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A B S T R A C T

Today, a world without the Internet is unimaginable. By interconnecting billions of peo-
ple worldwide and by o�ering an uncountable number of services, it is now fully em-
bedded in the modern society. Yet, despite technology evolution and development, its
pervasiveness and heterogeneity still raise new challenges, such as security concerns,
monitoring of the users’ Quality of Experience (QoE), care for transparency and fair-
ness.

Accordingly, the goal of this thesis is to shed new light on some of the challenges
emerged in recent years. In particular, we provide an in-depth analysis of some of the
most prominent aspects of modern Internet. A particular emphasis is given on the World
Wide Web, which among all, is undoubtedly one of the most popular Internet applica-
tions, and a speci�c regard to its interaction with machine learning.

The �rst part of this work studies the Quality of Experience of users’ browsing the
Web, with measurements led both in the wild and in controlled environments. Our con-
tributions follow with an original analysis of both the subjective user feedback and the
objective QoE metrics, showing how hard it is to build accurate supervised data-driven
models capable to predict the user satisfaction, along with an in-depth discussion of the
multi-modal nature of the subjective user opinions.

In the second part of this work, we analyze and discuss the fairness of state-of-the-art
transformer-based language models, which are pre-trained on Web-based corpora and
which are typically used to solve a wide variety of Natural Language Processing (NLP)
tasks. Here, we question whether the sheer size and heterogeneity of the Web guarantee
diversity in the models. The core of our contributions rests in the measure of the bias
embedded in the models, that we discuss under di�erent angles.

Finally, the last part of this dissertation addresses the classi�cation of objects gen-
erated by machines through some of the simplest state-of-the-art supervised machine
learning algorithms. Through a minimally intrusive, robust and lightweight framework,
we show that the di�erent behaviors of a �eld of the IP packet, the IP identi�cation (IP-
ID), could be easily classi�ed with few features having high discriminative power. We
�nally apply our technique to an Internet-wide census and provide an updated view of
the adoption of the di�erent implementations in the Internet.
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1
R É S U M É D E L A T H È S E E N F R A N Ç A I S

Aujourd’hui, un monde sans Internet est inimaginable. En inter-connectant des mil-
liards de personnes dans le monde et en o�rant un nombre incalculable de services,
il est désormais pleinement intégré à la société moderne. Pourtant, malgré l’évolution et
le développement de la technologie, son omniprésence et son hétérogénéité soulèvent
encore de nouveaux dé�s, tels que les problèmes de sécurité, le contrôle de la qualité
d’expérience des utilisateurs (QoE), le souci de transparence et celui d’équité. En con-
séquence, l’objectif de cette thèse est d’apporter un nouvel éclairage sur certains des
dé�s qui ont émergé ces dernières années. En particulier, nous fournissons une analyse
approfondie de certains des aspects les plus importants de l’Internet moderne. Un ac-
cent particulier est mis sur le World Wide Web, qui, parmi tous, est sans doute l’une
des applications Internet les plus populaires, et un regard spéci�que sur son interaction
avec l’apprentissage automatique. Nous suivons donc deux directions de recherche prin-
cipales: premièrement, nous nous concentrons sur l’analyse de la qualité de l’expérience
des utilisateurs du Web (Chap. 3 et Chap. 4); deuxièmement, nous mettons l’accent sur
l’utilisation de l’apprentissage automatique appliqué aux mesures d’Internet, en étudi-
ant, d’une part, l’impact de son interaction avec le Web (Chap. 5) et, d’autre part, son
utilisation pour prédire les objets générés par les machines (Chap. 6).

La première partie de ce travail étudie la qualité de l’expérience de navigation des
utilisateurs sur le Web (Web QoE), avec des mesures e�ectuées à la fois “in the wild” et
dans des environnements contrôlés. Dans le chapitre 3, nous abordons le problème de
l’évaluation de la qualité de l’expérience sur un site web populaire en fonctionnement.
Plus précisément, nous le faisons en recueillant l’acceptance de Wikipédia par les util-
isateurs, soit plus de 62k de réponses au sondage, ce qui représente plus du double des
réponses recueillies dans des études similaires à grande échelle sur Wikipédia. Nos con-
tributions continuent avec une analyse originale de l’avis subjectif des utilisateurs et des
mesures objectives de la qualité d’expérience, montrant, d’un côté, une dépendance spa-
tiale entre des caractéristiques collectées, d’un autre côté, la di�culté de construire des
modèles supervisés précis, basés sur les données disponibles, capables de prédire la sat-
isfaction des utilisateurs. Dans le chapitre 4, nous nous concentrons plutôt sur la mesure
de la qualité de l’expérience dans des expériences contrôlées. En particulier, nous avons
mesuré le temps de chargement des pages perçu par les utilisateurs, c’est-à-dire le mo-
ment où un utilisateur considère qu’une page web est chargée et prête à être parcourue,

1
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sur 108 pages web via la plateforme Eyeorg. Dans ce chapitre, on trouve une discussion
approfondie de la nature multimodale des avis subjectifs des utilisateurs.

Dans la deuxième partie de ce travail, nous analysons et discutons l’équité des mod-
èles de langage basés sur des transformateurs de pointe, qui sont pré-entraînés sur des
corpus basés sur le Web et qui sont généralement utilisés pour résoudre une grande
variété de tâches de traitement du langage naturel (NLP). Dans le chapitre 5 nous nous
demandons si la taille et l’hétérogénéité du Web garantissent la diversité des modèles.
Le cœur de nos contributions repose sur la mesure du biais intégré dans les modèles, que
nous discutons sous di�érents angles. Nous observons que l’équité des grands modèles,
entraînés sur une énorme quantité de contenu Web, est déséquilibrée. Plus précisément,
les prédictions faites avec BERT et DistilBERT sur l’anglais américain standard sont
jusqu’à 21% plus précises que celles faites sur l’anglais afro-américain. Nous montrons
également qu’au contraire, BERT, RoBERTa et DistilRoBERTa présentent un biais op-
posé, favorisant alors l’anglais afro-américain. Nos résultats soulignent également que
les variantes distillées de BERT et RoBERTa, conçues pour être plus légères et entraînées
sur une quantité moindre de données, sont les plus justes parmi les sept modèles de lan-
gage testés.

En�n, la dernière partie de cette thèse traite de la classi�cation d’objets générés par
des machines à l’aide de certains des plus simples algorithmes d’apprentissage automa-
tique supervisés à l’état de l’art. Dans le chapitre 6, grâce à un framework solide mais
peu intrusif, nous montrons que les di�érents comportements d’un champ du paquet IP,
l’identi�cation IP (IP-ID), peuvent être facilement classi�és avec peu de caractéristiques
ayant un haut pouvoir discriminatoire. Nous appliquons en�n notre technique à un cen-
sus à l’échelle de l’Internet et fournissons une vue actualisée de l’adoption de ses dif-
férentes implémentations dans l’Internet. En particulier, les résultats du census révèlent
que le global n’est plus l’implémentation d’IP-ID la plus courante et que, au contraire,
d’autres comportements, comme le local et le constant, sont présents. Du point de vue de
la méthodologie, nous constatons que quelques caractéristiques scalaires et un classi�-
cateur simple, su�sent pour prédire avec précision les di�érentes mises en œuvre des
IP-ID. Du point de vue des résultats, en revanche, l’application de cette technique fournit
une vue actualisée de l’adoption des di�érentes implémentations d’IP-ID connues.
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2.1 context and motivation

Originally conceived to allow the communication among multiple computers on a sin-
gle network, the Internet is nowadays a worldwide network used by more than 59% of
the global population every day [57]. It has become an integral part of the society that
today, a world without the Internet is unimaginable. By connecting billions of people
worldwide and by enabling an uncountable number of services, the Internet is now a
core pillar of the modern information society and a critical piece of the human infras-
tructure.

At its dawn, the Internet was designed to support very few simple services, which
were working over rigidly-speci�ed protocols, and mostly text-based (e. g., electronic
mail, remote login, etc.). Over the last two decades, along with interconnecting more
and more users, it sparked the proliferation of many and diverse applications, signi�-
cantly increasing the number and the type of activities that users can carry out online.
Nowadays, the Internet is a complex and big network, with multiple layers of protocols
that interact with each other. It is an evolving system which is constantly changing in op-
erations, size, technologies, and economic relationships, all of which evolve at di�erent
time scales.

Among all, the World Wide Web is undoubtedly one of the most successful Internet
application. Indeed, nowadays, the Web usage is no longer restricted to sending and
reading emails or �nding information through search engines but also for watching
videos in streaming (e. g., Twitch, Youtube, etc.), for building social relations (e. g., Twit-
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ter, LinkedIn, etc.) and for buying goods (e. g., Amazon, AliExpress, etc.). It is then no
surprise to �nd in the Alexa top-10 websites rank of 2021 [1] the predominance of social
networks (baidu.com, facebook.com, etc.) and shopping platforms (tmall.com, taobao.com,
etc.) .

Due to its pervasive and heterogeneous nature, the Internet raised the interest of both
industry and academia researchers, who face a constantly renewed interest in exploring
and understanding the dynamics interacting in this continuously evolving system. Over
the years, to cope with the always increasing Internet demand and popularity, novel
network infrastructures, devices and tools, as, for instance, lighter browsers in the case
of the Web, have been introduced.

Moreover, along with technology evolution and development, also the habits and the
expectations of the users have changed signi�cantly. Indeed, the pervasiveness of the
Internet still raises new challenges: tra�c growth, security concerns, users’ quality of
experience, economic interests, transparency and fairness. Of those, Quality of Experi-
ence (QoE) embraces many of the others, so that, in this regard, all the Internet players
(Domain Name Services, Internet Service Providers, etc.) have to keep up using cutting-
edge technologies in order to provide a satisfactory QoE to the users. This is crucial
since if only one of them is a�ected by an outage, the entire Internet ecosystem might
be a�ected as well, compromising the �nal experience of the users.

2.1.1 Quality of Experience on the Web

Web browsing is one of the most popular applications for both desktop and mobile users.
Slow rendering of the websites was due in the 80s to dial-up connections, in the 90s to
slow 2G connections and it persists nowadays for a wide range of reasons, including the
growingly more complex structure of websites [151] and an increased usage of mobile
devices [41, 111]. This sometimes caused to the World Wide Web, since its inception,
the title of World Wide “Wait” [156]. Indeed, not surprisingly the �rst assessment of
Web performance can be traced back to the early 90s. Since then, a lot of e�ort has been
devoted to speed up the Web, as well as in designing metrics that can accurately tell
whether a webpage loaded fast or not and that can capture well the users’ Quality of
Experience.

The user-perceived latency, in particular, plays an important role in this regard and
has tangible consequences: Amazon claims that 100ms latency penalty results in a 1%
sales loss [90], Google a�rms that an additional delay of 400ms in search responses
reduces search volume by 0.74% [26] and Bing that 500ms of latency decreases the rev-
enue per user by 1.2% [93]. This is why an increasing attention has been given over the
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Figure 1: Relationship between QoS at di�erent layers and user QoE.

years to the QoE o�ered to �nal users and, more speci�cally, this is the reason why a
lot of e�ort has been devoted to reduce delays. However, it is still unclear if and by how
much a latency reduction translates into a better perceived experience from the user
point of view. This, coupled with the manifest aspect of Web QoE heavily impacting
revenues for Web-based companies, motivated a proliferation of new metrics proposals
and validation studies attempting to better capture human perception on browsing expe-
rience. Despite the considerable progresses in this direction, the quality of experience of
Web users’ remains still largely impenetrable. This di�culty is the result of the fact that
users QoE on the Web is a�ected by several factors. Some of them are often measurable,
like those tied to the system (e. g., the network and application Quality of Service met-
rics), some others more frequently unknown and not trackable, more tied to the context
in which the user is located, as the user expectations or expertise. Indeed, the concept
of QoE combines user perception, experience, and expectations with Quality of Service
(QoS) metrics. Figure 1 shows all the elements which contribute to users’ QoE, includ-
ing the relationship between the system in�uence factor, i. e., network and application
QoS, the context and the human subjective component. These factors are strongly in-
terdependent: network-layer QoS (e. g., the quality of the connection, packet losses, etc.)
a�ects and can degrade application-layer QoS metrics, e. g., the time at which the page
is loaded (PLT) or when it becomes interactive (TTI) etc., which in turn in�uences the
way in which the user experiences the browsing.

As a consequence, the analysis of Web QoE needs to couple the collection of two
type of measurements: the objective metrics, which include the system in�uence factors,



6 introduction

typically automatically collected with the browser, and the subjective human feedback,
which instead require involving the users.

The objective QoS metrics measured from an endpoint at network layer, e. g., latency,
packet loss, bandwidth, etc., from a session viewpoint are gathered together as meaning-
ful metrics at application layer. These metrics rely on measurable data (e. g., network,
browser events) capturing Web quality [2, 11, 20, 39, 54]. Most of these metrics are avail-
able from the browser navigation timing [46] as they pinpoint precise time instants of
the page loading progress, as the time when the page becomes interactive (TTI), or the
time when the �rst pixel is painted (TTFP), or can be inferred from packet/�ow-level
tra�c [73, 147] and are easy to include as proxy of user experience.

On the other side, the subjective metrics require the user feedback and rely instead
on directly collecting responses from users regarding di�erent questions related to Web
QoE. Di�erent approaches have been proposed in the literature: collect the Mean Opin-
ion Score (MOS) by averaging answers from a set of many users which have been asked
to rate on a 5-scale range their QoE [21], or ask users to comment on a video of the
website rendering process [54, 81, 149], or even measure the “user acceptance” of a ser-
vice [70].

Finally, to map these two kind of measurements two main approaches have been estab-
lished in literature: expert models, where domain experts specify a closed form function
and use subjective data to �t model parameters [51, 76, 77], or machine learning models,
where instead the subjective data is used to train the model [39, 54].

2.1.2 Machine Learning in modern science

Machine learning is a well established subset of Arti�cial Intelligence (AI) crawling with
strong technical and scienti�c background. Its success in several application domains
yielded to a growing demand for systems that can be used by both experts and novices
in the �eld of machine learning. Nowadays, machine learning has become an integra-
tive part of the modern scienti�c methodology and an essential building block for data
science. It o�ers the possibility to adopt automated procedures for the prediction of dif-
ferent phenomena based on past observations, unraveling underlying patterns present
in data and providing insights about the problem under investigation. For instance, as
aforementioned, machine learning has been used to build models which map the two
di�erent kind of measurements for Web QoE (objective metrics and subjective user feed-
back), in order to automatically extract the user-label data from the collected metrics.

Yet, machine learning should ideally not be used as a black-box tool, but rather con-
sidered as a methodology, with a rational thought process that is entirely dependent
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on the problem under study. Speci�cally, the use of algorithms should ideally require
an adequate understanding of their mechanisms, properties and limitations, in order to
better contextualize and interpret their results.

This is particularly relevant in the case of the algorithms which run the risk of repli-
cating and even amplifying human biases, particularly those a�ecting protected groups.
Indeed, models pre-trained on large datasets could encode biases potentially damag-
ing towards marginalized populations and could reinforce existing hegemonic view-
points [17]. The deployment and wide commercialization of biased algorithms would
expose potential ethical implications that should not be understated. This already man-
ifested in recent years in several ways with varying degrees of consequences for the
subject group. Notable cases brought to the fore include the gender bias in Amazon
online recruitment tools [65], where the AI software penalized any resume that con-
tained the word “women’s” in the text, hence downgrading the resumes of women who
attended women’s colleges, and the COMPAS algorithm [79] used by some U.S. states
to predict whether defendants should be detained or released, which was found to be
biased against African-American.

This is crucial in the case of natural language processing (NLP), whose applications
are among the most pervasive (e. g., hiring and recruitment, chatbots, conversational
systems, etc.) and, for which, the presence of a bias would be detrimental and have high
impact harmful consequences. In this area, the last three years were characterized by
the emergence of several innovative NLP algorithms designed to solve di�erent tasks
and engineered to assist the most diverse applications. Among those, groundbreaking
transformer-based language models (LMs) have been proposed and gained lots of sci-
enti�c interest due to their sizable improvements on a wide range of NLP tasks [43, 87,
88, 91, 124]. All the proposed models have been pre-trained trained on Web-based cor-
pora, ranging from user-generated content, as Reddit, to encyclopedia, as Wikipedia, to
literary works, as BookCorpus, and news articles, as CC-News.

Actually, given the sheer size and heterogeneity of the Web, one could expect these
models to guarantee diversity and be not prone to bias. However, the assumption of
considering large amounts of Web text as representative of all of humanity has already
been widely questioned in literature. Several works [34, 74, 137, 144, 160] highlighted
the risk that this could have in perpetuating dominant viewpoints, resulting in models
that embed stereotypical and derogatory associations along gender, race, ethnicity, and
disability status. More speci�cally, when pre-trained LMs demonstrate a preference de-
pending on the way a group of people speak, i. e., by understanding one group better
than the other, we are dealing with a problem of algorithmic bias and, consequently, of
fairness.
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2.2 reading map and contributions

This thesis is organized in six chapters and structured as follows. This �rst introductory
chapter is devoted to provide a global context and present the problems addressed.

During this introductory, we divide the objective of the thesis in three main research
questions, enumerated in the following:

- Q1: How accurately can we measure and predict the Quality of Experience of users

browsing on the Web?

- Q2: Does the Web sheer size and heterogeneity ensure the fairness of the models

trained on Web-based content?

- Q3: Are machine learning models better at classi�cation tasks when trained on con-

tent generated by machines instead of humans?

2.2.1 Thesis Organization

In the following, we brie�y sum up our contributions and schematize the outline in
Figure 2:

◦ In Chapter 3 we study the users’ Quality of Experience on the Wild Web, address-
ing question Q1. We do this by performing a large-scale study of one of the most
popular websites in operation, namely Wikipedia, and explicitly asking a fraction
of its users for feedback on their actual browsing experience.

– We show that the analysis of the collected subjective users’ feedback reveals
both expected (e. g., the impact of browser and network connectivity) and
surprising �ndings (e. g., absence of day/night, weekday/weekend seasonal-
ity and other temporal dependencies).

– Also, we leverage user survey responses to build supervised data-driven
models to predict user satisfaction which, despite including state-of-the art
quality of experience objective metrics and a considerable number of features
of di�erent type, are still far from achieving accurate results.

– The collected dataset is made publicly available, hopefully contributing in
enriching and re�ning the scienti�c community knowledge on Web users’
Quality of Experience (QoE).
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Figure 2: Outline of the thesis.

◦ In Chapter 4 we continue the study of question Q1 and focus on QoE when this
is measured in controlled environments, conducting experiments diametrically
opposed to those shown in Chapter 3. An often implicit assumption made by in-
dustrial and academic research communities is that a single metric is su�cient to
assess whether a webpage loaded fast.

– In this work we collect and make publicly available a unique dataset which
contains webpage features (e. g., number and type of embedded objects) along
with both objective and subjective Web quality of experience metrics. This
dataset was collected by crawling over 100 websites—representative of the
top 1 M websites in the Wild Web—while crowdsourcing the subjective user
opinions on the user perceived page load time (uPLT).

– We show that the uPLT distribution is often multi-modal and that, in practice,
no more than three modes are present.

– Our analysis reveals that, for complex webpages, each of the di�erent objec-
tive QoE metrics proposed in the literature (such as ATF, TTI, PLT, etc.) is
suited to approximate one of the di�erent uPLT modes.

◦ In Chapter 5 we investigate the relationship between the Web and machine learn-
ing models, addressing question Q2. Speci�cally, we test whether the sheer size
and heterogeneity of the Web guarantee also that the models trained therein are
bias-free and, consequently, are inclusive with respect to di�erent social groups.

– We study the fairness of state-of-the-art transformer-based language models
recently proposed and widely adopted for a plethora of NLP tasks. They have
been trained on Web-based content of di�erent size and type.

– We propose and validate an evaluation technique to assess the quality and
the bias of the predictions of 7 language models on transcripts of both spoken
African American English and Standard American English.
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– Our analysis shows the presence of diverse biases encoded by di�erent state-
of-the-art language models, like BERT and RoBERTa, de facto revealing that
the heterogeneity of the Web is a feature that does not imply diversity.

◦ In Chapter 6 we instead focus on Q3 and observe the behavior of some of the sim-
plest state-of-the-art supervised machine learning models when they are trained
on content generated by machines. We show how predictions are accurate when it
comes to the classi�cation of objects with very pre-determined patterns, in sharp
contrast with human-generated data as shown in Chapter 3.

– We propose a framework to classify the di�erent behaviors of the identi�ca-
tion �eld of the IP packet (IP-ID). This in the past was mostly implemented in
the operating systems as a simple packet counter, which allowed to perform
a wide range of tasks. However, this behavior has been discouraged over the
years for security reasons and other policies, as the use of random values,
have been suggested.

– Despite being only minimally intrusive, our technique is signi�cantly accu-
rate (99% true positive classi�cation), robust against packet losses (up to
20%) and lightweight (few packets su�ces to discriminate all the IP-ID be-
haviors).

– We then apply our technique to an Internet-wide census, where we actively
probe one alive target per each routable /24 subnet, and provide an updated
picture of the Internet-wide adoption of the di�erent known IP-ID imple-
mentations.

◦ Finally, in Chapter 7 we summarize and report the main contributions to the re-
search community and conclude the thesis with a discussion of the open issues.

2.2.2 Publications

The content of this dissertation has been partially published in international conferences
and journals. In the following we report the list of papers published or under review:

◦ Salutari, F., Cicalese, D., & Rossi, D., “A closer look at IP-ID behavior in the Wild”.
International Conference on Passive and Active Network Measurement, (PAM’18).
2018.

◦ Salutari, F., Da Hora, D., Dubuc, G., & Rossi, D., “A large-scale study of Wikipedia
users’ quality of experience”, The Web Conference (WWW’19). 2019.
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◦ Salutari, F., Da Hora, D., Dubuc, G., & Rossi, D., “Analyzing Wikipedia Users’ Per-
ceived Quality Of Experience: A Large-Scale Study”, IEEE Transactions on Network
and Service Management. 2020.

◦ Salutari, F., Da Hora, D., Varvello, M., Teixeira, R., Christophides, V., & Rossi, D.,
“Implications of the Multi-Modality of User Perceived Page Load Time”, IEEE Med-

ComNet Conference. 2020.

◦ (UNDER REVIEW) Salutari, F., Linguaglossa L. & Lipani A., “Quantifying the Bias
of Transformer-Based Language Models for African American English in Masked
Language Modeling”, The 2021 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP). 2021.

Moreover, the collaboration with other researchers on di�erent topics resulted in the
following contributions:

◦ (UNDER REVIEW) Bahri, M., Salutari, F., Putina, A. & Sozio, M., “Automated Ma-
chine Learning with a Focus on the Unsupervised Learning: a Survey”, The Inter-
national Journal of Data Science and Analytics (JDSA). 2021.

◦ (UNDER REVIEW) Putina, A., Salutari, F., Bahri, M. & Sozio, M., “AutoAD: an Auto-
mated Framework forUnsupervised Anomaly Detection”, European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML/PKDD). 2021.
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3.1 the wikipedia case

Since its inception, the World Wide Web has sometimes been dubbed as World Wide
“Wait” [156]. Slow rendering of the websites happened due to dial-up connections in the
80s, slow 2G connections in the 90s and so on, but it also persists nowadays for several
reasons including unexpected sources of latencies [33], interactions between network
protocols [50], the growingly more complex structure of websites [151], an increased
usage of mobile devices [41, 111] and the emergence of new protocols [127]. Yet, whereas
the study of Web performance is commonly [41, 50, 98, 111, 127, 150, 151, 163] tackled
via simple objective metrics [46], and rather typically the Page Load Time (PLT), the
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quality of Web users’ experience is still largely impenetrable [29, 81]. As such, a number
of alternative metrics that attempt at better �tting the human cognitive process (such
as SpeedIndex, user-PLT etc., see Section 3.2) have been proposed as a proxy of users’
Quality of Experience (QoE), whose monitoring is important for both Over The Top
(OTT) operators to keep users engaged as well as for Internet Service Providers (ISP) to
lower user churn.

At the same time, studies involving more advanced metrics are typically validated
with rather small-scale experiments, either with a small number of volunteers, or by
relying on crowdsourcing platforms to recruit cheap labor and produce a dataset labeled
with user opinion. Often, videos of websites rendering process are used (as opposite to
actual browsing), with possibly very speci�c instruction (e. g., such as in A/B testing, by
clicking on the fastest of two rendering processes) that are however rather di�erent from
the cognitive process in action during the typical user browsing activities. Additionally,
such tests are carried on a limited number of �xed conditions, with a small heterogeneity
of devices, Operatying Systems (OSs) and browsers, and are not exempt from cheating
so that ingenuity is needed to �lter out invalid answers from the labeled dataset [54,
149]. Finally, because these tests are carried on a limited number of pages, it is possible
to evaluate computationally costly metrics, such as those that require processing the
visual rendering of the website, which would hardly be doable in the World “Wild” Web.

Our aim is instead to take a completely di�erent approach and perform a large-scale
study of a popular website in operation, by explicitly asking a fraction of users for feed-
back on their actual browsing experience. Clearly, the approach is challenging but it
opens the possibility to gather more relevant user-labels, as they are issued from real

users of a real service, as opposite to crowdworkers payed to play a game (e. g., �nd
which video completes �rst as in A/B testing).

We do so by launching a measurement campaign over Wikipedia, that has gathered
over 62k survey responses in nearly 5 months. We complement the collection of user
labels with objective metrics concerning the user browsing experience (ranging from
simple PLT [46] to sophisticated SpeedIndex [2]), and harvest several data sources to
further enrich the dataset with several other informations (ranging from technical spec-
i�cation of the user device to techno-economic aspects tied to the user country) so that
each user survey answer is associated with over 100 features. Summarizing our main
contributions:

◦ �rst, we use survey data to deeply characterize user satisfaction along both tempo-
ral and spatial dimensions: shortly, we �nd that on average 85% of users are sat-
is�ed and show that user satisfaction does not exhibit seasonality at daily/weekly
timescales (which is unexpected) and document evidence of spatial dependency
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across many of the collected features (e. g., network access, browsing equipment,
country wealth, etc.);

◦ second, we use labels to build data-driven models of user experience: despite in-
cluding performance metrics considered to be the state-of-the art in user quality
of experience, we �nd that the model still falls short from attaining satisfactory
performance in operational settings;

◦ third, in spirit with the current trends toward research reproducibility, we release
the collected dataset as open-source (after having carefully ensured that no sen-
sitive information is leaked in the process, see Section 3.3.3), as we hope this can
help the scienti�c community in re�ning its understanding of Web users’ experi-
ence.

In the remainder of this chapter, after overviewing the related work (Section 3.2),
we explain the feedback collection process and dataset (Section 3.3), which we dissect
under both temporal and spatial angles (Section 3.4) and that we leverage to build a
data-driven model of Wikipedia users’ quality of experience experience (Section 3.5).
We �nally discuss current limitations in Web QoE assessment and possible directions to
circumvent them (Section 3.6) and summarize our �ndings (Section 3.7).

3.2 background and related work

Assessment of Web users’ quality of experience can be traced back to [114], that was
among the �rst to adapt classic results of psycho-behavioral studies gathered in the
computer domain [102] (in turn inspired by work by Weber and Fechner in the late
1800s), to the computer-network domain. This knowledge was later embedded into stan-
dards ITU-T G1030 [76, 126] (and models [51]) that encode the Weber-Fechner logarith-
mic [76, 126] (or exponential [51]) relationship between a stimulus (e. g., a delay) and its
perceived impact (e. g., nuisance for Web users). However, while logarithmic models are
valid for simple waiting tasks (e. g., �le downloads), the case of interactive Web browsing
is knowingly much more complex, as ITU-T G1031 [77] and [48] �rst pointed out.

