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Résumé

Basé sur le groupe de jauge SU() C × SU() L ×U() Y , le Modèle Standard (MS) de la physique des particules est une théorie fructueuse qui permet d'expliquer un grand nombre d'expériences jusqu'aux frontières d'intensités et d'énergies. Néanmoins, il est considéré comme incomplet et des manifestations de nouvelle physique sont attendues autour de l'échelle du TeV. L'unification du groupe de jauge du MS dans un groupe plus large et plus simple est théoriquement très intéressante. Dans cette optique, le MS est considéré comme une manifestation à basse énergie d'une théorie plus fondamentale. Ainsi, étant donné que les groupes d'unification possibles ont un rang supérieur ou égal à celui du MS, des sous-groupes supplémentaires tel que U() ou un deuxième groupe SU() peuvent entrer en jeu à un stade intermédiaire lors de la brisure de symétrie du groupe d'unification en groupe du MS. Il est intéressant de noter qu'un nouveau groupe facteur U() permet de prédire l'existence d'un boson de jauge supplémentaire noté Z dans la littérature. D'autre part, SU() étant un groupe non-abélien ayant trois générateurs, il introduit alors trois bosons de jauge supplémentaires dont un est neutre et deux sont chargés et notés W ± . Dans cette thèse, nous présentons des prédictions précises pour les observables des quarks top au LHC en présence de bosons Z et W . À cet effet nous étendons et améliorons un précédent calcul d'hadroproduction électrofaible de paires de quarks top dans des extensions du MS avec des nouvelles résonances lourdes de spin-1, neutres et chargées. En particulier, nous autorisons les couplages non diagonaux du boson Z dans la base des saveurs et prenons en compte la production non résonnante dans le MS et au-delà, y compris les contributions des bosons W et W dans le canal t. Toutes les amplitudes sont calculées avec le programme Recola2. De plus, nous incluons les corrections QCD au deuxième ordre de la théorie des perturbations et les adaptons systématiquement aux cascades partoniques à travers la méthode POWHEG en tenant compte des effets d'interférences entre les amplitudes du MS et celles de la nouvelle physique. Nous considérons le Modèle Standard séquentiel, le modèle leptophobique Topcolour, la classe de modèles G  , ainsi que le modèle d'hypercharge de la troisième famille avec des couplages Z non diagonaux dans l'espace des saveurs qui a été proposé récemment pour expliquer les anomalies dans les désintégrations de mésons B. Nous présentons des résultats numériques pour les sections efficaces des paires de quark top dans des collisionneurs de hadrons avec une énergie dans le centre de masse allant jusqu'à 100 TeV. Par la suite, nous lions notre calcul à Contur (Constraints On New Theories Using Rivet), pour obtenir des limites d'exclusions sur l'espace des paramètres des différents modèles prédisant des bosons lourds supplémentaires pour le canal de production de paires de quarks top, en utilisant les données du grand collisionneur de hadrons.

Introduction and Survey

Developed in the early 1970s, the Standard Model (SM) of particle physics [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF][START_REF] Salam | Electromagnetic and weak interactions[END_REF][START_REF] Weinberg | A model of leptons[END_REF][START_REF] Glashow | Weak interactions with lepton -hadron symmetry[END_REF][START_REF] Weinberg | Mixing angle in renormalizable theories of weak and electromagnetic interactions[END_REF][START_REF] Gross | Asymptotically free gauge theories. i[END_REF][START_REF] Kobayashi | CP-Violation in the Renormalizable Theory of Weak Interaction[END_REF][START_REF] Gross | Asymptotically free gauge theories. ii[END_REF][START_REF] Politzer | Asymptotic Freedom: An Approach to Strong Interactions[END_REF] is the most accurate theory known to describe the elementary particles of the universe and their interactions. It has been extremely successful in explaining a wealth of experimental data coming from highly-energetic colliders as well as low-energy precision experiments. Nevertheless, it is widely believed to be incomplete for different reasons. On the experimental side, the SM doesn't include gravity [START_REF] Rovelli | Notes for a brief history of quantum gravity[END_REF], it doesn't provide a candidate for a dark matter particle [START_REF] Bertone | Particle dark matter: Evidence, candidates and constraints[END_REF], the CP violation in the SM is not sufficient to explain the matter-anti-matter asymmetry observed in the universe [START_REF] Farrar | Baryon asymmetry of the universe in the standard electroweak theory[END_REF][START_REF] Gavela | Standard model CP violation and baryon asymmetry. Part 1: Zero temperature[END_REF][START_REF] Huet | Electroweak baryogenesis and standard model CP violation[END_REF], and massive neutrinos [START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF][START_REF] Ahmad | Measurement of the rate of ν e + d → p + p + einteractions produced by  B solar neutrinos at the Sudbury Neutrino Observatory[END_REF][START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF] are, a priori, not accounted for in the SM. Furthermore, the scalar sector of the SM suffers under naturalness problems: Why is the Higgs mass stable under quantum corrections? Why is CP-violation in the strong interaction absent or strongly suppressed? For this reason, in order to avoid fine-tuning in the scalar sector, the general expectation has been for a long time that new physics (NP) beyond the Standard Model (BSM) should be present close to the electroweak (EW) scale. On the aesthetical side, many of the 26 input parameters of the SM are quite peculiar (for example, the masses of the SM fermions span several orders of magnitude and there is no clear pattern in the CKM and PMNS mixing matrices), the SM gauge group is a direct product of three independent symmetry factors, and there is no clear relation between the three generations of the SM fermions (why are there three generations in the first place?).

For this reason, a large number of well-motivated extensions of the SM have been proposed in the literature which address one or several of the problems mentioned above. An elegant way to solve the naturalness problem is given by TeV-scale supersymmetry which would also provide a candidate for dark matter. Another attractive way to solve the naturalness problem and to better understand electroweak symmetry breaking is offered by theories postulating a new strong interaction at the TeV scale. Finally, models with large extra dimensions [START_REF] Baur | EXCITED WEAK VECTOR BOSONS[END_REF][START_REF] Datta | Effects of Kaluza-Klein excited W on single top quark production at Tevatron[END_REF] could explain why there is no large hierarchy between the EW scale and the fundamental Planck scale. On the other hand, Grand Unified Theories (GUT) [START_REF] Georgi | Unity of All Elementary Particle Forces[END_REF][START_REF] Pati | Lepton Number as the Fourth Color[END_REF][START_REF] Fritzsch | Unified Interactions of Leptons and Hadrons[END_REF][START_REF] Georgi | The State of the Art-Gauge Theories[END_REF] appeal to the old dream of unifying all interactions and matter. The strong, weak and electromagnetic interactions could then be understood as low energy manifestations of one fundamental interaction and also the quarks and leptons would just be low energy manifestations of the same fundamental particle multiplet. Many of such theories predict the existence of new resonances with properties similar to the W and Z gauge bosons of the SM. The new resonances, usually dubbed as Zand W -bosons, are massive, neutral and electrically charged spin-1 particles, respectively and mediate the neutral and charged current interactions of the SM fermions. These interactions can be described in a completely model independent manner, however, it would be complicated to perform a phenomenological study in this way since the resulting Lagrangian will have a large number of free parameters. Thus, one needs to restrict this freedom in practice. For instance, the couplings of the Z -and W -bosons in the Sequential Standard Model (SSM) [START_REF] Altarelli | Searching for new heavy vector bosons in p p colliders[END_REF] are defined to be identical to their SM counter parts with their mass being the only free parameter. Another approach is to collect together a group of models where the new resonances can be described by a minimal set of free parameters [START_REF] Martinez | Constraints on 3-3-1 models with electroweak Z pole observables and Z' search at the LHC[END_REF][START_REF] De Blas | Combining searches of Z' and W' bosons[END_REF][START_REF] Grojean | A weakly constrained W' at the early LHC[END_REF][START_REF] Salvioni | Non-universal minimal Z' models: present bounds and early LHC reach[END_REF][START_REF] Salvioni | Minimal Z-prime models: Present bounds and early LHC reach[END_REF]. Furthermore, models can be grouped in a class based on their theoretical origin as can be seen in [START_REF] Ježo | LHC phenomenology of general SU() × SU() × U() models[END_REF][START_REF] Cao | Discovery and Identification of W' and Z' in SU(2) x SU(2) x U(1) Models at the LHC[END_REF].

In the first chapter of this thesis we study a class of models, following the latter approach, where the SM gauge group is supplemented by an additional SU() gauge factor. Named as the G  class, it contains six models, the Left-Right (LR) [START_REF] Mohapatra | natural" left-right symmetry[END_REF][START_REF] Mohapatra | Left-right gauge symmetry and an "isoconjugate" model of CP violation[END_REF], Lepto-Phobic (LP), Hadro-Phobic (HP), Fermio-Phobic (FP) [START_REF] Barger | Gauge model with light W and Z bosons[END_REF][START_REF] Barger | Doubling of weak gauge bosons in an extension of the standard model[END_REF], Un-Unified (UU) [START_REF] Georgi | The un-unified standard model[END_REF][START_REF] Georgi | Ununifying the standard model[END_REF] and Non-Universal (NU) [START_REF] Malkawi | A model of strong flavor dynamics for the top quark[END_REF][START_REF] Li | Gauge model of generation nonuniversality[END_REF] models. We describe the classification of these models in two groups based on their patterns of symmetry breaking (SB), and we show their particle content and their charge assignments. Subsequently, we discuss how the spontaneous symmetry breaking (SSB) is achieved and how the gauge bosons acquire their masses in the G  class. We then summarise the couplings of the new resonances to SM fermions in the six models.

amplitudes in an NLO+PS matched calculation. (ii) The new code can handle flavour-nondiagonal and generation non-universal couplings in order to study Z -models that aim to explain B-flavour anomalies. (iii) The calculation includes t-channel W and W contributions. (iv) As in the old code, we take into account all interference terms as well as the photon induced channels for the SM, where the latter is needed to treat initial state QED singularities. This calculation represents a core part of this thesis. Compared to the previous calculation it is far more complex due to the additional amplitudes and more general coupling structure of the new gauge bosons to the SM fermions. It is also more subtle concerning various technical details as will be discussed in Chapter 3.

Measurements at particle collider experiments, even if primarily aimed at understanding SM processes, can have a high degree of model independence, and implicitly contain information about potential contributions from BSM physics. In Chapter 4, we briefly describe the Constraints On New Theories Using Rivet (Contur) method by explaining its workflow and philosophy. We then give some information about the Robust Independent Validation of Experiment and Theory (Rivet) repository, where the particle-level measurements, used subsequently by Contur to set limits on BSM theories, are preserved. In the last section of this chapter we show how our t t calculation of Chapter 3 is linked to Contur in order to set limits on models with additional heavy gauge bosons using LHC measurements. Additionally, we give an example to show how this tool chain can be used.

Finally, in the last chapter we summarise our work and give an outlook. Note that details on various calculations presented in this manuscript as well as extra material are relegated to the Appendices.

The material presented in this thesis has led to the following publications:

• A contribution to the CERN yellow report on the HL-and HE-LHC [START_REF] Vidal | Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC[END_REF] where we contributed precision predictions for new dilepton and t t resonances (Chapter 2).

• The results of calculation of NLO QCD corrections to electroweak t t hadroproduction in the presence of Z -and W -bosons have been published in the regular article [START_REF] Altakach | Electroweak t t hadroproduction in the presence of heavy Z and W bosons at NLO QCD in POWHEG[END_REF] and in an contribution to the proceedings of the ICHEP 2020 conference [START_REF] Altakach | Precise predictions for electroweak t t production at the LHC in models with flavour non-diagonal Z boson couplings and W bosons[END_REF] (Chapter 3).

• The work on the implementation of our calculation in the Contur framework has led to a publication in [START_REF] Buckley | Testing new-physics models with global comparisons to collider measurements: the Contur toolkit[END_REF]. A separate paper where we use the Contur framework to derive constraints on the leptophobic Topcolour (TC) model using LHC data on t t production is in preparation [START_REF] Altakach | New constraints on TopColour models[END_REF] (Chapter 4).

Chapter 1

Extended Gauge Group Models: The G  Class

The Standard Model of particle physics, based on an SU() C × SU() L ×U() Y gauge group, is an extremely successful theory that accounts for a wide range of high energy experiments at both the intensity and energy frontiers. Nevertheless, it is widely believed to be incomplete, and manifestations of new physics are expected to show up around the TeV scale.

The unification of the SM gauge group in a larger, simple group, e.g. SU(), SO(), or E  is theoretically very attractive. In this view, the SM is seen as an effective model valid at low energies E ≤ Λ NP , where Λ NP < m Planck is the energy scale where new physics effects beyond the SM become large. Thus, given the fact that the possible unification groups have a rank larger than the SM, additional subgroups like a U() or a second SU() may appear at an intermediate stage when the unification group is broken down to the SM group. Interestingly, a new U() group factor predicts one additional electrically neutral gauge boson denoted Z in the literature [START_REF] Langacker | The physics of heavy Z' gauge bosons[END_REF][START_REF] Del Aguila | The physics of Z' bosons[END_REF]. On the other hand, since SU() is a non-Abelian group with three generators, an additional one predicts/leads to three gauge bosons of which one is electrically neutral and two are charged and denoted W ± . Thus, named as G  class, models with an extra SU() gauge factor will be the main topic of this chapter. Moreover, despite sharing the same gauge group, various types of particle content, charge assignments and patterns of symmetry breaking can lead to different phenomenologies at the LHC [START_REF] Ježo | LHC phenomenology of general SU() × SU() × U() models[END_REF]. We will present numerical results for two of the G  models in Chapter 2 where we show cross section predictions for the future High Luminosity LHC as well as the proposed High Energy LHC. This chapter is organised as follows. In Section 1.1 we present the models from the G  class, their particle content, their charge assignments and we classify them according to different patterns of SB. The procedure of spontaneous symmetry breaking and the masses of the gauge bosons in the G  class are illustrated with an example in Section 1.2. Finally, in Section 1.3 we describe the Lagrangian of the interaction between generic neutral and charged spin-1 gauge bosons and the fermions of the SM.

G  models general features

The G  class is a class of models based on a SU()  × SU()  ×U() X gauge structure that ultimately breaks to U() EM . It groups together the Left-Right [START_REF] Mohapatra | natural" left-right symmetry[END_REF][START_REF] Mohapatra | Left-right gauge symmetry and an "isoconjugate" model of CP violation[END_REF], Lepto-Phobic, Hadro-Phobic, Fermio-Phobic [START_REF] Barger | Gauge model with light W and Z bosons[END_REF][START_REF] Barger | Doubling of weak gauge bosons in an extension of the standard model[END_REF], Un-Unified [START_REF] Georgi | The un-unified standard model[END_REF][START_REF] Georgi | Ununifying the standard model[END_REF] and Non-Universal [START_REF] Malkawi | A model of strong flavor dynamics for the top quark[END_REF][START_REF] Li | Gauge model of generation nonuniversality[END_REF] models. Relative to the Standard Model, these models have three additional massive gauge bosons, and can be characterized in terms of their charge assignments and the specific patterns of SB. Following Ref. [START_REF] Hsieh | Global analysis of general SU() × SU() × U() models with precision data[END_REF], the charge assignments to the SM quarks and leptons for the various models considered in this thesis are listed in Table 1.1 (This table/classifications comes from Ref. [START_REF] Hsieh | Global analysis of general SU() × SU() × U() models with precision data[END_REF]). The charge assignments of the different G  models to the Standard Model fermions considered in this thesis. Fields that do not appear in a given column are transforming as singlets.

BP

Note that some models (LR, LP, HP) also require right-handed neutrinos ν R . In the other cases, right-handed neutrinos may be present as SM singlets or just be absent.

The symmetry breaking is usually realised in two steps and at two energy scales. This is done, first, by breaking the SU()  × SU()  ×U() X down to the Standard Model gauge group, which is, secondly, broken down to the U() EM . The G  models can be categorized by two patterns of SB, the breaking pattern-I (BP-I) and the breaking pattern-II (BP-II). In BP-I, the SU()  is identified as the SU() L of the Standard Model. The first stage of SB then is SU()  ×U() X to U() Y at a high scale 1 . The second stage SB is the same as in the Standard 1 The high scale can in principle be anywhere between the electroweak and the Planck scale. However, for the heavy resonances to be accessible at the LHC the high scale has to be on the order of the TeV-scale.

Model, i.e. SU() L ×U() Y to U() EM at the electroweak scale. This scheme applies not only to Left-Right, but also to Lepto-Phobic, Hadro-Phobic and to Fermio-Phobic models. In contrast, in BP-II, the U() X is identified with the U() Y of the Standard Model as in the Un-Unified and the Non-Universal models. Thus, the first stage of SB is SU()  × SU()  to SU() L at the high scale. The second stage of SB is again the same as in the Standard Model. This classification is summarised in Table 1.2.

To complete the two stages of SB two multiplets of complex scalar fields are required. While experimental constraints on the electroweak gauge boson masses leave little freedom in the Higgs representation used for the electroweak SB, one has more freedom in the choice of the representation of the scalar used for the first stage SB. In BP-I we consider the two simplest category Identification first stage second stage

BP-I SU()  ≡ SU() L SU()  ×U() X → U() Y SU() L ×U() Y → U() EM BP-II U() X ≡ U() Y SU()  × SU()  → SU() L SU() L ×U() Y → U() EM Table 1.2:
The different patterns and stages of symmetry breaking in the considered G  models.

cases for the first stage of SB: via a complex doublet scalar, or a complex triplet scalar. On the other hand, in BP-II we consider the simplest case of using a bi-doublet Higgs to achieve this SB. For the convenience of typesetting, we denote the BP-I models with first stage SB triggered by an SU()-doublet(-triplet) as BP-I-D (BP-I-T) 2 . The vacuum expectation value (VEV) of the various scalars and their quantum numbers are shown in Table 1.3.

Two-step symmetry breaking and gauge boson masses

The extra SU() gauge factor in the G  class will add three gauge bosons to the four predicted by the Standard Model. As a consequence of the Lagrangian gauge invariance, all those bosons are massless, and will be denoted as: SU()  : W i µ , SU()  : W i µ , U() X : X µ , (i = , , ). 

Φ =  √  φ + √ φ ++ √ φ  -φ + Φ =  √    u T  UU, NU Φ ∼ (, , ) Φ = φ  + π  √ π + √ π -φ  -π  Φ =  √  u   u Second Stage SB LR-D, LP-D, HP-D, FP-D H ∼ (, , ) H = h   h +  h -  h   H = v √  c β   s β LR-T, LP-T, HP-T, FP-T H ∼ (, , ) H = h   h +  h -  h   H = v √  c β   s β UU, NU H ∼ (, ,   ) H = h + h  H = v √    Table 1.3:
The scalar fields representations and the VEV that achieve the symmetry breaking of the G  models.

In order to derive the mass terms of the various physical gauge bosons, one has to go from the gauge eigenstates basis, in which we initially write the Lagrangian in the unbroken phase, to the physical basis in the broken phase in which all the mass terms are diagonal. As discussed earlier, the SSB of the G  models will take place in two stages. After the first stage only Z ^ and W ^ ± acquire a mass (m  Z ^ (W ^ ) ). Next, during the second stage, the Higgs VEV not only confers masses to Z ^and W ^± (m  Z ^(W ^)), but also induces mass mixing contributions (δ m  Z ^(W ^)) that lead to Z ^ -Z ^and W ^ -W ^mixing, and additional contributions to the mass of the Z ^ and W ^ ± (∆ m  Z ^ (W ^ ) ). This is summarised in Figure 1.1 for models that follow BP-II. Note that the states with the hats (^) are the intermediate step between the gauge and the physical mass eigenstates which will be denoted without the hats. In what follows, we will illustrate this procedure by the models following BP-II, then a summary for the models following BP-I with a doublet scalar field for the first stage SB (BP-I-D) is given.

BP-II:

Gauge boson masses are generated after SSB from the kinetic terms of the scalar fields. Before we proceed we note the following. For a square matrix A = (a i j ), we have Tr(A † A) = i, j

|a i j |  .
That is, the outcome is the sum of the absolute value squared of all matrix elements. According to this note and the definitions of the Higgs bi-doublet Φ, see Table 1.3, it follows that if we take the kinetic Lagrangian of the scalars in the form

L Scalar = Tr[(D µ Φ) † (D µ Φ)],
we get the standard complex scalar field kinetic term (i.e. (∂ µ Φ) † (∂ µ Φ)) for the separate components of the matrix fields plus of course the interaction terms between the Higgs fields and the various gauge fields. Using the cyclic property of the trace operation, it is easily checked that this is indeed gauge invariant. Explicitly,

Tr[(D µ Φ) † (D µ Φ)] → Tr[U  (D µ Φ) † U †  U  (D µ Φ)U †  ],
where the different U  and U  matrices all combine to unity matrices. Thus, taking into account the second stage SB scalar field, the kinetic terms for the scalars in BP-II models take the following form

L Scalar ⊃ Tr[(D µ Φ) † (D µ Φ)] + (D µ H) † (D µ H),
where

D µ Φ =∂ µ Φ -ig    σ • W µ Φ -ig  Φ   σ  * • W µ using σ a  * = -(σ a  ) * = -(σ a  ) T ≡ -(σ a ) T one obtains D µ Φ =∂ µ Φ -ig    σ • W µ Φ + ig  Φ   σ • W µ D µ H =∂ µ H -ig    σ • W µ H -i   g X X µ H. (1.2)
For the sake of brevity, the µ index will be omitted in the rest of this section.

Step I:

At the first stage, the bi-doublet scalar field Φ takes its VEV and breaks the SU()  × SU()  symmetry to SU() L . Thus, after rotating the first and second components of the two SU()s,

i.e. W ± () = W  () ∓ iW  () √ 
, the charged gauge boson mass matrix can be written as

W +  W +    u    g   -g  g  -g  g  g       W -  W -    . (1.3)
Diagonalising this matrix leads to the masses of the charged gauge bosons, and to their compositions in terms of the gauge eigenstates. Here, we will obtain two massless gauge bosons called W ^± and two massive ones named

W ^ ± with m  W ^ =   (g   + g   )u  .
These mass eigenstates are related to the non-physical gauge bosons by3 

  W ^± W ^ ±   =   c φ s φ -s φ c φ     W ±  W ±    , (1.4) 
where φ is the mixing angle of the first stage SB and

c φ = g  g   + g   , s φ = g  g   + g   .
(1.5)

On the other hand, spanned by the third components of the two SU() gauge factors, the neutral mass matrix is written as

  W   W     u    g   -g  g  -g  g  g       W   W     . (1.6) 
Again, by dioganalising this matrix we will obtain two states, W ^ and Z ^ of which the former is massless while the mass of the second reads

m  Z ^ =   (g   + g   )
u  , and the composition of the mass eigenstates at this stage is

  W ^ Z ^   =   c φ s φ -s φ c φ     W   W     , (1.7) 
note that the mixing angle φ is the same as in (1.5). Thus, after the first stage of SB, there is still an unbroken SU() L ×U() Y symmetry, which may be identified as the Standard Model gauge group. The gauge bosons W ^±, and X ≡ B ^are massless, and only Z ^ and W ^ ± are massive.

Step II:

At the electroweak scale, the second stage SB takes place and the second scalar field H acquire its VEV, which induces further mixing among the gauge bosons. Thus the charged gauge boson mass matrix takes the following form

W ^+ W ^ +   m  W ^δ m  W δ m  W ^m W ^ + ∆ m  W ^     W ^- W ^ -   , (1.8) 
where for BP-II, one finds (see Appendix A.1)

  m  W ^δ m  W δ m  W ^m W ^ + ∆ m  W ^   =     g   c  φ v  -g  g  s  φ v  -g  g  s  φ v  m  W ^ + g   s  φ v    .
(1.9)

In the neutral sector and after rotating the fields similarly to the Standard Model, one obtains the gauge boson A, which turn out to be the photon, and Z ^in terms of the massless gauge bosons W ^ and B ^ 

A Z ^  =   c θ ^sθ -s θ ^cθ ^    B Ŵ ^  , (1.10) 
where θ ^is the second stage mixing angle and

c θ ^= g L g  L + g  Y , s θ ^= g Y g  L + g  Y , (1.11) with g L =  g   +  g   -
 and g Y = g X for the models following BP-II. This leads to the second stage SB neutral mass matrix

  Z ^Z ^   m  Z ^δ m  Z δ m  Z ^m Z ^ + ∆ m  Z ^     Z Ẑ ^   , (1.12) 
which reads for BP-II as (see Appendix A.1)

  m  Z ^δ m  Z δ m  Z ^m Z ^ + ∆ m  Z ^   =       (g  c φ c θ + g X s θ )  v  -g  g  g X s  φ e v  -g  g  g X s  φ e v  m  Z ^ + g   s  φ v      . (1.13)
Finally, the diagonalisation of the matrices in Eqs. (1.8, 1.12), taking into account that the scale of the first stage SB is much larger than the electroweak scale, leads to the physical mass eigenstates denoted without the hats (similarly for the charged gauge bosons)

Z ≡ Z ^-δ m  Z m Z ^ Z ^ , (1.14) 
Z ≡ δ m  Z m Z ^ Z ^+ Z ^ , (1.15) 
and to their masses

m  Z(W ) = m  Z ^(W ^) - (δ m  Z ^(W ^))  m  Z ^ (W ^ ) -m  Z ^(W ^) + δ m  Z ^ (W ^ ) , (1.16 
)

m  Z (W ) = m  Z ^ (W ^ ) + δ m  Z ^ (W ^ ) + (δ m  Z ^(W ^))  m  Z ^ (W ^ ) -m  Z ^(W ^) + δ m  Z ^ (W ^ )
.

(1.17)

Thus, using Eq. (1.17) one can write down the squared mass matrix of the physical gauge bosons in an expansion of powers of the vacuum expectation values for the various G  models:

BP-II, x = v u  : m  W =   (g   + g   )u  + g   s  φ u   x  + s  φ g   u   x  + O(x  ), (1.18) 
m  Z =   (g   + g   )u  + g   s  φ u   x  + s  φ g   g  X u  e  x  + O(x  ), (1.19 
)

where e = g  g  g X g   g   + g   g  X + g   g  X is the electromagnetic charge. From Eqs. (1.18, 1.19) it is
clear that in BP-II, the masses of W and Z are equal up to order x  included. Thus, one can assume that the new gauge bosons masses are identical in this breaking pattern.

BP-I-D:

We now summarise this procedure for the models following BP-I-D. The kinetic terms of the scalar fields in the model reads

L Scalar ⊃ (D µ Φ) † (D µ Φ) + Tr[(D µ H) † (D µ H)],
where

D µ Φ = ∂ µ Φ -ig    σ • W µ Φ -i   g X X µ Φ, D µ H = ∂ µ H -ig    σ • W µ H + ig  H   σ • W µ .
(1.20)

Step I:

Once Φ has acquired its VEV one obtains the charged gauge bosons matrix

W ^+ W ^ +   u  D      g       W ^- W ^ -   , (1.21) 
where

W ^± ≡ W ±  = W   ∓ iW   √  and W ^ ± ≡ W ±  = W   ∓ iW   √  . Thus only W ^ ± becomes massive (m  W ^ =   g   u  D ) after the first stage SB which of course is a consequence of the identification SU()  ≡ SU() L .
In the neutral sector spanned by W   and X gauge bosons the mass matrix is read off the Lagrangian .22) Diagonalising this matrix leads to two states, B ^and Z ^ of which the former is massless, while the mass of the second reads

  W   X   u  D   g   -g  g X -g  g X g  X     W   X   . ( 1 
m  Z ^ =   (g   + g  X )u  D ,
and to the relation between the mass eigenstates and the gauge eigenstates

  B Ẑ ^   =   c φ s φ -s φ c φ     X W     , (1.23) 
where φ is again the mixing angle of the first stage SB and

c φ = g  g   + g  X , s φ = g X g   + g  X . (1.24) 
Hence, after rotating the fields according to φ we obtain after the first stage SB a massive W ^ ± , a massive Z ^ and three massless gauge bosons B ^and W ^± .

Step II:

Below the electroweak scale the scalar field H acquires its VEV and the second stage SB occurs. Hence, The gauge bosons W ^ ± and W ^± further mix and the second stage SB charged mass reads

W ^+ W ^ +     g   v  -g  g  s β v  -g  g  s β v  g   u  D + g   v      W ^- W ^ -   . (1.25)
In the neutral sector using Eqs. (1.10, 1.11), the second stage SB neutral mass reads

  Z ^Z ^       g   v  - c  φ e g  g  g X v  - c  φ e g  g  g X v  m  Z ^ + g   c  φ v        Z Ẑ ^   , (1.26) note that g L = g  and g Y =  g   +  g  X -  .
Finally, following Eq. (1.17), the squared masses for the physical gauge bosons in expansion of power of v over u D are given by:

BP-I-D, x = v u D  : m  W =   g   u  D +   g   u  D x  + g   c  β s  β u  D x  + O(x  ), (1.27) 
m  Z =   g   u  D ( + t  φ ) + g   u  D ( + t  φ ) x  + (g   + g   ( + t  φ ))u  D g   ( + t  φ )  x  + O(x  ), (1.28) 
Similarly, for the models following BP-I with a triplet scalar field for the first stage SB one finds

BP-I-T, x = v u T  : m  W =   g   u  T +   g   u  T x  + g    c  β s  β u  T x  + O(x  ), (1.29) 
m  Z = g   u  T ( + t  φ ) + g   u  T ( + t  φ ) x  + (g   + g   ( + t  φ ))u  T g   ( + t  φ )  x  + O(x  ). (1.30) 
From Eqs. (1.27)-(1.30) one can see that the new heavy gauge boson masses are not degenerated in BP-I, and that the mass dependency on β is negligible. Finally, for the expressions of the various mass matrices we refer the reader to Table VI of [START_REF] Hsieh | Global analysis of general SU() × SU() × U() models with precision data[END_REF], which we have independently verified.

