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Deep learning methods for music style transfer

In music, composers, arrangers, performers and producers often adapt existing pieces to different contexts and audiences. Recently, deep learning methods have enabled transforming musical material in a data-driven manner, setting the ground for tools which could partially automate this process. The research performed in this area so far has focused largely on conversion between a small set of musical genres or instrument timbres, and on tasks that involve completing a partial arrangement in a desired style. The focus of this thesis, on the other hand, is on a family of tasks which we refer to as (one-shot) music style transfer, where the goal is to transfer the style of one musical piece or fragment onto another. We propose two specific tasks in this direction: (1) accompaniment style transfer for symbolic music representations (i.e. digital scores or MIDI files), and (2) timbre transfer for audio recordings. For each of these tasks, we pro-7

pose novel methods based on deep learning, as well as evaluation protocols. Additionally, we present a broader contribution related to the processing of sequences (music or otherwise) using Transformer neural networks.

In the first part of this work, we focus on supervised methods for symbolic music accompaniment style transfer, aiming to transform a given piece by generating a new accompaniment for it in the style of another piece. The method we have developed is based on supervised sequence-to-sequence learning using recurrent neural networks (RNNs) and leverages a synthetic parallel (pairwise aligned) dataset generated for this purpose using existing accompaniment generation software. We propose a set of objective metrics to evaluate the performance on this new task and we show that the proposed system is successful in generating an accompaniment in the desired style while following the harmonic structure of the input. We also present additional analyses aimed at a better understanding of the system.

In the second part, we investigate a more basic question: the role of positional encodings (PE) in music generation using Transformers. In particular, we propose stochastic positional encoding (SPE), a novel form of PE capturing relative positions while being compatible with a recently proposed family of efficient Transformers. The main theoretical contribution of this work is to draw a connection between positional encoding and crosscovariances of correlated stochastic processes. We demonstrate that SPE allows for better extrapolation beyond the training sequence length than the commonly used absolute PE. We follow up on this work with an experiment studying how PE can be better exploited for music generation by making it encode more musically meaningful information.

Finally, in the third part, we turn from symbolic music to audio and address the problem of timbre transfer. Specifically, we are interested in transferring the timbre of an audio recording of a single (but not necessarily monophonic) musical instrument onto another such recording while preserving the pitch content of the latter. We present a novel method for this task, based on an extension of the vector-quantized variational autoencoder (VQ-VAE), along with a simple self-supervised learning strategy designed to obtain disentangled representations of timbre and pitch. As in the first part, we design a set of objective metrics for the task. We show that the proposed method is able to outperform existing ones.

We believe that our contributions open interesting directions for followup work. Firstly, our approach to timbre transfer is promising, but may benefit from more advanced audio synthesis techniques to improve the sound quality of the outputs. We are also interested in investigating whether the approach could be adapted to symbolic music by combining it with efficient Transformers; this could lead to a more robust system for accompaniment or arrangement style transfer. Finally, regarding positional encodings in Transformers, we see a need for a more careful investigation of their role not only in music generation, but in sequence generation in general.
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Résumé

Les compositeurs, les arrangeurs, les interprètes et les producteurs de musique adaptent souvent des morceaux existants à des contextes et publics différents. Récemment, les méthodes d'apprentissage profond ont permis d'effectuer des transformations du matériel musical basées sur les données (data-driven), ce qui pourrait aider à créer des outils permettant d'automatiser une partie de ce processus. Les travaux antérieurs dans ce domaine se sont concentrés principalement sur la conversion entre un petit nombre de genres musicaux ou de timbres. L'objet de cette thèse est d'étendre ce cas de figure et de considérer le problème plus général du transfert de style musical, dont le but est de transférer de manière automatique le style d'un morceau à un autre. Nous proposons deux tâches différentes dans ce sens : (1) le transfert de style des accompagnements dans une représentation symbolique (c'est-à-dire sous forme d'une partition numérique ou un fichier MIDI), et (2) le transfert de timbre des enregistrements audio. Pour chacune de ces tâches, nous proposons une approche basée sur l'apprentissage profond, ainsi qu'un protocole d'évaluation. Nous apportons également une contribution plus large liée au traitement de séquences (musicales ou autres) à l'aide de réseaux de neurones appelés les Transformers.

Dans la première partie de la thèse, nous nous concentrons sur les méthodes supervisées pour le transfert de style des accompagnements dans une représentation symbolique. Plus précisément, l'objectif de ce travail est de transformer un morceau en lui générant un nouvel accompagnement dans le style d'un morceau différent. La méthode proposée est basée sur l'apprentissage supervisé de séquence à séquence à l'aide de réseaux de neurones récurrents (RNN), une technique développée pour la traduction automatique. Le système est entraîné sur une base de données synthétiques parallèle (alignée par paires) générée à cet effet à l'aide d'un logiciel existant de génération d'accompagnement. Nous proposons ainsi un ensemble de mesures objectives pour évaluer la performance sur cette nouvelle tâche et nous montrons que le système proposé réussit à générer un accompagnement dans le style souhaité (pas forcément connu pendant l'entraînement) tout en suivant la structure harmonique de l'entrée. En plus, nous présentons des analyses supplémentaires visant à mieux comprendre le fonctionnement du système proposé.

Dans la deuxième partie, nous étudions une question plus fondamentale : le rôle des encodages positionnels dans la génération de musique à l'aide des Transformers. Nous proposons l'encodage positionnel stochastique (SPE), un nouvel encodage positionnel capable de coder des positions relatives et compatible avec une classe récemment proposée de Transformers efficaces (Transformers à complexité linéaire). La principale contribution théorique de ce travail est l'établissement d'un lien entre l'encodage positionnel et la covariance croisée de processus gaussiens corrélés. Nous montrons expérimentalement que le SPE permet, mieux que la méthode conventionnelle (l'encodage positionnel absolu), de modéliser des séquences plus longues que celles rencontrées pendant l'entraînement. Nous poursuivons ce travail avec une expérience étudiant comment l'encodage positionnel peut être mieux exploité pour la génération de musique en le faisant coder des informations plus significatives musicalement.

Enfin, dans la troisième partie, nous passons de la musique symbolique à l'audio et abordons le problème du transfert de timbre. Plus précisément, étant donnés deux enregistrements audio, chacun d'un seul instrument (mais pas forcément monophonique), nous cherchons à transférer le timbre de l'un à l'autre, tout en préservant le contenu mélodique et harmonique du dernier. Nous présentons une nouvelle méthode pour cette tâche, basée sur une extension de l'autoencodeur variationnel quantifié (VQ-VAE), ainsi qu'une stratégie d'apprentissage auto-supervisé. La méthode est conçue pour obtenir des représentations séparées (démêlées) du timbre et de la hauteur, ce qui permet d'effectuer le transfert de timbre. Comme dans la première partie, nous concevons un ensemble de métriques objectives pour la tâche. Nous montrons que la méthode proposée est capable de surpasser des méthodes existantes.

Notre travail ouvre des pistes intéressantes pour le futur. D'abord, notre approche au transfert de timbre est prometteuse, mais bénéficierait d'une méthode plus avancée de synthèse sonore afin d'améliorer la qualité des résultats. Nous envisageons aussi la possibilité d'adapter cette approche à la musique symbolique en la combinant avec les Transformers efficaces ; cela permettrait d'obtenir un système plus robuste de transfert de style d'accompagnement ou d'arrangement. Enfin, concernant les encodages positionnels, nous voyons un besoin d'étudier davantage leur rôle non seulement dans la génération de musique, mais plus généralement dans la génération de séquences. (v 1 , v 2 , . . . , v N ) tuple or row vector 0 N or 0 zero vector (0, 0, . . . , 0
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Introduction

In music, composers, arrangers, performers and producers often adapt existing pieces to different contexts and audiences. For instance, music of the Renaissance period was often based on popular melodies, such as L'homme armé, a Medieval secular tune that gave rise to dozens of masses. Mussorgsky's Pictures at an Exhibition exists in hundreds of different arrangements for various instrumentations, with Ravel's orchestration being known to a wider audience than the original piano version. In modern popular music, cover songs are a common phenomenon; if sufficiently different in style from the original, a cover version may make the song accessible to a different audience, like Jimi Hendrix's classic rendition of All Along the Watchtower by Bob Dylan. More broadly, any performance of a musical piece can be viewed as the artist's personal interpretation of the piece, adapted to some extent to the context in which it is performed. With technological advances of the late 20 th century, it became possible to combine and transform existing recordings, leading to practices such as remixing and sampling, which became especially widespread with the advent of digital audio. A common example are dance remixes, altering the sound of a song to make it better suited for the dance floor, mainly by adding or replacing tracks or applying audio effects. Recordings may also be edited (shortened) to make them suitable for radio broadcasting or a TV advertisement.

More recently, developments in algorithms, signal processing and machine learning have brought the promise of directly manipulating more high-level, musically meaningful features. For example, it has become possible to automatically harmonize melodies [START_REF] Ebcioğlu | An expert system for harmonizing chorales in the style of J. S. Bach[END_REF][START_REF] Simon | MySong: automatic accompaniment generation for vocal melodies[END_REF][START_REF] Huang | Counterpoint by convolution[END_REF], generate sophisticated accompaniments or 'improvised' solos (see e.g. Band-in-a-Box1 ), turn scores into expressive performances [START_REF] Dixon | The "air worm": an interface for real-time manipulation of expressive music performance[END_REF][START_REF] Widmer | YQX plays Chopin[END_REF] or transfer sound textures from one recording onto another [START_REF] Driedger | Let it Bee -towards NMF-inspired audio mosaicing[END_REF][START_REF] Grinstein | Audio style transfer[END_REF].

One area where such automated music transformations can be applied is the very act of music making. In a practice called human-AI co-creation, artists2 experiment with integrating machine learning models into their creative process, using them to transform or complete existing musical fragments or generate new musical ideas from scratch [START_REF] Roberts | YACHT's new album is powered by ML + artists[END_REF], Huang et al., 2020]. Neural audio synthesis methods [START_REF] Engel | Neural audio synthesis of musical notes with WaveNet autoencoders[END_REF][START_REF] Engel | DDSP: Differentiable digital signal processing[END_REF] enable artists to explore new timbres and, when combined with pitch estimation, to employ them as virtual instruments controlled by audio input. 3Another application lies in generating music for short videos, such as advertisements or tutorials. Finding music that matches a video may be difficult and time-consuming and is complicated by copyright issues [START_REF] Frid | Music creation by example[END_REF]. This has inspired services4 that offer 'AI-generated music' based on different user-specified parameters. There has also been work on the retrieval of music based on video content [START_REF] Prétet | Cross-modal music-video recommendation: A study of design choices[END_REF]]. An interesting opportunity for innovation then lies in automatically generating or transforming music in order to match the content of a video or mimic the style of a given song.

A particularly interesting situation arises in video game soundtracks, which need to be sufficiently varied to avoid tiring the player during hours of gameplay. Moreover, the soundtrack needs to change dynamically in response to the player's actions and the state of the environment. Consequently, video games lend themselves to procedural music [START_REF] Collins | An introduction to procedural music in video games[END_REF] that adapts in real time to various in-game variables, typically by using pre-composed building blocks that are recombined in a randomized way, controlled by game-dependent logic. Such soundtracks require large amounts of specialized engineering effort, creating an exciting opportunity for methods capable of automating this process, e.g. to adapt existing music to a gameplay context.

Music style conversion

After a broad introduction to context-based music transformations, let us focus on a specific kind of transformation which we call music style conversion and which is the main topic of this thesis. In general terms, given a piece x with content C and style S, the aim of style conversion is to produce a piece y with the same content C, but a different style T (the target style). For this definition to be useful, we must also define what we mean by style and content. However, as we are about to see, there is no universal definition of these terms that could cover all possible use cases, and their meaning will instead depend on the concrete type of music style conversion task at hand.

Variety of style conversion tasks. Conceivable examples of music style conversion include:

(a) Changing the instrumentation of a given recording.

(b) Changing the lead vocal track to resemble a different singer.

(c) Changing the dynamics, timing or articulation to alter the mood of a performance or to imitate a given performer.

(d) Generating a cover of a song in the style of another song or artist, or in a given genre.

It should be apparent from these examples that style conversion can happen on a number of different levels. [START_REF] Xia | Music style transfer: A position paper[END_REF] define three such levels: timbre, performance control and composition style. For example, in (a) and (b), we modify timbre while preserving the information on the other two levels; in (c), we only modify performance control. However, in (d), the style features we wish to modify may be spread across all three levels.

Style transfer and style translation. We may also categorize style conversion tasks based on how the target style T is specified to the system. In this work, we consider two basic options:

(i) The set of possible styles is finite (and typically small) and fixed in advance.

The target style T may be represented as a discrete label (ID) or may not have an explicit representation (e.g. if a separate (sub-)system is trained for each target style). We refer to this case as style translation.

(ii) The set of possible styles is potentially infinite. The target style T is represented by a single example, i.e. by a musical fragment z in that style. This may be understood as style transfer [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF], and borrowing its terminology, we can call x the content input (since it bears the content C) and z the style input (since it bears the target style T ).

As we will detail in Chapter 2, most prior work on music has focused on style translation (i). Note that although some of these prior works also use the expression 'style transfer', this conflicts with how the term is traditionally understood [START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF][START_REF] Xie | Feature guided texture synthesis (FGTS) for artistic style transfer[END_REF][START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF], and the term 'translation' [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF], Zhu et al., 2017[START_REF] Malik | Neural translation of musical style[END_REF][START_REF] Mor | A universal music translation network[END_REF] is in our opinion more appropriate and helps us draw the distinction between (i) and (ii).

To further highlight this distinction, we will occasionally refer to (ii) as oneshot style transfer. This is by analogy to one-shot learning, the problem of learning the concept of a class from a single example (in order to perform classification [START_REF] Li | One-shot learning of object categories[END_REF] or to generate new samples from the class [START_REF] Rezende | One-shot generalization in deep generative models[END_REF]). In our case, we use the term 'one-shot' to emphasize that the system must extract the (potentially previously unseen) style T from a single example z.

Tasks of interest.

We are now ready to define the tasks that are the focus of this thesis. The first one is accompaniment style transfer, a task where the inputs and outputs are popular music or jazz accompaniments in a symbolic representation (in our case, MIDI5 files). We define the content of an accompaniment as the harmonic structure of the song -i.e. the information represented in a chord chart -and style refers to the way musicians produce an actual accompaniment based on this information. Note that we do not consider styles to be broad classes such as genres -instead, we consider a style to represent the set of patterns (e.g. riffs, voicings, rhythmical patterns) characteristic of a given artist or even an individual song. The task is illustrated in Fig. 1.1.

Ultimately, accompaniment style transfer enables creating a cover version of a given song by generating a new accompaniment for it in a given style. If sufficiently reliable, a system with this capability could be applied to aforementioned game or video soundtracks in order to increase the stylistic variability of existing material or even for personalization (adapting music to the listener's taste). In any case, accompaniment style transfer systems could be used by music creators to quickly try out different musical styles or even to create remixes or mashups in a human-AI co-creation setup.

The second task of interest is audio timbre transfer, illustrated in Fig. 1.2, where the inputs are single-instrument (but not necessarily monophonic) audio recordings. In this case, content is defined as pitch and style is defined as timbre. Again, we consider timbre in a very broad sense, including not only the identity of the instrument, but also any audio effects applied on top of it. This task has obvious applications in music making. In particular, a real-time, high-fidelity timbre transfer system would allow to turn a short audio sample into a fully realistic virtual instrument controllable e.g. by singing or playing an acoustic instrument.

Structure and contributions

The rest of the thesis is structured in the following manner:

• In Chapter 2, we review related work on music style conversion.

• In Chapter 3, we present some background on deep learning techniques for sequence generation, which are used extensively in this thesis.

• Chapter 4 concerns supervised methods for accompaniment style conversion, in particular one-shot accompaniment style transfer and, as an intermediate, simpler task, accompaniment style translation. The chapter includes the following major contributions of this thesis:

-We propose a common framework for accompaniment style conversion tasks based on supervised learning from synthetic data.

-We design a common evaluation protocol for the tasks, consisting of objective metrics of content preservation and style fit.

-As a first step, we approach the accompaniment style translation task and develop a method capable of translating bass-and-piano accompaniments between 70 different styles.

-We then extend the method to the one-shot accompaniment style transfer setting while also proposing a more robust input/output representation and an efficient strategy for working with accompaniments consisting of arbitrary combinations of instruments.

-Our experimental results demonstrate the performance of the proposed systems on the respective tasks. We also present additional analyses such as an ablation study and visualizations of the learned style representations.

These contributions have been published in the papers ⟨ISMIR2019⟩ and ⟨TASLP2020⟩ (see the List of publications).

• In Chapter 5, we investigate a more basic question: the role of positional encodings in symbolic music generation using Transformers. The major contributions presented here are as follows:

-We propose stochastic positional encoding (SPE), a novel form of positional encoding capturing relative positions (considered important in music generation) while being compatible with recently proposed linear complexity Transformers.

-We demonstrate that when applied to music generation, SPE allows for better extrapolation beyond the training sequence length than the commonly used absolute positional encoding (APE).

-We follow up on this work with an experiment studying how positional encodings can be better exploited for music generation by making them encode more musically meaningful information.

The first two of these contributions have been published in ⟨ICML2021⟩, along with some results on non-music data, additionally presented in Appendix A.2.

• In Chapter 6, we turn from symbolic music to audio and present our contributions addressing the problem of timbre transfer:

-We propose a novel method for this task, based on an extension of the vector-quantized variational autoencoder (VQ-VAE), along with a simple self-supervised learning strategy designed to obtain disentangled representations of timbre and pitch.

-We design an evaluation protocol for the task, consisting of objective metrics of content preservation and style fit.

-Our experimental results show that the proposed method is able to outperform baselines from the literature.

These contributions have led to the publication ⟨ICASSP2021⟩.

• Chapter 7 concludes the thesis, summarizes its contributions and offers some directions for future research.

The above contributions are accompanied by websites with listening examples and/or interactive demos, as well as source code and other resources. Their list can be found in Appendix C.

Moreover, three open-source software packages, HTML MIDI Player, NoPdb and Confugue, described in Appendix D, have been released as a by-product of this work.

Related work

This chapter will discuss prior work closely related to the style transfer task. In general, we are interested in learning style from data, and we therefore mostly omit methods that are rule-based and/or tailored to specific styles. We also focus more on deep learning-based approaches, as they are the topic of this thesis.

We open in Section 2.1 with some elementary background on deep learning for music and audio processing. In Section 2.2, we review methods that are specific to audio data (especially as opposed to symbolic music representations) and usually rely on theoretical understanding of audio signals and traditional digital signal processing methods. On the other hand, Sections 2.3 and 2.4 give an account of methods that are more strongly data-driven and are applicable across data modalities. We leave various other (more loosely related) works for Section 2.5. Section 2.6 concludes the chapter with some final remarks.

Deep learning preliminaries

In this section, we briefly introduce some deep learning concepts which will appear in the rest of this chapter. For a more complete overview of deep learning techniques for audio and music processing, see [START_REF] Peeters | Deep Learning for Audio and Music[END_REF].

Convolutional neural networks (CNN).

CNNs have become widespread as a means to process data presented as a regular grid, e.g. images or regularly sampled time series. Their core building block is a convolutional layer, which convolves its input with a set of learnable filters, essentially applying the same linear operation to different 'patches' of the input.

In the case of images, the input to each layer is usually a 3D tensor with 2 spatial dimensions (width, height) and 1 channel dimension; in this case, the filters of each layer make up a 4D tensor (kernel) with dimensions corresponding to width, height, input channels and output channels (i.e. number of filters); 2D convolution along the 2 spatial dimensions is performed. When processing audio, the input to the network is usually a spectrogram, i.e. a representation with a time dimension and a frequency dimension. One option is to treat the spectrogram as an image with a single channel and use 2D convolutions. However, depending on the type of spectrogram and the task, it may be more appropriate to use 1D convolution along the temporal dimension only.

A CNN then consists of a series of multiple such convolutional layers, interlaced with non-linearitites (activation functions) and pooling operations, which downsample (i.e. reduce the spatial dimensions of) the features. A popular pooling operation is max-pooling, which takes the maximum value in each spatial region. An alternative to pooling is strided convolution, where the convolutional filter skips some locations as it slides over the input, also leading to downsampling.

Recurrent neural networks (RNN).

An RNN is a suitable architecture whenever the input is a sequence of feature vectors x 1 , . . . , x N . It works by processing the input sequence from left to right and using each input x n to update its internal ('hidden') state vector. The resulting sequence of state vectors h 1 , . . . , h N can then be used for further processing. For example, if we wish to classify the input sequence, we can use the last hidden state h N as input to a linear classifier. We can also use the whole sequence of hidden states to predict a value for each position.

We will describe RNNs in more detail in Chapter 3, which will also explain how RNNs can be used for sequence generation.

Autoencoders. An autoencoder is any neural network that is trained to reconstruct its input, i.e. to copy its input to its output. It consists of an encoder, which maps the input x to a lower-dimensional intermediate representation z, often called the latent code, and a decoder, which then maps the latent code z to a reconstruction x ˆ. The utility of an autoencoder lies precisely in its latent code, which may be useful as features for a downstream task. In some cases, it is also possible to use the autoencoder to generate new data samples or to alter inputs by manipulating the corresponding latent codes.

Different types of autoencoders exist, imposing different constraints on the latent code space in order to obtain some desirable properties. Arguably the most popular kind is the variational autoencoder (VAE, [START_REF] Kingma | Auto-encoding variational Bayes[END_REF]), which assumes a particular prior distribution p(z) over the latent codes, typically the standard Gaussian.

Audio-specific methods

We start our literature review with a method which was in fact originally proposed for images and only later adapted to audio, but is still somewhat domain-specific. The method in question was introduced by [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF] and constitutes the first neural approach to style transfer. It is based on the observation that in a CNN trained for image recognition, the deeper layers encode high-level information about the composition of the image (content), while information about textures present in the image (style) is captured by summary statistics of different layers.

The method is illustrated in Fig. 2.1. The input to the algorithm are two images, the content image I c and the style image I s , which are then used to extract content and style information, respectively, in the following way: representations):

⃦ ⃦ ⃦F lc (I c ) -F lc (I) ⃦ ⃦ ⃦ 2 the content loss, ⃦ ⃦ ⃦G l (I s ) -G l (I) ⃦ ⃦ ⃦ 2
the style loss at layer l (∀l). This is done by initializing the image with random noise and then optimizing it using gradient descent. In each step, the representations F lc (I), G l (I) are computed with the use of the pre-trained CNN and the gradient is back-propagated to update the image. The technique has subsequently been improved and extended, as well as adapted to specific kinds of style transfer. For a taxonomy of image and video style transfer algorithms, see [START_REF] Jing | Neural style transfer: A review[END_REF]. [START_REF] Ulyanov | Audio texture synthesis and style transfer[END_REF] and [START_REF] Grinstein | Audio style transfer[END_REF] adapted and generalized this framework in order to transfer 'sound textures'. As a proof-ofconcept, Ulyanov and Lebedev simply replace the image with the spectrogram of an audio recording and use an untrained (randomly initialized) single-layer one-dimensional CNN to extract content and style features. On the other hand, Grinstein et al. drop the content loss and instead use the content input for initialization, letting the optimization converge to a nearby local optimum. They also propose an alternative way to compute the style loss, based on a model emulating the human auditory system. While both works achieve interesting results, the approach is not specifically tailored to music and does not aim to transfer musical timbre.