Still, with some exceptions [10, 11, 29, 39, 145, 149, 162] most studies still rely on sim-
ple metrics such as the Page Load Time (PLT) to assess the expected impact of new Web
protocols [50, 127, 151, 163], Web accelerators [98, 150] and devices [111, 115]. While re-
ducing delay is clearly a desirable objective, it is however unclear if (and by how much)
a latency reduction translate into a better perceived experience, which is the ultimate
goal of the above studies. In other words, while the importance of delay in human per-
ception is agreed upon, the exact relationship between the Web response time and user
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satisfaction appear much less clear than it appeared to be [109], and motivated a prolif-
eration of new metrics proposals and validation studies attempting at going beyond PLT.
Given that many di�erent de�nitions of PLT [49] are used in the literature, we specify
that in this work we denote PLT as the time elapsed between the fetchStart and
loadEventStart browser events de�ned by W3C Navigation Timing [46].

Table 2: Summary of recent related work gathering user feedback for Web quality of experience
assessment.

Year
[ref]

Scale/heterogeneity Experimental
settings

Main focus

Lab+CW1 Pages Network2 Sw3 Hw4 Samples
2015
[29]

0 + 120 30 - - - 3.6k Prioritize ele-
ments (Above
The Fold and
user ratings)

Per-user content pri-
oritization

2016
[149]

100 + 1k 100 n.a. 1 1 6k Side-by-side
videos (of the
same site)

uPLT metric de�ni-
tion

2017
[21]

147 + 0 25 32 1 1 4k Controlled
browsing
experiments

HTTP vs HTTP/2

2017
[162]

28 + 323 28 3 1 1 2.5k Side-by-side
videos or the
same website
in di�erent pro-
tocol settings

HTTP/2 push impact

2017
[54]

0 + 5.4k 500 16 1 1 40k Side-by-side
videos (160 dif-
ferent website
pairs)

PSI metric de�nition

2017
[81]

50 + 0 45 1 1 1 2.2k Webcam,
eye-tracking
glasses

Eye gaze, uPLT

2018
[39]

241 + 0 12 n.a. 1 1 9k Controlled
browsing
experiments

ATF metric de�ni-
tion

2019
[161]

0 + 50 7 11 1 1 n.a. User rating
of video ren-
dering of Web
browsing

QoE-aware network-
ing

2019
[130]

35 + 1.2k 5 3 1 1 10k User rating
of video ren-
dering of Web
browsing

QUIC protocol

this

study

62k users 46k 3.8kISPs 45 2.7k 62k User feed-
back from
real browsing
activity

User satisfaction

1Crowdworkers, 2Number of controlled network conditions, 3Software browser, 4Hardware device
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3.2.1 Web QoE metrics

Web QoE metrics fall in two main categories: objective and subjective. As we are inter-
ested in measuring browsing experience on individual pages, engagement metrics such
as those used in [13, 103] are clearly out of scope.

Objective: As such, objective metrics of interest for Web user QoE rely on measurable
data (e. g., network, browser events) capturing Web quality [2, 11, 20, 39, 54]. These
metrics can be further categorized in two classes.

On the one hand, there are tracking metrics that either pinpoint precise time instants

and track speci�c events of the W3C Navigation Timing [46]: notable examples include
the time at which the Document Object Model (DOM) is loaded or becomes interactive
(TTI), the time at which the �rst element is painted (TTFP), the Time to The First Byte
(TTFB), the time at which the page is fully loaded (PLT)1 or the time when the Above
The Fold (ATF) portion of the page is rendered [27]. Most of these metrics are available
from the browser Navigation Timing [46] or can be inferred from packet/�ow-level traf-
�c [73, 147] and are easy to include (though not necessarily relevant) as proxy of user
experience: for instance, [29] aim at prioritizing delivery of content that is rendered
above the fold (futher specializing content relevance for each user).

On the other hand, there are the integration metrics that are founded on the idea that
one page can render faster than another despite �nishing loading at the same “time”
(e. g., in terms of PLT). These metrics integrate all events of the waterfall representing the
visual progress of the page, such as SpeedIndex [2] and variants [20, 54, 129], that have
received signi�cant attention lately. Denoting with x(t) ∈ [0, 1] the visual completeness
ratio of a page, metrics in the SpeedIndex family are de�ned as the integral of the residual
completion

∫
(1− x(t))dt and di�er in the way they express x(t). Initial de�nitions in

this family required capturing movies of the rendering process [2], or to further use
similarity metrics SSim [54], making them di�cult to use outside a lab environment.
To counter this issue, simple approximations such as the ObjectIndex/ByteIndex [20]
that merely count the fraction of objects/bytes received (over the total amount), or as
the RUM SpeedIndex (RSI) [129] that use areas of rectangles for objects as they are
painted on screen (over the total screen size) have been proposed. In this chapter, we use
RSI, which is among the most advanced Web QoE metrics considered to be the current
industry standard. Finally, while we are aware that more complex approaches involving
the spatial dimension (i. e., eye gaze) also exist [29, 81], but they are not covered by this
work (cfr. Section 3.6).

1 PLT corresponds to a browser’s onload event, which indicates that all of the objects in the document are
in the DOM, and all the images, scripts, links and sub-frames have �nished loading.
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3.2.2 State of the art limitations

At the same time, the above metrics su�er from a limited validation with user feedback.

Subjective: Subjective metrics rely on directly collecting responses from users regard-
ing di�erent questions related to Web QoE. Typical approaches are to crowdsource the
validation with A/B testing [54, 149], or by performing experiments on real pages in
controlled conditions [39, 109, 112]. Both approaches have their downsides. Controlled
experiments with real HTTP server/clients and emulated network conditions for a more
faithful and interactive browsing experience, but are harder to scale, topping to few hun-
dreds users and few thousands data points [39]. A/B tests try to circumvent this limit,
but introduce other limitations. First and foremost, A/B testing is hardly representative
of Web browsing activity, since crowdworkers are instructed to select which among two
videos, that they are passively screening side-by-side and that correspond to two di�er-
ent Web rendering processes, appears to �nish �rst – whereas it is known that even
for a simple Web browsing task such as information seeking, already di�erent types of
searches are rather di�erent from the user standpoint in terms of cognition, emotion
and interaction [106]. In other words, these experiments inform us that humans can
perceive di�erences in these rendering processes, however they fail to signify if these
perceptible rendering changes would impact the user satisfaction through the course of
a normal browsing session.

The time at which users consider the process �nished is denoted as user-perceived-
PLT (uPLT) [149] or Time To Click (TTC) [54] and is often used as a ground truth of
user perception. Yet, when users select a uPLT in [149], they are proposed with similar
frames at earlier times, which has the bene�cial e�ect of clustering answers and make
uPLT more consistent at the price of possibly inducing a bias. Similarly, [54] employs
SpeedIndex and TTC to forecast which among the left or right video was selected by the
user at time TTC: the classi�er in [54] is accurate in predicting which of the two videos
is perceived as fastest by users. Yet, �ndings in [54] are not informative about whether
the user would have been dissatis�ed from the slower rendering had s/he actually been
browsing.

3.2.3 Our contribution

To get beyond the limitations of controlled and crowdsourced experiments just exposed
in Section 3.2.2 (e. g., few users involved, lack of real user behavior representativeness
and low data heterogeneity), in this work we are the �rst to query, at scale, Web users
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for their feedback on the quality of their browsing experience. We remark that this ap-
proach is rather common with VoIP services (e. g., Skype, Hangouts often ask for Mean
Opinion Score (MOS) rating at the end of the call), but to the best of our knowledge this
has not been attempted before on the wide and wild Web. Speci�cally, instead of col-
lecting user feedback on a 5-grade Absolute Category Ranking (ACR) scale, we ask for
a slightly more than binary feedback (see Section 3.3), which let us carry on a thorough
characterization of user satisfaction (see Section 3.4) and formulate a simple, yet hard,
binary classi�cation problem (see Section 3.5). Particularly, we provide a wide variety of
classi�cation results but we especially provide a thorough characterization of user QoE
along the temporal and spatial dimensions (Section 3.4).

The usefulness of the investigation we carry on and of the models we propose is clear
when we consider that recent work such as [52] still employs simple response times as a
proxy of user sastisfaction for Web performance, whereas authors [6] go at a deep level
to investigate performance of Video application, considering a more involved Pseudo-
Subjective Quality Assessment (PSQA) involving a Random Neural Network (RNN). It is
thus clear that, whereas models for video quality abunds [31, 32], scienti�c community
still misses an established and agreed MOS model for Web performance. At the same
time, we point out that the community started adopting slightly more accurate objective
models (as in [10, 125, 134] to perform large scale studies), that are inspired by metrics
such as SpeedIndex that we consider in this work, although the human component –
which is among the main contribution of this work– is generally missing. Particularly,
our collection e�ort allows us to perform a large scale study across the human dimension,
to levels that were previously unprecedented.

Compared to recent literature, compactly summarized in Tab. 2, we are the �rst to
involve a large number of real users (62k from 59k distinct IP addresses) accessing a
diverse set of pages (46k Wikipedia pages, which are more likely similar among them
than the set of di�erent websites used in other studies), gathering over 62k user re-
sponses overall (more than twice the survey responses collected in similar large-scale
Wikipedia studies [139]). Particularly, whereas most of the studies involving lab volun-
teers & crowdworkers employ a single browser and hardware (since crowdworkers are
shown videos rendered with a single browser and hardware combination) on a relatively
small set of synthetic controlled network conditions (1–32), in our dataset we observe
45 distinct browsers software used on over 2, 716 hardware devices2 on 3, 827 ISPs – a
signi�cant change with respect to arti�cial and controlled lab conditions, which make
the dataset that we release at [3] of particular interest.

2 As inferred from the User-Agent header �eld, after having �ltered bots
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Figure 3: Appearance of the Survey in the English Wikipedia (answer order is randomized).

3.3 user feedback collection

Wikipedia is, according to Alexa [1], the 5th most popular website, with over 1 billion
monthly visitors, that spend over 4 minutes over 3 pages on average per day on the
site. We engineer a survey that is triggered after the page ends loading and collects user
feedback (Section 3.3.1), that we augment with additional information (Section 3.3.2).

We note that, while this work is not the �rst in leveraging Wikipedia surveys in gen-
eral (see e. g., [139]) this is the �rst to gather user feedback on quality of Web browsing
experience from operational websites, for which we believe releasing the dataset can be
valuable for the community. To make sharing of the dataset possible, we take special
care into making user and content deanonymization as hard as possible, without hurt-
ing the dataset informative value as much as possible (Section 3.3.3). In this section, we
also perform a preliminary assessment of the collection methodology, to con�rm the
absence of bias in the response process (Section 3.3.4).

3.3.1 Technical aspects of the survey collection

Due to limitations in Wikimedia’s caching infrastructure, the survey is injected into
the page via client-side code. Wikimedia continuously collects Navigation Timing per-
formance data of a randomly selected sample T of page views (less than 1 every 1,000
pageviews). The survey is then displayed to a randomly selected sub-sample Sf this pop-
ulation (less than 1 every 1,000 of the pageviews with Navigation Timing information)
and only part of the surveys do receive an answer A. Since A ⊂ T, several features
(that we detail in Section 3.3.3 and analyze in Section 3.4.3) related to page loading per-
formances are also available for pages sampled in the survey responses.

The survey appears on Russian, French and Catalan Wikipedias, as well as English
Wikivoyage, and it is displayed in the appropriate language to the viewer. We collect the
survey on mobile & desktop version of the site (but not on the mobile app). The goal of
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Table 3: Collected corpus of Wikipedia users’ QoE feedback.

Period May 24th – Oct 15th
No. of survey requests |S| = 1746799
No. of survey answers |A| = 62740 |S|/|A| = 3.6%
No. of positive answers |A+| = 53208 |A+|/|A| = 84.8%
No. of neutral answers |A0| = 4838 |A0|/|A| = 7.7%
No. of negative answers |A−| = 4694 |A−|/|A| = 7.5%

the survey is to assert whether there are Quality of Experience issues that a signi�cant
fraction of users consider to be problematic, and that Wikipedia should thus deal with.
Since it is well known that “results that are only based on user ratings do not re�ect
user acceptance” [70], instead of asking users a 5-grade Absolute Category Ranking
(ACR) score, the survey explicitly asks for user acceptance, i. e., users can respond with
a positive, neutral or negative experience. For the sake of completeness, a snapshot of
the survey question as it is rendered for English readers is reported in Fig. 3. To avoid
biasing user answers, we randomize the order of survey answers and we avoid priming
e�ect by refraining to explain/formulate speci�c survey goal (e. g., collect data to make
Wikipedia faster) prior of the answer (survey purpose and data collection policies are
available through the “privacy statement” hyperlink shown in Fig. 3). Similarly, neutral
feedback is meant for, e. g., users that have no honest opinion, as well as users who were
not paying attention during the rendering, or users that do not understand the question,
etc., to avoid biasing the results (Section 3.3.4).

The survey is injected in the DOM after the page �nished loading (i. e., when the
loadEventEnd [46] �res). In order to give the survey visibility, it is consistently
inserted in the top-right area of the wiki article, ensuring that it typically appears above
the fold. However, as the users can freely browse the page before the survey appears, it
might be out of sight when it’s injected in the DOM, which is why we also record the
time elapsed between the loadEventEnd and the moment the user sees the survey.
Also users that are shown the survey are free not to respond to the survey, or might as
well respond very late (e. g., possibly browsing to other tabs in the meanwhile).

Overall, users responded as reported in Tab. 3 to about 3.6% of the over 1.7M surveys
that have been displayed in the period, for a total of over 62k anwers: 84.8% of the users
respond positively to the survey with an almost equal split of the remaining answers to
a neutral (7.7%) or negative (7.5%) grades.
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3.3.2 Collected features

We enrich the collected corpus with external sources that can be useful for a better
understanding of the survey responses (Section 3.4) as well as being instrumental to
the purpose of feedback prediction (Section 3.5). A terse summary of the metrics col-
lected (as well as those we plan to release) is reported in Tab. 4. We discuss rationales
of the selection for metrics that we make available in the publicly available dataset in
Section 3.3.3.

Page: For each page, we record 15 features that concerns it (e. g., its URL, revision ID,
size, etc.) and that thus are critical from a privacy point of view. We additionally record
the time lapse at which the survey is shown to users, which is instead innocuous.

Performance: Since S ⊂ T, then all the 32 Navigation Timing performance-related met-
rics (such as DOM, PLT, TTI, TTFP, connection duration, number of HTTP redirects and
their duration, DNS wait time, SSL handshake time, etc.) are also collected. Finally, we
compute the page download speed which is a simple, yet non linear, transformation of
page size and connection duration, by quantizing it in steps of 100Kbps. These informa-
tions are speci�c to page views, and are less critical to be shared.

User: The 32 collected user-related metrics include the browser, device and OS families.
Additionally, we know whether users are logged in Wikipedia, if they are accessing
Wikipedia through a tablet device and the number of edits that users have made (coarse
bins). These informations are of course highly critical.

Environment: The 36 environmental collected features pertain time, network, geoloca-
tion and techno-economic aspects. With the exception of time information, which are
directly available from the survey query, we extensively use external data sources to
extract environmental features.

As for the network, we leverage MaxMind [100] for IP to ASN and ISP mappings and
for geolocation at country (and city) granularity. ISP and ASN mappings are potentially
interesting as it can be expected that performances (for the same access technology) vary
across ISPs (access technology is also available for about 2/3 of the samples). Concerning
geolocation, whereas databases are known not to be reliable for city-level geolocation
of server addresses [119], they are generally su�ciently accurate for resolving customer
IP addresses, and especially when only ISO-3166-2 country-level precision is required.
Country-level precision also allows us to relatively compare performances across users
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in the same environment, i. e., we normalize the page download speed with respect to
the median per-country speed observed in our dataset (in terms of ratio, absolute and
relative error).

Additionally, ties between country wealth and network tra�c volumes have been es-
tablished in the literature (particularly, deviation from expected volume [140]): it is thus
worth investigating whether there also exist ties between wealth and users’ impatience.
We use the Gross Domestic Product (GDP) information made available by the World
Bank Open Data project [155]. The per-country economic features we consider (namely,
per-country GDP, country GDP rank, per-country per-capita GDP, etc.) are expressed in
terms of Geary-Khamis dollars, which relate to the purchasing power parity, i. e., how
much money would be needed to purchase the same goods and services in two countries.
The rationale in so doing is that, albeit Web users perception is tied to psychophysics
laws [126], there may be environmental conditions that tune this law di�erently in each
country. For instance, a �xed amount of delay (the stimulus) may have a smaller percep-
tual value to users of countries with poor Internet access which GDP-related features
might capture: e. g., in other words, one can expect users in a high-GDP country to have
better average performance and thus be more impatient than users from a low-GDP one.
In particular, we use the 2012 per-country dataset provided by [55] since arguably the
world-level statistics evolve on a relatively long timescale.

Finally, we expect user-home gateways [143] and particularly end-user devices [41,
111] to have a direct impact on the overall performance. As such, we complement the
ISP-level view with a device-level information. Particularly, we harvest the Web [64]
to �nd techno-economic information about user devices and in particular, collect de-
vice CPU, memory and pricing3 information. Intuitively, this information complements
the per-country GDP information as, e. g., there may be further perceptual di�erences
between users with a costly smartphone in low-GDP vs high-GDP countries. We rec-
ognize that device CPU and memory specs are only an upper-bound of the achievable
performance, as it is the mixture of applications installed and running on a device that
determine the amount of available CPU and RAM resources, from which user perception
will be ultimately a�ected [41, 111]. Missing this information on a per-sample basis, we
attempt to at least construct the per-device statistics, by considering Navigation Timing
information of a large representative sample of Wikipedia users. Particularly, we con-
sider the month of August 2018 during which we observe over 30 million Navigation
Timing samples from 29,336 di�erent devices, including all 2,716 devices in our survey.
We then construct deciles of per-device performance (e. g., of page load time and similar

3 Note that we collect pricing information at the time of our query, and not at the time when the device was
actually bought; we also ignore price di�erences among countries, and per-ISP o�er bundles.
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Table 4: Summary of the features (T/WWW/PA) that are associated to each users’ survey re-
sponse. The mutual information between the survey answer and T/WWW/PA features
in the class is reported as a boxplot.

Class T/WWW/PA Sample features MI(x,y)

Page 15/2/1
Wiki, Page size,
Survey viewtime,
etc.

Performance 32/26/18
PLT, TTI
TTFP, RSI, etc.

User 32/21/0
Device, Browser,
editCountBucket, etc.

Environment 36/12/0
Connection Type,
Time, Geolocation, etc.

Overall 115/61/19
Total
WWW [132] paper
Publicly Available

timing information): indeed, it can be expected that users of knowingly slow devices be
less impatient, which this additional data source could provide.

3.3.3 Ethics

The dataset we collect contains obviously sensitive information allowing to deanonymize
Wikipedia visitors (such as IP addresses, version of their browser and handsets), as well
as linking them to the content they visited (e. g., page, revision ID, time of their visit,
etc.).

Despite the dataset release policy explicitly forbids user deanonymization, in the in-
terest of respecting personal privacy we have to obscure information so to render user
deanonymization as hard as possible, while still allowing meaningful information to be
extracted from the data.

At �rst, as discussed in the WWW [132] paper, we proposed a conservative vetting
process, that selectively �ltered/obscured/aggregated information to select which fea-
tures could be ultimately released publicly, out of the total (T) dataset, that in this chap-
ter we denote with (WWW): the risk in this case was that perfect unlinkability could not
be claimed, since we do not control all other sources (e. g., a survey responder wishing
to deanonymize himself, well-funded opponents, capable researchers, etc.). After a rigor-
ous Wikipedia legal vetting process, we instead choose another option that aggressively
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�lters/obscures/aggregates features in an extremely conservative manner, considering
only features of the performance class, that are not linked to sensitive information. In
particular, the publicly available (PA) dataset is provided only for the Russian and French
Wikipedia.

Method: Speci�cally, for the conservative (WWW) case, we opted for an approach where
we transformed data in a non bijective way (e. g., IP to ASN and ISP mappings that pro-
vide network-related properties, while preventing user deanonymization at the same
time), or aggregated at a su�ciently coarse grain (e. g., country-level geolocation; ob-
fuscation of browser major/minor version; aggregation of unpopular devices, etc.). For
the same reason, we decided to aggregate time-related information at a coarse-grain
(hour-level) and drop most content-related features (e. g., page ID). We quantized the
page size with a resolution of 10kB, to also make it hard to reverse-engineer which
page was visited. We maintained most of the Navigation Timing related performance
features, that have the highest mutual information, which we obfuscated wherever nec-
essary (e. g., given that with precise PLT and download speed one could easily reverse
engineer the page size, and thus the content, we quantize the download speed in steps
of 100Kbps). In the publicly available (PA) set, only performance metrics are considered,
that are not linkable to any property related to time-of-day, user, content, geography,
device, etc.

Results: As a consequence, comparing results in these two scenarios is useful to see if
this loss of information potentially has an impact on the global prediction accuracy,
which we assess in Section 3.5: at the same time, from results presented in Tab. 4, we
can expect this e�ect to be rather limited. Indeed, Tab. 4 reports the number of features
that are collected overall (T) vs those that would have been available under a conserva-
tive (WWW) vetting process and the publicly available ones (PA). For each class (�rst
column), the table reports the number of T/WWW/PA features (second column), and
additionally reports boxplots of the mutual information MI(x,y) between features in
the class and the survey answer (last column).MI expresses the amount of information
(in bits) that can be obtained about the survey answers through the observed variable.
Tab. 4 shows that, while we only consider about half of the collected features (T), the
(WWW) features overall have a higher mutual information (particularly, note that the
25th percentile, median and 75th percentile are higher in the (WWW) feature set). Thus,
we conclude that:

◦ on the one hand, classi�cation results of Section 3.5 are only minimally a�ected by
selecting all (T), some (WWW) or very few (PA) features, so that repeatability of
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Figure 4: Quantile-quantile plot of PLT statistics for di�erent sets
(T ⊃ S ⊃ A = A+ ∪A′ ∪A−).

the QoE study is not a�ected by the vetting process: under this angle, it is fortunate
that features belonging to the performance class, which are those exhibiting the
highest mutual information with the user grade, are also the ones made available,
being the least critical to share.

◦ on the other hand, the type of study we conduct in Section 3.4 would be impossible
to reproduce with the available features (PA) set: under this angle, we decide to
provide in this work a through spatio-temporal characterization of the collected
dataset, as it would hardly be doable otherwise.

3.3.4 Validity of the collection methodology

Despite our care in engineering the survey questioning process, we cannot exclude a-
priori the existence of bias in the user survey answer process. For instance, users might
refrain to answer when the page loading experience was positive, and be more willing
to express their opinion in case of bad experience, which would lead to under-estimate
the user satisfaction.

To assess whether our survey collection methodology yields to such (or other) biases,
we compare three sets of page view experiences, namely (i) the set T where we record
Navigation Timing information from the browser (ii) the set S where users have been
shown the survey (iii) the set A where users have actually answered to the survey. Fi-
nally, we further slice the set of answered surveys A according to the answer in three
additional datasets with (iv) positive A+, (v) neutral A0 and (vi) negative A− grades.

Among the numerous features we collect, without loss of generality we now limitedly
consider the Page Load Time (PLT) distribution. Since S ⊂ T is selected with uniform
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random sampling, by construction we have that S and T are statistically equivalent as
far as individual features, such as PLT, are concerned. However, in case where users
decision to answer to the survey (irrespectively of the actual grade that we consider in
Section 3.4) would be biased by the performance of the page, then the PLT statistics
should di�er among the set of displayed S vs answered A surveys. The left-side of Fig. 4
reports a quantile-quantile (QQ)-plot of the empirical PLT distribution, using quantiles
of S on the x-axis and T,A on the y-axis, from which one can clearly remark the absence
of such bias.

Conversely, one would expect that, shall the PLT a�ect the actual grading of the
browsing experience, then PLT statistics should di�er among the A+ ∪A0 ∪A− = A

sets. This is shown in the right-side of Fig. 4, comparing the quantiles of the answer set
A on the x-axis to its per-grade slices on the y-axis. Several remarks are in order. First, it
can clearly be seen that browsing experience with negative scores fall above the equality
line, con�rming as expected that the set of negatively rated pages A− contains pages
with longer download time compared to the positive A+ and neutral A0 sets. Second,
similar considerations hold for neutral (slightly above) and positive (slightly below) an-
swers, although they are less visible – in part, this is due since positive grades represent
the bulk of the answers |A+|/|A| = 84.8%, for which the PLT statistics of A+ and A are
mechanically more similar (we will take care of class imbalance when appropriate later
on in Section 3.5). Third, we notice that the QQ-plots of positive, neutral and negative
answers overlap for quantiles corresponding to low and moderate PLT values, indicating
as expected that the PLT alone cannot fully capture user perception.

3.4 user feedback characterization

We start by analyzing the user feedback along aggregate (Section 3.4.1), temporal (Sec-
tion 3.4.2) and spatial (Section 3.4.3) viewpoints, including for the time being the neutral
answers.

3.4.1 Aggregate view

As previously illustrated in Fig. 4, users’ grades exhibit some correlation with perfor-
mance metrics such as PLT. This is consistent with results reported in Tab. 4, further
showing that metrics in the performance class have the highest mutual information with
user answers. We now consider other performance indicators beyond PLT, and depict
in Fig. 5 the empirical cumulative distribution functions (ECDFs) of three representative
navigation time metrics [46], slicing the dataset depending on the survey answer. Partic-
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Figure 5: Aggregate statistics of navigation timing performance (TTI, RSI and PLT in the �gure),
conditioned by survey response.

ularly, the �gure includes the Time To Interact (TTI), the RUM SpeedIndex (RSI) and the
Page Load Time (PLT), although we point out that results qualitatively hold for other
metrics such as Time to The First Paint (TTFP). These are the most widely used metrics
to express Web users quality of experience, and are among the metrics with the highest
mutual information with the survey answer (namely TTI=0.032, RSI=0.024, PLT=0.04).

Two takeaways clearly emerge from the picture. First, as expected order relationships
that were early shown in Fig. 4 for PLT are maintained for the TTI and RSI ECDFs, in
the sense that TTI, RSI and PLT for page views having a positive score are smaller (the
distribution is shifted to the left) with respect to TTI, RSI and PLT for neutral (middle
curves) or negative (right curves) scores.

Second, scores are hardly separable along any of the TTI, RSI or PLT metrics: notice
for instance that 75% of positive (57% negative) pages have a TTI up to 1 second, and
that similar considerations hold for RSI61s (59% positive vs 43% negative) and PLT61s
(47% vs 32%). This raises the need for additional metrics beyond those related to per-
formance timing, which hopefully can further assist the prediction of user scores.
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Figure 6: Annotation of major Wikipedia-related events occurred during the whole 5-months
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Figure 7: Temporal view: daily mean of PLT, TTI and RSI during the observation period.
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Figure 8: Temporal view: breakdown of daily survey answers among positive, neutral and nega-
tive scores.

