
HAL Id: tel-03499991
https://theses.hal.science/tel-03499991v1

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning methods for music style transfer
Ondřej Cífka

To cite this version:
Ondřej Cífka. Deep learning methods for music style transfer. Artificial Intelligence [cs.AI]. Institut
Polytechnique de Paris, 2021. English. �NNT : 2021IPPAT029�. �tel-03499991�

https://theses.hal.science/tel-03499991v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

T0
29 Deep learning methods

for music style transfer
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626
École Doctorale de l’Institut Polytechnique de Paris (ED IP Paris)

Spécialité de doctorat: Signal, Images, Automatique et robotique

Thèse présentée et soutenue à Palaiseau, le 17/11/2021, par

ONDŘEJ C ÍFKA

Composition du Jury :

Geoffroy Peeters
Professeur, Télécom Paris (IDS, LTCI), IP Paris, France Président

Gerhard Widmer
Professor, JKU Linz (ICP), Autriche Rapporteur

Jean-Pierre Briot
Directeur de recherche, CNRS (LIP6), Sorbonne Univ., France Rapporteur

Rachel Bittner
Senior Research Scientist, Spotify, France Examinatrice

Antoine Liutkus
Chargé de recherche, INRIA (LIRMM), Univ. Montpellier, France Examinateur

Gaël Richard
Professeur, Télécom Paris (IDS, LTCI), IP Paris, France Directeur de thèse

Umut Şimşekli
Chargé de recherche, INRIA (SIERRA), ENS (DI), France Co-directeur de thèse

Deep learning methods for
music style transfer

Ondřej Cífka

Abstract

In music, composers, arrangers, performers and producers often adapt
existing pieces to different contexts and audiences. Recently, deep learn-
ing methods have enabled transforming musical material in a data-driven
manner, setting the ground for tools which could partially automate this
process. The research performed in this area so far has focused largely on
conversion between a small set of musical genres or instrument timbres,
and on tasks that involve completing a partial arrangement in a desired
style. The focus of this thesis, on the other hand, is on a family of tasks
which we refer to as (one-shot) music style transfer, where the goal is to
transfer the style of one musical piece or fragment onto another. We pro-
pose two specific tasks in this direction: (1) accompaniment style transfer
for symbolic music representations (i.e. digital scores or MIDI files), and
(2) timbre transfer for audio recordings. For each of these tasks, we pro-
pose novel methods based on deep learning, as well as evaluation protocols.
Additionally, we present a broader contribution related to the processing
of sequences (music or otherwise) using Transformer neural networks.

In the first part of this work, we focus on supervised methods for sym-
bolic music accompaniment style transfer, aiming to transform a given piece
by generating a new accompaniment for it in the style of another piece. The
method we have developed is based on supervised sequence-to-sequence
learning using recurrent neural networks (RNNs) and leverages a synthetic
parallel (pairwise aligned) dataset generated for this purpose using existing
accompaniment generation software. We propose a set of objective metrics
to evaluate the performance on this new task and we show that the pro-
posed system is successful in generating an accompaniment in the desired
style while following the harmonic structure of the input. We also present
additional analyses aimed at a better understanding of the system.

In the second part, we investigate a more basic question: the role of
positional encodings (PE) in music generation using Transformers. In par-
ticular, we propose stochastic positional encoding (SPE), a novel form of
PE capturing relative positions while being compatible with a recently pro-
posed family of efficient Transformers. The main theoretical contribution
of this work is to draw a connection between positional encoding and cross-
covariances of correlated stochastic processes. We demonstrate that SPE
allows for better extrapolation beyond the training sequence length than
the commonly used absolute PE. We follow up on this work with an ex-
periment studying how PE can be better exploited for music generation by
making it encode more musically meaningful information.

Finally, in the third part, we turn from symbolic music to audio and
address the problem of timbre transfer. Specifically, we are interested in
transferring the timbre of an audio recording of a single (but not neces-
sarily monophonic) musical instrument onto another such recording while

3

preserving the pitch content of the latter. We present a novel method for
this task, based on an extension of the vector-quantized variational au-
toencoder (VQ-VAE), along with a simple self-supervised learning strategy
designed to obtain disentangled representations of timbre and pitch. As in
the first part, we design a set of objective metrics for the task. We show
that the proposed method is able to outperform existing ones.

We believe that our contributions open interesting directions for follow-
up work. Firstly, our approach to timbre transfer is promising, but may
benefit from more advanced audio synthesis techniques to improve the
sound quality of the outputs. We are also interested in investigating
whether the approach could be adapted to symbolic music by combining it
with efficient Transformers; this could lead to a more robust system for ac-
companiment or arrangement style transfer. Finally, regarding positional
encodings in Transformers, we see a need for a more careful investigation
of their role not only in music generation, but in sequence generation in
general.

4

Méthodes d’apprentissage profond
pour le transfert de style musical

Ondřej Cífka

Résumé

Les compositeurs, les arrangeurs, les interprètes et les producteurs de
musique adaptent souvent des morceaux existants à des contextes et publics
différents. Récemment, les méthodes d’apprentissage profond ont permis
d’effectuer des transformations du matériel musical basées sur les données
(data-driven), ce qui pourrait aider à créer des outils permettant d’auto-
matiser une partie de ce processus. Les travaux antérieurs dans ce domaine
se sont concentrés principalement sur la conversion entre un petit nombre
de genres musicaux ou de timbres. L’objet de cette thèse est d’étendre
ce cas de figure et de considérer le problème plus général du transfert de
style musical, dont le but est de transférer de manière automatique le style
d’un morceau à un autre. Nous proposons deux tâches différentes dans ce
sens : (1) le transfert de style des accompagnements dans une représenta-
tion symbolique (c’est-à-dire sous forme d’une partition numérique ou un
fichier MIDI), et (2) le transfert de timbre des enregistrements audio. Pour
chacune de ces tâches, nous proposons une approche basée sur l’apprentis-
sage profond, ainsi qu’un protocole d’évaluation. Nous apportons également
une contribution plus large liée au traitement de séquences (musicales ou
autres) à l’aide de réseaux de neurones appelés les Transformers.

Dans la première partie de la thèse, nous nous concentrons sur les mé-
thodes supervisées pour le transfert de style des accompagnements dans
une représentation symbolique. Plus précisément, l’objectif de ce travail
est de transformer un morceau en lui générant un nouvel accompagnement
dans le style d’un morceau différent. La méthode proposée est basée sur
l’apprentissage supervisé de séquence à séquence à l’aide de réseaux de
neurones récurrents (RNN), une technique développée pour la traduction
automatique. Le système est entraîné sur une base de données synthétiques
parallèle (alignée par paires) générée à cet effet à l’aide d’un logiciel exis-
tant de génération d’accompagnement. Nous proposons ainsi un ensemble
de mesures objectives pour évaluer la performance sur cette nouvelle tâche
et nous montrons que le système proposé réussit à générer un accompagne-
ment dans le style souhaité (pas forcément connu pendant l’entraînement)
tout en suivant la structure harmonique de l’entrée. En plus, nous présen-
tons des analyses supplémentaires visant à mieux comprendre le fonction-
nement du système proposé.

Dans la deuxième partie, nous étudions une question plus fondamen-
tale : le rôle des encodages positionnels dans la génération de musique
à l’aide des Transformers. Nous proposons l’encodage positionnel stochas-
tique (SPE), un nouvel encodage positionnel capable de coder des positions
relatives et compatible avec une classe récemment proposée de Transfor-
mers efficaces (Transformers à complexité linéaire). La principale contri-
bution théorique de ce travail est l’établissement d’un lien entre l’encodage
positionnel et la covariance croisée de processus gaussiens corrélés. Nous

5

montrons expérimentalement que le SPE permet, mieux que la méthode
conventionnelle (l’encodage positionnel absolu), de modéliser des séquences
plus longues que celles rencontrées pendant l’entraînement. Nous poursui-
vons ce travail avec une expérience étudiant comment l’encodage position-
nel peut être mieux exploité pour la génération de musique en le faisant
coder des informations plus significatives musicalement.

Enfin, dans la troisième partie, nous passons de la musique symbolique
à l’audio et abordons le problème du transfert de timbre. Plus précisément,
étant donnés deux enregistrements audio, chacun d’un seul instrument
(mais pas forcément monophonique), nous cherchons à transférer le timbre
de l’un à l’autre, tout en préservant le contenu mélodique et harmonique du
dernier. Nous présentons une nouvelle méthode pour cette tâche, basée sur
une extension de l’autoencodeur variationnel quantifié (VQ-VAE), ainsi
qu’une stratégie d’apprentissage auto-supervisé. La méthode est conçue
pour obtenir des représentations séparées (démêlées) du timbre et de la
hauteur, ce qui permet d’effectuer le transfert de timbre. Comme dans la
première partie, nous concevons un ensemble de métriques objectives pour
la tâche. Nous montrons que la méthode proposée est capable de surpasser
des méthodes existantes.

Notre travail ouvre des pistes intéressantes pour le futur. D’abord, notre
approche au transfert de timbre est prometteuse, mais bénéficierait d’une
méthode plus avancée de synthèse sonore afin d’améliorer la qualité des ré-
sultats. Nous envisageons aussi la possibilité d’adapter cette approche à la
musique symbolique en la combinant avec les Transformers efficaces ; cela
permettrait d’obtenir un système plus robuste de transfert de style d’ac-
compagnement ou d’arrangement. Enfin, concernant les encodages posi-
tionnels, nous voyons un besoin d’étudier davantage leur rôle non seulement
dans la génération de musique, mais plus généralement dans la génération
de séquences.

6

Acknowledgments
I would like to express my gratitude to:

• my supervisors Gaël and Umut for their guidance, support and kindness, for
always being there when I needed them – as well as knowing when to leave
me alone – and in general for making my PhD an enjoyable experience;

• colleagues from Télécom Paris and the ADASP group – including both of
my supervisors – not only for creating a pleasant workplace environment,
but also for the fun we’ve had playing music, even virtually1 during the
COVID-19 lockdown;

• my love Kateřina for her companionship, in particular for agreeing to move
to Paris, a decision she continues to lament to this day;

• Giorgia, Javier, Karim and Kilian for the mutual support in the face of the
French bureaucracy;

• Alexey for hosting (unfortunately only remotely) my internship at Inter-
Digital and for his adamance in pushing our paper and code through the
company’s internal approval process;

• Antoine for the fruitful and stimulating collaborations and for being an
endless source of ideas;

• Eric (Yi-Hsuan) and Shih-Lun for their valuable advice and contributions;

• Marie Skłodowska-Curie Actions and the MIP-Frontiers network2 for mak-
ing my PhD possible:

This work was supported by the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie
grant agreement No. 765 068 (MIP-Frontiers).

1https://youtu.be/hFWqzEQw4Ow
2https://mip-frontiers.eu/

7

https://youtu.be/hFWqzEQw4Ow
https://mip-frontiers.eu/

8

Contents

List of publications 11

Notation 13

1 Introduction 15
1.1 Music style conversion . 16
1.2 Structure and contributions . 18

2 Related work 21
2.1 Deep learning preliminaries . 21
2.2 Audio-specific methods . 22
2.3 Domain translation with cyclic consistency 26
2.4 Representation disentanglement 27
2.5 Other related work . 29

2.5.1 Self-supervised music completion 29
2.5.2 Music generation with constraints 30
2.5.3 Expressive performance rendering 30

2.6 Conclusion . 31

3 Background: Deep learning for sequence generation 33
3.1 Autoregressive neural language models 33

3.1.1 Generation . 34
3.1.2 Model architectures . 34

3.2 Sequence-to-sequence models . 38
3.2.1 Model architectures . 38

3.3 Conclusion . 41

4 Supervised symbolic music style conversion 43
4.1 Methods overview . 43

4.1.1 Synthetic data generation 45
4.2 Evaluation . 46

4.2.1 Content preservation . 46
4.2.2 Style fit . 46

4.3 Supervised style translation . 49
4.3.1 Method . 51
4.3.2 Experimental results . 53

4.4 Supervised style transfer (Groove2Groove) 56
4.4.1 Method . 57
4.4.2 Experimental results . 62

4.5 Conclusion . 68

9

5 Positional encodings for music generation 73
5.1 Background . 73

5.1.1 Linear complexity Transformers 73
5.1.2 Relative positional encoding 75
5.1.3 Music generation with Transformers 75

5.2 Stochastic positional encoding – theory 76
5.2.1 Drawing stochastic positional encodings 78
5.2.2 Gating and sharing . 81

5.3 Stochastic positional encoding – experimental results 81
5.3.1 Accompaniment continuation 82
5.3.2 Pop piano music generation 85

5.4 Metrical positional encoding . 87
5.5 Conclusion . 89

6 Self-supervised audio timbre transfer 93
6.1 Background . 94

6.1.1 Vector-quantized variational autoencoder 94
6.1.2 Self-supervised learning . 95

6.2 Method . 95
6.2.1 Data . 96
6.2.2 Model and training details 97

6.3 Evaluation . 99
6.3.1 Artificial benchmark . 100
6.3.2 ‘Real data’ benchmark . 100

6.4 Experimental results . 101
6.5 Discussion . 101

6.5.1 Our system . 101
6.5.2 Baselines . 102

6.6 Conclusion . 103

7 Conclusion 105
7.1 Summary of contributions . 105
7.2 Future directions . 106

Bibliography 109

A Miscellaneous details 123
A.1 Chord chart generation . 123
A.2 Long-Range Arena results . 124

B Additional figures 127

C Supplementary materials 131

D Software packages 133

10

List of publications
⟨ISMIR2019⟩

Ondřej Cífka, Umut Şimşekli, and Gaël Richard. Supervised symbolic
music style translation using synthetic data. In Proceedings of the 20th
International Society for Music Information Retrieval Conference (ISMIR
2019), pages 588–595, Delft, The Netherlands, November 2019. ISMIR.
doi: 10.5281/zenodo.3527878. URL https://doi.org/10.5281/zenodo.
3527878.

⟨TASLP2020⟩
Ondřej Cífka, Umut Şimşekli, and Gaël Richard. Groove2Groove: One-shot
music style transfer with supervision from synthetic data. IEEE/ACM
Transactions on Audio, Speech and Language Processing, 28:2638–2650,
August 2020. IEEE. doi: 10.1109/TASLP.2020.3019642. URL https:
//hal.archives-ouvertes.fr/hal-02923548.

⟨ICASSP2021⟩
Ondřej Cífka, Alexey Ozerov, Umut Şimşekli, and Gaël Richard. Self-
supervised VQ-VAE for one-shot music style transfer. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP
2021), Toronto, Canada, June 2021. IEEE. doi: 10.1109/ICASSP39728.
2021.9414235. URL https://hal.telecom-paris.fr/hal-03132940.

⟨ICML2021⟩
Antoine Liutkus,∗ Ondřej Cífka,∗ Shih-Lun Wu, Umut Şimşekli, Yi-Hsuan
Yang, and Gaël Richard. Relative positional encoding for Transformers
with linear complexity. In Proceedings of the 38th International Conference
on Machine Learning (ICML 2021), July 2021. PMLR. URL http://
proceedings.mlr.press/v139/liutkus21a.html.

∗Equal contribution.

