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Schéma ADER sur des Maillages Overset avec Transmission Compacte et
Hyper-réduction : Application aux Équations de Navier-Stokes Incompressibles

Résumé : Dans cette thèse, nous proposons un schéma éléments finis (FEM) / volumes
finis (FVM) spatio-temporel sur des grilles Chimera mobiles pour un problème général
d’advection-diffusion linéaire et non linéaire. Une attention particulière est accordée aux
zones de superposition des grilles afin de concevoir un stencil de discrétisation compact
et précis pour échanger des informations entre les différents patchs de maillage. Comme
dans la méthode ADER, les équations sont discrétisées sur un maillage spatio-temporel.
Ainsi, au lieu de conditions de transmission spatiale dépendant du temps entre des blocs en
mouvement relatif, nous définissons des polynômes d’interpolation sur des cellules spatio-
temporelles se croisant arbitrairement aux frontières des blocs. Grâce à ce schéma, une ap-
proche FEM-prédicteur/FVM-correcteur mesh-free est utilisée pour représenter la solution.
Dans ce cadre de discrétisation, une nouvelle vitesse de stabilisation locale de Lax-Friedrichs
(LLF) spatio-temporelle est définie en considérant à la fois la nature advective et diffusive de
l’équation. Les illustrations numériques pour les systèmes linéaires et non linéaires montrent
que les mailles mobiles de background et foreground n’introduisent pas de perturbations pa-
rasites dans la solution, atteignant uniformément le deuxième ordre de précision en espace
et en temps. Il est démontré que plusieurs mailles du foreground, pouvant se superposer et
ayant des déplacements indépendants, peuvent être utilisées grâce à cette approche.
La principale application de ce schéma concerne les équations de Navier-Stokes afin de si-
muler des écoulements visqueux incompressibles dans un domaine évolutif. Dans ce cas, les
grilles évolutives spatio-temporelles utilisées sont capables de prendre en compte à la fois les
objets éventuellement en mouvement et l’évolution du domaine. Puisqu’une méthode clas-
sique à pas fractionnaire est adoptée, un problème de Poisson pour la pression doit être ré-
solu numériquement. Ainsi, pour la discrétisation de l’opérateur de gradient, une technique
hybride est définie afin d’encoder automatiquement la configuration locale particulière de
superposition aux interfaces de deux blocs. Ceci évite une étape ultérieure d’interpolation à
l’interface pour échanger des informations entre différents blocs. La méthode qui en résulte
est précise au second ordre pour la vitesse et la pression en espace et en temps. La précision
et l’efficacité de la méthode sont testées par des simulations de référence.
Enfin, un schéma ADER réduit et hyper-réduit pour les équations d’advection-diffusion gé-
nérales sur des grilles overset est présenté. Ce schéma, basé sur l’approche de la Décomposi-
tion Orthogonale Propre (POD), permet de réduire les coûts de calcul à la fois pour trouver
la solution numérique et pour calculer les intégrales impliquées dans la définition des ma-
trices au niveau discret. Dans une étape d’apprentissage offline, on construit un sous-espace
réduit approprié sur lequel la solution réduite est ensuite projetée. Successivement, dans
l’étape online, une solution réduite numérique est trouvée par rapport à un paramètre défi-
nissant l’évolution du domaine. Afin de réduire les coûts de calcul des intégrales numériques
via la règle de quadrature, une étape supplémentaire d’apprentissage offline est effectuée.
Elle permet de définir un ensemble largement réduit de nœuds de quadrature pour tout
mouvement admissible du maillage. L’approche se situe dans un cadre de décomposition
de domaine (DD) : par conséquent, sur le maillage de foreground, la solution réduite est
récupérée alors que dans le maillage de background, la solution est haute-fidélité. La per-
formance du schéma proposé est testée sur des problèmes linéaires et non linéaires pour
différents mouvements du domaine de calcul. Les résultats montrent que les coûts de calcul
sont réduits à O(1) degrés de liberté en préservant la précision de la solution.
Mots-clés : Maillage Chimera, Maillage Overset, Volumes Finis, Éléments finis, ADER, Trans-
mission compacte, Advection-Diffusion instationnaire, Navier-Stokes Incompressible, POD,
Modèles Réduits, Hyper-réduction, Décomposition de Domaine
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ADER Scheme on Overset Grids with Compact Transmission and Hyper-reduction:
Application to Incompressible Navier-Stokes Equations

Abstract: In this thesis, we propose a space-time Finite Element (FEM) / Finite Volume
(FVM) scheme on moving Chimera grids for a general linear and nonlinear advection-diffusion
problem. Special care is devoted to grid overlapping zones in order to devise a compact
and accurate discretization stencil to exchange information between different mesh patches.
Like in the ADER method, the equations are discretized on a space-time slab. Thus, in-
stead of time-dependent spatial transmission conditions between relatively moving blocks,
we define interpolation polynomials on arbitrarily intersecting space-time cells at the block
boundaries. Through this scheme, a mesh-free FEM-predictor/FVM-corrector approach is
employed for representing the solution. In this discretization framework, a new space-time
Local Lax-Friedrichs (LLF) stabilization speed is defined by considering both the advective
and diffusive nature of the equation. The numerical illustrations for linear and nonlinear
systems show that background and foreground moving meshes do not introduce spurious
perturbations to the solution, uniformly reaching second order of accuracy in space and
time. It is shown that several foreground meshes, possibly overlapping and with indepen-
dent displacements, can be employed thanks to this approach.
The main application of the scheme is for the Navier-Stokes equations in order to simulate
incompressible viscous flows in an evolving domain. In this case, the employed evolving
space-time overset grids are able to take into account both possibly moving objects and the
evolution of the domain. Since a classical fractional step method is adopted, a Poisson prob-
lem for the pressure needs to be numerically solved. For this reason, for the discretization of
the gradient operator, a hybrid technique is defined which is able to automatically encode
the particular local overlapping configuration at the interfaces of two blocks. This avoids
a subsequent interpolation step at the interface to exchange information between different
blocks. The resulting method is second order accurate for both velocity and pressure in
space and time. The accuracy and efficiency of the method are tested through reference sim-
ulations.
Finally, a reduced and hyper-reduced ADER scheme for general advection-diffusion equa-
tions on overset grids is presented. This scheme, based on the Proper Orthogonal Decom-
position (POD) approach, allows to reduce the computational costs for both finding the nu-
merical solution and for computing the integrals involved in the definition of the matrices
of the algebraic counterpart. In an offline training stage it is built a proper reduced subspace
onto which the reduced solution is later projected. Successively, in the online step, a nu-
merical reduced solution is found with respect to a parameter defining the evolution of the
domain. In order to alleviate the computational costs for performing the numerical integrals
via quadrature rule, a further offline training stage is computed. It allows to define a largely
small set of quadrature nodes for any admissible movement of the mesh. The approach is in
a Domain Decomposition (DD) frame: consequently over the background mesh the reduced
solution is recovered while in background the solution is high-fidelity. The performance of
the proposed scheme is tested on both linear and nonlinear problem for different movement
of the computational domain. Results show that the computational costs reduce to O(1)
degrees of freedom by preserving the accuracy of the solution.
Keywords: Chimera mesh, Overset grid, Finite Volume, Finite Element, ADER, Compact
Transmission, Unsteady Advection-Diffusion, Incompressible Navier-Stokes, POD, Reduced
Order Model, Hyper-reduction, Domain Decomposition
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Résumé détaillé

Background

Une des principales difficultés pour la simulation d’un phénomène modélisé par
une équation différentielle partielle (EDP) est la modélisation géométrique du do-
maine de calcul avec un seul bloc de maillage. Ce problème est particulièrement
pertinent lorsque le domaine est complexe ou que sa forme et sa topologie évoluent
au cours de la simulation. Les approches classiques pour résoudre ce problème com-
prennent la méthode Lagrangienne-Eulérienne Arbitraire (ALE), les approches de
domaine fictif et les maillages Chimera.

Les méthodes ALE [61] permettent un certain degré de déformation et d’adapta-
tion du maillage grâce à une reformulation appropriée des équations gouvernantes
et à des algorithmes de déplacement de grille sophistiqués et efficaces. En 1969, Har-
low a dressé la liste des principaux schémas de résolution des problèmes de dyna-
mique des fluides en fonction de leur formulation en coordonnées lagrangiennes ou
eulériennes [54]. Lorsque la méthode utilise des mailles dont les nœuds se déplacent
en fonction du mouvement du fluide, elle est dite lagrangienne. Au contraire, si le
maillage est toujours fixe (c’est-à-dire qu’il ne change pas par rapport au mouve-
ment du fluide), la méthode est eulérienne. La première tentative de formulation
d’une méthode utilisant un maillage dont le mouvement est indépendant de la dy-
namique du fluide a été proposée par Trulio en 1966 pour les écoulements compres-
sibles [113]. La méthode proposée est explicite, ainsi le mouvement du maillage est
lié au mouvement du fluide par une condition de stabilité. Successivement, dans les
articles de Hirt en 1970 [60] et Hirt et al. en 1974 [61], une méthode ALE aux dif-
férences finies a été définie. Dans ces travaux, du fait d’une formulation implicite,
la vitesse du maillage est découplée de la vitesse du fluide. Cependant, lorsque la
déformation du maillage conduit à des cellules excessivement étirées, une étape dé-
licate (et coûteuse en calcul) de remaillage global peut être nécessaire. A son tour,
cette opération peut introduire des irrégularités d’approximation qui sont causées
par l’interpolation de la solution de l’ancienne grille à la nouvelle.

Dans les approches par domaine fictif, notamment les méthodes de frontière fan-
tôme [47], de frontière immergée [78] ou de pénalisation [4] le problème original est
discrétisé sur un maillage simple, généralement structuré et cartésien, constant dans
le temps [48, 88, 4].
Fedkiw et al. dans [45] a proposé pour la première fois une méthode des frontières
fantômes (GBM). Dans le but de simuler des problèmes de dynamique des gaz, la
GBM combine la robustesse des schémas eulériens avec une méthode d’interface
multimatérielle caractéristique d’un schéma lagrangien. En suivant l’interface avec
une fonction d’ensemble de niveaux [82, 106], un problème de Reimann approxi-
matif est résolu à l’emplacement de l’interface. Cette technique s’avère donc utile
lorsqu’une onde de choc ou une discontinuité se déplace dans le domaine de calcul.
Dans sa thèse de doctorat de 1972, Peskin a proposé la méthode Immersed Boundary
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(IBM) afin de simuler la mécanique cardiaque associée à l’écoulement du sang [89].
Dans ce travail antérieur, l’auteur propose l’utilisation d’un seul bloc cartésien non
conforme à la forme réelle du cœur (c’est-à-dire le domaine) ; ainsi une frontière im-
mergée est intégrée dans le bloc cartésien pour simuler les effets du flux sanguin. Au-
jourd’hui, IBM est lié à une méthode de grille cartésienne développée à l’origine pour
simuler des écoulements inviscides avec des frontières immergées complexes sur
des grilles cartésiennes [15, 34]. Successivement, ces méthodes ont été étendues aux
écoulements visqueux instationnaires [114, 119]. Aujourd’hui, les IBM s’adressent
non seulement aux interactions fluide-structure mais aussi aux interactions liquide-
liquide et liquide-gaz [2, 97].
Pour l’étude des écoulements incompressibles, une autre approche est fournie par
les méthodes de pénalisation (PM). Cette méthode vise également à éviter de construire
des maillages non structurés adaptés au corps afin d’utiliser des schémas numé-
riques rapides et efficaces (par exemple, des méthodes spectrales, de différences fi-
nies ou de volumes finis) sur des maillages cartésiens. Pour ce faire, on ajoute un
terme de vitesse de pénalisation dans l’équation de la quantité de mouvement pour
les équations incompressibles de Navier-Stokes. Dans les travaux antérieurs [86, 87]
de Peskin sur l’écoulement du sang dans le cœur et dans certaines autres formula-
tions revues (comme dans [51]), une intégrale temporelle de la vitesse et un terme
de pénalisation de la vitesse sont ajoutés uniquement à la surface définissant l’obs-
tacle. Successivement, Saiki et Biringen [96] ont étendu la pénalisation à l’ensemble
du domaine afin de prendre en compte les grands nombres de Reynolds. Les pre-
miers à étendre la pénalisation à un volume d’un milieu poreux ont été Arquis et
Caltagirone [6]. Enfin, Angot et Caltagirone [5, 3] ont étendu la pénalisation afin de
traiter les systèmes solides fluides-poreux. En particulier, que le sous-domaine de
calcul soit Ω ⊂ Rd, avec d = 2, 3, et qu’il contienne un certain nombre d’obstacles
solides irréguliers dont l’union est définie par Ωs et dont la vitesse possible est us.
Par conséquent, le sous-domaine restant Ω f = Ω/Ωs est occupé par le fluide. Les
équations incompressibles de Navier-Stokes pour ce problème sont les suivantes :
Trouver la vélocité u : Ω f ×R+ → Rd et la pression p : Ω f ×R+ → R du fluide telles
que :

∂tu + u · ∇u = ∇p +
1

Re
∆u in Ω f ×R+

∇ · u = 0 in Ω f ×R+

u = us in ∂Ωs ×R+

(1)

correctement fermé avec des conditions initiales et des conditions aux limites sur la
partie restante de la frontière ∂Ω du domaine. Le PM résout les équations incom-
pressibles de Navier-Stokes en substituant la première ligne du problème (1) par

∂tu + u · ∇u = ∇p +
1

Re
∆u +

χs

K
(us − u) in Ω f ×R+, (2)

où χs est la fonction indicatrice sur Ωs et K est la constante de pénalisation. Pour les
résultats théoriques de la convergence, dans la limite de vanité de K, de la solution
pour (2) vers la solution pour (1), le lecteur est prié de se reporter à [4].
Pour ces approches de domaines fictifs brièvement présentées, le maillage ne cor-
respond pas nécessairement aux limites physiques et un soin particulier doit être
apporté pour atteindre un degré de précision suffisant aux limites. De plus, la pré-
sence de fines couches limites peut réduire de manière significative les avantages
de calcul découlant d’un algorithme de maillage simple, en raison du rapport d’as-
pect uniforme du maillage. Des techniques hybrides employant des méthodes de
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frontières immergées avec des adaptations de maillage anisotrope peuvent être em-
ployées pour contourner ce problème [1].

Maillage Chimera

Nous concentrons nos recherches sur les grilles Chimera [116, 14, 75, 90]. Les
grilles de chimères consistent en de multiples blocs de mailles qui se chevauchent
et qui définissent ensemble une grille sur-étendue utilisée pour discrétiser spatiale-
ment une EDP [104, 105, 103]. En général, on dispose d’un maillage de background
qui comprend un ou plusieurs patchs de maillage de foreground qui sont ajustés aux
bordes du domaine physique. Cette approche de génération de maillage simplifie
considérablement la tâche d’adaptation du maillage dans le cas de couches limites,
de géométrie changeante pour un problème instable (par exemple, les problèmes
d’interaction fluide-structure en dynamique des fluides) et pour les domaines in-
stables à connexions multiples [10, 8, 98, 9, 30]. Une fois que les multiples patchs de
maillage sont générés, ils sont assemblés afin d’obtenir une zone de recouvrement
appropriée entre les blocs voisins [75].
L’utilisation des mailles Chimera est essentiellement basée sur des techniques d’in-
tégration de grille pour discrétiser le domaine de calcul qui peut évoluer. Une grille
principale (bloc de background) est d’abord construite. Elle est non-conforme par rap-
port à la forme complexe du domaine. Des grilles mineures successives (blocs de
foreground) sont construites afin de décrire précisément les formes particulières des
régions où se trouvent les obstacles. Comme les blocs mineurs superposent le bloc
majeur, une région de superposition est définie entre tous les blocs. Le long des ré-
gions de superposition, les informations de la solution doivent être mutuellement
échangées d’un bloc à l’autre. Dans cette thèse, une condition de transmission com-
pacte est recherchée afin de limiter les communications entre les grilles. A savoir, un
stencil compact composé uniquement de la première couche de cellules est défini
autour de toute cellule.
Le choix du schéma d’interpolation à l’interface se situe entre deux possibilités :
les approches non-conservatives et conservatives. Les schémas non-conservatifs (les
plus utilisés) sont définis sur l’étude locale de la configuration particulière de cel-
lules superposées utilisée pour définir l’interpolation elle-même. Des références sur
l’ordre de précision affectant le schéma numérique global peuvent être trouvées
dans [30]. Les interpolations conservatrices impliquent des interfaces patchées [16,
94] ou des régions arbitrairement superposées [81, 118]. En général, ces schémas
ne sont pas attrayants car s’ils sont relativement faciles à mettre en œuvre en deux
dimensions, ils deviennent encombrants ou impossibles à appliquer en trois dimen-
sions. De plus, même si une conservation globale des flux est assurée entre les fron-
tières superposées ou sur la frontière des trous, la conservation des flux locaux ne
peut être préservée.
Dans cette thèse, nous proposons un schéma d’éléments finis - volumes finis spatio-
temporels sur des grilles Chimera. Notre objectif est de combiner certains aspects
de l’approche ALE, notamment sa flexibilité par rapport au déplacement et à la dé-
formation de la grille, à la stratégie de discrétisation multi-blocs des grilles overset.
En particulier, nous accordons une attention particulière aux zones de recouvrement
de la grille afin de concevoir un stencil de discrétisation compact et précis permet-
tant d’échanger des informations entre les différents patches de maillage, dans l’es-
prit des travaux précédents sur les grilles cartésiennes hiérarchiques [93]. Nous ap-
pliquons ensuite cette approche à l’intégration d’équations aux dérivées partielles
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d’Advection-Diffusion linéaires et non linéaires et montrons comment la méthode
peut exploiter la polyvalence des mailles Chimera pour atteindre une précision du
second ordre dans des domaines instationnaires à connexions multiples.
La solution numérique sur les grilles Chimera est obtenue en échangeant des don-
nées à travers les cellules de frange au niveau de la zone de chevauchement. Par
exemple, dans [32, 53, 117, 74], les cellules marginales (à savoir donor) d’un bloc à
proximité de la zone de superposition fournissent les informations aux cellules mar-
ginales (c’est-à-dire receptor) d’un autre bloc par interpolation polynomiale. Dans
[58], une grille grossière est automatiquement générée et une connexion des infor-
mations d’interpolation au niveau de la zone de superposition est présentée par le
biais d’une approche multigrille.
Une autre façon de faire communiquer les différents blocs consiste à utiliser des
méthodes de décomposition de domaine (DD) appropriées (par exemple, les mé-
thodes de Schwartz, Dirichlet/Neumann ou Dirichlet/Robin). En particulier, chaque
bloc de maillage est considéré comme une décomposition du domaine et les zones
de chevauchement sont les interfaces permettant de coupler les différents blocs. En
fonction de ces approches, des méthodes discrètes typiquement itératives sont em-
ployées. Pour cette communication à double sens, le lecteur est renvoyé à [62] pour
plus de détails.
Dans le même cadre, d’autres approches connectent les mailles de background et
de foreground, comme les grilles DRAGON [65] pour lesquelles la zone de chevau-
chement est remplacée par une grille non structurée lors d’une étape ultérieure en
préservant les avantages de l’adaptation au corps des mailles Chimera. Enfin, une
grille Dragon consiste à créer une grille de blocs unique à partir d’une configuration
Chimera. Cependant, les coûts de calcul pour la réalisation d’une grille Dragon pour
un domaine évolutif augmentent considérablement, car il est possible qu’à chaque
instance, un nouveau maillage DRAGON doive être créé.
En revanche, nous dérivons ici une condition de transmission compacte du second
ordre en définissant correctement un ensemble de cellules, c’est-à-dire le stencil, qui
appartient aux maillages de background et de foreground, sur lequel la solution est
interpolée dans l’espace et le temps par un polynôme approprié. Ce stencil hybride
permet une transition continue de discrétisation d’un bloc à l’autre. En particulier,
une solution FEM discontinue sans maillage est d’abord récupérée, puis une cor-
rection MVF est effectuée dans n’importe quelle cellule en utilisant les informations
fournies par les cellules voisines. Ainsi, pour les cellules à franges, la solution est
obtenue en combinant des valeurs provenant de différentes grilles.

Schéma ADER

La méthode Arbitrary high order DERivatives (ADER) constitue un cadre idéal
pour poursuivre notre objectif. Dans [41, 109, 108, 29], les auteurs ont présenté une
méthode permettant de récupérer une solution précise pour des EDP hyperboliques
avec un ordre de précision arbitraire sur un seul bloc de maillage. Plus récemment,
dans [28], les auteurs ont présenté un schéma ADER de Galerkin discontinu avec a
posteriori un limiteur de volume fini à sous-cellules sur des grilles fixes et mobiles
telles que des mailles cartésiennes AMR adaptatives spatio-temporelles. Le schéma
numérique traite la variable temporelle indistinctement par rapport aux variables
spatiales en définissant la solution sur une dalle spatio-temporelle. Cette approche
de discrétisation nous permet donc de reconsidérer le problème des conditions de
transmission des grilles de Chimera : au lieu de conditions de transmission spatiale
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dépendant du temps entre des blocs de grille en mouvement relatif, nous définis-
sons des polynômes d’interpolation sur des cellules spatio-temporelles se croisant
arbitrairement aux frontières des blocs.
Dans le schéma ADER, une solution locale spatio-temporelle faible du problème
entre les temps génériques t et t+∆t est calculée dans chaque cellule spatio-temporelle.
Cette solution est définie comme le prédictrice. L’étape de prédiction est locale et donc
parallèlisable, car la solution est calculée indépendamment des informations des cel-
lules voisines. Ensuite, dans l’étape suivante de correction, le calcul d’un flux numé-
rique spatio-temporel entre les cellules voisines fournit la stabilisation appropriée
du schéma d’intégration. Nous étendons cette méthode de prédiction-correction aux
EDP d’Advection-Diffusion sur des grilles surdimensionnées et proposons un flux
spatio-temporel entre les cellules spatio-temporelles qui fournit une stabilisation et
une précision améliorées car il prend en compte la nature advective et diffusive de
l’opérateur local (éventuellement non linéaire).
Le schéma ADER, dans sa première formulation, peut être considéré comme une
évolution d’un schéma classique de type Godunov pour les lois de conservation
hyperboliques [49, 50]. Ce type de méthode utilise l’autosimilarité de la solution du
problème de Riemann local avec des données initiales constantes par morceaux pour
calculer le flux upwind numérique. Par la suite, la méthode a été étendue en em-
ployant une reconstruction linéaire par morceaux non oscillante pour le problème
de Riemann généralisé local à l’interface des cellules avec lesquelles l’espace est
discrétisé [68, 115]. La résolution numérique du problème de Riemann généralisé
est généralement lourde et il peut être impossible de l’obtenir pour des équations
d’Euler compliquées (par exemple, les problèmes de magnéto-hydro dynamique).
La méthode ADER est une tentative pour surmonter cette difficulté. Il s’agit d’une
méthode de précision d’ordre élevé dans l’espace et le temps. Afin d’évaluer le flux
numérique, pour la méthode ADER, le problème de Riemann généralisé est résolu
avec une condition initiale définie par des fonctions lisses en utilisant une méthode
semi-analytique [110]. La solution approximative est donnée par une expansion de
Taylor locale (c’est-à-dire à l’interface ou entre les cellules) en temps jusqu’à un ordre
de précision quelconque.

Maillages surdimensionnées pour les écoulements incompres-
sibles et les problèmes d’interaction fluide-structure

Un des objectifs de cette thèse est de développer un schéma de résolution des
équations incompressibles de Navier-Stokes (1) où le domaine éventuellement dé-
formable Ω(t) est discrétisé par des grilles overset. En particulier, le domaine Ω(t)
peut être considéré comme l’espace géométrique dans lequel le fluide effectue sa dy-
namique. Par conséquent, le maillage Chimera se déforme en fonction d’une défor-
mation de l’espace solide représenté et discrétisé par une surface interne des mailles
de foreground. Historiquement, le premier à proposer des grilles overset a été Vol-
kov dans les années 70 [116] ; les premières implémentations d’importance scienti-
fique sont celles de Starius pour les équations hyperboliques [105]. Successivement,
parmi tous, nous mentionnons Atta [7] pour l’étude de l’interfaçage adaptatif des
grilles, Kreiss [70] pour l’introduction de grilles curvilignes se superposent, Benek
et al. [13, 14] et Rai [94], pour l’équation d’Euler, et Chesshire et Henshaw [30], pour
une généralisation des maillages chimériques pour une large gamme d’EDP.
Tous les travaux cités utilisent plusieurs méthodes pour résoudre numériquement
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les différents problèmes différentiels. Il est possible de les regrouper en deux caté-
gories principales : Les méthodes à pas fractionnés (FSM) et les approches de dé-
composition de domaine (DD). Dans le contexte des écoulements incompressibles et
de l’interaction fluide-structure, parmi les travaux utilisant une FSM, nous citons un
article récent de Meng et al. [76]. Dans ce travail, les auteurs atteignent une précision
de quatrième ordre. En ce qui concerne les approches DD, l’un des derniers travaux
est celui de Mittal, Dutta et Fischer [77], dans lequel une approche Schwarz-spectrale
est utilisée en décomposant le domaine par rapport aux différents blocs de la grille
overset. Malgré les différentes méthodes, tous les travaux ont en commun le fait que
les cellules marginales, à savoir les cellules à la limite des régions de recouvrement,
échangent l’information par une interpolation appropriée. En général, un effort par-
ticulier est consacré à la définition d’une interpolation rapide et efficace garantissant
l’ordre de précision requis pour la solution finale. Par exemple, dans le cas de [76],
une interpolation polynomiale BWENO est employée, alors qu’une parallélisation
efficace du processus d’interpolation dans les régions de superposition est proposée
dans le cas de [77]. L’un des travaux les plus récents de Sharma et al. [100] définit la
différenciation suivante des nœuds d’une grille overset :

— Points de champ : noeuds du maillage auxquels les équations de gouvernance
sont résolues ;

— Points de frontières : points de maillage où les informations sont transférées
entre les mailles superposées ;

— Points de trou : points de maillage pour lesquels la solution n’existe pas.

Ce classement classique des nœuds nous donne l’occasion de souligner les dif-
férences de la méthode proposée dans cette thèse par rapport à l’état actuel de la
technique. Puisque nous utilisons une approche ADER et que nous dépensons une
partie des coûts de calcul globaux pour trouver un stencil compact aux interfaces qui
se superposent, nous n’avons jamais besoin d’échanger des informations par inter-
polation. En particulier, comme il apparaîtra clairement au cours de la thèse, l’étape
de prédiction d’ADER définit une approche à mailles libres pour laquelle tous les
nœuds ne sont pas différenciés par rapport au clustering classique ; ainsi, leur ap-
partenance à un bloc spécifique n’est plus importante ; successivement, dans l’étape
de correction suivante, en raison de la définition d’un stencil hybride composé de
nœuds appartenant à des mailles différentes, l’approche par volumes finis permet
d’échanger automatiquement les informations de l’étape précédente. La méthode ne
considère pas les nœuds comme faisant partie d’un bloc mais plutôt leurs distances
euclidiennes dans la définition du stencil. En d’autres termes, la configuration de
superposition spécifique au problème est gérée sans effort. L’interpolation effectuée
n’est obligatoire que lorsqu’une cellule de trou devient une cellule active en raison
du mouvement de la maille de foreground.
La méthode proposée pour les équations incompressibles de Navier-Stokes étant
fractionnaire, la pression est résolue via un problème de Poisson. Dans ce cas égale-
ment, les cellules marginales ne sont plus exploitées comme donneurs ou récepteurs
d’informations. En fait, une discrétisation appropriée de l’opérateur de gradient est
proposée aux interfaces en utilisant toutes les informations du stencil hybride com-
pact. Par conséquent, les relations décrites par la matrice de rigidité résultant de la
discrétisation de l’opérateur de Laplace gèrent automatiquement l’échange d’infor-
mations sans passer par une étape d’interpolation ultérieure.
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L’état actuel de l’art considère les grilles Chimera comme une discrétisation de l’es-
pace. Grâce à la méthode ADER, les grilles overset proposées dans la thèse discré-
tisent le continuum espace-temps et, par conséquent, définissent des mailles chi-
mères espace-temps. Ceci est un avantage qui permet de faire évoluer le domaine
ainsi que la grille overset (avec une dépendance possible de la solution elle-même)
et, en même temps, de calculer la solution sur cette structure de calcul évolutive.

Réduction et hyper-réduction de l’approche ADER

Dans la dernière partie de la thèse, une version réduite et hyper-réduite de l’ap-
proche ADER est introduite. Les méthodes de réduction de l’ordre du modèle (MOR)
sont formulées afin de réduire de manière significative les coûts de calcul pour ob-
tenir une approximation numérique de la solution d’une EDP. En particulier, quand
on veut une solution qui est paramétrique par rapport à un ensemble donné de para-
mètres variables ( comme les paramètres géométriques ou les variables de diffusion,
etc.), les méthodes MOR donnent la possibilité d’évaluer facilement cette solution le
long de l’instance spécifique des paramètres. Ce type de méthodes consiste typique-
ment en une étape d’apprentissage offline (éventuellement onéreuse en termes de
coûts de calcul) et une étape online qui permet de reconstruire la nouvelle solution
requise avec un grand avantage en termes de coûts et de temps de calcul.
La méthode réduite proposée pour obtenir la solution approchée est la Proper Or-
thogonal Decomposition (POD) [102, 22]. Les solutions haute-fidélité collectées via
ADER pour certaines instances des paramètres sont réarrangées hiérarchiquement
afin de définir une base couvrant le sous-espace VM, de dimension M, d’un espace
fonctionnel propre V sur lequel la solution réduite est projetée dans l’étape online.
Nous sommes intéressés par la recherche de solutions dépendant de paramètre(s)
conduisant à la déformation du domaine. Pour cette raison, une approche DD est ap-
pliquée à la réduction. Cela signifie que dans certaines régions particulières qui sont
affectées par l’évolution du domaine, la solution est réduite et que dans les autres
sous-régions, la solution est toujours de haute fidélité. En particulier, la décomposi-
tion est définie par la grille overset elle-même. L’approche de réduction donne l’op-
portunité de redéfinir le schéma ADER en considérant une macro-cellule identifiée
par la grille de foreground.
Comme la nouvelle reformulation d’ADER sur une macro-cellule nécessite une lé-
gère modification par rapport à sa formulation classique (c’est-à-dire haute fidélité),
les matrices qui en découlent dans la contrepartie algébrique du schéma doivent être
calculées à chaque instance temporelle. En fait, l’espace de projection V est composé
de fonctions qui ne sont assurées que d’une continuité locale (et non globale) le long
des coordonnées spatiales. Pour cette raison, une approche d’hyper-réduction est
proposée afin d’intégrer et de calculer facilement les matrices en utilisant des nœuds
de quadrature beaucoup plus petits que ceux nécessaires pour obtenir une approxi-
mation intégrale à l’ordre de précision fixé.





xvii

Acknowledgements
I would like to express my deep gratitude to Dr. Michel Bergmann and Prof. An-
gelo Iollo, my research supervisors, for their patient guidance, enthusiastic encou-
ragement and useful critiques of this research work. From both of them I have learnt
several lessons about the researcher’s job and I will definitely take inspiration from
them for my future career. Among the most valuable lessons, I would like to mention
three : 1) a thought, no matter how complex, is best expressed with the right words
because a mathematician never uses too many or too few words ; 2) mathematics is
a language that must not limit the objective but must help to solve the problem ; 3)
having a social life helps to see even the most difficult mathematical problems from
a decisively solving point of view.

One year of my PhD was at Optimad Engineering in Turin. Special thanks the-
refore go to Dr. Haysam Telib, CEO of the company, who welcomed me during the
difficult period of the pandemic. That experience gave me an insight into how useful
mathematics can be at an industrial level and gave me a real understanding of the
mathematics that exists outside the academic environment.

The final result of this manuscript would not have been the same without the va-
luable contribution of reviewers Prof. Michael Dumbser and Prof. Alexandre Ern.
The fair critique of what has been written and the ensuing debate has been an im-
portant moment of growth for me.

During my PhD years, an important guide and point of reference within INRIA
was Mme. Anne-Laure Gautier, to whom I extend my warmest thanks for the many
emails and the very quick and always useful replies.

Research is made up of people, and I was lucky enough to meet some of them
between the IMB, INRIA and the University of Bordeaux. Many everyday moments
have become special, from afternoons spent together debating different questions to
many laughs, meals and drinks all together. Among all, I want to mention my office-
mates Antoine, Floriane, Guillaume, Beatrice, Alexis and Nishant. All people from
teams MEMPHIS and MONC turned out to be friends even before being colleagues.

Despite the hard times of the pandemic and the many restrictions of these years,
I was able to have a life outside the walls of the university, both in Bordeaux and
in Turin. And "out there" I actually found a "in here" made up of people who are
now my friends and with whom a strong relationship began. I cannot mention them
all because it would not be enough to write another thesis. My memory now has
milestones made up of parties, walks, go-outs, eating, drinking or simply chatting
with many of them. Among all, I would like to thank my flatmate Snigdha because
of the great support given to me during this last year of my PhD and the sometimes
"dramatic" and hard time of writing the manuscript.

Finally, I want to thank my family because they are always there. No matter how
far I go, in the end it is never so far that I don’t feel their support there.

The author of this thesis is a human being. I should thank for this a number of
artists, scientists, poets, writers, dancers, painters, composers, psychologists, . . .. For



xviii

the sake of brevity, I will quote a poet, Simonides of Keos, as distant in time as he is
close in perception of what he is saying :

«΄Ο λόγος τῶν πραγμάτων εἰκών ἐςτιν».

The translation in English is by Anne Carson, the most powerful writer I read during
my PhD, from her essay Economy of the Unlost : Reading Simonides of Keos with Paul
Celan :

«The word is a picture of things».

My viewpoint in one sentence.
Myself in a fragment. . .

Bordeaux - Turin - Bordeaux
October 1st, 2018 - December 15th, 2021



xix

Contents

Résumé v

Abstract vii

Résumé détaillé ix

Acknowledgements xvii

List of Figures xxiv

List of Tables xxvi

List of Abbreviations xxvii

1 Introduction and state of the art 1

2 The one dimensional case 11
2.1 The third order stencil reconstruction: CWENO approach . . . . . . . . 12

2.1.1 Stencil of non overlapping cells . . . . . . . . . . . . . . . . . . . 12
2.1.2 Stencil of overlapping cells . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The CWENO-ADER approach for advective equations . . . . . . . . . 17
2.2.1 Local space-time Galerkin predictor . . . . . . . . . . . . . . . . 23
2.2.2 The mesh motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Finite volume scheme over the space-time cell . . . . . . . . . . 26
2.2.4 Cell management during the chimera meshes motion . . . . . . 28
2.2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Approximation of the first derivative over an overlapping stencil . . . 30
2.4 The Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 The Advection-Diffusion problem 39
3.1 The overset grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 The automatic definition of the stencil at the transmission con-
dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Local polynomial reconstruction . . . . . . . . . . . . . . . . . . 41
3.2.2 Local space-time Galerkin predictor . . . . . . . . . . . . . . . . 44
3.2.3 Recovery of the map and foreground mesh motion . . . . . . . 47
3.2.4 Correction stage: the finite volume scheme over the space-time

cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.5 Dynamics of the overlapping zone . . . . . . . . . . . . . . . . . 50

3.3 The stabilization of the scheme . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 The local advective-diffusive stabilization term . . . . . . . . . 51



xx

3.3.2 The choice of the relaxation time . . . . . . . . . . . . . . . . . . 52
3.3.3 The local advective stabilization term . . . . . . . . . . . . . . . 55

3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Order of convergence . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Empirical analysis of stability condition . . . . . . . . . . . . . . 60
3.4.3 Relationship between the convective field and the foreground

mesh velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.4 Further topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Nonlinear system . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Multimesh setting . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Complex domains . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Conclusions of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 The incompressible Navier-Stokes equations 75
4.1 The governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 The predictor solution . . . . . . . . . . . . . . . . . . . . . . . . 78
Local space-time Galerkin predictor . . . . . . . . . . . . . . . . 78
The space-time finite volume scheme . . . . . . . . . . . . . . . 79

4.3 The pressure equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1 The geometric reconstruction . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Truncation error and stencil at fringe cells . . . . . . . . . . . . . 83

4.4 The face-center discrete operators on overset grids . . . . . . . . . . . . 86
4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.1 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.2 Order of convergence . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3 The lid driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.4 The cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Steady cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Impulsively started cylinders . . . . . . . . . . . . . . . . . . . . 94
Impulsively started then stopped cylinders . . . . . . . . . . . . 95

4.6 Sedimentation of a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 Conclusions of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Reduced and Hyper-reduced ADER method 103
5.1 Reduced-order model based on ADER approach . . . . . . . . . . . . . 104

5.1.1 The prediction stage . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.2 The correction step . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.3 Domain decomposition approach . . . . . . . . . . . . . . . . . 107

5.2 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . . . . 108
5.3 Hyper-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Linear test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 Nonlinear test case . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Conclusions and future perspectives of the chapter . . . . . . . . . . . 119

Conclusions 125

A The CWENO polynomial 131
A.1 The non overlapping stencil . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 The overlapping stencil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



xxi

B ADER approach for the 1D advection equation 133
B.1 The research of the Galerkin predictor solution . . . . . . . . . . . . . . 133
B.2 Constants in Rusanov flux . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C The ADER approach for the advection-diffusion problem 135
C.1 The Galerkin predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.2 Time step ∆t in the limit of large diffusion . . . . . . . . . . . . . . . . . 136

D Chorin-Temam method 137
D.1 Poisson equation with fully homogeneous Neumann conditions . . . . 138

Bibliography 141





xxiii

List of Figures

1.1 An exemple of Immersed Boundary discretization . . . . . . . . . . . . 3
1.2 Sketch of the Chimera mesh . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Sketch of Chimera mesh for explaining the interpolation on the over-

lapping region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Sketch of grid connectivity in 1D . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Comparison between Chimera and Dragon grids . . . . . . . . . . . . . 6

2.1 An overlapping configuration in 1D . . . . . . . . . . . . . . . . . . . . 15
2.2 Comparison of solution for CASE2 with different steady mesh config-

urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Comparisons of the L1-errors for ε = h and ε = 10−6 for one overlap-

ping zone (IO = 50%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Comparisons of the L1-errors for ε = h and ε = 10−6 for two overlap-

ping zones (IO = 50%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Overlapping space-time cell in 1D . . . . . . . . . . . . . . . . . . . . . 26
2.6 Comparison between non overlapping and overlapping cells in 1D . . 28
2.7 The three possible configurations of overlapping cells during the meshes

motion in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Three time instances for CASE1 with a rigid translation movement of

the inside mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Three time instances for CASE3 with translation and deformation move-

ment of the inside mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10 An overlapping stencil in 1D . . . . . . . . . . . . . . . . . . . . . . . . 33
2.11 Solution of CASE4 (Poisson) . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.12 Solution of CASE5 (Poisson) . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Example of Chimera grid configuration . . . . . . . . . . . . . . . . . . 40
3.2 Two possible stencils: all cells in the same partition and cells in differ-

ent partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Visualization of Algorithm 3.1. . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Representation of the mapMi from the reference space-time cell Ĉ to
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Chapter 1

Introduction and state of the art

Background

One of the main difficulties for the simulation of a phenomenon modeled by a
Partial Differential Equation (PDE) is the geometrical modeling of the computational
domain with a single mesh block. This problem is especially relevant when the do-
main is complex or its shape and its topology evolve during the simulation. Classical
approaches to tackle this problem include the Arbitrary Lagrangian-Eulerian (ALE)
method, fictitious domain approaches and Chimera grids.

