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Abstract

Kernel methods are regarded as a cornerstone of machine learning. They allow to
model real-valued functions in expressive functional spaces, over which regularized em-
pirical risk minimization problems are amenable to optimization and yield estimators
whose statistical behavior is well studied. When the outputs are not reals but higher
dimensional, vector-valued reproducible kernel Hilbert spaces (vv-RKHSs) based on
operator-valued kernels (OVKs) provide similarly powerful spaces of functions, and
have proven useful to tackle problems such as multi-task learning, structured predic-
tion, or function-valued regression.

In this thesis, we introduce an original functional extension of multi-output learning
called infinite task learning (ITL), that allows to jointly solve an infinite number of
parameterized tasks, including for instance quantile regression, cost-sensitive classific-
ation and density level set estimation.

We propose a learning framework based on convex integral losses that encompasses
the ITL problem and function-valued regression. Optimization schemes dedicated to
solving the associated regularized empirical risk minimization problems are designed.
By sampling the integral losses, we derive finite-dimensional representation of the solu-
tion under several choices of regularizers or shape constraints penalties, while keeping
theoretical guarantees over their generalization capabilities. We also employ dualiz-
ation techniques with the benefit of bringing desirable properties such as robustness
or sparsity to the estimators thanks to the use of convoluted losses. Scalability issues
are addressed by deriving optimization algorithms in the the context of approximated
OVKs whose corresponding vv-RKHSs are of finite dimension. The use of trainable
deep architectures composed by a neural network followed by a shallow kernel layer is
also investigated as a way to learn the kernel used in practice on complex data such as
images.

We apply these techniques to various ITL problems and to robust function-to-function
regression, that are tackled in the presence of outliers. We also cast style transfer
problems as a vectorial output ITL problem and demonstrate its efficiency in emotion
transfer.



Résumé

Les méthodes à noyaux sont au coeur de l’apprentissage statistique. Elles permettent de
modéliser des fonctions à valeurs réelles dans des espaces de fonctions à fort potentiel
représentatif, sur lesquels la minimisation de risques empiriques régularisés est pos-
sible et produit des estimateurs dont le comportement statistique est largement étudié.
Lorsque les sorties ne sont plus réelles mais de plus grande dimension, les Espaces de
Hilbert à Noyaux Reproduisants à valeurs vectorielles (vv-RKHSs) basés sur des Noy-
aux à Valeurs Opérateurs (OVKs) fournissent des espaces de fonctions similaires et
permettent de traiter des problèmes tels que l’apprentissage multi-tâche, la prédiction
structurée ou la regression à valeurs vectorielles.

Dans cette thèse, nous étudions différents problèmes liés à l’apprentissage de mod-
èles à valeurs fonctionnelles, un cas que nous traitons en modélisant les sorties comme
vivant dans un espace de Hilbert de dimension infinie. Ceci nous permet notamment
d’exploiter la théorie associée aux vv-RKHSs précédemment évoquée, avec l’aide de noy-
aux à valeurs opérateurs agissant sur ces mêmes espaces. Ces problèmes requièrent des
fonctions de perte dédiées, définies sur des espaces fonctionnels qui diffèrent des fonc-
tions de perte usuelles utilisées en dimension finie. En particulier, nous nous intéressons
aux fonctions de perte convexes pouvant s’exprimer sous la forme d’une intégrale sur
l’espace de définition des fonctions de sortie. Ces pertes intégrales constituent une
extension naturelle des fonctions de perte utilisées en dimension finie, et permettent
d’aborder la recherche de fonctions cibles comme équivalent à la minimisation d’un
risque dans les vv-RKHSs.

Le cadre d’apprentissage que nous proposons repose sur la minimisation de risques
empiriques régularisés en présence de telles fonctions de perte. De par la nature fonc-
tionnelle des sorties, les problèmes d’optimisation en résultant souffrent d’écueuils sup-
plémentaires à ceux déjà présents en dimension finie. En premier lieu, et contrairement
au cadre fini-dimensionnel, il n’est pas garanti que les estimateurs bénéficient d’une
représentation de taille finie sur une base naturelle de l’espace de fonction considéré.
De plus, même si une telle décomposition était trouvée, les pertes intégrales sont ac-
compagnées de problèmes de calculabilité: en effet les intégrales (et leurs gradients)
ne peuvent le plus souvent pas être exprimées sous forme analytique et doivent être
estimées.

Une première contribution de cette thèse est de fournir un ensemble de techniques
d’optimisation à même de répondre à ces deux problématiques, tout en s’assurant que
les algorithmes proposés ne soient pas trop gourmands en ressources de calcul. En
reposant sur un échantillonage des pertes intégrales, nous obtenons une représentation
de dimension finie des estimateurs pour différents choix de régularisation dans les vv-
RKHSs, rendant possible l’utilisation d’algorithmes de descente de gradient dont la
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convergence est bien étudiée. L’usage de la dualité lagrangienne vient compléter cette
technique, en offrant un problème nouveau basé sur la transformée de Fenchel-Legendre
des pertes intégrales, qui est explicitée pour quelques fonctions de perte utiles. Les
difficultés liées à la représentation des variables duales sont traitées par l’usage de
splines linéaires, qui conjuguées à l’approximation de l’opérateur intégral lié au noyaux
rendent les problèmes d’optimisation solubles. Les problèmes de passages à l’échelle
sont aussi traités par l’utilisation de noyaux approchés, dont les vv-RKHSs associés
sont de dimension finie. Ceci permet de plus l’utilisation d’algorithmes de descente de
gradient stochastique, les pertes intégrales étant interprétées comme des espérances.
Enfin, nous proposons une architecture de modèle composée d’un réseau de neurone
et d’une dernière couche à noyaux, qui rend possible l’apprentissage de représentations
appropriées aux noyaux utiles dans les applications avec des données complexes comme
les images.

Une seconde contribution de cette thèse est l’introduction d’une extension fonctionnelle
originale du cadre multi-tâche appelée Apprentissage d’un Continuum de Tâches (ITL),
qui permet de résoudre conjointement un continuum de tâches paramétrées, parmi
lesquelles la régression quantile, la classification à coût assymétrique, ou l’estimation
de niveaux de densité. Le cadre ITL est traité grâce aux techniques d’optimisation
précédemment développées pour les pertes intégrales, avec quelques ajustements ayant
pour but de gérer des contraintes souples sur la monotonicité des estimateurs dans le
cas de la régression quantile notamment. Nous nous intéressons aussi aux capacités en
généralisation des estimateurs, que nous contrôlons théoriquement en les étudiant sous
l’angle de la stabilité uniforme. Enfin, cette approche fonctionnelle au cadre multi-tâche
nous permet aussi de revisiter les problemes de transfert de style sous l’angle ITL, avec
une application au transfert d’émotion.

Le dernier problème abordé dans cette thèse concerne la regression fonction-à-fonction
robuste en présence de valeurs aberrantes. Nous substituons à la norme carrée des pertes
convoluées, comme la perte ϵ-insensible ou la perte Huber, plus à même d’imposer des
estimateurs parcimonieux ou robustes. Les problèmes d’optimisation sont traités dans
le dual, où les synergies entre convolution infinitésimale et transformée de Fenchel-
Legendre rendent possible le développement d’algorithmes de descente de gradient
proximal. En particulier, certaines libertés dans la définition des pertes convoluées
permettent l’émergence de différents types de parcimonie, ainsi que la résistance à
différents types de valeurs aberrantes.





Notation

:= Equal by definition

R+ Non-negative reals

N∗ Positive integers: {1, 2, . . .}

[n] Set of integers from 1 to n ({1, . . . , n})

X Input space

Θ Hyperparameter space. Compact ⊂ Rp

U Hilbert space

F(Θ,U) Set of functions from Θ to U

C(Θ,U), C1(Θ,U) Continuous, continuously differentiable functions from Θ to U

L2[Θ, µ;U], L2[Θ, µ] Hilbert space of µ-integrable functions ⊂ F(Θ,U); in the latter
case: U = R

Y Output space assumed to be a Hilbert space ⊆ L2[Θ, µ;U]

〈·, ·〉Y, ‖·‖Y Scalar product and norm in Y

L(U,V),L(Y) Bounded linear operators from U to V; Y := U = V

Id Identity operator on the ambient space

A♯ Adjoint of operator A ∈ L(Y)

KerA Nullspace of a bounded linear operator A

ImA Image of a bounded linear operator A

kX : X× X → R Input kernel, scalar-valued

kΘ : Θ×Θ → R Hyperparameter kernel, scalar-valued

K : X× X → L(Y) Operator-valued kernel

HK Vector-valued RKHS associated to K

evx Evaluation map at point x
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Mn,m(R),Mn(R) Set of real matrices of size n×m; m := n

Idn Identity matrix of size n× n

Ai: ith row of matrix A

Tr Trace of operator or matrix

A⊤ Transpose of matrix A

‖·‖op Operator norm of operator or matrix

‖·‖p ℓp-norm on vectors or functions for p ∈ [1,+∞]

‖·‖p,q Mixed norm: ℓq norm of the ℓp norm of the rows of the argu-

ment:
∥∥A∥∥

p,q
=

∥∥∥∥(∥∥Ai:

∥∥
p

)
i

∥∥∥∥
q

.

〈A,B〉F Frobenius inner product of matrix A and B

Bp
ϵ Ball of radius ϵ for the ℓp-norm

Bϵ Ball of radius ϵ for the ambient Hilbert norm

dom(f) Domain of function f

Γ0(H) Proper, convex, lower-semicontinuous functions

f⋆ Fenchel-Legendre conjugate of function f

f □ g Infimal convolution of functions f and g

χC Indicator function of set C: 0 on C and +∞ elsewhere

∂f Subdifferential of function f

proxf Proximal operator of function f

ProjC Orthogonal projection on a closed convex set C

relint Relative interior

O Ordo

⊗ Kronecker product of matrices, tensor product of Hilbert
spaces or their elements

⊗m∈[M ]Pm Product measure. When P = P1 = . . . = PM , we write P⊗M .

1S Characteristic function of the set S: 1 on S and 0 otherwise

| · |+ Positive part: |x|+ = max(x, 0)

×mSm Descartes product of the sets Sm

Unif([n]) Uniform distribution on [n]







1
Motivation and Contributions

Contents

1.1 Machine Learning Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.1 Parameterized Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.2 Learning Vector-Valued Functions . . . . . . . . . . . . . . . . . 19
1.1.3 Learning Function-Valued Functions . . . . . . . . . . . . . . . . 20

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Due to the increasing complexity of collected data, which can come from many sensors,
embedded devices, IOT, or any other data acquisition pipeline, real world applications
are in dire need of machine learning systems able to deal with sophisticated data.
Especially, when the collected data correspond to the recording of the behaviour of a
phenomenon through time or space for instance, there is an interest for considering the
collection of datapoints as observations of a function. One can think for example to
data describing the trajectory of a plane through time, the evolution of CO2 levels in
the atmosphere, or the transmission of biochemical signals inside the brain.

These real world scenarii have motivated the research in functional data analysis (FDA,
Ramsay and Silverman 1997) whose goal is to provide a framework dedicated to data
modeled as functions. The potential scope of FDA is enormous and diverse (Ullah and
Finch, 2013), and has attracted a great deal of attention (Wang et al., 2016).

In particular, early works focused on semi-functional regression where the explanatory
variable is a function and the target variable is a scalar. The relationship between these
two can then be modeled as linear (Cardot et al., 2003), nonlinear (Cardot et al., 2003)
or hybrid (Aneiros-Pérez and Vieu, 2006), and many learning setting were investigated
such as quantile regression (Cardot et al., 2005), robust estimation (Crambes et al.,
2008; Azzedine et al., 2008) or variable selection (Aneiros et al., 2011).

More recently, the case of functional output regression (FOR) where both explanatory
and target variables are functions has been under study. The FOR setting is more
demanding than the semi-functional one, as it requires to model function-valued func-
tions. The target variable can then belong to an infinite dimensional Hilbert space, a
problem that needs to be addressed from a modeling point of view. This fundamental
issue has lead to consider linear models (Morris, 2015), non-parametric modeling (Fer-
raty and Vieu, 2006), or kernel methods (Lian, 2007; Kadri et al., 2010; Ferraty et al.,
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2011; Oliva et al., 2015; Kadri et al., 2016; Reimherr et al., 2018). The latter is of
particular interest to us, and one goal of this thesis is to propose and study a general
framework for function-valued regression beyond the square loss, and in the context of
vector-valued RKHSs (Pedrick, 1957).

Apart from functional data, we have noticed that it can be interesting to have predict-
ive models with function-valued outputs even if the output observations do not directly
correspond to a function. In particular, in a large number of ML problems, the task at
hand depends on some hyperparameter varying continuously and solving the problem
for a continuum of values presents many interests. A functional view on these problems
can be seen as an extension of multi-task learning (MTL; Evgeniou and Pontil 2004),
which is the second motivation for this thesis. MTL consists in learning jointly a finite
number of machine learning tasks with a single model, the underlying assumption being
that solving these tasks together will bring better results than solving them independ-
ently. One can think for example to tasks such as quantile regression (QR, Koenker
and Bassett Jr 1978), anomaly detection using one class support vector machines (OC-
SVM, Schölkopf et al. 2001b) or cost-sensitive classification (CSC, Elkan 2001) where
the task is characterized by some hyperparameter encoding information about the tar-
get function: the quantile level in QR, the fraction of outliers in the OCSVM, or the
relative importance associated to false positive and false negatives in CSC. The links
between MTL and vector-valued regression are fertile (Álvarez et al., 2012), and MTL
can be tackled using kernels for vector-valued functions (Micchelli and Pontil, 2005).

In the context of learning function-valued functions, a natural problem to consider is
the joint learning of infinitely many tasks. Such problem has been proposed in the
seminal paper (Takeuchi et al., 2013) for tasks whose loss function depends piecewise
linearly on the hyperparameter. Extending this framework to a larger class of tasks
and models is one of the motivation of this thesis.

The organization of this chapter is as follows: in Section 1.1 we present the type of
machine learning tasks tackled in this thesis, and raise related research questions in Sec-
tion 1.2. Our contributions are summarized in Section 1.3, with associated publications
and preprints in Section 1.4.

1.1 Machine Learning Tasks

We introduce below two examples of supervised learning tasks, namely the binary
classification and least squares regression.

Binary classification: The simplest example of a machine learning task is given
by binary classification. In this setting, we are given two random variables (X,Y) ∈
X × {−1, 1}. X encodes the representation of the data, or features in the space X,
and Y is the corresponding class. The goal of supervised classification is to build a
classifier ĥ : X → {−1, 1} which attributes the right class to a realization of the random
variable X, without knowing the probability distribution of (X,Y) and being only given
a finite sample (xi, yi)

n
i=1 independently drawn from the probability distribution of

(X,Y), called the training sample (Vapnik, 1999).

Theoretically, the ideal classifier involves the optimization problem

h† ∈ argmin
h measurable

E(X,Y)

[
1{−Y}(h(X))

]
. (1.1)
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The loss is called the 0 − 1 loss as it returns 0 whenever the prediction is correct and
1 when it fails. The best decision rule is given by the Bayes classifier

h†(x) :=

1 if P(Y = 1 |X = x) ≥ 1
2

0 otherwise.

However, given that the underlying distribution of (X,Y) is unknown, this rule cannot
be applied in practice and one must trade Equation (1.1) against an empirical version
based on the available training set (xi, yi)

n
i=1. Moreover, minimizing the 0 − 1-loss is

notoriously hard (can be NP-hard for many choices of H, Ben-David et al. 2003), so
that a convex upper bound such as the hinge loss can be used instead. Combined with
a margin based approach (Vapnik, 1998), this results in

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

max (0, 1− yih(xi)) + Ω(h),

where H is a set of possible candidates denoted hypothesis space, and Ω(h) is a regu-
larizer used to avoid overfitting. This leads to the celebrated support vector machines
(SVM) problem formulation and its separating hyperplane interpretation when using
kernel models (Cortes and Vapnik, 1995).

Least squares regression: When the random variable Y is not binary but real-
valued, inferring Y from X is called a regression task, the most well-known loss function
for regression being the square loss. The goal is then to build a prediction function
ĥ : X → R such that the residual Y − h†(X) is the smallest possible in expected square
norm, having only access to a training dataset (xi, yi)

n
i=1. Minimizing the square loss

has the benefit of estimating the conditional expectation of Y given X, as:

E[Y|X] = h†(X), h† ∈ argmin
h measurable

E(X,Y)

[
(Y − h(X))2

]
The theoretical best prediction at point x is achieved by h†(x) = EY|X=x

[
Y
]
. Again,

this predictor is of little convenience in practice as one does not have access to the
underlying distribution of (X,Y) and empirical versions based on the training data-
set (xi, yi)

n
i=1 must be considered, such as the regularized empirical risk minimization

problem

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

(yi − h(xi))
2 +Ω(h),

where H is hypothesis space and Ω(h) is a regularizer.

These two simple examples fall under the regularized empirical risk minimization um-
brella (Tikhonov and Arsenin, 1977; Girosi et al., 1995), which consists in solving

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi) + Ω(h),

where ℓ is a loss function used to measure the discrepancy between a prediction h(xi)
and the ground truth yi, and Ω(h) is a regularizer. Ideally, an estimator ĥ should
perform similarly on the training dataset (xi, yi)

n
i=1 and on new data sampled from
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P(X,Y). The generalization capabilities of the estimator can be controlled by bounding∣∣∣∣∣∣E(X,Y)

[
ℓ(ĥ(X),Y)

]
− 1

n

n∑
i=1

ℓ(ĥ(xi), yi)

∣∣∣∣∣∣ (1.2)

in high probability (Vapnik, 1998).

1.1.1 Parameterized Tasks

Parameterized tasks arise when the target function to estimate depends on a parameter
that impacts the task. We give below three examples of parameterized tasks.

Cost-sensitive classification: In the binary classification scenario, it may happen
that the cost associated to making a mistake on one or the other class differs in real
applications. For example in epidemiology, when designing a test to assess whether
a person is contaminated by a virus or not, a false positive is of less impact than a
false negative as the latter has dramatic consequence on the spread of the virus. It can
then be of advantage to introduce an imbalanced coefficient that penalizes differently
the two kinds of mistakes (Bach et al., 2006). A parameter θ ∈ [−1, 1] is capable of
encoding such asymmetry, and gives rise to the task

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

∣∣∣∣∣θ + 1

2
− 1{−1}(yi)

∣∣∣∣∣max (0, 1− yih(xi)) + Ω(h).

This way when θ is close to 1, mistakes made on ground truth samples with class −1
are almost not penalized, so that the classifier focuses on being right on the class 1,
and vice versa.

Quantile regression: In the regression setting, the conditional expectation may not
suffice to give sufficiently good prediction of the output variable. One could think for
example to data distributions where for all x ∈ X, PY|X=x is bimodal and symmetric
around 0, so that the conditional expectation EY|X=x[Y] = 0 would be a poor choice of
prediction as it would not be meaningful with respect to the underlying data distribu-
tion. In such cases, one can resort to estimating the conditional quantiles of Y given
X. Given a quantile level θ ∈ (0, 1), it is defined as

q(x) := inf{u ∈ R : P(Y ≤ u |X = x) ≥ θ}.

Estimating the conditional quantile can be tackled through its variational formulation

q(x) = argmin
u∈R

EY[ℓ(θ, u,Y) |X = x],

where ℓ is the so-called pinball loss (Koenker and Bassett Jr, 1978)

ℓ(θ, u, y) = max (θ(y − u), (θ − 1)(y − u)).

ERM based algorithms then allow to estimate q in various function spaces (Steinwart
et al., 2011).
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Density level set estimation: In anomaly detection, the goal is to separate inli-
ers, which are coherent observations, from outliers which are seen as anomalies in the
data. Given an X-valued random variable X, one aims at building a prediction function
ĥ : X → {−1, 1} used for deciding whether a new point is an inlier or an outlier. Given
a desired fraction of outliers θ ∈ (0, 1), a natural way to achieve this goal is to estimate
the minimum volume sets (MV-sets) associated to X (Polonik, 1997):

MV(θ) = argmin
G⊆X, G Borel

{
Λ(G) |PX(G) ≥ θ

}
,

where Λ(G) is the Lebesgue measure of a Borel set G. MV-sets describe regions where
X is most concentrated, and relate closely to the level sets of the density, in the sense
that they describe the same sets but with a different parameterization (the level of the
density versus the mass of the set with respect to PX). Outlierness of a point x can then
be characterized by its belonging to MV(θ). In particular, MV-sets can be estimated
using one-class SVMs (Schölkopf et al., 2001b).

1.1.2 Learning Vector-Valued Functions

While aforementioned tasks focus on predicting a single value, complex machine learn-
ing systems often require to predict jointly several values. This scenario typically occurs
in the regression setting when the output variable Y is Rp-valued, or when when one’s
goal is to solve jointly multiple tasks (Micchelli and Pontil, 2005). The latter is referred
to as multi-task learning (MTL) and has attracted a great deal of attention in machine
learning (Evgeniou et al., 2005) with far-reaching applications such as autonomous
driving, climate science, or functional brain imaging.

In its most generic form, MTL proposes to solve jointly p tasks, where each task is
encoded by a particular objective function, and observed dataset. Having access to p
datasets (Xj)

p
j=1 where each Xj := (xi,j , yi,j)

nj

i=1 ∈ (Xj × R)nj , the objective is then to
build p estimators (ĥj)

p
j=1 such that each ĥj : Xj → R performs well on task j.

When the dataset is shared across the tasks, this simplifies to finding a vector-valued
model ĥ : X → Rp such that each coordinate of ĥ performs well on the corresponding
task (Micchelli and Pontil, 2005). This simpler setting is also referred to as multi-output
learning (Álvarez et al., 2012) and is the setting considered in this thesis.

Compared to independent learning of each task, the advantage of MTL is to take
advantage of the similarity between the tasks to ensure consistency between them.
For example in quantile regression, the quantiles are by definition nondecreasing with
respect to θ, and that should be reflected in the estimator that jointly estimates the
conditional quantiles associated to some (θj)

p
j=1.

A simple way to jointly solve p tasks parameterized by (θj)
p
j=1 and loss functions

(ℓ(θj , ·, ·))pj=1 is then to sum the corresponding loss functions:

ĥ ∈ argmin
h∈H

1

np

n∑
i=1

p∑
j=1

ℓ(θj , h(xi)j , yi) + Ω(h),

where H ⊂ F(X,Rp) is a hypothesis space and Ω is some regularization term encoding
similarities between tasks (Argyriou et al., 2008b,a; Baldassarre et al., 2012).



20 CHAPTER 1. MOTIVATION AND CONTRIBUTIONS

Relevant application-specific references include (Sangnier et al., 2017) for quantile re-
gression and (Glazer et al., 2013) for density level set estimation. We finally want to
mention alternatives to summing the loss functions such as Pareto multi-task learning
which make use of multiobjective optimization (Lin et al., 2019).

1.1.3 Learning Function-Valued Functions

Learning function-valued functions is the goal of this thesis. Such scenario can be
considered as an extension of the prior vector-valued case beyond Euclidean space Rp

to generalized Hilbert spaces.

Functional output regression: The problem of learning function-valued function
can appear in supervised learning when the output variable Y is a function itself.
This happens for example in biomedical signal processing, epidemiology monitoring or
climate science where the phenomena under study exhibit a functional nature, and the
understanding of these phenomena depends on machine learning algorithms being able
to reliably predict functional data (Ramsay and Silverman, 2007).

In this problem family the task is to regress to a functional output from a vectorial or
functional input, a setting referred to as functional output regression (FOR). Assuming
that Y takes values in a functional space L2[Θ, µ], where Θ is the domain of the realiz-
ations of Y and µ a probability measure on it, a natural way to tackle this problem is
to estimate E[Y|X] = h†(X) where it is well-known that

h† = argmin
h∈H

E(X,Y)

[∥∥∥Y − h(X)
∥∥∥2
L2[Θ,µ]

]
,

with H being the set of all measurable functions from X to L2[Θ, µ]. As the underlying
distribution is unknown, one can use regularized empirical risk minimization in suitable
functional spaces to solve this problem, as proposed in the seminal works of Kadri et al.
(2010, 2016).

Jointly learning infinitely many tasks: The problem of learning function-valued
functions also emerges when considering the joint learning of infinitely many paramet-
erized tasks. The goal is then to learn a mapping

ĥ : x 7→ (θ 7→ ĥ(x)(θ) ∈ R)

such that for all θ ∈ Θ, ĥ(·)(θ) performs well on the task θ. Here Θ is a space encoding
the tasks, such as the quantile level in quantile regression (Θ = (0, 1)), the mass of the
MV-sets in anomaly detection (Θ = (0, 1)) or the asymmetry coefficient in cost-sensitive
classification (Θ = [−1, 1]).

The resulting optimization problem is

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

∫
Θ
ℓ(θ, h(xi)(θ), yi)dµ(θ) + Ω(h),

where µ is a probability measure describing the relative importance of each task, H ⊂
F(X,F(Θ,R)) is a suitable hypothesis space and Ω(h) is a regularizer. In their seminal
work, Takeuchi et al. (2013) introduce the parametric task learning framework able to
handle a continuum of tasks when the loss function has a piecewise linear dependency to
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the θ parameter. By leveraging solution path techniques, they show that the associated
optimization problem is tractable and yields a model whose dependency to θ is also
piecewise linear.

We can notice that both problem families involve a class of loss functions that we denote
integral losses, as the discrepancy between the function-valued prediction h(x) and the
observed output y is computed by means of an integration of the local loss functions
ℓ(θ, ·, ·) over the Θ space.

1.2 Research Questions
The goal of this thesis is to propose a general framework to learn function-valued
functions, both to offer novel functional output regression tools and to extend multi-
task learning to a continuum of tasks. The outputs are supposed to be functions over
a domain Θ, and we consider a family of losses that write as an integral over this
domain. This leads to the formulation of the corresponding regularized empirical risk
minimization problems, with the additional requirement of picking a suitable hypothesis
space. This hypothesis space is chosen to be a vector-valued reproducible kernel Hilbert
space (vv-RKHS), a generalization of RKHSs allowing function-valued models whose
full introduction is postponed to Chapter 2. Solving these optimization problems is not
straightforward, and raises various challenging questions:

• How can we solve problems involving integral losses while they are not computable
analytically?

• How do we represent the models on a computer despite the vv-RKHS being an
infinite-dimensional functional space?

• What compromises can be accepted on the hypothesis space to scale to larger
datasets?

For the specific functional output regression problem, existing techniques in the literat-
ure mostly focus on the square loss as a measure of the discrepancy between predictions
and ground truth, which is known to be sensitive to outliers in the data. Especially, in
a learning scenario where the data is contaminated with erroneous values, square loss
based estimators tend to perform poorly. We suggest the following lines of research:

• How can we go beyond the square loss in functional output regression? Can we
take advantage of dual approaches to allow sparse or robust estimators?

In Chapter 5 we develop a learning framework able to jointly learn infinitely many
parameterized tasks, referred to as infinite task learning (ITL). Interesting questions
then include:

• Which type of regularization can be used? How can we induce consistency
between the tasks?

• What kind of generalization guarantees can we get for the ITL estimator?

• Can we design kernels and appropriate optimization algorithms suited to handle
complex structured data such as images?
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• Can we extend the ITL framework to more involved learning tasks with higher
dimensional Θ?

1.3 Contributions
We now list the contributions of this thesis to the aforementioned problems, followed
by the description of the organization of the manuscript. In particular, Chapter 2 is not
included in these contributions as it is a background chapter on convex optimization
and (operator-valued) kernel methods used throughout the manuscript.

▶ Chapter 3 develops optimization algorithms to solve regularized empirical risk
minimization problems in vector-valued RKHSs, in the presence of integral losses.
Closed-form solutions are obtained for the square loss based estimators in the
fully and partially observed regime, extending known results to vectorial outputs.
Primal optimization algorithms are proposed for general loss functions, relying
either on some sampling of the integral loss that pertains the solution to a finite-
dimensional subspace of the vv-RKHS, or on stochastic optimization algorithms
made possible by the use of random Fourier features. Finally, dual methods are
explored, with compatibility conditions between the loss and the vv-RKHS allow-
ing for different representation of the solution and dedicated (proximal) gradient
descent algorithms.

▶ Chapter 4 investigates the functional output regression problem with a focus
on robustness and sparsity. To ensure these properties, new loss functions are
designed with building blocks being integral losses and infimal convolutions. In
particular, these losses extend the classical Huber and ϵ-insensitive losses to the
functional output case. The resulting optimization problems are solved using dual
methods, shown to be well-suited to the nature of the new losses and enabling
proximal gradient descent algorithms.

▶ Chapter 5 introduces the infinite task learning framework, able to jointly learn
a continuum of parameterized tasks and exemplified in quantile regression, cost-
sensitive classification and density level set estimation. Different choices of reg-
ularizers are proposed, corresponding to regularization in vv-RKHS norm or
in mixed L2-RKHS norm, for which dedicated double representer theorems are
stated. We analyse the generalization capabilities of the ITL estimator for the
supervised setting using uniform stability. Finally, we show that hybrid models in-
volving kernels and dedicated neural networks allow one to obtain more accurate
predictions in the context of image processing.

▶ Chapter 6 casts a style transfer problem as an ITL problem with vectorial outputs.
We consider the problem of emotion transfer for facial landmarks, for which a res-
olution in vv-RKHS is derived. We show that encoding emotions continuously in
some embedding space makes sense for this problem and achieves good perform-
ance on two facial datasets, with the additional benefit over existing method of
enjoying predictions over unseen emotions.

The algorithms developed in this thesis are gathered in the open source Python library
torch_itl. It is designed as a high level python library exploiting pytorch’s autodifferen-
tiation capabilities and providing a scikit-like api. For now it supports quantile regres-

https://github.com/allambert/torch_itl/
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sion and vectorial infinite task learning (applied in the context of emotion transfer), but
future release will include the rest of the proposed methods to enhance reproducibility.

1.4 Publications
These contributions have resulted in the following peer-reviewed publications and pre-
prints (⋆ indicates equal contribution)

• R. Brault⋆, A. Lambert⋆, Z. Szabó, M. Sangnier and F. d’Alché-Buc. Infinite
Task Learning in RKHSs. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 1294–1302, 2019.

• A. Lambert⋆, R. Brault⋆, Z. Szabó, M. Sangnier and F. d’Alché-Buc. A Func-
tional Extension of Multi-Output Learning In International Conference on Ma-
chine Learning (ICML): Adaptive & Multitask Learning workshop (AMTL), 2019.

• P. Laforgue, A. Lambert, L. Brogat-Motte, and F. d’Alché-Buc. Duality in
RKHSs with Infinite Dimensional Outputs: Application to Robust Losses In
International Conference on Machine Learning (ICML), pages 5598-5607, 2020.

• A. Lambert⋆, S. Parekh⋆, Z. Szabó, and F. d’Alché-Buc. Emotion Transfer
Using Vector-Valued Infinite Task Learning Technical report, 2021. (https:
//arxiv.org/abs/2102.05075). (under review)

https://arxiv.org/abs/2102.05075
https://arxiv.org/abs/2102.05075
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In this chapter, we present several mathematical tools that will be used throughout the
manuscript. In Section 2.1 we start with a brief summary on optimization of convex
functionals in general Hilbert spaces, including Fenchel-Legendre conjugates, paramet-
ric duality and proximal operators. In Section 2.2 we focus on operator-valued kernels
(OVKs) for machine learning. These classes give rise to expressive spaces of functions
called vector-valued reproducible kernel Hilbert spaces (vv-RKHSs), allowing to model
function-valued functions and chosen as hypothesis spaces in all further applications.

2.1 Convex Optimization Tools
Ultimately, machine learning consists in the minimization of a function, in the sense that
the output of a learning algorithm is the solution of a minimization problem. Among
these problems, convex ones are notoriously easier to deal with than nonconvex ones.
While nonconvex optimization has to deal with the existence of potentially different
local minima, convex optimization problems enjoy the property that any local minimum
is also a global minimum. In this thesis, we are concerned with convex optimization
problems, over a potentially infinite-dimensional Hilbert space denoted by H. We refer
to the monographs by e.g. Rockafellar (1970); Boyd et al. (2004); Bauschke et al. (2011),
and adopt the notations and terminology of the latter as the optimization framework
they design is suited to minimization problems over general Hilbert spaces. We begin
by defining a class of functions ubiquitous in convex optimization.

Definition 2.1 (Proper, convex, lower semi-continuous functions). We denote by Γ0(H)
the set of functions f : H →

]
−∞,+∞

]
that are
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Table 2.1 – Useful Fenchel-Legendre conjugates, for any f, g : H →
[
−∞,+∞

]
.

Function Fenchel-Legendre conjugate
1
2 ‖·‖

2
H

1
2 ‖·‖

2
H

‖·‖p χBp⋆

1
where 1

p + 1
p⋆ = 1

ϵf ϵf⋆( ·ϵ) for all ϵ > 0

f(· − y) f⋆ + 〈·, y〉H for all y ∈ H

f □ g f⋆ + g⋆

• proper: dom(f) :=
{
x ∈ H : f(x) < +∞

}
6= ∅,

• convex: ∀x, y ∈ H,∀t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), and

• lower semicontinuous: ∀x ∈ H, limy→x f(y) ≥ f(x), where lim denotes limit
inferior.

The Fenchel-Legendre conjugate of a function is an important notion for exploiting
duality principles. In particular it plays an important role in convex machine learning
as it is a key tool to solve variational problems.

Definition 2.2. The Fenchel-Legendre conjugate of a function f : H →
[
−∞,+∞

]
is

defined by
∀x ∈ H, f⋆(x) := sup

y∈H
〈x, y〉H − f(y). (2.1)

The Fenchel-Legendre conjugate of a function f is always convex. It is also involutive
on Γ0, meaning that (f⋆)⋆ = f for any f ∈ Γ0(H). We gather in Table 2.1 examples
and properties of Fenchel-Legendre conjugates.

We now introduce the infimal convolution operator following Bauschke et al. (2011).

Definition 2.3 (Infimal Convolution). The infimal convolution of two functions f, g : H →]
−∞,+∞

]
is

f □ g :

H → [−∞,+∞]

x 7→ inf
x′∈H

f(x− x′) + g(x′)

 . (2.2)

The infimal convolution operator is commutative, which means that f □ g = g□ f for
all f, g : H →] −∞,+∞]. It allows to define a smooth approximation of a potentially
non-smooth function f through the Moreau enveloppe defined as f □ 1

2γ ‖·‖2H where
γ > 0. One key property of the infimal convolution operator is that it behaves nicely
under Fenchel-Legendre conjugation, as detailed in the following proposition.

Proposition 2.4 (Bauschke et al. (2011), proposition 13.24). Let f, g : H →
]
−∞,+∞

]
.

Then

(f □ g)⋆ = f⋆ + g⋆.

We now define the proximal operator, used as a replacement for the classical gradient
step in the presence of non-differentiable objective functions.
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Definition 2.5 (Proximal Operator, Moreau (1965)). The proximal operator (or prox-
imal map) is defined as

∀(f, x) ∈ Γ0 ×H, proxf (x) := argmin
y∈H

f(y) +
1

2

∥∥x− y
∥∥2
H
. (2.3)

One advantage of working with functions in Γ0 is that the proximal operator is al-
ways well-defined. Its computation is efficient for many practical losses thanks to the
following proposition.

Proposition 2.6 (Moreau decomposition). Let f ∈ Γ0(H) and γ > 0. Then

Id = proxγf (·) + γ proxf⋆/γ(·/γ). (2.4)

Example 2.7. A particular case of interest is the proximal operator associated to the
indicator function of a closed convex set C ⊂ H. It holds that for all γ > 0,

∀h ∈ H, proxγχC(·)(h) = ProjC(h)

where ProjC is the orthogonal projection on C in H.

The proximal operator allows to solve composite problems of the form

inf
x∈H

f(x) + g(x), (2.5)

where f, g ∈ Γ0(H) are such that f is Gâteaux differentiable with C-Lipschitz continu-
ous gradient for some C > 0, while g is not.

Definition 2.8 (Gâteaux differentiability). Let f : H →
]
−∞,+∞

]
be proper and

x ∈ dom(f). Let y ∈ H. The directional derivative of f in the direction y is

f ′(x, y) = lim
α↓0

f(x+ αy)− f(x)

α

provided that the limit exists. When f ′(x, ·) is linear in y and continuous, f is said to
be Gâteaux differentiable at point x and there exist a unique vector ∇f(x) ∈ H such
that

∀y ∈ H, f ′(x, y) = 〈∇f(x), y〉H.

While in the finite dimensional case, existence of C1 partial derivatives ensures differ-
entiablity of the function and existence of a gradient, this is no longer true in infinite
dimension. Gâteaux differentiablity then helps to fill this void, and paves the way
to first order optimization methods such as the proximal gradient descent algorithm,
presented in Algorithm 2.1.

The subdifferential is a fundamental tool in convex analysis that generalizes the gradient
to nonsmooth functions.

