
HAL Id: tel-03499342
https://theses.hal.science/tel-03499342v1
Submitted on 21 Dec 2021 (v1), last revised 4 Apr 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic investigations of the dynamics of species
interactions

Yishu Wang

To cite this version:
Yishu Wang. Algorithmic investigations of the dynamics of species interactions. Computer Science [cs].
ERABLE - Equipe de recherche européenne en algorithmique et biologie formelle et expérimentale;
LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558; Univ Lyon, Université Claude-
Bernard Lyon 1, 2021. English. �NNT : 2021LYSE1196�. �tel-03499342v1�

https://theses.hal.science/tel-03499342v1
https://hal.archives-ouvertes.fr


N° d’ordre NNT : 2021LYSE1196

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYONopérée au sein de
l’Université Claude Bernard Lyon 1

École Doctorale N° 341
Évolution, Écosystème, Microbiologie, Modélisation

Spécialité de doctorat : Bioinformatique

Soutenue publiquement le 05/10/2021, par :
Yishu Wang

Algorithmic investigations of the
dynamics of species interactions

Devant le jury composé de :
Lobry, Jean PR, Université Claude Bernard Lyon 1 Président
Middendorf, Martin PR, Leipzig University Rapporteur
Semple, Charles PR, University of Canterbury Rapporteur
Finocchi, Irene PR, LUISS University Examinatrice
Strozecki, Yann MCF, Université UVSQ Examinateur
Sagot, Marie-France DR, INRIA Directrice de thèse
Figueiredo, Mário PR, Instituto Superior Técnico Co-directeur de thèse
Sinaimeri, Blerina CR, INRIA Co-encadrante de thèse
Mary, Arnaud MCF, Université Claude Bernard Lyon 1 Invité





Université Claude Bernard – LYON 1
Président de l’Université M. Frédéric FLEURY
Président du Conseil Académique M. Hamda BEN HADID
Vice-Président du Conseil d’Administration M. Didier REVEL
Vice-Président du Conseil des Études et de la Vie Universitaire M. Philippe CHEVALLIER
Vice-Président de la Commission de Recherche M. Jean-François MORNEX
Directeur Général des Services M. Pierre ROLLAND

COMPOSANTES SANTÉ
Département de Formation et Centre de Recherche en Biologie
Humaine

Directrice : Mme Anne-Marie SCHOTT

Faculté d’Odontologie Doyenne : Mme Dominique SEUX
Faculté de Médecine et Maïeutique Lyon Sud - Charles Mérieux Doyenne : Mme Carole BURILLON
Faculté de Médecine Lyon-Est Doyen : M. Gilles RODE
Institut des Sciences et Techniques de la Réadaptation (ISTR) Directeur : M. Xavier PERROT
Institut des Sciences Pharmaceutiques et Biologiques (ISBP) Directrice : Mme Christine VINCIGUERRA

COMPOSANTES & DÉPARTEMENTS DE SCIENCES & TECHNOLOGIE
Département Génie Électrique et des Procédés (GEP) Directrice : Mme Rosaria FERRIGNO
Département Informatique Directeur : M. Behzad SHARIAT
Département Mécanique Directeur M. Marc BUFFAT
École Supérieure de Chimie, Physique, Électronique (CPE Lyon) Directeur : M. Gérard PIGNAULT
Institut de Science Financière et d’Assurances (ISFA) Directeur : M. Nicolas LEBOISNE
Institut National du Professorat et de l’Éducation Administrateur Provisoire : M. Pierre

CHAREYRON
Institut Universitaire de Technologie de Lyon 1 Directeur : M. Christophe VITON
Observatoire de Lyon Directrice : Mme Isabelle DANIEL
Polytechnique Lyon Directeur : M. Emmanuel PERRIN
UFR Biosciences Administratrice provisoire : Mme Kathrin

GIESELER
UFR des Sciences et Techniques des Activités Physiques et
Sportives (STAPS)

Directeur : M. Yannick VANPOULLE

UFR Faculté des Sciences Directeur : M. Bruno ANDRIOLETTI





Abstract

To understand the dynamics of interaction between groups of species, for example,
in a hosts/parasites (or hosts/symbionts) system, it is essential to consider the pro-
cess of coevolution. The cophylogeny reconciliation model formulates the coevolution
question as an optimization problem. The set of optimal solutions represents differ-
ent scenarios of coevolution which need to be analyzed separately. The main result of
this thesis is a novel approach that addresses the issue of the often huge number of
optimal solutions which makes it difficult to analyze the results. We introduce sev-
eral biologically motivated equivalence relations, each one splitting the solution space
into equivalence classes. We propose polynomial-delay algorithms that enumerate the
equivalence classes, and the representative solutions, i.e., the solutions taken from
each equivalence class. Experimental results are then presented to illustrate the prac-
tical benefits of considering equivalence classes as a means of efficiently exploring the
solution space of cophylogeny reconciliation. Based on the algorithmic results, a soft-
ware called Capybara has been developed as a practical tool for analyzing cophylogeny
datasets. More generally, in the area of enumeration algorithms, the problem of effi-
ciently enumerating representative solutions is of theoretical importance. In the sec-
ond part of this thesis, we provide a general framework for the enumeration of the
equivalence classes of solutions for a family of optimization problems. We show that
this framework can be applied to various dynamic programming problems, of which
the cophylogeny problem is a special case.

Keywords.
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Résumé

Pour comprendre la dynamique d’interactions entre des groupes d’espèces, par exemple,
dans un contexte hôtes-parasites, il est primordial d’étudier le processus de coévolu-
tion. La réconciliation cophylogénétique est un modèle qui traduit la reconstruction
de l’histoire coévolutive en un problème d’optimisation combinatoire. L’ensemble des
solutions optimales, qui représentent des scénarios coévolutifs différents, peut avoir
une taille considérable, rendant l’analyse des résultats difficile. Le résultat principal
de cette thèse porte sur une nouvelle méthode qui permet d’explorer l’espace de so-
lutions de manière efficace. D’abord, je définis des relations d’équivalence et propose
des algorithmes d’énumération qui produisent la liste des solutions représentatives,
c’est-à-dire des solutions appartenant à chacune des classes d’équivalence. Ensuite,
je présente des résultats expérimentaux et montre que l’analyse des classes d’équiva-
lence aide à mieux étudier des jeux de données biologiques. Basé sur nos résultats al-
gorithmiques, un logiciel appelé Capybara a été développé comme un nouvel outil pra-
tique pour l’analyse cophylogénétique. Plus généralement, l’énumération des classes
d’équivalence des solutions est un problème théorique important. Dans la seconde par-
tie de la thèse, je présente un cadre général au sein duquel l’énumération efficace des
classes d’équivalence est possible. Je propose un algorithme qui énumère les classes
d’équivalence des solutions pour une famille de problèmes, en particulier, des pro-
blèmes où s’applique la technique de programmation dynamique.

Mots-clés.

Cophylogénie, Algorithmes d’énumération, Relation d’équivalence, Programmation dy-
namique.



Résumé en français

Le lecteur avisé ne devrait pas constater avec surprise que, contrairement à ce qu’un
titre de « dynamiques des interactions inter-espèces » aurait suggéré, le sujet princi-
pal de cette thèse concerne non pas l’écologie mais l’évolution. En effet, des approches
mêlant écologie et évolution ont été développées notamment par des écologues qui
s’intéressent à l’impact des mécanismes coévolutifs sur des communautés biologiques
en étroite interaction.

Pour préserver la biodiversité ou pour maîtriser l’émergence de maladies infec-
tieuses, les sciences de l’écologie doivent répondre au défi de la prédiction. Puisqu’il
est impossible de concevoir un avenir sans une compréhension approfondie du passé,
une science prédictive, quelle que soit l’échelle temporelle visée, s’appuie nécessaire-
ment sur les sciences du passé : géologie, paléontologie, archéologie, histoire, ou en-
core, la biologie évolutive. La cophylogénie, la juxtaposition des deux arbres phylogé-
nétiques, consiste à reconstruire l’histoire évolutive conjointe de deux groupes d’orga-
nismes ayant à l’heure actuelle une certaine relation écologique entre eux, par exemple
un groupe de mammifères et un groupe de leurs parasites. Il s’agit alors d’établir deux
types de liens de façon simultanée : des liens écologiques entre ces deux groupes d’es-
pèces, ce qui délimite le périmètre de l’étude, et des liens évolutifs entre le présent et
le passé, ce qui accorde aux résultats un pouvoir informatif et prédictif.

Il est facile de représenter des liens entre des organismes vivants : connaissant
quels parasites vivent chez quels hôtes, nous pouvons simplement écrire leurs noms
sur un papier et les relier par des traits de crayon. Sur l’axe temporel, comment repré-
senter des liens évolutifs entre le présent et le passé ?

La philosophie de la Grèce antique s’offre deux temporalités différentes : Chronos et
i



Kairos. Chronos fait référence au temps qui défile de manière linéaire et séquentielle,
tandis que Kairos symbolise le temps du moment opportun pour un geste décisif. Un
arbre phylogénétique, avec ses nœuds à chaque ramification, incarne Kairos, les points
de basculement où de nouvelles espèces sont nées. De même, la cophylogénie cherche à
établir des liens évolutifs qui ne s’inscrivent pas dans une temporalité chronologique,
mais qui peuvent être identifiés par des événements coévolutifs, une sorte de transition
critique durant laquelle se forment de nouvelles associations écologiques.

Le problème cophylogénétique est le suivant. Nous disposons de deux arbres phy-
logénétiques (qui représentent l’histoire évolutive de deux groupes d’espèces, comme
celui d’hôtes et celui de parasites), et d’un ensemble d’associations qui indiquent quel
organisme d’un arbre interagit au temps présent avec quel organisme de l’autre arbre.
L’objectif est d’associer les espèces ancestrales entre les deux arbres, d’une façon qui
soit la plus judicieuse possible, et ce, en termes d’événements coévolutifs représentés
par ces associations.

Le modèle de réconciliation d’arbres, proposé par des bioinformaticiens, permet de
transformer le problème cophylogénétique en un problème d’optimisation combina-
toire. Pour trouver une solution optimale d’un problème d’optimisation, le dévelop-
pement d’algorithmes est un outil essentiel. S’attaquant à ce problème informatique,
notre investigation est donc de nature algorithmique.

Un algorithme, une suite finie et non ambiguë d’instructions qui peuvent s’exécu-
ter sur un ordinateur, apporte une réponse à la question cophylogénétique au moyen
d’un autre type de lien plus abstrait. Entre les liens écologiques inter-espèces et les
liens évolutifs composés d’événements coévolutifs, un algorithme forme le maillon
central qui relie deux espaces : l’un est l’espace d’hypothèses biologiquement plau-
sibles de l’histoire coévolutive, l’autre est l’espace de solutions optimales du problème
informatique.

La vraisemblance d’une hypothèse coévolutive se rapporte à une pluralité de ré-
flexions. Or, un modèle mathématique ne peut prendre en compte qu’un petit nombre
d’entre elles. En outre, l’inclusion de certaines contraintes biologiques pourrait rendre
le problème informatique difficile à résoudre, ou, comme les informaticiens l’appellent,
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NP-difficile. La réponse apportée par un algorithme ne peut donc pas être une réponse
directe à la question biologique. Si l’espace des hypothèses biologiques n’est jamais
identique à celui des solutions du problème informatique, le maillon algorithmique
entre ces deux espaces repose sur une intime conviction des bioinformaticiens : avec
un modèle soigneusement élaboré, la vérité biologique est intégralement saisie, et il ne
reste plus qu’à la localiser au sein de l’espace de solutions, c’est-à-dire, dans la sortie de
l’algorithme. En d’autres termes, si un algorithme pouvait fournir une représentation
exhaustive de l’espace de solutions, une analyse appropriée de sa sortie permettrait de
dévoiler l’ensemble des scénarios coévolutifs plausibles.

Ainsi, des algorithmes d’énumération ont été développés pour le problème de co-
phylogénie. Un tel algorithme produit une liste contenant différentes manières d’as-
socier les deux arbres phylogénétiques, toutes optimales par rapport aux contraintes
mathématiques basées sur les événements coévolutifs. Un biologiste peut alors ana-
lyser chacune de ces solutions, appliquer des critères de sélection supplémentaires, et
arriver à un espace d’hypothèses coévolutives appuyé par son expertise.

La notion d’espace de solutions joue un rôle clé dans notre investigation algorith-
mique de la cophylogénie et marque le point d’entrée de cette thèse. Bien qu’un al-
gorithme d’énumération efficace semble donner une réponse satisfaisante à la ques-
tion biologique, il y a toutefois un obstacle de taille : il s’agit de la taille de l’espace de
solutions, c’est-à-dire du nombre de solutions optimales qui le composent. Afin de
soumettre la liste de solutions à un biologiste qui procédera ensuite à l’analyse ma-
nuelle des résultats, ce nombre-là doit rester raisonnable. Au cas où il y aurait plu-
sieurs milliers de solutions, la tâche d’analyse de résultats pourrait être confiée à un
programme informatique. Cependant, aucun programme informatique ne pourra ja-
mais traiter une liste contenant un si grand nombre d’objets qu’il dépasse le nombre
d’atomes dans l’univers ! 1

L’espace de solutions pour le problème de cophylogénie peut, malheureusement,
1Dans le Chapitre 3, le plus grand espace de solutions que nous allons rencontrer est de l’ordre de 10136.

Le nombre d’atomes dans l’univers a un ordre de grandeur estimé entre 1078 et 1082 (une brève explication
de cette estimation se trouve au lien suivant : https://physics.stackexchange.com/questions/47941/
dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universe).
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devenir incroyablement vaste, et surtout si on s’intéresse à un système d’interactions
hôtes-parasites impliquant des milliers d’organismes. Que faire dans ce cas-là ?

Une stratégie possible consiste à affiner le modèle en y ajoutant des contraintes
supplémentaires. Davantage de contraintes pourront effectivement réduire la taille de
l’espace de solutions. Néanmoins, comme nous l’avons évoqué plus tôt, il se peut que
ces contraintes rendent le problème bien plus difficile à résoudre, jusqu’au point où
l’on se retrouve dans l’incapacité de concevoir un algorithme efficace. De plus, de nou-
velles contraintes exigent de nouvelles informations biologiques (e.g., des connais-
sances biogéographiques qui excluent l’association entre des espèces spatialement sé-
parées), qui peuvent s’avérer difficiles à obtenir ou insuffisamment fiables.

Le travail de cette thèse relève d’une autre stratégie : naviguer à travers un vaste
espace de solutions de manière efficace. Lorsqu’il est irréaliste de faire un parcours
exhaustif de la longue liste de solutions, un « parcours guidé » de quelques solutions
représentatives laisserait peut-être déjà se dessiner le contour des scénarios coévolu-
tifs les plus vraisemblables.

Dans le Chapitre 1, je présente brièvement quelques concepts biologiques et ma-
thématiques et introduis le défi de trouver des solutions représentatives du problème
de cophylogénie. Le Chapitre 2 est consacré aux principaux résultats algorithmiques.
D’abord, je définis plusieurs relations d’équivalence sur l’ensemble de solutions op-
timales et explique la motivation biologique de ces définitions. Mathématiquement,
une relation d’équivalence partitionne l’espace de solutions en des sous-parties ap-
pelées « classes d’équivalence ». Dans ce contexte, on considère comme étant repré-
sentatives les solutions, non équivalentes entre elles, qui appartiennent à chacune des
classes d’équivalence. Je présente ensuite des algorithmes permettant d’énumérer les
classes d’équivalence pour chaque relation d’équivalence. Afin d’illustrer les avantages
de considérer les classes d’équivalence en pratique, des résultats expérimentaux sur
des jeux de données biologiques sont donnés dans le Chapitre 3. Ce chapitre présente
aussi le logiciel Capybara, un outil d’aide à l’analyse des données de cophylogénie qui
dérive de notre méthode d’exploration de l’espace de solutions par le biais des classes
d’équivalence.
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Notre investigation algorithmique du problème cophylogénétique nous mène à réa-
liser deux autres investigations liées à la première. Dans le Chapitre 4, on se propose
de s’attaquer à la question d’énumérer les classes d’équivalence de solutions dans un
contexte plus général, où une solution est identifiée par un sous-arbre dans un graphe,
et la relation d’équivalence est donnée par un coloriage de ce graphe. Je présente un al-
gorithme d’énumération de classes d’équivalence et montre que celui-ci pourrait s’ap-
pliquer à une famille de problèmes différents, dont fait partie le problème de cophylo-
génie. Le Chapitre 5 aborde la question de la quantification des différences entre des
arbres phylogénétiques. De nombreuses applications nécessitent un calcul rapide et
précis d’une distance entre des arbres. Par exemple, dans un système d’interactions
hôtes-parasites soumis à une forte pression favorisant la coévolution, on s’attend à
constater une faible dissimilarité entre les deux arbres phylogénétiques. Je propose
un nouvel algorithme pour approximer la distance dite Subtree prune and regraft entre
deux arbres, et je réalise une série d’expériences visant à illustrer ses avantages pra-
tiques par rapport aux algorithmes existants.

Les principaux résultats algorithmiques et une partie des résultats expérimentaux
des Chapitres 2 et 3 se trouvent dans l’article « Making sense of a cophylogeny out-
put : Efficient listing of representative reconciliations », publié dans le Workshop on

Algorithms in Bioinformatics (WABI) 2021 [Wan+21b].
Le logiciel Capybara a été présenté dans l’article « Capybara : equivalence ClAss

enumeration of coPhylogenY event-BAsed ReconciliAtions », publié sous forme d’une
Application Note dans la revue Bioinformatics [Wan+20].

Le contenu du Chapitre 4 constitue l’article « A general framework for enumerating
equivalence classes of solutions », publié dans l’European Symposium on Algorithms
(ESA) 2021 [Wan+21a].
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Introduction

All my apologies to the reader who, intrigued by the title of dynamics of species interac-

tions and eager to catch a glimpse of the complex mechanisms within ecological com-
munities, will discover with surprise that most of this thesis is concerned with evolu-
tion rather than ecology. Yet, it is a hallmark of the modern-day ecology to consider the
process of coevolution for the purpose of investigating biodiversity and certain aspects
of disease ecology.

To understand the present and to predict the future, humankind possesses an es-
sential source of knowledge: the past. Just as geology, paleontology, archaeology or
history, evolutionary biology makes it possible to establish a link between the present
time and a bygone time, either distant or nearby. In cophylogeny, evolution is studied
with regard to two taxonomic groups assumed to have some kind of current relation-
ship with each other, such as where one is a group of mammal species and the other is
a group of parasites of those mammals. Cophylogeny thus tries to elucidate two links
simultaneously: the ecological link between the two groups of species, which sets the
perimeter of the investigation, and the evolutionary link between the present and the
past, which endows the results with informative and predictive power.

To make the link between two groups of species is easy: after observing which par-
asites live in which mammals, we can simply write down their names on a paper and
draw lines between them with a pencil. But how do we connect the present and the
past?

The ancient Greeks had two words for time: chronos and kairos. Chronos refers to
sequential time, while kairos signifies a proper time for a decisive act. A phylogenetic
tree, with its nodes connecting separate branches, embodies kairos, the tipping points
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where new species are born. Likewise, the evolutionary link made by cophylogeny is
not chronological in nature, but is identified by coevolutionary events, the critical tran-
sitions during which new ecological connections are formed.

The cophylogeny problem is the following. Our information thus far has three com-
ponents: the two phylogenetic trees (representing respectively the evolutionary his-
tory of a group of host species and of a group of parasite species), and a set of associ-
ations that state which taxon in one tree is associated with which taxon in the other
tree. Our objective is to find a way of associating the ancestral species in the parasite
evolutionary tree with places in the host evolutionary tree, in a manner that makes the
most sense, and we judge what makes sense in terms of the coevolutionary events that
would account for those past associations.

Formulated as a computational problem, the phylogenetic tree reconciliation model
translates the cophylogeny problem into a hunt for efficient algorithmic tools. Our in-
vestigation is therefore an algorithmic one.

Algorithms, finite sequences of well-defined and computer-implementable instruc-
tions, help answering the cophylogeny question by providing another, more abstract,
kind of link. Built on top of the ecological link between species and the evolutionary
link composed of coevolutionary events, the algorithmic link connects spaces: one is
the space of biologically plausible hypotheses on associations and events, which forms
the answer of the biological question, the other one is the space of optimal solutions
of the computational problem, which is a mathematically well-defined set, and can
constitute the output of a computer program.

For a hypothesis about the coevolutionary history to be biologically plausible, a
broad range of factors should be taken into account, although only a select few can be
encoded as mathematical constraints into the computational problem. Besides, there
are biological constraints that, once added to the computational problem, render it in-
tractable, or, as the computer scientists call it, NP-hard. Needless to say, an algorithm
does not directly answer the biological question: even with the most accurate math-
ematical model, the space of biological hypotheses is never equivalent to the space of
solutions of the computational problem. By saying that there is an algorithmic link be-
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tween the two spaces, we express our belief that, given a sufficiently accurate model,
biological insights should be hidden somewhere in the solution space, and hence could
be found in the output of the algorithm. In other words, an algorithm that supplies the
whole solution space should open the door to understanding different possibilities of
coevolutionary scenarios.

This is the case for enumeration algorithms that have been developed for the co-
phylogeny problem. Such an algorithm enumerates, that is, provides a list of different
ways of associating the two phylogenetic trees, all of which are optimal with respect
to mathematical constraints based on the occurrences of coevolutionary events. Then,
a biologist can analyze each one of these solutions, apply additional selection criteria,
and come up with her own space of biologically plausible coevolutionary hypotheses.

Indeed, the solution space plays a pivotal part in our algorithmic investigation of
the cophylogeny problem, and is the starting point of this thesis. It may seem that
using an efficient enumeration algorithm we can already give a satisfactory answer to
the biological question. There is nonetheless a stumbling block: the size of the solution
space. For a human expert to be able to analyze the solutions one by one, the number
of solutions cannot be too large. When there are thousands of solutions, we can resort
to computer programs that automatically perform the analysis. However, no computer
program can ever process a list containing such a huge number of items that it exceeds
the number of atoms in the observable universe! 2

For the cophylogeny problem, the size of the solution space does unfortunately get
incredibly large, especially if we want to study a hosts/parasites system composed of
thousands of organisms. What can we do in such cases?

One possible strategy is to refine the model by including more constraints. This new
version of the computational problem will necessarily have a smaller solution space.
We already mentioned one major drawback of this approach: adding more constraints
can make the problem harder to solve, and we may be unable to find efficient algo-

2In Chapter 3, the largest solution space that we will encounter has a size in the order of 10136. It
is estimated that the there are between 1078 to 1082 atoms in the observable universe (a short ex-
planation of this estimation can be found in https://physics.stackexchange.com/questions/47941/

dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universe).
3

https://physics.stackexchange.com/questions/47941/dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universe
https://physics.stackexchange.com/questions/47941/dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universe


rithms. Those constraints also require further biological information (such as bio-
geographical information that makes associations between spatially separated species
impossible), which can be difficult to obtain or insufficiently reliable.

Another strategy consists in exploring the solution space efficiently despite its large
size. Many efforts have been undertaken in this direction. The work of the current
thesis also lies within the scope of this approach.

In Chapter 1, along with a succinct presentation of the mathematical and biologi-
cal background, we introduce our main algorithmic challenge: finding representative
solutions of the cophylogeny problem. Chapter 2 sets out the formal definition of the
model and our theoretical results. First, we define equivalence relations on the set of
solutions and explain the biological motivation of the definitions. Mathematically, an
equivalence relation splits the solution space into parts of mutually equivalent sub-
sets, called equivalence classes. In this setting, we find representative solutions through
the search of solutions that are not equivalent to each other, i.e., solutions in different
equivalence classes. We propose algorithms for enumerating the equivalence classes,
for each notion of equivalence relation. In Chapter 3, we show the experimental results
that illustrate the practical benefits of using the equivalence classes as a means of ex-
ploring the solution space. A software called Capybara is also presented in Chapter 3
as a practical tool for analyzing cophylogeny datasets. Then, we conclude our work on
the cophylogeny problem and present some perspectives.

Our algorithmic investigation of the cophylogeny problem has fostered two related
investigations. In Chapter 4, we venture into the territory of the abstract: in a general
framework where the solution space of some problem needs to explored, we propose
an algorithm for enumerating the equivalence classes of solutions, with respect to an
equivalence relation represented as a graph coloring. We show that the algorithm can
be applied to various computational problems, of which the cophylogeny problem is
a special case. In Chapter 5, we turn our attention to another problem in phyloge-
netic studies that has to do with the quantification of dissimilarity between phyloge-
netic trees. A fast and accurate computation of a distance measure between trees has
many applications. For instance, in a hosts/parasites system where species have co-
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evolved together, the dissimilarity between the phylogenetic trees of the two groups
of species should be low. We propose a new algorithm for approximating the subtree
prune-and-regraft distance between two phylogenetic trees, and we perform a series
of experiments to demonstrate its practical advantages in comparison with existing
algorithms.

The main algorithmic results and some of the experimental results from Chap-
ters 2 and 3 are included in the paper “Making sense of a cophylogeny output: Efficient
listing of representative reconciliations”, published in the Workshop on Algorithms in

Bioinformatics (WABI) 2021 [Wan+21b].
The cophylogeny software Capybara has been presented in “Capybara: equivalence

ClAss enumeration of coPhylogenY event-BAsed ReconciliAtions”, published as an ap-
plication note in the journal Bioinformatics [Wan+20].

The material in Chapter 4 forms the paper “A general framework for enumerat-
ing equivalence classes of solutions”, published in European Symposium on Algorithms

(ESA) 2021 [Wan+21a].
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Chapter 1
Preliminaries

1.1 Biological background

1.1.1 Phylogenetics

A central theme in the study of evolution is the understanding of evolutionary re-
lationships between organisms, both living and extinct. To describe such relation-
ships, a conceptual tool, dating back to the mid-nineteenth century, is the so-called
Tree of Life. Charles Darwin in his famous book The Origin of Species presented a first
graphical representation of evolutionary relationship among species, in the form of a
tree [Dar88]. In evolutionary biology, phylogenies, or phylogenetic trees, have been a
model of choice, on the tenet that contemporary species all share a common history
through their ancestry [DBP05].

As little is known about the relationships between extinct species, phylogenetic
trees are reconstructed by using phylogenetic inference methods, where the past rela-
tionships are inferred through mathematical models from features of contemporary
species. Early methods for reconstructing phylogenetic trees relied on morphologi-
cal or structural characteristics. Today, advances in molecular biology, especially in
sequencing technologies, have allowed the extensive use of DNA or protein sequence
data to build phylogenetic trees.
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Phylogenetic inference methods that use molecular data are based on the iden-
tification of homologous genes, that is, genes from different organisms that have a
shared ancestry [Fit70]. The development of new sequencing technologies has given
rise to massive datasets of ever increasing size, both in the number of genes and in the
number of taxa (i.e., species) that can be considered [KYT20]. Consequently, more so-
phisticated methods have been developed to extract the most information out of those
datasets, resulting in more accurate trees on larger and larger scales [Hug+16; Bur+20;
CK20]. Figure 1.1 shows, for example, the tree of life constructed by Hug et al. [Hug+16]
using genomic data from 3083 organisms.

As the volume of the data is huge and complex methods are required to deal with
the uncertainties of the data and systematic errors (these errors are generally due to
heterogeneous rates of evolution across taxa or time, which violate the assumptions
of the models), modern phylogenetic inference methods pose a heavy computational
burden. The inference of the tree in Figure 1.1 required 3840 computational hours on
a supercomputer.

Algorithmic efficiency is thus crucial. In Chapter 5, from an algorithmic stand-
point, we will look at one problem that naturally arises in phylogenetics analysis, that
is, the quantification of the difference between phylogenetic trees.

1.1.2 Cophylogeny

In cophylogeny, one is interested in reconstructing the coevolutionary history of groups
of species that interact over a long period of time and in ecologically close environ-
ments based on their phylogenetic information. This prolonged and intimate interac-
tion between different species is known as symbiosis. Symbioses are a common feature
of life and can be found across all major phylogenetic lineages [Pou11]. Typically de-
fined between a larger host organism and a smaller symbiont, symbiotic relationships
may be mutualistic, where both partners benefit from the interaction, parasitic, where
one partner benefits and the other suffers a cost, or commensalistic, where one partner
benefits while the other receives neither benefit nor harm [LP08; EKM16].
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Figure 1.1: The tree of life constructed from genomic data by Hug et al. [Hug+16].



Understanding the coevolutioary history of groups of organisms is important for
many reasons, including the identification and tracing of the origins of emerging in-
fectious diseases [Eth+06; LO14; Pen+15], and the conservation and management of
animal or microbial diversity [Ley+08; Bah+16].

Chapters 2 and 3 are dedicated to phylogenetic tree reconciliation, a widely used method
in cophylogeny studies. Following a long list of papers that considered this method
[Pag94; Cha98; MM05; Con+10; Don+15], we will use the terminology in the context of
hosts/parasites (hosts/symbionts) systems, even though the method can also be used
in the closely related context of genes/species coevolution [THL11; BAK12; Doy+10;
Sto+12]. In a nutshell, doing a phylogenetic tree reconciliation means to map the para-
site tree to the host tree. Once an appropriate mapping between the two trees is chosen,
one should be able to identify coevolutionary events. In general, four main evolutionary
events are considered: cospeciation (when both parasite and host speciate), duplica-
tion (when the parasite speciates but not the host), loss (when the host speciates but
not the parasite), and host-switch (when the parasite speciates and one of the new
species goes to infect another unrelated host). A schematic representation of each of
the four types of events is given in Figure 1.2.

Formulated as a computational optimization problem, the phylogenetic tree rec-
onciliation model includes a cost assigned to each type of events. The goal is then to
find a most parsimonious reconciliation, i.e., a mapping between the two trees that
minimizes the total cost of the events.

cospeciation duplication host-switchloss
Figure 1.2: Illustration of the four types of coevolutionary events in a host/parasite
reconciliation. The tube represents the host tree; the dotted line represents the parasite
tree.



If timing information (i.e., the order in which the speciation events occurred in the
host phylogeny) is not available (or sufficiently reliable to be used with enough confi-
dence), as is usually the case, finding a most parsimonious reconciliation is a NP-hard
problem [Ova+11; THL11]. To deal with this, one can either rely on heuristics [Con+10],
or accept solutions that may be biologically unfeasible, that is, to accept reconciliations
in which some of the host-switches induce a contradictory time ordering on the host
species [BAK12; Don+15]. Following this second path, efficient algorithms have been
proposed to enumerate optimal reconciliations. The output of those algorithm con-
sists of not one but a list of reconciliations that all achieve the minimal cost within the
model.

One issue that arises then is the size of the output. As the output of the enumeration
algorithm can be composed of billions of solutions, there is no hope of analyzing each
one of them separately. For instance, for the dataset of Wolbachia and their arthropod
hosts, collected by the Biometry and Evolutionary Biology Laboratory [Sim+11; Sim12],
the number of optimal reconciliations is unrealistically large (e.g., in the order of 1042,
see Chapter 3).

The good news is that, even when the number of solutions is huge, the set of so-
lutions can be compactly represented in a graph structure. By carefully examining
this graph, we can gain insight into the solution space and obtain information about
the coevolutionary history of the species. Various approaches have been developed in
the literature that aim at efficiently exploring the solution space or computing some
characteristics on the set of solutions, including data analysis methods (e.g., sampling
solutions uniformly at random [BAK13; Don+15], clustering [Ozd+17; ML19; San+20])
and exact methods (e.g., computing the diameter of the solution space [Haa+19], com-
puting the distribution of the pairwise distances [SML19], computing a median rec-
onciliation [Ngu+13]).