3.4.2 Temporal breakdown

At a glance: We next present the daily amount of user answers over the whole 5-months
period, with annotation of di�erent Wikipedia-related events. Such events, some of
which are reported in Fig. 6, are of di�erent nature and include, e. g., the injection of
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banners for fundraising or the call for volunteering contributions to Wikipedia content;
network-related events such as data center switchover/switchback; browser-related event
such as new versions that introduce known regression in performance metrics (e. g., Chrome
69 release that introduces a firstPaint regression); back-end events and deploy-
ment of new features (e. g., RUM metric “MediawikiLoadEnd” improved). As it can be
seen from Fig. 6, an operational website at scale continuously has events that are gener-
ally not available in testbeds (such as those overviewed in Section 3.2), that thus sample
very narrow and speci�c conditions that are not representative of real deployments.

Yet, these operational changes appear to have only a moderate e�ect on browser tim-
ing metrics: Fig 7 shows that events and banner campaigns do not alter in a signi�cant
fashion the evolution of PLT/RSI/TTI metrics, that are intrinsically variable at a daily
timescale. Particularly, from Fig. 8, one can notice that the daily fraction of positive, neu-
tral and negative answers remains remarkably steady over the observation period, with
a stationary fraction of about 85% satis�ed users.

On the one hand, this could be somewhat unexpected since, one could argue events
such as, e. g., data center switchover or browser regression to directly a�ect the objec-
tive measurable delay. At the same time, in light of Fig. 8, it appears that the observed
level of variability in the PLT/RSI/TTI metrics happen in a range that is not enough to
a�ect human perception – or in other words that the measured delay changes do not
necessarily harm user QoE.

Seasonality: We next study if user scores follow classic night/day and weekday/weekend
e�ect. The �rst circadian timescale is intrinsic to variation in human cognitive capabil-
ity throughout the day, whereas the second can possibly re�ect a change in the environ-
ment (work/leisure), which not only a�ects the environment (e. g., user mood) but also
possibly the devices used to access the service (e. g., company vs personal). Fig. 9 and
Fig. 10 report the raw answer frequency (top plots) as well as the breakdown of users
scores (bottom plots) at hour-of-day and day-of-week aggregation granularities respec-
tively. Plots report the mean (line) and 95% con�dence interval (shadowed band) of the
metrics of interest.

Top plots in Fig. 9 and Fig. 10 do exhibit a seasonal variation in the answers volume.
Particularly, in the hour-of-day case in Fig. 9 the volume is merely correlated with the
volume of users activity, which as expected follows a seasonal pattern with lower night-
time activity that is preserved by our random sampling. In the day-of-week case one
can notice a slight increase in the answer frequency on Sundays, which in our dataset
is due to a combination of (i) a slightly higher tra�c volume on some Sundays over the
5-months period, (ii) as well as a higher propensity to answer the survey on Sunday,
especially during some weeks of September.
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Figure 9: Temporal view: absence of night/day seasonality of survey answers.
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Figure 10: Temporal view: absence of weekday/weekend seasonality of survey answers.

Yet, more interesting is the absence of daily/weekly seasonality in the answers break-

down. From the bottom plot of Fig. 9 one clearly gathers the absence of seasonality at
24-hours circadian rhythms, which is somewhat surprising. Indeed, recent work [7] that
leverages wearable devices to infer user activity and correlate it to Web user responsive-
ness (i. e., keystroke and click times in the Bing search engine), do show that users have
worse responsiveness (i. e., higher keystroke and click delays) especially after wakeup
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and at night-time, whereas their response times are signi�cant faster during daytime.
In turn, from daily variability in user responsiveness, one could have expected a higher
tolerance to, e. g., slow websites performance, that however does not appear in our re-
sults. One likely reason is that the largest discrepancy between maximal and minimal
user click time is on average of about 1 second during the day (see Fig. 2(b) in [7]), which
may not be enough to trigger perceptual changes so important to a�ect the acceptabil-

ity of the page rendering process (whereas they could have appeared had our survey
involved a �ner-grained 5-grade ACR scale feedback).

Similarly, from the bottom plot of Fig. 10 one again gathers the absence of seasonality
over a weekly timescale. On the one hand, this is somewhat unexpected since human
behavior on computer networks (such as personal communication [85]) does exhibit
day-of-week dependence. On the other hand, this is in line with [7] that does not re-
mark a weekly di�erence in user responsiveness (i. e., weekend and weekdays follow a
statistically similar diurnal variability in [7]). Under this light, and given the absence
of time-of-day dependence on user website acceptability, the absence of day-of-week
seasonality is less striking.

Additionally, we gather that, despite the propensity to answer the survey may change
over typical human timescales, the answer itself may be more tied to the perceived per-
formance, con�rming the validity of our survey.

3.4.3 Spatial breakdown

Overall, our dataset comprises 115 features from 4 main classes. We now investigate
how the score breakdown is a�ected by some representative features in each class. Par-
ticularly, since the dependency between the user score and the performance class (e. g., 3
out of the 32 collected metrics, namely TTI, RSI and PLT) has already been exposed in
Fig. 4 and 5, in this section we further dig into page, user and environment-related fea-
tures. Speci�cally, whereas lab studies have rather poor diversity in terms of handsets,
browser software, and geographical diversity, the collected dataset allows to peek at Web
users’ QoE under each of these angles. Fig. 11 reports, for 15 cherry-picked features in
the dataset, the breakdown of positive/negative scores (neglecting neutral answers for
the sake of simplicity). For each subplot, we condition over di�erent values of the fea-
ture and visually report the positive/negative breakdown as stacked bars. For categori-
cal features without a natural ordering, the bars are ordered in increasing satisfaction
rates. In case of numerical features, the natural ordering is otherwise preserved (so that
breakdown is not monotonously increasing). On each subplot, the top x-axis report the



3.4 user feedback characterization 33

< 
10

 k
B

< 
20

 k
B

< 
30

 k
B

< 
40

 k
B

> 
50

 k
B

HTML Size (MI: 0.0028)0.5

0.6

0.7

0.8

0.9

1.0

−
+

−
+

−
+

−
+

−
+

Sa
m

su
ng

 In
te

rn
et

O
th

er
C

hr
om

e 
M

ob
ile

Y
an

de
x 

B
ro

w
se

r
M

ob
ile

 S
af

ar
i

Fi
re

fo
x

C
hr

om
e

O
pe

ra
Sa

fa
ri

Browser Family (MI: 0.0036)

−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+

X
ia

oM
i R

ed
m

i 4
A

X
ia

oM
i R

ed
m

i 4
X

Sa
m

su
ng

 S
M

-A
52

0F
iP

ad
O

th
er

iP
ho

ne
X

ia
oM

i R
ed

m
i 5

 P
lu

s
X

ia
oM

i R
ed

m
i N

ot
e 

4
M

i A
1

Device Family (MI: 0.0019)

−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+

C
hr

om
e 

O
S

A
nd

ro
id

W
in

do
w

s P
ho

ne
U

bu
nt

u
iO

S
W

in
do

w
s

Li
nu

x
M

ac
 O

S 
X

O
th

er

OS Family (MI: 0.0037)

−
+

−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+

Fa
ls

e

Tr
ue

isTablet (MI: 0.0074)

−
+

−
+

Fa
ls

e

Tr
ue

isLogged (MI: 0.0078)0.5

0.6

0.7

0.8

0.9

1.0
−
+

−
+

0 
ed

its

1-
4 

ed
its

5-
99

 e
di

ts

10
0-

99
9 

ed
its

10
00

+ 
ed

its
EditCountBucket (MI: 0.0012)

−
+

−
+

−
+

−
+

−
+

91
98

16
34

5
32

15
83

59
O

th
er

66
97

12
38

9
25

51
3

84
02

ASN (MI: 0.0215)

−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+

sl
ow

-2
g

2g 3g n.
a.

4g

Connection Type (MI: 0.0117)

−
+

−
+

−
+

−
+

−
+

(0
, 0

.1
]

(0
.1

, 0
.2

]
(0

.2
, 0

.5
]

(0
.5

, 1
]

(1
, 2

]
(2

, 5
]

(5
, 1

0]
> 

10

Speed over median speed
of the country (MI: 0.0101)

−
+

−
+

−
+
−
+
−
+
−
+
−
+
−
+

K
az

ak
hs

ta
n

O
th

er
G

er
m

an
y

Sp
ai

n
Fr

an
ce

B
el

ar
us

U
ni

te
d 

St
at

es
U

kr
ai

ne
R

us
si

a

Country (MI: 0.0144)0.5

0.6

0.7

0.8

0.9

1.0

−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+
−
+

A
ns

w
er

 B
re

ak
do

w
n

[1
,5

]

(5
,1

0]

(1
0,

50
]

>5
0

GDP rank (MI: 0.0162)

−
+

−
+

−
+ −

+

1 
G

B

1.
5 

G
B

2 
G

B

3 
G

B

4 
G

B

Static RAM of
 the device (MI: 0.0048)

−
+

−
+

−
+

−
+

−
+

(0
,1
50

€]

(1
50

€,
30

0€
]

(3
00

€,
60

0€
]

>
60

0€

Device Price (MI: 0.006)

−
+

−
+

−
+

−
+

<1
%

<5
%

<2
0%

>2
0%

Device price over
GDP (MI: 0.0122)

−
+

−
+ −

+
−
+

Figure 11: Illustration of spatial breakdown of user scores across page, user and environment

features obtained by conditioning each of them over di�erent values and showing on
the top x-axis the cardinality of samples for each bar.

cardinality of samples for each bar, and the bottom label reports the feature name and
is further annotated with the mutual information value.

Page-related metrics: Particularly, we aggressively censure features that would allow
content-linkability, making only two page-related features available in the (WWW) set:
namely, the survey viewtime after the page is rendered and the HTML page size. The
plot in the top left corner of Fig. 11 reports the variation on scores as a function of the
HTML page size. It can also be seen that breakdown is very similar irrespectively of the
HTML page size, with the exception of smaller pages, that have a slightly higher neg-
ative scores (which deserves further attention). Thus, in our dataset the page size only
plays a minor role in the user feedback, which can be expected since Wikipedia pages
tend to be relatively small. Concerning the smallest bin of pages up to 10kB, notice that
it comprises 7.8% of the over 46k pages (i. e., a bag of 3.6k pages) con�rming that a
10kB granularity make linkability complex.

User-related metrics: Among user-related metrics, we select the browser, device and OS
families (�ner grain information is precluded from sharing), and report whether users
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are logged in Wikipedia (binary �ag), if they are accessing Wikipedia through a tablet
device (binary �ag) and the number of edits that users have made (coarse bins). These
features are reported in the top row (and the �rst two features in the second row) of
Fig. 11.

For the family of browsers, device and OS, we report the top-8 and aggregate all others
into a “other” bin. Interestingly, from the browser family one can notice a remarkable dis-
crepancy of users score breakdown for di�erent browsers. Particularly, one can observe
“mobile” versions of popular browsers to have poorer scores than their “laptop/desktop”
counterpart: in this case, one cannot easily disambiguate whether poor scores are tied
to bad implementation of the browser, or to bad performance of the mobile device (a
nevertheless very likely cause [41, 111]). Considering only laptop/desktop browsers, we
have that Safari (1st), Opera (2nd) and Chrome (3rd) are on the podium, with Firefox
(4th) a close next.

It is also interesting to observe that, whereas users scores quite clearly di�er among
browsers, the amount of mutual information is still relatively low (comparable to the
HTML page size) – which is due to the fact that browsers are not equally represented
in the dataset, with Chrome and Chrome mobile taking up over 50% of the samples in
our dataset. Similarly, score breakdown is remarkably di�erent across devices, yet the
number of devices is so large (over 2.7k) and the categories either too precise (as for the
di�erent XiaoMi models) or too coarse (iPhone and iPad do not unfortunately report the
model version, which mixes old and new devices in a single bin) resulting in a very low
mutual information.

Score breakdown per OS con�rms that users score are better on laptop/desktop. How-
ever class imbalance across OSs makes it so that a simple binary indicator (isTablet) has
a higher predictive power with respect to more precise labels (e. g., twice as much as the
OS and browsers family).

Next, concerning user experience on Wikipedia, we notice that readers (0 edit) are
more likely to provide a negative answer than writers (from 1 to over 1000 edits). This is
somewhat surprising since whereas our survey population is mostly European, logged
editors are always directed to US servers, incurring in higher latency. The higher fraction
of positive answers can be due, on the one hand to the fact that higher Round Trip Time
(RTT) delay may be masked from warm-up caches for the page they are editing, or on
being more accustomed with (and thus more adapted to) Wikipedia service. At the same
time, given that most (97%) of Wikipedia users are readers, the knowledge of the edit
counts is irrelevant for predicting user satisfaction – so that even in this case a simple
binary information such as whether the user is logged in has more predictive power
(high MI ).
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Environment-related metrics: Features in the environment class include network-related
and per-country information, reported in the middle and bottom column of Fig. 11 re-
spectively. Network information is represented by ASN, connection type and speed in-
formation (particularly, we report in the picture the ratio of the download speed to the
median speed in the country observed in our dataset). We see that all have a clear im-
pact on the user scores, with consistent di�erences across ASN, very strong di�erences
across connection type (although there are only very few 2G and 3G connections in our
dataset, thus a lowMI) and strong di�erence on the relative connection speed. Interest-
ingly, concerning the latter one can notice that the ratio of negative scores decreases for
increasing speed, and �nally exhibits a slight decrease again for users having 10× the
median speed in the country – likely well equipped and possibly more impatient users.

In terms of country-level information, bottom-row plots in Fig. 11 inspect the coun-
try name and its GDP rank. Two phenomena appear: on the one hand, we observe that
users living in countries with poor GDP (high rank) consistently report poor perfor-
mance (likely tied to poorer infrastructures); on the other hand, we observe that users
of wealthy countries, that have comparably better performance (e. g., higher rates), also
possibly report negative scores, but possibly due to di�erent reasons (e. g., tied to higher
user impatience due to higher expectations).

We �nally consider further information concerning the user device (such as RAM and
price harvested from the Web), which we report to the median per-country per-capita
GDP. We gather that, whereas poor maximum RAM (1GB) is symptomatic of bad per-
formance, scores are strikingly similar across a range of device prices: as performances
are likely di�erent across devices [41] (which in part justi�es the price di�erence), this
seems to suggest that owners of cheap devices are prepared to be more tolerable in spite
of poorer performance. However, if we do take into account the relative wealth of the
country by normalizing the price tag over the per-capita GDP, we see that there is a
negative correlation with user scores (possibly, expectations of users owning a pricey
device in a lower-GDP country are also higher, and users are more likely to report bad
performance as negative experience).

3.5 user feedback prediction

We continue by disregarding the neutral scores and now build data-driven models that
forecast user answers.

Problem formulation: Keeping only negative and positive answers for the user feedback
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Table 5: User feedback prediction: Confusion matrixes, obtained when averaging the results ob-
tained with a 10-fold cross validation on B with the PA features set.

Model True Predicted All
- +

Perceptron - 0.64 0.42 4494
+ 0.36 0.58 4494

Random Forest - 0.58 0.41 4494
+ 0.42 0.59 4494

XGBoost - 0.63 0.41 4494
+ 0.37 0.59 4494

K-NN - 0.57 0.43 4494
+ 0.43 0.57 4494

SVM - 0.67 0.44 4494
+ 0.33 0.56 4494

prediction analysis is a simpli�cation which directly stems from the structure of our
survey, and allows to turn the problem into a binary classi�cation one. This simple for-
mulation enables immediate and intuitive statements of performance objective, that we
express in terms of the classic information retrieval metrics.

Clearly, from an operational standpoint a conservative estimation of user satisfaction
is preferable. Indeed, the service operator wants to avoid that a malfunctioning service
that is truly a�ecting user experience goes undetected, as when the ratio of dissatis�ed
users increases above a given level this can prompt alert to repair or ameliorate the
service. In our settings, conservative prediction results translate into maximizing the

recall of negative scores.

Reference classi�cation results: Given the class imbalance, we have to preliminarily down-
sample the dataset4: indeed, given that after discarding the neutral scores 92% of the
users are satis�ed, a naïve 0-R classi�er that just learns the relative frequency of the
scores and systematically answers with the majority class, would achieve 0.92 accuracy
– but would entirely miss negative scores, having thus a null A− recall. Hence, a more
appropriate baseline for recall of unsatis�ed users requires performing undersampling,
i. e., keep only a portion of the positive scores, equal to the size of the negative ones, to
obtain a balanced dataset. We denote the balanced dataset B and the complementary
dataset, only containing positive answers �ltered out in the downsampling as B.

4 We prefer to avoid the diametrically opposite approach of synthetically generating users score, which is in
stark contrast with the very same nature of our survey work.
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Table 6: User feedback prediction: classi�cation results expressed through several metrics, ob-
tained when averaging the results obtained with a 10-fold cross validation on B with
the PA features set.

Model Accuracy PrecisionA− RecallA− PrecisionA+ RecallA+ F1A− F1A+

Perceptron 0.60 0.64 0.47 0.58 0.73 0.54 0.65
Random Forest 0.59 0.58 0.61 0.59 0.56 0.60 0.58
XGBoost 0.61 0.63 0.50 0.59 0.71 0.56 0.64
K-NN 0.57 0.57 0.55 0.57 0.59 0.56 0.58
SVM 0.59 0.67 0.34 0.56 0.84 0.45 0.67

Tab. 5 reports 5 confusions matrixes, obtained when training a 20-trees random for-
est [24], a XGBoost [35] classi�er, a Multi Layer Perceptron (MLP) (two layers percep-
tron: a Recti�ed Linear Unit (ReLU) and a sigmoid), a K Nearest Neighbor (K-NN) (with
K = 5) and �nally a Support-Vector Machines (SVM) classi�er. Results are gathered when
considering all the 19 (PA) publicly available features on a 10-fold cross validation with
a 90:10 training and testing dataset split, and �nally averaging the outcomes of each
fold. The entire classi�cation results are reported in Tab. 6 and expressed in terms of
accuracy, precision, recall and F1 score for both the positive A+ and the negative A−

answers sets. We obtain, in terms of model accuracy, similar results with both the models,
with a slightly higher accuracy when using XGBoost but lower A− recall with respect to
the Random Forest Classi�er. Prediction outcome is clearly deceiving and only slightly
better than the naïve baseline, despite the relatively large number of features collected:
speci�cally, with the Random Forest classi�er only 61% of the unsatis�ed users are cor-
rectly captured, with a precision of 0.58. Interestingly, performance on the remaining

dataset B, i. e., the set of positive scores �ltered out due to class imbalance, remains
consistent with an average accuracy of 0.55.

Fig. 12 presents the Receiver Operating Curve (ROC) plots produced when evaluating
the true positive rate by letting the probability threshold vary. We remark that for all
the other results we keep the probability threshold �xed to 0.5. This is obtained again
when averaging the results of the 10-fold validation with the abovementioned di�erent
models. This plot con�rms that classi�cation performs just slightly better than random
guessing (blue dotted line), regardless of the model adopted, without any surprising
result. XGBoost is the model leading to the highest Area Under the Curve (AUC) (0.65),
followed by the MLP.

Feature subsampling: We next consider how the classi�cation results change with respect
to the above reference (where we consider the collected overall (T) features) when we
slice the dataset by keeping only subsets of (T). We repeat the experiments with the same
parameters used to obtain the above reference results and the same statistical metrics.
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Figure 12: ROC curves, obtained when averaging the results gathered with a 10-fold cross vali-
dation on B with the PA features set.

Fig. 13 reports the classi�cation results, expressed again in terms of accuracy (top), pre-
cision (middle) and recall (bottom), when considering the portion of (WWW) features:
as expected, since features in the (WWW) set are fewer with respect to (T) but having
better mutual information with the survey answers, classi�cation results are practically
una�ected. We reduce this set even further by only considering the features in the (PA)

set (all belonging to the performance class). In this case, results show a slightly higher,
but still very limited specially in the random forest case, reduction of the classi�cation
performance: on the one hand, performance-related features consistently rank high in
terms of Gini importance, though on the other hand they lack discriminative power for
telling user answers apart. We also report the classi�cation results obtained when we
remove the outliers from each feature using the three-sigma rule, that we denote with
(PAw.o.). In this case, we observe that �ltering out the outliers do not the performances.
The solid black line in top of Fig. 13 shows the fraction of conditioned dataset with re-
spect to the original one. This is evidently equal to 1 in the (T) and (WWW) cases, and
instead is decreasing for the (PA) set, where only user records coming from French and
Russian wiki are made available, and for the outliers-free (PAw.o.) set, where roughly
only 75% of the entries are kept. Furthermore, this is as well decreasing when we spa-
tially subsample the dataset in Fig. 14, as we describe next.

Dataset subsampling: We �nally spatially condition the dataset, investigating whether
classi�cation performance mechanically improves by reducing the heterogeneity in the
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Figure 13: Classi�cation results, feature subsampling: performance obtained by limiting the (T)

total features, 61 (WWW) features, 19 (PA) publicly available features, both with
(PAw.o.) and without (PA) outliers �ltering.

dataset, in an attempt to recreate more homogeneous conditions as usually done in the
lab studies of Tab. 2.

Particularly, in (C ; a) we use features in (WWW) set and restrict the attention to the
most popular browser, namely Chrome, considering both mobile and desktop �avors.
In (WWW ; b) we instead restrict to users of the prevalent country, i. e., Russia, and in
(WWW ; c) to Android users. We also combine these �lters altogether (WWW ; a ; b) and
(WWW ; a ; b ; c), and �nally consider (WWW ; d) the top-1000 pages in our dataset. We
report in Fig. 14 the classi�cation results obtained by running the models on each of the
above dataset variants. Clearly, conditioning the dataset implies that a smaller fraction
of the original dataset is available (as shown from the decreasing solid black line in top of
Fig. 14), which we also have to re-balance: in turn, con�dence intervals for the metrics
of interest increase for decreasing dataset fractions, which is expected. Yet, it is easy
to gather that classi�cation performances are only minimally a�ected in all the above
cases, irrispectively of the portion of features considered, the amount of homogeneity
in the data or of the model adopted, so that the state-of-the art quality of experience
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Figure 14: Classi�cation results, dataset subsampling: performance obtained by restricting the
attention to (a) Chrome-only browser, (b) Russian population (c) Android OS and (d)
top-1000 pages (and combinations thereof).

metrics we collect, enriched with environmental information as described in Section
3.4, are apparently not enough to discriminate among satis�ed and unsatis�ed users.

Explainability: In step with the current trend towards human interpretable machine
learning and model explainability, we leverage SHAP (SHapley Additive exPlanations) [96]
to explain which are the relevant features that can help revealing whether a user is satis-
�ed or not. We report in Fig. 15 the top-20 features of (WWW) set, sorted by the sum of
the SHAP magnitude values computed for all the samples of the dataset, obtained with
a Random Forest Classi�er. SHAP values indicate the impact of each feature on the pre-
diction, hence providing a quantitative insight of the importance of each feature for the
model. On the one hand, this summary plot provides an overview of the most important
features for the model. On the other hand, it highlights what is driving the de�nition of
variable importance itself, the feature values. Indeed, the positive x-axis values assess
the impact on the model output for predicting the negative answer label, whilst the neg-
ative ones refer to the positive answer label. For the top-�ve features, the higher their
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Figure 15: Ranking of the features according to their SHAP values.

values, the larger the impact on the model prediction, indicating that users experiencing
longer loading times, and interestingly longer survey appearance times, are more likely
associated in the prediction with the negative answer label. Moreover, plot in Fig. 15
also highlights the �aws of the model, showing that for none of the features there is a
clear abrupt detachment between low and high values around 0, and instead low feature
values are almost always implying both positive and negative SHAP values. The main
takeaway of this analysis is that the top-15 features belong to the performance class,
which is consistent with the MI output shown in Sec.3.3.3, which fortunately are also
exported in the PA features set. Furthermore, despite the documented in�uence of HTTP
redirects on Web performance results [49], we observe that the redirect time is ranked
low in the feature importance scale and thus does not impact much the user feedback
prediction.
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3.6 discussion

This work is the �rst to leverage user feedback from real browsing sessions in opera-
tional settings. As any new work, there are a number of limits, which requires community-
level-e�orts which we discuss next.

Collection and validation methodologies: We remark that this work is the �rst to collect
user feedback from real users in real browsing activity, from an operational deployment.
This is in stark contrast with most lab research, where volunteers or crowdworkers are
exposed to a very limited heterogeneity (e. g., single device/browser), are not carrying
on a browsing activity (e. g., A/B testing uses videos) and are not asked about their sat-
isfaction but about other metrics as a proxy (e. g., which video �nished �rst?). We argue
that lab/crowdsourcing experiments and collection in the wild should coexist.

On the one hand, we stress that while A/B testing is a necessary step, it is however not
su�cient. Survey data discussed in this chapter seems to suggest that metrics that are
considered as state-of-the art for Web QoE, seems to be ultimately poorly correlated with
the experience of real Wikipedia users. In turn, it also follows that lab/crowdsourcing
experiments should diversify the type of user feedback: e. g., the fact that a user is able
to notice which video �nishes �rst (which uPLT metrics attempt to model), does not
imply that he would grade that Web rendering process as positive (or the rendering
corresponding to the other video as negative).

On the other hand, we are aware that part of the challenges in real-world experiments
comes from diversity and variance: it follows that surveys such as those we are carry-
ing on should be kept running continuously, as it is commonplace for VoIP applications
that regularly poll their users for a QoE opinion. Operating continuously would lower
barriers for further experiments [12], empower website operators with a very relevant
performance indicator for their service, informing them in near-real time about impact
of new features deployment. Additionally, long-time surveys allow to collect signi�cant
volumes of data to keep ameliorating models for user prediction in spite of high vari-
ance and heterogeneity. Moreover, there exist other QoE in�uence factors that we did
not include in this study, like the sentiment linked to the topic and the content of the
page or more information about the context in which the measurement is carried out,
as the earlier user browsing experience. These undoubtedly have an important impact,
that is however hard to capture.

RSI: not needed, or not enough?: Concerning Web user QoE metrics, this study seems
to suggest a poor discriminative power of the RUM SpeedIndex (RSI) so as to predict
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users scores, at least for Wikipedia users. In part, this may be due to the structure of
Wikipedia pages (where, e. g., text may be more prevalent that in other pages in the
Alexa top-100 typically considered in similar studies, see Section 3.2). This nevertheless
raises the question so as to whether it is possible to (i) design metrics that are better
�t to the spatial structure of the page, or (ii) metrics capable of better weighting the
focus of user attention, and at the same time (iii) raises questions about the accuracy vs
generality of QoE metrics.

As for (i), we have currently improved the system to also collect navigation timing
statistics for speci�c elements that are believed to be important for Wikipedia, such as
the “time to the top image”. This is a good compromise between collecting the whole
waterfall (which is impossible in operational settings) and could yield to metrics that are
website-speci�c (losing generality), but better correlated with user experience (gaining
discriminative power).

As for (ii), we are aware that more complex approaches involving spatial dimension
(i. e., eye gaze) also exist [29, 81]. However, including the spatial dimension in the user
perception is hard to capture in the lab, and challenging in the wild: a good starting
point would be to leverage mouse-movements as a proxy of eye gaze activity (which are
known to be strongly correlated [110]), and that can help further re�ning QoE metric in
the spatial direction (e. g., by adding the knowledge of whether the rendered element is
under the user gaze). Additionally, mouse-movements can capture user anxiety which
further reduces the user viewport [158]. Clearly, further research is needed on whether
user-touch can be useful for similar purposes in case of mobile handsets.

Finally, (iii) previous work [39] already has pointed out a tension between accuracy
vs generality of QoE metrics and models: on the one hand, it seems rather challenging
to capture the rich diversity of over one billion pages with a single QoE model, so that
it may be tempting to develop website-speci�c models, as it is our focus here; on the
other hand, it may be possible to develop models for groups of websites that sharing
similarities in their underlying structure (e. g., picture-dominant vs text-dominant sites;
interactive vs static pages; etc.), which remains an open question to date.