Definition 2.9 (Subdifferential). Let f : H →
]
−∞,+∞

]
. The subdifferential of f at

x ∈ dom(f) is:

∂f(x) := {u ∈ Rd : ∀y ∈ H, f(y) ≥ f(x) + 〈u, y − x〉H} , (2.6)

i.e. the set of "slopes" of all affine minorants of f which are exact at x.
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Algorithm 2.1 Proximal gradient descent for Problem 2.5
input : Lipschitz constant C, iteration number T
init : x(0)

1 for t = 1, . . . , T do
2 x(t) = prox 1

C
g

(
x(t−1) − 1

C∇f(x
(t−1))

)
3 return x(T )

If f is a convex Gâteaux differentiable function, the subdifferential at x ∈ dom f has
only one element: ∇f(x). Subdifferentiability allows to generalize first-order optimality
conditions to non-differentiable convex functions.

Proposition 2.10 (Fermat’s rule). Let f ∈ Γ0(H). Then, for all x̂ ∈ H:

x̂ ∈ argmin
x∈H

f(x) ⇔ 0 ∈ ∂f(x̂). (2.7)

We are now ready to state the strong duality theorem in the context of minimization
under affine equality constraints, which will be used when exploiting duality in vv-
RKHSs.

Definition 2.11 (Lagrangian). Let f ∈ Γ0(H), K be a Hilbert space, L ∈ L(H,K) and
b ∈ K. We are interested in solving

inf
x∈H

f(x) + χ{0}(Lx− b)︸ ︷︷ ︸
:= P(x)

(2.8)

that we refer to as the primal problem. The Lagrangian associated to Problem 2.8 is

L :

(
H ×K →

]
−∞,+∞

]
(x, α) 7→ f(x) +

〈
Lx− b, α

〉
K

)
.

We then refer to
sup
α∈K

inf
x∈H

L(x, α)︸ ︷︷ ︸
:= D(α)

as the dual problem. Moreover, (x, α) is a saddle point if

P(x) = L(x, α) = D(α).

We can notice that P(x) = supα∈K L(x, α) for ∀x ∈ H. Denoting by P∗ and D∗ the
respective optimal values of the primal and dual problems, weak duality ensures that
P∗ ≥ D∗. It turns out that for a large class of problems, both values are equal, a setting
refered to as strong duality.

Proposition 2.12 (Strong duality). Assume that there exist x ∈ relint dom f such that
Lx− b = 0. Then strong duality holds i.e. P∗ = D∗.

2.2 Kernel Methods for Machine Learning
In this section, we successively present a construction of RKHSs (Section 2.2.1) and
vv-RKHSs (Section 2.2.2) and highlight their usefulness in machine learning.
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2.2.1 Scalar-valued Kernels and RKHSs

Kernel methods stand as a cornerstone of machine learning. Not only they have played
a preponderant role in extending linear models to nonlinear models but they come with
a rigorous mathematical framework that eases the analysis of the learning algorithm
(see Schölkopf and Smola (2002); Berlinet and Thomas-Agnan (2004); Steinwart and
Christmann (2008) for in depth presentation of kernel methods for machine learning).
Their development is strongly linked with convex optimization as practical algorithms
make an extensive use of duality principles. They offer powerful modeling spaces, called
reproducing kernel Hilbert spaces (RKHSs), which are Hilbert spaces of functions that
enjoy a regularity property: convergence in the space implies pointwise convergence.
Equivalently, this can be summarized by the requirement of continuity for all functions
evaluations.

Definition 2.13. Let X be any set and H ⊂ F(X,R) be a Hilbert space. H is said to be
a reproducing kernel Hilbert space (RKHS) if and only if for all x ∈ X, the following
evaluation mapping at x is continuous.

evx :

(
H → R
h 7→ h(x)

)
.

Definition 2.13 is of limited practical interest. Indeed, we seldom have access first to a
RKHS H, but rather construct it through the notion of reproducing kernel as presented
below.

Definition 2.14. A (scalar-valued) kernel on X is a function k : X×X → R such that

1. ∀(x, z) ∈ X2, k(x, z) = k(z, x), and

2. ∀n ∈ N∗, (xi)
n
i=1 ∈ Xn, (αi)

n
i=1 ∈ Rn,

∑n
i=1

∑n
j=1 αiαjk(xi, xj) ≥ 0.

Remark 2.15. Throughout this thesis we consider kernels meant in the sense of pos-
itive definite functions while noting that the construction can be extended to indefinite
kernels leading to Krein spaces (Ong et al., 2004; Huang et al., 2017).

In the rest of this manuscript, we may with a slight abuse simply refer as kernel any
scalar-valued kernel. Kernels can be constructed on sets X with very different structures
including for instance permutations (Jiao and Vert, 2016), measures (Cuturi et al.,
2005), graphs (Mahé and Vert, 2009), or time series (Cuturi et al., 2007). In case of
X = Rd, we can mention the celebrated Gaussian kernel which reads

∀(x, z) ∈ R2, k(x, z) = e−γ‖x−z‖2

2 , (γ > 0).

The following theorem originating from (Aronszajn, 1950) states an equivalence between
kernels and the existence of a feature map representation.

Theorem 2.16. A function k : X × X → R is a kernel if and only if there exists a
Hilbert space V and a mapping ϕ : V → H such that

∀(x, z) ∈ X2, k(x, z) = 〈ϕ(x), ϕ(z)〉V. (2.9)

The space V is then called a feature space and the mapping ϕ a feature map.
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The following theorem links kernels to RKHSs, saying that any kernel can be associated
to a unique RKHS, for that reason kernels are sometimes called reproducing kernels.

Theorem 2.17. Let k be a kernel on X. Then there exists a unique Hilbert space of
functions Hk ⊂ F(X,R) such that

1. ∀x ∈ X, k(·, x) ∈ Hk, and

2. ∀(h, x) ∈ Hk × X, h(x) = 〈h, k(·, x)〉Hk
.

The mapping x 7→ k(·, x) is called the canonical feature map, with V in Equation (2.9)
being Hk itself. If one gets a RKHS H from Definition 2.13, then the existence for all
x ∈ X of a function k(·, x) ∈ H stems from Riesz representation theorem, and taking
x 7→ k(·, x) as a feature map in Equation (2.9) ensures that H is the RKHS associated
to the kernel k.

The above properties allow to define RKHSs on spaces X without any structural as-
sumption. It turns out that endowing the input space with a metric structure and a
probability measure leads to fertile connections with functional analysis and L2 spaces.

Integral operators and RKHSs We begin by introducing the notion of integral
operator associated to a kernel on a compact space Θ.

Definition 2.18 (Integral Operator). Let Θ be a compact metric space endowed with a
Borel probability measure µ, and k be a continuous kernel on Θ. The integral operator
Tk,µ is defined as

Tk,µ :

L2[Θ, µ] → L2[Θ, µ]

f 7→
(
θ 7→

∫
Θ f(θ

′)k(θ, θ′)dµ(θ′)
) .

Remark 2.19. When there is no ambiguity on the considered measure, we omit the
dependence in µ and abbreviate Tk,µ as Tk.

The continuity of k, combined with the compactness of Θ ensure that k is bounded on
Θ, and thus Tk is continuous and compact. Moreover, the symmetry of k implies that
Tk is self-adjoint. Finally, it turns out that Tk is positive (i.e.

〈
Tkf, f

〉
L2[Θ,µ]

≥ 0 for
∀f ∈ L2[Θ, µ]). The spectral theorem for self-adjoint compact operators guarantees the
existence of an at most countable family of functions (ψj)j∈J forming an orthonormal
system in L2[Θ, µ] such that

∀f ∈ L2[Θ, µ], Tkf =
∑
j∈J

λj〈f, ψj〉ψj , (2.10)

where (λj)j∈J are the family of positive eigenvalues ordered so that λ1 ≥ λ2 ≥ · · · ≥ 0.
Additionally, the eigenvalues (ψj)j∈J can be chosen to be continuous since Tk maps
L2[Θ, µ] into the space C(Θ,R) of continuous functions. This provides a Mercer rep-
resentation of the kernel k, as stated below.

Theorem 2.20 (Mercer). Let Θ be a compact metric space endowed with a Borel
probability measure µ such that supp(µ) = Θ, and k be a continuous kernel on Θ. Let
(λj , ψj)j∈J be the eigendecomposition of Tk with continuous eigenvectors. Then

∀(θ, θ′) ∈ Θ2, k(θ, θ′) =
∑
j∈J

λjψj(θ)ψj(θ
′) (2.11)



2.2. KERNEL METHODS FOR MACHINE LEARNING 31

where the convergence is uniform on Θ2 and absolute for all (θ, θ′) ∈ Θ2.

Remark 2.21. The compact assumption on Θ can be weakened to "Hk is compactly
embedded in L2[Θ, µ]" while still retaining most of Mercer’s theorem, see Steinwart and
Scovel (2012) for more details.

While the eigendecomposition of Tk depends on µ, Equation (2.11) holds nevertheless.
When supp(µ) = Θ, a nice byproduct of Mercer’s theorem is to provide a description
of Hk in terms of the decay rate of the Fourier coefficients in the basis (ψj)j∈J . Indeed,
it holds that

Hk =

f ∈ L2[Θ, µ] :
∑
j∈J

(
〈f, ψj〉L2[Θ,µ]

)2
λj

< +∞

 (2.12)

so that h ∈ Hk if and only if there exist f ∈ L2[Θ, µ] such that Tkf = h.

Exhibiting the exact eigendecomposition of Tk is a notoriously hard century-old problem
for general k and µ (Stone, 1932; Klus et al., 2020). In some cases it can be carried
out by solving a differential equation associated to the eigenvector problem, but this
method can only be applied on an ad hoc basis.

Example 2.22 (Laplacian kernel eigendecomposition, Kadri et al. (2016)). Let Θ =
[0, 1] and µ be the Lebesgue measure. Let k(θ, θ′) = e−|θ−θ′|. The eigendecomposition
of Tk is given by

λj =
2

1 + c2j
, ψj : θ 7→ cj cos(cjθ) + sin(cjθ)

where (cj)
∞
j=1 are solutions to the equation cot(c) = 1

2

(
c− 1

c

)
where cot is the cotan-

gent function.

If the exact eigendecomposition is impossible to get, one can resort to using approximate
decomposition based on a sampling of the integral operator.

Example 2.23 (Approximate eigendecomposition, Hoegaerts et al. 2005). Let k be a
continuous kernel on a compact metric space Θ endowed with a measure µ. Let m > 0

and (θj)
m
j=1

i.i.d.∼ µ. We consider the problem of finding a continuous eigenvector ψ of
a sampled version of the integral operator Tk with eigenvalue λ > 0:

∀θ ∈ Θ,
1

m

m∑
j=1

k(θ, θj)ψ(θj) = λψ(θ). (2.13)

In particular, by evalutating Equation (2.13) at points (θj)mj=1, we get that (λm,ψ(θj)mj=1)
is a pair of eigenvalue/eigenvector associated to the Gram matrix K ∈ Mm(R) defined
by Kij = k(θi, θj) for all (i, j) ∈ [m]2. These can be computed using e.g. Singular Value
Decomposition, and by backsubstitution in Equation (2.13) one gets an approximated
eigenbasis of dimension at most m that can be used as a proxy in applications where
the true eigenvectors of Tk are required.
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The decay rate of the eigenvalues (λj)j∈J determines "how large" the RKHS is; the
slower the decay the larger the space is. An approach to measuring the modeling
capacity of the RKHS then consists in answering the question "Can functions in the
RKHS approximate any continuous function for the uniform convergence ?".

Definition 2.24 (Universal kernels, Micchelli et al. (2006)). Let k be a kernel on a
compact metric space Θ. k is said to be universal if Hk = C(Θ,R) where the closure is
taken with respect to the uniform convergence norm.

Universal kernels are key in obtaining consistency of machine learning estimators, and
relate to the integral operator the following way.

Proposition 2.25 (Carmeli et al. (2010)). Let k be a kernel on a compact metric space
Θ. Then k is universal if and only if Tk,µ is injective for all probability measures µ.

The integral operator allows to embed a probability measure in a Hilbert space an idea
that has lead to a very active subfield of machine learning (Smola et al., 2007; Fukumizu
et al., 2008; Sriperumbudur et al., 2010; Sejdinovic et al., 2013). Indeed, Tk,µ(1) ∈ Hk

characterizes the distribution µ provided that the kernel is characteristic, a class of
kernel encompassing in particular the universal kernels (see Sriperumbudur et al. (2011);
Szabó and Sriperumbudur (2018) for an exhaustive classification of kernels), in which
case the RKHS norm in Hk allows to discriminate between measures and paves the
way to many modern statistical tests based on maximum mean discrepancy (Gretton
et al., 2008, 2012).

Kernel quadrature rules RKHSs can be used to approximate integrals, a topic of
interest for this thesis. Given a measure µ on a compact space Θ ⊂ Rd, the goal of
quadrature rules is to find points (θj)

m
j=1 ∈ Θ and coefficients (ηj)

m
j=1 ∈ Rm such that

for some class of functions H the approximation

∀h ∈ H,

∫
Θ
h(θ)dµ(θ) ≈

m∑
j=1

ηjh(θj)

is reasonable. In particular, we want the approximation to have better convergence
rates than the asymptotic O(m1/2) obtained by Monte-Carlo methods where one uses
(θj)

m
j=1

i.i.d.∼ µ and ηj = 1
m . Taking H as the unit ball of some RKHS, this problem

can be cast as the approximation of the mean embedding in the RKHS with well
chosen elements (Smola et al., 2007). The resulting integration scheme (ηj , θj)

m
j=1 is

called a kernel quadrature rule and can enjoy asymptotic convergence rates faster than
Monte-Carlo, for example of order O(m−r/d) in a Sobolev space of order r (Novak,
2006). Kernel quadrature rules enjoy rich connections with random feature expansions,
among them the random Fourier features introduced later, which allows to express the
optimal sampling measure of the (θj)

m
j=1 as a leverage score depending on the kernel

and µ (Bach, 2017). Finally we want to mention that it is possible to get convergence
rates of the estimate given by kernel quadrature rules even when applied to functions
outside the RKHS (Kanagawa et al., 2020).

Empirical risk minimization in RKHSs In the supervised learning setting, given
a loss function ℓ : R2 → R (taken proper, convex, lower semi-continuous with respect
to its first argument) and a joint random variable (X,Y) ∈ X × R, an ideal predic-
tion rule h ∈ F(X,R) minimizes R(h) := E(X,Y)ℓ(h(X),Y) over the set of admissible,
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i.e. measurable, prediction rules. Because the law of (X,Y) is unknown, one relies on
i.i.d. samples (xi, yi)

n
i=1 and trades the expectation for the empirical mean, to which

a regularization term is added to prevent overfitting. The set of admissible prediction
rule can be chosen to be a RKHS Hk, resulting in the optimization problem

inf
h∈Hk

1

n

n∑
i=1

ℓ
(
h(xi), yi

)
+
λ

2

∥∥h∥∥2
Hk

(λ > 0). (2.14)

Problem 2.14 has received a great deal of attention in several different settings such
as the square loss (kernel ridge regression, (Vapnik, 1998)), the pinball loss (Steinwart
et al., 2011), support vector machines (SVM, Cortes and Vapnik 1995), least squares
SVM (Suykens and Vandewalle, 1999) and many others. One advantage of RKHSs over
other spaces is to benefit from a representer theorem for the solution. First introduced
in Kimeldorf and Wahba (1971) for specific losses such as the square loss, it has been
extended to handle any loss functions.

Theorem 2.26 (Representer, Steinwart and Christmann (2008)). There is a unique
solution ĥ ∈ Hk to Problem 2.14 and there exist (α̂i)

n
i=1 ∈ Rn such that

ĥ =
n∑

i=1

α̂ik(·, xi). (2.15)

Remark 2.27. The representer theorem still holds under weaker assumption, as long
as the functional to minimize is convex, only involves the evaluation of the model at
points (xi)ni=1 and the regularizer is a nondecreasing function of

∥∥h∥∥
Hk

(Schölkopf et al.,
2001a).

Example 2.28 (Kernel Ridge Regression). Using the square loss ℓ(h(x), y) = 1
2(h(x)−

y)2, the solution of Problem 2.14 can be computed in closed form. Denoting by K ∈
Mn(R) the Gram matrix associated to (xi)

n
i=1 and kernel k, and by y = [yi]

n
i=1 ∈ Rn

the observed outputs, it holds that

α̂ =
(
K+ λn Id

)−1
y, (2.16)

where α̂ = [α̂i]
n
i=1 ∈ Rn encodes the coefficients in Equation (2.15).

Large scale learning The flexiblity of kernel methods often comes with a com-
putation price; large-scale learning scenarii require dedicated techniques ta make the
computations tractable. In particular, we can cite the Nyström method (Williams
and Seeger, 2001) which proposes to approximately solve Equation (2.16) using only
a subset of the columns of the Gram matrices. This amounts to a subsampling in the
representer expression in Equation (2.15) and has allowed to scale to billions of points
(Rudi et al., 2017; Meanti et al., 2020). Another popular method is random Fourier fea-
tures (RFF) introduced in (Rahimi and Recht, 2007, 2008) for shift-invariant kernels.

Definition 2.29. Let k be a kernel on X. It is said that k is shift-invariant if there
exists k0 : X → R (called its signature) such that for all (x, z) ∈ X2, k(x, z) = k0(x−z).

The RFF model stems from Bochner’s theorem (Rudin, 1990), stating that any con-
tinuous, bounded and shift-invariant kernel k : Rd × Rd → R can be expressed as the
Fourier transform of some finite Borel measure ρk on Rd, and the correspondence is
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one-to-one:
k(x, z) =

∫
Rd

cos
(〈
ω, x− z

〉)
dρk(ω).

Given some integer m and (ωj)
m
j=1 i.i.d. sampled from ρk, the kernel k̃ : X × X → R

defined by

∀(x, z) ∈ X2, k̃(x, z) =
1

m

m∑
j=1

cos (〈ωj , x− z〉) (2.17)

is then a reasonable approximation for k (see the work of Sriperumbudur and Szabó
(2015) for optimal rates), and the associated RKHS Hk̃ can be used as hypothesis space
in machine learning problems.

The feature map associated to the kernel is then ϕ̃ : Rd → R2m defined for all x ∈ Rd

by

ϕ̃(x) =
1√
m
(cos (ω⊤

1 x), . . . , cos (ω
⊤
mx), sin (ω

⊤
1 x), . . . , sin (ω

⊤
mx))

⊤. (2.18)

Example 2.30 (RFF integral operator eigendecomposition). Let k̃ be a RFF kernel
on Rd of type Equation (2.17) for some integer m and (ωj)

m
j=1 i.i.d. sampled from

ρk. Let Θ be a compact subspace of Rd, endowed with a probability measure µ. The
eigendecomposition of Tk̃ is computable, as for any f ∈ L2[Θ, µ], it holds that

∀θ ∈ Θ, Tk̃f(θ) =

∫
Θ
k̃(θ, θ′)f(θ′)dµ(θ′)

=
1

m

m∑
j=1

cos(ω⊤
j θ)

∫
Θ
cos(ω⊤

j θ
′)f(θ′)dµ(θ′)

+ sin(ω⊤
j θ)

∫
Θ
sin(ω⊤

j θ
′)f(θ′)dµ(θ′).

Plugging in some function h =
∑n

j=1 aj cos(ω
⊤
j θ) + bj sin(ω

⊤
j θ) and writing the eigen-

vector problem, we get that h is an eigenvector of Tk̃ if and only if (a1, . . . am, b1, . . . bm)⊤

is an eigenvector of the matrix Ψ ∈ M2m(R) encoding the scalar products in L2[Θ, µ]
of the cosines and sines, defined ∀i, j ∈ [m]2 by

Ψi,j =

∫
Θ
cos(ω⊤

i θ) cos(ω
⊤
j θ)dµ(θ) Ψi+m,j+m =

∫
Θ
sin(ω⊤

i θ) sin(ω
⊤
j θ)dµ(θ)

Ψi+m,j =

∫
Θ
sin(ω⊤

i θ) cos(ω
⊤
j θ)dµ(θ) Ψi,j+m =

∫
Θ
cos(ω⊤

i θ) sin(ω
⊤
j θ)dµ(θ).

Moreover, they also share the same eigenvalues up to the 1
m factor, so that Singular

Value Decomposition can be applied on Ψ to get the eigendecomposition of Tk̃. Finally,
notice that when µ is the Lebesgue measure, the coefficients of Ψ are computable in
closed form, whereas they must be approximated for general µ.

RFF benefit from a large body of work, from pure computational aspects (Yang et al.,
2014; Le et al., 2013; Zhang et al., 2019) to quantifying their effect in learning algorithms
(Rudi and Rosasco, 2017; Li et al., 2019b).
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Kernel Learning Though giving rise to expressive functional spaces, kernels are
hard to tune in practice. The idea of kernel learning proposes to learn the kernel adap-
ted to the task at hand. This can take many forms, including multiple kernel learning
(Sonnenburg et al., 2006) which proposes to learn a convex combination of kernels,
kernel alignment (Kandola et al., 2002) which gives a measure of adequacy between the
kernel and the data, spectral kernel learning where the goal is to learn a shift invari-
ant kernel from its fourier spectral measure stemming from Bochner’s theorem (Oliva
et al., 2016; Li et al., 2019a), and many others. In particular, we want to mention deep
kernel learning, which consists in parameterizing a kernel by a neural architecture, and
provides a way to train jointly the parameters of the estimator and the neural archi-
tecture. This idea has been introduced by Salakhutdinov and Hinton (2007), where
authors use deep beliefs nets to learn covariance kernels for Gaussian processes. The
pretraining of the network is carried out on a large, unsupervised dataset to learn relev-
ant features, and the weights are fine-tuned for specific applications involving a smaller
amount of data. The resulting kernel family is referred to as deep kernels (DK). Since
then deep kernels have been exploited in various kernel-related tasks, such as maximum
mean discrepancy for GAN discriminators (Li et al., 2017), density estimation via score
matching in exponential families (Wenliang et al., 2018), semi supervised learning (Jean
et al., 2018), non-parametric two-sample tests (Liu et al., 2020), among others. The
resulting optimization problems are costly, as learning deep kernels involves the joint
minimization in the parameters of the neural architecture and in the coefficients of the
representer theorem. Thus, most approaches focus on scalable approaches by choosing
a kernel that brings computational advantages. We can mention Yang et al. (2015)
for image classification with random Fourier features approximated using the FastFood
method Le et al. (2013), Wilson et al. (2016) for scaling Gaussian processes up to
millions of points, Mehrkanoon et al. (2017); Mehrkanoon and Suykens (2018) for gen-
eral hybrid RFF approaches. Deep kernel learning approaches allow to apply kernel
methods to complex data such as images, as emphasized later in Section 5.4.4.

We now present the vv-RKHS extension to kernel methods used for modeling outputs
which are not real-valued.

2.2.2 Operator-valued Kernels and vv-RKHSs

Vector-valued RKHSs (vv-RKHSs) are an extension of RKHSs allowing to model func-
tions with outputs in a Hilbert space first developed in Pedrick (1957). While the
definition and properties of vv-RKHSs are similar to the real output case (see Table 2.2
for a comparison between real and vector-valued cases), the kernels involved are not
real-valued anymore but operator-valued. We refer to Carmeli et al. (2006, 2010) for
an overview on the topic. In what follows, Y a separable Hilbert space.

Definition 2.31. Let H ⊂ F(X,Y) be a Hilbert space. H is said to be a vector-valued
reproducing kernel Hilbert space if and only if for all x ∈ X, the following evaluation
mapping at x is continuous.

evx :

(
H → Y

h 7→ h(x)

)
.

Similarly to the scalar case, vv-RKHSs can be constructed from OVKs.

Definition 2.32. An operator-valued kernel (OVK) on X is a function K : X × X →
L(Y) such that
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Table 2.2 – Equivalent notions between scalar (k) and operator-valued kernels (K).

scalar-valued kernel operator-valued kernel

kernel k : X× X → R K : X× X → L(Y)

positivity
∑

i,j∈[n] αiαjk(xi, xj) ≥ 0
∑

i,j∈[n]

〈
K(xi, xj)yi, yj

〉
Y
≥ 0

function space Hk = Span{k(·, x) : x ∈ X} HK = Span{K(·, x)y : (x, y) ∈ X× Y}
reproducing property h(x) =

〈
h, k(·, x)

〉
Hk

h(x) = K(·, x)#h
feature map ϕ : X → V Φ : X → L(Y,V)

parametrization h =
〈
ϕ(·), v

〉
V

h = Φ(·)#v

1. ∀(x, z) ∈ X2, K(x, z) = K(z, x)♯, and

2. ∀n ∈ N∗, (xi)
n
i=1 ∈ Xn, (yi)

n
i=1 ∈ Yn,

∑n
i=1

∑n
j=1〈yi,K(xi, xj)yj〉 ≥ 0.

OVKs can also be characterized by the existence of a feature map.

Theorem 2.33. A function K : X× X → L(Y) is an OVK if and only if there exist a
Hilbert space V and a mapping Φ: X → L(V,Y) such that

∀(x, z) ∈ X2, K(x, z) = Φ(x)Φ(z)♯.

We again call Φ a feature map and V a feature space. Given an OVK K and x ∈ X,
Kx : Y → F(X,Y) denotes the linear operator such that

∀y ∈ Y, ∀z ∈ X, Kxy(z) = K(x, z)y.

The following theorem describes the vv-RKHS associated to an OVK.

Theorem 2.34. Let K be an OVK on X. Then there exists a unique Hilbert space of
functions HK ⊂ F(X,Y) such that

1. ∀(x, y) ∈ X× Y, Kxy ∈ HK , and

2. ∀(h, x) ∈ Hk × X, h(x) = K♯
xh.

Remark 2.35. If H is a vv-RKHS in the sense of Definition 2.31 then its associated
kernel is given by K(x, z) = evxev♯z.

We now define the family of separable kernels which are among the simplest OVKs to
work with.

Definition 2.36. An operator-valued kernel K : X × X → L(Y) is called separable if
there exists a scalar kernel k : X× X → R and an operator A ∈ L(Y) such that

∀(x, z) ∈ X2, K(x, z) = k(x, z)A.

Separable kernels are undoubtedly the most studied OVKs, for their simplicity and
computational efficiency. Indeed the scalar product in the associated RKHS HK takes
a straightforward form on elementary elements of the form Kxy:〈

Kx1y1,Kx2y2

〉
HK

=
〈
K(x1, x2)y1, y2

〉
Y
= k(x1, x2)

〈
Ay1, y2

〉
Y
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for all (x1, x2, y1, y2) ∈ X2 × Y2.

Other notables classes of OVKs include the curl-free and div-free matrix-valued kernels
used for vector fields learning (Macedo and Castro, 2010), the transformable matrix-
valued kernels for multi-view data (Huusari et al., 2018) and the recent entangled or
partial trace OVKs deriving from quantum computing concepts (Huusari and Kadri,
2021). It is also worth mentioning that extensions of multiple kernel learning to OVKs
have been investigated in Kadri et al. (2012).

Example 2.37. Let kX : X × X → R be a kernel, and A ∈ Ms(R) for some integer s,
such that A is a positive self-adjoint operator. Let

K :

(
X× X → Ms(R)
(x, z) 7→ kX(x, z)A

)
.

Then K is an OVK on X and HK ⊂ F(X,Rs).

While in the scalar case the kernel associated to a RKHS is unique, in the operator-
valued case one may find OVKs acting on different output space that lead to the "same"
space of function up to an isometry in the sense defined below.

Definition 2.38. Two Hilbert spaces H1, H2 are said to be unitarily equivalent if there
exist W ∈ L(H1,H2) such that WW ♯ = IdH2 and W ♯W = IdH1.

Example 2.39 (Carmeli et al. (2010), example 6). Let kX : X×X → R and kΘ : Θ×Θ →
R be kernels. Let

K :

(
X× X → L(HkΘ)
(x, z) 7→ kX(x, z) IdHkΘ

)
.

Then K is an OVK on X and the corresponding vv-RKHS HK is unitarily equivalent
to HkX ⊗HkΘ.

Example 2.40 (Carmeli et al. (2010), example 7). Let kX : X×X → R and kΘ : Θ×Θ →
R be kernels. Assume that Θ is a compact metric space endowed with a probability
measure µ such that supp(µ) = Θ, and that kΘ is continuous. Let

K :

(
X× X → L2[Θ, µ]
(x, z) 7→ kX(x, z)Tk,µ

)
.

Then K is an OVK on X and the corresponding vv-RKHS HK is unitarily equivalent
to HkX ⊗HkΘ.

Remark 2.41. The modeling spaces from Example 2.39 and Example 2.40 are essen-
tialy the same spaces of functions as the scalar RKHS associated to the product kernel
kX ⊗ kΘ. What differs among these choices is whether we look at the elements of these
spaces as functions (i) from X to HkΘ, (ii) from X to L2[Θ, µ], or (iii) from X×Θ to
R. We leverage this flexibility in the design of optimization algorithms in Chapter 3.

Similarly to the scalar case, one can define the integral operator associated to an OVK
K : Θ×Θ → L(Y) when HK ⊂ C(Θ,Y) and K is bounded in operator norm on supp(µ):

TK,µ :

L2[Θ, µ;Y] → L2[Θ, µ;Y]

f 7→
(
θ 7→

∫
ΘK(θ, θ′)f(θ′)dµ(θ′)

) . (2.19)
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Such object can be defined for the larger class of Mercer kernels, which are OVKs such
that x 7→

∥∥∥K(x, x)
∥∥∥
op

is locally bounded, and HK ⊂ C(X,Y) (see Carmeli et al. (2010)
for more details about this).

Proposition 2.42 (Carmeli et al. (2010)). Let Θ be a compact metric space endowed
with a Borel probability measure µ, and K : Θ × Θ → L(Y) be an OVK. Assume that
HK ⊂ C(Θ,Y) and that K is bounded in operator norm on supp(µ). If K(θ, θ) is a
compact operator for all θ ∈ Θ, then TK,µ is a compact operator.

Proposition 2.42 allows to perform the eigendecomposition of TK,µ, and we get a similar
characterization of HK than the one in Equation (2.12). We refer the interested reader
to Carmeli et al. (2010).

Regularized Empirical risk minimization in vv-RKHSs Let (X,Y) ∈ X×Y be
random variables, we assume access to i.i.d. samples (xi, yi)ni=1. Given a proper, convex
lower-semicontinuous loss function L : Y × Y → R (with respect to its first argument),
we consider the learning problem

inf
h∈HK

1

n

n∑
i=1

L(h(xi), yi) +
λ

2

∥∥h∥∥2
HK

(λ > 0), (2.20)

where K : X×X → L(Y) is an OVK. Problem 2.20 arises when performing empirical risk
minimization in vv-RKHSs for outputs that lie in a Hilbert space. In particular, we can
cite applications to multi-output learning (Micchelli and Pontil, 2005; Álvarez et al.,
2012), function-to-function regression (Kadri et al., 2016) and structured prediction
where outputs are embeddings of structured objects into scalar RKHSs (Brouard et al.,
2011; Kadri et al., 2013; Brouard et al., 2016). Similarly to the scalar case, it turns out
that the minimizer of Problem 2.20 can be expressed using a representer theorem, this
time with coefficients in Y themselves.

Theorem 2.43 (Representer, Micchelli and Pontil (2005)). There exists a unique solu-
tion ĥ ∈ HK to Problem 2.20, that can be written as

ĥ =
n∑

i=1

K(·, xi)α̂i (2.21)

for some (α̂i)
n
i=1 ∈ Yn.

The benefit of Theorem 2.43 is to pertain the solution to Problem 2.20 to a specific
subset of HK . The coefficients (α̂i)

n
i=1 now belong to the Hilbert space Y, which can

pose representation problems for infinite dimensional Y. This is discussed at length in
Chapter 3.

Kernel methods have a rich history of exploiting parametric duality techniques to solve
empirical risk minimization problem. In particular, these techniques translate well to
OVK-based learning problems, and can be exploited to gain additional information
about the coefficients (α̂i)

n
i=1. Below we present a result originating from (Brouard

et al., 2016) about the dualization of such problems with output in a general Hilbert
space Y. We adopt the notation Iℓi : y ∈ Y 7→ Iℓ(y, yi) for any i ∈ [n].
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Theorem 2.44 (Dualization, Brouard et al. (2016)). The solution of Problem 2.20 is
given by

ĥ =
1

λn

n∑
i=1

K(·, xi)α̂i, (2.22)

with (α̂i)
n
i=1 ∈ Yn being the solution of the dual problem

inf
(αi)ni=1∈Yn

n∑
i=1

I⋆ℓi(−αi) +
1

2λn

n∑
i,j=1

〈
αi,K(xi, xj)αj

〉
Y
. (2.23)

Again, solving Problem 2.23 may not be straightforward and we refer to Chapter 3 for
dedicated techniques in the context of integral losses.

Large scale learning The vv-RKHS framework is even more challenging than the
real-valued one from computational perspective. Approximated kernel schemes can
however be applied to lighten it, as proposed by the operator random Fourier features
(ORFF) methodology (Brault et al., 2019). This approach holds for shift-invariant
OVK, and relies on an operator-valued version of Bochner’s theorem, stating that any
shift-invariant Mercer OVK K : Rd×Rd → R can be expressed as the Fourier transform
of some finite operator-valued borelian measure QK on Rd, and the correspondence is
one-to-one:

k(x, z) =

∫
Rd

cos
(〈
ω, x− z

〉)
dQK(ω).

Under mild regularity assumptions verified for separable OVKs (see Brault et al.
(2016) for a precise statement), the operator-valued measure can be written dQK(ω) =
QK(ω)dρK(ω) for an operator-valued function QK and bounded Borel measure ρk.
Given some integer m and (ωj)

m
j=1 i.i.d. sampled from ρK , the kernel K̃ : X×X → L(Y)

defined by

∀(x, z) ∈ X2, K̃(x, z) =
1

m

m∑
j=1

cos (〈ωj , x− z〉)QK(ωj) (2.24)

can be used as hypothesis space in machine learning problems. The feature map asso-
ciated to the kernel is then Φ̃ : Rd → L

(
Y,Y2m

)
defined for all x ∈ Rd by

Φ̃(x) =
1√
m

m⊕
i=1

(
cos (ω⊤

i x)B(ωj)
♯ ⊕ sin (ω⊤

mx)B(ωj)
♯
)

(2.25)

where ∀j ∈ [m], B(ωj)B(ωj)
♯ = Q(ωj).

In the case of a separable kernel K = kXA, dQK = Adρk so that it suffices to exhibit
a decomposition BB♯ = A for some B ∈ L(Y) and the feature map writes

Φ̃(x) =
1√
m
ϕ̃X(x)⊗B♯. (2.26)

In particular Singh et al. (2020) use the ORFF methodology to learn stabilizable non-
linear dynamics.
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2.3 Conclusion
In this chapter we provided a background in both convex optimization and vector-valued
RKHSs theory, with focus on machine learning applications. In short, vv-RKHSs are
extensions of RKHSs allowing to model functions with outputs in any Hilbert space,
enabling the model of function-valued functions in particular. These spaces of functions
are chosen as hypothesis spaces for the regularized empirical risk minimization problems
raised in the rest of the thesis.
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In this chapter, we address the general question of solving regularized empirical risk
minimization problems in vv-RKHSs with functional outputs, in the presence of integral
losses. After introducing the family of considered problems in Section 3.1, we devote
Section 3.2 to the study of the special case of the square loss function, for which
closed-form solutions exist. In Section 3.3 we investigate ways to solve the problems
based on the primal formulation, either by means of a double representer theorem
or by the use of random features. We then delve into dual algorithms in Section 3.4,
designing techniques involving adapted basis related to the operator-valued kernels used
in practice, or exploiting linear splines bases to represent the dual variables, rephrasing
the problem as the minimization of an approximated quadratic form under specific
linear constraints. This chapter ends with a conclusion in Section 3.5.

3.1 Problem Formulation

Let (X,Y) be a pair of random variables taking values in a product space X×L2[Θ, µ;U].
Depending on the application considered, X will be Rd or a functional space. The space
Θ ⊂ Rp is a compact domain endowed with a Borel probability measure µ, and U = Rs

for some integer s > 0. We begin by proposing a family of loss functions referred to as
integral losses that involves an integration over the space Θ.
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Integral Losses Losses on L2[Θ, µ;U] can be constructed from a family of ground
losses on U parameterized by θ ∈ Θ. Let ℓ : Θ×U×U → R be such a family, and define
a loss function Iℓ on L2[Θ, µ;U]2 by integration with respect to µ:

Iℓ(f, g) =

∫
Θ
ℓ(θ, f(θ), g(θ))dµ(θ), for f, g ∈ L2[Θ, µ;U]. (3.1)

The integrated loss Iℓ encodes the cost associated to the prediction of f given the ground
truth g. As f and g are functions with domain Θ, the prediction error is measured
pointwise (∀θ ∈ Θ) as ℓ(θ, f(θ), g(θ)); in Iℓ this error is aggregated on Θ with weighting
µ (see Table 3.1 for a summarized view of all these parameters in different scenarii). We
require that ℓ is a convex lower semi-continuous integrand; that is for all θ ∈ Θ, v ∈ U,
ℓ(θ, ·, v) is lower semi-continuous and convex. The integrand is also chosen to be proper:
∀(θ, u, v) ∈ Θ×U2, ℓ(θ, u, v) 6= −∞ and is not everywhere +∞. We assume in the sequel
and refer to these requirements jointly as normal convex integrand. To avoid indefinite
integral issues, by convention Iℓ(f, g) = +∞ if any of the positive or negative part of
the integrand is infinite.