On the other hand, a method designed for music, and one that can be considered to perform music timbre transfer, is musical mosaicing or musaicing [START_REF] Zils | Musical mosaicing[END_REF]. Musaicing is a form of concatenative synthesis which splits a 'source' audio recording into short frames (each a fraction of a second in duration) and concatenates them so as to match the characteristics of another ('target') recording. [START_REF] Driedger | Let it Bee -towards NMF-inspired audio mosaicing[END_REF] propose to combine this method with non-negative matrix factorization (NMF ), as illustrated in Fig. 2.2. The frames from the source recording are used as a fixed dictionary W of spectral templates, and an activation matrix H is then obtained using an iterative update process so that the product W H approximates the spectrogram of the target recording. The Griffin-Lim algorithm [START_REF] Griffin | Signal estimation from modified short-time Fourier transform[END_REF] is then applied to this approximation W H Subsequent works [START_REF] Aarabi | Music retiler: Using NMF2D source separation for audio mosaicing[END_REF]Peeters, 2018, Tralie, 2018] instead use nonnegative matrix factor 2D deconvolution (NMF2D, [START_REF] Schmidt | Nonnegative matrix factor 2-D deconvolution for blind single channel source separation[END_REF]) in an attempt to improve the performance in cases where the source audio is not monophonic.

In a radically different, learning-based approach, [START_REF] Engel | DDSP: Differentiable digital signal processing[END_REF] perform music timbre conversion using a trainable synthesis model conditioned on pitch and loudness. The model is composed of a neural network that controls the parameters of a harmonic-plus-noise synthesizer (combining additive and subtractive synthesis) with explicitly controlled pitch (fundamental frequency). Timbre conversion is achieved by extracting the pitch and loudness information from a given recording (the former using a pre-trained pitch estimator) and feeding it to the synthesis model, trained for a specific target instrument.

Similarly, [START_REF] Bitton | Vector-quantized timbre representation[END_REF] combine a neural network with a subtractive synthesizer, but their model is trained end-to-end as a waveform autoencoder. The latent representation is discrete (see VQ-VAE in Sections 2.4 and 6.1.1) and loudness-invariant (i.e. disentangled from loudness, which is included as a separate feature). Timbre conversion is done simply by feeding an arbitrary audio input to this end-to-end model, which has been trained for a specific target instrument as in Engel et al. Interestingly, the method allows not only preserving the pitch and loudness of the input, but also translating within-instrument timbre variations.

Both methods achieve impressive audio quality, but require training for each individual target instrument, unlike the method of [START_REF] Driedger | Let it Bee -towards NMF-inspired audio mosaicing[END_REF] and our own method laid out in Chapter 6.

Domain translation with cyclic consistency

When styles are thought of as classes or data domains, style conversion may be framed as a domain translation task, a concept which is not limited to music, but may be applied to any data modality.

From a machine learning perspective, we can approach the task in a supervised or an unsupervised manner, depending on the kind of available training data. A classical example of a translation task where aligned (parallel) data is readily available, and therefore a supervised approach is feasible, is machine translation (MT) between natural languages. This field has a relatively long tradition, with the first data-driven machine translation systems dating back to the early 1990s [START_REF] Brown | A statistical approach to machine translation[END_REF]. On the other hand, music style translation is a task where a sufficient amount of aligned data is typically difficult or impossible to collect. This leads to a need for unsupervised domain translation methods, which have only become available in recent years thanks to deep learning.

A major advantage of unsupervised translation methods is that they usually do not require a prior notion of content (what is shared across domains) and style (what should be changed by translation) -these concepts are learned completely from data. However, the goal is poorly defined, and unless sufficient constraints are imposed, the learned mapping may not be meaningful.

In this section, we focus on domain translation using cycle-consistent generative adversarial networks (CycleGAN s). CycleGANs were developed for unsupervised image-to-image translation by [START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF]. The learning algorithm observes unpaired examples from two domains X and Y and learns two mutually inverse mappings G : X → Y and F : Y → X . The authors propose to employ two techniques, displayed in Fig. 2.3, to constrain these mappings:

(1) An adversarial objective to force the outputs of F and G to be indistinguishable from real examples from the domains X and Y, respectively.

Specifically, the mapping G is coupled with a discriminator network D Y , which aims to distinguish the generated samples G(x) from real samples y; in the same way, F is coupled with a discriminator D X . The mappings F and G are trained to fool the respective discriminators, which ensures a match between the distributions of their outputs and the real data distributions. Each mapping together with its associated discriminator hence constitutes a generative adversarial network (GAN ; [START_REF] Goodfellow | Generative adversarial nets[END_REF]).

(2) Two cycle consistency losses, enforcing the constraint that F and G are each other's inverse, i.e. F (G(x)) ≈ x and G(F (y)) ≈ y.

Applying CycleGANs (and GANs in general) to sequential data such as music is more challenging due to the autoregressive nature of most sequence generation models, such as recurrent neural networks (RNNs), Transformers or WaveNets. In these models, generation proceeds sequentially, always conditioned on the outputs sampled in all previous steps, which typically makes the process nondifferentiable, especially in the case of symbolic music, which is itself a discrete, non-differentiable object. This prevents from training the model by straightforward gradient back-propagation. Huang et al. [2019b] use a CycleGAN for audio timbre translation, but avoid generating raw audio by applying the CycleGAN to spectrograms. A conditional WaveNet, trained on spectrogram-waveform pairs, is then used to synthesize the audio. Brunner et al. [2018b] employ a CycleGAN for symbolic music style translation, representing the music as a piano roll (a binary matrix of note activations along time). In both cases, the music representation can be essentially treated as a monochrome image, which allows to use a standard convolution-based architecture.

Representation disentanglement

Another popular concept used for unsupervised learning of transformations is that of representation disentanglement. The aim of disentanglement is to learn features that are interpretable in the sense that each feature or group of features represents a particular attribute ('semantic factor') and can be manipulated independently of the other features without affecting other attributes. This is especially useful in the context of autoencoders and generative models, since it allows transforming data samples along these attributes by manipulating the corresponding features. To perform style transformations, it is desirable to disentangle style from content; for example, style transfer can then be achieved simply by combining one example's content representation with the style representation of another.

Methods attempting to achieve disentanglement purely using unlabeled data (i.e. by automatically discovering the factors to be disentangled) have been proposed, e.g. by [START_REF] Chen | InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[END_REF] and [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], but doing so for highlevel attributes, such as style and content in music, remains a hard problem. For this reason, we focus on settings where these attributes are known and labels are available.

One of the first works in this area [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF] succeeded in disentangling specific attributes of human faces (e.g. age, gender, glasses) in an image autoencoder. The method is inspired by GANs, but the adversarial training is performed in the autoencoder's latent space to enforce disentanglement. Specifically, the encoder maps the input x to a latent representation z, which is then used not only by the decoder to reconstruct x, but also by a discriminator to predict the associated attributes y. The encoder and the discriminator are trained adversarially, meaning that the goal of the encoder is to make it impossible for the discriminator to identify the attributes y from z.

Similar techniques are used by [START_REF] Lample | Unsupervised machine translation using monolingual corpora only[END_REF] to perform unsupervised natural language translation, bringing the task closer to the one discussed in Section 2.3. This time, the attribute y is the language (e.g. English or French) and the goal is for z is to encode the meaning of the sentence x in a languageindependent way.

A different method that we wish to include here is the vector-quantized variational autoencoder (VQ-VAE), proposed by [START_REF] Van Den Oord | Neural discrete representation learning[END_REF]. A VQ-VAE is an autoencoder with a discrete latent space. Its latent representation is a sequence of discrete symbols from a (learned) finite dictionary, placing an explicit limit on its capacity. While the authors' goal is not representation disentanglement, they show experimentally (without theoretical guarantees) that after training this model on speech with conditioning on the speaker identity, it is pos-Figure 2.4 -The music translation network of [START_REF] Mor | A universal music translation network[END_REF]. The input is encoded using a WaveNet encoder shared between all domains and the output is generated using a domain-specific decoder. The network is trained as an autoencoder (always selecting the appropriate decoder according to the training example) while using the domain classification (confusion) network to encourage the intermediate representation to be domain-independent. Reproduced from [START_REF] Mor | A universal music translation network[END_REF]. © 2018 Noam Mor, Lior Wolf, Adam Polyak, Yaniv Taigman. sible to achieve voice conversion simply by switching the speaker label. They conclude that the model learns 'a high-level abstract space' capable of representing an utterance in a speaker-invariant way -in other words, the autoencoder's latent space becomes disentangled from the speaker embedding space. This inspired our music timbre transfer approach, presented later in Chapter 6; we will give a more detailed explanation of the VQ-VAE there.

Turning finally to music, an approach very similar to [START_REF] Lample | Unsupervised machine translation using monolingual corpora only[END_REF] has been applied to music audio translation by [START_REF] Mor | A universal music translation network[END_REF], using a WaveNet [START_REF] Van Den Oord | WaveNet: A generative model for raw audio[END_REF] autoencoder architecture (see Fig. 2.4). As a major difference to Lample et al., the framework accounts for multiple domains X 1 , . . . , X n , which in this case correspond to different composers and instrumentations (e.g. X 1 = Mozart's symphonies, X 2 = Haydn's string quartets etc.). The discriminator then becomes a multi-class classifier and is referred to as the domain confusion network. The encoder is still shared for all source domains, but a separate decoder is used for each target domain. 1For symbolic music style (genre) translation, Brunner et al. [2018a] propose a variational autoencoder (VAE) trained on a multi-track representation in two different genres. To promote style-content disentanglement, the encoder is forced to output an explicit one-hot encoding of the style label in the first two dimensions of the latent representation. This is done by attaching a softmax with a cross-entropy loss to these two dimensions, and adding it as an additional term to the loss function. The authors argue that this, together with the VAE loss, is enough to ensure disentanglement. Once the model is trained, style conversion is achieved by swapping the dimensions corresponding to the two styles.

In contrast, research on (one-shot) music style transfer via representation disentanglement is more recent and concurrent to our work. [START_REF] Hung | Musical composition style transfer via disentangled timbre representations[END_REF] propose an encoder-decoder model for music transcription (i.e. to convert audio to a symbolic representation) with a disentangled latent representation of pitch and timbre (instrumentation). Adversarial training is employed, designed to mutually disentangle the pitch and timbre representations. The trained model then allows to do a form of composition style transfer by changing the instrumentation. However, it is not clear whether it has one-shot capabilities, as it is not evaluated in this setting. [START_REF] Yang | Deep music analogy via latent representation disentanglement[END_REF] propose a model based on a VAE for disentangling the pitch and rhythm components of a melody. This is achieved by designating a part of the latent code as the rhythm features z r (similarly to Brunner et al. [2018a]) and using them to reconstruct the rhythm only, by means of a rhythm decoder. This reconstructed rhythm is then used, together with the rest of the latent code, z p (i.e. the pitch features), as input to a 'global' decoder to reconstruct the whole melody.

Similarly, Wang et al. [2020b] use a VAE to disentangle the representations of the harmony (chords) and the 'texture' of an accompaniment, each encoded using a dedicated encoder. In this case, however, the input to the chord encoder is already a chord sequence produced by a rule-based chord extraction system. The texture encoder receives a piano-roll representation and uses a convolutional architecture with hyperparameters carefully picked to obtain 'blurry' features with little information about the chords.

Still in a similar spirit, [START_REF] Kawai | Attributes-aware deep music transformation[END_REF] and [START_REF] Wu | MuseMorphose: Full-song and fine-grained music style transfer with just one Transformer VAE[END_REF] train VAEs conditioned on pre-defined musical attributes that can be computed automatically, such as note density and degree of polyphony. [START_REF] Kawai | Attributes-aware deep music transformation[END_REF] use an adversarial loss to disentangle the learned representation from these attributes, while [START_REF] Wu | MuseMorphose: Full-song and fine-grained music style transfer with just one Transformer VAE[END_REF] employ a β-VAE objective [START_REF] Higgins | beta-VAE: Learning basic visual concepts with a constrained variational framework[END_REF] with free bits [Kingma et al., 2016]. By considering these attributes to represent style, a form of style transfer can then be achieved simply by transferring these musical attributes from one piece to another (though this is not explicitly studied in these works). Similarly, [START_REF] Nistal | DarkGAN: Exploiting knowledge distillation for comprehensible audio synthesis with gans[END_REF] train an audio GAN conditioned on pitch, as well as on attribute probabilities ('soft labels') produced by a pre-trained teacher model.

Other related work

Self-supervised music completion

A broad family of music transformation tasks is what we could call music completion, inpainting or infilling. Here, we are given a partial piece of music (e.g. a score with missing parts) and wish to generate more musical material to 'fill in the blanks'.

Tasks like this are straightforward to learn from arbitrary music datasets, especially in the case of symbolic music, since we can simply mask out (i.e. treat as unobserved) a part of the input and then train our model to recover it while conditioned on the context. Such methods may be classified as self-supervised learning, where training inputs and/or targets (labels) are generated from unlabeled data in an automated way. 2For example, the Drumify model introduced by [START_REF] Roberts | Magenta Studio: Augmenting creativity with deep learning in Ableton Live[END_REF] is trained to reconstruct a drum groove given only the note onset times. [START_REF] Hakimi | BebopNet: Deep neural models for personalized jazz improvisations[END_REF] consider the problem of generating a jazz solo given a chord sequence; their model is trained on a dataset of jazz solo transcriptions, which contain the solo melody along with the chord sequence.

More relevant to our work are systems that are additionally conditioned on the target style, and hence achieve a form of style transfer. [START_REF] Choi | Encoding musical style with transformer autoencoders[END_REF] use a Transformer autoencoder to harmonize a melody in the style of a given piano performance. [START_REF] Lattner | High-level control of drum track generation using learned patterns of rhythmic interaction[END_REF] train a gated autoencoder (GAE) to generate a kick drum track for a given recording and are able to use it to transfer the kick drum style from one song onto another. [START_REF] Grachten | BassNet: A variational gated autoencoder for conditional generation of bass guitar tracks with learned interactive control[END_REF] extend this approach to bass lines.

Music generation with constraints

The methods from the previous subsection directly model the conditional distribution from which we then wish to sample. Another option is to model the joint distribution, and impose some constraints on it at runtime in order to incorporate existing musical material.

Such techniques can be viewed as another way to approach the music completion task from the previous subsection. For example, [START_REF] Hadjeres | Style imitation and chord invention in polyphonic music with exponential families[END_REF], [START_REF] Hadjeres | DeepBach: A steerable model for Bach chorales generation[END_REF] and [START_REF] Huang | Counterpoint by convolution[END_REF] developed systems for generation of Bach chorales, which are possible to constrain to produce a given melody, and hence perform harmonization in the style of Bach. However, more complex constraints are possible. [START_REF] Hadjeres | Style imitation and chord invention in polyphonic music with exponential families[END_REF] mention the possibility of imposing chord labels without enforcing specific voicings. [START_REF] Herremans | MorpheuS: Generating structured music with constrained patterns and tension[END_REF], on the other hand, constrain a generated piece to have a given 'tension profile' and a particular structure of repeating patterns. This tension profile can be extracted from a template piece or specified by the user. Moreover, it is possible to introduce other soft constraints e.g. to fix the pitches of specific notes.

Inspired by these ideas, [START_REF] Lu | Transferring the style of homophonic music using recurrent neural networks and autoregressive models[END_REF] approach music style conversion by iteratively updating a piece of music using pseudo-Gibbs sampling (as in [START_REF] Hadjeres | DeepBach: A steerable model for Bach chorales generation[END_REF]) with the constraint of keeping the melody fixed. Style conversion is achieved by using a model trained on the desired target style.

Expressive performance rendering

The last task that we will touch on is that of rendering a musical score as an expressive performance, which typically means predicting expressive dynamics and/or timing. This is a rare case where paired data is easy to acquire (unlike in Sections 2.3 and 2.4), since given a performance, the corresponding score is usually readily available, at least in Western classical music. Predicting the performance variables from the score then becomes a straightforward machine learning task, which can be viewed as a type of supervised translation (as in [START_REF] Malik | Neural translation of musical style[END_REF]). For example, [START_REF] Widmer | YQX plays Chopin[END_REF] use a simple Bayesian model which predicts three variables for each note -tempo, loudness and articulation -given some features representing its context. [START_REF] Malik | Neural translation of musical style[END_REF] use an RNN to predict the sequence of loudness values given the sequence of pitches.

Conclusion

We have reviewed the literature related to music style conversion. In sum, a wide variety of works are related to ours in that they transform or complete existing music in some way. However, prior work on music style conversion, as we have defined it, is limited. In particular, all existing work on one-shot symbolic music style transfer is concurrent to ours, which we will present in Chapter 4. Similarly, in the audio domain, prior work on style conversion mostly concerns translation as opposed to one-shot transfer. The few existing works on one-shot audio style transfer either do not specifically focus on musical timbre, or are not learning-based, both of which is in contrast to our work presented in Chapter 6.

Background: Deep learning for sequence generation

In this work, we make extensive use of deep neural networks for sequence generation, namely neural language models and sequence-to-sequence networks. Such models are applicable whenever we need to learn to generate data represented as sequences of discrete symbols. In recent years, they have become extremely popular, achieving state-of-the-art results on many language processing tasks [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Radford | Improving language understanding by generative pre-training[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional Transformers for language understanding[END_REF], He et al., 2021, inter alia], and more recently also leading to advances in music generation and transformation [e.g. Donahue et al., 2019a, Huang et al., 2019a[START_REF] Huang | Pop music Transformer: Beat-based modeling and generation of expressive pop piano compositions[END_REF], Choi et al., 2020]. This chapter serves as an introduction to these models, which have several peculiarities relating both to their training and their use for generation.

Note that there exists a variety of other deep learning techniques that have also been applied to music generation. For a survey of these techniques, see [START_REF] Briot | Deep Learning Techniques for Music Generation[END_REF].

Autoregressive neural language models

A language model (LM) can be viewed as a way to model probability distributions over sequences of symbols (tokens), i.e. P (y) = P (y 1 , . . . , y m ), where y 1 , . . . , y m are symbols from a finite vocabulary. These symbols are traditionally words, but may also correspond to characters, subword units or -as in this work -musical events (e.g. notes).

The most common way to build LMs is to factorize the distribution P (y) using the chain rule:

P (y 1 , . . . , y M ) = M ∏︂ m=1 P (y m | y 1 , . . . , y m-1 ).
This leads to an autoregressive language model, where the problem is reduced to modeling the conditional distribution P (y m | y 1 , . . . , y m-1 ) -a classification task also known as next word prediction. Such models have many advantages, especially the ease of training and their ability to model complicated distributions and draw samples from them.

Training is typically done via maximum-likelihood estimation (MLE), which can be formulated as minimizing a negative log-likelihood (NLL) loss:

L(y; θ) = -log M ∏︂ m=1 P θ (y m | y 1 , . . . , y m-1 ) = - M ∑︂ m=1 log P θ (y m | y 1 , . . . , y m-1 ). (3.1)
In modern applications, P θ is usually parameterized using a neural network which receives the tokens y 1 , . . . , y m-1 and outputs a softmax probability distribution over y m , and trained using some form of stochastic gradient descent over a training dataset.

Generation

A trained autoregressive LM can be used to generate new sequences -i.e. sample from the learned distribution P θ (y 1 , . . . , y M ) -in a left-to-right fashion. In the m-th step of this process, we feed the previously generated prefix y ˆ1, . . . , y ˆm-1 to the model and sample y ˆm randomly according to P (y m | y ˆ1, . . . , y ˆm-1 ). Apart from generating novel sequences from scratch, the model also lends itself to continuation, where a prompt y 1 , . . . , y m-1 is given, and generation proceeds from the m-th step.

While this procedure is rather simple, it requires a set of standard tricks to achieve success. Firstly, sampling y ˆ1 ∼ P (y 1 ) would require conditioning the model on an empty sequence, which is not normally possible. For this reason, a beginning-of-sequence token y 0 = <s> is prepended to all training sequences, and generation then starts by sampling y ˆ1 ∼ P (y 1 | y 0 = <s>). Similarly, an end-of-sequence token </s> is appended to all training sequences; during generation, sampling this special token terminates the generation loop.

A commonly encountered problem is that sampling naïvely from the learned distribution P can easily lead to incoherent outputs due to overestimating the probabilities of relatively unlikely tokens -a phenomenon called the 'unreliable tail' by [START_REF] Holtzman | The curious case of neural text degeneration[END_REF]. A well-known way to alleviate this problem is sampling with temperature, where the logits (pre-softmax activations) obtained from the model are divided by a temperature parameter τ > 0 prior to applying the softmax. With τ < 1, this leads to a lower-entropy distribution, reducing the probability mass assigned to the unreliable tail, but also decreasing the overall diversity of the outputs [START_REF] Caccia | Language GANs falling short[END_REF][START_REF] Hashimoto | Unifying human and statistical evaluation for natural language generation[END_REF]. As τ tends to 0, the distribution becomes one-hot, i.e. all the probability mass is assigned to the most likely outcome; this limit behaviour, where the most likely token is chosen deterministically at each step, is known as greedy decoding.

Another sampling strategy is top-k sampling [START_REF] Fan | Hierarchical neural story generation[END_REF][START_REF] Holtzman | Learning to write with cooperative discriminators[END_REF], where only the k most likely candidates are considered and the probability of the rest is forced to be equal to 0. Nucleus sampling [START_REF] Holtzman | The curious case of neural text degeneration[END_REF] is an improvement on this strategy, where the number k of considered candidates is chosen dynamically (controlled by a parameter p) based on the shape of the distribution, which is shown to lead to higher-quality outputs.

Model architectures

As mentioned above, a neural language model needs to be able to consume a (variable-length) sequence of input tokens y 1 , . . . , y m-1 and output a probability distribution over the next token, P (y m | y 1 , . . . , y m-1 ).

Before applying any neural network architecture to a token sequence, we first need to encode each token as a real-valued vector. This is done using an embedding layer, which selects the corresponding column of an embedding matrix W e (a trainable parameter); in other words, if 1 ym is a one-hot representation of y m (indicating its position in the vocabulary), then the corresponding embedding can be written as y m = W e 1 ym . We can then feed the sequence y 1 , . . . , y m-1 to any sequence processing network. This network will output a feature vector h m-1 , which is then passed through a linear projection and a softmax operation to obtain a probability distribution over y m . 
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Recurrent neural networks

One class of neural networks suitable for sequence processing are recurrent neural networks (RNNs). An RNN works by processing the input sequence from left to right and using each input y m to update its internal ('hidden') state:

s m = f RNN (y m-1 , s m-1 ) (3.2)
where f RNN is a non-linear function that depends on the type of the RNN and has trainable parameters. The state is a vector whose dimension (also called the number of units) is a hyperparameter of the RNN.

A very popular type of RNN cell -i.e. particular form of f RNN from Eq. (3.2)is long short-term memory (LSTM, Hochreiter and Schmidhuber [1997]). Many variations on the LSTM cell exist, including the simpler gated recurrent unit (GRU, Cho et al. [2014]), which has also enjoyed widespread use and which we employ here as well.

In practice, we do not need to run the RNN for each prefix y 1 , . . . , y m-1 where m ∈ 1, . . . , M , since we can easily obtain all s m , and hence compute the sum in Eq. (3.1), in a single run of the RNN over the entire input sequence y 1 , . . . , y M -1 . This leads to the training procedure displayed in Fig. 3.1a. Generation is also relatively time-and memory-efficient, since as shown in Fig. 3.1b, in each step, we only need the last computed state s m-1 and the embedding y m-1 of the last sampled token to compute the new state s m and sample the new token y ˆm.

Transformers

Another popular choice of architecture is the Transformer [START_REF] Vaswani | Attention is all you need[END_REF]. Unlike RNNs, a Transformer does not keep track of history using a single state vector, but instead has access to the entire history by means of a (self-)attention mechanism. This makes it a more powerful model than RNNs, but slower for generation, since in each step, it needs to consider all previous steps, leading to an overall quadratic time complexity.

The Transformer architecture,1 displayed in Fig. 3.2, alternates fully-connected layers, which are applied independently to each position, and multi-head self-attention layers, which take care of passing information between different positions. The idea of the self-attention layer is to compute in a set of attention scores or weights, expressing the importance of each position to the current A scaled dot product between the current query and every key is then computed, and the resulting scores are used to compute a weighted average of the values. Formally, with the queries, keys and values gathered in respective matrices Q, K ∈ R M ×d key and V ∈ R M ×d value , the attention mechanism can be written as

Attention(Q, K, V) = softmax ⎛ ⎝ QK ⊤ √︂ d key ⎞ ⎠ V, (3.3)
where the softmax is applied along the key dimension, so that each element in the result is a convex combination of all the values, i.e.:

Attention(Q, K, V) = [︄ ∑︁ N n=1 exp(e mn )v n ∑︁ N n ′ =1 exp(e mn ′ ) ]︄ m , ( 3.4 
)

e mn = q ⊤ m k n /︂√︂ d key . (3.5)
Moreover, it turns out to be useful to apply the attention mechanism not just once, but several (H) times in parallel (with different parameters), obtaining a different result each time. This is called multi-head (self-)attention with H attention heads. Here, the queries for the h-th head are obtained as q m = W Q (h) y m , and analogously for keys and values, with d key = d value = D = d model /H. The outputs of all attention heads are then concatenated and projected back to d model dimensions using an additional linear layer.

