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Findest du also nichts hier auf den Gängen, öffne die Türen,
findest du nichts hinter diesen Türen, gibt es neue Stockwerke,
findest du oben nichts, es ist keine Not, schwinge dich neue
Treppen hinauf. Solange du nicht zu steigen aufhörst, hören die
Stufen nicht auf, unter deinen steigenden Füßen wachsen sie
aufwärts.

— Franz Kafka, Fürsprecher

So if you find nothing in the corridors, open the doors, and if
you find nothing behind these doors, there are more floors, and
if you find nothing up there, don’t worry, just leap up another
flight of stairs. As long as you don’t stop climbing, the stairs
won’t end, under your climbing feet they will go on growing
upwards.

— Franz Kafka, Advocates

Si tu ne trouves rien ici dans les couloirs, alors ouvre les portes,
si tu ne trouves rien derrière ces portes, il y a de nouveaux
étages, si tu ne trouves rien plus haut, ce n’est pas une
catastrophe, projette de nouveux escaliers devant toi. Tant que
tu ne cesses pas de monter, les marches ne cessent pas, elles
poussent au fur et à mesure sous tes pieds qui montent.

— Franz Kafka, Intercesseur
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Introduction

This thesis gives an overview of my work on polytopes related to lattice congruences of the weak
order. Two well-known examples of these polytopes are the permutahedron and the associahedron.

The permutahedron Permn, a subject of research since at least 1911 (see [Sch13]), is a poly-
tope whose vertices correspond to the permutations of n elements, and whose edges are given by
transpositions of adjacent entries. It can be constructed as the convex hull of the permutations
of [n] seen as vectors in Rn or as a Minkowski sum of the segments [ei, ej ] for 1 ≤ i < j ≤ n.
The associahedron Asson, described and studied in [Sta63], is a polytope whose vertices can be
interpreted as the triangulations of a convex polygon, and whose edges are given by flips of diag-
onal. Another interpretation associates the vertices to all binary trees and the edges to rotations.
It has been constructed in several ways, in particular as the convex hull of carefully chosen points
associated to binary trees (see [Lod04]). The permutahedron and associahedron have connections
to several areas of mathematics beyond the scope of combinatorics and geometry, including Hopf
algebras (see [LR98, MR95, HNT05]) and mathematical physics (see [AHBHY18]).

Like all polytopes, these two can be studied from different perspectives: focusing on their shape
and volume as geometric objects, or on the combinatorial information they encode in their face
structure. For example, the face lattice of the permutahedron is the refinement lattice of ordered
partitions of [n] and the face lattice of the associahedron is the inclusion lattice of noncrossing sets
of polygon diagonals. In this thesis, we are most interested in the normal fans of these polytopes.
The normal fan of the permutahedron is the braid fan, given by the braid arrangement of the
hyperplanes xi = xj for 1 ≤ i < j ≤ n. The normal fan of the associahedron of [Lod04] is the
sylvester fan. Since it coarsens the braid fan, the associahedron is a generalized permutahedron
(in the sense of [Pos09, PRW08]).

Such relationships between polytopes are not limited to the braid fan. The cones of any real
central hyperplane arrangement induce a fan that is the normal fan of a zonotope. Moreover,
choosing one of the regions of that fan as the base region induces a partial order on all the regions,
called the poset of regions (see [Ede84, BEZ90]), which is a lattice under certain circumstances.
For the braid arrangement, this poset is isomorphic to the weak order on the symmetric group Sn.
For the Coxeter type B arrangement (see [BB05]), it is isomorphic to the weak order on the hyper-
ocathedral group SBn (see [You30]).

Applying a lattice congruence (see [Rea04]) to a lattice of regions induces a quotient fan
(see [Rea05]), where maximal cones are united if their corresponding lattice elements are equiva-
lent under the lattice congruence. For example, the normal fan of the associahedron is a quotient
fan induced by the sylvester congruence (see [LR98, HNT05]). A quotientope is a polytope whose
normal fan is a quotient fan. Their existence was certified by a technical construction in [PS19]
for those quotient fans based on the weak order on Sn.

The objective of this thesis is to study further constructions for quotientopes. Our first con-
tribution concerns constructions as removahedra (see [Pil17]), which are polytopes obtained by
removing inequalities from the facet description of the permutahedron. We show that the per-
mutreehedra (introduced in [PP17]) are the only quotientopes that can be obtained as removahe-
dra. Our second contribution is a simplified construction of arbitrary quotientopes as Minkowski
sums of elementary polytopes we call shard polytopes due to their close relation with the shards
of a hyperplane arrangement studied in [Rea16b]. In the weak order on Sn, our quotientope for
the sylvester congruence coincides with the associahedron constructed in [Pos09], a Minkowski
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sum of the faces of the standard simplex. Moreover, our construction can be adapted to construct
quotientopes for all lattice congruences of the weak order on SBn .

This thesis is made of four chapters. We start with preliminaries in Chapter 1. We then continue
in Chapter 2 by analyzing the quotient fans of permutree congruences. In Chapter 3, we introduce
the concept of shard polytopes. In Chapter 4, we transfer this concept to the type B arrangement.
Next, we will give an overview of the contents of each of these four chapters.

1. Preliminaries. This chapter largely follows the concepts and notation established in [Zie07]
and [Rea16b]. We start by giving an overview of some well-established concepts of discrete
geometry, including hyperplanes (in Section 1.1), polyhedral cones and polytopes (in Section 1.2).
In Section 1.2.4, we introduce type cones, which first appeared in [McM73]. Given a fan, a
function that assigns to each of its rays a certain scalar is called a height function. The name comes
from the intepretation as description of a convex set, where the function gives the maximal extent
that set has in the direction of the respective ray. While the convex sets induced by arbitrary height
functions can have many shapes and might be empty, we are particularly interested in those that
induce a polytope whose normal fan is the fan we started with. For a complete fan, the set of these
special height functions is an open polyhedral cone itself, called the type cone. They are closely
related to Minkowsi sums (which we introduce in Section 1.2.5). Given two height functions from
a type cone, their sum induces a polytope that is the Minkowski sum of the polytopes induced by
the individual height functions.

In Section 1.3, we introduce real central hyperplane arrangements, which are sets of linear hy-
perplanes in Rn. The complement of their union splits the real space into a number of connected
components whose closures are called the regions of the arrangement. Each region is a polyhedral
cone and they are the maximal cones of the arrangement fan, a complete fan in Rn. This arrange-
ment fan is also the normal fan of a family of polytopes. A zonotope is any polytope that can be
written as the Minkowski sum of finitely many line segments. An arrangement zonotope is a zono-
tope where there is one such line segment normal to each of the arrangement hyperplanes. The
normal fan of any arrangement zonotope is the arrangement fan. A well-known arrangement is
the braid arrangement An containing all the hyperplanes {x ∈ Rn | xi = xj} for 1 ≤ i < j ≤ n.
Its regions correspond to the permutations of [n] and its fan is called the braid fan. A well-known
zonotope is the permutahedron Permn, whose vertices are the permutation vectors for all permu-
tations of [n]. The permutahedron is an arrangement zonotope of the braid arrangement.

While the fan of a hyperplane arrangement is naturally ordered by inclusion of its cones, we can
introduce another partial order on the regions of an arrangement by setting one of the arrangement
regions to be the base. We can then partially order all the regions by inclusion of the sets of hy-
perplanes that separate them from the base region. We call an arrangement together with a choice
of base region an oriented arrangement, and the partial order is its poset of regions introduced
in [Ede84]. For the braid arrangement, the canonical choice of base region is the one containing
the point (1, 2, . . . , n) corresponding to the identity permutation id ∈ Sn. The poset of regions
of the oriented braid arrangement is isomorphic to the well-known weak order on Sn. The weak
order, like any poset of regions of an oriented simplicial arrangement, is a semidistributive lattice.
We introduce the basic ideas revolving around posets and lattices in Section 1.4. In particular,
we introduce join-irreducible elements of a lattice, which are those that cannot be obtained as the
join of other elements. In the weak order on Sn, these are the permutations with a single descent.
As the poset of regions is semidistributive, each of its elements has a canonical decomposition as
the join of some join-irreducibles. We also introduce lattice congruences which are equivalence
relations that preserve meets and joins. Any lattice congruence ≡ induces a quotient lattice whose
elements are the equivalence classes of ≡. This quotient lattice retains the induced partial order,
meets and joins of the original lattice. A well-established lattice congruence on the weak order is
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the sylvester congruence (see [LR98, HNT05]) and its quotient lattice is the well-known Tamari
lattice (see [Tam51]).

In the poset of regions, the join-irreducibles are in bijection with certain parts of the arrange-
ment hyperplanes, introduced in [Rea03]. These parts are obtained by following a set of rules to
break the arrangement hyperplanes into pieces, which is why they are called the shards of the ar-
rangement, commonly denoted by Σ. In Section 1.5, we introduce the construction of shards, their
relation to join-irreducibles and lattice congruences through a partial order among them called
forcing. Given a lattice congruence on the poset of regions, its equivalence classes can not only
be understood as combinatorial objects comprising elements of the lattice, but also as geometrical
objects, corresponding to unions of some of the chambers of the arrangement fan. This coarsening
of the arrangement fan, where ≡-equivalent chambers are united, is called the quotient fan F≡.

Like the arrangement fan is the normal fan of arrangement zonotopes, some quotient fans also
appear as normal fans of well-known polytopes. For example, the normal fan of the classical as-
sociahedron (see [Lod04]) is the quotient fan induced by the sylvester congruence on the poset
of regions of the braid arrangement. Such a polytope is called a quotientope for that congruence
(see [PS19]). This leads us to the main question that served as the starting point for the research
presented in this thesis: Given any lattice congruence on the poset of regions of an oriented sim-
plicial arrangement, is there a quotientope whose normal fan is the quotient fan induced by that
congruence? It is known from [PS19] that this is the case for a quotient lattice of the poset of
regions of the braid arrangement. However, their construction is based on a careful but rather
technical choice of height function and does not generalize easily to other arrangements. This
motivated research to better understand quotient fans and find more natural ways to construct
quotientopes, which we will see in Chapters 3 and 4.

In Section 1.6, we review some previous research on the type cone of the braid arrangement.
Labeling the rays of the braid fan by subsets of [n], its type cone can be understood as the set of
strictly submodular height functions on subsets of [n]. We introduce the family of all polyhedra
whose normal fans coarsen the braid fan. These polyhedra correspond to height functions that
are submodular but not necessarily strictly submodular. They appeared in [Pos09] and [PRW08]
as generalized permutahedra, but we will use the term deformed permutahedra to emphasize the
special kind of generalization obtained by coarsening the normal fan.

A particularly interesting subclass of deformed permutahedra are removahedra. They can be ob-
tained from the standard permutahedron Permn by removing inequalities from its H-description.
Their normal fans are called removahedral fans. Extending this notation, we call a lattice con-
gruence on the weak order removahedral if its quotient fan is a removahedral fan. Examples of
removahedra besides the permutahedron include the associahedron Asson, the Hohlweg-Lange as-
sociahedra (see [HL07]), and the graph associahedra (see [CD06, Dev09]) of chordful graphs (see
[Pil17]).

But these are not the only special quotientopes that have already been studied in different con-
texts. In Section 1.7, we introduce permutrees, objects which first appeared in [PP17] and gener-
alize a number of combinatorial objects, in particular permutations, binary sequences and binary
trees. They are oriented trees drawn from bottom to top, where each internal node has one or two
upper and one or two lower neighbors. The numbers of neighbors are represented by the sym-
bols , , and and the sequence of these symbols is called the decoration δ of the permutree.
Permutrees with decoration n correspond to permutations on Sn, while those with decoration n

correspond to binary trees with n internal nodes and those with decoration n correspond to bi-
nary sequences of length n − 1. Generic δ-permutrees are obtained from decorations containing
various of these symbols.
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Given a decoration δ, all δ-permutrees are related by sequences of rotations in the tree and can
be partially ordered by fixing a natural orientation of these rotations. The resulting partial order is
called the δ-permutree lattice. As a result of the correspondences discussed above, special cases
of permutree lattices include the weak order on Sn for δ = n, the Tamari lattice for δ = n

and the Boolean lattice for δ = n. These correspondences go even further: Every permutree
decoration induces a lattice congruence on the weak order. The special cases include the trivial
congruence for δ = n, the sylvester congruence for δ = n and the hypoplactic congruence (see
[KT97], [Nov00]) for δ = n.

In consequence, every permutree lattice is a quotient lattice of the weak order and induces
a quotient fan of the braid arrangement fan, called the δ-permutree fan. Quotientopes for all
permutree congruences have been constructed in [PP17]. They are called permutreehedra and can
be described directly from the number of nodes in left and right upper and lower subtrees of each
node of a permutree. Permutreehedra include as special cases the permutahedron for δ = n,
Loday’s associahedron (see [Lod04]) for δ = n, the Hohlweg-Lange associahedra (see [HL07])
for δ ∈ { , }n, the parallelpiped with directions ei − ei+1 for δ = n and some graphical
zonotopes for δ ∈ { , }n.

2. Quotientopes and Removahedra. Chapter 2 is based on the following preprint:
• [APR20] Doriann Albertin, Vincent Pilaud, and Julian Ritter. Removahedral congruences

versus permutree congruences. Preprint, arXiv:2006.00264, 2020.
A short version of the paper appears in the proceedings of the 33rd International Conference on
Formal Power Series and Algebraic Combinatorics (see https://www.mat.univie.ac.
at/~slc/wpapers/FPSAC2021/10.html).

In this chapter, we make some observations about congruences on the lattice of regions of the
braid arrangement in general and permutree congruences in particular. We start in Section 2.1
by distinguishing essential and non-essential congruences. We call a congruence essential if the
minimal lattice element and all its neighbors are in distinct congruence classes. We argue that quo-
tientopes for non-essential congruences of the weak order on Sn can be obtained as the Cartesian
product of quotientopes for some essential congruences of the weak order on some Sk with k < n.
This justifies considering only essential congruences in many situations.

In Section 2.2, we discuss the rays of quotient fans of the braid fan. For a general lattice
congruence, we determine whether or not a certain ray of the braid fan is a ray of the quotient
fan as well. We do so by analyzing the shards that have been removed by the congruence. As the
quotient fan coarsens the braid fan, this is sufficient to describe the set of rays of the quotient fan.
For the special case of a permutree congruence, we translate the statement into a straightforward
criterion to check for potential rays of the permutree fan using only the decoration. For example,
using the conventional labeling of the rays of the braid fan by proper subsets of [n], the set of rays
of the δ-permutree fan is the set of all proper intervals for δ = n and it is the set of all proper
initial and final intervals for δ = n.

It had been established in [PP17] that all permutree congruences are removahedral and that per-
mutreehedra generalize the classic constructions of associahedra of [Lod04] and [HL07]. In Sec-
tion 2.3.1, we show that all removahedral congruences are permutree congruences. In conse-
quence, these two notions are equivalent for congruences of the weak order on Sn. Moreover,
in Section 2.3.2, we introduce a special case of removahedral congruences. We call a congruence
strongly removahedral if its quotient fan can be obtained not only by deleting inequalities from the
standard permutahedron Permn but starting from any polytope P whose normal fan is the braid
fan. We show that every permutree congruence is strongly removahedral. This implies that ev-
ery removahedral congruence is in fact strongly removahedral, allowing to construct appropriate
quotientopes not only starting with the H-description given by the height function of Permn, but
starting with any strictly submodular function.
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In Section 2.4, we use our findings about the rays of the permutree fan to describe the type cone
of a permutree fan. We give a description of the facets of the type cone, determine its number
of facets and deduce a criterion to find out whether a type cone of a certain permutree fan is
simplicial. Permutree fans whose associated type cone is simplicial are particularly interesting
because they allow for a canonical representation of the permutreehedron as the Minkowski sum
of those polytopes induced by height functions corresponding to the rays of the type cone. We
complete the chapter by describing the set of all quotientopes for such a permutree fan in the
kinematic space (see [AHBHY18]).

3. Shard Polytopes for the Braid Arrangement. Chapter 3 is based on part I of
• [PPR20] Arnau Padrol, Vincent Pilaud, and Julian Ritter. Shard polytopes. Preprint,
arXiv:2007.01008, 2020.

A short version of the paper appears in the proceedings of the 33rd International Conference on
Formal Power Series and Algebraic Combinatorics (see https://www.mat.univie.ac.
at/~slc/wpapers/FPSAC2021/11.html).

In this chapter, we establish a construction of quotientopes for any lattice congruence of the
weak order on Sn. These new quotientopes, called shardsumotopes, are built as the Minkowski
sum of new elementary polytopes for each of the shards of the arrangement, called shard polytopes.

We start in Section 3.1 by generalizing shards of the oriented braid arrangement to so-called
pseudoshards, a broader class of polyhedral cones with similar combinatorial representation. We
introduce a number of new objects related to shards, both inspired by and compatible with the
schematic representation of shards established in [Rea15]. In particular, we introduce shard
matchings, which can be seen geometrically as certain sums of braid arrangement hyperplane
normals ei − ej that are closely related to the shard.

We then use these shard matchings to define the shard polytope SP(Σ) in Section 3.2. There is
one such polytope for each shard of the braid arrangement. We give both anH-description and a V-
description and prove that they are equivalent. We determine the dimension, the number of facets
and the number of vertices of the shard polytope. In particular, we observe that shard polytopes
are simplices for the up shards and that the numbers of shard polytope vertices are the Fibonacci
numbers for alternating shards. We go on to describe faces of a shard polytope. We determine
its edges using combinatorial properties of the associated shard matchings. Moreover, we show
that any face of a shard polytope is (isomorphic to) a Cartesian product of shard polytopes. To
conclude the section, we establish a number of symmetries of shard polytopes.

In Section 3.3, we analyze the normal fans of shard polytopes, called shard fans and denoted
by SF(Σ). These are of particular interest as we aim to reconstruct a quotient fan as the normal
fan of a Minkowski sum of shard polytopes, so the normal fan of this Minkowski sum will be
the common refinement of all the associated shard fans. We describe the walls and some of the
cones of the shard fans. The main result in this section guarantees that the union of walls of the
shard fan SF(Σ) both contains the shard Σ as a subset and is contained in the union of all those
shards Σ′ that force Σ in the sense introduced in Section 1.5.3.

This property of shard fans enables us to construct shardsumotopes in Section 3.4. Given a
lattice congruence ≡ on the weak order, the shardsumotope SP+(≡) is the Minkowski sum of all
shard polytopes SP(Σ) for the shards Σ that appear in the quotient fan F≡. The normal fan of the
shardsumotope is then equal to the quotient fan, where each shard polytope SP(Σ) summed up
in the process introduces the shard Σ into the resulting fan without adding any walls not present
in F≡. Prominent shardsumotopes include the parallelotope spanned by braid arrangement nor-
mals, a non-standard permutahedron and a translate of the classical associahedron (see [Lod04])
obtained as the shardsumotope of the sylvester congruence. We conclude this section with a dis-
cussion of vertices and facets of shardsumotopes and a way to construct them efficiently.
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In Section 3.5, we examine the role that shard polytopes play in the type cone of the braid
arrangement. We show that shard polytopes are Minkowski indecomposable, so their height func-
tions lie in the rays of the type cone of the braid fan. We visualize the type cone of the braid fan,
relating the polyhedral structure of the cone, the polytopes induced by certain height functions and
the shards of the braid arrangement in one picture.

4. Shard Polytopes for the Type B Arrangement. Chapter 4 is based on part II of
• [PPR20] Arnau Padrol, Vincent Pilaud, and Julian Ritter. Shard polytopes. Preprint,
arXiv:2007.01008, 2020.

A short version of the paper appears in the proceedings of the 33rd International Conference on
Formal Power Series and Algebraic Combinatorics (see https://www.mat.univie.ac.
at/~slc/wpapers/FPSAC2021/11.html).

In this chapter, we adapt our findings from Chapter 3 to a different class of hyperplane arrange-
ments. While Chapter 3 covers lattice congruences on the poset of regions of the braid arrange-
ment ~An (which is isomorphic to the lattice of the weak order on Sn), Chapter 4 considers lattice
congruences on the poset of regions of the type B arrangement ~Bn (which is isomorphic to the
lattice of the weak order on SBn ). The name of this arrangement is derived from its relation to the
type B Coxeter group (see [Rea16a]), also known as the hyper-octahedral group (see [You30]).

In Section 4.1, we introduce the type B arrangement and its poset of regions isomorphic to
the weak order on the group SBn of signed permutations. We determine the type cone of the
type B arrangement. We describe the canonical zonotope of the type B arrangement, known as
the B-permutahedron. Each signed permutation on [n] can equivalently be described as a cen-
trally symmetric permutation of [±n] := {−n, . . . ,−1, 1, . . . , n}. This translates into a ge-
ometric relationship of the associated arrangements via the centrally symmetric subspace HBn .
The B arrangement ~Bn can be obtained as the intersection of a braid arrangement withHBn . The B-
permutahedron can be obtained as the projection of the standard permutahedron toHBn .

In Section 4.2, we analyze the shards of the type B arrangement. We show that they can be
obtained by intersecting the shards of the braid arrangement with HBn . We then use the geometry
of the arrangement to carefully establish the forcing relation among ~Bn shards. It would be conve-
nient to assume that the forcing order on type B shards coincides with the forcing order on shards
of the braid arrangement intersected withHBn . However, we prove that this is not the case. In par-
ticular, most upper sets of type B shards cannot be obtained from upper sets of braid arrangement
shards by intersection withHBn .

It is known (see [Rea16a]) that lattice congruences on the weak order on SBn are in bijection
with upper sets in the forcing order on type B shards and define quotient fans just as those on
the weak order on Sn do. In Section 4.3, we describe these quotient fans. With the help of the
shard polytopes for the braid arrangement constructed in Chapter 3, we define shard polytopes
for all type B shards using the projection to HBn . Again, we show that the normal fans of each of
these type B shard polytopes contains the shard itself and is contained in the union of all shards
that force it. With this result, we conclude the chapter by constructing quotientopes for all lattice
congruences of the weak order on SBn .

Software. Over the course of preparation of my thesis, I extensively used the open source
software SageMath [SD19] to work with many of the objects mentioned so far. I wrote code to
implement some definitions and algorithms that had not been present in the software yet. This
enabled my collaborators and me to experiment with the concepts, visualize examples and shape
an intuition of the objects we were dealing with. Plots obtained from this effort can be seen in a
few of the figures in this thesis. This computational support was very helpful to obtain the results
presented in the following chapters.
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Introduction

Cette thèse donne une vue d’ensemble de mon travail sur les polytopes reliés aux congruences
de treillis de l’ordre faible. Deux examples bien connus de ces polytopes sont le permutaèdre et
l’associaèdre.

Le permutahèdre Permn, sujet de recherche depuis au moins 1911 (voir [Sch13]), est un poly-
tope dont les sommets correspondent aux permutations de n éléments, et dont les arêtes sont
données par les transpositions d’entrées adjacentes. Il peut être construit comme l’enveloppe con-
vexe des permutations de [n] vues comme vecteurs dans Rn ou comme la somme de Minkowski
des segments [ei, ej ] pour 1 ≤ i < j ≤ n. L’associaèdre Asson, décrit et étudié dans [Sta63],
est un polytope dont les sommets peuvent être interprétés comme les triangulations d’un poly-
gone convexe, et dont les arêtes sont données par les flips des diagonales. Une autre interprétation
associe les sommets à tous les arbres binaires et les arêtes aux rotations. Il a été construit de
plusieurs manières, notamment comme l’enveloppe convexe de points soigneusement choisis as-
sociés aux arbres binaires (voir [Lod04]). Le permutaèdre et l’associaèdre ont des liens avec
plusieurs domaines des mathématiques au-delà de la combinatoire et de la géométrie, notam-
ment avec les algèbres de Hopf (voir [LR98, MR95, HNT05]) et avec la physique mathématique
(voir [AHBHY18]).

Comme tout polytope, ces deux polytopes peuvent être étudiés selon différentes perspectives :
en se concentrant sur leur forme et volume comme des objets géométriques, ou sur l’information
combinatoire encodée par leur structure de faces. Par exemple, le treillis des faces du permutaèdre
est le treillis de raffinement des partitions ordonnées de [n] et le treillis des faces de l’associaèdre
est le treillis d’inclusion des ensembles sans croisement de diagonales d’un polygone. Dans cette
thèse, nous nous intéressons aux éventails normaux de ces polytopes. L’éventail normal du per-
mutaèdre est l’eventail de tresses, donné par l’arrangement de tresses des hyperplans xi = xj
pour 1 ≤ i < j ≤ n. L’éventail normal de l’associaèdre de [Lod04] est l’éventail sylvestre.
Comme il est raffiné par l’éventail de tresses, l’associaèdre est un permutaèdre généralisé (au sens
de [Pos09, PRW08]).

De telles relations entre polytopes ne se limitent pas à l’éventail de tresses. Les cônes de tout
arrangement réel d’hyperplans linéaires induisent un éventail qui est l’éventail normal d’un zono-
tope. De plus, le choix d’une région de l’éventail comme région de base induit un ordre partiel
sur les régions, appelé l’ordre des régions (voir [Ede84, BEZ90]), qui est un treillis dans certaines
circonstances. Pour l’arrangement de tresses, cet ordre est isomorphe à l’ordre faible sur le groupe
symétrique Sn. Pour l’arrangement de Coxeter de type B (voir [BB05]), il est isomorphe à l’ordre
faible sur le groupe hyper-octaédrique SBn (voir [You30]).

L’application d’une congruence de treillis (voir [Rea04]) sur un treillis de régions induit un
éventail quotient (voir [Rea05]), où des cônes maximaux sont collés si leurs éléments de treillis
correspondants sont équivalents sous la congruence de treillis. Par exemple, l’éventail normal de
l’associaèdre est un éventail quotient induit par la congruence sylvestre (voir [LR98, HNT05]).
Un quotientope est un polytope dont l’éventail normal est un éventail quotient. Leur existence
a été certifiée par une construction technique dans [PS19] pour les éventails quotients basés sur
l’ordre faible sur le groupe symétrique.

L’objectif de cette thèse est d’étudier plus avant des constructions de quotientopes. Notre pre-
mière contribution concerne les constructions comme enlevoèdres (voir [Pil17]), qui sont des poly-
topes obtenus en enlevant des inégalités de la description des facettes du permutaèdre. Nous mon-
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trons que les permutarbrèdres (introduits dans [PP17]) sont les seuls quotientopes qui peuvent être
obtenus comme enlevoèdres. Notre deuxième contribution est une construction simplifiée de quo-
tientopes arbitraires comme sommes de Minkowski de polytopes élémentaires que nous appelons
polytopes de tessons en raison de leur étroite relation aux tessons d’un arrangement d’hyperplans
étudiés dans [Rea16b]. Dans le cas de l’ordre faible sur Sn, notre quotientope pour la congru-
ence sylvestre coïncide avec l’associaèdre construit dans [Pos09], une somme de Minkowski des
faces du simplexe standard. De plus, notre construction peut être adaptée pour construire des
quotientopes pour toute congruence de treillis de l’ordre faible sur SBn .

Cette thèse est composée de quatre chapitres. Nous commençons par les préliminaires dans le
chapitre 1. Nous poursuivons ensuite dans le chapitre 2 en analysant les éventails quotient des
congruences de permutarbres. Dans le chapitre 3, nous introduisons le concept de polytopes de
tessons. Dans le chapitre 4, nous transfèrons ce concept à l’arrangement de Coxeter de type B.
Dans la suite de cette introduction, nous détaillons le contenu de chacun de ces quatre chapitres.

1. Préliminaires. Ce chapitre suit en grande partie les concepts et les notations établis
dans [Zie07] et [Rea16b]. Nous commençons en donnant une vue d’ensemble de quelques con-
cepts classiques de géométrie discrète, y compris les hyperplans (dans la partie 1.1) et les cônes
polyédraux et polytopes (dans la partie 1.2). Dans la partie 1.2.4, nous introduisons les cônes de
type, qui sont apparus pour la première fois dans [McM73]. Étant donné un éventail, une fonction
qui attribue à chacun de ses rayons un certain scalaire est appelée une fonction de hauteur. Le
nom vient de la description d’un ensemble convexe, dont la fonction précise l’étendue maximale
dans la direction donnée par chaque rayon. Tandis que les ensembles convexes induits par des
fonctions de hauteur arbitraires peuvent avoir des formes differentes et pourraient être vides, nous
sommes particulièrement intéressés par celles qui induisent un polytope dont l’éventail normal
est l’éventail dont nous sommes partis. Pour un éventail complet, l’ensemble de ces fonctions
de hauteur spécifiques est lui-même un cône polyédral, appelé le cône de type. Ces cônes de
type sont étroitement liés aux sommes de Minkowski (que nous introduisons dans la partie 1.2.5).
Étant donné deux fonctions de hauteur d’un cône de type, leur somme induit un polytope qui est
la somme de Minkowski des polytopes induits par ces fonctions de hauteur.

Dans la partie 1.3, nous introduisons les arrangements réels centraux d’hyperplans, qui sont des
ensembles d’hyperplanes linéaires dans Rn. Le complément de leur union divise l’espace réel
en plusieurs composantes connexes dont les clôtures sont appelées les régions de l’arrangement.
Chaque région est un cône polyédral et ils sont les cônes maximaux de l’éventail de l’arrangement,
un éventail complet dans Rn. Cet éventail d’arrangement est également l’éventail normal d’une
famille de polytopes. Un zonotope est un polytope qui peut être écrit comme la somme de
Minkowski d’un nombre fini de segments. Un zonotope d’arrangement est un zonotope où ces seg-
ments sont des vecteurs normaux des hyperplans de l’arrangement. L’éventail normal de tout zono-
tope d’arrangement est l’éventail de l’arrangement. Un arrangement bien connu est l’arrangement
de tresses An, qui contient tous les hyperplans {x ∈ Rn | xi = xj} pour 1 ≤ i < j ≤ n. Ses
régions correspondent aux permutations de [n] et son éventail est appelé l’éventail de tresses. Un
zonotope bien connu est le permutaèdre Permn, dont les sommets sont les vecteurs des permuta-
tions de [n]. Le permutaèdre est un zonotope d’arrangement de l’arrangement de tresses.

L’éventail d’un arrangement d’hyperplans est naturellement ordonné par l’inclusion de ses
cônes. On peut aussi introduire un autre ordre partiel sur les régions d’un arrangement en fix-
ant une des régions comme étant la région de base. On peut alors ordonner toutes les régions
par inclusion de l’ensemble des hyperplans qui les séparent de la région de base. On appelle un
arrangement avec un choix de région de base un arrangement ordonné et son ordre partiel est son
ordre des régions introduit dans [Ede84]. Pour l’arrangement de tresses, le choix canonique de la
région de base est celle qui contient le point (1, 2, . . . , n) et qui correspond à la permutation iden-
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tité id ∈ Sn. L’ordre des régions de l’arrangement de tresses orienté est isomorphe à l’ordre faible
sur Sn. L’ordre faible, comme tout ordre des régions d’un arrangement simplicial orienté, est un
treillis semi-distributif. Nous introduisons les bases de la théorie des ordres partiels et des treillis
dans la partie 1.4. En particulier, nous introduisons les éléments sup-irréductibles d’un treillis, qui
ne peuvent pas être obtenus comme un sup d’autres élements. Dans l’ordre faible sur Sn, ce sont
les permutations avec une seule descente. Comme l’ordre des régions est semi-distributif, tout élé-
ment admet une décomposition canonique comme le sup de certains éléments sup-irréductibles.
Nous introdusions aussi les congruences de treillis, qui sont des relations d’équivalence qui préser-
vent l’inf et le sup. Chaque congruence de treillis ≡ induit un treillis quotient dont les éléments
sont les classes d’équivalence de ≡. Ce treillis quotient retient l’ordre partiel induit, les infs et les
sups du treillis d’origine. Une congruence de treillis bien connue sur l’ordre faible est la congru-
ence sylvestre (voir [LR98, HNT05]) et son treillis quotient est le treillis de Tamari (voir [Tam51]).

Dans l’ordre des régions, les sup-irréductibles sont en bijection avec certaines parties des hy-
perplans de l’arrangement, introduites dans [Rea03]. Ces parties sont obtenues en suivant un
ensemble de règles pour briser les hyperplans de l’arrangement en morceaux, c’est pourquoi ils
sont appelés tessons de l’arrangement, généralement dénotés par Σ. Dans la partie 1.5, nous in-
troduisons la construction des tessons, leur relation aux sup-irréductibles et aux congruences de
treillis à travers un ordre partiel sur les tessons, appelé le forçage. Étant donné une congruence
de treillis sur l’ordre des régions, ses classes d’équivalence peuvent non seulement être comprises
comme des objets combinatoires qui fusionnent des éléments du treillis, mais aussi comme des ob-
jets géométriques qui correspondent à certaines unions de chambres de l’éventail de l’arrangement.
Cet éventail, qui est raffiné par l’éventail d’arrangement, et qui unit les classes des chambres équiv-
alentes sous ≡, est appelé l’éventail quotient F≡.

De même que l’éventail d’un arrangement est l’éventail normal des zonotopes de l’arrangement,
certains éventails quotients apparaissent comme éventails normaux de polytopes bien connus. Par
exemple, l’éventail normal de l’associaèdre classique (voir [Lod04]) est l’éventail quotient induit
par la congruence sylvestre sur l’ordre des régions de l’arrangement de tresses. Un tel polytope
est appelé un quotientope pour cette congruence (voir [PS19]). Cela nous amène à la question
principale qui servait de point de départ pour les recherches présentées ici : étant donnée une
congruence de treillis sur l’ordre des régions d’un arrangement simplicial orienté, existe-t-il un
quotientope dont l’éventail normal est l’éventail quotient induit par cette congruence ? Il est connu
de [PS19] que c’est le cas pour toute congruence de treillis sur l’ordre des régions de l’arrangement
de tresses. Cependant, leur construction est basée sur un choix minutieux mais assez technique de
fonction de hauteur et elle ne se généralise pas facilement à d’autres arrangements. Cela a motivé
la recherche visant à mieux comprendre les éventails quotients et à trouver des constructions plus
naturelles des quotientopes, ce que nous verrons aux chapitres 3 et 4.

Dans la partie 1.6, nous passons en revue certaines recherches antérieures sur le cône de type de
l’arrangement de tresses. En étiquetant les rayons de l’éventail de tresses par les sous-ensembles
de [n], son cône de type peut être compris comme l’ensemble des fonctions de hauteur strictement
sous-modulaires sur les sous-ensembles de [n]. Nous introduisons la famille de tous les polyèdres
pour lesquels l’éventail de tresses raffine leur éventail normal. Ces polyèdres correspondent aux
fonctions de hauteur qui sont sous-modulaires mais pas forcément strictement sous-modulaires.
Ils sont apparus dans [Pos09] et [PRW08] comme permutaèdres généralisés, mais nous utilisons
l’expression permutaèdres déformés afin de souligner la généralisation particulière obtenue par
cette relation de raffinement des éventails.

Les enlèvoèdres forment une sous-classe particulièrement intéressante des permutaèdres défor-
més. Ils peuvent être obtenus à partir du permutaèdre standard Permn en enlevant des inégalités
de sa description par inégalités. Leurs éventails normaux sont appelés éventails enlèvoédraux. Par
extension, nous appelons une congruence de treillis sur l’ordre faible enlèvoédrale si son éven-
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tail quotient est un éventail enlèvoédral. Des exemples d’enlèvoèdres sont l’associaèdre stan-
dard Asson, les associaèdres de Hohlweg-Lange (voir [HL07]), et les associaèdres de graphes
(voir [CD06, Dev09]) pour les graphes dont tous les cycles induisent des sous-graphes complets
(voir [Pil17]).

Mais ce ne sont pas les seuls quotientopes spéciaux qui ont déjà été étudiés dans d’autres con-
textes. Dans la partie 1.7, nous introduisons les permutarbres, des objets qui sont apparus pour la
première fois dans [PP17] et qui généralisent plusieurs objets combinatoires, y compris les per-
mutations, les séquences binaires et les arbres binaires. Ce sont des arbres orientés dessinés de bas
en haut, où chaque nœud interne a un ou deux voisins inférieurs et un ou deux voisins supérieurs.
Les nombres de voisins sont représentés par les symboles , , et et la suite de ces symboles
est appelée décoration δ du permutarbre. Les permutarbres avec la décoration n correspondent
aux permutations sur Sn, tandis que ceux avec la décoration n correspondent aux arbres bi-
naires à n nœuds internes et ceux avec la décoration n correspondent aux séquences binaires
de longeur n− 1. Des δ-permutarbres génériques sont obtenus à partir des décorations contenant
différents symboles.

Étant donné une décoration δ, tous les δ-permutarbres sont reliés par des suites de rotations
dans l’arbre et peuvent être ordonnés partiellement en fixant une orientation naturelle sur ces
rotations. L’ordre partiel ainsi obtenu est appelé le treillis des δ-permutarbres. En conséquence des
correspondances discutés ci-dessus, les cas particuliers des treillis de permutarbres comprennent
l’ordre faible sur Sn pour δ = n, le treillis de Tamari pour δ = n et le treillis booléen
pour δ = n. Ces correspondances vont même plus loin : chaque décoration de permutarbres
induit une congruence de treillis sur l’ordre faible. Les cas particuliers comprennent la congruence
triviale pour δ = n, la congruence sylvestre pour δ = n et la congruence hypoplactique (voir
[KT97], [Nov00]) pour δ = n.

En conséquence, chaque treillis de permutarbres est un treillis quotient de l’ordre faible et induit
un éventail quotient de l’éventail de l’arrangement de tresses, appelé l’éventail des δ-permutarbres.
Des quotientopes pour toutes les congruences de permutarbres ont été construits dans [PP17]. Ils
sont appelés les permutarbrèdres et peuvent être décrits directement à partir du nombre de nœuds
dans les sous-arbres gauche et droit inférieur et supérieur de chaque nœud d’un permutarbre. Les
cas particuliers de permutarbres comprennent le permutaèdre pour δ = n, l’associaèdre de Loday
(voir [Lod04]) pour δ = n, l’associaèdre de Hohlweg-Lange (voir [HL07]) pour δ ∈ { , }n,
le parallélépipède avec les directions ei − ei+1 pour δ = n et certains zonotopes graphiques
pour δ ∈ { , }n.

2. Quotientopes et enlevoèdres. Le chapitre 2 est basé sur la prépublication suivante :
• [APR20] Doriann Albertin, Vincent Pilaud, and Julian Ritter. Removahedral congruences

versus permutree congruences. Preprint, arXiv:2006.00264, 2020.
Une version courte de l’article apparaît dans les actes de la 33rd International Conference on
Formal Power Series and Algebraic Combinatorics (voir https://www.mat.univie.ac.
at/~slc/wpapers/FPSAC2021/10.html).

Dans ce chapitre, nous faisons quelques observations sur les congruences sur le treillis de ré-
gions de l’arrangement de tresses en général et les congruences de permutarbre en particulier.

Nous commençons dans la partie 2.1 par distinguer les congruences essentielles et non-
essentielles. Nous appelons une congruence essentielle si l’élément minimal du treillis et tous
ses voisins sont dans des classes d’équivalence distinctes. Nous observons que des quotientopes
pour les congruences non-essentielles de l’ordre faible sur Sn peuvent être obtenus par produit
cartésien de plusieurs quotientopes pour des congruences essentielles de l’ordre faible sur un cer-
tain Sk avec k < n. Cela justifie de ne considérer que les congruences essentielles dans beaucoup
de situations.
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Dans la partie 2.2, nous discutons les rayons des éventails quotients de l’éventail de tresses.
Pour une congruence de treillis générale, nous déterminons si un certain rayon de l’éventail de
tresses est aussi un rayon de l’éventail quotient. Pour ce faire, nous analysons les tessons qui
ont été enlevés par la congruence. Comme l’éventail de tresses raffine l’éventail quotient, cela
est suffisant pour décrire l’ensemble des rayons de l’éventail quotient. Pour le cas spécial d’une
congruence de permutarbre, nous traduisons la proposition en un critère simple pour vérifier des
rayons potentiels de l’éventail de permutarbre en n’utilisant que la décoration. Par exemple, en
utilisant l’étiquetage conventionnel sur les rayons de l’éventail de tresses par les sous-ensembles
propres de [n], l’ensemble de rayons de l’éventail des δ-permutarbres est l’ensemble de tous les
intervals propres pour δ = n et il est l’ensemble de tous les intervals propres initiaux et finaux
pour δ = n.

Il a été établi dans [PP17] que toute congruence de permutarbre est enlèvoédrale et que les
permutarbrèdres généralisent les constructions classiques de l’associaèdre de [Lod04] et [HL07].
Dans la partie 2.3.1, nous montrons que toute congruence enlèvoédrale est une congruence de
permutarbre. En conséquence, ces deux notions sont équivalentes pour les congruences de l’ordre
faible sur Sn. De plus, dans la partie 2.3.2, nous introduisons un cas spécial des congruences
enlèvoédrales. Nous appelons une congruence fortement enlèvoédrale si son éventail quotient
peut être obtenu non seulement en enlevant des inégalites du permutaèdre standard Permn, mais
aussi à partir de n’importe quel polytope P dont l’éventail normal est l’éventail de tresses. Nous
montrons que toute congruence de permutarbre est fortement enlèvoédrale. Cela implique que
tout congruence enlèvoédrale est en fait fortement enlèvoédrale, ce qui permet de construire des
quotientopes non seulement à partir de la fonction de hauteur de Permn, mais aussi à partir de
n’importe quelle fonction de hauteur strictement sous-modulaire.

Dans la partie 2.4, nous utilisons nos découvertes sur les rayons de l’éventail de permutarbre
pour décrire le cône de type d’un éventail de permutarbre. Nous donnons une déscription des
facettes du cône de type, nous déterminons son nombre de facettes et nous déduisons un critère
pour savoir si le cône de type d’un certain éventail de permutarbre est simplicial. Les éven-
tails de permutarbre dont le cône de type associé est simplicial sont particulièrement intéressants
parce qu’ils permettent une représentation canonique du permutarbrèdre comme la somme de
Minkowski des polytopes induits par les fonctions de hauteur correspondantes aux rayons du cône
de type. Nous terminons ce chapitre en décrivant l’ensemble de tous les quotientopes pour un tel
éventail de permutarbre dans l’espace cinématique (voir [AHBHY18]).

3. Polytopes de tessons pour l’arrangement de tresses. Le chapitre 3 est basé sur la
partie I de la prépublication suivante :
• [PPR20] Arnau Padrol, Vincent Pilaud, and Julian Ritter. Shard polytopes. Preprint,
arXiv:2007.01008, 2020.

Une version courte de l’article apparaît dans les actes de la 33rd International Conference on
Formal Power Series and Algebraic Combinatorics (voir https://www.mat.univie.ac.
at/~slc/wpapers/FPSAC2021/11.html).

Dans ce chapitre, nous établissons une construction de quotientopes pour n’importe quelle con-
gruence de treillis de l’ordre faible sur Sn. Ces nouveux quotientopes, appelés shardsumotopes,
sont construits comme la somme de Minkowski de nouveaux polytopes élémentaires pour chacun
des tessons de l’arrangement, appelés les polytopes de tessons.

Nous commençons dans la partie 3.1 par généraliser les tessons de l’arrangement de tresses
orienté pour obtenir ce que l’on appelle pseudo-tessons, une classe plus large de cônes polyédraux
avec une représentation combinatoire similaire. Nous introduisons quelques nouveaux objets reliés
aux tessons, à la fois inspirés par et compatibles avec la représentation schématique des tessons
établie dans [Rea15]. En particular, nous introduisons les couplages d’un tesson, qui peuvent être
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vus d’un point de vue géométrique comme certaines sommes de vecteurs ei − ej normaux aux
hyperplanes de l’arrangement de tresses qui sont étroitement liés au tesson.

Nous utilisons alors ces couplages de tesson pour définir le polytope de tesson SP(Σ) dans la
partie 3.2. Il y a un tel polytope pour chaque tesson de l’arrangement de tresses. Nous donnons
une description par inégalités et une description par sommets et démontrons que ces deux descrip-
tions sont équivalentes. Nous déterminons la dimension, le nombre de facettes et le nombre de
sommets du polytope de tesson. En particulier, nous observons que les polytopes de tessons sont
des simplexes pour la classe des tessons supérieurs et que le nombre de sommets des polytopes de
tesson sont les nombres de Fibonacci pour la classe des tessons alternants. Nous poursuivons en
décrivant les faces d’un polytope de tesson. Nous déterminons ses arêtes en utilisant des propriétés
combinatoires des couplages de tesson associés. De plus, nous montrons que toute face d’un poly-
tope de tesson est isomorphe à un produit cartesien de polytopes de tessons. Pour conclure cette
section, nous établissons quelques symétries des polytopes de tessons.

Dans la partie 3.3, nous examinons les éventails normaux des polytopes de tessons, appelés
éventails de tessons et dénotés par SF(Σ). Ils présentent un intérêt particulier comme nous vi-
sons à reconstruire un éventail quotient comme l’éventail normal d’une somme de Minkowski de
polytopes de tessons, donc l’éventail normal de cette somme de Minkowski sera le raffinement
commun de tous les éventails de tessons associés. Nous décrivons les murs et quelques cônes
des éventails de tessons. Le résultat principal de cette section garantit que l’union des murs de
l’éventail de tesson SF(Σ) à la fois contient le tesson Σ comme sous-ensemble et est contenu
dans l’union de tous les tessons Σ′ qui forcent Σ au sens introduit dans la partie 1.5.3.

Cette propriété des éventails de tessons nous permet de construire des shardsumotopes dans la
partie 3.4. Étant donné une congruence de treillis ≡ sur l’ordre faible, le shardsumotope SP+(≡)
est la somme de Minkowski de tous les polytopes de tessons SP(Σ) pour les tessons Σ qui apparais-
sent dans l’éventail quotient F≡. L’éventail normal du shardsumotope est alors égal à l’éventail
quotient, où chaque polytope de tesson SP(Σ) qui a été sommé dans le processus introduit le tes-
son Σ dans l’éventail résultant sans ajouter aucun mur non présent dans F≡. Parmi les exemples
les plus marquants, citons le parallélépipède induit par les normales de l’arrangement de tresses,
un permutaèdre non-standard et une translation de l’associaèdre standard (voir [Lod04]) obtenue
comme le shardsumotope de la congruence sylvestre. Nous terminons cette section par une discus-
sion sur les sommets et facettes des shardsumotopes et un moyen de les construire efficacement.

Dans la partie 3.5, nous examinons le rôle que jouent les polytopes de tessons dans le cône
de type de l’arrangement de tresses. Nous montrons que les polytopes de tessons ne sont pas
décomposables comme sommes de Minkowski, de sorte que leurs fonctions de hauteur se trouvent
dans les rayons du cône de type de l’éventail de tresses. Nous visualisons le cône de type de
l’éventail de tresses, mettant en relation la structure polyédrale du cône, les polytopes induits par
certaines fonctions de hauteur et les tessons de l’arrangement de tresses dans une seule image.

4. Polytopes de tessons pour l’arrangement de type B. Le chapitre 4 est basé sur la
partie II de la prépublication suivante :
• [PPR20] Arnau Padrol, Vincent Pilaud, and Julian Ritter. Shard polytopes. Preprint,
arXiv:2007.01008, 2020.

Une version courte de l’article apparaît dans les actes de la 33rd International Conference on
Formal Power Series and Algebraic Combinatorics (voir https://www.mat.univie.ac.
at/~slc/wpapers/FPSAC2021/11.html).

Dans ce chapitre, nous adaptons nos découvertes du chapitre 3 à une autre classe d’arrangements
d’hyperplans. Tandis que le chapitre 3 couvre les congruences de treillis sur l’ordre des régions
de l’arrangement de tresses ~An (qui est isomorphe au treillis de l’ordre faible sur Sn), dans le
chapitre 4, nous considérons les congruences de treillis sur l’ordre des régions de l’arrangement ~Bn
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(qui est isomorphe au treillis de l’ordre faible sur SBn ). Le nom de cet arrangement vient de
sa relation au groupe de Coxeter de type B (voir [Rea16a]), également appelé le groupe hyper-
octaédrique (voir [You30]).

Dans la partie 4.1, nous introduisons l’arrangement de type B et son ordre des régions isomor-
phe à l’ordre faible sur le groupe SBn des permutations signées. Nous déterminons le cône de type
de l’arrangement de type B. Nous décrivons le zonotope canonique de l’arrangement de type B,
connu comme le B-permutaèdre. Chaque permutation signée sur [n] peut également être décrite
comme une permutation de [±n] := {−n, . . . ,−1, 1, . . . , n} qui est centralement symétrique.
Cela peut être traduit en une relation géométrique des arrangements associés via le sous-espaceHBn
centralement symétrique. L’arrangement ~Bn peut être obtenu comme l’intersection d’un arrange-
ment de tresses avecHBn . Le B-permutaèdre peut être obtenu comme la projection du permutaèdre
standard surHBn .

Dans la partie 4.2, nous examinons les tessons de l’arrangement de type B. Nous montrons
qu’ils peuvent être obtenus en intersectant les tessons de l’arrangement de tresses par HBn . Nous
utilisons alors la géometrie de l’arrangement pour établir soigneusement la relation de forçage
parmi les tessons de ~Bn. Il serait commode de supposer que l’ordre de forçage sur les tessons
de type B coïncide avec l’ordre de forçage sur les tessons de l’arrangement de tresses intersec-
tés avec HBn . Cependant, nous démontrons que ce n’est pas le cas. En particulier, la plupart des
ensembles de tessons de type B fermés par forçage dans ~Bn ne peuvent pas être obtenus en in-
tersectant HBn avec les éléments d’un ensemble de tessons de l’arrangement de tresses fermé par
forçage dans ~An.

Il est connu (voir [Rea16a]) que les congruences de treillis sur l’ordre faible sur SBn sont en
bijection avec les ensembles de tessons de type B fermés par forçage dans ~Bn et qu’il définissent
des éventails quotients comme le font celles sur l’ordre faible sur Sn. Dans la partie 4.3, nous
décrivons ces éventails quotients. En utilisant les polytopes de tessons pour l’arrangement de
tresses construits au chapitre 3 et leurs projections sur HBn , nous définissons des polytopes de
tessons pour tous les tessons de type B. À nouveau, nous montrons que les éventails normaux de
chacun de ces polytopes de tessons de type B à la fois contient le tesson lui-même et est contenu
dans l’union de tous les tessons qui le forcent. Avec ce resultat, nous terminons ce chapitre en
construisant des quotientopes pour toute congruence de treillis de l’ordre faible sur SBn .

Logiciel. Au cours de la préparation de cette thèse, j’ai beaucoup utilisé le logiciel libre
SageMath [SD19] pour travailler avec de nombreux objets mentionnés jusqu’ici. J’ai écrit du
code pour implémenter certaines définitions et algorithmes qui n’étaient pas encore présents dans
le logiciel. Cela nous a permis, à mes collaborateurs et à moi-même, d’expérimenter les concepts,
de visualiser des exemples et de former une intuition des objets sur lesquels nous travaillions. Des
graphiques obtenus grâce à cet effort peuvent être vus dans quelques-unes des figures de cette
thèse. Ce soutien informatique a été très utile pour obtenir les résultats présentés dans les chapitres
suivants.
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1 Preliminaries

Notation

We will use Rn to denote the standard n-dimensional Euclidian vector space. We will think of
points and vectors v ∈ Rn as column vectors. They will be written in boldface (like x,y, z), to
distinguish them better from scalars and integers (like i, j, k).

In particular, 0 will represent the all-zeros vector and 1 will represent the all-ones vector. For
an integer i ∈ [n], we use ei to denote the unit vector (0, . . . , 0, 1, 0, . . . , 0) in dimension n. For
any set of integers X ⊆ [n], we use 1X to denote its characteristic vector, so that 1X =

∑
i∈X ei.

In particular, we have 1[n] =
∑n

i=1 ei = 1. We will denote sets by uppercase letters and vectors
by lowercase letters. For integers `, r and n, we use
• [`, r] := {z ∈ Z | ` ≤ z ≤ r},
• ]`, r[:= {z ∈ Z | ` < z < r},

• [n] := [1, n],
• [±n] := [−n, n] \ {0}.

The definitions and theorems in this chapter are well-known, so in general we do not give proofs.
We make exceptions for some statements which are less prominent than others.

1.1 Discrete Geometry

1.1.1 Combinations and Hulls

We first recall some basic ways of geometrically combining given points to obtain others.

Definition 1.1.1 (Linear, Conical, Affine and Convex Combination). Let x1, . . . ,xk be finitely
many points in Rn. Then the weighted sum

∑k
i=1 λixi = x ∈ Rn is called

• a linear combination of the xi, if λi ∈ R for all i ∈ [n],
• a conical combination of the xi, if λi ∈ R≥0 for all i ∈ [n],
• an affine combination of the xi, if λi ∈ R for all i ∈ [n] and

∑n
i=1 λi = 1,

• a convex combination of the xi, if λi ∈ R≥0 for all i ∈ [n] and
∑n

i=1 λi = 1.

We remark that every affine, conical or convex combination is a linear combination. Further-
more, a combination of the xi is convex if and only if it is both conical and affine. For a given
subset of Rn, we give a name to the set of all such combinations.

Definition 1.1.2 (Linear, Conical, Affine and Convex Hull). Let K ⊆ Rn be a non-empty set.
The linear (resp. conical, affine, convex) hull of K is the set of all linear (resp. conical, affine,
convex) combinations of elements of K. We also refer to the linear hull (resp. affine hull) as the
linear span (resp. affine span). We denote the hulls by span(K), cone(K), aff(K) and conv(K),
respectively. As a convention, we fix span(∅) = cone(∅) = {0} and aff(∅) = conv(∅) = ∅.

Example 1.1.3. Given the unit vectors e1, . . . , en in Rn,
• their linear hull is the entire space Rn: the linear combinations

∑n
i=1 λiei for unrestricted

choice of scalars λi ∈ R are precisely all vectors in Rn,
• their conical hull is the closed positive orthant {x ∈ Rn | ∀i ∈ [n] : xi ≥ 0}, as the conical

combinations of the unit vectors are exactly those points with nonnegative entries,
• their affine hull is the minimal affine subspace containing all unit vectors, which is equal to

the point set {x ∈ Rn |
∑n

i=1 xi = 1},

1
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• their convex hull is the intersection of that affine subspace with the closed positive orthant,
equal to the point set {x ∈ Rn |

∑n
i=1 xi = 1, ∀i ∈ [n] : xi ≥ 0}.

We will use the objects in this example from time to time, so we will illustrate them in Figure 1.1
and give them names and symbols:

Figure 1.1: The positive orthant R2
≥0 (left), the sum-one-hyperplaneH2

1 (center), and the standard
simplex ∆1 (right), all in R2.

Definition 1.1.4 (Standard Hulls). Let n be a positive integer.
• We denote the (closed) positive orthant by Rn≥0 := {x ∈ Rn | ∀i ∈ [n] : xi ≥ 0}.
• We denote the sum-one-hyperplane byHn1 := {x ∈ Rn |

∑n
i=1 xi = 1}.

• We denote the standard simplex by ∆n−1 := {x ∈ Rn |
∑n

i=1 xi = 1,∀i ∈ [n] : xi ≥ 0}.

We note that as every convex combination is both an affine combination and a conical combina-
tion, the convex hull is a subset of both the affine hull and the conical hull and therefore a subset
of their intersection. But while equality with that intersection holds in our unit vector example
(∆n−1 = Rn≥0 ∩Hn1 ), it is not true in general. In fact, it fails as soon as the points x1, . . . ,xn are
linearly dependent.

Example 1.1.5. We consider the points 0 and e1 + e2 in some Rn for n ≥ 2. Their conical hull
contains the point 0 · 0+ 2 · (e1 + e2) = 2e1 + 2e2. Their affine hull contains that point −1 · 0+
2 · (e1 + e2) = 2e1 + 2e2 as well. But while there are different conical or affine combinations
to obtain that point, none of them is a convex combination, so 2e1 + 2e2 is not contained in the
convex hull of 0 and e1 + e2. See Figure 1.2 for an illustration.

Figure 1.2: The conical hull cone({0, e1 + e2}) (left), the affine hull aff({0, e1 + e2}) (center),
and the convex hull conv({0, e1 + e2}) (right) of the points 0 and e1 + e2 in R2.

There are some other standard hulls that are built similarly. The sum-one-hyperplane Hn1 is
defined to contain exactly those x ∈ Rn with

∑n
i=1 xi = 1.
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1.1 Discrete Geometry

Definition 1.1.6 (Standard Hyperplanes). Similarly to the sum-one-hyperplane, we define
• the sum-zero-hyperplaneHn0 := {x ∈ Rn |

∑n
i=1 xi = 0},

• the sum-count-hyperplaneHnΣ :=
{
x ∈ Rn

∣∣ ∑n
i=1 xi =

∑n
i=1 i =

(
n+1

2

)}
.

The sum-zero-hyperplane contains, in particular, all vectors of the form ei − ej for two (not
necessarily distinct) indices i, j ∈ [n]. The sum-count-hyperplane is useful when dealing with
incidence vectors of permutations: Any standard permutation σ ∈ Sn can be written as a vec-
tor (σ1, σ2, . . . , σn) (equivalently,

∑n
i=1 σiei), whose sum of entries is

∑n
i=1 i =

(
n+1

2

)
. There-

fore, the sum-count-hyperplane contains all such incidence vectors of permutations.

Definition 1.1.7 (Convex Set). Let n be a nonnegative integer. A set of points K ⊆ Rn is convex
if for any two points x,y ∈ K, any convex combination of x and y (and therefore the entire
straight line segment [x,y]) is also contained in K. Equivalently, K is convex if and only if it is
equal to its own convex hull conv(K).

Example 1.1.8. Both the empty set and a set containing a single point are convex, as they do not
contain two points whose interval would have to be contained as well. On the other hand, the
entire Euclidian space Rn is a convex set as the convex combination λx+(1−λ)y is a real vector
for any choice of x,y ∈ Rn and λ ∈ R with 0 ≤ λ ≤ 1.

An intersection of two convex sets is always convex, while their union may fail to be convex. For
example, both setsK1 :=

{
x ∈ R3

∣∣ x1 ≥ 0, x3 = 0
}

andK2 :=
{
x ∈ R3

∣∣ x2 ≥ 0, x3 = 0
}

are
convex. If we pick −e2 ∈ K1 and −e1 ∈ K2, we observe that for any λ ∈ ]0, 1[, we obtain a
convex combination y = λ(−e2) + (1 − λ)(−e1) = (λ − 1,−λ, 0), which has y1, y2 < 0 and
is therefore contained in neither K1 nor K2. Their convex hull K := conv(K1 ∪ K2) is given
by K =

{
x ∈ R3

∣∣ x3 = 0
}

.

A set such as
{
x ∈ R3

∣∣ x3 = 0
}

is called a hyperplane in Rn, which we will now define more
formally along with some associated concepts.

1.1.2 Hyperplanes

We already saw three affine subspaces of Rn constructed in a similar way. We will now formally
introduce this class of subspaces.

Definition 1.1.9 (Hyperplanes and Halfspaces). In the n-dimensional Euclidian space Rn, a hy-
perplane H is an (n − 1)-dimensional affine subspace of Rn. Any hyperplane can be written
as H = {x ∈ Rn | 〈v |x〉 = b} for some scalar b ∈ R and a nonzero vector v ∈ Rn, which is
called a normal vector ofH . The hyperplane H is a linear hyperplane if b = 0. The two (closed)
halfspaces induced by H are H+ := {x ∈ Rn | 〈v |x〉 ≥ b} and H− := {x ∈ Rn | 〈v |x〉 ≤ b}.
(Analogously, H induces two open halfspaces obtained by replacing the weak inequalities with
strict ones.) These halfspaces are called linear if the associated hyperplane H is linear (equiva-
lently, if b = 0).

Definition 1.1.10 (Support and Separation). The hyperplane H is supporting for a set K ⊆ Rn
ifH∩K 6= ∅ andK is contained in one of the closed halfspaces induced byH . Given two convex
sets A,B ⊆ Rn, the hyperplane H separates A from B if A ⊆ H− and B ⊆ H+ or vice versa.
It strictly separates A from B if it separates A from B and A ∩H = ∅ = B ∩H .

Example 1.1.11. Given the hyperplane H =
{
x ∈ R3

∣∣ x3 = 1
}

, its normal vectors are all
nonzero multiples of e3 (including all negative multiples). H does not contain the origin,
so b 6= 0 and H is not linear. The halfspaces induced by H are {x ∈ Rn | 〈e3 |x〉 ≥ 1}
and {x ∈ Rn | 〈e3 |x〉 ≤ 1}. We note that the assigment of the symbols H+ and H− to these
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1 Preliminaries

two halfspaces depends on the orientation of the hyperplane determined by the choice of normal
vector. The hyperplane H is supporting for the line segment [0, e3]. It is not supporting for the
line segment [0, 2e3] (as that one is contained in neither halfspace induced by H) or the line
segment [−e3, 0] (as that one has an empty intersection with H).

We remark that any closed convex set K ⊆ Rn is equal to the intersection of the negative
halfspaces of all hyperplanes H supporting K. Furthermore, for a closed convex set K ⊆ Rn and
any nonzero direction v ∈ Rn, there is a unique b ∈ R such that H := {x ∈ Rn | 〈v |x〉 = b} is
supporting for K.

1.2 Polyhedral Combinatorics

For the basic notions of polyhedral geometry, we start by describing cones. For a both broader and
more detailed introduction to polytopes, we refer to the classic textbook [Zie07], whose conven-
tions we largely follow here.

1.2.1 Cones

As a first object of study, we will introduce polyhedral cones. All cones we consider are polyhe-
dral, so we will assume all cones appearing henceforth to be polyhedral and just call them cones.

Definition 1.2.1 (H-Cone and V-Cone). Let n be a nonnegative integer.
• AnH-cone is the intersection of finitely many closed linear halfspaces of Rn.
• A V-cone is the conical hull of finitely many vectors in Rn.

The following statement certifies thatH-cones and V-cones are in fact the same objects:

Theorem 1.2.2 (Cone). A set C ⊆ Rn is anH-cone if and only if it is a V-cone.

It is therefore justified to speak of a cone whenever we encounter one of these objects, regardless
of whether it is given by anH-description or a V-description. We will continue by introducing the
principal notion to study the structure of a cone: the notion of a face.

Definition 1.2.3 (Faces of a Cone). Given a cone C, the dimension of C is the dimension of the
affine hull ofC. The lineality space ofC is the largest linear subspaceL ⊆ Rn such that l+x ∈ C
for all l ∈ L and x ∈ C. A face of C is the intersection of C with a hyperplane supporting C.
Moreover, C is always considered a face of itself. Every face of C is a cone. The proper faces
of C are all of its faces except for C. A facet of C is a face of C whose codimension is 1 (a face
of dimension one less than dim(C)). A ray of C is a face of C whose dimension is 1. A cone C
is called simplicial if its dimension equals the number of rays.

This way, we defined a cone as the intersection of closed halfspaces. There are analogous
definitions arising when intersecting open halfspaces instead.

Definition 1.2.4 (Open Cones and Closures). An open cone is the intersection of finitely many
open linear halfspaces of Rn. Its closure is the cone obtained by the intersection of the closure of
each of these halfspaces.

Example 1.2.5 (Orthant). A cone that arises naturally when using the Cartesian coordinate system
in three dimensions is the positive orthant C :=

{
x ∈ R3

∣∣ x1, x2, x3 ≥ 0
}

. It is the intersection
of the halfspaces {x ∈ Rn | xi ≥ 0} for i ∈ {1, 2, 3} or equivalently, the conical span of the unit
vectors e1, e2 and e3. The rays of the cone C are the three half-lines from 0 in direction e1, e2

and e3, respectively. Its facets are the three lower-dimensional cones obtained by intersecting C
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with one of the three hyperplanes Hi = {x ∈ Rn | xi = 0} for i ∈ {1, 2, 3}. The faces of C
are the origin 0 (0-dimensional face), all of its rays (1-dimensional faces), all of its facets (2-
dimensional faces) and the entire cone C itself (3-dimensional face).

Any cone is equal to its conical hull and is therefore the set of all conical combinations of its
elements (or, more efficiently, of all its rays). This gives us another elegant way of describing a
cone.

Observation 1.2.6 (Cones as Images of Orthants). Given a set of vectors v1, . . . ,vm ∈ Rn, we
can write them as the columns of a matrix M ∈ Rn×m. Then the conical hull of the vi is the
image of the positive orthant in Rm under the linear map defined by φ(x) = Mx. In particular,
every cone C is the image of the positive orthant in some Rm under a linear map. For example,
the cone C from Example 1.2.5 is the image of the positive orthant R3

≥0 under the identity map
defined by the 3-dimensional unit matrix. Moreover, every vector inC can be obtained as a conical
combination of the rays.

1.2.2 Polytopes

While cones are based on conical combinations, there is a similar concept based on convex com-
binations, namely that of polytopes. We will introduce some basic properties and note that many
of them are analogous to what we know about cones. Just like cones, polytopes can equivalently
be described as the intersection of halfspaces or as the set of combinations (here: convex) of a set
of points.

Definition 1.2.7 (H-Polytope and V-Polytope). Let n be a nonnegative integer.
• AnH-polytope is a bounded intersection of finitely many closed halfspaces of Rn.
• A V-polytope is the convex hull of finitely many points in Rn.

As was the case with H-cones and V-cones, the following statement certifies that H-polytopes
and V-polytopes are in fact the same objects.

Theorem 1.2.8 (Polytope). A set P ⊆ Rn is anH-polytope if and only if it is a V-polytope.

Due to this statement, known as the main theorem of polytope theory, it is justified to speak
of a polytope whenever we encounter one of these objects, regardless of whether it is given by
anH-description or a V-description.

An example of anH-description of a polytope defined as the intersection ofm halfspaces of Rn
is an (m × n)-matrix M together with a vector v ∈ Rm. Then the polytope P(M,v) is defined
as P(M,v) := {x ∈ Rn |Mx ≤ v}. It is the intersection of all the halfspaces defined by the
inequalities 〈Mi |x〉 ≤ vi, where Mi and vi are the i-th row of the matrix M and the i-th entry of
the vector v, respectively. We remark that while every polytope can be described in this way, not
every set of this form is necessarily a polytope as P(M,v) might not be bounded.

In Figure 1.1, we saw the three standard hulls (positive orthant for conical combinations, sum-
one hyperplane for affine combinations and standard simplex for convex combinations). Just as
every cone is the image of an orthant under a linear map built from its rays, every polytope can be
given as the image of a standard simplex under a linear map built from its vertices.

Observation 1.2.9 (Polytopes as Images of Simplices). Given a set of vectors v1, . . . ,vm ∈ Rn,
we can write them as the columns of a matrix M ∈ Rn×m. Then the convex hull of the vi is
the image of the standard simplex ∆m−1 = {x ∈ Rm |

∑m
i=1 xi = 1} in Rm under the linear map

defined by φ(x) = Mx. In particular, every polytope P is the image of the standard simplex ∆m−1

in some dimension m under a linear map. Moreover, every point in P can be obtained as a convex
combination of the vertices.
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Definition 1.2.10 (Faces of a Polytope). Given a polytope P, the dimension of P is the dimension
of its affine hull. The faces of P are all intersections of P with a hyperplane supporting P, the
empty set, and P itself. A proper face of P is a face of P that is neither empty nor P itself. Every
face of P is a polytope. The face lattice of P is the set of its faces, partially ordered by inclusion.
Depending on their dimension, a face F of P is called
• a vertex of P if dim(F ) = 0,
• an edge of P if dim(F ) = 1,
• a ridge of P if codim(F ) = 2 (put differently, if dim(P)− dim(F ) = 2),
• a facet of P if codim(F ) = 1 (put differently, if dim(P)− dim(F ) = 1).

A d-dimensional polytope P is called
• simplicial if every facet of P contains exactly d vertices of P,
• simple if every vertex of P is contained in exactly d facets of P.

We denote by V (P) the set of all vertices of P. A polytope P is called a simplex if its dimension
is equal to the number of vertices minus one.

Example 1.2.11 (3-Cube). We exemplify these basic notions by the well-known example of the
3-dimensional cube C3 :=

{
x ∈ R3

∣∣ 0 ≤ x1, x2, x3 ≤ 1
}

. It is the intersection of the three half-
spaces

{
x ∈ R3

∣∣ xi ≥ 0
}

and the three halfspaces
{
x ∈ R3

∣∣ xi ≤ 1
}

for i ∈ {1, 2, 3}. Equiv-
alently, C3 is the convex hull of its vertices {0, 1}3. We can describe the vertices as the inci-
dence vectors of all subsets of [3], so that V (C3) = {1I | I ⊆ [3]}. The edges of C3 are the
segments [1A,1B] for all pairs of sets A,B ⊆ [3] with |A∆B| = 1. As C3 is 3-dimensional, its
ridges are its edges. The facets of C3 are the six polytopes obtained by intersecting C3 with one of
the six hyperplanes

{
x ∈ R3

∣∣ xi = k
}

for i ∈ {1, 2, 3} and k ∈ {0, 1}.

Example 1.2.12 (Faces of the Simplex). The standard simplex ∆n−1 = conv {ei | i ∈ [n]} has
faces ∆I for each subset I ⊆ [n], where ∆I := conv {ei | i ∈ I}. In particular, we obtain the
empty face as ∆∅ and the entire simplex as ∆[n].

Definition 1.2.13 (Equivalence of Polytopes). Two polytopes P,Q are combinatorially equiva-
lent if their face lattices are isomorphic. The combinatorial type of a polytope is its equivalence
class with respect to this equivalence relation. In particular, two polytopes are of the same combi-
natorial type if and only if they are combinatorially equivalent.

Integer Polytopes

Integer polytopes are a class of polytopes of particular interest in optimization. They often appear
when combinatorial objects are translated into geometric objects, as will be the case for some
classes of polytopes introduced later.

Definition 1.2.14 (Integer Polytope). A polytope P ⊆ Rn is an integer polytope if every vertex v
of P is an integer vector v ∈ Zn.

To certify that a certain polytope of the form {x ∈ Rn |Mx ≤ b} is an integer polytope, one
can use special properties of the matrix M.

Definition 1.2.15 (Total Unimodularity, Consecutive Ones). A matrix M is totally unimodu-
lar if each square submatrix of M has determinant equal to −1, 0 or +1. A matrix M has the
consecutive ones property if every row of M is of the form (0, . . . , 0, 1, . . . , 1, 0, . . . , 0).

