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i

Seldon suddenly felt weary. It seemed as though this misinterpretation of his theory was con-
stantly going to occur. Perhaps he should not have presented his paper. (...)

“My mathematical analysis implies that order must underlie everything, however disorderly
it may appear to be, but it does not give any hint as to how this underlying order must be
found. Consider — Twenty-five million worlds, each with its overall characteristics and culture,
each being significantly different from all the rest, each containing a billion or more human be-
ings who each have an individual mind, and all the worlds interacting in innumerable ways and
combinations! However theoretically possible a psychohistoric analysis may be, it is not likely
that it can be done in any practical sense.”

Isaac Asimov, Prelude to foundation, 1988.
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Main contributions

This thesis covers part of my work as a Ph.D. student between October 2017 and October 2020
at École Normale Supérieure in Paris, under the supervision of Florent Krzakala. Several sec-
tions and chapters and adapted from the following works, where one can also find codes for
numerical implementation.

The first paper is mainly a statistical mechanics work, as it revisits a usual problem in a more
delicate setting, and invokes a mixture of several methods and results from spin glass theory.

1. A. Abbara, Y. Kabashima, T. Obuchi and Y. Xu. Learning performance in inverse Ising
problems with sparse teacher couplings. Journal of Statistical Mechanics: Theory and
Experiment, 2020 (7), 073402.

This work is the fruit of a project led by Professor Yoshiyuki Kabashima (Tokyo University)
and collaborators. We consider the inverse Ising problem, where one knows samples of spin
configurations and tries to infer the couplings. We focus on the teacher-student scenario in the
asymptotic limit, which was already analyzed in a previous work by Opper et. al., but now
deal with the case of sparse teacher weights. This adds a major difficulty, since student weights
are not sparse a priori. We design an ansatz for student weights, and combine the cavity and
replica method to compute the error achieved by the pseudo likelihood estimator. We compare
this result to simulations on several types of graphs.

The three following works divert from pure statistical mechanics and turn to inference prob-
lems, exploiting their links with message passing algorithms to characterize optimal reconstruc-
tion performance.

2. A. Abbara, A. Baker, F. Krzakala and L. Zdeborová. On the universality of noiseless linear
estimation with respect to the measurement matrix. Journal of Physics A: Mathematical
and Theoretical, 53 (16), 164001, 2020

This work looks into noiseless sparse linear regression, i.e. noiseless compressed sensing, a
very simple setting that can be seen as a building block towards more complicated schemes.
The initial motivation was to compare phase transitions in terms of reconstruction error in
the teacher-student scenario, for different types of sensing matrices. We study two cases: the
teacher-student scenario which exhibits for i.i.d. matrices a transition between a hard phase and
an easy one, and the `1 recovery case with the well-known Donoho–Tanner transition. We use
vector approximate message passing (VAMP) as solver, and find that many types of structured
matrices (but not all) share the same transitions, thus shedding light on a universal behavior.
This universality is easily clarified for rotationally invariant sensing matrices, but there is no
clear explanation for other more complicated matrices.
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3. C. Gerbelot, A. Abbara, and F. Krzakala. Asymptotic errors for high-dimensional con-
vex penalized linear regression beyond Gaussian matrices. Volume 125 of Proceedings of
Machine Learning Research, pages 1682-1713, 2020.

We consider penalized linear regression, where the regularization is a convex function. We
provide a theoretical proof to characterize reconstruction performance in the teacher-student
scenario, involving convex optimization and random matrix theory tools. The data matrix is
taken to be rotationally invariant, which goes beyond the usual Gaussian data setting. We
prescribe an oracle version of VAMP to solve the reconstruction problem. We build on its
analytic tractability, provided by state evolution equations which specify statistical properties
of the algorithm’s estimates through its iterations, and show that Oracle VAMP converges if the
regularization is strong enough. An analytic continuation argument is used to extend the result
to regimes where VAMP is non-convergent. State evolution equations are shown to match, at
their fixed point, the replica formula for the corresponding inference problem. Under reasonable
assumptions, the proof shows that the heuristic replica prediction is rigorous.

4. C. Gerbelot, A. Abbara, and F. Krzakala. Asymptotic errors for teacher-student convex-
generalized linear models (or: How to prove Kabashima’s replica formula). arXiv preprint
arXiv:2006.06581, 2020.

This paper extends the previous proof to generalized linear models with convex penalty, again
with rotationally invariant data matrices. It demonstrates a somewhat difficult replica formula
first derived by Kabashima in 2008, providing rigorous characterization for reconstruction per-
formance. This time, we lean on an oracle version of multi-layer vector approximate message
passing (MLVAMP) and its state evolution. To deal with non-linearity in the convergence proof,
we need to refine our analysis. We resort to a dynamical system approach, where a non-linear
system is recast into a linear one, and its convergence is determined through a linear matrix
inequality.

The last paper in this list builds a bridge between statistical theory of learning and statistical
physics, highlighting a connection between two quantities that are often encountered in each field.

5. A. Abbara, B. Aubin, F. Krzakala, and L. Zdeborová. Rademacher complexity and spin
glasses: A link between the replica and statistical theories of learning. Volume 107 of
Proceedings of Machine Learning Research, pages 27–54, 2020.

In this work, we consider binary classification problems, in particular the Rademacher complexity
which provides a worst-case scenario bound on the generalization gap, since it does not depend on
the rule used to generate labels. We note that it is closely linked to the ground state energy of the
corresponding problem and to the Gardner capacity, which are familiar quantities in statistical
physics. The Rademacher complexity can thus be computed in some cases thanks to the replica
method. We compare it to the best-case scenario, i.e. the teacher-student reconstruction error.
We show how such a connection can benefit both communities, and deepen intuition about
bounds on generalization performance.
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Index of notations and abbreviations

AMP Approximate message passing
ADMM Alternating direction method of multipliers
BP Belief propagation
DCT Discrete cosine transform
EP Expectation propagation
ER Erdős–Rényi
i.i.d. identically and independently distributed
IS Interaction screening
LASSO Least absolute shrinkage and selection operator
LMMSE Least minimum mean squared error
MAP Maximum a posteriori
MC Monte Carlo
MCMC Monte Carlo Markov chain
ML Maximum likelihood
MLVAMP Multi-layer vector approximate message passing
MSE Mean squared error
PL Pseudo likelihood
RF Random features
RR Regular random
RS Replica-symmetric
1RSB 1-step replica symmetry breaking
2RSB 2-step replica symmetry breaking
RSS Residual sum of squares
SE State evolution
SK Sherrington Kirkpatrick
SVD Singular value decomposition
SVM Support vector machine
TAP Thouless Anderson Palmer
VAMP Vector approximate message passing
VC Vapnik Chervonenkis

δ(·) Kronecker/Dirac delta
Tr Trace operator
(i, j) network edge or neighbor spins
∼ sampled from
d= equal in distribution
≈ approximately equal
∼= equal up to a constant factor
∝ proportional to
N (0,∆) Gaussian distribution of mean 0 and variance ∆
p / P / P Probability
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Introduction

A stroll through the statistical physics field

When talking to a non-specialist audience, it seems that statistical physics counts among the
fields of physics that are less heard of. And yet, it is an essential tool to understand the behavior
of large systems. Most people have in fact brushed upon it through thermodynamics lectures,
as thermodynamic laws are a consequence of its fundamental representations. A sketchy way
to present its scope of applications would be stating that statistical physics deals with systems
that contain a very large number of elements. Say that you want to describe the properties of
a gas of particles stored inside a box. Physics gives us an equation of motion for each particle,
including their interactions, so we could try and solve all those equations and obtain a complete
description of what is going on inside the box. Of course, this would be completely over the
top: the number of particles involved is of the order of the number of Avogadro, i.e. 1023, so
there is no way that we could technically solve all those equations. In fact, obtaining a simu-
lation of a few seconds is already a very hard task that requires a huge amount of computing
power. What do we do then, if a simple box of gas renders us helpless? We need to turn to a
statistical description of the particles, to move from a microscopic (i.e. at the scale of particle
interaction) to a macroscopic description (around the size of the box). Besides, we are not
actually interested in knowing the movement of every single particle. Instead, we would like to
know some characteristics of the system as a whole: for instance, we usually describe a gas by
its temperature and pressure, quantities which need to appear through our description of the
system. The foundations to statistical mechanics were laid out in the second half of the 19th cen-
tury by Maxwell, Gibbs [63], and of course Boltzmann. In this introduction, we will give a mere
glimpse of the discipline, simply to set the background that will be needed through the chapters.

The key to soothe down the serious headache of dealing with 1023 particles is to adopt a
probabilistic description. Instead of studying every single element of the system, we will focus
on the probability of the system being in a given configuration. A configuration, or a microstate,
is defined by all the dynamic variables needed to specify the state of each particle. The ensemble
of all configurations is the phase space. We also know the Hamiltonian H of the system, i.e.
the sum of all kinetic and potential energies of the system. Of course, the state of the system
depends on time, and many problems in statistical mechanics include a dynamical study. We
might be interested in observables evaluated on the system, some of them being proportional to
the system size i.e. extensive, while the other are intensive. Since the system has a very large
size, it is reasonable in many cases to assume that taking the average with respect to observation
time of an observable stabilizes: we say that the system is in its (Gibbs) equilibrium state, and
most of our work will be framed in this context. Feynman described equilibrium as the state
when all the “fast” things have happened and all the “slow” things not [51]. A fundamental
assumption of statistical physics is that all configurations have the same probability after equi-
librium is reached. One attempt to explain this is the ergodicity hypothesis: it basically states
that each microstate has been visited enough times so as to construct locally a uniform measure
in the phase space. Averaging any observable on a sufficiently long time would then be the same
as doing an average over the phase space. However, ergodicity is very hard to prove and is a
challenging topic in mathematics [175], and even if the ergodicity hypothesis holds, the time
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needed to do a sufficient spanning of the phase space is incredibly large... Another way of justi-
fying the uniform distribution over the space phase is that many observables actually have the
same value for “most” microstates (except an exponentially smaller number of configurations),
therefore many different measures on the phase space would still be an acceptable sampling of
the equilibrium measure, and still yield the right result for the observable average. In this sense,
the uniform measure is one among many measures that do the job.

We can now define the number of configurations (or the corresponding volume in the phase
space) that have a given energy E as W (E). It grows exponentially with the number of par-
ticles, hence it is convenient to use its logarithm. This is none other than the entropy1 of the
system, whose existence was postulated by Boltzmann [147], that reads S(E) = kB logW (E)
where kB is the Boltzmann constant and has the dimension of an energy divided by a temper-
ature (kB ' 1.38 × 10−23JK−1). Entropy is an extensive function of the energy. It is often
described as the disorder of the system, which can be a bit confusing. Entropy depends on the
number of configurations that yield the system’s energy. During a spontaneous reaction such as
an exchange of heat between a warm cup of tea and cold air, due to the very large number of
molecules, there are many more microstates where the energy is “spread out” between the drink
and air molecules, than those where energy stays stored in the drink. Entropy thus increases,
and the tea becomes lukewarm. Without going into detail, we remind the reader of the second
law of thermodynamics: if we consider an isolated system, entropy can only increase (or stay
constant for a reversible operation). While it is hard to develop an intuition about entropy, it
carries deep meaning and shows up in several fields of physics2.

From there we can also define the temperature T as ∂S
∂E ≡

1
T . Note that those statistical

quantities actually coincide with the thermodynamic ones and allow to properly recover the
meanings we are used to. When two isolated systems are put in contact, they exchange energy,
and equilibrium is reached when their temperatures are the same, as in Figure 1. Another usual

Figure 1: Left: two isolated systems with different temperatures, which are then
put in contact. Right: after a long enough observation time, the reunion of the
two systems reaches thermal equilibrium, as both their temperatures stabilize at

the same value.

setting is having a system that can exchange energy with a much larger macroscopic system,
often called a thermostat. The reunion of these two systems is isolated, hence has constant
energy. The large system is so huge that it has an absolute temperature T , and imposes it to
his little brother. The probability pn of finding the small system in one of its configurations of
energy En then reads pn = 1

Z exp(− En
kBT

), where Z =
∑
n exp(− En

kBT
) =

∑
EW (E) exp(− E

kBT
)

is called the partition function. We often replace the factor 1
kBT

by β. The average value of
the small system energy is called internal energy. It reads U = 1

Z

∑
nEne

−βEn and also verifies
U = −∂ logZ

∂β . An elegant property of this internal energy is that its fluctuation depends on the
1Shannon’s entropy, which was introduced in 1948, was named this way due to its similarities with Boltzmann’s

entropy. It is in fact one among many fruitful parallels that can be drawn between physics and information theory.
2A mesmerizing question that involves entropy is the so-called arrow of time first underlined in astrophysics

[47]: why do we observe time flowing in only one direction, even though most classical and quantum laws of physics
are time-symmetric? The second principle of thermodynamics does specify a preferred direction of evolution, since
entropy can only increase: time can only go forward...
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system size, and is of the order of 1/
√
N . N being very large, internal energy is known with

precision. A follow-up definition is the free energy F ≡ U −TS, which verifies F = − 1
β logZ. It

corresponds to the energy that is actually available for the system to perform work at constant
temperature, i.e. that does not get lost through heat, hence the word “free”. At equilibrium, a
system will minimize its free energy.

This formalism allows to explain phase transitions between different phases of matter, when
one external parameter is modified. At the heart of these transitions lies the competition between
energy and entropy. A famous example is the Ising model, which describes N spins lying on a
network’s vertices. Each spin can have value ±1, and neighboring spins interact. The energy of
one configuration is defined as E = −J

∑
(i,j) SiSj−B

∑
i Si. J is a coupling constant that tends

to align spins, and B is a magnetic field. Note that replacing constant J by random couplings
{Jij} gives rise to interesting and complex behaviors, and studying them is a purpose of a
whole field called spin glass physics. In our simple model, there are 2N possible configurations,
and each one has a probability 1

Z e
−βE with E its energy. At large temperature β → ∞, the

configurations with smaller energy dominate the partition function, and the system is in its
ground state. At small temperature β → 0, all configurations are equiprobable. The majority
of microstates have average magnetization M = 1

N

∑
i Si equal to zero. The system will be in

one of these configurations and have the corresponding energy, such that its entropy is maximal.
Starting from aligned spins for intermediate values of temperature, flipping some of them will
increase energy but also increase entropy: it is not clear which configurations are preferred
by the system. It turns out that for a dimension equal to or larger than 2, the Ising model
displays a phase transition. Below a critical temperature Tc, magnetization is non-null (it is
the ferromagnetic phase), but becomes equal to zero for beyond Tc (paramagnetic phase). The
magnetization is a good tracker of the state of the system, and studying it allows to characterize
the phase transition: it is called an order parameter3.

Figure 2: Shape of the average magnetization M as function of the temperature
for the two-dimensional Ising model. At T = Tc, the system displays a phase

transition as M becomes equal to zero.

Theoretical understanding of inference problems

In recent years, machine learning techniques that deal with huge datasets have improved in a
spectacular way. In particular, deep learning [91] relies on artificial neural nets with several
layers, and has achieved many successes in computer vision, speech recognition, image process-
ing, recommendation systems, spanning health and industrial applications. Machine learning

3An intriguing property of continuous phase transitions is the existence of critical exponents, which provide
a power law describing the behavior of order parameters at the transition. It seems that those exponents only
depend on some features of the physical system, and can be classified in universality classes [90].



Introduction 4

advances are at the heart of the so-called “fourth industrial revolution” [142]. State-of-the-art
neural nets are made up of numerous layers of artificial neurons, which are simple units that
perform a possibly non-linear operation based on the information received from their neighbors.
Layers of neurons are connected through synaptic weights, defining a specific architecture. The
resulting system is determined through a tremendous amount of parameters, which makes its
behavior almost impossible to visualize.

Input Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁷ Output Layer ∈ ℝ³
Input layer       Hidden layer                  Output layer

Figure 3: Example of fully-connected neural network. The input layer (left) is
connected to one hidden layer (middle), itself connect to the output layer (right).

The weights colors indicate their various strengths.

Yet, some network structures possess an important representation power : they become able
to extract significant features from the data. For instance in supervised learning, a network is
trained on examples of associated input-output, and needs to learn the underlying rule and gain
the ability to generalize outside the training set. To train the network, we can use the widely-
spread method of stochastic gradient descent, updating weights to go towards the minimum
of a loss function that measures the network’s mistakes on the training set. In this example,
the goal is to minimize a function (which can be seen as an energy) with a very large number
of parameters, as seen in the simple example of Figure 4. The mathematics involved [34] are
demanding and far from the intuition that we might extract from low dimension settings. The
advent of very complicated phenomena due to large dimension is common when we attempt to
analyze neural networks, and is referred to as the curse of dimensionality.

wave
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Figure 4: Example of energy landscape in 3 dimensions with several local minima.
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While the high number of parameters tends to transform neural nets into black boxes, a
silver lining is that statistical physics actually thrives in this large-size thermodynamic limit,
that we will call the asymptotic limit. In fact, statistical physics has a long standing tradition
in studying neural nets since the 80s, and more generally inference problems where we try to
recover an underlying distribution through analysis of data. A seminal work by Hopfield [75]
made an explicit connection between the field of spin glass physics and neural nets, and used
analytical approach from disordered systems to solve the now-called Hopfield model with random
input patterns. The perceptron, which corresponds to a one-layer neural network that performs
binary classification, was studied by Gardner [58] for random input data.

Figure 5: Single perceptron with inputs x1, ..., xN connected through weights
W1, ...,WN . The output is y = ϕ(

∑N
i=1Wixi), i.e. the weighted sum of inputs to

which we apply a non-linearity ϕ, often a sigmoid.

A method borrowed from statistical physics, called the replica method, allowed to determine
analytically how many patterns could be stored by N units, i.e. the capacity of the network.
Note that those initial works describe simple inference problem or take strong assumptions,
in particular assuming randomness properties of the data. Therefore, their results might not
directly apply to the complicated, very structured real-world data used in cutting edge applica-
tions of machine learning. However, this is not an admission of defeat: starting with building
blocks is essential to moving on to more complicated schemes. As the interest of statistical
physics in machine learning has been revived, physical methods have also evolved, see [56] for a
recent review of mean-field inference methods for neural networks. Statistical physics’ current
topics of research include – among many others – the generalization ability of networks, training
algorithms through mean-field methods, clarifying the role of depth in networks by studying
signal propagation through layers, or shedding light on dynamics of stochastic gradient descent
in simple models.

A striking fact that calls for a statistical physics approach is the presence of phase transitions
in some inference problems [88]. These transitions can be purely information-theoretical, or can
describe an algorithmic behavior. A common scenario is the following: there are N variables,
and we know M observations or samples, from which we want to extract information about
the variables. We look at the regime where both M and N are large, in fact we take them
both going to infinity, but such that their ratio α = M/N remains finite. A first question is
to know the theoretical bounds: in what case do we have enough information to recover the
variables? Say that our specific question can be tackled through an analytical approach. In
some settings, we observe that the problem undergoes a sudden transition from solvable to
unsolvable when varying some parameters, as shown in Figure 6. This can happen when the
data become too sparse, or too noisy. The transition happens at a critical value αIT (which
might be unknown); which provides an information-theoretic threshold: inference is successful if
the ratio of measurements to unknowns is larger than αIT, and fails otherwise. Another question
is computational efficiency: how can we design an algorithm that allows to solve the problem in
polynomial time? It turns out that a phase transition may also occur in computational behavior,
bringing to light another threshold αC (which also might be unknown), such that αC > αIT.
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When α > αC , the algorithm allows to solve the problem, but it fails to do so below αC , even
though inference is theoretically possible. The region between αC and αIT is called the hard
phase: in this area, we would like to find algorithms that push the computational solvable to
unsolvable transition more towards αIT, or to find a lower bound for the transition threshold.
Statistical physics can be informative for both questions. For some problems, it offers on one
hand an analytical approach with proper order parameter, which explains the information-
theoretical transition. On the other hand, it can provide insight about computational bounds
by describing algorithmic behavior as a dynamic system. This will be illustrated with message
passing algorithms [45] further down in our chapters. Note that several methods from physics
provide heuristic non-rigorous results, that still carry deeper intuition. As in many examples
through history, mathematics endeavors to prove these results, and build a solid theory around
them; this duality will be illustrated in our manuscript.

Figure 6: A typical phase diagram for an inference problem where the goal is
to reconstruct a signal. The reconstruction error is plotted with respect to α, the
measurements to signal ratio. The blue line represents optimal theoretical bound:
at αIT, the reconstruction error goes to zero, which can be explained as a physical
phase transition. The dashed red line represents an algorithmic behavior, where
the error goes to zero at αC . The resulting diagram is divided in three parts:

impossible, hard, and easy.

Research in machine learning is very active and channels efforts from many communities.
Statistical learning theory provides rigorous bounds on worst-case scenarios, while statistical
physics – relying on Bayesian inference – describes typical cases, which are the most probable.
Optimization (convex, or non-convex) concentrates on extremizing energy or loss functions, and
provides a mathematical analysis of corresponding algorithms. Information theory lays out a
theoretical framework to measure the amount of information transmitted through neural net-
works... Keeping track of those plentiful directions of research is certainly hard, but also exciting
as frontiers between disciplines become blurry, allowing for exchange of ideas, just like Shannon’s
entropy was named after Boltzmann’s.

In this thesis, we will focus on a small portion of interaction between statistical physics
and inference questions, in particular exploiting the physics toolbox developed in the context of
spin glass theory, with the replica and cavity methods. We will build up on the relation between
those methods and message passing algorithms, and go beyond the usual framework of Gaussian
identically and independently distributed data, which was the first playground of statistical
physics results. One concern will be to justify and prove heuristic physics result, exploiting
optimization and random theory elements. Our work deals with simple linear networks, but also
with more complex generalized linear models, i.e. multi-layer networks.
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Organization of the thesis

In Chapter 1, we stay in the physics field and start by introducing spin glass physics, to illustrate
the replica method through a well-known example, the Sherrington-Kirkpatrick model. We then
apply this method on an inverse Ising problem with sparse teacher weights. In Chapter 2,
we drift towards signal processing and machine learning, and address the inference problem
of linear regression or compressed sensing. We introduce message passing algorithms and show
that noiseless compressed sensing displays universal transitions for a large class of data matrices.
Chapter 3 leans towards mathematics and optimization, as it turns to convex penalized linear
regression, and provides a mathematical proof of the validity of the associated replica free energy,
relying on a convergence proof of Vector approximate message passing algorithm. Chapter 4 is a
generalization, since it shows the validity of the replica free energy for a generalized linear model
with a convex penalty, relying on a dynamical systems inspired analysis of Multi-layer vector
approximate message passing. Finally, Chapter 5 builds a bridge between statistical learning
theory – which provides worst-case bounds on the generalization gap in classification problems
– and statistical physics, by highlighting the link between the Rademacher complexity and the
physical ground state energy. Each chapter will be followed by a summary of results and arising
questions.
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Chapter 1

The replica method and the inverse
Ising problem with sparse weights

1.1 The replica method for spin glass models

1.1.1 Introduction to spin glass models

Spin glass models were originally introduced to describe some metal alloys such as copper-
magnesium or gold-iron. They differ from standard ferromagnets where magnet spins align;
or paramagnet where magnets spins are anti-aligned: in spin glasses, both behaviors compete
to produce a non-regular pattern. The magnetic elements are modeled by N variables, that
we call spins. Each spin is described by a scalar parameter Si, and we define S = {Si}i=1,...,N .
Those spins interact with each others in a given way, and this interaction will influence how they
behave together. Spin glasses are in fact very complex to study and show various phenomena of
interest, both in-equilibrium and off-equilibrium. A nice and broad introduction to spin glasses
in statistical physics can be found in [107].

Figure 1.1: Schematic spin system where spins lie on a square lattice and are
represented by up or down arrows. Left: ferromagnetic state where spins are

aligned. Right: random spin glass state.

The interaction between spins are modeled by the coupling variables J = {Jij}i,j=1,..,N which
are distributed according to some probability distribution P (J). The spins are subjected to local
fields h = {hi}i=1,...,N . For a given set J, the system is described by the Ising Hamiltonian,
already mentioned in the introduction:

HJ({Si}) = −
N∑

i,j=1
JijSiSj −

N∑
i=1

hiSi. (1.1)

A typical phenomenon in spin glass systems is frustration: depending on the sign of couplings
Jij , two spins will tend to be aligned or anti-aligned to minimize the energy of the system.
However, a given spin might be under two opposing constraints from two of its neighbours, and
it is not clear which configuration is the most energetically favorable, as shown in Fig. 1.2. From
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Figure 1.2: Representation of a system of 3 spins with possible frustration. The
green dashed arrows symbolize positive couplings, which tend to align spins, while
blue dashed arrows symbolize negative couplings which tend to anti-align spins.
Left: the spin configurations satisfy the constraints imposed by the couplings.
Right: Frustrated system. Spins 1 and 2 are aligned, but the positive coupling J13
pushes spin 3 to be up-oriented, while negative J23 pushes it to be down-oriented.

the Hamiltonian, we can define the partition function

ZJ =
∑
S
e−βHJ(S) (1.2)

with β an inverse temperature, and the average free energy

ΦJ = − 1
βN

logZJ. (1.3)

Note that ΦJ depends on a precise set of couplings: hence it differs for every spin glass sample!
Therefore it is hard to draw general statements from it. Luckily, a standard thermodynamic
argument shows that the free energy is self-averaging: it will reach the same value for any set
of couplings J with a non-vanishing probability. Basically, a quantity is self-averaging when it
concentrates around its average value and its variance goes to zero. The free energy is of order
1, and taking the average on the couplings distribution yields

Φ2
J

J
− (ΦJ

J)2 = O
( 1
N

)
. (1.4)

We can thus appropriately define the average value of the free energy density:

Φ = ΦJ
J = − 1

βN
log

∑
S
e−βHJ(S)

J
. (1.5)

At first glance, we see that computing the average free energy is no easy task: you need to first
calculate ZJ for any configuration of the couplings, then take the logarithm of this complicated
integral, and finally average over the couplings. This is called the quenched average (the first
step is done with a frozen choice of couplings J). A simpler computation would be to perform
the average over the couplings before taking the logarithm, i.e.

− 1
βN

log
∑
S
e−βHJ(S)

J
(1.6)

which is called the annealed average. In some fortunate cases, the quenched and annealed aver-
ages can actually be the same, but this is not true in general. There is no escaping: we need to
find a way to evaluate the very difficult quenched free energy.

While strenuous, this task would be very informative: the free energy carries useful informa-
tion about the state of the system, and will be written in terms of parameters that hold physical
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meaning, and can help understand the configuration of the spins.

1.1.2 Goal of the replica method

The replica method aims at simplyfing the free energy computation, and relies on the following
replica trick:

logZ = lim
n→0

Zn − 1
n

. (1.7)

The idea is essentially to replace the computation of logZ by Zn. The dubious reader might
object that this does not seem much simpler! In fact, in some settings it is indeed feasible to
calculate Zn, as you will see in the following examples. We have not written the average free
energy yet, so we add a few elements to reach

Φ = − 1
βN

lim
N→∞

lim
n→0

ZnJ − 1
n

. (1.8)

To do this calculation properly, we should a priori make sure that the limit n→ 0 exists, and we
should take it before the limit N →∞. However, in practice we cannot respect those constraints:
we will have to deviate from this agenda to reach an analytic result.

1.1.3 Example of replica-symmetric calculation: the Sherrington-Kirkpatrick
model

The Sherrington-Kirkpatrick model [148] is a celebrated spin glass model that displays infinite-
range interactions. Its Hamiltonian reads

HJ(S) = −
∑
i<j

JijSiSj −
∑
i

hSi (1.9)

with h a constant external field, and the couplings satisfy

Jij = 0 J2
ij = 1

N
Jij = Jji. (1.10)

We will walk through the main steps of the calculations to provide an overview of the use of
the replica method. We take the couplings as Gaussian variables, but note that the result only
depends in fact on their first two moments.

Averaging the replicated partition function

We start off by writing ZnJ, that we call the replicated partition function. The idea is to
introduce n replicas of the system, that we denote with the subscript a:

ZnJ =
∑
J
P (J)

∑
Sa

i

exp

β∑
a

∑
i<j

JijS
a
i S

a
j + β

∑
a

∑
i

hSai

 . (1.11)

where ∑
Sa

i

=
n∑
a=1

N∑
i=1

∑
Sai =±1

.
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Taking the couplings to be Gaussian, we can compute the average

ZnJ =
∫ ∏

i<j

dJij e−
J2
ij

2N
√

2πN

∑
Sa

i

exp

β∑
a

∑
i<j

JijS
a
i S

a
j + β

∑
a

∑
i

hSai

 (1.12)

=
∑
Sa

i

exp

 β2

2N
∑
i<j

(
n∑
a=1

Sai S
a
j

)2

+ βh
∑
i

∑
a

Sai

 . (1.13)

Note that

∑
i<j

(
n∑
a=1

Sai S
a
j

)2

=
∑
i<j

∑
a

(Sai Saj )2 + 2
∑
i<j

∑
a<b

Sai S
b
iS

a
j S

b
j (1.14)

= nN(N − 1)
2 +

∑
a<b

(∑
i

Sai S
b
j

)2

−
∑
a<b

∑
i

(Sai Sbj )2 (1.15)

= nN(N − 1)
2 − n(n− 1)N

2 +N2∑
a<b

(∑
i

Sai S
b
i

N

)2

(1.16)

Keeping only terms of dominant order in N and replacing in the average free energy above, we
reach

ZnJ =
∑
Sa

i

exp

β2Nn

4 + β2N

2
∑
a<b

(∑
i

Sai S
b
i

N

)2

+ βNh
∑
i

∑
a

Sai
N

 . (1.17)

This first step is already interesting: averaging out on the couplings yields an integral that
depends only on the quantities

∑
i
Sai S

b
i

N and
∑
i
Sai
N . The first one quantifies the overlap between

the spins from replicas a and b, and the second the average magnetization of the spins for replica
a: we begin seeing quantities that carry physical meaning. We would like to write the free energy
as a function of those variables, instead of individual spins. Using the following identity1:

exp

β2N

2
∑
i

(
Sai S

b
i

N

)2
 =

∫
dQab

√
β2N

2π e−
β2N

2 Q2
ab+β

2N
∑

i

Sa
i
Sb
i

N
Qab , (1.18)

the replicated partition function becomes

ZnJ =
∑
Sa

i

∫ ∏
a<b

(
dQab

√
β2N

2π

)

× exp
{
−
∑
a<b

β2N

2 Q2
ab + β2N

∑
a<b

Qab
∑
i

Sai S
b
i

N
+ β2Nn

4 + βNh
∑
i

∑
a

Sai
N

}

=
∫ ∏

a<b

(
dQab

√
β2N

2π

)
exp

{
−N

[
β2

N

∑
a<b

Q2
ab −

β2n

4

]}(∑
Sa

exp
{
βh
∑
a

Sa + β2
∑
a<b

QabS
aSb

})N

ZnJ =
∫ ∏

a<b

(
dQab

√
β2N

2π

)
e−NΦn[Q] (1.19)

1(1.18) is simply a Gaussian integral where we have reverted the usual right-hand and left-hand terms, but is
often referred to as the Hubbard-Stratonovitch transform (which might unnecessarily impress the reader), as it
was first used by Hubbard and Stratonovitch in quantum mechanics. It contains the idea of converting a system
of particles with two-body interactions, into a system of independent particles interacting with a field. This trick
is widely used in replica calculations since it allows to “decouple” replicas.
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where Q = {Qab} is a n× n matrix and

Φn[Q] = −nβ
2

4 + β2

2
∑
a<b

Q2
ab − log

∑
Sa

exp

βh∑
a

Sa + β2∑
a<b

QabS
aSb

. (1.20)

Taking the limit N →∞ first

At this stage, we are tempted to use a saddle-point method on (1.19). This means that we first
take the limit N →∞ before the limit n→ 0: a priori it might be wrong to do this. To progress
further, we assume that we are allowed to reverse those limits, and get to

f = − lim
n→0

1
βn

min
Q

Φn [Q] . (1.21)

This step is also tricky: we are looking for the n(n−1)
2 values inside matrix Q∗ that minimize

function Φn, but recall that n is bound to go to zero. We would then consider a negative number
of parameters: this does not soundly make sense, and something could go wrong when taking
n→ 0. Still, we feign ignorance and go on looking for Q∗ satisfying

∀a < b,
∂Φn

∂Qab

∣∣∣∣
Q∗

= 0 (1.22)

∀a < b, Q∗ab =
SaSb exp

{
βh
∑
a S

a + β2∑
a<bQ

∗
abS

aSb
}

∑
Sa exp

{
βh
∑
a S

a + β2∑
a<bQ

∗
abS

aSb
} . (1.23)

The right-hand term can be seen as an average 〈·〉Q with respect to the partition function

Z(Q,Sa) =
∑
Sa
e−βH[Q,Sa] (1.24)

where the Boltzmann measure is on Hamiltonian

H[Q,Sa] = −h
∑
a

Sa − β
∑
a<b

QabS
aSb. (1.25)

Saddle-point equations thus read

∀a < b, Q∗ab = 〈SaSb〉Q∗ . (1.26)

We are now focusing on the set of parameters Q∗, which hold the meaning of average overlaps
between two replicas. In particular S∗aa, for a = 1, ..., n is called the self-overlap of replica a. For
our spin system, the self-overlap is always equal to one.

Choosing an ansatz

We now reach a key point of the calculation. Solving the saddle-point equations over the whole
space of possible values of Q is too hard: we need to assume a reasonable parametrization of
the matrix Q. Remember that we introduced the replicas of the system as a formal trick to
write the replicated partition function: they are all equivalent. In particular, the function Φn[Q]
should be invariant if we exchange lines or columns of the matrix. The simplest and natural
ansatz is thus the replica-symmetric (RS) ansatz: Qab = Qcd for any a 6= b, and c 6= d. This
parametrization states that

Qab = q0 + (1− q0)δab (1.27)
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such that

Qaa = 1 for a = 1, ..., n (1.28)
Qab = q0 for a 6= b (1.29)

where q0 is called the order parameter. Let us plug this into:

− 1
βn

Φ(q) = − 1
βn

−nβ2

4 + β2

4
∑
a<b

q2
0 − log

[∑
Sa
eβ

2q0
∑

a<b
SaSb+βh

∑
a
Sa
] . (1.30)

Using

eβ
2q0
∑

a<b
SaSb = eβ

2q(
∑

a
Sa)2−β2q0

∑
a
(Sa)2 (1.31)

= e−nβ
2q0

∫
Dzeβ

√
q0
∑

a
Sa (1.32)

with Dz = dz√
2πe
− z

2
2 , we can decouple the sum on the replicas, reaching

− 1
βn

Φ(q) = − 1
βn

{
−nβ

2

4 + n(n− 1)β2

4 q2
0 − log

[∫
Dz(2 cosh(β√q0z + βh))n

]}
. (1.33)

Taking the limit n→ 0

Up till now, we were considering an integer number of replicas. To take the limit n → 0, we
assume that there is an analytic continuation of the value of − 1

βnΦ(q) for real values of n, which
yields

Φ = −β4 (1− q0)2 −
∫

Dz log[2 cosh(β√q0z + βh)], (1.34)

and the corresponding saddle-point equation is

q0 =
∫
Dz tanh2(β√q0z + βh). (1.35)

Let us take a step back and check where we are: we have computed the average free energy, as
a function of one parameter q0. The state of our system is described by the minimum of this
free energy: we only need to minimize it with respect to q0. To reach this stage, we have done
several moves that could possibly lead to a mistake: we have reverted limits, chosen a particular
ansatz, and assumed an analytic continuation of free energy for n→ 0.

Solving (1.35) for h = 0 shows that q0 = 0 is the only solution for β < 1, but another non-
trivial solution exists for β > 1. Since β plays the role of an inverse temperature, it means that
the system undergoes a phase transition between a regime of high-temperature, where it has a
paramagnetic phase, and a regime of low temperature, the spin glass phase. At h 6= 0, there is
no phase transition.

We could stop here and be happy with our result, but since we have done several fishy steps,
we need to be extra careful and double-check it. In fact, something does go wrong with our
calculation, when we take the limit n → 0. We already see that taking n → 0 makes Φn a
function of a negative number of parameters, which does not mean much, but we need some
amount of faith – and some amount of craziness – to go through replica calculations. To evaluate
the correctness of our solution we can probe the stability of the fixed point, by computing the
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eigenvalues of the Hessian matrix(
∂2Φn[Q]
∂QcdQef

)
{c,d},{e,f}

∈ R
n(n−1)

2 ×n(n−1)
2

which is well defined for integer values of n, and then taking n→ 0 to see how it affects them.
If matrix Q is a minimum of Φn, the eigenvalues of the Hessian matrix must all be strictly
positive at this point. However, a detailed analysis in the replica-symmetric ansatz [39] provides
all eigenvalues of the Hessian matrix, and shows that for any value of h, one of them becomes
negative as n → 0 if the temperature is sufficiently low. Therefore our solution is not valid
anymore as the fixed-point becomes unstable and is therefore not a global minimum, and we
need to pick a different ansatz for low temperature regime. Another way of seeing that something
went wrong is to compute the entropy of the system. The entropy is positive by definition, being
the logarithm of the number of configurations, however taking the RS ansatz we find a negative
entropy at zero temperature. To understand how we can choose an appropriate ansatz for the
matrix Q and what it would mean, we will have to dig deeper into the physical meaning of
overlap parameters.

1.1.4 An overview of replica symmetry breaking

Pure states and ergodicity breaking

Until now, we simply went with the flow of the calculation, but let us see what statistical physics
tell us about the behavior of this disordered spin system. By minimizing the free energy, we are
looking for the Gibbs equilibrium state reached by the system. In fact, this equilibrium state can
be seen as a mixture of several pure states, which themselves cannot be split: they form a basis
of all states. In a pure state, correlations between spins need to vanish as the distance between
them goes to infinity, which is a priori not the case for the equilibrum state. At low temperature,
the system undergoes a breaking of ergodicity: only a subpart of the space of configurations is
explored. In that case, several pure states coexist, and we can rewrite the average 〈·〉 on the
Hamiltonian as:

〈·〉 =
∑
γ

wγ〈·〉γ (1.36)

where γ denotes pure states, and the average 〈·〉γ is an average over the Boltzmann measure for
all configurations belonging to the pure state γ:

〈·〉γ = 1
Zγ

∑
S∈γ
· e−βHJ(S) (1.37)

Zγ =
∑
S∈γ

e−βHJ(S). (1.38)

Note that those averages depend on the disordered couplings J.

Physical parameters

• Edwards-Anderson parameter

We would like to define a nice parameter to describe a given configuration of the spins. For
magnets, the magnetization 1

N

∑N
i=1〈Si〉 comes in handy, but since the couplings J are unbiased,

the spins end up frozen in all directions, and averaging the magnetization on the disorder would
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simply give 0. Therefore, we prefer using the Edwards-Anderson parameter:

qEA = 1
N

N∑
i=1
〈Si〉2

J (1.39)

which is non-zero if the magnetizations are locally non-zero.

• Overlap between two spin configurations

Another parameter we are interested in the overlap, which allows to compare two spin configu-
rations, and which naturally shows in the replica calculation. For two spin configurations S,S′,
the overlap reads

qSS′ = 1
N

N∑
i=1

SiS
′
i. (1.40)

• Overlap between two states of the system

We can also define an overlap between states γ and η, which themselves contain several config-
urations, as

qγη = 1
N

N∑
i=1
〈Si〉γ〈Si〉η (1.41)

which unfolds as

qγη =
∑
S∈γ

∑
S′∈η

1
ZγZη

e−βHJ(S)e−βHJ(S′)qSS′ . (1.42)

Hence the overlap between two states of the system is the same as taking overlaps between
all configurations between those two states, and summing on their statistical weight. For a
given system, we would like to know the overlaps between pure states: to do so we define their
probability distribution PJ(q). Interestingly, we can rewrite qEA as a sum on pure states γ, η:

qEA = 1
N

N∑
i=1

∑
γ,η

wγwν〈Si〉γ〈Si〉η
J =

∑
γ,η

wγwηqηγ =
∫

dq q PJ(q)J
. (1.43)

Physical meaning of the overlap matrix Q

Besides, note that qEA can be written in the same fashion as a replica calculation, taking two
replicas c and d of the system, and Sc, Sd both being the set of all configurations:

qEA = 1
Z2

J

∑
Sc

∑
Sd

e−βHJ(Sc)e−βHJ({Sd})qScSd
J

(1.44)

= lim
n→0

1
N

n∑
a=1

∑
Sa
e−β

∑n

a=1HJ(Sa)
N∑
i=1

SciS
d
i

J

(1.45)

= lim
n→0
〈ScSd〉

J
. (1.46)

In the replica-symmetric ansatz, this is 〈ScSd〉
J

= Q
(RS)
cd , the value of Qcd at the saddle-point

solving (1.35), in the replica-symmetric case. Note that (c, d) could be any pair of different
indices. Hence this relation makes sense in the RS ansatz, but becomes problematic in a non-
symmetric ansatz where the overlaps could have different values. In fact, in that case we need
to broaden our calculation to include more than one saddle-point. Indeed, if the matrix Q is not
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invariant under permutations of the replicas, then any permutation provides a different saddle-
point with the same free energy. We would hence need to take into account all those equivalent
saddle-points, and sum on all of them. Hence the general case reads:

qEA = lim
n→0

2
n(n− 1)

∑
a<b

Qab. (1.47)

Matching this with equation (1.41), we get

P (q) ≡ PJ(q)J = lim
n→0

2
n(n− 1)

∑
a<b

δ(q −Qab). (1.48)

Finally, we see that the fraction of elements equal to q in the matrix Q gives the average
probability that two pure states of the system have overlap q. Hence, the parameters have
a clear physical meaning, and correspond to possible overlaps among pure states. In the RS
ansatz, we only have a single possible overlap q0 = Qab for all a 6= b, which means that only
one pure state exists, and the overlap q0 is the self-overlap of this single pure state. At low
temperature, as ergodicity breaking occurs, several pure states appear and hence give rise to
several overlap values. Bearing this in mind, we can try to formulate another ansatz for the
matrix Q.

1-step replica symmetry breaking

Now that we see the link between the overlap matrix Q and overlaps between pure states, we
can turn to a more sophisticated ansatz. The puzzle is still very hard to solve: we have no
idea how many pure states there are, what their self-overlap is, how many configurations they
include... Once again, we will try to design a somewhat naive ansatz and see how well it performs
(notably by comparing it to simulations), hoping that it will be well enough to encapsule the
physical reality. The simplest – although not that simple – ansatz is the first step of replica
symmetry breaking (1RSB), which was introduced by Parisi [123, 124]. Say that among the n
replicas, there exists n/m groups of m replicas each. Of course, n needs to be a multiple of m for
this to make sense. Let us further assume that the configurations within one state all have the
same overlap q1, and that configurations within two different states all have the same overlap
q0. Basically, the phase space is divided into clusters, each cluster being a state containing a
number of configurations, and all clusters having the same internal overlap and mutual overlap,
as shown in Fig. 1.3. The replicas reproduce this structure. For instance, if we take n = 9 and
m = 3, the 1RSB matrix Q reads:

Q =



1 q1 q1
q1 1 q1 · · · q0
q1 q1 q1

1 q1 q1
· · · q1 1 q1 · · ·

q1 q1 1
1 q1 q1

q0 · · · q1 1 q1
q1 q1 1


. (1.49)

Very well, but we still need to figure out what will happen when we take the mysterious n→ 0
limit, since m < n. According to (1.48), we have

P (q) = n−m
n− 1 δ(q − q0) + m− 1

n− 1 δ(q − q1) (1.50)
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Figure 1.3: Schematic representation of the phase space for 1-step replica sym-
metry breaking. The axes are some 2D projection of the configuration phase space.
The yellow blobs represent configuration clusters. The self overlap q1 is the same
within each cluster, while q0 is the mutual overlap between any pair of clusters.

and taking the limit n→ 0, we get to

P (q) = mδ(q − q0) + (1−m)δ(q − q1). (1.51)

Since we are striving to keep some meaning into the quantities we are manipulating, we would
like to keep P (q) a probability, hence smaller than 1, which implies that 0 ≤ m ≤ 1. Besides, we
would like 0 ≤ q0 ≤ q1 since two configurations belonging to the same state should be “closer”.
Our recipe is now complete: we need to plug this ansatz inside the replica calculation, to write
the free energy as a function of q0, q1,m; and to extremize it to reach a set of saddle-point
equations. There are still some difficulties along the way, but we will not detail them here since
we were mainly interested in explaining the idea between replica calculations. However, it is
worth noting that the result from the 1RSB ansatz is very close to numerical experiments, and
much more satisfactory than the RS wrong result in the low temperature spin glass phase.

Beyond 1RSB

While the 1RSB ansatz performs well for the SK model, it is clear that is still a simplified way
to model the phase space. We could keep repeating the same plan by splitting clusters into sub-
clusters, and adding a new overlap q2: this is two-step replica symmetry breaking. in practice,
the computation keeps getting harder, and it is not necessarily useful to increase complexity
since the 2RSB scheme does not always show a significant difference from the 1RSB result.

Although somewhat hard to use at first try, the replica method is a very powerful tool to
reach a heuristic solution for many problems. While it clearly lacks mathematical rigor, a huge
effort was made in order to prove replica results in several settings, and we will come back to
this later in this thesis. The take-away message is that the replica method manages to capture
some very deep and fundamental properties of disordered systems, and to incorporate them
accurately in its structure: it is no wonder that it has been used so consistently in the past 40
years, and is still a stepping stone to formulate many questions, without completely unveiling
its secrets. Let us stray away from the replica method for some time: it will show up again in a
few paragraphs as a way of tackling some inference problems.
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1.2 An introduction on statistical inference

In A study in scarlet, by Sir Arthur Conan Doyle, Sherlock Holmes makes his first appearance
as Dr Watson reads one of his articles. The latter states that “From a drop of water, a logician
could infer the possibility of an Atlantic or a Niagara without having seen or heard one of the
other. (...) By a man’s finger nails, by his coat-sleeve, by his boot, by his trouser knees, by the
callosities of his forefinger and thumb, by his expression, by his shirt cuffs – by each of these
things a man’s calling is plainly revealed. That all united should fail to enlighten the competent
enquirer in any case is almost inconceivable.” Watson does not buy it, and indignantly comments
“What ineffable twaddle!” We may want to agree: Holmes’ deductions often seem phenomenal
and somewhat far-fetched. Holmes then argues that this is no empty gibberish, since detectives
often come to him, “lay all the evidence before [him],and [he is] generally able, by the help of
[his] knowledge of the history of crime, to set them straight.” The reason why Holmes’ findings
might not always convincing is the little amount of information that he has. The more data he
has on a person, the more believable his deductions become. Nevertheless, he points out that
he is able to draw conclusions thanks to his “special knowledge”. What makes Holmes such a
gifted investigator is his shrewd use of inference.

Statistical inference describes the process of deducing information about a distribution of
underlying data, from the knowledge of observations. Let us see how to formulate this in
mathematical terms, taking up the approach of Bayesian inference. We consider a set of variables
x = {xi}i=1,...,N and measurements y = {yµ}µ=1,...,M that contain some information on the
variables.

• We assume that the data is distributed according to P (x), the prior distribution, that we
may only know partially. Note that the data does not effectively have to be a random
variable, we merely use the probability notation to describe a belief about the values of x.

• The way in which the observations are generated or derive from the data is P (y|x), the
likelihood distribution.

• The conditional probability of having data x given observations y is P (x|y), the posterior
distribution.

They are linked through the well-known Bayes formula

P (x|y) = P (y|x)P (x)
P (y) . (1.52)

For Holmes and Watson, the variables could be information about the suspect’s life and where-
abouts, while the observations are all the clues that are so brilliantly interpreted by Sherlock.
The “special knowledge” he mentioned lies in distributions P (x) and P (y|x), and his deductions
are a proxy for P (x|y). Apart from profiling a culprit, inference problems show up in many
fields: machine learning, social science, information theory, biology, signal processing... They
can be very complex and challenging, fuel a large amount of research, and applications are ev-
erywhere. Statistical inference is particularly exciting in our modern era of big data: for many
problems we can obtain a huge amount of information, thousands, millions of measurements.
How accurate would Sherlock Holmes become if he also had access to the social media accounts,
the GPS localization, and the message history of the suspect! Even Watson would not do too
bad... We will hence focus on the large-dimensional thermodynamic limit: we will consider
M,N →∞ but will often keep their ratio α ≡M/N of order 1.
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Teacher-student scenario

Within the Bayesian inference set-up, some problems can be written in the teacher-student
scenario.

i) We assume that a teacher generates the variables x0 from a probability distribution PT (x0),
then the measurements are obtained through a likelihood probability PT (y|x0). The original
variables x0 are called the ground truth.

ii) A student then starts from the observations y, and has some knowledge through distribu-
tions PS(x) and PS(y|x), and would like to recover x0.

Estimators

From here comes an important question: how do we measure the performance of an estimator
x̂ that aims at recovering x0? There are several options, but we will often use the following
quantities:

• The maximum a posteriori (MAP) estimator verifies

x̂MAP = arg max
x

PS(x|y) (1.53)

• We could also try to minimize the mean squared error (MSE) between the signal and the
ground truth defined as

MSE(x̂,x0) = 1
N

E[‖x̂− x0‖22] (1.54)

where the average is on the prior distribution PT (x0). When the ground truth is not
known, we need to assume that the signal x is sampled from the distribution PS(x|y), on
which we average to get MSE(x̂,x).

Bayes optimal versus mismatched case

The distributions used by the student may or may not coincide with those of the teacher. Clearly,
it would be ideal if the student knows the ground truth prior distribution and likelihood since
it would give him more accurate information about the data, but it is often not the case. Thus
we distinguish the two settings:

• If PS(x) = PT (x) and PS(y|x) = PT (y|x), we are in the Bayes optimal case.

• If PS(x) 6= PT (x) and/or PS(y|x) 6= PT (y|x), we are in the mismatched case.

