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Abstract

The heavy fermion compound CeRhIn5 offers an ideal playground to investigate the rich physics of
strongly correlated electron systems. It can be readily tuned to a quantum critical point by hydro-
static pressure, chemical doping, and magnetic fields. While the pressure-induced quantum critical
point is long accepted to be of the Kondo-breakdown type, the one induced by the magnetic field
at Bc ≈ 50 T was suggested to be of the spin-density-wave type. This assumption is based on the
observation of additional de Haas–van Alphen frequencies deep inside the antiferromagnetic state,
above B∗ = 30 T, where a novel phase of enhanced in-plane electronic anisotropy emerges. These
additional frequencies were interpreted as a signature of an abrupt Fermi-surface reconstruction
due to the field-induced itineracy of the f electrons at B∗.

Our comprehensive angular-dependent de Haas–van Alphen study of CeRhIn5 and its non-
f reference compound LaRhIn5 establishes the localized character of the f electrons inside and
outside of the antiferromagnetic phase. This rules out any significant field-induced Fermi-surface
reconstruction, particularly across B∗. We suggest the field-induced quantum criticality in CeRhIn5

does not conform with the established theoretical models.
A part of the thesis is dedicated to understanding the origin of the elusive state above B∗.

Our observation of a distinct specific-heat anomaly at B∗ suggests it to be a real phase transition,
probably weakly first-order. Further, our ultrasound study for a field applied at 2◦ from the c axis
revealed anomalies at B∗ in all the symmetry-breaking ultrasonic modes, suggesting additional
broken symmetries. Similar anomalies of the opposite sign were observed at the well-established
metamagnetic transition at Bm ' 20 T. In conjunction with the observation of both anomalies
strictly within the antiferromagnetic state, this suggests that the transition at B∗ corresponds to
a field-induced change of the magnetic structure from commensurate to incommensurate. Finally,
the angular-dependent behavior of the anomaly at B∗, contradictory to the previously reported
transport studies on microfabricated samples of CeRhIn5, emphasize the crucial role of the uniaxial
strain inherently present in the latter.

Our de Haas–van Alphen measurements on the related heavy fermion superconductor CeCoIn5

revealed anomalous quantum oscillations between 20 and 24 T, where some of the effective masses
also show an unusual field-dependence. Similarly, our magnetoresistance measurements revealed a
clear anomaly at 23 T, further suggesting that a field-induced instability occurs in CeCoIn5 at this
field.

The final part of the thesis is dedicated to growing high-quality single crystals of the Ce-
218 family. The samples of Ce2CoIn8 were grown of sufficiently high quality to show quantum
oscillations for the first time. The Fermi surface is found to be qualitatively similar to CeCoIn5,
but with larger orbits. Some of the effective masses are found to be strongly enhanced.
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Abstract in French

Le composé à fermions lourds CeRhIn5 constitue un terrain de jeu idéal pour étudier la riche
physique des systèmes à électrons fortement corrélés. Il peut facilement être pousser à travers un
point critique quantique par pression hydrostatique, dopage chimique et champ magnétique. Alors
que le point critique quantique induit par la pression est communément reconnu être de type �
suppression de Kondo �, celui induit par champ magnétique à Bc = 50 T est suggéré être de
type � onde de densité de spin �. Cette hypothèse est basée sur l’observation de fréquences
de Haas-van Alphen supplémentaires au cœur de l’état antiferromagnétique au-dessus de B∗ =
30 T, où une nouvelle phase de forte anisotropie électronique dans le plan apparait. Ces nouvelles
fréquences ont été interprétées comme la signature d’une soudaine reconstruction de la surface de
Fermi due à l’itinérance des électrons f induite par le champ à B∗. Nos études détaillées de la
dépendance angulaire de l’effet Haas-van Alphen sur CeRhIn5 et son composé de référence sans
électrons f , LaRhIn5, établissent le caractère localisé des électrons f de part et d’autre du point
critique quantique antiferromagnétique. Ceci élimine toute possibilité de reconstruction de surface
de Fermi sous champ, notamment de part et d’autre B∗. Nous suggérons que le comportement
critique quantique induit sous champ dans CeRhIn5 n’est pas conforme avec les modèles théoriques
existants.

Une partie de cette thèse est dédiée à la compréhension de l’origine de ce mystérieux état au-
dessus de B∗. Notre observation d’une claire anomalie de chaleur spécifique à B∗ suggère qu’il
s’agit d’une réelle transition de phase, probablement faiblement du 1er ordre. Par ailleurs, nos
études d’ultrasons pour un champ appliqué à 2◦ de l’axe c montrent des anomalies à B∗ dans tous
les modes acoustiques qui brisent la symétrie, suggérant des ruptures de symétrie supplémentaires.
Des anomalies similaires mais de signe opposé ont été observées à la transition méta−magnétique
bien connue à Bm = 20 T. Comme par ailleurs, les deux anomalies ne surviennent que dans l’état
antiferromagnétique, la transition à B∗ semble correspondre à une modification induite sous champ
de la structure magnétique d’un état commensurable à un état incommensurable. Finalement, en
contradiction avec les précédentes études de transport sur des microéchantillons de CeRhIn5, le
comportement angulaire de l’anomalie à B∗ souligne le rôle crucial de la contrainte uni-axiale
intrinsèquement présente dans ces derniers.

Nos mesures de Haas-van Alphen sur le supraconducteur à fermions lourds apparenté CeCoIn5

montrent des oscillations quantiques anormales entre 20 et 24 T, là ou certaines masses effectives
montrent également une dépendance en champ inhabituelle. De façon similaire, nos mesures de
magnétorésistance montrent une nette anomalie à 23 T, suggérant qu’une instabilité induite sous
champ survient dans CeCoIn5 à ce champ.

La partie finale de cette thèse est dédiée à la croissance de monocristaux de haute qualité
de la famille Ce−218. Les échantillons de Ce2CoIn8 obtenus sont de suffisamment haute qualité
pour observer des oscillations quantiques pour la premiére fois. La surface de Fermi semble être
qualitativement similaire à celle de CeCoIn5, mais avec des orbites plus grandes. Certaines des
masses effectives sont particulièrement élevées.

Mots Clés :

champ magnétique intense surface de Fermi
chaleur spécifique vitesse de l’ultrason
CeRhIn5 CeCoIn5
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Chapter 1

Introduction

1.1 A brief review of electronic systems

1.1.1 General introduction

The physical properties of an electronic system are driven by the behavior of its electrons. Be it
a metal, a semi-conductor, or a strongly-correlated-electron system, each owe its unique physical
properties to a distinct electronic behaviour resulting from the interaction of its electrons with their
environment, i.e., the ionic lattice and the rest of the electrons.

For instance, a free electron can attain arbitrary energy due to the absence of an environment
to interact with and alter its character. But when present in an atom, it can only acquire a discrete
energy of the atomic orbital it occupies. Subsequently, when atoms are clustered together into
a lattice to form a matter, the electrons tend to behave in a distinct manner as a result of the
electron-lattice and electron-electron interactions.

In a matter such as a metal, the electrons are bundled together into groups known as ‘energy
bands’, that are separated from other energy bands by an energy gap. The electrons in the most
‘energetic’ group, the conduction band, are responsible for the macroscopic properties, such as the
electrical conductivity, thermal conductivity, heat capacity, magnetic susceptibility, electrodynam-
ics, etc.

Such properties solely dependent on the conduction electrons, wandering through the lattice,
can be understood within a simple ‘free-electron model’ or the Drude-Sommerfeld model [1, 2, 3].
This model treats the conduction electrons in a metal as an ensemble of free electrons neglecting
electron-lattice interactions. The electronic wave-function is represented by a plane wave extending
throughout the lattice, analogous to the itineracy of the conduction electrons. However, this model
can not explain other classes of matter, such as semiconductors, insulators, semi-metals or even
some metallic properties, such as Hall effect and magnetoresistance, in which the electron-lattice
interactions cannot be ignored.

Therefore, came to the rescue, a ‘nearly free model’ that laid to the foundations of the band-
theory of solids. This theory comprehensively took into account the interactions between the
conduction electrons and the ionic lattice. Within this theory, the periodic lattice potential mod-
ulates the free electron wave-function leading to the formation of energy bands and band gaps,
unlike the continuous parabolic energy dispersion relation of the free electron model. With the
ideas of energy bands and energy gaps, the physics arising due to electron-lattice interactions could
be comprehensively accounted for to explain systems like semi-conductors and insulators.

1.1.2 Strongly correlated electron systems

In a certain special class of electronic systems, the electron-lattice interactions are much weaker
than the interactions amongst the electrons themselves that play the most dominant role in shaping
the overall macroscopic properties. These interactions amongst the electrons are referred to as
correlations. Such materials are known as strongly correlated electron systems (SCES). These
strong electronic correlations lead to exotic physical properties, such as long-range magnetic order,

5



CHAPTER 1. INTRODUCTION

unconventional superconductivity, and heavy-fermion state. Since they possess such exotic and
novel states of matter, SCES are also colloquially referred to as Quantum Materials.

Usually, strongly correlated electron systems are intermetallic compounds containing elements
with partially filled d or f orbitals. The spatial confinement of these orbitals leads to an increased
electronic repulsion causing stronger correlations. Most materials containing transition metals (d
orbital electrons) are either magnetic or superconducting, depending on the electronic shell in which
d electrons lie [4].

Figure 1.1: Spatial distribution of charge densities in 3d, 4f and 5f orbitals, taken from Ref. [5]

Strongly correlated electron systems with elements containing 4f or 5f electrons house rich
physics due to special character of these electrons [5, 6, 7, 8, 9]. Due to the huge positive nuclear
charge, the f -orbital is pulled inside the ionic core rendering it localized, much more than the
d orbitals as is evident from the spatial distribution of electric charge in 3d, 5f and 4f orbitals
shown in Fig. 1.1. Further, the large spin-orbit coupling in f -orbitals combines the spin (S) and
angular momentum (L) of the f -states into a state of definite total angular momentum J . The
interaction of large spin degrees of freedom of the f orbitals with conduction electron degree of
freedom can lead to a remarkable physics, such as a non-magnetic delocalized character to the
f orbitals. Therefore, intermetallic systems with elements like cerium and uranium reside in a
crossover region between the localized and itinerant character and form an exotic class of strongly
correlated electron materials.

It is pertinent to comprehensively take into account the electronic correlation effects to under-
stand the overall macroscopic properties of strongly correlated electron systems. In this regard,
several extensive theories were developed treating such systems as a many-body ensemble of elec-
trons. While these theories have been able to successfully explain many-body effects to a certain
degree, a comprehensive model accounting for the electronic correlations in entirety is still lacking.
In the following section, I will discuss the theoretical attempts to capture the many-body effects in
SCES.

1.1.3 Theoretical approaches to many-body effects in SCES

Initial attempts to describe electron-electron repulsion were inspired from the semi-empirical meth-
ods aimed at describing many-electron atoms, where the modified atomic energy levels were ob-
tained by including empirical parameters to Bohr’s model [10]. Later on, more formal methods
were devised to tackle the complicated many-body problem. There are essentially two pathways.
The first is a computational approach from the first principles - the so called ab-initio method, and
the other is an analytic one - the model Hamiltonian approach.

ab-initio methods: The ab-initio methods started in 1926 with the Schrodinger equation that
gave motivation to the so called mean-field approach. In such an approach, the mean-field approx-
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imation is implied, i.e., a particle in a many-body system experiences an effective potential (Veff )
created by the rest of the particles.

In 1927, D. Hartree came up with his self-consistent field method to approximate wavefunctions
of atoms and ions [11]. Within this method, the time-independent Schrodinger equation (non-
relativistic approximation) for each particle, taking Veff created by the rest of the particles, was
solved self-consistently by an iterative method running on an Ansatz/seed solution. Although, the
method was theoretically sound, it didn’t respect the anti-symmetry of the wave-function (Pauli
principle), a consequence of quantum statistics. Therefore, it failed to account for the exchange
interactions associated with the anti-symmetry, which was later corrected by Fock and Slater in
their renewed Hartree-Fock method [12, 13]. Although, the Hartree-Foch method was successful in
explaining many-body effects in a number of systems, in many other systems, certain deviations still
arose from the mean-field approximation. The deviations were collectively termed as correlations.

These ‘correlations’ have in parts contributions from the Coulomb correlations and from the
Fermi correlations. The Fermi correlation is basically the contribution arising from the electronic
exchange interaction, and was accounted for in the Hartree-Fock method. However, the Hartree-
Foch method failed to account for the Coulomb correlations.

Later, several approaches were developed to account for the Coulomb correlation effects due
to the electronic repulsion. These are known as the post Hartree-Fock methods. In this regard,
a huge advancement was made with the development of the Hohenberg-Kohn theorem that led to
uniquely defining a system’s wave-function by its charge density ρ. This laid to the foundation of
the highly successful density functional theory (DFT). A differential equation, referred to as the
Kohn-Sham equation, is derived by the variation of energy functional E[ρ] depending on the local
electronic charge density ρ = ρ(r).

E[ρ] = T [ρ] +

∫
ρ(r)Vext(r)d3r +

∫
ρ(r)ρ(r’)

r - r’
d3rd3r

′
+ Exc[ρ] (1.1)

Here T [ρ] is the kinetic energy, Vext is the external potential acting on the electrons, the third term
is the Hartree-term for Coulomb interaction between electrons, and Exc[ρ] is the so-called exchange
or correlation term. The Kohn-Sham equation for single electron wave functions are solved in an
effective potential Veff self consistently just like in the Hartree-Fock method. Simply put, the
DFT is a direct generalization of the Hartree-Fock approach. The DFT approach would be exact
if the explicit form of Exc[ρ] was known, but it is not the case. However, approximations like the
local density approximation (LDA) and its spin counterpart, the local spin density approximation
(LSDA) for exchange correlation energy have been highly successful in the DFT methods. Using
these approximations, the DFT has been successfully applied to describe electronic properties of
atoms, molecules and solids, where correlations are not too strong.

By 1989, it was realized that the problem can be further simplified by considering a large
number of nearest neighbors, and then can be solved for any strength of the Coulomb repulsion as
the spatial fluctuations can be neglected, leaving only time dependent on-site fluctuations [14, 15].
This laid the foundations of the dynamical mean-field theory (DMFT), which mapped lattice models
to an effective impurity problem with correlated electrons experiencing a mean-field, which, this
time, is dynamic, i.e., time or energy dependent. Dynamical mean-field methods clearly represent
a new advance in the many-body physics, but they are still unable to capture numerous many-
body effects in strongly correlated electron systems, such as the divergent behavior of the effective
masses. This is why the generalization of DMFT to account for real materials is an active area of
research. The above considerations demonstrate that ab-initio methods alone, in principle, cannot
provide sufficient insights in the physics of the strongly-correlated electron systems because of their
computational complexity and the unknowns involved.

Model Hamiltonian approach: The model Hamiltonian approach simplifies the full many-
body Hamiltonian to take into account only the relevant degrees of freedom, i.e., the valence
electron orbitals near the Fermi level. New insights have been achieved through model assumptions
and simplification of initial many-body Hamiltonian. For example, one of the simplest models
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of correlated electrons, the Hubbard-Hamiltonian, simplifies the many-body problem by simply
accounting for the interplay between electron hopping (tij) and local on-site repulsion U . But the
model Hamiltonian approach can be used only for a limited number of simpler systems.

Quasiparticle approach: The much needed breakthrough to explain the behavior of strongly
correlated electron systems came with a complimentary approach, the so-called quasiparticle ap-
proach. This approach replaced the many-body interacting particle ensemble by long-lasting ex-
citations, interacting with each other, above a certain vacuum ground state. These excitations
are referred to as the quasiparticles. The quasiparticle approach laid down the foundations of the
renowned Landau theory of quasiparticles or the Landau Fermi-liquid theory.

1.1.4 Landau Fermi-liquid theory

The impleading problem to understand many-body interactions in a matter at low temperatures,
that had been a bone of contention, was resolved to a great extent by the renowned Fermi-liquid
(FL) theory. This theory was a significant advancement over established models for simpler sys-
tems, such as metals, where the electronic interactions are negligible. Simple statistical models,
such as the Drude-model, that treated electrons in metals as a gas of non-interacting classical
particles, and the Sommerfeld-model that treated metals as an ensemble of fermions, successfully
explained metallic properties such as
1. a well defined Fermi surface [16],
2. the temperature dependence of the specific heat C ∝ γT ,
3. the temperature dependence of the susceptibility Xpara(T ) ' constant,
4. Wiedemann–Franz law i.e., κ/σ ∝ T , where κ and σ are the thermal and electrical conductivi-
ties, respectively.

Since only non-interacting fermions are involved, these models are also referred to as the Fermi-
gas models. However, these models are not useful when complex many-body interactions, such as
the electron-electron interactions, become significant, like in SCES. Therefore, in an attempt to
overcome the shortcomings of the Fermi-gas model, Landau proposed a revamp to the Fermi-gas
model to account for electronic correlation effects in his Fermi-Liquid (FL) theory.

In his theory, Landau treated interacting electronic system’s low energy excitations as quasipar-
ticles. These quasiparticles are analogous to non-interacting fermions of the Fermi-gas model with
the same spin, charge, momentum but have their dynamical properties, such as mass and magnetic
moment modified or renormalized to take into account the interaction with other fermions. The
quasiparticles have an associated finite lifetime, τ , such that h̄/τ = kBT . The renormalization of
quasiparticle effective masses is given by

m∗ = m0

(
1 +

Fl
3

)
, (1.2)

where Fl is the Landau renormalization parameter and m0 is the free electron mass. In some
strongly correlated electron systems, such as the so-called heavy fermions, m∗ is huge and can be
as large as 1000 m0. The quasiparticle mass enhancement leads to a large density of states (DOS)
at the Fermi level given as

N(εF ) =
m∗kF

π2h̄2 (1.3)

where kF is the Fermi vector.

The quasiparticle mass and DOS renormalization enhances the electronic contribution to the
specific heat as

C =
π2k2

BN(εF )

3
T. (1.4)

From equation 1.4, it is evident that qualitatively the behaviour of a Fermi-liquid is similar to a
Fermi-gas, and is only renormalized according to the electron-electron interaction. Therefore, the
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ground state of the Fermi-gas model can be adiabatically transformed to the ground state of the
Fermi-liquid model if the interaction is slowly turned on.

Furthermore, an important experimental indicator of the Fermi-liquid state is the resistivity, ρ,
which scales as T 2 and has contributions from the inelastic electron-electron and umklapp scatter-
ing. It is written as

ρ = ρ0 +AT 2. (1.5)

Instability of the Fermi-liquid states were shown to lead to exotic phases in strongly correlated
electron systems. The Pomeranchuk instability of the Fermi liquid towards a nematic phase is one
of the prominent examples.

1.2 Heavy fermions

Heavy fermions (HF) are a special class of materials within the strongly correlated electron systems.
HFs contain a rare-earth or actinide element with a partially filled f orbital. They are named as
such because of the extremely enhanced quasiparticle effective masses, reaching up to 1000 times
the bare electron mass in some cases.

In the HF systems, electrons in the f orbital of rare-earth elements like cerium and uranium lead
to peculiar properties. It is the interplay of the f electron and conduction electrons internal degrees
of freedom like spin, charge, and orbital moment, that exhibit exotic phenomena. This interplay
makes heavy fermion systems extremely sensitive to small variations of external parameters, such
as temperature, pressure, or magnetic field. The ground state in these systems is governed by two
competing interactions, namely the Kondo interaction and the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction. In the following sections, I will discuss these two interactions in detail.

1.2.1 Kondo interaction

In an attempt to resolve the long puzzling low-temperature resistivity minima observed in several
metals [see. Fig. 1.2], Jun Kondo proposed the idea of Kondo interaction [17, 18, 19, 20].

Figure 1.2: Resistivity minimum observed in (a) Gold Ref [17] and (b) Mo1−xNbx alloy Ref [19].

By 1960’s, it was realized that the observed resistivity minima was due to dilution of metal with
scant amount of magnetic impurities. When a magnetic impurity is placed in a sea of conduction
electrons, an exchange coupling occurs between the localized magnetic moment of the magnetic
impurity ~S and the conduction electrons spin ~σ of the host metal, given by

J ~S.~σ, (1.6)
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where J is the effective strength of the exchange interaction. For J < 0, the exchange interaction
tends to align the conduction electron spin in a direction opposite to that of magnetic impurity
spin (antiferromagnetic coupling). Kondo considered this interaction of magnetic impurity and
conduction electrons by including a higher order logarithmic scattering contribution due to spin-
flip of the magnetic moment as

J2N(ε) log |εF − εk| (1.7)

where εk is the energy of an electron, εF is the Fermi energy and N(ε) is the density of states at
the Fermi level. This logarithmic contribution becomes significant for the electron energies close
to the Fermi energy at finite temperatures i.e., εF − εk ' kBT .

J2N(ε) log (kBT ) (1.8)

This additional scattering term leads to an anomalous increase in resistivity with decreasing tem-
peratures.

Figure 1.3: Formation of a Kondo singlet at low temperatures. (a) At T ≥ TK , local moment in a
sea of conduction electrons. (b) Kondo singlet formed at T ≤ TK .

A schematic representation of the Kondo effect is shown in figure 1.3. At high temperatures,
the impurity spin is only weakly coupled to the conduction electron, but at lower temperatures,
the localized impurity moment is gradually screened out by the conduction electrons due to the
AF coupling, resulting into a non-magnetic Kondo singlet [21].

The temperature below which the Kondo interaction takes prominence is characteristic of the
system and is known as the Kondo temperature, TK .

TK '
1

N(ε)
e−1/JN(ε) (1.9)

The Kondo temperature corresponds to the binding energy of a Kondo singlet. As Kondo in-
teraction starts taking prominence, a local single impurity Kondo effect occurs and log T scattering
term begins to contribute to the resistivity with decreasing temperatures until a maximum in resis-
tivity is reached at T = Tcoh as indicated by the dashed line in Fig. 1.4. At Tcoh, individual Kondo
singlets develop coherence leading to a composite and coherent non-magnetic state. Therefore, at
temperatures below Tcoh, the resistivity drops sharply with decreasing temperature as shown in
figure 1.4. Similarly, other physical properties are also affected as the localized moments are grad-
ually screened. For example the Curie susceptibility (χ ∝ 1/T ) of the localized moments changes
to paramagnetic susceptibility at low temperatures (χ ∝ 1/TK).

In heavy fermion systems, the lattice sites are occupied by ions containing f electrons acting as
localized moments in a sea of conduction electrons. Such an arrangement is known as the Kondo
lattice [23, 24]. Here, the Kondo interaction results in formation of an ensemble of local Kondo
singlets which hybridize with the conduction band resulting into flatted hybridized bands separated
by an energy gap close to the Fermi-level, as shown in Fig. 1.5 (a),(b),(c).
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Figure 1.4: Kondo effect in the heavy fermion superconductor CeCoIn5. Resistance of CeCoIn5

showing the resistivity minima ρmin at T ∼ 200 K, a log T increase below ρmin upto the Kondo
coherence temperature Tcoh ∼ 50 K, and a superconducting transition at TSC = 2.3 K

Figure 1.5: Lattice Kondo effect in a heavy fermion system. (a) The energy dispersion relation
for the conduction band (in blue) and the localised moment (orange). (b) resulting flattened
heavy band (green) as Kondo singlets hybridize with the conduction band (c) Density of states of
hybridized bands separated by a band gap ∆. Fermi surface corresponding to (d) localized and (e)
hybridized states. Adapted from Ref. [22]

11



CHAPTER 1. INTRODUCTION

These hybridized bands have renormalized/enhanced quasiparticle effective masses, which in
turn renormalize the dynamical physical properties as discussed in the Fermi-liquid theory. The
hybridized state is referred to as the heavy-fermion state due to heavy effective masses of the quasi-
particle involved. Furthermore, in the heavy fermion state, the Fermi surface grows [25, 26] due to
the additional contribution coming from the f electrons compared to the non-hybridized/localized
state, where only the conduction electrons forms the Fermi surface (Fig. 1.5(d),(e).)

Therefore, in f -electron systems, the Kondo interaction favours a non-magnetic heavy-fermion
ground state. Next, I will discuss the RKKY interaction.

1.2.2 Ruderman Kittel Kasuya Yosida interaction

As discussed in the previous section, due to the Kondo effect, a localized moment in a sea of
conduction electrons is effectively screened out by a cloud of conduction electrons coupled anti-
ferromagnetically to it. The reorganization of the conduction electrons at the localized moment
alters the remaining of the conduction electron sea with a nearly periodic modulation damping
sinusoidally, known as the Freidel oscillations, as shown in Fig. 1.6.

In an atomic arrangement, such as the Kondo lattice, the localized moments positioned at the
lattice sites can interact with each other indirectly through the Friedal oscillations of the conduction
electrons. This indirect exchange between the localized moments is known as the RKKY interaction.

Figure 1.6: Indirect exchange between localized moments due to the Friedel oscillations of the
conduction electrons

The effective strength of the RKKY interaction damps sinusoidally with the Fermi wave vector
2kF [27], given as

J(r) ∝ J2N(ε)F (2kF r), (1.10)

where

F (x) =
xcosx− sinx

x4
(1.11)

The RKKY interaction (TRKKY ∝ J2N(ε)) tends to align the localized moments in ferromag-
netic or anti-ferromagnetic order depending on the moment of the localized ions, kF and lattice
parameters (i.e. position of the localized f ions). Therefore, the RKKY interaction favours a
magnetic ground state.

1.2.3 Doniach phase diagram

From the discussion in the preceding sections it is clear that the Kondo and the RKKY inter-
actions favour ground states of opposing nature, i.e., non-magnetic and magnetic, respectively.
Therefore, the competition of the two interactions becomes crucial in determination of the overall
physical properties of Kondo lattices or heavy fermion systems. This competition was beautifully
summarized in 1977 by S. Doniach in his famous Doniach phase diagram [24], shown in figure 1.7.

This diagram depicts the competition between the energy scales corresponding to the Kondo
(TK ' N(ε)−1e−1/JN(ε) ) and the RKKY (TRKKY ∝ J2N(ε)) interactions as a function of strength
of the exchange/coupling constant and DOS at the Fermi level.
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Figure 1.7: Doniach phase diagram from Ref. [24]. The x axis represents the strength of the
exchange/coupling constant times DOS at the Fermi level. The y axis represents the energy scale
in terms of temperature

The RKKY interaction dominates for weak exchange coupling, i.e., JN(ε) less than a critical
value JcN(ε), resulting into a magnetic ground state. For strong exchange coupling, i.e., JN(ε) >
JcN(ε), the Kondo effect dominates, resulting in the formation of coherent Kondo singlets at low
temperatures, i.e., the non-magnetic Fermi-liquid state. A continuous variation of JN(ε) from weak
to strong coupling regime changes the ground state of the Kondo lattice system from magnetically
ordered to a non-magnetic Fermi-liquid state that occurs through a continuous or second-order
phase transition at J = Jc. Such a continuous phase transition at the absolute zero temperature is
known as a quantum phase transition and occurs at the quantum critical point (0 K,JcN(ε))(see
fig. 1.8). Experimentally, the QCP can be achieved by tuning the exchange coupling constant using
a non-thermal parameter such as pressure, magnetic fields, uniaxial-stress, or chemical substitution.

In the vicinity of a quantum phase transition, novel exotic states of matter arise. Next, I shall
discuss the exotic physics that arises near a QCP.

1.2.4 Quantum criticality

In the Kondo lattice systems, a quantum phase transition (QPT) usually separates an ordered state
from a disordered one, such as a magnetically-ordered state from a magnetically-disordered state.

Generally, a continuous phase transition is identified with a finite order parameter in the or-
dered state that vanishes across the transition into the disordered state. As T → Tc, the system
approaches classical criticality and thermal fluctuations of the order parameter grow in the vicinity
of the critical point and become long-ranged and diverging at a classical critical point, i.e, T = Tc.
The green shaded region in Fig. 1.8 depicts the growing thermal fluctuations of the order parameter
at the classical order-disorder transition boundary as classical criticality is approached.

On the other hand, for temperatures significantly smaller than Tc, thermal fluctuations (∼ kBT )
become comparable/smaller than quantum fluctuations arising due to the Heisenberg uncertainty
principle given by

∆E = h̄ω ∼ h̄

τc
, (1.12)

where τc is the decay time scale associated with quantum fluctuations.

As T → 0, quantum fluctuations dominate over thermal fluctuations, h̄ω > kBT , and, thereby,
become the driving force of the associated quantum phase transition [28, 29]. At T = 0, the critical
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Figure 1.8: Phase diagram for a strongly correlated electron system showing a QPT. The black
dotted line depicts the quantum critical region. The orange solid line depicts a classical phase
transition and corresponding thermal fluctuations are shown by the green shaded region (see text
for details).

value of the non-thermal tuning parameter where quantum fluctuations diverge is known as the
quantum critical point (QCP) [30, 31, 32, 33, 34].

The region of enhanced quantum fluctuations or the ‘zero point motion’ in the vicinity of the
QCP is known as the quantum critical region. This region houses rich exotic physics in form of a
quantum matter. For instance, the interaction of quantum fluctuations with Fermi-liquid quasipar-
ticles leads to a deviation from the Fermi-liquid behavior to a non-Fermi liquid behaviour [35, 36]
observed in various physical properties, such as
1. Resistivity : ρ(T ) = ρ0 +ATn where 1 < n < 1.5,
2. Specific heat : C ∝ −lnT
3. Susceptibility : χ ∼ χ0 (1− c(T/T0)).

Moreover, in very clean samples, unconventional superconductivity has been observed near the
QCP [37, 38]. Several other exotic novel phases, like electron-nematic state [39, 40, 41, 42, 43], have
also been observed in the vicinity of the QCP. The possibility to explore such rich quantum states
of matter makes QCP’s a central topic of research in modern condensed matter physics. Another
related problem is to understand how enhanced quantum fluctuations lead to exotic novel phases.
In this regard, heavy fermion systems are an ideal playground to study quantum criticality. As
illustrated in Doniach phase diagram, heavy fermion systems can be conveniently driven across a
QCP. And for this purpose, magnetic field, in particular, is a rather convenient/clean parameter for
investigation, as it can be varied continuously to tune the same system across the QCP to different
quantum states.

Before moving to investigations of heavy fermions, I shall discuss theoretical models dealing
with the physics close to a QCP. While there is some consensus in this regard, a generalized
understanding is still elusive.

Types of Antiferromagnteic QCPs

Currently, the physics close to a QCP separating an antiferromagnetic state from the heavy Fermi-
liquid/Kondo state is understood by classifying the QCPs into two different classes. The first one
is the local or Kondo-breakdown type, and the second one is the spin density-wave type QCP.
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1. Local or Kondo-breakdown type QCP

The local or Kondo-breakdown type QCP refers to a quantum criticality scenario, in which the
paramagnetic Fermi-liquid state abruptly breaks down when a system crosses the QCP and enters
into the antiferromagnetic state [30, 44, 45, 46].

Figure 1.9: Local or Kondo-breakdown type quantum critical point. The Fermi surface and the f
electron character change abruptly across the QCP.

The Kondo state breakdown is accompanied by a change in nature of the f electrons. From
being itinerant in the Fermi liquid state due to hybridization with the conduction electrons, the f
electrons decouple from the conduction band and become localized at the ionic sites upon entering
the magnetically ordered state. As a consequence of localization, the f electrons cease to contribute
to the Fermi surface leading to an abrupt reconstruction of the Fermi surface, i.e., from a ‘large
Fermi surface’ corresponding to itinerant f electrons to a ‘small Fermi surface’ corresponding to
localized f electrons. Furthermore, at the Kondo breakdown type QCP, the effective masses of
quasiparticles diverge everywhere on the Fermi surface. A schematic phase diagram for the Kondo-
breakdown type QCP is shown in Fig. 1.9.

2. Spin Density Wave (SDW) type QCP

The SDW type QCP refers to a quantum criticality scenario, in which the transition from the heavy
Fermi-liquid state to the antiferromagnetic magnetic state does not break the heavy quasiparticles
abruptly, which remain intact upon crossing the QCP.

Across a SDW-type QCP, the f electrons remain itinerant and the Fermi surface largely un-
changed. Fluctuations of the antiferromagnetic order parameter take prominence close to this
QCP. The f itinerant antiferromagnetic phase in the vicinity of such a QCP is described in terms
of a spin-density-wave order of the heavy quasiparticles of the paramagnetic state. The theoretical
description is based on itinerant spin-fluctuation theory [47, 48, 49, 29, 50]. In this scenario, the
effective masses diverge only on certain portions of the Fermi surface connected by the antiferro-
magnetic wave vector, i.e, the so-called hot-spots. The effective masses of quasiparticles on the
rest of the Fermi surface remain unchanged. A schematic phase diagram for the SDW type QCP
is shown in Fig. 1.10.

Since the Fermi surfaces with itinerant and localized f electrons possess different size and
morphology, the two types of quantum critical points can be easily distinguished experimentally by
performing Fermi surface studies across QCP. Similarly, the variation of effective masses across the
QCP can also help in distinguishing the type of QCP. To this effect, Fermi surface studies based on

15



CHAPTER 1. INTRODUCTION

Figure 1.10: Spin density wave type quantum critical point. The Fermi surface and f electron
character remain unchanged across the QCP.

quantum oscillations have proved to be of extreme importance [51, 52, 53]. As will be discussed in
detail in the following sections, using quantum oscillations, the morphology of complicated Fermi
surfaces, the quasiparticle effective masses, and several other important parameters such as the
scattering length and the mean free path can be determined.

1.3 Probes to investigate heavy fermions

Several experimental probes are generally used to investigate various aspects of heavy fermions.
Here I discuss the various probes used during this thesis.

1.3.1 Fermi surface studies and quantum oscillations

In the simplest of terms, quantum oscillations are periodic oscillations of the electronic density of
states at the Fermi-level in magnetic fields. Quantum oscillations, therefore, naturally manifest
themselves in every physical property that is directly or indirectly linked to the electronic density
of the states at the Fermi level, like resistivity, magnetization, elastic constants, etc.

Landau quantization and the Onsager relation

Quantum oscillations are a direct consequence of the quantization of electronic energy levels in an
applied magnetic field, and can be directly deduced from the electron motion in a magnetic field
using a semi-classical approach and the Bohr-Sommerfeld quantization of the electron orbit [54]
[55].

Motion of an electron in magnetic-field

For an electron moving in an uniform magnetic field (B), the equation of motion in the semi-
classical approach can be simply written as the rate of the change of momentum (h̄k̇) due to the
Lorentz force

h̄k̇ = −evF (k)×B (1.13)
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Here, e is the electronic charge, k is the wavevector representing the electron and vF is the Fermi
velocity deduced from the energy dispersion (ε− k) relation as

vF (k) =
1

h̄

∂ε(k)

∂k
(1.14)

The Lorentz force acts perpendicular to the electron motion and does zero work on it. Therefore,
the electron energy ε remains constant even as k changes with time as it traverses a trajectory in
a magnetic field. Also, from eq. 1.14, vF is the gradient of constant energy surfaces, and, since
k̇ is perpendicular to vF , this implies that k̇ must be tangential to the constant energy surface.
Further, k̇ is also perpendicular to B. Therefore, it follows that the end of the k vector traces out
an orbit, which is the intersection of constant ε surface and a plane normal to B. This trajectory
of electron motion can be obtained by integrating the equation 1.13 with respect to time

h̄(k − k0) = −e(R−R0)×B, (1.15)

where R is the position vector of the electron in real space. Eq 1.15 implies that projection of the
classical trajectory on to a plane normal to B is a scaled version of its trajectory in the k space
with a 90◦ tilt, as shown in Fig. 1.11(a) and (b).

The electron traces this orbit periodically with an angular cyclotron frequency, ωc, which can
be calculated by substituting vF from eq. 1.14 into eq. 1.13 as

dt =
h̄2

e(gradk(ε×B))
dk

=
h̄2

eB

dk

( ∆ε
∆k′n

)

=
h̄2

eB

dk.∆k′n
∆ε

(1.16)

Here, k
′

is the component of k normal to B and κ is the component parallel to B. ∆k
′

is the
change of the normal component k

′
over a time ∆t. ∆k is the change from one constant energy

surface at ε(k) to another constant energy surface at ε + ∆ε(k + ∆k). dk.∆k′n corresponds to an
area element ∆Sn traced over a time dt [see fig. 1.11(c)].

Integrating eq. 1.16 over the whole orbit gives the time period T = 2π/ωc

ωc =
2πeB

h̄2 /(
∂S

∂ε
)κ (1.17)

Now, according to the Bohr-Sommerfeld quantization rule the resulting semi-classical orbit is quan-
tized 1.18 as following ∮

p.dq = (r + γ)2πh̄ (1.18)

In our case, the canonical momentum is p = h̄k − eA, where A is the vector potential defined as
B = ∇×A, and the canonical position is q = R′, where R′ is the projection of the real space orbit
on the plane perpendicular to B. Therefore, substituting these two in eq. 1.18, we have∮

(h̄k − eA).dR′ = (r + γ)2πh̄ (1.19)

From eq. 1.13, substituting h̄k = e (R×B)∮
(R×B).dR′ −

∮
A.dR′ = (r + γ)

2πh̄

e
(1.20)

Using Stokes theorem
∮
A.dR′ =

∫
S(∇×A)dS =

∫
S B.dS, we have

B.