The following statement on the relation between these two properties can be attributed to folk-
lore. We give a proof for the sake of completeness.

Lemma 1.2.16 (Consecutive One Matrices Are Totally Unimodular). If a matrix M has the con-
secutive ones property, then M is totally unimodular.
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Proof. Let M be a matrix with the consecutive ones property. We fix an arbitrary square n × n
submatrix A of M. We want to show that det(A) ∈ {−1, 0,+1}.

We first remark that A has the consecutive ones property as well. If A has an all-zero row,
then det(A) = 0 and we are done. Otherwise, let a1, . . . ,an be the columns of A. We introduce
a new matrix B, whose columns b1, . . . ,bn are defined by b1 := a1 and bi := ai − ai−1

for 1 < i ≤ n. As B is obtained from A by adding multiples of other columns to each column,
we know that det(B) = det(A). Let ar be the r-th row of A. As we may asssume ar is not
all-zero, we have ar = 1[k,`] for some 1 ≤ k ≤ ` ≤ n. If ` < n, then br = ek − e`+1. If ` = n,
then br = ek. We deduce that every row of B either has a single nonzero entry +1 or it has two
nonzero entries adding up to zero.

To determine det(B), we perform a Laplace expansion along every row that has exactly one
nonzero entry. Every such step introduces a factor of ±1 to the determinant. If this exhausts
all rows of B, we deduce that det(A) = det(B) ∈ {−1,+1}. Otherwise, we are left with a
submatrix B′ of B. If B′ has a zero row, then det(B′) = 0. Otherwise, every row of B′ has
exactly one +1 entry and exactly one −1 entry, so B′ · 1 = 0, which certifies that B′ is singular.
In either case, det(A) = det(B) = det(B′) = 0. As A was an arbitrary submatrix of M, we
conclude that M is totally unimodular.

The following lemma about totally unimodular matrices is a special case of a well-known state-
ment due to [HK10].

Lemma 1.2.17 (Totally Unimodular Matrices Give Integer Polytopes). Let P be a polytope in Rn.
If P = {x ∈ Rn |Mx ≤ b} for a totally unimodular matrix M and an integer vector b, then P is
an integer polytope.

Example 1.2.18. Take for example the following totally unimodular matrix M ∈ Z6×3 together
with an integer vector b ∈ Z6:

M =



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 b =



1
1
1
1
1
1


Then P = P(M,b) is the 3-dimensional cube with vertex set V (P) = {−1,+1}3, so every vertex
of P is an integer vector.

1.2.3 Fans

A concept of particular interest in combinatorial geometry is that of a fan. It is a collection of
cones closed under intersections and taking faces.

Definition 1.2.19 (Fan). A fan F in Rn is a collection of cones such that
• if F is a face of a cone C ∈ F , then F ∈ F ,
• if C,C ′ ∈ F , then C ∩ C ′ is a face of C and of C ′.

The fan F is complete if the union of its cones is Rn. The fan F is pointed if {0} ∈ F (equiva-
lently, if {0} is a face of every cone in F). The fan F is simplicial if all its cones are simplicial.

The dimension of F is the dimension of the affine hull of the union of its cones. A chamber
of F is a cone of F of codimension 0. A wall of F is a cone of F of codimension 1. A ray of F
is a cone of F of dimension 1.
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We will almost exclusively consider pointed fans, as any complete fan can be obtained as the
product of a pointed fan with its lineality space. Complete fans arise naturally from polytopes in
the following way:

Definition 1.2.20 (Normal Vector, Normal Cone and Normal Fan). Given a polytope P, a normal
vector of a facet F of P is a vector v ∈ Rn such that the hyperplaneH := {x ∈ Rn | 〈v |x〉 ≤ b}
is supporting for F for some b ∈ R. It is called an outer normal vector if P ⊆ H− or an inner
normal vector if P ⊆ H+. The (outer) normal cone of a non-empty face F of P is the conical
hull of all outer normal vectors of the facets containing F . In particular, the normal cone of the
empty face of P is the orthogonal complement of P in its ambient space. In the case where P is
full-dimensional, this is the conical hull of the empty set, which is {0}. The normal fan N (P)
of P is the complete fan obtained as the set of all normal cones of all faces of P.

Observation 1.2.21 (Correspondence Between Faces of P and N (P)). We observe that
• the vertices of P correspond to the chambers of N (P),
• the edges of P correspond to the walls of N (P),
• the facets of P correspond to the rays of N (P).

If P ⊆ Rn is full-dimensional, then the d-dimensional faces of the polytope P correspond to
the (n− d)-dimensional faces of its normal fan N (P).

Definition 1.2.22 (Refinement and Coarsening). Given two fans F ,G in Rn, the fan F refines G
(equivalently, the fan G coarsens F) if every cone of G is a union of cones of F . Given two
fans F1,F2 in Rn, their common refinement is F1 ∧ F2 := {C1 ∩ C2 | C1 ∈ F1, C2 ∈ F2}.

We remark that for any fan F in Rn, there is a simplicial fan that refines F .

1.2.4 Type Cones

We saw how a polytope induces a fan. In fact, many different polytopes induce the same fan.
We will now study under which circumstances different polytopes have the same normal fan.
Given a certain fan F , it turns out that the set of all polytopes with F as normal fan can be seen
geometrically as a cone, which is called the type cone of F and was introduced in [McM73]. In
this section, we will introduce the necessary notions for that result.

We first recall that a ray of F is a cone of dimension 1. Every ray of a pointed fan can be written
as the conical hull of a single vector. To simplify notation, we will often represent a ray by a ray
vector, which is a fixed nonzero vector such that the set of nonnegative multiples of this vector
equals the ray we started with. Moreover, given a fan F , we fix a ray matrix that can be derived
from the fan by choosing one representative ray vector for each of its rays.

Definition 1.2.23 (Ray Matrix). Let F be a pointed complete simplicial fan in Rn whose number
of rays is N . A ray matrix MF for F is any (N × n)-matrix whose rows are representative
vectors for the rays of F .

With these fixed ray vectors, we can define polytopes such that each of their facets is orthogonal
to one of these row vectors and thus orthogonal to one of the rays of the fan. We describe such a
polytope by describing how far it stretches out in the direction of each of the rays.

Definition 1.2.24 (Height Function). Given a ray matrix MF ∈ RN×n, a height function with
respect to that ray matrix is any vector h ∈ RN , interpreted in the following way: The vec-
tor h ∈ RN induces a polytope P(MF ,h) = {x ∈ Rn |MF · x ≤ h}. This polytope P(MF ,h)
has an inequality of the form 〈r |x〉 ≤ hr for each ray vector r appearing as a row of MF ,
where hr denotes the entry of h corresponding to that row.
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We remark that while every facet of P(MF ,h) must have a ray of F as its outer normal vector,
the converse is not true. It follows that given a height function h for a fan F , that fan F is not
necessarily the normal fan of P(MF ,h), as can be seen in the following example:

Example 1.2.25. Let F be the 2-dimensional fan generated by N = 5 rays in the directions
(0,−1), (−1, 0), (0, 1), (1, 1) and (1, 0). It is pointed (as the intersection of all its cones contains
nothing but the origin), complete (as the cones spanned by these rays cover R2) and simplicial (as
all maximal cones are simplicial). It can be represented by the following (5× 2)-matrix.

MF :=


0 −1
−1 0
0 1
1 1
1 0


Given the height function h = (1, 1, 1, 2, 1) ∈ R5 for that ray matrix MF , the polytope
P(MF ,h) = {x ∈ Rn |MF · x ≤ h} can be obtained as the intersection of the halfspaces de-
fined by−1 ≤ x1 ≤ 1 (second and fifth row), −1 ≤ x2 ≤ 1 (first and third row), and x1 +x2 ≤ 2
(fourth row). For an illustration, see Figure 1.3 (center). As the inequality induced by the fourth
row is redundant, we obtain P(MF ,h) to be the 2-dimensional cube with vertices {−1,+1}2.
Therefore, the normal fan N (P(MF ,h)) only has four rays and is thus different from F .

Figure 1.3: The polytope P(MF ,h) with h = (1, 1, 1, λ, 1) for the values λ = 2.5 (left), λ = 2
(center) and λ = 1.5 (right). The ray vectors of MF are drawn in light gray (the
rows correspond to the rays in clockwise order, starting with the bottom ray). The
boundaries of the half-spaces are indicated in red, the resulting polytope is colored in
dark gray. Note that in the examples on the left and in the center, the normal fan of the
resulting polytope is different from the fan F we started with.

We want to describe the set of height functions for which the resulting normal fan is the fan we
started with. In this example, the inequality induced by the fourth row was made redundant by
the inequalities induced by rows three and five. These are the inequalities coming from the two
rays that are adjacent to the fourth ray. If our height vector were h = (1, 1, 1, 1.5, 1) instead, the
fourth row would induce the inequality x1 + x2 ≤ 1.5, which is not redundant and changes the
combinatorial type of the polytope P(MF ,h). For an illustration, see Figure 1.3 (right).

In fact, this relation between rays of adjacent maximal cones can be used to describe the situ-
ations in which one of the inequalities is made redundant and thus changes the normal fan of the
resulting polytope. We will now generalize this approach. First, we exploit that pointed complete
simplicial fans admit a special relationship between its neighboring maximal cones.
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Definition 1.2.26 (Adjacent Cones). Let F be a pointed complete simplicial fan in Rn and
let MF ∈ RN×n be a ray matrix for F . Any maximal cone of F is the conical hull cone(R) for
some set R which contains exactly n rows of MF . We denote by Adj(F) the set of unordered
pairs {R,S} where cone(R) and cone(S) are adjacent maximal cones in F . As the fan F is
simplicial, any such sets of rays R and S satisfy the relation R \ {r} = S \ {s} for two ray
vectors r and s that appear as rows of the ray matrix MF .

For any such pair of adjacent maximal cones, their generating rays have a linear dependency
that can be turned into a criterion to evaluate height functions on the fan.

Definition 1.2.27 (Wall-Crossing Inequality). Let F be a pointed complete simplicial fan in Rn
with ray matrix MF and let h ∈ RN be a height function with respect to MF . For any pair
of adjacent maximal cones {R,S} ∈ Adj(F), there are ray vectors r and s of F such that
R \ {r} = S \ {s}. Then there is a unique (up to rescaling) linear dependence of the form

α · r + β · s +
∑

t∈R∩S
γt · t = 0, with α, β > 0.

The wall-crossing inequality associated to these cones is the following inequality on entries of h.

α · hr + β · hs +
∑

t∈R∩S
γt · ht > 0.

Without loss of generality, we can always rescale these coefficients such that α + β = 2. We
denote by αR,S(t) the coefficient of t in the unique linear dependence rescaled in this way. This
allows us to rewrite the wall-crossing inequality as∑

t∈R∪S
αR,S(t) · ht > 0.

These wall-crossing inequalities for a height function are precisely what determines whether
or not F is the normal fan of the polytope induced by that height function, as was pointed out
by [CFZ02].

Theorem 1.2.28 (Normal Fans and Wall-Crossing Inequalities). Let F be a pointed complete
simplicial fan in Rn and MF ∈ RN×n be a ray matrix for F . Then the following are equivalent
for a height function h ∈ RN :
• The fan F is the normal fan of the polytope P (MF ,h).
• The height function h satisfies all wall-crossing inequalities of F .

We can therefore describe all height functions h that induce polytopes with the same normal
fan by a set of linear inequalities on h. The set of all such vectors h is the intersection of finitely
many closed linear halfspaces and therefore a polyhedral cone, which is called the type cone.

Definition 1.2.29 (Type Cone). Let F be a pointed complete simplicial fan in Rn with ray ma-
trix MF ∈ RN×n. The type cone TC(F) is the set of all height functions h ∈ RN such that F is
the normal fan of P(MF ,h).

With our knowledge about the wall-crossing inequalities from Definition 1.2.27 and Theo-
rem 1.2.28, we can provide a concise description of the type cone for a given ray matrix.

Corollary 1.2.30 (An H-Description of the Type Cone). Let F be a pointed complete simplicial
fan in Rn and MF ∈ RN×n be a ray matrix for F . Then the type cone of F is

TC(F) =

{
h ∈ RN

∣∣∣∣∣ ∑
t∈R∪S

αR,S(t) · ht > 0 for all {R,S} ∈ Adj(F)

}
.
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We observe that translating a polytope P(MF ,h) in any direction in Rn preserves its normal
fan, but moves its height function along an infinite line contained in the type cone. Therefore, the
type cone of a complete simplicial fan in Rn has an n-dimensional lineality space.

Observation 1.2.31 (Closed Type Cone and Deformation Cone). All the wall-crossing inequalities
are strict inequalities. Therefore, the halfspaces containing all their solutions are open halfspaces.
As the type cone TC(F) is the intersection of all of them, it is an open cone. We denote its closure,
called the closed type cone, by TC(F). An H-description of the closed type cone can simply be
obtained by replacing the strict inequality > by a weak inequality ≥ in Corollary 1.2.30. If F is
obtained as the normal fan of the polytope P, then TC(F) is also known as the deformation cone
of P (see [Pos09] and [PRW08]).

We remark that all the constructions in this section depended not only on the fan F , but also
on the chosen ray matrix MF . We argue that this choice has only minor consequences on the
resulting type cone.

Observation 1.2.32 (Type Cone is Independent of Ray Matrix). Let F be a fan in Rn. Given
two ray matrices M1,M2 for F , the type cone TC(F) constructed from either of them depends
only loosely on the choice of ray matrix. Exchanging the order of the rays as rows of the matrix
corresponds to exchanging the corresponding entries of the height functions or the type cone.
Scaling a ray by a positive factor corresponds to scaling the corresponding entry in the height
functions or the type cone. Any two type cones constructed from different ray matrices for the
same fan are therefore isomorphic. As we are mainly interested in the combinatorial structure of
the type cone, in particular its face lattice, we speak of the type cone of a fan, regardless of the
choice of ray matrix.

There are pointed complete simplicial fans whose type cone is empty, meaning that no polytope
with this normal fan exists. The following example is so well-known that it has been named the
mother of all examples in [DLRS10].

Example 1.2.33 (The Mother of All Examples). The fan F of the mother of all examples can be
constructed in R3 using the following ray matrix:

MF =



4 0 0
0 4 0
0 0 4
2 1 1
1 2 1
1 1 2
−1 −1 −1


The illustration on the right side shows the intersection of the cones of F with the hyper-

plane H :=
{
x ∈ R3

∣∣∣ ∑3
i=1 xi = 4

}
. The six numbered points represent the rays in the first

six rows of MF , while the seventh ray can be imagined to be on the back side of the picture,
pointing stright away from the viewpoint. The lines in the illustration are the intersections of
the 2-dimensional cones of F with H . This example is interesting because it is quite easy to
construct, yet there is no polytope P whose normal fanN (P) is the mother of all examples fan F .
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1.2.5 Minkowski Sums

We started our introduction to geometry by combining points to obtain other points. We continue
now by recalling a basic way to geometrically combine sets of points to obtain other sets of points.

Definition 1.2.34 (Minkowski Sum). The Minkowski sum of two sets A,B ⊆ Rn is denoted
by A+B := {a+ b | a ∈ A, b ∈ B}.

We remark that the Minkowski sum of an arbitrary set and the empty set is the empty set.
Moreover, we note that the Minkowski sum of any two convex sets is convex. Even more is true if
we sum two convex sets that are polytopes.

Theorem 1.2.35 (Minkowski Sum of Polytopes). Let P,Q ⊆ Rn be two polytopes. Then their
Minkowski sum P + Q is a polytope as well.

In particular, given a polytope P ⊆ Rn and a vector v ∈ Rn, then the set containing nothing
but the vector v is a 0-dimensional polytope in Rn. The sum of {v} and P is the set of all
points {v + p | p ∈ P}. The resulting polytope is refered to as the translation of P by v and
simply denoted by v + P.

Observation 1.2.36 (Faces of a Minkowski Sum of Polytopes). Let P,Q ⊆ Rn be two polytopes
and let v ∈ Rn \ {0} be a nonzero vector. There is a unique scalar bP := maxx∈P 〈v |x〉 with bQ
and bP+Q defined analogously. Then HP := {x ∈ Rn | 〈v |x〉 ≤ bP} is a supporting hyperplane
for P, so there is an associated face FP := HP∩P. We can now define such hyperplanes and faces
for the two other polytopes analogously and remark that FP + FQ = FP+Q holds for any nonzero
direction, so every face of P + Q is the Minkowski sum of a face of P and a face of Q obtained in
this way.

Observation 1.2.37 (Normal Fan of a Minkowski Sum of Polytopes). The normal fan of the
polytope P + Q is the common refinement of the normal fans of P and Q. In particular, every
vertex of P + Q is the Minkowski sum of a vertex of P and a vertex of Q.

Example 1.2.38. The line segment P := conv{0, e1} and the triangle Q := conv{0, e1, e2}
are two polytopes in R2 (see Figure 1.4 for an illustration). Their Minkowski sum P + Q can
be computed as the convex hull conv {p + q | p ∈ P,q ∈ Q}. As every point of P (resp. Q)
is a convex combination of its vertices, it suffices to build the convex hull over all Minkowski
sums of vertices from V (P) and V (Q). The points obtained in this way are 0+ 0, 0+ e1, 0+ e2,
e1+0, e1+e1 and e1+e2. We observe that some of these points are redundant for a V-description
of P+Q as they can be described as a convex combination of others. For example, 0+e1 = e1+0
is the center of 0 and 2e1. We obtain the V-description P + Q = conv{0, 2e1, e2, e1 + e2}. We
emphasize that the sum of vertices of two polytopes P and Q is not necessarily a vertex of P + Q.

We observe that P + Q has a facet in direction e2 containing the two vertices e2 and e1 + e2.
It is not the Minkowski sum of a facet of P and a facet of Q, but the Minkowski sum of the entire
polytope P with the vertex e2 ∈ Q. We keep in mind that a facet of P+Q is not necessarily the sum
of facets of P and Q. On the other hand, the vertex 0 is a facet of P while the line segment [e1, e2]
is a facet of P. Their Minkowski sum is the line segment [e1, e2], which is not a face of P+Q. We
keep in mind that the sum of facets of two polytopes P and Q is not necessarily a facet of P + Q.

Observation 1.2.39 (Sums of Height Functions). Let F be a fan in Rn with a ray matrix MF and
let h,h′ ∈ TC(F) be two height functions in the type cone. They induce two polytopes P(MF ,h)
and P(MF ,h

′), respectively. As TC(F) is a cone, any conical combination of these height vec-
tors, for example h∗ = λ · h + µ · h′ (where λ, µ ≥ 0), lies in the type cone as well. Therefore,
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Figure 1.4: The three polytopes P = conv{0, e1} (top left), Q = conv{0, e1, e2} (top center)
and P + Q = conv{0, 2e1, e2, e1 + e2} (top right) from Example 1.2.38, together
with their normal fans in the bottom row.

all three polytopes P1 = P(MF ,h) and P2 = P(MF ,h
′) and P3 = P(MF ,h

∗) have the same
normal fan N (P1) = N (P2) = N (P3) = F . Moreover, they are related through a weighted
Minkowski sum with coefficients λ and µ, such that λ · P1 + µ · P2 = P3.

Example 1.2.40. The normal fan of the polytope P+Q, as used before and illustrated on the right
side in Figure 1.4, can be described by the following ray matrix:

MF :=


0 −1
−1 0
0 1
1 1

 , h(P) =


0
0
0
1

 , h(Q) =


0
0
1
1

 , h(P + Q) = h(P) + h(Q) =


0
0
1
2


We remark that the order of the rows is such that the first row corresponds to the bottom ray, with
the other rows following in clockwise order. Then
• the polytope P (on the left side of Figure 1.4) is induced by the height function h(P),
• the polytope Q (in the center) comes from the height function h(Q),
• and the polytope P + Q (on the right side) comes from the height function h(P + Q).

We note that neither h(P) nor h(Q) is contained in the type cone. This translates into the fact
that neither of the polytopes they induce has F as their normal fan. We can also argue that they
are not in the type cone as they each violate at least one wall-crossing inequality as introduced
in Definition 1.2.27. Let r1, . . . , r4 denote the four row vectors of MF .
• Between the bottom left cone spanned by {r1, r2} and the top left cone spanned by {r2, r3},

the unique linear dependence is r1 + r3 = 0, so the wall-crossing inequality is h1 + h3 > 0.
The height function h(P) violates this inequality, so P does not have the normal fan F .
• Between the top left cone spanned by {r2, r3} and the top right cone spanned by {r3, r4}, the

linear dependence is r2 + r4 − r3 = 0, so the wall-crossing inequality is h2 + h4 − h3 > 0.
The height function h(Q) violates this inequality, so Q does not have the normal fan F .

1.2.6 Indecomposability

In this section, we focus on polytopes which cannot be obtained as the Minkowski sum of different
polytopes in a non-trivial way. We remark that any polytope P is equal to the Minkowski sum of
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itself and the 0-dimensional polytope {0} containing only the origin. We are therefore interested
in a suitable definition for being indecomposable.

Definition 1.2.41 (Weak Minkowski Summand). A weak Minkowski summand of a polytope P
is a polytope Q such that there are a scalar λ ≥ 0 and a third polytope R such that Q + R = λP.

For a discussion of several characterizations of weak Minkowski summands of P, we refer to
the appendix of [PRW08]. We remark that Q is a weak Minkowki summand of P if and only if the
normal fan of Q coarsens the normal fan of P. Moreover, the set of weak Minkowski summands
of P is equal to the closed type cone of its normal fan N (P).

We recall from Observation 1.2.39 that conical combinations of height functions in the type
cone correspond to Minkowski sums of the associated polytopes. We remark that the rays of the
closed type cone represent Minkowski summands of P that cannot be decomposed further. Such
polytopes are called (Minkowski) indecomposable.

Definition 1.2.42 (Indecomposable Polytope). A polytope P is called indecomposable if every
weak Minkowski summand of P is of the form λP+ t for some scalar λ ≥ 0 and a vector t ∈ Rn.

The following criterion is a special case of a more elaborate statement in [McM87]. We give a
modified proof adapted to our case.

Theorem 1.2.43 (Indecomposability Criterion). Let P be a polytope. If there is an indecomposable
face F of P such that every facet of P has a vertex in common with F, then P is indecomposable.

Proof. We fix anH-representation of the polytope P = P(M,v) := {x ∈ Rn |Mx ≤ v}, where
we denote the rows of M and thus the outer normal vectors of the facets of P by n1, . . . ,nm. Then
any Minkowki summand Q of P can be written as Q = P(M,w) for some vector w ≤ v, where
we choose w such that all the inequalities are tight for Q.

Let F be an indecomposable face of P whose vertices are p1, . . . ,pk. Let G be a face of Q that
maximizes a normal vector of F. Moreover, for each vertex pi of F, let qi be a vertex of Q that is
maximal in direction pi.

Then the face G is a Minkowski summand of F and therefore of the form λF+t for some λ ≥ 0
and t ∈ Rn. We deduce that qj = λpj + t holds for all j ∈ [k]. If the facet of P that maximizes
the direction ni contains the vertex pj , then the facet of Q that is maximal in direction ni has to
contain the vertex qj , which leads us to confirm that wi = 〈ni |qj〉 = λvi + 〈ni | t〉. We conclude
that Q = λP + t.

1.2.7 Cartesian Products

We look at another classical way of constructing a new polytope based on two existing ones.

Definition 1.2.44 (Product of Polytopes). The (Cartesian) product of two polytopes P ∈ Rn
and Q ∈ Rm is defined as P× Q := {(p,q) ∈ Rn+m | p ∈ P,q ∈ Q}.

Observation 1.2.45 (Faces of a Cartesian Product of Polytopes). The polytope P × Q has di-
mension dim(P) + dim(Q) and its non-empty faces are all the products of a non-empty face
of P with a non-empty face of Q. In particular, its vertices are the points (v,v′) for each pair of
vertices v ∈ V (P) and v′ ∈ V (Q).

Example 1.2.46. The n-dimensional cube Cn := {x ∈ Rn | 0 ≤ xi ≤ 1 for all i ∈ [n]} can easily
be decomposed into one-dimensional polytopes. On one hand, it is the Minkowski sum of the line
segments [0, ei] ⊂ Rn for all i ∈ [n]. On the other hand, it is the Cartesian product of n one-
dimensional line segments [0, 1] ⊂ R.
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It is not a coincidence that these decompositions of the cube are very similar. In fact, the
Cartesian product of any two polytopes P ∈ Rn and Q ∈ Rm is equal to the Minkowski sum
of the two polytopes P′ = P × {0}m and Q′ = {0}n × Q. In consequence, the normal fan
of P×Q is the common refinement of the normal fans of P′ and Q′, so its cones are all sets of the
form CP × CQ for cones CP ∈ N (P) and CQ ∈ N (Q).

On the other hand, the Minkowski sum of any two polytopes P,Q ∈ Rn is the projection of
their Cartesian product P × Q ∈ Rn+n under the linear map defined by ϕ(ei) = ei for i ∈ [1, n]
and ϕ(ei) = ei−n for i ∈ ]n, 2n].

1.3 Hyperplane Arrangements

We will now study arrangements of hyperplanes. For an introduction to hyperplane arrangements
with a focus on their posets of regions, we refer to [Rea16b] and [BEZ90]. We first introduce
the basic notions, before focusing on some cones, polytopes and fans associated with hyperplane
arrangements and then introducing orientations and orders on them.

1.3.1 Basics

Definition 1.3.1 (Hyperplane Arrangement). Let n be a positive integer. A (real) hyperplane
arrangement A is a collection of finitely many hyperplanes in Rn.

We will only consider real hyperplane arrangements, so we omit the term and assume every
hyperplane arrangement mentioned henceforth to be real. We will use A as a set sometimes, so
that we can denote a hyperplane of the arrangement by H ∈ A.

Definition 1.3.2 (Center, Rank, Essential). The center of an arrangement A is the intersection of
all hyperplanes H ∈ A. The arrangement A is called central if its center is non-empty. The rank
of an arrangement is the dimension of the ambient vector space Rn minus the dimension of the
center. An arrangement is called essential if its center has dimension 0 or equivalently, if its rank
equals its dimension.

In arrangements of linear hyperplanes, the center of an arrangement A is always a linear sub-
space. The esssentialization is obtained by restricting all hyperplanes to the orthogonal comple-
ment of the center.

Definition 1.3.3 (Arrangement Matrix). An arrangement matrix MA ∈ Rn×m of an arrange-
mentA containingm hyperplanes in Rn is a matrix whose columns are normal vectors v1, . . . ,vm
of the arrangement hyperplanes H1, . . . ,Hm ∈ A.

We remark that this definition leaves several degrees of freedom in choosing an arrangement
matrix. In particular, any matrix that is obtained through nonzero scaling of column vectors or
exchanging column vectors of an arrangement matrix is still an arrangement matrix of the same
arrangement.

Example 1.3.4 (Braid Arrangement). We fix a positive integer n. For any pair of distinct inte-
gers i < j ∈ [n], we introduce the hyperplane Hn(i, j) := {x ∈ Rn | xi = xj}. The arrange-
ment An := {Hn(i, j) | 1 ≤ i < j ≤ n} of all such hyperplanes is called the braid arrange-
ment. Its center is the line R1 containing all points {x ∈ Rn | ∀i, j ∈ [n] : xi = xn}. Therefore,
the arrangement An is central, but not essential, as its rank is n − 1. Its essentialization is the
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intersection with the orthogonal complement of the vector 1, which is given by the linear sub-
space Hn0 = {x ∈ Rn |

∑n
i=1 xi = 0}. See Figure 1.5 (center) for an illustration of this arrange-

ment. An arrangement matrix for n = 3 is the following:

MA :=

 1 1 0
−1 0 1
0 −1 −1


The hyperplane arrangements we are interested in will only contain linear hyperplanes. We

remark that any such arrangement is central, as the origin 0 lies on every linear hyperplane. As
all hyperplane arrangements we consider will be real, central hyperplane arrangements of linear
hyperplanes, we will omit these terms and assume every arrangement to be real and central and to
contain only linear hyperplanes.

1.3.2 Regions, Fan and Faces

We will now study some geometric objects that arise naturally in hyperplane arrangements.

Definition 1.3.5 (Complement and Regions). The complement of an arrangement A is the
set Rn \

(⋃
H∈AH

)
of all points not contained in any hyperplane of A. It is the disjoint union

of connected components which are unbounded open polyhedral cones. The regions of A are the
closures of these connected components. We denote the set of all regions byR(A).

Observation 1.3.6 (Regions are Cones). Every hyperplane H of A slices the space Rn into two
open halfspaces on either side of H . Therefore, every region ofA is the closure of the intersection
of finitely many open halfspaces of Rn, making every region a closed polyhedral cone in Rn.

The regions of an arrangement are closed polyhedral cones. We will use the term open region
whenever we want to denote the interior of a region without its boundary. The following statement
certifies that the (closed) regions of an arrangement induce a complete fan in Rn.

Theorem 1.3.7 (Regions and Fan). The regions of A are the maximal cones of a complete fan.

This motivates the following definitions for the objects in the context of that fan.

Definition 1.3.8 (Arrangement Fan). Given an arrangementA, the arrangement fan F(A) is the
complete fan whose maximal cones are the regions of A. The faces of A are the cones of F(A),
which are the regions of A and all their faces. In particular,
• the chambers of F(A) are all regions of A,
• the walls of F(A) are all facets of the regions of A,
• the rays of F(A) are all rays of the regions of A.

The arrangementA is called simplicial if F(A) is simplicial (equivalently, if every region ofA is
a simplicial cone).

We note that the fan of the arrangement is independent of the choice of normal vectors or
orientations of the hyperplanes, it is uniquely determined by the arrangement itself. Conversely,
the arrangement fan uniquely defines the arrangement.

Observation 1.3.9 (Fans of Essential Arrangements). We remark that the arrangement A is es-
sential if and only {0} is its center, which is a face of every region and therefore a cone in F(A).
In particular, the arrangement fan F(A) is pointed if and only if A is essential.
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Example 1.3.10 (Regions and Rays of the Braid Arrangement). The braid arrangement is not es-
sential, as all its hyperplanes contain the line R1. To obtain a simplicial and essential arrangement
fan, the braid fan Fn is defined to be the fan obtained as the intersection of the regions of An
with the sum-zero hyperplane Hn0 = {x ∈ Rn |

∑n
i=1 xi = 0}. We remark that the intersections

with the sum-one hyperplane Hn1 or the sum-count-hyperplane HnΣ yield isomorphic fans, but the
one intersected with Hn0 is the most convenient one because the hyperplane normals ej − ei are
all contained in this subspace.
• The chambers of the braid fan (corresponding to the regions of An) are in bijection with

the permutations in Sn. The permutation σ = (σ1, σ2, . . . , σn) corresponds to the (n − 1)-
dimensional cone C(σ) := {x ∈ Hn0 | xσ1 ≤ xσ2 ≤ · · · ≤ xσn}. A representative point in
the interior of that region is p(σ) := σ−1((1, 2, . . . , n)) = (σ−1(1), σ−1(2), . . . , σ−1(n)).
• The rays of the braid fan (corresponding to the 2-dimensional faces of An) are in bijection

with the proper subsets of [n]. A proper subset ∅ ( I ( [n] corresponds to the 1-dimensional
cone C(I) :=

{
x ∈ Hn0

∣∣ xi1 = · · · = xip ≤ xj1 = · · · = xjn−p
}

, where I = {i1, . . . , ip}
and [n] \ I = {j1, . . . , jn−p}. A representative vector for that ray is r(I) := |I| · 1− n · 1I ,
which has an entry |I| − n for every index i ∈ I and an entry |I| for every index j 6∈ I .
• The rays of the chamber C(σ) are the sets C(σ([k])) for all k ∈ [n − 1]. In particular,

the rays of the chamber C(idn) associated to the identity permutation are the sets C([k]) for
all k ∈ [n− 1].

See Figure 1.5 (center) for an illustration of the braid fan F4.

To represent a rank 3 arrangement in a planar illustration, a stereographic projection is com-
monly used. For this, the arrangement hyperplanes are intersected with a unit ball centered in the
origin and the resulting great circles are stereographically projected to the plane. The arrangement
hyperplanes are then represented by circles, its rays are the points where two or more circles inter-
sect and its regions are the closed faces of the drawing. See Figure 1.13 (left) for a stereographic
projection of the ~A4 arrangement.

Observation 1.3.11 (Type Cone of an Arrangement). Given a hyperplane arrangement A, the
type cone of the arrangement is the type cone of the arrangement fan F(A). We therefore just
write TC(A) to denote that type cone TC(F(A)). We remark that it is independent of any orien-
tation of the arrangement and any choice of base region (both of which we will introduce later).
Any height function h ∈ TC(A) induces a polytope whose normal fan is the arrangement fan.

We will now introduce a special class of polytopes whose normal fan is an arrangement fan.

1.3.3 Zonotopes

Zonotopes are a class of polytopes that are closely related to hyperplane arrangements. As every
line segment in real space is a one-dimensional polytope, the Minkowski sum of a finite set of line
segments is a polytope as well.

Definition 1.3.12 (Zonotope). A zonotope is any polytope that can be obtained as the Minkowski
sum of finitely many line segments. Equivalently, a zonotope is any polytope that is the image of
a cube under an affine map.

Theorem 1.3.13 (Zonotopes and Arrangements). Let the zonotope Z ⊆ Rn be the Minkowski
sum of the line segments [0,vi] for i ∈ [m]. Then its normal fan N (Z) is equal to the fan of the
arrangement of all hyperplanes {x ∈ Rn | 〈x |vi〉 = 0} for i ∈ [m].

We remark that the zonotope Z =
∑m

i=1[0,vi] is the image of the standard m-dimensional
cube Cm := conv({0, 1}m) under the linear map φ(x) := MA · x defined by the arrangement
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matrix whose columns are the normal vectors vi. Any zonotope that can be obtained in this way
is called a zonotope of A.

Observation 1.3.14 (Arrangement and Zonotope). The structure of an arrangement zonotope is
closely related to the structure of the arrangement: The zonotope vertices correspond to the regions
of the arrangement, and its edges correspond to the walls of the arrangement. If the arrangement is
essential, then the k-dimensional faces of the zonotope correspond to the (n−k)-dimensional faces
of the arrangement and its facets correspond to the rays of the arrangement. We emphasize that
the normal fan of the arrangement zonotope is the arrangement fan and an essential arrangement
is simplicial if and only if the corresponding zonotope is simple.

We already saw some of the relations between the braid arrangement and the symmetric group.
Unsurprisingly, there is a well-known polytope constructed from permutations that is a zonotope
of the braid arrangement.

Example 1.3.15 (Permutahedron). The permutahedron Permn is defined equivalently as
• the convex hull of the points

∑n
i=1 i · eσi for all permutations σ ∈ Sn,

• the intersection of the sum-count-hyperplaneHnΣ =
{
x ∈ Rn

∣∣ ∑n
i=1 xi =

∑n
i=1 i =

(
n+1

2

)}
with the halfspaces

{
x ∈ Rn

∣∣∣ ∑i∈I xi ≥
(|I|+1

2

)}
for all proper subsets ∅ ( I ( [n],

• the translation of the zonotope Z =
∑

1≤i<j≤n[0, ei − ej ] by the vector (1, 2, . . . , n).
In particular, the permutahedron is a zonotope of the braid arrangement, translated from the sum-
zero hyperplane to the sum-count-hyperplane. See Figure 1.5 (right) for an illustration of the
permutahedron Perm4. Each An hyperplane {x ∈ Rn | xi = xj} is perpendicular to the line seg-
ment [0, ei − ej ], which are exactly the edge directions of the permutahedron.
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Figure 1.5: The Hasse diagram of the weak order on S4 (left) is the poset of regions of the oriented
braid arrangement ~A4 (center), where the regions are labeled by permutations. The
permutahedron Perm4 (right) is a zonotope of the oriented braid arrangement. Its
normal fan is the braid fan F4. The choice of base region 1234 induces an acyclic
orientation on the edges of the permutahedron corresponding to the cover relations of
the weak order directed upwards. [Picture from [PS19]]

1.3.4 Oriented Arrangements

The following definitions depend on a choice of a base region B among the regions R(A) of
the arrangement A. This choice induces an orientation on each hyperplane H ∈ A, as it now
has one halfspace containing B and one halfspace not containing B. Furthermore, the choice of
a base region in the arrangement translates into a choice of a base vertex in any zonotope of the
arrangement, thereby inducing an acyclic orientation on the edges of the zonotope.
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Definition 1.3.16 (Oriented Arrangement). An oriented arrangement ~A is a hyperplane arrange-
ment A together with a fixed base region B ∈ R(A).

To work with an oriented arrangement, we fix an order of the hyperplanes H1, . . . ,Hm of ~A
with associated normal vectors v1, . . . ,vm oriented away from the base region B so that we
have B ⊆ H−i = {x ∈ Rn | 〈vi |x〉 ≤ 0} for every Hi ∈ ~A. An oriented arrangement matrix
of ~A is any arrangement matrix of A where the column vectors are oriented away from the base
region.

Definition 1.3.17 (Sign Vector). Let ~A be an oriented arrangement in Rn and p ∈ Rn be a point.
• The sign of p with respect to a hyperplane Hi of ~A is sgnHi(p) := sgn 〈vi |p〉.
• The sign vector of p in ~A is sgn ~A(p) := (sgnH1

(p), . . . , sgnHm(p)).

Informally, the sign sgnH(p) tells us on which side of H the point p is located. It is
• 0 if p lies on H ,
• +1 if p lies in the positive open halfspace H+ \H ,
• −1 if p lies in the negative open halfspace H− \H .

We emphasize that the notions of positive and negative halfspace depend on the orientation of the
arrangement via the orientation of the hyperplane normal vector.

Observation 1.3.18 (Sign Vector of a Region). As the open regions of ~A are not intersected
by any hyperplane of ~A, all points in their interior have the same sign vector. We denote the
sign vector of a region R ∈ R( ~A) by sgn ~A(R). We remark that for every region R ∈ R( ~A),
we have sgn ~A(R) ∈ {−1,+1}m as the open region is contained in the complement of ~A and
therefore does not lie on any of the hyperplanes. A point in the boundary of a region R lies on one
or more of the hyperplanes of ~A, so its sign vector has one or more corresponding zero entries and
is otherwise identical with the sign vector of the region. We remark that in this way, the interior of
every cone of the arrangement fan (not just the chambers) has a unique sign vector.

We recall from Definition 1.1.10 that a hyperplane H separates two regions R1, R2 ∈ R( ~A) if
they are in opposite closed halfspaces induced by H . We will use this notion to establish a partial
order onR( ~A).

Definition 1.3.19 (Separating Set). Given a region R ∈ R( ~A) of an oriented arrangement ~A with
base region B, the separating set Sep(R) is the set of hyperplanes in ~A that separate R from B.

We remark that we can equivalently define the set Sep(R) from sign vectors. The set Sep(R)
contains exactly those hyperplanes H ∈ ~A for which sgnH(R) 6= sgnH(B), which holds if and
only if sgnH(R) = +1.

Definition 1.3.20 (Basic Hyperplanes). Let ~A be an oriented arrangement in Rn. The basic hy-
perplanes of ~A are those that intersect the base region B in dimension (n− 1).

Equivalently, a hyperplane Hi ∈ ~A is basic if and only if there is a region R ∈ R( ~A) whose
separating set is {Hi} or, yet equivalently, whose sign vector has−1 in each entry except for the i-
th one, where it has +1. We emphasize that the notion of a basic hyperplane depends entirely on
the orientation: For every hyperplane H ∈ A, we can choose a chamber of the arrangement fan
on which H induces a facet and define an orientation on A with that chamber as the base region,
then H is basic in this oriented arrangement.

To give examples for these notions in the braid arrangement, we introduce some notation for
permutations of the symmetric group. Every permutation of [n] is uniquely determined by the
pairs of numbers that do not occur in increasing order. This concept can be formalized as follows:
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Definition 1.3.21 (Inversion of a Permutation). Given a permutation π ∈ Sn, an inversion of π is
a pair of values (πa, πb) such that 1 ≤ a < b ≤ n but πa > πb. The inversion set of a permutation
is the set of all its inversions Inv(π) := {(πa, πb) | 1 ≤ a < b ≤ n and πa > πb}.

We note that the identity permutation has an empty inversion set, as the integers 1, 2, . . . , n
appear in order, while the opposite permutation π = (n, . . . , 2, 1) has

(
[n]
2

)
as its inversion set,

because every pair of integers is in reverse order.

Example 1.3.22 (The Oriented Braid Arrangement). In the braid arrangement An, the canon-
ical choice of base region is B = {x ∈ Rn | x1 ≤ x2 ≤ · · · ≤ xn}. In terms of permuta-
tions, it corresponds to the identity permutation id, so B = C(idn). It is spanned by the
rays C([k]) for all k ∈ [n]. This is equivalent to orienting all hyperplanes Hn(i, j) away from the
point (1, 2, . . . , n) in B by setting the normal vectors ej − ei whenever i < j.

We denote the oriented braid arrangement with this choice of base region by ~An. This choice
induces an acyclic orientation on the edges of the permutahedron Permn, equivalent to ordering
them along the direction (1, 2, . . . , n). Its basic hyperplanes are Hn(k, k + 1) for all k ∈ [n− 1].

Given a permutation σ ∈ Sn, the corresponding region C(σ) of the braid arrangement has
the representative point p = (σ−1(1), σ−1(2), . . . , σ−1(n)). It is on the positive side of a hyper-
plane Hn(i, j) if and only if pi > pj , which occurs exactly if σ−1(i) > σ−1(j) or put differ-
ently, exactly if j occurs before i in σ, which was the definition of (j, i) being an inversion of σ.
Therefore, the separation set of the region C(σ) contains exactly the hyperplanes Hn(i, j) for all
inversions (j, i) of σ.

The orientation of an arrangement through the choice of a base region allows us to compare its
regions and partially order them in the following way.

Definition 1.3.23 (Poset of Regions). The poset of regions Pos( ~A) of an oriented arrangement ~A
is the set of regionsR(A) partially ordered by inclusion of separating sets, meaning thatR1 ≤ R2

if and only if Sep(R1) ⊆ Sep(R2).

We note that the Hasse diagram of Pos( ~A) is the vertex graph of any arrangement zono-
tope Zono(A). Furthermore, any choice of base region forA induces an acyclic orientation on the
edges of Zono(A).

To determine the poset of regions of the braid arrangement, we first remark that the inversion
sets defined above can be used to introduce a partial order on the symmetric group Sn for a fixed n.

Definition 1.3.24 (Weak Order). The weak order on the permutations of Sn is the partial order
defined by σ ≤ σ′ ⇐⇒ Inv(σ) ⊆ Inv(σ′).

As we saw in Example 1.3.22, the inversion sets of permutations in Sn are in bijection with
the separating sets of regions in the oriented braid arrangement. In consequence, the poset of re-
gions Pos( ~An) of the oriented braid arrangement is isomorphic to the weak order on Sn. See Fig-
ure 1.5 (left) for an illustration.

We will introduce one last concept connected to arrangement regions and separating sets. As
every linear hyperplane is centrally symmetric with respect to 0, the same holds for an entire
arrangement of linear hyperplanes. In consequence, the centrally reflected image of a region of A
is another region of A.

Definition 1.3.25 (Opposite Region). LetA be an arrangement in Rn. Given a region R ∈ R(A),
the opposite region of R is the region −R := {x ∈ Rn | −x ∈ R}.

Many properties of −R are closely related to the properties of R. In particular, its sign vector
is sgn ~A(−R) = − sgn ~A(R) and its separating set is Sep(−R) = A\Sep(R). In the oriented braid
arrangement, the region opposite toC(σ) is the region labeled by the permutation (σn, . . . , σ2, σ1)
and its inversion set contains all pairs (j, i) with 1 ≤ i < j ≤ n such that (j, i) 6∈ Inv(σ).
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1.4 Posets and Lattices

We will study the posets of regions of oriented hyperplane arrangements. For a more detailed
overview of this topic, we refer to the survey [Rea16b], which we will largely follow in this
section. We therefore introduce a number of definitions and concepts used to describe partially
ordered sets. As any arrangement of finitely many hyperplanes has finitely many regions, any
poset of regions we will encounter will have finitely many elements. This allows us to consider
only partial orders on finite sets.

1.4.1 Posets

Definition 1.4.1 (Partial Order and Total Order). Given a finite set S, a partial order on S is a
binary relation ≤ which is
• reflexive (x ≤ x for every x ∈ S),
• transitive (if x ≤ y and y ≤ z, then x ≤ z),
• and antisymmetric (if x ≤ y and y ≤ x, then x = y).

A partial order is called a total order if ≤ also is a total relation (∀x, y ∈ S : x ≤ y or y ≤ x).
• A partially ordered set (also called poset) (S,≤) is a set S with a partial order ≤ on S.
• A totally ordered set (also called chain) (T,≤′) is a set T with a total order ≤′ on T .

We now define some key concepts for partially ordered sets.

Definition 1.4.2 (Poset Terminology). Let (S,≤) be a finite poset. For x, y ∈ S with x ≤ y,
the interval between x and y is [x, y] := {s ∈ S | x ≤ s ≤ y}. The cover relations of the poset
are all intervals where [x, y] = {x, y}. We then write x ≺ y and say that y covers x. A poset
is bounded if it has a unique minimal element 0̂ and a unique maximal element 1̂. A chain of
the poset is a subset of S on which ≤ is a total order. The length of a chain is the number of
its elements minus one (equivalently, its number of cover relations). A poset is graded if it is
bounded and every maximal chain from 0̂ to 1̂ has the same length. The rank of a graded poset is
the length of a chain from 0̂ to 1̂.

There is a canonical way to illustrate a poset by its cover relations, called the Hasse diagram.
See Figure 1.5 (left) for an example, illustrating the weak order on S4.

Definition 1.4.3 (Hasse Diagram). A Hasse diagram of a finite poset (S,≤) is a drawing of the
oriented graph with one vertex for each element of S and an edge from x to y directed upwards
whenever y covers x.

The structure of permutations together with the definition of inversions allows us to describe the
cover relations in the weak order.

Observation 1.4.4 (Cover Relations in the Weak Order). The cover relations σ ≺ π of the weak
order on Sn are those pairs of permutations σ, π ∈ Sn that differ only in two consecutive posi-
tions k and k + 1, such that πk+1 = σk < σk+1 = πk. Then the inversion sets of σ and π differ
only by the inversion of these entries, so that Inv(π) = Inv(σ) ∪ {(πk, πk+1)}.

With this partial order on permutations of Sn, we say that two permutations π, σ ∈ Sn are
adjacent if one covers the other in the weak order.

Definition 1.4.5 (Subposets and Superposets). Let (S,≤) be a finite poset. Another poset (S′,≤′)
is called a subposet of (S,≤) if S′ ⊆ S and ≤′ ⊆ ≤ as relations (so that x ≤′ y implies x ≤ y).
In that case, (S,≤) is also called a superposet of (S′,≤′). If≤′ = ≤ ∩ (S′ × S′) (so≤′ preserves
all relations between elements of S′), then (S′,≤′) is called an induced subposet of (S,≤). A
linear extension of a finite poset (S,≤) is any superposet of (S,≤) on the same set S that is a
total order.
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Example 1.4.6. The lexicographic order on the permutations of Sn is a linear extension of the
weak order: it is transitive, antisymmetric and a total relation and whenever π ≤ π′ in the weak
order, then π ≤ π′ in lexicographic order, so the weak order is a subset of the lexicographic order.

Definition 1.4.7 (Upper Set and Lower Set). Let (S,≤) be a partially ordered set. An upper
set of (S,≤) is a subset U ⊆ S such that whenever x ∈ U and x ≤ y, then y ∈ U as well.
Analogously, a lower set of (S,≤) is a subset L ⊆ S such that whenever x ∈ L and z ≤ x,
then z ∈ L as well.

Such a set is also known as an upward closed set (resp. downward closed set). We remark that
the complement of an upper set in a poset is a lower set and vice versa.

1.4.2 Lattices

We now introduce lattices as a special kind of posets. We remark that these lattices are not to be
confused with lattices in the sense of grids (for example when looking at integer points in real
space).

Definition 1.4.8 (Lattice). A lattice is a finite poset (L,≤) where every two elements x, y ∈ L
have a unique minimal upper bound in L (called the join x∨y) and a unique maximal lower bound
in L (called the meet x ∧ y).

Figure 1.6: A mnemonic to tell join and meet apart. The join is associated to the symbol ∨ and
is found somewhere above the elements in the Hasse diagram, while the meet is as-
sociated to the symbol ∧ and is found somewhere below the elements in the Hasse
diagram.

In particular, every lattice is bounded, as the meet of all elements is the unique minimal element
and the join of all elements is the unique maximal element. The weak order on Sn we introduced
in the previous section is a lattice whose minimal element is the identity permutation and whose
maximal element is the reverse permutation.

Definition 1.4.9 (Join-Irreducibles and Meet-Irreducibles). Given a lattive (L,≤), an element j ∈
L is called join-irreducible if it covers exactly one element. An element m ∈ L is called meet-
irreducible if it is covered by exactly one element.

To describe the join-irreducible elements in the weak order on Sn, we first need to define special
pairs of entries of a permutation that are a special case of inversions of a permutation.

Definition 1.4.10 (Descent of a Permutation). Given a permutation π ∈ Sn, a descent of π is a
pair of consecutive entries (πk, πk+1) such that πk > πk+1. The descent set of a permutation is
the set of all its descents Desc(π) := {(πk, πk+1) | k ∈ [n− 1] and πk > πk+1}.

We can use a special notation for permutations with a single descent that will have further
applications later.

Observation 1.4.11 (Permutations with a Single Descent). A permutation σ = (σ1, σ2, . . . , σn)
that has exactly one descent (σk, σk+1) can be written in the form πn(`, r, A,B), where we
set ` = σk+1 and r = σk, while A = {σi | 1 ≤ i < k and σi ∈ ]`, r[} is the set of all integers be-
tween ` and r that appear in σ before the descent , and B = {σj | k + 1 < j ≤ n and σj ∈ ]`, r[}
is the set of all integers between ` and r that appear in σ after the descent.
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This notation can be used to introduce an illustration of a permutation with a unique descent,
called an arc.

Definition 1.4.12 (Arc). Given a permutation π = πn(`, r, A,B) with a unique descent, the arc
associated to π is an x-monotone continuous curve from ` to r, wiggling around the horizontal
axis and passing above the points of A and below the points of B.

Figure 1.7: The arc corresponding to σ = 124783569 ∈ S9. The nine dots represent the inte-
gers 1, 2, . . . , 9. The permutation σ has a single descent (8, 3), (so the arc connects the
dots 3 and 8), with 4 and 7 appearing before the descent (so the arc passes above the
corresponding dots) and 5 and 6 appearing after the descent (so the arc passes below
the corresponding dots).

Example 1.4.13. For example, the permutation σ = 124783569 ∈ S9 has the unique de-
scent (8, 3). Here, the sets A = {4, 7} and B = {5, 6} contain those integers between 3 and 8 that
appear in σ before resp. after the descent. Therefore, we can write σ = π9(3, 8, {4, 7}, {5, 6}).
See Figure 1.7 for an illustration of the associated arc.

Conversely, given 1 ≤ ` < r ≤ n and disjoint sets A,B ⊆ [n] such that A ∪̇ B = ]`, r[, we can
reconstruct a permutation πn(`, r, A,B) in the following way: It starts with entries 1, 2, . . . , `−1,
followed by the elements of A in increasing order, then by r and `, next by the elements of B in
increasing order and finally the numbers r + 1, . . . , n − 1, n. A permutation constructed in this
way always has exactly one descent, namely (r, `).

These permutations with a single descent do not only have a special notation and illustration,
they are in fact exactly the join-irreducible elements in the weak order on Sn.

Theorem 1.4.14 (Join-Irreducible Elements in the Weak Order). The join-irreducible elements of
the weak order on Sn are exactly those permutations that have a single descent.

1.4.3 Join Representations

Join and meet of elements in a lattice can be used to describe an element of that lattice, stating that
it is the join (resp. meet) of a certain set of other elements.

Definition 1.4.15 (Join and Meet Representations). Given a lattice (L,≤) and an element x ∈ L,
a join representation of x is a subset J ⊆ L such that x =

∨
(J). The join representation is

irredundant if for every strict subset J ′ ⊆ J , we have x 6=
∨

(J ′). A meet representation of x
is a subset M ⊆ L such that x =

∧
(M). Irredundancy is defined analogously.

Every element x of a lattice L admits some trivial join representations: The set {y ∈ L | y ≤ x}
of all elements of the lattice below x is a join representation of x. In general, this join representa-
tion is not irredundant, as the smaller set {x} is another join representation of x. A more interesting
kind of join representation occurs when it is irredundant but at the same time, the elements of the
representation are as low in the lattice as possible.
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Definition 1.4.16 (Canonical Join and Meet Representations). The canonical join representation
of x is an irredundant join representation x =

∨
(J) such that for any other irredundant join

representation x =
∨

(J ′) and any element j ∈ J , there is some j′ ∈ J ′ such that j ≤ j′. The
canonical meet representation is defined analogously.

The elements in a canonical join representation of an element x ∈ L are join-irreducible ele-
ments of L. In particular, the canonical join representation of x has only one element if and only
if x is join-irreducible in L, in which case the canonical join representation is x =

∨
{x}. Canon-

ical representations do not exist in all lattices. In fact, the class of lattices which guarantees their
existence has a dedicated name.

Definition 1.4.17 (Semidistributive Lattice). A lattice is semidistributive if every element has a
canonical join representation and a canonical meet representation.

The following statement certifies that canonical meet and join representations always exist in a
poset of regions as soon as the underlying arrangement is simplicial.

Theorem 1.4.18 (Semidistributive Lattice of Regions). Let ~A be an oriented simplicial arrange-
ment. Then the poset of regions Pos( ~A) is a semidistributive lattice.

The braid arrangement is a simplicial arrangement. Together with the orientation induced by
choosing the region of the identity permutation as base region, its poset of regions is the weak
order. We can describe the canonical join representation of any permutation in Sn.

Observation 1.4.19 (Canonical Join Representations in the Weak Order). The canonical join
representation of any permutation σ is obtained by joining, for all descents (σk, σk+1) of σ,
the permutations πn(σk+1, σk, Ak, Bk), where Ak = {σi | 1 ≤ i < k and σk+1 < σi < σk} is
the set of integers between σk+1 and σk that appear in σ before the descent (σk, σk+1) and
where Bk = {σj | k + 1 < j ≤ n and σk+1 < σj < σk} is the set of integers between σk+1

and σk that appear after the descent (σk, σk+1).

In fact, multiple arcs as introduced in the previous section can be combined to give a unique
representation of a permutation that allows us to directly read off its canonical join representation.

Definition 1.4.20 (Noncrossing Arc Diagram). The arcs of two permutations πn(`1, r1, A1, B1)
and πn(`2, r2, A2, B2) cross if the two associated curves cross in their interior. That is the case
if and only if neither A1 ∩ ({`2, r2} ∪ B2) nor A2 ∩ ({`1, r1} ∪ B1) are empty. A noncrossing
arc diagram is a collection of arcs such that no two of them cross, no two of them have the same
left endpoint ` and no two of them have the same right endpoint r. We emphasize that the left
endpoint of one arc may be the right endpoint of another arc in the same noncrossing arc diagram.

Example 1.4.21. The permutation σ = 395284176 ∈ S9 has the five descents (9, 5), (5, 2), (8, 4),
(4, 1) and (7, 6). Its canonical join representation is therefore σ = 123495687 ∨ 135246789 ∨
123584679 ∨ 234156789 ∨ 123457689. See Figure 1.8 for an illustration of the associated arc
diagram.

1.4.4 Lattice Congruences

Lattices allow a special kind of equivalence relation that respect the structure of meets and joins
in the lattice.

Definition 1.4.22 (Lattice Congruence). Given a lattice (L,≤) a lattice congruence on L is
an equivalence relation ≡ on L that preserves meets and joins. More formally, if x1 ≡ x2

and y1 ≡ y2, then x1 ∧ y1 ≡ x2 ∧ y2 and x1 ∨ y1 ≡ x2 ∨ y2.
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Figure 1.8: The arcs corresponding to 123495687 (top left), 135246789 (top right), 123584679
(center left), 234156789 (center right) and 123457689 (bottom left), all combined in
the noncrossing arc diagram for σ = 395284175 (bottom right). We emphasize that
no two arcs in a noncrosing arc diagram have the same left endpoint or the same right
endpoint, but the left endpoint of one arc can be the right endpoint of another. This
occurs whenever the permutation has two consecutive descents. In this example, the
arcs representing the descents (9, 5) and (5, 2) touch in 5, and the arcs representing the
descents (8, 4) and (4, 1) touch in 4.

Example 1.4.23 (Sylvester Congruence). A well-known congruence on the weak order on Sn is
the sylvester congruence. It has one equivalence class for every binary tree with internal nodes
labeled 1, 2, . . . , n from left to right in inorder notation. Then each binary tree is interpreted as a
partial order on [n] where x ≤ y if and only if the node labeled x is below the node labeled y in the
binary tree. The equivalence classes of the sylvester congruence are the sets of linear extensions
of each of the binary trees. See Figure 1.9 for an illustration.

We remark that the equivalence classes of any lattice congruence are intervals in the lattice.
Furthermore, the set of all congruences on the same lattice can be partially ordered by inclusion
of their equivalence classes.

Definition 1.4.24 (Congruence Lattice). Given a lattice (L,≤), the congruence lattice ConL is
the set of all lattice congruences on L, partially ordered by ≡1 ≤ ≡2 if and only if ≡1 ⊆ ≡2 as
relations (or equivalently, if x ≡1 y implies x ≡2 y for any choice of elements x, y ∈ L).

Observation 1.4.25 (Top and Bottom Element of the Congruence Lattice). The top and bottom
element of the congruence lattice ConL are trivial equivalence relations on the elements of L:
The top element is the trivial equivalence relation where there is only a single equivalence class
containing all elements of L. The bottom element is the trivial equivalence relation where each
element of L is the only element of its equivalence class.

So far, we only introduced ConL as a poset, but the following statement tells us that it is in
fact a lattice, and provides the rules to construct meet and join of elements in ConL, which are
congruences in L.
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Theorem 1.4.26 (Meet and Join of Congruences). Given a lattice (L,≤), the congruence lat-
tice ConL is a lattice. The meet of two congruences in ConL is their intersection. The join of two
congruences in ConL is the transitive closure of their union.
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Figure 1.9: The sylvester congruence, illustrated by its equivalence classes on the weak order
on S4 (left), and the associated quotient lattice, which is known as the Tamari lattice,
partially ordering the binary trees with 4 internal nodes (right). [Picture from [PS19]]

Definition 1.4.27 (Contraction). Given a lattice (L,≤), and a join-irreducible j ∈ L, we denote
by j∗ the unique element of L covered by j. We say that a congruence ≡ ∈ ConL contracts j
if j ≡ j∗. The minimal congruence contracting j is denoted by con(j). It is the meet in ConL
of all those congruences ≡ on L with j ≡ j∗.

As ConL is a lattice itself, it has join-irreducible elements. We will now see that these join-
irreducibles of ConL are closely connected to the join-irreducibles of L.

Theorem 1.4.28 (Join-Irreducible Congruences). Given a lattice (L,≤), the join-irreducible el-
ements of ConL are exactly the congruences of the form con(j) for some join-irreducible ele-
ment j ∈ L.

We remark that there is not necessarily a bijection as there might be distinct join-irreducible el-
ements j, j′ ∈ L with the same minimal contracting congruence con(j) = con(j′). Neverthelesss,
any lattice congruence is completely determined by the set of join-irreducibles it contracts.

Theorem 1.4.29 (Canonical Join Representation of a Congruence). Let ≡ ∈ ConL be a congru-
ence on the lattice (L,≤) and let J be the set of join-irreducibles of L that are contracted by ≡.
Then the canonical join representation of ≡ in ConL is

∨
j∈J con(j).

Definition 1.4.30 (Forcing in ConL). Given a lattice (L,≤), we call join-irreducibles j, j′ ∈ L
forcing-equivalent if con(j) = con(j′). We say that j forces j′ and write j → j′, if we
have con(j) ≥ con(j′) in ConL. The forcing order ≥f is a partial order on forcing-equivalence
classes of join-irreducible elements defined such that j ≥f j′ if and only if con(j) ≥ con(j′)
in ConL. The lattice (L,≤) is called congruence uniform if no two distinct join-irreducibles
of L are forcing-equivalent, so there is a bijection between the join-irreducible elements j ∈ L
and the join-irreducible congruences con(j) ∈ ConL.

We can view the forcing order as the subposet of ConL induced by join-irreducible congruences.
The lower sets of this subposet completely determine the congruence lattice ConL.
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Theorem 1.4.31 (Congruences and Forcing). Let (L,≤) be a lattice. Its congruence lattice ConL
is isomorphic to the poset of lower sets in the forcing order, partially ordered by inclusion.

In Section 1.5, we will apply all these notions and statements to the poset of regions of simplicial
hyperplane arrangements in general and the braid arrangement in particular. For now, we will
introduce one last lattice-theoretic concept: What happens if we use the partial order on L to
partially order the equivalence classes of a lattice congruence ≡ on L?

1.4.5 Quotient Lattices

Definition 1.4.32 (Quotient Lattice). Given a lattice (L,≤) and a lattice congruence ≡ on L, the
quotient lattice L/≡ is the set of equivalence classes of ≡, partially ordered by C ≤ C ′ if and
only if there exist x ∈ C and x′ ∈ C ′ with x ≤ x′ in L. The meet C ∧ C ′ (resp. join C ∨ C ′) of
two≡-classes is the unique≡-class C∗ that contains all the meets x∧x′ (resp. all the joins x∨x′)
for all x ∈ C and x′ ∈ C ′.

The following theorem states that this partial order is not only well-defined, but that it is even
a lattice with canonical join and meet representations (if the original lattice L had canonical join
and meet representations).

Theorem 1.4.33 (Semidistributive Quotient Lattice). For a semidistributive lattice (L,≤) and a
lattice congruence ≡ on L, the quotient lattice L/≡ is a semidistributive lattice.

The following statement tells us what the cover relations of the quotient lattice (equivalently,
the edges of its Hasse diagram) look like.

Lemma 1.4.34 (Cover Relations of a Quotient Lattice). The cover relations of the quotient lat-
tice L/≡ are C ≺ C ′ wherever there are x ∈ C and x′ ∈ C ′ with x ≺ x′ in L.

Example 1.4.35 (Tamari Lattice). For the lattice L of the weak order on Sn and the sylvester con-
gruence ≡ on L, the quotient lattice L/≡ is the Tamari lattice. Its elements are the equivalence
classes of ≡, which are the binary trees with n internal nodes. Its cover relations are rotations in
binary trees. See Figure 1.9 for an illustration of the Hasse diagram of the Tamari lattice labeled
by the binary trees.

1.5 Quotients on the Poset of Regions

We will now apply the concepts of the previous section to the posets of regions of simplicial
hyperplane arrangements. Once again, we follow the survey [Rea16b]. We already saw in Theo-
rem 1.4.18 that any poset of regions of such an arrangement is a semidistributive lattice, guarantee-
ing the existence of canonical join representations. As these depend on join-irreducible elements
of the lattice, we will first identify the geometric objects in an oriented arrangement correspond-
ing to join-irreducible elements in the poset of regions. As we will see, these join-irreducibles are
closely related to certain parts of the arrangement hyperplanes, called the shards of an oriented
arrangement.

1.5.1 Shards

The name »shard« reminds us that we are »breaking the hyperplane, like a pane of glass, into
pieces«, as remarked in [Rea16b]. See Figure 1.12 (center) for an illustration of the shards that the
hyperplanes of the ~A3 arrangement are broken into. To know how to construct these pieces in order
to obtain meaningful objects, we need some further notions related to an oriented arrangement.
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Definition 1.5.1 (Rank-Two Subarrangement). Let ~A be an oriented arrangement with base re-
gion B. Let H1, H2 ∈ A be two hyperplanes. The rank-two subarrangement induced by H1

and H2 is the oriented arrangement ~A′ :=
{
H ∈ ~A

∣∣∣ H1 ∩H2 ⊆ H
}

containing all hyperplanes

of ~A that contain the codimension-2 subspace H1 ∩ H2. The base region of ~A′ is the unique
region B′ of ~A′ which is a superset of the base region B. The basic hyperplanes of ~A′ are those
that are basic with respect to B′.

Definition 1.5.2 (Cutting Hyperplanes). Let ~A be an oriented arrangement. For two hyper-
planes H1, H2 ∈ ~A, let ~A′ be their common rank-two subarrangement. We say that H1 cuts H2 if
and only if H1 is basic in ~A′ and H2 is not basic in ~A′.

We are now ready to define the shards of an oriented hyperplane arrangement. Every hyper-
plane H is cut into pieces along each intersection with another hyperplane H ′ that cuts H .

Definition 1.5.3 (Shards). Let H ∈ ~A be a hyperplane. We denote by Cut(H) the set of all
hyperplanes in ~A that cut H . The shards of H are the closures of the connected complements
of H \

⋃
Cut(H). The shards of the arrangement ~A are the shards of all the hyperplanes in ~A.

Given a shard Σ, we denote by H(Σ) the hyperplane that Σ is a shard of. Moreover, we denote the
set of all shards of the arrangement ~A by the symbol Σ( ~A) and just write Σ whenever it is clear
which oriented arrangement we are discussing.

To get a better understanding of these concepts, we will describe them in the oriented braid
arrangement ~An.

Example 1.5.4 (Shards of the Braid Arrangement). We recall that the hyperplanes of the braid
arrangement are of the form Hn(i, j) := {x ∈ Rn | xi = xj} for all 1 ≤ i < j ≤ n. In the
canonically oriented braid arrangement ~An, for any two hyperplanes Hn(i1, j1) and Hn(i2, j2),
• their rank-two subarrangement does not contain any other hyperplane if |{i1, j1, i2, j2}| = 4.

In this case, both hyperplanes are basic, so neither of them cuts the other.
• If i1 = j2 (resp. i2 = j1), then the rank-two subarrangement also contains the hyper-

plane Hn(i2, j1) (resp. Hn(i1, j2)), but this one is not basic in the subarrangement, while
the two we started with are. Therefore, neither of them cuts the other.
• If i1 = i2 and j1 < j2 (resp. i2 < i1 and j1 = j2), then the rank-two subarrangement also

contains the hyperplane Hn(j1, j2) (resp. Hn(i2, i1)) which is basic in the subarrangement,
while Hn(i2, j2) is not. Therefore, the hyperplane Hn(i1, j1) cuts the hyperplane Hn(i2, j2).

In consequence, the hyperplane Hn(i, j) is cut by all hyperplanes Hn(i, k) and all hyper-
planes Hn(k, j) for all k ∈ ]i, j[. The shards of Hn(i, j) are the closures of the connected
components that remain after removing the intersections with all these cutting hyperplanes. This
means that for each cutting hyperplane, every shard of Hn(i, j) is entirely contained in one of
the two closed halfspaces induced by that cutting hyperplane. In particular, either xk ≤ xi = xj
or xi = xj ≤ xk holds for each k ∈ ]i, j[ and the shard is uniquely determined by the set of these
decisions for all k.

The shards of the oriented braid arrangement ~An are therefore all sets of the form Σn(`, r, A,B)
for all 1 ≤ ` < r ≤ n and A ∪̇ B = ]`, r[. We denote the set of all the shards of ~An by the
symbol Σn := {Σn(`, r, A,B) | 1 ≤ ` < r ≤ n and A ∪̇ B = ]`, r[}.

This notation for ~An shards is very similar to the one we used previously to describe permuta-
tions with a single descent and their associated arcs. We will see their relation to the shards of the
oriented braid arrangement in the following section. Before, we briefly mention that this notation
allows us to concisely describe which rays of the braid arrangement lie on a certain shard. As
shards are cut only along hyperplanes of the arrangement, any ~An shard is equal to the convex
hull of all the arrangement rays it contains.
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1.5.2 Shards and Congruences

In this section, we examine the connection between the shards of an oriented arrangement and the
lattice congruences on the poset of regions. The first step to achieve this is to associate to each
shard a certain set of regions of the arrangement.

Definition 1.5.5 (Upper and Lower Regions and Shards). Given an oriented arrangement ~A,
• an upper region of a shard Σ is a region R ∈ R(A) that intersects Σ in dimension n− 1 and

has HΣ ∈ Sep(R). In that case, the shard Σ is called a lower shard of R.
• Analogously, a lower region of Σ is a region R ∈ R(A) that intersects Σ in dimension n− 1

and has HΣ 6∈ Sep(R). In that case, the shard Σ is called an upper shard of R.
The set of all upper regions of a shard Σ is denoted by Upper(Σ), while the set of all lower regions
of Σ is denoted by Lower(Σ).

To provide some examples for these definitions, we return to the oriented braid arrangement ~An
We recall that the regions of that arrangement are in bijection with the permutations in Sn.

Example 1.5.6 (Lower Shards of a Braid Arrangement Region). We set σ = 395284176 ∈ S9 as
in Example 1.4.21. Its five descents are (9, 5), (5, 2), (8, 4), (4, 1) and (7, 6). Let R(σ) ∈ R( ~A9)
be the region associated to σ in the poset of regions of ~A9. The regions covered by R(σ) are
exactly those associated to a permutation in S9 that can be obtained from σ by exchanging one of
the descents of σ by the same two entries in ascending order.

For the descent (8, 4), the adjacent permutation π without that descent is π = 395248176. The
facet separating R(σ) from R(π) is a part of the hyperplane H9(4, 8). More precisely, the shard
we cross is Σ9(4, 8, {5}, {6, 7}) as 5 appears before 4 and 8, while 6 and 7 appear after 4 and 8 in
both σ and π. Therefore, the lower shards of R(σ) are:
• Σ9(5, 9, ∅, {6, 7, 8}),
• Σ9(2, 5, {3}, {4}),

• Σ9(4, 8, {5}, {6, 7}),
• Σ9(1, 4, {2, 3}, ∅),

• Σ9(6, 7, ∅, ∅).

Example 1.5.7 (Upper Regions of a Braid Arrangement Shard). Given a shard Σ := Σn(`, r, A,B)
of the oriented braid arrangement ~An, the upper regions of Σ are given by all permutations with a
descent (r, `) such that all entries of A appear before it and all entries of B appear after it.

