
HAL Id: tel-03498904
https://theses.hal.science/tel-03498904v1

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Le côté obscur de la relativité générale
Jean-Francois Coupechoux

To cite this version:
Jean-Francois Coupechoux. Le côté obscur de la relativité générale. General Relativity and Quantum
Cosmology [gr-qc]. Université de Lyon, 2021. English. �NNT : 2021LYSE1153�. �tel-03498904�

https://theses.hal.science/tel-03498904v1
https://hal.archives-ouvertes.fr


N°d’ordre NNT : 2021LYSE1153

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

École Doctorale  ED52 
de Physique et d’Astrophysique

Spécialité de doctorat : Physique Théorique 
Discipline : Astroparticules & Cosmologie 

Soutenue publiquement le 10/09/2021, par :

Jean-François Coupechoux

The Dark Side of General Relativity

Devant le jury composé de :

TSIMPIS Dimitrios, Professeur des Universités, Université Lyon 1, IP2I            Président
NOVAK Jérôme, Directeur de recherche CNRS, LUTH, Meudon                     Rapporteur
RIOTTO Antonio, Professeur, Université de Genève, CAP                              Rapporteur
CAPRINI Chiara, Directrice de recherche CNRS, APC, Paris                        Examinatrice
MOHAYAEE Roya, Chargée de recherche CNRS, IAP, Paris                         Examinatrice

ARBEY Alexandre, Maître de conférences, Université Lyon 1, IP2I   Directeur de thèse









Résumé

Motivés par les récentes détections d’ondes gravitationnelles, nous considérons que les
trous noirs primordiaux sont une alternative valable à une partie significative de la matière
noire. Pour le moment, il n’y a pas de preuves expérimentales de l’existence d’un tel objet
mais l’évènement appelé GW190814 a permis de détecter un objet compact de 2.6 M⊙. Il
s’agit donc soit de l’étoile à neutrons la plus massive, soit du trou noir le plus léger jamais
détecté. Mais il pourrait également s’agir d’un trou noir primordial et nous allons considé-
rer différents aspects des ondes gravitationnelles reliées aux trous noirs primordiaux. Tout
d’abord, nous avons utilisé le code développé par la communauté d’Einstein Toolkit pour
résoudre numériquement les équations d’Einstein et calculer des formes d’ondes gravita-
tionnelles émises par la fusion de deux trous noirs. Ces formes d’ondes sont valables pour
n’importe quelle masse du système considéré grâce aux relations de scaling pour des trous
noirs décrits par la métrique de Kerr. On peut donc facilement avoir la forme d’onde pour
des trous noirs allant d’une masse de l’ordre du gramme jusqu’à des millions de masses
solaires. Ces relations de scaling sont également valables pour des trous noirs chargés mais
il existe des trous noirs plus exotiques qui brisent les relations de rescaling. Nous étudierons
les limites physiques de ces relations en considérant l’expansion de l’Univers et le rayonne-
ment de Hawking qui peuvent devenir non négligeables pour des trous noirs primordiaux.

Lorsqu’un signal d’onde gravitationnelle est détecté par la collaboration LIGO/Virgo,
les objets détectés sont classés en étoiles à neutrons si leur masse est inférieure à 2.2 M⊙
et en trous noirs si leur masse est supérieure à 5 M⊙. Mais si on ne veut pas utiliser cette
distinction, il faut être capable de mesurer l’effet de la matière baryonique décrivant une
étoile à neutrons grâce à la déformabilité de marée. Ainsi, nous étudierons les conditions
nécessaires pour déterminer la nature des objets compacts en injectant des formes d’onde
dans un bruit réaliste des détecteurs.

Par ailleurs, il existe de nombreux candidats pour décrire la matière noire et les trous
noirs primordiaux n’en constituent qu’un parmi tant d’autres. Le modèle Fuzzy Dark Mat-
ter basé sur un champ scalaire en est un autre, et il est possible d’étendre un tel modèle
pour qu’il imite également le comportement de l’énergie noire. Nous étudierons son poten-
tiel pour en donner la forme la plus générale. A basse énergie, les deux ingrédients de base
sont : un terme de masse de l’ordre de 10−22 eV et une constante V0 dominant l’évolution
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récente de l’Univers pour remplacer l’énergie noire. Cependant, la forme du potentiel reste
une question ouverte car elle est très peu contrainte au cours de l’histoire de l’Univers. En
revanche, il est possible de donner des limites sur la densité d’énergie d’un champ scalaire
totalement générique au moment de la nucléosynthèse primordiale grâce à l’abondance des
différents éléments primordiaux. Ces limites sont données pour un champ scalaire stable et
pour un champ scalaire se désintégrant en radiation. Il existe de nombreux modèles utili-
sant des champs scalaires en cosmologie, pour essayer de réduire leur nombre, une solution
est de les considérer comme non indépendant. Pour cela, nous introduirons un modèle de
triple unification unifiant : l’inflation, la matière noire et l’énergie noire avec un seul et
unique champ scalaire couplé de manière non minimale à la gravité.

Keywords: Matière noire, énergie noire, champs scalaires en cosmologie, nucléosyn-
thèse primordiale, trous noirs primordiaux, étoiles à neutrons, ondes gravitationnelles.



Abstract

Motivated by the recent gravitational wave detections, we consider primordial black
holes as a valid alternative to a significant fraction of dark matter. At the moment, there
is no experimental evidence of such an object, but the event called GW190814 has detected
a compact object of 2.6 M⊙. It is therefore either the most massive neutron star or the
lightest black hole ever detected. But it could also be a primordial black hole and we will
consider different aspects of gravitational waves related to primordial black holes. First,
we used the code developed by the Einstein Toolkit community to solve numerically the
Einstein equations and calculate the gravitational wave-forms emitted by a binary black
hole merger. These wave-forms are valid for any mass of the system thanks to the scaling
relations for black holes described by the Kerr metric. We can thus easily have the wave-
form for black holes having a mass of the order of a gram up to millions of solar masses.
These scaling relations are also valid for charged black holes but there are more exotic
black holes that break the scaling relations. We will also study the physical limits of these
relations by considering the expansion of the Universe and Hawking radiation, which can
become non-negligible for primordial black holes.

When a gravitational wave signal is detected by the LIGO/Virgo collaboration, the
detected objects are classified as neutron stars if their mass is lower than 2.2 M⊙ and as
black holes if their mass is higher than 5M⊙. But if we do not want to use this distinction,
we must be able to distinguish the effect of baryonic matter describing a neutron star
through the tidal deformability. We will study the necessary conditions to determine the
nature of compact objects by injecting wave-forms into a realistic detector noise.

There are many candidates to describe dark matter and primordial black holes are one
of them. The Fuzzy Dark Matter model based on a scalar field is another one and it is
possible to extend this model to also mimic the behavior of dark energy. We will study
the potential of such a model to give the most general form. At low energy, the two basic
ingredients are: a mass term of the order of 10−22 eV and a constant V0 dominating the
recent evolution of the Universe to replace dark energy. However, the shape of the potential
remains an open issue because it is not very constrained in the primordial Universe. On
the other hand, it is possible to give limits on the energy density of a generic scalar field
during Big-Bang nucleosynthesis by the observed abundance of the elements. These limits
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are given: for a stable scalar field and for a scalar field decaying into radiation. There
are many models using scalar fields in cosmology, to reduce their number, a solution is to
consider them as non-independent. For this, we will introduce a triple unification model
unifying: inflation, dark matter and dark energy with a single scalar field with a non-
minimal coupling to gravity.

Keywords: Dark matter, dark energy, cosmological scalar fields, Big-Bang nucleosyn-
thesis, primordial black holes, neutron stars, gravitational waves
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Introduction

Who, looking at the night sky filled with bright stars, is not amazed by the space and
the size of the Universe? Throughout history, the notion of Universe has evolved according
to philosophical principles. In ancient Greece, Aristotle considered the Earth as a fixed
point at the center of everything (geocentric theory) and it was not until the Renaissance
that Copernic’ principle emerged with the idea that our planet is not the center of the
Universe and that it should not have a privileged position. In the 17th century, thanks
to Galileo’s telescopes, the solar system could be observed with precision and in the 20th
century, the questions of history, structure and evolution of the cosmos appeared with the
concept of Big-Bang. The debate on the cosmological constant is a striking illustration of
the evolution of knowledge in cosmology. Initially, Einstein had introduced it to impose a
static Universe, which was challenged by Hubble’s law and then removed. But, with the
discovery of the accelerated expansion of the Universe, Einstein’s constant was reintroduced
with a different value.

Today, at the beginning of the 21st century, cosmology is opening a new period, some-
times called modern cosmology with a huge amount of data. To give some examples, the
Center for Astrophysics recorded the position of 1100 galaxies in 1985 and now, with the
Sloan Digital Sky Survey (SDSS) [1], the 3D position of four million galaxies and quasars
is mapped which covers 90% of the visible Universe. In 1964, the cosmological background
was discovered and only an approximation of its temperature was measured and today, the
Planck collaboration measures its anisotropy with great precision and puts constraints on
cosmological parameters [2].

Cosmology is a science distinct from others, because no experiment can be performed
directly to test hypotheses without bias: no Universe can be created. With astronomical
observations, a standard model called ΛCDM has emerged. This model is based on Gen-
eral Relativity and knowledge of fundamental physics to answer some of these questions:
How did the elements form? How did galaxies form? Why is the Universe so flat? Why is
the CMB so homogeneous even in non-causally connected regions? etc. According to the
Big-Bang, the origin of the Universe dates back to 13.8 billion years ago. At that time, the
Universe was hotter and denser. Its evolution described by the ΛCDM model, is based on
four main observations: the abundance of elements predicted by the Big-Bang nucleosyn-
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thesis, the expansion of the Universe by the Hubble diagram, the cosmological background
and the large scale structure of the observable Universe with galaxy distribution.

Despite the great success of ΛCDM model, it introduces a cosmological constant Λ
and cold dark matter whose natures are totally unknown and which constitute 95% of
the total energy of the Universe. In other words, the Standard Model of particles can
only describe 5% of the Universe. So, "What is dark matter?", "What is dark energy?".
Remain the most important unresolved questions in cosmology. There are many theories
that try to answer these questions. For cold dark matter, they can be classified into two
groups. The first one considers that General Relativity must be modified and that the
missing matter is only a gravitational effect and that no unknown cold dark matter is
needed. Modified Newtonian dynamics (MOND) [3] is an example of such a theory. The
second group considers that at galaxy scale, General Relativity is still valid and adds a new
ingredient like weakly-interacting massive particles (WIMPs) to describe cold dark matter.
But these particles have not yet been detected by direct experiment like Edelweiss [4] and
no clue of new physics has been found in the Large Hadron Collider. It is also possible to
mimic the behavior of cold dark matter with primordial black holes [5] or with ultra-light
particles described by a scalar field [6]. Concerning the cosmological constant Λ, it has
been introduced to take into account the acceleration of the expansion of the universe
observed using supernovae of type Ia [7]. In the equations of General Relativity, the
cosmological constant can appear on the left side of the equation as a space-time curvature
term through the Λgµν term or in the right side as a source term interpreted by a fluid with
negative pressure called dark energy. What is strange is that throughout the evolution of
the Universe, because of its, the cosmological constant only starts having an impact today.
An accelerated universe expansion can also be easily described by a scalar field dominated
by it potential as is the case for inflation.

Scalar fields are ubiquitous in cosmology: fuzzy dark matter, quintessence, dark fluid,
inflation, dilatons, moduli, etc. are some examples. Quintessence models [8] aim to explain
dark energy by a dynamical scalar field that could have had an impact at an earlier stage
of the Universe like the freezing models or in the future like the thawing models. Fuzzy
Dark Matter models based on an ultralight scalar field dominated by its mass term (m ∼
10−22 eV) that interacts only gravitationally can reproduce the observed galaxy rotation
curves [9] and explain cold dark matter [6]. It is questionable whether all these scalar fields
are independent. The Dark Fluid model aims to unify Fuzzy Dark Matter and quintessence
and a further step is to unify Dark Fluid with inflation.

As mentioned earlier, a scalar field is not the only possible solution to the cold dark
matter problem. Recently, primordial black holes have reappeared as a potential solution
to this problem. With the first detection of the gravitational waves from binary black
hole merger: GW150914 [10], this opens up new opportunities completely independent of
electromagnetic radiation to study the Universe and test General Relativity in strong field
regime. After this first detection, many others followed and the population of black holes
is being studied. The detection of a black hole with a mass close to one solar mass would
be an important clue of the existence of a primordial black hole, because a stellar black
hole is expected to have a mass higher than 4− 5 solar masses.

The work I will present here is composed of two large independent parts motivated by
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cold dark matter.

In the first part, a cosmological scalar field dominated by its mass term m ∼ 10−22 eV
is considered as a viable alternative to cold dark matter. Such a model is called Fuzzy
Dark Matter. If its potential is fairly well constrained in the weak field regime by the
Cosmic Microwave Background [11], for example, we will see, this is not the case in the
strong field regime. In the case where the potential of a scalar field is dominated by a
constant then, it can replace the dark energy component of the Universe. After reviewing
these models, we consider the most general potential of the Dark Fluid model, which aims
at unifying the two unknown components of the Universe compatible with observations.
The main key ingredient is the domination of a mass term during the dark matter area
that leads to a quickly oscillated scalar field around a minimum, but a non-zero minimum
to create the new recent acceleration of the Universe. A further step will be done by
considering that inflation could be created by Dark Fluid. Or rather, that inflation is
a consequence of a non-minimal coupling between dark fluid scalar field and gravity. In
the early Universe, scalar fields are weakly constrained but there are constraints due to
the Big-Bang nucleosynthesis. The upper limits on the energy density of scalar fields will
be calculated considering the observed primordial abundance of the following elements:
helium-4, deuterium and helium-3. Unfortunately, the addition of a scalar field to the
ΛCDM model does not solve the lithium problem.

In the second part, primordial black holes are considered as a viable alternative to cold
dark matter. This requires specific masses around 1020g or 1050g to explain the whole
dark matter component [5] but primordial black holes around 1 M⊙ can still constitute a
significant part of this unknown matter. The GW190814 event [12] with a compact object
of 2.6 M⊙ is unexpected because it appears too large to be a neutron star and too small
to be a black hole. It is therefore important to determine the conditions under which a
neutron star or a compact star can mimic a primordial black hole of the same mass in
the light of gravitational wave-forms. This will obviously depend on the stiffness of the
equation of state and the quality of the data. To give a quantitative answer, the odds
number can be computed with Bayesian analysis to select between two competing models.

More precisely, chapter 1 is a short introduction to the ΛCDM model. For more details
there are several good textbooks [13–15] and my favorite is Scott Dodelson’s which explains
modern cosmology. In chapter 2, the homogeneous evolution of scalar fields that mimic
dark matter and/or dark energy is presented. The main result is the possible shape of the
most general potential for Dark Fluid models. Chapter 3 presents a new model that aims to
unify: dark matter, dark energy and inflation. This model has been published in [16]. The
last chapter of the first part gives the limits of the energy density of stable and decaying
scalar fields considering Big-Bang nucleosynthesis and the observed abundance of helium,
helium-3 and deuterium. These limits have been published in [17].

The second part begins with chapter 5. It starts with the interest of studying primordial
black holes and ends with a quick introduction to numerical relativity within the Einstein
Toolkit framework [18] to produce gravitational wave-forms. More details on numerical
relativity can be found in the following textbook [19] and a pedagogical explanation of the
3+ 1 formalism in [20]. Chapter 6 is the article [21] which introduced the scaling relations
in General Relativity that are used in numerical relativity. Their limits are explored by
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considering Hawking radiation and cosmological expansion for primordial black holes. In
addition, scaling relations for exotic black holes are being explored and the observation of a
break in these scaling relations upon detection of gravitational waves would be an indication
of physics beyond Einstein’s standard relativity. Finally, Chapter 7 is motivated by the
GW190814 event [12] with the detection of a 2.6 solar mass compact object of unknown
nature and we explore how gravitational wave-forms produced by primordial black holes
could mimic neutron stars [22].

The first appendix is the list of abbreviations and acronyms. Appendix B is a summary
of my main results from Part I that was written for the ICHEP conference [23].
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Cosmological Scalar Fields
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1
The ΛCDM model

First, we review the standard cosmological model called ΛCDM based on the cosmo-
logical principle, which states that the Universe is isotropic (identical in all directions)
and homogeneous (no privileged localization) on a sufficiently large scale. According to
the ΛCDM model, more than 95% of the total energy of the Universe is unknown, and
the natures of dark energy and dark matter remain two of the most important unresolved
questions.

Contents

1.1 The expanding Universe . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Scale factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Friedmann equations . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Composition of the Universe . . . . . . . . . . . . . . . . . . . . 11

1.2 A brief history of the Universe . . . . . . . . . . . . . . . . . . . 13

1.2.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Big-Bang nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . 18

1.3 Beyond the standard model . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Galaxy rotation curves . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Conclusion and dark sector . . . . . . . . . . . . . . . . . . . . . 20

1.1 The expanding Universe

1.1.1 Scale factor

In 1929, Hubble discovered that the Universe is expanding. In other word, the distance
between two galaxies is smaller in the early Universe than today. This can be understood
by the metaphor of the balloon. The balloon corresponds to a 2 dimensional Universe
and the points drawn on the balloon represent the positions of the galaxies. The comoving
distance calculated from the coordinates between two points or two galaxies remains always

7



CHAPTER 1. THE ΛCDM MODEL

Figure 1.1 – Difference between the physical distance and the comoving distance in an
expanded Universe.

constant. But, if the balloon inflates, the physical distance which is proportional to the
scale factor a changes. Fig. 1.1 shows an expansion of the Universe where the comoving
distance and the physical distance are represented.
Let us consider a comoving trajectory ~x(t) of a galaxy. Its physical trajectory is:

~xph = a(t)~x(t) (1.1)

and its physical velocity is the derivative of Eq. (1.1) which leads to:

~vph(t) =
d~xph
dt

=
da

dt
~xph + a

d~x

dt
= H~xph + ~vpe (1.2)

where ~vpe is the peculiar velocity close to 400 km/s for a typical galaxy and H is the
Hubble rate which characterizes the variation of the scale factor. The present Hubble rate
of the Universe called the Hubble constant H0 is measured by different methods. A first
method is to determine the proportionality coefficient between the physical velocities and
their distances which leads to [24]:

H0 = 100h km/s/Mpc (1.3)

with h = 0.72±0.08. Another possibility is to measure the Hubble constant by the Cosmic
Microwave Background (CMB), its value is given in Table 1.1.

1.1.2 Friedmann equations

A spacetime is defined by a manifold M with a metric gµν . For a spatially homogeneous
and spatially isotropic Universe, the spacetime (M,gµν) admits a foliation of hypersurfaces
Σt parameterized by the continuous cosmological time t such that [25]:

gµνdx
µdxν = −c2dt2 + γijdx

idxj , (1.4)

8
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Parameter Definition Observational value
ωb = Ω0

bh
2 Baryon cosmological parameter 0.02237± 0.00015

ωc = Ω0
ch

2 Cold dark matter cosmological parameter 0.1200± 0.0012

ΩΛ Cosmological constant parameter 0.6847± 0.0073

H0 Hubble constant in km/s/Mpc 67.36± 0.54

zeq Redshift of matter-radiation equality 3402± 26

Table 1.1 – Data from Planck 2018 results [2]. Ω0
X is defined as the ratio of the current

energy density of component X over the present critical density, and h is the reduced
Hubble constant h = H0/(100 km/s/Mpc).

where xi and γij are respectively the coordinates and the induced metric on Σt. In (1.4),
there are no terms in dtdxi; and (Σt,γij) must be a maximally symmetrical space of 3
dimensions. Then [25]:

γijdx
idxj =







a(t)2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
(Euclidean space R

3)

a(t)2
[
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

]
(hypersphere S

3)

a(t)2
[
dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2)

]
(hyperbolic space H

3)

. (1.5)

After coordinate transformations, the metric (1.4) can be rewritten as follows:

gµνdx
µdxν = −c2dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

, (1.6)

which is called the Friedmann Lemaître Robertson Walker (FLRW) metric with:

k =







0 (Euclidean space R
3)

1 (hypersphere S
3)

− 1 (hyperbolic space H
3)

. (1.7)

A flat universe characterized by a zero curvature is Euclidean. A closed Universe is de-
scribed by a hypersphere with positive curvature. In such a space, two particles moving
freely and initially parallel will converge. An open Universe is described by a hyperbolic
space with negative curvature.

With the metric (1.4), to solve the Einstein equations:

Rµν −
1

2
gµνR+ Λgµν =

8πG

c4
Tµν , (1.8)

it is necessary to determine the stress-energy tensor Tµν . For a perfect fluid, this tensor is
defined by:

Tµν =
(
ρc2 + P

)
uµuν + Pgµν , (1.9)

with ρc2 the matter energy density of the fluid, P the pressure and uα = (1, 0, 0, 0) the
4-velocities. In General Relativity, the continuity equations are imposed by the vanishing

9
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Figure 1.2 – Evolution of the energy density fractions of radiation, matter and dark energy
as function of the scale factor. The shaded areas show the different epochs of the Universe.

of the covariant derivative of the stress-energy tensor. In the expanding Universe, the
conservation law for a perfect fluid gives:

dρ

dt
+ 3

ȧ

a

(

ρ+
P

c2

)

= 0 . (1.10)

To solve this equation, it is necessary to know the equation of state ω = P/ρc2. Two
standard cases can be distinguished:

• ω = 0 corresponding to a fluid with null pressure, dust or cold dark matter are some
examples.

• ω = 1/3 corresponding to radiation.

For a constant equation of state, the Eq. (1.10) can be easily solved and the energy density
is proportional to a power of the scale factor a:

ρ = ρ0

[a0
a

]3(1+ω)
. (1.11)

Finally, Einstein’s equations in an isotropic and homogeneous Universe in the xµ =
(ct, r, θ, φ) coordinates give the following two equations:

(
ȧ

a

)2

+
c2k

a2
=

8πG

3
ρ+

c2Λ

3
,

ä

a
= −4πG

3

(

ρ+ 3
P

c2

)

+
c2Λ

3
,

(1.12)

called Friedmann equations. The first equation corresponds to the tt component and the
second to the rr component. The others are trivial. These two differential equations
describe the evolution of a(t), ρ(t) and P (t). This system is closed by an equation of state.
In the following, we use the natural unit system with c = 1.

10
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1.1.3 Composition of the Universe

Figure 1.3 – In the ΛCDM model, the Universe
is constituted of radiation, baryonic matter, cold
dark matter and dark energy.

The ΛCDM model assumes the ex-
istence of a cold dark matter and a
cosmological constant Λ whose natures
are still an open issue. Currently, af-
ter 14 billion years of evolution, the
abundance of the different species con-
stituting the Universe, is represented by
the diagram of Fig. 1.3. As we can see,
more than 95% of the Universe is un-
known. These proportions between the
various species evolve with the Universe
expansion. For example, during Big-
Bang nucleosynthesis, radiation domi-
nates the Universe, and dark energy is
negligible. There are three main eras of
domination: the radiation era, the mat-
ter era and the dark energy era. Fig. 1.2
shows the evolution of these quantities
as a function of the scale factor a fol-
lowing:

• Radiation: relativistic species whose rest mass energy is negligible compared to its
kinetic energy: E(p) =

√

p2 +m2 ≃ p. At equilibrium at temperature T , the energy
density of such a species is:

ρ = g

∫
d3p

(2π)3
1

e(E−µ)/T ± 1
E (1.13)

and the pressure is:

P = g

∫
d3p

(2π)3
1

e(E−µ)/T ± 1

p2

3E
(1.14)

where the +1 is for a Fermi-Dirac distribution and −1 for a Bose-Einstein distribu-
tion. The constant g is the degeneracy of this species and µ is the chemical potential.
As expected, for E = p, the energy density is proportional to the pressure with a
factor 1/3 which means that the equation of state is ω = 1/3. Today, the radiation is
composed of photons and neutrinos. Cosmic Microwave Background (CMB) photons
have been detected at the temperature T0 = 2.725K measured by the Planck collab-
oration. The CMB appears as a perfect black body radiation. The energy density of
photons is given by Eq. (1.13) with x = p/T :

ργ = 2× 4π

(2π)3

∫ +∞

0

x3dx

ex − 1
=
π2

15
T 4 (1.15)

where the factor 2 represents the two polarizations of photons and the chemical po-
tential can be safely ignored [26]. Since the density evolves like a−4 for radiation, the
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temperature T scales as a−1. Unlike cosmological photons, cosmological neutrinos
have not been observed. Neutrinos follow the Fermi-Dirac distribution, but today
their interactions are too weak to remain in equilibrium with photons. Photons and
neutrinos can therefore have different temperatures. In the early Universe, when
the Universe is hotter and denser, photons and neutrinos are in equilibrium with the
same temperature; but with the expansion of the Universe, neutrinos and photons are
decoupled. In this hypothesis, the temperatures of photons and neutrinos are identi-
cal, but electrons and positrons will annihilate and reheat the photon temperature.
Before this annihilation, radiation is composed of: photons (2 degrees of freedom),
electrons e− (2 spin states), positron e+ (2 spin states), neutrinos (3 species with 1
spin state) and antineutrinos. Thus, the entropy density s = (ρ + P )/T = 4ρ/3T
scaling as a−3 is given by:

s1 =
2π2

45
T 3

(

2 +
7

8
(2 + 2 + 3 + 3)

)

=
43π2

90
T 3 (1.16)

where the factor 7/8 comes from the difference between bosons and fermions. Af-
ter the annihilation, the radiation is composed of photons (temperature Tγ) and
neutrinos (temperature Tν). Thus,

s2 =
2π2

45

(

2T 3
γ +

21

4
T 3
ν

)

(1.17)

Even during annihilation, temperature of neutrinos scales as a−1 and aT is constant
for this species. Assuming that annihilation does not create entropy s1a31 = s2a

3
2, we

obtain:
Tν
Tγ

=

(
4

11

)1/3

(1.18)

Today, the energy density of radiation is:

ρr = ργ + ρν =

(

1 + 3
7

8

(
4

11

)4/3
)

π2

15
T 4
0 (1.19)

which represents about 0.01% of the total energy density of the Universe.

• Matter: baryonic matter in the Universe can be observed thanks to the electro-
magnetic radiation interacting with this matter. The observed clouds of matter are
mainly composed of hydrogen and most of their atoms are ionized. But this density
of matter constitutes only 16% of the total matter density. There is a matter that
does not interact with light and for now, only its impact by gravitational effects has
been detected. This matter is called cold dark matter. In the following, the matter is
considered as the sum of the cold dark matter and the baryonic matter. This matter
is modeled by zero pressure, which leads to a scaling of a−3. The observational values
given by the Planck collaboration are shown in Table 1.1.

12
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Figure 1.4 – Chronology of the Universe based on the Big-Bang model.

• Dark energy: is the reinterpretation of the cosmological constant Λ which appears
in the Friedmann equations (1.12) as a negative pressure fluid: PΛ = −ρΛ. Such fluid
is introduced in the ΛCDM model to explain the recent acceleration of the Universe.

Table 1.1 gives the main cosmological parameters which will be used in the following.

1.2 A brief history of the Universe

The origin and evolution of the Universe are described by the cosmological model called
Big-Bang. The age of the Universe is about 14 billion years, which corresponds to a tem-
perature of T0 = 2.7 K. Today, the scale factor a = a0 is generally set to 1. In the past,
the Universe was smaller a < 1 and hotter T > 2.7 K. In cosmology, the temperature
often substitutes for time to describe the evolution of the Universe because it is a great
indicator of the appearance of phase transitions (recombination, nuclear fusion, protons
formed, electroweak transition, ...). Fig. 1.4 summarizes the chronology of the Universe
since the Planck energy and the big steps are listed below.

The beginning of the physical Universe can be considered as the Planck scale and no
theory can describe it correctly. The quantum effects of gravity dominate its evolution and
it is possible that the four fundamental forces are unified.

13
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After Big-Bang, the Universe grows extremely fast and this period is called inflation.
Between 10−33 − 10−32 s the Universe expands by a factor of the order of 1026. In other
words, the number N of e-folds is greater than 50: log(aend/abeg) ≥ 50 where abeg and
aend is respectively the scale factor at the beginning and the end of inflation. There is no
direct experiment which demonstrates the existence of inflation, but it is the solution to
solve the flatness and horizon problems. At the end of inflation, the inflaton must decay
into particles that will give the Standard Model.

At 150 GeV, an energy a little higher than the Higgs mass, the temperature is not suffi-
cient to keep electromagnetism and weak interaction into a single electroweak interaction.
The SU(2) × U(1)Y symmetry is broken into U(1)EM . The vacuum expectation value
of the Higgs field is no longer zero. The 3 bosons of the electroweak interaction become
massive with a massless photon.

For a temperature between 150 GeV and 150 MeV, the Universe is a soup of quark
known as the quark-gluon plasma. It is filled with quarks, leptons and their antiparticles.
But, for a temperature below 150 MeV, baryons and mesons are produced. The majority
of hadrons will be protons and neutrons.

At 1 MeV, the equilibrium between electrons, positrons, neutrinos and antineutrinos is
broken. The rate Γ of the reaction:

e+ + e− ↔ νe + ν̄e (1.20)

is given by n〈σv〉 ∼ G2
FT

5 where GF is the Fermi constant. Neutrinos decouple when this
rate is approximately equal to the Hubble parameter H =

√

8π/3Gρ ∼
√
GT 4 which leads

to a decoupling temperature of:

T ∼
(√

G

G2
F

)1/3

∼ 1 MeV . (1.21)

Thus, for a temperature below 1 MeV, neutrinos are no longer in equilibrium with photons,
electrons, positrons ... The Universe becomes transparent for neutrinos, which produced
the emission of the cosmic neutrino background. This emission has not been detected yet.

Between 100 keV and 1 keV, protons and neutrons fuse to form nuclei. Hydrogen,
helium-4, deuterium, helium-3, lithium-7 ... are produced during what is called primordial
nucleosynthesis. The Universe is a plasma of nuclei, electrons and photons.