∮
(R× dR′)−

∫
S
B.dS = (r + γ)

2πh̄

e
(1.21)
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Figure 1.11: Motion of an electron in a plane perpendicular to the magnetic field in an orbit in (a)
real space and (b) corresponding motion in k-space, which is a scaled version of the orbit in real
space with a 90◦ tilt, as discussed in the text. (c) area ∆Sn between n− 1th and nth levels traced
by the electron at a fixed κ.

18
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Now,
∮

(R× dR′) = 2a, where a is the area of the orbit in real space. Therefore, we have

B.2a−
∫
S
B.dS = (r + γ)

2πh̄

e
(1.22)

∫
S B.dS = B.a is simply the magnetic flux φ through the orbit, which gives

2φ− φ = (r + γ)
2πh̄

e

= (r + γ)
2πh̄

e
(1.23)

Equation 1.23 implies that the motion of an electron in a magnetic field is quantized into orbits
in real space such that the magnetic flux through these orbits is a multiple of the universal quantum
of flux (2πh̄)/e.

This quantization of the electron orbit can be obtained in the reciprocal or k space by a simple
transformation, using equation 1.13, which can be rewritten as

dr

dt
=

h̄

eB

(
dk

dt

)
(1.24)

For a infinitesimally small change of position over a time ∆t, dr/dt = ∆r/∆t.

∆r =
h̄

eB
∆k (1.25)

an =

(
h̄

eB

)2

Sn, (1.26)

where an is the area in real space and Sn is the area in k space.

φn = B.an (1.27)

= B.

(
h̄

eB

)2

Sn (1.28)

=

(
h̄

e

)2 1

B
Sn (1.29)

Using eq. 1.23, we obtain the renowned Onsager relation for the electron orbit quantization in
k-space as

Sn = (n+ γ)
2πe

h̄
B (1.30)

The above equation implies that in k-space, for a fixed quantum number n and a magnetic field
B, the electrons move in an orbit of a fixed area Sn = Sε,κ on a particular constant energy surface.
The section of the plane normal to the magnetic field taken at a certain κ (component of k parallel
to field) on a constant energy surface determines ε of Sn area orbit for that particular constant
energy surface, as shown in Fig. 1.12(a). Variation of κ (implying k) will give such plane sections
of area Sn on different constant energy surfaces. These plane sections, lying on discrete constant
energy surfaces, can be visualized as a tube of the cross section area Sn and co-axial with the field
direction, as shown in Fig. 1.12(b).

Similarly, for the fixed field B, such tubes with different cross-sections can be visualized for
different quantum numbers. This family of tubes is referred to as the Landau tubes. These Landau
tubes are just an extension of Landau levels, which, at a fixed κ, can be visualized as discrete
energy levels lying on successive Landau tubes. To sum up, the Onsager relation states that the
permitted electronic states in k-space lie on Landau tubes.

19



CHAPTER 1. INTRODUCTION

Figure 1.12: Simplified visualization of a Landau tube in k-space for a free electron gas. (a) A
section of an orbit of area Sn taken at κ = κn on the constant energy surface εn. (b) Similar
sections of area Sn at different κ′s on different energy surfaces. A tube of the area Sn can be
visualized along the black dotted lines.

Landau tubes for a Free electron gas

For the free electron gas, the Landau tubes are coaxial cylinders parallel to magnetic field, as shown
in Fig. 1.13. The constant energy surface for the free electron gas is a sphere in k-space given as

ε =
h̄2k2

2m0
(1.31)

where k2 = k2
x+k2

y+k2
z is the square of the Fermi wave vector. Now, for the simple case of magnetic

field along the kz direction, kz = κ. The intersection of constant energy sphere with a plane section
at κ will be a circle of the area Sn = π(k2

x + k2
y). The free electron energy can then be written as

ε =
h̄2

2m0

(
Sn
π

+ κ2

)
(1.32)

Using the Onsager relation for Sn, we get

ε = (n+ 1/2)β0B +
h̄2κ2

2m0
, (1.33)

where β0 = eh̄/m0c. Substituting ε(k) from eq. 1.31 into eq. 1.33, we obtain the equation for
Landau tubes as

h̄2

2m0
(k2
x + k2

y) = (n+ 1/2)β0H (1.34)

The energy difference between two neighbouring Landau levels, i.e., at a given κ and for the
successive quantum numbers n and n+ 1 can be obtained from Onsager relation and eq. 1.17 as

(∆ε)∆n=1 =

(
∂ε

∂S

)
κ

(∆S)∆n=1

=
2πeB

h̄

(
∂ε

∂S

)
κ

= h̄ωc (1.35)

= βB, (1.36)
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Figure 1.13: Landau tubes as a set of coaxial cylinders parallel to B for a free electron gas.

where β = eh̄
m , and m = h̄2

2π

(
∂S
∂ε

)
κ

is the cyclotron mass.

Quantum oscillations

The Onsager relation states that for a fixed κ and n, the cross-section of a Landau tube Sn is
proportional to the applied magnetic field B. At the Fermi surface, the cross-section of the Landau
tube is equal to the extremal cross-section of the Fermi surface (Sext) perpendicular to the magnetic
field direction.

Therefore, if nth Landau tube at a magnetic field Bn coincides with the Fermi surface, i.e.,
Sn = Sext, then we have

Sn
Bn

= (n+ γ)
2πe

h̄
(1.37)

Now with increasing magnetic field, the area of Landau tubes will increase such that at a higher
field Bn+1, the nth tube will cross the Fermi surface, while its immediate neighbor, the (n − 1)st

Landau tube, will coincide with the Fermi surface, i.e., Sn−1 = Sext. Thus we have

Sn+1

Bn+1
=

2πe

h̄
(n+ 1 + γ) (1.38)

Since at the Fermi level, Sn = Sn−1 = Sext, subtracting the above two equations, we get

Sext

(
1

Bn+1
− 1

Bn

)
=

2πe

h̄(
1

Bn
− 1

Bn+1

)
=

2πe

h̄Sext

∆

(
1

B

)
=

2πe

h̄Sext
(1.39)

This implies that equal increments in 1/B will produce orbits of the same size, Sext. In other
words, the occurrence of the Fermi surface extremal orbit (frequency) is periodic in 1/B. In terms
of the occupancy of the electronic states, according to the Fermi function, only the states below
the Fermi level are occupied. Thus, with increasing magnetic field, as each Landau tube crosses
the Fermi level εF , it will empty the electronic density onto the neighboring Landau tube just
below εF . Therefore, the passage of consecutive Landau levels across the Fermi surface will cause
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a discontinuity in the density of states at the Fermi level with a periodic occurrence at ∆(1/B)
intervals. These periodic variation of the density of state at the Fermi level is known as the quantum
oscillations. The corresponding frequency F is given by the Onsager relation as

F =
h̄Sext
2πe

(1.40)

Complicated Fermi surface Spherical Fermi surface

 1/B

(b)(a)

 1/B

B

Figure 1.14: Quantum oscillations as a function of 1/B corresponding to (a) a spherical Fermi
surface comprises of only one frequency (b) while a complicated Fermi surface (real system) com-
prises a superposition of multiple frequencies (the oscillations shown are not exact for FS but only
a representation).

For a spherical Fermi surface, there is only one extremal orbit and, therefore, its quantum
oscillations have only one frequency [see Fig. 1.14(a)]. For real systems, the Fermi surface is often
more complicated due to the presence of multiple bands, and more than one extremal orbit are
possible in the direction perpendicular to the field. Therefore, quantum oscillations observed for
such a Fermi surface will be a superposition of several frequencies, as shown in Fig. 1.14(b).

Each frequency of quantum oscillations is directly proportional to an extremal cross-section of
the Fermi surface perpendicular to the applied magnetic field. Therefore, a Fermi surface can be
mapped exactly by measuring quantum oscillation as a function of the of magnetic field orientations,
as shown in Fig. 1.15. As evident from Fig. 1.15(a) and (c), for spherical Fermi surface, the only
quantum oscillation frequency remains unchanged for any orientation of the magnetic field. On the
other hand, cylindrical Fermi surface, such as shown in Fig. 1.15(b), the single quantum oscillation
frequency smoothly evolves with the field orientation, as shown in Fig. 1.15(c). Anisotropic Fermi
surfaces usually have more than one frequency.

Every physical property dependent on the electronic density of states at the Fermi level, such
as resistivity, magnetization and elastic constants (where electron-phonon coupling leads to QOs),
inherently show quantum oscillations when measured as a function of the magnetic field. There-
fore, by measuring such physical properties, the morphology of complex Fermi surfaces can be
experimentally mapped.
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Figure 1.15: Fermi Surface topology of (a) a spherical and (b) a cylindrical Fermi surface determined
through the angular variation extremal orbit in a direction perpendicular to magnetic field.

The de Haas-van Alphen effect

As discussed in the previous section, Landau quantization leads to quantum oscillations of the
electronic density of states at the Fermi level that are reflected in most of the physical properties.
The Quantum oscillations observed in magnetization, are known as the de Haas-van Alphen (dHvA)
effect. The dHvA oscillations are described by the famous Liftshitz-Kosevich (LK) [56, 57] formula
(eq. 1.44). The LK formula can be conveniently deduced from fundamental thermodynamics (see
Ref. [54] for details). Magnetization, being a thermodynamic quantity, can be deduced from the
thermodynamic potential Ω of a system defined as

Ω = F −Nζ, (1.41)

where ζ is the chemical potential, N is the number of electrons, F = E − TS is the free energy, E
is the internal energy and S is the entropy of the system.

The vector magnetic moment can then be obtained as the derivative of Ω at constant ζ

~M = − (gradBΩ)ζ (1.42)

Individually, the components of magnetization parallel, M‖, and perpendicular, M⊥, to B are
obtained as

M‖ = −(∂Ω/∂B)ζ

M⊥ = − 1

B
(∂Ω/∂θ)ζ,B . (1.43)

Here, θ is the angle specifying the direction of field in the plane in which Ω varies the most rapidly
with the direction of field.

Lifshitz-Kosevich formula

The LK formula gives the oscillatory part of the magnetization (Mosc). Basically, Mosc comprises
of a summation of dHvA oscillations corresponding to all the extremal cross-sections of the Fermi
surface as well as their harmonics.

Mosc =
∑
r

∑
i

(−1)r

r3/2
Ai sin

(
2πrFi
B

+ βi

)
(1.44)

Here, the summation running over i adds the dHvA oscillations Fi corresponding to the ith extremal
orbit of the Fermi surface. The summation running over r encompasses higher harmonics of the

23



CHAPTER 1. INTRODUCTION

fundamental dHvA oscillations frequencies, Fi’s. βi is the phase shift. Ai is the amplitude of the
ith oscillation given as

Ai =
e5/2V FiB

1/2

(2h̄)1/2π5/2m

∣∣∣∣∂2Si
∂κ2

∣∣∣∣−1/2

RTRDRS , (1.45)

where V is the volume of the sample, and
∣∣∣∂2Si∂κ2

∣∣∣ is the curvature factor that refers to the change of

the cross-section area around the extremal orbit along the direction of the field. Therefore, while

for a cylindrical Fermi surface,
∣∣∣∂2Si∂κ2

∣∣∣ is small, leading to quantum oscillations with large amplitude,∣∣∣∂2Si∂κ2

∣∣∣ is large for a pancake like Fermi surface, resulting in smaller oscillations amplitude.

The multipliers RT , RD and RS are known as the reduction factors, and are responsible for
damping the amplitude of dHvA oscillations. RT is the temperature reduction factor, RD is the
Dingle reduction factor and RS is the spin damping factor. Each of these factors will be indepen-
dently discussed in the following sections.

1. Temperature reduction factor (RT )

The temperature reduction factor, RT , refers to the effect of a finite temperature in smearing the
amplitude of quantum oscillations and is given as

RT =
πλ

sinh(πλ)
(1.46)

=
2π2rkBT/βB

sinh(2π2rkBT/βB)
. (1.47)

Here λ = 2πrkBT/βB is the amplitude smearing factor, where β = eh̄
m∗ , with m∗ being the quasi-

particle effective mass renormalized by electron-electron and electron-phonon interactions.

For λ = 2πrkBT/βB � 1,

RT ≈ 1

This implies that for m∗ ' m0, RT approaches unity at low temperatures and high fields. Also, RT
is almost temperature independent at low temperatures. On the other hand, for λ = 2πrkBT/βB �
1,

RT =
4π2rkBT

βB
e−2π2rkBT/βB,

implying that for enhanced effective masses, the temperature reduction factor exponentially damps
the dHvA amplitude even at low temperatures.

The temperature reduction factor with relevant parameters can be written in a simplified form
as

RT =
αrm∗T/B

sinh(αrm∗T/B)
(1.48)

where α = 2π2kB
eh̄ ' 14.69 T/K

The temperature dependence of the reduction factor RT for different effective masses m∗ (rang-
ing from 1−100 m0) is shown in Fig. 1.16. It is evident, that high magnetic fields and low temper-
atures are necessary to observe quantum oscillations corresponding to higher effective masses. For
instance, in a commercially available superconducting magnet reaching upto moderate fields, say 18
T, quantum oscillations corresponding to very small effective masses, m∗ ' 1− 2 m0, can be easily
observed at 4He temperatures, while atleast 3He temperatures are necessary to observe oscillations
for m∗ ' 10 m0 [Fig. 1.16(a)]. Even lower temperatures are needed, such as in the range of a
dilution refrigerator temperature or lower, to observe quantum oscillations corresponding to still
higher effective masses, i.e., m∗ ' 100 m0. In a resistive or hybrid magnetic reaching upto higher
fields, say 40 T, these quantum oscillations can be observed at higher temperatures as shown in
Fig. 1.16 (b).

24



1.3. PROBES TO INVESTIGATE HEAVY FERMIONS

0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

m*

3He

100m*

10m*

 

 

R
T

Dilution refrigerator

B = 18 T

(b) 

(a) 

2m*

4He

100m* 10m*
2m*

 

 

R
T

Temperature (K)

m*

B = 40 T

Figure 1.16: Temperature reduction factor to the dHvA amplitudes with different effective masses
as a function of the temperature at two different magnetic fields (a) B = 18 T and (b) 40 T.
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Effective masses

The effective masses corresponding to the dHvA oscillations can be experimentally determined as
a consequence of the temperature reduction factor, since

A(T ) = A0 RT (1.49)

where A(T ) is the dHvA amplitude at temperature T and A0 is the amplitude at the lowest
temperature. A fit based on eq. 1.48 to the temperature dependence of dHvA amplitudes gives the
effective mass as a fitting parameter.

2. Dingle reduction factor (RD)

The Dingle reduction factor refers to the effect of scattering on the dHvA amplitude. Due to
the scattering of electrons, either because of impurities or otherwise, there is an associated finite
relaxation time, τ . As a result, the Landau levels are broadened according to the uncertainty
principle. And the ‘Dingle’ reduction factor RD due to the level broadening is given as

RD = exp(−2π2rkBTD
βB

)

= exp(−2π2rkBTDm
∗

eh̄B
)

= exp(−αrm
∗TD
B

), (1.50)

where TD = h̄
2πkB

1
τ is known as the Dingle temperature.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0
 TD = 0.1 K
 TD = 0.5 K
 TD = 1 K
 TD = 5 K

 

 

R
D

Magnetic Field (T)

m* = 5 m0

Figure 1.17: Dingle reduction factor as a function of magnetic field for a dHvA frequency with
m∗ = 5m0 at a few different Dingle temperatures.

The Dingle reduction factor as a function of magnetic field for an orbit with m∗ = 5m0 at
a few different Dingle temperatures is shown in Fig. 1.17. It is evident that the amplitude of
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dHvA oscillations at a constant field is diminished with increasing the Dingle temperature, i.e.,
increasing electronic scattering. This implies that the Dingle temperature has an effect on the
dHvA amplitude equivalent to an increased temperature, Teq = T + TD. In this regard, the Dingle
temperature becomes a rather important parameter to infer the quality of the sample depending
on impurity scattering. It is pertinent to have samples with TD as small as possible to observe
quantum oscillations. Further, higher fields are needed to observe quantum oscillations in ‘dirtier’,
samples, i.e. with a higher TD.

Experimentally, the Dingle temperature of an orbit can be determined from the magnetic field
dependance of its dHvA amplitude. Using eq. 1.45 and eq. 1.50, we have

Ai ∝ B1/2 m∗T/B

sinh(αrm∗T/B)
exp(−αrm

∗TD
B

) (1.51)

At a fixed temperature T , for an orbit with the effective mass m∗, the dHvA amplitude will be

Ai ∝ B−1/2 exp (−αrm∗TD/B)

sinh(αrm∗T/B)
(1.52)

Eq. 1.52 can be rewritten in the so-called Dingle plot [see Fig. 1.18] form as

ln

[
A(B)B1/2sinh

(
αm∗T

B

)]
= −αm∗TD

1

B
+ const. (1.53)
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Figure 1.18: The evolution of dHvA amplitude with magnetic field plotted as the so-called ‘Dingle
plot’.

The Dingle temperature can then be determined from the slope of ‘Dingle-plot’ as

TD =
slope

−αm∗
(1.54)
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Apart from the indication of the sample quality, the electronic mean free path, l = vF τ = h̄kF
m∗

corresponding to individual orbits can also be deduced from the Dingle temperatures

l =
h̄r2kF

2πkBm∗TD
. (1.55)

Since Sext = πk2
F , using Onsager relation, the mean-free path can be re-written as

l =
h̄2

2πkBm∗TD

√
2e

h̄
F (1.56)

The Dingle reduction factor is not renormalized by the many-body interactions.

3. Spin reduction factor RS

The final reduction factor of the dHvA amplitude is the spin reduction factor RS [58]. In an applied
magnetic field, the spin degeneracy of the energy levels is lifted as

ε± 1

2
∆ε, (1.57)

where ε = 1
2gβ0H with β0 = eh̄

m0c
= 2µB (µB is the Bohr magneton). g is the Lande spin splitting

factor, taken as 2 for free electron.
This splitting of an energy level is equivalent to a phase difference (φ = ∆ε

βH ) between the
oscillations arising from the spin-up and spin-down electrons. Such a phase difference leads to a
reduction of the dHvA amplitude. The overall amplitude of the oscillations will a superposition
of amplitudes from spin-up and spin-down multiplied by the spin reduction factor, which, for rth

harmonic can be written as

RS = cos(rπφ/2)

= cos(rπ∆ε/βH)

= cos(rπg(m∗/m0)/2)

= cos(rπS)

The dHvA amplitude vanishes when the contributions from the two spins cancel each other.
This is known as spin zero. The value of g can be determined from spin zero positions.

Apart from the above mentioned reduction factors, the sample and field inhomogeneity also
lead to reduction of the dHvA amplitude.

Conditions for dHvA oscillations

Different reduction factors impose certain conditions that must be fulfilled to observe dHvA oscil-
lations. These conditions are listed below.

1. Low temperature and high fields: At a finite temperature T , due to the thermal excitations
kBT , quasiparticles in states just below the Fermi-level are excited to states just above the Fermi
level. This leads to the broadening of the density of states at the Fermi level. Unlike at T = 0,
as a particular Landau level crosses the Fermi surface, the quasiparticles do not move abruptly
to the Landau level just inside the Fermi surface, but rather gradually as the the Fermi level is
broadened. Thus, for a discontinuity in electronic density of states to occur at the Fermi level, the
temperature broadening kBT of the Fermi level must be much smaller than the distance between
two consecutive Landau levels h̄ωc, i.e.,

kBT � h̄ωc (1.58)

which can be re-written as
B

T
=
m∗kB
h̄e

(1.59)
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2. High quality samples: To observe quantum oscillations, the electron should be able to
perform at least one cyclotron motion during the relaxation time, i.e., ωcτ > 2π. This imposes a
restriction on impurity scattering and, thereby, on the sample quality as

τ >
2πm∗

eB
(1.60)

In summary, the dHvA effect provides significant information about the electronic states in the
vicinity of the Fermi energy. Information such as the Fermi surface morphology, effective masses
are extremely useful to study quantum critical phenomenon on heavy fermion systems.

1.3.2 Heat capacity

Heat capacity is a direct thermodynamic response (∆T ) of a system to a supplied energy (∆Q)
and is given as

C = lim
∆T→0

∆Q

∆T
(1.61)

It is a classical probe to measure excited states of a system in a relevant temperature or energy
range.

In a metal, the electronic contribution (Ce = γT ) to heat capacity becomes significant only at
low temperatures where the lattice (phonon) vibrations start freezing and the phonoic contribution
(Cph = βT 3) becomes very small. If a magnetically ordered state occurs in the system, an additional
magnetic contribution Cmag is added to the heat capacity as

C = Ce + Cph + Cmag (1.62)

The magnetic contribution is usually approximated using various models accounting for magnon
and spin density wave terms.

In the electronic contribution Ce = γT , γ is known as the Sommerfeld coefficient given by

γ =
π2

2

N0k
2
B

εF
(1.63)

Since the Fermi energy is inversely proportional to the mass of the particles, we have

γ ∝ m (1.64)

Therefore, the Sommerfeld coefficient is a direct indicator of the thermal effective masses of quaipar-
ticles. Particularly, for heavy fermions, huge effective masses, which cannot be observed through
quantum oscillations (due to the limitations discussed in previous sections), can be accounted for
through the Sommerfeld coefficient. Therefore, γ, is an extremely important indication of the
strong electronic correlations.

Furthermore, heat capacity measurements can act as a complimentary probe to establish if the
Fermi surface is thoroughly determined through quantum oscillations or parts of it are missed, by
comparing the sum of effective masses of individual orbits obtained through quantum oscillations
with the thermal effective mass deduced from γ.

The most significant use of heat capacity is to experimentally identify and characterize thermo-
dynamic phase transitions. Thermodynamic transitions involve an entropy change (for an ordered-
disorder transition) or a latent heat change, which appears as a distinct feature in heat capacity.
Therefore, heat capacity is often used as a classical probe to not only detect thermodynamic phase
transitions, but also to establish order of the phase transition. A first-order thermodynamic phase
transition manifests itself as a sharp δ-function like anomaly due to the involvement of the latent
heat, while a second-order transition manifests itself as a distinct λ-like feature, as shown in Fig.
1.19.
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Figure 1.19: Schematic representation of (a) a first-order transition as a δ-like feature and (b) a
second-order transition as a λ-like feature in specific heat.

1.3.3 Elastic constants

Similar to heat capacity, elastic modulus of a material is also a thermodynamic quantity. But,
instead of supplied heat, elastic constants are a response to applied strains and can be obtained as
the second-derivative of the free energy of a system, i.e.,

c =
d2F

de
(1.65)

where c is the elastic constant, F is the free energy of the system, and e is the applied strain.

Usually, the electronic character of a system is coupled, up to a certain degree, to the crystal
lattice due to electron-phonon coupling. In cases where this coupling is strong enough, the electronic
properties can be detected as a lattice response using dilatometric probes.

The remarkable aspect of the elastic response is that, a thermodynamic phase transition ap-
pears as a sharp, distinct anomaly in relevant elastic constants due to the strain-order parameter
coupling. Therefore, the symmetries of an order-parameter associated with a phase transition can
be determined. Furthermore, complex phase transitions that break only certain symmetries of the
underlying electronic-magnetic structure, such as the electronic-nematic or exotic metamagnetic
transitions, can also be studied as structural, magnetic, etc. degrees of freedom couple to specific
elastic constants. Therefore, probing elastic properties is a vital tool to investigate intricate aspects
of unknown phase transitions in heavy fermion systems.

Before moving to a discussion on how to investigate heavy fermion physics using elastic proper-
ties, I shall briefly discuss elastic constants of a tetragonal lattice, in which numerous heavy fermion
materials crystallize. Further, I shall also discuss how an elastic constant or a combination of them
can be measured using characteristic elastic waves.

Elastic constants for a tetragonal lattice

The elastic stiffness constants or simply elastic constants of a crystal lattice can be obtained from
its response to elastic waves using the Hooke’s law;

σ = ce, (1.66)

where σ is the stress, c is the elastic stiffness constant, and e is the elastic strain.

According to the Hooke’s law, the strain-stress relation for a cubic lattice is written as
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Xx = C11exx + C12eyy + C13ezz + C14eyz + C15ezx + C16exy
Yy = C21exx + C22eyy + C23ezz + C24eyz + C25ezx + C26exy
Zz = C31exx + C32eyy + C33ezz + C34eyz + C35ezx + C36exy
Yz = C41exx + C42eyy + C43ezz + C44eyz + C45ezx + C46exy
Zx = C51exx + C52eyy + C53ezz + C54eyz + C55ezx + C56exy
Xy = C61exx + C62eyy + C63ezz + C64eyz + C65ezx + C66exy

Here the quantities on left hand side are stresses, in which the capital letter denotes the direction
of the force, and the subscript denotes the normal to the plane to which the force is applied. For
an elementary cube, there are six independent stress component denoted by Xx, Yy, Zz, Yz, Zx, Xy.

The infinitesimal elastic change in length along the direction of applied stress is the elastic
deformation or strain denoted by εαβ, where α, β = x, y, z such that the displacement along the x,
y, and z direction are u, v, and w, respectively. Therefore, we have the strain components defined
in terms of elastic deformations as

exx ≡ εxx =
∂u

∂x

eyy ≡ εyy =
∂v

∂y

ezz ≡ εzz =
∂w

∂z

exy ≡ εyx + εxy =
∂u

∂y
+
∂v

∂x

eyz ≡ εzy + εyz =
∂v

∂z
+
∂w

∂y

ezx ≡ εzx + εxz =
∂u

∂z
+
∂w

∂x
(1.67)

Finally, the 36 quantities, Ci,j (where i, j = 1, 2, 3, 4, 5, 6) are known as the elastic stiffness
constants or moduli of elasticity and are inverse of elastic compliances or elastic constants.

For a particular lattice system, the elastic stiffness constants can be written as a tensor of rank
3. The Ci,j are symmetrical, and thus the number of independent Ci,j decrease from 36 to 21.

The number of Ci,j is further reduced depending on the symmetries of the concerned crystal
structure. For a cubic crystal symmetry, there are only 3 independent elastic stiffness constants,
namely, C11, C12, C44 which can be written in a matrix form as

Xx

Yy
Zz
Yz
Zx
Xy

 =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

×


exx
eyy
ezz
eyz
ezx
exy

 (1.68)

All the cerium-based heavy fermions belonging to the 115 and 218 families crystallize into a
tetragonal crystal structure. Unlike the cubic lattice, a tetragonal crystal has 6 independent elastic
stiffness constants namely, C11, C12, C13, C33, C44, C66 and can be written in a matrix form as

Xx

Yy
Zz
Yz
Zx
Xy

 =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

×


exx
eyy
ezz
eyz
ezx
exy

 (1.69)

These elastic stiffness constants can be probed independently or as a combination using elastic
waves that induce elastic deformations in the lattice.
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Let us assume that an elastic wave, such as an ultrasonic wave, induces a displacement ‘u’ along
the x-direction. Then, the equation of motion in the x-direction can be written as

ρ
∂2u

∂t2
=
∂Xx

∂x
+
∂Xy

∂y
+
∂Xz

∂z
(1.70)

where ρ is the density and u is the displacement along the x-direction. Using eq. 1.69, we have

ρ
∂2u

∂t2
= C11

∂εxx
∂x

+ C12
∂εyy
∂x

+ C13
∂εzz
∂x

+ C66
∂εxy
∂y

+ C44
∂εzx
∂z

= C11
∂2u

∂x2
+ C12

∂2v

∂x∂y
+ C13

∂2w

∂x∂z
+ C66

(
∂2u

∂y2
+

∂2w

∂x∂y

)
+ C44

(
∂2u

∂z2
+

∂2w

∂z∂x

)
= C11

∂2u

∂x2
+ C66

∂2u

∂y2
+ C44

∂2u

∂z2
+ (C12 + C66)

∂2v

∂x∂y
+ (C13 + C44)

∂2w

∂x∂z
(1.71)

Similar equations of motion can be written for displacement v along the y direction

ρ
∂2v

∂t2
=

∂Yx
∂x

+
∂Yy
∂y

+
∂Yz
∂z

= C66
∂exy
∂x

+
∂(C12exx + C11eyy + C13ezz)

∂y
+ C44

∂eyz
∂z

= C66
∂(εyx + εxy)

∂x
+
∂(C12exx + C11eyy + C13ezz)

∂y
+ C44

∂(εzy + εyz)

∂z

= C66

(
∂2u

∂y∂x
+
∂2v

∂x2

)
+ C12

∂u2

∂x∂y
+ C11

∂v2

∂y2
+ C13

∂w2

∂y∂z
+ C44

∂2v

∂z2
+ C44

∂2w

∂z∂y

= C66
∂2v

∂x2
+ C11

∂v2

∂y2
+ C44

∂2v

∂z2
+ (C12 + C66)

∂2u

∂x∂y
+ (C13 + C44)

∂2w

∂z∂y
(1.72)

and displacement w along the z direction, respectively.

ρ
∂2w

∂t2
=

∂Zx
∂x

+
∂Zy
∂y

+
∂Zz
∂z

= C44
∂ezx
∂x

+ C44
∂eyz
∂y

+
∂(C13exx + C13eyy + C33ezz)

∂z

= C44
∂(εzx + εxz)

∂x
+ C44

∂(εzy + εyz)

∂y
+
∂(C13εxx + C13εyy + C33εzz)

∂z

= C44
∂(εzx + εxz)

∂x
+ C44

∂(εzy + εyz)

∂y
+
∂(C13

∂u
∂x + C13

∂v
∂y + C33

∂w
∂z )

∂z

= C44
∂(∂u∂z + ∂w

∂x )

∂x
+ C44

∂(∂v∂z + ∂w
∂y )

∂y
+
∂(C13

∂u
∂x + C13

∂v
∂y + C33

∂w
∂z )

∂z

= C44

(
∂2w

∂x2
+
∂w2

∂y2

)
+ C33

∂2w

∂z2
+ (C13 + C44)

(
∂2u

∂x∂z
+

∂2v

∂y∂z

)
(1.73)

Wave-equations of the form such as in eqn. 1.71, 1.72, and 1.73 can then be solved to obtain
elastic constants in terms of the wave velocities for propagation in the high symmetry directions
for longitudinal or transverse particle motion as

Ci,j = ρc2
s (1.74)

where cs is the wave velocity.
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Elastic constants in different ultrasonic modes

1. Propagation along the [100] direction

For propagation along the [100] direction, there are 3 possible ultrasonic modes, one longitudinal
and two transverse modes.

In the longitudinal mode, the particle displacement u is along the direction of the propagation,
i.e., [100] or x direction, and can be written as

u = u0 exp ι(Kx− ωt), (1.75)

where K = 2π/λ is the wavevector in the direction of the propagation, and ω is the frequency.
Therefore, the wave velocity is cs = ω/K.

Now, substituting eq. 1.75 into eq. 1.71, we get

ρω2 = C11K
2

cs =

√
C11

ρ
(1.76)

Figure 1.20: Elastic wave propagating along the [100] direction induces elastic deformations given
by (a) C11 for the longitudinal mode (b) C66 for the transverse in-plane mode and (c) C44 for
the transverse out of plane mode. For each deformation, the associated deformation/strain is also
mentioned.

In the transverse or shear mode, the particle motion is perpendicular to the direction of the
propagation. Therefore, the particle displacement can be either along the [010] or y direction or
along the [001] or z direction.

The particle displacement v along the y direction can be written as

v = v0 exp ι(Kx− ωt) (1.77)

and substituting eq. 1.77 into eq. 1.72 gives

ρω2 = C66K
2

cs =

√
C66

ρ
(1.78)
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Similarly, the particle displacement w along the z direction can be written as

w = w0 exp ι(Kx− ωt) (1.79)

and substituting eq. 1.79 into eq. 1.73 gives

ρω2 = C44K
2

cs =

√
C44

ρ
(1.80)

The results for all the 3 modes for the propagation along the [100] direction are summarized in
Fig. 1.20. It is evident that the elastic wave velocity for the longitudinal mode is a direct measure
of the C11 elastic stiffness constant (see Fig. 1.20(a)). On the other hand, the elastic wave velocity
for the transverse mode in the tetragonal basal plane gives the C66 elastic stiffness constant (Fig.
1.20(b)), while for the transverse mode out of the basal plane it gives the C44 elastic stiffness
constant(Fig. 1.20(c)). C11 corresponds to lattice expansion/contraction along the [100] direction,
whereas C44 and C66 are symmetry breaking modes and can potentially be sensitive to monoclinic
and orthorhombic/rhombohedral lattice distortions, respectively.

Since in the tetragonal crystal symmetry, the directions [100] and [010] are equivalent, the
propagation along the [010] direction gives exactly the same elastic constants as those for the
propagation along the [100] direction.

2. Propagation along the [110] direction

Similar to the [100] direction, in case of the propagation along the [110] direction, there are also 3
possible ultrasonic modes, one longitudinal and two transverse modes.

For the particle motion in the tetragonal basal plane, the particle displacements in the direction
of propagation, i.e., [110], can be written as a linear combination of propagations along [100] and
[010]. Therefore, the two components of the particle displacement are

u = u0 exp[ι(Kxx+Kyy − ωt)]
v = v0 exp[ι(Kxx+Kyy − ωt)] (1.81)

Now, substituting eq. 1.81 into eq. 1.71 and eq. 1.72 gives

−ρω2u = −C11K
2
xu− C66K

2
yu− (C12 + C66)KxKyv

−ρω2v = −C66K
2
xv − C11K

2
yv − (C12 + C66)KxKyu (1.82)

The set of equations 1.82 can be solved simultaneously by equating the determinant to zero.
Using Kx = Ky = K/

√
2, we have∣∣∣∣∣ρω2 − (C11+C66)K2

2 − (C12+C66)K2

2

− (C12+C66)K2

2 ρω2 − (C11+C66)K2

2

∣∣∣∣∣ = 0 (1.83)

(
ρω2 − (C11 + C66)K2

2

)2

−
(

(C11 + C66)K2

2

)2

= 0 (1.84)

[(
ρω2 − (C11 + C66)K2

2
− (C11 + C66)K2

2

)][(
ρω2 − (C11 + C66)K2

2
+

(C11 + C66)K2

2

)]
= 0

(1.85)
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Therefore, we get two solutions for the wave velocity. Either

ρω2 =
1

2
(C11 + C12 + 2C66)K2 (1.86)

cs =

√
1

2ρ
(C11 + C12 + 2C66) (1.87)

which is the case for the longitudinal mode, i.e., the particle motion along [110] or

ρω2 =
1

2
(C11 − C12)K2

cs =

√
1

2ρ
(C11 − C12) (1.88)

which is the case for the transverse mode in the tetragonal basal plane, i.e, the particle motion
along [11̄0].

Figure 1.21: Elastic wave propagating along the [110] direction induces elastic deformations given
by (a) (C11 +C12 + 2C66)/2 for the longitudinal mode (b) (C11−C12)/2 for the transverse in-plane
mode and (c) C44 for the transverse out of plane mode. For each deformation, the associated
deformation/strain is also mentioned.

For the out of plane transverse mode, i.e., for the particle motion w along the [001] direction,
we have

w = w0 exp[ι(Kxx+Kyy − ωt)] (1.89)

Substituting eq. 1.89 into eq. 1.73, we get

ρω2 = C44(K2
x +K2

y )

cs =

√
C44

ρ
(1.90)

The results for all the 3 modes for the propagation along the [110] direction are summarized
in Fig. 1.21. The elastic wave velocity in the longitudinal mode gives a combination of the elastic
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constants C11, C12, C66. On the other hand, the elastic wave velocity for the transverse mode in the
tetragonal basal plane gives the combination (C11−C12)/2 (Fig. 1.21(b)), while for the transverse
mode out of the basal plane it gives the elastic stiffness constant C44 (Fig. 1.21(c)).

3. Propagation along the [001] direction

For the elastic wave propagating along the [001] or z-direction, there are two possible modes, one
longitudinal and one transverse mode.

The transverse mode is equivalent to the out of plane transverse mode for the propagation along
[100] and [110] directions, and, therefore, the velocity gives the elastic constant C44.

In the longitudinal mode, the particle motion is along the [001] or z direction, and is given as

w = w0 expι(Kz−ωt) (1.91)

Now, substituting eq. 1.91 into 1.73

ρω2 = C33K
2

cs =

√
C33

ρ
(1.92)

Figure 1.22: Longitudinal elastic wave propagating along the [001] direction induces an elastic
deformation given by C33. The associated deformation/strain is εzz.

Therefore, the velocity of the longitudinal elastic wave propagating in the [001] direction directly
gives the elastic stiffness constant C33, and the corresponding deformation is shown in Fig. 1.22.