Nishimori identity Say that we are considering an inference problem in a Bayes optimal
teacher-student setting. x0 is again the ground truth, y the measurement given by the teacher,
and let us take xa,xb,xc three configurations sampled independently from the posterior distri-
bution P (x|y). Take f any function of two configurations. We can then write

E[f(xa,xb)] =
∫

dxa dxb dyP (xa|y)P (xb|y)P (y)f(xa,xb) (1.55)

E[f(x∗,xc)] =
∫

dx0 dxc dyP (x0,xc,y)f(x0,xc). (1.56)



Chapter 1. The replica method and the inverse Ising problem with sparse weights 20

Note that

P (x0,xc,y) = P (xc|x0,y)P (x0,y) (1.57)
= P (xc|y)P (y|x0)P (x0) (1.58)
= P (xc|y)P (x0|y)P (y) (1.59)

where we used the independence of xc and x0, and Bayes formula. Thus we reach

E[f(x0,xc)] =
∫

dx0 dxcP (xc|y)P (x0|y)P (y)f(x0,xc) (1.60)

and finally the Nishimori identity

E[f(x∗,xc)] = E[f(xa,xb)]. (1.61)

This identity implies
(x∗,xc) d= (xa,xb) (1.62)

where d= is the equality in probability law. In particular, the overlap between the ground truth
and any replica of the system, and the overlap between two distinct replicas, are the same. Thus
there is only one possible value of overlap between any two different replicas of the system, which
means that a Bayes optimal teacher student setting is always replica-symmetric.

1.3 Inverse Ising problem with sparse teacher couplings

This section is adapted from [3].

1.3.1 Introduction of the inverse Ising problem

We come back to an Ising model consisting of N spin variables S = {Si}i=1,...,N with symmetric
couplings J = {Jij}i,j=1,...,N , subjected to local fields H = {Hi}i=1,...,N with Hamiltonian

H(S|J,H) = −
N∑
i<j

JijSiSj −
N∑
i=1

HiSi (1.63)

and probability distribution

PIsing(S|J,H) = 1
ZIsing

e
∑N

i<j
JijSiSj+

∑N

i=1 HiSi , (1.64)

where J ∈ RN×N and H ∈ RN are the couplings and external fields. The inverse Ising prob-
lem consists in inferring the couplings and external fields from a given dataset of spin samples
DM ≡ {S(µ)}Mµ=1, where S(µ) = {S(µ)

i }i=1,...,N is a sample of spin configuration, and M denotes
the dataset size.

The inverse Ising problem is attracting more and more attention with the increasing inter-
est in machine learning technologies. One recent application spurring this trend is for retinal
neurons [141, 150], and subsequent applications to a wide range of systems have been con-
ducted [159, 70, 176, 177, 166, 160, 161, 162], showing the potential usefulness of the inverse
Ising framework.
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The maximum likelihood estimator

A typical estimator for couplings and local fields is the maximum likelihood (ML) estimator
defined by

{
ĴML(DM ), ĤML(DM )

}
= arg min

J,H

−
M∑
µ=1

logPIsing
(
S(µ)∣∣J,H)

 . (1.65)

This canonical estimator enjoys some nice properties in the asymptotic limit. First, it is con-
sistent: it converges in probability to the true parameter. Besides, it is unbiased: its aver-
age does converge to the true parameter. The ML estimator is thus a good one, but is not
always appropriate for the inverse Ising framework as it has an exponentially large computa-
tional cost. Certain approximations and/or algorithms must be tailored to ease this difficulty
and meet the demands of advanced applications, which has been attempted in previous stud-
ies [24, 81, 156, 74, 26, 144, 136, 108, 35, 9, 172, 94, 173].

The pseudo likelihood and local estimators

One of the most effective examples is the pseudo likelihood (PL) method [24, 9]. The idea is
to replace the distribution PIsing by another one that approximates it, and makes the estimator
easier to compute. To do this, we define S\i ≡ {Sj}j 6=i the set of N − 1 spins which does
not include spin i; Hi = {Hj}j 6=i and Ji = {Jij}j=1,..,N . For each spin Si, we introduce the
conditional distribution

P
(
Si
∣∣S\i,Ji, Hi

)
= 1
Zi
e
Si

(∑
j(6=i) JijSj+Hi

)
(1.66)

where the normalization reads

Zi = 2 cosh

∑
j( 6=i)

JijSj +Hi

 . (1.67)

The PL estimator is obtained separately for each spin Si by

{
ĴPL
i (DM ), ĤPL

i (DM )
}

= arg min
Ji,Hi

−
M∑
µ=1

logP
(
S

(µ)
i

∣∣S(µ)
\i ,Ji, Hi

) (1.68)

= arg min
Ji,Hi


M∑
µ=1

`PL
(
S

(µ)
i hi(S(µ)

\i ,Ji, Hi)
) , (1.69)

where we have used functions

hi(S\i,Ji, Hi) =
∑
j(6=i)

JijSj +Hi, (1.70)

`PL (x) = −x+ log 2 cosh x. (1.71)

The PL estimator is consistent in the asymptotic limit, and it is local: it enables us to treat large
systems because local couplings directly connected to a given spin are isolated from the other
couplings, and thus can be estimated independently. Each coupling vector Ji can be assessed
independently from the others with low (polynomial) computational cost. However, it remains
a simplification of the complete setting, and loses the coupling symmetry Jij = Jji: in general
the estimated couplings ĴPL

ij and ĴPL
ji will not be equal.
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Note that we could do a broader analysis on any local cost function ` replacing `PL in (1.69).
A remarkable advantage of local learning is its theoretical tractability in high-dimensional set-
tings; indeed recent theoretical analyses based on the replica method revealed the tight limit of
inference accuracy in the asymptotic limit [12, 11, 22].

Teacher-student scenario

We focus on the inverse Ising problem in the teacher-student scenario. The dataset DM of M
spin samples is assumed to be composed of independently identically distributed (i.i.d.) samples
from a teacher Ising model with couplings J∗ and external fields H∗. A student Ising model
attempts to infer the teacher couplings and fields from the dataset. For each site i, we measure
the inference accuracy by the residual sum of squares (RSS) between the teacher couplings J∗i
and student’s estimator Ĵi:

E = ||J∗i − Ĵi||22 =
∑
j(6=i)

(
J∗ij − Ĵij

)2
= R∗ − 2ρ+R, (1.72)

where we defined the following three macroscopic parameters:

R∗ =
∑
j( 6=i)

(
J∗ij

)2
, (1.73a)

R =
∑
j(6=i)

(
Ĵij
)2
, (1.73b)

ρ =
∑
j(6=i)

J∗ij Ĵij . (1.73c)

Those parameters will naturally appear in the statistical physics analysis. We would like to
evaluate the performance of the pseudo likelihood. We can compute it numerically, and evaluate
the residual sum of squares, but we are also interested in finding a way to assess it analytically,
which might also be helpful to compute the error of different local estimators and compare them.
Previous studies of [12, 11, 22] focused on fully-connected Ising models. In high-dimensional
settings, however, sparsely-connected models are more interesting because the inference accuracy
is expected to be much better than the dense case. Our goal is to handle the sparsely-connected
case. To do this, we investigate the teacher-student scenario using the replica method by drawing
on previous studies [12, 11, 22], but refine the theoretical treatment in [12] to deal with the
teacher with sparse connections.

Statistical mechanics analysis: general framework

We will go through the statistical mechanics formulation developed in [12] to analyze the theo-
retical performance of local learning models. For simplicity of theoretical treatment, we assume
the absence of external fields both in the teacher and student models. The analysis deals with
any local cost function ` that depends on the variable S(µ)

i hi(S(µ)
\i ,Ji, Hi), for instance `PL for

the pseudo likelihood. All spins can be treated equivalently, so we pick any spin and name
it spin 0, and reorder the rest as spins 1 to N − 1. To lighten notations, we rename J the
coupling vector J0 = {J0j}j=1,...,N . The starting idea is to introduce the Hamiltonian and
Boltzmann distribution induced by `, instead of the natural Ising distributions which relate to
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the maximum-likelihood estimator. Focusing on the zeroth spin, we thus consider

H(J|DM ) =
M∑
µ=1

`
(
S

(µ)
0 h(S(µ)

\0 ,J)
)

(1.74)

P (J|DM ) = 1
Z
e−βH(J|DM ), (1.75)

where

h(S\0,J) =
N−1∑
j=1

JjSj (1.76)

Z = Tr
J
e−βH(J|DM ). (1.77)

β is an inverse temperature, and TrJ denotes the integration with respect to J with an appro-
priate measure. For instance in the Sherrington-Kirkpatrick model, the couplings were taken to
be Gaussian variables. Depending on our knowledge of the model, we should adapt the prior
distribution on the couplings. Since we have no particular information here, the integration is
done on the uniform measure: we simply need to rescale the couplings (this will become clear
through the computation), so TrJ =

∫ √
N dJ.

In the limit β → ∞, the Boltzmann distribution converges to a pointwise measure on the
estimator Ĵ = arg minJ

{∑M
µ=1 `

(
S

(µ)
0 h(S(µ),J)

)}
. This is good news for us: we are precisely

interested in characterizing this estimator. We focus on the asymptotic limit M,N →∞ while
keeping α = M/N = O(1). The average (on spin samples) free energy is self-averaging and
reads:

Φ = − lim
N→∞

1
βN

[logZ]DM (1.78)

where the square brackets [·]DM denote the average over the dataset, i.e. over the teacher Ising
model:

[·]DM =
∑

S(1),··· ,S(M)

(·)
M∏
µ=1

PIsing(S(µ)|J∗). (1.79)

We will resort to the replica method to perform the difficult average over DM , through the
following replica trick:

f = − lim
N→∞

1
βN

[logZ]DM = − lim
N→∞

1
βN

lim
n→0

1
n

log [Zn]DM . (1.80)

Assuming that n is a positive integer, we can rewrite [Zn]DM as

[Zn]DM = Tr
{Ja}na=1

∑
S(µ)

PIsing(S(µ)|J∗)e
−β
∑n

a=1 `

(
S

(µ)
0 h(S(µ)

\0 ,J
a)
) (1.81)

= Tr
{Ja}na=1

{∑
S
PIsing(S|J∗)e−β

∑n

a=1 `(S0h(S\0,Ja))
}M

. (1.82)

We now introduce variables {ha =
∑N−1
j=1 Jaj Sj}a=1,...,n and h∗ =

∑N−1
j=1 J∗j Sj , which are called

cavity fields since they are obtained after removing a spin from the sum, hence introducing a
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“cavity”. Using those variables, we get

[Zn]DM = Tr
{Ja}na=1

{∑
S

∫
dh∗

n∏
a=1

dha

× δ

h∗ − N−1∑
j=1

J∗j Sj

 n∏
a=1

δ

ha − N−1∑
j=1

Jaj Sj

PIsing(S
∣∣J∗)e−β∑n

a=1 `(S0ha)
}M

.

(1.83)

We perform the sum over all spins S1, ..., SN−1 except S0, yielding the joint distribution
Pcav(h∗, {ha}na=1

∣∣J∗, {Ja}na=1) of the cavity fields:

[Zn]DM = Tr
{Ja}na=1

{∑
S0

∫
dh∗

n∏
a=1

dhaPcav(h∗, {ha}na=1
∣∣J∗, {Ja}na=1) 1

Z0
eS0h

∗
e−β

∑n

a=1
`(S0h

a)

}M
(1.84)

with the normalization constant Z0 is defined as

Z0 =
∫

dh∗Pcav(h∗|J∗)2 cosh h∗. (1.85)

Our integrating variables have now become the cavity fields. To proceed further with the
computation, we need to specify the functional form of the cavity field distribution, and perform
the average over it. When the teacher is a fully-connected model, this analysis was done in [12].
We will review this result, and then build upon it to tackle the sparsely-connected case.

Revisiting the fully-connected case

When the teacher is a fully-connected model, we assume that dependencies between spins are
so weak that the central limit theorem applies to {ha =

∑N−1
j=1 Jaj Sj}a and h∗ =

∑N−1
j=1 J∗j Sj ,

which can be considered as multivariate Gaussian variables. In [12], the authors assumed that
data are sampled from the paramagnetic phase of a teacher network, and that replica symmetry
(RS) holds in both the student and teacher systems, which is true for convex cost functions, e.g.
in the case of pseudo likelihood. Under these assumptions, the following four order parameters
are sufficient to describe the average free energy:

Q∗ ≡
∑
i,j

C
\0
ij J
∗
i J
∗
j (1.86a)

Q ≡
∑
i,j

C
\0
ij J

a
i J

a
j (1.86b)

q ≡
∑
i,j

C
\0
ij J

a
i J

b
j , (a 6= b) (1.86c)

m ≡
∑
i,j

C
\0
ij J
∗
i J

a
j , (1.86d)

with C\0 the correlation matrix between the spins:

C
\0
ij = 〈SiSj〉\0 − 〈Si〉\0 〈Sj〉\0 = 〈SiSj〉\0 , (1.87)

where 〈· · ·〉\0 denotes the average over the teacher Ising model without the zeroth spin; the
last equality is due to the paramagnetic assumption. From these parameters, we can write the
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covariances of the cavity fields (1.86) as〈
(h∗)2

〉\0
= Q∗ (1.88)

〈h∗ha〉\0 = m (1.89)〈
hahb

〉\0
= Qδab + (1− δab)q. (1.90)

We can rewrite [Zn]DM as

[Zn]DM =
∫

dQ dq dm eNS(C\0,J∗,Q,q,m)+M logL(Q∗,Q,q,m), (1.91)

where

eNS(C\0,J∗,Q,q,m) ≡ Tr
{Ja}na=1

n∏
a=1

δ
Q−∑

i,j

C
\0
ij J

a
i J

a
j

 δ
m−∑

i,j

C
\0
ij J
∗
i J

a
j


×
∏
a<b

δ

q −∑
i,j

C
\0
ij J

a
i J

b
j

 (1.92)

L(Q∗, Q, q,m) ≡
∑
s0

∫
dh∗

n∏
a=1

dhaPcav(h∗, {ha}na=1
∣∣Q∗, Q, q,m) 1

Z0
eS0h∗e−β

∑n

a=1 `(S0ha). (1.93)

Deferring the detailed computations to appendix A.1, we immediately have the result in the
limit n→ 0:

lim
n→0

1
n
S
(
C\0,J∗, Q, q,m

)
= 1

2

{
Q−m2/Q∗

Q− q
+ log 2π + log(Q− q)− 1

N
Tr log C\0

}
, (1.94)

lim
n→0

1
n

logL (Q∗, Q, q,m) =
∫

Dz e
√

m2
q
z− 1

2
m2
q log

∫
Dv e−β`(

√
Q−qv+√qz). (1.95)

Further, we take the limit β →∞, which requires the scaling of χ ≡ β(Q− q) to remain of order
1. After straightforward calculations, we get

Φ (β →∞) = lim
β→∞

− 1
β

(
lim
n→0

1
n
S
(
C\0,J∗, Q, q,m

)
+ α lim

n→0

1
n

logL (Q∗, Q, q,m)
)

= − Extr
Q,χ,m

{
1
2
Q−m2/Q∗

χ
+ α

∫
Dzmax

y

(
−
(
y −
√
Qz −m

)2
2χ − `(y)

)}
. (1.96)

The extremization condition yields the following equations of state:

0 = 1
χ
− α√

Q

∫
Dz z ∂`

∂y

∣∣∣∣∣
y=ŷ

, (1.97a)

0 = − m

Q∗χ
− α

∫
Dz ∂`

∂y

∣∣∣∣∣
y=ŷ

, (1.97b)

0 = − 1
χ2

(
Q− m2

Q∗

)
+ α

∫
Dz

 ∂`
∂y

∣∣∣∣∣
y=ŷ

2

, (1.97c)
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where

ŷ(z,Q, χ,m) = arg max
y

(
−
(
y −
√
Qz −m

)2
2χ − `(y)

)
. (1.98)

Solving (1.97), we obtain the saddle-point value of Q,χ,m. A standard technique detailed in
appendix A.2 gives the following relation on the macroscopic parameters (1.73):

R =
(
Q− m2

Q∗

)
1
N

Tr
(
C\0

)−1
+R∗

(
m

Q∗

)2
(1.99a)

ρ = R∗
m

Q∗
. (1.99b)

We still need to specify the values of Q∗, R∗, and the inverse correlation function
(
C\0

)−1
. To

obtain these quantities, we have to separately solve the direct problem. Once we compute (1.99),
we can directly derive the residual sum of squares E through (1.72) and evaluate the performance
of the estimator.

1.3.2 Details of the sparsely-connected case

This section provides the extension of the above result to the sparsely-connected case, which is
our main contribution in [3]. To this end, we introduce an ansatz for the estimator’s behavior
as well as the functional form of the cavity field distribution. Under the ansatz, the cavity field
is decomposed into a signal and a noise, and it is shown that the noise part obeys essentially
the same equations of state as the fully-connected case. To complete the computation under the
ansatz, we will need the tree-like structure of the coupling network of the teacher model.

Difficulty of the sparse case and oracle estimator

In the fully-connected case, the cavity fields could be seen as Gaussian thanks to the central
limit theorem. However, this result does not hold in the sparse case, where the sums inside the
cavity fields contain a finite number of non-zero terms. The distribution of h∗ actually becomes
the sum of a few pointwise measures, which is far from Gaussian. Hence, we need a new ansatz
to handle the cavity field distribution in the sparse case.

To find an idea of how to overcome this, let us consider an ideal situation where we know
which couplings are non-zero. We assume that the zeroth spin is connected to c = O(1) neigh-
boring spins, and introduce two sets of indices Ω = {i|J∗i 6= 0, i ∈ {1, · · · , N − 1}} and
Ω̄ = {i|J∗i = 0, i ∈ {1, · · · , N − 1}}, where Ω (Ω̄) is called the active (inactive) set; |Ω| = c and
|Ω̄| = N − 1− c. If we know Ω and Ω̄ in advance, then the inference should be conducted only
on {Ji|i ∈ Ω}. Accordingly, the number of variables to be inferred is just c = O(1); hence, the
dataset size M = O(N) is sufficiently large. In this ideal case, an estimator behaves as

Ĵoracle
i =

{
J∗i + ∆i (i ∈ Ω)

0 (i ∈ Ω̄) , (1.100)

and we call this an oracle estimator. ∆i is the “error” from the true solution, taken as a random
variable. In the local learning class with appropriate cost functions such as pseudo likelihood [77],
∆i is considered to have zero mean and a variance that decreases at the rate of O( 1

M ) = O( 1
N ).

The RSS then reads
E =

∑
i∈Ω

∆2
i = O( 1

N
) (1.101)
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and vanishes in the asymptotic limit.

Ansatz on the estimator

Based on these observations about the oracle estimator, we assume that the (non-oracle) esti-
mator obtained from consistent cost functions obeys the following form:

Ĵi
.=
{
J̄i + ∆i (i ∈ Ω)

∆i (i ∈ Ω̄) , (1.102)

where we again assume that ∆i is a random variable which is asymptotically zero mean with
variance scaled as O(N−1); the correlations among {∆i}i are also assumed to be sufficiently
weak. The quantity J̄i is interpreted as the mean value of the estimator and will deviate from
the true value J∗i owing to the extensive number of noise terms {∆i}i. The values of {J̄i}i∈Ω are

Figure 1.4: Ansatz on the estimator in the sparsely-connected case. The center
blackdot is S0, the three dark dots represent spins {Si, i ∈ Ω} and the light dots
are spins {Si, i ∈ Ω̄}. The dark lines are the couplings Ĵi = J̄i + ∆− i for i ∈ Ω,

while the light dashed lines symbolize the couplings that reduce to noise.

later computed by taking the minimization condition of the free energy as the order parameters.
The applicable range of this ansatz is discussed in part 1.3.4. With this ansatz, the RSS can be
written as

E ≈
∑
i∈Ω

(
J∗i − J̄i

)2
+
∑
i∈Ω̄

∆2
i . (1.103)

There are two non-negligible contributions to the RSS coming from the bias in Ω, and the noise
in Ω̄. The RSS remains finite even in the limit N → ∞, while it vanished in the ideal oracle
case. The cavity field can also be decomposed as

ha = hΩ + ha∆ (1.104)
hΩ ≡

∑
j∈Ω

J̄jSj (1.105)

ha∆ ≡
∑
j

∆a
jSj ≈

∑
j∈Ω̄

∆a
jSj , (1.106)

we call ha∆ is termed as the “noise” part.

Properties of hΩ and ha∆

We will assume that hΩ and ha∆ are asymptotically independent in the limit N → ∞. Let
us explain why this assumption is reasonable. Our network has a tree-like structure, we can
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thus define the generation g of a spin S from Ω as the shortest path length between S and any
spin in Ω along the network. As g grows, the correlation with {Si|i ∈ Ω} decays exponentially
fast, while the number of spins belonging to generation g exponentially increases, as shown
in Fig. 1.5. If the correlation decay is sufficiently faster than the increase of the spins, then
the majority of spins in the network can be regarded as uncorrelated with Ω. Some terms in
ha∆ are certainly correlated with h∗, but their contribution would then be of order O(1/

√
N)

because ∆i = O(1/
√
N), and the number of correlating terms is O(1) thanks to the fast decay of

correlations. Hence, the contribution of correlating terms vanishes and the uncorrelated majority
with Ω completely dominates ha∆ in the thermodynamic limit. These observations indicate that

Figure 1.5: Representation of a tree-like network. The spin generation g (ex-
pressing its distance from S0) grows from left to right. As g increases, the number
of spins becomes exponentially large, and their correlation with S0 decays expo-
nentially too. The independance of hΩ and ha∆ holds if the decrease in correlation

is sufficiently faster.

(1.82) can be now decomposed as follows:

[Zn]DM = Tr
{Ja}na=1

{∑
S

∫ n∏
a=1

dhaPIsing(S
∣∣J∗)e−β∑n

a=1 `(S0ha)
}M

≈ Tr
{∆a}na=1

{∑
S

∫ n∏
a=1

dha∆PIsing(s|J∗) δ

ha∆ −∑
j∈Ω̄

∆a
jSj

 e−β∑n

a=1 `

(
S0

(∑
j∈Ω J̄jSj+h

a
∆

))}M

where we performed the variable transformation ∆a = Ja − J̄ and neglected the contribution∑
j∈Ω ∆a

jSj in ha∆ following (1.106). We then denote SΩ = {Si|i ∈ Ω} and SΩ̄ = {Si|i ∈ Ω̄}, and
perform the sum over SΩ̄, yielding the joint distribution P (S0,SΩ, {ha∆}a|J∗, {∆a}a):

[Zn]DM = Tr
{∆a}na=1

{ ∑
S0,SΩ

∫ n∏
a=1

dha∆P (S0,SΩ, {ha∆}a|J∗, {∆a}a)e−β
∑

a
`
(
S0
(∑

j∈Ω
J̄jSj+ha∆

))}M
(1.107)

We now invoke the asymptotic absence of correlation between ha∆ and (S0,SΩ) to reach

[Zn]DM ≈ Tr
{∆a}na=1

{ ∑
S0,SΩ

∫ n∏
a=1

dha∆PIsing(S0,SΩ|J∗)Pcav({ha∆}a|{∆a}a)

× e−β
∑n

a=1
`
(
S0
(∑

j∈Ω
J̄jSj+ha∆

))}M
. (1.108)
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We can apply the central limit theorem to noise parts {ha∆}a, that we can consider as Gaussian
variables. Like in the fully-connected case, two order parameters describing their covariances
are introduced:

Q ≡
∑
i,j

C
\0
ij ∆a

i∆a
j , (1.109)

q ≡
∑
i,j

C
\0
ij ∆a

i∆b
j , (a 6= b). (1.110)

Average free energy in the sparsely-connected case

We do not need counterparts of parameters m and Q∗ from the densely-connected case here, be-
cause the dependence on (S0,SΩ) is separately and explicitly treated in the present formulation.
Then,

[Zn]DM ≈
∫

dQdq eNS(C\0,Q,q)+M logL(J∗,J̄,Q,q), (1.111)

where

eNS(C\0,Q,q) ≡ Tr
{∆a}na=1

n∏
a=1

δ

Q−∑
i,j

C
\0
ij ∆a

i∆a
j

∏
a<b

δ

q −∑
i,j

C
\0
ij ∆a

i∆b
j

 (1.112)

L(J∗, J̄, Q, q) =
∑
S0,SΩ

∫ n∏
a=1

dha∆PIsing(S0,SΩ|J∗)Pcav({ha∆}
n
a=1

∣∣Q, q)
×e
−β
∑n

a=1 `

(
S0

(∑
j∈Ω J̄jSj+h

a
∆

))
. (1.113)

Again, using the techniques in appendix A.1 we get

lim
n→0

1
n
S
(
C\0, Q, q

)
= 1

2

{
Q

Q− q
+ log 2π + log(Q− q)− 1

N
Tr logC\0

}
, (1.114)

lim
n→0

1
n

logL
(
J∗, J̄, Q, q

)
=
∑
S0,SΩ

PIsing(S0,SΩ|J∗)

×
∫

Dz log
∫

Dv e
−β`
(
S0

(∑
j∈Ω J̄jSj+

√
Q−qv+√qz

))
. (1.115)

Recalling the finite scaling of χ = β(Q− q) and taking the β →∞ limit, we get

Φ = −Extr
Q,χ

{1
2
Q

χ

+ α
∑
S0,SΩ

PIsing(S0,SΩ|J∗)
∫

Dzmax
y

−
(
y − S0(

√
Qz +

∑
j∈Ω J̄jSj)

)2

2χ − ` (y)


 . (1.116)

The extremization condition with respect to Q and χ gives

0 = 1
χ
− α√

Q

∑
S0,SΩ

PIsing(S0,SΩ|J∗)S0

∫
Dz z ∂`

∂y

∣∣∣∣∣
y=ŷ

, (1.117a)

0 = − Q
χ2 + α

∑
S0,SΩ

PIsing(S0,SΩ|J∗)
∫

Dz

 ∂`
∂y

∣∣∣∣∣
y=ŷ

2

, (1.117b)
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where

ŷ(z, S0,SΩ|Q,χ, {J̄j}j∈Ω) = arg max
y

−
(
y − S0

(√
Qz +

∑
j∈Ω J̄jSj

))2

2χ − `(y)

 . (1.118)

The mean estimates {J̄j}j∈Ω are also evaluated by the extremization condition. The result for
J̄j is given by

0 =
∑
S0,SΩ

PIsing(S0,SΩ|J∗)
∫

Dz
y∗ − S0(

√
Qz +

∑
j∈Ω J̄jSj)

2χ S0Sj (1.119)

=
∑
S0,SΩ

PIsing(S0,SΩ|J∗)
∫

Dz ∂`
∂y

∣∣∣∣∣
y=ŷ

S0Sj . (1.120)

If we solve (1.117), (1.120), we obtain parameters Q,χ, {J̄i}i∈Ω, and we can evaluate the residual
sum of squares which is expressed in the present setting as

E ≈
∑
i∈Ω

(J∗i − J̄i)2 +
∑
i∈Ω̄

∆2
i =

∑
i∈Ω

(J∗i − J̄i)2 + Q

N
Tr
(
C\0

)−1
. (1.121)

We still need to know
(
C\0

)−1
, and PIsing(S0,SΩ|J∗) also needs to be assessed in the sparsely-

connected case. We turn to the direct problem to evaluate these quantities.

1.3.3 Properties of the direct problem

The inverse problem essentially requires certain information from its direct problem counterpart.
In the fully-connected case, two-body quantities such as

(
C\0

)−1
and

∑
i,j C

\0
ij J
∗
i J
∗
j are suffi-

cient. However, in the sparse case, higher-order information is needed because the central limit
theorem does not fully describe the dominant terms in the system. Hence, the functional form
of PIsing(S0,SΩ) becomes necessary, as seen in (1.116). Techniques for computing such quanti-
ties in the sparse case largely advanced in the ’90–’00s. We will use a portion of the results to
compute the necessary quantities, and more detailed techniques can be found in [120, 105]. For
our work, we rely on the assumptions that the teacher model is in the paramagnetic phase and
the external fields are absent.

Marginal distribution of the teacher model

The marginal distribution PIsing(S0,SΩ|J∗) is computed by marginalizing the whole distribution
PIsing(S|J∗) with respect to SΩ̄. In general, this operation requires nontrivial computations
and the resultant distribution becomes dependent on parameters among the marginalized spins.
However, under the present assumptions, such dependencies do not exist and the expression
becomes rather simple:

PIsing(S0,SΩ|J∗) = 1
ZΩc

e
S0
∑

j∈Ω J
∗
j Sj (1.122)

ZΩc =
∑
S0,SΩ

e
S0
∑

j∈Ω J
∗
j Sj (1.123)

where Ωc denotes the union index set of 0 and Ω. This form is applied to (1.117), (1.120) to
obtain the order parameters.
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Inverse correlation function

We will now compute the inverse correlation function (C\0)−1; the superscript \0 is not essential
so we discard it and treat the whole system. The so-called Gibbs free energy G will serve our
purpose. It is similar to the free energy we have defined previously, but adds a term that depends
on its argument m:

G(m) ≡ max
θ

{
θ>m− logZ(θ)

}
, (1.124)

where Z(θ) =
∑

S e
∑N

i<j
JijSiSj+

∑N

i=1HiSi+
∑

i
θiSi . A precious identity is the equality between

the Hessian of G, and the inverse correlation function:

(
C−1

)
ij

= ∂2G

∂mi∂mj
(1.125)

We may thus focus on computing G.

For sparsely-connected graphs in which loops can be neglected, the Gibbs free energy corre-
sponds to the so-called Bethe free energy, which consists of two contributions corresponding to
factor and variable nodes, in the asymptotic limit. More insight on the Bethe free energy will
be given in 2.1.3. In our case, G is known to have the following form:

GBethe(m) =
∑
e∈E

Tr
Se
be(Se) log

(
be(Se)

eJe
∏
i∈e Si

)
+

N∑
i=1

(ci − 1)Sm(mi) (1.126)

where ci denotes the connectivity or the number of edges connecting to node i, and Sm(m) is
the entropy conditioned by the magnetization m:

Sm(m) = −1−m
2 log 1−m

2 − 1 +m

2 log 1 +m

2 , (1.127)

and e and E denote an edge and the set of edges, respectively. With a slight abuse of notation,
e also represents the index set of variable nodes connected to the edge e, allowing us to use
expressions like Je

∏
i∈e Si and Se denoting the spins connected to the edge e. The factor be

represents the marginal distribution of Se which can be parametrized as

be(Se) ∝ eJe
∏
i∈e Si

∏
i∈e

eSihi→e

2 cosh hi→e
(1.128)

where hi→e is an auxiliary external field (also usually called cavity field) necessary to match the
average 〈Si〉 with the given value mi. Specifying the node indices in the edge e as e = (i, j), we
can explicitly write equations to be satisfied as

tanh−1 (mi) = hi→e + tanh−1 (tanh(Je) tanh(hj→e)) (1.129a)
tanh−1 (mj) = hj→e + tanh−1 (tanh(Je) tanh(hi→e)) . (1.129b)

In general, {hi→e}i,e can have a complicated dependence relation. As a result, the computation of
the Hessian of G becomes difficult, although numerically doable, and we cannot have a compact
analytic form of the inverse correlation function. Fortunately, under the paramagnet and no
external field assumptions, we can assume that h and m are small, and linearize (1.129) with
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respect to them, yielding

hi→e = mi − tanh(Je)mj

1− tanh2(Je)
hj→e = mj − tanh(Je)mi

1− tanh2(Je)
. (1.130)

Inserting this into (1.126) and expanding it with respect to m up to the second order, we get

GBethe(m)≈
∑
e∈E

{∑
i∈e

m2
i

2(1− tanh2(Je))
− tanh(Je)

1− tanh2(Je)

∏
i∈e

mi

}
−
∑
i

(ci − 1)1
2m

2
i + cst. (1.131)

From here, we compute the Hessian and the expression of the inverse correlation function:

(
C−1

)
ij

=

∑
k∈∂i

1
1− tanh2(Jik)

− (ci − 1)

 δij − tanh(Jij)
1− tanh2(Jij)

(1− δij), (1.132)

where ∂i denotes the index set of nodes connected to i. This expression can be applied even if
there is no edge for (i, j) (namely Jij = 0).

1.3.4 Applicable range of the ansatz

We now discuss the applicable range of the ansatz (1.102). This ansatz is a strong statement,
since it allows us to set aside any possible biases of the estimator components outside the active
set Ω. When is it valid and how does it relate to the tree-like network structure?

Zero gradient conditions for Ω

To answer these questions, we rethink (1.120) which stated for every j ∈ Ω

0 =
∑
S0,SΩ

PIsing(S0,SΩ|J∗)
∫

Dz ∂`
∂y

∣∣∣∣∣
y=ŷ

S0Sj . (1.133)

An important observation is that this equation is merely the zero-gradient condition of ` with
respect to Jj (j ∈ Ω), averaged over the datasets. Let us justify this equality. Denoting the
empirical average on the dataset DM by · · ·DM , and using the statistical mechanical analysis
explained so far, we can start by directly writing the zero-gradient condition with respect to Jj
for j ∈ Ω as

0 =
∂`(S0h(S\0,J))

∂Jj

∣∣∣∣∣
J=Ĵ(DM )

DM

= ∂`(y)
∂y

S0Sj

DM

(1.134)

where we name y = S0h(S\0, Ĵ) = S0(
∑
i ĴiSi). We would like this equation to yield the same

result as (1.120). We replace the estimator Ĵ with the average over (1.75) (we will then take
β →∞ to recover the estimator properties), take the average over the dataset, and introduce n
replicas. These manipulations take us to

0 = lim
β→∞

lim
n→0

Tr
{Ja}na=1

(∑
S
PIsing(S

∣∣J∗)e−β∑n

a=1 `(y
a)
)M−1

×
(∑

S
PIsing(S

∣∣J∗)e−β∑n

a=1 `(y
a)∂`(y1)

∂y1 S0Sj

)
. (1.135)



Chapter 1. The replica method and the inverse Ising problem with sparse weights 33

where ya ≡ S0 (
∑
i J

a
i Sj). The ansatz on the estimator (1.102) and replica symmetry used in

1.3.2, say in short that

ya
ansatz= S0

∑
i∈Ω

J̄iSi + ha∆

 (RS)= S0

∑
i∈Ω

J̄iSi +
√
Q− qva +√qz

 . (1.136)

where va, z ∼ N (0, 1). Applying this form and following the same line of computations as in
1.3.2, we get(∑

S
PIsing(S

∣∣J∗)e−β∑n

a=1 `(y
a)∂`(y1)

∂y1 S0Sj

)

N→∞−→
∑
S0,SΩ

PIsing(S0,SΩ
∣∣J∗) ∫ Dz

(∫
Dve−β`(y(z,v))

)n ∫ Dv1e−β`(y(z,v1)) ∂`(y1)
∂y1 S0Sj∫

Dv1e−β`(y(z,v1))

n→0−→
∑
S0,SΩ

PIsing(S0,SΩ
∣∣J∗) ∫ Dz

∫
Dve−β`(y(z,v)) ∂`(y)

∂y S0Sj∫
Dve−β`(y(z,v))

β→∞−→
∑
S0,SΩ

PIsing(S0,SΩ
∣∣J∗) ∫ Dz ∂`(y)

∂y

∣∣∣∣∣
y=ŷ

S0Sj , (1.137)

and the factor
(∑

S PIsing(S
∣∣J∗)e−β∑n

a=1 `(y
a)
)M−1

in (1.135) becomes unity when taking the
n→ 0 limit. Therefore, we correctly recover the same equation as (1.120).

Validity of the ansatz on tree-like graphs

This computation naturally leads to the following question: Should we compute all the zero-
gradient conditions not only for Ω but also for Ω̄? This point is important: if the answer is
affirmative, then the ansatz (1.102) is insufficient as it only defines J̄j for the active set j ∈ Ω.
To be consistent, the answer should be a priori considered to be yes in general; hence, we need
to take into account the zero-gradient conditions for k ∈ Ω̄. This implies that the ansatz (1.102)
should be modified, and we need to introduce mean estimates J̄k for k ∈ Ω̄ in general situations.

Fortunately, if the network is tree-like, we can show that all the zero-gradient conditions are
automatically satisfied once those for all j ∈ Ω are met. To show this, we recover the external
field H∗ for technical reasons. When the external field exists, the student model should also have
an external field variable, and hence the replica result is slightly modified. That modification
is accomplished by replacing

∑
j∈Ω J̄jSj with

∑
j∈Ω J̄jSj + H̄0 in (1.116), (1.118) and (1.136).

Here, H̄0 denotes the mean estimate of the external field variable acting on the focused spin
S0 of the student model, and is determined by the extremization condition of the free energy,
yielding

0 =
∑
S0,SΩ

PIsing(S0,SΩ|J∗,H∗)
∫

Dz ∂`
∂y

∣∣∣∣∣
y=ŷ

S0. (1.138)

Under this setup, we would like to show consistency of (1.102) on tree-like networks. The first
step is to write down the zero-gradient condition for k ∈ Ω̄. The result of applying the averages
and replica method is simply the replacement of Sj with Sk in (1.135). Recalling that

PIsing(S
∣∣J∗,H∗) = 1

ZIsing
e
∑N

i<j
J∗ijSiSj+

∑N

i=1 H
∗
i Si , (1.139)
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a simple computation of its derivative with respect to H∗k gives the following relation:

∑
S
PIsing(S

∣∣J∗,H∗)e−β∑n

a=1 `(y
a)∂`(y1)

∂y1 S0Sk = ∂

∂H∗k

(∑
S
PIsing(S

∣∣J∗,H∗)e−β∑n

a=1 `(y
a)∂`(y1)

∂y1 S0

)

+
(∑

S
PIsing(S

∣∣J∗,H∗)e−β∑n

a=1 `(y
a)∂`(y1)

∂y1 S0

)
〈Sk〉 (1.140)

where 〈· · ·〉 denotes the average over PIsing(S
∣∣J∗,H∗). Let us look at the last term in the limits

β →∞, n→ 0, N →∞. The coefficient before 〈Sk〉 converges to the right-hand side of (1.138),
giving zero. Meanwhile, in the same limit, the first term can be transformed as

∂

∂H∗k

(∑
S
PIsing(S

∣∣J∗,H∗)e−β∑n

a=1 `(y
a)∂`(y1)

∂y1 S0

)

→ ∂

∂H∗k

 ∑
S0,SΩ

PIsing(S0,SΩ
∣∣J∗,H∗) ∫ Dz ∂`(y)

∂y

∣∣∣∣∣
y=ŷ

S0

 , (1.141)

and the dependence on H∗k appears only in the marginal distribution PIsing(S0,SΩ
∣∣J∗,H∗). On

tree-like networks, the marginal distribution necessarily takes the following form:

PIsing(S0,SΩ
∣∣J∗,H∗) = 1

Z
eS0(

∑
i∈Ω J

∗
i Si+H

∗
0 )+
∑

i∈Ω h
\0
i Si (1.142)

where h\0i is the effective field obtained by marginalizing the descendant spins of i, and is usually
termed as cavity field. An important point of (1.142) is the absence of higher-order interactions
among active set spins because of the tree-like structure. Hence, the dependence on H∗k appears
only through the effective fields h\0i . Furthermore, owing to the tree-like structure, only one of
the effective fields is dependent on H∗k . Specifying the corresponding index as j(∈ Ω), we get

∂

∂H∗k

 ∑
S0,SΩ

PIsing(S0,SΩ
∣∣J∗,H∗) ∫ Dz ∂`(y)

∂y

∣∣∣∣∣
y=ŷ

S0


=
∂h
\0
j

∂H∗k

∂

∂h
\0
j

 ∑
S0,SΩ

PIsing(S0,SΩ
∣∣J∗,H∗) ∫ Dz ∂`(y)

∂y

∣∣∣∣∣
y=ŷ

S0


=
∂h
\0
j

∂H∗k

∑
S0,SΩ

PIsing(S0,SΩ|J∗)
∫

Dz ∂`
∂y

∣∣∣∣∣
y=ŷ

S0Sj (1.143)

−
∑
S0,SΩ

PIsing(S0,SΩ|J∗,H∗)
∫

Dz ∂`
∂y

∣∣∣∣∣
y=ŷ

S0 〈Sj〉

 (1.144)

= 0.

In lines (1.143) and (1.144), we recognize the right-hand side terms of (1.120) and (1.138), which
are both equal to zero. Hence, the zero-gradient conditions on the inactive set Ω̄ are satisfied
once those of the active set Ω hold, and the ansatz (1.102) holds on tree-like networks.

This proof also provides a perspective for loopy graphs. If loops exist, then higher-order
interactions emerge in PIsing(S0,SΩ); they generally depend on H∗k in a complex manner and
yield some additional terms as a result of differentiation. In such situations, additional mean
estimates J̄k for k ∈ Ω̄ will be necessary to satisfy the corresponding zero-gradient conditions;
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however, treating all variables in Ω̄ is clearly infeasible. Tailoring good approximations in such
cases may be interesting in future work, although we show in 1.3.5 an example in which our
present theoretical treatment becomes a good approximation even for loopy graphs.

1.3.5 Numerical experiments

In this part, we conduct numerical experiments to check the accuracy of the theoretical com-
putations. The actual behavior of the order parameters and related quantities depends on the
details of the coupling ensembles. We treat the regular random (RR) graph and Erdős–Rényi
(ER) graph as representative examples of sparse tree-like graphs. The RR graph is characterized
by one connectivity parameter c, while the ER graph is characterized by the connection proba-
bility p. To keep the generated graph sparse enough in the ER case, we assume the probability
is scaled as p = d/N , with d the mean degree. Furthermore, we also assume that the couplings
of the teacher model have the same probability of taking both signs and the strength is constant:
|J∗i | = K > 0. The coupling strength K is assumed to be small enough to satisfy the paramagnet
assumption of the teacher model. In particular, for the RR graph, the paramagnetic condition
is

(c− 1) tanh2K < 1, (1.145)

while that of the ER one is

d tanh2K < 1. (1.146)

The derivation of these bounds can be found in [120, 105]. The cost function is fixed to the
pseudo likelihood one in the following, as the simplest and commonly used case. The result
for the RR graph case is shown below in 1.3.5, and that for the ER graph is in 1.3.5. For
comparison, some numerical results on the square lattice are shown in 1.3.5, focusing on the
approximation nature of the present theoretical results. Furthermore, as another common cost
function, the so-called interaction screening (IS) method [172] belonging to the local learning
class is examined and compared with pseudo likelihood.

Thanks to the uniformity of the coupling strength, the strength of mean estimates {J̄i}i∈Ω
can also be set to a uniform value |J̄i| = K̄ = b̂K, where the bias factor

b̂ ≡ K̄/K (1.147)

is introduced. For the same reason, the marginal distribution can be simplified by again intro-
ducing the cavity field h∗ =

∑
j∈Ω J

∗
j Sj as

∑
S0,SΩ

P (S0,SΩ|J∗)(· · · ) =
∑
S0

∫
dh∗Pcav(h∗|J∗)e

S0h∗

Z0
(· · · ) (1.148)

where Z0 =
∫

dh∗2Pcav(h∗|J∗) cosh h∗. If the considered spin’s connectivity is c, then the cavity
field distribution becomes

Pcav(h∗|J∗) = Pcav(h∗|K, c) ≡ 1
2c

c∑
k=0

(
c

k

)
δ (h∗ −K(c− 2k)) . (1.149)

Applying the reduction (1.148) in (1.117), (1.120) after replacing
∑
j∈Ω̄ J̄jsj by b̂h∗ in (1.118)

reduces the computation of mean estimates to that of the bias factor b̂. The theoretically eval-
uated b̂ was compared with that obtained by numerical experiments to check the validity of our
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theoretical treatment.

The numerical computation of the order parameter Q will be conducted below, but it has
some delicate points. In our actual computations, the following procedure was adopted: From the
generated teacher model we first compute the inverse correlation function

(
C\0

)−1
by the cavity

formula (1.132) and numerically invert it to obtain C\0. Then we introduce {∆̂i = Ĵi − J̄i}N−1
i=1

from the learning result Ĵ, and the mean estimate J̄ which is obtained as J̄ = b̂J∗ where the
theoretically evaluated value of b̂ is inserted. Finally, we get a numerical value of Q through the
relation Q =

∑
i,j C

\0
ij ∆̂i∆̂j . Although it is also possible to evaluate C\0 by the Monte Carlo

(MC) sampling instead of using formula (1.132), this method is better for controlling fluctua-
tions and reducing computational cost.

The outline of our numerical experiment is as follows. We first generate teacher model, next
perform MC sampling, and finally choose a center spin and conduct learning by numerically
minimizing the PL cost function (1.68). The obtained estimator is used to compute relevant
quantities such as the residual sum of squares (RSS). As a result, there are some distinctive
sources of fluctuation in the estimate, but we do not discriminate them below. The error
bar is accordingly defined by the standard error coming from those fluctuations. The number
of datasets used to compute the error bar is hereafter denoted as Nset. More details of the
numerical experiment are summarized in A.3.

RR graph case

In the case of the RR graph with connectivity c, using (1.132) the trace of the inverse correlation
function becomes

1
N

Tr C−1 = c

1− tanh2K
− c+ 1. (1.150)

Substituting this in conjunction with the parameters obtained by (1.117), (1.120) into (1.121), we
obtain the RSS. Below, we compare these theoretical values with the numerically evaluated ones.

We start by comparing the theoretical and numerical values of E , Q, and b̂. In Fig. 1.10,
these quantities are plotted against α for K = 0.2 and 0.4 at N = 200 and c = 3. In all the plots,
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Figure 1.6: Plots of E (left), Q (middle), and b̂ (right) against α for K = 0.2
and 0.4 at (N, c) = (200, 3). Dotted lines and color markers are the theoretical
and numerical values, respectively. The agreement between them is fairly good.
The left and middle panels are plotted in the double log scale because E and Q
drastically diverge in the limit α → 2. The error bars obtained from Nset = 100
datasets are shown, although they tend to be comparable with the size of markers.

the agreement between the theoretical (dotted lines) and numerical (color markers) results is
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fairly good, supporting the validity of our analytical treatment.

Next, we consider the distributions of the estimators in Fig. 1.7, which were normalized
as probability distribution functions. The left panel is the distribution of the estimators on
the active set Ω. We can observe that two peaks are located around the theoretical prediction
±b̂K. In the middle panel, the estimator distribution on the inactive set Ω̄ is shown, yielding
a Gaussian-like distribution with zero mean. Similar behavior is observed for the noise part on
the active set, {∆̂i = Ĵi− J̄i}i∈Ω, the distribution of which is given in the right panel. Here, the
mean estimates {J̄i}i∈Ω are computed by multiplying the theoretically evaluated bias b̂ by the
true coupling {J∗i }i∈Ω. These observations are again consistent with our theoretical analysis.

Figure 1.7: Distribution of the estimators Ĵ on the active and inactive sets are
given in the left and middle panels, respectively. The right panel is the distribution
of the noise part on the active set, {∆̂i = Ĵi − J̄i}i∈Ω. The system parameters
are (N,K,α, c) = (200, 0.4, 5, 3). The middle and right panels imply that the
noise parts obey the zero-mean Gaussian distribution and have no discriminative
difference between the active and inactive sets. Here, the histograms are generated
from Nset = 500 datasets; from each dataset, the number of obtained estimators

is c = 3 for Ω while that for Ω̄ is N − c− 1 = 196.

Thirdly, we check the finite size effect. In Fig. 1.8, the RSS and rescaled variance (multiplied
by N) of the noise parts ∆̂ = Ĵ− J̄ are plotted with respect to system size N , in the upper and
lower panels respectively. Although the finite size effect behaves in different ways depending on
the parameters and quantities, we can see that the numerical results (markers) fairly match the
theoretical values (black dotted lines) as the system size is large. Here, the rescaled variance
corresponds to the quantity QTr

(
C\0

)−1
/N in our theoretical computation, which is consis-

tent with (1.121). These results again confirm the validity of our computations.

Finally, we hint to some noteworthy remarks. The results shown in Figs. 1.7 and 1.8 imply
the possibility of an efficient method of debiasing. The bias factor b̂ can be computed from our
analytical result, and hence we can debias our estimator in an efficient manner. The residual
after debiasing ∆̂ is considered to obey a Gaussian distribution, as shown in Fig. 1.7, and is
supported by our analytical computations in A.1. Thus, we can efficiently compute the P-value
according to the standard hypothesis testing method, enabling us to judge the relevance of the
estimated couplings. Moreover, in the thermodynamic limit N → ∞, we can show that the
perfect reconstruction of the teacher’s network is possible for any α > 2. To do so, we need to
evaluate the probability of getting false positives in the estimator. To control false positives, we
introduce a constant threshold value Kth(> 0), and consider estimated couplings with absolute
values less than Kth as negligible and set to zero; we independently repeat this procedure for
all i = 1, ..., N . Let us evaluate the probability of successfully screening out false positives using
this method. The observations so far imply, on the inactive set Ω̄, that the estimator behaves
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Figure 1.8: Top: Plot of E against the system size N for α = 5 (left) and 50
(right) at (K, c) = (0.4, 3). The black dotted lines denote the theoretical result
and the markers are the numerical ones. The numerical results tend to converge
with the theoretical results as the system size grows, although the finite size effect
seems to be different between the left and right panels. The error bar is obtained
from Nset = 500 datasets for N = 50–200, Nset = 400 for N = 400, and Nset = 50
for N = 800. Bottom: The rescaled variance (multiplied by N) of the noise part
∆̂ = Ĵ− J̄ is plotted against the system size N . Parameters are the same as those
of their counterparts in the upper panels. Although in this closeup scale there is a
small gap between the numerical and theoretical results within the one standard
error, this gap can be eliminated by taking a larger number of samples. Here, the
error bar was obtained using the bootstrap method by considering each realization

and component of ∆̂ as i.i.d..

as

Ĵi ∼ N
(

0, σ
2
i

N

)
, (∀i ∈ Ω̄), (1.151)

where σ2
i is the rescaled variance of the estimate, and verifies (1/N)

∑
i∈Ω̄ σ

2
i ≈ QTr

(
C\0

)−1
/N .

Hence, the probability of successfully screening out these estimators on Ω̄ is

∏
i∈Ω̄

Prob
(
|Ĵi| < Kth

)
=
∏
i∈Ω̄

1− 2
∫ ∞√

N

σ2
i

Kth

dz e
− 1

2 z
2

√
2π

 ≈∏
i∈Ω̄

1− 2√
2π

e
− 1

2
N

σ2
i

K2
th√

N
σ2
i
Kth

 −−−−→
N→∞

1.

The second approximate equality comes from the asymptotic formula of the integral, which
holds as N → ∞. The last limiting holds as long as σi is bounded from above, because the
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exponential factor exp(−1
2NK

2
th/σ

2
i ) decays fast enough compared with the number of products

|Ω̄| = N − c − 1. Hence, we can completely suppress the false positives in the limit N → ∞.
Meanwhile, we also desire to accurately reproduce the presence of couplings on Ω. This can be
done by tuning the threshold value Kth to a smaller value than the true coupling strength K
(the mean estimates J̄ are larger than K in the absolute value). In practical situations, we do
not know the true coupling strength K in advance, and thus it is nontrivial to correctly tune
Kth. In such cases, it may be better to pick Kth by monitoring the distribution of estimators as
seen in Fig. 1.7, and to find a value that effectively separates the modes of distribution.