11

https://doi.org/10.5281/zenodo.3527878
https://doi.org/10.5281/zenodo.3527878
https://hal.archives-ouvertes.fr/hal-02923548
https://hal.archives-ouvertes.fr/hal-02923548
https://hal.telecom-paris.fr/hal-03132940
http://proceedings.mlr.press/v139/liutkus21a.html
http://proceedings.mlr.press/v139/liutkus21a.html

12

Notation
v = [vn]n column vector with entries vn

A = [amn]mn matrix with entries amn

am = [amn]n m-th row of matrix A
a∗n = [amn]m n-th column of matrix A
x scalar or unspecified object
[u, v] concatenation of vectors u, v
[a b] closed interval from a to b

(a b) open interval from a to b

(v1, v2, . . . , vN) tuple or row vector
0N or 0 zero vector (0, 0, . . . , 0⏞ ⏟⏟ ⏞

N

)⊤

1N or 1 all-ones vector (1, 1, . . . , 1⏞ ⏟⏟ ⏞
N

)⊤

1n one-hot vector (0, 0, . . . , 0⏞ ⏟⏟ ⏞
n−1

, 1, 0, 0, . . .)⊤

diag(v) diagonal matrix with the entries of v on the diagonal

13

14

1. Introduction
In music, composers, arrangers, performers and producers often adapt existing
pieces to different contexts and audiences. For instance, music of the Renaissance
period was often based on popular melodies, such as L’homme armé, a Medieval
secular tune that gave rise to dozens of masses. Mussorgsky’s Pictures at an Ex-
hibition exists in hundreds of different arrangements for various instrumentations,
with Ravel’s orchestration being known to a wider audience than the original pi-
ano version. In modern popular music, cover songs are a common phenomenon;
if sufficiently different in style from the original, a cover version may make the
song accessible to a different audience, like Jimi Hendrix’s classic rendition of
All Along the Watchtower by Bob Dylan. More broadly, any performance of a
musical piece can be viewed as the artist’s personal interpretation of the piece,
adapted to some extent to the context in which it is performed.

With technological advances of the late 20th century, it became possible to
combine and transform existing recordings, leading to practices such as remixing
and sampling, which became especially widespread with the advent of digital
audio. A common example are dance remixes, altering the sound of a song to
make it better suited for the dance floor, mainly by adding or replacing tracks or
applying audio effects. Recordings may also be edited (shortened) to make them
suitable for radio broadcasting or a TV advertisement.

More recently, developments in algorithms, signal processing and machine
learning have brought the promise of directly manipulating more high-level, mu-
sically meaningful features. For example, it has become possible to automatically
harmonize melodies [Ebcioğlu, 1990, Simon et al., 2008, Huang et al., 2017], gener-
ate sophisticated accompaniments or ‘improvised’ solos (see e.g. Band-in-a-Box1),
turn scores into expressive performances [Dixon et al., 2005, Widmer et al., 2009]
or transfer sound textures from one recording onto another [Driedger et al., 2015,
Grinstein et al., 2018].

One area where such automated music transformations can be applied is the
very act of music making. In a practice called human-AI co-creation, artists2

experiment with integrating machine learning models into their creative process,
using them to transform or complete existing musical fragments or generate new
musical ideas from scratch [Roberts, 2019, Huang et al., 2020]. Neural audio
synthesis methods [Engel et al., 2017, 2020] enable artists to explore new timbres
and, when combined with pitch estimation, to employ them as virtual instruments
controlled by audio input.3

Another application lies in generating music for short videos, such as adver-
tisements or tutorials. Finding music that matches a video may be difficult and
time-consuming and is complicated by copyright issues [Frid et al., 2020]. This has
inspired services4 that offer ‘AI-generated music’ based on different user-specified
parameters. There has also been work on the retrieval of music based on video
content [Prétet et al., 2021]. An interesting opportunity for innovation then lies

1https://www.pgmusic.com/
2e.g. https://yacht.bandcamp.com/album/chain-tripping
3https://g.co/tonetransfer
4e.g. https://www.aiva.ai/, https://www.ampermusic.com/

15

https://www.pgmusic.com/
https://yacht.bandcamp.com/album/chain-tripping
https://g.co/tonetransfer
https://www.aiva.ai/
https://www.ampermusic.com/

in automatically generating or transforming music in order to match the content
of a video or mimic the style of a given song.

A particularly interesting situation arises in video game soundtracks, which
need to be sufficiently varied to avoid tiring the player during hours of game-
play. Moreover, the soundtrack needs to change dynamically in response to the
player’s actions and the state of the environment. Consequently, video games
lend themselves to procedural music [Collins, 2009] that adapts in real time to
various in-game variables, typically by using pre-composed building blocks that
are recombined in a randomized way, controlled by game-dependent logic. Such
soundtracks require large amounts of specialized engineering effort, creating an
exciting opportunity for methods capable of automating this process, e.g. to adapt
existing music to a gameplay context.

1.1 Music style conversion
After a broad introduction to context-based music transformations, let us focus
on a specific kind of transformation which we call music style conversion and
which is the main topic of this thesis. In general terms, given a piece x with
content C and style S, the aim of style conversion is to produce a piece y with
the same content C, but a different style T (the target style). For this definition
to be useful, we must also define what we mean by style and content. However,
as we are about to see, there is no universal definition of these terms that could
cover all possible use cases, and their meaning will instead depend on the concrete
type of music style conversion task at hand.

Variety of style conversion tasks. Conceivable examples of music style con-
version include:

(a) Changing the instrumentation of a given recording.

(b) Changing the lead vocal track to resemble a different singer.

(c) Changing the dynamics, timing or articulation to alter the mood of a per-
formance or to imitate a given performer.

(d) Generating a cover of a song in the style of another song or artist, or in a
given genre.

It should be apparent from these examples that style conversion can happen on
a number of different levels. Xia and Dai [2018] define three such levels: timbre,
performance control and composition style. For example, in (a) and (b), we
modify timbre while preserving the information on the other two levels; in (c),
we only modify performance control. However, in (d), the style features we wish
to modify may be spread across all three levels.

Style transfer and style translation. We may also categorize style conver-
sion tasks based on how the target style T is specified to the system. In this
work, we consider two basic options:

16

(i) The set of possible styles is finite (and typically small) and fixed in advance.
The target style T may be represented as a discrete label (ID) or may not
have an explicit representation (e.g. if a separate (sub-)system is trained for
each target style). We refer to this case as style translation.

(ii) The set of possible styles is potentially infinite. The target style T is repre-
sented by a single example, i.e. by a musical fragment z in that style. This
may be understood as style transfer [Gatys et al., 2016], and borrowing
its terminology, we can call x the content input (since it bears the content
C) and z the style input (since it bears the target style T).

As we will detail in Chapter 2, most prior work on music has focused on style
translation (i). Note that although some of these prior works also use the expres-
sion ‘style transfer’, this conflicts with how the term is traditionally understood
[Efros and Freeman, 2001, Xie et al., 2007, Gatys et al., 2016], and the term ‘trans-
lation’ [Isola et al., 2017, Zhu et al., 2017, Malik and Ek, 2017, Mor et al., 2019]
is in our opinion more appropriate and helps us draw the distinction between (i)
and (ii).

To further highlight this distinction, we will occasionally refer to (ii) as one-
shot style transfer. This is by analogy to one-shot learning, the problem of
learning the concept of a class from a single example (in order to perform classifi-
cation [Li et al., 2006] or to generate new samples from the class [Rezende et al.,
2016]). In our case, we use the term ‘one-shot’ to emphasize that the system
must extract the (potentially previously unseen) style T from a single example z.

Tasks of interest. We are now ready to define the tasks that are the focus
of this thesis. The first one is accompaniment style transfer, a task where
the inputs and outputs are popular music or jazz accompaniments in a symbolic
representation (in our case, MIDI5 files). We define the content of an accompani-
ment as the harmonic structure of the song – i.e. the information represented in
a chord chart – and style refers to the way musicians produce an actual accom-
paniment based on this information. Note that we do not consider styles to be
broad classes such as genres – instead, we consider a style to represent the set of
patterns (e.g. riffs, voicings, rhythmical patterns) characteristic of a given artist
or even an individual song. The task is illustrated in Fig. 1.1.

Ultimately, accompaniment style transfer enables creating a cover version of
a given song by generating a new accompaniment for it in a given style. If suffi-
ciently reliable, a system with this capability could be applied to aforementioned
game or video soundtracks in order to increase the stylistic variability of existing
material or even for personalization (adapting music to the listener’s taste). In
any case, accompaniment style transfer systems could be used by music creators
to quickly try out different musical styles or even to create remixes or mashups
in a human-AI co-creation setup.

The second task of interest is audio timbre transfer, illustrated in Fig. 1.2,
where the inputs are single-instrument (but not necessarily monophonic) audio
recordings. In this case, content is defined as pitch and style is defined as timbre.
Again, we consider timbre in a very broad sense, including not only the identity
of the instrument, but also any audio effects applied on top of it.

5https://www.midi.org

17

https://www.midi.org

+

→ →

output

content input style input

Figure 1.1 – An example of accompaniment style transfer. The accompaniments
in this example consist of a piano track and a bass track. The output follows
the harmony of the content input (the chords C7 and F) while employing the
samba-like rhythmic and melodic patterns of the style input. In general, the two
inputs need not be the same length. The chord symbols are shown for illustration
only and are not part of the data for the task.

outputcontent input style input

Figure 1.2 – An example of timbre transfer. The inputs and outputs are audio
recordings. The output combines the pitch content of the content input with the
timbre of the style input.

This task has obvious applications in music making. In particular, a real-time,
high-fidelity timbre transfer system would allow to turn a short audio sample
into a fully realistic virtual instrument controllable e.g. by singing or playing an
acoustic instrument.

1.2 Structure and contributions
The rest of the thesis is structured in the following manner:

• In Chapter 2, we review related work on music style conversion.

• In Chapter 3, we present some background on deep learning techniques
for sequence generation, which are used extensively in this thesis.

• Chapter 4 concerns supervised methods for accompaniment style

18

conversion, in particular one-shot accompaniment style transfer and, as an
intermediate, simpler task, accompaniment style translation. The chapter
includes the following major contributions of this thesis:

– We propose a common framework for accompaniment style conversion
tasks based on supervised learning from synthetic data.

– We design a common evaluation protocol for the tasks, consisting of
objective metrics of content preservation and style fit.

– As a first step, we approach the accompaniment style translation
task and develop a method capable of translating bass-and-piano ac-
companiments between 70 different styles.

– We then extend the method to the one-shot accompaniment style
transfer setting while also proposing a more robust input/output rep-
resentation and an efficient strategy for working with accompaniments
consisting of arbitrary combinations of instruments.

– Our experimental results demonstrate the performance of the proposed
systems on the respective tasks. We also present additional analyses
such as an ablation study and visualizations of the learned style rep-
resentations.

These contributions have been published in the papers ⟨ISMIR2019⟩ and
⟨TASLP2020⟩ (see the List of publications).

• In Chapter 5, we investigate a more basic question: the role of positional
encodings in symbolic music generation using Transformers. The major
contributions presented here are as follows:

– We propose stochastic positional encoding (SPE), a novel form of po-
sitional encoding capturing relative positions (considered important
in music generation) while being compatible with recently proposed
linear complexity Transformers.

– We demonstrate that when applied to music generation, SPE allows
for better extrapolation beyond the training sequence length than the
commonly used absolute positional encoding (APE).

– We follow up on this work with an experiment studying how positional
encodings can be better exploited for music generation by making them
encode more musically meaningful information.

The first two of these contributions have been published in ⟨ICML2021⟩,
along with some results on non-music data, additionally presented in Ap-
pendix A.2.

• In Chapter 6, we turn from symbolic music to audio and present our con-
tributions addressing the problem of timbre transfer:

– We propose a novel method for this task, based on an extension of
the vector-quantized variational autoencoder (VQ-VAE), along with a
simple self-supervised learning strategy designed to obtain disentan-
gled representations of timbre and pitch.

19

– We design an evaluation protocol for the task, consisting of objective
metrics of content preservation and style fit.

– Our experimental results show that the proposed method is able to
outperform baselines from the literature.

These contributions have led to the publication ⟨ICASSP2021⟩.

• Chapter 7 concludes the thesis, summarizes its contributions and offers
some directions for future research.

The above contributions are accompanied by websites with listening examples
and/or interactive demos, as well as source code and other resources. Their list
can be found in Appendix C.

Moreover, three open-source software packages, HTML MIDI Player, NoPdb
and Confugue, described in Appendix D, have been released as a by-product of
this work.

20

2. Related work
This chapter will discuss prior work closely related to the style transfer task. In
general, we are interested in learning style from data, and we therefore mostly
omit methods that are rule-based and/or tailored to specific styles. We also focus
more on deep learning-based approaches, as they are the topic of this thesis.

We open in Section 2.1 with some elementary background on deep learning for
music and audio processing. In Section 2.2, we review methods that are specific to
audio data (especially as opposed to symbolic music representations) and usually
rely on theoretical understanding of audio signals and traditional digital signal
processing methods. On the other hand, Sections 2.3 and 2.4 give an account
of methods that are more strongly data-driven and are applicable across data
modalities. We leave various other (more loosely related) works for Section 2.5.
Section 2.6 concludes the chapter with some final remarks.

2.1 Deep learning preliminaries
In this section, we briefly introduce some deep learning concepts which will ap-
pear in the rest of this chapter. For a more complete overview of deep learning
techniques for audio and music processing, see Peeters and Richard [2021].

Convolutional neural networks (CNN). CNNs have become widespread
as a means to process data presented as a regular grid, e.g. images or regularly
sampled time series. Their core building block is a convolutional layer, which
convolves its input with a set of learnable filters, essentially applying the same
linear operation to different ‘patches’ of the input.

In the case of images, the input to each layer is usually a 3D tensor with
2 spatial dimensions (width, height) and 1 channel dimension; in this case, the
filters of each layer make up a 4D tensor (kernel) with dimensions corresponding
to width, height, input channels and output channels (i.e. number of filters); 2D
convolution along the 2 spatial dimensions is performed. When processing audio,
the input to the network is usually a spectrogram, i.e. a representation with a time
dimension and a frequency dimension. One option is to treat the spectrogram
as an image with a single channel and use 2D convolutions. However, depending
on the type of spectrogram and the task, it may be more appropriate to use 1D
convolution along the temporal dimension only.

A CNN then consists of a series of multiple such convolutional layers, inter-
laced with non-linearitites (activation functions) and pooling operations, which
downsample (i.e. reduce the spatial dimensions of) the features. A popular pool-
ing operation is max-pooling, which takes the maximum value in each spatial
region. An alternative to pooling is strided convolution, where the convolutional
filter skips some locations as it slides over the input, also leading to downsam-
pling.

Recurrent neural networks (RNN). An RNN is a suitable architecture
whenever the input is a sequence of feature vectors x1, . . . , xN . It works by

21

processing the input sequence from left to right and using each input xn to up-
date its internal (‘hidden’) state vector. The resulting sequence of state vectors
h1, . . . , hN can then be used for further processing. For example, if we wish to
classify the input sequence, we can use the last hidden state hN as input to a
linear classifier. We can also use the whole sequence of hidden states to predict
a value for each position.

We will describe RNNs in more detail in Chapter 3, which will also explain
how RNNs can be used for sequence generation.

Autoencoders. An autoencoder is any neural network that is trained to re-
construct its input, i.e. to copy its input to its output. It consists of an encoder,
which maps the input x to a lower-dimensional intermediate representation z,
often called the latent code, and a decoder, which then maps the latent code z to
a reconstruction x̂. The utility of an autoencoder lies precisely in its latent code,
which may be useful as features for a downstream task. In some cases, it is also
possible to use the autoencoder to generate new data samples or to alter inputs
by manipulating the corresponding latent codes.