After 370000 years, the Universe had expanded and cooled enough (T ∼ 0.4 eV), to
allow the formation of atoms. Electrons and nuclei bind to form neutral atoms. The
Universe becomes transparent: photons can travel freely without scattering with matter.
These photons form the Cosmic Microwave Background (CMB) and were emitted during
this epoch called recombination.

After recombination, the Universe enters in the dark ages. Photons are no longer
emitted until the re-ionization. Hydrogen clouds form and collapse into stars and galaxies.
The formation of the first starts and galaxies is still under debate, but it is approximately
300 mega years after the Big-Bang. Thereafter, galaxies coalesce into clusters and super-
clusters of galaxies.

It is only recently that the expansion of the Universe has begun to accelerate. The
Λ-CDM model explain this acceleration with a negative pressure fluid.
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Figure 1.5 – Potential U(ψ) defined in Eq. (1.28) as a function of ψ. Inflation starts at the
dashed red line and ends at the dashed blue line.

1.2.1 Inflation

As mentioned earlier, inflation was introduced to solve the horizon problem. This prob-
lem appears with the homogeneity and anisotropy of the CMB. In all sky directions, the
CMB has the same temperature even if the regions are not causally connected. Therefore,
the last scattering of photons can not be in equilibrium. The comoving Hubble radius
(aH)−1 is a way to know if the particles are in causal contact. The scale λ = 2πa/k is out-
side the horizon if the wave-number k is smaller than aH. During inflation, the comoving
Hubble rate must decrease dramatically and therefore aH has to be increased:

d

dt
(aH) ≃ d2a

dt2
> 0 . (1.22)

Solving the horizon problem means having an accelerated expanding period called inflation.
With the Friedmann equations (1.12), in order to have an accelerated expansion, it is
necessary to have a negative pressure fluid such that P < −ρ/3. Such a behavior can
be obtained with a scalar field dominated by its potential. The energy density and the
pressure of a scalar field φ are given by:

ρ =
φ̇2

2
+ U(φ) ,

P =
φ̇2

2
− U(φ) ,

(1.23)

which leads to P ≃ −ρ if the kinetic term φ̇2/2 is negligible as compared to the potential
term U and an expansion of 55 e-fold solves also the flatness problem.

The inflation model introduced by Starobinsky is based on gravity [28]. Assuming this
R2 model to describe inflation, the action is given by:

S =

∫

d4x
√−g

[
1

2κ2

(

R+
1

6M
R2

)]

, (1.24)
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Figure 1.6 – Marginalized joint two-dimensional 68% and 95% C.L. regions for the slow-roll
parameters (ǫv, ηv, ξ

2
v), and the tensor to scalar ratio r as a function of the scalar spectral

index ns. The two-dimensional constraints are obtained by the Planck collaboration [27] us-
ing TT,TE,EE+lowE+lensing data (blue contours) and TT,TE,EE+lowE+lensing+BK15
data (red contours). The black lines correspond to the values of the R2-inflation model
for 50 < N < 60. The big black dot is calculated with N = 60 and the small one with
N = 50.

where M is a constant, fixed by the amplitude of CMB power spectrum (see equation
(1.34)). This action corresponds to the f(R) = R+R2/(6M2) theory. Starobinsky inflation
model is known to be a viable inflation scenario. Inflation occurs when R ≫ M2 and
H2 ≫ |Ḣ|, see [29].

We perform a conformal transformation to find the Einstein frame, with:

Ω2 = F (R) , (1.25)

where F (R) is the derivative of f(R). By defining an effective field ψ as:

ψ

MP
=

√

3

2
logF , (1.26)
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the action becomes:

S =

∫

d4x
√

−g̃
[

1

2κ2
R̃− 1

2
g̃µν∂µψ∂νψ − U(ψ)

]

, (1.27)

with

U(ψ) =
M2
P

2

FR− f

F 2
=

3M2M2
P

4

[

1− exp

(

−
√

2

3

ψ

MP

)]2

. (1.28)

The tilde in the action denotes quantities in the Einstein frame. Chaotic inflation occurs
when the potential dominates the evolution and changes slowly.

The shape of the potential is shown in Fig. 1.5, where one can see that the potential
is relatively constant in the region ψ ≫ MP . The slow-roll parameters of this potential,
which have to be small during inflation, are given by:

ǫv =
M2
P

2

(
U ′

U

)2

=
4

3

[

exp

(
2ψ√
6MP

)

− 1

]−2

,

ηv =M2
P

U ′′

U
= −4

3

exp
(

2ψ√
6MP

)

− 2
[

exp
(

2ψ√
6MP

)

− 1
]2 ,

ζ2v =M4
P

U ′′′U ′

U2
=

16

9

exp
(

2ψ√
6MP

)

− 4
[

exp
(

2ψ√
6MP

)

− 1
]3 .

(1.29)

The end of inflation is characterized by ǫv = 1 so that

ψend
MP

=

√

3

2
ln

(

1 +
2√
3

)

≃ 0.94 . (1.30)

The number of e-folds is given by:

N =
1

M2
P

∫ ψbeg

ψend

U

U ′dψ =
3

4

[(

exp

(√

2

3

ψbeg
MP

)

−
√

2

3

ψbeg
MP

)

−
(

exp

(√

2

3

ψend
MP

)

−
√

2

3

ψend
MP

)]

,

(1.31)

and one obtains for N = 55

ψbeg
MP

≃
√

3

2
ln

(
4

3
N

)

≃ 5.26 . (1.32)

The scalar spectral index [30] and the tensor to scalar ratio can also be obtained by
ns = 1 − 6ǫv + 2ηv and r = 16ǫv, respectively. The CMB observations by Planck set
constraints on slow-roll parameters [31], which are presented in Fig. 1.6. Therefore, the
predictions are in agreement at the one sigma level with Planck observational data.
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In order to obtain the value of αv2, we will use the amplitude of the power spectrum
which is connected to the potential by [32]:

δ2H =
4

25
PR =

1

150π2M4
P

V

ǫv
. (1.33)

The evaluation of this expression at the end of inflation, which corresponds to N ≃ 55 and
δH ≃ 2× 10−5, gives:

M ≃ 3× 10−6mP . (1.34)

with mP =
√
8πMP . This equality fixes the free parameter of the R2 model.

1.2.2 Big-Bang nucleosynthesis

The abundance of the elements in the Universe is related by primordial nucleosynthesis.
The key ingredient is the synthesis of deuterium:

p+ n→ D + γ . (1.35)

For a temperature of 1 MeV, when the Universe is hotter and denser, the nuclei can not
bind. If deuterium is formed, it will be immediately destroyed by high energy photons.
At that time, the Universe is dominated by radiation and the ratio between protons and
neutrons is close to one, but with the expansion of the Universe described by the Friedmann
equations, the proton-neutron equilibrium given by the following relations:

n+ e+ ↔ ν̄e + p ,

n+ νe ↔ p+ e−
(1.36)

is broken and there is a freeze out. At 0.1 MeV, which corresponds to 109 K, beta decay
occurs and the deuterium starts to be synthesized with a n/p ratio close to 12%. The
light elements are formed and the main reactions are given in the left panel of Fig. 1.7.
The element most produced by the Big-Bang nucleosynthesis (BBN) is helium-4 with a
mass fraction of 25%. Deuterium, helium-3, beryllium-7, lithium-7 are produced in small
quantities. At 1 keV, the temperature is not high enough and the BBN stops. The
predicted BBN abundances are shown in the right panel of Fig. 1.7. The thick lines
represent theoretical predictions and the boxes and arrows observational measurements.
The solid vertical band is the region that is compatible between theory and measurements,
leading to a measurement of the baryon density (neutron and proton density) in Universe
during the BBN.

1.2.3 Cosmic Microwave Background

After 370000 years of evolution, the Universe was cold enough to allow the formation
of atoms. At that time, the Universe became transparent to photons because the light was
no longer being scattered off free electrons. These photons follow the black body spectrum
given by the Planck’s law:

I(ν, T ) =
2hν3

c2
1

exp (hν/kBT )− 1
, (1.37)
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Figure 1.7 – Left panel: diagram of the Big-Bang nucleosynthesis with the main reactions.
Right panel: predicted abundances of the light nuclei from the Big-Bang nucleosynthesis
from [33].

where the temperature is measured at 2.7 K. The CMB measurements impose many con-
straints on the cosmological parameters. Some of them are given in Table 1.1. In addition,
the Planck collaboration provides constraints on wφ: the dark energy equation of state [2].
Depending on the parameterization of wφ, the article [34] gives the following constraints:

• if wφ is constant, measurements impose:

wφ = −1.028± 0.032 , (1.38)

• if wφ is described by a linear fit as a function of the scale parameter a such that
wφ(a) = ω0 + (1− a)ωa with ω0 and ωa constant, measurements impose:

ω0 = −0.961± 0.077 ,

ωa = −0.28+0.31
−0.21 .

(1.39)

In addition the Planck collaboration gives limits on the early dark energy (EDE) cos-
mological parameter ΩEDE(z), which is the proportion of dark energy density to the total
energy density at redshift z [35]. These constraints are [36]:

• ΩEDE ≤ 4% (95% C.L.) at redshift z = 10,

• ΩEDE ≤ 2% (95% C.L.) at redshift z = 50,

• ΩEDE ≤ 1.6% (95% C.L.) at redshift z = 200,

• ΩEDE ≤ 1.3% (95% C.L.) at redshift z = 1000.
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1.3 Beyond the standard model

1.3.1 Galaxy rotation curves

In 1933, the astronomer Fritz Zwicky discovered the missing matter by studying the
dynamical evolution of the Coma cluster. The theoretical study of the evolution of the
observed luminosity mass does not correspond to the real dynamics. He then suggested
the existence of invisible matter in galaxy cluster called dark matter. Moreover, with the
development of radiotelescope, galaxy rotational curves can be measured. Far from the
center of the galaxies, these curves are generally flat, whereas the theory predicts a decrease
as 1/

√
r following the Keplerian dynamics where r is the distance to the galaxy center.

Consequently, the galaxies seem to be surrounded by a dark matter halo.

As demonstrated in the papers [9, 37, 38], a simple complex scalar field with U(1)
symmetry based on the Lagrangian density:

Lφ = gµν∂µφ
†∂νφ+ U(φ) , (1.40)

can reproduce the galaxy rotation curves of dwarf galaxies. The calculations assume an
internal rotation for the scalar field φ = σ(r) exp(iωt) associated to a quadratic potential
with anharmonic corrections. A result for the dwarf spiral DDO 154 is shown in Fig. 1.8.
In this figure, the visible matter called baryonic matter does not reproduce rotation curve
but, by adding a dark halo described by a complex scalar field, the observed rotation curve
is reproduced. Such a model based on a low mass scalar field is called Fuzzy Dark Matter
and we will study it in more detail in the next chapter from a cosmological point of view.

1.3.2 Conclusion and dark sector

The nature of dark energy and dark matter is still an unresolved mystery in cosmol-
ogy. Baryon asymmetry in the Universe, baryogenesis and inflation also necessitate new
phenomena in the early Universe. Many cosmological models for such phenomena involve
scalar fields, and with the discovery of a Standard Model Higgs boson [39,40] the existence
of fundamental scalar fields has been proven.

Cosmological observations can be explained by assuming the existence of cold dark
matter (CDM) and of a cosmological constant Λ [2], forming the cosmological standard
model ΛCDM. The cosmological constant represents about two-third of the present total
energy density in the Universe, whereas CDM and baryons constitute the remaining energy
density. CDM is a pressureless component, and the cosmological constant has a negative
pressure and constant density. At the time of recombination and emission of the Cosmic
Microwave Background (CMB), the dominating energy density was that of radiation, and
the baryon and CDM densities were subdominant but left specific imprints on the CMB,
and the cosmological constant was completely negligible. Before recombination, radiation
is assumed to dominate, and in the very early Universe the expansion is expected to be
exponential during the inflation period.

The cosmological constant can be replaced by a dark energy with a nearly constant
density today [8, 41–46]. Contrary to the cosmological constant, dark energy is driven by
a dynamical mechanism. Quintessence models, for example aim at explaining dark energy
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Figure 1.8 – Rotation curve of the dwarf spiral DDO 154 from [38]. The blue dots represent
the direct measurement of the rotation curve and the green curve is the expected rotation
curve with the visible matter. The red line is the rotation curve calculated by adding a
scalar field.

with a cosmological field [41, 42]. The form of its potential is clearly unknown, and many
different potentials have been studied and confronted with observations, and a large variety
of models are still compatible with observational data.

Typical dark matter models involve weakly-interacting massive particles (WIMPs),
which can be scalar particles still undiscovered at colliders and dark matter detection
experiments. Models for dark matter can also be based on other kinds of scalar fields.
This is for example the case of fuzzy dark matter [6] or spintessence [47], in which the
scalar field oscillates quickly, acquiring in average a pressureless matter behaviour. At
galactic scales, it can form a galactic halo through Bose-Einstein condensation, with a
typical size given by the Compton wavelength of the scalar field. Such models need a
quadratic term in the potential with a mass as low as 10−23 eV, and therefore the scalar
field does not behave like particles. Such models have the advantage of not suffering from
the so-called cuspy halo and missing satellite problems [48].

On the other hand, the dark fluid model [49–51] describes a cosmological component
which behaves at galactic scales as dark matter and at large scales like dark energy, re-
placing both components by a single one. Such a model can rely on a scalar field with a
specific potential [52–54].
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2
Scalar fields in cosmology

In this chapter different models based on scalar fields will be presented. Fuzzy Dark
Matter (FDM) models introduce a scalar field that behaves like dark matter, quintessence
models can explain the recent acceleration of the expansion of the Universe, and dark fluid
models aim at unifying dark energy and dark matter with the same and unique scalar field.
The potential of these models is still an open question and we will focus on the evolution
of cosmological scalar fields at the time of the Big-Bang nucleosynthesis, which may affect
the formation of heavy nuclei.

Contents
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2.1 Dark energy scalar fields

Cosmological scalar fields are often used to explain dark energy, and typical models
include quintessence [8,55]. In this section, we consider such a scalar field, and the cosmo-
logical constant is set to zero in the equations and replaced by the real scalar field φ. Since
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all cosmological observations are currently compatible with a simple cosmological constant,
the main features of such scenarios are a scalar field density close to the dark energy value
in the present Universe, an equation of state wφ ≈ −1, and a negligible density at the
recombination time. We will consider several cases of quintessence scalar fields [8]: scaling
freezing model, tracking freezing model and thawing model. For each model, we choose the
parameters and initial conditions so that the scalar field density equals the cosmological
constant density today.

To solve the evolution equations, we follow [56] and define the reduced variables:

x =
φ̇√

6MPH
,

y =

√

U(φ)√
3MPH

,

ur =

√
ρr√

3MPH
,

um =

√
ρm√

3MPH
,

uφ =

√
ρφ√

3MPH
,

(2.1)

where ρr, ρm and ρφ refer to radiation, matter (baryonic matter and cold dark matter)
and scalar field (dark energy) densities, respectively, and MP is the Planck mass. With
such definitions, the background evolution is given by:

x′ =
3

2
x (Π− 2x) +

√

3

2
λy2 ,

y′ =
3

2
Πy −

√

3

2
λyx ,

u′m =
3

2
(Π− 1)um ,

u′r =
3

2

(

Π− 4

3

)

ur ,

u′φ =
3

2
Πuφ ,

(2.2)

with the Friedmann constraint:

x2 + y2 + u2r + u2m + u2φ = 1 , (2.3)

where the prime denotes a derivative with respect to the logarithm of the scale factor
N = ln a, λ = −MPU

′/U and Π is defined as:

3

2
Π =

3

2

(

2x2 + u2m +
4

3
u2r

)

= − Ḣ

H2
. (2.4)

This system of equations is particularly useful to obtain fixed point solutions in the evolu-
tion of the scalar field.

2.1.1 Scaling freezing models

We first consider the case of a single exponential potential [57]:

U(φ) = V exp

(

−λ φ

MP

)

, (2.5)

where V and λ are constant parameters. The density evolution of the scalar field is given
by the system of equations (2.2). The fixed point solutions for the scalar field respect
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Figure 2.1 – Evolution of the scalar field density for a single exponential potential, as a
function of the scale factor. The solid curves for the scalar field have been obtained for fixed
point initial conditions and the dashed curve for arbitrary initial conditions. In the fixed
point case, the evolution of the scalar field density follows the dominant energy density.

x′ = 0 and y′ = 0. In the case where the evolution of the Universe is dominated by a
barotropic fluid with a pressure such as Pf = (f − 1)ρf where f is constant, we have:

x =
φ̇√

6MPH
=

√

3

2

f

λ
,

y =

√

U(φ)√
3MPH

=

(
3(2− f)f

2λ2

)1/2

,

(2.6)

and the fixed point solutions are given by:

8πG

3H2

(

φ̇2

2
+ V exp

(

−λ φ

MP

))

=
3f

λ2
. (2.7)

These fixed point solutions are the only ones which are stable, as discussed in [57]. There-
fore during the radiation-domination era we have:

(
H

H0

)2

≃ Ω0
r =⇒ Ωφ =

ρφ
ρc

=
4Ω0

r

λ2
a−4 , (2.8)

and during the matter-domination era:

H2

H2
0

≃ Ω0
ma

−3 =⇒ Ωφ =
ρφ
ρc

=
3Ω0

m

λ2
a−3 , (2.9)

where ρc is the critical density. Hence the evolution of the scalar field density will follow
that of the dominating density. The evolution of the scalar field is shown as a function of
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the scale factor in Figure 2.1. As expected, the scalar field density follows the evolution
of the dominating density and is inversely proportional to λ2 for fixed point solutions. For
λ = 10, two curves are drawn, one with fixed point initial conditions and the other one
for arbitrary initial conditions. In the latter case the scalar field is first dominated by its
kinetic term and its density is proportional to a−6, it then reaches a plateau whose height
depends on the value of V and the initial values of φ and of φ̇. This kind of behaviour
does not depend on the form of the potential and will be studied in more detail in the next
section. Ultimately, the scalar field reaches the fixed point behaviour.

At the time of BBN (a ∼ 10−10), since the radiation is dominating, the scalar field
density decreases with an exponent equal to nφ = 4 for fixed point solutions and nφ = 6
for other initial conditions.

The problem of the exponential potential however is that because of its tracking be-
haviour, it does not lead to a correct present-time behaviour with wφ ≈ −1, and the single
exponential potential is generally considered as excluded [58].

We therefore turn towards the more flexible double exponential potential [59], which is
the prototypical scaling freezing model:

U(φ) = V1exp

(

−λ1
φ

MP

)

+ V2exp

(

−λ2
φ

MP

)

, (2.10)

where V1,2 and λ1,2 are constant parameters. Such a model can be motivated by com-
pactifications in superstring models. The top panel of Figure 2.2 shows the evolution of
the scalar field density for λ2 = 0 and for different values of λ1. The initial conditions
have been chosen in order to obtain fixed point solutions. The bottom panel shows the
evolution of the equation of state wφ = Pφ/ρφ. During the radiation-dominated era, we
have wφ = wr = 1/3. During the matter-dominated era we have wφ = wm = 0. It is only
recently that the second term in the potential (2.10) is dominating, leading to an equation
of state wφ ≃ −1. In the λ2 = 0 case, the observational constraint from Planck (1.39)
at 95% C.L. translates into λ1 > 13 at 95% C.L., and the observational constraint from
early dark energy ΩEDE ≤ 1.3% at z = 1000 translates into λ1 > 15. Therefore a double
exponential can explain the recent acceleration of the expansion of the Universe.

To summarize, within the model under consideration, at the epoch of BBN the scalar
field has a radiation-like behaviour with wφ = 1/3 for fixed point solutions, whereas with
generic initial conditions either the kinetic term dominates leading to wφ = 1, or the
potential dominates leading to a plateau with wφ = −1.

2.1.2 Tracking freezing models

We now consider the inverse power-low potential [60]:

U(φ) =M4

(
MP

φ

)p

, (2.11)

where M is a constant mass scale and p a positive exponent. Contrary to the exponential
case, the potential is diverging when the scalar field becomes close to zero.

The top panel of Figure 2.3 shows the evolution of the scalar field density for two values
of p and different initial conditions. In the early Universe, the scalar field is dominated
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Figure 2.2 – Evolution of the scalar field in the scaling freezing model with a double expo-
nential behaving like dark energy. V1 and V2 have been fixed to retrieve the cosmological
constant value today. The top panel shows the evolution of its density, matter density and
radiation density as functions of the scale factor. The bottom panel shows the evolution of
the scalar field equation of state wφ = Pφ/ρφ as a function of the scale factor. The curves
have been drawn for different values of λ1, and for λ2 = 0.

by its kinetic energy and the equation of state is wφ = 1. After this period the scalar
field density is constant with wφ = −1. As can be seen in the figure, the duration of the
constant behaviour period strongly depends on initial values of the scalar field and can
even extend to the present period, or stop and reach an intermediate equation of state
with ωφ ∼ −0.5 with a negligible density. Finally the two curves (dashed and solid) for
the same value of p are identical and determine the value of the dark energy density today
and its equation of state. Following [41, 61], in the matter area we have ωφ = −2/(p+ 2).
The Planck constraints (1.38) at 95% C.L. then translate into p < 0.105.
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Figure 2.3 – Evolution of the scalar field in the tracking freezing model with inverse power-
low potential behaving like dark energy. M has been fixed to retrieve the cosmological
constant value today. The top panel shows the evolution of the scalar field, matter and
radiation densities as functions of the scale factor. The bottom panel shows the evolution
of the equation of state wφ = Pφ/ρφ as a function of the scale factor. The curves are drawn
for different values of the exponent p and for two different initial conditions.

To summarize, in this scenario we found that during BBN the scalar field can either
be dominated by its kinetic term with wφ = 1, or have a negligible density.

2.1.3 Thawing models

We now consider the pseudo-Nambu-Goldstone potential [62]:

U(φ) = µ4
(

1 + cos(φ/fa)
)

, (2.12)

where µ and fa are constant parameters.
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Figure 2.4 – Evolution of the scalar field in a thawing model with pseudo-Nambu-Goldstone
potential behaving like dark energy, for different choices of initial conditions and param-
eters. µ has been fixed to retrieve the cosmological constant value today. The top panel
shows the evolution of the scalar field, matter and radiation densities as functions of the
scale factor. The bottom panel shows the evolution of the equation of state wφ = Pφ/ρφ
as a function of the scale factor. The curves are drawn up to a = 10 for different initial
conditions. The shaded area corresponds to the future with a > 1.

Figure 2.4 shows the behaviour of the scalar field for different initial conditions and
choices of µ and fa, as a function of the scale factor. We explicitly plotted the evolution
up to a = 10 in order to better visualize how the behaviour changes in the future when
a > 1. If the initial value of φ̇ is non-zero, the scalar field is first dominated by its kinetic
term. Then the scalar field becomes constant. At the present period, a ≈ 1, the scalar
field starts to evolve and wφ increases and starts to oscillate. This behaviour is called
“thawing” as opposed to the “freezing” behaviour of the previous models. For larger values
of φi/MP the field starts oscillating earlier. In the future for a > 1, which corresponds to
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the shaded area in the figure, the averaged value of wφ will stay close to 0, and the scalar
field will therefore behave like matter. At the time of BBN, we observe that the scalar
field is generally dominated by its kinetic term leading to wφ = 1, or has a constant but
negligible density.

At the present epoch with a ∼ 1 the equation of state departs from the cosmological
constant behaviour. Using the Planck constraints from Eqs. (1.38) and (1.39), we obtain
that wφ < −0.95 at 95% C.L. In Figure 2.4 this means that cases with φ̇ = 0 (blue and
green curves) are excluded.

To summarize, quintessence scalar fields at BBN time have generally three different
behaviours:

• a dominating kinetic term leading to wφ = 1,

• a tracking radiation-like behaviour with wφ = 1/3,

• a constant behaviour with wφ = −1, which often corresponds to a negligible density.

Intermediate behaviours are still possible, but in our set-up they always correspond to
negligible densities during BBN.

2.2 Dark matter scalar fields

In this section, we consider the case of a scalar field with a matter-like behaviour
in the present Universe. We therefore have the cosmological constant density set to its
observational value, and the cold dark matter density is replaced by the scalar field density.
We thus expect the scalar field density to have the same density as the observed cold dark
matter one in the period between recombination and today, and a matter-like behaviour
corresponding to wφ = 0.

Two separate cases can occur. First, if the scalar field is associated to a large mass
term, dark matter can then be composed of scalar particles. Second, if the mass is very
small, the Compton wavelength is large, and the scalar field will have only large scale
effects. We study only the latter case in the following.

Let us consider an oscillating scalar field, which has a behaviour similar to the one
of a pseudo-Nambu-Goldstone potential in the future. If the timescale T of the studied
phenomena is much longer than the oscillation period of typical frequency ωeff , but much
shorter than the conformal Hubble time H−1, i.e. H−1 ≫ T ≫ ωeff , the averaged equation
of state reads [63]:

wφ =
〈Pφ〉
〈ρφ〉

=
〈φ′2/(2a2)− U(φ)〉
〈φ′2/(2a2) + U(φ)〉 =

〈U ′(φ)φ− 2U(φ)〉
〈U ′(φ)φ+ 2U(φ)〉 +O

( H
ωeff

)

, (2.13)

where the prime corresponds to the derivative with respect to the conformal time η, defined
as dt = a dη, and 〈...〉 the average over the time interval T . For example, if we take a
power-law potential U(φ) = λ|φ|n/n, we can show that wφ ≃ (n − 2)/(n + 2). Then, the
conservation of the stress-energy tensor ρ′φ + 3(1 + wφ)Hρφ = 0 gives:

〈ρφ〉 = ρ0a
−3(1+wφ) = ρ0a

−6n/(n+2) . (2.14)

As a consequence, a quadratic term in the potential leads to a matter-like behaviour.
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Figure 2.5 – Evolution of the fuzzy dark matter scalar field, associated to a quadratic
potential with a mass m = 10−24 eV, as a function of the scale factor. Baryon, radiation
and cosmological constant densities follow the standard values of the ΛCDM model. The
density of the scalar field has been calculated for different values of φ̇ at a = 10−12. For
each value of φ̇, we have chosen the initial value of φ in order to obtain a matter-like
behaviour starting before the observed zeq of Table 1.1 and a present scalar field density
equal to the observed cold dark matter density.

2.2.1 Quadratic potential: fuzzy dark matter

Fuzzy dark matter [6] has recently attracted some attention [11] as a potential alter-
native to WIMP models. It features a quadratic potential such that:

U(φ) =
1

2
m2φ2 . (2.15)

As discussed before, such a potential can give to the scalar field a matter-like behaviour.
Observations of galaxy rotation curves can be used to constrain the value of the mass
m [37]. At galactic scales, the scalar field can be described as a Bose-Einstein condensate
in gravitational interaction with baryonic matter, and a value of m compatible with the
observations is of the order of 10−24−10−23 eV. The Klein-Gordon equation corresponding
to the potential (2.15) in a homogeneous Universe reads [64]:

φ̈+ 3Hφ̇+m2φ = 0 . (2.16)

It is convenient to define the dimensionless time t̃ = mt, the dimensionless Hubble constant
H̃ = H/m and u = a3/2φ. With this change of variables, the Klein-Gordon equation takes
the form:

ü+

(

1− 3

4

ȧ2

a2
− 3

2

ä

a

)

u = 0 . (2.17)

Two cases can be considered:
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• assuming H̃ ≫ 1, one can transform Eq. (2.17) into

v′′ − a′′

a
v = 0 , (2.18)

with ′ = d/dη the derivative with respect to the dimensionless conformal time η such
as dη = dt̃/a, and v = a−1/2u = aφ. In the radiation-domination era, the Friedmann
equation gives a′′ = 0. We therefore find dη ∝ da and v = α1a + β1, where α1 and
β1 are two constants of integration. The scalar field density reads:

ρφ =
φ̇2

2
+
m2φ2

2
= m2





(

H0

√

Ω0
r

a

d

da

(v

a

)
)2

+
1

2

(v

a

)2





=
m2H2

0Ω
0
rβ

2
1

a6
+
m2

2

(

α1 +
β1
a

)2

.

(2.19)

• assuming H̃ ≪ 1 and ˙̃H ≪ 1, the solution of Eq. (2.17) is much simpler. Indeed, the
energy E = u̇2/2 + u2/2 is conserved and we obtain

ρφ =
φ̇2

2
+
m2φ2

2
=
m2E

a3
. (2.20)

Thus the background evolution of the scalar field gives a matter-like behaviour.

Figure 2.5 shows the evolution of the baryon, radiation, cosmological constant and
scalar field densities for different initial conditions. In the early Universe the scalar field
density is dominated by its kinetic energy and the potential is completely negligible. So
a3dφ/dt is conserved and the scalar field density is proportional to a−6. As dφ/dt decreases,
at some point the field density becomes dominated by the potential and the field density
is therefore constant as long as H > m. For H < m, the scalar field oscillates quickly and
its energy density evolves like dark matter.

As discussed earlier, the end of the plateau corresponds to the equality H2 ≃ m2, or
equivalently to a ≃ (H2

0

√

Ω0
r/m)1/4 ≃ 3.7 × 10−6. The beginning of the plateau depends

on the initial value of φ̇ and is given by the solution of the equation:
(

1 +
H0

√

Ω0
rφi

a2i φ̇i

)

a3 − aia
2 − aiH0

√

Ω0
r

m
= 0 , (2.21)

where the subscript i indicates the initial time. So the plateau begins before a ≃ 2.4×10−8,
which corresponds to a negligible value of φi.

In conclusion, because of the plateau, the fuzzy dark matter scalar field density remains
negligible during BBN.

2.2.2 Self-interaction coupling

We extend the previous analysis by adding a quartic term to the potential (2.15) [9,37]:

U(φ) =
1

2
m2φ2 +

1

4
λφ4 . (2.22)
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Figure 2.6 – Evolution of a scalar field with self-interaction coupling behaving like dark
matter, as a function of the scale factor. Baryon, radiation and cosmological constant
densities follow the standard values of the ΛCDM model. In the top panel the scalar
field density is drawn with m = 1.2 × 10−20 eV, λ = 10−81 and φ = 9.5 × 1029 eV−4,
φ̇ = 1.3 × 1017 eV−3 for a = 10−12. In the bottom panel the scalar field density is drawn
for different values of λ. For each value of φ̇, we have chosen the initial value of φ in
order to obtain a matter-like behaviour starting before the observed zeq of Table 1.1 and
a present scalar field density equal to the observed cold dark matter density.