ALE methods [61] allow a certain degree of mesh deformation and adaptation
thanks to an appropriate reformulation of the governing equations and to sophisti-
cated and efficient grid displacement algorithms. In 1969, Harlow listed the main
schemes for solving problems in fluid dynamics accordingly to their formulation
in Lagrangian or Eulerian coordinates [54]. When the method uses meshes whose
nodes move accordingly to the movement of the fluid, it is said to be Lagrangian.
On the contrary, if the mesh is always fixed (namely it does not change with respect
to the movement of the fluid), the method is Eulerian. The first attempt of a formula-
tion of a method using a mesh whose movement is independent of the dynamics of
the fluid was proposed by Trulio in 1966 for compressible flows [113]. The proposed
method is explicit, thus the movement of the mesh is related to the movement of
the fluid through a stability condition. Successively, in papers by Hirt in 1970 [60]
and Hirt et al. in 1974 [61], a finite differences ALE method was defined. In those
works, because of an implicit formulation, the velocity of the mesh is decoupled by
the velocity of the fluid. However, when the grid deformation leads to excessively
stretched cells, a delicate (and computationally expensive) global re-meshing step
may be necessary. In turn, this operation can introduce approximation irregularities
that are caused by the interpolation of the solution from the old grid to the new one.

In fictitious domain approaches, including ghost boundary methods [47], im-
mersed boundary [78] or penalization methods [4] , the original problem is discre-
tised on a simple mesh, usually structured and Cartesian, constant in time [48, 88,
4].
Fedkiw et al. in [45] proposed for the first time a Ghost Boundary Method (GBM).
With the objective of simulating gas dynamics problems, GBM combines the robust-
ness of Eulerian schemes with a multimaterial interface method characteristic of a
Lagrangian scheme. By tracking the interface with a level set function [82, 106], at
the interface location an approximate Reimann problem is solved. Consequently,
this technique results useful when a shock wave or a discontinuity moves in the
computational domain.
In his PhD thesis of 1972, Peskin proposed the Immersed Boundary method (IBM)
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in order to simulate cardiac mechanics associated to the blood flow [89]. In this for-
mer work, the author proposes the usage of a single Cartesian block nonconforming
with the real shape of the heart (i.e. the domain); thus an immersed boundary is
built into the Cartesian block for simulating the effects of the blood flow. Today
IBM is related to a Cartesian grid method originally developed for simulating inviscid
flows with complex embedded boundaries on Cartesian grids [15, 34, 37]. Succes-
sively, these methods were extended to unsteady viscous flows [114, 119]. Today
IBMs are addressed not only to fluid-structure interactions but also to liquid-liquid
and liquid-gas interactions [2, 97]. In Figure 1.1 there is a sketch of IBM spatial dis-
cretization from [78].
For the study of incompressible flows, another approach is provided by the Penaliza-
tion Methods (PM). Also this method aims in avoiding building body-fitted unstruc-
tured meshes in order to use fast and efficient numerical schemes (e.g. spectral, finite
differences or finite volume methods) on Cartesian meshes. To do this, a penaliza-
tion velocity term in the momentum equation for the incompressible Navier-Stokes
equations is added. In the former works [86, 87] by Peskin on the blood flow in the
heart and in some other reviewed formulations (such as in [51]), both a time integral
of the velocity and a velocity penalization term are added only at the surface defin-
ing the obstacle. Successively, Saiki and Biringen [96] extended the penalization to
the whole domain in order to take into account large Reynolds numbers. The firsts
to extend the penalization to a volume of a porous medium were Arquis and Calta-
girone [6]. Finally, Angot and Caltagirone [5, 3] extended the penalization in order
to deal with fluid-porous solid systems. In particular, let Ω ⊂ Rd, with d = 2, 3,
be the computational domain and let it contain a certain number of irregular solid
obstacles whose union is defined by Ωs whose possible velocity is us. Consequently
The remaining subdomain Ω f = Ω/Ωs is occupied by the fluid. The incompressible
Navier-Stokes equations for this problem read: find the velocity u : Ω f ×R+ → Rd

and the pressure p : Ω f ×R+ → R of the fluid such that

∂tu + u · ∇u = ∇p +
1

Re
∆u in Ω f ×R+

∇ · u = 0 in Ω f ×R+

u = us in ∂Ωs ×R+

(1.1)

properly closed with initial and boundary conditions over the remaining part of
the boundary ∂Ω of the domain. The PM solves the incompressible Navier-Stokes
equations by substituting the first line of problem (1.1) with

∂tu + u · ∇u = ∇p +
1

Re
∆u +

χs

K
(us − u) in Ω f ×R+, (1.2)

where χs is the indicator function 1 over Ωs and K is the penalization constant. For
the theoretical results of converge in the limit of vanishing K of solution for (1.2) to
the solution for (1.1), the reader is addressed to [4].
For these briefly introduced fictitious domain approaches, the grid does not neces-
sarily fit the physical boundaries and special care must be taken to attain a sufficient
degree of accuracy at the boundaries. Moreover, the presence of thin boundary lay-
ers can significantly reduce the computational advantages deriving from a simple

1.

χs(x) =

{
1, x ∈ Ωs

0, otherwise
.
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FIGURE 1.1 – An example of Immersed Boundary discretization. The
solid boundary Ωb is defined by a closed line into a Cartesian grid.
Over the fluid domain Ω f and the solid domain Ωb the system of
PDEs describes the fluid and solid dynamics, respectively. This figure

is from [78].

meshing algorithm, because of the uniform aspect ratio of the mesh. Hybrid tech-
niques employing immersed boundary methods with anisotropic mesh adaptations
can be employed for circumventing this problem [1].

Overset grids

We focus our investigations on Chimera grids [116, 14, 75, 90]. Chimera grids
consist of multiple overlapping mesh blocks that together define an overset grid
used for spatially discretize a PDE [104, 105, 103] (see Figure 1.2) . Usually, one has a
background mesh that includes one or more foreground mesh patches that are fitted
to the physical domain boundaries. This mesh generation approach considerably
simplifies the task of mesh adaptation in the case of boundary layers, changing ge-
ometry for an unsteady problem (e.g. fluid-structure interaction problems in fluid-
dynamics) and for unsteady multiply connected domains [10, 8, 98, 9, 30]. Once the
multiple mesh patches are generated, they are collated in order to obtain an appro-
priate overlapping zone between the neighboring blocks [75].
The usage of Chimera meshes is essentially based on grid embedding techniques
for discretizing the possible evolving computational domain. A major grid (back-
ground block) is first built. It is non-conformal with respect to the complex shape
of the domain. Successively minor grids (foreground blocks) are constructed in order
to precisely describe the particular shapes of those regions where the obstacles are
located. Since the minor blocks overlap the major block, an overlapping region is
defined among all blocks. Along the overlapping regions the information of the so-
lution needs to be mutually exchanged from one block to another. In this thesis, a
compact transmission condition is sought in order to limit communications between
the grids. Namely, a compact stencil only composed of the first layer of cells is de-
fined around any cell.
The choice of the interpolation scheme at the interface falls between two possibili-
ties: nonconservative and conservative approaches. The nonconservative schemes
(the most used) are defined on the local study of the particular overlapping config-
uration of cells used for defining the interpolation itself. References on the order
of accuracy affecting the global numerical scheme can be found in [30]. The con-
servative interpolations involve patched interfaces [16, 94] or arbitrarily overlapped
regions [81, 118]. In general these schemes are not attractive because if they are rela-
tively easy to implement in two dimension, they become cumbersome or impossible
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to be applied in three dimensions. Moreover, even though a global conservation
of fluxes is ensured among the overlapping boundaries or on the boundary of the
holes, local flux conservation could not be preserved. Figure 1.3 from [65] sums up
a classical chimera configuration.
In the thesis, we propose a space-time Finite Element Finite Volume scheme on
Chimera grids. Our objective is to combine some aspects of an ALE approach, no-
tably its flexibility with respect to grid displacement and deformation, to the multi-
block discretization strategy of overset grids. In particular, we devote special care
to grid overlapping zones in order to devise a compact and accurate discretization
stencil to exchange information between different mesh patches, in the spirit of pre-
vious works on Cartesian hierarchical grids [93]. We then apply this approach to in-
tegrate linear and nonlinear Advection-Diffusion partial differential equations and
show how the method can exploit the versatility of the Chimera meshes to reach
second order accuracy in unsteady multiply connected domains.
The numerical solution on Chimera grids is obtained by exchanging data through
the fringe cells at the overlapping zone. For example, in [32, 53, 117, 74], fringe
(namely donor) cells of a block in proximity of the overlapping zone provide the
information to the fringe (i.e., receptor) cells of another block by polynomial interpo-
lation. In [58] a coarse grid is automatically generated and a connection of interpola-
tion information at the overlapping zone is presented through a multigrid approach
(as sketched in Figure 1.4 for a one dimensional overset grid).
Another way of making the different blocks communicate is to use proper Domain
Decomposition (DD) methods (e.g., Schwartz, Dirichlet/Neumann or Dirichlet/Robin
methods). In particular, each mesh block is considered as a decomposition of the do-
main and the overlapping zones are the interfaces for coupling the different blocks.
Accordingly to these approaches, typically iterative discrete methods are employed.
For this two-way communication, the reader is referred to [62] for further details.
In the same framework, other approaches connect the background and the fore-
ground meshes, such as the DRAGON grids [65] for which the overlapping zone
is replaced by a unstructured grid during a further stage by preserving the body-
fitting advantages of the Chimera meshes. Figure 1.5 compares a Chimera mesh
with a Dragon grid. Finally, a Dragon grid consists in creating a unique block mesh
from a Chimera configuration. However, the computational costs for achieving a
Dragon grid for evolving domain largely increase because possibly at any time in-
stance a new DRAGON mesh needs to be created.
In contrast, here we derive a second order compact transmission condition by prop-
erly defining a set of cells, i.e. the stencil, that belong to both the back- and foreground
meshes, over which the solution is interpolated in space and time by an appropri-
ate polynomial. This hybrid stencil allows a smooth discretization transition from
one block to another. In particular, first a mesh-free discontinuous FEM-solution is
recovered and then a FVM-correction is performed in any cell by using information
provided by neighboring cells. Thus, for fringe cells, the solution is obtained by
combining values from different grids.

ADER scheme

The Arbitrary high order DERivatives (ADER) method provides an ideal setting
for pursuing our purpose. In [41, 109, 108, 29], the authors presented a method to
recover an accurate solution for hyperbolic PDEs with an arbitrary order of accuracy
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Ω

Ωfg

Γs

FIGURE 1.2 – Sketch of the mesh configuration. The computational
(i.e. fluid) domain contains the solid body whose boundary is Γs.
The foreground mesh (in blue) defines the foreground subdomain Ωfg
whose boundary is the union of an external (dashed line) and internal
(continuous line) boundary. Consequently, the internal foreground

boundary coincides with the solid body boundary.

FIGURE 1.3 – Sketch of Chimera mesh for explaining the interpolation
on the overlapping region. The figure is from [65].

FIGURE 1.4 – Sketch of grid connectivity in 1D. Values of interpola-
tion points, UN1 and V0, are obtained by interpolation. The figure is

from [58].
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FIGURE 1.5 – Comparison between Chimera (a) and Dragon (b) grids
for a C-shape structure. In particular, the dragon grid replaces the
overlapping zone between the two blocks of the chimera configura-

tion through a unstructured grid. The figure is from [65].

on a single mesh block. More recently, in [28] the authors presented an ADER Dis-
continuous Galerkin scheme with a posteriori subcell finite volume limiter on fixed
and moving grids such as space-time adaptive Cartesian AMR meshes. The nu-
merical scheme treats the temporal variable indistinctly with respect to the spatial
variables by defining the solution on a space-time slab. This discretization approach,
therefore, allows us to re-consider the problem of Chimera grids transmission condi-
tions: instead of time-dependent spatial transmission conditions between relatively
moving grid blocks, we define interpolation polynomials on arbitrarily intersecting
space-time cells at the block boundaries.
In the ADER scheme a local space-time weak solution of the problem from the
generic time t to t + ∆t is computed in every single space-time cell. This solution
is defined as the predictor. The prediction step is local and hence embarrassingly
parallel, because the solution is calculated independently of the information of the
neighboring cells. Then, in the subsequent stage of correction, the computation of a
space-time numerical flux between neighboring cells provides the appropriate sta-
bilization of the integration scheme. We extend this prediction-correction method
to Advection-Diffusion PDEs on overset grids and propose a space-time flux among
the space-time cells that provides improved stabilization and precision as it takes
into account both the advective and diffusive nature of the local (eventually nonlin-
ear) operator.
ADER scheme, in its former formulation, can be seen as an evolution of a classi-
cal Godunov-type scheme for hyperbolic conservation laws [49, 50]. This type of
methods uses the self-similarity of the solution for the local Riemann problem with
a piece-wise constant initial data to compute the upwind numerical flux. Succes-
sively, the method was extended by employing non-oscillatory piece-wise linear
reconstruction for the local generalized Riemann problem at the interface of cells
with which space is discretized [68, 115]. The numerical resolution of generalized
Riemann problem is usually cumbersome and it may be impossible to obtain for
complicated Euler equations (e.g. Magneto-Hydro Dynamics problems). The ADER
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method is an attempt in order to overcome this difficulty. It is a high-order accu-
racy method in space and time. In order to evaluate the numerical flux, for ADER
method the generalized Riemann problem is solved with initial condition defined
by smooth functions using a semi-analytic method [110]. The approximate solution
is given by a local (i.e. at the interface or between cells) Taylor expansion in time up
to any order of accuracy.

Overset grids for incompressible flows and fluid-structure in-
teraction problems

One of the goals of this thesis is to develop a scheme for solving the incompress-
ible Navier-Stokes equations (1.1) where the possibly deforming domain Ω(t) is dis-
cretized through overset grids. In particular, the domain Ω(t) can be considered as
the geometric space in which the fluid performs its dynamics. Consequently, the
Chimera mesh deforms accordingly to a deformation of the solid space represented
and discretized by an internal surface of the foreground meshes, as sketched in Fig-
ure 1.2. Historically, the first to propose overset grids was Volkov in ’70s [116]; the
first implementations of scientific relevance are by Starius for hyperbolic equations
[105]. Successively, among all, we mention Atta [7] for studying adaptive grid inter-
facing, Kreiss [70] for the introduction of curvilinear grids overlapping each other,
Benek et al. [13, 14] and Rai [94], for the Euler equation, and Chesshire and Henshaw
[30], for a generalization of chimera meshes for a wide range of PDEs.
All the cited works use several methods for numerically solving the different differ-
ential problems. It is possible to group them into two main categories: Fractional
Step methods (FSM) and Domain Decomposition (DD) approaches. In the context of
incompressible flows and fluid-structure interaction, among the works using a FSM,
we cite a recent paper 2 by Meng et al. [76]. In this work the authors achieve a fourth
order accuracy. Concerning the DD approaches, one of the last work is by Mittal,
Dutta and Fischer [77], in which a Schwarz-spectral approach is used by decompos-
ing the domain with respect to the different blocks of the overset grid. Despite of the
different methods, all the works have in common the fact that fringe cells, namely
the cells at the boundary of the overlapping regions, exchange the information by a
proper interpolation. In general, special effort is devoted to the definition of a quick
and efficient interpolation ensuring the required order of accuracy for the final solu-
tion. For example, in [76] a BWENO polynomial interpolation is employed, instead
an efficient parallelization for the interpolation process at the overlapping regions is
proposed in [77]. One of the most recent works by Sharma et al. [100] defines the
following differentiation of the nodes of an overset grid:

— Field points: mesh nodes at which the governing equations are solved;

— Fringe points: mesh nodes at which the information is transferred between
overlapping meshes;

— Hole points: mesh nodes at which the solution does not exist.

This classical nodes clustering gives us the opportunity to outline the differences
of the method proposed in this thesis with respect to the actual state of the art. Since
we employ an ADER approach and spend part of the global computational costs

2. This paper is listed in the Overture website https://www.overtureframework.org/
publications.html. We refer the reader to this website for an exhaustive bibliography related to
the overset grids.

https://www.overtureframework.org/publications.html
https://www.overtureframework.org/publications.html
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for finding a compact stencil at the overlapping interfaces, we never need to ex-
change information by interpolation. In particular, as it will be clear along the the-
sis, the prediction step of ADER defines a free-mesh approach for which all nodes
are undistinguished with respect to the classical clustering; thus, their belonging
to a specific block is no longer important; successively, in the subsequent correc-
tion step, due to the definition of a hybrid stencil composed of nodes belonging to
different meshes, the finite volume approach allows to automatically exchange the
information of the previous step. The method does not consider the nodes as part of
a block but rather their Euclidean distances in the definition of the stencil. In other
words, the problem-specific overlapping configuration is effortlessly managed. The
performed interpolation is mandatory only when a hole cell turns into an active cell
due to the movement of the foreground mesh.
Since the proposed method for the incompressible Navier-Stokes equations is frac-
tional, the pressure is solved via a Poisson problem. Also in this case, fringe cells
are no longer exploited as donors or receptors of information. As a matter of fact, a
proper discretization of the gradient operator is proposed at the interfaces using all
the information of the compact hybrid stencil. Consequently, the relations described
by the stiffness matrix resulting from the discretization of the Laplace operator auto-
matically manages the exchange of information without going through a subsequent
interpolation step.
The current state of the art considers chimera grids as discretization of the space.
Due to the ADER method, the proposed overset grids in the thesis discretize the
space-time continuum and, consequently, define space-time chimera meshes. This
is an advantage that allows to evolve the domain as well as the overset grid (with
a possible dependency on the solution itself) and, at the same time, to compute the
solution over this evolving computational structure.

Reduction and hyper-reduction of ADER approach

In the last part of the thesis, a reduced and hyper-reduced version of the ADER
approach is introduced. Model Order Reduction (MOR) methods are formulated in
order to significantly reduce the computational costs for achieving a numerical ap-
proximation of the solution for a PDE. In particular, when one wants a solution that
is parametric with respect to a given set of variable parameters (such as geometrical
parameters or diffusion variables, etc.), MOR methods give the possibility to easily
evaluate this solution along the specific instance of parameters. This type of meth-
ods typically consists of an offline stage of training (eventually expansive in terms
of computational costs) and an online stage which allows to reconstruct the new re-
quired solution with a large advantage in terms of computational costs and times.
The proposed reduced method for obtaining the approximated solution is the Proper
Orthogonal Decomposition (POD) [102, 22]. The collected high-fidelity solutions via
ADER for some instances of the parameters are hierarchically rearranged in order
to define a basis spanning the subspace VM, of dimension M, of a proper functional
space V over which the reduced solution is projected in the online step. We are inter-
ested in looking for solutions depending on parameter(s) leading the deformation of
the domain. For this reason, a DD approach is applied to the reduction. This means
that in some particular regions particularly affected by the evolution of the domain
the solution is reduced and in the remaining sub-regions the solution is still high-
fidelity. In particular, the decomposition is defined by the overset grid itself. The
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reduction approach gives the opportunity to re-define the ADER scheme by consid-
ering a macro-cell identified by the foreground mesh.
Since the new reformulation of ADER over a macro-cell needs a slight modification
with respect to its classical (i.e., high-fidelity) formulation, the arising matrices in the
algebraic counterpart of the scheme need to be computed at each time instance. As
a matter of fact, the projecting space V is composed of functions which are assured
only a local (and not a global) continuity along the spatial coordinates. For this rea-
son, a hyper-reduction approach is proposed in order to easily integrate and com-
pute the matrices by employing a largely small quadrature nodes than are needed
to obtain an integral approximation at the fixed order of accuracy.

Structure of the thesis

The thesis is organized as follows. In Chapter 2, the preliminary results in 1D
problems are presented. In particular, some former analysis on both the nature of
the superposition and the definition of a polynomial interpolation over the overlap-
ping are studied over linear hyperbolic equations. In addition, a FV approach is
proposed for the discretization of the second order Laplace operator in the presence
of the overlapping cells.
These studies were therefore preparatory to the results of Chapter 3. In this chapter
a second order ADER scheme for linear and nonlinear advection-diffusion problems
on moving overset grids with a compact transmission condition is introduced. The
numerical method is explained in order to be adapted to the chimera mesh and es-
pecially to the dynamics of the overlapping zone. A new local advective-diffusive
stabilization term allowing to increase the CFL condition with respect to the local
advective stabilization term from the literature is proposed.
Consequently, the scheme for the advection-diffusion problem is used in Chapter 4
together with the scheme for the Poisson equation for achieving a numerical solu-
tion for the incompressible Navier-Stokes equations. Special care is devoted to the
discretization of the gradient operator in order to easily manage the information ex-
change at the overlapping zone without going through an interpolation step.
Finally, in Chapter 5 the reduction and hyper-reduction models for ADER scheme
for linear and nonlinear advection-diffusion problems are presented. The reduced
space onto which the reduced solution is projected is properly defined. In particu-
lar, the POD is explained for the construction of the basis spanning this space. In
addition, the hyper-reduction technique is introduced in order to integrate over the
domain regardless of the evolution to which it is constrained. This allows to com-
pute the involved matrices by employing a largely small set of quadrature points for
any admissible movement of the mesh.
Throughout the thesis, a number of test cases are shown in order to numerically ver-
ify what is asserted in the first parts of any chapter.
In the last part of the thesis, the Conclusions are discussed.
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Chapter 2

The one dimensional case

In this chapter the overset grid in one dimension is introduced. It is used for
discretizing a real domain for the resolution of two types of PDEs, namely the scalar
linear advective equation and the Poisson problem. These two classes of equations
result to be useful for the partial differential problems which are faced in the next
chapters. As a matter of fact, the majority of the topics in the future chapters address
as proper extensions of what is presented in this chapter.
Here, the presented schemes are a proper extension of methods originally intro-
duced for one-block grid. The nature of the superposition between cells covering
a real segment is analyzed. In particular, the superposition condition is studied also
in the two extreme limits of zero superposition as well as a total superposition of one
cell over another one. The former limit condition describes the classical one-block
mesh. In this case the intersection between two consecutive cells is represented by
the shared vertex (thus, it has zero-measure). On the contrary, the latter condition
produces a doubling in the degrees of freedom because at least two whole cells cover
the same subset of the domain. We expect that, when the measure of the superpo-
sition vanishes, the presented schemes fall onto the original schemes. On the other
side, when an ill-posed doubling of information is reproduced, we are interested in
understanding where the arising algebraic systems become undetermined.

The evolving space-time computational domain formally is
⋃

t∈(0,T) Ω(t)× {t};
however, by abuse of language and along the whole thesis, this set is written as
Ω(t)× (0, T) even though it is not possible to define it through a Cartesian product
representation because the domain Ω(t) varies in time and it cannot be factored out.
The 1D linear advective equation over a domain Ω is: find u : Ω(t) × (0, T) → R

such that
∂tu + a∂xu = 0 in Ω(t)× (0, T) (2.1)

completed by suitable boundary conditions. Let T = {Ωj}N
j=1 a suitable partition of

the domain Ω. Velocity a 6= 0 is the advective velocity. Originally, any intersection
between two successive cells Ωj and Ωj+1 is supposed. Successively, the intersec-
tion is considered and the schemes extended. Along the chapter, the average of the
solution u over the cell Ωj at time t is indicated as

Uj =
1
hj

ˆ
Ωj

u(t, x)dx.

with hj = |Ωj|.
For problem (2.1), if the initial condition writes: u(x, 0) = u0(x) for any x in the
domain Ω, thus the exact solution reads u(x, t) = u0(x− at) for any x in Ω and any
time t in [0, T].
In the last part of the chapter, an approximation of the first derivative exact up to the
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second order is provided.

2.1 The third order stencil reconstruction: CWENO approach

In this section the compact version of the WENO polynomial reconstruction [63,
73] is presented. This method, known in literature with the name CWENO [99], con-
sists in constructing a second order polynomial over a stencil Sj. For both overlap-
ping and non overlapping stencils, an optimal polynomial Popt of degree 2 is looked
for. In order to control the total variation, we describe the optimal polynomial as a
convex combination of polynomials. The weights of the linear combination take into
account the possibility of a discontinuity or of a quick variation of the interpolating
function:

Popt = α0P0 +
2

∑
γ=1

αγPγ,

where P0 is a polynomial of degree 2 and Pγ, γ = 1, 2, are polynomials of degree 1.
The weights αγ, γ = 1, 2, 3, define a convex combination, i.e. they are positive and
their sum is 1. Concerning the reconstruction, the optimal polynomial Popt and the
linear polynomials P1 and P2 are computed. Therefore P0 is computed as

P0 = α̃0P0 +
2

∑
γ=1

α̃γPγ,

where the coefficients α̃γ are a linear combination of the convex weights αγ with
suitable smoothness indicators. For the presented numerical results, the convex set
of weights are {0.5, 0.25, 0.25}.

2.1.1 Stencil of non overlapping cells

In this subsection, the stencil Sj =
⋃1

i=−1 Ωj+i, j = 1, . . . , N, is such that the
intersection between two consecutive cells has zero-measure. Under the hypothesis
that u solving (2.1) is smooth over Sj, we look for an optimal polynomial satisfying
the WENO property of any cell composing the stencil:

1
hj+i

ˆ
Ωj+i

Popt(x)dx = Uj+i, i = −1, 0, 1. (2.2)

By choosing a basis of zero mean polynomials over Ωj for P2(Sj), hence the set of
all polynomials of degree equal or less than 2 over the stencil Sj, (see the appendix
in subsection A.1) the optimal polynomial formally reads:

Popt(x) = Uj + px(x− xj) +
1
2

pxx

[
(x− xj)

2 −
h2

j

12

]
, (2.3)

where xj is the mean point of interval Ωj and the coefficients are defined as:

px =
(hj + 2hj+1)U[j− 1, j] + (hj + 2hj−1)U[j, j + 1]

2(hj−1 + hj + hj+1)
,

pxx =
3(2hj + hj−1 + hj+1)U[j− 1, j + 1]

2(hj−1 + hj + hj+1)
,

(2.4)
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with

U[j− 1, j] =
Uj −Uj−1

xj − xj−1
, U[j, j + 1] =

Uj+1 −Uj

xj+1 − xj
,

U[j− 1, j + 1] =
U[j, j + 1]−U[j, j− 1]

xj+1 − xj−1
.

Since the hypothesis of smoothness of u cannot be always validated, a reconstruction
only defined by the optimal polynomial could present a Gibbs phenomenon, hence
the optimal polynomial could present numerical oscillations. For this reason, by
considering a basis of zero mean polynomials in P1(Sj), the set of all polynomials of
degree equal or less than 1 over the stencil Sj, we construct two linear polynomials
Pγ, γ = 1, 2, matching the cell averages Uj and Uj+2γ−3:

Pγ(x) = Uj + U[j− 2 + γ, j− 1 + γ](x− xj), γ = 1, 2.

At this stage, we can compute the central polynomial P0 by solving the linear equa-
tion:

Popt =
2

∑
γ=0

αγPγ,

with convex coefficients αγ.
Finally, the central polynomial built over the stencil reads:

P =
2

∑
γ=0

α̃γPγ, (2.5)

where the new weights α̃γ are a linear combination of the convex weights αγ and the
smoothness indicators βγ:

α̃γ =
ωγ

∑2
δ=0 ωδ

, with ωγ =
αγ

(ε + βγ)2 , γ = 0, 1, 2. (2.6)

The smoothness indicators βγ detect large gradients or eventual discontinuities.
Thus, when the solution is not smooth, they avoid the presence of big oscillations
in the polynomial reconstruction and the central polynomial P is largely defined by
the linear polynomials P1 and P2. On the contrary, if the solution is smooth and does
not present a large variation over the stencil, the smoothness indicators are such that
the new weights α̃γ coincide with the previous ones αγ (i.e. P ≈ Popt). In the litera-
ture, several definition of the smoothness indicators are present. Following [101, 73],
we define the indicators as

βγ =
2

∑
l=1

ˆ
Ωj

h2l−1
j (P(l)

γ (x))2 dx, γ = 0, 1, 2. (2.7)

By rewriting the central polynomial as

P0 = Uj + p0
x(x− xj) +

1
2

p0
xx

[
(x− xj)

2 −
h2

j

12

]
,

we can explicitly define the smoothness indicators in (2.7):

β0 =
13
12

h4
j (p0

xx)
2 + h2

j (p0
x)

2,
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β1 = U[j− 1, j]2h2
j , β2 = U[j, j + 1]2h2

j .

At the denominator of the definition of the new weights there is the term ε. In
origin, it was introduced in the formulas to give a numerical meaning to the weights
in case of a vanishing smoothness indicator. Anyway the role of ε goes beyond
the simply avoidance of a zero denominator for the non linear wights ωγ. In the
literature, in the work by Kolb [67], it was numerically proven that the choice of ε
influences the convergence of the numerical scheme. In particular it can be noticed
that a high value (say ε ∼ h) may allow numerical oscillation while very small values
(say ε ≤ 10−6) allow to achieve the theoretical order of convergence only for very
fine grids. In this thesis, an analysis at varying of ε is conducted in the case of a
non-moving foreground mesh.

2.1.2 Stencil of overlapping cells

In this subsection the hypothesis of non overlapping cells for the stencil Sj is
relaxed. For sake of simplicity but with no loss of generality, we suppose that |Ωj ∩
Ωj+1| 6= 0 (the overlapping could involve also cells of indexes j − 1 and j). This
means that the problem consists in constructing a polynomial over this new defined
stencil. Due to the chimera configuration, there exist two (partial) partitions T1 =

{Ω1
i }

N1
i=1 and T2 = {Ω2

k}
N2
k=1 of the physical domain Ω such that

⋃N1
i=1 Ω1

i ∪
⋃N2

k=1 Ω2
k =

Ω. With respect to the stencil Sj, let Ωj ⊂ T1 and Ωj+1 ⊂ T2 (see Figure 2.1) 1. For
a non overlapping configuration, the distance between the two consecutive middle
points xj and xj+1 is (hj + hj+1)/2. In the overlapping configuration, a corrector term
σ is defined. It measures the intersection of the two overlapping cells, i.e. σ = |Ωj ∩
Ωj+1| = xj + hj/2− xj+1 + hj+1/2. The objective consists in looking for a polynomial
with the same modus operandi of the previous subsection with the correction defined
by σ.
By choosing the same previously introduced polynomial basis for P2(Sj), and by
satisfying the WENO properties (2.2), the optimal polynomial writes as (2.5) but the
polynomial coefficients are corrected as follows:

px =
(hj + 2hj+1 + 6σ̃j,j+1)U[j− 1, j] + (hj + 2hj−1)U[j, j + 1]

2(hj−1 + hj + hj+1 + 3σ̃j,j+1)
,

pxx =
3(2hj + hj−1 + hj+1 − 2σ)U[j− 1, j + 1]

2(hj−1 + hj + hj+1 + 3σ̃j,j+1)
,

(2.8)

with the lumped corrector term

σ̃j,j+1 =
σ[3σ− (hj+1 + 2hj)]

3(hj+1 + hj − 2σ)
.

Proposition 2.1.1. In the limit of σ→ 0, i.e. in the limit of the non overlapping stencil, the
above polynomial coefficients (2.8) tend to the ones of the non overlapping case in (2.4).

Remark 2.1.1. Since the optimal polynomial is looked for by the conditions in (2.2), it holds
that

|Ωj ∩Ωj+1| < min
k=j,j+1

|Ωk|.

1. By abuse of notation, the superscript on the cell defining its belonging to the specific partition is
omitted.
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FIGURE 2.1 – An overlapping configuration in 1D. The cells belong-
ing to the partitions T1 and T2 are in red and in blue, respectively.

Thus, it is not possible to determine a unique polynomial if Ωj ∩ Ωj+1 = Ωk, with k =
j, j + 1, i.e. when a total overlapping occurs. In this the case, the algebraic system deriving
from (2.2) is undetermined.

The correction term only insists on the definition of the optimal polynomial. The
linear polynomials P1 and P2 are the same ones previously found. Consequently, the
central polynomial P0 is found with the same relation previously stated. Finally, the
non linear weighs ωγ depend on the smoothness indicator whose definitions do not
change. Therefore they will be function of the central polynomial coefficients p0

x and
p0

xx corrected with the new coefficients px and pxx.
In Section A.2 of the appendix there are all the formal computations of this subsec-
tion.

2.1.3 Numerical results

In this subsection some preliminary results on the CWENO polynomial recon-
struction are presented, by analyzing the rates of convergence of four test cases at
varying of both the type of overlapping and the value of ε in the definition of the
non linear weights (2.6). In particular, the performances of the CWENO reconstruc-
tion are evaluated in one case by recovering the local CWENO polynomials, in other
cases by solving (2.1) through a finite volume method over unsteady overset grids.
Due to the boundary conditions, two ghost cells are created at the beginning and at
the end of the physical domain Ω, respectively. The size of these cells matches the
size of the adjacent cells in the domain. The value of the solution into the ghost cells
is led by the type of the boundary conditions with which the hyperbolic equation is
completed (e.g. periodic conditions, Dirichlet conditions, etc.).
By denoting with Un

j the cell average of the solution over the cell Ωj at the discrete
time tn, the fully discrete scheme of (2.1) for solving the numerical tests reads:

Un+1
j = Un

j −
∆t
hj
Q(∂Ωj; u),

where ∆t is the time step and Q(∂Ωj; u) represents the numerical approximation of
the fluxes Hj±1/2 at the boundary ∂Ωj of the cell. In all shown simulations of the
subsection, the flux is numerically approximated through a Lax-Friedrichs scheme.
In particular, by considering the flux across the cells Ωj and Ωj+1, we distinguish
two cases:

— Ωj ∩Ωj+1 = {xj+1/2}, with xj+1/2 = xj + hj/2 ≡ xj+1 − hj+1/2 the common
vertex to both cells. In this case the numerical flux Hj+1/2 over the vertex is:

Hj+1/2 =
1
2

[
a(u+

j+1/2 + u−j+1/2)−
hj

∆t
(u+

j+1/2 − u−j+1/2)

]
,
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where u+
j+1/2 = Pj+1(xj+1/2) and u−j+1/2 = Pj(xj+1/2), being Pj and Pj+1 the

CWENO polynomial reconstructions over the stencils Sj and Sj+1, respectively.

— |Ωj ∩Ωj+1| = [p, q], such that the vertex p = xj+1 − hj+1/2 < xj + hj/2 = q.
In this case the numerical flux Hj+1/2 across the vertex q reads:

Hj+1/2 =
1
2

[
a(Pj+1(q) + Pj(q))−

hj

∆t
(Pj+1(q)− Pj(q))

]
.

Finally, a third-order TVD Runge-Kutta scheme is adopted:

U(1)
j = Un

j +
∆t
hj
Q(∂Ωj; un)

U(2)
j =

3
4

Un
j +

1
4

U(1)
j +

1
4

∆t
hj
Q(∂Ωj; u(1))

Un+1
j =

1
3

Un
j +

2
3

U(2)
j +

2
3

∆t
hj
Q(∂Ωj; u(2)).

The considered test cases are:

— CASE0: CWENO reconstruction of u(x) = e−x2
+ 0.1χR+(x);

— CASE1: Periodic B.C. with u0(x) = sin(πx);

— CASE2: Periodic B.C. with u0(x) = sin(2πx− sin(2πx)/π);

— CASE3: Periodic B.C. with u0(x) = sin(πx) + 0.25 sin(15πx)e−20x2
.

For all cases the domain Ω is the real interval (−1, 1).

Remark 2.1.2. For CASE0, just a CWENO polynomial reconstruction is performed. For
the remaining cases, problem (2.1) is integrated up to the final time T = 3 with an advective
speed a = 1.

Remark 2.1.3. Function of CASE0 presents a discontinuity in x = 0.

Remark 2.1.4. The solution of CASE3 has a large space derivative.

For all the cases, the analysis is computed by computing the L1-norm error of
the mismatch between the CWENO polynomial reconstruction and the cell aver-
age of the exact solution by doubling the number of cells at any simulation. For
TEST1, TEST2 and TEST3, the error is evaluated at final time T. In particular, first
the reconstruction is validated over a unique uniform mesh (see Table 2.1). Succes-
sively, two uniform meshes overlapping around x = 1/320 are considered. Finally,
the same computations are performed over three overlapping meshes around points
x = ±0.4. In Figure 2.2, three configurations for CASE2 are showed.
The algebraic system deriving from (2.2) tends to be undetermined at the increas-
ing of the overlapping area (i.e. the rows of the deriving matrix tend to be more
and more strictly correlated, see Remark 2.1.1). Thus, the following overlapping index
IOj,j+1 is defined. It measures the overlapping area over the measure of the union
set for two overlapping cells Ωj and Ωj+1 as follows:

IOj,j+1 =
|Ωj ∩Ωj+1|
|Ωj ∪Ωj+1|

=
hj + hj+1 + 2(xj − xj+1)

hj + hj+1 + 2(xj+1 − xj)
. (2.9)

Thus, for the same configuration of overlapping meshes, a gradually larger overlap-
ping index is considered. Tables 2.2, 2.3 and 2.4 refer to the overlapping indexes (in
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TABLE 2.1 – L1-norm error and converge rate with one uniform mesh
as function of the total number of nodes N.