The following result connects the shards of an oriented arrangement to the join-irreducible
regions of its poset of regions.

Theorem 1.5.8 (Shards and Join-Irreducibles). Let ~A be an oriented simplicial arrangement and Σ

be a shard of ~A. Then Upper(Σ) is a connected subposet of Pos( ~A) whose unique minimal
element is a join-irreducible of Pos( ~A) denoted by JΣ. Every join-irreducible region of Pos( ~A)
is JΣ for a unique shard Σ of ~A.

Example 1.5.9 (Shards and Arcs of the Braid Arrangement). In the oriented braid arrange-
ment ~An, the join-irreducible regions are exactly those regions associated to a permutation with
a single descent. In Observation 1.4.11, we denoted such a permutation by πn(`, r, A,B) and
subsequently illustrated such a permutation by a single arc.

In Example 1.5.4, we saw that we can describe all the shards of the arrangement by sets of the
form Σn(`, r, A,B), with the identical conditions 1 ≤ ` < r ≤ n and A ∪̇ B = ]`, r[. Now
Theorem 1.5.8 explains the reason behind this: Every permutation πn(`, r, A,B) with a single
descent is the unique minimal element among the upper regions of a shard and that shard is just
obtained by using Σn(`, r, A,B) with the same parameters n, `, r, A,B.
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Definition 1.5.10 (On Shards of the Braid Arrangement). Let Σ = Σn(`, r, A,B) be a shard of the
braid arrangement. The left endpoint of Σ is ` and the right endpoint of Σ is r. The length of Σ
is the difference r− `. The shard Σ is called an up shard, if B = ∅ (equivalently, if the associated
arc passes above all points in between ` and r). It is called a down shard, if A = ∅ (equivalently,
if the associated arc passes below all points in between ` and r). It is called a mixed shard, if it is
neither an up shard nor a down shard (equivalently, if the associated arc crosses the axis).

In particular, the basic hyperplanes of the oriented braid arrangement are exactly its shards of
length 1, namely all sets of the form Σn(k, k + 1, ∅, ∅) for all k ∈ [n− 1], which are equal to the
hyperplanes Hn(k, k + 1).

Theorem 1.5.11 (Shards and Join Representations). Let ~A be an oriented simplicial arrangement.
The canonical join representation of a region R ∈ R(A) is R =

∨
{JΣ | R ∈ Upper(Σ)}.

Example 1.5.12 (Arcs in an Arc Diagram). Theorem 1.5.11 explains why the lower shards of the
region associated with the permutation σ = 395284176 in Example 1.5.6 are so similar to the arcs
used in the join representation of the same permutation in Example 1.4.21. The canonical join
representation of a region contains exactly those join-irreducibles whose corresponding shards are
lower shards of the region.

Lemma 1.5.13 (Rays in an ~An Shard). For any index set ∅ ( I ( [n], any 1 ≤ ` < r ≤ n and
any partition A ∪̇ B = ]`, r[, the ray C(I) lies in the shard Σn(`, r, A,B) if and only if
• either `, r ∈ I and A ⊆ I , • or `, r 6∈ I and B ⊆ [n] \ I .

Figure 1.10: The shard Σ9(3, 8, {4, 7}, {5, 6}), visualized by the arc in blue, together with two
rays it contains, labeled by the index sets I1 = {1, 3, 4, 5, 7, 8} (visualized in red on
the left) and I2 = {2, 4, 7} (visualized in red on the right).

The statement of Lemma 1.5.13 has a straightforward visualisation, given in Figure 1.10. We
saw that every ~An shard can be visualized by an arc. Similarly, we can represent anAn ray labeled
by an index set I by an arc from 0 to n+ 1 passing above all dots in I and below all dots in [n]\ I .
Then the ray lies in the ~An shard if and only if this line does not cross the arc associated to the
shard.

1.5.3 Shards and Forcing

We will now analyze how we can describe forcing among congruences on the poset of regions of
an oriented arrangement through its shards.

Definition 1.5.14 (Shard Digraph). Let Σ1,Σ2 be two shards of ~A. We say that the shard Σ2

arrows Σ1 and write Σ2 → Σ1 if and only if H(Σ2) cuts H(Σ1) and Σ1∩Σ2 has dimension n−2.
The shard digraph for ~A is the directed graph whose vertices are Σ( ~A) with directed edges
from Σ2 to Σ1 whenever Σ2 arrows Σ1.

These arrows allow us to describe forcing among the congruences in the following way.
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Theorem 1.5.15 (Forcing Among Shards). Let ~A be an oriented simplicial arrangement whose
poset of regions is L. Let Σ1,Σ2 ∈ Σ( ~A) be two distinct ~A shards. Then con(JΣ1) ≤ con(JΣ2)
in the congruence lattice ConL if and only if there is a directed path from Σ2 to Σ1 in the shard
digraph. In this case, we say that Σ2 forces Σ1.

We will now exemplify these notions on the braid arrangement.

Example 1.5.16 (Forcing in the Braid Arrangement). We introduced the shards of the braid
arrangement ~An in Example 1.5.4. We saw that the hyperplane Hn(i, j) is cut by all hy-
perplanes Hn(i, k) and Hn(k, j) for all k ∈ ]i, j[. For a shard Σn(i, j, A,B) on the hy-
perplane Hn(i, j), the only shard on Hn(i, k) that intersects it in dimension n − 2 is the
shard Σn(i, k, A∩ ]i, k[ , B ∩ ]i, k[). In consequence, the shard Σ := Σn(`1, r1, A1, B1) forces the
shard Σ′ := Σn(`2, r2, A2, B2) if and only if `2 ≤ `1 < r1 ≤ r2 and both A1 ⊆ A2 and B1 ⊆ B2.
The special case where Σ arrows Σ′ occurs if and only if additionally, they agree in either the left
or the right endpoint.

We can visualise this through arcs: The ~An shard Σ := Σn(`1, r1, A1, B1) forces another ~An
shard Σ′ := Σn(`2, r2, A2, B2) if the endpoints of Σ are inside the endpoints of Σ′ and the two
arcs agree in between, meaning that for every dot in ]`1, r1[, they either both pass above or both
pass below. See Figure 1.11 (left) for an example of this visualisation.

The shard poset on ~An is the set of all ~An shards, partially ordered by forcing. Its minimal
elements are the shards of the hyperplane Hn(1, n) and its maximal elements are the basic hyper-
planes Hn(k, k + 1) for all k ∈ [n − 1]. See Figure 1.11 (right) for an illustration of the shard
poset on ~A4.

The weak order on Sn (equivalently, the poset of regions of the braid arrangement) is a con-
gruence uniform lattice. The congruences on that lattice are in bijection with the lower sets in the
shard poset, as described in Theorem 1.4.31.

ih k
j

Figure 1.11: An example of forcing among shards of ~An (left), illustrated by the red shard of the
hyperplane Hn(i, j) and the blue shard of Hn(h, k). As h ≤ i < j ≤ k and both arcs
agree on ]i, j[, the red shard forces the blue shard. On the right, the shard poset of the
braid arrangement ~A4. [Picture from [PS19]]

We recall from Definition 1.4.27 that a congruence ≡ is said to contract a join-irreducible ele-
ment j if j ≡ j∗. We introduce a similar term for the shard associated to that join-irreducible.

Definition 1.5.17 (Removing and Retaining Shards). Given an oriented simplicial arrangement ~A
and a shard Σ ∈ Σ( ~A), a congruence ≡ on Pos( ~A) removes the shard Σ, if ≡ contracts JΣ.
Otherwise, ≡ retains Σ. We denote the set of shards that ≡ removes by Σ×≡ and the set of shards
that ≡ retains by ΣX

≡.
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We remark that for any lattice congruence ≡ on Pos( ~A), the set Σ×≡ is a lower set in the forcing
order and the set ΣX

≡ is an upper set in the forcing order. They are disjoint and their union is Σ( ~A).
We recall from Theorem 1.4.31 that the congruences on Pos( ~A) are in bijection with the lower
sets of shards they remove in the forcing order. Equivalently, the congruences on Pos( ~A) are in
bijection with the upper sets of shards they retain in the forcing order.

We now have assembled some translations between the geometry of the shards in an oriented
simplicial arrangement and the combinatorics of a congruence in its lattice of regions. Next, we
will study the geometric counterpart of a quotient lattice of the lattice of regions.

1.5.4 Quotient Fans

Theorem 1.5.18 (Quotient Fan). Let ~A be an oriented simplicial arrangement and ≡ be a con-
gruence on Pos( ~A). Then the closures of the connected components of Rn \ (

⋃
Σ) (where the

union runs over all shards of ~A retained by ≡) are the maximal cones of a fan. We denote that
fan by F≡ and call it the ≡-quotient fan of ~A. Equivalently, the maximal cones of F≡ are each
obtained by uniting all the regions contained in one equivalence class of ≡.

In particular, any quotient fan F≡ coarsens the arrangement fan F(A) (equivalently, the ar-
rangement fan F(A) refines each quotient fan F≡).

We can describe the quotient fan F≡ by what we know about the congruence ≡. We already
learned about its chambers and we will later examine the rays of quotient fans derived from the
braid arrangement. Here, we will describe the walls of a quotient fan built from any oriented
simplicial arrangement.

Lemma 1.5.19 (Walls of the Quotient Fan). Every wall of the quotient fan F≡ is a subset of some
shard Σ ∈ ΣX

≡ retained by ≡.

Proof. It follows from Theorem 1.5.18 that the union of the walls of the quotient fan is the union
of all shards retained by ≡. Assume for a contradiction that there is a wall w of F≡ that is not the
subset of any retained shard. Then w is the union of multiple facets of F that are part of at least
two different adjacent shards Σ1,Σ2 on the same hyperplaneH . As these shards are adjacent, there
has to be a hyperplaneH ′ which cutsH and there is at least one shard Σ′ onH ′ that intersects w in
dimension n− 2. Then Σ′ forces at least one of Σ1 and Σ2 and therefore is retained in the quotient
fan. But then w cannot be a wall of the quotient fan as its intersection with Σ′ lies in the relative
interior of w and is not a face of w, which is impossible as F≡ is a fan.

To give an example of a quotient fan, we examine the fan that arises from the sylvester congru-
ence that we introduced in Example 1.4.23.

Example 1.5.20 (Sylvester Fan). For the sylvester congruence ≡ and the associated quotient lat-
tice L/≡ that is the Tamari lattice, the quotient fan F≡ is called the sylvester fan. It has
• a chamber C(T ) for each binary tree T on the nodes [n], given by an H-description as the

set C(T ) = {x ∈ HnΣ | xi ≤ xj if i is a descendant of j in T},
• a ray C(I) for each proper interval I = [i, j] ( [n].

1.5.5 Quotientopes

We know that for every real central hyperplane arrangement, the arrangement fan is the normal fan
of the arrangement zonotope Zono(n). For some quotient lattices L/≡ on the poset of regions L,
the quotient fan F≡ is the normal fan of a polytope as well.
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Example 1.5.21 (Associahedron). There is a well-known polytope whose normal fan is the
sylvester fan F≡, called the associahedron Asson. To give a suitable V-description, we first
introduce a notation for some numbers of leaves in a binary tree T , where the internal nodes are
labeled in inorder (see [Lod04]).
• `(T, j) denotes the number of leaves in the left subtree of the node j in T .
• r(T, j) denotes the number of leaves in the right subtree of the node j in T .

Now the associahedron Asson can be defined equivalently as
• a V-polytope that is the convex hull of the points

∑n
j=1 `(T, j) · r(T, j) · ej for all binary

trees T on n nodes (see [Lod04]),
• an H-polytope that is the intersection of the sum-count hyperplane HnΣ with the halfs-

paces
{
x ∈ Rn

∣∣∣ ∑j
k=i xk ≥

(
j−i+2

2

)}
for all intervals [i, j] ⊆ [n] (see [SS93]),

• a translation of the Minkowski sum of the faces ∆[a,b] (as introduced in Example 1.2.12) of
the standard simplex ∆n−1 for all 1 ≤ a ≤ b ≤ n (see [Pos09]).

We have seen one introductory example where the quotient fan is the normal fan of a polytope.
The central question that arises in this context is the following: Given an oriented simplicial
hyperplane arrangement and a quotient lattice of the poset of regions, is the resulting quotient fan
the normal fan of a polytope? We will first give such polytopes a dedicated name.

Definition 1.5.22 (Quotientope). Let ~A be an oriented simplicial hyperplane arrangement and
let ≡ be a lattice congruence on Pos( ~A). A polytope Q is called a quotientope for ≡ if its normal
fan N (Q) is equal to the quotient fan F≡.

We will now briefly introduce the results of [PS19] on quotientopes in the oriented braid ar-
rangement ~An. They first defined a class of real-valued functions on the set of shards Σn of
the ~An arrangement.

Definition 1.5.23 (Forcing Dominant Function). A function f : Σn → R>0 is called forcing
dominant if f(Σ) >

∑
Σ′ f(Σ′) (where the sum runs over all Σ′ that force Σ) holds for any

shard Σ ∈ Σn.

We remark that such a forcing dominant function always exists, an explicit example for f being
the function defined by f(Σ) = n−(r−`)2 . Next, we define a function γ that takes as arguments
an ~An shard and a set representing an An ray and maps them to either zero or one.

Definition 1.5.24 (Shard Contribution). Given a shard Σ = Σn(`, r, A,B) and a set ∅ ( I ( [n],
the shard contribution γ(Σ, I) is defined to be 1 if both |I ∩{`, r}| = 1 and A = I ∩ ]`, r[, and 0
otherwise.

With these two definitions, one can construct a height function h for any fixed lattice congru-
ence ≡ on the lattice of regions of ~An in the following way.

Definition 1.5.25 (f-Height). Let ≡ be a lattice congruence of the poset of regions Pos( ~An) and
let f : Σn → R>0 be a forcing dominant function. Then hf is the height function defined
by hf (I) :=

∑
Σ∈Σn f(Σ)γ(Σ, I) for any proper subset ∅ ( I ( [n].

This class of height functions satisfies all the wall-crossing inequalities of the quotient fan. In
consequence, any such hf induces a polytope whose normal fan is the quotient fan.

Theorem 1.5.26 (Quotientopes in the Braid Arrangement). Let ≡ be a lattice congruence of the
poset of regions Pos( ~An) and hf be a height function constructed as above. Then the poly-
tope Phf := {x ∈ Rn | 〈r(I) |x〉 ≤ hf (I) for all ∅ ( I ( [n]} is a quotientope for ≡.

We will keep their result in mind, but aim to find a different approach to constructing quotien-
topes that is less dependent on the structure of the braid arrangement and can be generalized to
other arrangement. For now, we will focus on the structure of the braid arrangement for a little
longer.
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1.6 Deformed Permutahedra and Removahedra

In this section, we will discuss the closed type cone of the braid fan Fn. As the permutahedron
is a zonotope of the braid arrangement, this type cone is also known as the deformation cone of
the permutahedron. We will first describe the linear dependences that define the closed braid fan
in Section 1.6.1. Next, we will use this to give a concise description of the deformation cone
in Section 1.6.2. Then we will introduce a name for polytopes induced by the height functions
in the boundary of the closed type cone in Section 1.6.3. In the final Section 1.6.4, we are par-
ticularly interested in those deformed permutahedra that are obtained by deleting facets from the
permutahedron.

1.6.1 Linear Dependences in the Braid Fan

We recall that the rays of the braid fan Fn are labeled by all proper subsets ∅ ( I ( [n] and
represented by ray vectors r(I) = |I|1 − n1I . Furthermore, we set r(∅) = r([n]) = 0 for
convenience in notation. We recall that to describe the inequalities of the type cone, it is crucial to
know the linear dependences that occur among the rays of adjacent chambers.

Lemma 1.6.1 (Linear Dependence Among Braid Fan Rays). Let ∅ ( I, J ( [n] be two proper
subsets of [n]. Then ray vectors of the braid arrangement labeled by these sets satisfy the linear
dependence r(I) + r(J) = r(I ∩ J) + r(I ∪ J).

With this knowledge, it is possible to describe the desired linear dependence for any pair of
adjacent chambers of the braid fan.

Lemma 1.6.2 (Linear Dependence Among Braid Fan Chambers). Let σ, π be two adjacent per-
mutations in Sn. Then their chambers C(σ) and C(π) in the braid fan Fn have n − 2 rays in
common. We fix ∅ ( I ( [n] and ∅ ( J ( [n] such that C(I) is the ray of C(σ) not in C(π)
and C(J) is the ray of C(π) not in C(σ). Then the unique linear dependence among the ray
vectors of the cones C(σ) and C(π) is r(I) + r(J) = r(I ∩ J) + r(I ∪ J).

Example 1.6.3. In A3, the permutations id = 123 and π = 213 are adjacent. We know from
Example 1.3.10 that the rays of the region C(123) are labeled by the index sets {1} and {1, 2},
while the rays of the region C(213) are labeled by the index sets {2} and {1, 2}. In particular,
the ray of C(id) not in C(π) is labeled by I = {1} and the ray of C(π) not in C(id) is labeled
by J = {2}. Their linear dependence is r({1}) + r({2}) = r({1, 2}) + 0, which checks out
as (−2, 1, 1) + (1,−2, 1) = (−1,−1, 2).

Another permutation adjacent to id = 123 is σ = 132. There, we obtain {1, 2} as label of
the ray of C(id) not in C(σ) and {1, 3} as label of the ray of C(σ) not in C(id). This gives
us r({1, 2}) + r({1, 3}) = r({1}) (see Figure 1.12). We remark that in both these examples,
either I ∩ J or I ∪ J is not a proper subset. The first cases which are not degenerate in this sense
appear in the braid fan F4. As an example, the cones C(4132) and C(4312) are adjacent and their
linear dependence is given by r({3, 4}) + r({1, 4}) = r({4}) + r({1, 3, 4}) (see Figure 1.13).

1.6.2 Submodular Functions

The closed type cone of the braid fan, also known as the deformation cone of the permutahe-
dron, has been studied in detail in [Pos09] and [PRW08]. We use our knowledge about the linear
dependences in the braid fan from the previous section to give a concise description.
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Figure 1.12: The braid fan F3 with rays labeled in red, chambers labeled in blue and hyperplanes
labeled with inequalities (left), the four shards of the oriented arrangement (with
base region 123) labeled by their arcs (center), and the quotient fan for the sylvester
congruence (right). [Picture from [PS19]]
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Figure 1.13: A stereographic projection of the braid fan F4 from a point opposite to the region
labeled 1234, with some rays labeled in red, some chambers labeled in blue and some
hyperplanes labeled with inequalities (left), all 11 shards of the oriented arrangement
(with base region 1234) labeled by their arcs (center), and the quotient fan for the
sylvester congruence (right). [Picture from [PS19]]

Definition 1.6.4 (Submodular Inequalities and Functions). Let n ∈ N and X,Y ⊆ [n] be subsets
of [n]. The submodular inequality for X and Y is f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). A
real-valued function f : 2[n] → R on subsets of [n] is called a submodular function if it satisfies
the submodular inqualities for all X,Y ⊆ [n]. It is called strictly submodular if it satisfies all the
corresponding strict inequalities.

The following classical statement follows from Theorem 1.2.28 and Lemma 1.6.2. We recall
that we can naturally identify a vector h in the type cone, whose entries correspond to ray vectors
of the braid fan Fn, with a function h : 2[n] → R≥0 with h(∅) = h([n]) = 0.

Theorem 1.6.5 (Closed Type Cone of the Braid Fan). The closed type cone of the braid fan Fn is
the set of functions h : 2[n] → R≥0 which are submodular and satisfy h(∅) = h([n]) = 0. The
facets of TC(Fn) correspond to those submodular inequalities where |I \ J | = |J \ I| = 1.

As the normal fan of the permutahedron (as we constructed it in Example 1.3.15) is the braid
fan, it is induced by a height function which lies in this type cone. We will now introduce its height
function and show that it is indeed submodular.
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Example 1.6.6 (Height Function of the Permutahedron). The permutahedron Permn was defined
in Example 1.3.15 as a V-polytope. Therefore, it is induced by the height function which, given
a ray vector r(I) of the braid fan, asks which of the vertices has the largest scalar product with
that ray vector. As the ray vector r(I) is of the form |I|1− n1I , this scalar product is maximized
at any vertex where σ has its |I| smallest entries in those coordinates indexed by I . In any such
vertex, the scalar product 〈r(I) |σ〉 adds a |I| for every integer from 1 to n and subtracts an n for
every integer from 1 to |I|. We deduce the following explicit height function denoted by h◦:

h◦(I) = max
σ∈Sn

〈r(I) |σ〉 = |I|
(
n+1

2

)
− n

(|I|+1
2

)
= n

2 · |I| (n− |I|).

To verify that this height function is submodular, we observe that

h◦(I) + h◦(J)− h◦(I ∪ J)− h◦(I ∩ J) = n · |J \ I| · |I \ J | ≥ 0.

1.6.3 Deformed Permutahedra

With the help of submodular functions, we described the closed type cone of the permutahedron.
We recall that only the height functions in the open type cone yield a polytope with the desired
normal fan, while those in the boundary yield polytopes with different normal fans that coarsen
the normal fan of the permutahedron. We will give this class of polytopes a dedicated name.

Definition 1.6.7 (Deformed Permutahedron). A polytope P whose normal fanN (P) coarsens the
braid fan Fn for some n ∈ N is called a deformed permutahedron.

We remark that in particular, any quotientope on the braid arrangement is a deformed permuta-
hedron since the quotient fan F≡ coarsens the braid fan Fn by definition.

Observation 1.6.8 (Deformed Permutahedra and Submodular Functions). Up to translation, any
deformed permutahedron is given by Defoh :=

{
x ∈ HnΣ

∣∣ ∑
i∈I xi ≤ h(I) for all ∅ ( I ( [n]

}
for some submodular function h : 2[n] → R≥0.

We use the term deformed permutahedron instead of the term generalized permutahedron as
used by A. Postnikov in [Pos09] and [PRW08]. There are different ways to generalize a class
of polytopes, and the expression deformed permutahedron is more precise to describe the special
kind of generalization obtained by coarsening the normal fan.

1.6.4 Removahedra

We will now see a particular class of deformed permutahedra. We characterize these polytopes
by the way we obtain their fan which coarsens the braid fan, as is the case for all deformed
pemutahedra, but does so in a special way.

Definition 1.6.9 (Removahedron). A deformed permutahedron P which can be obtained by delet-
ing inequalities in anH-description of the permutahedron Permn is called a removahedron.

We can use the following convenient notation for removahedra.

Observation 1.6.10 (H-Description for Removahedra). Any removehedron can be written
as RemoI :=

{
x ∈ HnΣ

∣∣ ∑
i∈I xi ≤ h◦(I) for all I ∈ I

}
for the height function h◦ of the

permutahedron Permn and some family I of proper subsets ∅ ( I ( [n] for some n ∈ N.

We remark that the combinatorial type of the removahedron depends not only on the choice of
family I, but also on the choice of height function, where choosing an arbitrary h ∈ TC(Fn)
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would not necessarily yield the same polytope as the one obtained by removing inequalities from
the standard permutahedron Permn. While the term removahedron is used to describe a polytope,
we will also give a special name to normal fans and lattice congruences appearing in the context
of a removahedron.

Definition 1.6.11 (Removahedral Fans and Congruences). A fan G with rays {r(I) | I ∈ I} is
called removahedral if it is the normal fan of the removahedron RemoI . A lattice congruence ≡
of the weak order is called removahedral if its quotient fan F≡ is a removahedral fan.

We remark that while removahedra and removahedral fans are in bijection, not all removahedral
fans (and thus not all removahedra) are induced by a removahedral congruence on the poset of
regions of the braid arrangement.

Example 1.6.12. For example, in the permutahedron Perm4 illustrated in Figure 1.5 (right), the
vertices corresponding to the permutations 1324, 1342, 3124 and 3142 span a facet. Removing the
inequality that defines this facet yields a removahedron, and its normal fan is a removahedral fan.
On the other hand, any lattice congruence ≡ of the poset of regions of ~An (and thus of the weak
order on Sn) that considers 1324 and 3124 to be equivalent (they are separated by the down shard
connecting 1 and 3) has to consider 1423 and 3123 to be equivalent as well (they are separated by
the down shard connecting 1 and 4) due to the rules of forcing. Therefore, the removahedral fan
we just constructed cannot be obtained as the quotient fan of any removahedral congruence.

This motivates the name quotientopal removahedron for those removahedra that are quotien-
topes of some removahedral congruence. As we just saw, not all removahedra are quotientopal,
and this is the case in particular for all unbounded removahedra as the definition of a removahedron
does not require the resulting polyhedron to be a polytope.

Example 1.6.13 (Removahedra). We already know some examples of removahedra.
• The permutahedron Permn itself is a trivial removahedron obtained by removing none of the

inequalities at all.
• The associahedron Asson can be obtained as a removahedron by removing exactly those in-

equalities that do not correspond to an interval [i, j] ⊆ [n].
• The graph associahedron AssoG (as described in [CD06, Dev09]) is a removahedron if and

only if the graph G is chordful (meaning that every cycle induces a clique, see [Pil17]).

We remark that there are lattice congruences of the weak order on Sn which are not removahe-
dral congruences.

Example 1.6.14 (Non-Removahedral Congruence). We consider the congruence ≡ of S4 which
removes only one shard, namely Σ4(1, 4, {2}, {3}). This removed shard does not contain any
ray in its interior, so the rays of the associated quotient fan F≡ are exactly the rays of the orig-
inal braid fan Fn. In consequence, the removahedron corresponding to this quotient fan is the
permutahedron Perm4 whose normal fan is different from F≡.

We will move on to another class of removahedra in the next section.

1.7 Permutrees

Permutrees are combinatorial objects introduced in [PP17] that generalize and interpolate between
permutations and binary trees. They appear naturally in the context of congruences on the weak
order.
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1.7.1 Basics

To define permutrees, we start with some definitions on oriented trees.

Definition 1.7.1 (Ancestry in Trees). Let T be an oriented tree and j be a node of T .
• A parent of j is an outgoing neighbor of j.
• A child of j is an incoming neighbor of j.
• An ancestor subtree of j is a connected components of T \ {j} containing a parent of j.
• A descendant subtree of j is a connected components of T \ {j} containing a child of j.

These definitions allow us to define permutrees in the following way:

Definition 1.7.2 (Permutree). A permutree is an oriented tree T with nodes [n] such that
• every node has exactly one or two parents and exactly one or two children,
• if node j ∈ [n] has two parents, then
◦ all nodes in the left ancestor subtree of j are smaller than j,
◦ all nodes in the right ancestor subtree of j are larger than j,

• and if node j ∈ [n] has two children, then
◦ all nodes in the left descendant subtree of j are smaller than j,
◦ all nodes in the right descendant subtree of j are larger than j.

The definition of permutrees allow us to enforce the following conventions when drawing them:
• The edges are oriented from bottom to top (so children are below and parents are above).
• The nodes in [n] appear from left to right in ascending order.
• We draw an auxiliary vertical red wall
◦ below each node with two children (separating the left and right descendant subtrees),
◦ above each node with two children (separating the left and right ancestor subtrees).

Definition 1.7.3 (Permutree Decorations). In a drawing of a permutree, we represent a node by
one of the following symbols, depending on the number of parents and children of a node.
• the symbol for a node with one parent and one child,
• the symbol for a node with one parent and two children,
• the symbol for a node with two parents and one child,
• the symbol for a node with two parents and two children.

The sequence of these symbols for the nodes 1, . . . , n is called the decoration δ of T . The length
of the decoration δ is n. For a given permutree T ,
• the set δ− := {j ∈ [n] | δj = or } contains all nodes with exactly two children,
• the set δ+ := {j ∈ [n] | δj = or } contains all nodes with exactly two parents.
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Figure 1.14: Four examples of permutrees. While the left one is a generic one for the decora-
tion , the other three use specific decorations corresponding to permu-
tations ( 7), binary trees ( 7), and binary sequences ( 7). [Picture from [APR20]]
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Observation 1.7.4 (Special Permutrees). Permutrees generalize several combinatorial concepts.
• Permutrees with decoration δ = n correspond to permutations on Sn.
• Permutrees with decoration δ = n correspond to binary trees with n internal nodes.
• Permutrees with decoration δ = n correspond to binary sequences of length n.

Examples for these three special cases as well as the general case are illustrated in Figure 1.14.

Definition 1.7.5 (Permutree Edge Cut). Let T be a permutree and i→ j be an oriented edge of T .
An edge cut (I ‖ J) in T is a partition of the nodes [n] of T into the two connected components I
and J := [n] \ I obtained after removing the edge from i ∈ I to j ∈ J .

These edge cuts will prove useful to describe the geometry of the permutree fan defined later.

1.7.2 Permutree Lattices

Similarly to the standard rotation on binary trees, there is a local operation on δ-permutrees which
reverses the orientation of one edge and rearranges the endpoints of two other edges.

Definition 1.7.6 (Permutree Rotation). Let T be a permutree with decoration δ. Fix an edge i→ j
in T . We label a descendant subtree D and an ancestor subtree U as follows:
• We set D to be the descendant subtree of node i (the right one if i ∈ δ−).
• We set U to be the ancestor subtree of node j (the left one if j ∈ δ+).

We obtain a new oriented tree S from T by reversing the orientation of i → j, attaching the
subtree U to i and attaching the subtree D to j. This transformation from T to S is called the
rotation of the edge i→ j.

The following statement shows that the result of a rotation is always another δ-permutree. Put
differently, the set of δ-permutrees is closed under permutree rotations.

Theorem 1.7.7 (Edge Cuts of Adjacent Permutrees). Let T be δ-permutree and let i → j be an
edge in T . Then the tree S resulting from the rotation of i→ j is a δ-permutree as well. Moreover,
S has the same edge cuts as T except for the cut defined by i→ j, and S is the unique δ-permutree
with that property.

For a fixed decoration δ, we can define an orientation on the δ-permutree rotations, which yields
a directed graph on the set of δ-permutrees.

Definition 1.7.8 (Increasing Permutree Rotations). Let T and S be two δ-permutrees which differ
only by a single rotation of an edge with endpoints i < j. If that edge is directed i → j in T
and j → i in S, then the rotation from T to S is called an increasing rotation. The increasing
rotation graph for δ is the directed graph whose vertices are the δ-permutrees and whose directed
edges are increasing rotations.

The following statement shows that the transitive closure of this directed graph is not only a
partial order on the set of δ-permutrees, but even a lattice. Two examples of such permutree
lattices are illustrated in Figure 1.15.

Theorem 1.7.9 (Permutree Lattice). Let δ be a permutree decoration. The transitive closure of
the increasing rotation graph on δ-permutrees is a lattice. It is called the δ-permutree lattice.

Observation 1.7.10 (Special Permutree Lattices). Just as permutrees generalize permutations,
binary trees and binary sequences, the permutree lattices obtained from certain permutree decora-
tions generalize some well-known lattices.
• For δ = n, the δ-permutree lattice is the lattice of the weak order.
• For δ = n, the δ-permutree lattice is the Tamari lattice.
• For δ = n, the δ-permutree lattice is the Boolean lattice.
• For δ ∈ { , }n, the δ-permutree lattice is a Cambrian lattice (see [Rea06]).
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Figure 1.15: The δ-permutree lattices, for two decorations of length 4, namely δ = (left)
and δ = (right). [Picture from [PP17]]

All these examplary δ-permutree lattices are quotient lattices of the weak order. In fact, every
permutree lattice for a decoration of length n is a quotient lattice of the weak order on Sn, as we
will see in the following section.

1.7.3 Permutree Congruences

The δ-permutree lattices form a special subclass of quotient lattices of the weak order. They can
be described in the following way:

Definition 1.7.11 (Permutree Congruence). Let δ ∈ { , , , }n be a permutree decoration.
The δ-permutree congruence ≡δ is the equivalence relation on the weak order on Sn whose
equivalence classes are the sets of linear extensions of the δ-permutrees (similar to the construction
in Example 1.4.23).

The following statement tells us that these equivalence relations are in fact lattice congruences.

Theorem 1.7.12 (Permutree Quotient). Let δ be a permutree decoration of length n. Then the δ-
permutree congruence is a lattice congruence of the weak order on Sn and the associated quotient
lattice Sn/≡δ is isomorphic to the δ-permutree lattice.

Futher equivalent definitions of permutree congruences, using tree insertions or rewriting rules
on words, can be found in [PP17]. For now, we are more interested in describing a permutree
congruence by the shards ΣX

≡δ it retains.

Observation 1.7.13 (Shards of a Permutree Congruence). We know that every lattice congruence
on the weak order is defined uniquely by the set of shards that it retains. Given a permutree
decoration δ, the set of shards retained by ≡δ are those shards Σn(`, r, A,B) with 1 ≤ ` < r ≤ n
and δ− ∩ ]`, r[ ⊆ A and δ+ ∩ ]`, r[ ⊆ B.
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The arcs corresponding to these shards are those with left endpoint ` and right endpoint r that
do not pass below any k ∈ δ− and do not pass above any k ∈ δ+, as can be visualised through the
impenetrable vertical red walls below all k ∈ δ− and above all k ∈ δ+.

Observation 1.7.14 (Special Permutree Congruences). Regardless of the description we use, these
permutree congruences generalize other well-known congruences on the weak order.
• For δ = n, the congruence ≡δ is the trivial congruence.
• For δ = n, the congruence ≡δ is the sylvester congruence (see [HNT05]).
• For δ = n, the congruence ≡δ is the hypoplactic congruence (see [KT97], [Nov00]).
• For δ ∈ { , }n, the congruence ≡δ is a Cambrian congruence (see [Rea06]).

See Figure 1.16 for illustrations of the sets of retained shards for some permutree congruences.

Figure 1.16: Four sets of retained shards of a permutree congruence, illustrated by their arcs. The
leftmost one is generic and corresponds to the permutree decoration . The
three others illustrate the decoration 5 (corresponding to permutations) the deco-
ration 5 (corresponding to binary trees) and the decoration 5 (corresponding to
binary sequences). [Picture from [APR20]]

We can use the retained shards to determine whether a congruence is induced by a permutree.

Theorem 1.7.15 (Generators of a Permutree Congruence). Let ≡ be a lattice congruence on the
weak order on Sn. The following are equivalent:
• ≡ is a permutree congruence.
• All forcing-maximal removed shards in Σ×≡ are of length 2 (so all of them are shards of the

form Σn(i− 1, i+ 1, ∅, {i}) or Σn(i− 1, i+ 1, {i}, ∅) for some 1 < i < n).

There is a straightforward partial order on the decoration symbols which allows us to partially
order permutree decorations.

Definition 1.7.16 (Refinement of Permutree Decorations). There is a natural partial order on the
symbols { , , , } that is induced by increasing number of parents and children and is denoted
by 4. The cover relations are 4 , and , 4 . Let δ, δ′ ∈ { , , , }n be two
decorations of the same length. Then δ refines δ′ (written: δ 4 δ′) if for all i ∈ [n], the symbols
of δ and δ′ in position i satisfy δi 4 δ′i.

We can use this partial order on decorations to partially order the associated congruences.

Observation 1.7.17 (Refinement of Permutree Congruences). Let δ, δ′ ∈ { , , , }n be two
decorations of the same length. Then the refinement relation on decorations implies inclusion of
the associated lattice congruences on the weak order L. If δ refines δ′, then δ ≤ δ′ in ConL, so for
any two permutations σ, π ∈ Sn, the equivalence σ ≡δ π implies σ ≡δ′ π.

1.7.4 Permutree Fans

In the previous subsection, we have seen that every permutree decoration of length n induces a
quotient lattice of the weak order on Sn. As seen in section Section 1.5.4, every quotient lattice
induces a polyhedral fan called the quotient fan. We can now describe this fan:
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Definition 1.7.18 (Permutree Fan). Let δ be a permutree decoration. The δ-permutree fan Fδ is
the quotient fan associated to the δ-permutree lattice congruence ≡δ.

To describe the rays and chambers of the permutree fan Fδ, we first recall the description of
braid fan chambers and rays from Example 1.3.10. As the rays are labeled by proper subsets
of [n], we will determine which of them are rays of the permutree fan through the index sets they
are labeled with.

Definition 1.7.19 (Index Sets Compatible with a Permutree). Let δ ∈ { , , , }n be a per-
mutree decoration of length n. A proper subset ∅ ( I ( [n] is called compatible with δ if both of
the following hold for all k ∈ [n].
• If k ∈ δ− \ I , then k < min(I) or max(I) < k.
• If k ∈ δ+ ∩ I , then k < min([n] \ I) or max([n] \ I) < k.

We denote by Iδ the collection of all index sets compatible with δ.

The following result connecting compatible index sets and permutree rays is a consequence
of Corollary 2.2.6, which we will prove later.

Corollary 1.7.20 (Rays of a Permutree Fan). The rays of the permutree fan Fδ are the rays r(I)
for all index sets I compatible with δ.

Next, we will describe the chambers of the permutree fan. As the fan coarsens the braid fan,
each chamber is a union of chambers of the braid fan. The following statement helps us determine
which chambers of the braid fan are united to obtain the permutree fan for a fixed decoration δ.

Observation 1.7.21 (Chambers of a Permutree Fan). The chambers of Fδ are in bijection with
the δ-permutrees. The chamber corresponding to a δ-permutree T can be equivalently described
• as the union of the chambers C(σ) for all permutations σ that are linear extensions of T ,
• as the intersection of the halfspaces defined by xi ≤ xj for all edges i→ j of T ,
• as the conical hull of the rays |I| · 1J − |J | · 1I for all edge cuts (I ‖ J) of T .

See Figure 1.17 for an illustration of two exemplary permutree fans and their chambers.

Figure 1.17: The permutree fans F (left) and F (right). Each shard is labeled with
its corresponding arc, and some chambers are labeled with their corresponding per-
mutree. [Picture from [APR20]]

As was the case with permutree congruences and permutree lattices, some special cases of
permutree fans turn out to be well-known fans or ones that are particularly easy to construct.
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Observation 1.7.22 (Special Permutree Fans). The permutree fans include some well-known fans
for particular decorations:
• If δ = n, the permutree fan Fδ is the braid fan Fn.
• If δ ∈ { , }n, the permutree fans Fδ are the type A Cambrian fans (see [RS09]).
• If δ ∈ { , }n, the permutree fan Fδ is the fan of the arrangement defined by the hyper-

planes {x ∈ Rn | xi = xj} for those 1 ≤ i < j ≤ n where δk = for all k ∈ ]i, j[.
• If δ = n, then Fδ is the fan of the arrangement of {x ∈ Rn | xi = xi+1} for all i ∈ [n− 1].

Finally, we observe that refinement of permutree decorations as defined in Definition 1.7.16
translates to refinement of permutree fans.

Observation 1.7.23 (Refinement of Permutree Fans). Let δ, δ′ ∈ { , , , }n be two decora-
tions of the same length. If δ 4 δ′, then the δ-permutree fan Fδ refines the δ′-permutree fan Fδ′ .

1.7.5 Permutreehedra

Following the established path from a congruence to a quotient lattice to a quotient fan to a quotien-
tope, we will now describe the quotientopes for permutree congruences, called permutreehedra.
We first introduce some numbers for a δ-permutree that are useful to describe these polytopes.

Definition 1.7.24 (Subtree Numbers for a Permutree). Let T be a δ-permutree and j be a node
of T . The following numbers describe the number of nodes in certain subtrees of j in T :
• d(T, j) is the number of nodes in the descendant subtrees of j in T ,
• `(T, j) is the number of nodes in the left ancestor subtree of j in T ,
• r(T, j) is the number of nodes in the right ancestor subtree of j in T ,
• `(T, j) is the number of nodes in the left descendant subtree of j in T ,
• r(T, j) is the number of nodes in the right descendant subtree of j in T ,
• n(T, j) := 1 + d(T, j) + `(T, j)r(T, j)− `(T, j)r(T, j) is calculated from these numbers.

With the help of these numbers, we give two equivalent definitions of the δ-permutreehedron.

Definition 1.7.25 (Permutreehedron). Let δ ∈ { , , , }n be a permutree decoration of
length n. The δ-permutreehedron PTδ is the polytope defined equivalently as
• the convex hull of the points

∑n
j=1 n(T, j)ej for all δ-permutrees T ,

• the intersection of the sum-count hyperplane HnΣ =
{
x ∈ Rn

∣∣ ∑n
i=1 xi =

(
n+1

2

)}
with the

halfspaces
{
x ∈ Rn

∣∣∣ ∑i∈I xi ≥
(|I|+2

2

)}
for all index sets I ∈ Iδ compatible with δ.

We find illustrations for two examples of permutreehedra in Figure 1.18. The following state-
ment tells us that a δ-permutreehedron is a quotientope for the δ-permutree congruence on the
weak order.

Theorem 1.7.26 (Permutreehedra are Quotientopes). Let δ be a permutree decoration. The δ-
permutree fan Fδ is the normal fan of the δ-permutreehedron PTδ.

Observation 1.7.27 (Special Permutreehedra). The permutreehedra Permn include some well-
known polytopes for particular decorations.
• If δ = n, then PTδ is the permutahedron Permn.
• If δ = n, then PTδ is J.-L. Loday’s associahedron Asson (see [SS93, Lod04]).
• If δ ∈ { , }n, then PTδ is a Hohlweg-Lange associahedron Assoδ (see [HL07, LP18]).
• If δ = n, then PTδ is the parallelpiped with directions ei − ei+1 for all i ∈ [n− 1].
• If δ ∈ { , }n, then PTδ is the graphical zonotopes Zono(n)δ generated by those vec-

tors ei − ej where 1 ≤ i < j ≤ n with δk = for all k ∈ ]i, j[.
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Figure 1.18: The permutreehedra PT (left) and PT (right). The vertices are labeled by
the permutrees for the respective decoration. [Picture from [PP17]]

Figure 1.19: The δ-permutreehedra, for all decorations δ ∈ { } × { , , , }2 × { }. [Pic-
ture from [PP17]]
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Finally, refinement of permutree decorations as defined in Definition 1.7.16 also translates to a
kind of refinement among permutreehedra.

Observation 1.7.28 (Refinement of Permutreehedra). Let δ, δ′ ∈ { , , , }n be two decora-
tions of the same length. If δ 4 δ′, then the δ′-permutreehedron PTδ′ is obtained from the δ-
permutreehedron PTδ by deleting inequalities in the facet description of PTδ.

We recall that n is the finest among the permutree decorations of length n. The associated per-
mutree congruence is the trivial congruence where every element is a singleton in its equivalence
class. The associated permutree lattice is the weak order on Sn itself. Therefore, the permutree
fan is the braid fan Fn and the associated permutreehedron is the permutahedron Permn. As any
permutree decoration of length n is refined by n, any permutreehedron can be obtained from the
permutahedron by deleting inequalities. See Figure 1.19 for an illustration of the permutreehedra,
partially ordered by refinement of the underlying permutree decorations, or equivalently, by inclu-
sion of the sets of facet inequalities of the permutahedron to be deleted. This can be rephrased in
the following way:

Corollary 1.7.29 (Permutree Congruences are Removahedral). All permutree congruences are
removahedral congruences.
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In this chapter, we will make some observations about congruences of the weak order on Sn (or
equivalently, on the lattice of regions of the braid arrangement ~An). We will describe the rays and
chambers of a quotient fan, using the established notation and illustration through arcs. We will
use these results to describe the rays of a permutree fan and prove that all permutree congruences
are removahedral congruences. Finally, we will describe the type cone of a permutree fan.

To prepare these results, we first argue that we can restrict our analysis to a certain kind of con-
gruences that cannot be described as the combination of simpler congruences in lower dimensional
arrangements.

2.1 Essential Congruences

We first introduce the notion of polygons in a lattice. They are intervals with a special property.
We first review in Section 2.1.1 their definition and two results established in [Rea16b] before
proving some new results in Section 2.1.2.

2.1.1 Basics

Definition 2.1.1 (Polygonal Lattices). Let L be a finite lattice. A polygon in L is an interval [x, y]
that is equal to the union of two maximal chainsC1 andC2 from x to y such thatC1∩C2 = {x, y}.
The bottom edges of a polygon are the cover relations in the interval that are adjacent to x. The
top edges of a polygon are the cover relations in the interval that are adjacent to y. The side edges
of a polygon are the cover relations that are neither top nor bottom edges. A lattice L is called a
polygonal lattice if both of the following hold.
• Whenever x ≺ y1 and x ≺ y2, then [x, y1 ∨ y2] is a polygon,
• whenever x1 ≺ y and x2 ≺ y, then [x1 ∧ x2, y] is a polygon.

The posets of regions we are dealing with are always polygonal lattices. Moreover, the following
statement tells us that certain sets of regions defined geometrically have the combinatorial structure
of a polygonal interval in the poset of regions.

Lemma 2.1.2 (Polygonal Lattice of Regions). Let ~A be an oriented simplicial arrangement. Its
poset of regions is a polygonal lattice. Moreover, given a (d− 2)-dimensional face F of ~A, the set
of regions containing F is a polygon in Pos( ~A).

Polygonal lattices have some simple rules of forcing, describing which equivalences among its
elements imply other equivalences.

Lemma 2.1.3 (Polygonal Forcing). Let L be a polygonal lattice, let [x, y] be a polygon in L and
let ≡ be a congruence on L. If x ≺ a is a bottom edge of the polygon such that x ≡ a, then b ≡ c
holds for every side edge b ≺ c of the polygon.

2.1.2 Polygons in the Lattice of Regions

Given a quotient of such a polygonal lattice, we are particularly interested in those equivalence
classes that cover the minimal congruence class [0] ∈ L/≡. These equivalence classes have the
following property in any polygonal lattice.
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Lemma 2.1.4 (Congruence Classes in Quotients of Polygonal Lattices). Let L be a polygonal
lattice and ≡ be a congruence on L. Let C be an ≡-class that covers the minimal congruence
class [0] ∈ L/≡. Then the minimal element j ofC is join-irreducible inL and b ∈ [0] for all b < j.

Proof. Let C be an ≡-class with [0] ≺ C in L/≡. We know that each ≡-class is an interval in L.
Let j, k ∈ L be the minimal and maximal element of C such that C = [j, k] ⊂ L.

We first observe that all elements strictly below j are equivalent to 0 (mod ≡). Assume
there exists an element b ∈ L with 0 ≤ b < j which is not equivalent to 0 (mod ≡). Then
[0] < [b] < [j] = C, in contradiction to C covering [0] in L/≡.

Now assume for a contradiction that j is not join-irreducible in L. Then we may fix two distinct
elements x1, x2 both covered by j. Let x := x1 ∧ x2 be their meet in L. We observed above that
the elements x, x1 and x2 are all in the≡-class [0]. As L is a polygonal lattice, the interval [x, j] is
a polygon. Let a be the element covering x in the chain from x to x1. Then j = a ∨ x2 = j in L.
As lattice congruences preserve joins, we obtain j ≡ a ∨ x2 ≡ 0, in contradiction to the choice
of j ∈ C.

We recall from Definition 1.4.27 that for any join-irreducible element j ∈ L, there is a unique
smallest congruence, denoted by con(j), that contracts j and its lower neighbor j∗. Similarly, for
any pair of elements a, b ∈ L in a lattice, we denote the unique smallest congruence relation ≡
on L such that a ≡ b by con(a, b). We now study the minimal congruence that contracts the base
region with one of its neighbors and its behavior regarding the other neighbors of the base region.

Lemma 2.1.5 (Minimal Regions in a Quotient Lattice of Regions). Let ~A be an oriented simplicial
hyperplane arrangement with base region B. Let R1, . . . , Rk be the regions of ~A that cover B
in Pos( ~A). If ≡1 is the lattice congruence con(B,R1), then B 6≡1 R for all R ∈ R2, . . . , Rk.

Proof. For i ∈ [k], let Hi be the hyperplane separating B from Ri. Then {Hi | i ∈ [k]} is the set
of basic hyperplanes of ~A. Then the set of all shards of ~A except for thoseHj with j > 1 is a lower
set in the forcing poset, as no shard can arrow a basic hyperplane. This lower set corresponds to
a lattice congruence ≡ on Pos( ~A). It removes all shards except for H2, . . . ,Hk. In particular, we
obtain R1 ≡ B 6≡ Rj for all j > 1. As ≡1 := con(B,R1) is minimal among all congruences
contracting B ≺ R1, this asserts that B 6≡1 R2, . . . , Rk as well.

With all these preparations, we can now prove that for each of the join-irreducible regions neigh-
boring the base region, there exists a congruence that removes the basic hyperplanes that separates
it from the base region while retaining all other basic hyperplanes. In the induced quotient fan, the
number of chambers adjacent to the new base region decreases by 1.

Proposition 2.1.6 (Upper Covers in a Non-Essential Congruence). Let ~A be an oriented simplicial
hyperplane arrangement with base region B and lattice of regions L. Let R1, R2, . . . , Rk be the
upper covers of B in L. Let ≡ := con(R1) be the smallest congruence contracting R1. The upper
covers of the ≡-class [B] in the quotient lattice L/≡ are exactly the k − 1 distinct congruence
classes [R2], [R3], . . . , [Rk].

Proof. We prove the statement in two steps: First we show that [R2], . . . , [Rk] are distinct and
each cover [B], then we show that there is no other congruence class covering [B].

1. Claim: For 2 ≤ i < j ≤ k, the ≡-classes [Ri] and [Rj ] are distinct and each cover [B].
Let 2 ≤ i ≤ k. From Lemma 2.1.5, we know that ≡ does not contract B ≺ Ri. Denote
by Ci be the ≡-class containing Ri. As B ≺ Ri in L, we obtain [B] ≺ Ci in L/≡. From
Lemma 2.1.4. we know that every Ci contains only elements≥ Ji for some join-irreducible
Ji ∈ L. As there is no join-irreducible below Ri, this gives us Ji = Ri. In particular, for
i 6= j, we obtain Ji 6= Jj and therefore [Ri] 6= [Rj ].
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2. Claim: There is no other ≡-class covering [B].
LetC be an≡-class with [B] ≺ C in L/≡. From Lemma 2.1.4, we know that there is a join-
irreducible J contained in C such that all lattice elements below J are in [B]. Denote by J∗
the unique region covered by J in L. If J∗ = B, we obtain J = Ri for some 2 ≤ i ≤ k.
Assume that C, unlike the equivalence classes considered so far, has J∗ 6= B. Then we can
fix a region R covered by J∗. Let F be the intersection of J ∩ J∗ and J∗ ∩ R, two facets
of the region J∗. Since A is a simplicial arrangement, F is a d − 2-dimensional face. By
Lemma 2.1.2 the set of regions containing F is a polygonal interval in L. The region J
cannot be the top element of that polygon because it is join-irreducible in L. The region J∗
cannot be the bottom element of the polygon because the region R ≺ J∗ contains F and is
therefore an element of the polygon. We deduce that the edge J∗ ≺ J is a side edge of the
polygon. Let S ≺ T be the bottom edge of the chain in the polygon containing J∗ and J .
As the regions S ≺ T are strictly below J in L, they are both in [B] and ≡ has contracted
the bottom edge S ≺ T . Due to Lemma 2.1.3, then J∗ ≡ J as well. This is impossible as
J ∈ C was chosen such that all lattice elements below it are in [B]. Therefore, all≡-classes
covering [B] in L/≡ are of the form [Ri] for 2 ≤ i ≤ k.

2.1.3 Essential Quotientopes

With the help of Proposition 2.1.6, we can characterize those congruences that yield quotientopes
whose dimension is equal to that of an arrangement zonotope. We will give these congruences a
dedicated name.

Definition 2.1.7 (Essential Congruences). Let ~A be an oriented simplicial arrangement. A lattice
congruence ≡ on Pos( ~A) is called essential if it does not remove any basic hyperplane.

Corollary 2.1.8 (Essential Quotientopes). Let ~A be an oriented simplicial arrangement and let ≡
be a lattice congruence on Pos( ~A). A quotientope Q whose normal fan is the quotient fan F≡ has
the same dimension as an arrangement zonotope if and only if ≡ is essential.

Proof. If ≡ does not remove any basic hyperplane, then none of the join-irreducibles covering the
base region in the lattice of regions is contracted. Therefore, each of their respective congruence
classes is an upper cover of the new base region in the quotient lattice. By the same argument used
in the first part of the proof for Proposition 2.1.6, these upper covers are distinct. Therefore, the
base chamber of the quotient fan is equal to the base chamber of the original fan, so its quotientope
has the same edge directions around the vertex corresponding to the base region. In particular, the
dimension of the quotientope is the same as the dimension of any arrangement zonotope.

Conversely, if ≡ does remove at least one of the basic hyperplanes, then Proposition 2.1.6 tells
us that the base chamber of the quotient fan has one neighbor less than the base chamber of the
arrangement fan. As the arrangement is simplicial, the number of upper covers of the base region is
equal to the rank of the arrangement. Equivalently, the zonotope is simple, so its dimension is equal
to the number of neighbors of any given vertex. As any≡-quotientope has to have fewer neighbors
for the vertex corresponding to the base region, its dimension has to be lower as well.

2.1.4 Products of Quotientopes

We will now take a look at the consequences that these statements have for quotientopes in the
braid arrangement, associated with lattice congruences of the weak order. In particular, we can
describe a way to construct a quotientope for a non-essential congruence from quotientopes of
lower-dimensional braid arrangements.

A non-essential congruence ≡ on the poset of regions of ~An, removes at least one basic hy-
perplane Hn(k, k + 1) for some k ∈ [n − 1]. Therefore, any shard retained by ≡ is part of a

49



2 Quotientopes and Removahedra

hyperplane Hn(i, j) with either 1 ≤ i < j ≤ k or k + 1 ≤ i < j ≤ n. The set of retained shards
of either type each form an upper set in the forcing order, so each is the set of retained shards of a
lattice congruence on the weak order on Sn, which we call ≡1 and ≡2, respectively.

Now any two permutations where the integers [1, k] appear in the same order are≡1-equivalent,
while any two permutations where the integers [k + 1, n] appear in the same order are ≡2-
equivalent. Therefore, the congruence ≡1 is isomorphic to a congruence on the weak order of
permutations of length k, while the congruence ≡2 is isomorphic to a congruence on the weak
order of permutations of length n − k. Furthermore, the quotient fan F≡1 only has cones of the
form C × Rn−k while the quotient fan F≡2 only has cones of the form Rk × C.

All the hyperplanes of shards retained by ≡1 contain the line cone(
∑k

i=1 ei) and all the hyper-
planes of shards retained by ≡2 contain the line cone(

∑n
i=k+1 ei). Therefore, the center of the

quotient fan F≡ will contain all multiples of the vector
∑k

i=1 ei −
∑n

i=k+1 ei.

Observation 2.1.9 (Minkowski Sum of Quotientopes). Let ~A be an oriented simplicial arrange-
ment, let ≡1 and ≡2 be two lattice congruences on Pos( ~A) and let ≡ := ≡1 ∨ ≡2 be the join
of the two congruences in ConL. The common refinement of the quotient fans F≡1 and F≡2 is
the quotient fan F≡. Therefore, given an ≡1-quotientope Q1 and an ≡2-quotientope Q2, their
Minkowski sum Q1 + Q2 is an ≡-quotientope.

Therefore, if the lattice congruence ≡ is not essential, we can just combine an ≡1-quotientope
and an ≡2-quotientope into an ≡-quotientope by building their Cartesian product. The resulting
quotientope is supposed to have one vertex for each≡-class. It does so as these equivalence classes
are obtained by independently combining one class of ≡1 (determining the order of [1, k]) with a
class of ≡2 (determining the order of [k + 1, n]) and ignoring how these two parts are interlaced,
as all hyperplanes connecting two integers i ≤ k and j > k were removed in the quotient fan F≡.
This corresponds geometrically to combining vertices v1 and v2 of either smaller quotientope into
vertices (v1,v2) of the new quotientope.

As a consequence of this shortcut, we only need to consider essential congruences in our anal-
ysis of quotientopes for lattice congruences.

2.2 Removing and Retaining Rays

In this section, we will take a closer look at the structure of a quotient fan induced by a lattice
congruence on the weak order on Sn. We will begin by examining its rays.

2.2.1 Rays of the Quotient Fan

We recall from Lemma 1.5.13 the criterion describing which rays lie on an ~An shard. We now give
an aditional criterion. For a given ray, it tells us which ~An shards contain that ray in their relative
interior. We will say that those are shards around that ray. We recall from Definition 1.5.10
the definition of up shards and down shards in the braid arrangement and introduce the following
definition of special up and down shards for a certain ray index set.

Definition 2.2.1 (I-Conformal shards). Let ∅ ( I ( [n] be an index set for the An ray C(I),
where I = {i1, i2, . . . , ia} and J := [n] \ I = {j1, j2, . . . , jb}.
• An I-consecutive down shard is a shard Σn(ik, ik+1, ∅, ]ik, ik+1[) for any k ∈ [a− 1].
• A J-consecutive up shard is a shard Σn(jk, jk+1, ]jk, jk+1[ , ∅) for any k ∈ [b− 1].
Informally, each of these shards has two consecutive indices from its index set as endpoints

and has all integers in between as part of its B-set (for a down shard) resp. its A-set (for an
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up shard). The set of all I-conformal shards ΣI,n is the set of all I-consecutive down shards and
all J-consecutive up shards:

ΣI,n := {Σn(ik, ik+1, ∅, ]ik, ik+1[) | k ∈ [|I| − 1]}
∪ {Σn(jk, jk+1, ]jk, jk+1[ , ∅) | k ∈ [|J | − 1]} .

We remark that for an index set I , there are n− 2 distinct I-conformal shards, of which |I| − 1
are I-consecutive down shards and n− |I| − 1 are J-consecutive up shards.

Example 2.2.2. We examine the ray of the A9 arrangement labeled by the set I = {1, 4, 5, 6, 8}.
We can illustrate that A9 ray by a red arc from 0 to 10 passing above the entries of I and be-
low the entries of J := [n] \ I = {2, 3, 7, 9}. See Figure 2.1 (left) for an illustration. The I-
consecutive down shards are Σ9(1, 4, ∅, {2, 3}), Σ9(4, 5, ∅, ∅), Σ9(5, 6, ∅, ∅) and Σ9(6, 8, ∅, {7}).
The J-consecutive up shards are Σ9(2, 3, ∅, ∅), Σ9(3, 7, {4, 5, 6}, ∅) and Σ9(7, 9, {8}, ∅).

Figure 2.1: The ~A9 ray indexed by I = {1, 4, 5, 6, 8} is illustrated by the red arc passing above 1,
4, 5, 6 and 8 and below 2, 3, 7 and 9. The left pictures shows this ray together with
all I-conformal shards ΣI,9, illustrated by the blue arcs. These are the shards that
contain C(I) in their interior. The right pictures shows this ray together with all shards
that contain the ray C(I) (in their interior or in their boundary), illustrated by the blue
arcs. These are the arcs that are entirely below or entirely above the red arc. We
remark that neither of these sets of blue shards is an upper or lower set in the forcing
order. For example, the blue shard Σ9(6, 8, ∅, {7}) is included in both sets. It forces
the shard Σ9(6, 9, ∅, {7, 8}) and is forced by the shard Σ9(6, 7, ∅, ∅), both of which are
clearly absent from both sets, as their arcs cross the red arc corresponding to the ray.

This helps us in describing the rays of the quotient fan as these I-conformal shards turn out to
be exactly the ~An shards which contain the ray labelled by I in their relative interior.

Proposition 2.2.3 (Shards with An Ray in the Interior). Given an index set ∅ ( I ( [n], the ~An
shards containing r(I) in their relative interior are exactly the (n− 2) I-conformal shards ΣI,n.

Proof. We recall from Example 1.3.10 that the ray vector labelled by I is r(I) = |I| · 1− n · 1I ,
which has an entry |I| − n for every i ∈ I and an entry |I| for every j ∈ [n] \ I . Moreover, the
relative interior of an ~An shard Σn(`, r, A,B) is the set of all x ∈ Rn with xa < x` = xr < xb
for all a ∈ A and b ∈ B. Therefore, r(I) lies in the relative interior of the shard if and only if
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• either xa = |I| − n for all a ∈ A and x` = xr = |I| and B = ∅,
• or A = ∅ and x` = xr = |I| − n and xb = |I| for all b ∈ B.

These cases are equivalent to the following choices of `, r, A and B:
• either ]`, r[ = A ⊆ I and `, r ∈ [n] \ I ,
• or `, r ∈ I and ]`, r[ = B ⊆ [n] \ I ,

where the first case is equivalent to being an I-consecutive down shard and the second case is
equivalent to being an ([n] \ I)-consecutive up shard.

We can directly deduce a little result on shards that are neither up shards nor down shards:

Observation 2.2.4 (Rays Inside Mixed Shards). As a mixed shard (equivalently, a shard whose
arc crosses the axis) can have neither A = ]`, r[ and B = ∅ nor A = ∅ and B = ]`, r[, the relative
interior of any mixed shard never contains any An ray.

Next, we describe the rays of a quotient fan F≡. As any quotient fan F≡ coarsens the arrange-
ment fan F(An), the set of rays of F≡ is a subset of the set of rays of F(An). The following
statement tells us which rays are preserved for a fixed congruence ≡ on the weak order on Sn.

Proposition 2.2.5 (Rays of a Quotient Fan). Let ≡ be an essential congruence on Pos( ~An)
and ∅ ( I ( [n] be an index set. Then C(I) is a ray of F≡ if and only if ΣI,n ⊆ ΣX

≡.

Proof. If ΣI,n ⊆ ΣX
≡, we examine the intersection of all I-conformal shards Σ ∈ ΣI,n. We

distinguish two cases.
• If I is an initial interval [1, k], then C(I) is a ray of the basic chamber of the braid fan. If I is

a final interval [k + 1, n], then C(I) is a ray of the opposite of the basic chamber of the braid
fan. As ≡ is an essential congruence, the basic chamber of the braid fan and its opposite are
chambers of the quotient fan F≡ as well, and so are their rays.
• If I is neither an initial nor a final interval, there are indices 1 ≤ a < b < c ≤ n with

either a, c ∈ I and b 6∈ I or a, c 6∈ I and b ∈ I . Then the intersection of the shards in ΣI,n is
the set of all x ∈ Hn0 with xi ≤ xj for all i ∈ I and j 6∈ I , which coincides with the definition
of the cone C(I). As all these shards intersect along this ray, we can replace each of them
with a wall of the quotient fan such that their intersection still equals this way. The quotient
fan F≡ is closed under intersection of its cones, so this ray C(I) is a cone of F≡ as desired.

Conversely, if ΣI,n 6⊆ ΣX
≡, then we can fix an I-conformal shard Σ = Σn(`, r, A,B) ∈ ΣI,n that is

not retained by≡. Without loss of generality, let Σ be an I-consecutive down shard (if Σ is an ([n]\
I)-consecutive up shard, an analogous argument holds). We assume for a contradiction that C(I)
is a ray of the quotient fan F≡. Then C(I) is a cone of the fan and therefore an intersection of
some of its maximal cones. In particular, there is a set of walls of F≡ whose intersection is C(I).
By Lemma 1.5.19, this can be rewritten as a set of retained shards Σ1,Σ2, . . . ,Σk such that their
intersection S =

⋂k
i=1 Σi equals C(I). If we set I ′ := I ∩ [1, `] (which is distinct from C(I)

as r ∈ I), then the intersection S does not include the ray C(I ′). Then there is at least one of
the shards we intersect to obtain S, say Σj = Σn(`′, r′, A′, B′), such that r(I ′) does not lie in Σj .
As S contains r(I), so does Σj . We first observe that either `′, r′ ∈ I or `′, r′ 6∈ I as otherwise, Σj
would intersect C(I) in the origin only.
• If `′, r′ 6∈ I , then `′, r′ 6∈ I ′. As r(I ′) does not lie in Σj , Lemma 1.5.13 tells us that there is

some `′ < p < r′ with p ∈ B′ and p ∈ I ′. Then S has x`′ ≤ xp (due to Σj), while r(I)
has xp < x`′ (as p ∈ I and `′ 6∈ I), which contradicts our assumption that r(I) lies in Σj .
• If `′, r′ ∈ I and `′, r′ ∈ I ′, then Lemma 1.5.13 tells us that there is some `′ < p < r′

with p ∈ A′ and p 6∈ I ′ (and therefore p 6∈ I). Then S has xp ≤ x`′ (due to Σj) while r(I)
has x`′ < xp (as `′ ∈ I and p 6∈ I), which contradicts our assumption that r(I) lies in Σj .
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• If `′, r′ ∈ I while `′ ∈ I ′ and r′ 6∈ I ′, then we have `′ ≤ ` < r ≤ r′. If Σ and Σj agree
on ]`, r[ (meaning that for every index in this interval, they agree on whether it is in their A
or B set), then Σ forces Σj . As Σ is not an element of Σ≡ (which is an upper set in the forcing
poset), this implies that Σj cannot be an element of Σ≡ either, in contradiction to our choice
of Σj . We conclude that Σ and Σj do not agree on ]`, r[.
As we chose Σ to be an I-consecutive down shard, it can only disagree with Σj if there
is some ` < p < r such that p ∈ A′. But then S has x`′ ≥ xp (due to Σj) while r(I)
has x`′ < xp (as ` < p < r and Σ is I-consecutive), which contradicts our assumption
that r(I) lies in Σj .
• If `′, r′ ∈ I and `′, r′ 6∈ I ′, then Lemma 1.5.13 tells us that there is some `′ < p < r′

with p ∈ B′ and p ∈ I ′. This would mean that I contains both `′ and p while I ′ contains
only p, which is impossible due to the construction of I ′.

2.2.2 Rays of the Permutree Fan

In this section, we specialize Proposition 2.2.5 to δ-permutree congruences. We obtain the fol-
lowing description of the rays of the δ-permutree fan Fδ. This result was already mentioned
in Corollary 1.7.20, which is a consequence of it.

Corollary 2.2.6 (Rays of the Permutree Fan). Let δ be a decoration of length n and ∅ ( I ( [n]
be an index set. Then C(I) is a ray of Fδ if and only if both of the following hold.
• If k ∈ δ− \ I , then k < min(I) or max(I) < k.
• If k ∈ δ+ ∩ I , then k < min([n] \ I) or max([n] \ I) < k.

Equivalently, C(I) is a ray of Fδ if and only if for all a < b < c, both of the following hold.
• If a, c ∈ I , then b 6∈ δ− \ I .
• If a, c ∈ [n] \ I , then b 6∈ δ+ ∩ I .

Proof. We recall from Observation 1.7.13 that the shards retained by ≡δ are exactly those
shards Σn(`, r, A,B) with δ− ∩ ]`, r[ ⊆ A and δ+ ∩ ]`, r[ ⊆ B. Conversely, the shards re-
moved by ≡δ are those where there is some k ∈ ]`, r[ with k ∈ δ− \A or k ∈ δ+ \B.

By Proposition 2.2.5, the 1-dimensional cone C(I) is a ray of the permutree fan Fδ if and only
if ≡δ removes no I-conformal shard. Therefore, C(I) is a ray of Fδ if and only if
• no I-consecutive down shard Σn(ik, ik+1, ∅, ]ik, ik+1[) has a k ∈ δ− \ I
• and no ([n] \ I)-consecutive up shard Σn(jk, jk+1, ]jk, jk+1[ , ∅) has a k ∈ δ+ ∩ I .

I-consecutive down shards are I-compatible if `, r ∈ I are consecutive elements of I and ([n]\I)-
consecutive up shards are I-compatible if `, r ∈ I are consecutive elements of [n] \ I . Such
consecutive elements exist if and only if there is a pair of indices in I (resp. [n] \ I) such that k
lies in between. This proves our claim.

Example 2.2.7. For the decorations of Figure 1.15, Figure 1.17 and Figure 1.18, the rays
of F correspond to the subsets 1, 2, 3, 4, 12, 13, 23, 34, 123, 134, 234. The rays of F
correspond to the subsets 1, 4, 12, 34, 123, 124, 234.

Example 2.2.8. As examples of Corollary 2.2.6, we find the following classic descriptions.
• When δ = n, the fan Fδ = F n is the braid fan and its rays are labeled by all proper

subsets ∅ ( I ( [n].
• When δ = n, the rays of F n are labeled by those proper subsets of [n] that are inter-

vals [i, j] for 1 ≤ i ≤ j ≤ n. These intervals can also be visualised as internal diagonals of a
polygon with vertices 0, 1, . . . , n+ 1, where [i, j] represents the diagonal (i− 1, j + 1).
• When δ = n, the rays of F n are all initial intervals [1, k] and all final intervals [k, n]

distinct from [1, n].
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We can use our results on the rays of the δ-permutree fan to count them.

Corollary 2.2.9 (Number of Rays of a Permutree Fan). Let δ be a permutree decoration of
length n. The number ρ(δ) of rays of the δ-permutree fan Fδ is

ρ(δ) = n− 1 +
∑

1≤i<j≤n
∀k∈]i,j[: δk 6=

2|{k∈]i,j[ | δk= }|.

Proof. We count the number of different possibilities to pick a proper subset ∅ ( I ( [n] such
that the induced ray C(I) is a ray of the quotient fan Fδ. In order to do so, we first choose two
positions i, j ∈ [n].
• We fix i to be the last position such that {1, . . . , i} is a subset of either I or [n] \ I .
• We fix j to be the first position such that {j, . . . , n} is a subset of either I of [n] \ I .
As I has to be a proper subset of [n], we require that i < j. With these positions fixed, we

have to decide for every k ∈ ]i, j[, if k ∈ I . We remark that the choice for k = i + 1 uniquely
determines whether 1, . . . , i are all in I or all in [n]\I (analogously with the choice for k = j−1).
We will deal with the case where ]i, j[ = ∅ later.

Now Corollary 2.2.6 tells us that if k ∈ δ−, then k 6∈ I is a necessary condition for C(I) to
be a ray. Similarly, if k ∈ δ+, then k ∈ I has to hold. In the case where there is some k ∈ ]i, j[
with δk = , there is no valid choice and C(I) cannot be a ray. We therefore have to restrict to
those choices of i and j that have δk 6= for all k ∈ ]i, j[.

For any valid choice of i and j meeting these conditions, we have to set k ∈ I whenever δk =
and k 6∈ I whenever δk = . This leaves us a choice between 2 options for each k ∈ ]i, j[
with δk = , which gives us 2|{k∈]i,j[ | δk= }| choices in total for fixed valid i and j. We can sum
up these powers of 2 for all valid choices of 1 ≤ i < j ≤ n with δk 6= for all k ∈ ]i, j[.