The dimensionless constant λ represents a self-interaction coupling. With the same nota-
tion as in the previous subsection, the Klein-Gordon equation becomes:

v′′ +

(

a2 − a′′

a
+

λ

m2
v2
)

v = 0 . (2.23)

Three different cases can be considered:

• assuming λφ2 ≪ H2 and H̃ ≫ 1, the Klein-Gordon equation is the same as Eq. (2.18)
and we obtain similar results.
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• assuming λφ2 ≫ H2 and λφ2 ≫ m2, during the radiation-domination era, the Klein-
Gordon equation becomes:

v′′ +
λ

m2
v3 = 0 . (2.24)

In this case the quadratic part of potential does not contribute to the evolution of
field density. The energy E = v′2/2 + λv4/(m2) is conserved and we obtain:

ρφ =
φ̇2

2
+
λφ4

4
=
m2E

a4
+
m2u

2a4

(

H2
0Ω

0
r

a2
v − 2H0

√

Ω0
r

a
v′

)

. (2.25)

Therefore the background behaviour of the scalar field is radiation-like.

• assuming λφ2 ≪ m2 and H̃ ≪ 1, ˙̃H ≪ 1, the Klein-Gordon equation is the same as
in Eq. (2.17) and we obtain similar results.

Figure 2.6 shows the evolution of the baryon, radiation, cosmological constant and
scalar field densities. As expected the difference with the results of the previous subsection
is a radiation-like behaviour of the scalar field. In the top panel, we have chosen a mass
m = 1.2× 10−20 eV, and we see that the scalar field density is not negligible during BBN
and its evolution is dominated by the self-interaction coupling. Such a mass is however
disfavoured by the CMB and large-scale structure data, which impose [11]:

10−26 < m/eV < 10−23.3 ,

10−111 < λ < 10−98 .
(2.26)

In the bottom panel of Figure 2.6, we have chosen parameter values compatible with these
constraints, and we see that the scalar field density is negligible during BBN. More gen-
erally, scanning over the parameters and imposing the constraints (2.26), we have verified
that the scalar field density is always negligible at the BBN epoch.

2.2.3 Polynomial potential

The previous results can be extended to the case of an arbitrary polynomial potential.
The BBN constraints then depend on which term of the potential is dominating at BBN
time. Following Eq. (2.42), if the dominating term is φn, the scalar field density evolves
as ρφ ∝ a−6n/(n+2), meaning that the exponent is within the range [−6, 0]. For example,
if the dominating term is φ6, Eq. (2.42) gives ρφ ∝ a−4.5. However, since the matter-
like behaviour should hold at recombination time, it can be expected that the scalar field
density is also negligible at BBN time.

2.2.4 Exponential potential

We now consider the following potential:

U(φ) = αρc
[

exp

(
βφ2

m2

)

− 1

]

, (2.27)

where ρc is the critical density, and α and β are two dimensionless constants. This po-
tential is built in order to have a minimum at zero in absence of scalar field. Similarly to
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Figure 2.7 – Evolution of a scalar field with an exponential potential behaving like dark
matter, as a function of the scale factor. Baryon, radiation and cosmological constant
densities follow the standard values of the ΛCDM model. The scalar field density has been
calculated for different initial values. For each value of φ̇, we have chosen α in order to
obtain a matter-like behaviour starting before the observed zeq of Table 1.1 and a present
scalar field density equal to the observed cold dark matter density.

the previous cases, the scalar field is required to start behaving like dark matter before
recombination in order to agree with the CMB data. In the late Universe, the scalar field
is expected to have a small value, so that the potential becomes via a Taylor expansion:

U(φ) = ρc
(
αβ

m2
φ2 +

1

2

αβ2

m4
φ4 + ...

)

, (2.28)

where the dominant term is quadratic. We therefore recover the fuzzy dark matter potential
with possibly a non-negligible quartic term. Constraints on fuzzy dark matter impose the
mass of the scalar field to be around 10−24 eV. In consequence we choose 2αβ = m4/ρc.
With this relation there is only one free parameter for this potential. Figure 2.7 shows
the scalar field density evolution for different initial conditions. For each initial scalar field
value we have chosen α to obtain the same value of the radiation-matter equality as in the
ΛCDM scenario, so that α ≃ 5× 1015. We found that with an exponential potential, only
two behaviours are possible during BBN: either a kinetic term domination with wφ = 1,
or a potential term domination leading to a constant density with wφ = −1.

2.2.5 Complex scalar field: Spintessence

Until now we have only considered the case of a real scalar field. In this subsection we
study a complex scalar field with a U(1)-symmetric potential [47]. The potential will be
given by U(φ†φ). For a complex scalar field:

φ(t) =
σ(t)√

2
exp(iθ(t)) , (2.29)
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Figure 2.8 – Evolution of a spintessence complex scalar field with a mass term behaving like
dark matter, as a function of the scale factor. Baryon, radiation and cosmological constant
densities follow the standard values of the ΛCDM model. We have chosen φ̇ = 1.3× 1017

eV−3 for a = 10−12, and we set the initial value of φ in order to obtain a matter-like
behaviour starting before the observed zeq of Table 1.1 and a present scalar field density
equal to the observed cold dark matter density.

where σ(t) is the amplitude and θ(t) the phase, Friedmann and Klein-Gordon equations
give the following system:

d2σ

dt2
+ 3H

dσ

dt
+ U ′

(
σ2

2

)

σ − ω2σ = 0 ,

dω

dt
σ + 3Hωσ + 2ω

dσ

dt
= 0 ,

H2 = H2
0

(

Ω0
ba

−3 +Ω0
ra

−4 +
ρφ
ρc

)

,

(2.30)

with ω(t) = dθ/dt and

ρφ =
σ̇2

2
+
ω2σ2

2
+ U

(
σ2

2

)

. (2.31)

The first two terms of the density constitute the kinetic part. The second line of Eq. (2.30)
is the imaginary part of the Klein-Gordon equation and implies the conservation of the
U(1)–charge per comoving volume Q = ωσ2a3. We can rewrite the first equation and the
scalar field density as:

d2σ

dt2
+ 3H

dσ

dt
+ U ′

(
σ2

2

)

σ − Q2

σ3a6
= 0 ,

ρφ =
σ̇2

2
+

Q2

2σ2a6
+ U

(
σ2

2

)

.

(2.32)
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We consider now the evolution of the scalar field density for a polynomial potential of
order 4:

U(φ†φ) = U0 +m2φ†φ+ λ(φ†φ)2 =
1

2
m2σ2 +

1

4
λσ4 . (2.33)

Figure 2.8 shows the evolution of the scalar field density for different values of the charge
per comoving volume Q as a function of the scale factor. We consider first the case where
the self-coupling λ is zero. When Q is zero we recover exactly the results of a real scalar
field. In the early Universe, when Q increases the Klein-Gordon equation gives the con-
servation of a3dσ/dt. At this time, the kinetic terms which depend on the values of σ̇2

and Q2 dominates, giving an equation of state wφ = 1. The behaviour then changes and
the density becomes constant. We can see that the height of the plateau increases with
the charge per comoving volume. The transition between the plateau and the dark matter
behaviour, which is given by H ≃ m for Q = 0, will also increase. In conclusion, the sec-
ond term in Eq. (2.31) acts as an extra mass term and the evolution of the complex scalar
field density has the same behaviour as a real scalar field. Similar conclusions are obtained
for a non-zero self-coupling, and the scalar field has a negligible density at the time of BBN.

To summarize, the density of dark matter scalar fields is generally dominated by the
kinetic part at the epoch of BBN, leading to an equation of state wφ = 1 and an evolution
such that ρφ ∝ a−6. However, the density of the scalar field is generally negligible at this
time. We also saw that non-standard potentials such as polynomials can lead to other
behaviours. It is however important to keep in mind that a scalar field with a heavy mass
term can behave like dark matter even during the BBN epoch, having an average equation
of state wφ = 0 and an evolution such that ρφ ∝ a−3.

2.3 Dark fluid model

A scalar field which interacts only gravitationally with baryonic matter associated to a
dominating quadratic mass term in the potential can behave as collisionless matter and be a
dark matter candidate. One the other hand a scalar field with a mostly constant potential
can explain the current acceleration of the expansion of the Universe. As discussed in
Refs. [49–51] it is possible to explain the dark energy and dark matter behaviours with a
unique dark fluid. We study the properties of such a scalar field in view of the observational
constraints.

2.3.1 Dark fluid model and observational constraints

Galactic scale: Fuzzy Dark Matter

Most of the dark matter models involve particles which interact only very weakly with
Standard Model particles. Such weakly-interacting massive particles (WIMPs) are still
undiscovered at colliders and in dark matter detection experiments. An alternative possi-
bility based on scalar fields, namely fuzzy dark matter [6], has recently re-attracted some
attention [48]. At galactic scale such models can reproduce the flatness of galaxy rota-
tion curves [37]. The scalar field, associated to a quadratic potential with a mass m, can
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form a Bose-Einstein condensate in gravitational interactions with baryonic matter. The
condensate constitutes a galactic halo with a typical size given by the Compton wavelength:

lcompton =
h

mc
. (2.34)

For a typical halo of 10 kpc, the mass m is estimated to be m ∼ 10−23 eV [52]. Having
such a small mass is an advantage for fuzzy dark matter since it does not suffer from the
so-called cuspy halo and missing satellite problems [65]. Furthermore a scalar field with in
addition to a mass term a quartic term of coupling constant λ, can also condensate within
a radius L, which can be of the order of the typical size of a cluster. The relation between
L and λ is given by:

λ =
8πGm4L2

c2
. (2.35)

For a typical cluster size L ∼ 1 Mpc, the value of the quartic term coupling is λ ∼ 10−89

[52].
The fuzzy dark matter model has been studied in the context of galactic halos, in

particular in Refs. [6,65]. The evolution of an ultralight scalar field φ is given by the Klein-
Gordon equation. In a static galaxy gravitational interaction can be globally described in
the Newtonian limit with the Poisson equation. In addition, a nonrelativistic dispersion
relation can be safely assumed for the wave equation. The wavefunction of the scalar field
can be written under the form ψ = A exp(iα), where A is the probability amplitude and
α the phase, so that φ = A cos(mt− α) [6]. The evolution equation reads:

i

(

∂t +
3

2

ȧ

a

)

ψ =

(

− 1

2m
∇2 +mΨ

)

ψ , (2.36)

and the Poisson equation:
∇2Ψ = 4πGδρφ , (2.37)

where Ψ is the Newtonian potential, ȧ/a is the Hubble parameter and δρφ = m2δ|ψ|2/2
is the energy density of the scalar field. Equation (2.36) is the Schrödinger equation for a
self-gravitating particle in a Newtonian potential in an expanding Universe. In Ref. [6] it
is shown that ultralight particles with a mass m ∼ 10−22 eV lead to smooth and minimum-
sized halos, and therefore provide a solution to the cuspy halo and galaxy satellite problems
of standard cold dark matter scenarios.

The Schrödinger-Poisson equation system (2.36-2.37) also describes a solitonic be-
haviour during a head-on collision between two galaxies with Bose-Einstein condensate
halos [66], that is compatible with the observations of the Bullet Cluster [67].

Galaxy rotation curves in agreement with the observations can also be obtained with
an ultralight complex scalar field, when a stationary and regular configuration is assumed,
with the harmonic ansatz:

φ(r, t) = φ0(r) exp(iωt) , (2.38)

similar to the one of boson stars. A comprehensive study in general relativity has been
presented in [37], finding a best fit to the galaxy rotation curves with a mass in the range
10−24−10−23 eV. This result is similar to the one obtained in the Newtonian approximation.

38



CHAPTER 2. SCALAR FIELDS IN COSMOLOGY

Cosmological behaviour

Let us now consider the cosmological behaviour of the dark fluid scalar field. We assume
a homogeneous Universe filled only with radiation, baryonic matter and dark fluid scalar
field. Using the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, the Einstein and
Klein-Gordon equations become:

H2 =
8πG

3
(ρφ + ρr + ρb) ,

2Ḣ + 3H2 = −8πG (Pφ + Pr + Pb) ,

φ̈+ 3Hφ̇+
dV

dφ
= 0 ,

(2.39)

where the energy density and pressure of the scalar field are given by:

ρφ =
1

2

(
dφ

dt

)2

+ V (φ) ,

Pφ =
1

2

(
dφ

dt

)2

− V (φ) .

(2.40)

If we consider the cosmological evolution of a rapidly oscillating scalar field with a frequency
feff . The oscillations need to be faster than the Universe evolution, which is characterized
by the conformal Hubble time H−1. For example for the power-law potential V (φ) =
λ|φ|n/n, the average equation of state is given by:

wφ =
〈Pφ〉
〈ρφ〉

=
n− 2

n+ 2
, (2.41)

where 〈...〉 denotes the average value over a time T such that H−1 ≫ T ≫ f−1
eff . When the

potential governs the energy density evolution, the conservation of the stress energy tensor
gives:

〈ρφ〉 = ρφ,0

(
a

a0

)−3(1+wφ)

= ρφ,0

(
a

a0

)−6n/(n+2)

. (2.42)

For n = 2, this energy density evolves like cold dark matter.
During the period when radiation is dominating the expansion, we can derive con-

straints from primordial nucleosynthesis (BBN). At this epoch the evolution of the scalar
field density is governed by its kinetic term and BBN constraints exclude large scalar field
densities such as [17]:

ρφ(1 MeV) ≥ 1.40ργ(1 MeV) . (2.43)

The CMB and large scale structure observations provide additional constraints. Con-
sidering a scalar field with anharmonic corrections and a potential with a quadratic term
with a mass m and a quartic term with a small coupling constant λ, the main constraints
provided by the Planck and WiggleZ data are [11]:

log10(λ) < −91.86 + 4 log10

( m

10−22 eV

)

(2.44)

for masses heavier than 10−24 eV.
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The acceleration of the expansion of the recent Universe can be in agreement with
a simple cosmological constant. On the other hand quintessence models describe dark
energy with a scalar field φ which has a constant density today and was negligible during
the matter and radiation domination periods.To have a dark energy behaviour, the dark
fluid scalar field therefore needs to have in the recent Universe a rather constant density,
corresponding to a nearly constant value of φ.

Simple dark fluid potential

The dark fluid potential is an open question. In the recent Universe, when the energy
densities are low, the values of the scalar field are small, and one can consider a series
expansion of the potential, assuming a Z2 symmetry. Limiting ourselves to the second
order, the simplest potential mimicking dark matter and dark energy appears as a second
order polynomial, i.e. the sum of constant, having the role of cosmological constant, and a
quadratic term equivalent to the fuzzy dark matter potential. Anharmonic corrections can
also occur with one extra order in the polynomial expansion, and the expanded effective
potential then reads

V (φ) = V0 +
1

2
m2φ2 +

1

4
λφ4 . (2.45)

The constant V0 can lead to a dark energy behaviour provided:

V0 =
Λc4

8πG
≈ 2.5× 10−11 eV4 , (2.46)

where Λ is the cosmological constant. The mass term behaves as a cold and fuzzy dark
matter if m is in the range:

m ≈ 10−22 − 10−21 eV , (2.47)

and the quartic term λ must verified the inequality (2.44).
Figure 2.9 shows the evolution of the scalar field energy density fraction Ωφ = ρφ/ρ

0
cr

with ρ0cr = 3H2
0/(8πG) the critical density as a function of the scale factor a in a homoge-

neous Universe described by the system of equations (2.39). More precisely the Universe
is considered flat and composed of:

• radiation which evolves according to a−4,

• baryonic matter which evolves according to a−3,

• dark fluid which evolves like matter as a−3 when the mass term governs the scalar
field evolution and like dark energy when the constant term dominates.

In the early Universe, the scalar field evolution is dominated by the kinetic term φ̇2/2 and
its density evolves according to a−6. After this period the potential can start dominating,
resulting in a constant density. Then an equilibrium between the kinetic and the potential
is reached, leading to a density described by the equation (2.42). When m2 ≪ λφ2 and
V0 ≪ λφ4, its density evolves like radiation. When λφ2 ≪ m2 and V0 ≪ m2φ2, its
density evolves like matter and when λφ4 ≪ V0 and m2φ2 ≪ V0, its density evolves like
cosmological constant. Essentially the value of the constant density plateau depends on
on the mass m, that we fix to 10−22 eV, the initial value of φ and the quartic term. The
dependence on λ is also shown in Figure 2.9 for a quadratic potential with anharmonic
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Figure 2.9 – Evolution of dark fluid scalar field density fraction as a function of the scale
factor a in the case of a potential with constant term, quadratic term with mass m = 10−22

eV, and quartic term with coupling constant λ. Baryon and radiation densities follow those
of the ΛCDM model.

corrections, where the initial conditions have been chosen in order to have the same scalar
field in the recent Universe.

Within this setup, the dark fluid can replace simultaneously dark matter and dark
energy. It is however important to keep in mind that the potential (2.45) may be a series
expansion of a more complicated potential. In such a case, the primordial properties of
the scalar may be affected by the real form of the potential.

2.3.2 General potential for the dark fluid model

A possibility to improve the dark fluid model is to replace the constant part of the
potential by a dynamical term. Practically it has to be negligible during the matter
domination era in order not to affect the dark matter behaviour. One can for example
add to the quadratic term a quintessence potential [8,55], replace the quadratic term [52],
consider quantum corrections [53], etc. We will see in the following which potentials can
explain simultaneously dark energy and dark matter.

Extended dark matter term

Let us consider the case of an exponential potential. By construction:

V (φ) = V0 exp

(
m2

2V0
φ2
)

≃
φ→0

V0 +
1

2
m2φ2 +

m4

4V0
φ4 , (2.48)

where the second equality is the series expansion, which is valid for small φ values. V0
is fixed to the cosmological constant value V0 = 2.5 × 10−11 eV, and m ∼ 10−22 eV as
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explained in the previous section, so that the effective quartic term coupling is

λ =
m4

V0
≃ 10−78 . (2.49)

Unfortunately this value is too large and is not compatible with the CMB constraints given
in Eq. (2.44).

A second possibility is the following potential:

V (φ) = V0 +
m4

λ

[

exp

(
λφ2

2m2

)

− 1

]

≃
φ→0

V0 +
1

2
m2φ2 +

1

4
λφ4 , (2.50)

which has the same behaviour as the polynomial dark fluid model presented in the previous
section.

Another possibility is a potential with a hyperbolic sine:

V (φ) = V0 +
m4

β
sinh

(
βφ2

2m2

)

≃
φ→0

V0 +
1

2
m2φ2 +

1

4!

β2

m2
φ6 . (2.51)

When φ is small, there is no quartic term and the φ6 term will have a negligible effect, so
that this potential reduces to a constant and a quadratic term.

These models have similar behaviours, which correspond to the one of a polynomial
potential. In practice the main difference between them is the position of the constant
density plateau, as explained in [17]. After the plateau, the scalar field behaves as dark
matter and/or as dark energy, and these models are indistinguishable.

Extended dark energy term

We consider the case in which a quintessence term is added to the dark fluid potential.
There exist two main classes of quintessence models [55]: freezing models in which the field
follows a tracker potential down to its minimum, and thawing models in which the field
continues evolving after reaching the dark energy behaviour.

To have a dark fluid model it is necessary for the quintessence term not to modify the
dark matter behaviour. For example the tracking freezing potential [60]

V (φ) =M4

(
MP

φ

)p

(2.52)

is incompatible with the mass term. Indeed if the scalar field oscillates with a density
evolving as a−3, the field φ will sooner or later reach a negligible value and the tracking
freezing potential diverges.

We now consider the expansion of an exponential potential:

V (φ) =
1

2
m2φ2 + α exp

(

−β
2
φ2
)

≃
φ→0

α+
1

2
(m2 − αβ)φ2 +

αβ2

4
φ4 , (2.53)

where α is determined by the dark energy density, and m and β by the galactic and
cluster scales, respectively. The exponential term can therefore explain simultaneously the
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Figure 2.10 – Evolution of the dark fluid density for the simple dark fluid potential (solid
green line) and for the pseudo-Nambu-Goldstone potential (dashed purple line) with mass
m = 10−22 eV. Both curves are superimposed with negligible differences. The evolutions
of the baryon density and radiation density are the same as in the ΛCDM model, and are
shown in red and blue, respectively.

acceleration of the expansion, galaxy rotation curves and galaxy cluster scale. Numerically,
the modification of the mass term by the αβ term is tiny.

Another possibility is the addition of a pseudo-Nambu-Goldstone potential [62]:

V (φ) =
1

2
m2φ2 + µ4 (1 + cos(φ/fa)) , (2.54)

where m, µ and fa are constant parameters. In this thawing model the dark energy be-
haviour which presently dominates the evolution of the Universe will end in the future and
a new period of dark matter domination will happen in the far future. In Figure 2.10, the
density evolution of the scalar field governed with the pseudo-Nambu-Goldstone potential
with mass term is the same as with the simple dark fluid potential defined in Eq. (2.45).

The dark fluid model can also be generalized to a complex scalar field with a U(1)
symmetric potential. The dark matter behaviour is based on the spintessence model [47].
The symmetry implies the conservation of a charge per comoving volume: Q = R2θ̇a3 where
R and θ are the amplitude and phase of the complex scalar field such as φ = R exp(iθ).
However, similarly to all the dark fluid models that we presented, the choice of the potential
remains arbitrary. The crucial point for a successful model seems to be that the dark fluid
needs to have a fuzzy dark matter behaviour, or in other words its potential should contain
a mass term with m ∼ 10−22 eV.
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3
Triple unification

In this chapter, we show that it is possible for a scalar field to simultaneously replace dark
matter, dark energy and inflation by assuming the existence of a non-minimal coupling to
gravity, a Mexican hat potential, and a spontaneous symmetry breaking before inflation.
After inflation, the scalar field behaves like a dark fluid, mimicking dark energy and dark
matter, and has a dark matter behavior similar to fuzzy dark matter.
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3.1 Introduction

The scalar fields are ubiquitous in cosmology, even if only one exists in the Standard
Model of particle physics. One possibility to reduce the number of cosmological scalar
fields is to unify dark energy and fuzzy dark matter using a single scalar field. This so-
called dark fluid scalar field has already been considered in Refs. [50, 51] and is a possible
solution to both dark energy and dark matter questions. However, such a model is not
unique and the choice of the scalar field potential [52, 54] remains unclear. Nevertheless
most of the potentials that have been considered in the literature can be approximated by
the sum of a quadratic mass term leading to a matter behaviour and an approximately
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constant term giving a dark energy behaviour. A second possibility is to unify inflation
and dark energy [68]. In this case the simplest model is based on a potential composed of
a mass term and a constant term which leads to two stages of accelerated expansion: The
first accelerated expansion occurs in the early Universe and the second one at the present
epoch. A third possibility is to unify inflation and dark matter. In such a case the chaotic
inflation scalar field does not decay completely during reheating, and the density surviving
the incomplete decay can behave as dark matter [69].

A step further would consist in a triple unification to explain simultaneously dark
matter, dark energy and inflation with a unique scalar field. Such a scenario was for
example studied in Refs. [70, 71] where the standard chaotic inflation scalar field with a
mass m ∼ 10−6MP survives after an incomplete decay. The key feature of this scenario
is that the scalar field density remains negligible during the radiation-domination era and
oscillate around a non zero-minimum after radiation domination. Another model studied
in Ref. [72] relies on a non-canonical kinetic term.

In the following we present a more natural triple unification scenario based on a cos-
mological scalar field undergoing a symmetry breaking before inflation. The inflationary
period will be similar to Starobinsky inflation [28], and the resulting scalar perturbations
in the new vacuum will behave as a dark fluid, unifying dark matter and dark energy. We
restrict our study to cases where the dark fluid potential is a polynomial of order 4.

3.2 Model with a non-minimal coupling φ2R2

As mentioned in Appendix 3.6.1, a scenario with a polynomial potential without a non-
minimal coupling between the scalar field and the gravity is incompatible with the CMB
data and the fuzzy dark matter constraints derived in the previous section. A possible
scenario to combine inflation and dark fluid using a scalar field φ is to add a non-minimal
gravitational coupling to gravity. It is demonstrated in Appendix 3.6.2 that a φ2R term
cannot be produced a correct inflationary period with a dark fluid potential. Assuming
a Z2 symmetry for the scalar field which will be spontaneous broken and considering a
second order coupling in R, we consider the following action:

S =

∫

d4x
√−g

[
1

2κ̃2
(
R+ αφ2R+ βφ2R2

)
− 1

2
gµν∂µφ∂νφ− V (φ)

]

, (3.1)

where V is the dark fluid potential and κ̃ is a modified Einstein’s gravitational constant
which will give the usual κ constant after the symmetry breaking, and α, β two constants.
In this model inflation will occur when the βφ2R2 term drives the expansion. Our goal
is to retrieve the Starobinsky inflation model [28]. Before discussing the properties of the
action (3.1), we briefly review the Starobinsky model, which is a specific case of f(R)
theories [73], in which the geometrical action reads

S =

∫

d4x
√−g 1

2κ2
f(R) , (3.2)

with

f(R) = R+
R2

6M2
, (3.3)
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where M is a mass parameter. In the FLRW metric the Einstein equations lead to:

Ḧ − Ḣ2

2H
+

1

2
M2H + 3HḢ = 0 ,

R̈+ 3HṘ+M2R = 0 .

(3.4)

Assuming that inflation occurs when R≫M and Ḣ ≫ H2 one can show that [29,74]:

H(t) = Hi −
M2

6
(t− ti) ,

R(t) = 12H2 −M2 ,

a(t) = ai exp

(

Hi(t− ti)−
M2

12
(t− ti)

2

)

,

(3.5)

so that the Universe experiences an exponential inflationary expansion.
In order to find a similar behaviour with the action (3.1), βφ2 needs to be constant

and equal to 1/6M2. However the scalar field is dynamical and follows the Klein-Gordon
equation, which reads in the FLRW metric:

φ̈+ 3Hφ̇+ V,φ −
αφR+ βφR2

κ̃2
= 0 , (3.6)

and for which the only solution with constant φ corresponds to φ = 0 with the minimal
dark fluid potential.

To obtain a non-zero and constant φ, a possibility is to consider a potential with a
non-standard minimum which does not sit at φ = 0. We will study in the following the
potential:

V (φ) = V0 +
m2

8v2
(
φ2 − v2

)2
, (3.7)

which has two minima corresponding to φ2 = v2. With this potential φ = ±v is a constant
solution to the Klein-Gordon equation, and the action (3.1) can lead to inflation, dark
matter and dark energy behaviours.

3.3 Inflation

3.3.1 Z2 spontaneous symmetry breaking

The action (3.1) with the potential defined in Eq. (3.7) is invariant under a Z2 symmetry
(φ(x) → −φ(x)). At φ = 0 the potential has a local maximum and the theory is unstable
around this value. The two minima correspond to φ = ±v. When the scalar field goes
to one of these minima, the Z2 symmetry is spontaneously broken. The scalar field φ can
oscillate around one of the minima so that:

φ = ξ ± v , (3.8)
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where v is a Vacuum Expectation Value (VEV) and ξ is the variation of scalar field around
the minimum. The action (3.1) thus becomes:

S =

∫

d4x
√−g

[
1

2κ̃2

(

R+αv2
(

1± 2

v
ξ +

1

v2
ξ2
)

R+ βv2
(

1± 2

v
ξ +

1

v2
ξ2
)

R2

)

− 1

2
gµν∂µξ∂νξ − V (ξ)

]

,

(3.9)

with:

V (ξ) = V0 +
m2

2
ξ2 ± m2

2v
ξ3 +

m2

8v2
ξ4 . (3.10)

Also after the spontaneous symmetry breaking and in the limit |ξ| ≪ v, two terms appear
in the action as a result of the dynamical evolution of the scalar field: a term αv2R and a
term βv2R2. The first term modifies gravity and can be reabsorbed in the definition of the
gravitational constant κ. The second term and will induce an inflation period silimarly to
the one in the Starobinsky model. After symmetry breaking, the scalar field variation ξ
will behave as a dark fluid.

Usually, as for example in the Higgs-inflation model, the symmetry breaking occurs
after inflation but in our case it is the opposite. After symmetry breaking, in the limit
|ξ| ≪ v, one can define the effective gravitational constant κ as:

κ =
κ̃

√

1 + αv2 (1± 2ξ/v + ξ2/v2)
≃ κ̃√

1 + αv2
. (3.11)

If the constant α is positive, the gravitational constant κ in the very early Universe is
greater than its value today. It is the opposite way if α is negative. Replacing κ̃ by κ, the
action (3.9) becomes:

S =

∫

d4x
√−g

[
1

2κ2

(

R+
βv2

αv2 + 1/ (1± 2ξ/v + ξ2/v2)
R2

)

−1

2
gµν∂µξ∂νξ−V (ξ)

]

, (3.12)

the standard Einstein’s field equations are recovered with in addition a scalar field ξ and
a R2 term which will generate inflation the Universe. Neglecting the effect of ξ during
inflation the action (3.12) becomes:

S ≃
∫

d4x
√−g

[
1

2κ2

(

R+
βv2

(1 + αv2)M2
P

R2

)]

. (3.13)

This action corresponds to an f(R) = R+R2/(6M2) theory with 6M2 = (1+αv2)M2
P /(βv

2).
Starobinsky inflation model is known to be a viable inflation scenario. Inflation occurs when
R≫M2 andH2 ≫ |Ḣ|, and the typical value ofM is 3×10−6mP withmP =

√
8πMP [29].

Therefore a value for βv2/(1 + αv2) is given by:

βv2

1 + αv2
≃ 109 , (3.14)

but α, β and v are not constrained independently. We however made the assumption that
the symmetry breaking occurs before inflation. This assumption imposes only |ξ| ≪ v and
it is for this reason that we neglected all the terms in front of R2 in Eq. (3.12) except the
constant term.
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Figure 3.1 – Possible evolutions of the dark fluid density ρξ (green) depending on its initial
density. The evolutions of the baryon density (blue) and radiation density (red) are the
same as in the ΛCDM model.