Per-server vs per-device statistics: In this work, we did not explicitly leverage time-series
of server-related operational metrics, as these are gathered live at minute-timescale on
Prometheus [121] but are not readily available on the Hive platform [8]. At the same
time, the raw load on during the considered period appears too low in practice to have
an impact so signi�cant to a�ect user satisfaction.

Conversely, given that mobile browsers performances are signi�cantly dependent on
the handsets, as already shown in [41, 111] and con�rmed in this work, collecting per-
device statistics seems a mandatory step to ameliorate prediction performance, as “com-



44 the users and the world wide web

putation activities are the main bottleneck when loading a page on mobile browsers” [111].
Unfortunately, average per-device performance we considered in this work are not telling
enough, as they merely report the resource upper-bound (i. e., CPU and RAM capacity)
as opposite to the actual state of the device (i. e., free RAM and available CPU cycles)
corresponding to the page view that the user answered about – which could hopefully
ameliorate prediction performance.

3.7 conclusions

In this work we engineer, collect, analyze and predict user survey scores pertaining to
the quality of their Web browsing experience. Out of over 1.7million queries, we gather
over 62k answers corresponding to either positive (84.8%), neutral (7.7%) or negative
(7.5%) experiences. Associated to each answer, we collect 115 features, part of which
we make publicly available taking care of rendering user deanonymization and content-
linkability as hard as possible.

The main takeaways in our analysis are that users are consistently satis�ed, and
that scores do not exhibit seasonality at circadian or weekly timescales, which is un-
expected. Quite surprisingly, scores are also not a�ected by network-related events
(e. g., data center switchover) happening during the period, nor by Wikipedia-related
events (e. g., banner campaigns that alter the page rendering) nor by known browsers
events (e. g., Chrome 69 �rst paint regression). Additionally, we �nd that scores are, as
expected, heavily in�uenced by user-level expertise and equipment (e. g., device, OS
and browser), as well as network and country-level characteristics (including access
technologies, ISP and economical factors). Interestingly, scores are not a�ected by the
Wikipedia page size, nor by the device price (unless economical factors are also weighted
in).

Concerning user score prediction, perhaps the most important (and equally disturb-
ing) takeaway is that it is surprisingly hard to predict even a very coarse-grained in-
dication of user satisfaction. This can be tied in part to the lack of more informative
indicators in our dataset (such as content and context factors that are known to a�ect
user QoE), and also raises a number of interesting questions and challenges for the whole
community.
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4.1 the multi-modality of uplt

A good Quality of Experience (QoE) on the Web is essential for both content providers
and consumers. QoE directly a�ects end-users’ willingness to visit a webpage [150] as
well as content providers’ business revenues [138]. Both industry (e. g., QUIC, SPDY, and
HTTP/2) and academia [29, 113, 128, 150] have made signi�cant e�ort to design tools
and novel protocols to reduce page load times as the main factor that determines Web
QoE is how fast a page loads [47].

Originally, quality of user experience on the Web was approximated using simple
performance metrics like time-to-�rst-byte (TTFB) and the browser onLoad event. As
modern webpages are composed of hundreds of di�erent objects, these metrics can typ-
ically capture only the lower and upper bounds of the user perception on page load
time. This limitation has motivated the introduction of a number of recent metrics to
better capture user experience on the Web, such as the Above-the-Fold (ATF) [25] and
the SpeedIndex [2].

Despite all these e�orts, the question regarding how well existing single-valued met-
rics capture the user perception of page load time remains open. In this regard, the user

45
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(a) (b) (c)

Figure 16: Relevant snapshots of the www.booking.com rendering process corresponding to the
di�erent modes that are visible in the distribution reported in Fig.17. Notice that the
“above the fold” content is almost all rendered in (a) and fully rendered in (b). At time
(c) a popup arise, inviting users to login in the website.

Figure 17: uPLT distribution for www.booking.com, highlighting the issue that users do not agree
on a single time instant to identify completion of webpage rendering.

perceived Page Load Time (uPLT) is de�ned as the time when a user considers the web-
page to be loaded and ready to browse. With few exceptions, almost the entire previous
industrial and academic e�orts make the implicit assumption that a single-valued metric
can capture the uPLT across users – or, equivalently, that the distribution of uPLT of a
given page across users is uni-modal. Recent studies have challenged this assumption,
showing that users rarely agree on a single uPLT [81, 149]. However, the multi-modality
of uPLT was not the main focus of these studies, and as such it was not studied in depth.

UPLT multi-modality is rooted in many factors, such as personal preferences with
respect to what is considered important on a webpage, e. g., text rather than images,
carousels of elements, popups or ads. Fig. 17 illustrates this issue when asking for feed-
back from 54 recruited participants regarding the uPLT ofwww.booking.com. About 40%
of users believe uPLT to be around 2 seconds, another 40% indicates uPLT≈ 3.7 seconds
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and nearly 20% report a uPLT≈ 9.1 seconds. These uPLT values appear in conjunction
with distinct webpage loading events; we report the snapshot of these events in Fig. 16.
This example illustrates the challenges of measuring uPLT, and raises questions about
which among the numerous objective Web QoE metrics (e. g., PLT, TTFP, ATF [25]) is
more suitable as a proxy for these remarkably di�erent user opinions.

To address these questions, we collect a comprehensive data set of webpage features
(e. g., number and type of embedded objects) along with both objective and subjective

Web quality metrics. We �nd that around 50% of the webpages in our study present a
multi-modal uPLT distribution and that, in practice, three modes are su�cient to accu-
rately describe uPLT distribution. Moreover, we show that the number of images and the
number of objects in a webpage can help in predicting uPLT modality. To promote cross
comparison and enable further studies, we make this dataset publicly available [5].

This chapter is organized as follows. We describe the methodology used to produce
the representative set of webpages for our analysis and how we employed the Eyeorg
platform [149] to crowdsource uPLT on these pages (Section 4.2). Next, we thoroughly
characterize the collected user feedback (Section 4.3), rigorously quantifying violations
of the hypotesis that uPLT is uni-modal and �nally contrast uPLT modes with objec-
tive QoE metrics. Finally, we discuss our �ndings (Section 4.4) and put our results in
perspective with recent related work.

4.2 data collection

To explore the relationship between uPLT and objective Web QoE metrics we need to (i)
collect a comprehensive dataset comprising “representative” webpages, and (ii) crowd-
source feedback from real users on uPLT. We �rst devise a novel methodology to iden-
tify a limited number (e. g., 100) of webpages to test from the Cisco’s Umbrella top-1M
list [72] (Sec. 4.2.1). Second, we automate the collection of webpage characteristics and
objective Web QoE metrics from Chrome-based browsers (Sec. 4.2.2). Finally, we con-
duct an Eyeorg [149] crowdsourced campaign to ask users when each webpage �nished
loading (Sec. 4.2.3). We make the entire dataset collected publicly available [5].

4.2.1 Representative Webpage Selection

A recurring concern in Web performance research is how to select a meaningful set of
webpages to study. Due to the sheer size of the Web, some sort of sampling needs to be
introduced. To study the Web, researchers often resort to the most popular webpages
from Alexa or Cisco, or a combination of popular and unpopular webpages. While it
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Figure 18: Number of webpages per cluster.

is important to sample popular webpages, since they attract the majority of the tra�c,
unpopular webpages might have a completely di�erent set of characteristics yielding to
di�erent results. In this chapter we argue that popularity should not prime over diver-
sity of webpages, as otherwise the results may lose generality. We therefore opt for a
strati�ed selection of both popular and diverse pages by clustering them according to
the complexity of their HTML content.

Initial hitlist:We crawl all URLs from Cisco’s Umbrella top 1-million list, which became
popular in the research community after Alexa became paywalled, on August 2018. The
Umbrella list is generated by tracking the total number of worldwide DNS requests.
The main advantage of this approach is that this gives us insights not only on popular
top level domains (e. g., wikipedia.org), but also on popular actual pages with content
(e. g., https://en.wikipedia.org/wiki/Main_Page). However, the Umbrella list also contains
URLs that are the target of automated DNS requests (i. e., not associated to an actual user
request) notably for ads and analytic services. We additionally �nd that some webpages
on the list are either no longer valid or implement access control. By discarding URLs
that either never responded to our request, or returned non-HTML content (e. g., JSON
or XML) we obtain 317, 000 valid HTML pages.

Clustering: On this set of webpages, we compute six features that, as reported by
Butkiewicz et. al [28], are distinctive of the page characteristics and in particular have
high correlation with webpage complexity: page size (in MB), total number of objects,
number of images, CSS, javascript, and number of distinct origins. Then, we rely on
K-means to �nd pages of similar complexity. Given our crowd-measurement budget,
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we �x K = 100. We experiment with three standard feature normalization techniques:
min-max, mean-std, and a quantile-based feature normalization, where we transform
the original values of each feature to the quantiles they correspond to in the dataset
(e. g., for amazon.com, page size: 38%, num imgs: 99%, num domains: 61%).

Fig. 18 reports the number of pages per cluster produced by K-means, ordered by de-
creasing cluster size. We observe that, due to the wide range of values for page size and
number of objects in the dataset (up to 75 and 1, 429Mb, respectively), both min-max
and mean-std normalization create several “outlier clusters” near the extreme ranges of
each feature with very few pages (less than 10), while creating a single overcrowded
cluster for simple and small pages. We note that quantile-based normalization results
in clusters that represent a sizeable number of pages (the smallest 5 clusters contain
between 155 and 347 pages) while at the same time helps in better representing the
�ne-grain diversity of relatively small pages (there is no single giant cluster). Upon a
closer analysis, we put aside 14 clusters that contained a large number of “error pages”.
These cluster included regular HTML pages reporting 401, customized 404 pages, pages
with valid HTML but no actual content, as well as login pages. We observe that the 5
largest clusters still represent 30% of all pages: therefore, a strati�ed selection strategy
helps avoiding oversampling these pages.

Strati�ed selection: From each of the remaining 86 clusters, we manually pick one
webpage for user evaluation in Eyeorg. We do this by choosing a popular webpage ac-
cording to the ranking, i. e., which is simultaneously (i) the closest to the centroid, (ii) in
English language, and that (iii) does not contain o�ensive or adult content (e. g., porn,
gambling), in order to avoid exposing crowdsource participants to upsetting content.

Given the fair amount of work involved, this list of “representative” webpages is in-
teresting per se, and we make it available [5]. Finally, we add 22 handpicked webpages
that we also studied in previous work [39] to obtain a total of 108 sampled webpages.

4.2.2 Objective Web Quality Metrics

For each webpage of the set, we collect the objective Web quality metrics discussed in
Section 3.2, notably the TTFP, the TTI, the Approximated Above-The-Fold (AATF) [39]
and the PLT. We rely on a Chrome extension [9] to measure all the metrics, since some
metrics require the rendered position of all objects in the page, cannot be measured from
the HAR �le (as opposed to PLT, DOM, TTI, etc.) and thus are better measured directly



50 the users and the controlled web

from the browser. Further, we use FFmpeg to record videos of a webpage rendering
process.

We instrument a stock version of Chrome (v68.0.3440.84) with the above extension
and attempt to load the 108 selected webpages, consecutively. For each load, we set a
maximum duration of 15 seconds and also record webm videos of the rendering process.
This is needed since we then plan to crowdsource users responses with Eyeorg. Since
headless Chrome currently does not support extensions, we leverage the X virtualframe
bu�er Xvfb to allow remote execution without the need for a physical monitor. We mea-
sure each webpage 5 times, ensuring warm DNS caches, and a clean browser pro�le at
the beginning of each run. We then select the experiment (video and set of performance
metrics) with the median PLT among the 5 repetitions.

4.2.3 UPLT Crowdsourcing

We measure uPLT via Eyeorg’s timeline experiment [149] where a participant is asked
to “scrub” the video of a webpage load until when (s)he considers the page to be ready.
We run a single Eyeorg campaign targeting the above 108 webpages and 1, 000 paid
participants from Figure Eight1 (total cost: $120). Each participant evaluates 6 videos—
thus generating 6, 000 uPLT values or about 54 valid feedbacks per webpage, on average.

In Figure Eight, we request the highest quality participants. As discussed in the Eye-
org paper, we also �lter user responses using a mix of their engagement (i. e., the time
spent on task) and the quality of their opinions using some control questions. Eyeorg im-
plements control questions on top of the frame selection helper, a tool that helps the user
“rewinding” her uPLT selection if an equal2 (earlier) frame is identi�ed. This is needed
because, for some users, it can be hard to scrub a video exactly to the earliest point asso-
ciated with a selected frame. For one video out of six, the frame selection helper suggests
the very �rst video frame as a rewind option. Users that blindly accept this suggestion
without noticing the obvious di�erence between the two frames are considered as po-
tentially distracted, and their responses are discarded. In total, we discard 172 users due
to low engagement and due to failing the control questions.

4.3 understanding users’ feedback

In order to provide an in-depth characterization of user feedback, we start our analysis
by checking the existence of multiple modes on the uPLT distribution, considering for

1 https://www.�gure-eight.com/
2 No more than 1% di�erent in a pixel-by-pixel comparison.
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Figure 19: Component weights for pages with multi-modal uPLT.

each webpage the valid uPLT feedbacks. Then, we study the number and parameters
of the di�erent modes exhibited by the uPLT distribution for each webpage. Finally, we
investigate how the complexity of modern webpages (e. g., number of objects, domains,
etc.) and user browsing behavior may a�ect uPLT multi-modality.

4.3.1 UPLT Distribution Analysis

We next analyze the uPLT distributions to inspect the presence of multi-modal behav-
iors. For this purpose, we rely on a non-parametric statistical test widely used to assess
whether a distribution of real-valued random variables, such as the uPLT, is likely to be
uni-modal [66]. This test computes the dip statistic as the maximum di�erence between
the empirical cumulative distribution function (ecdf), and the uni-modal distribution
function that minimizes that maximum di�erence. When we perform the dip test, we
employ the common threshold p < 0.05 to reject the null hypothesis of uni-modality.
We �nd on our set that 56webpages are likely to exhibit a uni-modal distribution of uPLT
and 52 a multi-modal one. By lowering this threshold, the number of likely multi-modal
webpages decreases, e. g., when p < 0.01 only 42 pages are estimated as multi-modal.

For the webpages found to be likely multi-modal, we model their uPLT distributions
with a Gaussian mixture model (GMM), i. e., a weighted sum of K independent Gaussian
distributions. The question that naturally arises is how many Gaussian components K
have to be considered per webpage. By letting the parameter K of the GMM range from
2 to 10, we observe that the GMM accurately models the uPLT distribution for K > 3.
However, we �nd that even for K = 3 some webpages have small modes (34 webpages
have at least one of the three components with weight lower than 0.05).
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aaaaaaaaaa
Mmass

Mtime Mfirst Msecond Mthird

Mmajor 63% 33% 4%

Mmiddle 29% 38% 33%

Mminor 8% 29% 63%

Table 7: Breakdown forMmass =Mtime.

We run the goodness-of-�t Kolmogorov-Smirnov test, with a con�dence level of 0.95.
The null hypothesis is that the empirical uPLT and the mixture distribution (which we
sample to obtain the same number of samples as the empirical one) with K = 3 come
from the same distribution. The result shows that, for more than 70% of the multi-modal
webpages, the null hypothesis is con�dently accepted. Hence, for each likely multi-
modal webpage, we set K = 3 and �nd the corresponding GMM parameters from its
uPLT distribution: mean, standard deviation, and weight of each component.

Fig. 19 shows the weights’ distribution of the three components sorted by their mass,
Mmass = [Mmajor,Mmiddle,Mminor], across the 52 likely multi-modal webpages.
We observe that the weight ranges from 0.40 to 0.95 for the major component (Mmajor),
which represents on average 69% of users (median 72%), 0.03 to 0.43 for the mid-
dle (Mmiddle) component, and 0.02 to 0.27 for the minor component (Mminor). For
some outlier webpages, such as booking.com, users are split into multiple well de�ned
modes of similar size. In the opposite case, there are webpages such as paperpile.com

where nearly all the users agree on a single uPLT value, with two other smaller modes
(Mmajor,mass = 0.86,Mmiddle,mass = 0.10,Mminor,mass = 0.04).

The uPLT components can alternatively be sorted by occurring time, in such a way
that the user opinion is split among Mtime = [Mfirst, Msecond, Mthird] on multi-
modal webpages (so that Mfirst refers to the earliest in time and Mthird to the latest
one). By analyzing the modes de�ned in these two distinct ways, we can check when
eachMmass mode coincides with eachMtime mode.

Tab. 7 shows the percentage of occurrences for each of the 9 couples of Mmass =

Mtime (Mmajor = Mfirst, Mmajor = Msecond, etc.). This gives us information
on which time sorted mode Mtime is more liable to be the most or least popular one
(Mmass). The table highlights that the majority of users are more likely to prefer the ear-
liest modes: the major modeMmajor is indeed equivalent to the earliest modeMfirst

on 33 pages (63% of the whole multi-modal webpages set), it is equal to the second



4.3 understanding users’ feedback 53

Page Feature µ σ 25% 50% 75%

Size [MB] 854/970 862/1,687 176/136 564/439 1,382/1,145
# Objects 53/81 47/50 17/44 46/76 72/106
# JS 15/21 14/14 5/9 10/19 22/28
# Images 20/34 27/31 4/12 10/26 22/44
# CSS 13/16 10/15 5/6 12/10 16/24
# Domains 7/11 8/9 3/6 4/8 9/14

Table 8: Statistics of uni-modal/multi-modal pages.

one Msecond on 17 pages (33%), and �nally it is equivalent to the latest third mode
Mthird on just 2 pages (4%). Reversely, the minor modeMminor tends to rarely coin-
cide with the earliest oneMfirst (8%): it is actually most of the time equal to the latest
mode Mthird (63%) and sparingly to the second one Msecond (29%). We can �nally
conclude that the mapping between mass and time sorted modes is such that the most

popular mode is generally also the earliest in time and vice versa.

4.3.2 Page Characteristics and uPLT

Given that half of the webpages exhibit a multi-modal uPLT, we investigate which of
their characteristics (e. g., number of objects, images, domains, etc.) may cause a split of
users’ feedback with respect to when the page is loaded. For example, ads heavy web-
pages might be (at least) bi-modal since some users consider the page to be loaded before
ads are shown, while some others would wait for the whole content to be retrieved and
displayed.

Tab. 8 illustrates several statistics (average, standard deviation, 25/50/75th percentile)
of the webpage characteristics we considered during our strati�ed URL selection (see
Section 4.2). We can observe that the standard deviation of the size of multi-modal web-
pages is double with respect to that of uni-modal ones (at the 100% percentile we have
10, 338 vs 3, 460). We also observe that the mean number of images and of distinct ori-
gin domains for multi-modal webpages is respectively 34 and 11 compared to 20 and
7 for uni-modal webpages. This is inline with the intuition that complex webpages are
more likely to be multi-modal. We next inspect how prevalent is advertising across these
websites by matching the content received against EasyList,3 a list of known advertise-

3 https://easylist.to/easylist/easylist.txt
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Figure 20: Ranking of the features according to their SHAP values when predicting uni-modal
pages.

ment domains. We �nd that multi-modal websites contain, on average, 5 times more
advertisements than uni-modal websites, likely segmenting user opinions on uPLT.

We are now interested in assessing the importance of each of the above features for
predicting uPLT multi/uni-modality of webpages. For this task, we train a Random For-
est Classi�er with 25 estimators, which on a 7-fold cross validation4 achieves an average
precision of 0.69 and an average recall of 0.68. In line with the current trend towards hu-
man interpretable machine learning and model explainability, we leverage SHAP (SHap-
ley Additive exPlanations) [95] to understand which features can better reveal whether
a webpage is uni-modal or not. We report in Fig. 20 the 6 features, sorted by the sum
of the SHAP magnitude values computed for all the webpages. SHAP values capture
the e�ect of removing a feature for a given prediction under all possible combinations
of presence or absence of the other features. Hence, they provide a quantitative insight
of the importance of each feature for the model. The positive x-axis values assess the
impact on the model output for predicting the uni-modal class, whilst the negative ones
refer to the multi-modal class. We can observe that the two most in�uential features
are the number of images and the number of objects present in the webpage. In par-
ticular, the lower the values of these features, the higher their SHAP value (up to 0.2
for the number of images and 0.15 for number of objects). In other words, for simple
webpages with few images and objects, users more likely agree on a single uPLT, mak-
ing the uPLT distribution uni-modal. Such e�ect is less evident for the other webpage
properties, where low and high feature values overlap, causing a decrease in the impact

4 Seven-fold cross-validation ensures that the validation dataset is at least 15% of the size of the whole
dataset.
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Figure 21: |PLT − TTI| ECDF for uni/multi-modal pages.

factors on model prediction, probably due to the lack of additional data points to train
the model. These �ndings provide valuable insights for designing webpages with more
predictable user perception. For instance, we might expect that the uPLT measured via
mobile browsers presents a unimodal distribution, as they generally load a simpli�ed
version of the webpage. We acknowledge that future studies are needed to further elab-
orate relevant design guidelines in this direction.

Finally, we quickly investigate if a di�erence in performance metrics can also explain
the multi-modality of uPLT. We check whether the time di�erence between the early and
late events (such as TTI and PLT) of the page loading process provides strong evidence
of multi-modality. Fig. 21 shows the ecdf of |PLT − TTI| for webpages we previously
categorized as uni-modal or multi-modal. We can observe that multi-modal websites
are, overall, characterized by larger |PLT −TTI| di�erences compared to uni-modal ones.
On the other hand, less than 10% of uni-modal pages had a |PLT − TTI| > 2.2s. This
�nding suggests that the rendering of these webpages naturally segment the users: some
believe the page loaded as soon as the major part of the page loaded (usually closer to
TTI) whereas others wait for all visible images to �nish loading to consider the page
fully loaded (usually closer to PLT).

4.3.3 Evaluation of Web Quality Metrics

Finally, we investigate to which extent single-valued objective Web quality metrics (see
Section 3.2) can approximate the di�erent modes of the uPLT distributions exhibited by
the webpages of our study. For each of the 56 webpages showing a uni-modal uPLT be-
havior, Tab. 9 reports on the top the Root Mean Square Error (RMSE) of the mean of the
uPLT distribution µ(uPLT) with respect to each of the following objective Web perfor-
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RMSEµ,Metric TTFP TTI AATF PLT

µ(uPLT) 2.48s 2.35s 1.99s 1.48s

wRMSE TTFP TTI AATF PLT

µ(uPLT) 3.10s 2.45s 2.57s 2.64s

Mmajor 2.03s 1.84s 2.54s 3.27s

Mmiddle 4.89s 4.33s 4.23s 4.29s

Mminor 9.36s 8.69s 8.67s 7.96s

Mfirst 1.44s 1.81s 2.80s 3.79s

Msecond 4.60s 3.74s 3.72s 3.65s

Mthird 11.71s 10.89s 10.39s 9.14s

Table 9: RMSE of (top) uni-modal and (bottom) multi-modal uPLT with Web quality metrics.

mance metrics: TTFP, TTI, PLT and ATF, computed as Approximated Above-The-Fold
(AATF) [39]. Results reveal that PLT is the metric which better approximates (lowest
error term) the uPLT for webpages showing a uni-modal behavior of uPLT.

We rely on the weighted RMSE (wRMSE) to assess the quality of approximation of ob-
jective Web quality metrics for the 52webpages with multi-modal uPLT (see the bottom
part of Tab. 9). This approach weights the average towards larger components, which
is particularly important for better evaluating the error onMmiddle andMminor. We
conduct this analysis from three di�erent perspectives: (i) we compare the wRMSE
of the mean of the uPLT distribution µ(uPLT), as we did for uni-modal webpages,
(ii) we examine the three modes sorted by their mass Mmass = [Mmajor, Mmiddle,
Mminor] (Mmajor is the mode with the largest mass of the distribution), and (iii) by
occurring timeMtime = [Mfirst,Msecond,Mthird] (Mfirst is the earliest).

The results summarized in Tab. 9 show that TTFP and TTI better approximateMmajor

and, not unexpectedly, given the duality shown in Sec. 4.3.1,Mfirst. On the other hand,
AATF and PLT better approximate Mmiddle, Mminor, Msecond and Mthird. The
former suggests that, to enhance the uPLT analysis, measuring and optimizing the last

updates, usually achieved with PLT, is less relevant with respect to the earlier ones,
e. g., TTI and TTFP. The latter instead con�rms that the users choosing a late uPLT
agree on a page to be loaded close to the last two page tracking events. It is also an
interesting validation to note that, on uni-modal pages, PLT better matches µ(uPLT)
whereas TTI does that for multi-modal ones.
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Table 10: Summary of recent related work.

Year [ref] Experiments
scale

Measurement
design

uPLT
multi-
modality

Metrics
evaluation

uPLT modes
analysis Main focus

2012 [48] n.a. uPLT crowd-
sourcing

No Yes No WQL de�nition
and demonstra-
tion

2013 [135] n.a. uPLT crowd-
sourcing

No Yes No Assessment and
Models for Web
QoE

2014 [142] n.a. n.a. No Yes No Web QoE
overview

2016 [149] 1000 users,
100 webpages uPLT crowd-

sourcing
Yes No No uPLT metric

de�nition

2017 [81] 50 users,
45 webpages uPLT crowd-

sourcing
Yes No No uPLT optimiza-

tion by tracking
user’s eye gaze

2017 [54] 5.4k users,
115 webpages A/B testing

by showing
side-by-side
videos

No Yes No Web browsing
QoE assessment

2020 [This
work]

1k users,
108 webpages uPLT crowd-

sourcing
Yes Yes Yes uPLT multi-

modality
analysis and
characteriza-
tion

4.4 discussion

Only few among recent works highlighted the existence of possible multi-modal behav-
iors for the uPLT. However, none of them deepened the study of the uPLT multi-modality
or further explored the existence of these underlying di�erent user behaviors, by carry-
ing out the analysis of user feedback under this angle.

A summary of closely related work is reported in Tab. 10, where we distinguish for
each study whether its authors identify or mention the multi-modal trait of uPLT (“uPLT
multi-modality”) or if they analyze that the uPLT is insu�ciently captured by single-
valued objective metrics (“Metrics evaluation” ). For the sake of comparison with our
work, we report when available, the experimental settings and the size of the measure-
ments (amount of users and webpages involved). Speci�cally, we note that previous stud-
ies [48, 135, 142] observe that uPLT does not match PLT, while Gao et al. [54] �nd that,
more generally, “commonly used navigation metrics such as onLoad and TTFB fail to rep-
resent majority human perception”. We note that although these works remarked either
the multi-modality of uPLT or the di�culty in mapping uPLT to single Web QoE met-
rics, their focus was not on characterizing the uPLT multi-modal nature. This con�rms
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that the main hypothesis of our work is in line with the recent empirical observations
in Web QoE modeling.

In this chapter, we went beyond related work by (i) evaluating the fraction of uni-
modal versus multi-modal pages according to a rigorous statistical test, (ii) thoroughly
characterizing the di�erent uPLT modes, and �nally (iii) mapping between the di�er-
ent uPLT modes and the Web QoE metrics proposed in the literature. Speci�cally, our
analysis shows that (i) the uPLT distribution is uni-modal for approximately half of the
webpages in our dataset, for which a simple PLT indicator (measured via the browser
onLoad event) is a good estimator of user perception. We also show that, among classi-
cal indicators of webpage complexity, the number of objects and the number of images are
good indicators for uPLT modality. We then show that (ii) multi-modal webpages are,
in practice, never characterized by more than three modes. The most prevalent mode
represents no less than 40% of users (69% on average, 72% median) in our dataset. We
also observe that the earliest and most popular modes tend to match.