Finally, the effective elastic stiffness constants corresponding to different ultrasonic modes for
a tetragonal lattice can be summarized in the Table 1.1.

These elastic constants obtained from different elastic modes can help in determining the sym-
metry of the order parameter of a transition which is a vital information in understanding its
origin.
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Elastic Stiffness Constants Table

Ultrasonic Mode Propagation
Direction (~k)

Polarization
Direction (~u)

Effective Elastic Stiff-
ness Constant

Longitudinal [100] [100] C11

Transverse [100] [010] C66

Transverse [100] [001] C44

Longitudinal [110] [110] (C11+C12+2C66)/2
Transverse [110] [1-10] (C11-C12)/2
Transverse [110] [001] C44

Longitudinal [001] [001] C33

Table 1.1: Effective elastic stiffness constants obtained for different ultrasonic modes in a tetragonal
lattice. The first column mentions the longitudinal transverse nature of the ultrasonic mode. The
second and third columns depicts the directions of propagation and polarization, receptively. The
corresponding elastic constant are listed in the fourth column.

1.3.4 Magnetization

Similar to heat capacity and elastic constants, magnetization is also a thermodynamic response of
a system and can be defined as the derivative of the free energy (F ) with respect to magnetic field
at constant temperature, volume and chemical potential

M =

(
dF

dB

)
T,V,N

. (1.93)

Magnetization gives a measure of the magnetic moment of a bulk system and, therefore, is an ex-
tremely useful probe to detect changes in the magnetic structure. In several Kondo lattice systems,
a sharp change in magnetization occurs at a first-order field-induced metamagnetic transition and,
therefore, magnetization can act as the ultimate probe to distinguish it from other thermodynamic
phase transitions which is an extremely important information in pursuit of identifying the nature
and origin of unknown phase transitions.

1.3.5 Resistivity

Resistivity of metallic systems has long been regarded as an impeccable probe in experimental
physics. In metals, resistivity scales as T 2 at low temperatures due to the electron-electron scat-
tering

ρ = ρ0 +AT 2 (1.94)

In Kondo lattice system, it gives a direct indication of heavy Fermi liquid state through an enhanced
A coefficient which is related to the Sommerfeld coefficient as A ∝ γ2. Further, Kondo coherence
appears as a maximum in resistivity. In the vicinity of a QCP, non-Fermi liquid behavior can be
detected as deviations from the T 2 scaling, as well as a superconducting state as zero resistivity.
Also, electronic phase transitions can be detected as sharp anomalies in resistivity as a function of
magnetic field (magnetoresistance) and temperature. Moreover, quantum oscillations can also be
detected in resistivity (known as Shubnikov-de Haas effect) to perform Fermi surface studies.
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Chapter 2

Experimental Techniques

During the course of this thesis, various sensitive and high-resolution experimental techniques
were used to investigate different aspects of heavy-fermion systems discussed in Chapter 1. All
the measurements were performed at the two high-field facilities of the European Magnetic Field
Laboratory (EMFL), namely, the LNCMI-G in Grenoble, France and the HLD-HZDR in Dresden,
Germany. Also, a part of this thesis was dedicated to growing high-quality single crytals of heavy
fermions at the IMR, Tohoku university, Japan. Therefore, a separate section will be devoted to
self-flux growing technique in a later chapter.

2.1 dHvA effect using torque method

The magnetic torque method is widely used for measuring de Haas-van Alphen effect. As the name
suggests, this method is based on measuring the magnetic torque that a material experiences in
magnetic fields.

A sample placed in a homogeneous magnetic field experiences a magnetic torque ~τ due to the
interaction of its bulk magnetic moment ~MV with the external magnetic field ~B. As a consequence,
quantum oscillations in magnetization (the dHvA effect) are directly reflected in magnetic torque.

~τ = ~MV × ~B

| ~τ | = M⊥V B (2.1)

If the external magnetic field is inhomogeneous, the sample also experiences a force ~F = −∇( ~M. ~B)
given by the gradient of the potential energy associated with magnetic moment. Therefore, to keep
the force negligibly small, the sample should be very small and must be placed at the field center.

In a conventional torque method in static fields, a non-magnetic cantilever made of copper
Beryllium (CuBe) is used as sample holder. The sample is glued on top of it, as shown in Fig. 2.1.
The cantilever also acts as the upper plate of a capacitor with its bottom plate attached to the
sample holder platform. In applied magnetic fields, the cantilever bends due to the torque on the
sample, thereby changing capacitance between the two plates. For a small bending, the variation
of the capacitance is proportional to the torque, while for large bending, a non-linear correction
has to be applied to calculate the torque as follows

At zero field, the capacitance between the cantilever and the ground plate separated by d0 is

C0 =
εA

d0
(2.2)

where A is the area of the cantilever and ε is permittivity. In a magnetic field, if the cantilever
bends by ∆d due to the torque, then the capacitance is given by

C =
εA

d0 + ∆d
(2.3)
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Figure 2.1: A setup for the torque method. A sample (black slab) is glued on top of a metallic
cantilever (yellow), which is bent towards the ground plate due to a magnetic torque on the sample
in applied magnetic fields.

The change in capacitance ∆C is

∆C = C − C0 =
εA

d0 + ∆d
− εA

d0

= C0

(
− ∆d

d0 + ∆d

)
(2.4)

The direction of bending depends on the direction of the torque, as shown in Fig. 2.2. At
zero field, the cantilever is at equilibrium position [Fig. 2.2(a)]. If the torque is out of the plane,
then the cantilever bends away from the ground plate, i.e., ∆d is positive [Fig. 2.2(a)], while for
torque into the plane the cantilever bends towards the ground plate, i.e., ∆d is negative. Therefore,
depending on the direction of bending, the change in capacitance is different for the same amount
of bending ∆d.

Figure 2.2: Cantilever is (a) in equilibrium position at zero magnetic field, (b) bent away from
the ground plate due to an out-of-plane torque, (c) bent towards the ground plate due to an
into-the-plane torque.

∣∣∣∣ ∆d

d−∆d

∣∣∣∣ > ∣∣∣∣ ∆d

d+ ∆d

∣∣∣∣ . (2.5)
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∆C is larger when the cantilever bends towards the ground plate and, hence, the measurement is
more sensitive in this case [Fig. 2.2(c)].

The magnetic torque can be calculated by measuring ∆C as

∆C = C0

(
τ

d+ τ

)
,

τ ∝
(
− ∆C/C0

1−∆C/C0

)
. (2.6)

For a small deflection of the cantilever ∆C/C0 << 1, τ ∝ ∆C.
C0 is typically ≤ 1 pF in our setup where the cantilever and ground plate are separated by

100 µm. The capacitance is measured using a precision capacitance bridge. For this purpose,
either a single standalone instrument, like the high precision capacitance bridge from Andeen-
Hagerling, can be used, or a precision capacitance bridge (Wein bridge) driven by an independent
oscillator (an ultra-low distortion function generator) can be used. In the latter case, the output
signal from the capacitance bridge is read using a lock-in amplifier. A high sensitivity, typically
∼ 10−5 pF, was achieved using a precision capacitance bridge.

In pulsed magnetic field, the torque method is slightly altered. Due to the extremely small dura-
tion of pulses (typically ≤ 150 ms), the torque is measured using commercially available piezoresis-
tive microcantilevers with large eigenfrequency suitable for such transient measurements. A sample
is mounted at the end of the piezoresistive cantilever. The torque on the sample is detected as a
change in the resistance. Even small change is resistance is precisely detected using a wheatstone
bridge whose output voltage is first amplified using a preamplifier and then recorded by a transient
recorder [59]. Metallic cantilevers are not suitable in pulsed fields due to the eddy current heating.

For a material with an isotropic Fermi surface, the magnetization direction is always along the
applied field, i.e., M ‖ H and therefore, ~τ = 0, rendering the torque method unsuitable. For
materials with anisotropic Fermi surfaces, the magnetization has a component orthogonal to the
magnetic field ( ~M⊥). The component of this torque about any particular axis perpendicular to H
is

~τ = − 1

F

∂F

∂θ
M‖BV (2.7)

Here F is the dHvA frequency, θ is an angle specifying the direction of field in the plane
normal to the chosen axis and M‖ is the parallel component of M containing the oscillatory part
of magnetization Mosc given by Lifshitz-Kosevich formula. The torque, therefore, contains an
oscillatory part as well.

Another disadvantage of the torque method is that the torque vanishes for fields along crys-
tallographic symmetry axes as ∂F/∂θ = 0. But this fact is used as an advantage for very precise
alignment of the sample with the field as shown in Fig. 2.3. Upon approaching angles closer to the
symmetry axis [001], the torque becomes smaller and vanishes for field precisely along [001].

Data analysis

Depending on the magnetic anisotropy the overall torque signal can contain a predominant non-
oscillatory contribution that has to be subtracted to obtain raw dHvA oscillations.

In an anisotropic material, the magnetic response also occurs in a direction other than that of
the applied field and, therefore, magnetization is given as

~M = χ̄ ~B, (2.8)

where χ̄ is the magnetic susceptibility tensor, which has an isotropic contribution χi and an
anisotropic contribution χa. For example, in materials with a tetragonal crystal structure, the
susceptibility tensor can be written as

χ̄ =

χi 0 0
0 χi 0
0 0 χi + χa

 (2.9)
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Figure 2.3: Alignment of the symmetry axis of the sample along the field direction in toque method.
The picture in the inset shows a sample mounted on a metallic cantilever.

For a magnetic field applied out of the tetragonal basal plane, at an angle θ from the c axis,
the magnetization ~M can be written as

~M =

χi 0 0
0 χi 0
0 0 χi + χa

 0
−B sin θ
B cos θ

 =

 0
−χiB sin θ

(χi + χa)B cos θ

 (2.10)

Using eq. 2.1 the torque ~τ will be

~τ =

 0
−χiB sin θ

(χi + χa)B cos θ

×
 0
−B sin θ
B cos θ

 =

χa (B)2 cos θ sin θ
0
0

 (2.11)

Therefore, the magnetic torque is non-zero only in magnetically anisotropic material, and is pro-
portional to B2

| ~τ |= V χaB
2 cos θ sin θ (2.12)

The non-oscillatory background torque can be orders of magnitude higher than the oscillatory
part of the torque in materials with strong magnetic anisotropy such as in some heavy fermions.
This background torque needs to be subtracted from the overall torque signal with an appropriate
polynomial fit. Moreover, in certain cases, the overall torque signal might contain special features,
like a metamagnetic transition and therefore, will require unique consideration rather than just a
simple polynomial background subtraction. In case the dHvA oscillations comprise of low dHvA
frequencies, the background must be subtracted in such a way that the low dHvA frequencies are
not affected.

After subtracting the non-oscillatory background, the remaining oscillatory torque signal is
analyzed to extract the dHvA frequencies and their amplitudes. This can be done by performing a
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Fourier transform on the signal that converts a signal in time domain to its counterpart in frequency
domain, i.e., f(t)→ F (k).

F (k) =

∫ ∞
−∞

f(t)e−2πιkt (2.13)

Since our torque signal is not a continuous but a discrete data set, instead of Fourier transform,
we compute the discrete Fourier transform (DFT) defined for a sequence xn of length N as

F (k) =

N−1∑
n=0

xne
−( 2πι

N
kn) (2.14)

where k = 0, .....N − 1.
The DFT is performed by using a shrewd mathematical algorithm known as the Fast Fourier

transform (FFT) [60]. Generally, DFT is performed on data collected at equal interval ∆t so that
the indexes can be easily converted into time t = n∆t, and frequency as

f(k) =
k

N∆t
. (2.15)

The frequency resolution is then given by

∆f = f(k)− f(k − 1) =
1

N∆t
(2.16)

The maximum frequency, or the folding frequency is

fmax =
fk
2

=
N

2
∆f =

1

2∆t
(2.17)

As explained in the previous chapter, quantum oscillation are periodic in 1
B , therefore we

perform FFT on the oscillatory torque as a function of inverse magnetic field, i.e., τ̃ vs 1
B . The

first step is to interpolate the τ̃ vs 1
B data set to convert the data into equally spaced intervals in 1

B
for DFT. For a magnetic field range from Bmin to Bmax and Nint interpolation points, in analogy
to ∆t, the interval between two data points here is

∆

(
1

B

)
=

1

Nint − 1

(
1

Bmin
− 1

Bmax

)
=

1

Nint − 1

Bmax −Bmin
BmaxBmin

(2.18)

The frequency resolution is then given by

∆F =
Nint − 1

Nint

Bmax −Bmin
BmaxBmin

(2.19)

and the maximum frequency is

Fmax =
Nint − 1

2

Bmax −Bmin
BmaxBmin

(2.20)

Therefore, the maximum dHvA frequency depends only on the inverse field interval determined
by selected field range and the number of interpolation points. On the other hand, the frequency
resolution depends on the total number of points, and can be improved by padding the interpolated
data with zeros up to a total number of points Ntot. The improved frequency resolutions will then
be

∆F =
Nint − 1

Ntot

Bmax −Bmin
BmaxBmin

(2.21)

Finally, to reduce the FFT spectral leakage, a correction window function is applied to the
original data. For this purpose, a cosine sum window known as the Hamming window, was used,
mathematically defined as

w[n] =

K∑
k=0

(−1)kakcos

(
2πkn

N

)
, where 0 ≤ n ≤ N (2.22)

While data analysis softwares like Origin, have in-built functions to perform FFT analysis, I
used a dedicated MATLAB code written by Johannes Klotz.
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2.2 Heat capacity techniques

Experimentally, heat capacity is obtained by measuring the thermal response of a sample to supplied
heat. The idea is to thermally isolate the sample from the environment and connect it to the
thermal-bath only via one known thermally conducting channel, i.e., a weak thermal link of thermal
conductance κ, as shown in the schematic figure 2.4.

Figure 2.4: Schematic of a basic setup for measuring specific heat. Sample is placed on a platform
with a heater and a thermometer. The whole assembly is weakly coupled to the thermal bath.

The specific heat, C, can then be determined by measuring the relaxation time, τ , for the
sample to exponentially relax to the thermal bath as

T = Tbath +A exp(−κt
C

)

C ∝ κτ (2.23)

where T is the sample temperature and Tbath is the bath temperature.
To perform such a measurement, we need a heater to supply the heat directly to the sample, a

thermometer to measure the sample temperature in real time, and another thermometer to be used
as a reference thermometer for the thermal bath. The thermometer requirements are meticulously
met by using a commercially available Cernox (ceramic silicon oxynitride) chip [61, 62] generally
used as a highly sensitive low-temperature thermometer. The Cernox chip is composed of a thin
sensing film (of conducting ZrN and non-conducting ZrO) with negative temperature coefficient
deposited on a shappire substrate.

During this work, two different experimental techniques were used to measure specific heat.
The thermal-relaxation technique was used at constant magnetic fields while sweeping temperature
and the AC-calorimetric technique was used at a constant temperature while sweeping magnetic
field.

2.2.1 Thermal relaxation

In the thermal relaxation method, a single bare Cernox chip (CX-1030), such as shown in Fig.
2.5(a), was used as both the sample heater and the thermometer and the platform. The sample
is glued on the back side of the chip [Fig. 2.5(b)]. The chip is connected to the thermal bath
via a weak thermal link provided by four thin phosphor bronze wires [see Fig. 2.5(c)]. The wires
also provide a mechanical support to the chip, and are used as current leads. The Cernox chip
is simultaneously used as both the sample heater and the thermometer to measure the sample
temperature in real time.

Calibration of the Cernox chip : The resistance of the Cernox chip, RC , is calibrated in-situ
against the reference thermometer of the thermal bath. To this end, small currents of a few µAs
are supplied to the Cernox chip and the signal is read using a DC multimeter, at a constant bath
temperature, Tbath. The chip resistance at Tbath = 2.5 K for a few different supplied powers P is
shown in Fig. 2.6(a). A linear extrapolation of RC at small excitations gives the intercept, i.e,
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Figure 2.5: Setup to measure specific heat using thermal-relaxation technique, (a) bare Cernox
chip, (b) sample glued on the back side of the Cernox chip shown in (a), (c) Cernox chip connected
to the thermal bath with four wires.

the chip resistance RC0 at zero power. For P = 0, the chip and sample temperature is the same
as the thermal-bath temperature, i.e., T = Tbath. Therefore, the chip resistance, RC , at a given
temperature can be obtained using the reference thermometer of the thermal-bath.

A similar process is repeated at several different bath temperatures to obtain corresponding
RC0’s. Once RC0’s are known at a few different temperatures, we fit lnRC0 vs lnT with an
appropriate polynomials fit such as one defined in eq. 2.24

lnT = ΣanX
n (2.24)

In this equation, X ∈ [−1, 1] is a normalized variable deduced for each lnRC0 using their averaged
value < lnRC0 > at different bath temperatures and the standard deviation σ and is defined as
X = (lnRC0− < lnRC0 >)/σ. This polynomial fit to lnRC0 vs lnT is basically the calibration
curve for the Cernox chip as shown in Fig. 2.6(b).

The thermal conductance of the weak thermal link is also calibrated in-situ using the chip
calibration. In this regard, a pair of points is used from among the last three points (say, (Pn, Rn),
(Pn−1, Rn−1), (Pn−2, Rn−1)) at high excitation power to obtain κ at a particular Tbath as

κ =
∆P

∆T
(2.25)

Fig. 2.6(c) shows κ/T as a function of temperature. It is more or less constant and only weakly
temperature-dependent, implying that, in a first order approximation κ is linear in temperature.
From the calibration, we obtain κ/T ' 4× 10−7 W/K2 for the 50 µm and κ/T ' 1× 10−7 W/K2

for the 25 µm thick phosphor bronze wires of the calorimeter. Also, κ is essentially independent
of the magnetic field, as was verified from measurement in magnetic fields (see. Fig. 2.6(d)). The
bath thermometer used is field calibrated.

Relaxation: Thermal-relaxation is performed independent of the calibration. Initially, without
any applied excitation to the chip the sample is in equilibrium with the thermal bath, i.e., T = Tbath.

Then a constant heating current I1 is continuously supplied to the system. The sample heats
up and undergoes ‘up-relaxation’, i.e., an exponential decrease of the chip voltage (and RC as well),
and saturates at a higher temperature that is 2×Tbath. The heating current is then decreased to
a smaller I2, and, therefore, the sample undergoes ‘down-relaxation’, i.e., an exponential increase
of the chip resistance to another saturation value as shown in Fig. 2.7. The specific heat can be
calculated from either the ‘up’ or ‘down’ relaxation as following

For a power P = I2R supplied to the sample, the heat equation can be written as

RCI
2dt = [C + Caddenda]dT +

∫ T

Tb

κ(T ′) dT ′ dt. (2.26)
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Figure 2.6: In situ calibration of Cernox chip. (a) chip resistances at a few different excitation
power. (b) calibration curve obtained for the Cernox chip (c) thermal conductance of phosphor
bronze wire at different bath temperature calculated using the chip calibration.

Here C is the specific heat of the sample and Caddenda is the additional contribution to the total
heat capacity of the system from the addenda comprising of the Cernox chip, the Apiezon grease,
and the wires.

The chip resistance corresponding to the saturated temperature T∞ is R∞. Also, at saturation,
dT = 0. Therefore, eq. 2.26 becomes

R∞I
2dt = 0 +

∫ T∞

Tb

κ(T ′)dT ′ dt. (2.27)

Subtracting eq. 2.27 from eq. 2.26, we get

(RC −R∞) = [C + Caddenda]dT +

∫ T∞

T
κdT ′ dt,

C + Caddenda =
(RC −R∞)I2 +

∫ T
T∞

κ(T ′)dT ′

dT/dt
. (2.28)

From the above equation, it is evident that specific heat of the system can be determined if we
know the sample temperature, the thermal conductance κ in the relevant temperature range, and
the chip resistance RC and R∞.

This technique provides an accuracy of 1%. Also, its sensitivity of 10−3 is ideal to detect even
very small changes in specific heat. Further details of this technique are given elsewhere [63].

The addenda contribution to the specific heat must be subtracted from the total specific heat
of the system in order to obtain the absolute specific heat of the sample. To this end, the addenda,
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i.e., the heat capacity of the system without sample, is first measured as a function of temperature
in zero field. The addenda is later subtracted from all the curves obtained with a mounted sample.
The addenda contribution to heat capacity is independent of magnetic fields. A typical addenda
contribution to the total specific heat is shown in Fig. 2.8

2.2.2 AC calorimetry

The AC calorimetric method is highly useful in detecting very small changes in the specific heat
as a function of an external parameter such as magnetic field. For example, a weakly first-order
field-induced transition not apparent in the thermal-relaxation specific heat method, can be de-
tected distinctly by the AC calorimetric technique. In the thermal-relaxation method, a nearly
temperature-independent field-induced phase transition cannot be observed in temperature sweeps
at constant fields. Therefore, in such a situation AC calorimetry is helpful as it allows measuring
specific heat as a function of field at a constant temperature.

The AC calorimetry was first developed by Sullivan and Seidel [64] in 1968. Since then, there
have been numerous improvements of this technique.

Figure 2.9: (a) Cernox chip cut into two parts to make the heater and thermometer independent.
(b) Basic setup for AC calorimetry. The heater is supplied with AC excitation and thermometer
with DC.

Unlike the thermal relaxation technique, in the AC calorimetry, the heater and the thermometer
are separated, as shown in Fig. 2.9(a). The heater part of the Cernox chip of the resistance RH
is excited by a small AC current IHcos(ωHt) of a few µA at an appropriate excitation frequency
(ωH = 2πf), chosen according to a particular system characteristics. A schematic diagram of an AC
calorimeter is shown in Fig. 2.9(b). The sample temperature is measured using the thermometer
part of the chip excited by a small DC current of a few µA. The AC power I2

HRHcos
2(ωHt)

generated by the heater has two effects. First, it increases the sample temperature above the
thermal bath temperature Tbath. Second, it induces an oscillatory thermal response TAC with the
sample temperature T oscillating at twice the excitation frequency [64, 65] i.e ω = 2ωH [see Fig.
2.10(a)]. The resulting sample temperature is thus given by:

T = Tbath + TDC + TAC (2.29)

Here TDC is an inevitable effect arising from self-heating of the heater and the thermometer due
to supplied excitations. TDC is the excess in sample temperature T with respect to the thermal
bath temperature. It depends on the average power generated by the heater, PH = I2

HRH/2, and
the thermometer, PTh, as well as the thermal conductance κ between the system and the thermal
bath, i.e., TDC = (PTh + PH)/κ.

The heat capacity of the system, C, is obtained from the oscillatory thermal response as

TAC =
PH

κ+ ιωC

=
PHκ

κ2 + ω2C2
− ι ωCPH

κ2 + ω2C2
(2.30)
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Figure 2.10: (a) Schematic illustration of temperature oscillations Tac in the sample with an addi-
tional heating TDC above the bath temperature Tbath. (b) Variation of the amplitude of temperature
oscillations Tac with the oscillation frequency ω.

Both the real and the imaginary terms of the complex Eq. 2.30 depend on PH , κ, C, ω. However,
the phase, θ, between the two terms provides a more direct measure of the heat capacity of the
system, independent of PH as

tan θ =
Cω

κ
(2.31)

In the first-order approximation, κ is proportional to the temperature, and is independent of
the magnetic field. Therefore, at a constant excitation frequency,

tan θ ∝ C

T
(2.32)
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Figure 2.11: Specific heat obtained using AC technique at different excitation frequencies.

Selection of excitation frequency: Using eq. 2.30, the amplitude of sample temperature
oscillations can be written as

| TAC |=
PH√

κ2 + ω2C2
(2.33)
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Figure 2.12: Heater calibration (a) calibration curves at 4 different fields. (b) variation in heater
resistance with magnetic field at different bath temperatures (c) 3-D surface plot of (b)

| TAC |= PH/κ for κ� ωC. The sample is strongly coupled to the thermal bath and the sample
temperature oscillates with the maximum amplitude TAC = TDC = PH/κ. Such a configuration is
insensitive to specific heat of the system.

| TAC |= PH/ωC for κ� ωC. At very large excitation frequency, the thermal relaxation are to
slow to follow the driving heating power and therefore, TAC is very small. In this case the sample
temperature is T = Tbath + TDC . The sample temperature oscillations TAC = PH/Cω are 90◦

out-of-phase with respect to the heater power PH .

| TAC |= PH/
√

2κ for ω = κ/C. ω = κ/C is the cutoff frequency separating the above two
extremal cases.

For the technique to be most sensitive to the specific heat of the sample, we judiciously choose
an excitation frequency close to ωc (as shown in Fig. 2.10(b)) depending on the particulars of the
system under study. We try to select an excitation frequency such that not only the amplitude
of temperature oscillations TAC are big enough to determine the specific heat sensitively but are
also negligible compared to the bath temperature. In our experiments TAC ∼ 10 − 100 mK.
Experimentally, ωc = κ/C can be chosen by tuning to an excitation frequency for which the phase
is θ = 45◦. A suitable excitation frequency close to ωc can be chosen by performing measurement
with the sample at a few different excitation frequencies and look for the maximum sensitivity as
shown in Fig. 2.11.

Heater calibration: To precisely determine the sample temperature, the resistance of the Cernox
heater is calibrated with respect to the reference thermometer of the thermal bath. To take into
account the self-heating effects, i.e, TDC , the heater resistance at zero excitation, RH0, is obtained
by a linear extrapolation of the heater resistances RH at a few different small excitations. At zero
self heating, the heater temperature is the same as the bath temperature. RH0 is determined at
a few different bath temperatures to obtain calibration curve i.e., lnRH0 vs lnT as shown in Fig.
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2.12(a). The above process is then repeated to precisely calibrate the heater in magnetic fields
using the field calibrated reference thermometer of the thermal bath. We determined RH0 values
at four different magnetic fields (20 T, 25 T, 30 T and 35 T) at several different temperatures in the
range of interest, i.e., from 1.3 K to 4 K. This way, calibration curves, i.e., RH0 vs T , are obtained
at the above mentioned magnetic fields, as shown in Fig. 2.12(b) and Fig. 2.12(c).

Finally, using these calibration curves with appropriate polynomial fits, the sample temperature
in a magnetic field is precisely determined. Due to the magnetoresistance of the heater and the
thermometer, there is a very small variation, less than 1%, of the sample temperature in magnetic
fields. For the AC specific heat measurements, the sample temperature, T , indicated in the later
chapters is the value averaged over the relevant field interval.
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2.3 Elastic response using ultrasound velocity

The elastic stiffness constants are obtained by measuring the velocity of ultrasonic elastic waves
through a single crystalline sample. We measured the ultrasound velocity and elastic attenuation
using either a frequency-sensitive or a phase- sensitive detection pulse-echo technique.

The pulse-echo method

In this method, we used piezoelectric transducers to generate and detect longitudinal and transverse
acoustic waves. The measurement can be performed in either a reflection mode [see Fig. 2.13(a)],
where a single transducer, attached to a flat surface of the sample, acts as both the ultrasonic
generator and the detector, or in a transmission mode [see Fig. 2.13(b) and (c)], in which the
generator and the detector are separate, and glued at the opposite parallel faces of the sample.

Figure 2.13: Schematic setup of the pulse-echo method for ultrasound velocity and attenuation
measurement in the (a) reflection and (b) the transmission modes. (c) Actual sample-transducer
assembly in the transmission mode.

An ultrasonic pulse generated by the generator transducer propagates through the sample. A
part of the pulse is directly transmitted to the detector, while the rest is reflected back into the
sample from the boundary. Pulses reaching the detector after multiple reflections at the opposite
boundaries of the sample results in different echoes, which diminishes at each additional reflection.
The velocity and the attenuation of the ultrasound pulse are determined through these echoes re-
ceived at the detector. Each transit through the sample length (L0) gives a phase shift φ = KL0

with respect to the original pulse signal, where K = ω/cs. The phase shift in the nth echo is
1. φn = 2nKL0 : for the reflection mode
2. φn = (2n+ 1)KL0 : for the transmission mode

To measure the ultrasound velocity, a particular echo is selected (say nth echo in the transmission
mode). Then, the phase shift with respect to the reference signal is
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φn = KL0(2n+ 1)

=
ω

cs
L0(2n+ 1), (2.34)

Differentiating eq. 2.34 gives
dφn
φn

=
dω

ω
− dcs

cs
+
dL0

L0
(2.35)

Usually, the thermal expansion of the sample due to the temperature change, or the mag-
netostriction due to magnetic field can be neglected in comparison to the velocity changes, i.e.,
dL0/L0 ≈ 0

2.3.1 Frequency sensitive or phase-locked method

In the frequency sensitive detection, the phase is kept constant, i.e., dφ = 0. Therefore, the change
in frequency is directly proportional to the change of the velocity.

dω

ω
=
dcs
cs

(2.36)

The change of the velocity is measured by tracing the change of the frequency using a feedback
loop that keeps the phase constant by changing the frequency.

The attenuation α of the ultrasound pulse amplitude can be obtained from an exponential fit
of the consecutive echoes A1 at x1 and A2 at x2 with a complex parameter Kr + ια as

A1(x1) = A0e
ιKrx1−αx1

A2(x2) = A0e
ιKrx2−αx2 . (2.37)

Subtracting the above two equation, we get

α =
1

x2 − x1
ln

(
A1

A2

)
, (2.38)

or in units of db/cm

α =
20

x2 − x1
log10

(
A1

A2

)
(2.39)

Generally, we select either the 1st or the 2nd echo, and monitor its variation as a function of
temperature or magnetic field to measure the ultrasound velocity and attenuation. The relative
accuracy of this method is ∆v

v ∼ 10−6. The absolute velocity can be determined for the nth echo
in transmission mode as

v = L0
2n+ 1

t
. (2.40)

where t is the time taken between the generation of an ultrasound pulse and the detection of its nth

echo. In the CeRhIn5 samples of lengths between 1.5 - 2.5 mm, the typical values of absolute sound
velocities measured at 4.2 K were 2000-4000 m/s. For the various modes, ultrasound frequencies
were 30-200 MHz.

A schematic of the setup for the frequency-sensitive pulse-echo technique is shown in Fig. 2.14.
A voltage divider divides the signal generated by the frequency generator (RF gen.) and gives
the signal for the sample and for the reference (Hybrid). The output signal from the sample is
multiplied with a signal from the hybrid in one of the mixers, while in the other one it is multiplied
with a π/2 shifted signal also from the hybrid. The outputs from the two mixers are read using
the gated integrator (GI) or boxcar averager.
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Figure 2.14: Schematic of the setup for a frequency-sensitive pulse-echo technique by Ref. [66].

2.3.2 Phase sensitive or frequency-locked method

Due to the extremely small duration (≤150 ms) of the pulses in pulsed magnetic fields, the feedback
loop is too slow to track the frequency change as a function of the magnetic field. Therefore, an
alternate method is used to measure the ultrasound velocity and the attenuation. Instead of the
phase shift, the frequency is held constant. The change of the velocity is then directly proportional
to the change of the phase, which is determined by a comparative method numerically.

In this method, the overall signal during the pulse is divided into a fixed number of segments
(10000) depending on the repetition rate (50 kHz or 20 µs) of the ultrasonic pulse. Each recorded
segment contains a raw signal composed of echos coming from the sample. The amplitude and the
phase were obtained through data analysis of the measured raw sine wave signal coming from the
sample. For the data analysis, a phase comparator was used, between the reference signal and the
signal from the sample [see Fig. 2.15]. The phase comparator gives two outputs, an in-phase signal
I and a signal Q, phase separated from I, by π/2.

Figure 2.15: Schematic of the setup for a phase-sensitive pulse-echo technique by Ref. [66]. The
phase and amplitude are numerically calculated from the orthogonal outputs I and Q from the
phase comparator.

The phase and the amplitude can then be calculated as

tan(φn) =
Qn
In
, (2.41)

An =
√
I2
n +Q2

n (2.42)
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2.4 Longitudinal magnetization using Faraday balance

As discussed in section 1.1, the torque method for dHvA oscillations gives only a measure of the
magnetization component perpendicular to magnetic field. The magnetization component parallel
to the field, i.e., longitudinal magnetization is measured using an alternate capacitive technique
based on the Faraday balance principle [67]. In this technique, a sample of the magnetization M
is placed on a mobile CuBe platform exposed to a fixed magnetic field gradient dB/dz produced
by a ferromagnetic Nickel piece which is also used as the ground plate of the capacitor as shown in
Fig. 2.16

Figure 2.16: Faraday balance for measuring longitudinal magnetization

The mobile CuBe platform is displaced by a force ~F acting on the sample along the direction
of the field gradient

~F = − ~M
d~B

dz
(2.43)

Similar to the torque method, the sample displacement is measured as the change of the ca-
pacitance using a high precision capacitance bridge from Andeen-Hagerling. The sensitivity of this
method is 10−7 emu.

2.5 Magnetoresistance using four-point method

Magnetoresistance measurements were performed on both bulk samples as well as microstructured
devices of heavy fermion systems. The microstructured devices were fabricated at HLD/MPI
Dresden using focussed ion beam (FIB).

Magnetoresistance measurements were performed using a standard four-point resistivity method
in a dilution fridge in static fields. The measurements were performed with a very small ac excitation
current of the order of 10 − 100 µA and the output signal was amplified using pre-amplifier and
transformers and detected using a lock-in amplifier. The sensitivity of the measurement is 5mΩ.
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Chapter 3

CeRhIn5

Rare-earth-based materials are now widely recognized as an ideal playground for exploration of the
fascinating physics that develops around a quantum critical point (QCP), a second-order phase
transition at zero temperature [68, 44, 69]. In Ce-based compounds, such a QCP can be induced
by hydrostatic pressure, chemical doping, or magnetic field, where it typically separates a mag-
netically ordered from a nonmagnetic ground state. Therefore, from the experimental point of
view, Ce-based heavy-fermion materials are particularly suitable systems to investigate. Further,
in these compounds, relatively small energy scales allow the tuning of the electronic correlations by
using accessible pressures and magnetic fields leading to novel exotic states such as unconventional
superconductivity, electronic-nematicity and/or other unusual states in the vicinity of a QCP.

Among the many Ce-based heavy fermions, the so-called ‘Ce-115’ heavy fermion systems, dis-
covered only two decades back, have attracted particular attention. The observation rich physics in
form of magnetism, unconventional superconductivity, NFL behaviour, pressure and field-induced
quantum critical points among many other exotic phenomena, have established the Ce-115 family
(CeRhIn5, CeCoIn5 and CeIrIn5) as the poster child of heavy fermion physics. However, in-spite of
a vast number of studies, several aspects of these compounds still remain poorly understood. This
thesis is an attempt to understand such unresolved aspects in the two compounds, CeRhIn5 and
CeCoIn5. This particular chapter is dedicated to CeRhIn5 and the subsequent chapter is focused
on the compound CeCoIn5.

Finally, the 2D-like compounds in the Ce-115 heavy fermion family can be systematically ex-
tended to their 3D-like analogs forming the so called ‘Ce-218’ heavy fermion family. Although,
the members of the Ce-218 family are qualitatively similar to their corresponding 2D analogs in
Ce-115s family, the energy scales associated with physical properties such as Tc (for SC state), TN
(for AFM state), Tcoh (for Kondo effect) are significantly modified. Therefore, the final chapter is
dedicated to growth and characterization of Ce-218 compounds, especially Ce2CoIn8.

3.1 Introduction

Similar to all the members of Ce-115 heavy fermion family, CeRhIn5 also crystallizes into a tetrag-
onal HoCoGa5 structure (space group P4/mmm) with lattice parameter a = 4.652 Åand c = 7.542
Å. At ambient pressure and zero magnetic field, it undergoes an antiferromagnetic (AFM) transi-
tion at TN = 3.8 K. The electronic specific heat coefficient, γ ≈ 400 mJ/K2mol, makes CeRhIn5

a moderate heavy-fermion material [70, 71, 72]. In the AFM state, the electronic contribution is
γ0 ∼ 56 mJ/K2mol [73].

3.1.1 Pressure as tuning parameter

In 2000, Hegger et al. detected a pressure-induced superconducting state in CeRhIn5 at pressures
above 16.3 kbar, with a maximum transition temperature Tc ∼ 2.2 K at P = 21 kbar [70] [see Fig.
3.1]. Since then, CeRhIn5 has taken the center stage as a prototypical material to investigate heavy
fermion physics. The appearance of pressure-induced superconductivity qualitatively conformed
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with the Doniach picture and the widely accepted view that superconductivity in AFM heavy
fermions is mediated by spin fluctuations near the AFM QCP [37].

Figure 3.1: Pressure induced superconductivity in CeRhIn5. Adapted from Ref. [70]

Before CeRhIn5, the cubic heavy fermion compound CeIn3 and tetragonal CePd2Si2 also showed
pressure-induced superconducting phase near the AFM QCP but with a smooth suppression of
the AFM state [37]. However, in CeRhIn5, Hegger et al. detected an abrupt disappearance of
antiferromagnetism and appearance of superconductivity at a critical pressure Pc between 14.5 and
16.3 kbar. Therefore, the transition from AFM to SC state was attributed to be first-ordered. Also,
the initial transition temperature Tc of the pressure induced superconducting state in CeRhIn5 was
roughly 10 times that of CeIn3, which was thought to be due to its unique electronic structure.