The cases where i+ 1 = j have ]i, j[ = ∅ and therefore each contribute 20 = 1 to this sum. In
these cases, it is not determined whether I = {1, . . . , i} or I = {j, . . . , n}. Both are possible and
both induce a ray C(I) which is a ray of the permutree fan according to Corollary 2.2.6. As we
only counted each of these cases once, we have to add n− 1 to our sum.

Example 2.2.10. For the decorations of Figure 1.15, Figure 1.17 and Figure 1.18, we ob-
tain ρ( ) = 11 and ρ( ) = 7.

Example 2.2.11. As examples of Corollary 2.2.9, we find the following classic numbers.
• When δ = n, the braid fan F n has ρ( n) = 2n − 2 rays.
• When δ = n, the fan F n has

(
n+1

2

)
− 1 rays. This equals the number of internal diagonals

of an (n+ 2)-gon.
• When δ = n, the fan F n has 2n− 2 rays.

In the sum formula given in Corollary 2.2.9, the powers of 2 vary depending on the number
of symbols in the decoration. If there is no such symbol in δ, all these powers of 2 collapse
to 20 = 1 and the number of rays of the permutree fan is particularly easy to calculate.

Corollary 2.2.12 (Number of Rays of Some Permutree Fans). If δ ∈ { , , }n, we have

ρ(δ) = n− 1 + |{1 ≤ i < j ≤ n | ∀k ∈ ]i, j[ : δk 6= }| .

2.2.3 Rays and Chambers in the Quotient Fan

We make some more small observations on the structure of the quotient fan that we will use to
prove statements about removahedral congruences in the following section.
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Lemma 2.2.13 (Hyperplane Separating Two Braid Fan Rays). Let ∅ ( I, J ( [n] be two index
sets for the braid fan. The hyperplane {x ∈ Rn | xi = xj} strictly separates the ray vectors r(I)
and r(J) if and only if i ∈ I \ J and j ∈ J \ I (or vice versa).

Proof. For the ray vector r = r(I) to be on a side of the hyperplane, we first need ri 6= rj ,
say ri < rj without loss of generality. Then i ∈ I and j 6∈ I . Then r′ = r(J) is on the other side
of that hyperplane if and only if r′i > r′j , which is equivalent to j ∈ J and i 6∈ J , as claimed.

Corollary 2.2.14 (Braid Region Containing Two Specific Rays). Let ∅ ( I, J ( [n] be two index
sets for the braid fan. There is a region of the braid arrangement that has both C(I) and C(J) as
rays if and only if I ⊆ J or I ⊇ J .

Proof. As the regions of the braid arrangement are the closures of the connected components,
two rays are faces of the same region if and only if they are not strictly separated by any An
hyperplane. By Lemma 2.2.13, such a hyperplane exists if and only if neither of I and J is a
subset of the other.

Corollary 2.2.15 (Number of Braid Regions with Two Specific Rays). Let ∅ ( I ⊂ J ( [n]
be two index sets for the braid fan. The number of regions of the braid arrangement that have
both C(I) and C(J) as rays is |I|! · |J \ I|! · |[n] \ J |!.

Proof. We know from Example 1.3.10 that the rays of the chamber C(σ) are the one-dimensional
cones C(σ([k])) for all k ∈ [n−1]. In order to have both C(I) and C(J) as rays, a permutation σ
has to have σ([|I|]) = I and σ([|J |]) = J . We note that this is another proof that one of I and J
has to be a subset of the other. To fix a suitable permutation σ = (σ1, σ2, . . . , σn) ∈ Sn, we need
it to start with all entries of I , followed by those entries of J not in I , and filled up by the entries
not in J . Within each of these three blocks, the order in which the values appear is arbitrary.

Observation 2.2.16 (Wall-Crossing Inequalities in a Quotient Fan). For index sets ∅ ( I, J ( [n],
we always have

r(I) + r(J) = (|I|+ |J |)1− n(1I + 1J)

= (|I ∩ J |+ |I ∪ J |)1− n(1I∩J + 1I∪J)

= r(I ∩ J) + r(I ∪ J).

To determine whether these rays induce a wall-crossing inequality, the question is just whether the
rays labeled I and J are in adjacent chambers whose intersection contains the rays labeled I ∩ J
and I ∪ J .

2.3 Removahedral Congruences

We recall that a congruence ≡ is called removahedral if a suitable quotientope can be obtained by
deleting facet-defining inequalities of the permutahedron Permn as defined in Example 1.3.15. We
will now take a look at how removahedral congruences and permutree congruences are related.

2.3.1 Removahedral Congruences are Permutree Congruences

We learned from Corollary 1.7.29 that every permutree congruence is an essential removahedral
congruence. In this section, we want to show that the opposite holds as well. We will prove that
every essential removahedral congruence is a permutree congruence.

We attempt to prove this by contradiction: We fix a lattice congruence ≡ of the weak order
on Sn which is an essential removahedral congruence but not a permutree congruence. We will
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use our findings from the previous section to describe the quotient fanF≡ and reason that it cannot
in fact be a removahedral fan, proving that no such congruence can exist.

Given our fixed congruence ≡, the set Σ×≡ is the set of shards removed by ≡, which is a lower
set in the forcing order on ~An. We denote by S the set of maximal elements of the lower set Σ×≡
with respect to the forcing order. Our first result will guarantee that S must contain a shard of a
certain type.

Claim 2.3.1. The set S defined above contains a shard of length 3 or more which is not mixed.

Proof. We first remark that as ≡ is an essential congruence, the set S does not contain any shard
of length 1. We can partition S into the subsets S2 and S≥3, where the elements of S2 are those
shards in S that have length 2 and S≥3 contains those shards in S that have a length of 3 or more.
Since ≡ is not a permutree congruence, the set S must contain a shard of length distinct from 2
according to Theorem 1.7.15, so the set S≥3 is non-empty. We recall from Theorem 1.7.15 that
we can interpret S2 as a set of forcing-maximal removed shards for some permutree congruence
which we shall denote by ≡δ. This congruence is distinct from ≡, so the permutree fan Fδ is
distinct from the quotient fan F≡. As ≡ removes some mixed shards which are retained in ≡δ,
this implies that F≡ coarsens Fδ.

We assume for a contradiction that S≥3 contains only mixed shards. As mixed shards force
only mixed shards, the up shards and down shards retained by ≡ are the same as those retained
by ≡δ. Then Proposition 2.2.5 tells us that the quotient fan F≡ and the permutree fan Fδ have the
exact same rays. Equivalently, as both≡ and≡δ are removahedral congruences, their correspond-
ing removahedra are obtained from the permutahedron Permn by removing the exact same facet
inequalities, yielding the exact same quotientope. But as the normal fans F≡ and Fδ of these two
quotientopes are distinct, they cannot both be removahedral congruences, in contradiction to our
assumption. Therefore, the set S≥3 has to contain some shard that is not mixed, which proves our
claim.

With this result, we can fix an up shard Σn(`, r, ]`, r[ , ∅) that is among the maximal elements
of the lower set Σ×≡. In the case where the shard is a down shard of the form Σn(`, r, ∅, ]`, r[), the
proof is symmetric. We now introduce five subsets of [n] given by the intervals
• I := ]`+ 1, r[,
• J := ]`, r − 1[,

• K := [1, r[,
• L := ]`, n],

• and M := ]`+ 1, r − 1[.

We observe that for each of these intervals, the left boundary is smaller or equal to the right
boundary as the shard we started with has length r − ` ≥ 3. We remark that M is the only one of
these intervals which is possibly empty (in the case where `+3 = r). To get a better understanding
of how our reasoning for the remainder of this section is meant to work, we will first consider an
example.

Example 2.3.2. We consider the lattice congruence ≡ on the weak order of S4 whose only re-
moved shard is Σ4(1, 4, {2, 3}, ∅). This induces the following five subsets:
• I = ]1 + 1, 4[ = {3},
• J = ]1, 4− 1[ = {2},

• K = [1, 4[ = {1, 2, 3},
• L = ]1, 4] = {2, 3, 4},

• M = ]1 + 1, 4− 1[ = ∅.

We remark that our fixed shard Σ4(1, 4, {2, 3}, ∅) is a join-irreducible in Pos( ~A), so it corre-
sponds to a permutation σ with a single descent which we can give explicitly as σ = 2341. The
only permutation covered by σ in Pos( ~A) is π = 2314. The meaning of the five subsets becomes
clearer when we examine the chambers of the braid fan labeled by σ and π.

The rays of the region C(σ) are labeled by {2}, {2, 3} and {2, 3, 4}, while the rays of the
region C(π) are labeled by {2}, {2, 3} and {1, 2, 3}. These two chambers of the braid fan
are part of the same chamber of the quotient fan F≡ as the shard Σ4(1, 4, {2, 3}, ∅) separat-
ing them was the one shard removed by ≡. Therefore, F≡ has a chamber spanned by the
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rays labeled {2}, {2, 3}, {1, 2, 3} and {2, 3, 4}. We remark that the ray C({2, 3}), represented
by the ray vector r({2, 3}) = (2,−2,−2, 2), lies in the conical span of C({1, 2, 3}) (rep-
resented by r({1, 2, 3}) = (−1,−1,−1, 3)) and C({2, 3, 4}) (represented by r({2, 3, 4}) =
(3,−1,−1,−1)), so C({2, 3}) is a ray of the braid fan F4, but not a ray of the quotient fan F≡
and not a ray of that chamber in particular.

Similarly, we analyze the braid fan regions labeled by σ′ = 3241 and π′ = 3214. They are
separated by Σ4(1, 4, {2, 3}, ∅) as well. Therefore, together they form a chamber of the quotient
fan containing the braid fan rays labeled {3}, {2, 3}, {1, 2, 3} and {2, 3, 4}. As before, the ray
labeled {2, 3} is not extremal in this chamber. In fact, it is not a ray of the quotient fan F≡ accord-
ing to Proposition 2.2.5 as the removed shard Σ4(1, 4, {2, 3}, ∅) is an ([n]\{2, 3})-consecutive up
shard.

Now the chamber spanned by the rays labeled K = {1, 2, 3}, L = {2, 3, 4} and J = {2}
and the chamber spanned by the rays labeled K = {1, 2, 3}, L = {2, 3, 4} and I = {3} are
adjacent in the quotient fan F≡, separated by the hyperplane {x ∈ Rn | x2 = x3}, and their ray
vectors are related by the equation r(I) + r(J) = (2,−2,−2, 2) = r(K) + r(L). We recall
that the height function h◦ of the permutahedron Permn is given by h◦(S) = 4 |S| (4 − |S|).
This height function violates the wall-crossing inequality h◦(I) + h◦(J) > h◦(K) + h◦(L)
as h◦(I) +h◦(J) = 2 · 4 · 1 · 3 = h◦(K) +h◦(L). In consequence, the quotient fan F≡ is not the
normal fan of a removahedron, so the lattice congruence ≡ cannot be removahedral.

We now establish some general statements to extend this reasoning from one example to any
essential removahedral congruence≡ that is assumed not to be a permutree congruence. We begin
by making sure the braid fan rays we are dealing with are guaranteed to be rays of the quotient fan
as well.

Claim 2.3.3. All the rays C(I), C(J), C(K), C(L) and C(M) are rays of the quotient fan F≡.

Proof. By using Proposition 2.2.3, we can determine which shards contain the rays labeled by I ,
J , K, L and M in their interior. As we assumed ≡ to be an essential congruence, it has to retain
all basic shards. If we can show that all non-basic shards that contain any of these rays in their
relative interior are retained by ≡ as well, then we know that all of these rays are still present in
the quotient fan F≡.

We know from Proposition 2.2.3 that the shards containing one of these rays in their interior
are exactly those that are S-conformal for some S ∈ {I, J,K,L,M}. We first remark that as
all the index sets are proper intervals, all S-consecutive down shards are basic shards. To find all
non-basic S-conformal shards, we only need to search among the [n] \ S-consecutive up shards
for each of the index sets. The complement of any of these index set intervals in [n] is either
an initial or a final interval (in which case all [n] \ S-consecutive up shards are basic) or the
disjoint union of an initial and a final interval (in which case the only non-basic one is the up shard
connecting min(S)− 1 to max(S) + 1).
• For I = ]`+ 1, r[, the only non-basic I-conformal shard is Σn(`+ 1, r, ]`+ 1, r[ , ∅).
• For J = ]`, r − 1[, the only non-basic J-conformal shard is Σn(`, r − 1, ]`, r − 1[ , ∅).
• For K = [1, r[, all K-conformal shards are basic.
• For L = ]`, n], all L-conformal shards are basic.
• For M = ]`+ 1, r − 1[, the only non-basic M -conformal shard is the [n]\M -consecutive up

shard Σn(`+ 1, r − 1, ]`+ 1, r − 1[ , ∅).
We remark that each of these non-basic shards we found is forcing Σn(`, r, ]`, r[ , ∅). But as we
fixed that shard to be maximal in Σ×≡, this implies that all these non-basic shards are retained
by ≡. Therefore, all the rays C(I), C(J), C(K), C(L) and C(M) are still rays in the quotient
fan F≡.
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Next, we will see that the rays labeled by I , J , K, L and M are related in a certain way in the
quotient fan F≡ associated to our fixed congruence ≡.

Claim 2.3.4. The quotient fan F≡ contains adjacent chambers C1 and C2 separated by the hyper-
planeHn(`+1, r−1) such that r(I) ∈ C1 and r(J) ∈ C2, while {r(K), r(L), r(M)} ⊂ C1∩C2.

Proof. The index sets are related by M ⊆ I, J ⊆ K,L. Following Lemma 2.2.13, two rays
cannot be separated by a hyperplane of the braid fan (and therefore of the quotient fan) if one of
the index sets contains the other. We deduce that the only ones among them whose rays might be
strictly separated by a hyperplane of the braid arrangement are induced by the pair of I and J and
induced by the pair of K and L.
• The index sets I and J have I \ J = {r − 1} and J \ I = {`+ 1}. In consequence, the

rays C(I) and C(J) are strictly separated only by the hyperplane {x ∈ Rn | x`+1 = xr−1}.
• The index sets K and L have K \ L = [1, `] and L \K = [r, n]. In consequence, the

rays C(K) and C(L) are strictly separated by all those hyperplanes {x ∈ Rn | xa = xb}
where a ∈ [1, `] and b ∈ [r, n]. We remark that the quotient fan F≡ is missing all shards of
the form Σn(i, j, ]i, j[ , ∅) for i ∈ [1, `] and j ∈ [r, n], as they are forced by the removed up
shard Σn(`, r, ]`, r[ , ∅). Therefore, C(K) and C(L) are not separated by any F≡ hyperplane
and are in a common chamber of F≡.

Alternatively, we can explicitly walk through a sequence of permutations to see whether their as-
sociated regions in ~An all are equivalent under≡ and whether they contain some of the rays C(I),
C(J), C(K), C(L) and C(M). We fix the permutation σ := (` + 2, . . . , r − 2, r − 1, ` +
1, `, . . . , 1, r, . . . , n) and the permutation π := (`+ 2, . . . , r − 2, r − 1, `+ 1, r, . . . , n, `, . . . , 1).
We build a sequence of permutations adjacent in the weak order, starting with σ and ending with π,
each of which starts with the block (`+2, . . . , r−2, r−1, `+1) and ends with a shuffle of (`, . . . , 1)
with (r, . . . , n). We go from σ to π by transposing in each step two values i ≤ ` and j ≥ r in con-
secutive positions. At each such step, all indices of the interval ]i, j[ between the two transposed
values appear before the position of the transposition. Therefore, the two permutations related by
this transposition are separated by the shard Σn(i, j, ]i, j[ , ∅) which is forced by Σn(`, r, ]`, r[ , ∅)
and therefore removed by ≡. Therefore, all the permutations of the sequence belong to the same
equivalence class of ≡. Regarding the quotient fan F≡, in each step of the sequence of adjacent
permutations, we cross a shard that has been removed in F≡ and therefore, the cones of all these
permutations in the braid fan are part of the same cone of F≡.

We observe that the sets I = ]`+ 1, r[ and M = ]`+ 1, r − 1[ are initial intervals of all
permutations in our sequence, while K = [1, r] is an initial interval of σ and L = ]`, n] is an
initial interval of π. Therefore, the chamber of F≡ associated with our sequence of permutations
contains all the rays C(I), C(K), C(L) and C(M).

Analogously, we can build another very similar sequence of permutations starting with the
permutation σ′ := (` + 2, . . . , r − 2, ` + 1, r − 1, `, . . . , 1, r, . . . , n) and ending with π′ :=
(`+ 2, . . . , r− 2, `+ 1, r− 1, r, . . . , n, `, . . . , 1) and using the same steps as before. For the same
reason as above, all these permutations in this sequence belong to a common chamber of F≡ as
well. Furthermore, this chamber is adjacent to the one associated with our first sequence as σ
and σ′ are adjacent in the weak order in Sn, differing only by a transposition of ` + 1 and r − 1
and separated by the shard Σn(` + 1, r − 1, ]`+ 1, r − 1[ , ∅) which forces Σn(`, r, ]`, r[ , ∅) and
is therefore retained by ≡ as Σn(`, r, ]`, r[ , ∅) is maximal in Σ×≡. In this family of permutations,
the index sets J = ]`, r − 1[ and M = ]`+ 1, r − 1[ are initial intervals of all the permutations,
whileK = [1, r[ is an initial interval of σ′ and L = ]`, n] is an initial interval of π′. Therefore, this
chamber contains all the rays C(J), C(K), C(L) and C(M) and is adjacent to the one studied
above.

We now analyze the linear dependence induced by the rays labeled by I , J , K, L and M .
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Claim 2.3.5 (Linear Dependence for IJKLM). The ray vectors r(I), r(J), r(K), r(L) and r(M)
satisfy the equation r(I) + r(J) = r(K) + r(L) + r(M).

Proof. We recall that the ray vectors are given by r(S) = |S| ·1−n ·1S . The needed cardinalities
are |I| = |J | = r−`−2 and |K| = r−1 and |L| = n−` and |M | = r−`−3. so |K|+|L|+|M | =
2(r − `− 2) + n. We deduce the following sums of ray vectors:

r(I) + r(J) = 2 · (r − `− 2) · 1− n · 1I − n · 1J
r(K) + r(L) + r(M) = 2 · (r − `− 2) · 1 + n · 1− n · 1K − n · 1L − n · 1M

Due to the overlapping intervals, we find that 1K + 1L = 1[n] + 1I + 1J − 1M , and conclude
that r(I) + r(J) = r(K) + r(L) + r(M), proving our claim.

Next, we examine the behaviour of the permutahedron height function with respect to the wall-
crossing inequality induced by these linearly dependent rays.

Claim 2.3.6 (Wall-Crossing Inequality for IJKLM). The height function h◦ of the permutahe-
dron Permn satisfies the inequality h◦(I) + h◦(J) ≤ h◦(K) + h◦(L) + h◦(M).

Proof. We recall that the height function of Permn is given by h◦(S) = n
2 |S| · (n− |S|). For the

values of this function, we obtain

h◦(I) + h◦(J) = n(r − `− 2)(n− r + `+ 2)

= n
(
nr − n`− 2n− `2 − r2 − 4`+ 4r + 2`r − 4

)
h◦(K) + h◦(L) + h◦(M) = n

2 · ((r − 1)(n− r + 1) + (n− `)`)
+ n

2 · (r − `− 3)(n− r + `+ 3)

= n
2 ·
(
nr − r2 + r − n+ r − 1 + n`− `2

)
+ n

2 ·
(
nr − n`− 3n− `2 + 2`r − 6`− r2 + 6r − 9

)
= n ·

(
nr − `2 − r2 − 2n+ `r − 3`+ 4r − 5

)
and conclude that

h◦(I) + h◦(J)− h◦(K)− h◦(L)− h◦(M) = n (−n`− `+ `r + 1)

= n`(r − n) + n(1− `)
≤ 0,

where the last inequality holds because neither summand is positive as 1 ≤ ` < r ≤ n.

This completes our preparations for the proof of Theorem 2.3.7, our main statement in this
section.

Theorem 2.3.7 (Removahedral Congruences are Permutree Congruences). All essential remova-
hedral congruences on the lattice of regions of the braid arrangement are permutree congruences.

Proof. Combining Claim 2.3.3, Claim 2.3.4, Claim 2.3.5 and Claim 2.3.6, we assumed that there
was an essential lattice congruence ≡ of the weak order on Sn that was removahedral, but not a
permutree congruence. We showed that there are adjacent chambers C1 and C2 of the quotient
fan F≡, which both contain r(K), r(L) and r(M), with one of them containing r(I) and the
other one containing r(J). These adjacent chambers of the quotient fan induce a wall-crossing
inequality h◦(I) +h◦(J) > h◦(K) +h◦(L) +h◦(M) which is violated by the height function of
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the permutahedron Permn. Therefore, the quotient fan F≡ cannot be obtained from the braid fan
just by deleting inequalities from anH-description of the permutahedron Permn. In consequence,
the congruence ≡ cannot be removahedral, which contradicts our assumption.

2.3.2 Permutree Congruences are Strongly Removahedral

We now introduce a stronger criterion for certain congruences on Pos( ~A) which we call strongly
removahedral.

Definition 2.3.8 (Strongly Removahedral Congruence). Let ≡ be a removahedral lattice congru-
ence of the weak order on Sn. The congruence ≡ is called strongly removahedral if its quotient
fan F≡ can be obtained from any polytope P whose normal fan is the braid fan by deleting in-
equalities of theH-description of P.

It has been established that every permutree congruence is removahedral. In the rest of this
section, we will show that every permutree congruence is in fact strongly removahedral. We start
by describing the combinatorial structure behind any two adjacent chambers of the permutree fan.

Proposition 2.3.9 (Rays of Adjacent Chambers of the Permutree Fan). Let δ be a permutree
decoration with associated permutree fan Fδ. Let R and S be two sets of standard ray vectors
of the braid fan such that the two associated chambers cone(R) and cone(S) of Fδ are adjacent.
Let ∅ ( I, J ( [n] be the two index sets such that R \ S = {r(I)} and S \R = {r(J)}. Then
both braid fan rays C(I ∩ J) and C(I ∪ J) are rays of Fδ and both are included in cone(R∩ S).
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Figure 2.2: The rotation from TR to TS . [Picture from [APR20]]

Proof. Let TR and TS be the two δ-permutrees whose chambers in the permutree fan Fδ
are C(TR) = cone(R) and C(TS) = cone(S). As these chambers are adjacent, there is an
edge i → j of TR that is rotated to the edge j → i in TS . We assume that i < j (otherwise, we
swap the roles of I and J in the following argument). We denote by U , D, L, L, R, R the subtrees
of TR and TS as illustrated in Figure 2.2. We remark that not all of the subtrees L, L, R, R have
to exist if δi 6= or δj 6= . In this case, we assume the respective subtree to be empty.

We recall from Observation 1.7.21 that the standard ray vectors of the chamber C(TR) are
exactly the vectors |I| · 1J − |J | · 1I for all edge cuts (I ‖ J) of TR. According to Theorem 1.7.7,
the edge cuts of TR and those of TS are the same except for the one corresponding to the edge
between i and j. We obtain that I = {i} ∪ D ∪ L ∪ L and J = {j} ∪ D ∪ R ∪ R. We deduce
that I ∩ J = D and I ∪ J = [n] \ U (as I ∪ J = {i, j} ∪D ∪ L ∪ L ∪R ∪R).

But both (D ‖ [n] \D) and ([n] \ U ‖ U) are edge cuts in both δ-permutrees TR and TS . There-
fore, the corresponding rays C(I ∩ J) and C(I ∪ J) are rays of the δ-permutree fan Fδ and both
ray vectors r(I ∩ J) and r(I ∪ J) are elements of the intersection R ∩ S.

We deduce that the wall-crossing-inequalities used to describe a permutree fan Fδ are all of a
certain form.
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Corollary 2.3.10 (Wall-Crossing Inequalities of a Permutree Fan). All wall-crossing inequalities
of the δ-permutree fan Fδ are of the form h(I) + h(J) > h(I ∩ J) + h(I ∪ J) with the usual
convention that h(∅) = h([n]) = 0.

Proof. We saw that any two adjacent chambers of the δ-permutree fan Fδ satisfy a linear depen-
dence of the form r(I) +r(J) = r(I ∩J) +r(I ∪J). The corresponding wall-crossing inequality
then is of the form h(I) + h(J) > h(I ∩ J) + h(I ∪ J). As this holds for any pair of adjacent
chambers, all wall-crossing inequalities of the δ-permutree fan Fδ are of this form.

We are now ready to deduce the main result of this section. We can start from any polytope
whose normal fan is the braid fan (equivalently, any strict submodular function as stated in The-
orem 1.6.5) and build a permutreehedron for any decoration δ just by removing the inequalities
corresponding to those rays of the braid fan that are not rays of the permutree fan.

Corollary 2.3.11 (Permutreehedra from Strictly Submodular Functions). Let h : 2[n] → R≥0 be
a strictly submodular function with h(∅) = h([n]) = 0 and let δ ∈ { , , , }n be a decoration
of length n. Then the δ-permutree fan Fδ is the normal fan of the polytope

PTh
δ :=

{
x ∈ HnΣ

∣∣∣∣∣ ∑
i∈I

xi ≤ h(I) for all I ∈ Iδ

}
,

where Iδ := {∅ ( I ( [n] | r(I) is a ray of Fδ} is characterized by Corollary 2.2.6. In particular,
any permutree congruence ≡δ is strongly removahedral.

By combining this result with Theorem 2.3.7, we may conclude that every essential remova-
hedral congruence is in fact a strongly removahedral congruence. This does not mean that we
can construct every removahedron by deleting inequalities from the H-description of an arbitrary
polytope whose normal fan is the braid fan, as our new statements only concern those removahedra
that are associated with a lattice congruence.

2.4 Type Cones of Permutree Fans

This section is dedicated to giving a complete facet description of the type cone TC(Fδ) associ-
ated to the permutree fan Fδ. We start by analyzing the pairs of rays that induce wall-crossing
inequalities.

2.4.1 Exchangeable Rays

Proposition 2.3.9 implies that any two adjacent chambers cone(R) and cone(S) of the permutree
fan Fδ with R \ S = {r(I)} and S \ R = {r(J)} have a linear dependence that does not depend
on R and S, but only on r(I) and r(J). This property of a fan is called the unique exchange
property in [PPPP19]. We call a pair of rays exchangeable if their ray vectors r(I) and r(J) are
associated in this way. It allows us to completely describe the type cone using only inequalities
associated with exchangeable rays.

We therefore first identify the pairs of exchangeable rays of Fδ. We consider two index sets ∅ (
I, J ( [n] such that C(I) and C(J) are rays of the δ-permutree fan Fδ, as we characterized them
in Corollary 2.2.6.
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Proposition 2.4.1 (Exchangeable Rays in the Permutree Fan). The pair {C(I), C(J)} of rays in
the permutree fan Fδ is exchangeable if and only if all of the following hold.

(i) i := max(I \ J) < min(J \ I) =: j,
(ii) I \ J = {i} or δi 6= ,

(iii) J \ I = {j} or δj 6= ,
(iv) ]i, j[ ∩ δ− ⊆ (I ∩ J),
(v) ]i, j[ ∩ δ+ ∩ (I ∩ J) = ∅.

We first look at the pairs of exchangeable rays in an example.

Example 2.4.2. For the decorations of Figure 1.15, Figure 1.17 and Figure 1.18, the pairs of
exchangeable rays of F are labeled by the following pairs of subsets.
• {{1}, {2}},
• {{1}, {3}},
• {{1}, {3, 4}},
• {{1, 2}, {1, 3}},
• {{1, 2}, {1, 3, 4}},
• {{1, 2}, {2, 3}},
• {{1, 2}, {2, 3, 4}},

• {{1, 2, 3}, {1, 3, 4}},
• {{1, 2, 3}, {2, 3, 4}},
• {{1, 2, 3}, {4}},
• {{1, 3}, {2, 3}},
• {{1, 3}, {3, 4}},
• {{1, 3}, {4}},
• {{1, 3, 4}, {2, 3, 4}},

• {{2}, {3}},
• {{2}, {3, 4}},
• {{2, 3}, {3, 4}},
• {{2, 3}, {4}},
• {{3}, {4}}.

The pairs of exchangeable rays of F are labeled by the following pairs of subsets.
• {{1}, {2, 3, 4}},
• {{1, 2}, {3, 4}},

• {{1, 2}, {4}},
• {{1, 2, 3}, {1, 2, 4}},

• {{1, 2, 3}, {4}},
• {{1, 2, 4}, {3, 4}}.

Example 2.4.3. In special cases of Proposition 2.4.1, we obtain the following pairs of exchange-
able rays in Fδ labeled by pairs of proper subsets {I, J} which have the following properties:
• If δ = n, the pairs of exchangeable rays are all the pairs of I = K ∪ {i} and J = K ∪ {j}

for some 1 ≤ i < j ≤ n and K ⊆ [n] \ {i, j}.
• If δ = n, the pairs are of the form I = [h, j[ and J = ]i, k] for 1 ≤ h ≤ i < j ≤ k ≤ n.

These pairs correspond to the pairs of intersecting internal diagonals of the (n+2)-gon labeled
by (h− 1, j) and (i, k + 1).
• If δ = n, the pairs are of the form I = [1, i] and J = ]i, n] for 1 ≤ i < n.

We now proceed by proving Proposition 2.4.1. We recall from Section 1.7.1 that a red wall is
drawn above the nodes of δ+ to separate their left and right ancestor subtrees and below the nodes
of δ− to separate their left and right descendant subtrees.

Proof of Proposition 2.4.1. In the first part of the proof, we show that the conditions in Proposi-
tion 2.4.1 are necessary for the rays C(I) and C(J) to be exchangeable in the δ-permutree fan Fδ.
We follow the notation introduced in the proof of Proposition 2.3.9.

(i) We recall that we had set I = {i} ∪D ∪ L ∪ L and J = {j} ∪D ∪ R ∪ R. As we know
that max(L ∪ L) < i < j < min(R ∪R), we obtain i = max(I \ J) and j = min(J \ I).

(ii) If δi = , both subtrees L and L are empty. We obtain I \ J = {i} ∪ L ∪ L = {i}.
(iii) If δj = , both subtrees R and R are empty. We obtain J \ I = {j} ∪R ∪R = {j}.
(iv) If there is some index k ∈ ]i, j[ with k ∈ δ− and k 6∈ I ∩ J , then the δ-permutree edge

connecting i and j crosses the red wall below k.
(v) If there is some index k ∈ ]i, j[ with k ∈ δ+ and k ∈ I ∩ J , then the δ-permutree edge

connecting i and j crosses the red wall above k.
For the opposite direction of the proof, we assume that I and J satisfy the conditions of

both Corollary 2.2.6 and Proposition 2.4.1. We will construct two δ-permutrees T and S which
are related by the rotation of the edge connecting i and j, whose edge cut in T is (I ‖ [n] \ I) and
whose edge cut in S is (J ‖ [n] \ J).
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In a first step, we fix permutrees that follow the decoration δ on certain sets of indices.
• D on the restriction of δ to I ∩ J ,
• U on the restriction of δ to [n] \ (I ∪ J),

• L on the restriction of δ to (I \ {i}) \ J ,
• R on the restriction of δ to (J \ {j}) \ I .

We use these smaller permutrees to construct an oriented tree T on [n]. We start with a directed
edge i→ j and place the small permutrees around it in the following way.
• If i ∈ δ−, we make L the left descendant subtree of i and D the right descendant subtree of i.
• If i 6∈ δ−, we make L the left ancestor subtree of i and D the only descendant subtree of i.
• We make U an ancestor subtree of j (the left one if j ∈ δ+).
• We make R the right descendant subtree of j if j ∈ δ−, else the right ancestor subtree of j.
We remark that there is only one way to place these subtrees. To place D if i ∈ δ−, we have

to connect the leftmost upper blossom of D to the right lower blossom of i (to the only lower
blossom if i 6∈ δ−.

Next, we will show that the conditions of Corollary 2.2.6 and Proposition 2.4.1 make sure that T
is a δ-permutree. First of all, we remark that T is indeed a tree as L is empty if δi = and R
is empty if δj = due to the second condition of Proposition 2.4.1. We therefore need to show
that the edges of T neither cross any red wall below a node k ∈ δ− nor any red wall above any
node k ∈ δ+.

First of all, the nodes in L are all smaller than i and the nodes in R are all larger than j by the
first condition. Therefore, there is no red wall below those nodes of U between i and j due to the
fourth condition and no red wall above those nodes ofD between i and j due to the fifth condition.
We deduce that the edge from i to j does not cross any red wall.

We now consider an edge from ` to `′, both elements of L ∪ {i} with ` < `′. This edge does
not cross any red wall induced by a node r of R ∪ {j} since `′ ≤ i < j ≤ r. It does not cross
any red wall induced by a node u of U since otherwise, we would have ` < u < `′ with `, `′ ∈ I
and u ∈ δ−\I , in contradiction to Corollary 2.2.6 Similarly, it does not cross any red wall induced
by a node d of D since otherwise, we would have ` < d < `′ with `, `′ 6∈ J and d ∈ δ+ ∩ J ,
in contradiction to Corollary 2.2.6 Similarly, we can prove that no edge in D ∪ {i} or U ∪ {j}
or R ∪ {j} crosses any red wall. Therefore, T is a δ-permutree.

We finally denote by S the δ-permutree obtained by rotating the edge i → j of T . As a result
of this construction, the edge i→ j induces the edge cut (I ‖ [n] \ I) in T , while the edge j → i
induces the edge cut (J ‖ [n] \ J) in S. In consequence, the δ-permutrees T and S correspond
to adjacent chambers of the δ-permutree fan Fδ and the rays C(I) and C(J) are exchangeable in
these chambers.

We want to calculate the number of pairs of exchangeable rays in the δ-permutree fan Fδ. We
first introduce an auxiliary function Ω.

Definition 2.4.4 (Omega Function). For a sequence (δ1 . . . δk) of decoration symbols , , , ,
we define the function Ω inductively by Ω() = 1 for the empty sequence and

Ω(δ1 . . . δk) :=


2 · Ω(δ1 . . . δk−1) if δk = ,

1 + Ω(δ1 . . . δk−1) if δk ∈ { , },
2 if δk = .

We then define the functions Ω and Ω for a sequence (δ1 . . . δi) by

Ω (δ1 . . . δi) :=

{
1 if δi = ,

Ω(δ1 . . . δi−1) if δi 6= ,

Ω (δ1 . . . δi) :=

{
Ω(δ1 . . . δi−1) if δi = ,

1 if δi 6= .
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We can visualize the mechanism behind the function Ω in the following way: We start with a
trivial binary tree containing nothing but a root node. Then each step of the construction can be
visualized as the construction of a new binary tree based on the one obtained in the previous step.
• If δk = , the root node has two copies of the previous tree as children.
• If δk ∈ { , }, one child of the root is a leaf while the other is a copy of the previous tree.
• If δk = , both children of the root are leafs.

Then Ω equals the number of leafs of the binary tree obtained after the last step, while for Ω , we
either keep this number or replace it by one if the last symbol is and for Ω , we either keep this
number or replace it by one if the last symbol is different from .

Regardless of this illustration, we can use the function to count all pairs of exchangeable rays
for a given permutree decoration δ.

Corollary 2.4.5 (Number of Pairs of Exchangeable Rays). Let δ be a permutree decoration of
length n. The number χ(δ) of pairs of exchangeable rays in the permutree fan Fδ is

χ(δ) =
∑

1≤i<j≤n
∀k∈]i,j[: δk 6=

Ω (δ1 . . . δi) · 2|{k∈]i,j[ | δk= }| · Ω (δn . . . δj).

Example 2.4.6. For the decorations of Figure 1.15, Figure 1.17 and Figure 1.18, we ob-
tain χ( ) = 19 and χ( ) = 6.

Example 2.4.7. We study the consequences of Corollary 2.4.5 for certain simple decorations.
• If δ = n, then the associated permutree fan F n = Fn is the braid fan, and its number of

pairs of exchangeable rays is 2n−1 ·
(
n
2

)
.

• If δ = n, then the asociated permutree fan F n has
(
n+2

4

)
pairs of exchangeable rays. This

equals the number of quadruples of vertices of the (n+ 2)-gon.
• If δ = n, then the associated permutree fan F n has n− 1 pairs of exchangeable rays.

After looking at these examples, we will now prove the statement about the number of pairs of
exchangeable rays in a permutree fan as stated in Corollary 2.4.5.

Proof of Corollary 2.4.5. We recall from Corollary 2.2.6 that the rays of the δ-permutree fan Fδ
are labeled by those index sets ∅ ( I ⊆ [n] where for all 1 ≤ a < b < c ≤ n, whenever a, c ∈ I ,
then b 6∈ δ− \ I and whenever a, c 6∈ I , then b 6∈ δ+ ∩ I . Furthermore, Proposition 2.4.1 gives
us a condition for when two such index sets labeling rays of the permutree fan form a pair of
exchangeable rays of Fδ. We count the number of ways to build two index sets I and J that both
label rays of the permutree fan Fδ that are exchangeable.
• First, we choose two indices 1 ≤ i < j ≤ n. We will shape I and J such that i = max(I \J)

and j = min(J \ I). This ensures that they satisfy Corollary 2.2.6 (i).
• For each k ∈ ]i, j[, the aforementioned condition max(I \ J) = i < k < j = min(J \ I)

implies that either k ∈ I ∩ J or k ∈ [n] \ (I ∪ J). We have two restrictions: If k ∈ δ−,
we need k ∈ I ∩ J due to Proposition 2.4.1 (iv). If k ∈ δ+, we need k ∈ [n] \ (I ∪ J) due
to Proposition 2.4.1 (v). Depending on the decoration δ, the following cases are possible.
◦ If δk = , there is no such pair of index sets. This explains the condition on the sum.
◦ If δk = , we need k ∈ I ∩ J , leaving us no choice.
◦ If δk = , we need k ∈ [n] \ (I ∪ J), leaving us no choice.
◦ If δk = , we are free to choose either k ∈ I ∩ J or k ∈ [n] \ (I ∪ J).

Combining these choices over all k ∈ ]i, j[, the number of choices is obtained by multiplying
a 2 for each k ∈ ]i, j[ that has δk = , giving a us 2|{k∈]i,j[ | δk= }| choices.
• For each k ∈ [1, i[, we first note that we cannot have k ∈ J \ I as k < i < j = min(J \ I).

Furthermore, if δi = , then we cannot have k ∈ I \ J due to Proposition 2.4.1 (ii).
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We take a look at the conditions imposed by Corollary 2.2.6. If i ∈ δ+, then we need that i <
min([n]\I) as the alternative max([n]\I) < i is impossible due to i < j ∈ [n]\I . Therefore,
if i ∈ δ+, we are forced to have k ∈ I for all k ∈ [1, i[. Analogously, if i ∈ δ−, we are forced
to have k 6∈ J . This narrows down our choices as follows, depending on the symbol δi.
◦ If δi = , we are forced to have k ∈ I \ J .
◦ If δi = , we are forced to have k 6∈ J with either k ∈ I or k 6∈ I .
◦ If δi = , we are forced to have k ∈ I with either k ∈ J or k 6∈ J .
◦ If δi = , we have either k ∈ I ∩ J or k ∈ [n] \ (I ∪ J).

Therefore, if δi = , this determines the assignment of all indices in [1, i[ to the sets I and J .
Otherwise, our choices are limited further by the conditions imposed by Corollary 2.2.6.
◦ If k ∈ δ− with k 6∈ I , then k < min(I), so all indices < k have to be excluded from I .
◦ If k ∈ δ− with k 6∈ J , then k < min(J), so all indices < k have to be excluded from J .
◦ If k ∈ δ+ with k ∈ I , then k < min([n] \ I), so all indices < k have to be included in I .
◦ If k ∈ δ+ with k ∈ J , then k < min([n]\J), so all indices < k have to be included in J .

Then the Omega function from Definition 2.4.4 counts the number of ways in which we can
decide for each index k ∈ [1, i[ whether it should be included in I or J or both or none. We
recall that as δi ∈ { , , }, we have exactly two valid choices for each of these positions,
which are not independent.
◦ Whenever δk = , we double the number of valid combinations on the smaller indices

as neither of our choices imposes a constraint.
◦ Whenever δk ∈ { , }, one of our choices keeps up all the previous combinations, while

the other choice forces us to use one specific combination on the smaller indices.
◦ Whenever δk = , each of our choices forces us to use one specific combination on the

smaller indices.
Therefore, the function Ω(δ1 . . . δi−1) gives the number of valid assignments of the indices
in [1, i[ to the sets I and J . The function Ω (δ1 . . . δi) either keeps this value or replaces it
by 1 in the case where δi = .
• The choices for k ∈ ]j, n] are counted analogously to those for k ∈ [1, i[.

2.4.2 Facets of the Type Cone

Due to the unique exchange property of the δ-permutree fan Fδ, every pair of exchangeable rays
of Fδ yields a wall-crossing inequality for the type cone TC(Fδ). When collecting all these
inequalities, some of them are redundant. Regarding the geometry of the type cone, this means that
these inequalities do not define facets of TC(Fδ). We can characterize those pairs of exchangeable
rays that do define a facet of TC(Fδ) by criteria similar to those given in Proposition 2.4.1. In fact,
conditions (i), (iv) and (v) are identical, only conditions (ii) and (iii) are slightly stricter.

Proposition 2.4.8 (Facets of the Permutree Type Cone). The pair {C(I), C(J)} of rays in the
permutree fan Fδ is exchangeable and defines a facet of the type cone TC(Fδ) if and only if all of
the following hold.

(i) i := max(I \ J) < min(J \ I) =: j,
(ii) I \ J = {i} or δi = ,

(iii) J \ I = {j} or δj = ,
(iv) ]i, j[ ∩ δ− ⊆ (I ∩ J),
(v) ]i, j[ ∩ δ+ ∩ (I ∩ J) = ∅.

Example 2.4.9. For the decorations of Figure 1.15, Figure 1.17 and Figure 1.18, the facets of the
type cone TC(F ) correspond to rays labeled by the pairs of subsets
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• {{1}, {2}},
• {{1}, {3}},
• {{1, 2}, {1, 3}},
• {{1, 2}, {2, 3}},

• {{1, 2, 3}, {1, 3, 4}},
• {{1, 2, 3}, {2, 3, 4}},
• {{1, 3}, {2, 3}},
• {{1, 3}, {3, 4}},

• {{1, 3, 4}, {2, 3, 4}},
• {{2, 3}, {3, 4}},
• {{3}, {4}}.

The facets of the type cone TC(F ) correspond to rays labeled by the subsets
• {{1}, {2, 3, 4}},
• {{1, 2}, {4}},

• {{1, 2, 3}, {1, 2, 4}},
• {{1, 2, 4}, {3, 4}}.

Example 2.4.10. As special cases of Proposition 2.4.8, we find that the pairs of echangeable rays
of Fδ described in Example 2.4.3 define facets of the type cone TC(Fδ) when δ = n or δ = n.
If δ = n, the facets of the type cone TC(F n) are induced by pairs of rays labeled [i, j[ and ]i, j]
for some 1 ≤ i < j ≤ n. These pairs correspond to intersecting internal diagonals (i − 1, j)
and (i, j + 1) of the (n+ 2)-gon, which differ only by a shift.

Observation 2.4.11 (Index Set Intervals and Type Cone Facets). By combining Corollary 2.2.6
and Proposition 2.4.8 (ii)-(iii), we can say something more about pairs of index sets that induce
facets of the type cone.
• The interval [1, i[ is included
◦ in I \ J if δi = ,
◦ in [n] \ (I ∪ J) if δi = ,
◦ in I ∩ J if δi = .

• The interval ]j, n] is included
◦ in J \ I if δj = ,
◦ in [n] \ (I ∪ J) if δj = ,
◦ in I ∩ J if δj = .

In particular, we obtain that I \J is either {i} or [1, i], and J \I is either {j} or [j, n]. However,
these conditions are not sufficient, as for example I = {1, 2} and J = {3} do not label a pair of
rays that induces a facet of the type cone.

Proof of Proposition 2.4.8. We consider two index sets I, J that satisfy the conditions of Corol-
lary 2.2.6 and label a pair of exchangeable rays as stated in Proposition 2.4.1. We will show that
they satisfy the stronger conditions of Proposition 2.4.8 (ii)-(iii) if and only if the wall-crossing
inequality corresponding to the exchange of C(I) and C(J) defines a facet of the permutree type
cone TC(Fδ). This gives us two statements to prove:

1. If I, J do not satisfy Proposition 2.4.8 (ii)-(iii), then the wall-crossing inequality induced
by I and J can be expressed as the sum of wall-crossing inequalities induced by other pairs
of exchangeable rays.

2. If I, J satisfy Proposition 2.4.8 (ii)-(iii), then there is a point in the ambient space of the
type cone that satisfies all wall-crossing inequalities induced by pairs of exchangeable rays
of Fδ except for the one induced by the pair {I, J}.

We start by proving the first of these two statements. Let I, J be two index sets that label a
pair of exchangeable rays of the permutree fan (thus satisfying the conditions of Corollary 2.2.6
and Proposition 2.4.1 (ii)-(iii)), but fail to satisfy Proposition 2.4.8 (ii)-(iii). Then at least one of
the following holds:
• |I \ J | > 1 and δi 6= , • or |J \ I| > 1 and δj 6= .
As I and J satisfy Proposition 2.4.1 (ii)-(iii), in both these cases, δi 6= (resp. δj 6= ) has to

hold. Therefore, at least one of the following holds:
• |I \ J | > 1 and δi ∈ { , }, • or |J \ I| > 1 and δj ∈ { , }.
We will examine the consequences of the case where |I \ J | > 1 and δi = , while the other

cases are symmetric. We first set, as usual,
• i := max(I \ J),
• j := min(J \ I),

• D := I ∩ J ,
• U := [n] \ (I ∪ J),

• L := (I \ J) \ {i},
• R := (J \ I) \ {j}.

As done in the proof of Proposition 2.4.1, we choose a suitable permutree onD, U , L andR and
construct δ-permutrees T and S such that the rotation from T to S exchanges the rays labeled by I
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Figure 2.3: Some rotations in δ-permutrees. The third column is a combination of rotations of the
form given in the fourth column. [Picture from [APR20]]

and J . See Figure 2.3 for an illustration of S, T and the δ-permutrees V , W , X and Y constructed
similarly. Note that the subtree R is drawn at the same level as the node j, and can be the right
ancestor or right descendant subtree of j, depending on whether δj = or δj = . We will now
examine the rotations in Figure 2.3 and see which wall-crossing inequalities they induce.
• The trees S and T .

We already know that the inequality induced by the pair {I, J} is

h(I) + h(J) > h(I ∩ J) + h(I ∪ J).

• The trees V and W .
We first note that both have δi = , so both V and W are δ-permutrees as well. In the tree V ,
the leftmost lower blossom of L is connected to j. In the tree W , the leftmost lower blossom
of L is connected to i. The rightmost upper blossom of L is connected to the blossom of U
which used to be connected to j in the tree T . If we set I ′ := D ∪ {i} = (I ∩ J) ∪ {i}, then
the edge cut induced by i→ j in V is (I ′ ‖ [n] \ I ′) and the edge cut induced by j → i in W
is (J ‖ [n] \ J) as D ∪R ∪ {j} = J . This gives us the inequality

h(I ′) + h(J) > h(I ∩ J) + h(I ∪ J).

• The trees X and Y .
Clearly, Y is a δ-permutree as it is equal to V . By the same arguments, X is a δ-permutree
as well. If both i and j are connected to the same node of L, then rotating the edge joining L
and j relates X and Y . Otherwise, this rotation moves a part of L in between j and U
and leaves the remaining part of L between i and j. This yields a sequence of rotations
between the δ-permutrees Xk and Yk as illustrated in Figure 2.3, where we set X1 := X
and Xk+1 := Yk in every step. Each of these is a δ-permutree where we have a partition of L
into the lower part Lk and the upper part Lk. Then Lk+1 is obtained from Lk by deleting the
node connected to j in Xk and all its left ancestors and descendants. This way, we will finally
end up with Yp = Y .
We set J ′ := J ∪ {i} = R ∪ D ∪ {j} ∪ {i} and recall that I ′ = D ∪ {i}. Each of the
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above rotations relates the ray labeled by I ′ ∪ Lk to the ray labeled by J ′ ∪ Lk+1, where
the intersection of these two sets is I ′ ∪ Lk+1 and their union is J ′ ∪ Lk. This gives us one
wall-crossing inequality per step, each of the form

h(I ′ ∪ Lk) + h(J ′ ∪ Lk+1) > h(I ′ ∪ Lk+1) + h(J ′ ∪ Lk)

in each step. Summing up all these inequalities, due to the fact that L1 = L and Lp = ∅, as
well as I ′ = I ∩ J ′ and J ′ ∪ L = I ∪ J ′, we obtain the inequality

p−1∑
k=1

h(I ′ ∪ Lk) +

p∑
k=2

h(J ′ ∪ Lk) >

p∑
k=2

h(I ′ ∪ Lk) +

p−1∑
k=1

h(J ′ ∪ Lk)

h(I ′ ∪ L1) + h(J ′ ∪ Lp) > h(I ′ ∪ Lp) + h(J ′ ∪ L1)

h(I) + h(J ′) > h(I ∩ J ′) + h(I ∪ J ′).

If we sum up the wall-crossing inequality induced by the pair {I ′, J} and the wall-crossing
inequality induced by the pair {I, J ′}, recalling that I ∩ J ′ = I ′ and I ′ ∪ J = J ′, we obtain

h(I ′) + h(J) + h(I) + h(J ′) > h(I ∩ J) + h(I ∪ J) + h(I ∩ J ′) + h(I ∪ J ′)
h(I) + h(J) > h(I ∩ J) + h(I ∪ J).

We have therefore shown that the wall-crossing inequality h(I) +h(J) > h(I ∩J) +h(I ∪J)
induced by the pair {I, J} is nothing but the sum of the wall-crossing inequalities induced by the
rotation from V to W and the stepwise rotation from X to Y . In consequence, the pair of I and J
does not define a facet of the type cone TC(Fδ). This concludes our proof for the first statement.

It is left to show that if the pair {I, J} satisfies Proposition 2.4.8 (ii)-(iii), then there is a point
in the ambient space of the type cone that satisfies all wall-crossing inequalities induced by pairs
of exchangeable rays of Fδ except for the one induced by the pair {I, J}.

We first introduce some notations and definitions. For any finite set S, we denote its power
set (the set containing all subsets of S) by P(S) := {X ⊆ S}. For two finite sets A,B, we
define ∇(A,B) := P(A ∪ B) \ (P(A) ∪ P(B)) to be the set of all subsets that contain at least
one element of both A \ B and B \ A. We write A G B if neither A \ B not B \ A are empty.
If A G B, we observe that
• A ∪B is the inclusion-maximal element of∇(A,B),
• A and B are inclusion-maximal among the subsets of A ∪B not included in∇(A,B),
• the two-element sets contained in ∇(A,B) are precisely the unordered pairs {a, b} for any

combination of a ∈ A \B and b ∈ B \A.
Moreover, given two pairs of finite sets {A,B} and {C,D} with A G B and C G D, we obtain

the following statements.
• If ∇(A,B) = ∇(C,D), then A ∪B = C ∪D and {A \B,B \A} = {C \D,D \ C},

so {A,B} = {C,D} are in fact the same pair of sets.
• If ∇(A,B) ⊆ ∇(C,D), then A ∪B ⊆ C ∪D, and up to exchanging C and D, we

have A \B ⊆ C \D and B \A ⊆ D \ C.
Furthermore, we will build the type cone TC(Fδ) in the space RIδ indexed by those index

sets I ∈ Iδ that label rays of the permutree fan Fδ. We denote by (gM )M∈Iδ the standard
basis of this space. Given our pair of subsets {I, J} labeling a pair of exchangeable rays, we
set n(I, J) := gI + gJ − gI∩J − gI∪J to be the normal vector of the wall-crossing inequality
associated to that pair. Our task now is to find a point p ∈ RIδ such that
• 〈p |n(I, J)〉 < 0 for our pair {I, J},
• 〈p |n(K,L)〉 ≥ 0 for any other pair {K,L} satisfying the conditions of Proposition 2.4.8.
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To achieve this, we define three auxiliary vectors x,y, z ∈ RIδ as follows:

x :=−
∑
M∈Iδ

|P(M) \ ∇(I, J)| · gM ,

y :=−
∑
M∈Iδ

|P(M) ∩∇(I, J)| · gM ,

z :=− n(I, J).

We construct the point p ∈ RIδ as p := λx + µy + z, where λ ∈ R is an arbitrary scalar
such that λ > |〈z |n(K,L)〉| for any pair {K,L} of subsets and µ ∈ R is an arbitrary scalar such
that 0 < µ |∇(I, J)| < 〈z | z〉. We will prove that this point p satisfies the desired inequalities.

For this, let {K,L} be a pair of index sets satisfying Proposition 2.4.8 (ii)-(iii). We analyze
the scalar product of the point p with the normal vector n(K,L) associated to the pair {K,L}.
We do so by analyzing the scalar products of x, y and z with n(K,L). We first note that due to
inclusion-exclusion, we have |∇(K,L)| = |P(K ∪ L)| − |P(K)| − |P(L)|+ |P(K ∩ L)|. This
helps us with the following calculations.

〈x |n(K,L)〉 =xK + xL − xK∩L − xK∪L

=− |P(K) \ ∇(I, J)| − |P(L) \ ∇(I, J)|
+ |P(K ∪ L) \ ∇(I, J)|+ |P(K ∩ L) \ ∇(I, J)|

= |∇(K,L) \ ∇(I, J)|
〈y |n(K,L)〉 =yK + yK − yK∩L − yK∪L

=− |P(K) ∩∇(I, J)| − |P(L) ∩∇(I, J)|
+ |P(K ∪ L) ∩∇(I, J)|+ |P(K ∩ L) ∩∇(I, J)|

= |∇(K,L) ∩∇(I, J)|
〈z |n(K,L)〉 =− 〈n(I, J) |n(K,L)〉

=− 〈gI + gJ − gI∪J − gI∩J |gK + gL − gK∪L − gK∩L〉

We can now evaluate the scalar product of p with the normal vector associated to the facet defined
by a pair of index sets {K,L} and, in particular, the pair of index sets {I, J}.

〈p |n(K,L)〉 = λ · |∇(K,L) \ ∇(I, J)|+ µ · |∇(K,L) ∩∇(I, J)|+ 〈z |n(K,L)〉
〈p |n(I, J)〉 = λ · |∇(I, J) \ ∇(I, J)|+ µ · |∇(I, J) ∩∇(I, J)|+ 〈z |n(I, J)〉

= 0 + µ · |∇(I, J)| − 〈z | z〉 < 0,

where the final inequality is due to the definition of µ (which implies µ · |∇(I, J)| < 〈z | z〉). To
evaluate 〈p |n(K,L)〉, we distinguish the cases where∇(K,L) is a subset of∇(I, J) or not:
• If∇(K,L) 6⊆ ∇(I, J), then∇(K,L)\∇(I, J) is non-empty, so λ·|∇(K,L) \ ∇(I, J)| ≥ λ.

By definition, λ > |〈z |n(K,L)〉|, so

〈p |n(K,L)〉 =λ · |∇(K,L) \ ∇(I, J)|+ µ · |∇(K,L) ∩∇(I, J)|+ 〈z |n(K,L)〉
>µ · |∇(K,L) ∩∇(I, J)| ≥ 0.

• If ∇(K,L) ( ∇(I, J), then λ · |∇(K,L) \ ∇(I, J)| = 0. Furthermore, ∇(K,L) is
guaranteed to contain K ∪ L, so µ · |∇(K,L) ∩∇(I, J)| > 0. All we need to show is
that 〈z |n(K,L)〉 = 0 which can be reformulated as

〈gI + gJ − gI∪J − gI∩J |gK + gL − gK∪L − gK∩L〉 = 0,
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which is equivalent to {I, J, I ∪ J, I ∩ J} and {K, L, K ∪ L, K ∩ L} being disjoint.
Up to reversing the roles of I and J , we can set i := max(I \ J) < min(J \ I) =: j. We do
the same for k := max(K \ L) < min(L \K) =: `. As demonstrated when we introduced
the∇-notation, the fact that∇(K,L) ⊆ ∇(I, J) implies thatK\L ⊆ I\J and L\K ⊆ J \I ,
from which we deduce that k ≤ i < j ≤ `. As we know that the pair {I, J} satisfies the
condition Proposition 2.4.8 (ii), there are two possibilities.
◦ If I \ J = {i}, then ∅ ( K \ L ( I \ J implies that K \ L = {i} as well.
◦ If δi = , then k ≤ i implies that k = i (otherwise, there would be i ∈ ]k, `[ with i ∈
δ− ∩ δ+, contradicting Proposition 2.4.8 (iv)-(v)). We know from Observation 2.4.11
that [1, i[ ⊆ I \ J , so I \ J = [1, i] and, for the same reason, K \ L = [1, i] as well.

As a symmetric proof holds for the sets J \ I and L \K, we conclude that K \ L = I \ J
and L \ K = J \ I , where in particular, k = i and j = `. We are now ready to prove
that {I, J, I ∪ J, I ∩ J} and {K,L,K ∪ L,K ∩ L} are disjoint.
◦ As i ∈ I \ L and j ∈ L \ I , we have I 6∈ {L,K ∪ L,K ∩ L}. Similarly, we obtain J 6∈
{K,K ∪ L,K ∩ L} and K 6∈ {J, I ∪ J, I ∩ J} and L 6∈ {J, I ∪ J, I ∩ J}. If I = K,
then J = (J \ I) ∪ (I \ (I \ J)) = (L \K) ∪ (K \ (K \ L)) = L. Similarly, if J = L,
then I = K, but we assumed the pair {I, J} to be distinct from {K,L},
◦ It is left to show that {I ∪ J, I ∩ J} and {K ∪ L,K ∩ L} are not disjoint.
• Clearly, I ∪ J 6= K ∩ L as i ∈ I \ L.
• Similarly, I ∩ J 6= K ∪ L as j ∈ L \ I .
• If I∪J = K∪L, then I = (I∪J)\(J \I) = (K∪L)\(L\K) = K, contradiction.
• And if I ∩J = K ∩L, then I = (I ∩J)∪ (I \J) = (K ∩L)∪ (K \L) = K again.

This completes our argument that the two sets are disjoint.
So as {I, J, I ∪ J, I ∩ J} and {K,L,K ∪ L,K ∩ L} are disjoint, we have 〈z |n(K,L)〉 = 0
and therefore, 〈p |n(K,L)〉 > 0.

So the point p we picked proves that any pair of index sets {I, J} that satisfies the conditions
of Proposition 2.4.8 does indeed induce a facet of the type cone of the permutree fan.

2.4.3 Number of Facets of the Type Cone

Similarly to Corollary 2.4.5, we can count the number of facets of the type cone with the help of
the Ω function. The proof is almost identical to that of Corollary 2.4.5.

Corollary 2.4.12 (Number of Facets of the Permutree Fan Type Cone). The number φ(δ) of facets
of the type cone TC(Fδ) of the δ-permutree fan Fδ is

φ(δ) :=
∑

1≤i<j≤n
∀k∈]i,j[: δk 6=

Ω (δ1 . . . δi) · 2|{i<k<j | δk= }| · Ω (δn . . . δj).

Example 2.4.13. For the decorations of Figure 1.15, Figure 1.17 and Figure 1.18, we ob-
tain φ( ) = 12 and φ( ) = 4.

Example 2.4.14. Specializing Corollary 2.4.12, we obtain the following well-known numbers:
• If δ = n, then the type cone TC(F n) has 2n−2 ·

(
n
2

)
facets.

• If δ = n, then the type cone TC(F n) has
(
n
2

)
facets. This equals the number of quadrilat-

erals of the form (i− 1, i, j, j + 1) in the (n+ 2)-gon.
• If δ = n, then the type cone TC(F n) has (n− 1) facets.

The following is an immediate corollary of Corollary 2.4.12 for the case where the symbol
does not appear in the decoration.
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Corollary 2.4.15 (Number of Facets of Some Permutree Fan Type Cones). If δ ∈ { , , }n,
we have φ(δ) = |{1 ≤ i < j ≤ n | ∀k ∈ ]i, j[ : δk 6= }|.

2.4.4 Simplicial Type Cone

As we now know the number of facets of the type cone, we can determine when it is simplicial.

Corollary 2.4.16 (Simplicial Type Cone of the Permutree Fan). The type cone TC(Fδ) is simpli-
cial if and only if δj 6= for all k ∈ ]1, n[.

Proof. The type cone TC(Fδ) is simplicial if and only if the number ρ(δ) of rays of the fan Fδ
and the number φ(δ) of facets of the type cone TC(Fδ) satisfy the equality ρ(δ) = φ(δ) + n− 1.
We find formulas for ρ(δ) in Corollary 2.2.9 and for φ(δ) in Corollary 2.4.12:

ρ(δ)− n+ 1 =
∑

1≤i<j≤n
∀k∈]i,j[: δk 6=

2|{k∈]i,j[ | δk= }|

φ(δ) =
∑

1≤i<j≤n
∀k∈]i,j[: δk 6=

2|{k∈]i,j[ | δk= }| · Ω (δ1 . . . δi) · Ω (δn . . . δj)

As we know that the function Ω is ≥ 1 for any sequence of decoration symbols, the equal-
ity ρ(δ) = φ(δ) + n − 1 holds if and only if all factors Ω (δ1 . . . δi) and Ω (δn . . . δj) are one.
This is clearly the case if δk 6= for all k ∈ ]1, n[. Conversely, as soon as δk = for a k ∈ ]1, n[,
then Ω (δ1 . . . δk) > 1, so the equality does not hold.

2.4.5 All Permutreehedra

We can now apply Corollary 1.2.30 to obtain all realizations of the δ-permutree fan in the kine-
matic space (see [AHBHY18]) for the case where δ ∈ { , , }n. We assume that δ1 = δn = .
We remark that the decorations δ1 and δn are irrelevant in all decorations, so this assumption does
not lose generality.

Definition 2.4.17 (Sets for Permutreehedra in Kinematic Space). Given a permutree decoration δ
of length n, we define the set Fδ := {1 ≤ i < j ≤ n | ∀k ∈ ]i, j[ : δk = }. Moreover, we
set Rn := {0, 1} × [n]2 × {0, 1}. For each pair (i, j) ∈ Fδ and sign ε ∈ {+,−}, we define
the following numbers:

pεδ(i, j) :=

{
min ({j} ∪ (]i, j[ ∩ δε))− 1 if i ∈ δε,
i− 1 if i 6∈ δε,

qεδ(i, j) :=

{
max ({i} ∪ (]i, j[ ∩ δε)) + 1 if j ∈ δε,
j + 1 if j 6∈ δε,

sεδ(k) :=

{
1 if k ∈ δ+,

0 if k 6∈ δ+.

With these notations, we can fix a vector u ∈ RFδ
>0 and define a polytope Qδ(u).

Definition 2.4.18 (Permutreehedron in Kinematic Space). Let δ ∈ { , , }n be a permutree
decoration with δ1 = δn = and let u ∈ RFδ

>0. We define the polytope Qδ(u) to contain
all z ∈ RFδ

≥0 that satisfy all of the following conditions.
• If (p, q) 6∈ Fδ, then z(`,p,q,r) = 0 for all `, r ∈ {0, 1}.
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• If p+ 1 6= q, then z(`,p,q,r) = z(`′,p,q,r′) for all `, `′, r, r′ ∈ {0, 1}.
• If (i, j) ∈ Fδ, then z(1, p+δ (i,j), q−δ (i,j), 0) + z(0, p−δ (i,j), q+δ (i,j), 1)
− z(1−s−δ (i), p−δ (i,j+1), q−δ (i−1,j), 1−s−δ (j)) − z(s+δ (i), p+δ (i,j+1), q+δ (i−1,j), s+δ (j)) = u(i,j).

We obtain the following complete set of realizations of the δ-permutree fan Fδ.

Proposition 2.4.19 (Quotientopes for the Permutree Fan). Let δ ∈ { , , }n be a permutree
decoration with δ1 = δn = . Then the polytopes whose normal fan is equal to the δ-permutree
fan Fδ are exactly the polytopes Qδ(u) for all u ∈ RFδ

>0.

Example 2.4.20. For special decorations, we get the following special cases of Proposition 2.4.19.

• If δ = n, then p+
δ (i, j) = p−δ (i, j) = i and q+

δ (i, j) = q−δ (i, j) = j. Then the poly-
tope Qδ(u) is equivalent to the kinematic cube (see [AHBHY18]){

y ∈ R{0,1}×[n−1]
∣∣∣ y ≥ 0 and ∀i ∈ [n− 1] : y(0,i) + y(1,i) = u(i,i+1)

}
.

The map is given by y(0,i) = z(0,i,i+1,1) and y(1,i) = z(1,i,i+1,0).
• If δ = n−1 , then p+

δ (i, j) = i and q+
δ (i, j) = j and

p−δ (i, j) =

{
j − 1 if i = 1,

i− 1 if i 6= 1,
as well as q−δ (i, j) =

{
i+ 1 if j = n,

j + 1 if j 6= n.

Then the polytope Qδ(u) is equivalent to the kinematic associahedron (see [AHBHY18])y ∈ R
(

[0,n+1]
2

)
∣∣∣∣∣∣∣∣∣∣
y ≥ 0

y(0,n+1) = 0

y(i,j) = 0 if i+ 1 = j

y(i,j+1) + y(i−1,j) − y(i−1,j+1) − y(i,j) = u(i,j) for all (i, j) ∈
(

[n]
2

)

 .

The map is given by y(0,j) = z(1,j−1,j,0) and y(i,n+1) = z(0,i,i+1,1) and y(i,j) = z(`,i,j,r) for
any `, r ∈ {0, 1}.

Proof of Proposition 2.4.19. We will parametrize the rays of the permutree fan Fδ by Rn and
the facets of its type cone TC(Fδ) by Fδ. For any sequence (`, p, q, r) ∈ Rn, we build a sub-
set R(`, p, q, r) ⊆ [n] as follows:
• If (p, q) 6∈ Fδ, then we set
◦ R(0, p, q, 0) := ∅,
◦ R(1, p, q, 0) := ∅,

◦ R(0, p, q, 1) := ∅,
◦ R(1, p, q, 1) := [n].

• If (p, q) ∈ Fδ and p+ 1 = q, then we set
◦ R(0, p, q, 0) := ∅,
◦ R(1, p, q, 0) := [1, p],

◦ R(0, p, q, 1) := [q, n],
◦ R(1, p, q, 1) := [n].

• If (p, q) ∈ Fδ and p+1 < q, then we ignore the values of ` and r and make the setR(`, p, q, r)
the unique proper subset ∅ ( R ( [n] which satisfies the conditions of Corollary 2.2.6 and
has the property that i is the last position such that [1, i] either all belong to R or belong
to [n] \R and j is the last position such that [j, n] either all belong to R or belong to [n] \R.
There is one unique set R with these properties, as we showed in the proof of Corollary 2.2.9
(We emphasize that we are in the case where δ ∈ { , , }n).

This way, we parametrize the rays of the permutree fan Fδ by the set Rn, where we ig-
nore (`, p, q, r) whenever (p, q) 6∈ Fδ and identify all sequences (a, p, q, b) for all a, b ∈ {0, 1}
whenever (p, q) ∈ Fδ and p+ 1 = q.
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We will now associate to every pair (i, j) ∈ Fδ a pair of subsets (I(i, j), J(i, j)) that label a pair
of rays that defines a facet of the type cone as elaborated in Corollary 2.2.6 and Proposition 2.4.8.
As usual, we want to have i = max(I(i, j) \ J(i, j)) and j = min(J(i, j) \ I(i, j)). As δ ∈
{ , , }n), that pair of subsets is unique due to Observation 2.4.11. We claim that these sets,
their intersection and union are given by

I(i, j) = R(1 , p+
δ (i, j) , q−δ (i, j) , 0),

J(i, j) = R(0 , p−δ (i, j) , q+
δ (i, j) , 1),

I(i, j) ∩ J(i, j) = R(1i 6∈δ− , p
−
δ (i, j + 1) , q−δ (i− 1, j) , 1j 6∈δ−),

I(i, j) ∪ J(i, j) = R(1i∈δ+ , p
+
δ (i, j + 1) , q+

δ (i− 1, j) , 1j∈δ+).

We will now prove these four claims.

• We recall from Proposition 2.4.8 that ]i, j[ ∩ δ− ⊆ I(i, j) and [i, j[ ∩ δ+ ⊆ [n] \ I(i, j).
Moreover, Observation 2.4.11 tells us that
◦ If i ∈ δ+, then [1, i] ⊆ I(i, j), and the maximal position p such that [1, p] all belong

to I(i, j) is the position just before the first element of ]i, j[ ∩ δ+, or p = j if there is no
such element.
◦ If i 6∈ δ+, then [1, i[ ⊆ [n]\I(i, j), while i ∈ I(i, j), and therefore the maximal position p

such that [1, p] all belong to [n] \ I(i, j) is p = i− 1.
We remark that in all these cases, that position p is equal to p+

δ (i, j). By a symmetric ar-
gument, we find that the smallest position q such that the interval [q, n] entirely belongs
to I(i, j) or entirely belongs to [n] \ I(i, j) is equal to q−δ (i, j). These properties also en-
sure that 1 ≤ p+

δ (i, j) < q−δ (i, j) ≤ n. We have i − 1 ≤ p+
δ (i, j) with equality only

when i 6∈ δ+ and q−δ (i, j) ≤ j + 1 with equality only when j 6∈ δ−. Together with δk 6=
for all k ∈ ]i, j[, this implies that δk 6= for all k ∈

]
p+
δ (i, j), q−δ (i, j)

[
. We conclude

that (p+
δ (i, j), q−δ (i, j)) ∈ Fδ. In the case where i 6∈ δ+, we have the equality p+

δ (i, j) = i−1,
implying that q−δ (i, j) ≥ i+ 1 > p+

δ (i, j) + 1. We therefore obtain
◦ If p+

δ (i, j) + 1 = q−δ (i, j), then i ∈ δ+, so [1, i] ⊆ I(i, j) and we deduce the equal-
ity I(i, j) =

[
1, p+

δ (i, j)
]

= R(1, p+
δ (i, j), q−δ (i, j), 0).