N CASE0 CASE1 CASE2 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

20 2.10e-03 - 5.38e-02 - 3.94e-01 - 5.24e-02 -
40 8.98e-04 1.25 5.10e-03 3.40 9.27e-02 2.09 5.30e-02 -0.02
80 3.16e-04 1.51 5.20e-04 3.29 1.04e-02 3.16 6.02e-02 -0.19
160 8.62e-05 1.87 6.43e-05 3.01 1.00e-03 3.33 5.36e-02 0.17
320 1.78e-05 2.27 8.04e-06 3.00 1.15e-04 3.16 1.62e-02 1.73
640 2.96e-06 2.59 1.01e-06 3.00 1.40e-05 3.04 2.10e-03 2.95
1280 4.30e-07 2.79 1.26e-07 3.00 1.72e-06 3.02 2.45e-04 3.09
2560 5.79e-08 2.89 1.57e-08 3.00 2.13e-07 3.01 3.02e-05 3.02

percentage) of 10%, 50% and 80%, respectively. Tables 2.6, 2.5 and 2.7 refer to the
overlapping indexes of 10%, 50% and 80%, respectively, for both the present over-
lapping zones.

Remark 2.1.5. For three overlapping meshes, the two overlapping indexes are always equal,
i.e. the first and the second meshes are overlapping the same way the second and the third
meshes do.

For CASE1 and CASE2, the expected rate of convergence is 3. For the remaining
cases we expect a lower (or equal) rate of convergence due to the discontinuity (for
CASE0) and the large space-derivative (for CASE3) of the exact solutions. All errors
shown in Tables 2.1 - 2.7 point to CWENO reconstructions with parameter ε = h in
weights (2.6).
For the same type of overlapping configuration, when the solution is quite smooth
with a slow variation in space, increasing the overlapping index does not largely
effect the performance. On the contrary, when the exact solution presents large
space-derivative, a large overlapping reduces the precision (i.e., a large error). By
moving from one overlapping to two overlapping zones, the smoothness of the so-
lution seems again to have a key role in the performances. As expected, when a
second overlapping zone is introduced, the precision reduces at least of one order
of magnitude. Finally, we can notice that, with a controlled overlapping, the results
obtained over one mesh and the ones obtained over a chimera grid are similar. This
is due to the fact that the CWENO reconstruction takes into account both the right
distances between the cell centers and the overlapping configuration of the meshes
over which the solution is computed.

Finally, in Figures 2.3 and 2.4 it is reported the comparison of the L1-error with
respect to ε = h and ε = 10−6. The percentage of the overlapping index is always
kept constant at 50%. It is evident that, with a smaller value of ε, the convergence is
always reached or sometimes overcome. On the other hand, the error corresponding
to ε = h is always lower (except for CASE0 with two overlapping zones), therefore
the numerical solution is closer to the exact solution in the sense of the L1-norm.

2.2 The CWENO-ADER approach for advective equations

In this section it is presented a finite volume scheme for the resolution of equa-
tion (2.1) in the case of a moving chimera grids. In particular, it is explained how to
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(A) One mesh

(B) One overlapping section

(C) Two overlapping sections

FIGURE 2.2 – Comparison of solution for CASE2 with different steady
mesh configurations. For (B) and (C), the overlapping indices are

IO = 80%.
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TABLE 2.2 – L1-norm error and converge rate with two overlapping
meshes as function of the total number of nodes N (IO = 10%)

N CASE0 CASE1 CASE2 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

20 3.78e-05 - 5.68e-02 - 3.99e-01 - 5.24e-02 -
40 5.37e-06 3.04 5.20e-03 3.70 9.31e-02 2.25 5.67e-02 -0.25
80 7.59e-07 2.93 5.21e-04 3.45 1.04e-02 3.28 6.67e-02 -0.13
160 9.71e-08 3.06 6.44e-04 3.07 1.00e-03 3.40 7.29e-02 0.44
320 1.25e-08 3.00 8.05e-06 3.03 1.15e-04 3.18 5.39e-02 1.74
640 1.57e-09 3.01 1.01e-06 3.01 1.40e-05 3.06 1.63e-03 2.95
1280 1.98e-10 3.00 1.26e-07 3.01 1.72e-06 3.03 2.98e-04 2.85
2560 2.48e-11 3.00 1.57e-08 3.00 2.13e-07 3.01 1.14e-04 1.39

TABLE 2.3 – L1-norm error and converge rate with two overlapping
meshes as function of the total number of nodes N (IO = 50%)

N CASE0 CASE1 CASE2 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

20 3.85e-05 - 6.52e-02 - 4.43e-01 - 5.24e-02 -
40 5.38e-06 3.07 5.60e-03 3.79 9.64e-02 2.30 5.73e-02 -0.37
80 7.60e-07 2.94 5.44e-04 3.48 1.07e-02 3.29 7.28e-02 -0.03
160 9.72e-08 3.06 6.52e-05 3.12 1.00e-03 3.42 7.43e-02 0.45
320 1.25e-08 3.00 8.09e-06 3.04 1.16e-04 3.20 5.46e-02 1.75
640 1.57e-09 3.01 1.01e-06 3.02 1.40e-05 3.06 2.10e-03 2.95
1280 1.98e-10 3.00 1.26e-07 3.01 1.72e-06 3.03 2.98e-04 2.85
2560 2.48e-11 3.00 1.57e-08 3.00 2.13e-07 3.01 1.14e-04 1.39

TABLE 2.4 – L1-norm error and converge rate with two overlapping
meshes as function of the total number of nodes N (IO = 80%)

N CASE0 CASE1 CASE2 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

20 3.93e-05 - 7.57e-02 - 4.45e-01 - 6.30e-02 -
40 5.40e-06 3.19 6.30e-03 3.85 1.00e-02 2.31 7.53e-02 -0.28
80 7.60e-07 2.95 5.94e-04 3.52 1.10e-03 3.30 7.70e-02 -0.03
160 9.72e-08 3.10 6.78e-05 3.19 1.00e-03 3.43 5.49e-02 0.50
320 1.25e-08 3.00 8.27e-06 3.06 1.15e-04 3.21 1.65e-02 1.75
640 1.57e-09 3.02 1.02e-06 3.03 1.40e-05 3.07 2.10e-03 2.95
1280 1.98e-10 3.01 1.28e-07 3.01 1.72e-06 3.03 2.98e-04 2.85
2560 2.48e-11 3.00 1.59e-08 3.01 2.14e-07 3.02 1.14e-04 1.39
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TABLE 2.5 – L1-norm error and converge rate with three overlapping
meshes as function of the total number of nodes N (IO = 10%)

N CASE0 CASE1 CASE2 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

17 2.40e-03 - 2.24e-01 - 7.29e-01 - 1.52e-01 -
32 1.00e-03 1.31 1.81e-02 3.98 2.12e-01 1.95 7.31e-02 1.16
61 3.73e-04 1.58 1.60e-03 3.77 3.07e-02 2.99 6.10e-02 0.28

120 1.05e-04 1.88 6.78e-04 3.30 3.10e-03 3.40 6.14e-02 -0.01
237 2.28e-05 2.22 2.08e-05 3.09 3.11e-04 3.39 3.47e-02 0.84
472 3.99e-06 2.53 2.59e-06 3.02 3.64e-05 3.12 6.30e-03 2.47
941 5.99e-07 2.74 3.23e-07 3.01 4.44e-06 3.05 1.30e-03 2.25
1880 8.24e-08 2.87 4.03e-08 3.01 5.48e-07 3.02 1.38e-04 3.29

TABLE 2.6 – L1-norm error and converge rate with three overlapping
meshes as function of the total number of nodes N (IO = 50%)

N CASE0 CASE1 CASE2 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

17 2.40e-03 - 2.56e-01 - 7.77e-01 - 1.77e-01 -
32 1.10e-03 1.29 1.98e-02 4.05 2.19e-01 1.98 7.59e-02 1.39
61 3.75e-04 1.59 1.70e-03 3.77 3.17e-02 3.00 5.49e-02 0.50

120 1.04e-04 1.88 1.80e-04 3.36 3.10e-03 3.42 6.42e-02 -0.23
237 2.28e-05 2.22 2.20e-05 3.09 3.25e-04 3.34 4.24e-02 0.61
472 3.99e-06 2.53 2.67e-06 3.06 3.72e-05 3.14 9.70e-03 2.14
941 5.99e-07 2.74 3.39e-07 2.99 4.62e-06 3.03 6.70e-04 3.87
1880 8.23e-08 2.87 4.16e-08 3.03 5.61e-07 3.05 6.43e-04 0.05

TABLE 2.7 – L1-norm error and converge rate with three overlapping
meshes as function of the total number of nodes N (IO = 80%)

N CASE0 CASE1 CASE2 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

17 1.70e-03 - 2.30e-01 - 7.76e-01 - 2.32e-01 -
32 1.10e-03 0.75 2.14e-02 4.16 2.23e-01 1.90 7.63e-02 1.77
61 2.25e-04 2.38 1.70e-03 3.92 3.23e-02 3.04 5.50e-02 0.51

120 1.05e-04 1.13 1.88e-04 3.26 3.20e-03 3.42 7.02e-02 -0.36
237 2.28e-05 2.22 2.17e-05 3.18 3.24e-04 3.37 3.39e-02 1.07
472 4.00e-06 2.53 2.74e-06 3.00 3.79e-05 3.11 9.50e-03 1.85
941 5.99e-07 2.74 3.35e-07 3.05 4.62e-06 3.05 6.70e-04 3.84
1880 8.24e-08 2.87 4.26e-08 2.98 5.69e-07 3.02 2.78e-04 1.27
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FIGURE 2.3 – Comparisons of the L1-errors for ε = h (continuous
lines) and ε = 10−6 (dotted lines) for one overlapping zone (IO =

50%).
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FIGURE 2.4 – Comparisons of the L1-errors for ε = h (continuous
lines) and ε = 10−6 (dotted lines) for two overlapping zones (IO =

50%).
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reach a solution with a patch of several grids which can move, deform and overlap.
The presented algorithm is a reformulation in the case of moving chimera meshes of
the ADER finite volume scheme [108, 109, 40] originally presented by Dumbser et al.
[41]. The numerical scheme, defined as a predictor-corrector method, is composed of
two steps for the recovery of the numerical solution at time tn+1 from the previous
numerical solution at time tn.
At the base of any stage, there is a polynomial reconstruction matching the cell av-
erage of the solution. In this section a third-order CWENO polynomial is built as
explained in the previous section. Nevertheless, a priori, the order of the reconstruc-
tion can be general. Since the mesh evolves in time, if T is a (either global or local)
partition of the physical domain, any cell Ωj(t) ∈ T evolve as well in time with the
possibility to move (translation) and to change its length (deformation).

2.2.1 Local space-time Galerkin predictor

At this stage, the polynomial reconstruction of the solution at the discrete time tn

is known and it is denoted as w(x). Since the method needs a predictor solution for
computing the space-time fluxes, a local solution of (2.1) is solved in the space-time
cell Ωj(t)× [tn, tn+1] under the form of a space-time polynomial of degree 3 2. This
method is based on the discrete counterpart of the Cauchy-Kovalevskaya procedure
[110, 112, 12, 25, 55] . In particular, it consists in solving the hyperbolic equation
via a non linear finite volume element method over a specific set of nodes over the
space-time cell. This local solution represents the local evolution of the polynomial
reconstruction w(x). No neighbor information is required at this stage. The local in-
formation referring to any space-time cell is managed in the last stage of the method.

First, the governing equation (2.1) is written in a space-time reference system
defined by the coordinates ξ = (ξ , τ). It is denoted with x = (x, t) the coordinates
in the space-time cell. Let a Lagrangian basis {θl(ξ)}6

l=1 be defined by a Lagrangian
interpolation through a set of space-time nodes (ξl)

6
l=1 in the reference space-time

domain. For our purposes, and according to [40], the nodes are

(0, 0); (1/2, 0); (1, 0); (0, 1/2); (1, 1/2); (1/2, 1).

The reader is referred to the appendix section B.1 for the formal definition of the used
Lagrangian basis. The basis has the property to reproduce the Kronecker symbol if
any of its components is evaluated over a node as: θl(ξm) = δlm. Let qh be the local
predictor solution, it is defined

ql = ql(ξ , τ) = θl(ξ , τ)q̂l , (2.10)

with q̂l = q(ξl). In the above expression the Einstein notation for sum on repeated
indexes is used.
The map from the physical space-time coordinates x and the reference space-time
coordinates ξ is achieved through an isoparametric approach. Hence, the physical co-
ordinates are a function of the reference coordinates via the Lagrangian basis:

x = x(ξ , τ) = θl(ξ, τ)x̂l . (2.11)

2. A priori, the reconstruction can be computed with a generic order M. In that case, the CWENO
reconstruction of the solution at time tn is a polynomial of order M.
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As usual, x̂l = x(ξl). For the time variable t, the reference map is written as the
linear dilatation

t = t(τ) = tn + ∆t τ, (2.12)

where ∆t is the time step equal to tn+1 − tn. Through (2.10) and (2.12), the Jacobian
matrix of the map is determined:

J =
∂x
∂ξ

=

[
xξ xτ

0 ∆t

]
, (2.13)

whose inverse reads:

J−1 =
∂ξ

∂x
=

[
ξx ξt
0 1/∆t

]
. (2.14)

The PDE equation (2.1) rewritten with respect to the reference coordinates is:

∂τq τt + ∂ξq ξt + ∂ξq ξx = 0, (2.15)

which is equivalent to
∂τq = −∆tH(q), (2.16)

with H(q) = (ξt + ξx)∂ξq.
By considering any element of the Lagrangian basis, the weak formulation of (2.16)
expressed through (2.10) reads

〈θk, ∂τθl〉q̂l = −∆t〈θk, θl〉Ĥl , ∀k = 1, . . . , 6, (2.17)

with Ĥl = H(q̂l) and 〈·, ·〉 the L2-scalar product over the reference domain: 3

〈 f , g〉 =
ˆ 1

0

ˆ 1

0
f (ξ , τ)g(ξ , τ)dξ dτ, ∀ f , g Lebesgue measurable over (0, 1)2.

The algebraic counterpart of the weak form (2.17) is:

Kq̂ = −∆tMĤ , (2.18)

such that:

Klm = 〈θl , ∂τθm〉; Mlm = 〈θl , θm〉; [q̂]m = q̂m; [Ĥ]m = Ĥm. (2.19)

The algebraic system (2.18) has vector Ĥ on the right hand side implicitly defined
by the unknown vector q̂. For this reason, let q̂0 denote the degrees of freedom that
are known from the initial condition w(x) (for τ = 0, i.e., t = tn). Thus, q̂1 refers to
those degrees of freedom defined for τ > 0. With these definitions, we can split the
algebraic system (2.18) as[

K00 K01

K10 K11

] [
q̂0

q̂1

]
= −∆t

[
M00 M01

M10 M11

] [
Ĥ0

Ĥ1

]
. (2.20)

In the above algebraic system, only the second multi-row is of our interest, but the
deriving linear system is still nonlinear. It is linearized through a fixed point iteration
indexed though r as follows:

K11q̂1
r+1 = K10q̂0 − ∆tM10Ĥ0 − ∆tM11Ĥ1

r . (2.21)

3. In the next chapter a proper functional environment will be introduced for all the weak forms.
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For an adequate initial guess q̂1
0 for problem (2.21) , we refer to [59].

Since part of the chimera grid is moving, we have to take it into account. The
motion of the computational space fulfills the following ODE:

dx
dt

= V(x, t), (2.22)

with V(x, t) the local mesh velocity. When the mesh is moving independently of the
advective velocity a, the method is an ALE (Arbitrary Lagrangian-Eulerian) scheme.
According with the isoparametric approach defined by (2.11), the local velocity in
the physical space-time cell reads:

Vh = Vh(ξ , τ) = θl(ξ , τ)V̂l , (2.23)

with V̂l = V(ξl).
Through (2.23), it is possible to express the motion equation (2.22) in an algebraic sys-
tem after a weak formulation (as done for the hyperbolic equation). Consequently,
since the velocity V(x, t) also depends on the unknown positions of the space x, we
solve the linearized system through a fixed point iteration:

K11 x̂1
r+1 = K10 x̂0 + ∆tM00V̂0

+ ∆tM10V̂1
r . (2.24)

Equations (2.24) and (2.21) have to be solved together.

Here the first stage of the method finishes. In the sequel the most salient steps
are listed:

— Through (2.24), solve the mesh motion (2.22);

— Compute the Jacobian matrix (2.13) and its inverse (2.14);

— Update the terms in the definition of H(·);
— Finally, evolve the local solution through (2.21).

2.2.2 The mesh motion

Since the mesh motion equation (2.22) is solved through a fully local method, a
shared vertex xj by the cells Ωj and Ωj+1, both belonging to the same partition T ,
could have different (namely discontinuous) velocity even though it is not physically
true. For this reason a weighted average is considered in order to tackle this problem.
As suggested in [24], the unique mesh velocity V̄n

j of point xk at time tn is written as:

V̄n
k =

1
Nk

∑
Ωn

j ∈T
V̄n

k,j, with V̄n
k,j =

ˆ 1

0
θl(ξ

∗, τ)dτ V̂l,j, (2.25)

where Nk is the number cells, in the partition T , sharing the vertex xk, Ωn
j = Ωj(tn)

and ξ∗ is that specific reference spatial coordinate such that x(ξ∗, τ∗) = xν
k , with

ν = n if τ∗ = 0 and ν = n + 1 if τ∗ = 1. For a more sophisticated definition of the
unique velocity V̄n

k in (2.25) we refer to [41].
In general, the partition T of the domain is considered globally covering the domain,
even though the cells are allowed to move during the simulation. This means that a
continuous displacement field is ensured for the cells’ movement. When a chimera
grid is used, this could be no longer valid. As a matter of fact, there exists a set of
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FIGURE 2.5 – Overlapping space-time cell (remarked in light violet).
The last cell of T1 (in blue) overlaps the first cell in T2 (in red). The ve-
locity of the two meshes can be different due to the chimeric behavior

of the grid composition.

(partial) partitions Ti such that
⋃

i Ti = Ω and a discontinuous velocity for the cells
is possible. For instance, by thinking to the simplest possible configuration of two
partitions T1 and T2 overlapping around a certain point x̄, there will exist two cells
Ω1 ∈ T1 and Ω2 ∈ T2 such that Ω1 ∩Ω2 = [p, q] (thus x̄ ∈ [p, q]). The spatial position
occupied by p could have a velocity and a movement which are discontinuous due
to the chimera behavior of the grids even though that point is shared by two different
cells. In particular, Np = 1 in both T1 and T2 and consequently the velocity of the
point depends on the partition velocity. In Figure 2.5 this configuration is sketched.

2.2.3 Finite volume scheme over the space-time cell

The proposed numerical scheme is an ALE finite volume scheme. Let Cn
j =

Ωj(t)× [tn, tn+1] be the space-time control volume, describing the evolution of the
cell Ωj from times tn to tn+1. Geometrically, we identify the space-time control
volume as a quadrilateral with two parallel basis Ωn

j and Ωn+1
j whose end points,

namely the left vertices Xn
1,j and Xn+1

1,j and the right vertexes Xn
2,j and Xn+1

2,j , are con-
nected by straight lines (see Figure 2.5). Formally, the boundary ∂Cn

j of the control
space-time cell is defined as:

∂Cn
j = Ωn

j ∪Ωn+1
j ∪

⋃
Ωi∈N n

j

∂Cn
ji , (2.26)

with N n
j the set of the neighboring cells to Ωn

j . Since equation (2.1) has to be inte-
grated over the control volume Cn

j , in order to simplify the computation of the inte-
grals, a map from τ ∈ [0, 1] is defined for the straight lines connecting the vertexes
of the cell from time tn to tn+1. In particular, through the basis functions

β1(τ) = 1− τ; β2(τ) = τ, (2.27)

any point x̃ji on the straight line ∂Cn
ji can be described as the convex expansion:

x̃ji(τ) = β1(τ)Xn
ji + β2(τ)Xn+1

ji . (2.28)
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Via (2.28), it is possible to compute the length | ∂Cn
ji | of the lateral side ∂Cn

ji and its
one-unit outward normal vector nji:

| ∂Cn
ji |=

√
(∆t)2 + (∆Xn

ji)
2; nji = [±∆t,∓∆Xn

ji]
T , (2.29)

with ∆Xn
ji = Xn+1

ji − Xn
ji. The signs into the formal definition of the outward normal

nji depend on the position (namely right or left) of the side ∂Cn
ji .

Equation (2.1) can now be integrated over the control volume. First, the equation is
expressed in divergence form:

∇̃ · ũ = 0, (2.30)

with ∇̃ = [∂x, ∂t]T and ũ = [a u, u]T. The integration of the equation (2.30) over the
control volume ˆ

Cn
∇̃ · ũ dx dt = 0 (2.31)

can be rewritten as ˛
∂Cn

ũ · ñ dγ = 0, (2.32)

due to the Gauss divergence theorem. Using the boundary decomposition (2.26)
and since the unit normal vectors at the faces Ωn

j and Ωn+1
j are [0,−1] and [0, 1],

respectively, equation (2.32) defines the following scheme:

hn+1
j Un+1

j = hn
j Un

j − ∑
Ωi∈N n

j

ˆ 1

0
|∂Cn

ji |ũji · nji dτ. (2.33)

The term ũji · nji, evaluated on the particular ξ∗ such that x(ξ∗, τ) = x̃ji ∈ ∂Cji for any
τ ∈ [0, 1], represents the numerical flux. Let q− and q+ denote the predictor solutions
computed in the cells Ωj and Ωi, respectively. The numerical flux is approximated
using a Rusanov-type scheme:

ũji · nji =
1
2
(u+ + u−) · nji −

1
2

s(q+ − q−), (2.34)

where u± = [aq±, q±]T and s, deriving from the maximum eigenvalue of the ALE
Jacobian matrix reads:

s = ±∆t
(

1− ∆t
∆Xn

ji

)
. (2.35)

Remark 2.2.1. In this case the parameter s coincides with the flatten ALE Jacobian matrix,
we refer to all the paper in the bibliography devoted to the ADER method for its specific
definition in the multidimensional case.

As for the definition of the normal vector to the side ∂Cn
ji in (2.29), also for the

parameter s the sign is defined by the orientation of the line ∂Cn
ji . In Section B.2

of the appendix there are all the computations for deriving the constants involved
in the integration of the flux approximated via a Rusanov scheme. In [41] a more
sophisticated numerical approximation based on the Osher-Solomon scheme [84] is
provided.

An important issue is the integration of the numerical flux. As a matter of fact,
for a unique partition of the physical domain, the integration of (2.34) is computed
over the line ∂Cn

ji which is shared at the boundaries of both Ωj(t) and Ωi(t) for any
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FIGURE 2.6 – Comparison between non overlapping and overlapping
cells. The boundary ∂Cn

ji (dashed line), over which the Rusanov flux is
integrated, is at the boundaries of both space-time cell when there is
no overlapping (left picture) while it completely falls inside the neigh-

boring cell when the two cells overlap (right picture).

t between tn and tn+1. With a chimera grid, in case that the two cells Ωj(t) and
Ωi(t) overlap, the line ∂Cn

ji falls inside the cell Ωi(t) (see Figure 2.6). Consequently,
if the integral for the numerical flux can be preformed exactly once the Lagrangian
basis for describing the predictor solution is defined, the same integral in the case
of overlapping cells cannot be exactly performed. In this thesis a Gauss-quadrature
scheme is employed for this type of integration.

2.2.4 Cell management during the chimera meshes motion

The last part of the presentation of the CWENO-ADER method with a chimera
grid is devoted on the possibility, during the motion of some partitions, of either
creation or suppression of some cells. As already noticed in Remark 2.1.1, the over-
lapping area is confined only to one layer of any partition covering the physical spa-
tial domain. Consequently, when a mesh is moving, in order to fulfill this condition
and for not having degenerative cases (such as a cell globally bounded in another
one), during the motion some cells could appear (in order to not have void between
two different meshes) and some others could disappear. In Figure 2.7, all possible
configuration of overlapping cells are sketched.
Since the computation of the predictor solutions over any space-time cell only refers
to the specific cell (without involving the neighbor cells), this process does not affect
that part of the algorithm. On the other hand, when it is needed to compute the
integral of the Rusanov flux, it has to be understood which cells are involved in the
predictor solutions.
In case of suppression, the computation of the integral is the same one described
in the previous subsection. In particular, when the cell is suppressed, another cell
moved and completely covers it. Therefore, for the computation of the integral, the
predictor solution defined over the suppressing cell is used for solving the numerical
solution in its neighbor space-time cells. Since its cell average value is not necessary
at time tn+1, equation (2.33) is not solved in that cell.
On the contrary, when the meshes move by creating a void in the physical domain, a
new cell Ωb is created. The values of the predictor solution qb on the nodes at time tn

are computing evaluating the CWENO polynomial reconstruction of the closest cell
at those specific points. Successively, the CWENO-ADER approach is applied. The
finite volume stage is performed over born cell by treating it as an overlapping cell.
In the case of small overlapping that does not imply neither a suppression nor the
creation of a cell, the integral of flux (2.34) over the space-time edge Cn

ji is performed
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FIGURE 2.7 – The three possible configurations of overlapping cells
during the meshes motion. On the top there is a simple overlapping.
On the bottom left Ωi completely covers Ωj during the motion, con-
sequently Ωj will disappear at time tn+1. Finally, on the bottom right,
due to the void created by the motions of Ωi and Ωj, a new cell Ωb

(dashed line) is created.

over specific quadrature points x̄ ∈ ∂Cn
ji . A generic point over the space-time edge

is parametrized in the (ξ, τ) reference system through the unique couple (ξ∗, τ̄) to
be found. Since any point in the space-time cell C̄n

ji is represented as projection over

a Lagrangian basis (i.e. x(ξ , τ) = ∑6
l=1 θl(ξ , τ)x̂l), the specific ξ∗ ∈ (0, 1) mapping

x̄ ∈ Cn
ji is found by inverting x̄(ξ∗, τ̄) = ∑6

l=1 θl(ξ
∗, τ̄)x̂l .

2.2.5 Numerical results

In this subsection the presented method is numerically validated. Two test cases
are considered: CASE1 and CASE3 described in Section 2.1.3. Two overlapping mesh
Tout and Tin covers the domain. Let h be the length of a cell in Tin, thus the length of a
cell in Tout is set equal to 4h. In particular, the outside mesh Tout covers the entire do-
main Ω = [−1, 1] while the inside mesh Tin covers the sub-interval [−0.875,−0.75] .
The outside mesh is steady, hence it does not move or deform during the simula-
tion, while the inside mesh can either translate or deform. This means that there
is a hole in the outside which is covered by the inside mesh. Consequently, during
the entire simulation, there are two zones of superposition moving accordingly to
the movement of the inside mesh. For both test cases, the final time is T = 2. Two
configurations are simulated:

— Rigid translation. The inside mesh moves with respect to the velocity V(x, t) =
χ{t≤1}(t)− 0.3χ{t>1.1}(t);

— Translation and deformation. The inside mesh moves according to the velocity
law given by V(x, t) = exχ{t≤1}(t)− 0.2χ{t>1.5}(t).

Figure 2.8 depicts three time instances for CASE1 with a rigid translation configu-
ration. Similarly, in Figure 2.9, the plot for three time instances are reported for a
translation and deformation movement of the inside mesh. Table 2.8 resumes the
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TABLE 2.8 – L1-norm error and convergence rate in the translation
and translation and deformation configurations as function of the total

number N of nodes.

Rigid translation Translation and deformation

N CASE1 CASE3 N CASE1 CASE3

L1-err L1-rate L1-err L1-rate L1-err L1-rate L1-err L1-rate

71 1.96e-04 - 1.00e-1 - 62 2.11e-04 - 9.68e-2 -
142 2.38e-05 3.04 1.59e-1 -0.68 125 2.52e-05 3.03 1.57e-1 -0.69
278 3.23e-06 2.97 1.71e-2 3.32 247 3.87e-06 2.75 1.62e-2 3.33
553 4.61e-07 2.83 1.10e-3 3.95 493 6.29e-07 2.63 1.10e-3 3.91
1103 9.00e-08 2.37 8.17e-5 3.81 983 1.42e-07 2.16 7.88e-5 3.80
2203 2.37e-8 1.93 7.01e-6 3.55 1966 3.95e-08 1.84 6.80e-6 3.53

L1-norm errors between the numerical solution and the exact solution at final time T
and rate of convergence for the two listed configurations. We notice that, after a cer-
tain threshold of error, around 1e-8, the rate of convergence decreases. This is likely
due to the presence of the two overlapping zones. The method seems to perform
well also in the case of a large space derivative.

2.3 Approximation of the first derivative over an overlapping
stencil

Let Sj =
⋃j+1

i=j−1 Ωi be a stencil of three cells Ωi = [xi−1/2, xi+1/2], with center
xi (i = j− 1, j, j + 1), covering a part of a domain in R. The stencil is overlapping
if the right extreme point xi+1/2 of any cell does not coincide with the left extreme
point x(i+1)+1/2, as shown in Figure 2.10. The measure of a single cell is |Ωj| =
hj = xj+1/2 − xj−1/2. Moreover let δj+1/2 = xj+1 − xj and δj−1/2 = xj − xj−1/2 be
the distances between two consecutive centers. When δj+1/2 = hj+1/2 and δj−1/2 =
hj−1/2 the stencil is composed of contiguous cells and it is no longer overlapping.

The objective is to approximate the first derivative of a function u : Sj → R at
points x = xj±1/2 with second-order accuracy through a linear expansion of the
values of u at the nodes. Let uj be the function u(xj) evaluated at the center xj. The
minimal required regularity on the function is u ∈ C3(Sj). By Taylor’s expansion
with remainder in Lagrange form, it holds

uj+1 = u(xj+1/2 + δj+1/2)

= u(xj+1/2) + δj+1/2u′(xj+1/2) +
1
2

δ2
j+1/2u′′(xj+1/2) +

1
6

δ3
j+1/2u′′′(ξr

j+1/2);
(2.36)

uj = u
(

xj+1/2 −
hj

2

)
= u(xj+1/2)−

1
2

hju′(xj+1/2) +
1
8

h2
j u′′(xj+1/2)−

1
48

h3
j u′′′(ξ l

j+1/2);
(2.37)
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(A) t = 0

(B) t = 1

(C) t = T = 2

FIGURE 2.8 – Three time instances for CASE1 with a rigid translation
movement of the inside mesh.
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(A) t = 0

(B) t = 1

(C) t = T = 2

FIGURE 2.9 – Three time instances for CASE3 with translation and
deformation movement of the inside mesh.
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FIGURE 2.10 – An overlapping stencil. The blue squared points rep-
resent the extremes cell Ωj, the circular points are the nodes.

uj−1 = u(xj+1/2 − (hj + δj−1/2))

= u(xj+1/2)− (hj + δj−1/2)u′(xj+1/2) +
1
2
(hj + δj−1/2)

2u′′(xj+1/2)

+
1
6
(hj + δj−1/2)

3u′′′(ξ ll
j+1/2);

(2.38)

with ξr
j+1/2 ∈ [xj+1/2, xj+1], ξ l

j+1/2 ∈ [xj, xj+1/2] and ξ ll
j+1/2 ∈ [xj−1, xj+1/2]. Let

{αi,j+1/2}3
i=1 be the set of the unknown expansion coefficients. The linear combi-

nation of equations (2.36), (2.37) and (2.38) for approximating u′(xj+1/2) reads

α1,j+1/2uj+1 + α2,j+1/2uj + α3,j+1/2uj−1 = (α1,j+1/2 + α2,j+1/2 + α3,j+1/2)u(xj+1/2)

+

[
α1,j+1/2δj+1/2 −

1
2

α2,j+1/2hj − α3,j+1/2(hj + δj−1/2)

]
u′(xj+1/2)

+
1
2

[
α1,j+1/2δ2

j+1/2 +
1
4

α2,j+1/2h2
j + α3,j+1/2(hj + δj−1/2)

2
]

u′′(xj+1/2)

+
1
6

α1,j+1/2δ3
j+1/2u′′′(ξr

j+1/2)−
1
48

α2,j+1/2h3
j u′′′(ξ l

j+1/2)

− 1
6

α3,j+1/2(hj + δj−1/2)
3u′′′(ξ ll

j+1/2).
(2.39)

Consequently, the following constraints are imposed:
α1,j+1/2 + α2,j+1/2 + α3,j+1/2 = 0
α1,j+1/2δj+1/2 − 1

2 α2,j+1/2hj − α3,j+1/2(hj + δj−1/2) = 1
α1,j+1/2δ2

j+1/2 +
1
4 α2,j+1/2h2

j + α3,j+1/2(hj + δj−1/2)
2 = 0

, (2.40)

whose solution is
α1,j+1/2 =

δj−1/2+1.5hj/2
δ2

j+1/2+δj+1/2δj−1/2+1.5δj+1/2hj+0.5δj−1/2hj+0.5h2
j

α2,j+1/2 =
δj+1/2−δj−1/2−hj

δj+1/2δj−1/2+0.5δj+1/2hj+0.5δj−1/2hj+0.25h2
j

α3,j+1/2 =
−δj+1/2+0.5hj

δj+1/2δj−1/2+0.5δj+1/2hj+δ2
j−1/2+1.5δj−1/2hj+0.5h2

j

. (2.41)

This allows to write that

u′(xj+1/2) = α1,j+1/2uj+1 + α2,j+1/2uj + α3,j+1/2uj−1 +O(h2
j ). (2.42)
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Similarly, is is possible to approximate the derivative u′(xj−1/2). At the left extreme
of Ωj, by Taylor expansion with Lagrange remainder, it holds

uj+1 = u(xj−1/2 + (hj + δj+1/2))

= u(xj−1/2) + (hj + δj+1/2)u′(xj−1/2) +
1
2
(hj + δj+1/2)

2u′′(xj−1/2)

+
1
6
(hj + δj+1/2)

3u′′′(ξrr
j−1/2);

(2.43)

uj = u
(

xj−1/2 +
hj

2

)
= u(xj−1/2) +

1
2

hju′(xj−1/2) +
1
8

h2
j u′′(xj−1/2)−

1
48

h3
j u′′′(ξr

j−1/2);
(2.44)

uj−1 = u(xj+1/2 − δj−1/2)

= u(xj−1/2)− δj−1/2u′(xj−1/2) +
1
2

δ2
j−1/2u′′(xj−1/2) +

1
6

δ3
j−1/2u′′′(ξ l

j−1/2);
(2.45)

with ξrr
j−1/2 ∈ [xj−1/2, xj+1], ξr

j−1/2 ∈ [xj−1/2, xj] and ξ l
j−1/2 ∈ [xj−1, xj−1/2]. A linear

combination of terms in (2.43), (2.44) and (2.44) for approximating u′(xj−1/2) reads:

α1,j−1/2uj+1 + α2,j−1/2uj + α3,j−1/2uj−1 = (α1,j−1/2 + α2,j−1/2 + α3,j−1/2)u(xj−1/2)

+

[
α1,j−1/2(hj + δj+1/2) +

1
2

α2,j−1/2hj − α3,j−1/2δj−1/2

]
u′(xj−1/2)

+
1
2

[
α1,j−1/2(hj + δj+1/2)

2 +
1
4

α2,j−1/2h2
j + α3,j−1/2δ2

j−1/2

]
u′′(xj−1/2)

+
1
6

α1,j−1/2(hj + δj+1/2)
3u′′′(ξrr

j−1/2) +
1

48
α2,j−1/2h3

j u′′′(ξr
j−1/2)

− 1
6

α3,j−1/2δ3
j−1/2u′′′(ξ l

j+1/2),
(2.46)

with {αi,j−1/2}3
i=1 real coefficients to be found. The following system of constraints

arises 
α1,j−1/2 + α2,j−1/2 + α3,j−1/2 = 0
α1,j−1/2(hj + δj+1/2) +

1
2 α2,j−1/2hj − α3,j−1/2δj−1/2 = 1

α1,j−1/2(hj + δj+1/2)
2 + 1

4 α2,j−1/2h2
j + α3,j−1/2δ2

j−1/2 = 0
, (2.47)

whose solution is:
α1,j−/2 =

δj−1/2−0.5hj/2
δ2

j+1/2+δj+1/2δj−1/2+1.5δj+1/2hj+0.5δj−1/2hj+0.5h2
j

α2,j−1/2 =
δj+1/2−δj−1/2+hj

δj+1/2δj−1/2+0.5δj+1/2hj+0.5δj−1/2hj+0.25h2
j

α3,j−1/2 = − δj+1/2+1.5hj

δj+1/2δj−1/2+0.5δj+1/2hj+δ2
j−1/2+1.5δj−1/2hj+0.5h2

j

. (2.48)

Finally, it holds

u′(xj−1/2) = α1,j−1/2uj+1 + α2,j−1/2uj + α3,j−1/2uj−1 +O(h2
j ). (2.49)
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2.4 The Poisson equation

Let Ω ⊂ R be the computational domain of the Poisson equation:

∂x(−ν∂xu) = f in Ω, (2.50)

completed with some compatible boundary conditions and with ν > 0 the diffusion
parameter. Problem (2.50) is solved via finite volumes on a chimera grid. The com-
putational domain is discretized through a patch of n partitions Ti, with i = 1, . . . , n.
By integrating equation (2.50) over a cell Ωj and by divergence theorem, it follows

− ν∂xu(xj−1/2) + ν∂xu(xj+1/2) =

ˆ
Ωj

f (x) dx. (2.51)

Since the scheme is cell-centered, it is needed to approximate the derivatives at the
extremes of the cell in (2.51). By using approximations in (2.42) and (2.49), equation
(2.51) reads

−ν(α1,j+1/2 − α1,j−1/2)uj+1 − ν(α2,j+1/2 − α2,j−1/2)uj

− ν(α3,j+1/2 − α3,j−1/2)uj−1 =

ˆ
Ωj

f (x) dx.
(2.52)

This yields to the linear system whose j-th equation looks for the j-th unknown uj,
for any j = 1, . . . , N.