The tetragonal CeRhIn5 is composed of planes of CeIn3 with intermediate layers of RhIn2

sandwiched in between. In an analogy with the high-temperature cuprate superconductors, the
structure can be viewed as a stack of alternating layers of conducting CeIn3 and insulating RhIn2

along the c axis [74] [see fig. 3.2(a)]. It was suggested that the quasi-two-dimensional configuration
of the CeIn3 layers is at the heart of the unusual pressure dependence of CeRhIn5.

Subsequently, a number of studies were carried out to understand the electronic and magnetic
structure of CeRhIn5. In this regard, a 115In nuclear quadrupolar resonance (NQR) study revealed
that in the AFM state, a magnetic moment µCe ∼ 0.1 - 0.2 µB is localised at cerium site with a
spiral modulation that is incommensurate with the lattice [75]. Further, based on several neutron
diffraction studies, it was established that in the AFM phase, the Ce moments are antiferromagnet-
ically aligned within the CeIn3 planes [see fig. 3.2(a), (b)] and the Ce moments spiral transversely
along the c axis with the incommensurate propagation vector Q = (0.5, 0.5, 0.297) [76]. Along this
spiral, the twist of magnetic moments is approximately 107◦ per CeIn3 layer and is apparently
related to the intervening RhIn2 layer [76] [see fig. 3.2(c)]. The quasi-2D structure of CeRhIn5

was indicated by the NQR study and later established by the anisotropic Fermi surfaces observed
in a dHvA study [77]. Several dHvA experiments unambiguously suggest that the f electrons of
CeRhIn5 are localized at ambient pressure [78, 79].

More careful studies on cleaner samples revealed that superconductivity evolves rather smoothly
and at pressures lower than 16 kbar [80]. Also, the region of coexistence of AFM and SC was found
to exist in a wider pressure range. Furthermore, a dHvA study exploring the evolution of the
Fermi surface with pressure revealed that the onset of superconductivity is accompanied by a
simultaneous build up of a heavy fermion state (i.e. enhancement of effective masses) upto 2.1
GPa, however the Fermi surface remained unchanged [81]. Taking a cue from the drastic increase
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Figure 3.2: Crystal structure of CeRhIn5. (a) alternating layers of CeIn3 and RhIn2 stacked along
the c axis. (b) unit cell of CeRhIn5 (c) transverse view from c direction showing a tilt of θ = 107◦

between Ce moments on consecutive CeIn3 layers.
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of the effective masses with pressure on the two quasi-cylindrical Fermi surfaces, H. Shishido et al.
carried forward their study to still higher pressures. In 2005, in their highly influential paper, H.
Shishido et al. reported a divergent behavior of the effective masses at 2.35 GPa accompanied by a
drastic change of the Fermi surface [82]. As the critical pressure Pc = 2.35 GPa is reached, all the
dHvA frequencies observed at P = 0 increase discontinuously signaling an abrupt Fermi surface
reconstruction as a consequence of the f electron delocalization [82] [Fig. 3.3(a)]. In addition, the
effective masses diverge at Pc [Fig. 3.3(b)]. These observations are consistent with local critical
or Kondo-breakdown type QCP. The pressure-induced QCP in CeRhIn5 is now considered to be a
textbook example of the Kondo-breakdown type QCP.

Figure 3.3: Pressure-induced QCP in CeRhIn5, adapted from Ref [82]. (a) An abrupt change of
dHvA frequencies at Pc = 2.3 GPa and (b) the corresponding divergence of the effective masses of
α2,3 and β2 orbits.

In 2006, a startling observation was made by an AC magnetic susceptibly study in the form of
coexistence of SC and AFM in CeRhIn5 at ambient pressure. Instead of being pressure-induced,
superconductivity was observed at ambient pressure with a Tc ≈ 90 mK [83]. The Tc increased
significantly above 10 kbar, exactly where TN starts decreasing rapidly [see fig. 3.4(a)]. This com-
petitive coexistence of superconductivity and antiferromagnetism attracted a lot of attention with
a combination of two different tuning parameters such as pressure-field and pressure-substitution
studies.

In parallel, studies were also directed at understanding the role of helical magnetic structure as
a factor for stabilizing the superconducting state. Up to 8.6 kbar, the magnetic structure remains
unchanged with Q = (0.5, 0.5, 0.297). At 10 kbar, however, a sudden change in the magnetic
structure occurs with Q = (0.5, 0.5, 0.396) [84], although, the magnetic transition temperature
remains the same. This change of the magnetic modulation may be the outcome of a change in
the electronic character of this material at 9 kbar where SC and AFM compete. The change of Q
in the pressure range from 8.6 to 10 kbar signifies a change in the rotation angle of the spiral spin
structure from 107◦ to 142.6◦, as shown in fig. 3.4(b).

3.1.2 Chemical pressure or substitution as tuning parameter

Several attempts have also been made to study the QCP and coexistence of SC and AFM states
by either diluting or increasing the concentration of different ions.
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Figure 3.4: Competitive coexistence of the AFM and SC state in CeRhIn5 with pressure, adapted
from Ref [83]. (b) Pressure induced change of the magnetic structure [84]

CeRh1−xCoxIn5

When Rh is substituted with Co, the incommensurate AFM order with Q = (0.5, 0.5, 0.297) of pure
CeRhIn5 is weakly suppressed for small dopings. For intermediate Co concentrations a commensu-
rate AFM with Qc = (0.5, 0.5, 0.5) and an incommensurate AFM structure with Ql = (0.5, 0.5, 0.42)
evolves that coexists with SC state [85, 86] [see Fig. 3.5(a)]. This suggests that Qc and Ql mod-
ulations are significantly enhanced in the intermediate x range, and may be connected with the
evolution of the superconductivity.

Upon substituting Rh by Co, a discontinuous change of the dHvA frequencies was observed in
CeRh1−xCoxIn5 [87]. However, the FS reconstruction does not occur at the critical concentration
xc ≈ 0.8, where the AFM order is suppressed, but deep inside the AFM state, at x ' 0.4, where the
AFM order alters its character and superconductivity emerges. Furthermore, the effective masses
do not diverge anywhere. Thus, the doping-induced QCP appears to be of the SDW type.

Figure 3.5: Temperature-concentration phase diagram for (a) CeRh1−xCoxIn5, adapted from ref.
[86] and (b) CeRh1−xIrxIn5 adapted from ref. [88, 85]. The region of coexistence contains 3 distinct
states, namely SC, AFM IC and AFM C

CeRh1−xIrxIn5

When Rh is substituted with Ir, the superconducting region was observed over a broad range of
dopings 0.3 ≤ xIr ≤ 1. Also, the region of coexistence of SC and AFM is from xIr = 0.3 to
xIr = 0.6 [89, 90]. Under pressure, the broad superconducting dome splits into two distinct SC
phases. The one coexisting with AFM state has a higher Tc [91, 92]. The region of coexistence
of SC and AFM revealed the coexistence of two distinct antiferromagnetic structures, as shown
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in Fig. 3.5(b). One of them is the incommensurate helical structure with Q = (0.5, 0.5, 0.297),
of pure CeRhIn5, while the other one is a commensurate structure with Q = (0.5, 0.5, 0.5) that
appears below TNc = 2.7 K. The appearance of the commensurate AFM order was suggested to
be responsible for superconductivity [88].

LaxCe1−xRhIn5

The substitution of a non-4f ion La in place of Ce leaves f electrons localized, but shifts the P −T
phase diagram further into the magnetic side [93, 79]. The pressure-induced superconducting
state still persists upon dilute doping of Ce with a non-magnetic (non-4f) La[93]. Upon a 10%
substitution, TN is suppressed from 3.8 K to 2.7 K with the same staggered moment of Ce = 0.38
µB [94, 93].

CeRhIn4.84Sn0.16

Similar to LaxCe1−xRhIn5, in Sn-doped CeRhIn5 i.e., CeRhIn4.84Sn0.16, the TN is suppressed from
3.8 K to 2.7 K. However, the P-T phase diagram shifts towards the Kondo state [93] similar to the
case of Rh substitution by Co or Ir.

3.1.3 Magnetic field as tuning parameter

The behavior of CeRhIn5 in magnetic field is unique. Magnetic field applied in the basal plane of
the tetragonal crystal structure induces two additional magnetic transitions [see Fig. 3.6(a) and
(b)], observed in specific heat [73], thermal expansion, and magnetostriction measurements [95].
The one at low temperatures is a first-order metamagnetic transition. It occurs at Bm ∼ 2 T at low

Figure 3.6: Magnetic field induced phase transitions in CeRhIn5 for field applied along the a axis
(left) and the corresponding phase diagram (right). Solid symbols represent first-order and open
symbols represents second-order transition. Adapted from Ref [73]

temperatures [78, 73, 95]. The transition corresponds to a change of the magnetic structure from
the ambient pressure and zero field incommensurate helicoidal phase Q = (1/2, 1/2, 0.297) [76]
to a commensurate collinear square-wave (‘up-up-down-down’ configuration) with the propagation
vector Q = (1/2, 1/2, 1/4) [96, 97, 98]. A schematic diagram of such a field-induced change of the
magnetic structure is shown in Fig. 3.7.

In the ‘up-up-down-down’-type structure, the magnetic moments still lie within the basal plane,
but are now aligned perpendicular to the applied field direction [96, 97]. When the magnetic field
is tilted away from the basal plane, this metamagnetic transition field Bm increases, and initially
follows a 1/ cos(α) dependence, where α is the angle from the basal plane towards the c axis [78]. At
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Figure 3.7: A schematic illustration of the (a) helical incommensurate magnetic structure in
CeRhIn5 at ambient pressure and zero field and (b) the commensurate collinear “up-up-down-
down” field-induced magnetic structure for B ≥ 2 T along the a axis.

larger angles α ≥ 75◦, Bm deviates from this dependence to lower values. It occurs slightly above
20 T when the field is applied at θ = 2◦ from the c axis, the lowest angle at which we observed the
corresponding anomaly.

The higher temperature transition is second order. This transition occurs in a narrow tem-
perature range. The exact magnetic structure throughout this temperature-field range is still not
clear. According to the initial report, this transition corresponds to a small change of the ordered
moment, while the propagation vector remains the same as in zero magnetic field [96]. However,
a more recent report suggests that this phase corresponds to the incommensurate elliptical he-
lix with strongly modulated magnetic moments and temperature-dependent propagation vector
Q = (1/2, 1/2, l(T )) [97].

A field-induced QCP was reported to occur at the critical magnetic field, Bc, of about 50 T along
both the c and a axes [99, 100], as shown in Fig. 3.8. The critical field of the AFM suppression is
surprisingly high considering the AFM ordering transition temperature TN = 3.8 K. Furthermore,
in a strongly anisotropic material like CeRhIn5, almost the same critical field for the two principal
crystallographic directions is also surprising. It must be noted, however, that this experiment was
performed in pulsed fields using an AC calorimetry in which the two low field-induced transitions
were not detected.

The interest in CeRhIn5 was renewed with the observation of a new feature at a magnetic field
B∗ ≈ 30 T applied along or close to the c axis. This high-field feature was observed deep within
the AFM state. It separates the high-field phase of CeRhIn5 from the well-studied low-field phase.
So far, this feature has been detected in several measurements at a field around 30 T or B∗ (from
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Figure 3.8: Magnetic field induced quantum critical point in CeRhIn5 at 50 T. Adapted from ref
[99].

now on) [99, 101, 102, 43, 103, 104, 105]. Various interpretations were put forward to explain the
nature or origin of this feature and the high-field state above it. Now I shall discuss these studies
and their interpretations one by one.

This feature was first detected as an anomaly in hall resistivity ρxy, at B∗, as shown in Fig.
3.9(b) [99]. The feature at Bm = 18 T corresponds to the 2 T metamagnetic transition from
incommensurate to commensurate structure for a field orientation of a few degrees away from the
c axis. In the same paper, dHvA measurements in high magnetic fields also revealed an unusual
physics at B∗. Although, there was no direct indication of any anomaly at B∗ in the raw torque
signal, quantum oscillations, however, revealed an emergence of new dHvA frequencies in fields
above B∗. The newly observed orbits above B∗ are α2, α1, and β1 as shown in Fig. 3.9(a).
The appearance of these new dHvA frequencies was interpreted as a field-induced Fermi-surface
reconstruction above 30 T, where the Fermi-surface changes from small to large, and the f electrons
change their character from localized to itinerant.

This implies that the field-induced QCP is of the SDW type, as shown in Fig. 3.9(c). The latter
result is very surprising given that magnetic fields are generally expected to localize 4f electrons.
Moreover, contrary to pressure- and doping-induced QCPs, the low-field dHvA frequencies do
not change at B∗, which seriously questions the validity of the FS reconstruction scenario. This
inconsistency motivated us to re-examine the FS of CeRhIn5 at high magnetic fields.

From there on, efforts were naturally made to unravel the high-field physics of CeRhIn5. In
this regard, magnetoresistance measurement have been particularly employed. CeRhIn5 is a highly
conductive metal, as evident by the in-plane and out-of-plane resisivities of a few µΩcm. There-
fore, direction-dependent resistivity measurements under high magnetic fields were carried out on
microstructured devices of CeRhIn5 fabricated using focused ion beam (FIB).

In the magnetoresistance measurements on FIB devices of CeRhIn5, Moll et al. detected a
sharp increase in the in-plane resistivity at B∗, which then gradually decreases at higher fields up
to a minimum at the critical field for AFM the suppression at Bc, while the out-of-plane resistivity
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Figure 3.9: Field induced Fermi surface reconstruction at B∗ depicting (a) an emergence of new
dHvA frequencies, (b) a sharp anomaly in the hall resistivity, (c) the T −B phase diagram of the
SDW type QCP with delocalization of the f electrons, which occurs inside the AFM phase at B∗.
Adapted from ref. [99].

remained featureless, as shown in Fig. 3.10(a). The feature at B∗ showed a huge hysteresis
associated with a reminiscent or memory-dependent state generally seen for a first-order transition.
Further, a non-linear electrical transport revealed increasing conductivity with current bias. Based
on these observations, the feature at B∗ was interpreted as a first-order transition into a density
wave (DW) state [101].

The magnetic field, at which the feature occurs, has a relatively weak dependence on the angle
θ of the field from the c axis. The feature was observed at 27 T for θ ∼ 0◦, and it exists up to
θ ∼ 60◦ at 34 T. However, the size of the step showed a non-monotonous angular dependence with
a maximum at 20◦ [fig. 3.10(b)]. The suggested T − B phase diagram depicting the field-induced
density wave state is shown in Fig. 3.10(c). It must be noted that the size of the hysteresis was
found to be sample dependent, and it decreases for larger sample. The FIB fabricated samples
are strained, especially the thinner ones, as they are glued onto a substrate. Therefore, the effect
of strain on the observed magnetoresistance feature at 30 T in FIB fabricated CeRhIn5 samples
cannot be ruled out.

The question of hysteresis was carefully considered by Ronning et al. in a more recent magne-
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Figure 3.10: Magnetoresistance in FIB fabricated microstructures of CeRhIn5, adapted from Ref.
[101]. (a) The anomaly in the in-plane resistivity with a huge hystersis. (b) Angle dependence of
the size and the position of the anomaly. (c) Suggested T − B phase diagram with high field DW
state.

toresistance study on FIB fabricated devices of special geometry[43]. One FIB fabricated device
probed the resistivity in the basal plane along the two orthogonal directions [110] and [11̄0], and
a second FIB device proved the resistivity along the symmetry-inequivalent orthogonal directions
[100] and [010]. The magnetoresistance of each device showed a resistive anomaly for fields at ∼ 20◦

from the c axis around B∗ ∼ 28 T, signaling the entry into the high-field phase. At the same time,
a substantial asymmetry between the two orthogonal in-plane resistance bars emerged (red, blue
traces in Fig. 3.11(a)).

Figure 3.11: (a) In-plane electronic anisotropy in CeRhIn5 at field applied at 20◦ from the c axis
for two FIB devices probing the orthogonal symmetry inequivalent channels [110], [11̄0] and [100],
[010]. Adapted from Ref.[43]. (b) Temperature dependence of the magnetoresistance anomaly at
B∗.

The most striking observation was the appearance of a strong in-plane resistivity anisotropy
(ρ‖/ρ⊥) in this high-field phase beyond B∗. The in-plane anisotropy at B∗ was observed to be the
most pronounced for θ = 20◦. The anisotropy successively decreases at higher fields and becomes
isotropic at the AFM phase boundary in accordance with the previous report [101] [see Fig. 3.11(a)
and (b)].

The presence or absence of a hysteresis was studied by the gradual closing of resistivity anisotropy
in the current channels along [110] and [11̄0] directions with the orientation of magnetic field θ from
the c axis at B = 35 T. At θ = 20◦ the anisotropy is maximum, and it decreases to zero on ap-
proaching θ = 0◦. The up and down angle sweeps are identical indicating no hysteresis [see Fig.
3.12]. The vanishing of the hysteresis at B ‖ c was then argued as incompatible with density
waves. Furthermore, the non-linear conductivity was found to decrease with increasing electric
bias contrary to the report by Moll et al.

Therefore, based on these new observations, Ronning et al. suggested an alternate interpretation
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Figure 3.12: The high-field in-plane electronic anisotropy as a function of the angles θ from the
c toward the a axis. Arrows indicate the direction of rotation of sample in field. Adapted from
Ref.[43].

of the high-field state. They attributed the in-plane resistivity anisotropy at B∗ ≈ 30 T to the
in-plane symmetry breaking of the underlying electronic structure from C4 to C2. The feature
at B∗ corresponds to a transition into a state of lower symmetry similar to an electronic-nematic
phase [43, 103]. The electronic-nematic phase interpretation is based on the necessity of a finite
in-plane field component to give rise to the anisotropy through the directional alignment of the
nematic domains.

The electronic-nematic state due to the in-plane symmetry breaking is accompanied by a small
lattice distortion ∆L

L ≤ 2 × 10−6 for a magnetic field applied at θ = 11◦ from the c axis [43].
Later on, a high-resolution dilatometry study was performed to carefully understand the response
of the lattice to this new phase at B∗ [103]. They observed no hysteresis and a broad transition
and therefore, suggested it to be a crossover rather than a real thermodynamic transition. This
was a plausible scenario as thermodynamic probes, such as magnetic torque, specific heat, and
magnetization, also failed to detect a direct anomaly of the new phase at B∗. A small expansion
in the a-axis magnetostriction was observed [see Fig. 3.13] that was explained as breaking of the
in-plane tetragonal symmetry C4 due to a finite in-plane field component. The broken C4 symmetry
of the underlying lattice marks the onset of the nematic order. The in-plane lattice expansion was
interpreted as an enhanced hybridization between Ce 4f and the in-plane In (i.e. In(1)) conduction
electrons at fields above B∗. This interpretation is in accordance with the field-induced itineracy
of the f electrons and the robust Kondo coupling in high fields, previously suggested [99].

Recently, a high-field NMR study was carried out to better understand the microscopic origin
of the high-field phase by measuring the 115In NMR spectra at the two inequivalent indium sites,
namely, In(1) and In(2) [104]. The main finding of this study was based on the simulation of
the experimental NMR spectra over the whole field range, below and above B∗, with the same
low-field nuclear quadrupolar parameters except for decreased formal In(1) and In(2) Knight shifts
∆K at fields above B∗ = 31 T. A detectable local structural distortion or a significant change of
the magnetic structure at B∗, was therefore, ruled out. The decrease of the formal In(1) and In(2)
Knight shifts above B∗ was interpreted as a decrease of the internal fields at these sites and thus
a decrease of the bulk magnetization. Therefore, in absence of change of the magnetic structure,
the decrease in ∆K was interpreted as a decrease of the ordered moment µCe and therefore, a
decrease of the hyperfine, coupling which can be explained by an increased Kondo screening due
to the hybridization of the f and conduction electron.

Independent of the simulation of the experimental NMR data and its interpretation, based on
the observation of a characteristic ‘double horn’ spectral distribution pattern, it was concluded
that the magnetic structure above B∗ is incommensurate with a similar, if not identical Q =
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Figure 3.13: Magnetostriction along the (a) c axis and (b) a axis in CeRhIn5 for a field applied at
θ = 17◦ from the c axis. Adapted from ref [103]

(0.5, 0.5, 0.297).
Lastly, recent high-field ultrasound velocity measurement revealed a sharp anomaly in the trans-

verse elastic constant CT = C11−C12
2 at B∗ [105]. It was interpreted in terms of crystal symmetry

breaking resulting into quadrupolar ordering. This work conform with the so far accepted picture
of the enhanced c-f hybridization and the Fermi surface reconstruction.

In spite of the various interpretations discussed above, the exact origin and nature of this
new phase is still under debate. It is still unclear whether the anomaly corresponds to a real
thermodynamic phase transition or a crossover. Therefore, the high-field phase in CeRhIn5 calls
for further more careful studies.

In this chapter of my thesis, we challenge some of the above discussed interpretations based on
our recent high-field results in CeRhIn5. Based on our specific heat measurements, we will settle
the debate of anomaly at B∗ being a real transition rather than a crossover. Most important, we
will challenge the idea of the field-induced Fermi-surface reconstruction and the SDW-type QCP by
showing a continuous localization of the f electrons up to 70 T. Our results effectively negate the so
far accepted picture of the field-enhanced c− f hybridization or Kondo coupling and field-induced
itinerancy of the f electrons. Moreover, we will show that the story of the magic angle of 20◦,
where the electronic anisotropy was observed to be strongest, is not compatible with bulk single
crystalline samples. Our ultrasound velocity results will show that decreasing the in-plane field
component increases the size of the feature at B∗, which goes against the now accepted picture of
the electronic-nematic phase, in which a finite in-plane field component align the nematic domains
along a certain direction with the maximum of nematic susceptibility at θ = 20◦. We will show
that the high-field phase is not an absolute in-plane phenomenon, but poses a 3-D characteristics.
Based on our results, we will put forward a new, more evolved, yet simpler hypothesis for the high-
field phase. We discuss the high-field transition at B∗ as a field-induced change of the magnetic
structure. To truly confirm the nematic character of the high-field phase in bulk samples, we
suggest magnetoresistance measurements on bulk single crystalline samples, so that strain effects
are rendered ineffective (if such an experiment is possible). Finally, our ultrasound results on bulk
CeRhIn5 in contrast with magnetoresistance study on FIB fabricated devices, opens up a discussion
around the possibility of strain as a tuning parameter for electronic correlations in CeRhIn5.
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3.2 dHvA effect in high magnetic fields

3.2.1 Abstract

We report a comprehensive de Haas-van Alphen (dHvA) study of the heavy-fermion material
CeRhIn5 in magnetic fields up to 70 T. Several dHvA frequencies gradually emerge at high fields
as a result of magnetic breakdown. Among them is the thermodynamically important β1 branch,
which has not been observed so far. Comparison of our angular-dependent dHvA spectra with
those of the non-4f compound LaRhIn5 and with band-structure calculations evidences that the
Ce 4f electrons in CeRhIn5 remain localized over the whole field range. This rules out any sig-
nificant Fermi-surface reconstruction, either at the suggested nematic phase transition at B∗ ≈
30 T or at the putative quantum critical point at Bc ' 50 T. Our results rather demonstrate the
robustness of the Fermi surface and the localized nature of the 4f electrons in- and outside of the
antiferromagnetic phase.

3.2.2 Introduction

In spite of numerous experimental investigations of strongly correlated electron systems in the
vicinity of a QCP, the details of what drives the QCP remain the subject of much theoretical
debate. As mentioned in the previous chapter, there are currently two fundamentally different
theoretical models, which attempt to describe the physics of antiferromagnetic (AFM) QCPs in
heavy-fermion (HF) materials. The models can be distinguished by whether the Ce 4f electrons
are localized or itinerant on the either side of a QCP. Here, “itinerant” means that the f electrons
are fully hybridized with the conduction electrons, and, therefore, contribute to the Fermi surface
(FS). The first type of QCP, referred to as a spin-density-wave (SDW) QCP [29, 50], assumes the f
electrons to be itinerant on both sides of a QCP. In this case, if delocalization of f electrons occurs,
it occurs inside the magnetic phase. The second type of QCP, known as a Kondo-breakdown
QCP [44, 106, 30, 107, 108], suggests that a transition from itinerant to localized 4f electrons
occurs precisely at the QCP. Furthermore, the effective masses of the conduction quasiparticles are
expected to diverge upon approaching this type of QCP.

Since the FSs with itinerant and localized f electrons possess different size and morphology,
the two cases can be easily distinguished experimentally by performing quantum-oscillation mea-
surements, such as the de Haas–van Alphen (dHvA) effect. A comparison of the experimental
angular-dependent dHvA spectra with results of band-structure calculations, both for localized
and itinerant 4f electrons, allows us to distinguish between both scenarios. For Ce-based com-
pounds, a comparison can also be made using experimental results obtained on La-based analogs,
which serve as f -localized references, since the electronic structures of Ce and La differ by only one
f electron.

The heavy fermion compound CeRhIn5 can play a crucial role in expanding our understanding
of quantum critical points. The antiferromagnetic ground state in CeRhIn5 can be tuned to a QCP
by pressure [70, 109, 110, 111], chemical substitution [89, 112, 113], and magnetic field [99, 100].
The pressure-induced QCP in CeRhIn5 is now considered as a textbook example of the Kondo-
breakdown type. Several dHvA experiments evidence that the f electrons of CeRhIn5 are localized
at ambient pressure [78, 79], although some of the theoretically predicted dHvA frequencies were
not experimentally observed [78]. As the critical pressure for the suppression of antiferromag-
netism, Pc = 2.3 GPa, is reached, all dHvA frequencies observed at P < Pc change discontinuously,
signaling an abrupt FS reconstruction as a consequence of the f -electron delocalization [82]. In
addition, the effective masses diverge at Pc, further supporting the Kondo-breakdown scenario. A
similar discontinuous change of the dHvA frequencies was observed upon substituting Rh by Co in
CeRh1−xCoxIn5 [87]. However, the FS reconstruction does not occur at the critical concentration
xc ≈ 0.8, where the AFM order is suppressed, but deep inside the AFM state, at x ' 0.4, where
the AFM order alters its character and superconductivity emerges to coexist with antiferromag-
netism. Furthermore, the effective masses do not diverge here. Thus, the substitution-induced
QCP appears to be of the SDW type.
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Recently, a field-induced QCP was reported to occur at the critical field Bc ' 50 T applied
both along the c and a axis [99, 100]. Furthermore, an electronic-nematic phase transition was
observed at B∗, and attributed to an in-plane symmetry breaking [43, 103]. Finally, as discussed
previously, Jiao et al. [99, 102] reported the emergence of additional dHvA frequencies at B∗ ≈
30 T, which was interpreted as a field-induced FS reconstruction associated with the f -electron
delocalization and therefore, suggesting the field-induced Fermi surface to be of the SDW-type [see
Fig. 3.9]. This result is surprising given that magnetic fields are generally expected to localize f
electrons. This motivated us to thoroughly re-examine the FSs of CeRhIn5 at high magnetic fields
through a comprehensive angular-dependent dHvA study. To definitely establish the character of
f electron in CeRhIn5 in high magnetic fields, we also performed angular-dependent dHvA effect
measurement in its f -localized references compound LaRhIn5, also in high fields, to compare the
Fermi-surfaces of the two compounds.

3.2.3 Band-structure calculations

In order to address the question of whether the f electrons in CeRhIn5 are itinerant or localized at
high magnetic fields, band-structure calculations were performed for both CeRhIn5 with itinerant
f electrons and LaRhIn5

1. Band-structure calculations were carried out using a full potential
linearized augmented plane wave (FLAPW) method with the local density approximation (LDA)
for the exchange correlation potential. For the LDA, the formula proposed by Gunnarsson and
Lundqvist [114] was used. For the band-structure calculations, the program codes tspace and
kansai were used.

The space group of CeRhIn5 is P4/mmm (# 123, D1
4h). The lattice parameters used for the

calculation are a = 4.6521 Å and c = 7.5404 Å [115]. These parameters are similar to those
previously reported [70, 116, 74, 117]. In P4/mmm, the 1a (0.0, 0.0, 0.0) and 1b site (0.0, 0.0,
0.5) are occupied by Ce and Rh ions, respectively. Indium ions occupy the 1c (0.5, 0.5, 0) and 4i
site (0.0, 0.5, 0.3068). In the calculation for LaRhIn5, the Ce ion was just replaced by the La ion,
because this is a non-4f reference material.

In the FLAPW method, the scalar relativistic effect [118] is considered for all electrons and
the spin-orbit coupling is included self-consistently for all valence electrons as a second variational
procedure. The muffin-tin (MT) sphere radii are set as 0.3543a for Ce and La, and 0.32806a for
Rh and In. Here, a is the lattice constant for the a axis. Core electrons (Xe core minus 5s25p6 for
Ce and La, Kr core minus 4p6 for Rh, Kr core for In) are calculated inside the MT sphere in each
self-consistent step. 5s25p6 electrons on Ce and La, 4p6 on Rh, and 4d10 on In ions are calculated
as valence electrons by using the second energy window. The LAPW basis functions are truncated
at |k + Gi| ≤ 4.85 (2π/a), corresponding to 771 LAPW functions at the Γ point. 225 sampling
points uniformly distributed in the irreducible 1/16th of the Brillouin zone (BZ) (2048 points in
the full BZ) were used for potential convergence and the final band structure. The fermi surfaces
calculated from these band structure calculations is shown in Fig. 3.14.

Similar calculations were previously performed for CeCoIn5 [119, 78] and CeIrIn5 [120] with
itinerant f electrons, and provided an excellent agreement with experimental results. The calculated
FSs, shown in Fig. 3.14, closely resemble those reported previously [121, 78, 122, 99]. Although
there are similarities between the FSs with localized and itinerant f electrons, several significant
morphological differences between the two scenarios are apparent. The topologies of the quasi-two-
dimensional (2D) FS sheets originating from band 15 and giving rise to the α orbits are almost
identical. Only the orbit size is different. There is, however, an additional three-dimensional (3D)
FS sheet in the itinerant scenario. The FS sheets originating from band 13 are considerably different
in the localized and itinerant cases. The complicated cross-like sheet giving rise to the ε orbits in
the localized case is replaced by two small ellipsoidal pockets in the itinerant scenario. The most
essential difference, however, is the morphology of the FS sheets originating from the electron band
14. In the localized case, a quasi-2D sheet gives rise to the orbits β1 (belly) and β2 (neck). In the
itinerant scenario, on the contrary, this sheet is more 3D with a larger β1 orbit that is present over

1These calculations were performed by H. Harima, Kobe university, Japan.
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Figure 3.14: Calculated FSs with localized (top) and itinerant (bottom) f electrons. Solid lines
indicate some extremal cross-sections discussed in the text.

a more limited angular range, and an entirely missing neck orbit β2. The latter is replaced by a
much smaller hole orbit β∗, which exists at very small angles only. This difference alone is sufficient
to decide which of the calculated FSs yields a better agreement with the experimental results.

3.2.4 Experimental methods

For our dHvA experiments, high-quality (residual resistivity ratio ρRT /ρ0 ∼ 300) single crystals of
CeRhIn5 grown by the In self-flux method were used, details of which are given elsewhere [78]. The
dHvA experiments were performed using magnetic-torque methods in both static (up to 36 T) and
pulsed (up to 70 T) magnetic fields. The former were performed in a dilution refrigerator (Tbase ∼
30 mK) equipped with a low-temperature rotator using a metallic capacitive cantilever. The latter
were done in a 3He cryostat (Tbase ∼ 620 mK) using a piezoresistive microcantilever. When using
a rotator, the sample was first carefully aligned on the cantilever with respect to the rotation axis.
The whole setup was then mounted in the rotator of the dilution refrigerator probe at a small
negative angle. The sample was then rotated in field in small steps until the background torque
vanished. Since magnetic torque vanishes when a magnetic field is applied along a symmetry axis,
this orientation was taken as the reference, i.e., field parallel to the c axis. The estimated error
in the angle determination is less than 0.1◦. Once the reference orientation was found, the sample
was always rotated in the same direction to avoid hysteresis.
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3.2.5 Field-dependence of the first-order phase transition from incommensurate
to commensurate magnetic structure

At ambient pressure and zero magnetic field, the magnetically ordered ground state of CeRhIn5 is an
incommensurate helicoidal phase characterized by the propagation vector Q = (1/2, 1/2, 0.297) [76].
The magnetic moments on the cerium ions are aligned antiferromagnetically in the tetragonal basal
plane and spiral transversely along the c axis [76, 123]. When the magnetic field is applied in the
basal plane, a first-order phase transition occurs at Bm ' 2 T at low temperatures [78, 73, 95].
The transition corresponds to a change of the magnetic structure to a commensurate sine-wave
structure with the propagation vector Q = (1/2, 1/2, 1/4) [96, 97, 98]. The magnetic moments
are still in the basal plane, but now aligned perpendicular to the applied field direction [96, 97].
When the magnetic field is tilted away from the basal plane, the transition field Bm increases, and
initially follows a 1/ cos(α) dependence, where α is the angle from the basal plane towards the c
axis [78].

In magnetic-torque measurements, the transition manifests itself by a clear anomaly, as shown
in Fig. 3.15(a). Bm deviates from the 1/ cos(α) dependence at higher angles [see Fig. 3.15(b)]. It
occurs slightly above 20 T when the field is applied at θ = 2◦, the lowest angle at which we observed
the corresponding anomaly.
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Figure 3.15: First-order metamagnetic transition in CeRhIn5. Black arrows in (a) indicate the
metamagnetic transition in the raw torque signal at various field orientations, θ. (b) Angular
dependence of the metamagnetic transition field Bm. The dashed line represents Ba

m/ cos(α) =
Ba
m/ sin(θ), where Ba

m = 2 T is the transition field along the a axis, and α is the angle from a to
the c axis.

All the static-field measurements reported here were performed at fields higher than Bm, i.e.,
in the commensurate phase with Q = (1/2, 1/2, 1/4). This implies that the magnetic Brillouin
zone is smaller than its paramagnetic counterpart. As a consequence, the topology of the Fermi
surface in the antiferromagnetic state is modified with respect to the paramagnetic phase, for
which the band-structure calculations are performed. This might be approximated by a band-
folding procedure where the paramagnetic Fermi surface is folded into the smaller Brillouin zone
based on a large magnetic unit cell. In the particular case of CeRhIn5, the reduction of the Brillouin
zone hardly affects the Fermi surface sheet originating from band 15. On the other hand, the sheet
originating from band 14, especially the largest β1 orbit is strongly affected. This orbit can only
be observed via magnetic breakdown.