3.3.2 Reheating

In this section, we study the production of particles, which can be created via the Unruh
effect [75] for which an observer in an accelerated frame can observe the emission of particles
off the vacuum. Let us consider the usual reheating scenario after R2 inflation [27,29]. As
long as the created particles do not modify the evolution of the Universe, the action which
describes the model is still:

S =

∫

d4x
√−g

[
1

2κ2

(

R+
R2

6M2

)]

, (3.15)

but the solutions (3.5) are no longer valid. After inflation the Hubble parameter and scalar
curvature are in a fast oscillating regime with M(t − tos) ≫ 1, where tos corresponds to
the beginning of the oscillations. The solutions of the Einstein equations are then:

R ≃ − 4M

t− tos
sin (M(t− tos)) ,

H ≃ 4

3(t− tos)
cos2

(
M

2
(t− tos)

)

,

a

a0
≃ (t− tos)

2/3 .

(3.16)

During this oscillating phase, radiation will be produced via the Unruh effect and the total
radiation energy density is given by [29,74]:

ρr =
g̃∗
a4

∫ t

tos

Ma4R2

1152π
dt , (3.17)

where g̃∗ is the number of relativistic degrees of freedom of non-conformally invariant fields.
In the Standard Model, g̃∗ is equal to 1 because only the Higgs field can be produced
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gravitationally. The articles [76–78] detail some models of reheating in R2 inflation. At
this period the radiation density encompasses (at least) all the Standard Model particles.
The evolution of the radiation density is given by:

dρr
dt

+ 4Hρr =
g∗Ma4R2

1152π
, (3.18)

where g∗ is now the number of relativistic degrees of freedom by supposing a thermalization
of the radiation. The second term corresponds to a backreaction due to the expansion of
the Universe. At a later stage, when R becomes negligible and the right-hand side term
in the previous equation vanishes, the total energy density evolves as ρr ∝ a−4. The
integration of Eq. (3.17) is performed by considering the solution of Einstein equations
given in (3.16). Without considering the backreaction of radiation, we obtain:

ρr ≃
g∗M3

240π

1

t− tos
. (3.19)

This density evolves slowly as compared to H2. The radiation domination era begins at
t ≃ tos + 103M2

P /(g∗M
3) and the reheating temperature can be approximated by [27,29]:

Tr ≤ 3× 1016g
1/4
∗

(
M

MP

)3/2

GeV , (3.20)

where the Tr is defined implicitly as the temperature at which ρr = g∗π2T 4
r /30.

As mentioned in the previous section the field ξ exists before inflation but its density is
suppressed by the expansion of the Universe and is negligibly small at the end of inflation.
The reheating mechanism of the field ξ is similar to the case of radiation. The energy
density of ξ is given by:

ρξ ≃
a2os
a6

∫ t

tos

Ma4R2

1152π
dt . (3.21)

This density production is negligible compared to the radiation density since the latter is
proportional to the large number of relativistic degrees of freedom. The evolution of the
density of ξ is shown in Figure 3.1 for different initial densities. One can notice that the
scalar field density has no influence on the evolution of the Universe until it starts behaving
like dark matter. One can therefore expect the same behavour at late time whatever the
scalar field amplitude at the end of inflation.

3.4 Dark fluid behaviour

After inflation the scalar curvature is small and the R2 term can be safely neglected.
The action (3.12) therefore becomes:

S =

∫

d4x
√−g

[
1

2κ2
R− 1

2
gµν∂µξ∂νξ − V (ξ)

]

, (3.22)

with the potential given in Eq. (3.10).
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As we have seen in the previous section the scalar field ξ is expected to behave like a
dark fluid: The scalar field ξ can mimick dark energy if:

V0 =
Λ

κ
= 2.5× 10−11 eV4 , (3.23)

and dark matter if:

m ∼ 10−22 eV . (3.24)

In addition to the constant term and the mass term the potential contains a ±m2/(2v)ξ3

term and a quartic term m2/(8v2)ξ4. The effect of the quartic term has already been
discussed in Section 2.3.1, and we have seen that λ = m2/2v2 has to be smaller than
10−98, which implies:

v & 7× 1026 eV . (3.25)

The tiny values of the couplings ensure the stability of the potential against quantum
corrections [53, 79]. With such a large value of v, which is one order of magnitude below
the Planck energy, the symmetry breaking will occur well before inflation, and the term
in R2 can be safely neglected as we had assumed. Provided the minimum value of v the
phase transition may be related to the Planck era.

Let us study the impact of the extra ξ3 and ξ4 terms of the potential. The scalar field
ξ can emulate dark matter if it oscillates quickly around its minimum. In such a case,
neglecting the extra terms, the energy density of the dark fluid is:

ρξ ≃
ξ̇2

2
+
m2

2
ξ2 + V0 = m2〈ξ2〉+ V0 , (3.26)

where m is fixed to 10−22 eV and v = 7 × 1026 eV. In Figure 3.2 the contributions to the
scalar field energy density from the different terms of the potential are shown as functions
of the scalar field value ξ. The cosmological constant density as well as the average dark
matter energy densities in the recent Universe, at the time of matter-radiation equality,
and at cluster and galaxy scales are also shown for comparison. As can be seen in the
figure, in the present Universe the cubic and quartic terms have negligible contributions as
compared to the mass term of the potential at any time and scale in the matter domination
period. For example the average dark matter density in galaxies can be obtained by the
equation (3.26) which gives ξ ∼ 3× 1020 eV. With this value we have:

m2ξ3

2v

/
m2ξ2

2
≃ 5× 10−7 ,

m2ξ4

8v2

/
m2ξ2

2
≃ 5× 10−14 .

(3.27)

The contributions of the cubic and quartic terms are even smaller at larger scales. There-
fore, they do not affect the dark matter behaviour of the scalar field in galaxies and clusters,
and the dark fluid behaves as fuzzy dark matter.
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Figure 3.2 – Contributions to the scalar field energy density of the terms m2ξ2/2 (red),
m2ξ3/2v (yellow) and m2ξ4/8v2 (violet) in the potential (3.10), as a function of the value of
the scalar field ξ. The horizontal lines indicate the current observation order of magnitude
of the dark matter energy densities at different scales and the potential constant term V0
corresponding to the cosmological constant.

3.5 Conclusions

We have studied a triple unification model, relying on a single scalar field with a non-
minimal gravitational coupling to the squared scalar curvature. The potential of this scalar
field has been chosen to be a one-dimensional Mexican hat with two displaced minima plus
a constant term. The constant term may also be replaced by a quintessence potential.
After a discrete symmetry breaking similar to the one of the Higgs mechanism, a constant
term appears in front of the squared scalar curvature, which can generate a R2-inflation.
At the end of inflation, the Standard Model particles will be produced via a reheating
mechanism and the massive scalar field resulting from the symmetry breaking will also be
reheated. This scalar field has the dark fluid properties and can simultaneously replace
dark matter and dark energy. This scenario, in addition to replacing inflation, dark matter
and dark energy with a single scalar field, leads to a dark matter behaviour similar to the
one of fuzzy dark matter, which alleviates the cuspy halo and missing satellite problems.

52



CHAPTER 3. TRIPLE UNIFICATION

3.6 Appendix: alternative action

This appendix motivates the choice of the action (3.1) for the triple unification sce-
nario by introducing two other models which do not match with the CMB data and the
constraints on dark fluid model.

3.6.1 Chaotic inflation

Inflationary models have been introduced to explain the flatness and horizon problems.
Successful models are based on scalar fields with a slow-roll evolution during a sufficiently
long time in order to provide a very large expansion rate in the early Universe, such that
N = log(aend/abeg) & 50 [27], where N is the number of e-folds. The so-called chaotic
inflation model [80], in which a scalar field with quadratic potential is in slow-roll during
inflation, can fulfil this constraint. Also in Ref. [68], it is shown that chaotic inflation can
be obtained together with dark energy using a scalar field associated to the potential

V (φ) =
m2

2
φ2 + V0 . (3.28)

The main problem to unify chaotic inflation and dark energy is that the observation of the
CMB anisotropies imposes m ≃ 3× 10−6MP [2], which is not in agreement with the mass
needed for a dark fluid model. Using instead a quartic potential which becomes dominant
during the inflation:

V (φ) ≃ λ

4!
φ4 , (3.29)

λ has to be of the order of 10−14 to be compatible with CMB data [2], which is incompatible
with the dark fluid setup. Therefore the dark fluid potentials derived in the previous section
cannot lead to a chaotic inflation in agreement with the observational data.

3.6.2 Non-minimal coupling φ2R

A first solution to unify inflation and dark fluid model would be to consider a non-
minimal coupling between the dark fluid scalar field and the scalar curvature. Such cou-
plings have been studied in the context of the Higgs-inflation scenario [81]. Let us consider
the following action:

S =

∫

d4x
√−g

[
1

2κ2

(

1 +
α2

M2
P

φ2
)

R− 1

2
gµν∂µφ∂νφ− V (φ)

]

, (3.30)

with κ2 =M−2
P and

V (φ) = V0 +
m2

2
φ2 +

λ

4
φ4 . (3.31)

The α2 coupling is chosen to be positive in order to ensure that the coupling to gravity
always remains positive. The parameters V0, m and λ are fixed by the dark fluid model
requirements, and the only free parameter is therefore α. This action is assumed to be
written in the Jordan frame in which the scalar field is non-minimally coupled to the Ricci
scalar R. To confront this model with the CMB data, it is necessary to rewrite the action
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in the Einstein frame by making a conformal transformation. In the Einstein frame, where
the quantities are represented by a tilde, the metric is:

g̃µν = Ω2gµν , (3.32)

where Ω2 is the conformal factor such that

Ω2 = 1 + α2 φ
2

M2
P

. (3.33)

Following Ref. [82], one defines the effective scalar field ψ and potential U such that

dψ

dφ
=

√

Ω2 + 6α4φ2/M2
P

Ω4
,

U(ψ) = Ω−4V (φ) ,

(3.34)

and the action (3.30) takes the form of the usual Einstein-Hilbert action:

S =

∫

d4x
√

−g̃
[

1

2κ2
R̃− 1

2
g̃µν∂µψ∂νψ − U(ψ)

]

. (3.35)

The observational constraints on the spectral index ns implies α2 > 4× 10−3 [27].
On the other hand the parameter α can be constrained by the observational power

spectrum which is related to the potential by [32]:

δ2H =
4

25
PR =

1

150π2M4
P

U

ǫv
, (3.36)

where

ǫv =
M2
P

2

(
U ′(φ)

U(φ)

)2

=
M2
P

φ2
8

1 + (1 + 6α2)α2φ2/M2
P

(3.37)

is the slow-roll parameter [82]. The power spectrum has to be calculated at the time of
the end of inflation tend, which is related to the number of e-folds N :

N =

∫ φend

φbeg

φ

MP

1 + (1 + 6α2)α2φ2/M2
P

4
(
1 + α2φ2/M2

P

) dφ , (3.38)

where φend corresponds to ǫv = 1. Unfortunately, the system:

M2
P

φ2end

8

1 + (1 + 6α2)α2φ2end/M
2
P

= 1 ,

8N = (1 + 6α2)

(

φ2beg
M2
P

− φ2end
M2
P

)

+ 6 ln

(

1 + α2φ2beg/M
2
P

1 + α2φ2end/M
2
P

)

,

P∗
R =

λ

192π2
φ6beg
M6
P

(

1 + (1 + 6α2)α2
φ2beg
M2
P

)

,

(3.39)

has no valid solution for λ ∼ 10−100. For example assuming α2 ≥ 1 the first equation
leads to α2φ2end ∼ 1.2M2

P , the second one gives α2φ2beg ∼ 75M2
P for N ≃ 55, and the third
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one imposes α2 ∼ 10−42, which contradicts the other requirements. Therefore, it is not
possible to unify inflation and dark fluid with a coupling φ2R. This result is different from
the ones obtained in the context of Higgs-inflation model, in which the quartic coupling λ
is much larger. In our case the parameter λ is too small to reproduce the amplitude of the
anisotropies.
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4
Big-Bang nucleosynthesis

Scalar fields are widely used in cosmology, in particular to emulate dark energy in
quintessence models, or to explain dark matter in scenarios such as the fuzzy dark mat-
ter model. In addition, many scenarios involving primordial scalar fields which may have
driven inflation or baryogenesis are currently under scrutiny. In this chapter, we investi-
gate the impact of such scalar fields on Big-Bang nucleosynthesis and derive constraints
on their energy density using the observed abundance of the elements.

Contents

4.1 Master equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Observational constraints . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Decaying scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 BBN constraints on cosmological scalar fields . . . . . . . . . . 61

4.4.1 Stable scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Decaying scalar fields . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Master equations

In the cosmological standard model, before the beginning of BBN the expansion of the
Universe is dominated by radiation. The dominating species are photons γ, electrons and
positrons e∓, baryons b, neutrinos ν and antineutrinos ν̄, and dark matter χ. In presence
of a scalar field, the total energy density and pressure of the primordial plasma can be
written as

ρtot = ργ + ρν,ν̄ + ρb + ρe∓ + ρχ + ρφ ,

Ptot = Pγ + Pν,ν̄ + Pe∓ + Pφ ,
(4.1)

where the baryon and dark matter densities are considered as pressureless.

57



CHAPTER 4. BIG-BANG NUCLEOSYNTHESIS

The link between temperature and time is given by the conservation of the total radi-
ation entropy, namely:

dsrad
dt

= −3Hsrad . (4.2)

The different chemical elements are in interaction through nuclear reactions of the type

Ni
AiZi +Nj

AjZj +Nk
AkZk ↔ Nl

AlZl +Nm
AmZm +Nn

AnZn , (4.3)

where the Ni are the number of nuclei Zi which enter the reaction and Ai their atomic
numbers. The evolution of the number of each of the elements is driven by the Boltzmann
equations:

dYi
dt

= Ni

∑

j,k,l,m,n

(

−
Y Ni

i Y
Nj

j Y Nk

k

Ni!Nj !Nk!
Γijk→lmn +

Y Nl

l Y Nm
m Y Nn

n

Nl!Nm!Nn!
Γlmn→ijk

)

, (4.4)

where Γijk→lmn and Γlmn→ijk are the forward and reverse reaction rates of Eq. (4.3).
BBN occurs for a scale factor of about aBBN ∼ 10−10 and a temperature scale of TBBN ∼

1 MeV, and the abundance of the elements after BBN can be obtained by integrating
simultaneously Eqs. (4.1)–(4.4) with Friedmann equations.

4.2 Observational constraints

We compute the abundance of the elements using the public code AlterBBN [83, 84],
which has been modified to incorporate different kinds of scalar fields. We will compare
the abundances to the following set of observational measurements [85]:

Yp = 0.245±×0.003 ,
2H/H = (2.569± 0.027)× 10−5 ,
3He/H = (1.1± 0.2)× 10−5 .

(4.5)

The exclusion is obtained via a χ2 analysis at 95% C.L.
In addition, the observations of the lithium-7 abundance give [85]:

7Li/H = (1.6± 0.3)× 10−10 . (4.6)

Whereas the observations of the previous abundances are compatible with the predictions
in the cosmological standard model, the 7Li abundance shows a discrepancy of more than
3σ between the observation and the prediction, which is too large by a factor three. We
will check in the following analysis whether the presence of a scalar field can explain this
discrepancy.

4.3 Decaying scalar fields

In the early Universe, cosmological scalars such as inflatons [81, 86], dilatons [87, 88]
or moduli [89–92] could give birth to specific phenomena such as inflation or leptogenesis.
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Figure 4.1 – Evolution of the decaying scalar field density, matter density and radiation
density as functions of the scale factor (top) and of the temperature (bottom), for a re-
heating temperature of 1 MeV displayed by the vertical black lines. In absence of decay,
the scalar field density evolves as a−n. The initial densities of the scalar field are chosen
so that ρφ = ργ at T = 10 MeV for different values of n.

Their common features is that they did not survive, at least in non-negligible proportions.
We can therefore assume that these scalar fields decayed at a period prior to recombination,
so that they did not leave imprint in the CMB.

Contrary to the cases studied in the previous sections, decaying scalar fields are not
constrained by observations of the present Universe, and generally neither by observations
of the CMB. The form of the potential and its behaviour remains therefore arbitrary.
If such scalar fields decay much before BBN, they will have no effect either on BBN or
recombination. If they decay after BBN, either their densities are negligible and they have
no effect on the cosmological history, or their densities are large enough to impact BBN by
modifying the expansion rate and the decay has to occur soon enough in order to escape
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constraints from CMB. In the latter case, the scalar fields can be considered as stable
during BBN, with a constant equation of state wφ ∈ [−1, 1], leading to a density scaling
as ρφ ∝ a−n, with n ∈ [0, 6].

We consider now the case of a scalar field decaying at the BBN epoch. To simplify
the analysis, we assume an instantaneous thermalization with the thermal bath, and a
dominant decay into radiation.

The Klein-Gordon equation becomes:

φ̈+ 3Hφ̇+
dU

dφ
= −Γφρφ , (4.7)

and the total radiation entropy receives an injection such that:

∂srad
∂t

= −3Hsrad +
Γφρφ
T

, (4.8)

where Γφ is the decay width of the scalar field.
We assume here that the scalar field potential is a power law, so that during BBN and

in absence of decay it evolves as
ρφ = ρ0φa

−n , (4.9)

where n is a constant parameter between 0 and 6. Thus the Klein-Gordon equation can
be rewritten as:

dρφ
dt

= −nHρφ − Γφρφ . (4.10)

Following [93,94] we define the reheating temperature TRH of the scalar field as:

Γφ =

√

4π3geff(TRH)

45

T 2
RH

MP
, (4.11)

where geff is the number of effective energy degrees of freedom of radiation. The model
is therefore defined by three parameters: the exponent n, the reheating temperature TRH

and the initial scalar field density.
Figure 4.1 shows the evolution of the scalar field as a function of the scale factor or the

temperature, for a reheating temperature of 1 MeV. The scalar field density at the initial
temperature Ti = 10 MeV has been chosen so that ρφ = ργ for n = 3, 4, 6. Since the decay
of the scalar field induces a reheating by increasing the radiation density, the initial value
of the matter density has been adjusted in order to obtain the observed baryon-to-photon
ratio from the CMB. This effect can be seen in the top panel of the figure, where the
evolution of the densities is shown as a function of the scale factor: the radiation density
increases at a scale factor corresponding to the reheating temperature. This is the reason
why the photon density is different for each choice of n. In the bottom panel where the
evolution is shown as a function of the temperature, this effect translates into a decrease
of the matter density, which is equivalent to lowering the baryon over radiation ratio to
obtain the value derived from the CMB observations. This is also the reason why the
matter density appears as different for each choice of n.

We see that after reheating, the decrease of the scalar field accelerates and its density
drops very quickly, increasing simultaneously the radiation density. It can therefore be
expected that a decaying scalar field can modify BBN for TRH ∈ [1, 10] MeV.
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4.4 BBN constraints on cosmological scalar fields

In the previous sections, we have analysed the cosmological behaviours of a broad range
of scalar fields. In this section, we study the constraints from BBN on scalar field models,
considering separately the cases of the stable and decaying scalar fields.

4.4.1 Stable scalar fields

Stable scalar fields have in general a constant equation of state during BBN, with wφ
ranging from −1 to +1 corresponding to a density varying as a−n with n ∈ [0, 6]. The
most standard values are 1 (kinetic term domination) and 1/3 (radiation-like behaviour),
corresponding to densities scaling as the inverse of the scale factor with an exponent 6 and
4, respectively.

In the cases when wφ < 0, since the scalar field density decreases more slowly than
radiation, if the scalar field density is not completely negligible, it will start dominating
the expansion of the Universe during or after BBN, and can even affect the CMB.

In presence of a scalar field, the expansion rate given by the Friedmann equation will
be modified during BBN. Two extreme cases can be considered. The first one corresponds
to a scalar field density negligible with respect to the photon density at T ∼ 1 MeV.
We will obtain in this case the same results as in the standard cosmological model. The
opposite case is the domination of the scalar field density at BBN time, which will modify
the abundance of the elements via Hubble rate modification.

Figure 4.2 shows Yp and the abundances of 2H, 3He and 7Li for different values of
the exponent n and the scalar field density at T ∼ 1 MeV. The dashed lines correspond
to exclusions by the individual constraints for each element at 95% C.L. Using the χ2

approach we obtain at 95% C.L.:

• for nφ = 0 (constant density, potential domination), BBN constraints exclude:

ρφ(1 MeV) & 2× 10−7 ργ(1 MeV) . (4.12)

• for nφ = 3 (matter-like behaviour), BBN constraints exclude:

ρφ(1 MeV) & 0.005 ργ(1 MeV) . (4.13)

• for nφ = 4 (radiation-like behaviour), BBN constraints exclude:

ρφ(1 MeV) & 0.11 ργ(1 MeV) . (4.14)

• for nφ = 6 (kinetic term domination), BBN constraints exclude:

ρφ(1 MeV) & 1.40 ργ(1 MeV) . (4.15)

In addition, the 7Li abundance can be modified by the scalar field, but as we can see
from Figure 4.2, there is no region where the predictions for Yp, 2H, 3He and 7Li can be
simultaneously in agreement with their observational values.

In terms of physical models, scalar fields behaving like matter (fuzzy dark matter, ...)
do not affect BBN and no constraint can be found. For quintessence or dark field models
on the other hand, Eq. (4.14) applies for tracking scenarios with fixed points solutions,
or Eq. (4.15) in more general scenarios with generic initial conditions. For more exotic
scenarios, BBN constraints can be obtained from Figure 4.2.

61



CHAPTER 4. BIG-BANG NUCLEOSYNTHESIS

Figure 4.2 – From top to bottom, values of Yp, 2H/H, 3He/H and 7Li/H, as a function of
the decrease exponent n and the initial scalar field density (normalized to photon density)
at T = 1 MeV, (left) with a logarithm scale on the y-axis and for n ≤ 3, and (right) with
a linear scale on the y-axis and for n ≥ 3. The dashed lines represent the individual BBN
constraints at 95% C.L. Except for 7Li, the excluded region is above the lines.
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4.4.2 Decaying scalar fields

We now turn to the case of decaying scalar fields. As discussed before, if the scalar
field decays after BBN, the constraints that we just obtained remain valid. On the other
hand, if the decay is terminated when BBN starts, the scalar field will have a negligible
density which will have no effect on BBN.

We now turn to the case of decaying scalar fields with reheating temperatures below
10 MeV. We consider scalar fields which evolve as ρφ ∝ a−n in absence of decay, for
n = 0, 3, 4, 6.

In Figure 4.3, we present the abundance of the elements for n = 0, 3 as functions of the
reheating temperature TRH and the ratio of the scalar field density to the photon density
at T = 10 MeV. 1 The same plots are obtained with n = 4, 6 in Figure 4.4. The dashed
lines correspond to exclusions by the individual constraints for each element at 95% C.L.
Using the χ2 approach at 95% C.L. we obtain the following results:

• for n = 0, the compatible parameter region corresponds to large reheating tempera-
tures and small densities. Indeed, before the decay, the density of the scalar field is
constant, meaning that it will dominate and accelerate the expansion over the radi-
ation density, which decreases as T 4. This model is therefore strongly constrained,
so that only a small fraction of constant scalar field can be allowed.

• for n = 3, since the scalar field has a matter-like behaviour, if the scalar field density
dominates the expansion, the expansion rate is smaller before its decay. We see that
such a scenario is excluded if

ρφ(10 MeV) & 0.01

(
TRH

1 MeV

)

ργ(10 MeV) . (4.16)

There is therefore a compensation between the modification of the expansion rate
and the injection of radiation.

• for n = 4, we obtain a limit

ρφ(10 MeV) & 0.1 ργ(10 MeV) , (4.17)

which is equivalent to the limit obtained for a stable scalar field. This could be
expected since the scalar field had originally a radiation-like behaviour and decays
into radiation.

• for n = 6, BBN is unaffected for ρφ(10 MeV) . 0.5 ργ(10 MeV) independently of
the reheating temperature, or when the reheating temperature is below 4 MeV and
ρφ(10 MeV) . ργ(10 MeV). For large reheating temperatures, the scalar field decays
earlier, increases the radiation density, decelerates the expansion, and modifies the
abundance of the elements even for small values of the initial density. For lower
reheating temperatures, the expansion rate is increased but slowed down before the
decay, and less constraining limits are thus obtained.

1. It is important to note that the initial densities of the decaying scalar fields are fixed at T = 10 MeV,
contrary to the case of stable scalar fields where the initial temperature was T = 1 MeV.
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Figure 4.3 – From top to bottom, values of Yp, 2H/H, 3He/H and 7Li/H, as functions of
the reheating temperature TRH and the initial scalar field density (normalized to photon
density) at T = 10 MeV, for (left) a constant density n = 0, and (right) a matter-like
behaviour n = 3. The dashed lines represent the individual BBN constraints at 95% C.L.
Except for 7Li, the excluded regions are above the lines.
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Figure 4.4 – From top to bottom, values of Yp, 2H/H, 3He/H and 7Li/H, as functions of
the reheating temperature TRH and the initial scalar field density (normalized to photon
density) at T = 10 MeV, for (left) a radiation-like behaviour n = 4, and (right) a domi-
nating kinetic term n = 6. The dashed lines represent the individual BBN constraints at
95% C.L. Except for 7Li, the excluded regions are above the lines.
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Similarly to the case of stable scalar fields, there is no possibility to simultaneously
explain the abundance of 7Li and be consistent with the constraints on the 4He, 2H and
3He abundances.

To summarize, in the very early Universe the primordial scalar fields are likely to
have a constant density or a dominating kinetic term. For the constant behaviour, it is
mandatory for the scalar field to have a subleading density at BBN time, independently
of the reheating temperature. On the contrary, for a kinetic term dominated scalar field,
the initial density can be rather large, and even dominant for low reheating temperature,
meaning that a late reheating is favoured in such cases.

4.5 Summary

In this part, we have studied the cosmological evolution of scalar fields and studied
their impact on Big-Bang nucleosynthesis. We have shown that the scalar fields can have
non-negligible densities ρφ at the time of BBN and equations of state wφ = Pφ/ρφ between
−1 and +1.

Scalar fields can replace a cosmological constant, for example in quintessence models,
and we show that the most usual dark energy scenarios lead to wφ = 0, wφ = 1/3 or
wφ = 1 at BBN time, which can affect BBN if the scalar field density is non-negligible at
this epoch.

Scalar fields can also act as dark matter, with wφ = 0 today, as it is the case in fuzzy
dark matter scenarios. In the early Universe, the kinetic term generally dominates, giving
an equation of state wφ = 1 at BBN time. However, because of the constraints from
studies of the CMB, the density of such scalar fields is negligible at the time of BBN, and
no constraint can be obtained from BBN.

Similarly, dark fluid models with scalar fields replacing simultaneously dark matter and
dark energy are extremely constrained both by dark matter constraints at local and large
scales and by dark energy constraints at cosmological scales, and we showed that in the
most simple models, no constraints can be obtained from BBN since the scalar field density
at BBN epoch is negligible. Only more complex models incorporating specific dark energy
potentials are likely to have effects on BBN, and the constraints are expected to be similar
to the ones obtained on quintessence scenarios.

Primordial scalar fields which have decayed during BBN are on the contrary more likely
to have affected the abundance of the elements, in two different ways. First the scalar field
density increases the total density and affects the expansion rate of the Universe. This effect
can be particularly important since no strong constraint can limit the decaying scalar field
parameters at BBN time, so that large densities are still possible during BBN. Second
the decay into radiation injects entropy which modifies the relation between time (or scale
factor) and temperature and generates a reheating at the BBN epoch. We considered
the most usual cases, i.e. a scalar field density scaling as a−n in absence of decay, with
n = 0, 3, 4, 6, and derived constraints on the reheating temperature TRH and the initial
scalar field density.

Regardless of the scalar field model, we showed that it is not possible to find setups
which simultaneously satisfy the Yp,2H,3He constraints and the 7Li one. In other terms,
the lithium problem cannot be solved via the scalar field models that we considered. It may
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however be possible to design scenarios with scalar fields decaying into specific particles
which may affect BBN and decrease the abundance of lithium-7. We defer this task to
later studies.
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5
Basic concepts

In this chapter, we will briefly review some developments on primordial black holes which
differ from usual black holes in their origins: primordial black holes are produced in the
early Universe. One motivation for studying primordial black holes is that they may
constitute a large fraction of dark matter. Gravitational wave detections provide new op-
portunities to test the predictions of General Relativity and perhaps to observe primordial
black holes. So far, general relativity has passed all the tests successfully, but solving
Einstein’s equations for a binary system requires the use of numerical relativity. The code
Einstein toolkit [95] can be used to produce gravitational wave-forms from a binary
black hole merger. To describe a neutron star, an equation of state must be given and the
goal is to use the Meta Model which is able to reproduce all known equations of state and
even more. In this case, the code Whisky_THC [96,97] can be used to produce gravitational
wave-forms from a binary neutron star merger.
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5.1 Type of black holes

5.1.1 Black holes

In astrophysics, a black hole is a compact object whose gravitational field is so strong
that even the light can not escape. Such an object is described by General Relativity
with the Schwarzschild metric in the simplest case (J = 0 and Q = 0) and with the Kerr-
Newman metric for a charged and spinning black hole. A black hole appears as a hole in
space-time whose a boundary is called "event horizon". If an object crosses such a horizon,
it becomes causally disconnected from our Universe.

Black holes are not purely theoretical any more, but they have been observed and
at every galactic center, it seems that there is a supermassive black hole. A wonderful
picture of the shadow of the M87 supermassive black hole was made by the Event Horizon
Telescope [98]. In addition, on September 4, 2015 the first observation of gravitational
waves from a binary black hole merger [10] with a mass of about 30M⊙ for each black hole
was made by the Hanford and Livingston LIGO detectors. Since this first detection, the
GWTC-1 catalog [99] reports ten binary black hole coalescence events detected in run O1
from September 12, 2015 to January 19, 2016 and in run O2 from November 30, 2016 to
August 5, 2017. For the O3 run from April 1, 2019 to October 1, 2019 it is 34 events [99].
Neutron star binaries and black hole - neutron star binaries have also been detected. The
distinction between these mergers is done via the mass of compact objects. There is a
mass gap between the masses of black holes and neutron stars: even if the boundaries
are still under debate, the mass of neutron stars may be estimated to be approximately
smaller than 2 M⊙ and the mass of black holes larger than 5 M⊙. However, a compact
object of 2.6 M⊙ has been observed [12] thanks to gravitational waves and its nature is
undetermined.