In Chapter 2, we propose a new exact method that allows to efficiently enumer-
ate representative solutions based on the biologically motivated notion of equivalence:
the output of the algorithm is then a list of reconciliations that are biologically non-
equivalent to each other. In Chapter 3, we will see that in practice, by only considering
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the representative solutions, we effectively reduce the number of solutions that need
to be analyzed while still maintaining important biological information about the so-
lution space (for example, Is there a high incidence of cospeciations? In which branches of

the parasite tree have there probably been host-switches?).

1.2 Mathematical background

1.2.1 Graphs, trees, forests

Graphs

Throughout the manuscript, we will use several basic notions in graph theory such as
cyclicity and connectivity. The definitions can be found in any classical textbook such
as [Die05]. For a directed graph G, we denote by V(G) and A(G) respectively the set
of nodes and the set of arcs of G. An arc is denoted by an ordered pair of nodes (v,w).
The set of out-neighbors of a node v is called its set of children and is denoted ch(v). If
w ∈ ch(v), the node w is a child of v. A directed acyclic graph (DAG) is a directed graph
without any directed cycle. A directed tree is a DAG whose underlying undirected graph
is acyclic and connected.

Trees

In this manuscript, a tree will refer to a rooted directed tree in which arcs are directed
away from the root. Any such tree T has the following property: (1) exactly one node,
called the root of T and denoted by r(T ), does not have any in-neighbor; (2) any other
node v has exactly one in-neighbor in T ; this unique in-neighbor is called the parent

of v and is denoted by p(v). A node without any child is called a leaf. We denote by L(T )
the set of leaf nodes of T . The non-leaf nodes, i.e., nodes which are not leaf nodes, are
called the internal nodes of T .

In a tree T , if there exists a directed path from a node v to a node w, the node w is
called a descendant of v, and v is called an ancestor ofw; if moreover v ≠ w, we say thatw
is a proper descendant of v, and that v is a proper ancestor ofw. If neitherw is an ancestor
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of v norw is an ancestor of v, we say that the two nodes are incomparable, and denote it
v
w
/ w. When v andw are comparable (i.e., they are not incomparable), the number of

arcs on the directed path between v andw is called the distance between v andw, and is
denoted by dT (v,w) (it is a non-negative integer). The largest distance between a node
v and a leaf of T is called the height of the node v. The leaf nodes have height zero. We
denote by LCA (v,w) the lowest common ancestor of two nodes v andw, that is, the node
having the smallest height among all nodes which are ancestors of both v and w. The
height of a tree T is defined to be the height of its root node. A tree having one single
node (its root is also a leaf) has height zero.

When T is a tree and v is a node of T , the subtree of T rooted at v is the subtree of T
containing all descendants of v, and is denoted by T |v. Clearly, T |v is a rooted tree, and
its root is r(T |v) = v. This way of taking subtrees does not change the height of the
nodes: for any node w of T |v, its height in T |v is the same as its height in the original
tree T .

Forests

In this manuscript, a forest will always refer to a DAG whose connected components are
rooted directed trees. A component having one single node is called an isolated node.
The order of a forest F, denoted by |F|, is its number of connected components. A tree
is a forest of order one. All terms that are previously defined for trees can be naturally
generalized to forests. In particular, a node v of a forest F is a leaf (resp. a root) if F has
a component T such that v is a leaf (resp. the root) of T . If two nodes v andw are in two
distinct components of F, the lowest common ancestor LCA (v,w) does not exist.

1.2.2 Phylogenetic trees and forests

A full rooted binary tree is a rooted tree in which every internal node has exactly two
children. Let T be a full rooted binary tree having n := |V(T )| nodes. The following
results are easy: (1) T has n+12 leaves and n−12 internal nodes; (2) the maximum distance
between any two comparable nodes in T (this is also called the diameter of T) is bounded
by n−12 = O(n).
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An ordered full rooted binary tree is a full rooted tree that satisfies the following: for
every internal node v, the set of children ch(v) has a fixed ordering; we will write ch(v)
as an ordered pair instead of a set. The two children of v are respectively called the left

child and the right child of v. When (v1, v2) are the children of v, the two subtrees T |v1
and T |v2 are called respectively the left subtree and the right subtree of T at node v.

Let X be a fixed arbitrary finite set, called the set of taxa. An X-tree is a tree whose
leaves are bijectively labeled by the set X. The element of X assigned to a node v by the
bijection is called the label of v.
Definition 1.1 (Phylogenetic trees and forests). Let X be a fixed set of taxa. A phyloge-

netic tree on X is a tree that satisfies all of the following properties: (1) it is a full rooted
binary tree; (2) it is ordered; (3) it is an X-tree. A phylogenetic forest is a forest whose
connected components are phylogenetic trees.

Biologically, two different phylogenetic trees according to Definition 1.1 can re-
flect the same evolutionary relationships between the taxa, because the ordering of
the children of a node does not matter. We will use the notion of isomorphic trees to
qualify phylogenetic trees that are biologically the same.
Definition 1.2 (Isomorphic phylogenetic forests). Two phylogenetic forests F1 and F2
on the same set X of taxa are isomorphic, denoted by F1 � F2,if there exists a bijection
between their node sets ϕ : V(F1) → V(F2) that satisfies all of the following conditions:

1. For all pairs of nodes (u, v) ∈ V2(F1), (u, v) ∈ A(F1) ⇐⇒ (ϕ(u),ϕ(v)) ∈ A(F2).
2. For each node u ∈ V(F1), u is a root of F1 if and only ifϕ(u) is a root of F2.
3. For each leafu ∈ L(F1),ϕ(u) is a leaf of F2, and the labels ofu andϕ(u) are identical.
The first condition ensures that the two forests are isomorphic as directed graphs;

the second condition additionally ensures that they are isomorphic as rooted forests, in
other words, there exists a bijection between the components of two forests that iden-
tifies isomorphic rooted trees. Together, the first two conditions guarantee that the
forests are the same as unordered forests, in other words, they have the same branch-
ing pattern, the same topology. The third condition ensures that the isomorphism pre-
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serves the labels of the leaves. For two phylogenetic trees (i.e., forests of order one) T1
and T2 to be isomorphic, the second condition can be simplified to: ϕ(r(T1)) = r(T2).

Remarks

For the sake of theoretical clarity, we have chosen a definition of the phylogenetic trees
that is slightly different from the one that is commonly used in the literature; the latter
does not consider the trees to be ordered. Our choice is motivated by the fact that, in
many practical situations, it is more convenient or natural to consider ordered trees. In
any such case, one must always bear in mind that two trees that “look different” may
be biologically the same:

• Two phylogenetic trees that are biologically the same (isomorphic) can have dif-
ferent representations in Newick format, the standard format for representing
trees in phylogenetic analysis (see Figure 1.3 for examples).

• For the purpose of visualizing phylogenetic trees on a two-dimensional graphic
(we are doing a planar embedding), an ordering of the children of each node must
be chosen. Visualization software such as [Yu+17] allow the user to flip the left
and right subtrees manually. Two isomormphic trees can have different graphical
representations (see Figure 1.3).

• When performing algorithms on phylogenetic trees, one often wants to traverse
all the nodes in the tree. Assuming a sequential model of computation (i.e., not
parallel), a convenient way of traversing an unordered tree would be to first choose
a fixed ordering for the children of each node (so it becomes ordered), and then
apply the standard traversal techniques for ordered binary trees (e.g., do a pre-
order depth-first traversal: first the root, then the left subtree, finally the right
subtree).
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Figure 1.3: Four phylogenetic trees and their representations in Newick format. T1 and
T2 are on the same set of taxa {A, B, C} but are not isomorphic. T3 and T4 are on the same
set of taxa {A, B, C, D} and are isomorphic.

1.2.3 Concepts in algorithms and complexity

Dynamic programming

Dynamic programming (DP) is an easy and powerful method that is widely used for
solving combinatorial optimization problems. First formally developed by Richard Bell-
man in the 1950’s [Bel52; Bel13], it has found numerous applications in various fields.
In bioinformatics, DP is used for solving problems such as Sequence alignment [NW70],
Protein structure comparison [HS93], RNA structure prediction [RE99], etc.

In Chapter 4, we will present a formal model for characterizing problems that can
be solved using DP or DP-like techniques. Here, we will only provide the necessary
intuitions and present some terminologies that will be used in Chapter 2.

Simply put, dynamic programming is a general problem-solving method that tries
to solve a problem by breaking it down into simpler subproblems in a recursive manner
(DP-subproblem). To solve an optimization problem using a DP-algorithm, the value
to be optimized should be computed via some recurrence relations using the optimal
values of the subproblems. Usually, these optimal values of the subproblems are stored
in a structure called the dynamic programming table (DP-table): one cell of the DP-table
corresponds to a DP-subproblem and contains the optimal value of that subproblem.
A typical DP algorithm has thus three components: (a) define the DP-subproblems
(what does the DP-table look like?), (b) write down the recurrence relations (how to
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fill up the DP-table?), (c) define the output (how to obtain the optimal value of the
optimization problem from the DP-table?).

As an example, consider the following optimization problem, known as the 0-1
Knapsack problem: given a knapsack of capacityWmax and n items, each of value vi
and of weightwi, the goal is to select a subset of items to put in the knapsack such that
the total weight does not exceed Wmax and the total value is maximized. In the case
where the weights w1, . . . ,wn and Wmax are positive integers, there is a well-known
DP-algorithm, which we will now describe by identifying the three components. (a) A
subproblem, indexed by (i, j), asks to find the maximum value M(i, j) that can be at-
tained using the first i items and with total weight at most j, where 0 ≤ i ≤ n and
0 ≤ j ≤ Wmax. (b) The recurrence relations are:

M(0, j) = 0,

M(i, j) =

M(i − 1, j) if j < wi,
max{M(i − 1, j), M(i − 1, j −wi) + vi} otherwise.

(c) The output isM(n,Wmax).
A problem may be solved by several different DP-algorithms. Depending on the

formulation, the time and space complexity of a DP-algorithm may or may not be a
polynomial of the input size (the above algorithm for the 0-1 Knapsack problem
has pseudopolynomial complexity).

Counting, enumeration

An optimization problem asks to find one solution, among all the feasible solutions,
such that its value (or measure) maximizes or minimizes the objective function. For
each optimization problem, there is a corresponding decision problem that asks whether
there is a feasible solution for some particular value (a decision problem is simply a
problem whose output set consists of only two values yes or no). This is called the de-

cision variant, or the associated decision problem of the optimization problem. We will
most often consider a NP optimization problem: every feasible solution has polynomial
size, and its value can be computed in polynomial time. In this case, the associated de-
cision problem will also be in the complexity class NP.
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We can also define the counting and the enumeration problems that are associated
with a given optimization problem. The first is concerned with establishing how many
solutions are optimal. The second is concerned with enumerating, i.e., producing a
list without duplicates of all optimal solutions. Counting and enumeration problems
without an underlying optimization problem can be formulated in a similar manner.

If we have an algorithm for the enumeration problem, it can obviously be turned
into an algorithm for the counting problem. However, in most cases, we do not have
an upper bound for the number of optimal solutions that is polynomial in the size of
the input. If we are interested in finding this number in polynomial time, the counting
algorithm should not rely on enumeration. Just as for a decision problem in the class
NP, we can either try to find a polynomial time counting algorithm, or try to show that
it belongs to a subclass of “harder” problems (NP-complete for decision problems);
the complexity class that characterizes the “harder” counting problems is the class
#P-complete.

For the enumeration problem, since the output size can be exponential in the input
size, the complexity is expressed in an output-sensitive manner. The performance of
an enumeration algorithm can be measured in different ways:
• We can measure the running time in terms of the total time that is required for

producing all solutions.
• By looking into the intermediate steps of the algorithm, we can measure the run-

ning time more carefully in terms of (1) the preprocessing time, i.e., the time re-
quired to produce the first solution, and (2) the maximum time delay between
two consecutive outputs.

An algorithm is said to be total polynomial time or output polynomial time if its total
running time is a polynomial of the input size and the output size. A total polynomial
time algorithm is said to be incremental polynomial time if the time delay between the
k-th and the (k+1)-th outputs is a polynomial ofk and the input size. A total polynomial
time algorithm is said to be polynomial delay if the time delay between two consecu-
tive outputs is a polynomial of the input size. In Chapters 2 and 4, we will see several
polynomial delay enumeration algorithms.
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Approximation, heuristic

An approximation algorithm is an efficient algorithm (polynomial time) that finds
an approximate solution to an optimization problem, with provable guarantees on the
quality of the approximate solution: this is usually a multiplicative factor called the
approximation ratio. For a minimization problem, a k-approximation algorithm, that
is, an approximation algorithm with ratio k, guarantees to output a feasible solution
whose value is within k times the optimal (minimum) value. Searching for approxi-
mation algorithms is a widely used approach for dealing with NP-hard optimization
problems.

Some algorithms are known as heuristics as they provide an approximate solution
efficiently but do not provide a guaranteed approximation ratio. Another type of algo-
rithm, also called heuristic, provides exact solutions with no guaranteed running time
bound. We will encounter both kinds of heuristics in this manuscript.
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Chapter 2
Phylogenetic tree reconciliation:

theoretical contributions

2.1 Introduction and definitions

2.1.1 The Reconciliation problem

In this section, we will define formally the Phylogenetic tree reconciliation
problem (shortly, the Reconciliation problem). At the end of the section, we will
discuss the biological relevance of this definition and provide some references.

Reconciliation, events, event vector

Let H and P be two phylogenetic trees (see Definition 1.1), respectively on the set of
taxa of host and parasite species. Let σ be a function from the parasite leaves L(P) to
the host leaves L(H), representing the parasite/host associations between the taxa (i.e.,
the extant species). The triple (H,P,σ)will be called a dataset.

A reconciliation is simply a function φ that assigns, for each parasite node p ∈ V(P),
a host node φ(p) ∈ V(H). It should represent the parasite/host associations for the ex-
tant species as well as for all the ancestral parasite species in the tree. Naturally, the
function φ must extend the leaf association function σ, that is, for each p ∈ L(P), we
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should have φ(p) = σ(p).
Now, for an internal node p, what are the constraints on the associated host φ(p)?

In the event-based model, a reconciliation must induce events. Concretely, for each
internal node p under a reconciliation φ, the events at p will have two components:
(1) exactly one event type (denoted by a special symbol) among ℂ,�,�, meaning re-
spectively cospeciation, duplication, and host-switch, and (2) zero or more loss events
(denoted by a nonnegative integer). The event type and the number of losses at a node
pwill depend on the relationship between three host nodes in the host tree: the hostφ(p)
assigned to p by φ, and the hosts φ(p1) and φ(p2) which are assigned to the two chil-
dren (p1,p2) of p. Those dependencies can be expressed as an event type function E and
a loss number function ξ, both taking as input three host nodes. The definitions of E
and ξ are given in Table 2.1.

Case
Value of

E(h,h1,h2)
Value of

ξ(h,h1,h2)
Both h1,h2 are descendants of h,
and h1 w/ h2 and h = LCA (h1,h2). ℂ dH(h,h1) + dH(h,h2) − 2
Both h1,h2 are descendants of h,
and the previous case does not apply. � dH(h,h1) + dH(h,h2)

Either (1) h1 is a descendant of h and h2 w
/ h,

or (2) h2 is a descendant of h and h1 w/ h. �
Either (1) dH(h,h1)

or (2) dH(h,h2)
Any other case, that is,
either (1) both h1 w/ h and h2 w

/ h,
or (2) h is a proper descendant of h1 or h2.

nonvalid nonvalid

Table 2.1: Definition of the event type function and the loss number function, both
taking as input three host nodes.

Using the functions E and ξ, we now give in Definition 2.1 the formal definition
of a reconciliation. In Definition 2.2, we also define the event type Eφ(p) and the loss
number ξφ(p) of a parasite node p under a reconciliation φ, as these notions will be
ubiquitous in the subsequent theoretical developments.
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Definition 2.1 (Reconciliation). Given two phylogenetic trees H and P, and a function
σ : L(P) → L(H), a function φ : V(P) → V(H) is called a reconciliation of (H,P,σ) if it
satisfies the following two conditions:

1. For every leaf node p ∈ L(P),
φ(p) = σ(p).

2. For every internal node p ∈ V(P) \ L(P)with children (p1,p2):
E(φ(p),φ(p1),φ(p2)) ∈ {ℂ,�,�}.

Definition 2.2 (Event type and loss number of a parasite node under a reconciliation).

Let φ be a reconciliation of (H,P,σ). For a parasite node p ∈ V(P), the event type Eφ(p)
and the loss contribution ξφ(p) of p under φ are defined respectively as follows:
• If p is a leaf (here � is a special symbol for denoting the terminal event, i.e., the

event type for the leaves):
Eφ(p) := �, ξφ(p) := 0.

• Otherwise, p is an internal node with children (p1,p2):
Eφ(p) := E(φ(p),φ(p1),φ(p2)), ξφ(p) := ξ(φ(p),φ(p1),φ(p2)) .

The image of the node-wise event type function Eφ is denoted by E := {�,ℂ,�,�}.
The loss event is denoted by another special symbol �. The values of Eφ partitions the
set of internal parasite nodes into three disjoint subsets according to their event type;
these subsets are denoted by Vℂ(P), V�(P), V�(P). The number of occurrences of each
of the three event types together with the number of losses make up the event vector of
the reconciliation φ, as defined in Definition 2.3. We also define in Definition 2.4 the
starred event vector which is simply the event vector without the number of losses.
Definition 2.3 (Event vector). The event vector of a reconciliation φ is the quadruple of
integers consisting of the total number of each type of events ℂ, �, �, �, i.e.

®e (φ) := ©«
��Vℂ(P)�� , ��V�(P)�� , ��V�(P)�� , ∑

p ∈V(P)
ξφ(p)ª®¬ . (2.1)

23



Definition 2.4 (Starred event vector). The starred event vector of a reconciliation φ is
the triple of integers that correspond to the first three elements of the event vector, i.e.,

®e ∗ (φ) := (��Vℂ(P)�� , ��V�(P)�� , ��V�(P)��) . (2.2)
The following result is trivial: the sum of the three elements of ®e ∗ (φ) is equal to the

number of internal parasite nodes, that is, V(P)|−12 .
In Figure 2.1, for 1 ≤ i ≤ 6, we show six different reconciliations φi, on the same

dataset (H,P,σ). On the right side of each reconciliation φi, we also marked the event
type Eφi(p) and the loss number ξφi(p) for each internal p, and the event vector ®e (φi).

Eφ1(p0) = �

ξφ1(p0) = 0
Eφ1(p1) = ℂ

ξφ1(p1) = 0
®e (φ1) = (1, 0, 1, 0)

p0
p1

pcpb

h0
h1
hbhcpa ha

φ1 Eφ2(p0) = �

ξφ2(p0) = 0
Eφ2(p1) = ℂ

ξφ2(p1) = 0
®e (φ2) = (1, 0, 1, 0)

p0
p1

pcpb

h0

h1 hb
hc

pa ha

φ2

Eφ3(p0) = ℂ

ξφ3(p0) = 1
Eφ3(p1) = �

ξφ3(p1) = 0
®e (φ3) = (1, 0, 1, 1)

p0
p1

pcpb

h0
h1
hb

hc

pa ha

φ3 Eφ4(p0) = ℂ

ξφ4(p0) = 1
Eφ4(p1) = �

ξφ4(p1) = 0
®e (φ4) = (1, 0, 1, 1)

p0
p1

pcpb

h0
h1
hbhcpa ha

φ4

Eφ5(p0) = ℂ

ξφ5(p0) = 0
Eφ1(p5) = ℂ

ξφ1(p5) = 0
®e (φ5) = (2, 0, 0, 0)

p0
p1

pcpb

h0
h1
hbhcpa ha

φ5 Eφ6(p0) = �

ξφ6(p0) = 1
Eφ6(p1) = �

ξφ6(p1) = 4
®e (φ6) = (0, 2, 0, 5)

p0
p1

pcpb

h0
h1
hbhcpa ha

φ6

Figure 2.1: Example of six different reconciliations on the same dataset. For each rec-
onciliation, the parasite and the host trees are drawn side by side. The solid curves at
the bottom indicate the parasite/host associations for the parasite leaves; the dashed
lines indicate the associations for the internal parasite nodes.
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Cost of a reconciliation, Reconciliation problem

A cost vector ®c := (c(ℂ), c(�), c(�), c(�)) is a quadruple of real numbers representing the
costs that we want to assign to each event type (including the loss event). Given a cost
vector ®c, the cost of a reconciliation φ is defined as the dot product between its event
vector and the cost vector: ®e (φ) · ®c.

We are now ready to define the combinatorial optimization problem which we call
the Reconciliation problem. Recall that a dataset is a triple (H,P,σ). An instance is
a pair consisting of a dataset and a cost vector ((H,P,σ), ®c). Given an instance, the set
of feasible solutions is the set of reconciliations of the dataset (H,P,σ). The goal of the
optimization problem is to find an optimal feasible solution, that is, a reconciliation φ
that minimizes the cost ®e (φ) · ®c. In the associated enumeration problem, the goal is to
find all reconciliations of minimum cost.

For example, for the dataset depicted in Figure 2.1, if the cost vector is (0, 0, 0, 0),
all reconciliations are optimal; if the cost vector is (0, 1, 1, 1), onlyφ5 is optimal.

Remarks

TheReconciliation problem is studied extensively in the literature [THL11; BAK12;
Don+15; Ma+18]. Notice that, for the sake of clarity, we used a slightly different set of
notations to define the event-based model (in particular, we rely on the functions E
and ξ in Table 2.1). The computational problem is equivalent to the ones that can be
found in those references.

There exists in the literature a non-equivalent formulation of theReconciliation
problem which considers the host tree to be dated: the input also includes a time
function that maps each host node to a positive number [Doy+10; Sco+13]. This dif-
ferent computational problem is not studied in the present manuscript.

For any given dataset, the set of feasible solutions is nonempty: a function φ that
satisfies the leaf association constraint (condition 1. of Definition 2.1) and that maps
every internal parasite node to the root of the host tree (for example, φ6 of Figure 2.1)
is always a valid reconciliation.
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2.1.2 Time-feasibility

A phylogenetic tree T , which represents a possible scenario for the evolutionary his-
tory of species, implies the existence of a node ordering that is consistent with the
ancestor/descendant relations in the tree. In practice, we can consider a time function
τ : V(T ) → ℝ>0 that maps each node to a positive number and satisfies the following:
for each arc (v,w) ∈ A(T ), we have τ(v) < τ(w). By transitivity, if v is an ancestor of w,
then τ(v) < τ(w).

For a dataset (H,P,σ) of theReconciliation problem, let τH be the time function
for the host tree. For a reconciliation φ to be biologically meaningful, the following
property must be satisfied:

for each arc (p,pi) ∈ A(P), we should have τH(φ(p)) < τH(φ(pi)). (2.3)
From the definition of a reconciliation (Table 2.1 and Definition 2.1), we can see that
this desired property is already ensured (by noticing that φ(p) is an ancestor of φ(pi)),
except for the arcs (p,pi) involved in a host-switch event, that we define next:
Definition 2.5 (Host-switch arc). Letφbe a reconciliation of (H,P,σ). Letp ∈ V(P)be an
internal parasite node of event type � underφ, i.e., Eφ(p) = �, then the arc (p,pi) ∈ A(P)
is called the host-switch arc of p underφ, where pi is the unique child of p in P such that
φ(pi) w/ φ(p).

The presence of the host-switch arcs can introduce incompatibilities in time, and
as a result, a function τH satisfying Equation (2.3) can no longer exist. Such a recon-
ciliation, while being a feasible reconciliation in our model, is called time-unfeasible

or cyclic (examples can be found, for instance, in [THL11]). There are two important
observations with respect to this concept: (1) given a reconciliation φ, whether φ is
time-feasible can be decided in polynomial time [THL11]; (2) for any dataset (H,P,σ),
the set of time-feasible reconciliations is nonempty (the reconciliation that maps ev-
ery internal parasite node to the root of the host tree does not have any host-switches).

In order to only obtain biologically meaningful reconciliations, we can modify our
Reconciliation problem into Time-feasible reconciliation problem: given
an instance, an algorithm for the latter should output a reconciliation that minimizes
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the cost among all time-feasible reconciliations. Unfortunately, Time-feasible re-
conciliation problem is NP-hard [Ova+11; THL11]. For the remainder of this chap-
ter, we will concentrate on theReconciliationproblem, while keeping in mind that
the solutions that we will explore may or may not be time-feasible. In Chapter 3, Sec-
tion 3.1, we will see that, for many instances, by simply enumerating the optimal rec-
onciliations and filtering out those that are not time-feasible, we can already obtain
time-feasible reconciliations. We will also present in Chapter 3 some more methods
for obtaining time-feasible reconciliations.

2.1.3 The reconciliation graph

Putting aside the time-feasibility and returning to our Reconciliation problem,
we are interested in finding reconciliations of minimum cost. It turns out that this
problem can be solved efficiently using the dynamic programming technique [BAK12;
Don+15]. The DP-algorithm also solves the enumeration version of the problem: in
fact, it produces a graph structure which is a compact representation of all reconcilia-
tions of minimum cost [Don+15; Ma+18]. One can argue that the power of this model
(or the reason for its popularity) comes primarily from the fact that, even though the
number of optimal solutions can grow exponentially with the size of the input trees,
many features of the solution space can be effectively understood by exploring this
graph structure of polynomial size [Ma+18]. In this section, we will describe the DP-
algorithm for constructing the graph that we call the reconciliation graph. This graph
will serve as the basis for a number of problems that we will tackle later in the chapter.

Dynamic programming

We will first describe a DP-algorithm that finds the optimal value, i.e., the minimum
cost of any reconciliation. Using the terminologies from Section 1.2.3, given an instance
((H,P,σ), ®c), we need to: (a) define the DP-subproblems and the DP-table, (b) write
down the recurrence relations for filling up the DP-table, (c) define the output.

Recall that E := {�,ℂ,�,�} is the set of possible event types for a node. Given a par-
asite nodep ∈ V(P), we denote byP |p the subtree ofP rooted at nodep, and byσ|L(P |p) the
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restriction of σ to the leaves of P |p. For the purpose of describing the DP-subproblems,
for a fixed dataset (H,P,σ), we will take the subtree of P at a particular node p ∈ V(P).
In this context, a reconciliation of the dataset (

H,P |p,σ|L(P |p)) is simply called a recon-

ciliation of P |p.
The set U := V(P) × V(H) × E is called the space of cells of the DP-table. A triple

(p,h, e) ∈ U is called a cell of the DP-table. A DP-subproblem, indexed by a cell (p,h, e),
asks to find a reconciliation φ of P |p that minimizes the cost, and satisfies φ(p) = h

and Eφ(p) = e. The DP-table stores at each cell the optimal value of the subproblem,
i.e., the minimum cost, denoted byM(p,h, e). The recurrence relations for computing
M(p,h, e) are as follows:
• If p is a leaf,

M(p,h, e) =


0 if h = σ(p) and e = �,
+∞ otherwise.

(2.4)

• Otherwise, p is an internal node with children (p1,p2). In this case,
M(p,h, e) = min

E(h,h1,h2)=e
h1,h2∈V(H)
e1,e2∈E

M(p1,h1, e1) +M(p2,h2, e2) + c(e) + c(�) ξ(h,h1,h2) . (2.5)

The output, i.e., the minimum cost of any reconciliation of (H,P,σ) is given by
min

h∈V(H),e∈EM(r(P),h, e). (2.6)

ad-AND/OR graphs

Before describing how to construct the reconciliation graph, we will first define a more
general graph structure: the acyclic decomposable AND-OR graph (ad-AND/OR graph),
which is known for having an intimate relationship with dynamic programming on
a tree. The reconciliation graph will be a particular ad-AND/OR graph with some ad-
ditional properties. In Chapter 4, we will study the relationship between general DP-
algorithms and ad-AND/OR graphs and provide some references.
Definition 2.6 (ad-AND/OR graph). A directed graphG is an acyclic decomposable AND/OR

graph (shortly, ad-AND/OR graph) if it satisfies the following:
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• G is a acyclic (it is a DAG).
• G is bipartite: its node set V(G) can be partitioned into (A,O) so that all arcs of G

are between these two sets. Nodes in A are called AND nodes; nodes in O are called
OR+ nodes.

• Every AND node has in-degree at least one and out-degree at least one. The set of
nodes of out-degree zero is then a subset of O and is called the set of goal nodes;
the remaining OR+ nodes are simply the OR nodes. The subset of OR nodes of in-
degree zero is the set of start nodes.

• G is decomposable: for any AND node, the sets of nodes that are reachable from
each one of its child nodes are pairwise disjoint.

An ad-AND/OR graph represents the space of solutions for some problem instance.
A solution will be a particular kind of subgraph which is a rooted tree.
Definition 2.7 (Solution subtree). A solution subtree T of an ad-AND/OR graph G is a
subgraph of G which: (1) contains exactly one start node; (2) for any OR node in T it
contains one of its child nodes inG, and for any AND node in T it contains all its children
in G.

The set of solution subtrees of G is denoted by T(G). It is immediate to see that a
solution subtree is indeed a subtree of G: it is a rooted tree, the root of which is a start
node. If we would drop the requirement of G being decomposable, the object defined
in Definition 2.7 would not be guaranteed to be a tree.

It is easy to see that the following four-step procedure allows to obtain one solution
subtree: (1) start at any start node, (2) for any visited OR node, visit one child, (3) for
any visited AND node, visit all children, (4) stop when the goal nodes are reached. In
fact, a well-known folklore result states that the set T(G) of solution subtrees of any
ad-AND/OR graphG can be enumerated efficiently: after a pre-processing step in time
linear in the size ofG, the delay between outputting two consecutive solutions is linear
in the size of the solution. In Chapter 4 we will discuss this result again.

We will define now a notion of subgraph for ad-AND/OR graphs that we will use
extensively later in this chapter as well as in Chapter 4. Intuitively, the relationship
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between such a subgraph and the entire graph correspond to the relationship between
a DP-subproblem and the “full” optimization problem.
Definition 2.8 (Subgraph starting from a set of nodes). LetG be an ad-AND/OR graph.
LetObe a set of OR+ nodes ofG. The subgraph ofG starting fromO, denoted byG/O, is the
subgraph obtained from G by setting O as the new set of start nodes (i.e., by removing
all nodes are unreachable from O through directed paths).

Constructing the reconciliation graph, first properties

We can finally describe now how to construct the reconciliation graph of a given in-
stance of the Reconciliation problem from Equations (2.4) and (2.5), the recur-
rence relations for filling up the DP-table.

The construction is done in two steps. In the first step, we build a directed graph
in which every node retains an additional attribute, its value, and every OR+ node is
uniquely labeled by a cell (p,h, e) ∈ U of the DP table. In the second step, we prune the
graph by removing nodes that do not yield optimal values.

1. For each (p,h, e) ∈ U such that p is a leaf, create a goal node labeled by (p,h, e); its
value is equal to 0 if h = σ(p) and +∞ otherwise (see Equation (2.4)). Then, for
each (p,h, e) ∈ U in the post-order of V(P) \ L(P), let (p1,p2) be the children of p,

i. For each (p1,h1, e1) and each (p2,h2, e2) such that E(h,h1,h2) = e, create an
AND node, connect it to the two OR+ nodes respectively labeled by (p1,h1, e1)
and (p2,h2, e2). Its value is equal to the sum of the values of its two children,
plus c(e) + c(�) ξ(h,h1,h2) (see Equation (2.5)).

ii. Create a single OR node, connect it to every AND node created in the previous
step. Its label is (p,h, e), and its value is the minimum of the values of its
children.

2. For each (r(P),h, e) ∈ U, remove the OR node labeled by that cell unless its value
is equal to the optimal cost (see Equation (2.6)). For each OR nodew, remove the
arc to its child AND nodewi if the value ofwi is not equal to the value ofw. Finally,
remove recursively all AND nodes without incoming arcs.
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It can be checked that the reconciliation graph is indeed an an-AND/OR graph as
defined in Definition 2.6. An OR+ node labeled by (p,h, e) is a start node if and only
if p = r(P), and is a goal node if and only if p ∈ L(P). It is also immediate to see that
each AND node in the reconciliation graph has exactly one in-neighbor and exactly
two children.