One of the challenges to tackle is that even computing Iℓ(f, g) in Equation (3.1) is not
straightforward. Our goal is to minimize the risk (or in practice its empirical version)
over a hypothesis class H (detailed below)

inf
h∈H

R(h) := E(X,Y)[Iℓ(h(X),Y)]. (3.2)

It is instructive to consider a few examples for Problem 3.2; the corresponding (X,Θ,U, ℓ)
choices are summarized in Table 3.1.

• Functional output regression (FOR, Chapter 4): In this problem family the task
is to regress to a functional output (Θ = [0, 1] is endowed with a probability measure
µ, U = R) from a vectorial (X = Rd) or functional input (X = L2[Θ0, µ0]). A natural
way to tackle this problem is to estimate E[Y|X] = h†(X) where it is well-known that

h† = argmin
h∈H

E(X,Y)

[∥∥∥Y − h(X)
∥∥∥2
L2[Θ,µ]

]
,

with H being the set of all measurable functions from X to L2[Θ, µ]. As
∥∥f∥∥2

L2[Θ,µ]
=∫

Θ f
2(θ) dµ(θ) for any f ∈ L2[Θ, µ], finding h† reduces to Problem 3.2 with ℓ(θ, u, v) =

1
2(v − u)2.

• Joint quantile regression (JQR, Section 5.4): While classically quantiles are re-
gressed for a single level (Koenker and Bassett Jr, 1978), one can consider the learning
problem of simultaneously learning multiple quantiles (Sangnier et al., 2016) or that
of the whole quantile function (Brault et al., 2019). Particularly, let Θ = [0, 1], U = R
and consider a pair of random variables (X,Y) ∈ Rd×R or (X,Y) ∈ Rd1×d2 ×R. Here
the r.v. Y is real valued, but is identified with a random variable of constant functions
in L2[Θ, µ]. The θ-conditional quantile of Y|X for θ ∈ (0, 1) is defined as

q(x)(θ) = inf{u ∈ R : P(Y ≤ u |X = x) ≥ θ} = argmin
u∈R

EY[ℓ(θ, u,Y) |X = x], (3.3)

where in the variational description ℓ is the so-called pinball loss

ℓ(θ, u, v) = max (θ(v − u), (θ − 1)(v − u)).
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Table 3.1 – Considered problem family: examples. QR: quantile regression. CSC:
cost-sensitive classification. FOR: functional output regression. ET: emotion transfer.

Task X Θ U ℓ(θ, u, v)

QR (Section 5.4) Rd [0,1] R max (θ(v − u), (θ − 1)(v − u))

CSC (Section 5.5) Rd [0, 1] R
∣∣∣θ − 1{−1}(v)

∣∣∣max(0, 1− uv)

FOR (Chapter 4) Rd or L2[Θ0, µ0] [0, 1] R 1
2(u− v)2

ET (Chapter 6) Rd or Rd1×d2 ⊂ Rp X 1
2 ‖u− v‖2U

The variational form in Equation (3.3) implies that for any h ∈ H∫
Θ
EX[EY[ℓ(θ, q(X)(θ),Y) |X]]dµ(θ) ≤

∫
Θ
EX[EY[ℓ(θ, h(X)(θ),Y) |X]]dµ(θ).

This means that R(q) ≤ R(h) for any h ∈ H in Problem 3.2.
• Cost-sensitive classification (CSC, Section 5.5): Let Θ = [0, 1], U = R and (X,Y)

be random variables taking values in Rd × {−1, 1}. We denote c+ (resp. c−) the
cost associated to a false positive (resp. negative). The cost-sensitive hinge loss is
defined as by ℓhinge(c+, c−, y, y

′) = (c+1{1}(y
′) + c−1{−1}(y

′))max (0, 1− yy′) where
(y, y′) ∈ R × {−1, 1}. Given x ∈ X, a classification rule is obtained by minimizing
EY[ℓ(c+, c−, s, Y ) |X = x] for s ∈ R, and predicting sign(s) (Bach et al., 2006).
Defining the asymmetry coefficient θ = c+

c++c−
and restraining the values of (c+, c−) to

the line c++c− = 1 the training can be performed jointly for all values of θ ∈ [0, 1] by
considering (3.2) with ℓ(θ, u, v) =

∣∣∣θ − 1{−1}(v)
∣∣∣max(0, 1− uv), µ encoding the user

importance to different values of θ, and identifying the random variable Y ∈ {−1, 1}
with a random variable of constant functions in L2[Θ, µ] (Brault et al., 2019).

• Emotion transfer (ET, Chapter 6): Let Θ ⊂ Rp be a compact set corresponding
to an embedding space for emotions endowed with a probability µ measuring the
importance of each emotion, and Y be a random variable taking its values in C(Θ,U)
where U = Rd or U = Rd1×d2 . The random variable Y encodes the trajectory of a
phenomenon (facial landmarks, face picture) with respect to the emotions. Let ϑ
be a random variable on Θ with probability ν, independent from Y, and consider
X = Y(ϑ) the X-valued random variable (X = U). Estimating Y from X can be
tackled by finding E[Y|X] = h†(X) where

h† = argmin
h∈H

E(X,Y)

[∥∥∥Y − h(X)
∥∥∥2
L2[Θ,µ;U]

]
,

with H being the set of all measurable function from X to L2[Θ, µ;U]. Therefore,
finding h† reduces to Problem 3.2 with ℓ(θ, u, v) = 1

2 ‖v − u‖2U.

Hypothesis Space We make use of the modeling choices described in Example 2.37
and Example 2.39, given some kernels kX, kΘ, and output similarity encoding matrix A.
Let HG be the vv-RKHS associated with the decomposable OVK G = kΘA. Elements
in HG model the Θ 7→ U mapping. We then specify HK to be the vv-RKHS associated
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to kernel K = kX IdHG
. Elements h ∈ HK model the relation

h : X 7→ (Θ 7→ U︸ ︷︷ ︸
∈HG

).

As seen in Remark 2.41, there is an equivalence between the views K = kX IdHG
and

K = kXTG where TG is the integral operator associated to G defined in Equation (2.19).
Depending on the situation at hand, we may use one or the other representation, and
denote by a unified notation Y the output space of functions in HK (either HG or
L2[Θ, µ;U]).

Choosing H := HK in Problem 3.2 one arrives at

inf
h∈HK

R(h) := E(X,Y)

[
Iℓ(h(X),Y)

]
. (3.4)

In practice, we do not have access to the true distribution of (X,Y), but we are given
i.i.d. samples gathered in a dataset S := (xi, yi)

n
i=1. These samples define the empirical

risk

RS(h) :=
1

n

n∑
i=1

Iℓ(h(xi), yi),

and one can solve
inf

h∈HK

RS(h) +
λ

2

∥∥h∥∥2
HK

(λ > 0). (3.5)

The term λ
2

∥∥h∥∥2
HK

acts as a regularizer. It can be interpreted two ways: from a
statistical learning point of view, it is used to prevent over-fitting whereas from an
optimization point of view it brings strong convexity to the problem and ensures the
coercivity of the functional to minimize.

One of the advantages of working with vv-RKHSs is to have a fairly general representer
theorem which ensures that the solution belongs to a specific subset of HK (see The-
orem 2.43). Particularly, we know that Problem 3.5 admits a unique solution ĥ ∈ HK

which can be written as

ĥ =
n∑

i=1

K(·, xi)α̂i (3.6)

for some (α̂i)
n
i=1 ∈ Yn.

When Y is finite-dimensional, this is enough to parameterize the solution and repres-
ent it on a computer. In our case, Y is a potentially infinite-dimensional functional
space raises an additional challenge on the parameterization of the (α̂i)

n
i=1 challenging.

Therefore plugging Equation (3.6) into Problem 3.5 is not a viable choice to directly
solve it, as we would be left with an optimization problem over an infinite-dimensional
space Yn.

Parametric duality can be exploited in the context of vv-RKHSs (see Theorem 2.44)
and the dual problem takes the form

inf
(αi)ni=1∈Yn

n∑
i=1

I⋆ℓi(−αi) +
1

2λn

n∑
i,j=1

〈
αi,K(xi, xj)αj

〉
Y
, (3.7)
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Table 3.2 – Summary of proposed algorithms. GD: (sub) gradient descent. SGD:
stochastic (sub) gradient descent. PGD: proximal gradient descent.

Section type Y parameterization loss algorithm

3.2.1 closed form L2[Θ, µ;U] eigenbasis of TG square loss analytic
3.2.2 closed form HG double representer square loss analytic
3.3.1 primal HG double representer sampled GD
3.3.2 primal HG ORFF any SGD
3.4.2 dual L2[Θ, µ;U] eigenbasis of TG Assumption 3.16 GD
3.4.3 dual L2[Θ, µ;U] linear splines Assumption 3.18 PGD

where Iℓi : y ∈ Y 7→ Iℓ(y, yi) for any i ∈ [n]. Given that (α̂i)
n
i=1 are solution to

Problem 3.7, the resulting estimator is

ĥ =
1

λn

n∑
i=1

K(·, xi)α̂i, (3.8)

One can notice that Theorem 2.44 provides a representer expression, with the additional
benefit of having access to a dual problem, which can be easier to solve than the direct
plug-in of Equation (3.6) into Problem 3.5. The search for the solution in HK is again
transferred to the search for optimal coefficients in Yn, which may be intractable in
practice for infinite-dimensional Y.

Solving Problem 3.5 is thus a challenging task, and requires dedicated techniques. Two
questions are raised here:

• How can we represent the coefficients (αi)
n
i=1 so that the resulting estimator

admits a finite-dimensional parametrization ?

• How can we learn the best estimator when we cannot even compute exactly each
Iℓ(h(xi), yi)?

These two questions are interlinked, and we propose in this chapter several algorithms
to solve Problem 3.5. In Section 3.2 we focus on the particular case of the square
loss, for which estimators enjoy closed-form solution. This is an extension of existing
results on kernel ridge regression for real-valued output functions. In Section 3.3, we
devise general optimization algorithms for any integral loss, using the primal version of
Problem 3.5. In particular, we show that sampling the integral loss guarantees a finite
parametrization of the estimator by means of a double representer theorem and allows
at the same time the approximate computation of the loss function, enabling gradient
descent algorithms. We then consider operator random Fourier features (ORFF) models
that naturally enjoy finite parameterization and propose a stochastic gradient descent
algorithm bypassing the need to compute each Iℓ(h(xi), yi). Finally, Section 3.4 is
devoted to the exploration of dual algorithms. We investigate properties of the Fenchel-
Legendre conjugate of integral losses on Y, and show that the flexibility of the vv-RKHS
modeling is well-suited to their computation. We then propose to solve Problem 3.7
by leveraging appropriate representation bases for the dual variables, either based on
the eigendecomposition of TG or using linear splines depending on the compatibility
between the loss function and the output vv-RKHS HG.
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3.2 The Special Square Loss Case
In the following, we derive closed-form expressions for the solution of the regularized
empirical risk minimization with the square loss in two different settings: in case of
modeling the observations (yi)

n
i=1 as functions (Section 3.2.1) or to assume access to a

sampled version of these (Section 3.2.2). Ultimately, even when modeling the outputs
as functions they are represented as multi-dimensional vectors and relevant quantities
have to be estimated from these vectors. This section corresponds to the extension of
(Lian, 2007; Kadri et al., 2010, 2016) beyond real-valued output functions.

3.2.1 Functional Observation Case

In the case where ℓ(θ, u, v) = 1
2 ‖u− v‖2U, one can notice that

Iℓ(f, g) =
1

2

∥∥f − g
∥∥2
L2[Θ,µ;U]

for ∀f, g ∈ L2[Θ, µ;U].

Taking Y = L2[Θ, µ;U] and leveraging the view K = kXTG, leads to an easy-to-compute
Fenchel-Legendre transform:

I⋆ℓi(α) =
1

2
‖α‖2Y + 〈α, yi〉Y

for all α ∈ Y. This is a direct consequence of the squared norm being the only fixed
point of the Fenchel-Legendre transform (Bauschke et al., 2011), as well as the fact
that for any f : Y → R and y ∈ Y, f(· − y)⋆ = f⋆ + 〈·, y〉Y. Consequently, Problem 3.7
writes as

inf
(αi)ni=1∈Yn

n∑
i=1

1

2

∥∥αi

∥∥2
Y
− 〈αi, yi〉Y +

1

2λn

n∑
i,j=1

kX(xi, xj)
〈
αi, TGαj

〉
Y
. (3.9)

Before diving deeper into the solution, we introduce two useful notations: we denote by
KX ∈ Mn(R) the Gram matrix of points (xi)ni=1 with kernel kX and by y =

[
yi
]n
i=1

∈ Yn

the aggregation of the observed outputs (yi)
n
i=1.

Proposition 3.1 (Closed-Form Functional Ridge). The solution ĥ of Problem 3.5 with
the square loss is given by

ĥ =
1

λn

n∑
i=1

kX(·, xi)TGα̂i,

where α̂ :=
[
α̂i

]n
i=1

∈ Yn is the solution of the linear system(
KX ⊗ TG + λn IdYn

)
α̂ = nλy. (3.10)

Proof Using the KX and y notations, define

J(α) =
1

2
‖α‖Yn − 〈α,y〉Yn +

1

2λn

〈
α,
(
KX ⊗ TG

)
α
〉
Yn
, α ∈ Yn.

Using this notation Problem 3.9 corresponds to solving infα∈Yn J(α). J is a (strongly)
convex Gâteaux differentiable function (see Definition 2.8), and

∇J(α) = α− y +
1

λn

(
KX ⊗ TG

)
α.
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Setting the gradient to zero at optimum α̂ ∈ Yn, one gets

α̂− y +
1

λn

(
KX ⊗ TG

)
α̂ = 0

which translates to (
KX ⊗ TG + λn IdYn

)
α̂ = λny.

Remark 3.2 (Relationship to Kadri et al. (2016)). The problem considered in Kadri
et al. (2016) is a real-valued function-to-function regression problem using the squared
norm in L2[0, 1] (U = R, µ is the Lebesgue measure on Θ = [0, 1]). The authors
leverage a representer theorem associated to a directional derivative argument to obtain
a closed-form solution which corresponds to the solution presented here with A = 1 ∈ R.

Solving Equation (3.10) can be carried out at the price of an operator inversion:

α̂ = λn
(
KX ⊗ TG + λn IdYn

)−1
y. (3.11)

As a reminder, for the OVK G considered here we have TG = A⊗TkΘ . Computing the
inverse operator in Equation (3.11) is intractable in practice for the large majority of
output kernels kΘ because of the complexity of TkΘ . However, one can turn to spectral
methods to get an approximate solution. This idea was first exploited in Kadri et al.
(2016) in the setting U = R, Θ = [0, 1] and can be adapted to the more general
case proposed here. It relies on the following observation: the eigen decomposition of
KX ⊗ TG can be obtained from the eigen decompositions of KX and TG. Indeed, if
(v, ψ) ∈ Rn×Y are respectively eigenvectors of KX and TG with associated eigenvalues
(σ, λ) then v ⊗ ψ is an eigenvector of KX ⊗ TG with eigenvalue σλ and all eigenvectors
of KX ⊗ TG can be obtained this way.

Let us assume access to the eigen decomposition (λj , ψj)
m
j=1 of rank m of the integ-

ral operator TG, similarly obtained using the eigen decomposition of A and TkΘ . A
discussion about the eigen decomposition of TkΘ is presented in Section 2.2.1. Let
(σi, vi)

n
i=1 ∈ (R × Rn)n be the eigen decomposition of the matrix KX obtained by for

instance using SVD. We propose to use

α̂ =
n∑

i=1

m∑
j=1

1

λ+ σiλj
〈y, vi ⊗ ψj〉Ynvi ⊗ ψj . (3.12)

The cost associated to the eigen decomposition of KX (respectively A) scales as O(n3)
(respectively O(s3)). Finding the first m pairs of (eigenvalue, eigenvector) of TG can be
hard and costly for general output kernels kΘ. One can then turn to using approximate
eigen decomposition as presented in Example 2.23 or use the eigen decomposition of a
Random Fourier Feature model from Example 2.30.

Remark 3.3. Equation (3.12) involves the scalar products 〈yi, ψj〉Y, which have to be
estimated from the data.

We now investigate ways to solve Problem 3.5 in the square loss setting when one does
not assume full access to the observed output functions (yi)ni=1 referred to as the partial
observation setting.
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3.2.2 Partially Observed Case

In various cases, due to the functional nature of the (yi)
n
i=1, one cannot assume to have

access to the whole functions (in the analogous signal sense, or being able to query
at any θ ∈ Θ), and that makes the quantity RS impossible to compute. This will be
the case in particular for the emotion transfer setting in Chapter 6. In this partially
observed setting, we assume that each yi is observed at certain number (m ∈ N∗) of
locations (θij)

m
j=1.

Remark 3.4 (General Case). One could have considered that the number of observed
locations varies with the numbering of the observation i, so that each yi is observed
at locations (θij)

mi
j=1. To keep the notations simple, we consider that the number of

locations observed per sample is fixed (m = mi for all i).

We moreover assume that for ∀i ∈ [n], (θij)mj=1
i.i.d.∼ µ, and define the sampled empirical

risk as

R̃S(h) :=
1

nm

n∑
i=1

m∑
j=1

1

2

∥∥∥yi(θij)− h(xi)(θij)
∥∥∥2
U
. (3.13)

. This choice ensures that R̃S(h) converges towards R(h) when the number of samples
and locations grows towards infinity.

Remark 3.5 (Re-weighting Scheme). In the case where the locations are not sampled
with probability µ, then there is no convergence of the sampled empirical risk towards the
true risk. To remedy this bottleneck, one can consider a re-weighted sampled empirical
risk of the form

R̃S(h) :=
1

n

n∑
i=1

m∑
j=1

ηij
2

∥∥∥yi(θij)− h(xi)(θij)
∥∥∥2
U
,

where (ηij)
n,m
i,j=1 encodes a re-weighting scheme ensuring that the proposed sampled em-

pirical risk converges towards the risk in Problem 3.4. The solution developed below
can then be adapted to such settings.

We now introduce the problem based on the minimization of the sampled empirical
risk:

inf
h∈HK

R̃S(h) +
λ

2

∥∥h∥∥2
HK

. (3.14)

It is advantageous in this case to adopt the view K = kX IdHG
as it helps in the

derivation of the dual problem of Problem 3.14.

Proposition 3.6. The solution of Problem 3.14 is given by

ĥ(x)(θ) =
1

λnm

n∑
i=1

m∑
j=1

kX(x, xi)kΘ(θ, θj)Aα̂ij , ∀(x, θ) ∈ X×Θ, (3.15)

with (α̂ij)
n,m
i,j=1 ∈ Unm being the solution of the dual problem

inf
(αij)

n,m
i,j=1∈Unm

n∑
i=1

m∑
j=1

1

2

∥∥∥αij

∥∥∥2
U
−
〈
yi(θij), αij

〉
U

+
1

2λnm

n∑
i1,i2=1

m∑
j1,j2=1

kX(xi1 , xi2)kΘ(θi1j1 , θi2j2)
〈
αi1j1 ,Aαi2j2

〉
U
.

(3.16)
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Proof We introduce slack variables ξ := (ξij)
n,m
i,j=1 ∈ Unm so that Problem 3.14 can be

rewritten as

inf
h∈HK ,ξ∈Unm

n,m∑
i,j=1

ℓij(ξij) +
λnm

2

∥∥h∥∥2
HK

s.t. ξij = h(xi)(θij) ∀(i, j) ∈ [n]× [m]

where we adopt the notation ℓij =
∥∥∥· − yi(θij)

∥∥∥2
U

. Denoting by α := (αij)
n
i,j=1 the dual

variables, the Lagrangian associated to the problem is

L
(
h, ξ,α

)
=

n,m∑
i,j=1

ℓij(ξij) +
λnm

2

∥∥h∥∥2
HK

+
〈
αij , ξij − h(xi)(θij)

〉
U
. (3.17)

The dual function then writes as

g(α) = inf
h∈HK ,ξ∈Unm

L
(
h, ξ,α

)
= inf

ξ∈Unm

n,m∑
i,j=1

ℓij(ξij) +
〈
αij , ξij

〉
U
+ inf

h∈HK

λnm

2

∥∥h∥∥
HK

−
n,m∑
i,j=1

〈
αij , h(xi)(θij)

〉
U
.

In the first term, we can recognize the Fenchel-Legendre conjugate of the squared norm:

inf
ξ∈Unm

n,m∑
i,j=1

ℓij(ξij)+
〈
αij , ξij

〉
U
= −

n,m∑
i,j=1

ℓ⋆ij(−αij) = −

 n,m∑
i,j=1

1

2

∥∥∥αij

∥∥∥2
U
−
〈
αij , yi(θij)

〉
U

 .

For the second term, differentiating with respect to h yields the optimum

ĥ =
1

λnm

n,m∑
i,j=1

K(·, xi)G(·, θij)αij

by using the reproducing property successively in HK and HG. It then holds that

λnm

2

∥∥∥ĥ∥∥∥
HK

−
n,m∑
i,j=1

〈
αij , ĥ(xi)(θij)

〉
U

= − 1

2λnm

n∑
i1,i2=1

m∑
j1,j2=1

kX(xi1 , xi2)kΘ(θi1j1 , θi2j2)
〈
αi1j1 ,Aαi2j2

〉
.

Finally the dual problem writes as

sup
α∈Unm

g(α) = − inf
α∈Unm

−g(α)

and by plugging in the expression of g(α) one arrives at Problem 3.16.

Proposition 3.6 allows to parameterize the solution to Problem 3.14 by a finite number
of elements of the finite-dimensional space U. Thus, the solution can be represented on
a computer, and solving Problem 3.16 boils down to the minimization of a quadratic
form, solvable in closed-form.
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Particularly, let us introduce three matrices encoding information about the dataset
and dual variables. Let K ∈ Mnm(R) be the Gram matrix associated to the problem,
whose entries are defined as

Km(i1−1)+j1,m(i2−1)+j2 = kX(xi1 , xi2)kΘ(θi1j1 , θi2j2), (i1, i2) ∈ [n]2, (j1, j2) ∈ [m]2.
(3.18)

Let Y ∈ Mnm,s(R) be a matrix gathering observations

∀(i, j) ∈ [n]× [m], Ym(i−1)+j,: = yi(θij)
⊤. (3.19)

The dual variables (αij)
n,m
i,j=1 ∈ Unm are collected in a matrix α ∈ Mnm,s(R) such that

∀(i, j) ∈ [n]× [m], αm(i−1)+j,: = α⊤
ij .

Using these notations, Problem 3.16 writes as

inf
α∈Mnm,s(R)

Tr

(
1

2
αα⊤ −αY⊤ +

1

2λnm
KαAα⊤

)
. (3.20)

It turns out that Problem 3.20 is akin to a Sylvester equation for which solutions can
be computed in closed-form, as it is summarized in the following lemma.

Lemma 3.7 (Optimization task for α). The solution α̂ of Problem 3.20 is the solution
of the following linear equation

Kα̂A+ λnmα̂ = λnmY. (3.21)

When A = Ids, the solution is analytic:

α̂ = λnm
(
K+ λnm Idnm

)−1
Y. (3.22)

Proof The statement follows by setting the gradient of the objective function to zero.
Indeed,

∇

(
α 7→ 1

2
Tr
(
αα⊤

))
= α, ∇

(
α 7→ Tr

(
−αY⊤

))
= −Y,

∇

(
α 7→ 1

2λnm
Tr
(
KαAα⊤

))
=

1

λnm
KαA.

Remark 3.8. Lemma 3.7 writes as a generalization of the method developed in Lian
(2007); Kadri et al. (2010) to the vector-valued outputs case and non-regular grid.

If the matrix A is not the identity matrix, one can still solve Equation (3.21) by using
dedicated solvers (El Guennouni et al., 2002). We now move on to the general case of
Problem 3.5 when the loss function no longer permits explicit closed-form solution.
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3.3 Solving in the Primal

In this section, we consider the general case of any proper, convex lower semicontinuous
integral loss and propose optimization algorithms based on the primal formulation of
Problem 3.5, that reads as

inf
h∈HK

1

n

n∑
i=1

Iℓ(h(xi), yi) +
λ

2

∥∥h∥∥2
HK

.

The classical representer theorem from Theorem 2.43 states that there exist (α̂i)
n
i=1 ∈

Yn such that the solution ĥ to Problem 3.5 takes the form

ĥ =

n∑
i=1

K(·, xi)α̂i.

However in our case, Y is a (potentially) infinite-dimensional Hilbert space, which
raises the problem of being able to provide an expression of ĥ that can be explicitly
calculated. Moreover, the computation of the loss function Iℓ is not straightforward, as
it involves an integral over the Θ domain. To circumvent these difficulties, we propose
below various optimization algorithms dedicated to solving Problem 3.5. Section 3.3.1
is devoted to solving an approximated problem based on a sampling of the integral
loss Iℓ for which a finite-dimensional parametrization can be obtained by means of
a double representer theorem, killing two birds with one stone. In Section 3.3.2, we
explore the use of Random Fourier Features, with the double benefit of lowering the
computational cost associated to the solution as well as benefiting by construction of
a finite-dimensional representation of the solution.

3.3.1 Sampling Schemes and Representer Theorems

Sampling Iℓ appears as a natural approach to solve Problem 3.5. It provides the imme-
diate benefit of making the loss function computable; the resulting sampled empirical
risk is

R̃S(h) :=
1

n

n∑
i=1

m∑
j=1

ηijℓ(θij , h(xi)(θij), yi(θij)), (3.23)

where (θij , ηij)
n,m
i,j=1 encodes information about a chosen sampling scheme. We are

now interested in solving an approximated counterpart of Problem 3.5 based on using
Equation (3.23) as a proxy for the empirical risk:

inf
h∈HK

R̃S(h) +
λ

2

∥∥h∥∥2
HK

. (3.24)

Below we discuss various valid sampling schemes before stating the double representer
theorem which allows to represent numerically the solution of Problem 3.24.

Monte-Carlo Sampling: The Monte-Carlo (MC) method simply consists in sampling
i.i.d. random variables (θj)

m
j=1

i.i.d∼ µ and estimating the integral Iℓ by its empirical
counterpart

Ĩℓ(f, g) :=
1

m

m∑
j=1

ℓ(θj , f(θj), g(θj)).
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The MC methods have a probabilistic error scaling as O
(

1√
m

)
(with constants depend-

ing on the variance of the integrand), which is independent from the dimensionality
of Θ. As RS consists in the sum of n terms involving Iℓ, a MC sampling scheme
for RS is described by some (θij)

n,m
i,j=1 where ∀i ∈ [n], (θij)

m
j=1

i.i.d.∼ µ. By setting
∀(i, j) ∈ [n] × [m], ηij = 1

m we arrive at Equation (3.23). It is worth noting at this
point that using m = 1 is an interesting choice: it amounts to a very loose approx-
imation of each Iℓ(h(xi), yi) but as the number of samples grows it still holds that
limn→∞RS(h) = R(h).

Quasi Monte-Carlo Sampling: The idea behind quasi Monte-Carlo (QMC) sampling
is to use a low discrepency sequence to estimate the integral. Such sequences provide
successively finer uniform partitions of the compact space Θ and guarantee that the
proportion of points falling in a subset B ⊆ Θ is close to µ(B). We give an example of
such sequence called the Sobol sequence (Sobol, 1967), exemplified in case of Θ = [0, 1].
Start with θ1 = 1

2 . Then build θ2 = 1
4 , and θ3 = 3

4 . Then θ4 = 1
8 , θ5 = 3

8 , and so on as
to obtain a regular covering of Θ. Such sequence can be adapted to higher dimensional
Θ.

Let ηj = 1
mF

−1(θj) where µ is assumed to be absolutely continuous w.r.t. the Lebesgue
measure and F is its associated c.d.f. , and (θj)

m
j=1 is a QMC sequence. We then define

Ĩℓ(f, g) =
m∑
j=1

ηjℓ(θj , f(θj), g(θj)).

The QMC methods has an approximation error scaling as O
(

(logm)p

m

)
, which is faster

that what is obtained using MC for many practical values of (m, p). However, the
constants involve the Hardy-Kraus variation of the integrand, which is often hard to
estimate. More details about this are given in Section 5.3. The QMC sampling scheme
leads to Equation (3.23) with (ηij , θij)

n,m
i,j=1 that are independent of i and simply consists

in stacking the same locations and coefficients defined by µ and the Sobol sequence.

Kernel Quadrature Rules: Quadrature rules are suited for low-dimensional Θ.
They are described in Section 2.2.1 and lead to an approximation

Ĩℓ(f, g) =
m∑
j=1

ηjℓ(θj , f(θj), g(θj)),

where (ηj , θj)
m
j=1 are the set of weights and locations produced by the quadrature rule.

By stacking n of them we recover Equation (3.23).

To solve Problem 3.24, we adopt the view K = kX IdHG
, as it allows to apply a repres-

enter theorem on the coefficients (αi)
n
i=1 ∈ Yn themselves, as expressed in the theorem

below.

Theorem 3.9 (Double Representer). Problem 3.24 has a unique solution ĥ and it takes
the form

ĥ(x)(θ) =

n∑
i=1

m∑
j=1

kX(x, xi)kΘ(θ, θij)Aα̂ij , ∀(x, θ) ∈ X×Θ (3.25)

for some coefficients α̂ij ∈ U with i ∈ [n] and j ∈ [m].
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Proof Let J(h) = R̃S(h)+
λ
2

∥∥h∥∥2
HK

denote the objective function to minimize. For all
g ∈ HG, let Kxg denote the function defined by (Kxg)(t) = K(t, x)g ∀t ∈ X. Similarly,
for all α ∈ U, Gθα stands for the function t 7→ G(t, θ)α where t ∈ Θ. Let us take the
finite-dimensional subspace

E = span
(
KxiGθijα : i ∈ [t], j ∈ [m], α ∈ U

)
.

The space HK can be decomposed as E and its orthogonal complement: E⊕E⊥ = HK .
The existence of ĥ follows from the coercivity of J (i.e. J(h) → +∞ as

∥∥h∥∥
HK

→ +∞)
which is the consequence of the quadratic regularizer and the lower boundedness of
ℓ. Uniqueness comes from the strong convexity of the objective. Let us decompose
ĥ = ĥE + ĥE⊥ , and take any α ∈ U. Then ∀(i, j) ∈ [n]× [m],〈

ĥE⊥(xi)(θij), α
〉
U

(a)
=
〈
ĥE⊥(xi), Gθijα

〉
HG

(b)
=
〈
ĥE⊥ ,KxiGθijα︸ ︷︷ ︸

∈E

〉
HK

(c)
= 0.

(a) follows from the reproducing property in HG, (b) is a consequence of the reproducing
property in HK , and (c) comes from the decomposition E ⊕ E⊥ = HK . This means
that ĥE⊤(xi)(θij) = 0 ∀(i, j) ∈ [n]× [m], and hence R̃S(ĥ) = R̃S(ĥE). Since

λ
∥∥∥ĥ∥∥∥2

HK

= λ

(∥∥∥ĥE∥∥∥2
HK

+
∥∥∥ĥE⊥

∥∥∥2
HK

)
≥ λ

∥∥∥ĥE∥∥∥2
HK

we conclude that ĥE⊤ = 0 and get that there exist coefficients α̂ij ∈ U such that

ĥ =
n∑

i=1

m∑
j=1

KxiGθij α̂ij .

This evaluates for all (x, θ) ∈ X×Θ to

ĥ(x)(θ) =
n∑

i=1

m∑
j=1

kX(x, xi)kΘ(θ, θij)Aα̂ij

as claimed in Equation (3.25).

The benefit of Theorem 3.9 is to provide a finite-dimensional parameterization of the
solution ĥ. Equation (3.25) then allows to write the predictions of the model in a
compact form involving the Gram matrix of the problem and the similarity matrix A.
To that end, define K ∈ Mnm(R) to be the Gram matrix whose entries are defined as

Km(i1−1)+j1,m(i2−1)+j2 = kX(xi1 , xi2)kΘ(θi1j1 , θi2j2), (i1, i2) ∈ [n]2, (j1, j2) ∈ [m]2.
(3.26)

Then, denoting by α ∈ Mnm,s the matrix encoding information about the coefficients
such that for all i, j ∈ [n]× [m], α̂i(m−1)+j,: = α̂⊤

ij , it holds that

ĥ(xi)(θij) = (Kα̂A)i(m−1)+j,:, (i, j) ∈ [n]× [m]. (3.27)

Remark 3.10. Depending on the chosen sampling, the Gram matrices associated to
the problem is structured differently. In particular, in the QMC and the quadrature rule
schemes, the sampling locations are the same for all samples and the Gram matrix K
has a tensorial structure K = KX ⊗KΘ which can be used to speed up computations,
and reduce the memory footprint.
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Associated to the fact that R̃S can be computed (the integration has been traded against
a summation), we now have all ingredients needed to apply classical optimization tools
to solve Problem 3.24. Indeed, defining

L(r) :=
1

nm

n∑
i=1

m∑
j=1

ℓ(θij , rm(i−1)+j,:, yi(θij)), r ∈ Mnm,s

we can restate Problem 3.24 as

inf
α∈Mnm,s

L(KαA) +
λ

2
Tr
(
KαAα⊤

)
. (3.28)

If one assumes access to the subgradients of ℓ, then by the separability of L it holds
that,

∂L(r)m(i−1)+j,: = ∂ℓ(θij , ·, yi(θij))(rm(i−1)+j,:), ∀r ∈ Mnm,s,∀(i, j) ∈ [n]× [m].

Problem 3.28 can be then be tackled by (sub)gradient descent methods making use of

∂
(
α 7→ L(KαA)

)
= K∂L(KαA)A, ∇

(
α 7→ λ

2
Tr
(
KαAα⊤

))
= λKαA.

This allows to perform various gradient descent algorithms; the specific technique can
be for instance vanilla (sub)gradient descent, accelerated gradient descent (Nesterov,
1983), or quasi-Newton methods (Zhu et al., 1997), depending on the regularity prop-
erties of ℓ.

3.3.2 Random Features Based Learning

Random Fourier features (RFF) were initially introduced for shift-invariant scalar ker-
nels (Rahimi and Recht, 2007) before being extended to shift-invariant OVKs (Brault
et al., 2016) under the operator random Fourier features (ORFF) framework. We
refer to Section 2.2 for an overview on the topic. They allow to lower the computa-
tional burden associated to solving empirical risk minimization problems by providing
finite-dimensional functional spaces whose functions approximate those in the original
hypothesis space. In our case, applied to the OVK G, they also provide the additional
benefit of bypassing the need to prove a representer theorem for the coefficients (αi)

n
i=1

in Equation (3.6), since by construction the RKHSs associated to random feature maps
are finite-dimensional.

We choose to work in output with an approximated OVK G̃ obtained by applying the
ORFF methodology. We call Φ̃ : Θ → L(U,V) its feature map where V is the associated
finite-dimensional feature space. As a reminder, V is of dimension 2ms where m is the
chosen number of random features chosen to approximate the kernel kΘ. We refer
to Equation (2.25) for the precise construction of this feature map, the key property
exploited is that each function α ∈ H

G̃
can be written

α = Φ̃(·)♯v (3.29)

for some v ∈ V. This provides a finite-dimensional parametrization of the space H
G̃

,
which we shall use in combination with Theorem 2.43. Indeed, we know that the
solution of Problem 3.5 applied to the vv-RKHS associated to K̃ = kX IdH

G̃
writes as

ĥ =
n∑

i=1

kX(·, xi)α̂i (3.30)
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for some (α̂i)
n
i=1 ∈ H

G̃
. By exploiting Equation (3.29), Problem 3.5 becomes

inf
(vi)ni=1∈Vn

n∑
i=1

Iℓ

 n∑
j=1

kX(xi, xj)Φ̃(·)♯vj , yi

+
λ

2

n∑
i,j=1

kX(xi, xj)
〈
vi, vj

〉
V
. (3.31)

This can be expressed in a more compact form by using tensor products. Indeed, by
writing v := (vi)

n
i=1 ∈ Vn one gets that

n∑
j=1

kX(xi, xj)Φ̃(·)♯vj =
[(

KX ⊗ Φ̃(·)♯
)
v

]
i

, ∀i ∈ [n]. (3.32)

We can then recognize in Problem 3.31 a general minimization problem of the form

min
v∈Vn

Eθ∼µ

 1

n

n∑
i=1

ℓ

(
θ,

[(
KX ⊗ Φ̃(θ)♯

)
v

]
i

, yi(θ)

)
+
λ

2
Tr
(
KXvv

⊤
) .

︸ ︷︷ ︸
:=J(θ,v)

(3.33)

These so-called stochastic optimization tasks are often encountered in machine learning,
and can be solved using gradient methods based on stochastic approximations (Bottou,
1991).

We propose in Algorithm 3.1 a randomized optimization algorithm based on stochastic
gradient descent to obtain v̂.