Different types of autoencoders exist, imposing different constraints on the
latent code space in order to obtain some desirable properties. Arguably the
most popular kind is the variational autoencoder (VAE, Kingma and Welling
[2014]), which assumes a particular prior distribution p(z) over the latent codes,
typically the standard Gaussian.

2.2 Audio-specific methods
We start our literature review with a method which was in fact originally proposed
for images and only later adapted to audio, but is still somewhat domain-specific.
The method in question was introduced by Gatys et al. [2016] and constitutes
the first neural approach to style transfer. It is based on the observation that
in a CNN trained for image recognition, the deeper layers encode high-level infor-
mation about the composition of the image (content), while information about
textures present in the image (style) is captured by summary statistics of different
layers.

The method is illustrated in Fig. 2.1. The input to the algorithm are two
images, the content image Ic and the style image Is, which are then used to
extract content and style information, respectively, in the following way:

(a) The content image Ic is processed by the CNN and the activations F lc(Ic)
of one of the deeper (higher) layers lc are used as the content representation.

(b) The style image Is is processed by the same CNN and the Gram matrix of
each layer of the network is computed. This Gram matrix Gl(Is) of the layer
l captures the correlations between the activations in the different feature
maps at this layer. The Gram matrices G1(Is), . . . ,GL(Is) of all the layers
are used together as a style representation.

Once the content representation and the style representation are extracted, we
wish to find an image I that matches both simultaneously, i.e. one that mini-
mizes a weighted sum of the following losses (Euclidean distances to the target

22

content input Ic style input Isoutput I

CNNCNN

content repr. content repr.

style repr. style repr.

CNN

content loss
style loss+

Figure 2.1 – Image style transfer. Left: the content representation of the image
Ic is obtained as the features produced by a specific layer of the pre-trained
CNN. Right: the style representation of the image Is is computed as the Gram
matrices of the features produced by different layers of the same CNN. Middle:
the content and style features of the (initially random) image I are computed
analogously. The total loss (weighted sum of distances between representations)
is calculated and its gradient is propagated back to I.

representations):
⃦⃦⃦
F lc(Ic)−F lc(I)

⃦⃦⃦2
the content loss,⃦⃦⃦

Gl(Is)− Gl(I)
⃦⃦⃦2

the style loss at layer l (∀l).

This is done by initializing the image with random noise and then optimizing it
using gradient descent. In each step, the representations F lc(I), Gl(I) are com-
puted with the use of the pre-trained CNN and the gradient is back-propagated
to update the image.

The technique has subsequently been improved and extended, as well as
adapted to specific kinds of style transfer. For a taxonomy of image and video
style transfer algorithms, see Jing et al. [2020].

Ulyanov and Lebedev [2016] and Grinstein et al. [2018] adapted and gen-
eralized this framework in order to transfer ‘sound textures’. As a proof-of-
concept, Ulyanov and Lebedev simply replace the image with the spectrogram
of an audio recording and use an untrained (randomly initialized) single-layer
one-dimensional CNN to extract content and style features. On the other hand,

23

Time target

Fr
eq

ue
nc

y

Target

Time source

Fr
eq

ue
nc

y
Source

Ti
m

e
so

ur
ce

Time target

≈

.
Learned activations

Time target

Fr
eq

ue
nc

y

Mosaic
=

Figure 2.2 – The NMF-driven musaicing method (a.k.a. ‘Let It Bee’) of Driedger
et al. [2015]. The ‘source’ (the buzzing of a bee) and the ‘target’ (Let It Be
by The Beatles) correspond to our style input and content input, respectively.
Reproduced from Driedger et al. [2015]. © 2015 Jonathan Driedger, Thomas
Prätzlich, Meinard Müller.

Grinstein et al. drop the content loss and instead use the content input for initial-
ization, letting the optimization converge to a nearby local optimum. They also
propose an alternative way to compute the style loss, based on a model emulating
the human auditory system. While both works achieve interesting results, the
approach is not specifically tailored to music and does not aim to transfer musical
timbre.

On the other hand, a method designed for music, and one that can be considered
to perform music timbre transfer, is musical mosaicing or musaicing [Zils and
Pachet, 2001]. Musaicing is a form of concatenative synthesis which splits a
‘source’ audio recording into short frames (each a fraction of a second in duration)
and concatenates them so as to match the characteristics of another (‘target’)
recording.

Driedger et al. [2015] propose to combine this method with non-negative ma-
trix factorization (NMF), as illustrated in Fig. 2.2. The frames from the source
recording are used as a fixed dictionary W of spectral templates, and an acti-
vation matrix H is then obtained using an iterative update process so that the
product WH approximates the spectrogram of the target recording. The Griffin-
Lim algorithm [Griffin and Lim, 1983] is then applied to this approximation WH

24

Figure 2.3 – Cycle-consistent generative adversarial network (CycleGAN). (a) The
model contains two mappings G : X → Y and F : Y → X . The two corresponding
discriminators DX and DY encourage the outputs of the two mappings to be
indistinguishable from samples from the target domains X and Y , respectively.
(b) The forward cycle consistency loss, enforcing F (G(x)) ≈ x. (c) The backward
cycle consistency loss, enforcing G(F (y)) ≈ y. Reproduced from Zhu et al. [2017].
© 2017 IEEE.

in order to obtain a time-domain signal, which is the final output of the algo-
rithm. Compared to the original NMF algorithm, Driedger et al. propose an
extended set of update rules that promotes sparsity and diagonal structures in
the activation matrix, which leads to better timbre preservation.

Subsequent works [Aarabi and Peeters, 2018, Tralie, 2018] instead use non-
negative matrix factor 2D deconvolution (NMF2D, Schmidt and Mørup [2006])
in an attempt to improve the performance in cases where the source audio is not
monophonic.

In a radically different, learning-based approach, Engel et al. [2020] perform music
timbre conversion using a trainable synthesis model conditioned on pitch and
loudness. The model is composed of a neural network that controls the param-
eters of a harmonic-plus-noise synthesizer (combining additive and subtractive
synthesis) with explicitly controlled pitch (fundamental frequency). Timbre con-
version is achieved by extracting the pitch and loudness information from a given
recording (the former using a pre-trained pitch estimator) and feeding it to the
synthesis model, trained for a specific target instrument.

Similarly, Bitton et al. [2021] combine a neural network with a subtractive
synthesizer, but their model is trained end-to-end as a waveform autoencoder.
The latent representation is discrete (see VQ-VAE in Sections 2.4 and 6.1.1) and
loudness-invariant (i.e. disentangled from loudness, which is included as a separate
feature). Timbre conversion is done simply by feeding an arbitrary audio input to
this end-to-end model, which has been trained for a specific target instrument as
in Engel et al. Interestingly, the method allows not only preserving the pitch and
loudness of the input, but also translating within-instrument timbre variations.

Both methods achieve impressive audio quality, but require training for each
individual target instrument, unlike the method of Driedger et al. [2015] and our
own method laid out in Chapter 6.

25

2.3 Domain translation with cyclic consistency
When styles are thought of as classes or data domains, style conversion may be
framed as a domain translation task, a concept which is not limited to music,
but may be applied to any data modality.

From a machine learning perspective, we can approach the task in a supervised
or an unsupervised manner, depending on the kind of available training data. A
classical example of a translation task where aligned (parallel) data is readily
available, and therefore a supervised approach is feasible, is machine translation
(MT) between natural languages. This field has a relatively long tradition, with
the first data-driven machine translation systems dating back to the early 1990s
[Brown et al., 1990]. On the other hand, music style translation is a task where
a sufficient amount of aligned data is typically difficult or impossible to collect.
This leads to a need for unsupervised domain translation methods, which have
only become available in recent years thanks to deep learning.

A major advantage of unsupervised translation methods is that they usually
do not require a prior notion of content (what is shared across domains) and style
(what should be changed by translation) – these concepts are learned completely
from data. However, the goal is poorly defined, and unless sufficient constraints
are imposed, the learned mapping may not be meaningful.

In this section, we focus on domain translation using cycle-consistent gener-
ative adversarial networks (CycleGAN s). CycleGANs were developed for unsu-
pervised image-to-image translation by Zhu et al. [2017]. The learning algorithm
observes unpaired examples from two domains X and Y and learns two mutually
inverse mappings G : X → Y and F : Y → X . The authors propose to employ
two techniques, displayed in Fig. 2.3, to constrain these mappings:

(1) An adversarial objective to force the outputs of F and G to be indistin-
guishable from real examples from the domains X and Y , respectively.
Specifically, the mapping G is coupled with a discriminator network DY ,
which aims to distinguish the generated samples G(x) from real samples
y; in the same way, F is coupled with a discriminator DX . The mappings
F and G are trained to fool the respective discriminators, which ensures a
match between the distributions of their outputs and the real data distribu-
tions. Each mapping together with its associated discriminator hence con-
stitutes a generative adversarial network (GAN ; Goodfellow et al. [2014]).

(2) Two cycle consistency losses, enforcing the constraint that F and G are
each other’s inverse, i.e. F (G(x)) ≈ x and G(F (y)) ≈ y.

Applying CycleGANs (and GANs in general) to sequential data such as music
is more challenging due to the autoregressive nature of most sequence generation
models, such as recurrent neural networks (RNNs), Transformers or WaveNets.
In these models, generation proceeds sequentially, always conditioned on the
outputs sampled in all previous steps, which typically makes the process non-
differentiable, especially in the case of symbolic music, which is itself a discrete,
non-differentiable object. This prevents from training the model by straightfor-
ward gradient back-propagation.

26

Huang et al. [2019b] use a CycleGAN for audio timbre translation, but
avoid generating raw audio by applying the CycleGAN to spectrograms. A con-
ditional WaveNet, trained on spectrogram-waveform pairs, is then used to syn-
thesize the audio. Brunner et al. [2018b] employ a CycleGAN for symbolic
music style translation, representing the music as a piano roll (a binary ma-
trix of note activations along time). In both cases, the music representation can
be essentially treated as a monochrome image, which allows to use a standard
convolution-based architecture.

2.4 Representation disentanglement
Another popular concept used for unsupervised learning of transformations is that
of representation disentanglement. The aim of disentanglement is to learn features
that are interpretable in the sense that each feature or group of features represents
a particular attribute (‘semantic factor’) and can be manipulated independently
of the other features without affecting other attributes. This is especially useful
in the context of autoencoders and generative models, since it allows transforming
data samples along these attributes by manipulating the corresponding features.
To perform style transformations, it is desirable to disentangle style from con-
tent; for example, style transfer can then be achieved simply by combining one
example’s content representation with the style representation of another.

Methods attempting to achieve disentanglement purely using unlabeled data
(i.e. by automatically discovering the factors to be disentangled) have been pro-
posed, e.g. by Chen et al. [2016] and Karras et al. [2019], but doing so for high-
level attributes, such as style and content in music, remains a hard problem. For
this reason, we focus on settings where these attributes are known and labels are
available.

One of the first works in this area [Lample et al., 2017] succeeded in disen-
tangling specific attributes of human faces (e.g. age, gender, glasses) in an image
autoencoder. The method is inspired by GANs, but the adversarial training is
performed in the autoencoder’s latent space to enforce disentanglement. Specif-
ically, the encoder maps the input x to a latent representation z, which is then
used not only by the decoder to reconstruct x, but also by a discriminator to pre-
dict the associated attributes y. The encoder and the discriminator are trained
adversarially, meaning that the goal of the encoder is to make it impossible for
the discriminator to identify the attributes y from z.

Similar techniques are used by Lample et al. [2018] to perform unsupervised
natural language translation, bringing the task closer to the one discussed in
Section 2.3. This time, the attribute y is the language (e.g. English or French)
and the goal is for z is to encode the meaning of the sentence x in a language-
independent way.

A different method that we wish to include here is the vector-quantized vari-
ational autoencoder (VQ-VAE), proposed by van den Oord et al. [2017]. A VQ-
VAE is an autoencoder with a discrete latent space. Its latent representation
is a sequence of discrete symbols from a (learned) finite dictionary, placing an
explicit limit on its capacity. While the authors’ goal is not representation disen-
tanglement, they show experimentally (without theoretical guarantees) that after
training this model on speech with conditioning on the speaker identity, it is pos-

27

Figure 2.4 – The music translation network of Mor et al. [2019]. The input is
encoded using a WaveNet encoder shared between all domains and the output
is generated using a domain-specific decoder. The network is trained as an au-
toencoder (always selecting the appropriate decoder according to the training
example) while using the domain classification (confusion) network to encourage
the intermediate representation to be domain-independent. Reproduced from
Mor et al. [2019]. © 2018 Noam Mor, Lior Wolf, Adam Polyak, Yaniv Taigman.

sible to achieve voice conversion simply by switching the speaker label. They
conclude that the model learns ‘a high-level abstract space’ capable of represent-
ing an utterance in a speaker-invariant way – in other words, the autoencoder’s
latent space becomes disentangled from the speaker embedding space. This in-
spired our music timbre transfer approach, presented later in Chapter 6; we will
give a more detailed explanation of the VQ-VAE there.

Turning finally to music, an approach very similar to Lample et al. [2018] has
been applied to music audio translation by Mor et al. [2019], using a WaveNet
[van den Oord et al., 2016] autoencoder architecture (see Fig. 2.4). As a ma-
jor difference to Lample et al., the framework accounts for multiple domains
X1, . . . ,Xn, which in this case correspond to different composers and instrumen-
tations (e.g. X1 = Mozart’s symphonies, X2 = Haydn’s string quartets etc.). The
discriminator then becomes a multi-class classifier and is referred to as the do-
main confusion network. The encoder is still shared for all source domains, but
a separate decoder is used for each target domain.1

For symbolic music style (genre) translation, Brunner et al. [2018a] pro-
pose a variational autoencoder (VAE) trained on a multi-track representation in
two different genres. To promote style-content disentanglement, the encoder is
forced to output an explicit one-hot encoding of the style label in the first two
dimensions of the latent representation. This is done by attaching a softmax with
a cross-entropy loss to these two dimensions, and adding it as an additional term

1The authors note that their attempts to train a single decoder conditioned on the target
domain were unsuccessful.

28

to the loss function. The authors argue that this, together with the VAE loss, is
enough to ensure disentanglement. Once the model is trained, style conversion is
achieved by swapping the dimensions corresponding to the two styles.

In contrast, research on (one-shot) music style transfer via representation dis-
entanglement is more recent and concurrent to our work.

Hung et al. [2019] propose an encoder-decoder model for music transcription
(i.e. to convert audio to a symbolic representation) with a disentangled latent
representation of pitch and timbre (instrumentation). Adversarial training is
employed, designed to mutually disentangle the pitch and timbre representations.
The trained model then allows to do a form of composition style transfer by
changing the instrumentation. However, it is not clear whether it has one-shot
capabilities, as it is not evaluated in this setting.

Yang et al. [2019] propose a model based on a VAE for disentangling the pitch
and rhythm components of a melody. This is achieved by designating a part of
the latent code as the rhythm features zr (similarly to Brunner et al. [2018a]) and
using them to reconstruct the rhythm only, by means of a rhythm decoder. This
reconstructed rhythm is then used, together with the rest of the latent code, zp

(i.e. the pitch features), as input to a ‘global’ decoder to reconstruct the whole
melody.

Similarly, Wang et al. [2020b] use a VAE to disentangle the representations
of the harmony (chords) and the ‘texture’ of an accompaniment, each encoded
using a dedicated encoder. In this case, however, the input to the chord encoder
is already a chord sequence produced by a rule-based chord extraction system.
The texture encoder receives a piano-roll representation and uses a convolutional
architecture with hyperparameters carefully picked to obtain ‘blurry’ features
with little information about the chords.