3.2.6 dHvA oscillations in CeRhIn5 and LaRhIn5

Figure 3.16 shows the oscillatory torque after subtracting a non-oscillating background and the
corresponding fast-Fourier transforms (FFTs) in CeRhIn5 for several magnetic-field orientations
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Figure 3.16: Fourier spec-
tra of the dHvA oscilla-
tions (shown in the inset)
of CeRhIn5 for magnetic
field applied at various an-
gles, θ, from the c to-
wards the a axis at T =
30 mK. The FFTs are per-
formed over the field inter-
val from Bmin = 29 T to
Bmax = 36 T, except at
10◦ where it is 29 - 34.5 T
(see the inset) due to ex-
perimental constraints. (b)
Shows an equivalent figure
of FFTs for the dHvA os-
cillations (shown in the in-
set) of LaRhIn5 for mag-
netic field applied at var-
ious angles, θ, from the
c towards the a axis at
T = 50 mK. The FFTs
in (b) are also performed
over the same 1/B inter-
val, ∆(1/B) ≈ 0.028 T−1,
with Bmin adjusted with re-
spect to the available Bmax
(see the inset) due to exper-
imental constraints. The
curves are shifted vertically
for clarity. All FFTs are
normalized to the strongest
dHvA spectral peak.
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θ, where θ is the angle from the c towards the a axis. The FFTs are performed over a field
interval mostly above B∗ with high-enough resolution to distinguish various dHvA frequencies.
We observed all dHvA frequencies detected in previous low- [121, 78, 79] and high-field [99, 102,
103] measurements. In addition, we observed a new, previously undetected, dHvA frequency β1,
whose origin will be discussed later in more detail. Figure 3.16(b) shows the the corresponding
oscillatory torque after subtracting a non-oscillating background and the FFTs in LaRhIn5 for
several magnetic-field orientations. We observed all the fundamental dHvA frequencies, namely
αi and βi, predicted by the band-structure calculations. These frequencies were also observed in
previous measurements in fields up to 13 T [78]. In addition to these fundamental frequencies,
several additional frequencies, such as N , M , and β′2, gradually emerge at high fields, as shown
in Fig. 3.21. These frequencies were not observed in previous lower field measurements [78]. This
suggests that they originate from magnetic breakdown orbits. Almost all of the frequencies observed
in CeRhIn5 are also observed in LaRhIn5 as shown in Fig. 3.17. Remarkably, the frequencies N ,
and β′2, were also observed to emerge at high fields in CeRhIn5, as shown in Fig. 3.17 and discussed
in section 3.2.8. Next we compare the experimentally obtained angular dependance of the dHvA
frequencies in CeRhIn5 with the band-structure calculations for both localized [Fig. 3.18(a)] and
itinerant [Fig. 3.18(b)] f electrons. For this comparison, the dHvA frequencies were extracted from
FFTs, such as shown in Fig. 3.16, performed over the field range 29 - 36 T 2 (Bavg = 32.12 T 3).
There is excellent agreement between the experimentally observed branches α2,3, α1, β2, and β1 and
their counterparts calculated for localized f electrons [Fig. 3.18(a)]. These branches originate from
the quasi-2D FS sheets from bands 14 and 15. The experimentally observed branches ε2 and ε3 also
agree very well with the f -localized calculations. These branches originate from the cross-like FS
sheet from band 13. The branchX is observed only at small angles close to the c axis, and it does not
seem to correspond to any calculated extremal area. Neither do the branches β′2 and N correspond
to any calculated branch. These frequencies will be discussed later in more detail. On the other
hand, there is a clear disagreement of the experimental data with band-structure calculations
assuming itinerant f electrons [Fig. 3.18(b)]. The most significant signature of this disagreement is
the presence of the β2 branch, which is supposed to be completely absent in the itinerant scenario.
This branch was also observed in previous high-field dHvA [99, 102] and magnetostriction [103]
measurements. In measurements under high pressure, this frequency disappears above Pc, where
the f electrons become itinerant [82]. Furthermore, the experimentally observed α2,3, α1, and
β1 branches lie far below those calculated for the itinerant case. In previous high-field dHvA
measurements performed with magnetic field only along the c axis, the frequencies N and β′2 were
interpreted as α2 and α1 of the f -itinerant model [99]. However, their angular dependence is
clearly different from that suggested by the calculations. Similarly, the experimentally observed
branch X was interpreted as the β1 branch of the itinerant scenario [99]. This frequency indeed
agrees with calculated β1 values at small angles close to the c axis. The positive curvature of this
branch, however, is inconsistent with the negative curvature of the calculated β1 branch. Finally, in
Fig. 3.18(c), we compare the angular dependence of the experimentally observed dHvA frequencies
in CeRhIn5 and LaRhIn5. The dHvA frequencies of the latter compound were also obtained from
high-field ranges up to the available Bmax. The excellent agreement of the experimentally measured
dHvA frequencies observed in CeRhIn5 and LaRhIn5 over the whole angular range is especially
strong confirmation that the f electrons, which are localized at low fields [78], remain so even in
fields higher than B∗.

3.2.7 Comparison of the dHvA frequencies in CeRhIn5 at high magnetic fields
and under high pressure

Additional confirmation of localized f electrons in CeRhIn5 at high fields comes from the compari-
son of dHvA frequencies observed in CeRhIn5 at high fields to that above the critical pressure. One

2This range, mostly above B∗, was chosen to provide high-enough resolution to distinguish close dHvA frequencies.
A small variation of this range does not alter the results.

3The average field, Bavg, of a field interval from Bmin to Bmax is defined as the reciprocal average, i.e., 1/Bavg =
1/2(1/Bmin + 1/Bmax).
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Figure 3.18: Angular dependance
of the experimentally observed
dHvA frequencies in CeRhIn5

together with results of band-
structure calculations (solid lines)
within localized (a) and itiner-
ant (b) scenarios, and with the
experimentally observed dHvA
frequencies in LaRhIn5 (open
circles) (c). In the latter case,
the band-structure calculations
for localized f electrons are also
shown.
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Figure 3.19: Comparison of the dHvA frequencies in CeRhIn5 at high magnetic fields (a) and
under high pressure (b). The results under pressure are from Ref. [82].(c) Angular dependance
of the experimentally observed dHvA frequencies in CeCoIn5 (from Ref. [119]) together with the
results of f -itinerant band-structure calculations for CeRhIn5 (solid lines).

of the appropriate ways to experimentally assess whether the f electrons of CeRhIn5 are itinerant or
localized under certain conditions is to compare the data with those obtained in CeRhIn5 above the
critical pressure, Pc = 2.3 GPa, where the f electrons are known to be itinerant [82]. In Fig. 3.19(a)
and (b), we show a comparison of the dHvA frequencies in CeRhIn5 over the field interval 29 -
36 T, mostly above B∗, with those at P = 2.9 GPa, well above Pc [82]. This comparison is not
straightforward, as the measurements under pressure were performed with field applied along the c
axis, where dHvA oscillations can not be observed in torque measurements. We, therefore, use the
data obtained at the lowest angle, 4◦, at which all the additional frequencies were observed. Since
all the dHvA frequencies almost don’t change at small angles, the frequency difference between 0◦

and 4◦ can be neglected. The dHvA frequencies in CeRhIn5 at high fields do not match those under
high pressure. Only the α2 frequency at high pressure roughly corresponds to the N frequency at
high field. On the other hand, the α1 and α3 frequencies at P = 2.9 GPa do not match any high
field frequencies. This comparison, therefore, argues in favor of the localized f electrons picture in
CeRhIn5 at high magnetic fields.

Furthermore, the FS of CeRhIn5 is often compared to the FS of CeCoIn5 to establish whether the
f electrons of CeRhIn5 are itinerant or localized under certain conditions, such as high pressure [82]
or high magnetic fields [99, 102]. The heavy fermion compounds CeCoIn5 is iso-structural to
CeRhIn5 and has an overall similar Fermi-surface topology. However, contrary to CeRhIn5, CeCoIn5

is non-magnetic with itinerant f electrons [119, 124, 78]. That is why the two cases are often
compared. Strictly speaking, this approach is not correct as there are certain differences between
the Fermi surfaces of CeCoIn5 and CeRhIn5 with itinerant f electrons, as shown in Fig. 3.19(c).
Not only the sizes of the α2 and α3 orbits are slightly different, the β2 orbit, present in CeCoIn5,
is absent in CeRhIn5 with itinerant f electrons.

3.2.8 Field-dependence of the dHvA frequencies in CeRhIn5 and LaRhIn5

Figures 3.16 to 3.18 convincingly demonstrate that the Ce f -electrons are localized up to 36 T.
That this situation persists up to still higher fields is evidenced by our pulsed-field measurements,
shown in Fig. 3.20(a). The corresponding FFT spectra obtained over a moving 1/B window are
shown in Fig. 3.20(b). Due to the much higher temperature, T = 620 mK, of the pulsed-field
measurements, some of the additional dHvA frequencies, such as N , β1 and X, emerge at higher
fields as compared to our lower temperature static-field results, an example of which is shown in
Fig. 3.20(c). Contrary to the previous report [99], some of these frequencies emerge well below B∗,
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Figure 3.20: (a) dHvA oscil-
lations in CeRhIn5 in pulsed
magnetic fields applied at
9◦ from the c axis. (b)
FFT spectra of the oscilla-
tions from (a) obtained over
the same 1/B range, shown
by the rectangle in (a). For
the bottom curve, the range
is from Bmin = 21.5 T to
Bmax = 25.07 T (Bavg =
23.15 T). For each succes-
sive curve, Bmin is increased
by 0.5 T up to 29 T, and
by 1 T from there on. The
inset shows the evolution of
the dHvA frequencies with
B obtained from pulsed (cir-
cles) and static (triangles)
field measurements. (c) FFT
spectra of the static-field
dHvA oscillations, shown in
Fig. 3.16, with B at 4◦ from
the c axis. The 1/B range
and the range for the bot-
tom curve are the same as
in (b). For each successive
curve, Bmin is increased by
0.5 T. The curves in (b) and
(c) are shifted for clarity.
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Figure 3.21: FFT spectra of the dHvA oscillations in LaRhIn5 with magnetic field applied at 9◦

from the c axis at T = 50 mK. All the FFTs are obtained over the same 1/B range. For the bottom
curve, the range is from Bmin = 21.5 T to Bmax = 25.07 T (Bavg = 23.15 T). For each successive
curve, Bmin is increased by 0.5 T. The curves are shifted vertically for clarity.

as can be seen in Fig. 3.20(b) and (c). We have not observed any frequency shift or the emergence
of new frequencies at either B∗ or Bc (inset of Fig. 3.20). Importantly, the β2 frequency is still
present above Bc ' 50 T. Furthermore, the effective masses remain finite in the immediate vicinity
of Bc (as discussed in sec. 3.2.9). This suggests that the f electrons remain localized when the
AFM order is suppressed by a magnetic field. The same conclusion was drawn for CeIn3, for which
the AFM order is also suppressed at a very high field of about 60 T [125].

We will now discuss the origin of the additional dHvA frequencies, such as β′2, N , β1, and X,
which emerge only at high fields. The frequency β1 originates from the belly orbit of the electron
band 14 (Fig. 3.14). Both the frequency itself and its angular dependence are in excellent agreement
with the f -localized calculations [Fig. 3.18(a)]. This branch was not observed in any of the previous
measurements. This is not surprising given that this orbit is strongly affected by the modification
of the Brillouin zone in the AFM state (as discussed in sec. 3.2.3). In addition, the corresponding
effective mass is strongly enhanced, m∗ ' 12 m0 (sec. 3.2.9). The frequencies β′2 and N do not
seem to correspond to any calculated branch within either the localized or itinerant model. It is,
however, apparent that β′2 follows the angular variation of β2 with a small and almost constant offset
(Fig. 3.18). Remarkably, this offset ∼ 0.6 kT, corresponds to the frequency A, which is almost angle
independent. This suggests that β′2 originates from the magnetic breakdown between β2 and A, i.e.,
β′2 = β2 −A, assuming that A corresponds to a hole pocket. The exact origin of the frequencies N
and X is unclear at present. Notably, the β′2 and N branches also emerge in LaRhIn5 only at high
fields [(see Fig. 3.21 and 3.18(c)], suggesting that they originate from magnetic-breakdown orbits.
The frequency X is the only one that is not observed in LaRhIn5. It is, therefore, less likely that
this frequency originates from a magnetic breakdown as we discuss here. Figure 3.22(a) shows the
field dependence of the oscillatory amplitude of the X and β1 branches. The lines represent the
field-dependent part of the Lifhitz-Kosevich formula. The effective masses were obtained from the
mass plots (shown in sec. 3.2.9), and the Dingle temperatures were determined from the Dingle
plots, as shown in Fig. 3.22(b). For both frequencies, the expected amplitude drops below the noise
level just below the lowest field point. This implies that these oscillations gradually rise above the
noise level with increasing magnetic field, rather than emerging all of a sudden at a given field value.
Indeed, in the latter case, the oscillations are expected to emerge well above the noise level. The
kink in the field-dependence of the X frequency amplitude is due to a drastic change of the Dingle
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Figure 3.22: (a) dHvA amplitude of the X and β1 branches as a function of magnetic field
applied at 4◦ from the c axis at T = 50 mK. The lines correspond to the standard Lifshitz-Kosevich
formula [54] with effective masses and Dingle temperatures determined from mass and Dingle plots,
respectevely. (b) Dingle plot for the branch X. Note that the slope of the Dingle plot changes
drastically at about 30 T.

temperature, as shown in Fig. 3.22(b). Remarkably, this change occurs at about 30 T. While it is
not clear whether this change is directly related to B∗, it might explain why the X frequency was
not observed below 30 T in the previous high field study [99].

Therefore, the emergence of X at high fields, although progressive as shown in Fig. 3.22, could
be due to a minor FS reconstruction, such as a Lifshitz transition of a spin-split band, similar to
what was observed in CeIrIn5 [126] and YbRh2Si2 [127]. We emphasize that even if this is the
case, the f electrons remain localised above 30 T as is evidenced by the presence of the β1 and β2

frequencies, and the very close match between the LaRhIn5 and the CeRhIn5 data.

3.2.9 Effective masses in CeRhIn5

The effective masses, m∗, corresponding to the various dHvA orbits of CeRhIn5 were determined by
fitting the temperature dependence of the oscillatory amplitude with the standard Lifshitz-Kosevich
formula [54] with m? as fitting parameter. This was done deep inside the antiferromagnetic phase
in the vicinity of B∗ (Fig. 3.23) and in the field-induced polarized paramagnetic phase just above
Bc (Fig. 3.24).

Inside the antiferromagnetic state, the effective masses were determined from the static-field
data over the field range from 28 to 34.5 T (Bavg = 30.86 T) for two orientations of the magnetic
field, at 4◦ and 8◦ from c towards the a axis, as shown in Fig. 3.23. The effective masses obtained
for these two orientations are similar, indicating a rather weak angular dependence of the effective
masses, at least close to the c axis. The effective masses corresponding to the dHvA frequencies
observed at moderate magnetic fields, such as α2,3 and β2, are in good agreement with previous
reports [121, 78]. The effective masses corresponding to the additional frequencies observed only
at high fields are much heavier, from ∼6m0 for the branch N , to ∼12m0 for the branch β1 (where
m0 is the bare electron mass), indicating many-body mass enhancements. For comparison, the
calculated band masses, mb, for the β1 branch are 0.85m0 and 0.81m0 at 4◦ and 8◦, respectively.

In the field-induced polarized paramagnetic phase, the effective masses were extracted from the
pulsed-field data over the field range from 50 to 68.18 T (Bavg = 57.69 T) with field applied at
9◦ from c towards the a axis, as shown in Fig. 3.24(a). Not only do the effective masses show
no sign of divergence just above Bc, the effective masses of the β2 and β1 branches are strongly
reduced with respect to the values at 30.86 T. Unfortunately, the amplitudes of these oscillations
are not strong enough for a reliable determination of the effective masses in the intermediate field
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Figure 3.23: (a) Fourier spectra of the dHvA oscillations in CeRhIn5 for a field rotated by θ = 8◦

from c to the a axis over the field interval from 28 to 34.5 T at different temperatures. (b) and (c)
Temperature dependence of the dHvA amplitudes at θ = 8◦ and 4◦, respectively. The lines are fits
using the standard Lifshitz-Kosevich formula [54].
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Figure 3.24: (a) FFT spectra of the dHvA oscillations in CeRhIn5 for a field rotated by θ = 9◦

from c to the a axis over the field interval from 50 to 68.18 T at different temperatures. (b)
Temperature dependence of the dHvA amplitudes from (a). The lines are fits using the standard
Lifshitz-Kosevich formula [54]. (c) Field-dependance of effective masses of the dHvA frequencies
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range as evident from the huge error bars in obtained effective masses shown in Fig. 3.24(b). The
apparent reduction of the effective masses observed here is likely to be due to the field-induced
polarization of the quasiparticle bands, which leads to the suppression of electronic correlations. A
similarly strong suppression of the effective masses by magnetic fields was previously observed in
CeB6 [128, 129], CeAl2 [130, 131], CeRu2Si2 [131], and CeCoIn5 [119].

Such a field-induced polarization of the quasiparticle bands is also possibly apparent in the field
evolution of FSs above Bc. At magnetic fields above 49 T, there is a small increase (of about 2%)
in the size of the β2 and β′2 FSs as shown in Fig. 3.25. Furthermore, there is also a splitting of the
fermi surface orbit α2,3 and β1 above 49 T. Also, the amplitudes of the dHvA frequencies abruptly
increase at magnetic fields above 49 T, indicating an abrupt increase in the dingle temperature at
49 T.
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Figure 3.25: Evolution of the dHvA frequencies with B obtained in CeRhIn5 in pulsed magnetic
fields applied at 9◦ from the c axis obtained over the same 1/B range, shown by the rectangle in
Fig. 3.20(a). For the bottom curve, the range is from Bmin = 28 T to Bmax = 34.38 T (Bavg =
30.86 T). For each successive curve, Bmin is increased by 0.5 T up to 29 T, and by 1 T from there
on. The curves are shifted for clarity.

All these changes observed above 49 T possibly are related to the suppression of the AFM state
and emergence of a field-induced polarized paramagnetic phase above Bc ≈ 49 T .

3.2.10 Conclusions

In summary, we performed high-field dHvA measurements on CeRhIn5 and LaRhIn5. In CeRhIn5,
several additional dHvA frequencies emerge above certain threshold fields. In particular, we ob-
served the previously undetected, thermodynamically important β1 branch predicted by the f -
localized band-structure calculations. Almost all of the dHvA frequencies observed in CeRhIn5 are
also present in LaRhIn5. In addition, their angular dependence is identical in the two compounds.
The presence and angle dependence of the observed dHvA frequencies are well accounted for by
band-structure calculations with localized f electrons, indicating that the f electrons of CeRhIn5

remain localized not only above B∗ ≈ 30 T, but also above Bc ' 50 T. We emphasize that delocal-
ization of the Ce f -electron at high magnetic field would change the whole FS from the localized to
the itinerant FS that we show in Fig. 3.14. Continued observation of the β2 branch at the highest
magnetic fields is clear evidence of that the Ce f -electron remains localized over the full magnetic
field range that we have explored.
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It was previously reported that the f electrons also remain localized in CeIn3 above its critical
field Bc ' 60 T [125]. Whereas CeIn3 is an isotropic HF compound with an almost spheroidal
FS, CeRhIn5 is a prototypical example of a strongly anisotropic material with quasi-2D FSs. The
continued localization of the f electrons well above Bc in both compounds is not consistent with
either of the two existing theoretical models of AFM QCPs. This implies that magnetic field, which
itself tends to localize f electrons, should be treated differently from such control parameters as
pressure or chemical doping.

The identification of a ‘small/localized’ or a ‘large/itinerant’ Fermi surface is an important
theoretical issue. In certain cases, the interpretation of dHvA results have been contentious. For
example, in CeRu2Si2, a change of Fermi surface from itinerant to localized was reported, above
a critical field Hm based on dHvA measurements [132, 133]. However, this interpretation is still
under debate. An alternate interpretation of an itinerant Fermi surface above Hm through a
Lifshitz transition was also put forward [134], which is more consistent with the premise that the
f electrons are never truly localized as long as the system remains in the metallic state with an
enhanced effective mass. There is always a finite hybridization in heavy fermion systems. Therefore,
the true meaning of localized f electron and ‘small’ Fermi surface based on dHvA measurements is
an important theoretical problem, as discussed in detail in ref [135]. Nonetheless, in CeRhIn5, the
low-field Fermi surface is ‘small/localized’, in the sense it is largely similar to that of LaRhIn5, and
is unanimously suggested by several dHvA studies. Our dHvA results establishes that this low-field
small/localized Fermi surface does not abruptly change either across B∗ = 30 T or Bc ' 50 T.

These results are published in [136].
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3.3 Specific heat in high magnetic fields

3.3.1 Abstract

CeRhIn5 is a prototypical antiferromagnetic heavy-fermion compound, whose behaviour in magnetic
field is unique. Magnetic field applied in the basal plane of the tetragonal crystal structure induces
two additional phase transitions. When the magnetic field is applied along, or close to, the c axis,
a new phase characterized by a pronounced in-plane electronic anisotropy emerges at B∗ ≈ 30 T,
well below the critical field, Bc ' 50 T, to suppress the antiferromagnetic order. The exact origin
of this new phase, originally suggested to be an electronic-nematic state, remains elusive. Here we
report low-temperature specific heat measurements in CeRhIn5 in high static magnetic fields up
to 36 T applied along both the a and c axis. For fields applied along the a axis, we confirmed
previously suggested phase diagram, and extended it to higher fields. This allowed us to observe
a triple point at ∼ 30 T, where the first-order transition from incommensurate to commensurate
magnetic structure merges into the onset of the second-order antiferromagnetic transition. For
fields applied along the c axis, we observed a small but distinct anomaly at B∗, which we discuss
in terms of a possible field-induced transition, probably weakly first-order. We further suggest that
the transition corresponds to a change of magnetic structure. We revise magnetic phase diagrams
of CeRhIn5 for both principal orientations of the magnetic field based entirely on thermodynamic
anomalies.

3.3.2 Introduction

At ambient pressure and zero magnetic field, CeRhIn5 undergoes an antiferromagnetic (AFM)
transition at TN = 3.8 K, in which the Ce moments are antiferromagnetically aligned within
the CeIn3 planes. The moments spiral transversally along the c axis with a propagation vector
Q = (0.5, 0.5, 0.297) incommensurate with the crystal lattice [76]. Magnetic field applied in the
basal plane of CeRhIn5 induces two additional transitions, observed in specific heat [73], thermal
expansion, and magnetostriction measurements [95]. The lower temperature transition is first order.
It occurs at Bm ∼ 2 T at low temperatures, and corresponds to a change of magnetic structure
from incommensurate to commensurate [96]. The higher temperature transition is second order. It
corresponds to a change of the ordered moment, while the propagation vector, almost the same as
in zero magnetic field [96], becomes temperature-dependent [97]. Both transitions were traced up
to 18 T in static field measurements [95]. More recently, specific heat measurements in pulsed fields
applied along the a axis revealed a non-monotonic field dependence of TN [99]. The AFM transition
temperature initially increases up to about 12 T, and then decreases monotonically all the way up
to the critical field Bc ∼ 50 T . In these measurements, however, the two field-induced phases were
not observed. Therefore, the complete phase diagram for fields along the a axis remains elusive.

When a magnetic field is applied along the c axis, TN monotonically decreases until it is com-
pletely suppressed at Bc ∼ 50 T [99, 100]. Surprisingly, the critical field for this orientation is
approximately the same as along the a axis in spite of a considerable crystallographic and magnetic
anisotropy of CeRhIn5. On the other hand, the critical field was extrapolated from specific heat
measurements in pulsed magnetic fields, while there is a difference between the results obtained in
pulsed [99, 100] and static [72] fields.

The most interesting feature was observed in various measurements at B∗ ' 30 T for field
applied either along or slightly tilted from the c axis [99, 101, 43, 103, 104, 105, 137]. While it
was interpreted as a transition into an electronic-nematic state [43], the exact origin and nature
of this anomaly is still under debate. Surprisingly, specific heat measurements have so far failed
showing a direct indication of this anomaly [72, 99, 100]. It is thus still unclear whether the anomaly
corresponds to a real thermodynamic phase transition or a crossover.

The above mentioned inconsistencies and shortcomings demonstrate a clear need to perform
specific heat measurements in high static fields to ascertain the quantum critical point, complete
the phase diagram for fields along the a axis, verify the phase diagram along the c axis, and seek
a direct evidence for the enigmatic novel state at B∗.
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Here we report high-field low temperature specific heat measurements on a single crystal of
CeRhIn5. The measurements were performed in static fields up to 36 T for field orientations both
along the a and c axes. For field applied along the a axis, we observed all the previously reported
transitions, and traced them to higher fields. For field along the c axis, we observed the so far
elusive anomaly at B∗ in addition to the AFM transition. Based on these features observed in
specific heat, we propose a revision of the magnetic phase diagram of CeRhIn5 for both principal
orientations of the magnetic field.

3.3.3 Experimental details

The high-quality single crystal of CeRhIn5 used in the present study was grown by the In-self-flux
technique, details of which can be found elsewhere [78]. The dimensions of the CeRhIn5 crystal are
1.3×0.8×0.2 mm3 and the mass is 1.55 mg. The length of the sample is parallel to the c axis, as
shown in Fig. 3.26.

Figure 3.26: Single crystal of CeRhIn5 used for the specific heat measurement.

Low-temperature specific heat measurements were performed in static magnetic fields up to 36 T
by either a thermal relaxation technique at constant magnetic field or AC technique at constant
temperature. Measurements at low fields using the thermal relaxation technique were performed
in a 4He cryostat equipped with a 12 T superconducting magnetic and a VTI providing the lowest
thermal bath temperature of 1.5 K. While the measurements at high fields were performed in a 36 T
resistive magnet equipped with a 4He cryostat reaching the lowest thermal bath temperature of
1.3 K by directly pumping on the Helium bath. The measurements using AC calorimetric technique
were entirely performed in the 36 T resistive magnet and 4He cryostat reaching the lowest thermal
bath temperature of 1.3 K. A Cernox thermometer, calibrated from 1.3 K to 40 K in magnetic
fields up to 36 T, was used as a reference thermometer for the thermal bath.

In the thermal relaxation technique, the specific heat C of CeRhIn5 is obtained by subtracting
the addenda contribution from the total heat capacity of the system as shown in Fig. 3.27(a).
It is evident that the addenda contribution to the total specific heat is negligibly small at low
temperatures compared to the sample.

Specific heat measured using the AC calorimetric technique is consistent with that using the
relaxation technique, as shown in Fig. 3.27(b). For the AC calorimetric technique, we plot tan θ
which is proportional to the specific heat of the sample, i.e., tan(θ) = Cω/κ. Given that κ ∝ T , and
the temperature oscillation frequency ω (twice of heater excitation frequency) is constant, we have
tan θ ∝ C/T . Further, in AC technique C is the total heat capacity of the system including the
addenda. However, as verified through the thermal-relaxation technique, the addenda contribution
to the heat capacity of the system is negligibly small over the temperatures range of Fig. 3.27(b)
and therefore, there is an excellent agreement between the results obtained by the two different
techniques.

For the AC specific heat data, the sample temperature is determined by removing the self heat-
ing effect, i.e., TDC , using the heater calibration described in the previous chapter on experimental
techniques.
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Figure 3.27: Total specific heat (red open circles) of CeRhIn5 and addenda (blue open circles)
obtained using thermal relaxation technique. (b) Comparison of the specific heat of CeRhIn5 at zero
field obtained using thermal relaxation (closed circles) and AC calorimetric (solid line) techniques.
For the latter, tan θ proportional to C/T is plotted.

3.3.4 Specific heat of CeRhIn5 for field applied along the a axis
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Figure 3.28: Specific heat of CeRhIn5 and LaRhIn5 at zero field obtained using the thermal
relaxation technique.

The specific heat C/T as a function of temperature for CeRhIn5 and LaRhIn5 obtained using
the thermal relaxation technique is shown in figure 3.28. The specific heat C/T decreases upon
cooling before reaching a minimum at 9 K with a value C/T ≈ 0.45 J/K2mol. On further lowering
the temperature, the specific heat increases first, leading to a sharp lambda-like feature in the
specific heat at T = 3.76 K and then decreases rapidly thereon. This feature corresponds to the
onset of a long-range anti-ferromagnetic order in CeRhIn5 through a second-order phase transition
at TN ≈ 3.8 K. The compound LaRhIn5 is a non-f reference compound for CeRhIn5 and therefore
only has phonoic contribution to specific heat. Conventionally, such a non-f material is used to
subtract the phononic contribution (βT 3) to the total specific heat of its iso-structural f electron
compound, i.e., CeRhIn5 (see Fig. 3.28).

Significant changes in the specific heat occurs in applied magnetic fields. Figure 3.29(a) shows
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Figure 3.29: Specific heat divided by temperature, C/T , of CeRhIn5 for magnetic field applied
along the a axis. (a) C/T as a function of T obtained from relaxation technique for several values
of magnetic field. Curves are vertically shifted according to the magnetic field scale shown in the
right axis. A zoom at low and high fields is shown in (b) and (c) respectively. (d) Total specific
heat, C, obtained from field sweeps using the AC technique.
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specific heat divided by temperature, C/T , obtained from relaxation measurements for magnetic
field applied along the a axis. For this field orientation, apart from the AFM transition at TN ,
there are two additional field-induced transitions at T1 and T2, as shown in Fig. 3.29(b). The
transition at T1 manifests itself by a sharp δ-like peak characteristic of a first-order transition. The
transition at T2 appears as a λ-type anomaly typical for a second-order transition. This transition
is observed only at low fields, as shown in Fig. 3.29(b). In agreement with previous reports, TN
initially increases up to about 10 T, and then decreases monotonically up to the highest field of
our measurements. The transition temperature T1 shows a similar trend. Above 3 T, T1 increases
up to about 12 T, and then starts to decrease. Its suppression rate, however, is slower than that of
TN . With increasing field, the two transitions approach each other. At 28 T, the two transitions
are barely distinguishable, and at 30 T only the transition at TN remains, as shown in Fig. 3.29(c).

All the transitions are also observed in measurements by AC technique, as shown in Fig. 3.30.
In particular, the curve obtained at 3.4 K, shows four phase transitions. Interestingly, while the
low-field transition at BL

1 manifests itself as a sharp peak, its high-field counterpart at BH
1 appears

as a rather smeared anomaly, although it is also a first-order transition. This is not surprising
considering that standard AC calorimetry models are based on steady-state measurements, which
is not the case for a first-order phase transition due to the involvement of latent heat. Therefore,
a first-order transition does not always manifest itself as the canonical δ-like feature. The shape,
and even the presence, of an anomaly depends on the latent heat associated with the transition.
On the other hand, a second-order transition always manifest itself as a distinct λ-like anomaly,
which is, indeed, the case for the two known second-order transitions at B2 and BN .
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Figure 3.30: Specific heat divided by temperature, C/T , of CeRhIn5 for magnetic field applied
along the a axis. (a) C/T as a function of T obtained from relaxation technique for several values
of magnetic field. Curves are vertically shifted according to the magnetic field scale shown in the
right axis. A zoom at low and high fields is shown in (b) and (c) respectively. (d) Total specific
heat, C, obtained from field sweeps using the AC technique.

The resulting magnetic field-temperature, B − T , phase diagram for field along the a axis is
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shown in Fig. 3.31. It contains three different antiferromagnetic phases labeled AFM1, AFM2, and
AFM3. The magnetic structure of all three phases was previously determined by neutron diffrac-
tion [96, 97]. The zero-field phase AFM1 corresponds to an incommensurate antiferromagnetic spin
helix with a propagation vector Q = (0.5, 0.5, 0.297). The AFM2 phase is an incommensurate ellip-
tical helix with strongly modulated magnetic moments and a temperature-dependent propagation
vector. The AFM3 phase is a commensurate collinear square-wave (‘up-up-down-down’ configu-
ration) with a propagation vector Q = (1/2, 1/2, 1/4). All three phases meet at a triple point
inside the AFM phase at (3 T, 3.4 K). The AFM2 phase exists only in a narrow temperature range
close to TN . This range shrinks with increasing magnetic field until the AFM2 phase is completely
suppressed at ∼ 30 T, giving rise to yet another triple point. Remarkably, this field is about the
same as B∗, at which the putative electronic-nematic phase emerges for fields close to the c axis.
Above 30 T, only the commensurate phase AFM3 exists up to the complete suppression of the
AFM order. A naive quadratic fit of TN vs B reveals a critical field Bc ' 54 T, in agreement with
previous pulsed field results [99].

0 5 10 15 20 25 30 35 40
2.0

2.5

3.0

3.5

4.0 TN

 T1

 T2

B || a

A
FM

1

AFM3  

 

Te
m

pe
ra

tu
re

 (K
)

Magnetic Field (T)

AFM2

Figure 3.31: Magnetic phase diagram of CeRhIn5 obtained from relaxation (circles) and AC
(triangles) specific heat measurements for field applied along the a axis. Closed and open symbols
correspond to second- and first-order transitions respectively.

3.3.5 Specific heat of CeRhIn5 for field applied along the c axis

Figure 3.32 shows the temperature dependence of the specific heat divided by temperature, C/T ,
obtained using relaxation technique at different magnetic fields applied along the c axis. For this
orientation of the magnetic field, TN is gradually suppressed, consistent with previous reports [72,
99, 100]. This is the usual behaviour observed in AFM heavy-fermion compounds. However,
we observed a non-monotonic behaviour of the specific heat jump at the AFM transition. With
increasing field, the jump size gradually increases up to 27 T, above which there is a small abrupt
drop. The jump size then remains almost constant between 29 and 35 T, the highest field of
our measurements. A similar behaviour was also observed in the previous studies [100, 73]. This
unusual behaviour indicates that there might be a change in the AFM state between 27 and 29 T.

The most remarkable result is obtained using the AC technique with field applied along the c
axis. For this orientation, we observed a weak but distinct anomaly at B∗, as shown in Fig. 3.33 and
3.34(a). The exact position of the anomaly is defined from the second derivative of the specific heat
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Figure 3.34: (a) Specific heat of CeRhIn5 for magnetic field applied along the c axis obtained
from field sweeps using the AC technique. Curves are vertically shifted for clarity. (b) Second
derivatives of the heat capacity shown in (a) with respect to magnetic field. Arrows indicate the
AFM transition and the anomaly at B∗.

with respect to magnetic field, where the anomaly manifests itself as a small maximum, as shown
in Fig. 3.34(b). This anomaly was not observed in previous high-field specific heat measurements.

3.3.6 Discussion about the anomaly at B∗

We will now discuss a possible origin of the high-field state above B∗ based on our findings. The
presence of the specific heat anomaly at B∗ implies that it is likely a real thermodynamic phase
transition rather than a crossover, contrary to what was previously suggested [103]. The latter
suggestion, however, was based on magnetostriction measurements performed in a magnetic field
applied at 20◦ from the c axis. Furthermore, the anomaly we observe at B∗ does not have the
characteristic λ-like shape of a second-order phase transition contrary to those at B2 and BN in
Fig. 3.30. Therefore, the anomaly observed at B∗ most likely corresponds to a first-order phase
transition. Moreover, it is thermodynamically forbidden that three second-order phase boundary
lines meet at a triple point [138]. This further supports our hypothesis that B∗ is a first-order
phase transition. Finally, the anomaly at B∗ is observed only within the AFM state, in agreement
with previous reports [99, 101, 43, 103, 105]. Based on this, the most natural explanation of the
phase transition at B∗ is a change of magnetic structure. Previous high-field NMR measurements
unambiguously suggest that the AFM phases both below and above B∗ are incommensurate [104].
Therefore, B∗ should correspond to a transition from one incommensurate phase, AFM1, to another
phase incommensurate along the c axis, AFM4, with a propagation vector Q = (0.5, 0.5, l), where
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l is different from 0.297 of the AFM1 phase.

This hypothesis is consistent with previous reports. Indeed, the previously observed resistivity
jump atB∗ [101, 43, 137] can be naturally accounted for by a metamagnetic spin-reorientation, as we
suggest here. The only previously reported result, which is difficult to reconcile with our hypothesis,
is that a Fermi surface reconstruction corresponding to the delocalization of the f electrons occurs
at B∗ [99, 102]. This conclusion, however, was challenged by recent angular-dependent de Haas-van
Alphen effect measurements, which suggest that the f electrons in CeRhIn5 remain localized up to
fields higher even than Bc [139].
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Figure 3.35: Magnetic phase diagram of CeRhIn5 obtained from relaxation (circles) and AC
(triangles) specific heat measurements. Closed symbols correspond to second-order transitions from
AFM to PM phase. Open symbols indicate the anomaly at B∗, which presumably corresponds to
a weakly first-order transition.

Figure 3.35 shows the revised magnetic phase diagram of CeRhIn5 for field applied along the
c axis. The field dependence of TN obtained from our static-field measurements is consistent
with that previously reported, based on the pulsed-field data [100]. A fit of the data to the
TN (B) = TN0[1 − (B/Bc)

2] expression, where TN0 is TN at zero field, reveals a critical field Bc '
52 T. This value is in agreement with that previously reported [99]. The transition at B∗ is
weakly temperature-dependent in agreement with previous measurements [99, 101, 43, 103, 105].
As was already discussed above, we suggest that this first-order transition separates two different
incommensurate magnetic phases.

We note that the situation is entirely different when a magnetic field is tilted from the c axis.
First, a finite component of a magnetic field in the basal plane explicitly breaks the C4 rotational
symmetry. Even more important is that at angles bigger than 2◦, the transition from incommen-
surate AFM1 phase into the commensurate phase AFM3 occurs below 30 T [139]. Therefore, the
transition at B∗ is from the commensurate phase AFM3 to the incommensurate phase AFM4.
This is likely what was observed in recent ultrasound velocity measurements [105]. In these mea-
surements, the anomaly observed at 20 T at the AFM1-AFM3 transition is very similar to that
observed at B∗ ' 30 T. Furthermore, the magnetostriction anomaly observed at B∗ in a magnetic
field tilted by about 20◦ from the c axis is similar to that observed at 7.5 T, where it corresponds
to the AFM1-AFM3 transition.
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3.3.7 Miscellaneous
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Figure 3.36: Specific heat in CeRhIn5 using temperature sweep (relaxation technique) for magnetic
fields close to B∗, applied along the c axis. The plots in green are for C/T at the remaining fields
listed in the legend.

As shown in the B − T phase diagram in Fig. 3.35, the B∗ transition is weakly temperature
dependent. It is, therefore, difficult to detect this transition in temperature sweeps in the relaxation
technique. However, close to the AFM boundary, this transition has a relatively larger temperature
dependence and shifts to slightly lower fields. We, therefore, performed specific heat measurements
using thermal relaxation technique at few different fields slightly below 30 T, as shown in Fig. 3.36.
Indeed, at magnetic fields close to 29 T, there is a weak anomaly observed in the specific heat
just below the AFM transition (indicated by arrows on the red plots in each panel of Fig. 3.36 at
B = 29.5 T, B = 29 T, and B = 28.74 T).