We will consider the two children of each AND node to be ordered. More precisely,
for an AND node v, if its in-neighbor is labeled by (p,h, e) where p has two ordered
children (p1,p2), we know that the two children of v are respectively labeled by cells
of the form (p1,h1, e1) and (p2,h2, e2): we will call the first one the left child w1 and the
second one the right child w2 of v, and we will write ch(v) = (w1,w2). However, the set
of children of an OR nodew is unorderd, and we will write ch(w) = {vi}.

For an OR node, we will typically be interested not in its set of children but in its set
of “grandchildren”, hence, we introduce here a new notation. Ifw is an OR node, we call
the grandchild couples ofw, denoted bygch(w), the union of the children of its child AND
nodes (it is a set of couples of OR+ nodes): gch(w) := ⋃

vi∈ch(w) ch(vi). By construction, no
two AND nodes that are children of the same OR node have the same couple of children,
therefore, the number of grandchild couples is equal to the number of child AND nodes:
|gch(w)| = |ch(w)|. Notice that an OR+ node can appear as a grandchild of two different
nodes, and can also appear in two different grandchild couples of a same node (see
Figure 2.2).

Letn = |V(H)| andm = |V(P)|. It is clear that the reconciliation graph hasO(mn)OR+
nodes. Each OR node has O(n2) children (or, equivalently, O(n2) grandchild couples).
The space required for storing the reconciliation graph is thusO(mn3). Practical algo-
rithms do not construct the reconciliation graph in the same way as we just described,
as the functions E and ξ are not trivial to compute. Nevertheless, the reconciliation
graph can be constructed usingO(mn3) time and space complexity [Don+15].

Solution subtrees of the reconciliation graph are optimal reconciliations

As announced in the beginning of this section, the reconciliation graph is a compact
representation of the set of optimal reconciliations. Formally, if G is the reconcilia-
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tion graph for a given instance of the Reconciliation problem, then the set T(G)
of solution subtrees of G corresponds bijectively to the set of optimal solutions of that
instance, i.e., the set of reconciliations of minimum cost. Moreover, we have the fol-
lowing result for the subgraph G/{w} starting from an OR+ nodew labeled by (p,h, e):
the set T(G/{w}) of solution subtrees of the subgraph corresponds bijectively to the set
of optimal solution of the DP subproblem indexed by (p,h, e).

In practice, to convert a solution subtree T1 ∈ T(G) into a reconciliation φ, we only
need to look at the labels (p,h, e) of the OR+ nodes in T1 (notice that a reconciliation
can simply be viewed as a collection of triples of the form (p,h, e)). We will henceforth
use interchangeably the terms solution subtrees of the reconciliation graph and optimal

reconciliations of the problem instance.
Let n = |V(H)| and m = |V(P)|. As we mentioned, the reconciliation graph can be

constructed inO(mn3) time. After the construction, using the standard techniques for
ad-AND/OR graphs, the total number of optimal reconciliations can be easily com-
puted, and the solutions subtrees can be enumerated with a linear time delay, that is
O(m). Therefore, there is an algorithm with a O(mn3) time pre-processing step and
O(m) time delay for enumerating all optimal reconciliations.

Figure 2.2 shows a reconciliation graph based on the same dataset (H,P,σ) as in
Figure 2.1 with nine solution subtrees. Among these nine reconciliations, four have
event vector (0, 0, 2, 0), two have (1, 0, 1, 0) (φ1 andφ2 of Figure 2.1), two have (1, 0, 1, 1)
(φ3 and φ4 of Figure 2.1), and one has (2, 0, 0, 0) (φ5 of Figure 2.1). The reconciliation
shown in bold is φ4 of Figure 2.1.

2.2 Defining equivalence relations

In this section, we will start by giving the formal definitions for a number of differ-
ent equivalence relations on the set of reconciliations of a given dataset, then we will
explain the motivation for such definitions, show some preliminary results, and state
the computational problems that are related to those equivalence relations.
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p0,hb,� p0,h0,ℂ p0,ha,� p0,hc,� p0,h1,�

p1,hb,�

pc,hc,�

pa,ha,� p1,h1,ℂ

pb,hb,�

p1,hc,�

Figure 2.2: Example of a reconciliation graph for the dataset (H,P,σ) of Figure 2.1.
Crossed circles are AND nodes. Rectangles are OR+ nodes. The cells with which the
OR+ nodes are labeled are written inside. One solution subtree is shown in bold (it is
φ4 of Figure 2.1).

2.2.1 Definitions

Definition 2.9 (V-equivalence). Two reconciliations φ1 and φ2 are Vector equivalent

(shortly, V-equivalent), if their event vectors are the same: ®e (φ1) = ®e (φ2).
Definition 2.10 (V ∗-equivalence). Two reconciliations φ1 and φ2 of the same dataset
are Starred Vector equivalent (shortly, V ∗-equivalent), if their starred event vectors are
the same: ®e ∗ (φ1) = ®e ∗ (φ2).
Definition 2.11 (E-equivalence). Two reconciliationsφ1 andφ2 of the same dataset are
Event equivalent (shortly, E-equivalent), if Eφ1(p) = Eφ2(p) for all p ∈ V(P).
Definition 2.12 (EL-equivalence). Two reconciliations φ1 and φ2 of the same dataset
are Event Labeling equivalent (shortly, EL-equivalent), if (1) they are E-equivalent, and
(2) the host-switch arcs are the same: for all p such that Eφ1(p) = �, the host-switch
arcs at p under φ1 and under φ2 (see Definition 2.5) are the same.
Definition 2.13 (CD-equivalence). Two reconciliations φ1 and φ2 of the same dataset
are Cospeciation Duplication equivalent (shortly, CD-equivalent), if (1) they are E-equi-
valent, and (2) for all p such that Eφ1(p) ∈ {ℂ,�}, we have φ1(p) = φ2(p).
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For example, φ1 and φ2 (or φ3 and φ4) of Figure 2.1 are V-, V ∗-, E-, and CD-equi-
valent but not EL-equivalent; φ1 and φ3 are V ∗-equivalent, but they are not equivalent
under any other equivalence relation.

Each one of these equivalence relation splits the set of optimal reconciliations of
a given instance into equivalence classes, i.e., subsets of pairwise equivalent recon-
ciliations. One representative of an equivalence class is simply a reconciliation in the
corresponding subset. We will abuse the terminology and call equivalence classes the
objects that best represent the common property of the reconciliations in that subset
(e.g., a V-equivalence class is simply a vector). A reconciliation in an equivalence class

will then be a reconciliation satisfying that property.
We will now introduce the notations for denoting the equivalence classes and mak-

ing statements such as “a reconciliation is in an equivalence class”. Recall that, if G is
the reconciliation for a given instance, then T(G) denotes the set of optimal reconcilia-
tions. For a fixed equivalence relation, we consider a function π that maps each recon-
ciliation φ ∈ T(G) to the equivalence class π(φ) ofφ (in other words, φ is in the equiva-
lence class π(φ)). For the E-, EL-, and CD-equivalence relations, the “common prop-
erty” of a class will be expressed via some local properties on each parasite node; we
define in Definition 2.14 this localized property that we call the color of a node. Then,
the definitions of π for each equivalence relation are given in Definition 2.15.
Definition 2.14 (Color of a parasite node under a reconciliation). Letφ be a reconcilia-
tion of (H,P,σ). For each parasite node p ∈ V(P), the color κφ(p) of p under φ is defined
in Table 2.2.
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Equivalence relation
The color κφ(p) of p under φ

(it is either a couple or a triple)
E-equivalence relation (p,Eφ(p))

EL-equivalence relation



(p,Eφ(p)) if Eφ(p) ≠ �

(p,�L) if (p,p1) is the host-switch arc at p
(p,�R) otherwise, (p,p2) is the host-switch arc

where �L and �R are two special symbols

CD-equivalence relation

(p,φ(p),Eφ(p)) if Eφ(p) ≠ �(
p, ?,�) otherwise, Eφ(p) = �

where ? is a special symbol (denoting unknown host)
Table 2.2: For each of E-, EL-, and CD-equivalence relations, definition of the color of
a parasite node under a reconciliation.
Definition 2.15 (Equivalence class). Consider a fixed instance on a dataset (H,P,σ) and
denote by T(G) the set of optimal reconciliations. The equivalence class π(φ) of a recon-
ciliation φ is the object defined in Table 2.3.

Equivalence relation The equivalence class π(φ) of φ

V-equivalence relation ®e (φ) (it is a vector of four integers)
V ∗-equivalence relation ®e ∗ (φ) (it is a vector of three integers)
E-, EL-, CD-equivalence relations π(φ) is a function that maps

each p ∈ V(P) to its color κφ(p)
Table 2.3: For each equivalence relation, definition of the equivalence class of a recon-
ciliation.
For a fixed equivalence relation, the set of equivalence classes of the instance, denote by
π(T(G)), is defined as follows:

π(T(G)) := ⋃
φ∈T(G)

π(φ). (2.7)
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2.2.2 Motivations

The first and foremost motivation of defining equivalence relations is the need of cap-
turing useful biological information from the set of optimal reconciliations, when this
set is too large for manual analyses or for exhaustive enumeration. While the number
of optimal reconciliations can grow exponentially fast with the size of the input trees,
we will see in Section 2.3.1 that the number of V- or V ∗-equivalence classes has a poly-
nomial upper bound. The set of V-equivalence classes (i.e., the event vectors) provides
already a first information about the co-evolutionary history of the hosts and their
parasites. Indeed, a high number of cospeciations may indicate that hosts and par-
asites evolved together, while a high number of host-switches may indicate that the
parasites are able to infect different host species. Under the scope of the E-equivalence
relation, we are also interested in which parasites are associated to each event type
(disregarding losses): by looking at the E-equivalence classes, we can get knowledge
of the number as well as the locality of the events inside the parasite tree. The informa-
tion from the E-equivalence classes can be further refined using the EL-equivalence
classes, as they tell us not only where the host-switches happen but also which arcs
of the parasite tree are involved (this information is relevant in the analysis of time-
feasibility; a practical application can be found in Chapter 3, Section 3.1.4).

The intuition behind the CD-equivalence relation is that, when a host-switch hap-
pens, there may be various hosts that can be selected as the parasite’s “landing site”.
In this case, we choose to consider as equivalent those reconciliations for which, while
the hosts that receive the switching parasites may differ, all the other parasite/host
associations (not corresponding to a host-switch) are the same. These reconciliations
are similar and often indistinguishable without additional biological information. In-
deed, take the two reconciliations φ1 and φ2 in Figure 2.1: they are identical except for
one switching parasite p0, which is mapped to h1 by φ1 and to ha by φ2. Since h1 and
ha are two sibling nodes sharing the same parent in the host tree, without further in-
formation, there is no good way to tell apart the two reconciliations φ1 and φ2, hence
we consider them as equivalent.

Among the five equivalence relations, the CD-equivalence relation is the only one
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that captures the precise parasite/host associations for some internal parasite nodes.
At first glance, it might seem too restrictive, and one might fear that the number of
CD-equivalence classes would be too large, which limits the practical usability. In
Chapter 3, Section 3.1, we will see that, for real-world datasets, the number of CD-
equivalence classes is almost always much smaller compared to the number of op-
timal reconciliations. In fact, there is also a theoretical foundation for allowing the
host-switch associations to be “movable”: as we will see in Lemma 2.1, finding one
optimal reconciliation means that (a potentially very large number of) certain other
reconciliations must also be optimal, all of them differ only by the associations of the
host-switch nodes.

Lemma 2.1. (The proof is straightforward and can be found in my Master thesis). Letφ be

an optimal reconciliation of (H,P,σ)with a cost vector ®c satisfying c(ℂ) < c(�)+2 c(�) (this

is verified by any reasonable cost vector used in practice). Let p0 ∈ V(P) be an internal node

with children (p1,p2). Suppose Eφ(p0) = � and suppose wlog that (p0,p1) is the host-switch

arc at p0. Suppose thatφ(p0) ≠ φ(p2) (so necessarilyφ(p0) is a proper ancestor ofφ(p2), see

Figure 2.3). Take any node h on the path fromφ(p0) toφ(p2) inH, excludingφ(p0) (there is

at least one choice for hwhich isφ(p2)). Considerφ′ : V(P) → V(H) such that

φ′(p0) = h, and ∀p ∈ V(P) \ {p0}, φ′(p) = φ(p)

(φ′ is identical toφexcept for the association atp0). Thenφ′ is an optimal reconciliation and

is CD-equivalent toφ.

p0

p2p1

ϕ(p0)

ϕ(p2)
dH ⩾ 1

Figure 2.3: Illustration of Lemma 2.1. Circles are parasite nodes; rectangles with
rounded corners are host nodes; dashed lines represent the parasite/host associations;
the zigzag line indicates that (p0,p1) is the host-switch arc at p0 under φ.
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2.2.3 Relationship between the equivalence relations

From the Definitions 2.9–2.13, we can easily deduce the following:
1. If φ1 and φ2 are V-equivalent, then they are V ∗-equivalent.
2. If φ1 and φ2 are E-equivalent, then they are V ∗-equivalent.
3. If φ1 and φ2 are EL-equivalent, then they are E-equivalent.
4. If φ1 and φ2 are CD-equivalent, then they are E-equivalent.

The next result is only guaranteed whenφ1 andφ2 are optimal reconciliations for a cost
vector ®c satisfying c(�) ≠ 0 (nonzero loss cost):

5. If φ1 and φ2 are V ∗-equivalent, then they are V-equivalent.
The converse of the above five statements is generally not true; counterexamples

can be found easily.
In practice, we will often look at the number of equivalence classes of a fixed in-

stance (i.e., the size |π(T(G))| of the set of equivalence classes, see Definition 2.15) for
several different equivalence relations. If we know that being A-equivalent implies
being B-equivalent, where A and B are two equivalence relations, then we know that
the number of A-equivalence classes is no bigger than the number of B-equivalence
classes. If the experimental observation contradicts this, there is a strong indication
that something went wrong (for example, we did not compute the things that we thought
we did). Therefore, knowing the relationship between the equivalence relations, apart
from the obvious usefulness of helping us to better understand the meaning of equiv-
alence classes, is also useful during experiments as a safeguard measure.

2.2.4 Computational problems

Equipped with our definitions of equivalence classes (see Definition 2.15), we aim at
studying the features of the set of optimal reconciliations by enumerating the equiv-
alence classes (see Chapter 3 for some other approaches, and a comparison with the
equivalence-based approach). Naively, one would iterate through every reconciliation
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and record their properties, then report the equivalence classes, and, only at the end,
report the statistics of the reconciliations in each equivalence class. However, when the
number of reconciliations is too large, for example, in the order of 1042 (see Chapter 3,
Section 3.1.2 and [Wan+20]), the naive method is not feasible.

The challenge is then to enumerate directly the equivalence classes without enu-
merating the optimal reconciliations explicitly. Concretely, the set of optimal recon-
ciliations will be represented implicitly as T(G), the set of solution subtrees of a recon-
ciliation graph G. Given a reconciliation graph as input, we will tackle the following
problems:
• Count the number of equivalence classes.
• Enumerate the equivalence classes.
• Study a particular equivalence class. That is, given an equivalence class,

– Count the number of reconciliations in that class,
– Find one representative (i.e., one optimal reconciliation) of that class,
– Enumerate all reconciliations in that class.

2.3 Dealing with the V- and V ∗-equivalence relations

2.3.1 V-equivalence relation

The enumeration of the V-equivalence classes (i.e., event vectors) can be achieved by
modifying the dynamic programming algorithm in such a way that the set of V-equi-
valence classes for each DP subproblem is kept along the way. This basic idea can, in
theory, be applied to any equivalence relation. However, such a modified algorithm will
require explicitly storing all the equivalence classes. Fortunately, for the V-equivalence
relation, the space complexity will remain a polynomial of the size of the input trees,
as we will see next.

Letn = |V(H)| andm = |V(P)|. The first three elements of any event vector necessar-
ily sum up to m−12 , the number of internal parasite nodes, hence there are only O(m2)
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possible combinations. The number of losses ξφ(p) for each parasite node p under any
reconciliationφ is at most twice the diameter of the host tree (i.e., twice the maximum
distance between two nodes), so the fourth element of any event vector is bounded by
O(nm). Therefore, the number of event vectors is bounded byO(nm3).

Given an instance and its reconciliation graphG, we are interested in the following
two problems: listing all event vectors, and, given a particular event vector, listing one
(or all) optimal reconciliations in that V-equivalence class. We will now describe how
to modify the DP algorithm for constructing the reconciliation graph G to solve both
problems.

Recall that ifw is an OR+ node of the reconciliation graphG, the set of solution sub-
trees T(G/{w}) of the subgraph starting from w corresponds to the optimal reconcili-
ations of the DP subproblem identified by the cell (p,h, e)with which w is labeled. We
define the set EV(w) of an OR+ nodew to be the set of V-equivalence classes of T(G/{w})
(i.e., the set π(T(G/{w})), where πmaps a reconciliation to its event vector, see Defini-
tion 2.15). Then, the sets EV can be computed as follows (for simplicity, we will identify
an OR+ node with the cell (p,h, e)with which it is labeled):
• For each goal node (p,h,�), EV(p,h,�) := {(0, 0, 0, 0}.
• For each OR node (p,h, e), let { ((pi1,hi1, ei1), (pi2,hi2, ei2))}1≤i≤k be its set of grandchild

couples, then EV(p,h, e) can be computed as

⋃
1≤i≤k

⋃
®u1∈EV(pi1,hi1,ei1)
®u2∈EV(pi2,hi2,ei2)


®u1 + ®u2 + (0, 0, 0, ξ(h,h1,h2)) +



(1, 0, 0, 0) if e = ℂ

(0, 1, 0, 0) if e = �

(0, 0, 1, 0) otherwise, e = �


.

(2.8)
The set of event vectors of T(G) that we seek is the union ⋃

w EV(w) taken over the set
of start nodes ofG, i.e., the OR+ nodes labeled with a cell of the form (r(P),h, e).

For each of the O(nm) OR+ nodes of the reconciliation graph, we need to keep an
extra set of sizeO(nm3). The space complexity is thereforeO(n2m4). For each OR node
and for each of its O(n2) grandchild couples, we need to compute the Cartesian sum
of two sets of EV’s of size O(nm3) each; this can be done naively in time O(n2m6) (to
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improve this, see, e.g., [FJ84]). The overall time complexity isO(n5m7).
Given an event vector, finding one optimal reconciliation in that V-equivalence class

can be done using a standard technique called backtracking. Let us define a function
Backtrack that takes two parameters: an OR+ node w of the reconciliation graph and
a vector ®v satisfying ®v ∈ EV(w). The function outputs an optimal subproblem reconcil-
iation φw ∈ T(G/{w}) such that ®e (φw) = ®v. We choose to represent a reconciliation as a
sequence of triples of the form (p,h, e), and the function will output one triple in each
recursive step. The function Backtrack(w, ®v) can be implemented as follows:

1. Let (p,h, e) be the cell with which w is labeled. Output the triple (p,h, e). Ifw is a
goal node, stop. Otherwise, go to step 2.

2. Let { ((pi1,hi1, ei1), (pi2,hi2, ei2))}1≤i≤k be the grandchild couples of w. Find any in-
dex i such that there exist ®u1 ∈ EV(pi1,hi1, ei1) and ®u2 ∈ EV(pi2,hi2, ei2) such that
the sum inside the big braces of Equation (2.8) is equal to ®v (such an i necessar-
ily exists). Choose any such ®u1 and ®u2. Then, call Backtrack((pi1,hi1, ei1), ®u1) and
Backtrack((pi2,hi2, ei2), ®u2).

Given a start node w and an event vector ®v ∈ EV(w), it suffices to call Backtrack(w, ®v)
to get one representative of the V-equivalence class ®v. Finally, if we replace “any” by
“all” in step 2. of Backtrack, we can easily adapt the algorithm so that it enumerates
all reconciliations, or counts the number of reconciliations in a V-equivalence class.

2.3.2 V ∗-equivalence relation

It is easy to see that the method described in the previous section for dealing with the
V-equivalence relation can be applied directly to the V ∗-equivalence relation. For find-
ing all starred event vectors, the extra spaced needed for storing those is onlyO(nm3),
as the total number of starred event vectors is bounded byO(m2); the time complexity
isO(n3m5).

2.4 Dealing with the E-, EL-, and CD-equivalence relations
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2.4.1 E-equivalence relation

By Definition 2.15, an E-equivalence class is a function that maps each parasite node
p to its color of the form (p, e), where e is an event type e ∈ E := {�,ℂ,�,�}. In this
section, we will represent an E-equivalence class as a set T of colors of the form (p, e).
In the same manner, a reconciliation φ ∈ T(G) will be written as a set of triples of the
form (p,h, e). Using this notation, a reconciliationφ is in an E-equivalence class T (i.e.,
π(φ) = T) if and only if, for each triple (p,h, e) ∈ φ, there exists a unique couple (p, e) ∈
T . A set T of couples of the form (p, e) is an E-equivalence class of the instance (i.e.,
T ∈ π(T(G))) if and only if there exists φ ∈ T(G) such that π(φ) = T .

The problem of studying a particular E-equivalence class is easy. Given an E-equivalence
class T , the reconciliation graph G can be pruned in such a way that its set of solution
subtrees corresponds precisely to the reconciliations in the class T (we simply need to
remove all OR nodes unless its label (p,h, e) corroborates the given class, i.e., (p, e) ∈ T).
Counting and enumerating the reconciliations in that particular E-equivalence class
can then be done using exactly the same method as for the “full” reconciliation graph.

Counting and enumerating the E-equivalence classes are, however, more challeng-
ing problems. At present, we will first concentrate on the enumeration of the setπ(T(G))
of E-equivalence classes.

Enumerating the E-equivalence classes

The algorithm is based on the simple idea of traversing the reconciliation graph in a
top-down fashion (a similar approach can be used in an algorithm that enumerates all
the solution subtrees). In order to obtain a polynomial time delay algorithm, during
the traversal, we can no longer consider the nodes one by one; the sets of nodes that
are contained in E-equivalent reconciliations must be traversed together. To make this
clear, we will define conveniently the color of an OR+ node in the reconciliation graph;
the algorithm will then traverse nodes of the same color together.
Definition 2.16 (Color of an OR+ node. Color couple).

• Letw be an OR+ node labeled by a cell (p,h, e) ∈ U, we say thatw is colored by the
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ordered pair κ(w) := (p, e) ∈ V(P) × E.
• Letw1 andw2 be two OR+ nodes colored respectively by (p1, e1) and by (p2, e2). The

color couple of the couple of nodes (w1,w2) is the couple of colors ((p1, e1), (p2, e2)).
To enumerate the E-equivalence classes by a top-down recursive traversal of the

reconciliation graph, the algorithm should achieve the following goal: given a set O of
OR+ nodes of the same color (p, e), enumerate π(T(G/O)), i.e., all E-equivalence classes
of the subgraph G/O. Any such class will include the color (p, e). If p is not a leaf, the
possible events of the two children of the node p are dictated by the color couples of
the grandchild couples gch(O) (by extension, gch of a set of nodes is the union of gch
of every node in the set). A naive algorithm can be described as follows: for each color
couple ((p1, e1), (p2, e2)) of gch(O), first take the union O1 of the first grandchildren of
color (p1, e1) and the union O2 of the second grandchildren of color (p2, e2), then call the
algorithm on O1 and independently on O2, and finally combine the results together,
that is, perform a Cartesian product between π(T(G/O1)) and π(T(G/O2)).

The pitfall of the naive approach is that not every combination between the E-
equivalence classes of the reconciliations of the two child subtrees is valid. Our algo-
rithm, shown in Algorithm 1, can be viewed as an improved version of the naive algo-
rithm in which particular care has been taken to ensure that only valid combinations
are outputted. Along with each E-equivalence class T , it also outputs a set Õ which is
a subset of the input set O: it is equal the union of the root OR+ nodes of all solution
subtrees φ ∈ T(G/O) such that π(φ) = T . Notice that in Algorithm 1 we employ both
the return and the yield statements for the output, the difference being that the latter
does not halt the algorithm.

Before the proof of correctness, let us recall that we use interchangeably the terms
optimal reconciliations and solution subtrees. We denote by r(φ) the root node of the so-
lution subtree φ. Observe that, if φ is a reconciliation of (H,P,σ), then r(φ) is a start
node; if φ is an optimal solution of the DP-subproblem indexed by a cell (p,h, e) (that
is, a reconciliation of P |p), then r(φ) is an OR+ node colored by (p, e).
Lemma 2.2. The functionEnumerate(p,e,O) of Algorithm 1 outputs all E-equivalence classes
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Algorithm 1: Enumerating the set of E-equivalence classes
1 Input: A node p of the parasite tree, an event e ∈ E, a set O of OR+ nodes

2 Require: The nodes in O are all colored with (p, e).
3 Output: All E-equivalence classes ofG/O, and for each class, a subset of O

4 Function Enumerate(p, e, O):

5 if p is a leaf then // necessarily e = � and O only contains goal nodes
6 return {(p, e)}, O
7 end

/* otherwise, necessarily e ∈ {ℂ,�,�} and O only contains OR nodes */
8 Let (p1,p2) be the children of p
9 Partition the set of grandchild couples gch(O) := ⋃

w∈O gch(w) according to
their color couples

10 for each subset {(wi1,wi2)}1≤i≤k of gch(O) of color couple ((p1, e1), (p2, e2)) do

11 Let O1 := ⋃1≤i≤k{si1} // O1 is the set of the first grandchildren
12 for each pair of T1 and Õ1 outputted by Enumerate(p1, e1, O1) do

13 Let O2 := ⋃1≤i≤k
{
wi2

�� ∃w1 ∈ Õ1 s.t. (w1,wi2) ∈ gch(O)}
/* O2 is the set of the second grandchildren compatible with Õ1 */

14 for each pair of T2 and Õ2 outputted by Enumerate(p2, e2, O2) do

15 Let Õ := {
w ∈ O �� ∃ (w1,w2) ∈ Õ1 × Õ2, s.t. (w1,w2) ∈ gch(w)

}
16 yield T1 ∪ T2 ∪ {(p, e)}, Õ
17 end

18 end

19 end

in π(T(G/O)) exactly once, and for each outputted pair of T and Õ, we have

Õ =
⋃
φ

{r(φ) | π(φ) = T , φ ∈ T(G/O)}. (2.9)
Proof. The proof is by induction on the height hp of the subtree P |p. We use the fact
that the pre-condition in the Require statement in Algorithm 1 is true for all recursive
calls of Enumerate (easy induction). When hp = 0, p is a leaf and {(p,σ(p),�)} is the
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only reconciliation in T(G/O), therefore, {(p, e)} is the only E-equivalence class. The
outputted set O contains in this case the unique goal node of G labeled by (p,σ(p),�).
Now we assume hp > 0.

(First direction) Consider a fixed pair of T := T1 ∪ T2 ∪ {(p, e)} and Õ outputted at
Line 16, and take a node w in Õ. We show that there exists a reconciliation φ ∈ T(G/O)
such that w = r(φ) and π(φ) = T (in other words, T is a valid E-equivalence class in
π(T(G))). By the induction hypotheses, T1 is an E-equivalence class so there exists a
reconciliation φ1 of P |p1 such that π(φ1) = T1. Letw1 := r(φ1). Take a node w2 ∈ O2 such
that (w1,w2) ∈ gch(w). By the induction hypotheses, there exists a reconciliation φ2 of
P |p2 such that r(φ2) = w2 and π(φ2) = T2. Define φ := φ1 ∪φ2 ∪ {(p,h, e)}, where (p,h, e)
is the label of w. Then φ is a valid reconciliation in T(G/O) (notice that φ is a solution
subtree ofG/O if and only if (w1,w2) ∈ gch(w)), and satisfies π(φ) = T .

(Second direction) Consider an E-equivalence class T ∈ π(T(G/O)), and take a recon-
ciliation φ ∈ T(G/O) such that π(φ) = T . We show that T is outputted exactly once at
Line 16 together with a set Õ containing the root node of φ. Assume that the root node
w := r(φ) is labeled with the triple (p,h, e), thenφ can be uniquely written as the union
φ1 ∪ φ2 ∪ {(p,h, e)} where φ1 and φ2 are respectively reconciliations of P |p1 and P |p2 .
Furthermore, T can be uniquely written as the union T1 ∪ T2 ∪ {(p, e)} where T1 = π(φ1)
and T2 = π(φ2). Notice that T1 and T2 do not depend on the choice of φ; for T to be out-
putted exactly once, it suffices to show that each of T1 and T2 is outputted exactly once.
For i = 1, 2, letwi := r(φi) and let (pi, ei) := κ(wi) be the color ofwi. At Line 10, we only
need to consider the iteration corresponding to the color couple ((p1, e1), (p2, e2)), as no
other iteration can output T1 or T2 from a recursive call. Sincew1 ∈ O1 andφ1 ∈ T(G/O1),
by the induction hypotheses, T1 is outputted exactly once in Line 12 together with a
set Õ1 containing w1. For this pair of T1 and Õ1, the set O2 computed at Line 13 con-
tains the nodew2. Hence, by applying again the induction hypotheses toφ2 ∈ T(G/O2),
T2 is outputted exactly once in Line 14 together with Õ2 containing w2. It remains to
check that the set O outputted together with T does contain the node w. As we have
(w1,w2) ∈ Õ1 × Õ2, this is straightforward from the computation of O (Line 15). �

Theorem 2.1. Using Algorithm 1, the set of E-equivalence classes of a reconciliation graph
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can be enumerated inO(mn2) time delay, wherem = |V(P)| andn = |V(H)|.

Proof. To obtain all E-equivalence classes in π(T(G)), it suffices to first partition the set
of start nodes of the reconciliation graph according to their colors, then, for each subset
Oi of start nodes of color (p, e), make one call of Enumerate(p, e, O). By Lemma 2.2,
we output every E-equivalence class of T(G/O) exactly once. Since any E-equivalence
class of T(G) is an E-equivalence class of T(G/Ok) for a unique k, we output every E-
equivalence class of T(G) exactly once.

For the complexity, consider the recursion tree formed by the recursive calls of
Enumerate. Notice that each node p of the parasite tree corresponds to exactly one re-
cursive call, the size of the recursion tree is thusO(m). In each recursive call, the par-
titioning of gch(O) and the computation of the sets O1, O2, and Õ can all be done in time
linear in the size of gch(O), which is O(n2). Therefore, O(mn2) time is needed in the
worst case between outputting two E-equivalence classes. �

Counting the E-equivalence classes

The next algorithm is a heuristic: it computes the exact value of |π(T(G))| without a
guaranteed upper bound on the running time or on the space. The idea is to build
an ad-AND/OR graph with a structure similar to that of the reconciliation graph and
whose solution subtrees correspond bijectively to the E-equivalence classes; after this
step, counting and enumerating the E-equivalence classes can be done using the stan-
dard techniques for ad-AND/OR graphs. Just as the reconciliation graph, such a graph
can have a relatively small size even when the number of solution subtrees is huge
(say, 106 arcs in the graph versus 1040 solution subtress). In Chapter 3, Section 3.1.2,
we will see that this heuristic method does allow us to compute some huge numbers of
E-equivalence classes.

Exactly like the reconciliation graph, the graph is constructed in a bottom-up fash-
ion using the dynamic programming technique. The DP-table is denoted by D. Each
step is indexed by a cell (p,h, e) ∈ U. The space of cells is traversed following the post-
order of the parasite tree. Notice that the input of the algorithm will be the reconcil-
iation graph. For simplicity, we use the notation M(p,h, e) to denote the unique OR+
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node in the reconciliation graph labeled by (p,h, e) (see Section 2.1.3, and also Equa-
tions (2.4) and (2.5)). At the end of the step (p,h, e), the valueD(p,h, e) of the DP-table
will also be an OR+ node: instead of being labeled by a triple (p,h, e), this node will be
labeled by a couple (p, e) (i.e., a color, see Definition 2.16).