Neutral and charged fermionic currents

As in the SM, the W -and Z -boson interactions with leptons and quarks arise in the G  models from the fermion kinetic Lagrangian

L f ermion = fi iγ µ D µ f i , (1.31) 
in which the sum runs over all the fermions in the model. The fermion fields are chosen to transform in specific representations under the G  gauge group, leading to a different expression for the covariant derivative in each model. Although different breaking patterns and different group representations of the fermions will lead to different Lagrangians, one can write the fermion kinetic Lagrangian in a general form

L f ermion =W ^+ µ J +µ +W ^-µ J -µ + Z ^µ J µ + A µ J µ +W ^ + µ K +µ +W ^ - µ K -µ + Z ^ µ K µ , (1.32) 
where the first line takes the same expression as in the SM and the second line is the new physics contribution. The SM-like currents have the familiar form

J µ = e f Q f f γ µ f , J  µ = g  L + g  Y f [(T , f L -s  θ Q f )P L -s  θ Q f P R ] f γ µ f , J + µ = g L √  f T +, f L P L f γ µ f , (1.33) 
where the expressions for g Y and g L depend on the model. Furthermore Q f is the charge of the fermion f , T , f L the third component of the isospin of SU() L4 for the fermion f , and e plays the role of the electromagnetic charge. The expressions for the new currents K  and K ± are model dependent and can be read off Tables IV and V of [START_REF] Hsieh | Global analysis of general SU() × SU() × U() models with precision data[END_REF].

Note that until now, the gauge bosons in L f ermion are not in the final physical state. In order to reach the interactions between the new heavy resonances and the fermionic fields, one has to rewrite L f ermion in terms of the mass eigenstates for both neutral and charged gauge bosons. This is done by first inverting Eqs. (1.14, 1.15) and then inserting the results in Eq. (1.32). Thus the fermion kinetic Lagrangian reads

L f ermion =W + µ J +µ - δ m  W m W ^ K +µ + (+ ←→ -) +W + µ K +µ + δ m  W m W ^ J +µ + (+ ←→ -) +Z µ J µ - δ m  Z m Z ^ K µ +Z µ K µ + δ m  Z m Z ^ J µ +A µ J µ . (1.34)
This procedure is exemplified in full detail for the NU model in Appendix A.2.

From another perspective, the most general Lorentz invariant Lagrangian describing the interaction of a neutral or a charged vector boson with the SM fermions5 can be written as

L W CC = g W √  ūi γ µ C W q,L i, j P L + C W q,R i, j P R d j + νi γ µ C W ,L i, j P L + C W ,R i, j P R e j W µ + h.c., (1.35) 
L Z NC = g W c θ W qi γ µ C Z q,L i, j P L + C Z q,R i, j P R q j + ¯ i γ µ C Z ,L i, j P L + C Z ,R i, j P R j Z µ + h.c., (1.36) 
where q ∈ {u i , d j }, ∈ {ν i , e j } (i, j = , , ). In addition, P L,R = ( ± γ  )/, g W is the SU() L gauge coupling, and θ W is the Weinberg angle. Last but not least, the C q,L(R) , C ,L(R) are arbitrary complex couplings that parametrise the interaction of the new resonances.

The expressions for the couplings for the different G  models can be obtained by manipulating Eq. (1.34) so that it can be compared to Eqs. (1.35, 1.36). For BP-II models, we will use the symbol M to denote the mass of the new particle regardless of its nature since the masses of the new gauge bosons are degenerate, see Eqs. (1.18, 1.19), and t φ the first stage SB tangent angle. In BP-I, we will use either m W or m Z .Hence, the couplings will be expressed in terms of two new parameters compared to the SM for both BP-I6 and BP-II [START_REF] Jezo | Z' and W' gauge bosons in SU(2)xSU(2)xU(1) models : Collider phenomenology at LO and NLO QCD[END_REF].

BP-I:

C W q,L = -ε W (t φ , m W , β )V CKM C W ,L = -ε W (t φ , m W , β ) C Z q( ),L = -s θ X q( ) t φ + (T ,q( ) L + Q q( ) s  θ )ε Z (t φ , m Z ) C Z q( ),R = s θ (-X q( ) t φ + T ,q( ) L  t φ ) + Q q( ) s  θ ε Z (t φ , m Z ) (1.37) Left-Right Lepto-Phobic C W q,R = -t θ  + t  φ t  φ V R C W q,R = -t θ  + t  φ t  φ V R C W ,R = -t θ  + t  φ t  φ C W ,R =  (1.38) Hadro-Phobic Fermio-Phobic C W q,R =  C W q,R =  C W ,R = -t θ  + t  φ t  φ C W ,R =  (1.39)

BP-II:

Un-Unified

C W q,L =  t φ -c θ ε(t φ , m) C W q,R =  C W ,L = -t φ -c θ ε(t φ , m) C W ,R =  C Z q,L = T ,q L c θ  t φ + (T ,q L + Q q s  θ )ε(t φ , m) C Z q,R = Q q s  θ ε(t φ , m) C Z ,L = -T ,q L c θ t φ + (T ,q L + Q q s  θ )ε(t φ , m) C Z ,R = Q q s  θ ε(t φ , m) (1.40)
Non-Universal (see Appendix A.2)

C W q( )(,),L =  t φ -c θ ε(t φ , m) C W q( )(,),R =  C W q( )(),L = -t φ -c θ ε(t φ , m) C W q( )(),R =  (1.41) C Z q( )(,),L = c θ  t φ T ,q( ) L + ε(t φ , m)(T ,q( ) L + Q q( ) s  θ ) C Z q( )(,),R = ε(t φ , m)Q q( ) s  θ C Z q( )(),L = -c θ t φ T ,q( ) L + ε(t φ , m)(T ,q( ) L + Q q( ) s  θ ) C Z q( )(),R = ε(t φ , m)Q q( ) s  θ
where q and denote the quarks and the leptons of the SM, while (, ) and () are the (first, second) and (third) generation of the SM fermions, respectively. Moreover, T , f is, as in Eq. (1.33), the sum of the third components of SU()  and SU()  , Q f is the electric charge, X f is, as given in Table 1.1, the U() X charge, V R the right-handed analogue of the CKM mixing matrix, and V CKM has been omitted in the NU model. The ε

W (t φ , m W , β ), ε Z (t φ , m Z , β ) and ε(t φ , m) collect terms proportional to s  β  + t  φ /m  W t φ , /m 
Z t φ and t φ /m  , respectively. In the allowed regions, under the constraints derived from low energy and precision data, the values of ε are strongly suppressed ( ∼ O(10 - )), see Figure 1 of Ref. [START_REF] Jezo | NLO+NLL limits on Z and W gauge boson masses in general extensions of the Standard Model[END_REF].

It is worth mentioning that the BP-II models are sometimes named left-handed models due to the fact that the W -boson does not couple to right-handed fermions. On the other hand, models following BP-I are sometimes referred to as right-handed models for the reason that the W couplings to the left-handed fermions are suppressed. It can also be mentioned that the W -boson in the LP model does not couple to leptons at all, hence the name Lepto-Phobic. Similarly, the W -boson in the HP and FP models does not couple to quarks and fermions respectively. Finally, one can also see that, within these assumptions, the couplings in BP-I do not depend on the representation of the first stage SB scalar field.

Chapter 2 Z , W Precision predictions at the HLand the HE-LHC Subsequently, and in order to fully profit from its potential, the high-luminosity phase of the LHC will commence then in the mid-2020s, after another long shutdown, with the aim of delivering an integrated luminosity of 3 ab - to each ATLAS and CMS, again at a centre-of-mass energy of 14 TeV. This is shown schematically in Figure 2.1 [START_REF] Brüning | The high-luminosity large hadron collider[END_REF]. Moreover, in the perspective

The HL-LHC project has a close collaboration with the LHC injector complex upgrade project 5 (currently being installed), the companion ATLAS and CMS detector upgrade projects (2019-2020 and especially 2024-2026) and the upgrade foreseen for both the LHCb and ALICE detectors (2019-2020; see FIG. 1).

New technologies

The HL-LHC is not only a project to deliver high collision rates for high energy physics experiments, but also a technology driver with the ambition to develop a series of new technologies that are crucial for the next generation of post-LHC hadron colliders.

High-field superconducting magnets. The backbone of the upgrade is the so-called quadrupole triplet magnet, which is key to squeezing the beams at the col-manufacture, Nb-Ti magnets and by four special twin Nb 3 Sn dipoles rated for 11 T, but with a design slightly different from the triplet quadrupoles. Reaching the 11-12 T range with Nb 3 Sn technology will enable the development of 15-16 T superconducting magnets, which are necessary for the proposed 100 km Future Circular Collider.

Superconducting radiofrequency crab cavity.

The HL-LHC required the development of special radiofrequency (RF) cavities that, rather than accelerating the beam by giving it a longitudinal kick, deflect particles transversally, resulting in the rotation of the particle bunch without modifying its trajectory. Manufactured in bulk niobium, these 400 MHz superconducting RF crab cavities are extremely compact (five times smaller than the traditional elliptical shape), feature very of pushing the LHC program even further, and relying on the future magnet technology, a high-energy LHC with a 27 TeV centre-of-mass energy that collects an integrated luminosity of 15 ab - could be installed.

C O M M E N T
The new heavy resonances that appear in G  models have broad consequences. Indeed, because of their mixing with the SM W -and Z-bosons, all the SM processes involving the electroweak gauge bosons are sensitive to the new particles. In the previous chapter, we have investigated this class of models, which are well motivated and simple to study since they can be described by two or three free parameters. Complementary to this study, in this chapter we focus on the HL-and HE-LHC phenomenology of theses new resonances.

In Section 2.1 we present higher order predictions for top-quark pair production for models with Z -bosons, while in Section 2.2 we study new physics contributions to the total cross section for the production of W decaying into leptons. Besides the BP-II models, i.e, the NU and the UU models, we also consider the Sequential Standard Model [START_REF] Altarelli | Searching for new heavy vector bosons in p p colliders[END_REF], a toy model which copies the weak interactions of quarks and leptons by heavier versions W and Z of the W and Z boson, respectively. The only free parameters in this model are the masses of the new heavy gauge bosons. Due to its simplicity and convenience it is a widely used benchmark model in which LHC data are analysed.

Precision predictions for pp → Z →t t

Long after Makoto Kobayashi and Toshihide Maskawa explained the observed CP violations in kaon decay by the existence of a third generation of quarks [START_REF] Kobayashi | CP-Violation in the Renormalizable Theory of Weak Interaction[END_REF], the top quark was discovered in 1995 at the p p collider (Tevatron) [START_REF] Abe | Observation of top quark production in pp collisions with the collider detector at fermilab[END_REF][START_REF] Abachi | Observation of the top quark[END_REF], to be the heaviest elementary particle. Due to its short life-time, it decays before it hadronises, which offers a unique opportunity to study a bare quark through its decay products. Moreover, the processes with top quarks are very interesting since the 3rd generation plays a prominent role in the SM due to the Yukawa coupling of the top quark which is the only Yukawa coupling in the SM of order one. Therefore, it is quite conceivable that new physics (similar to the Higgs boson) couples predominantly to the top quark.

In the following we use the PBZp code [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF] to obtain predictions for t t hadroproduction in the presence of a Z resonance. This code contains the calculation of NLO QCD corrections to the electroweak t t production, properly accounting for the interference between SM (Z, γ) and new physics amplitudes, and implemented in the POWHEG BOX framework [START_REF] Frixione | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method[END_REF][START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF][START_REF] Nason | A New method for combining NLO QCD with shower Monte Carlo algorithms[END_REF]. This framework allows to combine NLO QCD computations with parton shower Monte Carlos once the spin-and color-correlated Born amplitudes along with their virtual and real NLO QCD corrections are known.

Our results pertain to pp collisions at the HL-and HE-LHC and we present results for three models, the SSM and the UU-and NU models. As has been discussed in the previous chapter, in the UU model the quarks and leptons belong to different representations of the two SU() gauge factors whereas in the NU model the first two generations transform differently than the third generation. Both models take two input parameters, the mixing angle of the first stage symmetry breaking t ≡ tan φ = g  /g  and the mass of the heavy resonance m Z . Exclusion limits on the parameters space for the G  models have been derived in [START_REF] Hsieh | Global analysis of general SU() × SU() × U() models with precision data[END_REF] by performing a global analysis of low-energy precision data. Improved limits for the W and Z masses were found in [START_REF] Jezo | NLO+NLL limits on Z and W gauge boson masses in general extensions of the Standard Model[END_REF] using LHC data at √ S = 7 and 8 TeV leading to m V > 2.5 TeV and 3.6 TeV in the UU and NU models, respectively. Accordingly, we choose the parameter t = 0.465 for the UU and t = 0.438 for the NU model. The top quark is assigned a mass of m t = 172.5 GeV. The value of sin  θ W = 0.2312 was taken from the Particle Data Group [START_REF] Olive | Review of Particle Physics[END_REF]. We vary the mass for total cross sections between 1 (2.5, 3.75) and 10 TeV for the SSM (UU, NU), respectively. The Z width in all models is set to be the same as in the SSM, it has been calculated at leading order using PYTHIA 6 [62] with a running electro-magnetic coupling α(m Z ), such that Γ SSM Z /m Z slightly increases from 3.07% at m Z = 1 TeV to 3.19% at m Z = 10 TeV. For the parton distribution functions, we use the CT14nlo (ISET = 13100 in LHAPDF6) [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF], and the renormalisation and factorisation scales µ R and µ F are identified with the invariant mass of the system. Opposed to our numerical results/studies in Chapter 3, no cut on the invariant mass of the t t pair has been applied.

Numerical results

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 To illustrate the total number of events to be expected from resonant-only Z -boson production at the LHC, we show on the left hand side of Figure 2.2 the total NLO cross sections at a centre-of-mass energy of √ S = 14 TeV in the SSM (full black curve), the NU (full blue curve), and the UU (full red curve) models, together with the associated renormalisation and factorization scale uncertainties (light khaki bands), the α S uncertainties (light salmon bands), and the PDF uncertainties (light blue bands) 1 . As one can see, in the case of the HL-LHC, with an integrated luminosity of 3 ab - , the number of expected events falls from almost 274 × 10  for m Z = 2 TeV to 23 for m Z = 10 TeV in the SSM and is about an order of magnitude smaller for the chosen parameters in the NU model, while for the chosen parameters in the UU model it ranges between almost 63 × 10  for m Z = 3 TeV and 53 for m Z = 10 TeV. On the other hand, on the right hand side of Figure 2.2, we deal with the HE-LHC where √ S = 27 TeV and the integrated luminosity is projected to be 15 ab - . Thus for the SSM we expect the number of events to fall from almost 7 × 10  at m Z = 2 TeV to almost 10  for m Z = 10 TeV, and again less by about an order of magnitude in NU, while it ranges between 2.6 × 10  approximately for m Z = 3 TeV and 2 × 10  for m Z = 10 TeV in the UU model.

m Z [GeV]

Uncertainties

Three different sources of uncertainty are presented in The renormalisation and the factorisation scale uncertainties have been estimated by varying their values in the range [0.5, 2] times the nominal scale, with the constraint that 0.5

< µ F /µ R < 2: 2 (i) µ R = 0.5µ o R and µ F = 0.5µ o F , (ii) µ R = 0.5µ o R and µ F = 1µ o F , (iii) µ R = 1µ o R and µ F = 0.5µ o F , (iv) µ R = 1µ o R and µ F = 2µ o F , (v) µ R = 2µ o R and µ F = 1µ o F , (vi) µ R = 2µ o R and µ F = 2µ o
F , where µ o R and µ o F are the central renormalisation and factorisation scales, respectively. Then each one of the resulting 6 choices is divided by the central choice (µ R = 1µ o R and µ F = 1µ o F ), so that an envelope can be constructed by selecting the maximum and the minimum of the six ratios at each mass. As can be seen from Figure 2.3, the scale variations in the three models are of the order of 10 to 20 percent, which is relatively small and the typical size for NLO QCD predictions for an electroweak process. One reason might be that the renormalisation scale dependence only enters in one power of α S which is also already quite small at µ R ∼ O(TeV) due to asymptotic freedom.

The uncertainties of the PDF extraction, due to uncertainties of the data, can be propagated into the theoretical prediction using for example the Hessian method [START_REF] Pumplin | Multivariate fitting and the error matrix in global analysis of data[END_REF][START_REF] Pumplin | Uncertainties of predictions from parton distribution functions. 2. The Hessian method[END_REF]. This method will typically lead to a best-fit or a central prediction. Additionally, modern PDFs will also provide the error pdfs. Here we use the CT14nlo PDF set [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF], which, besides the PDF set with the value of α S = 0.118 (in this particular case, as well as in many other PDF fits, this represent the default choice), has 56 error pdfs that correspond to 28 eigenvectors of the Hessian matrix 3 . We estimate the uncertainty by applying the master formula of [START_REF] Pumplin | New generation of parton distributions with uncertainties from global QCD analysis[END_REF]:

∆ σ =     N p i= σ (S + i ) -σ (S - i )      (2.1)
where σ is the total cross section, and σ (S ± i ) are the predictions for σ based on the PDF sets S ± i from the eigenvector basis. What we show in Figure 2.3 is the envelope obtained through the ratio (σ ± ∆ σ )/σ . As can be seen, the PDF uncertainties are generally slightly smaller than the scale uncertainties. In the case of the HL-LHC they increase with m Z and reach ± 15% at m Z ∼ 5 . . . 6 TeV. For even larger Z masses the uncertainty band then shrinks again to ± 5%. This behaviour may be understood as follows: due to the large resonance masses the PDFs are probed at high x-values where the PDF uncertainties become increasingly large. Assuming leading order kinematics and central rapidities one has x  = x  = m Z √ S at the s-channel resonance. For example, at √ S = 14 TeV (HL-LHC) and m Z = 6 TeV the typical x-values are x ∼ 0.4. Following this logic one might expect even higher x-values and hence larger PDF uncertainties for m Z > 6 TeV. However, at these high x values the sea quark PDFs are steeply falling overcompensating the enhancement due to the s-channel (Breit-Wigner) resonance at s ^= x  x  s = m  Z such that eventually off-shell production of the Z boson will dominate and the x-values probed do not further increase. At the HE-LHC with √ S = 27 TeV, x ∼ 0.37 for m Z = 10 TeV and we stay in the regime where on-shell production of the Z resonance dominates for the entire m Z range shown.

Finally, we present the uncertainty arising from the variation of the strong coupling constant which turns out to be the smallest one. Besides the PDF set with the value of α S = 0.118, which in many PDF fits represent the default choice, CT14nlo provides a series of NLO sets with different strong coupling constants α S = 0.111-0.123. Here we treat the α S variations in the same way as in the case of the scale variations, i.e. by dividing each one of the 12 choices by the central cross section and then creating an envelope by choosing the maximum and the minimum for each mass of the heavy gauge-boson. As can be seen from as a function of m Z , for q q → Z → t t[+g] in the SSM (top row), the UU model (centre row), and the NU model (bottom row), at the HL-LHC (left) and the HE-LHC (right).

the smallest ones. This may be because the available range of α S values is relatively small. Also note that the α S dependence only enters at the NLO level.

Precision predictions for pp →W → ν

In this section we present the total cross section describing the production of a W -boson decaying into a lepton and a neutrino, where the interference with SM W -boson is taken into account. This is done using the NLO+NLL code Resummino [START_REF] Fuks | Precision predictions for electroweak superpartner production at hadron colliders with Resummino[END_REF] which matches a soft-gluon resummation at NLL accuracy to a fixed order NLO calculation. But first let us briefly explain the concept of resummation.

Despite the fact that NLO fixed order calculations are finite for well defined observables, logarithmic terms are usually present in the perturbation series. For example, such terms arise as finite remainders after the cancellations of soft singularities. There may also be logarithmic terms resulting from collinear particle emission off massive quarks (such as the top quark). These collinear logarithms are finite but can become large in certain regions of phase space. Beside the fact that such terms are large, the problem is that they appear systematically to all orders in the perturbative expansion. For instance, let us consider the following perturbative expansion for an observable O:

O = O () + α S (a  log(s) + . . . ) + α  S (a  log  (s) + b  log(s) + . . . ) + O(α  S ), (2.2) 
where s is a small (<< 1) but positive parameter. We obtain, in this particular example, for each power of α n S , terms like:

• α n S log n (s) (Leading Logs, or LL),

• α n S log n- (s) (Next-to-Leading Logs or NLL),

• α n S log n- (s) (Next-to-Next-to-Leading Logs or NNLL), etc.

This means that what we call LL is a series of terms to all orders in α S . These terms are multiplied by coefficients: a  α S log(s) + a  (α S log(s))  + a  (α S log(s))  + . . . , this and the fact that α S log(s) can be of order one or larger implies that O is not convergent at all, i.e., the perturbation series with α S as expansion parameter fails. In order to restore the predictivity of the theory one has to resum the leading logarithmic terms ∼ (α S log(s)) n to all orders in α s . Once this is done, the NLL terms could to be resummed, too. And so on and so forth.

Resummino effectively resums to all orders in α S the large logarithmic terms arising in large invariant mass (Q) and/or small transverse momentum (p T ) regions, i.e. regions that are close to the edge of the phase space, by performing a Mellin transform. In other words, it treats two different regions of phase space where the perturbation theory is spoiled:

• Regions close to the partonic production threshold, where z = Q  /s → 1 or equivalently in Mellin space N → ∞, which include terms

∼ α S π n ln m ( -z)  -z + → α S π n ln m+ N + . . . ,
with m ≤ n - and N = Ne γE [START_REF] Bozzi | Threshold Resummation for Slepton-Pair Production at Hadron Colliders[END_REF][START_REF] Debove | Threshold resummation for gaugino pair production at hadron colliders[END_REF].

• Small-p T , or equivalently in Mellin conjugate space (after applying a Fourier transform to the partonic cross section), large-b region, which induces large logarithms of the form

α n S  p  T ln m Q  p  T + → α n S ln m+ b + . . . ,
with m ≤ n - and b =   bQe γE [START_REF] Bozzi | Transverse-momentum resummation for slepton-pair production at the CERN LHC[END_REF][START_REF] Debove | Transverse-momentum resummation for gaugino-pair production at hadron colliders[END_REF].

This treatment accounts only partially for the full perturbative cross section away from these regions. In order to obtain a valid cross section at all values of z and p T , the fixed-order (f.o.) and the resummed (res.) calculations must be matched consistently by subtracting from their sum their overlap i.e. the perturbatively expanded (exp.) resummed component,

σ q q = σ ( f .o.) q q + σ (res.) q q -σ (exp.) q q .
(2.3)

Then after the resummation of the partonic cross section has been performed in Nand b-space,

Resummino multiplies the resummed cross section and its perturbative expansion with the corresponding parton distribution functions were also a Mellin transform has been applied, and transforms the hadronic cross section obtained in this way back to the physical zand p T -spaces. More details can be found in [START_REF] Jezo | NLO+NLL limits on Z and W gauge boson masses in general extensions of the Standard Model[END_REF].

Keeping the same values for the Weinberg angle as in the previous section, we have chosen benchmark points such that the width Γ W in all models is the same as in the SSM. We have calculated the width in the SSM (Γ SSM W ) at leading order using PYTHIA 6 [START_REF] Sjostrand | PYTHIA 6.4 Physics and Manual[END_REF] with a running electro-magnetic coupling, α(m W ), such that Γ SSM W /m W slightly increases from 3.49% at m W = 1 TeV to 3.60% at m W = 9 TeV. This is achieved by setting the parameter t = 1 in the UU and NU models. As a consequence, the W couplings to the SM fermions are the same in the SSM and NU cases. Again we use CT14nlo for the PDFs and we identify µ R and µ F with the invariant mass of the system. And finally, in order to enhance the contribution from the new gauge boson and limit the one from the SM W -boson as well as interference effects, we have implemented a cut on the invariant mass of the lepton pair:

m ll >   M W .

Numerical results

In Figure 2.4 we show the W production cross sections at a centre-of-mass energy √ S = 14 TeV at LO (dashed black), NLO (solid red), and NLO+NLL (solid green), along with the associated renormalisation and factorisation scale uncertainties (light khaki bands), in the SSM as a function of the heavy gauge boson mass (top left). The ratios of the total cross sections at the HL-LHC at NLO (solid red) and NLO+NLL (solid green) over the LO cross section as a function of the W mass is also presented (bottom left). Similarly, on the right hand side of Figure 2.4, we show the same but for a centre-of-mass energy √ S = 27 TeV. Interference terms between W -and W -gauge bosons are included. As one can see, in the case of the HL-LHC, with an integrated luminosity of 3 ab - , the number of expected events falls from almost 40 × 10  (42 × 10  ) for m W = 3 TeV to 9 [START_REF] Bertone | Particle dark matter: Evidence, candidates and constraints[END_REF] for m W = 7 TeV in the SSM at NLO (NLO+NLL). On the other hand, when dealing with the HE-LHC where √ S = 27 TeV and the integrated luminosity is of 15 

Uncertainties

By convention, the theory uncertainty, i.e. from missing higher orders, is estimated by change of cross section when varying the renormalisation and factorization scales around the central value as discussed in Section 2.1. In Figure 2.6 we show the fractional uncertainty at different orders in perturbation theory due to the scale variation, in particular the LO (light khaki bands), the NLO (light blue bands), and the NLO+NLL (light salmon bands). This is done at √ S = 14 TeV (right) and at √ S = 27 TeV (left) in the SSM (top) and in the UU model (bottom). As is naively expected, for all the models and at different energies, the higher we go in perturbation theory the smaller the errors are. In fact, the LO result has no dependence on the renormalisation scale because it has no dependence on α S .

2000 3000 4000 5000 6000 7000 8000 9000 2000 3000 4000 5000 6000 7000 8000 9000 The fractional uncertainty at LO, NLO, and NLO+NLL due to the scale variation as a function of m W , for q q → W,W → lν in the SSM (top row), and in the UU model (bottom row), at the HL-LHC (left) and the HE-LHC (right).

Chapter 3 QCD corrections to EW top-pair production beyond the Standard Model

Despite the fact that no signals of new physics have been found in the first and the second runs of the LHC at CERN, there are still high hopes that new particles will show up in the future high-luminosity runs. It is also clear that such signals will likely appear as small deviations from the SM predictions and that they will critically depend on the size of the theory uncertainties which makes precision predictions of both the SM background and the new physics signals an essential ingredient for a correct and reliable comparison between experimental data and theories describing the fundamental interactions of Nature.

The focus of this chapter is, again, on the W ± and the Z -bosons. As discussed in the previous chapters, such resonances are predicted by several well-motivated extensions of the SM and are extensively sought after by three of the experimental collaborations (ATLAS, CMS, and LHCb) at the LHC. In this context it is noteworthy that Z models with a non-universal flavor structure [START_REF] Allanach | Third family hypercharge model for R K ( * ) and aspects of the fermion mass problem[END_REF][START_REF] Allanach | Naturalising the third family hypercharge model for neutral current B-anomalies[END_REF], where the Z couples differently to the fermions of the three SM families, are viable candidates to explain the current B-flavour anomalies [START_REF] Aaij | Test of lepton universality with B  → K *  +decays[END_REF][START_REF] Aaij | Angular analysis of the B  → K *  µ + µdecay using 3 fb - of integrated luminosity[END_REF][START_REF] Aaij | Measurement of Form-Factor-Independent Observables in the Decay B  → K *  µ + µ[END_REF][START_REF] Aaij | Measurement of the B  s → µ + µbranching fraction and effective lifetime and search for B  → µ + µdecays[END_REF][START_REF] Aaboud | Study of the rare decays of B  s and B  mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector[END_REF][START_REF] Khachatryan | Observation of the rare B  s → µ + µdecay from the combined analysis of CMS and LHCb data[END_REF][START_REF] Chatrchyan | Measurement of the B  s → µ + µ -Branching Fraction and Search for B  → µ + µwith the CMS Experiment[END_REF][START_REF] Bobeth | Long-distance effects in B → K * from analyticity[END_REF][START_REF] Khachatryan | Angular analysis of the decay B  → K *  µ + µfrom pp collisions at √ s =  TeV[END_REF].

The strongest constraints on the parameter space of models with Z and W resonances come, in many cases, from searches with dilepton final states. In this case, precise predictions at NLO accuracy including a resummation of soft gluon terms at NLL accuracy can be obtained with the Resummino code [START_REF] Fuks | Precision predictions for electroweak superpartner production at hadron colliders with Resummino[END_REF] which has been used previously to derive limits on Z and W masses using data for dilepton final states [START_REF] Jezo | NLO+NLL limits on Z and W gauge boson masses in general extensions of the Standard Model[END_REF] and to provide predictions for the High Energy/High Luminosity options of the LHC [START_REF] Vidal | Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC[END_REF].