Still in a similar spirit, Kawai et al. [2020] and Wu and Yang [2021] train VAEs
conditioned on pre-defined musical attributes that can be computed automati-
cally, such as note density and degree of polyphony. Kawai et al. [2020] use an
adversarial loss to disentangle the learned representation from these attributes,
while Wu and Yang [2021] employ a β-VAE objective [Higgins et al., 2017] with
free bits [Kingma et al., 2016]. By considering these attributes to represent style,
a form of style transfer can then be achieved simply by transferring these musical
attributes from one piece to another (though this is not explicitly studied in these
works). Similarly, Nistal et al. [2021] train an audio GAN conditioned on pitch, as
well as on attribute probabilities (‘soft labels’) produced by a pre-trained teacher
model.

2.5 Other related work

2.5.1 Self-supervised music completion
A broad family of music transformation tasks is what we could call music com-
pletion, inpainting or infilling. Here, we are given a partial piece of music (e.g. a
score with missing parts) and wish to generate more musical material to ‘fill in
the blanks’.

29

Tasks like this are straightforward to learn from arbitrary music datasets, es-
pecially in the case of symbolic music, since we can simply mask out (i.e. treat as
unobserved) a part of the input and then train our model to recover it while condi-
tioned on the context. Such methods may be classified as self-supervised learning,
where training inputs and/or targets (labels) are generated from unlabeled data
in an automated way.2

For example, the Drumify model introduced by Roberts et al. [2019] is trained
to reconstruct a drum groove given only the note onset times. Hakimi et al. [2020]
consider the problem of generating a jazz solo given a chord sequence; their model
is trained on a dataset of jazz solo transcriptions, which contain the solo melody
along with the chord sequence.

More relevant to our work are systems that are additionally conditioned on
the target style, and hence achieve a form of style transfer. Choi et al. [2020] use
a Transformer autoencoder to harmonize a melody in the style of a given piano
performance. Lattner and Grachten [2019] train a gated autoencoder (GAE) to
generate a kick drum track for a given recording and are able to use it to transfer
the kick drum style from one song onto another. Grachten et al. [2020] extend
this approach to bass lines.

2.5.2 Music generation with constraints
The methods from the previous subsection directly model the conditional distri-
bution from which we then wish to sample. Another option is to model the joint
distribution, and impose some constraints on it at runtime in order to incorporate
existing musical material.

Such techniques can be viewed as another way to approach the music com-
pletion task from the previous subsection. For example, Hadjeres et al. [2016],
Hadjeres et al. [2017] and Huang et al. [2017] developed systems for generation
of Bach chorales, which are possible to constrain to produce a given melody, and
hence perform harmonization in the style of Bach. However, more complex con-
straints are possible. Hadjeres et al. [2016] mention the possibility of imposing
chord labels without enforcing specific voicings. Herremans and Chew [2017],
on the other hand, constrain a generated piece to have a given ‘tension profile’
and a particular structure of repeating patterns. This tension profile can be ex-
tracted from a template piece or specified by the user. Moreover, it is possible to
introduce other soft constraints e.g. to fix the pitches of specific notes.

Inspired by these ideas, Lu and Su [2018] approach music style conversion by
iteratively updating a piece of music using pseudo-Gibbs sampling (as in Hadjeres
et al. [2017]) with the constraint of keeping the melody fixed. Style conversion is
achieved by using a model trained on the desired target style.

2.5.3 Expressive performance rendering
The last task that we will touch on is that of rendering a musical score as an
expressive performance, which typically means predicting expressive dynamics
and/or timing. This is a rare case where paired data is easy to acquire (unlike in
Sections 2.3 and 2.4), since given a performance, the corresponding score is usually

2We will say more about self-supervised learning in Section 6.1.2

30

readily available, at least in Western classical music. Predicting the performance
variables from the score then becomes a straightforward machine learning task,
which can be viewed as a type of supervised translation (as in Malik and Ek
[2017]). For example, Widmer et al. [2009] use a simple Bayesian model which
predicts three variables for each note – tempo, loudness and articulation – given
some features representing its context. Malik and Ek [2017] use an RNN to
predict the sequence of loudness values given the sequence of pitches.

2.6 Conclusion
We have reviewed the literature related to music style conversion. In sum, a
wide variety of works are related to ours in that they transform or complete
existing music in some way. However, prior work on music style conversion, as we
have defined it, is limited. In particular, all existing work on one-shot symbolic
music style transfer is concurrent to ours, which we will present in Chapter 4.
Similarly, in the audio domain, prior work on style conversion mostly concerns
translation as opposed to one-shot transfer. The few existing works on one-shot
audio style transfer either do not specifically focus on musical timbre, or are not
learning-based, both of which is in contrast to our work presented in Chapter 6.

31

32

3. Background: Deep learning for
sequence generation
In this work, we make extensive use of deep neural networks for sequence gener-
ation, namely neural language models and sequence-to-sequence networks. Such
models are applicable whenever we need to learn to generate data represented
as sequences of discrete symbols. In recent years, they have become extremely
popular, achieving state-of-the-art results on many language processing tasks
[Bahdanau et al., 2015, Vaswani et al., 2017, Radford et al., 2018, Devlin et al.,
2019, He et al., 2021, inter alia], and more recently also leading to advances in
music generation and transformation [e.g. Donahue et al., 2019a, Huang et al.,
2019a, Huang and Yang, 2020, Choi et al., 2020]. This chapter serves as an intro-
duction to these models, which have several peculiarities relating both to their
training and their use for generation.

Note that there exists a variety of other deep learning techniques that have
also been applied to music generation. For a survey of these techniques, see Briot
et al. [2020].

3.1 Autoregressive neural language models
A language model (LM) can be viewed as a way to model probability distributions
over sequences of symbols (tokens), i.e. P (y) = P (y1, . . . , ym), where y1, . . . , ym

are symbols from a finite vocabulary. These symbols are traditionally words, but
may also correspond to characters, subword units or – as in this work – musical
events (e.g. notes).

The most common way to build LMs is to factorize the distribution P (y) using
the chain rule:

P (y1, . . . , yM) =
M∏︂

m=1
P (ym | y1, . . . , ym−1).

This leads to an autoregressive language model, where the problem is reduced
to modeling the conditional distribution P (ym | y1, . . . , ym−1) – a classification
task also known as next word prediction. Such models have many advantages,
especially the ease of training and their ability to model complicated distributions
and draw samples from them.

Training is typically done via maximum-likelihood estimation (MLE), which
can be formulated as minimizing a negative log-likelihood (NLL) loss:

L(y; θ) = − log
M∏︂

m=1
Pθ(ym | y1, . . . , ym−1)

= −
M∑︂

m=1
log Pθ(ym | y1, . . . , ym−1).

(3.1)

In modern applications, Pθ is usually parameterized using a neural network which
receives the tokens y1, . . . , ym−1 and outputs a softmax probability distribution
over ym, and trained using some form of stochastic gradient descent over a training
dataset.

33

3.1.1 Generation
A trained autoregressive LM can be used to generate new sequences – i.e. sam-
ple from the learned distribution Pθ(y1, . . . , yM) – in a left-to-right fashion. In
the m-th step of this process, we feed the previously generated prefix ŷ1, . . . , ŷm−1
to the model and sample ŷm randomly according to P (ym | ŷ1, . . . , ŷm−1). Apart
from generating novel sequences from scratch, the model also lends itself to con-
tinuation, where a prompt y1, . . . , ym−1 is given, and generation proceeds from
the m-th step.

While this procedure is rather simple, it requires a set of standard tricks to
achieve success. Firstly, sampling ŷ1 ∼ P (y1) would require conditioning the
model on an empty sequence, which is not normally possible. For this reason, a
beginning-of-sequence token y0 = <s> is prepended to all training sequences,
and generation then starts by sampling ŷ1 ∼ P (y1 | y0 = <s>). Similarly, an
end-of-sequence token </s> is appended to all training sequences; during gen-
eration, sampling this special token terminates the generation loop.

A commonly encountered problem is that sampling naïvely from the learned
distribution P can easily lead to incoherent outputs due to overestimating the
probabilities of relatively unlikely tokens – a phenomenon called the ‘unreliable
tail’ by Holtzman et al. [2020]. A well-known way to alleviate this problem is
sampling with temperature, where the logits (pre-softmax activations) ob-
tained from the model are divided by a temperature parameter τ > 0 prior to
applying the softmax. With τ < 1, this leads to a lower-entropy distribution,
reducing the probability mass assigned to the unreliable tail, but also decreasing
the overall diversity of the outputs [Caccia et al., 2018, Hashimoto et al., 2019].
As τ tends to 0, the distribution becomes one-hot, i.e. all the probability mass is
assigned to the most likely outcome; this limit behaviour, where the most likely
token is chosen deterministically at each step, is known as greedy decoding.

Another sampling strategy is top-k sampling [Fan et al., 2018, Holtzman
et al., 2018], where only the k most likely candidates are considered and the
probability of the rest is forced to be equal to 0. Nucleus sampling [Holtzman
et al., 2020] is an improvement on this strategy, where the number k of considered
candidates is chosen dynamically (controlled by a parameter p) based on the shape
of the distribution, which is shown to lead to higher-quality outputs.

3.1.2 Model architectures
As mentioned above, a neural language model needs to be able to consume a
(variable-length) sequence of input tokens y1, . . . , ym−1 and output a probability
distribution over the next token, P (ym | y1, . . . , ym−1).

Before applying any neural network architecture to a token sequence, we first
need to encode each token as a real-valued vector. This is done using an em-
bedding layer, which selects the corresponding column of an embedding matrix
We (a trainable parameter); in other words, if 1ym is a one-hot representation of
ym (indicating its position in the vocabulary), then the corresponding embedding
can be written as ym = We

1ym . We can then feed the sequence y1, . . . , ym−1
to any sequence processing network. This network will output a feature vector
hm−1, which is then passed through a linear projection and a softmax operation
to obtain a probability distribution over ym.

34

s1 s2 s3 sM

</s>y2

<s>

y1 y3

y1 y2 yM−1

(a) Training

s1 s2 s3 sM

</s>ŷ2

<s>

ŷ1 ŷ3

(b) Generation

Figure 3.1 – The standard training and generation procedure for an RNN language
model. Arrows with white heads point to prediction targets.

Recurrent neural networks

One class of neural networks suitable for sequence processing are recurrent neu-
ral networks (RNNs). An RNN works by processing the input sequence from
left to right and using each input ym to update its internal (‘hidden’) state:

sm = fRNN(ym−1, sm−1) (3.2)

where fRNN is a non-linear function that depends on the type of the RNN and
has trainable parameters. The state is a vector whose dimension (also called the
number of units) is a hyperparameter of the RNN.

A very popular type of RNN cell – i.e. particular form of fRNN from Eq. (3.2) –
is long short-term memory (LSTM, Hochreiter and Schmidhuber [1997]).
Many variations on the LSTM cell exist, including the simpler gated recurrent
unit (GRU, Cho et al. [2014]), which has also enjoyed widespread use and which
we employ here as well.

In practice, we do not need to run the RNN for each prefix y1, . . . , ym−1 where
m ∈ 1, . . . , M , since we can easily obtain all sm, and hence compute the sum in
Eq. (3.1), in a single run of the RNN over the entire input sequence y1, . . . , yM−1.
This leads to the training procedure displayed in Fig. 3.1a. Generation is also
relatively time- and memory-efficient, since as shown in Fig. 3.1b, in each step,
we only need the last computed state sm−1 and the embedding ym−1 of the last
sampled token to compute the new state sm and sample the new token ŷm.

Transformers

Another popular choice of architecture is the Transformer [Vaswani et al., 2017].
Unlike RNNs, a Transformer does not keep track of history using a single state
vector, but instead has access to the entire history by means of a (self-)attention
mechanism. This makes it a more powerful model than RNNs, but slower for
generation, since in each step, it needs to consider all previous steps, leading to
an overall quadratic time complexity.

The Transformer architecture,1 displayed in Fig. 3.2, alternates fully-con-
nected layers, which are applied independently to each position, and multi-head
self-attention layers, which take care of passing information between different
positions. The idea of the self-attention layer is to compute in a set of atten-
tion scores or weights, expressing the importance of each position to the current

1The original Transformer proposed by Vaswani et al. is in fact an encoder-decoder model,
which we describe in Section 3.2. What is described here is the decoder-only variant of the
Transformer, commonly used as a basis for LMs, e.g. by Radford et al. [2019].

35

Embedding layer

Target sequence
(shifted)

Positional encoding

Masked multi-head
attention

Add & Norm

Fully-connected

Add & Norm

Linear & Softmax

Target sequence

L layers

(a) High-level architecture

Masking
(optional)

MatMul

Linear Linear Linear

Q K V

Concat

Linear

H he
ad

s

(b) Multi-head (self-)attention

Figure 3.2 – The architecture of a Transformer language model.

36

one, and use these to weight the information at those positions. As illustrated
in Fig. 3.2b, this is done by considering each position m simultaneously as a
key km = WKgm, a query qm = WQgm and a value vm = WVgm, where
gm ∈ Rdmodel are the input features of the self-attention layer at position m,
and WQ, WK ∈ Rdmodel×dkey and WV ∈ Rdmodel×dvalue are trainable parameters.
A scaled dot product between the current query and every key is then com-
puted, and the resulting scores are used to compute a weighted average of the
values. Formally, with the queries, keys and values gathered in respective matri-
ces Q, K ∈ RM×dkey and V ∈ RM×dvalue , the attention mechanism can be written
as

Attention(Q, K, V) = softmax
⎛⎝QK⊤√︂

dkey

⎞⎠V, (3.3)

where the softmax is applied along the key dimension, so that each element in
the result is a convex combination of all the values, i.e.:

Attention(Q, K, V) =
[︄∑︁N

n=1 exp(emn)vn∑︁N
n′=1 exp(emn′)

]︄
m

, (3.4)

emn = q⊤
mkn

/︂√︂
dkey . (3.5)

Moreover, it turns out to be useful to apply the attention mechanism not
just once, but several (H) times in parallel (with different parameters), obtaining
a different result each time. This is called multi-head (self-)attention with
H attention heads. Here, the queries for the h-th head are obtained as qm =
WQ

(h)ym, and analogously for keys and values, with dkey = dvalue = D = dmodel/H.
The outputs of all attention heads are then concatenated and projected back to
dmodel dimensions using an additional linear layer.

To use a Transformer as a language model, it can be trained analogously to
the RNN in Fig. 3.1a. However, note that by simply applying Eq. (3.3) during
training, every query would be able to attend to every key, which is undesirable,
since during generation, only past positions (i.e. those corresponding to tokens
that have already been sampled) are available. For this reason, a lower trian-
gular (‘causal’) mask is applied to the pre-softmax attention matrix QK⊤/

√
D

during training, forcing all terms above the diagonal to equal −∞. This ensures
that qm only has access to k1, . . . , km while keeping the attention scores properly
normalized.

The last piece of the puzzle is positional encoding (PE). The fully-con-
nected and self-attention layers of the Transformer are permutation-invariant op-
erations, meaning that shuffling the input positions will not change the output
values.2 For this reason, a positional encoding vector is usually added to each
input embedding vector as a form of ‘positional bias’. This is sometimes referred
to as absolute positional encoding (APE). Vaswani et al. [2017] generate fixed
APE by sampling trigonometric functions at different frequencies. Alternatively,
APE can be learned as parameters of the model [Gehring et al., 2017, Devlin
et al., 2019].

2Note that this is only true for the unmasked version of the Transformer, as the lower
triangular mask does provide some sort of position information [Irie et al., 2019]. Nonetheless,
positional encoding is used systematically in all Transformer variants.