According to their masses, black holes can be classified into three main families:

• stellar black holes coming from the explosion of massive stars or supernovae, are
well observed by the LIGO/Virgo collaboration through gravitational waves. Their
masses are between 5 M⊙ and 100 M⊙

• intermediate mass black holes which constitute a new class recently discovered by
LIGO/Virgo collaboration [100]. Their masses are between 100 M⊙ and 105 M⊙

• supermassive black holes are found in the center of galaxies. Their masses are between
106 M⊙ and 109 M⊙. In the future, LISA will study them in more detail.

Finally, with the no-hair theorem, a black hole is a simple object defined only by a
few parameters, but it also emits the so-called Hawking radiation [101]. For a neutral and
non-rotating black hole of mass M , the temperature TH of the thermal radiation is given
by:

kBTH =
1

2π

~c3

4GM
, (5.1)

where kB is the Boltzmann constant, c the speed of light, G the Newton constant and ~ the
Planck constant. For a 5 M⊙ stellar black hole, the temperature is only 3× 10−7 K which
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is impossible to observe. However, Hawking radiation can be generated and detected in
analogous gravity [102, 103] by the creation of a sonic horizon in transonic flow. A Bose-
Einstein condensate in stationary transonic flow spontaneously emits correlated photons
which were detected by J. Steinhauer [104], which is the analogue of Hawking radiation.
Such radiation is too small to impact a standard black hole, but the Hawking temperature
is inversely proportional to the mass M , so it can evaporate a tiny primordial black hole.

5.1.2 Primordial black holes

Primordial black holes are not formed by the collapse of stars or during the formation
of galaxies. They were formed at the beginning of the Universe, by collapse of large
primordial densities at the end of inflation, or during some phase transitions; or by collapse
of cosmic string or domain walls ... The distinction between PBH and BH comes from
the "primordial" term, but they are described by the same Kerr-Newman metric. The
mechanism of formation of PBH is not well know but it is possible that PBHs formed with
a huge spin close to the extremal Kerr BH contrary to stellar BHs which generally have
a weak spin. The angular momentum of BHs increases when it accretes matter, but does
not approach the extreme spin limit in this way.

Assuming that a PBH is formed in a Hubble volume in the early Universe, one gets [105]:

MPBH ∼MP lanck ×
t0

tP lanck
∼ 1038g × t0(s) (5.2)

where t0 is the creation time. If a PBH forms at the Planck time, its mass will be the
Planck mass which is equal to 10−5 g. If a PBH forms after 1 second after the beginning of
the Universe, its mass will be 105 M⊙ and it will be classified as supermassive black hole.

BHs detected by the LIGO/Virgo collaboration are assumed to originate from star col-
lapse or coalescence of some compact objects, but some gravitational events could originate
from PBHs [106–108]. An event with a BH below the Chandrasekhar mass limit will be a
big step to prove that PBHs exist.

5.2 Primordial black hole as dark matter candidates

5.2.1 Advantages of primordial black holes

The nature of dark matter remains a major unresolved question in cosmology. In
particle physics with models beyond the Standard Model, cold dark matter can be described
by involking weakly-interactive particles, but these particles have still not been discovered
by direct and indirect detection and there is no clue of new physics at colliders. In Part I, we
introduced a light scalar field that can describe dark matter through the fuzzy dark matter
model, but another interesting idea is to consider that primordial black holes constitute a
significant part of cold dark matter. With such a model, gravity is still described by the
usual General Relativity, black holes exist, there is no need to introduce new unobserved
particles and the only assumption is that some over-densities in the early Universe collapsed
into black holes.
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Figure 5.1 – Constraints the fraction of PBHs with respect to DM as a function of the PBH
mass from [5]: red from evaporation, blue from lensing, gray from gravitational waves,
green from dynamical effects, light blue from accretion, orange from CMB distortions and
purples from large scale structure. A, B, C and D are possible open windows.

5.2.2 Open windows

To explain partly cold dark matter with primordial black holes, their masses should
fall within one of the four open windows drawn in Figure 5.1 [5]. This figure gathers the
current constraints on the upper limit of the mass fraction of primordial black holes with
respect to dark matter. If this fraction can be equal to one as is the case in windows A
and D, all dark matter could be explained by primordial black holes. The red constraint
is the most robust and corresponds to the evaporation of black hole. Below 5 × 1014 g,
the time life of primordial black holes is less than the age of the Universe. The blue color
corresponds to the gravitational lensing constraint, etc.

5.3 Gravitational sources

A charge displacement will produce electromagnetic waves and, by analogy, a mass
displacement will produce gravitational waves. One difference is that in General Relativ-
ity, a spherical system does not emit gravitational waves, but any asymmetric supernovae
explosion will. A rotating star with a mountain on its surface will also produce them.
Another example comes from the binary systems that have been detected by the mod-
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Figure 5.2 – Illustration from [109] of the different types of gravitational waves: inspiral
(top), continuous (top-middle), burst (bottom-middle) and stochastic (bottom).

ern LIGO/Virgo detectors. There are different types of gravitational waves, which are
illustrated in Figure 5.2:

• Inspiral gravitational waves: it is the only source of gravitational waves that has
been detected. They are produced by the end of life of a binary system when two
compact objects in quasi-circular orbit, coalesce to form a neutron star or a black
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hole. The frequency f of the signal increases slowly until the merger and the first
order of post-Newtonian expansion in power of v/c gives:

df

dt
=

96

5
π8/3

(
GM
c3

)5/3

f11/3 , (5.3)

where M is the chirp mass.

• Continuous gravitational waves: it is produced by a periodic system and the fre-
quency of the signal is then constant. Well before the merger time, a binary system
emits weak gravitational waves with frequency f equal to:

f =
1

π

√

m1 +m2

a3
(5.4)

with a the orbital separation, m1 and m2 the masses of the objects. The emission
must be weak to avoid a back reaction from the system. Another example is a
rotating star with a mountain at the surface.

• Burst gravitational waves: such waves are expected with gamma-ray bursts (GRBs)
and can be produced by supernovae, but they can also be produced by unknown or
unexpected sources and systems. After the inspiral gravitational waves, the merger of
two neutron stars seems accompanied by short GRBs and will produce gravitational
waves classified as bursts. In any case, their waveforms are not well known and their
detections would improve the knowledge of the details of the emitting system.

• Stochastic gravitational waves: they have a priori two components. The first one is of
cosmological origin with relic gravitational waves comparable to continuous noise in
all sky localizations. Such a signal is analogous to the Cosmic Microwave Background
and could have been created a few seconds after the Big-Bang. The discovery of such a
signal could open the way to a new physics. The second is of astrophysical origin and
comes from the set of gravitational wave sources having an intensity too weak to be
detected individually [110]. It is similar to the diffuse infrared background produced
by all unresolved optical sources. Such a signal depends on the stellar evolution, the
evolution of galaxies, the cosmology, the distribution of binary systems etc.

5.4 Numerical Relativity and 3 + 1 formalism

To calculate the gravitational wave-form emitted by a compact object merger, the
Einstein equations must be solved:

Rµν −
1

2
gµνR = 8πGTµν . (5.5)

Even in the case of a binary black hole merger where the source term is zero: Tµν = 0,
there is no analytical solution. As illustrated in Figure 5.3, the gravitational wave-form
is composed of three phases. The first one is called quasi-circular inspiral phase. In this
phase, the two compact objects are far enough away to calculate the wave-form by a Post-
Newtonian development [111]. The second phase is called plunge merger phase, it starts
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Figure 5.3 – The different phases of compact binary inspiral and coalescence (from Baum-
garte and Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer
[19])

when the two objects approach the innermost stable circular orbit and ends when the two
objects form only one. This phase is the most complicated to describe and requires to fully
solve the Einstein equations using Numerical Relativity. Finally, the object resulting from
the merge is formed in an excited state and the last phase consists in a de-excitation of
this object to form the Kerr metric. This phase is called ringdown and can be described
by perturbation of the Kerr metric.

In the following, we will study in more detail the solution of Einstein’s equations using
the codes developed by the Einstein Toolkit community [18,112]. To solve these equations
numerically, they must be in a particular form. There are three main families: the hy-
perbolic equations ∂2t φ = ∆φ, the elliptic equations ∆φ = 0 and the limit case with the
parabolic equations ∂tφ = ∆φ. The parabolic equations are useful to describe diffusion
phenomena like the diffusion of a drop of ink in water. By knowing the field φ at the initial
state ti over the whole space, it is possible to calculate φ at ti + δt and then φ at each
instant by iteration. An example of elliptic equation is the Poisson equation ∆V = 0 in
electrostatics. To solve this equation over a space V , we need to know the value of the field
on the edge of the space ∂V , and an algorithm generally called relaxation starts from an
initial guess and converge to the right value of the field φ. Finally, the initial conditions
for solving the hyperbolic equations describing for example the vibration of a string, are
the knowledge of the field at each instant on the edge of the space and the knowledge of
φ and ∂tφ at the initial instant over the whole space. The methods of resolution and the
approaches to solve numerically the equations are numerous and become more and more
complex when there are systems of coupled nonlinear differential equations as it is the
case for Einstein’s equations (5.5). The problem with this current form is that they are
a mixture of different types of equations and insoluble. Indeed, the left side of Einstein’s
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Figure 5.4 – Coordinates adapted to the foliation. Here N is the lapse function alpha
(from Gourgoulhon, 3 + 1 formalism and bases of numerical relativity [20])

equations is composed of gµν , ∂ρgµν , ∂σ∂ρgµν and we would like to impose at t = 0 the
metric with its spacial derivatives in 3-dimension to be able to make it evolve.

To solve Eisntein’s equations for a coalescence of compact objects, it is necessary to
use the formalism 3 + 1 which decomposes the spacetime into space + time [19, 20]. This
approach allows to decompose the space-time M into a family of hypersurfaces Σt such that
the sum of these hypersurfaces forms the whole spacetime. Thus, by giving the induced
metric γij (γij = gij) on a slice Σt where t is constant, it will be possible to evolve it in
order to compute the next slice Σt+δt. Conceptually, it is enough to know the following
system of differential equations:

∂tγij = ... ,

∂tγ̇ij = ... .
(5.6)

The unit vector normal to a slice Σt and oriented towards the future, noted n such that
n.n = −1, can be written:

n = −α~∇t (5.7)

with α the lapse function. α is the normalization factor of ~∇t which is the dual vector
of the form dt. Any vector of the space-time can be projected on the sub-vector space
defined by n or on the vector space defined by the slice of the space-time. Moreover the
shift vector β is defined by the following relation (see Figure 5.4):

∂t = αn+ β (5.8)

α and β represent the choice of the evolution of a slice in the space-time, that is to say to
pass from a time t to a time t+ δt. The metric gµν of the 4D space-time is equal to:

gµνdx
µdxν = −α2dt2 + γij(dx

i + βidt)(dxj + βjdt) . (5.9)
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The projection of the Einstein’s equations on the slice gives the following evolution equa-
tions [19]:

(∂t − Lβ) γij = −2αKij

(∂t − Lβ)Kij = −DiDjα+ α
(

Rij +KKij − 2KikK
k
j

) (5.10)

where Kij is the extrinsic curvature tensor which replaces γ̇ij of the equation (5.6), Lβ is
the Lie derivative along β and D is the connection associated with the metric γij . The
decomposition on n gives the Hamiltonian constraint and the mixed decomposition on n

and on the slice gives the 3 momentum constraints:

H = R+K2 − kijK
ij = 0 ,

Mi = Dj

(
Kij − γijK

)
= 0 .

(5.11)

This formulation of Einstein’s equations coming from the decomposition of space-time into
3 + 1, developed first by Georges Darmois in the 1920’s [113], André Lichnerowicz in the
1930-40’s [114] and Yvonne Fourès-Bruhat in the 1950’s [115]. These equations are called
"standard" 3+ 1 equations and sometimes called "ADM" equations after Arnowitt, Deser
and Misner [116]. Numerically, this formulation is not stable enough, the formulation used
by the Einstein Toolkit community, for example, is the BSSN formulation [117,118] which
is an improved form of the ADM equations.

For a given slice of space-time, the resolution of the equations involves 12 undeter-
mined initial data coming from (γij ,Kij) to which we have to subtract: the 4 constraints
(Hamiltonian + Momentum) and the 4 choices of coordinates (α,βi) [19]:

6 + 6
︸ ︷︷ ︸

independent
components

−1− 3
︸ ︷︷ ︸

constraint
equations

−4
︸︷︷︸

coordinate
choice

= 2× 2
︸ ︷︷ ︸

two independent
sets of values

. (5.12)

Thus, there remain two independent sets of values which correspond to the degrees of
freedom of the two gravitational wave polarizations.

5.5 Gravitational Wave-forms for binary black holes

To solve Einstein’s equations numerically, the Einstein Toolkit [18, 95] releases core
computational tools built on the Cactus [119] infrastructure allowing to realize parallel
high performance computing. The Einstein Toolkit source code is divided into different
modules called thorns. For example, the ADMBase thorn provides, among other things,
the 12 evolution variables: the induced metric γij and the extrinsic curvature Kij with
the lapse function α and the shift vector βi. The parameter file for running a simulation
with Einstein Toolkit must include all the parameters of the thorns used and looks like
the sample below. In this example, there are two blocks: a first block sets the ADMBase

evolution method and a second block that defines the choice of coordinates in the ML_BSSN

thorn [120–122]. These parameters allow us to fix the 1 + log slicing given by F = 2 and
N = 1 in the following equation:

∂tα = −FαN + 1
︸︷︷︸

advectLapse

× βi∂iα (5.13)
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and the hyperbolic gamma driver that imposes:

∂tβ
i = 3/4

︸︷︷︸

ShiftGammaCoeff

× Bi + 1
︸︷︷︸

advectShift

× βj∂jβ
i

∂tB
i = ∂tΓ̃

i − 1.0
︸︷︷︸

BetaDriver

× Bi + 1
︸︷︷︸

advectShift

× βj∂jβ
i

(5.14)

with Γ̃i the conformal connection functions [19]. To perform a merger of two black holes,
one must also use the TwoPunctures thorn [123] which allows to define the initial conditions,
the AHFinderDirect thorn [124] to compute at each instant the apparent horizon of the
black holes, two other thorns to extract the decomposition of the Weyl scalar ψ4 into s = −2
spin-weighted spherical harmonics, which is related to the gravitational wave polarization
amplitudes by the following equation:

ḧ+ − iḧ× = ψ4 =

∞∑

l=2

l∑

m=−l
ψlm4 (t, r)−2Ylm(θ, φ) . (5.15)

and so on. A complete example of parameter file can be found on the Einstein Toolkit
website [95]. It uses the different thorns described in [18, 120, 123–131]. To give an order
of magnitude, a full run of such a code requires about 3 days on 128 cores.

#############

# Evolution #

#############

ADMBase::evolution_method = "ML_BSSN"

ADMBase::lapse_evolution_method = "ML_BSSN"

ADMBase::shift_evolution_method = "ML_BSSN"

ADMBase::dtlapse_evolution_method = "ML_BSSN"

ADMBase::dtshift_evolution_method = "ML_BSSN"

ML_BSSN::harmonicN = 1

ML_BSSN::harmonicF = 2.0

ML_BSSN::ShiftGammaCoeff = 0.75

ML_BSSN::BetaDriver = 1.0

ML_BSSN::advectLapse = 1

ML_BSSN::advectShift = 1

#############

The result of a simulation of a binary black hole merger is plotted in Figure 5.5 with
different snapshots. On the left, there is the gravitational wave-form and on the right the
apparent horizon of the black holes. The natural units of the code are G = c = MT = 1
where MT is the total mass of the system. To plot Figure 5.5, the total mass has been
chosen equal to 20M⊙ and the initial conditions are two spinless black holes of the same
mass. The scaling relations will be studied in details in the next chapter with exotic black
holes.
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Figure 5.5 – Result of a merger of two black holes obtained with Einstein Toolkit. The
different times of the merger are represented by the different figures. On the left, there is
the gravitational wave-form and on the right the evolution of the apparent horizon of the
black holes.

Thanks to many numerical simulations, libraries like IMRPhenomPv2 [132–134] have been
built to have access to the gravitational wave-form of a merger in an almost instantaneous
way. It is also this type of templates that are used to extract gravitational waves from the
noise of detectors. Even if the wave-forms are well tabulated for standard black holes, it
is not yet the case, for example for 5 dimensional black holes.
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Figure 5.6 – Diagram showing competing structures to describe the interior of a neutron
star from [137].

5.6 Gravitational Wave-forms for binary neutron stars

Obtaining the wave-form for a neutron star merger is much more complex because it
involves hydrodynamic equations. In this case, the description of the matter must be taken
into account with a non-zero energy-momentum tensor. At the beginning of the fusion,
in the inspiral phase described by a post-Newtonian development, the composition of a
neutron star is only involved at 5PN order by the quadrupole momentum characterized
by the tidal deformability [111]. This tidal deformability has been measured for the first
time by the LIGO/Virgo collaboration for the GW1708017 event [135]. To compute the
complete wave-form, one must solve the Einstein equations with an equation of state that
relates the density ρ to the pressure p. A first approach uses a polytropic equation of state:
p = KρΓ with K and Γ two constants. A more realistic description involves a temperature
dependent equation of state with a description of neutrino emission and reabsorption.
In the following, we will start by describing different models of a neutron star. Then,
using Lorene [136], initial conditions for binary neutron star mergers will be calculated.
These configurations will be used by WhiskyTHC [96, 97] to evolve them and calculate the
corresponding gravitational wave-forms.

5.6.1 NS description and initial data

Compared to the sun, a neutron star is slightly more massive, of the order of 1.4M⊙,
but its radius is of the order of 10 km and thus far from the 696 340 km radius of the
sun. The matter constituting a neutron star is therefore in extremely dense conditions.
Figure 5.6 shows different possibilities of the state of matter in the core of such a star.
As we can see, there is no consensus and these extreme conditions cannot be realized in
laboratory to discriminate the models. But the observation of gravitational waves emitted
by a neutron star merger, gives an opportunity to study the structure of a neutron star.

82



CHAPTER 5. BASIC CONCEPTS

The web page https://stellarcollapse.org/microphysics gathers different equa-
tions of state that can be used to describe the matter of compact stars. Figure 5.7 shows
the evolution of density ρ and pressure p as a function of enthalpy for two equations of
state called: LS220 [138] and DD2 [139]. These equations of state can be used to solve
the Einstein equations to describe a rotating relativistic star. The energy density profile
is plotted for these two equations of state at the bottom right of Figure 5.7 for a 1.45M⊙
non-rotating star. This profile has been obtained using the nrotstar routine of Lorene
solving the equations of general relativity in a stationary and axisymmetric space [140].
The circumferential equatorial radius Rc of the stars is close to 13 km. To calculate these
profiles, the code uses as input the central value of the enthalpy, in this example, it is
approximately equal to 0.2 which gives a gravitational mass of 1.45M⊙. The core of the
neutron star corresponds to the region where the two equations of state are similar. To
realize an initial configuration for a neutron star merger, it is not enough to juxtapose two
neutron stars distant of 50 km, indeed, a slice of space-time must verify the Hamiltonian
and Momentum constraints and be in co-rotation. On the other hand, such a juxtaposition
is a good starting point to compute an initial configuration that can be used by evolution
codes. The initial conditions for a binary neutron star merger can be calculated by another
routine of Lorene [136]. The result given by this routine can be easily used as an initial con-
dition by Eintein Tollkit thanks to the thorn EinsteinInitialData/Meudon_Bin_NS which
directly takes the result of Lorene to initialize the slice of space-time. Recently [141],a new
public code for initial data compact-object binaries is available and allows to consider more
general cases with neutron stars having an intrinsic spin parallel to the orbit. Moreover,
the solver supports extreme mass ratio and spin asymmetries. In the following part, the
evolution of three initial conditions, calculated by Lorene, will be realized by WhiskyTHC

whose results are shown in Figure 5.8, Figure 5.9 and Figure 5.10.
The nuclear equations of state to describe the state of matter of a neutron star are nu-

merous, LS220 and DD2 are only two examples among many others. The meta-model [142],
developed at the IP2I of Lyon, allows to reproduce all the well known equations of state of
nuclear physics. This model is based on the expansion of the nuclear empirical parameters
(Esat, Lsym, ...) around the saturation density. By imposing the beta equilibrium, the high
density extrapolation of such an expansion, up to 2-5 times the saturation density, allows
to describe the matter of a neutron star. In this model, a neutron star consists of three
distinct but coherent regions. These regions are called: outer crust, inner crust and core.
The outer crust is composed of free electrons and nucleons described by the liquid drop
model, protons and neutrons are bound. In the inner crust, there are also free neutrons.
The core contains free electrons, muons, protons, neutrons and there are no more bound
protons and neutrons.

5.6.2 Evolution

After the first detection of the binary neutron star merger GW170817 by LIGO/Virgo,
it has become crucial to have accurate descriptions of such events, to be able to compare
them with gravitational waves and optical observations. WhiskyTHC [96] is the merger of the
Whisky [143] and THC [144] codes that allows to solve fully general-relativity hydrodynamics
in high-order codes. Its infrastructure is based on Einstein Toolkit and solves the CCZ4 for-
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Figure 5.7 – Representation of the equation of state LS220 in blue and DD2 in orange.
Top: evolution of density and pressure as a function of enthalpy. Bottom left: evolution of
enthalpy as a function of baryon density. Bottom right: energy density profile of a 1.45M⊙
neutron star.

mulation [145] of the Einstein equations. WhiskyTHC supports tabulated three-dimensional
equations of state with a treatment of neutrinos based on gray leakage scheme [146]. The
variables of the equations of state should be the energy density, temperature and electron
fraction. The evolution of the electron fraction is done by treating the neutrino emis-
sion and absorption. A detailed study of mass ejection, electromagnetic counterparts and
nucleosynthesis in neutron star merges has been done in [147] using WhiskyTHC.

Figures 5.8, 5.9 and 5.10 show the merger of two neutron stars of the same masses.
Each figure gathers several snapshots of the simulation. On the right of each snapshot,
there is a xy slice showing the energy density and on the left, there is the plot of the
gravitational wave calculated at a distance of 400 Mpc. The blue dashed curve represents
the total h+ amplitude of the wave-form while the black curve shows the emission of
the gravitational wave-form over time. Before the merger of the two neutron stars, the
wave-form is very similar between the different simulations and is very well described by a
post-Newtonian development. It is almost independent of the equation of state: it is the
inspiral phase. On the other hand, at merger time, three behaviors are clearly distinguished
according to the compact object formed by the fusion. In Figure 5.8, for the equation of
state LS220 with two 1.5M⊙ neutron stars, there is a collapse of the system into a black
hole very quickly after the merger. For the same equation of state but with neutron stars
of 1.35M⊙, there is formation of a kilonava several milliseconds before the collapse into
a black hole. During this phase, the frequency of the gravitational wave is much higher
than during the inspiral phase and its amplitude is lower. Unfortunately, this part of the
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gravitational wave very rich to study the structure of the matter falls for the moment in
the noise of the LIGO/Virgo detectors. Finally, for the DD2 equation of state with two
neutron stars of 1.45M⊙, the resulting object is a neutron star, so there is no black hole
collapse.

The description of matter under the extreme conditions of the interior of neutron stars
is not well known yet. In particular, are there phase transitions? Is the core of neutron
stars made up of quark-gluon plasma? Thus, the study of neutron star mergers could
help answering such questions. Performing these simulations with the LS220 and DD2
equations of state is the first step to further investigate these issues. A systematic study
with many equations of state would allow to better know the conditions under which a
kilonava is formed. This would also improve the templates of the gravitational wave-forms
used by the LIGO/Virgo collaboration in the Bayesian analysis. Moreover, it is not only
the gravitational wave-form that can be studied. Indeed, understanding the formation of
heavy nuclei in this type of system is crucial and must be studied, etc.
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Figure 5.8 – Result of a simulation representing the merger of two neutron stars of 1.5M⊙
realized by WhiskyTHC considering LS220 as equation of state.
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Figure 5.9 – Result of a simulation representing the merger of two neutron stars of 1.35M⊙
realized by WhiskyTHC considering LS220 as equation of state.
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Figure 5.10 – Result of a simulation representing the merger of two neutron stars of 1.45M⊙
realized by WhiskyTHC considering DD2 as equation of state.
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6
Scaling relations

Observations of gravitational waves provide new opportunities to study our Universe.
In particular, mergers of stellar black holes are the main targets of the current gravita-
tional wave experiments. In order to make accurate predictions, it is however necessary to
simulate the mergers in numerical general relativity, which requires high performance com-
puting. While scaling relations can be used to rescale simulations for very massive black
holes, non-standard black holes have specific properties which can invalidate the rescaling.
In this article, we study the scaling relations of general classes of black holes, including
primordial black holes affected by the cosmological expansion and Hawking evaporation.
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6.1 Introduction

After the discovery of gravitational waves (GWs) by LIGO [10], studies of mergers of
stellar mass black holes (BHs) and of the resulting emission of gravitational waves have
multiplied, either with semi-analytical descriptions or with numerical general relativity
simulations. In absence of discovery of new particles at the LHC and in dark matter
detection experiments, the nature of dark matter is still actively searched for, and the
fact that primordial black holes (PBHs) can constitute dark matter is now considered as
a viable possibility [5, 148, 149]. Contrary to stellar black holes, the mass of primordial
black holes spans from values as low as the Planck mass up to millions of solar masses,
and the merger of such PBHs can generate GWs with frequencies and amplitudes very
different from those accessible to LIGO and VIRGO. Yet such PBH-generated GWs may
be accessible to future GW experiments such as LISA [150], and it is important to correctly
model them. However because the masses of the involved PBHs can be very different from
the stellar BHs for which numerical simulation codes have been built, it may be very
difficult to simulate numerically their mergers, and in particular the final states, which
requires numerical simulations for a correct description. Fortunately there exists scaling
relations which can in principle be used to rescale results obtained in numerical simulations
of stellar BH mergers to very different mass scales and which also apply to GW emission.
Nevertheless, some particularities of the primordial black holes, such as very small masses,
maximal spins, non-negligible charges and Hawking evaporation, can falsify such scaling
relations. Besides, non-standard black hole models also have specific scaling properties. In
this paper, we study how the scaling properties can then be used to distinguish between
black hole models. In Section 6.2 we explicitly retrieve the scaling relations of standard
black holes and derive scaling relations for a more general case, i.e. Kerr-Newman black
holes with spin and electromagnetic charge. In Section 6.3 we discuss the domain of
validity of such a rescaling, taking into account Hawking evaporation and expansion of the
Universe. In Section 6.4, we study whether non-standard models of black holes can also
have specific scaling properties. In Section 6.5, we consider the limitations of numerical
simulations of black hole mergers in the case where the standard scaling properties are not
valid and discuss the advantages of identifying new scaling relations, before concluding.

In the following, we use the natural unit system with c ≡ 1.

6.2 Scale invariance of standard black holes

6.2.1 Scale invariance

In the coordinate system xµ = (t, x, y, z) associated to a metric gµν , we consider a
transformation with a scale factor λ such as

xµ −→ λxµ . (6.1)
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By definition of the metric and its relation with the local flat coordinates, the metric is
scale invariant under transformation (6.1). Under this transformation, we obtain for the
proper time τ , Christoffel symbol Γσµν and Riemann tensor Rσµνκ:

dτ2 = gµνdx
µdxν −→ λ2dτ2 ,

Γσµν =
1

2
gσα

(
∂gαµ
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

)

−→ λ−1Γσµν , (6.2)

Rσµνκ =
∂Γσµκ
∂xν

−
∂Γσµν
∂xκ

+ ΓσµαΓ
α
µκ − ΓσκαΓ

α
µν −→ λ−2Rσµνκ

In addition the four velocity vector uµ = dxµ/dτ is scale invariant, and the Ricci tensor
Rµν , the scalar curvature R and the Weyl conformal tensor Cσµνκ scale similarly to the
Riemann tensor Rσµνκ. The geodesic equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 (6.3)

is also scale invariant, and therefore its solutions are unchanged and only the coordinates
are dilated.

Concerning Einstein’s field equations (EFEs) with a cosmological constant Λ and a
stress-energy tensor Tµν :

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν , (6.4)

it is clear that the EFEs are not scale invariant. Indeed the cosmological constant is not
scale invariant, neither is Tµν in the general case. The scale invariance is retrieved in
absence of cosmological constant and in the vacuum.

The description of the merger of black holes and generation of gravitational waves fulfils
the scale-invariance condition: the GWs are perturbations of the metric in the vacuum, and
the BHs are described as metrics with horizons. In absence of matter outside the BHs, the
EFEs are written in the vacuum, and the cosmological constant is too small to have any
effect during the black hole coalescence and merger. Let us consider the Kerr metric [151]
in the Boyer–Lindquist coordinates [152], which describes a rotating black hole of mass M
and angular momentum J :

dτ2 =
(
dt− a sin2 θdφ

)2 ∆

Σ
−
(
dr2

∆
+ dθ2

)

Σ−
(
(r2 + a2)dφ− adt

)2 sin2 θ

Σ
, (6.5)

where (r, θ, φ) are spherical coordinates, a = J/M , Σ = r2 + a2 cos2 θ, ∆ = r2 −Rsr + a2

and Rs = 2GM the Schwarzschild radius. In the case of vanishing angular momentum,
the Schwarzschild metric is retrieved:

dτ2 =

(

1− 2GM

r

)

dt2 −
(

1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) . (6.6)

The scale invariance of the Kerr metric implies that:

Rs −→ λRs ⇐⇒ M −→ λM , (6.7)

a −→ λa ⇐⇒ J −→ λ2J , (6.8)
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under transformation (6.1). The transformation of J is compatible with the standard
definition of angular momentum ~J = m~x × ~v when applying the coordinate and mass
transformations (6.1) and (6.7). Also the Kerr dimensionless spin parameter a∗ = a/M ,
which is equal to 0 for Schwarzschild BHs and 1 for extremal Kerr BHs, is scale invariant.