To use a Transformer as a language model, it can be trained analogously to the RNN in Fig. 3.1a. However, note that by simply applying Eq. (3.3) during training, every query would be able to attend to every key, which is undesirable, since during generation, only past positions (i.e. those corresponding to tokens that have already been sampled) are available. For this reason, a lower triangular ('causal') mask is applied to the pre-softmax attention matrix QK ⊤ / √ D during training, forcing all terms above the diagonal to equal -∞. This ensures that q m only has access to k 1 , . . . , k m while keeping the attention scores properly normalized.

The last piece of the puzzle is positional encoding (PE). The fully-connected and self-attention layers of the Transformer are permutation-invariant operations, meaning that shuffling the input positions will not change the output values.2 For this reason, a positional encoding vector is usually added to each input embedding vector as a form of 'positional bias'. This is sometimes referred to as absolute positional encoding (APE). [START_REF] Vaswani | Attention is all you need[END_REF] generate fixed APE by sampling trigonometric functions at different frequencies. Alternatively, APE can be learned as parameters of the model [START_REF] Gehring | Convolutional sequence to sequence learning[END_REF][START_REF] Devlin | BERT: Pre-training of deep bidirectional Transformers for language understanding[END_REF]].

An alternative method for injecting position information is relative positional encoding (RPE), which encodes differences between pairs of positions (time lags), as opposed to absolute positions. This information, encoded as a matrix R, is then used to modify the computation of the attention scores in Eq. (3.3):

(︂ QK ⊤ + QR ⊤ )︂ / √ D.

Sequence-to-sequence models

Neural language models, described in the previous section, allow generating sequences from the data distribution. However, they become much more useful when we are able to condition them on some input data, and this is precisely what is achieved by sequence-to-sequence (seq2seq) models. Specifically, seq2seq models are used to model conditional distributions of the form

P (y | x) = P (y 1 , . . . , y M | x 1 , . . . , x N )
, where x 1 , . . . , x N represents an input sequence and y 1 , . . . , y M an output sequence. Factorizing this distribution along the output sequence as in Eq. (3.1), the task of the model at each step becomes to predict the distribution P (y m | y 1 , . . . , y m-1 , x 1 , . . . , x N ). The language model then becomes the decoder and the main challenge lies in conditioning it on the input sequence x 1 , . . . , x N via an appropriate encoder.

A popular way to connect the encoder to the decoder is via an attention mechanism. Note that this encoder-decoder attention (also called cross-attention or inter-attention), which will be detailed in the following section, is different from the self-attention from Section 3.1.2: while self-attention serves to exchange information between different positions inside the decoder, the role of encoderdecoder attention is to "route" features from the encoder to different positions in the decoder.

Model architectures RNN encoder-decoder (without attention)

A simple way to condition an RNN on an arbitrary sequence is to use an encoder capable of summarizing the whole sequence in a single fixed-dimensional vector. The perfect encoder architecture for this task is again an RNN -this time, however, all the intermediate RNN states are ignored, and only the final state h N (i.e. the state produced after consuming all the inputs) is kept. This final state is then used either as the initial state of the decoder RNN [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF], or as an additional input to the decoder RNN cell in every step [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF].

RNN encoder-decoder with attention

The above method relies on encoding the entire (variable-length) sequence into a single vector, which may not always be realistic. To address this problem, [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] enhance the RNN seq2seq model with encoder-decoder attention, which makes it possible for each decoder state to obtain a different, dynamically computed view of the input sequence. This is done by considering all the encoder states, denoted h 1 , . . . , h n , computing a weight α mn for every input position n and the current output position m, and using these weights to calculate seq2seq) model with attention, as proposed by [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]. For illustration purposes, the diagram focuses on the 3 rd decoding step, i.e. m = 3. Arrows with white heads point to prediction targets. Modified from ⟨ISMIR2019⟩.
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a weighted average c m of the encoder states, similarly to Eq. (3.4). Finally, c m , known as the context vector, is used as input to the decoder RNN cell f RNN to obtain the new state s m :

s m = f RNN ([y m-1 , c m ], s m-1 ), (3.6) c m = ∑︁ N n=1 exp(e mn )h n ∑︁ N n ′ =1 exp(e mn ′ ) , ( 3.7 
)

e mn = f att (s m-1 , h n ). (3.8)
In the original "Bahdanau-style" attention, f att is implemented as a fully-connected neural network; more similarly to the later-proposed Transformer, [START_REF] Luong | Effective approaches to attention-based neural machine translation[END_REF] suggest using a dot product (cf. Eq. (3.5)). Bahdanau et al. also propose to use a bidirectional RNN [START_REF] Schuster | Bidirectional recurrent neural networks[END_REF] in the encoder, i.e.

h n = [h fw n , h bw n ],
where h fw n is produced by a forward RNN and h bw n is produced by a backward RNN, which consumes the input from right to left. As a result, h n captures the context of the entire input, but is expected to focus around position n.

The model is illustrated in Fig. 3.3.

Transformer encoder-decoder

For completeness, let us also mention the encoder-decoder variant of the Transformer [START_REF] Vaswani | Attention is all you need[END_REF]. Analogously to the model that we just described, it consists of a Transformer encoder and a Transformer decoder, connected using an attention mechanism. Hence, attention is used in three different places in the model: as encoder self-attention, decoder self-attention, and encoder-decoder attention.

As shown in Fig. 3.4, the architecture of the encoder is similar to the one described in Section 3.1.2 (the only difference is that no attention mask is used, so that the whole input is accessible to the self-attention mechanism at any time). As a major addition, the decoder now has the encoder-decoder (cross-)attention inserted in every layer. This encoder-decoder attention is computed according to Eq. (3.3); here, however, the keys and values are computed from the outputs of the encoder rather than from decoder features. In other words, we have:

k n = W K h n , v n = W V h n , q m = W Q g m , (3.9)
where h 1 , . . . , h N ∈ R d model are encoder features for the input sequence x 1 , . . . , x N , and g 1 , . . . , g M -1 ∈ R d model are the decoder features for the output sequence y 1 , . . . , y M -1 .

Conclusion

In this chapter, we have introduced the principles behind deep neural networks for sequence generation and translation, namely neural language models and sequence-to-sequence (seq2seq) models, as well as the most popular architectures used in this context: RNNs and Transformers. In the next chapter, we will build upon this knowledge while describing our first contribution, consisting in methods for accompaniment style conversion.

Supervised symbolic music style conversion

This chapter is based on the papers ⟨ISMIR2019⟩ and ⟨TASLP2020⟩ by Cífka et al. © 2020 IEEE.

In this chapter, we present two studies focusing on accompaniment style conversion in the context of jazz and popular music. This type of music is often notated using chord charts, providing the basic harmonic and rhythmic information for a song (an example can be found at the top of Fig. 4.2). When performing the song, the rhythm section of the band may use the chart as a basis for an improvised accompaniment ('comping'), choosing a bass line, chord voicings, slight harmonic alterations, rhythmic patterns, ornamentation and even instrumentation (e.g. piano vs. keyboard) as appropriate for the style. Herein, we consider the chord chart to be the content, and style then characterizes the process of converting this chord chart to an accompaniment. The underlying assumption is that the chord chart is independent of style; while this is not always realistic (for instance, jazz songs typically use more complex harmonies than some popular music genres), it allows us to develop a principled approach.

Our final goal in this chapter is one-shot accompaniment style transfer: given a musical piece (the content input), we wish to generate a new accompaniment for it in the style of a different piece (the style input). Note that even though we expect the output to follow the same chord chart as the content input, we do not assume this chart to be available.

The first study, presented here in Section 4.3, takes a first step towards this goal by tackling a simpler accompaniment style translation task. The only input in this case is the content input, and the target style is simply selected from one of a small set of available options. The method developed here is then extended to the full one-shot setting in the second study in Section 4.4.

Since the methods proposed in the two studies share a common basis, relying on supervised learning from synthetically generated accompaniments, we first give a general overview of this core idea in Section 4.1. Then, in Section 4.2, we set forth automatic evaluation metrics developed to gauge the performance of our systems. Finally, the core of both studies follows in Sections 4.3 and 4.4, respectively.

Methods overview

Generally speaking, we are interested in learning a transformation (x, z) ↦ → y, where x is a song fragment in an arbitrary style S, y is the same fragment in a different style T (the target style), and z is an indication of the style T . In the case of style translation (Section 4.3), where the set of possible target styles is known and finite, z will be a discrete label identifying T . In the case of one-shot style transfer (Section 4.4), z will be an example of T , i.e. another fragment in style T . As we have seen in Chapter 2, a major difficulty associated with music style conversion tasks is that there are no publicly available 'aligned' or 'parallel' datasets (containing examples of the same music played in different styles) to learn from.1 As a result, works that predate ours mostly adopt unsupervised learning frameworks and apply them to genre-labeled datasets. In our work, we adopt a different strategy to overcome the lack of aligned data, which is to synthesize it. Synthetic training data has proven useful for music information retrieval tasks such as chord recognition [START_REF] Lee | Acoustic chord transcription and key extraction from audio using key-dependent HMMs trained on synthesized audio[END_REF] and fundamental frequency estimation [START_REF] Mauch | PYIN: a fundamental frequency estimator using probabilistic threshold distributions[END_REF]Dixon, 2014, Salamon et al., 2017], and is also popular for tasks like semantic segmentation in computer vision [START_REF] Ros | The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF][START_REF] Varol | Learning from synthetic humans[END_REF]. In our case, synthetic data opens up the possibility for supervised learning techniques known from the machine translation field. Moreover, it allows us to work with fine-grained style labels, as opposed to genre labels, which may be too vague or ambiguous for such purposes.

Our models proposed here are neural networks with an encoder-decoder structure, as depicted in Fig. 4.1. In both cases, we have a content encoder that processes the input x (the content input) and a style encoder processing the input z (the style input); the output y ˆis then produced by the decoder based on the representations computed by the two encoders. In the style translation case, z is simply a label identifying the target style T and the style encoder degenerates to a simple embedding layer. In both cases, the output of the content encoder is a sequence of feature vectors, which are accessed by the decoder via an attention mechanism; on the other hand, the output of the style encoder is a single embedding vector σ.

An accompaniment typically consists of multiple tracks (e.g. bass, piano, drums). While we could in principle model all the output tracks jointly, we break the problem down by assuming conditional independence of the output tracks given the inputs and by training our models to generate only one track at a time. The complete accompaniment is then obtained by combining the outputs of multiple models or multiple runs of one model. The architecture of the proposed models is derived from sequence-to-sequence models with attention, described in Section 3.2. The models are simply trained end-to-end to minimize the cross entropy of the ground-truth targets y (represented as token sequences) given the inputs x, z, i.e. -E [log P (y | x, z)]. This supervised training approach is possible due to our synthetic data generation scheme, outlined below in Section 4.1.1. To test the models, we run them on new pairs (x, z). In style translation, z is inevitably limited to styles from the training set; the one-shot style transfer model, on the other hand, should be tested with target styles not encountered during training.
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Synthetic data generation

As we have mentioned, our approach proposed here involves synthetic data generation, allowing to obtain a virtually unlimited number of ground-truth examples (x, z, y), and hence perform supervised learning. In this section, we describe the general synthetic data generation method; details of the datasets generated for the individual studies will be given later in Sections 4.3.1 and 4.4.1.

Specifically, our synthetic dataset is generated using RealBand from the Bandin-a-Box (BIAB) software package. 2 BIAB allows generating a MIDI accompaniment for a given chord chart in one of the available styles. A style is essentially a set of human-defined patterns and rules for accompaniment generation which allow for some degree of freedom (randomness); one input can thus yield many different results. Each style typically consists of two substyles (A and B) with slightly different patterns intended for different sections of a song. The overall range of patterns in each style is relatively small, and thus corresponds to a specific comping style or 'groove' rather than a broad category like genre. For instance, over 150 BIAB styles are categorized as Blues, bearing such names as 'Texas Blues -12/8 Slow Blues' and 'Elvis1 -50s Rock Shuffle-Blues'. Each style may contain up to 5 tracks (drums and up to 4 other instruments).

The basic idea of our data generation scheme is to start with a set of chord charts and use BIAB to generate a number of renditions of each chart in different accompaniment styles. Once the dataset is generated, we may simply pick two generated accompaniments corresponding to the same chord chart, as in Fig. 4.2, and use one as the content input x and one as the target y. More precisely, to form the training triplets (x, z, y), we loop over all pairs (x, y) such that x and y correspond to the same chord chart segment, but x ̸ = y. We denote T the style of y (i.e. the target style). Then, in the style translation case, we have z = T (a discrete label); in the style transfer case, we pick z uniformly randomly from all segments in style T .

Notice that only the accompaniment, and not the underlying chord chart, is fed to the model. This allows easily applying the trained model to inputs for which the chord chart is not available, in particular ones that are not BIABgenerated or are in a genre where the chord chart representation is not commonly used (e.g. classical music).

Evaluation

When evaluating style conversion, we need to consider two complementary criteria: how well the transformed music fits the desired style (style fit) and how much content it retains from the original (content preservation). Note that it is trivial (but useless) to achieve perfect results on either of these two criteria alone, so it is essential to evaluate both of them. In this section, we describe objectiveautomatically computed -metrics for both criteria.

Content preservation

Given our definition of content, we would like the content preservation metric to capture the agreement in harmonic structure, which is the most important piece of information conveyed in a chord chart. Following [START_REF] Lu | Transferring the style of homophonic music using recurrent neural networks and autoregressive models[END_REF], we compute this metric by correlating the chromagram of the generated segment with that of the content input. A chromagram in this context is essentially a 2D histogram with time on the x axis and the 12 pitch classes on the y axis; in other words, it is a matrix that records how many notes from each pitch class are active in each (regularly sampled) time frame.

To measure content preservation, we compute the chromagram of each of the two segments (content input and output) at a rate of 12 frames per beat and smooth each of them using an averaging filter with a window size of 2 beats (24 frames) and a stride of 1 beat (12 frames). Finally, we calculate the average frame-wise cosine similarity between the two sets of chroma features.

Style fit

In some of the recent music style transformation works [Brunner et al., 2018a,b], the quality of a transformation is measured by means of a binary style classifier trained on a pair of styles. However, the merit of such evaluation is limited, since a high classifier score merely demonstrates that the output has some of the distinguishing features of the target style, and not necessarily that it actually fits the style. For this reason, we aim for a more interpretable metric of style fit.

Metric

As observed e.g. by [START_REF] Mckay | Automatic genre classification of MIDI recordings[END_REF], [START_REF] Hadjeres | Style imitation and chord invention in polyphonic music with exponential families[END_REF], and Sakellariou et al. [2017], musical style is well captured in musical event statistics, especially pairwise statistics between neighboring events. Drawing inspiration from the features proposed by [START_REF] Mckay | Automatic genre classification of MIDI recordings[END_REF], we devise a set of so-called style profiles, and use cosine similarities between them as style similarity metrics. This allows us to measure the style fit of an output as the style similarity between this output and a reference (i.e. an example of the target style).

The proposed metrics are summarized in Table 4.1. Firstly, to compute the (pairwise) time-pitch metric (proposed in ⟨ISMIR2019⟩), we consider all pairs of note onsets less than 4 beats apart and at most 20 semitones apart, and record the time difference and interval for each pair. We then obtain the style profile as a normalized 2D histogram of all these pairs with 6 bins per beat and one bin per semitone, and flatten it to get a 984-dimensional vector.

Clearly, the pairwise time-pitch metric is invariant to time shifts, does not account for note duration or velocity (dynamics) and is not suitable for drums. For this reason, we complement it with 3 additional metrics (proposed later in ⟨TASLP2020⟩), computed on statistics of single notes: onset-duration, onsetvelocity and onset-drum. These are defined analogously to the time-pitch metric, but instead relate the position of a note's onset within the measure to some other attribute of the same note (duration, velocity, and percussion instrument, respectively).

Note that we compute these metrics on each instrument track separately, since we presume that the dependencies between notes played by different instruments are often too complex to be captured by our statistics and would only make them more noisy. This choice is also in line with the design of our models, which generate different tracks conditionally independently given the inputs.

We measure the time-pitch and onset-duration metrics for non-drum instruments only; onset-drum is computed on drums only. Plots of example style profiles can be found in Fig. B.1 in the appendix.

Levels of granularity

Our proposed models operate on 8-bar segments, which may not always be sufficient to compute reliable style profiles, making the metrics noisy. For this reason, we may want to collect the statistics on sets of segments with the same target style, but real-world datasets may not have style labels that are sufficiently finegrained and accurate for this purpose. In fact, style may in some cases vary significantly even within a single piece. For this reason, we propose different variants of our style similarity metrics depending on the level of granularity:

1. Nano: a single style profile is computed for every segment, i.e. each segment is scored separately.

2. Song-level: for a given target style, the style profiles are aggregated over all segments in a song. In other words, every (input song, target style) pair gets a single score.

3. Macro: for a given target style, the style profiles are aggregated over all segments in the dataset, i.e. every target style gets scored as a whole.

Metrics validation

In this section, we validate the proposed style similarity metrics on the Bodhidharma dataset [START_REF] Mckay | The Bodhidharma system and the results of the MIREX 2005 symbolic genre classification contest[END_REF], a diverse collection of 950 MIDI recordings annotated with genre labels. To this end, we compute the similarities (nano variant) between all pairs of 8-bar segments in Bodhidharma and compare inter-vs. intra-genre similarities. For simplicity, we limit the analysis to pitched instruments, and therefore include only the onset-duration, onset-velocity and time-pitch metrics. Since we apply the metrics to each instrument track individually and it may not be possible to unambiguously match the tracks of two given segments, we simply compute the similarities on all pairs of instruments belonging to the same MIDI instrument group3 and average the results. First, we compare in the left part of Fig. 4.3 the similarities between segments from the same song to similarities between segments from different songs (regardless of genre). The same-song similarities are substantially higher for all three metrics, which is in line with our understanding of style as a set of characteristics pertaining to a particular artist or song. Secondly, we would also expect our metrics to capture at least some characteristics of genres; this is demonstrated in the plot on the right, which shows that the average similarity of segments from the The values have been averaged so that every data point corresponds to a single pair of songs.

same genre (excluding segments from the same song) is higher than the average similarity across genres, again on all three metrics. The results on genres are further detailed in Fig. 4.4, showing the similarity values -averaged over all 3 metrics -between all pairs of genres (again, pairs of segments from the same song are excluded). Despite the generally low and noisy values, we can find clear clusters of similar genres, e.g.: Swing, Cool and Bebop; Metal, Alternative Rock and Punk; as well as a classical music cluster.

Supervised style translation

This section details our work on supervised accompaniment style translation published in ⟨ISMIR2019⟩. The main contribution of this work is a neural model capable of translating between different accompaniment styles. As this is the first work in this direction, we chose to restrict ourselves to translating between 70 'artificial' styles included in the Band-in-a-Box (BIAB) software, and we only consider bass-and-piano accompaniments for simplicity.

Even in this limited setting, we were able to obtain interesting results. In particular, we show that a relatively simple RNN encoder-decoder architecture is able to achieve very good results on both style fit and content preservation, and that it even generalizes to inputs in styles other than encountered during training. These results provide an excellent stepping stone for the next study on one-shot style transfer (Section 4.4).

Additional materials for this study, notably listening examples4 and source code,5 are available online. A complete list of resources is given in Appendix C. 

Method

We propose an architecture based on RNN encoder-decoder sequence-to-sequence (seq2seq) models with attention, which we have described in Section 3.2. This choice is motivated by the successes of RNNs on symbolic music generation [START_REF] Eck | Finding temporal structure in music: blues improvisation with LSTM recurrent networks[END_REF][START_REF] Simon | Performance RNN: Generating music with expressive timing and dynamics[END_REF][START_REF] Hadjeres | DeepBach: A steerable model for Bach chorales generation[END_REF][START_REF] Sturm | Music transcription modelling and composition using deep learning[END_REF] and by the ability of the attention mechanism to condition the generation on arbitrary input data without a prior alignment.

Compared to the standard seq2seq model, our architecture has the extra style embedding layer, which is used to condition the decoder on the target style label. This allows a single model to translate to a potentially large number of different styles (similar to multilingual translation, e.g. [START_REF] Johnson | Google's multilingual neural machine translation system: Enabling zero-shot translation[END_REF]). On the other hand, to simplify the task and facilitate evaluation, we train a dedicated model for each target instrument track (bass, piano).

The rest of this section will cover our choices regarding input/output representation and model architecture and training, as well as details about how the synthetic dataset for this task was created.

Input and output representation

A common choice of representation of symbolic non-monophonic music for neural processing is a piano roll, a matrix that records which notes are active at each point in time. We use a binary-valued piano roll with 128 pitches and 4 columns per beat (quarter note) to encode our input.

For representing the output (and also as an alternative input representation), we opted for a MIDI-like encoding, which -unlike a piano roll -is straightforward to model using an RNN decoder. Specifically, following [START_REF] Simon | Performance RNN: Generating music with expressive timing and dynamics[END_REF], we encode the music as a sequence of 3 types of events, each with one integer argument:

• NoteOn(pitch): start a new note at the given pitch;

• NoteOff(pitch): end the note at the given pitch;

• TimeShift(delta): move forward in time by the specified amount, measured in 12ths of a beat.

NoteOn and NoteOff take values in the range 0-127, whereas TimeShift is within 1-24. When encoding the piano track, which is not monophonic, we compress the sequences by also including a NoteOff(All) event that ends all currently active notes. In contrast to [START_REF] Simon | Performance RNN: Generating music with expressive timing and dynamics[END_REF], our representation is tempoinvariant and we do not model dynamics. 

Model architecture, training and inference

As mentioned above (and depicted in Fig. 4.1), the proposed model is an encoderdecoder seq2seq model with attention and an additional style embedding layer. The architecture of the encoder (which we call the content encoder) depends on the type of input representation: NoteOn(50) TimeShift( 9) NoteOn( 60) NoteOn( 65) NoteOn( 69) NoteOn( 76) TimeShift( 12) NoteOff( 60) NoteOff( 65) NoteOff( 69) NoteOff( 76) TimeShift( 3) NoteOff( 50) NoteOn( 43) NoteOn( 59) NoteOn( 65) NoteOn( 69) NoteOn( 76) TimeShift( 24) NoteOff(All) • If the input is a piano roll, we use a two-layer convolutional network (CNN) with ELU (exponential linear unit; [START_REF] Clevert | Fast and accurate deep network learning by exponential linear units (ELUs)[END_REF]) activation and max pooling, followed by a bidirectional RNN with a gated recurrent unit (GRU; [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF]). The CNN serves to compress the input, resulting in a sequence of 1280-dimensional vectors with 2 vectors per bar. The bidirectional GRU (with 256 units in each direction) then adds the ability to incorporate information from a wider context, producing a sequence of 512-dimensional state vectors h 1 , . . . , h N .

• If the input is a sequence of tokens, we use an embedding layer, also followed by a bidirectional GRU.

We refer to the two resulting variants of the model as 'roll2seq' and 'seq2seq', respectively.

The decoder is also implemented using a GRU, conditioned on the target style and equipped with a Bahdanau-style attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]; see Section 3.2.1) acting on the encoder outputs h 1 , . . . , h N as in a standard seq2seq model. To condition the decoder on the style embedding σ, we feed it to the decoder RNN cell as an additional input in every step as in [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF]. The m-th decoder state s m is then computed as (cf. Eq. (3.6)):

s m = GRU([y m-1 , c m , σ], s m-1 ), (4.1)
where [•] denotes concatenation, y m-1 is the embedding of the previous output token, s m-1 is the previous state and c m is the context vector computed by the attention mechanism.