ER graph case

For the ER graph with connection probability p = d/N , the evaluation of the order parameters
and related quantities is slightly more complex than the RR case because of the distributed
nature of the connectivity. In the thermodynamic limit, the distribution of connectivity c in the
ER graph obeys the Poisson distribution:

Ppo(c|d) = e−d
dc

c! . (1.152)

The trace of the inverse correlation function fortunately becomes simple in the limit:

1
N

Tr C−1 −−−−→
N→∞

∞∑
c=0

(
c

1− tanh2K
− c+ 1

)
Ppo(c|d) =

(
d

1− tanh2K
− d+ 1

)
. (1.153)

When focusing on spin i with connectivity ci in the ER graph, its associated order parameters
are computed by (1.117) with P (h∗|ci) defined in (1.149), and the RSS is given by

Ei(ci) = (1− b̂(ci))2K2 +Q(ci)
(

d

1− tanh2K
− d+ 1

)
. (1.154)

This explicit dependence of the order parameter on ci is the complex point of the ER case. The
mean RSS for the whole network then reads

Emean = 1
N

N∑
i=1
Ei

N→∞−−−−→
∞∑
c=0

{
(1− b̂(c))2K2 +

(
d

1− tanh2K
− d+ 1

)
Q(c)

}
Ppo(c|d). (1.155)

As an interesting departure from the RR case, we here examine the connectivity dependence
of our quantities of interest. The plots of E(c), Q(c), and b̂(c) at (N,α, d,K) = (400, 10, 4, 0.4)
are given in Fig. 1.9. In this experiment, we generated ten different ER networks, performed
two independent MC samplings, and conducted learning for all i = 1, · · · , N . The error bars
were placed using the obtained datasets, and Nset varied depending on the connectivity c.
The agreement between the theoretical and numerical results is fairly good. Although a slight
deviation at large c in E(c) and Q(c) was observed, it is presumably attributed to the finite
size effect, which increased at large c as system size became insufficient to generate nodes with
large c. We have tried to control this deviation but found it is difficult to conduct experiments
of sufficiently large systems in reasonable time: The generation probability of node with, say,
c = 13 can be estimated as Ppo(13|4) ≈ 2× 10−4, and hence for stably generating networks with
such large degree nodes we need at least N ≈ 5000, which is too much in our experiment.

We also computed the mean RSS (1.155) for the whole network. The theoretical value is
Emean = 0.4780, while the present experimental value is Emean = 0.4907 ± 0.0041. The slight
difference between these is again attributed to the finite size effect. Here, the theoretical value
was obtained by taking the sum of (1.155) up to c = 20; the effect of this truncation was found
to be small.
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Figure 1.9: Plots of E (left), Q (middle), and b̂ (right) against c at (N,α, d) =
(400, 10, 4). Black dotted lines and markers are the theoretical and numerical
values, respectively; the different colors correspond to different K. The agreement

between them is fairly good.

Square lattice case for comparison

We have seen in 1.3.4 that our ansatz holds for tree-like graphs. Usually, carrying out a cavity
method in direct problems is known to yield good approximations even for loopy graphs, as long
as correlations among spins are weak; it is sometimes referred to as Bethe approximation and
will be mentioned in 2.1.3. Here, we compare our theoretical result for c = 4 with the simulation
result on the square lattice (hence a non tree-like network) with periodic boundary condition.
To avoid possible complexity due to frustration, the present teacher couplings were assumed to
be all positive and constant, J∗i = K > 0, (i ∈ Ω).

In Fig. 1.10, we plotted E and b̂ against α for K = 0.2 on the square lattice of size 20× 20,
in comparison with our theoretical result (dotted line) computed with the assumption of the
tree-like network structure. The agreement between the theoretical and numerical results is very
good, which suggests that our theoretical result can be a good approximation even for loopy
graphs.

5 10 20 30 50
0

0.2

0.4

0.6

0.8

1

1.2

RS
S

Square lattice, (20 20, K=0.2)
theory

5 10 20 30 50
1

1.1

1.2

1.3

1.4

1.5
Square lattice, (20 20, K=0.2)

theory

Figure 1.10: Plots of E (left) and b̂ (right) against α for K = 0.2 on the square
lattice of size 20×20. For comparison, the theoretical results derived by assuming
the tree-like structure of the coupling network are plotted as the dotted lines. The
agreement between the markers (numerical results) and lines is fairly good. The

error bars obtained from Nset = 400 datasets are shown.
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Another interesting phenomenon for loopy graphs is the possible presence of bias in the
estimated couplings for spins in Ω̄, as discussed in 1.3.4. To examine this, we show in the
upper panels of Fig. 1.11 the distributions of the coupling estimates corresponding to the next
nearest neighbors (NNN) from the center spin S0 in the teacher model for the square lattice
(left) and for the RR graph with c = 4 (right). To make a fair comparison, the present teacher
couplings for the RR graph case are all positive and constant as the square lattice case. These
two distributions are very similar, implying that the bias in coupling estimates for remote spins
is, even if it exists in loopy graphs, very weak for the present situation. For further quantitative
information, the means of those distributions were plotted against the system size in the lower
panels. Again, we observed no clear deviation from zero and no significant difference between the
two cases of the square lattice and RR graph. These suggest the practicality of the theoretical
results for wider situations than tree-like networks.
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Figure 1.11: Top: Distributions of the NNN estimators for the 20 × 20 square
lattice (left) and for the RR graph with (N, c) = (400, 4). In both cases, other pa-
rameters are set to be (K,α) = (0.2, 5) and Nset = 400. No clear positive/negative
tendency is observed in both cases. Bottom: Plots of the mean of the NNN es-
timate distribution against the system size for the square lattice (left) and RR
graph (right). Other parameters are similar to those of the corresponding upper
panels. The means are quite small, and no clear deviation from zero is observed.
The dataset sizes are Nset = 600, 600, 400, 200, 40 for N = 100, 225, 400, 900, 1600,

respectively. The error bars are obtained using the bootstrap method.

Comparison with interaction screening

We now examine the interaction screening (IS) cost function [172, 94], which is another common
method for the inverse Ising problem, and would like to compare it with the PL method. The
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IS cost function is given by

`IS(x) = e−x. (1.156)

In Fig. 1.12, we plot E , Q, and b̂ against α for the RR graph at (c,K) = (3, 0.4), with two
theoretical curves of IS (dashed line) and PL (dotted line). Numerical results are also shown to
validate the theoretical result of the IS case. The important observation is that the IS result
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Figure 1.12: Comparison of the PL and IS results. Plots of E (left), Q (middle),
and b̂ (right) against α at (c,K) = (3, 0.4) for the RR graph are given. The theo-
retical curves for PL and IS are described by dotted and dashed lines, respectively.
The color markers are the numerical results for the IS case at N = 200, whose
error bars are obtained from Nset = 100 datasets. The consistency of the numer-
ical and theoretical results is fairly good. The IS result provides larger values in
all these three quantities than those of PL, implying that IS gives larger error,

variance, and bias.

consistently gives larger values of E , Q, b̂ than those of PL. This implies that the IS method gives
larger error, variance, and bias than PL. Although it is known that IS requires a near-optimal
number of samples with respect to the dataset sizeM [172, 94, 139] for perfect reconstruction of
the coupling network structure, it does not necessarily mean it holds better accuracy in terms
of variance/bias.

1.3.6 Discussion and limits

The crucial assumptions of our treatment are the asymptotic behavior of the estimator (1.102)
and the paramagnet assumption of the teacher model, leading to the decoupled distributions
of the cavity fields. The former assumption implies that the teacher’s couplings can be recon-
structed by the student almost perfectly, as discussed at the end of 1.3.5. However, it requires
the smallness of coupling strength, implying that strongly-correlated datasets cannot be treated
by the proposed theory.

As for perfect reconstruction of the sparse network in the inverse Ising framework, earlier
studies reported similar results in empirical and theoretical ways [40, 139, 174, 133]. In particu-
lar, a series of analyses by Wainwright and the collaborators [139, 174, 133] derived the necessary
and sufficient conditions for the perfect reconstruction in the asymptotic limit, clarifying that
the necessary size of the dataset scales as M = O(logN) when the maximum degree of the
network is bounded from above. Compared to this scaling, our result on the scaling M = O(N)
is rather conservative. Our formulation, however, has some nontrivial advantages by deriving
more detailed information about the system. For example, it can deal with the ER graph, whose
maximum degree is not bounded, and for which the proofs established in [139, 174, 133] are not
applicable. By directly assessing the estimator’s fluctuation, our result also clarifies that hypoth-
esis testing can actually achieve perfect reconstruction, which provides another efficient way of



Chapter 1. The replica method and the inverse Ising problem with sparse weights 43

reconstruction than the `1 regularization used in earlier studies. The explicit computation of the
bias on the estimator is also another perk of our approach. In this way, the present formulation
can provide finer information.

For handling real-world datasets, finite magnetizations as well as possible loop structures
in the network should be taken into account. For such realistic situations, the computation of
(1/N) Tr C−1 and Pcav(h∗|J∗) will be more complicated. To evaluate those quantities, advanced
techniques such as Bethe approximation [135, 116], high-temperature expansion, and MC sam-
plings will be useful. The ansatz (1.102) should also be modified for the case of loopy graphs, as
discussed in 1.3.4. The presented result can be still practical as an approximation for treating
such situations, as demonstrated in 1.3.5.

A clear drawback of the estimator treated in this paper is that it is not informative in the
region α ≤ 2, as indicated by the divergent RSS in the limit α → 2+ shown in 1.3.5 and [12].
To overcome this, the use of regularizations might be promising. The `1 regularization will be
particularly useful to control false positives in the estimated couplings. It is also possible to
employ hypothesis testing in conjunction with `2 regularization [182].

Another interesting extension of the present analysis might be the model-mismatched cases
where the student model cannot be equal to the teacher one. Even in such cases, some limited
information in the teacher, such as the coupling network structure, might be recovered in some
conditions [162]. Pursuing this possibility could provide a better justification for applications of
the inverse Ising framework to the analysis of real-world datasets.

Summary of Chapter 1 In this first chapter, we briefly described the Sherrington-Kirkpatrick
spin glass model and went over the replica calculation providing a glimpse of its key steps. In
particular, we have seen that it relies on several non-rigorous steps and it implies picking an
ansatz. In some cases, the replica-symmetric ansatz is correct, but we might have to introduce
replica symmetry to describe models with ergodicity breaking. After introducing the framework
of Bayesian statistical inference, we proposed a theory to evaluate the reconstruction perfor-
mance in inverse Ising problems with sparse couplings. To do this, we turned to the pseudo
likelihood estimator. A large part of the theory relies on the statistical mechanical formulation
in [12], but we refined the theoretical treatment in the cavity method to handle the teacher
model with sparse couplings. The resulting expression requires a full functional form of the cav-
ity field distribution, which is far from Gaussian but was obtained by appropriate consideration
of the direct problem counterpart. Our theoretical result shows good agreement with numerical
experiments conducted on the RR and ER graphs. This agreement holds even for the case of
the square lattice, suggesting the practicality of the present result as an approximation for loopy
graphs.
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Chapter 2

Universality of phase transitions in
noiseless linear regression

2.1 Belief propagation

2.1.1 Factor graphs

We consider a graphical model with N variables x = (x1, ..., xN ), taking values on a finite
set, called the alphabet X . We would like to compute interesting quantities on this model, for
instance joint distributions, or conditional distributions of some of its variables. To do so, it is
useful to first compute marginal distributions of this model. Naively, it would require summing
over all possible configurations, i.e. a number of operations of order |X |N : the computational
cost is exponential and will be unpractical when N becomes large. Belief propagation will help
us bypass this issue, through a set of equations which allows us to obtain marginals with a cost
of order N . To begin, let us introduce the general framework: we consider a finite bipartite
graph with two type of vertices.
• The variable set V includes variable nodes i ∈ V , which are symbolized by round vertices.

• The function set F includes function nodes a ∈ F , which are symbolized by square vertices.
∂i denotes the function nodes which share an edge with i, while ∂a is the set of variable nodes
connected with a. E is the set of edges of the graph. For each function node, we have a function
ψa : X |∂a| → R+. The ensemble Ψ = (V, F,E, {ψa}a∈F ) is a factor graph. On such a graph, we
define a probability measure

PΨ(x) ≡ 1
ZΨ

∏
a∈F

ψa(x∂a) (2.1)

where x∂a is the restriction of variable vector x to the set ∂a. The normalizing function reads

ZΨ =
∑

x∈X |V |

∏
a∈F

ψa(x∂a). (2.2)

The one-dimensional marginalized distributions we are interested in read for i ∈ V

C
[i]
Ψ (x) =

∑
x,xi=x

∏
a∈F

ψa(x∂a). (2.3)

2.1.2 An easy example: the Ising chain

To gently dive into the techniques from belief propagation, let us focus for a moment on the
one-dimensional ferromagnetic Ising chain, with a constant external field H. The variable are
S = (S1, ...SN ) which take values in X = {−1,+1}. The Boltzmann distribution reads

PIC = 1
ZIC

e−βHIC(S) (2.4)
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with β the inverse temperature, and

HIC(S) = −
N−1∑
i=1

SiSi+1 −H
N∑
i=1

Si. (2.5)

We are interested in the marginal distribution Pj(Sj). It is made up by several contributions,
coming from each node that is connected to the variable node Sj on the factor graph: one
contribution comes from variable node Sj−1, one from variable node Sj+1, and one from the
function node which models the external fieldH applied to Sj . We define the following quantities:

ν̂→j(Sj) = 1
Z→j

∑
S1,...,Sj−1

exp

β
j−1∑
i=1

SiSi+1 + βH
j−1∑
i=1

Si

 (2.6a)

ν̂j←(Sj) = 1
Zj←

∑
Sj+1,...,SN

exp

β
N∑
i=j

SiSi+1 + βH
N∑

i=j+1
Si

 . (2.6b)

ν̂→j and ν̂j← are probability distribution and are thus normalized by Z→j and Zj←. From there,
we can write the marginal distribution Pj(Sj), as

Pj(Sj) ∼= ν̂→j(Sj) eβHSj ν̂j←(Sj) (2.7)

where ∼= denotes equality up to a normalization factor. ν̂→j and ν̂j← are called messages, they
correspond to the marginal distribution of Sj in a model where we have removed all nodes on
the right of Sj and all nodes on the left, respectively. It is straightforward to see that messages
relate to each other through

ν̂→i+1(Si+1) ∼=
∑
Si

ν̂→i(Si)eβSiSi+1+βHSi (2.8a)

ν̂i−1←(Si−1) ∼=
∑
Si

ν̂i←(Si)eβSi−1Si+βHSi . (2.8b)

Note that ν̂→1(±1) = ν̂N←(±1) = 1
2 . Combining this with (2.8), we can compute all mes-

sages iteratively, with a number of iterations of order N , then obtain marginal distributions
through (2.7).

Figure 2.1: Factor graph of the one-dimensional Ising chain. The circles are
variable nodes i.e. spins, the squares are function nodes. On top, they represent
the external field’s action. The spin Sj is represented with the three messages it

receives: eβHSj , ν̂→j and ν̂j←.

2.1.3 BP on tree-like networks

BP equations

In a similar fashion, we will define messages along the edges of the factor graph, focusing on those
which are tree-like. For each edge (i, a) between a variable node and a factor node, there are
two messages νi→a(xi) and ν̂a→i(xi), which are both probability distributions. More precisely,
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ν̂i→a(xi) coincides with the single variable xi marginal C [i]
Ψi→a in the modified graphical model

Ψi→a which does not include factor a. νi→a(xi) is the distribution of xi in the graphical model
Ψa→i where all factors in ∂i except a have been discarded. Belief propagation (BP) is an update
rule of these messages which reads, up to normalization factors:

ν
(t+1)
i→a (xi) ∼=

∏
b∈∂i\a

ν̂
(t)
b→i(xi) (2.9a)

ν̂
(t)
a→i(xi) ∼=

∑
x∂a\i

ψa(x∂a)
∏

j∈∂a\i
ν

(t)
j→a(xj). (2.9b)

Note that if ∂i\a is empty, then νi→a(±1) = 1
2 ; and if ∂a\i is empty, ν̂a→i = ψa. We thus

obtain one equation for each oriented edge of a graph, i.e. a total of 2|E| equations on as many
messages. At each time, we can also evaluate the estimate νi(xi) of the marginal distribution
Pi(xi) of variable xi by summing on all incoming messages:

ν
(t)
i (xi) ∼=

∏
a∈∂i

ν̂
(t−1)
a→i (xi). (2.10)

A great fact is the following rigorous result: if DΨ is the diameter of Ψ, i.e. the maximal distance
between two variable nodes on the factor graph, then BP equations converge for t > DΨ. We
usually say that BP is exact on trees. Adding a star subscript to designate the fixed point
messages of BP equations, for t > DΨ and for any variable node i:

ν
(t)
i→a = ν∗i→a (2.11)

ν̂
(t)
a→i = ν̂∗a→i (2.12)

ν
(t)
i (xi) = Pi(xi). (2.13)

The first appearance of these equations was in the context of coding theory, but they were
also found in statistical physics (in relation to the Bethe approximation), and in the artificial
intelligence community. An overview of BP equations in the light of statistical physics can be
found in [105], while [183] provides an educational approach.

Simplification for pairwise models

In the following parts, we will often be interested in pairwise models i.e. graphical models where
all factor nodes have degree 2. A pairwise model can be represented by a graph G = (V,E) over
variable nodes. The edge (i, j) joins variables i and j which are the arguments of a function ψij ,
and function nodes correspond to edges. The corresponding probability distribution is

Ppair(x) = 1
Zpair

∏
(i,j)∈E

ψij(xi, xj). (2.14)

Besides, the BP equations reduce to only messages νi→(i,j), that we rename νi→j and become

ν
(t+1)
i→j

∼=
∏

k∈∂i\j

∑
xk

ψik(xi, xk)ν
(t)
k→i(xk). (2.15)

Useful quantities

BP equations do not only provide marginal distributions, they also allow us to compute other
useful quantities.
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• Joint distribution of a subset of variables

Let FR be a subset of function nodes, VR a subset of variable nodes adjacent to FR. R is the
induced subgraph that we assume to be connected. Let ∂R be the subset of function nodes
which are adjacent to a variable node from VR, but are not in FR. For a function a ∈ ∂R, there
exists a unique variable node i from VR connected to it, we will denote it i(a). Then the joint
distribution of xR, the restriction of x to VR variables, reads

P (xR) = 1
ZR

∏
a∈FR

ψa(x∂a)
∏
a∈∂R

ν̂∗a→i(a)(xi(a)). (2.16)

• Joint probability distribution of all variables

We can also express the joint probability distribution of the complete set of variables in terms
of marginal probabilities. We call Pa(x∂a) the marginal probability distribution of all variables
involved in function ψa. Pi(xi) is the marginal distribution of variable xi. Then the joint
distribution P (x) on tree graphs can be written in terms of those marginals as

P (x) =
∏
a∈F

Pa(x∂a)
∏
i∈V

Pi(xi)1−|∂i|. (2.17)

This can be proven by induction on the number of factors.

• Internal energy

The physicist reader is of course interested in applying this formalism to physical systems, such
as the Ising chain mentioned above in 2.1.2. In a physical system, the functions ψa read

ψa(x∂a) = e−βEa(x∂a) (2.18)

with β an inverse temperature, and Ea an energy function characterizing the constraint a. For
simplicity, let us set β to 1. From there, we define the internal energy, which is the expectation
of the total energy:

U [P ] = −
∑
x
P (x)

∑
a∈F

logψa(x∂a). (2.19)

We will now use (2.16) and apply it to FR = {a} for each a ∈ F . In that case VR = ∂a, and∏
a∈∂R =

∏
i∈∂a

∏
b∈∂i\a, which gives

U [P ] = −
∑
a∈F

∑
x∂a

P (x∂a) logψa(x∂a) (2.20)

= −
∑
a∈F

∑
x∂a

1
Za
ψa(x∂a) logψa(x∂a)

∏
i∈∂a

∏
b∈∂i\a

ν̂∗b→i(xi) (2.21)

U [P ] = −
∑
a∈F

1
Za

∑
x∂a

ψa(x∂a) logψa(x∂a)
∏
i∈∂a

ν∗i→a(xi). (2.22)

where we have used (2.9a), and Za =
∑

x∂a ψa(x∂a)
∏
i∈∂a ν

∗
i→a(xi)

• Entropy of P (x)

The entropy of distribution P (x) is defined by

H[P ] = −
∑
x
P (x) logP (x). (2.23)



Chapter 2. Universality of phase transitions in noiseless linear regression 48

From (2.17), it is straightforward that

H[P ] = −
∑
a∈F

Pa(x∂a) logPa(x∂a)−
∑
i∈V

(1− |∂i|)Pi(xi) logPi(xi). (2.24)

• Free energy

We can finally consider the free energy Φ = − 1
β logZ, where Z =

∑
x
∏
a∈F ψa(x∂a) is the

partition function. The free energy relates to the internal energy and the entropy defined above,
such that

Φ[P ] = U [P ]−H[P ] (2.25)

Φ[P ] =
∑
a∈F

Pa(x∂a) log Pa(x∂a)
ψa(x∂a)

+
∑
i∈V

(1− |∂i|)Pi(xi) logPi(xi). (2.26)

Bethe free energy

Relying on (2.16), we can rewrite the free energy in terms of the BP messages, that we group
in one variable containing the 2|E| messages ν = {νi→a, ν̂a→i |i ∈ V, a ∈ ∂i},

Φ[ν] = −
∑
a∈F

Φa(ν)−
∑
i∈V

Φi(ν) +
∑

(ia)∈E
Φia(ν), (2.27)

where

Φa(ν) = log

∑x∂a ψa(x∂a)
∏
i∈∂a

νi →a(xi)

 (2.28)

Φi(ν) = log

∑
xi

∏
b∈∂i

ν̂b→i(xi)

 (2.29)

Φ(ia)(ν) = log
{∑

xi

νi →a(xi)ν̂a→i(xi)
}
. (2.30)

Φ[ν] is called the Bethe free energy and it is exact on tree graphs. If ν∗ is the ensemble of all
marginals at the fixed point of BP equations, we thus have Φ = Φ[ν∗].

2.1.4 BP on loopy graphs

We have seen that belief propagation is an exact and remarkable tool for tree-like networks,
and provides several types of information. We would like to have something similar on more
complicated networks. However, the tree structure is heavily used in the calculations above. For
instance for pairwise models, the BP equation (2.15) relies on the following idea: if you consider
the modified graphical model where we remove the function ψij , then variable xj becomes
uncorrelated with other variables {xk, k ∈ ∂i\j}. In other words, because of the tree structure,
the only “link” xj had with other neighbours of xi was through ψij . The marginal distribution
for xj in this model is thus the same as its marginal distribution in another model where we
remove all ψil for l ∈ ∂i, i.e. where all neighbors of xi are uncorrelated variables (see Fig. 2.2).
This equality allows to simplify marginal computations and to decouple independent terms. Of
course, it does not work for any network: the logic breaks down if xj is connected to other
variables {xl, l ∈ ∂i\j} through another variable node than xi.
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Figure 2.2: A pairwise tree model. Left: Complete graphical model focused on
variable i and its neighbors. Middle: modified graphical model where we have
removed function ψij . Right: modified graphical model where we have removed
all functions ψil for l ∈ ∂i. Due to the tree structure, the marginal distribution

for variable j is the same in the middle and right models.

For general models, using BP means filling some voids. We would need to find a set of
functions that play the roles of messages νi→a, ν̂a→i. We would like them to satisfy BP equations,
which should also converge to an (existing? unique?) fixed point. We will need to define possible
marginals, i.e. a collection of functions bi over X for i ∈ V , and ba over X |∂a| for a ∈ F . Since
they need to mimic marginals, those functions should satisfy:∑

xi

bi(xi) = 1 ∀i ∈ V (2.31)∑
x∂a

ba(x∂a) = 1 ∀a ∈ F (2.32)
∑

x∂a\i
x∂a = bi(xi) ∀a ∈ F,∀i ∈ ∂a\i. (2.33)

Note that any joint distribution P (x) would provide such functions, however it is not true the
other way round: a well-defined set of functions {bi, ba} does not necessarily correspond to a
distribution. For this reason, we say that we are using beliefs; the messages simply describe
what could be actual marginals.

Another way to address BP on loopy graphs is through the variational approach, using the
Bethe free energy defined in (2.27). We have seen that it is exact on trees, and our hope would
be that it provides a good approximation of the actual free energy on more complicated graphs.
The Bethe free energy can be defined as a function on a set of possible marginals {bi, ba}. It
shares a close bond with BP equations, through the following property: the stationary points
of the Bethe free energy, where the energy is finite, correspond to fixed points of BP equations.
In fact, in tree graphs the Bethe free energy is convex, hence it has a unique stationary point
which provides the unique fixed point of BP equations, but this unicity is not true in general.

In practice, BP can be very effective even on loopy graphs. In particular, note that BP
is a local algorithm: outgoing messages on a given node are updated as functions of incoming
messages received at the previous iteration. BP will bear fruit if the graph is locally tree-like
in the asymptotic limit (for a large enough graph, starting from any node and for any finite
distance d, the part of the factor graph which is at distance at most d from the center node is
a tree). Another case of graphs where BP provides remarkable results is the case of densely-
connected graphs (which are not locally tree-like!), where correlations are small enough, so that
local loops in the network have negligible contribution. In the following, we will see that BP
equations in such settings can sometimes be simplified, in connection with statistical physics
methods already used in Chapter 1. We will deal with a more general class of message passing
algorithms. Similar to BP, they can be defined on a factor graph, and also involve messages
(often marginals) on its directed edges, as well as a local update rule of the messages at the
nodes.



Chapter 2. Universality of phase transitions in noiseless linear regression 50

2.2 Theoretical background on linear regression

2.2.1 Introduction to linear regression

Let us cast belief propagation aside for a moment, and introduce the problem of linear regression.
Say that you manage an online library, and would like to issue targeted book recommendations
to your clients. You already have a fair amount of clients, and you ask them to rate each
book they read. You also ask them for some information when they create an account: their
age, address, profession, and a few other elements, in total N . Based on this data, you would
like to know whether a particular book would be a good recommendation for a new client or
not. Putting all the ratings for this book from M previous users in a vector y ∈ RM , and the
information about them in a matrix F ∈ RM×N (one line per user, one column per information),
you would like to find a vector x ∈ RN such that

y = Fx. (2.34)

If we can find such a vector x, it would contain coefficients to express the rating of the book as a
weighted sum of the various pieces of information on the reader. If you get a new client, you can
then simply add a line to the matrix F, and obtain an estimate of this book’s rating for that client.
Hence you would have an idea of this client’s susceptibility to enjoy the book. At first glance,

Figure 2.3: Linear regression to obtain ratings as a linear combination of ele-
ments from the data matrix lines.

this does not seem like a very efficient method. Indeed, having only a few pieces of information
on each user might not be enough to actually explain their rating of the book. However, we now
live in the big data era: we are overwhelmed by information, and we should design techniques
and algorithms that take into account the large amount of accessible data to better extract
information from it. In particular, the online library manager now does not only know 5 or 6
elements about each user: a simple research on google might reveal a social media account, and
a real avalanche of data. Our linear regression problem thus becomes relevant in the asymptotic
regime that we are used to: M,N are very large. Linear problems might seem too simple and
somewhat out-of-date, however even they hold a fair share of mystery and delicate questions.
In particular, when M < N , the system is undetermined: there are more unknowns than
measurements, and the regression becomes a challenging task. These problems appear in many
fields: signal processing where we call it compressed sensing, experimental physics, biology...
Seminal work on techniques to solve the problem computationally can be found in [44, 30].
An example of brilliant and exciting application is magnetic resonance imaging (MRI) [95, 96].
The same set-up used to evaluate book ratings could be exploited to store personal medical
information, and explain which factors influence how likely a person is to contract a disease.
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2.2.2 Sparse linear regression

Why sparse?

Coming back to library management, say that you now hacked into your users’ social media
accounts1, and your data matrix has an enormous number of columns. Of course, most of them
are irrelevant, hence the vector x needs to be sparse: most of its components are null. Allowing

Figure 2.4: Sparse linear regression: only K out of N elements of x are non
zero, which selects K columns from the data matrix F.

for some noise, our problem is now phrased this way: we know y ∈ RM and a data matrix (also
called the sensing matrix) F ∈ RM×N , and we assume that y is generated through

y = Fx0 + w (2.35)

with w ∼ N (0,∆0)N a Gaussian noise. We would like to find an estimate x ∈ RN , which recon-
structs x0 and has only K non-zero components. We fall into the teacher-student scenario, and
the problem is hence characterized by two ratios: α ≡ M/N , and ρ ≡ K/N . We are interested
in the asymptotic regime: K,M,N →∞, with α, ρ of order 1.

Depending on the context of the problem, matrix F can have very different structures. Of
course, we would like to have a theory as general as possible and we might be interested in some
specific forms. However, we need to accept a trade-off between generalization and specialization,
and to start with easier types of matrices to analyze, in the hope of gaining more understanding
of such questions. In the following, we will take F a random matrix, sampled from a given
distribution. Several questions arise:

• When do we have enough measurements to reconstruct the signal? We first rule out the
region where we have less measurements than unknowns: information-theoretically, it is
impossible to find x if α < ρ.

• In the region α > ρ, where can we estimate x, and how can we do it with an algorithm in
polynomial time?

Bayes-optimal versus `1 reconstruction

We measure the performance of an estimator through the mean squared error with respect to
the ground truth. Two theoretical settings can be considered:

i) The teacher-student Bayes-optimal scenario, in which we know that x0 comes from a given
distribution px0 , i.e. we know the statistical property of the signal that we are trying to
estimate.

1not recommended
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ii) In a more general mismatched setting, we do not know anything about x0, and we only
try to find an estimate which is as sparse as possible, to reduce the number of significant
parameters.

Our ideal target would be to find

x̂0 = arg min
x∈RN

‖y− Fx‖22, such that x̂0 is the most sparse possible. (2.36)

We would like to minimize the so-called `0 norm (which is not a norm!), which counts the
number of non zero components of the estimator. However, there is no way to do so in less than
exponential time, as we would have to try all possible positions of non zero elements. Hence we
turn to the `1 norm ‖·‖1 defined by ‖x‖1 =

∑N
i=1 xi. We thus define the estimator

x̂ = arg min
x∈RN

{
‖y− Fx‖22 + ‖x‖1

}
. (2.37)

We have incorporated the `1 norm inside the function to minimize, as a penalty function. This
linear regression with `1 norm is called the LASSO (which stands for Least absolute shrinkage
and selection operator). This approach was suggested in a line of work from [29, 28]. The `1
norm is a convex function, so estimator x can be found using a convex optimization algorithm.
But why would we pick the `1 norm instead of, say, the usual `2 norm which is also convex? The
answer lies in the geometry of those norms. We usually say that the `1 penalty favors sparsity:
minimizing it will tend to select solutions which are actually sparse, more than other norms, as
shown in Fig. 2.5. A refined analysis on sparse estimators and their interpretation as maximum
a posteriori (MAP) estimators can be found in [66].

Figure 2.5: Linear regression with on R2. The blue line is the space of solutions
to y = Fx, and we select the point x̂ of coordinates x̂1, x̂2 in purple. Left: The
yellow square is the sphere of vectors with the smallest `1 norm that still intersects
the space of solutions. The estimator satisfies x̂1 = 0. Right: The yellow circle
is the sphere of vectors with the smallest `2 norm that intersects the space of

solutions. x̂ has two non zero components.

Two types of matrices

In the rest of the chapter, we will be interested in several types of random matrices. For now,
we start with two of them:

• Gaussian i.i.d. matrices

F ∈ RM×N is Gaussian i.i.d. when its elements are independently and identically distributed
according to N (0, 1

N ) the Gaussian distribution of mean zero and variance 1
N .
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• Rotationally invariant matrices

This is a much larger class of matrices, that can be defined through the singular value decom-
position (SVD) of F, which yields

F = UΣV (2.38)

where U ∈ RM×M and V ∈ RN×N are orthogonal matrices. Σ ∈ RM×N contains the singular
values of F, i.e. the square roots of the eigenvalues of FTF. F is rotationally invariant if
the matrices U and V have been generated from the Haar measure, i.e. randomly sampled
from the space of rotations. This definition might seem a bit mysterious, however note that
such matrices can be generated: simply by sampling the orthogonal matrices and choosing the
desired spectrum inside Σ. Gaussian i.i.d. matrices are included in this class of rotationally
invariant matrices, in this case the singular values of F follow the Marchenko-Pastur law [169].
We will also be interested in right rotationally invariant matrices, where only V needs to be
Haar-generated, independently from U and Σ. Rotationally invariant data matrices allow for
correlation between data samples, they are thus a significant improvement with respect to i.i.d.
matrices.

Replica analysis for i.i.d. and right rotationally invariant matrices

Let us see how to analyze the problem of linear regression in the inference framework introduced
in 1.2. We turn to a probabilistic reconstruction analysis, as explained in [88, 87]. We allow for
noise w again, we can later take its zero limit. To obtain an estimate of the signal, we want to
sample from the posterior probability distribution, obtained through Bayes’ theorem

P (x|F,y) = P (y|x,F)P (x,F)
P (y,F) . (2.39)

Let us stop here for a second. In this setting, we assume that we know that y is generated as
a linear product of a random matrix of known distribution and a ground truth signal, plus a
Gaussian noise, but we do not necessarily know the true noise variance ∆0, so we will try to
approximate it with a noise of variance ∆. We said before that P (x,F) was the prior distribution,
that encapsules our knowledge of x, or what we believe about its distribution. Let us see how
to incorporate this in our case.

i) In the Bayes-optimal setting,

we know the signal true probability distribution px0(x0), and we use it as prior distribution
P (x,F). The properties of the true signal x0 will then be described by maximimizing the
posterior distribution, which will be done through a replica calculation.

ii) In the mismatched case,

P (x,F) can help in enforcing constraints about x. To generalize our approach to any separable
penalty function f , we want to characterize the estimator

x̂ = arg min
x∈RN

{1
2‖y− Fx‖22 + f(x)

}
. (2.40)

For the LASSO estimation, we take f = ‖·‖1. To enforce the penalty role of f , we impose

P (x|F) ∼= e−
f(x)

∆ , (2.41)

and this choice will become clear in a few lines. Note that the prior distribution is independent
from the matrix F, so we can simply denote it P (F). We rename P (y,F) = Z the partition
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function, that we obtain by plugging in the likelihood

P (y|x,F) =
M∏
µ=1

1√
2π∆

e−
1

2∆

(
yµ−
∑N

i=1 Fµixi
)2

(2.42)

such that

P (x|y,F) ∼=
N∏
i=1

P (xi)
M∏
µ=1

1√
2π∆

e−
1

2∆

(
yµ−
∑N

i=1 Fµixi
)2
. (2.43)

We are interested the partition function which reads

Z(y,F) =
∫ N∏

i=1
dxi

N∏
i=1

P (xi)
M∏
µ=1

1√
2π∆

e−
1

2∆

(
yµ−
∑N

i=1 Fµixi
)2
. (2.44)

where P (xi) = px0(xi) in the Bayes-optimal case, or P (xi) = e−
f(xi)

∆ for the mismatched set-
ting: in that case, we can factor out 1/∆ in the exponential terms in front of the quantity
1
2‖y − Fx‖22 + f(x). Taking the noise ∆ → 0 in the student model will successfully make the
integral concentrate on the desired estimator x̂.

To proceed with the calculation, we want to compute Φ the free energy averaged on the
randomness of the model, i.e. F,x0,w, which can be done through the replica trick

Φ = lim
N→∞

1
N

EF,x0,w[logZ] = lim
N→∞

1
N

lim
n→0

EF,x0,w[Zn]− 1
n

. (2.45)

Introducing n replicas of the system, we want the replicated partition function

EF,x0,w(Zn) =
∫ ∏

i,a

dxai
∏
i,a

P (xai )
∏
µ

EF,x0,w
1√

2π∆
e−

1
2∆
∑n

a=1

(∑N

i=1 Fµix0,i+wµ−
∑N

i=1 Fµix
a
i

)2
.

(2.46)
The replica calculation unfolds in terms of the following order parameters for all a = 1, .., n:

ma = 1
N

N∑
i=1

xai x0,i (2.47)

Qa = 1
N

N∑
i=1

(xai )2 (2.48)

qab = 1
N

N∑
i=1

xai x
b
i . (2.49)

They measure the overlaps between replicas and the ground-truth, the self-overlap of the repli-
cas, and overlaps between different replicas. The computation involves an average over the
distribution of the data matrix F, which is a delicate point. In fact, we know how to compute
it in two cases:

• When F is (Gaussian) i.i.d.

The replica formula (the Tanaka formula [157]) for this case is well-known and has been postu-
lated in different situations [168, 87, 88, 186]. Generic methods to prove replica formulas have
been proposed based on the Guerra interpolation technique [67]. This heuristic replica result
has been recently rigorously proven in a series of papers [13, 134]. In a more recent proof [14],
it has been shown, again, that the formula is not specific to Gaussian i.i.d. matrices, but that
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any matrix with i.i.d elements of unit variance and zero mean leads to the same exact result for
mean squared error.

• When F is right rotationally invariant

This case includes the Gaussian i.i.d. one, but is more general. It has been computed in [79]
and proving it for a convex penalty is at the heart of another work, detailed in the next chapter.
We consider that C ≡ FTF has a well-defined eigenvalue distribution pλ with compact support.
We can define its minimum λmin and maximum λmax. To write the free energy, we need some
transforms which come from random matrix theory, that are associated with pλ. The Stieltjes
transform of C reads

SC(z) =
∫ λmax

λmin

dλpλ(λ)
λ− z

= E
[ 1
λ− z

]
(2.50)

and is correctly defined outside of pλ’s support. The corresponding R-transform is

RC(x) = S−1
C (−x)− 1

x
. (2.51)

The detail of the computation is given in appendix B. We take the replica symmetrix (RS) ansatz,
which is necessarily the correct one when the penalty function is convex, since our minimization
problem admits only one solution. RS also holds for the teacher-student Bayes-optimal scenario,
thanks to the Nishimori identity. We can thus remove the subscripts of the order parameters
which share a unique value. The replica formula for the average free energy finally yields

Φ(Q, q,m, Q̂, q̂, m̂) = GC

(
−Q− q∆

)
+
(
−E[x2

0]− 2m+ q

∆ + ∆0(Q− q)
∆2

)
G′C

(
−Q− q∆

)

+ QQ̂

2 −mm̂+ qq̂

2 +
∫

dx0 px0(x0)
∫

Dz log
{∫

dxP (x)e−
Q̂+q̂

2 x2+m̂xx0+z
√
q̂x
}

(2.52)

where GC is defined with respect to pλ as

GC(x) = 1
2SupΛ

{
−
∫

dλpλ(λ) log |Λ− λ|+ Λx
}
− 1

2 log |x| − 1
2 . (2.53)

Note that in the domain of definition of RC, we have G′C(x) = 1
2RC(x). For simplicity, we will

use this relation in the following results. However, remember that it only holds in a specific
regime, and the general (and somewhat less aesthetic) correct expression would be to simply
write things in terms of GC and its derivative. We can now minimize the free energy with respect
to its parameters, which provides 6 saddle-point equations. We can rewrite them as equations
on two parameters, which characterize the mean squared error with respect to the ground-truth
E, and variance V of the estimator:

E = q − 2m+ E[x2
0] (2.54)

V = Q− q. (2.55)

Defining the two functions

fa(A,B) =
∫

dx xP (x)e−
(x−B)2

2A∫
dxP (x)e−

(x−B)2
2A

fv(A,B) = A
∂fa(A,B)

∂B
, (2.56)
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the replica equations on (E, V ) read

E = E

{fa( ∆
RC(−V∆ )

, x0 + z

RC(−V∆ )

√
(E − ∆0

∆ V )R′C(−V∆) + ∆0RC(−V∆)
)
− x0

}2
 (2.57a)

V = E

[
fv

(
∆

RC(−V∆ )
, x0 + z

RC(−V∆ )

√
(E − ∆0

∆ V )R′C(−V∆) + ∆0RC(−V∆)
)]

(2.57b)

with the expectation taken on x0 ∼ px0(x0) and z ∼ N (0, 1). To numerically solve the equations,
we simply need to iterate them by computing the left-hand-side at iteration t+ 1 as a function
of the right-hand-side taken from iteration t. In the limit ∆→ 0, these equations can be written
in terms of a rescaled variance and error and naturally yield proximal operators that are widely
used in convex optimization. We will spend some time discussing them in the following chapter.
For now, all we need to know is that the replica method allows to obtain a set of equations
on the mean squared error of the estimator with respect to the ground truth signal, for right
rotationally invariant matrices. Those equations can be solved by initializing them properly,
then iterating them. We can thus draw a phase diagram depending on parameters α, ρ: for each
point we can solve the equations and get a theoretical value of the error made by the estimator.
However, we need to proceed with care: indeed it is not always clear whether equations (2.57)
have only one solution, and finding one could simply correspond to a local minimum of the free
energy instead of a global one.

Theoretical phase transitions

We first focus on data matrices which are i.i.d. which is simply a particular case of the replica
analysis. We need to specify a prior distribution px0(x0), in the following we will assume that
the ground truth comes from a separable Gauss-Bernoulli distribution, such that for sparsity
ρ ∈ [0; 1], for a scalar x:

px0(x) = (1− ρ)δ(x) + ρφ0(x) (2.58)

with φ0 a known distribution, classically a normal one. For a fixed ρ, we know that in the region
α < ρ we cannot reconstruct the signal. The line α = ρ is called the information-theoretical
(IT) transition. As we increase α, we get more and more measurements, and we expect the
reconstruction error to decrease. In fact, the theory predicts a phase transition: the error is
non-zero, then past a given threshold α(ρ), the error goes to zero and the described estimator
achieves perfect reconstruction.

i) In the Bayes-optimal case,

the phase diagram is somewhat subtle. Recall that we are trying to recover x0, which is described
by the global minimum of the free energy. However, say that we initialize our equations (2.57)
on (E, V ) starting from no information at the signal, i.e. with m = 0 (no overlap with the
ground-truth). Then, there is a regime where the iterations will converge to a local minimum of
the free energy, and will not be able to reach the global minimum. The phase diagram is divided
into three parts. Below the IT threshold, it is impossible to recover the ground truth. Directly
above the IT threshold, the free energy has a local minimum which absorbs our iterations if we
start with no knowledge of the signal. The error associated with this local minimum is not zero.
If we increase the number of measurements, the free energy will at some point have only one
global minimum, then our iterations will converge to it, and the error will become zero since
we are describing the ground truth: it is the easy phase. This transition is marked by a phase
transition that we call the Bayesian hard phase line, or the spinodal (a term borrowed from
thermodynamics which indicates a phase transition). The region between the IT threshold and
the spinodal is called the hard phase. The existence of this phase might be seen as irrelevant,
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but we will see that it is very important for the algorithmic treatment of our problem, and that
understanding the behavior of the free energy is informative.
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Bayesian hard-phase line
IT transition

Figure 2.6: Phase diagram for i.i.d. matrices in the (α, ρ) space. Below the
dashed line of the IT transition (blue region), it is impossible to recover the signal.
Between the IT line and the Bayesian hard phase solid line lies the hard phase
(yellow region), where a naive iteration of the replica equations reaches a local
minimum of the free energy with a non zero error. Above the Bayesian hard phase

line, the free energy has a unique global minimum.

ii) In the `1 reconstruction case,

the free energy of the replica calculation has only one global minimum which describes the
estimator x̂. Iterating the equations on (E, V ) safely describe the error achieved by this estimator
with respect to the ground-truth. There is a phase transition marked by the Donoho–Tanner
line [46]: above this line, x̂ matches x0, but it fails to do so below. We cannot do better than this
line with `1 reconstruction, which is therefore sub-optimal. The Donoho–Tanner and Bayesian
hard phase lines are compared in Fig. 2.7.

2.2.3 Approximate message passing algorithms

The phase diagrams for i.i.d. matrices provide some insight on the properties of the estimator
x̂ in the `1 reconstruction, and of replica free energy for Bayes-optimal reconstruction. We now
turn to the practical aspect of our problem: how can we reconstruct the signal x0 with an algo-
rithm in polynomial time? We will use message passing algorithms, a statistical physics inspired
variant of belief propagation, where local beliefs are approximated by Gaussian distributions.
For our setting in particular, we turn to approximate message passing (AMP) [45] that applies
to Gaussian i.i.d. matrices, and Vector approximate message passing (VAMP) [132] which ap-
plies to rotationally invariant matrices. We choose these algorithms because they come with
a rich physical interpretation, as will be seen further on. To provide a general grasp on those
algorithms’ logic, we will show a glimpse of AMP’s derivation starting from BP. A detailed
derivation can be found in [87]. Let us start by writing the BP equations associated to the
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Figure 2.7: Theoretical phase transitions for noiseless linear regression for Gaus-
sian i.i.d. matrices in the (α, ρ) phase diagram. The purple Donoho–Tanner is for
`1 reconstruction, the blue Bayesian hard phase line is for Bayes-optimal recon-
struction of a Gauss-Bernoulli signal. Above the line: the mean squared error of
the estimator is null and the signal is perfectly estimated. Below the line: the error
obtained by solving the replica equations grow (initializing with no knowledge of
the signal). The Bayes-optimal spinodal is below the Donoho–Tanner line, indeed
the Bayes-optimal setting allows recovering the signal with fewer measurements

than `1 reconstruction, as it exploits more information.

probability distribution (2.43). The associated factor graph is given in Fig. 2.8. There are in
total MN edges, thus the BP equations will involve 2MN messages, that we call mi→µ,mµ→i,
and read:

mµ→i(xi) = 1
Zµ→i

∫ ∏
j 6=i

dxje−
1

2∆ (
∑

j 6=i Fµjxj+Fµixi−yµ)2 ∏
j 6=i

mj→µ(xj) (2.59a)

mi→µ(xi) = 1
Zi→µ

P (xi)
∏
γ 6=µ

mγ→i(xi) (2.59b)

where Zµ→i, Zi→µ are normalizations to ensure that messages are probability distributions. Re-
call that P (xi) here is the prior distribution.

We would like to simplify these 2MN equations, which are two numerous and difficult to
handle, since we look at the asymptotic limit of large N . There are two stages of simplification
of these equations: first exploiting the fact that Fµi elements are of order 1/

√
N , and further

on using the fact they are Gaussian. The result is a set of TAP equations, named for Thouless,
Anderson and Palmer who first derived them to write a mean-field theory for the Sherrington-
Kirkpatrick model [163], introduced in Chapter 1. A possible derivation is the cavity method
exploited in [106]. The recipe of the cavity method usually includes these ingredients: intro-
ducing a cavity by removing a variable, then focusing on resulting marginal distributions, and
making use of the resulting absent (for a tree) or weak correlations between remaining variables
to simplify some terms (in particular invoking a central limit theorem on local fields to treat
them as Gaussian variables). Such a cavity approach was used in 1.3. We will here only give the
gist ideas of the derivation of TAP equations starting from BP equations. First of all we need
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to define the mean and variance of message mi→µ:

ai→µ =
∫

dxi ximi→µ(xi) (2.60a)

vi→µ =
∫

dxi x2
imi→µ(xi)− a2

i→µ. (2.60b)

Then, defining the probability distribution

mi(x) ∼= P (xi)
∏
γ

mγ→i(xi) (2.61)

where we have “completed” mi→µ by the marginal mµ→i, we also define its mean and variance

ai =
∫

dxi ximi(xi) (2.62a)

vi =
∫

dxi x2
imi(xi)− a2

i . (2.62b)

The key point is to write ai→µ as ai, plus a correction term which is linear in Fµi to keep elements
of order 1/

√
N , but discard those of smaller order. This additional correction is absolutely

crucial, and is called the Onsager term. For the SK model, the Onsager term translates the
difference between the average of the local fields in the complete model, and their average in
the model induced by creating a cavity. It sits in the magnetization approximation as an extra
correction term compared to traditional mean-field approaches2. Defining wµ =

∑
i Fµiai→µ, we

can write the TAP equations for Gaussian i.i.d matrices. Adding the appropriate time indices,
the TAP equations turn into approximate message passing (AMP) equations which read:

V (t+1) = 1
N

∑
i

v
(t)
i (2.63)

ω(t+1)
µ =

∑
i

Fµia
(t)
i −

(yµ − ω(t)
µ )

∆ + V (t)

[
1
N

∑
i

v
(t)
i

]
(2.64)

Σ(t+1) = ∆ + V (t+1)

α
(2.65)

R
(t+1)
i = a

(t)
i +

∑
µ

Fµi
(yµ − ω(t+1)

µ )
α

(2.66)

a
(t+1)
i = fa

(
Σ(t+1), R

(t+1)
i

)
(2.67)

v
(t+1)
i = fv

(
Σ(t+1), R

(t+1)
i

)
(2.68)

where fa, fv are the functions defined in (2.56) and depend on the prior distribution P (x). For
instance, if the signal model taken for inference is a Gauss-Bernoulli P (x) = (1− ρ)δ(x) + ρφ(x)
with some known distribution φ; a reasonable initialization is

a
(0)
i = ρ

∫
dx xφ(x) (2.69a)

v
(0)
i = ρ

∫
dx x2φ(x)− (a(0)

i )2 (2.69b)

ω(0)
µ = yµ. (2.69c)

2Note that the first appearance of the Onsager term involves three Nobel prize holders: Onsager himself,
Thouless and Anderson... It is definitely a beautiful piece of physics.
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Let us note a few facts:
– the TAP equations correspond to the fixed point of AMP. If we derive them starting from
BP equations (that we know how to properly iterate), the time indices seem obvious. However,
starting from the physics cavity method only provides the fixed point, and adding the appropriate
time indices can be tricky. In fact, finding the right time indices to guarantee convergence for
the original SK model TAP equations was quite a challenge, and it was only fully understood
recently.
– BP equations involved a number of variables of order MN , while for AMP the number is of
the order M +N : one loop of AMP is much faster than one loop of iterating BP messages.

Figure 2.8: Factor graph for linear reconstruction. The circles are variable
nodes {xi}, i = 1, ..., N . The squares are function nodes, to the left they describe
the priors P (xi), and to the right the measurements yµ, µ = 1, ...,M which are

obtained by multiplying the signal elements through matrix elements Fµi.