◦ If p+
δ (i, j) + 1 < q−δ (i, j), then these two values fully determine I(i, j) and we

have I(i, j) = R(1, p+
δ (i, j), q−δ (i, j), 0).

This concludes our proof for the claimed form of I(i, j).
• The argument for J(i, j) is symmetric.
• To determine the intersection of I(i, j) and J(i, j), we distinguish the cases where that inter-

section is either empty or not.
◦ If I(i, j) ∩ J(i, j) = ∅, then Observation 2.4.11 tells us that i, j ∈ δ− and Proposi-

tion 2.4.8 (v) gives us ]i, j[ ⊆ δ+. We deduce the two equalities p−δ (i, j + 1) = j − 1
and q−δ (i− 1, j) = i+ 1. This implies that p−δ (i, j + 1) 6< q−δ (i− 1, j), so that the
pair (p−δ (i, j + 1) , q−δ (i− 1, j)) cannot be an element of Fδ except for the case
where p−δ (i, j + 1) + 1 = q−δ (i− 1, j). Since i, j ∈ δ−, this yields in both situations
that R(1i 6∈δ− , p

−
δ (i, j + 1) , q−δ (i− 1, j) , 1j 6∈δ−) = ∅ = I(i, j) ∩ J(i, j).

◦ If I(i, j) ∩ J(i, j) 6= ∅, we examine separately the cases where i ∈ δ+ or i 6∈ δ+.
Then Observation 2.4.11 gives us the following results:
• If i ∈ δ+, then [1, i[ ⊆ [n]\ (I(i, j)∩J(i, j)) and the largest position p such that the

entire interval [1, p] is contained in [n] \ (I(i, j)∩ J(i, j)) is the position just before
the smallest element of ]i, j[ ∩ δ−, or j + 1 if there is no such element.
• If i 6∈ δ+, then [1, i[ ⊆ I(i, j)∩J(i, j) while i 6∈ I(i, j)∩J(i, j). We deduce that the

largest position p such that the entire interval [1, p] is contained in I(i, j)∩J(i, j) is
the position i− 1.
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2 Quotientopes and Removahedra

We conclude that the position p−δ (i, j + 1) is in fact the largest position p such that the
interval [1, p] is entirely contained in either I(i, j) ∩ J(i, j) or [n] \ (I(i, j) ∩ J(i, j)).
A symmetric argument shows that q−δ (i − 1, j) is the smalles position q such that the
interval [q, n] is entirely contained in either I(i, j) ∩ J(i, j) or [n] \ (I(i, j) ∩ J(i, j)).
This ensures that the pair

(
p−δ (i, j + 1) , q−δ (i− 1, j)

)
∈ Fδ.

We can now distinguish the following three cases:
• If p−δ (i, j + 1) + 1 < q−δ (i− 1, j), then

I(i, j) ∩ J(i, j) = R(1i 6∈δ− , p
−
δ (i, j + 1) , q−δ (i− 1, j) , 1j 6∈δ−),

as they are both fully determined by p−δ (i, j + 1) and q−δ (i− 1, j).
• If p−δ (i, j+1)+1 = q−δ (i−1, j) and [1, i[ ⊆ I(i, j)∩J(i, j), then i ∈ δ+ and j ∈ δ−

by Observation 2.4.11, so we get

I(i, j) ∩ J(i, j) =
[
1, p−δ (i, j + 1)

]
= R(1 , p−δ (i, j + 1) , q−δ (i− 1, j) , 0)

= R(1i 6∈δ− , p
−
δ (i, j + 1) , q−δ (i− 1, j) , 1j 6∈δ−).

• If p−δ (i, j + 1) + 1 = q−δ (i− 1, j) and [1, i] ⊆ [n] \ (I(i, j) ∩ J(i, j)), then i ∈ δ−
and j ∈ δ+ by Observation 2.4.11, so we get

I(i, j) ∩ J(i, j) =
[
q−δ (i− 1, j), n

]
= R(0 , p−δ (i, j + 1) , q−δ (i− 1, j) , 1)

= R(1i 6∈δ− , p
−
δ (i, j + 1) , q−δ (i− 1, j) , 1j 6∈δ−).

This concludes the proof for all cases of the intersection I(i, j) ∩ J(i, j): It is always
equal to R(1i 6∈δ− , p

−
δ (i, j + 1) , q−δ (i− 1, j) , 1j 6∈δ−).

• The proof for the union I(i, j) ∪ J(i, j) = R(1i∈δ+ , p
+
δ (i, j + 1) , q+

δ (i− 1, j) , 1j∈δ+) is
identical.

Now we have listed these pairs (I(i, j), J(i, j)) for all (i, j) ∈ Fδ. Then Proposition 2.3.9
tells us that the wall-crossing inequalities of the δ-permutree fan Fδ are of the form described
in Definition 2.4.18. Now Corollary 1.2.30 certifies that the polytope Qδ(u) is made up of all the
height vectors that realize the permutree fan.
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3 Shard Polytopes for the Braid
Arrangement

In this chapter, we will have a closer look at the shards of the oriented braid arrangement ~An. We
will define a polytope for each ~An shard, using some newly introduced concepts. We will describe
these polytopes, in particular give explicit H- and V-descriptions, determine when two of their
vertices form an edge and give some more information on the shape of their faces. We will then
analyze the normal fans of shard polytopes and see that they have suitable properties that allow us
to create any ~An quotientope as the Minkowski sum of certain shard polytopes.

3.1 Shard Matchings, Climbs and Falls

We will first prepare our results by introducing some notions revolving around ~An shards.

3.1.1 Pseudoshards

We introduce a generalization of shards in the braid arrangement, which can be expressed by
abusing the notation introduced for shards. Pseudoshards are denoted just like shards, but the
union of the disjoint above- and below-sets is not necessarily the entire interval in between the
endpoints of the shard.

Definition 3.1.1 (Pseudoshards). Let 1 ≤ ` < r ≤ n and let A and B be a pair of disjoint
subsets of the open interval ]`, r[ (where A ∪̇ B may or may not equal to that interval). We define
the ~An pseudoshard Σn(`, r, A,B) := {x ∈ Rn | ∀a ∈ A, b ∈ B : xa ≤ x` = xr ≤ xb}. It is
an Ãn shard if and only if A ∪̇ B = ]`, r[.

For any pair of integers 1 ≤ ` < r ≤ n, we may partially order all pseudoshards Σn(`, r, A,B)
by inclusion of their sets A and B. The unique minimal pseudoshard with respect to this order
is Σn(`, r, ∅, ∅), which is equal to the entire hyperplane Hn(`, r). On the other hand, the maximal
pseudoshards with respect to this order are the pseudoshards where A ∪̇ B = ]`, r[, which are
precisely the ~An shards of Hn(`, r). It is therefore justified to say that pseudoshards interpolate
between ~An hyperplanes and their shards. We say that a pseudoshard Σn(`, r, A,B) skips an
integer i ∈ ]`, r[ if i is an element of neither A nor B. The ~An shards are precisely those ~An
pseudoshards that do not skip any integer.

While ~An shards have a gentle illustration as arcs on the dots from 1 to n, pseudoshards cannot
be drawn as easily, as it is not clear how the arc should behave at those positions that are contained
in neither A nor B. However, there is a straightforward way of mapping a pseudoshard to a
proper ~Ac shard of the hyperplane Hc(1, c), where c < n.

Observation 3.1.2 (From Pseudoshard to Shard). Every ~An pseudoshard can be mapped to
an ~Ac shard in the following way: Given a pseudoshard Σ = Σn(`, r, A,B), we fix the
set C = {`, r} ∪ A ∪ B and its cardinality c := |C|. We can then use the order preserving
bijection ϕ : C → [c]. We observe that ϕ(`) = 1 and ϕ(r) = c. We abuse notation to denote the
effect of that map to an entire pseudoshard Σ to be ϕ(Σ) := Σc(ϕ(`), ϕ(r), ϕ(A), ϕ(B)).
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3 Shard Polytopes for the Braid Arrangement

3.1.2 Climbs and Falls

To each ~An shard, we can associate a characteristic vector in {−1, 0,+1}n that describes for each
index in [`, r] whether it lies in A or B.

Definition 3.1.3 (Characteristic Vector of a Shard). Let Σ = Σn(`, r, A,B) be an ~An shard. We
define the characteristic vector (or direction) of the shard Σ to be χ(Σ) := 1{`}∪A − 1B∪{r}.

We remark that a characteristic vector of a pseudshard can be constructed in the exact same way.
While the characteristic vector of a shard has zero entries precisely in the coordinates of [n]\ [`, r],
the characteristic vector of a pseudshard has zeros for those indices i ∈ ]`, r[ where i 6∈ A and i 6∈
B.

Any ~An shard Σn(`, r, A,B) is a part of an ~An hyperplane Hn(`, r), so the associated arc
connects the dot labeled ` to the one labeled r. The behavior of the arc with respect to the dots in
between ` and r is entirely determined by the sets A and B. We will keep this illustration in mind
and introduce some names for certain indices between ` and r.

Definition 3.1.4 (Climbs, Falls and Turns). Let Σ := Σn(`, r, A,B) be an ~An shard. We define
• a Σ-climb to be a position j ∈ [`, r[ where j ∈ {`} ∪B and j + 1 ∈ A ∪ {r},
• a Σ-fall to be a position j ∈ [`, r[ where j ∈ {`} ∪A and j + 1 ∈ B ∪ {r},
• a Σ-turn to be any position distinct from ` and r − 1 which is a Σ-climb or a Σ-fall,
• the number of Σ-turns to be t(Σ) := |{j ∈ [`+ 1, r − 2] | j is a Σ-turn}|.

Example 3.1.5. Both positions ` and r − 1 are always Σ-climbs or Σ-falls: If ` = r − 1, then the
position ` = r − 1 is both a Σ-climb and a Σ-fall. Otherwise, ` is a Σ-climb if ` + 1 ∈ A and
a Σ-fall if `+ 1 ∈ B. Analogously, r − 1 is a Σ-climb if r − 1 ∈ B and a Σ-fall if r − 1 ∈ A.

We can extend the notions of climbs and falls to a pseudoshard Σ = Σn(`, r, A,B), where we
recall that A ∪̇ B is contained in (but not necessarily equal to) the interval ]`, r[. Once more, we
use the set C := A ∪B ∪ {`, r} of all positions occuring in the pseudoshard.

Observation 3.1.6 (Climbs, Falls and Turns for Pseudoshards). For a fixed j ∈ [`, r[, the posi-
tion j + 1 might not be contained in A ∪̇ B. We define the successor of j in the pseudoshard
by setting s(j) := min {i ∈ C | i > j}. Using this generalized notation, a Σ-climb is a po-
sition j ∈ [`, r[ with j ∈ {`} ∪ B and s(j) ∈ A ∪ {r}. A Σ-fall is a position j ∈ [`, r[
with j ∈ {`} ∪ A and s(j) ∈ B ∪ {r}. We note that these definitions are equivalent to the
ones given in Definition 3.1.4 in the case where Σ is a shard.

Observation 3.1.7 (Climbs and Falls, Left and Right). Let Σ := Σn(`, r, A,B) be an ~An shard.
For every a ∈ A, we observe that there is at least one climb in [`, a[ and at least one fall in [a, r[.
Analogously, for every b ∈ B, there is at least one fall in [`, b[ and at least one climb in [b, r[.

Observation 3.1.8 (Number of Turns). We can deduce from Example 3.1.5 that the number of Σ-
climbs plus the number of Σ-falls is equal to the number of Σ-turns plus two. This implies that the
number of Σ-climbs plus the number of Σ-falls is at least 2. Furthermore, the arc of Σ crosses the
horizontal axis between the dots j and j + 1 if and only if j is a Σ-turn. In particular, the number
of Σ-turns is equal to the number of times arc crosses the horizontal axis.

Example 3.1.9. We have a look at two examples of shards, illustrated in Figure 3.1.
• The shard Σ9(4, 8, {5}, {6, 7}) (illustrated by the left arc) has the characteristic vector χ(Σ) =

(0, 0, 0,+,+,−,−,−, 0). It has climbs in positions 4 and 7 and a fall in position 5. Its only
turn is in position 5, where its arc crosses the horizontal axis.

• The shard Σ9(1, 4, {2, 3}, ∅) (illustrated by the right arc) has the characteristic vector χ(Σ) =
(+,+,+,−, 0, 0, 0, 0, 0). It has a climb in position 1 and a fall in position 3. It does not have
any turns and its arc does not cross the horizontal axis.
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Figure 3.1: The arcs of Σ9(4, 8, {5}, {6, 7}) (left) and Σ9(1, 4, {2, 3}, ∅) (right).

3.1.3 Shard Matchings

The notation of ~An shards as Σn(`, r, A,B), partitioning an interval in between two endpoints into
two disjoint sets A and B, allows us to think about matchings between these two sets. We will
impose a number of conditions on how to match positions in one set with positions in the other
one and introduce a handy notation in accordance with the ones for shards. These shard matchings
will then be used to describe shard polytopes.

Definition 3.1.10 (Shard Matching). Let Σ = Σn(`, r, A,B) be an ~An shard. We define
• a Σ-matching to be a (possibly empty) set M = {a1, b1, . . . , ak, bk} ⊆ [`, r], where
◦ ` ≤ a1 < b1 < · · · < ak < bk ≤ r,
◦ ai ∈ {`} ∪A and bi ∈ B ∪ {r} for i ∈ [k],

• the pairs of a non-empty Σ-matching to be (ai, bi) for i ∈ [k],
• the semi-length of a Σ-matching to be k,
• the characteristic vector of a Σ-matching to be χ(M) :=

∑
i∈[k] eai − ebi ,

• the set of all Σ-matchings to beM(Σ) := {M ⊆ [`, r] |M is a Σ-matching}.

We observe that the characteristic vector of any Σ-matching agrees in all its nonzero entries
with the characteristic vector of the shard Σ, so that 〈χ(M) |χ(Σ)〉 = |M |.

Example 3.1.11. For every ~An shard Σ, there are two trivial Σ-matchings.
• M = ∅ is a Σ-matching with no pairs. Its characteristic vector is χ(M) = 0.
• M = {`, r} is a Σ-matching with one pair (`, r) and characteristic vector χ(M) = e` − er.

The following are other simple examples of Σ-matchings for a shard Σ = Σn(`, r, A,B).
• Given any position a ∈ A, the set {a, r} is a Σ-matching.
• Given any position b ∈ B, the set {`, b} is a Σ-matching.

Extending the diagrams used to represent ~An shards by arcs, we can illustrate a Σ-matching
using a simple visualisation where
• solid dots represent the elements a1, a2, . . . , ak (the positive entries of χ(M)),
• hollow dots represent the elements b1, b2, . . . , bk (the negative entries of χ(M)),
• tiny dots represent elements not part of the matching (the zero entries of χ(M)).
In particular, all solid dots are on or below the arc illustrating the shard Σ, while all hollow dots

are on or above the arc. This visualisation allows a rather symbolic interpretation: If we imagine
the arc to depict the water surface between the solid shore on the left and an object floating in the
sea on the right, then the solid elements in between are below the sea level as they sink, the hollow
elements float above it.

Example 3.1.12. The shard Σ4(1, 4, {3}, {2}) illustrated by has the matchings
• M = ∅, illustrated by , characteristic vector χ(M) = (0, 0, 0, 0),
• M = {1, 4}, illustrated by , characteristic vector χ(M) = (+1, 0, 0,−1),
• M = {1, 2}, illustrated by , characteristic vector χ(M) = (+1,−1, 0, 0),
• M = {3, 4}, illustrated by , characteristic vector χ(M) = (0, 0,+1,−1),
• M = {1, 2, 3, 4}, illustrated by , characteristic vector χ(M) = (+1,−1,+1,−1).
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3 Shard Polytopes for the Braid Arrangement

We remark that we can partially order the Σ-matchings by inclusion as sets. We will give this
partial order a name:

Definition 3.1.13 (Poset of Matchings). Given an ~An shard Σ, the poset of Σ-matchings is the
set of all Σ-matchings partially ordered by set inclusion.

We note that the poset of Σ-matchings is not ordering Σ-matchings by the inclusion of pairs. To
give an example for the shard Σ = Σn(1, 4, {2}, {3}), the matching M = {1, 4} is included in
the Σ- matching M ′ = {1, 2, 3, 4} as a set, but its only pair (1, 4) is not a pair of the matching M ′.

We will now discuss the circumstances under which every single matching for one shard is a
matching for another shard as well.

Lemma 3.1.14 (Common Matchings). Let Σ1 = Σn(`1, r1, A1, B1) and Σ2 = Σn(`2, r2, A2, B2)
be two ~An shards. ThenM(Σ2) ⊆M(Σ1) if and only if Σ2 forces Σ1 and `2 6∈ B1 and r2 6∈ A1.

Proof. We prove the two directions of the statement separately.
• IfM(Σ2) ⊆M(Σ1), we exploit that certain Σ2-matchings are Σ1-matchings:
◦ The Σ2-matching M = {`2, r2} always exists. As it has to be a Σ1-matching, we deduce

that `2 ∈ {`1} ∪A1 and r2 ∈ B1 ∪ {r1}. This implies that `1 ≤ `2 and r2 ≤ r1.
◦ For every b ∈ B2, there is the Σ2-matchingM = {`2, b}. As this has to be a Σ1-matching,

we deduce that b ∈ B1, so B2 ⊆ B1 (as max(B2) < r2 ≤ r1 implies b < r1).
◦ For every a ∈ A2, there is the Σ2-matching M = {a, r2}. As it has to be a Σ1-matching,

we deduce that a ∈ A1, so A2 ⊆ A1 (as `1 ≤ `2 < min(A2) implies `1 < a).
These inequalities and set inclusions certify that Σ2 forces Σ1. Moreover, `2 ∈ {`1} ∪ A1

implies that `2 6∈ B1 and an analogous argument gives us r2 6∈ A1.
• If Σ2 does force Σ1, then we have A2 ⊆ A1 and B2 ⊆ B1 and `1 ≤ `2 < r2 ≤ r1 by

definition of forcing in ~An. If additionally, `2 6∈ B1, then we have `2 = `1 or `2 ∈ A1, so in
either case, {`2} ∪A2 ⊆ {`1} ∪A1, and analogously, B2 ∪ {r2} ⊆ B1 ∪ {r1}. We conclude
that by Definition 3.1.10, every Σ2-matching is a Σ1-matching as desired.

Definition 3.1.15 (Compatible Pairs). Given an ~An shard Σ, we call two Σ-pairs (a1, b1)
and (a2, b2) compatible if b1 < a2 or b2 < a1. We say that a Σ-pair (a, b) is compatible
with a Σ-matching M if (a, b) is compatible with every pair of M .

We first note that compatibility of pairs depends only on the positions, not on the shard. We
remark that if a Σ-pair (a, b) is compatible with a Σ-matching M , then every pair of M is either
completely to the left of completely to the right of the interval [a, b]. Therefore, we can add (a, b)
to the existing Σ-matching and the resulting set M ∪ {a, b} is a Σ-matching as well.

Example 3.1.16. Given the ~A6 shard Σ = Σ6(1, 6, {3, 5}, {2, 4}), the set M = {1, 2, 5, 6} is
a Σ-matching (illustrated by ) and the Σ-pair (3, 4) is compatible with M , therefore
the set M ∪ {3, 4} = {1, 2, 3, 4, 5, 6} is a Σ-matching as well (illustrated by ).

Observation 3.1.17 (Pseudoshard Matchings). We remark that we can use matchings as defined
in Definition 3.1.10 on pseudoshards without any restriction. The set M will not contain any
integer that is skipped by the pseudoshard and pairs, semi-length and characteristic vector can be
used in the exact same way.

Every Σ-matching is uniquely defined by the Σ-pairs it contains. In this sense, every Σ-matching
can be written as a vector in {0, 1}P , where P is the set of all Σ-pairs. Their convex hull forms a
polytope in RP , which can equivalently be described by the inequalities
• 0 ≤ xp ≤ 1 for every p ∈ P ,
• xp + xp′ ≤ 1 for any two pairs p and p′ that are not compatible.
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This polytope is easy to construct, but might have very high dimension. We can project it
into Rn by mapping every unit vector e(a,b) ∈ RP to the difference of unit vectors ea − eb ∈ Rn.
We note that as every matching is uniquely defined by its pairs, this projection is injective on the
set of vertices: We obtain exactly the characteristic vectors of all Σ-matchings. We will focus on
the lower-dimensional projection of this polytope which has very interesting properties. We have
completed our preparations and introduced all terminology necessary to define shard polytopes.

3.2 Shard Polytopes

3.2.1 Construction

We introduce a polytope for every ~An shard Σ. We will give both a V-description and an H-
description and prove later that they are equivalent. Our first definition uses the characteristic
vectors of Σ-matchings as defined in Definition 3.1.10 to describe the vertices of the polytope.

Definition 3.2.1 (Shard Polytope by V-Description). Let Σ be an ~An shard. The shard poly-
tope SP(Σ) is the convex hull of the characteristic vectors χ(M) of all Σ-matchings M .

Figure 3.2: Shard polytopes for all ~A3 shards. [Picture from [PPR20]]

Our second definition uses climbs and falls of the shard Σ as defined in Definition 3.1.4 to
describe the facets of the polytope.

Definition 3.2.2 (Shard Polytope by H-Description). Let Σ = Σn(`, r, A,B) be an ~An shard.
The shard polytope SP(Σ) is the intersection of the sum-zero hyperplane Hn0 with the linear
subspace {x ∈ Rn | ∀i 6∈ [`, r] : xi = 0} and the halfspaces defined by
• xa ≥ 0 for every a ∈ A,
• xb ≤ 0 for every b ∈ B,

•
∑

i≤f xi ≤ 1 for every Σ-fall f ,
•
∑

i≤c xi ≥ 0 for every Σ-climb c.

Before we prove the equivalence of these two definitions, we will take a closer look at the
inequalities of shard polytopes, based solely on theH-description of Definition 3.2.2.

Lemma 3.2.3 (Some Inequalities for the Shard Polytope). Let Σ = Σn(`, r, A,B) be an ~An shard.
For every point x ∈ SP(Σ) in the shard polytope SP(Σ), we have
• 0 ≤ xj ≤ 1 for every j ∈ {`} ∪A,
• −1 ≤ xj ≤ 0 for every j ∈ B ∪ {r},
• 0 ≤

∑
i≤k xi ≤ 1 for every k ∈ [n].

Proof. We fix an arbitrary point x ∈ SP(Σ). For ease of notation, we introduce the vector y ∈ Rn
with entries yj :=

∑
i≤j xi. By definition of the shard polytope, this vector y has
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3 Shard Polytopes for the Braid Arrangement

Figure 3.3: Shard polytopes for all ~A4 shards, arranged to illustrate the forcing order among them.
[Picture from [PPR20]]

• yf ≤ 1 for every Σ-fall f ,
• yc ≥ 0 for every Σ-climb c,
• yr ≤ ys for every 1 ≤ r ≤ s ≤ n with ]r, s] ⊆ A,
• yr ≥ ys for every 1 ≤ r ≤ s ≤ n with ]r, s] ⊆ B,
• yn = 0 as x lies on the sum-zero hyperplaneHn0 .

We examine the entries of x and y and distinguish cases by the position of j relative to ` and r.
• If j < `, then xj = 0 and yj =

∑
i≤j xi = 0 by definition.

• If j = `, we set c to be the first Σ-climb in [`, r[ and f to be the first Σ-fall in [`, r[. We deduce
that ]`, c] ⊆ B and ]`, f ] ⊆ A and conclude that 0 ≤ yc ≤ y` ≤ yf ≤ 1. Furthermore, we
know y` = y`−1 + x` = 0 + x`, so 0 ≤ x` ≤ 1 holds as well.
• If j ∈ A, we set c to be the last Σ-climb in [`, j[ and f to be the first Σ-fall in [j, r[. As we

noted in Observation 3.1.7, both do exist. We deduce ]c, j] ⊆ A and ]j, f ] ⊆ A and conclude
that 0 ≤ yc ≤ yj ≤ yf ≤ 1. This also implies that xj = yj − yj−1 ≤ 1 − yc ≤ 1 and we
already know 0 ≤ xj holds as j ∈ A.
• If j ∈ B, we proceed analogously by setting f to be the last Σ-fall in [`, j[ and c to be the

first Σ-climb in [j, r[. We conclude that on one hand, 0 ≤ yc ≤ yj ≤ yf ≤ 1 while on the
other hand, xj = yj − yj−1 ≥ 0− yf ≥ −1 and xj ≤ 0 holds as j ∈ B.
• If j = r, then all xi with j < i are zero, so yr + 0 = yn = 0. Furthermore, we obtain the

equality xr = yr − yr−1 = 0− yr−1, where yr−1 lies in between 0 and 1 as shown before.
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• If j > r, then xj = 0 and
∑

i≤j xi = yn −
∑n

k=j+1 xk = 0− 0 = 0.
In particular, we showed that SP(Σ) is a subset of the n-cube [−1,+1]n ⊆ Rn.

Now that we know a number of additional inequalities that are valid for the shard poly-
tope SP(Σ), we proceed by proving that none of the inequalities used in Definition 3.2.2 can be
left out: They are in fact irredundant.

Lemma 3.2.4 (Shard Polytope Facets). Let Σ be an ~An shard. The facets of SP(Σ) correspond to
the inequalities in Definition 3.2.2.

Proof. To prove irredundancy, we provide one vector in Rn for each of the inequalities. That
vector violates this particular inequality while satisfying all the others. We list them explicitly.
• For every a ∈ A, the inequality xa ≥ 0 is violated by e` − ea.
• For every b ∈ B, the inequality xb ≤ 0 is violated by eb − er.
• For every Σ-climb c, the inequality

∑
i≤c xi ≥ 0 is violated by ec+1 − ec.

• For every Σ-fall f , the inequality
∑

i≤f xi ≤ 1 is violated by 2ef − 2ef+1.
We conclude that each inequality in Definition 3.2.2 defines a facet of SP(Σ). Clearly, every facet
is defined by a supporting inequality of the polytope and distinct inequalities define distinct facets,
so the facets of SP(Σ) correspond to these inequalities.

We now prove that the definitions of the shard polytope as a V-polytope in Definition 3.2.1 and
as anH-polytope in Definition 3.2.2 are in fact equivalent.

Proposition 3.2.5 (Equivalence of Shard Polytope Descriptions). Let Σ := Σn(`, r, A,B) be
an ~An shard. The polytope defined by the inequalities of Definition 3.2.2 is equal to the polytope
defined as convex hull of the characteristic vectors of all Σ-matchings as stated in Definition 3.2.1.

Proof. We fix an arbitrary ~An shard Σ. We define P to be the convex hull of the characteristic vec-
tors of all Σ-matchings as in Definition 3.2.1 and Q to be the intersection of halfspaces described
in Definition 3.2.2. We will prove the equality P = Q by showing that either polytope is contained
in the other.

1. We fix an arbitrary Σ-matching M . Then its characteristic vector x = χ(M) satisfies all
the equalities and inequalities that define the polytope Q:
• M only contains elements in the range [`, r], so xi = 0 wherever i < ` or i > r.
• For any a ∈ A, either a ∈M (so xa = 1), or a 6∈M (so xa = 0). Either way, xa ≥ 0.
• For any b ∈ B, either b ∈M (so xb = −1), or b 6∈M (so xb = 0). Either way, xb ≤ 0.
• For the remaining criteria, we note that for an arbitrary position j ∈ [0, n], we can

define the set Mj := M ∩ [0, j]. If Mj has an even number of elements, then x has
equally many positive and negative entries up to j, so

∑
i≤j xi = 0. In particular,

for j = n, we obtain that
∑

i≤n xi = 0 as M has even cardinality. If Mj has an
odd number of elements, then the number of positive entries of x up to j exceeds the
number of negative entries of x up to j by exactly one, so that

∑
i≤j xi = 1. We

conclude that 0 ≤
∑

i≤j xi ≤ 1 for every j ∈ [`, r]. In particular, this holds for
every Σ-climb and every Σ-fall.

We proved that every vertex of P satisfies all the inequalities of Q. As both P and Q are
convex, this implies that P is a subset of Q.

2. To prove that Q is a subset of P, We will first show that Q is an integer polytope. We
can rewrite Q in the form {x ∈ Rn |Mx ≤ b} for a matrix M ∈ Rm×n and an integer
vector b ∈ Rm. The rows of M and scalars in b correspond to the conditions in Defini-
tion 3.2.2.
• For every i ∈ [n] \ [`, r], we write row with ei in M and 0 in b.
• For every i ∈ [n] \ [`, r], we write row with −ei in M and 0 in b.
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• We write a row with 1 in M and 0 in b.
• We write a row with −1 in M and 0 in b.
• For every a ∈ A, we write a row with −ea in M and 0 in b.
• For every b ∈ B, we write a row with eb in M and 0 in b.
• For every Σ-fall f , we write a row with 1[1,f ] in M and 1 in b.
• For every Σ-climb c, we write a row with −1[1,c] in M and 0 in b.

We construct another matrix M′ which is identical to M except that every row of M which
has negative entries gets multiplied by −1. Then M′ has the consecutive ones property as
defined in Definition 1.2.15. We observe that every square submatrix of M′ can be obtained
from a square submatrix of M by multiplying some rows by −1. We deduce that M has
the consecutive ones property as well, so by Lemma 1.2.16, we conclude that M is totally
unimodular. As b is an integer vector, we can apply Lemma 1.2.17 and deduce that all
vertices of Q have integer coordinates.
Let w now be one of the vertices of Q. We define the set M(w) := {j ∈ [n] | wj 6= 0} and
show that it is in fact a Σ-matching.
• We first note that if w = 0, then M(w) = ∅ is a trivial Σ-matching.
• By Definition 3.2.2, all nonzero entries of w appear in between ` and r, so M ⊆ [`, r].
• We denote the smallest element of M(w) by a1. Assume a1 ∈ B ∪ {r} for a contra-

diction. Then
∑

i≤a1 wi ≤ −1, in contradiction to Lemma 3.2.3 valid for Q.
• We denote the second smallest element of M(w) by b1. Assume b1 ∈ {`} ∪ A for a

contradiction. Then
∑

i≤b1 wi ≥ 2, in contradiction to Lemma 3.2.3 valid for Q.
• These two arguments can be continued up to the last element of M(w).

We deduce that M(w) is a Σ-matching. This implies that every vertex of Q is the charac-
teristic vector of a Σ-matching and therefore contained in P. As both Q and P are convex,
we deduce that Q is a subset of P.

We conclude that P = Q, so the two definitions of shard polytopes are equivalent.

Observation 3.2.6 (Pseudoshard Polytopes). As remarked in Observation 3.1.17, we can define Σ-
matchings for pseudoshards in the exact same way as for ordinary shards. The skipped positions
(described by the set ]`, r[ \ (A ∪̇ B)) will never appear in any Σ-matching. On the other hand, we
saw a way to use climbs and falls for pseudoshards in Observation 3.1.6. We may therefore define
the pseudoshard polytope SP(Σ) equivalently
• as the convex hull of the characteristic vectors of all Σ-matchings,
• by the equalities and inequalities given in Definition 3.2.2, with the additional requirement

that xj = 0 for every j that is skipped by Σ (that is, every j ∈ ]`, r[ \ (A ∪̇ B)).
We recall that we can map the pseudoshard Σ to a shard ϕ(Σ) through the map ϕ given in Ob-
servation 3.1.2. Then the pseudoshard polytope SP(Σ) is affinely isomorphic to the shard poly-
tope SP(ϕ(Σ)).

3.2.2 Basic Properties

We now know how to construct a shard polytope for any ~An shard. We already know its facets
(we showed in Lemma 3.2.4 that the inequalities in the H-description given in Definition 3.2.2
are irredundant). In this section, we will examine shard polytopes for some more basic polytope
properties, such as their dimension, number of facets and vertices, before learning more about the
shape of their faces, their edges and edge directions.

Lemma 3.2.7 (Shard Polytope Dimension). Let Σ = Σn(`, r, A,B) be an ~An shard. Its shard
polytope SP(Σ) has dimension r − `.
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Proof. We first recall that every vertex v of SP(Σ) has
∑n

i=1 vi = 0 and vj = 0 for all j ∈
[n] \ [`, r]. As these equalities define an (r − `)-dimensional linear subspace of Rn containing all
vertices of SP(Σ), the dimension of their convex hull SP(Σ) cannot be larger than r − `. On the
other hand, we know that every Σ-matching yields a point in SP(Σ).
• The empty Σ-matching ∅ yields the point 0.
• The Σ-matching {`, r} yields the point e` − er.
• For every a ∈ A, the Σ-matching {a, r} yields the point ea − er.
• For every b ∈ B, the Σ-matching {`, b} yields the point e` − eb.

These are 1+1+ |A|+ |B| = `−r+1 distinct points in SP(Σ). As they are affinely independent,
we deduce that the dimension of SP(Σ) is at least r − `.

Lemma 3.2.8 (Shard Polytope Facet Number). Let Σ = Σn(`, r, A,B) be an ~An shard and let t
be the number of Σ-turns. The number of facets of SP(Σ) is r − `+ 1 + t. The polytope SP(Σ) is
a simplex if and only if Σ does not have any turns.

Proof. We know by Lemma 3.2.4 that the facets of SP(Σ) are in bijection with the inequalities of
Definition 3.2.2. There, we have one inequality for each element of A or B, which gives us a total
of r − ` − 1 inequalities, plus one more inequality for each Σ-climb and each Σ-fall. We recall
that the number of Σ-climbs plus the number of Σ-falls equals the number of Σ-turns plus 2. We
deduce that the number of facets of SP(Σ) is r − `− 1 + 2 + t.

As we saw that the dimension of SP(Σ) is r − `, we know it is a simplex if and only if it
has r − `+ 1 facets, which is the case if and only if Σ does not have any turns.

Lemma 3.2.9 (Shard Polytope Vertices). Let Σ := Σn(`, r, A,B) be an ~An shard. The vertices of
the shard polytope SP(Σ) are exactly the characteristic vectors of all Σ-matchings.

Proof. We already know that SP(Σ) is the convex hull of the characteristic vectors of all Σ-
matchings. It is left to show that all of them are extremal points in SP(Σ). We fix a Σ-matchingM
and define the direction d(M) ∈ Rn by d(M) := 2χ(M) − χ(Σ), where χ(Σ) and χ(M) are
the characteristic vectors of the shard and the matching as introduced in Definition 3.1.3 and Def-
inition 3.1.10, respectively. Then for any Σ-matching M ′, we obtain〈

d(M)
∣∣χ(M ′)

〉
=
〈
2χ(M)

∣∣χ(M ′)
〉
−
〈
χ(Σ)

∣∣χ(M ′)
〉

= 2 ·
∣∣M ∩M ′∣∣− ∣∣M ′∣∣

=
∣∣M ∩M ′∣∣− ∣∣M ′ \M ∣∣

≤ |M | .

We deduce thatM is the only Σ-matching whose scalar product with d(M) is |M |, while the scalar
product for any other Σ-matching is smaller. Therefore, χ(M) cannot be a convex combination of
characteristic vectors of other Σ-matchings. We conclude that every characteristic vector χ(M)
of a Σ-matching M is a vertex of SP(Σ).

We now count the number of vertices of a shard polytope, equal to the number of shard match-
ings. We first introduce two auxiliary functions counting certain sets which can be completed to a
matching. We use binary variables δx∈Y that are 1 if the index condition is satisfied, otherwise 0.

Definition 3.2.10 (Counting Matching Prefixes). Let Σ := Σn(`, r, A,B) be an ~An shard. We
define two integer functions vΣ, wΣ : [`, r]→ N by

1. vΣ(`), wΣ(`) := 1,
2. vΣ(i) := vΣ(i− 1) + δi∈{`}∪A · wΣ(i− 1) for i ∈ ]`, r[,
3. wΣ(i) := wΣ(i− 1) + δi∈B∪{r} · vΣ(i− 1) for i ∈ ]`, r[.
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We observe that wΣ(i) counts the number of Σ-matchings that only contain values in [`, i].
Similarly, vΣ(i) counts the number of subsets of [`, i] that become a Σ-matching when adding r.
More formally, we can describe vΣ(i) (resp. wΣ(i)) as the number of odd (resp. even) subsets
of [`, i] that are of the form M ∩ [`, i] for some Σ-matching M .

In particular, wΣ(`) = 1 because the only Σ-matching using only values in [`, `] is the empty
one and vΣ(`) = 1 as the only subset of [`, `] that becomes a Σ-matching by adding r is the set {`}.
Moreover, wΣ(r) is the total number of Σ-matchings. This gives us the following result:

Corollary 3.2.11 (Shard Polytope Vertex Number). Let Σ := Σn(`, r, A,B) be an ~An shard. The
number of vertices of its shard polytope SP(Σ) is wΣ(r).

Example 3.2.12. For two examples of ~An shards, we obtain the following numbers of vertices:
• Given the up shard Σ = Σn(1, n, ]1, n[ , ∅) with endpoints 1 and n, its shard polytope SP(Σ)

has n vertices. This result can also be obtained by combining that the dimension of SP(Σ)
is n − 1 (see Lemma 3.2.7) and that SP(Σ) is a simplex as Σ does not have any turns
(see Lemma 3.2.8).

• Given a shard Σ = Σn(1, n,A,B) of the hyperplane Hn(1, n), where the positions in ]1, n[
alternate between A and B (for example, Σ = Σ6(1, 6, {3, 5}, {2, 4})). Then vΣ and wΣ

increase alternatingly, so the number of vertices of SP(Σ) is the Fibonacci number Fn+1.

3.2.3 Edges

In this section, we will analyze the edges of a shard polytope. As every edge is a one-dimensional
face of the polytope, no convex combinations of its two endpoints can be represented as a convex
combination of the remaining vertices of the polytope. For our shard polytope, this condition trans-
lates into a condition on the sum of the characeristic vectors of two Σ-matchings. To understand
these sums, we examine the different ways to obtain a sum of two characteristic vectors.

Lemma 3.2.13 (Combining Σ-Matchings). Let Σ = Σn(`, r, A,B) be an ~An shard and let M1

and M2 be two distinct Σ-matchings. Exactly one of the following holds.
• Either there exist two Σ-matchings M3 and M4 both distinct from M1 and M2 such

that χ(M1) + χ(M2) = χ(M3) + χ(M4),
• or there exist two Σ-matchings H and T with h := sup(H) and t := inf(T ) and some

positions ai ∈ {`} ∩A and bi ∈ B ∪ {r}, such that {M1,M2} is one of the following pairs:
1. {H ∪ {a0, b0} ∪ T , H ∪ T} with h < a0 < b0 < t,
2. {H ∪ {a0, b1} ∪ T , H ∪ {a0, b2} ∪ T} with h < a0 < b1, b2 < t,
3. {H ∪ {a1, b0} ∪ T , H ∪ {a2, b0} ∪ T} with h < a1, a2 < b0 < t,
4. {H ∪ {a1, b1, a2, b2} ∪ T , H ∪ {a1, b2} ∪ T with h < a1 < b1 < a2 < b2 < t.

Proof. We fix two Σ-matchingsM1 andM2 and setH to be the unique maximal common initial Σ-
matching of M1 and M2. More formally, H is the maximal subset of M1 ∩M2 such that H is
a Σ-matching and H = {i ∈M1 ∩M2 | i ≤ sup(H)}. Analogously, we set T to be the unique
maximal common final Σ-matching of M1 and M2 (so that T is a Σ-matching with the property
that T = {i ∈M1 ∩M2 | inf(T ) ≤ i}). As the two Σ-matchings M1 and M2 are distinct, at least
one of the sets M1 \ (H ∪̇ T ) and M2 \ (H ∪̇ T ) is non-empty.

For any vector w ∈ Rn, we denote its support (the set of coordinates where it has nonzero
entries) by Supp(w) := {i ∈ [n] | wi 6= 0}. We define the sequence δ(w) := (δ(w)j)j∈Supp(w)

with entries δ(w)j :=
∑

i≤j wi for every position j ∈ Supp(w). Given a Σ-matchingM of semi-
length k, the sequence δ(χ(M)) has length 2k and is alternating between a 1 for every element
of ({`} ∪A) ∩M and a 0 for every element of (B ∪ {r}) ∩M , as it sums up the entries of the
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χ(M1) (1, 0, −1, 0)

+χ(M2) (0, 1, 0, −1)

= (1, 1, −1, −1)

χ(M3) (1, 0, 0, −1)

+χ(M4) (0, 1, −1, 0)

χ(M1) (1, 0, −1, 1, 0, −1)

+χ(M2) (0, 1, −1, 1, −1, 0)

= (1, 1, −2, 2, −1, −1)

χ(M3) (1, 0, −1, 1, −1, 0)

+χ(M4) (0, 1, −1, 1, 0, −1)

Figure 3.4: Two examples of the standard case of Lemma 3.2.13. In each of these, the vec-
tor χ(M1) + χ(M2) can equivalently be obtained as the sum of characteristic vectors
of two matchings M3 and M4 distinct from M1 and M2. This remains true if we add
matchings H to the left and T to the right of all of them.

(1.) χ(M1) (1, −1)

+χ(M2) (0, 0)

= (1, −1)

(2.) χ(M1) (1, 0, −1)

+χ(M2) (0, 1, −1)

= (1, 1, −2)

(3.) χ(M1) (1, 0, −1)

+χ(M2) (1, −1, 0)

= (2, −1, −1)

(4.) χ(M1) (1, −1, 1, −1)

+χ(M2) (1, 0, 0, −1)

= (2, −1, 1, −2)

Figure 3.5: The four special cases of Lemma 3.2.13. In each of these, it is impossible to obtain the
vector χ(M1) + χ(M2) as the sum of characteristic vectors of two matchings distinct
from M1 and M2. This remains true if we add matchings H to the left and T to the
right of both M1 and M2.

characteristic vector up to that position. In particular, the sequence δ(χ(M1)+χ(M2)) is alternat-
ing between 2 and 0 in the entries corresponding to H and T , with δ(χ(M1) +χ(M2))sup(H) = 0
and δ(χ(M1) + χ(M2))inf(T ) = 2 (if H and T are non-empty so that sup(H) and inf(T ) are
integers).

Looking at the two Σ-matchings M1 and M2, we have δ(χ(M1) + χ(M2))j ∈ {0, 1, 2} for
every j ∈ M1 ∪M2. We will examine that sequence δ(χ(M1) + χ(M2)) in more detail, and
we focus on the central positions included in neither H nor T , which can equivalently be defined
as C := (M1 ∪ M2) ∩ ]sup(H), inf(T )[ or C := (M1 ∪ M2) \ (H ∪̇ T ). We note that M1

and M2 do not differ outside of the positions in C. As we assumed M1 and M2 to be distinct, we
deduce that C is not empty. We define the subsequence d := δ(χ(M1) +χ(M2))j∈C and observe
that d ∈ {0, 1, 2}C .

We note that the first entry of d corresponds to an element of {`} ∪ A, as H is either empty
or its maximal element corresponds to an element of B ∪ {r} contained in both M1 and M2.
Analogously, the last entry of d corresponds to an element of B ∪ {r}, as T is either empty
or its first element corresponds to an element of {`} ∪ A contained in both M1 and M2. Each
position j ∈ C ⊆ [`, r] either has j ∈ {`} ∪ A, so the entry dj equals the previous one minus 1
or 2, or j ∈ B ∪ {r}, so the entry dj equals the previous one plus 1 or 2. In particular, the first
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entry of d is nonzero while the last entry has to be zero. We now distinguish cases by the position
of zeros in d.

We first consider the case where there is a zero in d apart from the last position. Then there are
three positions i < j < k ∈ C such that di, dk > 0 = dj . This implies that we obtain Σ-matchings
from each of the constructions
• L1 := M1∩ [`, j], • L2 := M2∩ [`, j], • R1 := M1∩ ]j, r], • R2 := M2∩ ]j, r].
Note that they are all distinct. If two of them were identical, they would have to be part of H

resp. T . We know that M1 = L1 ∪̇ R1 and M2 = L2 ∪̇ R2 have to hold. Therefore, the
sets M3 := L1 ∪̇ R2 and M4 := L2 ∪̇ R1 are two new matchings distinct from M1 and M2 such
that χ(M1) + χ(M2) = χ(M3) + χ(M4) as desired. We remark that in this case, none of the
four special cases listed in the lemma may occur.

We now consider the cases where the only zero in d is in the last position. There are four special
cases to consider, in which there only is a single way to decompose into Σ-matchings.

1. If d = (10), then Supp(d) is of the form {a0, b0},
so one of the matchings has to contain {a0, b0}, and the other one contains neither.

2. If d = (210), then Supp(d) is of the form {a0, b1, b2},
so one of the matchings has to contain {a0, b1}, and the other has to contain {a0, b2}.

3. If d = (120), then Supp(d) is of the form {a1, a2, b0},
so one of the matchings has to contain {a1, b0}, and the other has to contain {a2, b0}.

4. If d = (2120), then Supp(d) is of the form {a1, b1, a2, b2},
so one of the matchings has to contain {a1, b2}, and the other has to contain {a1, b1, a2, b2}.

We distinguish the remaining cases by their first entry of d. We first recall that d cannot start
with a 0. If d starts with a 1, then we may assume that it neither starts with 10 nor with 120 (as we
have already considered these cases), so it has to start with 121. We recall that the first entry of d
always corresponds to an element of {`} ∪ A. As the second entry is larger than the first one, it
corresponds to an element of A. We denote the two positions by a1 < a2.
• We first consider the subcase where d = 1210. Then C = {a1 < a2 < b1 < b2}, and we can

decompose C in two distinct ways: Either as {{a1, b1}, {a2, b2}} or as {{a1, b2}, {a2, b1}}.
Appending H and T yields the desired decompositions of χ(M1) + χ(M2).
• We now consider the other subcase where d starts with 1212. Then those first four entries

of C are of the form a1 < a2 < b1 < a3. We can decompose this part in two different
ways, independently of the rest of d, either as {{a1, b1, a3}, {a2}} or as {{a1}, {a2, b1, a3}}.
With H and T appended, this also guarantees that there are at least two distinct decomposi-
tions of χ(M1) + χ(M2).

If d starts with a 2, then we first remark that it cannot start with 20: This would mean that the first
two entries of d correspond to positions that should be part of H , as they are contained in both M1

and M2. We may also assume that it neither starts with 210 not with 2120. So d starts with 2121.
• We first consider the subcase where d = 21210. Then C = {a1 < b1 < a2 < b2 < b3}, and

we can decompose C in two distinct ways: Either as {{a1 < b1 < a2 < b2}, {a1 < b3}} or
as {{a1 < b1 < a2 < b3}, {a1 < b2}}.
• We are left with the case where d starts with 21212. Then those first five entries of C are of

the form a1 < b1 < a2 < b2 < a3. We can decompose this part in two different ways, namely
as {{a1 < b1 < a2 < b2 < a3}, {a1}} or as {{a1 < b1 < a2}, {a1 < b2 < a3}}.

To illustrate this proof, Figure 3.4 gives examples of pairs of matchings where the sum of the
characteristic vectors can be obtained from other matchings as well, while Figure 3.5 shows the
special cases where it is impossible. We can deduce a simple sufficient criterion to decide whether
two Σ-matchings can be recombined into two new Σ-matchings.
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Corollary 3.2.14 (Decomposable Σ-Matchings). Let Σ be an ~An shard. Let M1,M2 be two
distinct Σ-matchings with |M1∆M2| > 2. Then there exist two Σ-matchings M3 and M4 both
distinct from M1 and M2 such that χ(M1) + χ(M2) = χ(M3) + χ(M4).

Proof. We observe that in each of the four special cases of Lemma 3.2.13, we have |M1∆M2| = 2.
We conclude that we are in the other one of the two exlusive cases.

This leads us to the following characterization of all edges of the shard polytope.

Lemma 3.2.15 (Shard Polytope Edges). Let Σ := Σn(`, r, A,B) be an ~An shard. The edges of its
shard polytope SP(Σ) are exactly those pairs of characteristic vectors of Σ-matchings M and M ′

where |M∆M ′| = 2.

Proof. We fix two Σ-matchingsM andM ′ and define the direction d := χ(M)+χ(M ′)−χ(Σ).
For any matching M ′′, we first observe that we can partition the set to rewrite its cardinality
as |M ′′| = |M ′′ \ (M ∪M ′)|+ |(M ′′ ∩M) \M ′|+ |(M ′′ ∩M ′) \M |+ |M ′′ ∩M ∩M ′|. This
leads us to the following expression for the scalar product of d and χ(M ′′): we obtain〈

d
∣∣χ(M ′′)

〉
=
〈
χ(M)

∣∣χ(M ′′)
〉

+
〈
χ(M ′)

∣∣χ(M ′′)
〉
−
〈
χ(Σ)

∣∣χ(M ′′)
〉

=
∣∣M ∩M ′′∣∣+

∣∣M ′ ∩M ′′∣∣− ∣∣M ′′∣∣
= 2

∣∣M ∩M ′ ∩M ′′∣∣+
∣∣(M ∩M ′′) \M ′∣∣+

∣∣(M ′ ∩M ′′) \M ∣∣− ∣∣M ′′∣∣
= 2

∣∣M ∩M ′ ∩M ′′∣∣+
∣∣M ′′ ∩ (M \M ′)

∣∣+
∣∣M ′′ ∩ (M ′ \M)

∣∣− ∣∣M ′′∣∣
=
∣∣M ∩M ′ ∩M ′′∣∣− ∣∣M ′′ \ (M ∪M ′)

∣∣ .
In particular, we note that 〈d |χ(M ′′)〉 ≤ |M∩M ′∩M ′′| ≤ |M∩M ′|. The first inequality is tight
if and only if M ′′ ⊆ M ∪M ′ while the second inequality is tight if and only if M ∩M ′ ⊆ M ′′.
We deduce that 〈d |χ(M ′′)〉 = |M ∩M ′| holds if and only if M ∩ M ′ ⊆ M ′′ ⊆ M ∪ M ′.
If |M∆M ′| = 2, these conditions are satisfied if and only if M ′′ = M or M ′′ = M ′. In this case,
there are exactly two vertices of SP(Σ) that are maximal along the direction d, so their convex
hull is a face of SP(Σ), implying that SP(Σ) has an edge connecting χ(M) and χ(M ′) as soon
as |M∆M ′| = 2.

It is left to show that all edges of SP(Σ) are of this form. We fix an arbitrary edge e of SP(Σ).
We recall that the vertices of SP(Σ) are exactly the characteristic vectors of Σ-matchings, so
there are Σ-matchings M1 and M2 such that e connects χ(M1) to χ(M2). We assume for a
contradiction that |M1∆M2| > 2. Then Corollary 3.2.14 states that there are Σ-matchings M3

and M4 both distinct from M1 and M2 such that χ(M1) + χ(M2) = χ(M3) + χ(M4). This
means that the center of χ(M1) and χ(M2) is equal to the center of χ(M3) and χ(M4), so e
cannot be an edge of SP(Σ).

We now know all the edges of the shard polytope and are able to determine when two of its
vertices are adjacent. We extend this notion of adjacency to the matchings that such vertices
correspond to.

Definition 3.2.16 (Adjacent Matchings). We call two Σ-matchings adjacent if their characteristic
vectors are adjacent vertices of SP(Σ). Equivalently, Σ-matchings M and M ′ are adjacent if and
only if |M∆M ′| = 2.

Now that we characterized the edges of the shard polytope, we can examine all the edge direc-
tions appearing in SP(Σ).

Corollary 3.2.17 (Shard Polytope Edge Directions). The edge directions of SP(Σ) are exactly
the
(
r−`+1

2

)
directions ej − ei for ` ≤ i < j ≤ r.
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Proof. We fix an ~An shard Σ = Σn(`, r, A,B) and examine its shard polytope SP(Σ). As the
empty matching and the matching {`, r} are always Σ-matchings, the shard polytope has at least
two vertices and therefore at least one edge. We fix an edge connecting χ(M) and χ(M ′). By
Lemma 3.2.15, the set M∆M ′ contains exactly two elements which we denote by i < j. Without
loss of generality, we may assume that i ∈M \M ′. We can quickly cover all cases.
• If i, j ∈ {`} ∪A, then j ∈M ′ \M , so χ(M)− ei = χ(M ′)− ej .
• If i, j ∈ B ∪ {r}, then j ∈M ′ \M , so χ(M) + ei = χ(M ′) + ej .
• If i ∈ {`} ∪A and j ∈ B ∪ {r}, then j ∈M \M ′, so χ(M ′) + ei − ej = χ(M).
• If i ∈ B ∪ {r} and j ∈ {`} ∪A, then j ∈M \M ′, so χ(M ′)− ei + ej = χ(M).

In each of these cases, χ(M)−χ(M ′) ∈ {ei− ej , ej − ei}, so all edge directions of SP(Σ) have
the form we claimed. We now fix i < j ∈ [`, r]. It is left to show that every direction ej − ei is
the direction of an SP(Σ) edge.
• If i, j ∈ {`} ∪A, we set M := {i, r} and M ′ := {j, r}.
• If i, j ∈ B ∪ {r}, we set M := {`, i} and M ′ := {`, j}.
• If i ∈ {`} ∪A and j ∈ B ∪ {r}, we set M := {i, j} and M ′ := ∅.
• If i ∈ B ∪ {r} and j ∈ {`} ∪A, we set M := {`, i, j, r} and M ′ := {`, r}.

In each of these cases, M and M ′ are distinct Σ-matchings with |M∆M ′| = 2, so their character-
istic vectors share an edge in SP(Σ) according to Lemma 3.2.15. Moreover, the direction of this
edge is χ(M)− χ(M ′) ∈ {ei − ej , ej − ei} as desired.

Observation 3.2.18 (Cover Relations in the Poset of Matchings). We recall that the poset of Σ-
matchings as introduced in Definition 3.1.13 is the set of all Σ-matchings partially ordered by
set inclusion. The cover relations in this poset are all pairs of Σ-matchings M < M ′ such that
both |M | + 2 = |M ′| and M ⊂ M ′. The latter condition is not necessarily the case for any
two adjacent matchings, so not all of them form a cover relation. Therefore, the edges of the
Hasse diagram of this poset correspond to those edges of SP(Σ) connecting the characteristic
vectors of two Σ-matchings where one is included in the other, so they correspond to the edge
directions ea−eb for all positions a ∈ {`} ∪A and b ∈ B ∪ {r}. Equivalently, the cover relations
of the Hasse diagram correspond to those edges of SP(Σ) whose endpoints have different scalar
products with the characteristic vector χ(Σ) of the shard, as 〈χ(Σ) |χ(M)〉 = |M | holds for
any Σ-matching M . Therefore, different values in this scalar product ensure different cardinalities
of the matchings and thus different ranks in the poset of Σ-matchings.

For edges in direction ei − ej with i, j both in {`} ∪ A or both in B ∪ {r}, both endpoints
of the edge correspond to matchings with the same cardinality. Therefore, in general we cannot
use χ(Σ) or the poset of Σ-matchings to induce an orientation on all edges of SP(Σ).

We are now ready to answer the following question about the graph of the polytope SP(Σ).
Given some Σ-matching M , what is the neighborhood of its vertex in SP(Σ)?

Observation 3.2.19 (Shard Polytope Edge Types). We know that for any fixed Σ-matching M ,
every adjacent Σ-matchingM ′ as defined in Definition 3.2.16 has |M∆M ′| = 2 by Lemma 3.2.15.
We can distinguish cases by the shape of M∆M ′, as we know that we are in one of the four cases
described by Lemma 3.2.13.

1. For every Σ-pair (a, b) compatible with M , there is an adjacent Σ-matching M ∪ {a, b}.
Conversely, for every pair (ai, bi) of M , there is an adjacent Σ-matching M \ {ai, bi}.

2. For every Σ-pair (a, b) of M , every distinct Σ-pair (a, b′) compatible with M \ {a, b}
induces an adjacent Σ-matching (M ∪ {b′}) \ {b}. Clearly, the pair (a, b′) is compatible
with M \ {a, b} if and only if a < b′ < min(M ∩ ]b, r]).

3. For every Σ-pair (a, b) of M , every distinct Σ-pair (a′, b) compatible with M \ {a, b} in-
duces an adjacent Σ-matching (M ∪ {a′}) \ {a}. Clearly, the pair (a′, b) is compatible
with M \ {a, b} if and only if max(M ∩ [`, a[) < a′ < b.

88



3.2 Shard Polytopes

4. For every Σ-pair (a, b) of M , whenever there are positions a < b′ < a′ < b with a′ ∈ A
and b′ ∈ B, they induce an adjacent Σ-matching M ∪ {b′, a′}, replacing the pair (a, b)
by the consecutive pairs (a, b′) and (a′, b). Conversely, for every two consecutive Σ-
pairs (ai, bi), (ai+1, bi+1) of M , there is an adjacent Σ-matching M \ {bi, ai+1}, replacing
the two consecutive pairs by the new pair (ai, bi+1).

This gives us a rough lower bound on the number of neighbors of a vertex χ(M) of SP(Σ): It
has at least one neighbor for every pair ofM and one neighbor for any two pairs consecutive inM ,
so the number of neighbors is at least twice the number of pairs of M minus one. In particular, we
can state that the number of neighbors of the zero vector is equal to the number of Σ-pairs.

3.2.4 Faces

Next, we will examine the faces of shard polytopes. As every pseudoshard polytope is affinely
isomorphic to a shard polytope, many statements can easily be reformulated to hold for all pseu-
doshard polytopes as well. For a given shard Σ, we first introduce a class of shards on different
hyperplanes that force Σ.

Definition 3.2.20 (Restriction of a Shard). Let Σ = Σn(`, r, A,B) be an ~An shard. For posi-
tions i, j with ` ≤ i < j ≤ r, we denote by Σ[i,j] the restriction of Σ to [i, j] defined as
• Σ[i,j] := Σn(i, j, A ∩ ]i, j[ , B ∩ ]i, j[).

It is the unique shard on the An hyperplane Hn(i, j) that forces Σ. Similarly, we introduce two
more restrictions of Σ which both force Σ.
• Σ≤i := Σn(`, i, A ∩ ]`, j[, B ∩ ]`, i[) is a shard of Hn(`, i).
• Σ>j := Σn(j + 1, r, A ∩ ]j + 1, r[, B ∩ ]j + 1, r[) is a shard of Hn(j + 1, r).

Moreover, we introduce a pseudoshard obtained by omitting one of the positions k ∈ ]`, r[.
• Σ\i := Σn(`, r, A \ {i}, B \ {i}) is an ~An pseudoshard of the hyperplane Hn(`, r).

We remark that this statement remains valid for pseudoshards as well if we replace j + 1 by the
successor s(j) of j in the notation for Σ>j and the associated hyperplane. We use these restrictions
to prove that all faces of a shard polytope are (affinely isomorphic to) Cartesian products of other
shard polytopes of lower dimension.

Proposition 3.2.21 (Shard Polytope Faces as Cartesian Products of Pseudoshard Polytopes).
Let Σ = Σn(`, r, A,B) be an ~An shard. Then every face of SP(Σ) is a Cartesian product of
pseudoshard polytopes.

Proof. We first recall that the proper faces of a Cartesian product of polytopes are the Cartesian
products of the proper faces of the individual polytopes. As every proper i-dimensional face is the
facet of an i + 1-dimensional face, it is sufficient to prove the statement for the facets of SP(Σ).
We obtained the description of all facets of SP(Σ) in Lemma 3.2.4. We prove the statement for
both types of facets:

1. The facet defined by the equality xi = 0 is equal to the pseudoshard polytope SP(Σ\i).
2. We remark that by definition of pseudoshard polytopes, the polytope SP(Σ≤j) lies in a lin-

ear subspace of Rn defined as {x ∈ Rn | xi = 0 for all j < i}, while the polytope SP(Σ≥j)
lies in the subspace {x ∈ Rn | xi = 0 for all i ≤ j}. We deduce that their Cartesian prod-
uct SP(Σ≤j)× SP(Σ≥j) can naturally be understood as a polytope in Rn.
• If j is a Σ-climb, then the facet defined by the equality

∑
i≤j xi = 0 is spanned by

the characteristic vectors of those Σ-matchings whose restriction to the interval [`, j] is
a Σ-matching itself. This implies that their restriction to the interval [s(j), r] is a Σ-
matching as well. The facet is therefore equal to the Cartesian product of the pseu-
doshard polytopes SP(Σ≤j)× SP(Σ>j).
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• Analogously, for every Σ-fall j ∈ [`, r[, the facet defined by the equality
∑

i≤j xi = 1
is spanned by the characteristic vectors of those Σ-matchings whose restriction to the
interval [`, j] contains one more element of {`} ∪ A than of B. Let M be such a
matching. We find new matchings depending on whether j and s(j) are elements ofM .
◦ If j ∈M , then M ∩ [`, j[ is a Σ≤j-matching.
◦ If j 6∈M , then (M ∩ [`, j[) ∪ {j} is a Σ≤j-matching.
◦ If s(j) ∈M , then M ∩ ]s(j), r] is a Σ>j-matching.
◦ If s(j) 6∈M , then {s(j)} ∪ (M ∩ ]s(j), r]) is a Σ>j-matching.

The facet is therefore equal to the Cartesian product SP(Σ≤j)× SP(Σ>j) of two pseu-
doshard polytopes, translated by ej − es(j).

Next, we will have a closer look at some faces that are particularily easy to describe. For every
pair of a Σ-matching, the shard polytope SP(Σ) has a face for which we can give a V-description.

Lemma 3.2.22 (Face for a Σ-Pair). Let Σ be an ~An shard. For every Σ-matching pair (a, b), there
is a face of SP(Σ) which is the convex hull of the characteristic vectors of those Σ-matchings that
contain (a, b) as a pair.

Proof. Given a Σ-pair (a, b), we introduce the direction d := ea − eb − 1A∩]a,b[ + 1B∩]a,b[. We
remark that 〈d |χ(M)〉 ≤ 2 for every Σ-matching M , where equality holds if and only if M con-
tains both a and b and no position in between, which is precisely the case when M contains (a, b)
as a pair. Those Σ-matchings that do have characteristic vectors that are maximal in direction d,
so their convex hull is a face of SP(Σ).

Each such face is isomorphic to the Cartesian product of two shard polytopes.

Observation 3.2.23 (Face for a Σ-Pair as Cartesian Product). Every Σ-matching M contain-
ing (a, b) as a pair can be split up into three parts:
• The left part M<a := M ∩ [`, a[ has to be a matching for the shard Σ≤b

∗
as denoted in Defi-

nition 3.2.20, where b∗ := max {b′ ∈ B | b′ < a} as the last element of M<a cannot be in A.
• The central part M ∩ [a, b] contains exactly a and b.
• Analogously, the right part M>b := M ∩ ]b, r] has to be a matching for the shard Σ≥a

∗
,

where a∗ := min {a′ ∈ A | b < a′}.
Therefore, the characteristic vector of any Σ-matching M containing (a, b) as a pair is of the
form χ(M<a) + ea − eb + χ(M>b). Put differently, the face of SP(Σ) induced by the pair (a, b)
is isomorphic to the Cartesian product of the shard polytopes SP(Σ≤b

∗
) and SP(Σ≥a

∗
).

In the proof of Lemma 3.2.22, we used certain directions to talk about faces of SP(Σ). Before,
we saw that shard polytopes sometimes appear as faces of other shard polytopes. To investigate
some more connections of this kind, we introduce a number of vectors in Rn related to a pair
of ~An shards.

Definition 3.2.24 (Vectors for Two Shards). Given two ~An shards Σ1 := Σn(`1, r1, A1, B1)
and Σ2 := Σn(`2, r2, A2, B2), we define
• the direction d(Σ1,Σ2) := χ(Σ2)− χ(Σ1) = 1{`2}∪A2

− 1{`1}∪A1
− 1B2∪{r2} + 1B1∪{r1},

• the translation t(Σ1,Σ2) := δ`2∈B1(e`1 − e`2) + δr2∈A1(er2 − er1),
• the translated direction v(Σ1,Σ2) := d(Σ1,Σ2) + 2t(Σ1,Σ2).

While translation and translated direction will appear later, we will first make ourselves a lit-
tle more familiar with the direction vector d(Σ1,Σ2) in the case where the shard Σ2 forces Σ1.
We recall that this implies that `1 ≤ `2 < r2 ≤ r1 and A2 ⊆ A1 and B2 ⊆ B1. If addition-
ally, `2 ∈ {`1} ∪ A1 and r2 ∈ B1 ∪ {r1} hold, then χ(Σ1) and χ(Σ2) agree on all the entries
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labelled by [`2, r2]. In particular, for any Σ1-matching M , we have 〈χ(Σ1) |χ(M)〉 = |M |
and 〈χ(Σ2) |χ(M)〉 = |M ∩ [`2, r2]|. We deduce that 〈d(Σ1,Σ2) |χ(M)〉 ≤ 0 with equality
if and only if M ⊆ [`2, r2] which is equivalent to M being a Σ2-matching. This motivates the
following statement.

Lemma 3.2.25 (Faces from Forcing). Let Σ1 := Σn(`1, r1, A1, B1) and Σ2 := Σn(`2, r2, A2, B2)
be two ~An shards. Then the shard polytope SP(Σ2) is a face of the shard polytope SP(Σ1) if and
only if Σ2 forces Σ1 and both `2 6∈ B1 and r2 6∈ A1.

Proof. We first assume that Σ1 and Σ2 meet these requirements. Then every Σ2-matching is
a Σ1-matching according to Lemma 3.1.14, so the vertex set of SP(Σ2) is a subset of the ver-
tex set of SP(Σ1). Furthermore, as argued above, we know that for every Σ1-matching, we
have 〈d(Σ1,Σ2) |χ(M)〉 ≤ 0 with equality if and only if M is a Σ2-matching. As SP(Σ2) is
precisely the convex hull of the characteristic vectors of those matchings which maximize the
polytope SP(Σ1) in the direction d(Σ1,Σ2), so we conclude that SP(Σ2) is a face of SP(Σ1).

It is left to show the opposite direction. We assume that SP(Σ2) is a face of SP(Σ1). Then
every vertex of SP(Σ2) is a vertex of SP(Σ1). In particular, every Σ2-matching is a Σ1-matching,
so Lemma 3.1.14 implies all of the requested properties.

We will see that there are some more relations between one shard polytope and the faces of
another one. For a shard Σ2 forcing a shard Σ1, we can make a statement about SP(Σ2) being
related to a face of SP(Σ1) even if they do not meet the requirements of Lemma 3.2.25, meaning
that `2 ∈ B1 or r2 ∈ A1. To prepare this, we examine the effect of the translation vector t(Σ1,Σ2),
defined in Definition 3.2.24, on the characteristic vector of a Σ2-matching. We first define a
subclass of Σ1-matchings.

Definition 3.2.26 (Inspired Matching). Let Σ1 = Σn(`1, r1, A1, B1) and Σ2 = Σn(`2, r2, A2, B2)
be two ~An shards such that Σ2 forces Σ1. A Σ2-inspired Σ1-matching M is a Σ1-matching with
the additional properties
• if `1 < `2, then `1 ∈M if and only if `2 ∈ B1,
• if r2 < r1, then r1 ∈M if and only if r2 ∈ A1,
• M \ {`1, r1} ⊆ [`2, r2].

We note that every Σ2-inspired Σ1-matching is a Σ1-matching by definition, but the converse
holds only if both are the same shard. Furthermore, if `2 6∈ B1 and r2 6∈ A1, then Σ2-matchings
and Σ2-inspired Σ1-matchings are the same, while if `2 ∈ B1 or r2 ∈ A1, then no Σ2-matching
is a Σ2-inspired Σ1-matching. But even in this case, they are in bijection, as we will see in the
following statement.

Lemma 3.2.27 (Bijection with Inspired Matchings). Given ~An shards Σ1 and Σ2 such that Σ2

forces Σ1, the equation χ(M1) = χ(M2) + t(Σ1,Σ2) induces a natural bijection between all Σ2-
matchings and all Σ2-inspired Σ1-matchings.

Proof. From a fixed Σ2-matching M2, we derive a Σ2-inspired Σ1-matching by modifying M2.
• If `2 ∈ B1 ∩M2, we replace `2 by `1 in M2.
• If `2 ∈ B1 \M2, we add the pair (`1, `2) to M2.
• If r2 ∈ A1 ∩M2, we replace r2 by r1 in M2.
• If r2 ∈ A1 \M2, we add the pair (r2, r1) to M2.

We note that this corresponds to adding (e`1 − e`2) to the characteristic vector of M2 if and only
if `2 ∈ B1 and adding (er2 − er1) to the characteristic vector of M2 if and only if r2 ∈ A1.
Therefore, the characteristic vector of the resulting matching is χ(M2) + t(Σ1,Σ2).
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Conversely, we can modify a Σ2-inspired Σ1-matching M1 to obtain a Σ2-matching:
• If {`1 < `2} ⊆M1, we remove both `1 and `2 from M1.
• If `1 ∈M1 and `2 6∈M1 we replace `1 by `2.
• If {r2 < r1} ⊆M1, we remove both r2 and r1 from M1.
• If r1 ∈M1 and r2 6∈M1, we replace r1 by r2.

This corresponds to subtracting (e`1 − e`2) from the characteristic vector of M2 if and only if we
have `2 ∈ B1 and subtracting (er2 − er1) if and only if r2 ∈ A1, so that the characteristic vector
of the resulting matching is χ(M1)− t(Σ1,Σ2).

We saw that there is a bijection between Σ2-matchings and Σ2-inspired Σ1-matchings, such that
their characteristic vectors differ by t(Σ1,Σ2). We can use this knowledge to derive some more
statements about the faces of SP(Σ1).

Lemma 3.2.28 (Faces from Forcing and Translation). Let Σ1 and Σ2 be two ~An shards such
that Σ2 forces Σ1. Then the translated shard polytope t(Σ1,Σ2) + SP(Σ2) is a face of SP(Σ1).

Proof. To prove this statement, we introduce a direction in Rn such that certain vertices of SP(Σ1)
are maximal in that direction, meaning that they span a face of SP(Σ1). We describe the Σ1-
matchings whose characteristic vectors lie in this face and give a bijection between them and
the set of all Σ2-matchings. That bijection defined by manipulating sets then geometrically corre-
sponds to adding t(Σ1,Σ2) to their characeristic vectors. We recall the vector v(Σ1,Σ2) from Def-
inition 3.2.24. As Σ2 forces Σ1, we have A2 ⊆ A1 and B2 ⊆ B1 and therefore

v(Σ1,Σ2) = (2δ`2∈B1 − 1)(e`1 − e`2) + (2δr2∈A1 − 1)(er2 − er1)− 1A1\A2
+ 1B1\B2

.