2.4.1 Numerical results

Let us consider the domain Ω = [−1, 1] for the two test cases CASE4 and CASE5
of problem (2.50) whose exact solutions are

uex(x) = sin(πx) and uex(x) = sin2(πx) tanh(x− 0.3),

respectively. Both test cases are completed with homogeneous Dirichlet boundary
conditions with diffusive term ν = 1. The computational domain is covered with
three uniform overlapping meshes.They superpose around points x̄1 = −0.4 and
x̄2 = 0.4. Let h be the space step of the first and the third grid (covering the begin-
ning and the end of the domain), thus h/3 is the space step of the second mesh in
the middle. The overlapping indexes are 0.6 and 0.5, respectively.
The order of convergence of the L2-error between the numerical and exact solutions
is analyzed and reported in Table 2.9. A second-order accuracy is achieved. In Fig-
ures 2.11 and 2.12 there are the plots of the numerical solutions of CASE4 and CASE5,
respectively. The different markers define the different overlapping meshes.
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TABLE 2.9 – L2-errors and order of convergence for CASE4 and
CASE5 as function of the total number N of cells.

N CASE4 CASE5

L2-err L2-rate L2-err L2-rate

61 4.71e-4 - 5.98e-4 -
120 1.03e-4 2.25 1.43e-4 2.12
237 2.42e-5 2.13 3.64e-5 2.01
472 5.83e-6 2.07 9.32e-6 1.98
883 1.63e-6 2.03 2.69e-6 1.98
1763 4.05e-7 2.01 6.78e-7 1.99

FIGURE 2.11 – Numerical solution of CASE4. The different markers
define the different meshes.
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FIGURE 2.12 – Numerical solution of CASE5. The different markers
define the different meshes.
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Chapter 3

The Advection-Diffusion problem

As already noted in the previous chapter, the Arbitrary high order DERivatives
(ADER) method provides an ideal setting for pursuing the purpose of solving a PDE
over a moving and deforming overset grid. In [41, 109, 108, 29], the authors present
a method to recover an accurate solution for hyperbolic PDEs with an arbitrary or-
der of accuracy on a single mesh block. More recently, in [28] the authors present
an ADER Discontinuous Galerkin scheme with a posteriori subcell finite volume lim-
iter on fixed and moving grids such as space-time adaptive Cartesian AMR meshes.
The numerical scheme treats the temporal variable indistinctly with respect to the
spatial variables by defining the solution on a space-time slab. This discretization
approach, therefore, allows to re-consider the problem of Chimera grids transmis-
sion conditions: instead of time-dependent spatial transmission conditions between
relatively moving grid blocks, we define interpolation polynomials on arbitrarily in-
tersecting space-time cells at the block boundaries.
In the ADER scheme a local space-time weak solution of the problem from the
generic time t to t + ∆t is computed in every single space-time cell. This solution
is defined as the predictor. The prediction step is local and hence embarrassingly
parallel, because the solution is calculated independently of the information of the
neighboring cells. Then, in the subsequent stage of correction, the computation of a
space-time numerical flux between neighboring cells provides the appropriate sta-
bilization of the integration scheme. We extend this prediction-correction method
to Advection-Diffusion PDEs on overset grids and propose a space-time flux among
the space-time cells that provides improved stabilization and precision as it takes
into account both the advective and diffusive nature of the equation.
Part of this chapter is in [18].

Let Ω(t) ⊂ Rd be the time-dependent computational domain and let T be a posi-
tive real. In the following we consider the parabolic problem: find u : Ω(t)× [0, T]→
Rδ such that

∂tu +∇ · F(u,∇u) = f , x ∈ Ω(t), t ∈ [0, T], (3.1)

closed with appropriate initial and boundary conditions. Problem (3.1) is a rather
general representation of an advection-diffusion model. In (3.1) the diffusive-convective
vector F(u,∇u), eventually nonlinear, and the force term f (x, t) are defined. In
particular, the problem is linear when the diffusive-convective term is written as
F(u,∇u) = Au − ν∇u, where A : Ω × [0, T] → Rδ×δ is the advective field and
ν : Ω× [0, T]→ R+ is the diffusion parameter.
With respect to the pure advective PDEs of Chapter 2, in this chapter a non-vanishing
diffusion parameter is considered. For this reason, the solution of problem (3.1) is
continuous and enough regular to beP2-interpolated. In particular, due to the Lapla-
cian operator, the solution never presents shock waves or discontinuities.
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FIGURE 3.1 – Example of Chimera grid configuration. In black there
is the background mesh and in pink the foreground mesh.

3.1 The overset grid

An overset grid or Chimera mesh is a set of mesh blocks covering the compu-
tational domain. Each block may overlap other block(s) in some particular sub-
region(s) said overlapping zone(s). Once the multiple mesh patches are generated,
they are collated in order to generate an appropriate topology [75]. Consequently,
an overlapping zone between two neighboring blocks is defined. For the sake of
simplicity with no loss of generality, the whole method is explained by considering
a two blocks overset grid (i.e., the background and the foreground meshes). For
multiple-block meshes (e.g. T1, . . . , TN), a hierarchy of meshes from the background
to the foreground is defined (e.g. T1 < · · · < TN) 1. Successively the presented
algorithm for setting the overset grid is performed from one mesh to the union of
all other meshes towards the background (e.g. Ti for

⋃i−1
j=1 Tj for any i = 2, . . . , N).

Figure 3.1 shows an overset grid; in black there is the background mesh and in pink
the foreground mesh. In particular, the foreground mesh can move and deform. The
overlapping zone is necessary for the communication and data transfer from one
mesh to the other.
In this thesis, the cell of any block mesh is considered quadrilateral. In particular,
when all the cells are squared, the mesh is uniform. When the cells are either squared
or rectangular and the edges are oriented as the Cartesian axes, the mesh is said to
be Cartesian.

3.1.1 The automatic definition of the stencil at the transmission condition

Let Tk = {Ωk
i }

Nk
i=1 be the partition composed of Nk cells referring to the k-th block

mesh 2, moreover, let Si be the stencil centered over the cell Ωi. Thus, stencil Si
is the set collecting the indexes of neighboring cells to Ωi. By abuse of language,
sometimes we will refer to the physical set Ωi ∪

⋃
j∈Si

Ωj as the stencil.
It is possible to distinguish two classes of cells with respect to their proximity to the
overlapping interface. The definition of the stencil depends on the class.
If cell Ωi is not at the boundary of the overlapping zone (Figure 3.2a), the stencil Si is
composed of all the cells Ωj sharing at least one vertex with Ωi. Thus, if Ωi belongs

1. In this case, symbol > defines the position in the hierarchy among meshes.
2. In order to simplify the notation, we will omit the superscript k to the cell Ωk

i by writing Ωi
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to the partition T1, all cells Ωj, with j ∈ Si, also belong to T1.
If the cell Ωi of partition Tk is at the boundary of the interface, it is no longer possible
to use the criterion of the cells sharing at least a vertex. In fact, there will be at least
one edge eil not shared by any other cell of the same partition (see right edge of cell
Ω16 in Figure 3.2b). For these cells, we aim in automatically finding the other cells of
partition Tj (j 6= k) belonging to the stencil. Let the extremes of the edge be indicated
as v1 and v2 and its middle point with v3, respectively. Point c? is the center of mass
of generic cell Ω?. For our numerical tests, Algorithm 3.1 is adopted through the
two steps:

1. look for the nodes of cells of the other partition Tj minimizing the Euclidean
distance with respect to points vµ, µ = 1, 2, 3, (line 5, see Figure 3.3a);

2. compute the symmetric points ṽµ of center ck
i with respect to points vµ for

µ = 1, 2, 3 (line 6), then look for the cells of partition Tj whose centers minimize
the Euclidean distance with the three symmetric points (line 7, see Figure 3.3b).

For the edges shared by other cells in the same partition, the cells of the stencil will
be those ones sharing at least one vertex (as cells of indexes 13, 14, 17, 19 and 20 in
Figure 3.2b).
The routine presented in this section will be run whenever the foreground mesh
configuration as well as the hole change.
Algorithm 3.1 could not define a compact stencil in the case of widely different mesh
spacing. In this case, more than three points vµ can be considered for lines 5 and
6. Moreover a weighted symmetry (possibly led by the different spacing) can be
performed at line 6.

Algorithm 3.1 Compute stencil for cells at the boundary of the overlapping zone.

Input: Ωk
i , ek

il , Tj, S k
i ; . j 6= k, i.e. Tj is the other partition with respect to Tk

1: Initialize v1 and v2 as the two vertexes of edge ek
il ;

2: v3 ← (v1 + v2)/2; . Middle point of edge ek
il

3: Zj ← ∅; . Temporary set of indexes of partition Tj
4: for µ = 1, 2, 3 do
5: Zj ← Zj ∪ {n = 1, . . . , Nj : ‖vµ − cj

n‖ ≤ ‖vµ − cj
m‖ ∀m = 1, . . . , Nj};

6: ṽ← 2vµ − ck
i ; . Symmetric point of cellcenter ck

i of Ωk
i with respect to vµ

7: Zj ← Zj ∪ {n = 1, . . . , Nj : ‖ṽ− cj
n‖ ≤ ‖ṽ− cj

m‖ ∀m = 1, . . . , Nj};
8: S k

i ← Si ∪ Zj;
9: return S k

i

3.2 The numerical method

Once the stencil has been defined, the numerical method can both numerically
solve problem (3.1) and eventually evolve the overset grid. In this section the scheme
is presented. The method consists in a FEM-predictor FVM-corrector scheme sta-
bilised with a Local Lax-Friedrichs approach whose stabilization coefficient is ex-
plained in the following section.

3.2.1 Local polynomial reconstruction

The first step of the numerical method is to recover a reconstruction of the solu-
tion over any point of the actual cell Ωi. Since the scheme is cell-centered, at time tn,
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(A) A stencil of cells in the same par-
tition. Continuous line for the stencil
S13 = {7, 8, 9, 12, 14, 17, 18, 19}.

1
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7

13 14

16 17

19
20

(B) A stencil of cells not belonging to the
same partition. Continuous line for the
stencil S16 = {1, 4, 7, 13, 14, 17, 19, 20}.

FIGURE 3.2 – Two possible stencils: on the left the stencil is in the
same partition; on the right the stencil is composed of cells not be-

longing to the same partition.
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(A) First step: by identifying the vertexes
v1 and v2 and the middle point v3 of the
edge on the boundary cell Ω16 (blue full
dots), look for the nodes of cells in the
partition T1 (black empty dots) minimiz-
ing the Euclidean distance with respect

to those points.

1
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◦
•v2

•
v3
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v1

•ṽ2◦

•ṽ3 ◦

•ṽ1
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(B) Second step: by identifying the sym-
metric points ṽµ, µ = 1, 2, 3, (red full
dots) of the node of the cell Ω16 (blue
empty dot) with respect to the vertexes
and the middle point of the not shared
edge, look for the nodes of cells in the
partition T1 minimizing the Euclidean

distance to those points.

FIGURE 3.3 – The two steps for the research of cells in the partition T1
for the cell Ω16 ∈ T2.
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we would like to extend (at least locally) the solution to the whole cell by exploiting
the information in the cells of the stencil referring to Ωn

i . In order to explain the re-
construction, let us consider a generic regular 3 function φ : E → R by identifying
the stencil E = Ωn

i ∪
⋃

j∈Si
Ωn

j . We remark that, due to the overlapping zone, the
cell composing the subdomain E does not necessary fulfill the non-overlapping con-
dition, i.e., it could be verified that there is a couple of indexes k, l ∈ {i} ∪ Si such
that Ωn

k ∩Ωn
l 6= ∅. Let us suppose to know the value of function φ over the center

of mass (xk, yk) = xk, with k ∈ {i} ∪ Si, of any Ωk composing E. We would like to
have a polynomial function Πiφ(x, y) for any (x, y) ∈ E by using the knowledge of
the function φ only on the centers of mass. Let us define φk = φ(xk, yk). For any
(x, y) ∈ E it is always possible to write the Taylor’s polynomial truncated to the
quadratic terms with respect to φi:

φ(x, y) = φi + (∂xφ)i (x− xi) + (∂yφ)i (y− yi) + (∂2
xyφ)i (x− xi)(y− yi)

+
1
2
(∂2

xxφ)i (x− xi)
2 +

1
2
(∂2

yyφ)i (y− yi)
2 +O(H3),

(3.2)

with H = max{|x− xi|, |y− yi|}. In the expansion (3.2) all the derivatives of φi are
unknown. Moreover, by renaming those derivatives as

p1 = (∂xφ)i p2 = (∂yφ)i p3 = (∂2
xyφ)i p4 = (∂2

xxφ)i p5 = (∂2
yyφ)i, (3.3)

the Taylor’s expansion (3.2) can be seen as a linear combination of the components
of the basis {1, x − xi, y − yi, (x − xi)(y − yi), 1

2 (x − xi)
2, 1

2 (y − yi)
2} which defines

the polynomial space function P2 of quadratic polynomials centered in xi; thus the
polynomial interpolation function Πiφ reads:

Πiφ(x, y) = φi + p1(x− xi) + p2(y− yi) + p3(x− xi)(y− yi)

+
1
2

p4(x− xi)
2 +

1
2

p5(y− yi)
2,

(3.4)

with the polynomial coefficients pl , l = 1, . . . , 5, to be sought. By imposing as con-
straint that the polynomial Πiφ(x, y) exactly coincides with the function φ on the
nodes, i.e. Πiφ(xj, yj) = φj for any j ∈ Si, the system in the unknown polynomial
coefficients arises:hx

ik hy
ik hx

ikhy
ik

1
2 (h

x
ik)

2 1
2 (h

y
ik)

2

...
...

...
...

...
hx

ij hy
ij hx

ijh
y
ij

1
2 (h

x
ij)

2 1
2 (h

y
ij)

2


p1

...
p5

 =

δφik
...

δφij

 , (3.5)

with hx
ij = xj − xi, hy

ij = yj − yi and δφij = φj − φi, for j ∈ Si. The algebraic system
(3.5) has to be solved in least-square sense if |Si| > 5. Moreover, if the chosen poly-
nomial basis is not reduced, namely if the Taylor’s expansion (3.2) is arrested to the
bi-linear or linear terms, the stencil has to contain at least 5 cells in order to ensure
a solution for (3.5). The proposed P2-interpolation, with the second-order accurate
scheme, fulfills the condition for the accuracy in the interpolation for overlapping
zones whose depth do degrades as the characteristic length h of the chimera mesh
(i.e., do = O(h)) [30].
This method allows to locally reconstruct all over the stencil a given function. If the
function is defined over the computational domain Ω ⊂ R2 and it is (at least locally)

3. We require at least φ ∈ C2(E).
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C2, then the reconstruction is locally computed over any stencil and the ensured or-
der of convergence is 3. On the contrary, if the solution presents propagating shock
waves or discontinuities, this interpolation is no longer adequate because of well-
known Gibbs’ phenomenon, for which spurious oscillation are produced near the
discontinuity. For those cases, other interpolation could be adopted, such as the cen-
tral weighted ENO for hyperbolic equations for moving meshes in [41] or in Chapter
2.
In the sequel, the local polynomial reconstruction Πiun will be referred as wn

i .

3.2.2 Local space-time Galerkin predictor

Let be the time interval [0, T] subdivided in N subintervals [tn, tn+1], with n =
0, . . . , N − 1; thus for a generic time-dependent variable g(t), we define gn for gn =
g(tn). In particular, the domain Ωn and the solution un at time tn are considered
the actual spatial configuration and the actual time, respectively. Let Cn

i = Ωi(t)×
[tn, tn+1] be the physical space-time cell whose lower and upper bases represent
the evolution of cell Ωi(t) from tn to tn+1. First, the governing equation (3.1) is
rewritten with respect to a space-time reference system identified by the indepen-
dent variables ξ ≡ (ξ , η, τ) in the unit cube Ĉ = [0, 1]3. Let Ξ = (ξ , η) be the
reference spatial vector. Inspired by [59], the governing equation is discretized us-
ing an efficient nodal formulation of space-time nodes given by a tensor product
of Gauss-Legendre quadrature points along space and time directions. This choice
defines an L2-orthogonal Lagrange basis used for the definition of the Galerkin so-
lution. For our purposes, the single direction nodes over the unit interval [0, 1] are
{(5−

√
15)/10; 1/2; (5 +

√
15)/10}. Consequently, over a space-time cell there will

be 27 Gauss-Legendre nodes ξ̂m and 27 Lagrange polynomial θl : Ĉ → R such that
θl(ξ̂m) = δlm and

´
Ĉ θlθm dξ = δlm‖θl‖2

L2(Ĉ), with δlm the Kronecker symbol. Let

m : {1, 2, 3}3 → {1, . . . , 27} be a discrete map from a single direction index to the
global three dimensional index defined as

m(i, j, k) = i + 3(j− 1) + 9(k− 1), (3.6)

where indexes i, j, k ∈ {1, 2, 3} lead the discretization along ξ , η, τ, respectively. By
denoting the Gauss-Legendre nodes with ξ̂i, η̂j and τ̂k along ξ, η and τ, respectively,
and with θ

ξ
i (ξ), θ

η
j (η) and θτ

k (τ) the Lagrange polynomial for ξ-, η- and τ-directions,

respectively, the three dimensional Gauss-Legendre node ξ̂l and its associated La-
grange polynomial θl(ξ) read

ξ̂l = (ξ̂i, η̂j, τ̂k); θl(ξ, η, τ) = θ
ξ
i (ξ)θ

η
j (η)θ

τ
k (τ), (3.7)

with index l = m(i, j, k).
We want to solve the following problem: find q : Cn

i → Rδ such that{
∂tq +∇ · F(q,∇q) = f in Cn

i

q|t=tn = wn
i on Ωn

i
, (3.8)

which is problem (3.1) restricted to the space-time cell Cn
i and redefined as a bound-

ary value problem. We denote with qh as the discretized solution of (3.8). In order
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FIGURE 3.4 – Representation of the mapMi from the reference space-
time cell Ĉ to the physical space-time cell Cn

i .

to refer problem (3.8) to the reference domain Ĉ, we use a mapMi : Ĉ → Cn
i

Mi :


x = x(ξ , η, τ)

y = y(ξ , η, τ)

t = tn + ∆t τ

, (3.9)

such that any space-time point x ≡ (x, y, t) in the physical space-time cell Cn
i is a

function x = x(ξ), with ξ ∈ Ĉ (see Figure 3.4). Time t is considered as a linear
function of τ. From map (3.9), we define the Jacobian matrix J as

J =
dx
dξ

=

xξ xη xτ

yξ yη yτ

0 0 ∆t

 , (3.10)

whose inverse is

J−1 =
dξ

dx
=

ξx ξy ξt
ηx ηy ηt
0 0 1/∆t

 =

[
J−1
s Ξt
0 1/∆t

]
. (3.11)

In the above notation, we call J−1
s the restriction to the spatial coordinates of the

inverse of the Jacobian matrix

J−1
s =

[
ξx ξy
ηx ηy

]
. (3.12)

and Ξt = [ξt, ηt]T the derivative of the spatial reference vector with respect to time.
Through (3.12), the problem in the reference domain reads

∂τq + ∆tF ∗(∇̂q) + ∆tJ−T
s ∇̂ ·F ∗∗(q, ∇̂q) = ∆t f , (3.13)

where
∂tq =

∂τq
∆t

+F ∗(∇̂q); F ∗(∇̂q) = ∇̂q Ξt;

F ∗∗(q, ∇̂q) = F(q, J−T
s ∇̂q) = (F ∗∗ξ ,F ∗∗η ); ∇̂ =

[
∂ξ

∂η

]
.
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The hat differential operators refer to reference space variables ξ and η in the refer-
ence space-time cell Ĉ. By abuse of notation and for sake of simplicity, we call all
functions involved in both equations (3.8) and (3.13) with the same symbol (e.g., q
and f ) even though they take inputs in the physical space-time cell Cn

i and in the
reference space-time cell Ĉ, respectively. In order to weaken equation (3.13), the fol-
lowing functional space is defined:

Θ =

{
v ∈ L2(Ĉ) : (0, 1)2 3 (ξ , η) 7→ v(ξ , η, τ) ∈ H1((0, 1))

}
being the subspace of finite energy function space L2(Ĉ) of functions in Sobolev
space H1((0, 1)) at any fixed reference space couple (ξ, τ). Moreover, the following
notation is introduced:

〈 f , g〉 =
ˆ
Ĉ

f g dξ; [ f , g]τ =

ˆ 1

0

ˆ 1

0
f (ξ , η, τ)g(ξ , η, τ) dΞ. ∀ f ∈ Θ, ∀g ∈ ΘD.

with D = 1, . . . , δ. For our purposes, functional space Θ is identified as a test space
and the following trial functional spaces is defined:

Q =

{
v ∈ H1(Ĉ) : v(ξ , η, 0) = wn

k ∧ J−1
[
∇̂v
∂τv

]
∈ L2(Ĉ; R3)

}
,

where wk is the k-th component of the interpolated polynomial wn. By multiplying
left and right side of (3.13) by a generic test function θ ∈ Θ and by integrating over
the reference space-time cell Ĉ, the problem reads: find q ∈ Qδ such that

[θ, q]1− 〈∂τθ, q〉+∆t 〈θ,F ∗(∇̂q)〉+∆t 〈θ, J−T
s ∇̂ ·F ∗∗(q, ∇̂q)〉 = ∆t 〈θ, f 〉+ [θ, wn]0

(3.14)
∀θ ∈ Θ, with [θ, wn]0 =

´ 1
0

´ 1
0 θ(ξ , η, 0)wn(ξ, η) dΞ. For the Galerkin solution qh and

the convective-diffusive terms F ∗ and F ∗∗ in the reference domain, a Lagrangian
polynomial expansion is performed, i.e., by adopting the Einstein’s notation, qh =

θl q̂l and F ?
h = θlF̂ ?

l , with ? = ∗, ∗∗, where q̂l = q(ξ̂l) and F̂ ?
l = F ?|ξ̂l

. Considering
as the test function the k-th Lagrangian polynomial θk and by using the Lagrange
expansion, we rewrite equation (3.14) as:

([θk, θl ]1 − 〈∂τθk, θl〉)q̂l + ∆t〈θk, θl〉F̂
∗
l + ∆t〈θk, (ξx∂ξ + ηx∂η)θl〉F̂

∗∗
ξ,l

+ ∆t〈θk, (ξy∂ξ + ηy∂η)θl〉F̂
∗∗
η,l = ∆t〈θk, f 〉+ [θk, wn]0,

(3.15)

for any k = 1, . . . , 27.
In the left hand side of (3.15), we remark that the arising matrices have a sparse
pattern due to the L2-orthogonality of the Lagrangian basis (e.g. the mass ma-
trix by 〈θk, θl〉 is diagonal). Matrices involving the derivatives of the map Mi, i.e.
〈θk, (ξx∂ξ + ηx∂η)θl〉 and 〈θk, (ξy∂ξ + ηy∂η)θl〉, cannot be explicitly computed before
finding the map itself. On the contrary, the components which do not involve the
map, namely ([θk, θl ]1 − 〈∂τθk, θl〉) and 〈θk, θl〉, can be pre-computed once for all be-
fore solving problem (3.15). In appendix Section C.1 it is described how to compute
the matrices of (3.15).
In equation (3.15) the convective-diffusive terms F ∗ and F ∗∗ are implicitly defined
by the solution qh. For this reason a fixed point problem is solved: let r be the index
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of the fixed point iteration, therefore we solve qr+1
h

([θk, θl ]1 − 〈∂τθk, θl〉)q̂r+1
l + ∆t〈θk, θl〉F̂

∗,r
l + ∆t〈θk, (ξx∂ξ + ηx∂η)θl〉F̂

∗∗,r
ξ,l

+ ∆t〈θk, (ξy∂ξ + ηy∂η)θl〉F̂
∗∗,r
η,l = ∆t〈θk, f 〉+ [θk, wn]0,

(3.16)

where terms of fixed point index r are computed by using the previous solution
qr

h. In our numerical tests, the fixed point iteration stops when the L2(Ĉ)-norm of
residual of equation (3.16) is less than a fixed tolerance.

3.2.3 Recovery of the map and foreground mesh motion

In the previous subsection, the local mapMi : Ĉ → Cn
i has been involved for the

computation of the local weak predictor solution. Moreover, the foreground mesh
of coordinates X is moving accordingly to the following motion equation:

dX
dt

= V , (3.17)

where V = V(x, t; u) is the mesh velocity, eventually dependent on the solution.
Equation (3.17) is closed with a Cauchy condition X(0) = X0, which is the initial
spatial configuration. Through equation (3.17), we recover the mapMi for any cell
at least on the foreground mesh. The motion equation (3.17) is solved through an
isoparametric or Lagrangian approach by locally referring it to the same reference sys-
tem as done for the local equation (3.8). This means that the spatial coordinates X
are considered as function of the reference coordinates, i.e. X(ξ), with ξ ∈ Ĉ. Fi-
nally, the solution of the referred motion equation is approximated via a Lagrangian
expansion by employing the same Lagrangian basis {θk}27

k=1 built on the tensor com-
bination of three Gauss-Legendre nodes in (0, 1) along any direction as previously
introduced: Xh = θlX̂ l , with X̂ l = X(ξ̂l). Thus, from time tn to tn+1, the motion
equation (3.17) is locally re-written as

dX
dt

= V in Cn
i , (3.18)

and closed by strongly imposing that the solution Xn at current time is equal to X(tn)
found at the previous physical space-time cell Cn−1

i . The local motion equation (3.18)
is weaken in a similar way to the local equation (3.8) and in algebraic form it reads

([θk, θl ]1 − 〈∂τθk, θl〉)X̂ l = ∆t〈θk, θl〉V̂ l + [θk, θl ]0X̂n
l , (3.19)

with V̂ l = V |ξ̂l
. The last term [θk, θl ]0X̂n

l takes into account the initial given configu-
ration of the space at time tn.
When the mesh is neither moving nor deforming, as for cells in the background,
the mesh velocity is thus coincident with zero, i.e. V ≡ 0. In that case, the map is
known a priori and it consists in the re-scaling of the reference space-time cell Ĉ to
the physical space-time cell Cn

i :{
x = x(ξ) = xi−1/2 + hx

i ξ

y = y(η) = yi−1/2 + hy
i η

, (3.20)
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where coordinates xi−1/2 and yi−1/2 and xi+1/2 and yi+1/2 define the extremes along
x- and y-direction of the physical space-time cell

Cn
i ≡ [xi−1/2, xi+1/2]× [yi−1/2, yi+1/2]× [tn, tn+1];

and hx
i and hy

i are the length along x and y of the cell, respectively, i.e. hx
i = xi+1/2 −

xi−1/2 and hy
i = yi+1/2 − yi−1/2.

Since the mesh motion equation (3.17) is essentially solved via a sort of Discontinu-
ous Galerkin (DG) approach, possible numerical (and non physical) discontinuities
could arise. As a matter of fact, for a given vertex X̄n+1

k shared by a set of spatial
cells {Ωn+1

i }i∈Zn+1
k

at time tn+1, there could be as many different values of the ver-

tex, namely {X̄n+1
k,i }i∈Zn+1

k
, for any map Mi referring to the cell Cn

i to which Ωn+1
i

belongs. The set Zn+1
k collects the index(es) of the cells sharing the vertex X̄n+1

k . The
cardinality Nk of set {Ωn+1

i }i∈Zn+1
k

, coinciding with the cardinality of the indexes set

Zn+1
k , depends on the position of the vertex X̄n+1

k on the foreground mesh: it is either
1 or 2 if the vertex is on the boundary of the mesh, otherwise it is 4. For this reason
we consider a weighted average value for the shared vertex in order to tackle the
possible arising discontinuities. As suggested in [24], we first consider a weighted
velocity V̄ n+1

k corresponding to the vertex X̄n+1
k

V̄ n+1
k =

1
Nk

∑
i∈Zn+1

k

V̄ n+1
k,i , with V̄ n+1

k,i =

ˆ 1

0
θl(ξ

∗, η∗, τ) dτV̂ l,i, (3.21)

where coordinates (ξ∗, η∗) depend on the position of the coordinate X̄n+1
k in the cell

Ωn+1
i ; it can assume four values: (0, 0), (1, 0), (1, 1) and (0, 1). Once equation (3.19)

is solved, the just found coordinates {X̂ l}27
l=1 are used for computing the velocity

components V̂ l,i and, thus, the weighted velocities V̄ n+1
k in (3.21). Finally, the coor-

dinates X̄n+1
k at time tn+1 is

X̄n+1
k = X̄n

k + ∆t V̄ n+1
k . (3.22)

We refer the reader to [41] for another definition of the weighted vertex velocities
V̄ n+1

k in (3.21) where the Voronoi neighborhood parameters of any vertex are ex-
ploited.
In Algorithm 3.2 we resume the salient stages of the prediction step.

Algorithm 3.2 Prediction step

1: Compute the foreground mesh motion (3.22) from the motion equation (3.17)
and through the weighted velocity (3.21);

2: for i = 1, . . . , N do
3: Find the mapMi for the space-time cell Cn

i ;
4: Compute the Jacobian matrix J associated toMi;
5: Compute J−1 and take the submatrix J−1

s to the spatial coordinates defined
in (3.12);

6: Update the convective-diffusive terms F ∗ and F ∗∗ in the reference domain;
7: Evolve the local predictor solution through (3.15);
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3.2.4 Correction stage: the finite volume scheme over the space-time cell

Once the local predictor solution qh is computed in each space-time cells Cn
i , we

can perform the correction stage. First, we rewrite the convective-diffusive equation
(3.1) in divergence form. Let ∇x,t = [∇, ∂t]T be the space-time differential operator
and let U = [F(u,∇uu), u]T be the space-time solution, thus problem (3.1) can be
rewritten as

∇x,t ·U = f in Ω(t)× [0, T]. (3.23)

We want to find a finite volume solution for the above equation, where the finite
volume is the space-time cell Cn

i , whose boundary reads

∂Cn
i = Ωn

i ∪Ωn+1
i ∪

4⋃
j=1

Γn
ij, (3.24)

where the boundaries Γn
ij, j = 1, . . . , 4, are the space-time boundaries of Cn

i linking

any edge of Ωn
i at time tn to any edge of Ωn+1

i at time tn+1. By integrating equation
(3.23) over Cn

i and by applying the divergence theorem to the left side, we obtain
ˆ

∂Cn
i

U · nx,t dΓ =

ˆ
Cn

i

f dC , (3.25)

with nx,t being the normal unit vector to the boundary ∂Cn
i of the cell. Let Un

i be the
spatial average of the solution u of (3.1) over the spatial cell Ωn

i and located on its
center, i.e.,

Un
i =

1
|Ωn

i |

ˆ
Ωn

i

u(x, y, tn) dx dy, (3.26)

where |Ωn
i | is the measure of the spatial cell Ωn

i . Though (3.24) and (3.26), equation
(3.25) explicitly is

− |Ωn
i |Un

i + |Ωn+1
i |Un+1

i +
4

∑
j=1

ˆ
Γn

ij

U · nx,t dΓ =

ˆ
Cn

i

f dC , (3.27)

where the unknown is the average solution Un+1
i at time tn+1, while the last term of

the left hand side is the space-time flux along the space-time sides
⋃4

j=1 Γn
ij. Scheme

(3.27) is the Finite Volume scheme; we remark that it is still exact. In order to solve
(3.27), we need to approximate the integral function of the space-time flux. Among
the several methods proposed in the literature (such as in [41, 38, 39, 109, 59]), we
here present a Local Lax-Friedrichs (LLF) approach:

[U · nx,t]Γn
ij
≈ Φ(q+

j , q−j ) =
1
2
(U+

j + U−j ) · nx,t −
s
2
(q+

j − q−j ), (3.28)

where U+
j = U(q+

j ) and U−j = U(q−j ) are the space-time solution of (3.23) com-
puted by solutions q+

j and q−j , which represent the local predictor solutions outside
and inside the cell, respectively, with respect to the space-time side Γn

ij. The term
s is the stabilization coefficient. Equation (3.27) with the flux approximation (3.28)
closes the correction stage of the ADER method. At the end of this stage, a solution
un+1

i is found over any cell Ωn+1
i . Since the predictor solution over space-time cells

Cn+1
i needs to be evaluated over the Gauss nodes, a second order local polynomial

interpolation is performed as explained in Section 3.2.1.
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For the computation of the integrals along the space-time manifolds Γn
ij, we still

use the previously computed map Mi. As a matter of fact, for a generic function
g : Cn

i → R it holds:
ˆ

Γn
ij

g(x) dΓ =

ˆ
Γ̂j

g(x(ξ))|Cof(J)n̂j| dΓ̂,

where Γ̂j is the j-th lateral side of the reference cubic domain Ĉ of unit outer normal
n̂j, Γn

ij =Mi(Γ̂j) and Cof(J) is the cofactor matrix of the Jacobian tensor J of the map
(see Section C.1 for the formal definition of the cofactor matrix of the Jacobian).

Concerning the time step ∆t, due to the combination of the weak predictor solu-
tion by problem (3.14) and the consequent plug of this solution in the finite volume
scheme (3.27) trough the LLF flux (3.28), a classical stability analysis is not evident.
We assumed the time step to be

∆t = CFL
h

max{supΩ×[0,T] |ax|, supΩ×[0,T] |ay|}
, (3.29)

where h is the smallest characteristic length among all cells (both of background and
foreground meshes) along the whole temporal window [0, T], i.e., h = mini,n hn

i ,
with hn

i the characteristic length of spatial cell Ωn
i at discrete time tn. Coefficient CFL

in (3.29) is the Courant-Friedrichs-Lewy number. In this thesis, the CFL coefficient
is experimentally sought by conducting an empirical analysis in Section 3.4.2.

3.2.5 Dynamics of the overlapping zone

During the simulation, the foreground mesh moves and, consequently, the back-
ground mesh changes its configuration in the zone of the overlapping as well as in
the hole. Let Ωi(t) be a background cell in a neighborhood of the overlapping. From
times tn to tn+1, there are three possibilities:

1. Cell Ωi(t) is present at time tn and it disappears at time tn+1 because the hole
completely covers it;

2. Cell Ωi(t) is not present at time tn but it appears at time tn+1 because the hole
gets away;

3. The overlapping zone does not drastically change its configuration with re-
spect to cell Ωi(t), thus the cell is present at time tn and it still continues to be
present at time tn+1.

The third case is trivial. For the first case, the predictor solution is executed in order
to compute the fluxes of the neighboring cells even though the correction stage is
not performed. For the second case, information un

i is missing and it is necessary
for computing un+1

i . For this reason, let N1 the total number of background cells
(those ones in the hole included). Consequently i ≤ N1. By recalling that the order
of foreground cells starts from N1 + 1, we look for an index j > N1 such that

xj = arg min
k>N1
‖xi − xk‖, (3.30)

where xµ is the center of mass of cell Ωn
µ, for µ = i, j, k. Then, a local polynomial

interpolation wn
j on the stencil Sj centered on cell Ωn

j of the foreground mesh is
computed as previously explained in Section 3.2.1. In particular, since Ωn

j is chosen
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to be as the closest foreground cell to background cell Ωn
i through (3.30), a third order

polynomial approximation of solution un on xi is ensured by imposing un
i = wn

j (xi).
Finally the ADER prediction-correction is performed as usual.

3.3 The stabilization of the scheme

For the definition of the coefficient s in (3.28), there are different approaches lead-
ing to different definitions. Here we analyse two stabilization coefficients, i.e. the
advective-diffusive term sAD and the just advective term sA. For the sake of clarity
and to lighten the notation, we consider a two-dimensional scalar solution in this
section (i.e., d = 2 and δ = 1). In Section C.2 there is a sketch of proof for the formal
CFL value for the 1D case in the case of a diffusive-dominant dynamics.

3.3.1 The local advective-diffusive stabilization term

For the definition of the coefficient sAD in (3.28), we study a relaxed hyperbolic
form of the parabolic equation (3.23). Let us consider the following relaxation by
Cattaneo (we refer to [111] and its references for further details): let 0 < ε � 1 be a
relaxed time and consider variables v and w in Ω× [0, T] such that

∂tv =
1
ε
(∂xu− v); ∂tw =

1
ε
(∂yu− w). (3.31)

Relations (3.31) define the relaxations in the sense that ∂xu → v and ∂yu → w in
the limit of a vanishing ε. Since the flux has to be computed along the manifold Γn

ij
in the space-time continuum, let us consider solution u and all its first derivatives
as stationary solutions with respect to a pseudo-time t ∈ R+. Thus, let u(t; x, y, t) =
[u, v, w]T be the formal definition of the relaxed hyperbolic system with respect to
pseudo-time t. It holds ∂tu = 0. The conservative form problem (3.23) in quasi-
linear form is

∂tu+ ∂x(Au) + ∂y(Bu) + ∂t(Cu) = f in R+ ×Ω(t)× [0, T], (3.32)

where A, B and C are 3× 3 matrices (eventually involving the solution u among their
components if the original problem is nonlinear) and the force term

f = [ f ,−v/ε,−w/ε]T.

In particular, A and B always depend on the relaxation time ε and they are defined
by the convection-diffusion term F (u,∇u) and C is always the identity matrix if
the Cattaneo relaxation (3.31) is employed. In order to study the differential opera-
tor in (3.32), let us consider a vanishing force term, i.e. f ≡ 0. The presence of the
pseudo-time t in (3.32) helps in treating the real time variable t as any other spatial
variable x and y. When the force term in (3.32) is null, the problem is hyperbolic if
the spectrum of matrix A = nx A + nyB + ntC is real for any choice of real values
nx, ny and nt. If the hyperbolicity is ensured, the relaxed hyperbolic system has a
planar wave solution propagating in the space-time continuum Ω× [0, T]. In partic-
ular, if nx,t = [nx, ny, nt]T is a particular direction in the space-time continuum, the
eigenvalues ofA define the speeds of propagation of the solution along the principal
directions defined by the eigenvectors of A. For this reason, in the perspective of an
upwind stabilization, the local stabilization term sAD in (3.28) is equal to the maxi-
mum speed of propagation of the wave, as it happens for the LLF flux approximation
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for a generic hyperbolic problem of a propagating wave in the space continuum.
Here we detail the previous analysis for the convection-diffusion problem with the
convective field a = [ax, ay]T and the diffusive term ν depending on space x and
time t and eventually the solution u itself if a non-linearity leads the dynamics of the
equation. In this case, the matrices of the quasi-linear problem (3.32) read

A =

 ax −ν 0
−1/ε 0 0

0 0 0

 , B =

 ay 0 −ν
0 0 0
−1/ε 0 0

 , C =

1 0 0
0 1 0
0 0 1

 .