We can now derive the following scaling rules for the merger of n BHs of masses Mi,
spins Ji and momentum ~Pi with positions ~xi (i = 1 · · ·n) at time t:

Mi −→ λMi , t −→ λt , (6.9)
~Pi −→ λ~Pi , ~xi −→ λ~xi ,

Ji −→ λ2Ji , a∗i −→ a∗i .

Consequently the local densities scale as ρ −→ λ−2ρ, the accelerations as ~a −→ λ−1~a and
the velocities are scale invariant.

Similarly, since gravitational waves can be considered as perturbations of the metric,
their frequency f , wavelength Λ, energy E, amplitude (or metric perturbation) h, speed v
and stress-energy tensor scale as

f −→ λ−1f , Λ −→ λΛ , (6.10)

E −→ λE , h −→ h ,

v −→ v , Tµν −→ λ−2Tµν .

6.2.2 Scaling relations of charged spinning black holes

While stellar black holes are generally expected to have small spins and negligible
electromagnetic charges, primordial black holes can have very small masses, extremal spins
and be strongly charged. In particular, the lifetime of primordial black holes can be strongly
increased by an electromagnetic charge [153], making possible the existence of the very light
ones even today.

In the general case, primordial BHs have to be described by the Kerr-Newman metric
[154], which is similar to Eq. (6.5), with Σ = r2 − Rsr + a2 + R2

Q, where RQ is related to
the black hole charge Q by

RQ =

√

G

4πǫ0
Q , (6.11)

with ǫ0 the void permittivity. The scale invariance can be restored by transforming the
charge as

Q −→ λQ . (6.12)

However, such a rotating charge induces an electromagnetic potential such as

Aµ =

(
rRQ
Σ

, 0, 0,−a
∗RQr sin

2 θ

ΣG

)

, (6.13)

which is invariant under our set of transformations. The electromagnetic field therefore
transforms as

Fµν =
∂Aν
dxµ

− ∂Aµ
dxν

−→ λ−1Fµν , (6.14)
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and the associated stress-energy tensor as

Tµν = ǫ0

(

FµαgαβF
νβ − 1

4
gµνFδγF

δγ

)

−→ λ−2Tµν , (6.15)

which is the behaviour required to let the EFEs invariant in presence of a source term.
Turning to Maxwell’s equations:

∂

dxν

(√

− det(gµν)g
µαFαβg

βν

)

=
Jµ

ǫ0
, (6.16)

they are invariant when the current four-vector Jµ is zero or scales as λ−2. Therefore, not
only a Kerr-Newman BH respects the scaling relation described in Section 6.2.1 and charge
normalized to the BH mass Q/M is scale invariant, but the electromagnetic waves emitted
by a merger of charged black holes in empty space respect the same scaling properties
as gravitational waves, given in Eq. (6.10). There is indeed a strong parallel between
Einstein’s field equations and Maxwell’s equations: in presence of source terms the scaling
properties are generally broken.

As a consequence, any simulation of charged spinning black holes can be rescaled to
larger or smaller masses, and the gravitational waves and the electromagnetic waves can
be rescaled similarly.

6.3 Domain of validity of the scaling relations for primordial

black holes

Primordial black holes are by definition created in the primordial Universe, and can
have masses as low as the Planck mass. With such small masses, quantum effects have to
be taken into account, and interaction of the horizon of light black holes with the vacuum
results in the BH evaporation by emission of particles, called Hawking radiation [155].
In the following, we study the domain of validity of the scaling relation with respect to
surrounding material acting as source terms, expansion of the Universe and evaporation of
BHs.

6.3.1 Surrounding material around black holes

Let us briefly consider the presence of source terms in the EFEs. For a perfect fluid in
thermodynamic equilibrium, the stress-energy tensor reads:

Tµν = (ρ+ P )uµuν + Pgµν , (6.17)

where ρ and P are the energy density and pressure of the fluid. In order to leave the
EFEs scale invariant, the energy density and pressure need to transform under the scale
transformation as:

(ρ, P ) −→ λ−2(ρ, P ) . (6.18)

Such a transformation does not hold in the general case, but it is valid for collisionless
particles with negligible pressure, or when P ∝ ρ, or when both pressure and density are
negligibly small. This has been studied numerically for example in [156,157].
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In the general case, when processes dominated by electromagnetic, weak or strong
interactions occur the scaling is broken, because these interactions are related to different
couplings, and in addition weak and strong interactions have limited ranges. Similarly,
quantum effects cannot be expected to be scale-invariant since they are independent from
gravity.

6.3.2 Black holes and expansion rate of the Universe

Since PBHs originate in the early Universe, their mergers can be affected by the ex-
pansion. As the expansion is time-dependent but affects space, it breaks the scaling of
time and space. A simple rule would be to consider that a rescaling is possible as long
as the duration of the merger Tmerger is much smaller than the Hubble time tHubble(t) at
cosmological time t, that is

Tmerger ≪ tHubble(t)

[

≡ a(t)

ȧ(t)

]

, (6.19)

where a(t) is the cosmological scale factor. To calculate the merger time, we approxi-
mated the trajectory of the BHs to an equilibrium circular orbit with an orbital decay
rate dD(t)/dt. At lowest order, this expression can be calculated from the quadrupole for-
mula [19] and an integration of the orbital decay gives, for the binary separation distance
D(t) of the coalescence of two Schwarzschild BHs of Schwarzschild radius Rs, the following
scale invariant expression:

D(t) = 4

[
R3
s

20
(Tmerger − t)

]1/4

, (6.20)

which is valid at t < Tmerger. Assuming a ΛCDM model in a flat Universe, using the
cosmological parameters measured by Planck [2] and considering 60 e-folds for inflation,
we show in Figure 6.1 the individual BH masses of binary mergers for which Tmerger =
tHubble(t), as a function of the age of the Universe t. BHs with masses above the lines
merge faster than the expansion. The line corresponding to the maximal PBH mass has
been obtained by assuming that the biggest BH has a Schwarzschild radius equal to the
Hubble radius. In particular, at our present epoch, mergers of stellar black holes are
affected by the expansion only if their initial distance is larger than about 106 km.

6.3.3 Black holes and Hawking evaporation

Light PBHs are expected to vanish via emission of Hawking radiation [155]. Since the
lifetime of a BH is typically proportional to its mass cubed [158], the scaling of the mass
proportionally to the spacetime scaling is not possible anymore. Therefore, the scaling
can be applied only if the duration of the merger is much smaller than the lifetime of the
BHs. In Figure 6.2 we show the evaporation time of BHs as a function of their mass, for
Schwarzschild BHs and for nearly extremal Kerr BHs with a∗ = 0.99. The evaporation
time has been computed with the public program BlackHawk [159]. For comparison, typical
durations of mergers of two black holes obtained from Eq. (6.20) are also plotted as a
function of the mass of the system, assuming that both BHs have identical masses, for
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Figure 6.1 – BH masses corresponding to a merger time equal to the Hubble time, as a
function of the age of the Universe, for different initial merger BH distances D given as
numbers of Schwarzschild radii. The dashed line corresponds to the maximum mass of
BHs.

initial distancesD = (10Rs, 10
3Rs, 10

6Rs, 10
9Rs), so that the rescaling is typically correct

down to masses of about (10−4, 1, 106, 1012) grams, respectively, below which evaporation
has to be taken into account and breaks the rescaling. Since PBHs having not completely
evaporated today have masses above 1014 g [160, 161], the mergers of the surviving PBHs
are not affected by Hawking evaporation.

6.4 Non-standard black holes

In this section, we study the scaling properties of non-standard black holes, which
can either be extensions of the Schwarzschild black hole model within Einstein-gravity, or
black holes in non-standard gravity theories. In the latter case, not only the generation
of gravitational waves during a black hole merger can be modified, but the propagation
of the gravitational waves itself can be affected. Nevertheless, since the propagation of
gravitational waves mostly occurs in a weak gravitational field and the observed gravita-
tional waves are in agreement with general relativity, we will disregard the modification
of propagation in weak gravitational fields and mainly discuss the scaling properties of
non-standard black holes and gravity scenarios.

6.4.1 Black holes in expanding Universe

We first consider the McVittie metric [162], which describes a non-spinning and neutral
black hole in a flat expanding Universe:

dτ2 =

(
1− µ

1 + µ

)2

dt2 − (1 + µ)4a2(t)(dρ2 + ρ2 dΩ2) , (6.21)
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Figure 6.2 – In the time vs. BH mass plane, the solid lines correspond to the evaporation
time for a BH of mass M and spin a∗ = 0 (red) and a∗ = 0.99 (blue). The dashed lines
correspond to the merger time for two identical Schwarzschild BHs of mass M , for different
initial distances D given as numbers of the Schwarzschild radius.

where ρ is the comoving radius, a(t) the expansion factor, dΩ2 = dθ2+sin2 θdφ2 is the solid
angle and µ = GM/[2a(t)ρ]. This metric coincides with the Schwarzschild metric for a
constant a(t) under the redefinition r = a ρ, and with the Robertson and Walker metric in
flat space at large radius. The scaling relations are preserved as long as a(t)ρ −→ λ a(t)ρ.
In the case of a constant scale factor, the scaling relation ρ −→ λρ is similar to transfor-
mation (6.1). However, in presence of expansion, it is more interesting to consider that
the scaling relation would read instead a(t) −→ λ a(t). In a radiation-dominated Universe
a(t) = (2πGρr0/3)

1/4t1/2, and in a matter-dominated Universe a(t) = (6πGρm0 )1/3t2/3,
where ρr0 and ρm0 are the current radiation and matter densities, respectively. Therefore,
as long as the dominating component is not changing, the scaling relations are preserved
when ρr0 −→ λ2 ρr0 or ρm0 −→ λ ρm0 . This result is confirmed when considering that an
expanding Universe necessarily involves a non-zero stress-energy tensor, and the density
and pressure have the scaling properties given in Eq. (6.18). Using the transformations of
ρm0 and ρr0, we check that for matter ρm = ρm0 a

−3 −→ λ−2ρm, Pm ≈ 0, and for radiation
ρr = ρr0a

−4 −→ λ−2ρr and P r = ρr/3, so that the needed scaling properties are respected
by the stress-energy tensor. Thus, simulations of black hole mergers in expanding Uni-
verse can be rescaled as long as the dominating component is conserved and ρr0 or ρm0 are
rescaled properly. However, it is also clear that there is no possibility to use a rescaling
transformation from a static Universe to an expanding one.
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6.4.2 Morris-Thorne traversable wormholes

We consider here the Morris-Thorne traversable wormhole metric [163], which is spherically-
symmetric and static:

dτ2 = e2Φ(r)dt2 − dr2

1− b(r)/r
+ r2(dθ2 + sin2 θdφ2) , (6.22)

where Φ(r) and b(r) are arbitrary functions of r = r0 + l, where r0 is the radius of the
wormhole throat and l the distance from the throat. A wormhole is connected to two
universes, so that a value r > r0 corresponds to two points, one in our Universe and one
on the other side of the wormhole. For such a wormhole to exist, the Φ(r) should not have
any singularity and 1− b(r)/r has to remain positive for r ≤ r0. Also at infinity Φ(r) and
b(r) go to zero.

Contrary to the case of black holes, there exists a non-zero diagonal stress-energy
tensor [164] with elements:

Ttt =
1

8πG

b′

r2
,

Trr = − 1

8πG

[
b

r3
− 2

(

1− b

r

)
Φ′

r

]

, (6.23)

Tθθ = Tφφ =
1

8πG

[

Φ′′ +
(
Φ′)2 − b′r − b

2r2(1− b/r)
Φ′ − b′r − b

2r3(1− b/r)
+

Φ′

r

]

.

It is important to note that if the stress-energy tensor vanishes away from the throat,
Birkhoff’s theorem implies that the wormhole metric reduces to the Schwarzschild metric,
so that an isolated wormhole is indistinguishable from the Schwarzschild black hole away
from the center. The coalescence of two wormholes or a wormhole and a black hole would
therefore be indistinguishable from the a pure binary black hole when they are far away,
but the gravitational effects generated by the non-zero stress-energy tensor can affect the
merger and the spectrum of emitted gravitational waves. Considering metric (6.22), under
the transformation of Eq. (6.1), the scale invariance imposes that

Φ(r) −→ Φ(r) , (6.24)

b(r) −→ λb(r) .

These conditions automatically lead to Tµν −→ λ−2Tµν since wormholes are EFE solutions.
Looking at the zero tidal force hypothesis of Morris and Thorne [163], which corresponds

to Φ(r) = 0 and b(r) = (b0r)
1/2, the scale invariance implies that the constant b0 scales as

a distance.
Concerning the emission of gravitational waves during a merger involving two worm-

holes, the question of their scaling properties is therefore not related to the geometry, but
to the exotic energy which feeds the stress-energy tensor, and in particular to the inter-
action of the exotic energy of one of the wormholes with the exotic energy of the other
wormhole. If their interaction has similar scaling properties as gravity, then the emitted
gravitational waves will have the same scaling properties as in a binary black hole merger,
but it will not be the case otherwise.
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6.4.3 Loop quantum gravity inspired black holes

One of the major theoretical questions about the Schwarzschild metric concerns the
naked irreducible singularity at the center, which may find a solution in quantum gravity,
in which the smallest quanta is expected to have a minimal size that could affect the
properties of the black hole interior and in particular the geometry at its center. We
consider here the loop quantum gravity (LQG) corrected Schwarzschild metric of [165]:

dτ2 =
(r − r+)(r − r−)(r + r∗)2

r4 + a20
dt2 −

(
(r − r+)(r − r−)r4

(r + r∗)2(r4 + a20)

)−1

dr2 −
(

r2 +
a20
r2

)

dΩ2 ,

(6.25)
where r+ = 2GM(1+P )−2, r− = 2GM P (1+P )−2 and r∗ =

√
r+ r−, with P = (

√
1 + ǫ2−

1)/(
√
1 + ǫ2 + 1), ǫ being a very small constant, a0 = Amin/8π and Amin is the area

corresponding to the smallest quanta in the LQG quantification. r− and r∗ are two small
radii which prevent the singularity at r = 0 in the Schwarzschild metric. The Schwarzschild
metric is retrieved for ǫ = 0 and Amin = 0. For this metric, the scaling relations still hold
as long as Amin −→ λ2Amin, which is consistent with the scaling of an area, and ǫ is
scale-independent. However, it is clear that physically the smallest quanta area should not
be rescaled, but the probable small size of a0 would certainly not allow to distinguish the
gravitational waves emitted during a merger of LQG corrected Schwarzschild black holes
from the ones of a standard binary black hole merger.

6.4.4 Black holes in f(R) gravity

We now consider the well-known generalization of the Einstein-Hilbert Lagrangian den-
sity, where R is replaced by a generic function f(R) [73,166]. Such a modification encom-
passes a broad variety of new gravitational theories, including quantum gravity models.

From the definition of the Lagrangian, in empty space the scaling relation R −→ λ−2R
in Einstein’s gravity becomes f(R) −→ λ−2f(λ−2R), or equivalentlyR −→ f−1(λ−2f(λ−2R)).
This transformation does not obviously hold unless f(R) = R. It can nevertheless still be
valid in weak gravitational fields at first order in R when f(R) ≈ R, therefore not affecting
the propagation of gravitational waves.

The equation equivalent to EFEs reads in f(R) gravity:

f ′(R)Rµν −
1

2
f(R)gµν = [∇µ∇ν − gµν�]f ′(R) + 8πGTµν , (6.26)

where ∇µ is the covariant derivative, � = ∇µ∇µ is the Laplacian, and Tµν is the standard
stress-energy tensor. In the vacuum the right hand-side term appears as an effective stress-
energy tensor. In case of a constant scalar curvature R = R0 — as for example in empty
space in the Einstein’s gravity — the equation becomes in vacuum:

f ′(R)Rµν −
1

2
f(R)gµν = 0 , (6.27)

and its trace gives:
f ′(R0)R0 − 2f(R0) = 0 , (6.28)
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which admits as solution f(R0) ∝ R2
0, or R0 = 0 if f(R0) = 0. This second solution is

the same of the one of general relativity in empty space, and the standard Schwarzschild
metric is therefore a solution of the field equations (6.26) as long as f(0) = 0 1. In such a
case, the scaling properties of the Schwarzschild metric in f(R) gravity are therefore the
same as in Einstein’s gravity.

A more careful look at the field equations (6.26) reveals that even in absence of the
scaling f(R) −→ λ−2f(λ−2R) the equation itself scales as λ−2 in empty space, so that the
scaling properties of general relativity in vacuum are conserved in f(R) gravity. Therefore
the merger of two Schwarzschild black holes in f(R) gravity will have the same scaling
properties as in Einstein’s gravity, and the observed gravitational waves will also have the
same properties.

Nevertheless, because of the different field equations, the gravitational waves emitted
during the mergers and their propagation will be affected by f(R) gravity. Thus, in the
case of detection of non-standard gravitational waves, a scaling of the gravitational wave
spectra similar to the one expected in Einstein’s gravity would constitute a hint towards
f(R) gravity.

6.4.5 Black holes in gravity with higher-curvature terms

More generally, modified gravity can be based on Lagrangians with higher-curvature
terms involving higher-rank tensors in addition to the scalar curvature as in f(R) gravity,
such as RµνRµν or RαβµνRαβµν , or more complicated scalar objects such as

(∗Rαβµν)Rαβµν =

(
1

2

ǫρσµν√−g R
αβ
ρσ

)

Rαβµν (6.29)

in Jackiw-Pi theory [167], where ǫρσµν is the totally antisymmetric tensor.
In general, as long Rµν = 0 is a solution of the field equations, the Einstein’s gravity

Schwarzschild metric is a solution to describe static and spherically-symmetric black holes,
and the scaling relations of general relativity in empty space will still be valid. This is the
case for the three examples of scalars given above, but in general not for a cubic contraction
of the Riemann tensor [168]. If the Schwarzschild metric is valid, similarly to f(R) gravity,
the emitted gravitational waves and their propagation will be affected by the modified
gravity, but the scaling properties will still hold.

6.4.6 Extra-dimensional black holes

The generalization of general relativity to extra-dimensions is rather straightforward,
and the geometrical part of the action in a 4 + n dimensional spacetime reads:

Sg =
M2+n

∗
16π

∫

d4+nx
√−g(R4 +Rn) , (6.30)

where M∗ is the fundamental mass scale, R4 is the 4-dimensional part of the scalar cur-
vature and Rn is its n-dimensional part. An effective 4 dimension-action can be obtained

1. The converse is not necessarily true, and other spherically-symmetric and static black hole metric
solutions may also exist in f(R) gravity, without being valid in Einstein’s gravity.
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by integrating over the extra-dimensions and by neglecting the Rn term which only affects
the geometry of the extra-dimensions, leading to:

S4
g =

M2+n
∗ Ln

16π

∫

d4x
√−gR4 , (6.31)

where it is assumed for simplicity that the extra-dimensions have the same size L. The
Planck mass is therefore related to M∗ by

MP =M
1+n/2
∗ Ln/2 . (6.32)

The number n and the size L of the extra-dimensions are therefore the main parameters of
this model. The Schwarzschild solution for a spherically-symmetric and static metric also
exists and reads [169,170]:

dτ2 =

(

1−
(rh
r

)1+n
)

dt2 −
(

1−
(rh
r

)1+n
)−1

dr2 + r2dΩ2
2+n , (6.33)

where the horizon radius is given by:

rh = kn
1

M∗

(
M

M∗

) 1

1+n

, (6.34)

with M the black hole mass and

kn =

(
8Γ((3 + n)/2)

(2 + n)π(1+n)/2

) 1

1+n

. (6.35)

By definition, the field equations in (4 + n) dimensions are scale-invariant in empty
space. However, the mass scale M∗ is embedded in the Schwarzschild metric. In 4 dimen-
sions, M∗ =MP , which is fixed and is not modified under transformation (6.1). As for the
4 dimensional case, the scaling properties of the metric (6.33) imply that rh −→ λrh, and
as a consequence the scaling of the mass reads in (4 + n) dimensions:

M −→ λ1+nM . (6.36)

Similarly, the scaling properties of gravitational waves are identical to the 4-dimensional
case apart from the energy which scales as the mass. The propagation of gravitational
waves can be affected by the existence of extra-dimensions since the gravitational waves
can propagate into the extra-dimensions, modifying for example the propagation speed.

As a consequence, one can expect deviations from the scaling of the observed gravita-
tional waves with the masses of a black hole merger, which would be a characteristic of
the considered extra-dimension model.

We studied here the case of a very simple extra-dimension scenario, but there exist
many extra-dimension models, with for example more complicated geometries. In such
cases both the emission and propagation of gravitational waves can be modified, altering
the scaling properties obtained in this section.
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6.4.7 Lovelock black holes

We consider now the case of Lovelock black holes in the 5-dimensional Einstein-Gauss-
Bonnet theory [171]. The geometrical part of the effective 4-dimensional action reads:

Sg =
1

16πG

∫

d4x
√−g

(

−2Λ +R+ α(R2 +RαβµνR
αβµν − 4RµνR

µν)
)

, (6.37)

where Λ is the cosmological constant and α is a constant. The last term is the so-called
Gauss-Bonnet term, which appears as an ultraviolet correction to Einstein’s gravity.

Neglecting the cosmological constant, the spherically-symmetric and static solution of
the field equations leads to the following metric [172–174]:

dτ2 =

(

1 +
r2

4α
− r2

4α

√

1 +
8k22αM

M3
∗ r

4

)

dt2−
(

1 +
r2

4α
− r2

4α

√

1 +
8k22αM

M3
∗ r

4

)−1

dr2− r2dΩ2
3 ,

(6.38)
where k2 is given in Eq. (6.35) and M∗ is the fundamental mass scale in 5 dimensions.
This metric reduces to the Schwarzschild metric in 5 dimensions when α ≈ 0 or r2 ≫ |α|.
The horizon is located at rh =

√

k22MM−3
∗ − 2α, hence the condition M > 3παM3

∗ /k
2
2.

An interesting feature of this metric is that there is no naked singularity at the center.
For this metric to be invariant, first the mass has to follow the scaling relation M −→

λ2M , which is a particular case of Eq. 6.36, and second α −→ λ2α. However, since α is
the fundamental coupling of the Gauss-Bonnet term, it is fixed in the theory and cannot
be rescaled. At long distance, since the terms involving α vanish, the gravitational waves
emitted by the black hole will have the same properties as in the simple 5-dimension exten-
sion of Einstein’s gravity presented in Section 6.4.6. At short distance, the Schwarzschild
metric is also retrieved, but the effective mass is modified. At intermediate distance, the
terms proportional to r2 can dominate. As a consequence, the emitted gravitational waves
will be similar to the ones emitted by black hole mergers in Einstein’s gravity at low fre-
quencies, with the difference that the masses will scale as λ2, but at high frequencies such
scaling relations will not hold anymore.

6.4.8 Black holes in scalar-tensor gravity

A generic class of theories is based on the existence of a scalar field coupled to geometri-
cal tensors. For black holes, there exists a “no-hair conjecture” [175–177] which states that
black hole solutions of the EFEs are completely characterized by only three parameters,
the mass, the electric charge, and the angular momentum. This conjecture generally does
not apply to scalar-tensor gravity scenarios, in which the black holes can develop “scalar
hair” [178,179].

We consider here the example of black holes in the Einstein-Scalar-Gauss-Bonnet theory
[180], in which the geometrical part of the action reads

Sg =
1

16πG

∫

d4x
√−g

[

R− 1

2
∂µϕ∂

µϕ+ f(ϕ)R2
GB

]

, (6.39)

where f(ϕ) is a generic function of the scalar field ϕ and

R2
GB = RµνρσR

µνρσ − 4RµνR
µν +R2 (6.40)
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is the quadratic Gauss-Bonnet term. In empty space, the field equations can be obtained
from the action [180]:

Rµν −
1

2
gµνR = Tϕµν , (6.41)

�ϕ+ f ′(ϕ)R2
GB = 0 , (6.42)

with

T vac
µν = −1

4
gµν∂ρϕ∂

ρϕ+
1

2
∂µϕ∂νϕ−

1

2
(gρµgλν+gλµgρν)η

κλαβηργστRσταβ∇γ∂κf(ϕ) , (6.43)

and ηργστ = ǫργστ/
√−g.

A scaling T vac
µν −→ λ−2T vac

µν would imply for the scalar field ϕ −→ ϕ and f(ϕ) −→
λ2f(ϕ). These transformations are obviously self-contradictory since f(ϕ) does not vary
when ϕ is constant. However, since the last term of T vac

µν is multiplied by Rσταβ , in the
case of a weak field it will be negligible and will in particular not affect the gravitational
waves.

We will now check whether the geometry around black holes can conserve its scaling
properties in spite of the presence of the scalar field. In a spherically-symmetric and static
metric such as:

dτ2 = A(r)dt2 −B(r)dr2 − r2(dθ2 − sin2 θ dφ2) , (6.44)

the EFEs connect A(r) and B(r) to φ(r). Solving the set of field equations in such a metric
is a complicated task, but it is interesting to consider the asymptotic solution at infinity.
It reads at second order in 1/r:

A(r) = 1− 2GM

r
,

B(r) =

(

1− 2GM

r
−G2 16M

2 − P 2

4r2

)−1

, (6.45)

ϕ(r) = ϕ∞ +
GP

r
+
G2MP

r2
,

where M is the effective mass and P is the scalar charge. The value of the scalar field at
infinity ϕ∞ does not play any role as long as f(ϕ∞) = 0. As a consequence, at infinity the
Schwarzschild metric is retrieved at first order in r−1. The next orders can be written in
terms of P , so that the scalar charge appears as a new parameter (a “hair”) to describe black
holes in tensor-scalar gravity. It is interesting to compare this expression to the case of the
charged black hole in Einstein’s gravity, for which A(r) = B−1(r) = 1− 2GM

r + Q2G
4πǫ0r2

. As
for the electric charge Q, the scaling rule associated to scalar charge is therefore the same
as for the mass M : P −→ λP . This scalar charge is however generally not independent of
the mass M and is related to the definition of the f(ϕ) function [179].

Concerning the gravitational waves themselves, the ones emitted in the early stages
of a black hole merger will be very similar to the ones in Einstein’s gravity, and their
propagation will be unaffected in weak gravitational fields. However, when the black
holes get closer, deviations due to the presence of a scalar charge will appear, and the
scaling properties will be changed, unless there exists a regime in which the scalar charge
is proportional to the mass.
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6.4.9 Black holes in other modified gravity models

There exist many other possibilities to alter Einstein’s gravity, we consider here one
last case, namely the non-relativistic Hořava-Lifshitz four-dimensional theory of gravity
[181, 182], which is a renormalizable gravity theory in four dimensions which reduces to
Einstein’s gravity in IR but with improved UV behaviours. We will not consider here the
gory detail, but study the case of the asymptotically flat, spherically-symmetric and static
case, for which the metric is [183,184]:

dτ2 = f(r)dt2 − dr2

f(r)
− r2(dθ2 + sin2 θdφ2) , (6.46)

where
f(r) = 1 + ωr2 −

√

r(ω2r3 + 4ωM) , (6.47)

with ω a fundamental constant of the theory and M a mass parameter. For r ≫ (M/ω)1/3,
the Schwarzschild metric is retrieved. There are two horizons located at radii:

r± =M

(

1±
√

1− 1

2ωM2

)

. (6.48)

Therefore, if ωM2 ≥ 1/2, there is no naked singularity at the center, where the geometry
is flat. Once the fundamental parameters are fixed, only M can be changed. For f(r)
to be invariant under the transformation r −→ λr, the necessary transformation laws
are ω −→ λ−2ω and M −→ λM . The scaling of the mass is therefore the same as in
Einstein’s gravity. Nevertheless, because ω is a fixed parameter, even if the gravitational
waves emitted during a merger of black holes are similar to the ones of Einstein’s gravity
at long distances and low frequencies, the scaling properties will become invalid at short
distances and high frequencies.

6.5 Testing the scaling relations

6.5.1 Rescaling of simulations of black hole mergers

We now discuss simulations of mergers of binary black holes and emission of gravita-
tional waves, and their rescaling properties. Such simulations are computationally inten-
sive, and each of our simulations necessitated about one week on a 64-processor server.
The evolution of binary black holes includes different phases. The first one, which is the
longest, is the inspiral phase described using post-Newtonian techniques. The second one
is the plunge and merger phase, which can be only described via numerical relativity. The
last one is the ringdown phase described by perturbation methods.

To produce some examples of simulations and solve the Einstein equations, we use
the Einstein Toolkit code [18, 124, 127, 185]. The initial data are generated via the
TwoPunctures routine [128] for a merger with a near circular orbit. We consider only
this case since for a binary orbit with a given eccentricity e, the emission of gravitational
waves leads to a decrease in eccentricity. The evolution is performed using the BSSN
formulation [19] via the McLachlan routine [120]. To compute the properties of the emitted
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gravitational waves, we use the Newman-Penrose formalism [19] where the Weyl scalar ψ4

and the GW polarization amplitudes h+,× are related by:

ḧ+ − iḧ× = ψ4 =

∞∑

l=2

l∑

m=−l
ψlm4 (t, r)−2Ylm(θ, φ) . (6.49)

This corresponds to the decomposition of ψ4 into s = −2 spin-weighted spherical har-
monics. The dominant modes for the gravitational wave strain h are the l = m = 2
modes: h22+,×. Considering the scaling relations, since h+,× are scale invariant, we have
ψ4 −→ λ−2ψ4.