37

An alternative method for injecting position information is relative posi-
tional encoding (RPE), which encodes differences between pairs of positions
(time lags), as opposed to absolute positions. This information, encoded as a
matrix R, is then used to modify the computation of the attention scores in
Eq. (3.3):

(︂
QK⊤ + QR⊤

)︂
/
√

D.

3.2 Sequence-to-sequence models
Neural language models, described in the previous section, allow generating se-
quences from the data distribution. However, they become much more use-
ful when we are able to condition them on some input data, and this is pre-
cisely what is achieved by sequence-to-sequence (seq2seq) models. Specif-
ically, seq2seq models are used to model conditional distributions of the form
P (y | x) = P (y1, . . . , yM | x1, . . . , xN), where x1, . . . , xN represents an input se-
quence and y1, . . . , yM an output sequence. Factorizing this distribution along
the output sequence as in Eq. (3.1), the task of the model at each step becomes
to predict the distribution P (ym | y1, . . . , ym−1, x1, . . . , xN). The language model
then becomes the decoder and the main challenge lies in conditioning it on the
input sequence x1, . . . , xN via an appropriate encoder.

A popular way to connect the encoder to the decoder is via an attention
mechanism. Note that this encoder-decoder attention (also called cross-atten-
tion or inter-attention), which will be detailed in the following section, is different
from the self-attention from Section 3.1.2: while self-attention serves to exchange
information between different positions inside the decoder, the role of encoder-
decoder attention is to “route” features from the encoder to different positions in
the decoder.

3.2.1 Model architectures
RNN encoder-decoder (without attention)

A simple way to condition an RNN on an arbitrary sequence is to use an encoder
capable of summarizing the whole sequence in a single fixed-dimensional vector.
The perfect encoder architecture for this task is again an RNN – this time, how-
ever, all the intermediate RNN states are ignored, and only the final state hN

(i.e. the state produced after consuming all the inputs) is kept. This final state is
then used either as the initial state of the decoder RNN [Sutskever et al., 2014],
or as an additional input to the decoder RNN cell in every step [Cho et al., 2014].

RNN encoder-decoder with attention

The above method relies on encoding the entire (variable-length) sequence into
a single vector, which may not always be realistic. To address this problem,
Bahdanau et al. [2015] enhance the RNN seq2seq model with encoder-decoder
attention, which makes it possible for each decoder state to obtain a different,
dynamically computed view of the input sequence. This is done by considering all
the encoder states, denoted h1, . . . , hn, computing a weight αmn for every input
position n and the current output position m, and using these weights to calculate

38

c3

s1

s2

s3

sM

+

hfw
1 hbw

1

hfw
2 hbw

2

hfw
3 hbw

3

hfw
N hbw

N

·α31·α32

·α33

·α3N

. . .

</s>

y2

<s>
y1

y3
y2

y1

yM−1

c1

c2

cM

Figure 3.3 – RNN encoder-decoder (seq2seq) model with attention, as proposed
by Bahdanau et al. [2015]. For illustration purposes, the diagram focuses on
the 3rd decoding step, i.e. m = 3. Arrows with white heads point to prediction
targets. Modified from ⟨ISMIR2019⟩.

a weighted average cm of the encoder states, similarly to Eq. (3.4). Finally, cm,
known as the context vector, is used as input to the decoder RNN cell fRNN to
obtain the new state sm:

sm = fRNN([ym−1, cm], sm−1), (3.6)

cm =
∑︁N

n=1 exp(emn)hn∑︁N
n′=1 exp(emn′)

, (3.7)

emn = fatt(sm−1, hn). (3.8)

In the original “Bahdanau-style” attention, fatt is implemented as a fully-con-
nected neural network; more similarly to the later-proposed Transformer, Luong
et al. [2015] suggest using a dot product (cf. Eq. (3.5)).

Bahdanau et al. also propose to use a bidirectional RNN [Schuster and Paliwal,
1997] in the encoder, i.e. hn = [hfw

n , hbw
n], where hfw

n is produced by a forward RNN
and hbw

n is produced by a backward RNN, which consumes the input from right
to left. As a result, hn captures the context of the entire input, but is expected
to focus around position n.

The model is illustrated in Fig. 3.3.

Transformer encoder-decoder

For completeness, let us also mention the encoder-decoder variant of the Trans-
former [Vaswani et al., 2017]. Analogously to the model that we just described,
it consists of a Transformer encoder and a Transformer decoder, connected using
an attention mechanism. Hence, attention is used in three different places in
the model: as encoder self-attention, decoder self-attention, and encoder-decoder
attention.

As shown in Fig. 3.4, the architecture of the encoder is similar to the one
described in Section 3.1.2 (the only difference is that no attention mask is used,
so that the whole input is accessible to the self-attention mechanism at any time).
As a major addition, the decoder now has the encoder-decoder (cross-)attention
inserted in every layer. This encoder-decoder attention is computed according to

39

Embedding layer

Target sequence
(shifted)

Positional encoding

Masked multi-head
attention

Add & Norm

Fully-connected

Add & Norm

Linear & Softmax

Target sequence

L layers

Embedding layer

Input sequence

Positional encoding

Multi-head attention

Add & Norm

Fully-connected

Add & Norm

L layers

Multi-head attention

Add & Norm

Figure 3.4 – The architecture of a Transformer encoder-decoder model. The
encoder (left) encodes the input sequence as a series of feature vectors, which are
then used as keys and values in the encoder-decoder attention mechanism inside
the decoder (right).

40

Eq. (3.3); here, however, the keys and values are computed from the outputs of
the encoder rather than from decoder features. In other words, we have:

kn = WKhn, vn = WVhn, qm = WQgm, (3.9)

where h1, . . . , hN ∈ Rdmodel are encoder features for the input sequence x1, . . . , xN ,
and g1, . . . , gM−1 ∈ Rdmodel are the decoder features for the output sequence
y1, . . . , yM−1.

3.3 Conclusion
In this chapter, we have introduced the principles behind deep neural networks
for sequence generation and translation, namely neural language models and
sequence-to-sequence (seq2seq) models, as well as the most popular architectures
used in this context: RNNs and Transformers. In the next chapter, we will build
upon this knowledge while describing our first contribution, consisting in methods
for accompaniment style conversion.

41

42

4. Supervised symbolic music
style conversion

This chapter is based on the papers ⟨ISMIR2019⟩ and ⟨TASLP2020⟩ by Cífka et
al. © 2020 IEEE.

In this chapter, we present two studies focusing on accompaniment style con-
version in the context of jazz and popular music. This type of music is often
notated using chord charts, providing the basic harmonic and rhythmic informa-
tion for a song (an example can be found at the top of Fig. 4.2). When performing
the song, the rhythm section of the band may use the chart as a basis for an im-
provised accompaniment (‘comping’), choosing a bass line, chord voicings, slight
harmonic alterations, rhythmic patterns, ornamentation and even instrumenta-
tion (e.g. piano vs. keyboard) as appropriate for the style. Herein, we consider
the chord chart to be the content, and style then characterizes the process of
converting this chord chart to an accompaniment. The underlying assumption is
that the chord chart is independent of style; while this is not always realistic (for
instance, jazz songs typically use more complex harmonies than some popular
music genres), it allows us to develop a principled approach.

Our final goal in this chapter is one-shot accompaniment style transfer:
given a musical piece (the content input), we wish to generate a new accompa-
niment for it in the style of a different piece (the style input). Note that even
though we expect the output to follow the same chord chart as the content input,
we do not assume this chart to be available.

The first study, presented here in Section 4.3, takes a first step towards this
goal by tackling a simpler accompaniment style translation task. The only input
in this case is the content input, and the target style is simply selected from one
of a small set of available options. The method developed here is then extended
to the full one-shot setting in the second study in Section 4.4.

Since the methods proposed in the two studies share a common basis, relying
on supervised learning from synthetically generated accompaniments, we first give
a general overview of this core idea in Section 4.1. Then, in Section 4.2, we
set forth automatic evaluation metrics developed to gauge the performance of
our systems. Finally, the core of both studies follows in Sections 4.3 and 4.4,
respectively.

4.1 Methods overview
Generally speaking, we are interested in learning a transformation (x, z) ↦→ y,
where x is a song fragment in an arbitrary style S, y is the same fragment in a
different style T (the target style), and z is an indication of the style T . In the
case of style translation (Section 4.3), where the set of possible target styles is
known and finite, z will be a discrete label identifying T . In the case of one-shot
style transfer (Section 4.4), z will be an example of T , i.e. another fragment in
style T .

43

content input x

content
encoder

attention

style input/label z

style
encoder

σ: style
embedding

decoder

output ŷ

Figure 4.1 – The high-level structure of the proposed style conversion models.
The input z to the style encoder is either an accompaniment track (in the one-
shot style transfer case) or a style label (in the style translation case – the style
encoder then becomes a simple embedding layer). © 2020 IEEE.

As we have seen in Chapter 2, a major difficulty associated with music style
conversion tasks is that there are no publicly available ‘aligned’ or ‘parallel’
datasets (containing examples of the same music played in different styles) to
learn from.1 As a result, works that predate ours mostly adopt unsupervised
learning frameworks and apply them to genre-labeled datasets. In our work, we
adopt a different strategy to overcome the lack of aligned data, which is to synthe-
size it. Synthetic training data has proven useful for music information retrieval
tasks such as chord recognition [Lee and Slaney, 2008] and fundamental frequency
estimation [Mauch and Dixon, 2014, Salamon et al., 2017], and is also popular for
tasks like semantic segmentation in computer vision [Ros et al., 2016, Varol et al.,
2017]. In our case, synthetic data opens up the possibility for supervised learning
techniques known from the machine translation field. Moreover, it allows us to
work with fine-grained style labels, as opposed to genre labels, which may be too
vague or ambiguous for such purposes.

Our models proposed here are neural networks with an encoder-decoder struc-
ture, as depicted in Fig. 4.1. In both cases, we have a content encoder that pro-
cesses the input x (the content input) and a style encoder processing the input
z (the style input); the output ŷ is then produced by the decoder based on the
representations computed by the two encoders. In the style translation case, z
is simply a label identifying the target style T and the style encoder degenerates
to a simple embedding layer. In both cases, the output of the content encoder
is a sequence of feature vectors, which are accessed by the decoder via an atten-
tion mechanism; on the other hand, the output of the style encoder is a single
embedding vector σ.

An accompaniment typically consists of multiple tracks (e.g. bass, piano,
drums). While we could in principle model all the output tracks jointly, we
break the problem down by assuming conditional independence of the output
tracks given the inputs and by training our models to generate only one track at
a time. The complete accompaniment is then obtained by combining the outputs

1With the exception of our datasets, presented in this work.

44

D-7 G-7 Cmaj7 G-7

(shot)
C7

(shot)
Fmaj7

(shot)
F-6 E-7 A7(♭9)

1 2 3 4 5 6 7 8

C3

C3

C4

C5

C6

C4

C5

C2 bass

piano/synth

guitar

time (𝅘𝅥𝅯)

p
it

ch

Figure 4.2 – 8-bar excerpts of accompaniments (generated by Band-in-a-Box) in
two different styles (top: Jazz Swing, bottom: Progressive Rock) visualized as
piano rolls. Both correspond to the chord chart displayed above them. Drums
are not included. A 16th note grid is shown for reference. © 2020 IEEE.

of multiple models or multiple runs of one model.
The architecture of the proposed models is derived from sequence-to-sequence

models with attention, described in Section 3.2. The models are simply trained
end-to-end to minimize the cross entropy of the ground-truth targets y (repre-
sented as token sequences) given the inputs x, z, i.e. −E [log P (y | x, z)]. This
supervised training approach is possible due to our synthetic data generation
scheme, outlined below in Section 4.1.1. To test the models, we run them on new
pairs (x, z). In style translation, z is inevitably limited to styles from the training
set; the one-shot style transfer model, on the other hand, should be tested with
target styles not encountered during training.

4.1.1 Synthetic data generation
As we have mentioned, our approach proposed here involves synthetic data gener-
ation, allowing to obtain a virtually unlimited number of ground-truth examples
(x, z, y), and hence perform supervised learning. In this section, we describe the
general synthetic data generation method; details of the datasets generated for
the individual studies will be given later in Sections 4.3.1 and 4.4.1.

Specifically, our synthetic dataset is generated using RealBand from the Band-
in-a-Box (BIAB) software package.2 BIAB allows generating a MIDI accompani-
ment for a given chord chart in one of the available styles. A style is essentially
a set of human-defined patterns and rules for accompaniment generation which
allow for some degree of freedom (randomness); one input can thus yield many
different results. Each style typically consists of two substyles (A and B) with
slightly different patterns intended for different sections of a song. The over-
all range of patterns in each style is relatively small, and thus corresponds to a
specific comping style or ‘groove’ rather than a broad category like genre. For
instance, over 150 BIAB styles are categorized as Blues, bearing such names as

2https://www.pgmusic.com/

45

https://www.pgmusic.com/

‘Texas Blues – 12/8 Slow Blues’ and ‘Elvis1 – 50s Rock Shuffle-Blues’. Each style
may contain up to 5 tracks (drums and up to 4 other instruments).

The basic idea of our data generation scheme is to start with a set of chord
charts and use BIAB to generate a number of renditions of each chart in different
accompaniment styles. Once the dataset is generated, we may simply pick two
generated accompaniments corresponding to the same chord chart, as in Fig. 4.2,
and use one as the content input x and one as the target y. More precisely, to
form the training triplets (x, z, y), we loop over all pairs (x, y) such that x and y
correspond to the same chord chart segment, but x ̸= y. We denote T the style
of y (i.e. the target style). Then, in the style translation case, we have z = T (a
discrete label); in the style transfer case, we pick z uniformly randomly from all
segments in style T .

Notice that only the accompaniment, and not the underlying chord chart,
is fed to the model. This allows easily applying the trained model to inputs
for which the chord chart is not available, in particular ones that are not BIAB-
generated or are in a genre where the chord chart representation is not commonly
used (e.g. classical music).

4.2 Evaluation
When evaluating style conversion, we need to consider two complementary cri-
teria: how well the transformed music fits the desired style (style fit) and how
much content it retains from the original (content preservation). Note that it is
trivial (but useless) to achieve perfect results on either of these two criteria alone,
so it is essential to evaluate both of them. In this section, we describe objective –
automatically computed – metrics for both criteria.

4.2.1 Content preservation
Given our definition of content, we would like the content preservation metric
to capture the agreement in harmonic structure, which is the most important
piece of information conveyed in a chord chart. Following Lu and Su [2018], we
compute this metric by correlating the chromagram of the generated segment
with that of the content input. A chromagram in this context is essentially a 2D
histogram with time on the x axis and the 12 pitch classes on the y axis; in other
words, it is a matrix that records how many notes from each pitch class are active
in each (regularly sampled) time frame.

To measure content preservation, we compute the chromagram of each of the
two segments (content input and output) at a rate of 12 frames per beat and
smooth each of them using an averaging filter with a window size of 2 beats (24
frames) and a stride of 1 beat (12 frames). Finally, we calculate the average
frame-wise cosine similarity between the two sets of chroma features.