The models are trained using Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] with learning rate decay and with early stopping on the validation set. Our configuration files with complete hyperparameter settings are included with the source code.

Once the model is trained, we perform style translation using greedy decoding, i.e. by taking the most likely output token at every step as explained in Section 3.1.1. We also explored random sampling with different softmax temperatures, but found that this leads to a higher number of errors (i.e. invalid sequences or incorrect timing) and does not significantly improve the quality of the outputs.

Data generation details

To generate the synthetic training and test data, we followed the procedure from Section 4.1.1. First, we downloaded chord charts of around 3.5 k songs in the BIAB format from a popular online archive. 6 We used BIAB to generate arrangements of these songs in different styles and filtered the resulting MIDI files to keep only those in 4 4 or 12 8 time. 7 We then split those files into segments of 8 bars.

We selected a total of 70 styles from the '0 MIDI' and '1 MIDI' style packs included in Band-in-a-Box 2018, representing a wide variety of popular music genres. Each style contains up to 5 accompaniment tracks, from which we select only the bass and piano track. 8 We generated each song in 3 randomly picked styles, providing 2 In all experiments, we used 2809 songs for training, 46 songs as a validation set and 46 songs for evaluation, each in 3 examples in different styles.
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Experimental results

As mentioned above, we limit ourselves to generating the bass and piano tracks, and we train a dedicated model for each of them. We consider two scenarios: generating the track given only the corresponding source track (bass→bass, piano→piano), and using all non-drum accompaniment tracks from the input (all→bass, all→piano).

For bass→bass, we compare the seq2seq and roll2seq architectures defined in Section 4.3.1. For all other pairs, where the input is non-monophonic, we only employ roll2seq, since the sequential representation grows disproportionately in length in these cases and the computational cost of the attention mechanism becomes too heavy.

We evaluate our models on our synthetic test set generated by BIAB and on the Bodhidharma MIDI dataset [START_REF] Mckay | The Bodhidharma system and the results of the MIREX 2005 symbolic genre classification contest[END_REF]. The latter dataset was picked on the grounds of being stylistically diverse and balanced, containing an equal number of recordings from 38 different genres. We filtered and pre-processed Bodhidharma in the same way as the synthetic test set and we extracted the bass and piano tracks.

We also made extensive attempts to train the models of Brunner et al. [2018a], Brunner et al. [2018b] and [START_REF] Lu | Transferring the style of homophonic music using recurrent neural networks and autoregressive models[END_REF] on our data using the source code published by the authors, but unfortunately without success. This has prevented us from comparing these models with our proposal. Nonetheless, the provided example outputs can serve as a basis for perceptual comparison.

Evaluation

For a comprehensive evaluation of each model, we translated all inputs to all 70 styles and calculated the content preservation metric and time-pitch style fit metric,9 the latter in the macro and song-level variants. The results (averaged) are presented in Fig. 4.6. We provide two baselines for each track (bass and piano): 'source', which is simply the same track before the translation, and 'reference', which is a track generated by BIAB based on the chord chart (only available for the synthetic test set). As expected, the style fit is low for the source track (measured with respect to the target style) and close to 1 for the reference track. Our models' outputs generally do not fit the target style as perfectly as the reference does, but still score high compared to the source.

As for content preservation, we can notice that the reference value is quite low (0.78 for bass and 0.79 for piano). This should not be too surprising, since we are comparing accompaniments in two different styles, which might have different pitch-class distributions; moreover, there is some random harmonic variation within each style. The results achieved by our models on the synthetic test set are very close to the reference. To illustrate the value range of the metric, we provide the results obtained by a 'randomized' baseline (shown as 'random' in Fig. 4.6), where we randomly permuted the reference segments for each style (obtaining a reference with the correct style, but the wrong content). The resulting value is very low (0.16 for bass and 0.31 for piano) compared both to the true reference and to our models, indicating that the metric is useful and the models are performing well. On Bodhidharma, content preservation is generally weaker than on the synthetic test set. One interpretation can be that the encoder simply fails to extract the content information accurately, since it was trained on a different domain. However, we also find that the models often make timing errors on Bodhidharma inputs, leading to misalignment between the input and the output, which may also cause the content preservation metric to drop.

On the other hand, the style fit on Bodhidharma is close to the results on the synthetic test set (and not consistently lower or higher), and the difference to 'source' (i.e. the corresponding input track) is more marked, perhaps reflecting a higher style variability in the Bodhidharma data.

Upon listening, we clearly observe that the outputs are musical and seem to both fit the target style and follow the harmonic structure of the inputs. Besides, even though the piano and the bass tracks are generated independently, they sound surprisingly coherent. However, as mentioned above, we also observe occasional timing errors, which become more prominent when the bass and piano tracks are combined. In the next study, in Section 4.4.1, we will show how this issue can be alleviated by encoding timing in a more robust way. We will also revisit this question later in Section 5.4.

We also note that the single-track models output harmonically incorrect notes more often than the all models; this is expected, since their input is less harmonically rich. This effect is clearly audible (especially in bass, where important scale degrees are often missing in the input), but cannot be captured by the content preservation metric, which is computed against the same input.

Comparison with a single-pair model

All models presented so far were trained on music in 70 different styles, as opposed to a single style pair. To investigate the effect of this choice, we picked a pair of fairly dissimilar styles -ZZJAZZSW ('Jazz Swing Variation') and TWIST ('Twist Style', categorized as 'Lite Pop') -and generated a new training, validation and test set with each song rendered in these two styles only. To increase the amount of data, we performed this twice for each song (with different results), obtaining 2 × 2 = 4 training pairs per segment.

We used this new dataset to train single-style-pair versions of all models (in
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Even 16ths Swing 8ths Swing 16ths the ZZJAZZSW→TWIST direction only), preserving the original architectures except for the conditioning on the target style. We compare these '1→1' models to the full versions (70→70) on two sets of inputs:

• the synthetic test set in the ZZJAZZSW style;

• the 'Swing' section of Bodhidharma (23 songs).

In Fig. 4.7, we show the results for the two variants of the all→bass model. While the performance on the synthetic data seems to be the same, the scores of the 1→1 model drop considerably on the Bodhidharma data, suggesting that the model is overfitted to the 'synthetic' swing style. On the other hand, the performance of the 70→70 model stays high, showing that training on many different styles helped the model generalize to real swing.

Style embedding analysis

Neural representation spaces are often found to exhibit a meaningful geometry, and we decided to investigate whether this is the case for our learned style embedding space. Fig. 4.8 shows a projection of the embeddings labeled by the 'feel' of each style, with 'even' and 'swing' feel styles being clearly separated. We include more plots in Fig. B.2 in the appendix and also make available an interactive visualization.10 

Supervised style transfer (Groove2Groove)

This section details our work on supervised one-shot accompaniment style transfer published in ⟨TASLP2020⟩. This study builds upon the previous one by extending it to the one-shot setting. The result is a system -called Groove2Groove 11 (Grv2Grv for short) -which is much more practically applicable, since it is not limited to the synthetic styles provided by Band-in-a-Box, but can generalize to novel styles by 'extrapolating' the style of a short example presented at test time.

We created a companion website for this project,12 gathering all the supplementary materials. These include an interactive demo -allowing to run Groove2Groove on arbitrary MIDI files uploaded by the user -, example videos, source code, and data. See also Appendix C for a complete list of available resources.

Method

The method is largely based on the one proposed in the style translation study in Section 4.3.1. Some of the differences related to dealing with the additional style input were already outlined in Section 4.1 and will be detailed here. We also introduce some improvements based on findings and observations made during the previous study.

We recall that the main difference between the two methods is that in style translation, the inputs to the models were a content input x and a style label z, while here z becomes a segment of a musical accompaniment, serving as an example of the target style -the style input. With this comes the need to specify the style encoder architecture and to detail the way the whole model is trained, both of which we will do shortly.

Another major difference, which we have not mentioned yet, lies in how we break down the problem of generating multiple tracks. In the style translation study, we chose to train a separate model for each of the two tracks under consideration (bass, piano). However, in this study, we aim to expand our approach to other instrumentations, so that we may use an arbitrary MIDI file as the style input. In this setting, the said approach is not as suitable, not only considering the number of models that would need to be trained, but also because it may not be clear which track should be fed to which model at test time. For this reason, we propose to use a single model for generating all the accompaniment tracks, yet still one at a time.

The procedure, illustrated in Fig. 4.9, builds on the idea of the best-performing models from Section 4.3.2 (all→bass and all→piano). As in these models, we combine all the non-drum tracks from the content input in a single representation x, which is fed to the content encoder regardless of which output track is currently being generated. The style encoder, on the other hand, receives only a single track z (i) of the style input, and the corresponding track y (i) of the output is generated by the decoder. Note that neither the index i nor any other information about the track (e.g. the identity of the instrument) is given explicitly. The style encoder therefore does not encode the style of the style input as a whole, but rather the characteristics of the single track at hand. This design has the advantage that it allows to process any style input regardless of the number of tracks and without the need for any additional knowledge about them, and generalizes easily to instrument combinations unseen in the training data. It can also be considered more data-efficient than the model-pertrack approach, since a single training segment will result in multiple different parameter updates (one update per target track). .9 -An overview of the training and inference procedure for the Groove2Groove system. In both cases, the style input is broken down into individual instrument tracks, which are fed to the model individually as z (i) , each resulting in a corresponding output track y (i) . On the other hand, the content input x uses a constant representation that contains all tracks (except for drums). © 2020 IEEE.

On the other hand, an obvious disadvantage of this approach is that it generates the output tracks conditionally independently given the content input, and therefore cannot model interactions between them. This could be remedied by combining all of the tracks in a single representation as in Donahue et al. [2019a] or as we do later in Section 5.3.1. However, this is computationally more expensive not only due to the sheer length of the input sequences (which scales up with the number of tracks), but also because synchronous generation of multiple tracks is a more difficult task, arguably requiring a more powerful (higher-capacity) model. For this reason, we avoid such approaches in this study.

Input and output representation

Building on the method proposed for style translation, we use a piano roll representation for the content input and a token-based representation for the output. We also use the same token-based representation for the style input.

We keep the piano roll representation from 4.3.1, except that we use the values in the piano roll matrix to encode dynamics. More precisely, we set each value in the matrix to the total velocity of all notes with the given pitch active at the given time, normalized by the maximum velocity (127).

As for the token-based representation, we improve it by proposing a beatrelative encoding, which we found to be more robust to timing errors during generation, and the superior performance of which we will demonstrate in the ablation study in Section 4.4.2. Specifically, instead of encoding the time differences between consecutive events, we encode the position of each event within the current beat. To do this, we replace the TimeShift tokens with SetTime tokens that set the offset within the current beat, plus SetTimeNext tokens that allow moving on to the next beat. Moreover, we add SetVelocity tokens to be able to represent dynamics, and DrumOn/DrumOff tokens to encode drum notes. 13 The vocabulary then consists of the following token types:

• NoteOn(pitch), DrumOn(pitch): begin a new note at the given pitch (0-127);

• NoteOff(pitch), DrumOff(pitch): end the note at the given pitch (0-127, or * to end all active notes);

• SetTime(units): set the time within the current beat, quantized to 12ths of a beat (0-11);

• SetTimeNext(units): move to the next beat and set the time within that beat (0-11);

• SetVelocity(units): set the velocity value, quantized to 8 levels (1-8).
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Architecture details and training

A detailed view of the architecture is displayed in Fig. 4.10. As in the style translation study, the content encoder consists of a 2D CNN followed by an RNN (GRU); however, we reduce the RNN to a unidirectional (forward) one with a lower number of units in order to limit its memory footprint. The style encoder has a similar architecture, but uses 1D convolutions due to the sequential input representation. More precisely:

• The content encoder applies two consecutive 2D convolutional layers to the piano roll matrix, then flattens the resulting 3D feature map to obtain a sequence of 1024-dimensional vectors with two vectors per measure. This sequence is then fed to a GRU layer with 200 units, resulting in a sequence of 200-dimensional state vectors h 1 , . . . , h N .

• The style encoder starts with a sequence of embeddings of the input tokens and applies three consecutive convolutional layers, compressing the sequence eight times, followed by a GRU with 500 units. Only the last GRU state is kept and used as the style embedding σ (i) .

Recall that since the style encoder only sees one track z (i) at a time, the style embedding σ (i) encodes the style of that specific track (which is to be transferred to the corresponding output track), rather than the style of the accompaniment as a whole.

The decoder architecture is identical to the one from the style translation study.

We train the model using Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] with a batch size of 64 and with exponential learning rate decay, halving the learning rate every 3 k batches (192 k training triplets). We stop training in the middle of the first epoch (after 1.6 M triplets) where the improvement to the validation loss is already very small.

The complete hyperparameter settings are included with the source code.

Data generation details

As in Section 4.3, we need a parallel dataset of accompaniments in different styles, in this case one that allows us to gather triplets of musical fragments (A S , B T , A T ) where A S denotes the content input in some source style S, B T is the style input, serving as an example of the target style T , and A T is the target, combining the content A with the target style T . While we could extract such triplets from the dataset presented in Section 4.3.1, they would not be suitable for this task for two reasons. First, using only 70 styles would certainly not be enough for generalization to novel target styles. Second, for this task, the training, validation and testing sections of the dataset must contain disjoint sets of styles, so that we may monitor and evaluate the performance of the model in the one-shot setting.

We therefore decided to generate a completely new dataset using the following procedure.

The first step was again to acquire chord charts. Instead of using the same chord charts as in Section 4.3.1, we chose to create a new set of synthetic ones. The main, purely practical motivation was that of complete control over the generation procedure, allowing to create a dataset that is balanced and diverse at the same time. The same cannot be easily achieved with existing BIAB files, as the closed file format effectively prevents automatic analysis and manipulation. Moreover, using a fully synthetic dataset enabled us to release it publicly for reproducibility and to foster future research on musical styles.

We obtained the chord charts by sampling from a chord language model (LM) estimated on the iRb corpus [START_REF] Broze | Diachronic changes in jazz harmony[END_REF], which contains chord charts of over a thousand jazz standards. This process resulted in 1200 chord charts of 252 bars each for training, plus another 2 × 600 chord charts of 16 bars each as a validation and test set, respectively. Details of this procedure can be found in Appendix A.1.

Finally, to generate the accompaniments, we picked 1476 MIDI styles from BIAB (their list can be found on the supplementary website) and reserved 20+20 of them for the validation and test set, respectively. All selected styles are in 4 4 or 12 8 time (i.e. with 4 beats per measure) and contain between 3 and 5 instruments, one of which is always drums. In this study, we treat the A and B substyles as separate styles, effectively doubling the number of styles in each part of the dataset. We used BIAB to render each generated chart in a few randomly chosen styles, so as to obtain about 500 measures of MIDI per style in each subset (train, val, test). We then split the files into fragments of 8 bars.

Experimental results

As in the style translation study, we test the model on our synthetic test set and the Bodhidharma dataset. Additionally, we subjected Bodhidharma to a kind of dynamic range compression by standardizing the velocity values in each segment, then scaling and shifting them to match the mean and variance computed on the training data; this is to compensate for a skewed distribution of velocity annotations in this dataset. Note that both Bodhidharma and the synthetic test set contain styles unseen during training, and hence test the one-shot style transfer capabilities (i.e. the generalization to new styles).

We construct triplets (A S , B T , A T ) from the synthetic test set in the same way as during training. On Bodhidharma, where targets are not available, we form input pairs (A S , B T ) by choosing B T randomly (with replacement) from the entire dataset.

The model is tested in both the greedy decoding mode and the sampling mode with τ = 0.6 (observed to yield good results in preliminary experiments on the validation set).

For comparison, we also evaluate the following trivial systems:

• cp-content: copies the content input to the output; expected to have perfect performance on content preservation, but poor on style fit. This is the same as the 'source' baseline in the style translation study.

• cp-style: copies the style input to the output; expected to have perfect performance on style fit, but poor on content preservation (similarly to the 'random' baseline in the style translation study, since the style input is chosen independently of the content input).

• oracle: retrieves the 'ground-truth' target-style segment generated by BIAB, if available; this should provide a more realistic upper bound on all metrics.

Evaluating cp-content for style fit presents two pitfalls. The first is that the content inputs for one target style may themselves have several different styles. To avoid conflating them, we aggregate the style profiles over each of them separately; we then have one data point for each source-target style pair. The second problem is that, as the content input may contain a different set of instruments than the target, we do not know which reference to use for each track. For this reason, we evaluate each track of the content input against each track of the target style and report the maximum value for each target-style track.

We note that a direct comparison of our approach with prior style conversion work (including our own style translation study) is unfortunately not possible. The main reason is that a style translation system cannot be conditioned on unseen styles since it has no style encoder.

In the rest of this section, we present the main evaluation results and an ablation study, provide some observations about practical use of the proposed system, evaluate the proposed style similarity metrics, and explore the properties of the style embedding space.

Evaluation results

We evaluate our model using the metrics described in Section 4.2, computed in the macro and nano versions. First, we present in Fig. 4.11 the results on the synthetic test set.

In terms of the content preservation metric, Groove2Groove achieves perfect results (on par with oracle), and the gap with respect to cp-style is large. Even though on style fit metrics (macro version), Groove2Groove is not able to reach the performance of oracle or cp-style (close to 1), it scores higher than cp-content. This means that the output is, on average, closer to the target style than the content input, and hence the style transfer is at least partly successful. The large range of values of cp-content is explained by the fact that the content input may (or may not) already be in a style which is similar to the target.

We may notice that the performance of Groove2Groove on the onset-duration metric is considerably lower than on the other style fit metrics, which suggests that it does not model note duration well. However, note duration is arguably perceptually less important than other features (in particular, those related to onset time and pitch).

The two decoding modes of our model (greedy and sampling) achieve similar results on all metrics, but the sampling mode consistently performs slightly better on style fit. This is not unexpected, given the fact that greedy decoding always picks the most likely event, whereas sampling draws events randomly from the learned conditional distribution. This means that sampling should allow the model to better cover the distribution of features of the style, leading to a higher score on our metrics. We now turn to the results on the Bodhidharma dataset. In this case, we need to use the nano style fit metrics (as explained in Section 4.2). To allow for comparison, we compute the nano metrics on both datasets (synthetic and Bodhidharma) and display the results alongside in Fig. 4.12. First of all, we can see the style metrics drop and become more 'blurred' with respect to their macro versions (Fig. 4.11). For example, on the synthetic dataset, oracle decreases from 1.00 to 0.75 on average on time-pitch, and Groove2Groove (sampling) drops from 0.84 to 0.62; moreover, sampling no longer seems consistently better than greedy decoding on either dataset. This is probably due to the fact that a single 8bar example cannot capture how the characteristic patterns of the style manifest in all the different contexts (i.e. in different chord progressions); this will often lead to mismatching style profiles, and therefore noisy results.

On Bodhidharma, the scores are generally substantially lower than on the synthetic test set, which indicates that the dataset is more challenging for our model. The performance of cp-content on style fit metrics is lower as well; this means that the differences between styles in this dataset are larger, making the task more difficult. However, our model still beats the baselinescp-style on the content preservation metric and cp-content on the style fit metrics -the former being outperformed by a large margin.

One other factor to consider when reading the results is that Bodhidharma contains full arrangements including melodies, as well as polyphonic music. This leads to the following issues which may, in part, also be responsible for the different results between the synthetic test set and Bodhidharma:

1. When presented with a melody line as its style input, Groove2Groove -being trained on accompaniments -will instead attempt to generate a pseudoaccompaniment track in the style of the melody. Such tracks are generally unwanted and should, in practical applications, be removed in a manual pre-or post-processing step.

2. The additional (non-accompaniment) tracks in the content input can make the reference chroma features more noisy, which could contribute to the drop in the content preservation metric.

User perspective

Upon listening to the outputs, we note that they are, for the most part, musically meaningful, and follow the harmony of the content input very accurately (this is true even on the Bodhidharma dataset, despite the somewhat lower content preservation values). They also generally match the overall 'feel' of the target style, especially the rhythmic feel, pitch ranges and voicing types of the different tracks, but sometimes fail to reproduce some of the exact patterns characteristic for the style. We also observe that the outputs produced by random sampling tend to sound more interesting than those resulting from greedy decoding, which are often too simplistic and do not capture the real variability of the target style. This is consistent with the results in Fig. 4.11. We also note that for best results, human selection and/or pre-processing of the inputs is often required. Firstly, entire pieces cannot be used as style inputs; instead, one needs to select a short segment (ideally 8 bars), and not every such segment is equally representative of the style of the piece. Secondly, as mentioned in the previous section, some tracks should usually be excluded from the style input (or, equivalently, the output) because they are not part of the accompaniment. This is also true for heavily interdependent tracks (e.g. instruments playing in unison or creating parallel harmonies), which, if generated independently, will not have the desired effect.

Finally, to create a complete arrangement (cover), the generated accompaniment needs to be, at the least, combined with the melody of the content input. Even though it is conceivable to extract the melody automatically, it is a nontrivial task that lies outside the scope of our work.

Ablation study

Compared to our style translation work, Groove2Groove adds the ability to generate drums and to model velocity. In this section, we attempt to answer the question whether these additional tasks affect the performance of the model in other areas. To this end, we perform an ablation study where we re-train and evaluate the model while: is the full Groove2Groove model; 'none' models neither drums nor velocity. ∆ stands for the ∆-encoding. All models are evaluated in sampling mode. The synthetic test set uses macro metrics as in Fig. 4.11, Bodhidharma uses nano metrics as in Fig. 4.12. © 2020 IEEE.

Fig. 4.13 (four leftmost bars in each group) shows the results on three selected metrics on both of our test sets. Firstly, removing the capability to generate drums obviously causes the onset-drum metric to become undefined. However, it slightly improves the performance on the other metrics as the task becomes simpler.

Similarly, eliminating velocity seems to slightly improve the performance on the metrics unrelated to velocity (onset-duration and onset-drums). This may be explained by the fact that removing the velocity tokens makes the sequences shorter, reducing the length of the context that needs to be considered by the decoder, and hence making the problem easier overall.

In terms of the onset-velocity metric, the velocity-enabled models outperform the velocity-free ones on both datasets (although the latter still yield relatively good results thanks to our heuristic, which copies the average velocity from the style input).

We are also interested in validating our proposed beat-relative encoding (see Section 4.4.1), designed to overcome the limitations of representing timing as time differences between consecutive events. For this reason, we include in our ablation study a version of the Groove2Groove model which employs this latter strategy, which we will refer to as the ∆-encoding. In practice, this means that all SetTime and SetTimeNext tokens are replaced with TimeShift tokens.

The results, displayed in Fig. 4.13 as the rightmost bar in each group, show that the ∆-encoding is mostly outperformed by the beat-relative encoding. On inspection, we confirm that the outputs generated with the ∆-encoding are prone to rapidly accumulating timing errors (as already observed in Section 4.3.2). This frequently results in the individual output tracks getting completely desynchronized from the content input, as well as from each other. On the other hand, tracks generated with the beat-relative encoding are mostly rhythmically coherent, even with high sampling temperatures.

Style interpolation

The learned style embedding space enables us to blend styles by linearly interpolating their embeddings. We sampled 100 pairs of bass tracks from the synthetic test set and encoded them using the style encoder to obtain their respective embeddings. For each embedding pair σ 0 , σ 1 , we conditioned the decoder, in turn, on vectors of the form (1 -α) • σ 0 + α • σ 1 for α evenly spaced between 0 and 1. Each time, we ran the model over a batch of 20 content inputs in greedy decoding mode and computed the style similarities of the outputs to those obtained at the endpoints σ 0 , σ 1 (i.e. for α = 0, 1). Fig. 4.14 shows the results as a function of α. Interestingly, the similarity curves in (a) are rather monotonic, yet staircase-like (with continuous but steep transitions). This suggests that the style space is divided into soft regions with little internal variation (manifesting as plateaux in the plots), and that regions closer to each other correspond to more similar styles. Plot (b) in Fig. 4.14 then displays the behavior on average, showing that, consistently with the above observations, the similarity to the initial style decreases with increasing α.