However, also top quark observables are very interesting since the  rd generation plays a prominent role in the SM due to the Yukawa coupling of the top quark which is the only Yukawa coupling in the SM which is of order one. Therefore, it is quite conceivable that new physics (similar to the Higgs boson) couples predominantly to the top quark. In 2015, a calculation of next-to-leading order QCD corrections to the electroweak t t production in the presence of a Z resonance [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF] was performed. It properly accounted for the interference between SM and new physics amplitudes in a semi-automated fashion. The calculation was implemented in the POWHEG BOX framework [START_REF] Frixione | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method[END_REF][START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF][START_REF] Nason | A New method for combining NLO QCD with shower Monte Carlo algorithms[END_REF] performing a consistent matching of the fixed NLO calculation with shower Monte Carlos (SMC). The results obtained with this tool, dubbed PBZp, are useful since they bridge the gap between first-principles higher order calculations and the complex detector signatures and data from the experiments.

In this chapter, we perform a complete re-calculation of the processes implemented in the PBZp including a number of improvements:

• The amplitudes have been calculated using the Recola2 package [START_REF] Denner | Recola2: REcursive Computation of One-Loop Amplitudes 2[END_REF]. This package has been designed to automatize the calculations of amplitudes in theories beyond the SM including QCD and electroweak corrections at NLO. Our calculation is the first to use (and validate) this tool for a BSM calculation. Implementing the amplitudes obtained with Recola2 into Monte Carlo event generators (within the POWHEG BOX framework) is an important aspect which makes the tool more useful for LHC experiments.

• The new code can now deal with flavour non-diagonal/generation non-universal couplings such that the Z -models mentioned above explaining the B-flavour anomalies can be implemented.

• Another new feature is that the calculation now includes t-channel W and W contributions.

• As before, all interference terms are fully taken into account and the photon induced channels for the SM are included, properly matched with POWHEG. As discussed in [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF] they give a large/sizable contribution to the cross section. This chapter is organised as follows: In Section 3.1 we define the production of top-quark pairs at hadron colliders including new electroweak gauge bosons, focusing on the perturbative organisation of the cross section and its contributions at leading and next-to-leading order in the strong and electroweak coupling constants. In Section 3.2 we describe the Born, virtual, and real processes that contribute to our calculation. In Section 3.3 we give a brief description of the Recola2 package, provide some details on the UFO [START_REF] Degrande | UFO -The Universal FeynRules Output[END_REF] model file that need to be linked to it in order to calculate our amplitudes, and validate the resulting amplitudes against the old calculation. Section 3.4 and Section 3.5 present a discussion of the POWHEG method and a detailed description of the implementation of our NLO calculation in a Monte Carlo generator within the POWHEG BOX framework. To conclude, we summarise in Section 3.6 the models for which we present numerical results as a function of both the new gauge bosons masses and the collider energy and propose useful kinematic cuts to disentangle the different contributions.

Next-to-leading order QCD corrections to the electroweak top-pair production

The cross section of the top-pair production in hadronic collisions can be calculated using a property of QCD called factorisation1 which permits us to divide the calculation of the observables into two independent factors that encompass the underlying physics at different scales: a low-momentum non-perturbative hadronic part and a high-momentum part that describes what happens at short distance, see Figure 3 At the LHC, when two protons collide at a centre-of-mass energy of 13 TeV, each one carries a momentum p = 6.5 TeV in the centre-of-mass frame. If we give the partons coming from the first proton the index a, and the ones of the second proton an index b, then the interacting constituents of these protons will each carry a portion of the momentum of the parent proton, p a and p b respectively, where

p a = x a p a , p b = x b p b , x a , x b ∈ [, ]. (3.1) 
Using this notation, the hadronic cross section can be written as

σ = a,b   dx a f a (x a , µ F )   dx b f b (x b , µ F ) σab (x a p a , x b p b ; µ F ). (3.2)
Here, a sum over all the constituents of the protons a and b is performed in order to take into account all relevant partonic channels. Moreover, one has to integrate over all possible momentum fractions x a and x b of the two partons. In our case, this integration ranges extend from the threshold at which two top quarks t with mass m t can be produced up to the collider hadronic centre-of-mass energy. The high-momentum transfer part, the hard scattering of the partons a and in b is described by the parton level short distance cross section σab . On the other, the structure of the protons is encoded in terms of parton distributions functions f i (x, µ F ). The PDFs are non-perturbative objects describing the probability of finding a parton of type "i" carrying a longitudinal momentum fraction x of the parent proton momentum. It is important to note that the PDFs are universal, i.e., they are independent of hard scattering process which gives the formalism predictive power. Finally, both the hadronic and the partonic parts of the cross section depend on the factorisation scale µ F which fixes the energy scale at which the factorisation is realised. The final result of any computation should not depend on this unphysical, and essentially arbitrary scale. However, in practice, this is not the case due to missing higher orders in the perturbative expansion and as seen in Section 2.1.2 one can vary the scales to estimate the theoretical uncertainty due to these missing terms.

Since the PDFs are universal objects and since their scale dependence is well known we will focus on the high scale object i.e. on the partonic cross section which is usually obtained by performing a perturbative calculation and one can achieve higher formal accuracy by including higher-order effects. At the lowest or leading order of perturbation theory, in powers of the two parameters α S and α W , where the former parametrises strong interactions and its value is roughly 0.1 at the TeV scale and the latter parametrises the strength of the electroweak interactions and its value is around 0.01, the top-pair production partonic cross section, σ LO ab , can be written as

σ LO = σ LO S (α  S ) + σ LO SW (α S α W ) + σ LO W (α  W ), (3.3) 
where we drop the indices a and b of the contributing partons and we concentrate on the dependence of the coupling constants. The first component on the right hand side of Eq. (3.3) represents the gluon mediated subprocesses in the gg channel as can be seen in Figure 3.2 (a)-(c), and in the q q channel, as in Figure 3.2 (d). The first obvious amplitude that contributes to σ LO SW would be the one including diagrams (d) and (e) of Figure 3.2, however this choice is equal to zero since it will lead to a closed fermionic loop with one gluon vertex. Instead, σ LO SW includes the interference of diagrams (d) and (f) of Figure 3.2 as well as the photon-induced diagrams as depicted in Figure 3.3. Finally, the last term, σ LO W denotes the partonic cross section of the subprocesses mediated by the electroweak gauge bosons, photon γ, neutral Z-boson, and charged W -bosons initiated by q q, as shown in Figure 3.2 (e) and (f) respectively. q q q q q q g g g g g g

g g W γ, Z t t t t t t t t t t t t (b) (a) (c) (d) (e) (f) Figure 3.2: LO Feynman diagrams for t t production. gg-channel of O(α  S ) (a)-(c), q q-channel at the order O(α  S ) (d) and q q-channel at the order O(α  W ) (e)-(f).
LO accuracy is not sufficiently precise in some case, and higher order corrections are needed. The next-to-leading corrections to the top-pair production, collect, in addition to the three components of Eq. (3.3), terms with one additional power of one of the coupling constants α S or α W . Up to NLO, the cross section of the partonic top-pair production has the following perturbative expansion

σ NLO = σ; (α  S ) + σ; (α S α W ) + σ; (α  W ) + σ; (α  S ) + σ; (α  S α W ) + σ; (α S α  W ) + σ; (α  W ), (3.4) 
where the indices m; n represent the powers of α S and α W respectively. Throughout this manuscript we would refer sometimes to the term σm;n in the perturbative expansion as the partonic cross section at order O(α m S α n W ), for example, σ; could be referred to as the partonic cross section at order O(α S α  W ). The first three components of Eq. (3.4) correspond to the LO partonic cross sections σ LO S , σ LO SW , and σ LO W from Eq. (3.3) respectively. At NLO, these terms can receive QCD corrections through an interaction with an extra QCD particle or EW corrections through an interaction with an extra EW particle, as represented in the last four terms of Eq. (3.4). In that sense, σ; and σ; are the LO SM QCD contribution and the NLO corrections to it, they have been calculated in the late 1980 [START_REF] Nason | The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions[END_REF][START_REF] Nason | The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions[END_REF][START_REF] Beenakker | QCD Corrections to Heavy Quark Production in p anti-p Collisions[END_REF][START_REF] Beenakker | QCD corrections to heavy quark production in hadron hadron collisions[END_REF]. Moreover, NLO calculations for heavy quark correlations [START_REF] Mangano | Heavy quark correlations in hadron collisions at next-to-leading order[END_REF] and t t spin correlations [START_REF] Bernreuther | Top quark spin correlations at hadron colliders: Predictions at next-to-leading order QCD[END_REF][START_REF] Bernreuther | Top quark pair production and decay at hadron colliders[END_REF] are available too. σ; represents the EW corrections to the QCD backgrounds. In this case, a gauge-invariant subset was first investigated neglecting the interferences between QCD and EW interactions arising from box-diagram topologies and pure photonic contributions [START_REF] Beenakker | Electroweak one loop contributions to top pair production in hadron colliders[END_REF] and later including also additional Higgs boson contributions arising in 2-Higgs doublet models (2HDMs) [START_REF] Kao | Parity violating asymmetries in top pair production at hadron colliders[END_REF]. The rest of the electroweak corrections was subsequently calculated in a series of papers and included also Z-gluon interference effects and QED corrections with real and virtual photons [START_REF] Kuhn | Electroweak corrections to top-quark pair production in quark-antiquark annihilation[END_REF][START_REF] Moretti | Weak corrections to gluon-induced top-antitop hadro-production[END_REF][START_REF] Bernreuther | Mixed QCD and weak corrections to top quark pair production at hadron colliders[END_REF][START_REF] Bernreuther | Weak interaction corrections to hadronic top quark pair production[END_REF][START_REF] Hollik | NLO QED contributions to top-pair production at hadron collider[END_REF]. In principle, σ; would also receive contributions from new Z and W resonances. However, these contributions are expected to give a small correction to σ; and since they are highly model-dependent due to the rich structure of the scalar sector in many models we don't include them in our calculation.

In our calculation we focus on the tree-level EW top-quark pair production and the NLO QCD corrections to it, i.e. σ; and σ; respectively. σ; receives contributions from the s-channel amplitudes q q → (Z , Z, γ) →t t including the Z signal and its interference with the photon and SM Z-boson. Due to the resonance of the Z -boson, we expect these terms to be the most relevant for new physics searches. In addition, we include new contributions from diagrams with non-resonant t-channel exchange of W -, W -and Z -bosons that were not considered in Ref. [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF]. Note that out of these, the first two take into account CKM mixing and the last one is only allowed in models with flavour non-diagonal couplings due to the absence of a top quark PDF in a 5FNS. A particular advantage of the σ; contribution is that the calculation of higher order QCD corrections to it, σ; , can be carried out in a model-independent way as long as the couplings of Z and W are kept general. We also include σ; which receives contributions from the photon induced subprocess γg →t t and the interference of the s-channel QCD and the tchannel electroweak top-pair production. Note that the photon induced subprocess is numerically relevant and needed for a consistent treatment of the mass singularities in the process gq →t tq when the t-channel photon is collinear to the quark q. Finally, the purely electroweak term σ; would also receive contributions from new Z and W resonances. However, It is of order

O(α  W )
and parametrically suppressed compared to the other terms. We therefore do not include it in our calculation. 

Parton level processes

The perturbative partonic cross section of Eq. (3.2) can be written as

σab =  s ^ dφ (x a p a , x b p b ; p  , ..., p n )|A (x a p a , x b p b ; p  , ..., p n )|  (3.5)
where s ^is the (inverse) flux factor and s ^= Q  is the squared (partonic) centre-of-mass energy. A coherent calculation in perturbation theory requires taking into account all the diagrams at a given order, as well as all those of lower order. For instance, to calculate σ; , again we drop the indices a and b of the contributing partons and we concentrate on the dependence of the coupling constants, one needs to include all the squared amplitudes of order O(α S α  W ) and lower. In other words, σ; is proportional to the squared amplitude |A |  , where

|A (x

|A |  = |A ; |  +  e [A ; A * ; ] + |A   ; |  , (3.6) 
the first term on the right side of Eq. (3.6) has the lowest order ( ∼ |O(α W )|  ) and is called the Born term, the second one is of order O(α S α  W ) it represents the amplitudes with an emitted and re-absorbed field within the same diagram and is know as the virtual contribution, and the last component is also of order O(α S α  W ), it describes the amplitudes with one additional emitted particle with respect to the Born amplitudes and dubbed as the real component. It is worth mentioning that the Born and virtual contributions live in the same phase space (2 → 2 in this particular case), while the real contribution has a different number of particles in the final state (2 → 3 in our example), and thus can not be combined with the Born nor with the virtual amplitudes.

Taking into account the virtual and real contributions will lead to many difficulties because of the appearance of divergences. In general, these divergences could be one of the three different types: (i) the ultraviolet (UV) divergences which reflect the behavior at short distances or large momenta of the theory and only appear in virtual terms with very large loop momenta, (ii) the soft divergences that arise when the momentum of a massless particle tends to zero, it reflect the behavior of the theory at small energies or large distances and can appear in both real and virtual contributions, and (iii) the collinear divergences, also known as mass singularities, that happen when the momenta of two massless particles became parallel can also appear in both real and virtual amplitudes.

The UV divergences are treated by the so-called renormalisation procedure where all the parameters of the Lagrangian are redefined in a renormalisation scheme and acquire a renormalisation scale dependence (running couplings) and thus need to be measured at one scale. The running parameters can then be calculated at a different scale using a set of differential equations known as the renormalisation group equations. The soft singularities must cancel in the sum of real and virtual terms for infrared (IR) safe observables 3 . Last but not least, the initial state collinear divergences are treated by the so-called mass factorisation procedure, where, in the same spirit as in the renormalisation procedure, the PDFs and fragmentation functions are redefined in a factorisation scheme and acquire a factorisation scale dependence and thus need to be measured at one scale. The evolution for the measured scaled to a different one can then be obtained with the set of differential equations called DGLAP equations. More details about how we treat these singularities in our calculation will be given in the next sections.

In this section, we describe the amplitudes that contribute to σ; , σ; , and σ; in more detail. We work in a 5-Flavour Number Scheme (5-FNS), meaning that only the top-quark mass is different than zero, and that all relevant contributions with u, d, s, c, b (anti-)quarks, gluons and photons are included in the initial state. Furthermore, we allow for a completely general flavour structure for the coupling of the Z -and W -bosons to the Standard Model fermions.

Leading-order contributions

The lowest order diagrams, also known as the Born amplitudes A ; contributing to the electroweak top-pair production cross-section σ; ∼ |A ; |  are shown in Figure 3.4. Figure 3.4a) depicts in a compact form the contribution with an s-channel vector boson V  which can be a photon, a SM Z-boson, or a new heavy Z -boson. In the previous version of PBZp only flavour-diagonal Z couplings with q = q ∈ {u, d, s, c, b} were allowed.

In this calculation we include contributions with flavour-changing couplings of the Z -boson to the quarks in the initial state (q q ∈ {u ū, c ū,d d,s d,b d,d s,s s,b s,u c,c c,d b,s b,b b}). Note that the corresponding amplitudes with a charge-conjugated initial state are not shown. In the new calculation, we now also take into account the t-channel diagrams in Figure 3.4b) where the exchange boson V  can be a W -, W -, or Z -boson. Needless to say that those amplitudes in Figure 3.4a) and b) having the same initial (and final) states are added coherently.

As was discussed in [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF], the diagrams in Figure 3.4a) have zero interference with the QCD amplitude q q → g * →t t since such interference terms are proportional to the vanishing colour 3 An IR safe observable is an observable that does not depend on long distance physics and is therefore calculable

in perturbative QCD q q' V 1 t t q' t t q V 2 (a) (b)
Figure 3.4: Born amplitudes A ; contributing to the electroweak top-pair production cross section σ; . a) s-channel contribution where V  ∈ {γ, Z, Z } and q, q ∈ {u, d, s, c, b}. In the case of Z exchange we allow for flavour-changing amplitudes with q = q and we don't show the corresponding amplitudes with a charge-conjugated initial state. b) t-channel contributions where V  ∈ {W,W , Z }. All allowed amplitudes with the same initial (and final) state are added coherently.

trace Tr(T a ). On the other hand, the t-channel diagrams in Figure 3.4b) with q = q do interfere with the QCD amplitude q q → g * →t t. Thus they contribute to σ; and we take them into account. In Figure 3.5 we show the one-loop QCD corrections, A ; , to the diagrams in Figure 3.4. They contribute to the EW top-pair production at O(α s α  W ) due to the interference of these diagrams with the Born amplitudes in Figure 3.4: σV

One-loop virtual corrections

; ∼  e [A ; A * ; ].
Note again, that there is no interference of the diagrams in Figures 3.5a) and b) with the Born level QCD amplitude q q → g * →t t, whereas the diagrams in Figures 3.5c) and d) will interfere with it contributing to σ; . As discussed in Section 3.1, we don't consider the effect of heavy new resonances on σ; in this work.

In our re-calculation we define the virtual corrections as the set of diagrams with no vector bosons inside the loops, effectively treating them as background-fields in Recola2 [START_REF] Denner | Application of the background field method to the electroweak standard model[END_REF][START_REF] Denner | NLO electroweak corrections in extended Higgs Sectors with RECOLA2[END_REF]. The resulting QCD loop corrections constitute a gauge-invariant subset which can be seen by realising that if either of the quark lines is replaced by an auxiliary non colour-charged conserved current (e.g. a lepton-lepton vector interaction), the so-defined virtual corrections represent not only the full QCD corrections and are thus gauge-independent, but, moreover, they do not depend on the specific form of the auxiliary conserved current. Therefore, the statement holds true for the EW production if one vetoes diagrams with a gluon exchange between the two different quark lines, i.e. excluding box corrections. In summary, we therefore include diagrams such as Figures 3.5c and h) requires to account for quark mixing self-energy diagrams with transitions between different flavors due to W -, W -, or Z -bosons in the loop. Such quark mixing in the renormalisation is currently not implemented in Recola2/Rept1l. In the limit of a diagonal CKM matrix and including only diagonal W and Z couplings, we investigated in our calculation the impact of the diagrams in Figure 3.5e)-h) and it turns out that in this case, their contribution is negligibly small. Since any deviation from this "diagonal" setup is additionally suppressed by the small off-diagonal couplings we expect the contributions from Figure 3.5e)-h) to remain negligible also in this general "non-diagonal" case.

Real emissions

The following 2 → 3 tree-level amplitudes, A   ; , contribute to electroweak top-pair production at O(α s α  W ): (i) q q →t tg (and the charge conjugated process) and (ii) gq →t tq (and the charge conjugated process). The corresponding Feynman diagrams are shown in Figures 3.6 and 3.7 respectively.

For comparison, the real emission diagrams in Figures 4 and5 in the previous calculation [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF] are a (small) subset of the diagrams depicted in Figures 3.6 and 3.7 in a rather compact manner.
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.6: Diagrams contributing to the q q →t tg subprocesses at order O(α s α  W ). As in Figure 3.4, V  ∈ {γ, Z, Z }, V  ∈ {W,W , Z }, and q, q ∈ {u, d, s, c, b}. All allowed amplitudes with the same initial (and final) state are added coherently. q q q q q q q q q' q' q' q' The q q subprocesses in Figures 3.6 contain soft and collinear divergences. which cancel in the sum of real and virtual cross sections as a consequence of the KLN theorem. Within POWHEG they are treated using the Frixione-Kunszt-Signer subtraction [START_REF] Frixione | Three jet cross-sections to next-to-leading order[END_REF][START_REF] Frixione | A General approach to jet cross-sections in QCD[END_REF]. Collinear divergences are present in Figures 3.6a), b), e), and f). On the other hand, collinear gluon emission from a top quark line leads to a finite logarithm of the top quark mass which we keep in σ in fixed order perturbation theory.
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The gq and g q channels can only have collinear singularities. While the diagrams in Figures 3.7a), e), f), and h) are completely finite the other diagrams in Figure 3.7 contain configurations where a light quark propagator [b),g)] or a photon propagator [c),d)] can be close to its mass shell. As already discussed in [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF], the fact that the collinear divergences appearing in Figures 3.7 c) and d) involve a photon propagator has two consequences: (i) we have to introduce a PDF for the photon inside the proton, and (ii) the corresponding underlying Born process shown in Figure 3.3, gγ →t t, must be included in the calculation.

Recola: Recursive Computation of 1-Loop Amplitudes

The amplitudes that contribute to our calculation, see Section 3.2, were calculated using the Recola2 package.

Recola2 is an extension of Recola [START_REF] Actis | RECOLA: REcursive Computation of One-Loop Amplitudes[END_REF] for the computation of tree and one-loop amplitudes in the Standard Model and beyond. In Recola, one-loop amplitudes are decomposed in terms of tensor coefficients and tensor integrals, the latter being model independent and evaluated with the help of the Collier tensor integral library [START_REF] Denner | Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations[END_REF]. Thus, the model-dependent part only concerns the tensor coefficients and rational parts of type R  [START_REF] Ossola | On the Rational Terms of the one-loop amplitudes[END_REF] that are being constructed with the help of a Recola2 model file in a recursive and numerical way. The model file used in our study has been generated using the toolchain FeynRules [START_REF] Alloul | FeynRules 2.0 -A complete toolbox for tree-level phenomenology[END_REF] and Rept1l [START_REF] Denner | NLO electroweak corrections in extended Higgs Sectors with RECOLA2[END_REF] and is publicly available. 4 Recola regularises amplitudes in dimensional regularisation with space-time dimension D = 4 -2ε adopting by default the COLLIER normalisation for 1-loop integrals [START_REF] Denner | Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations[END_REF]. More precisely, conventional dimensional regularisation is used which treats all particles and momenta in D dimensions. Similarly, the Lorentz algebra is upgraded to D-dimensions with a special treatment of γ  , known as naive dimensional regularisation (NDR) [START_REF] Denner | Electroweak Radiative Corrections for Collider Physics[END_REF]. As the treatment of γ  is delicate in D = 4 dimensions, it can be formulated as a problem of determining the correct rational term of type R  which may not have a γ  scheme dependence or would otherwise prohibit defining (chiral) gauge symmetry of the theory in a consistent way. In NDR, rational terms for amplitudes with closed fermion loops and external vector bosons are evaluated using a reading point prescription, giving up on the cyclicity of the trace. This procedure guarantees that no symmetries of the theory are being broken, at least to one-loop order. The UV renormalisation is carried out in the complete on-shell scheme for all particles [START_REF] Denner | Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200[END_REF]. Since in this work we start from electroweak production including QCD corrections, no further renormalisation of couplings is required.

Recola model file: the Standard Model + W + Z

In this section we provide more details about the model file that, as discussed in Section 3.3, is linked to Recola2 in order to calculate the amplitudes at LO and NLO. Dubbed as "The Standard Model + W + Z " or "SMWZp", this model implements the SM at NLO QCD supplemented by interaction terms with a W and Z based on the following Lagrangian

L W Z =k W, ± e √ s W W µ C l W, ± νi γ µ w ± l j +C q W, ± ūi γ µ w ± d j + h.c+ (3.7) k Z, ± e s W c W Z µ C l Z, ± li γ µ w ± l j +C u Z, ± ūi γ µ w ± u j +C d Z, ± di γ µ w ± d j + h.c,
where q ∈ {u i , d j }, and ∈ {ν i , e j } (i, j =1,2,3) are the SM fermions in the mass eigenstate basis. Furthermore, w ± = ( ± γ  )/, k W (Z),+ and k W (Z),-are free parameters that affect the couplings between the W (Z ) boson and the right-handed and left-handed SM fermions respectively, e =  √ πα W is the electromagnetic charge, and s W and c W are the sine and the cosine of the Weinberg angle respectively. Finally, C l W, ± , C q W, ± , C l Z, ± , C u Z, ± , and C d Z, ± are CKM-like coupling matrices. For instance, C u Z,-would have 9 free parameters, CZlL1x1, CZlL1x2, CZlL1x3, CZlL2x1, CZlL2x2, CZlL2x3, CZlL3x1, CZlL3x2, and CZlL3x3 controlling the couplings between Z and left-handed ūu, ūc, ūt, cu, cc, ct, tu, tc, and tt respectively. It is worth mentioning that the SM CKM matrix is also a free parameter in this model and can be fixed by setting the 9 input parameters CKM1x1, CKM1x2, CKM1x3, CKM2x1, CKM2x2, CKM2x3, CKM3x1, CKM3x2, and, CKM3x3. For the complete set of the external parameters of SMWZp and how to edit their values see Appendix B.2.

Power counting of couplings in Recola

The orders associated to couplings for a given theory define a power-counting in Recola. As a result, the amplitudes are ordered and computed according to the power-counting of the model in consideration. In the SM the amplitudes are proportional to (

√ α S ) n S ( √ α W ) n-n S
where n is the total number of vertices and n S is the number of QCD vertices. For instance, the squared amplitude for the electroweak u ū →t t will have a total of 4 vertices of which 0 are of QCD nature and 4 are of EW type. Thus, in this particular case one has two amplitudes that are proportional to ( √ α S )  ( √ α W )  . Now going back to the SMWZp model where each vertex is proportional to either √ α S or √ α W with the latter describing, not only the EW SM vertices, but also the couplings to the BSM Z -and W -bosons. Thus, in order to allow for the selection of pure BSM contributions, The model has been implemented with, in addition to the SM power counting, a power counting for the BSM vertices. Again if one takes the same example as before, i.e., the squared amplitude of the electroweak u ū →t t, but this time in the SMWZp model, one will have two possibilities, either a SM EW production via a Z-boson or a BSM EW production mediated by a Z -boson. The squared amplitude in the former case would have 0 QCD vertices and 4 EW vertices of which none are of BSM type, in Recola's power-counting language this means: "0 QCD 4 QED 0 WZP", where QED means SM EW and WZP is the identifier for BSM EW. On the other hand, in the latter case, the squared amplitude has: "0 QCD 4 QED 4 WZP". More details about the power-counting and the anatomy of the SMWZp amplitudes within Recola that we include in our calculation can be found in the Appendix B.3.

Validation

The SSM amplitudes calculated with Recola were validated at the Born level against the ones in Madgraph (MG5) and the old PBZp package, and at the real and virtual levels to the old PBZp package only. This was done by sampling the full phase space. To this aim, we generated the phase space points using POWHEG BOX where the Born (and virtual) phase space is described by three vectors of random variables, Xborn1, Xborn2, and Xborn3, and the real phase space has, in addition to the Xborn vectors, three variables in the unit cube Xrad = {Xrad1, Xrad2, Xrad3} that set the radiation kinematics. Note that the Recola and the old PBZp packages use a different notation for couplings of gauge bosons to SM fermions, for more details see Appendix B.4.

Born

In Figure 3.8 we compare the tree level amplitudes calculated in Recola2 for u ū → Z → t t and d d → Z → t t against the ones calculated with MG5 (purple) and the old PBZp (blue) finding a very good agreement. The list of parameters that enter in this comparison can be read form Listing B.1 of Appendix B.5. Note that while sinus of the Weinberg angle is an external parameter in the old PBZp, this is not the case in Recola where it is an internal parameter depending on the masses of Zand W -bosons. More precisely

s  W =  -(m  W /m  Z ).
We also show the ratio of the photon induced amplitudes calculated in Recola2 over the ones calculated in the old PBZp where we find a perfect agreement as can be seen from Figure 3.9.

The only new parameter that affect this amplitudes with respect to the ones in Figure 3.8 is the strong coupling constant. 

Real

The real amplitudes for Z mediated processes have been also validated against the old calculation. In Figure 3.10 we show the u ū → Z → t tg and the d d → Z → t tg squared amplitudes of the SSM calculated in Recola2 over the ones obtained using the old PBZp package. In both cases we find a very good agreement after multiplying Recola2's amplitudes by a factor of π/α S . In addition, we compare, in the SSM, the sum of the squared amplitudes of g q → Z → t t ū and gq → Z → t tq, where q can be an up type or a down type quark, in both Recola2 (times π/α S ) and PBZp and we find again a very good agreement as can be seen from Figure 3.11. Last but not least, as shown in Figure 3.12, we also validate the virtual squared amplitudes of 

POWHEG BOX: Matching NLO QCD computations with Parton Shower Monte Carlos

We implemented the squared amplitudes for the EW top pair hadroproduction at LO and NLO QCD accuracy calculated with Recola2 in the computer framework POWHEG BOX [START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF] in order to obtain numerical results for hadron colliders. The Positive Weight Hardest Emission Generator method, used in the POWHEG BOX, aims to attain a NLO precision for an inclusive observable while sustaining at least leading logarithmic accuracy for exclusive ones obtained through parton shower algorithms implemented in various publicly available Shower Monte Carlo event generators such as PYTHIA [START_REF] Sjostrand | PYTHIA 6.4 Physics and Manual[END_REF][START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF] or Herwig [START_REF] Corcella | HERWIG 6.5 release note[END_REF].

The SMC event generators aim to simulate particle collisions in full detail starting from the high-energy perturbative domain down to the detector level 5 , which is, basically, what is observed by experiments. They can be seen as virtual colliders with the ultimate goal of producing unweighted events, that is events with the same probability as they occur in nature, each consisting of a list of final-state particles and their momenta. The structure of a protonproton collision at the LHC as built up by event generators can be described as follows. The simulation starts by calculating the hard subprocess, described by a black blob in Figure 3.13, which is the highest momentum transfer process in the event. The incoming and outgoing partons (quarks and gluons) involved in the hard scattering, together with any coloured particles, can emit virtual gluons, which can produce quark-antiquark pairs or even radiate further gluons, resulting in a cascade of partons known as the parton showers, this is shown in blue in Figure 3.13. The parton shower evolution starts from the hard process and falls down to lower and lower momentum scales reaching the non-perturbative regime, where the strong coupling constant is not small anymore. At this point, the process of hadronisation (yellow in Figure 3.13), in which the partons are confined into colourless hadrons, begins. The fact that the colliding protons contain other coloured partons in addition to the ones involved in the hard scattering implies that these additional constituents will undergo multiple interactions, this is known as the underlying event and is shown in green in Figure 3.13. Many of the resulted hadrons are not stable, thus, the last stage of event generation is the simulation of the decay of those hadrons.