4.2.2 Style fit
In some of the recent music style transformation works [Brunner et al., 2018a,b],
the quality of a transformation is measured by means of a binary style classifier
trained on a pair of styles. However, the merit of such evaluation is limited,

46

Metric Observations Bins

time-pitch (start(b)− start(a), pitch(b)− pitch(a)) 24 × 41
∈ [0 4)× {−20,−19, . . . , 20}, a ̸= b

onset-duration (start(a) mod 4, end(a)− start(a)) 24 × 12
∈ [0 4)× [0 2)

onset-velocity (start(a) mod 4, velocity(a)) 24 × 8
∈ [0 4)× {1, 2, . . . , 127}

onset-drum (start(a) mod 4, pitch(a)) 24 × 128
∈ [0 4)× {0, 1, . . . , 127}

Table 4.1 – Objective style fit metric definitions. Each metric is computed as a
cosine similarity between style profiles – flattened 2D histograms of the observa-
tions defined in the middle column (values that fall outside the given ranges are
ignored). start(·) and end(·) are the onset and offset time in beats, respectively, of
a given note. pitch(·) and velocity(·) denote the respective MIDI values. © 2020
IEEE.

since a high classifier score merely demonstrates that the output has some of the
distinguishing features of the target style, and not necessarily that it actually fits
the style. For this reason, we aim for a more interpretable metric of style fit.

As observed e.g. by McKay [2004], Hadjeres et al. [2016], and Sakellariou
et al. [2017], musical style is well captured in musical event statistics, especially
pairwise statistics between neighboring events. Drawing inspiration from the
features proposed by McKay [2004], we devise a set of so-called style profiles, and
use cosine similarities between them as style similarity metrics. This allows us to
measure the style fit of an output as the style similarity between this output and
a reference (i.e. an example of the target style).

The proposed metrics are summarized in Table 4.1. Firstly, to compute the
(pairwise) time-pitch metric (proposed in ⟨ISMIR2019⟩), we consider all pairs of
note onsets less than 4 beats apart and at most 20 semitones apart, and record
the time difference and interval for each pair. We then obtain the style profile
as a normalized 2D histogram of all these pairs with 6 bins per beat and one bin
per semitone, and flatten it to get a 984-dimensional vector.

Clearly, the pairwise time-pitch metric is invariant to time shifts, does not
account for note duration or velocity (dynamics) and is not suitable for drums.
For this reason, we complement it with 3 additional metrics (proposed later in
⟨TASLP2020⟩), computed on statistics of single notes: onset-duration, onset-
velocity and onset-drum. These are defined analogously to the time-pitch metric,
but instead relate the position of a note’s onset within the measure to some
other attribute of the same note (duration, velocity, and percussion instrument,
respectively).

Note that we compute these metrics on each instrument track separately, since

47

we presume that the dependencies between notes played by different instruments
are often too complex to be captured by our statistics and would only make
them more noisy. This choice is also in line with the design of our models, which
generate different tracks conditionally independently given the inputs.

We measure the time-pitch and onset-duration metrics for non-drum instru-
ments only; onset-drum is computed on drums only. Plots of example style
profiles can be found in Fig. B.1 in the appendix.

Levels of granularity

Our proposed models operate on 8-bar segments, which may not always be suffi-
cient to compute reliable style profiles, making the metrics noisy. For this reason,
we may want to collect the statistics on sets of segments with the same target
style, but real-world datasets may not have style labels that are sufficiently fine-
grained and accurate for this purpose. In fact, style may in some cases vary
significantly even within a single piece. For this reason, we propose different
variants of our style similarity metrics depending on the level of granularity:

1. Nano: a single style profile is computed for every segment, i.e. each segment
is scored separately.

2. Song-level: for a given target style, the style profiles are aggregated over
all segments in a song. In other words, every (input song, target style) pair
gets a single score.

3. Macro: for a given target style, the style profiles are aggregated over all
segments in the dataset, i.e. every target style gets scored as a whole.

Metrics validation

In this section, we validate the proposed style similarity metrics on the Bod-
hidharma dataset [McKay and Fujinaga, 2005], a diverse collection of 950 MIDI
recordings annotated with genre labels. To this end, we compute the similarities
(nano variant) between all pairs of 8-bar segments in Bodhidharma and compare
inter- vs. intra-genre similarities. For simplicity, we limit the analysis to pitched
instruments, and therefore include only the onset-duration, onset-velocity and
time-pitch metrics. Since we apply the metrics to each instrument track indi-
vidually and it may not be possible to unambiguously match the tracks of two
given segments, we simply compute the similarities on all pairs of instruments
belonging to the same MIDI instrument group3 and average the results.

First, we compare in the left part of Fig. 4.3 the similarities between segments
from the same song to similarities between segments from different songs (regard-
less of genre). The same-song similarities are substantially higher for all three
metrics, which is in line with our understanding of style as a set of characteristics
pertaining to a particular artist or song. Secondly, we would also expect our met-
rics to capture at least some characteristics of genres; this is demonstrated in the
plot on the right, which shows that the average similarity of segments from the

3The General MIDI specification [MIDI Manufacturers Association, 1991] defines 16 instru-
ment groups such as Piano, Bass, Strings or Reed, each comprising 8 instruments. This grouping
does not include drums, which exist on a dedicated MIDI channel.

48

o-duration o-velocity time-pitch
0.0

0.2

0.4

0.6

0.8

1.0

co
si

ne
 s

im
ila

ri
ty

(a) Songs

same song diff. song
o-duration o-velocity time-pitch

(b) Genres

same genre diff. genre

Figure 4.3 – Style similarities between pairs of segments from the Bodhidharma
dataset. Plot (a) contrasts similarities within and across songs, while plot (b)
contrasts similarities within and across the 38 genres in the Bodhidharma dataset.
The values have been averaged so that every data point corresponds to a single
pair of songs.

same genre (excluding segments from the same song) is higher than the average
similarity across genres, again on all three metrics.

The results on genres are further detailed in Fig. 4.4, showing the similarity
values – averaged over all 3 metrics – between all pairs of genres (again, pairs of
segments from the same song are excluded). Despite the generally low and noisy
values, we can find clear clusters of similar genres, e.g.: Swing, Cool and Bebop;
Metal, Alternative Rock and Punk; as well as a classical music cluster.

4.3 Supervised style translation

This section details our work on supervised accompaniment style translation pub-
lished in ⟨ISMIR2019⟩. The main contribution of this work is a neural model
capable of translating between different accompaniment styles. As this is the
first work in this direction, we chose to restrict ourselves to translating between
70 ‘artificial’ styles included in the Band-in-a-Box (BIAB) software, and we only
consider bass-and-piano accompaniments for simplicity.

Even in this limited setting, we were able to obtain interesting results. In
particular, we show that a relatively simple RNN encoder-decoder architecture
is able to achieve very good results on both style fit and content preservation,
and that it even generalizes to inputs in styles other than encountered during
training. These results provide an excellent stepping stone for the next study on
one-shot style transfer (Section 4.4).

Additional materials for this study, notably listening examples4 and source
code,5 are available online. A complete list of resources is given in Appendix C.

4http://tiny.cc/musicstyle
5https://github.com/cifkao/ismir2019-music-style-translation

49

http://tiny.cc/musicstyle
https://github.com/cifkao/ismir2019-music-style-translation

R
ag

tim
e

M
od

er
n

C
la

ss
.

R
om

an
tic

M
ed

ie
va

l
C

la
ss

ic
al

B
ar

oq
ue

R
en

ai
ss

an
ce

C
ou

nt
ry

 B
lu

es
Fl

am
en

co
Ta

ng
o

B
lu

es
 R

oc
k

C
hi

ca
go

 B
lu

es
R

oc
k

an
d

R
ol

l
B

os
sa

 N
ov

a
C

on
t.

C
ou

nt
ry

Tr
ad

. C
ou

nt
ry

H
ar

d
R

oc
k

Ps
yc

he
de

lic
R

eg
ga

e
So

ul
So

ul
 B

lu
es

B
lu

eg
ra

ss
C

el
tic

B
eb

op
C

oo
l

Sw
in

g
Ad

ul
t C

on
t.

Sa
ls

a
Ja

zz
 S

ou
l

Sm
oo

th
 Ja

zz
H

ar
dc

or
e

R
ap

Po
p

R
ap

Te
ch

no
D

an
ce

 P
op

Fu
nk

M
et

al
Al

t.
R

oc
k

Pu
nk

Ragtime
Modern Class.

Romantic
Medieval
Classical
Baroque

Renaissance
Country Blues

Flamenco
Tango

Blues Rock
Chicago Blues
Rock and Roll

Bossa Nova
Cont. Country
Trad. Country

Hard Rock
Psychedelic

Reggae
Soul

Soul Blues
Bluegrass

Celtic
Bebop

Cool
Swing

Adult Cont.
Salsa

Jazz Soul
Smooth Jazz

Hardcore Rap
Pop Rap
Techno

Dance Pop
Funk

Metal
Alt. Rock

Punk

.00

.05

.10

.15

.20

.25

.30

.35

.40

Figure 4.4 – Pairwise similarities between genres from the Bodhidharma dataset.
The values are averaged over all 3 metrics and all pairs of segments. Values on
the diagonal do not include pairs of segments from the same song. The order of
rows and columns has been determined using hierarchical clustering.

50

4.3.1 Method
We propose an architecture based on RNN encoder-decoder sequence-to-sequence
(seq2seq) models with attention, which we have described in Section 3.2. This
choice is motivated by the successes of RNNs on symbolic music generation [Eck
and Schmidhuber, 2002, Simon and Oore, 2017, Hadjeres et al., 2017, Sturm et al.,
2016] and by the ability of the attention mechanism to condition the generation
on arbitrary input data without a prior alignment.

Compared to the standard seq2seq model, our architecture has the extra style
embedding layer, which is used to condition the decoder on the target style label.
This allows a single model to translate to a potentially large number of different
styles (similar to multilingual translation, e.g. Johnson et al. [2017]). On the
other hand, to simplify the task and facilitate evaluation, we train a dedicated
model for each target instrument track (bass, piano).

The rest of this section will cover our choices regarding input/output repre-
sentation and model architecture and training, as well as details about how the
synthetic dataset for this task was created.

Input and output representation

A common choice of representation of symbolic non-monophonic music for neural
processing is a piano roll, a matrix that records which notes are active at each
point in time. We use a binary-valued piano roll with 128 pitches and 4 columns
per beat (quarter note) to encode our input.

For representing the output (and also as an alternative input representation),
we opted for a MIDI-like encoding, which – unlike a piano roll – is straightforward
to model using an RNN decoder. Specifically, following Simon and Oore [2017],
we encode the music as a sequence of 3 types of events, each with one integer
argument:

• NoteOn(pitch): start a new note at the given pitch;

• NoteOff(pitch): end the note at the given pitch;

• TimeShift(delta): move forward in time by the specified amount, mea-
sured in 12ths of a beat.

NoteOn and NoteOff take values in the range 0–127, whereas TimeShift is within
1–24. When encoding the piano track, which is not monophonic, we compress
the sequences by also including a NoteOff(All) event that ends all currently
active notes. In contrast to Simon and Oore [2017], our representation is tempo-
invariant and we do not model dynamics.

Fig. 4.5 illustrates both the piano roll representation and the token-based
representation.

Model architecture, training and inference

As mentioned above (and depicted in Fig. 4.1), the proposed model is an encoder-
decoder seq2seq model with attention and an additional style embedding layer.
The architecture of the encoder (which we call the content encoder) depends on
the type of input representation:

51

�
� � �
�� �� �
�
�

� �
�

���
�
�

44
�

� ��
44� �� � �

�
���

�
��

NoteOn(50) TimeShift(9) NoteOn(60) NoteOn(65) NoteOn(69)
NoteOn(76) TimeShift(12) NoteOff(60) NoteOff(65)
NoteOff(69) NoteOff(76) TimeShift(3) NoteOff(50)
NoteOn(43) NoteOn(59) NoteOn(65) NoteOn(69) NoteOn(76)
TimeShift(24) NoteOff(All)

Figure 4.5 – A bar of music in staff notation (top left), as a piano roll (top right)
and as a sequence of tokens (bottom).

• If the input is a piano roll, we use a two-layer convolutional network (CNN)
with ELU (exponential linear unit; Clevert et al. [2016]) activation and
max pooling, followed by a bidirectional RNN with a gated recurrent unit
(GRU; Cho et al. [2014]). The CNN serves to compress the input, resulting
in a sequence of 1280-dimensional vectors with 2 vectors per bar. The
bidirectional GRU (with 256 units in each direction) then adds the ability
to incorporate information from a wider context, producing a sequence of
512-dimensional state vectors h1, . . . , hN .

• If the input is a sequence of tokens, we use an embedding layer, also followed
by a bidirectional GRU.

We refer to the two resulting variants of the model as ‘roll2seq’ and ‘seq2seq’,
respectively.

The decoder is also implemented using a GRU, conditioned on the target
style and equipped with a Bahdanau-style attention mechanism (Bahdanau et al.
[2015]; see Section 3.2.1) acting on the encoder outputs h1, . . . , hN as in a stan-
dard seq2seq model. To condition the decoder on the style embedding σ, we feed
it to the decoder RNN cell as an additional input in every step as in Cho et al.
[2014]. The m-th decoder state sm is then computed as (cf. Eq. (3.6)):

sm = GRU([ym−1, cm, σ], sm−1), (4.1)

where [·] denotes concatenation, ym−1 is the embedding of the previous output
token, sm−1 is the previous state and cm is the context vector computed by the
attention mechanism.

The models are trained using Adam [Kingma and Ba, 2015] with learning rate
decay and with early stopping on the validation set. Our configuration files with
complete hyperparameter settings are included with the source code.

Once the model is trained, we perform style translation using greedy decod-
ing, i.e. by taking the most likely output token at every step as explained in

52

Section 3.1.1. We also explored random sampling with different softmax tem-
peratures, but found that this leads to a higher number of errors (i.e. invalid
sequences or incorrect timing) and does not significantly improve the quality of
the outputs.

Data generation details

To generate the synthetic training and test data, we followed the procedure from
Section 4.1.1. First, we downloaded chord charts of around 3.5 k songs in the
BIAB format from a popular online archive.6 We used BIAB to generate ar-
rangements of these songs in different styles and filtered the resulting MIDI files
to keep only those in 4

4 or 12
8 time.7 We then split those files into segments of 8

bars.
We selected a total of 70 styles from the ‘0 MIDI’ and ‘1 MIDI’ style packs

included in Band-in-a-Box 2018, representing a wide variety of popular music
genres. Each style contains up to 5 accompaniment tracks, from which we select
only the bass and piano track.8 We generated each song in 3 randomly picked
styles, providing 2×

(︂
3
2

)︂
= 6 training pairs per segment, or around 658 k training

examples in total.
In all experiments, we used 2809 songs for training, 46 songs as a validation

set and 46 songs for evaluation, each in 3 examples in different styles.

4.3.2 Experimental results
As mentioned above, we limit ourselves to generating the bass and piano tracks,
and we train a dedicated model for each of them. We consider two scenarios:
generating the track given only the corresponding source track (bass→bass,
piano→piano), and using all non-drum accompaniment tracks from the input
(all→bass, all→piano).

For bass→bass, we compare the seq2seq and roll2seq architectures defined
in Section 4.3.1. For all other pairs, where the input is non-monophonic, we only
employ roll2seq, since the sequential representation grows disproportionately in
length in these cases and the computational cost of the attention mechanism
becomes too heavy.

We evaluate our models on our synthetic test set generated by BIAB and
on the Bodhidharma MIDI dataset [McKay and Fujinaga, 2005]. The latter
dataset was picked on the grounds of being stylistically diverse and balanced,
containing an equal number of recordings from 38 different genres. We filtered
and pre-processed Bodhidharma in the same way as the synthetic test set and we
extracted the bass and piano tracks.