Example outputs from this experiment are provided on the supplementary website.

Style embedding visualization

To further explore the properties of the style embedding space, we visualize in Fig. 4.15 embeddings of segments from the Bodhidharma dataset, using PCA followed by t-SNE [START_REF] Maaten | Visualizing data using t-SNE[END_REF] for dimensionality reduction. Since the style embeddings encode the characteristics of individual tracks, we may expect the embedding space to be primarily clustered by instrument. This is confirmed by plot (a), showing that drums and bass are clearly separated from the rest. Other instruments do not form such clear-cut clusters, arguably because a single instrument may have different functions (e.g. playing chords vs. melody).

Plots (b) and (c) then show the distributions of genres for two selected instrument groups. Even though there are no pronounced clusters, we can observe that the individual genres are fairly localized.

Conclusion

We have proposed an approach to accompaniment style conversion based on supervised learning from synthetic data, focusing first in Section 4.3 on the accompaniment style translation task. Although restricted to bass-and-piano accompaniments in 70 selected styles, it has allowed us to demonstrate that with the right kind of training data, supervised machine translation methods can be applied to music with success, even generalizing to inputs in styles unseen during training.

We then extended this approach in Section 4.3 to address our ultimate goal of one-shot style transfer while mitigating some of the flaws observed in the style translation experiments.

Nevertheless, some limitations remain. Possibly the most important shortcoming of our one-shot style transfer system, Groove2Groove, is the fact that it is limited to accompaniments and does not account for interaction between different instruments. This arises from the nature of the synthetic training data, which is generated purely from chord charts and without strong inter-track dependencies. An approach capable of overcoming this limitation will likely need to be able to take advantage of the available non-parallel 'real-world' music data by means of unsupervised or semi-supervised learning (possibly still using parallel synthetic data for partial supervision). It will also need to employ a model capable of generating all tracks jointly -without strong independence assumptionsin order to capture the interactions between them; this is in principle possible (as shown e.g. by [START_REF] Roberts | A hierarchical latent vector model for learning long-term structure in music[END_REF], [START_REF] Payne | [END_REF], [START_REF] Thickstun | Coupled recurrent models for polyphonic music composition[END_REF]), albeit more computationally demanding, as already discussed in Section 4.4.1.

In addition to inter-track ('vertical') dependencies, long-range temporal ('horizontal') dependencies are also of great importance in music generation. The patterns used in a musical piece typically do not stay the same over the duration of the piece, but vary between sections. To model such dependencies, it is necessary to consider the context of the whole piece instead of only 8 measures at a time, which constitutes another scaling problem.

Moreover, it is apparent that there is, generally speaking, still room for improvement in the quality of the outputs -in particular, in the generalization to novel styles. This suboptimal one-shot generalization capability may be due to an insufficient number of styles in the training set (in spite of our efforts to make this number as large as possible) or a discrepancy between BIAB styles and the test inputs (which likely exists, despite BIAB styles being fairly realistic and diverse). We believe that both problems may be alleviated by training at least partially on open-domain, non-BIAB data as outlined above.

Lastly, the applicability of Groove2Groove is limited by the fact that it works with symbolic music only. An extension capable of processing audio inputs, or even producing audio end-to-end, would certainly be interesting and is left as another natural next step. 

Positional encodings for music generation

Sections 5.1.1, 5.1.2, 5.2 and 5.3 in this chapter are based on the paper ⟨ICML2021⟩ by Liutkus, Cífka (equal contribution) et al.

In Chapter 4, we identified the need to develop models capable of jointly generating multiple tracks in order to capture inter-track dependencies, as well as handling longer temporal contexts. This involves scaling up the input size and model capacity, a difficult challenge and an interesting problem in itself. One of the obstacles is that more powerful models like Transformers, which have a better ability to model complicated dependencies and have recently become the tool of choice for music generation, also come with increased computational complexity, which becomes prohibitive for very long sequences.

For this reason, we make a detour from style transfer in this chapter in order to study music generation using the recently proposed linear complexity Transformers (see Section 5.1.1 below) with particular focus on positional encoding schemes.

After some background (Section 5.1), we present in Section 5.2 our main, theoretical contribution of this chapter: stochastic positional encoding (SPE), a novel positional encoding (PE) scheme that addresses a fundamental incompatibility between linear complexity Transformers and relative positional encoding (RPE). We experimentally validate the proposed technique on music generation in Section 5.3 (with additional experiments on non-music tasks included in Appendix A.2). In Section 5.4, we follow up with some preliminary results on how PE may be better exploited for music generation by making it encode more musically meaningful information. Section 5.5 concludes the chapter.

Background

Linear complexity Transformers

The Transformer model [START_REF] Vaswani | Attention is all you need[END_REF] has been described in Section 3.1.2. We recall here Eqs. (3.4) and (3.5), expressing the computation of Transformer (self-)attention from queries Q, keys K and values V:

Attention(Q, K, V) = [︄ ∑︁ N n=1 exp(e mn )v n ∑︁ N n ′ =1 exp(e mn ′ ) ]︄ m , e mn = q ⊤ m k n /︂√ D .
Defining the (unnormalized) attention matrix A = [a mn ] mn as A ≡ [exp(e mn )] mn = exp where 1 N is an all-ones vector of length N . The multiplication by S -1 is simply a way to express row-wise normalization (division by row sums) of A. [START_REF] Tsai | Transformer dissection: An unified understanding for transformer's attention via the lens of kernel[END_REF] and [START_REF] Choromanski | Rethinking attention with Performers[END_REF] introduce a generalization where A is expressed in terms of a kernel function K : R M × R N → R + :

A = [K(q m , k n )] mn .
(5.4)

In the original Transformer [START_REF] Vaswani | Attention is all you need[END_REF], we have, according to Eq. (5.1):

K(q, k) = exp (︂ q ⊤ k /︂√ D )︂
.

(5.5)

Other choices of K are possible, yielding different variants of the Transformer as in [START_REF] Choromanski | Rethinking attention with Performers[END_REF] and [START_REF] Katharopoulos | Transformers are RNNs: Fast autoregressive transformers with linear attention[END_REF].

The original Transformer architecture explicitly computes the attention matrix A, leading to a O(M N D) complexity (quadratic in the case of self-attention, where M = N ), which prevents it from scaling to very long sequences. Although this is not necessarily a problem when sequence lengths are barely on the order of a few hundreds, as in some language processing tasks, it is prohibitive for very large signals like high-resolution images or audio.

Focusing on this scalability issue, several approaches have been recently investigated to allow for long sequences:

• Attention clustering schemes group items among which dependencies are computed through regular attention. This is either done by using simple proximity rules within the sequences, leading to chunking strategies [START_REF] Dai | Transformer-XL: Attentive language models beyond a fixed-length context[END_REF], or by clustering the keys and values [START_REF] Roy | Efficient content-based sparse attention with routing Transformers[END_REF].

Inter-cluster dependencies are either ignored or summarized via fixed-length context vectors that are coined in as memory [Wu et al., 2020].

• Assuming the attention matrix to be sparse. In this case, only a few a mn are nonzero [START_REF] Child | Generating long sequences with sparse Transformers[END_REF].

• Assuming A has a particular (low-rank) structure and can be decomposed as the product of two smaller matrices. A prototypical example is the Linformer [Wang et al., 2020a], which is limited to fixed-length inputs. Another very recent line of research in this same vein takes: (5.6) where ϕ : R D → R R is a non-linear feature map applied to each key k n and query q m , and R ≪ min(M, N ) [START_REF] Shen | Efficient attention: Attention with linear complexities[END_REF][START_REF] Katharopoulos | Transformers are RNNs: Fast autoregressive transformers with linear attention[END_REF].

A ≈ ϕ(Q)ϕ(K) ⊤ ,
• When K in Eq. (5.4) is a positive (semi-)definite kernel, the Performer [START_REF] Choromanski | Rethinking attention with Performers[END_REF] leverages reproducing kernel Hilbert spaces to show that a random ϕ may be used to exploit this convenient decomposition (5.6) on average, even when A is not low rank:

K ⪰ 0 ⇔ A = E ϕ [︂ ϕ(Q)ϕ(K) ⊤ ]︂ , (5.7)
where ϕ is drawn from a distribution chosen based on K.

A simple example is ϕ W (k n ) = max(0, Wk n ), with a random W ∈ R R×D for some R ∈ N.
In schemes like (5.6) and (5.7), the improved time and space complexity comes from the fact that the outputs can be obtained efficiently without computing the attention coefficients a mn :

Attention(Q, K, V) ≈ S -1 [︂ ϕ(Q) [︂ ϕ(K) ⊤ V ]︂]︂ ,
(5.8)

S = diag (︂ ϕ(Q) [︂ ϕ(K) ⊤ 1 N ]︂)︂
.

(5.9)

Notice that the multiplication ϕ(K) ⊤ V has time complexity O(N RD) and the result has dimensions R×D (independent of the input length). The whole attention mechanism then has time complexity

O((M + N ) RD) instead of O(M N D) and space complexity O(M R + N R + N D + RD) instead of O(M N + (M + N ) D).
Hence, we avoid the M N term and obtain a linear complexity Transformer.

Relative positional encoding

Relative positional encoding (RPE, [START_REF] Shaw | Self-attention with relative position representations[END_REF]) has already been mentioned in Section 3.1.2. The corresponding attention matrix can be written as follows: Although RPE is beneficial for performance [START_REF] Shaw | Self-attention with relative position representations[END_REF], Dai et al., 2019[START_REF] Tsai | Transformer dissection: An unified understanding for transformer's attention via the lens of kernel[END_REF], we are only aware of implementations that either require the computation of A, and clustered attention schemes, which in fine decompose A into smaller attention matrices, and compute them. This is in sharp contrast to Eqs. (5.8) and (5.9), which never compute the attention matrix.

A = exp (︂(︂ QK ⊤ + Ω )︂/︂√ D )︂ , (5.10) Ω = [︄ D ∑︂ d=1 q md P d (m -n) ]︄ mn , ( 5 

Music generation with Transformers

Recent years have seen increasing amounts of work on applying Transformers to music generation [Huang et al., 2019a[START_REF] Payne | [END_REF], Donahue et al., 2019a[START_REF] Jiang | Transformer VAE: A hierarchical model for structure-aware and interpretable music representation learning[END_REF][START_REF] Huang | Pop music Transformer: Beat-based modeling and generation of expressive pop piano compositions[END_REF][START_REF] Wu | The Jazz Transformer on the front line: Exploring the shortcomings of AI-composed music through quantitative measures[END_REF][START_REF] Muhamed | Symbolic music generation with Transformer-GANs[END_REF], largely motivated by the well-known ability of the self-attention mechanism to model long-range dependencies. To make scaling to longer sequences computationally feasible, some works [Donahue et al., 2019a[START_REF] Huang | Pop music Transformer: Beat-based modeling and generation of expressive pop piano compositions[END_REF][START_REF] Wu | The Jazz Transformer on the front line: Exploring the shortcomings of AI-composed music through quantitative measures[END_REF]] have adopted Transformer-XL [START_REF] Dai | Transformer-XL: Attentive language models beyond a fixed-length context[END_REF], a variant of the Transformer enhanced with a recurrence mechanism. This model allows training on arbitrarily long sequences, but only a fixed-length past context is available through the self-attention mechanism. Due to this property, it also needs to be used together with relative attention (RPE).

MIDI-like token-based representations, such as the one used in Section 4.3, seem to be the most popular output format [Huang et al., 2019a[START_REF] Payne | [END_REF], Donahue et al., 2019a]. [START_REF] Huang | Pop music Transformer: Beat-based modeling and generation of expressive pop piano compositions[END_REF] observe the same issues with regular rhythms as we did in Section 4.3.2, and propose REMI (revamped MIDIderived format). In a similar spirit to our beat-relative encoding from Section 4.4.1, REMI has Bar events that mark a downbeat (the start of a new bar) and Position events that indicate the offset from the last downbeat.

Regarding PE, the vast majority of works use absolute (APE) or relative (RPE) positional encoding based on token indices as usual. Huang et al. [2019a] employ a generalized, relation-aware variant of RPE [START_REF] Shaw | Self-attention with relative position representations[END_REF], encoding the time and pitch difference between two notes in addition to the difference between token indices. This is found to improve performance, but comes with an increased computational cost; this is likely why the authors only use this technique in the first layer of the network. To our knowledge, this is the only existing music generation work where PE is based on other kinds of information than solely token indices.

Stochastic positional encoding -theory

We now introduce our stochastic positional encoding (SPE), a novel positional encoding scheme designed to generalize RPE (Section 5.1.2 above) while being compatible with linear complexity Transformers (Section 5.1.1 above). A key idea for SPE is to draw a connection between positional encoding and crosscovariance structures of correlated random processes, as we will explain in the following. This will allow us to design a way to augment keys and queries in the attention mechanism so that a given relative positional pattern arises when they are multiplied together. Note that in all our experiments, we will work with regularly sampled sequences, i.e. T = N, but more settings are possible, such as irregularly sampled time series (T = R) or images (T = N 2 ). Also, we will only operate in the selfattention setting (as opposed to encoder-decoder attention), where the 'input' and 'output' sequence are the same (N = M = {1, . . . , N }) and the indices n, m simply pertain to keys {k n } n∈N and queries {q m } m∈N , respectively, computed based on this sequence.

Assumptions. We seek an attention matrix A given by: (5.12) where {P d } D d=1 are position kernels. Defining P d ≡ [P d (m, n)] mn , this can be written in matrix form as:

A = exp ⎛ ⎝ [︄ D ∑︂ d=1 q md P d (m, n)k nd ]︄ mn /︄ √ D ⎞ ⎠ ,
A = exp (︄ D ∑︂ d=1 diag(q * d )P d diag(k * d ) /︂√ D )︄ , (5.13)
which is understood as having D positional attention templates P d jointly activated by the queries q * d and keys k * d . Note that while original RPE in Eqs. (5.10) and (5.11) is different from this formulation, it can be seen as a special case where some entries are kept constant.

Positional attention as covariance. The key idea for SPE is to see the position kernel P d (m, n) as a covariance: (5.14) where Q ¯d(m) and K ¯d(n) are two real-valued random variables, which will be chosen with the single condition that their covariance function matches P d . Semantically, they should be understood as (randomly) encoding position m for queries and position n for keys, respectively. When multiplied together as in dot-product attention, they yield the desired attention template P d (m, n) on average. The central intuition is that the actual positional encodings do not matter as much as their dot product.

(∀M, N ) (∀m, n) P d (m, n) = E [︂ Q ¯d(m)K ¯d(n) ]︂ ,
In what follows, we will impose specific structures on the cross-covariance P d (m, n), which will allow us to design random processes Q ¯d = {Q ¯d(m)} m∈M and K ¯d = {K ¯d(n)} n∈N such that (5.14) holds. The core advantage of this construction is to allow for P d to be factorized. Let us for now assume that we construct Q ¯d, K ¯d in such a way that we can sample from them (we will see how in Section 5.2.1) and consider R independent realizations of them for given M and N , gathered in the M × R and N × R matrices Q ¯d and K ¯d, respectively:

Q ¯d ∼ [Q ¯d(m)] mr , K ¯d ∼ [K ¯d(n)] nr .
(5.15)

For large R, by the law of large numbers, we obtain:

P d ≈ Q ¯dK ¯⊤ d /︂
R .

(5.16)

This leads to A in Eq. (5.13) being given by:

A ≈ exp ⎛ ⎝ D ∑︂ d=1 diag(q * d ) Q ¯dK ¯⊤ d R diag(k * d )/ √ D ⎞ ⎠ (5.17) ≈ exp (︄ D ∑︁ d=1 diag(q * d )Q ¯d)︄(︄ D ∑︁ d=1 diag(k * d )K ¯d)︄ ⊤ R √ D .
(5.18)

Here, a crucial observation is that for large R, the cross-terms Q ¯dK ¯⊤ d ′ ̸ =d are negligible due to independence, provided that the processes are zero-mean. Finally, picking queries and keys as: (5.20) we see from Eqs. (5.18) to (5.20) that we get back to the usual multiplicative scheme (5.4) with A = exp(Q ˆK ˆ⊤/ √ R), where the queries/keys now have dimension R and can be used in Eq. (5.8) to directly obtain the outputs without computing A.

Q ˆ← D ∑︂ d=1 diag(q * d )Q ¯d/︂ 4 √ DR , (5.19) K ˆ← D ∑︂ d=1 diag(k * d )K ¯d/︂ 4 √ DR ,
The procedure is summarized in Algorithm 1: we provide a way (5.19-5.20) to achieve PE in the keys domain, such that the desired model (5.12) is enforced in the attention domain, parameterized by the attention kernels P d . Interestingly, this is done without ever computing attention matrices, complying with linear complexity Transformers. The remaining challenge, which we discuss next, is to generate Q ¯d and K ¯d enforcing Eq. (5.16).

Algorithm 1 Stochastic Positional Encoding. Input:

• position kernel P(m, n), number of replicas R.

• initial M × D and N × D queries Q and keys K. Positional encoding:

• Draw the D independent tuples {(Q ¯d, K ¯d)} d of M × R and N × R matrices as in Section 5.2.1. • Set Q ˆand K ˆas in Eqs. (5.19) and (5.20).

Inference: Compute outputs Y with a linear complexity Transformer as in Eqs. (5.8) and (5.9), i.e.:

S ← diag (︂ ϕ(Q) [︂ ϕ(K) ⊤ 1 N ]︂)︂ , Y ← S -1 [︂ ϕ(Q) [︂ ϕ(K) ⊤ V ]︂]︂ .

Drawing stochastic positional encodings

Inspecting (5.14), we notice that our objective is to draw samples from D pairs of centered random processes {Q ¯d, K ¯d} d with a prescribed cross-covariance structure P d . It is reasonable to use Gaussian processes for this purpose [START_REF] Williams | Gaussian processes for machine learning[END_REF], which have the maximum entropy for known mean and covariance. Such distributions are frequently encountered in geophysics in the cokriging literature [Matheron, 1963, Genton and[START_REF] Genton | Cross-covariance functions for multivariate geostatistics[END_REF], where scientists routinely handle correlated random fields. The particular twists of our setup are: we have a generative problem, e.g. as in [START_REF] Vořechovský | Simulation of simply cross correlated random fields by series expansion methods[END_REF]; however, as opposed to their setting, we are not directly interested in the marginal covariance function of each output, provided that the desired cross-covariance structure holds.

The most straightforward application of SPE arises when we pick P d (m, n) = P d (m -n), i.e. a stationary position kernel, which was coined in as choosing relative attention in [START_REF] Shaw | Self-attention with relative position representations[END_REF] and boils down to enforcing a Toeplitz structure for the cross-covariance matrix

P d ≡ [P d (m -n)] m,n between Q ¯d and K ¯d.
We propose two variants of SPE to handle this important special case, illustrated in Fig. 5.1. The first variant yields periodic covariance functions. It can be beneficial whenever attention should not vanish with large lags, e.g. as in traffic prediction [START_REF] Xue | TRAILER: Transformer-based time-wise long term relation modeling for citywide traffic flow prediction[END_REF]. The second variant generates vanishing covariance functions; a concept which has recently been shown useful [START_REF] Wang | On position embeddings in BERT[END_REF].

Variant I. Periodic attention (sineSPE).

In our first approach, we consider the case where P d is periodic, which gets a convenient treatment. We assume:

P d (m, n) = K ∑︂ k=1 λ 2 kd cos(2πf kd (m -n) + θ kd ) , (5.21)
where K ∈ N is the number of sinusoidal components and

f d ∈ [0 1] K , θ d ∈ [-π π] K
and λ d ∈ R K gather their K frequencies, phases, and weights, respectively. By using the matrix notation, we can rewrite (5.21) as: (5.22) where v [

P d = Ω(M, f d , θ d ) diag (︂ λ d ¨)︂2 Ω(N , f d , 0) ⊤ ,
¨≡ [︂ v ⌊p/2⌋ ]︂ p ∈ R 2K denotes a twice upsampled version of a vector v ∈ R K , ⌊•⌋
Ω (I, a, b)] nl = ⎧ ⎨ ⎩ cos(2πa k n + b k ) if l = 2k sin(2πa k n + b k ) if l = 2k + 1
It can be shown that if θ d = 0 and M = N , we get back to the (unique) Vandermonde decomposition for positive definite Toeplitz matrices1 [START_REF] Yang | Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution[END_REF], which boils down in our context to assuming that (∀τ ) P d (0) ≥ P d (τ ). Since this is not always desirable, we keep the more general (5.22).

At this point, we can easily build Q ¯d and K ¯d. We draw a 2K × R matrix Z d with independent and identically distributed (i.i.d.) Gaussian entries of unit variance, and define:

Q ¯d ← Ω(M, f d , θ d ) diag (︂ λ d ¨)︂Z d /︂√ 2K ,
(5.23)

K ¯d ← Ω(N , f d , 0) diag (︂ λ d ¨)︂Z d /︂√
2K .

(5.24)

It is easy to check that such a construction leads to (5.16). Its parameters are {f d , θ d , λ d } d , which can be trained through stochastic gradient descent (SGD) as usual.

Variant II. Vanishing attention with regular sampling (convSPE). Due to their periodic structure, the covariance functions generated by Variant I are non-vanishing. Yet, our framework is flexible enough to allow for vanishing covariance structures, which may be more desirable depending on the application [START_REF] Wang | On position embeddings in BERT[END_REF].

As opposed to Variant I, where we imposed a specific structure on P d , we will now follow an indirect approach, where P d will be implicitly defined based on our algorithmic construction. In this case, we assume that the signals are regularly sampled (typical in e.g. text, images, audio), and we will exploit the structure of Gaussian random matrices and basic properties of the convolution operation.

For ease of notation, we assume self attention, i.e. M = N . Let {Φ Q d , Φ K d } d denote a collection of filters, which will ultimately be learned from training data. The size and the dimension of these filters can be chosen according to the input data (i.e. can be vectors, matrices, tensors). We then propose the following procedure, which leads to a Toeplitz P d by means of convolutions: • We first draw an M ×R random matrix Z d with i.i.d. standard Gaussian entries. For multidimensional signals, Z d gathers R random vectors, matrices, cubes, etc.

• The desired Q ¯d and K ¯d are obtained by convolving Z d with respective filters Φ Q d and Φ K d : (5.25) where * denotes convolution with appropriate dimension (e.g. 1D, 2D or 3D). Using convolutions with finite filters ensures vanishing covariance (see the appendix of ⟨ICML2021⟩ for a proof).

Q ¯d = Z d * Φ Q d , K ¯d = Z d * Φ K d ,
Due to the independence of the entries of Z d , for large R, the product Z d Z ⊤ d /R will tend to the identity matrix. Given the fact the convolution operations in (5.25) can be equivalently expressed as a multiplication by triangular Toeplitz matrices constructed from the respective filters, it can be shown that, as R → ∞, Q ¯dK ¯⊤ d /R tends to the product of two triangular Toeplitz matrices. Hence, by using the properties of triangular Toeplitz matrices (cf. Kucerovsky et al. [2016, Theorem 2.4]), we conclude that, as R → ∞, our construction yields a Toeplitz matrix P d as desired. This approach is parameterized by the filters {Φ Q d , Φ K d } d , which will be learned from training data through SGD.

The variety of attention patterns P(m -n) that can be obtained directly depends on the kernel sizes, which is a classical result from signal processing [START_REF] Vetterli | Foundations of signal processing[END_REF]. Cascading several convolutions as in the VGGNet [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]] may be a convenient way to augment the expressive power of this convolutional SPE variant.

From a more general perspective, the two operations in (5.25) can be understood as producing PE through filtering white noise. Other classical signal processing techniques may be employed, such as using infinite impulse response filters. Such considerations are close to the ideas proposed by [START_REF] Engel | DDSP: Differentiable digital signal processing[END_REF].

To summarize, the core difference between the two proposed constructions (5.23-5.24) and (5.25) lies in the behaviour of RPE beyond a maximum lag, implicitly defined through the frequencies f d for (5.23-5.24) and through the sizes of the filters for (5.25). While the sinusoidal construction leads to a periodic RPE, the filtering construction leads to a vanishing RPE. Both may be the desired option depending on the application.