We could reduce even further AMP equations by removing intermediate variables. A par-
ticular advantage of these equations is that we can rewrite them on meaningful quantities
that characterize statistical properties of the involved variables. The first one is the vari-
able V (t) = 1

N

∑
i v

(t)
i , the average variance of local beliefs. We can define another quantity

as E(t) = 1
N

∑
i(a

(t)
i − x0,i)2 which computes the error between the ground truth x0, and the

belief on the estimator average at a given iteration of the algorithm. Without going into detail,
by simply analyzing the variable Ri, we find out that in the asymptotic limit, (Ri − x0,i) is a
Gaussian variable of mean 0 and variance α(E + ∆0). Exploiting this fact, we can pack AMP
into equations on E and V , that we call density evolution equations:

V (t+1) = E

fv
∆ + V (t)

α
, x0 + z

√
E(t) + ∆

α

 (2.70a)

E(t+1) = E


fa

∆ + V (t)

α
, x0 + z

√
E(t) + ∆

α

− x0


2
 (2.70b)

where the expectation is on x0 ∼ px0 , and z ∼ N (0, 1). These equations should seem familiar:
in fact they are exactly the same as those we obtained in (2.57) with the replica method, in
the particular case of a Gaussian i.i.d. matrix F. This “coincidence” is incredible: we have
designed an algorithm (AMP), hoping that it will converge, and we obtain a set of equations
on the error and variance achieved by its estimator at each iteration. But those equations, at
their fixed point, are none other than the error and variance predicted by the replica method by
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minimizing the free energy associated with the problem of maximizing the posterior distribu-
tion (2.43). This delightful correspondence will allow to draw many parallels between message
passing algorithms, which are already closely linked to the cavity method and the Bethe free
energy, and replica calculations.

Many variants of message passing algorithms exist. In this chapter, we are mainly interested
in AMP [45] and Vector AMP [132], which tackle Gaussian i.i.d and rotationally invariant
matrices for linear regression. While AMP is based on a loopy factor graph with scalar-valued
nodes, VAMP proceeds on a non-loopy graph with vector-valued nodes. It also displays an
Onsager term. A study of VAMP’s convergence will be at the heart of the next chapter. For now,
we underline the fact that both algorithms converge very quickly (around a dozen iterations).

2.3 Universal transitions in noiseless compressed sensing

This section is adapted from [2].

2.3.1 Equivalence between right rotationally invariant and Gaussian i.i.d.
matrices

We have seen in the previous part the theoretical phase transitions for `1 reconstruction for
Gaussian i.i.d. matrices; and for Bayes-optimal estimation the existence of a hard phase. We
would now like to do numerical simulations to see how different classes of matrices relate to
these transitions; using message passing algorithms as solvers. A priori, we do not know what
those transitions will become for different matrices: there could be no phase transition, no hard
phase, or the transition line could be above or below the one for Gaussian i.i.d. matrices. A
first easy comparison can be established between rotationally invariant matrices and Gaussian
ones. We start from a right rotationally invariant matrix decomposed as F = UΣV, with an
arbitrary rotation matrix U and singular values on Σ’s diagonal, but where the matrix V has
been randomly (and independently of Σ and U) generated from the Haar measure. We focus
the noiseless setting: we wish to find x such that

y = Fx = UΣVx. (2.71)

We will do some lego-playing with those matrices to modify the writing of the problem. If
M ≤ N , then Σ is written as Σ =

[
Σ̃ 0

]
and we define

Σinv =
[

Σ̃−1

0

]
such that ΣinvΣ =

[
IM 0
0 0

]
.

Multiplying (2.71) on both sides by UT , and then by Σinv; one reaches

ỹ = ΣinvUT
y = Ṽx (2.72)

where Ṽ is anM ×N matrix composed of the firstM lines of V. We have assumed without loss
of generality that the singular values are non-zero, otherwise we have to keep the first r lines of
V with r its rank.
If instead M > N , Σ is written as

Σ =
[

Σ̃
0

]
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and we define Σinv =
[

Σ̃−1 0
]
such that ΣinvΣ = IN. Multiplying (2.71) by UT then Σinv,

we obtain a similar equation
ỹ = ΣinvUT

y = Vx. (2.73)

In both cases, we thus see that the problem has been transformed – in a constructive way – into
a standard linear system with the sensing matrix Ṽ when M ≤ N being a (sub-sampled) ran-
dom rotation one, or sensing matrix V when M > N . This shows that all rotationally invariant
matrices, which satisfy U and Σ’s independence on V, can be transformed the same way and
are in the same universality class as far as noiseless linear recovery is concerned, i.e. they will
display the same phase transitions.

Since Gaussian i.i.d. matrices belong to the ensemble of random rotationally invariant ma-
trices (in this case Σ follows the Marcenko-Pastur law [169]) this means that all the information
theoretic rigorous results (such as phase transitions and mean squared error values) with zero
noise for random Gaussian i.i.d. matrices applies verbatim to all rotationally invariant ensemble,
(as long as the SVD matrices U and Σ are independent of V). This is a very strong universality,
that applies to the phase transitions of the three lines discussed in section 2.2.2: the Donoho–
Tanner for `1 reconstruction, the Bayes-optimal hard phase line, and the mean squared error
with respect to the ground-truth at each point of the (α, ρ) phase diagram. However, note that
the above construction depends crucially on the fact that we consider here noiseless measure-
ments. It would not work if an additional Gaussian noise were added in (2.71): in this case,
the transformation would make the i.i.d. Gaussian noise a correlated one. Indeed, the replica
formula for noisy measurements underlines that the mean squared error depends on the precise
set of matrices in noisy reconstruction [153, 168] (this formula is not yet fully rigorous, but see
[16] for a proof in a restricted setting).

The equivalence of transitions for noiseless measurements can also be seen thanks to the
replica calculation, by the following hand-waving argument3. Note that the universality of the
Donoho–Tanner was already hinted to in [80]. We will start from the replica equations on (E, V )
for rotationally invariant matrices (2.57), and see how they become the same as their sisters for
Gaussian i.i.d. matrices (2.70) in the limit ∆ → 0. Taking the case M < N , the main point is
to look at the R-transform RC of C = FTF in the appropriate limit, i.e. when its argument
−V/∆ goes to −∞. The matrix C has M −N zero eigenvalues, hence pλ(λ) has a delta-peak in
0 of weight 1− α and the Stieltjes SC diverges to the left of 0. SC is a bijection from ]−∞, 0[
into ]0,+∞[. In particular, we easily obtain its equivalent in 0− from its definition:

SC(x) ∼
x→0−

1− α
x

. (2.74)

which goes to +∞. Then

S−1
C (−x) ∼

x→−∞

1− α
x

, (2.75)

RC(x) ∼
x→−∞

−α
x
, (2.76)

R′C(x) ∼
x→−∞

α

x2 . (2.77)

Using those equivalents for x = −V/∆ inside (2.57), we get the same equations as (2.70) in
the zero noise limit. Hence, the expression of the error E and variance V is independent of the
distribution of non-zero eigenvalues of C, i.e. the singular values of F: the transitions are the
same for any right rotationally invariant matrix.

3to differentiate from a wand-waving argument, which is pure magic!
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2.3.2 Universal transitions for structured matrices

Some types of structured matrices

We will now go beyond rotationally invariant matrices, and consider the following types of
matrices.

• Discrete cosine transform (DCT) matrices

An N ×N discrete cosine transform (DCT) matrix Y is defined by:

Yjk =
√

2
N
εk cos

(
π(2j + 1)k

2N

)
, (2.78)

where j, k ∈ J0, N − 1K, ε0 = 1/
√

2, εi = 1 for i = 1, ..., N − 1. To obtain F ∈ RM×N if
M < N , we randomly pick M rows out of N from Y; and if M > N we add N −M randomly
picked rows from Y to complete it. The DCT is a Fourier-like transform [5], but it provides a
decomposition of a signal on a basis of cosine functions of varying magnitudes and frequencies,
with real coefficients instead of complex ones. Decomposing an image thanks to the DCT usually
concentrates most of the visually significant information in just a few coefficients. The DCT is
thus widely used in image compression applications [179], and other types of data compression.
Note that the DCT matrix is not rotationally invariant: if we perform its SVD decomposition, we
can see that the resulting orthogonal matrices have very specific structure in terms of sinusoids.

• Hadamard matrices

A natural variant of the DCT is given by Hadamard matrices. H is an N × N Hadamard
matrix if its entries are ±1 and its rows are pairwise orthogonal, i.e. HHT = NIN. For every
integer k, there exists a Hadamard matrix Hk of size 2k. These can be created with Sylvester’s
construction: Let H be a Hadamard matrix of order N . Then the partitioned matrix[

H H
H −H

]

is a Hadamard matrix of order 2N . Again, Hadamard matrices are not rotationally invariant. In
[137], AMP is used as a capacity-achieving decoder for sparse superposition codes, and decoding
complexity is shown to be significantly reduced by using Hadamard data matrices.

• Random features maps

Finally, we define random features (RF) maps as encountered in nonlinear regression problems.
In such settings, a random features matrix

F = h(WX) (2.79)

is obtained from the raw data matrix X by means of a random projection matrix W and a
pointwise nonlinear activation h. Kernel regression models, nonlinear in the original data X,
can then be approximately but efficiently solved by the linear estimation problem (2.71), with
an appropriate choice for h and the W-distribution [128]. Such matrices, that can be seen as the
output of a neuron with random weights, have been investigated in particular in the context of
neural networks [127, 93]. Indeed, in neural networks configurations with random weights play
an important role as they define the initial loss landscape. They are also fundamental in the
random kitchen sinks algorithm in machine learning [128]. In what follows, we will use random
features matrices where both W and X are random Gaussian i.i.d. matrices. The function h is
taken successively to be a sign step function, a hyperbolic tangent, and a rectified linear unit
(ReLu) defined as ReLu(x) = 0 if x < 0, x otherwise.
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Numerical results

A first amusing test is to apply the routine from section 2.3.1 on a fabricated problem. We
first generate a right-rotationally invariant matrix and a ground-truth vector, then the noiseless
measurement vector y. After transforming the problem to reach vector ỹ, we apply AMP on ỹ
and the associated sensing matrix, which allows to indeed reconstruct the ground-truth signal
in the easy region of the phase diagram for Gaussian matrices.

Moving on, we now want apply VAMP out of its comfort zone with structured matrices
described above. In fact, we could pick an algorithm out of different options [153, 27], in
particular, using the general expectation-propagation (EP) [109, 121] scheme. A variation of
EP called OAMP specially adapted to rotation matrices is developed in [97]. However, we enjoy
using VAMP because it provenly follows in the asymptotic limit state evolution equations that
describe the error achieved by its estimator at each iteration, and which (we will elaborate on
this in our next chapter) correspond to the replica equations (2.57) [153, 168, 16]. Therefore,
VAMP comes with a theoretical description of the mean squared error. Note that we have
no guarantee that VAMP will converge for structured matrices, however it turns out that for
many cases (adding some damping on its iterations, which slows down convergence but helps in
setting the algorithm on a converging path rather than straying off after one over-enthusiastic
step) it does converge. To perform simulations, we generate a synthetic problem with a Gauss-
Bernoulli distributed ground-truth, then the random matrix of our choice, and we multiply both
to obtain the noiseless measurement vector. We run VAMP and when it converges, we can
compute the error of the estimator with respect to the ground-truth, and compare it to the one
we get for rotationally invariant matrices (that we also know analytically). For `1 recovery, it
has been shown empirically that the Donoho–Tanner transition seems to hold for a wider range
of random matrix ensembles, see e.g. [43, 114]. Another line of work showed that the convex
`1 reconstruction problem can be treated through conic geometry, and the success probability
of signal recovery only depends on a geometric number characterizing a subcone (statistical
dimension or Gaussian width) [32, 6]. Our experiments include both the `1 reconstruction case,
and the Bayes-optimal estimation.

• Bayes-optimal reconstruction

To generate Figure 2.9, we ran VAMP 50 times on 50× 50 points spanning the (α,ρ)-space with
a generated DCT matrix, and computed the average mean squared error (MSE) between the
signal x0 and the reconstructed configuration. The MSE is represented with a color bar (white
means perfect reconstruction). We observe a phase transition in the Bayes-optimal that matches
the theoretical Bayesian hard phase line. For all other structured matrices mentioned above, we
obtain the same color diagram: each time the phase transition traces the same line. We also
compared the error obtained by VAMP for different matrices. In figure 2.10, we plot the MSE
averaged on 20 executions of VAMP for three values of fixed ρ and α ranging between 0 and 1.
We get the same error in reconstruction for all matrices, following the MSE for Gaussian i.i.d.
matrix for ρ = 0.25, 0.5 and 0.75.

• `1 recovery

The same protocols are applied to the `1 reconstruction. Averaging on 20 executions of VAMP
(or 50 for small α where finite-size effects are more important), we recover again in Figure 2.11 a
phase transition matching the theoretical Donoho–Tanner line for Gaussian i.i.d. matrices [43].
Figure 2.12 is obtained the same way as 2.10.
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Figure 2.9: Phase diagram for a DCT matrix (width N = 1000) in the Bayes-
optimal case. The averaged MSE on 50 executions of VAMP is represented by
a color-code, displaying a phase transition that matches the theoretical Bayesian
hard phase line for Gaussian i.i.d. matrices (black line). Some finite-size effects

can be seen.
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Figure 2.10: Mean squared error for ρ = 0.25, 0.5 and 0.75 (bottom to up curves)
in the Bayes-optimal case averaged on 20 executions of VAMP for Gaussian i.i.d,
DCT, Hadamard, random features matrices F = h(WX) with h = ReLu, h = sign,
h = tanh (W and X are Gaussian i.i.d of size αN ×N and N ×N) . The width

is N = 2000 for almost all matrices, except the Hadamard (N = 2048).
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Figure 2.11: Phase diagram in the `1 reconstruction case obtained by averaging
on 20 to 50 executions on VAMP. The dots indicate the phase transitions for
Gaussian i.i.d., DCT (width N = 2000), Hadamard matrices (N = 4096); and
random feature matrices F = h(WX) with h = ReLu, h = sign, h = tanh (W and
X are Gaussian i.i.d. of size αN×N and N×N with N = 2000). They match the
theoretical Donoho–Tanner transition for Gaussian i.i.d. matrices (black line).
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Figure 2.12: Mean squared error for ρ = 0.25, 0.5 and 0.75 (bottom to up curves)
in the `1 reconstruction case averaged on 20 executions of VAMP for Gaussian
i.i.d, DCT, Hadamard, random features matrices F = h(WX) with h = ReLu,
h = sign, h = tanh (W and X are Gaussian i.i.d of size αN ×N and N ×N). The

width is N = 2000 for all matrices except the Hadamard (N = 2048).
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2.3.3 Discussion and limits of the universality

We have seen that the universality in noiseless compressed sensing is not limited to the `1-type
reconstruction as in [43, 114], but extends to other quantities and estimators, such as the hard
phase line in Bayesian reconstruction, and the mean squared error. Besides, it does not only
include right rotationally invariant matrices, but empirically extends to Fourier-type matrices
and to the random features maps currently studied in machine learning. It seems that the
density evolution equations which predict the error of the estimator achieved by VAMP also
apply to those matrices, even though they are not proved in this setting. However, all matrices
do not share the same properties. Let us have a look at two examples of structured matrices
that do not seem to follow these universal phase transitions.

• Haar wavelet matrices

Haar wavelet matrices can be defined recursively by:

W2 =
[
1 1
1 −1

]
and W2k =

[
Wk ⊗ [1,−1]

Ik ⊗ [1, 1]

]

where Ik is the identity matrix of size k and ⊗ is the Kronecker product. Those matrices are
used, in particular, for the reknown Daubechies wavelet decomposition [38]. In the easy phase
of compressed sensing, both in the Bayes-optimal setting and the `1 recovery case, where VAMP
applied to i.i.d. matrices (as well as Hadamard, DCT, random features matrices) perfectly
reconstructs the signal; it fails to do so when applied to a Haar wavelet matrix. VAMP will then
converge to a fixed point with a non-zero MSE, as seen in Figures 2.13 and 2.14. In fact, VAMP
seems to always fail in reconstructing the signal for a Haar wavelet matrix: the mean squared
error converges to a finite quantity, but never to zero. Of course, this approach is algorithm-
dependent, but it means that VAMP is not necessarily appropriate to work with those matrices,
and that the theoretical insight we gain from its density evolution equations does not apply
empirically to some types of structured matrices. To sum up, we can roughly say thet we do
not observe the same phase transitions for VAMP applied to a Haar wavelet matrix.

• Gaussian correlated matrices

Let T(c) be the Toeplitz matrix defined as T(c)ab = c|a−b|. As in [129], we consider structured
matrices which satisfy the following property: if F is aM×N matrix, its elements have covariance

E[FiaFjb] = 1
M
CijDab (2.80)

where all Daa = 1. Such a matrix can be obtained, for instance, by multiplying a M × N
Gaussian i.i.d. matrix G by a N ×N Toeplitz matrix T(

√
c). In our simulations, we thus used

matrices
F(c) = 1√

M
GT(

√
c) (2.81)

for different values of c. Running VAMP in the Bayes-optimal case with parameters (α, ρ) in
the easy phase of compressed sensing, we find that it converges and perfectly reconstructs the
signal for c small enough (c = 0.15), but fails to converge and has a diverging MSE when c
is larger (c = 0.8), as seen in Figure 2.13. In the `1 recovery setting, still in the easy phase
above the Donoho–Tanner line, VAMP fails to converge to a fixed reconstructed vector x̂ both
for c very small (c = 0.001) or large (c = 0.8). However, the MSE stays very close to a small
non-zero value, which can be seen in Figure 2.14. After a large number of iterations, VAMP
keeps returning a vector very close to the original signal, but does not manage to reconstruct it.
The final MSE’s approximate value also depends on c: the larger the correlations are, the larger
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the MSE is. In [129], the authors study such correlated matrices in the very sparse regime when
α is close to zero, and show that the theoretical phase transition for `1 recovery depends on c.

Figure 2.13: Mean squared error at each iteration of VAMP in a Bayes-optimal
setting, for ρ = 0.3, α = 0.7 (in the easy phase of compressed sensing, i.e. above
the Bayesian hard phase line) . VAMP is applied to a Gaussian i.i.d, a DCT,
correlated Gaussian (width N = 2000); Hadamard and Haar wavelet matrices
(width N = 2048). The MSE for the Haar wavelet matrix converges to a finite
value but does not go to zero as for the other matrices. The MSE for a Gaussian
correlated matrix converges for small correlation c = 0.15 and diverges for larger

correlation c = 0.8.

Summary of Chapter 2 We considered the problem of noiseless compressed sensing, both in
the Bayes-optimal setting and in the `1 recovery case. We have clear theoretical understanding of
phase transitions (Bayesian hard phase and Donoho–Tanner lines) for i.i.d. matrices with mean
zero and variance 1 (thanks to a proven replica formula), and heuristic understanding for right
rotationally invariant matrices (which will be made rigorous in the next chapter). Through
simple arguments, we have shown that right rotationally invariant matrices share the same
phase transitions as i.i.d. ones. Besides, we observe through simulations that this universality
of transitions and of error values apply to a much larger class of matrices, including DCT,
Hadamard and random features matrices. Our simulations are made using message passing
algorithms which are a variant of belief propagation, and come with a rigorous theoretical
description in the asymptotic limit through their state evolution equations, that correspond to
the replica equations on (E, V ). However, VAMP applied on Haar wavelet matrices and Gaussian
correlated matrices does not display the same phase transitions. It would be interesting to find
a good criterion to identify which matrices satisfy this universality and which do not; and what
happens in a generalized model including non-linearities.
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Figure 2.14: Mean squared error at each iteration of VAMP in the case of `1
recovery, for ρ = 0.3, α = 0.8 (in the easy phase of compressed sensing, above
the Donoho–Tanner line). VAMP is applied to a Gaussian i.i.d, a DCT, corre-
lated Gaussian (width N = 2000); Hadamard and Haar wavelet matrices (width
N = 2048). The MSE for the Haar wavelet matrix converges to a finite value but
does not go to zero. The MSE for Gaussian correlated matrices does not effectively
converge, but stays very close to a small non-zero value, as seen in the zoomed-in

second subplot.
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Chapter 3

Asymptotic errors for convex
penalized linear regression beyond
Gaussian matrices

3.1 Definition of the problem

In this section, we will focus on the regression problem with convex penalty introduced in 2.2.2,
in the asymptotic regime. We are interested in the standard quadratic minimization problem,
given input space X ⊂ RN with M samples:

x̂ = arg min
x∈X

{1
2‖y− Fx‖22 + f(x)

}
(3.1)

where F ∈ RM×N is a known data matrix. f is a convex and separable regularization func-
tion. For instance, this setting includes the LASSO [165] by taking the `1 norm as penalty,
ridge regression [101] by taking the squared `2 norm, or elastic nets [187] which imply a linear
combination of the two. We assume the vector y has been obtained according to a noisy linear
process as

y = Fx0 + w (3.2)

where all elements from the vector x0 ∈ RN are identically and independently distributed (i.i.d.)
according to an arbitrary given distribution px0(·), and w ∈ RM is an i.i.d. Gaussian white noise
of zero mean and variance ∆0, independent of F and x0. Our aim is to provide expressions for
the mean squared error on the recovery of x0, which are asymptotically exact. The mean squared
error is defined as:

MSE = 1
N

E
[
‖x0 − x̂‖22

]
. (3.3)

We consider random matrices F with fixed aspect ratio α ≡M/N as M,N→∞.

In a pioneering paper, [20] considered this case for Gaussian i.i.d. matrices and provided a
rigorous derivation of an explicit formula for the asymptotic mean squared error of the LASSO
estimator. Our goal here is to go beyond the Gaussian case, hence we will look at rotationally
invariant matrices, previously defined in 2.2.2. Note that this setting, although specific, enjoys a
long standing tradition in signal processing [131], statistical physics [69], random matrix theory
[68] and communications theory [169]. We will adopt the statistical physics point of view, in
particular through the replica method approach. It allows to give typical-case results, that
represent a replacing approach to the worst-case analysis [113]. This chapter is adapted from
[61].

Main assumptions Since we want to obtain a rigorous statement, we have to be somewhat
careful with the mathematical assumptions involved, that we state now to lay proper foundation
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for our work:

• f is proper, closed, convex and separable.

• The empirical distributions of the underlying truth x0 and singular values of the rotation-
ally invariant sensing matrix respectively converge with second order moments, as defined
in appendix C.1, to given distributions px0 and pλ.

• The distribution pλ is non all-zero and has compact support.

• We consider the limit M,N →∞ with fixed ratio M/N = α.

3.2 Statistical physics result: the replica formula
As presented in 2.2.2 and detailed in appendix B, the statistical physics replica method allows
to analyze this teacher-student setting, and incorporates the regularization f through the prior
distribution term. f being convex, the minimization problem has a single solution, and the
replica-symmetric ansatz is necessarily the correct one, since it allows for a unique minimum
of the free energy. The replica method allows to compute the free energy of the associated
inference problem [79], and by minimizing it, provides properties of the estimator x̂ though
scalar parameters, such as its squared norm or its overlap with the ground truth. Replica
equations can also be recast in terms of the sought-after mean squared error, and heuristically
predict that it corresponds to E which solves the fixed point equations:

V = E
[

1
RC(−V )Prox

′
f/RC(−V )

(
x0 + z

RC (−V )

√
(E −∆0V )R′C (−V ) + ∆0RC (−V )

)]
(3.4a)

E = E

[{
Proxf/RC(−V )

(
x0 + z

RC (−V )

√
(E −∆0V )R′C (−V ) + ∆0RC (−V )

)
− x0

}2
]
. (3.4b)

where C = FTF,RC is the R-transform with respect to pλ, and expectations are over z ∼ N (0, 1)
and x0 ∼ px0 . Prox is the proximal operator defined as:

∀γ ∈ R+, x, y ∈ R Proxγf (y) ≡ arg min
x∈R

{
f(x) + 1

2γ (x− y)2
}
. (3.5)

3.3 Vector approximate passing and its state evolution

To prove the replica formula characterizing the error, we resort to Vector approximate message
passing (VAMP) [132] and we will build on results established mostly in [132] and [52]. VAMP
belongs to the class of message passing algorithms and is also linked with the expectation-
propagation strategy [110], as well as other algorithms [31, 97]. However, we will see that it has
the significant trait of providing rigorously derived state evolution equations. Let us start by
writing the VAMP equations that correspond to our problem. [65] explains that penalized least
squares regression can be seen as a maximum a posteriori (MAP) estimation, but also has other
equally acceptable Bayesian interpretations. We will here simply resort to the MAP formulation
of VAMP.



Chapter 3. Asymptotic errors for convex penalized linear regression 72

3.3.1 MAP formulation of Vector approximate message passing

Choose initial A(0)
1 and isotropically distributed B(0)

1

x̂(t)
1 = Prox

f/A
(t)
1

(
B(t)

1

A
(t)
1

)
x̂(t)

2 = (FTF +A
(t)
2 Id)−1(FTy + B(t)

2 ) (3.6a)

V
(t)

1 = 1
A

(t)
1

〈
Prox′

f/A
(t)
1

(
B(t)

1

A
(t)
1

)〉
V

(t)
2 = 1

N
Tr
[
(FTF +A

(t)
2 Id)−1

]
(3.6b)

A
(t)
2 = 1

V
(t)

1
−A(t)

1 A
(t+1)
1 = 1

V
(t)

2
−A(t)

2 (3.6c)

B(t)
2 = x̂(t)

1

V
(t)

1
−B(t)

1 B(t+1)
1 = x̂(t)

2

V
(t)

2
−B(t)

2 (3.6d)

where 〈·〉 is an element-wise averaging operator 〈x〉 = 1
N

∑N
i=1 xi, and the vector valued proximal

operator is defined as :

∀γ ∈ R+,x,y ∈ X Proxγf (y) ≡ arg min
x∈X

{
f(x) + 1

2γ ‖x− y‖22
}
. (3.7)

Proximal operators are well-known objects in convex optimization, and we will strongly rely on
their properties. In particular, Proxγf can be evaluated even when f is non-differentiable. In
the MAP formulation of VAMP, the proximals play the role of denoiser functions. In this work,
we slightly abuse notations by noting the vector-valued proximal (which is separable) and the
induced element-wise scalar-valued proximal in the same way, since it is easy to see which one
is used depending on the argument. Note that the second equation in (3.6a) can also be written
in terms of the proximal of x 7→ ‖y− Fx‖22 as

x̂(t)
2 = Prox 1

2A(t)
2
‖y−F·‖22

(
B(t)

2

A
(t)
2

)
.

This proximal formulation is convenient to draw parallels with proximal descent algorithms.
The latter enjoy a long lasting success in machine learning and signal processing [36] because of
their stability, simplicity to implement and solid theoretical anchoring, notably from a monotone
operator theory point of view [18]. An example of popular algorithm for solving composite con-
vex optimization problems of the form arg minx{f(x) + g(x)} is the Douglas-Rachford splitting
method [122], which roughly amounts to successively applying the proximal of f and the one of
g. It is shown in [52], a connection pursued in [100], that VAMP is similar to a Douglas-Rachford
descent with parameters that adapt to the local curvature of the cost function.

Let us take a closer look at VAMP’s equations. At each iteration, it returns two estimators,
x̂(t)

1 and x̂(t)
2 . V

(t)
1 , V

(t)
2 are their respective variances, and they are linked through parame-

ters A(t)
1 , A

(t)
2 . B1

(t),B2
(t) are intermediate vector-variables. Rescaling them by A(t)

1 , A
(t)
2 and

applying the proximal operators of f/A(t)
1 and of ‖y− F·‖22/(2A

(t)
2 ) yields x̂(t+1)

1 and x̂(t+1)
2 .

3.3.2 Equality of x̂ and VAMP’s fixed point

Sub-differential and proximal relation We start by defining a useful operator for convex
analysis. The sub-differential of f : R→ R, denoted ∂f , is the valued-set operator

∂f : x 7→ {u ∈ R|∀y ∈ R, 〈x− y, u〉+ f(x) ≤ f(y)}. (3.8)
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Graphically, the sub-differential in x gives back all the slopes of affine functions that coincide
with f in x, but only touch the curve of f in one point. If f is differentiable in x, these affine
functions reduce to only one, which is the tangent in x, thus ∂f(x) = f ′(x). The advantage of
the sub-differential is that it is well-defined for convex functions and can also be evaluated even
if they are non-differentiable. Taking the example of the absolute value f1 = |x|, we find that

∂f1(x) =


−1 if x < 0

]− 1, 1[ if x = 0
−1 if x > 0.

(3.9)

A beautiful relation links proximal operator and sub-differential: in fact the proximal operator
of a convex function f is the resolvent of its sub-differential [18], i.e.

Proxγf = (Id + γ∂f)−1. (3.10)

For the `1 norm in particular, it is straightforward to recover the well-known soft thresholding
function as its proximal, from this identity and the expression of the sub-differential of the
absolute value above.

Optimality condition If we consider the definition of the desired estimator x̂ (3.1), we can
rewrite it as a first-order condition:

FT (FTy− x̂) = ∂f(x̂). (3.11)

Now say that we are looking at a converging trajectory of VAMP, such that it reaches its fixed
point. We can look at the returned estimator x̂1 = x̂2 and see if it matches the desired x̂. In
particular, we would like x̂1 to satisfy the first order condition.

Fixed point analysis Looking at the fixed point of VAMP, we replace the proximal by the
resolvent of ∂f in (3.6d), which provides:

B1 = A1x̂1 + ∂f(x̂1) B2 = (FTF +A2Id)x̂2 − FTy. (3.12)

Inserting in (3.6d) yields

(FTF +A2Id)x̂2 − FT y = x̂1
V1
−A1x̂2 − ∂f(x̂1). (3.13)

Since V1 = V2 and x̂1 = x̂2 at the fixed point, knowing from (3.6c) that A1 +A2 = 1
V1
, we land

on
FT (y− Fx̂1) = ∂f(x̂1) (3.14)

which is non other than the optimality condition of problem (3.1). Therefore, the fixed point of
VAMP is indeed the solution estimator x̂.

3.3.3 State evolution of VAMP

The state evolution (SE) equations of VAMP are a set of equations that follow the algorithm,
and provide the statistical distribution of the iterates. They are exact in the asymptotic limit,
and a finite-size concentration inequality for AMP with Gaussian i.i.d. matrices can be found in
[138]. In particular, SE builds on the fact that B1 and B2 behave as noisy Gaussian estimates



Chapter 3. Asymptotic errors for convex penalized linear regression 74

of x0 at each iteration:

B(t)
1 = A

(t)
1 (x0 + P(t)

1 ) B(t)
2 = A

(t)
2 (x0 + P(t)

2 ), (3.15)

where P
(t)
1 ∼ N (0, τ (t)

1 ) P
(t)
2 ∼ N (0, τ (t)

2 ). (3.16)

The state evolution equations will involve the following parameters:

• τ (t)
1 and τ (t)

2 the variances of P (t)
1 , P

(t)
2 .

• V (t)
1 and V (t)

2 the variances of the estimates x̂(t)
1 and x̂(t)

2 .

• The mean squared errors of x̂(t)
1 and x̂(t)

2 , given through functions E1 and E2, defined as

E1(A(t)
1 , τ

(t)
1 ) = E

[(
Prox

f/A
(t)
1

(x0 + P
(t)
1 )− x0

)2
]

(3.17)

E2(A(t)
2 , τ

(t)
2 ) = E

[
∆0λC + τ

(t)
2 A

(t)2
2

(λC +A
(t)
2 )2

]
(3.18)

where expectations are taken on scalar variables x0 ∼ px0 , P
(t)
1 ∼ N (0, τ (t)

1 ), and λC ∼ pλ. E2
can also be written as:

E2 = lim
N→∞

1
N

E
[
‖(FTF +A

(t)
2 Id)−1(FT y + B(t)

2 )− x0‖22
]

(3.19)

where the expectation is with respect to x0 and P2
(t). The state evolution equations then read

α
(t)
1 = E

Prox′ 1
A

(t)
1
f
(x0 + P

(t)
1 )

 V
(t)

1 = α
(t)
1

A
(t)
1

(3.20a)

A
(t)
2 = 1

V
(t)

1
−A(t)

1 τ
(t)
2 = 1

(1− α(t)
1 )2

[
E1(A(t)

1 , τ
(t)
1 )− α(t)2

1 τ
(t)
1

]
(3.20b)

α
(t)
2 = E

[
A

(t)
2

λC +A
(t)
2

]
V

(t)
2 = α

(t)
2

A
(t)
2

(3.20c)

A
(t+1)
1 = 1

V
(t)

2
−A(t)

2 τ
(t+1)
1 = 1

(1− α(t)
2 )2

[
E2(A(t)

2 , τ
(t)
2 )− α(t)2

2 τ
(t)
2

]
. (3.20d)

SE equations thus present an iterative scalar equivalent model which allows to track the asymp-
totic statistical properties of the iterates of VAMP. A series of groundbreaking papers initiated
with [19] proved the exactness of these equations in the asymptotic limit, and extended the
method to treat nonlinear problems [130] and handle rotationally invariant matrices [132].

If VAMP converges, the fixed point ensures that x̂1 is equal to x̂2, as well as their variances
and errors. SE equations can be solved analytically if the teacher distribution px0(x0) is known.
In practice, all the averages are empirical and τ (0)

1 is initialized with the empirical variance of
B(0)

1 . Note that SE equations only hold if VAMP is properly initialized with an isotropically
distributed vector B(0)

1 , which empirically converges with second order moment. This is an
important subtlety that we need to keep in mind if we want to make a point using the state
evolution equations. Three additional assumptions on the denoiser functions (which in our case
correspond to proximal functions) are required for the state evolution theorem in [132] to hold.
These are automatically verified in the convex MAP case, as properties of the proximal mapping.
This is reminded in appendix C.1.
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3.3.4 Equivalence of state evolution and replica equations

We know lay out a first major argument : the fixed point of state evolution (3.20) provides
the same set of equations as the replica density evolution equations (3.4). The error E and
rescaled variance V from the replica formula correspond to the fixed point errors E1 = E2 and
variances V1 = V2 from state evolution. This equivalence can be found easily by tinkering with
the equations, and is detailed in appendix C.2.

3.4 A simplified algorithm: Oracle VAMP

3.4.1 Idea of the proof

We are now holding all the cards. We have an algorithm, VAMP, that tries to solve our min-
imization problem. If it converges, VAMP indeed goes to x̂, and its trajectory is rigorously
described by state evolution equations. In particular, SE equations at their fixed point char-
acterize the reached estimator x̂, and provide the sought-after mean squared error. They also
coincide with the replica equations.

We are immediately tempted to close the case and conclude that replica equations do present
the mean squared error of x̂. However, this would be a mistake at this point. We are still
missing the flour that makes all ingredients stick together: everything said above relies on the
fixed point of VAMP, but what if VAMP diverges? This is a classical caveat encountered when
studying sequences: we can start by characterizing the limit, but we still have to prove that the
sequence converges. In our case, if VAMP diverges, the state evolution equations will simply
be describing an off-trailing series of estimators that have nothing to do with x̂. We thus have
to show that there exists any converging trajectory of VAMP. Taking the fixed point itself as
constant trajectory does not work either, because it is not a valid initialization. Indeed, SE
equations only hold if initialized properly with B1

(0) isotropically distributed. Therefore, our
goal is the following: show that there exists a converging sequence of VAMP, for any initialization
that is allowed by SE equations.

3.4.2 Definition of Oracle VAMP

Since we have the right to pick any proper initialization, we will craft a convenient one that
simplifies VAMP’s iterations. To do so, we choose A0

1 and B1
(0) as being the ones that we

would get from the fixed point of state evolution. Therefore, parameters A1, A2, V1 = V2 which
are assigned by SE equations will remain constant throughout VAMP’s iterations. We call the
resulting algorithm Oracle VAMP. It is of course completely unpractical, since it implies already
solving SE equations before running VAMP, but it a valid theoretical construct and will serve
our purpose. Oracle VAMP reads

x̂(t)
1 = Prox 1

A1
f

(
B(t)

1
A1

)
x̂(t)

2 = Prox 1
2A2
||y−F·||22

(
B(t)

2
A2

)
(3.21a)

B(t)
2 = x̂(t)

1
V1
−B(t)

1 B(t+1)
1 = x̂(t)

2
V1
−B(t)

2 , (3.21b)

where the coefficients A1 and A2 verify:

V1 = SC(−A2) = 〈Prox′ 1
A1
f
(x0 + P1)〉/A1 A1 +A2 = 1

V1
(3.22)
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where P1 is Gaussian with variance τ1 prescribed by SE, and SC is the Stieltjes transform with
respect to the spectral measure of matrix C. Oracle VAMP can be made even more compact,
by writing it as one iteration on vector B2

(t):

B(t+1)
2 = O1 ◦ O2(B(t)

2 ) (3.23)

where O1 = 1
V1

Proxf/A1

(
.

A1

)
− Id, and O2 =

( 1
V
Prox 1

2A2
||y−F·||22

(
.

A2

)
− Id

)
. (3.24)

Notice, on the way, that this iteration would become the Peaceman-Rachford operator [125] if
we had A1 = A2 = 1

2V1
(but such a prescription would render the state evolution equations

invalid: Oracle VAMP and Peaceman-Rachford remain different algorithms).

A simple example: the squared `2 penalty In the `2 penalty case, Oracle VAMP (3.23)
drastically simplifies and converges after one iteration. To see it, we compute the proximal
operator of a `2 penalty with parameter λ2, which is a constant function:

Proxλ2
2 ||·||

2
2

= 1
1 + λ2

. (3.25)

Using (3.25) in the definition of V1 from (3.24) as the average of the proximal derivative imme-
diately shows that 1

V1
Proxf/A1( .

A1
) = Id, and operator O1 is null. Therefore B(t)

2 cancels itself
at the first iteration of the algorithm, directly leading to the fixed point:

x̂1 = x̂2 = (FTF +A2Id)−1(FTy). (3.26)

With squared `2 regularization, the convergence of Oracle VAMP is immediate. We will now
like to explicit general convergence bounds for this algorithm, in particular derive Lipschitz
constants for operators O1 and O2. Our approach is similar to [64] for Peaceman/Douglas-
Rachford splitting. These bounds will depend on the properties of the convex regularization
function. In particular, we will need two constants to characterize its convexity, that we define
now.

3.4.3 Strong convexity and smoothness of a convex function

Definition (Strong convexity) A proper closed function is σ-strongly convex with σ > 0 if
f − σ

2 ‖.‖
2 is convex. If f is differentiable, the definition is equivalent to

f(x) > f(y) + 〈∇f(y), x− y〉+ σ

2 ‖x− y‖
2 (3.27)

for all x, y ∈ X .

Definition (Smoothness for convex functions) A proper closed function f is β-smooth
with β > 0 if β2 ‖.‖

2 − f is convex. If f is differentiable, the definition is equivalent to

f(x) 6 f(y) + 〈∇f(y), x− y〉+ β

2 ‖x− y‖
2 (3.28)

for all x, y ∈ X .

A consequence of those definitions is the following second order condition: if f is twice
differentiable, it is σ-strongly convex and β-smooth if and only if:

σId � Hf � βId. (3.29)
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Figure 3.1: Left: a convex function f (black curve) with its usual definition
of being above the blue line directed by its derivative in each point. Right: the
function lies above the green curve, which adds a quadratic function of coefficient σ
to the blue line, and the crimson line which adds a quadratic function of coefficient

β. f is σ-strongly convex and β-smooth.

where Hf is its Hessian matrix; which means that the eigenvalues of Hf are between σ and β.
Hence for any γ > 0, f(x) = γ

2‖x‖
2
2 is γ-smooth and γ-strongly convex. Note that any convex

function is at least 0 strongly convex as it amounts to the usual convexity definition, but does
not necessarily have a smoothness constant, as is the case for the non differentiable `1 norm, as
shown in Fig. 3.2. However, we will be using theorems that include the case where there is no
smoothness assumption, by setting the smoothness constant to +∞.

Figure 3.2: Absence of smoothness for the `1 norm: it will cross with any
quadratic function.

3.4.4 Lipschitz constants of Oracle VAMP’s operators

We will work with two sets of strong convexity and smoothness constants: (σ1, β1) associated
with f (where β1 is set to its +∞ limit if there is no smoothness asssumption); and (σ2, β2)
associated with (x 7→ 1

2‖y−Fx‖22). Since the eigenvalue distribution pλ of C = FTF has compact
support, we clearly have (σ2, β2) = (λmin(C), λmax(C)) the minimal and maximal value of the
support. Using the properties of proximal operators and the fixed point of SE equations, we get
the following upper bounds on the Lipschitz constant of the iteration (3.23), depending on the
aspect ratio α = M/N and constants (σ1,2, β1,2). Calculations are detailed in appendix C.3.

Lipschitz constant of O1 — The Lipschitz constant L1 of the operator O1 in the cases
where 0 < σ1 < β1 or 0 < σ1 = β1 respectively reads:

L1 = max
( |A2 − σ1|
A1 + σ1

,
|β1 −A2|
A1 + β1

)
, L1 =

√√√√( (A2
2 −A2

1)
(A1 + σ1)2 + 1

)
(3.30)
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Lipschitz constant of O2 — The Lipschitz constant L2 of the operator O2 reads

L2 = max
(
|A1 − λmin(FTF)|
A2 + λmin(FTF) ,

|λmax(FTF)−A1|
A2 + λmax(FTF)

)
. (3.31)

The case 0 < σ1 < β1, α > 1 yields the same constant as the one derived in [52], which studies
a more general version of VAMP. Note that all those constants reduce to 1, if A1 = A2 is set,
which is consistent with the 1-Lipschitz property of the Peaceman-Rachford operator [125].

3.5 Smoothed problem and its convergence

3.5.1 Definition of the modified problem

The ideal scenario to prove the convergence of Oracle VAMP would be to show that its itera-
tion (3.23) is a contraction, which is true if the product of Lispchitz constants L1L2 is strictly
smaller than 1. This inequality does not hold in general, but we will turn to a modified problem
which will force convergence by shrinking down the Lipschitz constants. Basically, we add a
squared `2 penalty with factor λ2, that increases the strength of the regularization. We also re-
place f (which is potentially non-differentiable) by its twice differentiable approximation f̃ [89].
We now consider estimator

x̂λ2 = arg min
x∈RN

{1
2‖y− Fx‖22 + f̃(x) + λ2

2 ‖x‖
2
2

}
. (3.32)

The new penalty function has become h = f̃ + λ2
2 ‖·‖

2
2. We will show that for λ2 large enough,

Oracle VAMP applied to this modified problem becomes a contraction. To do this, we first
derive two bounds on parameters A1 and A2. Again, we will make use of the strong convexity
and smoothness constants (σh, βh) of h, which depend on (σ̃1, β̃1) the constants of f̃ as

σh = σ̃1 + λ2 βh = β̃1 + λ2. (3.33)

As before, the smoothness constants can be set to +∞ in case there is no smoothness assumption
on f .

3.5.2 Bounds on variance parameters A1 and A2

• Bound on A1

From (3.6b), we immediately have V1 = SC(−A2), which results in:

1
λmax(FTF)−A2

≤ V1 ≤
1

λmin(FTF)−A2
, (3.34)

and using equality A1 +A2 = 1
V1

at the fixed point we obtain

λmin(FTF) ≤ A1 ≤ λmax(FTF). (3.35)

• Bound on A2

We will proceed as for A1, by writing V1 as the Stieltjes transform associated with a bounded
eigenvalue distribution, related to convexity properties of the penalty h. We recall the following
equality on the proximal operator of h, for any γ > 0:

Proxγh(x) = (Id + γ∂h)−1 (x). (3.36)
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h being twice differentiable and separable, the proximal is separable too and we get to the
element-wise identity:

Prox′γh(x) = 1
1 + γf ′′(Proxγh(x)) . (3.37)

Using V1’s definition from (3.6b) as a function of B1 taken at the fixed point yields

V1 = 1
N

Tr
[
(A1IN +Hh(Proxγh(B1/A1)))−1

]
(3.38)

= 1
N

Tr
[
(A1IN +Hh(x̂λ2))−1

]
(3.39)

V1 = SHh(x̂λ2 )(−A1) (3.40)

since x̂λ2 is the desired estimator matched by VAMP’s fixed point, and SHh(x̂λ2 ) is the Stieltjes
transform associated with the eigenvalue distribution of Hh(x̂λ2). We can bound the eigenvalues
of Hh(x̂λ2): they are larger than σ̃h and smaller than β̃h. Using this bound inside the definition
of the Stieltjes transform provides

1
βh +A1

≤ V1 ≤
1

σh +A1
, (3.41)

then using equality A1 +A2 = 1
V1

at the fixed point, we get to

σh ≤ A2 ≤ βh. (3.42)

3.5.3 A note on non-separable denoisers

For now, we have focused on the case of separable f and separable proximal functions, which play
the role of denoiser functions in VAMP. In fact, in [53], the state evolution analysis of VAMP
was extended to a large class of non-separable convex denoisers which verify a convergence
property, called convergence under Gaussian noise. This result built upon previous work on
convex, non-separable regularization in message passing algorithms in [23]. The state evolution
equations are thus valid for this family of denoisers, which includes for instance group-based de-
noisers, convolutional denoisers, and convolutional neural nets. The Lipschitz constants derived
in 3.4.4 still hold for non-separable denoisers, as the proof only depends on strong convexity
and smoothness assumptions. Besides, according to [53], the VAMP iteration on V1, V2 in the
non-separable setting are defined for i = 1, 2 by

Vi = 1
Ai

1
N

N∑
n=1

∂gi,k(Bi/Ai, γ)
∂Bi,n

(3.43)

where gi : RN → RN is the proximal of the regularization for k = 1, and of the quadratic loss
function for k = 2, and gn its k-th component. This definition is exactly the normalized trace of
the Jacobian matrix of the proximal, i.e. a more general case that includes the separable-case
definition. We can replace (3.37) by its matricial equivalent. For h a twice-differentiable function
and γ > 0, starting again from

Proxγh(x) = (Id + γ∂h)−1 (x), (3.44)

we apply (Id + γ∇h) on both sides

Proxγf (x) + γ∇f(Proxγf (x)) = x, (3.45)
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then use the chain rule to differentiate the left-hand side with respect to x, reaching

JProxγh(x) + γHh(Proxγf (x))JProxγh(x) = Id (3.46)

where J denotes a Jacobian matrix and H a Hessian. Since h is a convex function, its Hessian is
positive semi-definite, and, knowing that γ is strictly positive, the matrix (Id+γHh(Proxγh(x)))
is invertible. We thus have :

JProxγh(x) = (Id + γHh(Proxγh(x)))−1. (3.47)

Using the updated definition of V1 (3.43), we reach (3.40) again. Therefore our bounds on A1
and A2 still hold for non-separable denoisers that satisfy the assumptions from [53].

3.5.4 Convergence bound on Oracle VAMP

The previous bounds on A1 and A2 serve to establish this fact: A1 is bounded between quantities
that only depend on F, regardless of the penalty function. However, A2 is bounded by constants
that depend on the strong convexity (and possible smoothness) of the regularization. Tuning
the strength of the added squared `2 regularization through parameter λ2 also modifies A2’s
range since σh = σ̃1 + λ2. In particular, if we look at the problem with λ2 large, then A2 will
scale accordingly, while A1 will remain stuck between the same finite bounds. Our goal now is to
show that if λ2 is large enough, Oracle VAMP applied on the corresponding problem becomes a
contraction. We use the Lipschitz bounds (3.30) and (3.31), but applied to the modified problem
with penalty h. We have a few cases to navigate:

i) 0 < σh < βh, βh is finite and L1 = A2−σh
A1+σh

The complete Lispchitz constant L = L1L2 yields

L = A2 − σh
A1 + σh

max
(
A1 − λmin(FTF)
A2 + λmin(FTF) ,

λmax(FTF)−A1
A2 + λmax(FTF)

)
(3.48)

and taking λ2 > λmax(FTF)− 2λmin(FTF)− σ̃1, combined to relations (3.33) and (3.35) guar-
antees L < 1.

ii) 0 < σh < βh, βh is finite and L1 = βh−A2
A1+βh

In that case, clearly L1 ≤ 1, and (3.35) tells us that

L2 ≤
λmax(FTF)− λmin(FTF)

A2 + λmin(FTF) . (3.49)

Taking λ2 > λmax(FTF)− 2λmin(FTF)− σ̃1 guarantees again that L2 < 1, hence L < 1.

iii) 0 < σh < βh, βh is infinite (i.e. there is no smoothness assumption)

In that case, L1 = max
(
A2−σh
A1+σh , 1

)
and like before, λ2 > λmax(FTF)− 2λmin(FTF)− σ̃1 results

in L < 1.

iv) 0 < σh = βh

We then know from (3.42) that σh = βh = A2, and

L1 =
√

2σh
σh +A1

. (3.50)
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This function of σh increases on the real positive axis, and is thus bounded by
√

2. We define
Λ2 =

√
2(λmax(FTF)−λmin(FTF))−λmin(FTF)− σ̃1, then picking λ2 > Λ2 ensures that L < 1.

Finally, we see that Oracle VAMP applied for the modified problem (3.32) with λ2 large enough
(i.e. larger than a given constant Λ2 that only depends on F and on the strong convexity
constant of the analytic approximation f̃) reduces to a single contracting operator. Fig. 3.3
illustrates how Oracle VAMP, seen as one iteration on vector B2, becomes convergent when the
LASSO penalty is strengthened by a ridge with regularization parameter λ2 large enough. We
conclude that for λ2 > Λ2, Oracle VAMP for the smoothed problem converges to its fixed point,
which is the associated estimator x̂λ2 .
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Figure 3.3: Convergence of vector B2 measured by 1
N ‖B2

(t+1)−B2
(t)‖2 through

successive Oracle VAMP iterations indexed by t. Oracle VAMP is ran on a Gaus-
sian i.i.d matrix of size 100 × 1000 (α = 0.1), for a Gauss-Bernoulli distributed
ground truth with sparsity ρ = 0.3 with noise ∆0 = 0.01. The penalty function
is the elastic net f = λ1‖·‖1 + λ2

2 ‖·‖
2
2 with λ1 = 0.1. The different lines corre-

spond to different ridge regularization parameters λ2. For λ2 too small, Oracle
VAMP clearly diverges; but convergence is enforced when λ2 gets large enough.
Oracle VAMP’s initialization parameters are found by solving the state evolution

equations for the elastic net problem, detailed in appendix C.4.