The LO matrix element at fixed order description have very few partons in the final state and is only valid with partons that are hard and well separated, however, it includes the correct quantum interference effects. On the other hand, a shower MC is a resumming procedure which has no limits on parton multiplicity, but is only valid in the soft and collinear regions of the phase space and only account for a partial interference. Thus, these two approaches are complementary. Combining fixed-order tree-level matrix elements and parton showers can be done in Monte Carlo simulations with methods like MLM [START_REF] Hoeche | Matching parton showers and matrix elements[END_REF] and CKKW [START_REF] Catani | QCD matrix elements + parton showers[END_REF][START_REF] Krauss | Matrix elements and parton showers in hadronic interactions[END_REF] where, using a cut-off, one truncates the phase space in two parts, the hard well separated part and the soft and/or collinear part. Nevertheless, LO accuracy is insufficient and more precision is needed. Matching NLO fixed order calculations with parton showers is beyond the ability of SMC event generators. In contrast to the tree level matrix elements, the partons of the hard scattering at NLO are not always hard and well separated, they can go soft or collinear. Thus, requiring a cut-off as in the LO case is not infrared safe, since at NLO, one has to integrate the real radiation over the complete phase space of the one particle that can be soft or collinear to obtain the IR poles that cancel against the virtual corrections. Furthermore, as seen in Figure 3.14, an overlap between the extra radiation of the real emission matrix element and the one coming from the parton shower can occur, this is known as the double counting problem.

Parton shower

Born+Virtual

Real emission

In this section we describe the POWHEG method that can circumvent the previously mentioned problems by consistently matching the NLO matrix elements with the parton shower. We start by briefly discussing the concepts of the Monte Carlo integration and the subtraction method, that are used in POWHEG to perform the integration over the phase space and to deal with the IR singularities. We then review the basics of the parton shower algorithm. Finally, we briefly discuss the POWHEG method.

Monte Carlo integration

The amplitudes obtained with Recola2 need to be integrated over the complex multidimensional phase space dφ . This task is done in POWHEG using Monte Carlo integration along with an optimization called VEGAS.

The idea of the Monte Carlo method is to estimate the numerical integration using random numbers 6 . To illustrate this, let us take the following integral

I = [,] d d d y f (y  , ..., y d ), (3.8) 
where I is the integral of the function f (y  , ..., y d ) which is square-integrable 7 Hence, the integral I can read as follows

I = dx f (x). (3.9) 
Given N uniform samples, or in other words N uniformly distributed and continuous random points {x n , n = , ..., N} in the integration domain, the integral on f (x) can be estimated by

E =  N N n= f (x n ). (3.10)
E is the so-called Monte Carlo estimate. Using the law of large numbers we find lim

N → ∞  N N n= f (x n ) = I. (3.11)
In words, this means that the Monte Carlo estimate converges to the true value of the integral for large samples. Since we are talking about an estimation, we need to provide information about its error. To this aim, let us first introduce the variance S  of the function f

S  [ f ] = dx( f (x n ) -I)  . (3.12) 
Using Eq. (3.12), it can be shown that the variance of our Monte Carlo estimate E is

S  [E] = S  [ f ] N , (3.13) 
meaning that the error in our Monte Carlo integration decreases as / √ N which independent of the dimension d of the integral. In practice, Eq. (3.13) can not be used easily since we do not know the result of the integral I. Alternatively, we can use the Monte Carlo estimate that we have computed

S  [E] =  N - N n= ( f (x n ) -E)  =  N N n= ( f (x n ))  -E  . (3.14) 
As we have seen, the convergence of the Monte Carlo integration is relatively slow (/ √ N).

In order to ameliorate this, the so-called variance reduction techniques [START_REF] Weinzierl | Introduction to Monte Carlo methods[END_REF] can be used. One of these techniques is importance sampling where, instead of sampling from an uniform distribution, one uses a distribution that is suited for the integrand. Schematically, this is equivalent to a change of variables

dx f (x) = dxg(x) f (x) g(x) = dG(x) f (x) g(x) , (3.15) 
where dG(x) = g(x)dx. In case g(x) is not uniformly distributed, the definition of the Monte Carlo estimate and variance become

E =  N N n= f (x) g(x) , (3.16 
)

S  (E) =  N N n= f (x) g(x)
 -E  .

(3.17)

The optimal case is when g(x) → f (x)/I which yields a vanishing variance S  = 0, but this would require preliminary knowledge about the integrand. As a solution, an adaptive algorithm that learns about the function to be integrated as it proceeds can be used. It realises importance sampling without requiring advance knowledge about the integrand. This algorithm is called VEGAS and was suggested in 1977 by G. Peter Lepage, for a detailed description of this optimisation we refer the reader to [START_REF] Lepage | A New Algorithm for Adaptive Multidimensional Integration[END_REF][START_REF] Lepage | VEGAS: AN ADAPTIVE MULTIDIMENSIONAL INTEGRATION PROGRAM[END_REF].

The subtraction method

As we have seen in Section 3.2, NLO calculations involve 3 different types of amplitudes in perturbation theory, namely the Born, the virtual and the real amplitudes. Schematically the integration over the phase spaces of these 3 contributions in a 2 → n NLO process can be described as follows

σ NLO = n dσ B + n dσ V + n+ dσ R , (3.18) 
where the subscripts B, V , and R stands for Born, virtual, and real respectively. Furthermore, in the Born and virtual cases, the integral is over the n-particle phase space, whereas in the real case it is over the (n + )-particle phase space.

Even though the virtual amplitudes obtained with Recola2 are UV finite, they still suffer, together with the real amplitudes, from IR divergences when integrated over the phase space. However, for infrared safe observables, the sum of the real and the virtual contributions is finite after integration. In practice, this is done by the mean of dimensional regularization where one shifts the dimension of the integral from 4 to 4+2ε, where ε is a very small number. After integration the divergences appear as explicit poles in both virtual and real terms but with opposite signs resulting in their cancellation. This can only be done analytically and, as we saw in the previous section, we use Monte Carlo integration in POWHEG where an integral with a non-integer number of dimensions can not be estimated.

An alternative solution that suites numerical techniques is the subtraction method. The basic idea of the subtraction method is to modify Eq. (3.18) by including a term that matches the singularity structure of the real contribution but with an opposite sign. This cancels the IR divergences in the real phase space integral. The subtraction term needs to be added back to guarantee that Eq. (3.18) remains unchanged. In addition, it needs to be simple enough in order to ensure that its integral over the momenta of the unresolved parton can be done analytically in dimensional regularization. Once this analytic integral is performed, we obtain an object that shares the same phase space as the Born and the virtual terms. Additionally, ensured by the KLN theorem and the definition of the subtraction term, this integrated subtraction term will have an explicit pole structure that cancels the one from the virtual contribution. As a result, the integrated subtraction term and the virtual term can then be merged into one non-divergent term, which is integrated over the same phase space. Thus, we obtain an equation with three finite integrals

σ NLO = n dσ B + n dσ V +  dσ S n+ dσ R -dσ S , (3.19) 
where S stands for subtraction. While different methods can be used to construct these subtraction terms, we will only briefly describe the FKS subtraction method by Frixione, Kunszt and Signer [START_REF] Frixione | Three jet cross-sections to next-to-leading order[END_REF][START_REF] Frixione | A General approach to jet cross-sections in QCD[END_REF] used in the POWHEG BOX.

To elaborate on the FKS method let us go back to the real part of Eq. (3.18) which can be written in terms of the real matrix element and the n +  phase space as follows

dσ R = |A n+ |  dφ n+ , (3.20) 
where the squared amplitude |A n+ |  diverges 8 as

 ξ i  ( -y i j )
, with ξ i representing the ratio of the energy of the final state leg i over the total partonic energy, and y i j describing the cosine of the angle between the two legs i and j. The FKS subtraction method relies on the partition of the n +  phase space into distinct zones that contain at most one collinear and/or one soft singularity. This can be attained schematically by editing Eq. (3.20) as follows

dσ R = i, j S i j |A n+ |  dφ n+ , (3.21) 
where the partitioning function S i j is a function of the momenta of the particles i and j. It is defined such that it vanishes for all singular regions that are not associated with parton i 8 Here we suppose that the ξ i factor in the phase space already cancels with one of  ξ i in the squared amplitude.

going soft or partons i and j becoming collinear and that the full phase space is recovered when summing over all possible pairs i, j

S i j = . (3.22)
As a result, every term in Eq. (3.21) is convergent everywhere over the phase space except for the ones where the energy of the parton i approaches zero or the partons i and j are very close to one another. Thus, these remaining divergences can be regularised, which, using the fact that

dx  x f (x) = dx f (x) -f ()Θ (x cut -x) x , (3.23) 
leads to changing every term in the sum of Eq. (3.21) to

 ξ i ξ cut   -y i j δ O ξ i ( -y i j )|A n+ |  dφ n+ . (3.24)
Even though the cancellation between ξ i and (y i j ) of Eq. (3.24) and the divergent poles of the squared amplitude has to be performed analytically, this does not cause a problem since the real amplitude factorises to the Born times the Altarelli-Parisi splitting functions in the collinear limit and to the Born times the eikonals in the soft limit. Furthermore, as mentioned previously, the integrated subtraction terms have to be added back to the virtual corrections. This leads to terms proportional to the colour correlated Born amplitudes when integrated over the one particle phase space. For a more complete explanation on how to construct the subtraction terms in the FKS framework we refer the reader to Ref [START_REF] Frederix | Automation of next-to-leading order computations in QCD: The FKS subtraction[END_REF].

Basics of QCD parton showers

A parton shower transforms the inclusive partonic prediction into an exclusive quantity. This is done by dressing the external legs of the matrix element with radiations. By doing so, it selects one possible history, in case of a final state parton, or prehistory, in case of an initial state parton, of all possible histories of the hard event. Furthermore, a parton shower is unitary, it does not change the probability of the hard event. In other words, the inclusive cross section should not change when the extra radiation is added. A general property of QCD, which goes under the name of collinear factorisation or universality of amplitudes, is that the squared amplitudes near the collinear limit factorise. This means, as can be seen in Figure 3.15, that if we consider an amplitude with m +  partons in the final state and we square it, then if two of the final state partons are close enough in the phase space (their angle goes to zero), they can be seen as coming from the same particle, and the value of the full square amplitude factorises into the probability of m partons times a universal object know as the splitting function. This is universal in the sense that the physics of the splitting does not interfere with the rest of the amplitudes. This can be formulated mathematically as

|A m+ |  dφ m+ → |A m |  dφ m × α S π dt t dz dϕ π P ^a→bc (z), (3.25) 
where A m+ and A m are the amplitudes for the m +  and m particle processes respectively, P ^a→bc is the Altarelli-Parisi splitting function with a, b, and c ∈ {q, g}, t represents the hardness of the branching and tends to zero in the collinear limit, it can be the virtuality, the transverse momentum, or the angular variable, ϕ is the azimuthal angle, it can be chosen to be the angle between the polarisation of the particle a and the plan of the branching, and z is the energy variable, it represents the energy fraction taken by parton b from parton a. The previous picture can be applied many times in a parton shower program. For instance, as shown in Figure 3.16, if, instead of one branching, we start with two branchings, then in the limit where both angles are very small and strongly ordered 9 Eq. (3.25) can be applied recursively This procedure is called the recursive collinear factorisation and can be done for an arbitrary number of emissions. It is also known as the leading-log approximation where leading-log refers to a single power of logarithmic enhancement for every power of α S . This can be seen explicitly in the case of a real emission cross section with k qg splittings for example

|A m+ |  dφ m+ → |A m |  dφ m × α S π
σ  α k S dt  t  ... dt k t k θ (Q  > t  > ... > t k > Q   ) = σ   k! α k S log k Q  Q   (3.27)
where σ  is the lowest-order cross section for the process at hand, Q is a typical hard scale, Q  is a small infrared cut-off that separates perturbative from non-perturbative regimes, and the function θ is equal to 1 if its argument is true and zero otherwise.

Although Eq. (3.27) involves a lower cut-off, the fact that it would blow up as t approaches 0 means that the real emission cross section is susceptible to low energy phenomena that cannot be interpreted by perturbative QCD. As we have seen before, for IR safe observables, this can be dealt with by including the virtual corrections as stated by the KLN theorem. This is guaranteed in parton shower programs by means of the so-called Sudakov form factors.

The Sudakov form factor is the probability that a parton leaves a high scale to actually show up at a lower scale without having emitted any resolvable radiation. If we describe the differential probability for the splitting a → bc in the phase space element [t,t + dt] knowing that no emission occurred before as

d p(t) = bc dt t dz dϕ π α S π P ^a→bc (z) (3.28)
then the probability of no splitting between the scales t and t + dt is d p(t). This can be generalised to

∆ (Q  ,t) = k  - bc dt t dz dϕ π α S π P ^a→bc (z) (3.29) = exp - b c Q  t dt t dz dϕ π α S π P ^a→bc (z) (3.30)
where ∆ (Q  ,t) is the Sudakov form factor describing that the parton a does not emit in the scale interval [Q  ,t]. The nice property about the Sudakov form factor is the fact that it is multiplicative. For instance, for a parton, the probability of no emission from one scale A down to another scale B times the probability of no emission from B to a lower scale C is equal to the probability of no emission from A to C.

Using the fact that (i) the splitting functions are universal and (ii) the Sudakov form factor is multiplicative, the probability for k ordered splittings from a leg at a given scale can be defined in a parton shower algorithm as

dP k (t  , ...,t k ) = ∆ (Q  , Q   ) k l= d p(t l )θ (t l- -t l ) (3.31)
where Q  is the hadronisation scale below of which the description for parton splitting cannot be trusted anymore.

So far, we limited our discussion to the parton shower in the collinear regions and did not consider the issues related to soft IR divergences. Indeed, in regions of the phase space where the energy fraction z goes to either zero or one the QCD amplitudes manifest singularities. This is properly treated in public SMC tools; for the sake of brevity we do not describe it here and we refer the reader to [START_REF] Alioli | Matching next-to-leading-order QCD calculations with shower Monte Carlo Simulations: single vector boson and higgs boson productions in powheg[END_REF] for a detailed description.

The POWHEG method

The POWHEG method is a procedure for matching NLO calculations with parton shower generators. The idea behind it was first proposed in [START_REF] Nason | A New method for combining NLO QCD with shower Monte Carlo algorithms[END_REF], and then discussed at great length in [START_REF] Frixione | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method[END_REF]. What distinguishes the positive weight hardest emission generator method from other interfacing procedures is that, as suggested by its name, it is capable of generating positive weighted events only, and it does not depend on the SMC program used for subsequent showering.

To overcome the problem of double counting, POWHEG produces the hardest emission 10first separately from the subsequent ones. Schematically11 , the POWHEG cross section for the generation of the hardest event is

dσ = B(φ B )dφ B ∆ R (p min T ) + R(φ R ) B(φ B ) ∆ R (k T (φ R ))dφ rad (3.32)
where B(φ B ) and R(φ R ) are the Born and real amplitudes respectively. k T (φ R ) is the transverse momentum of the radiation relative to the beam or to another parton, depending on the singular region. The p min T parameter is introduced as a lower cut-off on the transverse momentum, it is needed in order to prevent the strong coupling constant from reaching unphysical values. B(φ B ) is the NLO differential cross section at fixed underlying Born kinematics and integrated over the radiation variables, it can be expressed as

B(φ B ) = B(φ B ) + V (φ B ) + dφ rad R(φ R ) (3.33)
where V (φ B ) is the virtual contribution and the square bracket reflect the fact that a subtraction procedure, as described in Section 3.4.2, has been used. Finally, ∆ R is the POWHEG Sudakov form factor, and can be expressed as follows

∆ R (p T ) = exp -dφ rad R(φ R ) B(φ B ) θ (k T (φ R ) -p T ) (3.34)
where θ is the usual step function rendering values k T (φ R ) < p T prohibited. Thus, the POWHEG method is a kind of a multiplicative approach that uses the old k factor 12 thinking to improve the original SMC equation. This is achieved, as can be seen from Eq. (3.32), by replacing the Born cross section by B(φ B ) which is normalized to NLO by construction. At low transverse momenta the POWHEG Sudakov form factor turns into a standard one as in the SMC programs. Nevertheless, for inclusive quantities, the NLO precision of Eq. (3.32) is preserved. Furthermore, due to the fact that ∆ R ≈  and B/B ≈  + O(α S ) in the high transverse momentum regions of the phase space, the high-p T regions of the radiation is properly described by the real contributions

dσ ≈ B(φ B )dφ B R(φ R ) B(φ B ) dφ rad ≈ R(φ R )dφ B dφ rad . (3.35) 
In reality, a collison process involve multiple coloured massless particles in the initial or in the final state. Hence, the procedure described previously need to be repeated whenever one of these massless coloured partons goes soft or becomes parallel to another leg resulting in a divergence. For this to be possible, the real emission cross section is divided, as discussed in 3.4.2, into a sum of terms having at most one collinear and one soft singularities. Subsequently, for every term of the sum, a radiation is produced independently and only the one with the highest p T is maintained. Finally, the event is generated with respect to the flavour and kinematics associated to hardest emission.

Once generated, the hardest event can be then interfaced with any SMC program which can then create the rest of the shower. One important condition required by POWHEG in order to avoid the over-counting problem is that the SMC need to be either p T -ordered or can veto radiations that have a transverse momentum higher than the first emission.

POWHEG BOX implementation

The POWHEG method described in the previous section has been implemented in a computer framework dubbed the POWHEG BOX [START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF]. This framework collects a set of formulae and algorithms in Fortran 77 in order to facilitate the POWHEG implementation of a QCD NLO process in a semi-automated fashion. This is achieved given the following ingredients

• The list of all flavour structures of the Born processes.

• The list of all flavour structures of the real processes.

• The Born phase space.

• The Born squared amplitudes B, the colour correlated ones B i j and the spin correlated ones B µν .

• The real matrix elements squared for all relevant partonic processes.

• The finite part of the renormalised virtual corrections, calculated in D-dimensions.

• The Born colour structures in the limit of a large number of colours. Once these ingredients have been specified, the POWHEG BOX can automatically identify the singular regions, build the soft and collinear counter terms, construct the collinear remnants which are the left-over of the PDFs redefinition, produce the event with Born kinematics including virtual corrections, and then generates the hardest additional radiation according to the POWHEG Sudakov form factor. Many processes are already implemented in the POWHEG BOX including, but not limited to, single-top and single-top W associated production, Higgs boson production in gluon fusion etc [START_REF] Alioli | NLO single-top production matched with shower in POWHEG: s-and t-channel contributions[END_REF][START_REF] Re | Single-top Wt-channel production matched with parton showers using the POWHEG method[END_REF][START_REF] Alioli | NLO Higgs boson production via gluon fusion matched with shower in POWHEG[END_REF][START_REF] Alioli | Hadronic top-quark pair-production with one jet and parton showering[END_REF][START_REF] Alioli | Right-handed charged currents in the era of the Large Hadron Collider[END_REF][126].

In what follows, we review the previously listed elements that need to be provided by the user. This is done in the context of electroweak top-pair production using the Recola2 package. We then compare some cross sections obtained with our new implementation against the old calculation in [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF]. [0,-1,6,-6,-1], [0,1,6,-6,1], ..., [0,5,6,-6,5],

[-5,0,6,-6,-5], [-5,0,6,-6,-3], ..., [-1,0,6,-6,-3],

[-1,0,6,-6,-1], [1,0,6,-6,1], ..., [5,0,6,-6,5]].

As we can see from flst _ real, the variable flst _ lightpart need to be given the value 5 in our case. Finally we set kn _ masses and kn _ minmass as follows kn _ masses = [0,0,mt,mt,0] kn _ minmass = 2 * mt, where mt is the mass of the top quark and can be chosen in the POWHEG input file powheg.input. Additional information about the input file will be given in the following subsections.

The Born and Born-correlated squared amplitudes

Even though the Born phase space needs to be provided by the user, we skip the explanation on how this was done for our implementation since we used the same born _ phsp 16 file as in the hvq 17 POWHEG package [START_REF] Frixione | A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction[END_REF]. For more details about the Born phase space in POWHEG we refer the reader to [START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF][START_REF] Jezo | Z' and W' gauge bosons in SU(2)xSU(2)xU(1) models : Collider phenomenology at LO and NLO QCD[END_REF].

We now move on to the implementation of the Born and Born-correlated squared amplitudes. In POWHEG BOX this is done through the routine setborn(p(0:3,1:nlegborn),bflav(1:nlegborn),born, bornjk(1:nlegborn,1:nlegborn),bmunu(0:3,0:3,1:nlegborn)).

where setborn should return the Born squared amplitude in born 18 , the colour-correlated one in bornjk, and the spin-correlated one in bmunu, according to the choice of the 4-momenta p and the flavour structure bflav. Both the colour-and spin-correlated Born amplitudes are needed for the treatment of soft and collinear singularities in the FKS subtraction method and are defined in POWHEG, respectively, as follows

s b B jk = -N spins colours A {c i } A † {c i } c j → c j c k → c k T a c j ,c j T a c k ,c k (3.36) B µν k = N { j},s k ,s k A ({ j}, s k )A † ({ j}, s k )(ε µ s k ) * ε ν s k (3.37)
where in Eq. (3.36), A {c i } is the Born matrix element with {c i } representing the colour indices of all the external coloured legs. The suffix in the Hermition conjugate indicates that the colour indices of particles j and k are replaced with primed indices. N is the appropriate normalization factor including averages over initial spin and colour and symmetry factors. The SU() generator T a c,b is equal to the SU() structure constant i f cab for gluons, while it is equal to the colour matrix in the fundamental representation t a bc for incoming quraks (outgoing anti-quarks), and to -t a bc for incoming anti-quarks (outgoing quarks). In Eq. (3.37), the spin-correlated amplitude B µν k vanishes if particle k is not a gluon, it is obtained by leaving un-contracted the indices of the k th particle. The parameter s k of the Born amplitude describe the spin of the k th leg, while { j} represents collectively all the remaining spins and colours of the incoming and outgoing particles. Finally, ε µ s k and ε ν s k are the polarisation vectors. For more information about the formula of colour-and spin-correlated amplitude in POWHEG see section 2.3 of [START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF].

Typically, a calculation of a squared amplitude with Recola involves the following steps: (i) Setting the input parameters, (ii) defining the processes, (iii) generating the processes, (iv) and computing them. This should be done following the same order, except for the first step which could be alternatively carried out after defining the processes. On the other hand, the calculation of a tree level cross section in POWHEG starts with the previously mentioned init _ processes file, then goes through the init _ couplings routine where all the parameters are defined and then through the born file where the routine setborn is constructed.

We start by defining the processes for Recola in init _ processes by calling Recola's subroutine define _ process _ rcl(npr,processIn,order) (3.38) this defines the process(es) we want to compute. The argument npr of type integer is an identifier to the process we want to define. The argument processIn of type character specifies the external particles involved in the process. For instance, if we wish to define a process with u ū in the initial state and t t in the final state, processIn should be formulated as 'u u˜-> t t˜'. It is possible to define multiple processes with define _ process _ rcl, in this case each process should be given a different identifier. The argument order of type character * ( * ) takes only two values, 'LO' or 'NLO'. In the former case Recola can only evaluate tree level amplitudes whereas in the latter case it can evaluate both LO and NLO amplitudes. For our calculation, we set npr to flst _ nborn, with the latter being a POWHEG variable of type integer that changes with each inequivalent Born flavour structure. Furthermore, for each entry of the list flst _ born, which we discussed in the previous subsection, we fill a variable that we called process with the particles involved in the entry in the format of processIN, and we set the argument processIN to our variable process. Last but not least, we set the argument order to 'NLO' in order to avoid doing the definition step twice, one for Born and one for virtual, sine both amplitudes share the same phase space (2 → 2 in cour case).

In order to have the choice between calculating only SM amplitudes, only BSM amplitudes, or SM and BSM together (which will include the interference effects between the two), we call, directly after define _ process _ rcl, the subroutine setpowerBornLoopRecola(prid) and set prid to flst _ nborn. The building blocks of this subroutine, which we created, can be seen in Listing 3.1. Here we create a new variable channel and we add it as an element of powhe.input. This variable can take three values only, 3, 4, or 7. Each value will then call a combination of the following Recola's subroutines select _ power _ BornAmpl _ rcl(npr,cid,power) (3.39) unselect _ power _ BornAmpl _ rcl(npr,cid,power) (3.40) unselect _ all _ powers _ BornAmpl _ rcl(npr) (3.41) select _ power _ LoopAmpl _ rcl(npr,cid,power) (3.42) unselect _ power _ LoopAmpl _ rcl(npr,cid,power) (3.43) unselect _ all _ powers _ LoopAmpl _ rcl(npr) (3.44) where npr is the same as in 3.38, cid is of type character and defines the type of the vertex, and power is of type integer and specify how many vertices of type cid are considered (or not considered), for more information about the values that cid and power can take in our calculation see subsection 3.3.2. The subroutines (3.39, 3.40) allow to select/unselect the contribution to the Born amplitude according to the choice of cid and power while the subroutine (3.41) unselect all contributions to the Born amplitude (with any power and any coupling type) for the process with identifier npr. The subroutines (3.42, 3.43, 3.44) are the same as the subroutines (3.39, 3.40, 3.41) respectively, but for Loop amplitudes. Thus, according to our choices for the arguments cid and power, channel 7 would select SM and BSM contributions, channel 4 only SM contributions, and channel 3 only BSM ones, this is done for both the Born and the virtual amplitudes. However, since we want to include the amplitudes involving one s-channel gluon mediated diagram and one t-channel EW diagram, see subsection 3.2.1, which would affect channels 4 and 7, and since with Recola, using the previous subroutines, it is not possible to select these contributions without including the pure QCD amplitudes, additional work will be needed. This can be explained in the language of subsection 3.3.2 and Appendix B.3 as follows, at the Born level we want channel  to include the squared amplitudes , , , , and  and channel  to involve only  and . However, with the previous subroutines we are not able to select  and  or only  without including the squared amplitude  in both channel 7 and 4 respectively. we will address how we treat this later on.

The parameters needed by Recola in order to compute the squared amplitudes are set in the file init _ couplings. This will be explained in more details in the following subsections. We now continue in init _ couplings but addressing other information. Since we include the photon induced diagrams which involve one power in √ α S at the Born level, and since POWHEG will evaluate these amplitudes at different phase space points, we need to use the subroutine set _ dynamic _ settings _ rcl(n) (3.45) this regulates which input parameters can be set dynamically. The integer n can take the values 0 or 1, in the former case only α S can be reset after generating the process while in the latter case additional parameters needed when calculating Loop amplitudes can be reset as well. Since we aim to implement a NLO calculation, we set n to 1. Then, after calling all the input parameters, in order to generate our processes we call the subroutine generate _ processes _ rcl (3.46) this constructs the skeleton of the recursive procedure for all previously defined processes, and stores it in global variables that later on are used by Recola for the computation of amplitudes. At this stage, Recola can compute the amplitudes, however setting any of the already defined processes to zero would lead to an error, this can occur for example in case some of the couplings were set to zero. In order to overcome this problem, and allow the couplings to be set to zero whenever desired, we do, once the processes are generated, the following:

• We check whether the process exists or not using the subroutine process _ exists _ rcl( npr, exists) where the integre npr is the process identifier and the argument exists is of type logical.

• Then only if exists is true we take the process into account and we fill its external particles as an entry in the list flst _ born.

• After that we call reset _ recola _ rcl() which will free the memory and allow for the definition of a new set of processes in the same run of the program without changing the values of the input parameters.

• Then we call again the subroutine (3.45) since it was reset by the previous step.

• Finally, we define the existing processes and we select their powers as done before.

During these steps we set the npr argument in the subroutines process _ exists _ rcl, define _ process _ rcl, and setpowerBornLoopRecola to prid, with the latter chosen according to a routine that we created to be able to assign the identifiers of the processes independently for each channel 19 . This routine is dubbed bflavToPrid(bflav,channel) where the previously mentioned argument bflav is a list of four integers that defines the flavour structure of the pro-cess and channel is the variable that we introduced previously and specifies which amplitudes will be calculated.