Consequently, the spectrum ρ(A) of matrix A is

ρ(A) =
{

nt;
1
2

[
σ±

√(
a2

x +
4ν

ε

)
n2

x + 2axaynxny +

(
a2

y +
4ν

ε

)
n2

y

]}
, (3.33)

where σ = (a · n + 2nt)/
√

n2
x + n2

y and n = [nx, ny]T. Parameter σ is normalized

with respect to the spatial directions in order to make spectrum ρ(A) dimensionally
consistent. The following proposition finally defines the advective-diffusive stabi-
lization parameter.

Proposition 3.3.1. For the advection-diffusion problem (3.1) with the convective field a =
[ax, ay]T and the diffusive term ν, the advection-diffusion stabilization coefficient sAD is
chosen to be the absolute value of the maximum of spectrum (3.33), i.e.,

sAD = max |ρ(A)| = 1
2

∣∣∣∣∣σ +

√(
a2

x +
4ν

ε

)
n2

x + 2axaynxny +

(
a2

y +
4ν

ε

)
n2

y

∣∣∣∣∣. (3.34)

Since the spectrum ρ(A) ⊂ R for any nonnegative ε, it yields the relaxed system
(3.32) is always hyperbolic for any nonnegative ε.

3.3.2 The choice of the relaxation time

For the definition of the advective-diffusive stabilization term sAD, we consid-
ered the relaxed hyperbolic system (3.32) deriving from the parabolic problem (3.23)
through a relaxation time ε. If we were to solve the relaxed problem instead of the
original one, the approximate solution would differ from the exact solution of two
errors that are added together: the numerical error (typical of the scheme) and a
relaxation error. For a linear problem, these errors have been investigated by Mon-
tecinos and Toro in [111]. The error |uhip − u| between the hyperbolized solution
uhip and the original solution u isO(ε) [83]. Thus, if uhip,h is a numerical approxima-
tion of the exact relaxation solution uhip, the error |uhip,h − uhip| is O(h

p
0), with p the

order of the method (i.e., p = 2 in this thesis), and h0 the maximum characteristic
length of cells Ωi(t)’s. However, the goal is to choose a relaxation time ε such that
the relaxation error is always dominated by or, at least, comparable to the numerical
error, i.e. O(ε) / O(hp

0). The following theoretical result can help in fulfilling our
task.

Proposition 3.3.2. The solution u of the original parabolic problem (3.23) is approximated
by a relaxed solution uhip solving the relaxed problem (3.32) with accuracy p for all relaxation
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time ε and characteristic length cell h0 satisfying

O(ε)
O(hp

0)
= O

(
ε

hp
0

)
= Cp

ε

hp
0
= O(1), (3.35)

with

Cp =
1− 2−

1
2

2p− 1
2 − 1

.

The following proof of Proposition 3.3.2 was originally proposed in Section 2.4.1
of [80].

Proof. Since it holds uhip − u = O(ε) and uhip,h − uhip = O(hp), for a generic mesh
whose characteristic length h, we obtain

uhip,h − u = uhip − u +O(hp), (3.36)

which allows to relate the formulation error and the numerical error as

O(hr) = O(ε) +O(hp), (3.37)

where r is the order of accuracy by which the numerical scheme approximates the
solution of the original AD problem. Note that the numerical error can be expressed
as

O(hr) = κhr, (3.38)

with κ depending on the problem to be solved but not on the mesh spacing h.
Let uhip,hk be the hyperbolic numerical solution referring to a mesh spacing hk. There-
fore, from (3.37) and (3.38), on two successive meshes characterized by cell lengths
hk and hk+1, we obtain (

hk

hk+1

)r

=
O(ε) +O(hp

k )

O(ε) +O(hp
k+1)

. (3.39)

After some manipulations, it holds(
hk

hk+1

)r

=

(
hk

hk+1

)p

α, (3.40)

with

α =

O(ε)
O(hp

k )
+O(1)

O(ε)
O(hp

k+1)
+O(1)

. (3.41)

With no loss of generality, let us assume hk = 2hk+1. Taking the logarithm in (3.40),
we obtain

r = p +
log α

log 2
. (3.42)

Let us now assume that given an expected order of accuracy p, we consider that
the numerical scheme yields this accuracy if r ≥ p − 1/2. Therefore, the order of
accuracy for the AD problem attains the one of the hyperbolic problem when

− 1
2
<

log α

log 2
. (3.43)
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Because of the monotonicity of the logarithm, the above expression is equivalent to

1√
2
< α, (3.44)

which yields
1√
2

(
2p O(ε)
O(hp

k )
+O(1)

)
<
O(ε)

hp
k

+O(1), (3.45)

or
O(ε)
O(hp

k )
< O(1)

(
1− 2−1/2

2p−1/2 − 1

)
. (3.46)

By hypothesis,
O(ε)
O(hp

k )
= O

(
ε

hp
k

)
= C

ε

hp
k

, (3.47)

with C to be determined. Moreover, it holds

C
ε

hp
k
= O(1), (3.48)

or
Cε2n̄p = O(1), (3.49)

noting that it is possible to set h = 2−n̄, where n̄ = log2(1/h0). From (3.46), for all
n̄ ≥ 0 we set

Cε ≤ 1
2n̄p

(
1− 2−1/2

2p−1/2 − 1

)
≤ 1− 2−1/2

2p−1/2 − 1
. (3.50)

For convenience we take C ≤ Cmax/ε, as to maintain order O(1). Thus, we have

Cmax := ε
1− 2−1/2

2p−1/2 − 1
. (3.51)

This way, a sufficiency condition to maintain accuracy solving the AD problem for a
given mesh of size h is given by

ε

hp Cp = O(1), (3.52)

where Cp := Cmax/ε.

As a consequence, there is the following corollary.

Corollary 3.3.1. For a given mesh whose characteristic length is h0 and a numerical method
of order p for solving the hyperbolized problem (3.32) derived by the original parabolic prob-
lem (3.23), the optimal relaxation time εp is

εp =
O(1)hp

0
Cp

. (3.53)

We remark that, if a relaxation time ε is chosen to be less than or equal to εp,
the numerical error dominates the relaxation error; on the contrary, if a relaxation
time ε is chosen to be greater than the optimal value, the relaxation error dominates
the numerical error. For this reason, in our simulation relaxation time ε = ε2/2 is
chosen.
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3.3.3 The local advective stabilization term

In order to recover a stabilization term sA by only considering the first order
operator involved in the whole differential operator of the original problem, we can
treat the equation to stabilize as a pure hyperbolic (namely just advective) problem.
For this reason, the advective stabilization term sA coincides with the maximum
eigenvalue of the ALE Jacobian matrix in a spatial normal direction by excluding
the diffusive component which acts on the diffusion from the advective-diffusive
term F(u,∇u) [41]. This matrix reads

AV
ñ =

√
n2

x + n2
y

[
∂F
∂u

ñ− V · ñ I
]

, (3.54)

where I is the identity tensor whose dimension is that one of the image space of the
solution u and the unit vector ñ is the normalized projection of the space-time unit
vector nx,t along the spatial directions given by vector [nx, ny]T, i.e.

ñ =
[nx, ny]T√

n2
x + n2

y

.

By recalling that the recovered mapMi is defined over Ĉ with image in C i, the space-
time manifold Γn

ij, j = 1, . . . , 4, of the space-time cell Ci can be described by only
two of the three reference space-time variables (ξ , η, τ); i.e., by either couple (ξ, τ),
with η = η̄, or couple (η, τ), with ξ = ξ̄; with ξ̄ and η̄ alternatively equal to 0 or 1,
depending on the specific j-th space-time manifold Γn

ij. Let χ be the free variable (e.g.
χ = ξ) and κ̄ be the constrained variable (e.g. κ̄ = η̄) for the specific manifold Γn

ij.
Therefore, for a specific point x̃ over Γn

ij it is possible to distinguish two directional
vectors provided by the mapMi

rχ =

xχ

yχ

0


κ̄

and rτ =

xτ

yτ

∆t


κ̄

.

The definitions of the directional vectors rχ and rτ allow to explicitly write the phys-
ical normal vector nx,t on x̃ as

nx,t =
rχ ∧ rτ

|rχ ∧ rτ|

∣∣∣∣∣
κ̄

=
[∆t yχ, −∆t xχ, dχτ]T√
∆t2 y2

χ + ∆t2 x2
χ + d2

χτ

∣∣∣∣∣
κ̄

,

with dχτ = xχyτ − xτyχ. From now on we will omit the constraint variable κ̄. It is
now possible to write the unit vector ñ along the spatial directions and the velocity
of the point as

ñ =
[yχ,−xχ]T√

y2
χ + x2

χ

and V =
dx̃
dt

=
[xτ , yτ]T

∆t
.

Consequently it holds

V · ñ =
−dχτ

∆t
√

y2
χ + x2

χ

=
−nt√

n2
x + n2

y

. (3.55)
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In the case of a linear problem the advective stabilization term reads

sA = |axnx + ayny + nt|. (3.56)

The next proposition, through (3.55), allows to connect the advective-diffusive pa-
rameter sAD with the advective parameter sA in the limit of a vanishing diffusion
parameter ν.

Proposition 3.3.3. For linear problem (3.1), let the diffusion parameter ν go to zero, there-
fore the following limit holds

lim
ν→0

sAD =
1
2
|σ + axnx + ayny| = |axnx + ayny + nt| = sA. (3.57)

Proposition 3.3.3 confirms that, in the limit of small diffusion in the dynamics of
linear problem (3.1), the two stabilization techniques coincide.

3.4 Numerical results

In this section we are going to present some numerical test cases in order to anal-
yse the method.
Table 3.1 synthetically sums up the test cases that will be used for the different anal-
yses. In particular, test1 and test2 (in lowercase letters) are the 1D tests and TEST1
and TEST2 (in capital letters) are the 2D test cases.
In the 1D tests, the foreground mesh is put in the middle between other two meshes
composing the background mesh, and it deforms according to the deformation laws
specified in the last row of Table 3.1. In the following, for test1 we are not presenting
a figure but only the rate of convergence. In Figure 3.5 three instants for test2 simula-
tion are showed; in particular, the red circle markers define the nodes of the moving
foreground mesh which is in the middle between the other two meshes (in the back-
ground) whose nodes are marked by blue dots and x-symbols. The background
meshes are always uniform while the foreground mesh is allowed to be displaced
and deformed. The solution of test2 is flat towards the boundaries of the compu-
tational domain and develops a moving front affected by a large spatial derivative;
for this reason, the foreground mesh is set in order to follow the front. Finally we
remark that, if h is the characteristic length of the cells in the background mesh, at
the initial time t = 0 the foreground mesh is uniform with a characteristic length
equal to h/2 in test1 and h/4 for test2.
In TEST1, the foreground mesh is subjected to a deformation and rotation around
its center of mass. We remark that in this case that the deformation velocity de-
pends on the solution; in TEST2, the hyperbolic tangent in the exact solution de-
scribes a composed Gaussian bell whose maximum is originally located in the po-
sition x = (−1, 0) and, after a time T = π, it computes a counterclockwise half
rotation up to position x = (1, 0) along the circumference of unit radius and cen-
tered in the origin of the axes. Due to the particular dynamics of the solution, we
set a foreground mesh following the movement of the Gaussian bell. At the initial
time, the foreground and background meshes in both 2D cases consist of squared
cells whose sides have a length equal to h.
For all numerical tests, the time step ∆t is set accordingly to (3.29) with CFL coeffi-
cient equal to 0.4. The reason of this value will be better explained in Section 3.4.2
where an empirical stability analysis is conducted.



3.4. Numerical results 57

Without reporting numerical evidences, we checked the scheme is free-stream pre-
serving, i.e. it exactly solves a constant but nonzero solution.

3.4.1 Order of convergence

In this section we have a double goal. On one hand we want to numerically
prove that the presented method is second order when an advective-diffusive LLF
stabilization sAD is employed. On the other hand, we want to compare this stabi-
lization term with the local advective stabilization flux sA. The study of the second
order convergence is conducted on all test cases of Table 3.1. Finally, on the two
mentioned 2D test cases the comparison of the performances for the flux approxi-
mations is carried out.
For quantifying the convergence rate, we considered the L∞- and L2-norms of the
mismatch between the exact solution and the numerical solution at final time t = T.
The errors are defined and approximated as

L∞-err = ‖u− uex‖L∞(Ω) = ess sup
x∈Ω
|u(x, T)− uex(x, T)|

≈ eN
L∞ = max

k=1,...,N
|uM

k − uex(xk, T)|;
(3.58)

L2-err = ‖u− uex‖L2(Ω) =

√ˆ
Ω

(
u(x, T)− uex(x, T)

)2
dΩ

≈ eN
L2 [u− uex] =

√√√√ |Ω|∑N
k=1

(
uM

k − uex(xk, T)
)2

N
,

(3.59)

and

|H1|-err = |u− uex|H1(Ω) =

√√√√ d

∑
α=1

ˆ
Ω

(
∂xα u(x, T)− ∂xα uex(x, T)

)2
dΩ

≈

√√√√ d

∑
α=1

(
eN

L2 [∂xα u− ∂xα uex]
)2

,

(3.60)

respectively, where N ≈ |Ω|h−1/d is the number of cells such that any part of the of
the domain is covered by one and only one cell at time T (with h the characteristic
length of cells and d = dim(Ω)) and M is the maximum natural such that T =
M∆t. Approximation (3.59) is valid only in the case of cells having approximately
or exactly the same spacing. The error in H1-seminorm (3.60) gives a control on the
convergence of the gradient of the recovered numerical solution. The convergence
rate reads

Lp-rate = d
log (eN1

Lp /eN2
Lp )

log(N2/N1)
, for p = 2, ∞, (3.61)

for two different partition settings whose number of cells are N1 and N2, respec-
tively, with N1 < N2. The mesh refinement is performed by reducing the spacing
(kept constant for any cell) and by preserving a layer of 4 cells both in background
and foreground for the overlapping zone.
Table 3.2 sums up the convergence analysis for 1D test cases. In the last two columns
there are the rates of convergence of the errors for both L∞ and L2 errors. From the
analysis, the second order of the method is confirmed.
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FIGURE 3.5 – Three time instants for the 1D test case test2. The cir-
cle markers define the nodes of the moving foreground mesh. The
remaining dot and x markers are the nodes of the two background

meshes.
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TABLE 3.2 – Convergence analysis for 1D test cases test1 and test2.

T h L∞-err L2-err L∞-rate L2-rate

te
st

1

0.25

2.00e-2 1.2740e-3 1.3903e-3 0 0
1.00e-2 2.5042e-4 2.9250e-4 2.37 2.79
5.00e-3 5.6957e-5 6.6934e-5 2.15 2.14
2.50e-3 1.3675e-5 1.6068e-5 2.06 2.06

te
st

2

0.5

1.00e-2 9.2733e-4 6.3960e-4 0 0
5.00e-3 1.1948e-4 1.0081e-4 2.88 2.60
2.50e-3 2.1898e-5 1.6359e-5 2.49 2.67
1.25e-3 5.6504e-6 2.8547e-6 1.96 2.44

TABLE 3.3 – Convergence analysis for 2D test cases TEST1 and TEST2.
Column labeled with h reports the smallest characteristic length

among all cells.

T h L∞-err L2-err L∞-rate L2-rate

AD A AD A AD A AD A

3.00e-1 1.9012e-2 2.1887e-2 4.6211e-3 9.1724e-3 0 0 0 0
1.50e-1 4.3829e-3 5.8280e-3 1.0854e-3 2.4464e-3 2.28 2.06 2.25 2.05
7.50e-2 9.5837e-4 1.2096e-3 2.1323e-4 4.8789e-4 2.25 2.32 2.41 2.38TE

ST
1

1

3.75e-2 3.0646e-4 2.7571e-4 2.9265e-5 5.5269e-5 1.95 2.16 2.65 3.18
3.00e-1 6.5375e-2 6.5375e-2 1.0682e-2 1.0682e-2 0 0 0 0
2.25e-1 3.1934e-2 3.1598e-2 5.5980e-3 1.0043e-2 2.66 2.70 2.40 0.23
1.50e-1 1.1276e-2 1.1276e-2 2.0116e-3 2.0116e-3 2.71 2.70 2.66 4.18
1.13e-1 5.2093e-3 8.8807e-3 9.3905e-4 2.2073e-3 2.78 0.86 2.74 -0.33TE

ST
2

π

7.50e-2 2.4154e-3 3.6814e-3 3.9534e-4 8.6362e-4 1.94 2.22 2.19 2.37

In Table 3.3 we report the L∞- and L2-errors with their respective rate of convergence
with respect to a local advective-diffusive (AD, white cells) and advective (A, grey
cells) stabilization. We first remark that, for both cases, the errors relative to AD
stabilization are slightly smaller with respect to the same errors with an A stabiliza-
tion. The rate of convergence of the errors for an AD stabilization is at least 2. On
the other hand, even though a second order of accuracy is also reached by employ-
ing an A stabilization, the convergence rate shows an irregular trend (especially for
TEST2). For this reason we can state that an AD flux approximation allows to reach
a more precise solution with a monotone trend for the rate of convergence with re-
spect to the same solution with an A flux stabilization. Similar analysis follows from
the convergence errors in H1-seminorm reported in Table 3.4.

3.4.2 Empirical analysis of stability condition

As already mentioned at the end of Section 3.2.4, the presence of a weak solu-
tion, found in the prediction step of the presented method and successively plugged
into the flux of the finite volume scheme in the correction stage, makes a classical
stability analysis not straightforward to be made. For this reason, we performed an
empirical stability analysis by assuming that the right time step ∆t allowing a stable
computation is defined as in (3.29).
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TABLE 3.4 – Convergence analysis for 2D test cases TEST1 and TEST2
in H1-seminorm.

T h |H1|-err |H1|-rate

AD A AD A

3.00e-1 3.3739e-2 5.0851e-2 0 0
1.50e-1 7.4019e-3 1.4170e-2 2.36 1.99
7.50e-2 1.5996e-3 3.0617e-3 2.26 2.27TE

ST
1

1

3.75e-2 3.9104e-4 4.5886e-4 2.06 2.77
3.00e-1 1.2623e-1 1.2624e-1 0 0
2.25e-1 6.7239e-2 8.1671e-2 2.34 1.70
1.50e-1 2.5715e-2 2.5715e-2 2.50 2.92
1.13e-1 1.2408e-2 1.7499e-2 2.62 1.38TE

ST
2

π

7.50e-2 6.3809e-3 8.5549e-3 1.87 1.81

TABLE 3.5 – Experimental stability analysis. For both tests, the re-
ported CFL and ∆t consist in the maximum CFL number and the
maximum related time step ∆t such that the method is stable. La-
bels A and AD underline the usage of an advective and advective-
diffusive stabilization term for the LLF flux, respectively. The first
column reports the space steps h used for the different simulations.

TEST1 TEST2

h CFL ∆t CFL ∆t

A AD A AD A AD A AD

3.00e-1 0.55 0.95 2.06e-1 3.56e-1 0.75 0.95 2.81e-1 3.56e-1
1.50e-1 0.75 1.15 1.41e-1 2.16e-1 0.65 0.85 1.22e-1 1.59e-1
7.50e-2 0.75 0.95 7.03e-2 8.91e-2 0.55 0.75 5.16e-2 7.03e-2

On a given problem, once both background and foreground meshes are set, we con-
sidered a time step ∆t starting from a CFL number equal to 0.1 and, by increasing this
value of 0.05 each time, we look for the largest stable CFL. In particular, this process
is executed on the same problem considering an approximated LLF flux employing
once an advective-diffusive stabilization term sAD and then with an advective stabi-
lization term sA.
The analysis is conducted on the 2D test cases presented in Table 3.1. In Figure 3.6
there are three time instants of both test cases.
In Table 3.5 there are the maximum CFL numbers and related maximum time steps
∆t such that the method is stable. The time step ∆t is computed by formula (3.29).
By comparing the performances of a local advective (A) stabilization term against
the same ones using a local advective-diffusive (AD) stabilization term, it is evident
that an advective LLF flux always needs a smaller CFL with respect to an advective-
diffusive LLF flux in order to stabilize the routine.
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(A) TEST1 (B) TEST2

FIGURE 3.6 – Three time instants for test cases TEST1 (a) and TEST2
(b).
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3.4.3 Relationship between the convective field and the foreground mesh
velocity

From the theoretical explanation of the method, it does not emerge in any way
an interaction between the speed of the foreground grid V and the intrinsic advec-
tive field a of the problem. In other words, there does not seem to be a limitation
of the velocity of the mesh that is displaced and deformed in terms of stability of
the method. The unique limitation of the mesh speed (see section 3.2.5) is due to
the CFL condition with respect to the dimension of the single cell. In order to allow
to the code to perform the automatic information transmission, the mesh speed is
such that it does not allow a given fringe cell Ωn

i in the foreground mesh to migrate
beyond the boundaries of the stencil Si centered on the cell itself in any time interval
from tn to tn+1. As a matter of fact, if this process is not ensured, for those new born
cells belonging to the background mesh at time tn+1 could not be able to recover the
information from the polynomial interpolation. Consequently, the algorithm would
incur a loss of information.
In this subsection we test on a numerical case that the stability is only given by the
relative advective speed a− V and the mesh velocity V does not affect the stability
of the method in other ways. In particular, on the same linear test case, we will con-
sider different possible movements of the foreground mesh by measuring, at final
time t = T, the L∞- and L2-errors of the mismatch between the exact and the numer-
ical solution. The tested case is named TEST3 and it is summed up in Table 3.6 (top).
The foreground mesh is either allowed not to move or to rigidly move in the parallel
direction with respect to the abscissae axis. In particular, we consider three possibil-
ities of movements, P1, P2 and P3, reported and explained in Table 3.6 (bottom). We
remark that test P1 corresponds to a test case with a unique block mesh due to the
position and the uniformity of the foreground mesh with respect to the background
mesh. For this reason, tests P2 and P3 are compared with P1. In Figure 3.7 there
are both the numerical solutions and the associated pointwise absolute values of the
difference between the exact and numerical solution for the final time T = 2 for the
configurations listed above. In particular, the configuration of the foreground mesh
in Figure 3.7a (left) corresponds to the initial mesh configuration for tests P2 and P3
too. By visualizing the different plots of the errors, it is evident the movement of the
foreground mesh introduces an error. As a matter of fact the errors of P2 and P3 are
neither equal each other nor to the errors of P1. The quantitative differences among
the different cases are reported in Table 3.7. Concerning test P2, the L∞-error is
equal to the one of P1, even though the L2-error is the double. This distance between
a steady and moving foreground mesh becomes slightly more evident at increasing
of the mesh speed, as the last line of Table 3.7 shows. In any case, all the errors are
comparable and this confirms that there is no relation between advective field and
mesh velocity in terms of stability. The mesh velocity seems to affect the numerical
solution only on the precision.

We conclude this subsection by analyzing the loss of information given by a very
strong speed of the foreground mesh on the same test case. The foreground mesh is
still located in the subset [0.8, 1.2]2 at the initial time and moves rightwards with a
speed equal to 4. This velocity, with the considered time step ∆t, allows to the cells
on the left side of the foreground mesh to overflow from the borders of their stencil
from times tn to tn+1. In Figure 3.8 there is a comparison between the recovered
numerical solution and the exact solution for t = 0.84 (which corresponds to that
time when the right side of the moving mesh is fully aligned to the right side of the
channel). There is no relation between the two solutions because the speed of the
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TABLE 3.6 – On the top, features of TEST3 are reported. On the bot-
tom, there are the three considered movements of the foreground

mesh.

TEST3

Ω (0, 1)× (0, 5)
Diffusion 2e-3
Advection [1, 0]T

uex
− tanh(2(x− t)2 + 5(y− 1)2)+
+e−t(5x− x2)(2y− y2) + 1

B.C. Dirichlet: u|∂Ω ≡ 0

I.C.
− tanh(2x2 + 5(y− 1)2)
+(5x− x2)(2y− y2) + 1

T 2
fg mesh [0.8, 1.2]2

V P1, P2, P3

V

P1 The foreground mesh is not moving for the whole period
of the simulation.

P2 The foreground has a constant velocity equal to the advec-
tive velocity for any time.

P3 For half of the time the mesh moves with double the speed
compared to the advective field and for the remaining half
of the time the mesh moves with the same speed in modu-
lus but in the opposite direction compared to the advective
field.

TABLE 3.7 – Errors for TEST3. The errors refer to a characteristic
length h equal to the cell of 2e-2 and a time t = T = 2.

L∞-err L2-err

P1 2.1554e-2 6.8500e-3
P2 2.1554e-2 4.8809e-3
P3 4.8809e-2 1.0864e-2
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(A) P1

(B) P2

(C) P3

FIGURE 3.7 – The numerical solutions, on the left, at final time t = 2 of
the three possibilities P1, P2 and P3 of foreground mesh movements
for the TEST3. On the right there there are the associated point-wise
errors of the mismatch between the exact solution and the numerical

solution.



66 Chapter 3. The Advection-Diffusion problem

FIGURE 3.8 – Comparison between the numerical (left) and exact
(rigth) solution of TEST3 at time t = 0.84 for a moving foreground

mesh traveling with a speed generating a loss of information.

foreground mesh is so fast that it does not allow the algorithm to assign the correct
information about the background cells that arise in the wake of the foreground
mesh itself.

3.4.4 Further topics

We conclude this section by presenting three test cases that show the potentiality
of the method. Firstly, a nonlinear advection-diffusion system is solved; successively a
multimesh setting of grids is considered for the already described TEST2 (see Table
3.1); finally, we consider a test case with a complex domain in which the foreground
mesh is employed in order to adapt its shape to the shape of the domain.

Nonlinear system

Let Ω = [−π, π]2 and T = 0.5 be the computational domain and the final time,
respectively. Thus the problem is: find u : Ω× [0, T]→ R2 such that:

∂tu +∇ · (uuT) = ν∆u + f in Ω× [0, T]
u ≡ uex on ∂Ω× [0, T]
u(x, 0) = uex(x, 0) in Ω× {0}

, (3.62)

where the force term f is chosen to have the exact solution

uex(x, y, t) = e−t
[

cos(x) sin(y)
− sin(x) cos(y)

]
.

In problem (3.62), the diffusive term ν is equal to 5π × 10−3 while the convective
field is represented by the solution itself, thus the partial differential equation is
nonlinear. For this problem, the convective-diffusive component F is the matrix
uuT − ν∇u. The foreground mesh is originally located around the center of mass of
the whole domain and it is allowed to rigidly counterclockwise rotate. In Figure 3.9
there are the two components of the numerical solution at final time t = T.
The error and convergence analysis is conducted as for the already presented linear
test cases by comparing the performances of the flux discretization either with local
advective-diffusive or just advective stabilization term. For this reason, Table 3.8
reports the L∞ and L2 errors and convergence rates by decreasing four times the
characteristic length h of the cells. As already observed for the linear tests, also in
this specific nonlinear case the errors of AD and A fluxes are similar even though
an AD discretization is almost always more precise. Finally, we remark that both
flux approximations have a second order discretization rate, as we expected a priori.
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FIGURE 3.9 – Components of the solution of nonlinear test at time
t = T = 0.5.

TABLE 3.8 – Convergence analysis of the nonlinear test case. The
errors refer to time t = T = 0.5.

h L∞-err L2-err L∞-rate L2-rate

AD A AD A AD A AD A

3.00e-1 2.3700e-2 2.01643e-2 5.2187e-3 4.9065e-3 0 0 0 0
1.50e-1 5.2138e-3 5.8552e-3 1.1061e-3 1.5086e-3 2.36 1.93 2.42 1.84
7.50e-2 2.4113e-3 2.4344e-3 2.4506e-4 5.7129e-4 1.15 1.33 1.30 1.44
3.75e-2 6.1828e-4 6.4658e-4 1.0332e-4 1.4322e-4 1.99 1.94 2.16 2.02

However, in H1-seminorm, the convergence error is second-order only when an AD
stabilization parameter is used. In fact, as reported in Table 3.9, when an A flux is
employed, the gradient converges at about first order.

Multimesh setting

The presented method can be easily extended to more than one foreground mesh.
As a matter of fact, different meshes can be set with an independent movement and
such that to exchange information with the background grid and with the other
moving foreground meshes. Due to the possibility to move, the foreground meshes
can overlap each other. Consequently, the hole will be present in the background
as well as in some foreground grids by properly applying the same dynamics of the

TABLE 3.9 – Convergence analysis of the nonlinear test case in H1-
seminorm.

h |H1|-err |H1|-rate

AD A AD A

3.00e-1 4.2833e-2 4.0919e-2 0 0
1.50e-1 1.0336e-2 2.4094e-2 2.22 0.82
7.50e-2 5.2846e-3 1.3295e-2 2.00 0.82
3.75e-2 1.3233e-3 5.4676e-3 2.03 1.30
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overlapping zone of Section 3.2.5 to the specific intermediate foreground mesh.
In order to compare the performances of multimesh setting with two moving fore-
ground meshes, we considered the presented case TEST2 with a foreground mesh
clockwise rotating around the origin (see Table 3.1) by adding a second foreground
mesh. The new grid is originally located to subset [−0.78,−0.18] × [−0.62,−0.02]
and horizontally moves on the right with a constant velocity V2 = [−0.8, 0]T (see
Figure 3.10). The new grid intercepts the original foreground mesh at the beginning
and at the end of the simulation. For this reason, the original foreground mesh par-
tially covers the new mesh by creating a new partial hole on it (see first and last rows
in Figure 3.10b). Moreover a new hole is generated in the background. Since each
foreground mesh is independent from the other, the holes in the background can be
either connected (if the foreground grids overlap each other) or unconnected (if the
foreground meshes are far enough to not overlap each other). Figure 3.10a refers to
the solution where each grid is defined by squared grids whose cells have a charac-
teristic length h = 7.50e− 2. The L∞- and L2-errors with respect to the exact solution
are exactly the same reported in Table 3.3 (last row). This means that the new grid
does not influence the performance of the method with respect to the previous grid
setting.

Complex domains

An important application of chimera grids is the possibility to use meshes fitting
the particular shape of the domain (which eventually evolves in time) by preserving
a Cartesian background mesh. Here we present two test cases summed up in Table
3.10. For any positive time t, let the generic moving ball formally be

BR(ρmin, ρmax; t) =
{
(x, y) ∈ R2 : x = R(ρ, θ) cos (θ), y = R(ρ, θ) sin(θ)− 2t− π;

with (ρ, θ) ∈ C, R : C → R and C = [ρmin, ρmax]× [0, 2π]
}

.

For both test cases, the domain is the channel of dimensions [−π, π] × [−2π, 2π]
from which the moving generalized ball B(0, 0.5; t) is subtracted at any time t ∈
[0, T]. The ball vertically moves downwards with a constant velocity. In Figures
3.11a and 3.12a the numerical solutions at the initial and final time instants for the
numerical tests are reported, respectively. In Figures 3.11b and 3.12b there is a focus
on the grid settings. For the foreground meshes, a polar structured grids is em-
ployed. It fits the shape of the domain and moves as the domain evolves.

3.5 Conclusions of the chapter

We presented a second order finite volume scheme for unsteady advection-diffusion
PDEs on overset grid. The scheme is based on an extension of the ADER method to
advection-diffusion equations with compact data transmission conditions from the
background to the foreground meshes and vice versa. We also introduced a new
stabilization term for approximating the fluxes through a Local Lax-Friedrichs ap-
proach.
The numerical illustrations for linear and non-linear systems show that background
and foreground moving meshes do not introduce spurious perturbation to the solu-
tion, uniformly reaching second order accuracy in space and time. In addition, we
showed that the speed of the foreground mesh does not influence the stability of the
method. Our results also show that the new LLF stabilization speed improves the
precision and robustness of the numerical solution and allows a less restrictive CFL
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(A) (B)

FIGURE 3.10 – On the left (a), the solution of TEST2 for three time in-
stants with a multimesh setting composed of two foreground meshes;
on the right (b), for the same time instants, the configuration of the

background and foreground grids.
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(A) (B)

FIGURE 3.11 – On the left (a), the solution of TEST4 for the initial and
final time instants; on the right (b), for the same time instants, the

background and foreground grids setting.
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(A) (B)

FIGURE 3.12 – On the left (a), the solution of TEST5 for the initial and
final time instants; on the right (b), for the same time instants, the

background and foreground grids setting.



3.5. Conclusions of the chapter 73

condition. Finally, it is shown that several foreground meshes, possibly overlapping
and with independent displacements, can seamlessly be employed thanks to this
approach.
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Chapter 4

The incompressible Navier-Stokes
equations

In this chapter, we propose a space-time Finite Volume (FV) scheme on Chimera
grids. Our objective is to combine some aspects of an ALE approach, notably its
flexibility with respect to grid displacement and deformation, to the multi-block dis-
cretization strategy of overset grids. In particular, special care is devoted to grid
overlapping zones in order to devise a compact and accurate discretization stencil
to exchange information between different mesh patches. The numerical solution
of the incompressible Navier-Stokes equations follows a classical fractional method
[33, 107] with a second-order accuracy in space and time.
The unsteady advection-diffusion equation is discretized through the ADER ap-
proach in the same spirit of the previous chapter and [18].
For the resolution of the Poisson equation in the projection step, we propose a hy-
brid FV method. On internal cells, a classical reconstruction of the gradient through
the diamond formula [23, 36] is employed. On fringe cells, inspired by [93], the
reconstruction of the gradient is performed by interpolating the data through an
appropriate local minimization taking into account the geometry of the stencil. Spe-
cial care is devoted to the definition of a fully conservative scheme in the limit of a
no-shift overlapping configuration, namely when the background and foreground
meshes coincide in the overlapping region.
Part of this chapter is in [21].

As for the previous chapter, the compact stencils on the fringe cells at the over-
lapping zone of the overset grid are built by following Algorithm 3.1 of the previous
chapter. Consequently, the dynamics of the overlapping zone follows Section 3.2.5.

4.1 The governing equations

Let Ω(t) ⊂ R2 be the computational domain, eventually evolving in time t ∈
[0, T], with T positive real. We aim in studying the two-dimensional incompressible
flow in the space-time domain Ω(t)× (0, T) governed by the system

ρ

(
∂u
∂t

+ (u · ∇)u
)
= −∇p + µ∆u in Ω(t)× (0, T), (4.1a)

∇ · u = 0 in Ω(t)× (0, T), (4.1b)
u(x, 0) = u0(x) in Ω(0)× {0}, (4.1c)

and completed with boundary conditions over ∂Ω(t) × (0, T). In system (4.1), the
unknowns are the velocity u and the pressure p of the fluid of density ρ and dynamic
viscosity µ. The initial condition is given by (4.1c) through the initial velocity u0.
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Sometimes, it is more convenient to study the nondimensionalized system of (4.1);
in this case, through the incompressibility condition (4.1b), equations (4.1a) become

∂u
∂t

+∇ · (uuT) = −∇p +
1

Re
∆u in Ω(t)× (0, T), (4.2)

where Re = ρu∞L/µ is the Reynolds number, with u∞ the characteristic velocity of
the fluid and L the characteristic length of either the physical domain or the obstacle,
if it is present.
The domain Ω(t) is discretized with an overset mesh whose background and fore-
ground partitions are Tbg and Tfg, respectively. For the sake of simplicity we con-
sider only one foreground mesh even though it is possible to extend the method by
employing several foreground meshes. The cells of the foreground partition define
a subset Ωfg of the physical domain. The foreground mesh of coordinates X are
allowed to move and deform accordingly to the motion equation

dX
dt

= V in (0, T), (4.3)

which is a Cauchy problem of initial condition X|t=0 = X0(x). In problem (4.3) the
force term is the mesh velocity V(x, t; u, p), eventually dependent on the fluid ve-
locity and pressure 1. The motion equation (4.3) can be imposed regardless of the
physics described by system (4.1). However, when studying fluid-structure interac-
tion phenomena, the foreground mesh is employed in order to easily take into ac-
count the generic shape of the solid body. Consequently, the computational domain
Ω(t) defines the fluid domain and part of the boundary of the foreground subdo-
main Ωfg discretizes the boundary Γs of the solid, i.e., Γs ⊂ ∂Ωfg (see Figure 4.1).
Along the boundary Γs the interaction between the fluid and the solid takes place
and it mathematically reads

u = uB on Γs(t)× (0, T), (4.4)

where uB is the velocity of the solid body. Thus, the mesh velocity V has to coincide
with the velocity uB of the body on the boundary Γs of the solid:

V
∣∣
Γs
≡ uB. (4.5)

Consequently, the dynamics of motion and deformation of the foreground mesh in
(4.3) is led by condition (4.5).