Finally, we demonstrate that (iii) we can approximate the earliest and most popu-
lar mode by TTFP and TTI, whereas metrics such as ATF and PLT better approximate
the other modes. These �ndings can be summarized in the following rule of thumb for
measuring Web QoE using existing metrics. On the one hand, given that user browsing
statistics are likely to exhibit multi-modality, one metric is generally not su�cient to
faithfully capture user perception. On the other hand, the whole spectrum of user per-
ception seems to be captured by relatively few user modes, so that a small number of
metrics are good at capturing uni-modal (e. g., where PLT or AATF will su�ce) as well
as multi-modal behavior (e. g., where additionally TTI should be measured for increased
representativeness).

4.5 conclusions

In this chapter, we have asked a very simple but yet important and challenging ques-
tion: to which extent users agree on a single time for when a page is loaded? This question
is important because, traditionally, Web quality metrics (e. g., PLT and SpeedIndex) are
conceived to produce a unique time indicator, implicitly assuming that user opinions
would statistically converge to a single value. This question is also challenging, because
of the sheer size of the Web coupled with the complexity to collect and understand user
opinions. We show that for around half of the webpages considered, the uPLT distribu-
tion is multi-modal and that instead, for simple webpages users more likely agree on a
single uPLT. We point out our results are representative (as per the strati�ed sampling
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selection, which is interesting per se, that ensures our 100 target pages cover the initial
1M set) and repeatable (for which we have already open sourced our dataset [5]).

Whereas this work is far from entirely closing the Web QoE measurement issue, we
hope that open sourcing our dataset [5] can help the community into further nailing
down the smallest set of relevant Web QoE metrics covering all user modes, as opposite
to attempting to de�ne yet another single Web QoE indicator, that would by de�nition
fail in this task.
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5.1 is the web diverse enough?: on the fairness of language models

Since their inception [43], transformers-based bidirectional encoder representations lan-
guage models (LMs) gained lots of scienti�c interest due to their sizable improvements
on a wide range of Natural Language Processing (NLP) tasks. The success of BERT
pushed researchers to expand the state-of-the-art by introducing a plethora of model
variants with di�erences in the architecture [124], the size [87, 133, 157] and the train-
ing [88, 91]. This resulted in a growing concern of the research community to discuss
the potential risks coming from the pervasive adoption of these models [17]. Indeed, sev-
eral studies highlight that this would hinder an equitable and inclusive access to NLP
technologies and have real-world negative consequences in di�erent areas, as educa-
tion, work and politics [136]. In this context, given the consistent emergence of new
LMs trained on Web-based corpora, it is crucial to de�ne to which extent such models
are fair and not instead prone to bias.

Actually, given the sheer size and heterogeneity of the Web, one could expect these
models to be bias-free. However, already before the explosion of transformer-based LMs,
a variety of biases have been identi�ed in standard word embeddings [19, 22]. Recently,
some e�ort has been devoted to highlight the presence of possible biases encoded by

61
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transformer-based LMs along gender, race, ethnicity, and disability status. Yet, whereas
the study of such biases is commonly tackled via sentiment analysis and named entity
recognition tasks, in this work we take a di�erent approach. Inspired by the frequent
scenario occurring in conversational systems, where a word could be unheard or unrec-
ognized by the Automatic Speech Recognition system and would therefore need to be
predicted, we measure how token predictions change based on their context. Similar to
prior work [86] considering social biases in BERT, we assess the bias for a target token
by directly querying the underlying Masked Language model.

In this work we focus on the study of potential bias towards English dialects spoken
by underrepresented and historically discriminated groups, such as African American
English (AAE). Particularly, AAE slightly di�ers from mainstream English, also known
as Standard American English (SAE). In linguistics, these two variants are regarded as
two di�erent languages because highly structured with their own phonological, syntac-
tic and morphological rules [62]. However, SAE speakers often believe that AAE is a
version of SAE with mistakes and that AAE speakers belong to de�cient cultures [122,
154]. While, instead, AAE highlights the regional, societal and cultural environments in
which individuals have learned to speak [61].

It is di�cult to estimate the number of AAE speakers, since some African Americans
may speak a variety that aligns more with SAE and besides, not all AAE speakers are
African Americans. Nevertheless, a 2019 census [123] estimates that approximately 13%
of the U.S. population is currently African American. This suggests that the fraction of
population speaking AAE could be large. Hence, the presence of potential linguistic
biases would have discriminatory consequences towards a considerable group of indi-
viduals.

For these reasons, we set out to measure the robustness and the quality of 7 transformer-
based LMs in the prediction of missed words when the input is either SAE or AAE. Here
we question whether the heterogeneity of Web content, over which the LMs have been
trained, guarantees diversity. We resort to two renowned corpora of spoken SAE and
AAE and evaluate the LMs in a Masked Language Modeling (MLM) task. This is a �ll-

in-the-blank task, where we mask and predict a token simulating its absence in every
utterance. We next de�ne two metrics to compare the likelihood that the model assigns
to the predicted token and to the actual masked one, that we use as a proxy of quality
and fairness for the model itself.

Speci�cally, we rigorously quantify the model bias and �nd that BERT, in both its
cased and uncased variants, exposes a non-negligible bias towards SAE (up to 21% more
accurate results with respect to AAE). Surprisingly we �nd this bias to be reversed for
RoBERTa and BART models. We additionally observe distilled variants of these LMs to
be fairer with respect to their teachers. Finally, our analysis reveals how most of the bias



5.2 background and related work 63

resides in the AAE structural di�erences, and identi�es the particles, the pronouns and
the adpositions as principal parts of speech sources of bias.

This chapter is organized as follows. After overviewing the related work (Section 5.2),
we present the corpora and the methodology to measure of the bias (Section 5.3). In
Section 5.4 we show the results of the LMs when operated to predict the tokens from
AAE and SAE, illustrating that the metrics we de�ne reveal a bias. Finally, we discuss
our �ndings and possible directions (Section 5.5).

5.2 background and related work

The success of transformer-based LMs is down to several factors, among which it is
worth mentioning the large architectures and the training done on huge amounts of
textual data. Moreover, recently a special e�ort has been devoted to reducing the size
of large LMs, e. g., BERT [43] and RoBERTa [91], by means of various compression tech-
niques as knowledge distillation or quantization. This made possible the emergence of
much smaller, but no less accurate, LMs as DistilBERT [133] and DistilRoBERTa [133].

Nevertheless, the emergence and massive spread of all these models raised the interest
of the research community towards the potential societal risks linked to the employment
of these models for either generating text tasks or as components of classi�cation sys-
tems [17]. These works have studied the e�ects of transferring the stereotypical associ-
ations present in the training datasets to LMs, which cause unintended bias towards un-
derrepresented groups. Recent work [160] studies di�erences in performance for BERT,
showing that it often favors the majority group with regards to gender, language, eth-
nicity, and insurance status, whereas [144] �nds racial bias encoded in di�erent models.
A signi�cant research e�ort has been done to show race and gender bias embedded in
large models [14, 34, 86, 101, 137]. Authors in [74] highlight instead the presence of
topical biases in the words predicted by BERT on sentences mentioning disabilities.

In addition to bias measurement works, researchers have proposed methods to miti-
gate societal biases with debiasing techniques [80, 89, 148]. As for the bias towards lan-
guages, most studies have focused on o�ensive language and hate speech detection [42,
107, 108], while assessing the bias against dialects spoken by underrepresented groups is
quite recent [44]. Whereas the above works mostly focus on the negative sentiment and
stereotypical associations towards speci�c groups in BERT [43], in this work we quan-
tify the linguistic bias towards AAE for 7 di�erent LMs: BERT, RoBERTa, BART [88],
DistilBERT and DistilRoBERTa, including both their cased and uncased versions.

These works have proven that the large dimension of the training datasets for state-
of-the-art LMs is not synonymous of diversity and, as a consequence, of inclusion [17].
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Therefore, in this regard, our analysis is essential to provide a framework to assess, re-
veal and counteract the existing biases, which we hope will contribute in enriching the
scienti�c community knowledge on this domain.

5.3 methodology

Spoken language tends to have incomplete sentences, spontaneous self-corrections and
interruptions and its register is more of an informal one, while written language is typi-
cally more structured and pre-planned. The features of spoken language are of particular
interest for studying conversational systems.

Hence, to capture and provide an accurate and comprehensive account of societal
biases embedded in state-of-the-art LMs, we leverage two corpora of spoken English.
These are widely used by the linguists because considered a fair representation of their
spoken language. We note that, while this work is not the �rst in studying the presence
of societal biases, to the best of our knowledge, this is the �rst to provide a thorough
characterization of it for AAE, across di�erent models tested on a MLM task. In this
case, the use of the MLM task would replicate the often occuring scenario where a word
could be unrecognized by the Automatic Speech Recognition system which would nor-
mally have to infer it given the surrounding context. We summarize LMs performance
by means of statistical metrics, which are used to characterize both the bias and the
quality of the models.

5.3.1 Corpora for Spoken English

For SAE, we leverage the Santa Barbara Corpus of Spoken American English (SBC-
SAE) [45], which has been already widely adopted for di�erent applications, as the
assessment of political risk faced by U.S. �rms [67], the measure of grammatical con-
vergence in bilingual individuals [30] and the exploration of new-topic utterances in
naturally occurring dialogues [97].

The SBCSAE is the only existing large-scale corpus of naturally occurring spoken in-
teractions from people with di�erent regional origins in USA. It includes conversations
from a wide variety of people, di�ering in gender, occupation and social background,
recorded in various real everyday life situations. All the audio recordings are comple-
mented with their transcribed counterparts, which are the ones we use in this work.

The fact that SBCSAE consists of speakers from several regional origins prevents us
from crafting the results and unintentionally inducing a bias by comparing AAE with an
academic version of SAE, which is instead rather di�erent from the commonly spoken
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Corpus Language |U| 〈`u〉 L |T|

Original

CORAAL AAE 90,493 6.22 563,037 17,214
SBCSAE SAE 40,838 7.14 291,513 12,324

Preprocessed

CORAAL AAE 63,814 8.23 525,067 16,352
SBCSAE SAE 25,113 8.38 210,430 10,540

Table 11: Corpora summary: with and without �ltering utterances (U) based on their length.
With 〈`u〉 we indicate the average utterance length; with L, the length of the corpus
in number of words, and; with |T|, the number of terms (unique words).

English and, hence, far from the purpose of this work. Therefore, we �lter out Hispanic
and African American speakers (1092 AAE utterances, a negligible number with respect
to the size of the corpus) and obtain a corpus of SAE language.

For AAE, we leverage the Corpus of Regional African American Language (CORAAL) [82],
which also provides the audio recordings along with their time-aligned orthographic
transcription, of particular interest for this work. CORAAL includes 150 sociolinguistic
interviews for over a million words. It is periodically updated and is the only publicly
available corpus of AAE. As such, it has been used in literature for a plethora of tasks,
ranging from dialect speci�c speech recognition [44] to cross-language transfer learn-
ing [71].

In this work, we only focus on the CORAAL:DCB portion, since it is the one com-
prising the most recent interviews (carried out between 2015 and 2017) and the largest
amount of data (more than 500k words). It includes conversations from 48 speakers
raised in Washington DC, a city with a long-standing African American population.

For each corpus we de�ne U = {u1,u2, ...,un} as the set of all the available utter-
ances, and T = {t1, t2, ..., tn} as the set of all terms (unique words). Since we perform
an utterance-level analysis, we �rst �lter out noise. Particularly, we discard both short
utterances (composed by just one or two words) and very long ones (greater than 50
words). Therefore, we only keep utterances having a number of words ranging from 3
to 50.

Fig. 22 shows the empirical cumulative distribution function (ECDF) of the utterance
length `u for both AAE and SAE corpora. We can see that the two distributions are
almost equal, therefore our utterance-level analysis does not introduce any bias.

In Tab. 11 we report a terse summary of the corpora statistics, both before and after
having applied the �ltering based on the utterance length. Even though the sizes of the
two datasets are very di�erent, not only in terms of number of utterances |U|, but also
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Figure 22: The ECDF of the utterance length `u for both AAE and SAE corpora.

Model Training Data

BERT,
DistilBERT

BooksCorpus and
English Wikipedia (16GB)

RoBERTa,
BART

BERT data + Cc-News,
OpenWebText and Stories (160GB)

DistilRoBERTa OpenWebText (38GB)

Table 12: Training data for the tested LMs.

in terms of total number of words L and terms |T|, we can see that, after the �ltering,
the average utterance length 〈`u〉 is very similar (∼ 8 words per utterance).

5.3.2 Bias in Masked Language Modeling

In order to measure the bias in LMs we perform a MLM task. We leverage the transformer-
based BERTbase LM [43] and its recent variants, including DistilBERTbase [133], in both
their cased and uncased �avors, RoBERTabase [91], DistilRoBERTabase and BARTbase [88].
These LMs have all been pre-trained using a MLM objective, which consists in randomly
masking 15% of the tokens using a special [MASK] token. Note that these models are
trained on di�erent corpora, summarized in Tab. 12. In practice, they have been in-
structed to predict a masked token, referred to as a [MASK], given the surrounding
context of the sentence.

Therefore, by directly querying the underlying MLM in each LM, we simulate the typ-
ical scenario where a conversational system has to infer a missed word in an utterance.
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original utterance (u) And I be okay with it .
u with w1 masked [MASK] I be okay with it .
u with w2 masked And [MASK] be okay with it .

· · ·
u with w7 masked And I be okay with it [MASK]

Table 13: Example showing the masked token experiment.

Speci�cally, we encode each utterance of the two corpora with the tokenizer of the LM
considered, then, in turn, we mask each word wmask and �nally predict it by feeding
the model with only a context of 10 tokens surrounding the masked onewmask. Tab. 13
shows an example, illustrating how the experiment is carried on: (i) we let the LM en-
code the original utterance u (the one reported in the table has a length lower than 10
tokens so there is no need for the window), (ii) we mask and predict the �rst token w1,
(iii) we iteratively repeat this process until the last token of the utterance is masked.

The LM provides for each run a list of possible terms to �ll-in-the-blank. In this vocab-
ulary set (T) we select the predicted term tp having the highest probability P(tp|c) and,
as such, ranking �rst in the list ρ(tp|c) = 1, where c is the context surrounding tp and
ρ is the rank of t|c provided by the model. In this notation, a wordw is a term t in a con-
text c (t|c). We next retrieve from the vocabulary of possible terms T the corresponding
probability P(tm|c) and the rank ρ(tm|c) for the actual masked token tm. The latter
provides a measure of how likely the LM will choose tm as a candidate token to replace
the masked onewmask. It is then natural to employ the probabilities di�erence∆P(t|c)
as a proxy of the quality of the prediction for a single token, so de�ned:

∆P(t|c) = P(tp|c) − P(tm|c) = ∆P(w). (1)

We further de�ne for each token t|c the Complementary Reciprocal Rank (CRR) as:

CRR(t|c) = 1− ρ(tm|c)−1 = CRR(w). (2)

Note that this is the di�erence between the reciprocal rank (RR) of the predicted token,
which is always equal to 1 (ρ(tp|c)−1 = 1), and the RR of the masked token.

We then de�ne the probability di�erence for an utterance by averaging the probability
di�erence for each token in the utterance:

∆P(u) =
1

`u

∑
w∈u

∆P(w), (3)
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with `u being the length of the utterance in terms of tokens. Similarly, we de�ne the
CRR for an utterance as:

CRR(u) =
1

`u

∑
w∈u

CRR(w). (4)

Note that the metrics based on the ranks ρ(t|c) generated by the LMs are necessary
to fully capture the bias embedded in the models, as the ∆P(t|c) alone could be insu�-
cient. This because, the∆P(t|c) strongly depends on how the LM assigns the probability.
Indeed, the probability distribution of P(t|c) could be more uniform, and consequently
would lead, on average, to a smaller ∆P(t|c), or more skewed, causing instead larger
di�erences ∆P(t|c). Instead, this e�ect is not present in CRR that remains una�ected by
such di�erences in the output probability distribution of P(t|c).

5.4 qantifying the bias

In this section, we �rst provide an accurate overview of the measured LMs fairness,
and then further analyze the discovered biases from di�erent viewpoints. We show how
they varies when we take into account the syntactical, grammatical, and lexical patterns
typical of AAE language �rst, and then, when we slice the corpus based on parts of
speech.

5.4.1 Measuring the Bias of LMs

As described in Section 5.3, we test the fairness of transformer-based LMs by running
experiments in a MLM setting. As aforementioned, we use ∆P and CRR as metrics for
measuring the quality and the fairness of the models towards the two investigated lan-
guages. We are interested in observing the expected behavior of the LMs with respect
to each utterance, therefore we consider an aggregate measure of the metrics on a per-
utterance level.

Tab. 14 reports an overview of the results of∆P(u) and CRR(u). After having assessed
that the di�erence between the means of AAE and SAE for both∆P(u) and CRR(u)with
a Welch’s t-test [152] is signi�cant (p-value < 0.05), we measure their e�ect size using
the Cohen’s d [37]. This is reported in the last two columns of Tab. 14. According to
Cohen’s classi�cation there is a small e�ect for both the metrics, and a medium e�ect
for BART on ∆P(u) (d> 0.5).
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MAE MSE
∆P(u) CRR(u) ∆P(u) CRR(u)

Model AAE SAE ∆[%] d AAE SAE ∆[%] d AAE SAE ∆[%] d AAE SAE ∆[%] d

BERTcased 0.217 0.171 21 † 0.417 0.497 0.441 11 † 0.272 0.060 0.040 33 † 0.345 0.289 0.233 20 † 0.262
BERTuncased 0.242 0.198 18 † 0.352 0.494 0.446 10 † 0.232 0.074 0.053 29 † 0.297 0.288 0.238 18 † 0.230
DistilBERTcased 0.113 0.108 5 † 0.081 0.627 0.589 6 † 0.188 0.017 0.016 2 † 0.015 0.436 0.385 12 † 0.203
DistilBERTuncased 0.126 0.118 6 † 0.104 0.578 0.530 8 † 0.222 0.021 0.020 1 0.007 0.380 0.325 15 † 0.223
RoBERTa 0.223 0.261 -15 † 0.368 0.536 0.592 -9 † 0.252 0.061 0.079 -23 † 0.311 0.337 0.396 -15 † 0.225
DistilRoBERTa 0.143 0.153 -7 † 0.137 0.644 0.668 -4 † 0.117 0.026 0.029 -11 † 0.112 0.457 0.487 -6 † 0.115
BART 0.156 0.193 -20 † 0.506 0.613 0.682 -10 † 0.346 0.030 0.043 -31 † 0.447 0.418 0.501 -17 † 0.328

Table 14: MAE and MSE of ∆P(u) and CRR(u) measured on AAE and SAE corpora: results ob-
tained through the �ll-in-the-blank task with di�erent language models. † signi�es that
the AAE and SAE expectations are statistically signi�cant according to the Welch’s
two-tailed t-test (p-value < 0.05). The column d contains their e�ect size computed
according to the Cohen’s d.

We summarize the quality of the prediction in the corpora by means of two error
measures. We report the Mean Absolute Error (MAE) for each of the two distributions:

MAE(∆P(u)) =
1

|U|

∑
u∈U

|∆P(u)|, (5)

MAE(CRR(u)) =
1

|U|

∑
u∈U

|CRR(u)|. (6)

We also report the Mean Squared Error (MSE), de�ned as:

MSE(∆P(u)) =
1

|U|

∑
u∈U

∆P(u)2, (7)

MSE(CRR(u)) =
1

|U|

∑
u∈U

CRR(u)2. (8)

Indeed, these error measures can be used to quantify the quality of the predicted terms.
MAE and MSE closer to 0 correspond to an utterance having more accurately predicted
terms. Therefore, in Tab. 14 we highlight the values leading to the smallest error be-
tween AAE and SAE. We additionally emphasize the presence of bias by pointing out
the percentage of bias change of each LM ∆[%]. This is always calculated with respect
to the model with the largest bias, and when positive the model is biased towards SAE,
vice versa otherwise.

Three main patterns clearly emerge from Tab. 14. First, BERT and DistilBERT, in both
their cased and uncased variants, show a bias towards SAE for all the metrics. Specif-
ically, BERT not only presents a non-negligible bias against AAE but also it is the LM
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Figure 23: The di�erence between the ECDFs of SAE and AAE for the ∆P(u) measure. When
the values are greater than zero the LMs are more biased towards SAE, vice versa

otherwise.

which leads to the highest relative bias. Speci�cally, notice that the MAE(∆P(u)) for
SAE is more than 20% lower than AAE, 11% lower for the MAE(CRR(u)), 33% for the
MSE(∆P(u)) and 20% for the MSE(CRR(u)).

Second, DistilBERT, in both its cased and uncased �avors, and DistilRoBERTa, are
the models which perform better as regards the average probability di�erence ∆P(u).
This is true both in terms of MAE and MSE, which are approximately half and one
third of the other LMs. On the one hand, this could seem somewhat unexpected since,
one could argue that DistilBERT is less accurate than BERT, achieving only 97% of its
performance [133]. On the other hand, this is in line with recent work [17] reporting
that such LMs sometimes exceed the performance of the original ones. However, as
mentioned in Sec. 5.3, it is crucial to also look at the CRR(u), since a better behavior in
terms of ∆P(u) could in practice just be tied to the fact that the model generates more
uniformly distributed probabilities P(t|c) with respect to the others.

Finally, we observe that BART, despite leading to a decent quality of the prediction
for AAE (MAE(∆P(u)) and MSE(∆P(u)) are lower than BERT), shows an opposite
trend with respect to BERT and DistilBERT. This reverse unexpected bias towards AAE
is also introduced by RoBERTa and DistilRoBERTa. This is somewhat surprising and
could probably be ascribable to the type of datasets they have been trained on. In-
deed, as shown in Tab. 12, RoBERTa and BART are pre-trained with 1000% more data
than BERT. Particularly, by delving into the type of data involved, we discover mul-
tiple sources, ranging from English language encyclopedia and literary works (same
as BERT), to news articles and Web content. Speci�cally, RoBERTa, BART and Distil-
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Figure 24: The di�erence between the ECDFs of both AAE and SAE for the CRR(u) measure.
When the values are greater than zero the LMs are more biased towards SAE, vice
versa otherwise.

RoBERTa leverage OpenWebText [58], a corpus which includes �ltered Web content
obtained by scraping the social media platform Reddit, possibly exposing the LMs to a
less standard American English.

Since Tab. 14 reports only a summary of the distributions of the bias metrics computed
on both the datasets, for a better understanding, we show in Fig. 23 the bias measured by
subtracting the empirical cumulative distribution functions (ECDFs) of ∆P(u) of AAE
to that of SAE. This �gure includes the bias measured for the LMs, reporting, for the
sake of simplicity, for BERT and DistilBERT only their cased variants. The solid black
line at y = 0 shows the optimal unbiased LM and, hence, visually separates what is
biased against AAE (on the positive y-axis) from what instead is biased against SAE (on
the negative y-axis). In this way, we clearly see the behaviors of the LMs leading to the
two worst biases, i. e., RoBERTa and BERTcased: they are consistently biased towards
one side (BERTcased is always positive, whilst RoBERTa is instead always negative).
They both present the maximum bias when ∆P(u) is close to 0.2 and instead mitigate
for larger values.

A similar behavior is observed for the CRR(u). Fig. 24 shows the bias measured by
subtracting the empirical cumulative distribution functions (ECDFs) of CRR(u) of AAE
to that of SAE. The trend of the models is similar to that shown for ∆P(u): BERTcased
and DistilBERTcased exhibit a consistent bias towards SAE, whilst, on the contrary,
RoBERTa, DistilRoBERTa and BART are steadily biased towards AAE.
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Original Translated

Double Negative (0.7%)

• You don’t need nothing but you. • You don’t need anything but you.

• I wasn’t no lifeguard cause
I couldn’t swim.

• I wasn’t a lifeguard because
I couldn’t swim.

• Don’t never try to chase another

person happiness.

• Never try to chase another person’s

happiness.

• I don’t know nobody over there

no more.

• I don’t know anyone over there

anymore.

Copula be (2.8%)

• And I be okay with it. • And I am okay with it.

• It depends on where you going to. • It depends on where you are going to.

• All of my friends was from like DC. • All of my friends were from DC.

• Okay, we having a baby. • Okay, we are having a baby.

Contractions (4.6%)

• I’m’a ask you. • I’m going to ask you.

• I ain’t coming home. • I’m not coming home.

• something gonna happen. • something is going to happen.

• you gonna be there for a couple

of hours.

• you will be there for a couple

of hours.

Table 15: A sample of AAE utterances selected based on their syntactical features and their trans-
lations to SAE. In brackets the prevalence of the feature over the utterances in the AAE
corpus.

5.4.2 Bias on AAE Features

We next investigate how results change when we acknowledge the lexical, syntactical,
morphological and also phonological rules of AAE. Following AAE grammar [63], we
choose to focus on three major syntactical features: (i) the use of double negatives, (ii)
the di�erent usage of copula be and, �nally, (iii) the contractions of words and groups
of words.