We also made extensive attempts to train the models of Brunner et al. [2018a],
Brunner et al. [2018b] and Lu and Su [2018] on our data using the source code
published by the authors, but unfortunately without success. This has prevented

6Formerly at https://groups.yahoo.com/group/Band-in-a-Box-Files/, now moved to
https://band-in-a-box.groups.io/g/main/files

7The time signature depends on the style as well as on the song itself. A song originally in
4
4 may have a 12

8 arrangement and vice versa.
8The instrument labels are not always accurate; for example, some styles have two guitar

tracks, one of which is labeled as piano.

53

https://groups.yahoo.com/group/Band-in-a-Box-Files/
https://band-in-a-box.groups.io/g/main/files

content macro-style song-style0.0

0.2

0.4

0.6

0.8

1.0
synthetic

BASS BASS (seq2seq)
BASS BASS (roll2seq)

ALL BASS (roll2seq)
source

reference
random

cont. m-sty. s-sty.

Bodhidharma

(a) bass

content macro-style song-style0.0

0.2

0.4

0.6

0.8

1.0
synthetic

PIANO PIANO (roll2seq)
ALL PIANO (roll2seq)

source
reference

random
cont. m-sty. s-sty.

Bodhidharma

(b) piano

Figure 4.6 – Evaluation results on content preservation and style fit. ‘Source’ is
the original track (bass or piano), ‘reference’ is a track generated by BIAB in the
target style and ‘random’ is a random permutation of the references. For ‘song-
style’, we plot the mean and the standard deviation over all songs and target
styles.

us from comparing these models with our proposal. Nonetheless, the provided
example outputs can serve as a basis for perceptual comparison.

Evaluation

For a comprehensive evaluation of each model, we translated all inputs to all
70 styles and calculated the content preservation metric and time-pitch style fit
metric,9 the latter in the macro and song-level variants. The results (averaged)
are presented in Fig. 4.6.

We provide two baselines for each track (bass and piano): ‘source’, which is
simply the same track before the translation, and ‘reference’, which is a track
generated by BIAB based on the chord chart (only available for the synthetic
test set). As expected, the style fit is low for the source track (measured with
respect to the target style) and close to 1 for the reference track. Our models’
outputs generally do not fit the target style as perfectly as the reference does,
but still score high compared to the source.

As for content preservation, we can notice that the reference value is quite
low (0.78 for bass and 0.79 for piano). This should not be too surprising,
since we are comparing accompaniments in two different styles, which might
have different pitch-class distributions; moreover, there is some random harmonic
variation within each style. The results achieved by our models on the synthetic
test set are very close to the reference. To illustrate the value range of the
metric, we provide the results obtained by a ‘randomized’ baseline (shown as
‘random’ in Fig. 4.6), where we randomly permuted the reference segments for
each style (obtaining a reference with the correct style, but the wrong content).
The resulting value is very low (0.16 for bass and 0.31 for piano) compared both
to the true reference and to our models, indicating that the metric is useful and
the models are performing well.

9We did not use the other metrics as they were not proposed until later in ⟨TASLP2020⟩.

54

1 1 70 700.0

0.2

0.4

0.6

0.8

1.0
synthetic (ZZJAZZSW)

content macro-style song-style
1 1 70 70

Bodhidharma (Swing)

Figure 4.7 – Comparison of a single-style-pair model (1→1) and a full model
(70→70) on the ZZJAZZSW→TWIST style pair.

On Bodhidharma, content preservation is generally weaker than on the syn-
thetic test set. One interpretation can be that the encoder simply fails to extract
the content information accurately, since it was trained on a different domain.
However, we also find that the models often make timing errors on Bodhidharma
inputs, leading to misalignment between the input and the output, which may
also cause the content preservation metric to drop.

On the other hand, the style fit on Bodhidharma is close to the results on
the synthetic test set (and not consistently lower or higher), and the difference to
‘source’ (i.e. the corresponding input track) is more marked, perhaps reflecting a
higher style variability in the Bodhidharma data.

Upon listening, we clearly observe that the outputs are musical and seem
to both fit the target style and follow the harmonic structure of the inputs.
Besides, even though the piano and the bass tracks are generated independently,
they sound surprisingly coherent. However, as mentioned above, we also observe
occasional timing errors, which become more prominent when the bass and piano
tracks are combined. In the next study, in Section 4.4.1, we will show how this
issue can be alleviated by encoding timing in a more robust way. We will also
revisit this question later in Section 5.4.

We also note that the single-track models output harmonically incorrect notes
more often than the all models; this is expected, since their input is less har-
monically rich. This effect is clearly audible (especially in bass, where important
scale degrees are often missing in the input), but cannot be captured by the
content preservation metric, which is computed against the same input.

Comparison with a single-pair model

All models presented so far were trained on music in 70 different styles, as opposed
to a single style pair. To investigate the effect of this choice, we picked a pair of
fairly dissimilar styles – ZZJAZZSW (‘Jazz Swing Variation’) and TWIST (‘Twist
Style’, categorized as ‘Lite Pop’) – and generated a new training, validation and
test set with each song rendered in these two styles only. To increase the amount
of data, we performed this twice for each song (with different results), obtaining
2× 2 = 4 training pairs per segment.

We used this new dataset to train single-style-pair versions of all models (in

55

Even 8ths
Even 16ths
Swing 8ths
Swing 16ths

Figure 4.8 – Style embeddings learned by the all→piano model, labeled with
‘feel’ annotations provided by BIAB. Dimensionality reduction was performed
using linear discriminant analysis (LDA) with the feel labels as targets.

the ZZJAZZSW→TWIST direction only), preserving the original architectures
except for the conditioning on the target style. We compare these ‘1→1’ models
to the full versions (70→70) on two sets of inputs:

• the synthetic test set in the ZZJAZZSW style;

• the ‘Swing’ section of Bodhidharma (23 songs).

In Fig. 4.7, we show the results for the two variants of the all→bass model.
While the performance on the synthetic data seems to be the same, the scores
of the 1→1 model drop considerably on the Bodhidharma data, suggesting that
the model is overfitted to the ‘synthetic’ swing style. On the other hand, the
performance of the 70→70 model stays high, showing that training on many
different styles helped the model generalize to real swing.

Style embedding analysis

Neural representation spaces are often found to exhibit a meaningful geometry,
and we decided to investigate whether this is the case for our learned style embed-
ding space. Fig. 4.8 shows a projection of the embeddings labeled by the ‘feel’ of
each style, with ‘even’ and ‘swing’ feel styles being clearly separated. We include
more plots in Fig. B.2 in the appendix and also make available an interactive
visualization.10

4.4 Supervised style transfer (Groove2Groove)
This section details our work on supervised one-shot accompaniment style transfer
published in ⟨TASLP2020⟩. This study builds upon the previous one by extend-
ing it to the one-shot setting. The result is a system – called Groove2Groove11

(Grv2Grv for short) – which is much more practically applicable, since it is not
10https://bit.ly/2G5Jgnq
11The term groove is difficult to define, but often refers to the characteristic rhythmic ‘feel’

of a piece, arising from the patterns employed by the rhythm section. Hence, it encompasses
many of the key style features which we are considering here.

56

https://bit.ly/2G5Jgnq

limited to the synthetic styles provided by Band-in-a-Box, but can generalize to
novel styles by ‘extrapolating’ the style of a short example presented at test time.

We created a companion website for this project,12 gathering all the sup-
plementary materials. These include an interactive demo – allowing to run
Groove2Groove on arbitrary MIDI files uploaded by the user –, example videos,
source code, and data. See also Appendix C for a complete list of available
resources.

4.4.1 Method
The method is largely based on the one proposed in the style translation study
in Section 4.3.1. Some of the differences related to dealing with the additional
style input were already outlined in Section 4.1 and will be detailed here. We also
introduce some improvements based on findings and observations made during
the previous study.

We recall that the main difference between the two methods is that in style
translation, the inputs to the models were a content input x and a style label
z, while here z becomes a segment of a musical accompaniment, serving as an
example of the target style – the style input. With this comes the need to specify
the style encoder architecture and to detail the way the whole model is trained,
both of which we will do shortly.

Another major difference, which we have not mentioned yet, lies in how we
break down the problem of generating multiple tracks. In the style translation
study, we chose to train a separate model for each of the two tracks under con-
sideration (bass, piano). However, in this study, we aim to expand our approach
to other instrumentations, so that we may use an arbitrary MIDI file as the style
input. In this setting, the said approach is not as suitable, not only considering
the number of models that would need to be trained, but also because it may not
be clear which track should be fed to which model at test time. For this reason,
we propose to use a single model for generating all the accompaniment tracks,
yet still one at a time.

The procedure, illustrated in Fig. 4.9, builds on the idea of the best-performing
models from Section 4.3.2 (all→bass and all→piano). As in these models, we
combine all the non-drum tracks from the content input in a single representation
x, which is fed to the content encoder regardless of which output track is currently
being generated. The style encoder, on the other hand, receives only a single track
z(i) of the style input, and the corresponding track y(i) of the output is generated
by the decoder. Note that neither the index i nor any other information about the
track (e.g. the identity of the instrument) is given explicitly. The style encoder
therefore does not encode the style of the style input as a whole, but rather the
characteristics of the single track at hand.

This design has the advantage that it allows to process any style input regard-
less of the number of tracks and without the need for any additional knowledge
about them, and generalizes easily to instrument combinations unseen in the
training data. It can also be considered more data-efficient than the model-per-
track approach, since a single training segment will result in multiple different
parameter updates (one update per target track).

12https://groove2groove.telecom-paris.fr/

57

https://groove2groove.telecom-paris.fr/

A

AS

AT

Piano
Bass

Drums
B BT

Piano
Bass

Drums

style track z(i)

content input x

Neural
network

target y(i)

Chord
charts

Synthetic
accompaniments

Training

. . .

. . .

(segments)

(a) Data generation and training

content.mid

Guitar
Synth

Drums
style.mid

style track z(i)

content input x

Neural
network

output ŷ(i)

Inputs Style transfer

. . .

(b) Inference

Figure 4.9 – An overview of the training and inference procedure for the
Groove2Groove system. In both cases, the style input is broken down into in-
dividual instrument tracks, which are fed to the model individually as z(i), each
resulting in a corresponding output track y(i). On the other hand, the content
input x uses a constant representation that contains all tracks (except for drums).
© 2020 IEEE.

58

On the other hand, an obvious disadvantage of this approach is that it gener-
ates the output tracks conditionally independently given the content input, and
therefore cannot model interactions between them. This could be remedied by
combining all of the tracks in a single representation as in Donahue et al. [2019a] or
as we do later in Section 5.3.1. However, this is computationally more expensive
not only due to the sheer length of the input sequences (which scales up with the
number of tracks), but also because synchronous generation of multiple tracks is a
more difficult task, arguably requiring a more powerful (higher-capacity) model.
For this reason, we avoid such approaches in this study.

Input and output representation

Building on the method proposed for style translation, we use a piano roll repre-
sentation for the content input and a token-based representation for the output.
We also use the same token-based representation for the style input.

We keep the piano roll representation from 4.3.1, except that we use the values
in the piano roll matrix to encode dynamics. More precisely, we set each value
in the matrix to the total velocity of all notes with the given pitch active at the
given time, normalized by the maximum velocity (127).

As for the token-based representation, we improve it by proposing a beat-
relative encoding, which we found to be more robust to timing errors during
generation, and the superior performance of which we will demonstrate in the
ablation study in Section 4.4.2. Specifically, instead of encoding the time differ-
ences between consecutive events, we encode the position of each event within the
current beat. To do this, we replace the TimeShift tokens with SetTime tokens
that set the offset within the current beat, plus SetTimeNext tokens that allow
moving on to the next beat. Moreover, we add SetVelocity tokens to be able to
represent dynamics, and DrumOn/DrumOff tokens to encode drum notes.13 The
vocabulary then consists of the following token types:

• NoteOn(pitch), DrumOn(pitch): begin a new note at the given pitch (0–
127);

• NoteOff(pitch), DrumOff(pitch): end the note at the given pitch (0–127,
or * to end all active notes);

• SetTime(units): set the time within the current beat, quantized to 12ths
of a beat (0–11);

• SetTimeNext(units): move to the next beat and set the time within that
beat (0–11);

• SetVelocity(units): set the velocity value, quantized to 8 levels (1–8).

59

c3

s1 s2 s3 sM

+

h1 h2 h3 hN

·α31

·α32 ·α33

·α3M

</s>ŷ2

<s>

ŷ1 ŷ3

c1 c2 cMσ σ σ

2D CNN

content input piano roll x

output sequence

σ

1D CNN

z1 z2 z3 zN ′

style input sequence
z4 z5 · · ·

Content encoder Style encoder

Decoder

Figure 4.10 – A detailed view of the model architecture with focus on the 3rd

decoding step, i.e. m = 3 (for illustration purposes). The upper index (i) is
omitted everywhere for simplicity. © 2020 IEEE.

60

Architecture details and training

A detailed view of the architecture is displayed in Fig. 4.10. As in the style
translation study, the content encoder consists of a 2D CNN followed by an RNN
(GRU); however, we reduce the RNN to a unidirectional (forward) one with a
lower number of units in order to limit its memory footprint. The style encoder
has a similar architecture, but uses 1D convolutions due to the sequential input
representation. More precisely:

• The content encoder applies two consecutive 2D convolutional layers to the
piano roll matrix, then flattens the resulting 3D feature map to obtain a
sequence of 1024-dimensional vectors with two vectors per measure. This
sequence is then fed to a GRU layer with 200 units, resulting in a sequence
of 200-dimensional state vectors h1, . . . , hN .

• The style encoder starts with a sequence of embeddings of the input to-
kens and applies three consecutive convolutional layers, compressing the
sequence eight times, followed by a GRU with 500 units. Only the last
GRU state is kept and used as the style embedding σ(i).

Recall that since the style encoder only sees one track z(i) at a time, the style
embedding σ(i) encodes the style of that specific track (which is to be transferred
to the corresponding output track), rather than the style of the accompaniment
as a whole.

The decoder architecture is identical to the one from the style translation
study.

We train the model using Adam [Kingma and Ba, 2015] with a batch size of
64 and with exponential learning rate decay, halving the learning rate every 3 k
batches (192 k training triplets). We stop training in the middle of the first epoch
(after 1.6 M triplets) where the improvement to the validation loss is already very
small.

The complete hyperparameter settings are included with the source code.

Data generation details

As in Section 4.3, we need a parallel dataset of accompaniments in different styles,
in this case one that allows us to gather triplets of musical fragments (AS, BT , AT)
where AS denotes the content input in some source style S, BT is the style input,
serving as an example of the target style T , and AT is the target, combining
the content A with the target style T . While we could extract such triplets
from the dataset presented in Section 4.3.1, they would not be suitable for this
task for two reasons. First, using only 70 styles would certainly not be enough for
generalization to novel target styles. Second, for this task, the training, validation
and testing sections of the dataset must contain disjoint sets of styles, so that we
may monitor and evaluate the performance of the model in the one-shot setting.

13In drum tracks, the MIDI note number (which normally represents pitch) identifies the
percussion instrument (e.g. snare drum, hi-hat). For this reason, we chose to use a separate
set of tokens for drums; this way, we also avoid having to explicitly inform the model that the
track is to be played by a drum kit, and not a pitched instrument.

61

We therefore decided to generate a completely new dataset using the following
procedure.