4.2 The numerical method

The Navier-Stokes equations (4.1) are discretized using a Finite Volume (FV)
scheme with the collocated cell-centered variables (u, p). Let the whole time inter-
val (0, T) be subdivided into N sub-intervals (tn, tn+1), n = 1, . . . , N − 1, of length
∆t. For a given variable φ(x, t), we indicate its evaluation at discrete time tn with
φn. A fractional step method is used to evaluate the solution in time. In order to
improve the pressure smoothness and avoid some odd-even oscillation phenomena,
the face-centered velocity

U = (u)fc (4.6)

1. In that case systems (4.1) and (4.3) are coupled.
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Ω

Ωfg

Γs

FIGURE 4.1 – Sketch of the mesh configuration. The computational
(i.e. fluid) domain contains the solid body whose boundary is Γs.
The foreground mesh (in blue) defines the foreground subdomain Ωfg
whose boundary is the union of an external (dashed line) and internal
(continuous line) boundary. Consequently, the internal foreground

boundary coincides with the solid body boundary.

is introduced as presented by Mittal et al. [79]. The symbol (·)fc is a discrete operator
computing the face-centered value of the cell-centered input and it will be explained
later in this chapter.
Based on the predictor-projection-correction non incremental Chorin-Temam scheme 2

[33, 107], the first step (predictor step) evaluates an intermediate velocity u∗ obtained
by the resolution of an unsteady convection-diffusion equation{

∂u∗
∂t +∇ ·

(
u∗(Un)T)− 1

Re ∆u∗ = 0 in Ω(t)× (tn, tn+1)

u∗ = un in Ωn × {tn}
, (4.7)

which will be numerically solved as explained in the next subsection.
The intermediate velocity u∗ solving problem (4.7) is not divergence free. Thus the
predicted field u∗ is projected onto a divergence free space through the pressure. As
a matter of fact, by computing the divergence of equation

un+1 − u∗

∆t
= −∇pn+1 in Ω(t)× (tn, tn+1) (4.8)

and applying the divergence condition (4.1b) on the velocity fluid un+1, we obtain
the Poisson equation for the pressure

∆ψn+1 = −∇ · u∗ in Ωn+1, (4.9)

2. For more information, the reader is referred to the Appendix D.
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with ψ = ∆t p, by defining the projection step 3. Problem (4.9) refers to the cell-
centered velocity field and pressure. Thus, by employing the face-centered interme-
diate velocity U∗ = (u∗)fc, problem (4.9) turns into

∆ψn+1 = −∇ ·U∗ in Ωn+1, (4.10)

which is numerically solved as explained in Section 4.3.
The velocity fields un+1 and Un+1 at the cell-centers and face-centers, respectively,
are finally corrected through equation (4.8) as

un+1 = u∗ −∇ψn+1, (4.11a)

Un+1 = U∗ − (∇ψn+1)fc, (4.11b)

which conclude the numerical routine within the time sub-interval from tn to tn+1.

4.2.1 The predictor solution

The predictor equation (4.7) for the intermediate velocity u∗ is solved via the
ADER scheme for AD problems on overset grid presented in Chapter 3. Here the
method is briefly summed up.

Local space-time Galerkin predictor

The component-wise problem to be solved is: find qk : Cn
i → R, k = 1, 2, such that{

∂tqk +∇ · F(qk,∇qk) = 0 in Cn
i

qk = Πiun
k on Ωn

i
, (4.12)

where F(qk,∇qk) = qqk −∇qk/Re is the convective-diffusive term 4.

Remark 4.2.1. At this stage, the face-centered velocity U is not required as originally indi-
cated in problem (4.7).

In order to discretize problem (4.12), letMi : Ĉ → Cn
i be a map from the reference

space-time cell Ĉ = (0, 1)3 to the local space-time cell Cn
i = Ωi(t) × [tn, tn+1]. The

Jacobian J of the map and its inverse J−1 are written in (3.10) and (3.11), respectively.
In particular, through the spatial restriction J−1

s of the inverse Jacobian (3.12), the
problem in the reference domain reads 5 6

∂τqk + ∆tF [(∇̂qk) + ∆t J−T
s ∇̂ ·F ](qk, ∇̂qk) = 0 in Ĉ , (4.13)

with

F [(∇̂qk) =

[
ξt
ηt

]
· ∇̂qk; F ](qk, ∇̂qk) = F(qk, J−T

s ∇̂qk) =

[
F ]

ξ

F ]
η

]
.

3. For the boundary conditions of problem (4.9), see Section D.1.
4. The initial value datum Πiun

k refers to the P2(En
i )-interpolation, with En

i = Ωn
i ∪

⋃
j∈Sn

i
Ωn

j the
set of cells composing the stencil Sn

i at time tn.
5. Because of the transformation, it holds

∂tqk =
∂τqk
∆t

+F [(∇̂qk); and ∇ = J−T
s ∇̂.

6. The hat differential operators refer to the reference space variables ξ and η in the reference space-
time cell Ĉ. In particular, ∇̂ = [∂ξ , ∂η ]T .
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In order to weaken the problem (4.13), we introduce the following functional space

Θ =
{

v ∈ L2(Ĉ) : (0, 1)2 3 (ξ, τ) 7→ v(ξ, η, τ) ∈ H1((0, 1))
}

as finite energy functions of L2(Ĉ) associating Sobolev functions in H1((0, 1)) for
any fixed reference space couple (ξ , τ). Finally, for our purposes, it is identified Θ as
a test functional space and a trial functional space Qk is defined as

Qk =

{
v ∈ H1(Ĉ) : v(ξ , η, 0) = Πiun

k (x(ξ, η, 0), y(ξ , η, 0), tn)∧ J−1
[
∇̂v
∂τv

]
∈ L2(Ĉ; R3)

}
,

(4.14)
By multiplying left and right side of (4.13) by a generic test function θ in Θ and
by integrating over the reference space-time cell Ĉ, the weak problem reads 7: find
qk ∈ Qk such that

[θ, qk]1 − 〈∂τθ, qk〉+ ∆t 〈θ,F [(∇̂qk)〉+ ∆t 〈θ, J−T
s ∇̂ ·F ](qk, ∇̂qk)〉 = [θ, Πiun

k ]0
(4.15)

∀θ ∈ Θ. Problem (4.15) is discretized via finite elements employing a Lagrangian
polynomial basis over the 27 Gauss-Legendre quadrature points introduced in Sec-
tion 3.2.2. Finally, the arising nonlinear problem is linearized through a fixed-point
strategy.

The space-time finite volume scheme

Once the local predictor solution qk is computed in each space-time cells Cn, we
can perform the ADER correction stage. First, we rewrite the convective-diffusive
equation (4.7) in divergence form. Let FUn(u∗k ,∇u∗k ) = Unu∗k −∇u∗k /Re, with k =
1, 2, be the convective-diffusion term associated to the component-wise equation
(4.7); let ∇x,t = [∇, ∂t]T be the space-time differential operator and, finally, let U k =
[FUn(u∗k ,∇u∗k ), u∗k ]

T, k = 1, 2, be the k-component of the space-time solution, thus
problem (4.7) can be rewritten as: for any k = 1, 2,

∇x,t ·Uk = 0 in Ω(t)× (0, T). (4.16)

The objective is to find a finite volume solution for the above equation, where the
finite volume is the space-time cell Cn

i , whose boundary is 3.24. By integrating equa-
tion (4.16) over Cn

i and by applying the divergence theorem to the left side, we obtain
‹

∂Cn
i

U n
k · nx,t dΓ = 0, (4.17)

with nx,t = [nx, nt]T = [nx, ny, nt]T being the normal unit vector to the boundary ∂Cn
i

of the cell. Let ū∗,nk,i be the spatial average solution u∗k cell-centered in the space cell
Ωn

i at time tn, i.e.,

ū∗,nk,i =
1
|Ωn

i |

ˆ
Ωn

i

u∗k (x, y, tn) dx dy, (4.18)

7. As for the previous chapter, for any function f , g ∈ Θ, the following notation is assumed:

〈 f , g〉 =
ˆ
Ĉ

f g dξ; [ f , g]τ =

ˆ 1

0

ˆ 1

0
f (ξ , η, τ)g(ξ , η, τ) dξ dη.
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Though (4.18), equation (4.17) explicitly is

− |Ωn
i |ū
∗,n
k,i + |Ωn+1

i |ū∗,n+1
k,i +

4

∑
j=1

ˆ
Γn

ij

U k · nx,t dΓ = 0, (4.19)

where the unknown is the average solution ū∗,n+1
k,i at time tn+1, while the last term of

the left hand side is the space-time flux along the space-time sides
⋃4

j=1 Γn
ij. Scheme

(4.19) is the space-time Finite Volume scheme.

Remark 4.2.2. Scheme (4.19) is still exact.

In order to solve (4.19), the integral function of the space-time flux is approxi-
mated through a Local Lax-Friedrichs (LLF) approach:

[U k · nx,t]Γn
ij
≈ Φ(q+k,j, q−k,j) =

1
2
(U+

k,j +U−k,j) · nx,t −
s
2
(q+k,j − q−k,j), (4.20)

where U+
k,j = U k,j(q+k,j) and U−k,j = U k,j(q−k,j) are the space-time solution of (4.16)

computed by solutions q+k,j and q−k,j, which represent the local predictor solutions
outside and inside the cell, respectively, with respect to the space-time side Γn

ij. The
term s is the local stabilization coefficient depending on the face-centered velocity
Un considered constant over the space-time side Γn

ij. It reads

s =
1
2

∣∣∣∣∣Un · nx + 2nt +

√√√√[(Un
x )

2 +
4

εRe

]
n2

x + 2Un
x Un

y nxny +

[
(Un

y )
2 +

4
εRe

]
n2

y

∣∣∣∣∣,
(4.21)

where ε is the optimal relaxation parameter (i.e., ε = ε2/2, see Section 3.3.2).

Equation (4.19) with the flux approximation (4.20) closes the correction stage of
the ADER method. At the end of this stage, the cell-centered k-th component of the
solution u∗,n+1

k,i is found over any cell Ωn+1
i at time tn+1.

4.3 The pressure equation

The second step of the fractional step method is the projection step defined by
the Poisson equation (4.10) for pressure ψn+1 = ∆t pn+1 at time tn+1 on the Chimera
configuration for the domain Ωn+1. In this section, in order to lighten the notation,
the reference to time tn+1 is omitted for all involved variables and quantities. Let
the stencil Si centered on cell Ωi be decomposed in Si = S+i ∪ S

×
i , with S+i of cells

sharing either one or no edge with Ωi and S×i the remaining cells sharing only one
vertex of Ωi. The proposed scheme for (4.10) is a spatial FV approach. Thus, by inte-
grating over the space cell Ωi, whose boundary is ∂Ωi =

⋃
j∈S+i

γij, and by applying
the divergence theorem both to the left and right hand sides, the problem exactly
reads

∑
j∈S+i

ˆ
γij

∇ψ · nij dγ = ∑
j∈S+i

ˆ
γij

U∗ · nij dγ, (4.22)

with nij the unit outer normal to side γij. The integrals in (4.22) are approximated as

∑
j∈S+i

|γij|[∇ψ · n]ij = ∑
j∈S+i

|γij|U∗ij · nij, (4.23)
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v1

v2

Ω1

Ω2

•
P

◦c1
◦c2 dc

nγ

dt

x

y

FIGURE 4.2 – Sketch of two internal cells Ω1 and Ω2 sharing the edge
γ.

where |γij| is the length of side γij. In order to achieve the Poisson algebraic system
for problem (4.23), the approximation of the face-centered normal divergence term
[∇ψ · n]ij along γij is needed. For this reason, two different strategies are adopted
with respect to the position of the spatial cell Ωi: if the cell is not fringe, namely it is
not at the boundary of the overlapping interface of its partition, the approximation
is performed through a geometric reconstruction, otherwise, an approach involving
Taylor expansion is employed.

4.3.1 The geometric reconstruction

By considering Figure 4.2, let us consider two internal cells Ω1 and Ω2 in the
same partition and sharing the edge γ of normal n. Let P be the face-center of γ.
Moreover, let c1 and c2 be the cell-centers of the two cells and v1 and v2 be the
extremes of edge γ. These points define the unit direction vectors dc (of the centers)
and dt (tangent), respectively. The objective is to approximate the normal gradient
[∇ψ · n]P, applied on P, assumed to be constant over γ. It is approximated via the
diamond formula [23, 36] accordingly to the following theorem.

Theorem 4.3.1 (Diamond formula). In the configuration of Figure 4.2 and under the hy-
pothesis that the normal gradient∇ψ · n is constant all over the shared edge γ, the following
approximated formula holds:

[∇ψ · n]P ≈
1

dc · n

(
ψc2 − ψc1

|c2 − c1|
− ψv2 − ψv1

|γ| dc · dt

)
. (4.24)

Proof. Despite the value of the gradient∇ψP is unknown, its projection over the non
canonical basis {dc, dt} for R2 can be approximated as

∇ψ · dc ≈
ψc2 − ψc1

|c2 − c1|
and ∇ψ · dt ≈

ψv2 − ψv1

|γ| , (4.25)

respectively. By considering the notation of Figure 4.3, let α be the angle between di-
rections n and dc, therefore cos α = dc · n. Let us identify with PQ the unknown
quantity ∇ψP · n to be found. It is true that PR = ∇ψP · dc/ cos α and QR =
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x

y

•
P

n

dt

dc

∇ψP

α

∇ψP · n
Q

∇ψP · dc

R

∇ψP · dt

FIGURE 4.3 – Zoom of unit directions dc, dt and n over the face-center
P.

(tan α)∇ψP · dt, therefore:

PQ = PR−QR =
1

cos α

(
∇ψP · dc −∇ψP · dt sin α

)
=

1
dc · n

[
∇ψP · dc − (∇ψP · dt)(dc · dt)

]
,

(4.26)

which is equivalent to formula (4.24).

In the above approximation, due to the cell-centered nature of the scheme, an
approximation of the vertex-centered quantities ψv1 and ψv2 are necessary. In par-
ticular, they have to be expressed as function of some cell-centered quantities of the
unknown pressure ψ. Let us study this approximation for vertex v1; the extension to
vertex v2 trivially follows. Let S̃v1 be the substencil of indexes of those cells sharing
vertex v1. For internal cells, the cardinality of substencil S̃v1 is equal to 4. Thus, let
Ẽv1 =

⋃
j∈S̃v1

Ωj be the subdomain composed of cells sharing the vertex v1. Finally,

let Π̃v1 φ be the polynomial interpolation of a given function φ ∈ C2(Ẽv1), whose
knowledge is available to the cell-centers, by employing the bilinear basis of the
polynomial space function Q0

1 = span{1, x, y, xy}. In particular, it holds that

Π̃v1 ψ(x, y) = αv1,1 + αv1,2x + αv1,3y + αv1 ,4xy = zTαv1 ,

with z = [1, x, y, xy]T and the unknown polynomial coefficients collected in vector
αv1 . The polynomial coefficients are looked for by imposing that the polynomial
equals the pressure at the cell-centers of the substencil (i.e., Π̃v1 ψ(xj, yj) ≡ ψj for any
j in S̃v1). This yields the resolution of linear system Av1 αv1 = ψv1

, where the row
space of Av1 ∈ R4×4 is defined by the coordinates in zj and vector ψv1

collects the
cell-centered values ψj, with j ∈ S̃v1 . Finally we approximate as follows:

ψv1 ≈ Π̃v1 ψ(xv1 , yv1) = zT
v1

αv1 = zT
v1

A−1
v1

ψv1
, (4.27)
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that only depends on cell-centered values of ψ. This allows to finally define the i-th
line of system for problem (4.23). The scheme for internal cells reads

∑
j∈S+i

|γij|
dcij · nij

(
ψj − ψi

|cj − ci|
−

zT
v2j

A−1
v2j

ψv2j
− zT

v1j
A−1

v1j
ψv1j

|γij|
dcij · dvij

)
= ∑

j∈S+i

|γij|U∗ij · nij,

(4.28)
where the unknowns are the cell-centered values of ψ.

4.3.2 Truncation error and stencil at fringe cells

For the fringe cells, the diamond formula (4.24) for approximating the normal
gradient in (4.22) is more complicated. In fact there exists at least one edge for which
the second center c2 falls in the other partition. Thus, in a generic configuration, it
could be happen that the center direction dc tends to be parallel to the tangent direc-
tion dt, implying a vanishing term dc · n. The approach that we adopt exploits the
analytic information stored in any stencil Si centered on cell Ωi. Let Ri = Si ∪ {i}
be the increased stencil which includes also the index i. Let P be the generic face-
centered point on which the pressure gradient needs to be approximated. In the
sequel we provide the gradient approximation along the x-direction; the approxi-
mation along y similarly follows. For any j in Ri, the Taylor polynomial expansion
of ψj with respect to the face-centered value ψP truncated to the second-order terms
is

ψj = ψP + hx
j ∂xψP + hy

j ∂yψP + hx
j hy

j ∂2
xyψP +

1
2
(hx

j )
2∂2

xxψP +
1
2
(hy

j )
2∂2

yyψP +O(H3
j ),

(4.29)
with hx

j = xj − xP, hy
j = yj − yP and Hj = max{|hx

j |, |h
y
j |}. As done in the previous

subsection, the objective is to represent the face-centered gradient as dependent on
the cell-centered quantity in the stencil, i.e.,

∂xψP = ∑
j∈Ri

βx
sP(j)ψj, (4.30)

with coefficients βx
sP(j) to be found. The discrete function sP : Ri → {1, . . . , m},

with m = |Ri| being the cardinality of the enlarged stencil, sorts the indexes in Ri
in increasing order. By plugging the Taylor truncated expansion (4.29) in (4.30), it
holds:

∂xψP =

(
∑

j∈Ri

βx
sP(j)

)
ψP +

(
∑

j∈Ri

βx
sP(j)h

x
j

)
∂xψP +

(
∑

j∈Ri

β
y
sP(j)h

y
j

)
∂yψP

+

(
∑

j∈Ri

βx
sP(j)h

x
j hy

j

)
∂2

xyψP +

(
∑

j∈Ri

1
2

βx
sP(j)(h

x
j )

2

)
∂2

xxψP

+

(
∑

j∈Ri

1
2

βx
sP(j)(h

y
j )

2

)
∂2

yyψP +O
(

max
j∈Ri

H3
j

)
.

(4.31)
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Since the right side of (4.31) is the approximation of the x-derivative of ψP, the con-
dition on the coefficients βx

sP(j) are

∑
j∈Ri

βx
sP(j) = 0; ∑

j∈Ri

βx
sP(j)h

x
j = 1; ∑

j∈Ri

βx
sP(j)h

y
j = 0;

∑
j∈Ri

βx
sP(j)h

x
j hy

j = 0; ∑
j∈Ri

1
2

βx
sP(j)(h

x
j )

2 = 0; ∑
j∈Ri

1
2

βx
sP(j)(h

y
j )

2 = 0;
(4.32)

which can be synthesized in the linear system Mβx = bx, with M ∈ R6×m, βx ∈ Rm,
bx ∈ R6. Similar considerations can be assumed for the approximation of the y-
derivative 8. For this reason, let us consider the generic system

Mβ = b. (4.33)

Inspired by [93], for a general value of m, system (4.33) is solved by minimizing a
Lagrangian function under the constraints defined by a convex function H : Rm →
R. Let λ ∈ Rν be a vector of Lagrangian multipliers. Moreover let L : Rm×Rν → R

be the Lagrangian function to be minimized defined as

L(β, λ) = H(β)− λT(Mβ− b). (4.34)

To minimize this function means to find the stationary point (β, λ) such that{
∂L
∂β = 0
∂L
∂λ = 0

⇐⇒
{

∂H
∂β −MTλ = 0

Mβ = b
. (4.35)

Let C ∈ R4×m be the sub-matrix relative to the second-order constraints. Two cases
are distinguished:

m ≤ 10 : The convex function is H(β) = 1/2βT[(1− δ)CTC + δG]β, with ν = 6, con-
sequently the local system to be solved is[

[(1− δ)CTC + δG] −MT

M O

] [
β
λ

]
=

[
0
b

]
, (4.36)

where O is the null matrix in R6×6. This choice of the convex function H(β)
is such that the discretization coefficients minimize the second-order trunca-
tion error encoded in matrix M and their L2-norm is penalized by coefficient
δ (which is put equal to 0.01 in the presented test cases) in that region of the
stencil indicated by matrix G ∈ Rm×m, as it will be later discussed.

m > 10 : The convex function reads H(β) = 1/2βT β and ν = 10. Thus the local
minimization system is [

I −M̃T

M̃ O

] [
β
0

]
=

[
0
b

]
, (4.37)

8. In this case, with respect to constraints (4.32), there is

∑
j∈Ri

β
y
sP(j)h

x
j = 0 and ∑

j∈Ri

β
y
sP(j)h

y
j = 1.

Nothing changes for the other conditions.
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(A) In this configuration it
holds: ab f ({1, 2}) = {3, 4} while

a f b({3, 4}) = {2}.

Tb

T f

? ?� �1 2 ≡ 3 4•P

(B) No-shift configuration. It holds:
ab f (2) = 3 = a−1

f b (2), a f b(3) = 2 =

a−1
b f (3) and Ω2 ≡ Ω3.

FIGURE 4.4 – Sketch of overlapping configurations. Black cells {1, 2}
belong to the background partitions, blue cells {3, 4} to the fore-
ground. The star symbols (?) and the diamond symbols (�) represent
the cell-centers for cells in the background and in the foreground, re-

spectively.

with M̃ =

[
M
C

]
and I is the identity matrix in R10×10. In this case the coef-

ficients satisfy 10 second-order accuracy constraints while their norm is mini-
mized.

Finally, the scheme for the fringe cells is

∑
j∈S+i

|γij| ∑
l∈Ri

(βx
sij(l)

nx,ij + β
y
sij(l)

ny,ij)ψl = ∑
j∈S+i

|γij|U∗ij · nij, (4.38)

where the unknowns are the cell-centered values of ψ.

One goal for numerically solving the pressure problem is to have the same scheme
for fringe and internal cells in the limit of a perfect no-shift overlapping between
the background and foreground meshes. This allows to properly control the fluxes
exiting from the background and entering in the foreground (and vice versa) and,
consequently, to have a conservative scheme at least in this limit condition.
LetO be the set of indexes for cells in the overlapping zone. It is possible to separate
this set in two subsets Ob and O f for the background and foreground, respectively,
such that O = Ob ∪ O f and Ob ∩ O f = ∅. Moreover, let ab f : Ob → O f (and
a f b : O f → Ob) be the function associating the closest background (foreground)
overlapping cell to a given foreground (background) overlapping cell, i.e., for any
i ∈ Ob (and j ∈ O f )

ab f (i) = arg min
j∈O f
|xi − xj|

(
and a f b(j) = arg min

i∈Ob
|xj − xi|

)
. (4.39)

In a general overlapping configuration, it holds that a−1
f b 6= ab f and a−1

b f 6= a f b, as it is
showed in Figure 4.4a. Through the association functions it is possible to formalize
the no-shift overlapping limit configuration.

Definition 4.3.1 (No-shift overlapping configuration). The overlapping configuration
is said to be no-shift when it holds both

ab f = a−1
f b or a f b = a−1

b f ; (4.40a)

∀i ∈ Ob ∃!j = ab f (i) ∈ O f such that i = a f b(j) and Ωi ∩Ωj = Ωk, with k = i, j.
(4.40b)
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The limit of no-shift condition takes place when all overlapping cells in the back-
ground perfectly coincide with all overlapping foreground cells in the foreground
with a one-to-one match defined by the associations functions (an example is sketched
in Figure 4.4b).
Let us consider a fringe cell Ωi in a no-shift overlapping configuration for uniform
Cartesian meshes of characteristic length h and let us suppose to compute the gra-
dient at the face-center P of the side after which there is cell Ωj not belonging to the
same partition of Ωi (as in Figure 4.4b for cells Ω3, fringe, and Ω1, internal). If the
diamond formula (4.24) is used in this case, the tangential contribution vanishes be-
cause dc · dt = 0, consequently, the diamond formula corresponds to the minimiza-
tion of the Lagrangian functional associated to problem (4.33) fulfilling the second-
order constraints (4.32) with coefficients: βsij(i) = −βsij(j) = −1/h and βsij(k) = 0 for
any k ∈ Ri/{i, j}. This means that, in the view of the problem defined by (4.36), the
diamond formula is minimizing the L2-norm of the local parameters only in those
cells of the stencil sufficiently far from the face-center point P (where the value of
the local coefficients is set to 0). Consequently, all the information for the reconstruc-
tion of the gradient is recovered from the closest cells to P. This concept is encoded
in matrix G defined as a diagonal matrix G = diag(gsij(k))k∈Ri , with the diagonal
components defined as

gsij(k) =

{
1; k 6= arg minl∈Ri |xl − xP|
0; otherwise

. (4.41)

With this definition, in the considered overlapping configuration, components gk
assume value 1 only for k 6= i, j (thus for all cells whose centers do not minimize the
distance with the face-center P) and the solution of problem (4.36) can be proved to
provide βsij(i) = −βsij(j) = −1/h and βsij(k) = 0 for any k ∈ Ri/{i, j}, as defined
by the diamond formula. When matrix G is put equal to the identity, the L∞-norm
is penalized all over the stencil [93]. In the simulations of this work, matrix G with
coefficients defined by (4.41) is used for any overlapping configuration, allowing
to have a unique scheme for internal and fringe cells in the limit of the no-shift
overlapping condition.

4.4 The face-center discrete operators on overset grids

Accordingly to the Chorin-Temam scheme presented at the beginning of Section
4.2, the face-centered values of the velocity and pressure gradient are needed. These
computations take again into account either the internal or fringe position of the cell.
When the intermediate velocity u∗ is computed at the end of the predictor step (4.7),
its face-centered counterpart U∗ becomes the force term for the pressure equation
(4.10). If the edge is shared by two cells of the same partition, the face-centered
approximation is the mean of the P2-interpolations evaluated on the face-center by
using both the stencils of the two involved cells. On the contrary, when the side only
belongs to one cell (because it is fringe), the approximation is still the evaluation
of the polynomial interpolation on the face-center but just considering the hybrid
stencil of the cell.
In the last step (4.11b) of the fractional step, the face-centered gradient pressure is
used to correct the new face-centered velocity. For fringe cells, the face-centered
approximation still exploits the local coefficients explained in the Section 4.3.2. For
internal cells, through the diamond formula (4.24), it is possible to approximate the
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directional derivatives on the face-center along the center and tangential directions.
In particular they read

∂dc ψ ≈
ψc2 − ψc1

|c2 − c1|
and ∂dt ψ ≈

ψv2 − ψv1

|γ| , (4.42)

respectively, where ∂dψ = ∇ψ · d is the directional derivative of ψ along direction d.
Consequently it holds [

dc,x dc,y
dt,x dt,y

] [
∂xψ
∂yψ

]
=

[
∂dc ψ
∂dt ψ

]
(4.43)

which can be compactly written in an algebraic form as D (∇ψ)fc = w. By solving
the local face-centered system (4.43), correction (4.11b) is finally performed.

4.5 Numerical results

The first subsection 4.5.1 is devoted to the numerical solution of a generic Poisson
problem. In Section 4.5.2 the performances of the algorithm with respect to the order
of grid convergence is presented. In Sections 4.5.3 and 4.5.4 validations of physical
data for simulations of lid driven cavity and flows around cylinders, respectively, com-
pared to the literature are presented.

4.5.1 Poisson equation

Let the Poisson problem be: find u : Ω→ R such that

− ∆u = f in Ω (4.44)

completed with adequate boundary conditions. In particular, for problem (4.44),
the force term f is such that the exact solution uex(x, y) is sin(x2 + y2), with Ω =
(−π, π)2. Dirichlet boundary conditions are considered (i.e., u|∂Ω = uex|∂Ω).Three
chimera configurations in Figure 4.5 are considered. In Table 4.1, The L2-errors and
the convergences for the three configurations are reported. The convergence is def-
initely 2 and the error depends on the configuration of the overlapping zone. In
Figure 4.6, there are the color-plots of the solution over the three different configura-
tions. In Figure 4.7, there are depicted the pointwise errors of the numerical solution
with respect to the exact solution. It is evident that the overlapping zone does not
contribute to increase the error which is smaller at the overlapping than in other
places of the computational domain.

4.5.2 Order of convergence

For measuring the order of convergence of the method we computed the L2-norm
of the mismatch between the numerical solutions (both velocity and pressure) and
the exact ones (uex, pex) for the Taylor-Green vortices at Re = 100 in the computa-
tional domain Ω = (−π, π)2 at final time T = 1. In particular, the foreground mesh
originally covers the subdomain (−0.76, 0.76)2; it is composed of cells of the same
characteristic dimension h of cells in the background and it rigidly counterclockwise
rotates around the origin of axes accordingly to the mesh velocity V = 1/2[−y, x]T.
At the boundaries, the numerical velocity is imposed to be equal to the exact solu-
tion. In order to measure the space-time order of convergence, the time step ∆t is
chosen by respecting the CFL condition; in particular, since at the boundaries the
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(A) The square

(B) The rectangle

(C) The irregular quadrilateral

FIGURE 4.5 – Three different chimera-meshes for the computational
domain Ω = (−π, π)2. The background mesh is in black, the fore-

ground mesh in pink.
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TABLE 4.1 – Errors and convergence rate in L2-norm for the Poisson
equation of solution sin(x2y2) with respect to the over-set configura-
tions of Figure 4.5. In the first column there is the total number N of

cells.

N L2-err L2-rate

Square
2401 3.1100e-2 -
9537 7.3000e-3 2.10
37873 2.0000e-3 1.88

Recta
ngle 2451 2.5400e-2 -

10287 8.5000e-3 1.53
42153 2.3000e-3 1.85

Quadrila
tera

l 2443 4.000e-2 -
9853 7.1000e-3 2.48
39511 1.7000e-3 2.06

FIGURE 4.6 – Solution of the Poisson problem for the different con-
figurations. The northwest picture is the exact solution over the first

configuration (the square).
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FIGURE 4.7 – Pointwise errors of the divergence of the Poisson prob-
lem for the different configurations.

maximum velocity is 1, we set ∆t = CFL h/u∞, with CFL = 0.4 and u∞ = 1. Despite
the overset configuration is changing due to the rotation of the foreground mesh, the
convergence rate for the velocity and the pressure is around 2.50 for the velocity and
slightly smaller than 2 for the pressure, as showed in Table 4.2.

4.5.3 The lid driven cavity

In this section we study a lid driven cavity flow at Re = 1000. At the initial
time the fluid has zero velocity inside the cavity Ω = (0, 1)2. No-slip boundary
conditions (i.e., u ≡ 0) are strongly imposed on all sides of the cavity with ex-
ception to the upper boundary where velocity is constant and equal to [−1, 0]T. A
steady foreground mesh occupies the subdomain (0.21, 0.79)2. Both the background
and the foreground meshes are uniform and Cartesian, with a characteristic length

TABLE 4.2 – Convergence analysis for Taylor-Green Vortices in
(−π, π)2 at final time T = 1.

h L2-error convergence rate

velocity pressure velocity pressure

1.57e-1 2.7636e-5 2.0345e-3 - -
1.05e-1 8.4817e-6 9.4667e-4 2.95 1.91
7.85e-2 3.8148e-6 6.9023e-4 2.79 1.11
6.28e-2 2.1021e-6 4.8696e-4 2.68 1.57
5.24e-2 1.3363e-6 3.4589e-4 2.49 1.88



4.5. Numerical results 91

TABLE 4.3 – Comparison on the primary vortex for the lid driven
cavity: maximum stream-function Ψmax, vorticity ω and location of
the topological point. The reference into brackets indicates the used

methodology.

Ψmax ω x y

Present 0.1171 1.9721 0.4687 0.5625
Bruneau [27] 0.1179 2.0508 0.4687 0.5625
Bruneau [27] (Upwind) 0.1180 2.0549 0.4687 0.5625
Bruneau [27] (Kawamura [66]) 0.1179 2.0557 0.4687 0.5625
Bruneau [27] (Quickest [72]) 0.1150 1.9910 0.4687 0.5625
Ghia [46] 0.1179 2.0497 0.4687 0.5625

h = 1/128. Moreover the overlapping configuration is no-shift. We are interested in
the steady solution. This solution is reached when the L2-norm of the difference be-
tween the velocity at two consecutive times tn and tn+1 is less than 10−10. Figure 4.8
shows the streamlines at the steady state. The solution presents a main vortex and
two minor vortexes located towards the lower corners of the cavity. The main vortex
originates from the upper boundary and moves to the region discretized by the fore-
ground mesh. In order to quantitatively measure this movement, we consider the
geometrical topological point where the stream-function 9 Ψ is maximized. Before
the steady condition, this topological point moves from the background to the fore-
ground by passing through the overlapping zone. Table 4.3 resumes the comparison
of the maximum stream-function Ψmax and its location. Along the topological point,
also the value of the vorticity 10 ω is reported. All data from the literature for the
comparison consider a discretization grid of 128× 128. The validation confirms that
the presence of the foreground mesh does not influence the performance of the sim-
ulation. The results are in good agreement with reference ones. No perturbations to
the numerical solution are induced by the foreground mesh in the case of no-shift
overlapping condition.

9. A stream-function Ψ(x, y, t) of a 2D incompressible flow field u over a line γ ⊂ Ω formally reads

Ψ =

ˆ
γ
(ux dy− uy dx).

Consequently it holds that

ux =
∂Ψ
∂y

and uy = − ∂Ψ
∂x

.

The stream-function can be also derived as solution of the Poisson equation with the vorticity ω as
force term as

∆Ψ = −ω.

10. The vorticity field ω is the curl of the velocity field u:

ω = ∇∧ u.

In a two-dimensional flow the vorticity is always zero along x and y. Thus it is considered scalar and
defined as

ω =
∂uy

∂x
− ∂ux

∂y
.
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FIGURE 4.8 – Steady streamlines for the lid driven cavity test: blue
for the background and black for the foreground.

4.5.4 The cylinders

In this section the method is validated by studying the flow around a cylinder
that can be steady or moving. Let u∞ be the fluid velocity at the inlet boundary of
the computational domain. Moreover we recall that uB is the body velocity (namely
of the cylinder). Let the dimensionless stress tensor T(u, p) be defined as

T(u, p) = −pI +
1

Re
(∇u +∇uT), (4.45)

with I the 2× 2 identity tensor. The fluid dynamics force F f and torque M f exerted
by the fluid on the cylinder are

F f =

˛
∂ΩB

T(u, p)nB dγB, (4.46a)

M f =

˛
∂ΩB

rB ∧T(u, p)nB dγB, (4.46b)

where nB is the unit outer normal to the cylinder and rB is the position of any point
along the boundary ∂ΩB of the cylinder. We define the aerodynamics coefficients
as C = 2F f /(ρu2

∞D), with D the diameter of the cylinder. Finally, let the drag CD
and lift CL coefficients be CD = C · ex and CL = C · ey, respectively, with {ex, ey} the
canonical basis for R2.
The geometrical setting in this section is the same for all test cases. For this reason
we study the grid convergence on one case and we consider the same set of back-
and foreground meshes for all the other test cases. This zero test case simulates the
flow around a steady cylinder at Re = 550 with an inlet fluid velocity u∞ = [1, 0]T.
The center of the cylinder is located in the origin of the axis and is 8D far from the
inlet boundary, 16D from the outlet boundary and 8D from any of the upper and
lower boundary of the channel. At the boundaries, at the inlet a constant velocity
u∞ is imposed, there are no-reflecting conditions at the outlet [64] and streamline
conditions (i.e., v = 0 and ∂yu = 0) on the other two boundaries. Since the analytic
solution for this case is not available, we compute the drag coefficient evolution in
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TABLE 4.4 – Features of the five considered Chimera meshes for the
convergence grid study. The number of cells in background and fore-
ground are Nb and N f , respectively, whose sum is N. Label NB refers

to the number of cells around the cylinder.

Background Foreground N

h Nb min(h) max(h) N f NB

Grid1 4.00e-1 2604 2.14e-2 4.00e-1 2686 80 5290
Grid2 3.00e-1 4510 1.11e-2 3.00e-1 4554 100 9044
Grid3 3.00e-1 4510 7.90e-3 3.00e-1 7848 110 12358
Grid4 2.00e-1 10004 7.90e-3 2.00e-1 7194 110 17198
Grid5 1.00e-1 39204 6.90e-3 1.00e-1 18183 210 57387
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FIGURE 4.9 – Drag coefficient for the zero test case (steady cylinder at
Re = 550). The comparison is also validated with the drag coefficient

from Ploumhans and Winckelmans (PW2000) [91].

the time window [0, 5] for five different Chimera grid configurations, summarized
in Table 4.4. Grid1 is the coarsest grid and Grid5 is the finest one. In particular,
Grid3 is an intermediate configuration between Grid2 and Grid4. In fact it mixes the
background characteristics of Grid2 with the foreground ones of Grid4. The drag
coefficients from the different overset configurations are also compared with the one
by Ploumhans and Winckelmans [91] for the same test case. Figure 4.9 shows the
comparison. All curves match the one from the literature and, from the second to
the last configuration, the drag coefficient is the same. For this reason we use the
Chimera mesh Grid3 (in Figure 4.10) because, among all the meshes, it allows a good
compromise between computational times and numerical results.

Steady cylinder

Let us consider the same configuration of the zero test case for a Reynolds num-
ber Re = 200. In particular we study the asymptotic regime (long time integration).
For this test case the validation with literature is performed for the average drag
coefficient and the Strouhal number St = fvD/u∞, with fv the frequency of vortex
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FIGURE 4.10 – Chimera configuration of Grid3.

TABLE 4.5 – Comparison for the average drag coefficient CD and the
Strouhal number St for the steady cylinder at Re = 200.

CD St

Present 1.3430 0.1979
Bergmann [17] 1.3900 0.1999
Bergmann Iollo [20] 1.3500 0.1980
Bergmann et al. [19] 1.4000 -
Braza et al. [26] 1.4000 0.2000
He et al. [56] 1.3560 0.1978
Henderson [57] 1.3412 0.1971

shedding. The comparison in Table 4.5 shows that the results obtained with the pre-
sented scheme match the results of the literature. In Figure 4.11 there are the plots
of the drag and lift coefficients for the whole time period of integration.

Impulsively started cylinders

We now consider the impulsively started cylinders, namely test cases for which
uB 6= 0 and u∞ = 0. In this case no reflecting conditions are imposed also on the
inlet boundary. At the initial time the cylinder is horizontally shifted of 5D towards
the outlet boundary with respect to the steady test cases. For the whole time interval
of integration a constant velocity u∞ = [−1, 0]T is imposed to the cylinder.
In these conditions, at Re = 550 we expect a similar situation with the zero test case.
Thus we compute the drag coefficient by comparing it to both the one of the steady
case and the one from the literature provided by Ploumhans and Winckelmans [91]
as previously done. The comparison is plotted in Figure 4.12. The curves for the
steady and moving cases are very similar and comparable with the reference litera-
ture data. The similarity of the two test cases is also evident from the color plots of
the pressure at time t = 5 in Figure 4.13.
As for the steady test cases, we also considered the impulsively started cylinder at
Re = 200. By analysing the comparison in Figure 4.14 of the drag coefficient and data
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FIGURE 4.11 – Drag and lift coefficients for the steady cylinder at
Re = 200.

from the literature by Koumoutsakos and Leonard (KL1995) [69] and Bergmann et
al. (BHI2014) [19], there is a good agreement with the previous studies.