Scaling the temperature dependence of C/T with respect to TN provide an easier template to
understand the field-evolution of the specific heat, especially at low temperatures, such as in the
AFM state. Such a plot for CeRhIn5 for fields along the c axis is shown in figure 3.37. Contrary to
the previous report [100], the specific heat in the AFM state (below TN ) evolves gradually starting
from low fields and up to 35 T, the highest field of our measurement [see Fig. 3.37]. In Figure
Fig. 3.37(b) we plot the value of C/T at 0.8 TN as a function of field. For this value of scaled
temperature, i.e., 0.8 TN , there is a small jump at 29 T, in the otherwise smooth evolution of the
convex-shaped specific heat in the AFM state with field. This small jump is due to the presence
of the B∗ transition in C/T at 29 T as shown in Fig. 3.36. Furthermore, another interesting
observation is the abrupt change in the slope of C/T at 0.8 TN vs B. The slope, which depict
the evolution of specific heat with field, is almost doubled at fields above 29 T in comparison to
the slope below 29 T. This indicates that above 29 T, the evolution of AFM state and possibly
the AFM state itself is different from the low field state, i.e., below 29 T. This interpretation is
consistent with our hypothesis of change of AFM structure at B∗ (see Fig. 3.35).

Next we try to extract the magnetic field dependence of the electronic contribution to the total
specific heat in CeRhIn5. Usually for a metallic system, the total specific heat has electronic γ and
phononic β contributions whose temperature dependance can be written as

C/T = γ + βT 2 (3.1)

Experimentally, the electronic contribution or the Sommerfeld coefficient can be obtained as
the intercept of the C/T vs T 2 plot. Figure 3.38 shows such plots for CeRhIn5 in magnetic fields
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Figure 3.37: Evolution of specific heat in CeRhIn5 with magnetic field obtained using the relax-
ation technique. All the plots at different magnetic fields are scaled with respect to TN for the
corresponding field. (b) C/T taken at 0.8TN at different magnetic fields. The red dashed lines are
linear fit to the evolution of C/T at low and high fields.

up to 35 T. In the paramagnetic phase (which is equivalent of metallic state), C/T is essentially a
straight line (at T ≥ 10 K). The lines at different fields are parallel to each other, i.e. equal slope
β, indicating the phononic contribution is field independent. The y-intercept of this line give the
electronic contribution γ. It decreases with increasing magnetic fields as is typically expected for
heavy fermions due to suppression of correlation effects. At high fields (> 20 T), it is more or less
constant.
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Figure 3.38: Evolution of the specific heat C/T in CeRhIn5 plotted against T 2. The inset shows a
zoomed-in view of C/T vs T 2 in the low temperature range (antiferromagnetic state). The panel
on the right shows C/T vs T 2 in the high temperature range (paramagnetic state).

Determining the electronic contribution in the antiferromagnetic phase is not as straight forward
because a simple linear fit does not work and we are limited by the base temperature ≈ 1.6 K.
A very naive extraction of something equivalent to the electronic contribution in the AFM state
is shown in Fig. 3.39. Here the C/T at the lowest temperature, i.e., T = 1.65 K is plotted as a
function of magnetic field [see Fig. 3.39(b)].

However, such an analysis is not much reliable or informative. The specific heat below TN has
very distinct nature because of the additional contributions due to the AFM ordering of moments.
Therefore, in addition to the electronic and the phononic contribution, an antiferromagnetic magnon
contribution (Cmag) to the total specific heat must also be taken into account as below
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Figure 3.39: (a) Specific heat in CeRhIn5 at different magnetic fields applied along the c axis. (b)
Value of C/T taken at T = 1.65 K at different magnetic fields.

CTotal = Cel + Cph + Cmag. (3.2)

Now, the phononic contribution is very small at low temperatures, as can be seen in fig. 3.28
for LaRhIn5, and therefore, can either be neglected or must be subtracted from the total specific
heat before further analysis.

Next, to determine Cmag, appropriate models to fit the low temperature part of specific heat
are used. Often, Cmag is approximated using the spin-wave theory. For antiferromagnets, spin
wave theory gives a linear magnon dispersion relation i.e. ω ∼ k. The specific heat contribution
due to spin wave formation comes out to be CMT

3. Additionally, the magnetic anisotropy arising
from molecular fields will introduce a finite gap in the magnon dispersion. This introduces a factor
e−∆/T , where ∆ is the size of spin-gap.

For antiferromagnets, two models dealing with these details are generally used for fitting the
specific heat in AFM state. The first one (eq. 3.3) comprises of an antiferromagnetic spin wave
contribution with a dispersion relation in relativistic form ω =

√
∆2 +Dk2, where ∆ is the size of

spin-gap, α is related to spin-wave stiffness D by α ∝ D−1/3 [140].

Cmag = γ0T + α∆7/2T 1/2e−∆/T (1 + (39/20)(T/∆) + (51/32)(T/∆)2) (3.3)

The linear contribution γ0T is the electronic contribution in the AFM state. This model was
previously used by Jiao et al. to extract the field-dependence of γ0 in CeRhIn5 [100]. The second
one (eq. 3.4) is by Bredl [141] taking into account an activated term and is as follows

C/T = γ0 + βMT
2 + β′M (exp(−Eg/KBT ))T 2 (3.4)

Here, γ0T is again the electronic term in AFM state, βMT
3 is AFM magnon term, β′M (exp(−Eg/KBT ))T 3

is activated term arising from an AFM SDW with a gap in the excitation spectrum due to anisotropy.
This model was previously used by Cornelius et al. to extract γ0 in CeRhIn5 at zero field [77].

Using both these models, we tried to fit the magnetic contribution to the total specific heat
in CeRhIn5 at zero field (after subtracting the phonon contribution using LaRhIn5) as shown in
Fig. 3.40. The parameters extracted based on the fit using eq. 3.4 are (γ0 ≈ 65 mJ/K2mol, βm ≈
23 mJ/K2mol, β′m ≈ 722 mJ/K2mol and Eg/kB ≈ 8.2 mJ/K2mol) and are in good agreement
with the previous report by Cornelius et al.[77] (γ0 ≈ 56 mJ/K2mol, βm ≈ 24.1 mJ/K2mol, β′m ≈
706 mJ/K2mol and Eg/kB ≈ 8.2 mJ/K2mol).

94



3.3. SPECIFIC HEAT IN HIGH MAGNETIC FIELDS

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0  CeRhIn5-LaRhIn5

 model 1
 model 2

 

 

C
m
ag
/T

 (J
/K

2 m
ol

)

Temperature (K)

Figure 3.40: Fits of the magnetic contribution to the total specific heat in CeRhIn5 at zero field
using model 1 (eq. 3.3) (red line) and model 2 (eq. 3.4) (blue line) as discussed in the text.

Similarly, the extracted parameters based on the fit using eq. 3.3 are γ0 ≈ 130 mJ/K2mol, α ≈
1.46 ×10−6 mJ/K2mol and ∆ ≈ 11.6 mJ/K2mol. These parameters are not in much agreement
with the previous report by Jiao et al. [100] (γ0 ≈ 82 mJ/K2mol, α ≈ 6.5 ×10−6 mJ/K2mol
and ∆ ≈ 11.2 mJ/K2mol.) However, these extracted parameters also vary depending upon the
temperature range selected for fitting.

It is evident that fits based on eq. 3.3 and eq. 3.4 to the magnetic specific heat at low
temperature fails at temperature close to TN . The fit based on eq. 3.3 shows a larger deviation
from the experimental data close to TN . Furthermore, the variation of the extracted parameters
with the data range used suggests that such an analysis might lead to misleading conclusions,
especially when three to four free fitting parameters are involved. Therefore, a field dependence of
the extracted parameter, such as shown for γ0 in [100], must be considered cautiously.

3.3.8 Conclusions

In summary, we performed specific heat measurements in CeRhIn5 in static fields up to 36 T applied
both along the a and the c axis. For field along the a axis, we confirmed previously established rich
phase diagram, and extended it to higher fields. For field along the c axis, we observed a distinct
anomaly at B∗ ' 30 T, suggesting that a real thermodynamic phase transition, probably weakly
first-order, is likely to take place at this field. We suggest that this transition is from the low-field
incommensurate magnetic structure to another incommensurate phase, characterized by a different
propagation vector. High field inelastic neutron scattering measurements are required to definitely
confirm this hypotheses. Such measurements, although very challenging, are now possible due to
the recent experimental breakthrough [142].

These results are published in [139].
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3.4 Ultrasound velocity and attenuation in high magnetic fields

3.4.1 Abstract

Here we report a comprehensive high-field ultrasound velocity study on bulk single crystals of
CeRhIn5. For a field applied at 2◦ from the c axis, we observed two sharp anomalies, at 20 T and
30 T, in all the symmetry-breaking modes (C11, C44, C66 and CT ) at low temperatures, suggest-
ing additional broken symmetries of the underlying order parameter rather than just the four-fold
rotational symmetry previously suggested. The former anomaly corresponds to the well-known
first-order metamagnetic transition, where the magnetic structure changes from incommensurate
to commensurate. The higher field anomaly takes place at B∗ ≈ 30 T, where an electronic nematic
transition was previously suggested to occur. Both anomalies are of similar shape, but the corre-
sponding changes of the ultrasound velocity have the opposite signs. Furthermore, both anomalies
are observed within the antiferromagnetic state only. Based on these experimental results, we
suggest that the anomaly at B∗ also corresponds to a field-induced transition, this time from a
commensurate to a different incommensurate antiferromagnetic state. With increasing the field
angle from the c axis, the anomaly at B∗ slowly shifts to higher fields, broadens and becomes
smaller in magnitude. Therefore, the angle-dependent behaviour of the anomaly at B∗ is found to
be inconsistent with the microscopic picture of electronic-nematics, in which the anisotropy arising
due to the directional alignment of nematic domains is proportional to the strength of the in-plane
field component. The anomaly, traced up to 30◦ from the c axis, is no longer observed at 40◦ up to
36 T. These observations are in contrast with the previously reported results of transport studies
performed on microfabricated samples of CeRhIn5. Apart from the anomalies at 20 and 30 T in
the symmetry breaking modes, we also observed clear features around 30 T at temperatures below
1.9 K in the C33 mode, which is symmetry preserving. These anomalies, however, are observed
only when the magnetic field is applied very close to the c axis. With decreasing temperature,
these features form a dome-like phase centered at 30 T within the AFM state. However, no feature
was observed around 20 T in the C33 mode. Therefore, our results indicate that a rather exotic
phenomena occur around 30 T. Based on the observations in the C33 mode, we suggest that the
change of the magnetic structure, at least at small field angles, is either accompanied or driven by
an additional transition probably due to an inter-layer exchange along the c direction.

3.4.2 Introduction

Classical complex fluids often exhibit a phase, in which their rod-shaped micro-structured molecules
align in an orientational order in such a way that the rotational invariance is spontaneously broken.
Such a phase is known as a nematic state.

Strongly correlated electron systems, such as the high temperature superconductors, iron-
based superconductors, and heavy-fermion compounds, are essentially quantum fluids comprising
of strongly interacting constituents, i.e., electrons. Due to the strong electronic correlations, these
systems exhibit many exotic phases, such as unconventional-superconductivity, a strange metallic
state, a non-Fermi-liquid state, pseudogap phase and hidden-order.

In an analogy to the nematic state in the classical fluids (liquid crystals), SCES are conjectured
to host a similar symmetry broken nematic phase. Indeed, this was experimentally found in many
strongly correlated electron systems such as high-temperature superconductors [39, 40, 41] , stron-
tium ruthenate [42], and, more recently, in heavy-fermion systems [43]. In applied magnetic fields,
above a certain critical field, an unusually large transport anisotropy was observed in the rather
isotropic conducting planes of these 2D electronic systems. This strong electronic anisotropy was
interpreted as an electronic-nematic (EN) state. Microscopically, it is understood that above a crit-
ical out-of-plane field, a new state is prepared, in which the electron fluid is replaced by nanosized
electronic structures or ‘domains’, which can be aligned in a preferential direction by an arbitrary
small in-plane field component thereby leading to an anisotropic electronic transport along the two
orthogonal directions in the 2D conducting planes. Such a transport anisotropy increases with
increasing the in-plane field component. However, in the absence of an in-plane field component
(in other words fields perpendicular to the conducting planes), the transport anisotropy disappears
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but the domain formation may still exist. Only the presence of a finite in-plane field component
aligns these domains and reveals the full effect of the symmetry breaking.

The apparent relation of this nematic phase to unconventional superconductivity is still under
debate. It is an active area of research to understand if the nematic phase competes, coexists
or enhances superconductivity, or simply appears accidentally. In this regard, the heavy-fermion
compound CeRhIn5 can play a crucial role to study the possible relation of unconventional super-
conductivity and an electronic nematic phase. In this system, a pressure-induced unconventional
superconducting state [70] emerges in the vicinity of a pressure-induced QCP, while a state of en-
hanced in-plane electronic anisotropy, interpreted as an electronic-nematic phase, [43] emerges in
the vicinity of the field-induced QCP. While the unconventional superconducting state in CeRhIn5

is well established, a comprehensive understanding of the electronic anisotropic state is still elu-
sive. The electronic-nematic interpretation of the enhanced in-plane electronic anisotropy above
B∗ comes from the magnetoresistance study on FIB fabricated devices [43]. There is always a
finite strain on FIB-devices arising due to the difference in the thermal expansion coefficients of the
sample and the substrate or the contacts by which the sample is held. Another member of Ce-115
family, CeIrIn5, shows a drastic change of its properties due to strain [143]. In CeRhIn5 too, a
change of magnetic structure was observed in powdered samples [144] suggesting a strong impact of
the strain on its physics. The role of strain for the electronic-nematic transition, therefore, cannot
be ruled out.

While an anomaly around B∗ ∼ 30 T applied close to c axis has been observed in several
other measurements on bulk samples such as specific heat, magnetostriction [103], ultrasound ve-
locity [105] and NMR [104], torque and magnetization have so far failed to show a detectable
feature corresponding to this transition. These measurements, however, cannot directly confirm
the electronic-nematic character of the high-field state, while transport measurements can. Some of
these measurements do conform with the rationale of a symmetry-broken electronic nematic state.
For example, magnetostriction measurements indicated a small lattice response at 30 T in both the
a and c directions. The lattice distortion along the a direction was interpreted as a signature of an
enhanced hybridization of cerium f electrons with the in-plane 5p electrons of indium. Similarly,
previous NMR and ultrasound reports also indicated an enhanced in-plane c − f hybridization.
However, our dHvA study confirms that the f electrons remain localized above 30 T in the high-
field phase of enhanced anisotropy. Therefore, the origin of the electronic nematic state cannot be
due to an enhanced c− f hybridization and Kondo effect. The detection of an anomaly at 30 T in
our specific-heat study suggests that a real phase transition occurs at this field. We discussed the
transition at 30 T in terms of as a change of the magnetic structure. Fluctuations associated with a
magnetic instability close to the QCP can be a candidate for the origin of a correlated state, in this
case, an electronic-nematic state. Indeed, the pressure-induced and cobalt substitution-induced
superconducting states in CeRhIn5 are enhanced by a change of the antiferromagnetic structure.
Anyway, the true origin of the 30 T transition remains elusive.

The order parameter associated with the transition holds vital information about its microscopic
origin and must be studied an using an appropriate probe. In this regard, the elastic response
is an extremely useful probe, not to only detect thermodynamic phase transitions but also to
determine the symmetries of the associated order parameter through the strain-order parameter
coupling. Ultrasound waves readily couple with electronic, magnetic, and structural degrees of
freedom. Elastic constants (C) are a second-derivative of the free energy (F ) with respect to the
applied strain (ε), i.e., C = d2F/dε. Experimentally, the elastic constants can be deduced from the
ultrasonic velocity v in a crystal lattice of the mass density ρ as C = ρv2.

For a tetragonal crystal lattice, such as CeRhIn5, there are six independent elastic constants
(C11, C12, C13, C33, C44, C66). Except for C13, the other five can be probed experimentally
through ultrasound velocity measurements along the symmetry directions [100], [110] and [001].
The longitudinal (L) and transverse (T) ultrasonic modes along these symmetry directions and the
corresponding elastic constants are listed in Table 3.1. Redundant ultrasonic modes are left out of
this table.

Different ultrasound modes, obtained by different directions of the ultrasound propagation and
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Figure 3.41: (a) Crystal structure of CeRhIn5. Magnetic structure of CeRhIn5 (b) in zero magnetic
field and (c) in a magnetic field higher than 2 T applied along the [100] direction. Arrows indicate
the orientation of the magnetic moments. Only Ce atoms are shown in (b) and (c) for clarity.
(d) Schematic illustration of the symmetry strains induced by different ultrasound modes for a
tetragonal crystal structure. For each mode, the propagation (k) and polarization (u) directions
are shown by arrows. The associated irreducible representations are shown in brackets.
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Ultrasound modes and the elastic constants for a tetragonal lattice

Ultrasonic Mode ~k ~u Cij

L[100] [100] [100] C11

T[100] [100] [010] C66

T[100] [100] [001] C44

T[110] [110] [1-10] CT = (C11-C12)/2

L[001] [001] [001] C33

Table 3.1: The various ultrasounic modes for a tertragonal lattice and the corresponding elastic
constants. The first column list the ultrasonic mode, here L: longitudinal and T: transverse and
the subscript corresponds to the direction of propagation. The second and third columns depicts
the directions of propagation and polarization, receptively. The corresponding elastic constant are
listed in the fourth column.

polarization, induce different symmetry-breaking strains in the crystal, as schematically shown in
Fig. 3.41(d) for a tetragonal crystal structure. This, in turn, allows for the determination of the
symmetry of a phase order parameter as well as identification of the broken symmetries at a phase
transition.

Recent ultrasound velocity study [105] on CeRhIn5 detected an anomaly at 30 T in the trans-
verse elastic constant CT , while it was absent in the other four elastic constants. This was inter-
preted in terms of a quadrupolar ordering of the Ox2−y2 orbital due to the εx2−y2 strain conforming
with the previous interpretation of the broken C±4 tetragonal symmetry.

Here we report ultrasound velocity measurements in CeRhIn5 in static magnetic fields up to 36 T
and pulsed fields up to 65 T. The measurements in pulsed magnetic fields were performed using a
phase-sensitive detection of the ultrasound signal across the sample using piezo-electric transducers
in a 4He cryostat. The measurements in static fields were performed using a frequency-sensitive
detection of the signal in a 3He cryostat equipped with an in-situ rotator.

3.4.3 Signature of AFM transition in elastic constants and attenuation

Similar to the heat capacity, the elastic modulus being a thermodynamic probe also detects the
second-order anitferromagnetic phase transition in CeRhIn5 as a distinct λ-like feature at 3.8 K,
as shown in Fig. 3.42.
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Figure 3.42: (a) Relative ultrasound velocity and (b) ultrasound attenuation in CeRhIn5 across the
antiferromangetic transition for the ultrasonic modes CT and C33.

The AFM transition is detectable in both the ultrasound velocities and attenuations marking
the high sensitivity of our measurements. Here, the arrow points to the AFM transition observed
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in the elastic constants C33 and CT and their corresponding elastic attenuations. The anomaly in
the C33 mode is much smaller than that in the CT mode.

3.4.4 Field-dependence of the relative ultrasound velocity variation ∆v/v

Fig. 3.43 shows the relative ultrasound velocity variation with magnetic field applied close to the
c axis in CeRhIn5 for the five ultrasound modes described in Table 3.1.

The elastic constants C11, C44, C66 and CT corresponds to the tetragonal symmetry breaking
strains, as schematically depicted in the Fig 3.41(d). In addition to the symmetry breaking, C11

is also sensitive to the volume change. The elastic constants C11, C44, and C66 show an overall
softening (decrease of the relative ultrasound velocity) with magnetic field up to Bp. The elastic
constant CT shows a hardening (increase of the relative ultrasound velocity) with magnetic field
between Bm and B∗ followed by a softening at higher fields. The C33 elastic constant shows
an overall hardening with magnetic field up to the highest field of our measurement, i.e., 65 T.
Contrary to the previous report [105], we observed clear features around B∗ ≈ 30 T in all the elastic
constants, i.e., C11, C44, C66, CT and C33. Similarly, the feature at Bp ≈ 45 T is present in all
the elastic constants, while it is most pronounced in C11. However, in the CT mode BN(u) appears
instead of Bp, when the field is applied very close to the c axis. In the C11 mode, the feature at Bp
is marked by a rapid hardening as depicted in Fig. 3.43(a). The rapid hardening might be due to
the sensitivity of the C11 mode to volume changes. The feature at Bm is present in all the elastic
constants except for C33.

The feature at Bm corresponds to the well-known metamagnetic transition related to the change
of the antiferromagnetic structure from the ambient-pressure, zero-field incommensurate helical
structure (AFM1) [Fig. 3.41(b)] to a commensurate co-linear ‘up-up-down-down’ structure (AFM3),
shown in Fig. 3.41(c). The transition occurs at Bm = 2 T for a field applied along the a axis. When
the magnetic field is oriented away (by an angle α) from the basal plane towards the c axis, Bm
initially varies as 1/ cos(α), but deviates from dependence towards smaller values closer to the c
axis. For a field orientation θ ≈ 2◦ from the c axis (or α = 88◦), Bm ≈ 20 T. For a field alignment
better than 2◦ from the c axis, Bm has not been observed so far. To exclude a field alignment better
than 2◦ as the origin of the absence of Bm in the C33 elastic constant, we performed field-dependent
ultrasound velocity measurements at several orientations of the magnetic field (see Fig. 3.51). We
did not observe Bm even at angles larger than 2◦ from the c axis where Bm should appear below
20 T. Therefore, the absence of Bm in the C33 elastic constant implies that this mode does not
couple to the in-plane electronic or magnetic changes.

The presence of the features in ultrasound velocity can understood from the symmetry consid-
erations of the two antiferromagnetic structures, AFM1 and AFM3. AFM1 is an incommensurate
spiral helical structure [Fig. 3.41(b)]. A spiral helical magnetic structure has a C∞ rotational
symmetry about the axis of the helix, while the tetragonal crystal structure has a C4 rotational
symmetry about the c axis. Therefore, a combination of the two, which is the case for the AFM1
phase in CeRhIn5, should have the lower of the two rotational symmetries, i.e., a C4 symmetry
about the c axis. Now, in the up-up-down-down AFM2 structure [Fig. 3.41(c)], the magnetic mo-
ments are aligned in the tetragonal plane perpendicular to the magnetic field, i.e., in a preferential
antiferromangetic arrangement. Therefore, the symmetry of the magnetic structure is lowered from
C4 to C2 at the transition from incommensurate to commensurate at Bm. All the symmetry break-
ing strains that explicitly breaks the C4 symmetry should then be able to detect such a transition.
This is indeed the case, as Bm is detected in the CT , C11 and C66 modes. However, the presence
of Bm in the C44 mode suggests that additional symmetries are also broken across the IC-C tran-
sition, which are still to be identified. Nonetheless, experimentally, the most crucial point is the
observation of the features at Bm and B∗ in all the symmetry breaking modes. The transitions at
Bm and B∗ manifest themselves by similar anomalies, but the corresponding changes of ∆v/v have
the opposite signs. This implies, that all the symmetries broken at Bm, including the C4 rotational
symmetry, are restored at B∗. It is, therefore, natural to conclude that both transitions are of
the same origin, i.e., that the transition at B∗ corresponds to another field-induced change of the
magnetic structure, this time from the commensurate AFM3 to an incommensurate AFM4 phase
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Figure 3.43: Field dependence of the relative ultrasound velocity variation, ∆v/v, for the C11 (a),
CT = (C11 − C12)/2 (b), C33 (c), C44 (d), and C66 (e) modes at T ' 1.4 K. The field was applied
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in the basal plane.

Moving further, we notice that in the C44 and C66 modes, the feature at B∗ is larger than that
at Bm. On the contrary, in the C11 and CT modes, the anomaly at B∗ is smaller than that at Bm.
It is not clear why this is the case. Further, in the C33 mode, the feature at B∗ has as a ‘dip-like’
shape, completely different from the ‘step-like’ shape in all the other modes. The unique shape of
feature at B∗ will be discussed later.

The absence of the well-established, purely in-plane transition at Bm as well as the presence
of features around B∗ and Bp in the C33 mode suggests that the transitions at B∗ and Bp have
out-of-plane characteristics in addition to the in-plane character. This implies that the feature at
B∗ might also correspond to the onset of a state of a 3-D electronic nature.

3.4.5 Temperature-dependence of ∆v/v and ultrasound attenuation
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Figure 3.44: Temperature-dependence of the field-dependence of the relative ultrasound velocity
(a),(c) and the corresponding attenuation (b),(d) for the CT mode in CeRhIn5 for two different
field angles θ = 2.5◦ (a),(b) and θ = 7.5◦ (c),(d) from the c axis. Curves are shifted vertically
for clarity.

Fig. 3.44 shows the temperature dependence of the field-dependent ultrasound velocity and
elastic attenuation for the elastic constant CT at two different orientations of the magnetic field,
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θ ≈ 2.5◦ and θ ≈ 7.5◦. Fig. 3.45 shows the temperature dependence of the elastic constants C11, C44

and C66. In all the modes, the transitions at Bm and B∗, are almost temperature independent. The
transition at Bm moves to slightly higher fields at higher temperatures close to the AFM boundary.
On the contrary, B∗ moves to slightly lower fields when approaching the AFM boundary. The
transitions are only slightly diminished in size with temperatures well below the AFM boundary and
are drastically reduced only close to it. Both transitions exists strictly within the antiferromagnetic
state [see Fig. 3.45(a)].

Based on the temperature dependence of field-dependent ultrasonic velocity in the C11, C44,
C66, and CT modes, the temperature-magnetic field phase diagram is constructed, as shown in Fig.
3.46(a). All the points in the phase diagram corresponding to the various transitions are marked
in Figs. 3.43, 3.44, 3.52 and 3.53 and are explained in the text. The points corresponding to the
AFM boundary are from our specific heat study.

As mentioned previously, both the transitions at Bm and B∗ exist strictly within the AFM state
only. This suggests that the transition at B∗ is also related to the magnetic properties of CeRhIn5.
This further supports our hypothesis that the transition at B∗ corresponds to the change of the
magnetic structure.

The transitions at Bm and B∗ form a broad dome in the magnetic phase diagram [see fig.
3.46(a)], indicating that these two transitions binds a thermodynamic phase, AFM3, which has
a commensurate AFM structure. The transition at Bp traces a PPM state boundary, as was
previously suggested [105].

The features observed around B∗ in the C33 mode show a peculiar temperature-dependence,
different from the symmetry breaking modes. First of all, the features disappear above 2 K, about
0.5 K below the AFM phase boundary, as shown in Fig. 3.47. At low temperatures, there are two
distinct features, one at a field slightly lower than 30 T and another one at a field slightly higher
than 30 T. Furthermore, the two features show an asymmetric temperature dependence. higher
field feature is almost temperature-independent at low temperatures. It moves to slightly lower
fields on approaching 2 K. The lower field feature moves to lower fields with decreasing temperature.
The features form an asymmetric dome centered at 30 T within the antiferromagnetic state [see
fig. 3.46(b)]. The absence of a similar dome around the metamagnetic transition at 20 T argues
for a rather exotic situation at B∗. Since the C33 mode is symmetry preserving and is sensitive to
changes along the c direction of the tetragonal system such as interlayer exchange, an expansion or
a compression, the feature are probably related to the emergence of the out-of-plane fluctuations
or a 3D order around B∗, accompanying the suggested change of the magnetic structure. Another
possibility is that these two features around B∗ are real thermodynamic transitions. If this is the
case, there are three different transitions within a small field range around B∗. Their absence in
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the other modes can then be understood through a simple consideration. Since features in C33

correspond to the out-of-plane dynamics, C11, CT , C66 should not couple to them and, therefore,
we do not observe them in these modes. However, in C44 mode, these features can possibly be
detected at temperatures lower than 1.3 K. Measurements in the C44 mode at lower temperatures
are required to confirm this hypothesis.

3.4.6 Angle-dependence of ∆v/v and ultrasound attenuation

Fig. 3.48 shows the field dependence of ∆v/v (a) and corresponding ultrasound attenuation (b) for
various angles, θ, of the field from the c toward the a axis for the elastic constant CT .

In the magnetoresistance study performed on FIB-fabricated devices of CeRhIn5, the resistivity
step observed at 30 T gradually increased for fields tilted away from the c axis up to θ = 20◦, before
decreasing again and fading away at θ ≈ 60◦ [43].

The angle-dependent behavior of the feature at B∗ in ultrasound velocity is strikingly different
in ultrasound velocity in a bulk single crystal of CeRhIn5. As shown in Fig. 3.48, it is the strongest
for field orientations closer to the c axis. Initially, for small inclinations of the field away from the c
axis, it rapidly diminishes in size. For example, it diminishes by a factor of about 6 from θ ≈ 2◦ to
θ = 5◦ [Fig. 3.48(c)]. For still larger field angles from the c axis, it decreases in size rather slowly
[Fig. 3.48(a)]. Similarly, the anomaly at Bm also decreases with increasing θ with an initial abrupt
decrease by a factor of about 5 from θ ≈ 2◦ to θ = 5◦. Therefore, the angle-dependence of the
feature size at B∗ is similar to that of the MMT transition at Bm. However, unlike the invariably
sharp MMT transition, it gradually broadens with increasing θ until it is no longer distinguishable
above θ = 30◦. At θ = 40◦, the transition at B∗ is either not present up to 36 T or is dominated by
the huge magnetoacoustic quantum oscillations corresponding to a small Fermi-surface pocket ε2
[Fig. 3.48(d)]. This behavior of the B∗ feature implies probably that it changes from a transition at
low angles to a crossover at higher angles. This interpretation is also supported by our specific-heat
measurements [139] very close to the c axis, which suggest B∗ to be a real thermodynamic phase
transition, and the magnetostriction measurements at θ ≈ 17◦ from the c axis, which suggest it to
be a crossover [103].

Moving further, the feature at B∗ slowly moves to higher fields with increasing θ [see fig.
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Figure 3.48: Angle-dependence of the field-dependent relative ultrasound velocity in CeRhIn5 (a)
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3.49] in agreement with the previous reports [101, 43]. This suggests that unlike the metagenetic
transition at Bm tuned by the in-plane field component, the suggested metamagnetic transition at
B∗ is not driven by the in-plane field component, but by an alternative route, such as a magnetic-
structure modulation by an inter-layer exchange, a compression or an elongation. Such an inter-
layer exchange is experimentally supported by the features observed around B∗ in the C33 mode.

Similar to the CT mode, the feature at B∗ and Bm become stronger for field orientations closer
to the c axis in the C11 mode [see Fig. 3.50]. In the CT mode, the feature at B∗ is considerably
bigger for fields applied very close to the c axis, i.e., θ ≈ 2◦. Also, the behavior of ∆v/v above B∗

for θ ≈ 2◦ is different from that for θ > 2◦. For orientations close to 2◦, ∆v/v shows a down-turn,
which is absent for θ > 2◦.

Remarkably, it is only for these small orientations (θ ≈ 2◦) that features around B∗ exist in the
C33 mode [see Fig. 3.51]. It is, therefore, evident that the transition at B∗ and features around it
are prominent only for fields very close to the c axis. This clearly establishes the importance of the
out-of-plane field component for the B∗ transition.

3.4.7 More about the transition at B∗

Based on the observations and results shown in the previous sections, we suggest the transition
at B∗ to be a metamagnetic transition corresponding to change of the magnetic structure from
commensurate AFM3 to incommensurate AFM4, which restores all the symmetries broken at Bm.
In all the modes, overall behavior of ∆v/v for fields belowBm and aboveB∗ is similar. This indicates
that the low-field and high-field phases are of the same nature implying similar incommensurate
magnetic structures within AFM1 and AFM4. This behavior further supports a metamagnetic
transition from commensurate to incommensurate at B∗ as a likely possibility.

The angle-dependence of the anomaly size at B∗ is different from that observed in magnetore-
sistence, since decreasing the in-plane field component increases the size of the feature at least
down to 2◦ from the c axis. The remarkable difference between angular-dependent behaviors of
the B∗ transition in bulk samples and microfabricated devices is likely to be due to the uniaxial
strains usually present in the latter. CeRhIn5 is known to be very sensitive to uniaxial strains. For
instance, previously reported NQR measurements on bulk and powder samples of CeRhIn5 suggest
that even small strains (or stresses) change the zero-field magnetic structure from incommensurate
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to commensurate [144]. Additional measurements under uniaxial stress (or strain) at high magnetic
fields on bulk samples are required to elucidate the role of the uniaxial stress in previous transport
measurements on CeRhIn5 microstructures [101, 43].

It is already known that the change of magnetic structure at Bm is driven by an in-plane
magnetic field component atleast down to 10◦ to 15◦ from the c axis, which is also beautifully
captured by its initial 1/cosθ dependence [see Fig. 3.49]. However, unlike the 1/cosθ angular
dependence of the Bm transition, the weak angular dependence of the B∗ transition suggests that
the change of AFM structure at B∗ is not driven by the in-plane field component but a different
mechanism.

Here, very naively, I will try to suggest such an alternative mechanism based on the features
observed around B∗ in the symmetry preserving C33 mode. In this mode, the asymmetric growing of
the dome formed by these features around B∗ with decreasing temperatures indicates the possibility
of an exotic mechanism. One such possible mechanism is that at around B∗ = 30 T, an inter-layer
exchange between the CeIn3 layers occurs along the out-of-plane direction, which modulates the
magnetic structure. The asymmetry of the dome can then be explained as a difference in the
degree of the inter-layer exchange in two different AFM states, i.e., between the incommensurate
AFM1 below 30 T and the incommensurate AFM4 phase above 30 T (for magnetic field very close
to the c axis) or between the commensurate AFM3 below 30 T and the incommensurate AFM4
phase above 30 T (for magnetic field slightly tilted from the c axis, say 2◦). Then within the
dome region, the commensurate vector (1/2, 1/2, 1/4) gradually changes to an incommensurate
vector (1/2,1/2,δ(B)) as a function of field, where δ(B) changes from 0.25 to probably about, 0.21.
Nonetheless, the true origin of the features around B∗ and the driving mechanism of the suggested
change of the magnetic structure remain elusive.

It must be noted that so far magnetoresistence, magnetization, torque failed to show any de-
tectable feature in the longitudinal or c direction. However, magnetostriction revealed an anomaly
along the c direction, in addition to the a direction, for a field applied at θ ≈ 17◦, but its presence
was understood in terms of the Poisson’s ratio.

3.4.8 Hysteresis in ∆v/v at high fields

Generally, in case of first order transitions, a hysteresis is observed in the measured quantity as
a function of temperature or magnetic field. The first-order transition at Bm indeed shows a
hysteresis between up and down field-sweeps [see Fig. 3.52(a),(b)]. This is consistent with the
previous report [105]. There is a small but clear hysteresis at B∗ in the C44 and C11 modes [see Fig.
3.53(a),(b)] suggesting that B∗ is also likely a first-order transition. Further, in the CT mode, there
are hysteretic features both below and above B∗, as shown in Fig. 3.52. The inset in Fig. 3.52(a)
shows a zoomed-in view of the hysteresis above B∗. The features marked by BN(u) in the up field-
sweep and BN(d) in the down field-sweep seems to correspond to the antiferromagnetic transition.
The average of these two fields, (BN(u)+BN(d))/2, fits well nicely to the AFM phase boundary
in the temperature-field phase diagram (see violet closed circles in Fig. 3.54). This hysteresis at
the AFM transition is surprising as the antiferromagnetic phase transition is a second-order. The
λ-like shape of the specific-heat anomaly at the AFM transition confirms its second-order nature.
Therefore, it is not clear if this hysteresis at the AFM transition can be explained by a field-induced
change of the AFM structure. One plausible explanation is that there might be some very slow
relaxation timescales involved in the high field phase. Or it might be simply an artifact of the
pulsed-field measurements.

The temperature-dependence of the hysteresis observed at high fields is shown in Fig. 3.52(c)
for θ = 2◦, and (d) for θ = 15◦ in the CT mode. A similar temperature dependence is shown in
Fig. 3.53(a) and (b) for the C11 and C44 modes, respectively. In Fig. 3.53, the field, at which the
hysteresis closes (indicated by black arrows and corresponds to Bp in Fig. 3.43), corresponds to
the transition to the polarized paramagnetic state (PPM), suggested previously [105], and fits well
the PPM boundary in the phase diagram shown in Fig. 3.54.
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Figure 3.52: Field-dependence of the relative ultrasound velocity for the ultrasonic mode CT cor-
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3.4.9 Magnetoacoustic quantum oscillations

We observed clear magnetoacoustic quantum oscillations (MAQOs) in the ultrasound velocity in all
the modes measured both in static and pulsed fields. While the oscillations are stronger in certain
modes, they are weak in others. The oscillations are the strongest in the C33 mode. For example,
in the C33 mode, huge MAQOs are directly visible in the ultrasound velocity measured at the 3He
base temperature (T = 0.346 K), as shown in Fig. 3.55. The inset shows quantum oscillations
corresponding to large Fermi-surface orbits obtained by subtracting a smooth background from the
raw ∆v/v signal, essentially comprising of low frequencies ≤ 1 kT.
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Figure 3.55: Magnetoacoustic quantum oscillations in CeRhIn5 in relative ultrasound velocity in
the C33 mode. The inset shows the high-frequency oscillations obtained by subtracting a smooth
background.