We will work on OR+ nodes while keeping in mind the following: an OR+ nodew in-
duces a complete ad-AND/OR graph structure containing all nodes that are reachable
from w and in which w is the unique start node. We denote by T(w) the set of solution
subtrees of the ad-AND/OR graph induced by the OR+ node w. This “new” notation
should be intuitive: ifw is an OR+ node in a given graphG, the set T(w)was denoted by
T(G/{w}). When we consider an OR+ nodes for which the set of solution subtrees cor-
responds to a set of reconciliations (that is, an OR+ node of the reconciliation graph),
we denote by π(T(w)) the set of E-equivalence classes (see also Equation (2.7), Defini-
tion 2.15):

π(T(w)) := ⋃
φ∈T(w)

π(φ). (2.10)
Either for a reconciliation or for an E-equivalence classes, we will use its correspon-
dence with the label set (or a set of colors) of a solution subtree: by looking at the labels
of the OR+ nodes in each solution subtree in T(w), we obtain a set of labels of the form
(p,h, e) or (p, e). As we mentioned in the beginning of this section, a set of colors T is
a valid E-equivalence class for the subproblem (p,h, e), i.e., T ∈ π(T(M(p,h, e))), if and
only if there exists φ ∈ T(M(p,h, e)) such that π(φ) = T .

Using this notation, we know that the OR+ nodeM(p,h, e)of the reconciliation graph
satisfies the following:
• T(M(p,h, e)) corresponds bijectively to the set of optimal reconciliations of the

DP-subproblem indexed by (p,h, e) (those are reconciliationsφ of the subtree P |p
satisfying φ(p) = h and Eφ(p) = e)).

To obtain an ad-AND/OR graph as desired, the OR+ node D(p,h, e) of the DP-table
should satisfy the following lemma, which states in particular that two different solu-
tion subtrees should not correspond to the same label set (we will show this once we
will have described how to computeD(p,h, e)):
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Lemma 2.3. T(D(p,h, e)) corresponds bijectively to the set of E-equivalence classes of the

DP-subproblem indexed by (p,h, e), that is, (1) we have the equivalence between the two sets

of label sets:

T(D(p,h, e)) = π(T(M(p,h, e))), (2.11)
and (2) T(D(p,h, e)), as a multiset of label sets, has no redundancies.

The DP-algorithm for computingD(p,h, e) relies on a certain Merge operation that
we will not present immediately. Without describing how it does it, we first state what

it does:
Lemma 2.4. The Merge function takes as input a listw1, . . . ,wk of OR nodes satisfying:

• (Pre-condition 1) Everywi has the same label,

• (Pre-condition 2) For every grandchild couple (wi1,wi2) ∈ gch(wi), both T(wi1) and

T(wi2), as multisets of label sets, have no redundancies.

It returns a single OR nodewm such that

• (Post-condition 1) We have the equality between the two sets of label sets

T(wm) =
k⋃
i=1

T(wi) , (2.12)
• (Post-conditions 2) T(wm), as a multiset of label sets, has no redundancies.

Now, we are ready to describe how to fill up the DP-tableD. Since the space of cells
is the same, and the cells are filled in the same order, the algorithm is very similar to
the construction of the reconciliation graph (see Section 2.1.3). For each cell (p,h, e) ∈ U
such thatM(p,h, e) exists, in the post-order of V(P):
• If p is a leaf,D(p,h, e) is a goal node labeled by (p, e).
• Otherwise, p is an internal node with children (p1,p2).

– For each child AND node ofM(p,h, e), let (p1,h1, e1) and (p2,h2, e2) be the la-
bels of its two child OR+ nodes. Create an OR node wi labeled by (p, e) with
one single child AND node. Connect this AND node to the two OR+ nodes
D(p1,h1, e2) andD(p2,h2, e2).
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– D(p,h, e) is an OR node labeled by (p, e) and is equal to Merge(w1, . . . ,wk),
where thewi’s are the OR nodes created in the previous step.

Proof. (of Lemma 2.3) The second part, i.e., T(D(p,h, e))has no redundancies, is a direct
result of Lemma 2.4, post-condition 2 (it can be checked by easy induction that the
pre-conditions of Merge are satisfied). We will prove the first part of Lemma 2.3, i.e.,
Equation (2.11), by induction on the height hp of the subtree P |p. When hp = 0, p is
a leaf and {(p,h, e)} is the only reconciliation in T(M(p,h, e)), thus, {(p, e)} is the only
E-equivalence class. Now we assume hp > 0.

(First direction) Take T ∈ T(D(p,h, e)). It can be written as T1 ∪ T2 ∪ {(p, e)} where
Ti ∈ T(D(pi,hi, ei)), for i = 1, 2, for previously filled cells (pi,hi, ei). By the induction
hypotheses, T1 and T2 are valid E-equivalence classes of reconciliations of the subtrees
P |p1 and P |p2 . Now, the set of colors T is a valid E-equivalence class if and only if there
exists an OR+ nodew colored by (p, e) in the reconciliation graph that has a grandchild
couple (w1,w2) ∈ gch(w) of color couple ((p1, e1), (p2, e2)) (see Definition 2.16). This is
true; it suffices to choosew :=M(p,h, e).

(Second direction) Take φ ∈ T(M(p,h, e)). It can be written as φ1 ∪ φ2 ∪ {(p,h, e)}
where φi ∈ T(M(pi,hi, ei)), for i = 1, 2, for previously filled cells (pi,hi, ei). By the
induction hypotheses, there exist T1 ∈ T(D(p1,h1, e1)) and T2 ∈ T(D(p2,h2, e2)) such that
π(φi) = Ti, for i = 1, 2. Let T := T1 ∪ T2 ∪ {(p, e)}. It is clear that π(φ) = T . For T to
be a solution subtree, i.e., for T to be in T(D(p,h, e)), it suffices to find an OR node wi
created during the construction step (before applying Merge, see also Lemma 2.4) such
that T ∈ T(wi). Such awi can be found, since there exists a child AND node ofM(p,h, e)
having (M(p1,h1, e1),M(p2,h2, e2)) as children (it is the child AND node ofM(p,h, e) in
the solution subtree φ). �

It remains to describe the Merge function. The presentation is complicated, and is
deferred to the end of this chapter in Section 2.5 as Supplementary material.
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2.4.2 CD-equivalence relation

To apply the methods for enumerating and counting the E-equivalence classes to the
CD-equivalence relation, we only need to adapt the Definition 2.16 of the color of an
OR+ node so that it correctly reflects the color of a parasite node under a reconciliation
for the CD-equivalence relation (see Definitions 2.14 and 2.15). Concretely, if w is an
OR+ node labeled by (p,h, e), its color is either (p,h, e), if e ≠ �, or (p, ?,�) otherwise.

2.4.3 EL-equivalence relation

To apply the same methods as for the E-equivalence relation, we can build a slightly
modified version of the reconciliation graph which keeps tracks of the host-switch
arcs. Consider a new set of event types E′ := {�,ℂ,�,�L,�R} (see Definition 2.14).
Given a reconciliation graphG, we will modifyG so that each OR+ node, instead of being
labeled by (p,h, e) ∈ V(P) × V(H) × E, will now be labeled by (p,h, e′) ∈ V(P) × V(H) × E′.
To do this, for every OR node w in G labeled by a cell (p,h, e) such that e = �, in the
post-order of V(P), we perform the following operations:

1. Partition the set of grandchild couples gch(w) into two (potentially empty) sub-
sets denoted by gchL and gchR: for each (w1,w2) ∈ gch(w), respectively labeled by
(p1,h1, e1) and (p2,h2, e2), we put (w1,w2) to gchL if h1 w

/ h, otherwise (we have
necessarily h2 w

/ h), we put (w1,w2) to gchR.
2. If gchL = ∅, simply change the label of w to (p,h,�L). Otherwise, if gchR = ∅,

simply change the label ofw to (p,h,�R). In the remaining case, that is, both gchL
and gchR are nonempty, go to step 3.

3. Duplicatew into two nodeswL andwR, respectively labeled by (p,h,�L)and (p,h,�R)
(to duplicate a node means to copy all the incoming and outgoing arcs). Remove
the arcs between wL and some of its children until gch(wL) = gchL. Remove the
arcs betweenwR and some of its children until gch(wR) = gchR.

After this step (which takes linear time in the size of the graph), any method for the
E-equivalence relation can be used directly without modification.
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2.5 Supplementary material: the Merge function

The goal of this section is to present the Merge function mentioned in Lemma 2.4.
In this section, we do not work on the reconciliation graph but on some general ad-
AND/OR graph represented by its start node w, and such that each of its OR+ node is
labeled by a color of the form (p, e). We will be interested in questions such as “does

T(w), as a multiset of label sets, have redundancies?” In order to clarify and simplify this
statement, we start by introduce some new notations.

2.5.1 Notations and definitions

If T ∈ T(w) is a solution subtree, we denote by C(T ) the set of colors of the OR+ nodes
in T (i.e., the label set). What we have been calling the multiset of label sets is denoted
as the multiset C(w) := {C(T ) | T ∈ T(w)}. Instead of talking about label sets or sets
of colors, we will consider colorings, which we define next. Indeed, for any w that we
will encounter in the algorithm, a label set in C(w) always coincides with a coloring of
a parasite subtree.

We say that an OR+ node w colors a node p ∈ V(P) if its color κ(w) = (p, e) for some
e ∈ E. We will also say that an OR+ node colors a parasite subtree, using the following
recursive definition:
Definition 2.17. Let p ∈ V(P). Letw be an OR+ node that colors p. We say thatw colors

the subtree P |p if it satisfies the following:
• If p is a leaf, thenw is a goal node.
• If p is an internal node with children (p1,p2), then w is an OR node, and for each

grandchild couples (w1,w2) ∈ gch(w),w1 colors P |p1 andw2 colors P |p2 .
Given a tree and a fixed set of colors, a coloring (or node-coloring) of the tree is a

function that maps each node of the tree to a color. If w colors P |p, then each solution
subtree T ∈ T(w) corresponds to a coloring of the subtree P |p; this coloring, which can
be written as a label set, is also denoted by C(T ). Notice that each coloring in the mul-
tiset C(w) has the same root color, i.e., the color assigned to the root p of the subtree P |p
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(the root color is simply κ(w)). The next important definition replaces the statement
“the multiset C(w) has no redundancies” by a single adjective:
Definition 2.18. Let p ∈ V(P) and letw be an OR+ node that colors P |p. We say that the
nodew is neat if no two colorings in the multiset C(w) are the same, in other words, for
any two solution subtrees T1 and T2 ∈ T(w),

C(T1) = C(T2) ⇐⇒ T1 = T2.
The following result is easy: if an OR node w is neat, and if (w1,w2) ∈ gch(w), then

both OR+ nodesw1 andw2 are neat.
Using the new notations, Lemma 2.4 can be re-written as follows:

Lemma 2.5 (Reformulation of Lemma 2.4). TheMerge function takes as input a listw1, . . . ,wk
of OR+ nodes satisfying:

• (Pre-condition 1) Everywi colors the same subtree P |p with the same root color, for

some node p ∈ V(P),

• (Pre-condition 2) Everywi is neat.

It returns a single OR+ nodewm such that

• (Post-condition 1) We have the equality between the two sets of colorings

C(wm) =
k⋃
i=1

C(wi). (2.13)
• (Post-condition 2)wm is neat.

Notice that the union operation in Equation (2.13) is the union for sets; by the pre-
condition 2, every C(wi) is in fact a set (multiset whose elements are of multiplicity
one); the left hand side is also a set thanks to the post-condition 2.

2.5.2 Description of Merge

Merge

Informally speaking, the Merge function has two objectives: completeness (we must
capture all colorings of the input) and neatness (we must not produce duplicates). While
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the second objective seems nontrivial, there is an easy method for achieving the first
objective, or Equation (2.13) (it is clear that any candidate output wm should have the
same color as any input wi; we will omit the color of wm and focus on its children or
its grandchild couples; we also omit the trivial case where the function applies to goal
nodes instead of OR nodes):
• (Step 1 of Merge) Create an OR node wm and connect it to every one of the child

AND nodes of the inputwi’s, so that the set of children ofwm is the union of the
children of the inputwi:

ch(wm) =
k⋃
i=1
ch(wi).

This is exactly what we decided to do in Merge, followed by a second step:
• (Step 2 of Merge) Call MakeNeat(wm) so thatwm becomes neat.

We still need to describe MakeNeat, but we are one step closer, because, instead of trying
to capture all the colorings of the (multiple) input graphs, we now only need to modify
one single graph while maintaining the same set of distinct colorings.
Lemma 2.6. The MakeNeat function takes as input a single OR nodew0 satisfying:

• (Pre-condition 1)w0 colors a subtree P |p, for some node p ∈ V(P).

• (Pre-condition 2) For every grandchild couple (w1,w2) ∈ gch(w0), bothw1 andw2 are

neat.

It returns a single OR nodewm such that

• (Post-condition 1)wm is neat.

• (Post-condition 2) C(wm) is equal to the set of distinct colorings in C(w0).

Notations

To give a characterization of the neatness of a node, we need some more notations.
Notice that a grandchild couple (w1,w2) ∈ gch(w0) corresponds to an AND node in
ch(w0). Since an AND node is uniquely identified by its two child OR+ node, in this
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section, we simply denote an AND node by a couple of OR+ nodes, and we also write
(w1,w2) ∈ ch(w0). The algorithm will create AND nodes that are not children of some
already fixed OR nodes; their common properties are related to colorings of a parasite
subtree.
Definition 2.19. Let p ∈ V(P) \ L(P)with children (p1,p2). Let (w1,w2) be an AND node.
We say that (w1,w2) neatly colors the subtree P |p ifw1 colors P |p1 andw2 colors P |p2, and
bothw1 andw2 are neat.

If an AND node (w1,w2) neatly colors P |p, we denote byw1 ×w2 the set
w1 ×w2 := C(w1) × C(w2).

An element C of w1 × w2 is called a coloring of P |p with undetermined root color. In a
similar spirit as for the Cartesian products of colorings, we next introduce shorthands
for the intersection and the difference of sets of colorings. If w1 and w2 are two neat
OR+ nodes that color P |p, we denote, respectively, byw1 ∩w2 andw1 \w2 the sets

w1 ∩w2 := C(w1) ∩ C(w2), w1 \w2 := C(w1) \ C(w2).

MakeNeat

We can now give a characterization of the neatness of a node and present a strategy for
the MakeNeat function. Letw0 be the input of MakeNeat. It is an OR+ that colors P |p for
some p ∈ V(P). If p is a leaf, then w0 is necessarily neat. Otherwise, that is, if p is an
internal node:
• If, for every two child AND nodes of w0, indexed by i and j, and denoted respec-

tively by (wi1,wi2) and (wj1,wj2) ∈ ch(w0) (by the pre-conditions, all child AND nodes
neatly color P |p), we have

i ≠ j =⇒
(
wi1 ×wi2

)
∩

(
w
j1 ×wj2

)
= ∅, (2.14)

thenw0 is neat.
To put it short, an OR node is neat if the sets of colorings (with undetermined root
color) of its child AND nodes have pairwise empty intersections.
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A straightforward strategy for MakeNeat is to repeatedly find an “intersecting” pair
of child AND nodes and to make them “intersection-free”:
• Function MakeNeat(w0): while there is a pair of AND nodes (wi1,wi2) and (wj1,wj2) in
ch(w0) such that (

wi1 ×wi2
)∩ (

w
j1 ×wj2

)
≠ ∅, replace those two nodes by MakeInter-

sectionFree((wi1,wi2), (wj1,wj2)).
Lemma 2.7. The MakeIntersectionFree function takes as input two AND nodes (wi1,wi2)
and (wj1,wj2) such that both input nodes neatly color P |p for some p ∈ V(P), and(

wi1 ×wi2
)
∩

(
w
j1 ×wj2

)
≠ ∅. (2.15)

It returns a set A of AND nodes
{(wk1 ,wk2 )}k, all of which neatly color P |p, and such that⋃

k

wk1 ×wk2 =
(
wi1 ×wi2

)
∪

(
w
j1 ×wj2

) , (2.16)
and the sets of coloringswk1 ×wk2 of nodes in A have pairwise empty intersections.

Table 2.4 shows what we have chosen as the output of MakeIntersectionFree de-
pending on the cases (some easy set-theoretical computation will suffice for checking
that the output verifies Equation (2.16) and the condition of pairwise empty intersec-
tion). The cases represent the different causes for two Cartesian products of sets to be
have nonempty intersection (see Equation (2.15)). The first two cases (a) and (b) uti-
lizes the Merge function (here, Merge is used recursively, as it is called on OR+ nodes
that color a subtree P |p′ of smaller height than P |p, the latter is colored by the input
nodes of the Merge call from which the current call of MakeIntersectionFree origi-
nates); the output in these two cases is only one AND node. In cases (c) – (f), the output
consists of two AND nodes (however, one is potentially empty, see the paragraph after
Lemma 2.8 below). Notice that the four cases (c) – (f) are not not mutually exclusive
(all the cases are checked sequentially until the first applicable case is found). In the
most general case, that is, case (g), all four set differenceswi1 \wj1,wj1 \wj1,wi2 \wj2, and
w
j2\wj2 are nonempty; the output consists of three AND nodes. In cases (c) – (g), one of

the two input AND nodes does not undergo any modification and is outputted directly;
the modification made on the other input node (in case (g), it is also split in two) is
based on the computation of intersection and difference of OR+ nodes (last column of
Table 2.4), which we will present in the next section.
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Case Output AND nodes Notes

(a) C(wi1) = C(wj1)
(
wi1, Merge(wi2,wj2))

(b) C(wi2) = C(wi2)
(
Merge(wi1,wj1),wi2)

(c) C(wi1) ⊆ C(wj1) (wi1,wdiff2 ) and (wj1,wj2) C(wdiff2 ) = wi2 \wj2
(d) C(wj1) ⊆ C(wi1) (wi1,wi2) and (wj1,wdiff2 ) C(wdiff2 ) = wj2 \wi2
(e) C(wi2) ⊆ C(wj2) (wdiff1 ,wi2) and (wj1,wj2) C(wdiff1 ) = wi1 \wj1
(f) C(wj2) ⊆ C(wi2) (wi1,wi2) and (wdiff1 ,wj2) C(wdiff1 ) = wj1 \wi1

(g) none of the above
applies

(wdiff1 ,wi2) and (winter1 ,wdiff2 )
and (wj1,wj2)

C(wdiff1 ) = wi1 \wj1
C(winter1 ) = wi1 ∩wj1
C(wdiff2 ) = wi2 \wj2

Table 2.4: A functionMakeIntersectionFree that satisfies Lemma 2.7. It uses theMerge
function (see Lemma 2.5) and the InterDiff function (see Lemma 2.8).
Lemma 2.8. The InterDiff function takes as input two OR+ nodes w1 and w2, such that

both nodes are neat, and color P |p for some p ∈ V(P). It outputs two nodes winter and wdiff

such that both nodes are neat, and

C(winter) = w1 ∩w2, C(wdiff) = w1 \w2. (2.17)
In the case of empty intersection or difference, the output is a special symbol Empty.

In cases (c) – (f), it can happen that the “diff” node in the output is Empty. This
corresponds to the situation where both cases (c) and (e) or both (d) and (f) apply. In-
tuitively, we can say that one input AND node is entirely included in the other one as
sets of colorings. In this case, the output is just one single AND node, and it is equal to
one of the input nodes (the “bigger” one, or the one that includes the other).

Notice that the MakeIntersectionFree function needs to test for the inclusion and
the equality between sets of colorings. The equality is checked by double inclusion
(an improved method is discussed at the end of Section 2.5.4). The inclusion can be
checked by computing the intersection and the difference:

C(w1) ⊆ C(w2) ⇐⇒ (w1 ∩w2 ≠ ∅) ∧ (w1 \w2 = ∅).
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2.5.3 Intersection and difference

In this section, an AND node can either be denoted by a single letter v or by a couple
(w1,w2) of OR+ nodes that represents its children. If v := (w1,w2) neatly colors P |p, we
denote its set of colorings with undetermined root color by

C(v) = w1 ×w2 := C(w1) × C(w2).

Preliminaries

Let w1 and w2 be the two input nodes of InterDiff. If their colors are different, it is
clear that C(w1) ∩ C(w2) = ∅ and C(w1) \ C(w2) = C(w1). Suppose now that they have
the same color. If they are both goal nodes, the sets of colorings C(w1) and C(w2) have
only one element, that is, their common color. In this case, C(w1) ∩ C(w2) = C(w1) and
C(w1) \C(w2) = ∅. Suppose now thatw1 andw2 are both OR nodes. The idea is to express
the intersection and the difference using recursive calls of InterDiff on OR+ nodes
that can be found in the grandchild couples ofw1 andw2.

This idea turns out to work well: we are able to find a practical algorithm. Before
presenting the algorithm, it is convenient to introduce a subroutine, called AND-Inter-

Diff. It is a function that takes two parameters, a set A of AND nodes and a single AND
node vj, all of them neatly color P |p for some p ∈ V(P). It returns two sets of AND nodes
Ainter andAdiff. All the sets of AND nodes (one in the input and two in the output) satisfy
additionally the property of having pairwise empty intersections as sets of colorings (see
Equation (2.14)). The output should satisfy the following:⋃̇

v∈AinterC(v) should be equal to (⋃̇
vi∈A

C(vi)
)
∩ C(vj) =

⋃̇
vi∈A

(
C(vi) ∩ C(vj)

) ,⋃̇
v∈AdiffC(v) should be equal to (⋃̇

vi∈A
C(vi)

)
\ C(vj) =

⋃̇
vi∈A

(
C(vi) \ C(vj)

) . (2.18)

All the union operations in the above equations are decorated with a small dot, which
indicates that those are unions on pairwise disjoint sets. To go from the left hand side
to the right hand side of the equal signs in Equation (2.18), we have used the right dis-

tributive property of the intersection and the difference over the union.
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AND-InterDiff

The function AND-InterDiff(A, vj) can be implemented as follows:

• If A = ∅, return two empty sets.

• If |A| > 1, for each vi ∈ A, call AND-InterDiff on the singleton set {vi} and vj.
Return the union of all the outputted Ainter, and the union of all the outputted
Adiff (we are using the right distributive property, see Equation (2.18)). Since all
the union operations are on pairwise disjoint sets that contain pairwise disjoint
AND nodes, a union can simply be implemented as putting AND nodes to a list.

• In the remaining case, let vi be the only element of A. We have two AND nodes
vi := (wi1,wi2) and vj := (wj1,wj2) such that both neatly color P |p for some p ∈ V(P),
and we want to compute their intersection and difference. To do this, we will use
the InterDiff function for two OR+ nodes. Let winter1 and wdiff1 be the output of
InterDiff(wi1,wj1). Letwinter2 andwdiff2 be the output of InterDiff(wi2,wj2).

– If neither winter1 nor winter2 is Empty, return Ainter := {(winter1 ,winter2 )}. Other-
wise, return Ainter := ∅.

– (1) Ifwdiff1 is not Empty andwdiff2 is Empty, return Adiff := {(wdiff1 ,wi2)}.
(2) Ifwdiff1 is Empty andwdiff2 is not Empty, return Adiff := {(wi1,wdiff2 )}.
(3) Otherwise, that is, neitherwdiff1 norwdiff2 is Empty,

(3a) If eitherwinter1 orwinter2 is Empty (or both), return Adiff := {(wi1,wi2)}.
(3b) Otherwise, return Adiff := {

(wdiff1 ,wi2), (winter1 ,wdiff2 )
}.

Similar to what we did in MakeIntersectionFree, the different cases of AND-InterDiff
can be understood by asking in which situations two Cartesian products have nonempty
set difference; the correctness of the output can be verified by some easy set-theoretical
computation. Notice that only the case (3b) requires us to check carefully that the two
AND nodes in Adiff have empty intersection.
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InterDiff

Algorithm 2 shows the function InterDiff. The idea that we mentioned in the begin-
ning of this section corresponds to the for loop at Lines 13–21. Every occurrence of
the ∪ operator corresponds to the union between disjoint sets of AND nodes, and the
AND nodes in the same set always have pairwise empty intersection. The variable Ai

records the difference between vi, the i-th child AND node of w1 and the union of the
first j child AND nodes ofw2 (here, the sets of children have an arbitrary ordering), and
is equal to Adiff

i,j during the inner loop (Line 18), for 1 ≤ j ≤ |ch(w2)|. We have, at Line 16,
if j > 1:

C(Adiff
i,j ) = C(Adiff

i,j−1) \ C(vj) =
(
C(vi) \

( ⋃
1≤k≤j−1

C(vk)
))
\ C(vj) = C(vi) \

( ⋃
1≤k≤j

C(vk)
)

.

If j = 1, C(Adiff
i,j ) = C(vi) \ C(vj). The intersection between the i-th child vi ofw1 and the

j-th child ofw2 can also be expressed using the intersection between vi and the first j
children ofw2 (before computing the intersection with vj, we first subtract some pre-
vious child AND nodes that are disjoint with vj; this does not change the intersection).
We have, at Line 16, if j > 1:

C(Ainter
i,j ) = C(Adiff

i,j−1) ∩ C(vj) =
(
C(vi) \

( ⋃
1≤k≤j−1

C(vk)
))
∩ C(vj) = C(vi) ∩ C(vj).

If j = 1, C(Ainter
i,j ) = C(vi)∩C(vj). At the end of the inner loop, the following sets are added

(using unions of disjoint sets) to Ainter and Adiff that collects all the intersection and
difference between vi, the i-child ofw1, and all the children ofw2:

|ch(w2)|⋃
j=1

C(Ainter
i,j ) =

|ch(w2)|⋃
j=1

(
C(vi) ∩ C(vj)

)
= C(vi) ∩ ©«

|ch(w2)|⋃
j=1

C(vj)ª®¬
C

(
Adiff
i,|ch(w2)|

)
= C(vi) \ ©«

|ch(w2)|⋃
j=1

C(vj)ª®¬ .

The above observations, together with the right distributive property of intersection
and union, show that we indeed get the correct sets of colorings for Ainter and Adiff, at
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the end of the outer loop (Line 21):
C(Ainter) =

|ch(w1)|⋃
i=1

©«
|ch(w2)|⋃
j=1

C(Ainter
i,j )ª®¬ =

©«
|ch(w1)|⋃
i=1

C(vi)ª®¬ ∩ ©«
|ch(w2)|⋃
j=1

C(vj)ª®¬
C(Adiff) =

|ch(w1)|⋃
i=1

C
(
Adiff
i,|ch(w2)|

)
=

©«
|ch(w1)|⋃
i=1

C(vi)ª®¬ \ ©«
|ch(w2)|⋃
j=1

C(vj)ª®¬ .
These two sets consist of colorings with undetermined root color. At the end of Al-
gorithm 2, we add the correct root color and create the two OR nodes having respec-
tively Ainter and Adiff as sets of children. We then obtain the desired result as stated in
Lemma 2.8, Equation (2.17):

C(winter) = w1 ∩w2, C(wdiff) = w1 \w2.

2.5.4 Another operation on a set of AND nodes

We have already finished the description of all the components of the Merge function.
The idea was quite simple: after a “naive merge” of the input AND nodes, we remove all
the duplicates in the set of colorings by making every pair of AND nodes “intersection-
free”. This basic operation, called MakeIntersectionFree, can be easily implemented
given that we know how to compute the intersection and the difference between two
OR+ nodes. This is done by the InterDiff function which builds the set of child AND
nodes of the two output nodes (intersection and difference nodes) in a nested loop over
the children of the input nodes.

The InterDiff function is therefore the most basic operation and is needed at least
O(n2) times, where n is the number of child AND nodes in all the input nodes of Merge.
The only nontrivial operation in the nested loop of InterDiff is the subroutine called
AND-InterDiff which applies InterDiff recursively while iterating through a set of
AND nodes. The performance of InterDiff is sensitive to the size of those sets of AND
nodes. Any set of AND nodes that are considered in the algorithm contains only AND
nodes that are pairwise disjoint as sets of colorings, and it is constructed in two ways,
either (1) by initializing with a small number of AND nodes, or (2) by performing the
union operation between pairwise disjoint sets. For the purpose of improving the per-
formance and reducing the memory required for storing the result AND/OR graph, we
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Algorithm 2: Intersection and difference between two OR+ nodes
1 Input: Two neat OR+ nodes that color P |p for some p ∈ V(P).
2 Output: Two neat OR+ nodeswinter andwdiff.

3 Function InterDiff(w1,w2):

4 ifw1 andw2 do not have the same color, that is, κ(w1) ≠ κ(w2) then

5 returnwinter := Empty andwdiff := w1
6 end

7 Let p ∈ V(P) such thatw1 andw2 color P |p
8 if p is a leaf then

9 returnwinter := w1 andwdiff := Empty

10 end

11 Let (p1,p2) be the children of p
12 Let Ainter and Adiff be empty sets
13 for each child AND node vi ∈ ch(w1) do

14 Ai ← {vi}
15 for each child AND node vj ∈ ch(w2) do

16 Let Ainter
i,j and Adiff

i,j be the output of AND-InterDiff(Ai, vj)
17 Ainter ← Ainter ∪Ainter

i,j
18 Ai ← Adiff

i,j
19 end

20 Adiff ← Adiff ∪Ai

21 end

22 Letwinter be an OR node with κ(winter) := κ(w1) and ch(winter) := Ainter
23 Letwdiff be an OR node with κ(wdiff) := κ(w1) and ch(wdiff) := Adiff

/* If Ainter or Adi� is empty, the corresponding output is set to Empty */
24 returnwinter andwdiff

now introduce another operation, called RemovePartners, that decreases the size of a
set of AND nodes (without changing, of course, the sets of colorings). It can be used
anywhere in AND-InterDiff and InterDiff, immediately after a union operation. It
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can also be used in the function MakeNeat which also operates on a set of AND nodes:
after repeatedly applying MakeIntersectionFree so that there are no intersecting pair
of AND nodes, RemovePartners can be used to reduce the number of children of the
output OR node.

Given a setA of AND nodes, the RemovePartners operation repeatedly finds a pair of
AND nodes satisfying certain conditions, called a partner pair, and replaces them by a
single AND node, and it stops when no partner pair can be found. By assumption, any
two distinct AND nodes (wi1,wi2) and (wj1,wj2) in A satisfy the condition of being disjoint

as sets of colorings, that is, (
wi1 ×wi2

)
∩

(
w
j1 ×wj2

)
= ∅. (2.19)

Table 2.5 shows the two cases in which two AND nodes in A form a partner pair, and
gives the new AND node that replaces them. The ∪̇ symbol means to perform a “naive
merge” between two OR nodes of the same color by taking the union of their child AND
nodes (this is the same as the first step of Merge; the second step of Merge is unneces-
sary here, because the sets of colorings of the two OR nodes are necessarily disjoint).
Notice that the first two cases of MakeIntersectionFree also deal with similar situa-
tions (there, however, the second step of Merge cannot be omitted).

Case To be replaced by

C(wi1) = C(wj1) and κ(wi2) = κ(wj2) (wi1 , wi2 ∪̇wj2)
C(wi2) = C(wj2) and κ(wi1) = κ(wj1) (wi1 ∪̇wj1 , wi2)

Table 2.5: The two cases in which two AND nodes (wi1,wi2) and (wj1,wj2) satisfying
Equation (2.19) form partner pair, and the corresponding replacement node in the
RemovePartners function.