The scaling relations have been used for binary black holes since a long time [186,187],
and the natural units of codes correspond to c =MT = G = 1 units, where MT = m1+m2

is the total mass of the binary system. Setting G = 1 corresponds in our convention to
considering that the distance, time and mass units are equal, or in terms of scaling that
they all scale as λ, which is correct in Einstein’s gravity. We first perform two simulations
of Schwarzschild BH mergers. The first one is the merger of two BHs of masses equal to
0.5, which can be taken as the reference simulation. The second one is a similar simulation
with two BHs of mass 0.005, corresponding to a scale factor of λ = 0.01 and a total mass
of 0.01, and for which the code is not optimized since it runs outside its natural units in
which the total mass is equal to 1. Such a case would appear when non-standard black
holes with different scales are considered, since one scale would need to be chosen to adjust
the simulation parameters, and the other scale may be sufficiently different to generate
numerical instabilities. To compare both simulations, all the initial quantities are rescaled
using the relations given in Section 6.2.1 (e.g. mass of the BHs, initial angular momenta
of the two BHs, ...). In Figure 6.3, we show the real part of the Weyl tensor and the GW
strain for l = m = 2, as a function of time. To fulfil the scale invariance, the time and Weyl
tensor have been adimensioned using the total initial mass, as given in the axis labels. As
expected the two simulations give similar results in these scale invariant parameter planes.
The main difference is a high-frequency numerical noise, which comes from interpolation
procedures between the different path grids. In order to reduce this noise, it is necessary to
finely adjust the strength of the Kreiss-Oliger artificial dissipation term [188] or change the
finite differential order, but this requires re-running simulations with adjusted parameters
until the correct precision is reached. On the contrary, the reference simulation does not
show any instability. Such effects are even more primordial for binary neutron star mergers
to characterized matter effects. In numerical relativity simulations, the tidal effects tend
to be overestimated because of numerical dissipation which accelerates the inspiral phase,
and on the other hand the post-Newtonian development tends to underestimated them
because of the limited knowledge of higher post-Newtonian order.

Figure 6.4 shows ψ22
4 and h22+ for a similar merger, for two Kerr BHs with reduced

spin parameters a∗ = ±0.5, as a function of time. Similarly to Figure 6.3, we made two
simulations of BH mergers with total masses of 1 and 0.01. We see that the numerical
noise has in the case of Kerr BHs a larger impact which leads to a shift at later times. This
can only be reduced using a very finely adjusted Kreiss-Oliger dissipation strength and/or
a change of finite differential method, after which it is mandatory to run many simulations
to reach a correct precision.
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Figure 6.3 – Real part of the dimensionless Weyl scalar ψ22
4 (up) and GW strain signal

h22+ (down) as a function of the dimensionless time, corresponding to the mergers of two
Schwarzschild BHs for a total mass MT of 1 (blue) and for a total mass MT of 0.01 (orange).

As discussed in the previous sections, when comparing the spectra of the observed
gravitational waves of numerous black hole mergers, a breaking of the scaling relations of
Einstein’s gravity would be an unambiguous sign of non-standard gravity. The simulations
that we have produced show that if there exists a scale in the studied non-standard black
hole models which differs by two orders of magnitude from the main scale (set in general
by the mass), numerical instabilities can occurs, in particular at high frequencies. This
problem already exists when simulating mergers of two black holes with very different
masses (even if, when one mass is negligible, a perturbative approach may be possible). In
the case the gravitational waves of binary black hole mergers reveal a breaking of the scaling
relations, it will be necessary to perform simulations in non-standard gravities in order to
interpret the results, and to generate templates for gravitational wave experiments. It will
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Figure 6.4 – Same as Figure 6.3 for two spinning BHs of reduced spin parameters a∗ = ±0.5.

then be important to pay attention to the fact that numerical instabilities induced by the
presence of several scales may generate a spurious breaking of scaling properties, which
may misleadingly be interpreted as non-standard physics. Nevertheless, as we have seen, in
non-standard models the new parameters can also follow scaling rules. If they are unknown
on the theory side, the scaling relations can be used to reduce the number of simulations
to be performed to generate a library of templates spanning the model parameters, and to
rescale the resulting templates by rescaling also the fundamental parameters.

6.5.2 Testing General Relativity

The limits of general relativity can be tested in extreme gravity environments via
gravitational wave detections by comparing theoretical predictions with the observated
waveforms. A first approach is to subtract a computed template from the data and check
whether it is compatible with the detector design noise. A more elaborate approach is
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to measure the deviations by using the so-called parameterized post-Einsteinian (ppE)
formalism introduced by Yunes and Pretorius [189]. This strategy does not suppose any
knowledge of a new theory and is model-independent. There is no need to compute grav-
itational waveforms beyond the usual general relativity, which may prove to be difficult,
if not impossible; however, if some deviations are measured, this formalism will not give
information on the underlying model. The ppE formalism describes the amplitude A and
phase Ψ corrections at a post-Newtonian order n to the gravitational waveform h by a
couple of two parameters (αn, βn) given by:

A→ A(1 + αnu
2n) ,

Ψ → Ψ+ βnu
2n−5 ,

(6.50)

with u = (πMf)1/3, where M is the chirp mass of the binary system. To recovered
general relativity, αn and βn must be equal to zero. The study of the GW150914 [190]
and GW151226 [191] events performed in [192] sets only upper limits on |αn| and |βn|,
showing the compatibility with general relativity. With the improvement of detectors, or
with future generations such as Einstein Telescope, deviations may be observed. Scaling
relations derived in the previous sections represent a powerful tool to discriminate models.
Indeed, in a scaling theory, the observations will all lead to the same values for (αn,βn)
because the gravitational waveforms h are scale-invariant, contrary to a non-scaling theory.

To give an example, one can consider the Einstein-dilaton Gauss-Bonnet Gravity de-
scribed in Ref. [193]:

S =

∫

d4x
√−g

[

αψ(R2 +RαβµνR
αβµν − 4RµνR

µν)− 1

2
∇νψ∇νψ

]

. (6.51)

In this theory, the amplitude A and the phase Ψ are modified at the (−1) post-Newtonian
order and are given by [192,193]:

α−1 = −−5

192

16πα2

M4
T

(
m2

1s̃2 −m2
2s̃1
)2

M4
T η

18/5
,

β−1 = − −5

7168

16πα2

M4
T

(
m2

1s̃2 −m2
2s̃1
)2

M4
T η

18/5
,

(6.52)

where s̃i = 2
(√

1− χ2
i − 1 + (a∗i )

2
i

)

/(a∗i )
2, with a∗i = | ~Ji|/m2

i the dimensionless spins.

The scale rules mi → λmi, Ji → λ2Ji and f → λ−1f imply that u is scale invariant but
not (α−1,β−1):

α−1 → λ−4α−1 ,

β−1 → λ−4β−1 ,
(6.53)

which is incompatible with the scale-invariance of a waveform h.
On the other hand, if one considers the scalar-tensor theory described in [192,194], the

correction β is given by:

β = − 5

1792
φ̇2η2/5 (m1s̄1 −m2s̄2)

2 , (6.54)
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with s̄i =
(
1 +

√

1− (a∗i )
2
)
/2. Thus β is scale invariant by considering the usual rules:

mi → λmi, Ji → λ2Ji, f → λ−1f , t→ λt and φ→ φ.
Scaling relations can therefore be used to discriminate between models if deviations

from general relativity are measured through gravitational wave detection.

6.6 Conclusions and perspectives

In this chapter, we have studied scaling transformations for black hole mergers, from
primordial to supermassive black holes. We have verified that these rescaling relations are
not only valid for Schwarzschild and Kerr spinning black holes, but also for Kerr-Newman
charged spinning black holes, and that they extend to both the gravitational and electro-
magnetic waves emitted by such mergers. This opens the way to a rescaling of numerical
simulations for the most general cases of black holes, and in particular for primordial black
holes which are more likely to have extremal spins and large electromagnetic charges, thus
reducing the number of parameters to be varied for a full coverage of the parameter space
of black hole mergers. However, primordial black holes have specificities which can lead
to a breaking of the scaling relations. We have therefore studied the limitations of the
rescaling of primordial black holes: first, in the early Universe, the cosmological expansion
can prevent the merger because it increases the distances faster than the merger decreases
them. Then, for light primordial black holes, Hawking evaporation can be faster than the
merger. Finally, we have considered non-standard black holes models, such as the Morris-
Thorne wormhole model, the loop quantum gravity inspired Schwarzschild hole model,
and several cases of modified gravity black hole models, which can have different scaling
properties.

The scaling relations for black hole mergers and their emission of gravitation and elec-
tromagnetic waves are of utmost importance, because they emerge from the invariance of
general relativity and electromagnetism in empty space, and can allow to speed up nu-
merical simulations of numerous templates. As a consequence, with the multiplication
of observations of GWs from BH mergers, it will be important to compare the observed
spectra of binary black holes with different masses, because deviations from the scaling
relations will be a clear sign of the presence of non-standard phenomena and may lead to
the discovery of new gravitational physics.
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7
Discriminating same-mass Neutron Stars and Black Holes

gravitational wave-forms

Gravitational wave-forms from coalescences of binary black hole systems and binary
neutron star systems with low tidal effects can hardly be distinguished if the two systems
have similar masses. In the absence of discriminating power based on the gravitational
wave-forms, the classification of sources into binary neutron stars, binary black holes and
mixed systems containing a black hole and a neutron star can only be unambiguous when
assuming the standard model of stellar evolution and using the fact that there exists a
mass gap between neutron stars and black holes. This approach is however limited by its
own assumptions: for instance the 2.6 solar mass object detected in the GW190814 event
remains unclassified, and models of new physics can introduce new compact objects, like
primordial black holes, which may have masses in the same range as neutron stars. Then,
without an electromagnetic counterpart (kilonova), classifying mergers of compact objects
without mass gap criteria remains a difficult task, unless the source is close enough. In
what follows we investigate a procedure to discriminate a model between binary neutron
star merger and primordial binary black hole merger by using a Bayes factor in simulated
wave-forms that we superimpose to realistic detector noise.
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CHAPTER 7. DISCRIMINATING SAME-MASS NEUTRON STARS AND BLACK
HOLES GRAVITATIONAL WAVE-FORMS

7.1 Introduction

Gravitational wave astronomy has entered a new era, characterized by the detection of
a plethora of coalescing compact binary objects from the recent LIGO and Virgo runs [99,
195], with a large range of masses for the individual compact objects. In particular, the
GW190814 event [12] corresponds to a merger involving a compact object with a 2.6 solar
masses. Such a mass falls typically in the intermediate range between the known black
hole masses and neutron star masses [196–198], therefore this object can be either the most
massive neutron star or the lightest black hole ever detected. In terms of gravitational wave
emission, the main difference to be expected is related to the condensed matter effect of
neutron stars. Unfortunately, the detector sensitivities are currently too low to observe the
impact of matter effect, and in absence of electromagnetic counterpart to determine the
nature of this compact object. The mechanisms of formation of a black hole or a neutron
star of 2.6 solar masses remains unclear and an interesting idea is to consider that this
object is a primordial black hole (PBHs) [199].

Contrary to stellar black holes which are produced by supernovae, PBHs may have
been produced in the early Universe, during e.g. a phase transition. Their size is limited
by the Hubble scale, which is related to the cosmological time, providing a link between the
maximum PBH mass and the epoch of formation [5], and in practice PBHs can theoretically
have a mass between the Planck mass and millions of solar masses. Because of Hawking
evaporation, light PBHs lose mass under the form of radiation, and it has been shown that
PBHs with masses below 1015 grams would have already evaporated since their formation
[5], but heavier PBHs have sufficiently low evaporation rates to still remain. Because of
this, PBHs can constitute the whole or a large fraction of dark matter, and they are usually
considered as good candidates for dark matter [5]. The GW190814 event is not the only
event to contain a compact object of unknown nature because of a too low resolution of
detectors ; the question about the nature of compact objects can also be asked for the
GW190425 event [200].

In this chapter, we study the differences between gravitational wave-forms (GWs) pro-
duced by the coalescence of binary neutron stars (BNS), binary black holes (BBH) and
mixed systems containing a black hole and a neutron star (BHNS). The shapes of these
gravitational wave-forms are rather similar when the objects involved in the merger have
similar masses. The main goal of this paper is to understand under which circumstances
and conditions it is possible to discriminate between BBH and BNS wave-forms by making
use of injected signals with realistic noise profiles. In section 7.2, BBH, BHNS and BNS
templates will be compared using the match which is equivalent to the overlap maximized
over time and phase, and the odds number will be introduced to compare two compet-
ing models. In section 7.3, we will study the possibility of misinterpreting the results
when injecting a PBH wave-form into advanced detector noise and interpreting the data
in the context of BNS mergers. We will also explore the opposite problem, when BNSs are
interpreted as BBHs, and we will conclude in Section 7.4.
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7.2 Model selection

7.2.1 Degeneracy between BNS, BHNS and BBH wave-forms

A first approach to compare two GWs is to use the convolution product of the two GWs
in the time domain which is defined as the integral of the product of two GWs after one of
them has been reversed, shifted and extended by zero values. The discriminating parameter
to vary between BNS, BHNS and BBH wave-forms is the tidal deformability characterizing
the matter effect [201–203] which is only defined for neutron stars 1. Without mass gap
hypothesis, it is this parameter that will play a central role in characterizing the nature of
compact objects. For example, the convolution product of the wave-forms between a BBH
and a BNS normalized with the convolution product of BBH with itself is 0.937 for tidal
deformabilities equal to Λ1 = Λ2 = 600 and 0.997 for Λ1 = Λ2 = 0.

Following the article [205], the approach to compare two wave-forms taking into account
the sensitivity of the detectors, is based on the noise-weighted inner product between two
wave-forms h1 and h2 defined by:

〈h1|h2〉 = 4ℜ
∫ fmax

fmin

h1(f)h
∗
2(f)

Sn(f)
, (7.1)

where Sn(f) is the power spectral density, that encodes the frequency-dependent sensitivity
of a detector [206]. To calculate such scalar product, we take the advanced LIGO design
sensitivity given by aLIGOZeroDetHighPower [207], plotted in Figure 7.1. The separation
between two wave-forms h1 and h2 can be related to their match, which is defined by the
overlap maximized on the coalescence time and the coalescence phase:

M(h1, h2) = max
∆t,∆φ

〈h1|h2〉
√

〈h1|h1〉
√

〈h2|h2〉
. (7.2)

In gravitational wave searches for Compact Binary Coalescences (CBC), the LIGO/Virgo
Collaboration constructs template banks so that the match is at least 0.97 between the two
closest wave-forms [208]. To measure a difference between a neutron star and a black hole
via their gravitational wave-forms without taking into account the masses of the compact
objects, it is necessary to detect a significant matter effect affecting the wave-form through
the tidal deformability. To give an example of the difficulty of such a task, the match
between a BBH and a BNS with Λ1 = Λ2 = 600 with a chirp mass of 1.44 M⊙ and a mass
ratio of 0.9 is higher than 0.97. It requires at least Λ1 = Λ2 = 800 to have a match lower
than 0.97.

When a signal is detected, given a model MA, the marginalized posterior probability
density function of all unknown parameters θ is typically computed by using a Bayesian
analysis. The mean of the parameters θ is noted 〈θ〉. Following the Eq. (18) of [209], the
confidence region at a given probability p is the set of points that verifies the following
condition:

2ρ2 [1−M(h(θ), h(〈θ〉))] ≤ χ2
k(1− p) , (7.3)

1. The tidal deformability is also defined for a black hole submitted to an external gravitational
field [204], but its value is so small that it can be neglected for our study.
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Figure 7.1 – Power spectral density of noise for the advanced LIGO and Virgo detector
configurations.

where ρ is the signal to noise ratio (SNR) and χ2
k(1− p) is the chi-squared, in the case of

k degrees of freedom. We can use this relation to determine the regions in the parameter
space in which two different wave-forms can be distinguished. For a given SNR, if spins are
neglected, BNS templates have only 4 parameters: the chirp mass M, the mass ratio q and
the two tidal deformabilities Λ1, Λ2 because the match is maximized over phase, time and
distance. Since we want to measure matter effects to distinguish between a neutron star
and a black hole, we consider only the tidal deformabilities as free parameters and fix the
others. In addition, we make the simplifying assumption that Λ1 = Λ2. We write Eq. (7.3)
for the case where h(〈θ〉) is a BBH wave-form and for the case where h(θ) is a BNS one
with Λ1 = Λ2. It follows that BBH and BNS can be distinguished (and the nature of the
compact object can be determined) if:

2ρ2 [1−M(hBNS, hBBH)] ≥ χ2
k(1− p) , (7.4)

with χ2
k(1− p) = 2.71 at 90% C.L., which corresponds to one degree of freedom since the

tidal deformability is the only free parameter (Λ1 = Λ2). The left-hand side of Eq. (7.4)
depends on the fixed parameters but also on the luminosity distance d through the SNR:
ρ ≃ 〈hBBH|hBBH〉1/2 ≃ 〈hBNS|hBNS〉1/2 which is proportional to 1/d. Figure 7.2 shows
2ρ2 [1−M(hBNS, hBBH)] as a function of the deformability of neutron stars. The horizontal
lines correspond to the 90 and 99% C.L. limits: a point above one of these lines means that
BBH and BNS mergers can be distinguished at more than 90% of 99% C.L. The wave-forms
are calculated using IMRPhenomPv2 [132–134] for BBH and IMRPhenomPv2_NRTidal [210–
212] for BNS. As expected, the ability of distinguishing BBH and BNS increases with the
tidal deformabilities and the chirp mass, and decreases with the distances. For example,
for a distance of d = 200 Mpc, with M = 1.44 M⊙ and q = 0.9, the nature of the compact
objects can be determined if the tidal deformabilities are higher than 200, while for a
distance of 400 Mpc even tidal deformabilities of 1000 are not enough to make the BBH
and BNS wave-forms distinguishable at 99% C.L.
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Figure 7.2 – Comparison between BBH and BNS wave-forms. The curves show the left-
hand side of Eq. (7.4) as a function of the tidal deformabilities of the neutron stars. The
horizontal lines show the value of χ2

k for different confidence level thresholds : if a point is
below the horizontal lines, the two mergers are too similar to be distinguished at the given
confidence level. Different types of curves (solid, dashed and dotted) of the same color
indicate different chirp masses and different types of colors indicate different distances.
In particular, (M = 1.2M⊙, q = 0.9) corresponds to (m1 = 1.45M⊙, m2 = 1.31M⊙),
(M = 1.44M⊙, q = 0.9) to (m1 = 1.74M⊙, m2 = 1.57M⊙) and (M = 1.8M⊙, q = 0.9) to
(m1 = 2.18M⊙, m2 = 1.96M⊙)

We performed a similar study for the comparison of BBH and BHNS wave-forms,
to determine the conditions under which it is possible to distinguish the nature of the
compact object coalescing with the black hole. For this case, the BBH wave-forms are
generated with IMRPhenomPv3HM [213], because higher-order modes are important for such
asymmetric systems, and IMRPhenomNSBH [214] is used for BHNS. The results are shown in
Figure 7.3, for different asymmetric systems. For a small mass ratio of 0.112, the overlap
between BBH and BHNS wave-forms does not really depend on the tidal deformability
of the second compact object. Indeed, in such asymmetric configurations, the coalescence
evolution is driven by the most massive object: the smallest object is absorbed by the
black hole and its tidal deformability has a negligible effect. In this case, for a chirp
mass of 4 M⊙, the nature of the companion can be determined only for a system at low
distance (less than 200 Mpc). The more symmetric the system, the more important the
tidal deformability is to distinguish BBH and BHNS wave-forms.

The results shown in Figures 7.2 and 7.3 depend strongly on the detector sensitivity.
Indeed, any change in the power spectral density (PSD) Sn(f) directly affects the noise-
weighted inner product between two wave-forms (Eq. (7.1)). Some examples of PSD are
drawn in Figure 7.1. Their impact on the ability to distinguish between BBH and BNS
templates and to determine the nature of compact objects is shown in Figure 7.4 for the
system defined by M = 1.44 M⊙, q = 0.9 and d = 200 Mpc.
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Figure 7.3 – Same as Figure 7.2 for BBH and BHNS templates. (M = 4M⊙, q = 0.112)
corresponds to (m1 = 15.2M⊙, m2 = 1.7M⊙), (M = 4M⊙, q = 0.2) to (m1 = 10.9M⊙,
m2 = 2.2M⊙) and (M = 4M⊙, q = 0.4) to (m1 = 7.4M⊙, m2 = 3.0M⊙).

Figure 7.4 – Comparison between BBH and BNS mergers, assuming the different power
spectral densities shown in Figure 7.1. The chirp mass is fixed at 1.44 M⊙, the mass ratio
at 0.9 and the distance at 200 Mpc.

7.2.2 The odds number

The Bayes’ theorem links the posterior distribution to the likelihood, the prior and the
evidence [215]:

p(θ|d,MA) =
π(θ|MA)L(d|θ,MA)

Z(d|MA)
, (7.5)

p(θ|d,MA) is the posterior distribution which gives the probability of all unknown param-
eters θ, given the experimental data d within the model MA. L(d|θ,MA) is the likelihood

114



CHAPTER 7. DISCRIMINATING SAME-MASS NEUTRON STARS AND BLACK
HOLES GRAVITATIONAL WAVE-FORMS

function. π(θ|MA) is the prior assuming MA. Z(d|MA) is the evidence which is the
integral over the full set of parameters θ of the product of the likelihood and the prior:

Z(d|MA) =

∫

dθL(d|θ,MA)π(θ|MA) . (7.6)

Our goal is to study when BNS, BHNS and BBH mergers can be distinguished via
the wave-forms of the emitted GWs. Bayesian analysis estimates the posterior probability
density function for a given model MA. In order to compare two competing models, the
odds number can be used [215]:

BAB =
p(MA|d)
p(MB|d)

=
p(MA)

p(MB)

ZA
ZB

, (7.7)

where ZA/B is the evidence and p(MA/B) is the prior belief in model A/B. Thereafter,
GW data are analyzed without assumption on the nature of the compact objects whichever
their mass, and p(MA)/p(MB) is fixed to one. BAB = ZA/ZB is the Bayes factor between
the two competing models MA and MB. Jeffrey’s scale [216] gives an empirical calibration
of the strength of evidence and if lnBAB > 5, MA is strongly preferred. Limits for strong
evidence, moderate evidence and inconclusive are given in the Table 7.1.

It is important to notice that a Bayes factor penalizes more complicated models with
a large prior volume or a fine tuning. In other words, a particularly simple model giving
a worse fit to the data can be preferred over a complicated model giving a better fit.
This can be intuitively understood invoking the Occam’s razor principle as explained in
reference [217].

| lnBAB| Probability
< 1 < 0.731 Inconclusive
2.5 0.924 Moderate evidence
5 0.993 Strong evidence

Table 7.1 – Jeffrey’s scale to compare two competing models using the Bayes factor.

7.3 Model comparison with Bayes factor in injected data

In this section we use IMRPhenomPv2, IMRPhenomPv2_NRTidal and IMRPhenomNSBH to
describe BBH, BNS and BHNS wave-forms, respectively. The generated templates are used
to analyze LIGO/Virgo data, and will constitute our model hypothesis to test against the
simulated data. For this, we choose to perform a Bayesian analysis for each template and
study its output in terms of the posterior distribution of the parameters and the signal-
to-noise ratio. To determine which template better describes the data, we use the odds
number introduced in the previous section. The power spectral density of the detector
noise is taken to be the one of the advanced configurations for the O4 simulations 2. As the
nature of the compact objects is assumed unknown, three analyses are performed, one with
the BBH system, one with the BNS system and finally one with the BHNS system. Then,

2. https://dcc.ligo.org/LIGO-T2000012/public

115



CHAPTER 7. DISCRIMINATING SAME-MASS NEUTRON STARS AND BLACK
HOLES GRAVITATIONAL WAVE-FORMS

we compute the Bayes factor between these models in order to find which one describes
best the simulated data, with a decisive choice whenever the Bayes factor is higher than 5.
The results are computed using pBilby [218–220] with nested sampling, as introduced by
Skilling [221].

7.3.1 Injected wave-form

The first step in this study consists in generating a gravitational wave-form given by a
template and adding it to the design Gaussian noise of advanced detector configurations
as reported in [222]. The GW depends on 15 parameters: chirp mass M, mass ratio q, two

angular momenta ~S1,2 (for aligned spin systems, only χi = ~Si.~̂L/m
2
i are needed, where ~̂L

is the normalized orbital momentum), 2-dimensional sky localization (right ascension ra
and declination dec), luminosity distance d, two angles for the orbital plane (inclination
angle ι and the polarization angle ψ), coalescence time t and phase of coalescence φ. For
a BNS merger, 17 parameters must be used because the two tidal deformabilities Λ1 and
Λ2 must be added to the list.

The location of the source in the sky is chosen to maximize the signal for the most sen-
sitive detector (optimal configuration). The PSD for the Virgo detector, which determines
the sensitivity of the detector, is chosen for the advanced configuration, shown in purple
in Figure 7.1. For the Hanford and Livingston detectors, the PSD has been represented in
orange and is the same for both. The source location is taken to maximize the signal for
the Hanford detector. For a coalescence at a GPS time of 1.2×109 s, this gives 5.49 rad for
right ascension and 0.81 rad for declination. The inclination and polarization are chosen
at 0 rad. For a physical luminosity distance of 400 Mpc, the effective distance for these
parameters gives 400 Mpc for Hanford, 449 Mpc for Livingston, and 1867 Mpc for Virgo;
the antenna pattern of the emission is maximal for Hanford as expected. Unfortunately,
the Virgo detector is almost blind. A simple change in declination improves the average
effective distance of the three detectors. For example, a declination of 1.49 rad instead
of 0.81 rad gives an effective distance of 512 Mpc for Hanford, 626 Mpc for Livingston
and of 590 Mpc for Virgo. However, this change in declination does not improve the sig-
nal/noise Bayes factor: BSN = ZS/ZN where ZN is the noise evidence sometimes called
null likelihood.

The spin of neutron stars in a binary system is generally extremely weak. Well before
the inspiral phase detected by gravitational wave detectors, the spin of neutron stars is
suppressed by electromagnetic interactions. On the contrary, standard and primordial
black holes, which do not have this suppression mechanism, can have larger spins during
the merger, and a primordial black hole can even have a spin very close to that of an
extreme Kerr black hole. If a compact object is detected with a large spin, there is a
strong chance that it is a black hole and if the spin is almost equal to 1: a primordial black
hole. As for the mass criterion, we propose here to study the distinction between BH and
NS only with the Bayes factor without adding assumptions in the prior and we will restrict
ourselves to compact objects injected without spin. A priori, the presence of a spinning BH
in the coalescence will not increase the odds number to distinguish two models, because it
is always possible to assume a spinning NS.

In the following, we will consider an injected signal with the optimal configuration for
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Name of models Number Sampling parameters

R
es

tr
ic

te
d

sp
ac

e BBH W/O Spin 2 M, q

BNS W/O Spin 4 M, q, Λ1, Λ2

BBH 1D Spin 4 M, q, χ1, χ2 (aligned spin)

BBH 3D Spin 8 M, q, a1, a2, θ1, θ2, φJL, φ12 (full spin description)

BNS W/O Spin with Λi fixed 2 M, q (Λ1 and Λ2 are fixed at 0)

F
ul

l
sp

ac
e BBH 11 M, q, χ1, χ2, ra, dec, d, θJN , ψ, t, φ

BHNS 12 M, q, χ1, χ2, Λ2, ra, dec, d, θJN , ψ, t, φ

BNS 13 M, q, χ1, χ2, Λ1, Λ2, ra, dec, d, θJN , ψ, t, φ

BNS with Λi fixed 11 M, q, χ1, χ2, ra, dec, d, θJN , ψ, t, φ (Λ1 = Λ2 = 0)

Table 7.2 – Sampling parameters used for the different Bayesian analyses. The parameters
not mentioned in sampling parameters are set to the value used in the injected data.

Hanford as described in above. Compact objects are chosen without spin and with masses
equal to m1 = 1.74 M⊙ and m2 = 1.57 M⊙ i.e. a chirp mass of M = 1.44 M⊙ with
q = 0.9 and χi = 0. For an injected BBH data created by IMRPhenomPv2 routine, only the
luminosity distance varies between the different injections. For BNS data created by the
IMRPhenomPv2_NRTidal routine, the luminosity distance and the tidal deformabilities will
be varied.

7.3.2 Black hole mergers interpreted as neutron star mergers

The Bayes factor is calculated between BBH/BHNS models and BBH/BNS models for
an injected BBH signal of 128 seconds as described in the previous section. The sampling
parameters used for the Bayesian analysis, performed using parallel bilby are given in
Table 7.2. The full set of parameters is searched: there are 11 parameters for BBH,
12 parameters for BHNS and 13 parameters for BNS. The Bayes factor depends on the
template but also on the prior. To reduce the dependence on the prior, the same is used for
a BBH and for a BNS, namely we use a uniform prior between 0.87M⊙ and 5M⊙ for the
chirp mass and between 0.125 and 1 for the mass ratio with constraints 1M⊙ < m1 < 5M⊙
and 1M⊙ < m2 < 3M⊙ for all the models. We also use aligned spins in the low spin limit
corresponding to |χi| < 0.05 for each model. Only the tidal deformability, modeling the
matter for a NS, has no correspondent for a BH. In this case, a uniform prior between 0
and 5000 for Λ is added for a NS.

Figure 7.5 shows the variation of the Bayes factor as a function of the distance. In
all cases the values of lnBAB represented by the dots are positive, meaning that the MA

model is always preferred. If a point is above the dashed horizontal line, the MA model
is strongly better (cf. Table 7.1). The MA model corresponds to a BBH merger, i.e.
the model which corresponds to the BBH injected signal, and the MB model corresponds
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Figure 7.5 – Bayes factor for different models as a function of the luminosity distance for
the optimal configuration. The chirp mass of BBH injected data is chosen to be 1.44 M⊙
with a mass ratio of 0.9 and the sampling parameters for BBH, BHNS and BNS are given
in Table 7.2. A point above the dashed black lines means that the BBH hypothesis is
strongly favoured. In the blue region labelled "Inclusive" it is not possible to strongly
prefer one model over the other.

either to a BNS merger or to a BHNS merger. For a distance smaller than 200 Mpc, the
purple dots in Figure 7.5 are in the orange region and the BBH model is preferred over the
BNS model which is not really the case for the BHNS model (green dots). We can therefore
conclude that there is at least one black hole in the source that emitted the gravitational
wave. The BNS wave-form with almost zero tidal deformability fits very well with the
BBH wave-form, so the Bayes factor will prefer the model with the least parameter and
as expected, the purple dots are above the green dots and above zero. Each dot plotted in
Figure 7.5 is the result of one or two independent Bayesian analyses and is accompanied by
a vertical bar corresponding to the possible variation of the result: this bar represents the
uncertainty of the Bayes factor and its variation due to different realizations of the noise.
This uncertainty has been estimated with eight simulations in the zone where a model is
strongly favored (d = 150 Mpc) and in the "Inclusive" zone (d = 300 Mpc). Later in
the manuscript (Figure 7.7), we show those simulation points. When the odds number is
close to the limit of 5 it is not always possible to discriminate between the BBH and BNS
models even with a source at a distance of 100 Mpc.