Algorithm 3.1 Stochastic Gradient Descent with ORFFs
input : ORFF feature map Φ̃, input Gram matrix KX, gradient steps (γt)

T−1
t=0

init : v(0) = 0 ∈ Vn

4 for epoch t from 0 to T − 1 do
// sampling step

5 Sample θ ∼ µ
// gradient step

6 v(t+1) = v(t) − γt∂vJ(θ,v
(t))

7 return v(T )

Remark 3.11. This algorithm describes the vanilla stochastic gradient descent. De-
pending on the regularities of J, one can turn to more involved optimization algorithm
employing e.g. Nesterov acceleration (Nesterov, 1983) or any improvement over the
vanilla version. The stepsizes (γt)

T−1
t=0 are also to be chosen depending on the problem

to ensure convergence of the algorithm, in our case the objective is strongly convex
thanks to the regularizer so that a sufficiently small constant stepsize ensures conver-
gence (Bottou et al., 2018).

Double ORFF: If some application stems into large-scale learning, with n being so
big that Algorithm 3.1 becomes impossible to employ, one can make use of the RFF
trick on both kernels kX and G. This is possible when the input space X is the Euclidean
space Rd, which we assume in what follows. This amounts to working in the vv-RKHS
associated to the OVK K̃ = k̃X IdH

G̃
where G̃ and k̃X are respectively ORFF and RFF
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approximations of kernels kX and G. This vv-RKHS is of finite dimension 4mXmΘs
where mX and mΘ are the number of random features used for approximating kX and
kΘ. We denote by ϕ̃X and Φ̃Θ the corresponding finite-dimensional feature maps, the
dependence to each input space being made explicit for clarity. There is then a one-
to-one correspondence between function in H

K̃
and M2mX,2mΘs(R): ∀h ∈ H

K̃
, ∃β ∈

M2mX,2mΘs(R) such that

h(x)(θ) = ϕ̃X(x)
♯βΦ̃Θ(θ), (x, θ) ∈ X×Θ. (3.34)

With this full parametrization of the model, Problem 3.5 writes as

min
β∈M2mX,2mΘs(R)

Eθ∼µEi∼Unif([n])

[
ℓ
(
θ, ϕ̃X(xi)

♯βΦ̃Θ(θ), yi(θ)
)
+
λ

2
Tr
(
ββ⊤

)]
.︸ ︷︷ ︸

:=Ji(θ,β)

(3.35)

One can employ a doubly stochastic gradient descent to solve Problem 3.5 as proposed
in Algorithm 3.2. The algorithm is doubly stochastic as it proposes to first sample
i ∈ [n], and then perform a SGD step with loss function Ji(θ,β). Previous attempts at
doubly stochastic algorithms in kernel based learning include Dai et al. (2014), where
the random features are drawn sequentially as the algorithm goes on - contrary to
their setting, we work with a fixed number of these random features and the double
stochasticity comes from recognizing the objective function as an expectation over θ ∼
µ.

Algorithm 3.2 Doubly Stochastic Gradient Descent with ORFFs
input : ORFF feature map Φ̃Θ, RFF feature map ϕ̃X gradient steps (γt)

T−1
t=0

init : β(0) = 0 ∈ R2mX×2mΘs

8 for t from 0 to T − 1 do
// sampling step

9 Sample i ∼ Unif([n])
10 Sample θ ∼ µ

// gradient step
11 β(t+1) = β(t) − γt∂βJi(θ,β

(t))

12 return β(T )

3.4 Solving in the Dual

We now investigate dual algorithms for regularized empirical risk minimization in the
presence of integral losses. As a reminder, Problem 3.7 writes as

inf
(αi)ni=1∈Yn

n∑
i=1

I⋆ℓi(−αi) +
1

2λn

n∑
i,j=1

〈
αi,K(xi, xj)αj

〉
Y
,

We can see here that the objective function in Problem 3.7 is composed of two terms,
the first term being related to the Fenchel-Legendre conjugate of the integral loss Iℓ and
to the data, and the second term being a quadratic form involving the dual variables
(αi)

n
i=1 ∈ Yn and the OVK K.
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The difficulties encountered while solving Problem 3.5 are still visible here: the search
for the (αi)

n
i=1 ∈ Yn cannot a priori be reduced to a finite-dimensional optimization

problem. Also, it is unclear if the first term can be computed numerically, a chal-
lenge similar to what was observed in Problem 3.5 with integral losses. Finally, eval-
uating the quadratic form in the right term involves knowing how to compute each〈
αi,K(xi, xj)αj

〉
Y

which may not be straightforward.

To tackle these challenges, we first begin in Section 3.4.1 by providing general results on
the Fenchel-Legendre conjugate of integral losses on vv-RKHSs. Then in Section 3.4.2
we propose a solution to Problem 3.7 based on expressing dual variables in a basis suit-
able to both the OVK K and the loss function. This is feasible only when there is some
sort of compatibility between the loss function and the output vv-RKHS HG as de-
tailed in Assumption 3.16. Finally in Section 3.4.3 we develop optimization algorithms
to be used when there is no such compatibility. The basis in which to express the dual
variables is to be picked so as to make possible the use of proximal algorithms that
depend on the loss function. The quadratic term in Problem 3.7 is then approximated
to make the computations possible.

3.4.1 Fenchel-Legendre Conjugate of Integral Losses

To design dual optimization algorithm, it is crucial that we know how to compute the
Fenchel-Legendre conjugate of an integral loss. It turns out that under certain assump-
tions, the Fenchel-Legendre conjugate of an integral loss is the integral of the Fenchel-
Legendre conjugate, as was emphasized in the seminal paper Rockafellar (1974). To
that end, two key assumptions must be verified. The first one is that ℓ is a normal
convex integrand, which we have assumed throughout this chapter, while the second
one is the following:

Assumption 3.12. The Hilbert space of functions Y is decomposable, which means
that there exists an increasing sequence (Θk)k∈N of subsets of Θ with ∪∞

k=0Θk = Θ such
that for ∀k ∈ N, for all bounded measurable functions f : Θk → R, and for all g ∈ Y,
the measurable function that coincides with f on Θk and with g on Θ \ Θk belongs to
Y.

In a sense, Assumption 3.12 ensures that the space Y is big enough so that the Fenchel-
Legendre conjugate of the integral loss is the integral of the Fenchel-Legendre conjugate,
as detailed in the following proposition.

Proposition 3.13 (Fenchel-Legendre conjugate of Integral Losses, Rockafellar (1976)).
Let ℓ : Θ × U × U →

]
−∞,+∞

]
be a normal convex integrand. If Y satisfies Assump-

tion 3.12 then for all y ∈ Y,
Iℓ(·, y)⋆ = Iℓ⋆(·, y). (3.36)

where ℓ⋆ : Θ × U × U →] −∞,+∞] is the integrand defined for ∀(θ, u, v) ∈ Θ × U2 as
ℓ⋆(θ, u, v) = ℓ(θ, ·, v)⋆(u).

It turns out that assuming Assumption 3.12 is strict in the sense that many commonly-
used small spaces of functions do not satisfy it: linear models, polynomial functions,
Gaussian RKHSs, and so on. However, L2[Θ, µ;U] for any probability measure µ verifies
Assumption 3.12, which suggests to adopt the view Y = L2[Θ, µ;U] and the associated
OVK K = kXTG.
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We can however wonder what would happen if we tried to compute Iℓ(·, y)⋆ with
Y = HG. The following lemma provides a response with additional assumptions of
universality of kernel G and continuity of Iℓ.

Proposition 3.14. Let kΘ be a universal kernel, and A ∈ Ms(R) an invertible matrix.
Let HG be the vv-RKHS associated to the kernel G = kΘA. Assume that µ has full
support, in other words suppµ = Θ. Assume finally that Iℓ is continuous. Then for all
y ∈ HG

sup
g∈HG

〈g, α〉HG
− Iℓ(g, y) = Iℓ⋆(·, y) ◦ T−1

G (α), (3.37)

where T−1
G (α) is the only function in L2[Θ, µ;U] such that TG(T−1

G (α)) = α.

Proof We can remark that Im(TG) = HG since suppµ = Θ. Moreover, A is injective,
and universality of kΘ implies that TkΘ is injective (see Proposition 2.25), so that
TG = A ⊗ TkΘ is injective. Thus T−1

G (α) ∈ L2[Θ, µ;U] is well-defined for all α ∈ HG.
Then for ∀g ∈ HG,

〈g, α〉HG
− Iℓ(g, y) =

〈
g, TG ◦ T−1

G (α)
〉
HG

− Iℓ(g, y)

=
〈
g, T−1

G (α)
〉
L2[Θ,µ;U]

− Iℓ(g, y)

where we used the fact that T ♯
G is the canonical inclusion from HG to L2[Θ, µ;U]

(Carmeli et al. (2010), Proposition 3). Since HG is dense in L2[Θ, µ;U] and g 7→〈
g, T−1

G (α)
〉
L2[Θ,µ;U]

− Iℓ(g, y) is continuous, this results in Equation (3.37).

The result in Proposition 3.14 endorses the modeling choice Y = L2[Θ, µ], since it avoids
the difficulty brought in by the term involving T−1

G and additional assumptions. One
can then directly work with dual variables (αi)

n
i=1 ∈ L2[Θ, µ;U] and solve Problem 3.7.

Before delving into this solution, we list below the Fenchel-Legendre conjugates of a
various integral losses used in practice.

Square Loss: When ℓ(θ, u, v) = 1
2 ‖u− v‖2U then ℓ⋆(θ, u, 0) = ℓ(θ, ·, 0)⋆(u) = 1

2 ‖u‖
2
U

and by integrating it along Θ with probability µ we recover what was used in Section 3.2.
The case with nonzero v can be deduced by translation properties of the Fenchel-
Legendre conjugate (see Table 2.1).

Pinball loss: This corresponds to U = R, Θ = [0, 1] and

ℓ(θ, u, v) = max (θ(v − u), (θ − 1)(v − u)).

In this case, for ∀θ ∈ Θ,

ℓ⋆(θ, u, 0) = ℓ(θ, ·, 0)⋆(u) = χ{θ−1≤·≤θ}(−u).

So that for ∀(θ, v) ∈ Θ× U,

ℓ⋆(θ, u, v) = ℓ(θ, ·, 0)⋆(u)− uv = χ{θ−1≤·≤θ}(−u)− uv

by using the translation properties of the Fenchel-Legendre conjugate. By integrating
it, one gets for all (α, y) ∈ Y2:

Iℓ⋆(α, y) = χC(−α)− 〈α, y〉Y,

where C =
{
g ∈ Y : θ − 1 ≤ g(θ) ≤ θ holds µ a.e

}
.
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Cost-sensitive hinge loss: In this case, U = R, Θ = [0, 1] and

ℓ(θ, u, v) =
∣∣∣θ − 1{−1}(v)

∣∣∣max(0, 1− uv).

As we shall see in Chapter 5, in the application to cost-sensitive classification the data
(yi)

n
i=1 are constant functions being equal to ±1. We therefore only propose to compute

Iℓ(·, 1)⋆ and Iℓ(·,−1)⋆. For all (θ, u) ∈ Θ× R, it holds that

ℓ⋆(θ, u, 1) = ℓ(θ, ·, 1)⋆(u) = χ[0,θ](−u)

so by integration over Θ one arrives at

I⋆ℓ (α, 1) = χC1(−u),

where C1 =
{
g ∈ Y : 0 ≤ g(θ) ≤ θ holds µ a.e

}
. Similarly, we get

I⋆ℓ (α,−1) = χC−1(−u)

where C−1 =
{
g ∈ Y : 0 ≤ g(θ) ≤ 1− θ holds µ a.e

}
.

We now move on to the solution of Problem 3.7 when the problem benefits from com-
patibility between the integral operator TG and the loss functions Iℓ⋆i .

3.4.2 Integral Operator Eigenbasis Representation

As seen in Proposition 2.42, TG is a compact operator that admits an eigendecompos-
ition

TG =
∑
j∈J

λjψjψ
♯
j ,

where (λj)j∈J ∈ R|J |
+ is a non-increasing sequence of eigenvalues with limit 0 and (ψj)

∞
j=1

is an orthonormal family of L2[Θ, µ;U].

Remark 3.15. The eigenvalues (λj)j∈J are not to be confounded with the regularization
parameter λ despite the similar notation.

While we have no guarantee that the sequence (α̂i)
n
i=1 has a finite expansion on this

basis, we propose to perform the search of the dual variables (αi)
n
i=1 in the subset of

L2[Θ, µ;U] spanned by the first m eigenvectors of this basis, transforming the Prob-
lem 3.7 into a finite-dimensional optimization problem. The rationale behind this
approach is that as j → ∞, the influence of a particular direction ψj in the model will
vanish, because ∥∥∥TGψj

∥∥∥
Y
= λj

∥∥∥ψj

∥∥∥
Y
= λj →

j→∞
0.

This approach can only be applied when there is compatibility between the loss function
and the output RKHS HG. Indeed, for Problem 3.7 to be tractable, one needs to be
able to compute the terms Iℓi(αi) based solely on the coefficients of the dual variables in
the eigenbasis (ψj)

m
j=1. We propose below an assumption that quantifies such behavior.
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Assumption 3.16 (Basis Compatibility). The eigenbasis (ψj)
m
j=1 is compatible with

the integral loss Iℓ in the sense that for all i ∈ [n], there exists Li : Rm → R such that

∀α ∈ Rm, Iℓ⋆i

−
m∑
j=1

αjψj

 = Li(α, yi). (3.38)

Remark 3.17. One major drawback of this approach is that the eigenbasis must be com-
patible with the computation of the Fenchel-Legendre conjugate, and Assumption 3.16
is seldom verified in practice. For example, it is verified in case of the squared loss,
but not for the pinball or cost-sensitive hinge loss. However, the techniques developed
here are useful beyond integral losses, in the context of convoluted losses. This will be
exploited in Chapter 4 to gain sparsity using ϵ-insensitive losses or robustness through
the Huber loss.

We remark here that there are multiple choices for obtaining the system (ψj)
m
j=1, as

presented in Section 2.2. In particular, the use of approximated eigenbasis Example 2.23
or Random Fourier Features Example 2.30 can be beneficial to the user. Working with
a truncated basis is equivalent to solving Problem 3.7 in the vv-RKHS associated to
kernel

K̃(x, z) := kX(x, z)
m∑
j=1

λjψjψ
♯
j .

Problem 3.7 can then be rewritten as

inf
α∈Mn,m(R)

n∑
i=1

Iℓ⋆i

−
m∑
j=1

αijψj


︸ ︷︷ ︸
Li

(
αi:, yi

)
by (3.38)

+
1

2λn
Tr
(
KXαΛα⊤

)
, (3.39)

where Λ = diag(λj)
m
j=1 encodes information about the eigenvalues of TG and KX is the

input kernel Gram matrix over the data points (xi)ni=1. This optimization problem can
then be tackled by different means depending on the regularity of the problem. We
now explore in Section 3.4.3 optimization algorithms dedicated to solving Problem 3.7
when we cannot make Assumption 3.16.

3.4.3 Proximal Algorithms and Approximated Quadratic Forms

The solution of Problem 3.7 proposed in Section 3.4.2 relies on the strong Assump-
tion 3.16. In practice, this assumption is seldom verified and one cannot compute each
Iℓ⋆i (−αi) based on the coefficients of αi in an orthonormal basis. Thus, the approach
consisting in choosing first a basis adapted to the quadratic form is flawed here, as
the resulting problem is not amenable to optimization. We propose to work the other
way around: choose a basis adapted to the I⋆ℓi , and then find a way to compute the
quadratic form, at the price of an approximation.

Assumption 3.18. Let S be a finite-dimensional subspace of L2[Θ, µ;U], so that each
function α ∈ S can be parameterized by a vector v ∈ Rm. We say that S is compatible
with Iℓ if for all i ∈ [n], there exist Ri : Rm → R and Qi : Rm →

]
−∞,+∞

]
so that

1. for all α ∈ S parameterized by v ∈ Rm, I⋆ℓi(α) = Ri(v) +Qi(v),
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2. Ri is differentiable, and

3. proxγQi
is computable in closed form for all γ > 0.

Assumption 3.18 is designed so that Problem 3.7 writes as a composite problem whose
solution can be performed using proximal gradient descent algorithm (see Section 2.1
for reminders on these concepts). As an example, we consider the specific quantile
regression scheme associated to the integral pinball loss. In this setting, Θ = [0, 1] and
U = R are one-dimensional. The Fenchel-Legendre conjugate of the integral pinball
loss computed in Section 3.4.1 reads

Iℓ⋆i (α) = −〈α, yi〉Y + χC(−α), (α, i) ∈ Y× [n]

with C =
{
g ∈ Y : θ − 1 ≤ g(θ) ≤ θ holds µ a.e

}
. Moreover,

proxγχC(·)(α) = ProjC(α)

for all γ > 0 and α ∈ Y. Thus, to satisfy Assumption 3.18 a suitable finite-dimensional
representation space S must satisfy the two properties

1. for all (α, i) ∈ S× [n], if α is encoded by a vector v ∈ Rm then Ri(v) = −〈α, yi〉Y
is computable (or at least can be approximated)

2. for all α ∈ S, ProjC(α) can be computed in closed form.

Taking a closer look at this projection operator, we notice that

∀α ∈ Y, ProjC(α) :

(
Θ → R
θ 7→ max(θ − 1,min(α(θ), θ)).

)
(3.40)

We see here why the eigendecomposition of TG is not a suitable basis: ProjC(α) in-
volve a pointwise projection of each α(θ) on the corresponding interval [θ − 1, θ] so
that Span{(ψj)

m
j=1} may not stable with respect to this projection. This suggests to

choose a representation for the dual variables that allows a pointwise control on the
functions. We propose to use linear splines in this case, as their shape matches that of
the boundaries of C.

Linear Splines A linear spline α ∈ Y is encoded by a set of ordered locations
(θj)

m
j=1 ∈ Θm and by a vector α := (α(θj))

m
j=1 ∈ Rm. We denote by Sm the set of

linear splines obtained with those fixed locations. In between locations can be com-
puted using linear interpolation:

∀θ ∈ [θj , θj+1], α(θ) = α(θj) +
α(θj+1)− α(θj)

θj+1 − θj
(θ − θj).

The first remark to be made about restricting dual variables to be linear splines is
that linear splines can approximate any function in Y, so that it is a rich enough
representation to work with. Moreover, although restricting the dual variables to be
linear splines may appear a limitation, it turns out that in the estimator

ĥ =
1

λn

n∑
i=1

kX(·, xi)TGα̂i
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the splines are smoothed by means of the integral operator TG, so that the model itself
is not piecewise linear in θ, only the dual variables are. The drawback of this method
is that one cannot compute exactly the quadratic terms 〈αi, TGαj〉Y. We propose to
approximate them as presented below.

Approximated Quadratic Forms: Let α, β be linear splines encoded by locations
(θj)

m
j=1 ∈ Θm distributed i.i.d. according to µ and the vectors of function evaluations

α,β ∈ Rm. Let KΘ be the Gram matrix associated to locations (θj)
m
j=1 and kernel kΘ.

Then (
TkΘβ

)
(θ) =

∫
Θ
kΘ(θ, θ

′)β(θ)dµ(θ′) ≈ 1

m

m∑
j=1

kΘ(θ, θj)β(θj), θ ∈ Θ,

and 〈
α, TkΘβ

〉
Y
=

〈
α,

∫
Θ
kΘ(·, θ′)β(θ)dµ(θ′)

〉
Y

≈ 1

m2

m∑
i,j=1

kΘ(θi, θj)α(θi)β(θj)︸ ︷︷ ︸
α⊤KΘβ

We thus propose to solve the following problem

inf
(αi)ni=1∈Sm

n∑
i=1

χC(αi) +

n∑
i=1

〈αi, yi〉Y +
1

2λnm2
Tr
(
KXαKΘα

⊤
)

︸ ︷︷ ︸
:= J(α)

, (3.41)

where given some splines (αi)
n
i=1 ∈ Sm, we denote by α ∈ Mn,m(R) the matrix encoding

row-wise the values associated to each spline. We present in Algorithm 3.3 a proximal
gradient algorithm for solving Problem 3.41, that reads as a projected gradient descent:
for each epoch we perform one step of gradient descent on J, followed by the proximal
step that consists in the projection on the feasible set defined by C.

Algorithm 3.3 Proximal Gradient Descent with Linear Splines for Quantile Regression

input : Splines locations (θj)
m
j=1

i.i.d.∼ µ, Gram matrices KX, KΘ

init : α = 0 ∈ Mn,m(R)
13 for epoch from 1 to T do

// gradient step
14 α = α−∇J(α)

// proximal step
15 for row i from 1 to n do
16 for column j from 1 to m do
17 αij = Proj[θj−1,θj ](αij)

18 return α

Remark 3.19. While in the general case the 〈αi, yi〉Y have to be estimated, as we
will see in Chapter 5 the Infinite Task Learning framework uses constant functions as
observed outputs (yi)

n
i=1. This makes the exact computation of these scalar products
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possible when µ is the Lebesgue measure, as for a spline α ∈ Sm

〈α, yi〉Y = yi(0)

∫
Θ
α(θ)dθ = yi(0)

m−1∑
j=1

∫ θj+1

θj

α(θ)dθ

= yi(0)
m−1∑
j=1

1

2
(α(θj+1) + α(θj))(θj+1 − θj).

This algorithm can be adapted to the integral cost-sensitive hinge loss with a slightly
different projector suited to Section 3.4.1 and Section 3.4.1. The general idea of the
algorithm can work in higher dimensions: provided that some set S allows a pointwise
control on the dual variables and Assumption 3.18 is verified, the quadratic term can
be approximated and a proximal gradient algorithm is possible.

3.5 Conclusion
In this chapter, we provide optimization algorithms to solve regularized empirical risk
minimization problems in vv-RKHSs in the presence of integral losses. Beyond closed-
form solutions for the square loss, we address the question of representing the functional
coefficients by several means. Primal approaches include the double representer the-
orem, which provides a workable parametrization of the solution to the price of an
approximation on the integral loss, and random Fourier features amenable to optimiz-
ation via stochastic algorithms. Dual techniques are also developed, and involve some
compatibility conditions between the vv-RKHS and the loss for the representation of
the dual variables to be viable. In particular, dual approaches pave the way to ex-
tend this framework beyond integral losses, by using the infimal convolution operator
to design new loss functions. Finally, we want to emphasize the compatiblity of the
developed algorithms with hybrid models involving the composition of a neural ar-
chitecture and a kernel, allowing to tackle tasks with complex input data. This is
exemplified in Section 5.4.4 for quantile regression with input being images.





4
Robust Functional Output Regression

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Robust Estimators with Huber Loss . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Vectorial Huber Loss . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Integral Huber Loss . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Sparse Estimators with ϵ-Insensitive Losses . . . . . . . . . . . . . . . . 73
4.4.1 Vectorial ϵ-Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Integral ϵ-Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.1 Huber Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 ϵ-insensitive Losses . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

In this chapter, we propose a framework dedicated to regressing functional outputs
with a focus on robustness. To do so, we extend the integral loss framework introduced
in Chapter 3 to handle convoluted losses. This goal is achieved by exploiting duality
principles which are well-suited to the nature of these loss functions. After a brief
introduction in Section 4.1, we state the problem to solve in Section 4.2. In Section 4.3
we propose a methodology that handles different variants of the Huber loss, known to
induce robustness to outliers. In Section 4.4 we study optimization problems based
on ϵ-insensitive losses which are akin to bring sparsity to the estimator. Numerical
experiments on real and synthetic datasets are gathered in Section 4.5, and conclusions
are drawn in Section 4.6.

4.1 Introduction

Due to the increased availability of streaming data, learning to predict complex objects
has attracted a great deal of attention in machine learning. Biomedical Signal Pro-
cessing, Epidemiology Monitoring or Climate Science are examples of interdisciplinary
research fields where the phenomena under study exhibit a functional nature, and the
understanding of these phenomena depends on machine learning algorithms being able
to reliably handle functional data. Functional data analysis (FDA, Ramsay and Sil-
verman 1997; Wang et al. 2016) has been devoted to such setting, where one assumes
that the measurements of the underlying phenomena come numerous enough so that
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modeling it with functions makes sense. In particular, Functional Output Regression
(FOR) specializes to regression problems where the output variable is a function, the
input variable being either finite-dimensional or of a functional nature themselves.

The simplest way to design an algorithm is then to model a linear dependency between
the inputs and the outputs (Morris, 2015), at the price of being unable to cope with
complex dependency within the data. To remedy this bottleneck, nonlinear approaches
have been developed in recent years. In nonparametric statistics, Ferraty et al. (2011)
propose a Banach-valued version of the Nadaraya-Watson estimator. Kernel methods
have proven useful to tackle this problem as well, with works involving tri-variate regres-
sion problem in RKHSs (Reimherr et al., 2018), approximated kernel ridge regression
(KRR) using orthonormal bases (Oliva et al., 2015), and in the operator-valued kernel
literature a function-valued KRR with double representer theorem (Lian, 2007), solvers
based on a sampling of the functional norm (Kadri et al., 2010) or purely functional
methods relying on approximate inversion of integral operators (Kadri et al., 2016). We
can also mention recent techniques using vv-RKHSs to learn finite-dimensional coef-
ficients expressing the functional outputs with the help of a dictionary basis (Bouche
et al., 2021).

Most of these applications focus on the square loss, which is known to induce estimates
of the conditional expectation of the functional outputs given the input data. However,
defective sensors or malicious attacks can lead to erroneous or contaminated measure-
ments of the phenomena that result in functional outliers, and using the square loss has
the major drawback of providing estimators which are sensitive to these outliers, pro-
ducing unreliable prediction systems. In the scalar-valued case, variations of the square
loss such as the Huber loss (Huber, 1964) or ϵ-insensitive losses (Lee et al., 2005) have
been introduced (among other techniques) as a way to mitigate such sensitivity. In
the FDA setting, robustness aspects have been investigated using Bayesian methods
(Zhu et al., 2011), trading the mean for the Banach-valued median (Cadre, 2001), using
bounded loss functions (Maronna and Yohai, 2013), or leveraging principal component
analysis (Kalogridis and Van Aelst, 2019). We can also mention works involving the
Huber loss function for the semi-functional setting (functional input variable, scalar
output variable; Crambes et al. 2008; Shin and Lee 2016; Qingguo 2017; Boente et al.
2020).

In the operator-valued kernel literature, extension of ϵ-insensitive losses to the (finite)
vector-valued regression setting has been proposed by Sangnier et al. (2017). Using
convex optimization tools such as the infimal convolution operator and parametric
duality leads to efficient solvers and provide sparse estimators, an idea later exploited
in (Laforgue et al., 2020) where a generalization of this approach to infinite-dimensional
outputs encompassing both the Huber and ϵ-insensitive losses is proposed. In this
chapter, we extend the results from Laforgue et al. (2020) in the FOR setting and build
a robust framework based on parametric duality in vv-RKHSs with functional outputs,
adapting the dual optimization algorithms from Chapter 3 to the setting of convoluted
losses.

4.2 Problem Setting

In the functional output regression (FOR) setting, the goal is to regress to a functional
output Y taking its values in Y := L2[Θ, µ] where Θ := [0, 1] is endowed with a probab-
ility measure µ, from an input variable X that either takes its values in the Euclidean
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space X = Rd or in the Hilbert space X = L2[Θ, µ] itself. A natural way to tackle this
problem is to estimate E[Y|X] = h†(X) where it is well-known that

h† = argmin
h∈H

E(X,Y)

[∥∥∥Y − h(X)
∥∥∥2
Y

]
(4.1)

with H being the set of all measurable functions from X to Y. The existence of h†
is guaranteed by Theorem 10.2.2 from Dudley (2002) as Y is a Polish space (i.e. a
separable completely metrizable topological space).

In practice, the law of (X,Y) is unknown, and one has only information about it via
i.i.d. samples (xi, yi)

n
i=1. Since working with the set of all measurable functions from X

to Y is notoriously hard, we restrict the hypothesis space to be a vector-valued reprodu-
cing kernel Hilbert space (vv-RKHS) HK ⊂ F(X,Y) associated to some operator-valued
kernel (OVK) K : X × X → L(Y). We assume that K is chosen to be a decompos-
able kernel of the form K = kXTkΘ with scalar-valued kernels kX : X × X → R and
kΘ : Θ × Θ → R. We refer to Section 2.2.2 for more details about such functional
spaces. We then arrive to the following regularized empirical risk minimization prob-
lem

inf
h∈HK

1

n

n∑
i=1

∥∥∥yi − h(xi)
∥∥∥2
Y
+
λ

2

∥∥h∥∥2
HK

, (4.2)

where λ > 0 is a hyperparameter controling the strength of the regularization in the
vv-RKHS. Problem 4.2 has been introduced and solved in Kadri et al. (2016) with a
closed-form estimator

ĥ :=

n∑
i=1

K(·, xi)α̂i, (4.3)

with optimal coefficients α̂ := [α̂i]
n
i=1 ∈ Yn given by

α̂ =
(
KX ⊗ TkΘ + λn Id

)−1
y, (4.4)

where KX is the Gram matrix associated to the input data (xi)
n
i=1 and kernel kX, and

y = [yi]
n
i=1 is the vector aggregating the functional responses (yi)

n
i=1.

One main advantage of working with the square loss is to benefit from a closed-form
solution. This is due to the fact that the gradient of the objective function linearly
depends on the residuals yi − h(xi), reducing Problem 4.2 to the solution of a linear
system. This somehow innocent and positive property has dramatic consequences in
the presence of contaminated data, as the estimator will be strongly influenced by a
large shift in the data caused by some measurement error or malicious actor. One
can then resort to using losses different than the square loss, that provide more robust
estimators.

Remark 4.1. The notation here slightly differs from Chapter 3 where the loss func-
tions were taking two arguments. The reason behind this was to encompass two kinds
of residuals under the same umbrella: the regression case y − h(x) and the classific-
ation case yh(x). Since this chapter is devoted to regression, the loss function L in
Problem 4.5 takes only one argument which is y − h(x).

Given a general loss function L : Y → R, we consider the problem

inf
h∈HK

1

n

n∑
i=1

L(yi − h(xi)) +
λ

2

∥∥h∥∥2
HK

(4.5)
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Table 4.1 – Summary of proposed algorithms.

Section L L⋆ parameterization proximal operator

4.3.1 vectorial Huber 4.9 1
2 ‖·‖

2
Y + χBκ eigenbasis of TkΘ ProjBκ

4.3.2 integral Huber 4.10 1
2 ‖·‖

2
Y + χB∞

κ
linear splines ProjB∞

κ

4.4.1 vectorial ϵ-ridge 4.18 1
2 ‖·‖

2
Y + ϵ ‖·‖Y eigenbasis of TkΘ BST

4.4.2 integral ϵ-ridge 4.19 1
2 ‖·‖

2
Y + ϵ ‖·‖1 linear splines ST

and recall the formulation of the associated dual problem (see Theorem 2.44)

inf
(αi)ni=1∈Yn

n∑
i=1

L⋆
i (−αi) +

1

2λn

n∑
i=1

n∑
j=1

kX(xi, xj)
〈
αi, TkΘαj

〉
Y
, (4.6)

where f⋆ is the Fenchel-Legendre conjugate of any function f : Y →
]
−∞,+∞

]
(see

Definition 2.2) and by convention Li = L(yi − ·) ∀i ∈ [n]. The solution of Problem 4.5
then takes the form

ĥ =
1

λn

n∑
i=1

kX(·, xi)TkΘα̂i

with (α̂i)
n
i=1 being the solution of Problem 4.6.

Among interesting losses, we can mention the Huber loss (Huber, 1964) which is known
to induce robust estimators, or ϵ-insensitive losses (Lee et al., 2005) leading to sparse
solutions. A particularity of these losses is that they write as the infimal convolution
of two loss functions, which can be used to our advantage in Problem 4.6. Indeed,
constructing suitable loss functions L can be carried out using the infimal convolution
operator (see Definition 2.3): given two loss functions f and g, taking L = f □ g yields a
new loss function that can be used in Problem 4.5. In the duality framework, this type
of loss functions is particularly appealing as the Fenchel-Legendre conjugate of L can be
expressed as a simple addition L⋆ = f⋆ + g⋆ in Problem 4.6. This way, to design a loss
function of interest, we can for example take f = 1

2 || · ||
2
Y and convolve it with a function

g that brings an interesting property (sparsity, robustness) to the estimator resulting
from solving Problem 4.6. This results in dual problems with objective function being
the a smooth quadratic part, to which is added a non smooth term corresponding to g⋆.
This idea was first developed in the operator-valued kernel literature in Sangnier et al.
(2017), where it was applied to ϵ-insensitive losses in vv-RKHSs with finite-dimensional
outputs and then extended to infinite-dimensional outputs in Laforgue et al. (2020).

We propose to deepen this approach in the FOR case, and introduce two families
of problems that each bring special properties to the estimator. In Section 4.3, we
develop optimization algorithms to enforce robust estimators by using different versions
of the Huber loss. Then in Section 4.4, we apply this methodology to ϵ-insensitive loss
functions, for which estimators benefit from sparsity properties. A summary of all
these settings is given in Table 4.1. Finally, numerical experiments are presented in
Section 4.5.2 to illustrate the effectiveness of the approach in different outlier scenarii.
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4.3 Robust Estimators with Huber Loss
The Huber loss has been introduced by Huber (1964) to provide a robust estimate of
the mean of a random variable. In the real output case, it is defined as follows.

Definition 4.2. The real Huber loss with parameter κ > 0 is defined as

∀s ∈ R, ℓH,κ(s) :=


1
2s

2 if |s| ≤ κ

κ
(
|s| − κ

2

)
otherwise.

Due to its asymptotic behavior as κ| · |, the Huber loss is useful when the training data
is heavy-tailed or contains outliers. It turns out that ℓH,κ can be written in the more
compact form

ℓH,κ =
1

2
(·)2□κ| · |. (4.7)

This allows to easily compute its Fenchel-Legendre transform as detailed in the following
proposition.

Proposition 4.3. The Fenchel-Legendre transform of the real Huber loss ℓH,κ is given
by

∀s ∈ R, ℓ⋆H,κ(s) =
1

2
s2 + χ[−κ,κ](s). (4.8)

Proof This is a simple application of Proposition 2.4 to f = 1
2(·)

2 and g = κ| · |, whose
Fenchel-Legendre transforms can be found in Table 2.1.

Extending the Huber loss to higher dimension can be done multiple ways. A first one
would consist in replacing 1

2(·) by 1
2 ‖·‖

2
Y and κ| · | by κ ‖·‖Y in Equation (4.7), which

we refer to as the vectorial Huber loss.

Definition 4.4. The vectorial Huber loss of parameter κ > 0 is given by

LH,κ := κ ‖·‖Y□
1

2
‖·‖2Y , (4.9)

or again:

∀y ∈ Y, LH,κ(y) =


1
2

∥∥y∥∥2
Y

if
∥∥y∥∥

Y
≤ κ

κ
(∥∥y∥∥

Y
− κ

2

)
otherwise.

An illustration of the vectorial Huber loss is provided in Figure 4.1 for dimensions 1
and 2, in dimension 1 it coincides with the real Huber loss. Another way to extend the
Huber loss to Y is to consider the integral loss associated to the real Huber loss (see
Section 3.1 for more details about integral losses), as defined below.

Definition 4.5. The integral Huber loss of parameter κ > 0 is given by

∀y ∈ Y, IℓH,κ
(y) :=

∫
Θ
ℓH,κ(y(θ))dµ(θ). (4.10)

In Section 4.3.1, we propose a solution of Problem 4.6 with the vectorial Huber loss,
before considering the use of the integral Huber loss in Section 4.3.2. Both losses add
a different term in Problem 4.6 that constrains the dual variables, thus resulting in
robustness of the estimator to outliers.
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Figure 4.1 – Standard square loss and Huber loss in 1 and 2 dimensions (κ = 0.8).

4.3.1 Vectorial Huber Loss

Before proposing a solution to Problem 4.5 with the vectorial Huber loss, we quickly
provide the expression of its Fenchel-Legendre transform.

Proposition 4.6. The Fenchel-Legendre transform of the vectorial Huber loss LH,κ is
given by

∀y ∈ Y, L⋆
H,κ(y) =

1

2

∥∥y∥∥2
Y
+ χBκ(y) (4.11)

where Bκ is the ball with radius κ according to norm ‖·‖Y.

Proof This is again an application of Proposition 2.4 to f = 1
2 ‖·‖

2
Y and g = κ ‖·‖Y,

whose Fenchel-Legendre transforms can be found in Table 2.1.

We are now ready to exemplify Problem 4.6 for the vectorial Huber loss scenario.

Proposition 4.7. The dual of Problem 4.5 in the vectorial Huber loss case writes as

inf
(αi)ni=1∈Yn

n∑
i=1

1

2

∥∥αi

∥∥2
Y
− 〈αi, yi〉Y + χBκ(αi) +

1

2λn

n∑
i=1

n∑
j=1

kX(xi, xj)
〈
αi, TkΘαj

〉
Y
.

(4.12)

Proof This is the direct instantiation of Problem 4.6 with Fenchel-Legendre trans-
form given by Proposition 4.6, combined with the properties of the Fenchel-Legendre
transform with respect to the translation operator (see Table 2.1).