Impulsively started then stopped cylinders

With the same boundary conditions of the previous subsection, we also consider
test cases where the cylinder is impulsively starting its movement and at a given
time t0 it stops. For this subsection we consider a viscous-dominant flow at Re = 40
and a convective-dominant flow at Re = 550. For the former case the stopping time
t0 = 5, while in the latter case the cylinder is stopped at t0 = 2.5. For both cases,
before stopping, the cylinder has a constant velocity uB = [−1, 0]T. Figures 4.15 and
4.16 show the plot of the evolution of the drag coefficient compared with data from
literature provided by Koumoutsakos and Leonard [69] and Bergmann et al. [19] for
both test cases. Also in this case present data match the previous studies.

With the same accuracy, evaluated against the test cases of Bergmann et al. [19],
the validated data though the presented method require the mesh to be composed
of a number of cells from 1 to 2 orders of magnitude less. As a matter of fact, if the
degrees of freedom in [19] and [20] are ∼ 106 and ∼ 105, respectively, the overset
grid exploits ∼ 104 spatial cells.

4.6 Sedimentation of a cylinder

The last test case analyses the sedimentation of a cylinder in a cavity. In order to
validate the computed data with the proposed method, we set the same configura-
tion by Coquerelle and Cottet [35], Bergmann et al. [19] and Bergmann and Iollo [20].
The cavity is defined by the vertical channel [0, 2] × [0, 6] with a two-dimensional
cylinder, with its center of mass originally located in (1, 4), falling subjected to the
gravity up to the lower boundary. The cylinder radius is r = 0.125 with a density
ρs = 1.5. The viscosity and the density of the bounding fluid are ν = 0.01 and
ρ f = 1.0, respectively. The gravity has a modulus g = −980. The cylinder moves
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FIGURE 4.12 – Comparison of drag coefficient between the steady
and impulsively started cylinder at Re = 550. Both are compared

with the results by Ploumhans and Winckelmans (PW2000) [91].

(A) Steady cylinder (B) Moving cylinder

FIGURE 4.13 – Pressure at t = 5 for steady and impulsively moving
cylinders at Re = 550.
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FIGURE 4.14 – Comparison of the evolution of the drag coefficient
up to t = 0.25 for the impulsively started cylinder at Re = 200 with
data by Koumoutsakos and Leonard (KL1995) [69] and Bergmann et

al. (BHI2014) [19].
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FIGURE 4.15 – Comparison of the evolution of the drag coefficient up
to t = 7.5 for the impulsively started and then stopped cylinder at

Re = 40 with data by Bergmann et al. (BHI2014) [19].
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FIGURE 4.16 – Comparison of the evolution of the drag coefficient
up to t = 5 for the impulsively started and then stopped cylinder at
Re = 550 with data by Koumoutsakos and Leonard (KL1995) [69] and

Bergmann et al. (BHI2014) [19].

accordingly to

uB = V + Ω ∧ (x− xG), (4.47a)
mBV̇ = −F f + m̃g, (4.47b)

JBΩ̇ = M f , (4.47c)

where V and Ω are the translation and rotational velocities, respectively, and xG is
the center of the cylinder; in the translation equation (4.47b) mB = πr2ρs is the cylin-
der mass while m̃ = πr2(ρs − ρ f ) is the difference of fluid and cylinder masses after
the Archimedes’ law; in the rotational equation (4.47c) the cylinder inertia is denoted
by JB = πr4ρs; finally F f and M f are the fluid dynamics forces and torque defined
in (4.46), respectively.

The background mesh is uniform and Cartesian with cells of size h = 5× 10−2.
The foreground mesh fits the cylinder shape with the characteristic lengths of the
cell varying from 1.4× 10−3 to 5× 10−2. The time step is ∆t = min(h)/20. Since
we are interested in simulating the cylinder up to the lower boundary, there exists
a time t0 after which the foreground mesh overcomes the physical boundaries of
the cavity, as showed in Figure 4.17. In order to manage the part of the foreground
mesh exceeding the physical domain, we extend the computational domain as Ω̃ =
(0, 2)× (−1, 2) such that the foreground mesh is always fully contained. Thus, the
exceeding region is discretized by a part of the background and, for any time t > t0,
by a part of the foreground mesh. Consequently, also the hole in the background
will overcome the physical boundary after t0. In the whole computational domain
a fluid-solid single flow is considered by modeling a solid material in the extended
part (i.e., for any y < 0). This single flow is computed via a penalization method
[4]. With this approach the entire system is considered as a porous medium with a
variable discontinuous permeability K. In particular, the extended domain simulates
an impermeable body with a very low permeability (i.e., K � 1). In this case, the
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FIGURE 4.17 – Chimera configuration for the sedimentation cylinder.
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FIGURE 4.18 – Comparison of the vertical velocity v on a horizontal
cut through the center of the cylinder at time t = 0.1 for the sedi-
mentation test case with data by Coquerelle and Cottet (CC2008) [35],
Bergmann et al. (BHI2014) [19] and Bergmann and Iollo (BI2011) [20].
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FIGURE 4.19 – Comparison of the evolution of the vertical position yG
of the center of the cylinder for the sedimentation test case with data
by Coquerelle and Cottet (CC2008) [35], Bergmann et al. (BHI2014)

[19] and Bergmann and Iollo (BI2011) [20].



4.6. Sedimentation of a cylinder 101

considered equation in place of (4.2) reads

∂u
∂t

+∇ · (uuT) = −∇p +
1

Re
∆u +

χW

K
(uW − u), (4.48)

where uW is the velocity of the wall, zero in our case, and χW is the characteristic
function defined as

χW =

{
1, in the wall
0, elsewhere

. (4.49)

In the limit of K → 0, equation (4.48) tends to the Navier-Stokes equation (4.2) [4].
In this test case K = 10−8. Despite in principle the penalization method can be used
also for the cylinder, we remark that in this case we use it only for managing the
extended part of the computational domain. In particular, we consider the solid
below the wall having the same density of the cylinder (i.e., ρs = 1.5). Since the
new reaction term in (4.48) affects the velocity, with respect to the fractional Chorin-
Temam method, it is included in the predictor solution (4.7). Thus, it implies the
ADER scheme to consider a reaction stiff source term [59]. In particular, for the local
space-time Galerkin solution, a pseudo-mass term arises as

∆t
K
〈θm, χW |ξ̂l

θl〉q̂k,l (4.50)

for m, l = 1, . . . , 27, with χW |ξ̂l
= χW(x(ξ̂l), y(ξ̂l)) is the characteristic function com-

posed with the spatial components of the reference map Mi along the l-th tensor
Gauss-Legendre quadrature point. Successively, for the fixed-point problem, at the
iteration r, this reaction term (4.50) yields an unknown component as

∆t
K
〈θm, χW |ξ̂l

θl〉q̂r+1
k,l .

During the ADER correction step (4.16) , the penalization term is just added at the
left hand side of the space-time divergence form as

∇x,t ·Uk +
χW

K
uk = 0. (4.51)

In order to write the FV scheme, by integrating the above expression in the physical
space-time slab Cn

i , the method becomes

− |Ωn
i |ū
∗,n
k,i + |Ωn+1

i |ū∗,n+1
k,i +

4

∑
j=1

¨
Γn

ij

U k · nx,t dΓ +

˚
Cn

i

χW

K
uk dC = 0. (4.52)

Scheme (4.52) is not affected in the space-time fluxes by the new reaction term. For
this reason, the procedure of the method remains the same as explained in Section
4.2.1.

Figures 4.18 and 4.19 show the validation for the vertical velocity on the horizon-
tal line cutting the cylinder along the center and the evolution of the height of the
cylinder, respectively. Present data present good agreement with all the ones from
the literature. In particular it is possible to remark a closer match with the curves by
Bergmann et al. [19]; indeed both the present method and the method used in that
paper are second-order accurate. Also in this case it is possible to remark the sensible
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decreasing of degrees of freedom needed by the numerical solution through the pre-
sented method with respect to the ones from the literature. In fact if the overset grid
is composed of 9267 cells (i.e., 5964 in the background and 3663 in the foreground),
grids employed in [35], [19] and [20] use about 3× 106, 8× 105 and 2× 106 cells.

4.7 Conclusions of the chapter

We presented a FV scheme that is second-order accurate in space and time for the
solution of the incompressible Navier-Stokes equations with moving meshes. The
method is based on the Chorin-Temam fractional step method. The predictor veloc-
ity is solved through an extension of the ADER method for a nonlinear convective-
diffusive system on a Chimera mesh with a compact data transmission condition
for fringe cells, i.e., those cells devoted to the communication between the different
meshes of the overset grid. The projection step exploits a FV hybrid method for the
reconstruction of the pressure gradient. In particular a geometric approach is used
for internal cells and a weighted expansion is employed for expressing the gradient
along the fringe cells. We proved that the approaches for internal and fringe cells
are the same in the limit of a no-shift overlapping condition. This result is achieved
by properly minimizing a convex function for the local coefficients allowing to take
into account both the second-order truncation of the solution and the distribution of
data in the local stencil.
The numerical results showed that the movement of the mesh does not introduce
spurious oscillation to the numerical solution of the problem and that second-order
accuracy is preserved in both space and time. In order to test the method, a wide
range of canonical cases is exposed. Their validation confirms that the obtained
data match the ones from the literature. In particular, results for tests where the ex-
act solution is not available are always closer to the ones obtained by second-order
methods. Moreover, at equal accuracy, the total number of cells for the overset grid
(namely the degrees of freedom) is reduced by up to two orders of magnitude com-
pared to the ones from the cited literature. With the sedimentation test case, we
introduced a reaction term which is not present a priori in the original equation. In
particular, we mixed the adapted ADER method for Chimera meshes with a penal-
ization method in order not to cut part of the foreground mesh that overcomes the
physical boundaries of the domain. This application highlights the versatility of the
proposed method even in proximity of boundaries defined on other mesh blocks.
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Chapter 5

Reduced and Hyper-reduced
ADER method

The Model Order Reduction (MOR) is a numerical approach aiming at decreas-
ing the computational cost for the recovery of a numerical parameter-dependent
solution associated to a system of partial differential equations. It consists in a train-
ing stage (offline stage) where a relevant amount of information regarding the high-
fidelity solution is stored and processed in order to allow a cheap computation step
(online stage) for the computation of a new solution with a new set of values for the
parameter.
Among the several reduced order models (such as Reduced Basis [11, 92], Proper
Generalized Decomposition [31], Hierarchical Model Reduction [85], . . . ), one of the
most used is the Proper Orthogonal Decomposition (POD) [102, 22]. Accordingly to
this approach, a proper amount of information of high-fidelity solutions deriving by
the same problem for different parameter settings is stored in order to hierarchically
define a subspace where to finally project the reduced solution for a new parameter
setting in the online step. In particular, in the offline stage, the redundant informa-
tion is discarded and the relevant one is used in order to successively reduce the
computational cost in the online step.
In general, for solution of PDEs, the parameter setting (defining the geometry infor-
mation as well as the boundary condition or the diffusion parameter, for example)
affects the solution itself (e.g., by changing the support compact, or the features of a
shock wave, discontinuity contact, etc.).
In this chapter, we propose a reduced model in a Domain Decomposition (DD)
frame. This means that only in a certain region of the domain the reduction is ap-
plied while in the remaining part the High-Fidelity Model (HFM) is still employed
for recovering the numerical solution. The domain decomposition is automatically
defined by the overset composition of the meshes.
A preliminary first reduction based on the ADER method is proposed. In addition,
also a hyper-reduction [44, 43, 52] is defined for a cheap computation of the matrices
defining the algebraic counterparts of the scheme.

For the sake of simplicity and with no loss of generality, we present the method
by analyzing the linear and nonlinear convection-diffusion problem defined by the
problem: find u : Ω(t)× (0, T)→ R such that:

∂tu +∇ · F(u,∇u) = f Ω(t; z)× (0, T) (5.1)

properly closed with boundary and initial conditions. Problem (5.1) depends on a
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parameter z ∈ Z ⊂ R (eventually time-dependent) defining the evolution of the do-
main Ω(t) in time. For this reason, the problem is coupled with the Cauchy problem{

Ẋ = V(x, t; u; z) in (0, T)
X(0) = X0

(5.2)

which defines the movement of the foreground mesh employed for discretizing the
space around the deforming subset of the physical domain.

5.1 Reduced-order model based on ADER approach

Inspired by ADER method explained in Chapter 3, this section is devoted in
modeling a reduced-order model for ADER method. As for the full approach, first
the reduction is applied to the prediction finite element step, successively the re-
duced correction stage is explained.

5.1.1 The prediction stage

Let the time interval (0, T) be subdivided into intervals (tn, tn+1). The prediction
problem reads: find q : Ω(t)× (tn, tn+1)→ R such that:{

∂tq +∇ · F(q,∇q) = f in Ω(t)× (tn, tn+1)

q = un in Ωn , (5.3)

where un is the just computed solution at time tn. The space-time cylinder Ω(t)×
(tn, tn+1) is named B. Accordingly with the notation in the previous chapters, its
discretization is B =

⋃N
i=1 Cn

i , with Cn
i = Ωi(t)× (tn, tn+1). Let VM = span{Φm}M

m=1
be the reduced space defined by M modal function Φm(x, t) for any (x, t) in B. The
modal function are found during the offline stage of the reduced order model. The
objective is to find a projection of the solution over the reduced space. It means to
find a reduced solution

q(x, t; z) =
M

∑
m=1

an
m(z)Φm(x, t), (5.4)

where coefficients {an
m(z)}M

m=1, referring to time sub-interval (tn, tn+1), are found in
the online stage.
Since the modal function in VM are computed from the ADER prediction stage, it is
possible to state the inclusion VM ⊂ X, with

X =

{
v : B → R : (v|Cn

i
◦Mi|z) ∈ Θ ∀i = 1, . . . , N

}
(5.5)

functional space of functions whose restriction to any space-time cell Cn
i in B belongs

to

Θ =

{
v ∈ L2(Ĉ) : (0, 1)2 3 (ξ , η) 7→ v(ξ , η, τ) ∈ H1((0, 1))

}
, (5.6)

which is the functional solution space of local solutions from the high-fidelity method.
Space (5.6) is introduced in 3.2.2 and it is the natural space where to find the high-
fidelity weak solution of problem (5.1) restricted to the space-time Cn

i .
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Remark 5.1.1. Functions in space X (and consequently in subspace VM) are potentially
discontinuous in space.

Remark 5.1.2. For different instances of the parameter z ∈ Z, the union of the prediction
solutions over any space-time cell belongs to space (5.5).

It is now possible to weaken (5.3) as follows: find q ∈ VM such that q|t=tn = un and
ˆ
B

Φ(∂tq +∇ · F(q,∇q)− f ) dB = 0 ∀Φ ∈ X. (5.7)

Since the reduction is applied only on a decomposition of the domain defined by the
foreground mesh, it holds a mutually disjoint condition such that Cn

i ∩ Cn
j = ∅ for

any i 6= j. Consequently weak form (5.7) can be exactly written as

N

∑
i=1

( ˆ
Cn

i

Φ∂tq dC +
ˆ
Cn

i

Φ∇ · F(q,∇q) dC −
ˆ
Cn

i

Φ f dC
)
= 0 ∀Φ ∈ X. (5.8)

Concerning the first left hand side of (5.8), it holds Φ∂tq = ∂t(Φq)− ∂tΦq. Moreover,
due to both Reynolds’ transport theorem and the first fundamental integral calculus
theorem we have

ˆ
Cn

i

∂t(Φq) dC =
ˆ tn+1

tn

ˆ
Ωi(t)

∂t(Φq) dΩ dt

=

ˆ tn+1

tn

(
d
dt

ˆ
Ωi(t)

Φq dΩ−
˛

∂Ωi(t)
ΦqV · n̄i dγ

)
dt

=

ˆ
Ωn+1

i

Φq dΩ−
ˆ

Ωn
i

Φq dΩ−
4

∑
j=1

ˆ
Γn

ij

ΦqV ij · n̄ij dΓ,

(5.9)

with the boundary of the space time cell

∂Cn
i = Ωn

i ∪Ωn+1
i ∪

4⋃
j=1

Γn
ij

whose space-time manifold
⋃4

j=1 Γn
ij deformation velocity and spatial unit normal

are V ij and n̄ij, respectively. Let

Fχ =
M

∑
m=1

Fχ,mΦm (5.10)

be the χ-component of the advective-diffusive term F projected onto VM, with χ =
x, y. By taking the generic test function Φ in the reduced space and by plugging (5.4),
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(5.10) and (5.9) into the analytic weak form (5.8), its algebraic counterpart reads 1

N

∑
i=1

[( ˆ
Ωn+1

i

ΦlΦm dΩ−
4

∑
j=1

ˆ
Γn

ij

ΦlΦmV ij · n̄i j dΓ−
ˆ
Cn

i

∂tΦlΦm dC
)

an
m

+

ˆ
Cn

i

Φl∂xΦm dC Fx,m +

ˆ
Cn

i

Φl∂yΦm dC Fy,m

−
ˆ
Cn

i

Φl f dC −
ˆ

Ωn
i

Φlun dΩ
]
= 0 ∀l = 1, . . . , M.

(5.11)

By defining the matrices and vectors

[M1]lm =
N

∑
i=1

ˆ
Ωn+1

i

ΦlΦm dΩ; [A]lm =
N

∑
i=1

4

∑
j=1

ˆ
Γn

ij

ΦlΦmV ij · n̄ij dΓ;

[Kt]lm =
N

∑
i=1

ˆ
Cn

i

∂tΦlΦm dC; [Kχ]lm =
N

∑
i=1

ˆ
Cn

i

Φl∂χΦm dC;

[an]m = an
m; [Fχ]m = Fχ,m =

N

∑
i=1

ˆ
Cn

i

FχΦm dC;

[ f ]l =
N

∑
i=1

ˆ
Cn

i

Φl f dC; [uold]l =
N

∑
i=1

ˆ
Ωn

i

Φlun dΩ;

(5.12)

for any l, m = 1, . . . , M and χ = x, y, scheme (5.11) becomes

(M1 − A− Kt)an + KxFx + KyFy = f + uold. (5.13)

In the above algebraic problem the advective-diffusive components Fx and Fy are
implicitly defined by the unknown coefficients an. Thus, it is solved via a fixed
point iteration approach as for the high-fidelity method.

5.1.2 The correction step

Once the predictor solution (5.4) is found through (5.13), the corrected ADER so-
lution un+1 : Ωn+1 → R as well is found as usual (see Section 3.2.4).
In view of model reduction and hyper-reduction that also concerns the correction
stage of ADER, it is necessary to define a reduced representation also for the cor-
rected solution. In particular, let the functional space

UL = span{Ψl}L
l=1 ⊂ H1(Ω(t)) ∀t ∈ (0, T)

be defined by corrected modal basis functions Ψl(x) on Ω(t), with t in (0, T). The
corrected modal basis are computed in the offline stage as for the previously intro-
duced reduced modal basis Φm(x, t). Consequently, the projection of the corrected
solution over the space reads

u(x, t; z) =
L

∑
l=1

αl(t; z)Ψl(x(t)). (5.14)

1. The Einstein’s notation on repeated index m is used.
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Let u be the discrete counterpart of (5.14) defined over any cell (thus u ∈ RN). There-
fore, at time tn+1, the representation (5.14) algebraically is u = [Ψ]α, with matrix of
basis [Ψ] ∈ RN×L and coefficient vector α ∈ RL.
In view of a model reduction and hyper-reduction, in principle it is possible to de-
fine a reduced scheme of the correction stage of ADER. However, in this chapter we
just project the corrected solution onto the corrected reduced space UL. In particular,
the l-th corrected coefficient

αl =

ˆ
Ωn+1

uΨl dΩ (5.15)

is the L2-projection of the solution u along the l-th basis component Ψl . By introduc-
ing the quadrature integration matrix W ∈ RN×N associated to the spatial configu-
ration Ωn+1, the corrected coefficient (5.15) is approximated as αl ' ΨT

l Wu, with Ψl
the l-th column of [Ψ]. Therefore it holds α = [Ψ]TWu. In order to be coherent with
the presented theory, in the numerical validation, instead of the corrected solution
u, we consider its projection PUL u which algebraically is

PUL u = [Ψ]α = [Ψ][Ψ]TWu. (5.16)

Remark 5.1.3. By abuse of notation, the projector functional PUL : L2(Ωn+1) → UL for
solution u is confused with its algebraic counterpart as written in (5.16).

Remark 5.1.4. There is a substantial difference in the properties of the coefficients {an
m}M

m=1
projecting the predicted solution onto VM and those in (5.15) projecting the corrected solution
onto UL. As a matter of fact, the former do not have a point-wise dependence on the time
instant between tn and tn+1, for any n > 0. Rather they depend on the time step ∆t defining
the time dimension of B. Instead, the second indexes strictly depend on the time instant on
which the solution of the problem is evaluated.

5.1.3 Domain decomposition approach

As mentioned in the previous subsection, the proposed reduced model is built in
a domain decomposition frame. In particular, the reduction is applied to the mov-
ing subdomain defined by the partition of the foreground mesh and a high-fidelity
(HF) ADER approach is used for recovering the numerical solution in the remaining
subdomain defined by the background mesh. Thus, the exchange of information is
managed as explained in Section 3.2.5, even though the information are reduced in
foreground and HF in background. We remark that both the reduced and HF sub-
domains change accordingly to the parameter z. Consequently, for a different values
of z, for the same confined region of the space in Ω, the recovered information could
be either reduced or high-fidelity with respect to the specific deformation of the do-
main.

The proposed reduced method in Sections 5.1.1 and 5.1.2 is an attempt to model
ADER method over a macro-cell defined by the foreground mesh. In particular, the
HFM is employed in the micro-cells Cn

i and Ωn
i , while the ROM is defined over the

macro-cell identified by the moving or deforming foreground mesh. Consequently,
the global domain is decomposed in regions in order to isolate specific solutions
features accordingly to the deformation itself. In this context, the overset grid not
only easily discretizes the deforming space with respect to its geometrical variations
but also defines the zone of the high-fidelity and reduced numerical solution.
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5.2 Proper Orthogonal Decomposition

In the offline stage, the ADER scheme provides a database of Ns snapshots for
both predictor and corrector high-fidelity solutions collected at different time in-
stances, for different input parameters as well as for different mesh configurations.
Let gb = g(x, tk(b); zj(b)) be the b-th snapshot for any node x in (sub)domain E ⊆ B
at time instance tk(b) and for parameter assuming value zj(b).
The basis functions Υr (with Υr being either Φr or Ψr), r = 1, . . . , R (with R the
dimension of the reduced space, namely M for the predictor basis and L for the cor-
rected basis) are computed by POD in order to represent the solution snapshots at
best. In particular, the subspace Y = span{Υr}R

r=1 (with Y coinciding with VM or
UL) is the subspace of rank R minimizing the difference between the snapshots and
their projection onto the subspace itself, in the least-square sense. Formally, the pro-
jection onto the subspace Y is defined by the projector functional PY : L2(E) → Y
such that

L2(E) 3 g 7→ PY g =
R

∑
r=1

ˆ
E

gΥr dE Υr ∈ Y . (5.17)

The basis functions Υr are the solution of the optimization problem

minimize
Υ1 ,...,ΥR

Ns

∑
b=1

ˆ
E
(gb −PY gb)2 dE

subject to
ˆ

E
ΥµΥν dE = δµν ∀µ, ν = 1, . . . , R.

(5.18)

In order to numerically solve the POD problem (5.17), let the snapshots and the basis
functions be stored in matrices

G =


g1(x1) g2(x1) · · · gNs(x1)
g1(x2) g2(x2) · · · gNs(x2)

...
...

. . .
...

g1(xNx) g2(xNx) · · · gNs(xNx)

 ∈ RNx×Ns (5.19)

and

[Υ] =


Υ1(x1) Υ2(x1) · · · ΥR(x1)
Υ1(x2) Υ2(x2) · · · ΥR(x2)

...
...

. . .
...

Υ1(xNx) Υ2(xNx) · · · ΥR(xNx)

 ∈ RNx×R, (5.20)

respectively, with Nx the number of quadrature points in E. Moreover, let W ∈
RNx×Nx be the symmetric positive definite matrix of weights for a quadrature rule
integration. Thus problem (5.17) is rewritten as

minimize
[Υ]

‖G− [Υ][Υ]TWG‖2
FW

subject to [Υ]TW[Υ] = I,
(5.21)

where, for a generic matrix A, ‖A‖2
FW

:= tr(ATWA) is the Frobenius’ norm asso-

ciated to the scalar product defined by W. By defining matrix Ĝ = (W
1
2 )TG, with

W = W
1
2 (W

1
2 )T the Cholesky decomposition of weight matrix W, its truncated SVD

reads Ĝ ' URΣRVT
R . Due to the Eckart-Young theorem [42], problem (5.21) is solved
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by
[Υ] = (W

1
2 )−TUR. (5.22)

5.3 Hyper-reduction

For the resolution of problem (5.13), matrices as well as convective-diffusive
components, force term and previous solution vectors in (5.12) have to be computed.
Let E ⊆ B be a subset of the space-time cylinder B = Ω(t)× (tn, tn+1) (in particular,
it could be the cylinder B itself, or the lower base Ωn or the upper base Ωn+1 or the
union of all the space-time manifolds Γn

ij). Moreover, let TE = {Ei}NE
i=1 be a partition

of set E such that E =
⋃NE

i=1 Ei, with Ei ∩ Ej = ∅ for any i 6= j. All the algebraic com-
ponents in (5.12) can be defined in an abstract form from the following functionals
Hz

E : VM ×VM → R such that

VM ×VM 3 ( f , g) 7→ Hz
E[ f , g] :=

NE

∑
i=1

ˆ
Ei

δ1 f δ2g dE ∈ R, (5.23)

and PVM ,m : L2(B)→ R, for any m = 1, . . . , M defined as

L2(B) 3 h 7→ PVM ,mh :=
ˆ
B

hΦm dC ∈ R. (5.24)

For functional (5.23), the local operators δ1 and δ2 represent any derivative up to the
first order among the identity I and ∂t, ∂x or ∂y. The derivative in time is always pos-
sible to perform for functions in VM since any mapMi is always continuous in time.
In addition, since the functional Hz

E is defined as sum of integrals over any cell Ei,
the derivatives in space have sense because functions in VM are discontinuous over
E but their restriction over the single cell Ei, for any i = 1, . . . , NE, is regular enough
for first order space derivatives. Functionals in (5.24) represent the projection of any
function in L2(B) along the m-th basis component of VM.

Remark 5.3.1. Functional Hz
E depends on the configuration of the space and, eventually,

time of set E. The configuration is led by the value of the parameter z.

For the sake of simplicity, we present the hyper-reduction over functionalHz
E; the

hyper-reduction for projectors (5.24) easily follows. Let Ê ⊆ Ĉ such thatMi(Ê) ≡ Ei.
For the reference cell Ê it is possible to define Nint quadrature nodes {x̂j}Nint

j=1 associ-

ated to weights {ωj}Nint
j=1 . Since functional Hz

E takes input in VM, its computation for
any f , g ∈ VM is totally described by the computation over the basis components Φl
and Φm, for any couple l, m = 1, . . . , M. Therefore, at discrete level, it holds

Hz
E[Φl , Φm] =

NE

∑
i=1

ˆ
Ei

δ1Φl δ2Φm dE =
NE

∑
i=1

ˆ
Ê
(δ1Φl ◦Mi)(δ2Φm ◦Mi)Di

z dÊ

'
NE

∑
i=1

Nint

∑
j=1

ωj(δ1Φl ◦Mi)j(δ2Φm ◦Mi)jDi
z,j

(5.25)

where (δ1Φl ◦Mi)j = (δ1Φl ◦Mi)(x̂j) and (δ2Φm ◦Mi)j = (δ2Φm ◦Mi)(x̂j). Inte-
gral (5.25) is performed over the reference cell Ê through mapMi for two reasons:
this numerically simplifies the computation of the integral via a quadrature rule
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TABLE 5.1 – Characteristics of the generator functional Hz
E for the

hyper-reduction with respect to matrices in (5.12). Numbers N and
Nedges are the total number of cells and the total number of edges,
respectively. For matrix A, the definition of the metric Di

z depends on
the integration domain Γn

ij. Vector nij is the unit outward normal to
manifold edge Γn

ij. Physical variable χ can be either x or y.

Ei δ1 δ2 Di
z Ê NE Nint

M1 Ωn+1
i I I |xξyη − xηyξ |τ=1 (0, 1)2 N 9

A Γn
ij I I |Cof(J)nij| (0, 1)2 Nedges 9

Kt Cn
i ∂t I |det Ji| (0, 1)3 N 27

Kχ Cn
i I ∂χ |det Ji| (0, 1)3 N 27

and because in the prediction step of ADER approach usually the snapshots are col-
lected with respect to the reference system (ξ , η, τ); consequently the reduced basis
spanning VM from the offline stage is still defined over the reference cell. Conse-
quently, the geometrical information of the integral over Ei is stored in the generic
metric component 2 Di

z which depends on the particular configuration of E, i.e. on
the specific value of the parameter z. Table (5.1) resumes all the characteristics of the
generator functional Hz

E. Regarding the m-th projector functional PVM ,m, for vectors
Fχ, f and uold, the input functions are Fχ, f and un, respectively. The total number
of quadrature points for computing the projector outputs is NNint, with Nint = 27.

The total number of quadrature nodes is NENint. The goal in the hyper-reduction
stage is to find a number Nhr � NENint of quadrature points among all in order to
alleviate the computational costs for assembling matrices and vectors. Thus, a new
set of weights needs to be found. Let {ω̃i

j}
Nint
j=1 be the set of new weights such that

only Nhr among them are strictly positive with the remaining ones assuming value
0. Moreover, let

c(l,m),i
j,k = (δ1Φl ◦Mi)j(δ2Φm ◦Mi)jDi

zk ,j

be the integrating discretized function associated to cell Ei over the quadrature node
x̂j in the configuration given by the k-th parameter z in the dataset for the couple of
basis function Φl and Φm, for l, m = 1, . . . , M, i = 1, . . . , NE, j = 1, . . . , Nint and k =
1, . . . , Nz. Inspired by [95], the new quadrature points and weights are determined
simultaneously in the offline stage by approximating the hyper-reduction system

Cω̃ ' d, (5.26)

2. For example, if Ei is the space-time cell Cn
i , the metric component is given by the absolute value

of the determinant of the Jacobian tensor associated to the transformation mapMi.
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with

C =



C1,1

C2,1

...
CM,1

C1,2

...
C1,M

...
CMM


∈ RM2 Nz×NE Nint ,

whose blocks are

Cl,m =


c(l,m),1

1,1 · · · c(l,m),1
Nint ,1

c(l,m),2
1,1 · · · c(l,m),2

Nint ,1
· · · c(l,m),NE

1,1 · · · c(l,m),NE
Nint ,1

c(l,m),1
1,2 · · · c(l,m),1

Nint ,2
c(l,m),2

1,2 · · · c(l,m),2
Nint ,2

· · · c(l,m),NE
1,2 · · · c(l,m),NE

Nint ,2
...

. . .
...

...
. . .

...
. . .

...
. . .

...
c(l,m),1

1,Ns
· · · c(l,m),1

Nint ,Ns
c(l,m),2

1,Ns
· · · c(l,m),2

Nint ,Ns
· · · c(l,m),NE

1,Ns
· · · c(l,m),NE

Nint ,Ns

 ∈ RNz×NE·Nint ;

ω̃ = [ω̃1
1 , · · · , ω̃1

Nint
, · · · , ω̃NE

1 , · · · , ω̃NE
Nint

]T ∈ RNE Nint

and

d =



d1,1

d2,1

...
dM,1

d1,2

...
d1,M

...
dMM


∈ RM2 Nz ,

whose components are

dl,m = [Hz1
E [Φl , Φm], · · · ,HzNz

E [Φl , Φm]]
T ∈ RNz .

The quadrature weights have to be non-negative and approximate system (5.26).
Thus they are looked in the set Λ = {w ∈ R

NE Nint
+ : ‖Cw− d‖2 ≤ ε‖d‖2}, depending

on a certain fixed tolerance ε, such that

ω̃ = arg min
w∈Λ
‖w‖0, (5.27)

with ‖ · ‖0 the `0-pseudo-norm. Problem (5.27) is NP-hard. For this reason it is
replaced by the non-negative least square minimization problem

ω̃ = arg min
w∈R

NE Nint
+

‖Cw− d‖2
2. (5.28)

Problem (5.28) is solved through the algorithm explained in Section 3 of Chapter 23
of [71]. This algorithm promotes the sparsity in the solution and terminates when
the stopping criterion ‖Cω̃− d‖2 ≤ ε‖d‖2 is fulfilled. The accuracy of the integral
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tends to be the one provided by the full integration as the hyper-reduction tolerance
ε vanishes. Once the new weights ω̃ are found, the new quadrature nodes are the
ones corresponding to the nonzero new weights.
When the solution of hyper-reduction problem (5.26) is approximated, the full weight
matrix W involved in the computation of integrals is replaced by the hyper-reduced
weight matrix W̃ provided by the new weights ω̃.

Remark 5.3.2. The approximated integral by using all quadrature nodes as in (5.25) strictly
depends on the metric of the integral, thus on the specific configuration in space and time of
integration domain E. The hyper-reduction stage allows to define a subset of quadrature
points and weights for any admissible configuration as stored in the dataset of snapshots.

Remark 5.3.3. As for the full model, also for the reduced model of ADER, in the prediction
stage, there are matrices that can be pre-computed once for all and others for which this is
not possible. Matrices in (5.12) depend on the deformation at any time. Thus, they have
to be computed at each time instance. The hyper-reduction stage outlines a strategy for
accelerating and alleviating the computation.

5.4 Numerical results

In this section we present a linear and a nonlinear test case for numerically val-
idating the reduced and hyper-reduced ADER algorithm. For both test cases, the
evolving domain is

Ω(t; z) = (−π, π)× (−2π, 2π)/
{
(x, y) ∈ R2 : x2 + (y + zt)2 < 0.52

}
, (5.29)

representing a vertical channel with a removed vertically moving circle of radius 0.5
moving in time t ∈ (0, 1.5) whose velocity is the parameter z ∈ Z = [−2, 2]. In
particular, the motion equation for the foreground mesh has a velocity force term

V = [0, z]T.

At time t = 0 the circle has center in the origin of axes, successively it can move
along y-axis towards −∞ if z < 0 or +∞ if z > 0. Around the removed circle, a
polar grid with radius from 0.5 to 1.5 is built. It represents the foreground moving
mesh. On the background a Cartesian grid discretizes the remaining zones of the
channel. Both the background and foreground meshes are composed of cells whose
size is approximately h0 = 1.5× 10−1 (for example, see Figures 5.1 or 5.6). For both
test cases, the dataset is composed of predicted and corrected high-fidelity solution
any 5∆t (∆t = CFLh0/‖β‖, with CFL = 0.4 and β being the advective field) for time
velocities z ∈ {−2 + 0.5k}8

k=0 (consequently Nz = 9).
The accuracy of the ROM with respect to the HFM is evaluated by measuring the
mismatch between the reduced solution and the high-fidelity solution accordingly
to the relative space-time error:

Error =

√√√√´ T
0

´
Ω(t)(uHFM − uROM)2 dΩ dt´ T

0

´
Ω(t) u2

HFM dΩ dt
. (5.30)

For both linear and nonlinear test cases, the total number of cells composing the
foreground mesh is N f g = 767. Thus, since for the prediction step the number of
quadrature points into any cell is Nint = 27, the problem reduces from N f gNint =
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20709 DOFs to M DOFs. Regarding the corrected solution, if it is composed of 767
DOFs in the HFM, it is described by L DOFs after the projection over UL.

5.4.1 Linear test case

The linear test case is characterized by an advective-diffusive term

F(u;∇u) = βu− ν∇u,

where the advective field β = [1, 1]T and the diffusive term ν = 5× 10−2. The force
term f of the equation is such that the exact solution of the problem is

uex(x, y, t; z) = exp(−x2 − (y + zt)2 + 0.52) + cos(x− 0.5t) sin(y− 0.5t).

On the boundaries of the domain and at the origin of time, the numerical solution is
imposed to be the exact solution.

For this test case, three ROM solutions are recovered for three different definition
of parameter z:

— in-sample velocity: constant velocity z ≡ 1, which is a value of the parameter
z already stored in the dataset and used to build the reduced basis with the
other values of z;

— out-of-sample velocity: constant velocity z ≡ 0.8 which is a value of parameter z
not characterizing the solutions stored in the dataset;

— variable velocity: variable velocity z(t) = 2 cos(4t); this test case evaluates the
method not considering a constant velocity but a variable velocity whose ab-
solute value is always in Z = (−2, 2).

In figure 5.1 there are the high-fidelity solutions at final time t = 1.5 for some values
of cylinder velocity z. For the same time instance, the output of the ROM solutions
are in Figure 5.2.

For both in-sample and out-of-sample reconstruction, no hyper-reduction is used.
For the last case, i.e. for the variable velocity, both only reduced and hyper-reduced
numerical solutions are defined. In Figure 5.3 there are reported the reduced coeffi-
cients for the prediction step as functions of time. We remark that these coefficients
do not refer to the specific time instance tn but to all times in [tn, tn+1). In Figure
5.4 the plots of the errors between the reduced and hyper-reduced solutions are re-
ported. After the 6th mode the errors are less than 0.25%. For the hyper-reduction,
in Table 5.2 the number of quadrature points used for the different integrals are
reported. With respect to Figure 5.5 which depicts the percentage ratio between the
number Nhr of hyper-reduced quadrature points and the total number of quadrature
points NENint, for the variable velocity, from the 8th mode, the error is around 0.25%
for both reduced and hyper-reduced methods. These results is obtained despite the
values of the numbers of quadrature points reduce to less than 111 for E = Ω, 230
for E =

⋃
ij Γn

ij and 332 for E = B with respect to the total numbers of quadrature
points reported in Table 5.2.
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(A) z = −2 (B) z = −1

(C) z = 0 (D) z = +1.5

FIGURE 5.1 – High-fidelity solution at time t = 1.5 for the linear test
case for some instances of cylinder velocity z.