As for (i), we search for the close presence of multiple forms of grammatical negation
(which in Standard English are instead understood to resolve to a positive) in all the
utterances of the AAE corpus, and �nd, that 0.7% of the utterances contains such a fea-
ture. Concerning (ii), we select the AAE utterances exhibiting the use of the aspectual

be verb, typically used to denote habitual or iterative meaning (e. g., I be okay with it in
Tab. 15). Additionally, we also �lter on utterances with the verb tense in the -ing form
where the copula is either omitted (e. g., It depends on where you going to in Tab. 15) or
left at the base form (e. g., they be getting mad in Tab. 15), for a total of 2.8% of utter-
ances. Finally, for (iii) we include those utterances containing not-standard contractions,
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MAE MSE
∆P(u) CRR(u) ∆P(u) CRR(u)

Model AAE AAEᵀ ∆[%] d AAE AAEᵀ ∆[%] d AAE AAEᵀ ∆[%] d AAE AAEᵀ ∆[%] d

Double Negative [50 utterances]

BERTcased 0.202 0.159 21 † 0.591 0.391 0.334 15 † 0.493 0.046 0.030 34 † 0.526 0.166 0.125 25 † 0.436
BERTuncased 0.216 0.187 14 0.358 0.404 0.340 16 † 0.503 0.053 0.041 23 0.319 0.179 0.130 27 † 0.476
DistilBERTcased 0.137 0.106 22 † 0.548 0.506 0.441 13 † 0.523 0.022 0.014 37 † 0.504 0.267 0.213 21 † 0.457
DistilBERTuncased 0.148 0.117 21 † 0.485 0.479 0.394 18 † 0.701 0.025 0.018 27 0.293 0.240 0.174 28 † 0.611
RoBERTa 0.202 0.181 10 0.227 0.434 0.383 12 0.328 0.048 0.042 14 0.180 0.208 0.175 16 0.243
DistilRoBERTa 0.170 0.134 21 † 0.572 0.581 0.498 14 † 0.628 0.034 0.020 41 † 0.567 0.347 0.272 22 † 0.529
BART 0.164 0.140 15 † 0.422 0.534 0.471 12 † 0.469 0.030 0.023 22 0.368 0.297 0.245 18 0.392

Copula be [50 utterances]

BERTcased 0.252 0.184 27 † 0.691 0.589 0.408 31 † 1.142 0.074 0.043 42 † 0.622 0.373 0.190 49 † 1.109
BERTuncased 0.287 0.216 25 † 0.642 0.595 0.417 30 † 1.009 0.094 0.059 37 † 0.520 0.383 0.205 46 † 0.943
DistilBERTcased 0.134 0.119 11 0.273 0.703 0.540 23 † 0.910 0.021 0.017 16 0.198 0.519 0.329 37 † 0.893
DistilBERTuncased 0.138 0.118 14 † 0.339 0.678 0.513 24 † 0.904 0.022 0.017 25 0.344 0.485 0.302 38 † 0.856
RoBERTa 0.246 0.211 14 † 0.403 0.609 0.458 25 † 0.800 0.069 0.051 26 0.380 0.405 0.246 39 † 0.766
DistilRoBERTa 0.169 0.142 16 † 0.425 0.723 0.554 23 † 0.947 0.032 0.024 25 0.389 0.549 0.343 38 † 0.931
BART 0.161 0.144 11 0.305 0.672 0.556 17 † 0.672 0.029 0.024 18 0.246 0.474 0.344 27 † 0.627

Contractions [50 utterances]

BERTcased 0.225 0.181 19 † 0.507 0.470 0.347 26 † 0.848 0.058 0.040 32 † 0.436 0.247 0.136 45 † 0.786
BERTuncased 0.258 0.205 21 † 0.605 0.482 0.355 26 † 0.880 0.075 0.049 34 † 0.541 0.257 0.143 45 † 0.796
DistilBERTcased 0.135 0.114 16 0.381 0.584 0.463 21 † 0.746 0.022 0.016 28 0.316 0.369 0.237 36 † 0.743
DistilBERTuncased 0.140 0.113 19 † 0.477 0.538 0.410 24 † 0.799 0.023 0.016 33 0.374 0.318 0.191 39 † 0.761
RoBERTa 0.215 0.193 10 0.264 0.500 0.402 20 † 0.584 0.054 0.043 20 0.242 0.281 0.186 34 † 0.574
DistilRoBERTa 0.154 0.130 16 † 0.436 0.601 0.488 19 † 0.668 0.027 0.020 28 † 0.411 0.386 0.268 31 † 0.635
BART 0.143 0.136 5 0.117 0.567 0.475 16 † 0.562 0.023 0.023 1 0.015 0.346 0.255 26 † 0.520

Table 16: Similar to Table. 14 but calculated over a sample of 50 utterances of AAE and their
translated version (AAEᵀ) for each feature of AAE.

e. g., I’m’a, ain’t or omitting the auxiliary before gonna, e. g., something gonna happen in
Tab. 15. We do not include contractions which are popular in SAE, as wanna, won’t,

aren’t, etc. We obtain 4.6% of the utterances in this class. After having properly �ltered
the utterances corresponding to the speci�c grammar patterns, we carefully manually
validate our selection, by random picking and inspecting 1% of them. We check that the
1% random sampled utterances are actually satisfying the criteria we were looking for.
From this manual labeling we double check our selection strategies based on syntactical
rules and �nd that for both the 3 cases these are 99% accurate.

Next, we randomly choose 50 utterances from each AAE case and build a ground
truth by translating the AAE utterances into a version compliant to SAE, that we de�ne
as AAEᵀ. We keep the translation process as neutral as possible, by preserving the stan-
dard o�cially recognized contractions and by only adjusting the selected grammar rules.
Tab. 15 reports some examples of the utterances extracted from each AAE grammar case
bucket and the corresponding translated ones.

Finally, we repeat the MLM experiments, as described in Section 5.3, on these 150
translated utterances AAEᵀ and measure the bias. We report the results in Tab. 16. Ac-
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MAE MSE
∆P(t) CRR(t) ∆P(t) CRR(t)

Model AAE SAE ∆[%] d AAE SAE ∆[%] d AAE SAE ∆[%] d AAE SAE ∆[%] d

Particles [16k (AAE) 6k (SAE) terms],
∑

|∆[%]| = 66

BERTcased 0.113 0.081 29 † 0.143 0.212 0.192 9 † 0.054 0.071 0.040 44 † 0.176 0.177 0.157 11 † 0.062
BERTuncased 0.126 0.090 29 † 0.145 0.212 0.191 10 † 0.059 0.086 0.049 44 † 0.182 0.176 0.155 12 † 0.066
DistilBERTcased 0.079 0.070 12 † 0.062 0.328 0.310 6 † 0.045 0.030 0.025 16 † 0.051 0.272 0.259 5 † 0.036
DistilBERTuncased 0.090 0.073 19 † 0.099 0.313 0.294 6 † 0.046 0.040 0.028 29 † 0.102 0.262 0.248 5 † 0.038
RoBERTa 0.101 0.114 -11 † 0.058 0.208 0.238 -13 † 0.083 0.056 0.062 -10 † 0.039 0.168 0.194 -13 † 0.081
DistilRoBERTa 0.099 0.108 -8 † 0.049 0.354 0.369 -4 † 0.037 0.043 0.047 -9 † 0.035 0.300 0.312 -4 † 0.032
BART 0.079 0.102 -23 † 0.139 0.261 0.317 -18 † 0.144 0.032 0.043 -26 † 0.107 0.212 0.261 -19 † 0.142

Pronouns [84k (AAE) 31k (SAE) terms],
∑

|∆[%]| = 59

BERTcased 0.182 0.186 -2 † 0.017 0.349 0.379 -8 † 0.078 0.101 0.098 3 † 0.017 0.268 0.288 -7 † 0.062
BERTuncased 0.186 0.203 -8 † 0.061 0.326 0.367 -11 † 0.110 0.110 0.116 -5 † 0.027 0.246 0.278 -12 † 0.100
DistilBERTcased 0.139 0.141 -1 0.011 0.554 0.592 -6 † 0.103 0.051 0.049 4 † 0.018 0.447 0.480 -7 † 0.094
DistilBERTuncased 0.090 0.104 -14 † 0.086 0.404 0.453 -11 † 0.124 0.034 0.039 -12 † 0.041 0.319 0.361 -12 † 0.117
RoBERTa 0.176 0.187 -6 † 0.045 0.351 0.368 -5 † 0.044 0.096 0.102 -7 † 0.034 0.271 0.284 -5 † 0.039
DistilRoBERTa 0.116 0.123 -5 † 0.036 0.466 0.481 -3 † 0.037 0.047 0.051 -7 † 0.030 0.382 0.393 -3 † 0.028
BART 0.124 0.166 -25 † 0.233 0.444 0.520 -15 † 0.188 0.046 0.067 -32 † 0.188 0.362 0.428 -16 † 0.178

Adpositions (prepositions and postpositions) [50k (AAE) 18k (SAE) terms],
∑

|∆[%]| = 55

BERTcased 0.227 0.199 13 † 0.105 0.507 0.447 12 † 0.140 0.129 0.105 18 † 0.108 0.442 0.380 14 † 0.153
BERTuncased 0.251 0.222 11 † 0.097 0.499 0.447 11 † 0.122 0.153 0.127 17 † 0.107 0.435 0.381 13 † 0.134
DistilBERTcased 0.103 0.104 -0.3 0.002 0.779 0.753 3 † 0.073 0.034 0.033 4 † 0.012 0.730 0.7 3 † 0.065
DistilBERTuncased 0.140 0.135 4 † 0.029 0.598 0.562 6 † 0.084 0.057 0.053 8 † 0.032 0.532 0.493 7 † 0.095
RoBERTa 0.199 0.195 2 0.014 0.447 0.408 9 † 0.090 0.108 0.108 0.4 0.002 0.385 0.344 10 † 0.100
DistilRoBERTa 0.139 0.143 -3 † 0.022 0.584 0.542 7 † 0.099 0.057 0.060 -6 † 0.026 0.523 0.474 9 † 0.118
BART 0.154 0.154 0.02 0.000 0.552 0.525 5 † 0.063 0.062 0.063 -2 0.008 0.485 0.455 6 † 0.072

Table 17: Similar to Table. 14 but calculated for t rather than u, for three POS classes.

cording to Cohen’s classi�cation there is a prevalent medium e�ect for both the metrics,
with the exception of MSE(CRR(u)) for the copula class, where it is large.

At a �rst glance, we observe that the errors for the set of the AAE utterances in
the copula class are larger than both the other two classes and the whole AAE corpus
(reported in Tab. 14). More in general, we observe that, on average, both the three classes,
and therefore, all the 150 AAE utterances, come with a less accurate average prediction
with respect to the overall AAE corpus. We observe instead that the translated utterances
AAEᵀ are better predicted with respect to AAE surprisingly for all the seven LMs.

Notably, we observe that for the translated utterances in the double negative class, the
four metrics are always smaller (and hence sign of better performance) than those mea-
sured for the SAE corpus. This is somewhat unexpected since we observed for RoBERTa
and BART an opposite bias on SAE. However, we remind that the SAE corpus, SBC-
SAE, is made up of conversations collected from people with di�erent regional origins.
Consequently, despite the e�ort we make in trying not to excessively standardize the
utterances during the translation process, we could be generating sentences which are
free from regional bias and consequently “cleaner” than those found in the SAE corpus.



5.5 conclusions 75

5.4.3 Bias on Part-of-Speech

Finally, we investigate to which extent the POS tags are tied to the measured bias to-
wards AAE or SAE. To produce these results, we preliminary tag the tokens indepen-
dently generated by each language model with the NLTK [116] POS-tagger. Next, we
group by the 12 main tags of the universal tagset [118] and compute the MAE and the
MSE on the term-level measurements ∆P(t) and CRR(t).

Indeed, rather than averaging across the tokens in one utterance, we consider all
the terms t belonging to a given POS tag. Tab. 17 reports the results obtained for the
top-3 POS featuring the highest cumulative bias, computed by summing the absolute
bias |∆[%]| introduced by each LM and measured with the MAE(CRR(t)): the particles
(e. g., to, up, out, etc.), the pronouns (e. g., you, it, my, etc.) and the adpositions (e. g., like,
of, with, etc.). The results for the rest of the POS are reported in Tab. 18. In order to trust
the results of the POS-tagger we manually check the correctness of 100 tokens for each
class and language. We �nd that the accuracy is 100% for the pronouns, 99% for the
adpositions and 92% for the particles. Also in this case, we measure the e�ect for both
the metrics, and �nd that, according to the 6-grade Cohen’s classi�cation scale, it is very
small.

Interestingly, for the particles class, one can notice the same pattern reported in Tab. 14.
Particularly, DistilBERTcased is the LM which performs better in terms of ∆P(t) and,
DistilRoBERTa the one that leads to the lowest bias. Conversely, BERT is the model that
shows the highest bias towards SAE: it is up to 29% more accurate with respect to AAE
for MAE(∆P(t)). BART presents the opposite largest bias in favor of AAE: 23% (18%)
more for the MAE of ∆P(t) (CRR(t)) on the particles class. It is also interesting to note
that DistilBERT also at a token-level analysis presents better values for ∆P(t) rather
than CRR(t).

Quite surprisingly, we discover a bias presented by all the tested LMs towards AAE
in the pronouns class. This holds for both the∆P(t) and the CRR(t) and is revealed with
both the error measures, with the exception of BERT and DistilBERT cased for the MSE
of ∆P(t). This result deserves further investigation.

5.5 conclusions

In this chapter we proposed a methodology for the evaluation of the fairness of transformer-
based language models. We assess and analyze the bias for two corpora, one of the spo-
ken SAE and one of the AAE. By directly querying the underlying MLM in seven LMs,
we study the quality and the bias of their predictions under several angles. The focus
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is then narrowed down to the partitioning of the measured bias, by selecting the AAE
corpus according to its language features. Additionally, we assess the impact of the POS
tags on the found bias.

In a nutshell, results presented in this chapter suggest that di�erent models embed
diverse biases. Particularly, the most popular state-of-the-art LMs, namely BERT and
DistilBERT, show a non-negligible bias towards SAE (quality of the predictions up to
21% more accurate than AAE). Instead, BART, RoBERTa and DistilRoBERTa exhibit
an opposite bias. Our experiments reveal also that the distilled variants of BERT and
RoBERTa are the fairest among the seven tested LMs.

Yet, despite this work provides a �rst insightful snapshot of linguistic bias embedded
in di�erent LMs, it opens a number of research questions. First, can fairer prediction
outcomes be achieved with an ensemble learner of LMs embedding opposite biases, as,
for instance, BERTcased and BART? Second, our results give insights on how the bias
could be consistently mitigated with more inclusive corpora, by taking into account
AAE features. Finally, a special care could be put in the analysis of the distilled LMs,
narrowing the gap on the causes which lead them to fairer predictions with respect to
their teacher models, with a particular emphasis on the Web-based corpora used for
training.
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MAE MSE
∆P(t) CRR(t) ∆P(t) CRR(t)

Model AAE SAE ∆[%] d AAE SAE ∆[%] d AAE SAE ∆[%] d AAE SAE ∆[%] d

Verbs [118k (AAE) 46k (SAE) terms],
∑

|∆[%]| = 38

BERTcased 0.171 0.148 14 † 0.097 0.413 0.378 8 † 0.082 0.091 0.073 20 † 0.097 0.353 0.320 9 † 0.082
BERTuncased 0.193 0.169 13 † 0.091 0.409 0.381 7 † 0.068 0.111 0.090 19 † 0.098 0.350 0.323 8 † 0.069
DistilBERTcased 0.103 0.094 9 † 0.055 0.508 0.463 9 † 0.104 0.036 0.033 8 † 0.029 0.444 0.401 10 † 0.103
DistilBERTuncased 0.119 0.106 11 † 0.074 0.471 0.435 8 † 0.085 0.047 0.041 13 † 0.051 0.409 0.375 8 † 0.083
RoBERTa 0.206 0.198 4 † 0.031 0.457 0.449 2 † 0.020 0.110 0.103 6 † 0.035 0.383 0.374 2 † 0.023
DistilRoBERTa 0.167 0.159 5 † 0.036 0.551 0.535 3 † 0.039 0.074 0.069 6 † 0.029 0.475 0.457 4 † 0.045
bart 0.137 0.141 -3 † 0.021 0.554 0.557 -1 0.006 0.049 0.051 -4 † 0.017 0.479 0.477 0.4 0.004

Conjunctions [20k (AAE) 8k (SAE) terms],
∑

|∆[%]| = 25

BERTcased 0.269 0.274 -2 0.019 0.543 0.557 -3 † 0.036 0.147 0.153 -3 0.024 0.442 0.457 -3 † 0.042
BERTuncased 0.313 0.322 -3 † 0.032 0.535 0.576 -7 † 0.113 0.191 0.191 0 0.000 0.418 0.464 -10 † 0.139
DistilBERTcased 0.119 0.118 1 0.007 0.712 0.733 -3 † 0.062 0.039 0.037 5 0.020 0.625 0.652 -4 † 0.079
DistilBERTuncased 0.147 0.145 1 0.009 0.674 0.699 -4 † 0.070 0.058 0.054 6 † 0.026 0.578 0.610 -5 † 0.091
RoBERTa 0.237 0.234 1 0.010 0.529 0.518 2 0.025 0.126 0.126 0 0.000 0.438 0.426 3 † 0.033
DistilRoBERTa 0.137 0.132 4 † 0.028 0.676 0.656 3 † 0.054 0.050 0.048 3 0.014 0.597 0.581 3 † 0.044
BART 0.157 0.151 8 † 0.034 0.666 0.645 3 † 0.060 0.055 0.053 4 0.018 0.565 0.548 3 † 0.049

Determiners [41k (AAE) 19k (SAE) terms],
∑

|∆[%]| = 23

BERTcased 0.194 0.176 9 † 0.066 0.354 0.360 -2 0.016 0.116 0.096 17 † 0.095 0.283 0.287 -2 0.014
BERTuncased 0.193 0.192 0.7 0.004 0.328 0.351 -7 † 0.059 0.120 0.111 7 † 0.038 0.260 0.279 -7 † 0.057
DistilBERTcased 0.122 0.116 5 † 0.032 0.524 0.552 -5 † 0.070 0.047 0.042 11 † 0.044 0.436 0.464 -6 † 0.073
DistilBERTuncased 0.127 0.120 6 † 0.037 0.498 0.516 -4 † 0.044 0.053 0.047 12 † 0.049 0.412 0.431 -4 † 0.049
RoBERTa 0.181 0.169 7 † 0.049 0.342 0.339 1 0.009 0.106 0.093 12 † 0.063 0.272 0.268 2 0.013
DistilRoBERTa 0.144 0.136 5 † 0.038 0.515 0.509 1 0.015 0.064 0.059 8 † 0.036 0.433 0.426 2 † 0.019
BART 0.130 0.146 -12 † 0.088 0.419 0.430 -3 † 0.026 0.052 0.061 -15 † 0.074 0.343 0.347 -1 0.010

Adjectives [37k (AAE) 14k (SAE) terms],
∑

|∆[%]| = 19

BERTcased 0.199 0.194 2 † 0.020 0.631 0.645 -2 † 0.033 0.100 0.090 10 † 0.051 0.576 0.588 -2 † 0.028
BERTuncased 0.228 0.225 1 0.011 0.644 0.662 -3 † 0.042 0.124 0.112 10 † 0.055 0.592 0.605 -2 † 0.032
DistilBERTcased 0.097 0.106 -9 † 0.064 0.709 0.702 1 0.016 0.031 0.034 -10 † 0.033 0.658 0.647 2 † 0.026
DistilBERTuncased 0.106 0.119 -11 † 0.082 0.699 0.706 -1 0.019 0.036 0.042 -14 † 0.054 0.647 0.651 -0.6 0.009
RoBERTa 0.197 0.207 -5 † 0.044 0.614 0.636 -3 † 0.052 0.095 0.098 -3 0.018 0.557 0.580 -4 † 0.054
DistilRoBERTa 0.118 0.130 -9 † 0.072 0.705 0.688 3 † 0.044 0.043 0.048 -12 † 0.049 0.652 0.633 3 † 0.048
BART 0.185 0.204 -9 † 0.089 0.685 0.731 -6 † 0.118 0.078 0.089 -13 † 0.073 0.622 0.670 -7 † 0.120

Adverbs [44k (AAE) 17k (SAE) terms],
∑

|∆[%]| = 14

BERTcased 0.205 0.194 6 † 0.044 0.460 0.461 -0.1 0.001 0.115 0.103 10 † 0.056 0.398 0.402 -1 0.008
BERTuncased 0.229 0.220 4 † 0.032 0.454 0.460 -1 0.015 0.140 0.126 9 † 0.055 0.390 0.401 -3 † 0.026
DistilBERTcased 0.099 0.095 5 0.029 0.531 0.542 -2 † 0.025 0.034 0.031 10 † 0.034 0.475 0.490 -3 † 0.035
DistilBERTuncased 0.113 0.107 5 † 0.030 0.496 0.510 -3 † 0.031 0.044 0.039 12 † 0.045 0.437 0.455 -4 † 0.043
RoBERTa 0.214 0.216 -1 0.006 0.483 0.499 -3 † 0.038 0.116 0.114 1 0.008 0.414 0.433 -5 † 0.048
DistilRoBERTa 0.140 0.130 7 † 0.054 0.561 0.567 -1 0.016 0.058 0.050 15 † 0.063 0.495 0.505 -2 † 0.025
BART 0.221 0.238 -7 † 0.072 0.620 0.645 -4 † 0.067 0.106 0.115 -7 † 0.046 0.539 0.560 -4 † 0.052

Nouns [104k (AAE) 41k (SAE) terms],
∑

|∆[%]| = 12

BERTcased 0.217 0.192 11 † 0.098 0.661 0.655 0.8 † 0.013 0.114 0.091 20 † 0.113 0.609 0.606 0.6 0.008
BERTuncased 0.258 0.224 13 † 0.124 0.707 0.693 2 † 0.035 0.147 0.113 24 † 0.146 0.660 0.645 2 † 0.036
DistilBERTcased 0.103 0.104 -0.3 0.002 0.779 0.753 3 † 0.073 0.034 0.033 4 † 0.012 0.730 0.7 3 † 0.065
DistilBERTuncased 0.117 0.110 6 † 0.044 0.741 0.724 2 † 0.045 0.041 0.036 11 † 0.039 0.693 0.676 2 † 0.043
RoBERTa 0.203 0.208 -2 † 0.021 0.655 0.663 -1 † 0.018 0.096 0.097 -2 0.009 0.604 0.613 -2 † 0.022
DistilRoBERTa 0.128 0.132 -3 † 0.023 0.714 0.706 1 † 0.022 0.048 0.050 -4 † 0.014 0.665 0.656 1 † 0.023
BART 0.156 0.161 -3 † 0.025 0.718 0.733 -2 † 0.040 0.058 0.060 -2 0.009 0.668 0.684 -2 † 0.041

Table 18: MAE and MSE of ∆P(t) and CRR(t) measured on AAE and SAE corpora: results ob-
tained through the �ll-in-the-blank task with di�erent language models, averaging to-
ken predictions for each POS class. † signi�es that the AAE and SAE expectations are
statistically signi�cant according to the Welch’s two-tailed t-test (p-value< 0.05). The
column d contains their e�ect size computed according to the Cohen’s d.
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6.1 ip-id classification via supervised learning

The IP identi�cation (IP-ID) is a 16 (32) bits �eld in the IPv4 (v6) header [120]. Origi-
nally, along with the fragment o�set, the IP-ID was used to assist packet segmentation
and reassembly and it was unique per each combination of source, destination and pro-
tocol. Yet, with technology evolution and the adoption of the MTU path discovery [104],
IP fragmentation becomes less common nowadays, so that the last normative refer-
ence [146] allows IP-ID of atomic datagrams to be be non-unique. As a consequence,
IP-ID �elds values are determined by the speci�c implementation of the Operating Sys-
tem [105]. In particular, the majority of research work focus their attention on the global
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counter implementation, which used to be the most common implementation about a
decade ago [153]. However, due to recent evolution of the standards [59, 146], a wider
range of behaviors can be expected nowadays. Over time, di�erent behaviors have been
observed such as global and per-�ow counters, pseudo-random sequences and constant

values [15], as well as odd behaviors such as those due to load balancing [36] middle-
boxes, or host implementations using the wrong endianness [105]. Given that some of
the above implementations maintain state at the IP level, the IP-ID �eld has been of in-
valuable help to infer a wealth of information concerning the network. Particularly, by
leveraging inference from global IP-ID implementation, researchers have been able to
count the numer of hosts behind NATs [15, 105], or even assess the tra�c they gener-
ate [36, 75] and �nally expose censorship in the Internet [18, 94, 105, 117].

Given this context, and in particular the emergence of new IP-ID behaviors, it is im-
portant to de�ne methods to classify them, as well as using these methods to quantify
the prevalence of IP-ID implementation in the current Internet. To summarize our main
contributions:

◦ we design and implement a lightweight framework to classify the full range of
IP-ID behaviors, based on a handful of ICMP packets;

◦ we carefully validate our method against two datasets comprising the replies from
about 1, 855 sample hosts, chosen in di�erent manners, for which we build a
ground-truth by manual inspection and against multiple synthetic datasets, tailor-
made to test robustness against various forms of shortfalls;

◦ we apply the methodology to an Internet-wide campaign, where we classify one
alive target per each routable /24 subnet, gathering a full blown picture of the
IP-ID adoption in the wild.

Speci�cally, whereas the global counter (18% of occurrencies in our measurement)
implementation was the most common a decade ago [153], we �nd that other behaviors
(constant 34% and local counter 39%) are now prevalent. We also �nd that security
recommendations expressed in 2011 [59] are rarely followed (random, 2%). Finally, our
census quanti�es a non marginal number of hosts (7%) showing evidence of a range
of behaviors, that can be traced to poor or non-standard implementations (e. g., bogus
endianness, non-standard increments) or network-level techniques (e. g., load balancing,
or exogenous tra�c intermingled to our probes confusing the classi�er). To make our
�ndings useful to a larger extent, we make all our dataset and results available at [131].

This chapter is structured as follows. After overviewing the related work (Section 6.2),
we describe the methodology and illustrates the work�ow and the datasets involved (Sec-
tion 6.3). We next show the performance of the supervised classi�cation approach chosen
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Figure 25: Illustration of Constant, Local, Global, Random and Odd sequences

in the following order: system validation, robustness assessment and probing overhead
analysis (Section 6.4). Then, we present the results of the classi�er when operated in the
wild and put in perspective our �ndings with those of the previous works (Section 6.5).
Finally, we summarize the main outcomes (Section 6.6).

6.2 background and related work

6.2.1 Normative reference

The IP identi�cation (IP-ID) �eld identi�es the unique fragments of a packet and it is
used to handle the re-assembling process. First documented in the early 80s by RFC791 [120]
its use has been updated in several RFCs [23, 53, 59, 60, 146, 153]. Whereas [120] does not
fully specify the IP-ID behavior (i. e., it only states that each packet must have a unique
IP-ID for the triplet of source, destination and protocol), di�erent behaviors (namely
global, local and random, illustrated in Fig. 25) are detailed in 2006 by RFC4413 [153]. In
2008, RFC5225 [53] observed that some hosts set the IP-ID to zero: at the time of [53],
this was a not legal implementation as the �eld was supposed to be unique.

Yet, in 2012 [105] observed that the actual IP-ID implementation depends on the spe-
ci�c Operating System (OS) and versions1. In 2013, RFC6864 [146] updated the speci�ca-
tions by a�rming that the IPv4 ID uniqueness applies to only non-atomic datagrams: in
other words, if the don’t fragment (DF) bit is set, fragmentation and reassembly are not
necessary and hence devices may set the IP-ID to zero. At the same time, concern has

1 In particular [105] reports Windows and FreeBSD to use a global counter, Linux and MacOS to use local

counters and OpenBSD to use pseudo-random IP-IDs.
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Table 19: Summary of related work
Work Year Features Census Classes Break-

down (%)
Methodology Scope of the

work
[99] 2003 ∆IP-ID no (5000 target

routers)
70% global,
remaining 30%
between con-
stant (equal to
0) and counters
with increment
by 2.

Analysis of replies
to active probing
(ICMP requests)

Packet reorder-
ing and losses
diagnosis.

[36] 2005 ∆ IP-ID no (50 target
web-servers)

38% global Analysis of replies
to active probing
(HTTP requests)

Discover the
amount of load
balanced servers,
measure the
tra�c generated
by a server.

[69] 2013 - no 57% global,
14% local, 9%
constant, 20%
mixed IP-ID, 1%
random/other
(a)

- O�-path DNS
cache poison-
ing attacks and
defense against
them through
DNSSEC valida-
tion.

[117] 2017 IP-ID
accelera-
tion

no 16% global TCP SYN-ACK from
multiple vantage
points

Reveal Internet
censorship.

a Due to the rounding done by the authors [69], the sum of all the percentages is 101%

been raised about security problems following the predictability of IP-ID sequences [56,
60, 69, 84]. In particular, in 2012 RFC6274 [59] discouraged the use of a global counter
implementation for many security issues, such as stealth port scan to a third (victim)
host, and in 2016 RFC7739 [60] addressed concerns concerning IPv6-speci�c implemen-
tations. In light of the recent evolution of the standards, a re-assessment of IP-ID usage
in the wild is thus highly relevant.

6.2.2 IP-ID Classi�cation Breakdown

In the last decade, to the best of our knowledge, few research works have provided a
complete picture of the breakdown of the existing IP-IDs behaviors. That is what makes
the comparison of the results of this work with the previous ones with the purpose of
analysing the temporal changes on the IP-ID popularity an hard task.

Speci�cally, the sole quantitative assessment of IP-ID behavior over multiple classes
dates back to 2013. This is limited to 271 Top Level Domains TLDs probed by [69] (whose
main aim is to propose practical poisoning and name-server blocking attacks on stan-
dard DNS resolvers, by o�-path, spoo�ng adversaries). In particular, the 2013 study �nds
57% global, 14% local, 9% constant, 1% random/other. Additionally, [69] suggests that
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20% of DNS TLD exhibit evidence of “two or more sequential sequences mixed up, prob-
ably due to multiple machines behind load balancer”.