In RemovePartners, we need to check for the equality between the sets of colorings
of two OR nodes. Unlike MakeIntersectionFree which checks the equality using the
double inclusion criterion (by computing the intersection and the difference between
several pairs of OR+ nodes), RemovePartners, being an optional operation by nature,
does not require an exact equality check with double inclusion. A sufficient condition
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for C(w1) = C(w2) is that the two graphs are isomorphic with an isomorphism that pre-

serves the colors. This condition can be checked in linear time in the size of the graph
(or faster in practice using hashing techniques), as we can see in the following recur-
sive definition.
Definition 2.20. Given two neat OR+ nodesw1 andw2 that color P |p for some p ∈ V(P),
we say that they are sufficiently equal if κ(w1) = κ(w2) and, either

1. p is a leaf (sow1 andw2 are goal nodes), or
2. w1 andw2 have the same number of children, and ch(w1) and ch(w2) can be ordered

in such a way that for each i = 1, . . . , |ch(w1)|, the i-th child (w11,w12) ofw1 and the
i-th child (w21 ,w22) ofw2 satisfy
• w11 andw21 are sufficiently equal, and
• w12 andw22 are sufficiently equal.

In the implementation, MakeIntersectionFree can also gain an improved perfor-
mance by checking the equality (for the first two cases) in two phases: first we check
the sufficient equality, and only if the first test fails, we check the double inclusion.
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Chapter 3
Phylogenetic tree reconciliation:

practical contributions

3.1 Experimental results

We implemented in Python the algorithms for enumerating and counting the equiv-
alence classes from Chapter 2. In this section, we apply them on biological datasets
and give some experimental results that demonstrate their usefulness in practice. The
experiments are run on a laptop PC with Intel i5-3380M CPU (2.90 GHz, 4 cores) and
8 GB RAM.

3.1.1 Instances

An instance of the Reconciliation problem consists of a dataset, that is a triple
(H,P,σ), where H and P are phylogenetic trees and σ : L(P) → L(H) is a function, and
a cost vector ®c := (c(ℂ), c(�), c(�), c(�)) that gives the cost value that we associate with
each event type among cospeciation, duplication, host-switch, and loss.

Each dataset that we used is identified by an alphanumeric code. The code, the size
(measured as the number of nodes in the treesH and P), and the source of each dataset
are given in Table 3.1. All the datasets have already been used in the literature (see
[BAK13; Don+15]) and together cover different situations (sizes and topologies of the

65



trees) and different contexts: the COG datasets are from a genes-species context, while
all the other datasets are from a hosts-parasites or hosts-symbionts context.

For each dataset, we formed five instances using five different cost vectors: (−1, 1, 1, 1),
for maximizing the cospeciation; (0, 1, 1, 1), for minimizing the events that lead to in-
congruencies between the tree topologies; (0, 1, 2, 1)and (0, 2, 3, 1), where host-switches
are more penalized; (0, 1, 1, 0), which is a vector chosen only for theoretical purposes
and does not penalize cospeciations and losses.

With 15 datasets and 5 cost vectors, we have a total of 75 instances.

Dataset |V(H)| |V(P)| Notes and references

EC 13 19 Encyrtidae (parasitic wasps) and Coccidae [Den+13]
GL 15 19 Gophers and Lice [HN88; HP95]
SC 21 27 Seabirds and Chewing Lice [PPG03]
RP 25 25 Rodents and Pinworms [Hug03]

SFC 29 31 Anther-smut fungi and their Caryophyllaceous hosts [Ref+08]
PML
PMP 35 35 Pelican seabirds and Lice, the trees are generated using either a maxi-

mum likelihood (L) or a maximum parsimony (P) approach [Hug+07]
FD 39 101 Fish and Dactylogyrus [BMB13]
RH 67 83 Rodents and Hantaviruses [RHC09]
PP 71 81 Primates and Pinworm [Hug99]

COG2085
COG3715
COG4964
COG4965

199
87
79
53
59

Genes and species trees from the Clusters of Orthologous Groups
of proteins (COG) database. The unrooted gene trees are rooted in
such a way that the minimum cost of the Reconciliation problem
is minimized among all choices of root. [Tat+00; DA11]

WOLB 773 773 Wolbachia (bacteria) and their arthropod hosts [Sim+11; Sim12]
Table 3.1: All the datasets that were used in the experiments and their references.
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3.1.2 Numbers of equivalence classes

Introduction

The first set of experiments is concerned with the number of equivalence classes of the
set of optimal reconciliations, for each equivalence relation (this number is denoted
by |π(T(G))| in Chapter 2). As we mentioned in Chapter 2, Section 2.2.2, for an equiva-
lence relation to be of practical interest, we typically expect the number of equivalence
classes to be significantly smaller than the number of optimal reconciliations, that is,

|π(T(G))| � |T(G)|,
where � denotes “much smaller than”. Indeed, if the number of equivalence classes
were close to the number of optimal optimal reconciliations, analyzing one represen-
tative per equivalence class would not be advantageous, as analyzing all optimal rec-
onciliations would require a comparable level of human effort but provides more in-
formation.

Notice that, even without performing the enumeration of equivalence classes or the
enumeration of the representatives, the number of equivalence classes itself can still be
used as a diversity measure. Consider for example the following situation: if we have a
dataset that yields two drastically different numbers of equivalence classes (one is very
small, while the other one is very large), say the numbers of E-equivalence classes, for
two “similar” cost vectors, say (0, 1, 1, 1) and (0, 1, 2, 1), this may indicate that the so-
lution space (i.e., the set of optimal reconciliations) for this dataset is sensitive to the

choice of the cost vector. The issue of sensitivity to event costs has been studied lit-
erature, in particular in [BAK13], where the authors have also been interested in the
consistency of event type assignments when different cost vectors are used (those as-
signments correspond to the E-equivalence classes). A small number of E-equivalence
classes would indicate that the consistency is high. In [BAK13], the authors tried to dis-
cover different event type assignments (i.e., different E-equivalence classes) by sam-
pling the solution space uniformly at random. In comparison, our algorithm for enu-
merating the E-equivalence classes can answer the consistency question exactly.
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Results

Dataset
Cost

vector

#Optimal

reconciliations

#V-(V ∗-)equiv.

classes

#E-equiv.

classes

#EL-equiv.

classes

#CD-equiv.

classes

EC

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

2
16
18
16
24

1
5
6
4

8 (5)

1
8
10
8
16

2
16
18
16
24

2
9
18
16
24

GL

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

2
2
2
2
12

1
1
1
1

5 (3)

1
1
1
1
6

2
2
2
2
9

2
2
2
2
9

SC

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

1
1
1
1

113

1
1
1
1

18 (4)

1
1
1
1

10

1
1
1
1

18

1
1
1
1

24

RP

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

3
18
3
3

117

1
3
1
1

30 (5)

2
7
2
2

20

3
18
3
3

35

3
10
3
3

42

SFC

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

40
184
40
40

6332

1
2
1
1

110 (9)

3
6
3
3

70

16
160
16
16

363

3
6
3
3

888
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PML

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

2
180

2
11

448

1
4
1
2

17 (6)

1
7
1
2

24

2
160

2
6

119

1
9
1
4

119

PMP

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

2
2
2

18
262

1
1
1
2

34 (6)

1
1
1
2

18

2
2
2

18
98

1
1
1

10
232

FD

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

944
25184
408
80

1015

8
11
10
2

2146 (20)

14
52
20
2

54336

368
22752

180
16

604980

18
72
20
2

1013

RH

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

1052
42

2208
288

4080384

8
4
18
4

275 (13)

12
4

38
6

1152

176
42

368
48

5832

64
8

196
48

557928

PP

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

144
5120

72
72

498960

2
4
2
2

134 (12)

2
8
2
2

1152

144
4480

72
72

56700

72
48
36
36

124740

COG2085

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

109056
44544
37568
46656

1011

3
3
8
4

930 (13)

6
4
14
4

1152

7360
36224
3200
1344

52920

6
4
14
10

32864832
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COG3715

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

63360
1172598

9
33

1012

6
28
2
2

878 (15)

16
792

2
2

2496

2520
777030

7
2

5976

32
872

2
2

8694960

COG4964

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

36
224
36
54

8586842

1
2
1
2

376 (11)

1
2
1
2

64

4
224

4
6

220

1
2
1
2

38104

COG4965

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

44800
17408

640
6528

907176

5
2
2
3

324 (10)

13
4
3
5
12

23456
17408

576
448
17

13
4
3
5

11958

WOLB

(−1, 1, 1, 1)
(0, 1, 1, 1)
(0, 1, 2, 1)
(0, 2, 3, 1)
(0, 1, 1, 0)

1047
1048
1047
1042
10136

10
11
10
7

* (74)

4080
40960
4080

96
1027

*

*

*

1036
*

24192
76800
24192
1152

*

Table 3.2: The number of optimal reconciliations and the number of equivalence classes for each
equivalence relation and for each instance. For numbers larger than one billion, only the order
of magnitude is shown (as powers of 10). For the instances with the cost vector (0, 1, 1, 0), the
numbers of V- and V ∗-equivalence classes do not coincide (see Section 2.2.3); the latter is shown
in parentheses. The * symbol indicates that the counting of the equivalence classes exceeded
the memory limit of 8 GB.
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Discussion

First, let us look at the third column of Table 3.2, corresponding to the numbers of V-
and V ∗-equivalence classes. We have shown in Section 2.3.1 that these numbers are
bounded by a polynomial of the input size. They are indeed always very small; the
only exception is that, when the cost vector is (0, 1, 1, 0), the number of V-equivalence
classes can get large: this can be understood easily since, by setting the loss cost c(�) to
zero, we allow more variability in the number of losses of the solutions. One can argue
that, if the loss cost is set to zero, it is more reasonable to consider the V ∗-equivalence
relation rather than the V-equivalence relation.

The numbers of E- and CD-equivalence classes are also very small except when the
cost vector is (0, 1, 1, 0), in this case those numbers can be relatively larger. For exam-
ple, for the dataset COG2085 and cost vector (0, 1, 1, 1), there are 44544 optimal recon-
ciliations but only 4 CD-equivalence classes. This result suggests that the associations
that are involved in host-switches (in this case, horizontal gene transfer events) can
account for almost all the diversity of the solution space.

The numbers of EL-equivalence classes are generally larger than the other equiv-
alence classes. For some of the instances, we can observe that while the number of
E-equivalence classes is small, the number of EL-equivalence classes can be large and
close to (or even equal to) the number of optimal reconciliations. For example, for the
dataset PP and cost vector (−1, 1, 1, 1), there are only 2 E-equivalence classes whereas all
the 144 optimal reconciliations are in different EL-equivalence classes. This indicates
that, compared to the E-equivalence classes that tell us which nodes are involved in
host-switches, the EL-equivalence classes, which distinguish which arcs of the para-
site tree are involved in host-switches, can convey much more information.

To better measure and visualize how small the number of equivalence classes are
relative to the number of optimal reconciliations, we computed, for 29 instances hav-
ing between 102 and 108 optimal reconciliations, a value that we call Reduction: it is
equal to the number of equivalence classes divided by the number of optimal recon-
ciliations. In Figure 3.1, each x coordinate corresponds to an instance, where the in-
stances are sorted in the increasing order of the number of optimal reconciliations (the



denominator of Reduction); for each instance, we plotted three points that correspond
to the Reduction values for the E-, EL-, and CD-equivalence relations. Figure 3.1 il-
lustrates the observations that we made in the previous paragraphs: the E- and CD-
equivalence relations correspond generally to smaller Reduction values, whereas the
EL-equivalence relation yields larger Reduction values (closer to 1).
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100
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Figure 3.1: X-axis: The 29 instances in increasing order of the number of optimal rec-
onciliations. Y-axis: In logarithmic scale, the Reduction value that is equal to the num-
ber of equivalence classes over the number of optimal reconciliations. For each in-
stance, three points are plotted: the blue circle, the red triangle, and the black X, cor-
responding respectively to the number of E-, EL-, and CD-equivalence classes.

3.1.3 Lists of equivalence classes or representatives

As we have seen in the previous section, for many of the biological instances, the num-
ber of equivalence classes is small enough so that we can enumerate them all. We will
now see that the list of equivalence classes can provide useful information about the
solution space. For this purpose, we use the dataset WOLB that has the following par-
ticularity: all the cost vectors that we used lead to a number of optimal reconciliations
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that is at least 1042, which is too large for any exhaustive enumeration method. To
gain insight into the solution space of this dataset, apart from the methods based on
random sampling [BAK13; Don+15], only a limited number of the preexisting exact
methods can be applied in practice (e.g., computing the diameter of the solution space
[Haa+19], computing the distribution of the pairwise distances [SML19], computing
a median reconciliation [Ngu+13], etc.). The enumeration of the equivalence classes
or of the representatives of the equivalence classes is an addition to the list of exact
methods, and we will see that it can be quite informative. Consider a metric m on the
solution space that measures the differences in the event type assignments between
reconciliations:

m(φ1,φ2) := ��{p ∈ V(P) | Eφ1(p) ≠ Eφ2(p)}
�� . (3.1)

Then, knowing the list of E-equivalence classes and the size of each class, we can com-
pute the diameter, the distribution of pairwise distances, as well as a median reconcil-
iation of the solution space with respect to the metricm.

For the experiments, we choose the instance with the WOLB dataset and the cost
vector (0, 2, 3, 1). First, we look at the list of V-equivalence classes (i.e., the event vec-
tors), shown in Table 3.3. The table also indicates the size of each class as proportions of
the solution space (i.e., the proportion of optimal reconciliations in each V-equivalence
class among all optimal reconciliations).

Event vector Proportion of the solution space

(105, 0, 281, 45) 36.5425 %
(106, 0, 280, 48) 29.5704 %
(104, 0, 282, 42) 18.7570 %
(107, 0, 279, 51) 10.5588 %
(103, 0, 283, 39) 3.1628 %
(108, 0, 278, 54) 1.3807 %
(102, 0, 284, 36) 0.0277 %

Table 3.3: The V-equivalence classes of the instance WOLB-(0, 2, 3, 1) and their size, as
proportions of the solution space, sorted in the decreasing order of the size.
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From the list of event vectors, one can see that the dataset can be explained by a
large number of host-switches and cospeciations, and that there have probably been
no duplication. The diversity of the solution space in terms of the event vectors is low,
not only because the number of different event vectors is small, but also because these
event vectors are very similar to each other. Furthermore, if we view the proportions
of the event vectors as probability densities, the distributions of the solutions in the
spaces of all four dimensions of the event vectors are unimodal. For example, along the
axis of the number of cospeciations, solutions that have 105 (the most common value)
cospeciations or a number close to 105 are the most probable; in contrast, we are less
likely to find solutions that have a number of cospeciations which is far away from 105
(extreme values).

Now, we turn to the list of the 96 E-equivalence classes. Recall that an E-equivalence
class is a function π that associates each parasite node p ∈ V(P) with a color of the
form (p, e), where e ∈ E is an event type. One way to measure how dissimilar two E-
equivalence classes are from each other is to take the sum of differences:

m(π1,π2) := |{p ∈ V(P) | π1(p) ≠ π2(p)}| . (3.2)
Let si denote the size of an E-equivalence class πi (i.e., the number of optimal recon-
ciliations in that class). Equation (3.2) defines a measure on the set of E-equivalence
classes which can be used to compute, for instance, the average pairwise distance of the
solution space with respect to the metric in Equation (3.1) by noticing the following
relationship: ∑

i≠j

m(φi,φj) = ∑
i≠j

m(πi,πj) · si · sj, (3.3)
where the first sum is over the set of optimal reconciliations, the second sum is over the
set of E-equivalence classes. We computed the distances between the E-equivalence
classes. The maximum distance is 14. The average pairwise distance of the solution
space (see Equation (3.3)) is around 2. Informally, it means that if we randomly se-
lect two optimal reconciliations, we expect to find two differences in their node-wise
event type assignments. Those distance values are extremely small compared to the
theoretical maximum of 386 (the number of internal nodes of the parasite tree). An-
other observation that can be made from the list of E-equivalence classes is about the
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parasite nodes that can receive different event types across the solution space. Instead
of looking at the total number of differences, we can ask which nodes contribute to
the differences. There are only 15 of them, in other words, all other 371 internal nodes
receive a consistent event type across the entire solution space. We have further con-
firmed that the diversity of the solution space is low: not only the event vectors are
similar, the distributions of the events on the nodes of the parasite tree are also simi-
lar.

For the CD-equivalence classes, we can ask the similar question of which nodes
contribute to the differences. Here, a parasite node p contributes to the differences be-
tween two CD-equivalence classes if its color (see Definition 2.14) is different under the
two classes, i.e., either it receives different event types, or, if its event type is ℂ or �, it
is associated with different host nodes. After enumerating and analyzing the 1152 CD-
equivalence classes, we found 20 such nodes. In other words, apart from the 15 nodes
that contribute to the difference in event types, there are 5 cospeciation-duplication
nodes that are associated with different host nodes across the solution space. This
number is again very small, which backs up the statement about the diversity of the
solution space being low.

3.1.4 Finding time-feasible reconciliations using EL-equivalence classes

In Chapter 2, Section 2.1.2, we mentioned that a biologically meaningful reconciliation
should satisfy the requirement of time-feasibility. Unfortunately, theTime-feasible
reconciliationproblem, i.e., finding a time-feasible reconciliation that minimizes
the cost, is NP-hard [Ova+11; THL11]. A practical way of obtaining time-feasible rec-
onciliations is to first enumerate the optimal solution of Reconciliation problem
(where the time-feasible requirement is entirely dropped), and then filter out those
that are not time-feasible. If we only want to obtain one time-feasible optimal recon-
ciliation or check if there is any, we can stop the enumeration immediately as soon as
one such solution is found. However, if the number of optimal reconciliations is large
and the time-feasible reconciliations are sparse (or nonexistent), this approach would
require a long computation time before producing any output.
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Based on the work of [Nøj+18], we imagined a method for searching for time-feasible
optimal reconciliations that utilizes the enumeration of EL-equivalence classes. Pre-
cisely, given an instance, it outputs a time-feasible optimal reconciliation if there is
any, or “no” if there is none. In [Nøj+18], the authors presented an algorithm that
answers the following question inO(m log(n)) time, wherem = |V(P)| and n = |V(H)|:
• Given an EL-equivalence class π (see Definition 2.15), is there a reconciliation φ

in the class π that is time-feasible?
If the answer is yes, it also constructs such a reconciliation φ. Our new method is thus
straightforward: first we enumerate the EL-equivalent classes, then, for each class,
we apply the algorithm of [Nøj+18] to output a time-feasible reconciliation if there is
any. There are several pros and cons to this method:
• Pros:

– If there are no time-feasible reconciliations among the optimal ones, with
this method we can expect to obtain the “no” answer faster than with the
naive method (that is, by enumerating all optimal reconciliations and check-
ing their time-feasibility).

– If the time-feasible reconciliations are sparse, we can expect to discover one
such solution faster.

– Very often, we want to save the reconciliations to a file for subsequent anal-
ysis. In other words, we separate the enumeration and the time-feasibility
check into two steps. The space needed for storing the EL-equivalence classes
can be much smaller than the space required for storing all optimal recon-
ciliations. The EL-equivalence classes file can be used for the task of finding
time-feasible reconciliations as well as other tasks (such as visualization,
computation of the average distance or a median solution).

• Cons:

– In an EL-equivalence class, there can be multiple time-feasible reconcilia-
tions. This method can output only one of them. It should not be used if we
want to find all time-feasible optimal reconciliations.
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– If the number of EL-equivalence classes is close to the total number of op-
timal reconciliations (we have seen in Table 3.2 that these two numbers can
even be equal), there is little or no advantage in computation time or in stor-
age space compared to the naive method.

As we have seen in Section 3.1.2, for the majority of biological datasets and cost
vectors that we have chosen, the number of EL-equivalence classes is quite close to
the number of optimal reconciliations, so there is little advantage in terms of the speed
or space. Moreover, after enumerating the optimal reconciliations and computing the
proportion of those that are time-feasible, we observed that this proportion is almost
always high, therefore, we are rarely in a case where the time-feasible reconciliations
are sparse or nonexistent. In fact, as we hinted in Chapter 2, Section 2.1.2, in practical
situations, by applying the naive method, we are usually able to obtain time-feasible
optimal reconciliations.

Nevertheless, there are still a few instances (for example, the dataset COG4964 with
the cost vector (0, 1, 1, 0)) in which the number of EL-equivalence classes is signifi-
cantly smaller than the number of optimal reconciliations, and the latter is very large;
there are also a few instances (for example, the dataset COG4964 with the cost vector
(0, 2, 3, 1)) where none of the optimal reconciliations is time-feasible. Take the exam-
ple of the dataset COG3715 with the cost vector (−1, 1, 1, 1), there are 63360 optimal rec-
onciliations and 2520 EL-equivalence classes (corresponding to a Reduction of 0.04,
see Section 3.1.2). The space needed for storing the EL-equivalence classes is thus ap-
proximately 0.04 times the space needed for storing all optimal reconciliations, or 25
times smaller. It turned out that none of the optimal reconciliations is time-feasible.
We compared the time needed for obtaining the “no” answer using the two meth-
ods: (1) apply theO(n+m) time time-feasibility check of [THL11] to the list of optimal
reconciliations, (2) apply the (m log(n)) time algorithm of [Nøj+18] to the list of EL-
equivalence classes. Roughly, the second method produces the answer 7 times faster
than the first one (4 seconds versus 28 seconds). In the future, it is possible that we
come across more cases where finding time-feasible reconciliations by means of the
EL-equivalence classes would be clearly superior to the naive method.
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3.2 Capybara

3.2.1 Overview

Capybara [Wan+20] (seehttps://capybara-doc.readthedocs.io/) is a cross-platform
desktop application that help the user to perform various tasks around theReconcil-
iation problem. After loading an input file encoding a dataset (H,P,σ), the user can
specify a cost vector that makes up the instance of interest, then select one of the fol-
lowing tasks:
• Counting or enumerating all optimal reconciliations.
• Applying the time-feasibility filter during the enumeration of reconciliations.
• Counting or enumerating the V-, E-, and CD-equivalence classes, or enumerat-

ing one representative in each equivalence class.
• Enumerating the Best-K reconciliations (see Section 3.2.2).
• Converting a file containing a list of E- or CD-equivalence classes to a format

readable by Capybara Viewer, a Web visualization tool that specifically handles
these two types of equivalence classes (see Section 3.2.3).

A subset of the features of Capybara is distributed as a Python package, which allows
for customized manipulations of the equivalence classes during the enumeration (see
Section 3.2.4).

3.2.2 Best-K enumeration

Although at least one time-feasible reconciliations exists for any instance, it does not
have necessarily have the minimum cost among all possible reconciliations. When we
say that there is no time-feasible optimal reconciliation, it implies that all the time-
feasible reconciliations of this instance are suboptimal, that is, they have a cost that
is strictly larger than the minimum. A natural strategy of searching for time-feasible
reconciliations consists, in this case, of enumerating suboptimal reconciliations and
then applying the time-feasibility filter.
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As early as 1960, finding suboptimal solutions to an optimization problem has been
studied for its connection with dynamic programming [BK60; Glu63; WB85]. The
Best-K enumeration is an enumeration method that aims at finding a set of k solu-
tions that are better than any solution not in this set (they can thus be optimal or sub-
optimal), and has been used extensively in the problem of finding k shortest paths in
a graph [Yen71; KIM82; Epp98; HMS07; AL11]. Intuitively, for an instance of a mini-
mization problem, we can consider a partial order on the set of feasible solutions such
that one solution φ1 precedes another solution φ2 if and only if the cost of φ1 is strictly
smaller than the cost of φ2. The set of feasible solutions can then be viewed as an or-
dered list, where the order between solutions of the same cost are chosen arbitrarily.
A Best-K enumeration algorithm should output the first K elements of this list, or, if K
is larger than the number of feasible solutions, all elements of this list.

Capybara offers the option of Best-K enumeration and its combination with the
time-feasibility filter. The algorithm is based on a simple modification of the dy-
namic programming algorithm for enumerating all optimal reconciliations and was
discussed in my Master thesis. It should be noticed that, whether the user chooses the
optimal or the Best-K enumeration options, Capybara will check the time-feasibility
criteria of [Sto+12], which are more restrictive than the criteria of [THL11].

3.2.3 Visualization of E- and CD-equivalence classes

Given an E-equivalence class, we have the knowledge of the color for each parasite node
p ∈ V(P) (see Definitions 2.14 and 2.15). The color is a couple (p, e) consisting of the node
p itself and an event type e ∈ E := {�,ℂ,�,�} (leaf or terminal event, cospeciation,
duplication, host-switch). A natural way of visualizing the E-equivalence classes is
to draw the parasite trees with colors on the nodes that indicate the event type. For
example, the six reconciliations represented in Figure 2.1 split into four E-equivalence
classes; these E-equivalence classes are shown in Figure 3.2.

Using the same color code as Figure 3.2, Capybara Viewer converts a list of E-equivalence
classes to a list of pictures that can be viewed in a web browser or downloaded as image
files. Each E-equivalence class corresponds to a frame that can be displayed by Capy-
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Figure 3.2: Visualization of the four E-equivalence classes of the six reconciliations
from Figure 2.1. The colors corresponding to �,ℂ,�,� event types are respectively
white, orange, green, and blue.
bara Viewer; the user can either visualize one particular frame by selecting its index,
or visualize all frames sequentially as an animation. Common interaction options such
as zooming, panning, and scaling are also available.

For the CD-equivalence classes, we have the additional knowledge of the para-
site/host associations, for each parasite node with an event type other than host-switch.
Using the same frames as in the visualization of E-equivalence classes, Capybara Viewer
displays the label of the host node when the mouse hovers over a parasite node (if the
parasite node is of event type host-switch, the host label is the symbol ?, in conformity
with our Definition 2.14).

3.2.4 Python package

As we have seen in Section 3.1, counting or enumerating equivalence classes can be a
useful method for obtaining biological information from an instance. If we want to
include the analysis of equivalence classes as one step of an experimental pipeline,
Capybara’s Python package can then be a preferred choice over the graphical version
of Capybara. The Python package is called capybara-cophylogeny and can be found
in the repository Python Package Index (PyPI). It is easy to install and to update the
package to the newest version using pip, the standard Python package manager. The
documentation page provides several examples illustrating how to effectively use the
package for counting and enumerating equivalence classes in practical situations, such
as performing the same task on a large number of instances using multiprocessing, or
speeding up the computation using an alternative Python interpreter.
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Generally, while the graphical version offers more features and is more suitable for
users who are not technically oriented, the Python package offers more flexibility for
running multiple tasks automatically and simultaneously.

3.3 Conclusion and perspectives

In Chapter 2, we introduced theReconciliationproblem, defined equivalence rela-
tions on reconciliations, and proposed algorithms for counting and enumerating equiv-
alence classes. In particular, we are able to enumerate, in polynomial delay, one rep-
resentative reconciliation from each equivalence class. In Chapter 3, we applied our
algorithms to real datasets from the literature and analyzed their space of optimal rec-
onciliations using equivalence classes. Even when the number of optimal reconcili-
ations is huge (e.g., 1042), we managed to obtain useful information about the solu-
tion space through the list of equivalence classes. Finally, we presented Capybara, a
user-friendly software which performs various computational tasks based on our al-
gorithms and provides a tool for visualizing equivalence classes.

As a future direction, we would like to extend our algorithms to other biologically
motivated definitions of equivalence relations. A future version of Capybara will in-
clude more visualization options. How to efficiently visualize several equivalence classes
together in a compact and static fashion (i.e., without animation) is an especially in-
teresting and challenging question.

The problem of efficiently enumerating equivalence classes is interesting in its own
right. In Chapter 4, we will see a generalization of Algorithm 1 to solve the Equiva-
lence classes enumeration problem for general ad-AND/OR graphs; more per-
spectives will be presented there in the scope of enumeration algorithms.
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Chapter 4
Equivalence classes of solutions and

ad-AND/OR graphs

4.1 Introduction

An AND/OR graph is a well-known structure in the field of Logic and Artificial Intelli-
gence (AI) that represents problem solving and problem decomposition (see, for ex-
ample [MM78; Nil82]). In this chapter, we consider a particular flavor of AND/OR
graphs: the acyclic decomposable AND/OR graphs or ad-AND/OR graphs, also known
as the explicit AND/OR graphs for trees [DM07]. In Chapter 2, the same structure served
as the basis for describing the reconciliation graph, a graph that represents the so-
lution space of an instance of the Reconciliation problem. More generally, ad-
AND/OR graphs have an intimate relationship with problems that can be solved by dy-
namic programming (DP-problems).

As we suggested at the end of Chapter 3, enumerating equivalence classes is an
interesting and challenging topic in the field of enumeration algorithms. Unlike the
other chapters of this thesis which all have to do with phylogenetic trees, the current
chapter is concerned with the problem of enumerating equivalence classes of solutions
in the context of DP-problems. The algorithm that we will propose can be seen as a
generalization of Algorithm 1 of Chapter 2; this generalization is made from a partic-
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ular DP-problem (the Reconciliation problem) to a whole family of DP-problems.
Generalizing an algorithm to a wider range of problems is not a trivial task. It is cru-
cial to have a perspicuous formulation of the generalized version of the equivalence
classes enumeration problem. To this end, we conveniently use the framework of ad-
AND/OR graphs to represent the common structure of those DP-problems, and we de-
fine a specific kind of node-coloring on ad-AND/OR graphs, with the aim of charac-
terizing the equivalence relations that we are allowed to consider on the solutions of
the DP-problems.

The remainder of the chapter is organized as follows. After presenting the back-
ground and the motivation, we will first define an intermediate problem, namely the
Colored classes enumeration problem on ad-AND/OR graphs, and give a poly-
nomial delay algorithm. Then, as a second step, we show the connection between the
colored classes of an ad-AND/OR graph and the equivalence classes of solutions of a
DP-problem, and provide several concrete examples to illustrate how our algorithm
can be applied to a wide variety of DP-problems.

4.2 Background and motivation

Whereas classical optimization problems require to find a single best solution, enu-
meration problems require to build an entire set of solutions. The study of enumer-
ation problems offers many theoretical challenges as well as perspectives in practical
applications. On one hand, enumeration problems can give rise to theoretical ques-
tions that are not applicable in the more traditional setting of decision or optimization
problems, such as the output-sensitive complexity analysis (see Section 1.2.3). For in-
stance, the enumeration of minimal traversals of a hypergraph is a major problem that
is not known to be solved in polynomial total time [FGS19]. On the other hand, enu-
meration problems often provide more satisfactory answers to real-world questions
compared to optimization problems, as mathematical formulations (such as the sum
of weights) may not adequately capture all the desired properties of the best solution.
This can be due to various reasons: the quality criteria may be complicated (for exam-
ple, including the time-feasibility criterion in the Reconciliation problem would
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yield a NP-hard problem); the choice may be determined by data that is not yet avail-
able (for example, finding a shortest path in a transportation network subject to real
time disturbances); the decision may involve subjective factors that cannot be formally
modeled. In these situations, an enumeration algorithm is able to provide a list of can-
didate solutions (optimal, or of high quality), so that the user can apply more compli-
cated criteria, wait for data to become available or make full use of human expertise
before making a choice.

While real-world applications motivate the formulation of enumeration problems,
the practical usability of enumeration algorithms can be limited. The main reason for
this is the large number of solutions. The set of candidate solutions can be too slow to
be analyzed by the user or requires complex data analysis methods. One way of dealing
with this problem is the generation of representative solutions; similar formulations
include the generation of solutions that are far apart form each other, or the generation
of a subset of solutions of high diversity. In theses kinds of approaches, we need to
carefully define a new problem to better answer the original enumeration problem.
Regardless of the meaning of representative solutions, notice immediately that, for the
method to be applicable, one either requires the set of candidate solutions to be small
enough to be explored to a sufficient extend, or, when that is not the case (for example,
when there are candidate 1042 solutions), one needs to find the representative solutions
directly from the original enumeration problem instance.