In agreement with the results of the previous high-field ultrasound study on CeRhIn5 [105],
we observed strong low-frequency magnetoacoustic quantum oscillations in the CT mode between
Bm and B∗, as shown in the inset of Fig. 3.56. These oscillations with the frequency denoted A
(FA ' 0.6 kT) disappear above B∗, as shown in Fig. 3.56, also in agreement with the previous study.
This experimental result was interpreted as an evidence of a possible Fermi-surface reconstruction
at B∗ in the previous work [105]. However, in that work, quantum oscillations were observed in
the CT mode only.

In our measurements, the magnetoacoustic quantum oscillations from other modes clearly reveal
this frequency. For example, in the C33 mode, shown in Fig. 3.55, where the MAQO are the
strongest, this frequency is present both below and above B∗. The corresponding FFT spectra for
fields below (6-20 T) and above B∗ (31.8 - 36 T) are shown in Fig. 3.57(a). The oscillations with the
frequency A are clearly present both below [the inset of Fig. 3.57(a)] and above B∗ [Fig. 3.57(a)].

In addition to the frequency A, our static-field data in the C33 mode reveals most of the
previously observed dHvA frequencies in CeRhIn5, such as α2,3, α1 and β2. Further, quantum
oscillations below 20 T reveal a previously undetected small-Fermi surface orbit of the frequency
S1 = 70 T [inset of Fig. 3.57(a)] with the effective mass m∗ = 1.8 m0 [Fig. 3.57(b)]. This orbit
seems to disappear above 20 T, coincidentally close to the IC-C transition at Bm observed in other
modes for a field orientation θ ≈ 2◦. This small change of the Fermi surface is possibly associated
with the change of the magnetic structure.

Finally, in Figs. 3.58 (a) and (b), we show the field dependence of the MAQOs frequencies
in the C33 mode at the 3He base temperature for two different orientations θ ' 0◦ and θ ' 4.5◦
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Figure 3.56: Fast Fourier transform (FFT) spectra of the magnetoacoustic quantum oscillations in
the ultrasonic mode CT (shown in the inset) obtained over the field ranges below and above B∗. A
non-oscillating background was subtracted prior to performing the FFTs. The FFTs were perform
over equivalent 1/B ranges indicated by rectangles in the inset.
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Figure 3.58: Field depen-
dence of the MAQOs FFT
spectra in CeRhIn5 ob-
tained in the longitudinal
elastic constant C33 at T ≈
0.35 K for (a) θ = 0◦

(b) θ = 4.5◦. The in-
sets show the corresponding
MAQOs in the ultrasonic
velocity. The FFT spectra
are obtained over the same
1/B ranges. In the panel
(a), for the top curve, the
field range is from Bmin =
31.8 T to Bmax = 36 T
(Bavg = 33.88 T). For each
successive curve, Bmax is
decreased by 1 T down to
20 T. In the panel (b),
for the bottom curve, the
range is from Bmin = 10 T
to Bmax = 10.71 T (Bavg
= 10.34 T). For each suc-
cessive curve, Bmin is in-
creased by 1 T up to 20 T,
and by 0.5 T from there
on. Curves are vertically
shifted for clarity.
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of field from the c axis. To study the field evolution of the Fermi-surface across the two features
observed in the C33 mode at 26.7 T and 32 T for θ ' 0◦, the field range is divided into three
intervals (1) above 32.1 T, (2) between 26.7 T and 32.1 T, (3) below 26.7 T. The red and blue
lines separate these field intervals in Fig. 3.58 (a) as well as in the inset. Since the FFTs are
performed over equal 1/B intervals, the frequency A cannot be resolved due to the very small field
interval chosen for the FFTs. However, when a larger interval (equal to the one used in the dHvA
analysis) is chosen to perform the FFTs, such as done for θ ' 4.5◦ [see Fig. 3.58(b)], the frequency
A as well as its harmonics are clearly resolved. In both Figs. 3.58(a) and (b), the orbits α2,3 and
β2 are present in all the three intervals, while the spectral weight around the α1 orbit develops
progressively only at high fields. The α1 frequency is a fundamental frequency corresponding to
the localized f electrons in CeRhIn5. Its presence at high fields in not an indication of an abrupt
Fermi-surface reconstruction, but inherent to various limitations of this particular experiment, such
as temperature and technique. For example, in our magnetization measurements [see Fig. 3.61(b)],
the α1 orbit is clearly seen to emerge out of the noise level at fields much lower than 30 T. Similar is
the case for our dHvA measurements. Therefore, the MAQOs in the elastic constants CT and C33

are in agreement with our dHvA results, and rule out a field-induced Fermi-surface reconstruction
or an itineracy of the f electrons at B∗. However, some of the dHvA frequencies observed at high
fields in our study are not observed here in the ultrasound velocity.

3.4.10 Conclusions

In summary, we performed high-field ultrasound velocity measurements on bulk single crystals of
CeRhIn5. For a magnetic field slightly tilted from the c axis, we observed distinct anomalies at
both Bm ' 20 T and B∗ ' 30 T at low temperatures in all the symmetry breaking modes, i.e., C11,
C44, C66, and CT . In all these modes, the anomalies are of similar shape, but of the opposite sign.
Both anomalies are absent in the symmetry preserving C33 mode. Furthermore, our temperature-
dependent measurements reveal that both anomalies exist within the AFM state only. Given that
the transition at Bm corresponds to a change of the magnetic structure from incommensurate
below Bm to commensurate above Bm, we argue that the transition at B∗ is of the same origin,
i.e., from the commensurate phase below B∗ to a new incommensurate phase above it. This makes
CeRhIn5 one of the rare compounds, in which the application of a high magnetic field induces a
commensurate to incommensurate transition. High-field inelastic neutron diffraction measurements
are desirable to definitely confirm our hypothesis. In the C33 mode, instead of the B∗ transition,
features around B∗ are observed for a magnetic field applied very close to the c axis suggesting
an exotic mechanism at B∗, such as an interlayer exchange, compression or elongation. Additional
measurements are needed to understand their true origin.

When a magnetic field is tilted further away from the c axis, the anomaly at B∗ slowly moves
to higher fields, and progressively becomes smaller and broader. This behavior is in contrast with
what was observed in the previous transport measurements on microfabricated samples, in which
a sharp resistivity jump at B∗ was observed to increase up to about 20◦ following by a decrease up
to 60◦, where it faded away. Different behaviors observed here on bulk samples and on the FIB-
fabricated microstructures [101, 43] are likely to be due to uniaxial strains or stresses inevitably
present in the latter [143]. CeRhIn5 seems to be very sensitive to uniaxial strains. For instance,
previously reported NQR measurements on bulk and powder samples of CeRhIn5 suggest that
even small strains (or stresses) change the zero-field magnetic structure from incommensurate to
commensurate [144]. Additional measurements under uniaxial stress (or strain) at high magnetic
fields on bulk samples are required to elucidate the role of the uniaxial stress in previous transport
measurements on CeRhIn5 microstructures [101, 43].

Parts of these results are published in [145].

115



CHAPTER 3. CERHIN5

3.5 Magnetization in high magnetic fields

Based on our specific heat and ultrasound results, we suggest that the transition at B∗ corresponds
to a change of the magnetic structure from the incommensurate AFM1 to another incommensurate
AFM4 for fields along the c axis, and from the commensurate AFM3 to the incommensurate AFM4
for fields tilted by 2◦ or more from the c axis. So far, no anomaly was detected at B∗ in either
magnetic torque or magnetization. Similarly, no anomaly was detected in specific heat, before our
AC calorimetric specific heat measurement shown in the previous section.

3.5.1 Longitudinal magnetization

The previous magnetization measurements were performed in pulsed magnetic fields at T = 1.3 K,
in which no detectable anomaly was observed at B∗ [71]. This might be due to several reasons.
First of all, a first-order transition can be easily missed in pulsed-field measurements. Furthermore,
there is a good chance that the anomaly was not observed because of eddy-currents heating. We
observed the anomaly up to T ≈1.9 K in the C33 ultrasound mode which probes the longitudinal
direction. Another possible reason for the absence of an anomaly at B∗ is field misalignment.
Indeed, in the C33 ultrasound mode, the anomaly disappears already at θ = 4.5◦, as discussed in
previous section [see Fig. 3.51].
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Figure 3.59: Longitudinal magnetization in CeRhIn5 for field applied along the c axis at (a) T =
0.35 K and (b) 1.25 K. The blue (red) arrows indicate the up (down) field sweep curves.

Therefore, we performed magnetization measurements in a single crystal of CeRhIn5 for field
applied along the c axis in static magnetic fields up to 36 T in a 3He cryostat. We used a technique
based on the Faraday balance principle, discussed in chapter 2. This technique measures the
longitudinal magnetization i.e. component of magnetization along the field direction (here parallel
to the c axis).

Fig. 3.59 shows the longitudinal magnetization in CeRhIn5 in magnetic fields up to 36 T along
the c axis at T = 0.35 K (a) and T = 1.25 K (b). In accordance with the previous report [71], we
do not observe any feature at B∗ or at Bm. The most crucial result of this measurement is the
absence of a detectable anomaly at or close to B∗ = 30 T down to the lowest temperature measured
i.e. T = 0.35 K. However, in accordance with the previous report [71], there seems to be a small
change of slope of the magnetization across 30 T.
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3.5.2 Perpendicular component of magnetization
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Figure 3.60: Possible signature of the transition at B∗ in magnetic torque for magnetic field applied
(a) at θ = 2◦ and (b) at θ = 4◦ from the c axis toward the ab direction. (c) and (d) shows the
remaining torque signal after subtracting a second order polynomial from the magnetic torque in
(a) and (b), respectively.

Since no detectable feature is present in the longitudinal magnetization, we go back to our
magnetic torque data to see if a anomaly at B∗ is preset in the component of magnetization
perpendicular to the magnetic field. Figure 3.60 shows the magnetic torque in CeRhIn5 for field
applied at θ = 2◦ (a) and θ = 2◦ (b) from the c axis towards the [110] direction. In the raw torque
signal, an anomaly corresponding to Bm = 20.25 T for θ = 2◦ and Bm = 18.1 T for θ = 4◦ is clearly
observed, indicated by the green arrows in Fig. 3.60. For both the orientations of the field, a rather
subtle feature is observed at B ≈ 30 T. This feature becomes apparent on subtracting a quadratic
polynomial from the magnetic torque, as shown in Fig. 3.60 (c) and (d). The pink arrows indicate
the feature at B ≈ 30 T.

In accordance with the angular-dependant behaviour of B∗ in our ultrasound measurement,
the feature at B ≈ 30 is stronger at θ = 2◦ than that at θ = 4◦. Therefore, we suggest, this
feature, probably corresponds to the suggested metamagnetic transition at B∗. The detection of a
feature at B∗, although subtle, in magnetic torque, strongly supports our hypothesis of a change
of the magnetic structure from commensurate to incommensurate. At angles higher than 4◦, the
quantum oscillations are much stronger and the feature becomes much less noticeable. In principle,
we can measure torque at angles smaller than θ = 2◦, where this subtle feature should be more
pronounced, but the signal becomes nosier at smaller angles as magnetic torque vanishes closer to
the crystallographic axes. Therefore, performing alternate magnetic measurements that work for
field applied along or close to the crystallographic axes, such AC susceptibly might be interesting.

3.5.3 Quantum oscillations in longitudinal magnetization

We observe clear quantum oscillations in the longitudinal magnetization, as shown in Fig. 3.61(a),
obtained by subtracting a smooth non-oscillatory background from the magnetization curves in
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Fig. 3.59. FFTs of the oscillation performed over equal 1/B intervals reveals the evolution of the
dHvA frequencies with magnetic fields, as shown in Fig. 3.61(b).

Here, we observe many of the frequencies detected in our dHvA study, such as A, α2,3, α1, and
β2. The evolution of frequencies with magnetic field clearly indicates that there is no discontinuous
shift or emergence of new orbits at 30 T, thus ruling out a field-induced Fermi surface reconstruction
at B∗, consistent with our dHvA study.
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Figure 3.61: (a) Quantum oscillations in CeRhIn5 observed in longitudinal magnetization at 0.35 K
for field applied along the c axis. The quantum oscillations are obtained by subtracting a non-
oscillatory smooth background from longitudinal magnetization shown in Fig. 3.61. (b) Field
evolution of dHvA frequencies. All the FFTs are obtained over the same ∆(1/B) interval. The
top curve corresponds to Bmin =29 T, Bmax =35.9 T and Bavg = 32.08 T. Each successive curves
Bmin is decreased in steps of 0.5 T and corresponding Bmax is adjusted to keep ∆(1/B) constant.
For the bottom most curve Bmin = 20 T, Bmax = 23.06 T and Bmax = 21.42 T.

3.5.4 Conclusions

In conclusion, we performed magnetization measurements in CeRhIn5 in high static magnetic fields.
The component of magnetization parallel to field, i.e., longitudinal magnetization, does not show
any detectable anomaly at B∗ down to T = 350 mK. The component of magnetization perpendic-
ular to magnetic field, measured through magnetic torque down to T = 35 mK, shows a distinct
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anomaly at Bm and a subtle anomaly at B∗ ≈ 30 T. This subtle anomaly around B∗ supports our
interpretation of B∗ as a change of magnetic structure. Additional magnetic measurements, such
as AC susceptibility can be helpful in detecting a more pronounced presence of B∗ in magnetic
properties of CeRhIn5.
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Chapter 4

CeCoIn5

4.1 Introduction

CeCoIn5 is an extremely heavy fermion material having an enhanced Sommerfield coefficient γ ∼
1 J/K2mol [146]. At ambient pressure and zero magnetic field, CeCoIn5 exhibits a non-Fermi-liquid
behaviour at low temperatures in the normal state just before becoming a superconductor below
a critical temperature Tc = 2.3 K [146], signaled by a huge jump in specific heat [see Fig. 4.1].
The unconventional Cooper pairing in CeCoIn5 is considered to be mediated by antiferromagnetic
quantum fluctuations [146, 147, 148, 149].

Figure 4.1: A strong signature of the superconducting transition in CeCoIn5 at 2.3 K in the specific
heat. Adapted from Ref [146].

The SC state is entirely suppressed by a pressure of about 3.6 GPa, above which a Fermi-liquid
state was observed. The presence of an antiferromagnetic QCP at a negative pressure in CeCoIn5

was proposed [150] in an analogy to the Cuprates, in which at negative chemical pressures, close to
the suppression of the AFM state, several novel phases, such as the pseudogap phase, non-Fermi
liquid, and the SC state were observed [151, 152]. The temperature-pressure phase diagram for
CeCoIn5 is shown in Fig. 4.2.

In an applied magnetic field, the superconducting state in CeCoIn5 is suppressed at the upper
critical field Hc2 = 5 T along the c axis and Hc2 = 12 T along the a axis. The temperature-field
phase diagram for the two orthogonal orientations of fields, i.e, along [110] and [001] is shown in
Fig. 4.3(a) and (b), respectively.

At T ≤ 1 K, the superconducting phase transition near the Hc2 = 5 T becomes first order [147].
Furthermore, a new phase, different from the main d-wave superconducting phase, appears close to
Hc2 at low temperatures [155]. This new phase was interpreted as a Q-phase with a field-induced
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Figure 4.2: (a) Temperature-pressure phase diagram of CeCoIn5. (b) Schematic T-P phase diagram
of CeCoIn5 in an analogy with Cuprates. Adapted from Ref. [150].

Figure 4.3: Temperature-magnetic field phase diagram of CeCoIn5 for fields applied along (a) the
[110] direction Ref. [153] and (c) the c axis Ref. [154].

SDW formation close to the nodes [156]. Alternative origins of this new phase have been argued to
be the formation of a Cooper pair signet with a non-zero momentum [157, 153] (the elusive FFLO
phase [158]), singlet and triplet SC pairing, and intertwined orders with p-wave pair-density-wave
[159]. Specific heat and transport measurements suggested CeCoIn5 to be in the proximity of a
magnetic QCP at Hc2 [155], where the SC is suppressed. Additional indications for the presence
of a field-induced QCP at Hc2 stem from the observed cross-over from non-Fermi-liquid state to
Fermi-liquid state above the SC state and the emergence of a new intertwined state in the vicinity
of Hc2. Further, a recent dHvA study revealed an emergence of a field-induced instability above
Hc2 at a very low temperature Tn = 20 mK [154]. It was interpreted as a field-induced AFM state
[see Fig. 4.3(b)]. How this instability evolves into the Fermi-liquid state remains an open question.

4.1.1 Fermi surface and effective masses of CeCoIn5

The Fermi surfaces of CeCoIn5 are quasi-two-dimensional consisting of an almost cylindrical band
15-electron Fermi surface and a highly corrugated cylindrical band 14-hole Fermi surface. The band
13-hole Fermi surface consists of two kinds of small closed pockets. Figure 4.4 shows the calculated
Fermi surfaces in CeCoIn5 obtained from the full potential linear augmented plane wave (FLAPW)
band-structure calculations assuming itinerant f electrons [78]. Since CeCoIn5 is a compensated
metal, the volumes of the electron and the hole-Fermi surfaces are equal.

Previous dHvA studies [124, 119, 78, 161, 160, 154] detected most of the Fermi surface orbits
predicted by the calculations, namely, α3, α2, α1 corresponding to the nearly cylindrical band 15-
electron FS and β2, and β1 corresponding to the corrugated cylindrical band 14-hole FS. The orbits
ε and γ correspond to two small pockets of the 13-hole band FS. The angular dependence of the
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Figure 4.4: Calculated Fermi surfaces of CeCoIn5 assuming itinerant f electrons. Adapted from
Ref. [78]

experimentally observed dHvA frequencies in CeCoIn5 in magnetic fields up to 17 T by R. Settai et
al. [119] is shown in Fig. 4.5(c). Here the α branches follow approximately a 1/cos θ dependence,
where θ is the field-angle from the [001] toward either [100] or [110] direction, indicating nearly
cylindrical Fermi surfaces. The β2 branch has a positive curvature, while β1 has a negative curvature
in agreement with the itinerant calculations. The outer large orbit c in the 14-hole band Fermi-
surface has not been detected experimentally. The excellent agreement between the experimentally
observed dHvA orbits and the itinerant band-structure calculations confirms the itineracy of the f
electrons in CeCoIn5.

A dHvA study at still higher fields up to 28 T detected an emergence of new dHvA frequencies
Fa, Fc and Fd at fields above 23 T, as shown in Fig. 4.5(d) [160]. Further, a decrease of the
Dingle temperature around 23 T was also observed for the frequency F4, revealing a new magnetic
field scale at B ≈ 23 T. The change of Dingle temperature above 23 T suggests an important
modification of the quasiparticle scattering, and, therefore, magnetoresistance of CeCoIn5 must be
probed for a direct signature of any scattering changes.

The cyclotron effective masses corresponding to the main dHvA branches are extremely en-
hanced. For instance, in the field range 15 - 16.9 T along the c axis,the observed cyclotron masses
are about 50 m0 for β1 and β2 branches, 15 m0 for α1, 8.4 m0 for α3 and 18 m0 for α2 [119].
However, the observed heavy masses do not completely account for the huge zero-field Sommerfield
coefficient γ ≈ 1000 mJ/K2mol. The ‘missing mass’ was in part accounted for by the observation
of a field-dependent effective masses on the majority of the Fermi surfaces as shown in Fig. 4.6 (a)
and (b). The effective masses were observed to reduce with fields up to 18 T [119]. The reduction
of the effective masses with magnetic field is common behavior in heavy fermions. Another reason
for the ‘missing mass’ was uncovered by the observation of a spin-dependent mass enhancement
for α3 and β2 orbits in fields up to 18 T without any non-linear splitting of these Fermi surfaces
[161] as shown in Fig. 4.6(c). However, there are still undetected dHvA frequencies predicted by
the calculations such as c in band-14 [see Fig. 4.4], which might have an enhanced mass.

Therefore, CeCoIn5 needs to be explored at still higher fields to understand the field evolution
of the Fermi-liquid state through the Fermi surface and the effective mass studies, as well as to
understand the field-induced instabilities such as the one observed at 23 T [160].
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Figure 4.5: Low-fields quantum oscillations in CeCoIn5. (a) As-measured quantum oscillations and
(b) the corresponding FFT spectrum. (c) The angle-dependence of the dHvA frequencies reported
by R. Settai et al. [119]. (d) FFT spectra of the high-field quantum oscillations reported by I.
Sheikin et al. [160].
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Figure 4.6: Effective masses in CeCoIn5 (a) and (b) field-dependence of the effective masses by R.
Settai et al. [119]. (c) Spin-dependent mass enhancement for α3 orbit at orientation θ = 0◦ and
θ = 10◦ by A. McCollam et al. [161].

4.2 Results

4.2.1 Abstract

We present high-resolution low-temperature dHvA effect and magnetoresistance measurements in
CeCoIn5 in static magnetic fields up to 36 T. In the dHvA effect, for a field applied close to the
c axis, we observed a previously undetected high frequency Fe = 10.24 kT at high fields. This
frequency has a strongly enhanced effective mass m∗ =25-30 m0. Furthermore, an anomalous
behavior of the quantum oscillation amplitudes as well as the effective masses corresponding to the
α orbits was observed around 23 T. The effective masses on the α Fermi surface rapidly decrease
with magnetic field up to 23 T and then increase abruptly above this field. The large field interval
of our dHvA measurements allowed us to observe a clear field-induced splitting of several dHvA
frequencies. Our magnetoresistance measurements on FIB-fabricated microstructures of CeCoIn5

revealed a distinct anomaly at 23 T in the in-plane transport, while the out-of-plane transport
remains featureless. We interpret these field-induced changes at B ≈ 23 T as a possible signature
of the departure from the conventional Fermi-liquid state in high fields in CeCoIn5.

4.2.2 dHvA effect in CeCoIn5 in high fields

The dHvA effect measurements were performed in static magnetic fields up to 36 T in an dilution
fridge equipped with a in-situ rotator. A single crystal of CeCoIn5 was mounted on a 50 µm thick
metallic cantilever with a 100 µm spacer separating it from the ground plate, as shown in the inset
of Fig. 4.7.

4.2.3 Angle-dependence of the dHvA oscillations

Using the rotator, the c axis of the sample was carefully aligned along the magnetic field where
the magnetic torque vanishes. Using the rotator, we measured the dHvA effect at several different
orientations θ of the magnetic field from the c toward the a axis, as shown in Fig. 4.7.

As shown in Fig. 4.7, on increasing the field angle θ the background torque becomes larger.
There is a distinct signature of the superconducting transition at Hc2 = 5 T in the magnetic torque.
Further, quantum oscillations start appearing at fields below 10 T and are strongly enhanced at
high fields [see Fig. 4.7(b)].
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Figure 4.7: (a) As-measured magnetic torque in CeCoIn5 for fields applied at several field angles θ
from the c towards the a axis at T = 30 mK. (b) Quantum oscillations obtained by subtracting a
smooth polynomial background from the raw torque signal in (a).

Fig. 4.8 shows the FFTs corresponding to the quantum oscillations in Fig. 4.7(b). The FFTs
are performed over the high-field intervals 25 - 36 T to study the Fermi-surface of CeCoIn5 at fields
entirely above 23 T and with a high enough resolution to well resolve close dHvA frequencies.

We observed all the previously detected dHvA frequencies [124, 119, 78, 161, 160, 154], as shown
in Fig. 4.8. In addition, we detected a new frequency Fe = 10.24 kT, which was not observed in
any of the previous studies. Fe appears at θ = 6◦ between the second harmonics of α2 and α1.
Either it corresponds to the so far undetected fundamental frequency c in the hole band-14, or it
is new frequency not accounted for in the band-structure calculations. Another possible origin of
Fe, although unlikely, is the spin-split of α2, which is clearly resolved only in the second harmonic.
The α2 peak is indeed asymmetric. However, the spin-splitting of α2 cannot be directly resolved
in this field range. Further, the frequency Fc and β2 also seem to be split into two peak for θ = 6◦.

4.2.4 Field-dependence of quantum oscillations in CeCoIn5

The evolution of the dHvA frequencies with magnetic field at three different orientations is shown
in Fig. 4.9. It is evident that the frequencies Fa, Fc and Fd appear only at fields above 23 T. This
observation is consistent with the previous report [160].

Further, the new frequency Fe also seems to appear only at fields above 23 T, as is evident from
Fig. 4.9(c). Its presence at high fields might also be related to the field-induced instability at 23 T,
like Fa, Fc and Fd, or indeed it is only observed only at high fields due to its strongly enhanced
effective mass.

The dHvA frequencies Fa, Fb and β2 are strongly field dependent [see Fig. 4.9(d)]. Fa and β2

decrease with magnetic field. For example, β2 changes from 7.2 kT at 15 T to 6.8 kT at 32 T, i.e.,
it decreases by about 5%. The frequency Fb increases with field. Such a strong field dependence of
these dHvA frequencies, probably, results from a field-induced non-linear splitting of these orbits,
where the heavier split peak is not detected due to extremely heavy quasiparticle mass, and only
the lighter split peak is observed.

Figure 4.10 shows the evolution of the dHvA amplitudes of the α3, α2 and α1 orbits with
magnetic field. An anomalous behavior of their amplitudes is observed over the field range 20-
24 T. This anomalous behavior of the dHvA amplitudes is more pronounced for α2 and α1 and at
field orientations closer to the c axis. The amplitude of α1 gradually increases with field following
a pronounced suppression close to 22 T before a new increase at higher fields. The amplitude
of the α3 frequency gradually increases at fields above 23 T signaling an abrupt increase of the
Dingle temperature, which is almost doubled. At fields above 23 T, the amplitude of α2 is almost
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Figure 4.8: FFTs of the quantum oscillations in CeCoIn5 (shown in Fig. 4.7) at several field angles
θ from the c towards the a axis in the FFT range 25 - 35.95 T.
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Figure 4.11: Evolution of the dHvA amplitudes in CeCoIn5 with magnetic field applied at θ = 6◦

at several temperatures for (a) the α3, (b) α2, and (c) α1 orbits.

unchanged for field orientations close to the c axis, i.e., at θ = 0.48◦ and θ = 2◦ [see fig. 4.10(a)
and (b)]. At a larger field angle of θ = 6◦, the dHvA amplitudes of α3, α2 and α1 all show a similar
behavior, i.e., a gradual increase with field with an anomalous decrease between 20 and 23 T. The
observed decrease of the Dingle temperature suggests a modification of the quasiparticle scattering
for the α orbits. Therefore, the field-induced instability at 23 T seems to be related to the quasi-2D
band-15 Fermi-surface.

Finally, in Fig. 4.11 we show the field evolution of the dHvA amplitudes of the α3, α2, and α1

orbits at different temperatures. The anomalous decrease of the dHvA amplitudes, which is most
pronounced for α1, around 23 T becomes less prominent at higher temperatures, and is no longer
observed at 400 mK [see Fig. 4.11(c)]. For α2 and α3 [see Fig. 4.11(a) and (b)], the anomalous
behavior already become less noticeable already at 200 mK.

The disappearance of the anomalous behavior of the dHvA amplitudes at higher temperatures
provides an important insights into the field-induced instability. It suggests the quasiparticle scat-
tering in the vicinity of 23 T is strongly affected at low temperatures only.

4.2.5 Effective masses in CeCoIn5

Figure. 4.12 shows the temperature evolution of the dHvA amplitudes in two different field ranges
(equal intervals in ∆(1/B)) with the reciprocal average Bavg (a) 25.28 T and (b) 31.51 T. The
corresponding mass plots are shown in Figs. 4.12 (c) and (d).

The effective masses for both field interval are listed in Table 4.1. In accordance with previous
reports, some of the effective masses are found to be strongly enhanced. The effective mass of the
new frequency Fe is also strongly enhanced, i.e., 29.6 m0 at 25.28 T, and 24.7 m0 at 24.7 T. The
effective masses of the frequencies appearing above 23 T are also quite high.

Further, some of the effective masses are strongly field dependent, as shown in Fig. 4.13. The
effective mass of β1 is more than halved from ≈ 60 m0 at B ≈ 15 T to ≈ 25 m0 at B ≈ 32 T.
The effective masses of β1 and β2 rapidly decrease with field up to about 25 T following by a slow
decrease up to about 28 T, above which they do not change any longer. The effective masses of
the α orbits shows a peculiar field dependence. The masses of all the orbits decrease with field up
to 23 T. Above 23 T, the effective masses no longer decrease, but rather increase with field. Such
a field enhancement of the effective masses is quite rare. The increase of the effective mass is the
strongest for the α2 frequency, where it increases from 11m0 at 23 T to 16 m0 at 32 T. For α3 and
α1, the masses increase with field only up to 28 T, and then start to decrease gradually at higher
fields.
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Figure 4.12: Temperature-dependence of the dHvA amplitudes in CeCoIn5 over the field intervals
with the reciprocal field average (a) Bavg =25.28 T and and (b) Bavg =31.51 T. The corresponding
mass plots are shown in (c) and (d).

Effective masses in CeCoIn5

dHvA Frequency(kT) m∗ at 25.28 T (m0) m∗ at 31.51 T (m0)

α3 7 7.8
α2 13.2 15.7
α1 11 9.8
β2 27.3 18.9
α1 36.6 28.5
Fc 21.4 12.2
Fd 16.3 15.7
Fe 29.6 24.7

Table 4.1: Effective masses (m∗) corresponding the various dHvA frequencies in CeCoIn5.
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4.2.6 Field-induced splitting of the Fermi surface
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Figure 4.14: FFT of the dHvA oscillations in CeCoIn5 obtained over a large field interval 18 - 36 T.
The inset shows a still larger field interval to resolve the splitting of the α orbits.

The field-induced spin-splitting can be resolved by performing the FFT over a larger field range,
such as shown in Figs. 4.14 and 4.15. The frequency α3 has an asymmetric shape, in which the
splitting can be resolved by a double-peak fit. Similarly, the shape of the α1 and α2 is asymmetric.
Further, there are small split-peak-like features around the α1 and α2 orbits. The small peak α2(3)

close to main α2 orbit has an effective mass similar to α2, i.e., m∗ ≈ 12 m0. There are two small
peaks, α1(1) and α1(3), close to the main α1 orbit as well. Their effective masses are m∗ ≈ 12 m0 for
α2(1) and m∗ ≈ 10 m0 for α2(3). The effective mass of α1(3) was obtained by a double-peak fitting,
as shown in Fig. 4.16(a). Further, the splitting of α1 is clearly resolved in its second harmonic over
the field range 15.4 - 29 T [see Fig. 4.16(b)].
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The ratio of the effective masses of the split peaks α1(2) and α1(3) is almost the same as that
for their second harmonic, i.e., m∗(α1(3))/m

∗(α1(2)) = m∗(2α1(3))/m
∗(2α1(2)) ≈ 1.4. A still larger

interval is required to extract the effective masses of the small split peak in the second harmonic
of α2 [Fig. 4.16(b) and (f)]. The effective mass ratio of the split peaks α2(2) and α2(3) as well as
their second harmonics is also similar, i.e., m∗(α2(3))/m

∗(α2(2)) = m∗(2α2(3))/m
∗(2α2(2)) ≈ 1. The

splitting of α3 cannot be resolved in its second harmonic 2α3. A split peak β2(1) is observed close
to main β2 frequency labeled β2(2). However, no such splitting in seen in its second harmonic.
Therefore, it is not clear if β2(1) is a result of field-induced spin-splitting, in which the main β2

frequency should split into a heavier β2(1) = 6.8 kT with m∗ = 25.8 m0 and a lighter β2(2) = 7 kT
with m∗ = 15.7 m0 (see Fig. 4.15).

4.2.7 Magnetoresistance in CeCoIn5

The magnetoresistance measurements on a FIB-fabricated microstructure of CeCoIn5 were per-
formed in static fields up to 36 T in a dilution refrigerator equipped with an in-situ rotator.

Figure 4.17: FIB-fabricated micro structured devices of CeCoIn5. Devices labeled (a) and (c) are
equivalent

The micro-structured devices of CeCoIn5 were prepared by T. Helm at the MPI Dresden; the
details of the process can be found elsewhere [162]. As shown in the Fig. 4.17, there are three
different microstructured devices labeled (a), (b) and (c). The vertical devices labeled (a) and
(c) are equivalent and their length is along the c axis. These devices were used to measure the
out-of-plane transport, i.e., I ‖ c. The horizontal device labeled (b) has its length along the a axis
and was used to measure the in-plane transport with I ‖ c. The dimensions of these devices are as
following.
For the out-of-plane transport device labeled (a) : l × b× h = 11.74 µm× 1.876 µm× 2.045 µm
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Figure 4.18: In-plane and out-of-plane transport in CeCoIn5 for the field applied along the c axis
at T = 30 mK. The arrow indicate the field-induced instability in the in-plane transport.

For the in-plane transport device labeled (b) : l × b× h = 17.45 µm× 1.713 µm× 2.045 µm.

Figure 4.18 shows the in-plane and out-of-plane transport in the microstructured devices of
CeCoIn5 in fields up to 36 T applied along the c axis. Both configurations show the superconducting
transition at Hc2 = 5 T. The out-of-plane transport is featureless above Hc2. However, the in-plane
transport shows an unusual behavior. It first increases with field up to 21 T followed by a step-like
feature at 22 T and then decreases at higher fields.
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Figure 4.19: (a) In-plane and (b) out-of-plane transport in CeCoIn5 for field applied at several
angles θ from the c axis toward the a axis at T = 30 mK.

On increasing the angle θ of the magnetic field from the c toward the a axis, the high field
magnetoresistance increases for both transport directions. The feature at 22 T becomes smaller
with increasing θ. Also, the anomaly shifts to a slightly higher field with increasing the angle θ [see
Fig. 4.19(a)].

Furthermore, we observed clear Shubnikov-de Haas oscillations at high fields for transport
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along both directions. The quantum oscillations in the in-plane transport after subtracting a non-
oscillatory background for a field applied along the c axis are shown in the inset of Fig. 4.20. The
FFT of the SdH oscillations reveals most of the frequencies detected in our dHvA measurements
[see Fig. 4.20]. The relative amplitudes of the SdH oscillations are entirely different from those
observed in the dHvA measurements. The field-induced splitting is clearly resolved for the α1 orbit.
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Figure 4.20: FFT spectra of Shubnikov de Haas quantum oscillations in CeCoIn5 (shown in the
inset) for a field applied along the c axis at T =30 mK.

4.3 Conclusions

In summary, we performed dHvA and mangetoresistance measurements in CeCoIn5 at high fields
close to the c axis. Our measurements revealed an anomalous quantum oscillation behavior at
intermediate fields between 20 and 24 T, which is more pronounced at low temperatures and
becomes unnoticeable at T = 400 mK. The effective masses also show an unusual field dependence.
The effective masses of the α orbits show an abrupt increase above 23 T. Finally, magnetoresistance
measurement revealed a clear anomaly at 22 T. Based on these observations, we suggest that a
field-induced instability occurs in CeCoIn5 at high fields. The enhancement of effective masses with
magnetic fields suggests a departure from the standard Fermi-liquid behavior.
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Chapter 5

Ce-218 heavy-fermion materials

5.1 Introduction

The Ce-115 family of heavy-fermion materials, comprising of members, such as CeRhIn5, CeCoIn5

and CeIrIn5, has been extensively studied and revealed rich and exciting physics, as discussed in
the preceding chapters. It is only natural to expect similar exotic physics to occur in their more
3D analogs, such as Ce2RhIn8, Ce2CoIn8 and Ce2IrIn8.

Figure 5.1: The crystal structure of (a) cubic CeIn3, (b) tetragonal CeMIn5 formed by stacking
alternating layers of CeIn3 and MIn2 along the c axis and (c) tetragonal Ce2MIn8 formed by adding
an extra CeIn3 layer in between the alternating CeIn3 and MIn2 layers in CeMIn5.

These compounds form the so-called Ce-218 family (Ce2MIn8, M = Rh, Co, Ir, Pt, Pd) of
cerium-based heavy fermions. These compounds crystallize into a tetragonal Ho2CoGa8 type crystal
structure. Unlike Ce-115s, where the crystal structure comprises of alternating layers of conducting
CeIn3 and insulating MIn2, in Ce-218s, an additional conducting CeIn3 layer is sandwiched in
between two MIn2 layers [see Fig. 5.1]. The stack so formed has two layers of CeIn3 followed by a
layer of MIn2 alternating along the c axis. Therefore, the electronic structure becomes more 3D-like
in comparison with the 2D-like electronic structure in CeMIn5.