We first notice that Problem 4.12 is similar to the dual problems tackled using integral
losses in Section 3.4. Its solution can be performed using the techniques developed in
Section 3.4.2. Indeed, Assumption 3.16 which assess of the compatibility between the
loss function and the integral operator TkΘ is satisfied here: all the terms involved in
Problem 4.12 can be computed provided that we possess a representation of the (αi)

n
i=1

in an orthonormal basis. We thus represent the dual variables in the truncated eigen-
basis (λj , ψj)

m
j=1 associated to TkΘ . We introduce the notation R ∈ Mn,m(R) such that

Rij = 〈yi, ψj〉Y and Λ = diag (λj)
m
j=1 ∈ Mm(R). Denoting by α ∈ Mn,m(R) the matrix

encoding the coefficients of the dual variables, Problem 4.12 can be rephrased as

inf
α∈Mn,m(R)

Tr

(
1

2
αα⊤ −αR⊤ +

1

2λn
KXαΛα⊤

)
︸ ︷︷ ︸

:= J(α)

s.t. ‖α‖2,∞ ≤ κ. (4.13)
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Algorithm 4.1 Projected Gradient Descent for Vectorial Huber
input : Gram matrix KX, matrix of eigenvalues Λ, data scalar product matrix R,

regularization parameter λ, Huber parameter κ, gradient step γ

init : α(0) = 0 ∈ Rn×m or α(0) = λn
(
KX ⊗Λ+ λn Idnm

)−1
R

19 for epoch t from 0 to T − 1 do
// gradient step

20 α(t+1) = α(t) − γ
(
α(t) + 1

λnKXα
(t)Λ−R

)
// projection step

21 for row i from 1 to n do

22 α
(t+1)
i: = min

 κ∥∥∥∥α(t+1)
i:

∥∥∥∥
2

, 1

α
(t+1)
i:

23 return α(T )

We recognize in Problem 4.13 a composite optimization problem (see Problem 2.5) that
can be tackled using proximal gradient descent. Let γ > 0 and β ∈ Rm, it holds that

proxγχBκ (·)(β) = ProjBκ
(β) = min

(
κ/
∥∥β∥∥

2
, 1
)
β,

hence by the separability of α 7→
∑n

i=1 χBκ(αi:) the proximal step is obtained by
projecting each row of α onto Bκ. The proximal gradient descent algorithm is then
akin to a projected gradient descent because of the particular form of the proximal
operator. The algorithm is summarized in Algorithm 4.1. The resulting estimator is
then given by

ĥ =
1

λn

n∑
i=1

m∑
j=1

λjα̂ijkX(·, xi)ψj .

Remark 4.8. When κ is large, one recovers the unconstrained ridge regression problem
from Kadri et al. (2016), whose practical solution is performed in the truncated eigen-
basis (ψj)

m
j=1 (see Section 3.2.1 for details). The solution is described by the closed-form

expression
α̂ = λn

(
KX ⊗Λ+ λn Idnm

)−1
R. (4.14)

This can be used as an initialization point in Algorithm 4.1 if one has enough computa-
tional power. It does not correspond to a feasible dual point (except for large enough κ)
but after one epoch the projection step will ensure that the iterates satisfies ‖α‖2,∞ ≤ κ.

Remark 4.9. The gradient step γ to choose can be estimated from the parameters of
the problem. Indeed, for guaranteed convergence, one must set γ < 2

C where C is the
Lipschitz constant associated to the gradient of the objective function J. Here,

∇J(α) = α+
1

λn
KXαΛ−R

which is C-Lipschitz with

C = 1 +
1

λn

∥∥KX

∥∥
op
λ1.



72 CHAPTER 4. ROBUST FUNCTIONAL OUTPUT REGRESSION

4.3.2 Integral Huber Loss

The solution of Problem 4.5 with the integral Huber loss follows similar steps, exploiting
the corresponding Fenchel-Legendre transform whose expression is given below.

Proposition 4.10. The Fenchel-Legendre transform of the integral Huber loss IℓH,κ
is

given by
∀y ∈ Y, I⋆ℓH,κ

(y) =
1

2

∥∥y∥∥2
Y
+ χB∞

κ
(y), (4.15)

where B∞
κ =

{
y ∈ Y : |y(θ)| ≤ κ , µ a.e.

}
is the ball of radius κ for the ∞-norm.

Proof This is an application of Proposition 3.13 which states that I⋆ℓH,κ
= Iℓ⋆H,κ

combined with Proposition 4.3 that gives an expression for ℓ⋆H,κ.

We can now present Problem 4.6 for the integral Huber loss scenario.

Proposition 4.11. The dual to Problem 4.5 in the integral Huber loss case writes

inf
(αi)ni=1∈Yn

n∑
i=1

1

2

∥∥αi

∥∥2
Y
− 〈αi, yi〉Y + χB∞

κ
(αi) +

1

2λn

n∑
i=1

n∑
j=1

kX(xi, xj)
〈
αi, TkΘαj

〉
Y
.

(4.16)

Proof This is the direct instantiation of Problem 4.6 with Fenchel-Legendre trans-
form given by Proposition 4.10, combined with the properties of the Fenchel-Legendre
transform with respect to the translation operator (see Table 2.1).

In contrast to what was obtained in Section 4.3.1, Assumption 3.16 is no longer satis-
fied, and we cannot perform the solution of Problem 4.16 in the eigenbasis associated
to TkΘ . Indeed, given αi =

∑m
j=1 αijψj it is not possible to evaluate χB∞

κ
(αi) based on

the sole coefficients (αij)
m
j=1, nor is it possible to easily project αi onto B∞

κ . We can
then turn to the method developed in Section 3.4.3 and represent the dual variables as
linear splines, at the cost of approximating the quadratic term involving TkΘ . Indeed,
a proximal gradient algorithm involves a projection on the feasible set B∞

κ which has
linear borders: it thus seems appropriate to use a linear spline basis for the representa-
tion of the dual variables (αi)

n
i=1. Given a set of locations (θj)

m
j=1

i.i.d.∼ µ, we denote by
Sm the set of linear splines with locations (θj)mj=1, and encode the dual variables (αi)

n
i=1

by a matrix α ∈ Mn,m(R) such that the rows of α correspond to the values of the dual
variables at locations (θj)

n
j=1. Finally, we approximate 〈αi, yi〉Y ≈ 1

m

∑m
j=1 αi(θj)yi(θj)

and store the observed outputs yi(θj) in a matrix Y ∈ Mn,m(R). Problem 4.16 then
writes as

inf
α∈Mn,m(R)

Tr

(
1

2
αα⊤ −αY⊤ +

1

2λnm
KXαKΘα

⊤

)
s.t. ‖α‖∞ ≤ κ. (4.17)

A proximal gradient descent algorithm to solve Problem 4.17 is presented in Algorithm 4.2,
where projecting on B∞

κ is equivalent to projecting each value αij onto the interval
[−κ, κ]. The resulting estimator is given by

∀x ∈ X, ĥ(x) =
1

λnm

n∑
i=1

m∑
j=1

α̂ijkX(x, xi)kΘ(·, θj).
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Algorithm 4.2 Projected Gradient Descent for Integral Huber
input : Gram matrices KX,KΘ, data matrix Y, regularization parameter λ, Huber

parameter κ, gradient step γ
init : α(0) = 0 ∈ Rn×m or α(0) = λnm

(
KX ⊗KΘ + λnm Idnm

)−1
Y

24 for epoch t from 0 to T − 1 do
// gradient step

25 α(t+1) = α(t) − γ
(
α(t) + 1

λnmKXα
(t)KΘ −Y

)
// projection step

26 for row i from 1 to n do
27 for column j from 1 to m do

28 α
(t+1)
ij = sign

(
α
(t+1)
ij

)
min

(
κ,

∣∣∣∣α(t+1)
ij

∣∣∣∣
)

29 return α(T )

4.4 Sparse Estimators with ϵ-Insensitive Losses

Let us recall the important notion of ϵ-insensitive losses. Learning with ϵ-insensitive
losses forces the estimator to neglect small errors, preventing from overfitting and in-
ducing some form of regularization, which will be highlighted later in the associated
dual problems. As proposed in Sangnier et al. (2017); Laforgue et al. (2020) we extend
them from Rp to any Hilbert space Y.

Definition 4.12. Let L : Y → R+ be a convex loss such that L(0) = 0, and ϵ > 0. The
ϵ-insensitive version of L, denoted Lϵ, is defined by Lϵ(y) = (L□χBϵ)(y), or again:

∀y ∈ Y, Lϵ(y) =


0 if ‖y‖Y ≤ ϵ

inf
∥d∥Y≤1

L(y − ϵd) otherwise.

In other terms, Lϵ(y) is the smallest value of L within the ball of radius ϵ centered at
y.

Remark 4.13. The definition of Lϵ depends on the metric used to characterize Bϵ.
We use the ‖·‖Y norm as a natural choice, but one could envision variations of the
ϵ-insensitive losses based on different metrics, leading to an alternative diverse family
of dual problems.

In general, it is not possible to find an analytic expression for Lϵ. However, the ϵ-
insensitive version of the square loss enjoys a closed-form representation as detailed
below.

Definition 4.14. We define the vectorial ϵ-ridge loss to be the ϵ-insensitive version of
the square loss:

‖·‖2Y,ϵ := ‖·‖2Y□χBϵ(·) = max(‖·‖Y − ϵ, 0)2. (4.18)

The vectorial ϵ-ridge loss is illustrated in Figure 4.2 for dimension 1 and 2. Similarly
to what was done with the Huber loss in Section 4.3, we can define an interesting loss
on Y by integrating the local real ϵ-ridge losses.
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Figure 4.2 – Standard and ϵ-insensitive versions of the square loss in 1 and 2 dimensions
(ϵ = 1.5).

Definition 4.15. We define the integral ϵ-ridge loss to be the integral loss associated
to the ϵ-insensitive version of the real square loss:

∀y ∈ Y, I 1
2
(·)2ϵ (y) :=

∫
Θ
max(|y(θ)| − ϵ, 0)2dµ(θ). (4.19)

Having defined these two losses, we are ready to dive into the associated Problem 4.5.
We start in Section 4.4.1 by proposing a solution method for the vectorial ϵ-insensitive
ridge loss, before considering in Section 4.4.2 the integral ϵ-insensitive ridge loss func-
tion.

4.4.1 Vectorial ϵ-Ridge

The solution of Problem 4.6 with the vectorial ϵ-ridge is similar to its Huber counterpart
presented in Section 4.3.1. We begin by giving the Fenchel-Legendre conjugate of ‖·‖2Y,ϵ.

Proposition 4.16. The Fenchel-Legendre conjugate of the vectorial ϵ-insensitive ridge
loss is given by

∀y ∈ Y,
(
‖·‖2Y,ϵ

)⋆
(y) =

1

2

∥∥y∥∥2
Y
+ ϵ
∥∥y∥∥

Y
. (4.20)

Proof This is again an application of Proposition 2.4 applied to f = 1
2 ‖·‖

2
Y and

g = χBϵ(·), whose Fenchel-Legendre conjugates can be found in Table 2.1.

We can now apply this to Problem 4.6 in the vectorial ϵ-insensitive ridge loss scenario
as stated below.

Proposition 4.17. The dual to Problem 4.5 in the vectorial ϵ-insensitive ridge loss
case writes as

inf
(αi)ni=1∈Yn

n∑
i=1

1

2

∥∥αi

∥∥2
Y
−〈αi, yi〉Y+ϵ

∥∥αi

∥∥
Y
+

1

2λn

n∑
i=1

n∑
j=1

kX(xi, xj)
〈
αi, TkΘαj

〉
Y
. (4.21)

Proof This is the direct instantiation of Problem 4.6 with Fenchel-Legendre conjug-
ate given by Proposition 4.16, combined with the properties of the Fenchel-Legendre
conjugate with respect to the translation operator (see Table 2.1).
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Algorithm 4.3 Proximal Gradient Descent for Vectorial ϵ-Ridge
input : Gram matrix KX, matrix of eigenvalues Λ, data scalar product matrix R,

regularization parameter λ, ridge parameter ϵ, gradient step γ

init : α(0) = 0 ∈ Rn×m or α(0) = λn
(
KX ⊗Λ+ λn Idnm

)−1
R

30 for epoch t from 0 to T − 1 do
// gradient step

31 α(t+1) = α(t) − γ
(
α(t) + 1

λnKXα
(t)Λ−R

)
// proximal step

32 for row i from 1 to n do

33 α
(t+1)
i: = BST

(
α

(t+1)
i: , γϵ

)
34 return α(T )

We can notice that Assumption 3.16 is again satisfied here, and exploit the same meth-
odology from Section 3.4.2 as in Section 4.3.1. Keeping the same notations, one can
rephrase Problem 4.21 as

inf
α∈Mn,m(R)

Tr

(
1

2
αα⊤ −αR⊤ +

1

2λn
KXαΛα⊤

)
︸ ︷︷ ︸

:= J(α)

+ϵ ‖α‖2,1 . (4.22)

Problem 4.22 consists in the minimization of the finite-dimensional quadratic form
J with multi-task Lasso regularization ϵ ‖·‖2,1. We can adapt the proximal gradient
descent introduced in Algorithm 4.1 by choosing the suitable proximal operator which
is the block soft thresholding (BST) operator, defined for all x ∈ Rm by

BST(x, ϵ) :=

∣∣∣∣∣1− ϵ

‖x‖2

∣∣∣∣∣
+

x.

The algorithm is summarized in Algorithm 4.3. Remark 4.9 about the calibration of
the gradient step γ is still valid here.

4.4.2 Integral ϵ-Ridge

The solution of Problem 4.5 with the integral ϵ-ridge loss follows closely the steps in
Section 4.3.2. We begin by computing the associated Fenchel-Legendre conjugate.

Proposition 4.18. The Fenchel-Legendre conjugate of the integral ϵ-ridge loss is given
by

∀y ∈ Y,

(
I 1

2
(·)2ϵ

)⋆

(y) =
1

2

∥∥y∥∥2
Y
+ ϵ

∫
Θ
|y(θ)|dµ(θ). (4.23)

Proof This is an application of Proposition 3.13 which states that I⋆1
2
(·)2ϵ

= I( 1
2
(·)2ϵ

)⋆ .

We can now state Problem 4.6 for the integral ϵ-ridge loss scenario.
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Proposition 4.19. The dual to Problem 4.5 in the integral ϵ-ridge loss case can be
written as

inf
(αi)ni=1∈Yn

n∑
i=1

1

2

∥∥αi

∥∥2
Y
−〈αi, yi〉Y+ϵ

∫
Θ
|αi(θ)|dµ(θ)+

1

2λn

n∑
i=1

n∑
j=1

kX(xi, xj)
〈
αi, TkΘαj

〉
Y
.

(4.24)

Proof This is the direct instantiation of Problem 4.6 with Fenchel-Legendre conjug-
ate given by Proposition 4.18, combined with the properties of the Fenchel-Legendre
conjugate with respect to the translation operator (see Table 2.1).

In contrast to what was obtained in Section 4.4.1, Assumption 3.16 is no longer satisfied.
This is due to the term ϵ

∫
Θ |αi(θ)|dµ(θ) in Problem 4.24 which cannot be computed

from a representation of the dual variables in an orthonormal basis. We thus propose
to rely on the splines methodology developed in Section 3.4.3, and begin by expressing
the proximal operator further used in the proximal descent algorithm: as we recognize
that

ϵ

∫
Θ
|αi(θ)|dµ(θ) = ϵ

∥∥αi

∥∥
1

the proximal operator of the non-differentiable part can easily be computed using Mor-
eau decomposition Proposition 2.6

∀γ > 0, proxγϵ∥·∥1 = Id−γ prox
1/γ

(
ϵ ‖·‖1

)⋆
︸ ︷︷ ︸

χB∞
ϵ

(
·
γ

)
= Id−γ ProjB∞

γϵ
(·).

Thus linear splines are adapted to the problem in the sense of Assumption 3.18, as they
provide pointwise control of the dual variables, suited to the projection on B∞

γϵ . Using
the same notations as in Section 4.3.2, an approximated Problem 4.24 writes as

inf
α∈Mn,m(R)

Tr

(
1

2
αα⊤ −αY⊤ +

1

2λnm
KXαKΘα

⊤

)
+ ϵ ‖α‖1 . (4.25)

We recognize in Problem 4.25 the minimization of a quadratic form with Lasso pen-
alty ϵ ‖α‖1. We propose to solve it using a proximal gradient algorithm presented in
Algorithm 4.4. The proximal step involves the soft-thresholding operator

ST(x, ϵ) := sign(x)
∣∣∣|x| − ϵ

∣∣∣
+
,

which is known to induce sparsity in the iterates. The resulting estimator is given by

∀x ∈ X, ĥ(x) =
1

λnm

n∑
i=1

m∑
j=1

α̂ijkX(x, xi)kΘ(·, θj).

4.5 Numerical Experiments
In this section, we present numerical experiments to illustrate the benefits of learn-
ing with convoluted losses. We consider the setting of function-to-function regression,
where both the input variable X and the output variable Y are functions. The experi-
ments relied on two datasets, one real and one synthetic.
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Algorithm 4.4 Proximal Gradient Descent for Integral ϵ-ridge
input : Gram matrices KX,KΘ, data matrix Y, regularization parameter λ, Huber

parameter κ, gradient step γ
init : α(0) = 0 ∈ Rn×m or α(0) = λnm

(
KX ⊗KΘ + λnm Idnm

)−1
Y

35 for epoch t from 0 to T − 1 do
// gradient step

36 α(t+1) = α(t) − γ
(
α(t) + 1

λnmKXα
(t)KΘ −Y

)
// proximal step

37 for row i from 1 to n do
38 for column j from 1 to m do

39 α
(t+1)
ij = ST

(
α
(t+1)
ij , γϵ

)
40 return α(T )

Figure 4.3 – Lip dataset.

Real dataset We choose to work with the Lip dataset from Ramsay (2004), which
depicts the movement of the lip when a subject pronounces the word "bob" inside the
phrase "say bob again". More precisely, the input observations (xi)

n
i=1 are Electromyo-

gram (EMG) recordings of a muscle that depresses the lower lip while the output
observations (yi)

n
i=1 describe the acceleration of the lower lip of the speaker, both seen

as functions of the time. These functions are observed each millisecond, which forms
a regular grid of size 641 considering the duration of the experiments; we rescaled this
grid so that the domain of these functions is Θ := [0, 1]. The underlying goal is to map
the EMG signals onto the movements of the lip, allowing for a better understanding of
how the brain controls the diction. We have access to n = 32 such recordings, whose
illustration can be found in Figure 4.3.

Synthetic dataset To design a challenging task for our functional output regression
framework, we adapted a synthetic dataset from Bouche et al. (2021). A pair of (input,
output) functions is built as follows. We first draw r = 4 Gaussian processes (GPs)
denoted by (GPin

j )
r
j=1 with mean 0 and Gaussian covariances of various bandwidths

which will be used to model the input functions, and r other GPs to model the output
functions, this time denoted by (GPout

j )rj=1. Both sets of GPs were kept fixed, and to
create each pair of samples (xi, yi), we draw (aij)j∈[r] ∈ Rr uniformly in [−2, 2]r, and
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Figure 4.4 – Synthetic dataset. 50 samples are shown.

Figure 4.5 – Synthetic dataset global outliers. 15 samples are shown.

define

∀θ ∈ Θ, xi(θ) =
r∑

j=1

aijGPin
j (θ), yi(θ) =

r∑
j=1

aijGPout
j (θ).

Examples of such functions can be found in Figure 4.4.

Outliers generation To illustrate the robustness properties brought by the use of
the Huber and ϵ-insensitive losses, we propose to add two kinds of outliers to the
aforementioned datasets. The first type of outliers, that we refer to as local outliers,
model inconsistency in the data acquisition pipeline on a local level: we take a sample
from the training set and add some noise to the measurements of the functions at mo

number of locations (θ̃j)
mo
j=1 chosen randomly. The second type of outliers consists in

global outliers, that is functions whose shape do not match the ones of the training
samples. In particular, we create them the following way: for the lip dataset, we
consider the case of a data acquisition error where an input function xi is observed
correctly, but associated to an output function ỹi = −soyi where so is the scale of the
outlier, fixed during the experiment and yi is the normal observation. This is chosen to
maximize the disalignment between inliers and outliers. For the synthetic dataset, we
create new samples with different Gaussian processes in input and output, see Figure 4.5
for an illustration. We also use so to refer to the scale of the outliers, in the sense that
the coefficients (aij)j∈[r] ∈ Rr are drawn uniformly in [−so, so]r.
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Model Specification We use a decomposable kernel with respective input and out-
put kernels being kX and kΘ. The former is chosen to be an integrated Gaussian kernel,
i.e. kX(x, z) =

∫
Θ e

−γX[x(θ)−z(θ)]2 . The bandwidth γX is chosen via cross validation. For
kΘ, we chose a Gaussian kernel with bandwidth γΘ also chosen by cross validation.
Since algorithms dealing with the vectorial Huber and ϵ-insensitive losses involve the
eigendecomposition of TkΘ , in these cases we use a random Fourier features (RFF) ap-
proximation of the kernel for which the eigendecomposition of the associated integral
operator is easy to get (see Example 2.30). The number of RFFs is set to 25 which
provides functional spaces of dimension 50.

4.5.1 Huber Losses

In this section, we demonstrate the benefits of the two approaches developed in Sec-
tion 4.3.1 and Section 4.3.2 in the global outlier scenario detailed above for both the
real and synthetic dataset. We want to answer the following question:

• "Does the use of a Huber loss while training improves the mean square error at
the testing phase when the training data is contaminated with global outliers?"

Real dataset Because of the limited amount of data provided for the Lip experi-
ments, we are able to compute the leave-one-out (LOO) mean square error associated
to the vectorial and integral Huber loss regressors. The setting is as follows: we aug-
ment the dataset with 4 global outliers (12.5%) generated by the procedure described
above with various scale levels so ∈ {0.5, 1, 2, 5}. With a slight abuse, the hyperpara-
meters λ, γX, γΘ were computed once for each scale level using LOO cross validation
for the ridge regressor, and kept fixed for the various settings obtained by trading the
square loss against a Huber loss, thus results presented here are pessimistic w.r.t. the
performances of the Huber loss estimators. For a given scale level, as κ grows, the
constraint in the dual brought by the Huber loss becomes void, and we recover the
ridge regression solution from (Kadri et al., 2016) in the vectorial Huber case, and from
(Lian, 2007) in the integral Huber case. This phenomenon is illustrated in Figure 4.6,
we observe that there exist a range of κ for which the LOO error (computed with the
square loss) is better than the one of a model trained with a square loss itself, which
suggests that in presence of outliers the dual constraint on the norm of the coefficients
of the model helps to achieve robustness.

Synthetic dataset For the synthetic dataset, the procedure is roughly the same,
except that it is now cheap to have access to new test samples, so that we do not use
LOO error but rather measure the efficiency of the estimator on a fresh test set drawn
from the same distribution as the inliers. We consider 250 normal observations from
the dataset illustrated in Figure 4.4, and augment the training dataset with 25 outliers
generated as in Figure 4.5 with various scale levels so ∈ {2, 4, 6, 10}. We then tune the
hyperparameters by cross-validation on the gathered dataset, and report in Figure 4.7
mean square error obtained on a fresh test set generated from the inliers distribution.
Numerically, there still exists a range of κ for which the Huber estimator performs
better, but it is harder to see it with eye. This is certainly due to the fact that in this
case it is harder to differentiate between the inliers and the outliers, whereas for the
real dataset usecase the outliers were designed to maximize the confusion brought in
to the estimator.
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Figure 4.6 – Leave-one-out (LOO) generalization error when learning with Huber loss
and contaminated real data for several scales of outliers so ∈ {0.5, 1, 2, 5}. Left: vec-
torial Huber loss. Right: integral Huber loss. For large enough Huber loss parameter
κ the estimates (solid) coincide with that of the ridge solution (dashed).

Figure 4.7 – Test MSE when learning with Huber loss and contaminated synthetic data
for several scales of outliers so ∈ {2, 4, 6, 10}. Left: vectorial Huber loss. Right: integral
Huber loss.

4.5.2 ϵ-insensitive Losses

In this section, we present numerical experiments to illustrate the effectiveness of the
approaches developed in Section 4.4. In particular, we want to answer the following
question:

• "At what price (in terms of test error) can we get sparse estimators?"

Here, the sparsity is to be understood in terms of the percentage of zero coefficients. As
seen in the corresponding optimization problems, the vectorial and integral ϵ-insensitive
losses induce sparsity as they respectively bring in Group-LASSO and LASSO penal-
ization terms to the dual problem. When ϵ = 0, we recover the unconstrained ridge
regression solution, and as ϵ grows, the optimal coefficients become sparser. We expect
that as ϵ grows, there is a degradation of the performances of the model in terms of
test mean square error. Intuitively, the ϵ-insensitive ridge loss does not penalize the
residuals whose norm is smaller than ϵ, and we propose to experiment with these losses
in the context of local outliers, when some amount of noise is artificially added to the
data measurement points. We present an illustration of this behavior for the vectorial
ϵ-ridge, the two estimators behaving similarly.



4.6. CONCLUSION 81

(a) LOO error. (b) Sparsity of the coefficients.

Figure 4.8 – LOO error and sparsity when learning with vectorial ϵ-ridge loss and
contaminated real data for several scales of local outliers so ∈ {0.2, 0.5, 0.8, 1.2}. Left:
Test MSE. Right: Proportion of zero coefficients.

Real Dataset Similarly to the Huber case, we used LOO error as a measure of
performance and the same hyperparameters (λ, γX, γΘ). For the vectorial ϵ-ridge case,
we plot in Figure 4.8 the LOO error and the proportion of zero coefficients. Since the
problem is akin to a group lasso, this proportion corresponds to the number of training
samples used in the estimator, as the ‖·‖2,1 penalty forces some lines of the coefficient
matrix to be zero. The local outliers were obtained by added randomly a Gaussian
noise with standard deviation so ∈ {0.2, 0.5, 0.8, 1.2} at 20% of the locations associated
to 50% of the training data. As expected, the LOO error degrades when ϵ grows. We
observe little influence of the scale of the outliers on this experiment.

Synthetic Dataset We used test MSE on fresh test samples to assess the perform-
ance of the estimator. The local outliers were obtained by adding Gaussian noise with
standard deviation so ∈ {0.4, 1.2, 1.7} at 20% of the locations associated to 50% of the
training data. The results are illustrated in Figure 4.9, we observe similarly to the real
dataset case that as ϵ grows, the coefficients of the estimators grow sparser and the test
MSE degrades.

4.6 Conclusion
In this chapter, we proposed a functional output regression framework based on duality
in vv-RKHS that allows to go beyond the square loss case. The use of convoluted losses,
particularly suited to duality thanks to their compatibility with the Fenchel-Legendre
transform, produces a family of problems that read in the dual as the original regular-
ized empirical risk minimization problem plus a term akin to a penalty, depending on
the chosen loss. This term can enforce robustness, as seen with the family of the Huber
losses, or sparsity when choosing the family of ϵ-insensitive losses. To obtain them, we
convolve the square loss with a loss that is norm dependent, inviting to investigate in
future work the choice of the norm used in the right term of the convolution. This
would likely lead to different ways to enforce sparsity or robustness.
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(a) Test MSE. (b) Sparsity of the coefficients.

Figure 4.9 – Test MSE and sparsity when learning with vectorial ϵ-ridge loss and con-
taminated synthetic data for several scales of local outliers so ∈ {0.4, 1.2, 1.7}. Left:
Test MSE. Right: Proportion of zero coefficients.
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In this chapter, we propose to exploit the general framework of learning with integral
losses from Chapter 3 to adopt a new angle to multi-task learning. Multi-task learning
consists in leveraging dependency across tasks to jointly solve multiple task with a single
vector-valued model (Micchelli and Pontil, 2005). We extend the idea of multiple tasks
to a continuum of parameterized tasks, and present a principled way to jointly learn
these tasks referred to as infinite task learning (ITL).

After a brief introduction in Section 5.1, we devote Section 5.2 to the definition of
the ITL framework, before studying its generalization capabilities in Section 5.3. In
Section 5.4 we apply the ITL methodology to quantile regression and demonstrate its
efficiency on both synthetic and real-world datasets. Section 5.5 is devoted to the
cost-sensitive classification problem, and finally Section 5.6 explores the unsupervised
density level set estimation problem under the ITL angle. Conclusions are drawn in
Section 5.7.
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5.1 Introduction

Several fundamental problems in machine learning and statistics can be phrased as the
minimization of a loss function described by a hyperparameter. The hyperparameter
might capture numerous aspects of the problem: (i) the tolerance w.r.t. outliers as the
ϵ-insensitivity in support vector regression (SVR; Drucker et al. 1997), (ii) importance
of smoothness or sparsity such as the weight of the l2-norm in Tikhonov regularization
(Tikhonov and Arsenin, 1977), l1-norm in LASSO (Tibshirani, 1996), or more general
structured-sparsity inducing norms (Bach et al., 2012), (iii) density level set estimation
(DLSE), see for example one-class support vector machines (OCSVM), (iv) confidence
as exemplified by quantile regression (QR), or (v) importance of different decisions as
implemented by cost-sensitive classification (CSC). In various cases including QR, CSC
or DLSE, one is interested in solving the parameterized task for several hyperparameter
values. Multi-task learning (MTL; Evgeniou and Pontil 2004) provides a principled
way of benefiting from the relationship between similar tasks while preserving local
properties of the algorithms: ν-property in DLSE (Glazer et al., 2013) or quantile
property in QR (Takeuchi et al., 2006).

A natural extension from the traditional multi-task setting is to provide a prediction
tool being able to deal with any value of the hyperparameter. In their seminal work,
(Takeuchi et al., 2013) extended multi-task learning by considering an infinite number
of parameterized tasks in a framework called parametric task learning. Assuming that
the loss is piecewise affine in the hyperparameter, the authors were able to get the
whole solution path through parametric programming, relying on techniques developed
by Hastie et al. (2004).1 In this chapter, we relax the affine model assumption on
the tasks as well as the piece-wise linear assumption on the loss, and take a different
angle. We propose infinite task learning (ITL) within the framework of function-valued
function learning to handle a continuum number of parameterized tasks. For that
purpose we leverage tools from operator-valued kernels and the associated vv-RKHS.
The idea is that the output is a function over the hyperparameter space, modelled as
an element of a scalar-valued RKHS. Properties of this kernel, e.g. continuity, give an
explicit control on the relationship between tasks, and manipulating output functions in
a RKHS also enables us to consider incorporate specific constraints on their nature. In
the studied framework each task is described by a (scalar-valued) RKHS over the input
space which is capable of dealing with nonlinearities. The resulting ITL formulation
relying on vv-RKHS specifically encompasses existing multi-task approaches including
joint quantile regression (Sangnier et al., 2016) or multi-task variants of density level
set estimation (Glazer et al., 2013) by encoding a continuum of tasks.

5.2 From Parameterized to Infinite Task Learning

In this section, we gradually define our goal by moving from single parameterized tasks
(Section 5.2.1) to infinite task learning (ITL; Section 5.2.3) through multi-task learning
(MTL; Section 5.2.2).

1Alternative optimization techniques to deal with countable or continuous hyperparameter spaces
could include semi-infinite (Stein, 2012) or bi-level programming (Wen and Hsu, 1991).
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5.2.1 Learning Parameterized Tasks

A supervised parametrized task is defined as follows. Let (X,Y) ∈ X × R be a random
variable with joint distribution PX,Y which is assumed to be fixed but unknown. We
have access to n i.i.d. observations called training samples: S := (xi, yi)

n
i=1 ∼ P⊗n

X,Y. Let
Θ be the domain of hyperparameters, and ℓ : Θ × R × R → R be a loss function. Let
HkX ⊂ F

(
X; R

)
denote our hypothesis class; it is assumed to be a RKHS with kernel

kX : X × X → R. For a given θ, the goal is to estimate the minimizer of the expected
risk

R(θ, h) := EX,Y[ℓ(θ, h(X),Y)] (5.1)

over HkX , using the training sample S. This task can be addressed by solving the
regularized empirical risk minimization problem

min
h∈HkX

RS(θ, h) + Ω(h), (5.2)

where RS(θ, h) := 1
n

∑n
i=1 ℓ(θ, h(xi), yi) is the empirical risk and Ω : HkX → R is a

regularizer. Below we give three examples.

Quantile regression (QR): In this setting θ ∈
(
0, 1

)
. For a given hyperparameter

level θ, in QR the goal is to predict the θ-quantile of the real-valued output condi-
tional distribution PY|X. The task can be tackled using the pinball loss (Koenker and
Bassett Jr, 1978) defined in Equation (5.3) and illustrated in Figure 5.1.

ℓ(θ, h(x), y) = max(θ(y − h(x)), (θ − 1)(y − h(x))), (5.3)

Ω(h) =
λ

2

∥∥h∥∥2
HkX

(λ > 0).

Cost-sensitive classification (CSC): Our next example considers binary classific-
ation (Y ∈ {−1, 1}) where a (possibly) different cost is associated with each class, as
it is often the case in medical diagnosis or default detection (Japkowicz and Stephen,
2002; Elkan, 2001). The sign of h ∈ HkX yields the estimated class and in cost-sensitive
classification one takes

ℓ(θ, h(x), y) =

∣∣∣∣∣θ + 1

2
− 1{−1}(y)

∣∣∣∣∣max(0, 1− yh(x)), (5.4)

Ω(h) =
λ

2

∥∥h∥∥2
HkX

λ > 0.

The θ ∈ [−1, 1] hyperparameter captures the trade-off between the importance of cor-
rectly classifying the samples having −1 and +1 labels. When θ is close to −1, the
obtained h focuses on classifying well class −1, and vice-versa. Typically, it is desirable
for a physician to choose a posteriori the value of the hyperparameter at which she
wants to predict. Since this cost can rarely be considered to be fixed, this motivates to
learn one model giving access to all hyperparameter values.

Density level sets estimation (DLSE): Examples of parameterized tasks can also
be found in the unsupervised setting. For instance in outlier detection, the goal is to
separate outliers from inliers. A classical technique to tackle this task is the celebrated
one-class support vector machines (OCSVM; Schölkopf et al. 2000). OCSVM has a
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free parameter θ ∈ (0, 1], which can be proven to be an upper bound on the fraction of
outliers. When using a Gaussian kernel with a bandwidth converging to zero, OCSVM
consistently estimates density level sets (Vert and Vert, 2006). This unsupervised
learning problem can be empirically described by the minimization of a regularized
empirical risk RS(θ, t, h) + Ω(h), solved jointly over h ∈ HkX and t ∈ R with

ℓ(θ, h(x), t) = −t+ 1

θ

∣∣∣t− h(x)
∣∣∣
+
, Ω(h) =

1

2

∥∥h∥∥2
HkX

.

5.2.2 Solving a Finite Number of Tasks as Multi-Task Learning

In all the aforementioned problems, one is rarely interested in the choice of a single
hyperparameter value (θ) and associated risk

(
RS(θ, ·)

)
, but rather in the joint solution

of multiple tasks. The naive approach of solving the different tasks independently can
easily lead to inconsistencies. A principled way of solving many parameterized tasks
has been cast as a MTL problem (Evgeniou et al., 2005) which takes into account
the similarities between tasks and helps providing consistent solutions. For example it
is possible to encode the similarities of the different tasks in MTL through an explicit
constraint function (Ciliberto et al., 2017). In the ITL approach, the similarity between
tasks is designed in an implicit way through the use of a kernel on the hyperparameters.
Moreover, in contrast to MTL, in our case the input space and the training samples
are the same for each task; a task is specified by a value of the hyperparameter. This
setting is sometimes referred to as multi-output learning (Álvarez et al., 2012).

Formally, assume that we have m tasks described by parameters (θj)
m
j=1. The idea of

multi-task learning is to minimize the sum of the local loss functions RS(θj , ·), i.e.

argmin
h∈H

m∑
j=1

RS(θj , hj) + Ω(h),

where the individual tasks are modelled by the real-valued hj functions, the overall
Rm-valued model is the vector-valued function h : x 7→ (h1(x), . . . , hm(x)) belonging to
some hypothesis space H, and Ω is a regularization term encoding similarities between
tasks.

It is instructive to consider two concrete examples:

• In joint quantile regression one can use the regularizer to encourage that the predicted
conditional quantile estimates for two similar quantile values are similar. This idea
forms the basis of the approach proposed by Sangnier et al. (2016) who formulates the
joint quantile regression problem in a vector-valued reproducing kernel Hilbert space
with an appropriate decomposable kernel that encodes the links between the tasks.
The obtained solution shows less quantile curve crossings compared to estimators not
exploiting the dependencies of the tasks as well as an improved accuracy.

• A multi-task version of DLSE has been presented by Glazer et al. (2013) with the
goal of obtaining nested density level sets as θ grows. Similarly to joint quantile
regression, it is crucial to take into account the similarities of the tasks in the joint
model to efficiently solve this problem.
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5.2.3 Towards Infinite Task Learning

In the following, we propose a novel framework called infinite task learning (ITL) in
which we learn a function-valued function h ∈ HK where HK ⊂ F(X,F(Θ,R)) is a
vv-RKHS. Our goal is to be able to handle new tasks after the learning phase and thus,
not to be limited to given predefined values of the hyperparameter. Regarding this goal,
our framework generalizes the parametric task learning (PTL) approach introduced by
Takeuchi et al. (2013), by allowing a wider class of models and relaxing the hypothesis
of piece-wise linearity of the loss function. Moreover a nice byproduct of this vv-RKHS
based approach is that one can benefit from the functional point of view, design new
regularizers and impose various constraints on the whole continuum of tasks, e.g. ,

• The continuity of the θ 7→ h(x)(θ) function is a natural desirable property: for a
given input x, the predictions on similar tasks should also be similar.