We want to find those vertices of SP(Σ1) whose scalar product with v(Σ1,Σ2) is maximal. We fix
an arbitrary Σ1-matching M1 and take a close look at the scalar product x = 〈v(Σ1,Σ2) |χ(M1)〉
by going through all nonzero entries of χ(M1).
• If `1 ∈M1, it contributes 1 to x if `2 ∈ B1, and 0 if `2 = `1, and −1 if `2 ∈ A1.
• Any position in M1 ∩ ]`1, `2[ is in A1 \A2 or B1 \B2, so it contributes −1 to x.
• If `1 < `2 ∈M1, it contributes 0 to x regardless of whether `2 ∈ A1 or `2 ∈ B1.
• Any position in M1 ∩ ]`2, r2[ is in A1 ∩A2 or B1 ∩B2, so it contributes 0 to x.
• If r1 > r2 ∈M1, it contributes 0 to x regardless of whether r2 ∈ A1 or r2 ∈ B1.
• Any position in M1 ∩ ]r2, r1[ is in A1 \A2 or B1 \B2, so it contributes −1 to x.
• If r1 ∈M1, it contributes 1 to x if r2 ∈ A1, and 0 if r2 = r1, and −1 if r2 ∈ B1.

We deduce that for any Σ1-matchingM1, we have 〈v(Σ1,Σ2) |χ(M1)〉 ≤ δ`2∈B1 +δr2∈A1 , where
equality holds if and only if the Σ1-matching M1 is Σ2-inspired. It follows that the characteristic
vectors of all Σ2-inspired Σ1-matchings span a face of SP(Σ1). But as we saw in Lemma 3.2.27,
these are exactly the characteristic vectors of all Σ2-matchings, translated by t(Σ1,Σ2). Therefore,
the shard polytope SP(Σ2) translated by t(Σ1,Σ2) is a face of the shard polytope SP(Σ1).

We have seen how shard polytopes translate into faces of another shard polytope. Next, we will
study how this works vertex by vertex, and have a closer look at when a matching is inspired.

Lemma 3.2.29 (All Non-Trivial Matchings are Inspired). Let Σ1 = Σn(`1, r1, A1, B1) be
an ~An shard and let M1 be a Σ1-matching. If M1 ∩ ]`1, r1[ 6= ∅, there is an ~An shard Σ2

distinct from Σ1 such that Σ2 forces Σ1 and M1 is a Σ2-inspired Σ1-matching.

Proof. We introduce the set J := M1 ∩ ]`1, r1[ containing the elements of M1 apart from the
endpoints of the shard. For each case, we define a new shard Σ2 = Σn(`2, r2, A2, B2).
• If |J | = 1, we denote its only element by j. Then
◦ either j ∈ B1, so M1 = {`1, j} and we set Σ2 := Σn(`1, j, A1 ∩ ]`1, j[, B1 ∩ ]`1, j[),
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◦ or j ∈ A1, so M1 = {j, r1} and we set Σ2 := Σn(j, r1, A1 ∩ ]j, r1[ , B1 ∩ ]j, r1[).
In either case, Σ2 forces Σ1 and M1 is Σ2-inspired.
• If |J | ≥ 2, we set the endpoints `2 := min(J) and r2 := max(J). Then we define

the ~An shard Σ2 := Σn(`2, r2, A1 ∩ ]`2, r2[ , B1 ∩ ]`2, r2[). We observe that Σ2 is distinct
from Σ1 and forces Σ1. Moreover, we recall that the smallest element of a Σ1-matching cannot
be an element of B1. Therefore, if `2 ∈ B1, it is not the smallest element of M1, so `1 ∈M1.
Conversely, if `1 ∈M1, then `2 ∈ B1 is guaranteed because it is the second smallest element
of the Σ1-matching M1. Analogously, r1 ∈M1 if and only if r2 ∈ A1. All the other elements
of M1 are in [`2, r2] by definition. We conclude that M1 is Σ2-inspired.

This allows us to recursively define the vertex set of a shard polytope depending on the vertex
sets of the shard polytopes for all shards that force our fixed shard.

Corollary 3.2.30 (Vertices of the Shard Polytope from Forcing). Let Σ1 := Σn(`1, r1, A1, B1) be
an ~An shard. The vertices of the shard polytope SP(Σ1) are 0, e`1 − er1 , and the vertices of the
translated shard polytopes t(Σ1,Σ2) + SP(Σ2) for every shard Σ2 forcing Σ1.

Proof. We first recall from Lemma 3.2.9 that the vertices of SP(Σ1) are exactly the characteristic
vectors of Σ1-matchings. As ∅ and {`1, r1} are trivial Σ1-matchings, their characteristic vectors 0
and e`1 − er1 are always vertices of SP(Σ1).

Every nontrivial Σ1-matching M1 has M1 ∩ ]`1, r1[ 6= ∅. Then Lemma 3.2.29 guarantees that
there is a shard Σ2 forcing Σ1 such that M1 is Σ2-inspired. According to Lemma 3.2.27, this
implies that there is a Σ2-matching M2 such that χ(M2) + t(Σ1,Σ2) = χ(M1). Therefore, the
characteristic vector of M1 is a vertex of the translated shard polytope t(Σ1,Σ2) + SP(Σ2).

On the other hand, Lemma 3.2.28 certifies that if Σ2 forces Σ1, then every vertex of the translated
shard polytope t(Σ1,Σ2) + SP(Σ2) is a vertex of SP(Σ1) as well.

3.2.5 Symmetries

Shards admit multiple types of symmetry, which we can rediscover in their shard polytopes. We
will first introduce some terminology to describe these symmetries. We will use ρ (lowercase
rho) to denote maps on integers, sets of integers and vectors. We will use P (uppercase Rho) to
introduce an associated operation on shards.

Definition 3.2.31 (Shard Polytope Symmetry Maps). Given n ∈ N, we define involutive maps.
• For an integer i ∈ [n], we define ρ↔n (i) := n+ 1− i.
• For a set of positions T ⊆ [n], we define ρ↔n (T ) := {n+ 1− j | j ∈ T}.
• We define the linear map ρ↔n : Rn → Rn by ρ↔n (ei) := en+1−i.
• We define the linear map ρl : Rn → Rn by ρl(ei) := −ei.

We introduce two more maps P↔n and Pl, each acting as an involution on the set Σn of
all ~An shards, defined by their effect on an ~An shard Σ = Σn(`, r, A,B).
• A vertically mirrored shard is given by P↔n (Σ) := Σn(ρ↔n (r), ρ↔n (`), ρ↔n (A), ρ↔n (B)).
• A horizontally mirrored shard is given by Pl(Σ) := Σn(`, r, B,A).

We note that the definitions of ρ↔n on integers, sets of integers and vectors are compatible. For a
set T ⊆ [n], we have ρ↔n (T ) = {ρ↔n (j) | j ∈ T}, for an integer i ∈ [n], we have ρ↔n (ei) = eρ↔n (i).
Geometrically, the map ρ↔n is a rotation mapping any coordinate i ∈ [n] to coordinate n + 1− i,
while the map ρl corresponds to the reflection through the origin 0.

With the help of these maps, we can describe the interplay between shard polytopes of mirrored
shards and rotated and reflected shard polytopes.
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Lemma 3.2.32 (Shard Polytope Symmetries). Let Σ := Σn(`, r, A,B) be an ~An shard. Then

SP(Pl(Σ)) = ρl(SP(Σ)− e` + er) = ρl(SP(Σ)) + e` − er,

SP(P↔n (Σ)) = ρ↔n (SP(Σ)− e` + er) = ρ↔n (SP(Σ)) + en+1−r − en+1−`,

SP(P↔n ◦ Pl(Σ)) = ρ↔n ◦ ρl(SP(Σ)).

Proof. The shard polytopes SP(Pl(Σ)) and SP(P↔n (Σ)) can be described as the convex hull of
the characteristic vectors of all Pl(Σ)-matchings (resp. all P↔n (Σ)-matchings). We therefore have
a closer look at Pl(Σ)-matchings and P↔n (Σ)-matchings.
• Given a Σ-matching M , we can turn it into a Pl(Σ)-matching M ′ in the following way:
◦ If ` ∈M , we remove it.
◦ If ` 6∈M , we add it.

◦ If r ∈M , we remove it.
◦ If r 6∈M , we add it.

This way, the empty matching turns into {`, r} and vice versa. If M contains at least one
element from ]`, r[, these rules ensure that the elements of the resulting set alternate between
elements of {`} ∪ B and A ∪ {r} as desired. We deduce that M 7→ M∆{`, r} injectively
maps a Σ-matching to an Pl(Σ)-matching. As this map is involutive, it can also be used to
map an Pl(Σ)-matching to a Σ-matching, inducing a bijection between these sets.
For the Pl(Σ)-matching M∆{`, r}, its characteristic vector χ(M∆{`, r}) is therefore equal
to χ(M∆{`, r}) = −χ(M) + e` − er. This way, the signs on all positions in ]`, r[ are
flipped (reflecting the exchange of A and B by Pl), while the entries at the endpoints are
adjusted accordingly. Now we can describe the vertices of the shard polytope SP(Pl(Σ)) as
the vertices of −SP(Σ) = Pl(SP(Σ)), translated by e` − er.
• Analogously, if M is a Σ-matching, then ρ↔n (M∆{`, r}) is a P↔n (Σ)-matching and vice

versa. Therefore, the vertices of the shard polytope SP(P↔n (Σ)) are exactly the vectors of the
form χ(ρ↔n (M∆{`, r})) = ρ↔n (χ(M) − e` + er), and the shard polytope SP(P↔n (Σ)) is
equal to the polytope ρ↔n (SP(Σ)) translated by eρ↔n (r) + eρ↔n (`).
• For the last part of the statement, we compute the shard polytope SP(P↔n ◦ Pl(Σ)) using the

above equalities. As desired, we obtain

SP(P↔n ◦ Pl(Σ)) = ρ↔n (SP(Pl(Σ))− e` + er)

= ρ↔n (ρl(SP(Σ)) + e` − er − e` + er)

= ρ↔n ◦ ρl(SP(Σ)).

3.3 Shard Fans

The reason we introduced shard polytopes in the first place is that their normal fans exhibit a
behaviour that is compatible with the forcing poset on shards. We first define these fans properly
and have a closer look at the normal fan of SP(Σ).

Definition 3.3.1 (Shard Fan). Given an ~An shard Σ, the shard fan SF(Σ) is the normal fan of the
shard polytope SP(Σ), formed by the normal cones of all facets of SP(Σ).

Observation 3.3.2 (Basic Correspondences of Shard Polytope and Shard Fan). We observe that
• the chambers of SF(Σ) correspond to the vertices of SP(Σ),
• the walls of SF(Σ) correspond to the edges of SP(Σ),
• the rays of SF(Σ) correspond to the facets of SP(Σ).

We will be especially interested in the union of all walls of SF(Σ). It can be described equiva-
lently as the union of the normal cones of all edges of SP(Σ) or as the union of the boundaries of
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the normal cones of all vertices of SP(Σ). In particular, a vector lies in the normal cone of more
than one vertex of SP(Σ) if and only if it lies in the union of all walls of SF(Σ).

As the vertices of SP(Σ) are in bijection with the Σ-matchings, so are the chambers of SF(Σ).
A vector t ∈ Rn lies in the chamber associated to the Σ-matching M if and only if the inequal-
ity 〈t |χ(M)〉 ≥ 〈t |χ(M ′)〉 holds for every Σ-matching M ′ distinct from M . It lies in the
interior of the chamber if and only if that inequality is always strict. Conversely, if there is more
than one Σ-matching whose characteristic vector maximizes this scalar product with t, then t can-
not be contained in the interior of any of the chambers of SF(Σ) and is therefore contained in
the union of the walls of SF(Σ). For a fixed t, we will use the notation τ(M) := 〈t |χ(M)〉 to
denote the scalar product of t with the characteristic vector χ(M) throughout this section.

3.3.1 Walls

We can gather some information on this union of walls by giving both a subset which it contains
and a superset which it is contained in.

Proposition 3.3.3 (Shard Fan Walls). For any ~An shard Σ, the union of the walls of SF(Σ) is a
superset of the shard Σ and a subset of the union of all shards Σ′ that force Σ.

Proof. We fix an ~An shard Σ = Σn(`, r, A,B) and a real vector t ∈ Rn. To prove one direction of
the statement, we fix a vector t ∈ Σ on the shard itself. By definition of an ~An shard, the vector t
then satisfies the inequalities ta ≤ t` = tr ≤ tb for all a ∈ A and b ∈ B. As any matching M
can be rewritten as M = {a1 < b1 < · · · < ak < bk}, we have τ(M) =

∑k
i=1 tai − tbi . For

any pair {ai, bi} of M , we have ai ∈ {`} ∪ A and bi ∈ B ∪ {r}, so tai − tbi ≤ 0. This implies
that τ(M) ≤ 0 with equality if and only if tai = tbi for every i ∈ [k]. In particular, τ(M) = 0
holds for both M = ∅ and M = {` < r}. As t is maximized by these two vertices (and possibly
others) of SP(Σ), it lies in the normal cone of both vertices and thus in their intersection. We
conclude that it is contained in the union of the walls of SF(Σ).

To prove the second part of the statement, we fix a vector t ∈ Rn that lies in the union of
the walls of SF(Σ). As walls of SF(Σ) correspond to edges of SP(Σ), there is at least one
edge e of SP(Σ) such that t lies in the normal cone of e. Let M1 and M2 be the two Σ-matchings
whose characteristic vectors are connected by e. Then the normal cone of e is the intersection
of normal cones of the SP(Σ)-vertices χ(M1) and χ(M2). As e is an edge of SP(Σ), its center
cannot be rewritten as a convex combination of the remaining vertices of SP(Σ). In particular,
no Σ-matchings M3 and M4 distinct from M1 and M2 can have characteristic vectors that sat-
isfy χ(M1) +χ(M2) = χ(M3) +χ(M4). This implies that M1 and M2 are related in one of four
very special ways, as described in Lemma 3.2.13.

As done there, we first set H (resp. T ) to be the unique maximal common initial (resp. fi-
nal) Σ-matching of M1 and M2. We recall that as t belongs to the normal cones of both χ(M1)
and χ(M2), we have τ(M1) = τ(M2). Futhermore, τ(M ′) ≤ τ(M1) (resp. τ(M2)) holds for
all Σ-matchings M ′. We will go through the four special cases of Lemma 3.2.13 and introduce for
each of them a new shard Σ′ := Σn(`′, r′, A′, B′) with A′ := A ∩ ]`′, r′[ and B′ := B ∩ ]`′, r′[,
where the variables `′ and r′ will by defined separately in each case. We will show that Σ′ forces Σ.
Moreover, we introduce two families of Σ-matchings Ma and Mb for each case. We emphasize
that these are Σ-matchings, not Σ′-matchings. They will help us prove that the vector t is an
element of the shard Σ′.

95



3 Shard Polytopes for the Braid Arrangement

1. If M1 = H ∪ {a0 < b0} ∪ T and M2 = H ∪ T , we set
• `′ := a0 and r′ := b0,
• Ma := H ∪ {a < b0} ∪ T for a ∈ A′,
• Mb := H ∪ {a0 < b} ∪ T for b ∈ B′.

2. If M1 = H ∪ {a0 < b2} ∪ T and M2 = H ∪ {a0 < b1} ∪ T with b1 < b2, we set
• `′ := b1 and r′ := b2,
• Ma := H ∪ {a0 < b1 < a < b2} ∪ T for a ∈ A′,
• Mb := H ∪ {a0 < b} ∪ T for b ∈ B′.

3. If M1 = H ∪ {a1 < b0} ∪ T and M2 = H ∪ {a2 < b0} ∪ T with a1 < a2, we set
• `′ := a1 and r′ := a2,
• Ma := H ∪ {a < b0} ∪ T for a ∈ A′,
• Mb := H ∪ {a1 < b < a2 < b0} ∪ T for b ∈ B′.

4. If M1 = H ∪ {a1 < b2} ∪ T , and M2 = H ∪ {a1 < b1 < a2 < b2} ∪ T we set
• `′ := b1 and r′ := a2,
• Ma := H ∪ {a1 < b1 < a < b2} ∪ T for a ∈ A′,
• Mb := H ∪ {a1 < b < a2 < b2} ∪ T for b ∈ B′.

We first observe that in each of the four cases, the new shard Σ′ := Σn(`′, r′, A′, B′) satisfies
the inequalities ` ≤ `′ < r′ ≤ r and has A′ ⊆ A and B′ ⊆ B as well as A′ ∪̇ B′ = ]`′, r′[. We
conclude that Σ′ is an ~An shard that forces Σ.

It is left to show that the vector t is contained in the shard Σ′. For this, we need to ensure that
in all four cases, ta ≤ t`′ = tr′ ≤ tb holds for any a ∈ A′ and b ∈ B′.
• In each case, we defined `′ and r′ in such a way that τ(M1)− τ(M2) = t`′ − tr′ . We already

noted that τ(M1) = τ(M2), and this implies that t`′ = tr′ .
• In each case, we defined Σ-matchings Ma in such a way that τ(M1) − τ(Ma) = t`′ − ta.

Then τ(Ma) ≤ τ(M1) implies that ta ≤ t`′ . for each a ∈ A′.
• In each case, we defined Σ-matchings Mb in such a way that τ(M1) − τ(Mb) = tb − tr′ .

Then τ(Mb) ≤ τ(M1) implies that tr′ ≤ tb for each b ∈ B′.
We conclude that t is contained in the shard Σ′ which forces Σ, so t is contained in the union of
all shards that force Σ.

3.3.2 Cones for Matchings

In this section, we will describe some of the cones of SF(Σ). We do this by applying our knowl-
edge about the neighbors of a given SP(Σ) vertex χ(M) to describe the inequalities bounding the
corresponding chamber of SF(Σ). We recall our notation τ(M) = 〈t |χ(M)〉 so that the vec-
tor t ∈ Rn lies in the chamber corresponding to the Σ-matching M if and only if τ(M) ≥ τ(M ′)
holds for every Σ-matching M ′. Equivalently, t lies in the chamber of M if this inequality holds
for every matching M ′ such that χ(M) and χ(M ′) are adjacent in SP(Σ). We can now de-
fine one inequality for each neighbor of M , in each case drawing conclusions from the condi-
tion τ(M) ≥ τ(M ′). We know all possible neighbors of M from Lemma 3.2.15 via Observa-
tion 3.2.19 and use the same numbering of cases.

1. If M ′ = M ∪ {a < b} for some Σ-pair (a, b), then τ(M) ≥ τ(M ′) is equivalent to 0 ≥
〈t |χ(M ′)− χ(M)〉 = ta−tb. We obtain the inequality ta ≤ tb for everyM -compatible Σ-
pair (a, b). Conversely, if M ′ = M \ {a < b} for some Σ-pair (a, b), then we obtain 0 ≤
〈t |χ(M)− χ(M ′)〉 = ta− tb and deduce the inequality ta ≥ tb for every pair (a, b) ofM .

2. If M \ {b} = M ′ \ {b′}, where b belongs to the Σ-pair (a, b) of M , then we obtain tb ≤ tb′
for every Σ-pair (a, b′) compatible with M \ {a, b}.

3. If M \ {a} = M ′ \ {a′}, where a belongs to the Σ-pair (a, b) of M , then we obtain ta ≥ ta′
for every Σ-pair (a′, b) compatible with M \ {a, b}.

96



3.3 Shard Fans

4. If M ′ = M ∪ {b′ < a′}, then there is a Σ-pair (a, b) of M such that a < b′ < a′ < b. We
obtain tb′ ≥ ta′ . Conversely, if M ′ = M \ {b′ < a′}, then there are two consecutive Σ-
pairs (a, b′) and (a′, b) of M . We obtain tb′ ≤ ta′ .

We can use this information to describe some cones of the shard fan SF(Σ). In particular, we
will describe the normal cone associated to the vertex of SP(Σ) corresponding to a Σ-matching
and the normal cone associated to the face of SP(Σ) corresponding to a Σ-pair.

Lemma 3.3.4 (Shard Fan Cone for Matching). Let Σ = Σn(`, r, A,B) be an ~An shard and M be
a Σ-matching. The cone of SF(Σ) corresponding to M contains exactly the vectors t ∈ Rn with

1. ta ≤ tb for every Σ-pair (a, b) compatible with M ,
2. ta ≥ tb for every Σ-pair (a, b) of M ,
3. tb ≤ tb′ for every Σ-pair (a, b) of M and every Σ-pair (a, b′) compatible with M \ {a, b},
4. ta ≥ ta′ for every Σ-pair (a, b) of M and every Σ-pair (a′, b) compatible with M \ {a, b},
5. tb′ ≥ ta′ for every Σ-pair (a, b) of M such that (a, b′) and (a′, b) are compatible Σ-pairs,
6. tb ≤ ta′ for every two Σ-pairs (a, b) and (a′, b′) consecutive in M .

Proof. We first show that all of these conditions are necessary. For each of the conditions, we
assume that t violates it and introduce a modified Σ-matching M ′ with τ(M ′) > τ(M), which
certifies that χ(M) is not maximal in the direction t among the vertices of SP(Σ).

(i) If ta > tb for a Σ-pair (a, b) compatible with M ,
then we set M ′ := M ∪ {a, b}.

(ii) If ta < tb for a Σ-pair (a, b) of M ,
then we set M ′ := M \ {a, b}.

(iii) If tb > tb′ for a Σ-pair (a, b) of M and a Σ-pair (a, b′) compatible with M \ {a, b},
then we set M ′ := M ∪ {b′} \ {b}.

(iv) If ta < ta′ for a Σ-pair (a, b) of M and a Σ-pair (a′, b) compatible with M \ {a, b},
then we set M ′ := M ∪ {a′} \ {a}.

(v) If tb′ < ta′ for a Σ-pair (a, b) of M such that (a, b′) and (a′, b) are compatible Σ-pairs,
then we set M ′ := M ∪ {b′, a′}.

(vi) If tb > ta′ for two Σ-pairs (a, b) and (a′, b′) consecutive in M ,
then we set M ′ := M \ {b, a′}.

In each of these cases, M ′ is a Σ-matching such that τ(M ′) > τ(M), so t does not lie in the cone
of SF(Σ) corresponding to M .

For the second part of the statement, we assume for a contradiction that these conditions are not
sufficient. Then we can fix a vector t ∈ Rn and a Σ-matchingM such that t satisfies all conditions,
but is not included in the chamber of SF(Σ) corresponding to M . This implies that there is
an adjacent chamber of SF(Σ) corresponding to a Σ-matching M ′ such that τ(M ′) > τ(M).
As the chamber of M ′ is adjacent in SF(Σ), the vertex is adjacent to that of M in SP(Σ), so
Lemma 3.2.15, implies that |M∆M ′| = 2. We can now go through all forms of adjacent Σ-
matchings as described by Observation 3.2.19.

1. If M ′ = M ∪ {a, b} for an M -compatible Σ-pair (a, b), we have 0 < τ(M ′) − τ(M) =
ta − tb and deduce that ta > tb, violating 1. Conversely, if M ′ = M \ {a, b} for a Σ-
pair (a, b) of M , we have 0 < τ(M ′)− τ(M) = tb − ta, so that ta < tb violates 2.

2. If M ′ = (M ∪ {b′}) \ {b} for a Σ-pair (a, b) of M such that the Σ-pair (a, b′) is compatible
with M \ {a, b}, we have 0 < τ(M ′)− τ(M) = tb − tb′ , now tb > tb′ violates 3.

3. If M ′ = (M ∪{a′}) \ {a} for a Σ-pair (a, b) of M such that the Σ-pair (a′, b) is compatible
with M \ {a, b}, we have 0 < τ(M ′)− τ(M) = ta′ − ta, now ta < ta′ violates 4.

4. If M ′ = M ∪ {b′, a′} such that a < b′ < a′ < b, where (a, b′) and (a′, b) are Σ-pairs
of M ′, we have 0 < τ(M ′) − τ(M) = ta′ − tb′ , and tb′ < ta′ violates 5. Conversely,
if M ′ = M \ {b, a′} for two Σ-pairs (a, b) and (a′, b′) consecutive in M , we have 0 <
τ(M ′)− τ(M) = tb − ta′ , and tb > ta′ violates 6.
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In each of these cases, we showed that t violates one of the conditions, contradicting our as-
sumption. Therefore, t does lie in the chamber of M in SF(Σ) if it satisfies all of the condi-
tions.

This result can be used to describe some other cones in the shard fan as well.

3.3.3 Cones for Pairs

We recall that any polyhedral cone can equivalently be described as the positive linear span of
its rays or as the intersection of the halfspaces defined by its inequalities. For the normal cone
of the face of SP(Σ) corresponding to a Σ-pair, the rays correspond to the facets of SP(Σ) that
contain this face. On the other hand, the normal cone of a face of SP(Σ) can be described as
the intersection of those chambers of SF(Σ) associated to the vertices of the polytope that are
contained in the face. Therefore, to describe the normal cone corresponding to a Σ-pair, it is
sufficient to collect all inequalities that are used to describe one of these chambers.

We remark that in SP(Σ), a vertex associated to a Σ-matching M is contained in each of the
faces of SP(Σ) associated to a Σ-pair contained in M . Conversely, the normal cone of the face
of a Σ-pair is contained in all normal cones of Σ-matchings containing that pair. Therefore, all
inequalities bounding the normal cone of a Σ-matching must hold for the normal cone of any of
its Σ-pairs as well. To describe the cone of SF(Σ) corresponding to the face of SP(Σ) induced
by all Σ-matchings containing a fixed Σ-pair (a, b), we can collect all inequalities for all normal
cones associated to Σ-matchings containing that pair.

The wall-defining inequalities of the chambers of the shard fan are exactly those corresponding
to the edges of the shard polytope. We know that those are of a certain form connecting two
matchings that differ by exactly two positions. In particular, the normal cone of any face of the
shard fan can be described using only inequalities between two entries of the vector.

Corollary 3.3.5 (Shard Fan Cone for Pair). Let Σ := Σn(`, r, A,B) be an ~An shard and (a, b) be
a Σ-pair. If A∩ ]b, r] is non-empty, we set a∗ to be its minimal element. If B ∩ [`, a[ is non-empty,
we set b∗ to be its maximal element. A vector t ∈ Rn lies in the cone of SF(Σ) corresponding to
the Σ-pair (a, b) if and only if it satisfies
• ta ≥ tb,
• ti ≤ ta for every i ∈ [`, a[,
• tb ≤ tj for every j ∈ ]b, r],
• ta ≥ ta′ for every a′ ∈ A ∩ ]a, b[,
• tb′ ≥ tb for every b′ ∈ B ∩ ]a, b[,
• tb′ ≥ ta′ for all compatible Σ-pairs (a, b′) and (a′, b).
• If a∗ exists, then tj = tr for every j ∈ [a∗, r].
• If b∗ exists, then t` = ti for every i ∈ [`, b∗].

Proof. We collect the inequalities of Lemma 3.3.4 where we go through all Σ-matchings contain-
ing (a, b) as a pair.

So far, we described cones of the fan SF(Σ). There is another polyhedral cone in the same
space that we want to describe, which is not a cone of SF(Σ), but the union of some of its
chambers. In Corollary 3.3.5, we described the vectors in the normal cone of a given Σ-pair,
which is the intersection of all cones of SF(Σ) associated to Σ-matchings with that pair. Now,
we will describe the vectors in the union of all these cones, which will give us a description of all
vectors that lie in the normal cone of some Σ-matching containing that pair.
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Corollary 3.3.6 (Cone for all Matchings Containing a Pair). Let Σ := Σn(`, r, A,B) be
an ~An shard and (a, b) be a Σ-pair. A vector t ∈ Rn lies in a chamber of SF(Σ) corresponding to
some Σ-matching containing the pair (a, b) if and only if all of the following conditions hold:

1. ta ≥ tb,
2. tb′ ≥ tb for every b′ ∈ B ∩ ]a, b[,
3. ta ≥ ta′ for every a′ ∈ A ∩ ]a, b[ with a < b′ < a′ < b,
4. whenever ta′ > ta with a′ ∈ {`} ∪A and a′ < a, there is a b′ ∈ B ∩ ]a′, a[ with tb′ < ta,
5. whenever tb > tb′ with b′ ∈ B ∪ {r} and b < b′, there is an a′ ∈ A ∩ ]b, b′[ with tb < ta′ ,
6. tb′ ≥ ta′ for all b′ ∈ B and a′ ∈ A.

Proof. We collect all inequalities of Lemma 3.3.4 that separate a Σ-matching M containing (a, b)
as a pair from a Σ-matching M ′ not containing (a, b) as a pair. We go through them in the num-
bering used in Lemma 3.3.4.

(i) We ignore inequalities ta′ ≤ tb′ for compatible Σ-pairs (a′, b′) as we only care about (a, b).
(ii) We keep the inequality ta ≥ tb for our pair (a, b).

(iii) We keep the inequalities tb ≤ tb′ for our pair (a, b) and every distinct Σ-pair (a, b′).
(iv) We keep the inequalities ta ≥ ta′ for our pair (a, b) and every distinct Σ-pair (a′, b).

For positions a′ or b′ outside of [a, b] in these two cases, we rewrite the conditions to reflect that
the inequality only matters if M ′ contains (a′, b) or (b, a′) not only as a subset, but as a pair.

(v) We keep the inequalities tb′ ≥ ta′ for all compatible Σ-pairs (a, b′) and (a′, b).
(vi) We keep the inequalities tb1 ≤ ta2 for any two Σ-pairs (a1, b1) and (a2, b2) consecutive

in M such that (a, b) is one of them.
We find that this last type of conditions is redundant: Assume there is a b1 ∈ B ∩ ]`, a[ such
that tb1 > ta. If t is contained in the chamber of M , the pair (a1, b1) has to give a non-negative
contribution to τ(M), so ta1 ≥ tb1 > ta. Therefore, by condition 4, there has to be some po-
sition b′ ∈ B ∩ ]a1, a[ with tb′ < ta and thus there is a Σ-matching M ′ := (M ∪ {b′}) \ {b1}
adjacent to M with τ(M ′) > τ(M), which contradicts the assumption that t lies in the chamber
of M . An analogous argument holds for the case where (a, b) is the first of the two consecutive
pairs in M . Therefore, the inequality tb1 ≤ ta2 is already guaranteed to hold by the conditions
written up so far.

3.3.4 Cones for Edges

We conclude our analysis of some cones of the shard fan SF(Σ) with the normal cone of an edge
in the shard polytope SP(Σ).

Corollary 3.3.7 (Shard Fan Cone for an Edge in a Certain Direction). Let Σ := Σn(`, r, A,B) be
an ~An shard and ` ≤ i < j ≤ r be two positions. Then a vector t ∈ Rn is in the normal cone of
an edge of SP(Σ) in the direction ei − ej if and only if ti = tj and
• If i ∈ {`} ∪ A and j ∈ B ∪ {r}, there are two Σ-matchings M and M ′ = M ∪ {i, j} such

that t lies in the normal cone of both. Equivalently, t lies in the normal cone of a Σ-matching
containing the pair (i, j).
• If i ∈ B ∪ {r} and j ∈ {`} ∪ A, there are a < i < j < b such that M is a Σ-matching

containing the pairs (a, i) and (j, b) and M ′ = M \ {i, j} is a Σ-matching containing the
pair (a, b) such that t lies in the normal cone of both. Equivalently, t lies in the normal cone
of a Σ-matching containing the pairs (a, i) and (j, b).
• If i, j ∈ {`}∪A, there is some b > j with b ∈ B∪{r} such thatM is a Σ-matching containing

the pair (j, b) and M ′ = (M ∪{i})\{j} is a Σ-matching containing the pair (i, b) such that t
lies in the normal cone of both. Equivalently, t lies in the normal cone of a Σ-matching
containing the pair (i, b).
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• If i, j ∈ B∪{r}, there is some a < iwith a ∈ {`}∪A such thatM is a Σ-matching containing
the pair (a, i) and M ′ = (M ∪ {j}) \ {i} is a Σ-matching containing the pair (a, j) such
that t lies in the normal cone of both. Equivalently, t lies in the normal cone of a Σ-matching
containing the pair (a, j).

Proof. We first show that these conditions are necessary. To prove this, we assume that t is
in the SF(Σ) cone corresponding to an edge e connecting two SP(Σ) vertices, where e is in
direction ei − ej . We denote the two endpoints by χ(M) and χ(M ′), where M and M ′ are two
distinct Σ-matchings with χ(M ′) − χ(M) = ei − ej . As t lies in the normal cone of this edge,
we have τ(M) = τ(M ′) and thus ti = tj . The four cases follow by distinguishing cases based on
the positions i and j.

It is left to show that the conditions are sufficient. In each of the four cases, there are two
adjacent Σ-matchings M and M ′ such that t lies in the normal cone of both. They are connected
by a SP(Σ) edge in direction ei − ej which we denote by e. We deduce that τ(M) = τ(M ′) and
there is no Σ-matching M∗ with τ(M∗) > τ(M). Then t is maximized by a face F of SP(Σ) that
contains e. As e ⊆ F , we have t ∈ N (F ) ⊆ N (e), so t is contained in the normal cone of the
edge e in direction ei − ej .

3.4 Shardsumotopes

We will now describe the polytopes and normal fans that are obtained by building the Minkowski
sum of multiple shard polytopes. In particular, we will sum up shard polytopes for sets of shards
that are upper sets in the forcing order. We will call such a set a upper set of shards and recall
from Theorem 1.4.31 that the lattice congruences on Pos( ~An) are in bijection with the upper
sets of ~An shards, so any upper set of ~An shards can be written as S = ΣX

≡ for some lattice
congruence ≡ and vice versa.

3.4.1 Construction

Definition 3.4.1 (Shardsumotopes). Given an upper set of shards S ⊆ Σ, we define
• The summed shard polytope or shardsumotope SP+(S) to be the Minkowski sum of all

shard polytopes for shards in S, written as SP+(S) :=
∑

Σ∈S SP(Σ)
• The summed shard fan or shardsumofan SF+(S) to be the normal fan of the shardsumo-

tope SP+(S) or equivalently, the common refinement of all shard fans SF(Σ) for Σ ∈ S.
Given a latttice congruence ≡ on the poset of regions of ~An, we define SP+(≡) := SP+(ΣX

≡) to
be the shardsumotope for the upper set of shards retained by ≡ (and do the same for SF+(≡)).

Proposition 3.4.2 (Shardsumotopes are Quotientopes). For any lattice congruence≡ on the poset
of regions of ~An, the quotient fan F≡ is equal to the summedsumofan SF+(≡). Therefore, the
shardsumotope SP+(≡) is a quotientope for ≡.

Proof. The statement is a consequence of Proposition 3.3.3. The walls of every single shard
fan SF(Σ) for a shard Σ retained by ≡ is a superset of that shard, so SF+(ΣX

≡) contains all walls
of F≡. On the other hand, all walls contained in one of the shard fans SF(Σ) are a subset of the
union of all shards Σ′ that force Σ. As ΣX

≡ is an upper set of shards, the set of walls is also a subset
of the union of all shards of ΣX

≡, so SF+(ΣX
≡) only contains walls of F≡.

Observation 3.4.3 (Weighted Shardsumotopes). We remark that the statement can be generalized
to weighted Minkowski sums of the shard polytopes. For any choice of strictly positive weight
function ω : ΣX

≡ → R>0, the weighted Minkowski sum
∑

Σ∈ΣX
≡
ω(Σ)SP(Σ) always has the normal

fan F≡.
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3.4 Shardsumotopes

These results reward our effort in constructing shard polytopes: Summing them up, we have
found a new way to construct quotientopes in the ~An arrangement. In contrast to the approach
of [PS19], these quotientopes can be explicitly constructed from their vertices. This allows us to
examine them quite closely and to describe some of their properties.

We can reformulate the symmetries of shard polytopes stated in Lemma 3.2.32 to apply to
shardsumotopes as well:

Corollary 3.4.4 (Shardsumotope Symmetries). Let S be an upper set of ~An shards that is invariant
under the map Pl (resp. P↔n ) as defined in Definition 3.2.31. Then the shardsumotope SP+(S) is
invariant under the map Pl (resp P↔n ) up to a translation. In particular, if S is centrally symmetric
(in other words, the set is invariant under the map P↔n ◦ Pl), then SP+(S) = ρ↔n ◦ ρl(SP+(S)).

3.4.2 Examples

We will now construct shardsumotopes for some well-known congruences and upper sets of
shards.

Example 3.4.5. Given a basic shard Σ := Σn(i, i + 1, ∅, ∅) for some i ∈ [n − 1], the only Σ-
matchings are ∅ and {i, i+ 1}. Therefore, the shard polytope SP(Σ) of any basic shard is the line
segment between the vertices 0 and ei − ei+1. We denote the upper set of shards consisting of all
basic shards by Srec := {Σn(i, i+ 1, ∅, ∅) | i ∈ [n− 1]}. The associated shardsumotope is the
parallelotope SP+(Srec) =

∑n−1
i=1 [0, ei − ei+1].

Example 3.4.6. Let ≡ be the sylvester congruence (see Example 1.4.23) on the lattice of regions
of ~An. The shards retained by ≡ are precisely the up shards (see Definition 1.5.10). For any up
shard Σ = Σn(`, r, ]`, r[ , ∅) with 1 ≤ ` < r ≤ n, the Σ-matchings are the empty matching and
the 2-element sets {i, r} for all ` ≤ i < r. Therefore, each shard polytope SP(Σ) can be viewed
as the convex hull of the points ej for all j ∈ [`, r], translated by the vector −er. This convex hull
is a face of the standard simplex ∆ which can be denoted by ∆[`,r], indicating that it is the convex
hull of all ek for k ∈ [`, r].

We can therefore describe the shardsumotope SP+(≡) as a translate of the associahedron Asson
(as seen in Example 1.5.21) by the vector

∑n
j=1 (1− j)ej . Our construction as a shardsumotope

corresponds to the Minkowski decomposition of this polytope into faces of the standard simplex
indexed by the intervals of [n] that was described in [Pos09].

An illustration of this shardsumotope in ~A3 can be found among all shardsumotopes for essen-
tial congruences in Figure 3.6, where it is the second picture from the left. The 3-dimensional case
is illustrated in Figure 3.7 (left).

Figure 3.6: The shardsumotopes SP+(≡) for all essential congruences ≡ on the poset of re-
gions of ~A3. These are precisely those congruences that retain at least the two basic
shards Σ3(1, 2, ∅, ∅) (illustrated by the red arc) and Σ3(2, 3, ∅, ∅) (illustrated by the
blue arc). [Picture from [PPR20]]
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3 Shard Polytopes for the Braid Arrangement

Figure 3.7: The classic associahedron obtained as a shardsumotope from the sylvester congru-
ence retaining exactly the up shards (left) and the centrally reflected shardsumotope
built from the congruence retaining exactly the down shards (right). Both these shard-
sumotopes drawn in blue can equivalently described by removing inequalities from
theH-description of the permutahedron Perm4 (visualized inside the shardsumotopes,
colored in red), as they were constructed in [HL07]. [Picture from [PPR20]]

Figure 3.8: The permutahedron Perm4 (left) as defined in Example 1.3.15. The shardsumo-
tope SP+(Σ4) (center) obtained by summing the shard polytopes for all shards in ~A4

or equivalently, the shard polytopes of all shards retained by the trivial lattice congru-
ence that does not contract anything. The shardsumotope SP+(S) (right) obtained by
summing the shard polyoptes of all minimal shards in the forcing order of ~A4. [Picture
from [PPR20]]
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3.4 Shardsumotopes

Example 3.4.7. The set of all shards of ~An, denoted by Σn, is an upper set of shards. It corre-
sponds to the trivial lattice congruence on the poset of regions of ~An that assigns each region to
its own equivalence class. In consequence, the shardsumotope SP+(Σn) has as its normal fan the
braid fan Fn itself. See Figure 3.8 for an illustration of the shardsumotope in ~A4.

It exhibits both symmetries introduced in Corollary 3.4.4, but it does not have all the symmetries
of the classical permutahedron Permn.

3.4.3 Vertices

We can use our knowledge about the chambers of the shard fan to associate to any vector t ∈ Rn
a Σ-matchingM , chosen such that the normal cone of the shard polytope vertex χ(M) contains the
vector t. Put differently, t lies the normal cone of the shard fan corresponding to the matching M .
This map will then be useful to determine the vertices of a shardsumotope, as each vertex is a
Minkowski sum of vertices of the individual shard polytopes.

We first introduce a map that sends a vector t to the characteristic vector of a Σ-matching in the
following way.

Definition 3.4.8 (Artificial Matching Vector). Given an ~An shard Σ := Σn(`, r, A,B) and a vec-
tor t ∈ Rn, we define the point v(t,Σ) ∈ {−1, 0, 1}n where the j-th coordinate is
• 1 if and only if all of the following hold.
◦ j ∈ {`} ∪A.
◦ For every a ∈ {`} ∪A with a < j and ta > tj , there is some b ∈ B ∩ ]a, j[ with tb < tj .
◦ There is a b ∈ B ∪ {r} with j < b such that tj > tb and tj > ta for every a ∈ A ∩ ]j, b[.

• −1 if and only if all of the following hold.
◦ j ∈ B ∪ {r}
◦ For every b ∈ B ∪ {r} with j < b and tj > tb, there is some a ∈ A ∩ ]j, b[ with tj < ta.
◦ There is an a ∈ {`}∪A with a < j such that ta > tj and tb > tj for every b ∈ B∩ ]a, j[.

For an upper set of shards S, we define v(t,S) :=
∑

Σ∈S v(t,Σ).

The following two lemmas demonstrate that a point constructed this way is always the character-
istic vector of a Σ-matching (in Lemma 3.4.9) and that every characteristic vector of a Σ-matching
can be obtained with this construction for some vector t ∈ Rn (in Lemma 3.4.10).

Lemma 3.4.9 (Artificial Matching Vectors are Characteristic Vectors of Matchings). For any vec-
tor t ∈ Rn and any ~An shard Σ, the vector v(t,Σ) is the characteristic vector of a Σ-matching.

Proof. We fix an arbitrary vector t ∈ Rn and set v := v(t,Σ). If v = 0, it is the characteristic
vector of the empty Σ-matching. Otherwise, we need to show that the nonzero entries alternate in
sign, starting with a positive entry and ending with a negative entry. We first observe that the j-th
entry of v can be positive only if j ∈ {`} ∪A and negative only if j ∈ B ∪ {r}.

We assume for a contradiction that there are two positions a < a′ with positive entries in v
such that there is no negative entry of t in between. We choose a position j ∈ B ∩ ]a, a′[ such
that tj is minimal among all candidates. If multiple candidates have the same minimal value tj , we
choose the unique smallest position among them. We distinguish cases by comparing ta and ta′ to
demonstrate that j exists (implying that B ∩ ]a, a′[ is nonempty) and has tj < ta and tj < ta′ .
• If ta > ta′ , then va′ = 1 implies through the second condition that there is at least one

position b ∈ B ∩ ]a, a′[ with tb < ta′ . Therefore, j exists and tj ≤ tb < ta′ < ta.
• If ta ≤ ta′ , then va = 1 implies through the third condition that there is at least one posi-

tion b ∈ B∪{r}with a < b such that ta > tb and ta > ta∗ for every a∗ ∈ A∩]a, b[. As a′ < b
would imply ta > ta′ , we deduce that b < a′. In particular, j exists and tj < tb < ta ≤ ta′ .

We will now show that this j satisifies all three conditions for having a negative entry in v(t,Σ):
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3 Shard Polytopes for the Braid Arrangement

• Clearly, j ∈ B ∪ {r}.
• Every b ∈ B ∪ {r} with j < b and tj > tb has to have a′ < b as we chose j in such a way

that there cannot be any b ∈ B ∩ ]a, a′[ with tj > tb. Therefore, a′ gives us tj < ta′ to satisfy
the second condition.
• Moreover, we have a < j with ta > tj and tb > tj for every b ∈ B∩ ]a, j[ through our choice

of b, which certifies that the third condition is satisfied as well.
We deduce that vb = −1, which contradicts our assumption that a and a′ do not have any neg-
ative entry in between. An analogous argument shows that there cannot be two negative entries
consecutive among the nonzero entries of v(t,Σ) either.

It is left to show that the first nonzero entry is positive and the last nonzero entry is negative. We
setm to be the smallest position such that vm 6= 0 and assume for a contradiction thatm ∈ B∪{r}.
As the entry in position m is nonzero, it satisfies the third condition, so there has to be at least
one a ∈ `∪A with a < m such that ta > tm and tb > tm for every b ∈ B ∩ ]a,m[. We fix a to be
the position with maximal value ta among all positions with these properties (If there are multiple
candidates with the same value, we choose the unique largest position among them).

As m was assumed to be the first nonzero entry of v, the position a has to have a zero entry, so
it has to violate one of the conditions. It clearly satisfies a ∈ ` ∪ A. It satisfies the third condition
asm ∈ B∪{r} provides a < m and ta > tm, while for every a′ ∈ A∩]a,m[, we have ta > ta′ by
our choice of a. So a has to violate the second condition. We deduce that there is an a∗ ∈ {`}∪A
with a∗ < a and ta∗ > ta such that all b ∈ B ∩ ]a∗, a[ have tb ≥ ta. This implies that a∗ has the
properties ta∗ > tm and tb ≥ tm for all b ∈ B∩ ]a∗,m[. But this contradicts our choice of a as we
have a∗ < a. We conclude that the first nonzero entry cannot be negative. An analogous argument
shows that the last nonzero entry cannot be positive.

Lemma 3.4.10 (Every Characteristic Vector of a Matching is an Artificial Matching Vector). Let Σ
be an ~An shard. For every Σ-matching M , we have χ(M) = v(χ(M),Σ).

Proof. For the shard Σ = Σn(`, r, A,B), we fix a Σ-matching M and a position a ∈ {`} ∪A. We
set the two vectors t := χ(M) ∈ {−1, 0, 1}n and v := v(t,Σ).

We first assume that a ∈ M . Then ta = 1. We want to show that va = 1 holds as well. We
fix b := M ∩ ]a, r] to be the partner of a in M (so that (a, b) is a pair of M ). Clearly, a meets the
first two conditions of Definition 3.4.8 as a ∈ {`}∪A and there is no entry of t larger than ta = 1.
Moreover, we have a < b and 1 = ta > tb = −1 and for every a′ ∈ A ∩ ]a, b[, we have a′ 6∈ M
by our choice of b, so we obtain 1 = ta > ta′ = 0. We conclude that va = 1.

We now assume a 6∈ M . To show that va = 0, we distinguish cases based on the position of a
with respect to our matching M .
• If a > max(M), every j ∈ ]a, r] has tj = 0, so there cannot be any b ∈ B ∪ {r} with a < b

and 0 = ta > tb, so a violates the third condition.
• If a < min(M), we set a′ = min(M). Any b ∈ B ∪ {r} has 0 = ta > tb if and only

if b ∈ M , which implies a′ < b, so we have a′ ∈ A ∩ ]a, b[ with ta < ta′ , which violates the
third condition.
• If a′ < a < b′ for some M -pair (a′, b′), then a′ ∈ {`} ∪ A has a′ < a with 1 = ta′ > ta and

there cannot be any b ∈ B ∩ ]a′, a[ with tb < ta = 0 as that would contradict (a′, b′) being
an M -pair. Therefore, a violates the second condition.
• If b′ < a < a∗ for two consecutive M -pairs (a′, b′) and (a∗, b∗), then for every b ∈ B ∪ {r}

with a < b and 0 = ta > tb, we have to have tb = −1 and thus b ∈ M , which implies
that a∗ < b. In particular, there is a∗ ∈ A ∩ ]a, b[ with 0 = ta ≤ ta∗ = 1, violating the third
condition.

We conclude that va = 0. Analogous arguments show that vb = −1 holds if and only if b ∈M
with b ∈ B ∪ {r}. This proves that v = v(χ(M),Σ) and χ(M) are equal.
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We have seen that the vectors v(t,Σ) are precisely the characteristic vectors of Σ-matchings.
Put differently, we have seen that the vertex set of the shard polytope SP(Σ) is equal to the set
of vectors v(t,Σ) obtained from all t ∈ Rn. Moreover, we will see that each vector of the
form v(t,Σ) maximizes the shard polytope SP(Σ) in the direction given by t.

Corollary 3.4.11 (Artificial Matching Vectors Maximize a Direction). Let Σ be an ~An shard
and let t ∈ Rn be a nonzero vector. Then v(t,Σ) is maximal in direction t among all vertices
of SP(Σ).

Proof. The vector v(t,Σ) is the characteristic vector of some Σ-matching M , as we learned
in Lemma 3.4.9. We verify that the vector t lies in the normal cone of this matching by going
through the inequalities provided by Corollary 3.3.6 for each pair of M . This implies the desired
statement.

We are now prepared to characterize the vertices of a shardsumotope.

Proposition 3.4.12 (Vertices of Shardsumotopes). For an ~An shard Σ, the vertices of SP(Σ) are
precisely the points v(t,Σ) for all t ∈ Rn. For an upper set of ~An shards S ⊆ Σn, the vertices of
the shardsumotope SP+(S) are precisely the points v(t,S) for all t ∈ Rn.

Proof. The two lemmas 3.4.9 and 3.4.10 showed that every vector t ∈ Rn yields a characteristic
vector v(t,Σ) and every characteristic vector is of the form v(t,Σ) for some vector t ∈ Rn.
Therefore, the points we obtain in this way are precisely the vertices of the shard polytope.

For the shardsumotope, we know that each summand of v(t,S) :=
∑

Σ∈S v(t,Σ) is a vertex
of the respective shard polytope, but not every Minkowski sum of vertices is necessarily a vertex
of the resulting Minkowski sum polytope. But we learned in Corollary 3.4.11 that the vector t lies
in the normal cone of the vertex v(t,Σ) for each of the shards Σ ∈ S. We deduce that v(t,S) lies
in the intersection of all these normal cones, which is the normal cone of the vertex of SP+(S)
maximal in direction t.

While the preceding statement precisely describes the vertices of a shardsumotope, the follow-
ing statement gives us a more efficient way to construct it.

Corollary 3.4.13 (Constructing Shardsumotopes). Let ≡ be a lattice congruence on the poset of
regions of ~An. Let Π≡ be a set of permutations π ∈ σn representing the congruence classes of ≡.
Then the vertices of the shardsumotope SP+(≡) are exactly the points v(π−1,ΣX

≡) for all π ∈ Π≡.

Proof. We saw in Proposition 3.4.12 that every point constructed in this way is a vertex of the
shardsumope SP+(≡). It is left to show that every vertex of SP+(≡) can be obtained in this way.
We recall that for any permutation π ∈ σn, the direction π−1 as a vector in Rn lies in the cone of
the braid fan associated to the permutation π. Therefore, in the quotient fan F≡, the direction π−1

lies in the maximal cone associated to the ≡-congruence class containing π.
Due to Corollary 3.4.11, the vector v(π−1,ΣX

≡) is the vertex of the shardsumotope correspond-
ing to the congruence class containing π. By going through Π≡, we obtain one vertex for every≡-
congruence class and thus all vertices of the quotientope.

We remark that one straightforward choice for Π≡ is obtained by collecting the unique minimal
permutation (in weak order) of every congruence class of Pos( ~An)/ ≡.
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3 Shard Polytopes for the Braid Arrangement

3.4.4 Facets

Now that we know a straightforward way to describe a shardsumotope by its vertices, we will take
a closer look at its facets. We first introduce some notation.

Definition 3.4.14 (I-Minimal Σ-Pairs). Given an ~An shard Σ := Σn(`, r, A,B) and a proper
subset ∅ ( I ( [n], we define an I-minimal Σ-pair to be a Σ-pair (a, b) where a ∈ I and b 6∈ I
with the property that (B∆I) ∩ ]a, b[ = ∅. We define h(I,Σ) to be the number of I-minimal Σ-
pairs. For an upper set of shards S ⊆ Σn, we define h(I,S) :=

∑
Σ∈S h(I,Σ).

We remark that given ` ≤ a < k < b ≤ r, the condition k 6∈ B∆I means that either k ∈ B ∩ I
or k ∈ A \ I . Therefore, a Σ-pair (a, b) has this property if and only if there is no other Σ-
pair (a′, b′) with a ≤ a′ < b′ ≤ b satisfying the condition.

Lemma 3.4.15 (Shard Polytope Heights). Given an ~An shard Σ and a proper subset ∅ ( I ( [n],
the maximum of the scalar product 〈1I |x〉 over all points x of the shard polytope SP(Σ) is h(I,Σ).

Proof. We know that for any direction, the maximum over a polytope in that direction can be
obtained in a vertex of the polytope. We learned in Corollary 3.4.11 that any direction t is max-
imized in SP(Σ) by v(t,Σ). In particular, the direction 1I is maximized by the vertex v(1I ,Σ).
That maximal scalar product is s := 〈1I |v(1I ,Σ)〉 =

∑
k∈I v(1I ,Σ)k.

We first observe that for any k ∈ I ∩ (B ∪ {r}), Definition 3.4.8 certifies that v(1I ,Σ)k = 0 as
there cannot exist any a ∈ {`} ∪ A with an entry higher than the one of k. We deduce from the
definition that v(1I ,Σ)k = 1 if and only if k ∈ I ∩ ({`} ∪A) and there is some b ∈ (B ∪ {r}) \ I
with k < b and a 6∈ I for every a ∈ A ∩ ]k, b[.

We observe that the second condition is equivalent to there being a minimal such b ∈ B ∪ {r}
with k < b such that (B∆R) ∩ ]k, b[ = ∅. We deduce that s counts the number of Σ-pairs (k, b)
with (B∆R) ∩ ]k, b[ = ∅ which by Definition 3.4.14 equals h(R,S).

The following corollary follows by the properties of a Minkowski sum of polytopes:

Corollary 3.4.16 (Shardsumotope Heights). Given an upper set of ~An shards S ⊆ Σn and a
proper subset ∅ ( I ( [n], the maximum of the scalar product 〈1I |x〉 over all points x of the
shardsumotope SP+(S) is h(I,S).

This allows us to give the followingH-description of the shardsumotope SP+(S).

Corollary 3.4.17 (H-Description of a Shardsumotope). Given an upper set of ~An shards S ⊆ Σn,
the shardsumotope SP+(S) is given by

SP+(S) = {x ∈ Rn | 〈1 |x〉 = 0 and 〈1I |x〉 ≤ h(I,S) for every ∅ ( I ( [n]} .

Given a lattice congruence ≡, we recall from Proposition 2.2.5 that the rays of the quotient
fan F≡ are precisely those labelled by index sets ∅ ( I ( [n] which satisfy ΣI,n ⊆ ΣX

≡ as
introduced in Definition 2.2.1. This allows us to describe the facets of a shardsumotope in the
following way.

Corollary 3.4.18 (Facets of a Shardsumotope). Let ≡ be a lattice congruence on the poset of ~An
regions. Then the facets of the shardsumotope SP+(≡) are the intersections with the hyperplanes
given by 〈1I |x〉 = −h([n] \ I, ΣX

≡) for all index sets ∅ ( I ( [n] which satisfy ΣI,n ⊆ ΣX
≡ as

defined in Definition 2.2.1.
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3.4.5 Examples of Vertices and Facets

We will now look at the vertices and facets of some specific shardsumotopes that we already
looked at in Section 3.4.2.

Example 3.4.19. We first analyze the shardsumotope SP+(Srec) as seen in Example 3.4.5, where
the upper set of shards Srec contains all basic ~An shards. Let Σ = Σn(i, i+ 1, ∅, ∅) be a ba-
sic ~An shard for some i ∈ [n− 1]. We obtain
• v(t,Σ) = ei − ei+1 if ti > ti+1, and 0 otherwise.
• h(I,Σ) = 1 if i ∈ I and i+ 1 6∈ I , and 0 otherwise.

The shardsumotope SP+(Srec) has
• one vertex v(t,Srec) =

∑n−1
i=1 δti>ti+1(ei − ei+1) for each possible pattern of ascents and

descents of a vector t ∈ Rn, or put differently, for each binary sequence of length n− 1,
• two facets defined by 0 ≤

〈
1[i]

∣∣x〉 ≤ 1 for each i ∈ [n− 1].

Example 3.4.20. Next, we take a look at the sylvester congruence ≡ (introduced in Exam-
ple 1.4.23), where the set ΣX

≡ of retained shards contains all up shards (introduced in Defini-
tion 1.5.10). Let Σ = Σn(`, r, ]`, r[ , ∅) be an ~An up shard. We obtain
• v(t,Σ) = ej − er, where j is the position where t is maximal among all entries in the

interval [`, r] (if there is more then one such position, we choose the rightmost one of them),
• h(I,Σ) = 1 if r 6∈ I and there is some j ∈ [`, r[ with j ∈ I .

The shardsumotope SP+(≡) has
• a vertex v = v(t,ΣX

≡) for each ≡-class, whose coordinates are vj = (j − i)(k − j) − j,
with i = max ({0} ∪ {p ∈ [1, j[ | tp > tj}) and k = min ({p ∈ ]j, n] | tj < tp} ∪ {n+ 1}).
• a facet defined by

〈
1[i,j]

∣∣x〉 ≥ (1− i)(j − 1 + 1) for each interval 1 ≤ i ≤ j ≤ n.

We remark that this vertex description can be directly linked to binary trees. We know that
the sylvester congruence classes on the poset of regions of ~An correspond to binary trees. Given
a vector t ∈ Rn, we can say that it belongs to the binary tree T if and only if ti < tj holds
whenever i is a descendant of j in T (using infix labeling). In the j-th coordinate of v, given
by (j − i)(k − j) − j, we can then intrepret the factors (j − i) and (k − j) as the number of
leaves in the left and right subtrees of j in T . This agrees with the vertex description of the
associahedron Asson given in [Lod04], translated by the vector −(1, 2, . . . , n).

Moreover, we can use this same translation to recover the facet description from [Lod04] given
by
〈
1[i,j]

∣∣x〉 ≥ (1− i)(j−1+1)+
∑j

k=i k =
(
j−i+2

2

)
for all intervals [i, j], where the endpoints

have to satisfy 1 ≤ i ≤ j ≤ n.

Example 3.4.21. Finally, we examine the shardsumotope for the upper set of shards Σn containing
all ~An shards. The shardsumotope SP+(Σn) has
• a vertex v(t,Σn) for each permutation, where

vj = 2n−1

∑
i<j
ti>tj

2i−j −
∑
j<k
tj>tk

2j−k

 .

We remark that the sums go over all inversions of the vector t involving the position j,
• a facet for each index set ∅ ( I ( [n] defined by

〈1I |x〉 ≤
∑
i<j

i∈I,j 6∈I

2n+i−j .
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3.4.6 Shard Polytope Minkowski Identity

We observed in Example 3.4.7 that the permutahedron we constructed as a shardsumotope (illus-
trated in Figure 3.8) is not the classical permutahedron Permn as introduced in Example 1.3.15.
There raises the question if there are some positive weights such that Permn can be obtained as a
weighted Minkowski sum of shard polytopes. We will see in Corollary 3.4.25 that this is not the
case.

To prepare this result, we will establish a Minkowski identity on shard polytopes. We recall the
definitions of restricted shards from Definition 3.2.20 and introduce two more shards that can be
obtained from a shard.

Definition 3.4.22 (Shards With Flipped Position). Given an ~An shard Σ := Σn(`, r, A,B) and a
position k ∈ ]`, r[, we define
• Σk→A := Σn(`, r, A ∪ {k}, B \ {k}),
• Σk→B := Σn(`, r, A \ {k}, B ∪ {k}).

Proposition 3.4.23 (Shard Polytope Minkowski Identity). Given an ~An shard Σ := Σn(`, r, A,B)
and a position k ∈ ]`, r[, we have SP(Σk→A) + SP(Σk→B) = SP(Σ\k) + SP(Σ≤k) + SP(Σ≥k).

Proof. We first remark that both sides of the equation describe a Minkowski sum of (pseudo)shard
polytopes, which makes both sides of the equation a polytope. It therefore suffices to show that
every vertex of the left-hand side polytope is contained in the right-hand side polytope and vice
versa. We know every vertex of a Minkowski sum of polytopes is a sum of vertices of the sum-
mands, so in this case, a sum of characteristic vectors of (pseudo)shard matchings. We fix an ~An
shard Σ and a position k ∈ ]`, r[ and set the left-hand side polytope P := SP(Σk→A)+SP(Σk→B)
and the right-hand side polytope Q := SP(Σ\k) + SP(Σ≤k) + SP(Σ≥k).

We fix a vertex v of P. Then there are a Σk→A-matching MA and a Σk→B-matching MB such
that v = χ(MA) + χ(MB). We distinguish cases by the inclusion of k in MA and MB and
introduce three matchings M , M≤ and M≥ for the three (pseudo)shards Σ\k, Σ≤ and Σ≥.
• If k ∈MA ∩MB ,

we set M := (MA ∩ [`, k[)∪ (MB ∩ ]k, r]) and M≤ := MB ∩ [`, k] and M≥ := MA ∩ [k, r].
• If k ∈MA \MB ,

we set M := MB and M≤ := MA ∩ [`, k[ and M≥ := MA ∩ [k, r].
• If k ∈MB \MA,

we set M := MA. and M≤ := MB ∩ [`, k] and M≥ := MB ∩ ]k, r].
• If k 6∈MA ∪MB and |MB ∩ [`, k[| is even,

we set M := MA and M≤ := MB ∩ [`, k[ and M≥ := MB \M≤.
• If k 6∈MA ∪MB and |MB ∩ [`, k[| is odd,

we set M := MA and M≤ := (MB ∩ [`, k[) ∪ {k} and M≥ := {k} ∪ (MB ∩ ]k, r])

In each of these cases, M≤ is a Σ≤k-matching and M≥ is a Σ≥k-matching, while the matching
denoted byM is a Σ\k-matching with the property that v = χ(M≤)+χ(M≥)+χ(M), so v ∈ Q.
We deduce that P ⊆ Q.

To prove the opposite inclusion, we fix w to be a vertex of Q. Then there are a Σ-matching M
not containing k, an Σ≤k-matching M≤ and an Σ≥k-matching M≥ that together satisfy the equa-
tion w = χ(M) + χ(M≤) + χ(M≥). We distinguish cases by the shape of M .
• If |M ∩ [`, k[| is even, then M ∩ [`, k[ and M ∩ ]k, r] are two Σ-matchings. We define the

sets MA := (M ∩ [`, k[) ∪M≥ and MB := M≤ ∪ (M ∩ ]k, r]).
• If |M ∩ [`, k[| is odd, we distinguish cases by the inclusion of k in M≤ and M≥.
◦ If k 6∈M≤ ∪M≥, we set MA := M and MB := M≤ ∪M≥.
◦ If k ∈M≤∩M≥, we note that wk = 0, so we can set MA := (M≤ \ {k})∪ (M ∩ ]k, r])

and MB := (M ∩ ]`, k[) ∪ (M≥ \ {k}).
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3.4 Shardsumotopes

◦ If k ∈M≤ \M≥, we note wk = −1 and set MA := M and MB := M≤ ∪M≥.
◦ If k ∈M≥ \M≤, we note wk = +1 and set MA := M≤ ∪M≥ and MB := M .

In each of these cases, MA is a Σk→A-matching and MB is a Σk→B-matching with the property
that w = χ(MA) + χ(MB), so w ∈ P. We deduce that Q ⊆ P and conclude P = Q, proving our
statement.

This identity, illustrated in Figure 3.9, allows us to describe any shard polytope as a Minkowski
sum and difference of shard polytopes of up shards. We recall from Example 3.4.6 that those shard
polytopes are simplices. This rediscovers a formula that first appeared in [ABD10].

We will now use the Minkowski identity to decribe the polytope shown on the right side of Fig-
ure 3.8, where we built the sum of shard polytopes of all forcing minimal shards of ~An, which are
precisely the shards of the An hyperplane Hn(1, n).

Proposition 3.4.24 (Sum of Forcing Minimal Shard Polytopes). The Minkowski sum of the shard
polytopes SP(Σ) for all forcing minimal shards Σ of ~An is a zonotope that is combinatorially
equivalent to the permutahedron Permn. It can be described as∑

A⊆]1,n[

SP(Σn(1, n, A, ]1, n[ \A)) =
∑

1≤i<j≤n
2f(i,j) · [0, ei − ej ],

where f(i, j) := |{p ∈ ]1, n[ | p 6∈ [i, j]}| = max(i− 2, 0) + max(n− j − 1, 0).

Proof. We will prove a statement for a broader class of sums of pseudoshard polytopes. We fix an
arbitrary setX ⊆ [n], fix the variables ` := min(X) and r := max(X), the set Y := X \{`, r} of
intermediate positions, the leftmost intermediate position k := min(Y ) and the setsX ′ := X\{k}
and Y ′ := Y \ {k} = X \ {`, k, r}, which each have k removed. We then have a look at a
Minkowski sum of shard polytopes defined by P(X) :=

∑
A⊆Y SP(Σn(`, r, A, Y \ A)). We

note that the Minkowski sum in Proposition 3.4.24 is a special case of this form if we set X = [n].
In the general case, whenever |X| > 2, then Y is non-empty, so k exists. Then we can pair

up all the subsets A ⊆ Y such that each pair differs only by whether k ∈ A or not. This way,
we can group all the summands of P(X) into 2|Y

′| = 2|X|−3 pairs. For each such pair of shard
polytopes, Proposition 3.4.23 allows us to rewrite their sum. If we do that for all the summands
of P(X) simultaneously, we obtain the equality

P(X) =
∑
A⊆Y

SP(Σn(`, r, A, Y \A))

=
∑
A⊆Y ′

SP(Σn(`, r, A, Y ′ \A))

+
∑
A⊆Y ′

SP(Σn(k, r, A, Y ′ \A))

+ 2|Y
′|SP(Σn(`, k, ∅, ∅))

=P(X \ {k}) + P(X \ {`}) + 2|X|−3 [0, e` − ek] .

Using this reformulation, we claim that for any choice of X ⊆ [n] with |X| ≥ 2, the poly-
tope P(X) is a Minkowski sum of line segments of the form [0, ei − ej ]. We prove this claim by
induction on the cardinality of X .
• For |X| = 2, we obtain a pseudoshard of the form Σn(`, r, ∅, ∅), where the only pseudoshard

matchings are ∅ and {`, r}, so that its pseudoshard polytope is of the desired form.
• For the induction step, we may assume that the polytopes P(X \ {k}) and P(X \ {`}) can be

expressed as Minkowski sums of line segments, so the above recursion proves our claim.
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∪ =

+ =

= ∪ ∪

= + +

Figure 3.9: An example of the Minkowski identity given in Proposition 3.4.23, exemplified for
the shard Σ4(1, 4, {2, 3}, ∅) or the shard Σ4(1, 4, {3}, {2}) and the position k = 2.
[Picture from [PPR20]]
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To find the appropriate coefficients for the line segments summed up to obtain P([n]), we oberve
that the line segment [0, ei − ej ] appears explicitly in the recursion if and only if i and j are the
two minimal elements of X . Starting the recursion with P([n]), this gives us a factor of 2 for each
integer strictly in between 1 and i, while the segment’s muliplicity of 2|X|−3 gives us as many
factors of 2 as there are positions strictly in between j and n, making the total number of factors
of 2 equal to the function f(i, j) introduced above.

Corollary 3.4.25 (Permutahedra as Weighted Shardsumotopes). For n ≥ 4, the standard permu-
tahedron Permn cannot be written as a weighted Minkowski sum of shard polytopes.

Proof. We recall from Proposition 3.3.3 that for any ~An shard Σ∗, the union of the walls
of SF(Σ∗) is a subset of the union of all shards Σ′ that force Σ∗. It follows that for any forcing-
minimal shard Σ, there is no other shard whose shard fan contains Σ in its union of walls. In
particular, edges in direction e1 − en and thus normal to the hyperplane Hn(1, n) appear only
as edges of the shard polytopes SP(Σ) for all minimal shards Σ (which are precisely the shards
of Hn(1, n)).

The normal fan of Permn is the braid fan Fn and contains all these walls, so the permu-
tahedron contains all the corresponding edges. If we want to write Permn as a weighted
sum Permn =

∑
Σ∈Σn wΣSP(Σ) of shard polytopes, it is therefore necessary that all poly-

topes of forcing-minimal shards are included with a strictly positive weight wΣ > 0. As the edge
connecting 0 and e1 − en has the same length

√
2 in all shard polytopes SP(Σ) for minimal

shards Σ and all edges of Permn have the same length, the weights wΣ have to coincide for all
minimal shards Σ ∈ Σn.

But if all these weights coincide, we can deduce from Proposition 3.4.24 that for n ≥ 4, the
sum of all the minimal shard polytopes has edges of length at least 2 ·

√
2. In particular, the

permutahedron Permn would have edges of length at least 2 ·
√

2, in contradiction to the fact that
all its edges have the same length.

We have seen that while every quotient fan of the braid arrangement appears as the normal fan
of some shardsumotope, not every polytope whose normal fan is a quotient fan can be obtained as
a Minkowski sum of shard polytopes. In the following section, we will have a closer look at shard
polytopes in the type cone of the braid fan and the role their Minkowski sums play.

3.5 Type Cones and Shard Polytopes

We have found a way to build quotientopes by adding shard polytopes. It is natural to ask whether
this is the end of the road or if shard polytopes can themselves be built as Minkowski sums of even
more elementary polytopes. We will see that this is not the case, which mean that shard polytopes
are in some sense elementary objects. We use the definition of (Minkowski) indecomposability
introduced in Section 1.2.6 and show that shard polytopes are indecomposable in this regard.

Proposition 3.5.1 (Shard Polytopes are Indecomposable). For any ~An shard Σ, the shard poly-
tope SP(Σ) is indecomposable.

Proof. We fix a shard Σ = Σn(`, r, A,B) and recall the H-description of its shard polytope SP(Σ)
provided in Definition 3.2.2 and go through all its facets to check whether they contain the two
vertices 0 (which is the characteristic vector of the empty Σ-matching {}) and e` − er (which is
the characteristic vector of the Σ-matching {`, r}).
• All facets defined by an inequality xa ≥ 0 for some a ∈ A contains both 0 and e` − er.
• The same holds for all facets defined by inequalities xb ≤ 0.
• Each facet defined by an inequality

∑
i≤f xi ≤ 1 for a Σ-fall f contains the vertex e` − er.
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3 Shard Polytopes for the Braid Arrangement

• Each facet defined by an inequality
∑

i≤c xi ≥ 0 for a Σ-climb c contains the vertex 0.
The empty matching and the matching {`, r} differ in exactly two of their entries. We learned
in Lemma 3.2.15 that this means that their characteristic vectors share an edge in SP(Σ). We
just saw that this edge shares at least one vertex with every facet of the polytope. We conclude
from Theorem 1.2.43 that SP(Σ) is indecomposable.