The physical properties of the 218 compounds are found to be qualitatively similar to their
corresponding 115 analogs. For instance, similar to CeRhIn5, Ce2RhIn8 is also an antiferromagnet,
but with a lower TN = 2.8 K [73]. Ce2IrIn8 shows a field-induced non-Fermi liquid behavior [163]
just like its 115 analog CeIrIn5. Similarly, Ce2CoIn8 also becomes superconducting at ambient
pressure like CeCoIn5, but with a lower Tc ∼ 0.45 K [164].
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Considering significant lowering of the superconducting ordering temperature Tc with the ad-
dition of an extra conducting CeIn3 layer in Ce-218s, these compounds can be an ideal playground
to understand the role of dimensionality in unconventional superconductivity. In this regard, in-
formation about their Fermi surfaces can play a crucial role. It is, therefore, important to check if
the extra conducting layer drastically changes the Fermi-surface morphology in 218s in comparison
with 115s or only the Fermi surfaces only grow bigger in size, but with a morphology similar to
115s. However, there are not many Fermi-surface studies on these compounds. To the best of my
knowledge, dHvA oscillations have never been observed in Ce2IrIn8 and Ce2CoIn8 due to a poor
sample quality, while in Ce2RhIn8 there is only one dHvA study in low fields, in which only two
frequencies were detected [165]. Therefore, the Fermi surfaces of these compounds remain largely
unexplored.

That is why, we tried to grow high-quality single crystals of these 218 compounds as well as
their non-f lanthanum analogs to perform Fermi-surface studies. I grew these samples during my
brief stay at the ICC-IMR, Tohoku university in Oarai, Japan.

5.2 Single crystals growth

The single crystals of Ce2MIn8’s are grown using the self-flux method. The method is named as
such because one of the starting materials, taken in excess amount, acts as the flux. In case of
Ce2MIn8’s, excess indium (In) acts as flux that helps in melting the starting elements (Ce, Co, Rh,
Ir) well below their melting points. The single crystals grow as a result of precipitation when the
molten homogenized supersaturated solution of the starting materials is slowly cooled down in a
controlled manner. The following steps were perfomed for growing the single crystals.

1. Cleaning and baking the crucible The single crystals are grown in an alumina crucible.
The crucible first has to be cleaned thoroughly to avoid unwanted impurities before placing the
starting materials in it. To this end, the crucible is kept in acetone in a small flask, which is placed
in an ultrasonic vibrator for about 10 minutes. The crucible is then taken out and placed in a
baking furnace. In the baking furnace, the crucible is heated and simultaneously pumped using a
turbo pump. The crucible baking is done for at least a few hours or overnight.

2. Starting materials The starting materials are commercially available elements of very high
purity (more than 95%). The starting materials for growing single crystals of Ce(La)2MIn8’s were
then placed in the cleaned alumina crucible in the stoichiometric ratio Ce(La): M (Co,Rh,Ir): In
:: 2:1:20. Note, that indium (In), which acts as the flux, is taken in excess.

For growing Ce2CoIn8 and La2CoIn8, at first a stoichiometric ratio (Ce(La):Co :: 2:1) of the
two starting materials, cerium (lanthanum) and cobalt was arc-melted to lower their melting points
further and obtain a good homogeneous alloy of the two. After arc-melting a pellet of Ce2Co
(La2Co) is formed, which is then placed in the crucible along with the excess indium. For the
other two compounds, Ce2RhIn8 and Ce2IrIn8, the starting materials were placed in the crucibles
in elemental forms without arc-melting.

3. Evacuation and encapsulation of the crucible Once the starting materials are placed in
the alumina crucible, it is encapsulated in an evacuated quartz ampoule, which is then placed in
the programmable heating furnace.

4. Crystal growth The stating materials in the sealed ampoules were put through the heating-
cooling profile shown in Fig. 5.2 to grow single crystals. For growing Ce2CoIn8, the profile shown
in Fig. 5.2(a) was used, while for growing Ce2IrIn8 and Ce2RhIn8 the profile shown in Fig. 5.2(b)
was used. The mixture of starting materials was first heated up to about 1000◦C. All the starting
materials, even with a melting point much higher than 1000◦C melt at this temperature because
of the indium flux. The heating is kept constant at 1000◦C for a few hours so that the melted
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Figure 5.2: The heating-cooling profile used for growing single crystals of (a) Ce2CoIn8 and (b)
Ce2IrIn8 and Ce2RhIn8.

materials form a homogenized solution. Then comes the most crucial step for the crystal growth,
i.e., precipitation upon cooling.

The growth of crystals largely depends on the cooling profile followed. In order to grow Ce2CoIn8

single crystals, the heated melt is first cooled rapidly to 650◦C in 30 minutes. From 650◦C onwards,
the mixture was cooled very slowly, at a rate of 4 ◦C/hour down to 350 ◦C, during which time
the single crystals grow. To grow Ce2RhIn8 and Ce2IrIn8 single crystals, the molten homogenized
solution at 1100◦C is slowly cooled at a rate of 8◦C/hour down to 650◦C during which the single
crystals grow.

The single crystals are still immersed in the molten excess of indium flux. This excess of indium
can be removed by spinning it off in a centrifuge. Further, any residual indium flux can be removed
by immersing the crystals in dilute Sulphuric acid for a short time.

Finally, after all these steps, we obtained nice faceted single crystals, such as shown in Fig. 5.3.
The crystals grew in all sizes ranging from less a millimeter up to half a centimeter. The elemental
characterization of these crystals was done using energy dispersive X-ray spectroscopy (EDS).

Ce2IrIn8 grew in a mixed phase with CeIn3, i.e., single crystals of CeIn3 also grew along with
Ce2IrIn8. Similarly, Ce2CoIn8 grew in a mixed phase with CeCoIn5. On the other hand, Ce2RhIn8

grew in pure single phase. Further, the lanthanum analogs of Ce2IrIn8 and Ce2RhIn8 were also
successfully grown in single phase. However, instead of the intended La2CoIn8, crystals of LaCoIn5

grew in a pure phase. Few nice looking single crystals were selected from among the lot to study.
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Figure 5.3: Single crystals of Ce-based 218 heavy fermions and their La analogs grown at the
ICC-IMR.

5.3 Ce2CoIn8

As already mentioned, Ce2CoIn8 grew in a mixed phase along with CeCoIn5. The single crystals
of Ce2CoIn8 have a truncated hexahedron shape, while single crystals of CeCoIn5 have a plate-like
shape, as shown in Fig. 5.4.

Figure 5.4: Single crystal of Ce2CoIn8 (left) and CeCoIn5 (right)

Using single crystal diffraction, the lattice parameters of the Ce2CoIn8 single crystal are esti-
mated as a = 4.4643 Å and c = 12.26 Å. The lattice constants are in agreement with previous
reports [164, 166].

5.3.1 Resistivity and specific heat

We selected two crystals, a truncated hexahedron shaped crystal of Ce2CoIn8 (S2) and a plate
shaped crystal of CeCoIn5 for resistivity measurements using PPMS. The current was applied
along the a axis in both cases. As expected, upon cooling down, both compounds showed a hump-
like maximum corresponding to the onset of the Kondo coherence at intermediate temperature
and a superconducting transition at lower temperatures [see Fig. 5.5]. For CeCoIn5, the Kondo
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coherence occurs at Tcoh ≈ 50 K and the superconducting transition occurs at Tc = 2.3 K. For
Ce2CoIn8, both Tcoh ≈ 10 K and Tc = 0.4 K are much lower.

Further, two additional step like features were observed in Ce2CoIn8 at Tb = 0.9 K and Ta = 1.3
K. These features were also detected in the previous studies as well [164, 167]. However, there is
no detectable feature around 2.3 K, the superconducting transition temperature of CeCoIn5, in
Ce2CoIn8 suggesting the absence of any CeCoIn5 impurity in this Ce2CoIn8 sample.
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Figure 5.5: (a) Temperature dependence of resistivity in Ce2CoIn8 (blue) and CeCoIn5 (red). (b)
Low-temperature specific heat of Ce2CoIn8 obtained using the thermal relaxation technique at zero
field (blue) and at 11 T (red). The upper inset shows a zoomed in view of specific heat at low
temperatures. The lower inset shows the sample (S1) used for the specific heat measurement.

Next, we selected a smaller crystal of Ce2CoIn8 (S1) for specific heat and dHvA effect measure-
ments. A picture of this crystal is shown in the lower inset of Fig. 5.5(b). The low-temperature
specific heat measured using the thermal relaxation technique is shown in Fig. 5.5(b). The spe-
cific heat decreases upon cooling down to ≈3.5 K and then increases slightly at lower temperatures.
There is no detectable trace of a CeCoIn5 impurity in this single crystal (S1). Therefore, we selected
this crystal to measure the dHvA effect as well.

5.3.2 dHvA effect

Figure 5.6: Single crystal of Ce2CoIn8 mounted on a 25 µm thick cantilever for dHvA effect
measurements. The sample was rotated from the c towards the a axis.

To measure the dHvA effect in Ce2CoIn8, we used the most sensitive cantilever (25 µm thick).
Figure 5.6 shows the single crystal S1 mounted on the cantilever. The dHvA effect in Ce2CoIn8
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was measured in static magnetic fields up to 36 T in a dilution refrigerator equipped with an in-situ
rotator.
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Figure 5.7: dHvA effect in Ce2CoIn8 at T = 50 mK in magnetic fields up to 36 T applied at θ = 6◦

from the c toward the a axis. (a) The as-measured magnetic torque in Ce2CoIn8. (b) Quantum
oscillations in Ce2CoIn8 obtained by subtracting a smooth non-oscillatory background from the
torque signal. (c) FFTs of quantum oscillations in (b) for different field ranges.

Figure 5.7(a) shows the magnetic torque acting on the Ce2CoIn8 single crystal in magnetic
fields applied at θ = 6◦ from the c toward the a axis. The magnetic torque shows a peculiar broad
minimum at BH ≈ 28 T. The origin of this minimum is not clear. Further, there is another small
step-like feature at BL ≈ 5 T, which becomes clear on subtracting a smooth background, as shown
in Fig. 5.7(b). The origin of this feature is also not clear. Coincidentally, BL corresponds to the
Hc ‖ c in CeCoIn5 and, therefore, might be due to a tiny amount of a CeCoIn5 impurity. However,
this would be surprising as specific heat showed no detectable trace of any CeCoIn5 impurity in
this crystal (S1) [see Fig. 5.5(b)].

Most importantly, we observed clear quantum oscillations in the heavy-fermion superconductor
Ce2CoIn8 for the first time. To the best of our knowledge, quantum oscillations have not been so
far observed in this compound. The oscillations appear already at about 10 T and grow stronger
with field, such that the low-frequency oscillations become distinguishable on the magnetic torque
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Figure 5.8: Angle dependence of the dHvA frequencies in Ce2CoIn8 at T = 50 mK obtained over
the field range 25.5 - 31.4 T. (a) FFTs at various orientations of the magnetic field. The bottom
four FFTs at (1◦, 2◦, 4◦ and 6◦) are obtained from torque measurements using a 25µm cantilever,
for the rest (6◦ to 44◦), a 50µm cantilever was used. Curves are shifted vertically for clarity. (b)
dHvA frequencies plotted as a function of angle θ from the c toward the a axis.

signal itself.

The FFT of these quantum oscillations reveals several frequencies γ, ε, α3, α2 and α1 shown
in Fig. 5.7(c). While most of these frequencies are present already below 20 T, although their
amplitudes are very small, the α1 frequency with the smallest amplitude is visible only at high
fields, above 24 T.

Next, we performed angle dependent measurements of these dHvA frequencies to map the Fermi
surface of Ce2CoIn8. The angle dependence of all the observed frequencies is shown in Fig. 5.8(d).
The frequency α3 is observed up to large angles ∼ 44◦. The frequencies α2 and α1 persist up
to smaller angles. α3 roughly follows a 1/cos(θ) dependence suggesting that it originates from a
quasi-2D Fermi surface. The angle dependence of α2 and α1 is comparatively flatter suggesting
a more distorted cylindrical Fermi-surface. The dHvA frequency γ is almost angle independent
suggesting that it originates from a small isotropic Fermi-surface pocket.

To determine the nature of the f electrons, i.e., itinerant or localized, we compare the experi-
mentally obtained dHvA frequencies in Ce2CoIn8 with those obtained from the LDA band-structure
calculations1. The calculated Fermi-surfaces for La2CoIn8 assuming the f electrons to be localized
and for Ce2CoIn8 assuming the f electrons to be itinerant are shown in Fig. 5.9.

The experimental dHvA frequencies are plotted against these band-structure calculations as-
suming the f electrons to itinerant [see Fig. 5.10(a)] and localized [see Fig. 5.10(b)]. The agreement
with the localized calculations is extremely poor for the α frequencies. The agreement between the

1These calculations were performed by H. Harima, Kobe university, Japan.
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Figure 5.9: Theoretical Fermi surfaces of La2CoIn8 (left) and Ce2CoIn8 (right) obtained from band
structure calculations.
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Figure 5.10: Comparison of experimentally obtained dHvA frequencies (coloured: red, green, cyan
and magenta) in Ce2CoIn8 with (a) the theoretical band structure calculations assuming the f
electrons to be itinerant and (b) localized (c) the experimentally obtained dHvA frequencies in
CeCoIn5 from ref [119] (open circles) and our work (closed black circles).
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experimental frequencies and the itinerant calculations is not very good either. Although there is
some resemblance of α3 and γ with the calculations, α2 and α1 do not match any of the calculated
branches.

Finally, in Fig. 5.10(c), we compare the dHvA frequencies in Ce2CoIn8 with the experimentally
obtained dHvA frequencies in CeCoIn5. Here, the open circles are dHvA frequencies in CeCoIn5

obtained by R. Settai et al. in field up to 17 T, [119] at low fields and closed black circles rep-
resent the dHvA frequencies in CeCoIn5 that we obtained in our high field (25.5 - 31.4 T) dHvA
measurements discussed in the previous chapter.

There is a certain qualitative agreement between the experimentally obtained dHvA frequen-
cies in Ce2CoIn8 and those in CeCoIn5. However, compared to CeCoIn5, the dHvA frequencies
in Ce2CoIn8 are shifted upwards suggesting larger orbit sizes. Based on the qualitative agreement
between the experimentally obtained dHvA frequencies in Ce2CoIn8 with those in CeCoIn5, it ap-
pears that the Fermi surfaces of Ce2CoIn8 have a morphology qualitatively similar to CeCoIn5, but
with a larger volume. Another possibility for the qualitative agreement between the experimental
frequencies in both compounds it that the frequencies observed in Ce2CoIn8 might be originating
form a CeCoIn5 impurity phase that is somewhat misaligned with the main Ce2CoIn8 phase. Al-
though, this seems to be extremely unlikely, as no detectable trace of CeCoIn5 was found in the
specific heat measurements, further studies are needed to rule this out completely.
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Next, we measured the temperature dependence of the dHvA amplitudes to determine the
corresponding effective masses, as shown in Fig. 5.11(a) and (b). The effective masses deduced
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form the standard LK fit to the temperature dependence of the dHvA amplitudes are 6.7±0.3 m0

for α3, 19±1 m0 for α2 and 5.4±0.6 m0 for α1. The effective mass of α2 in Ce2CoIn8 is higher
than that in CeCoIn5, while for α1 it is lower. The effective mass of α3 is almost field independent,
while α2 shows a mass enhancement with magnetic fields Fig. 5.11(c). The field-dependence of the
effective masses could not be extracted at lower fields due to the very small amplitudes.

Moving further, in Fig. 5.12 we show the dHvA effect measurements in Ce2CoIn8 performed in
a superconducting magnet for fields applied close to the a axis. Fig. 5.12(a) shows the magnetic
torque (top) and the signal left after subtracting a smooth background (bottom). There are two
features in the magnetic torque: a small one at Bl ∼ 5.5 T and a bigger one at Bh ∼ 11 T. It is not
clear if the feature at Bl is the same as that observed for the field along the c axis also close to 5 T.
The origin of the feature at 11 T is not clear either. At increasing orientation of the field away from
the a toward the c axis, it becomes smaller and moves to higher fields. It becomes undetectable at
≈ 11◦ from a axis in field up to 18 T as shown in Fig. 5.12(b).

10 11 12 13

0 2 4 6 8 10 12 14

0 1 2 3 4 5 6 7

To
rq

ue
 (a

rb
. u

ni
ts

)

 

To
rq

ue
 (a

rb
. u

ni
ts

)

Magnetic field (T)

B // a

 
 

 

(c)

(b)  from a

 

 (a)

 

 

 from a

Bl

 

 

T = 50 mK

Bh

Bh

 

 Magnetic Field (T)

 

 

 from a

 from a

 from a

 from a

 

 

A
m

pl
itu

de
 (a

rb
. u

.)

F (kT)

 from a

Bl

Figure 5.12: dHvA effect in Ce2CoIn8 at T =50 mK for a field applied close to the a axis. (a)
Magnetic torque in Ce2CoIn8 (top) and the signal left after subtracting a smooth background
(bottom). (b) Angle dependence of the feature at Bh at a few different orientations of field from
the a toward the c axis. (c) The FFT of the magnetic torque after subtracting a polynomial
background for a field applied at 0.65◦ from the aaxis.

The high frequency quantum oscillations are not present for fields close to the a axis suggesting
that the large Fermi surfaces in Ce2CoIn8 are anisotropic and quasi-two-dimensional. The small
isotropic Fermi-surface pocket γ is present, as shown in fig. 5.12(c).
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5.4 Ce2IrIn8

We also tried to measure the dHvA effect on a small plate-like single crystal of Ce2IrIn8 in an
18 T superconducting magnet in a dilution refrigerator equipped with an in-situ rotator. Fig.
5.13(a) shows the magnetic torque in Ce2IrIn8 for magnetic fields applied in the vicinity tof the
two principal crystallographic, i.e., close to c (left) and a axes (right).
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Figure 5.13: Magnetic torque in Ce2IrIn8 in magnetic fields up to 18 T at 50 mK. (a) Magnetic
torque in Ce2IrIn8 for fields applied close to the c (left) and the a (right) axes. (b) The corresponding
torque signal after subtracting a polynomial background from the curves in (a). (c) FFT spectra
of the torque signals in (b).

It is evident from Fig. 5.13(b) and (c) that there are no quantum oscillations for either ori-
entation of the magnetic field up to 18 T. This suggest that the measured sample of Ce2IrIn8 is
not of a high enough quality to observe quantum oscillations in intermediate fields. Measurements
at still higher fields are needed to check if quantum oscillations can be observed in this sample of
Ce2IrIn8.
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5.5 Ce2RhIn8

Magnetic toque in Ce2RhIn8 was also measured on a small plate-like single crystal in the 18 T
superconducting magnet in a dilution refrigerator. Fig. 5.14(a) shows the magnetic torque in
Ce2RhIn8 for a magnetic field applied close to the c axis.
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Figure 5.14: Magnetic torque in Ce2RhIn8 at 50 mK in magnetic fields up to 18 T close to the c axis
(a). Magnetic torque in Ce2IrIn8 for fields close to the c axis. (b) The inset shows the torque signal
after subtracting a polynomial background from (a). The main figures shows the FFT spectrum of
the torque signal from the inset.

The inset of Fig. 5.14(b) shows the remaining magnetic torque after subtracting a smooth
background. The FFT of this signal reveals a very low frequency, as shown in Fig. 5.14(b). In
addition, there seem to be a at 5.6 kT barely above the noise level. Measurements at much higher
fields are needed to check if it is a real dHvA frequency or not.

5.6 Conclusions

In summary, we were able to successfully grow single crystals of the Ce-218 family. The Ce2CoIn8

crystals are of high enough quality to show clear quantum oscillations. We performed angle- and
temperature-dependent measurements of the dHvA frequencies in Ce2CoIn8. The Fermi-surface
of Ce2CoIn8 is found to be qualitatively similar to CeCoIn5 but with larger orbits. Some of the
effective masses in Ce2CoIn8 are quite heavy, especially for the α2 orbit. The samples of Ce2RhIn8

and Ce2IrIn8 do not show reliable quantum oscillations up to 18 T.
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Chapter 6

Conclusions and perspectives

The results presented in the preceding chapters put forward a more evolved understanding of the
Ce-115 and related compounds in high magnetic fields. In this final chapter, I list the conclusions
of our results for the three compounds CeRhIn5, CeCoIn5 and Ce2CoIn8 one by one. While some
of the conclusions and interpretations are supported in entirety by our results, for the others
additional/complimentary measurements are needed either to definitely confirm our hypotheses or
to further understand the physics that still remain unresolved even after this work. Therefore,
right after the conclusions, I discuss some complimentary measurements that can be helpful in this
regard.

CeRhIn5

We performed high-field dHvA measurements on CeRhIn5 and LaRhIn5. In CeRhIn5, several
additional dHvA frequencies emerge above certain threshold fields. In particular, we observed the
previously undetected, thermodynamically important β1 branch predicted by the f -localized band-
structure calculations. Almost all of the dHvA frequencies observed in CeRhIn5 are also present in
LaRhIn5. In addition, their angular dependence is identical in the two compounds. The presence
and angle dependence of the observed dHvA frequencies are well accounted for by band-structure
calculations with localized f electrons, indicating that the f electrons of CeRhIn5 remain localized
not only above B∗ ≈ 30 T, but also above Bc ' 50 T. We emphasize that delocalization of the Ce
f -electron at high magnetic field would change the whole FS from the localized to the itinerant FS.
Continued observation of the β2 branch at the highest magnetic fields is clear evidence of that the
Ce f -electron remains localized over the full magnetic field range that we have explored. It was
previously reported that the f electrons also remain localized in CeIn3 above its critical field Bc '
60 T [125]. Whereas CeIn3 is an isotropic HF compound with an almost spheroidal FS, CeRhIn5

is a prototypical example of a strongly anisotropic material with quasi-2D FSs. The continued
localization of the f electrons well above Bc in both compounds is not consistent with either of the
two existing theoretical models of AFM QCPs. This implies that magnetic field, which itself tends
to localize f electrons, should be treated differently from such control parameters as pressure or
chemical doping.

We also performed specific heat measurements in this compound in static fields up to 36 T
applied both along the a and the c axis. For field along the a axis, we confirmed previously
established rich phase diagram, and extended it to higher fields. For field along the c axis, we
observed a distinct anomaly at B∗ ' 30 T, suggesting that a real thermodynamic phase transition,
probably weakly first-order, is likely to take place at this field.

Further, we also performed high-field ultrasound velocity measurements on bulk single crystals
of CeRhIn5. For a magnetic field slightly tilted from the c axis, we observed distinct anomalies at
both Bm ' 20 T and B∗ ' 30 T at low temperatures in all the symmetry breaking modes, i.e., C11,
C44, C66, and CT . In all these modes, the anomalies are of similar shape, but of the opposite sign.
Both anomalies are absent in the symmetry preserving C33 mode. Furthermore, our temperature-
dependent measurements reveal that both anomalies exist within the AFM state only. Given that
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the transition at Bm corresponds to a change of magnetic structure from IC below Bm to C above
Bm, we argue that the transition at B∗ is of the same origin, i.e., from the C phase below B∗ to a
new IC phase above it. This makes CeRhIn5 one of the rare compounds, in which the application
of a high magnetic field induces a C to IC transition. When a magnetic field is tilted further
away from the c axis, the anomaly at B∗ slowly moves to higher fields, and progressively becomes
smaller and broader. This behavior is in contrast with what was observed in the previous transport
measurements on microfabricated samples, in which a sharp resistivity jump at B∗ was observed to
increase up to about 20◦ following by a decrease up to 60◦, where it faded away. Different behaviors
observed here on bulk samples and on the FIB-fabricated microstructures are likely to be due to
uniaxial strains or stresses inevitably present in the latter. CeRhIn5 seems to be very sensitive
to uniaxial strains. For instance, previously reported NQR measurements on bulk and powder
samples of CeRhIn5 suggest that even small strains (or stresses) change the zero-field magnetic
structure from incommensurate to commensurate. Finally, while both the anomalies at Bm and
B∗ are absent in the C33 clear distinct features are observed around B∗ which are not observed in
any other modes. These two features forms a done around B∗ which seems to be expanding in field
with decreasing temperatures.

Finally, our results on CeRhIn5 opens up new perspectives for performing the following exper-
iments in future

Neutron diffraction experiments in pulsed fields to determine the Q vector for
the magnetic structure of CeRhIn5 above B∗

Neutron diffraction experiments now possible in high fields above 30 T [142] is the most natural
experiment perform to definitely confirm our hypothesis about the transition atB∗ being a change of
magnetic structure. The Q vector for the AFM4 state can be determined through this experiment.

High field NMR experiment at slightly tilted magnetic fields from the c axis

The high field NMR experiment for field precisely along the c axis revealed that the antiferromag-
netic structure above B∗ (AFM4) is incommensurate. For fields slightly tilted (say by 2◦) from
the c axis, similar NMR experiment should definitely be able to distinguish the three magnetic
structures (AFM1, AFM3, and AFM4) in the B-T phase diagram. Therefore, an NMR experiment
at slightly tilted magnetic fields can also be helpful in confirming our hypothesis.

AC specific heat at temperatures lower than 2 K.

If the two features above and below B∗ are indeed real thermodynamic phase transition, then they
can possibly be detected as small but distinct anomalies in the AC specific heat similar to the
anomaly at B∗. Therefore, extending our AC specific heat measurements at lower temperatures is
a natural experiment to perform.

High-field magnetostriction experiment for fields close to the c axis

If the features observed close to the transition at B∗ in the C33 mode are related to the volume
change, magnetostriction measurements for fields applied close to the c axis should be able to
detect them as anomalies corresponding to an expansion or compression along the c direction of
the tetrogonal lattice.

Transport measurements on bulk single crystals under uniaxial strain

The angular-dependent behaviour of the transition at B∗ observed in our ultrasound velocity mea-
surements performed on bulk single crystals is contradictory to the highly influential transport
study performed on microstructured devices of CeRhIn5 in which strains are inherently present.
To the best of our knowledge, so far the enhanced in-plane anisotropic transport has not been
observed in bulk single crystals. Therefore, to truly understand the enhanced in-plane anisotropy
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and the role of strains in its emergence in the FIB devices, such transport measurements must be
performed on bulk single crystals under uniaxial strain.

Neutron diffraction experiments on bulk single crystal under uniaxial strain

To understand the change of magnetic structure from incommensurate at zero-field in bulk single
crystals to commensurate in powered sample at zero-field, neutron diffraction experiments on bulk
single crystal under uniaxial strain can be helpful.

Ultrasound velocity in the C33 mode in dilution refrigerator

While extending our ultrasound velocity measurements to dilution refrigerator temperatures is
definitely desirable for all the modes to extend the T-B phase diagram to lower temperatures, the
case for C33 mode is particulary interesting. The dome formed by the two feature in the T-B phase
diagram, centered around B∗, is unique to this mode and seems to get broader in field at lower
temperature. Therefore, extending the T-B phase diagram to lower temperatures is necessary to
observe the full expanse of this dome.

High field AC susceptibility in CeRhIn5

An anomaly at B∗ is absent in longitudinal magnetization. However, a small feature is observed
in magnetic torque near 30 T for field applied very close to the c axis (2◦ and 4◦) which tends to
become stronger for a better alignment of field from the c axis, i.e, it is stronger at 2◦ than 4◦.
But for fields closer to the crystallographic axis magnetic torque starts vanishing and therefore, the
signal becomes noisy. This makes a strong case for AC susceptibly in CeRhIn5 where unlike torque,
measurements close to the crystallographic axis are not an issue. Also, sometimes metamagnetic
transitions that weakly manifest in torque appear as pronounced anomalies in AC susceptibly.

Ultrasound velocity in the C44 mode using a in-situ rotator

The anomalies at Bm and B∗ in the C44 modes have a kink like rather than sharp step like in
CT mode. Further, the anomaly at B∗ is greater than the one at Bm. Based on these strange
observations, it is possible that an angle-dependence of ultrasound velocity in the C44 at lower
temperatures might also reveal features that were only observed in the C33 mode.

Ultrasound velocity in the CT and C33 modes using a double axis in-situ rotator

For field applied precisely along the c axis, the metamagentic transition at Bm induced by an in-
plane component of magnetic field (B ≥ 2 T) moves to fields higher than 36 T. Therefore, it would
be interesting to see if the transition at B∗ also disappears or not for field precisely along the c
axis. Such a measurement can elucidate the role of in-plane and out-of-plane field components on
the transition at B∗.

CeCoIn5

We performed dHvA and mangetoresistance measurement in CeCoIn5 at high fields close to the
c axis. Our measurements revealed anomalous quantum oscillation at intermediate fields between
20-24 T which is more pronounced at low temperatures and becomes unnoticeable at T = 400 mK.
The effective masses also show a peculiar field dependence. The effective masses of the α orbits show
an abrupt increase above 23 T. Finally, magnetoresistance measurement revealed a clear anomaly
at 22 T. Based on these observations we suggest a field-induced instability occurs in CeCoIn5 at
high fields. The enhancement of effective masses with magnetic fields suggests a departure from
the usual fermi liquid behavior.

Finally, our results on CeCoIn5 opens up new perspectives for performing the following experi-
ments in future
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Extending the dHvA study in CeCoIn5 to still higher fields

Our dHvA study in CeCoIn5 should be extended to still higher fields in CeCoIn5, to see if the
field enhancement of effective mass of α2 orbit continues, and if it diverges at still higher fields and
resulting into another QCP.

Temperature-dependent magnetoresistance study

The magnetoresistance study also needs to extended further, especially a temperature dependence
of the anomaly at 23 T transition to understand its origin.

High-field specific heat study

A high-field specific heat study is definitely needed to see if a field-induced phase transition occurs
at 23 T.

High field AC susceptibility in CeCoIn5

Certain transitions of magnetic origin are sometimes not observed in magnetic torque but may
appear in AC susceptibly. Therefore, AC susceptibly measurement on CeCoIn5 can be helpful in
identifying if the 23 T anomaly has magnetic origins.

High field ultrasound velocity in CeCoIn5

It is clear from our measurements on CeRhIn5 that ultrasound technique is a powerful tool to
understand unknown phase transitions. Therefore, ultrasound velocity measurement in CeCoIn5 is
a plausible experiment to perform to understand the 23 T anomaly.

Ce2CoIn8

In summary, we are able to successfully grow single crystal of the Ce-218 family. The Ce2CoIn8

crystals are of high quality and show nice quantum oscillation. We performed angle and temperature
dependance of dHvA frequencies in Ce2CoIn8. The fermi surface in Ce2CoIn8 is found to be
qualitatively similar to CeCoIn5 but with larger orbit sizes. The effective masses in Ce2CoIn8

are quite heavy especially for the α2 orbit. The compounds Ce2RhIn8 and Ce2IrIn8 do not show
quantum oscillation up to 18 T.

Growing single crystals of still higher quality

The effective masses of the observed orbits do not fully account for the huge Sommerfield coefficient.
Therefore, we expect heavier dHvA frequencies are still missing. Therefore, to fully map the fermi
surface of Ce2CoIn8 single crystals of still higher quality are needed.

Specific heat study

The features observed at 5 T and 11 T in the magnetic torque are not fully understood and therefore
warrant further studies. A specific heat study is needed to see these features corresponds to real
phase transitions as well as to elucidate their origin.
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[30] P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, “How do Fermi liquids get heavy and
die?,” J. Phys.: Condens. Matter, vol. 13, pp. R723–R738, 2001.

[31] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, “Fermi-liquid instabilities at magnetic
quantum phase transitions,” Rev. Mod. Phys., vol. 79, pp. 1015–1075, 2007.
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“Magnetic and Thermal Properties of CeIrIn5 and CeRhIn5,” J. Phys. Soc. Jpn., vol. 70,
pp. 877–883, 2001.

155



BIBLIOGRAPHY

[72] J. S. Kim, J. Alwood, G. R. Stewart, J. L. Sarrao, and J. D. Thompson, “Specific heat in
high magnetic fields and non-Fermi-liquid behavior in CeM In5 (M = Ir,Co),” Phys. Rev. B,
vol. 64, 2001.

[73] A. L. Cornelius, P. G. Pagliuso, M. F. Hundley, and J. L. Sarrao, “Field-induced magnetic
transitions in the quasi-two-dimensional heavy-fermion antiferromagnets CenRhIn3n+2 (n = 1
or 2),” Phys. Rev. B, vol. 64, p. 144411, 2001.

[74] E. Moshopoulou, Z. Fisk, J. Sarrao, and J. Thompson, “Crystal Growth and Intergrowth
Structure of the New Heavy Fermion Materials CeIrIn5 and CeRhIn5,” J. Solid State Chem.,
vol. 158, pp. 25–33, 2001.

[75] N. J. Curro, P. C. Hammel, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, and Z. Fisk,
“Evidence for spiral magnetic order in the heavy fermion material CeRhIn5,” Phys. Rev. B,
vol. 62, pp. R6100–R6103, 2000.

[76] W. Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J. W. Lynn, and R. W. Erwin,
“Incommensurate magnetic structure of CeRhIn5,” Phys. Rev. B, vol. 62, pp. R14621–R14624,
2000.

[77] A. L. Cornelius, A. J. Arko, J. L. Sarrao, M. F. Hundley, and Z. Fisk, “Anisotropic elec-
tronic and magnetic properties of the quasi-two-dimensional heavy-fermion antiferromagnet
CeRhIn5,” Phys. Rev. B, vol. 62, pp. 14181–14185, 2000.

[78] H. Shishido, R. Settai, D. Aoki, S. Ikeda, H. Nakawaki, N. Nakamura, T. Iizuka, Y. In-
ada, K. Sugiyama, T. Takeuchi, K. Kindo, T. C. Kobayashi, Y. Haga, H. Harima, Y. Aoki,
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at a Critical Pressure in CeRhIn5: dHvA Study under Pressure,” J. Phys. Soc. Jpn., vol. 74,
pp. 1103–1106, 2005.

[83] G. Chen, K. Matsubayashi, S. Ban, K. Deguchi, and N. Sato, “Competitive coexistence
of superconductivity with antiferromagnetism in CeRhIn5,” Physical review letters, vol. 97,
p. 017005, 2006.

[84] S. Majumdar, G. Balakrishnan, M. Lees, D. M. Paul, and G. McIntyre, “Pressure-induced
change in the magnetic modulation of CeRhIn5,” Physical Review B, vol. 66, p. 212502, 2002.

[85] S. Ohira-Kawamura, H. Shishido, A. Yoshida, R. Okazaki, H. Kawano-Furukawa,
T. Shibauchi, H. Harima, and Y. Matsuda, “Competition between unconventional super-
conductivity and incommensurate antiferromagnetic order in CeRh1−xCoxIn5,” Phys. Rev.
B, vol. 76, p. 132507, 2007.

156



BIBLIOGRAPHY

[86] M. Yokoyama, N. Oyama, H. Amitsuka, S. Oinuma, I. Kawasaki, K. Tenya, M. Matsuura,
K. Hirota, and T. J. Sato, “Change of antiferromagnetic structure near a quantum critical
point in CeRh1−xCoxIn5,” Phys. Rev. B, vol. 77, p. 224501, 2008.

[87] S. K. Goh, J. Paglione, M. Sutherland, E. C. T. O’Farrell, C. Bergemann, T. A. Sayles, and
M. B. Maple, “Fermi-Surface Reconstruction in CeRh1−xCoxIn5,” Phys. Rev. Lett., vol. 101,
p. 056402, 2008.

[88] A. Llobet, A. D. Christianson, W. Bao, J. S. Gardner, I. P. Swainson, J. W. Lynn, J.-M.
Mignot, K. Prokes, P. G. Pagliuso, N. O. Moreno, J. L. Sarrao, J. D. Thompson, and A. H.
Lacerda, “Novel coexistence of superconductivity with two distinct magnetic orders,” Phys.
Rev. Lett., vol. 95, p. 217002, Nov 2005.

[89] P. G. Pagliuso, C. Petrovic, R. Movshovich, D. Hall, M. F. Hundley, J. L. Sarrao,
J. D. Thompson, and Z. Fisk, “Coexistence of magnetism and superconductivity in
CeRh1−xIrxIn5,” Phys. Rev. B, vol. 64, p. 100503(R), 2001.

[90] G. q. Zheng, N. Yamaguchi, H. Kan, Y. Kitaoka, J. L. Sarrao, P. G. Pagliuso, N. O. Moreno,
and J. D. Thompson, “Coexistence of antiferromagnetic order and unconventional super-
conductivity in heavy-fermion CeRh1−xIrxIn5 compounds: Nuclear quadrupole resonance
studies,” Phys. Rev. B, vol. 70, p. 014511, 2004.

[91] M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, J. L. Sarrao, and J. D. Thompson,
“Two superconducting phases in CeRh1−xIrxIn5,” Phys. Rev. B, vol. 70, p. 020505, 2004.

[92] S. Kawasaki, M. Yashima, Y. Mugino, H. Mukuda, Y. Kitaoka, H. Shishido, and Y. Ōnuki,
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