• Another example is to impose a shape constraint in QR: the conditional quantile
should be increasing w.r.t. the hyperparameter θ. This requirement can be imposed
through the functional view of the problem.

• In DLSE, to get nested level sets, one would want that for all x ∈ X, the decision
function θ 7→ 1R+(h(x)(θ)− t(θ)) changes its sign only once.

To keep the presentation simple, in the sequel we are going to focus on ITL in the
supervised setting; we dedicate Section 5.6 to the unsupervised task of DSLE.

We introduce the integral loss function

Iℓ(h(x), y) :=

∫
Θ
ℓ(θ, h(x)(θ), y)dµ(θ), (5.5)

where ℓ : Θ× R× R → R is a loss function and µ is a probability measure on Θ which
encodes the importance of the prediction at different hyperparameter values. Without
prior information and for compact Θ, one may consider µ to be uniform. The true and
empirical risks read then as

R(h) := EX,Y

[
Iℓ(h(X),Y)

]
, RS(h) :=

1

n

n∑
i=1

Iℓ(h(xi), yi). (5.6)

Intuitively, minimizing the expectation of the integral over θ in a rich enough space
corresponds to searching for a pointwise minimizer x 7→ ĥ(x)(θ) of the parametrized
tasks introduced in Equation (5.1) with, for instance, the implicit space constraint that
θ 7→ ĥ(x)(θ) is a continuous function for each input x. We show in Proposition 5.25
that this is precisely the case in QR.

Interestingly, the empirical counterpart of the true risk minimization can now be con-
sidered with a much richer family of penalty terms:

min
h∈HK

RS(h) + Ω(h). (5.7)

Here, Ω(h) can be a weighted sum of various penalties

• imposed directly on h such as λ
2

∥∥h∥∥2
HK

for λ > 0, in which case we recognize in
Problem 5.7 the type of problems whose resolution has been discussed at length in
Chapter 3 or
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• integrated constraints on either θ 7→ h(x)(θ) or x 7→ h(x)(θ) such as∫
X

Ω1(h(x)(·))dP(x) or
∫
Θ
Ω2(h(·)(θ))dµ(θ)

which allow the property enforced by Ω1 or Ω2 to hold pointwise on X or Θ respect-
ively.

It is worthwhile to see a concrete example before turning to the statistical analysis in
Section 5.3: in quantile regression, the monotonicity assumption of the θ 7→ h(x)(θ)
function can be encoded by choosing Ω1 as

Ω1(f) = λnc

∫
Θ

∣∣∣−f ′(θ)∣∣∣
+
dµ(θ)

when the output RKHS HkΘ is populated with differentiable functions and λnc > 0
controls the strength of the soft constraint.

5.3 Generalization Analysis through Uniform Stability

In this section, we study the generalization gap (or excess risk) associated to the ITL
method. The goal here is to control with high probability the quantity

E(ĥ) := R(ĥ)− RS(ĥ), (5.8)

where ĥ is the estimator resulting from the ITL method in the supervised setting:

ĥ = argmin
h∈HK

1

n

n∑
i=1

Iℓ(h(xi), yi) + λ
∥∥h∥∥2

HK
. (5.9)

Remark 5.1. The reader can notice that the regularization parameter here is λ and
not λ

2 as it helps readability of the generalization bound.

When E(ĥ) is small, the learned estimator performs comparably on unseen data drawn
with probability P(X,Y), whereas when it is large, the estimator overfits, meaning it
performs poorly on new data. A myriad of techniques have been developed to study
the generalization error (Steinwart and Christmann, 2008; Zhou, 2002; Rudi and Ros-
asco, 2017), extending the seminal work of (Vapnik, 1992). In the particular kernel
based learning, we can invoke the Rademacher complexity tool (Bartlett and Mendel-
son, 2002) which allows to bound suph∈HK

|E(h)| and benefits from a large body of
work, with extensions to vector-valued learning (Maurer and Pontil, 2016). However,
these extensions rely on the assumption of trace class OVKs which is not verified for the
kernel K = kX IdHkΘ

. Moreover, bounding suph∈H |E(h)| appears unnecessarily hard,
since we are only interested in bounding E(ĥ).

These considerations lead us to work in the framework of uniform stability introduced
in (Bousquet and Elisseeff, 2002). Uniform stability asks the question: "what happens
when we learn an estimator with a slightly modified dataset ?" and answers by saying
that when the two resulting estimators are close, then it is possible to bound the excess
risk of the output of the algorithm.
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Definition 5.2. Let S =
(
xi, yi

)n
i=1

be the training data. We call Si the training data
Si = ((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)), i ∈ [n].

In the following, L : HK×X×R is a loss function whose dependence w.r.t. to the model
h is explicit, and the risks are

R(h) = E(X,Y)

[
L(h,X,Y)

]
, RS(h) =

1

n

n∑
i=1

L(h, xi, yi).

Remark 5.3. To fit in this framework, we will choose either

L(h, x, y) = Iℓ(h(x), y) or L(h, x, y) = Ĩℓ(h(x), y) (5.10)

depending on whether we analyse the theoretical ITL estimator (see Section 5.3.1) or
the one obtained from the practical solution with a sampled empirical risk and double
representer theorem (see Section 5.3.2).

Definition 5.4. A learning algorithm mapping a dataset S to an estimator ĥS is said
to be β-uniformly stable with respect to the loss function L if for all n ∈ N∗, i ∈ [n],
and S training set, ∥∥∥L(ĥS , ·, ·)− L(ĥSi , ·, ·)

∥∥∥
∞

≤ β. (5.11)

Assumption 5.5. There exists ξ ≥ 0 such that for all (x, y) ∈ X× Y and training set
S, L(ĥS , x, y) ≤ ξ.

Having defined these concepts, we are now ready to state the generalization bound from
(Bousquet and Elisseeff, 2002) that allows to quantify the excess risk of an estimator
provided by a learning algorithm.

Proposition 5.6. (Bousquet and Elisseeff, 2002) Let S 7→ ĥS be a learning algorithm
with uniform stability β with respect to a loss L satisfying Assumption 5.5. Then for
all n ≥ 1 and δ ∈ (0, 1), with probability at least 1 − δ on the drawing of the samples,
it holds that

E
(
ĥS

)
≤ 2β + (4nβ + ξ)

√
log (1/δ)

n
.

Proposition 5.6 ensures that whenever
√
nβ →

n→∞
0, the true risk R(ĥS) is controlled by

its empirical version RS(ĥS), and the bounds are tight when β scales as 1
n . The bounds

associated to uniform stability have recently benefited from sharper results proposed
by Feldman and Vondrak (2018) and later Bousquet et al. (2020). We present it below
for completeness.

Proposition 5.7. (Bousquet et al., 2020) Let S 7→ ĥS be a learning algorithm with
uniform stability β with respect to a loss L satisfying Assumption 5.5. Then for all
n ≥ 1 and δ ∈ (0, 1), with probability at least 1 − δ on the drawing of the samples, it
holds that ∣∣∣∣E(ĥS)∣∣∣∣ ≤ c1β log2(n) log (e/δ) + c2ξ

√
log (e/δ)

n

where c1 = 12
√
2e and c2 = 4e.
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This bound shows both sub-Gaussian (
√
log e/δ term) and sub-exponential (log e/δ

term) regimes and can be of great interest for β that decrease slower than 1
n (see

Bousquet et al. (2020) for a discussion about this). In our case as we will see β scales
as 1

n ; we present the results implied by Proposition 5.6 and note the analysis can be
adapted to Proposition 5.7. This is the strength of the uniform stability framework, all
we have to do is prove that the algorithms are β-stable, and we can profit from both
bounds.

Uniform stability and vv-RKHS learning We now exploit results from Kadri
et al. (2016) (we can also mention the initial work of Audiffren and Kadri (2013)), who
studied the uniform stability of learning algorithms based on empirical risk minimiz-
ation with vv-RKHS norm regularization. There is a slight difference between their
setting and ours, since they use losses defined for some y in the output space of the
vv-RKHS, but this difference has no impact on the validity of the proofs. Their work
relies on the following assumptions:

Assumption 5.8. There exists κ > 0 such that for ∀x ∈ X,
∥∥∥K(x, x)

∥∥∥
op

≤ κ2.

Assumption 5.9. For all h1, h2 ∈ HkΘ, the function

(x1, x2) ∈ X× X 7→ 〈K(x1, x2)h1, h2〉HkΘ
∈ R

is measurable.

We recall the choice of OVK we make: K(x, z) = kX(x, z)IHkΘ
with (x, z) ∈ X × X,

kX and kΘ are bounded scalar-valued kernels; in other words there exist (κX, κΘ) ∈ R2

such that sup
x∈X

kX(x, x) ≤ κ2X and sup
θ∈Θ

kΘ(θ, θ) ≤ κ2Θ.

Remark 5.10. Assumptions 5.8, 5.9 are satisfied for our choice of kernel.

Assumption 5.11. The application (y, h, x) 7→ L(y, h, x) is σ-admissible, i.e. convex
with respect to h and Lipschitz continuous with respect to f(x), with σ as its Lipschitz
constant.

We now state a proposition from Kadri et al. (2016) which gives β-stability guarantees
for the output of the algorithm

ĥS = argmin
h∈HK

1

n

n∑
i=1

L(h, xi, yi) + λ
∥∥h∥∥2

HK
. (5.12)

Proposition 5.12. (Kadri et al., 2016) Under Assumption 5.8, Assumption 5.9, and
Assumption 5.11, a learning algorithm that maps a training set S to the function ĥS
defined in Equation (5.12) is β-stable with β = σ2κ2

2λn .

5.3.1 Generalization Bound for Non-Approximated Scheme

In this section, we derive generalization bounds based on Proposition 5.12 for the
non-approximated ITL scheme, in the sense that we analyse the theoretical estim-
ator without considering the approximations induced by the practical optimization
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algorithm:

ĥS = argmin
h∈HK

1

n

n∑
i=1

L(h, xi, yi) + λ
∥∥h∥∥2

HK
(5.13)

where
L(h, x, y) =

∫
Θ
ℓ(θ, h(x)(θ), y)dµ(θ). (5.14)

Quantile regression We recall that in this setting,

ℓ(θ, h(x)(θ), y) = max (θ(y − h(x)(θ)), (1− θ)(y − h(x)(θ)))

and consider the associated L from Equation (5.14). Moreover, we will assume that
|Y| is bounded almost surely by B ∈ R. We will therefore verify the hypothesis for
y ∈ [−B,B] and not y ∈ R.

Lemma 5.13. In the case of the QR, the loss L is σ-admissible with σ = 2κΘ.

Proof Let h1, h2 ∈ HK and θ ∈ [0, 1]. ∀x, y ∈ X× R, it holds that

ℓ(θ, h1(x)(θ), y)− ℓ(θ, h2(x)(θ), y) = (θ − t)(h2(x)(θ)− h1(x)(θ)) + (t− s)(y − h1(x)(θ)),

where s = 1y≤h1(x)(θ) and t = 1y≤h2(x)(θ). We consider all possible cases for t and s :

• t = s = 0 : |(t− s)(y − h1(x)(θ))| ≤ |h2(x)(θ)− h1(x)(θ)|,
• t = s = 1 : |(t− s)(y − h1(x)(θ))| ≤ |h2(x)(θ)− h1(x)(θ)|,
• s = 1, t = 0 : |(t− s)(y − h1(x)(θ))| = |h1(x)(θ)− y| ≤ |h1(x)(θ)− h2(x)(θ)|,
• s = 0, t = 1 : |(t − s)(y − h1(x)(θ))| = |y − h1(x)(θ)| ≤ |h1(x)(θ) − h2(x)(θ)|

because of the conditions on t, s.

Thus ∣∣∣ℓ(θ, h1(x)(θ), y)− ℓ(θ, h2(x)(θ), y)
∣∣∣ ≤ (θ + 1)|h1(x)(θ)− h2(x)(θ)|

≤ (θ + 1)κΘ||h1(x)− h2(x)||HkΘ
,

where we used the Cauchy-Schwartz inequality applied to h1(x)−h2(x) and kΘ(·, θ) in
HkΘ at the last line. By integrating this expression over the Θ space, we get that∣∣∣L(h1, x, y)− L(h2, x, y)

∣∣∣ ≤ ∫ 1

0
(θ + 1)κΘ||h1(x)− h2(x)||HkΘ

dµ(θ)

≤ 2κΘ||h1(x)− h2(x)||HkΘ

and L is σ-admissible with σ = 2κΘ.

Lemma 5.14. Let S = ((x1, y1), . . . , (xn, yn)) be a training set and λ > 0. Then for
all (x, θ) ∈ X× (0, 1), it holds that |ĥS(x)(θ)| ≤ κXκΘ

√
B
λ .

Proof Since ĥS is the output of our algorithm and 0 ∈ HK , it holds that

λ||ĥS ||2 ≤
1

n

n∑
i=1

∫ 1

0
ℓ(θ, 0, yi)dµ(θ) ≤

1

n

n∑
i=1

∫ 1

0
max (θ, 1− θ)|yi|dµ(θ) ≤ B.
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Thus ||ĥS || ≤
√

B
λ . Moreover, ∀x, θ ∈ X× (0, 1),∣∣∣ĥS(x)(θ)∣∣∣ = ∣∣∣〈ĥS(x), kΘ(θ, ·)〉HkΘ

∣∣∣
≤ κΘ

∥∥∥ĥS(x)∥∥∥
HkΘ

by Cauchy-Schwartz inequality in HkΘ

≤ κXκΘ

∥∥∥ĥS∥∥∥
HK

by the bounded operator norm of K♯
x

which concludes the proof.

Lemma 5.15. Assumption 5.5 is satisfied for ξ = 2

(
B + κXκΘ

√
B
λ

)
.

Proof Let S = ((x1, y1), . . . , (xn, yn)) be a training set and ĥS be the output of our
algorithm. For all (x, y) ∈ X× [−B,B], it holds that

L(y, ĥS , x) =

∫ 1

0
max (θ(y − ĥS(x)(θ)), (θ − 1)(y − ĥS(x)(θ)))dµ(θ)

≤ 2

∫ 1

0

∣∣∣y − ĥS(x)(θ)
∣∣∣ dµ(θ) ≤ 2

∫ 1

0
|y|+

∣∣∣ĥS(x)(θ)∣∣∣ dµ(θ)
≤ 2

B + κXκΘ

√
B

λ

 .

Proposition 5.16. The QR learning algorithm defined in Equation (5.13) is such that
for all n ≥ 1 and δ ∈ (0, 1), with probability at least 1−δ on the drawing of the samples,
it holds that

R
(
ĥS

)
≤ RS

(
ĥS

)
+

4κ2Xκ
2
Θ

λn
+

8κ2Xκ2Θ
λ

+ 2

B + κXκΘ

√
B

λ


√ log (1/δ)

n
. (5.15)

Proof This is a direct consequence of Proposition 5.12, Proposition 5.6, Lemma 5.13
and Lemma 5.15.

Cost-sensitive classification In this setting, the loss ℓ is

ℓ(θ, h(x)(θ), y) =

∣∣∣∣∣θ + 1

2
− 1{−1}(y)

∣∣∣∣∣ ∣∣∣1− yh(x)(θ)
∣∣∣
+

and the associated L is given by Equation (5.14). One can verify (the way it was done
for quantile regression) that the properties above still hold, but with constants

σ = κΘ, β =
κ2Xκ

2
Θ

2λn
, ξ = 1 +

κXκΘ√
λ
.

This allows to formulate the following bound.
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Proposition 5.17. The CSC learning algorithm defined in Equation (5.13) is such
that for all n ≥ 1 and δ ∈ (0, 1), with probability at least 1 − δ on the drawing of the
samples, it holds that

R
(
ĥS

)
≤ RS

(
ĥS

)
+
κ2Xκ

2
Θ

λn
+

(
2κ2Xκ

2
Θ

λ
+ 1 +

κXκΘ√
λ

)√
log (1/δ)

n
.

5.3.2 Generalization Bound for Approximated Scheme

In this section, we derive generalization bounds based on Proposition 5.12 for the
approximated ITL scheme

ĥS = argmin
h∈HK

1

n

n∑
i=1

L(h, xi, yi) + λ
∥∥h∥∥2

HK

where

L(h, x, y) =
1

m

m∑
j=1

ℓ(θj , h(x)(θj), y). (5.16)

and (θj)
m
j=1 is a quasi Monte-Carlo sequence used to approximate the loss function as

proposed in Section 3.3.1. We remind the reader of the statistical quantities:

R
(
ĥS

)
= EX,Y

[
Iℓ(ĥS(X),Y)

]
, RS

(
ĥS

)
=

1

n

n∑
i=1

Iℓ(ĥS(xi), yi)

R̃
(
ĥS

)
= EX,Y

 1

m

m∑
j=1

ℓ(θj , ĥS(X)(θj),Y)

 , R̃S

(
ĥS

)
=

1

nm

n∑
i=1

m∑
j=1

ℓ(θj , ĥS(xi)(θj), yi).

The uniform stability framework then informs about the generalization gap between R̃

and R̃S , and additional work is needed to control the quantity R− R̃S . In particular we
make use of convergence properties of QMC integration which benefit from O

(
logm
m

)
convergence rates for bounded variation functions.

Definition 5.18 (Hardy-Krause variation). Let Π be the set of subdivisions of the
interval Θ = [0, 1]. A subdivision will be denoted by σ = (θ1 = 0, θ2, . . . , θp = 1) and
f : Θ → R be a function. Using these notations, the Hardy-Krause variation of the
function f is defined as V (f) = sup

σ∈Π

∑p−1
i=1

∣∣∣f(θi+1)− f(θi)
∣∣∣.

Remark 5.19. If f is continuous, V (f) is also the limit as the mesh of σ goes to zero
of the above quantity.

In the following, let f : θ 7→ EX,Y

[
ℓ(θ, ĥS(X)(θ),Y)

]
. This function is of primary im-

portance for our analysis, since in the quasi Monte-Carlo setting, the convergence
properties of the integration scheme only hold if the function to integrate has finite
Hardy-Krause variation.
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Quantile regression The following lemma quantifies the Hardy-Krause variation of
the function f defined above in the QR setting.

Lemma 5.20. Assume the boundeness of both scalar-valued kernels kX and kΘ. Assume
moreover that kΘ is C1 and that its partial derivatives are uniformly bounded by some
constant C. Finally, assume that Y is almost surely bounded by some constant B. Then

V (f) ≤ B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
. (5.17)

Proof It holds that

V (f) = sup
σ∈Π

p−1∑
i=1

∣∣∣f(θi+1)− f(θi)
∣∣∣

= sup
σ∈Π

p−1∑
i=1

∣∣∣∣EX,Y

[
ℓ(θi+1, ĥS(X)(θi+1),Y)

]
− EX,Y

[
ℓ(θi, ĥS(X)(θi),Y)

]∣∣∣∣
= sup

σ∈Π

p−1∑
i=1

∣∣∣∣EX,Y

[
ℓ(θi+1, ĥS(X)(θi+1),Y)− ℓ(θi, ĥS(X)(θi),Y)

]∣∣∣∣
≤ sup

σ∈Π

p−1∑
i=1

EX,Y

[∣∣∣ℓ(θi+1, ĥS(X)(θi+1),Y)− ℓ(θi, ĥS(X)(θi),Y)
∣∣∣]

≤ sup
σ∈Π

EX,Y

p−1∑
i=1

∣∣∣ℓ(θi+1, ĥS(X)(θi+1),Y)− ℓ(θi, ĥS(X)(θi),Y)
∣∣∣
 .

The supremum of the expectation is smaller than the expectation of each supremum,
hence

V (f) ≤
∫
V (fx,y)dPX,Y , (5.18)

where fx,y : θ 7→ ℓ(θ, y, ĥS(x)(θ)) is the local counterpart of the function f at point
(x, y). To bound this quantity, let us first bound locally V (fx,y). To that extent, we
fix some (x, y) in the following. Since fx,y is continuous (because kΘ is C1), then using
Choquet (1969, Theorem 24.6), it holds that

V (fx,y) = lim
|σ|→0

p−1∑
i=1

∣∣∣fx,y(θi+1)− fx,y(θi)
∣∣∣ .

Moreover since k ∈ C1 and ∂kθ = (∂1k)(·, θ) has a finite number of zeros for all θ ∈ Θ,
one can assume that in the subdivision considered afterhand all the zeros (in θ) of the
residuals y − ĥS(x)(θ) are present, so y − ĥS(x)(θi+1) and y − ĥS(x)(θi) are always of
the same sign. Indeed, if not, create a new, finer subdivision with this property and
work with this one. Let us begin the proper calculation: let σ = (θ1, θ2, . . . , θp) be a
subdivision of Θ, it holds that ∀i ∈

{
1, . . . , p− 1

}
:∣∣∣fx,y(θi+1)− fx,y(θi)

∣∣∣ = ∣∣∣max (θi+1(y − ĥS(x)(θi+1)), (1− θi+1)(y − ĥS(x)(θi+1)))

−max (θi(y − ĥS(x)(θi)), (1− θi+1)(y − ĥS(x)(θi)))
∣∣∣.

We now study the two possible outcomes for the residuals:
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• If y − h(x)(θi+1) ≥ 0 and y − h(x)(θi) ≥ 0 then∣∣∣fx,y(θi+1)− fx,y(θi)
∣∣∣ = ∣∣∣θi+1(y − ĥS(x)(θi+1))− θi(y − ĥS(x)(θi))

∣∣∣
=
∣∣∣(θi+1 − θi)y + (θi − θi+1)ĥS(x)(θi+1)

+ θi(ĥS(x)(θi)− ĥS(x)(θi+1))
∣∣∣

≤
∣∣∣(θi+1 − θi)y

∣∣∣+ ∣∣∣(θi − θi+1)ĥS(x)(θi+1)
∣∣∣

+
∣∣∣θi(ĥS(x)(θi)− ĥS(x)(θi+1))

∣∣∣ .
From Lemma 5.14, it holds that ĥS(x)(θi+1) ≤ κXκΘ

√
B
λ . Moreover,

∣∣∣ĥS(x)(θi)− ĥS(x)(θi+1)
∣∣∣ = ∣∣∣∣∣〈ĥS(x), kΘ(θi, ·)− kΘ(θi+1, ·)

〉
HkΘ

∣∣∣∣∣
≤
∥∥∥ĥS(x)∥∥∥

HkΘ

∥∥∥kΘ(θi, ·)− kΘ(θi+1, ·)
∥∥∥
HkΘ

≤ κX

√
B

λ

√∣∣∣kΘ(θi, θi) + kΘ(θi+1, θi+1)− 2kΘ(θi+1, θi)
∣∣∣

≤ κX

√
B

λ

(√∣∣∣kΘ(θi+1, θi+1)− kΘ(θi+1, θi)
∣∣∣

+

√∣∣∣kΘ(θi, θi)− kΘ(θi+1, θi)
∣∣∣).

Since kΘ is C1, with partial derivatives uniformly bounded by C, it holds that∣∣∣kΘ(θi+1, θi+1)− kΘ(θi+1, θi)
∣∣∣ ≤ C(θi+1 − θi)

and ∣∣∣kΘ(θi, θi)− kΘ(θi+1, θi)
∣∣∣ ≤ C(θi+1 − θi)

so ∣∣∣ĥS(x)(θi)− ĥS(x)(θi+1)
∣∣∣ ≤ κX

√
2BC

λ

√
θi+1 − θi

and overall

∣∣∣fx,y(θi+1)− fx,y(θi)
∣∣∣ ≤

B + κXκΘ

√
B

λ

 (θi+1 − θi) + κX

√
2BC

λ

√
θi+1 − θi.

• If y − h(x)(θi+1) ≤ 0 and y − h(x)(θi) ≤ 0, then∣∣∣fx,y(θi+1)− fx,y(θi)
∣∣∣ = ∣∣∣(1− θi+1)(y − ĥS(x)(θi+1))− (1− θi)(y − ĥS(x)(θi))

∣∣∣
≤
∣∣∣ĥS(x)(θi)− ĥS(x)(θi+1)

∣∣∣+ ∣∣∣(θi+1 − θi)y
∣∣∣

+
∣∣∣(θi − θi+1)ĥS(x)(θi+1)

∣∣∣+ ∣∣∣θi(ĥS(x)(θi)− ĥS(x)(θi+1))
∣∣∣
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so with similar arguments one gets

∣∣∣fx,y(θi+1)− fx,y(θi)
∣∣∣ ≤

B + κXκΘ

√
B

λ

 (θi+1 − θi) + 2κX

√
2BC

λ

√
θi+1 − θi.

(5.19)

Therefore, regardless of the sign of the residuals y − h(x)(θi+1) and y − h(x)(θi), one
gets Equation (5.19). Since the square root function has Hardy-Kraus variation of 1
on the interval Θ = [0, 1], it holds that

sup
σ∈Π

p−1∑
i=1

|fx,y(θi+1)− fx,y(θi)| ≤ B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
.

Combining this with Equation (5.18) finally gives

V (f) ≤ B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ
.

We are now ready to compare the true risk R of the ITL estimator with its sampled
version R̃ based on the sampled integral loss Ĩℓ.

Lemma 5.21. Let R be the risk defined in Equation (5.6) for the quantile regression
problem. Assume that (θ)mj=1 have been generated via the Sobol sequence and that kΘ is
C1 with its partial derivatives being uniformly bounded by some constant C. Then∣∣∣∣R(ĥS)− R̃

(
ĥS

)∣∣∣∣ ≤
B + κXκΘ

√
B

λ
+ 2κX

√
2BC

λ

 log(m)

m
. (5.20)

Proof Let f : θ 7→ EX,Y

[
ℓ(θ, ĥS(X)(θ),Y)

]
. It holds that

|R(ĥS)− R̃(ĥS)| ≤ V (f)
log(m)

m

according to the Koksma-Hlawka inequality (Morokoff and Caflisch, 1995), where V (f)
is the Hardy-Krause variation of f . Lemma 5.20 allows then to conclude.

When gathered together, Lemma 5.21 and Proposition 5.16 provide a bound on the
true risk of the estimator w.r.t. its sampled empirical risk.

Proposition 5.22. Let ĥS be the quantile estimator resulting from Equation (5.13)
with sampled loss from Equation (5.16). Assume that Y is almost surely bounded, the
kernels kX, kΘ are bounded and kΘ is C1 with bounded derivatives. Then it holds that

R
(
ĥS

)
≤ R̃S

(
ĥS

)
+OPX,Y

(
1

λ
√
n

)
+O

(
logm√
λm

)
. (5.21)

Proof This is a direct application of Lemma 5.21 and Proposition 5.16.
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Cost-sensitive classification The bound for the CSC case follows the same reas-
oning, and the Hardy-Kraus variation of the function f : θ 7→ EX,Y

[
ℓ(θ, ĥS(X)(θ),Y)

]
is bounded by the following lemma.

Lemma 5.23. Assume the boundeness of both scalar-valued kernels kX and kΘ. Assume
moreover that kΘ is C1 and that its partial derivatives are uniformly bounded by some
constant C. Then

V (f) ≤ 1 + κXκΘ

√
1

λ
+ 2κX

√
2C

λ
. (5.22)

Proof The proof is similar to the one of Lemma 5.20, replacing the residual y− ĥS(x)
by 1 − yĥS(x) and performing the case distinction whether 1 − yĥS(x) is positive of
negative.

5.4 Quantile Regression
This section is dedicated to quantile regression when using ITL to learn the whole
quantile function. As a reminder, given an X-valued random variable X and real-valued
output random variable Y we define its conditional quantile function by

q(x)(θ) = inf
u∈R

{
t : P[Y ≤ u|X = x] = θ

}
, (x, θ) ∈ X× (0, 1).

While the conditional quantile function is not defined for θ = 0 and θ = 1, it can be
extended to these values by continuity whenever Y is a bounded random variable.

Remark 5.24. By definition, for all x ∈ X, the conditional quantile function q(x) is a
nondecreasing function. However, estimates based on the ITL method do not necessarily
satisfy this property, and it can be challenging to impose such shape constraint for the
estimator. This will be discussed in Section 5.4.1.

It is well-known (Koenker and Bassett Jr, 1978) that for any quantile level θ ∈ (0, 1)
and point x ∈ X, the quantile enjoys a variational formula

q(x)(θ) = argmin
u∈R

EY|X=x

[
ℓ(θ, u,Y)

]
,

where the pinball loss is defined by

ℓ(θ, u, v) : (u, v) ∈ R2 7→ max (θ(v − u), (θ − 1)(v − u)) ∈ R, (5.23)

and it is illustrated in Figure 5.1. The following proposition validates the introduction
of the integral pinball loss Iℓ to tackle the estimation of the whole quantile function in
one go.

Proposition 5.25. Let X,Y be two r.v. respectively taking values in X and R, with Y
bounded almost surely. Let q : X → F([0, 1],R) be the associated conditional quantile
function and µ be a positive probability measure on [0, 1] such that µ({0}) = µ({1}) = 0.
Then for ∀h ∈ F(X,F([0, 1],R))

R(h)− R(q) ≥ 0,

where R is the risk defined in Equation (5.6).



98 CHAPTER 5. INFINITE TASK LEARNING

θ − 1

θ

v − u

ℓ(θ, u, v)

Figure 5.1 – Pinball loss for θ = 0.8.

Proof The proof is based on the one given (Li et al., 2007) for a single quantile. Let
f ∈ F(X,F([0, 1],R)), θ ∈ (0, 1) and (x, y) ∈ X× R. Let also

s =

1 if y ≤ f(x)(θ)

0 otherwise
, t =

1 if y ≤ q(x)(θ)

0 otherwise
.

It holds that

ℓ(θ, h(x)(θ), y)− ℓ(θ, q(x)(θ), y) =

= θ(1− s)(y − h(x)(θ)) + (θ − 1)s(y − h(x)(θ))

−θ(1− t)(y − q(x)(θ))− (θ − 1)t(y − q(x)(θ))

= θ(1− t)(q(x)(θ)− h(x)(θ)) + θ((1− t)− (1− s))h(x)(θ)

+(θ − 1)t(q(x)(θ − h(x)(θ))) + (θ − 1)(t− s)h(x)(θ) + (t− s)y

= (θ − t)(q(x)(θ)− h(x)(θ)) + (t− s)(y − h(x)(θ)).

Then, notice that

E
[
(θ − t)(q(X)(θ)− h(X)(θ))

]
= E

[
E
[
(θ − t)(q(X)(θ)− h(X)(θ))

]
|X
]

= E
[
E
[
(θ − t)|X

]
(q(X)(θ)− h(X)(θ))

]
by the tower rule for expectations, and since q is the true quantile function,

E
[
t|X
]
= E

[
1{Y≤q(X)(θ)}|X

]
= P

[
Y ≤ q(X)(θ)|X

]
= θ,

so

E
[
(θ − t)(q(X)(θ)− h(X)(θ))

]
= 0.

Moreover, (t− s) is negative when q(x)(θ) ≤ y ≤ h(x)(θ), positive when h(x)(θ) ≤ y ≤
q(x)(θ) and 0 otherwise, thus the quantity (t− s)(y− h(x)(θ)) is always positive. As a
consequence,

R(h)− R(q) =

∫ 1

0
E
[
ℓ(θ, h(X)(θ),Y)− ℓ(θ, q(X)(θ),Y)

]
dµ(θ) ≥ 0

which concludes the proof.

Proposition 5.25 allows us to derive conditions under which the minimization of the risk
above yields the true quantile function. Under the assumption that (i) q is continuous
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(as seen as a function of two variables), (ii) supp(µ) = [0, 1], then the minimization of
the integrated pinball loss performed in the space of continuous functions yields the
true quantile function on the support of PX,Y.

The ITL framework proposes to learn this quantile function in a vv-RKHS HK by
solving a regularized empirical risk problem:

ĥ = argmin
h∈HK

1

n

n∑
i=1

Iℓ(h(xi), yi) +
λ

2

∥∥h∥∥2
HK

. (5.24)

This problem can then be solved using the optimization algorithm developed in Chapter 3,
in particular by sampling the integral loss and benefiting from a double representer
theorem (see Section 3.3.1) or by using dual algorithms (see Section 3.4.3). In the
following, we further explore this problem: in Section 5.4.1 we study ways to enforce
shape constraints for the estimate by means of a soft penalty added to the objective
function in Problem 5.24. Later in Section 5.4.2 we propose to smooth the pinball
loss, to the benefit of enjoying fast solvers exploiting the differentiability of the loss,
then study in Section 5.4.3 the impact of the number of sampled locations m used to
approximate the integral loss. Finally in Section 5.4.4 we apply the ITL framework to
a quantile estimation problem where the input data are images, and propose to use a
neural network to learn the input kernel.

5.4.1 Enforcing Shape Constraints

By definition, the quantile function is nondecreasing with respect to the parameter θ.
It is desirable that an estimator ĥ output by the ITL scheme possesses this property,
so that it can be interpreted as a quantile function. Visually, this means that given
two quantile levels (θ1, θ2) ∈ Θ2 the curves associated to ĥ(·)(θ1) and ĥ(·)(θ2) must
not cross. This phenomenon, denoted as crossing quantiles, is a challenge to avoid in
practice. While previous approaches in multi-output learning try to control the finite
differences ĥ(x)(θj+1) − ĥ(x)(θj) (Sangnier et al., 2016), having a functional model
allows to consider the partial derivative of the estimator with respect to θ, which
should be nonnegative to respect the nondecreasibility condition. The smoothness of
the model can be ensured by the smoothness of the output kernel: following Ziemer
(2012), whenever kΘ ∈ C2(Θ2,R) then any f ∈ HkΘ ∈ C1(Θ,R). Denoting by ∂Θh the
partial derivative operator in HK with respect to θ, one would ideally want to solve

ĥ = argmin
h∈HK

1

n

n∑
i=1

Iℓ(h(xi), yi) +
λ

2

∥∥h∥∥2
HK

s.t. (∂Θh)(x)(θ) ≥ 0 ∀(x, θ) ∈ X×Θ.

(5.25)

Remark 5.26. There is a slight notation overloading with the subdifferential operator
∂ introduced in Section 2.1. In this chapter we are dealing with differentiable functions
and identify ∂f(θ) = {f ′(θ)} with f ′(θ)’?. For a kernel kΘ(θ1, θ2) of two variables,
assumed to be C2, we denote ∂1kΘ the partial derivative of k with respect to θ1 and
∂2kΘ the partial derivative of k with respect to θ2. From Zhou (2008), for all θ ∈ Θ,
(∂2kΘ)(·, θ) ∈ HkΘ and the reproducing property in HkΘ reads as

(∂f)(θ) =
〈
f, (∂2kΘ)(·, θ)

〉
HkΘ

, (f, θ) ∈ HkΘ ×Θ. (5.26)
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This translates in the vv-RKHS HK to

(∂Θh)(x)(θ) =

〈
h,Kx

(
(∂2kΘ)(·, θ)

)〉
HK

, (h, x, θ) ∈ HK × X×Θ. (5.27)

This type of constraint belongs to the family of hard constraints and in our case the
functional constraint prevents a tractable optimization scheme. We can point to Aubin-
Frankowski and Szabó 2020 for a recent work on enforcing hard shape constraints in
kernel based learning. To mitigate this bottleneck, we propose to penalize the objective
function in Problem 5.24 with a soft constraint based on the derivative of the model:

Ωnc(h) := λnc

∫
X

∫
Θ

∣∣∣−(∂Θh)(x)(θ)
∣∣∣
+
dPX(x)dµ(θ).

Given that such a penalty is not computable analytically, we approximate it and define

Ω̃nc(h) := λnc
1

nncmnc

nnc∑
i=1

mnc∑
j=1

∣∣∣−(∂Θh)(x̃i)(θ̃j)
∣∣∣
+
.

where (x̃i)
nnc
i=1 and (θ̃j)

mnc
j=1 form a grid at which the penalty is computed. They can be

chosen different from the real data (xi)
n
i=1 and sampled locations (θj)

m
j=1 used in the

double representer theorem. We then arrive at the following optimization problem

ĥ = argmin
h∈HK

1

n

n∑
i=1

Iℓ(h(xi), yi) +
λ

2

∥∥h∥∥2
HK

+ Ω̃nc(h). (5.28)

Is is to be noticed that the resulting estimator does not necessarily prevents crossing
quantile, hence the term soft constraints. The double representer expression from The-
orem 3.9 can then be adapted to encompass this type of penalty, as emphasized in the
theorem below.

Theorem 5.27. Problem 5.28 admits a unique solution ĥ ∈ HK , and there exist
(α̂ij)

n,m
i,j=1 ∈ Rnm and (β̂ij)

nnc,mnc

i,j=1 ∈ Rnncmnc such that for all (x, θ) ∈ X×Θ,

ĥ(x)(θ) =

n,m∑
i,j=1

α̂ijkX(x, xi)kΘ(θ, θj) +

nnc,mnc∑
i,j=1

β̂ijkX(x, x̃i)∂2kΘ(θ, θ̃j). (5.29)

Proof The proof is similar to the one of Theorem 3.9. Define

E1 =

{(
KxikΘ(·, θj)

)n,m
i,j=1

: (i, j) ∈ [n]× [m]

}
,

E2 =


(
Kx̃i

(
∂2kΘ(·, θ̃j)

))nnc,mnc

i,j=1

: (i, j) ∈ [nnc]× [mnc]


and

E = Span {E1 ∪ E2} ⊂ HK .