Gating and sharing

Although RPE and the generalization (5.13) we propose are novel and efficient strategies to handle position information, it may be beneficial to also allow for attention coefficients that are computed without positional considerations, simply through q ⊤ m k n . As a general gating mechanism, we propose to weight between positional and non-positional attention through a gate parameter δ d ∈ [0 1]:

P d ≡ [δ d + (1 -δ d )P d (m, n)] m,n .
(5.26)

This gating scheme can be implemented simply by augmenting Q ¯d and K ¯d generated as above through:

q ¯d,m ← √︂ 1 -δ d q ¯d,m + √︂ δ d ϵ d , (5.27) k ¯d,m ← √︂ 1 -δ d k ¯d,m + √︂ δ d ϵ d , (5.28) 
where ϵ d ∈ R R in Eqs. (5.27) and (5.28) is the same and has i.i.d. standard Gaussian entries.

In practice, we can share some SPE parameters across the network, notably across layers, to strongly reduce computing time and memory usage. In our implementation, sharing means generating a single instance of Q ¯and K ¯for each head, on which a layer-wise gating is applied before Eqs. (5.19) and (5.20). This is illustrated in Fig. 5.1.

Stochastic positional encoding -experimental results

In this section, we present experiments studying the performance of the proposed SPE on music generation.

Besides these experiments, we also include in Appendix A.2 results on the Long-Range Arena (LRA) benchmark [START_REF] Tay | Long Range Arena: A benchmark for efficient Transformers[END_REF], consisting of text and image classification tasks. On this benchmark, SPE tends to perform comparably to absolute positional encoding, with the sinusoidal variant bringing a considerable performance boost on one task.

The companion website2 for SPE contains listening examples, as well as a link to the source code. See also Appendix C for a complete list of available resources.

Accompaniment continuation

This section presents an updated and extended version of the accompaniment continuation results from ⟨ICML2021⟩.

In this experiment, we evaluate Performers [START_REF] Choromanski | Rethinking attention with Performers[END_REF] with different positional encodings on an accompaniment continuation task. Similar to the accompaniment style transfer task from Section 4.4, the model is given a short example of an accompaniment (a 'style input') and is expected to continue generating in the same style; however, there is no content input to guide the generation, and the model simply generates freely. This is achieved simply by training the model for unconditional generation, then priming it with a short prompt (2-bar musical fragment) and letting it generate a continuation. We then observe whether the generated continuation matches the style of the prompt.

This experiment is specifically designed to investigate training on relatively short sequences (512 tokens) and generalization beyond the training length. This also enables us to train the original Transformer architecture (computing the full attention matrix) in the same setting, allowing to perform a direct comparison of SPE and RPE.

Experimental setup

The models have 24 layers, 8 attention heads and d model = 512 and are trained on sequences of length N = 512, corresponding to 2-10 bars. At test time, the model is prompted with 2 bars in a style not seen during training and new tokens are sampled to complete the sequence to a length of 1024, i.e. twice the training length.

As a baseline, we include 'vanilla' Transformers/Performers, which add classical sinusoidal absolute positional encoding to the input (APE). The SPE-based models (sineSPE, convSPE) use layer-wise sharing and layer-specific gating. As an ablation experiment to investigate the importance of positional encodings in music generation, we include a Performer with no positional encoding (noPE).

On the Transformer side, we additionally include two variants of RPE, both of which are implemented exactly (without approximation) by modifying the computation of the attention matrix. First, the original RPE from Eqs. (5.10) and (5.11). Second, sineRPE, a sinusoidal version of RPE, where P d in Eq. (5.11) is obtained via our (learnable) sinusoidal scheme (5.21).

Training data

We use the synthetic dataset from Section 4.4.1. We only use the training section of the dataset and perform a custom training/validation/test split such that each section contains a unique set of BIAB styles (2761 for training and 50 each for validation and testing).

We convert each accompaniment to a trio consisting of bass, drums and another randomly selected accompaniment track (e.g. piano, guitar). We then perform random data augmentation by skipping measures at the beginning, dropping some of the instruments, and transposition.

Data representation

We use a representation similar to the beat-relative encoding from Section 4.4.1, but adapted to a multi-track setting, taking inspiration from Donahue et al. [2019a]. Specifically, we encode a piece of music as a sequence of the following types of event tokens, each with two integer arguments:

• NoteOn(track, pitch): Begins a new note at the given pitch (0-127).

• NoteOff(track, pitch): Ends the note at the given pitch (0-127).

• TimeShift(beats, offset): Advances current time by a given number of beats and then sets the offset within the beat, given as the number of ticks from its beginning (0-11). The maximum possible shift is (2, 0).

Results and discussion

We use the time-pitch, onset-duration and onset-drum metrics from Section 4.2 to quantify the similarity of the generated continuation to the style of the prompt. When listening to the generated music, we notice a drift in quality along time. For this reason, we divide each generated sample into four successive chunks based on token position and evaluate them separately.

The results are displayed in Fig. 5.2. In the Transformer experiments, both RPE and sineRPE stay close to sineSPE, which is encouraging and confirms the soundness of our proposal.

For positions up to 512, neither of the positional encodings seems to have a substantial advantage over the others. This is an interesting finding, especially in the case of noPE, suggesting that positional encoding is not particularly important here. While seemingly surprising, this is in agreement with the literature, e.g. [START_REF] Irie | Language modeling with deep Transformers[END_REF] and [START_REF] Tsai | Transformer dissection: An unified understanding for transformer's attention via the lens of kernel[END_REF], who found that removing positional encoding altogether in the decoder part of Transformer-based architectures only leads to a small drop in performance, and in some cases even a slight performance boost. This is explained by the fact that the causal masking, where the set of available keys strictly increases with query position, already provides a strong positional signal.

On the other hand, for positions exceeding the training length 512, the performance of APE drops sharply, while the other positional encodings are more stable (convSPE more so than sineSPE). This includes noPE, which achieves comparable or slightly better results than SPE.

To conclude, the experiment suggests that our proposed SPE behaves similarly to RPE on music generation, and in particular, it seems to inherit one of the celebrated advantages of RPE, its ability to generalize beyond training sequence lengths [Huang et al., 2019a]. On the other hand, we are able to obtain similar benefits by removing PE altogether. This raises the important question whether PE in general is beneficial at all -or even detrimental -in music and sequence generation. A more thorough investigation is needed to answer this question; we present follow-up results in this direction in Section 5.4. 

Pop piano music generation

This section presents the contribution of S.-L. Wu and Y.-H. Yang. The content is reproduced from ⟨ICML2021⟩ and edited with their permission. See the paper for more details.

In this section, we present another music generation experiment, this time scaling up to longer sequences (2048 tokens) and focusing on unconditional generation of solo piano music.

Experimental setup

In this experiment, Performers, again with 24 layers and 8 heads per layer, were trained on a dataset composed of 1747 pop piano tracks, encoded using REMI [START_REF] Huang | Pop music Transformer: Beat-based modeling and generation of expressive pop piano compositions[END_REF]. The models were trained with sequence length N = 2048, corresponding to ∼1 minute of music. 5 models are included, differing only in the PE strategy, namely baseline APE, as well as sineSPE and convSPE, with or without gating.

Results and discussion

For qualitative assessment, we first display in Fig. 5.3 one attention pattern for each PE model: APE and sineSPE/convSPE (gated), obtained as an average over 20 from-scratch generations for a chosen layer-head pair. More plots can be found in Fig. B.3 in the appendix. Interestingly, we notice that for early layers, APE attention does not go much beyond training sequence length; this would explain the poor extrapolation performance of APE observed in Section 5.3.1, as well as below. This behaviour is not found in SPE variants, which consistently attend to all positions. Another remarkable feature of the proposed model (only displayed in the appendix) is that gating visually disables PE altogether for some layers/heads, in which case attention is global.

Since the literature suggests that RPE improves generalization performance [START_REF] Shaw | Self-attention with relative position representations[END_REF][START_REF] Zhou | Improving generalization of Transformer for speech recognition with parallel schedule sampling and relative positional embedding[END_REF][START_REF] Rosendahl | Analysis of positional encodings for neural machine translation[END_REF], we display in Fig. 5 Figure 5.5 -PE evaluation metrics [START_REF] Wang | On position embeddings in BERT[END_REF] for the pop piano music generation task in the 1 st layer (lower is better), w.r.t. query positions. Training sequence length is 2048. Only query-key offsets <128 are considered here.

indicate how well the models predict the token at a certain position given the preceding tokens, for tracks in the validation set. As in Section 5.3.1, we notice that all SPE variants, especially ungated convSPE, behave much better than APE for token positions ≥2048. There is less difference between the different PEs for positions <2048, but gated convSPE seems to perform the best here, achieving slightly but consistently lower cross entropy values than APE.

Recently, [START_REF] Wang | On position embeddings in BERT[END_REF] defined metrics for the evaluation of PE, suggesting that translation invariance and monotonicity are desirable properties. Translation invariance states that the distance of two PEs should only depend on their relative position (i.e. be translation-invariant), while monotonicity states that neighboring positions should be assigned PEs that are close to each other, compared to faraway positions. Following their identical word probing methodology, these metrics are reported in Fig. 5.5. As expected, SPE variants greatly outperform APE in terms of translation invariance. This is not the case for monotonicity; still, SPE scores are remarkably stable across positions, contrarily to APE, which again rapidly degrades beyond the training length.

Metrical positional encoding

The experiments in the previous section seemed to suggest that PEs of either kind are not particularly beneficial for symbolic music generation using Transformers. However, one aspect that we omitted is the fact that the usual way PE is used in music generation is not musically meaningful. This is because in token-based representations, token indices do not have any obvious semantics besides determining order. In particular, the indices of two tokens generally do not convey any information about the delay between the corresponding musical events, and do not even allow to determine whether the events occur simultaneously or not. Hence, the question arises whether PE could be better leveraged by making it encode more musically relevant position information, e.g. metrical timing of events as in Huang et al. [2019a]. In this section, we propose an experiment that revisits this question.

Experimental setup

We train Linear Transformers3 [START_REF] Katharopoulos | Transformers are RNNs: Fast autoregressive transformers with linear attention[END_REF] for music generation. The networks are relatively large with 28 layers, 8 attention heads, d model = 1024 and a maximum sequence length of N = 1024. We compare the following: Even though SPE (especially the sinusoidal variant) is in principle capable of naturally handling irregularly sampled sequences as in (b), we unfortunately found it computationally infeasible in this context. This is mainly because each example in a training batch has a distinct index set N , which prevents sharing the same Q ānd K ¯within the batch, leading to high memory consumption. For this reason, we limit ourselves to APE (vanilla or timing-flavored) in this experiment.

We adopt the multi-track token-based representation from Section 5.3.1, but besides the beat-relative encoding of timing (with TimeShift(beats, offset) tokens), we alternatively use a ∆-encoding (as in Chapter 4) with tokens of the form TimeShift(delta), simply encoding the time differences between consecutive events. The basic time unit for both representations is a 12th of a beat.

Note that our proposal (b) is different from that of Huang et al. [2019a] (outlined in Section 5.1.3) in two key aspects. First, Huang et al. use RPE, which is not feasible with our large sequence length and model size;4 moreover, absolute timing carries additional information such as the offset within the current beat, which may help anchor the generated music to the metrical grid. Second, we do not encode token indices (unlike Huang et al., who encode both indices and timing information), as we have argued in Section 5.3.1 that this is not necessary.

Also note that neither MPE nor the beat-relative encoding provide any additional information about the metrical grid (since beats happen at regular intervals and the first beat is assumed to occur at time 0) compared to the other options we consider; what they do provide is simply a more explicit representation of this information.

We evaluate the trained models on a music continuation task as in Section 5.3.1. Specifically, we prime the model with a 16-beat prompt (4 bars assuming that the time signature is 4 4 ) and let it generate a continuation not exceeding the training length, employing nucleus sampling [START_REF] Holtzman | The curious case of neural text degeneration[END_REF] with p = 0.8 and softmax temperature τ = 0.9. We then measure the style similarity between the continuation and the song from which the prompt was extracted.

Training data and procedure

We use the 'full' version (LMD-full) of the Lakh MIDI Dataset5 [START_REF] Raffel | Learning-based methods for comparing sequences, with applications to audioto-MIDI alignment and matching[END_REF], containing 178 k MIDI files. As in Section 5.3.1, we obtain a dataset of trios by randomly choosing three tracks -drums, bass, other -from each file (here, however, the third track is not necessarily an accompaniment track). We train for 10 epochs (∼44 h on a Tesla V100 GPU) while applying similar data augmentation techniques as in Section 5.3.1. We also employ a form of curriculum learning [START_REF] Bengio | Curriculum learning[END_REF] where we gradually increase the length of the training sequences from 32 to 1024 for the first ∼3.4 epochs.

Results and discussion

As before, we use the metrics from Section 4.2 to quantify the style similarity of the generated continuation to the prompt. Because LMD includes files with mixed time signatures and files where downbeat (measure boundary) locations cannot be reliably identified, we modified the onset-duration and onset-drum metrics so that the onset time is now represented relative to the current beat and not the last downbeat. Our (preliminary) results on the validation set are shown in Fig. 5.6.

The ∆-encoding turns out to be very sensitive to the choice of PE: with APE, it scores the lowest of all setups on all three metrics, but with MPE, it scores the highest. The beat-relative encoding maintains relatively good performance for all three PEs, but is still outperformed by the ∆-encoding with MPE on 2 of the 3 metrics.

We notice two surprising results. Firstly, noPE tends to achieve better results than APE (always comparing results on the same metric and with the same tokenbased representation). This effect is especially strong with the ∆-encoding. This suggests that injecting token positions via APE is actually harmful in this case, perhaps acting mostly as noise that the network can easily get distracted by and/or overfit to.

Secondly, the beat-relative encoding, which appeared superior to the ∆-encoding in Section 4.4.2, does not yield the best results even when combined with MPE. We do not have a convincing explanation for this, but we speculate that, provided that metrical timing information is present in the input, it may be easier for the network to predict a simple relative time shift than to compute the next beat-relative position.

We also display in Table 5.1 the validation losses achieved by the different models. Interestingly, the results do not correlate with those in Fig. 5.6: all the values for APE and MPE are close to 0.613, with APE slightly lower -i.e. betterthan MPE; on the other hand, the value for noPE is considerably higher in both cases (0.6368, 0.6256). Hence, we can see that choices which clearly benefit generation, possibly by making 'errors' less likely to occur, do not necessarily make the learning task easier.

We would also like to remark that our objective metrics in Fig. 5.6 should not be taken as an absolute measure of output quality and that the ideal evaluation method is a subjective listening test. This is especially true here (as opposed to when working with synthetic BIAB data as in Chapter 4 and Section 5.3.1), since a good continuation might diverge significantly from the style of the prompt.

Listening to the generated outputs,6 we notice that all models are capable of imitating the style of the prompt almost perfectly, often copying the prompt only with small but meaningful variations. On the other hand, all of the models also occasionally enter an 'arhythmic state' and fail to produce any musically meaningful material, or quickly drop some of the instruments of the trio. (Note that the latter issue cannot be captured by our metrics, which evaluate each instrument separately.) These issues seem to be more common with ∆-encoding + APE/noPE than the other models.

Conclusion

In this chapter, we studied positional encodings (PEs) and their role in music generation using efficient Transformers. In Sections 5.2 and 5. We partly answered this question in Section 5.4, conducting an experiment which suggests that (i) conventional absolute PE, encoding token indices, can be detrimental for music generation compared to no PE, and (ii) absolute PE which encodes metrical time instead of indices (called here metrical positional encoding) is beneficial to at least the same extent as token-based representations that explicitly encode the metrical grid. It will be interesting to see whether these results generalize to architectures like Transformer-XL [START_REF] Dai | Transformer-XL: Attentive language models beyond a fixed-length context[END_REF], which rely on RPE, and how metrical PE behaves together with -and compares to -more sophisticated token-based representations like REMI [START_REF] Huang | Pop music Transformer: Beat-based modeling and generation of expressive pop piano compositions[END_REF].

Coming back to music style transfer, the main topic of this thesis, we are excited about the observed 'style imitation' capabilities of efficient Transformers, especially when combined with timing-based PE. We are hoping to leverage these capabilities to improve upon the one-shot style transfer performance of our Groove2Groove system (Section 4.4). 91

Self-supervised audio timbre transfer

This chapter is based on the paper ⟨ICASSP2021⟩ by Cífka et al. © 2021 IEEE.

Let us now turn from symbolic music to audio, and specifically to one-shot audio timbre transfer, a challenging problem that has received little attention in prior work. We view this task as a variant of music style transfer, but with a considerably different definition of style and content than in previous chapters. Namely, we consider single-instrument1 (but not necessarily monophonic) audio recordings, and define style as timbre (understood roughly as instrument identity, including any audio effects) and content as pitch. Our goal is then to transfer the timbre of the style input onto the content input while preserving the pitch content of the latter.

Clearly, pitch is a local (fast-changing) feature, while timbre, in our definition, is a global feature (staying largely the same over the course of a recording). Note that there are other features that characterize a recording, notably loudness. In this work, we do not prescribe (or evaluate) whether or to what extent such features are transferred. However, we intuitively expect that local variations in these features end up being part of content, while global characteristics (e.g. average loudness) should belong to style.

To address the task, we develop a single generic model capable of encoding pitch and timbre separately and then combining their representations to produce the desired output. Unlike many previous music style transformation works (e.g. [START_REF] Engel | DDSP: Differentiable digital signal processing[END_REF], Wang et al. [2020b], [START_REF] Nercessian | Zero-shot singing voice conversion[END_REF], as well as our own work in Chapter 4), we neither assume the training data to be paired or otherwise annotated, nor do we rely on existing models or algorithms to create artificial annotations (e.g. pitch contours or timbre-related descriptors). This leads to the need for data-driven disentanglement of the pitch and timbre representations learned by the model. In this work, we propose to perform this disentanglement using a combination of discrete representation learning (via an extension of the vector-quantized variational autoencoder, or VQ-VAE [van den [START_REF] Van Den Oord | Neural discrete representation learning[END_REF]), self-supervised learning, and data augmentation.

The contributions presented in this chapter can be summarized as follows:

• We propose the first neural model for one-shot instrument timbre transfer. The model operates via mutually disentangled pitch and timbre representations, learned in a self-supervised manner without the need for annotations.

• We train and test our model on a dataset where each recording contains a single instrument. Using a set of newly proposed objective metrics, we show that the method constitutes a viable solution to the task, and is able to compete with baselines from the literature.

• Since our approach to disentanglement is largely data-driven, it should be extensible to other music transformation tasks, such as arrangement or composition style transfer.

The companion website2 for this project contains audio examples, as well as links to the source code and a demo notebook. See also Appendix C.

Background

Vector-quantized variational autoencoder

The vector-quantized variational autoencoder (VQ-VAE; van den Oord et al.

[2017]), is an autoencoder with a discrete latent space. Its latent representation is a sequence of discrete symbols from a (learned) finite dictionary, which puts an explicit limit on its capacity. While the authors' goal is not representation disentanglement, they show experimentally that after training this model on speech with conditioning on the speaker identity, it is possible to achieve voice conversion simply by switching the speaker label. They conclude that the model learns 'a high-level abstract space' capable of representing an utterance in a speaker-invariant way -in other words, the autoencoder's latent space becomes disentangled from the speaker embedding space.

A VQ-VAE consists of an encoder, which maps the input x to a sequence Z (z 1 , . . . , z L ) of discrete code vectors from a codebook, and a decoder, which tries to map Z back to x. Formally, given the input x, the encoder neural network E first outputs a sequence E(x) = E ∈ R L×D of D-dimensional feature vectors, which are then passed through a quantization (discretization) operation Q which selects the nearest vector from a discrete embedding space (codebook) Q ∈ R K×D :

z i = Q(e i ) = arg min q j ,1≤j≤K ⃦ ⃦ ⃦e i -q j ⃦ ⃦ ⃦. (6.1)
The model is trained to minimize a reconstruction error L ae between the input x and the output of the decoder D(Q(E(x))) = D(Z). The backpropagation of its gradient through the discretization bottleneck Q to the encoder is enabled via straight-through estimation, where the gradient with respect to Q(E(x)) received from the decoder is instead assigned to E(x). To ensure the alignment of the codebook Q and the encoder outputs E(x), two other terms appear in the VQ-VAE objective -the codebook loss and the commitment loss: 

L cbk = 1 L L ∑︂ i=1 ⃦ ⃦ ⃦sg [z i ] -e i ⃦ ⃦ ⃦ 2 , (6.2) L cmt = 1 L L ∑︂ i=1 ⃦ ⃦ ⃦z i -sg [e i ] ⃦ ⃦ ⃦ 2 . ( 6 
L = L ae + L cbk + βL cmt (6.4)

Self-supervised learning

Self-supervised learning is a family of techniques for learning representations of unlabeled data. The basic principle is to expose the inner structure of the databy splitting each example into parts or by applying simple transformations to itand then exploit this structure to define an artificial task (sometimes called the pretext task) to which supervised learning can be applied. Notable examples include predicting context (e.g. the neighboring words in a sentence [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF] or a missing patch in an image [START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF]), the original orientation of a rotated image [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF] or the 'arrow of time' in a (possibly reversed) video [START_REF] Wei | Learning and using the arrow of time[END_REF]. The representation arising from (pre-)training on the pretext task is then typically used as features for a downstream task.

In the present work, following this principle, we extract pairs of excerpts from audio files and rely on them to learn a style representation as detailed in the following section. Nevertheless, the method we propose is not a typical selfsupervised one, since we do not have a pre-training stage followed by fine-tuning on a downstream task. Instead, we simply train our model on the pretext task (a reconstruction task) and then directly use it to perform style transfer.

Method

Given the goal of mapping two inputs -the content input x and the style input yto an output, it is natural to define an encoder-decoder model with two encoders (one for each input) and a single decoder. It remains to describe how to train this model, and in particular, how to ensure the mutual disentanglement of the style and content features. Our proposal, illustrated in Fig. 6.1, rests on two key points:

(i) We use a discrete representation c 1 , . . . , c L for content and train the model to reconstruct the content input, x; hence, the content encoder together with the decoder form a VQ-VAE. This is motivated by the success of the VQ-VAE on voice conversion as mentioned in Section 6.1.1.

(ii) The output of our style encoder is a single continuous-valued embedding vector s. To ensure that the style encoder only encodes style (i.e. to make it content-independent), we employ a simple self-supervised learning strategy where we feed a different input y to the style encoder such that x and y are different segments of the same audio recording (with some data augmentation applied; see Section 6.2.1 for details).

These choices are complementary to each other, as we will now see.

Firstly, (i) necessarily means that the content encoder will drop some information from the content representation c. Since this alone does not guarantee that only content information will be preserved, (ii) is introduced to guide the encoder to do so. Our reasoning is that providing a separate style representation, not constrained by the discretization bottleneck, should make it unnecessary to also encode style information in c.

Secondly, it can be expected that in a trained model, only information useful for reconstructing x will influence the output. Hence, due to (ii) and provided that x and y do not share any content information, we expect s to only encode style. Also note that the discretization bottleneck in (i) is key for learning a useful style representation s: without it, y may be completely ignored by the model.

Once trained, the model is used for inference simply by feeding the content input and the style input to the respective encoders.

Data

Our self-supervised learning strategy consists in training on pairs of segments x, y where each such pair comes from a single recording. The underlying assumption is that such x and y have the same style (timbre) but different content. We combine data from two different sources, chosen to easily satisfy this assumption: We perform two kinds of data augmentation. Firstly, we transpose each segment from LMD up or down by a random interval (up to 5 semitones) prior to synthesis; this ensures that the two segments in each pair have different content, but does not affect their timbre.

Secondly, we apply a set of random timbre-altering transformations to increase the diversity of the data:

• (LMD only.) Randomly changing the MIDI program (instrument) to a different one from the same broad family of instruments (keyboards & guitars; basses; winds & strings; . . . ) prior to synthesis.

• (RT only.) Audio resampling, resulting in joint time-stretching and transposition by up to ±4 semitones.