We have seen that shard polytopes are indecomposable, so each of them corresponds to a ray of
the type cone. This does not imply that all rays of the type cone correspond to shard polytopes or
that all indecomposable deformed permutahedra are shard polytopes. We will now have a closer
look at the type cone of the braid fan F3.

Example 3.5.2 (Type Cone of the Braid Fan). The braid fan F3 is a 2-dimensional fan with 6
rays. Its type cone lies in the space of height functions on those 6 rays and is therefore naturally
embedded in R6. This means that type cones are difficult to visualize even for low-dimensional
arrangements with few rays such as A3.

We can nevertheless visualise the closed type cone TC(F3) in three dimensions in the following
way. The cone has a two-dimensional lineality space corresponding to translations of the resulting
polytopes in R2. We can therefore intersect the type cone with the orthogonal complement of this
lineality space without losing any information. We obtain a 4-dimensional cone in a 4-dimensional
linear subspace of R6.

We remark that this cone still contains all dilations of each of the polytopes defined by its height
functions. We can therefore concentrate on the intersection of the cone with another hyperplane
that throws out all but one scalar multiple of each height function. We choose that hyperplane in
such a way that it contains the height functions of all shard polytopes. We obtain a polytope that
we call the type polytope TP(F). In the case of F3, the type polytope TP(F3) is a bipyramid
over a triangle. See Figure 3.10 for an illustration.

Proposition 3.5.3 (Shard Polytopes Span a Simplex within the Type Polytope). The height func-
tions of the shard polytopes SP(Σ) for all shards Σ of the oriented braid arrangement ~An span a
simplex that is a full-dimensional subset of the type polytope TP(Fn).

Proof. We first observe that the dimension of the type polytope is 2n − n− 2, as the braid fan Fn
has 2n − 2 rays, the lineality space of the type cone has dimension n − 1 and the dimension
decreases by one more through the intersection with a hyperplane to turn the cone into a polytope.

Furthermore, we observe that the number of ~An shards of the hyperplane Hn(`, r) is 2r−`−1

due to the number of ways to distribute the positions in ]`, r[ into disjoint sets A and B. Sum-
ming these up over all An hyperplanes, we deduce the total number of ~An shards to be equal
to
∑

1≤`<r≤n 2r−`−1 = 2n − n− 1. This is the number of ~An shard polytopes.
It now suffices to prove that the set of shard polytopes is affinely independent in the type poly-

tope or equaivalently, linearly independent in the type cone. Asumme for a contradiction that there
are coefficients λ : Σn → R such that 0 =

∑
Σ∈Σn λ(Σ)SP(Σ) is a linear dependence in the type

cone TC(Fn). We can then fix two subsets of shards defined by S+ := {Σ ∈ Σn | λ(Σ) > 0}
and S− := {Σ ∈ Σn | λ(Σ) < 0}. This enables us to rewrite the linear dependence of the height
functions as the equality P+ = P− of the two Minkowski decomposable polytopes defined
by P+ :=

∑
Σ∈S+ λ(Σ)SP(Σ) and P− :=

∑
Σ∈S− λ(Σ)SP(Σ).

Let Σ∗ be a forcing minimal shard in S+ ∪ S−. According to Proposition 3.3.3, the shard
polytope SP(Σ∗) is the only shard polytope for a shard in S+∪S− whose normal fan contains the
shard Σ∗. This implies that this shard is contained in one of the normal fans of P+ and P− but not
in both, which contradicts our assumption that P+ = P−.
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Figure 3.10: The type polytope TP(F3) of the braid fan F3. Its facets are labeled from 1 to 6,
where facets 3 and 6 are labeled in grey as they are on the opposite side of the view-
point. The diagram on the bottom to the right shows the A3 arrangement, where the
walls are labeled from 1 to 6 as well and correspond to the facets of TP(F3). The
bold dots indicate the position of several polytopes we discussed. We emphasize that
all shard polytopes SP(Σ) corresponding to the four shards of ~A3 are vertices of the
type polytope. [Picture from [PPR20]]

We remark that this result does not contradict Proposition 3.4.23, which gives an equality of dif-
ferent Minkowski sums of pseudoshard polytopes, as the equalities described there always contain
at least one pseudoshard polytope, whereas Proposition 3.5.3 implies that no equality of different
Minkowski sums using only shard polytopes can exist.

The result of Proposition 3.5.3 can be used to describe any quotientope (not just the ones ob-
tained as shardsumotopes) in this basis of shard polytopes. Such an expression might have nega-
tive coefficients, which requires using so-called Minkowski differences and working in the space
of virtual polytopes as described in [PK92]. In particular, this approach can be used to describe
the quotientopes constructed in [PS19] as Minkowski sums of dilated shard polytopes.
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4 Shard Polytopes for the Type B
Arrangement

In this chapter, we adapt our findings from Chapter 3 to a different class of hyperplane arrange-
ments. In Section 4.1, we will have a look at shards of the oriented type B arrangement ~Bn. We
define the arrangement, have a look at its regions and rays, its canonical zonotope and type cone.
We will then analyze the shards of the type B arrangement in Section 4.2. We use the geome-
try of the arrangement to describe forcing among ~Bn shards. In Section 4.3, we describe lattice
congruences and quotient lattices of the poset of regions. We use shard polytopes for ~An shards
to introduce shard polytopes for ~Bn shards with similar properties. We use them to construct
quotientopes for all lattice congruences of the weak order on SBn .

Notation We recall the following conventions on notation for an integer n:
• [n] := [1, n] denotes the set of integers from 1 to n,
• [±n] := [−n, n] \ {0} denotes the integers from 1 to n and their additive inverses.
We start using some more special notation in this chapter. For any vector x ∈ Rn, we introduce

additional virtual coordinates x−i := −xi for i ∈ [−n, n]. In particular, this implies x0 = 0.
Moreover, for a set of indices X ⊆ [−n, n], we use
• X+ := {i ∈ [n] | i ∈ X} for the subset of positive integers contained in X ,
• X− := {i ∈ [n] | −i ∈ X} for those positive integers whose additive inverse is in X ,
• −X := {−i ∈ Z | i ∈ X} for the additive inverses of the elements of X ,
• X± := X ∩ −X for those integers which appear in X with both signs.

4.1 The Type B Arrangement

We will first introduce signed permutations and then the Bn hyperplane arrangement whose com-
binatorics can be described using them. For a more detailed introduction to the combinatorics of
type B Coxeter groups and therefore the combinatorics behind the type B arrangement, we refer
to the classic textbooks [Hum90] and [BB05].

4.1.1 Signed Permutations

Definition 4.1.1 (B-Permutation). Let σ : [−n,+n] → [−n,+n] be a bijection on the set of
integers [−n,+n]. It is called centrally symmetric if σ(−a) = −σ(a) holds for all a ∈ [−n,+n].
A centrally symmetric bijection on [−n, n] is called a B-permutation. The type B Coxeter group
denoted by SBn is the group of all B-permutations on [−n,+n].

Central symmetry implies in particular that σ(0) = −σ(0) = 0, so the B-permutations
in SBn can equivalently be viewed as bijections acting on ±[n] instead of [−n,+n]. Any B-
permutation σ ∈ SBn is uniquely determined by its values for the arguments 1, . . . , n. This allows
for the compact notation σ = σ(1)σ(2) · · ·σ(n), using x to denote a negative value −x. For
example, we write 21 for the bijection σ : [±2]→ [±2] with values σ(1) = 2 and σ(2) = −1. For
compactness, this notation will be used in illustrations throughout this chapter. We can interpret σ
as a signed permutation on [n], combining a regular permutation from Sn and a sequence of
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signs in {−,+}n. This implies in particular that the number of B-permutations and therefore the
number of elements of SBn is equal to 2nn!.

Just like for permutations in the symmetric group Sn (see Definition 1.3.21), we can define
inversions on the B-permutations in SBn .

Definition 4.1.2 (Inversion of a B-Permutation). An inversion of a B-permutation σ ∈ SBn is
• either a pair of values (σa, σb) such that 1 ≤ a < b ≤ n but σa > σb,
• or a pair of values (σ−a, σb) such that 1 ≤ a ≤ b ≤ n but σ−a > σb.

The inversion set of a B-permutation σ is the set of all its inversions

InvB(σ) := {(σa, σb) | 1 ≤ a < b ≤ n and σa > σb}
∪ {(σ−a, σb) | 1 ≤ a ≤ b ≤ n and σ−a > σb} .

These inversion sets enable us to partially order B-permutations just like standard permutations.

Definition 4.1.3 (Weak Order on SBn ). The weak order on the B-permutations of SBn is the partial
order defined by σ ≤ σ′ ⇐⇒ InvB(σ) ⊆ InvB(σ′).

We remark that the weak order on SBn is a lattice. Its cover relations are all those pairs of signed
permutations which differ only by the sign of σ(1) and all those pairs of signed permutations
which differ only by swapping two consecutive positions σ(i) and σ(i+ 1) for some i ∈ [n− 1].
See Figure 4.1 (left) for an illustration of the Hasse diagram of the weak order on SB3 .

4.1.2 Hyperplanes

We will now introduce the Bn hyperplane arrangement, which is a geometric realization for the
weak order on SBn , just as the An arrangement is for the weak order on Sn.

Definition 4.1.4 (The Bn Arrangement). The type B arrangement denoted by Bn is the arrange-
ment of all hyperplanes of the form {x ∈ Rn | xa = xb} for some a, b ∈ [±n].

This compact description uses the virtual coordinates x−i = −xi. To describe all Bn hyper-
planes, we can use the notation Hn(`, r) = {x ∈ Rn | x` = xr} introduced in Example 1.3.4 to
denote An hyperplanes. This time, we allow the first index ` to be zero or negative, with the
restriction that |`| < r.

To better understand the hyperplanes of the Bn arrangement, we introduce three families of hy-
perplanes in Rn by their normal vectors, each of which is oriented such that the point (1, 2, . . . , n)
is on their positive side. This will be useful when introducing an orientation to construct the poset
of regions of Bn where the canonical choice of base region will again be the one corresponding to
the identity permutation id.

Observation 4.1.5 (Bn Hyperplane Normals). The Bn hyperplanes are:
1. the first family of hyperplanes Hn(0, i) normal to ei for some 1 ≤ i ≤ n,
2. the second family of hyperplanes Hn(i, j) normal to ej − ei for some 1 ≤ i < j ≤ n,
3. the third family of hyperplanes Hn(−i, j) normal to ei + ej for some 1 ≤ i < j ≤ n.

Given a Bn hyperplane H , we denote by family(H) ∈ {1, 2, 3} the family it belongs to. We
remark that these three families can be distinguished by the sign of the first value in the Hn(·, ·)
notation. We deduce that the Bn arrangement contains n+

(
n
2

)
+
(
n
2

)
= n2 hyperplanes. We can

give a simple bijection from [n]× [n] to the set of Bn hyperplanes.

Observation 4.1.6 (Numbering Bn Hyperplanes). Picking a, b ∈ [n] independently,
• we assign the first family hyperplane Hn(0, a) normal to ea if a = b,
• or the second family hyperplane Hn(a, b) normal to eb − ea if a < b,
• or the third family hyperplane Hn(−b, a) normal to ea + eb if a > b.
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4.1.3 Regions

Just like the regions of theAn arrangement correspond to standard permutations in Sn, the regions
of the Bn arrangement correspond to B-permutations in SBn .

Observation 4.1.7 (Regions of the Bn Arrangement). The regions of the Bn arrangement are in
bijection with the B-permutations in SBn . The B-permutation σ ∈ SBn corresponds to the Bn
region defined by

C(σ) :=
{
x ∈ Rn

∣∣ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)

}
.

We remark that this assigns to each B-permutation σ the unique the region of the arrange-
ment containing the point (σ−1(1), σ−1(2), . . . , σ−1(n)). The canonical choice of base region
is C(idn), which is labeled by the identity permutation idn and contains the point (1, 2, . . . , n).
See Figure 4.1 (center) for an illustration of the B3 arrangement with their regions labelled by
signed permutations.

4.1.4 Rays

The rays of the Bn arrangement correspond to the non-trivial faces of the n-dimensional cube Cn
in the following way: Bn is the arrangement of reflection hyperplanes of Cn. This is illustrated
in Figure 4.1 (center), which shows the intersection of the Bn hyperplanes with the Cn cube. Every
non-empty face F of the cube has a unique canonical outer normal vector v(F) ∈ {−1, 0,+1}n.
For the entire cube as a trivial face of itself, we set v(Cn) = (0, . . . , 0), which is the only vector
in {−1, 0,+1}n that is not a Bn ray. This allows us to count the rays of Bn without much effort
and with an equality to the number of non-trivial cube faces.

Observation 4.1.8 (Number of Bn Rays). The number of Bn rays is 3n − 1 =
∑n

d=1 2d
(
n
d

)
.

We can also represent such a vector by the corresponding subset I(F) ⊂ [±n] containing the
non-zero coordinates of the vector, signed accordingly. For example, the cube face with outer nor-
mal vector (0, 1, 0,−1) corresponds to the set 24. For an i-dimensional face Fi, the vector v(Fi)
has exactly i zeros and |I(Fi)| = n− i.

Conversely, to every non-empty signed index set ∅ ( I ( [±n] with {−i, i} 6⊆ I for all i ∈ [n],
we assign the ray vector r(I) :=

∑
i∈I ei and the ray cone C(I) := cone(r(I)). This construction

gives us a bijection between Bn rays and proper signed index sets in the above sense.
As the arrangement is n-dimensional and simplicial, every region has exactly n rays. We will

collect the tools necessary to describe the rays of a region in more detail in Section 4.1.7. Let us
just remark here that the Bn region C(σ) is the polyhedral cone spanned by the rays C(σ([k, n]))
for all k ∈ [n].

4.1.5 Type Cone

We briefly discuss the fan of the type B arrangement and its type cone, containing all height
functions that induce polytopes whose normal fan is that arrangement fan.

Definition 4.1.9 (The Bn Fan). The fan of Bn is called the type B fan and denoted by FBn .

For an illustration of FB3 , see Figure 4.2. We will now construct the type cone of the fan FBn .
As the rays of Bn are in bijection with the proper faces of Cn, we will have a closer look at their
combinatorial structure first.

Definition 4.1.10 (Maximal Flag of a Polytope). A maximal flag of a polytope P is a chain of
faces F−1 ⊂ F0 ⊂ · · · ⊂ Fn−1 ⊂ Fn such that each Fi is an i-dimensional face of P. The maximal
flags of a polytope are in bijection with the maximal chains from bottom to top in the polytope’s
face lattice.
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4 Shard Polytopes for the Type B Arrangement

Observation 4.1.11 (Regions of Bn as Cube Faces). The regions of the Bn arrangement are in
bijection with the maximal flags of the n-cube. The set differences I(Fi−1)\I(Fi) of any maximal
flag are singletons for i ∈ [n]. They can be used to recover the associated signed permutation by
setting σ(i) := I(Fi−1) \ I(Fi) for i ∈ [n]. Conversely, the rays of a region corresponding to the
maximal chain F−1 ⊂ F0 ⊂ · · · ⊂ Fn−1 ⊂ Fn are exactly the vectors v(F0), . . . ,v(Fn−1).

We recall the definition of wall-crossing inequalities as described in Definition 1.2.27. We can
use the description of Bn regions as maximal flags to determine these inequalities for the Bn fan.

Lemma 4.1.12 (Bn Ray Exchanges). The equalities between the rays of adjacent regions of Bn
are of one of the following shapes:
• v(F0) + v(F′0) = 2v(F1) for all F0,F

′
0 ⊂ F1

• v(Fi) + v(F′i) = v(Fi−1) + v(Fi+1) for all Fi−1 ⊂ Fi,F
′
i ⊂ Fi+1, where 0 < i < n.

Proof. Let R be a Bn region with associated signed permutation σ ∈ SBn and associated maximal
flag F−1 ⊂ · · · ⊂ Fn. Recall from Section 4.1.1 that the signed permutations of all regions
neighboring toR are obtained by either changing the sign of σ(1) or exchanging σ(i) and σ(i+1)
for some i ∈ [n− 1].

Changing the sign of σ(1) corresponds to replacing the vertex F0 by the unique other endpoint
of the edge F1. This gives the equation v(F0) + v(F′0) = 2v(F1). It is independent of the choices
of higher-dimensional faces in the flag. Exchanging σ(i) and σ(i+ 1) for 0 < i < n corresponds
to replacing the face Fi by the unique other face F′i with the properties Fi−1 ⊂ F′i ⊂ Fi+1. That
exchange is unique due to the diamond property of polytope face lattices. The exchange of the
faces gives the equation v(Fi) + v(F′i) = v(Fi−1) + v(Fi+1). This equation is the same for all
pairs of adjacent regions with rays v(Fi−1) and v(Fi+1).

Given a lattice L, a subposet P of L is commonly known as a diamond if it consists exactly of
elements a, b, c, d, whose only cover relations are a ≺ b, c and b, c ≺ d. The exchangeable pairs
of rays of the Bn arrangement are in bijection with the diamonds in the face lattice of the n-cube.
We are now ready to describe and count all pairs of exchangeable rays and the geometric object
that these exchanges form: The type cone of the Bn arrangement fan FBn .

Corollary 4.1.13 (Bn Type Cone). Let CF
n be the set of proper faces of the n-cube Cn. The type

cone TC(Bn) is the set of all height functions h : CF
n → R≥0 with

• h(F0) + h(F′0) < 2h(F1) for all F0,F
′
0 ⊂ F1,

• h(Fi) + h(F′i) < h(Fi−1) + h(Fi+1) for all Fi−1 ⊂ Fi,F
′
i ⊂ Fi+1, where 0 < i < n.

We can now use a simple counting argument in the face lattice of the n-dimensional cube to
deduce information on the type cone of the Bn arrangement fan.

Lemma 4.1.14 (Counting Diamonds). The number of diamonds in the face lattice of Cn is

2n−1n+ 3n−2n(n− 1).

Proof. We count those diamonds whose bottom element is F−1 separately: Their number equals
the number of edges of the n-cube, which is 2n−1n. For diamonds with bottom element Fi−1,
where 0 < i < n, we note that the number of (i − 1)-faces of the n-cube is 2n−i+1

(
n
i−1

)
. The

number of (i + 1)-faces containing a given Fi−1-face is
(
n−i+1

2

)
. So for a given i, the number of

face pairs Fi−1 ⊂ Fi+1 is 2n−i+1
(
n
i−1

)(
n−i+1

2

)
= 2n−in(n − 1)

(
n−2
i−1

)
. Summing up, we get a

total of 2n−1n+ n(n− 1)
∑n−1

i=1 2n−i
(
n−2
i−1

)
= 2n−1n+ n(n− 1)3n−2.

As we saw in Lemma 4.1.12, the diamonds in the face lattice of Cn are in bijection with the ray
exchanges in the arrangement fan FBn . However, a ray exchange may be associated with multiple
walls of the Bn arrangement, so we have to count them separately.

118



4.1 The Type B Arrangement

Lemma 4.1.15 (Number of Bn Walls). The number of walls in the Bn arrangement is 2n−1n! · n.

Proof. We can count the number of walls of the arrangement directly: Every region has n adjacent
regions, so the number of walls is n/2 times the number of regions. This gives 2nn! · n/2.

The number of pairs of adjacent regions can also be obtained by summing for each diamonds in
the face lattice the number of maximal flags containing the diamond’s top and bottom point.
• For fixed F0 ⊂ F1, there are (n− 1)! maximal flags containing them.
• For fixed Fi−1 ⊂ Fi+1 with i ∈ [n−1], we look at both sides of the remaining flag separately.
◦ There are 2i−1(i− 1)! maximal flags F0 ⊂ · · · ⊂ Fi−1.
◦ There are (n− i− 1)! maximal flags Fi+1 ⊂ · · · ⊂ Fn.

So in total, there are 2i−1(i − 1)!(n − i − 1)! maximal flags containing fixed Fi−1 ⊂ Fi+1. This
way, we obtain the same number of walls as a result of the computation
2n−1n · (n− 1)! +

∑n−1
i=1 2n−i+1

(
n
i−1

)(
n−i+1

2

)
· 2i−1(i− 1)!(n− i− 1)! = 2n−1n! · n.

4.1.6 B-Permutahedron

Just as the standard permutahedron (see Example 1.3.15) whose graph is the Hasse diagram of
the weak order on Sn is a zonotope of the An arrangement, there is a type B permutahedron
associated to the weak order on SBn that is a zonotope of the Bn arrangement.

Definition 4.1.16 (Type B Permutahedron). The B-Permutahedron PermB
n is a polytope defined

equivalently as
• the convex hull of the points

∑n
i=1 ieσ(i) for all B-permutations σ ∈ SBn ,

• the intersection of the halfspaces
{
x ∈ Rn

∣∣∣ ∑i∈I xi ≤
(
n+1

2

)
−
(|I|+1

2

)}
for all signed index

sets ∅ ( I ( [±n] with {−j, j} 6⊆ I for all j ∈ [n],
• a translation of the Minkowski sum

∑
−n≤a<b≤n [ea, eb] of all Bn hyperplane normals.

We can immediately deduce the number of B-permutahedron faces of certain dimensions.
• It has 2n · n! vertices as Bn has that many regions.
• It has 2n−1 · n · n! edges as FBn has that many walls.
• It has 3n − 1 facets as Bn has that many rays.
Moreover, the normal fan of the B-permutahedron is the arrangement fan FBn of the Bn arrange-

ment. The graph of the B-permutahedron is the Hasse diagram of the weak order on SBn , oriented
in the direction −

∑n
i=1 i · ei.

Both An and Bn arrangements and their associated standard permutahedron Permn and B-
permutahedron PermB

n are closely connected not only in a combinatorial sense, but also through
geometric operations. In general, [Zie07, Lemma 7.11] states that for a polytope P ∈ Ra and a
projection ϕ : Ra → Rb, the dual map ϕ∗ : Rb → Ra gives an isomorphism between the normal
fan of the projected polytope ϕ(P) ∈ Rb and the section ofN (P) by the image of ϕ∗. We can use
this to relate A[±n] and Bn arrangements and zonotopes.

Definition 4.1.17 (Centrally Symmetric Subspace). Let (ei)i∈[n] denote the canonical basis of Rn
(where the Bn arrangement and B-permutahedron PermB

n are defined) and let (fj)j∈[±n] denote the
canonical basis of R[±n] (where for theA[±n] arrangement and its zonotope isomorphic to Perm2n

are defined). We consider the linear projection ϕB : R[±n] → Rn defined by ϕB(fj) := ej
and ϕB(f−j) := −ej for all j ∈ [n]. The dual map of ϕB is ϕB∗ : Rn → R[±n] defined
by ϕB∗(ei) := fi − f−i. The centrally symmetric subspace of R[±n] is the image of the dual
map ϕB∗, denoted byHBn :=

{
x ∈ R[±n]

∣∣ x−i = −xi for all i ∈ [±n]
}

.

With this centrally symmetric subspace and the projection ϕB, we can relate the Bn arrangement
and its zonotope with their counterparts from An.
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Figure 4.1: The Hasse diagram of the weak order on SB3 (left) is isomorphic to the poset of regions
of ~B3. The arrangement fanFB3 (right) is illustrated by its intersection with theC3 cube
to indicate the correspondence between B3 rays and C3 faces and the Bn hyperplanes
being the reflection hyperplanes of C3. The B-permutahedron PermB

3 (bottom) is a
polytope whose normal fan is the FB3 arrangement fan and whose vertex graph is the
Hasse diagram of the weak order on SB3 . [Picture from [PPR20]]
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Figure 4.2: The arrangement fanFB3 , intersected with a unit ball in R3 (left) and as a stereographic
projection of the great circles to a 2-dimensional plane (right). [Picture from [PPR20]]
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4.1 The Type B Arrangement

Observation 4.1.18 (Connecting Bn and An Arrangements). The Bn arrangement is the section
of the A[±n] arrangement by the centrally symmetric subspaceHBn . The B-permutahedron PermB

n

is the image of the standard permutahedron Permn by the projection map ϕB.

4.1.7 The Poset of Rays

We will now examine a partial order on the rays of Bn that will help us to understand the combi-
natorial structure of the regions and, later, the shards of Bn.

Definition 4.1.19 (Poset of Bn Rays). The poset of rays of Bn is the set of all nonzero vectors r ∈
{−1, 0,+1}n, partially ordered by inclusion of their associated n-cube faces. Equivalently, r ≤ r′

if and only if every entry r′i is either zero or equal to ri for i ∈ [n].

We observe that the maximal rays in the poset are all positive and negative unit vectors ±ei
for i ∈ [n]. The minimal rays in the poset are the vectors {−1,+1}n. We recall some definitions
revolving around posets and introduce a notation for one of them.

Definition 4.1.20 (Lower Sets). Let (P,≤) be a poset. A subset S ⊆ P is called a lower set in P
if x ∈ S and y ∈ P with y ≤ x imply that y ∈ S. A lower set S is called a principal lower set
if it has a unique maximum element m ∈ S such that s ≤ m for all s ∈ S. Given an antichain
of poset elements {a1, . . . , ak} ⊆ P , we denote by ↓({a1, . . . , ak}) the unique lower set in which
the maximal elements are a1, . . . , ak. Whenever it is clear that a1, . . . , ak are poset elements, not
sets, we omit the curly brackets and just write ↓(a1, . . . , ak). As a convention, we fix ↓(0) = P
and ↓(∅) = ∅.

Observation 4.1.21. The principal lower set ↓(ei) contains 3n−1 rays for every i ∈ [n]. The
principal lower set of one ray of the form ±ei ± ej contains 3n−2 rays.

Observation 4.1.22. As we denote indices and vectors by lower case and sets by upper case, we
will carefully use the notations −E(X) := {−ei : i ∈ X} and E(−Y ) := {ei : −i ∈ Y }.

For the remainder of this section, we introduce some rather technical lemmas to deal with lower
sets in the poset of rays. They will be used later in our proofs for the geometry of ~Bn shards.

Lemma 4.1.23 (Arithmetics in the Poset of Bn Rays). Let A,B be disjoint subsets of [n]. Then
• ↓(EA) ∪ ↓(EB) = ↓(EA∪B),
• ↓(

∑
k∈A ek) ∩ ↓(

∑
k∈B ek) = ↓(

∑
k∈A∪B ek),

•
⋃
J⊆A(↓(

∑
k∈J ek) \ ↓(EA\J)) = {−1, 0,+1}n \ {0}.

Proof. For the first two statements, we repeatedly apply the simple facts
• ↓(ea) ∪ ↓(eb) = ↓(ea, eb) • and ↓(ea) ∩ ↓(eb) = ↓(ea + eb)
for distinct indices a, b ∈ [n]. In the last statement, the left-hand side clearly is a subset of

the right-hand side. To prove the converse, we fix a nonzero vector x ∈ {−1, 0,+1}n and use
the set Jx := {a ∈ A | xa = 1}. Then x ∈ ↓(

∑
k∈Jx ek) and x 6∈ ↓(EA\Jx). Therefore, x is

contained in the left-hand side set.

We will need some more set-theoretic tools, that are simple, yet not immediately clear. We
prove them here for the sake of completeness.

Lemma 4.1.24 (technical). Let I be a finite set of indices such that there are finite sets of Bn rays
Ti ⊆ Si for all i ∈ I . For an index set J ⊆ I , let J denote its complement I \ J , let S(J) denote
the union

⋃
j∈J Sj and let T (J) denote the intersection

⋂
j∈J Tj , where T (∅) :=

⋃
i∈I Si. Then⋃

i∈I
(Si \ Ti) =

⋃
i∈I

Si \
⋃
J⊆I

(T (J) \ S(J)).
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Proof. Let x ∈
⋃
i∈I Si. Then x is contained in

⋃
i∈I(Si \ Ti) if and only if there is at least one

index k ∈ I such that x ∈ Sk, but x 6∈ Tk.
First assume there is such a k ∈ I . Let J ⊆ I be an arbitrary subset of indices. If k ∈ J ,

then x 6∈ T (J). If k 6∈ J , the index k is in J , so x ∈ S(J). In any case, x is not contained
in T (J) \ S(J). Therefore, x is not contained in their union over all J ⊆ I and thus contained in
the right-hand side set.

Now assume there is no such k. Let Jx ⊆ I denote the index set (possibly empty) of all j ∈ I
such that x ∈ Tj . Then by assumption, x 6∈ Si for all i ∈ Jx. Therefore, x ∈ T (Jx) \ S(Jx), so it
is among the elements of

⋃
i∈I Si that are excluded from the right-hand side set.

Corollary 4.1.25 (technical). For finite sets T1 ⊆ S1 and T2 ⊆ S2, we obtain

(S1 \ T1) ∪ (S2 \ T2) = (S1 ∪ S2) \
(

(T1 ∩ T2) ∪ (T1 \ S2) ∪ (T2 \ S1)
)
.

In particular, if T1 = T2, we obtain (S1 \ T ) ∪ (S2 \ T ) = (S1 ∪ S2) \ T.

Lemma 4.1.26 (technical). The set of rays violating a given inequality among the entries of a ray
vector can be described as a set difference of lower sets in the poset of rays. Let i, j ∈ [n] be
distinct integers.

1. The set of rays violating ri ≤ 0 is ↓(ei) \ ∅.
The set of rays violating ri ≥ 0 is ↓(−ei) \ ∅.
The set of rays violating ri = 0 is ↓({±ei}) \ ∅.

2. The set of rays violating ri ≤ rj is ↓(ei,−ej) \ ↓(ei + ej ,−ei − ej).
The set of rays violating ri = rj is ↓({±ei,±ej}) \ ↓(ei + ej ,−ei − ej).

3. The set of rays violating ri ≤ −rj is ↓(ei, ej) \ ↓(ei − ej , ej − ei).
The set of rays violating −ri ≤ rj is ↓(−ei,−ej) \ ↓(ei − ej , ej − ei).
The set of rays violating −ri = rj is ↓({±ei,±ej}) \ ↓(ei − ej , ej − ei).

Proof. In each case, the set of rays violating the equality is equal to the union of the sets of rays
violating either inequality.

1. The rays violating ri ≤ 0 are exactly the rays with ri = 1. By definition of the poset of
rays, these are exactly the rays ≤ ei. An analogous argument holds for ri ≥ 0.

2. The rays violating ri ≤ rj are the rays with ri = 1 (hence below ei) or rj = −1 (hence
below −ej) except for those rays with ri = rj ∈ {±1} (which are exactly the ones be-
low ei + ej or below −ei − ej).

3. The rays violating ri ≤ −rj are the rays with ri = 1 (hence below ei) or −rj = −1
(hence below ej) except for those rays with −ri = rj ∈ {±1} (which are exactly the ones
below ei − ej or below ej − ei). An analogous argument holds for −ri ≤ rj .

Example 4.1.27. The above lemma gives us a more formal way to state simple properties of Bn
rays and Bn hyperplanes. For example, let us take a look at the halfspace defined by xi ≤ xj . The
set ↓(ei,−ej) \ ↓(ei + ej ,−ei − ej) can be described as follows: If xi = 1 or xj = −1, then r
does not comply with the restriction except for the cases where xi = xj = 1 or xi = xj = −1.

4.2 Type B Shards

We will now examine the oriented arrangement ~Bn induced by the choice of a base region of Bn.
By convention, we designate the region containing (1, 2, . . . , n) as base region. To analyze the
poset of regions Pos( ~Bn), we recall that the join-irreducibles in the poset of regions of any oriented
simplicial arrangement are in bijection with the shards of the arrangement. We will construct them
geometrically from first principles of shards and carefully analyze their forcing relation.
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4.2.1 Rank-Two Subarrangements

We start our discussion of ~Bn shards with an overview of rank-two subarrangements of ~Bn as
defined in Definition 1.5.1. We recall that if a rank-two subarrangement contains only two hyper-
planes, neither of them cuts the other. We will call such a subarrangement trivial.

Lemma 4.2.1 (Subarrangements of ~Bn). There are three classes of non-trivial subarrangements
of ~Bn. In each of them, the first two are basic hyperplanes, written in boldface.

1. {ei, ej − ei, ej , ei + ej} (where i < j),
2. {ej − ei, ek − ej, ek − ei} (where i < j < k),
3. {ej − ei, ei + ep, ej + ep} (where i < j and p ∈ [n] \ {i, j}).

Observation 4.2.2 (Number of Subarrangements of ~Bn). There are
(
n
2

)
subarrangements of the

first type and
(
n
3

)
of the second type and

(
n
2

)
(n− 2) of the third type. In total, the number of non-

trivial rank-two subarrangements is 1
6n(n−1)(4n−5). Note that each rank-two subarrangements

of the first type is isomorphic to the B2 arrangement, while the ones of the second and third type
are isomorphic to the A2 arrangement.

We can rewrite the list of subarrangements using the Hn(a, b) notation as follows:

Observation 4.2.3 (Subarrangements of ~Bn). The rank-two subarrangements of ~Bn are the fol-
lowing subarrangements for all i, j ∈ [n] with i < j.

1. {Hn(0, i),Hn(i, j), Hn(0, j), Hn(−i, j)},
2. {Hn(i, j),Hn(j,k), Hn(i, k)} for each k ∈]j, n],
3. {Hn(i, j),Hn(−k, i), Hn(−k, j)} for each k ∈ [1, i[,
4. {Hn(i, j),Hn(−i,k), Hn(−k, j)} for each k ∈]i, j[,
5. {Hn(i, j),Hn(−i,k), Hn(−j, k)} for each k ∈]j, n].

We recall the notion of hyperplane cutting from Definition 1.5.2. We can now deduce all cutting
relations in the ~Bn arrangement from the rank-two subarrangements we just introduced.

Lemma 4.2.4 (Hyperplane Cutting Table for ~Bn). Let a, b, `, r ∈ [−n, n] with |`| < r and |a| < b.
Then the following are all cases where Hn(a, b) cuts Hn(`, r):

` = 0 ` > 0 ` < 0

a = 0 if 0 = ` = a < b < r — if ` = −b < −a = 0 < r

a > 0 if 0 = ` < a < b = r
if 0 < ` = a < b < r if ` = −b < −a < 0 < r
or 0 < ` < a < b = r or ` < 0 < +a < +b = r

a < 0 — —
if ` = +a < 0 < +b < r
or ` < +a < 0 < +b = r
or ` = −b < 0 < −a < r

We can rephrase this statement in a more compact way.

Corollary 4.2.5 (Hyperplane Cutting in ~Bn). Let a, b, `, r ∈ [−n, n] with |`| < r and |a| < b.
Then Hn(a, b) cuts Hn(`, r) exactly in the following three cases.
• ` = a and b < r, • ` < a 6= 0 and b = r, • ` = −b and −a < r
In particular, if we set I = {|a|, |b|, |`|, |r|}, then |I| < 4 whenever Hn(a, b) cuts Hn(`, r).

4.2.2 Preparing Shards

In this rather technical section, we make some preparations to determine the shards of the ~Bn
arrangement. We do so by introducing a class of polyhedral cones that generalize Bn hyperplanes
and Bn halfspaces.
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4 Shard Polytopes for the Type B Arrangement

Definition 4.2.6 (Sn(U, V )). Given two signed index sets U, V ⊆ [−n, n], we define the
set Sn(U, V ) := {x ∈ Rn | ∀u ∈ U, v ∈ V : xu ≤ xv} with the usual conventions x−i := −xi
and x0 := 0.

Observation 4.2.7. Sn(U, V ) is contained in the subspace {x ∈ Rn | ∀i, j ∈ U ∩ V : xi = xj}.

We observe that Sn(U, V ) is a closed polyhedral cone. We can prove this in two different ways:
Firstly, for every x ∈ Sn(U, V ) and λ ∈ R≥0, the scalar multiple λx is contained in Sn(U, V )
as well. Secondly, we observe that Sn(U, V ) is the intersection of halfspaces induced by Bn
hyperplanes.

Observation 4.2.8 (Nested Sn(U, V )). Given sets U1, U2, V1, V2 ⊂ [−n, n] with U1 ⊆ U2

and V1 ⊆ V2, we have Sn(U1, V1) ⊇ Sn(U2, V2).

We will make heavy use of the notions of Section 4.1.7 and the notation introduced right at the
beginning of Chapter 4.

Lemma 4.2.9 (Bn Rays not in Sn(U, V )). The set of all Bn rays not contained in Sn(U, V ) is
given by ↓

(
E(U+ ∪ −V −) ∪ −E(V + ∪ −U−)

)
\ T , where T is the minimal set containing

1. ↓(
∑

k∈V + ek −
∑

k∈−V − ek) ⊆ T if V ± = ∅, and
2. ↓(

∑
k∈−U− ek −

∑
k∈U+ ek) ⊆ T if U± = ∅,

and T is empty if U± 6= ∅ 6= V ±.

Proof. We give a non-constructive proof. We first show that every Bn ray vector not in Sn(U, V )
is in the set. Then we will show that no Bn ray vector contained in Sn(U, V ) is in the set.

1. Let x be a Bn ray vector that is not in Sn(U, V ). Then there are u ∈ U, v ∈ V such that
xu > xv. Therefore, either xu = 1 or xv = −1 or both.
• If xu = 1 and u > 0, then u ∈ U+, so x ∈ E(U+ ∪ −V −).
• If xu = 1 and u < 0, then u ∈ −U−, so x ∈ −E(V + ∪ −U−).
• If xv = −1 and v > 0, then v ∈ V +, so x ∈ −E(V + ∪ −U−).
• If xv = −1 and v < 0, then v ∈ −V −, so x ∈ E(U+ ∪ −V −).

It is left to show that x 6∈ T . As xu > xv, we know that
• xu 6= −1 (thus x 6≤

∑
k∈−U− ek −

∑
k∈U+ ek if U± = ∅),

• and xv 6= 1 (thus x 6≤
∑

k∈V + ek −
∑

k∈−V − ek if V ± = ∅),
so we can conclude that x 6∈ T .

2. Let x be a Bn ray that is contained in Sn(U, V ). Then xu ≤ xv for all u ∈ U and v ∈ V .
Assume x ∈ ↓

(
E(U+ ∪ −V −) ∪ −E(V + ∪ −U−)

)
. It is left to show that x ∈ T . We

observe that least one of the following has to hold:
• Given an i ∈ U+ such that xi = 1 or an i ∈ −U− such that xi = −1, we know that
xv = 1 for all v ∈ V , in particular, 0 6∈ V . Therefore, if V ± = ∅, we have x ≤∑

k∈V + ek −
∑

k∈−V − ek.
• Given an i ∈ −V − such that xi = 1 or an i ∈ V + such that xi = −1, we know that
xu = −1 for all u ∈ U , in particular 0 6∈ U . Therefore, if U± = ∅, we have x ≤∑

k∈−U− ek −
∑

k∈U+ ek.
We conclude that x ∈ T as desired.

Observation 4.2.10. Given U, V ⊆ [−n, n], we define three auxiliary sets of indices:
• JUV := (U+ ∩ V +) ∪ (−U− ∩ −V −)
• JU := (U+ ∩ −U−) \ (V + ∪ −V −)
• JV := (V + ∩ −V −) \ (U+ ∪ −U−)

Then JUV , JU and JV are pairwise disjoint and their union is (U+ ∪ −V −) ∩ (V + ∪ −U−).
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4.2 Type B Shards

Proposition 4.2.11 (Dimension of Sn(U, V )). Let U, V ⊂ [−n, n]. Then

dimSn(U, V ) =


n− |JUV | − |JU | − |JV | if U± 6= ∅ 6= V ±,

n− |JUV |+ 1 if
(
U± = ∅ or V ± = ∅

)
and JUV 6= ∅,

n if
(
U± = ∅ or V ± = ∅

)
and JUV = ∅.

Proof. We will prove the statement in two steps. First, we will show that the ≥ direction of these
equalities hold. Then, we will give a proof for their ≤ direction.

To show that the given expressions are lower bounds for dimSn(U, V ), we will collect a set
of linearly independent rays contained in Sn(U, V ). As it is a linear cone, it contains the positive
linear span of these rays, so its dimension has to be at least the number of these rays.

1. We set I := [n] \ (JUV ∪̇ JU ∪̇ JV ). Then for every k ∈ I , either k 6∈ U+ ∪ −V −
or k 6∈ V + ∪ −U− or both. In the first case, the ray ek is contained in Sn(U, V ). In the
second case, the ray −ek is contained in Sn(U, V ). In this way, the indices in I induce
a set of distinct linearly independent rays contained in Sn(U, V ), so its dimension is at
least |I| = n− |JUV | − |JU | − |JV |.

2. If U± = ∅, then |JU | = 0 and for every ` ∈ JV , the ray e` +
∑

k∈−U− ek −
∑

k∈U+ ek
is contained in Sn(U, V ). All these |JV | rays together with the ones constructed from I
are distinct, linearly independent and contained in Sn(U, V ). Therefore, the dimension
is at least |I| + |JV | = n − |JUV |. If JUV is empty, this is equal to n. If it is not
empty, then for every ` ∈ JUV , neither e` nor −e` is contained in Sn(U, V ), so the sum∑

k∈−U− ek −
∑

k∈U+ ek itself is not only contained in Sn(U, V ), but also distinct and
linearly independent from all the other rays collected so far, increasing the lower bound by
one. An analogous argument holds if V ± = ∅.

It remains to show that the expressions are valid upper bounds for dimSn(U, V ). We will collect
a set of vectors that are orthogonal to everything in Sn(U, V ). If the vectors in our collection are
linearly independent, then the dimension of Sn(U, V ) is at most nminus the size of our collection.

1. For the first case, assume U± 6= ∅ 6= V ±. We distinguish cases by the shape of JU and JV .
a) If JU 6= ∅ 6= JV , then for every pair of u ∈ JU and v ∈ JV , the four inequali-

ties ±xu ≤ ±xv are valid on Sn(U, V ), and they imply ±xu = ±xv = 0. Therefore,
we have xk ≤ 0 ≤ xk valid for every k ∈ JUV and thus xk = 0. Therefore, Sn(U, V )
is orthogonal to ek for every k ∈ JUV ∪̇ JU ∪̇ JV .

b) If JU 6= ∅ = JV , then V ± = {0} by our assumption. For every k ∈ JUV , the
inequalities xk ≤ 0 ≤ xk are valid, and for every k ∈ JU , the inequalities ±xk ≤ 0
are valid for Sn(U, V ). In either case, Sn(U, V ) is orthogonal to the unit vector ek for
all k ∈ JUV ∪̇ JU ∪̇ JV (as JV = ∅). An analogous argument holds if JU = ∅ 6= JV .

c) If JU = ∅ = JV , then by assumption, U± = {0} = V ±, so 0 ∈ U ∩ V . Then for
every k ∈ (U+ ∪−V −)∩ (V + ∪−U−), the inequalities xk ≤ 0 and 0 ≤ xk are valid
for Sn(U, V ). Therefore, Sn(U, V ) is orthogonal to ek for every k ∈ JUV ∪̇ JU ∪̇ JV .

We conclude that the dimension of the subspace orthogonal to Sn(U, V ) is greater than or
equal to |JUV |+ |JU |+ |JV |.

2. If JUV 6= ∅, we can fix i = min(JUV ). Then xi ≤ xj ≤ xi are valid on Sn(U, V ) for every
j ∈ JUV \ {i}. Therefore, Sn(U, V ) is orthogonal to ej − ei for every j ∈ JUV \ {i}. We
conclude that the dimension of the subspace orthogonal to Sn(U, V ) is at least |JUV | − 1.

3. The third case holds with equality as dimSn(U, V ) ≤ dimRn = n.

Observation 4.2.12. As a byproduct, we determined the orthogonal complement of Sn(U, V ):
1. In the first case, it is generated by {ek | k ∈ JUV ∪̇ JU ∪̇ JV }.
2. In the second case, it is generated by {ej − ei | i, j ∈ JUV , i < j}.
3. In the third case, it contains nothing but the origin.
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4 Shard Polytopes for the Type B Arrangement

Corollary 4.2.13 (Dimension of Sn(T, T )). Let T ⊂ [−n, n]. Set I := {|t| | t ∈ T}. Then

dim(Sn(T, T )) =

{
n− |I| if 0 6∈ I and |I| < |T |i,
n− |I|+ 1 else.

Proof. We set U = V = T and apply Proposition 4.2.11. Note that JUV = I \{0}, while both JU
and JV are empty. We observe that U± = V ± = {i ∈ I : −i, i ∈ T}.
• If 0 ∈ I , then 0 ∈ U±, V ±, so dim(Sn(U, V )) = n− |JUV | = n− |I|+ 1.
• If 0 6∈ I and |I| = |T |, then U± = V ± = ∅, so dim(Sn(U, V )) = n−|JUV |+1 = n−|I|+1.
• If 0 6∈ I and |I| < |T |, then two elements of T add up to zero. They are both contained

in U± ∩ V ±, so dim(Sn(U, V )) = n− |JUV | = n− |I|.

4.2.3 Shard Basics

We will introduce a special case of sets of the form Sn(U, V ) that are defined very similarly to ~An
shards. We then study their properties and show that they are exactly the ~Bn shards.

Definition 4.2.14 (Sn(`, r, A,B)). Let −n ≤ ` < r ≤ n. Let A,B be a pair of sets partitioning
the interval ]`, r[, that is, A ∪B =]`, r[ and A ∩B = ∅. We then define

Sn(`, r, A,B) := {x ∈ Rn | ∀a ∈ A, b ∈ B : xa ≤ x` = xr ≤ xb} .

Observation 4.2.15. Including ` and r in the notation is often redundant, but very convenient.
1. We set A := A ∪ {`, r} and B := B ∪ {`, r}. Then Sn(`, r, A,B) = Sn(A,B).
2. Note that 0 is an element of A ∪B if and only if ` < 0 < r.
3. Assume r + ` 6= 0. The set S = Sn(`, r, A,B) is orthogonal to er − e`. Therefore,

we observe that S is contained in the hyperplane Hn(`, r) if |`| < r (and contained in
Hn(−r,−`) otherwise). We denote by family(S) the family of that hyperplane.

Definition 4.2.16 (Sherds). We call S = Sn(`, r, A,B) an n-sherd if the following hold.
1. −n ≤ ` < r ≤ n,
2. A ∪B =]`, r[ and A ∩B = ∅,
3. if 0 ∈ A, then B ∩ −B = ∅ and if 0 ∈ B, then A ∩ −A = ∅.

We call the n-sherd dexter if `+ r > 0 and we call it sinister if `+ r < 0. We note that the third
condition implies in particular that `+ r 6= 0.

Observation 4.2.17 (Sherd Arithmetic). Given a set Sn(`, r, A,B), the following are equal:
1. Sn(`, r, A,B)
2. Sn(−r,−`,−B,−A) (reciprocal notation)
3. −Sn(`, r, B,A) (geometric opposite)
4. −Sn(−r,−`,−A,−B) (geometric opposite)

In consequence, every dexter n-sherd has a reciprocal notation as a sinister n-sherd and vice
versa, so dexter n-sherds and sinister n-sherds are the same objects.

Lemma 4.2.18 (Sherd Dimension). Every n-sherd is (n− 1)-dimensional.

Proof. Let S be an n-sherd. Let Sn(`, r, A,B) be a dexter notation for S. To apply Proposition
4.2.11, we define U := A = {`, r} ∪ A and V := B = {`, r} ∪ B and set JUV , JU and JV as in
Observation 4.2.10

1. If ` = 0, then U± = {0} = V ±. We therefore find ourselves in the first case of Proposi-
tion 4.2.11. As JU = ∅ = JV and JUV = {r}, we obtain dim(S) = n− 1− 0− 0.
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2. If ` 6= 0, then JUV = {|`|, r}. If ` > 0, then U, V ⊂ [n]. Therefore, both U± and V ± are
empty. If ` < 0, then ` < 0 < r as S is dexter and therefore, 0 ∈ A or 0 ∈ B. By the
definition of n-sherds, this means that U± = A ∩ −A = ∅ or V ± = B ∩ −B = ∅. We
conclude by using the second case of Proposition 4.2.11, giving us dim(S) = n−2+1.

Lemma 4.2.19 (Sherd Union). Every ~Bn hyperplane is equal to the union of all n-sherds on it.

Proof. Let H be a Bn hyperplane. As every n-sherd on H is a subset of H , their union is a subset
of H as well. It remains to show that H is a subset of their union. We fix an arbitrary point x ∈ H
and prove that there is an n-sherd on H containing x. We distinguish cases by the family of H .

1. If family(H) = 1, then H = Hn(0, r) for some r ∈ [n]. We set A := {k ∈]0, r[ | xk ≤ 0}
and B := {k ∈]0, r[ | xk > 0}. Then x ∈ Sn(0, r, A,B), a valid n-sherd.

2. If family(H) = 2, then H = Hn(`, r) for some positions 0 < ` < r ≤ n. We fix the
sets A := {k ∈]`, r[ | xk ≤ xi} and B := {k ∈]`, r[ | xk > xi}. Then x ∈ Sn(`, r, A,B),
a valid n-sherd.

3. If family(H) = 3, then H = Hn(`, r) for some 0 < −` < r ≤ n. Recall that x−k = −xk
and x0 = 0 and set A := {k ∈]`, r[ | xk ≤ xr} and B := {k ∈]`, r[ | xk > xr}. Then we
have x ∈ Sn(`, r, A,B). We check that this is indeed a valid n-sherd: Clearly,A∪B =]`, r[
and A ∩B = ∅ hold as well as −n ≤ ` < r ≤ n. We check the third condition:
• If 0 ∈ A, then 0 ≤ xr. No k with ±xk > xr ≥ 0 can exist, so B ∩ −B = ∅.
• If 0 ∈ B, then 0 > xr. No k with ±xk ≤ xj < 0 can exist, so A ∩ −A = ∅.

Lemma 4.2.20 (Sherd Intersection). Let H be a Bn hyperplane and let S1, S2 be two distinct
n-sherds on H . Then S1 ∩ S2 ⊆ Ȟ for some Bn hyperplane Ȟ that cuts H .

Proof. Let H = Hn(i, j). Let S1 = Sn(i, j, A1, B1) and S2 = Sn(i, j, A2, B2) be two shards.
Note that they are in dexter notation. As they are distinct, we can assume without loss of generality
that A1 \ A2 is non-empty. Set k := max(A1 \ A2). Then xk ≤ xj is valid on S1 and xk ≥ xj is
valid on S2. Therefore, S1 ∩ S2 ⊆ {x ∈ Rn | xk = xj} = Hn(k, j).

It is left to show thatHn(k, j) cutsH . We first assume k = 0. Then 0 ∈ A1\A2, so 0 ≤ xj = xi
is valid on S1, therefore −xi ≤ xj on S1 and analogously, −xi ≥ xj on S2. Note that k = 0
implies i < 0 < j, therefore −i ∈ A1 \ A2, which contradicts the fact that k was chosen to be
maximal. But if k 6= 0, we see from Lemma 4.2.4 that Hn(k, j) cuts Hn(i, j).

Lemma 4.2.21 (Sherd in Shard). Every n-sherd is part of a ~Bn shard.

Proof. Let S = Sn(`, r, A,B) be an n-sherd in dexter notation. Then H = Hn(`, r) is the
hyperplane containing S. We need to show that for every hyperplane Ȟ cuttingHn(`, r), the set S
is entirely contained in one of the closed halfspaces induced by Ȟ . We recall that we can find all
cutting relations between hyperplanes in Lemma 4.2.4. Let Ȟ be a hyperplane that cuts H .

1. If Hn(`, r) is of the first family, then 0 = ` < r.
• If Ȟ is normal to ei for some i ∈]0, r[, then i ∈ A ∪̇B and S is contained in a halfspace

induced by ei: the positive one if i ∈ B or the negative one if i ∈ A.
• If Ȟ is normal to er − ei for some i ∈]0, r[, then i ∈ A ∪̇ B and S is contained in a

halfspace induced by er − ei: the positive one if i ∈ A or the negative one if i ∈ B.
2. If Hn(`, r) is of the second family, then 0 < ` < r.

• If Ȟ is normal to er − ek for some k ∈]`, r[, then k ∈ A ∪̇ B. S is contained in a
halfspace induced by er − ek: the positive one if k ∈ A or the negative one if k ∈ B.
• If Ȟ is normal to ek − e` for some k ∈]`, r[, then k ∈ A ∪̇ B. S is contained in a

halfspace induced by ek − e`: the positive one if k ∈ B or the negative one if k ∈ A.
3. If Hn(`, r) is of the third family, then ` < 0 < r with |`| < r.
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• If Ȟ is normal to e|`|, we note that on H , we have x−` ≥ 0 if and only if x−` ≥ x`.
The sherd S is contained in a halfspace induced by e|`|: In the positive one if −` ∈ B
or in the negative one if −` ∈ A.
• If Ȟ is normal to e|`| − ek for some k ∈]0,−`[, then −k ∈ A ∪̇ B. Note that we

have x−` − xk ≥ 0 if and only if x−k ≥ x`. The sherd S is contained in a halfspace
induced by the normal vector e|`| − ek: the positive one if −k ∈ B or the negative one
if −k ∈ A.
• If Ȟ is normal to er − ek for some k ∈]0, r[, then k ∈ A ∪̇ B. S is contained in a

halfspace induced by er − ek: the positive one if k ∈ A or the negative one if k ∈ B.
• If Ȟ is normal to e|`| + ek for some k ∈] − `, r[, then k ∈ A ∪̇ B. Note that we

have xk + x−` ≥ 0 if and only if xk ≥ x`. S is contained in a halfspace induced
by ek + e|`|: the positive one if k ∈ B or the negative one if k ∈ A.
• If Ȟ is normal to ek + er for some k ∈]0,−`[, then −k ∈ A ∪̇ B. Note that we

have xk + xr ≥ 0 if and only if x−k ≤ x`. S is contained in a halfspace induced
by ek + er: the positive one if −k ∈ A or the negative one if −k ∈ B.
• If Ȟ is normal to ek + e|`| for some k ∈]0,−`[, then k ∈ A ∪̇ B. Note that we

have xk + x−` ≥ 0 if and only if xk ≥ x`. S is contained in a halfspace induced
by ek + e|`|: the positive one if k ∈ B or the negative one if k ∈ A.

Proposition 4.2.22 (Shards of ~Bn). The set ΣB of all shards of ~Bn contains exactly the n-sherds.

Proof. We know from Lemma 4.2.19 that every Bn hyperplane H is the union of all n-sherds
on H . Therefore, every ~Bn shard intersects at least one n-sherd. We know from Lemma 4.2.21
that every n-sherd is part of a ~Bn shard. Therefore, no n-sherd belongs to more than one ~Bn shard.
Still, there could be multiple n-sherds in one ~Bn shard. But we know from Lemma 4.2.18 that
every n-sherd is (n − 1)-dimensional and Lemma 4.2.20 tells us that any two n-sherds of the
same hyperplane intersect only in a bounding hyperplane of the shard. Therefore, no two n-sherds
belong to the same ~Bn shard.

Observation 4.2.23. Every basic hyperplane of ~Bn is a shard. The basic hyperplanes of ~Bn are
exactly the sets Sn(i− 1, i, ∅, ∅) for i ∈ [n].

Now that we have found ~Bn shards and a way to describe them using two endpoints and a
partition of the positions in between as was the case for ~An shards. To continue to work our way
towards quotientopes, we need to analyze the forcing relation of ~Bn shards. We will now prepare
to describe this relation with our notation for sherds.

4.2.4 ~Bn Arcs

Now that we exhaustively described ~Bn shards, we will try to illustrate them in the same way we
illustrated ~An shards, using arcs. We recall from Observation 4.1.18 the concept of the ~A[±n] ar-
rangement and its intersection with the centrally symmetric subspace HBn . Just as every ~Bn hy-
perplane is the intersection of an ~A[±n] hyperplane with that subspace, every ~Bn shard is the
intersection of an ~A[±n] shard with that subspace.

We will therefore assign to each ~Bn shard S a canonical (dexter) representative ~A[±n] shard Σ

in the space R[±n]. We define this representative using the notation Σ = Σ[±n](`, r, A,B) :={
x ∈ R[±n]

∣∣ xa ≤ x` = xr ≤ xb for all a ∈ A, b ∈ B
}

for endpoints ` < r ∈ [±n] such
that A ∪̇ B = [`, r] \ {0}. We emphasize that shards in ~A[±n] do not use the index zero, but
only the nonzero integers in [±n]. Therefore, the set of ~A[±n] shards we can describe in this way
are just shards of the A2n arrangement with a shifted notation.
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Definition 4.2.24 (Representative Shard). Given a ~Bn shard S = Sn(`, r, A,B) in dexter notation,
we associate an ~A[±n] shard Σ in the following way.
• If family(S) = 1 (so ` = 0), we set Σ = Σ[±n](−r, r, −A ∪A, −B ∪B).
• If family(S) = 2 (so ` > 0), we set Σ = Σ[±n](`, r, A,B).
• If family(S) = 3 (so ` < 0), we set Σ = Σ[±n](`, r, A \ {0}, B \ {0}).

These choices of representative shards correspond to ~A[±n] arcs. As every representative shard
is full-dimensional in the centrally symmetric subspace HBn of R[±n], its arcs are centrally sym-
metric, too.

Definition 4.2.25 ( ~Bn Arcs). Given a ~Bn shard S, the associated ~Bn arc is the arc of the repre-
sentative ~A[±n] shard Σ of S. In the case of family(S) > 1, it is usually shown together with its
centrally symmetric image. We call the ~Bn arc
• singular if family(S) = 1, where the representative arc is centrally symmetric in itself,
• separated if family(S) = 2, where the representative arc and its centrally symmetric image

are strictly separated by the position 0,
• overlapped if family(S) = 3, where the representative arc and its centrally symmetric image

overlap around the position 0.

Figure 4.3: The ~B4 arcs for the shard S4(0, 4, {2}, {1, 3}) of the first family (with a singular arc,
on the left), for the shard S4(1, 4, {2}, {3}) of the second family (with a separated arc,
in the middle), and for the shard S4(−2, 3, {−1, 0, 2}, {1}) of the third family (with
an overlapped arc, on the right). [Picture from [PPR20]]

See Figure 4.4 for an illustration of the ~B2 arrangement and its shards labeled by ~Bn arcs and
see Figure 4.5 for a stereographic projection of the ~B3 arrangement.

If family(S) = 3 and the representative ~Bn arc is overlapped, we call the ~Bn arc upper if
it passes above its centrally symmetric image or lower if it passes below. This is well-defined
as the arc and its centrally symmetric image are non-crossing. As ~A[±n] arcs are in bijection
with ~A[±n] shards, we call an ~A[±n] shard upper (resp. lower) if the corresponding ~A[±n] arc is.

These ~Bn arcs give us a way to enumerate ~Bn shards: We count pairs of ~A[±n] arcs centrally
symmetric to each other (or pairs of an arc with itself in the case of a singular ~Bn arc).

Lemma 4.2.26 (Number of ~Bn Shards). The number of ~Bn shards is 3n − n− 1.

Proof. We will prove the statement by induction on n. For n = 1, the only ~Bn arc is the sin-
gular one connecting −1 to +1. For the induction step, we remark that we can split the pairs
of ~A[±n] arcs into those incident to the dots −n and +n and those not indicent to them, which are
corresponding to the ~Bn−1 shards, whose number we assume to be 3n−1 − n by induction. We
need to count those indicent to −n and +n and we do so by splitting them into the three types
discussed above.
• Counting singular arcs, we know that each of them connects −n to +n and they are centrally

symmetric, so we have two choices to pass above or below each dot in [1, n− 1] and the rest
is determined by symmetry. This gives us f1

n := 2n−1 choices.
• Counting separated arcs, we look at the dexter one connecting some k to n. For each choice

of k ∈ [1, n− 1], there are 2n−k−1 ways to pass above or below the dots in between. This
gives us f2

n :=
∑n−1

k=1 2n−k−1 = 2n−1 − 1 choices.
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• Counting overlapped arcs, we look at the dexter one connecting some −k to n. For each
choice of k ∈ [1, n− 1], there are
◦ 2 choices for every position in [k, n] as the arc can pass above or below it,
◦ 3 choices for very position in [1, k[, as the dot can lie above both the arc and its centrally

symmetric image, below both arcs or in between the two.
As all these choices are distinct and independent and completely determine the arc due to
central symmetry, this gives us f3

n :=
∑n−1

k=1 2n−k · 3k−1 = 2 · 3n−1 − 2n.
We conclude that the number of ~Bn shards is(

3n−1 − n
)

+ f1
n + f2

n + f3
n = 3n−1 − n+ 2n−1 + 2n−1 − 1 + 2 · 3n−1 − 2n

= 3n − n− 1.

4.2.5 Arrows Between Shards

We recall the definition of arrows in an oriented hyperplane arrangement from Definition 1.5.14.
To determine whether one shard arrows another, we want to know what the dimension of their
intersection is. In some cases, we can easily describe the intersection using the same notation we
introduced for shards.

Lemma 4.2.27 ( ~Bn Shard Intersection). Let S1 = Sn(`1, r1, A1, B1) and S2 = Sn(`2, r2, A2, B2)
be two ~Bn shards such that {`1, r1} ∩ {`2, r2} 6= ∅. Then S1 ∩ S2 = Sn(A1 ∪A2, B1 ∪B2).

Proof. Let s ∈ {`1, r1} ∩ {`2, r2}. We prove one direction of inclusion after the other. Firstly,
let x ∈ S1∩S2. Then xa ≤ xs for all a ∈ A1∪A2. On the other hand, xs ≤ xb for all b ∈ B1∪B2.
Therefore, x ∈ Sn(A1 ∪ A2, B1 ∪B2). Secondly, let x ∈ Sn(A1 ∪ A2, B1 ∪B2). Then xa ≤ xb
for all a ∈ A1, b ∈ B1, so x ∈ S1. Moreover, xa ≤ xb for all a ∈ A2, b ∈ B2, so x ∈ S2.

We introduce a notation that we can use to describe all pairs of shards arrowing another.

Lemma 4.2.28 (Nested ~Bn Shard Notation). Let S1 and S2 be ~Bn shards such that S2 arrows S1.
Then we can write S1 and S2 in a way that S1 = Sn(`1, r1, A1, B1) and S2 = Sn(`2, r2, A2, B2)
with `1 ≤ `2 < r2 ≤ r1.

Proof. Let S1 = Sn(a1, b1, X1, Y1) and S2 = Sn(a, b2, X2, Y2) be two shards in dexter nota-
tion. Then Hn(a1, b1) and Hn(a2, b2) are the two Bn hyperplanes that contain S1 and S2. If S2

arrows S1, then Hn(a2, b2) cuts Hn(a1, b1). By Corollary 4.2.5, we are in one of the following
cases.
• If a1 ≤ a2 and b2 ≤ b1,

then we can denote S1 = Sn(a1, b1, X1, Y1) and S2 = Sn(a2, b2, X2, Y2).
• If a1 ≤ −b2 and −a2 ≤ b1,

then we can denote S1 = Sn(a1, b1, X1, Y1) and S2 = Sn(−b2,−a2,−Y2,−X2).
Either way, we can denote the two shards in such a nested fashion.

Using this notation of nested shards, we can exclude some cases where S2 cannot arrow S1.

Lemma 4.2.29 (Nested ~Bn Shards Without Arrows). Let S1 and S2 be two ~Bn shards denoted
by S1 = Sn(`1, r1, A1, B1) and S2 = Sn(`2, r2, A2, B2). We set I = {|`1|, |`2|, |r1|, |r2|}.
If |I| 6= 3, then neither of S1 and S2 arrows the other.

Proof. We first observe that |I| ≥ 2 as `1 6= r1 and `1 6= −r1 by definition of ~Bn shards.
Clearly, |I| ≤ 4. To prove the statement, we show that in the cases |I| = 2 and |I| = 4, neither
of Hn(S1) and Hn(S2) cuts the other.
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Figure 4.4: The type B fan FB2 (left) and the corresponding ~Bn shards and ~Bn arcs (right). The
chambers of the fan are labeled by signed permutations in blue, its rays are labeled
by signed index sets in red and hyperplanes are labeled by inequalities with different
colors for each hyperplane. [Picture from [PPR20]]
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letters if necessary. [Picture from [PPR20]]
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• If |I| = 4, then Corollary 4.2.5 certifies that neither Hn(S1) nor Hn(S2) cuts the other.
• If |I| = 2, then either (`1 = `2 and r1 = r2) or (`1 = −r2 and r1 = −`2). We deduce that S1

and S2 are part of the same hyperplane. Therefore, Hn(S1) = Hn(S2), but no ~Bn hyperplane
cuts itself.

We conclude that neither of S1 and S2 arrows the other.

We can combine these two statements to describe all pairs of shards where one arrows the other
in a way that they share exactly one of their endpoints.

Corollary 4.2.30 (Nested ~Bn Shards with Common Endpoint). Let S1 and S2 be two ~Bn shards
such that S2 arrows S1. We can always write them in such a way that S1 = Sn(`1, r1, A1, B1)
and S2 = Sn(`2, r2, A2, B2) with either (`1 = `2 and r2 < r1) or (`1 < `2 and r2 = r1).

Without loss of generality, for any pair of shards where S1 arrows S2, we can use dexter and
sinister notation to denote them in a way that r1 = r2. It therefore suffices to check these cases
for arrows. We first determine when the intersection of S1 and S2 has dimension n− 2 in the case
where `2 6= 0.

Lemma 4.2.31 (Dimension of Nested ~Bn Shard Intersection). Let S1 = Sn(`1, r, A1, B1)
and S2 = Sn(`2, r, A2, B2) be two ~Bn shards with `1 < `2 and `2 6= 0. Then dim(S1∩S2) = n−2
if and only if all of the following hold.

1. A1 ⊇ A2 and B1 ⊇ B2,
2. if −`2 = `1, then A±1 ∪B

±
1 = {0},

3. if −`2 ∈ A1, then 0 ∈ A1,
4. if −`2 ∈ B1, then 0 ∈ B1.

Proof. We set LR := {`1, `2, r} and U := A1 ∪ A2 ∪ LR and V := B1 ∪ B2 ∪ LR. Then by
Lemma 4.2.27, we have S1 ∩ S2 = Sn(U, V ). As in Observation 4.2.10, we define
• JUV := (U+ ∩ V +) ∪ (−U− ∩ −V −),
• JU := (U+ ∩ −U−) \ (V + ∪ −V −),
• JV := (V + ∩ −V −) \ (U+ ∪ −U−).

We obtain
• JUV = (A+

1 ∩B
+
2 ) ∪ (A+

2 ∩B
+
1 ) ∪ (−A−1 ∩ −B

−
2 ) ∪ (−A−2 ∩ −B

−
1 ) ∪ (LR+ ∪ −LR−),

• JU =
(
(A+

1 ∪A
+
2 ) ∩ (−A−1 ∪ −A

−
2 )
)
\ (B+

1 ∪B
+
2 ∪ −B

−
1 ∪ −B

−
2 ),

• JV =
(
(B+

1 ∪B
+
2 ) ∩ (−B−1 ∪ −B

−
2 )
)
\ (A+

1 ∪A
+
2 ∪ −A

−
1 ∪ −A

−
2 ).

We remark that JUV is non-empty. and recall the results of Proposition 4.2.11.
• If U± 6= ∅ 6= V ±, then dim(S1 ∩ S2) = n− |JUV | − |JU | − |JV |.
• If U± = ∅ or V ± = ∅, then dim(S1 ∩ S2) = n+ 1− |JUV |.

We know that `1 < `2 < r and −`1,−`2 6= r, but possibly, −`1 = `2. We distinguish cases by
their signs. Note that condition (2) only applies if `1 < 0 ≤ `2. Conditions (3) and (4) are only
meaningful if `1 < 0 < `2 or `2 < 0 < r. In all other cases, dim(S1 ∩ S2) = n − 2 will just be
shown to be equivalent to A1 ∩B2 = A2 ∩B1 = ∅. Note that this is equivalent to condition (1) as
we have A2 ∪̇ B2 =]`2, r[⊂]`1, r[= A1 ∪̇ B1.
• If 0 < `1 < `2 < r, then U, V ⊆ [n], so both U± and V ± are empty. We conclude that the

dimension of the intersection is dim(S1∩S2) = n+1−|JUV | = n−2−|A1∩B2|−|A2∩B1|.
This is equal to n− 2 if and only if A1 ∩B2, A2 ∩B1 = ∅.

• If `1 = 0 < `2 < r, then 0 ∈ LR, so 0 ∈ U± ∩ V ± and the dimension of the intersection
is dim(S1 ∩S2) = n− |JUV | − |JU | − |JV |. As both sets JU and JV are empty while for the
third one, we have JUV = (A+

1 ∩ B
+
2 ) ∪ (A+

2 ∩ B
+
1 ) ∪ {`2, r}, we deduce the intersection

dimension dim(S1 ∩S2) = n− 2− |A1 ∩B2| − |A2 ∩B1|. This is equal to n− 2 if and only
if both A1 ∩B2 and A2 ∩B1 are empty.
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• If `1 < 0 < `2 < r, we assume without loss of generality that 0 ∈ A1. Then by Defini-
tion 4.2.16, B±1 = {0} and furthermore, U± 6= ∅ as it contains 0. We distinguish subcases by
the order of −`1 and `2.
◦ If −`1 < `2, then V ± = ∅. Therefore, the dimension of the intersection is given

by dim(S1 ∩ S2) = n + 1 − |JUV | = n − 2 − |A+
1 ∩ B

+
2 | − |A

+
2 ∩ B

+
1 |. We con-

clude that dim(S1 ∩ S2) = n− 2 if and only if A1 ∩B2, A2 ∩B1 = ∅.
◦ If −`1 = `2, then `2 ∈ V ±. Therefore, dim(S1 ∩ S2) = n − |JUV | − |JU | − |JV | =
n−2−|A+

1 ∩B
+
2 |−|A

+
2 ∩B

+
1 |−|A

+
1 ∩−A

−
1 |. We conclude that dim(S1∩S2) = n−2

if and only if A1 ∩B2, A2 ∩B1 and A±1 ∪B
±
1 = {0}.