In this section and in the following we have assumed the source as oriented favorably
for detection and the results are therefore rather optimistic. Moreover, we have considered
a Gaussian noise for the detectors without considering terrestrial noise due for instance to
meteorological conditions or human activity which is an ideal case. On the other hand,
the limit can slightly improve with the increase of the chirp mass.

118



CHAPTER 7. DISCRIMINATING SAME-MASS NEUTRON STARS AND BLACK
HOLES GRAVITATIONAL WAVE-FORMS

7.3.3 Neutron star mergers interpreted as black hole mergers

In this section, we consider the case where the injected data are generated by mergers
of BNS and we try to determine whether it is possible to confuse a BNS merger with
nonzero tidal deformability with a BBH merger. We inject the GWs generated by mergers
of BNS with different tidal deformabilities and zero spin at different distances and study
the Bayes factor between BNS and BBH.

Study on spin modeling in a restricted parameter space for Bayessian analysis

First, we focus on the impact of the BH spins on the Bayes factor. In order to reduce
the computational cost, only the physical parameters of the objects are searched for, using
a Bayesian analysis. The sampling parameters for the different models considered are given
in Table 7.2 and the results are shown in Figure 7.6. In the top panel, the Bayes factor
is calculated between the "BNS without Spin" model and a BBH model with different
spin descriptions defined in Table 7.2. For data injected with Λ1 = Λ2 = 600 or with
Λ1 = Λ2 = 300, the "BNS without Spin" model is always preferred regardless of the BBH
models. For data injected with Λ1 = Λ2 = 600, the most favored case is the "BBH without
Spin" model. Not taking spin into account in the BBH analysis, a BBH is unable to mimic
a BNS and the posterior distribution of the mass ratio is not compatible with the injected
value of 0.9. The spin description allows for an improved signal fit with the BBH model
due to the flexibility provided by a larger parameter space. On the other hand, the Bayes
factor will not automatically be better because it penalizes models with a larger number
of parameters, as shown by the blue and red dots, and using a 3D spin description is worse
than a 1D description within the BBH model. For data injected with Λ1 = Λ2 = 100,
some values of lnBAB slightly prefer the BBH model in spite of the fact that the signal
was created with a BNS model. The bottom panel of Figure 7.6 shows a new Bayesian
analysis with the model "BNS without Spin with Λi fixed" represented with black dots.
In this case, the BBH model is no longer preferred compared to the BNS model.

Full space parameters

In this section, the complete parameter space is probed via a Bayesian analysis (see
Table 7.2) for the same injected data as in Figure 7.6. The Bayes factor between BNS and
BBH is shown in Figure 7.7. As expected, the larger the tidal deformability, the clearer
the distinction and the less a BBH merger can mimic a BNS merger. We can also notice
the strong impact of the distance from the source on the results. When d = 100 Mpc, the
tidal deformability is clearly reconstructed if Λ1 = Λ2 ≥ 300. For a distance around 200
Mpc, the Bayes factor is not systematically in the orange region even for a strong tidal
deformability and for a distance of 300 Mpc, it is no longer possible to discriminate the
nature of the compact objects.

When the injected signal is a BBH (see Figure 7.5), the Bayesian analysis never prefers
the BNS model even if it is not possible to conclude that it is a BBH because the Bayes
factor does not reach the strong evidence limit. The purple dots in Figure 7.7, which
correspond to a BNS signal with Λ1 = Λ2 = 100, seem to suggest that the BBH merger
is preferred over the BNS one. This preference is just a reminder that the BNS model
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Figure 7.6 – Top panel: Bayes factor in restricted space between the model called "BNS
without Spin" and different models of BBH as a function of the luminosity distance. The
sampling parameters corresponding to the different models are given in Table 7.2 and the
injected data correspond to BNS mergers in optimal configuration and with zero spins.
Each point represents the mean value and the vertical bar the standard deviation for 4 to
6 simulations with different noise realizations. A dot located in the orange regions means
that one of the two analyses is strongly preferred by the data. Bottom panel: zoom on the
results for an injection with Λ1 = Λ2 = 100. The black points are added and correspond to
the Bayesian analysis performed with "BNS without Spin with Λi fixed" and with "BBH
without Spin" (see Table 7.2).

is more complex than the BBH model because it has two additional parameters. This
is demonstrated by the red dots which are consistent with a zero Bayes factor when the
Bayesian analysis for BNS is performed by setting Λ1 = Λ2 = 0 ("BNS with Λi fixed"
model).

As shown in Figure 7.7, considering the PSD of the advanced detector configurations,
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Figure 7.7 – Bayes factor in full space between BNS and BBH models as a function of
the luminosity distance for different tidal deformabilities. The sampling parameters cor-
responding to the different models are given in Table 7.2 and the injected data are the
same as in Figure 7.6. A point in the orange regions means that one of the two models is
preferred, whereas a point in the blue region corresponds to an inconclusive discrimination
of the best model. The red points are obtained for the same injected data as for the purple
points (Λ1 = Λ2 = 100) but with the analysis called "BNS with Λi fixed" which sets the
tidal deformabilities to zero. The variation of the results using different realizations of the
noise is represented by the black stars, which were used to draw the vertical bars.

the Bayes factor does not distinguish between the BNS model and the BBH model when
the source is at 300 Mpc even in the case where the tidal deformabilities are large (Λ1 =
Λ2 = 600). A significant improvement is expected with Einstein Telescope [223]. To have
an idea of this improvement, a BNS signal at 300 Mpc is injected in the Hanford detector
with the PSD [224] of Einstein Telescope and in the Livingstone detector with the PSD
of the advanced detector configuration. For a BNS signal with Λ1 = Λ2 = 600, the Bayes
factor is about 90 and the BNS model is strongly favored compared to the BBH model.
The distinction is even easier than with the previously considered signal which was injected
at 100 Mpc (see Figure 7.7). For a BNS signal with Λ1 = Λ2 = 100, the Bayes factor is
now well above the −5 limit while staying in the region labelled "Inclusive".

7.4 Conclusion

The nature of the compact 2.6M⊙ object detected in the GW190814 event is unknown:
is it a neutron star, a black hole, a new type of compact object? Motivated by this event,
we studied how a gravitational wave-form of a BBH merger can be distinguished from a
BNS merger. Normally, the distinction is made by considering that there is a mass gap
between black holes and neutron stars: a neutron star has a mass lower than 2.2M⊙ and a
black hole higher than 5M⊙. The problem with the observed 2.6M⊙ object is that it does
not fit into this classification. Moreover, if primordial black holes exist, they may have
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masses similar to neutron stars. Thus, we reconsidered the distinction between a black
hole and a neutron star by considering only the gravitational waveform without priors on
the masses.

As a first step, we compared a wave-form from a BBH template, a BNS template and
a BHNS template by using the match function defined in Eq. (7.2). In the case where the
two objects are described by the same physical parameters: same spin, same mass, the
match between the different gravitational wave-forms is close to 1. The parameter that
allows us to distinguish them is the tidal deformability of the neutron star. In absence
of tidal deformability, it will be impossible to have a difference. We have seen that even
with a large tidal deformability, the observation of the gravitational wave of a merger at
400 Mpc will not identify a difference between the templates. For a highly asymmetric
BHNS merger, the tidal deformability of the companion is not a distinguishing parameter
with a merger.

During a detection, the parameters of a fusion are determined by a Bayesian analysis.
Such an analysis must use the template corresponding to the nature of the compact objects.
A selection criterion for the nature of the fusion is given by the Bayes factor. In the case
where two models A and B are in competition: a BBH fusion for A and a BNS fusion for
B for example, the quantity lnBAB determines the best model. If BAB > 5, model A is
strongly favored compared to B and conversely if the ratio is less than −5. If the ratio
is between these two values, the data can be explained by both models.We have therefore
studied this ratio for data injected by considering a fusion with 1.44 M⊙ for the chirp
mass. This factor depends on the prior volume and penalizes the most complex systems
with a larger number of parameters. For BBH injected data, the Bayes factors of the
BBH models are always better compared to the others. In such a merger, the wave-form
is very well reproduced by a BNS model with neutron stars having a tidal deformability
equal to zero but because of the tidal deformability, the BNS model is more complex and
therefore worse than the BBH model. For injected BNS data with Λ1 = Λ2 = 600, the
Bayes factors of the BNS models are largely favored over BBH. On the other hand, when
Λ1 = Λ2 = 100, we find that the BBH model is better than BNS when the data is made
with BNS. A better fit does not mean a better Bayes factor given by the evidence. To get
rid of this effect, it is possible to fix the tidal deformability of neutron stars at zero to have
exactly the same prior volume. In this case, either the Bayes factor becomes zero and one
cannot be sure of the nature of the compact object or it remains negative and lower than
−5 and the nature of the compact object becomes known. A very conservative limit to
avoid preferring BBH when a BNS signal is injected without redoing a Bayesian analysis
and fixing the deformability would be to take a limit of 8 instead of 5. This limit of 8 has
been conventionally introduced in [215].

The detection of a merger at a distance larger than 250 Mpc will not have a good enough
signal to noise ratio to allow the determination of the nature of compact objects even if
the merger is perfectly oriented for the Hanford detector. This limit can be improved if we
consider a higher chirp mass for the merger but during a real detection, the noise is never
ideal and the orientation of the merger not optimal. By considering Einstein Telescope,
the comparison between two models is dramatically improved. This ability to discriminate
between two models can be used to interpret experimental measurements of GWs and
obtain incredible insights in General Relativity.



Conclusion

Despite the great successes of cosmology, the ΛCDM model assumes the existence of
dark matter which is 5 times more abundant than baryonic matter and it also assumes the
existence of dark energy which dominates the current evolution of the Universe. Gravita-
tional impacts of dark matter are not questioned, but to solve the problem of this invisible
matter, there are only two possibilities: change the theory of gravity or introduce a new
particle (in the broad sense) to the Standard Model. Even if dark matter remains of
unknown nature, its behavior can be imited by a scalar field dominated by a quadratic
potential. We have therefore presented the fuzzy dark matter model which assumes a tiny
mass of the order of 10−22 eV. Dark energy can also be described by a scalar field domi-
nated by a constant potential which gives an energy density that does not evolve with the
scale factor. The flatter the potential, the more the model will behave like a cosmological
constant. On the other hand, the energy density of the scalar field may have been different
in the past even if it constant today.

In Universe described by the Friedmann-Lemaître-Robertson-Walker metric, the energy
density of a scalar field introduced by the Quintessence and Fuzzy dark matter models
evolves as the power of the scale factor a: ρφ = (a0/a)

n. This power n is between 6 for a
scalar field dominated by its kinetic energy and 0 if it is dominated by a constant potential.
During the whole evolution of the Universe, this power n has potentially changed. If n is
equal to 3, the energy density of the scalar field evolves as dark matter and if n = 0, it
evolves as dark energy. To unify the two unknown components of the Universe by a single
scalar field called dark fluid model, it is necessary to have a transition between n = 3 and
n = 0. The minimal model which realizes this condition must have a potential composed
of a constant V0 and a mass term m. Thus, going back in time the energy density of such
field evolves in n = 0, then n = 3, then n = 0, then n = 6. If V0 and m are the two key
ingredients of a dark fluid model which must dominate the evolution of the scalar field at
low energy, the potential can be much more complex as long as the Taylor expansion in
the weak field gives the minimal model. Indeed, such a model is very little constrained
in the primordial Universe because its energy density is often negligible compared to the
radiation density.

To reduce the number of scalar fields in cosmology, the dark fluid model mimicks the
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behavior of dark matter and dark energy by a single scalar field. In cosmology, inflation is
also described by a scalar field. Thus, we have introduced a model that unifies the dark fluid
model with inflation. This model must govern both the evolution of the Universe in these
very first seconds, but also the current evolution of the Universe. For this, it was necessary
to introduce a non-minimal coupling between gravity and the scalar field: φ2R2. This term
is only non negligible at the very beginning of the Universe when the curve of space-time is
huge. Moreover, to have a viable model, the scalar field must break spontaneously before
inflation, which gives a α2R2 term and thus the R2-inflation introduced by Starobinsky.
Without this symmetry breaking the attractor point of the theory would correspond to
φ = 0 and it would not have been possible to have the rapid acceleration of the expansion
of the Universe. Thus, it is possible to unify inflation, dark matter and dark energy with
a single scalar field.

To constrain the scalar fields in the early Universe, it is possible to study their impact
on the abundance of different primordial elements produced during Big-Bang nucleosynthe-
sis. Scalar field evolving generally in power of a will modify the expansion of the Universe
via the Hubble factor and thus the formation of the first nuclei. Thus, we have constrained
the density of a scalar field during Big-Bang nucleosynthesis. In the particular case where
the field evolves as radiation, we found the limit of 3 extra species of neutrinos. We have
seen that adding a scalar field is not a solution to the lithium problem even in the case
where the scalar field decays into radiation. On the other hand, the upper bound on the
energy density of a scalar field during BBN has been calculated.

In a second time, we considered primordial black holes as an alternative to dark matter.
This idea came back to the forefront with the detection of gravitational waves. Indeed,
a significant part of dark matter could be constituted by primordial black holes around
one solar mass and thus potentially detectable by the LIGO/Virgo collaboration. For the
moment, no compact object has been identified as a primordial black hole. We have studied
the conditions necessary to identify the nature of compact objects during a detection.
An important parameter is the signal-to-noise ratio because the higher it is, the better
we can deduce the posterior distribution and thus the possibility to detect the effect of
baryonic matter through the tidal deformability. To characterize the difference between
two templates of gravitational wave-forms, the maximization on the coalescence phase and
the coalescence time of the match filtering is a powerful tool. This is used to characterize
the maximum difference between two wave-forms that should be used for online detection.
We have studied how a gravitational wave signal can be used to determine the nature of
the source. During a detection, it is the mass of the compact object which is taken into
account to conclude on its nature. If the compact object has a mass greater than 5 M⊙,
then it is a black hole and if it is a mass less than 2.2 M⊙, then it is a neutron star.
If we do not use this criterion because of primordial black holes, we need to be able to
distinguish between BBH, BNS and BHNS templates. Thus, we studied the Bayes factor
that allows to compare two models and defined a conservative limit of 8 to have a strong
evidence. For a BBH merge of 1.44 M⊙ injected in realistic detector noise, BBH template
will always be favored over a BNS template, but for distances of the order of 300 Mpc this
distinction is inconclusive. When a BNS merge is injected into the noise, the distinction
between BBH and BNS depends strongly on the tidal deformability of the objects. For



very low deformability, the distance between the source and the detectors must be less
than 100 Mpc. For higher deformabilities, the distance that allows a distinction can go up
to 200 Mpc. We expect a great improvement on these limits with Einstein Telescope.

The metric describing primordial black holes, is the Kerr-Newman metric which is the
same as that of usual black holes. The only difference is that the mass of primordial black
holes can be as small as the Planck mass and as large as the mass of super massive black
holes. In a first step, we generalized the scaling relations of General Relativity used in
numerical relativity. For a BBH merger of total mass MT , the wave-forms are computed
in the natural units which are: c = 1, and G = 1 MT = 1. Thus, the mass of the
primordial holes does not pose a problem for the theoretical calculation of the wave-forms,
but unfortunately the frequency of the signal will be rescaled and will go out of the pass
bound of the detectors. The physical limits of the rescaling will be the evaporation of the
black hole by Hawking radiation and a too fast extension of the Universe compared to the
merger time. On the other hand, some theories beyond General Relativity are not scale
invariant and studying the rescaling of gravitational wave-forms could be a first clue on
the limits of exotic black holes.

The gravitational wave-forms of a BBH merger are rather well known and are crucial
to determine the merge parameters. On the other hand, because of the description of
the matter for a neutron star, the BNS wave-forms are much more difficult to calculate.
Moreover, the behavior of matter in such conditions is not known. In particular, are there
phase transitions? Is the core of neutron stars made up of quark-gluon plasma? Thus, the
study of neutron star mergers could help answering such questions. Using Whysky_THC,
we have shown how to obtain a wave-form of a merge BNS for a tabulated equation of
state with density, temperature and electron fraction as variables, so it is necessary to do
this study in a systematic way for many equations of state generated by the Meta Model.
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A
List of abbreviations and acronyms

This appendix contains the list of symbols and abbreviations used in this manuscript.

BH
PBH
NS
BBH
BNS
BHNS
DM
FDM
BBN

c
G
~

M⊙
gµν
a
a0 = a(t0) = 1
aeq
H0

ρb
ρm
ρr
ρΛ
ρφ
ρc = 3H2/8πG
ΩX = ρX/ρ

c

Black Hole
Primordial Black Hole
Neutron Star
Binary Black Hole
Binary Neutron Star
Black Hole - Neutron Star
Dark Matter
Fuzzy Dark Matter
Big-Bang Nucleosynthesis

Sound speed
Newton’s constant
Planck’s constant
Solar mass
Metric with the convention (−,+,+,+)
Scale factor of the Universe
Scale factor at the reference time t0
Scale factor at matter-radiation equality
Hubble’s constant
Baryon energy density
Matter energy density
Energy density of all radiation
Dark matter energy density
Scalar field energy density
Critical energy density
Energy density fraction of the species X
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Yp
2H
3He
7Li
mi

MT = m1 +m2

M = (m1m2)
3/5/(m1 +m2)

1/5

q = m2/m1

d
ra
dec
ψ
χi
Λi

Primordial helium mass fraction
Deuterium
Helium-3
Lithium-7
Mass of the ith object
Total mass of a binary system
Chirp mass
Mass ratio
Luminosity distance in Mpc
Right ascension in radians
Declination in radians
Polarization in radians
Aligned spin of the ith object
Tidal deformability of the ith object

130



B
Cosmological scalar fields and BBN

This appendix is a summary of our main results presented in Part I. This work has been
realized for the 40th International Conference on High Energy Physics [23].

Contents
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The nature of dark matter and of dark energy which constitute more than 95% of
the energy in the Universe remains a great and unresolved question in cosmology. Cold
dark matter can be made of an ultralight scalar field dominated by its mass term which
interacts only gravitationally. The cosmological constant introduced to explain the recent
acceleration of the Universe expansion can be easily replaced by a scalar field dominated by
its potential. More generally, scalar fields are ubiquitous in cosmology: inflaton, dilatons,
moduli, quintessence, fuzzy dark matter, dark fluid, etc. are some examples. One can
wonder whether all these scalar fields are independent. The dark fluid model aims at
unifying quintessence and fuzzy dark matter models with a unique scalar field. One step
futher is to unify the dark fluid model with inflation. In the very early Universe such scalar
fields are not strongly constrained by direct observations, but Big-Bang nucleosynthesis sets
constraints on scalar field models which lead to a modification on the abundance of the
elements. In this talk we will present a scalar field model unifying dark matter, dark energy
and inflation, and study constraints from Big-Bang nucleosynthesis on primordial scalar
fields.
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B.1 Introduction

Scalar fields are ubiquitous in cosmology. Fuzzy dark matter model [6] has for example
been introduced to replace cold dark matter with a scalar field dominated by its mass
term, and such a scalar field behaves like collisionless matter. Quintessence models [41] on
the other hand replace the cosmological constant with a scalar field. The energy density of
these models evolves with time and may have played a role at earlier stages of the Universe.
Inflation can also be described with a scalar field.

One possibility to reduce the number of different scalar fields involved in cosmology
is to unify them. In the first section, we will present the dark fluid model [49, 52] which
describes both dark energy and dark matter with a single scalar field. In the second section,
we will go further by introducing a scalar field to rule them all, i.e. unifying inflation and
dark fluid. In the final section, we will derive constraints on scalar field scenarios from Big-
Bang nucleosynthesis, since the presence of scalar fields can affect the observed abundance
of the elements.

B.2 Dark Fluid model

The dark fluid model aims at unifying dark energy and dark matter with a single scalar
field. To reproduce a cold dark matter behaviour, the scalar field has to oscillate quickly
around the minimum of its potential. Its value at the minimum needs to be nonzero in
order to create an acceleration of the expansion, as explained by the cosmological constant
in the ΛCDM model. The following system of equations gives the cosmological evolution
for an isotropic and homogeneous Universe described by the Robertson and Walker metric
and the Klein-Gordon equation which governs the scalar field evolution:

H2 =
8πG

3
(ρφ + ρr + ρm) ,

2Ḣ + 3H2 = −8πG (Pφ + Pr + Pm) ,

φ̈+ 3Hφ̇+
dU

dφ
= 0 .

(B.1)

The radiation energy density ρr evolves according to a−4 and the baryonnic matter energy
density ρm evolves according to a−3 where a is the scale factor. Both energy densities are
drawn in Figure B.1 and are the same as in the ΛCDM model. To determine the density
of the scalar field ρφ, one needs to define the potential U , but its shape is still an open
question. The simplest potential can be defined with the two parameters V0 and m:

U(φ) = V0 +
1

2
m2φ2 . (B.2)

The constant V0 = Λc4/8πG leads to a dark energy behaviour with Λ the cosmological
constant, and the mass term m leads to a dark matter behaviour. The value of m is
approximately equal to 10−22 eV, which corresponds to the mass of the fuzzy dark matter
model. At galactic scale, the scalar field forms Bose-Einstein condensates, which may
constitute galaxy-sized dark matter halos. For a typical halo of 10 kpc, the Compton
wavelength l = h/mc requires such a tiny mass m. With this value, one can reproduce
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the flat spiral galaxy rotation curves [9] and avoid the cuspy halo and missing satellite
problems [65].

The evolution of the energy density ρφ is also drawn in Figure B.1: when the scalar
field evolution is dominated by its kinetic energy, the density decreases as a−6. Later
the potential is no longer negligible and one can observe a plateau. When the scalar field
oscillates quickly around its minimum, the energy density decays as a−3, and more recently
the constant V0 leads to an accelerated expansion of the Universe. There in the dark fluid
model, a single scalar field can replace both dark matter and dark energy simultaneously.

Figure B.1 – Evolution of the dark fluid scalar field density (green), radiation density (red)
and baryon density (blue) fractions as functions of the scale factor.

B.3 Triple Unification

Several models of triple unification have already been studied in the literature, but
these models do not explain dark matter as in the dark fluid model, i.e. with a scalar field
with an ultralight mass term m ∼ 10−22 eV. In this section we present a more natural
triple unification scenario by assuming a non-minimal coupling to the gravity φ2R2 and
a symmetry breaking before inflation (see Ref. [16]). Considering a Z2 symmetry for the
scalar field and a quadratic coupling in R, the model is defined by the action:

S =

∫

d4x
√−g

[
1

2κ̃2
(
R+ αφ2R+ βφ2R2

)
− 1

2
gµν∂µφ∂νφ− V (φ)

]

, (B.3)

where κ̃ is a modified Einstein’s constant and V the potential of the scalar field defined
by:

V (φ) = V0 +
m2

8v2
(
φ2 − v2

)2
. (B.4)

For φ equal to zero, the potential has a local maximum, around which the theory is
unstable. The two minima correspond to φ = ±v. When the scalar field goes to one of
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these minima the Z2 symmetry is spontaneously broken. By replacing φ by ξ ± v where
ξ characterizes the variation of the scalar field around the minimum, the action (B.3)
becomes:

S =

∫

d4x
√−g

[
1

2κ2

(

R+
βv2

αv2 + 1/(1± 2ξ/v + ξ2/v2)
R2

)

− 1

2
gµν∂µξ∂νξ − V (ξ)

]

,

(B.5)
with:

κ =
κ̃

√

1 + αv2(1± 2ξ/v + ξ2/v2)
,

V (ξ) = V0 +
m2

2
ξ2 ± m2

2v
ξ3 +

m2

8v2
ξ4 .

(B.6)

In the |ξ| ≪ v limit, κ is constant and equal to the Einstein’s constant. If one neglects the
scalar field variation ξ, only the R and R2 terms have an impact on the Universe evolution
after the symmetry breaking. The R2 term produces an inflationary period which will be
similar to the one of Starobinsky inflation [28]:

S =

∫

d4x
√−g

[ 1

2κ2

(

R+
βv2

(1 + αv2)M2
P

R2

)]

. (B.7)

As in the R2-inflation model [74], the action (B.7) produces an inflationary period compat-
ible with the observations and the constant βv2/(1 + αv2) can be fixed by the amplitude
of the cosmic microwave mackground power spectrum to be 109 [16]. After inflation, the
Unruh effect will produce the radiation energy density of the usual standard model and
will also reheat the scalar field ξ.

The scalar field ξ which appears after symmetry breaking and characterizes the varia-
tion around the minimum will evolve as in the simplest dark fluid model when neglecting
the higher order terms of the potential (B.6). It can therefore replace dark energy thanks
to the V0 constant term, and dark matter via the mass term. The ξ3 and ξ4 terms have
negligible effects if v > 7 × 1026 eV. For example in galaxies, the density of dark matter
gives an average value of 3× 1020 eV for the scalar field ξ, so that

m2ξ3

2v

/
m2ξ2

2
≃ 5× 10−7 ,

m2ξ4

8v2

/
m2ξ2

2
≃ 5× 10−14 ,

(B.8)

and the higher order terms can be safety neglected. Therefore the action (B.3) unifies
inflation, dark energy and dark matter by assuming a unique and single scalar field.

B.4 Big-Bang nucleosynthesis

Big-Bang nucleosynthesis is generally considered to occur during radiation domination,
the total energy density is mainly composed of photons, electrons, positrons, baryons, neu-
trinos, antineutrinos and dark matter. For a temperature of about 1 MeV, the hydrogen nu-
clei can fuse into helium nuclei. The reactions which produced the primordial abundances
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freeze out because of the Universe expansion. In the standard cosmological model, the
observational measurements and the theoretical predictions obtained using the AlterBBN
public code [84] are given in Table B.1. Helium-4, helium-3 and deuterium abundances
are compatible with measurements, but there is a conflict with the lithium-7 abundance.
Adding a stable scalar field to the total energy density or a decaying scalar field to radiation
during Big-Bang nucleosynthesis does not solve the lithium problem. However, we will can
find upper limits on the energy densities of such scalar fields in order to be compatible
with helium-4, helium-3 and deuterium abundance observational measurements. There is
no lower limit: without scalar field the standard model is retrieved.

elements observational measurements theoretical predictions

Yp 0.245± 0.003 0.2472± 0.0006

2H/H (2.569± 0.027)× 10−5 (2.463± 0.074)× 10−5

3He/H (1.1± 0.2)× 10−5 (1.03± 0.03)× 10−5

7Li/H (1.6± 0.3)× 10−10 (5.4± 0.7)× 10−10

Table B.1 – Helium-4, helium-3, deuterium and lithium-7 abundances from observational
measurements [85] and theorical predictions [84].

B.4.1 Constraints on stable scalar fields

We first consider the density of the scalar field to be a power law of the scale factor:

ρφ = ρ0φ(1MeV)× a−n , (B.9)

which modifies the abundance of the elements via a modification of the Hubble rate, which
is proportional to the total energy density. For example, as we can see in Figure B.1, the
simplest dark fluid model evolves with n = 6 during Big-Bang nucleosynthesis. The χ2

constraints at 95% C.L. give [17]:

for n = 6 : ρφ (1 MeV) ≤ 1.40ργ (1 MeV) ,

for n = 4 : ρφ (1 MeV) ≤ 0.11ργ (1 MeV) ,

for n = 3 : ρφ (1 MeV) ≤ 0.005ργ (1 MeV) ,

for n = 0 : ρφ (1 MeV) ≤ 2× 10−7ργ (1 MeV) .

(B.10)

For n = 4, the limit can be reinterpreted as 3 extra species of neutrinos.

B.4.2 Constraints on decaying scalar fields

When the scalar field decays, it will no longer affect the Universe evolution because its
density becomes negligible. If it decays after Big-Bang nucleosynthesis, the stable scalar
field case is recovered. Therefore, one considers a scalar field which decays into radiation
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Figure B.2 – Evolution of scalar field density (green), radiation density (red) and matter
density (blue) fractions as functions of the scale factor (top) and of the inverse of temper-
ature (bottom) for different values of n. The temperature of reheating is equal to 1 MeV
and is represented by the vertical black line.

during Big-Bang nucleosynthesis. The evolution of the scalar field density is given by the
Klein-Gordon equation:

dρφ
dt

= −nHρφ − Γφρφ , (B.11)

in which there is an additional decaying constant Γφ =
√

4π3geff (TRH)/45T
2
RH/MP , where

TRH is the reheating temperature. Figure B.2 shows the evolution of the scalar field, which
in absence of decay corresponds to ρφ = ρ0φ×a−n. The initial value of the scalar field energy
density is chosen at Ti = 10 MeV. This value has to be adjusted to recover the baryon-to-
photon ratio inferred from the cosmic microwave background. Considering the evolution of
the matter, radiation and scalar field densities, it is possible to make theoretical predictions
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for Big-Bang nucleosynthesis. The χ2 constraints at 95% C.L. give [17]:

for n = 6 : ρφ (10 MeV) ≤ 0.5ργ (10 MeV) ,

for n = 4 : ρφ (10 MeV) ≤ 0.1ργ (10 MeV) ,

for n = 3 : ρφ (10 MeV) ≤ 0.01

(
TRH

1 MeV

)

ργ (10 MeV) .

(B.12)

For n = 4, this limit is equivalent to the stable scalar field because the scalar field evolves
like radiation and decays into radiation.

B.5 Conclusion

To conclude, we have presented a model that unifies not only dark matter and dark
energy but also inflation. Several triple unification models have already been studied so
far, but we have presented here a model in which dark matter has a behaviour similar to
fuzzy dark matter i.e. an ultralight matter. Furthermore we have derived the upper limit
of energy densities from Big-Bang nucleosynthesis for generic stable and decaying scalar
fields.
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