TABLE 5.2 – Total number NENint of quadrature points with respect
to the domain integration E.

E NE Nint NENint

Ω 767 9 6903⋃
ij Γn

ij 1594 9 14346
B 767 27 20709
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(A) In-sample, z = +1 (B) Out-if-sample, z = +0.8

(C) Variable velocity, z(t) =
2 cos(4t)

FIGURE 5.2 – ROM solutions at time t = 1.5 for the linear test case.
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(A) In-sample, z = +1

(B) Out-of-sample, z = +0.8

(C) Variable velocity, z(t) = 2 cos(4t)

FIGURE 5.3 – Evolution of the first five reduction coefficients for the
in-sample, out-of-sample and variable velocity reconstruction. These
coefficients do not refer to the specific time instance tn but to all times

in [tn, tn+1).
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FIGURE 5.4 – Error analysis for the linear test case. Both in-sample
and out-of-sample reconstructions are only reduced. For the last case,
the errors refer to the reduced and hyper-reduced numerical solu-

tions.
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FIGURE 5.5 – Percentage analysis of Nhr/(NENint) as function of the
number of modes for the linear test case. The reference number of

integration points is reported in the last column of Table 5.2.

5.4.2 Nonlinear test case

The nonlinear test case formally reads

∂tu +∇ · F(u,∇u) = 1 in Ω(t)× (0, T)
u ≡ 0 on ΓD × (0, T)
u = z on ΓB(t)× (0, T)
∇u · n = 0 on ΓN × (0, T)
u = u0(x) in Ω(0)× {0}

where the final time T = 1.5 and the domain Ω(t; z) is the same as the previous
linear test case. Boundary surfaces ΓN and ΓB(t) are the bottom of the channel and
the surface of the moving cylinder, respectively; consequently ΓN = ∂Ω(t)/(ΓN ∪
ΓB(t)). As for the previous test case, the dynamics of the moving cylinder is led by
the vertical velocity z ∈ Z = [−2, 2]. The convection-diffusion term is defined as

F(u,∇u) =
[

0
−z

]
tanh(u) u− ν∇u,

with ν = 5× 10−2. Because of the hyperbolic tangent of the solution in the convec-
tive part, the equation is nonlinear. Finally, the initial condition is

u0(x, y) =
1

2π3 (y− 2π)(x2 − π2).

This test case is particularly affected by the parameter z. As a matter of fact, it de-
fines the value of the solution at the boundary ΓB(t) and it modulates the convective
component along the y direction. Moreover, when the cylinder does not move, i.e.
when z ≡ 0, the convective component in F vanishes and the problem turns into
a linear heat equation on a non-evolving domain closed with mixed homogeneous
Dirichlet - Neumann conditions. Consequently, the parameter z also defines the na-
ture of the local operator and, consequently, of the equation itself. We remark that,
for this test case (as for the previous one), the most relevant dynamics is around the
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moving cylinder because of the strong boundary condition imposed on its surface.

In Figure 5.6 the high-fidelity solution at final time t = 1.5 for some instances of
the cylinder velocity z are reported. Figure 5.7 depicts the considered ROM solutions
at final time t = 1.5.
The ROM and HR solution is recovered in the following cases:

— in-sample velocity: constant velocity z ≡ 1, which is a solution stored in the
dataset in th offline stage;

— variable velocity: quadratically variable velocity z(t) = 8t2/9; in this case the
values of the velocity go from a minimum of 0 to the maximum value 2 (i.e. all
the possible positive velocities stored in the dataset).

In Figure 5.6 the high-fidelity solution at final time t = 1.5 for some instances of the
cylinder velocity z are reported. Figure 5.7 depicts the considered ROM solutions at
final time t = 1.5.

For the in-sample reconstruction, the hyper-reduction is not applied. On the con-
trary, a comparison between the reduced and the hyper-reduced techniques is per-
formed for the test case with a variable velocity. The plots of the first five reduced
coefficients for the two test cases are in Figure 5.8. The errors of the two test cases
are plotted in Figure 5.9. With respect to the linear test case, for both nonlinear tests
the errors start around a value of 35% but at the 14th mode they are slightly larger
than 1%, despite of the nonlinear dynamics governing the problem. Since the used
overset mesh is the same of the previous linear test case, information regarding the
total number of quadrature points in Table 5.2 is valid also for the nonlinear prob-
lem. After the 4th mode, the errors of the reduced and hyper-reduced mode for the
variable velocity are almost the same even though the number of quadrature points
for the hyper-reduced solution is less than 2% with respect to the total number of
quadrature points. In particular, for hyper-reduced solution with 14 modes (corre-
sponding to the maximum percentage of used quadrature points), when E = Ω the
number of quadrature points reduces from 6903 to 118, when E =

⋃
ij Γn

ij it reduces
from 14346 to 244 and when E = B from 20709 to 352. The hyper-reduction seems
to not affect the error with respect to the just reduced solution.

5.5 Conclusions and future perspectives of the chapter

We presented a former reduced and hyper-reduced formulation for ADER based
on a Proper Orthogonal Decomposition approach in a domain decomposition frame
over an overset grid. In particular, on several parameter settings for a linear and
nonlinear test cases, we analyzed the mismatch between the high-fidelity solution
and the reduced/hyper-reduced numerical solution. No spurious oscillations are
observed due to the movement of the foreground mesh over the background mesh.
For the presented test cases, the reduction in terms of degrees of freedom goes from
O(105) to O(1) ∼ O(10), with no significant loss in the precision of the solution.
Moreover, the hyper-reduction training in the offline stage allows to compute the
matrices involved in the algebraic counterpart of the scheme by using less than the
2% of the total number of quadrature points by not affecting the computed errors.



120 Chapter 5. Reduced and Hyper-reduced ADER method

(A) z = −2 (B) z = −1

(C) z = 0 (D) z = +1.5

FIGURE 5.6 – High-fidelity solution at time t = 1.5 for the nonlinear
test case for some instances of cylinder velocity z.
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(A) In-sample, z = +1 (B) Variable velocity, z(t) = 8t2/9

FIGURE 5.7 – ROM solutions at time t = 1.5 for the nonlinear test
case.

Future investigations will extend the integration of the scheme to incompressible
flows. Moreover, since the nature of the prediction reduced parameters do not de-
pend on the time instance but rather on the time-dimension of the space-time cylin-
der B, future perspectives address on using a larger time step in the online stage
with respect to the one used in the offline stage in order to enhance the computa-
tional times.
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(A) In-sample, z = +1

(B) Variable velocity, z(t) = 8t2/9

FIGURE 5.8 – Evolution of the first five reduction coefficients for the
in-sample and variable velocity reconstructions. These coefficients do
not refer to the specific time instance tn but to all times in [tn, tn+1).
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(B) Variable velocity, z(t) = 8t2/9

FIGURE 5.9 – Error analysis for the nonlinear test case. The in-sample
reconstruction is only reduced. For the other case, the errors refer to

the reduced and hyper-reduced numerical solutions.
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FIGURE 5.10 – Percentage analysis of Nhr/(NENint) as function of the
number of modes for the nonlinear test case. The reference number

of integration points is reported in the last column of Table 5.2.
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Conclusions

In this thesis we aim to formulate a method for the numerical solution of the
incompressible Navier-Stokes equations over complex domains discretized through
overset grids.

After some preliminary results in one dimension in Chapter 2, in Chapter 3 we
presented a second-order finite volume scheme for unsteady advection-diffusion
PDEs on overset grid. The scheme is based on an extension of the ADER method
to advection-diffusion equations with compact data transmission conditions from
the background to the foreground meshes and vice versa. During the prediction step,
ADER method is able to recover the numerical solution via a free-mesh approach.
For this reason any active cell (namely no hole cells) are undistinguished with re-
spect to their location far or at the overlapping interface. Successively, due to the
definition of a compact stencil at the interface, i.e. a hybrid minimal set of cells be-
longing to different mesh blocks that surround the fringe cell, the corrected solution
at the overlapping interface does not need to be interpolated through a subsequent
interpolation step.
We also introduced a new stabilization term for approximating the fluxes through
a Local Lax-Friedrichs approach. It takes into account both the convective and the
diffusive components of the local differential operator and it is obtained by prop-
erly relaxing the original problem by turning it into a hyperbolic system. Thus, we
introduced a relaxation parameter for which when it is taken smaller than a given
constant dependent on the suited order of accuracy of the scheme, it introduces an
error which is dominated by the numerical error.
The numerical illustrations for linear and non-linear systems show that background
and foreground moving meshes do not introduce spurious perturbation to the solu-
tion, uniformly reaching second order accuracy in space and time. In addition, we
showed that the speed of the foreground mesh does not influence the stability of the
method. Our results also show that the new LLF stabilization speed improves the
precision and robustness of the numerical solution and allows a less restrictive CFL
condition. Finally, it is shown that several foreground meshes, possibly overlapping
and with independent displacements, can seamlessly be employed thanks to this
approach.

In Chapter 4 we presented a FV scheme that is second-order accurate in space
and time for the solution of the incompressible Navier-Stokes equations with mov-
ing meshes. The method is based on the Chorin-Temam fractional step method. The
predictor velocity is solved through an extension of the ADER method for a nonlin-
ear convective-diffusive system on a Chimera mesh with a compact data transmis-
sion condition for fringe cells, as previously discussed.
The projection step exploits a FV hybrid method for the reconstruction of the pres-
sure gradient. In particular a geometric approach is used for internal cells and a
weighted expansion is employed for expressing the gradient along the fringe cells.
We proved that the approaches for internal and fringe cells are the same in the limit
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of a no-shift overlapping condition, i.e. when the overlapping between two blocks
is perfectly aligned for any cell. This result is achieved by properly minimizing
a convex function for the local coefficients allowing to take into account both the
second-order truncation of the solution and the distribution of data in the local sten-
cil. As previously remarked for the convection-diffusion problem, also for the Pois-
son equation arising the projection step, an interpolation step is skipped because the
discretization itself of the gradient is able to take into account the overlapping con-
figuration.
Also in this case, the numerical results showed that the movement of the mesh does
not introduce sporious oscillation to the numerical solution of the problem and that
second-order accuracy is preserved in both space and time. In order to test the
method, a wide range of canonical cases is exposed. Their validation confirms that
the obtained data match the ones from the literature. In particular, results for tests
where the exact solution is not available are always closer to the ones obtained by
second-order methods. Moreover, at equal accuracy, the total number of cells for
the overset grid (namely the degrees of freedom) is reduced by up to two orders of
magnitude compared to the ones from the cited literature.
With the sedimentation test case, we introduced a reaction term which is not present
a priori in the original equation. In particular, we mixed the adapted ADER method
for Chimera meshes with a penalization method in order not to cut part of the fore-
ground mesh that overcomes the physical boundaries of the domain. This applica-
tion highlights the versatility of the proposed method even in proximity of bound-
aries defined on other mesh blocks.

Finally, in the last Chapter 5 we presented a reduced and hyper-reduced formula-
tion for ADER based on a Proper Orthogonal Decomposition approach in a domain
decomposition frame over an overset grid. In particular, on several parameter set-
tings for a linear and nonlinear test cases, we analyzed the mismatch between the
high-fidelity solution and the reduced/hyper-reduced numerical solution. No spu-
rious oscillations are observed due to the movement of the foreground mesh over
the background mesh. In addition, the solution seems to be not affected by the do-
main decomposition approach for which the solution is reduced in foreground but
still high-fidelity in background.
The reduced ADER formulation gives the opportunity to re-define the method with
respect to a macro-cell geometrically outlined by the foreground mesh. In particular,
the classical Galerkin projection of ADER is substituted by a projection on particular
broken space, whose functions are locally continuous in space.
On the other hand, this new reformulation mandatory obliges to compute all the
matrices involved in the algebraic counterpart at any time instance. In order to en-
lighten the consequent computational costs, a hyper-reduction is introduced. Through
a training process, it allows to drastically decrease the number of quadrature point
over which the integrals are discretized regardless of the evolution of the domain;
in other words, the offline hyper-reduction step finds a fixed small set of quadrature
points onto which discretize the integrals for any admissible movement of the do-
main.
For the presented test cases, the reduction in terms of degrees of freedom goes from
O(105) toO(1) ∼ O(10). Moreover, the hyper-reduction training in the offline stage
allows to compute the matrices involved in the algebraic counterpart of the scheme
by using less than the 2% of the total number of quadrature points by not affecting
the computed errors.
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Future perspectives

One crucial aspect of the method is the local interpolation of the corrected so-
lution at current time tn used for the recovery of the predicted solution over the
space-time cell Ωi(t)× (tn, tn+1). For hyperbolic equations whose solution eventu-
ally present shock waves or large gradients in specific regions of the computational
domain a CWENO interpolation is used. For (linear and nonlinear) convection-
diffusion equations, due to the non-vanishing diffusion parameter, a simpler inter-
polation in P2 is adopted, i.e. polynomials of degree 2 are employed. However, even
for diffusive problems, especially in the presence of nonlinear PDEs, sometimes the
solutions may exhibit local characteristics that would be badly represented by sim-
ple polynomials of order 2. Since CWENO polynomials for overset grids in one
dimension have been shown to describe solutions with large gradients well, also at
the overlapping zone, possible extensions could be made in multiple dimensions.
This might be possible, moreover, from the fact that a compact stencil was also de-
fined at the overlap interfaces, i.e., for the fringe cells.

As often pointed out in the different chapters, a difference between the contents
of this thesis and the state of the art is in the definition of a compact stencil, even
at the overlapping interface. This operation facilitates the exchange of information
along the fringe cells. In some cases, as for the Poisson equation, it has also allowed
to encode already in the gradient approximation the particular geometric configura-
tion of superposition. However for now the search for a compact frontier stencil is
only well achieved when the size of the fringe cell is comparable to the cells on the
other partition. The compact stencil composition algorithm is essentially based on
a minimization of the Euclidean distance of the cell centers in a certain proximity.
In the future, some other criteria (for example on more appropriate Euclidean mini-
mization or on the definition of proximity itself) could allow to relax the hypothesis
of the comparable aspect ratio among the overlapping cells of different blocks.

The issue of the stability of the scheme remains an open problem in the thesis.
The proposed method is definitively explicit and in fact a CFL condition is neces-
sary for the method to remain stable. Through a suitable relaxation of the original
problem, we have exhibited a new stabilization term that is more efficient and less
restrictive in terms of the definition of the time step ∆t. However, its validation
remains only numerical. Even in the simplest linear cases, because of the prediction-
correction nature of ADER a classical stability analysis remains tricky. In this direc-
tion, it should be found a closed formula that links the time step with the imposed
convective field with respect to the linear or nonlinear characteristics of the differen-
tial problem and the operator characterizing it as well as the features of the chimera
mesh.

Such knowledge of the time step would also not only better characterize the
properties of the scheme but also help find alternative solutions to the current fore-
ground grid velocity constraint. As a matter of fact, from times tn to tn+1, the defor-
mation of the grid has to ensure that the region of hole cells turning into active cells
is a slice whose length along the deformation direction is at most equal to the aspect
ratio of the background cells. Otherwise a loss of information on the new active cells
could be incurred. Perhaps other approaches could allow a larger deformation for
the grid at equal time step ∆t.
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The approximation of the gradient operator at the superposition interface, used
for the solution of the Poisson problem in the projection step for the incompress-
ible Navier-Stokes equations, showed that, at least in the no-shift configuration, the
diamond formula and the analytical approach based on Taylor developments coin-
cided. The necessity to define hybrid methods on chimera grids that are globally
conservative at least in trivial configurations is one of the open topics within the sci-
entific community using overset grids. Our proposed hybrid method defines some
new directions on the search for such solutions. Further future studies may allow us
to refine these techniques and probably find computationally cheap schemes that are
at least globally conservative. In fact, the current state of the art proposes schemes
with this property that are almost impossible to be applied in 3D and in any case
very computationally expensive.

Regarding the reduction and the hyper-reduction, in the future some extensions
to incompressible flows problems can be studied by properly extending the reduc-
tion to the projection step interesting the Poisson problem for the pressure and by ad-
equately taking into account not known a priori overlapping configurations. More-
over the extension to whole blocks could be considered in order to reduce the com-
putational costs also on the background mesh. For now this is not possible because
of the change of the hole in background dominated by the movement of the grid in
foreground. Therefore, the way the problem is formulated, finding a reduced space
defined on the background domain that both includes zones that may or may not ex-
ist with respect to the (admissible) grid movement is not possible. Perhaps, further
techniques could be taken into account. For example by defining another training
offline stage allowing to identify some cells or regions susceptible to the movement
over which to evaluate the information as well as to compute the integrals defined
by the scheme. This could be done in the same spirit of the offline training stage for
finding the small set of nodes for reducing the computational cost of integration via
quadrature rule for any admissible movement of the grid.

Some AMR approaches could optimize the number of degrees of freedom in
those sub-regions of the space where the solution is essentially free from high gradi-
ents and, in general, far enough from the overlapping region. Finally, the extensions
to three-dimensional flows as well as the parallelization of the computations can be
envisaged.
The extension to the 3D case should inherit the same characteristics of the 2D with
respect to the overlapping configuration enrolled either in the different passages of
ADER or in the discretization of the local differential operators. In particular, the
definition of three-dimensional compact stencil at the interface is needed. Since the
algorithm for the definition of a compact stencil is defined on a general Euclidean
minimization, the extension should be easily achieved. Moreover the ADER ap-
proach, in both the prediction and correction step, can be easily extended to the 3D.
Concerning the incompressible Navier-Stokes equations, a problem could be rep-
resented by the automatic encoding of the overlapping geometric features for the
discretization of the gradient operator. As a matter of fact, more analysis could be
conducted in order to prove a generalization of the presented approach to three di-
mensions.

The presented numerical validations do not consider any parallel computation.
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The translation to parallel computations needs to be take into account some consid-
erations. If the ADER method in its predictor step is embarrassingly parallel (be-
cause of the restriction of the original problem to the single space-time cell), in the
corrector step the partitioning processes on different processors is not a trivial mat-
ter. In fact, for evolving domains and especially when the movement of the mesh
is not known a priori, the partitioning could be defined at any time instance. This
creates some open questions on how to manage these processes. Similar consider-
ations apply also to the discretization of other differential operators (e.g. gradient
approximation).
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Appendix A

The CWENO polynomial

A.1 The non overlapping stencil

The notation of this appendix follows the one introduced in Chapter 2.
Let us consider the basis for P2(Sj) of the polynomial with zero mean over the

central cell Ωj: 〈1, x− xj, [(x− xj)
2 − h2

j /12]〉. The optimal polynomial is described
as the linear combination of the element of the basis: Popt(x) = a[(x− xj)

2− h2
j /12]+

b(x− xj) + c. Thus the goal is to look for the polynomial coefficients a, b and c. By
imposing the WENO condition (2.2), we easily find that c = Uj and

1
2

[
(xj−1 − xj)

2 +
h2

j−1−h2
j

12

]
a + (xj−1 − xj)b = Uj−1 −Uj

1
2

[
(xj+1 − xj)

2 +
h2

j+1−h2
j

12

]
a + (xj−1 − xj)b = Uj+1 −Uj

.

By recalling that, in the non overlapping configuration, xj−1 − xj = −(hj−1 + hj)/2
and xj+1− xj = (hj+1− hj), we can rewrite the above system by multiplying the first
and the second line by −1/(xj−1 − xj) and 1/(xj+1 − xj), respectively:

1
6 (2hj−1 + hj)a− b = −Uj−Uj−1

xj−xj−1

1
6 (2hj+1 + hj)a− b =

Uj+1−Uj
xj+1−xj

. (A.1)

This allows to find that a and b are exactly the polynomial coefficients px and pxx,
respectively, presented in the section 2.1.1.
Concerning the linear polynomials P1 and P2, they are both represented by choos-
ing the basis 〈1, x − xj〉. In particular, for the former we impose it matches the cell
averages Uj−1 and Uj, for the latter we impose it matches the cell averages Uj and
Uj+1. For P1, it writes as P1(x) = a1(x − xj) + b1. Its polynomial coefficients solve
the system {

(xj−1 − xj)a1 + b1 = Uj−1

b1 = Uj
,

therefore, a1 = U[j − 1, j] and b1 = Uj. Following the same for P2, it writes as
P2(x) = a2(x− xj) + b2, with a2 = U[j, j + 1] and b2 = Uj. We remark that, for these
polynomials, the topology of the overlapping of the stencil does not influence their
definition. For this reason, even in the presence of an overlapping, their definitions
do not change.
Since it holds that Popt = ∑2

γ=0 αγPγ, we can find the central polynomial P0.
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A.2 The overlapping stencil

Let the stencil Sj be composed of two overlapping cells, i.e. |Ωj ∩ Ωj+1| 6= 0.
In this case, for the research of the polynomial, any consideration up to (A.1) in
the previous subsection can be replaced. In this configuration the followings hold:
xj−1 − xj = −(hj−1 + hj)/2 and xj+1 − xj = (hj+1 + hj)/2− σ, where the corrector
term σ is the measure of the overlapping zone, i.e. σ = |Ωj ∩Ωj+1| = xj + hj/2−
xj+1 + hj+1/2. By defining the term

σ̃j,j+1 =
σ[3σ− (hj+1 + 2hj)]

3(hj+1 + hj − 2σ)
,

it can be easily proven that the polynomial coefficients for Popt are

px =
(hj + 2hj+1 + 6σ̃j,j+1)U[j− 1, j] + (hj + 2hj−1)U[j, j + 1]

2(hj−1 + hj + hj+1 + 3σ̃j,j+1)
,

pxx =
3(2hj + hj−1 + hj+1 − 2σ)U[j− 1, j + 1]

2(hj−1 + hj + hj+1 + 3σ̃j,j+1)
.

All the other ingredients involved in the CWENO reconstruction are the same as in
the non overlapping configuration.
If the overlapping involves the cells Ωj−1 and Ωj, the corrector term is defined as
σ = |Ωj−1 ∩Ωj|. Consequently the lumped corrector term reads:

σ̃j−1,j =
σ[3σ− (hj−1 + 2hj)]

3(hj−1 + hj − 2σ)
.

Therefore, the polynomial coefficients for the optimal polynomial in this configura-
tion are

px =
(2hj+1 − hj)U[j− 1, j] + (2hj−1 + hj + 6σ̃j−1,j)U[j, j + 1]

2(hj−1 + hj + hj+1 + 3σ̃j−1,j)
,

pxx =
3(hj−1 + 2hj + hj+1 − 2σ)U[j− 1, j + 1]

2(hj−1 + hj + hj+1 + 3σ̃j−1,j)
.
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Appendix B

ADER approach for the 1D
advection equation

B.1 The research of the Galerkin predictor solution

Let Ω̂ = (0, 1)2 be the reference space-time domain in which the predictor so-
lution is referred to and looked for. The nodes and the Lagrangian basis are the
following:

ξ1 = (0, 0); θ1(ξ , τ) = 2ξ2 + 2ξτ + 2τ2 − 3ξ − 3τ + 1;

ξ2 = (1/2, 0); θ2(ξ , τ) = −4ξ2 − 2τ2 + 4ξ + τ;

ξ3 = (1, 0); θ3(ξ , τ) = 2ξ2 − 2ξτ + 2τ2 − ξ − τ;

ξ4 = (0, 1/2); θ4(ξ , τ) = −2ξτ − 2τ2 + 3τ;

ξ5 = (1/2, 1); θ5(ξ , τ) = 2τ2 − τ;

ξ6 = (1, 1/2); θ6(ξ , τ) = 2ξτ2 − 2τ2 + τ.

Recalling that the matrices K and M are defined as:

Kij =

ˆ
Ω̂

∂τθi θj dξ dτ; Mij =

ˆ
Ω̂

θi θj dξ dτ,

their sub-matrices are:

K10 =
1
6

−1 −2 1
2 −3 2
1 −2 −1

 ; K11 =
1
6

 1 2 −1
−2 3 −2
−1 2 1

 ;

M10 =
1

180

−19 34 −9
−1 −4 −1
−9 34 −19

 ; M11 =
1

180

44 6 4
6 24 6
4 6 4

 .

B.2 Constants in Rusanov flux

In this section we formally derive the constants involved in the integration of the
flux approximated through the numerical model by Rusanov.
Let us suppose to want to find the constants for the right side ∂Cn

j,j+1 of the space-
time cell Cn

j . Since ∂Cn
j,j+1 is a segment in the space-time, the generic point x̃j,j+1 ∈



134 Appendix B. ADER approach for the 1D advection equation

∂Cn
j,j+1 can be parametrized as:{

x̃j,j+1(τ) = β1(τ)Xn
j,j+1 + β2(τ)Xn+1

j,j+1

t = tn + ∆t τ
. (B.1)

In the above parametric system, the first line is (2.28), therefore β1 and β2 are the
basis functions mapping τ ∈ [0, 1] in x̃j,j+1. For Pythagoras’ theorem, it holds

|∂Cj,j+1| =
√
(∆t)2 + (∆Xn

j,j+1)
2 and the unit-norm outward vector to the that side is

nj,j+1 = [∆t,−∆Xn
j,j+1]

T/|∂Cn
j,j+1|. Consequently:

ˆ
∂Cn

j,j+1

ũ · nj,j+1 dγ =

ˆ 1

0
|∂Cn

j,j+1|[ũ · nj,j+1]ξ=1 dτ.

By considering relation (2.34), the two addenda explicitly are:

(u+
j,j+1 + u−j,j+1) · nj,j+1 =

u+
j,j+1 + u−j,j+1

|∂Cn
j,j+1|

(∆t− ∆Xn
j,j+1);

s ≡ AV
n (u) = ∆t

(
∂u
∂u

n−Vn
)
= ∆t

(
1−

dx̃j,j+1

dt

)
= ∆t

(
1−

∂x̃j,j+1

∂τ

∂τ

∂t

)
= ∆t

(
1−

∆Xn
j,j+1

∆t

)
,

with n = [nj,j+1]x/|[nj,j+1]x| ≡ +1. Therefore, the Rusanov flux writes:

ũn
j,j+1 · nj,j+1 =

1
2

[∆t− ∆Xn
j,j+1

|∂Cn
j,j+1|

− ∆t
(

1−
∆Xn

j,j+1

∆t

)]
u+

j,j+1

+
1
2

[∆t− ∆Xn
j,j+1

|∂Cn
j,j+1|

+ ∆t
(

1−
∆Xn

j,j+1

∆t

)]
u−j,j+1.

Consequently the integral of the flux is:

ˆ
∂Cn

j,j+1

ũn
j,j+1 · nj,j+1 dγ =

1
2

aj,j+1

ˆ 1

0
u+

j,j+1|ξ∗ dτ +
1
2

bj,j+1

ˆ 1

0
u−j,j+1|ξ∗ dτ,

with ξ∗ such that x(ξ∗, τ) = x̃j,j+1(τ) for any τ ∈ [0, 1] and

aj,j+1 = (1− |∂Cn
j,j+1|)(∆t− ∆Xn

j,j+1),

bj,j+1 = (1 + |∂Cn
j,j+1|)(∆t− ∆Xn

j,j+1).

The same reasoning can be done for the space-time side ∂Cj−1,j. The integral flux is
exactly the same but the constants are:

aj−1,j = (1− |∂Cn
j,j+1|)(−∆t + ∆Xn

j,j+1),

bj−1,j = (1 + |∂Cn
j,j+1|)(−∆t + ∆Xn

j,j+1).
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Appendix C

The ADER approach for the
advection-diffusion problem

C.1 The Galerkin predictor

The inverse of the Jacobian matrix in (3.11) formally is

J−1 =
dξ

dx
=

ξx ξy ξt
ηx ηy ηt
0 0 1/∆t

 =
1

∆t dξη

 ∆t yη −∆t xη dητ

−∆t yξ ∆t xξ −dξτ

0 0 dξη

 , (C.1)

with dαβ = xαyβ − xβyα, α, β = ξ , η, τ.
From the weak formulation (3.14), matrices not involving the derivatives of map
Mi, i.e. [θk, θl ]1 and 〈∂τθk, θl〉, are exactly computed once for all. All the remaining
matrices 〈θk, (ξx∂ξ + ηx∂η)θl〉 and 〈θk, (ξx∂ξ + ηx∂η)θl〉 are computed by numerically
integrating by quadrature rule. The components of these matrices can be resumed
in the following two forms: 〈θk, ρ∂αθl〉, with α = ξ, η and ρ : Ĉ → R any function
in (C.1). By using the discrete map index (3.6) over indexes k = m(a, b, c) and l =
m(a′, b′, c′) and the tensor representation (3.7), they formally read

〈θk, ρ∂ξθl〉 =
{

ω3D
k ρ(ξ̂k)(θ

ξ
a′(ξ̂a))′, when l = m(a′, b, c) ∀a′ = 1, 2, 3

0 otherwise

and

〈θk, ρ∂ηθl〉 =
{

ω3D
k ρ(ξ̂k)(θ

η
b′(η̂b))

′, when l = m(a, b′, c) ∀b′ = 1, 2, 3
0 otherwise

,

where ω3D
k = ωaωbωc is the 3D quadrature weight from the single direction Gauss-

Legendre weights {ω1, ω2, ω3} = {5/18, 4/9, 5/18} and ξ̂k = (ξ̂a, η̂b, τ̂c) is the k-th
3D quadrature node.

The cofactor matrix Cof(J) of the Jacobian matrix J is

Cof(J) =

 ∆t yη −∆t yξ 0
−∆t xη ∆t xξ 0

dητ −dξτ dξη

 .
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C.2 Time step ∆t in the limit of large diffusion

The assumption for the time step ∆t in (3.29) could appear too simple and does
not take into account the possibility of a large diffusion (i.e. O(ν) > O(|a|)). It can
be justified by the presence of teh stabilization parameter sAD presented in (3.34)
through the right relaxation parameter εp introduced in Corollary 3.3.1. Despite of
the simplistic definition of the time sep, the diffusion (also in the limit of a diffusive-
dominant dynamics) is recovered by the stabilization term sAD. here it is provided a
sketch of proof for this statement in the 1D case.
Let us start saying that a classical stabilization analysis is complicated because of
FEM-predictor solution in the space-time flux (3.28). Let us assume the convective-
diffusive term to be linear, i.e. F(u, ux) = au− νux. By approximating the integrals
in the scheme (3.27) through the rectangle formula 1, at the first order in space and
in time it holds 2

−hUn + hUn+1 + ∆t(Φl + Φr) = 0.

Since the space-time cell normal edge is nx,t = [±∆t,∓ch]T/
√

∆t2 + c2h2, where we
assume the deformation of the cell to be smaller than or equal to the characteristic
length h of the mesh (i.e. 0 < c ≤ 1), it is possible to sum the scheme up as follows

− hUn + hUn+1 + ∆tC1Ūx + ∆tC2Ū − 1
2

∆tsADCq = 0, (C.2)

where Ūx, Ū and Cq take into account the contribution of the space derivatives, the
solution and the FEM-predictor solution q in the fluxes (3.28), respectively. These
quantities are assumed finite. Accordingly to the definition in (3.29) and in the limit
of a diffusive-dominant dynamics, it holds:

∆tC1 ∼
CFL2hν

a
√

CFL2 + a2c2
, (C.3a)

∆tC2 ∼
cCFL√

CFL2 + a2c2
, (C.3b)

∆tsAD ∼
1
2

CFLh2(CFL2 + a2c2)|aCFLh + 4c2h2 − 4CFLch2 + κCFL2ν1/2|, (C.3c)

where constant κ takes into account the constants of the optimal relaxation param-
eter of Corollary 3.3.1. By plugging (C.3) into (C.2) there is a possibility to properly
define a CFL condition in order to ensure the stability of the scheme for any initial
value problem 3.
With this sketch of proof we want to communicate that the stabilization parameter
takes into account the diffusive parameter. A formal stability analysis is cumber-
some for more dimensions and for more complicated mesh deformations. Thus, this
justifies the empirical numerical analysis for a proper CFL value in Section 3.4.2.

1. In one dimension the rectangle formula reads:

ˆ b

a
f (x) dx ≈ a + b

2
f
(

a + b
2

)
.

2. Here the dependence of the formulation on the i-th cell is omitted.
3. Here this computation it is not performed.
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Appendix D

Chorin-Temam method

Consider a generic differential problems of type: find w : Ω ×R+ → Rd2 , with
Ω ⊂ Rd1 (d1, d2 = 1, 2, 3) such that

∂tw + L1w + L2w = f in Ω×R+,

properly closed with additional conditions and with L1 and L2 representing two
differential operators. A fractional step method consists in the idea of splitting the
time advancing from tn to tn+1 = tn + ∆t in two sub-problems each one accounting
one differential operator:

w̃n+1 − wn

∆t
+ L1w̃n+1 = 0,

wn+1 − w̃n+1

∆t
+ L2wn+1 = 0,

with w̃ an auxiliary intermediate solution. Among the fractional step method there
is a class of methods called projection methods.
Concerning the Navier-Stokes equations, Chorin-Temam method is a projection step
for looking for the fluid and pressure velocity. In particular it consists of two major
steps:

ũ− un

∆t
− 1

Re
∆ũ + (ũ · ∇)ũ = 0, (Step 1){

un+1−ũ
∆t +∇pn+1 = 0,
∇ · un+1 = 0,

(Step 2)

The two sub-problems require suitable boundary conditions. Step 1 is an advection-
diffusion problem for the intermediate velocity ũ and inherits the same boundary
conditions imposed for the original Navier-Stokes problem. On the other hand,
problem of Step 2 is not diffusive and the trace u|∂Ω of the solution is not defined. It
is possible to prove that the only information defined on the solution is its normal
component [u · n]∂Ω. Thus, if the original problem is closed through fully homo-
geneous Dirichlet boundary conditions, problem of Step 2 is well posed if when
u · n = 0 over ∂Ω is imposed. This mismatch on the boundary conditions of the final
velocity contributes to the splitting error associated to the fractional step approach.
Step 1 is usually defined the prediction step because the solving velocity ũ does not
fulfill the continuity equation (i.e. it is not free-divergent). Step 2 is called projec-
tion step because of the projection of the final velocity on a free-divergent functional
space. Let Hdiv(Ω) := {v ∈ H1(Ω)d : ∇ · v = 0}. Let Step 2 be weakened for any
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v ∈ Hdiv,0 := {w ∈ Hdiv : [w · n]∂Ω = 0}, thus

ˆ
Ω

un+1 − ũ
∆t

· v dΩ = −
ˆ

Ω
∇pn+1 · v dΩ =

ˆ
Ω

pn+1∇ · v dΩ = 0.

Consequently, ˆ
Ω

un+1 · v dΩ =

ˆ
Ω

ũ · v dΩ.

This means that the final velocity u is the orthogonal projection of ũ onto the sub-
space Hdiv,0. This is a direct consequence of the Helmholtz’s decomposition theorem:

Theorem D.0.1 (Helmholtz’s decomposition theorem). Let Ω ⊂ Rd be a simply con-
nected domain. For ant v ∈ H1(Ω)d there exists a unique decomposition into a solenoidal
(divergence-free) and an irrotational (curl-free) part such that

v = w +∇φ,

with w ∈ Hdiv,0(Ω) and φ ∈ H1(Ω).

From the projection step of Chorin-Temam method, the decomposition reads

ũ = un+1 + ∆t∇pn+1,

with un+1 and pn+1 defining the solenoidal and irrotational parts, respectively. Fi-
nally, by applying the divergence operator to Step 2, the Poisson problem for the
pressure of (4.9) arises.

D.1 Poisson equation with fully homogeneous Neumann con-
ditions

Let us suppose to have Dirichlet boundary condition along the whole boundary
∂Ω for the velocity u. Since both the the intermediate and corrected velocities share
the same boundary conditions, by applying the scalar product with respect to the
unit outward normal at the boundary at Step 2, the arising boundary condition for
the Poisson pressure problem reads is

∇pn+1 · n = 0,

which is a fully homogeneous Neumann condition. Let ψ = ∆tpn+1, the following
problem has to be solved: {

−∆ψ = f in Ω
∇ψ · n = 0 on ∂Ω

(D.1)

with f a proper force term. Because of the boundary conditions, problem (D.1) has
not a unique solution. In particular, if ψ solves (D.1), also ψ + c solves (D.1) for any
real c. Consequently, if the algebraic FV counterpart of the problem is Kψ = f , the
stiffness matrix K has a nontrivial kernel. For this reason, in the code, the zero mean
solution solving (D.1) is found. We define V = {v ∈ H1(Ω) : [∇v · n]∂Ω = 0} and
the energy functional J : V → R associated to the problem formally written as

J (v) =
1
2

ˆ
Ω
∇v · ∇v dΩ−

ˆ
Ω

f v dΩ.
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For our goal, the looked solution ψ is the minimizer of the following problem

minimize
v∈V

J (v)

subject to
ˆ

Ω
v dΩ = 0.

(D.2)

Let the associated Lagrangian functional L : V ×R→ R be

L(v, λ) = J (v) + λI(v),

with I(v) =
´

Ω v dΩ the constraint. In order to solve the optimization problem
(D.2), the following system is solved 1{

DL[w]
Dv = 0 ∀w ∈ V

∂L
∂λ = 0

⇒
{´

Ω∇v · ∇w dΩ−
´

Ω f w dΩ + λ
´

Ω w dΩ = 0 ∀w ∈ V´
Ω v dΩ = 0

.

Due to the zero normal derivative at the boundary of functions in V, the first line of
the system turns into

ˆ
Ω
(−∆v− f + λ)w dΩ = 0 ∀w ∈ V,

In particular, by choosing w ≡ 1, we recover a FV problem associated to the algebraic
counterpart [

K ω
ωT 0

] [
ψ
λ

]
=

[
f
0

]
,

with ωi = |Ωi| the measure of cell Ωi. Finally, the above problem is solved.

1. By definition:
DL[w]

Dv
= lim

δ→0

L(v + δw, λ)−L(v, λ)

δ
∀w ∈ V.
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