• 0-4 audio effects, drawn from reverb, overdrive, phaser, and tremolo, with randomly sampled parameters.

An identical set of transformations is applied to both examples in each pair to ensure that their timbres do not depart from each other. After this procedure, we end up with 209 k training pairs (119 k from LMD6 and 90 k from RT).

Model and training details

We represent the audio signal as a log-scale magnitude STFT (short-time Fourier transform) spectrogram with a hop size of 1/32 s and 1025 frequency bins. To obtain the output audio, we invert the STFT using the algorithm of [START_REF] Griffin | Signal estimation from modified short-time Fourier transform[END_REF].

The model architecture is depicted in Fig. 6.2. The encoders treat the spectrogram as a 1D sequence with 1025 channels and process it using a series of 1D convolutional layers which serve to downsample it (i.e. reduce its temporal resolution). The last layer of the style encoder is a GRU (gated recurrent unit; [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF]) layer, whose final state s (a 1024-dimensional vector) is used as the style representation. This vector s is then fed to the 1 st and the 4 th decoder layer by concatenating it with the preceding layer's outputs at each time step.

The decoder consists of 1D transposed convolutional layers which upsample the feature sequence back to the original resolution. GRU layers are inserted for better temporal modeling, particularly to combine the content and style representations in a context-aware fashion.

We train the model using Adam [START_REF] Kingma | A method for stochastic optimization[END_REF] to minimize the VQ-VAE loss from Eq. (6.4), defining the reconstruction loss L ae as the mean squared error between x and x ˆ. We train for 32 epochs, taking about 20 hours in total on a Tesla V100 GPU. 

x conv [4, 2] 2× conv [1, 1] + VQ [K = 2048] y conv [4, 2] conv [1, 1] + GRU conv ⊤ [1, 1] final state GRU + conv ⊤ [4, 2] 2× conv ⊤ [1, 1] GRU + max ( 

Evaluation

As in Chapter 4, we wish to evaluate our method on two criteria: (a) content preservation and (b) style fit. In timbre transfer, these should express (a) how much of the pitch content of the content input is retained in the output, and (b) how well the output fits the target timbre. To this end, we propose the following objective metrics for measuring pitch and timbre dissimilarity, respectively, between an output and a reference recording:

(a) Pitch: We extract pitch contours from both recordings using a multi-pitch version of the MELODIA algorithm [START_REF] Salamon | Melody extraction from polyphonic music signals using pitch contour characteristics[END_REF] implemented in the Essentia library [START_REF] Bogdanov | Essentia: An audio analysis library for music information retrieval[END_REF]. We round the pitches to the nearest semitone and express the mismatch between the two pitch sets A, B at each time step as the Jaccard distance:

d J (A, B) = 1 - |A ∩ B| |A ∪ B|
We report the mean value of this quantity over time.

(b) Timbre: Mel-frequency cepstral coefficients (MFCCs) 2-13 are generally considered to be a good approximate timbre representation [START_REF] Richard | An overview on perceptually motivated audio indexing and classification[END_REF]. Since they are computed on a per-frame basis, instead of comparing them directly, we apply metric learning [START_REF] Hoffer | Deep metric learning using triplet network[END_REF] on top of them to aggregate them over time and get a single dissimilarity score.

More precisely, we use a triplet network with a convolutional architecture, which receives a sequence of MFCC vectors (only coefficients 2-13) and outputs an embedding. The metric is then computed as the cosine distance D cos in this embedding space. The network is trained to minimize the triplet hinge loss:

L (︂ x, x + , x - )︂ = max {︂ 0, D cos (︂ f (x), f (x + ) )︂ -D cos (︂ f (x), f (x -) )︂ + 0.1 }︂ ,
where f is the function implemented by the network, x is an anchor, x + is a positive example and x -is a negative example. The training dataset consists of 7381 such triplets extracted from the Mixing Secrets data so that x and x + are from the same file and x -is from a different file. The aim is to make the metric good at discriminating between different instruments, but largely pitch-independent.

We compare our method to 2 trivial baselines and 2 baselines from the literature:

• cp-content: Copies the content input to the output.

• cp-style: Copies the style input to the output.

• U+L: The algorithm of [START_REF] Ulyanov | Audio texture synthesis and style transfer[END_REF] (not specifically designed for timbre transfer), consisting in optimizing the output spectrogram for a content loss and a style loss.

We tune the ratio of the weights (λ c , λ s ) of the two losses on a small synthetic validation set to minimize the log-spectral distance (LSD) to the ground truth (see Section 6.3.1 below). However, since the ratio found by this procedure (λ s = 10 -2.1 λ c ) is too small for the style input to have any noticeable effect on the output, we also include results with a larger style weight (λ s = 10λ c ) chosen manually so that the effect of both inputs is clearly audible. (In both cases, the weights are normalized: λ s + λ c = 1.)

• Musaicing: A freely available implementation7 of the musaicing algorithm of [START_REF] Driedger | Let it Bee -towards NMF-inspired audio mosaicing[END_REF]. Note that this implementation involves a preprocessing step which automatically transposes (pitch-shifts) the style input to all 12 keys and concatenates the results.

Artificial benchmark

First, we evaluate our method on a synthetic dataset generated from MIDI files. Although such data is not completely realistic, it enables conducting a completely objective benchmark by comparing the outputs to a synthetic ground truth.

We generated the data based on the Lakh MIDI Dataset (LMD) similarly as in Section 6.2.1, but using a set of files held out from the training set, and with no data augmentation. We rendered the music using the Timbres Of Heaven SoundFont, 4 ↑ not used in the training set.

We randomly drew 721 content-style input pairs and generated a corresponding ground-truth target for each pair by synthesizing the content input using the instrument (MIDI program) of the style input. To avoid pairs of extremely different inputs (e.g. bass line + piccolo duet) for which the task would make little sense, we sorted all instrument parts into 4 bins using two median splits: on the average pitch and on the average number of voices (simultaneous notes); we then formed each pair by drawing two examples from the same bin. To obtain a balanced distribution of instruments, we limited the total number of examples per MIDI program to 4.

Both the pitch and timbre distance are measured with respect to the groundtruth target. Additionally, we measure an overall distance to the target as the root-mean-square error computed on dB-scale mel spectrograms; this is known as log-spectral distance or LSD.

'Real data' benchmark

We created a more realistic test set based on the 'Mixing Secrets' audio library,8 containing over 400 multi-track recordings from various (mostly popular music) genres. After filtering out multi-instrument, vocal and unpitched percussion tracks, we extracted 690 content-style input pairs similarly as in Section 6.3.1. (In this case, we used multi-pitch MELODIA to estimate the average pitch and number of voices of each track, then used this information to perform the median splits.)

As no ground truth is available in this dataset, we compute the pitch and timbre metrics with respect to the content and style input, respectively. 

Experimental results

The results of both benchmarks are shown in Table 6.1. First, our system outperforms all baselines on LSD and the timbre metric. The difference to the cp-content baseline is negative in more than 75 % of examples on both of these metrics and in both benchmarks. Hence, viewing our system as a timbre transformation applied to the content input, we can say that this transformation changes the input in the correct 'direction' in more than 75 % of cases. We may also notice that the result of cp-style on timbre is, somewhat counter-intuitively, outperformed by our system. This may be a sign that the timbre metric is still somewhat influenced by pitch.

Turning to the pitch distance metric, we note that its values seem rather high (> 0.5 on a scale from 0 to 1). However, most of this error should be attributed to the pitch tracking algorithm rather than to the systems themselves. This is documented by the fact that the pitch distance of cp-content to the groundtruth target is 0.54 instead of 0. Another useful value to look at is the result of cp-style: as the style input is selected randomly, its pitch distance value should be high, and is indeed close to 0.9. Using these two points of reference, we observe that our system's result is much closer to the former than to the latter in both benchmarks, which is the desired outcome. Moreover, it outperforms the musaicing baseline in both cases, albeit only slightly on real inputs.

Discussion

We will now attempt to explain the results from the previous section and complement them with our subjective observations. We encourage the reader to listen to the provided audio examples, which should make the following more obvious.

Our system

Our subjective observations upon examining the outputs mostly match the objective evaluation. We find that, although the sound quality of our outputs is not nearly perfect, their timbre typically does sound much closer to the style input than to the content input. (Low synthesis quality and various artifacts are somewhat expected, as they are a common occurrence with the Griffin-Lim algorithm, as well as decoders based on transposed convolutions [START_REF] Pons | Upsampling artifacts in neural audio synthesis[END_REF]. However, synthesis quality is not the main focus of this preliminary work.)

The pitch of the content input is generally well preserved in the output, yet faster notes and polyphony seem to pose a problem. We believe this is caused by a low capacity of the discrete content representation. Even though a codebook size of 2048 seems more than sufficient in theory, we found that on both of our test sets combined, only 81 of the codebook vectors are actually used in practice. This means, for example, that at a tempo of 120 BPM, only 25.4 bits of information can be encoded per beat. This 'codebook collapse' [START_REF] Dieleman | The challenge of realistic music generation: modelling raw audio at scale[END_REF] is a known issue with VQ-VAEs.

We also observe that our method works better on target instruments with a temporally 'stable' sound, e.g. piano; this might also explain why our method achieves better evaluation results on synthetic inputs (generated using samples) than on real ones, which are less predictable. A likely culprit is our use of a deterministic model, which cannot possibly capture the acoustic variability of instruments like saxophone or violin while being able to convert from an instrument that lacks this variability. This could be remedied by replacing our decoder with a probabilistic one which models a fully expressive conditional distribution, such as WaveNet [START_REF] Van Den Oord | WaveNet: A generative model for raw audio[END_REF].

Finally, choosing a more suitable loss function, such as a perceptual loss [START_REF] Manocha | A differentiable perceptual audio metric learned from just noticeable differences[END_REF] or an adversarial loss [Donahue et al., 2019b] could also help improve the output quality.

Baselines

The musaicing baseline, which uses fragments from the style input to construct the output, generally matches the target timbre very precisely, but is often less musically correct than ours. For example, note onsets tend to lack clear attacks; pitch errors and spurious notes occur, especially when the style input is nonmonophonic or fast.

As for U+L, we have already mentioned that tuning it automatically resulted in a style weight which is too small (about 100 times lower than the content weight). It is therefore unsurprising that the tuned variant performs close to the cp-content baseline on all metrics (i.e. achieving excellent results on pitch, but poor on timbre). In other words, it seems that for U+L, the best strategy to minimize LSD -which captures both timbre and pitch -is to ignore timbre altogether.

By increasing the style weight manually to achieve subjectively better timbre transfer, we were able to improve the timbre metric on the real test set (though it is still far behind our system) but all other metrics deteriorated. When listening to the outputs, we notice that the algorithm is able to transfer fragments of the style input to the output, but cannot transpose (pitch-shift) them to match the content input. This is a sign that the style representation is heavily pitch-dependent, and therefore not suitable for this task.

Conclusion

In this chapter, we have proposed a novel approach to one-shot timbre transfer, based on an extension of the VQ-VAE, along with a simple self-supervised learning strategy. Our results demonstrate that the method constitutes a viable approach to the timbre transfer task and is able to outperform baselines from the literature.

The most important shortcoming of our method seem to be artifacts and in general subjectively poor output audio quality. We believe that a more expressive decoder such as a WaveNet, RNN or Transformer should allow improving the performance especially on instruments with great temporal variability, and perhaps enable extensions to more challenging style transfer tasks, such as arrangement or composition style transfer. Alternatively, it may be possible to improve the output quality by a more careful choice of loss function. 103

Conclusion

In this work, we studied music style transfer, a family of tasks where the goal is to transfer the style of one musical piece or fragment onto another. Our main contribution lies in proposing novel approaches and evaluation metrics for two tasks which have received little attention in prior work: accompaniment style transfer and audio timbre transfer. We have also contributed to the field of symbolic music generation and to research on positional encodings in Transformer models.

In the rest of this final chapter, we give a more detailed summary of our contributions, followed by directions for future research.

Summary of contributions

Task definitions. We hope to have helped clear the terminological vagueness around music style transfer by proposing the terms style conversion, style translation and one-shot style transfer. We also echo the call of [START_REF] Xia | Music style transfer: A position paper[END_REF] for more precise definitions of different variants of these tasks and we have followed it to the best of our ability in defining our accompaniment style conversion and timbre transfer tasks.

Music style conversion methods. We have proposed two novel methods for music style conversion: (1) an approach to accompaniment style transfer (and as an intermediate step, accompaniment style translation), based on supervised learning from a synthetic dataset; (2) an approach to audio timbre transfer, based on an extension of the vector-quantized variational autoencoder (VQ-VAE), along with a simple self-supervised learning strategy. Our results demonstrate the ability of our methods to transfer the style from the style input while preserving the content of the content input. We also provide additional experiments and analyses aimed at a better understanding of the proposed methods.

Music style conversion evaluation. For both (1) and ( 2) above, we have designed objective metrics measuring content preservation and style fit, two essential criteria for evaluating style conversion. To our knowledge, these metrics constitute the first automatic evaluation protocol for music style transfer that considers both of these criteria.

Symbolic music generation.

As a general contribution to symbolic music generation, we have proposed two novel, beat-aware encodings of timing for eventbased representations: beat-relative encoding and metrical positional encoding. Our results suggest that both lead to improved generation quality.

Positional encodings for Transformers. We have proposed stochastic positional encoding (SPE), a novel positional encoding strategy for Transformer models capturing relative positions while being compatible with a recently proposed family of efficient Transformers. In music generation experiments, we demonstrated that SPE allows for better extrapolation beyond the training sequence length than the commonly used absolute positional encoding (APE). We also evaluated SPE on a non-music benchmark and found that it performs at least as well as APE (bringing a performance boost on one task).

On the other hand, our ablation experiments suggest that in music generation, positional encodings in general (including SPE) bring little to no benefit in the form that is commonly used, compared to not using any positional encoding whatsoever. To further investigate the importance of positional encodings in music generation, we have proposed the aforementioned metrical positional encoding as a way to use (absolute) positional encodings to more robustly encode metrical timing in music. Unlike the classical index-based APE, this novel timing-based APE appears to be strongly beneficial for music generation.

Reproducibility. We have made publicly available the data pre-processing, training and evaluation code, as well as complete hyperparameter settings for all the published papers. We have also released the Groove2Groove MIDI Dataset, generated for training our accompaniment style transfer system, making it to our knowledge the first publicly available parallel (pairwise aligned) symbolic music dataset. Another remarkable feature of this data are the exceptionally fine-grained style labels.

Future directions

Symbolic music style transfer. While we have shown our supervised approach to one-shot accompaniment style transfer to be effective, we have also identified some important limitations, namely:

• It is restricted to accompaniments, i.e. it is not designed to handle melodies or music without a clear melody-accompaniment distinction.

• It does not account for interactions between different instruments.

• There is room for improvement in the one-shot generalization to novel styles.

An approach capable of overcoming these issues will need to be able to model multi-track music without strong independence assumptions, perhaps using techniques similar to those that we have explored in our work on music generation using efficient Transformers. It will also need to be trained on more opendomain data, calling for methods capable of learning from non-parallel (unaligned) datasets. One such method is our 'self-supervised VQ-VAE', which was developed for audio timbre transfer, but may be equally applicable to accompaniment or arrangement style transfer. An interesting future direction is then to tackle these tasks by combining a Transformer decoder with a vector-quantized encoder and a variant of our self-supervised learning strategy. Another possible improvement is to modify the approach to make it capable of taking audio (as opposed to MIDI files) as input, rendering the system more accessible to end users.

Positional encodings for Transformers. Our research on positional encodings raises interesting questions that merit further investigation, namely:

• How important are strong positional encoding schemes for different tasks?

In which tasks are they critical?

• Can positional encoding do harm in sequence generation tasks?

• How do our results on timing-based positional encodings generalize to other Transformer architectures used for music generation, more sophisticated token-based representations or even tasks other than music generation?

Audio timbre transfer. The most important shortcomings of our timbre transfer method seem to be artifacts and in general subjectively poor output audio quality. This could be attributed to the use of a deterministic decoder, the chosen loss function or the Griffin-Lim reconstruction algorithm. We believe that a perceptual loss function or a more expressive model such as a WaveNet, recurrent network (RNN) or generative adversarial network (GAN) should allow improving the performance.

In practical applications, real-time processing will also be desirable, as it will enable timbre transfer to be used during live performances.

Style transfer in other modalities. Due to the data-driven nature of our 'self-supervised VQ-VAE', we believe that it may not only be applicable to different kinds of music style transfer, but also serve as a general style transfer framework for other modalities such as speech, images and text.

Cross-modal conditioning. Whereas we have focused on transferring style from a given music example, follow-up work should explore music transformations controlled by non-musical inputs, as we have described in the introduction. Examples include transforming music to convey a given emotion or mood or to fit the narrative of a video, a gameplay situation, a real-life occasion or the musical taste of a specific user or demographic group. The methods that we have developed in this work could serve as a basis for implementing such transformations.

A. Miscellaneous details A.1 Chord chart generation

This section is adopted and modified from the paper ⟨TASLP2020⟩ by Cífka et al. © 2020 IEEE.

To obtain the chord charts mentioned in Section 4.4.1, we sample from a chord language model (LM) estimated on the iRb corpus [START_REF] Broze | Diachronic changes in jazz harmony[END_REF], which contains chord charts of over a thousand jazz standards. For this purpose, each chord symbol is represented as a token composed of the chord's root expressed in relation to the song's main key (e.g. I, ♭VII), the chord's quality (e.g. min6, 7♭9), and its duration. We extract the necessary features using the jazzparser.sh script provided by Broze and Shanahan. We separate songs in major keys from songs in minor keys, and train a smoothed bigram LM (using Lidstone or add-ε smoothing with ε = 0.01) on each of the two. A bigram LM models the conditional probability of a token given the previous token, and hence allows for sampling new token sequences in a Markovian fashion. This yields chord sequences similar to those from the iRb corpus, but the smoothing allows for producing unexpected chord transitions occasionally, increasing the diversity of the data.

Although the distribution of chords generated by the LM may not be appropriate for all musical styles, we assumed that it would be sufficiently diverse to cover most styles thanks to the harmonic variability of jazz, and the LM smoothing. Nevertheless, we acknowledge that expanding the dataset to chord charts from other genres could provide some benefits.

We sample sequences from the LM repeatedly and concatenate them until we reach the maximum number of measures. We then choose the key of the chord chart at random (following the distribution of keys in iRb), and convert each token to a chord symbol according to the chosen key.

We optionally add some of the following modifiers (defined by BIAB) to each chord: (a) push: creates an 8 th note anticipation; (b) hold: all instruments hit the chord simultaneously and hold it until the next chord symbol; (c) shot: all instruments play the chord staccato, followed by silence; (d) rest: all instruments are silent until the next chord. (See e.g. bar 4 in Fig. 4.2, featuring a G minor 7 th chord with shot and push modifiers.) These modifiers are turned on and off at random, with probabilities chosen so that they are scattered sparsely throughout the chord charts. This kind of data enhancement is necessary in order for the trained system to be able to handle such rhythmic variations; notably, we observed that the model from Section 4.3, which was trained without using this technique, always produces continuous accompaniments even when the inputs contain prominent breaks. [START_REF] Tay | Long Range Arena: A benchmark for efficient Transformers[END_REF], along with the name of the bestperforming model (in parentheses), is included.

Discussion. Results on ListOps are poor overall, with accuracies around 17 %. This complies with [START_REF] Tay | Long Range Arena: A benchmark for efficient Transformers[END_REF], who reason that 'kernel-based models [e.g. Performer, Linear Transformers] are possibly not as effective on hierarchically structured data,' leaving room for improvement. We also hypothesize this is largely due to some issues with the training data for this task, which unfortunately were unknown to us and had not been fixed at the time of our experiments.2 Regarding performance of SPE, we first notice that the sineSPE variant yields the best results on three tasks, which is a strong achievement and validates our approach, especially considering the difficulty of this evaluation benchmark. While it is only marginally better than APE for ListOps and Text, it is worth mentioning that sineSPE combined with the Linear Transformer-ReLU yields an accuracy improvement of ∼3 % on Retrieval compared to the best result obtained by [START_REF] Tay | Long Range Arena: A benchmark for efficient Transformers[END_REF].

Regarding convSPE, its performance in the LRA is not as remarkable. This mitigated result appears somewhat in contradiction with the discussion found in [START_REF] Wang | On position embeddings in BERT[END_REF], which presents vanishing attention as a desirable property of PE. On the contrary, we empirically observe that our non-vanishing sinusoidal version sineSPE behaves better in these particular tasks.

Finally, the superior results of APE on Image are not unexpected, given the limited ability of these models to exploit relative positions. On the contrary, the relatively good performance of SPE on this task is in fact remarkable, especially considering that the baseline systems for this task use learnable APE.

In sum, the performance of SPE is very much comparable to APE (which is already encouraging) and in some cases considerably better, but this boost in performance is not systematic. This raises interesting considerations:

(i) The variance of the Monte Carlo estimator might be problematic. We are enthusiastic about the elegant formulation of stochastic feature maps as in the Performer, which was a strong inspiration. Still, we must acknowledge that their computation relies on a Monte Carlo estimator (5.18). We suspect that the variance of the estimator might play a role in the final performance in large dimensions, which opens up the direction of exploring variancereduced estimation methods, rather than plain Monte Carlo.

(ii) LRA tasks might not benefit from strong (R)PE schemes. The LRA was designed to compare Transformer architectures, filling a gap in this domain and standing as the de facto standard, justifying our choice. Still, although PE is known to be important in many cases, it is not known whether it is so in the LRA tasks. We feel that there is room for such a specialized comparison, which is scheduled in our future work, possibly leading to new long-range tasks where PE is critical. In the first part of this work, we focus on supervised methods for symbolic music accompaniment style transfer, aiming to transform a given piece by generating a new accompaniment for it in the style of another piece. The method we have developed is based on supervised sequence-to-sequence learning using recurrent neural networks (RNNs) and leverages a synthetic parallel (pairwise aligned) dataset generated for this purpose using existing accompaniment generation software. We propose a set of objective metrics to evaluate the performance on this new task and we show that the system is successful in generating an accompaniment in the desired style while following the harmonic structure of the input.

In the second part, we investigate a more basic question: the role of positional encodings (PE) in music generation using Transformers. In particular, we propose stochastic positional encoding (SPE), a novel form of PE capturing relative positions while being compatible with a recently proposed family of efficient Transformers. We demonstrate that SPE allows for better extrapolation beyond the training sequence length than the commonly used absolute PE.

Finally, in the third part, we turn from symbolic music to audio and address the problem of timbre transfer. Specifically, we are interested in transferring the timbre of an audio recording of a single musical instrument onto another such recording while preserving the pitch content of the latter. We present a novel method for this task, based on an extension of the vector-quantized variational autoencoder (VQ-VAE), along with a simple self-supervised learning strategy designed to obtain disentangled representations of timbre and pitch. As in the first part, we design a set of objective metrics for the task. We show that the proposed method is able to outperform existing ones.

Institut Polytechnique de Paris 91120 Palaiseau, France

Notationv

  = [v n ] n column vector with entries v n A = [a mn ] mn matrix with entries a mn a m = [a mn ] n m-th row of matrix A a * n = [a mn ] m n-th column of matrix A x scalar or unspecified object [u, v] concatenation of vectors u, v [a b] closed interval from a to b (a b) open interval from a to b

Figure 1 Figure 1

 11 Figure 1.1 -An example of accompaniment style transfer. The accompaniments in this example consist of a piano track and a bass track. The output follows the harmony of the content input (the chords C 7 and F) while employing the samba-like rhythmic and melodic patterns of the style input. In general, the two inputs need not be the same length. The chord symbols are shown for illustration only and are not part of the data for the task.output content input style input

Figure 2

 2 Figure 2.1 -Image style transfer. Left: the content representation of the image I c is obtained as the features produced by a specific layer of the pre-trained CNN. Right: the style representation of the image I s is computed as the Gram matrices of the features produced by different layers of the same CNN. Middle: the content and style features of the (initially random) image I are computed analogously. The total loss (weighted sum of distances between representations) is calculated and its gradient is propagated back to I.