3.6 Analytic continuation and end of the proof

We have now proven the convergence of Oracle VAMP for the smoothed problem (3.32), provided
the regularization is strong enough, thus completing the recipe to the proof explained in 3.4.1.
In this regime, we can conclude two things: the replica formula for asymptotic error is correct,
and the statistical distribution of x̂λ2 is given by VAMP’s state evolution. Indeed, SE equations
do not only give the scalar value of the error, but also statistical properties of the estimators.
In particular, we know the distribution of B1 at the fixed point, which is related to variance τ1.
τ1 can itself be written in terms of (E, V ) the mean and variance of the estimator, as seen in
appendix. Finally, for λ2 > Λ2, x̂λ2 has the following element-wise distribution:

x̂λ2 ∼ Proxh/RC(−V )

(
x0 + z

RC (V )

√
(E −∆0V )R′C (−V ) + ∆0RC (−V )

)
(3.51)

where z ∼ N (0, 1).
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Nevertheless, we are not satisfied yet. We want to prove the expression of the error for any
penalty function f , not only for a smoothed version of the problem with added regularization.
The key here will be to perform an analytic continuation: the error is a scalar function that
depends on parameter λ2. If it is analytic in λ2, and has a known expression for λ2 > Λ2, then
we will be able to extend its expression to the rest of the domain.

Finite N case Let us first focus on the finite N regime, before taking the asymptotic limit
N → ∞. We invoke the optimality condition on the convex problem (3.32) which prescribes a
solution x satsifying: (

FTF + λ2Id +∇f̃
)

x = FTy. (3.52)

The left hand side is an analytic operator in λ2 applied to x. Using the analytic inverse function
theorem [83], this clearly prescribes an analytic solution for x in λ2. We then turn to the SE
equations (3.20), which can also be written as (3.4). The contribution of λ2 in these equations
show up through the proximal operator of h = f̃ + λ2

2 ‖·‖
2
2, and can be explicited thanks to

the following expression of the proximal of a differentiable function with added squared `2
regularization:

∀x ∈ R, ∀γ > 0 Prox
γ(f̃+λ2

2 ‖.‖
2
2)(x) =

(
(1 + γλ2)Id + γf̃ ′

)−1
(x). (3.53)

On the right-hand side, the function to invert is analytical in λ2 with non-zero derivative, there-
fore by virtue of the analytical inverse function theorem [83], its inverse is also analytical in λ2.
Equations (3.4) are thus also analytical in λ2. The implicit function theorem [84] ensures that
the scalar quantities defined by those equations, including the mean squared error E at finite N ,
are analytic in λ2. We can conclude using the analytic continuation property [83] that the replica
equations, and all the scalar quantities from SE equations hold true whatever the value of λ2. In
particular, taking λ2 = 0 provides the MSE of the modified problem with penalty h = f̃ . This
only differs from the original problem (3.1) by the use of a twice differentiable penalty function
f̃ . Going from the differentiable relaxation to the real problem is intuitive: it only relies on
finding an appropriate sequence of twice differentiable functions (fk)k∈N converging towards f ,
as done in [48], and taking the limit k → ∞ inside the MSE. At finite N , the loss achieved by
estimator x̂ is thus given by the replica equations.

Note that our approach allows to continuate all scalar quantities, the MSE being among
them, but we have no easy way to show that the Gaussian distribution of B1/A1 predicted by
state evolution for large λ2 also extends to the original problem, therefore we have not shown
that (3.53) holds for λ2 < Λ2.

Asymptotic limit and analyticity of the loss We now know the expression of the loss for
all λ2, for finite N . We are then tempted to take the asymptotic limit, but we encounter a subtle
caveat. We have a sequence of real loss functions, all analytic in λ2, described by the replica
equations. However, taking their pointwise limit when N → ∞ does not necessarily yield an
analytic function in λ2. If the asymptotic MSE in not analytic in λ2, we have no clue about its
expression for λ2 < Λ2, and our proof would only hold for λ2 large enough when VAMP actually
converges to estimator x̂. To properly conclude, we thus need one more assumption: the MSE
of estimator x̂ has to be analytic in λ2, in other words there should be no transition for λ2 < Λ2.
This assumption is very reasonable, and proving it is left for future work, where one will need
for instance to bound all derivatives of the loss [99].
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3.7 Applications and numerical experiments

We want to compare the analytic expression of the error, obtained by the fixed point of SE (3.20)
or equivalently the replica equations (3.4) with numerics on two typical problems. In both, the
underlying truth vector x0 has i.i.d. elements sampled from a Gauss-Bernoulli distribution with
sparsity parameter ρ ∈ R+, like in Chapter 2:

px0(x0) = (1− ρ)δ(x0) + ρ
1√
2π

exp (−x2
0/2) , (3.54)

and the training vector y is obtained as (3.2). Numerical experiments are performed using
the Scikit-learn [126] implementation of the LASSO, which uses a coordinate descent method
detailed in [55, 82].

3.7.1 Linear regression with row orthogonal matrices

In the first model, we use a LASSO regression by setting the penalty function to f = λ1‖·‖1,
where λ1 is the regularization parameter. We consider two types of matrices :

1. Gaussian i.i.d. matrices

2. Row orthogonal matrices, i.e. rotationally invariant matrices, with all singular values
equal to 1. Such random matrices are very similar to subsampled Fourier and Hadamard
matrices, and play a fundamental role in e.g. compressed sensing [167] and communication
[69]. C = FTF then has the following eigenvalue distribution:

λC ∼ max(0, 1− α)δ(0) + min(1, α)δ(1). (3.55)
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Figure 3.4: Mean squared error MSE = 1
N ‖x0−x̂‖22 computed numerically (dots)

for two types of matrices of size 200 × 100, for a Gauss-Bernoulli ground truth
of sparsity ρ = 0.3 with noise ∆0 = 0.3, compared tp the analytical replica/state
evolution asymptotic prediction (line). We use LASSO regression with penalty
f = λ1‖·‖1 and compute the MSE as function of λ1. Numerical results match the

analytic expression fairly well, despite the small size of the matrices.

In our simulations from Fig. 3.4, we take M,N = 200, 100 (α = 2), ∆0 = 0.01 and ρ = 0.3.
Each point is an average over 104 realizations. The error bars in this case are vanishingly small
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(≈ 10−5). We see that an excellent agreement is obtained with the theoretical result, although
the simulation matrices are rather small. Thus, the asymptotical setting is very practical, since
it is already very well described with matrices with values of M,N of a few hundreds.

3.7.2 Overparametrization and double descent

In the second setup, we consider the effect of the aspect ratio α = M/N on the reconstruction
performance of a sparse vector. We want to reproduce the double descent phenomenon that
was observed and discussed recently in several papers [21, 71, 112, 103] in linear regression (but
was already mentioned in [119]). In order to provide a minimal model of such a phenomenon,
we follow the intuition proposed in [4]: to observe a divergence of the error, the eigenvalue
distribution of C must have a singularity (but still be integrable) at λ1 = 0 for α = 1. Since
we are using rotationally invariant matrices, we can design any spectrum with compact support
that satisfies this criterion. We choose to sample the singular values of F from the uniform
distribution U(

[
(1− α)2, (1 + α)2]). We can compute the distribution of the eigenvalues of C,

in particular the non-zero ones are the squared singular values of F. A little algebra yields:

λC ∼ max(0, 1− α)δ(0) + min(1, α)
( 1

2((1 + α)2 − (1− α)2)IλC∈[(1−α)2,(1+α)2]
1√
λC

)
, (3.56)

where I is the indicator function.

Our results are shown in Fig. 3.5 using N = 250, ∆0 = 0.05, for two values of the reg-
ularization parameter λ1 = 10−4, 10−1. We recover the double descent with the very small
regularization (light-colored curve). Note that the error peak could be moved to any point p
on the x-axis by sampling singular values from the uniform distribution U(

[
(p− α)2, (p+ α)2]).

Multiple descents can also be obtained by adding several distributions of the form (3.56), with
different shifts p. Augmenting the regularization to enforce a realistic LASSO penalty removes
the error peak. As before, one observes striking agreement between the asymptotics and the
simulation. Our formulas generalize here the results of [112] for any distribution of singular
values.
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Figure 3.5: Mean squared error MSE = 1
N ‖x0 − x̂‖22 computed with LASSO

regression f = λ1‖·‖1 for two different regularization parameters. The matrices
have width N = 250 and the MSE is plotted as a function of their aspect ratio
α. The noise is ∆0 = 0.05. Each experiment point is an average over a hundred
realizations. We use rotationally invariant matrices with singular values sampled
from the uniform distribution on [(1 − α)2, (1 + α)2]. For λ1 = 10−4, we observe
a peak around α = 1 as predicted by the theory. Increasing the `1 regularization

to λ1 = 0.1 explicitly removes the peak to give a smooth curve.

Summary of Chapter 3 In this chapter, we have proved an exact asymptotic expression
for the mean squared error of the estimator solving a penalized linear regression problem, using
an analyticity assumption for the loss in the asymptotic limit. The data matrix is rotationally
invariant, while the penalty function is convex, which includes the case of ridge regression or the
LASSO, already discussed in Chapter 2 in the noiseless setting. The error is given by the replica
formula which is derived in a heuristic way, but coincides with the rigorous state evolution fixed
point of VAMP. Our method relies on proving the convergence of one carefully chosen instance of
an oracle version of the algorithm, thanks to convex optimization tools. Numerical experiments
show very good agreement between theory and simulation, even for small matrices (N ≈ a few
hundreds).
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Chapter 4

Asymptotic errors for
teacher-student convex generalized
linear models

4.1 Introduction of the problem

In Chapter 3, we dealt with linear regression with convex penalty, and relied on vector approxi-
mate message passing. We now step our game up, and would like to focus on generalized linear
models, which add a non-linearity in the teacher vector. This chapter is adapted from [62]. The
problem is defined as follows: we aim at reconstructing a given i.i.d. weight vector x0 ∈ RN
from outputs y ∈ RM generated using a training set (fµ)µ=1,...,M and the teacher rule:

y = φ(Fx0 + ω0) (4.1)

where φ is a proper, closed, convex and separable function, and ω0 ∼ N (0,∆0Id) is an i.i.d. noise
vector. We want to study the reconstruction performance of the generalized linear estimation
method:

x̂ = arg min
x∈RN

{g(Fx,y) + f(x)} (4.2)

where g and f are proper, closed, convex and separable functions.

Let x̂ be the estimator of x0 defined in (4.2), and ẑ = Fx̂ the estimator of z0 = Fx0.
Ground-truth vectors have norms ρx ≡ ‖x0‖22/N , ρz ≡ ‖z0‖22/M . We define the squared norms
and the overlap of these estimators with the ground-truth:

m∗x ≡ lim
N→∞

x̂Tx0
N

m∗z ≡ lim
M→∞

ẑT z0
M

(4.3)

q∗x ≡ lim
N→∞

‖x̂‖22
N

q∗z ≡ lim
N→∞

‖ẑ‖22
N

(4.4)

We want an analytic expression of these quantities. With the knowledge of the asymptotic over-
lap m∗x, and squared norms q∗x, ρx, most quantities of interest can be estimated. For instance,
the quadratic reconstruction error is obtained from its definition as E = ρx + q∗x − 2m∗x, while
the angle between the ground-truth vector and the estimator is θ = arccos(m∗x/(

√
ρxq∗x)). One

can also estimate the generalization error for new random Gaussian samples [49], or compute
similar errors for the denoising of z0.

The study of asymptotic (i.e. large-dimensional) reconstruction performance of generalized
linear estimation in the teacher-student setting has been the subject of a significant body of
work over the past few decades [145, 178, 49, 20, 48, 42, 184], and is currently witnessing a
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renewal of interest especially for the case of Gaussian i.i.d. matrices, see e.g. [151, 71, 103]. We
go beyond this setting by taking F rotationally invariant.

The simplest case of the present question, when both f and g are quadratic functions, can
be mapped to a random matrix theory problem and solved rigorously, as in e.g. [71]. Handling
non-linearity is, however, more challenging. A long history of research tackles this difficulty in
the asymptotic limit, in particular using the replica method. In the case of Gaussian data, where
the matrix F is Gaussian i.i.d., the asymptotic performance of the LASSO was rigorously derived
in [19], and the existence of the logistic estimator discussed in [151]. A set of papers managed
to extend this study to a large set of convex losses g, using the so-called Gordon comparison
theorem [164]. As for rotationally invariant matrices, and for any convex and separable loss
g and regularization f , a heuristic replica formula has been derived by Yoshiyuki Kabashima,
providing a sharp analytical formula for the performance of reconstruction of the signal x0 [78].

Main assumptions We consider the minimization problem (4.2) with f and g proper closed,
convex and separable functions, and F ∈ RM×N a rotationally invariant matrix. We assume
that the empirical distributions of the underlying truth x0 and eigenvalues of FTF respectively
converge with second order moments, as defined in appendix C.1, to given distributions px0 and
pλ. We also assume that the distribution pλ is non all-zero and has compact support. We focus
on the limit M,N →∞ with fixed ratio α = M/N .

4.2 Statistical physics result: the replica formula

4.2.1 Replica free energy

The scalar quantities that we want to characterize are given by the extremization of the replica-
symmetric free energy associated to our problem, which is derived by Takashi and Kabashima1

in [152], and reads:

Φ = − extr
mx,χx,qx,mz ,χz ,qz

{gF + gG − gS}, (4.5)

gF = extr
m̂1x,χ̂1x,Q̂1x,m̂1z ,χ̂1z ,Q̂1z

{1
2qxQ̂1x −

1
2χxχ̂1x − m̂1xmx − αm̂1zmz + α

2
(
qzQ̂1z − χzχ̂1z

)
+E

[
φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x)

]
+ αE

[
φz(m̂1z, Q̂1z, χ̂1z; z0, ξ1z)

]}
,

gG = extr
m̂2x,χ̂2x,Q̂2x,m̂2z ,χ̂2z ,Q̂2z

{1
2qxQ̂2x −

1
2χxχ̂2x −mxm̂2x − αmzm̂2z + α

2
(
qzQ̂2z − χzχ̂2z

)
−1

2

(
E
[
log(Q̂2x + λQ̂2z)

]
− E

[
χ̂2x + λχ̂2z

Q̂2x + λQ̂2z

]
−E

[
ρx(m̂2x + λm̂2z)2

(Q̂2x + λQ̂2z)

])}
,

gS = 1
2

(
qx
χx
− m2

x

ρxχx

)
+ α

2

(
qz
χz
− m2

z

ρzχz

)
,

1In fact, the first version of this formula was derived in 2008 in [78], but it is slightly misleading. In this
first paper, the author performs an Itzykson-Zuber-Harish-Chandra integral which yields a function dependent
on the eigenvalue distribution pλ. However, this function can saturate, as seen for function GC in the replica
calculation in appendix B. If saturation occurs, the result depends specifically on the larger eigenvalue of FTF,
and this eigenvalue has non-negligible deviation in the limit N → ∞. In fact, [78] writes an annealed average
on F by assuming that it is equal to the quenched average, but this is not necessarily true. This slight mishap
happens because delta-functions are written as Fourier transforms inside the computation. Howevere in [152],
the delta-functions as Gaussian functions with vanishigly small variances, and it allows to safely conclude the
computation. We thus use the replica formula [152], but still credit the original and elegant derivation from [78].
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where φx and φz are the potential functions

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = lim
β→∞

1
β

log
∫
e−

βQ̂1x
2 x2+β(m̂1xx0+

√
χ̂1xξ1x)x−βf(x)dx, (4.6)

φz(m̂1z, Q̂1z, χ̂1z; z0, χ1z) = lim
β→∞

1
β

log
∫
e−

βQ̂1z
2 z2+β(m̂1zz0+

√
χ̂1zξ1z)z−βg(y,z)dz. (4.7)

In this β → ∞ limit (the so-called zero temperature limit in statistical physics), potentials φx
and φz correspond to maximum a posteriori (MAP) estimation. Note that they are closely
related to the Moreau envelopes [122, 18] of f and g. The Moreau envelope of a proper, closed
and convex function f represents a smoothed convex function which shares the same minimizers
as f , as shown on Fig. 4.1. It is defined for γ ≥ 0 and z ∈ R as

Mγf (z) = infx
{
f(x) + 1

2γ ‖x− z‖
2
2

}
. (4.8)

φx and φz can also be written

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = Q̂1x
2 X2 −Mf/Q̂1x

(X) (4.9)

φz(m̂1z, Q̂1z, χ̂1z; z0, ξ1z) = Q̂1z
2 Z2 −Mg(y,·)/Q̂1z

(Z) (4.10)

where X = m̂1xx0 +
√
χ̂1xξ1x

Q̂1x
and Z = m̂1zz0 +

√
χ̂1zξ1z

Q̂1z
.

This parallel with Moreau envelopes shows that the replica result extends the framework of [164],
where the reconstruction performance of Gaussian generalized linear models is characterized
using expected Moreau envelopes.

Figure 4.1: Moreau envelopeMf of a convex, non-differentiable function f .

4.2.2 Sketch of proof

We would like to prove the validity of the replica formula to characterize reconstruction per-
formance. We will proceed as we did in Chapter 3, with the help of an algorithm that has an
analytical description. This time, we use multi-layer generalized vector approximate message
passing (MLVAMP) [54], the big brother of VAMP that applies to our setting in its two-layer
version. [54] provides a rigorous proof of state evolution equations for MLVAMP, if they are
properly initialized. Our proof involves the following steps:

i) We show that the state evolution fixed point of MLVAMP’s state evolution matches the
replica result,
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ii) We verify that the sequence’s fixed point reaches the estimator x̂,

iii) We determine the conditions for this sequence to be provably convergent.

4.3 MLVAMP and its state evolution

4.3.1 MAP formulation of two-layer VAMP

For our minimization problem, we need to solve the maximum a posteriori (MAP) version of
MLVAMP. It is similar to a multilayer proximal descent method, and can be viewed as succes-
sively solving an alternating direction method of multipliers (ADMM) [25] step for each layer of
the model, with an additional LMMSE (linear minimum mean squared error) step on each layer.
As pointed out in [52], the main difference between MLVAMP and standard convex optimiza-
tion methods are the implicit prescription of descent step sizes and prefactors at each iteration
through variance parameters that are computed at each iteration. The latter adapt to the local
curvature of denoiser functions.

We start by giving the full iterations of the MLVAMP algorithm from [54] applied to a 2-
layer network. For a given operator T : Rd → Rd, the brackets 〈T (x)〉 = 1

d

∑d
i=1 T (x)i denote

element-wise averaging operations, where d isM or N in our case. For a given matrix M ∈ Rd×d,
the brackets amount to 〈M〉 = 1

dTr(M).

Initialize h(0)
1x ,h

(0)
2z isotropically

Forward pass – denoising (L = 0) Forward pass - LMMSE (L = 1)

x̂(t)
1 = g1x(h(t)

1x , Q̂
(t)
1x) ẑ(t)

2 = g2z(h(t)
2x ,h

(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z ) (4.11a)

χ
(t)
1x = 1

Q̂
(t)
1x

〈
∂g1x(h(t)

1x , Q̂
(t)
1x)

∂h(t)
1x

〉
χ

(t)
2z = 1

Q̂
(t)
2z

〈
∂g2z(h(t)

2x ,h
(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z )

∂h(t)
2z

〉
(4.11b)

Q̂
(t)
2x = 1/χ(t)

1x − Q̂
(t)
1x Q̂

(t)
1z = 1/χ(t)

2z − Q̂
(t)
2z (4.11c)

h(t)
2x = (x̂(t)

1 /χ
(t)
1x − Q̂

(t)
1xh(t)

1x)/Q̂(t)
2x h(t)

1z = (ẑ(t)
2 /χ

(t)
2z − Q̂

(t)
2zh(t)

2z )/Q̂(t)
1z (4.11d)

Backward pass – denoising (L = 1) Backward pass - LMMSE (L = 0)

ẑ(t)
1 = g1z(h(t)

1z , Q̂
(t)
1z ) x̂(t+1)

2 = g2x(h(t)
2x ,h

(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z ) (4.11e)

χ
(t)
1z = 1

Q̂
(t)
1z

〈
∂g1z(h(t)

1z , Q̂
(t)
1z )

∂h(t)
1z

〉
χ

(t+1)
2x = 1

Q̂
(t)
2x

〈
∂g2x(h(t)

2x ,h
(t+1)
2z ,Q̂

(t)
2x , Q̂

(t+1)
2z )

∂h(t)
2x

〉
(4.11f)

Q̂
(t+1)
2z = 1/χ(t)

1z − Q̂
(t)
1z Q̂

(t+1)
1x = 1/χ(t+1)

2x − Q̂(t)
2x (4.11g)

h(t+1)
2z = (ẑ(t)

1 /χ
(t)
1z − Q̂

(t)
1zh(t)

1z )/Q̂(t+1)
2z h(t+1)

1x = (x̂(t+1)
2 /χ

(t+1)
2x − Q̂(t)

2xh(t)
2x)/Q̂(t+1)

1x . (4.11h)

Denoiser functions g1x and g1z can be written as proximal operators in the MAP setting:

g1x(h(t)
1x , Q̂

(t)
1x) = arg min

x∈RN

{
f(x) + Q̂

(t)
1x
2 ‖x− h(t)

1x‖
2
2

}
= Prox

f/Q̂
(t)
1x

(h(t)
1x) (4.12)

g1z(h(t)
1z , Q̂

(t)
1z ) = arg min

z∈RM

{
g(y, z) + Q̂

(t)
1z
2 ‖z− h(t)

1z ‖
2
2

}
= Prox

g(.,y)/Q̂(t)
1z

(h(t)
1z ). (4.13)
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To shorten notations, the scalar element-wise version of these separable proximal operators will
be called ηf and ηg(y,·). LMMSE denoisers g2z and g2x in the MAP setting read (see [132]):

g2z(h(t)
2x ,h

(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z ) = F(Q̂(t)

2zFTF + Q̂
(t)
2xId)−1(Q̂(t)

2xh(t)
2x + Q̂

(t)
2zFTh(t)

2z ) (4.14)

g2x(h(t)
2x ,h

(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z ) = (Q̂(t+1)

2z FTF + Q̂
(t)
2xId)−1(Q̂(t)

2xh(t)
2x + Q̂

(t+1)
2z FTh(t+1)

2z ). (4.15)

At each iteration, MLVAMP returns two estimators for x̂ and two estimators for ẑ, which
are the hat vectors x̂1, x̂2, ẑ1 and ẑ2. The variance parameters are the Q̂1x, Q̂2x, Q̂1z, Q̂2z
and χ1x, χ2x, χ1z, χ2z (they play the same role as A1, A2 and V1, V2 did for VAMP). Finally
h1x,h2x,h1z,h2z are intermediate vectors, and applying them denoiser functions with adapted
variance parameters yields the hat estimators. We are sticking to notations from [152], which
differ from the ones used in [132] and [54], but we will provide a dictionary in appendix D.2.

4.3.2 Equality of x̂ and MLVAMP’s fixed point

We would like the fixed point of MLVAMP to satisfy the following first-order optimality condition

∂f(x̂) + FT∂g(Fx̂) = 0, (4.16)

where g(·) designates g(·,y). This condition characterizes the unique minimizer of the convex
problem (4.2). Writing the fixed point of the scalar parameters of the iterations (4.11), we get
the following prescriptions on the scalar quantities:

1
χx
≡ 1
χ1x

= 1
χ2x

= Q̂1x + Q̂2x
1
χz
≡ 1
χ1z

= 1
χ2z

= Q̂1z + Q̂2z (4.17)

Q̂1xχ1x + Q̂2xχ2x = 1 Q̂1zχ1z + Q̂2zχ2z = 1. (4.18)

Replacing h1x’s expression inside h2x reads

h2x =
( x̂1
χx
− Q̂1xh1x

)
/Q̂2x =

( x̂1
χx
−
( x̂2
χx
− Q̂2xh2x

))
/Q̂2x (4.19)

and using (4.17) we get x̂1 = x̂2, and a similar reasoning gives ẑ1 = ẑ2. From (4.14) and (4.15),
we clearly find ẑ2 = Fx̂2. Inverting the proximal operators in (4.12) and (4.13) yields

x̂1 + 1
Q̂1x

∂f(x̂1) = h1x (4.20)

ẑ1 + 1
Q̂1z

∂g(ẑ1) = h1z. (4.21)

We then take the MLVAMP equation on h1x, we write

h1x =
( x̂2
χx
− Q̂2xh2x

)
/Q̂1x (4.22)

=
( x̂2
χx
− (Q̂2zFTF + Q̂2xId)x̂2 + Q̂2zFTh2z

)
/Q̂1x (4.23)

= −
(
Q̂2zFTF + Q̂2x

(
1− 1

χxQ̂2x

)
Id
)

x̂2

Q̂2x
+ FT

(
Q̂1z

(
1

χzQ̂1z
− 1
)

ẑ1 − ∂g(ẑ1)
)

(4.24)

which is equal to the left-hand term in (4.20). Using this equality, as well as ẑ1 = Fx̂1 and
relations (4.17) and (4.18) yields

∂f(x̂1) + FT∂g(Fx̂1) = 0. (4.25)
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Hence, the fixed point of MLVAMP satisfies the optimality condition (4.16) and is indeed the
desired MAP estimator: x̂1 = x̂2 = x̂. This shows point ii of our sketch of proof.

4.3.3 State evolution of MLVAMP and its fixed point

We have two versions of state evolution equations in our hands. The first one comes from [54],
and is proven in the asymptotic limit, but somewhat difficult to handle. We refer to it as (SE1).
The second version is derived in [152] directly from MLVAMP’s equations stated in (4.11), and
in the same notations that we have adopted. We call this one (SE2). To stick with our notations,
we will prefer the equations from (SE2), however they suffer from a drawback: they are derived
with a more physical approach relying on a non-proven assumption, but we want to invoke SE
equations that are exact for the needs of our proof. We thus have two ways of proceeding: we
could directly show that (SE1) and (SE2) are exactly the same set of equations at their fixed
point. However, this turns out to be a hassle (although we explain how to do it in appendix
D.2.3), so we turn to an easier trick: we could simply show that the starting assumption of (SE2)
is implied by the rigorous formulation of (SE1), which means that (SE2) becomes rigorous too,
and we can use it to our hearts’ content. This is done in appendix D.2.1.

Gaussian property assumption
[152] starts by assuming that h1x,h1z,h2x,h2z behave as Gaussian estimates:

Q̂
(t)
1xh(t)

1x − m̂
(t)
1xx0

d=
√
χ̂

(t)
1xξ

(t)
1x (4.26a)

VT (Q̂(t)
2xh(t)

2x − m̂
(t)
2xx0) d=

√
χ̂

(t)
2xξ

(t)
2x (4.26b)

UT (Q̂(t)
1zh(t)

1z − m̂
(t)
1z z0) d=

√
χ̂

(t)
1z ξ

(t)
1z (4.26c)

Q̂
(t)
2zh(t)

2z − m̂
(t)
2z z0

d=
√
χ̂

(t)
2z ξ

(t)
2z (4.26d)

where d= denotes equality of empirical distributions. U and V come from the singular value
decomposition F = UΣVT and are Haar-sampled; ξ(t)

1x , ξ
(t)
2x , ξ

(t)
1z , ξ

(t)
2z are normal Gaussian vec-

tors, independent from x0, z0,VTx0 and UT z0. We show that this assumption is exact in the
asymptotic limit in appendix D.2.1.

Recall that parameters Q̂(t)
1x , Q̂

(t)
1z , Q̂

(t)
2x , Q̂

(t)
2z are defined through MLVAMP’s iterations (4.11).

Parameters m̂(t)
1x , m̂

(t)
1z , m̂

(t)
2x , m̂

(t)
2z and χ̂(t)

1x , χ̂
(t)
1z , χ̂

(t)
2x , χ̂

(t)
2z will be prescribed through SE equations.

Other useful variables are the overlaps and squared norms of estimators, for k ∈ {1, 2}:

m
(t)
kx = x>0 x̂(t)

k

N
q

(t)
kx = ‖x̂

(t)
k ‖22
N

m
(t)
kz = z>0 ẑ(t)

k

M
q

(t)
kz = ‖ẑ

(t)
k ‖22
M

.

The state evolution equations are scalar and describe the evolution of these 16 quantities through-
out MLVAMP’s iterations. This might seem very complicated to handle, but these quantities
carry physical meaning which makes them friendlier to the scared-off reader, and SE equations
turn out to be perfectly compatible with numerical implementation. Note that they involve the
scalar proximals ηf and ηg(y,·). Expectations are taken with respect to the random variables
x0 ∼ px0 , z0 ∼ N (0,√ρz), y ∼ φ(z0 + ω0), ξ1x, ξ1z ∼ N (0, 1), and eigenvalues λ ∼ pλ.
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Starting from assumptions (4.26), and following the derivation of [152] adapted to the iter-
ation order from (4.11), the scalar state evolution equations read:

Initialize Q̂
(0)
1x , Q̂

(0)
2z , m̂

(0)
1x , m̂

(0)
2z , χ̂

(0)
1x , χ̂

(0)
2z > 0.

m
(t)
1x = E

x0ηf/Q̂(t)
1x

m̂(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

 (4.27a)

χ
(t)
1x = 1

Q̂
(t)
1x

E

η′
f/Q̂

(t)
1x

m̂(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

 (4.27b)

q
(t)
1x = E

η2
f/Q̂

(t)
1x

m̂(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

 (4.27c)

Q̂
(t)
2x = 1

χ
(t)
1x
− Q̂(t)

1x (4.27d)

m̂
(t)
2x = m

(t)
1x

ρxχ
(t)
1x
− m̂(t)

1x (4.27e)

χ̂
(t)
2x = q

(t)
1x

(χ(t)
1x)2

− (m(t)
1x)2

ρx(χ(t)
1x)2

− χ̂(t)
1x (4.27f)

m
(t)
2z = ρx

α
E
[
λ(m̂(t)

2x + λm̂
(t)
2z )

Q̂
(t)
2x + λQ̂

(t)
2z

]
(4.27g)

χ
(t)
2z = 1

α
E
[

λ

Q̂
(t)
2x + λQ̂

(t)
2z

]
(4.27h)

q
(t)
2z = 1

α
E
[
λ(χ̂(t)

2x + λχ̂
(t)
2z )

(Q̂(t)
2x + λQ̂

(t)
2z )2

]
+ ρx
α
Eλ

[
λ(m̂(t)

2x + λm̂
(t)
2z )2

(Q̂(t)
2x + λQ̂

(t)
2z )2

]
(4.27i)

Q̂
(t)
1z = 1

χ
(t)
2z
− Q̂(t)

2z (4.27j)

m̂
(t)
1z = m

(t)
2z

ρzχ
(t)
2z
− m̂(t)

2z (4.27k)

χ̂
(t)
1z = q

(t)
2z

(χ(t)
2z )2

− (m(t)
2z )2

ρz(χ(t)
2z )2

− χ̂(t)
2z (4.27l)

m
(t)
1z = E

z0ηg(y,.)/Q̂(t)
1z

m̂(t)
1z z0 +

√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

 (4.27m)

χ
(t)
1z = 1

Q̂
(t)
1z

E

η′
g(y,.)/Q̂(t)

1z

m̂(t)
1z z0 +

√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

 (4.27n)

q
(t)
1z = E

η2
g(y,.)/Q̂(t)

1z

m̂(t)
1z z0 +

√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

 (4.27o)

Q̂
(t+1)
2z = 1

χ
(t)
1z
− Q̂(t)

1z (4.27p)
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m̂
(t+1)
2z = m

(t)
1z

ρzχ
(t)
1z
− m̂(t)

1z (4.27q)

χ̂
(t+1)
2z = q

(t)
1z

(χ(t)
1z )2

− (m(t)
1z )2

ρz(χ(t)
1z )2

− χ̂(t)
1z (4.27r)

m
(t+1)
2x = ρxE

[
m̂

(t)
2x + λm̂

(t+1)
2z

Q̂
(t)
2x + λQ̂

(t+1)
2z

]
(4.27s)

χ
(t+1)
2x = E

[
1

Q̂
(t)
2x + λQ̂

(t+1)
2z

]
(4.27t)

q
(t+1)
2x = E

[
χ̂

(t)
2x + λχ̂

(t+1)
2z

(Q̂(t)
2x + λQ̂

(t+1)
2z )2

]
+ ρxE

[
(m̂(t+1)

2x + λm̂
(t+1)
2z )2

(Q̂(t)
2x + λQ̂

(t+1)
2z )2

]
(4.27u)

Q̂
(t+1)
1x = 1

χ
(t+1)
2x

− Q̂(t)
2x (4.27v)

m̂
(t+1)
1x = m

(t+1)
2x

ρxχ
(t+1)
2x

− m̂(t)
2x (4.27w)

χ̂
(t+1)
1x = q

(t+1)
2x

(χ(t+1)
2x )2

− (m(t+1)
2x )2

ρx(χ(t+1)
2x )2

− χ̂(t)
2x . (4.27x)

The fixed point of those state evolution equations exactly coincides with the extremization
conditions of the replica free energy (4.5), which shows point i of our sketch of proof.

4.4 Oracle MLVAMP as a dynamical system

4.4.1 Definition of Oracle MLVAMP
We move on to the hardest part of the proof, i.e. point iii. Just like we did in 3.4, we will
introduce an oracle version of MLVAMP. Indeed, we only need to show that there exists one
instance of the algorithm that converges to its fixed point, and we have the freedom to choose
initialization, as long as it satisfies the criteria that keep state evolution equations valid. In
the oracle algorithm, second-order parameters, i.e. the implicit step-sizes and prefactors of the
denoisers, are prescribed from the fixed point of the state evolution equations. In our notations,
these parameters correspond to Q̂1x, Q̂1z, Q̂2x, Q̂2z, χx, χz. The Oracle-MLVAMP iterations then
read:

Initialize h(0)
1x h(0)

2z isotropically, prescribe Q̂1x, Q̂1z, Q̂2x, Q̂2z, χx, χz.

Forward pass – denoising Forward pass – LMMSE

x̂(t)
1 = Proxf/Q̂1x

(h(t)
1x ) ẑ(t)

2 = F(Q̂2xFTF + Q̂2xId)−1(Q̂2xh(t)
2x + Q̂2zFTh(t)

2z ) (4.28a)

h(t)
2x = (x̂(t)

1 /χx − Q̂1xh(t)
1x )/Q̂2x h(t)

1z = (ẑ(t)
2 /χz − Q̂2zh(t)

2z )/Q̂1z (4.28b)

Backward pass – denoising Backward pass – LMMSE

ẑ(t)
1 = Proxg(.,y)/Q̂1z

(h(t)
1z ) x̂(t+1)

2 = (Q̂2xFTF + Q̂2zId)−1(Q̂2xh(t)
2x + Q̂2zFTh(t+1)

2z ) (4.28c)

h(t+1)
2z = (ẑ(t)

1 /χz − Q̂1zh(t)
1z )/Q̂2z h(t+1)

1x = (x̂(t+1)
2 /χx − Q̂2xh(t)

2x )/Q̂1x. (4.28d)

At each iteration, Oracle-MLVAMP returns two sets of estimators (x̂(t)
1 , x̂(t)

2 ) and (ẑ(t)
1 , ẑ(t)

2 )
which respectively aim at reconstructing the minimizer x̂ and ẑ = Fx̂. At the fixed point, we
have x̂(t)

1 = x̂(t)
2 and ẑ(t)

1 = ẑ(t)
2 . The constant parameters verify the fixed point relations (4.17)
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and (4.18). Of course, the fixed point of Oracle MLVAMP coincides with the fixed point of
MLVAMP, i.e. the minimizer x̂.

4.4.2 Compact form of Oracle MLVAMP

We want to write Oracle MLVAMP in a compact way, to exhibit the main operators and try to
characterize their Lipschitz constants. When studying Oracle VAMP, it could be reduced to the
composition of two operators (3.23). For MLVAMP, it will be of course more complicated. We
write it as two equations on vectors h(t)

1x ,h
(t)
2z :

Initialize h(0)
1x ,h

(0)
2z

h(t+1)
1x = W1Õ1h(t)

1x + W2Õ2(W3h(t)
2z + W4Õ1h(t)

1x) (4.29)

h(t+1)
2z = Õ2(W3h(t)

2z + W4Õ1h(t)
1x) (4.30)

where

W1 = Q̂2x

Q̂1x

(
1
χx

(Q̂2zFTF + Q̂2xId)−1 − Id
)

W2 = Q̂2z

χxQ̂1x
(Q̂2zFTF + Q̂2xId)−1FT (4.31a)

W3 = Q̂2z

Q̂1z

(
1
χz

F(Q̂2zFTF + Q̂2xId)−1FT − Id
)

W4 = Q̂2x

Q̂1zχz
F(Q̂2zFTF + Q̂2xId)−1 (4.31b)

Õ1 = Q̂1x

Q̂2x

(
1

χxQ̂1x
Proxf/Q̂1x

(·)− Id
)

Õ2 = Q̂1z

Q̂1z

(
1

χzQ̂1z
Proxg(.,y)/Q̂1z

(·)− Id
)
. (4.31c)

4.4.3 Recast of Oracle VAMP as a linear system

This system is somewhat hard to handle and includes non-linear operators. We will follow the
approach pioneered in [92], where the main idea is to recast any non-linear dynamical system
as a linear one. In the linear system, convergence will be naturally characterized by a matrix
norm. The linear recast works this way: for a given non-linearity Õ applied to an iterate h, we
define the variable u = Õ(h) and rewrite the initial algorithm in terms of this trivial transform.
Any property of Õ is then summarized in a constraint matrix linking h and u. For example, if
Õ has Lipschitz constant ω, then for all t:

‖ut+1 − ut‖22 6 ω2‖ht+1 − ht‖22, (4.32)

which can be rewritten in matrix form:[
ht+1 − ht
ut+1 − ut

]T [
ω2Idh 0

0 −Idu

] [
ht+1 − ht
ut+1 − ut

]
> 0 (4.33)

where Idh , Idu are the identity matrices with dimensions of u,h, i.e. M or N in our case. The
matrix encapsules the Lipschitz property of the non-linear operator. Any cocoercivity property
(verified by proximal operators) can also be rewritten in matrix form but yields non block
diagonal constraint matrices. For our proof, we will derive the Lipschitz constants of non-linear
operators instead of focusing on their cocoercivity, as it turns out simpler and sufficient to prove
our point. After obtaining the linear formulation of our system, the condition of convergence
is given by the main theorem from [92] (adapted to ADMM in [117]) through a linear matrix
inequality.
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Let us write the recast of Oracle MLVAMP as a linear system. We define the variables:

u(t)
0 = Õ1(h(t)

1x), v(t) = W3h(t)
2z + W4u(t)

0 , and u(t)
1 = Õ2(v(t)) (4.34)

such that h(t+1)
2z = u(t)

1 , h(t+1)
1x = W1u(t)

0 + W2u(t)
1 . (4.35)

where u0,h1x ∈ RN , v,u1,h2z ∈ RM . We then write

h(t) =
[
h(t)

2z
h(t)

1x

]
, u(t) =

[
u(t)

1
u(t)

0

]
, z(t)

0 =
[
h(t)

1x
u(t)

0

]
, z(t)

1 =
[
v(t)

u(t)
1

]
.

This leads to the following linear dynamical system recast of (4.29):

h(t+1) = Ah(t) + Bu(t) (4.36)

z(t)
1 = C1h(t) + D1u(t) (4.37)

z(t)
2 = C2h(t) + D2u(t) (4.38)

where
A = 0(M+N)×(M+N) B =

[
IM 0M×N
W2 W1

]
(4.39)

C1 =
[
0N×M IN
0N×M 0N×N

]
D1 =

[
0N×M 0N×N
0N×M IN

]
(4.40)

C2 =
[

W3 0M×N
0M×M 0M×N

]
D2 =

[
0M×M W4

IM 0M×N

]
. (4.41)

4.4.4 Lipschitz constants and constraint matrices

The next step is to impose the properties of the non-linearities Õ1, Õ2 through constraint ma-
trices. The Lipschitz constants ω1, ω2 of Õ1, Õ2 can be determined using properties of proximal
operators [64] and are directly linked to the strong convexity and smoothness of the cost function
and regularization. Let (σ1, β1) and (σ2, β2) the the strong convexity and smoothness constants
(that can be taken infinite if there is no smoothness assumption) of f and g(y, ·). An upper
bound on the Lipschitz constants then reads:

ω1 = Q̂1x

Q̂2x

√√√√1 + Q̂2
2x − Q̂2

1x
(Q̂1x + σ1)2

ω2 = Q̂1z

Q̂2z

√√√√1 + Q̂2
2z − Q̂2

1z
(Q̂1z + σ2)2

. (4.42)

From there, we define the constraints matrices

M1 =
[
ω2

1 0
0 −1

]
⊗ IN M2 =

[
ω2

2 0
0 −1

]
⊗ IM (4.43)

where ⊗ denotes the Kronecker product. To study the convergence of our new linear system,
we resort to Theorem 4 from [92], that provides the following condition.

Convergence condition (Linear matrix inequality)
Consider the following linear matrix inequality with τ ∈ [0, 1]:

0 �
[
ATPA− τ2P ATPB

BTPA BTPB

]
+
[
C1 D1
C2 D2

]T [
β1M1 0

0 β2M2

] [
C1 D1
C2 D2

]
. (4.44)
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If (4.44) is feasible for some P � 0 and β1, β2 > 0, then for any initialization h(0), h(t) converges
to a vector h∗ and

∀t, ‖h(t) − h∗‖2 6
√
κ(P)τ t‖h(0) − h∗‖2 (4.45)

where κ(P) is the condition number of P.

What does this inequality tell us? Matrices A,B,C1,C2,M1,M2 come from the definition
of our system. Then for any τ ∈ [0, 1], we would like to find any P � 0 and β1, β2 > 0, such
that inequality (4.44) holds. If we do, then τ provides a convergence rate of our system. The
convergence speed is also conditioned by a number κ(P). Our job now will be to write the
matrix to the right-hand side of (4.44), by assuming a given form of P, and seeing if we can
indeed find P, τ , β1 and β2 to satisfy the inequality. To do this, we need to characterize some
bounds on variance parameters.

4.4.5 Bounds on variance parameters

From the fixed point of the MLVAMP iterations, the definition of the averaging operators, and
the form of the Jacobian of the proximal operator already used in (3.47), we proceed exactly
like we did for VAMP in 3.5.2 to obtain the following relations on the Q̂ parameters involving
the Hessian matrices of f and g taken at the fixed point, denoted Hf and Hg:

1
Q̂2x + Q̂1x

= 1
N

Tr
[
(Hf + Q̂1xId)−1

]
= 1
N

Tr
[
(Q̂2zFTF + Q̂2xId)−1

]
(4.46)

1
Q̂1z + Q̂2z

= 1
N

Tr
[
(Hg + Q̂1zId)−1

]
= 1
M

Tr
[
FFT (Q̂2zFFT + Q̂2xId)−1

]
. (4.47)

From there, we obtain the following inequalities:

σ1 6 Q̂2x 6 β1 (4.48)
σ2 6 Q̂2z 6 β2 (4.49)

Q̂2zλmin(FTF) 6 Q̂1x 6 Q̂2zλmax(FTF) (4.50)
Q̂2x

λmax(FFT ) 6 Q̂1z 6
Q̂2x

λmin(FFT ) . (4.51)

Note that λmin(FFT ) can be equal to 0, the right-hand side of the last inequality would then be
uninformative. λmax(FTF) = λmax(FFT ) are strictly positive, since the spectrum is assumed
to be non-trivial.

4.5 Smoothed problem and end of the proof

4.5.1 Convergence of the smoothed problem

In Chapter 3, we introduced a smooth problem by adding a ridge penalty to the convex reg-
ularization function, to enforce strong convexity. We follow the same idea here, but we add
two ridge penalties: one that completes f , and one that completes g. We replace f and g by
their twice-differentiable approximation [89, 10], but keep the same names for simplicity. The
smoothed setting consists in solving the modified minimization problem, for λ2, λ̃2 ≥ 0 :

x̂(λ2, λ̃2) = arg min
x∈RN

{
g̃(Fx,y) + f̃(x)

}
(4.52)
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where f̃(x) = f(x)+ λ2
2 ‖x‖

2
2 and g̃(Fx,y) = g(Fx,y)+ λ̃2

2 ‖Fx‖22. Note that (σ̃1, β̃1) and (σ̃2, β̃2)
the strong convexity (and possibly infinite) smoothness constants of f̃ and g̃ verify:

σ̃1 = σ1 + λ2 β̃1 = β1 + λ2 (4.53)
σ̃2 = σ2 + λ̃2 β̃2 = β2 + λ̃2. (4.54)

For the smoothed problem (4.52), constants (σ1, β1) and (σ2, β2) are directly augmented by
λ̃2, λ2, which allows us to control the scaling of Q̂2x and Q̂2z through (4.48) and (4.49). The rest
of the convergence proof is then based on successive application of Schur’s lemma [76] on the
linear matrix inequality (4.44) by translating the convergence conditions into simpler inequalities;
which can be verified by choosing the appropriate λ̃2, λ2, β1, β2. The computation needs to be
meticulously done and is detailed in appendix D.4. Defining vector h(t) =

[
h(t)

2z ,h
(t)
1x

]T
, our result

formally reads:

∀ λ̃2 > 0, ∃ Λ2 such that ∀λ2 > Λ2 :

∃ c ∈]0, λ2[ such that ‖h(t) − h∗‖22 6
(
c

λ2

)t
‖h(0) − h∗‖22 (4.55)

which implies lim
t→∞
‖h(t) − h∗‖22 = 0

where h∗ is the fixed point value of h(t) for Oracle MLVAMP on the smoothed problem. Basically,
we show that for any ridge penalty added to g, Oracle MLVAMP converges if the ridge penalty
added to f is strong enough. Note that proving convergence of gradient-based descent methods
for sufficiently strongly-convex functions is a coherent result from an optimization point of view.
This is corroborated by the symbolic convergence rates derived for ADMM in [117], where a
sufficiently strongly convex function is also considered. We have now proven point iii, but only
for the smoothed problem in a given regime of added ridge penalty.

4.5.2 Analytic continuation

We want to use an analytic continuation on scalar quantities that are obtained by the state
evolution equations, which include the overlaps used to characterize our reconstruction error.
First, note that the optimality condition of the smoothed problem (4.52) reads

∂f(x̂) + FT∂g(Fx̂) + (λ2Id + λ̃2FTF)x̂ = 0 (4.56)

and defines an analytic function of (λ2, λ̃2) for the coordinates of the solution x̂(λ2, λ̃2), and
thus for ẑ = Fx̂ as well, using the analytic inverse function theorem from [83]. We also know
that the proximal of a convex (and differentiable) function with an addition ridge penalty reads:

Prox
γ(f+λ2

2 ‖.‖
2
2)(z) = ((1 + γλ2)Id + γf ′)−1(z) (4.57)

which is an analytic function in λ2. Therefore, all equations defining the scalar quantities in the
state evolution equations (4.27) at finite N are analytic in (λ2, λ̃2), which implicitly defines an
analytic function for any scalar combination of those quantities [83]. Moreover, the convergence
of Oracle MLVAMP on the smoothed problem holds for an open subset of (λ2, λ̃2); we can
therefore use an analytic continuation theorem [83] to extend it to all non-negative values of
(λ2, λ̃2). By choosing (λ2, λ̃2) = (0, 0); we show that the expressions of all scalar quantities
defined by state evolution equations at finite N still hold for the original problem (4.2). To
take the asymptotic limit, we must again proceed carefully. We consider the asymptotic MSE
as a pointwise limit of a sequence of loss functions for N finite, which are themselves analytic.
However, if the asymptotic loss is not analytic in (λ2, λ̃2), then it could have a different expression
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outside MLVAMP’s convergence domain, as underlined in the last paragraph of 3.6. To properly
conclude the proof, we need to assume analyticity of the MSE in (λ2, λ̃2) in the asymptotic
limit. Proving this reasonable assumption is left for later work. Under this condition, we have
safely found that replica and SE equations provide the exact asymptotic expression for the
reconstruction performance of estimator x̂.

4.6 Numerical experiments

4.6.1 Matrix parameters and singular values

We perform a few experiments to compare simulation with the theoretical expressions predicted
by the state evolution and replica result. The experimental points were obtained using the
convex optimization tools of [126], with a data matrix of dimension N = 200,M = αN , for
α ∈ [0.1, 3]. Each point is an average over 100 realizations. We assume that the ground-truth
x0 is pulled from a Gauss-Bernoulli law of the form:

px0(x0) = (1− ρ)δ(x0) + ρ
1√
2π

exp (−x2
0/2). (4.58)

Our plots correspond to ρ = 1. The two types of matrices we use are Gaussian i.i.d., the eigenval-
ues of FTF are then sampled from the Marchenko-Pastur distribution (B.23); and rotationally
invariant matrices with singular values independently sampled from the uniform distribution
U(
[
(1− α)2, (1 + α)2]); which yields pλ as in (3.56). The theoretical prediction is obtained by

iterating the state evolution equations (4.27), until they converge to their fixed point.

4.6.2 Regularization: elastic net

We use elastic net regularization f = λ1‖·‖1 + λ2
2 ‖·‖

2
2, and the proximal expression is given

in (C.37). To run state evolution equations, we need to compute a few expectations over the
regularization proximal, that we provide here. Writing X = m̂1xx0+

√
χ̂1xξ1x

Q̂1x
, where ξ1x ∼ N (0, 1),

a little calculus shows that:

E[Prox2
f/Q̂1x

(X)] =
(

1
1 + λ2

Q̂1x

)2
(1− ρ)

λ2
1 + (Q̂1x)2τ

(Q̂1x)2
erfc

(
λ1

Q̂1x
√

2τ

)
−
λ1
√

2τ exp(− λ2
1

2(Q̂1x)2τ
)

Q̂1x
√
π


+ ρ

λ2
1 + (Q̂1x)2(τ + τ0)

(Q̂1x)2
erfc

(
λ1

Q̂1x
√

2(τ + τ0)

)
−
λ1
√

2(τ + τ0) exp(− λ2
1

2(Q̂1x)2(τ+τ0) )

Q̂1x
√
π

 , (4.59)

E[Prox′
f/Q̂1x

(X)] = 1
1 + λ2

Q̂1x

[
(1− ρ) erfc

(
λ1

Q̂1x
√

2τ

)
+ ρ erfc

(
λ1

Q̂1x
√

2(τ + τ0)

)]
, (4.60)

E[x0Proxf/Q̂1x
(X)] =

ρ
√
τ0

1 + λ2
Q̂1x

erfc
(

λ1

Q̂1x
√

2(τ + τ0)

)
, (4.61)

where we write τ0 = (m̂1x/Q̂1x)2 and τ = χ̂1x/Q̂
2
1x.