In our work, we chose to find representative solutions through the enumeration
of equivalence classes; this is by no means the only method of defining and obtaining
representative solutions. Depending on the data types, it can be more straightforward
to define an equivalence relation rather than a distance measure or a diversity measure
on the set of solutions (or the other way around, for example, when the data consists
of vectors of numerical values). Mathematically, a distance or diversity measure can
be more costly or complicated to compute, as its computation typically involves mul-
tiple objects that need to be treated together, whereas the computation of equivalence
classes is usually done by mapping each single object to a canonical object of the class
to which it belongs.
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Although there are similarities in the rationale between methods based on equiv-
alence relations and methods based on distance measures, there are important differ-
ences that should not be ignored, especially when interpreting of the results. Along
with a chosen distance or diversity measure, the user usually also needs to specify a
number k as the size of the output (or an upper bound of the size), in such a way that
the level of detail or the granularity of the representative solutions in the output can
be explicitly controlled. The number of equivalence classes is directly determined by
the definition of the equivalence relation, and consequently, the choices of equivalence
relations are limited in practice to those that do not yield too much or too little equiva-
lence classes. Another potential issue is that, in the enumeration output, equivalence
classes may be presented without any good way of assessing their relative disparities
(two solutions are simply non equivalent to each other, but cannot be “more or less”
non equivalent). When the size of each equivalence class (or the fraction of the solution
space that it represents) is of importance to the user, this information should also be
included in the output to prevent any cognitive bias. Indeed, according to the applica-
tions, the user may be more interested in solutions that are the most representative,
in the sense that they are similar to a large portion of the whole set of solutions, or
she may be more interested in solutions that are outliers. Notice that, in data analysis
methods based on distance measures, the preference between community detection
and anomaly detection is usually directed encoded in the design of the algorithm. An
algorithm that generates a list of equivalence classes does not necessarily need to con-
sider the size of each equivalence class. Later in the chapter, we solve the problem of
enumerating equivalence classes and the problem of finding the size of an equivalence
class in our framework using two entirely different algorithms.

Computational problems that explore the idea of equivalence relation or equiva-
lence classes have been identified in various areas, such as Genome rearrangements
[Bra+08; BS10], Artificial intelligence [AMP97], Pattern matching [Blu+87; Nar+07],
or the study of RNA shapes [GVR04]. The efficient enumeration of representative so-
lutions to a problem was listed as an important open problem in a Dagstuhl workshop
in 2019 on Algorithmic Enumeration: Output-sensitive, Input-Sensitive, Parameterized,
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Approximative [FGS19]. This challenge has been addressed in the literature in a few
specific problems and using different approaches, such as diversity measures [AK11],
super-solutions [MSS14], and equivalence classes [Bra+08; Mor15]. To the best of our
knowledge, no generalized method for finding representative solutions has been de-
signed to deal with a family of problems.

4.3 Colored classes of solution subtrees of an ad-AND/OR graph

4.3.1 Basic definitions

First, recall the following notations. Ifw is a node in a directed graph, its out-neighbors
are called its children and the set of children is denoted by ch(w). The root node of
a rooted tree T is denoted by r(T ). Next, let us restate the definitions of ad-AND/OR
graphs given in Chapter 2.
Definition 4.1 (ad-AND/OR graph). A directed graphG is an acyclic decomposable AND/OR

graph (shortly, ad-AND/OR graph) if it satisfies the following:
• G is a acyclic (it is a DAG).
• G is bipartite: its node set V(G) can be partitioned into (A,O) so that all arcs of G

are between these two sets. Nodes in A are called AND nodes; nodes in O are called
OR+ nodes.

• Every AND node has in-degree at least one and out-degree at least one. The set of
nodes of out-degree zero is then a subset of O and is called the set of goal nodes;
the remaining OR+ nodes are simply the OR nodes. The subset of OR nodes of in-
degree zero is the set of start nodes.

• G is decomposable: for any AND node, the sets of nodes that are reachable from
each one of its child nodes are pairwise disjoint.

An example of an ad-AND/OR graph is given in Figure 4.1.
Definition 4.2 (Solution subtree). A solution subtree T of an ad-AND/OR graph G is a
subgraph of G which: (1) contains exactly one start node; (2) for any OR node in T it
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contains one of its child nodes inG, and for any AND node in T it contains all its children
in G.

The set of solution subtrees of G is denoted by T(G). It is immediate to see that a
solution subtree is indeed a subtree of G: it is a rooted tree, the root of which is a start
node. If we would drop the requirement of G being decomposable, the object defined
in Definition 4.2 would not be guaranteed to be a tree (in general AND/OR graphs, the
solutions are not called subtrees but instead subgraphs). In Figure 4.1, one solution sub-
tree is shown in bold.

Figure 4.1: An acyclic decomposable AND/OR graph with four start nodes. Squares are
OR+ nodes (OR nodes or goal nodes); crossed circles are AND nodes. One solution sub-
tree of size 8 is shown in bold.

The following four-step procedure allows to obtain one solution subtree: (1) start
at any start node, (2) for any visited OR node, visit one child, (3) for any visited AND
node, visit all children, (4) stop when the goal nodes are reached. The set T(G) of so-
lution subtrees of any ad-AND/OR graphG can be enumerated efficiently: after a pre-
processing step in time linear in the size of G, the delay between outputting two con-
secutive solutions is linear in the size of the solution. This result is folklore and the
algorithm is sometimes redesigned to fit the needs of a particular problem. Indeed,
for a specific dynamic programming problem, the enumeration of the solutions can
be done in an ad hoc manner, and the graph structure used by the algorithm is not
explicitly called an ad-AND/OR graph. For instance, in [Don+15], the authors devised
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an enumeration algorithm for the Reconciliation problem that works not only on
reconciliation graphs but on any ad-AND/OR graph. See [Rot19] for another example.
In the literature that explicitly studies general AND/OR graphs, the effort is naturally
focused on the question of enumerating solution subgraphs in AND/OR graphs that are
neither acyclic nor decomposable, which is much more challenging (see, e.g., [MM78;
MB85; JT00; Gho+12]).

We will define now a notion of subgraph for ad-AND/OR graphs that we will be used
extensively. Intuitively, the relationship between such a subgraph and the entire graph
correspond to the relationship between a DP-subproblem and the “full” optimization
problem.
Definition 4.3 (Subgraph starting from a set of nodes). LetG be an ad-AND/OR graph.
LetObe a set of OR+ nodes ofG. The subgraph ofG starting fromO, denoted byG/O, is the
subgraph obtained from G by setting O as the new set of start nodes (i.e., by removing
all nodes are unreachable from O through directed paths).

When the set O consists of a single nodew, the notation G/O simplifies to G/w.
It may seem trivial but let us mention that the number of solution subtrees |T(G)|

of an ad-AND/OR graph G can be computed easily, without enumerating any of them.
To see this, letN(w) denote the number of solution subtrees ofG/w for each OR+ node
w. If w is a goal node, then N(w) = 1. Otherwise, N(w) = ∑

vi ∈ ch(w)
∏
wk ∈ ch(vi)N(wk).

In a nutshell, the number of solution subtrees of a subgraph starting from an OR and
(respectively, an AND node) node is the sum (respectively, the product) of that of its
children.

4.3.2 Color classes: definitions

LetG be an ad-AND/OR graph. Letℂ be an ordered set of colors. The colors will be used
to express the equivalence relation on the set of solution subtrees ofG. Intuitively, two
OR+ nodes having the same color represent two alternative ways of solving the problem
that can be considered equivalent.
Definition 4.4 (e-coloring). An ad-AND/OR graph G is e-colored if its OR+ nodes are
colored in such a way that for any AND node all its children have distinct colors.
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Notice here that only OR+ nodes are colored and AND nodes are not colored. Ifw is
a OR+node of G, we denote by c(w) its color. If w is an AND node, we denote by c(w)
the tuple of colors of the children of w sorted in increasing order of the colors. From
the definition of an e-coloring, the color tuple c(w) of an AND node w is necessarily
of the same size as the set of children ch(w). The intuition is that the color tuple c(w)
distinguishes each child OR+ node of an AND node w, and gives a specific ordering
between them.

If T ∈ T(G) is a solution subtree of G, we use the notation π(T ) for the result of con-
tracting the AND nodes in T : for each OR nodew of T , contract the only child node ofw
in T (i.e., remove the child and connectw to each one of its “grandchildren”).
Definition 4.5 (Color class). A node-colored rooted treeC is a color class of an e-colored
ad-AND/OR graph G if there exists a solution subtree T of G such that π(T ) is equal to
C. Such a T is said to be a solution subtree belonging to the color class C.

We denote by C(G) the set of color classes of G (in Chapter 2, in the context of a
reconciliation graph G, the similar object was denoted by π(T(G))). The notation π can
be seen as a function π : T(G) → C(G). If C is a color class of G, we denote by π−1(C) :=
{T ∈ T(G) | π(T ) = C} the subset of solution subtrees ofG belonging to the color class C.
The notations c(w) and c(w) are naturally extended to the case where w is a node in a
color class: c(w) denotes the color ofw, and c(w) denotes the color tuple of the children
ofw. The color tuple c(r(C)) of the root of a color class C is called its root color tuple.

An example of an e-colored ad-AND/OR graph with five color classes is given in
Figure 4.2.

4.3.3 Color classes: enumeration

Given an ad-AND/OR graph G that is e-colored with a fixed ordered color set ℂ, we
propose a polynomial delay algorithm to enumerate all equivalence classes ofG.

Total ordering over the set of color classes

We define a total ordering ≺ (called smaller than) over C(G), the set of color classes of
G, using the given ordering on the set ℂ of colors. IfC and C′ are two color classes with
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Figure 4.2: An e-colored ad-AND/OR graph and its five color classes. Crossed circles
are AND nodes; squares are OR+ nodes. The colors of the OR+ nodes are written inside
the squares.

different root colors, we say that C is smaller than C′, denoted by C ≺ C′, if the root
color ofC precedes that ofC′. IfC andC′ have the same root color, let (C1, . . . ,Ck) (resp.
(C′1, . . . ,C′

`
)) be the child subtrees of r(C) (resp. of r(C′)) sorted recursively with respect

to ≺. We then say that C is smaller than C′ if the tuple (C1, . . . ,Ck) is lexicographically
smaller than (C′1, . . . ,C′

`
), i.e., if Ci ≺ C′i with i being the smallest index such that Ci ≠

C′
i
. We also assume that ∅ is smaller than any tree, and therefore a single-node tree

colored with a color c ∈ ℂ comes before any other tree whose root is colored with c in
≺.

Definitions and notations

Given an OR nodew, we denote by ct (w) the set of color tuples of its children, i.e.,
ct (w) := {

c(v) : v ∈ ch(w)} .
From the definition, a color tuple (c1, . . . , cj) belongs to ct (w) ifw has a child AND node
whose children are colored with (c1, . . . , cj). If we consider a color class C of C(G/w),
the tuples in ct (w) are precisely the possible colorings of the children of r(C) (in other
words, the root colors of the child subtrees of r(C)). Indeed, if the child AND node v ∈
ch(w) is chosen in a solution subtree, then c(v)will be the colors of the children ofw in
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the color class in which that solution subtree belongs. Notice that several child AND
nodes ofwmay have the same color tuple.

Ifw is a goal node, we define ct (w) := ∅. We extend the notation ct to a set O of OR+
nodes with ct (O) := ⋃

w∈O ct (w). In the same way, (c1, . . . , cj) is a color tuple of ct (O) if
and only if there exists a color classC ofC(G/O) such that the children of r(C) are colored
with (c1, . . . , cj).

Given a set O of OR+ nodes, we consider the set ct (O in lexicographical order. For an
index r ≤ |ct (O)|, let tr be the r-th color tuple of ct (O). We denote by Pr(O) the subset of
child AND nodes of O whose color tuple is tr, i.e.,

Pr(O) := {v ∈ ch(O) : c(v) = tr} .

When the set O is clear from the context, it is omitted from the notation and we simply
write Pr (in Algorithm 3, we will only work with a fixed setO). The subsets P1, . . . ,P |ct (O|
form a partition of ch(O).

Finally, given a color tuple tr := (c1, . . . , cj) ∈ ct (O), for each i ≤ j, by Definition 4.4,
each AND node in Pr has exactly one child OR+ node colored with ci. We denote by Pr

i

the set of child OR+ nodes of Pr colored with ci, i.e.,

Pri = {w ∈ ch(v) : v ∈ Pr, c(w) = ci} .

In summary, the key notation Pr
i

that we will use in Algorithm 3 can be described as
follows: it is the set of grandchild OR+ nodes of O colored with the i-th color cr of the
r-th color tuple tr ∈ ct (O).

In the left panel of Figure 4.3, an example graph is shown where each node is labeled
by an integer. The colors are, in increasing order, w, x, y, and z. For O = {1, 2}, the set
ct (O) contains the three color tuples t1 = (w,y), t2 = (x,y) and t3 = (x,y, z). The three
corresponding sets of child AND nodes are, respectively, P1 = {6}, P2 = {4, 5}, and
P3 = {3}. The sets Pr

i
are the following: P11 = {12}, P12 = {11}, P21 = {9, 10}, P22 = {8, 11},

P
31 = {9}, P32 = {8}, and P32 = {7}.
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Figure 4.3: Left panel: An e-colored ad-AND/OR graph, where each node is labeled
by an integer. Right panel: For O = {1, 2} and t2 = (x,y), we have P21 = {9, 10} and
P22 = {8, 11}. There are four combinations between C

(
G/P21

) and C
(
G/P22

) ; only two of
them are admissible.

Algorithm description

In Algorithm 3, we present a function Next that, given a color class C ∈ C(G), a color
c ∈ ℂ, and and a set ofOR+ nodes O of G all colored with c, outputs the next color class
ofG/O with respect to ≺, or, if C is the last one, outputs a special symbol ⊥. In order to
use this function to obtain all color classes, one needs to first partition the set of start
nodes of G according to their colors, then, for each color ck and the subset Ok of start
nodes colored with ck in increasing order, call Next repeatedly with the parameters ck
and Ok, together with each outputted color class C (starting with ∅) until reaching the
symbol ⊥ (see also the proof of Theorem 4.1).

After treating the easy case where the output color classes consists of a single node
(Lines 4–6), Algorithm 3 distinguishes two cases. Since the output must follow the
lexicographic order on the set ct (O) of color tuples, the algorithm identifies the index
r that corresponds to the root color tuple c(r(C)) of the current color class C (Line 17),
and makes use of the following observation. Either (1) C is the last color class of G/O
with the r-th root color tuple, and in this case we try to move on to the next color tuple
(Line 20, the “go to” case), or (2) there still exists some color classes with the same
root color tuple.
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Algorithm 3: Enumerate the next color class with respect to ≺
1 Input: A color c ∈ ℂ, a set ofOR+ nodes O ofG all colored with c, and a color

class C ∈ C(G/O)
2 Output: The color class C′ ofG/O that follows Cwith respect to the ≺ ordering,

or ⊥ if no such C′ exists.
3 Function Next(c, O,C):

4 if C = ∅ and O contains goal nodes then

5 Return A tree with a single root node colored with c
6 end

7 r← 0
8 if C = ∅ orC is a single-node tree then

9 r← r + 1
10 if r > |ct (O)| then

11 Return ⊥
12 end

13 Let (c1, . . . , cj) be the color tuple of tr ∈ ct (O) and let C1, . . . ,Cj ← ∅
14 O1 ← Pr1
15 `← 1
16 else

17 Let r be such that tr ∈ ct (O) is the root color tuple c(r(C)) of C
18 Let (C1, . . . ,Cj) be the child subtrees of r(C), the roots of which are

colored respectively with (c1, . . . , cj) := tr
19 For all i ≤ j, let Oi ⊆ Pri be the set of nodes in Pr

i
compatible with

(C1, . . . ,Ci−1), the first (i − 1) child subtrees of r(C)
20 Let ` be the largest index i ≤ j such that Next(ci, Oi,Ci) ≠ ⊥ if such index

exists. Otherwise, C← ∅ and go to line 8
21 end

22 C` ← Next(c`, O`,C`)

23 for ` < i ≤ j do

24 Let Oi ⊆ Pri be the set of nodes in Pr
i

compatible with (C1, . . . ,Ci−1)
25 Ci ← Next(ci, Oi, ∅)
26 end

27 Return A tree with root color c and root child subtrees (C1, . . . ,Cj)



In this second case, we turn our attention to the child subtrees (C1, . . . ,Cj) of r(C),
ordered according to their root colors. Observe that, since C is a color class of G/O, for
each i ≤ j, the i-th child subtree Ci is a color class of G/Pr

i
. It then suffices to replace

the last child subtreeCj by its successorC′
j

if there exists one, and we obtain a solution
C′ whose child subtrees at the root are (C1, . . . ,Cj−1,C′

j
), which is by definition of the

successor of C. If Cj has no successor, we replace if possible Cj−1 by its successor C′
j−1

and we replace C − j by the smallest admissible color class (i.e., the successor of ∅). In
general, we select at each step the greatest index ` such that C` has a successor with
respect to ≺ (Line 20), and we replace it by its successor C′

`
(Line 22), and we take the

smallest admissible color class for every ` < i ≤ j (Lines 23-26).
Without further care, the above described procedure would output color classes C′

whose child subtrees (C′1, . . . ,C′
j
) at the root correspond to the elements of the Carte-

sian product of C(G/Pr
i
), for i ≤ j. However, while it is true that if C is a color class of

G/O, its child subtree Ci is a color class of G/Pr
i

for all i ≤ j, the converse is not true.
Indeed, not all elements of C(G/Pr1 ) × · · · × C(G/Pr

j
) lead to an admissible color class (an

example is given in the right panel of Figure 4.3). In order to find an admissible color
class, we should guarantee that the choice of a givenCi is compatible with the previous
choices (C1, . . . ,Ci−1). This is done by selecting the subset of OR+ nodes Oi ⊆ Pri that are
compatible with (C1, . . . ,Ci−1) (Lines 19 and 24). An admissible choice of Ci will then
be any color class ofG/Oi. The definition of compatible nodes will be given later. There
are two important remarks with respect to the addition of this compatibility check in
the algorithm. First, for each i ≤ j, the subset Oi can be easily computed (this can be
seen from Definition 4.6). Secondly, Oi is never empty, i.e., there is always a choice
forCi that is compatible with the previous choices of (C1, . . . ,Ci−1) (there is at least one
choice that corresponds to the current color class). Notice that if this property were not
satisfied, the algorithm would not have a polynomial delay complexity since we may
spend exponential time without reaching any color class. With this property, we are
guaranteed to be always able to extend a partial tuple of subtrees (C1, . . . ,Ci) until we
reach a complete tuple (C1, . . . ,Cj) that will form an admissible color class.



Compatible nodes

Given a set of OR+ nodesO all colored with the same color c and a color classC ofC(G/O),
we denote by r(π−1(T )) := {r(T ) : T ∈ π−1(C)} the subset of OR+ nodes in O, each one of
which is the root of a solution subtree belonging to the color class C. The following
definition formalizes the notion of compatible nodes mentioned previously.
Definition 4.6. Let O be a set of OR+ nodes of color c. Let tr =: (c1, . . . , cj) ∈ ct (O) be its
r-th color tuple. Let k be an integer such that 1 ≤ k < j. For i ≤ k, let Ci be a color class
in C(G/Pr

i
). We say that a OR+ nodew ∈ Pr

k+1 is compatible with the k-tuple (C1, . . . ,Ck) if
there exists an AND-node v ∈ Pr that satisfies the following: (1)w is a child of v, (2) for
all i ≤ k, the set r(π−1(Ci)) contains a child of v.

In Algorithm 3, we extended Definition 4.6 to the case where k = 0, and any node
in Pr1 is compatible with the empty tuple.

The next lemma, essential to the proof of correctness, states the key property of
compatible nodes: choosing a compatible node guarantees that a partial tuple of sub-
trees can be “safely” extended, without the risk of creating any non-admissible color
class, that is, a color class that does not correspond to any solution subtree ofG.
Lemma 4.1. Let O be a set of OR+ nodes G all colored with c. Let tr =: (c1, . . . , cj) be the

r-th color tuple in ct (O). Let C be a color class of G/O, and let C1, . . . ,Ck, be its first k child

subtrees, for some fixed k < j, whereCi ∈ C(G/Pri ) for all i ≤ k. Let Ok+1 ⊆ Prk+1 be the set of

OR+ nodes compatible with (C1, . . . ,Ck). Given Ck+1 ∈ C
(
G/Pr

k+1
)

, there exists a color class

C ∈ C(G/O)whose first (k+1) child subtrees at the root are precisely (C1, . . . ,Ck,Ck+1) if and

only ifCk+1 ∈ C(G/Ok+1).

Proof. (First direction) Assume that there exists a color classC ofG/O whose first (k+1)
child subtrees at the root are (C1, . . . ,Ck,Ck+1), and let T be a solution subtree of G/O
such that π(T ) = C. Let v be the unique child AND node of the r(T ). Notice that since
we have Ci ∈ Pri for all i ≤ k, the color tuple c(v) of v is necessarily the r-th color tuple
tr ∈ ct (O), and so v ∈ Pr. Let (w1, . . . ,wj) be the child OR+ of v in T , ordered in increasing
order of their color. For all i ≤ kwe havewi ∈ r(π−1(Ci), the nodewk+1 is thus compatible
with (C1, . . . ,Ck). Therefore, Ck+1 ∈ C (G/Ok+1) sinceCk+1 ∈ C(G/wk+1), andwk+1 ∈ Ok+1.
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(Second direction) Assume now that Ck+1 ∈ C (G/Ok+1). Then there exists a com-
patible OR+ node wk+1 ∈ Ok+1 and a solution subtree Tk+1 of G/wk+1 rooted atwk+1 that
satisfies π(Tk+1) = Ck+1. Since wk+1 ∈ Ok+1, by the Definition 4.6 of compatible nodes,
there exists an AND node v ∈ Pr such that wk+1 is a child of v, and, for all i ≤ k, there
exists an OR+ node wi ∈ r(π−1(Ci)) such that c(wi) = ci (i.e., wi is the unique child of v
colored with the color ci). Therefore, for all i ≤ k, there exists a solution subtree Ti of
G/wi such that π(Ti) = Ci. Now consider any solution subtree T of G/O containing the
nodes v,w1, . . . ,wk, andwk+1. Then its first (k+1) child subtrees at v are (T1, . . . , Tk, Tk+1),
and therefore, the first (k+1) child subtrees at the root of its color classπ(T ) are precisely
(C1, . . . ,Ck,Ck+1). �

Analysis

Lemma 4.2. LetC be a color class ofG/O for a set O of OR+ nodes ofG, all colored with the

same color c. Then, the function Next of Algorithm 3 satisfies the following:

1. Next(c, O, ∅) returns the smallest equivalence class ofG/O with respect to ≺.

2. IfC is not the last color class ofG/O, then Next(c, O,C) returns the successor ofC.

3. IfC is the last color class ofG/O, then Next(c, O,C) returns⊥.

Proof. Let us define the height of the subgraphG/O, denoted byh(G/O), to be the maxi-
mum height of a color class ofG/O, i.e., the number of OR+ nodes in a longest path from
O to a goal node minus 1. The proof will be done by induction on h(G/O).

Assume first that h(G/O) = 0, i.e., O contains only goal nodes. Then G/O has only
one color class C, which is the single-node tree of color c. The call of Next(c, O, ∅) will
outputC at Line 5 of the algorithm, and the call of Next(c, O, C) will return⊥ at Line 11
since |ct (O)| = 0.

Assume now that h(G/O) > 0.
Proof of Lemma 4.2.1 If O contains goal nodes, then the smallest color class of

G/O with respect to ≺ is the single-node tree colored with c and Next(c, O, ∅) outputs it
at Line 5. Otherwise, let C′ be the smallest color class of G/O and let (C′1, . . . ,C′

j
) be the

its child subtrees at the root. By definition of≺, the roots of (C′1, . . . ,C′
j
) are colored with
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the lexicographically smallest color tuple t1 := (c1, . . . , cj) of ct (O), and by Lemma 4.1,
for all i ≤ j, C′

i
is the smallest color class ofG/Oi, where Oi ⊆ P1

i
is the set of nodes of P1

i

compatible with (
C′1, . . . ,C′

i−1
) . Thus, Next(c, O, ∅) will return C′ at Line 28, since rwill

receive 1 at Line 9, C1 will receive Next(c1, P11, ∅) at Line 22 which is equal to C′1 by the
induction hypothesis, and for all i ≤ j, Ci will receive Next(ci, Oi, ∅) at Line 25 which
is equal to C′

i
by the induction hypothesis.

Proof of Lemma 4.2.2 Let (C′1, . . . ,C′
j
) be the child subtrees of r(C) and let tr :=

(c1, . . . , cj) be the root color tuple of C, i.e., the color tuple with which the roots of the
subtrees (C′1, . . . ,C′

j
) are colored. Let Oi ⊆ Pri be the set of nodes of Pr

i
compatible with

(C′1, . . . ,C′
i−1) for all i ≤ j. Let C′ be the color class of G/O that follows C with respect

to ≺. Let (C′′1 , . . . ,C′′
j
) be the child subtrees of r(C′). Notice that the children of r(C′) are

either colored with the same color tuple tr, or colored with tr+1, the next color tuple of
ct (O), if C is the largest color class ofG/O with the root color tuple tr.

Assume first that the children of r(C′) are colored with the same color tuple tr. Let `
be the smallest index such that C′

`
≠ C′′

`
. We claim that ` is also the largest index such

that C′
`

has a successor in C(G/O`) with respect to ≺, and thus it corresponds to the `
chosen by the algorithm at Line 20. Indeed, assume that there exist i < k ≤ j and a
larger color class Ĉk ∈ C(G/Ok) such that C′

k
≺ Ĉk. By Lemma 4.1, there exists a color

class of G/O whose first k child subtrees at the root are (C′1, . . . ,C′
k−1, Ĉk). However, in

this case such a color class would be greater than C and smaller than C′ with respect
to ≺, and it would be in contradiction with the fact that C′ immediately follows C in ≺.
Now, C` will receive Next(c`, O`, C′`) at Line 22, which is by the induction hypothesis
the color class that succeeds C′

`
in C(G/O`). Since we assumed that ` is the smallest

index such that C′
`
≠ C′′

`
, by definition of ≺ and by Lemma 4.1, C′′

`
is the color class that

succeeds C′
`

in ℂ(G/O)`), and so C` will receive C′′
`

at Line 22. Since for all i ≤ `we have
C′
i
= C′′

i
, and since (C1, . . . ,C`−1) are not modified by the algorithm, at the end of it,

(C1, . . . ,C`−1,C`) will be equal to (C′1, . . . ,C′
`−1,C′′

`
) = (C′′1 , . . . ,C′′

`−1,C′′
`
). It now remains

to show thatCi will be equal toC′′
i

for all ` < i ≤ j. Again, by Lemma 4.1, for all ` < i ≤ j,
C′′
i

is the smallest color class ofG/O′
i
), where O′

i
is the set of nodes of Pr

i
compatible with

(C′′1 , . . . ,C′′
i−1), since otherwise, another color class of G/O greater than C and smaller
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than C′ could be built. Thus, at Line 25, Ci will receive Next(ci, O′i, ∅), which is equal
to C′′

i
by the induction hypothesis, and C′ will be returned at Line 27.

Assume now that the children of r(C′) are colored with the next color tuple tr+1. In
this case, C is the greatest color class of C(G/O) with the root color tuple tr. We claim
that each child subtree C′

i
of r(C) is also the greatest color class of G/Oi for all i ≤ j.

Indeed, assume otherwise that, for some i, there exists a color class Ĉi ∈ O(G/Oi)with
C′
i
≺ Ĉi. Then, by Lemma 4.1, there exists a color class Ĉ ∈ C(G/O)with the same root

color tuple tr that is greater than C, contradicting the fact that C is the greatest color
class with the root color tuple tr. By the induction hypotheses, Next(ci, Oi, C′i) will
therefore return ⊥ for all i ≤ j. So C will receive ∅ at Line 20 and the algorithm will
go to Line 8, and the next color tuple tr+1 will be selected at Line 9. Using now similar
arguments to the ones used in the proof of Lemma 4.2.1, the smallest color class with
the root color tuple tr+1 will be returned.

Proof of Lemma 4.2.3 Assume now that C is the last equivalence class of G/O.
Notice that in this case, the children of r(C) are colored with tr where r = |ct (O)|. As
previously, let C′

i
be the i-th child subtree at r(C). Then, for all i ≤ j := |tr |, C′i is the

largest color class of G/Oi. By the induction hypothesis, Next(ci, Oi, C′i) would return
⊥ for all i ≤ j. Therefore, C will receive ∅ at Line 20 and the algorithm will return to
Line 8. Since r = |ct (O)|, rwill receive r+1 at Line 9 and⊥will be returned at Line 11. �
Theorem 4.1. Given an e-colored ad-AND/OR graph G, the set C(G) can be enumerated

with delayO(n · s)wheren is the number of nodes ofG and s is the maximum size of a color

class.

Proof. To enumerateC(G), we first partition the set of start nodes ofGaccording to their
colors. For each subset Oi of color ci, starting with C := ∅, we repeatedly assign the
output of Next(ci, Oi, C) to C and output it until C = ⊥. By Lemma 4.2, this guarantees
that we output every color of O(G/Oi) exactly once. Since any color class of G belongs
to C(G/Oi) for a given i ≤ k, every color class will be outputted exactly once.

For the complexity, notice that at most one recursive call is performed by each node
of the next color class. More precisely, if Next(c, O, C) returns C′, there will be exactly
one recursive call per node in C′ that is not in C, and thus at most s recursive calls will
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be performed.
In each recursive call, the set of color tuples ct (O) and the sets Pr

i
, where r ≤ |ct (O|

and i ≤ j := |tr |, can all be computed in O(n) time in total. It remains to show that the
sets of compatible nodes Oi, i ≤ j, can be computed in O(n) time in total which will
conclude the proof. To do this, we should be able to compute the sets r(π−1(Ci)) for all
i ≤ j. If Next(c, O, C) = C′, the easiest way is to return the set r(π−1(C′)) together with C′
when the call Next(c, O, C) returns. To compute this, observe that if C ∈ C(G/O)where
O is a set of goal nodes all having the same color c, then r(π−1(C)) = O, and if r(C) has
child subtrees (C1, . . . ,Cj), then r(π−1(C)) is the set of nodes of O that has at least one
child AND node v such that ch(v) contain exactly one node in r(π−1(Ci)) for each i ≤ j,
which can be found in O(n) time. Thus only O(n) time is necessary at each recursive
call to return r(π−1(C′)) in addition to C′. �

4.3.4 Restricting the graph to a color class

After the enumeration of the color classes, it might be interesting to go back to the so-
lution subtrees that belong to each color class. In particular, in practical applications,
one might want to use the number of solution subtrees as a measure for the “impor-
tance” or “significance” of a color class. In Algorithm 4, we present an algorithm that,
given an e-colored ad-AND/OR graphG and a color class C ∈ C(G), constructs the sub-

graphGC ofG restricted toC, that is, a subgraph ofG of which the solution subtrees are
exactly the ones ofG belonging to the color class C:

T(GC) = π−1
G (C) := {T ∈ T(G) : π(T ) = C} .

Once the graph GC is obtained, the following questions can be answered (by applying
the same method as for any ad-AND/OR graph): counting the number of, and enumer-
ating the solution subtrees belonging to the color class C.

Algorithm 4 relies on two recursive functions VisitOR+ and VisitAND, both taking
as input a node in G and a node in C. The Require statements are used to specify the
preconditions that the two parameters of the two Visit functions must verify; it can be
checked by inspection that these conditions are always satisfied whenever the func-
tions are called. The algorithm performs an operation called Mark on the nodes in G.
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All nodes are initially unmarked; the Mark operation changes the state of a node into
marked.

Recall that π(T ) transforms a solution subtree T ∈ T(G) into a color class C ∈ C(G)
by contracting the AND nodes in T . For a fixed T , we extend this notation and write
π(w) = π(v) := x for every OR nodew in T with its unique AND-child node v in T that are
identified with the node x in C under the transformation.
Lemma 4.3. Let T be a solution subtree ofG belonging to the color class C. For every node

w of T , there is a call to either the function VisitOR+ or to VisitAND of Algorithm 4 with

parametersw and π(w), depending on whetherw is an OR+ node or an AND node.