The remaining works concentrate instead on assessing the popularity of just the
global implementation being it only the focus of their studies, proving once again the
relevance of a Internet-wide list comprising IP addresses generating IP-ID with the afore-
mentioned behavior. Namely, in 2003, [99] reported that 70% (over 5000 probed targets)
were using an IP-ID counter (global or local implementation); in 2005, [36] reported that
38% (over 150 hosts) used a global IP-ID; in 2006, [153] a�rms the global implementa-
tion to be the most common assignment policy (among 3 behaviors).

6.2.3 IP-ID Based-Inference

Additionally, the IP-ID has been exploited for numerous purposes in the literature. No-
tably, IP-ID side-channel information helped to discover load balancing server [36], count
hosts behind NAT [15, 105], measure the tra�c [36, 75] and detect router alias [16, 83,
141]. More recently, [94] leverages IP-ID to detect router aliases, or infer router up
time[18] and to reveal Internet censorship [117], refueling interest in the study of IP-
ID behavior. Whereas the above work [15, 36, 75, 117, 141] mostly focus only on the
global IP-ID behavior, in this work we not only consider all expected IP-ID behavior, but
additionally quantify non-standard behaviors: in particular, we provide a methodology
to accurately classify IP-ID behaviors, that we apply to the Internet at large, gathering
a picture of the relative popularity of each IP-ID behavior. In terms of methodologies,
authors in [99] use ICMP timestamp and IP-ID to diagnose paths from the source to
arbitrary destinations and �nd reordering, loss, and queuing delay. In [78], the authors
identify out-of-sequence packets in TCP connections that can be the result of di�erent
network events such as packet loss, reordering or duplication. In [36], they use HTTP
requests from two di�erent machines toward 150 target websites, to discover the num-
ber of load-balancing server. Authors in [117] use TCP SYN-ACK from multiple vantage
points to identify connectivity disruptions by means of IP-ID �elds, which then they use
as a building block of a censorship detection framework.

In this chapter, we leverage ICMP tra�c (spoo�ng IP addresses to craft sequences of
packets that are precisely interleaved when they hit the target under observation) to
build an accurate, robust and lightweight IP-ID classi�cation technique.
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6.3 methodology

To provide an accurate and comprehensive account of IP-ID behavior in the wild, we
need (i) a reliable classi�er, able to discriminate among the di�erent typical and anoma-
lous IP-ID behaviors. At the same time, to enable Internet coverage, (ii) the classi�er
should rely on features with high discriminative power, extracted from the data gath-
ered through an active probing technique that is as lightweight as possible. In this sec-
tion we illustrate the practical building blocks and their theoretical foundations, that
our classi�cation framework builds upon.

IP-ID classes: From the host perspective, several IP-ID behaviors are possible as de-
picted in Fig. 25. The image shows the sequences of 25 IP-ID samples sent from 2 dif-
ferent host (orange and blue) where the packets are sent alternatively to the target. The
di�erent behaviors depicted are, from left to right: (i) constant counters are never in-
cremented (and for the most part are equal to 0x0000); (ii) local or per-host counters
that are incremented at each new packet arrival for that �ow (mostly by 1 unit, 99.7%
of the times in our large scale measurements): as a consequence, while the orange or
blue per-host sub-sequences are monotonically increasing, the aggregate sequence al-
ternates between the two; (iii) global counters are incremented by 1 unit at each new
packet arrival for any �ow: thus, the sequence s is monotonically increasing (90.3% of
the times by 1 unit, 4.7% by 2 units and 4.6% by 3 units), and the orange or blue per-
host sub-sequences are monotonically increasing but at a faster rate (by 2 units); (iv)
random IP-IDs are extracted according to a pseudo-random number generator. Finally, a
special mention is worth for the class of (v, vi) odd IP-ID behaviors, that are not system-
atically documented in the literature and that arise for several reasons (including bugs,
miscon�guration, non-standard increments, unforeseen interaction with other network
apparatuses, etc.) and for which we report two di�erent samples occurring in real exper-
iments.

6.3.1 Active probing

To gather the above described sequences, our measurement technique relies on active
probing. We craft a tool able to send and receive ICMP packets, running at two van-
tage points (VP) with public IP addresses in our campus network. Speci�cally, we send
a stream of N ICMP echo requests packets in a back-to-back fashion, which forces the
target machine to generate consecutive ICMP echo replies: thus, assuming for the time
being that no packet were lost, we gather a stream of N IP-IDs samples for that target.
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Figure 26: Scenario in which the active probing is performed: only one sender is used to ease the
synchronization of packets generation, whilst both the machines are used to receive
and collect the stream of IP-IDs generated at the target machine.

Sending packets back-to-back is necessary to reduce the noise in the IP-IDs stream se-
quence: if probe packets were spaced over time, the sequence could be altered by exoge-
nous tra�c hitting the target (e. g., in case of global counter). As a result, the sequence
would depend on the (unknown) packet arrival rate in between two consecutive probe
packets, likely confusing the classi�er. In this way, the use of back-to-back packets re-
duces as much as possible the interference with some possible extra exogenous tra�c
hitting the same destination, that could otherwise alter the sequences. A second obser-
vation is that, whereas a single vantage point may be su�cient to distinguish among
constant, random and global counters, it would fail to discriminate between global vs
local counters. However, sending packets from two di�erent VPs is not advisable, due
to the di�culty in precisely synchronizing the sending patterns so that packets from
di�erent hosts alternate in the sequence [99].

Therefore, a better alternative is to receive packets on two di�erent VPs, x and y, but
shift the packet generation process to only one of them, as x, and use it as sender: by
letting x spoof the address IPy of the colluding receiver y, it is possible to generate a
sequence of back-to-back packets that are also perfectly interleaved as depicted in Fig. 25.
Fig. 26 shows the scenario in which the experiments are carried out. It provides infor-
mation about how the hosts are involved and the kind of data collected: there are two
receivers but only one real sender, and the information gathered at the two vantage
points regards the sequences of IP-IDs generated by the target machine. To validate our
assumptions, we carry on additional experiments on a preliminary testbed to test the
sensitivity of the algorithm to external tra�c hitting the target. In these experiments:

◦ we send UDP CBR tra�c with Iperf at TXrate = 10Mbps and vary the packet
size over time (in particular decrease), so that we increase the packet rate during
the experiment (to control the IP-ID generation);

◦ in one experiment, we send ICMP Echo Request packets with an inter-packet gap
of ∆tinterpacketgap = 10ms and collect the IP-ID sequence x, for which we
derive the derivative series (gray color line);
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Figure 27: Sensitivity analysis to external tra�c: derivative of the sequence of IP-IDs x ′ in the
two di�erent scenarios

◦ in the other experiment, we send ICMP packets back-to-back and again measure
the growth of IP-ID in the sequence (red color line).

Even though the experiments are simple, the results are very telling: the plots in Fig. 27
show the derivative of the sequence of IP-IDs x ′, which basically just counts the amount
of exogenous packets in between two consecutive ICMP probes, in both scenarios of the
experiments. For instance, when packets are 100 Bytes long, in ∆tinterpacketgap =

10ms it is expected to have TXrate·∆tinterpacketgappacketsize = 125 packets slipping in between
two probes, which actually happens. This would clearly jeopardize the classi�er. Con-
versely, in the experiments carried out in our lab, back-to-back packets leave no possibil-
ity to the other UDP packets to intermingle and confuse the classi�er. These experiments
suggest that sending packets back-to-back is a good strategy, although we do not feel
results to be conclusive for all the devices available in the network (e. g., router, setup,
shaper, etc.). However, even in case the reality was not as nice as our experimental lab
results (which is likely to be the case), at the same time this a�ects at most some of the
odd behaviors, which already are a tiny (7%) fraction of the overall cases. Indeed, it is
very unlikely that the amount of real tra�c is so perfectly varying between probes to
erroneously confuse a classi�er to believe that a global sequence is a random one just
due to exogenous tra�c. Very high information entropy of those sequences is not a side-
product of some variable tra�c, but truly coming from a random number generator (it
is pretty well known that is hard to generate good pseudo-random sequences, and the
arrival rate is surely not a source of perfect entropy).

To overcome reordering, packet loss and duplication events, we additionally control
the sequence number in the stream of generated probe packets.
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Feature Constant Local Global Random Odd

H(x) 0 log2
N
2 log2

N
2 6 log2

N
2 -

H(s) 0 6 log2N log2N 6 log2N -
H(x ′) 0 0 0 6 log2

N
2 -

H(s ′) 0 1 0 6 log2N -
E[x ′] 0 1 2 (216−1)

2 -

σx 0
√

(N2−4)
48

√
(N2−4)
12

(216−1)√
12

-

σs 0 6 (216−1)√
12

√
(N2−1)
12

(216−1)
2 -

σ ′x 0 0 0 (216−1)√
12

-

σ ′s 0 |x1−y1−
1
2 | 0 (216−1)√

12
-

Table 20: Tabulated expected values for selected features

6.3.2 Features De�nition

As anticipated, to build a robust classi�er we need to manually de�ne a set of tailor-
made features able to discriminate among the di�erent IP-IDs implementations. The
experiment and the measurements can be formalised as follows: we send N packets to
a given target t, with the source address �eld alternating between consecutive requests,
whose replies are sent back to our two vantage points x and y: we indicate with s the
aggregated sequence comprising the N IP-IDs sent back by t, as we receive it at the
edge of our network2. By abuse of language, we indicate with x and y the sub-sequences
(each of length N/2) of IP-IDs, sent back by t and received by the homonymous host.
From these sequences x,y and s we further construct derivative series x ′, y ′ and s ′ by
computing the discrete di�erences between consecutive IP-IDs (i. e., x ′i = xi − xi−1).
We summarize these series with few scalar features by computing the �rst E[X] = 1

N ·∑N
i xi and second moments of the IP-ID series, σ =

√
E[X2] − (E[X])2 as well as their

information entropy, de�ned as the expected value of the information content H(X) =
E
[
I(X)

]
= −

∑N
i pi log2 pi

where pi is the provability that the discrete random variable X takes the xi value.
Speci�cally, we consider the mean E[X] of the derivative series x′ and y′, the entropy

H(X) and the standard deviation of s,x and y and of their derivatives s ′, x ′ and y ′.
Actually, for each feature we can derive an expected value in the ideal3 case (so that no

2 Notice that packet losses and reordering may let us receive less than N packets, or receive packets in a
slight di�erent order than what sent by the target.

3 Sequences from well behaving hosts that have no software bug or malicious behavior, and that are neither
a�ected by losses nor reordering
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expected values is reported for the odd class) that we summarize in Tab. 20. For the
sake of brevity, we report in Tab. 20 only once the expectations of the features of the
subsequences x andy, given that they are conceptually equivalent. Intuitively, we expect
the mean of the constant sequence to be unknown, but that of its derivative to be null.
Similarly, the derivative of a global counter would have a value of 1 (2) for the aggregate
sequence s (subsequences x and y). The entropy of the sequence is expected to increase
from the minimum of a constant sequence equal to H(X) = −1 log2(1) = 0

to the maximum of H(X) = −N · 1N log2
1

N
= log2N occurring when all the N

elements of the series are di�erent. Consequently, by considering the global and local
implementations, we can observe that the entropy for the sequences x and y of length
N
2 is expected to be maximum H(xglobal) = H(yglobal) = log2

N
2 . Accordingly, in

the global implementation, the sequence s is made up of two not-overlapping sequences,
leading to an expected maximum entropy of H(sglobal) = log2N. Di�erently, in the
local implementation this is true only when the two counters do not overlap, otherwise
this remains only an upper bound. A similar observation can be done for the entropy
expectations for the random sequences, in which the presence of duplicate values would
reduce the entropy. For the local implementation, the sequences x ′,y ′, derivatives of
two independent counters, are constant thus the entropy, as said, is expected to be 0.
On the other hand, the derivative s ′ of the aggregate sequence s is made up of two
alternating values, corresponding to the two o�sets:

s ′local(n) =

θ1 = y1 − x0 if n even

θ2 = x2 − y1 if n odd
(9)

Both θ1 and θ2 are repeated for N
2

times, so each one occurs with a probability of 1
2

.

The entropy becomes H(s ′local) = −2 · 12 log2
1

2
= 1 Conversely, being the expected

derivative sequence of a global counter always equal to s ′global = 1, as a result the
entropy becomes H(s ′global) = 0.

Similarly, the other expectation values can be easily derived by analogy.

6.3.3 Datasets

In this work, we collect four di�erent datasets, that we use in the di�erent stages of the
work alternatively to make the classi�er learn the classi�cation function, i. e., as training
dataset, and to evaluate performances as testing dataset.
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Table 21: Summary of the Datasets.
Name Type Description Properties Size

[Targets]
URL

L Real
Measurements

Large scale measurements
dataset comprising the IP-ID
sequences received from the
portion of hitlist [68] providing
response rate > 80%

Presence of presence of
odd behaviors of the IP-
ID, possibility of losses
or out-of-order packets

2,5 M [131]

G Real
Measurements

Manually labeled dataset con-
taining the IP-IDs contained
in the replies of a set of IP
addresses sampled uniformly
from the hitlist to guarantee
class balance

Targets chosen to pro-
vide IP-pre�x level and
class balance, presence
of odd behaviors, used
for training and classi�-
cation of L

2 k [131]

G ′ Real
Measurements

Manually labeled dataset con-
taining the IP-IDs from the
replies of a set of IP addresses
where 75% of it belong to the
same IP/8 subnet

Targets chosen to
provide IP-pre�x level
imbalance, presence
of odd behaviors,
used for validation of
performances

2 k [131]

Sideal Synthetic Dataset manually designed
to intentionally contain the
four possible IP-ID imple-
mentations in the ideal case
evenly distributed emulating
the replies collected through
real measurements

Lossless, absence of
odd behaviors, used
for validation of
performances

20 k [131]

Slossy Lossy
Synthetic

Dataset manually designed to
intentionally contain the four
possible IP-ID implementa-
tions spoiled with four di�er-
ent �avour of losses (Slossy =
∪(Sunif., Shole, Sextr., Sequi.))
evenly distributed

Lossy, absence of odd
behaviors, used for test-
ing resilience to losses

20 k [131]

Sreorder Synthetic G dataset spoiled when of 20%
of each IP-ID sequence is inten-
tionally randomly swapped

Used for testing re-
silience to sequence
alteration due to
out-of-order packets

20 k [131]

Large scale census L: The �rst dataset is made up of real measurements coming from
a large scale measurement campaign and includes the replies coming from a subset of a
hitlist of alive IP addresses [68]. We avoid putting stress on the infrastructure carrying a
full Internet census: as we aim at providing an accurate picture of the relative popularity
of IP-ID implementations on the Internet, it su�ces to collect measurements for portion
of targets, namely 1 alive IP/32 host per each /24 pre�x. For this reason, for the targets
selection, we rely on the public available hitlist regularly published by [68], comprising
16 millions of targets IP/32. The hitlist contains targets for all /24, including those who
have never been replying to the probing: excluding them from our target list, leaves us
with approximately 6 millions of potential targets. To reduce the amount of probe traf-
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89% of targets receive

more than 80 probes 

78.4% of targets

receive all the probes 

Figure 28: Internet campaign: ECDF of the number of packet replies

�c, we decide to be conservative: we preliminary probe the 6 millions potential targets
sending two ICMP echo requests, and include in our �nal target list the approximately
3, 2 million responsive hosts (in line with [40, 159]). We send a batch of N = 100 back-
to-back probe packets to each target, but otherwise probe at a low average rate, so that
we complete a /24 census in about 3 days. Fig. 28 shows the empirical cumulative distri-
bution function (ECDF) of the received packets at our VPs. We observe that we receive
almost all the replies from most of the targets: the 90% (80%) of the targets answer to
more than 40 (all) packets per each host, corresponding to a 20% (0%) loss scenario. A
large plateau in the CDF also indicates that the distribution is bi-modal, i. e., the remain-
ing hosts generally reply with very few packets (e. g., 10 or less per each VP or over 90%
loss rate). This suggests that future campaigns could be safely conducted with a smaller
N ′ < N. To provide accurate classi�cation results, in light of our robustness analysis
done with synthetic dataset and whose results are shown in Sec. 6.4.2, we limit our at-
tention to the 2, 588, 148 hosts for which we have received at least N = 80 packets.

Ground Truth G and G ′:

The second real dataset is G, made of IP-ID sequences for which we manually con-
struct a ground truth. For this purpose, we extract the replies from a subset of targets
of L which satisfy some pre-established requirements. We include in this dataset only
the 1,855 hosts from which we receive 100% of the replies, and perform the manual in-
spection of each of the sequences. We repeat the process twice, with two very di�erent
choices of the ground-truth datasets: G sampled uniformly from the hitlist paying atten-
tion to guarantee class balance and G ′ where about 75% samples belong to the same
IP/8 subnet. Interestingly, when performing the manual labelling, we �nd a small but
non marginal fraction (about 7%) of sequences that are hard to classify: a deeper in-
vestigation reveals these odd behaviors to be due to a variety of reasons – including
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Figure 29: Manual Ground Truth: Normalized classes occurrences for the training datasets G and
G ′

per-packet IP-level load balancing, wrong endianness, non standard increments in the
global counter, etc. While we cannot completely rule out interference of exogenous traf-
�c altering our IP-ID sequences, lab experiments suggest that the use of back-to-back
packets lessen its impact, as described before in Sec. 6.3.1. Nevertheless, these samples
provide a useful description of the odd class, that would otherwise have been di�cult
to de�ne. In Fig. 29 we report the breakdowns of the two datasets G and G ′.

Syntethic Datasets:

In order to assess the robustness of our classi�er against packet losses, we rely on two
more datasets which are made up by synthetic sequences, from which we can derive the
features useful in the classi�cation process. While for simple loss patterns (e. g., uniform
i.i.d. losses) it is still possible to analytically derive expected values in closed form, for
loss models where losses are correlated, this becomes signi�cantly more di�cult. As
such, we opt for an experimental assessment of classi�cation accuracy in presence of
di�erent synthetic loss models, that we apply to synthetic ideal sequences contained in
dataset Sideal by purposely discarding a part of the sequences. Speci�cally, we consider:
(i) a uniform i.i.d. loss model; (ii) a hole model where, starting from a random point in
the sequence, 20% of consecutive samples are removed; (iii) an extreme model where
we remove 20% of the initial values (or equivalently the �nal 20% of the sequence); and
�nally (iv) an equidistant model where losses start at a random point and are equally
spaced over the sequence. We apply these loss models to obtain a synthetic lossy dataset
Slossy. Speci�cally, for each loss model we generate 5, 000 loss sequence pattern, for an
overall of 20, 000 test cases. In order to deeper investigate the reordering phenomena
e�ect on the performances of the classi�er, we manually disrupt the sequences contained
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Figure 30: Validation: Confusion Matrix of 20-fold validation over G done both with Decision
Tree and Random Forest Classi�ers

in G. Speci�cally, we impose the swapping of 20% on the IP-IDs contained in the series
x,y collected for each IP address in G and build a new rigged dataset Sreorder.

A summary of all the datasets with their description and properties is reported in
Tab. 21.

6.4 ip id classification

From the values tabulated in Tab 20, we expect classi�ers that use this set of features to
be able to fully discriminate the set of IP-ID well-de�ned behaviors under ideal condi-
tions. However, as we shall see, unexpected behavior may arise in the Internet, due to a
variety of reasons, which are hard to capture in general. We thus opt for a supervised clas-
si�cation approach, which allows to learn a predictive model with decision trees (DTs),
based on the above features. Additionally, we investigate to what extent the classi�er is
robust against losses and reordering, and �nally assess the minimum number of samples
N needed to achieve a reliable classi�cation.

6.4.1 Classi�cation accuracy and validation

We �rst train and validate our classi�er using the the real dataset G of IP-ID sequences
for which we have manually constructed a ground truth. Note that, for the moment we
train the classi�er only over the dataset G, but later we will show the independence of
the model from this choice.

We assess the classi�cation accuracy over G with a 20-fold cross-validation, whose
results are reported in Fig. 30 as a confusion matrix: we can observe that the classi�er
is extremely accurate, with 100% true positive in the constant and local classes, 99%
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Figure 31: Validation: Relative importance for the most useful features of the classi�er.

for the random and 98% for the global class. The worst case is represented by 95%
true positive for the odd class (that represent only 7% of the samples): these very few
misclassi�cations are erroneously attributed to local, global or random classes, and addi-
tional series de�nition (e. g., to compensate for wrong endianness) could help reducing if
needed. For completeness, we compare the results obtained with the Decision Tree [92]
with the ones achieved with Random Forest. Results, shown in Fig. 30, again as a confu-
sion matrix, show that the small misclassi�cation gaps introduced by the Decision Tree
are fully �lled when using a Random Forest Classi�er, which leads to 100% classi�cation
accuracy for all the classes.

Additionally, Fig. 31 reports the importance for the most useful features of the clas-
si�er. Four main takeaways can be gathered from the picture: �rst, just four features
are necessary for a full discrimination, which is reasonable as the cardinality of the
classes to discriminate is small; second, as expected features that measure the disper-
sion (entropy and standard deviation) are prevalent; third, both original and derivative
sequences are useful in the detection; fourth, subsequence metrics are highly redundant
(i. e., H(x) = H(y), σx = σy, etc.).

6.4.2 Robustness

Before operating the classi�er on the data collected in the wild, we study its robustness
both to packet losses and to the number of packets employed in the experiments.

It is fundamental to test the robustness of the features to losses in a controlled scenario,
in order to emulate the real measurements, in which events such as packet losses or out-
of-order arrivals are not so rare.
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Table 22: Features values for both lossless and lossy synthetic dataset Slossy with 20 % losses -
local implementation case of IP-ID.

Sideal Slossy

Feature Lossless Uniform Hole Extremal Equidistant

H(s) 6.64 64 6.64 6.64 6.64
H(x′) 0 0.84 0.17 0 0.78
E[y′] 1 1.25 1.25 1 1.26
σ(x) 32.64 38.75 29.68 18.02 20.92
σ(s) 10.97 e3 11.09 e3 1072 e3 11.03 e3 11.05 e3

σ(s′) 16.29 e3 16.01 e3 16.6 e3 16.15 e3 16.4 e3

Robustness to Losses:

For the previously shown six features we evaluate their values in the lossy synthetic
Slossy sequences and tabulate the results averaged over the dataset, respecting the IP-ID
and loss type partitioning, in order to compare with the ones evaluated for the lossless
sequences in Sideal. In Tab. 22 we report those values evaluated for the simulated local
implementations. We compare the features evaluated for the lossless dataset Sidealwith
those of the lossy Slossy with uniform random, hole, extremal and equidistant losses.
As a whole, results obtained with the synthetic dataset Slossy do not signi�cantly di-
verge from the ones obtained with Sideal, proving the strength of the features and their
robustness to change and alteration of the original sequences. Speci�cally, H(s), which
turns out to be the most important feature, as shown in Fig. 31, does not vary in presence
of any kind of losses, while H(x′) can vary more depending on the �avour of the loss.

Given these results, we next assess the robustness of the classi�er against packet
losses, which may introduce distortion in the features. Since, as previously described,
the expected values in the ideal conditions are signi�cantly apart, we expect the classi-
�er to be resilient to a high degree of losses. Without loss of generality, we consider an
extreme case where only 80 out of 100 samples are correctly received (i. e., a 20% loss
rate) by exploiting the lossy synthetic dataset Slossy.

We want to assess the accuracy of the previously validated model, i. e., the one trained
on the real lossless dataset G over Slossy. Results of these experiments are reported in
Fig 32 and Fig 33. In particular, the confusion matrix reported in the left side of Fig 32
shows the aggregated results over all loss models: we can observe that most of the classes
have a true positive classi�cation of 99% or 100% even in presence of 20% packet losses,
and irrespectively of the actual loss pattern.
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Figure 32: Robustness: (left) Confusion Matrix of a classi�er trained on the real lossless dataset
G and tested on the synthetic lossy dataset Slossy with purposefully injected 20%
packet losses on each sequence, (right) Confusion Matrix of a classi�er trained on
the real lossless dataset G and tested on the dataset where 20% of each sequence is
intentionally randomly swapped Sreorder.
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Figure 33: Robustness: Misclassi�cation breakdown of the (local,odd) (14%) for the di�erent loss
models.

Additionally, we observe that in the case of the local class, only 86% of the sequences
are correctly classi�ed, whereas 14% of the local sequences in presence of heavy losses
are erroneously classi�ed as being part of the “odd” behavior class. Fig 33 dig further
the reasons of this discrepancy, showing that the misclassi�cation mostly happens for
the hole loss model, while in the other cases is a very rare event. Recalling the odd
behavior early shown in the plot of Fig. 25, we notice that this model induces a gap
in the sequence, which is possibly large enough to be statistically similar to cases such
as load balancing, where the sequence alternates among multiple counters. Overall, we
�nd the classi�er to be robust to very high loss rates and, with a single exception, also
invariant to the actual loss pattern – which is a rather desirable property to operate the
classi�er into a real Internet environment. To investigate the e�ect of the presence of
out-of-order packets received at the vantage point and of the reordering phenomena, we
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Figure 34: Probing Overhead analysis: Accuracy as a function of the sample set size

perform again the classi�cation, with the decision tree classi�er still trained on G but
tested on Sreorder. We use again the confusion matrix as graphical way to highlight the
quality of the classi�cation. Results of these experiments are shown in the right matrix
of Fig 32: we can observe that reordering does not a�ect at all constant and random
labels classi�cation and that the classi�er is strong in recognizing the local and global
behaviors leading to respectively 1% and 2% false positive misclassi�cation.

Probing Overhead: We �nally assess how large the number of samples N needs to
be to have accurate classi�cation results. In principle, features tabulated in Fig 20 are
diverse enough so that we expect high accuracy even for very small values of N.

To assess this experimentally, we take the real lossless dataset G and only consider
that we have at our disposal only N ′ < N out of the N = 100 samples gathered in the
experiment. For each value of N ′, we perform a 20-fold cross validation, training and
validating with N ′ samples. We start from a minimum of N ′ = 10 (i. e., 5 packets per
host) up to the maximum of N = 100 (i. e., 50 probes per host) samples. Fig 34 clearly
shows that accuracy is already very high4 at 0.95 when N ′ = 4 and exceeds 0.99 when
N = 100.

6.5 internet census

The last step of the analysis consists in using the previously trained classi�er over G to
classify the IP-ID behaviors present in the dataset L. In this section, we �rst show the
results of the classi�cation and, then, we put them in perspective with those obtained

4 Notice that even in the extreme case with as few asN ′ = 2 packets, random and constant classi�cation are
correctly labeled, whereas the remaining global vs local cannot be discriminated, yielding to 0.70 accuracy
in the G set.
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Figure 35: (a) Internet campaign: Normalized classes occurrences for the training G and Internet-
scale L dataset; (b) Measured occurrences of Global IP-ID implementations over the
years; (c) Breakdown of the classes of L obtained with both G ′ and G

by related work. Then, we deeper investigate some aspects to see how di�erent bound-
ary conditions a�ect classi�cation performances, as the impact of di�erent training set
choices or of the number of probe packets on the performances of the classi�cation.
Finally, we perform a spatial analysis and we deepen the analysis of the odd behaviors.