4.6.3 Loss functions

We provide the proximal of the loss function for several cases, which are necessary to run
state evolution equations. The involved expressions cannot always be simplified, and we had
to perform a numerical integration. In the present model, if the teacher y is chosen as a sign,
one-dimensional integrals can be reached, leading to stable and reasonably fast implementation
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(a few minutes to generate a curve comparable to those of Figure 4.2 for the non-linear models,
the ridge regression being very fast).

Square loss The square loss is defined as:

g(p, y) = 1
2(p− y)2, (4.62)

its proximal and partial derivative then read:

Proxg/γ(p) = γ

1 + γ
p+ 1

1 + γ
y (4.63)

∂

∂p
Proxg/γ(p) = γ

1 + γ
. (4.64)

Using this form with a plain ridge penalty (elastic net with λ1 = 0) leads to great simplification in
the state evolution equations, and recovers the classical expressions obtained for ridge regression
in papers such as [71, 61].

Hinge loss and SVMs The hinge loss is used for “maximum-margin” classification, notably
for support vector machines (SVMs). It reads:

g(p, y) = max(0, 1− py). (4.65)

Assuming y ∈ {−1,+1}, its proximal and partial derivative then read:

Proxg/γ(p) =


p+ y

γ if γ(1− yp) > 1
y if 0 6 γ(1− yp) 6 1
p if γ(1− yp) 6 0

(4.66)

∂

∂p
Proxg/γ(p) =


1 if γ(1− yp) > 1
0 if 0 6 γ(1− yp) 6 1
1 if γ(1− yp) 6 0.

(4.67)

Logistic loss The logistic loss reads:

g(p, y) = log(1 + exp(−py)) (4.68)

Its proximal (at point p) is the solution to the fixed point problem:

x = p+ y

γ(1 + exp(py)) , (4.69)

and its derivative, given that the logistic loss is twice differentiable, reads

∂

∂p
Proxg/γ(p) =

(
1 + 1

γ

∂2

∂p2 g(Proxg/γ(p))
)−1

(4.70)

=
(

1 + 1
γ

1
(2 + 2cosh(Proxg/γ(p))

)−1

. (4.71)
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Figure 4.2: Comparison between simulation and theory (from the state evolu-
tion equations) predictions of scalar quantities characterizing reconstruction per-
formance. We consider a binary classification problem with data generated as
y = sign(Fx0 + ω0) with matrix F being in the top figure Gaussian i.i.d., and
in the bottom a rotationally invariant matrix with a squared uniform density of
eigenvalues. We plot the angle between the estimator and the ground-truth vector
θ = arccos(m∗x/(

√
ρxq∗x)) as a function of the aspect ratio α = M/N taking `2

penalty with λ2 = 10−3. The losses correspond to a square loss (ridge regres-
sion), Support Vector Machine through hinge loss, and a logistic regression. The
theoretical prediction (full line) is compared with numerical experiments (points)

conducted using standard convex optimization solvers from [126].

Summary of Chapter 4 In this chapter, we proved the replica formula that characterizes
reconstruction performance for a teacher-student scenario in a generalized linear model, when
the data matrix is rotationally invariant, and under an analyticity assumption for the asymptotic
mean squared error. This performance is determined through scalar parameters that describe
minimizer (4.2), which is the solution of an unconstrained convex problem. Extremizing the
replica free energy yields the same equations as the fixed point of the state evolution equations
of multi-layer VAMP, in its two-layer version. We study an Oracle version of MLVAMP, that
can be recast as a linear dynamical system, and use a linear matrix inequality that mediates a
convergence condition. By adding ridge penalties to the regularization and loss functions, we
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can find a regime where Oracle MLVAMP is convergent. Besides, we show that its fixed point
corresponds to the minimizer we are interested in, indicating that it is indeed characterized by
the replica formula. Performing an analytic continuation on the added regularization parameters
extends the validity of the expressions of all scalar quantities coming from the state evolution
equations; which shows the replica formula for the original minimization problem. We compare
theory to simulations for matrices with size of a few hundreds, with a sign teacher, two different
types of matrices, an `2 penalty and several losses. We find excellent agreement, despite the small
size of the matrices and the asymptotic nature of the state evolution/replica analytic result.The
proofs from the two last chapters strongly rely on message passing algorithms state evolution
equations. A natural question would be to probe the existence of a similar set of equations (at
least empirical) for different algorithms, such as expectation propagation schemes, which would
also allow a physical or optimization approach to characterize algorithmic performance.
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Chapter 5

Rademacher complexity and free
energy: a link between the replica
and statistical theories of learning

Until now, we have mostly focused on inference problems formulated in statistical physics terms,
and pointed out links with convex optimization, message passing algorithms, and random matrix
theory tools. In this chapter, we take a Diagon Alley1 and begin by shortly introducing the well-
known statistical learning problem of generalization, and later underline how some angles can
be rephrased through the prism of statistical physics. This chapter is adapted from [1].

5.1 Convergence bounds on the generalization gap

5.1.1 A friendly introduction to the generalization problem

We consider binary classifications functions on a space X into {−1,+1}. X is an environment,
such as a set of images, on which we define a concept through a teacher function fT ; such as the
absence of presence of a bird on the picture. The goal is to find a function that approximates the
concept, which will be pulled from a hypothesis class F . The latter could be for instance a neural
network or a linear function, with respective weights or parameters w. We want to compare
fT with functions from F on the whole space X , but instead we use a test set of M examples
{y(µ),x(µ)}µ=1,..,M where y(µ) = fT (x(µ)); and x(µ) is assumed to be drawn from a distribution
px. We choose a loss function L, such as the square loss L(y1, y2) = (y1−y2)2, or in the following
the indicator L(y1, y2) = 1(y1, y2). A general definition to measure the performance of fw ∈ F
is the empirical risk

RMempirical(fw) = 1
M

m∑
µ=1
L
(
y(µ), fw(x(µ))

)
. (5.1)

What we actually hope to minimize is the population risk, defined as

Rpopulation(fw) = Ey,x [L(y, fw(x))] . (5.2)

We typically pick a function fw after a learning phase, where we try to obtain the value of
parameters w that guarantees a good match with the teacher function on a given set of ex-
amples. Taking the same set as above turns it into a training set. This learning process aims
at empirical risk minimization. The generalization question amounts to knowing if the chosen
function fw performs well on the complete set X , knowing that it is a good approximation of
the concept on the training set. However, the discrepancy between empirical and population
risks could be arbitrarily large. Our goal is thus to bound the difference between them, that we

1see Harry Potter and the Philosopher’s stone, J.K. Rowling.
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call generalization gap.

For simplicity, let us call εw the population risk, and νw the probability of fT and fw being
equal on a random element from the training set. Luckily, the law of large numbers states that
for a randomly chosen set of parameters w, νMw converges to εw as M → ∞. The convergence
rate for one function fw is then provided by the Hoeffding inequality, where we take δ a tolerance
parameter:

Prob
(
|νMw − εw| > δ

)
≤ 2e−δ2M . (5.3)

The convergence of νMw to εw is called convergence of frequencies to probabilities. (5.3) notably
shows that the convergence rate is of order 1/

√
M . However, this inequality holds for a given

function fw, but we would like to have a uniform convergence result, for all functions in the
hypothesis class. Indeed, we may pick through the learning process a function fw such that νMw
converges very slowly to εw, and the generalization gap would be large. Therefore we focus on
the quantity

Prob
(

sup
fw∈F

|νMw − εw| > δ

)
.

This probability accounts for the worst-case scenario since it takes the supremum on all of the
hypothesis class.

5.1.2 The Vapnik-Chervonenkis theorem on uniform convergence

If F is finite, we can invoke Hoeffding’s inequality on each function from the hypothesis class,
thus reaching

Prob
(

sup
fw∈F

|νMw − εw| > δ

)
≤ 2|F|e−δ2M . (5.4)

The key for the case where F is infinite is the Vapnik-Chervonenkis theorem, that states:

Prob
(

sup
fw∈F

|νMw − εw| > δ

)
≤ C1∆F (2M)e−δ2M . (5.5)

where C1 is a constant, and ∆F (2M) represents an effective number of functions in F , mediating
the number of concepts that can be expressed on the training set by the hypothesis class. To
reach uniform convergence, we need ∆F (2M)e−δ2M to go to zero as M → ∞, therefore ∆F ’s
growth should not be too fast. In particular, a polynomial growth would be perfect. Taking a
random set {x(µ)} ∈ XM , ∆F (M) is the growth function of the hypothesis class, and is defined
by the maximum number of different classifications which can be induced by its functions. If F is
finite, it is clear that ∆F (M) ≤ |F|, since the hypothesis class cannot induce more classifications
than its number of functions. Besides, ∆F (M) ≤ 2M which is the total number of classifications.
Thankfully, Vapnik and Chervonenkis one side [33, 171], Sauer on the other [140], showed that
for every class of functions F , there exists a unique integer dVC(F), called the VC dimension,
such that for M ≤ dVC, all 2M classifications can be induced by F . For M > dVC, ∆F (M) is
bounded by a polynomial function. More precisely:

∆F (M) = 2M ifM ≤ dVC (5.6a)

∆F (M) ≤
(
eM

dVC

)dVC

ifM > dVC. (5.6b)

Another way of defining the VC dimension is the size of the set that can be fully shattered by
the hypothesis class F . In other words, if we can find a set of k points from X such that any
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classification on these examples can be achieved by a function from the hypothesis class, but
cannot find any such set of k+1 examples, then the VC dimension is k. For instance, if X = R2,
and F is the space of linear classifiers, then the associated VC dimension is 3, as explained in
Fig. 5.1. The VC theorem (5.5) thus provides a uniform convergence result, which informally

Figure 5.1: First line: a set of three points that can be shattered by a linear
classifier, no matter what the chosen labels are (red or blue), as shown in the three
examples. Second line: a set of four points that cannot always be shattered by a
linear classifier, as shown in the last picture. Any set of 4 points can be attributed
a blue/red classification that cannot be shattered; hence the VC dimension of

linear classifiers on R2 is 3.

reads

Rpopulation(fw)−RMempirical(fw) = O

√dVC(F)
M

 . (5.7)

However, this approach clearly does not give tight enough bounds: not only is it a worst-case
analysis, but it also does not depend on the data distribution. It holds whatever the distribution
is, and fails to exploit information about the problem’s specificity. Moreover, it only applies to
binary classification.

5.1.3 The Rademacher complexity

Rademacher bound on uniform convergence

Another quantity provides a uniform convergence bound on the generalization gap, and takes
into account the data distribution: the Rademacher complexity [17]. Let fw be any function in
the hypothesis class F on RN , and let ε ∈ {±1}M be drawn uniformly at random. The empirical
Rademacher complexity is defined as

R̂M (F ,X) ≡ Eε

 sup
fw∈F

1
M

M∑
µ=1

εµfw
(
x(µ)

) , (5.8)

and depends on the sample examples X = {x(1), ...,x(M)} ∈ RN×M . The Rademacher complexity
is defined as the population average

RM (F) ≡ EX
[
R̂M (F ,X)

]
. (5.9)

We keep our focus on binary classification and consider the corresponding indicator loss function
L(y1, y2) = 1(y1 − y2) that counts the number of misclassified samples. We will be interested
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in a hypothesis class F =
{
fw : RN −→ {±1}

}
. We define the training error εMtrain(.) and

generalization error εgen(.) for any function fw ∈ F by

εMtrain(fw) ≡ 1
M

M∑
µ=1

1
(
y(µ) 6= fw(x(µ))

)
(5.10)

εgen(fw) ≡ Ey,X [1(y 6= fw(x))] . (5.11)

The Rademacher complexity provides a uniform convergence bound on binary classification (see
e.g. [17, 146, 113]), that can be stated as follows: Fix a distribution px and let δ > 0. Let
X = {x(1), . . .x(M)} ∈ RN×M a set of examples identically and independently drawn from px.
Then with probability at least 1− δ (over the draw of X),

∀fw ∈ F , εgen(fw)− εMtrain(fw) ≤ RM (F) +

√
log(1/δ)
M

. (5.12)

The Rademacher complexity becomes a uniform bound of the generalization gap: in our favorite
asymptotic limit when M,N →∞ the δ−dependent term goes to zero, and only the first term
on the right-hand side remains finite.

Recovering the VC uniform convergence bound

This inequality can be used to recover the classical VC result (5.7). To do so, we invoke Massart’s
lemma [102], which states that for a finite subset A ⊂ RM and ε ∈ {±1}M uniformly drawn:

E

sup
a∈A

M∑
µ=1

εµaµ

 ≤ sup
a∈A

[
(
∑M
µ=1a

2
µ)1/2

]√
2 log|A|. (5.13)

Consider a particular sample set X, with M elements. Taking any hypothesis class F , it
can at most induce ∆F (M) different classifications on those M points, i.e. a finite number,
where ∆F is the growth function. We pick ∆F (M) functions from the hypothesis class such
that they cover all possible classifications described by the class, and call this ensemble of
functions FX . We then define the finite set AX = {

(
f(x(1)), ..., f(x(M))

)
|f ∈ FX}. Clearly

supa∈AX
[
(
∑M
µ=1a

2
µ)1/2

]
=
√
M . Writing the Rademacher definition yields:

RM (F) ≡ EX,ε [RM (F ,X)] ≤ EX

 1
M

sup
a∈AX

1
M

M∑
µ=1

εµaµ

 (5.14)

≤ EX

√2 log |AX|
M

 ≤
√

2 log ∆F (M)
M

(5.15)

RM (F) ≤ C

√
dVC(F)
M

(5.16)

where C is a constant, according to (5.6). (5.12) thus agrees with the bound given in (5.7).
In the rest of the chapter, we will look at a few different hypothesis classes, and see how the
corresponding Rademacher complexities can be computed or understood through statistical
physics.
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5.2 Rademacher complexities on some hypothesis classes for
i.i.d. data

We start by considering that each vector from data points X = {x(1), ...,x(M)} ∈ RN×M
has been generated identically and independently from a factorized distribution, such that
∀µ ∈ J1;MK, px

(
x(µ)

)
=
∏N
i=1 px(x(µ)

i ). A simple example would be to take matrix X Gaussian
i.i.d. For now, we focus on i.i.d. data distribution, but sec. 5.4.5 presents a generalization to
rotationally invariant matrices X. Our approach is to work on typical case problems, instead of
the worst-case analysis achieved through statistical bounds [145, 178, 118, 49, 184]. Real-world
applications imply complicated structures of data, but we still hope to gain insight on them
by understanding simple settings and computing closely or exactly the associated Rademacher
complexities. We focus on the usual asymptotic limit where M,N → ∞, with α = M

N of order
1.

5.2.1 Linear model

To start with a simple example, we tackle the computation of the Rademacher complexity for
a simple function class containing all linear models with weights w ∈ RN lying on the sphere
SN (Γ) of radius Γ > 0:

Flinear =

fw :

RN −→ R
x −→ 1√

N
wTx

,w ∈ SN (Γ)

 . (5.17)

From eq. (5.9),

RM (Flinear) = Ey,X

[
1

M
√
N

sup
w∈SN (Γ)

[
yTXTw

]]
(5.18)

where y is replacing ε. Computing the empirical Rademacher complexity amounts to finding the
vector w? that maximizes the scalar product between y and XTw, which is w? = XTy

‖XTy‖2

√
NΓ.

The empirical Rademacher complexity thus reads

Rm (Flinear) = Ey,X

[ Γ
M
‖Xy‖2

]
. (5.19)

Since X has i.i.d. entries, we can apply the central limit theorem, which states:

∀i ∈ J1, NK, (Xy)i =
M∑
µ=1

x
(µ)
i yµ ∼ N (0,M). (5.20)

hence

Ey,X
[
‖Xy‖22

]
= Ey,X

[
N∑
i=1

(x(µ)
i yµ)2

]
= NM (5.21)

and Ey,X[‖Xy‖2] =
√
NM , which finally gives

RM (Flinear) = Γ√
α
, (5.22)

where α = M
N . This first result for the simple linear function hypothesis class allows to grasp the

behavior of the Rademacher complexity in the asymptotic limit. At fixed input dimension N , it
decreases with the number of samples as 1/

√
α. The generalization gap thus goes to zero as α

goes to infinity. Note that increasing the radius of the weights expands the function complexity
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and might help for fitting the data-set, but unfortunately leads to a looser generalization bound,
which illustrates the bias variance trade-off [60]. The Rademacher complexity scales as α−1/2,
therefore it remains finite in the asymptotic limit, while the term

√
log(1/δ)/M in (5.12) goes

to zero as M→∞ .

5.2.2 Perceptron model

We now turn to a different hypothesis class: the perceptron denoted Fsign. This class contains
linear classifiers which output binary variables, and will fit much better labels in the binary
classification task. The class writes

Fsign =

fw :

RN −→ {±1}
x −→ sign

(
1√
N

wTx
) ,w ∈ RN

 . (5.23)

We assume that X ∈ RN×M is i.i.d. with all elements of x(µ) sampled from N (0, 1). We want
to show that the Rademacher complexity for this class asymptotically scales as 1/

√
α when α

grows large, i.e. the same behavior as the Rademacher complexity for Flinear. To do this, we
will point out an upper and lower bound of the Rademacher complexity that scale as such.

Upper bound

For a linear classifier with binary ouputs such as the perceptron, the VC dimension is easy
to compute and dVC = N . Hence we know from Massart’s theorem [102] that RM (Fsign) is
bounded by a term of order

√
dVC(Fsign)/M = 1/

√
α.

Lower bound

Let us consider the following estimator, known as the Hebb rule [72]: w? = 1√
N

∑M
ν=1 y

(ν)x(ν).
It gives the following function

fw?

(
x(µ)

)
= sign

( 1√
N

w?Tx(µ)
)

= sign

( 1
N

M∑
ν=1

y(ν)x(ν)
)T

x(µ)

 .

By definition, the Rademacher complexity reads

RM (Fsign) ≡ Ey,X

sup
w

1
M

M∑
µ=1

y(µ)fw
(
x(µ)

)
≥ Ey,X

 1
M

M∑
µ=1

y(µ)fw?

(
x(µ)

)
= Ey,X

 1
M

M∑
µ=1

sign

y(µ) 1
N

(
M∑
ν=1

y(ν)x(ν)
)T

x(µ)


= Ey,X

 1
M

M∑
µ=1

sign

1 + 1
N

M∑
ν 6=µ

y(µ)y(ν)x(ν)Tx(µ)

 .
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As x(µ) ∼ N (0, 1)N and y(µ) ∼ 1
2δ(y

(µ) + 1) + 1
2δ(y

(µ) − 1), z(µ) ≡ y(µ)x(µ) ∼ N (0, 1)N . Let us
define the random variable

θµ ≡
1
N

M∑
ν 6=µ

y(µ)y(ν)x(ν)Tx(µ) = 1
N

M∑
ν 6=µ

z(ν)T z(µ).

The central limit theorem states that θµ is a Gaussian variable. We compute its two first
moments:

E [θµ] = Ez

 1
N

M∑
ν 6=µ

z(ν)T z(µ)

 = Ez

 1
N

M∑
ν 6=µ

N∑
i=1

z(ν)T
i z(µ)

i

 = 0

E
[
θ2
µ

]
= E

 1
N2

 M∑
ν 6=µ

z(ν)T z(µ)

2
 = (M − 1)

N
−→
M→∞

α .

Therefore θµ ∼ N (0, α). Finally

RM (Fsign) ≥ Eθ

 1
M

M∑
µ=1

sign (1 + θµ)

 = Eθ [sign (1 + θ)]

= P [θ ≥ −1]− P [θ ≤ −1] = 2P [θ ≥ −1]− 1.

Noting that

P [θ ≥ −1] =
∫ ∞
− 1√

α

Dθ = 1
2erfc

(
− 1√

2α

)
∼α→∞

1
2 + 1√

2πα
,

we obtain a lower bound for the Rademacher complexity

RM (Fsign) ≥
√

2
π

1√
α

= O
( 1√

α

)
.

Combing the lower and upper bounds shows that RM (Fsign) = O(1/
√
α) in the asymptotic and

large α limit.

5.3 The statistical physics approach

5.3.1 The Gardner capacity for classification problems

Let us now see how statistical physics approaches the question of classification. We stay fo-
cused on Gaussian i.i.d. data where x ∼ N (0, 1)N . Consider a function class, for instance the
perceptron one Fsign: {fw : x → sign

(
1√
N

wTx
)
}. A classic question in the literature was to

compute how many misclassified examples can be obtained for a given rule, used to generate
the labels [49], for instance using a function fw from the perceptron class. Given M samples
{y(µ),x(µ)}µ=1,...,M , the number of wrongly classified training samples can be defined through
the Hamiltonian:

H ({y,X},w) ≡
M∑
µ=1

1
[
y(µ) 6= fw

(
x(µ)

)]
= 1

2

M − M∑
µ=1

y(µ)fw
(
x(µ)

) . (5.24)

Note that this Hamiltonian is similar to the one we are familiar with through the compressed
sensing calculation, but taken in the limit where the inverse temperature β goes to infinity. The
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Boltzmann distribution then turns into a delta function, hence the indicator in (5.24). A classical
problem in statistical physics is to compute the critical “storage” capacity: we take M examples
{x(µ)}µ=1,...,M and labels {y(µ)}µ=1,...,M randomly chosen between ±1. We then need to find
the maximal number of samples Mc that can be correctly classified by the hypothesis class, and
from there we define the critical capacity, also called the Gardner capacity [59] as αc = Mc/N .
This computation was first achieved thanks to the replica method, let us briefly explain its main
idea. The replicated free energy is presented as an integral on the space of weights. Inside the
integral, we impose a constraint to select only functions that properly classify the examples i.e.
verify fw(x(µ)) = y(µ) for µ = 1, ...,M . The free energy yields a function of the order parameter
q, which quantifies the overlap between perceptron weights w of functions that are allowed by
the proper classification constraint. We extremize the free energy which yields a saddle-point
equation on q. We then take the limit q → 1, which physically means that only one set of
weights exists such that the corresponding function fw can classify the examples, hence that
we have reached the limit number of patterns that can be correctly classified. The limit q → 1
becomes an equation on α, its solution is αc.

It turns out there exists a deep connection between the Gardner capacity and the VC di-
mension. Indeed, both of them are linked to the maximum number of points Mc such that there
exists a function in the hypothesis class that is able fit the data set. In particular, using Sauer’s
lemma [140] in the large size limit M,N → ∞, where αc = Mc/N and αVC = dVC/N are kept
finite, it is possible to show that the Gardner capacity αc provides a lower-bound of the VC
dimension [49]:

αc ≤ 2αVC . (5.25)

For instance, in the case of perceptron hypothesis class Fsign, the VC dimension is equal to
the input space dimension: dVC = N , yielding αVC = 1; while the Gardner capacity is αc = 2
[37, 59]. Computing the Gardner capacity gathered a lot of work from the statistical physics
community, starting with a series of papers in the 90s [59, 85], and kept fueling research through
more recent rigorous works [154, 155, 41, 8].

5.3.2 The Rademacher complexity and the ground state energy

The Rademacher complexity might seem mysterious due to its somewhat complicated definition.
However, it is in fact linked to a very usual statistical physics quantity, which is none other than
the ground state energy. We define the Gibbs measure at inverse temperature β as:

〈. . . 〉β ≡
∫

dw . . . e−βH({y,X},w)∫
dwe−βH({y,X},w) . (5.26)

We now take the Gibbs measure of the Hamiltonian in (5.24) for any function fw ∈ F , then
average over {y,X}:

Ey,X

〈H ({y,X},w)
N

〉
β

= α

2

1− Ey,X

〈
1
M

M∑
µ=1

y(µ)fw
(
x(µ)

)〉
β

 , (5.27)

where α = M/N . Taking the zero temperature limit, i.e. β → ∞, we obtain the ground state
energy egs, a quantity commonly used in physics. Interestingly, we recognize the definition of
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the Rademacher complexity RM (F) within:

egs ≡ lim
β→∞

lim
N→∞

Ey,X

〈H ({y,X},w)
N

〉
β

= α

2

1− Ey,X

 sup
fw∈F

1
M

M∑
µ=1

y(µ)fw
(
x(µ)

)
= α

2 (1−RM (F)) ,

(5.28)

where random labels y play the role of the Rademacher variable ε in (5.9). We thus underline a
(surprisingly!) simple correspondence between the ground state energy on the perceptron model
and the Rademacher complexity. This connection means that the Rademacher complexity can
be computed (rather than bounded) for many models using the replica method.

5.3.3 A flavor of understanding of Rademacher bounds on generalization

Before going to actual ground state energy computations, we would like to understand more
intuitively why the Rademacher complexity is linked with the generalization gap bound, through
a hand-waving explanation. Consider the fraction of mistakes performed by a classifier fw on the
training set, i.e. the training error εMtrain(fw); and on unknown samples, i.e. the generalization
error εgen(fw). The worst case scenario while trying to learn how to fit patterns is the absence
of underlying rule, meaning that labels are purely random and uncorrelated from input. The
generalization error will then remain equal to 1/2, which is what we get from a random guess.
We can then sketch the following heuristic generalization bound:

εgen(fw)− εMtrain(fw) ≤ εrandom labels
gen (fw)− εrandom labels,M

train (fw)

= 1
2 − ε

random labels,M
train (fw)

= 1
2
(
1− 2εrandom labels,M

train (fw)
)

= 1
2Ey

 1
M

M∑
µ=1

yµfw
(
x(µ)

)
≤ 1

2R̂M (F) .

(5.29)

Note that this heuristic reasoning does not give the exact Rademacher generalization bound,
but it does bring to light a similar quantity. In fact, the actual stronger and uniform (over all
possible w ∈ RN ) bound does not have a factor 1/2, and cannot be fully captured by the simple
above argument. Nevertheless, this simple point reflects the gist idea within Rademacher bound.
It provides a very pessimistic bound by assuming the worst possible scenario, i.e. fitting data
and trying to make predictions while the labels are random. Of course, in real data problems
the rule is not random and uncorrelated with inputs; it is then no surprise that the Rademacher
bound is not tight [185].

5.4 Consequences and bounds for simple models

5.4.1 Ground state energies of the perceptron

We focus on the perceptron hypothesis class, and take αc the Gardner capacity for Gaussian i.i.d.
data. If the number of samples M is smaller than Mc the maximum number of patterns that
can be classified, i.e. α < αc, it is by definition possible to fit all random labels y. Accordingly,
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the number of misclassified examples is zero and the ground state energy egs = 0. This means
that the Rademacher complexity is asymptotically equal to 1 for α < αc, by virtue of (5.28).
Above the Gardner capacity α > αc, the estimator fw cannot perfectly fit the random labels and
will misclassify some of them, equivalently egs > 0. We have seen in 5.2 that the Rademacher
complexity scales as 1/

√
α when α becomes large; therefore we can make the following reasonable

guess:

RM (F) = 1 for α < αc , (5.30)

RM (F) ≈ Θ
(√

αc
α

)
for α� αc . (5.31)

Using the replica method and the mapping with ground state energies (5.28), we shall now see
how one can go beyond these simple arguments, and compute the actual precise asymptotic
value of the Rademacher complexity.

5.4.2 Computing the ground state energy with the replica method

Reminder on the replica ansatz and calculation

We will now draw out our favorite tool to compute free energies, i.e. the replica method.
In Chapter 2, we computed the free energy for compressed sensing, for rotationally invariant
matrices as well as Gaussian i.i.d. ones. In Chapter 4, we focused on the replica-symmetric
Kabashima free energy formula on rotationally invariant matrices for generalized models, which
includes our current interest. However, the formula (4.5) is somewhat difficult to handle, and
we will use here its simplification for Gaussian i.i.d. data. We consider a simple generalization
of the linear functions hypothesis class. Fix any activation function ϕ : R 7→ {±1}, and define
the following hypothesis class

Fϕ ≡

fw :

RN 7→ {−1, 1}
x 7→ ϕ

(
1√
N

wTx
) ,w ∈ RN

 . (5.32)

As usual, we use the Bayesian framework and start by writing the posterior distribution

P (w|y,X) = P (y|w,X)P (w)
P (y,X) = e−βH({y,X},w)Pw (w)

Z({y,X}, α, β) , (5.33)

where Pw is the prior distribution of the weights, Z is the partition function associated to the
Hamiltonian eq. (5.24) at inverse temperature β

Z({y,X}, α, β) =
∫
RN

dwe−βH({y,X},w)Pw (w) . (5.34)

From there, we define the free energy at inverse temperature β:

Φy,X({y,X}, α, β) = − lim
N→∞

1
Nβ

logZ({y,X}, α, β) . (5.35)

Being interested in the typical case, we want to compute the averaged free energy

Φ(α, β) ≡ Ey,X [Φy,X ({y,X}, α, β)] . (5.36)
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We follow up by writing the replica trick

− 1
Nβ

Ey,X [logZ({y,X}, α, β)] = − 1
Nβ

lim
n→0

∂ logEy,X [Z({y,X}, α, β)n]
∂n

, (5.37)

and after computing the replicated free energy, we assume there exists an analytical continuation
for n ∈ R and that we can revert both limits, so that

Φ(α, β) = lim
n→0

[
lim
N→∞

− 1
Nβ

∂ logEy,X [Z({y,X}, α, β)n]
∂n

]
. (5.38)

This computation can be found in [184], and we provide some more detail in appendix E.
Now remember that in previous chapters, we stayed in clear waters and only performed replica-
symmetric calculations. Indeed, we were either in Bayes-optimal teacher-student scenarios which
guarantees replica symmetry thanks to Nishimori’s identity, or studying convex penalized prob-
lems which made sure that the free energy extremum corresponds to a single configuration. We
will now need to row on and break replica symmetry. Recall that computing Φ (5.38) reduces to
an optimization problem over two symmetric matrices Q, Q̂ ∈ Rn×n, where off-diagonal terms
measure the overlaps between the weights of different replicas, while the diagonal term is fixed
to E

[
1
N ‖w‖

2
2

]
. As explained in 1.1.4, we can define a hierarchy of ansatz on these matrices

Q and Q̂, starting with replica-symmetry (RS), the going to one-step or more replica symme-
try breaking (RSB). The different ansatz describe different solution space structures. While in
some problems the RS or 1RSB ansatz are sufficient, in others only the infinite step solution
(full-RSB) gives the exact ansatz [104, 154, 155]. However, the 1RSB approach is usually an
accurate approximation, so we might not need to use the full-RSB ansatz, as each additional
step of symmetry breaking makes the computation more tedious.

General expressions of RS and 1RSB free energy for Gaussian i.i.d. data

The RS and 1RSB computation of average free energy for Gaussian i.i.d. matrices [98, 50, 180]
yield:

Φ(RS)
iid (α, β) = − 1

β
Extr
q0,q̂0

{
1
2 (q0q̂0 − 1) + Ψ(RS)

w (q̂0) + αΨ(RS)
out (q0, β)

}
,

Φ(1RSB)
iid (α, β) = − 1

β
Extr

q0,q1,q̂0,q̂1,m

{
1
2 (q1q̂1 − 1) + m

2 (q0q̂0 − q1q̂1) + Ψ(1RSB)
w (q̂0, q̂1) + αΨ(1RSB)

out (q0, q1, β)
}

where q0, q1 denote the overlap order parameters. The auxiliary functions read

Ψm
w (q̂0) ≡ Eξ0 logEw

[
exp

(
(1− q̂0)

2 w2 + ξ0
√
q̂0w

)]
(5.39)

Ψ(RS)
out (q0, β) ≡ EyEξ0 logEz

[
I
(
y
∣∣√Q− q0z +√q0ξ0, β

)]
(5.40)

Ψ(1RSB)
w (q̂0, q̂1) ≡ 1

m
Eξ0 log

(
Eξ1Ew

[
exp

(
(1− q̂1)

2 w2 +
(√

q̂0ξ0 +
√
q̂1 − q̂0ξ1

)
w

)]m)
(5.41)

Ψ(1RSB)
out (q0, q1, β) ≡ 1

m
EyEξ0 log

(
Eξ1Ez

[
I(y
∣∣√q0ξ0 +

√
q1 − q0ξ1 +

√
1− q1z, β)

]m)
(5.42)

where ξ0, ξ1 are i.i.d. normal random variables, and y ∼ Py(.) the distribution of the random
labels. I(y|z) = e−βV (y|z) is a temperature dependent cost function, where the generic cost
function V reads in our case V (y|z) = 1 [y 6= ϕ(z)]. In another setting, we could have replaced
it with a different loss, such as the squared one. Those expressions are valid for any generic weight
distribution Pw(.) and non-linearity ϕ. The detailed computation can be found in Appendix E,
in particular (E.19) and (E.31). The general method to find the ground state energy is to take
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the zero temperature limit

egs,iid(α) ≡ lim
β→∞

Φiid(α, β) , (5.43)

while handling carefully the scaling of the optimized order parameters in this limit.

Spherical perceptron

The most commonly studied model, ever since Gardner’s initial works [58, 57, 59, 58] is the
spherical model of the perceptron with continuous weights, i.e. with weights w ∈ RN such
that ‖w‖22 = N . The spherical constraint allows to have a well-defined model which excludes
diverging or vanishing weights. In this case, the Gardner capacity is rigorously known to be
equal to αc = 2 [37].

The RS, 1RSB and 2RSB [98, 50, 180] are computed in appendix E.6. In the RS case, we
take the zero temperature limit β → ∞ with q0 → 1 and χ = β(Q − q0) finite. In the 1RSB
ansatz, we take q1 → 1,m → 0 keeping χ ≡ β(Q − q1) and Ω0 ≡ mβ

χ finite. Those limits and
scalings lead to the following expressions of the ground states energies:

e
(RS)
gs,iid = Extr

χ

{
− 1

2χ + αEy,ξ0 min
z

[
V (y|z) + (z − ξ0)2

2χ

]}
(5.44)

e
(1RSB)
gs,iid = Extr

χ,Ω0,q0

{ 1
2Ω0χ

log (1 + Ω0(1− q0)) + q0
2χ (1 + Ω0(1− q0)) (5.45)

+ α

χΩ0
Eξ0

[
logEξ1

[
e
−Ω0χminz

[
V (y|z)+ 1

2χ(z−√q0ξ0−√1−q0ξ1)2
]]]}

where the cost function is V (y|z) = 1 [y 6= ϕ(z)]. The details of the derivation via the replica
method and the expression for the 2RSB ansatz are given in appendix E.6. The results for
Rademacher variable y and with ϕ(z) = sign(z) are depicted in Fig. 5.2.

Till now, we have thought of using statistical physics to gain knowledge about the Rademacher
complexity. Nevertheless, this exchange of goods works is double-sided, and the bounds on the
Rademacher complexity can also bear consequences for statistical physics. Indeed, we do not
know a priori what large α scaling the ground state energy has. However, guessing that the
Rademacher complexity scales as 1/

√
α for large values of α – namely that there exists a con-

stant C such that Rm (F) ≈
α→∞

C√
α
– implies that the ground state energy behaves for large α

as
egs(α) = α

2 (1−RM (F)) −→
α→∞

α

2

(
1− C√

α

)
. (5.46)

Let us see how this prediction compares with our actual ground state expressions. We first notice
that the replica-symmetric solution complexity fails to deliver the correct scaling as sketched
in Fig. 5.2: the scaling drawn from (5.46) must not be entirely trivial. On the other hand,
the 1RSB and 2RSB solutions we used (which are expected to be numerically very close to
the full-RSB one, that is harder to evaluate), seem in Fig. 5.2 to display the correct scaling.
The connection between the Rademacher complexity and the ground state free energy allows
to forecast through (5.46) the scaling of the energy in the large α regime that is only satisfied
through a replica-symmetry breaking ansatz. An intriguing question would be to determine the
constant C through statistical physics, which is still beyond our grasp.
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Figure 5.2: Explicit Rademacher complexity for the spherical perceptron (with
Gardner capacity αc = 2). For α < αc the problem of properly classifying patterns
is satisfiable, so the number of errors is zero and the Rademacher complexity is
constant to 1. For α > αc, the problem is not satisfiable and egs > 0. In the case of
the spherical perceptron, RS (dashed green) and 1RSB (red) ansatz provide neatly
different results that scale respectively with α−1/3 and α−1/2 in the large α limit,
as shown ont the right picture where scalings are represented by colored slightly
dashed lines. Performing the 2RSB calculation (see appendix E.6) does not change
the scaling and the difference with respect to 1RSB is visually imperceptible.
The black dotted-dashed curve is the generalization error in the teacher-student
scenario [15]. Note the large gap between the worst case Rademacher bound and

the actual teacher-student generalization error.

Binary perceptron

Another common choice for the weights distribution is the binary prior Pw(w) = 1
2 [δ(w − 1) +

δ(w + 1)] [85]. In this case, the replica-symmetric prediction of the Gardner capacity gives a
wrong result, which can be seen in different ways: the resulting capacity is larger than 1, which
is impossible since the N weights cannot store more than N patterns. Moreover, the obtained
value does not match simulation. Finally, computing the stability of the saddle-point of the
RS free energy shows that it is unstable [58, 98] past the so-called Almeida-Thouless capacity
[39], and local stability is a necessary (but not sufficient) condition for the result to be correct.
Upgrading from the RS calculation leads to the 1RSB scheme, in the binary perceptron, the
landscape of the model is said to be frozen 1RSB, i.e. clustered in point-like dominant solutions,
and it turns out that the equation yielding the 1RSB storage capacity amounts to finding an
effective temperature that sets the RS entropy to zero [49]. Proceeding with it yields αc ≈ 0.83,
which is believed to be correct and matches numerical simulation [86]. This prediction is re-
markably still not entirely proven, although a lower bound is derived in [41], and the capacity
for different types of step perceptrons are rigorously found in [8].

Again, we note that even though we are unsure of the 1RSB global stability, and should
possibly replace by a more complex (and ultimately full-RSB) solution, 1RSB already gives
the good scaling RM (F) = O(1/

√
α), and satisfies the scaling (5.46) for large α, as shown in

Fig. 5.3.
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Figure 5.3: Explicit Rademacher complexity for the binary perceptron (αc ≈
0.83...). The replica solution (orange) leads again to a α−1/2 scaling (dashed
orange) of the Rademacher complexity at large α, shown on the right picture.
The dotted-dashed black curve is the generalization error in the teacher-student
scenario. Again, we obersve a large discrepancy between the worst case bound

(Rademacher) and the teacher-student generalization error.

5.4.3 Teacher-student scenario versus worst case Rademacher

The Rademacher bounds are really interesting as they depend only on data distribution, and
are valid for any rule used to generate the labels, no matter how complicated. In this sense, it is
a worst-case scenario on the rule that prescribes labels to data. An opposite take is to consider
the teacher-student approach, where we know the teacher rule used to generate labels. This
would actually provide the best-case generalization gap. by fitting the labels according to the
same teacher rule.

We shall assume that the actual labels on the training set are given by the rule

y = sign
( 1√

N
w?ᵀx

)
, (5.47)

with w? the teacher weights that can be taken as Rademacher ±1 variables, or Gaussian ones.
Labels are thus generated by feeding i.i.d. random samples to a neural network architecture (the
teacher) and are then presented to another neural network (the student) that is trained using
this data. Let us compare the worst case Rademacher bound with the actual generalization
error achieved by the student.

We first consider the error of a typical solution w sampled from the posterior distribution
εstudent
gen for the student. From the generalization error definition (5.11), and since labels are ±1
variables, we write:

εstudent
gen = 1− Ex,w? [〈fw?(x)× fw(x)〉] = 1− q? (5.48)

where q? = Ex,w? [〈fw?(x)× fw(x)〉] is none other than the replica-symmetric overlap. Recall
that it can be computed through the replica method [145, 178, 118], and was rigorously obtained
as well in [15], which showed on the way that the resulting generalization error is equal to the
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Bayes-optimal error for the quadratic loss. The two optimistic (teacher-student) and pessimistic
(Rademacher) errors can be seen in Fig. 5.2 for spherical weights, and in Fig. 5.3 for binary
weights. In this case, since a perfect fit is always possible, the training error is zero and the
Rademacher complexity is itself the bound on the generalization error. These two figures show
how different the worst and teacher-student case can be in practice, and underline that one should
not be surprised when the empirical Rademacher complexity does not give a sharp bound on
the generalization gap [185].

5.4.4 Committee machine with Gaussian weights

Knowing that a large gap lies between the Rademacher bound and the teacher-student setting
generalization error, we wonder whether we can find a case where the Rademacher bound is
void: it means having the Rademacher complexity equal to 1, but achieving good generalization
in the teacher-student setting. This actually happens for two-layer networks. Consider a simple
hypothesis class, the committee machine [49]. It consists in a two-layer network where the second
layer has been fixed, such that only weights of the first layer W = {w1, ...,wK} ∈ RN×K are
learnt. The function class for a committee machine with K hidden units is defined by

Fcom ≡

fW :

RN 7→ {−1, 1}
x 7→ sign

(∑K
k=1 sign

(
1√
N

wᵀ
kx
)) W ∈ RN×K

 . (5.49)

Instead of computing the Rademacher complexity with the replica method, it will be enough
for our current purpose to understand its rough behavior. As discussed in 5.4.1, it is linked to
the Gardner capacity. A generic bound by [111] states that αc it is upper bounded by a term of
orderK log(K). Additionally, the Gardner capacity has been computed by the replica method in
[115, 170, 181], yielding αc = O(K

√
log(K)). We thus expect that the Rademacher complexity

is equal to 1 when α is smaller than a term of order K log(K), but grows proportionally to 1/
√
α

in the large α limit. A reasonable scaling sketch is:

RM (Fcom) = 1 for α < O
(
K
√

log(K))
)

RM (Fcom) ≈ O

√K
√

logK
α

 for α� O
(
K
√

logK
)
.

(5.50)

Let us compare this with the generalization error achieved by the teacher-student case, when
the labels are produced by a teacher committee machine as

y = sign
(

K∑
k=1

sign
( 1√

N
w?ᵀ
k x

))
, (5.51)

the error of the student reads

εstudent
gen = 1− Ex,W? [〈fW?(x)× fW(x)〉] = 1− q? (5.52)

where, again q? = Ex,W? [〈fW?(x)× fW?(x)〉], has been computed in a series of papers in
statistical physics [73, 143], and rigorously derived using the Guerra interpolation method in
[7]. Interestingly, in this case, one can get an error that decays as 1/α as soon as α � K. In
the large α limit, there is a huge gap between the Rademacher bound RM (Fcom) that scales
as (K

√
log(K)/α)1/2 and the actual generalization error εstudent

gen = O(K/α). This disparity
further illustrates the substantial difference in behavior one can get between the worst case and
teacher-student case analysis, as seen in Fig. 5.4.
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Figure 5.4: Illustration of the scaling of the Rademacher complexity (blue) for
the fully connected committee machine, compared to the exact generalization error
in the teacher-student scenario (dotted-dashed black), scaling as 1/α at large α.
We observe a large gap between the worst case bound (Rademacher) and the

teacher-student result.

5.4.5 Extension to rotationally invariant matrices

Until now, we have focused on Gaussian i.i.d. data and relied on the corresponding replica
calculation to compute the exact Rademacher complexity. Fortunately, we also know how to
carry out the replica calculation for rotationally invariant data matrices, and the result depends
on pλ, the asymptotic eigenvalue distribution of XTX.

For the teacher-student setting, this calculation is performed in [152] and was at the heart of
Chapter 4, where we only needed the replica-symmetric ansatz since we added a convex penalty.
The replica-symmetric free energy in the limit β → ∞ is given in (4.5). The corresponding
saddle-point equations can be iterated through (4.27). [152] further establishes the 1RSB free
energy. The ground state 1RSB free energy can be simply obtained by taking the β →∞ limit
in it. A local stability analysis for both the RS and 1RSB case is also detailed, providing a
stability condition that depends on pλ, and can be checked to gain intuition about the range of
validity of the RS and 1RSB ansatz.

Recall that another derivation of the replica free energy (both RS and 1RSB) was provided
in [149], and in [78] for the teacher-student case, but as explained in footnote 1, it might not
be true for some eigenvalue distributions pλ. Indeed, it summons a function F which depends
on pλ, but implies the equality between a quenched and annealed average, which is violated
if the larger eigenvalue of XTX has non-negligible deviation when N → ∞. Nevertheless, in
the case of the Gaussian i.i.d. data matrix, the calculation is correct if we directly replace the
function F by its i.i.d. counterpart Fiid(x, y) = −α

2xy, and we easily recover our i.i.d. free
energy expressions.
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Summary of Chapter 5 In this chapter, we seeked to establish a connection between sta-
tistical learning theory and statistical physics, by looking at the problem of generalization in
binary classification. In particular, we focus on the generalization gap which quantifies the
difference between the error achieved by an estimator on a training set, and the error on the
complete data ensemble. This gap can be bounded in the asymptotic large size limit thanks
to the VC dimension, which only depends on the function hypothesis class, or the Rademacher
complexity, which additionally depends on data distribution but not on the rule used to generate
the labels. We show that the Rademacher complexity is equal to the ground state free energy
of the corresponding inference problem, that can be computed thanks to the physics replica
method, at least for i.i.d. or rotationally invariant matrices. The simplest replica-symmetric
ansatz might fail to describe the dominant configurations of the energy landscape, therefore we
also conduct 1RSB and 2RSB calculations. The link between Rademacher and ground state
allows to obtain in some settings the precise value of the Rademacher complexity, but also to
predict empirically a scaling of 1/

√
α for large α for the ground state energy. We compute the

generalization error for the ideal teacher-student case as well, which is considerably better than
the worst-case approach (since the latter assumes random labels) embodied by the Rademacher
complexity. Open questions arise: it would be interesting to prove the general scaling of the
Rademacher complexity in the large α limit (including hypothesis classes with multi-layer net-
works), and from there deduce the behavior of ground state energies. Extending our analysis to
more complicated and structured classes of data matrices (that are not rotationally invariant)
also remains a challenge.
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Afterword

In this thesis, we went over several inference problems: the inverse Ising model with sparse
teacher weights, noiseless compressed sensing, penalized linear regression, penalized generalized
linear model, and generalization for binary classification. Our goal was to provide a physical
description, enabling us to provide theoretical predictions on reconstruction performance, or
statistical properties of estimates and order parameters. In short, we try to think of the prob-
lem as a physical system, to pour insight gained from the study of disordered systems, through
meaningful quantities such as the free energy, entropy, magnetization...

Our preferred tool was the replica method, which allows to compute the free energy of a
spin system in some settings. One major limitation of the replica is the need for randomness
assumptions, in particular about the structure of the data matrix. Initial results concerned i.i.d.
matrices, and now encompass rotationally invariant matrices through the use of the Harish-
Chandra-Itzykson-Zuber integral. However, performing the replica calculation for structured
data is a tough challenge, and an ongoing direction of research in statistical physics. Another
instrument is the cavity approach as well as TAP equations and the Bethe free energy, which
lead to a highway of variational methods on tree like graphs.

A natural concern is to make heuristic results from statistical physics rigorous. This would
strengthen physical results, and make them more reliable for different communities. From a
mathematical perspective, it is also interesting to develop a formalism that accounts for physical
intuition. One common technique is based on the Guerra interpolation method, but we resorted
in this thesis to constructive proofs based on convergence analysis of proper algorithms. Indeed,
we aimed at drawing concepts from different fields closer and building bridges between them,
rather than staying enclosed in a purely physical framework. We centered our work on message
passing algorithms, to exploit their rich connections with statistical physics. In particular, we
were fond of their state evolution equations, which coincide at their fixed point with replica
equations, and provide information to track the algorithm step-by-step. Message passing al-
gorithms can converge very fast, but they suffer from lack of stability which makes them less
popular in the optimization community. However, they remain powerful theoretical tools.

Several questions emerge from our interest in message passing algorithms. From a numerical
point of view, it would be interesting to design a way of implementing state evolution equations
with more stability. In fact, we had to put up quite an effort to successfully implement the state
evolution of multi-layer vector approximate message passing. Another promising path would
be to extend message passing algorithms to different types of matrices, as we have been again
limited to rotationally invariant matrices. In fact, an even broader target would be to find
an equivalent of state evolution equations (even heuristically) for a larger class of algorithms,
such as expectation propagation schemes. Basically, we would like to enhance ways of tracking
algorithmic behavior through analytic equations.
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On the whole, we wish to account for more correlated and complicated structures of data.
Although rotationally invariant matrices are well-defined and can be generated, understanding
what type of data they describe is not so clear. They might also provide a good approximation
for structured matrices, or share universal properties as seen for noiseless compressed sensing.
A better understanding of the effect of data correlation on algorithms such as belief propagation
or expectation propagation, and on replica or TAP equations, is a crucial and flourishing direc-
tion of research. While we focused on “simple” scenarios, we strived to refine proof techniques
to push back the language frontier between different fields, that necessarily entangle over ma-
chine learning and inference problems, and lay foundations towards understanding of multi-layer
networks.
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Appendix A

Calculation details for inverse Ising
problem with sparse teacher

A.1 Computations for L and S
For computing L, the following decomposition of the cavity fields becomes useful:

h∗ =
√
Q∗ − m2

q
v∗ +

√
m2

q
z, (A.1)

ha =
√
Q− qva +√qz, (A.2)

where va, v∗, z are i.i.d Gaussian variables with zero mean and unit variance. It is easy to
confirm that this decomposition reproduces the covariances among {h∗, h1, · · · , hn}. Using this
and performing the integration with respect to v∗, we get

L(Q∗, Q, q,m) =
∫

Dz e
√

m2
q
z− 1

2
m2
q

(∫
Dv e−β`(

√
Q−qv+√qz)

)n
, (A.3)

where we use the relation Z0 = 2e
1
2Q
∗ , which was canceled with a factor appearing by the inte-

gration of v∗. (1.95) is easily derived from this.