Proof. By top-down induction. The start node of T is visited at Line 3 since it has the
correct color. In the induction step we separate two cases. For an OR+ nodew of T that
is not a start node, suppose that the parent v0 ofw in T is visited in a call VisitAND(v0,
π(v0)). Then w is visited (Line 22), and the second parameter is π(w). In the other
case, for an AND node v of T , suppose that the parent w0 of v in T is visited in a call
VisitOR+(w0, π(w0)). Since we have π(v) = π(v1) and c(π(w0)) = c(v), the condition at
Line 12 is satisfied and v is visited in a call VisitAND(v, π(v)). �

The correctness of Algorithm 4 is shown in Theorem 4.2. We omit the analysis of
complexity as the algorithm clearly requires a running time that is linear in the size of
the input graph G.
Theorem 4.2. The set of solution subtrees ofGC, the graph returned by Algorithm 4, is equal

to π−1
G
(C), i.e., the set of solution subtrees ofG belonging to the color class T .
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Algorithm 4: Restricting the graph to a color class
1 Input: An e-colored ad-AND/OR graphG and a color classC

2 Output: The subgraphGC ofG restricted toC

3 Function Main(G,C):

4 for each start nodew0 ofG such that c(w0) = c(r(C)) do

5 VisitOR+(w0, r(C))
6 end

7 return GC obtained from G by removing all unmarked nodes
8 Function VisitOR+(w, x):

9 Require: c(w) = c(x)
10 ifw is a goal node and x is a leaf then

11 Mark(w)
12 return

13 end

14 for each child AND node vi ofw inG such that c(vi) = c(x) do

15 VisitAND (vi, x)
16 end

17 if at least one child ofw is marked then

18 Mark(w)
19 end

20 Function VisitAND(v, x):

21 Require: c(v) = c(x)
22 for each child OR+ nodewi of v do

23 xi ← the unique child of x such that c(wi) = c(xi)
24 VisitOR+ (wi, xi)
25 end

26 if all children of v are marked then

27 Mark(v)
28 end
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Proof. (First direction) We show that any solution subtree ofGC is also a solution sub-
tree of C, and that it belongs to the color class C. For every marked OR node, at least
one child is marked (Line 15); for every marked AND node, all its children are marked
(Line 24). A solution subtree of GC is thus a solution subtree of G. Let T be a solution
subtree ofGC, consider the recursion tree of the Visit function calls during which the
nodes in T are marked. By the preconditions of the Visit functions, that is, c(w) = c(x)
and c(v) = C(x), the tree π(C) is equal to the tree formed by the colored nodes that are
used as the second parameter x in this recursion tree. The latter is simply equal toC (we
start with the root of C, then visit each child of the current node), so we have π(T ) = C.
Therefore, every solution subtree ofGC belongs to the color class C.

(Second direction) Let T be a solution subtree ofG such that π(T ) = C, we show that
every node in T is marked by bottom-up induction. By Lemma 4.3, any goal nodew in T
is visited in a call VisitOR+(w, π(w)) sow is marked (Line 9) becauseπ(w) is necessarily
a leaf. For the induction step we separate two cases. Let w be an OR node in T , and
suppose that all nodes in the subtree T |w are already marked. Again, by Lemma 4.3,
w is visited. Then w is marked at Line 16, since exactly one child of w is in T and is
thus marked. In the other case, let v be an AND node in T and suppose that all nodes
in T |v are marked. By the lemma, v is visited. Then v is marked at Line 25, because all
children of v are in T and are thus marked. This completes the proof. �

4.4 Application to dynamic programming

4.4.1 A formalism for tree-sequential dynamic programming

Since its introduction by Karp and Held [KH67], monotone sequential decision processes

(mSDP) have been the classical model for problems solvable by dynamic programming
(DP-problems). This formalism is based on finite-state automata. The solutions of
DP-problems are thus equivalent to languages of regular expressions, or to paths in
directed graphs. It is known that Bellman’s principle of optimality [Bel13] also applies
to problems for which the solutions are not sequential but tree-like [Bon70]. Various
generalizations have been proposed to characterize broader classes of problems solv-
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able by DP or DP-like techniques [Hel89; BDI11].
The framework of equivalence classes enumeration that we consider is situated

within the immediate generalization of the mSDP model, i.e., generalizing finite au-
tomata (regular expressions, paths in DAGs) to finite tree automata (regular tree gram-
mars, solution trees of general AND/OR graphs). Further generalizations exist (from
trees to graphs of treewidth > 1); the collection of these methods is known as Non-

serial dynamic programming [BB72].
In this model, a tree-sequential problem can be specified by a finite (bottom-up)

tree automaton A = (Q,Σ, δ,q0,QF), where Q is a finite set of states, Σ is a ranked
alphabet, δ is a set of transition rules of the form (q1, . . . ,qn,a,q)where q1, . . . ,qn,q ∈
Q and a ∈ Σ, q0 ∈ Q is the initial state, QF ⊆ Q is a set of final states. The problem
specification also includes a cost function. The set L(A) of trees accepted by the tree
automaton A defines the set of feasible solutions. The minimization problem seeks to
minimize the cost function over the set L(A) of feasible solutions.

We will consider the simple case of a positive additive cost function that always
equals zero in the initial state. An additive cost function can be defined via an incre-
mental cost function I : Q∗ × Σ → ℝ, where Q∗ consists of tuples of states in Q of the
form (q1, . . . ,qn). I(q1, . . . ,qn,a) can be viewed as the cost of attaching n child subtrees
to a new root of symbol a. While it might seem restrictive to require an additive struc-
ture on the cost function, this simple case does cover many important problems admit-
ting a DP-algorithm, for instance,Travelling salesman [Bel62; HK62],Knapsack
[KPP04], or Levenshtein distance [WF74].

In this case, the answer of the minimization problem can be shown to be equal to
minq∈QF D(q), whereD : Q→ ℝ≥0 is defined by the following recurrence equations:

D(q0) = 0 ,
for q ≠ q0 , D(q) = min

(q1,...,qn,a,q)∈δ
∑

1≤i≤n
D(qi) + I(q1, . . . ,qn,a) . (4.1)

A dynamic programming algorithm for the minimization problem corresponds to an al-
gorithm that computesD; the functionD is commonly called a dynamic programming

table (a DP-tabled, also called a DP-array, or a DP-matrix). In general, to be able to
write down the recurrence relations does not imply that there exists an efficient algo-
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rithm to compute the function. Indeed, such an algorithm does not exist in general for
given arbitrary tree automata and cost functions [Iba74].

Using an algebraic approach, Gnesi and Montanari [GMM81] have shown that solv-
ing the functional Equation (4.1) corresponds to finding the solution subtrees of a gen-
eral AND/OR graph. An important special case in which DP-algorithms exist is when
the underlying AND/OR graph is acyclic.

When a fixed tree is given as an input to the problem, the underlying AND/OR graph
is acyclic and decomposable (that is, it is an ad-AND/OR graph). Such problems are
hence naturally solvable by DP-algorithms. These algorithms are known in folklore
under the name Dynamic programming on a tree. Many graph-theoretical problems
(e.g., maximum matching, longest path) can be solved optimally on trees by DP-algorithms.
Numerous real-world applications also rely on DP-algorithms on trees; examples can
be found, for instance, in Data Science [RM08], Computer Vision [FH05; Vek05], and
Computational Biology [BAK12; Don+15].

Explicit construction of the ad-AND/OR graph for DP on a fixed tree

Due to its usefulness for the examples that we will develop next, in the case of DP on
a fixed tree, an explicit construction of the ad-AND/OR graph from Equation (4.1) is
described below. The construction is done in two steps. In the first step, we build a
graph in which every node retains an additional attribute, its value, and every OR+ node
is labeled by a state q ∈ Q. In the second step, we prune the graph by removing nodes
that do not yield optimal values.

1. For each (q0,a,q) ∈ δ, create a goal node of value 0 labeled by q. Then, for each
q ≠ q0 in post-order,

i. For each (q1, . . . ,qn,a,q) ∈ δ, create an AND node, connect it to the n OR+
nodes labeled by q1, . . . ,qn. Its value is equal to the sum of the values of its
children, plus I(q1, . . . ,qn,a).

ii. Create a single OR node, connect it to every AND node created in the previous
step. Its label is q, and its value is the minimum of the values of its children.
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2. For each q ∈ QF, remove the OR node labeled by q unless its value is equal to
minq∈QF G(q). For each OR node s, remove the arc to its AND-child node si if the
value of si is not equal to the value of s. Finally, remove recursively all AND nodes
without incoming arcs.

A similar procedure was described in Chapter 2, Section 2.1.3 for constructing the
reconciliation graph, which is an ad-AND/OR graph with some additional properties
(one such property is that every AND node has exactly two ordered children).

4.4.2 Examples

We will give several examples of DP-problems for which the enumeration of equiva-
lence classes of solutions can be done by enumerating the color classes of the underly-
ing ad-AND/OR graph.

Optimal tree coloring problem

Description A prototypical problem that fits into the framework of DP on a fixed tree
is Optimal tree coloring, that is, finding an optimal node-coloring of the input
tree. Many problems of practical interest can reduce to Optimal tree coloring;
three concrete examples are given later in this section.

If T is the input (rooted, ordered) tree and ℂ is the set of colors, such a problem
seeks a coloring φ : V(T ) → ℂ that minimizes the cost function. There can be many
constraints on the coloring function: some nodes of T may be forced to have a certain
color, the possible colors of a node may depend on the colors of its descendants. In our
tree-sequential dynamic programming formalism, a tree automaton and a cost func-
tion are given as part of the input. The tree automaton defines the set L(A) of feasible
coloring functions satisfying all those constraints. A state q can be interpreted as a
colored subtree of T with a particular root color; the unique initial state is an empty
coloring and transitions into a colored leaf of T ; a final state corresponds to a fully
colored T with a particular root color. A commonly used form of cost functions con-
siders the (possibly weighted) sum over the edges of the tree of the cost of putting
two colors on each end of an edge, that is, an incremental cost function I of the form
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I(q1, . . . ,qn,a,p) = ∑1≤i≤n p(ai,a)whereai is the color of the root of the subtree in state
qi and p : C2 → ℝ≥0 is a function that gives the cost of putting two colors at each end
of an edge.

Equivalence relations on the set of solutions A possible strategy to define equiva-
lence classes on the solution space of theOptimal tree coloring problem is to con-
sider some colors to be locally equivalent on a node. In practical applications, the space
of colors can be quite large (this is the case for the Reconciliation problem from
Chapter 2). Even though the precise colors of each node are necessary for correctly
computing the cost function, when the solutions are analyzed by a human expert, it
can be desirable to omit the colors and just look at whether the color of a node belongs
to some group of colors. Therefore, this kind of equivalence relations is natural in many
situations. Our Definition 4.5 of color classes of an e-colored ad-AND/OR graph deals
exactly with equivalence relations of this type.

Let e be a function that maps a nodeu and a color c to the “color group” of that node,
denoted bye(u, c). Two solutions of theOptimaltreecoloringproblemφ1,φ2 : V(T ) →
ℂ are said to be equivalent if∀u ∈ V(T ), e(u,φ1(u)) = e(u,φ2(u)). LetG be the ad-AND/OR
graph associated with this instance. Then G can be e-colored as follows. For each OR+
node w of G labeled with the state q, where q is interpreted as a colored subtree of T |u
of T rooted at a node u colored with c, we color the node w with e(u, c). After this, G is
e-colored, and its set of color classes C(G) corresponds to the set of equivalence classes
of the solutions of the instance. Notice that the constraint we had on the e-coloring
of an ad-AND/OR graph is naturally satisfied by any meaningful function e because in
a DP setting we only consider ordered trees: the i-th and j-th children of a node of T
cannot be in the same color group unless i = j.

Concrete examples of tree coloring problems

In each of the following problems, the connection with the Optimal tree color-
ing problem is straightforward. The aim here is to show that our framework allows to
consider equivalence relations that are natural or appropriate for those problems.
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Example 1 In the Reconciliation problem that we studied in Chapter 2, the in-
put tree is the parasite tree, the set of colors is the set of nodes of the host tree, and
the notion of reconciliation defines the set of feasible colorings. The E-, EL-, and CD-
equivalence relations, all of which can be shown to yield an e-coloring of the recon-
ciliation graph, are motivated by biological considerations and by practical needs. In
Chapter 3, we have seen that useful information can be extracted from the equivalence
classes to help us better understand the solution space, which can be huge for some
datasets.

Example 2 This example is related to the alignment of gene sequences on a phylo-
genetic tree, known as the Tree alignment [San75]. In this problem, one seeks to
infer the ancestral sequences, knowing the sequence on each taxa, in a way that is
most parsimonious (i.e., minimizing the edit distance between adjacent sequences).
The general version of the problem considers sequences of arbitrary length and is NP-
hard [WJ94; War95]. Here we look at the special case of sequences of length 1 (which
also solves the problem of aligning, on a tree, sequences of a given fixed length). The
input is a tree T , a setΣ of letters (DNA alphabet or protein alphabet), a function that la-
bels each leaf node of T with a letter, and a distance function d : Σ2 → ℝ≥0 between two
letters. The goal is to extend the leaf labeling to a full labeling φ : V(T ) → Σ such that
the sum of the distances over the edges of T is minimized. Defining equivalence rela-
tions of the solutions based on a grouping of the letters is uncontrived in this problem:
for the DNA or protein alphabet, the letters can be subdivided into structurally simi-
lar groups. In practice, we have a fixed length n for the sequences on each node, and
we solve the single-letter problem independently for each of the n positions and then
combine the solutions together. It is clear that, by combining n sets of solutions, the
number of solutions can quickly become huge when the length grows. Summarizing
the solution space by means of enumerating the equivalence classes is then a useful
technique for analyzing the output.

Example 3 The Frequency assignment problems are a family of problems that
naturally arise in telecommunication networks, and that have been extensively stud-
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ied in graph theory as a generalization of graph coloring known as the T-coloring
problem [Hal80; Rob91; Tes93]. In the variant called the list T-coloring, the input is a
graphG representing the interference between radio stations, a setC of colors, a func-
tion S that gives for each vertex v ∈ V(G) a set S(v) ⊆ C of colors (possible frequencies
for a station), and a set T ⊆ C2 of forbidden pairs of colors (interfering frequencies).
The goal is to find a coloring φ : V(G) → C such that a ∀v ∈ V(G), φ(v) ∈ S(v), and
∀(u, v) ∈ E(G), (φ(u),φ(v)) ∉ T . While this problem is hard in general, it can be solved
by DP when the underlying graph is a tree. In this case, we can enumerate colorings of
the input trees without any forbidden pair of colors on the edges. Defining equivalence
relations by grouping some of the colors together (for example, frequencies that could
be considered similar), and enumerating only one solution per equivalence class can
be a practical way of reducing the size of the output.

Graph optimization problems and DP on tree decomposition

Graph optimization problems can model a large variety of real-world problems. Many
hard graph problems can be solved in polynomial time with a dynamic programming
algorithm when the input graph has bounded treewidth (see, for example, [Bod88]).
The underlying idea is that, given a tree decomposition of a graph, the DP-algorithm
traverses the nodes (bags) of the decomposition and consecutively solves the respec-
tive sub-problems.

A well-studied type of graph problems is the vertex subset optimization problems,
which ask for a subset of vertices of the input graph that is optimal with respect to some
graph-theoretical properties. Given a bag X, a DP-algorithm generally computes for
each subset Z ⊆ X the optimal solution of the DP-subproblem whose intersection with
X is Z. In this context, we could define two solutions to be equivalent if they intersect
each bag of the decomposition in an “equivalent” way. The equivalence relation on the
solutions is then defined by an equivalence relation over the subsets of each bag, and
two solutions S1 and S2 are equivalent if for all bags X of the decomposition, S1 ∩ X is
equivalent to S2 ∩ X.

One of the simplest examples is to consider that all the nonempty subsets of ver-
109



tices of a bag are equivalent. Thus, what we are interested in is whether a solution
“hits” a bag (i.e., whether it has a nonempty intersection with the vertices in the bag).
Consequently, two solutions would be considered equivalent if they hit the same bags.

We can also consider two subsets of a bag to be equivalent if they have the same size.
In this case, two solutions would be equivalent if each bag contains the same number
of vertices in the two solutions.

The above two examples give an idea on how equivalence relations which fit into
our framework can be defined. We believe that considering solutions in the way they
are distributed along the tree decomposition of a graph could give a good overview of
the diversity of the solution space.

4.5 Conclusion and perspectives

In this chapter, we provided a framework for the enumeration of solutions in polyno-
mial delay that can be applied to a whole family of problems, and we showed several
examples of applications in dynamic programming problems. A few key ingredients
are required: one is that the solutions must be represented in an AND/OR graph that is
acyclic and decomposable, the other is that the equivalence relation must be encoded
into an e-coloring of the graph. It would be interesting to ask the same question for
a general colored AND/OR graph, that is, whether we can efficiently enumerate color
classes of solution subgraphs, if one or more of those ingredients is missing. In partic-
ular, it remains open whether the problem is hard without assuming the decompos-
ability of the structure of the solutions.

Putting together equivalence relations and graph enumeration problems can give
rise to new research directions. We worked on a particular flavor of AND/OR graphs
due to their close relationship with dynamic programming problems. Outside of a
DP setting, in the area of graph algorithms, the enumeration of subgraphs of a graph
satisfying some particular properties, of which the enumeration of color classes of an
ad-AND/OR graph is a special case, is also a challenging problem, and has stimulated
interesting development – both theoretical and experimental – in Network biology
[ASA19; Geo+09], Data mining [Mou+14], Data bases theory [Zen+06], etc. In these
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applications, one typically wishes to understand the data, which is the graph itself,
by exhibiting its patterns, represented as subgraphs satisfying some desired proper-
ties (e.g., connectivity, density). For the purpose of discovering distinctive patterns, an
equivalence relation can be introduced, and the new question is then how to efficiently
enumerate subgraphs that satisfy the desired properties and that are not equivalent to
each other.

In the last part of Section 4.4.2, we hinted that our approach can be used in the con-
text of graph optimization problems, together with the tree decomposition technique
and DP-algorithms on tree decomposition. For a specific graph problem such asDom-
inating set, one might want to define an equivalence relation that is more tailored
to the problem and not based on tree decomposition. More generally, the most suit-
able equivalence relation on the set of solutions of a problem could be based on some
non-local properties, and our framework would not apply. A recursive algorithm such
as Algorithm 3 works well when the property of interest is local in some sense (here,
in the form of an e-coloring). In order to efficiently enumerate equivalence classes
that are based on non-local properties, we have to develop new techniques. Indeed, in
Chapter 2, the enumeration of V-equivalence classes, which is based on the non-local
property of event vector, was done using an entirely different method.
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Chapter 5
Maximum agreement forest

5.1 Introduction

A natural question that arises in phylogenetic analysis is the quantification of dissim-
ilarity between different (i.e., non isomorphic, see Chapter 1, Definition 1.2) phyloge-
netic trees on the same set of taxa. The difference in the tree topology can be a conse-
quence of different inference methods, or different data sources being used (e.g., mor-
phological data, behavioral data, genetic data, etc). Furthermore, regardless of the in-
ference method or the data source, the constructed tree may not correctly represent
evolutionary relationships, because not all groups of species follow a simple tree-like
evolutionary pattern. The non tree-like evolutionary processes, such as hybridiza-
tion, recombination, and horizontal gene-transfer, are collectively known as reticu-

lation events [HRS10]. Due to reticulation events, phylogenetic trees representing the
evolutionary history of different genes found in the same set of species may differ.

Several distance metrics are commonly used to quantify the difference between
phylogenetic trees. The Robinson-Foulds distance is a popular metric that can be cal-
culated in linear time [RF81; Day85]. The subtree prune-and-regraft (SPR) distance
and the hybridization number [Bar+05] are more biologically meaningful, but are NP-
hard to compute [AS01; BS05; BS07] (and even APX-hard [Hei+96; Rod03]). The SPR
distance is particularly interesting as it provides a lower bound on the number of retic-
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ulation events required to transform one tree to the other, which is a simple explana-
tion for the difference between trees [BH06].

TheMaximum agreement forest problem (MAF problem) is closely related
to the problem of computing the SPR distance [Hei+96]. In the case of two rooted di-
rected binary trees, the optimal value of theMAFproblem (using a subtle redefinition
by [BS05]) coincides with the value of the rSPR distance, that is, the rooted variant of
the SPR distance. In this chapter, we will focus on theMAF problem.

For theMAFproblem, several standard approaches for dealing with NP-hard prob-
lems have been employed, including approximation algorithms, fixed-parameter al-
gorithms [WZ09; WBZ13], and integer linear programming [Wu08]. Much of the lit-
erature has been devoted to the search of better approximation algorithms, leading to
a succession of algorithms with ever-improving approximation ratios. The first cor-
rect approximation algorithm is a 5-approximation [Bon+06]. Subsequently, several
3-approximations have been proposed [BMS08; RSW07; WZ09], each one improving
on the running time. The approximation ratio was later improved to 2.5 by [Shi+16]
and then to 7/3 by [CMW16]. To date, the best approximation ratio of 2 is achieved by
[SZS16] and [Che+20] which independently gave two algorithms using entirely differ-
ent methods. Recently, [YCW19] made use of Monte Carlo tree search, improving on the
2-approximation of [Che+20] to achieve a better practical result.

In this chapter, we define formally the MAF problem and present a heuristic for
it, that is, an algorithm that provides an approximate solution without a guaranteed
approximation ratio, then we compare this algorithm experimentally with the exist-
ing approximation algorithms and show that it outperforms all but one of them in
terms of the quality of the approximation. We conjectured that this algorithm also
achieves the approximation ratio of 2. If this were true, we would have yet another
2-approximation, again based on entirely different ideas from the two existing ones,
that is easier to understand and to implement and performs better in practice.
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5.2 Definitions

Basic definitions about trees and forests can be found in Chapter 1, Section 1.2.2. In
this chapter, the central object that we study is a X-forest, or a leaf-labeled rooted bi-
nary forest. It is a graph whose connected components are rooted binary trees, and its
leaves are bijectively labeled by a set X. To be more consistent with the terminology
commonly found in the literature (where the vocabulary associated with undirected
trees and forests is most often used), in this chapter, the set of arcs of a forest F will
be denoted by E(F); nodes and arcs will be called respectively vertices and edges. Recall
from Chapter 1 that if v is a vertex in a forest, p(v) denotes its parent.

The edge incident on a leaf is called the pendant edge of that leaf. An isolated vertex

in a rooted binary forest is a leaf that is also the root of a component (i.e., an out-degree
zero and in-degree zero vertex). A pendant subtree of anX-forest is a subtree that can be
obtained from the forest by deleting at most one edge. It is necessarily a rooted binary
tree. Unless explicitly stated otherwise, we simply use the term subtree to designate a
pendant subtree. A cherry is a subtree consisting of only three vertices: two leaves and
their common parent. A cherry containing two leaves a and b is denoted by (a,b), or
equivalently, (b,a).
Definition 5.1 (Leaf pair). Let (F1, F2) be a pair of X-forests, i.e., two rooted binary
forests whose leaves are labeled by the same set X. A leaf pair (v1, v2) of (F1, F2) is an
ordered pair consisting of a leaf v1 of F1 and a leaf v2 of F2 having the same label.
Definition 5.2 (Cutting an edge from an X-forest). Let F be an X-forest. Let E ⊆ E(F)
be a set of edges of F. Then Cut(F,E) is an X-forest obtained from F by applying the
following operations:

1. Remove from E(F) the edges in E.
2. Repeatedly contract each out-degree one and in-degree one vertex, i.e., remove

it and then add an edge between its parent and its unique child.
3. Remove all out-degree one and in-degree zero vertices (their unique child then

becomes the new root of that component).
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When E contains only one edge e, Cut(F,E) can be simply written as Cut(F, e). The
operation of cutting an edge is also called making a cut.
Definition 5.3 (AF, MAF). An agreement forest (AF) of two X-forests F1 and F2 is an X-
forest F such that there exist E1 ⊆ E(F1) and E2 ⊆ E(F2) satisfying

F � Cut(F1,E1) � Cut(F2,E2) .
By choosing E1 = E(F1) and E2 = E(F2), we can always obtain an AF of F1 and F2 whose
components are all isolated vertices.

A maximum agreement forest (MAF) is an AF whose order is minimum.
For a pair ofX-trees (T1, T2) (i.e., twoX-forests of order 1),m(T1, T2)denotes the order

of a MAF minus one, that is,
m(T1, T2) := min{|F| − 1 : F is an AF of T1 and T2} . (5.1)

Since each cut increases the number of components by one, the number m(T1, T2) can
also be interpreted as the number of edges that one needs to cut in each tree to produce
an agreement forest.

The MAF problem can be stated as follows: given two X-trees T1 and T2, find the
value ofm(T1, T2).

It is known thatm(T1, T2) is equal to the rSPR distance if the following preprocessing
operations have been applied to each of the two input X-trees: (1) add a dummy leaf
labeled by ρ (a symbol that is not already in the label set X), (2) add ρ to the label set X,
and (3) add a dummy root whose two children are the dummy leaf ρ and the original
root of the tree [BS05]. As our interest in solving the MAF problem originates from
the computation of the rSPR distance, we will assume that this preprocessing step has
already been applied. For convenience, we will refer to the optimal value of an instance
of the MAF problem simply as the distance. Therefore, the value of m(T1, T2) defined
in Equation (5.1) is called the distance between T1 and T2.

Even though an instance of theMAF problem is a pair of trees, for the purpose of
analyzing our algorithm, it is worthwhile to extend the notion of distance to a pair of
forests.
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Definition 5.4 (Distance between a pair ofX-forests). Let (F1, F2) be a pair ofX-forests.
Let (d1,d2) be an ordered pair of integers satisfying d2 = d1 + |F1 | − |F2 |.
• We say that (d1,d2) is an upper bound of the distance, denoted bym(F1, F2) ≤ (d1,d2),

if there exists an AF F of F1 and F2 such that |F| ≤ d1 + |F1 | = d2 + |F2 |. Equivalently,
m(F1, F2) ≤ (d1,d2) if there exists E1 ⊆ E(F1) of size at most d1 and E2 ⊆ E(F2) of size
at most d2 such that Cut(F1,E1) � Cut(F2,E2).

• We say that (d1,d2) is a lower bound of the distance, denoted bym(F1, F2) ≥ (d1,d2),
if for all AF F of F1 and F2, the order of F satisfies |F| ≥ d1 + |F1 | = d2 + |F2 |.

• If (d1,d2) is an upper bound and a lower bound of the distance, we simply call it
the distance between F1 and F2, and writem(F1, F2) = (d1,d2).

It is clear that if |F1 | = |F2 | = 1, the distance (d1,d2) satisfies d1 = d2 = |F| − 1 for
any MAF F of F1 of F2. The definition ofm(F1, F2) coincides with the one given in Equa-
tion (5.1) for a pair of trees, but with an important subtlety: the distance between a
pair of forests is a pair of integers, while the distance between a pair of trees is a sin-
gle integer. As we will see in the next section, the algorithm needs to work on pairs of
forests with “unbalanced” numbers of components, i.e., (F1, F2)with |F1 | ≠ |F2 |, hence,
different numbers of cuts are needed in each forest before reaching a MAF.

The following easy lemmas are useful for expressing the quality of a cut in terms of
the distance. As the distance can be intuitively understood as the number of cuts that
still need to be made before reaching a MAF, a cut in one forest decreases (the corre-
sponding element of) the distance by either zero or one; a cut is effective if it indeed
decreases the distance by one.
Lemma 5.1 (Making cuts does not increase the distance). Let (F1, F2) be a pair of X-

forests. Let E1 ⊆ E(F1) and E2 ⊆ E(F2) be some subsets of edges of F1 and F2. Then

m(Cut(F1,E1),Cut(F2,E2)) ≥ (d1 − |E1 |,d2 − |E2 |)

where (d1,d2) = m(F1, F2).
Proof. Any AF F ofCut(F1,E1) andCut(F2,E2) is also an AF of F1 and F2. So |F| ≥ d1+|F1 | =
d1 − |E1 | + |Cut(F1,E1)| and |F| ≥ d2 + |F2 | = d2 − |E2 | + |Cut(F2,E2)|. �
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Lemma 5.2 (A cut is effective if it is used by a MAF). Let (F1, F2)be a pair ofX-forests with

m(F1, F2) = (d1,d2).

• (Cutting in only one forest) Let e1 be an edge of F1. If there exists a MAF F of F1 and F2
such that e1 ∈ E1, where E1 is the subset of edges of F1 such that F � Cut(F1,E1), then

m(Cut(F1, e1), F2) = (d1 − 1,d2).
• (Cutting in both forests) Let e1 be an edge of F1 and e2 be an edge of F2. If there exists

a MAF F of F1 and F2 such that e1 ∈ E1 and e2 ∈ E2, where E1 and E2 are the subsets of

edges of F1 and F2 such that F � Cut(F1,E1) � Cut(F2,E2), then

m(Cut(F1, e1),Cut(F2, e2)) = (d1 − 1,d2 − 1).
Proof. (For the first statement only; the proof of the second statement is similar) By
Lemma 5.1, m(Cut(F1, e1), F2) ≥ (d1 − 1,d2). For the other direction, since e1 ∈ E1, the
forest F is an AF of Cut(F1, e1) and F2. We have |F| = d1 + |F1 | = (d1 − 1) + |Cut(F1, e1)|, so
m(Cut(F1, e1), F2) ≤ (d1 − 1,d2). �

5.3 The algorithm

5.3.1 Reduction rules

Given a pair of X-trees T1 and T2, we seek an approximate solution of their distance,
that is, an upper bound ofm(T1, T2). The general strategy of the algorithm is straight-
forward. At any step, we have a pair ofX-forests and we cut edges in both of them until
the pair becomes isomorphic; the result is an AF and the final number of cuts is an up-
per bound of the distance. Notice that not all algorithms in the literature follow this
approach, for example, the 3-approximation of [WZ09] only cuts edges in one of the
two input trees.

The first important component of the algorithm is the reduction rules. These rules
tell us how to transform a pair of forests into another one with strictly fewer leaves
while preserving the distance. Intuitively, these rules correspond to the observations of
the type “it is forbidden (or mandatory) to cut such an edge”.
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a

Ta

Figure 5.1: Illustration of the reduction rule 1. Only the relevant and common structure
of the two forests is drawn.

Four reduction rules are considered in the algorithm. The first two were defined in
[AS01; BS05]. We will only give the proof of correctness for the other two. The first
three rules are concerned with common structures that can be found in both forests:
those structures can be replaced by simpler ones. The fourth rule is of a different nature
and identifies an edge that must be cut in exactly one of the two forests.
• Reduction rule 1 (Subtree reduction): Replace any subtree of more than one leaf

that occurs in both forests by a single leaf with a new label.
• Reduction rule 2 (Chain reduction): Replace any chain of subtrees that occurs

identically and with the same relative orientation in both forests by three new
leaves with new labels correctly oriented to preserve the direction of the chain.

• Reduction rule 3 (Root-chain reduction): Replace any chain of subtrees that oc-
curs identically and with the same relative orientation in both forests and starts
from the root of its component by a single leaf with a new label.

• Reduction rule 4 (Isolated vertex reduction): If there exists a leaf pair (v1, v2) such
that v1 (resp. v2) is an isolated vertex but v2 (resp. v1) has a parent, cut the pendant
edge of v2 (resp. v1).

Following what the authors did in [AS01; BS05], we do not formally define what is
a chain in the rule 2 but only show it graphically. Illustrations of application of each of
the first three reduction rules are shown in Figures 5.1–5.3.

It is worth mentioning that we will always call the forests X-forests in any step of
the algorithm, although the original label set Xmay have changed as a consequence of
applying the reduction rules.
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d

a′
b′
c′

Figure 5.2: Illustration of the reduction rule 2. Only the relevant and common structure
of the two forests is drawn. Common subtrees have already been replaced by leaves
after applying the reduction rule 1.