6.5.1 Longitudinal Comparison (over the years)

We apply our classi�er in the wild, speci�cally on the previously introduced dataset
L (Sec. 6.3.3), made with the data collected through a large scale Internet measurement
campaign. We observe that, while our classi�er is able to perform a very accurate classi�-
cation even with few samples, we need to deal with loss rates, which is unknown a priori.
Hence, even though our probing overhead analysis in Sec. 6.4.2 revealed high accuracy
for few number of samples, we prefer for the time being to use a simple and conservative
approach and selectN = 100 samples, being very accurate also in presence of very high
loss rates. We apply the classi�cation to batches of 100,000 hosts, and for each class c, we
compute the relative breakdown of the class in that batch n̂c = nc/

∑
i ni, evaluating

the con�dence intervals of n̂c over the di�erent batches. Results are reported in Fig. 35
(a), where we additionally report the breakdown in our G training set comprising just
1, 855 population samples: it can be seen that while G has no statistical relevance for the
census, it is not a�ected by class imbalance and thus proves to be a good training set.

Results are particularly interesting to put in perspective with current literature knowl-
edge. Speci�cally, past work [36, 56, 99, 153] consistently reported the global counter
to be more widespread: in 2003, [99] 70% ; in 2005, [36] 38%; in 2006, [153] a�rms
the global implementation to be the most common assignment policy; in 2013, [69]
57%. On the contrary, we �nd that only 18% (over 2, 5 million targets) are still using
global counter implementation: this in line with 2017 results that reports slightly more
than 16% global IP-IDs [117] (whose main aim is to detect censorship in the Internet).
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Figure 36: Breakdown of the classes of L obtained with both a Decision Tree and a Random
Forest Classi�er.

This decreasing trend, summarized in Fig. 35 (b), is possibly a�ected by the compara-
bly smaller population size of early studies. However, we believe this to be rooted into
OS-level changes in IP-ID policy implementations: e. g., Linux and Solaris, which pre-
viously adopted a global counter, for security reasons later moved to a local counter
implementation [59].

By comparing our results with the only one providing the occurrences of both the
normatives-compliant IP-ID behaviors and some odd practices [69], the 2013 study (our
census) �nds 57% (18%) global, 14% (39%) local and 9% (34%) constant IP-IDs, which
testify of a signi�cant evolution. Additionally, recalling that [69] suggests that 20%
of DNS TLD generate mixed IP-IDs, we �nd out that this is much larger than the 7%
fraction of the larger “odd” class (including but not limited to load balance) that we
�nd in this work. Finally, despite 2012 recommendations [59], the percentage of random
IP-ID sequence was (and remains) limited 1% (2%).

For completeness and in light of what showed in Sec. 6.4.1, we compare the results ob-
tained with the Decision Tree those of the Random Forest. From the outcomes reported
in Fig. 36 we can observe that no statistical di�erence is present in the two cases.

6.5.2 Sensitivity Analysis

Training Set Choice: In order to prove the indipendence of the results from the choice
of the training dataset we exploit the second manually validated dataset G ′, which satis-
�es the previously described requirements and it is purposely biased, as it contains 75%
of the samples from the same /8, which is something not desiderable from a IP coverage
point of view.
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We then use these two datasets to classify the IP-ID behaviors in the whole large scale
dataset L covering the all the responsive IP addresses of the full hitlist. Results, shown
in Fig. 35 (c) con�rms indeed the validity of our methodology since, statistically, there
are only slight di�erences between the occurrences breakdown when the classi�er is
trained on G or G ′ . Both datasets yield to consistent results ensuring the independence
of the model from the training dataset and proving that as long as the behaviors are
balanced the IP-pre�x level imbalance is irrelevant.

Lightweight Census: Additionally, we may want to further investigate how the clas-
si�cation results change when we have a fewer number of packets building the IP-ID
series that we aim at classify. This is important since we want to avoid injecting useless
tra�c in the network. Similarly to what previously described in Sec. 6.4.2, we take the
measurements dataset G and only consider that we have at our disposal only the �rst
N ′ = 10 < N out of theN = 100 samples gathered in the full experiment. Given that in
this case we are only looking at a small portion of the collected series, we may expect that
in this case we can have a loss in terms of amount of oddities really present in the dataset,
and behaviors like the one depicted in Fig. 25 might not be correctly classi�ed, simply
due to to lack of information about it. In fact, in this case, it is possible that the jump of
the IP-ID counter occurs later in the sequence, so all the features are evaluated on a re-
sembling simple counter. What practically happens in reality con�rms the expectations:
about half of the oddities are spread between the global and local implementations. What
is instead more surprising is the substantial decrease for the population random class.
This might be due again to the lack of fundamental information to correctly classify
those behaviors. Conversely, constant behaviors are easy to be identi�ed even with a
bunch of few packets. These results show that to correctly detect random and odd IP-ID
classes more care is needed: more data might be required to spot the proper behavior of
the series. Whilst, for the other classes, few packets are more than enough to correctly
classify them.

6.5.3 Spatial analysis

Odd class: As already mentioned, during the manual labelling phase we discovered
some targets setting the IP-ID in not-standard unexpected manners, which may be as-
cribable to di�erent causes, and that we named as odd behaviors. In this section we try
to investigate a bit more the odd class, trying to �gure out whether we can re-map some
of those IP addresses in other classes or not. The �rst analysis we perform consist in
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Figure 37: Normalized classes occurrences for L and its lighter version when only N=10 packets
out of 100 are considered.

converting the interpretation of the bytes contained in the IP-ID IPv4 header �eld to
little endian and try to perform again the classi�cation to check if results change. We fo-
cus only on the 172, 679 IP addresses in L previously classi�ed as odd and perform byte
swapping to each IP-ID value of the x,y series. Then, we re-build the dataset with the
new features and operate the classi�er trained on G on it. Results show that no meaning-
ful change has occurred, since, except for a neglibigle amount of IP addresses becoming
global, almost all the IP-ID series remain odd.

Figure 38: IP-ID census results, shown as a 12th order Hilbert curve, a fractal space-�lling
curve that allows the mapping of the one-dimensional IPv4 address space into a bi-
dimensional image.
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Results on the IPv4 address space: Next, we want to visualize the IP-ID classes distri-
bution on the IPv4 address space. A functional way to graphically perform this task is
through a 12th-order Hilbert curve, a fractal space-�lling curve which allows the map-
ping of the one-dimensional IPv4 address space into a bi-dimensional image. The use
of Hilbert curves to compactly represent Internet-wide characteristics was �rst popular-
ized by the Xkcd comic [4] and then used ever since. Each pixel in the image depicted
in Fig. 38 represents a single /24 pre�x block and its color can range among six di�erent
hues. Five of these refer to the �ve IP-ID classes and are respectively assigned to the pixel
if one representative address of that /24 network is part of our analysis, e. g., it belongs
to L, and the model has classi�ed it as the corresponding color label. On the contrary
if there are no IP addresses in L belonging to that /24 the associated pixel is coloured
white. From the image it is clearly possible to highlight some easily distinguishable is-

lands of close IP addresses which implement the IP-ID in the same way. However, this is
not an exhaustive result to assess that the hosts whose IP addresses belong to the same
pre�x block generates IP-ID in the same manner.

AS aggregation: Finally, we inspect the spatial aggregation of the IP addresses per Au-
tonomous System. We perform this by querying Team Cymru whois database [38] and
collecting from there information about the 49189 ASes of the the IP addresses present
in our dataset L. We focus only on the 32994 ASes owning at least two IP addresses of
the list, discarding in this way 16k IP addresses. We evaluate then the standard devia-
tion σ of the IP-ID classes of the IP addresses belonging to the same AS. We �nd out, as
shown in Fig. 39, that 29% of the ASes own IP addresses from whom we collected pack-
ets containing the IP-ID generated in the same way (standard deviation σ = 0). This
result is not telling much if considered alone, and since the most popular class is about
40% of the total this could just be equal to a random clustering of the IP addresses.

6.6 conclusions

This chapter presents, to the best of our knowledge, the �rst systematic study of the
prevalence of di�erent IP-ID behaviors in the current IPv4 Internet (extending this work
to IPv6 is a future, necessary, work). In this work, we �nd evidence that local and con-
stant implementations of the IP-ID are prevalent: this is in contrast with common knowl-
edge [36, 53, 69, 99, 105, 153], from which the global counter was expected, even in recent
times, to be the most popular IP-ID implementation.
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Figure 39: Standard Deviation of IP-ID classes of IP addresses owned by same AS

Summary and Perspectives: We proposed a framework to robustly classify the di�er-
ent IP-ID behaviours with only a handful of IP packets.

The data collection block relies on an experimental testbed comprising one sender
and two receivers, which collect the IP packets and, speci�cally, the information related
to the IP-ID �eld. The sender sends a burst of packets, minimizing the impact of ex-
ternal tra�c and purposely exploiting spoo�ng to precisely alternate addresses in the
sequence.

To classify the di�erent IP-ID classes, we trained and validated di�erent classi�ers on
datasets gathered from real measurements and additionally tested in the presence of con-
trolled losses to assess its robustness. Training of the model required manual validation
of thousands of sequences: during this phase, we also discovered some odd behaviour,
not documented in any of the previous RFCs, and which may be attributed to di�erent
causes.

In instances where odd behaviour was previously reported, our classi�er is the �rst to
automatically and correctly label such instances, making it easier to perform large-scale
analysis over the Internet. Moreover, classi�cation only requires a handful of packets,
making the methodology extremely lightweight.

Experimental results show that the majority of hosts adopt local IP-IDs (39%) or a
constant counter (34%) of which:

◦ A fraction of global counters (18%) is signi�cantly lower than expected;

◦ A non-marginal number of hosts have an odd behaviour (7%);

◦ Random IP-IDs are only slightly more than an exception (2%).
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This outcome provides a picture of Internet-wide adoption of the di�erent IP-ID imple-
mentations. Indeed, we gather that the 18% breakdown of the global implementation
in 2017 is three times lower with respect to the 57% reported in 2013 [69]. While the
quantitative reduction is in line with the statistics reported by recent work that lever-
ages global IP-ID behaviour to detect censorship in the Internet [117], one could have
expected the decrease in global implementation to be compensated by an increase of
random IP-IDs, which is not the case.

Contributions: Our �rst contribution is to devise an accurate, lightweight and robust
classi�er: accuracy of the classi�er follows from a principled de�nition of the statistical
features used to succinctly describe the IP-ID sequence; robustness is a consequence of
this choice, as features remains wide apart even under heavy losses.

Our second contribution is to carry on a manual investigation e�ort for a moderate
size dataset coming from real Internet measurements: this valuable ground truth allow
us to adopt a supervised classi�cation techniques to train a model able not only to detect
well-de�ned behaviors, but also to correctly recognize a wide range of odd behaviors.

Finally, all our datasets, including the testing with manual ground truth, as well as
the results of our census, are publicly available at [131]: we hope that the former can
assist scientists to build and test new techniques for IP-ID classi�cation, whereas the
latter provides practitioners with readily usable lists of the hosts with global IP-ID im-
plementations for their inference. Speci�cally, the available readily usable list of the
approximate half million hosts with global IP-ID implementations global implementa-
tions [131] can make work such as [15, 36, 117, 141] still possible. Moreover, by updating
and consolidating the scattered knowledge [36, 56, 99, 117, 153] of IP-ID prevalence, this
work contributes in re�ning the current global Internet map.
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Over recent years, the technological development and pervasiveness of the Internet
and, in parallel, the rise and massive spread of machine learning algorithms exposed
researchers to a number of di�erent new challenges.

This manuscript o�ered a walk through di�erent studies aimed at providing an overview
of some of the most prominent aspects of modern Internet. Here we followed two main
research directions: �rst, we focused on the analysis of Web users’ Quality of Experience
(Ch. 3 and Ch. 4); second, we gave emphasis on the use of machine learning applied to
Internet measurements, studying, on one side, the impact of its interaction with the Web
(Ch. 5); and, on the other, its use to predict objects generated by machines (Ch. 6).

We next summarize the achievements of this thesis work and discuss possible future
research directions.

7.1 summary of our contributions

In the �rst part of this thesis we focused on the measurement and on the analysis of the
Quality of Experience of users browsing the Web.

7.1.1 Users’ acceptance in the Wild Web

In Chapter 3 we tackled the problem of assessing the quality of experience on a pop-
ular website in operation. Speci�cally, we do this by gathering the user acceptance of
Wikipedia, over 62k user answers, more than twice the survey responses collected in
similar large-scale Wikipedia studies. We collect either positive (84.8%), neutral (7.7%)
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or negative (7.5%) experiences, each one associated with over 100 features. The collected
dataset is interesting per se, as it is particularly heterogeneous, comprising 59k distinct
IP addresses, 45 browsers, 3.8k ISPs and 2.7k hardware devices. A portion of it, includ-
ing 19 features which ensures that no sensitive information allowing to deanonymize
Wikipedia visitors is present, is made available to the research community as we hope
this can help in re�ning the understanding of Web users’ experience.

This chapter presents some important results. First, we observe that the concerned
Wikipedia users are consistently satis�ed, and that not only user answers unexpectedly
do not exhibit seasonality at circadian or weekly timescales but also they are not a�ected
by network-related events, which are typically inducing measurable delay changes.

Second, we �nd evidence of spatial dependency across many of the collected features:
particularly, we observe that user scores are in�uenced by user-level expertise and equip-
ment as well as network and country-level characteristics.

Finally, we observe that supervised data-driven models of user experience, used to
predict the user scores still falls short from attaining satisfactory performance in opera-
tional settings. This occurs despite when they include performance metrics considered
to be the state-of-the art of Web QoE and even when reducing the variance and hetero-
geneity of the data.

7.1.2 User Perceived Page Load Time in controlled experiments

In Chapter 4 we focused instead on measuring Quality of Experience in controlled exper-
iments. Particularly, we crowdsource the user perceived page load time, the time when
a user considers a webpage to be loaded and ready to browse, on 108 webpages via the
Eyeorg platform. Through the Eyeorg’s timeline experiment, participants are shown a
video of webpage load and asked to scrub it until when (s)he considers the page to be
ready. Similarly to Chapter 3, also in this work we gather both objective and subjective

Web quality metrics. This chapter showed two main results.
First, we observe that half of the webpages involved in our study present a multi-

modal uPLT distribution and that, in practice, three modes are su�cient to accurately
describe the uPLT distribution.

Second, we �nd that the number of images and the number of objects in a webpage
can help in predicting the uPLT modality.

In spirit with the current trends toward research reproducibility, also this dataset is
made publicly available.

∗ ∗ ∗
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In the second part of the thesis we presented some results related to the interaction
of machine learning models with (i) Web and (ii) machine-generated content.

7.1.3 The fairness of models trained on the Web

In Chapter 5 we question the assumption that the Web sheer size and heterogeneity
ensure the fairness of the models trained on Web-based content. Here, we propose a
methodology for the evaluation of the fairness of state-of-the-art transformer-based lan-
guage models. This chapter showed two main results, related to the fact that di�erent
models encode diverse biases when used for the prediction of terms of both Standard
American English and African American English.

First, we observe that the fairness of large models, trained on huge amount of Web-
based content, is unbalanced. Speci�cally, the predictions done with BERT and Distil-
BERT on Standard American English are up to 21% more accurate with respect to those
done on African American English. We show also how instead BART, RoBERTa and
DistilRoBERTa exhibit an opposite bias, favouring then African American English.

Second, results highlight that the distilled variants of BERT and RoBERTa, designed
to be lighter and trained on a lower amount of data, are the fairest among the seven
tested language models.

7.1.4 Supervised learning to infer machine-generated content

In Chapter 6 we observe instead how state-of-the-art machine learning algorithms be-
have when they are trained on content generated by machines, i. e., the IP identi�ca-
tion (IP-ID) �eld of the IPv4 header. Despite being only minimally intrusive and fairly
lightweight, the proposed technique is signi�cantly accurate and unveils two main �nd-
ings, the �rst one more related to the methodology, the second one more tied instead to
the classi�cation results.

From the methodology perspective, we �nd that few scalar features and a simple
classi�er, as a decision tree, are enough to accurately predict the di�erent IP-IDs im-
plementations. This is in sharp contrast with the results shown in Chapter 3. Here the
classi�cation of objects with very pre-determined behaviors, depending on the speci�c
implementation of the OS, leads to very accurate predictions.

From the point of view of the results, instead, the application of this technique to an
Internet-wide census provides an updated view of the adoption of the di�erent known
IP-ID implementations in the wild. Particularly, the results of the census reveals that the
global is no longer the most common IP-ID implementation and that, instead, other be-
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haviors, as local and constant, are present. This is particularly relevant, being the global
implementation of invaluable help to infer a wealth of information concerning the net-
work. Releasing all our datasets and results publicly, including two manually labeled
ground truth datasets and a list of the approximate half million hosts with the IP-ID
implementations, can make works relying on this IP-ID class still possible.

7.2 future work

There are several ways in which the results discussed in this thesis could be extended.
We next present some perspectives that could be accomplished as future work.

As concerns the Web QoE, di�erent directions can be further explored. With regards
to the experiment carried out in Chapter 3, we must point out that there exist other QoE
in�uence factors that we did not include in the analysis, such as content and context fac-
tors that are known to a�ect user QoE. For instance, the sentiment linked to the topic and
the content of the page or more informative indicators about the context in which the
measurements are carried out, as the earlier user browsing experience, heavily impact
QoE. However, they are hard to capture. Moreover, adding the knowledge of whether
the rendered element is under the user gaze, using mouse-movements as a proxy of eye
gaze activity, can help further re�ning QoE metric in the spatial direction. Clearly, fur-
ther research is needed on whether user-touch can be useful for similar purposes in case
of mobile handsets.

As for the bias embedded in models trained on Web based corpora, di�erent debiasing
techniques can be thought and implemented. Besides traditional debiasing approaches,
as those based on the loss function modi�cation, research directions which rely on en-
semble methods could be explored. Ensemble learning might lead to fairer prediction
outcomes, by combining language models which embed opposite biases, as, for instance,
BERTcased and BART in our analysis. Moreover, distilled language models need fur-
ther investigations. Particularly, a special emphasis should be given on the study of the
causes which lead them to have fairer predictions with respect to their teacher mod-
els. This could pose new research questions, such as the comparison of the cost-bene�t
analysis of large base models with respect to the smaller distilled counterparts.
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Table 23: List of features, informing whether each comes from raw data or is derived, and if it is
present in the T, WWW or PA set.

Feature Class Feature Name Raw Derived T WWW PA

Page

recvfrom

revision

wiki

seqid

schema

pageid

pagetitle

skin

survey code name

revid

transfersize

page size quantized

page size plugin

tot num. objects

survey viewtime

Performance

connectEnd

connectStart

dnsLlookup

domComplete

domInteractive

fetchstart

111
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�rstpaint

gaps

loadEventEnd

loadEventEtart

mediawikiLoadEnd

redirectcount

redirecting

requestStart

responseEnd

responseEtart

rsi

secureConnectionStart

unload

connectduration

responseduration

plt

tti

country speed avg

speed

speed quantized

country speed ratio

country speed delta

country speed relative

speed over median per country

(PLT · 0.9) + (TTI · 0.1)
log(RSI)

IP

uuID

editcountbucket

User

isloggedin
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istablet

platform

userlanguage

browser family

device family

os family

browser family sanitized

device family sanitized

os family sanitized

RAM device

price device

mobileview

webhostMobile

browserMobile

osMobile

isMobile

ASN

ISP

PLTdecile1

PLTdecile2

PLTdecile3

PLTdecile4

PLTdecile5

PLTdecile6

PLTdecile7

PLTdecile8

PLTdecile9

count

Environment

datetime

year
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month

day

hour

country code

namespaceid

webhost

city

continent

country

country code

latitude

longitude

postal code

subdivision

timezone

action

isanon

isoversample

mediawiki version

mobilemode

e�ective connection type

day of week

day of year

day of month

week of year

GDP

GDP rank

GDP percapita

Environment

Device Price over GDP

Device Price over GDP per capita
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GDP rank BIN

unix timestamp

unix timestamp normalized to minutes

datetime normalized to hour 1

Table 24: Schema of the Public Available Features.

1 provided in a separate dataset together with the user survey answer, where the order of the entries has
been randomly shu�ed in order to prevent user deanonymization
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wiki Which wiki the request was on (ruwiki, cawiki, eswiki, frwiki or
enwikivoyage)

unload 2 The time spent on unload (unloadEventEnd - unloadEventStart).

redirecting5 Time spent following redirects.

fetchStart5 The time immediately before the user agent starts checking any
relevant application caches.

dnsLookup5 Time it took to resolve names (domainLookupEnd - domain-
LookupStart).

secureConnectionStart5 The time immediately before the user agent starts the handshake
process to secure the current connection.

connectStart5 The time immediately before the user agent start establishing the
connection to the server to retrieve the document.

connectEnd5 The time immediately after the user agent �nishes establishing
the connection to the server to retrieve the current document.

requestStart5 The time immediately before the user agent starts requesting the
current document from the server, or from relevant application
caches or from local resources.

responseStart5 The time immediately after the user agent receives the �rst byte
of the response from the server, or from relevant application
caches or from local resources.

responseEnd5 The time immediately after the user agent receives the last byte
of the current document or immediately before the transport con-
nection is closed, whichever comes �rst.

loadEventStart5 The time immediately before the load event of the current docu-
ment is �red.

loadEventEnd5 The time when the load event of the current document is com-
pleted.

mediawikiLoadEnd (Mediawiki-speci�c.) The time at which all ResourceLoader mod-
ules for this page have completed loading and executing.
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domComplete5 The time immediately before the user agent sets the current doc-
ument readiness to "complete".

domInteractive5 The time immediately before the user agent sets the current doc-
ument readiness to "interactive".

gaps5 The gaps in the Navigation Timing metrics. Calculated by taking
the sum of: domainLookupStart - fetchStart, connectStart - do-
mainLookupEnd, requestStart - connectEnd and loadEventStart
- domComplete.

�rstPaint 3 The time when something is �rst displayed on the screen.

rsi4 RUMSpeedIndex. Estimate of the SpeedIndex value based on Re-
sourceTiming data. Now moved to the RUMSpeedIndex Event-
Logging schema, but was collected as part of the NavigationTim-
ing schema at the time of the study.

2 metrics coming from the browsers’ implementation of the NavigationTiming API
3 �rstPaint comes from the Paint Timing API or vendor-speci�c implementations predating the standards.
4 RUMSpeedIndex is a compound metric combining several NavigationTiming and ResourceTiming (level

1 and level 2) metrics into a single score. It’s a 3rd-party FLOSS library found here: https://github.com/
WPO-Foundation/RUM-SpeedIndex

https://www.w3.org/TR/paint-timing/
https://www.w3.org/TR/resource-timing-1/
https://www.w3.org/TR/resource-timing-1/
https://www.w3.org/TR/resource-timing-2/
https://github.com/WPO-Foundation/RUM-SpeedIndex
https://github.com/WPO-Foundation/RUM-SpeedIndex
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Titre : Mesures d’Internet à large echelle, longitudinale et sans biais

Mots clés : Mesures d’Internet, Qualité d’expérience, Apprentissage

Résumé : Aujourd’hui, un monde sans Internet est in-
imaginable. En interconnectant des milliards de personnes
dans le monde et en offrant un nombre incalculable de
services, il est désormais pleinement intégré à la société
moderne. Pourtant, malgré l’évolution et le développement
de la technologie, son omniprésence et son hétérogénéité
soulèvent encore de nouveaux défis, tels que les problèmes
de sécurité, le contrôle de la qualité d’expérience des utili-
sateurs (QoE), le souci de transparence et celui d’équité.
En conséquence, l’objectif de cette thèse est d’apporter un
nouvel éclairage sur certains des défis qui ont émergé ces
dernières années. En particulier, nous fournissons une ana-
lyse approfondie de certains des aspects les plus impor-
tants de l’Internet moderne. Un accent particulier est mis
sur le World Wide Web, qui, parmi tous, est sans doute
l’une des applications Internet les plus populaires, et un re-
gard spécifique sur son interaction avec l’apprentissage au-
tomatique. La première partie de ce travail étudie la qualité
de l’expérience de navigation des utilisateurs sur le Web,
avec des mesures effectuées à la fois “in the wild” et dans
des environnements contrôlés. Nos contributions continuent
avec une analyse originale de l’avis subjectif des utilisa-
teurs et des mesures objectives de la qualité d’expérience,
montrant la difficulté de construire des modèles supervisés

précis, basés sur des données, capables de prédire la sa-
tisfaction des utilisateurs, ainsi qu’une discussion approfon-
die de la nature multimodale des avis subjectifs des utili-
sateurs. Dans la deuxième partie de ce travail, nous ana-
lysons et discutons l’équité des modèles de langage basés
sur des transformateurs de pointe, qui sont pré-entraı̂nés
sur des corpus basés sur le Web et qui sont généralement
utilisés pour résoudre une grande variété de tâches de trai-
tement du langage naturel (NLP). Nous nous demandons
ici si la taille et l’hétérogénéité du Web garantissent la diver-
sité des modèles. Le cœur de nos contributions repose sur
la mesure du biais intégré dans les modèles, que nous dis-
cutons sous différents angles. Enfin, la dernière partie de
cette thèse traite de la classification d’objets générés par
des machines à l’aide de certains des plus simples algo-
rithmes d’apprentissage automatique supervisés à l’état de
l’art. Grâce à un framework solide mais peu intrusif, nous
montrons que les différents comportements d’un champ du
paquet IP, l’identification IP (IP-ID), peuvent être facilement
classifiés avec peu de caractéristiques ayant un haut pou-
voir discriminatoire. Nous appliquons enfin notre technique
à un census à l’échelle de l’Internet et fournissons une vue
actualisée de l’adoption de ses différentes implémentations
dans l’Internet.

Title : Longitudinal, large-scale and unbiased Internet measurements

Keywords : Internet Measurements, Quality of Experience, Machine learning

Abstract : Today, a world without the Internet is unimagi-
nable. By interconnecting billions of people worldwide and
by offering an uncountable number of services, it is now fully
embedded in the modern society. Yet, despite technology
evolution and development, its pervasiveness and heteroge-
neity still raise new challenges, such as security concerns,
monitoring of the users’ Quality of Experience (QoE), care
for transparency and fairness. Accordingly, the goal of this
thesis is to shed new light on some of the challenges emer-
ged in recent years. In particular, we provide an in-depth
analysis of some of the most prominent aspects of modern
Internet. A particular emphasis is given on the World Wide
Web, which among all, is undoubtedly one of the most po-
pular Internet applications, and a specific regard to its inter-
action with machine learning.
The first part of this work studies the Quality of Experience
of users’ browsing the Web, with measurements led both in
the wild and in controlled environments. Our contributions
follow with an original analysis of both the subjective user
feedback and the objective QoE metrics, showing how hard
it is to build accurate supervised data-driven models ca-
pable to predict the user satisfaction, along with an in-depth

discussion of the multi-modal nature of the subjective user
opinions.
In the second part of this work, we analyze and discuss
the fairness of state-of-the-art transformer-based language
models, which are pre-trained on Web-based corpora and
which are typically used to solve a wide variety of Natural
Language Processing (NLP) tasks. Here, we question whe-
ther the sheer size and heterogeneity of the Web guarantee
diversity in the models. The core of our contributions rests
in the measure of the bias embedded in the models, that we
discuss under different angles.
Finally, the last part of this dissertation addresses the clas-
sification of objects generated by machines through some
of the simplest state-of-the-art supervised machine learning
algorithms. Through a minimally intrusive, robust and light-
weight framework, we show that the different behaviors of a
field of the IP packet, the IP identification (IP-ID), could be
easily classified with few features having high discriminative
power. We finally apply our technique to an Internet-wide
census and provide an updated view of the adoption of the
different implementations in the Internet.
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