Remember that the goal was to create the subroutine setborn where the Born and Borncorrelated squared amplitudes can be calculated for each flavour configuration. This can now be done with Recola. To this aim we created in the file born.f a subroutine called computeBornRecola(prid,bflav,p,born,bornjk,bmunu) which, given the identifier of the process prid, its flavour structure bflav and its 4-momenta p, returns the Born squared amplitudes in born, the colour-correlated ones in bornjk, and the the spin-correlated ones in bmunu. We start by calling Recola's subroutine set _ alphas _ rcl that sets the value of the strong coupling constant which can now have different values for different scales since we used the subroutine set _ dynamic _ settings _ rcl. This is needed since we include the LO photon induced processes in our calculation. Then in order to calculate the Born amplitude we call the subroutine compute _ process _ rcl(npr,p,order,A) (3.47) where A is a real vector with 2 entries, A(1) where the value of the Born squared amplitude will be saved and A [START_REF] Salam | Electromagnetic and weak interactions[END_REF] where the virtual squared amplitude will be saved. Since we want to only calculate tree level amplitudes we set order to 'LO'. Now in order to get the Born squared amplitude in born, one has just to set born = A(1). However, since, as we discussed earlier, our SM and SM+BSM amplitudes still contain the pure QCD contribution , in order to only choose the amplitudes  and  for channel 4 and , , , , and  for channel 7 we need to use the subroutine get _ squared _ amplitude _ rcl(npr,pow,order,B) (3.48) where B is one of the entries of A. The argument pow specify the powers of all the vertices involved in the squared amplitude. For instance, for an amplitude with 2 QCD vertices and 2 EW vertices, pow = [2,2,0]. To exemplify how this can be done let us take the case of channel 4 (SM only), after calling the subroutine (3.47) we do the following get _ squared _ amplitude _ rcl(prid,[2,2,0],'LO',B1(1)) get _ squared _ amplitude _ rcl(prid,[0,4,0],'LO',B2(1))

and then we set born to B1(1)+B2 [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF]. The same can be done for channel 7. Once the Born amplitude is calculated, the colour-correlated one can be obtained with Recola by calling rescale _ colour _ correlation _ rcl(npr,i1,i2,A2cc) (3.49) The integer arguments i1 and i2 denote the position identifiers of the respective external particles (ordered as in the process definition). The argument A2cc of type real(dp) delivers the output of the subroutine. As in the Born case, we can't yet set bornjk to A2cc since we do not want to include the pure QCD contributions, thus similarly to the previous case we have to call the subroutine get _ colour _ correlation _ rcl(npr,pow,i1,i2,B2cc) (3.50) and thus the bornjk can be set to the sum of the B2ccs for all the desired powers. However, it turns out that, since the definition of the colour-correlated amplitudes in Recola is different that the one in POWHEG, one should multiply the amplitude obtained with Recola by -C A if i1 is a quark or an anti-quark and by -C F if it is a gluon, with C A and C F being the Casimir operators in the adjoint and fundamental representations respectively. Last but not least, Recola can provide the spin-correlated squared amplitudes through the subroutine rescale _ spin _ correlation _ matrix _ rcl(npr,j,order,A2sc). This is only non zero when j is a gluon, it is thus straightforward to implement it in our particular case because the only diagrams that involve a gluon are the photon induced ones, and they only have one external gluon each.

The last piece related to the Born amplitudes that need to be including is the Born colour structure. This is done in born.f through the subroutine born _ colour _ lh which sets up the colours for our 28 Born flavour configurations.

The virtual and real amplitudes

When it comes to the virtual amplitudes, the user needs to create the routine setvirtual(p(0:3,1:nlegborn),vflav(1:nlegborn),virtual) which should return the regularised part of the virtual amplitude in virtual given the flavour structure vflav of the process and its 4-momenta p. As we already know by now, Recola needs to go through different steps in order to be able to compute the amplitudes. Since the virtual contributions share the same phase space as for the Born ones, many of the steps were already achieved when calculating the tree level amplitudes, this was attained by simply setting the argument order to 'NLO' in the subroutine define _ process _ rcl whenever called. Thus we will mainly concentrate on the computation step which will be done in the file virtual.f. But first let us briefly explains what needs to be added in the init _ processes and init _ couplings files.

The routine setpowerBornLoopRecola(prid) of init _ processes in Listing 3.1 selects the amplitudes that contribute to each channel, not only at the Born level, but at the Loop level as well. As in the tree level case, for channels 4 and 7, some unwanted amplitudes will still be involved in our calculation. More precisely channel 4 would involve the unwanted  amplitude and channel 7, in addition to that, will also include the squared amplitude . This is surpassed in the same fashion as in the Born routine. We will elaborate on the solution when discussing the computation step. In the init _ couplings file, whenever the set _ dynamic _ setting _ rcl is called, one should also add the subroutines set _ on _ shell _ scheme _ rcl and set _ delta _ ir _ rcl(d,d2) of which the former will select the on-shell scheme for the mass renormalisation of unstable particles and the latter will set the variables DeltaIR and DeltaIR2 parametrizing the IR poles to d and to d2, respectively (d and d2 are of type real(dp)), see Listing B.3 for our choice of these 2 arguments.

The computation of the virtual amplitudes is evaluated in virutal.f through the subroutine computeVirtualRecola(prid,vflav,p,virtual). It returns in virtual the regularised virtual amplitude calculated with Recola for the process with an identifier prid, which as in the Born case should be obtained through bflavToPrid, its flavour structure vflav, and its 4-momenta p. We first start by setting the factorisation and renormalisation scales (set _ fac _ ren _ scales), the MS scale (set _ mu _ ms _ rcl), the IR scale (set _ mu _ ir _ rcl), and the strong coupling constant value (set _ alphas _ rcl). Then using the subroutine (3.47) and setting its argument order to 'NLO', the virtual amplitudes are calculated. However, as stated earlier, the amplitudes still involve some unwanted diagrams. Similarly to the Born case, this is overcome using the subroutine (3.48) but setting the argument order to 'NLO' this time. Finally, due to the difference in the definition of the virtual amplitudes between POWHEG and Recola, we multiply the resulted amplitudes with (π)/α S .

The real contribution is expected to be implemented by the user in the file real.f through the subroutine setreal(p(0:3,1:nlegborn),rflav(1:nlegborn),amp2) which computes, according to the momenta p of the external legs, the squared amplitude 20for the real process specified by the flavours rflav, stripped off by a factor α S /(π) as in the virtual case. This is done using Recola exactly as in the Born case. The only difference is that the order argument needs to be set to 'LO' when defining the processes. Of course one should do that for the real configurations of the list flst _ real in this case. Finally, the resulted amplitudes should be multiplied by the factor (π)/α S .

Input parameters

The handling of the (new) external parameters of the SMWZp model (see Section 3.3.1), the contributions to the calculation, and some other parameters needed by POWHEG in order to perform the integration, can be specified in the file powheg.input. The new parameters are defined in the subroutine init _ couplings. Their defaults values can then be edited through powheg.input. For instance, the Z couplings to the SM fermions can be manipulated by setting the variables lzpu1x1, lzpu1x2, ..., lzpu3x3 for left-handed up-type quarks, rzpu1x1, rzpu1x2, ..., rzpu3x3 for right-handed up-type quarks, lzpd1x1, lzpd1x2, ..., lzpd3x3 for left-handed down-type quarks, and rzpd1x1, rzpd1x2, ..., rzpd3x3 for right-handed down-type quarks. For an example of powheg.input including the complete list of parameters see Appendix B.6.

Our implementation of EW top-pair hadroproduction can be compiled using a provided

Makefile. Executing make will create the binary pwhg _ main. Since we use Recola to calculate the amplitudes, its libraries should be added to the main path by the user. A typical run would then be executed in a new directory containing the input file powheg.input together with the binary pwhg _ main. In the input file, the hadronic CM energy can be set for each beam separately in variables ebeam1 and ebeam2 and the PDFs for the two beams can be specified in the variables lhans1 and lhans2. Events will be generated if the variable numevts specifying the number of events to generate is set to a value larger than . Note that it is also possible to simulate only the Born contribution and this is achieved by setting the variable bornonly = 1 21 . For more settings, we refer the reader to the POWHEG BOX manual [START_REF] Alioli | The POWHEG BOX user manual: common features[END_REF] or the comments in the powheg.input file in Listing B.4. During the initialization, the consistency between the real and the Born contributions is checked and the result is stored in pwhg _ checklimits. This is followed by the integration and event generation. The result of the integration is printed on screen as well as saved in the file pwgstat.dat and the events in the Les Houches Event format [START_REF] Alwall | A Standard format for Les Houches event files[END_REF] are stored in the file pwgevents.lhe. Our implementation was validated against the old PBZp calculation by comparing some NLO cross sections for channels 3, 4, and 7 between the two. Since the old package only allow for diagonal Z couplings and does not include the t-channel W and W contributions, we set, in the new package, the non-diagonal couplings of Z together with the CKM parameters and the couplings of W to zero. The comparison was performed in the SSM for channels 3 and 7, and in the SM for channel 4. We assume a Z of 5.5 TeV mass and we vary the centre-of-mass energy to take the values 14, 27, 50, and 100 TeV. This can be seen in Figure 3.17 where the cross sections calculated with the new PBZp are represented in blue while the ones obtained with the old package are plotted in dashed red. The upper part of the Figure shows the cross sections in channel 3 (Z only) on the left, the NLO production in channel 4 (Z and γ) in the middle, and the NLO cross sections of channel 7 (Z , Z, and γ) on the right. The lower panels of Figure 3.17 shows, in the same order of the upper ones, the ratio of the total cross sections of the new calculation over the ones obtained from the old PBZp. As can be seen from the plots, we get a very good agreement in the three cases.

EW top-pair production at NLO QCD accuracy at the LHC and beyond

We have calculated the QCD corrections to the EW top-pair production in theories with extra Z -and W -boson using the Recola2 package and linked them to POWHEG in order to be able to produce results at NLO+PS accuracy. The implementation together with the validation was discussed in the previous section. In this section we present some models with additional new heavy resonances for which we produce numerical results using the new PBZp package.

Models

With the intention of presenting the different aspects of the new calculation we introduce, in addition to the SSM, two new models. It is worth mentioning that the most stringent limits on W and Z masses in the SSM are derived from searches with dilepton final states. Assuming Γ Z /m Z = 3%, a mass below 5.1 TeV is excluded by the ATLAS Z search for high-mass dilepton resonances at the LHC run II with √ S = 13 TeV and 139 fb - integrated luminosity (see Figure 3 and Table 3 of [START_REF] Aad | Search for high-mass dilepton resonances using 139 fb - of pp collision data collected at √ s =13 TeV with the ATLAS detector[END_REF]). The CMS search for a narrow resonance in high mass dilepton final states using data from LHC run II at √ S = 13 TeV with 140 fb - integrated luminosity leads to a lower mass limit of m Z ≥ 5.15 TeV assuming a signal width Γ Z /m Z = 3% (see Table 4 of [START_REF] Collaboration | Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb - of data at √ s =  TeV[END_REF]). For W gauge bosons in the SSM, masses below 6.0 TeV are excluded by the ATLAS W search with charged lepton plus missing transverse momentum final states using data from LHC run II with √ S = 13 TeV and an integrated luminosity of 139 fb - [START_REF] Aad | Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at √ s =  TeV with the ATLAS detector[END_REF],

where Γ W /m W varies between 2.7% at m W = 150 GeV and 3.5% above the t b threshold. The CMS W search using LHC Run II data from 2016 (not the complete Run II data set) at 35.9 fb - integrated luminosity set the lower limit on the mass of W to 5.2 TeV [START_REF] Sirunyan | Search for high-mass resonances in final states with a lepton and missing transverse momentum at √ s =  TeV[END_REF].

Topcolour model

The Topcolour model [START_REF] Hill | Topcolor: top quark condensation in a gauge extension of the standard model[END_REF][START_REF] Hill | Topcolor assisted technicolor[END_REF] can generate a large top-quark mass through the formation of a top-quark condensate. This is achieved by introducing a second strong SU() gauge group which couples preferentially to the third generation, while the original SU() gauge group couples only to the first and second generations. To block the formation of a bottom-quark condensate, a new U() gauge group and associated Z -boson are introduced. Different couplings of the Z -boson to the three fermion generations then define different variants of the model [START_REF] Harris | Cross-Section for Topcolor Z t Decaying to t t[END_REF]. A popular choice with the LHC collaborations is the leptophobic TC model (also called Model IV in the reference cited above) [START_REF] Harris | Cross Sections for Leptophobic Topcolor Z' Decaying to Top-Antitop[END_REF], where the Z couples only to the first and third generations of quarks and has no significant couplings to leptons. This particular choice has three parameters: the ratio of the two U() coupling constants, cot θ H , which should be large to enhance the condensation of top quarks, but not bottom quarks, as well as the relative strengths f  and f  of the couplings of right-handed up-and down-type quarks with respect to those of the left-handed quarks. This model is excluded by the ATLAS search for t t resonances in fully hadronic final states in pp collisions at √ S = 13 TeV and an integrated luminosity of 139 fb - for Z masses below 3.9 and 4.7 TeV and for the decay widths of 1 and 3%, respectively [START_REF] Aad | Search for tt resonances in fully hadronic final states in pp collisions at √ s = 13 TeV with the ATLAS detector[END_REF]. At √ S = 13

TeV and with an integrated luminosity of 35.9 fb - , the CMS search for resonant t t production in proton-proton collisions excludes masses up to 3.80, 5.25, and 6.65 TeV for Z decay widths of 1, 10, and 30%, respectively [START_REF] Sirunyan | Search for resonant tt production in proton-proton collisions at √ s =  TeV[END_REF].

Third Family Hypercharge Model

The Third Family Hypercharge Model (TFHM) [START_REF] Allanach | Third family hypercharge model for R K ( * ) and aspects of the fermion mass problem[END_REF] is a minimal extension of the SM by an anomaly-free, spontaneously broken U() F gauge symmetry. Apart from the new gauge boson (X) and a SM singlet, complex scalar field (Θ (x)), needed for the spontaneous symmetry breaking of the U() F symmetry, no new particles are introduced. The model has flavourdependent couplings designed to explain various measurements of B meson decays (R [START_REF] Aaij | Angular analysis of the B  → K *  µ + µdecay using 3 fb - of integrated luminosity[END_REF][START_REF] Aaij | Measurement of Form-Factor-Independent Observables in the Decay B  → K *  µ + µ[END_REF][START_REF] Collaboration | Angular analysis of B  d → K * µ + µdecays in pp collisions at √ s =  TeV with the ATLAS detector[END_REF][START_REF]Measurement of the P  and P  angular parameters of the decay B  → K *  µ + µin proton-proton collisions at √ s =  TeV[END_REF]) which are currently in tension with SM predictions. In addition, it provides an explanation of the heaviness of the third generation of SM particles and the smallness of the quark mixing. An update of the allowed parameter space (post Moriond ) can be found in Ref. [START_REF] Davighi | Connecting neutral current B anomalies with the heaviness of the third family[END_REF]. Recently, the TFHM has been slightly modified to make it more natural in the charged lepton sector [START_REF] Allanach | Naturalising the third family hypercharge model for neutral current B-anomalies[END_REF]. In the following we will use the original TFHMeg model from Ref. [START_REF] Allanach | Third family hypercharge model for R K ( * ) and aspects of the fermion mass problem[END_REF]. The collider phenomenology of the TFHMeg has also been studied in [START_REF] Allanach | Collider constraints on Z models for neutral current B-anomalies[END_REF]. This model has three free parameters, the extra U() coupling, g F , the angle controlling the mixing of the second and third family quarks, θ sb and the Z -boson mass. The width of Z in the TFHMeg is

( ) K [73, 141], BR(B s → µ + µ -) [76-79], angular distributions in B → K ( ) µ + µ -decays
Γ Z = g  F m Z π .
The Z couplings to the quarks depend on g F and θ sb (see Eq. (2.15) in [START_REF] Allanach | Third family hypercharge model for R K ( * ) and aspects of the fermion mass problem[END_REF]):

-L Xψ = g F   u L Λ (u L ) γ ρ u L +   d L Λ (d L ) γ ρ d L +   t R γ ρ t R -   b R γ ρ b R Z ρ , (3.51) 
where all quark fields are in the mass eigenbasis and

u L = (u L , c L ,t L ) T and d L = (d L , s L , b L ) T .
The matrix Λ (d L ) can be found in Eq. (2.16) of Ref. [START_REF] Allanach | Third family hypercharge model for R K ( * ) and aspects of the fermion mass problem[END_REF]. It depends on θ sb :

Λ (d L ) =          sin  (θ sb )   sin(θ sb )    sin(θ sb ) cos  (θ sb )      . (3.52) Moreover, Λ (u L ) = V Λ (d L ) V †
, where V is the CKM matrix.

Numerical results

We now use our next-to-leading order calculation to obtain predictions for top-quark-pair production for the three models introduced in the preceding section: the Sequential Standard Model, the Topcolour model, and the Third Family Hypercharge Model. Here, our goal is not an exhaustive study of the collider phenomenology for each of these models scanning over the entire allowed parameter space, but rather to exemplify our calculation by showing results for a number of benchmark points. We will present results for the LHC at √ S = 14 TeV but also for pp collisions at higher centre-of-mass energies.

We will first discuss the general setup of our calculations and event selection in Section 3.6.2 and 3.6.2 before showing predictions for fiducial cross sections and NLO K-factors in Section 3.6.2. The impact of the newly included contributions is discussed in Section 3.6.2, and finally the impact of the interference of the BSM signal and the SM background is studied in Section 3.6.2.

Setup and input

The theoretical description of our calculation and of the models we consider here can be found in the preceding sections. Here we describe the additional input required for the numerical computations for which the results are presented in the next few sections. This general setup and the input parameters are used by default if not stated otherwise.

We employ a top quark pole mass m t = 172.5 GeV. Furthermore, the masses and widths of the weak gauge bosons are given by m Z = 91.1876 GeV, Γ Z = 2.4952 GeV, m W = 80.385 GeV, Γ W = 2.085 GeV [START_REF] Patrignani | Review of Particle Physics[END_REF]. The weak mixing angle is fixed by sin  θ W = m  W /m  Z = 0.222897 and the fine-structure constant is set to α(m t ) = 1/126.89. We neglect the running of this coupling to higher scales. We consider quark mixing between all three families and use a unitary CKM matrix constructed using Wolfenstein parameters as in Ref. [START_REF] Zyla | Review of Particle Physics[END_REF].

For the proton parton distribution functions (PDFs), we use the NLO luxQED set of NNPDF3.1 [START_REF] Bertone | Illuminating the photon content of the proton within a global PDF analysis[END_REF][START_REF] Manohar | How bright is the proton? A precise determination of the photon parton distribution function[END_REF][START_REF] Manohar | The Photon Content of the Proton[END_REF] as implemented in the LHAPDF library (ID = 324900) [START_REF] Buckley | LHAPDF6: parton density access in the LHC precision era[END_REF][START_REF] Andersen | Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report[END_REF]. This set provides, in addition to the gluon and quark PDFs, a precise determination of the photon PDF inside the proton which we need for our cross section predictions. The running strong coupling α s (µ R ) is evaluated at NLO in the MS scheme and is provided together with the PDF set 22 .

For our numerical predictions in the following sections, we choose equal values for the factorisation and renormalisation scales, µ F and µ R respectively, which we identify with the partonic centre-of-mass energy:

µ F = µ R = √ s ^.
Additionally we vary µ F and µ R by independently multiplying the scales by factors of ξ R , ξ F ∈ {0.5, 1, 2} discarding combinations with ξ F /ξ R = 4 or 1/4. We combine such seven-point variations into an uncertainty band by taking the envelope of all the predictions.

We present (N)LO+PS predictions for a pp collider with a range of energies √ S ∈ {14, 27, 50, 100} TeV. We consider the SSM, TC and TFHM models and a range of Z masses m Z ∈ [START_REF] Salam | Electromagnetic and weak interactions[END_REF][START_REF] Gross | Asymptotically free gauge theories. ii[END_REF] TeV. In the SSM we set the mass of W equal to the mass of Z and its mixing matrix to that of the SM W . The widths of Z -and W -bosons must then be Γ Z /m Z = 3%, Γ W /m W = 3.3%. The parameters of the TC model are chosen as follows: we set f  = 1 and f  = 0 and calculate cot θ H such that Γ Z /m Z = 3.1-3.2 %. In the TFHM we set θ sb = 0.095, g F /m Z = 0.265 where m Z is given in TeV which implies Γ Z /m Z = {0.012, 0.028, 0.050, 0.078, 0.112, 0.152, 0.199} for m Z = {2, 3, 4, 5, 6, 7, 8} TeV. 23

Event generation and cuts

We generate events in the Les Houches Event format [START_REF] Alwall | A Standard format for Les Houches event files[END_REF] using POWHEG BOX with stable onshell top quarks and require the underlying Born kinematics to satisfy a cut on the t t invariant mass m t t ≥ 0.75 m Z , in order to enhance the signal over background ratio. We then decay both top quarks leptonically and shower the events using PYTHIA 8.244 [START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF]. The branching ratio of the leptonic top decay of 10.5% [START_REF] Zyla | Review of Particle Physics[END_REF] squared is applied, unless stated otherwise. Note 

Contribution no cuts [ f b] m t t cut [ f b] m t t & fiducial cuts [%]

γg + gγ →t t, O(αα s ) 3700 0.0327 41.6 q q →W →t t, O(α  ) + interf. 3220 0.0573 3.7 q q → g/W →t t, O(αα s ) -1680 0.000703 37.4 q q → γ/Z →t t, O(α  ) 510 0.00614 74.9 q q → Z →t t, O(α  ) 0.210 0.114 77.4 q q →W →t t, O(α  ) + interf. 0.0025 -that the PYTHIA decays wash out any spin correlations. We use PowhegHooks to veto shower emissions harder than the POWHEG emission and disable QED showers.

We perform further event selection and bin in histograms on-the-fly using Rivet [START_REF] Buckley | Rivet user manual[END_REF][START_REF] Bierlich | Robust Independent Validation of Experiment and Theory: Rivet version 3[END_REF]. Events are required to have two or more charged leptons, two or more neutrinos, two or more anti-k T [154] R = 0.5 jets each containing at least one b-parton. All these objects have to fulfil the acceptance cuts p T > 25 GeV and |y| < 2.5. Furthermore, we combine charged leptons and neutrinos into W -bosons based on their MC truth PDG id and require each event to feature at least one such W + and one such W -boson.

It is instructive to have a closer look at the size of the various leading order contributions to the EW top-pair production considered in this study, and the effects that the invariant mass and the fiducial cuts have on them. To that effect in Table 3.1, we show integrated cross sections in femtobarn for the centre-of-mass energy √ S = 14 TeV and the Z -boson mass, m Z , set to 5 TeV with no cuts in the first column. The cross sections after the invariant mass cut are shown in the second column and after both invariant mass and fiducial cuts in the third column. Note the branching ratio of two leptonic top decays has been stripped from these predictions. We do this because the ratio of the first two columns does not depend on the decay channel and we expect the fiducial cuts, in this study designed for the dileptonic channel, to have a similar impact in all the other decay channels. All the contributions in the table are obtained by multiplying an amplitude by its complex conjugate except for q q → g/W →t t, which is calculated as A (q q →W →t t)A * (q q → g →t t) + c.c. . The contributions in rows 2 and 6 also contain the interference terms with the contributions in rows 4 and 5 respectively (indicated by "+interf.").

First we observe that the various SM contributions (rows 1-4) are of similar size, with the resonant production being the smallest. This must be because the Z-boson resonance is below the m t threshold. Furthermore we notice that the "interference term" in the third row is negative, which is not surprising. The invariant mass cut, see the second column, reduces all the SM contributions by roughly 5 orders of magnitude, except for the "interference term" which is reduced even more, by about 7 orders of magnitude. 24 The effect of the fiducial cut in the third column is expressed in terms of percentage relative to the second column. It has roughly the same impact on all the SM contributions, except for the non-resonant W -boson production in the second row, in which the bulk of the cross section is in the forward regions outside the acceptance. After both cuts are applied the first two largest contributions are the photon induced and the resonant t t productions, both of which were already included in our previous calculation [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF].

By design the invariant mass cut has quite a different impact on the resonant Z production and reduces it only gently, by a factor less than two. As expected the fiducial cut behaves nearly the same for SM and BSM resonant productions. After both cuts are applied the Z contribution is by far the dominant one. The cuts we designed for this study are thus more than adequate for selecting SSM Z →t t production with m Z = 5 TeV at a √ S = 14 TeV LHC.

The non-resonant W production is about two orders of magnitude smaller than the resonant one. Moreover we would expect the invariant mass and fiducial cuts to reduce it considerably similarly to the non-resonant W production. This contribution in the SSM and at √ S = 14 TeV is thus negligible. 25 Note that this may not be the case anymore at higher collider energies.

Fiducial cross sections and NLO K-factors

On the upper panels of Figure 3.18 we show fiducial NLO+PS cross sections for the SSM, TFHM and the TC model versus the Z -boson mass, m Z , at a fixed centre-of-mass energy √ S =

14 TeV (left) and versus the centre-of-mass energy for fixed mass m Z = 3 TeV (right). In the SSM the W -boson mass is always set equal to m Z . For comparison we also include the results for the SM 26 (grey, dashed line). The event generation setup, the invariant mass and the fiducial cuts are as described above. In all cases, the cross sections fall off with increasing m Z and grow with increasing √ S. The former is also true for the SM in which the cross section only depends on m Z indirectly through the invariant mass cut. The invariant mass cut adequately suppresses the SM background relative to the BSM signal in the SSM and in the TC model. The prediction for the TFHM model, however, can barely be distinguished from the SM background throughout the whole mass range at √ S = 14 TeV. It only becomes appreciably larger than the SM at higher energies, where its ratio over the SM is roughly 1.13 at √ S = 100 TeV. Adopting a tighter invariant mass cut would be advised for the

TFHM, for example m Z -Γ Z < m t t < m Z + Γ Z .
The NLO+PS over LO+PS K-factors, shown on the lower panels of Figure 3.18, are moderate to large and grow with Z -boson mass up to ∼ 40% in the TC model and up to ∼ 60% in the SSM. In the absence of BSM effects, this ratio effectively measures the dependence of higher order corrections on the partonic centre-of-mass energy. Between 2 and 4 TeV this ratio is fairly flat but then quickly grows, surpassing 60 % percent at 8 TeV. As expected, the K-factors in the TFHM closely follow those of the SM.

Conversely, the K-factors follow the opposite trend versus √ S and eventually almost all drop below one for m Z = 3 TeV. It would be interesting to see whether the higher order corrections for larger Z masses follow a similar pattern.

Higher order corrections are often included in experimental searches in terms of a constant K-factor. While this is more or less well justified for a range of Z masses between 2 and 5 TeV, the corrections more than double when this range is extended to 2-8 TeV. It may thus be desirable to abandon this crude approximation in high luminosity or high energy searches where we expect the reach to extend considerably.

Impact of non-resonant contributions

A new feature of our calculation is that we include non-resonant contributions with t-channel W , W and Z exchange. We study their impact here.

In Figure 3.19 we show the ratio of predictions for cross sections for EW t t production in the SSM obtained using our new version of PBZp over the old one of Ref. [START_REF] Bonciani | Electroweak top-quark pair production at the LHC with Z bosons to NLO QCD in POWHEG[END_REF]. The left panel shows this ratio as a function of m Z = m W at √ S = 14 TeV, the right panel as a function of √ S at m Z = m W = 3 TeV. The cross sections have been calculated with an invariant mass cut m t t ≥ 0.75 m Z and with (red lines) and without (blue lines) fiducial cuts, at NLO+PS (solid lines) and LO+PS (dashed lines).

The ratio of our predictions at √ S = 14 TeV is roughly between 1.2 and 1.5 when fiducial cuts are not considered. The reason behind it is the new non-resonant contribution, due to the SM q q →W →t t process, not falling off with the invariant mass as fast as the resonant one. This behaviour was already observed in Table 3.1, where this process contributes less than the resonant Z production after the invariant mass cut but is still roughly of the same order of magnitude. In this respect the q q →W →t t process behaves similarly to the γg + gγ →t t process, which was already included in our old calculation. The situation worsens as the centre-of-mass energy is increased, the value of the ratio reaching almost 5 at √ S = 100 TeV.

Once the fiducial cuts are switched on, the new contributions are reduced considerably and the ratio of the "new / old" predictions drops down to roughly between 1.0 and 1.05 across the whole mass range at √ S = 14 TeV and between 1.0 and 1.2 across the whole √ S range at fixed mass m Z = m W = 3. This is simply because the bulk of the high invariant mass cross section for the q q →W →t t process lives in the forward region. In this respect the q q →W →t t process is quite dissimilar to the γg + gγ →t t process.

QCD corrections do not change this picture appreciably, but we note that the corrections to this ratio can be considerable at high centre-of-mass energies, over 50%. Our new calculation thus confirms our previous predictions for the SSM at √ S = 14 TeV, while at the same time it offers a much more sophisticated description of the interplay of various contributions that enter electroweak top-pair production. This interplay may become very important for Z s with weaker couplings and will certainly become important at higher collider energies. 

Signal-background interference

Interferences between the BSM signal and the SM background are routinely neglected even in the most recent experimental searches. The argument is that interferences mostly affect the shapes of resonance bumps, which "bump-hunting" is largely insensitive to. Consequently, experimental analyses work with the SM only and the SM+BSM hypotheses, where the latter is a "naive" sum of the signal and the background.

While interference effects are expected to integrate out in total cross sections, they may no longer be negligible once invariant mass and fiducial cuts are considered. In this section we explore interference effects by studying ratios of the fiducial cross sections for EW t t production obtained either using the full process pp → γ, Z, Z ,W →t t or by summing the SM background process pp → γ, Z →t t and the SSM signal pp → Z ,W →t t. Both sets of predictions will include all the contributions to the EW top-pair production considered in our new calculation with one exception: those obtained by summing the SM background and the BSM signal will not include any of the interference terms {γ, Z,W } × {Z ,W }. This ratio of the cross sections with the interference terms over the ones without them is shown in Figure 3.20 as a function of m Z on the left and as a function of √ S on the right.