◦ If −`1 > `2, we recall from Definition 4.2.16 that 0 ∈ A1 implies B1 ∩ −B1 = ∅, so in
particular r 6∈ −B1 and −`1 6∈ B1 and −B1 ∩ B2 = −B1 ∩ A1 ∩ B2. Then V ± = ∅ if
and only if −B1 ∩B2 = ∅ or equivalently (−B1 ∪ {−`1}) ∩ ({`2} ∪B2) = ∅.
• If −`2 6∈ B1 and A1 ∩B2 = A2 ∩B1 = ∅, then V ± = ∅. Then the dimension of the

intersection is dim(S1 ∩ S2) = n+ 1− |JUV | = n− 2.
• If−`2 ∈ B1, then−`2 ∈ V ±. Then dim(S1∩S2) = n−|JUV |−|JU |−|JV | ≤ n−3

as {`2,−`1, r} ⊆ JUV .
• If (A1 ∩B2) ∪ (A2 ∩B1) 6= ∅, they contain some k.
◦ If k = −`1, we deduce that −`1 ∈ B2 as −`1 6∈ B1. Then −`1 ∈ V ±, so

that dim(S1 ∩ S2) = n− |JUV | − |JU | − |JV | ≤ n− 3.
◦ Otherwise, |JUV | ≥ 4, so we have dim(S1 ∩ S2) ≤ n+ 1− |JUV | ≤ n− 3.

We conclude that dim(S1 ∩ S2) = n − 2 if and only if both A1 ∩ B2 and A2 ∩ B1 are
empty and −`2 6∈ B1.

• If `1 < `2 < 0 < r, we first observe that if 0 ∈ A1 ∩B2 or 0 ∈ A2 ∩B1, then 0 ∈ U± ∩ V ±,
therefore dim(S1 ∩ S2) = n− |JUV | − |JU | − |JV | ≤ n− |LR| = n− 3.
To find the cases where the dimension is n − 2, we may assume without loss of generality
that 0 ∈ A1 ∩ A2, then 0 ∈ U±. By Definition 4.2.16, we know that both B1 ∩ −B1

and B2 ∩ −B2 are empty. Firstly, we remark that −r 6∈ B1, B2. Secondly, we deduce
that the set V ± = (B1 ∪ B2) ∩ (−B1 ∪ −B2) is empty if and only if B1 ∩ −B2 is empty.
AsB1∩−B2 = B1∩({−`2}∪−B2), this is the case if and only if bothA1∩B2 = A2∩B1 = ∅
and −`2 6∈ B1.
◦ If V ± = ∅, then dim(S1 ∩ S2) = n+ 1− |JUV | = n+ 1− |(LR+ ∪−LR−)| = n− 2.
◦ If V ± 6= ∅, then dim(S1∩S2) = n−|JUV |−|JU |−|JV | ≤ n−|(LR+∪−LR−)| = n−3.

We conclude that dim(S1∩S2) = n−2 if and only ifA1∩B2 = A2∩B1 = ∅ and−`2 6∈ B1.
An analogous argument with the roles of A and B exchanged holds if 0 ∈ B1 ∩B2.

• If `1 < `2 < 0 = r, then 0 ∈ LR, so 0 ∈ U± ∩ V ± and the dimension of the intersection
is given by dim(S1 ∩ S2) = n − |JUV | − |JU | − |JV |. As both JU and JV are empty
and JUV = (−A−1 ∩ −B

−
2 ) ∪ (−A−2 ∩ −B

−
1 ) ∪ {−`1,−`2}, we obtain dim(S1 ∩ S2) =

n− 2− |A1 ∩B2| − |A2 ∩B1|. This is equal to n− 2 if and only if A1 ∩B2, A2 ∩B1 = ∅.
• If `1 < `2 < r < 0, then U, V ⊆ −[n], so U± = V ± = ∅. We conclude that the dimension

of the intersection is dim(S1 ∩S2) = n+ 1− |JUV | = n− 2− |A1 ∩B2| − |A2 ∩B1|. This
is equal to n− 2 if and only if A1 ∩B2, A2 ∩B1 = ∅.

Observation 4.2.32. We can give some simpler explanation that the conditions 1 - 4 in the lemma
we just discussed are necessary.

1. If A1 6⊇ A2, there is a k ∈ A2 such that k 6∈ A1. As A2 ⊂]`2, r[⊂]`1, r[= A1 ∪̇ B1,
we know that k has to be contained in B1. We fix the three index sets T := {`1, `2, k, r}
and I := {|`|, |k|, |r1|, |r2|} and S := Sn(T, T ). As S1 ∩ S2 = Sn(A1 ∪ A2, B1 ∪ B2) by
Lemma 4.2.27, we have S1∩S2 ⊂ S by Lemma 4.2.7 and deduce dim(S1∩S2) ≤ dim(S).
We first observe that |I| ≤ 2 is impossible: r can neither be equal to −`1 nor to −`2,
but if −k = r, then `1 < `2 < k < 0, so `1 and `2 cannot add up to zero. We now
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assume that |I| = 3 and 0 ∈ I . Then exactly two of `1, `2, k, r have to add up to zero. We
note that `1 = 0 or r = 0 are impossible as all remaining variables would have the same
sign, so no two of them can add up to zero. `2 = 0 is forbidden by the conditions of the
lemma. But if k = 0, then −r would have to be equal to `1 or `2, which is impossible by
Definition 4.2.16. Therefore, |I| = 3 implies that 0 6∈ I .
Corollary 4.2.13 states that if 0 6∈ I and |I| < |T |, then dim(S) = n− |I|, while otherwise,
we have dim(S) = n − |I| + 1. We conclude that dim(S1 ∩ S2) ≤ dim(S) ≤ n − 3. An
analogous argument holds if B1 6⊇ B2.

2. If −`2 = `1 and A±1 ∪ B
±
1 6= {0}, we assume without loss of generality that there is

some 0 < k ∈ A±1 . Note that x`1 = x`2 is equivalent to x`1 = x`2 = 0. All x ∈ S1

have −xk, xk ≤ xr = x`1 and all x ∈ S2 have xr = x`2 = −x`1 . Therefore, every
vector x ∈ S1 ∩ S2 has −xk, xk ≤ x`1 = −x`1 and thus xk = x`2 = xr = 0. We can
conclude that dim(S1∩S2) ≤ n−3. An analogous argument holds if there is a 0 < k ∈ B±1 .

3. If −`2 ∈ A1 and 0 ∈ B1, then all x ∈ S1 have −x`2 ≤ xr ≤ 0. As all x ∈ S2 have
the property x`2 = xr, we know that all x ∈ S1 ∩ S2 have −x`2 , x`2 ≤ xr ≤ 0. This
implies x`2 = 0, so that all x ∈ S1 ∩ S2 have x`1 = x`2 = xr = 0. We conclude
that dim(S1 ∩ S2) ≤ n− 3. An analogous argument holds if −`2 ∈ B1 and 0 ∈ A1.

Note that the proof of Lemma 4.2.31 showed that these conditions are sufficient as well.

We use our findings to deduce when S2 arrows S1 in the case we discussed.

Corollary 4.2.33 (Arrows in Most Cases). Let S1 = Sn(`1, r, A1, B1) and S2 = Sn(`2, r, A2, B2)
be ~Bn shards with `1 < `2 and `2 6= 0. Then S2 arrows S1 if and only if all of the following hold.

1. A1 ⊇ A2 and B1 ⊇ B2,
2. if −`2 = `1, then A±1 ∪B

±
1 = {0},

3. if −`2 ∈ A1, then 0 ∈ A1,
4. if −`2 ∈ B1, then 0 ∈ B1.

Proof. We first distinguish cases by dexter and sinister notation of S1 and S2:
• If S2 is in dexter notation, then Hn(S2) = Hn(`2, r).
◦ If S1 is in dexter notation, then Hn(S1) = Hn(`1, r).
◦ If S1 is in sinister notation, then Hn(S1) = Hn(−r,−`1).

• If S2 is in sinister notation, then Hn(S2) = Hn(−r,−`2). As `2 < r and |`2| > r, we know
that `2 < 0. Then `1 < `2 implies |`1| > |`2| > r, so S1 is in sinister notation as well
and Hn(S1) = Hn(−r,−`1).

For all these cases, Corollary 4.2.5 certifies thatHn(S2) cutsHn(S1). By definition, S2 arrows S1

if and only if dim(S1∩S2) = n−2 andHn(S2) cutsHn(S1). It is left to show that the dimension
of the intersection is dim(S1 ∩ S2) = n− 2 if and only if all four conditions hold. That is exactly
the result of Lemma 4.2.31.

It is left to determine when the intersection of S1 and S2 has dimension n − 2 in the case
where `2 = 0. We immediately combine this question with hyperplane cutting to determine
whether S2 arrows S1.

Lemma 4.2.34 (Arrows From Family 1 to Family 3). Let S1 = Sn(`, r, A1, B1) with ` < 0
and S2 = Sn(0, r, A2, B2) be two ~Bn shards. Then S2 arrows S1 if and only if A2 ⊆ A1 ∩ −B1

and B2 ⊆ B1 ∩ −A1.

Proof. We first show that r < −` holds if S2 arrows S1 or ifA2 ⊆ A1∩−B1 andB2 ⊆ B1∩−A1.
• Assume that S2 arrows S1 and −r < `. Then S1 is part of the hyperplane Hn(−`, r). We

know from Lemma 4.2.4 that Hn(−`, r) does not cut Hn(0, r), so S2 does not arrow S1,
which contradicts our asumption. We conclude that ` < −r as ` = −r is impossible by
Definition 4.2.16.
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• Assume that A2 ⊆ A1 ∩ −B1 and B2 ⊆ B1 ∩ −A1, then A2 ∪̇ B2 ⊆ −A1 ∪̇ −B1,
so ]0, r[ ⊆ ]−r,−`[, which implies r ≤ −`. As r = −` is impossible by Definition 4.2.16,
we conclude that r < −`.

We know that r < −` implies that the hyperplane Hn(−r,−`) cuts Hn(0, r). It is left to show
that if r < −`, then dim(S1 ∩ S2) = n− 2 if and only if A2 ⊆ A1 ∩ −B1 and B2 ⊆ B1 ∩ −A1.
We set LR := {`, 0, r} and U := A1∪A2∪LR and V := B1∪B2∪LR. Then by Lemma 4.2.27,
we have S1 ∩ S2 = Sn(U, V ).

We recall the result of Proposition 4.2.11: Because of 0 ∈ LR, we have U± 6= ∅ 6= V ±,
so dim(S1 ∩ S2) = n − |JUV | − |JU | − |JV | = n − |(U+ ∪ −V −) ∩ (V + ∪ −U−)|. We fix
another set X = (A+

1 ∪ A
+
2 ∪ −B

−
1 ) ∩ (B+

1 ∪ B
+
2 ∪ −A

−
1 ) and observe that X ∪ {−`, r} =

(U+ ∪ −V −) ∩ (V + ∪ −U−). As r < −`, we have X ⊆ ]0,−`[, so −` 6∈ X . Furthermore,
we remark that A+

1 , A
+
2 , B

+
1 , B

+
2 ⊆ ]0, r[ and r 6∈ −B−1 ∩ −A

−
1 , so r 6∈ X . We conclude

that X ∩{−`, r} = ∅, so dim(S1 ∩S2) = n− 2− |X|. It remains to show that X = ∅ if and only
if both A2 ⊆ A1 ∩ −B1 and B2 ⊆ B1 ∩ −A1.
• If X = ∅, then in particular, A+

2 ∩B
+
1 = A+

2 ∩ −A
−
1 = ∅. We fix a k ∈ A2 ⊆ ]0, r[.

◦ Then k 6∈ B+
1 . As k ∈ ]0, r[ = B+

1 ∪̇ A
+
1 , we know that k ∈ A+

1 .
◦ Furthermore, k 6∈ −A−1 . As k ∈ ]0,−`[ = −A−1 ∪̇ −B

−
1 , we know that k ∈ −B−1 .

We conclude that A2 ⊆ A1 ∩ −B1. An analogous argument proves that B2 ⊆ B1 ∩ −A1.
• If A2 ⊆ A1 ∩ −B1 and B2 ⊆ B1 ∩ −A1, we use the fact that A1 ∩ B1 = ∅. Then A2 ⊆ A1

implies A2 ∩B1 = ∅. Analogously, we find A2 ∩ −A1 = ∅ and B2 ∩A1 = B2 ∩ −A1 = ∅.
We rewrite X =

(
A+

2 ∪ (A+
1 ∪−B

−
1 )
)
∩
(
B+

2 ∪ (B+
1 ∪−A

−
1 )
)
. As A2 ∩B2 = ∅, we deduce

that X = (A+
1 ∪ −B

−
1 ) ∩ (B+

1 ∪ −A
−
1 ) = (A+

1 ∩ −A
−
1 ) ∪ (B+

1 ∩ −B
−
1 ). Assume there is

a k ∈ A+
1 ∩ −A

−
1 ⊆ ]0, r[. Then k 6∈ B1,−B1, so on one hand, k 6∈ A2 ⊆ A1 ∩ −B1 and

on the other hand, k 6∈ B2 ⊆ B1 ∩ −A1. But then k 6∈ A2 ∪ B2 = ]0, r[, a contradiction.
An analogous argument shows that B+

1 ∩ −B
−
1 = ∅, so we can conclude that X = ∅ as

desired.

4.2.6 Forcing of Shards

It is a direct consequence of Lemma 4.2.4 that the cutting relation on the ~Bn hyperplanes is acylic.
In consequence, the arrows on the ~Bn shards are acyclic, so its reflexive-transitive closure is anti-
symmetric. We can therefore adapt the established definition of Theorem 1.5.15 to our case.

Observation 4.2.35 (Chain of Arrows Among ~Bn Shards). Let S1 and S2 be two ~Bn shards such
that S2 forces S1. Then by definition of forcing, there has to exist a finite chain of shards such
that S2 = T1 → T2 → · · · → Tk = S1 with k ≥ 2. Repeated application of Corollary 4.2.30
certifies that we can always write them as S1 = Sn(`1, r1, A1, B1) and S2 = Sn(`2, r2, A2, B2)
in such a way that for every i ∈ [k], we have Ti = Sn(xi, yi, Xi, Yi) and for each i ∈ [k − 1], we
even have either (xi = xi+1 and yi > yi+1) or (xi < xi+1 and yi = yi+1).

We introduce new binary relations on of ~Bn shards. They are fairly simple to grasp and will
prove to be very useful in describing the forcing relation among ~Bn shards.

Definition 4.2.36 (Extension and Restriction of Shards). Let S1 and S2 be ~Bn shards denoted
by S1 = Sn(`1, r1, A1, B1) and S2 = Sn(`2, r2, A2, B2). We say that S2 restricts S1 (equiva-
lently, S1 extends S2) if one or both of the following statements hold:
• A1 ⊇ A2 and B1 ⊇ B2 and [`1, r1] ⊇ [`2, r2],
• A1 ⊇ −B2 and B1 ⊇ −A2 and [`1, r1] ⊇ [−r2,−`2].

We say that S2 doubly restricts S1 (equivalently, S1 doubly extends S2) if both hold. Note that
these definitions are independent of the choice of notation for each shard.
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Observation 4.2.37. We can easily check several properties of these four binary relations:
1. (Inclusion of Relations): As a relation, double restriction (resp. extension) is a strict subset

of simple restriction (resp. extension): If S1 doubly restricts (resp. extends) S2, then S1

restricts (resp. extends) S2.
2. (Reflexivity): Restriction and extension are reflexive relations: Every ~Bn shard restricts and

extends itself. Double restriction and double extension are irreflexive relations: No ~Bn shard
doubly restricts or doubly extends itself.

3. (Antisymmetry): Both simple and double extension or restriction are antisymmetric rela-
tions on the set of shards of Bn: If S1 restricts (resp. doubly / extends) S2 and S2 restricts
(resp. doubly / extends) S1, then S1 = S2.

4. (Transitivity): Both simple and double extension or restriction are transitive relations on the
set of shards of Bn: If S1 restricts (resp. doubly / extends) S2 and S2 restricts (resp. doubly
/ extends) S3, then S1 restricts (resp. doubly / extends) S3.

Example 4.2.38. Let S = Sn(−2, 3, A = {−1, 0, 2}, B = {1}). We note that we can’t just
intersect A and B with a smaller interval ]`2, r2[, even if `2 + r2 6= 0. For example, we are not
allowed to restrict S to ]−1, 2[. We would obtain T = Sn(−1, 2, {0}, {1}) which has 0 ∈ A,
but 1 ∈ B ∩ −B, so T is not a ~Bn shard.

We will now give three statements concerning the connection between forcing and restricting.

Lemma 4.2.39 (Restriction if S2 Forces S1). Let S1 and S2 be two ~Bn shards where S2 forces S1.
1. Then S2 restricts S1.
2. If family(S1) = 3 and family(S2) = 1, then S2 doubly restricts S1.

Proof. As S2 forces S1, Observation 4.2.35 certifies that there exists a chain of shards such
that S2 = T1 → T2 → · · · → Tk = S1 with k ≥ 2, where we can denote S1 = Sn(`1, r1, A1, B1)
and S2 = Sn(`2, r2, A2, B2) in such a way that for every i ∈ [k], we have Ti = Sn(xi, yi, Xi, Yi)
and for each i ∈ [k − 1], we even have
• either xi = xi+1 and yi > yi+1, • or xi < xi+1 and yi = yi+1.
We will prove the second case first. We first note that as no hyperplane of family 1 or 3 cuts a hy-

perplane of family 2, no shard of family 1 or 3 arrows a shard of family 2. Furthermore, no hyper-
plane of family 3 cuts a hyperplane of family 1, so no shard of family 3 arrows a shard of family 1.
We deduce that if Ti is a family 3 shard, then Ti+1 is a family 3 shard as well. As family(T1) = 1
and family(Tk) = 3, there is exactly one index m ∈ [k] such that family(Ti) = 1 for 1 ≤ i < m
and family(Ti) = 3 for m ≤ i ≤ k. In particular, we know that Tm−1 → Tm. We deduce
from Lemma 4.2.34 that Xm ⊆ Xm−1 ∩ −Ym−1 and Ym ⊆ Ym−1 ∩ −Xm−1. Furthermore, re-
peated application of Corollary 4.2.33 certifies that Xm−1 ⊆ A1 and Ym−1 ⊆ B1 and A2 ⊆ Xm

and B2 ⊆ Ym on the other side. We deduce that A2 ⊆ A1 ∩ −B1 and B2 ⊆ B1 ∩ −A1, so we
conclude that S2 doubly restricts S1.

We will now consider the case where family(S1)− family(S2) < 2. Then repeated application
of Corollary 4.2.33 certifies that X1 ⊆ Xk and Y1 ⊆ Yk. We note that this also holds if there is
an index m ∈ [k − 1] such that family(Tm) = 1 and family(Tm+1) = 3. We conclude that S2

restricts S1.

We will now prove the opposite direction: Restriction implies forcing. We explicitly construct
an arrowing chain of shards to deduce that the first one forces the last.

Lemma 4.2.40 (Forcing if S2 Restricts S1). Let S1 and S2 be two distinct ~Bn shards such
that family(S1)− family(S2) < 2. If S2 restricts S1, then S2 forces S1.
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Proof. Denote S2 = Sn(`2, r2, A2, B2) in dexter notation (so that |`2| < r2). Assume that S2

restricts S1. Then we can denote S1 = Sn(`1, r1, A1, B1), where we choose the notation such that
A2 ⊆ A1 and B2 ⊆ B1 and `1 ≤ `2 < r2 ≤ r1. We set X := A1 ∩ ]`2, r1[ and Y := B1 ∩ ]`2, r1[
and T := Sn(`2, r1, X, Y ). As S2 restricts S1, we observe that as A2 = A1 ∩ ]`2, r2[ and
X = A1 ∩ ]`2, r1[, we have A2 ⊆ X ⊆ A1 and analogously, B2 ⊆ Y ⊆ B1.

We first check the conditions of Definition 4.2.16 to make sure that T is a ~Bn shard:
1. Clearly, −n ≤ `2 < r1 ≤ n
2. We have X ∪ Y = (A1 ∪ B1) ∩ ]`2, r1[ = ]`1, r1[ ∩ ]`2, r1[ = ]`2, r1[ as S1 is a ~Bn shard

itself. For the same reason, we obtain X ∩ Y = A1 ∩B1 ∩ ]`2, r1[ = ∅.
3. If 0 ∈ X , thenX ⊆ A1 implies 0 ∈ A1, soB1∩−B1 = ∅ as S1 is a ~Bn shard. In particular,
B1 ∩−B1 = ∅ and −r1 6∈ B1. As Y ⊆ B1, we deduce that Y ∩−Y = ∅ and −r1 6∈ Y . To
prove that Y ∩ −Y = ∅, it is left to show that −`2 6∈ Y . This is clear if −`2 ≤ 0. Assume
`2 < 0 and −`2 ∈ Y . As S2 was denoted in dexter notation, we have `2 < −`2 < r2 and
B2 = B1 ∩ ]`2, r2[ implies that −`2 ∈ B2. Then B2 ∩ −B2 6= ∅, but 0 ∈ A2, which is
impossible because S2 is a ~Bn shard. An analogous argument holds if 0 ∈ Y .

We confirmed that T is a ~Bn shard. As S2 was denoted in dexter notation, we have |`2| < r2,
which implies |`2| < r1, so T = Sn(`2, r1, X, Y ) is in dexter notation as well.

We will now show that either S2 = T or S2 → T . Clearly, if r1 = r2, then T = S2. Otherwise,
we use the opposite notations T = Sn(−r1,−`2,−Y,−X) and S2 = Sn(−r2,−`2,−B2,−A2).
As 0 < r2 < r1, we can apply Corollary 4.2.33: We check that T and S2 meet the conditions.
Firstly, A2 ⊆ X implies that −X ⊇ −A2 and analogously, −Y ⊇ −B2. We remark that
0 < r2 < r1 implies −r1 6= −r2. Furthermore, X ∪ Y = ]`2, r1[ and |`2| < r2 < r1 imply that
neither r2 ∈ −Y nor r2 ∈ −X . We conclude that S2 → T .

It is left to show that either T = S1 or T → S1. Clearly, if `1 = `2, then T = S1. Otherwise,
we have `1 < `2. We observe that `2 = 0 is impossible as it would imply that family(S1) −
family(S2) = 2, contradictory to the condition of the lemma. We distinguish cases by the signs
of `1 and `2.
• If 0 ≤ `1 < `2, then T → S1 by Corollary 4.2.33: Firstly, A1 ⊇ X and B1 ⊇ Y . Secondly,
−`1 6= `2. Thirdly, as −`2 6∈ ]`1, r1[, we have neither −`2 ∈ A1 nor −`2 ∈ B1.
• If `1 < `2 < 0, then T → S1 by Corollary 4.2.33: Firstly, A1 ⊇ X and B1 ⊇ Y . Secondly,
−`1 6= `2. Thirdly, we assume for a contradiction that −`2 ∈ A1 and 0 ∈ B1. Then we recall
that the dexter notation of S2 implied that |`2| < r2. Therefore−`2, 0 ∈ ]`2, r2[, so−`2 ∈ A2

and 0 ∈ B2. Then 0 ∈ B2 and `2 ∈ A2 ∩ −A2, which is impossible as S2 is a ~Bn shard. An
analogous argument forbids the combination of −`2 ∈ B1 and 0 ∈ A1.
• If `1 < 0 < `2, we introduce one more shard. We set V = A1∩ ]`3, r1] andW = B1∩ ]`3, r1]

and U := Sn(`3, r1, V,W ). We set `3 to −1 or 1 depending on the shard S1. We distinguish
cases by that decision:
◦ If 0 and 1 are both in A1 or both in B1, then we set `3 = −1. We check the conditions of

Definition 4.2.16 to make sure that U is a ~Bn shard:
1. Clearly, −n ≤ −1 < r1 ≤ n.
2. We have V ∪ W = (A1 ∪ B1) ∩ ]−1, r1[ = ]`1, r1[ ∩ ]−1, r1[ = ]−1, r1[ and
V ∩W = (A1 ∩B1) ∩ ]−1, r1[ = ∅ as S1 is a ~Bn shard.

3. If 0 ∈ V , we want to show that W ∩ −W = ∅ or equivalently, W ∩ −W = ∅ and
1 6∈W and −r1 6∈W . Firstly, W ∩−W = ∅ and −r1 6∈W follow from B1 ∩−B1

as S1 is a ~Bn shard. Secondly, 1 6∈ W as we assumed that 0 and 1 are either both in
A1 (and thus in W ) or both in B1 (and thus in V ).

We want to prove T → S1. We first show T → U by Corollary 4.2.33: Firstly, V ⊇ X
and W ⊇ Y . Secondly, we note that one of V ± and W± is empty while the other
contains only 0. Thirdly, as V ∪W = [0, r1[, we have neither −`2 ∈ V nor −`2 ∈W .
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As a second step, we show that either U = S1 or U → S1. Clearly, if `1 = −1, then
U = S1. Otherwise, we have `1 < −1 and want to show that U → S1. Once more, we
apply Corollary 4.2.33: Firstly, A1 ⊇ V and B1 ⊇ W . Secondly, we note that 1 6= `1.
Thirdly, assume for a contradiction that 1 ∈ A1 and 0 ∈ B1. Then 1 ∈ V and 0 ∈ W ,
so 0 ∈ W and 1 ∈ V ∩ −V , which is impossible as U is a ~Bn shard. An analogous
arugment holds if 1 ∈ B1 and 0 ∈ A1. We conclude that T → S1 as desired.
◦ If (0 ∈ A1 and 1 ∈ B1) or (0 ∈ B1 and 1 ∈ A1), then we set `3 = 1. Then U is a ~Bn

shard of the second family.
We want to prove T → S1. As a first step, we show that either T = U or T → U .
Clearly, if 1 = `2, then T = U . Otherwise, we have 1 < `2 and want to show that
T → U . As always, we apply Corollary 4.2.33: Firstly, V ⊇ X and W ⊇ Y . Secondly,
we note that −1 6= `2. Thirdly, as V ∪ W = [2, r1[, we have neither −`2 ∈ V nor
−`2 ∈W .
As a second step, we show that U → S1. Of course, we use Corollary 4.2.33: Firstly,
A1 ⊇ V and B1 ⊇ W . Secondly, if −`3 = `1, then `1 = −1, so one of A±1 and B±1 is
empty while the other one contains only 0. Thirdly, we assume for a contradiction that
−`3 ∈ A1 and 0 ∈ B1. Then A1 ∩ −A1 = ∅ as S1 is a ~Bn shard. But this implies
1 = `3 6∈ A1 in contradiction to the assumption of the case we are in. An analogous
arugment holds if −`3 ∈ B1 and 0 ∈ A1. We conclude that T → S1 as desired.

As S1 and S2 were presumed to be distinct, we conclude that S2 forces S1.

Lemma 4.2.41 (Forcing from Double Restriction). Let S1 and S2 be two ~Bn shards such that
family(S1) = 3 and family(S2) = 1. If S2 doubly restricts S1, then S2 forces S1.

Proof. We denote the shard S1 = Sn(`1, r1, A1, B1) in sinister notation (so that r1 < −`1)
and S2 = Sn(0, r2, A2, B2) in dexter notation. As S2 doubly restricts S1, we obtain the sequence
of inequalities `1 < −r1 ≤ 0 < r2 ≤ r1 < −`1 and A2 ⊆ A1 ∩ −B1 and B2 ⊆ B1 ∩ −A1. We
set T := Sn(0, r1, A

+
1 , B

+
1 ). Clearly, T is a ~Bn shard. Then Lemma 4.2.34 certifies that T → S1.

• If r1 = r2, then T = S2, so S2 → S1, so S2 forces S1.
• If r1 > r2, we can use the sinister notations for the shards T = Sn(−r1, 0,−B+

1 ,−A
+
1 )

and S2 = Sn(−r2, 0,−B2,−A2). We note that −A2 ⊆ −A+
1 and −B2 ⊆ −B+

1 . Then
Corollary 4.2.33 certifies that S2 → T , and we deduce that S2 forces S1.

The following statement is a direct consequence of the three lemmas we just discussed and
gives a compact exhaustive criterion to determine whether one ~Bn shard forces another. We refer
to Observation 4.1.5 for the classification of all hyperplanes a ~Bn shard can lie on into three disjoint
families.

Proposition 4.2.42 (Forcing in ~Bn). A ~Bn shard S2 forces another ~Bn shard S1 if and only if
1. family(S1)− family(S2) < 2 and S2 restricts S1 or
2. family(S1)− family(S2) = 2 and S2 doubly restricts S1.

See Figure 4.6 for an illustration of the forcing poset on ~B3 shards. We remark that forcing
on ~Bn shards is not as straightforward as forcing on ~An shards when using arc representations.

Observation 4.2.43 (Forcing on ~Bn Arcs). A ~Bn shard S with representative Σ forces an-
other ~Bn shard S′ with representative Σ′ if and only if
• S and S′ are both of the third family (so they each have overlapped ~Bn arcs) and the upper

arc of S forces the upper arc of S′ as arcs of ~A[±n] shards.
• or S is not of the third family and the arc of S or its centrally symmetric image forces the arc

of S′ as arcs of ~A[±n] shards.
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Figure 4.6: The forcing order on ~B3 shards, illustrated by their ~Bn arcs. [Picture from [PPR20]]

This has a number of implications.
• A third family shard can only force shards that are of the third family as well. On the

other hand, a third family shard might be forced by other shard of any family. For exam-
ple, does not force which forces .
• For forcing among third family shards (with overlapped arcs), the distinction between up-

per and lower arcs is important as it determines whether 0 ∈ A or 0 ∈ B. For exam-
ple, is forced by , but not by .

4.3 Type B Quotients

In this section, we will use our knowledge on the shards of ~Bn and their forcing relation to ana-
lyze lattice congruences on the poset of regions Pos( ~Bn), the quotient lattices they induce, their
quotient fans and quotientopes for them.

4.3.1 Lattice Congruences

Similar to the ~An arrangement, we can see lattice congruences as upper sets in the forcing poset.
This is a consequence of the properties of forcing discussed in Section 1.5.3.

Theorem 4.3.1 ( ~Bn Lattice Congruences). The lattice congruences on Pos( ~Bn) (equivalently, on
the weak order on SBn ) are in bijection with the upper sets of the poset of ~Bn shards.

We remark that there are some connections between lattice congruences on the poset of regions
of ~Bn and lattice congruences on the poset of regions of ~A[±n]. First, we will take a look at upper
sets of ~Bn shards, translated into upper sets of ~A[±n] shards.

Corollary 4.3.2 (Upper Set without Third Family Shards). If an upper set in the poset of ~Bn shards
has no shard of the third family among its minimal elements, it does not contain any shard of the
third family and the corresponding set of ~A[±n] shards is an upper set in the forcing poset of ~A[±n].

We next have a look at upper sets of ~A[±n] shards, trying to translate them back into sets
of ~Bn shards. For some ~A[±n] shards, this is considerably easier than for others.
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Definition 4.3.3 (Centrally Symmetrizable Shard). Let Σ[±n] = Σn(`, r, A,B) be an ~A[±n] shard.
It is called centrally symmetrizable if Sn(`, r, A,B) is a ~Bn shard as defined in Definition 4.2.16.
We then call Sn(`, r, A,B) its symmetrized ~Bn shard. Equivalently, the shard Σ is centrally sym-
metrizable if its corresponding ~A[±n] arc is either centrally symmetric in itself or if it is not cross-
ing its centrally symmetric image.

Corollary 4.3.4 (Upper Set of Symmetrized Shards). Let S be an upper set of ~A[±n] shards.
The set of symmetrized ~Bn shards for all centrally symmetrizable shards in S is an upper set
of ~Bn shards.

4.3.2 Quotient Fans

As in the braid arrangement ~An, we are interested in the quotient fans that are obtained by applying
lattice congruences of the weak order on ~Bn to the type B arrangement fan. The following is a
reformulation of Theorem 1.5.18 for the ~Bn arrangement.

Theorem 4.3.5 ( ~Bn Quotient Fan). Let ≡B be a lattice congruence on Pos( ~Bn). It induces a
quotient fan FB≡ that coarsens the Bn fan FBn . Its chambers can be described
• as the closures of the connected components of the complement in Rn of the union of

all ~Bn shards S ∈ ΣBX≡ retained by ≡B,
• or as the unions of chambers C(σ) of FBn corresponding to all B-permutations σ ∈ SBn in

each congruence class of ≡B.

We can now describe the rays of the quotient fan FB≡.

Lemma 4.3.6 (Rays of the ~Bn Quotient Fan). Given a lattice congruence ≡B on the poset of
regions of Pos( ~Bn) and a non-empty signed subset ∅ ( I ( [±n], the ray C(I) of the Bn ar-
rangement fan FBn is a ray of the quotient fan FB≡ if and only if for any ` < r ∈ [±n], the
congruence ≡B retains all the shards
• Sn(`, r, ∅, ]`, r[) whenever `, r ∈ I with `+ r 6= 0 and ]`, r[ ∩ I = ∅,
• Sn(`, r, ]`, r[ , ∅) whenever `, r ∈ −I with `+ r 6= 0 and ]`, r[ ∩ −I = ∅,
• Sn(0, r, ∅, ]0, r[) whenever `, r ∈ I with `+ r = 0 and ]`, r[ ∩ I = ∅,
• Sn(0, r, ]0, r[ , ∅) whenever `, r ∈ −I with `+ r = 0 and ]`, r[ ∩ −I = ∅,
• Sn(`, r, ]`, r[ ∩ I, ]`, r[ ∩ −I) whenever `, r 6∈ −I ∪ I and ]`, r[ \ (−I ∪ I) = ∅.

Proof. Just as we learned in Proposition 2.2.3, a ray is present in a quotient fan FB≡ if and
only if all the shards that contain it in their interior are preserved by the congruence ≡B. Us-
ing Proposition 2.2.3, we can describe the ~A[±n] shards which contain the ray C(I) in their inte-
rior. The ~Bn shards listed above are precisely those that correspond to these ~A[±n] shards through
the projection ϕB on the centrally symmetric spaceHBn .

We recall that an ~A[±n] shard is centrally symmetrizable if it corresponds to a ~Bn shard as
described in Definition 4.3.3. This property has implications on the rays in its interior and on their
intersection with the centrally symmetric subspaceHBn ⊂ R[±n].

Observation 4.3.7 (Rays of Non-Symmetrizable Shards). The interior of any ~A[±n] shard Σ that
is not centrally symmetrizable does not intersect the centrally symmetric subspaceHBn .

4.3.3 Quotientopes

We will now discuss the construction of quotientopes for lattice congruences on the weak or-
der of SBn (equivalently, on the poset of regions Pos( ~Bn)). The following statement follows
from Corollary 4.3.4.
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Corollary 4.3.8 ( ~Bn Quotientopes as Projections of ~A[±n] Quotientopes). Let ≡ be a lattice con-
gruence on the poset of regions of ~A[±n]. We set ≡B to be the lattice congruence on the poset
of regions of ~Bn that retains exactly the centrally symmetrizable ~A[±n] shards in ΣX

≡. Then
the ~Bn quotient fan FB≡ is the section of the ~A[±n] quotient fan F≡ by the centrally symmetric
subspace HBn . Therefore, if Quot(≡) is a quotientope in R[±n] for ≡ (whose normal fan is thus
equal to F≡), then the image of Quot(≡) by the projection ϕB is a quotientope in Rn for ≡B.

If every quotient lattice of the weak order on SBn could be obtained in this way, then we could
construct quotientopes for all lattice congruences ≡B in the above way. However, this is not
the case as the forcing relation among ~Bn shards is different from the forcing relation of their
representative ~A[±n] shards as discussed in Observation 4.2.43. While every lattice congruence
on Pos( ~A[±n]) corresponds to a lattice congruence on Pos( ~Bn), the converse is not true. In fact,
only 12 of the 19 lattice congruences on Pos( ~B2) can be constructed from centrally symmetrizing a
congruence on Pos( ~A[±2]), and only 1370 of 8368 do so for n = 3, as we computed using [SD19].

We will nevertheless construct quotientopes for all quotient fans of the ~Bn arrangement fan. For
the remainder of this chapter, we first construct shard polytopes for ~Bn shards. With their help, we
will be able to construct shardsumotopes for lattice congruences on the poset of regions Pos( ~Bn).

4.3.4 Shard Polytopes

We will use shard polytopes constructed for shards in the ~A[±n] arrangement and project them to
the centrally symmetric subspaceHBn . These polytopes will serve as shard polytopes for ~Bn shards.
Equivalently, they can be constructed directly from a ~Bn shard by using shard matchings of its
representative ~A[±n] shard.

Definition 4.3.9 ( ~Bn Shard Polytope). Let S be a ~Bn shard whose representative ~A[±n] shard is Σ.
The shard polytope SP(S) is the convex hull of the characteristic vectors of all Σ-matchings, with
the usual convention that e−i = −ei.

Observation 4.3.10. We remark that this implies that SP(S) is the image of the ~A[±n] shard
polytope SP(Σ) under the projection ϕB onto the centrally symmetric subspace HBn ⊂ R[±n]

given in Definition 4.1.17, so we can write SP(S) = ϕB(SP(Σ)).

See Figure 4.7 for an illustration of the shard polytopes of ~B2 (top) and of ~B3 (bottom).

Observation 4.3.11. Given a ~Bn shard S represented by the ~A[±n] shard Σ = Σ[±n](`, r, A,B),
we first observe that the dimension of SP(S) is equal to r− ` if family(S) = 2 and equal to r oth-
erwise. To make some observations about the vertices of the shard polytope SP(S), we distinguish
cases by the family that S belongs to.
• If family(S) = 1, then the vertices of SP(S) are precisely the characteristic vectors of all

those Σ-matchings that are centrally symmetric, as we will show in Lemma 4.3.17.
• If family(S) = 2, then SP(S) = SP(Σ), so the vertices of SP(S) are precisely the character-

istic vectors of all Σ-matchings.
• If family(S) = 3, then there is no bijection between the vertices of SP(S) and the Σ-

matchings. In particular, there are Σ-matchings whose characteristic vectors are not vertices
of SP(S) and there are vertices of SP(S) that are the characteristic vector of multiple Σ-
matchings.

The following statement certifies that Bn shard polytopes have the crucial property that makes
them suitable for our construction of quotientopes as shardsumotopes. It is the type B analogue
of Proposition 3.3.3.
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Figure 4.7: Shard polytopes for all six ~B2 shards (top) and for all 23 ~B3 shards (bottom). Each of
them is labeled below by the arcs of their corresponding ~A[±n] shards. The numbers
on the vertices indicate the characteristic vectors of the ~A[±n] shard matchings. In the
diagram for ~B3, the shard polytopes are arranged in the forcing order on ~B3 shards.
[Picture from [PPR20]]
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Proposition 4.3.12 ( ~Bn Shard Fan Walls). Given a ~Bn shard S, the union of the walls of the
normal fan of the shard polytope SP(S) contains the shard S and is contained in the union of all
shards S′ that force S.

The rest of this section is dedicated to the proof of Proposition 4.3.12. We first recall from Ob-
servation 4.3.10 that any ~Bn shard polytope SP(S) is the image of the ~A[±n] shard polytope SP(Σ)

under the linear projection ϕB : R[±n] → Rn (as defined in Observation 4.1.18), where Σ is the
shard representing S. Similar to the arguments discussed in Observation 4.1.18, we observe that
the normal fan of SP(S) is equal to the section of the normal fan of SP(Σ) with the centrally
symmetric space HBn . In particular, the walls of the normal fan of SP(S) are exactly the inter-
section of the walls of the normal fan of SP(Σ) with HBn . This allows us to prove the first step
towards Proposition 4.3.12.

Lemma 4.3.13 ( ~Bn Shards Are Contained in the Walls of Their Shard Fan). Any ~Bn shard S is a
subset of the union of the walls of the normal fan of SP(S).

Proof. The ~Bn shard S is equal to the intersection of its representative Σ with the centrally sym-
metric subspace HBn . We know from Proposition 3.3.3 that the union of the walls of the normal
fan of SP(Σ) contains the shard Σ itself. This implies that Σ∩HBn is a subset of the union of walls
of the normal fan of SP(S) as desired.

Moreover, we can use this approach to make a step towards proving the opposite direction
of Proposition 4.3.12.

Lemma 4.3.14 ( ~Bn Shards Fan Walls are Contained in a Union of Other Shards). The union
of the walls of the normal fan of SP(S) is contained in the union of all ~Bn shards S′ whose
representative Σ′ forces the shard Σ representing S.

Proof. The walls of the normal fan of SP(S) are exactly the intersections of the walls of the
normal fan of SP(Σ) with the centrally symmetric subspace HBn . We know from Lemma 4.3.14
that the union of the walls of SP(Σ) is contained in the union of all shards Σ′ that force Σ. This
implies that the union of the walls of SP(S) is contained in the union of sets Σ′ ∩ HBn for all
shards Σ′ forcing Σ and therefore in the union of those shards Σ′.

As discussed earlier around Observation 4.2.43, the forcing of ~A[±n] representative shards does
not guarantee the forcing of the respective associated ~Bn shards. To prove Proposition 4.3.12, we
therefore need to show for any ~Bn shard S′ that does not force S but has a representative Σ′ that
does force the representative Σ, that the centrally symmetric subspace HBn does not intersect any
wall of the normal fan SP(Σ) that is a subset of S′. We will prove this step by step depending on
the family of the shard S.

Family 1 (Singular ~Bn Arcs)

Definition 4.3.15 (Centrally Symmetric Matching). Let Σ be an ~A[±n] shard. A Σ-matching M is
called centrally symmetric if M = −M holds.

We remark that centrally symmetric shards can have matchings that are not centrally symmetric
(see for example the shard Σ[±2](−2,+2, {+1}, {−1}) and the matchingM = {1, 2}). Moreover,
shards that are not centrally symmetric can have matchings that are centrally symmetric (see for
example the shard Σ[±2](−2,+2, {−1,+1}, ∅) and the matchingM = {−2, 2}). We take a closer
look at characteristic vectors of centrally symmetric Σ-matchings.
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Observation 4.3.16. Given a centrally symmetric ~A[±n] shard Σ = Σ[±n](−r, r, A,B) and a
centrally symmetric Σ-matching M , the k-th entry of its characteristic vector χ(M) ∈ Rn is
either zero, or possibly +2 if k ∈ A+, or possibly −2 if k ∈ B+ ∪ {r}.

We can now determine the vertices of the ~Bn-shard polytope SP(S).

Lemma 4.3.17 (Vertices of SP(S) for Family 1). Let S be a ~Bn shard of the first family with rep-
resentative ~A[±n]-shard Σ. The vertices of the shard polytope SP(S) are exactly the characteristic
vectors of those Σ-matchings that are centrally symmetric.

Proof. We fix a Σ-matching M = {a1 < b1 < · · · < ak < bk}. As the shard Σ is centrally
symmetric, we know that the reflected set −M := {−bk < −ak < · · · < −b1 < −a1} is
a Σ-matching as well. We observe that their characteristic vectors are identical in Rn because
we have χ(−M) =

∑k
i=1 (e−bi − e−ai) =

∑k
i=1 (eai − ebi) = χ(M). We assume that M is

not centrally symmetric, so that M 6= −M . As M and −M cannot fall into any of the special
cases of Lemma 3.2.13, so there are two Σ-matchings M3 and M4 distinct from M and −M such
that 2χ(M) = χ(M) + χ(−M) = χ(M3) + χ(M4). In particular, the vector χ(M) is in the
convex hull of χ(M3) and χ(M4), so it cannot be a vertex of SP(S). Therefore, every vertex
of SP(S) has to be the characteristic vector of a centrally symmetric Σ-matching.

Conversely, we deduce from Observation 4.3.16 that any characteristic vector of a centrally
symmetric Σ-matching is a vertex of the cube in Rn defined by the inequalities 0 ≤ xi ≤ 2 for
all i ∈ A+ and −2 ≤ xj ≤ 0 for all j ∈ B+ ∪ {r}. Therefore, the shard polytope SP(S) is
a subset of this cube and every characteristic vector of a centrally symmetric Σ-matching is an
extremal point of the cube and thus a vertex of SP(S).

We have another look at centrally symmetric matchings. We can partition them into two classes:
Those that have a cardinality that is divisible by 4 (including the empty matching) and those that
have a cardinality that is not divisible by 4.

Observation 4.3.18 (Partition of SP(S) Vertices). Let Σ = Σ[±n](`, r, A,B) be an ~A[±n] shard.
• A centrally symmetric Σ-matching M with 4 | |M | has an even number of negative and posi-

tive elements, and as they are strictly alternating between elements of {`} ∪ A and elements
of B ∪ {r}, both M ∩ [n] and M ∩ −[n] are Σ-matchings themselves. For its characteristic
vector, we obtain 〈1 |χ(M)〉 = 0.
• A centrally symmetric Σ-matching M with 4 - |M | has an odd number of negative and

positive elements. For its characteristic vector, we obtain 〈1 |χ(M)〉 = −2.
Geometrically, as every vertex of SP(S) is equal to a characteristic vector of a centrally sym-
metric Σ-matching, the direction 1 defines two faces of SP(S) where we have either 〈1 |x〉 = 0
or 〈1 |x〉 = −2, and each vertex of SP(S) is contained in exactly one of these two faces.

We next have a look at the edge directions of SP(S).

Lemma 4.3.19 (Edge Directions of SP(S) for Family 1). Let S be a ~Bn shard of the first family.
The shard polytope SP(S) does not have any edge in a direction ei + ej for any 1 ≤ i < j ≤ n.

Proof. Assume for a contradiction that SP(S) has two vertices χ(M1) and χ(M2) (where
bothM1 andM2 are centrally symmetric by Lemma 4.3.17) that form an edge in direction ei+ej .
Then we have χ(M2) = χ(M1) + λ(ei + ej) for some λ 6= 0. Without loss of generality, we
may assume that λ > 0 (we can just exchange the roles of M1 and M2). We learned in the proof
of Lemma 4.3.17 that the vertices of SP(S) have a k-th coordinate of 0 or 2 if k ∈ A+ and a k-th
coordinate of −2 or 0 if k ∈ B+ ∪ {r}. In any entry, two vertices of SP(S) can only differ either
by 0 or by 2, so we need to have λ = 2. This gives us χ(M2) = χ(M1) + 2ei + 2ej , which
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implies that 〈1 |χ(M2)〉 = 〈1 |χ(M1)〉 + 4. But we saw in Observation 4.3.18 that this scalar
product is either 0 or −2 for all characteristic vectors of centrally symmetric Σ-matchings, which
gives a contradiction.

We can now prove the desired statement about first family shard polytopes without much effort.

Lemma 4.3.20 (Shard Fan Walls for Family 1). Let S be a ~Bn shard of the first family. The
union of the walls of the normal fan of the shard polytope SP(S) is contained in the union of the
representatives Σ′ for all ~Bn shards S′ that force S.

Proof. Let Σ be the representative of S. As S is of the first family, it is only forced by
those ~Bn shards S′ whose representative Σ′ force Σ. With the help of Lemma 4.3.14, we only need
to show that no wall of the normal fan of SP(S) is a part of a Bn hyperplane of the third family,
or equivalently, that no edge of SP(S) is normal to a Bn hyperplane of the third family. This is
certified by Lemma 4.3.19.

Family 2 (Separated ~Bn Arcs)

For ~Bn shards of the second family, the desired result can be obtained in a straightforward way.

Lemma 4.3.21 (Shard Fan Walls for Family 2). Let S be a ~Bn shard of the second family. The
union of the walls of the normal fan of the shard polytope SP(S) is contained in the union of the
representatives Σ′ for all ~Bn shards S′ that force S.

Proof. Let Σ be a ~Bn shard of the second family with representative ~A[±n] shard Σ. We know
from Observation 4.2.43 that the ~Bn shards that force S are precisely those whose representative Σ′

forces Σ. Therefore, the statement is an immediate consequence of Lemma 4.3.14.

Family 3 (Overlapping ~Bn Arcs)

The third family of ~Bn shards is the one with the most complicated properties concerning both
the notation we established and their relationship to the ~A[±n] arrangement. We will distinguish
a number of cases for a ~Bn shard depending on whether its dexter representative ~A[±n] shard is
upper or lower. We will first make a few observations that help us in these case distinctions.

Observation 4.3.22. Let S = Sn(`, r, A,B) be a ~Bn shard of the third family in dexter notation
(so that 0 < −` < r). Let Σ be the representative of S and let α be the arc illustrating Σ and−α be
the centrally symmetric image of α. We see immediately that α is above −α if and only if 0 ∈ A.
The vertical order of the arcs has some more implications:
• The arc α is above α′ if and only if −` ∈ A and −i ∈ A for all i ∈ B ∩ ]−`, `[.
• The arc α is below α′ if and only if −` ∈ B and −i ∈ B for all i ∈ A ∩ ]−`, `[.

Put differently, for any ~Bn shard S, we are in one of the following cases:
• We have 0 ∈ A and−` ∈ A and −i ∈ A for all i ∈ B ∩ ]−`, `[.
• We have 0 ∈ B and −` ∈ B and −i ∈ B for all i ∈ A ∩ ]−`, `[.

The following result is a direct consequence of this observation.

Lemma 4.3.23 (Partial Central Symmetry Certified By Forcing). Let S be a ~Bn shard of the third
family with representative Σ. Let S′ = Sn(`′, r′, A′, B′) be another ~Bn shard of the third family
with representative Σ′. We set the positionm′ := min(|`′| , |r′|). If Σ′ forces Σ and they are neither
both upper nor both lower, then Σ is centrally symmetric on the interval [−m,+m].

We give another rather technical statement that we will use later to examine the ~Bn shard fan
for a shard of the third family.
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Lemma 4.3.24 (Consequences of Non-Forcing Among Representative ~A[±n] Shards). Let S
be a ~Bn shard of the third family in dexter notation S = Sn(`, r, A,B) with representa-
tive ~A[±n] shard Σ. Let Σ′ = Σ[±n](`

′, r′, A′, B′) be another ~A[±n] shard that forces Σ. If Σ′ does
not force the centrally symmetric reflection of Σ, then
• either r′ > −`,
• or 0 ∈ A and there is a k ∈ ]`′, r′[ such that −k, k ∈ A,
• or 0 ∈ B and there is a k ∈ ]`′, r′[ such that −k, k ∈ B.

Proof. We denote the centrally symmetric reflection of Σ by Σ∗ := Σ[±n](−r,−`,−B,−A).
As Σ′ forces Σ, the sets A and A′ (resp. B and B′) agree on all positions in between `′ and r′.
Moreover, we have either [`′, r′] ⊆ [−r,−`] or not.
• If [`′, r′] 6⊆ [−r,−`], we remark that Σ is the dexter representative of S, so −r < ` < 0.

As Σ′ forces Σ, we have ` ≤ `′. Together, these inequalities imply that −r < ` ≤ `′, so the
case [`′, r′] 6⊆ [−r,−`] can only occur if r′ > −`.
• If [`′, r′] ⊆ [−r,−`], we have −r ≤ ` ≤ `′ < 0 < r′ ≤ −`. As Σ′ does not force Σ∗, the

set−B does not agree with A′ (and thus not with A) on the positions in between `′ and r′ and
the same argument holds for−A andB. As they do not agree, there has to be some k ∈ ]`′, r′[
such that one of the following holds.
◦ We have k ∈ A \ (−B), so that k ∈ A ∩ (−A), and therefore −k, k ∈ A. Then Obser-

vation 4.3.22 implies that we are in the case where 0 ∈ A.
◦ We have k ∈ B \ (−A), so that k ∈ B ∩ (−B), and therefore −k, k ∈ B. Then Obser-

vation 4.3.22 implies that we are in the case where 0 ∈ B.

The remainder of this section is dedicated to proving a statement on the walls of the normal fan
of the shard polytope SP(S) analogous to those for the other families of shards.

Lemma 4.3.25 (Shard Fan Walls For Family 3). Let S be a ~Bn shard of the third family. The
union of the walls of the normal fan of the shard polytope SP(S) is contained in the union of the
representatives Σ′ for all ~Bn shards S′ that force S.

Proof. For a ~Bn shard S of the third family, the ~Bn shards S′ that force S are exactly those whose
representative ~A[±n] shard Σ′ forces Σ or its centrally symmetric image, except for those where S′

is of the third family and Σ′ does not force Σ (meaning that the upper ~A[±n] shard of S′ does not
force the upper ~A[±n] shard of S but the lower one and vice versa). We will therefore analyze the
following situation:
• Let S = Sn(`, r, A,B) be a ~Bn shard of the third family in dexter notation.
• Let Σ′ = Σ[±n](`

′, r′, A′, B′) be an ~A[±n] shard that forces Σ, such that
◦ S′ is a ~Bn shard,
◦ S′ has Σ′ as a dexter or sinister representative,
◦ the upper representative of S′ forces the lower representative of S,
◦ and the upper representative of S′ does not force the upper representative of S.

• Let t ∈ Σ′ ∩ HBn ⊂ R[±n] be a centrally symmetric R[±n] vector in the shard Σ′. This holds
exactly for those vectors t ∈ R[±n] with the properties

ti = −t−i for all i ∈ [n] (1)

t`′ = tr′ (2)

ti < t`′ = tr′ for all i ∈ A ∩
]
`′, r′

[
(3)

tj > t`′ = tr′ for all j ∈ B ∩
]
`′, r′

[
(4)

We want to show that no edge of SP(Σ) has a normal cone that contains the vector t. Such an
edge would have to be in direction e`′ − er′ .
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We distinguish cases by the combinations of dexter/sinister and upper/lower representatives that
force each other. We label the arcs of S by α and−α and the arcs of S′ by α′ and−α′. We always
assume that Σ′ forces Σ while Σ′ does not force the centrally symmetric image of Σ.

Case 1: Σ is lower dexter and Σ′ is upper dexter

In this case, the order of the endpoints is −r ≤ −r′ < `′ < 0 < −`′ < r′ ≤ r [Picture
from [PPR20]]. As Σ′ is upper, we have −`′ ∈ A′ and therefore −`′ ∈ A by Observation 4.3.22.
From (3), we have t−`′ < t`′ = tr′ and by (1), we get −t`′ < 0 < t`′ .

As Σ is lower, we have −` ∈ B and as −` ∈ ]`′, r′[, we know from (4) that t−` > t`′ , which
implies that ` 6= `′. We deduce that `′ ∈ B as `′ ∈ ]`,−`[ and Σ is lower.

We now assume for a contradiction that t lies in the normal cone of an edge in direction e`′−er′ .
As `′ ∈ B, we know from Corollary 3.3.7 that there has to exist some ` ≤ s < `′ with s ∈ {`}∪A
such that t lies in the normal cone of some Σ-matching containing the pair (s, `′). By Corol-
lary 3.3.5, this implies that

ts ≥ t`′ > 0. (5)

We remark that s ∈ [`,−`[ and s ∈ {`}∪A. We use Observation 4.3.22 to deduce that−s ∈ B.
We distinguish two subcases depending on the order of s and −r′.
• If s > −r′, then −s ∈ B ∩ ]`′, r′[, so (4) gives us t−s > t`′ while (1) gives us the equal-

ity −ts = t−s, allowing us to conclude that −ts > t`′ > 0, which contradicts (5).
• If s ≤ −r′, we have r′ ≤ −s and −s ≤ −` by definition of s. This means that r′ ≤ −`, so

we cannot be in the first case of Lemma 4.3.24. As Σ is lower, there is some k ∈ ]`′, r′[ such
that −k, k ∈ B. By Lemma 4.3.23, Σ is centrally symmetric on the interval [`′,−`′] as Σ′ is
dexter. Therefore, k ∈ [−`′, r′[. Now k < r′ implies s ≤ r′ < −k, so −k ∈ B ∩ ]s, `′[.
Now Corollary 3.3.5 implies that

−tk = t−k ≥ t`′ > 0. (6)

And from k ∈ B ∩ ]`′, r′[ and (4), we deduce

tk ≥ t`′ > 0. (7)

These two inequalities (6) and (7) contradict each other.

Case 2: Σ is lower dexter and Σ′ is upper sinister

In this case, the order of the endpoints is −r < ` ≤ `′ < −r′ < 0 < r′ < −`′ ≤ −` < r
[Picture from [PPR20]]. As Σ′ is upper, we have −r′ ∈ A′ and therefore −r′ ∈ A by Ob-
servation 4.3.22. From (3), we have t−r′ < t`′ = tr′ and by (1), we get −tr′ < 0 < tr′ .
As Σ′ is sinister, we have `′ < −r′ < −`′. As Σ′ forces Σ, we have ` ≤ `′. These imply

147



4 Shard Polytopes for the Type B Arrangement

the inequalities ` < −r′ < −`. As Σ is lower, we then have r′ ∈ B. As r′ < −`, we learn
from Lemma 4.3.24 that there is some k ∈ ]`′, r′[ such that −k, k ∈ B. Then Lemma 4.3.23 gives
us k ∈ ]`′,−r′[ ⊂ ]`′, r′[ and −k ∈ ]r′,−`′[ ⊂ ]r′, r]. We distinguish two subcases depending on
the order of t−k and tr′ .
• If t−k ≥ tr′ , then (1) gives us

−tk ≥ tr′ > 0. (8)

Moreover, as k ∈ B ∩ ]`′, r′[, we learn from (4) that

tk ≥ tr′ > 0. (9)

These two inequalities (8) and (9) contradict each other.
• Otherwise, we have t−k ≥ tr′ . We know from Corollary 3.3.7 that if t lies in the normal

cone of an edge in direction e`′ − er′ , where r′ ∈ B, then t lies in the normal cone of
some Σ-matching containing a pair (s, r′) for some s ≤ `′. With the help of Corollary 3.3.5,
we deduce that for any j ∈ ]r′, r[ such that j ∈ B ∪ {r} and tj < tr′ , there has to exist
some m ∈ ]r′, j[ with m ∈ A and tm ≥ tr′ . This holds in particular for −k ∈ ]r′, r]. Then
there has to be some m ∈ ]r′,−k[ with m ∈ A such that

tm ≥ tr′ > 0. (10)

Moreover, as Σ is lower and m ∈ ]`,−`[ with m ∈ A, we obtain −m ∈ B and −m ∈ ]`′, r′[.
With (4), we have

−tm = t−m ≥ tr′ > 0. (11)

These two inequalities (10) and (11) contradict each other.

Case 3: Σ is upper dexter and Σ′ is lower dexter

In this case, the order of the endpoints is −r ≤ −r′ < `′ < 0 < −`′ < r′ ≤ r [Picture
from [PPR20]]. As Σ′ is lower, we have −`′ ∈ B. Then (4) tells us that t−`′ > t`′ = tr′ and
by (1), we obtain t`′ < 0 < −t`′ . As Σ is upper, we have −` ∈ A and therefore ` 6= `′. This
implies that `′ ∈ A because Σ is upper and −`′ ∈ ]`,−`[.

We now claim that there is some u ∈ {`} ∪A with both u ∈ [`, `′[ and u ∈ ]−r′, `′[. We certify
the existence of such an index u with the help of Lemma 4.3.24.
• Either r′ > −`, then we set u := `. As Σ is upper, we have −` ∈ A by Observation 4.3.22.
• or r′ ≤ −` and there exists a k ∈ ]`′, b′[ with both −k, k ∈ A. In this case, we learn

from Lemma 4.3.23 that k ∈ ]−`′, r′[ and we set u := −k.
For this position u, we have −u ∈ A ∩ ]`′, r′[ and (3) gives us t−u ≤ t`′ = tr′ . Now (1) allows us
to conclude that

−tu ≤ t`′ < 0. (12)

We distinguish two subcases depending on the order of tu and t`′ .
• If tu ≤ t`′ , we deduce from (12) that both −tu, tu < 0, which is impossible.
• Otherwise, tu > t`′ . If t is in the normal cone of an edge in direction e`′ − er′ with `′ ∈ A,

then Corollary 3.3.7 states that t lies in the normal cone of a matching that contains a
pair (`′, s) for some s ≥ r′. Together with Corollary 3.3.5, we learn that for all i ∈ [`, `′[ with
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both i ∈ {`} ∪A and ti > t`′ , there exists some h ∈ ]i, r′[ with both h ∈ B and

th ≤ t`′ < 0. (13)

On the other hand, Σ is upper and h ∈ B ∩ ]`,−`[, so Observation 4.3.22 gives us −h ∈ A.
Furthermore, we have −h ∈ ]`′, r′[. Then (1) and (3) give us

−th = t−h ≤ t`′ < 0. (14)

These two inequalities (13) and (14) contradict each other.

Case 4: Σ is upper dexter and Σ′ is lower sinister

In this case, the order of the endpoints is −r < ` ≤ `′ < −r′ < 0 < r′ < −`′ ≤ −` < r
[Picture from [PPR20]]. As Σ is lower, we have −r′ ∈ B by Observation 4.3.22. Then (4) gives
us t−r′ > t`′ = tr′ and (1) tells us that tr′ < 0 < −tr′ . As Σ is upper and r′ ∈ ]`,−`[, this
also implies that r′ ∈ A. As we have r′ < −`, we learn from Lemma 4.3.24 that there exists
some k ∈ ]`′, r′[ such that both −k, k ∈ A. This k must satisfy k ∈ ]`′,−r′[ by Lemma 4.3.23
and thus k ∈ ]`′, r′[. We know from (3) that

tk ≤ tr′ < 0. (15)

If t lies in the normal cone of an edge in direction e`′−er′ where r′ ∈ A, then Corollary 3.3.7 tells
us that t lies in the normal cone of a Σ-matching containing the pair (r′, v) for some v ∈ ]r′, r]
with v ∈ B ∪ {r}. Then Corollary 3.3.5 gives us

tv ≤ tr′ < 0. (16)

We now distinguish two subcases by the order of v and −`′.
• If v ≥ −`′, then r′ < −k < −`′ ≤ v certifies that −k ∈ ]r′, v[ and −k ∈ A. Together

with (1) and Corollary 3.3.5, this gives us −tk = t−k ≤ tr′ < 0. This contradicts (15).
• Otherwise, we have v < −`′. Since Σ is upper and v ∈ ]`,−`[ with v ∈ B, we learn

from Observation 4.3.22 that −v ∈ A. Moreover, we have −v ∈ ]`′,−r[. Then (4) certifies
that −tv = t−k ≤ tr′ < 0. This contradicts (16).

This completes or work towards a proof of Proposition 4.3.12.

Proof of Proposition 4.3.12. We saw in Lemma 4.3.13 that the walls of SP(S) contain the shard S.
We showed family for family in Lemma 4.3.20 and Lemma 4.3.21 and Lemma 4.3.25 that
the union of the walls of SP(S) is always contained in the union of the representatives Σ′ for
all ~Bn shards S′ that force S.

4.3.5 Shardsumotopes

We just learned that a ~Bn shard polytope SP(S) as defined in Definition 4.3.9 has the crucial
propery Proposition 4.3.12 that the union of the walls of its fans contains the shard S itself and
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Figure 4.8: The B permutahedron PermB
3 as defined in Definition 4.1.16 (left) and the shardsumo-

tope SPB+(ΣB) as introduced in Example 4.3.28 (right). [Picture from [PPR20]]

does not contain any shard S′ that is not forcing S. Of course, it would have been possible to build
arbitrary Minkowski sums of ~Bn shard polytopes and study their properties regardless of this result.
But Proposition 4.3.12 now enables us to use ~Bn shard polytopes to construct shardsumotopes that
are quotientopes of lattice congruences on the weak order on SBn (or equivalently, on the poset of
regions Pos( ~Bn).

Definition 4.3.26 (B-Shardsumotope). Given a lattice congruence ≡B of the weak order on SBn
that retains the ~Bn shards SB, the B-shardsumotope SPB+(≡B) is the Minkowski sum of the shard
polytopes SP(S) for all S ∈ SB, given by SPB+(≡B) :=

∑
S∈SB SP(S).

The following statement on B-shardsumotopes is the type B analogue of Proposition 3.4.2 and
a direct consequence of Proposition 4.3.12.

Corollary 4.3.27 (B-Shardsumotopes are B-Quotientopes). For any lattice congruence ≡B on the
poset of regions Pos( ~Bn), the quotient fan FB≡ is the normal fan of SPB+(≡B). In consequence,
the B-shardsumotope SPB+(≡B) is a quotientope for ≡B.

Example 4.3.28. For the trivial lattice congruence on the weak order on SBn that retains all ~Bn
shards ΣB, the normal fan of the shardsumotope SPB+(ΣB) is the type B fan FBn . See Fig-
ure 4.8 (right) for an illustration in ~B3.

Example 4.3.29. A well-studied example of lattice congruences of the weak order on SBn are β-
Cambrian congruences. They were introduced and analyzed in the more general context of
Coxeter groups in [Rea04] and [Rea06]. Given a β-Cambrian congruence ≡B, the normal fan
of the shardsumotope SPB+(≡B) is the quotient fan of this congruence. Their shardsumotopes
are identical to the β-cyclohedra studied in [HL07]. This decomposition as a Minkowski sum of
polytopes was already known from the context of brick polytopes (see [PS15]). See Figure 4.9 for
some illustrations in ~B3.
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4.3 Type B Quotients

Figure 4.9: Several B-shardsumotopes for β-Cambrian congruences. In each case, the upper di-
agram shows a steregraphic projection of the quotient fan with arc illustrations of all
retained ~Bn shards. The lower diagram shows the resulting shardsumotope in blue,
which can equivalently obtained by removing inequalities from the facet description
of the B-permutahedron PermB

3 shown in red. [Picture from [PPR20]]
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Titre : Polytopes de tessons et quotientopes pour les congruences de treillis de l’ordre faible
Mots clés : ordre faible, congruence et quotient de treillis, éventail quotient et quotientope, arrangement d’hyperplans,
cone de type, permutarbre

Résumé : Dans la combinatoire polyédrale, plusieurs poly-
topes bien connus sont reliés à des congruences de treillis
de l’ordre faible. Deux exemples sont le permutaèdre et l’as-
sociaèdre. L’éventail normal du permutaèdre est l’éventail
de tresses, donné par l’arrangement de tresses des hy-
perplans xi = xj pour 1 ≤ i < j ≤ n. L’éventail nor-
mal de l’associaèdre est l’éventail sylvestre. Parce qu’il est
raffiné par l’éventail de tresses, l’associaèdre est un per-
mutaèdre généralisé. De telles relations entre polytopes ne
se limitent pas à l’éventail de tresses. Les cônes de tout ar-
rangement réel d’hyperplans linéaires induisent un éventail
qui est l’éventail normal d’un zonotope. De plus, le choix
d’une région de l’éventail comme région de base induit un
ordre partiel sur les régions, appelé le poset des régions,
qui est un treillis dans certaines circonstances. Pour l’arran-
gement de tresses, ce poset est isomorphe à l’ordre faible
sur le groupe symétrique. Pour l’arrangement de Coxeter de
type B, il est isomorphe à l’ordre faible sur le groupe hyper-
octaédrique.
N. Reading a montré qu’une congruence de treillis d’un
treillis des régions induit un éventail quotient, où des cônes
maximaux sont collés si leurs éléments de treillis correspon-

dants sont équivalents sous la congruence de treillis. Par
exemple, l’éventail normal de l’associaèdre est un éventail
quotient induit par la congruence sylvestre. Un quotientope
est un polytope dont l’éventail normal est un éventail quo-
tient. Leur existence a été certifiée par une construction
technique de V. Pilaud et F. Santos pour les éventails quo-
tients basés sur l’ordre faible sur le groupe symétrique. L’ob-
jectif de cette thèse est d’étudier plus avant des construc-
tions de quotientopes.
Notre première contribution concerne les constructions
comme enlevoèdres qui sont des polytopes obtenus en en-
levant des inégalités de la description de facettes du per-
mutaèdre. Nous montrons que les permutarbrèdres sont
les seuls quotientopes qui peuvent être obtenus comme
enlèvoedres. Notre deuxième contribution est une construc-
tion simplifiée de quotientopes arbitraires comme sommes
de Minkowski de polytopes élémentaires que nous appe-
lons polytopes de tessons en raison de leur étroite re-
lation aux tessons d’un arrangement d’hyperplans. Notre
construction peut être adaptée pour construire des quotien-
topes pour tout congruence de treillis de l’ordre faible sur le
groupe hyper-octaédrique.

Title : Shard Polytopes and Quotientopes for Lattice Congruences of the Weak Order
Keywords : weak order, lattice congruences and quotients, quotient fan and quotientope, hyperplane arrangement, type
cone, permutree

Abstract : In polyhedral combinatorics, some well-known
polytopes are related to lattice congruences of the weak
order. Two examples are the permutahedron and the as-
sociahedron. The normal fan of the permutahedron is the
braid fan, given by the braid arrangement of the hyperplanes
xi = xj for 1 ≤ i < j ≤ n. The normal fan of the classi-
cal associahedron is the sylvester fan. Since it coarsens the
braid fan, the associahedron is a generalized permutahe-
dron. Such relationships between polytopes are not limited
to the braid fan. The cones of any real central hyperplane
arrangement induce a fan that is the normal fan of a zono-
tope. Moreover, choosing one of the regions of that fan as
the base region induces a partial order on all the regions,
called the poset of regions, which is a lattice under certain
circumstances. For the braid arrangement, this poset is iso-
morphic to the weak order on the symmetric group. For the
Coxeter type B arrangement, it is isomorphic to the weak
order on the hyper-ocathedral group.
It was shown by N. Reading that applying a lattice
congruence to a lattice of regions induces a quotient fan,

where maximal cones are united if their corresponding lat-
tice elements are equivalent under the lattice congruence.
For example, the normal fan of the associahedron is a quo-
tient fan induced by the sylvester congruence. A quotien-
tope is a polytope whose normal fan is a quotient fan. Their
existence was certified through a technical construction by
V. Pilaud and F. Santos for those quotient fans based on the
weak order on the symmetric group. The objective of this
thesis is to study further constructions for quotientopes.
Our first contribution concerns constructions as removahe-
dra which are polytopes obtained by removing inequalities
from the facet description of the permutahedron. We show
that the permutreehedra are the only quotientopes that can
be obtained as removahedra. Our second contribution is
a simplified construction of arbitrary quotientopes as Min-
kowski sums of elementary polytopes we call shard poly-
topes due to their close relation with the shards of a hy-
perplane arrangement. Our construction can be adapted
to construct quotientopes for all lattice congruences of the
weak order on the hyper-octahedral group.
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