(ab)

rootroot
a

b

Figure 5.3: Illustration of the reduction rule 3. Only the relevant and common structure
of the two forests is drawn. Common subtrees have already been replaced by leaves
after applying the reduction rule 1.
Lemma 5.3 (The reduction rule 3 preserves the distance). Let (F1, F2) be a pair of X-

forests. If the reduction rule 3 can be applied and the result is a pair (F′1, F′2), thenm(F1, F2) =
m(F′1, F′2).
Proof. It suffices to consider two leaf pairs (a1,a2) and (b1,b2) (labeled respectively by
a and b) such that p(b1) = p(p(a1)) and p(b1) is the root of a component of F1, and p(b2) =
p(p(a2)) and p(b2) is the root of a component of F2 (see Figure 5.3). Let (ab) be the label
of the new leaf in (F′1, F′2).

First, let F′ be a MAF of F′1 and F′2. If the leaf (ab) is isolated in F′, replace it by a cherry
of two leaves a and b; otherwise, the parent of (ab) is the root of a component, and we
can replace (ab) by a leaf b, and add a new root and connect it to the old root p(a) and to
a leaf a. The result is an AF of F1 of F2, hence,m(F1, F2) ≤ m(F′1, F′2).

For the other direction, let F be a MAF of F1 and F2. We first show that the leaves
labeled by a and b are in the same component of F. Assume that a and b are in different
components. Then a must be an isolated vertex; b is either an isolated vertex or p(b)
is the root of a component. In the first case, connect the two isolated vertices a and b
to form a cherry. In the second case, add a new root to the component containing b,
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connecting it to the old root p(b) and to the isolated vertex a. In both cases, we get an
AF of F1 of F2 of order strictly smaller than F, contradicting the minimality of the order
of F. Therefore, a and b are in the same component in F. Replace the chain containing
a and b by a new leaf labeled by (ab). The result is an AF of F′1 and F′2, hence,m(F′1, F′2) ≤
m(F1, F2). �

Lemma 5.4 (The cut made by the reduction rule 4 is effective). Let (F1, F2) be a pair of

X-forests. If the reduction rule 4 cuts an edge e1 in F1 (resp. e2 in F2), then

m(Cut(F1, e1), F2)) = (d1 − 1,d2)
(resp. m(F1,Cut(F2, e2))) = (d1,d2 − 1))

where (d1,d2) = m(F1, F2).

Proof. The proof is trivial: if a leaf appears as an isolated vertex in either F1 or F2, it
must appear as an isolated vertex in every MAF of F1 and F2. �

During the algorithm, the reduction rules will be applied at the very beginning as
well as at the end of each iteration. The remaining steps of an iteration thus only con-
sider a pair of forests that is irreducible.

Definition 5.5 (Irreducible pair of forests). A pair of X-forests is called irreducible if
none of the reduction rules 1–4 can be applied.

The next lemma says that a pair of forests can be made irreducible efficiently, and
the size of an irreducible pair of forests is bounded linearly by their distance. The proof
is omitted and follows from the similar statements in [AS01; BS05] (the addition of the
two new reduction rules does not affect the analysis).

Lemma 5.5. A pair of X-forests (F1, F2) of size n (i.e., the number of vertices in each forest)

can be transformed into an irreducible pair (F′1, F′2) of size n′ inO(n) time, and the size n′ is

bounded linearly bym(F1, F2).
121



5.3.2 Common continuous subtree (CCS)

Definition

The central idea of the algorithm is to identify subtrees that are “almost” identical in
the pair of forests. This is in a similar spirit as the first reduction rule, which identifies
subtrees that are exactly identical. In our definition of “almost identical subtrees”, we
allow at most one cut in either forest, that is to say, after cutting at most one edge,
that subtree will occur in both forests and the reduction rule 1 applies. The next few
definitions express this formally.
Definition 5.6 (CS). Let F be a X-forest. A continuous subtree (CS) of F is a subtree H of
F having at least two leaves, and in which at most one edge (u, v) is marked as the cut

edge and satisfies u ≠ r(H) (i.e., the cut edge is not incident to the root of the CS).
When no edge is marked as the cut edge, the cut edge of the CS is defined to be the

empty set ∅. Accordingly, we define Cut(F, ∅) := F.
Definition 5.7 (CCS). Let (F1, F2) be a pair of X-forests. A common continuous subtree

(CCS) of (F1, F2) is an ordered pair (H1,H2) such that
• H1 is a CS of F1, H2 is a CS of F2.
• Let e1 and e2 be the cut edges of (H1,H2). Then Cut(H1, e1) � Cut(H2, e2).

The number of leaves in Cut(H1, e1) or equivalently in Cut(H2, e2) is called the size of
the CCS.

From the definition of a CS, after performing the cut, it must still remain at least
two leaves in the CS, hence, the size of a CCS is at least two. Consequently, Cut(H1, e1)
and Cut(H2, e2) share at least one common cherry.

Classification

In an irreducible pair of forests, the possible sizes or topologies of a CCS are very lim-
ited. As we just pointed out, after performing the cuts in a CCS, a common cherry ap-
pears in both forests. This common cherry must not exist before the cuts, otherwise
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the first reduction rule would apply. It implies that, in at least one of the two forests,
the cut edge of the CCS is the edge that “separates” the two leaves in that cherry. The
next lemma provides a list of properties of CCSes in an irreducible pair of forests, and
classifies all possible CCSes into three types in relation to the cut edge that “separates
the new common cherry”.
Lemma 5.6. Let (H1,H2) be a CCS of a pair of irreducibleX-forests (F1, F2). Then

1. Th cut edges of H1 and H2 cannot both be empty.

2. For either H1 or H2 or for both, the cut edge (u, v) is incident to the pendant edge of a

leaf a, that is,u = p(a).

A CS satisfying this property is called a leading CS of that CCS.

3. Assume wlog that H1 is a leading CS of the CCS. Let a be leaf adjacent to the cut edge

of H1, and let b be the leaf such that p(b) = p(p(a)) (such a leaf b exists because there

must be a cherry (a,b) after cutting the cut edge of H1). Leta′ andb′ be the leaves of F2
having the same labels as a and b. Then exactly one of following is true:

(a) (a′,b′) is a cherry of H2. In this case, (H1,H2) is called a CCS of type one.

(b) H2 has a cut edge (u, v) such thatu = p(b′) and p(u) = p(a′). In this case, (H1,H2)
is called a CCS of type two.

(c) H2 has a cut edge (u, v) such thatu = p(a′) and p(u) = p(b′). In this case, (H1,H2)
is called a CCS of type three.

In any of the three cases, the leaves a and b in F1 and the leaves a′ and b′ in F2 are said

to be forming the target cherry of the CCS.

4. The maximum size of a CCS of type one is 6. The maximum size of a CCS of type two is

5. The maximum size of a CCS of type three is 3.

Proof. 1. Suppose that both cut edges are empty, then H1 and H2 are common sub-
trees of F1 and F2. Since the reduction rule 1 does not apply, any common subtree
can only have one leaf. By definition, a CS has at least two leaves.
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2. Suppose that neither of the two CSes is a leading CS, then there exists a common
cherry in Cut(H1, e1) and Cut(H2, e2) that is unchanged by performing the cuts.
This cherry is a common subtree of F1 and F2 and contradicts the irreducibility.

3. Trivial from the definition of a CCS.
4. The limits on the size of a CCS come from the fact that neither reduction rule 1

nor reduction rule 2 applies. The assertion can be checked by listing exhaustively
all possible configurations of a CCS. In Figure 5.4, we provided such a list. The
figure should be read as follows. The two leaves forming the target cherry are
labeled by a and b. The row indexed by 0 shows the possible configurations of
the leading CS of a CCS. Once a leading CS has been chosen in row 0, in the same
column, the rows 1–3 provide possible configurations of the other CS (leading or
not), such that these two CSes together form a correct CCS. Each column, indexed
from 2 to 6, shows the possible configurations for a given size of a CCS (starting
from column 3, the row 2 splits into two sub-rows). A possible configuration of
a CCS is a combination of one configuration from row 0 with one configuration
from rows 1–3, both taken from the same column. The choice between rows 1–3
determines whether the CCS is of type one, two, or three.

�

The classification of CCSes allows us to find CCSes very efficiently in irreducible
pairs of forests. As a key operation in the algorithm, CCS searching is needed repeat-
edly and crucially impacts the running time. While our definition of CCS is simple and
interesting by itself, the assumption of irreducibility makes it especially interesting
from a practical point of view.
Lemma 5.7. Given an irreducible pair of forests, the list of its CCSes can be found in linear

time in the size of the forests.

Proof. It suffices to identify all target cherries (a,b)which appear either as cherries or
as “cherries separated by an edge”. There can only be a linear number of them, hence,
all CCSes of size 2 can be found in linear time. Any CCS of size larger than 2 can be
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Figure 5.4: Classification of CCSes. A possible configuration of a CCS is a combination

of one configuration from the row indexed by 0, with one configuration from rows 1–3,
both taken from the same column. The choice between rows 1–3 determines whether
the CCS is of type one, two, or three. The column index indicates the size of the CCS.
obtained from a CCS of size 2 by successively adding leaves that are next to the target
cherry (see Figure 5.4); this clearly requires constant time. �

Best CCS and best pre-CCS leaf pair

At each iteration, the algorithm identifies all CCSes of the irreducible pair of forests.
Two situations can then occur. If there are more than one CCS, it selects one of them.
If, on the other hand, there exists no CCS, it in turn tries to find a pre-CCS leaf pair,
which we will define later; as the name suggests, after cutting out such a leaf pair from
the forests, some CCSes will emerge as a result. In both situations, the choice of the
CCS or the pre-CCS leaf pair is guided by a partial order between CCSes, taking into
account the type and the size.
Definition 5.8 (Best CCS). For a given set of CCSes, consider the following partial order
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(reflexive, antisymmetric, and transitive) “better than”:
• A CCS of type one is better than a CCS of type two.
• A CCS of type two is better than a CCS of type three.
• For two CCSes of the same type, a CCS of larger size is better than the smaller one.

A CCS is called a best CCS if it is a minimal element, i.e., there exists no other better CCS
in the set.

When the pair of forests does not have any CCS, the algorithm chooses to cut a leaf
pair, or more precisely, the pendant edges of a leaf pair. Indeed, in the special case of an
irreducible pair of forests without any CCS, this kind of cut preserves the irreducibility.
This allows the algorithm to “look one step ahead” and to identify new CCSes imme-
diately after the cut, i.e., without applying the reduction rules and going to the next
iteration.
Lemma 5.8. Let (F1, F2) be a pair of irreducible X-forests that does not have any CCS. Let

(v1, v2) be a leaf pair of (F1, F2). Then, after cutting the pendant edges e1 and e2 of v1 and v2,

the pair of forests (Cut(F1, e1),Cut(F2, e2)) are still irreducible.

Proof. It is easy to check that the reduction rules 2 and 3 cannot apply to the pair
(Cut(F1, e1),Cut(F2, e2)). To see that the Reduction rule 1 does not apply, suppose that
(Cut(F1, e1),Cut(F2, e2)) has one common subtree of at least two leaves. Let a and b be
two leaves that form a common cherry ofCut(F1, e1) andCut(F2, e2). The leavesa and b
cannot appear as a cherry in both forests F1 and F2 because the pair (F1, F2) is irreducible.
Thus at least one edge e1 or e2 must separate the two leaves. Assume wlog that e1 is
incident to the pendant edge of a in F1. Let H1 be the CS of F1 rooted at the parent of b
with e1 marked as the cut edge. Depending on the position of the edge e2 relative to the
cherry (a′,b′) in F2 (three cases: outside of the cherry, incident to the pendant edge of
b′, or incident to the pendant edge of a′), we can choose the CS H2 accordingly (each
case corresponds to a type of CCS) such that (H1,H2) is a CCS of (F1, F2) (a and b form
the target cherry of that CCS), contradicting the assumption that the pair (F1, F2) does
have any CCS. �
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Definition 5.9 (Pre-CCS leaf pair). Let (F1, F2) be a pair of irreducible X-forests that
does not have any CCS. A leaf pair (v1, v2) of (F1, F2) is called a pre-CCS leaf pair if, after
cutting the pendant edges e1 and e2 of v1 and v2, the new pair of forests (Cut(F1, e1),
Cut(F2, e2)) has at least one CCS.
Definition 5.10 (Best pre-CCS leaf pair). Let (F1, F2) be a pair of irreducible X-forests
that does not have any CCS. Consider the set of CCSes

H̃ := ⋃
(e1,e2)

{
H1,H2) : (H1,H2) is a best CCS of (Cut(F1, e1),Cut(F2, e2))}

where e1 and e2 are the pendant edges of v1 and v2, and the union is taken over all
pre-CCS leaf pairs (v1, v2) of (F1, F2). A leaf pair (v1, v2) for which a best CCS (H1,H2) of
(Cut(F1, e1),Cut(F2, e2)) is a minimal element of H̃ for the relation “better than” (see
Definition 5.8) is called a best pre-CCS leaf pair associated with a best CCS (H1,H2).

From this definition, if there exist two distinct best pre-CCS leaf pairs associated
respectively with the best CCSes (H1,H2) and (H′1,H′2), then both best CCSes are of
the same type and of the same size, although they are CCSes in two different pairs
of forests.

5.3.3 Summary of the algorithm

The algorithm, shown in Algorithm 5, is called NewCCS. The name acknowledges the
fact that it originated from ideas of algorithms that were previously explored in the
team and in which the term CCS, though defined differently, was first introduced.

At each iteration, the algorithm updates a pair of forests (F1, F2) and an integer k
that keeps track of the number of cuts made so far in F1. The edges that are cut from
F1 by the algorithm come from three sources: either it is the result of applying the
reduction rule 3 (Line 21), or it is the pendant edge of a leaf (Lines 13 and 19), or it is
the cut edge of a CCS (Lines 9 and 15). As the cut edge e of a CCS may not exist (defined
to be ∅ in this case), we use the notation |e| that equals zero if the edge is empty and
equals one otherwise. At least one edge is cut in one of the forests in each iteration
(by Lemma 5.6, the two cut edges of a CCS cannot both be empty), so the while loop
necessarily stops and ends with a pair of isomorphic forests. As the reduction rules
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Algorithm 5: (NewCCS) Approximatem(T1, T2)
1 Input: A pair ofX-trees T1 and T2
2 Output: An integer k such thatm(T1, T2) ≤ k
3 F1 ← T1; F2 ← T2; k← 0
4 Make (F1, F2) irreducible by applying the reductions rules
5 while F1 and F2 are not isomorphic do

6 if there exists a CCS of (F1, F2) then

7 Let (H1,H2) be a best CCS of (F1, F2)
8 Let e1 and e2 be the cut edges of (H1,H2)
9 F1 ← Cut(F1, e1); F2 ← Cut(F2, e2); k← k + |e1 |

10 else if there exists a pre-CCS leaf pair of (F1, F2) then

11 Let (v1, v2) be a best pre-CCS leaf pair of (F1, F2) associated with a best CCS
(H1,H2)

12 Let e1 and e2 be the pendant edges of v1 and v2
13 F1 ← Cut(F1, e1); F2 ← Cut(F2, e2); k← k + 1
14 Let e3 and e4 be the cut edges of (H1,H2)
15 F1 ← Cut(F1, e3); F2 ← Cut(F2, e4); k← k + |e3 |
16 else // i.e., there is no CCS and no pre-CCS leaf pair
17 Let (v1, v2) be a random leaf pair of (F1, F2)
18 Let e1 and e2 be the pendant edges of v1 and v2
19 F1 ← Cut(F1, e1); F2 ← Cut(F2, e2); k← k + 1
20 end

21 Make (F1, F2) irreducible by applying the reductions rules
22 Increment kwith the number of edges the reduction rule 3 has cut in F1
23 end

24 return k

preserve the distance, exactly k cuts are needed in either forests to arrive at an AF,
therefore, k is an upper bound of the distance. The number of iterations is O(n) and
each iteration requires O(n) time (to see this, notice that the number of leaf pairs is
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O(n) and cutting a leaf pair only createsO(1) new CCSes), hence the next lemma.
Lemma 5.9. Algorithm 5 returns an upper bound ofm(T1, T2) inO(n2) time.

We end this section with the following conjecture:
Conjecture 5.1. Algorithm 5 is a 2-approximation for computingm(T1, T2).

5.4 Experimental results

Algorithm 5 has been implemented in Python. Because there is some randomness,
the implementation performs 10 random runs and outputs the best solution. In this
section, the name NewCCS only refers to the best-out-of-ten implementation.

To compare with our NewCCS algorithm, we will use five existing algorithms that
have a publicly available implementation.
• WZ (https://github.com/cwhidden/rspr), the 3-approximation by [WZ09] which

runs in linear time.
• SVN (https://nolver.net/maf/), the 2-approximation by [SZS16]. It runs in

quadratic time.
• CMW, CHN, CombMCTS (http://rnc.r.dendai.ac.jp/rsprHN.html), respectively,

the (7/3)-approximation by [CMW16] (quadratic time), the 2-approximation by
[Che+20] (cubic time), the Monte Carlo tree search algorithm by [YCW19], which
is a practical improvement of the previous two (no complexity analysis).

5.4.1 Practical issues

Ideally, we would like to run all the above algorithms on all the available datasets. This
was however not possible due to various runtime problems that we encountered when
running the software.
• CMW can output a number that is smaller than the real distance. For example, for

the following instance with distance 4, the output is 3.
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(((((((((L1,L2),L3),L4),L5),L6),L7),L8),L9),L10);

(((((((((L1,L2),L4),L8),L9),L10),L5),L6),L3),L7);

• CMW can output a number that is more than 7/3 times the real distance, while it
is a (7/3)-approximation. For example, for the following instance with distance
2, the output is 5.
(((((((((L1,L2),L3),L4),L5),L6),L7),L8),L9),L10);

(((((((((L2,L4),L5),L1),L6),L7),L3),L8),L9),L10);

• CHN can output a number that is smaller than the real distance. For example, for
the following instance with distance 3, the output is 2 (however, the output is 3 if
the order of two input trees is switched).
(((L5,L4),L3),(((L9,L7),((L10,L8),(L6,L2))),L1));

((((L8,((((L9,L7),(L10,L2)),L1),L5)),L4),L6),L3);

Any of the above problems will be referred to as an error. It should be clear that the
possibility of running into errors limits the experiments and the analyses that we are
able to perform.

We will now proceed to the comparison of NewCCS with the five existing algo-
rithms. The datasets that we use are either from the literature or from our own con-
struction. For any instance in the datasets, the exact distance is known (either by con-
struction, or pre-computed using one of the available software, e.g., [WBZ13]). The
experiments are run on a laptop PC with Intel i5-3380M CPU (2.90 GHz, 4 cores) and
8 GB RAM.

5.4.2 Comparison using randomly generated datasets

For the first experiment, we use the three datasets R50100, R80200, and R100200 from [YCW19],
each containing 120 instances. In Rba, each instance (T1, T2) is obtained by first gener-
ating a random phylogenetic tree T1 with a leaves and then obtaining T2 by applying b
random rSPR operations. For example, an instance in R50100 has size 100, and the dis-
tance is at most 50.
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On these three datasets, all six algorithms run fast enough, and without encoun-
tering any error, so we can compare their approximation ratio as the authors did in
[YCW19]. For each dataset, we computed the average and the maximum approxima-
tion ratios among the 120 instances. The results are shown in Table 5.1.

Average Ratio Max Ratio

R
50100 R80200 R100200 R

50100 R80200 R100200
WZ 1.431 1.478 1.436 1.692 1.671 1.587
SVN 1.494 1.560 1.501 1.705 1.725 1.658
CMW 1.148 1.088 1.141 1.419 1.286 1.317
CHN 1.136 1.084 1.127 1.356 1.225 1.276
CombMCTS 1.006 1.004 1.010 1.047 1.029 1.057
NewCCS 1.058 1.058 1.058 1.143 1.135 1.126

Table 5.1: For each of the six algorithms and for each dataset, the average and maxi-
mum approximation ratio on the 120 instances of the randomly generated datasets.

On the randomly generated datasets, the 3-approximation WZ produces slightly
better ratios than the 2-approximation SVN. Those two algorithms are significantly
outperformed by the (7/3)-approximation CMW and the 2-approximation CHN. The
lowest average approximation ratio is achieved by CombMCTS, which was designed
to improve the approximation ratio in practice by means of a Monte Carlo tree search
technique. The NewCCS algorithm yields the second best average approximation ratio
on all three datasets.

Instead of looking at the quality of the output of each algorithm on average on the
whole dataset, we can ask, for each individual instance, how well is the output of one
algorithm compared to the output of another. For this, we can compute the average
difference of the approximation ratio, that is, the difference between the two output
values divided by the real distance, averaged over the 120 instances. Take the dataset
R100200. On average, NewCCS achieves an approximation ratio that is 0.083 better than
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CMW, 0.069 better than CHN, and 0.048 worse than CombMCTS.

5.4.3 Comparison using a dataset of caterpillars of fixed size

We have constructed a dataset consisting of 1814399 pairs of trees with distances be-
tween 1 and 7, which correspond to all possible pairs of caterpillars with 10 leaves (a
rooted caterpillar is a rooted binary tree with only one cherry). Since the number of in-
stances in this dataset is quite large, we randomly selected a subset of 5000 instances
(with distances also spanning from 1 to 7). On this subset, we ran all six algorithms
and measured the running time. We also computed the average and the maximum ap-
proximation ratios. If an error occurs (see Section 5.4.1), the instance is excluded from
the computation of the average and the max approximation ratios (for that algorithm
only). The results are shown in Table 5.2.

Time Average Ratio Max Ratio Remarks

WZ 37 s 1.333 2.333
SVN 9 s 1.430 2.0
CMW 9 min 10 s 1.140 2.0 643 errors (1 ratio > 7/3,

642 ratio < 1)
CHN 11 min 01 s 1.183 2.0 9 errors (ratio < 1)
CombMCTS 23 min 32 s 1.020 1.5
NewCCS 14 s 1.077 1.75

Table 5.2: For each of the six algorithms, the running time, the average and maximum
approximation ratio on the 5000 pairs of caterpillars with 10 leaves.

On this caterpillar dataset, both CMW and CHN run into some type of error. Out of
the four remaining algorithms, SNV and WZ produce poorer average approximation
ratios; CombMCTS gives the best approximation but is significantly slower; NewCCS is
the second fastest and yields the second best average ratio. If we run the algorithms on
the full dataset of 1814399 instances, the estimated running time of CombMCTS is 5.9
days, while NewCCS only needs 1.5 hour. Hence, for this dataset consisting of a large
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number of instances of a very small size, NewCCS is of strong practical interest, as it
offers a good compromise between the speed and the quality of the approximation.

5.4.4 Comparison using a special family of instances

For the last experiment, we used a dataset that we call HUGE. It consists of 58 pairs of
trees of sizes between 201 and 4001. These instances belong to the I′ family introduced
by [RSW07] and for which the distances are known exactly. Precisely, for an instance
of size 40q + 1 in this dataset (where q is an integer), the distance is 15q + 1. For every
instance (T1, T2) in this dataset, another instance (T2, T1) is also included, that is, the
same pair of trees with the order switched.

We ran all six algorithms on HUGE and recorded the approximation ratio and the
running time. The results are plotted in Figures 5.5–5.10. The X-coordinates corre-
spond to the sizes of the instances. For each size, there are two points (blue circle and
the red triangle) which correspond to the two instances that only differ by the ordering
of the two input trees.
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Figure 5.5: The approximation ratio and the running time (s) of WZ on HUGE.
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Figure 5.6: The approximation ratio and the running time (min) of SNV on HUGE.
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Figure 5.7: The approximation ratio and the running time (s) of CMW on HUGE.
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Figure 5.8: The approximation ratio and the running time (s) of CHN on HUGE.
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Figure 5.9: The approximation ratio and the running time (min) of CombMCTS on
HUGE. Three largest instances are missing as the time limit of 24 hrs was exceeded.
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Figure 5.10: The approximation ratio and the running time (s) of NewCCS on HUGE.



Approximation ratio

(T1, T2)
Approximation ratio

(T2, T1)
WZ converges to 5/3 converges to 2
CMW equals to 1 converges to 5/3
CHN converges to 4/3 converges to 5/3
CombMCTS equals to 1 converges to 1

Table 5.3: Behaviors of the approximation ratio of each algorithm with increasing in-
stance sizes in the dataset HUGE, for each of the two possible orderings of the input.

Interestingly, apart from SVN and NewCCS, the other four algorithms all exhibit
significantly different behaviors in terms of the approximation ratio when the order
of the input trees is switched. Such observations are summarized in Table 5.3. For
two of those algorithms, namely CMW and CombMCTS, the running time also follows
two distinctive growth patterns, i.e., the running time grows more rapidly with the
instance size for one of two orderings of the input, and grows more slowly for the other
ordering.

Among the six algorithms, WZ and CHN are the fastest but achieve the worst ap-
proximation ratios; SVN always produces an approximation ratio near the worst fac-
tor 2; the performance of CMW is most sensitive to the ordering of the input. Only
CombMCTS and NewCCS consistently produce near optimal solutions (approximation
ratio < 1.1) for both orderings of the input. However, CombMCTS can be more than a
thousand times slower than NewCCS (e.g., 200 min versus 3 s), making it impractical
on this family of instances as soon as the instance size becomes larger than a few hun-
dreds. We have confirmed again the observation that we made in the previous exper-
iment: NewCCS produces results of good quality, is fast enough, and is robust against
special cases (no errors, no sensitivity to the ordering of the input).
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5.5 Conclusion and perspectives

We proposed a new algorithm NewCCS for finding an approximate solution of theMax-
imum agreement forest problem. Although its approximation ratio is currently
unknown, it performs well in practice, beating existing approximation algorithms ei-
ther in terms of the quality of the solution or in terms of speed. The immediate per-
spective is to prove or disprove Conjecture 5.1. There are a number of small known
instances on which NewCCS achieves the factor 2. Based only on few simple ideas,
NewCCS is easier to understand and to implement than the two algorithms that achieve
the current best approximation ratio of 2, and it has the potential to be improved in the
future. Finding a better approximation algorithm for computing the rSPR distance is
an interesting question both theoretically and in practical applications. Any improve-
ment in the approximation factor or in the running time can possibly lead to better
exact algorithms for computing the rSPR distance (e.g., by using a bounded search
technique), as well as better exact or approximation algorithms for related problems
such as the computation of the hybridization number.
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Conclusion

The interaction between organisms living in closely related environments, such as
humans and their gut microbiota, can present complex dynamics. To understand it
through the lens of coevolution, the field of computational biology provides power-
ful methods for finding the most parsimonious reconciliations between phylogenetic
trees. In the case where efficient enumeration algorithms exist, that is, when we have
put behind us the computational complexity of the problem itself, what we are facing
now is the biological complexity of the solutions of the problem: in a hosts/parasites
system consisting of more than a thousand species, any of the current event-based
models would generate a solution space that is so large that it precludes the analysis
or the interpretation of the results [Bau+14]. There are two natural ways of addressing
this issue: either we refine the model by including more constraints, hoping that the
output size will be significantly reduced (and hoping that we can still solve the problem
efficiently), or, we cling to this huge solution space but try to summarize it somehow,
so that we get an output of reasonable size without losing important biological infor-
mation. This thesis is concerned with the second approach.

In Chapter 2, we defined different notions of equivalence between reconciliations.
To summarize the solution space of the phylogenetic tree reconciliation problem then
means to provide a list of equivalence classes. In each equivalence class, any solu-
tion can be chosen as the representative, as the biological characteristics that we want
to capture with the equivalence relation are necessarily shared by any solution in the
class. We designed practical algorithms for enumerating the equivalence classes and
the representative solutions, and in Chapter 3, applied those algorithms to biological
datasets and made them available to end users through the Capybara software.

139



Our approach is remarkable from several points of view. First of all, for the phyloge-
netic tree reconciliation problem, the practical benefit of considering the equivalence
classes when analyzing the solution space is striking. For example, in Chapter 3, Sec-
tion 3.1.3, we managed to reduce the number of solutions that need to be considered
from the order of 1042 to only 7. Beyond the reconciliation problem, many more prob-
lems in bioinformatics or computer science also suffer from a large size of the solu-
tion space. Compared to other possible approaches that can drastically reduce the size
of the output, such as agglomerative clustering methods that produce consensus so-
lutions or centroid solutions [Ozd+17; ML19; San+20; AQE19], the equivalence-based
approach has quite a few advantages.

The first one is that, since we only need to define an adequate notion of equivalence,
the equivalence-based approach can be used in a wider context than clustering meth-
ods. The latter require some kind of distance or diversity measure between solutions
which, depending on their mathematical nature (numerical values, strings of sym-
bols, graphs, functions on graphs, etc.), can be difficult to define or costly to compute
(see also Chapter 4, Section 4.2).

The second advantage is the interpretability of the results. One reason for this is
that the enumeration (and the counting) of equivalence classes, as we formulated it, is
not a data analysis method but instead a computational problem that could be solved
exactly. Clustering methods will perform poorly when the solution space is not well-
separated into clusters with respect to the chosen distance measure, and, when there
are indeed some distinctive clusters in the distribution of the solutions, such methods
would fail to discover the pattern if the number of “real” clusters is too large (this is be-
cause the running time usually depends heavily on the size of the output, i.e., the final
number of clusters chosen by the user). Quite unlike the clustering methods, an algo-
rithm that counts or enumerates the equivalence classes will invariably discover any
“distinctive pattern” with respect to the chosen equivalence relation, as a pattern here
corresponds simply to an equivalence class. The equivalence relation also provides a
precise characterization of the solutions inside an equivalence class. In contrast, so-
lutions inside a cluster in the clustering output are described by their similarities or
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dissimilarities with the representative solution (the centroid of the cluster): these are
numerical values which can be less straightforward for the user to interpret.

For all these reasons, we believe that, outside of the context of the reconciliation
problem, there are more problems that can benefit from considering the equivalence
classes of solutions. In Chapter 4, we proposed a general framework for enumerating
equivalence classes of solutions that can be useful for a variety of problems.

This general framework has a strong connection with the key Algorithm 1 of Chap-
ter 2 that enumerates E-equivalence classes in polynomial delay for the reconciliation
problem. First, while Algorithm 1 is described in terms of the reconciliation graph
which might sound limited to that particular problem, we pointed out early on that
this graph has the same structural properties as ad-AND/OR graphs, a type of graph
that naturally emerges in problems that can be solved by dynamic programming al-
gorithms. Moreover, since Algorithm 1 only employed very general techniques such as
recursive depth-first search and backtracking, it is not at all surprising that the idea
can be generalized to tackle a wider range of problems.

Making sense of the output by efficiently summarizing the solution space is only
one way of increasing the practical usability of an algorithm. In Chapter 5, we saw that
even for the well-studied problem of computing the rooted subtree prune-and-regraft
distance between two phylogenetic trees, current algorithms stumble upon various
practical issues: quality of the solutions, speed, or the robustness of the implementa-
tion when tested on special datasets (see Section 5.4). We thus proposed a new algo-
rithm that is easy to understand and to implement, is fast enough, and consistently
produces solutions of high quality on randomly generated instances as well as on spe-
cial families of instances.

Other than the open mathematical and computational challenges mentioned at the
end of each chapter, there remains several avenues of expansion for the work of the
present thesis. It will be interesting to see how well the results of equivalence classes
enumeration match up with the biological understanding of the coevolutionary history
of the organisms in other datasets, and maybe under new notions of equivalence that
yet need to be defined. Then, based on the feedback from end users, new features can
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be added to Capybara to include more computational and visualization options. It will
also be interesting to apply the general framework of Chapter 4 to study some different
problems in order to see how well it works in practice. We provided a few examples that
can be a good starting point, and we would like to find more applications. For problems
whose solutions do not have a tree structure, the enumeration of equivalence classes as
a means of understanding the solution space can still be worth investigating, although
new techniques will be necessary.
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