Let J(h) = 1
n

∑n
i=1 Ĩℓ(h(xi), yi) +

λ
2

∥∥h∥∥2
HK

+ Ω̃(h). J is coercive and bounded below,
so that there exists a minimizer ĥ ∈ H which is unique by strong convexity of J. Since
E is a finite-dimensional subspace of HK , it is closed in HK , and E ⊕ E⊥ = HK .
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By decomposing ĥ = ĥE + ĥE⊥ and applying the reproducing property, we get that
J(ĥE + ĥE⊥) = J(ĥE)+

λ
2

∥∥∥ĥE⊥

∥∥∥2
HK

, which in turns implies that ĥE⊥ = 0 and validates
the decomposition in Equation (5.29).

The benefit of Theorem 5.27 is to provide a workable finite-dimensional parameteriz-
ation of ĥ. The size of the representation is nm + nncmnc, in particular if we use the
data points (xi)

n
i=1 and sampled locations (θj)

m
j=1 in the computation of Ω̃, then the

size of the representation is 2nm. The resulting finite dimensional problem can then
be tackled by first order optimization methods such as subgradient descent.

The efficiency of the non-crossing penalty is illustrated in Figure 5.2 on a synthetic
dataset from Sangnier et al. (2016). This dataset consists in a sine curve at 1Hz
modulated by a sine envelope at 1/3Hz and mean 1, distorted with a Gaussian noise of
mean 0 and a linearly decreasing standard deviation from 1.2 at x = 0 to 0.2 at x = 1.5.
Here n = 40 data samples and m = 20 sampling locations have been generated, and we
used the same anchors for the non-crossing penalty. Many crossings are visible on the
right plot, while they are almost not noticeable on the left plot, using the non-crossing
penalty.

Concerning our real-world examples, to study the efficiency of the proposed scheme in
quantile regression the following experimental protocol was applied. We worked with 20
UCI datasets, each dataset was splitted randomly into a training set (70%) and a test
set (30%). We optimized the hyperparameters by minimizing a 5-folds cross validation
with a Bayesian optimizer2 Once the hyperparameters were obtained, a new regressor
was learned on the whole training set using the optimized hyperparameters. We report
the value of the pinball loss and the crossing loss on the test set for three methods: our
technique is called infinite quantile regression (IQR), we refer to Sangnier et al. (2016)’s
approach as joint quantile regression (JQR), and independent learning (abbreviated as
IND-QR) represents a further baseline. We repeated 20 simulations (different random
training-test splits); the results are also compared using a Mann-Whitney-Wilcoxon
test. A summary is provided in Table 5.1.

Notice that while JQR is tailored to predict finite many quantiles, our IQR method
estimates the whole quantile function hence solves a more challenging task. Despite the
more difficult problem solved, as Table 5.1 suggest the performance in terms of pinball
loss of IQR is comparable to that of the state-of-the-art JQR on all the twenty studied
benchmarks, except for the ‘crabs’ and ‘cpus’ datasets (pval < 0.25%). In addition,
when considering the non-crossing penaltycone can observe that IQR outperforms the
IND-QR baseline on eleven datasets (pval < 0.25%) and JQR on two datasets. This
illustrates the efficiency of the constraint based on the continuum scheme.

5.4.2 Smoothing the Loss Function

There are several ways to solve the non-smooth optimization problems associated to the
QR task. One could proceed for example by duality—as presented in Section 3.4.3—,
or apply sub-gradient descent techniques (which often converge quite slowly). In our
experiments we used the L-BFGS-B (Zhu et al., 1997) optimization scheme which is
widely popular in machine learning, with non-smooth extensions (Skajaa, 2010; Keskar
and Wächter, 2017). The technique requires only evaluation of objective function along

2We used a Gaussian process model and minimized the expected improvement. The optimizer was
initialized using 27 samples from a Sobol sequence and ran for 50 iterations.
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Figure 5.2 – Impact of crossing penalty on toy data. Left plot: strong non-crossing
penalty (λnc = 10). Right plot: no non-crossing penalty (λnc = 0). The plots show
100 quantiles of the continuum learned, linearly spaced between 0 (blue) and 1 (red).
Notice that the non-crossing penalty does not provide crossings to occur in the regions
where there is no points to enforce the penalty (e.g. x ∈ [0.13, 0.35]). This phenomenon
is alleviated by the regularity of the model.

Table 5.1 – Quantile regression on 20 UCI datasets. Reported: 100×value of the
pinball loss, 100×crossing loss (smaller is better). pval: outcome of the Mann-Whitney-
Wilcoxon test of JQR vs IQR and Independent vs IQR. Boldface: significant values
w.r.t. IQR.

dataset JQR IND-QR IQR

(pinball pval) (cross pval) (pinball pval) (cross pval) pinball cross

CobarOre 159 ± 24 9 · 10−01 0.1 ± 0.4 6 · 10−01 150 ± 21 2 · 10−01 0.3 ± 0.8 7 · 10−01 165 ± 36 2.0 ± 6.0
engel 175 ± 555 6 · 10−01 0.0 ± 0.2 1 · 10+00 63 ± 53 8 · 10−01 4.0 ± 12.8 8 · 10−01 47 ± 6 0.0 ± 0.1

BostonHousing 49 ± 4 8 · 10−01 0.7 ± 0.7 2 · 10−01 49 ± 4 8 · 10−01 1.3 ± 1.2 1 · 10−05 49 ± 4 0.3 ± 0.5
caution 88 ± 17 6 · 10−01 0.1 ± 0.2 6 · 10−01 89 ± 19 4 · 10−01 0.3 ± 0.4 2 · 10−04 85 ± 16 0.0 ± 0.1

ftcollinssnow 154 ± 16 8 · 10−01 0.0 ± 0.0 6 · 10−01 155 ± 13 9 · 10−01 0.2 ± 0.9 8 · 10−01 156 ± 17 0.1 ± 0.6
highway 103 ± 19 4 · 10−01 0.8 ± 1.4 2 · 10−02 99 ± 20 9 · 10−01 6.2 ± 4.1 1 · 10−07 105 ± 36 0.1 ± 0.4
heights 127 ± 3 1 · 10+00 0.0 ± 0.0 1 · 10+00 127 ± 3 9 · 10−01 0.0 ± 0.0 1 · 10+00 127 ± 3 0.0 ± 0.0
sniffer 43 ± 6 8 · 10−01 0.1 ± 0.3 2 · 10−01 44 ± 5 7 · 10−01 1.4 ± 1.2 6 · 10−07 44 ± 7 0.1 ± 0.1

snowgeese 55 ± 20 7 · 10−01 0.3 ± 0.8 3 · 10−01 53 ± 18 6 · 10−01 0.4 ± 1.0 5 · 10−02 57 ± 20 0.2 ± 0.6
ufc 81 ± 5 6 · 10−01 0.0 ± 0.0 4 · 10−04 82 ± 5 7 · 10−01 1.0 ± 1.4 2 · 10−04 82 ± 4 0.1 ± 0.3

BigMac2003 80 ± 21 7 · 10−01 1.4 ± 2.1 4 · 10−04 74 ± 24 9 · 10−02 0.9 ± 1.1 7 · 10−05 84 ± 24 0.2 ± 0.4
UN3 98 ± 9 8 · 10−01 0.0 ± 0.0 1 · 10−01 99 ± 9 1 · 10+00 1.2 ± 1.0 1 · 10−05 99 ± 10 0.1 ± 0.4

birthwt 141 ± 13 1 · 10+00 0.0 ± 0.0 6 · 10−01 140 ± 12 9 · 10−01 0.1 ± 0.2 7 · 10−02 141 ± 12 0.0 ± 0.0
crabs 11 ± 1 4 · 10−05 0.0 ± 0.0 8 · 10−01 11 ± 1 2 · 10−04 0.0 ± 0.0 2 · 10−05 13 ± 3 0.0 ± 0.0

GAGurine 61 ± 7 4 · 10−01 0.0 ± 0.1 3 · 10−03 62 ± 7 5 · 10−01 0.1 ± 0.2 4 · 10−04 62 ± 7 0.0 ± 0.0
geyser 105 ± 7 9 · 10−01 0.1 ± 0.3 9 · 10−01 105 ± 6 9 · 10−01 0.2 ± 0.3 6 · 10−01 104 ± 6 0.1 ± 0.2
gilgais 51 ± 6 5 · 10−01 0.1 ± 0.1 1 · 10−01 49 ± 6 6 · 10−01 1.1 ± 0.7 2 · 10−05 49 ± 7 0.3 ± 0.3
topo 69 ± 18 1 · 10+00 0.1 ± 0.5 1 · 10+00 71 ± 20 1 · 10+00 1.7 ± 1.4 3 · 10−07 70 ± 17 0.0 ± 0.0

mcycle 66 ± 9 9 · 10−01 0.2 ± 0.3 7 · 10−03 66 ± 8 9 · 10−01 0.3 ± 0.3 7 · 10−06 65 ± 9 0.0 ± 0.1
cpus 7 ± 4 2 · 10−04 0.7 ± 1.0 5 · 10−04 7 ± 5 3 · 10−04 1.2 ± 0.8 6 · 10−08 16 ± 10 0.0 ± 0.0
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with its gradient, which can be computed automatically using reverse mode automatic
differentiation (as in Abadi et al. (2016)). To benefit from the available fast smooth
implementations (Jones et al., 2001; Fei et al., 2014), we smoothed the non-differentiable
part of the loss function. To do that, remark that the pinball loss writes as

ℓ(θ, u, v) =
∣∣∣θ − 1R−(v − u)

∣∣∣ |v − u|

and replace the absolute value by a smoothed approximation given by its Moreau
enveloppe (Bauschke et al., 2011). The resulting κ-smoothed (κ > 0) absolute value is
as follows:

ψκ
1 (r) :=

(
|·|□ 1

2κ
|·|2
)
(r) =

 1
2κr

2 if |r| ≤ κ

|r| − κ
2 otherwise,

Minimizing the κ-smoothed pinball loss

ℓκ(θ, h(x), y) =
∣∣∣θ − 1R−(y − h(x))

∣∣∣ψκ
1 (y − h(x))

yields the quantiles when κ → 0, the expectiles as κ → +∞. The intermediate values
are known as M-quantiles (Breckling and Chambers, 1988). The influence of the κ
parameter is illustrated in Figure 5.3. For this experiment, 10000 samples have been
generated from the sine wave dataset described in Section 5.4.1, and the model have
been trained on 100 quantiles generated from a Gauss-Legendre quadrature. When
κ is small the quantiles are recovered (the dashed lines on the right plot match the
theoretical quantiles in plain lines). It took 225s (258 iteration, and 289 function
evaluations) to train for κ = 1 · 101, 1313s for κ = 1 · 10−1 (1438 iterations and 1571
function evaluations), 931s for κ = 1e−3 (1169 iterations and 1271 function evaluations)
and 879s for κ = 0 (1125 iterations and 1207 function evaluations). We used a GPU
Tensorflow implementation and run the experiments in float64 on a computer equipped
with a GTX 1070, and intel i7 7700 and 16GB of DRAM.
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Figure 5.3 – Impact of the smoothing of the pinball loss for different values of κ.
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5.4.3 Influence of the Number of Sampled Locations

In this section, we quickly present an additional experiment on the number of sampled
locations m used to approximate the integral loss Iℓ.

In the experiment presented in Figure 5.4, on the sine synthetic benchmark, we draw
n = 1000 training points and study the impact of increasing m on the quality of the
quantiles at θ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. We notice that when m ≥ 34 ≈

√
1000

there is little benefit to draw more m samples: the quantile curves do not change on
the ntest = 2000 test points.
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Figure 5.4 – Impact of the number of hyperparameters sampled.

5.4.4 Deep Kernel Learning for Quantile Regression on Images

In this section, we apply the IQR method in the problem of estimating the age of fishes
(Y) from images (X). This task is critical in sustainable management of fish resources
with the goal of avoiding overfishing. The age of a fish can be inferred from its otholiths,
which are calcium carbonate structures growing behind their brains. As the fish gets
older, the otholith becomes larger and more convoluted, as illustrated in Figure 5.5. The
estimation problem is rather challenging, and typically involves experts who carefully
examine the growth zones of the otholiths. This process is costly, especially when we
realize that the number of otholiths analysed yearly around the world scales in millions
(Campana and Thorrold, 2001). Automating the task is of fundamental interest, and
has been addressed recently using convolutional neural networks (CNNs) in Moen et al.
(2018), yielding satisfactory predictions and interpretable results (Ordonez et al., 2020).

Beyond the single real-valued prediction of the age of the fish, we propose to learn
the conditional quantile function of Y (age of the fish) given X (photography of its
otholith). In the ITL framework, this requires to define a kernel on the input space,
which can be difficult. As CNN are known to learn relevant features stored in their
last layer (Goodfellow et al., 2016), a first idea would be to use a pretrained CNN to
extract features for X, and then apply the ITL framework with an input kernel on the
resulting feature space, denoted V in what follows. This amounts to using a kernel

kX(x, y) = kV(ϕω(x), ϕω(y)), (5.30)
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(a) Age 3 (b) Age 7 (c) Age 10 (d) Age 13

Figure 5.5 – Fish bone images of otholiths at different ages. Dataset from the Norwegian
Marine Data Center.

where kV is a kernel on the feature space, and ϕω : X → V is the neural architecture used
for extracting features parameterized by its weights ω. In a deep kernel learning spirit,
we propose here to learn jointly the parameters of the neural architecture and that
of the estimator. To do so, we consider an input kernel of the form Equation (5.30),
where ϕω is an Inception v3 architecture (Szegedy et al., 2016), and kV is a Gaussian
random Fourier feature (RFF) kernel. We also choose kΘ to be a Gaussian RFF kernel,
which allows to exploit Algorithm 3.2 for the optimization. To train jointly on both
parameters of the kernel and the estimator, at each epoch we make a gradient step on
the kernel parameters, starting from pre-trained weights used in Ordonez et al. (2020)
for predicting fish ages. Many tricks are needed to make the training smooth, such as
rescaling images, feature augmentation, and so on; we refer to Ordonez et al. (2020) for
details. While visualization is a bit hard for this problem, we illustrate in Figure 5.6 a
few quantile functions associated to random samples from the dataset. We can see that
the quantile functions are nondecreasing with respect to θ, which is at in agreement
with theoretical properties of quantiles.

5.5 Cost-Sensitive Classification

In this section we present some numerical illustration to the CSC application of the ITL
scheme. The optimization is performed using a L-BFGS solver on the finite dimensional
problem provided by the double representer expression from Theorem 3.9, associated to
a smoothing of the imbalanced Hinge loss obtained by its Moreau enveloppe, similarly
to the quantile regression case developed in Section 5.4.2.

We used the Iris UCI dataset with 4 attributes and 150 samples, the two synthetic
scikit-learn (Pedregosa et al., 2011) datasets Two-Moons (noise=0.4) and Circles
(noise=0.1) with both 2 attributes and 1000 samples. As detailed in section 5.2.3, CSC
on a continuum Θ = [−1, 1] that we call infinite cost-sensitive classification (ICSC)
can be tackled by our proposed technique. In this case, the hyperparameter θ controls
the tradeoff between the importance of the correct classification with labels −1 and
+1. When θ = −1, class −1 is emphasized; the probability of correctly classified
instances with this label (called specificity) is desired to be 1. Similarly, for θ = +1,
the probability of correct classification of samples with label +1 (called sensitivity) is
ideally 1.
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Figure 5.6 – Estimated quantiles of a few otholiths samples chosen randomly in the
dataset. The colorbar on the right indicates the ground truth age of the fish, and on
the left is plotted its estimated quantile as a function of θ. We can see that the quantiles
are nondecreasing thanks to the non crossing penalty.

We chose kX to be a Gaussian kernel with bandwidth σX = (2γX)
(−1/2) the median

of the Euclidean pairwise distances of the input points (Jaakkola et al., 1999). The
output kernel kΘ is also a Gaussian kernel with bandwidth γΘ = 5. We used m = 20
for all datasets in the double representer theorem associated to the sobol sequence.
As a baseline we trained independently 3 CSC classifiers with θ ∈ {−0.9, 0, 0.9}. We
repeated 50 times a random 50 − 50% train-test split of the dataset and report the
average test error and standard deviation (in terms of sensitivity and specificity).

Our results are illustrated in Table 5.2. For θ = −0.9, both independent and joint
learners give the desired 100% specificity; the joint CSC scheme however has signific-
antly higher sensitivity value (15% vs 0%) on the dataset Circles. Similar conclusion
holds for the θ = +0.9 extreme: the ideal sensitivity is reached by both techniques, but
the joint learning scheme performs better in terms of specificity (0% vs 12%) on the
dataset Circles.

The results from Table 5.2 are highlighted in Figure 5.7 and Figure 5.8 where we present
a vizualization of the independent vs continuum learning problems.
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Table 5.2 – ICSC vs Independent (IND)-CSC. Higher is better.

Dataset Method θ = −0.9 θ = 0 θ = +0.9

sensitivity specificity sensitivity specificity sensitivity specificity

Two-Moons IND 0.3± 0.05 0.99± 0.01 0.83± 0.03 0.86± 0.03 0.99± 0 0.32± 0.06
ICSC 0.32± 0.05 0.99± 0.01 0.84± 0.03 0.87± 0.03 1± 0 0.36± 0.04

Circles IND 0± 0 1± 0 0.82± 0.02 0.84± 0.03 1± 0 0± 0
ICSC 0.15± 0.05 1± 0 0.82± 0.02 0.84± 0.03 1± 0 0.12± 0.05

Iris IND 0.88± 0.08 0.94± 0.06 0.94± 0.05 0.92± 0.06 0.97± 0.05 0.87± 0.06
ICSC 0.89± 0.08 0.94± 0.05 0.94± 0.06 0.92± 0.05 0.97± 0.04 0.90± 0.05

(a) Circle dataset

(b) Two-Moons dataset

Figure 5.7 – Illustration of ICSC on toy datasets used in Table 5.2.
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Figure 5.8 – Illustration of ICSC on the Iris dataset used in Table 5.2.

5.6 Density Level Set Estimation
In this section, we adapt the ITL framework to an unsupervised learning problem,
the DLSE carried out by means of OCSVM. As a reminder, given some data (xi)

n
i=1

following an unknown law PX and a hyperparameter value θ ∈ (0, 1], the classical
OCSVM in a scalar RKHS HkX can be formulated as(

ĥ, t̂
)
= argmin

h∈HkX
,t∈R

1

nθ

n∑
i=1

max (0, t− h(xi))− t+
1

2

∥∥h∥∥2
HkX

. (5.31)

Given the resulting estimator
(
ĥ, t̂
)
∈ HkX × R, the rule

d(x) := sign
(
ĥ(x)− t̂

)
is then a reasonable choice for deciding whether a new point x is an inlier (d(x) = 1)
or an outlier (d(x) = −1). In particular, it is known (Schölkopf et al., 2001b) that if
the distribution PX does not contain discrete components, and the kernel kX is analytic
and non-constant, then this approach is theoretically grounded as the decision function
d will separate the input space X in two sets (inliers and outliers) with respective mass
1− θ and θ, a property refered to as the θ-property.

Our objective is to generalize this algorithm to learning an OCSVM jointly for the
continuum θ ∈ Θ := (0, 1]. To that end, we use a function-valued model h ∈ HK

where K = kX IdHkΘ
, and model t as a function belonging to an RKHS Hkb where

kb : Θ × Θ → R is a scalar-valued kernel on Θ. We want each
(
ĥ(·)(θ), t̂(θ)

)
to be

(close to) a solution of Problem 5.31. For this reason we introduce the L2-RKHS mixed
regularizer

Ω(h) =
1

2

∫
Θ

∥∥∥h(·)(θ)∥∥∥2
HkX

dµ(θ),
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and consider the problem(
ĥ, t̂
)
= argmin

h∈HK ,t∈Hkb

1

n

n∑
i=1

Iℓ(h(xi), t) + Ω(h) +
λ

2

∥∥t∥∥2
Hkb

, (5.32)

where λ > 0 is a regularization parameter, and Iℓ is the integral loss associated to

ℓ(θ, u, v) =
1

θ
max (0, v − u)− v

and to a probability measure µ. The decision function is then able to predict the
outlierness of a new data point x for all θ ∈ (0, 1] by

d(x)(θ) = sign
(
ĥ(x)(θ)− t̂(θ)

)
.

Remark 5.28. The regularizer Ω(h) is uniformly weaker than a vv-RKHS norm based
regularizer 1

2

∥∥h∥∥2
HK

:

∀θ ∈ Θ,
∥∥∥h(·)(θ)∥∥∥2

HkX

=
〈
h(·)(θ), h(·)(θ)

〉
HkX

≤ kΘ(θ, θ)〈h, h〉HK

so that after integration

Ω(h) ≤ 1

2

(∫
Θ
k(θ, θ)dµ(θ)

)∥∥h∥∥2
HK

.

This prevents the direct use of a representer theorem, as the regularizer does not write
as a nondecreasing function of

∥∥h∥∥
HK

.

Remark 5.29. Due to the non-integrability of 1
θ at a neighborhood of 0, the integral

in Iℓ is not assured to converge to a finite value. To alleviate this bottleneck, one can
choose the measure µ appropriately and consider either a measure with support [ϵ, 1]
for some small ϵ > 0 or a measure with full support that ensures proper convergence of
Iℓ (e.g. the measure of density θ 7→ 2θ).

We now devote the following part to solving Problem 5.32, that we refer to as infinite
one-class SVM (IOCSVM). In Section 5.6.1, we propose a representer theorem for a
sampled version of Problem 5.32 that is amenable to optimization and emphasize the
benefit of this approach with numerical experiments in Section 5.6.2.

5.6.1 Representer Theorem for Mixed Regularization

One difficulty of working with Problem 5.32 is that the classical representer theorem
from Theorem 2.43 does not apply. To get a finite parametrization of the estimator, we
will solve a sampled version of the problem, and prove a double representer theorem for
ĥ. Given a sampling scheme (ηj , θj)mj=1 ∈ (R×Θ)m using for instance quasi Monte-Carlo
or quadratures (see Section 3.3.1), we introduce the notation

Ĩℓ(h(x), t) :=

m∑
j=1

ηjℓ(θj , h(xi)(θj), t(θj)), Ω̃(h) :=
1

2

m∑
j=1

ηj

∥∥∥h(·)(θj)∥∥∥2
HkX

(5.33)
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and propose to solve(
ĥ, t̂
)
= argmin

h∈HK ,t∈Hkb

1

n

n∑
i=1

Ĩℓ(h(xi), t) + Ω̃(h) +
λ

2

∥∥t∥∥2
Hkb

. (5.34)

It turns out that the estimator resulting from Problem 5.34 enjoy a representer expres-
sion. To prove it, we need the following two lemmas. They make use of the equivalence
of views between HK and HkX ⊗HkΘ (see Remark 2.41).

Lemma 5.30. Let kX and kΘ be two scalar-valued kernels on X and Θ, and K :
(θ, θ′) 7→ kΘ(θ, θ

′) IdHkX
. Then for all m ∈ N∗ and (θj)

m
j=1 ∈ Θm,(

+m
j=1 Im(Kθj )

)
⊕
(
∩m
j=1Ker(K♯

θj
)

)
= HK , (5.35)

where +m
j=1 Im(Kθj ) denotes the Minkowski sum of the sets

(
Im(Kθj )

)
j∈[m]

.

Proof The statement boils down to proving that V :=
(
+m

j=1 Im(Kθj )
)

is closed in

HK , since it is straightforward by double inclusion that V⊥ =

(
∩m
j=1Ker

(
K♯

θj

))
. Let

(ej)
l
j=1 be an orthonormal basis of Span {(kΘ(·, θj))mj=1} ⊂ HkΘ , with l 6= m potentially.

Such basis can be obtained by applying the Gram-Schmidt orthonormalization method
to (kΘ(·, θj))mj=1. Then, V = Span {ej ⊗ f, 1 ≤ j ≤ k, f ∈ HkX}. Notice also that for
∀(j1, j2) ∈ [l]× [l],∀f, g ∈ HkX ,

〈ej1 ⊗ f, ej2 ⊗ g〉HK
= 〈ej1 , ej2〉HkΘ

〈f, g〉HkX
. (5.36)

Let (hn)n∈N∗ be a sequence in V converging to some h ∈ HK . By definition, one can
find sequences (f1,n)n∈N∗ , . . . , (fl,n)n∈N∗ ∈ HkX such that for ∀n ∈ N∗, hn =

∑l
j=1 ej ⊗

fj,n. Let p, q ∈ N∗. It holds that, using the orthonormal property of (ej)
l
j=1 and

Equation (5.36),

∥∥∥hp − hq

∥∥∥2
HK

=

∥∥∥∥∥∥∥
l∑

j=1

ej(fj,p − fj,q)

∥∥∥∥∥∥∥
2

HK

=
l∑

j=1

∥∥∥fj,p − fj,q

∥∥∥2
HkX

.

Since (hn)n∈N∗ converges in HK , it is a Cauchy sequence, thus so are the sequences
(fj,n)n∈N∗ . But HkX is a complete space, so these sequences converge in HkX , and by
denoting fj = limn→∞ fj,n, one gets h =

∑l
j=1 ej ⊗ fj . Therefore h ∈ V, V is closed

and the orthogonal decomposition in Equation (5.35) holds.

Lemma 5.31. Let kX, kΘ be two scalar-valued kernels, with kΘ a strictly positive defin-
ite kernel (i.e. any Gram matrix associated to kΘ is strictly positive), and K : (θ, θ′) 7→
kΘ(θ, θ

′)IHkX
. Let also m ∈ N∗, (θj)

m
j=1 ∈ Θm, and V =

(
+m

j=1 Im(Kθj )
)

. Then

I : V → R defined as I(h) :=
∑m

j=1

∥∥∥h(θj)∥∥∥2
HkX

is γ-strongly convex where γ is the

smallest eigenvalue of the Gram matrix KΘ associated to (θj)
m
j=1 and kΘ. In particu-

lar, I is coercive.
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Proof Notice that I is the quadratic form on V associated to the linear mapping L ∈
L(HK) defined by L :=

∑m
j=1KθjK

♯
θj

, in the sense that for all h ∈ V, I(h) = 〈h,Lh〉HK
.

Indeed,

∀h ∈ V, I(h) =
m∑
j=1

〈
K♯

θj
h,K♯

θj
h

〉
HkX

=
m∑
j=1

〈
h,KθjK

♯
θj
h

〉
HK

=
〈
h,Lh

〉
HK

.

Let h ∈ V, by definition there exist (fj)
m
j=1 ∈ Hm

kX
such that h =

∑m
j=1Kθjfj . We

begin by computing
∥∥h∥∥2

HK
:

〈h, h〉HK
=

〈
m∑
i=1

Kθifi,

m∑
j=1

Kθjfj

〉
HK

=
m∑
i=1

m∑
j=1

〈
Kθifi,Kθjfj

〉
HK

=
m∑
i=1

m∑
j=1

〈
K♯

θj
Kθifi, fj

〉
HkX

=
m∑
i=1

m∑
j=1

kΘ(θi, θj)
〈
fi, fj

〉
HkX

=
〈
KΘ,Kf

〉
F
,= Tr

(
KΘKf

)
,

where we introduced the notation KΘ ∈ Mm(R) for the Gram matrix over the points
(θj)

m
j=1 with the kernel kΘ and Kf ∈ Mm(R) for the Gram matrix over the (fj)

m
j=1 with

the linear kernel. We compute I(h) similarly, starting by

Lh =
m∑
j=1

KθjK
♯
θj

 m∑
i=1

Kθifi

 =
m∑
i=1

m∑
j=1

kΘ(θi, θj)Kθjfi,

and following by

〈h,Lh〉HK
=

〈
m∑
l=1

Kθlfl,

m∑
i=1

m∑
j=1

kΘ(θi, θj)Kθjfi

〉
HK

=
m∑
l=1

m∑
i=1

m∑
j=1

kΘ(θi, θj)
〈
Kθlfl,Kθjfi

〉
HK

=
m∑
l=1

m∑
i=1

m∑
j=1

kΘ(θi, θj)

〈
K♯

θj
Kθlfl, fi

〉
HkX

=

m∑
l=1

m∑
i=1

m∑
j=1

kΘ(θi, θj)kΘ(θj , θl)
〈
fl, fi

〉
HkX

=
〈
KΘ,KfKΘ

〉
F
= Tr

(
KΘKΘKf

)
.

By the strictly positive assumption on kΘ, KΘ has a minimum eigenvalue γ > 0. Then
KΘ − γ Idm and KΘKf are positive symetric matrices and

Tr
((

KΘ − γ Idm
)
KΘKf

)
≥ 0 (5.37)

which can be rewritten as

Tr
(
KΘKΘKf

)
≥ γ Tr

(
KΘKf

)
or

I(h) ≥ γ
∥∥h∥∥2

HK
.

Finally, we recognize in the left term of Equation (5.37) a convex function of h, so
I− γ ‖·‖2HK

is convex which proves the γ-strong convexity of I on V.
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Remark 5.32. Lemma 5.31 highlights the difference between the regularizers Ω(h),
Ω̃(h) and 1

2

∥∥h∥∥2
HK

. While the latter is uniformly stronger than the two others, on
the specific subspace V, Ω̃(h) is γ-strongly convex. As m grows, the strong convexity
constant γ goes to zero, and when m = +∞, we recover Ω(h) which does not bring
strong convexity to the problem and is thus strictly weaker than 1

2

∥∥h∥∥2
HK

.

We are now ready to prove a double representer theorem for the solution of Prob-
lem 5.34.

Theorem 5.33. Let kX, kΘ, kb be three scalar-valued kernels, with kΘ a strictly positive
definite kernel, kb bounded, and K = kX IdHkΘ

. Then Problem 5.34 admits a solution(
ĥ, t̂
)
∈ HK ×Hkb which writes for all (x, θ) ∈ X×Θ

ĥ(x)(θ) =

n∑
i=1

m∑
j=1

α̂ijkX(x, xi)kΘ(θ, θj), t̂(θ) =

m∑
j=1

β̂jkb(θ, θj)

for some (α̂ij)
n,m
i,j=1 ∈ Rn×m and (β̂j)

m
j=1 ∈ Rm. Moreover the solution is unique on

V×Hkb with V defined in Lemma 5.31.

Proof Introduce K ′ : (θ, θ′) ∈ Θ × Θ 7→ kΘ(θ, θ
′)IHkX

∈ L(HkX). The spaces HK

and HK′ are unitarily equivalent by means of the feature operator W : HK′ → HK

such that ∀(f, x, θ) ∈ HK′ × X × Θ,Wf(x)(θ) = f(θ)(x). This means that they are
essentially the same spaces of functions, whose elements are seen either as mappings
X → (Θ → R) or Θ → (X → R). Define

J :

HK ×Hkb → R
(h, t) 7→ 1

n

∑n
i=1 Ĩℓ(h(xi), t) + Ω̃(h) + λ

2

∥∥t∥∥2
Hkb

 .

Let V = W

(
+m

j=1 Im(K ′
θj
)

)
. Since W is an isometry, thanks to Equation (5.35), it

holds that V ⊕ V⊥ = HK . Let (h, t) ∈ HK × Hkb , there exists unique hV⊥ ∈ V⊥,
hV ∈ V such that h = hV + hV⊥ . Notice that J(h, t) = J(hV + hV⊥ , t) = J(hV, t)
since ∀j ∈ [m], ∀x ∈ X, hV⊥(x)(θj) = W−1hV⊥(θj)(x) = 0. Moreover, J is bounded
by below so its infimum is well-defined, and inf

(h,t)∈HK×Hkb

J(h, t) = inf
(h,t)∈V×Hkb

J(h, t).

Finally, notice that J is coercive on V × Hkb endowed with the sum of the norms in
V and Hkb (which makes it a Hilbert space): if (hn, tn)n∈N∗ ∈ V × Hkb is such that∥∥hn∥∥HK

+
∥∥tn∥∥Hkb

→
n→∞

+∞, then either (
∥∥hn∥∥HK

)n∈N or (
∥∥tn∥∥Hkb

)n∈N has to diverge
:

• If
∥∥tn∥∥Hkb

→
n→∞

+∞, since

tn(θj) = 〈tn, kb(·, θj)〉Hkb
≤ kb(θj , θj)

∥∥tn∥∥Hkb

≤ κb
∥∥tn∥∥Hkb

(∀j ∈ [m]),

then

J(hn, tn) ≥
λ

2

∥∥tn∥∥2Hkb

−
m∑
j=1

wjt(θj) →
n→∞

+∞.
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• If
∥∥hn∥∥HK

→
n→∞

+∞, according to Lemma 5.31, J(hn, tn) →
n→∞

+∞ as long as all
ηj are strictly positive, which is verified for the quasi Monte-Carlo scheme.

Thus J is coercive, so Bauschke et al. (2011, Proposition 11.15) allows to conclude that
J has a minimizer (ĥ, t̂) on V×Hkb . Then, in the same fashion as Theorem 3.9, define
U1 = Span {(K(·, xi)kΘ(·, θj))n,mi,j=1} ⊂ V and U2 = Span {(kb(·, θj))mj=1} ⊂ Hkb , and use
the reproducing property to show that (ĥ, t̂) ∈ U1 × U2, so there exist (αij)

n,m
i,j=1 and

(βj)
m
j=1 such that for ∀(x, θ) ∈ X×Θ,

ĥ(x)(θ) =
n∑

i=1

m∑
j=1

α̂ijkX(x, xi)kΘ(θ, θj), t̂(θ) =
m∑
j=1

β̂jkb(θ, θj).

Finally, using the γ notation from Lemma 5.31, J is min (λ, γ)-strongly convex on
V×Hkb which ensures that the resulting (ĥ, t̂) is unique.

Theorem 5.33 guarantees a finite-dimensional expansion for the estimator (ĥ, t̂), which
can be used as a plug-in in Problem 5.34. The next section highlights the performance
of this approach on some synthetic and real-world datasets.

5.6.2 Numerical Experiments

To assess the quality of the estimated model by IOCSVM, we illustrate the θ-property
(Schölkopf et al., 2000): the proportion of inliers has to be approximately 1 − θ
(∀θ ∈ (0, 1)). For the studied datasets (Wilt, Spambase) we used the raw inputs without
applying any preprocessing. After experimenting with a few input kernels, we settled
for the exponentiated χ2 kernel kX(x, z) := exp

(
−γX

∑d
k=1(xk − zk)

2/(xk + zk)
)

with
bandwidth γX = 0.25. A Gauss-Legendre quadrature rule provided the integral ap-
proximation in Equation (5.33), with m = 100 samples. We chose the Gaussian kernel
for kΘ; its bandwidth parameter γΘ was the 0.2−quantile of the pairwise Euclidean
distances between the θj ’s obtained via the quadrature rule. The margin (bias) kernel
was kb = kΘ. As it can be seen in Fig. 5.9, the θ-property holds for the estimate which
illustrates the efficiency of the proposed continuum approach for density level-set es-
timation. In the scalar case, the OCSVM algorithm with the Gaussian kernel in input
estimates the level sets of the density of X. Combined with the θ-property, this means
that the IOCSVM estimator should be able to estimate these level sets as a function of
θ. We show in Figure 5.10 that this is the case on a simple Gaussian mixture underlying
probability PX. The strength of the approach is then to be able to provide a score of
outlierness for a new point x ∈ X:

s(x) := sup
θ∈Θ

{
θ : d(x)(θ) ≥ 0

}
.

This is well-suited to anomaly detection problems as it indicates whether a point x ∈ X

is a rare event (tail of the distribution, s(x) close to 0) or a common event (s(x) close
to 1).

5.7 Conclusion
In this chapter we proposed infinite task learning (ITL), a novel nonparametric frame-
work aiming at jointly solving parametrized tasks for a continuum of hyperparameters.
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Figure 5.9 – DLSE: the θ-property is approximately satisfied.

We provided excess risk guarantees for the studied ITL scheme, and demonstrated its
practical efficiency and flexibility in various tasks including cost-sensitive classification,
quantile regression and density level set estimation.

While in all aforementioned tasks Θ and Y are one-dimensional, the ITL framework
can be adapted to more complex tasks such as emotion transfer tasks as emphasized in
Chapter 6.
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(a) Theoretical level sets of the Gaussian mixture, scaled by the
value of the density.

(b) Estimated level sets of the Gaussian mixture, scaled by 1−
mass of the sets

Figure 5.10 – Proof of concept of ∞-OCSVM for DLSE on a simple Gaussian mixture.
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6.1 Introduction

Recent years have witnessed an increasing attention around style transfer problems
(Gatys et al., 2016; Wynen et al., 2018; Jing et al., 2020) in machine learning. In a
nutshell, style transfer refers to the transformation of an object according to a target
style. It has found numerous applications in computer vision (Ulyanov et al., 2016; Choi
et al., 2018; Puy and Pérez, 2019; Yao et al., 2020), natural language processing (Fu
et al., 2018) as well as audio signal processing (Grinstein et al., 2018) where objects at
hand are contents in which style is inherently part of their perception. Style transfer is
one of the key components of data augmentation (Mikołajczyk and Grochowski, 2018)
as a means to artificially generate meaningful additional data for the training of deep
neural networks. Besides, it has also been shown to be useful for counterbalancing
bias in data by producing stylized contents with a well-chosen style (see for instance
Geirhos et al. 2019) in image recognition. More broadly, style transfer fits into the
wide paradigm of parametric modeling, where a system, a process or a signal can
be controlled by its parameter value. Adopting this perspective, style transfer-like
applications can also be found in digital twinning (Tao et al., 2019; Barricelli et al.,
2019; Lim et al., 2020), a field of growing interest in health and industry.