As in the previous section, the predictions with the invariant mass cut are shown in blue, the predictions with both the invariant mass and the fiducial cuts in red; the NLO+PS predictions are plotted with solid lines, while LO+PS ones with dashed lines. We find that the interference reduces the cross section at √ S = 14 TeV and has a relatively steep profile versus m Z at LO: a few percent for the light Z s to well over 20% for the heavy ones. The size of the interference effects seem rather flat as a function of √ S for fixed m Z = m W = 3 TeV in comparison. We also observe that the interference effects tend to be pronounced by the fiducial cuts, while the higher order corrections rather stabilise them.

Note that these conclusions may not generalise, as we expect the interference effects to strongly depend on the BSM scenario and on the position of the invariant mass cut. In view of their potentially large size, however, we advocate they be considered in experimental searches.

Chapter 4

Constraining models with Z -bosons using LHC fiducial measurements

Working at the interface of theory and experiment in particle physics demands an equilibrium between what we wish to understand regarding the theory under consideration, and what we can achieve using the experimental data. Even though an important number of measurements at the LHC were designed to deal with Standard Model processes, they can still implicitly involve information about possible contributions from BSM physics. The method, "Constraints On New Theories Using Rivet", Contur [START_REF] Butterworth | Constraining new physics with collider measurements of Standard Model signatures[END_REF], uses the fact that unfolded particle level measurements created in fiducial regions of the phase space are highly model-independent. These measurements can thus be exploited to get information about BSM processes implemented in Monte Carlo generators in a very generic way. This approach should not be seen as a discovery procedure, but rather as a method to eliminate inconsistent BSM proposals.

In this chapter we describe the linking between the new PBZp package, explained in the previous chapter, and the Contur tool, in order to test models with extra heavy gauge bosons against the set of corresponding LHC measurements preserved in the Rivet library. We first start by briefly explaining the Contur workflow. We then provide some information on Rivet [START_REF] Bierlich | Robust Independent Validation of Experiment and Theory: Rivet version 3[END_REF]. Finally, we discuss how we connect PBZp and Contur and give some numerical results.

The Contur method: workflow and philosophy

The key hypothesis of Contur is that editing the Lagrangian of the Standard Model affects the already well-understood and measured differential cross-sections. Hence, if introducing a new BSM particle modifies a measured distribution beyond its experimental uncertainties, then, we should have detected it already. As a result, if one can foresee how hundreds of differential quantities in existing LHC measurements can be affected according to a specific BSM scenario, then one can compute the exclusion limits of its parameter space without requiring an exclusive search. To this end, Contur designs a workflow that does the following:

• Takes a BSM model point with a set of parameter values.

• Generates simulated particle-level events from it.

• Infer the effect of those events in each bin of the LHC measurements.

• Find the exclusion status at some confidence level for that model point. Furthermore, it can repeat this procedure over a range of parameter points, to identify the excluded regions of the parameter space.

Contur aims for speed and coverage of new BSM models at the cost of some precision and sensitivity. In order to achieve this, it deals with fiducial, particle-level measurements, that is, observables corrected for detector effects or "unfolded", but not extrapolated beyond detector acceptance. Another preference of the Contur method is the generation of inclusive events. In this way the model in hand can be tested comprehensively against a wide range of measurements instead of concentrating on some specific signatures. A comparison of a leptophobic TC model producing a 1000 GeV Z resonance in a t t mass measurement [START_REF] Sirunyan | Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at √ s = 13[END_REF]. An NLO QCD t t background prediction is shown in green for comparison. The figure on the left shows the background model generated from data, with the one on the right showing the effect of using the theoretically calculated background model.

Two approaches can be used in order to calculate the exclusion limits with Contur: (i) The most complete one is when the background is defined by the simulated SM predictions and their associated uncertainties. In this case, the BSM signal is added on top of the background. The exclusion is then obtained by comparing the signal + background to the data within uncertainties. (ii) The less complete approach (also known as the null hypothesis of the Contur method) is when the background is assumed to be the data. In this case, the BSM signal is superimposed on top of the data and the uncertainties on the data are considered to define the room that is left for the signal. Both approaches are exemplified in Figure 4.1, where on the left hand side (background = data) the signal (red) is 100% excluded, whereas on the right hand side (background = SM prediction) the BSM signal (red) is excluded at 75% CL. It is important to note that Contur suffers from some limitations, mainly due to the incomplete information published by the experiments (SM prediction not published, bin-to-bin correlation information for the systematic uncertainties not provided, hidden model-dependent assumptions, ...). For more information about the Contur method and its limitations we refer the reader to [START_REF] Buckley | Testing new-physics models with global comparisons to collider measurements: the Contur toolkit[END_REF][START_REF] Yallup | Constraining new physics with fiducial measurements at the LHC[END_REF].

The Rivet analyses

The Rivet, or Robust Independent Validation of Experiment and Theory, repository is a system where particle-level measurements from the LHC and other colliders are preserved. Each analysis paper has its own Rivet analysis routine, i.e. a C++ code where the measured particlelevel cross section is defined. These routines produce histograms which can be compared to the published plots in the corresponding papers. In other words, a Rivet routine chooses the generated events that would go into the fiducial region, and project their properties into histograms that have the same observables and binnings as in the measurement. The format used by Rivet for histograms and associated analysis objects is dubbed YODA.

On the other hand, the digitised record of the measured cross-section values together with their uncertainties is preserved in the HepData library1 [START_REF] Maguire | HEPData: a repository for high energy physics data[END_REF]. For every new release, Rivet is synchronised to the up-to-date HepData repository so that the produced SM events can be filtered through the Rivet routines and compared to the corresponding measured data and uncertainties from HepData.

Contur exploits the set of Rivet analysis plugins to set the fiducial cuts on the BSM events instead of the SM ones. For each beam configuration, it is possible to run many (or even all) of the Rivet routines at the same time. Consequently, the produced BSM events can be scanned and filtered using the complete set of routines, which results in a large number of histograms describing if, and where, the BSM signal would have shown in the existing collider measurements. Then, the exclusion limits can be computed following one of the approaches explained in the previous section.

As we have previously seen, Contur superimposes the BSM signal, for each measurement, either directly on top of the data or on top of the corresponding simulated SM theory. Either way, if the signal results in an excess in a measured distribution, there could also be excesses in measurements of similar final states coming from essentially the same events. Since the information about the correlations between different measurements are not provided, one can not take them into account. This would then lead to high exclusion rates due to multiply-counting what might be the same exclusion against several measurements. In order to avoid such a problem, Contur divide the analysis routines into orthogonal pools in which the measurements are grouped by, crudely, different final states, different experiments, and different centre-of-mass energies.

Constraints on theories with extra heavy gauge bosons using Contur

There are two ways to study a BSM model with Contur. Regardless of the background choice (data or simulated SM), one can either (i) create a UFO file [START_REF] Degrande | UFO -The Universal FeynRules Output[END_REF], read it into Herwig, and analyse the generated events with Rivet and Contur, or (ii) Produce fully-final state events in HEPMC format [START_REF] Dobbs | The hepmc c++ monte carlo event record for high energy physics[END_REF][START_REF] Buckley | The hepmc3 event record library for monte carlo event generators[END_REF] with any MC event generator and analyse them with Rivet and Contur.

We work according to the latter option. Events can be generated in POWHEG in the .lhe format using the pwhg _ main executable together with the powheg.input file. These events can then be transformed to the .hepmc format and showered using a full-final-state generator such as PYTHIA. The .hepmc events can then be passed through Rivet as usual to obtain a YODA file for processing by Contur to get exclusion limits.

Machinery to steer POWHEG using Contur has been created based on the PBZp POWHEG package which produces events at leading and next-to-leading order for electroweak t t hadroproduction in models with flavour non-diagonal Z -boson couplings and W -bosons [START_REF] Altakach | Electroweak t t hadroproduction in the presence of heavy Z and W bosons at NLO QCD in POWHEG[END_REF][START_REF] Altakach | Precise predictions for electroweak t t production at the LHC in models with flavour non-diagonal Z boson couplings and W bosons[END_REF]. Three BSM models are currently implemented, namely the Sequential Standard Model [START_REF] Altarelli | Searching for new heavy vector bosons in p p colliders[END_REF], the Topcolour model [START_REF] Harris | Cross Sections for Leptophobic Topcolor Z' Decaying to Top-Antitop[END_REF], and the Third Family Hypercharge Model [START_REF] Allanach | Third family hypercharge model for R K ( * ) and aspects of the fermion mass problem[END_REF]. In what follows we exemplify this steering chain by explaining how to run jobs on a High Performance Computing (HPC) system to set exclusion limits on the mass of Z in the TC model.

To run a batch job one needs three executables (main-pythia.cc, pwhg _ main, and pbzp _ input _ contur.py), two files (param _ file.dat and powheg.input _ template), and one directory (RunInfo), all in one run directory. More details on these are listed below.

• the main-pythia.cc script is responsible for the creation of the HEPMC file and of the parton showering.

• The RunInfo directory contains the needed analysis steering files (.ana). However, if the .ana files do not already exist locally, they will be automatically copied by contur-batch 2 to the local RunInfo directory. example, i.e. in generator one first gives the full path to setupPBZpWp.sh then the one for setupEnv.sh. In addition, one should check that the parameters defined in params _ file.dat are also defined in powheg.input _ template, in other words, removing or adding new parameters should be done in both files. The content of main-pythia.cc, pbzp _ input _ contur.py, and powheg.input _ template is shown in Appendix C.1.

To run a test scan over the parameter space defined in param _ file.dat without submitting it to a batch farm one should run the following command contur-batch -n 1000 -t powheg.input _ template -m pbzpwp -s where -n specifies the number of events (1000 in this particular example), -m sets the MC event generator, -t indicates the correct template, and the -s flag ensure that no jobs will be submitted. This will produce a directory called myscan## containing one directory for each beam configuration, each containing however many runpoint directories are indicated by the ranges in the param _ file.dat (9 × 9 in our example). One can then have a look at the shell scripts (runpoint _ xxxx.sh) which have been generated, to check that all is as expected. Moreover, one can manually submit some of the runpoint _ xxxx.sh files as a test. We should mention that at this stage, i.e. before running the runpoint _ xxxx.sh files, the powheg.input files are not yet created, only after running the .sh files, which run the pbzp _ input _ contur.py script, the powheg.input files needed by PBZp will be generated and properly filled.

In order to run a batch job one should run the batch submit command without the -s flag and specifies the queue on his batch farm using the -q flag. Note that qsub, Slurm, and Condor batch systems are all supported in Contur. If one has a different submission system one needs to work out how to change the appropriate submission commands in Contur. A successful run will produce a directory called myscan## as before. When the batch job is complete there should, in every run point directory, be a runpoint _ xxxx.yoda file and an output.pbzpwp directory that contains the .lhe file.

At this stage we have created a farm of directories, for each beam energy, containing a .yoda file for each combination of the mass and the total width of Z in the TC model. These YODA files can now be scanned and analysed by Contur using the following command contur -g myscan##

where -g specifies the folder with a structured grid of points to analyse, which is the myscan## directory in this example. This will create the directory ANALYSIS that contains a .map file where the Contur likelihood analysis for our sampled collection of points is encoded. The sensitivities calculated by Contur for each grid point can be then expressed as a 2D heatmap showing the overall sensitivity. This will show where our BSM signal can be excluded due to existing LHC measurements available in Rivet and which part of the phase space is still open. The 2D heatmap can be plotted by issuing the command contu-plot on the .map file while specifying the parameters of the x-axis (mZp) and of the y-axis (GZp) respectively. The result of our example case is shown in Figure 4.2, where, as specified in param _ file.dat, the mass of Z (x-axis) ranges between 1000 and 5000 GeV and its total decay width (y-axis) between 30 and 150 GeV. The exclusion limits are shown in yellow at 95% CL and in green at 68% CL. Here we are using the default null hypothesis approach (background = data). plot the heatmap while indicating which analysis pool has the most significant exclusion limit in every scan point. In our case, this can be seen from Figure 4.3 where the region on the left of the white solid (dashed) line is excluded at 95% (68%) CL, and the terms LMETJET; METJET; TTHAD; JETS at the end of each pool name stand for lepton, missing transverse momentum, plus optional jets; missing transverse momentum plus jets; Fully hadronic top events; Inclusive hadronic final states respectively.

In order to test our model using the most complete approach (background = SM predictions) we first simulated the background for all the measurements included in the contributing pools (see Figure 4.3) [START_REF] Sirunyan | Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at √ s = 13[END_REF][START_REF] Aad | Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in √ s = 8 TeV proton-proton collisions using the ATLAS detector[END_REF][START_REF] Aad | Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at √ s =  TeV using the ATLAS detector[END_REF][START_REF] Sirunyan | Measurement of the jet mass in highly boosted tt events from pp collisions at √ s =  TeV[END_REF][START_REF] Sirunyan | Measurement of the Jet Mass Distribution and Top Quark Mass in Hadronic Decays of Boosted Top Quarks in pp Collisions at √ s = TeV[END_REF][START_REF] Aad | Measurement of the t t production cross-section and lepton differential distributions in eµ dilepton events from pp collisions at √ s =  TeV with the ATLAS detector[END_REF][START_REF] Aad | Measurements of top-quark pair differential and double-differential cross-sections in the +jets channel with pp collisions at √ s =  TeV using the ATLAS detector[END_REF][START_REF] Aaboud | Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at √ s =  TeV using the ATLAS detector[END_REF][START_REF] Aaboud | Measurements of differential cross sections of top quark pair production in association with jets in pp collisions at √ s =  TeV using the ATLAS detector[END_REF][START_REF] Sirunyan | Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at √ s =  TeV[END_REF][START_REF] Aaboud | Measurements of t t differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at √ s =  TeV using the ATLAS detector[END_REF][START_REF] Khachatryan | Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV[END_REF] except the ones in ATLAS _ 13 _ JETS. We used the hvq POWHEG package [START_REF] Frixione | A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction[END_REF] to simulate the SM QCD background and our PBZp package for the EW part, and added the two together to obtain an EW+QCD SM background. The scale and PDF variations were both taken into account. Then, we created the ANALYSIS directory using the command contur -g myscan## --th --to

where -th tells Contur to use theory as the background if available (fall back to using data otherwise), and -to to only use measurements where theory is available (but still use data as the background by default). Thus, to get a .map file where we (i) use only measurements where we have a theory prediction and (ii) actually use that prediction, we need both flags together. Finally, the 2D heatmap and the one indicating the contribution of each pool can be generated exactly as before (using contur-plot). This can be seen in our case in Figs. 4.4 and 4.5 respectively, where the limits we obtain are weaker as compared to the previous case. New heavy resonances are a common occurrence in BSM theories. In particular, they show up whenever the SM gauge group is extended. In this thesis, we focused on new heavy spin-1 neutral and charged vector bosons denoted as Z -and W -bosons respectively.

In Chapter 1 we reviewed such resonances in the context of the G  class. A class that involves models in which the SM gauge group is extended with an additional SU() factor. In this perspective, the SM emerges as the low energy limit of theories based on much larger simple gauge groups like SU(), SO() or E  . We presented six realisations of this class, namely the Left-Right, Lepto-Phobic, Fermio-Phobic, Hadro-Phobic, Non-Universal and Un-Unified models. We showed how these models differ from each other in their particle content and in the way their SU()  × SU()  ×U() X gauge group is broken. Furthermore, the expressions for the masses and couplings of the new resonances to the SM fermions have also been presented and in some cases calculated. Chapter 2 was dedicated to higher order predictions for spin-1 resonance searches in two classes of observables, top-quark-pair production and dilepton production at the HL-LHC and the HE-LHC. In the former case, we used the old PBZp code which includes the NLO QCD corrections to the EW production of top-antitop pairs in the presence of a new neutral gauge boson implemented in the parton shower Monte Carlo program POWHEG. The dilepton cross sections were calculated using the NLO+NLL code RESUMMINO which matches a soft-gluon resummation at NLL accuracy to a fixed order NLO calculation. We considered four models: the Un-Unified and the Non-Universal models, a leptophobic Topcolour model, and the Sequential Standard Model.

In Chapter 3 We performed a complete recalculation, including several improvements, of the electroweak top-quark pair hadroproduction in extensions of the Standard Model with extra heavy neutral and charged spin-1 resonances. In particular, we allowed for flavour-non-diagonal Z couplings in order to accommodate a wider class of heavy resonance models including models which have been brought forward to explain the anomalies currently seen in B decays. We also took into account non-resonant production in the SM and beyond, including the contributions with t-channel W -, W -and Z -bosons. All amplitudes were generated using the Recola2 package. Our calculation was one of the first to use Recola2 for a BSM calculation. We included NLO QCD corrections and consistently matched them to parton showers with the POWHEG method fully taking into account the interference effects between SM and new physics amplitudes. As a first application, we presented numerical results for t t cross sections at hadron colliders with a centre-of-mass energy up to 100 TeV for three models, the Sequential Standard Model, the Topcolour model, as well as the Third Family Hypercharge Model. We discussed the effect of cuts on the signal over background ratio and presented K-factors which turned out to increase considerably as a function of the heavy resonance mass. The impact of the newly included contributions was shown to be modest at 14 TeV if suitable cuts are applied. However, it became sizable when the centre-of-mass energy reached 100 TeV.

Finally, in Chapter 4 we briefly explained the Contur framework where CONTUR stands for "Constraints On New Theories Using Rivet". This framework exploits the fact that particle-level differential measurements made in fiducial regions of the phase space have a high degree of model-independence and can therefore be used to give information about a wide variety of BSM 93 physics implemented in Monte Carlo generators, using a broad range of final states. We linked our t t calculation to Contur and introduced a steering machinery where the events are produced using PBZp based on a parameter choice defined in Contur. The produced events can then be analysed by Rivet and Contur resulting in a map of exclusion limits. Three models were added to this chain, namely the Sequential Standard Model, the Topcolour model, and the Third Family Hypercharge Model. The machinery was exemplified using the TC model.

The production of single top quarks at the LHC is a powerful means to identify physics beyond the Standard Model. The t t study that we performed in Chapter 3 paves the way for a similar upcoming calculation of the NLO QCD corrections to the pp →W /W →t b process. As before we will use Recola2 to calculate the Born, virtual, and real amplitudes. The implementation in POWHEG can then be done as in the case of t t. Since we understand the different steps in the calculation quite well and many aspects are fairly automatised we expect to finalise the implementation in the near future. The most important task will be to perform an exhaustive precision analysis of W and single-top production for Run 3 of the LHC, starting in 2021, and to prepare a publication. While models with an additional Z may explain neutral current B-anomalies, W -bosons may be a solution for charged current ones. Finally, having both calculations complete, it would be interesting to study the correlations between the observables with different final states (top-antitop, top-bottom) in order to increase the power to discriminate different models. Such a study would be similar in spirit as the one in [START_REF] Ježo | LHC phenomenology of general SU() × SU() × U() models[END_REF] but at NLO QCD precision.

The experience with Contur/Rivet could be useful to study other BSM models. It would be interesting to address the connection of additional new gauge bosons to dark matter, one of the most important outstanding problems in particle physics. This includes not only studies of the traces of dark photons and other neutral and charged mediators in SM processes, but also possible signals of new physics processes when the new gauge bosons couple to new scalars and fermions. An example for the B-L model can be found in [START_REF] Klasen | NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model[END_REF]. It could also be interesting to connect Contur/Rivet with global analysis frameworks in the context of effective theories allowing to systematically include LHC constraints in the global analyses.

A. G  models A.1 Derivation of the second stage SB mass matrices in BP-II

The general Lagrangian that describes the gauge boson masses can be written as

L mass =   m  Z ^Z ^µ Z ^µ +   (m  Z ^ + ∆ m  Z ^ )Z ^ µ Z ^ µ + δ m  Z ^(Z ^µ Z ^ µ + Z ^ µ Z ^µ ) + m  W ^W ^-µ W ^+µ + (m  W ^ + ∆ m  W ^ )W ^ - µ W ^ +µ (A.1) + δ m  W ^(W ^-µ W ^ +µ +W ^ - µ W ^+µ ).
The covariant derivative of the second stage SB scalar field reads, see Table 1.3,

D µ H = ∂ µ H -ig    σ • W µ H -i   g X X µ H.
Below the electroweak scale H acquires its VEV and the covariant derivative takes the following form

D µ H = -ig    σ • W µ v √        -i   g X X µ v √        = -i v        √  g  (W  µ -iW  µ )  √  (g X X µ -g  W  µ )     
, accordingly, the Hermitian conjugate of the covariant derivative is

(D µ H ) † = i v   √  g  (W  µ + iW  µ )  √  (g X X µ -g  W  µ ) .
Multiplying the covariant derivative by its Hermitian conjugate one finds

(D µ H ) † (D µ H ) = v   g   W - µ W +µ  + v   (g X X µ -g  W  µ )(g X X µ -g  W µ  ). (A.2)
Starting from the first component of the right-hand side of Eq. (A.2) and using that

W ± µ = c φ W ^± µ -s φ W ^ ± µ one obtains v   g   W - µ W +µ  =   g   v  (c  φ W ^-µ W ^+µ -c φ s φ W ^-µ W ^ +µ -c φ s φ W ^ - µ W ^+µ + s  φ W ^ - µ W ^ +µ ).
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G  models Thus, by comparing this result to the charged part of the Lagrangian in Eq. (A.1) we obtain the elements of the charged gauge bosons mass matrix:

m  W ^=   g   c  φ v  , (A.3) δ m  W ^= -   g   c φ s φ v  = -   g  g  s  φ v  , (A.4) ∆ m  W ^ =   g   s  φ v  . (A.5)
On the other hand, rearranging the second component on the right-hand side of Eq. (A.2) using that

X µ = B ^µ , B ^µ = c θ A µ -s θ Z ^µ , W  µ = c φ W ^ µ -s φ Z ^ µ and W ^ µ = c θ Z ^µ + s θ A µ leads to v   (g X X µ -g  W  µ )(g X X µ -g  W µ  ) = v   [(g  c φ c θ + g X s θ )  Z ^µ Z ^µ - s  φ e g  g  g X Z ^µ Z ^ µ - s  φ e g  g  g X Z ^ µ Z ^µ + g   s  φ Z ^ µ Z ^ µ ].
Hence, by inspecting the neutral part of the Lagrangian in Eq. (A.1), the components of the neutral gauge bosons mass matrix are

m  Z ^=   (g  c φ c θ + g X s θ )  v  , (A.6) δ m  Z ^= -   g  g  gg X s  φ e v  , (A.7) ∆ m  Z ^ =   g   s  φ v  . (A.8)

A.2 Neutral and charged currents in the NU model

In this section we exemplify Eqs. (1.33, 1.34) by the NU model of the G  class. This model is motivated by the strong hierarchy of the fermion mass matrix. The relatively large mass of the third generation fermions may suggest a dynamical behavior different from that of the first two generations. Thus, in the NU model the third generation undergoes a different flavor dynamics from the usual weak interaction proposed in the SM. We assume this flavor dynamics to be associated with the new SU() symmetry; no modification to QCD interactions are considered here. This is summarised in Table A

.1. Fields Components SU()  SU()  U() X Fermions L L(,) ν L e L  st , nd 2 1 -  L L() ν L e L  rd 1 2 -  E e R 1 1 -1 Q L(,) u L d L  st , nd 2 1   Q L() u L d L  rd 1 2   U u R 1 1   D d R 1 1 -  Gauge Bosons W  W +  , W -  , W   3 1 0 W  W +  , W -  , W   1 3 0 X X 1 1 0 Scalars Φ φ  + π  √ π + √ π -φ  -π  2 2 0 H h + h  1 2   Table A.1:
The field content of the Non-Universal model [START_REF] Malkawi | A model of strong flavor dynamics for the top quark[END_REF] and the respective quantum numbers.

Under the symmetry of the G  class, the covariant derivative reads

D µ ≡ ∂ µ -ig  T i  W i µ -ig  T j  W j µ -ig X XX µ . (A.9)
According to the charge assignments in Table A.1, the covariant derivative takes the following forms for each term

LL(,) γ µ D µ L L(,) = LL(,) γ µ (∂ µ -ig  T i  W i µ -ig X XX µ )L L(,) , LL() γ µ D µ L L() = LL() γ µ (∂ µ -ig  T j  W j µ -ig X XX µ )L L() , (A.10) Ēγ µ D µ E = Ēγ µ (∂ µ -ig X XX µ )E, QL(,) γ µ D µ Q L(,) = Qα L(,) γ µ [(∂ µ -ig  T i  W i µ -ig X XX µ )δ αβ -i g s  λ a αβ • G a µ ]Q β L(,) , QL() γ µ D µ Q L() = Qα L() γ µ [(∂ µ -ig  T j  W j µ -ig X XX µ )δ αβ -i g s  λ a αβ • G a µ ]Q β L() , Ūγ µ D µ U = Ūα γ µ [(∂ µ -ig X XX µ )δ αβ -i g s  λ a αβ • G a µ ]U β , (A.11) Dγ µ D µ D = Dα γ µ [(∂ µ -ig X XX µ )δ αβ -i g s  λ a αβ • G a µ ]D β ,
In what follows the strong interactions of fermions and bosons will be neglected. Following Eq. (A.11), the kinetic terms of the first and the second generation left-handed fermions contain the following terms

fL(,) iγ µ D µ f L(,) = fL(,) iγ µ (∂ µ -ig  T i  W i µ -ig X XX µ ) f L(,) = fL(,) γ µ [i∂ µ + g  √  (W + µ T +  +W - µ T -  ) + g  W  µ T   + g X XX µ ] f L(,) ⊃ f(,) γ µ [ g  √  (W + µ T +  +W - µ T -  )]P L f (,) (A.12) + f(,) γ µ [(g  s φ s θ T   + g X c θ X)A µ + (g  s φ c θ T   -g X s θ X)Z ^µ + (g  c φ T   )Z ^ µ ]P L f (,) ,
where f stands for the quarks and the leptons of the NU model. Furthermore

X µ = B µ , B µ = c θ A µ -s θ Z ^µ , W  µ = c φ Z ^ µ + s φ W ^ µ and W ^ µ = c θ Z ^µ + s θ A µ .
Similarly and using that W  µ = c φ W ^ µs φ Z ^ µ the kinetic terms of the third generation left-handed fermions read

fL() iγ µ D µ f L() = fL() iγ µ (∂ µ -ig  T i  W i µ -ig X XX µ ) f L() = fL() γ µ (i∂ µ + g  √  (W + µ T +  +W - µ T -  ) + g  W  µ T   + g X XX µ ) f L() ⊃ f() γ µ [ g  √  (W + µ T +  +W - µ T -  )]P L f () + f() γ µ [(g  c φ s θ T   + g X c θ X)A µ (A.13) + (g  c φ c θ T   -g X s θ X)Z ^µ + (-g  s φ T   )Z ^ µ ]P L f () .
The next step is to rearrange the couplings in the neutral sector of Eqs. (A.12, A.13) in terms of g L , g Y and e

g  s φ c θ T   -g X s θ X = g  L + g  Y (T   -s  θ (T   + X)), g  s φ s θ T   + g X c θ X = e(T   + X), (A.14) g  c φ c θ T   -g X s θ X = g  L + g  Y (T   -s  θ (T   + X)), g  c φ s θ T   + g X c θ X = e(T   + X), (A.15)
hence using Eqs. (A.14, A.15), the kinetic terms of the left-handed fermions take the following form fL(,)

iγ µ D µ f L(,) ⊃ f(,) γ µ [ g  √  (W + µ T +  +W - µ T -  )]P L f (,) (A.16) + f(,) γ µ [e(T   + X)A µ + g  L + g  Y (T   -s  θ (T   + X))Z ^µ + (g  c φ T   )Z ^ µ ]P L f (,) , and 
fL() iγ µ D µ f L() ⊃ f() γ µ [ g  √  (W + µ T +  +W - µ T -  )]P L f () (A.17) + f() γ µ [e(T   + X)A µ + g  L + g  Y (T   -s  θ (T   + X))Z ^µ + (-g  s φ T   )Z ^ µ ]P L f () .
Finally by applying the modified Gell-Mann-Nishijima formula

Q( f ) = T   ( f ) + T   ( f ) + X( f ) = T  L ( f ) +Y ( f ), (A.18)
and the fact that

W ± µ = s φ W ^± µ + c φ W ^ ± µ and that W ± µ = c φ W ^± µ -s φ W ^ ± µ one finds fL(,) iγ µ D µ f L(,) ⊃ f(,) γ µ [ g L √  (W ^+ µ T +, f L +W ^-µ T -, f L ) + g  c φ √  (W ^ + µ T +, f L +W ^ - µ T -, f L )]P L f (,) + f(,) γ µ [eQ f A µ + g  L + g  Y (T , f L -s  θ Q f )Z ^µ + (g  c φ T , f L )Z ^ µ ]P L f (,) , (A.19) and fL() iγ µ D µ f L() ⊃ f() γ µ [ g L √  (W ^+ µ T +, f L +W ^-µ T -, f L ) - g  s φ √  (W ^ + µ T +, f L +W ^ - µ T -, f L )]P L f (,) + f() γ µ [eQ f A µ + g  L + g  Y (T , f L -s  θ Q f )Z ^µ + (-g  s φ T , f L )Z ^ µ ]P L f () . (A.20) G  models
Accordingly, one can easily find the kinetic terms for the right-handed fermions

fR iγ µ D µ f R = fR iγ µ (∂ µ -ig X XX µ ) f R ⊃ fR γ µ (c θ g X XA µ -s θ g X XZ ^µ ) f R (A.21) = f γ µ (eQ f A µ -g  L + g  Y s  θ Q f Z ^µ )P R f .
Thus following Eq. (1.31) the fermion kinetic Lagrangian reads