To compute the entropic term S(C\0,J∗, Q, q,m), we use the rescaled variable W =
√
NJ

and set the integration measure as TrJ =
∫
dW. Here, we use the uniform measure because

in the present setting the student has no prior information about the teacher couplings. If
certain prior knowledge is available such as the teacher coupling sparseness, it can be suitable to
introduce another measure. Further, we represent the delta functions by the Fourier expressions
as follows:

δ

Q− 1
N

∑
i,j

C
\0
ij W

a
i W

a
j

 = C1

∫
dQ̃ e

1
2NQ̃Q−

1
2 Q̃
∑

i,i
C
\0
ij W

a
i W

a
j , (A.4a)

δ

q − 1
N

∑
i,j

C
\0
ij W

a
i W

b
j

 = C2

∫
dq̃ e−Nq̃q+q̃

∑
i,j
C
\0
ij W

a
i W

b
j , (A.4b)

δ

m− 1
N

∑
i,j

C
\0
ij W

∗
i W

a
j

 = C2

∫
dm̃ e

−Nm̃m+m̃
∑

i,j
C
\0
ij W

∗
i W

a
j , (A.4c)

where the integration contour is the imaginary axis and C1, C2 are appropriate normalization
constants; however, these points are irrelevant and ignored hereafter. Inserting (A.4) into (1.92),
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we get

eNS =
∫

dQ̃ dq̃ dm̃ eSX
∫ ∏

a

dWa eU , (A.5)

where

SX = N

(1
2nQ̂Q−

1
2n(n− 1)q̃q − nm̃m

)
, (A.6)

U = −1
2Q̃

∑
a

(Wa)T C\0Wa + q̃
∑
a<b

(Wa)T C\0Wb + m̃
∑
a

(J∗)T C\0Wa

= −1
2(Q̃+ q̃)

∑
a

(Wa)T C\0Wa + 1
2 q̃
∑
a,b

(Wa)T C\0Wb + m̃
∑
a

(J∗)T C\0Wa. (A.7)

To decouple different replicas and components of {Wa}a, we use the expression C\0 = UTΛU,
where Λ is the diagonal matrix consisting of the eigenvalues {λi}i and U is the appropri-
ate orthogonal matrix. Performing the variable transformation W̃ = UW and applying the
Hubbard–Stratonovich transformation, we get∫ ∏

a

dWa eU =
∫ ∏

i

Dzi
∫ ∏

a

dW̃a e−
1
2 (Q̃+q̃)

∑
a

∑
i
λi(W̃a

i )2+
∑

a

∑
i

(
λiW̃

∗
i m̃+
√
λiq̃zi

)
W̃a
i

=
∫ ∏

i

Dzi e
n
∑

i

{
1
2
(√λiW̃∗i m̃+

√
q̃zi)2

(Q̃+q̃) + 1
2(log 2π−log λi−log(Q̃+q̃))

}

= e
−N2 log

(
1− nq̃

Q̃+q̃

)
+ 1

2n
∑

i

λi(W̃∗i )2
m̃2

Q̃+q̃(1−n) +n
2
∑

i(log 2π−log λi−log(Q̃+q̃)) ≡ eSJ . (A.8)

Note that the definition of W̃ implies that W̃ essentially obeys a Gaussian distribution, and
thus the estimator Ĵ also does. This knowledge of the distribution can be used for hypothesis
testing.

In the asymptotic limit N →∞, we can use the saddle-point (or Laplace) method to avoid
the explicit integrations with respect to Q̃, q̃, m̃, yielding

S = Extr
Q̃,q̃,m̃

{SX + SJ
N

}
= Extr

Q̃,q̃,m̃

{
1
2nQ̃Q−

1
2n(n− 1)q̃q − nm̃m− 1

2 log
(

1− nq̃

Q̃+ q̃

)

+1
2n

Q∗m̃2

Q̃+ q̃(1− n)
+ n

2
(
log 2π − log(Q̃+ q̃)

)
− n

2N Tr log C\0
}
. (A.9)

where we used the relations
∑
i λi

(
W̃ ∗i

)2
= NQ∗,

∑
i log λi = Tr log C\0. The limit n→ 0 leads

to

lim
n→0

S
n

= Extr
Q̃,q̃,m̃

{
1
2Q̃Q+ 1

2 q̃q − m̃m+ 1
2
q̃ +Q∗m̃2

Q̃+ q̃

+1
2
(
log 2π − log(Q̃+ q̃)

)
− 1

2N Tr log C\0
}
, (A.10)
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and the extremization condition gives

Q̃ = Q− 2q +m2/Q∗

(Q− q)2 , q̃ = q −m2/Q∗

(Q− q)2 , m̃ = m/Q∗

Q− q
. (A.11)

Substituting these relations into (A.10), we obtain (1.94). If we ignore the terms related to m
and m̃, we have (1.114).

A.2 Derivation of macroscopic parameters R and ρ

To derive the expressions of R and ρ, we can employ the technique of auxiliary variables. We
introduce two terms hR

∑
a (Wa)T Wa and hρ

∑
a (W∗)T Wa in (A.7), and perform the same

line of computations as in A.1. As a result, the entropic term is modified to the following
expression:

lim
n→0

S
n

= Extr
Q̃,q̃,m̃

{
1
2Q̃Q+ 1

2 q̃q − m̃m

+ 1
2N

∑
i

(m̃λi + hρ)2
(
W̃ ∗i

)2
+ λiq̃

(Q̃+ q̃)λi − 2hR
+ log 2π − log

(
(Q̃+ q̃)(λi − 2hR)

)}. (A.12)
Taking the differentiation with respect to hρ and taking the limit hρ, hR → 0, we get

ρ = lim
hρ,hR→0

∂

∂hρ
lim
n→0

S
n

= 1
N

∑
i

m̃
(
W̃ ∗i

)2

Q̃+ q̃
= m

Q∗
R∗. (A.13)

The last expression is obtained by using (A.11). Similarly,

R = lim
hρ,hR→0

∂

∂hR
lim
n→0

S
n

= 1
N

∑
i

m̃2
(
W̃ ∗i

)2

(
Q̃+ q̃

)2 + Q̃+ 2q̃(
Q̃+ q̃

)2
1
λi


=
(
m

Q∗

)2
R∗ +

(
Q− m2

Q∗

)
1
N

Tr
(
C\0

)−1
. (A.14)

which gives (1.99). In the sparse case, we need to compute
∑
i∈Ω̄ ∆2

i for computing the RSS.
By construction, this is equivalent to R when m is absent. Hence

∑
i∈Ω̄ ∆2

i is given by putting
m = 0 in (A.14), leading to (1.121).

A.3 Details of numerical experiments

The actual experimental procedures are summarized as follows. We first generated a random
graph and the teacher couplings on it, and obtained spin snapshots using MC sampling. Then,
we randomly chose a center spin S0 and learnt the couplings connected to S0 by minimizing the
PL cost function defined with a dataset obtained from the sampled spin configurations. This
single sequence of operations provided single values of the quantities of interest, such as E and
Q. To obtain the error bars of those quantities, we repeated this sequence many times. Here, the
experiment had three different sources of fluctuations: the generated teacher model (graph shape
and couplings), the choice of the center spin, and the MC sampling. We did not discriminate
between these three fluctuations unless explicitly mentioned, and we defined the error bar as the
standard error among the obtained values according to their recurrence; the number of datasets
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obtained this way is denoted as Nset. In the MC sampling, we started from a random initial
configuration and updated the state by the standard Metropolis method; one MC step (MCS)
is defined by N trial flips of spins, where N is the total number of spins. We discarded the first
105 MCSs as burn-in to avoid systematic errors from the initialization. Furthermore, to avoid
possible correlations in samples, each dataset for learning was generated by subsampling from a
much larger dataset, which consists of all the configurations recorded after every few numbers
of MCS. The size of the subsampled dataset was chosen to be at least five times smaller than
that of the larger dataset. The optimization algorithm is a standard trust-region method using
the second-order expansion of the objective function.
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Appendix B

Replica calculation for right
rotationally invariant matrices

B.1 General setting

We measure y ∈ RM , which has been generated through

y = Fx0 + w (B.1)

with w ∼ N (0,∆0)N a Gaussian noise, and F ∈ RM×N the sensing matrix. We focus on the
asymptotic limit, i.e. M,N →∞ but α = M/N is fixed of order 1. We want to sample a vector
x from the posterior probability measure

P (x|y,F) ∼=
1
Z

n∏
i=1

P (xi)
M∏
µ=1

1√
2π∆

e−
1

2∆ (yµ−
∑N

i=1 Fµixi)
2 (B.2)

where Z is the partition function. In the Bayes-optimal setting, we assume the true prior
distribution px0 is separable and we take P (xi) = px0(xi). In the case of penalized reconstruction,
we want to find

x̂ = arg min
x∈RN

{1
2‖y− Fx‖22 + f(x)

}
(B.3)

where f is a convex and separable penalty function, for instance the `1 norm. To incorporate it
in our Bayesian approach, we plug in P (xi) ∼= e−

f(xi)
∆ .

To proceed with the replica calculation, we want to compute Φ the free energy averaged on
the randomness of the model, i.e. F,x0,w, which can be done through the replica trick

Φ = lim
N→∞

1
N

EF,x0,w(logZ) = lim
N→∞

1
N

lim
n→0

EF,x0,w(Zn)− 1
n

. (B.4)

Introducing n replicas of the system, we want the replicated partition function

EF,x0,w(Zn) =
∫ ∏

i,a

dxai
∏
i,a

P (xai )
∏
µ

EF,x0,w
1√

2π∆
e
− 1

2∆

∑n

a=1

(∑N

i=1
Fµix0,i+wµ−

∑N

i=1
Fµix

a
i

)2

. (B.5)

B.2 Reminder for the case of a Gaussian i.i.d. sensing matrix

If F is sampled from a Gaussian i.i.d. distribution with zero mean and variance 1/N , the
calculation is straightforward as we can directly compute the average on matrix elements. The
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detail can be found in [87]. In particular, looking at the term

Xµ = EF,w

[
e−

1
2∆
∑n

a=1(
∑N

i=1 Fµi(x0,i−xai )+wµ)2
]
, (B.6)

we observe that the variables vaµ ≡
∑N
i=1 Fµi(x0,i − xai ) +wµ obey a joint Gaussian distribution,

and we average on it. This average will result in the first two terms inside the final free energy.
We introduce the following order parameters for all a = 1, .., n:

ma = 1
N

N∑
i=1

xai x0,i (B.7)

Qa = 1
N

N∑
i=1

(xai )2 (B.8)

qab = 1
N

N∑
i=1

xai x
b
i (B.9)

and we rely on the replica-symmetric ansatz, which is correct in the teacher-student Bayes-
optimal setting.

Φiid(Q, q,m, Q̂, q̂, m̂) = −α2
q − 2m+ E[x2

0] + ∆0
∆ +Q− q

− α

2 log(∆ +Q− q) + QQ̂

2 −mm̂+ qq̂

2

+
∫

dx0px0(x0)
∫

Dz log
{∫

dxP (x)e−
Q̂+q̂

2 x2+m̂xx0+z
√
q̂x
}
. (B.10)

B.3 Free energy for right rotationally invariant matrices

Let us now see how this computation adapts to a right rotationally invariant matrix F, as done
in [79]. We assume that the distribution pλ of the eigenvalues of C = FTF converges and has
compact support. An essential point of the calculation is to compute

∏
µXµ when F is not i.i.d.

Let us write this quantity without splitting it into a product of M terms, in its matricial shape

∏
µ

Xµ = EF,w

[
exp

{
− 1

2∆

n∑
a=1

[F(x0 − xa) + ξ]T
[
F(x0 − xa) + ξ

]}]
. (B.11)

First, we perform the average on the Gaussian noise w:

Ew

[
exp

{
− 1

2∆

n∑
a=1

[F(x0 − xa) + w]T [F(x0 − xa) + w]
}]

(B.12)

= exp
{
− 1

2∆

n∑
a=1

(x0 − xa)TFTF(x0 − xa)
}
Ew

[
exp

{
−‖w‖

2
2

2∆0
− n‖w‖22

2∆ −
n∑
a=1

wTF(x0 − xa)
∆

}]

∼= exp
{
− 1

2∆

n∑
a=1

(x0 − xa)TFTF(x0 − xa) + ∆0

2∆(∆ + n∆0)

[
n∑
a=1

(x0 − xa)T
]

FTF
[

n∑
a=1

(x0 − xa)
]}

.

We are left to average on F:

EF

[
exp

{
− 1

2∆

n∑
a=1

(x0 − xa)TFTF(x0 − xa) + ∆0

2∆(∆ + n∆0)

[
n∑
a=1

(x0 − xa)T
]

FTF
[

n∑
a=1

(x0 − xa)
]}]

= EF

[
exp

{
1
2Tr

(
FTFL(n)

)}]
(B.13)
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where L(n) ≡ − 1
∆
∑n
a=1(x0−xa)(x0−xa)T+ ∆0

∆(∆ + n∆0) [
∑n
a=1(x0 − xa)]

[∑n
a=1(x0 − xa)T

]
.

pλ is the asymptotic eigenvalue distribution of FTF. We assume that it has at least one non-
zero eigenvalue and compact support. We define λmin, λmax the minimum and maximum of its
support1.

Useful transforms We take a detour to introduce a few useful functions that depend on the
distribution pλ, starting with

GC(x) = 1
2SupΛ

{
−
∫

dλpλ(λ) log |Λ− λ|+ Λx
}
− 1

2 log |x| − 1
2 . (B.14)

The Stieltjes transform associated with C is

SC(x) =
∫ λmax

λmin

dλ ρ(λ)
x− λ

. (B.15)

It is properly defined outside of pλ’s support. If x is in the appropriate range i.e. x < −SC(λmax),
then we can differentiate with respect to Λ inside GC and obtain Λ∗ = S−1(−x),to reach

G′C(x) = 1
2S
−1
C (−x)− 1

2x = 1
2RC(x) (B.16)

where
RC(x) = S−1

C (−x)− 1
x

(B.17)

is the R-transform related to the asymptotic eigenvalue distribution pλ. However, if x lies
in a different range and we cannot express GC simply as the R-transform’s integral. If x >
−SC(λmax), then Λ “saturates” at λmax so that

GC(x > SC(λmax)) = 1
2

[
−
∫ λmax

λmin

dλpλ(λ) log |λmax − λ|+ λmaxx− log x− 1
]
. (B.18)

In the following, we use the R-transform for the sake of elegance but we should remember that
this expression only holds in the right range, otherwise the valid expression would be to replace
the R-transform by 2G′C.

Harish-Chandra-Itzykson-Zuber integral We need to average on F in (B.13), which can
be done using the asymptotic form of the Harish-Chandra-Itzykson-Zuber integral [158]. The
general idea is the following: considering a rotationally invariant matrix M = U′Σ′V′, for any
function φ of M:

EM [φ(M)] = EM
[
DU′ DV′ φ(U′Σ′V′T )

]
(B.19)

where integrating on DU′, DV′ represents averages over the ensemble of orthogonal matrices
using the Haar measure. The Harish-Chandra-Itzykson-Zuber integral then allows to write the
result as a function that depends only on the asymptotic singular value distribution of M.
Applied to M = FTF, it states that:

EF

[
exp

{1
2Tr

(
FTFL(n)

)}]
= exp

N ∑
λ e.v. of L(n)/N

GFTF(λ)

 . (B.20)

1Note that FTF = VTΣTΣV: the matrix U does not show up in the calculation, which explains why we
only need rotational invariance for V. This will be different for a generalized linear model, as the dependency
upon F will not be as simple.
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To write this explicitly, we need to compute the eigenvalues of matrix L(n). Some linear al-
gebra shows that 1

N

∑n
a=1(x0 − xa)(x0 − xa)T and 1

N [
∑n
a=1(x0 − xa)]

[∑n
a=1(x0 − xa)T

]
have

the same set of eigenvectors
n∑
a=1

(x0 − xa),
(

(n− 1)(x0 − xa)−
∑
b6=a

(x0 − xb)
)
a=1,...,n

 (B.21)

with eigenvalues respectively
{
n(E[x2

0]− 2m+ q) +Q− q,Q− q
}
and {n(Q− q), 0}. Hence the

eigenvalues of 1
NL(n) are

−Q− q∆ − n

∆(E[x2
0]− 2m+ q) + n

∆0
∆0(∆ + n∆0)(Q− q)

with multiplicty 1, and −Q− q∆ with multiplicity (n − 1). We clarify the Harish-Chandra-
Itzykson-Zuber integral:

EF

[1
2Tr

(
FTFL(n)

)]
= (n− 1)GC

(
−Q− q∆

)
+GC

(
−Q− q∆ − n

∆(E[x2
0]− 2m+ q) + n

∆0

∆0(∆ + n∆0) (Q− q)
)
.

Further in the replica calculation, we need to take the log of this quantity and keep the term of
linear order in n:

lim
n→0

∂

∂n

1
N

log
{
EF

[1
2Tr

(
FTFL(n)

)]}
= GC

(
−Q− q∆

)
+
(
−E[x2

0] + q − 2m
∆ + ∆0

∆2 (Q− q)
)
G′C
(
−Q− q∆

)
.

This contribution to the free energy boils down to the first two terms inside the free energy for
a rationally invariant matrix:

Φ(Q, q,m, Q̂, q̂, m̂) = GC

(
−Q− q∆

)
+
(
−E[x2

0]− 2m+ q

∆ + ∆0(Q− q)
∆2

)
G′C

(
−Q− q∆

)

+ QQ̂

2 −mm̂+ qq̂

2 +
∫

dx0px0(x0)
∫

Dz log
{∫

dxP (x)e−
Q̂+q̂

2 x2+m̂xx0+z
√
q̂x
}
. (B.22)

We can check the particular case of a Gaussian i.i.d. matrix, which can be seen as a rotationally
invariant matrix whose singular values obey the Marchenko-Pastur distribution, defined as

pMP(λ) =
(

1− 1
α

)+
δ(λ) +

√
(λ− a)+(b− λ)+

2αλ (B.23)

where (z)+ = max(0, z) and

a = (1−
√
α)2 b = (1 +

√
α)2. (B.24)

The associated transforms read

GMP(z) = α

2 log |1− z| (B.25)

SMP(z) = 1− α±
√
z2 − 2(α+ 1)z + (α− 1)2

2αz (B.26)

RMP(z) = α

1− z (B.27)

and (B.22) happily becomes the free energy for Gaussian i.i.d. matrices (B.10).
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B.4 Density evolution equations

To obtain the density evolution equations on (E, V ) we start by taking the fixed point equations
by differentiating (B.22) with respect to parameters m, q, Q, m̂, q̂ and Q̂+ q̂:

m̂ = 1
∆RC

(
−Q− q∆

)
(B.28a)

q̂ = − 1
∆2

(
−E[x2

0] + 2m− q + ∆0
∆ (Q− q)

)
R′C

(
−Q− q∆

)
+ ∆0

∆2RC

(
−Q− q∆

)
(B.28b)

Q̂+ q̂ = 1
∆RC

(
−Q− q∆

)
(B.28c)

m =
∫

dx0 x0px0(x0)
∫

Dzfa

(
m̂, x0 + z

√
q̂

m̂

)
(B.28d)

Q− q =
∫

dx0px0(x0)
∫

Dzfv

(
m̂, x0 + z

√
q̂

m̂

)
(B.28e)

q =
∫

dx0px0(x0)
∫

Dzf2
a

(
m̂, x0 + z

√
q̂

m̂

)
(B.28f)

with fa, fv defined in (2.56). Recall that the squared error and variance of the estimator can
be written as functions of order parameters as E = q − 2m + E[x2

0], V = Q− q. We can easily
recognize E and V in the right-hand side of equations (B.28a),(B.28b) and (B.28c). Writing m̂,
q̂ in terms of E, V and combining it with equations (B.28e), (B.28f) we reach

E = E

{fa( ∆
RC(−V∆ )

, x0 + z

RC(−V∆ )

√
(E − ∆0

∆ V )R′C(−V∆) + ∆0RC(−V∆)
)
− x0

}2
 (B.29a)

V = E

[
fv

(
∆

RC(−V∆ )
, x0 + z

RC(−V∆ )

√
(E − ∆0

∆ V )R′C(−V∆) + ∆0RC(−V∆)
)]

(B.29b)

with the expectation taken on x0 ∼ px0(x0) and z ∼ N (0, 1).

Proximal formulation for linear reconstruction with convex penalization In the case
of reconstruction with convex penalty f , we can slightly modify those equations to write them
in terms of proximal operators defined as

∀γ ∈ R+, x, y ∈ R Proxγf (y) ≡ arg min
x

{
f(x) + 1

2γ (x− y)2
}
. (B.30)

They will appear naturally in place of functions fa and fv when we derive the saddle-point
equations, this time taking P (x) = e−

f(x)
∆ , then the limit ∆→ 0. For instance, (B.28d) yields

m =
∫
dx0φ(x0)x0

∫
Dz

∫
dx

Z̃
x exp

{
−f(x)

∆ + xx0

∆ RC

(
−V∆

)
− x2

2∆RC

(
−V∆

)
+ z
√
q̂x

}
(B.31)

with Z̃ =
∫
dx e−

1
∆f(x)− Q̂+q̂

2 x2+m̂xx0+z
√
q̂x. Equation (B.28b) also reads

q̂ = ∆0
2∆2RC

(
−V∆

)
+ 1

2∆

(
E − ∆0

∆ V

)
R′C

(
−V∆

)
. (B.32)

which can be inserted into (B.31). We then want to take the limit ∆ → 0. We rescale the
variance parameter V into V/∆, but keep the same name for simplicity. We are now left to do
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a Laplace approximation in the integral term of (B.31), to reach

m = lim
∆→0

∫
dx0px0(x0)x0

∫
Dz
∫

dx
Z̃
x

exp
{
− 1

∆

[
f(x) + x2

2 RC(−V )− xx0

2 RC(−V )− zx
√

∆0RC(−V ) + (E −∆0V )R′C(−V )
]}

= E

[
x0 arg min

x

{
f(x) + RC(−V )

2

(
x−

[
x0 + z

RC (−V )
√

(E −∆0V )R′C (−V ) + ∆0RC (−V )
])2

}]
,

clearly yielding a proximal operator such that

m = E
[
x0Proxf/RC(−V )

(
x0 + z

RC (−V )

√
(E −∆0V )R′C (−V ) + ∆0RC (−V )

)]
. (B.33)

The same reasoning on (B.28e), (B.28f) also invoke a proximal operator in place of fa and fv,
and combining them leads to

V = E
[

1
RC(−V )Prox

′
f/RC(−V )

(
x0 + z

RC (−V )

√
(E −∆0V )R′C (−V ) + ∆0RC (−V )

)]
(B.34a)

E = E

[{
Proxf/RC(−V )

(
x0 + z

RC (−V )

√
(E −∆0V )R′C (−V ) + ∆0RC (−V )

)
− x0

}2
]
. (B.34b)

where V is the rescaled variance of the estimator.
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Appendix C

Details for Oracle VAMP
convergence proof

C.1 Definitions and assumptions

Proper and closed convex functions A convex function is proper if its domain is non-
empty, and if it never attains −∞. A convex function f : RN → R with domain dom(f) is
closed if for each α ∈ R, the sublevel set {x ∈ dom(f)|f(x) ≤ α} is a closed set.

Empirical convergence with p-th order moment This paragraph reproduces appendix
B of [132], which reviews the analysis framework from [19]. It anchors the definitions necessary
for a rigorous analysis of VAMP and state evolution statement. The building blocks are the
notions of vector sequence and pseudo-Lipschitz function, which allow to define the empirical
convergence with p-th order moment. Consider a vector of the form

x(N) = (x1(N), ...,xN (N)) (C.1)

where each sub-vector xn(N) ∈ Rr for any given r ∈ N∗. For r = 1, which is the case we are in,
x(N) is denoted a vector sequence.

Given p > 1, a function f : Rr → Rs is said to be pseudo-Lipschitz continuous of order p if
there exists a constant C > 0 such that for all x1,x2 ∈ Rs:

‖f(x1)− f(x2)‖2 6 C‖x1 − x2‖2
[
1 + ‖x1‖p−1

2 + ‖x1‖p−1
2

]
(C.2)

Then, a given vector sequence x(N) converges empirically with p-th order moment if there exists
a random variable X ∈ Rr such that:

i) E|X|p <∞; and

ii) for any scalar-valued pseudo-Lipschitz continuous f(.) of order p,

lim
N→∞

1
N

N∑
n=1

f(xn(N)) = E[f(X)] a.s. (C.3)

Note that defining an empirically converging singular value distribution implicitly defines a se-
quence of matrices F(N) which are rotationally invariant.

We also recall the definition of uniform Lipschitz continuity. For a given mapping φ(x, A)
defined on x ∈ X and A ∈ R, we say it is uniform Lipschitz continuous in x at A = Ā if there
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exists constants L1 and L2 > 0 and an open neighborhood U of Ā such that:

‖φ(x1, A)− φ(x2, A)‖2 6 L1‖x1 − x2‖2 (C.4)

for all x1,x2 ∈ X and A ∈ U ; and

‖φ(x, A1)− φ(x, A2)‖2 6 L2(1 + ‖x‖2)|A1 −A2| (C.5)

for all x ∈ X and A1, A2 ∈ U .

State evolution assumptions The state evolution theorem (see Theorem 1 (i-ii-iii) from
[132]) holds if we fulfill the main assumptions stated in 3.1, as well as the following three
conditions:

• α(t)
1 must be in [0, 1]. This is always verified because a proximal operator has Lipschitz

constant 1, hence its derivative is smaller than one, and α1 is an expectation value of this
derivative.

• The functions defining Ai and Ei must be continuous at the points prescribed by the SE
equations. This holds true as well since proximals of convex functions are continuous.

• Finally the denoisers (here the proximals) and their derivatives need to be uniformly
Lipschitz in their arguments at their parameters. This is again verified from properties of
proximal operators.

C.2 Equivalence of replica equations and state evolution fixed
point

In this section, we play with the fixed point equations of state evolution (3.20) to write them
under the same form of replica fixed point equations. The fixed point of SE, where we have
inserted the fixed point conditions V1 = V2, E1 = E2, and removed the time subscripts, reads:

α1 = E
[
Prox′ 1

A1
f
(x0 + P1)

]
(C.6a)

α2 = A2SC(−A2) (C.6b)

V1 = α1
A1

= α2
A2

(C.6c)

1
V1

= A1 +A2 (C.6d)

τ2 = 1
(1− α1)2

[
E1 − α2

1τ1
]

(C.6e)

τ1 = 1
(1− α2)2

[
E1 − α2

2τ2
]

(C.6f)

E1 = E
[(

Proxf/A1(x0 + P1)− x0
)2
]

= E
[

∆0λC + τ2A
2
2

(λC +A2)2

]
. (C.6g)

Our goal is to rewrite those relations involving only two variables, E1 and V1. First off, (C.6b)
and (C.6c) give

V1 = SC(−A2). (C.7)
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Then (C.6d) turns into

A1 = 1
V
−A2 = 1

V1
+ S−1

C (−V1) = RC(−V1). (C.8)

Combined with (C.6a) and (C.6c):

V1 = 1
RC(−V1)Ex0,P1

[
Prox′f/A1

(x0 + P1)
]

(C.9)

where P1 is a Gaussian variable of variance τ1. We now want to explicit the expression of τ1.
Starting from (C.6e), using (C.6c) and (C.6d) provides

τ2 = 1
(A2V1)2

[
E1 − τ1(1−A2V1)2

]
. (C.10)

Turning to (C.6f), and plugging in the error definition from (C.6g) yields

τ1 = 1
(1−A2V1)2

(
E
[
∆0

λC
(λC +A2)2 + τ2

A2
2

(λC +A2)2

]
− τ2(A2V1)2

)
(C.11)

= 1
(1−A2V1)2

(
E
[

∆0
(λC +A2) −

A2∆0
(λC +A2)2 + τ2

A2
2

(λC +A2)2

]
− τ2(A2V1)2

)
(C.12)

τ1 = 1
(1−A2V1)2

(
∆0SC(−A2)−A2∆0S ′C(−A2) + τ2A

2
2S ′C(−A2)− τ2(A2V1)2

)
, (C.13)

then incorporating τ2’s expression (C.10) reads

τ1 = ∆0V
2

1
(1−A2V1)2S ′C(−A2)(SC(−A2)−A2S ′C(−A2))

+ E1
(1−A2V1)2S ′C(−A2)(S ′C(−A2)− V 2

1 ). (C.14)

We have now expressed the variance of the Gaussian variable P1 as a function of E1 and V1. A
somewhat heavy (but easy) step is now necessary. We repeatedly use equalities A1V1 = 1−A2V1;
A2 = −S−1

C (V1), and the identity

R′C(x) = (S−1
C (−x))′ + 1

x2 = −1
S ′C(S−1

C (−x))
+ 1
x2 (C.15)

to reach

τ1 = E1
R2

C (−V1)

(
−1

S ′C(S−1
C (V1))

+ 1
V 2

1

)
+ ∆0
RC2 (−V1)

(
RC (−V1)− V1

(
−1

S ′C(S−1
C (V1))

+ 1
V 2

1

))

= 1
R2

C (−V1)
(
(E1 −∆0V1)R′C (−V1) + ∆0RC (−V1)

)
. (C.16)

Adding this to equation (C.17) yields

V1 = 1
RC(−V1)E

[
Prox′f/RC(−V1)(x0 + z

RC (−V1)

√
(E1 −∆0V1)R′C (−V1) + ∆0RC (−V1)

]
. (C.17)
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Using the established expression for τ1 inside E1’s first definition in (C.6g) also reads

E1 = E

[{
Proxf/RC(−V1)

(
x0 + z

RC (−V1)

√
(E1 −∆0V1)R′C (−V1) + ∆0RC (−V1)

)
− x0

}2
]
. (C.18)

Equations (C.17) and (C.18) immediately follow from the fixed point of state evolution, and
they are exactly the same as (B.34a) and (B.34b), i.e. the replica equations on (E, V ).

C.3 Lipschitz constants of Oracle VAMP operators

In this section, we establish the Lipschitz constants of operators O1 and O2, which are succes-
sively applied to define one interation of Oracle VAMP (3.23). We will resort to properties of
proximal operators, but first cite a few definitions from [18]:

• An operator T : Rk → Rl is nonexpansive if it is Lipschitz-continuous with Lipschitz
constant equal to 1.

• T is firmly nonexpansive if

∀x, ∀y ∈ Rk ‖T (x)− T (y)‖22 + ‖(Id− T )x− (Id− T )y‖22 ≤ ‖x− y‖22. (C.19)

• Let γ > 0. T is γ-cocoercive if and only if γT is firmly nonexpansive, which is equivalent
to writing T = 1

2γ (Id + S) with S a nonexpansive operator.

We now cite Proposition 2 from [64], which will help us characterizing the proximal operators:
assume that f is σ-strongly convex and β-smooth and that γ > 0.

i) If β > σ, then Proxγf − 1
1+γβ Id is ( 1

1+γσ −
1

1+γβ )−1-cocoercive. This result also includes the
case where f has no smoothness assumption, by taking the limit β = +∞.

ii) If β = σ, Proxγf is 0-Lipschitz.

iii) If we do not have a strong convexity assumption (i.e. f is simply convex and σ = 0), the
property still implies that Proxγf is firmly nonexpansive.

C.3.1 Lipschitz constant of O1

Case 1: 0 < σ1 < β1 The previous proposition yields

Prox 1
A1
f = 1

2

( 1
1 + σ1/A1

+ 1
1 + β1/A1

)
Id + 1

2

( 1
1 + σ1/A1

− 1
1 + β1/A1

)
S1 (C.20)

where S1 is a non-expansive operator. Replacing in the expression of O1 leads to:

O1 =
( 1

2V1

( 1
A1 + σ1

+ 1
A1 + β1

)
− 1

)
Id + 1

2V1

( 1
1 + σ1/A1

− 1
1 + β1/A1

)
S1

(
.

A1

)
(C.21)

which, knowing that A1 +A2 = 1
V1
, O1 has Lipschitz constant:

L1 = max
( |A2 − σ1|
A1 + σ1

,
|β1 −A2|
A1 + β1

)
. (C.22)
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Case 2: 0 < σ1 = β1 In this case, the proposition above yields

‖Prox 1
A1
f (x)− Prox 1

A1
f (y)‖22 =

( 1
1 + σ1/A1

)2
‖x− y‖22 (C.23)

which, with the firm non-expansiveness of the proximal operator gives:

‖O1(x)−O1(y)‖22 = 1
V 2 ‖Prox 1

A1
f (x/A1)− Prox 1

A1
f (y/A1)‖22 (C.24)

− 2A1
V1

〈 x
A1
− y
A1
,Prox 1

A1
f (x/A1)− Prox 1

A1
f (y/A1)

〉
+ ‖x− y‖22 (C.25)

6
( 1
V 2

1
− 2A1

V1

)
‖Prox 1

A1
f (x/A1)− Prox 1

A1
f (y/A1)‖22 + ‖x− y‖22 (C.26)

=
(( 1

V 2
1
− 2A1

V1

)( 1
A1 + σ1

)2
+ 1

)
‖x− y‖22 (C.27)

=
(

A2
2 −A2

1
(A1 + σ1)2 + 1

)
‖x− y‖22. (C.28)

The upper bound on the Lipschitz constant is therefore:

L1 =
√

(A2
2 −A2

1)
(A1 + σ1)2 + 1. (C.29)

Case 3: no strong convexity or smoothness assumption This setting will not be needed
for our proof (because we will only handle penalty functions which have a strictly positive strong
convexity constant, by adding a ridge term), but we still go through it for completeness. In this
case the only information we have is the firm nonexpansiveness of the proximal operator, which
gives the same proof as in the previous case but stops at (D.45), immediately giving the upper
bound:

L1 = max
(

1, A1
A2

)
. (C.30)

C.3.2 Lipschitz constant of O2

We have assumed that the data matrix is non-trivial, implying λmax(FTF) 6= 0. In this case we
use the explicit form of O2, which is linear:

‖O2(x)−O2(y)‖2 = ‖
( 1
V1

(FTF +A2Id)−1 − Id
)

(x− y)‖2 (C.31)

6 ‖
( 1
V1

(FTF +A2Id)−1 − Id
)
‖ ‖x− y‖2. (C.32)

The spectral norm of matrix 1
V1

(FTF + A2Id)−1 − Id gives the upper bound on the Lipschitz
constant:

L2 = max
(
|A1 − λmin(FTF)|
A2 + λmin(FTF) ,

|λmax(FTF)−A1|
A2 + λmax(FTF)

)
. (C.33)

C.4 State evolution equations for the elastic net problem

This section provides some technical details for our minimization problem in the elastic net
setting, i.e.

x̂∗λ2 = arg min
x∈RN

{1
2‖y− Fx‖22 + λ1‖x‖1 + λ2

2 ‖x‖
2
2

}
. (C.34)
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We first give the definitions of the proximal operators associated with the separable `1 norm,
the `2 norm, and the elastic net regularization through their element-wise expression:

Proxλ1‖·‖1(x) =


x+ λ1 if x < −λ1

0 if − λ1 < x < λ1
x− λ1 if x > λ1

(C.35)

which is called the soft thresholding function.

Proxλ2
2 ‖·‖

2
2

= 1
1 + λ2

(C.36)

Prox
λ1‖·‖1+λ2

2 ‖·‖
2
2

= 1
1 + λ2

Proxλ1‖·‖1 . (C.37)

For our numerical simulations, we consider an i.i.d. teacher vector x0 pulled from the Gauss-
Bernoulli distribution :

px0(x0) = (1− ρ)δ(x0) + ρ
1√
2π

exp (−x2
0/2). (C.38)

To run Oracle VAMP, we first had to determine the constants coming from the fixed point of
state evolution, hence we had to solve SE equations first. Let us give some detail about the set
of equations (3.20), specifically for the elastic net minimization problem. We need to specify all
quantities that depend on the proximal operators.

α
(t)
1 = E

[
Prox′

f/A
(t)
1

(x0 + P
(t)
1 )

]
(C.39)

where the expectation is over x0 ∼ px0 and P1 ∼ N (0, τ (t)
1 ), can be explicitly computed and

yields

α
(t)
1 = 1

1 + λ2
A

(t)
1

(1− ρ) erfc

 λ1

A
(t)
1

√
2τ (t)

1

+ ρ erfc

 λ1

A
(t)
1

√
2(τ (t)

1 + 1)

 (C.40)

with erfc(x) = 2√
π

∫+∞
x e−t

2 dt. We now turn to the error

E1(A(t)
1 , τ

(t)
1 ) = E

[(
Prox

f/A
(t)
1

(x0 + P
(t)
1 )− x0

)2
]
. (C.41)

This term can be tricky to evaluate numerically, as it involves two-dimensional integrals. Some
algebra allows to write it in terms of one-dimensional integrals and error functions, which are
supported by most scientific coding library:

erf(x) = 2√
π

∫ x

0
e−t

2 dt.
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We denote s =
(

1 + λ2
A

(t)
1

)−1
, and directly skip to the result:

E1 = (1− ρ)s2

erfc

λ1/A
(t)
1√

2τ (t)
1

(( λ1

A
(t)
1

)2

+ τ
(t)
1

)
− exp

{
− (λ1/A

(t)
1 )2

2τ (t)
1

}√
2τ (t)

1 /π
λ1

A
(t)
1


+ ρEx0

1
2x

2
0

erf

λ1/A
(t)
1 − x0√
2τ (t)

1

+ erf

λ1/A
(t)
1 + x0√
2τ (t)

1

+ x2
0 − 2sx2

0 + s2
[
τ

(t)
1 + (λ1/A

(t)
1 )2 + x2

0

]

+ s

√
τ

(t)
1 /(2π) exp

{(
−λ1/A

(t)
1 − x

2
0

2τ (t)
1

(
(s− 2)x0 − s

λ1

A
(t)
1

))}
+ s

√
τ

(t)
1 /(2π) exp

{(
−λ1/A

(t)
1 + x2

0

2τ (t)
1

(
(2− s)x0 − s

λ1

A
(t)
1

))}

+ 1
2

[
s2(τ (t)

1 + (λ1/A
(t)
1 − x0)2) + 2s(λ1/A

(t)
1 − x0)x0 + x2

0

]
erf

λ1/A
(t)
1 − x0√
2τ (t)

1


−1

2

[
x2

0 − 2sx0(λ1/A
(t)
1 + x0) + s2(τ (t)

1 + (λ1/A
(t)
1 + x0)2)

]
erf

λ1/A
(t)
1 + x0√
2τ (t)

1

 . (C.42)

Using expression (C.40) and (C.42) allows to numerically solve the state evolution equations for
the elastic net problem.
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Appendix D

Details for Oracle MLVAMP
convergence proof

D.1 From replica potentials to Moreau envelopes

Here we show how the potentials defined for the replica free energy (4.5) can be mapped to
Moreau envelopes in the β →∞ limit. We consider the scalar case since the replica expressions
are scalar. All functions are separable here, so any needed generalization to the multidimensional
case is immediate. We start by reminding the definition of the Moreau envelope [18, 122]Mγf

of a proper, closed and convex function f for a given γ ∈ R∗+ and any z ∈ R:

Mγf (z) = inf
x∈R

{
f(x) + (1/2γ)‖x− z‖22

}
(D.1)

The Moreau envelope can be interpreted as a smoothed version of a given objective function with
the same minimizer. For `1 minimization for example, it allows to work with a differentiable
objective. By definition of the proximal operator we have the following identity:

Proxγf (z) = arg min
x∈R

{
f(x) + (1/2γ)‖x− z‖22

}
, (D.2)

Mγf (z) = f(Proxγf (z)) + 1
2‖Proxγf (z)− z‖22. (D.3)

Let us see how to match the replica potentials with the Moreau envelope. We start from the
definition of φx, and apply Laplace’s approximation:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = lim
β→∞

1
β

log
∫
e−

βQ̂1x
2 x2+β(m̂1xx0+

√
χ̂1xξ1x)x−βf(x)dx (D.4)

= −Q̂1x
2 (x∗)2 + (m̂1xx0 +

√
χ̂1xξ1x)x∗ − f(x∗) (D.5)

where
x∗ = arg min

x∈R

{
−Q̂1x

2 x2 + (m̂1xx0 +
√
χ̂1xξ1x)x− f(x)

}
. (D.6)

This is an unconstraint convex optimization problem, thus its optimality condition is enough to
characterize its unique minimizer:

− Q̂1xx
∗ + (m̂1xx0 +

√
χ̂1xξ1x)− ∂f(x∗) = 0 (D.7)

⇐⇒ x∗ = (Id + 1
Q̂1x

∂f)−1
(
m̂1xx0 +

√
χ̂1xξ1x

Q̂1x

)
(D.8)

⇐⇒ x∗ = Proxf/Q̂1x

(
m̂1xx0 +

√
χ̂1xξ1x

Q̂1x

)
(D.9)
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Replacing this in the replica potential and completing the square, we get:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = −f(Proxf/Q̂1x
(X))− Q̂1x

2 ‖X − Proxf/Q̂1x
(X)‖22 + X2

2 Q̂1x (D.10)

= Q̂1x
X2

2 −Mf/Q̂1x
(X) (D.11)

where we used the shorthand X = m̂1xx0+
√
χ̂1xξ1x

Q̂1x
. The same calculation provides a similar

expression for φy.

D.2 Rigorous state evolution statement

D.2.1 Making assumption (4.26) rigorous
We look into the state evolution equations derived for MLVAMP in [132], that we call (SE1).
Those equations are proven to be exact in the asymptotic limit, and follow the same algorithm
as (4.11). In particular, they provide statistical properties of vectors h1x,h2x,h1z,h2z. We
would like to check whether the starting assumption (4.26), that serves as building block of the
state evolution derived in [152] (SE2), are rigorous too. We can read relations from [54] using the
following dictionary between our notations and theirs, valid at each iteration of the algorithm:

Q̂1x, Q̂2x, Q̂1z, Q̂2z ←→ γ−0 , γ
+
0 , γ

+
1 , γ

−
1 (D.12a)

χ1xQ̂1x, χ2xQ̂2x, χ1zQ̂1z, χ2zQ̂2z ←→ α−0 , α
+
0 , α

−
1 , α

+
1 (D.12b)

x0, z0, ρx, ρz,h1x,h2x,h1z,h2z ←→ Q0
0,Q0

1, τ
0
0 , τ

0
1 , r−0 , r

+
0 , r

+
1 , r

−
1 . (D.12c)

Let us see what (SE1) says about the distribution of vectors r−0 , r
+
0 , r

+
1 , r

−
1 (which are precisely

the subjects of assumption (4.26)). Placing ourselves in the asymptotic limit, [54] shows the
following equalities:

r−0 = Q0
0 + Q−0 (D.13a)

r+
0 = Q0

0 + Q+
0 (D.13b)

r−1 = Q0
1 + Q−1 (D.13c)

r+
1 = Q0

1 + Q+
1 (D.13d)

where Q−0 ∼ N (0, τ−0 )N and Q−1 ∼ N (0, τ−1 )N are i.i.d. Gaussian vectors. Q+
0 , Q+

1 have the
following norms and non-zero correlations with ground-truth vectors Q0

0,Q0
1:

τ+
0 ≡

‖Q+
0 ‖22
N

c+
0 ≡

Q0T
0 Q+

0
N

(D.14)

τ+
1 ≡

‖Q+
1 ‖22
M

c+
1 ≡

Q0T
1 Q+

1
M

. (D.15)
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With simple manipulations, we can rewrite (D.13) as:

r−0
d= Q0 + Q−0 (D.16a)

VT r+
0

d=
(

1 + c+
0
τ0

0

)
VTQ0

0 + VT Q̃+
0 (D.16b)

r−1
d= Q0

1 + Q−1 (D.16c)

UT r+
1

d=
(

1 + c+
1
τ0

1

)
UTQ0

1 + UT Q̃+
1 (D.16d)

where for k ∈ {1, 2} vectors

Q̃+
k = −c

+
k

τ0
k

Q0
k + Q+

k (D.17)

and Q−0 ,Q
−
1 have no correlation with ground-truth vectors Q0

0, Q0
1, UTQ0

0, VTQ0
1. Besides,

Lemma 5 from [132] states that VT Q̃+
0 and UT Q̃+

1 have components that converge empirically
to Gaussian variables, respectively N (0, τ+

0 ) and N (0, τ+
1 ). Let us now translate this in our own

terms, using the following relations that complete our dictionary with state evolution parameters:

m̂1x

Q̂1x
←→ 1 m̂2z

Q̂2z
←→ 1 (D.18a)

m̂2x

Q̂2x
←→ 1 + c+

0
τ0

0

m̂1z

Q̂1z
←→ 1 + c+

1
τ0

1
(D.18b)

χ̂1x

Q̂2
1x
←→ τ−0

χ̂2z

Q̂2
2z
←→ τ−1 (D.18c)

χ̂2x

Q̂2
2x
←→ τ+

0 −
(c+

0 )2

τ0
0

χ̂1z

Q̂2
1z
←→ τ+

1 −
(c+

1 )2

τ0
1

. (D.18d)

Simple bookkeeping transforms equations (D.16) into a rigorous statement of starting assump-
tions (4.26) from [152]. Since those assumptions are now rigorously established in the asymptotic
limit, the remaining derivation of state evolution equations (4.27) holds and provides a mathe-
matically exact statement.

D.2.2 Scalar equivalent model of state evolution

For the sake of completeness, we will provide an overview of the explicit matching between the
state evolution formalism from [54] which was developed in a series of papers, and the replica
formulation from [152] which relies on statistical physics methods. Although not necessary to
our proof, it is interesting to develop an intuition about the correspondence between those two
faces of the same coin. We have seen in the previous subsection that [54] introduces ground-
truth vectors Q0

0,Q0
1, estimates r±0 , r

±
1 which are related to vectors Q±0 ,Q

±
1 . Let us introduce

a few more vectors using matrices from the singular value decomposition F = UDVT . Let
sν ∈ RN be the vector containing all square roots of eigenvalues of FTF with pν its element-wise
distribution; and sµ ∈ RM the vector containing all square roots of eigenvalues of FFT with pµ
its element-wise distribution. Note that those two vectors contain the singular values of F, but
one of them also contains max(M,N)−min(M,N) zero values. pµ and pν are both well-defined
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since pλ is properly defined in Assumptions 4.1. We also define

P0
0 = VTQ0

0 P+
0 = VTQ+

0 P−0 = VTQ−0
P0

1 = UQ0
1 P+

1 = UQ+
1 P−1 = UQ−1 .

By virtue of Lemma 5 from [132], the six previous vectors have elements that converge empirically
to a Gaussian variable. Hence, all defined vectors have an element-wise separable distribution,
and we can write the state evolution as a scalar model on random variables sampled from those
distributions. To do so, we will simply write the variables without the bold font: for instance
Z0

0 ∼ px0 , sν ∼ pν , and Q−0 refers to the random variable distributed according to the element-
wise distribution of vector Q−0 . The scalar random variable state evolution from [54] now reads:

Initialize γ−(0)
1 , γ

−(0)
0 , τ

−(0)
0 , τ

−(0)
1 , Q

−(0)
0 ∼ N (0, τ−(0)

0 ), Q−(0)
1 ∼ N (0, τ−(0)

1 ), α−(0)
0 , α

−(0)
1

Initial pass (ground truth only)
sν ∼ pν , sµ ∼ pµ, Q0

0 ∼ px0 (D.19a)
τ0

0 = E[(Q0
0)2] P 0

0 ∼ N (0, τ0
0 ) (D.19b)

Q0
1 = sµP

0
0 τ0

1 = E[(sµP 0
0 )2] = E[(sµ)2]τ0

0 P 0
1 ∼ N (0, τ0

1 ) (D.19c)

Forward Pass (estimation):

α
+(t)
0 = E

[
η′
f/γ
−(t)
0

(Q0
0 +Q

−(t)
0 )

]
(D.19d)

γ
+(t)
0 = γ

(t)
0

α
+(t)
0
− γ−(t)

0 (D.19e)

Q
+(t)
0 = 1

1− α+(t)
0

{
η
f/γ
−(t)
0

(Q0
0 +Q

−(t)
0 )−Q0

0 − α+
0 Q
−(t)
0

}
(D.19f)

K+(t)
0 = Cov

(
Q0

0, Q
+(t)
0

) (
P 0

0 , P
+(t)
0

)
∼ N

(
0,K+(t)

0

)
(D.19g)

α
+(t)
1 = E

 s2
µγ
−(t)
1

γ
−(t)
1 s2

µ + γ
+(t)
0

 (D.19h)

γ
+(t)
1 = γ

−(t)
1

α
+(t)
1
− γ−(t)

1 (D.19i)

Q
+(t)
1 = 1

1− α+(t)
1

 s2
µγ
−(t)
1

γ
−(t)
1 s2

µ + γ
+(t)
0

(Q−(t)
1 +Q0

1)

+ sµγ
+(t)
0

γ
−(t)
1 s2

µ + γ
+(t)
0

(P+(t)
0 + P 0

0 )−Q0
1 − α

+(t)
1 Q

−(t)
1

 (D.19j)

K+(t)
1 = Cov

(
Q0

1, Q
+(t)
1

) (
P 0

1 , P
+(t)
1

)
∼ N

(
0,K+(t)

1

)
(D.19k)
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Backward Pass (estimation):

α
−(t+1)
1 = E

[
η
g(y,.)/γ+(t)

1
(P 0

1 + P
+(t)
1 )

]
(D.19l)

γ
−(t+1)
1 = γ

+(t)
1

α
−(t+1)
1

− γ+(t)
1 (D.19m)

P
−(t+1)
1 = 1

1− α−(t+1)
1

{
η
g(y,.)/γ+(t)

1
(P 0

1 + P
+(t)
1 )− P 0

1 − α
−(t+1)
1 P

+(t)
1

}
(D.19n)

τ
−(t+1)
1 = E

[
(P−(t+1)

1 )2
]

Q
−(t+1)
1 ∼ N (0, τ−(t+1)

1 ) (D.19o)

α
−(t+1)
0 = E

[
γ

+(t)
0

γ
−(t+1)
1 s2

ν + γ
+(t)
0

]
(D.19p)

γ
−(t+1)
0 = γ

+(t)
0

α
−(t+1)
0

− γ+(t)
0 (D.19q)

P
−(t+1)
0 = 1

1− α−(t+1)
0

{
sνγ
−(t)
1

γ
−(t+1)
1 s2

ν + γ
+(t)
0

(Q−(t+1)
1 +Q0

1)

+ γ
+(t)
0

γ
−(t+1)
1 s2

ν + γ
+(t)
0

(P+(t)
0 + P 0

0 )− P 0
0 − α

−(t+1)
0 P

+(t)
0

}
(D.19r)

τ
−(t+1)
0 = E

[
(P−(t+1)

0 )2
]

Q
−(t+1)
0 ∼ N (0, τ−(t+1)

0 ). (D.19s)

D.2.3 Direct matching of the state evolution fixed point equations

To be consistent, we should be able to show that equations (D.19) allow us to recover equa-
tions (4.27) at their fixed point. Although somewhat tedious, this task is facilitated using
dictionaries (D.12) and (D.18). We shall give here an overview of this matching through a few
examples.