In this chapter, we propose a novel principled approach for style transfer, exemplified
in the context of emotion transfer of face images. Given a set of emotions, classical
emotion transfer refers to the task of transforming face images according to these target
emotions. The pioneering works in emotion transfer include that of Blanz and Vetter
(1999) who proposed a morphable 3D face model whose parameters could be modified
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for facial attribute editing. Susskind et al. (2008) designed a deep belief net for facial
expression generation using action unit (AU) annotations.

More recently, extensions of generative adversarial networks (GANs, Goodfellow et al.
2014) have proven to be particularly powerful for tackling image-to-image translation
problems (Zhu et al., 2017). Several works have addressed emotion transfer for facial
images by conditioning GANs on a variety of guiding information ranging from discrete
emotion labels to photos and videos. In particular, StarGAN (Choi et al., 2018) is con-
ditioned on discrete expression labels for face synthesis. ExprGAN (Ding et al., 2018)
proposes synthesis with the ability to control expression intensity through a controller
module conditioned on discrete labels. Other GAN-based approaches make use of ad-
ditional information such as AU labels (Pumarola et al., 2018), target landmarks (Qiao
et al., 2018), fiducial points (Song et al., 2018) and photos/videos (Geng et al., 2018).
While GANs have achieved high quality image synthesis, they come with some pitfalls:
they are particularly difficult to train and require large amounts of training data.

Unlike previous approaches, we adopt a functional point of view: given some person,
we assume that the full range of the emotional faces can be modelled as a continuous
function from emotions to images. This view exploits the geometry of the representation
of emotions (Russell, 1980), assuming that one can pass a facial image “continuously"
from one emotion to an other. We then propose to address the problem of emotion
transfer by learning an image-to-function model able to predict for a given facial input
image represented by its landmarks (Tautkute et al., 2018), the continuous function
that maps an emotion to the image transformed by this emotion.

This function-valued regression approach relies on a the infinite task learning (ITL)
technique developed in Chapter 5. ITL enlarges the scope of multi-task learning (Ev-
geniou and Pontil, 2004; Evgeniou et al., 2005) by learning to solve simultaneously a
set of tasks parametrized by a continuous parameter. While strongly linked to other
parametric learning methods such the one proposed by Takeuchi et al. (2006), the
approach differs from previous works by leveraging the use of operator-valued kernels
and vector-valued reproducing kernel Hilbert spaces (vv-RKHS; Pedrick 1957; Micchelli
and Pontil 2005; Carmeli et al. 2006) to model function-valued functions with vectorial
outputs. vv-RKHSs have proven to be relevant in solving supervised learning tasks
such as multiple quantile regression (Sangnier et al., 2016) or unsupervised problems
like anomaly detection (Schölkopf et al., 2001b). A common property of these works is
that the output to be predicted is a real-valued function of a real parameter.

To solve the emotion transfer problem, we present an extension of ITL, vector ITL (or
shortly vITL) which involves functional outputs with vectorial representation of the
faces and the emotions, showing that the approach is still easily controllable by the
choice of appropriate kernels guaranteeing continuity and smoothness. In particular,
the functional point of view by the inherent regularization induced by the kernel makes
the approach suitable even for limited and partially observed emotional images. We
demonstrate the efficiency of the vITL approach in a series of numerical experiments
showing that it can achieve state-of-the-art performance on two benchmark datasets.

The chapter is structured as follows. We formulate the problem and introduce the vITL
framework in Section 6.2. Section 6.3 is dedicated to the underlying optimization prob-
lem. Numerical experiments conducted on two benchmarks of the domain are presented
in Section 6.4. Discussion and future work conclude the chapter in Section 6.5.
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Figure 6.1 – Illustration of emotion transfer.

6.2 Problem Setting
In this section we define our problem. Our aim is to design a system capable of transfer-
ring emotions: having access to the face image of a given person our goal is to convert
his/her face to a specified target emotion. In other words, the system should implement
a mapping of the form

(face, emotion) 7→ face. (6.1)

In order to tackle this task, one requires a representation of the emotions, and similarly
that of the faces. The classical categorical description of emotions deals with the classes
‘happy’, ‘sad’, ‘angry’, ‘surprised’, ‘disgusted’, ‘fearful’. The valence-arousal model
(Russell, 1980) embeds these categories into the 2-dimensional space. The resulting
representation of the emotions are points θ ∈ R2, each coordinate of these vectors
encoding the valence (pleasure to displeasure) and arousal (high to low) associated to
the emotions. This is the emotion representation we use while noting that there are
alternative encodings in higher dimension (Θ ⊂ Rp, p ≥ 2; Vemulapalli and Agarwala
2019) to which the presented framework can be naturally adapted. Throughout this
work faces are represented by landmark points. Landmarks have been proved to be a
useful representation in facial recognition (Saragih et al., 2009; Scherhag et al., 2018;
Zhang et al., 2015), 3D facial reconstruction and sentiment analysis. Tautkute et al.
(2018) have shown that emotions can be accurately recognized by detecting changes
in the localization of the landmarks. Given M number of landmarks on the face, this
means a description x ∈ X := R2M , and hence a d := 2M -dimensional representation.
The resulting mapping from Equation (6.1) is illustrated in Figure 6.1: starting from a
neutral face and the target happy one can traverse to the happy face; from the happy
face, given the target emotion surprise one can get to the surprised face.

In an ideal world, for each person, one would have access to a trajectory z mapping each
emotion θ ∈ Θ to the corresponding landmark locations x ∈ X; this function z : Θ 7→ X

can be taken for instance to be the element of L2[Θ, µ;X], the space of Rd-valued
square-integrable function w.r.t. to a measure µ. The probability measure µ allows
capturing the frequency of the individual emotions. In practice, one has realizations
(zi)i∈[n], each zi corresponds to a single person possible appearing multiple times. The
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trajectories are observable at finite many emotions
(
θ̃i,j

)
j∈[m]

.1 In order to capture

the relation from Equation (6.1) one can rely on a hypothesis space H with elements

h : X 7→ (Θ 7→ X). (6.2)

The value h(x)(θ) represents the landmark prediction from face x and target emotion
θ.

We consider two tasks for emotion transfer:

• Single emotional input: In the first problem, the assumption is that all the
faces appearing as the input in Equation (6.1) come from a fixed emotion θ̃0 ∈ Θ.
The data which can be used to learn the mapping h consists of t = n triplets2

xi = zi

(
θ̃0

)
∈ X, Yi =

(
zi

(
θ̃i,j

)
︸ ︷︷ ︸
=:yi,j

)
j∈[m]

∈ Xm,

(θi,j)j∈[m] =
(
θ̃i,j

)
j∈[m]

∈ Θm, i ∈ [t].

To measure the quality of the reconstruction using a function h, one can consider
a convex loss ℓ : X × X → R on the landmark space. The resulting objective
function to minimize is

RS(h) :=
1

tm

∑
i∈[t]

∑
j∈[m]

ℓ(h(xi)(θi,j), yi,j). (6.3)

The risk RS(h) captures how well the function h reconstructs on average the
landmarks yi,j when applied to the input landmark locations xi.

• Joint emotional input: In this problem, the faces appearing as input in Equa-
tion (6.1) can arise from any emotion. The observations consist of triplets

xm(i−1)+l = zi

(
θ̃i,l

)
∈ X, Ym(i−1)+l =

(
zi

(
θ̃i,j

)
︸ ︷︷ ︸

=:ym(i−1)+l,j

)
j∈[m]

∈ Xm

(θm(i−1)+l,j)j∈[m] =
(
θ̃i,j

)
j∈[m]

∈ Θm,

where (i, l) ∈ [n] × [m] and the number of pairs is t = nm. Having defined
this dataset one can optimize the same objective in Equation (6.3) as before.
Particularly, this means that the pair (i, l) plays the role of index i of the previous
case. The (θi,j)i,j∈[t]×[m] is an extended version of the

(
θ̃i,j

)
i,j∈[t]×[m]

to match

the indices going from 1 to t in Equation (6.3).

We leverage the flexible class of vector-valued reproducing kernel Hilbert spaces (vv-
RKHS; Carmeli et al. 2010) for the hypothesis class schematically illustrated in Equa-
tion (6.2). Learning within vv-RKHS has been shown to be relevant for tackling

1To keep the notation simple, we assume that m is the same for all the zi-s.
2In this case θi,j is a literal copy of θ̃i,j which helps to get a unified formulation with the joint

emotional input setting.
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function-valued regression (Kadri et al., 2016). The construction follows the structure

h : X 7→ (Θ 7→ X)︸ ︷︷ ︸
∈HG︸ ︷︷ ︸

∈HK

(6.4)

which we detail below. A general reminder on these spaces of functions is presented in
Chapter 2. The vector (Rd)-valued capability is beneficial to handle the Θ 7→ X = Rd

mapping; the associated Rd-valued RKHS HG is uniquely determined by a matrix-
valued kernel G : Θ × Θ → Rd×d = L(X). Similarly, in Equation (6.4) the X → HG

mapping is modelled by a vv-RKHS HK corresponding to an operator-valued kernel
K : X× X → L(HG). We chose K and G to be separable kernels of the form

G(θ, θ′) = kΘ(θ, θ
′)A, K(x, x′) = kX(x, x

′) IdHG
(6.5)

with a scalar-valued kernel kX : X × X → R and kΘ : Θ × Θ → R, and symmetric,
positive definite matrix A ∈ Rd×d. This choice corresponds to the intuition that for
similar input landmarks and target emotions, the predicted output landmarks should
also be similar, as measured by kX, kΘ and A, respectively. More precisely, smoothness
(analytic property) of the emotion-to-landmark output function can be induced for
instance by choosing a Gaussian kernel kΘ(θ, θ′) = exp(−γ‖θ − θ′‖22) with γ > 0. The
matrix A when chosen as A = Idd corresponds to independent landmarks coordinates
while other choices encode prior knowledge about the dependency among the landmarks
coordinates (Álvarez et al., 2012). Similarly, the smoothness of function h can be
driven by the choice of a Gaussian kernel over X while the identity operator on HG is
the simplest choice to cope with functional outputs. By denoting the norm in HK as
‖·‖HK

, the final objective function is

min
h∈HK

RS(h) +
λ

2

∥∥h∥∥2
HK

(6.6)

with a regularization parameter λ > 0 which balances between the data-fitting term
(RS(h)) and smoothness (

∥∥h∥∥2
HK

). We refer to Problem 6.6 as vector-valued infinite
task learning (vITL).

Remark: This problem is a natural adaptation of the ITL framework (Brault et al.,
2019) learning with operator-valued kernels mappings of the form X 7→ (Θ 7→ Y) where
Y is a subset of R; here Y = X. An other difference is µ: in ITL this probability
measure is designed to approximate integrals via quadrature rule, in vITL it captures
the observation mechanism.

6.3 Optimization
This section is dedicated to the solution of Problem 6.6 which is an optimization prob-
lem over functions (h ∈ HK). General tools to handle problems such as Problem 6.6
have been proposed in Chapter 3, in particular throughout this chapter we consider the
squared loss ℓ(x, x′) = 1

2‖x−x
′‖22; in this case we recognize the partially observed scen-

ario with square loss from Section 3.2.2. Thus, Lemma 3.7 resumes solving Problem 6.6
to solving a Sylvester equation, as it holds that the solution ĥ ∈ HK writes

ĥ(x)(θ) =
t∑

i=1

m∑
j=1

kX(x, xi)kΘ(θ, θi,j)Aα̂i,j , ∀(x, θ) ∈ X×Θ (6.7)
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for some (α̂i,j)i,j∈[t]×[m] ∈ Unt which can be gathered in a matrix α̂ ∈ Mnt,d(R) so that
α̂ is solution to

Kα̂A+ tmλα̂ = Y (6.8)

where the Gram matrix K = [ki,j ]i,j∈[tm] ∈ Mtm(R), and the matrix consisting of all
the observations Y = [Yi]i∈[tm] ∈ Mtm,d(R) are defined as

km(i1−1)+j1,m(i2−1)+j2 := kX(xi1 , xi2)kΘ(θi1,j1 , θi2,j2), (i1, j1), (i2, j2) ∈ [t]× [m],

Ym(i−1)+j := y⊤i,j , (i, j) ∈ [t]× [m].

Remarks:

• Computational complexity: In case of A = Idd, the complexity of the closed
form solution is O

(
(tm)3

)
. If all the samples are observed at the same locations

(θi,j)i,j∈[t]×[n], i.e. θi,j = θl,j for ∀(i, l, j) ∈ [t]× [t]× [m], then the Gram matrix K
has a tensorial structure K = KX ⊗KΘ with KX = [kX(xi, xj)]i,j∈[t] ∈ Rt×t and
KΘ = [kΘ(θ1,i, θ1,j)]i,j∈[m] ∈ Rm×m. In this case, the computational complexity
reduces to O

(
t3 +m3

)
. If additional scaling is required one can leverage recent

dedicated kernel ridge regression solvers (Rudi et al., 2017; Meanti et al., 2020).
If A is not identity but invertible, then multiplying Equation (6.8) with A−1

gives Kα̂+ tmλα̂A−1 = YA−1 which is a Sylvester equation for which efficient
custom solvers exist (El Guennouni et al., 2002). If A is not invertible, one can
use Singular Value Decomposition to reduce the dimensionality of α̂ and fall back
on the invertible case.

• Regularization in vv-RKHS: Using the notations above, for any h ∈ HK paramet-
erized by a matrix α, it holds that ‖h‖2HK

= Tr
(
KαAα⊤

)
. Given two matrices

A1,A2 and associated vv-RKHSs HK1 and HK2 , if A1 and A2 are invertible then
any function in HK1 parameterized by α also belongs to HK2 (and vice versa),
within which it is parameterized by αA−1

2 A1. This means that the two spaces
contain the same functions, but their norms are different.

6.4 Experiments

In this section we demonstrate the efficiency of the proposed vITL technique in emo-
tion transfer. We first introduce the two benchmark datasets we used in our experi-
ments and give details about data representation and choice of the hypothesis space
in Section 6.4.1. Then, in Section 6.4.2, we provide a quantitative performance assess-
ment of the vITL approach (in mean squared error and classification accuracy sense)
with a comparison to the state-of-the-art StarGAN method. Section 6.4.3 is dedic-
ated to investigation of the role of A (see Equation (6.5)) and the robustness of the
approach w.r.t. missing obervation. These two sets of experiments (Section 6.4.2 and
Section 6.4.3) are augmented with a qualitative analysis (Section 6.4.4). The code
written for all these experiments is available on GitHub.

6.4.1 Experimental Setup

We used the following two popular face datasets for evaluation.

https://www.github.com/allambert/torch_itl
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Neutral Fearful Angry Disgusted Happy Sad Surprised

(a) KDEF
Neutral Fearful Angry Disgusted Happy Sad Surprised

(b) RaFD

Figure 6.2 – Illustration of the landmark edge maps for different emotions and both
datasets.

• Karolinska Directed Emotional Faces (KDEF; Lundqvist et al. 1998): This data-
set contains facial emotion pictures from 70 actors (35 females and 35 males)
recorded over two sessions which give rise to a total of 140 samples per emo-
tion. In addition to neutral, the captured facial emotions include afraid, angry,
disgusted, happy, sad and surprised.

• Radboud Faces Database (RaFD; Langner et al. 2010): This benchmark contains
emotional pictures of 67 unique identities (including Caucasian males and females,
Caucasian children, and Moroccan Dutch males). Each subject was trained to
show the following expressions: anger, disgust, fear, happiness, sadness, surprise,
contempt, and neutral according to the facial action coding system (FACS; Ekman
et al. 2002).

In our experiments, we used frontal images and seven emotions from each of these
datasets. An edge map illustration of landmarks for different emotions is shown in
Figure 6.2.

At this point, it is worth recalling that we are learning a function-valued function,
h : X 7→ (Θ 7→ X) using a vv-RKHS as our hypothesis class (see Section 6.2). In the
following we detail the choices made concerning the representation of the landmarks in
X, that of the emotions in Θ, and in the kernel design kX, kΘ and A.

Landmark representation, pre-processing: We applied the following pre-processing
steps to get the landmark representations which form the input of the algorithms. To
extract 68 landmark points for all the facial images, we used the standard dlib lib-
rary. The estimator is based on dlib’s implementation of Kazemi and Sullivan (2014),
trained on the iBUG 300-W face landmark dataset. Each landmark is represented by its
2D location. The alignment of the faces was carried out by the Python library imutils.
The method ensures that faces across all identities and emotions are vertical, centered
and of similar sizes. In essence, this is implemented through an affine transformation
computed after drawing a line segment between the estimated eye centers. Each image
was resized to the size 128 × 128. The landmark points computed in the step above
were transformed through the same affine transformation. These two preprocessing
steps gave rise to the aligned, scaled and vectorized landmarks x ∈ R136=2×68.



124 CHAPTER 6. EMOTION TRANSFER

1.0 0.5 0.0 0.5 1.0
Valence

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ar
ou

sa
l

Neutral
Happy

Sad

SurprisedFearful

Disgusted

Angry

Figure 6.3 – Extracted ℓ2-normalized valence-arousal centroids for each emotion from
the manually annotated train set of the AffectNet database.

Emotion representation: We represented emotion labels as points in the 2D valence-
arousal space (VA, Russell 1980). Particularly, we used a manually annotated part of
the large-scale AffectNet database (Mollahosseini et al., 2017). For all samples of a
particular emotion in the AffectNet data, we computed the centroid (data mean) of
the valence and arousal values. The resulting ℓ2-normalized 2D vectors constituted
our emotion representation as depicted in Figure 6.3. The normalization is akin to
assuming that the modeled emotions are of the same intensity. In our experiments, the
emotion ‘neutral’ was represented by the origin. Such an emotion embedding allowed
us to take into account prior knowledge about the angular proximity of emotions in
the VA space, while keeping the representation simple and interpretable for post-hoc
manipulations.

Kernel design: We took the kernels kX, kΘ to be Gaussian on the landmark rep-
resentation space and the emotion representation space, with respective bandwidth γX
and γΘ. A was assumed to be Idd unless specified otherwise.

6.4.2 Quantitative Performance Assessment

In this section we provide a quantitative assessment of the proposed vITL approach.

Performance measures: We applied two metrics to quantify the performance of the
compared systems, namely the test mean squared error (MSE) and emotion classifica-
tion accuracy. The classification accuracy can be thought of as an indirect evaluation.
To compute this measure, for each dataset we trained a ResNet-18 classifier to recog-
nize emotions from ground-truth landmark edge maps (as depicted in Figure 6.2). The
trained network was then used to compute classification accuracy over the predictions
at test time. To rigorously evaluate outputs for each split of the data, we used a clas-
sifier trained on RaFD to evaluate KDEF predictions and vice-versa; this also allowed
us to make the problem more challenging. The ResNet-18 network was appropriately
modified to take grayscale images as input. During training, we used random horizontal
flipping and cropping between 90-100% of the original image size to augment the data.
All the images were finally resized to 224 × 224 and fed to the network. The network
was trained from scratch using the stochastic gradient descent optimizer with learning
rate and momentum set to 0.001 and 0.9, respectively. The training was carried out
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for 10 epochs with a batch size of 16.

We report the mean and standard deviation of the aforementioned metrics over ten
90%-10% train-test splits of the data. The test set for each split is constructed by
removing 10% of the identities from the data. For each split, the best γX, γΘ and λ
values were determined by 6-fold and 10-fold cross-validation on KDEF and RaFD,
respectively.

Baseline: We used the popular StarGAN (Choi et al., 2018) system as our baseline.
Other GAN-based studies use additional information and are not directly comparable
to our setting. For fair comparison, the generator G and discriminator D were modified
to be fully-connected networks that take vectorized landmarks as input. In particular,
G was an encoder-decoder architecture where the target emotion, represented as a 2D
emotion encoding as for our case, was appended at the bottleneck layer. It contained
approximately one million parameters, which was chosen to be comparable with the
number of coefficients in vITL (839, 664 = 126×7×7×136 for KDEF). ReLU activation
function was used in all layers except before bottleneck in G and before penultimate
layers of both G and D. We used their default parameter values in the code.3 Ex-
periments over each split of KDEF and RaFD were run for 50K and 25K iterations,
respectively.

MSE results: The test MSE for the compared systems is summarized in Table 6.1.
As the table shows, the vITL technique outperforms StarGAN on both datasets. One
can observe low reconstruction cost for vITL in both the single and the joint emotional
input case. Interestingly, a performance gain is obtained with vITL-joint on the RaFD
data in MSE sense. We hypothesize that this is due to the joint model benefiting
from input landmarks for other emotions in the small data regime (only 67 samples
per emotion for RaFD). Despite our best efforts, we found it quite difficult to train
StarGAN reliably and the diversity of its outputs was low.

Classification results: The emotion classification accuracies are available in Table 6.2.
The classification results clearly demonstrate the improved performance and the higher
quality of the generated emotion of vITL over StarGAN; the latter also produces predic-
tions with visible face distortions as it is illustrated in Section 6.4.4. To provide further
insight into the classification performance we also show the confusion matrices for the
joint vITL model on a particular split of KDEF and RaFD datasets in Figure 6.4.
For both the datasets, the classes ‘happy’ and ‘surprised’ are easiest to detect. Some
confusions arise between the classes ‘neutral’ vs ‘sad’ and ‘fearful’ vs ‘surprised’. Such
mistakes are expected when only using landmark locations for recognizing emotions.

6.4.3 Analysis of Additional Properties of vITL

This section is dedicated to the effect of the choice of A (in kernel G) and to the
robustness of vITL w.r.t. missing obervation.

Influence of A in the matrix-valued kernel G: Here, we illustrate the effect of
matrix A (see Equation (6.5)) on the vITL estimator and show that a good choice of
A can lead to lower dimensional models, while preserving the quality of the prediction.
The choice of A is built on the knowledge that the empirical covariance matrices of
the output training data contains structural information that can be exploited with
vv-RKHS (Kadri et al., 2013). In order to investigate this possibility, we performed the

3The code is available at https://github.com/yunjey/stargan.

https://github.com/yunjey/stargan
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Table 6.1 – MSE error (mean ± std) on test data for the vITL-single (top), the vITL-
joint and the StarGAN system (bottom). Lower is better.

Methods KDEF frontal RaFD frontal

vITL: θ0 = neutral 0.010± 0.001 0.009± 0.004
vITL: θ0 = fearful 0.010± 0.001 0.010± 0.005
vITL: θ0 = angry 0.012± 0.002 0.010± 0.005
vITL: θ0 = disgusted 0.012± 0.001 0.010± 0.004
vITL: θ0 = happy 0.011± 0.001 0.010± 0.004
vITL: θ0 = sad 0.011± 0.001 0.009± 0.004
vITL: θ0 = surprised 0.010± 0.001 0.011± 0.006

vITL: Joint 0.011± 0.001 0.007± 0.001

StarGAN 0.029± 0.003 0.024± 0.007

Table 6.2 – Emotion classification accuracy (mean ± std) for the vITL-single (top), the
vITL-joint (middle) and the StarGAN system (bottom). Higher is better.

Methods KDEF frontal RaFD frontal

vITL: θ0 = neutral 76.12± 4.57 79.76± 7.88
vITL: θ0 = fearful 76.22± 4.91 78.81± 8.36
vITL: θ0 = angry 74.49± 2.31 78.10± 7.51
vITL: θ0 = disgusted 74.18± 4.22 78.33± 4.12
vITL: θ0 = happy 73.57± 2.74 80.48± 5.70
vITL: θ0 = sad 75.82± 4.11 77.62± 5.17
vITL: θ0 = surprised 74.69± 2.25 80.71± 5.99

vITL: Joint 74.81± 3.10 77.11± 3.97

StarGAN 70.69± 8.46 65.88± 8.92

Angry

Disgusted
Fearful

Happy
Neutral Sad

Surprise
d

Angry

Disgusted

Fearful

Happy

Neutral

Sad

Surprised

0.95 0.05 0 0 0 0 0

0.02 0.98 0 0 0 0 0

0 0.16 0.33 0 0.26 0.26 0

0 0 0 1 0 0 0

0.03 0 0 0 0.78 0.19 0

0.3 0.01 0 0 0.22 0.47 0

0 0 0.2 0 0 0 0.8

(a) KDEF

Angry

Disgusted
Fearful

Happy
Neutral Sad

Surprise
d

Angry

Disgusted

Fearful

Happy

Neutral

Sad

Surprised

0.52 0 0 0 0 0.48 0

0 0.98 0.02 0 0 0 0

0 0 0.67 0 0 0 0.33

0 0 0 1 0 0 0

0 0 0 0 0.4 0.6 0

0 0 0 0 0.05 0.95 0

0 0 0 0 0 0 1

0.0

0.2

0.4

0.6

0.8

1.0

(b) RaFD

Figure 6.4 – Confusion matrices for classification accuracy of vITL-joint model. Left:
dataset KDEF. Right: dataset RaFD. The y axis represents the true labels, the x axis
stands for the predicted labels. More diagonal is better.
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Figure 6.5 – Test MSE (mean ± std) as a function of the rank of the matrix A. Smaller
MSE is better.

singular value decomposition of Y⊤Y which gives the eigenvectors collected in matrix
V ∈ Rd×d. For a fixed rank r ≤ d, define Jr = diag(1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
d−r

), set A = VJr V
⊤

and train a vITL system with the resulting A. While in this case A is no more invertible,
each coefficient α̂i,j from Equation (6.7) belongs to the r-dimensional subspace of Rd

generated by the eigenvectors associated to the r largest eigenvalues of Y⊤Y. This
makes a reparameterization possible and leads to a decrease in the size of the model,
going from t ×m × d parameters to t ×m × r. We report in Figure 6.5 the resulting
test MSE performance (mean ± standard deviation) obtained from 10 different splits,
and empirically observe that r = 20 suffices to preserve the optimal performances of
the model.

Learning under a missing obervation regime: To assess the robustness of vITL
w.r.t. missing data, we considered a random mask (ηi,j)i∈[n],j∈[m] ∈ {0, 1}n×m; a sample
zi(θi,j) was used for learning only when ηi,j = 1. Thus, the percentage of missing data
was p := 1

nm

∑
i,j∈[n]×[m] ηi,j . The experiment was repeated for 10 splits of the dataset,

and on each split we averaged the results using 4 different random masks (ηi,j)i∈[n],j∈[m].
The resulting test MSE of the predictor as a function of p is summarized in Figure 6.6.
As it can be seen, the vITL approach is quite stable in the presence of missing data on
both datasets.

6.4.4 Qualitative Analysis

In this section we show example outputs produced by vITL in the context of discrete
and continuous emotion generation. While the former is the classical task of synthesis
given input landmarks and target emotion label, the latter serves to demonstrate a key
benefit of our approach, which is the ability to synthesize meaningful outputs while
continuously traversing the emotion embedding space.

Discrete emotion generation: In Figure 6.7 and Figure 6.8 we show qualitative
results for generating landmarks using discrete emotion labels present in the datasets.
For vITL, not only are the emotions recognizable, but landmarks on the face boundary
are reasonably well-synthesized and other parts of the face visibly less distorted when
compared to StarGAN. The identity in terms of the face shape is also better preserved.
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Figure 6.8 – Discrete expression synthesis results on the RaFD dataset with ground-
truth neutral landmarks as input.
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Figure 6.9 – Continuous expression synthesis results with vITL on the KDEF dataset,
with ground-truth neutral landmarks. The generation is starting from neutral and
proceeds in the radial direction towards an emotion with increasing radii r.

      happy  surprised

Figure 6.10 – Continuous expression synthesis with vITL technique on the RaFD data-
set, with ground-truth neutral landmarks. The generation is starting from ‘happy’ and
proceeds by changing angular position towards ‘surprised’. For a more fine-grained
video illustration traversing from ‘happy’ to ‘sad’ along the circle, see the demo on
GitHub.

Continuous emotion generation: Starting from neutral emotion, continuous gener-
ation in the radial direction is illustrated in Figure 6.9. The landmarks vary smoothly
and conform to the expected intensity variation in each emotion on increasing the ra-
dius of the vector in VA space. We also show in Figure 6.10 the capability to generate
intermediate emotions by changing the angular position, in this case from ‘happy’ to
‘surprised’. For a more fine-grained video illustration traversing from ‘happy’ to ‘sad’
along the circle, see the GitHub repository.

https://www.github.com/allambert/torch_itl
https://www.github.com/allambert/torch_itl
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These experiments and qualitative results demonstrate the efficiency of the vITL ap-
proach in emotion transfer.

6.5 Conclusion
In this chapter we introduced a novel approach to style transfer based on function-
valued regression, and exemplified it on the problem of emotion transfer. The proposed
vector-valued infinite task learning (vITL) framework relies on operator-valued kernels.
vITL (i) is capable of encoding and controlling continuous style spaces, (ii) benefit from
a representer theorem for efficient computation, and (iii) facilitates regularity control
via the choice of the underlying kernels. The framework can be extended in several
directions. Other losses can be leveraged to produce outlier-robust or sparse models
in the spirit of Chapter 4. Instead of being chosen prior to learning, the input kernel
could be learned using deep architectures (Mehrkanoon and Suykens, 2018; Liu et al.,
2020) opening the door to a wide range of applications.



Conclusion and Perspectives

In this thesis, we have introduced a general learning framework based on vector-valued
reproducible kernel Hilbert spaces and integral losses, akin to estimate predictive mod-
els with functional outputs. Due to the complexity of the task, certain approximations
are required for the resulting optimization problems to be tractable. These can be ap-
plied either on the loss side, gaining a workable representation of the solution by means
of a double representer theorem or on the hypothesis space by restricting the coefficients
to live in a finite-dimensional subspace of the vv-RKHS, chosen to be well-suited to
the problem. These approximations enable primal or dual algorithm using variations
of gradient descent. Among them, the use of random Fourier features allows to tackle
large-scale learning settings. This learning framework is proved to be useful to extend
functional output regression to more involved losses such as robust losses. Moreover,
scenarii where the observed training outputs are not functional but for which the task to
be solved is parameterized can also benefit from the functional point of view, resulting
in the infinite task learning framework.

We exemplified the proposed framework in quantile regression, cost-sensitive classific-
ation, density level set estimation and emotion transfer with non scalar outputs and
parameters. In these applications, the space of parameters Θ is relatively simple; fu-
ture work could include learning scenarii where Θ is a complex structured set, over
which the design of the output kernel is crucial. One could extend for instance quantile
regression to Hilbert-valued output random variables that result in Θ being the unit
ball of a certain Hilbert space.

Functional output regression in vv-RKHSs was tackled by leverage the duality view,
allowing to design losses through infimal convolution whose associated estimator shows
robustness or sparsity. This idea could be pushed further by considering different norms
to convolute with the loss function, giving rise to a large family of dual problems that
might influence the behavior of the estimator in interesting ways.

From a statistical learning point of view, many questions are still to be investigated. In
particular, while we have studied the generalization capabilities of the ITL estimator,
the convergence of the risk associated to the estimator towards the Bayes risk remains
an open question. The analysis of such risk could be performed in the context of random
Fourier features, possibly allowing for the derivation of optimality conditions on the
sampling measure to achieve good performance with the fewer features possible.

From a modeling point of view, we have evocated the combination of neural networks
with kernels to deal with objects over which choosing a good kernel is notoriously
hard like images or documents. These hybrid approaches seem promising and could
be further developed, as learning the kernel brings nonconvexity to the optimization
problems and requires dedicated solvers. Moreover, the class of vv-RKHSs used in this
thesis rely on separable kernels which can be less appropriate in certain applications
as they induce a tensorial structure in the Gram matrix. Going beyond such kernels
requests to start anew from the problem formulation as we would lose the computability
advantages brought by the separability.
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Concerning further applications, we are particularly interested in applying the de-
veloped framework to the study of dynamical systems. Imagining applications where
the output variable is a trajectory having to satisfy a certain differential equation,
choosing appropriate output vv-RKHS would ensure by design a control over the prop-
erties of the model, and using the reproducing property for derivatives in a RKHS paves
the way to tractable optimization problems.

Finally, we want to mention the potential of ITL for meta-modeling and meta-learning
(Ton et al., 2021), which could be deepened in further works.
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Titre : Apprentissage de Fonctions à Valeurs Fonctionnelles dans des Espaces de Hilbert à Noyaux Auto-reproduisants
avec Pertes Intégrales : Application à l’Apprentissage d’un Continuum de Tâches
Mots clés : noyaux à valeurs opérateurs, pertes intégrales, dualité lagrangienne, regression fonctionnelle, regression
quantile, transfert d’émotion

Résumé : Les méthodes à noyaux sont au coeur de l’appren-
tissage statistique. Elles permettent de modéliser des fonctions
à valeurs réelles dans des espaces de fonctions à fort potentiel
représentatif, sur lesquels la minimisation de risques empi-
riques régularisés est possible et produit des estimateurs dont
le comportement statistique est largement étudié. Lorsque les
sorties ne sont plus réelles mais de plus grande dimension,
les Espaces de Hilbert à Noyaux Reproduisants à valeurs vec-
torielles (vv-RKHSs) basés sur des Noyaux à Valeurs Opéra-
teurs (OVKs) fournissent des espaces de fonctions similaires
et permettent de traiter des problèmes tels que l’apprentissage
multi-tâche, la prédiction structurée ou la regression à valeurs
fonctionnelles.
Dans cette thèse, nous introduisons une extension fonction-
nelle originale du cadre multi-tâche appelée Apprentissage
d’un Continuum de Tâches (ITL), qui permet de résoudre
conjointement un continuum de tâches paramétrées, parmi
lesquelles la régression quantile, la classification à coût assy-
métrique, ou l’estimation de niveaux de densité.
Nous proposons un cadre d’apprentissage basé sur des fonc-
tions de pertes intégrales qui comprend à la fois l’ITL et la
régression à valeurs fonctionnelles, ainsi que des méthodes

d’optimisation pour résoudre les problèmes de minimisation
de risque empirique régularisé résultants. Par un échantillo-
nage des pertes intégrales, nous obtenons une représentation
de dimension finie des solutions pour différents choix de ré-
gularisation ou pénalités liées à la forme des fonctions, tout
en gardant un contrôle théorique sur les capacités en géné-
ralisation des estimateurs. L’usage de la dualité lagrangienne
vient approfondir ces méthodes, en apportant en particulier les
moyens d’imposer des estimateurs parcimonieux ou robustes
à l’aide de pertes convoluées. Les problèmes de passages à
l’échelle sont traités par l’utilisation noyaux approchés, dont
les vv-RKHSs associés sont de dimension finie. Nous propo-
sons aussi une architecture composée d’un réseau de neurone
et d’une dernière couche à noyaux, qui permet l’apprentissage
de représentations appropriées aux noyaux utiles dans les ap-
plications avec des données complexes comme les images.
Ces techniques sont appliquées à plusieurs problèmes d’ITL,
ainsi qu’au problème de regression fonction-à-fonction robuste
en présence de valeurs aberrantes. Enfin, nous revisitons les
problemes de transfert de style sous l’angle ITL, avec une ap-
plication au transfert d’émotion.
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Abstract : Kernel methods are regarded as a cornerstone
of machine learning. They allow to model real-valued func-
tions in expressive functional spaces, over which regularized
empirical risk minimization problems are amenable to optimi-
zation and yield estimators whose statistical behavior is well
studied. When the outputs are not reals but higher dimen-
sional, vector-valued Reproducible Kernel Hilbert Spaces (vv-
RKHSs) based on Operator-Valued Kernels (OVKs) provide
similarly powerful spaces of functions, and have proven use-
ful to tackle problems such as multi-task learning, structured
prediction, or function-valued regression.
In this thesis, we introduce an original functional extension
of multi-output learning called Infinite Task Learning (ITL),
that allows to jointly solve an infinite number of parameterized
tasks, including for instance quantile regression, cost-sensitive
classification and density level set estimation.
We propose a learning framework based on convex inte-
gral losses that encompasses the ITL problem and function-
valued regression. Optimization schemes dedicated to solving
the associated regularized empirical risk minimization pro-

blems are designed. By sampling the integral losses, we derive
finite-dimensional representation of the solution under several
choices of regularizers or shape constraints penalties, while
keeping theoretical guarantees over their generalization capa-
bilities. We also employ dualization techniques with the bene-
fit of bringing desirable properties such as robustness or spar-
sity to the estimators thanks to the use of convoluted losses.
Scalability issues are addressed by deriving optimization al-
gorithms in the the context of approximated OVKs whose
corresponding vv-RKHSs are of finite dimension. The use of
trainable deep architectures composed by a neural network
followed by a shallow kernel layer is also investigated as a way
to learn the kernel used in practice on complex data such as
images.
We apply these techniques to various ITL problems and to
robust function-to-function regression, that are tackled in the
presence of outliers. We also cast style transfer problems as
a vectorial output ITL problem and demonstrate its efficiency
in emotion transfer.
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