L f ermion = fL iγ µ D µ f L + fR iγ µ D µ f R ⊃ f γ µ [eQ f A µ + g L √  (W ^+ µ T +, f L +W ^-µ T -, f L )P L + g  L + g  Y (T , f L P L -s  θ Q f )Z ^µ ] f + f(,) γ µ [ g  c φ √  (W ^ + µ T +, f L +W ^ - µ T -, f L ) + g  c φ (T , f L )Z ^ µ ]P L f (,) (A.22) -f() γ µ [ g  s φ √  (W ^ + µ T +, f L +W ^ - µ T -, f L ) + g  s φ (T , f L )Z ^ µ ]P L f () ,
or in compact form

L f ermion = fL iγ µ D µ f L + fR iγ µ D µ f R ⊃ L EM + L NC + L CC , (A.23)
where the EM interaction Lagrangian L EM , the neutral weak interaction Lagrangian L NC and the charged weak interaction Lagrangian L CC are defined as follows

L EM = J µ A µ , L NC = J  µ Z ^µ + K  µ Z ^ µ , (A.24) L CC = J + µ W ^+µ + J - µ W ^-µ + K + µ W ^ +µ + K - µ W ^ -µ ,
and the EM current J µ , the neutral weak currents J  µ , K  µ and the charged weak currents J ± µ , K ± µ are defined as follows

J µ = e f Q f f γ µ f , J  µ = g  L + g  Y f [(T , f L -s  θ Q f )P L -s  θ Q f P R ] f γ µ f , (A.25) J + µ = g L √  f T +, f L P L f γ µ f , K  µ = g  c φ (T , f L P L ) f(,) γ µ f (,) -g  s φ (T , f L P L ) f γ µ f  , (A.26) K ± = g  c φ √  (T ± , f L P L ) f(,) γ µ f (,) - g  s φ √  (T ± , f L P L ) f γ µ f  .
Inverting Eqs. (1.14, 1.15) one obtains

Z ^µ (W ^± µ ) ≡ Z µ (W ± µ ) + δ m  Z ^(W ^) m  Z ^ (W ^ ) Z µ (W ± µ ), (A.27) Z ^ µ (W ^ ± µ ) ≡ - δ m  Z ^(W ^) m  Z ^ (W ^ ) Z µ (W ± µ ) + Z µ (W ± µ ).
Inserting Eq. (A.27) in Eq. (A.22) one obtains for the neutral sector

f γ µ [ g  L + g  Y (-s  θ Q f )(Z µ + δ m  Z m Z ^ Z µ )]P R f + f(,) γ µ [ g  L + g  Y (T , f L -s  θ Q f )(Z µ + δ m  Z m Z ^ Z µ ) + g  c φ T , f L (- δ m  Z m Z ^ Z µ + Z µ )]P L f (,) + f() γ µ [ g  L + g  Y (T , f L -s  θ Q f )(Z µ + δ m  Z m Z ^ Z µ ) -g  s φ T , f L (- δ m  Z m Z ^ Z µ + Z µ )]P L f () .
Thus, the new neutral current Lagrangian after the second SB stage, displaying how the SM interactions are modified by the presence of the new neutral resonance, is given by

L Z NC = [ δ m  Z m Z ^ g  L + g  Y [(T , f L -s  θ Q f )P L -s  θ Q f P R ] f γ µ f + g  c φ (T , f L P L ) f(,) γ µ f (,) -g  s φ (T , f L P L ) f γ µ f  ]Z µ (A.28) = [ δ m  Z m Z ^ J µ + K µ ]Z µ .
Similarly, for the charged sector in Eq. (A.22)

f(,) γ µ [ g L √  (W + µ + δ m  W m W ^ W + µ )T +, f L + g  c φ √  (- δ m  W m W ^ W + µ +W + µ )T +, f L + (+ ←→ -)]P L f (,) + f() γ µ [ g L √  (W + µ + δ m  W m W ^ W + µ )T +, f L - g  s φ √  (- δ m  W m W ^ W + µ +W + µ )T +, f L + (+ ←→ -)]P L f () .
G  models Hence, the new charged current Lagrangian reads

L W CC = [ δ m  W m W ^ g L √  T +, f L P L f γ µ f + g  c φ (T , f L P L ) f(,) γ µ f (,) -g  s φ (T , f L P L ) f γ µ f  ]W + µ + (+ ←→ -) = [ δ m  W m W ^ J +µ + K +µ ]W + µ + (+ ←→ -). (A.29)
In order to obtain the couplings of Eq. (2.1) for the NU model, we first solve the equations for the SM-like and the new charged currents:

J + µ = g L √  f T +, f L P L f γ µ f = g L √  ( L(,,) γ µ T +,L L P L L (,,) + Q(,,) γ µ T +,Q L P L Q (,,) ) (A.30) = g L √  ( ν(,,) γ µ P L e (,,) + ū(,,) γ µ P L d (,,) ), K + µ = g  c φ √  (T +, f L P L ) f(,) γ µ f (,) - g  s φ √  (T +, f L P L ) f γ µ f  = g  c φ √  ( L(,) γ µ T +,L L P L L (,) + Q(,) γ µ T +,Q L P L Q (,) ) - g  s φ √  ( L() γ µ T +,L L P L L () + Q() γ µ T +,Q L P L Q () ) (A.31) = g  c φ √  ( ν(,) γ µ P L e (,) + ū(,) γ µ P L d (,) ) - g  s φ √  ( ν() γ µ P L e () + ū() γ µ P L d () ).
Then, inserting the result in Eq. (A.29) leads to

L W CC = g L  [ ν(,) γ µ ( g  c φ g L - g  g  s  φ v  (g   + g   )u  )P L e (,) + ū(,) γ µ ( g  c φ g L - g  g  s  φ v  (g   + g   )u  )P L d (,) + ν() γ µ (- g  s φ g L - g  g  s  φ v  (g   + g   )u  )P L e () (A.32) + ū() γ µ (- g  s φ g L - g  g  s  φ v  (g   + g   )u  )P L d () ,
where

δ m  W m W ^ = - g  g  s  φ v  (g   + g   )u  .
The comparison of Eq. (A.32) with Eq. (1.35) leads to

C W q( )(,),L = g  c φ g L - g  g  s  φ v  (g   + g   )u  , C W q( )(,),R = , (A.33) C W q( )(),L = - g  s φ g L - g  g  s  φ v  (g   + g   )u  , C W q( )(),R = .
The last step consists of solving Eq. (1.18) for the VEV u expressed in terms of the resonance mass M and the mixing angle φ , which we consequently substitute into Eq. (A.33). This leads to

C W q( )(,),L =  t φ -c θ ε(t φ , m), C W q( )(,),R = , (A.34) C W q( )(),L = -t φ -c θ ε(t φ , m), C W q( )(),R = , where g  c φ g L =  t φ and - g  s φ g L = -t φ .
G  models Accordingly, by solving the equations for the SM-like and the new neutral currents and inserting the results in Eq. (A.28) and comparing with Eq. (1.35) we obtain

C Z q( )(,),L = g  c φ c θ g L (T ,q( ) L ) + c θ g L g  g  s  φ v  (g   + g   )u  g  L + g  Y (T ,q( ) L + Q q( ) s  θ ), C Z q( )(,),R = c θ g L g  g  s  φ v  (g   + g   )u  g  L + g  Y (Q q( ) s  θ ), (A.35) C Z q( )(),L = - g  s φ c θ g L (T ,q( ) L ) + c θ g L g  g  s  φ v  (g   + g   )u  g  L + g  Y (T ,q( ) L + Q q( ) s  θ ), C Z q( )(),R = c θ g L g  g  s  φ v  (g   + g   )u  g  L + g  Y (Q q( ) s  θ ).
Hence, in a similar way as in Eq. (A.34), the couplings of the Z to the SM fermions read for the NU model

C Z q( )(,),L = c θ  t φ T ,q( ) L + ε(t φ , m)(T ,q( ) L + Q q( ) s  θ ), C Z q( )(,),R = ε(t φ , m)Q q( ) s  θ , (A.36) C Z q( )(),L = -c θ t φ T ,q( ) L + ε(t φ , m)(T ,q( ) L + Q q( ) s  θ ), C Z q( )(),R = ε(t φ , m)Q q( ) s  θ .
B. Recola2

B.1 Amplitude structure in Recola

Recola uses the so-called colour-flow decomposition to evaluate the amplitude of a given process. This method has a physical interpretation in terms of the flow of colour, which makes it ideal for merging the hard-scattering cross section with shower Monte-Carlo programs. Usually the colour index a of the gluon is described in the adjoint representation of SU() and can take the values 1, ..., 8. However, since the adjoint representation is isomorphic to the tensor product   of the fundamental and anti-fundamental representations of SU(), the gluon's colour coordinate can be replaced by a couple of indices i, j = 1,2,3. Thus, in the colour-flow representation, each gluon line is replaced by a double line, while quarks sustain the usual colour index i = 1,2,3 and are represented by a single line, see Figure B.1. Following this decomposition, the amplitude can be written as

A → A i  ...i k j  ... j k [h  , ..., h k ], (B.1)
where k is the number of external particles and h n (n = , ..., k) represents the helicity of the n th external leg. The upper index i transforms under the fundamental representation of SU()

and can take the values 1, 2, 3 for gluons, incoming anti-quarks and outgoing quarks, while it vanishes for colourless particles, incoming quarks and outgoing anti-quarks. Furthermore, the lower index j follows the conjugate of the fundamental representation of SU() and is absent for colourless particles, incoming anti-quarks and outgoing quarks, while it takes the values 1, 2, 3 for gluons, incoming quarks and outgoing anti-quarks. The colour flows from the lower index j to the upper index i, as can be seen in propagator and a t-channel Z mediated diagram this time, here q q can only be of up type and no flavour-mixing is accepted. Finally the last block () involves pure BSM diagrams. The first line has 2 s-channel Z diagrams where mixing and any type of quarks is allowed. The second line has 2 t-channel W diagrams allowing for flavour-mixing within the down family. The third line contains one t-channel W diagram and one s-channel Z diagram, q q ∈ {d d, s s, b b}.
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Recola2

The penultimate line involve one t-channel and one s-channel Z and final line 2 t-channel Z diagrams where in both cases the initial state quarks can only be of up type but flavour-mixing is accepted.

In Recola2 within SMWZp for the 13 q q (2 → 2) sub-processes (we don't show γg →t t here even though, as discussed before, we take this contribution into account) that enter our calculation at LO and NLO. In particular, we show this for different contributions by including gradually the different mediators (γ, Z, W , Z , and W ). This is visualised in 16 different tables where the first column consists of the initial state quark combinations for each set of mediators, the second column contains the possible LO squared amplitudes for each initial state based on the chosen propagators, and the third column involves also the squared amplitudes but at NLO. Whenever it appears in any of the tables, the term "does not exist" means that we can not ask Recola2 to compute the squared amplitude for this specific initial state where a particular mediators are chosen, for instance, one can not calculate a non-diagonal t t production when the Z-boson is the mediator as seen in 

B.4 Couplings in Recola2 vs couplings in old PBZp

While, as can be seen from Eq. (3.7), Recola2 uses the left-right (LR) notation for the couplings between the gauge bosons and the fermions, the old PBZp package uses the axial-vector (AV) notation [START_REF] Ciobanu | Z' generation with PYTHIA[END_REF] 

L Z = g W c W Z µ C V -C A γ  f γ µ f , (B.5)
where g W = e s W is the SU() L gauge coupling. To exemplify the transition between the two notations we will use the Lagrangian that describes the diagonal interaction between Z -boson and dd. In Recola2 this can be derived from Eq. 

Recola2

Here we show how to call an amplitude for one phase space point in Recola2 and in Madgraph using the Python programming language. 

Recola2

Listing B. 

  , LP-D, HP-D, FP-D Φ ∼ (, , LP-T, HP-T, FP-T Φ ∼ (, , )
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 11 Figure 1.1: The mixing of the gauge bosons in BP-II. The gauge bosons colored in red are massive while bosons colored in black are massless.
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 1 Fig.1| The LHC and the HL-LHC baseline plan for the next decade and beyond. The Large Hadron Collider (LHC) operation is a sequence of interleaved operating runs of 3-4 years each and long shutdowns (LS) of 2 years. After LS3 (2024-2026) the machine will be in the high-luminosity LHC (HL-LHC) configuration. 4000 fb -1 is the ultimate integrated luminosity goal (the HL-LHC design value is 3000 fb -1 , see the text). The design luminosity is the original luminosity value that the LHC was designed to achieve. EYETS, extended year-end technical stop; LIU, LHC injectors upgrade. Adapted with permission from CERN.
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 21 Figure 2.1: The LHC and the HL-LHC baseline plan for the next decade and beyond [57].
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 23 namely the renormalisation and factorization scale (light khaki bands), the strong coupling (light salmon bands), and the PFD (light blue bands) uncertainties. More specifically the ratio of the error bands to the central predictions is shown. On the left hand side we show the variations at √ S = 14 TeV for SSM (top), UU model (centre), and NU model (bottom), and the same but for √ S = 27 TeV is shown on the right hand side of Figure 2.3.
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 2323 Figure 2.3:The fractional uncertainty due to the scale and the α S variation, as well as the PDF uncertainty as a function of m Z , for q q → Z → t t[+g] in the SSM (top row), the UU model (centre row), and the NU model (bottom row), at the HL-LHC (left) and the HE-LHC (right).
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 26 Figure 2.6:The fractional uncertainty at LO, NLO, and NLO+NLL due to the scale variation as a function of m W , for q q → W,W → lν in the SSM (top row), and in the UU model (bottom row), at the HL-LHC (left) and the HE-LHC (right).
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 31 Figure 3.1: A pictorial representation of the factorisation formula in Eq. (3.2). The central part between the dashed vertical lines, describes the high-momentum transfer part represented by the short distance cross section σab where X denotes any hadronic final state. The remaining parts on the left and right sides of the dashed vertical lines, describe the low-momentum transfer part of the hadronic collision represented by the parton distribution functions. The dashed lines represent the scale of the factorisation µ F , the separation between the high-momentum and low-momentum parts of the hadronic collision.
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Figure 3 . 3 :

 33 Figure 3.3: Photon-induced top-pair production of O(α S α W )

  a p a , x b p b ; p  , ..., p n )|  is the (squared) matrix element or (squared) amplitude, it depends on all final state momenta p  , ..., p n as well as the initial state momenta x a p a and x b p b . In what follows we will refer to |A (p a , p b ; p  , ..., p n )|  as |A |  for compactness.

Figure 3 . 5 :

 35 Figure 3.5: One-loop QCD corrections, A ; , to the diagrams in Figure 3.4. As before, V  ∈ {γ, Z, Z }, V  ∈ {W,W , Z }, and V = V  ∪V  denotes the union of V  and V  .

  ) and d), but we omit amplitudes in the second row of Figure3.5. In principle one could compute all corrections, but the renormalisation of the amplitudes in Figures 3.5g

  )

Figure 3 . 7 :

 37 Figure 3.7: Similar as in Figure 3.6 but for the subprocesses gq →t tq .

Figure 3 . 8 :

 38 Figure 3.8: The ratio of the Born amplitude in Recola2 vs PBZp and MG5 in the SSM for u ū → Z → t t (top). Bottom: same but for d d → Z → t t.

Figure 3 . 9 :

 39 Figure 3.9: The ratio of the Born amplitude for Recola2 over PBZp in the SSM for gγ → t t.

Figure 3 . 10 :

 310 Figure 3.10: The ratio of the real amplitude for Recola2 over PBZp in the SSM at for u ū → Z → t tg (top). Bottom: same but for d d → Z → t tg.

Figure 3 . 13 :

 313 Figure 3.13: The structure of a proton proton collision at the LHC as described by event generators.

Figure 3 . 14 :

 314 Figure 3.14: A pictorial representation of the double counting problem at NLO. The first line consists of the Born and virtual amplitudes. The second line contain the real amplitudes. The blue radiations come from the parton shower while the red emission comes from the matrix element.

  and depends on d variables y  , ..., y d over the unit hypercube [, ] d . For brevity, we will denote a point in the unit hypercube by x = (y  , ..., y d ) and the function evaluated at this point by f (x) = f (y  , ..., y d ).

Figure 3 . 15 :

 315 Figure 3.15: Pictorial representation of the collinear factorisation in QCD.

Figure 3 . 16 :

 316 Figure 3.16: Pictorial representation of the recursive application of the collinear factorisation formula in Eq. (3.26).

  following 78 entries flst _ real = [[-5,5,6,-6,0], [-5,3,6,-6,0], ..., [-1,3,6,-6,0],[-1,1,6,-6,0], [1,-1,6,-6,0], ...,[5,-5,6,-6,0], [0,-5,6,-6,-5], [0,-5,6,-6,-3], ..., [0,-1,6,-6,-3],

Figure 3 . 17 :

 317 Figure 3.17: Top: The SSM NLO total cross section predictions in picobarns for pp → Z →t t (left), pp → Z, γ →t t (central), and pp → Z , Z, γ →t t (right) at √ S ={14, 27, 50, 100} TeV for the new-and the old-PBZp. Bottom: their ratios in the same order at a centre-of-mass energy √ S ∈ {14, 27, 50, 100} TeV.

1 ((Figure 3 . 18 :

 1318 Figure 3.18: Fiducial cross sections for EW t t production in the SM, SSM, TC, and TFHM with an invariant mass cut m t t ≥ 0.75 m Z and our event selection cuts at NLO+PS (upper panels), and as ratio to LO+PS (lower panels). In the SSM m W = m Z . The bands represent perturbative uncertainty due to seven-point variation of µ F and µ R . Left panel: cross sections at √ S = 14 TeV as a function of m Z . Right panel: cross sections at m Z = 3 TeV as a function of √ S.

Figure 3 . 19 :

 319 Figure 3.19: The ratio of cross sections for EW t t production in the SSM in the new calculation, including t-channel W and W exchange contributions, over the old calculation, without these contributions, at NLO+PS (solid lines) and LO+PS (dashed lines). The cross sections have been calculated with an invariant mass cut m t t ≥ 0.75 m Z and with (red lines) and without (blue lines) fiducial cuts. Left panel: cross section ratio at √ S = 14 TeV as a function of m Z = m W . Right panel: cross section ratio at m Z = m W = 3 TeV as a function of √ S.

  M tt & fiducial cuts m Z (W ) = 3 TeV

Figure 3 . 20 :

 320 Figure 3.20: The ratio of the cross section for EW t t production in the SSM with and without the interference terms between the SM and the Z ,W contributions at NLO+PS (solid) and LO+PS (dashed). The cross sections have been calculated with an invariant mass cut m t t ≥ 0.75 m Z and with (red line) and without (blue line) fiducial cuts. Left panel: Cross section ratio at √ S = 14 TeV as a function of m Z = m W . Right panel: Cross section ratio at m Z = m W = 3 TeV as a function of √ S.

1 CMS, 13 1 CMS, 13
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Figure 4 . 1 :

 41 Figure 4.1:A comparison of a leptophobic TC model producing a 1000 GeV Z resonance in a t t mass measurement[START_REF] Sirunyan | Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at √ s = 13[END_REF]. An NLO QCD t t background prediction is shown in green for comparison. The figure on the left shows the background model generated from data, with the one on the right showing the effect of using the theoretically calculated background model.

Furthermore

  

Figure 4 . 2 :

 42 Figure 4.2: Contur 2D heatmap for the leptophobic TC model, in the Z mass (GeV) versus the Z total decay width (GeV). The 95% CL (yellow) and 68% CL (green) exclusion limits are superimposed considering the data as background.

Figure 4 . 3 :

 43 Figure 4.3: The breakdown of Figure 4.2 into the most sensitive analysis pool for each scan point.

Figure 4 . 4 :

 44 Figure 4.4: Same as Figure 4.2 but using the SM theoretical predictions as background.

Figure 4 . 5 :

 45 Figure 4.5: The breakdown of Figure 4.4 into the most sensitive analysis pool for each scan point.

Figure B. 1 :

 1 Figure B.1: Quark-gluon vertex in the fundamental representation (a) and in the colour-flow representation where the arrow tracks the flow of colour (b).

  Figure B.1 (b). Finally, in order to forbid a   gluon 105 Recola2ParametersRecola identifier k

1 :Figure B. 2 :

 12 Figure B.2:The pure EW diagrams that interfere at the Born level in our calculation.

Figure B. 3 Figure B. 3 :

 33 Figure B.3: Born level squared amplitudes including QCD and EW interference that we include in our calculation.

B. 5

 5 (3.7)L Z d d = k Z,+ e s W c W Z µ C d Z,+ w + dγ µ d + k Z,- e s W c W Z µ C d Z,-w -dγ µ d, (B.6)using the fact that w ± = ( ± γ  )/ Eq. (B.6) can rearranged as followsL Z d d = e s W c W Z µ k Z,+ C d Z,+ + k Z,-C d Z,-+ γ  k Z,+ C d Z,+k Z,-C d Z,-dγ µ d (B.7) Thus, by comparing Eq. (B.5) and Eq. (B.7) one can find C V (A) in terms of C d Z, ± and vice-versaC V =  k Z,-C d Z,-+ k Z,+ C d Z,+ (B.8) C A =  k Z,-C d Z,-k Z,+ C d Snippetcodes to call an amplitude in Madgraph and in

Recola2Listing B. 1 :

 1 A python script example to call the matrix element in Recola. § ¤ # Import the Recola library (pyrecola) as follows:from pyrecola import * # set model parameters set _ parameter _ rcl("MZp", 800.) set _ parameter _ rcl("WZp", 23.) set _ parameter _ rcl("MZ", 9.118800e+01) set _ parameter _ rcl("WZ", 2.4414039999999 ) set _ parameter _ rcl("MW", 80.419002445756163) set _ parameter _ rcl("WW", 2.085000e+00) set _ parameter _ rcl("aEW", 0.0075467711139788835) set _ parameter _ rcl("kWL", 0.0) set _ parameter _ rcl("kWR", 0.0) set _ parameter _ rcl("kZL", 1.4142135623730951) set _ parameter _ rcl("kZR", 1.4142135623730951) set _ parameter _ rcl("CZdL1x1", -0.301169) set _ parameter _ rcl("CZdL1x2", 0.0) set _ parameter _ rcl("CZdL1x3", 0.0) set _ parameter _ rcl("CZdL2x1", 0.0) set _ parameter _ rcl("CZdL2x2", -0.301169) set _ parameter _ rcl("CZdL2x3", 0.0) set _ parameter _ rcl("CZdL3x1", 0.0) set _ parameter _ rcl("CZdL3x2", 0.0) set _ parameter _ rcl("CZdL3x3", -0.301169) set _ parameter _ rcl("CZuR1x1", -0.104768) set _ parameter _ rcl("CZuR1x2", 0.0) set _ parameter _ rcl("CZuR1x3", 0.0) set _ parameter _ rcl("CZuR2x1", 0.0) set _ parameter _ rcl("CZuR2x2", -0.104768) set _ parameter _ rcl("CZuR2x3", 0.0) set _ parameter _ rcl("CZuR3x1", 0.0) set _ parameter _ rcl("CZuR3x2", 0.0) set _ parameter _ rcl("CZuR3x3", -0.104768) set _ parameter _ rcl("CZdR1x1", 0.052384) set _ parameter _ rcl("CZdR1x2", 0.0) set _ parameter _ rcl("CZdR1x3", 0.0) set _ parameter _ rcl("CZdR2x1", 0.0) set _ parameter _ rcl("CZdR2x2", 0.052384) set _ parameter _ rcl("CZdR2x3", 0.0) set _ parameter _ rcl("CZdR3x1", 0.0) set _ parameter _ rcl("CZdR3x2", 0.0) set _ parameter _ rcl("CZdR3x3", 0.052384) set _ parameter _ rcl("CZuL1x1", 0.248785) set _ parameter _ rcl("CZuL1x2", 0.0) set _ parameter _ rcl("CZuL1x3", 0.0) set _ parameter _ rcl("CZuL2x1", 0.0) set _ parameter _ rcl("CZuL2x2", 0.248785) set _ parameter _ rcl("CZuL2x3", 0.0) set _ parameter _ rcl("CZuL3x1", 0.0) set _ parameter _ rcl("CZuL3x2", 0.0) set _ parameter _ rcl("CZuL3x3", 0.248785) #define the process define _ process _ rcl(1, "d d~-> t t~", "LO") #generate the process generate _ processes _ rcl() p1 = [500., 0., 0., 500.] p2 = [500., 0., 0., -500.] # generate a sample PSP using RAMBO p = set _ outgoing _ momenta _ rcl(1, [p1, p2]) # compute tree squared amplitude compute _ process _ rcl(1, p, 'LO') # get a specific contributions get _ squared _ amplitude _ rcl(1, 'LO', pow=[0, 4, 4]) ¦ ¥

Listing B. 4 : 123 ih2 1 ! 1 ebeam2 6500d0 ! energy of beam 2 !! 7 bornonly 0

 412311270 An example of powheg.input in the SSM. § ¤ ! q + qbar -> gamma/Z/W/Z'/W' -> t + tbar inputs ! GENERAL POWHEG PARAMETERS numevts 100000 ! number of events to be generated ih1 1 ! hadron 1 (1 for protons, -1 for antiprotons) Recola2 hadron 2 (1 for protons, -1 for antiprotons) ebeam1 6500d0 ! energy of beam To be set only if using LHA pdfs lhans1 324900 ! pdf set for hadron 1 (LHA numbering) lhans2 324900 ! pdf set for hadron 2 (LHA numbering) ! Parameters to allow or not the use of stored data use-old-grid 1 ! if 1 use old grid if file pwggrids.dat is ! present (<> 1 regenerate) use-old-ubound 1 ! if 1 use norm of upper bounding function stored in ! pwgubound.dat, if present; <> 1 regenerate ! Integration precision related settings ncall1 50000 ! number of calls for initializing the integration grid itmx1 1 ! number of iterations for initializing the integration grid ncall1rm 1000000 ! number of calls for initializing the integration grid itmx1rm 1 ! number of iterations for initializing the integration grid ncall2 100000 ! number of calls for computing the integral and finding ! upper bound itmx2 5 ! number of iterations for computing the integral and finding ! upper bound foldcsi 2 ! number of folds on csi integration foldy 5 ! number of folds on y integration foldphi 1 ! number of folds on phi integration nubound 50000 ! number of calls to setup upper bounds for radiation icsimax 1 ! <= 100, number of csi subdivision when computing the upper bounds iymax 5 ! <= 100, number of y subdivision when computing the upper bounds xupbound 2d0 ! increase upper bound for radiation generation ! Calculate with remnants withdamp 1 ! (default 0, do not use) use Born-zero damping factor ! PROCESS SPECIFIC PARAMETERS ! scale settings scale 1 ! 0...muf=mur=sqrt(pt^2+m^2), 1...muf=mur=sqrt(shat), ! otherwise...muf=muF, mur=muR Recola2 ! optional production parameters ! (defaults defined in init_couplings.f) alphaem _ inv 126.89 ! 1/alphaem (at 2 * mt=2 * 172.5 according to pythia) topmass 172.5 ! top mass (ATLAS ttbar search) which subset of corrections to calculate? ! channel: 3 --Z'/W'; 4 -photon/Z/W; 7 -photon/Z/W/Z'/W' channel ! calculate the cross sections at NLO gaswitch 1 ! include photon induced diagrams LRscheme 1 ! use the LR format for the couplings micut 1500.0 ! set a generation cut on the top pair invariant mass useRecolaBorn 1 ! use Recola to calculate the Born amplitudes ! (if 0 use old PBZp routines) useRecolaReal 1 ! use Recola to calculate the real amplitudes ! (if 0 use old PBZp routines) useRecolaVirtual 1 ! use Recola to calculate the virtual amplitudes ! (if 0 use old PBZp routines) ¦ ¥ Contur g1 = ee/cw const = (sqrt(2.) * ee)/(cw * sw) # Recola factor for Z' couplings fac = sqrt(1 -((4 * Mtop ** 2) / (MZp ** 2))) * (2 + 4 * (Mtop ** 2/MZp ** 2)) + 4 # see eq. 6 in 1112.4928v3 cotH2 = (GZp * 8 * cw ** 2) / (aEM * MZp * fac) # see eq. 6 in 1112.4928v3 cotH = sqrt(cotH2) # Set the couplings ## TFHMeg if model in ['TFHMeg', 'tfhmeg', 'Tfhmeg']: ## Write the TFHMeg couplings into Recola's L-R form ## float(): convert couplings from sympy.core.numbers.Float to float numbers lzpu1x1=float((1./const) * (-1./6.) * LamuL[0,0] * (gF)) lzpu1x2=float((1./const) * (-1./6.) * LamuL[0,1] * (gF)) lzpu1x3=float((1./const) * (-1./6.) * LamuL[0,2] * (gF)) lzpu2x1=float((1./const) * (-1./6.) * LamuL[1,0] * (gF)) lzpu2x2=float((1./const) * (-1./6.) * LamuL[1,1] * (gF)) lzpu2x3=float((1./const) * (-1./6.) * LamuL[1,2] * (gF)) lzpu3x1=float((1./const) * (-1./6.) * LamuL[2,0] * (gF)) lzpu3x2=float((1./const) * (-1./6.) * LamuL[2,1] * (gF)) lzpu3x3=float((1./const) * (-1./6.) * LamuL[2,2] * (gF)) rzpu1x1=float((1./const) * (-2./3.) * LamuR[0,0] * (gF)) rzpu1x2=float((1./const) * (-2./3.) * LamuR[0,1] * (gF)) rzpu1x3=float((1./const) * (-2./3.) * LamuR[0,2] * (gF)) rzpu2x1=float((1./const) * (-2./3.) * LamuR[1,0] * (gF)) rzpu2x2=float((1./const) * (-2./3.) * LamuR[1,1] * (gF)) rzpu2x3=float((1./const) * (-2./3.) * LamuR[1,2] * (gF)) rzpu3x1=float((1./const) * (-2./3.) * LamuR[2,0] * (gF)) rzpu3x2=float((1./const) * (-2./3.) * LamuR[2,1] * (gF)) rzpu3x3=float((1./const) * (-2./3.) * LamuR[2,2] * (gF)) lzpd1x1=float((1./const) * (-1./6.) * LamdL[0,0] * (gF)) lzpd1x2=float((1./const) * (-1./6.) * LamdL[0,1] * (gF)) lzpd1x3=float((1./const) * (-1./6.) * LamdL[0,2] * (gF)) lzpd2x1=float((1./const) * (-1./6.) * LamdL[1,0] * (gF)) lzpd2x2=float((1./const) * (-1./6.) * LamdL[1,1] * (gF)) lzpd2x3=float((1./const) * (-1./6.) * LamdL[1,2] * (gF)) lzpd3x1=float((1./const) * (-1./6.) * LamdL[2,0] * (gF)) lzpd3x2=float((1./const) * (-1./6.) * LamdL[2,1] * (gF)) lzpd3x3=float((1./const) * (-1./6.) * LamdL[2,2] * (gF)) rzpd1x1=float((1./const) * (1./3.) * LamdR[0,0] * (gF)) rzpd1x2=float((1./const) * (1./3.) * LamdR[0,1] * (gF)) rzpd1x3=float((1./const) * (1./3.) * LamdR[0,2] * (gF)) rzpd2x1=float((1./const) * (1./3.) * LamdR[1,0] * (gF)) rzpd2x2=float((1./const) * (1./3.) * LamdR[1,1] * (gF)) rzpd2x3=float((1./const) * (1./3.) * LamdR[1,2] * (gF)) rzpd3x1=float((1./const) * (1./3.) * LamdR[2,0] * (gF)) rzpd3x2=float((1./const) * (1./3.) * LamdR[2,1] * (gF)) rzpd3x3=float((1./const) * (1./3.) * LamdR[2,2] * (gF)) elif model in ['TC', 'tc', 'Tc', 'tC']: ## Write the TC couplings into Recola's L-R form lzpu1x1=-(1./const) * 0.5 * (g1) Contur if "model" not in line.strip("\n"): f.write(line) with open(path _ to _ params, "r") as f: lines = f.readlines() with open(path _ to _ params, "w") as f: for line in lines: if "dummy" not in line.strip("\n"): f.write(line) if model in ['TFHMeg', 'tfhmeg', 'Tfhmeg']: with open(path _ to _ params, "r") as f: lines = f.readlines() with open(path _ to _ params, "w") as f: for line in lines: if "GZp" not in line.strip("\n"): f.write(line) ¦ ¥ Listing C.3: powheg.input _ template. § ¤ ! q + qbar -> Z' -> t + tbar inputs ! This is the {model} ! The theta_sb parameter is equal to {tsb} ! GENERAL POWHEG PARAMETERS numevts 10000 ! The number of events of corrections to calculate? ! channel: 3 --Z'; 4 -photon/Z/W; 7 -photon/Z/W/Z'/W'

  

Table 1 .