  Figure 2.2 -The NMF-driven musaicing method (a.k.a. 'Let It Bee') of Driedger et al. [2015]. The 'source' (the buzzing of a bee) and the 'target' (Let It Be by The Beatles) correspond to our style input and content input, respectively. Reproduced from Driedger et al. [2015]. © 2015 Jonathan Driedger, Thomas Prätzlich, Meinard Müller.

Figure 2

 2 Figure 2.3 -Cycle-consistent generative adversarial network (CycleGAN). (a) The model contains two mappings G : X → Y and F : Y → X . The two corresponding discriminators D X and D Y encourage the outputs of the two mappings to be indistinguishable from samples from the target domains X and Y, respectively. (b) The forward cycle consistency loss, enforcing F (G(x)) ≈ x. (c) The backward cycle consistency loss, enforcing G(F (y)) ≈ y. Reproduced from Zhu et al. [2017]. © 2017 IEEE.

Figure 3 . 1 -

 31 Figure 3.1 -The standard training and generation procedure for an RNN language model. Arrows with white heads point to prediction targets.

Figure 3 . 2 -

 32 Figure 3.2 -The architecture of a Transformer language model.

Figure 3 . 4 -

 34 Figure 3.4 -The architecture of a Transformer encoder-decoder model. The encoder (left) encodes the input sequence as a series of feature vectors, which are then used as keys and values in the encoder-decoder attention mechanism inside the decoder (right).

  high-level structure of the proposed style conversion models. The input z to the style encoder is either an accompaniment track (in the oneshot style transfer case) or a style label (in the style translation case -the style encoder then becomes a simple embedding layer). © 2020 IEEE.

  b) -start(a), pitch(b) -pitch(a)) 24 × 41 ∈ [0 4) × {-20, -19, . . . , 20}, a ̸ = b onset-duration (start(a) mod 4, end(a) -start(a)) 24 × 12 ∈ [0 4) × [0 2) onset-velocity (start(a) mod 4, velocity(a)) 24 × 8 ∈ [0 4) × {1, 2, . . . , 127} onset-drum (start(a) mod 4, pitch(a)) 24 × 128 ∈ [0 4) × {0, 1, . . . , 127} Table 4.1 -Objective style fit metric definitions. Each metric is computed as a cosine similarity between style profiles -flattened 2D histograms of the observations defined in the middle column (values that fall outside the given ranges are ignored). start(•) and end(•) are the onset and offset time in beats, respectively, of a given note. pitch(•) and velocity(•) denote the respective MIDI values. © 2020 IEEE.

Figure 4 .

 4 Figure 4.3 -Style similarities between pairs of segments from the Bodhidharma dataset. Plot (a) contrasts similarities within and across songs, while plot (b) contrasts similarities within and across the 38 genres in the Bodhidharma dataset.The values have been averaged so that every data point corresponds to a single pair of songs.

Figure 4 . 4 -

 44 Figure 4.4 -Pairwise similarities between genres from the Bodhidharma dataset. The values are averaged over all 3 metrics and all pairs of segments. Values on the diagonal do not include pairs of segments from the same song. The order of rows and columns has been determined using hierarchical clustering.

Fig. 4 .

 4 5 illustrates both the piano roll representation and the token-based representation.

Figure 4

 4 Figure 4.5 -A bar of music in staff notation (top left), as a piano roll (top right) and as a sequence of tokens (bottom).

  pairs per segment, or around 658 k training examples in total.

Figure 4 . 6 -

 46 Figure 4.6 -Evaluation results on content preservation and style fit. 'Source' is the original track (bass or piano), 'reference' is a track generated by BIAB in the target style and 'random' is a random permutation of the references. For 'songstyle', we plot the mean and the standard deviation over all songs and target styles.

Figure 4 . 7 -

 47 Figure 4.7 -Comparison of a single-style-pair model (1→1) and a full model (70→70) on the ZZJAZZSW→TWIST style pair.

Figure 4 . 8 -

 48 Figure 4.8 -Style embeddings learned by the all→piano model, labeled with 'feel' annotations provided by BIAB. Dimensionality reduction was performed using linear discriminant analysis (LDA) with the feel labels as targets.

Figure 4

 4 Figure 4.9 -An overview of the training and inference procedure for the Groove2Groove system. In both cases, the style input is broken down into individual instrument tracks, which are fed to the model individually as z(i) , each resulting in a corresponding output track y(i) . On the other hand, the content input x uses a constant representation that contains all tracks (except for drums). © 2020 IEEE.

Figure 4 .

 4 Figure 4.10 -A detailed view of the model architecture with focus on the 3 rd decoding step, i.e. m = 3 (for illustration purposes). The upper index (i) is omitted everywhere for simplicity. © 2020 IEEE.

Figure 4 .

 4 Figure 4.11 -Evaluation results on the synthetic test set. The two leftmost results in each group are those of our main proposed model. The triangles indicate the mean. We use the macro variant of the style metrics, i.e. each data point corresponds to one of the target styles. © 2020 IEEE.

Figure 4 .

 4 Figure 4.12 -Evaluation results on both test sets. Style metrics are computed in the nano variant, i.e. each data point corresponds to a single example. This results in higher variance than in Fig.4.11, but enables us to evaluate on Bodhidharma. © 2020 IEEE.

Figure 4 .

 4 Figure 4.13 -Results of the ablation study. 'Dr. + vel.' ('drums + velocity')is the full Groove2Groove model; 'none' models neither drums nor velocity. ∆ stands for the ∆-encoding. All models are evaluated in sampling mode. The synthetic test set uses macro metrics as in Fig.4.11, Bodhidharma uses nano metrics as in Fig.4.12. © 2020 IEEE.

  vs. α (a) Examples for specific style pairs; the solid line and the dashed line show the similarity to the outputs generated from σ 0 (i.e. for α = 0) and σ 1 (for α = 1), respectively. α-wise average and standard deviation of the metrics plotted in (a) (solid line) over 100 style pairs.

Figure 4 .

 4 Figure 4.14 -Style similarity to interpolation endpoints as a function of the interpolation coefficient α. © 2020 IEEE.

Figure 4 .

 4 Figure 4.15 -PCA + t-SNE projections of style embeddings. Each point corresponds to a single track of a single segment from Bodhidharma. The colors in (a) represent MIDI instrument groups with drums added as an extra category. The colors of the genres in (b) and (c) are determined by the locations of their centroids. © 2020 IEEE.

  can rewrite Eqs. (3.4) and (3.5) as Attention(Q, K, V) = S -1 AV, (5.2) S = diag(A1 N ), (5.3)

  .11) where P d : Z → R is the d-th component -activated by query dimension d -of the (learnable) relative positional encoding.

  Index set. For generality, let us consider input/output sequences indexed by n ∈ N and m ∈ M, respectively, where N , M ⊆ T and T is called the index set. As before, the sequence lengths are denoted N = |N | and M = |M|.

  denotes the floor operation, and for an index set I, Ω(I, a, b) is a matrix of size |I| × 2K, with entries (0-based indexing):

  Figure 5.1 -(a) Generation of Q ¯and K ¯, which approximate the templates P d when multiplied together. (b) Q ¯and K ¯can be shared across layers. At each layer l, different gating is (optionally) used before applying Eqs. (5.19) and (5.20) to generate new queries Q ˆand keys K ˆ.

Figure 5 . 2 -

 52 Figure 5.2 -Musical style similarity between output and initial prompt (higher is better). The results are sorted along the x axis by token position; positions ≥ 512 were not encountered during training. Each data point corresponds to a single BIAB style.

Figure 5

 5 Figure 5.3 -Examples of attention patterns observed at inference time in the Performers trained for pop piano music generation. The plots are for sequence length M = N = 3072 while training sequences have length 2048.

  Figure 5.4 -Validation cross entropy (lower is better) vs. token position on the pop piano music generation task. The black vertical line indicates the maximum position to which the models are trained.

  (a) classical (sinusoidal) APE, encoding token indices (APE); (b) metrical positional encoding: APE encoding the metrical time in ticks (12ths of a beat) from the beginning of the piece (MPE);(c) no positional encoding (noPE).

  Figure 6.2 -The proposed timbre transfer model architecture. All convolutions are 1D, with the kernel size and stride shown. All layers have 1024 channels, except for the last two (conv ⊤ & GRU), which have 1025 (the number of frequency bins). All layers except for the input layers and the VQ are preceded by batch normalization and a Leaky ReLU activation[START_REF] Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF]. conv ⊤ stands for transposed convolution. © 2021 IEEE.

Titre:

  M éthodes d'apprentissage profond pour le transfert de style musical Mots cl és : apprentissage machine, transfert de style, transformation de musique, g én ération de musique, synth èse sonore, r éseaux de neurones R ésum é : R écemment, les m éthodes d'apprentissage profond ont permis d'effectuer des transformations du mat ériel musical bas ées sur les donn ées (data-driven). L'objet de cette th èse est le transfert de style musical, dont le but est de transf érer de mani ère automatique le style d'un morceau à un autre.Dans la premi ère partie de ce travail, nous nous concentrons sur les m éthodes supervis ées pour le transfert de style des accompagnements dans une repr ésentation symbolique, visant à transformer un morceau donn é en lui g én érant un nouvel accompagnement. La m éthode propos ée est bas ée sur l'apprentissage supervis é de s équence à s équence à l'aide de r éseaux de neurones r écurrents (RNN) et s'appuie sur une base de donn ées synth étiques parall èle (align ée par paires) g én ér ée à cet effet à l'aide d'un logiciel de g én ération d'accompagnement existant. Nous proposons ainsi un ensemble de mesures objectives pour évaluer la performance sur cette nouvelle t âche et nous montrons que le syst ème r éussit à g én érer un accompagnement dans le style souhait é tout en suivant la structure harmonique de l'entr ée.Dans la deuxi ème partie, nous étudions une question plus fondamentale : le r ôle des encodages posi-tionnels (PE) dans la g én ération de musique à l'aide des Transformers. Nous proposons l'encodage positionnel stochastique (SPE), un nouveau PE capable de coder des positions relatives et compatible avec une classe r écemment propos ée de Transformers efficaces. Nous d émontrons que le SPE permet, mieux que la m éthode conventionnelle (le PE absolu), de mod éliser des s équences plus longues que celles rencontr ées pendant l'entraînement.Enfin, dans la troisi ème partie, nous passons de la musique symbolique à l'audio et abordons le probl ème du transfert de timbre. Plus pr écis ément, nous nous int éressons à transf érer le timbre d'un enregistrement audio à un autre, tout en pr éservant le contenu m élodique et harmonique de ce dernier. Nous pr ésentons une nouvelle m éthode pour cette t âche, bas ée sur une extension de l'autoencodeur variationnel quantifi é (VQ-VAE), ainsi qu'une strat égie d'apprentissage auto-supervis é conc ¸ue pour obtenir des repr ésentations d ém êl ées du timbre et de la hauteur. Comme dans la premi ère partie, nous concevons un ensemble de m étriques objectives pour la t âche. Nous montrons que la m éthode propos ée est capable de surpasser des m éthodes existantes.Title: Deep learning methods for music style transferKeywords: machine learning, style transfer, music transformation, sound synthesis, music generation, neural networks Abstract: Recently, deep learning methods have enabled transforming musical material in a data-driven manner. The focus of this thesis is on a family of tasks which we refer to as (one-shot) music style transfer, where the goal is to transfer the style of one musical piece or fragment onto another.

  

  

  Both correspond to the chord chart displayed above them. Drums are not included. A 16 th note grid is shown for reference. © 2020 IEEE.
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		C 3						
		C 2 C 6							bass piano/synth guitar
		C 5						
		C 4						
	pitch	C 3						
		time (𝅘𝅥𝅯)						
	Figure 4.2 -8-bar excerpts of accompaniments (generated by Band-in-a-Box) in
	two different styles (top: Jazz Swing, bottom: Progressive Rock) visualized as
	piano rolls.						

  , a novel PE that generalizes RPE, allowing to induce a given relative attention pattern while avoiding any explicit computation in the attention domain. This makes it compatible with linear complexity Transformers, allowing for the first time to test RPE-like attention at scale. Our experimental results confirm that SPE behaves like RPE on music generation, in particular inheriting its generalization capabilities on sequence lengths unseen during training. At the same time, we observe similar behavior when PE is ablated; this raises a question about the real benefits of RPE -and PE in general -in sequence generation tasks.
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	Figure 5.6 -Musical style similarity between output and initial prompt (higher
	is better). The triangles indicate the mean. Each data point corresponds to a
	single file from the validation set.		
			∆-encoding	beat-relative encoding
		APE	noPE	MPE	APE	noPE	MPE
		0.6135 0.6368 0.6140 0.6122 0.6256 0.6125
	Table 5.1 -Validation cross entropies (lower is better) achieved by the models.
	Note that the results for ∆-encoding and beat-relative encoding are not neces-
	sarily comparable.				
							3, we presented

SPE

  .3)Here sg[•] stands for the 'stop-gradient' operator, defined as identity in the forward computation, but blocking the backpropagation of gradients. The two losses are therefore identical in value, but the first only affects (i.e. has non-zero partial Figure6.1 -A high-level depiction of the proposed method. We extract pairs of segments from audio files and use them for self-supervised learning of a VQ-VAE with an additional style encoder. The content representation c 1 , . . . , c L is discrete, the style representation s is continuous. © 2021 IEEE. derivatives w.r.t.) the codebook Q (via Q), while the second only affects the encoder E. A weighting hyperparameter β is applied to L cmt in the total loss:

	VQ-VAE			
	x	content encoder	c 1 , . . . , c L	decoder	x ˆ
	ƫ				
	y	style encoder	s		

  Timbre T Pitch T Timbre S Pitch C

			Artificial	Real
	System LSD T cp-content 14.62	0.3713 0.5365	0.4957
	cp-style	20.36	0.2681 0.8729	0.9099
	U+L, λ c /λ s = 10 -2.1 (tuned) 14.50	0.3483 0.5441	0.4792 0.1315
	U+L, λ c /λ s = 10	23.08	0.3645 0.6508	0.4579 0.6043
	Musaicing	14.51	0.2933 0.6445	0.2319 0.6297
	This work	12.16	0.2063 0.5500	0.2278 0.6197
	Table 6.1 -Evaluation results. Distances marked S, C, and T are computed w.r.t.
	the style input, the content input, and the synthetic target, respectively. Results
	that are trivially 0 are omitted. U+L = Ulyanov and Lebedev [2016]; Musaicing
	= Driedger et al. [2015]. © 2021 IEEE.		

Table A .

 A 1 -Long-Range Arena classification tasks used in this work. Trans.-ReLU (APE) 17.58 ± 1.01 63.98 ± 0.05 58.78 ± 0.93 42.25 ± 0.01 Lin. Trans.-ReLU + sineSPE 17.80 ± 0.00 64.09 ± 0.62 62.39 ± 0.59 41.21 ± 1.18 Lin. Trans.-ReLU + convSPE 9.50 ± 1.17 63.23 ± 1.31 61.00 ± 1.34 39.96 ± 1.31 Table A.2 -Long-Range Arena results (higher scores are better). Mean and standard deviation of accuracy over three runs is reported, except for Performer with convolutional SPE, where only a single run was completed. For comparison, the best result reported by

	Name	Dataset	Input			Length Goal	# classes
	ListOps	ListOps	expression with operations	2 k	evaluate expression	10
			on lists of numbers 0-9		
	Text	IMDB	movie review as byte string 8 k	classify sentiment	2
	Retrieval AAN	pair of articles as byte strings 2 × 4 k detect citation link	2
	Image	CIFAR10 8-bit gray-scale 32×32 image	1 k	recognize object	10
			as byte string		
				ListOps	Text		Retrieval	Image
	Best [Tay et al.]		37.27 (Reformer)	65.90 (Linear Trans.) (Sparse Trans.) (Sparse Trans.) 59.59 44.24
	Lin. Trans.-ReLU [Tay et al.] 18.01	65.40		53.82	42.77
	Performer-softmax (APE)	17.80 ± 0.00 62.58 ± 0.22	59.84 ± 1.46	41.81 ± 1.16
	Performer-softmax + sineSPE 17.43 ± 0.32 62.60 ± 0.50	60.00 ± 1.20	41.12 ± 1.70
	Performer-softmax + convSPE 17.80	60.94		57.22	40.06
	Lin.					

https://www.pgmusic.com/

e.g. https://yacht.bandcamp.com/album/chain-tripping

https://g.co/tonetransfer

e.g. https://www.aiva.ai/, https://www.ampermusic.com/

https://www.midi.org

The authors note that their attempts to train a single decoder conditioned on the target domain were unsuccessful.

We will say more about self-supervised learning in Section 6.1.2

The original Transformer proposed byVaswani et al. is in fact an encoder-decoder model, which we describe in Section 3.2. What is described here is the decoder-only variant of the Transformer, commonly used as a basis for LMs, e.g. by[START_REF] Radford | Language models are unsupervised multitask learners[END_REF].

Note that this is only true for the unmasked version of the Transformer, as the lower triangular mask does provide some sort of position information[START_REF] Irie | Language modeling with deep Transformers[END_REF]. Nonetheless, positional encoding is used systematically in all Transformer variants.

With the exception of our datasets, presented in this work.

https://www.pgmusic.com/

The General MIDI specification[MIDI Manufacturers Association, 1991] defines 16 instrument groups such as Piano, Bass, Strings or Reed, each comprising 8 instruments. This grouping does not include drums, which exist on a dedicated MIDI channel.

http://tiny.cc/musicstyle

https://github.com/cifkao/ismir2019-music-style-translation

Formerly at https://groups.yahoo.com/group/Band-in-a-Box-Files/, now moved to https://band-in-a-box.groups.io/g/main/files

The instrument labels are not always accurate; for example, some styles have two guitar tracks, one of which is labeled as piano.

We did not use the other metrics as they were not proposed until later in ⟨TASLP2020⟩.

https://bit.ly/2G5Jgnq

The term groove is difficult to define, but often refers to the characteristic rhythmic 'feel' of a piece, arising from the patterns employed by the rhythm section. Hence, it encompasses many of the key style features which we are considering here.

https://groove2groove.telecom-paris.fr/

In drum tracks, the MIDI note number (which normally represents pitch) identifies the percussion instrument (e.g. snare drum, hi-hat). For this reason, we chose to use a separate set of tokens for drums; this way, we also avoid having to explicitly inform the model that the track is to be played by a drum kit, and not a pitched instrument.

If P d ⪰ 0 and K ≥ N , Eq. (5.22) still holds but is not unique.

https://cifkao.github.io/spe/

Linear Transformers are simpler compared to Performers in that they use a deterministic feature map, and they achieved better results in the LRA benchmark in Appendix A.2. Here, following[START_REF] Katharopoulos | Transformers are RNNs: Fast autoregressive transformers with linear attention[END_REF], we use the feature map ϕ(x) = ELU(x) + 1, where ELU is the exponential linear unit activation[START_REF] Clevert | Fast and accurate deep network learning by exponential linear units (ELUs)[END_REF].

The authors themselves note that their relation-aware RPE does not scale beyond Bach chorales.

https://colinraffel.com/projects/lmd/

https://cifkao.github.io/metrical-pe/

Considering multi-instrument recordings would lead to a more challenging and open-ended task closer to instrumentation transfer, which includes assigning an instrument (or set of instruments) to each note.

https://adasp.telecom-paris.fr/s/ss-vq-vae

https://colinraffel.com/projects/lmd/

See the MuseScore SoundFont list: https://musescore.org/en/handbook/soundfontsand-sfz-files

5 https://www.pgmusic.com

The final number is lower than the number of files in LMD due to corrupt MIDI files and parts with insufficiently many notes being discarded.

https://github.com/ctralie/LetItBee/

https://www.cambridge-mt.com/ms/mtk/

A model named 'Performer' is reported byTay et al., but communication with the authors revealed it to be in fact equivalent to our Linear Transformer-ReLU, as it does not use random features. To avoid confusion, we refer to this model as such herein.

The official data loader for ListOps contained a bug that caused it to inadvertently strip some characters from the input sequences.

https://github.com/magenta/magenta-js
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A.2 Long-Range Arena results

This section is based on the paper ⟨ICML2021⟩ by Liutkus, Cífka (equal contribution) et al.

We evaluate the proposed stochastic positional encoding (SPE) in the Long-Range Arena (LRA, [START_REF] Tay | Long Range Arena: A benchmark for efficient Transformers[END_REF]), a benchmark for efficient Transformers, consisting of sequence classification tasks with a focus on long-range dependencies. We use the following tasks from this benchmark:

• ListOps: parsing and evaluation of hierarchical expressions. a longer variant of [START_REF] Nangia | ListOps: A diagnostic dataset for latent tree learning[END_REF];

• Text: movie review sentiment analysis on the IMDB corpus [START_REF] Maas | Learning word vectors for sentiment analysis[END_REF];

• Retrieval: article similarity classification on the ACL Anthology Network (AAN) corpus [START_REF] Radev | The ACL anthology network corpus[END_REF];

• Image: object recognition on the CIFAR10 dataset [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] represented as pixel sequences.

The tasks are challenging due to the large sequence lengths, deliberately increased by choosing a character-/pixel-level representation. More details on the tasks are given in Table A.1. We do not include Pathfinder (a synthetic image classification task) as we were unable to reproduce the results of Tay et al. on this task, even through correspondence with the authors. We evaluate SPE (the gated variant) on two efficient Transformer models: the (softmax) Performer [START_REF] Choromanski | Rethinking attention with Performers[END_REF], and a Linear Transformer [START_REF] Katharopoulos | Transformers are RNNs: Fast autoregressive transformers with linear attention[END_REF] with a ReLU feature map, i.e. choosing ϕ(•) = max(0, •) element-wise in Eq. (5.6). 1 It should be noted that the ReLU feature map does not approximate the softmax kernel, which SPE is designed for (see Eq. (5.12)). Nevertheless, it is possible to use SPE with any feature map in practice, allowing us to include Linear Transformer-ReLU as an interesting test of generalization to alternative kernels.

We adopt the configuration of Tay et al., only changing the PE and the batch sizes/learning rates to allow training on limited hardware with similar results. All other hyperparameters are kept identical to the original LRA. It is worth noting that the Image models are different from the rest in that they employ a single-layer network and only use the first position for prediction, dramatically limiting their ability to benefit from relative positional information.

Since we observe some variation between different runs, we train and evaluate each model 3 times (except for Performer with convolutional SPE, which is computationally more costly) and report the mean and standard deviation of the results.

The results of the benchmark are given in Table A.2. The accuracies achieved by the baseline Linear Transformer-ReLU (APE) are similar to or surpass those reported by Tay et al., which is a clear validation of our experimental setup. 

B. Additional figures
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C. Supplementary materials

This appendix gathers references to all the additional resources that accompany the published articles and this thesis.

D. Software packages

Besides the source code associated with the published papers, I have developed and released the following open-source software packages in connection to my work on this thesis:

HTML MIDI Player Web component for playing and displaying MIDI files.

The package provides the <midi-player> HTML element, which allows embedding MIDI files in web pages, similarly to how audio files can be inserted using the <audio> element. This Python package provides an easy-to-use API for debugger-like functionality. With NoPdb, it is possible to write Python one-liners to:

• capture function calls, including arguments, local variables, return values and stack traces;

• set 'breakpoints' that trigger certain pre-defined actions, namely evaluating expressions or executing arbitrary code with local side effects.

This makes it a convenient tool for inspecting machine learning model internals such as Transformer attention matrices.

https://github.com/cifkao/nopdb Confugue Hierarchical configuration framework.

Confugue is a Python package providing a wrapper class for nested configuration dictionaries (usually loaded from YAML files), which can be used to easily configure complicated object hierarchies.

The package is ideal for configuring deep learning experiments. These often have large numbers of hyperparameters and managing all their values globally can quickly get tedious. Instead, Confugue allows each part of the deep learning model to be automatically supplied with hyperparameters from a YAML configuration file, eliminating the need to pass them around or to define the same hyperparameter in multiple places. The nested structure of the configuration file follows the hierarchy of the model architecture, with each part of the model having access to the corresponding section of the file.

https://github.com/cifkao/confugue