• Recovering equation (4.27e)

Let us start from the rigorous scalar state evolution, in particular equation (D.19f) that defines
variable Q+

0 . We get rid of time indices here since we focus on the fixed point. We first compute
the correlation

c+
0 = E

[
Q0

0Q
+
0

]
= 1

1− α+
0

{
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
− τ0

0

}
(D.20)

where we have used E[(Q0
0)2] = τ0

0 . At the fixed point, we know from MLVAMP or simply
translating equations (4.17), (4.18) that

1− α+
0 = α−0 ,

1
α−0

= γ−0 + γ+
0

γ+
0

, γ+
0 α

+
0 = γ−0 α

−
0 .

Simple manipulations take us to

c+
0 =

E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]

α−0
− τ0

0 (1 + γ−0
γ+

0
) (D.21)

(
1 + c+

0
τ0

0

)
γ+

0 =
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
γ+

0

τ0
0α
−
0

− γ−0 . (D.22)
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Now let us translate this back into our notations. The term E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
simply

translates into m1x, and the rest of the terms can all be changed according to our dictionary.
(D.22) exactly becomes

m̂2x = m1x
ρxχx

− m̂1x, (D.23)

hence we perfectly recover equations (4.27e) at the fixed point.

• Recovering equation (4.27f)

We start again from (D.19f) and square it:

E
[
(Q+

0 )2
]

= 1
(1− α+

0 )2

{
E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
+ E

[
(Q0

0)2
]

+ (α+
0 )2E

[
(Q−0 )2

]
−2E

[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
− 2α+

0 E
[
Q−0 η

2
f/γ−0

(Q0
0 +Q−0 )

]}
(D.24)

τ+
0 = 1

(1− α+
0 )2

{
E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
+ τ0

0 + (α+
0 )2τ−0

−2E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
− 2α+

0 E
[
Q−0 η

2
f/γ−0

(Q0
0 +Q−0 )

]}
. (D.25)

Since Q−0 is a Gaussian variable, independent from Q0
0, we can use Stein’s lemma and use

equation (D.19d) to get
E
[
Q−0 η

2
f/γ−0

(Q0
0 +Q−0 )

]
= α+

0 τ
−
0 . (D.26)

Moreover, from (D.20) we have

(c+
0 )2(α−0 )2 =

(
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
− τ0

0

)2
(D.27)

(c+
0 )2(α−0 )2

τ0
0

−
(E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
)2

τ0
0

= −2E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]

+ τ0
0 . (D.28)

Replacing (D.26) and (D.28) into (D.25), we reach

(
τ+

0 −
(c+

0 )2

τ0
0

)
(α−0 )2 = E

[
η2
f/γ−0

(Q0
0 +Q−0 )

]
−

(
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
])2

τ0
0

− (α+
0 )2τ−0 (D.29)

(
τ+

0 −
(c+

0 )2

τ0
0

)
(γ+

0 )2 =
E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
(γ+

0 )2

(α−0 )2 −

(
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
])2

(γ+
0 )2

τ0
0 (α−0 )2

− (γ−0 )2τ−0 . (D.30)

Notice that E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
simply translates into our variable q1x from its definition (4.27c),

and our dictionary directly transforms (D.30) into equation (4.27f):

χ̂2x = q1x
χ2

1x
− m2

1x
ρxχ2

1x
− χ̂1x. (D.31)

• Recovering equation (4.27s)

We first note that for any function h,

E[h(sν)] = min(1, α)E[h(sµ)] + max(0, 1− α)h(0). (D.32)
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and s2
ν ∼ pλ. Applying this to h(s) = γ−1 s

2

γ−1 s
2 + γ+

0
and starting from (D.19j), we rewrite

α+
1 = E

[
γ−1 s

2
µ

γ−1 s
2
µ + γ+

0

]
(D.33)

= 1
α
E
[

γ−1 λ

γ−1 λ+ γ+
0

]
(D.34)

with λ ∼ pλ, which translates into equation (4.27s):

χ2z = 1
α
E
[

λ

Q̂2x + λQ̂2z

]
. (D.35)

In a similar fashion, we can recover all equations (4.27) by writing variances and correlations
between scalar random variables defined in (D.19), and using the independence properties es-
tablished in [54]; thus directly showing the matching between the two state evolution formalisms
at their fixed point.

D.3 Operator norms and Lipschitz constants

D.3.1 Operator norms of the matrices W1,W2,W3,W4

The norms of the linear operators W1,W2,W3,W4 defined in (4.31) can be computed or
bounded with respect to the singular values of the matrix F. The derivations are straightforward
and do not require any specific mathematical result. Denoting ‖W‖ the operator norm of a given
matrix W, we have the following:

‖W1‖ = Q̂2x

Q̂1x

(
|Q̂1x − Q̂2zλmin(FTF)|
Q̂2x + Q̂2zλmin(FTF)

,
|Q̂1x − Q̂2zλmax(FTF)|
Q̂2x + Q̂2zλmax(FTF)

)
(D.36)

‖W2‖ = Q̂2z

χxQ̂1x

√
λmax(FTF)

Q̂2x + Q̂2zλmin(FTF)
(D.37)

‖W3‖ = Q̂2z

Q̂1z

(
|Q̂2x − Q̂1zλmin(FFT )|
Q̂2x + Q̂2zλmin(FFT )

,
|Q̂2x − Q̂1zλmax(FFT )|
Q̂2x + Q̂2zλmax(FFT )

)
(D.38)

‖W4‖ = Q̂2x

χzQ̂1z

√
λmax(FTF)

Q̂2x + Q̂2zλmin(FTF)
. (D.39)

D.3.2 Lispchitz constants of Õ1, Õ2

We now derive upper bounds of the Lipschitz constants of Õ1, Õ2 using properties of proximal
operators stated in appendix C.3. We lay out some details for Õ1, the derivation is identical for
Õ2. Let (σ1, β1) ∈ R∗2+ be the strong-convexity and smoothness constants of f . Note that (4.48)
states that σ1 6 Q̂2x 6 β1.

Case 1: 0 < σ1 < β1 Proposition 2 from [64] gives the following expression:

Proxf/Q̂1x
= 1

2

(
1

1 + σ1/Q̂1x
+ 1

1 + β1/Q̂1x

)
Id + 1

2

(
1

1 + σ1/Q̂1x
− 1

1 + β1/Q̂1x

)
S1 (D.40)
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where S1 is a nonexpansive operator. Replacing in the expression of Õ1 leads to:

Õ1 = Q̂1x

Q̂2x

((
1

2χx

(
1

Q̂1x + σ1
+ 1
Q̂1x + β1

)
− 1
)
Id + 1

2χx

(
1

Q̂1x + σ1
− 1
Q̂1x + β1

)
S1

)
(D.41)

which, knowing that Q̂1x + Q̂2x = 1
χx

at the fixed point, and splitting cases where the first term
of the sum in D.41 is negative or positive, provides Õ1’s Lipschitz constant:

ω1 = Q̂1x

Q̂2x
max

(
Q̂2x − σ1

Q̂1x + σ1
,
β1 − Q̂2x

Q̂1x + β1

)
. (D.42)

Case 2: 0 < σ1 = β1 In this case, Proposition 2 from says that [64]

‖Proxf/Q̂1x
(x)− Proxf/Q̂1x

(y)‖22 =
(

1
1 + σ1/Q̂1x

)2

‖x− y‖22 (D.43)

which, with the firm non-expansiveness of the proximal operator gives, for any x, y ∈ R:

‖Õ1(x)− Õ1(y)‖22 =
(
Q̂1x

Q̂2x

)2( 1
Q̂2

1xχ
2
x

‖Proxf/Q̂1x
(x)− Proxf/Q̂1x

(y)‖22

−2 1
χx

〈
x− y,Proxf/Q̂1x

(x)− Proxf/Q̂1x
(y)
〉

+ ‖x− y‖22
)

(D.44)

6

(
Q̂1x

Q̂2x

)2(( 1
Q̂2

1xχ
2
x

− 2 1
χx

)
‖Prox 1

Q̂1x
f (x)− Prox 1

Q̂1x
f (y)‖22 + ‖x− y‖22

)

=
(
Q̂1x

Q̂2x

)2
( 1

Q̂2
1xχ

2
x

− 2 1
χx

)(
1

1 + σ1/Q̂1x

)2

+ 1

 ‖x− y‖22 (D.45)

=
(
Q̂2

2x − Q̂2
1x

(Q̂1x + σ1)2
+ 1

)
‖x− y‖22. (D.46)

The upper bound on the Lipschitz constant is therefore:

ω1 = Q̂1x

Q̂2x

√√√√1 + (Q̂2
2x − Q̂2

1x)
(Q̂1x + σ1)2

. (D.47)

Recovering (4.42) In our proof, we make no assumption on the strong-convexity or smooth-
ness of the function f , but adding the ridge penalties through parameters λ2, λ̃2 brings both
Õ1 and Õ2 to either the first of the second case above. It is straightforward to see that the
Lipschitz constant (D.47) is a upper bound of (D.42). We thus use (D.47) for generality, and
recover expressions (4.42):

ω1 = Q̂1x

Q̂2x

√√√√1 + Q̂2
2x − Q̂2

1x
(Q̂1x + λ2)2

(D.48)

ω2 = Q̂1z

Q̂2z

√√√√1 + Q̂2
2z − Q̂2

1z
(Q̂1z + λ̃2)2

. (D.49)
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D.4 Dynamical system convergence analysis
In this section, we study the convergence of the linear recast of Oracle MLVAMP, by trying to
satisfy the linear matrix inequality (LMI) (4.44). We focus on the smoothed problem (4.52).
in particular, we will look at the regime where the additional regularization λ2 is arbitrarily
large, while λ̃2 is fixed but non-zero. From bounds (4.48) and (4.49); we see that Q̂2x, Q̂1z will
grow with λ2,; while Q̂2z, Q̂1x remain finite. We write the corresponding linear matrix inequality
(4.44) and expand the constraint term:

0�
[
ATPA− τ2P ATPB

BTPA BTPB

]
+
[
β0CT

0 M0C0 + β1CT
1 M1C1 β0CT

0 M0D0 + β1CT
1 M1D1

β0DT
0 M0C0 + β1DT

1 M1C1 β0DT
0 M0D0 + β1DT

1 M1D1

]
(D.50)

A little basic algebra shows that:

CT
0 M0C0 =

[
0M×M 0M×N
0N×M ω2

0IN

]
CT

1 M1C1 =
[
ω2

1WT
3 W3 0M×N

0N×M 0N×N

]
(D.51)

CT
0 M0D0 = 0(M+N)×(M+N) DT

0 M0C0 = 0(M+N)×(M+N) (D.52)

CT
1 M1D1 =

[
0M×M ω2

1WT
3 W4

0N×M 0N×N

]
DT

1 M1C1 =
[

0M×M 0M×N
ω2

1WT
4 W3 0N×N

]
(D.53)

DT
0 M0D0 =

[
0M×M 0M×N
0N×M −IN

]
DT

1 M1D1 =
[
−IM 0M×N

0N×M ω2
1WT

4 W4

]
(D.54)

where all the matrices constituting the blocks have been defined in (4.31). This gives the
following form for the constraint matrix, which is the last matrix in (D.50):[

H1 H2
HT

2 H3

]
(D.55)

where

H1 =
[
β1ω

2
1WT

3 W3 0M×N
0N×M β0ω

2
0IN

]
(D.56)

H2 =
[
0M×M β1ω

2
1WT

3 W4
0N×M 0N×N

]
(D.57)

H3 =
[
−β1IM 0M×N
0N×M −β0IN + β1ω

2
1WT

4 W4

]
(D.58)

thus the LMI becomes:
0 �

[
−τ2P + H1 H2

HT
2 BTPB + H3

]
. (D.59)

We take P as block diagonal:

P =
[

P1 0M×N
0N×M P2

]
(D.60)

where P1 ∈ RM×M and P2 ∈ RN×N are positive definite (no zero eigenvalues) and diagonalizable
in the same basis as FTF, which is also the eigenbasis of W1,W3,WT

2 W2,WT
4 W4. We have:

BTPB =
[
P1 + WT

2 P2W2 WT
2 P2W1

WT
1 P2W2 WT

1 P2W1

]
. (D.61)
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We are then trying find the conditions for the following problem to be feasible with 0 < τ < 1:[
τ2P−H1 −H2
−HT

2 −(BTPB + H3)

]
� 0 (D.62)

Schur’s lemma then says that the strict version of (D.62), which we will consider, is equivalent
[76] to:

− (BTPB + H3) � 0 and τ2P−H1 + H2(BTPB + H3)−1HT
2 � 0 (D.63)

We want to verify these two conditions.

Conditions for −(BTPB + H3) � 0
We want to derive the conditions for:[

β1IM −P1 −WT
2 P2W2 −WT

2 P2W1
−WT

1 P2W2 β0IN − β1ω
2
1WT

4 W4 −WT
1 P2W1

]
� 0. (D.64)

Applying Schur’s lemma again gives the equivalent problem:

β0IN − β1ω
2
1WT

4 W4 −WT
1 P2W1 � 0 (D.65)

β1IM −P1 −WT
2 P2W2

−WT
2 P2W1(β0IN − β1ω

2
1WT

4 W4 −WT
1 P2W1)−1WT

1 P2W2 � 0. (D.66)

We start with (D.65). A sufficient condition for it to hold true is:

β0 > β1ω
2
1λmax(WT

4 W4) + λmax(P2)λmax(WT
1 W1). (D.67)

From appendix 4.4.5, we have:

λmax(WT
1 W1) 6

(
Q̂2x

Q̂1x

)2

max
(
|Q̂1x − Q̂2zλmin(FTF)|
Q̂2x + Q̂2zλmin(FTF)

,
|Q̂1x − Q̂2zλmax(FTF)|
Q̂2x + Q̂2zλmax(FTF)

)2

(D.68)

6 max

(1− Q̂2z

Q̂1x
λmin(FTF)

)2

,

(
1− Q̂2z

Q̂1x
λmax(FTF)

)2
 ≡ b1 (D.69)

and

ω2
1λmax(WT

4 W4)6
(
Q̂1z

Q̂2z

)2(
1 + (Q̂2z)2 − (Q̂1z)2

(Q̂1z + λ̃2)2

)(
Q̂2x

χzQ̂1z

)2
λmax(FTF)

(Q̂2x + Q̂2zλmin(FTF))2

6 Q̂1z

(
2λ̃2 + λ̃2

2
Q̂1z

+ (Q̂2z)2

Q̂1z

)(
Q̂1z + Q̂2z

Q̂2z(Q̂1z + λ̃2)

)2

λmax(FTF). (D.70)

For arbitrarily large Q̂1z, the quantity
(

2λ̃2 + λ̃2
2

Q̂1z
+ (Q̂2z)2

Q̂1z

)(
Q̂1z+Q̂2z

Q̂2z(Q̂1z+λ̃2)

)2
λmax(FTF) is triv-

ially upperly above whatever the value of λ̃2, Q̂2z. Let b2 be such an upper bound independent
of λ2, Q̂2x, Q̂1z. The sufficient condition for (D.65) to hold thus becomes:

β0 > β1Q̂1zb2 + λmax(P2)b1 (D.71)
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where b1, b2 are constants independent of λ2, Q̂2x, Q̂1z.

We now turn to (D.66). A sufficient condition for it to hold is:

β1 > λmax(P1) + λmax(WT
2 W2)λmax(P2)

+ (λmax(P2))2λmax(WT
2 W2)λmax(WT

1 W1)
β0 − β1ω2

1λmax(WT
4 W4)− λmax(P2)λmax(WT

1 W1)
(D.72)

Note that condition (D.65) ensures that the denominator in (D.72) is non-zero. We then have:

λmax(WT
2 W2) 6

(
Q̂2z

χxQ̂1x

)2
λmax(FTF)

(Q̂2x + Q̂2zλmin(FTF)2
(D.73)

6

Q̂2z(1 + Q̂1x
Q̂2x

)

Q̂1x


2

λmax(FTF) (D.74)

This quantity can be upperly bounded by a constant independent of λ2, Q̂2x, Q̂1z for arbitrarily
large Q̂2x, that we call b3 be such a constant. Then a sufficient condition for condition (D.66)
to hold is:

β1 > λmax(P1) + b3λmax(P2) + b1b3(λmax(P2))2

β0 − β1Q̂1zb2 − λmax(P2)b1
. (D.75)

We see that β0 must scale linearly with Q̂1z which is one of the parameters that is made
arbitrarily large since it grows with λ2. Then β0 also needs to become arbitrarily large for the
conditions to hold. We choose β0 = 2β1Q̂1zb2 + λmax(P2)b1 for the rest of the proof. Condition
(D.71) is then automatically verified, and β1 needs to be chosen according to condition (D.75),
which becomes:

β1 > λmax(P1) + b3λmax(P2) + b1b3λ
2
max(P2)

β1Q̂1zb2
(D.76)

This obviously has a bounded solution for large values of Q̂1z. We now turn to the second part
of (D.63).

Conditions for τ 2P−H1 + H2(BTPB + H3)−1HT
2 � 0

We need to study the term −H2(BTPB + H3)−1HT
2 (we study it with the − sign since the

middle matrix is negative definite from conditions (D.65,D.66) which are now verified). As we
will see, because of the form of H2, we do not need to explicitly compute the whole inverse. Let

Z = −(BTPB + H3)−1 =
[
Z1 Z2
ZT2 Z3

]

where Z is divided into blocks of the same size as those of (BTPB + H3). We then have:

−H2(BTPB + H3)−1HT
2 = H2ZHT

2 (D.77)

=
[
β2

1ω
4
1WT

3 W4Z3WT
4 W3 0M×N

0N×M 0N×N

]
. (D.78)

We thus only need to characterize the lower right block of Z. It is easy to see that conditions
(D.65) and (D.66) also enforce that both the Schur complements associated with the upper left
and lower right blocks of −(BTPB + H3) are invertible, thus giving the following form for Z3
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using the block matrix inversion lemma [76]:

Z3 = (β0IN − β1ω
2
1WT

4 W4 (D.79)
−WT

1 P2W1 −WT
1 P2W2(β1IM −P1 −WT

2 P2W2)−1WT
2 P2W1)−1. (D.80)

We obtain the following upper bound on the largest eigenvalue of Z3:

λmax(Z3) 6 1
β0 − β1Q̂1zb2 − λmax(P2)b1 − b1b3λ2

max(P2)
β1−λmax(P1)−b2λmax(P2)

, (D.81)

and using the prescription β0 = 2β1Q̂1zb2 + λmax(P1)b1, we get:

λmax(Z3) = 1
β1Q̂1zb2 − b1b3λ2

max(P2)
β1−λmax(P1)−b2λmax(P2)

6
b4

Q̂1z
(D.82)

where b4 is a constant independent of the arbitrarily large parameters λ2, Q̂2x, Q̂1z. Thus
λmax(Z3) can be made arbitrarily small by making λ2 arbitrarily large.

We now want to find conditions for τ2P−H1 + H2(BTPB + H3)−1HT
2 � 0 which is equivalent

to: [
τ2P1 − β1ω

2
1WT

3 W3 − β2
1ω

4
1WT

3 W4Z3WT
4 W3 0M×N

0N×M τ2P2 − β0ω
2
0IN

]
. (D.83)

This involves a block diagonal matrix, we only need to check that separate blocks are positive-
definite. We start with the upper left block, for which a sufficient condition is:

τ2λmin(P1)− β1ω
2
1λmax(WT

3 W3)− β2
1ω

4
1λmax(WT

3 W3)λmax(WT
4 W4)λmax(Z3) > 0 (D.84)

Using the bounds from appendix 4.4.5, we have:

ω2
1λmax(WT

3 W3) 6
(
Q̂1z

Q̂2z

)2 (
1 + (Q̂2z)2 − (Q̂1z)2

(Q̂1z + λ̃2)2

)
λmax(WT

3 W3) (D.85)

6
(

1 + (Q̂2z)2 − (Q̂1z)2

(Q̂1z + λ̃2)2

)
max

(
|Q̂2x − Q̂1zλmin(FTF)|
Q̂2x + Q̂2zλmin(FTF)

,
|Q̂2x − Q̂1zλmax(FTF)|
Q̂2x + Q̂2zλmax(FTF)

)2

(D.86)

6
2λ̃2Q̂1z + λ̃2

2 + (Q̂2z)2

(Q̂1z + λ̃2)2
max

(1− Q̂1z

Q̂2x
λmin(FTF)

)2

,

(
1− Q̂1z

Q̂2x
λmax(FTF)

)2
 (D.87)

6
1
Q̂1z

(2λ̃2 + (λ̃2
2 + (Q̂2z)2)
Q̂1z

) max

(1− Q̂1z

Q̂2x
λmin(FTF)

)2

,

(
1− Q̂1z

Q̂2x
λmax(FTF)

)2

(D.88)

Thus there exists a constant b5, independent of λ2, Q̂1z, Q̂2x such that, for sufficiently large Q̂1z:

ω2
1λmax(WT

3 W3) 6 b5

Q̂1z
. (D.89)

Remember that we had:
ω2

1λmax(WT
3 W3) 6 Q̂1zb2, (D.90)
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which gives the following sufficient condition for the upper left block in (D.83):

τ2λmin(P1)− β1
b5

Q̂1z
− β2

1
b2b5b4

Q̂1z
> 0. (D.91)

A sufficient condition for the lower right block in (D.83) then reads:

τ2λmin(P2)− β0ω
2
0 > 0, (D.92)

where we have:

β0ω
2
0 =

(
Q̂1x

Q̂2x

)2(
1 + (Q̂2x)2 − (Q̂1x)2

(Q̂1x + λ2)2

)
(2β1Q̂1zb2 + λmax(P2)b1) (D.93)

= 1
Q̂2x

(Q̂1x)2
(

1 + (Q̂2x)2 − (Q̂1x)2

(Q̂1x + λ2)2

)(
2β1

Q̂1z

Q̂2x
b2 + λmax(P2) b1

Q̂2x

)
(D.94)

We remind the reader that Q̂1z, Q̂2x grow linearly with λ2. Thus the dominant scaling at large
λ2 is (exchanging Q̂2x with Q̂1z up to a constant):

β0ω
2
0 6

b6

Q̂1z
, (D.95)

where b6 is a constant independent of the arbitrarily large quantities. The final condition
becomes:

τ2λmin(P1)− β1
b5

Q̂1z
− β2

1
b2b5b4

Q̂1z
> 0 (D.96)

τ2λmin(P2)− b6

Q̂1z
> 0 (D.97)

where we want τ < 1. We now choose τ2 = c̃/Q̂1z with a constant c̃ independent of λ2, Q̂1z, Q̂2x

that verifies c̃ > max
(
β1b5+β2

1b2b5b4
λmin(P1) , b6

λmin(P2)

)
, such that:

c̃

Q̂1z
λmin(P1)− β1

b5

Q̂1z
− β2

1
b2b5b4

Q̂1z
> 0 (D.98)

c̃

Q̂1z
λmin(P2)− b6

Q̂1z
> 0. (D.99)

Since β1 is bounded for large values of Q̂1z, and the bi and c are constants independent of
λ2, Q̂2x, Q̂1z, one can then just enforce c̃ < Q̂1z if λ2 is large enough. We then obtain τ < 1 and
a linear convergence rate of

√
c/λ2, taking c ≡ c̃λ2/Q̂1z. This rate being strictly smaller than

1, it ensures convergence. We see that the eigenvalues of the matrix P are of little importance
as long as they are non-vanishing. We choose P as the identity. Inequality (4.55) thus holds,
and our linear system converges, also proving convergence of Oracle MLVAMP in the considered
regime of regularization.
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Appendix E

Replica computation of the ground
state energy for perceptrons for a
Gaussian i.i.d. matrix

E.1 Notations and problem setting

In this section, we present the replica computation of for generalized linear models, corresponding
to the hypothesis class Fϕ from (5.32), i.e.

Fϕ ≡

fw :

RN 7→ {−1, 1}
x 7→ ϕ

(
1√
N

wTx
) ,w ∈ RN

 . (E.1)

We gather the examples into a data matrix {xT1 , . . . ,xTM} = X ∈ RM×N , where each element
is identically and independently sampled from Px(x) = N (0, 1), and corresponding labels
y = (y1, ..., yM ) are drawn randomly from Py(.). We consider for the moment a generic prior
distribution w ∼ Pw(.) that factorizes, and a component-wise activation function ϕ(.). The cost
function of a given sample is V (yµ|zµ) = 1 [yµ 6= ϕ(zµ)] where zµ ≡ 1√

N
wTxµ. It returns 0 if the

the estimator classifies the example correctly, and 1 otherwise. Finally, we define the constraint
function at inverse temperature β, that depends explicitly on the Hamiltonian (5.24):

I(y|z, β) ≡
M∏
µ=1

e−βV (yµ|zµ) = e−βH({y,X},w). (E.2)

Note that the constraint function converges at zero temperature to a hard constraint function
I(y|z, β) −→

β→∞

∏M
µ=1 1 [V (yµ|zµ) = 0].To compute the replicated partition function, we introduce

n ∈ N replicas of the system, and resort to the replica trick (5.37). Assuming there exists an
analytical continuation for n → 0 and that we can revert limits, the averaged free energy Φ of
the initial system becomes:

Φ(α, β) = − lim
n→0

[
lim
N→∞

1
Nβ

∂ logEy,X [Z({y,X}, α, β)n]
∂n

]
, (E.3)

where the replicated partition function average reads

Ey,X [Z({y,X}, α, β)n] =
∫
RM

dyPy (y)
∫
RM×N

dXPx(X)Z({y,X}, α, β)n (E.4)

=
∫
RM

dyPy (y)
∫
RM×N

dXPx(X)
n∏
a=1

∫
RN

dPw (wa)
M∏
µ=1

∫
dzaµI(yµ|zaµ, β) δ

(
zaµ −

1√
N

waTxµ
)
. (E.5)
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E.2 Average over the Gaussian i.i.d. data matrix

As the data matrix is taken (Gaussian) i.i.d., we have for i, j ∈ J1;NK and µ, ν ∈ J1;MK
the expectation EX[xµixνj ] = δµνδij . Hence zaµ = 1√

N

∑N
i=1 xµiw

a
i is the sum of i.i.d. ran-

dom variables, and the central limit theorem guarantees that in the large size limit N → ∞,
zaµ ∼ N

(
EX[zaµ],EX[zaµzbµ]

)
, with the two first moments given by

EX[zaµ] = 1√
N

N∑
i=1

EX[xµi]wai = 0 (E.6)

EX[zaµzbν ] = 1
N

∑
i,j

EX[xµixνj ]wai wbj = 1
N

∑
i,j

δµνδijw
a
i w

b
j =

(
1
N

N∑
i=1

wai w
b
i

)
δµν . (E.7)

In the following, we introduce the overlap matrix of size n× n defined by its elements:

Qab = waTwb

N
(E.8)

and the vectors z̃µ ≡ (zaµ)a=1,...,n and w̃i ≡ (wai )a=1,...,n ∈ Rn. From the above calculation,
z̃µ follows a multivariate Gaussian distribution z̃µ ∼ Pz̃(z̃,Q) d= N (0n,Q) where d= stands for
equality in distribution, and Pw̃(w̃i) =

∏n
a=1 Pw(w̃ai ). We do a change of variable, using the

Fourier representation of the δ-Dirac function, bringing in a new matrix Q̂ of size n× n:

1 =
∫
Rn×n

dQ
∏
a≤b

δ

(
NQab −

N∑
i=1

wai w
b
i

)
(E.9)

∝
∫
Rn×n

dQ
∫
Rn×n

dQ̂ exp
(
−N2 TrQQ̂

)
exp

{
1
2

N∑
i=1

w̃T
i Q̂w̃i

}
. (E.10)

The replicated partition function factorizes and becomes an integral over the matrix parameters
Q and Q̂, that can be evaluated using a Laplace method in the N →∞ limit,

Ey,X [Z({y,X}, α, β)n] ∝
∫

dQ dQ̂eNΦ(n)(Q,Q̂,α,β) '
N→∞

eN ExtrQ,Q̂{Φ(n)(Q,Q̂,α,β)} (E.11)

where 
Φ(n)

(
Q, Q̂, α, β

)
≡ −1

2TrQQ̂ + log Ψ(n)
w (Q̂) + α log Ψ(n)

out(Q, β) ,

Ψ(n)
w (Q̂) =

∫
Rn

dw̃Pw̃(w̃)e
1
2 w̃T Q̂w̃ ,

Ψ(n)
out(Q, β) =

∫
dyPy (y)

∫
Rn

dz̃Pz̃(z̃,Q)I(y|z̃, β).

(E.12)

Finally, using (E.3) and switching the two limits n→ 0 and N →∞, the quenched free energy
Φ simplifies as an extremization problem

Φ(α, β) = − 1
β

Extr
Q,Q̂

{
lim
n→0

∂Φ(n)(Q, Q̂, α, β)
∂n

}
, (E.13)

over general symmetric matrices Q and Q̂. Until now, we have written the main steps without
picking an ansatz on overlap parameters, we will now see how the calculation unfolds for each
choice.

Choosing an ansatz The simplest and commonly used ansatz yield the following form for
the overlap matrix:
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• Replica Symmetry (RS) ansatz: Q(RS) = (Q− q0)In + q0Jn

• 1-Step Replica Symmetry Breaking (1RSB) ansatz:
Q(1RSB) = (Q− q1)In + (q1 − q0)In/m0 ⊗ Jm0 + q0Jn ,

• 2-Step Replica Symmetry Breaking (2RSB) ansatz:
Q(2RSB) = (Q− q2) In + (q2 − q1) In/m1 ⊗ Jm1 + (q1 − q0) In/m0 ⊗ Jm0 + q0Jn

where Ik is the identity matrix of size k, and Jk is the matrix of size k full of ones. Q is always the
self-overlap, while overlaps q0, q1, q2 show up successively through steps of symmetry breaking,
and each time express different levels of overlaps within and between clusters of solutions. Some
intuition on these ansatz was given in 1.1.4. Plugging these ansatz in (E.13), and taking the
derivative followed by the n → 0 limit, optimizing over the space of matrices boil down to a
much simpler optimization problem over a few scalar order parameters.

E.3 RS free energy for an i.i.d. data matrix

Let us compute the functional Φ(n)(Q, Q̂, α, β) appearing in the free energy eq. (E.13) in the
RS ansatz. The latter assumes that all replica remain equivalent with a common overlap
q0 = 1

N

∑N
i=1w

a
i w

b
i for a 6= b and a norm Q = 1

N

∑N
i=1w

a
i w

a
i , leading to the following expressions

for matrices Q and Q̂ ∈ Rn×n:

Q(RS) =


Q q0 ... q0
q0 Q ... ...
... ... ... q0
q0 ... q0 Q

 and Q̂(RS) =


Q̂ q̂0 ... q̂0
q̂0 Q̂ ... ...
... ... ... q̂0
q̂0 ... q̂0 Q̂

 . (E.14)

Let us compute separately the terms involved in the functional Φ(n)(Q, Q̂, α, β) in (E.12): the
first is a trace term, the second Ψ(n)

w depends on the weights prior, and the third term Ψ(n)
out

depends on the constraint I(y|z) (E.2).

i) Trace term

The trace term can be easily computed and takes the form

1
2TrQQ̂

∣∣∣∣
RS

= 1
2
(
nQQ̂+ n(n− 1)q0q̂0

)
. (E.15)

ii) Prior integral

Evaluated at the RS fixed point, and using the Hubbard-Stratonovich transform (or equivalently
a Gaussian identity, which sounds less classy, see footnote 1), the prior integral can be further
simplified

Ψ(n)
w (Q̂)

∣∣∣
RS

=
∫

dw̃Pw̃(w̃)e
1
2 w̃T Q̂RSw̃ =

∫
dw̃Pw̃(w̃) exp

(
(Q̂− q̂0)

2

n∑
a=1

(w̃a)2
)

exp

q̂0

(
n∑
a=1

w̃a
)2


=
∫

Dξ0

[∫
dwPw(w) exp

(
(Q̂− q̂0)

2 w2 + ξ0
√
q̂0w

)]n
. (E.16)

iii) Constraint integral

Recall the vector z̃ ∼ Pz̃(z̃,Q) d= N (0n,Q) follows a Gaussian distribution with zero mean and
covariance matrix Q. In the RS ansatz, the covariance can be rewritten as a linear combination
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of the identity In and Jn: Q(2RSB) = (Q − q0)In + q0Jn, which allows to split the variable za
into two Gaussian parts

za = √q0ξ0 +
√
Q− q0u

a

with ξ0 ∼ N (0, 1) and ∀a, ua ∼ N (0, 1). The constraint integral then reads:

Ψ(n)
out(Q, β)

∣∣∣
RS

=
∫

dyPy (y)
∫
Rn

dz̃Pz̃(z̃,Q)I(y|z̃, β)

=
∫

dyPy (y)
∫

Dξ0

∫ n∏
a=1

DuaI
(
y|√q0ξ0 +

√
Q− q0u

a, β
)

(E.17)

=
∫

dyPy (y)
∫

Dξ0

[∫
DzI

(
y|√q0ξ0 +

√
Q− q0z, β

)]n
.

Putting all pieces together, the functional Φ(n)(Q, Q̂, α, β) taken at the RS fixed point has an
explicit formula and dependency in n:

Φ(n)(Q, Q̂, α, β)
∣∣∣
RS
'
n→0
−1

2
(
nQQ̂+ n(n− 1)q0q̂0

)
+ n

∫
Dξ0 log

(∫
dwPw(w) exp

(
(Q̂− q̂0)

2 w2 + ξ0
√
q̂0w

))
(E.18)

+ nα

∫
dyPy (y)

∫
Dξ0 log

(∫
DzI

(
y|√q0ξ0 +

√
Q− q0z, β

))
.

RS free energy Taking the derivative with respect to n and the n → 0 limit, the RS free
energy has a simple expression

Φ(RS)(α, β) = − 1
β
extr
q0,q̂0

{
−1

2QQ̂+ 1
2q0q̂0 + Ψ(RS)

w (q̂0) + αΨ(RS)
out (q0, β)

}
, (E.19)

Ψ(RS)
w (q̂0) ≡ Eξ0 logEw

[
exp

(
(Q̂− q̂0)

2 w2 + ξ0
√
q̂0w

)]
, (E.20)

Ψ(RS)
out (q0, β) ≡ EyEξ0 logEz

[
I
(
y
∣∣√Q− q0z +√q0ξ0, β

)]
, (E.21)

where ξ0, z ∼ N (0, 1), w ∼ Pw(.), y ∼ Py(.) and Q = Q̂ = 1 in the case where 1
N ‖w‖

2
2 = 1.

Simplification in the spherical case In the spherical/Gaussian case, Ψ(n)
w (Q̂) in eq. (E.12)

can be directly integrated as

Ψ(n)
w (Q̂) =

∫
‖w̃‖22=N

dw̃e
1
2 w̃T Q̂w̃ = −1

2 log det
(
2π(In + Q̂)

)
(E.22)

Besides, taking the derivative of (E.12) with respect to Q̂, we find Q−1 = (In + Q̂). Finally, we
get rid of Q̂ to reach

Φ(n) (Q, α, β) ≡ 1
2 log det (2πQ) + α log Ψ(n)

out(Q, β) . (E.23)

The above determinant reads in the RS ansatz

1
2 det(Q)

∣∣∣∣
RS
' n

2

(
log(1− q0) + q0

1 + (n− 1)q0
+O(n)

)
. (E.24)
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Finally, the RS free energy in this simple case becomes

Φ(RS)(α, β) = − 1
β

Extr
q0

{ 1
2(1− q0) + 1

2 log(2π) + 1
2 log(1− q0) + αΨ(RS)

out (q0, β)
}
, (E.25)

with Ψ(RS)
out defined in (E.21).

E.4 1RSB free energy for an i.i.d. data matrix

The free energy (E.13) can also be evaluated at the simplest non trivial fixed point, thanks to
the one-step Replica Symmetry Breaking ansatz (1RSB). Instead of assuming that replicas are
equivalent, it states that the symmetry between replica is broken and that replicas are clustered
in different states, with inner overlap q1 and outer overlap q0. Translating this analytically, the
matrices can be expressed as function of the Parisi parameter m0:

Q(1RSB) = q0Jn + (q1 − q0) I n
m0
⊗ Jm0 + (Q− q1) In

Q̂(1RSB) = q̂0Jn + (q̂1 − q̂0) I n
m0
⊗ Jm0 +

(
Q̂− q̂1

)
In .

(E.26)

i) Trace term

Again, the trace term can be easily computed

1
2TrQQ̂

∣∣∣∣
1RSB

= 1
2
(
nQQ̂+ n(m0 − 1)q1q̂1 + n(n−m0)q0q̂0

)
. (E.27)

ii) Prior integral

Separating replicas with different overlaps q0, q1, the prior integral can be written, using Hubbard-
Stratonovich transforms to decouple replicas, as

Ψ(n)
w (Q̂)

∣∣∣
1RSB

=
∫

dw̃Pw̃(w̃)e
(Q̂−q̂1)

2
∑n

a=1(w̃a)2+ (q̂1−q̂0)
2

∑ n
m0
k=1
∑km0

a,b=(k−1)m0+1 w̃
aw̃b+ q̂0

2 (
∑n

a=1 w̃
a)2

=
∫

Dξ0

[∫
Dξ1

[∫
dwPw(w) exp

(
(Q̂− q̂1)

2 w2 +
(√

q̂0ξ0 +
√
q̂1 − q̂0ξ1

)
w

)]m0] n
m0

(E.28)

with ξ0, ξ1 ∼ N (0, 1).

iii) Constraint integral

Again, the vector z̃ ∼ Pz̃
d= N

(
0,Q(1RSB)

)
is distributed as a Gaussian vector with zero mean

and covariance
Q(1RSB) = q0Jn + (q1 − q0) I n

m0
⊗ Jm0 + (Q− q1) In.

The Gaussian vector of covariance Q(1RSB) can be decomposed in a sum of normal Gaussian
vectors ξ0 ∼ N (0, 1), ξk ∼ N (0, 1) ∀k ∈ J1; n

m0
K and ua ∼ N (0, 1) ∀a ∈ J(k − 1)m0 + 1; km0K:

za = √q0t0 +
√
q1 − q0tk +

√
Q− q1ua .
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Finally the constraint integral reads

Ψ(n)
out(Q, β)

∣∣∣
1RSB

=
∫

dyPy (y)
∫

Dξ0

∫ n/m0∏
k=1

Dξk
∫ km0∏
a=(k−1)m0+1

DuaI
(
y|√q0ξ0 +

√
q1 − q0ξk +

√
Q− q1ua, β

)

=
∫

dyPy (y)
∫

Dξ0

[∫
Dξ1

[∫
DzI

(
y|√q0ξ0 +

√
q1 − q0ξ1 +

√
Q− q1z, β

)]m0] n
m0
. (E.29)

Gathering previous computations (E.27, E.28, E.29), the functional Φ(n) evaluated at the 1RSB
fixed point reads:

Φ(n)(Q, Q̂, α, β)
∣∣∣
1RSB

'
n→0
−1

2
(
nQQ̂+ n(m0 − 1)q1q̂1 + n(n−m0)q0q̂0

)
(E.30)

+ n

m0

∫
Dξ0 log

(∫
Dξ1

[∫
dwPw(w) exp

(
(Q̂− q̂1)

2 w2 +
(√

q̂0ξ0 +
√
q̂1 − q̂0ξ1

)
w

)]m0)

+ α
n

m0

∫
dyPy (y)

∫
Dξ0 log

(∫
Dξ1

[∫
DzI

(
y|√q0ξ0 +

√
q1 − q0ξ1 +

√
Q− q1z, β

)]m0)
.

1RSB free energy The free energy for the 1RSB ansatz reads:

Φ(1RSB)(α, β) = − 1
β
extr
q,q̂,m0

{1
2
(
q1q̂1 −QQ̂

)
+ m0

2 (q0q̂0 − q1q̂1)

+Ψ(1RSB)
w (q̂) + αΨ(1RSB)

out (q, β)
}

(E.31)

Ψ(1RSB)
w (q̂) ≡ 1

m0
Eξ0 log

(
Eξ1Ew

[
exp

(
(Q̂− q̂1)

2 w2 +
(√

q̂0ξ0 +
√
q̂1 − q̂0ξ1

)
w

)]m0)

Ψ(1RSB)
out (q, β) ≡ 1

m0
EyEξ0 log

(
Eξ1Ez

[
I(y

∣∣√q0ξ0 +
√
q1 − q0ξ1 +

√
Q− q1z, β)

]m0)
where q = (q0, q1), q̂ = (q̂0, q̂1), ξ0, ξ1, z ∼ N (0, 1), w ∼ Pw(.), y ∼ Py(.) and Q = Q̂ = 1.

In the spherical case, equation (E.23) remains valid. We can compute the overlap matrix
determinant in the 1RSB ansatz:

det Q|1RSB = (nq0 +m0(q1 − q0) + (1− q1))× (1− q1)n−
n
m0 × (m0(q1 − q0) + (1− q1))

n
m0
−1

log det Q|1RSB ' n
(
m0 − 1
m0

log(1− q1) + log (m0(q1 − q0) + (1− q1))
m0

+ q0
m0(q1 − q0) + (1− q1)

)
Using the above expression for the determinant and the simplified replica potential (E.23) we
obtain

Φ(1RSB)(α, β) = − 1
β

Extr
q0,q1,m0

{1
2 log(2π) + m0 − 1

2m0
log(1− q1) + 1

2m0
log (m0(q1 − q0) + (1− q1))

+ q0
2 (m0(q1 − q0) + (1− q1)) + αΨ(1RSB)

out (q, β)
}
.

(E.32)
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E.5 2RSB free energy for an i.i.d. data matrix

Analogously, the 2RSB ansatz for m1 < m0 < n reads

Q(2RSB) = q0Jn + (q1 − q0) I n
m0
⊗ Jm0 + (q2 − q1) I n

m1
⊗ Jm1 + (Q− q2) In (E.33)

Q̂(2RSB) = q̂0Jn + (q̂1 − q̂0) I n
m0
⊗ Jm0 + (q̂2 − q̂1) I n

m1
⊗ Jm1 +

(
Q̂− q̂2

)
In (E.34)

and the above computation of the free energy generalizes to

Φ(2RSB)(α, β) = − 1
β

Extr
q,q̂,x0,m1

{
1
2

(
q2q̂2 −QQ̂

)
+ m1

2 (q1q̂1 − q2q̂2) + m0

2 (q0q̂0 − q1q̂1)

+Ψ(2RSB)
w (q̂) + αΨ(2RSB)

out (q, β)
}

(E.35)

Ψ(2RSB)
w (q̂) ≡ 1

m1
Eξ0 log

(
Eξ1

[
Eξ2Ew

[
e

(Q̂−q̂2)
2 w2+

(√
q̂0ξ0+

√
q̂1−q̂0ξ1+

√
q̂2−q̂1ξ2

)
w

]m1]m0
m1
)

Ψ(2RSB)
out (q, β)≡ 1

m1
EyEξ0 log

(
Eξ1
[
Eξ2Ez

[
I(y
∣∣√q0ξ0 +

√
q1 − q0ξ1 +

√
q2 − q1ξ2 +

√
Q− q2z, β)

]m1]m0
m1
)
.

E.6 Ground state energies - Spherical case

We focus on the particular case of the spherical perceptron with weights w ∈ RN such that
‖w‖22 = N .

E.6.1 RS ground state energy e(RS)
gs

To compute the ground state energy, we first need to take both limits q0 → 1 and β → ∞,
keeping the product χ = β(Q− q0) finite [98, 50, 180] inside (E.21), which reads:

Ψ(RS)
out (q0, β) ≡ EyEξ0 logEz

[
I
(
y
∣∣√Q− q0z +√q0ξ0, β

)]
'

(q0,β)→(1,∞)
−1

2 log(2π(Q− q0))− β
∫

dPy(y)
∫

Dξ0 min
ξ0,z

[
V (y|z) + (z − ξ0)2

2χ

]

that finally leads, taking limits q0 → 1, β →∞ in (E.25), to the RS ground state energy

e(RS)
gs = Extr

χ

{
− 1

2χ + αEy,ξ0 min
z

[
V (y|z) + (z − ξ0)2

2χ

]}
. (E.36)

Application to the step-perceptron Taking the step function V (y|z) = θ(κ−z) with κ > 0
a robustness parameter and Py(y) = δ(y − 1) leads to the expression [58]:

e(RS)
gs = Extr

χ

{
− 1

2χ + α

(∫ κ−
√

2χ

−∞
Dξ +

∫ κ

κ−
√

2χ
Dξ (ξ − κ)2

2χ

)}
. (E.37)

E.6.2 1RSB ground state energy e(1RSB)
gs

To compute the ground state energy in the 1RSB ansatz, we first need to take limits q1 → 1
with β →∞ and m0 → 0, keeping the products χ ≡ β(Q− q1) and ω0 ≡ m0β finite [180], with
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∆q = 1− q0. Recall

Ψ(1RSB)
out (q, β) ≡ 1

m0
EyEξ0 log

(
Eξ1Ez

[
I(y

∣∣√q0ξ0 +
√
q1 − q0ξ1 +

√
Q− q1z, β)

]m0)
= 1
m0

∫
dyPy(y)
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Dξ0 log

∫
Dξ1

(∫
dzNz

(√
q0ξ0 +
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q1 − q0ξ1, 1− q1
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e−βV (y|z)

)m0

(E.38)

' 1
m0

∫
dyPy(y)

∫
Dξ0 log

∫
Dξ1e

−m0βminz
[
V (y|z)+ 1

2β(1−q1)(z−
√
q0ξ0−

√
q1−q0ξ1)2

]

Taking q1 → 1 with β →∞ and m0 → 0 in (E.32), and defining Ω0 = ω0
χ , we obtain the 1RSB

ground state energy

e(1RSB)
gs = Extr

χ,Ω0,q0

{ 1
2Ω0χ

log (1 + Ω0∆q) + q0
2χ (1 + Ω0∆q) (E.39)

+ α

χΩ0
Eξ0 logEξ1e

−Ω0χminz
[
V (y|z)+ 1

2χ

(
z−√q0ξ0−

√
∆qξ1

)2]}
.

E.6.3 2RSB ground state energy e(2RSB)
gs

Taking q2 → 1 with β →∞, we define Ω0 = m0β
χ ,Ω1 = m1β

χ , we obtain in the same fashion the
2RSB ground state energy of the spherical perceptron:

e(2RSB)
gs = Extr

χ,Ω1,Ω0,q1,q0,

{
q0

2χ(1 + Ω1(1− q1) + Ω0(q1 − q0) + 1
2Ω1χ

log(1 + Ω1(1− q1)) (E.40)

+ α

χΩ0
Eξ0 logEξ1
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−Ω1χminz
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]]Ω0/Ω1

1
2Ω0χ

log
(

1 + Ω0(q1 − q0)
1 + Ω1(1− q1)

)}
Note that taking q1 = q0,m0 = m1 recovers the 1RSB expression.
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RÉSUMÉ

Au cours de la dernière décennie, les techniques d’apprentissage automatique ont connu de formidables progrès, et
donnent lieu à de nombreuses applications. Elles sont néanmoins très difficiles à analyser, car elles impliquent l’utilisation
de réseaux de neurones profonds sur des données réelles, régis par un nombre énorme de paramètres. La physique
statistique s’est depuis longtemps attaquée à l’étude des réseaux de neurones et des problèmes d’inférence, ce dès les
années 80, se penchant d’abord sur des modèles simplifiés avec données aléatoires. Les algorithmes actuels gagnant
en performance, un renouveau d’intérêt a secoué la communauté physique, qui s’est de nouveau attablée à leur étude ;
s’efforçant de fournir des piliers de compréhension théorique solide à travers des problèmes synthétiques qui décrivent
les cas les plus probables. Les physiciens emploient en particulier des méthodes heuristiques développées dans le
domaine des verres de spin, telle la méthode des répliques. Dans cette thèse, nous approchons plusieurs problèmes
à travers un formalisme d’inférence Bayesienne. Un premier résultat physique est obtenu pour le problème inverse
d’Ising, dans le cas d’un réseau enseignant à poids épars - en grande partie nuls. Nous nous tournons ensuite vers
l’acquisition comprimée, et observons que plusieurs classes de matrices structurées partagent les mêmes transitions
dans le cas d’une reconstruction sans bruit, et nous expliquons ce phénomène pour les matrices invariantes par rotation
à droite. Nous exploitons le lien entre physique statistique et algorithmes de passage de messages pour démontrer
la formule des répliques qui caractérise la performance optimale de reconstruction pour une régression linéaire avec
pénalité convexe. Nous étendons ce résultat au modèle linéaire généralisé, qui incorpore des non-linéarités et décrit un
réseau de neurones à deux couches. Ces deux résultats concernent des matrices invariantes par rotation, dépassant
ainsi l’hypothèse commune de données identiquement et indépendemment distribuées, et permettant d’incorporer des
corrélations entre données. Enfin, nous montrons que la complexité de Rademacher, qui fournit un encadrement de
l’écart de généralisation dans le pire des cas pour des problèmes de classification binaire, est intimement liée à l’énergie
libre fondamentale du problème physique correspondant, et peut être calculée dans certains cas.

MOTS CLÉS

Physique statistique, systèmes désordonnés, apprentissage automatique, méthode des répliques, algo-
rithmes de passage de messages, optimisation convexe.

ABSTRACT

In the last decade, machine learning techniques have achieved tremendous progresses and yield many applications.
However, they are very hard to analyze, due to the huge number of parameters involved in deep networks dealing with real-
world data. Statistical physics have a long-standing tradition of studying neural networks and inference problems, starting
in the 80s, that initially focused on simplified models with random data. As algorithms recently became more efficient,
the physics community witnessed a renewal of interest in the topic, attempting to provide solid theoretical foundations by
studying synthetic problems and describing the typical, most probable case. In particular, physicists use heuristic methods
developed in the spin glass field, such as the replica method. In this thesis, we approach several problems through a
Bayesian inference setting. A first physical result is derived for the inverse Ising problem with sparse teacher weights.
We then consider compressed sensing and observe that several classes of structured matrices share the same phase
transitions, in the noiseless reconstruction case, and provide an explanation in the case of right rotationally invariant
matrices. We build on the link between statistical physics and message passing algorithms, to prove the replica result
characterizing the optimal reconstruction performance for linear regression with convex penalty. We also extend this result
to the generalized linear model, which adds non-linearity and describes a two-layer neural network. Both results tackle
the case of rotationally invariant data matrices, which goes beyond the usual assumption of identically and independently
distributed data, and allows for correlated patterns. Finally, we show that the Rademacher complexity, that provides a
worst-case bound for the generalization gap in classification problems, shares a deep connection with the ground state
free energy of the corresponding physical problem, and can be computed in some settings.

KEYWORDS

Statistical physics, disordered systems, machine learning, replica method, message passing algorithms, con-
vex optimization.
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