 1 

		Model	SU() 	SU() 	U() X
	BP-II Un-Unified (UU)		u L d L			ν L e L		Y SM for quarks, Y SM for leptons
		Non-Universal (NU)	u L d L  st , nd	,	ν L e L  st , nd	u L d L  rd	,	ν L e L  rd	Y SM for quarks, Y SM for leptons
	BP-I	Left-Right (LR)	u L d L	,	ν L e L	u R d R	,	ν R e R	  for quarks, -  for leptons
		Lepto-Phobic (LP)	u L d L	,	ν L e L	u R d R		  for quarks, -Y SM for leptons
		Hadro-Phobic (HP)	u L d L	,	ν L e L	ν R e R		Y SM for quarks, -  for leptons
		Fermio-Phobic (FP)	u L d L	,	ν L e L				Y SM for quarks, Y SM for leptons

1:

  After the discovery of the Higgs boson[START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF][START_REF] Chatrchyan | Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC[END_REF], the LHC physics program can be considered one of the most successful experimental programs in Science. Built by the European Organization for Nuclear Research (CERN), it was first commissioned in 2010 for proton-proton collisions with a 7 TeV centre-of-mass energy, a new record at the time, which has been increased to reach 8 TeV from April 2012 until the end of the so called Run 1 in 2013. Following a long technical stop in 2013-2014, it operated in Run 2 with proton collisions at 13 TeV centre-of-mass energy from June 2015 to deliver to ATLAS and CMS a total integrated luminosity of about 189 fb - by the end of 2018. A two-year long shutdown is now in progress (2019-2020) and Run 3 is expected to start in 2021, potentially providing collisions at the nominal energy of 14 TeV and with nominal target integrated luminosities of 350 fb - .

Table 3 . 1 :

 31 Total cross sections in LO for top-pair production at O(α s α) and O(α  ) in the SM and SSM at √ S = 14 TeV. The Z -boson mass is set to 5 TeV. For all the predictions in this table we use NLO α S and NLO PDFs.

Table B . 3 :

 B3 Table B.2. Amplitudes in red indicate that we do not include these contribution in our calculation but Recola2 can calculate them. The bold font means that the contribution is negligible. Finally, n-Z and d-Z stand for a non-diagonal and a diagonal Z -boson respectively. Same as Table B.2 but for sub-processes possibly mediated by γ, Z, or W .

					Recola2
	γ, Z γ, Z, W	LO LO	NLO NLO
	n-Z , d-Z , W n-Z ,d-Z , W	
	d b d b	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	d s d s	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	d d d d	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422
	u c u c	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	u ū u ū	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422
	s b s b	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	s s s s	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422
	s d s d	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	c c c c	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422
	c ū c ū	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	b b b b	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422
	b s b s	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	b d b d	does not exist 040 042 044 220 222 400	does not exist 240 242 244 420 422
	γ, Z, d-Z	LO	NLO
	γ, Z, W d-Z	LO	NLO
	n-Z , d-Z , W d b	does not exist	does not exist
	d b d s	040 042 044 220 222 400 does not exist	240 242 244 420 422 does not exist
	d s d d	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422 440
	d d u c	040 042 044 220 222 400 does not exist	240 242 244 420 422 does not exist
	u c u ū	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422 440
	s b	u ū	040 042 044 220 222 400 does not exist	240 242 244 420 422 does not exist
	s s		s b	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422 440
	s d		s s	040 042 044 220 222 400 does not exist	240 242 244 420 422 does not exist
	c c		s d	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422 440
	c ū	c c	040 042 044 220 222 400 does not exist	240 242 244 420 422 does not exist
	c ū b b	040 042 044 220 222 400 040 042 044 220 222 400	240 242 244 420 422 240 242 244 420 422 440
	b s	b b	040 042 044 220 222 400 does not exist	240 242 244 420 422 does not exist
	b d	b s	040 042 044 220 222 400 does not exist	240 242 244 420 422 does not exist
	b d	040 042 044 220 222 400	240 242 244 420 422

Table

B

.2: Squared amplitudes that can be calculated with Recola2 for 13 q q (2 → 2) sub-processes mediated by γ or Z-boson. Table B.4: Same as Table B.2 but for sub-processes possibly mediated by γ, Z, or W .

Table B . 5 :

 B5 Same as TableB.2 but for sub-processes possibly mediated by γ, Z, or a diagonal Z .

	γ, Z, n-Z	LO	NLO
	n-Z		
	d b	040 042 044 220 222 400	240 242 244 420 422 444
	d s	040 042 044 220 222 400	240 242 244 420 422 444
	d d	040 042 044 220 222 400	240 242 244 420 422 440
	u c	040 042 044 220 222 400	240 242 244 440 442 444
	u ū	040 042 044 220 222 400	240 242 244 420 422 440
	s b	040 042 044 220 222 400	240 242 244 420 422 444
	s s	040 042 044 220 222 400	240 242 244 420 422 440
	s d	040 042 044 220 222 400	240 242 244 420 422 444
	c c	040 042 044 220 222 400	240 242 244 420 422 440
	c ū	040 042 044 220 222 400	240 242 244 440 442 444
	b b	040 042 044 220 222 400	240 242 244 420 422 440
	b s	040 042 044 220 222 400	240 242 244 420 422 444
	b d	040 042 044 220 222 400	240 242 244 420 422 444
	γ, Z, W ,	LO	NLO
	W		
	d b	040 042 044 220 222 400	240 242 244 420 422
	d s	040 042 044 220 222 400	240 242 244 420 422
	d d	040 042 044 220 222 400	240 242 244 420 422
	u c	040 042 044 220 222 400	240 242 244 440 442
	u ū	040 042 044 220 222 400	240 242 244 420 422
	s b	040 042 044 220 222 400	240 242 244 420 422
	s s	040 042 044 220 222 400	240 242 244 420 422
	s d	040 042 044 220 222 400	240 242 244 420 422
	c c	040 042 044 220 222 400	240 242 244 420 422
	c ū	040 042 044 220 222 400	240 242 244 440 442
	b b	040 042 044 220 222 400	240 242 244 420 422
	b s	040 042 044 220 222 400	240 242 244 420 422
	b d	040 042 044 220 222 400	240 242 244 420 422

Table B.6: Same as Table B.2 but for sub-processes possibly mediated by γ, Z, or a non-diagonal Z .

Table B . 7 :

 B7 Same as TableB.2 but for sub-processes possibly mediated by γ, Z, W , or W .

			Recola2
	γ, Z, n-Z ,	LO	NLO
	d-Z		
	d b	040 042 044 220 222 400	240 242 244 420 440
	d s	040 042 044 220 222 400	240 242 244 420 440
	d d	040 042 044 220 222 400	240 242 244 420 440
	u c	040 042 044 220 222 400	240 242 244 420 440
	u ū	040 042 044 220 222 400	240 242 244 420 440
	s b	040 042 044 220 222 400	240 242 244 420 440
	s s	040 042 044 220 222 400	240 242 244 420 440
	s d	040 042 044 220 222 400	240 242 244 420 440
	c c	040 042 044 220 222 400	240 242 244 420 440
	c ū	040 042 044 220 222 400	240 242 244 420 440
	b b	040 042 044 220 222 400	240 242 244 420 440
	b s	040 042 044 220 222 400	240 242 244 420 440
	b d	040 042 044 220 222 400	240 242 244 420 440
	γ, Z, W ,	LO	NLO
	d-Z		
	d b	040 042 044 220 222 400	240 242 244 420 422
	d s	040 042 044 220 222 400	240 242 244 420 422
	d d	040 042 044 220 222 400	240 242 244 420 422
	u c	040 042 044 220 222 400	240 242 244 420 422
	u ū	040 042 044 220 222 400	240 242 244 420 422
	s b	040 042 044 220 222 400	240 242 244 420 422
	s s	040 042 044 220 222 400	240 242 244 420 422
	s d	040 042 044 220 222 400	240 242 244 420 422
	c c	040 042 044 220 222 400	240 242 244 420 422
	c ū	040 042 044 220 222 400	240 242 244 420 422
	b b	040 042 044 220 222 400	240 242 244 420 422
	b s	040 042 044 220 222 400	240 242 244 420 422
	b d	040 042 044 220 222 400	240 242 244 420 422

Table B.8: Same as Table B.2 but for sub-processes possibly mediated by γ, Z, non-diagonal Z , or a diagonal Z .

Table B . 9 :

 B9 Same as TableB.2 but for sub-processes possibly mediated by γ, Z, W , or a diagonal Z .

	Recola2		
	γ, Z, W ,	LO	NLO
	n-Z		
	d b	040 042 044 220 222 400	240 242 244 420 422
	d s	040 042 044 220 222 400	240 242 244 420 422
	d d	040 042 044 220 222 400	240 242 244 420 422
	u c	040 042 044 220 222 400	240 242 244 420 422
	u ū	040 042 044 220 222 400	240 242 244 420 422
	s b	040 042 044 220 222 400	240 242 244 420 422
	s s	040 042 044 220 222 400	240 242 244 420 422
	s d	040 042 044 220 222 400	240 242 244 420 422
	c c	040 042 044 220 222 400	240 242 244 420 422
	c ū	040 042 044 220 222 400	240 242 244 420 422
	b b	040 042 044 220 222 400	240 242 244 420 422
	b s	040 042 044 220 222 400	240 242 244 420 422
	b d	040 042 044 220 222 400	240 242 244 420 422

Table B.10: Same as Table B.2 but for sub-processes possibly mediated by γ, Z, W , or a non-diagonal Z .

Table B .

 B 12: Same as TableB.2 but for sub-processes possibly mediated by γ, Z, W , or a non-diagonal Z .

Table B .

 B [START_REF] Gavela | Standard model CP violation and baryon asymmetry. Part 1: Zero temperature[END_REF]: Same as TableB.2 but for sub-processes possibly mediated by γ, Z, W , non-diagonal Z , or a diagonal Z .

Table B .

 B 14: Same as TableB.2 but for sub-processes possibly mediated by γ, Z, W , non-diagonal Z , or a diagonal Z .

Table B .

 B 15: Same as TableB.2 but for sub-processes possibly mediated by γ, Z, W , diagonal Z , or W .

			Recola2
	γ, Z, W ,	LO	NLO
	n-Z , W		
	d b	040 042 044 220 222 400	240 242 244 420 422 440
	d s	040 042 044 220 222 400	240 242 244 420 422 440
	d d	040 042 044 220 222 400	240 242 244 420 422 440
	u c	040 042 044 220 222 400	240 242 244 420 422 440
	u ū	040 042 044 220 222 400	240 242 244 420 422 440
	s b	040 042 044 220 222 400	240 242 244 420 422 440
	s s	040 042 044 220 222 400	240 242 244 420 422 440
	s d	040 042 044 220 222 400	240 242 244 420 422 440
	c c	040 042 044 220 222 400	240 242 244 420 422 440
	c ū	040 042 044 220 222 400	240 242 244 420 422 440
	b b	040 042 044 220 222 400	240 242 244 420 422 440
	b s	040 042 044 220 222 400	240 242 244 420 422 440
	b d	040 042 044 220 222 400	240 242 244 420 422 440

Table B.16: Same as Table B.2 but for sub-processes possibly mediated by γ, Z, W , non-diagonal Z , or W .

Table B .

 B 17: Same as Table B.2 but for sub-processes possibly mediated by γ, Z, W , non-diagonal Z , diagonal Z , or W .

powheg.input file

  2: A python script example to call the matrix element in MG5. § ¤ Some parameters needed to set the loop matrix element in Recola. § ¤ Her we show an example of the file powheg.input for a NLO calculation of the total cross section for BSM+SM t t hadroproduction at 13 TeV.

		import matrix2py	
		def invert _ momenta(p):	
		""" fortran/C-python do not order table in the same order"""	
		new _ p = []	
		for i in range(len(p[0])): new _ p.append([0] * len(p))	
		for i, onep in enumerate(p):	
		for j, x in enumerate(onep):	
		new _ p[j][i] = x	
		return new _ p	
		matrix2py.initialisemodel("/path/to/Cards/param _ card.dat")	
		p = [[ 500., 0., 0., 500.],	
		[ 500., 0., 0., 500.],	
		[ 500, 110.9243, 444.8308, -199.5529],	
		[ 500, -110.9243, -444.8308, 199.5529]]	
		P =invert _ momenta(p)	
		alphas = 0.118 # strong coupling constant	
		nhel = -1 # sum over helicity	
	¦	me2 = matrix2py.get _ value(P, alphas, nhel)	¥
		Listing B.3: set _ delta _ ir _ rcl(0.,pi ** 2/6.)	
		set _ mu _ ms _ rcl(100.)	
	¦	set _ mu _ ir _ rcl(100.)	¥
	B.6 The	

As usual, the components of the SU()-triplet have been written as a 2 × 2 matrix using Φ ≡ Φ • σ where σ are the Pauli matrices. See, e.g., [Higgs Hunter's Guide, section 6.5]. Note that the index structure of the bi-doublet is Φ α α where the undotted index transforms according to the representation 2 of SU() and the dotted index according to the representation  (in the same way as left-and right-handed Weyl spinors transform).

Note that in the following the sine, cosine and tangent trigonometric functions are shortened, e.g. s x ≡ sin x, c x ≡ cos x and t x ≡ tan x respectively.

In BP-I the third component of isospin of the SU() L is identified with the third component of the isospin of SU()  , while in BP-II it is identified with the sum of the third components of SU()  and SU()  isospin.

This may also include a right-handed neutrino for each generation of SM fermions.

In the case of BP-I the dependence on β can be neglected since it only enters via the ε Z (W ) functions which are strongly suppressed as will be further discussed below.

The PDF and α S uncertainties are covered by the scale variation. They will be clearer in Figure

2.3.[START_REF] Salam | Electromagnetic and weak interactions[END_REF] Note that this procedure is widely used in the literature. It is not fundamental but allows for reasonable comparisons as long as the same approach is used everywhere.

Note that there are two error PDFs associated to each eigenvector, one for the positive and one for the negative direction.

The factorisation has been proven in so-called QCD factorisation theorems[START_REF] Collins | Factorization of Hard Processes in QCD[END_REF]. For deep inelastic scattering (DIS) it is also a consequence of the operator product expansion.

Note, however, that despite the parametric suppression they have been shown to be important in the SM in a region with large top transverse momentum[START_REF] Pagani | The impact of the photon PDF and electroweak corrections on t t distributions[END_REF][START_REF] Gütschow | Multi-jet merged top-pair production including electroweak corrections[END_REF].

The model file can be found on the official website https://recola.hepforge.org/ under model files.

This does not include the detector effects which can be obtained through detector simulation tools like DELPHES[START_REF] Ovyn | DELPHES, a framework for fast simulation of a generic collider experiment[END_REF] for example.

In practice, computers can not deliver random numbers since they are deterministic machines, instead, they can produce pseudo random numbers which can approximate the properties of random numbers to a very good accuracy.

A square-integrable function is a real-or complex-valued measurable function for which the integral of the square of the absolute value is finite.

Strongly ordered means that the angle of the second branching is smaller than the angle of the first one. It also means that the virtuality of the first branching is higher that the one of the second splitting.

By hardest we mean the emission that has the highest transverse momentum, either with regard to the beam for initial state radiation (ISR), or as compared to another particle for final state radiation (FSR).

Here we do not go into the details about the radiation regions and the correct treatment of the associated flavour configurations, for a complete discussion we refer to[START_REF] Frixione | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method[END_REF][START_REF] Nason | A New method for combining NLO QCD with shower Monte Carlo algorithms[END_REF] 

Here we mean by flavour structure of a process the type of all its incoming and outgoing particles.

Note that in nlegborn.h, nlegreal is set to nlegborn+1 automatically.

All variables with the kn prefix are defined in the header file pwhg _ kn.h.

This file contains the born _ phsp(xborn) subroutine that fills the four-momenta of Born-process particles (both in the laboratory and in the centre-of-mass frame), the Bjorken x of the two incoming partons, the minimal mass of the Born system and the phase space volume.

A POWHEG package to calculate the heavy flavour production in hadronic collisions at NLO.

The Born amplitude should not contain the flux factor /(s b ) (where s b is the centre-of-mass energy squared of the Born process) since it is provided by the POWHEG BOX.

Remember the channel will define whether we will calculate SM amplitudes only, BSM amplitudes only, or both SM and BSM amplitudes together.

Averaged over spin and colours; Similar to the Born and the virtual cases, the real contributions should not contain the flux factor.

Furthermore, if LO events are required the variable LOevents should be set to 1 as well, otherwise POWHEG BOX will attach POWHEG radiation.

Its value is fixed by the condition α s (m Z ) = 0.118.

This benchmark point was selected from Figure1in[START_REF] Davighi | Connecting neutral current B anomalies with the heaviness of the third family[END_REF].

The invariant mass cut is a generation cut, so one does not need to worry about the numerical precision in samples without it.

At the moment, this contribution cannot be calculated independently of the Z contribution. Because it is much smaller it would require an extremely precise prediction for the Z contribution. Thus we do not report the numbers after cuts.

Note that this does not include the QCD contribution.

Occasionally this would also include the best SM theory predictions at the time and/or the breakdown of uncertainties in each bin or other correlation information

A utility for submitting Contur scans to HPC systems.

The colour singlet state is ( +  + )/ √ . QCD is based on the SU() colour symmetry which has 8 generators and therefore 8 (not 9) gauge field quanta: there is no room for a singlet gluon in an SU() gauge theory.

Table B.11: Same as Table B.2 but for sub-processes possibly mediated by γ, Z, W , or a diagonal Z .
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Process specification

The first step of a POWHEG implementation is to provide the code with the lists of all possible flavour structures 13 for both Born and real processes that can contribute to the NLO calculation we want to implement. Dubbed flst _ born and flst _ real, the two lists are declared in the header file pwhg _ flst.h as flst _ born(nlegborn,maxprocborn) and flst _ real(nlegreal ,maxprocreal) respectively, where nlegborn set the number of external legs of the Born (or virtual) processes whereas nlegreal set the number of external particles of the real processes, and both need to be specified by the user in the nlegborn.h file 14 , furthermore the variables maxprocborn and maxprocreal specify the maximal number of inequivalent Born and real flavour configurations respectively. The two arrays have then to be filled in a subroutine called init _ processes. The elements of these arrays consist of the list of initial and final state particles of the Born and real process represented by their PDG codes [START_REF] Zyla | Review of Particle Physics[END_REF] except for the gluon which, instead of 21, has the code 0. For instance, the entry [2,-2,6,-6] represent the process u ū →t t. The index of the first light parton in those arrays must be specified in init _ processes by setting the variable flst _ lightpart. Finally, and also in init _ processes, one need to fill the array kn _ masses 15 with the masses of the external particles of the process and to fix the lower limit on the mass of the final state by setting the variable kn _ minmass.

In our particular case, we implement the EW top-pair hadroproduction and its NLO QCD corrections, and since the produced tops are on-shell, we deal with 2 → 2 processes at the Born and virtual level. Thus, our nlegborn and nlegreal are equal to 4 and 5 respectively. Additionally we set the variables maxprocborn and maxprocreal to 30 and 100 respectively. As seen in 3.2.1, the tree level processes that contribute to our calculation are q q →t t with q q ∈ {u ū, c ū, The real processes have one additional parton and can have either two quarks or one gluon and one quark in the initial state. Our real flavour configuration array flst _ real consists of the • The pbzp _ input _ contur.py script is used to create and fill the powheg.input files based on the model choice in param _ file.dat, it needs powheg.input _ template in order to do so.

• The param _ file.dat file defines a parameter space, as with other generators.

We set the leptophobic TC model such that the only free parameters are the mass (mZp) and the total decay width 3 (GZp) of the Z -boson, but one also needs to include the name of the model (TC in this example), and the parameters of the other models as dummy 4 . This can be seen from the TC param _ file.dat file shown in Listing 4.1, where in addition to the parameters we also have setupPBZpWp.sh which is a script that sets the environment needed to run pwhg _ main, and setupEnv.sh a script which sets up the run-time environment which the batch jobs will use, as a minimum it will need to contain the lines to execute the rivetenv.sh and yodaenv.sh files. For all the set up files, one should give the full explicit path. The setupPBZpWp.sh and the setupEnv.sh should be always in the same order as shown in this 3 The ratio of the two U() coupling constants cot θ H needed to set the couplings is calculated from the mass and the width, see Eq. ( 6) of [START_REF] Harris | Cross Sections for Leptophobic Topcolor Z' Decaying to Top-Antitop[END_REF]. 4 Only the angle θ sb (tsb) needed for the TFHMeg, since for now we only include the SSM (mZp, GZp), the TFHMeg (mZp, (tsb)) and the TC (mZp, GZp) models. This is done in order to be able to use the same powheg.input _ template for all the models.

Recola2

from being in a singlet state 1 , the following condition is required

where m is a gluon.

In the colour-flow formalism, the colour part in the Feynman rules is described by products of Kronecker δ s , see Figure 1 of [START_REF] Maltoni | Color Flow Decomposition of QCD Amplitudes[END_REF]. This means that the colour structure of the amplitude can be expressed as a linear combination of all possible products of Kronecker δ s carrying the colour indices of the external particles

where A P()P()...P(k) [h  , ..., h k ] are known as the structure-dressed amplitudes, and the sum runs over all possible permutations P of the labels of external gluons, incoming quarks, and outgoing anti-quarks.

To illustrate Eq. (B.3) let us take the process g d → t t d as an example. The first element is a gluon and is expressed by an upper index (i  ) and a lower index ( j  ). The second component is an incoming anti-quark and will be represented by an upper index (i  ). The third constituent is an outgoing quark which is equivalent to an upper index (i  ). Finally, the fourth and fifth elements of the process are both outgoing anti-quarks and will be both taken into account through two lower indices ( j  ) and ( j  ) respectively. Thus, since we have 3 lower indices, the number of possible permutations is 3! and the decomposition is given by

Using Recola the user can calculate the Born and one-loop contributions to the structuredressed amplitudes A ( c, h) for all the values of the vectors c and h of the external legs of the process. A ( c, h) is the compressed form of A P()P()...P(k) [h  , ..., h k ] where c is a k-dimensional vector with the components c  , c  , ..., c k are different than zero only if the external particle is a gluon, an incoming anti-quark or an outgoing quark, and h is the helicity vector representing the h  , ..., h k components. Moreover, Recola can also compute the squared amplitudes at the Born and the one-loop level, summed over helicities and colours of the outgoing particles and averaged over helicities and colours of the incoming ones.

B.2 Input parameters of SMWZp

The complete set of the external input parameters of the SMWZp is shown Table B.1, where, in addition to the parameters described in Section 3.3.1, we have k G that allows to disable the contributions from the non-diagonal goldstone bosons G  and G ± . By default it is set to 1 and should never have any value other than 0 or 1. The couplings of these new goldstone bosons to quarks and leptons need to be in accordance with the corresponding Z and W couplings to leptons and quarks, which is guaranteed by construction (i.e. they get scaled by the same k Z and k W factors). α W and α S are the EW and strong coupling constants respectively. The rest of the parameters are the masses and the widths of the particles of the SMZWp model.

In order to change the value of any of the previous parameters using the Fortran programming language one needs to call the subroutine set _ parameter _ rcl(param,value), where param is of type character and can be any of the parameters of Table B.1 and value is of type complex(dp). An imaginary part of value can lead to undefined behaviour, and value should be real even though it is of type complex(dp). For instance, to set the α S parameter to 0.118 one needs to call set _ parameter _ rcl(aS, cmplx(0.118d0,0d0,dp)).

B.3 The anatomy of the SMWZp amplitudes within Recola2

Here we describe in more details the anatomy of the squared amplitudes of the SMWZp. As discussed in Section 3.3.2, they are computed in Recola2 based on the powers in √ α S and √ α W , or in Recola2's syntax on the powers in "QCD QED WZP".

At the Born level the squared amplitude will have exactly 4 vertices in our calculation. Since we do EW top-pair production, no QCD vertices are allowed, meaning that we will have either "0 QCD 4 QED 0 WZP" or " 0 QCD 4 QED 2 WZP" or "0 QCD 4 QED 4 WZP" (again, 4 QED 4 WZP do not mean 8 vertices, but 4 EW vertices of which 4 are of BSM nature) as can be seen in Figure B.2. However, as discussed previously, since we include t-channel diagrams mediated by W , W , or Z , and since these diagrams would interfere with QCD diagrams, we could also have squared amplitudes with "2 QCD 2 QED 0 WZP" and "2 QCD 2 QED 2 WZP", see Figure B 

C. Contur

C.1 Steering files

Here we show the content of three files needed by Contur when steering PBZp and running jobs on a high performance computing system. cout << "\n >>> The lh events will be read from file " << argv [START_REF] Salam | Electromagnetic and weak interactions[END_REF] << " <<<\n >>> The Number of events is " << argv [START_REF] Weinberg | A model of leptons[END_REF] << " <<< \n >>> HepMC events will be written to file "

<< argv [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF] << " <<< \n" << endl;

// Interface for conversion from Pythia8::Event to HepMC event.

HepMC::Pythia8ToHepMC ToHepMC;

// Specify file where HepMC events will be stored.

HepMC::IO _ GenEvent ascii _ io(argv [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF], std::ios::out); // Generator.

Pythia pythia;

127 Contur // lhe input file, events will be read from the .lhe file pythia.readString("Beams:frameType = 4"); // Choice of frame for the two colliding particles.

For options 4 the beam identities are obtained by the Les Houches information.

pythia.readString("Beams:LHEF ="+std::string(argv [START_REF] Salam | Electromagnetic and weak interactions[END_REF])); """

Translates an Array or nested list, or anything that behaves similarly, into a structure of nested matrices.