The first step was again to acquire chord charts. Instead of using the same
chord charts as in Section 4.3.1, we chose to create a new set of synthetic ones.
The main, purely practical motivation was that of complete control over the
generation procedure, allowing to create a dataset that is balanced and diverse at
the same time. The same cannot be easily achieved with existing BIAB files, as
the closed file format effectively prevents automatic analysis and manipulation.
Moreover, using a fully synthetic dataset enabled us to release it publicly for
reproducibility and to foster future research on musical styles.

We obtained the chord charts by sampling from a chord language model (LM)
estimated on the iRb corpus [Broze and Shanahan, 2013], which contains chord
charts of over a thousand jazz standards. This process resulted in 1200 chord
charts of 252 bars each for training, plus another 2× 600 chord charts of 16 bars
each as a validation and test set, respectively. Details of this procedure can be
found in Appendix A.1.

Finally, to generate the accompaniments, we picked 1476 MIDI styles from
BIAB (their list can be found on the supplementary website) and reserved 20+20
of them for the validation and test set, respectively. All selected styles are in 4

4 or
12
8 time (i.e. with 4 beats per measure) and contain between 3 and 5 instruments,
one of which is always drums. In this study, we treat the A and B substyles
as separate styles, effectively doubling the number of styles in each part of the
dataset. We used BIAB to render each generated chart in a few randomly chosen
styles, so as to obtain about 500 measures of MIDI per style in each subset (train,
val, test). We then split the files into fragments of 8 bars.

4.4.2 Experimental results
As in the style translation study, we test the model on our synthetic test set and
the Bodhidharma dataset. Additionally, we subjected Bodhidharma to a kind of
dynamic range compression by standardizing the velocity values in each segment,
then scaling and shifting them to match the mean and variance computed on
the training data; this is to compensate for a skewed distribution of velocity
annotations in this dataset.

Note that both Bodhidharma and the synthetic test set contain styles unseen
during training, and hence test the one-shot style transfer capabilities (i.e. the
generalization to new styles).

We construct triplets (AS, BT , AT) from the synthetic test set in the same
way as during training. On Bodhidharma, where targets are not available, we
form input pairs (AS, BT) by choosing BT randomly (with replacement) from the
entire dataset.

The model is tested in both the greedy decoding mode and the sampling mode
with τ = 0.6 (observed to yield good results in preliminary experiments on the
validation set).

For comparison, we also evaluate the following trivial systems:

• cp-content: copies the content input to the output; expected to have
perfect performance on content preservation, but poor on style fit. This is
the same as the ‘source’ baseline in the style translation study.

62

• cp-style: copies the style input to the output; expected to have perfect
performance on style fit, but poor on content preservation (similarly to the
‘random’ baseline in the style translation study, since the style input is
chosen independently of the content input).

• oracle: retrieves the ‘ground-truth’ target-style segment generated by
BIAB, if available; this should provide a more realistic upper bound on all
metrics.

Evaluating cp-content for style fit presents two pitfalls. The first is that
the content inputs for one target style may themselves have several different
styles. To avoid conflating them, we aggregate the style profiles over each of
them separately; we then have one data point for each source-target style pair.
The second problem is that, as the content input may contain a different set of
instruments than the target, we do not know which reference to use for each track.
For this reason, we evaluate each track of the content input against each track of
the target style and report the maximum value for each target-style track.

We note that a direct comparison of our approach with prior style conversion
work (including our own style translation study) is unfortunately not possible.
The main reason is that a style translation system cannot be conditioned on
unseen styles since it has no style encoder.

In the rest of this section, we present the main evaluation results and an
ablation study, provide some observations about practical use of the proposed
system, evaluate the proposed style similarity metrics, and explore the properties
of the style embedding space.

Evaluation results

We evaluate our model using the metrics described in Section 4.2, computed in
the macro and nano versions. First, we present in Fig. 4.11 the results on the
synthetic test set.

In terms of the content preservation metric, Groove2Groove achieves perfect
results (on par with oracle), and the gap with respect to cp-style is large.
Even though on style fit metrics (macro version), Groove2Groove is not able
to reach the performance of oracle or cp-style (close to 1), it scores higher
than cp-content. This means that the output is, on average, closer to the
target style than the content input, and hence the style transfer is at least partly
successful. The large range of values of cp-content is explained by the fact
that the content input may (or may not) already be in a style which is similar to
the target.

We may notice that the performance of Groove2Groove on the onset-duration
metric is considerably lower than on the other style fit metrics, which suggests
that it does not model note duration well. However, note duration is arguably
perceptually less important than other features (in particular, those related to
onset time and pitch).

The two decoding modes of our model (greedy and sampling) achieve similar
results on all metrics, but the sampling mode consistently performs slightly better
on style fit. This is not unexpected, given the fact that greedy decoding always
picks the most likely event, whereas sampling draws events randomly from the

63

content time-pitch onset-duration onset-drum onset-velocity
0.0

0.2

0.4

0.6

0.8

1.0

co
si

ne
 s

im
ila

ri
ty

Grv2Grv (greedy) Grv2Grv (sampling) ᴄᴘ-ᴄᴏɴᴛᴇɴᴛ ᴄᴘ-ꜱᴛʏʟᴇ ᴏʀᴀᴄʟᴇ

Figure 4.11 – Evaluation results on the synthetic test set. The two leftmost results
in each group are those of our main proposed model. The triangles indicate
the mean. We use the macro variant of the style metrics, i.e. each data point
corresponds to one of the target styles. © 2020 IEEE.

learned conditional distribution. This means that sampling should allow the
model to better cover the distribution of features of the style, leading to a higher
score on our metrics.

We now turn to the results on the Bodhidharma dataset. In this case, we
need to use the nano style fit metrics (as explained in Section 4.2). To allow
for comparison, we compute the nano metrics on both datasets (synthetic and
Bodhidharma) and display the results alongside in Fig. 4.12. First of all, we can
see the style metrics drop and become more ‘blurred’ with respect to their macro
versions (Fig. 4.11). For example, on the synthetic dataset, oracle decreases
from 1.00 to 0.75 on average on time-pitch, and Groove2Groove (sampling) drops
from 0.84 to 0.62; moreover, sampling no longer seems consistently better than
greedy decoding on either dataset. This is probably due to the fact that a single 8-
bar example cannot capture how the characteristic patterns of the style manifest
in all the different contexts (i.e. in different chord progressions); this will often
lead to mismatching style profiles, and therefore noisy results.

On Bodhidharma, the scores are generally substantially lower than on the
synthetic test set, which indicates that the dataset is more challenging for our
model. The performance of cp-content on style fit metrics is lower as well; this
means that the differences between styles in this dataset are larger, making the
task more difficult. However, our model still beats the baselines – cp-style on
the content preservation metric and cp-content on the style fit metrics – the
former being outperformed by a large margin.

One other factor to consider when reading the results is that Bodhidharma
contains full arrangements including melodies, as well as polyphonic music. This
leads to the following issues which may, in part, also be responsible for the dif-
ferent results between the synthetic test set and Bodhidharma:

1. When presented with a melody line as its style input, Groove2Groove – be-
ing trained on accompaniments – will instead attempt to generate a pseudo-
accompaniment track in the style of the melody. Such tracks are generally

64

0.0

0.2

0.4

0.6

0.8

1.0

co
si

ne
 s

im
ila

ri
ty

Synthetic test set

content time-pitch onset-duration onset-drum onset-velocity
0.0

0.2

0.4

0.6

0.8

1.0
Bodhidharma

Grv2Grv (greedy) Grv2Grv (sampling) ᴄᴘ-ᴄᴏɴᴛᴇɴᴛ ᴄᴘ-ꜱᴛʏʟᴇ ᴏʀᴀᴄʟᴇ

Figure 4.12 – Evaluation results on both test sets. Style metrics are computed in
the nano variant, i.e. each data point corresponds to a single example. This results
in higher variance than in Fig. 4.11, but enables us to evaluate on Bodhidharma.
© 2020 IEEE.

65

unwanted and should, in practical applications, be removed in a manual
pre- or post-processing step.

2. The additional (non-accompaniment) tracks in the content input can make
the reference chroma features more noisy, which could contribute to the
drop in the content preservation metric.

User perspective

Upon listening to the outputs, we note that they are, for the most part, musically
meaningful, and follow the harmony of the content input very accurately (this
is true even on the Bodhidharma dataset, despite the somewhat lower content
preservation values). They also generally match the overall ‘feel’ of the target
style, especially the rhythmic feel, pitch ranges and voicing types of the different
tracks, but sometimes fail to reproduce some of the exact patterns characteristic
for the style. We also observe that the outputs produced by random sampling
tend to sound more interesting than those resulting from greedy decoding, which
are often too simplistic and do not capture the real variability of the target style.
This is consistent with the results in Fig. 4.11.

We also note that for best results, human selection and/or pre-processing
of the inputs is often required. Firstly, entire pieces cannot be used as style
inputs; instead, one needs to select a short segment (ideally 8 bars), and not
every such segment is equally representative of the style of the piece. Secondly,
as mentioned in the previous section, some tracks should usually be excluded
from the style input (or, equivalently, the output) because they are not part
of the accompaniment. This is also true for heavily interdependent tracks (e.g.
instruments playing in unison or creating parallel harmonies), which, if generated
independently, will not have the desired effect.

Finally, to create a complete arrangement (cover), the generated accompani-
ment needs to be, at the least, combined with the melody of the content input.
Even though it is conceivable to extract the melody automatically, it is a non-
trivial task that lies outside the scope of our work.

Ablation study

Compared to our style translation work, Groove2Groove adds the ability to gen-
erate drums and to model velocity. In this section, we attempt to answer the
question whether these additional tasks affect the performance of the model in
other areas. To this end, we perform an ablation study where we re-train and
evaluate the model while:

(a) excluding the drum track,

(b) omitting the SetVelocity tokens and making the content input piano roll
binary (containing only the values 0 and 1 indicating whether a note is
present), or

(c) both of the above.

In cases (b) and (c), we post-process the output by setting the velocity of all
notes equal to the average velocity of the style input notes.

66

o-duration o-drum o-velocity
0.0

0.2

0.4

0.6

0.8

1.0

co
si

ne
 s

im
ila

ri
ty

Synthetic test set

o-duration o-drum o-velocity

Bodhidharma

none velocity drums dr. + vel. dr. + vel. + Δ

Figure 4.13 – Results of the ablation study. ‘Dr. + vel.’ (‘drums + velocity’)
is the full Groove2Groove model; ‘none’ models neither drums nor velocity. ∆
stands for the ∆-encoding. All models are evaluated in sampling mode. The
synthetic test set uses macro metrics as in Fig. 4.11, Bodhidharma uses nano
metrics as in Fig. 4.12. © 2020 IEEE.

Fig. 4.13 (four leftmost bars in each group) shows the results on three selected
metrics on both of our test sets. Firstly, removing the capability to generate
drums obviously causes the onset-drum metric to become undefined. However,
it slightly improves the performance on the other metrics as the task becomes
simpler.

Similarly, eliminating velocity seems to slightly improve the performance on
the metrics unrelated to velocity (onset-duration and onset-drums). This may
be explained by the fact that removing the velocity tokens makes the sequences
shorter, reducing the length of the context that needs to be considered by the
decoder, and hence making the problem easier overall.

In terms of the onset-velocity metric, the velocity-enabled models outperform
the velocity-free ones on both datasets (although the latter still yield relatively
good results thanks to our heuristic, which copies the average velocity from the
style input).

We are also interested in validating our proposed beat-relative encoding (see
Section 4.4.1), designed to overcome the limitations of representing timing as
time differences between consecutive events. For this reason, we include in our
ablation study a version of the Groove2Groove model which employs this latter
strategy, which we will refer to as the ∆-encoding. In practice, this means that
all SetTime and SetTimeNext tokens are replaced with TimeShift tokens.

The results, displayed in Fig. 4.13 as the rightmost bar in each group, show
that the ∆-encoding is mostly outperformed by the beat-relative encoding. On
inspection, we confirm that the outputs generated with the ∆-encoding are prone
to rapidly accumulating timing errors (as already observed in Section 4.3.2). This
frequently results in the individual output tracks getting completely desynchro-
nized from the content input, as well as from each other. On the other hand,
tracks generated with the beat-relative encoding are mostly rhythmically coher-
ent, even with high sampling temperatures.

67

Style interpolation

The learned style embedding space enables us to blend styles by linearly interpo-
lating their embeddings. We sampled 100 pairs of bass tracks from the synthetic
test set and encoded them using the style encoder to obtain their respective em-
beddings. For each embedding pair σ0, σ1, we conditioned the decoder, in turn,
on vectors of the form (1− α) · σ0 + α · σ1 for α evenly spaced between 0 and 1.
Each time, we ran the model over a batch of 20 content inputs in greedy decoding
mode and computed the style similarities of the outputs to those obtained at the
endpoints σ0, σ1 (i.e. for α = 0, 1).

Fig. 4.14 shows the results as a function of α. Interestingly, the similarity
curves in (a) are rather monotonic, yet staircase-like (with continuous but steep
transitions). This suggests that the style space is divided into soft regions with
little internal variation (manifesting as plateaux in the plots), and that regions
closer to each other correspond to more similar styles. Plot (b) in Fig. 4.14
then displays the behavior on average, showing that, consistently with the above
observations, the similarity to the initial style decreases with increasing α.

Example outputs from this experiment are provided on the supplementary
website.

Style embedding visualization

To further explore the properties of the style embedding space, we visualize in
Fig. 4.15 embeddings of segments from the Bodhidharma dataset, using PCA
followed by t-SNE [Maaten and Hinton, 2008] for dimensionality reduction. Since
the style embeddings encode the characteristics of individual tracks, we may
expect the embedding space to be primarily clustered by instrument. This is
confirmed by plot (a), showing that drums and bass are clearly separated from
the rest. Other instruments do not form such clear-cut clusters, arguably because
a single instrument may have different functions (e.g. playing chords vs. melody).

Plots (b) and (c) then show the distributions of genres for two selected in-
strument groups. Even though there are no pronounced clusters, we can observe
that the individual genres are fairly localized.

4.5 Conclusion
We have proposed an approach to accompaniment style conversion based on su-
pervised learning from synthetic data, focusing first in Section 4.3 on the accom-
paniment style translation task. Although restricted to bass-and-piano accompa-
niments in 70 selected styles, it has allowed us to demonstrate that with the right
kind of training data, supervised machine translation methods can be applied to
music with success, even generalizing to inputs in styles unseen during training.

We then extended this approach in Section 4.3 to address our ultimate goal
of one-shot style transfer while mitigating some of the flaws observed in the style
translation experiments.

Nevertheless, some limitations remain. Possibly the most important short-
coming of our one-shot style transfer system, Groove2Groove, is the fact that
it is limited to accompaniments and does not account for interaction between

68

different instruments. This arises from the nature of the synthetic training data,
which is generated purely from chord charts and without strong inter-track de-
pendencies. An approach capable of overcoming this limitation will likely need to
be able to take advantage of the available non-parallel ‘real-world’ music data by
means of unsupervised or semi-supervised learning (possibly still using parallel
synthetic data for partial supervision). It will also need to employ a model capa-
ble of generating all tracks jointly – without strong independence assumptions –
in order to capture the interactions between them; this is in principle possible (as
shown e.g. by Roberts et al. [2018], Payne [2019], Thickstun et al. [2019]), albeit
more computationally demanding, as already discussed in Section 4.4.1.

In addition to inter-track (‘vertical’) dependencies, long-range temporal (‘hor-
izontal’) dependencies are also of great importance in music generation. The pat-
terns used in a musical piece typically do not stay the same over the duration of
the piece, but vary between sections. To model such dependencies, it is necessary
to consider the context of the whole piece instead of only 8 measures at a time,
which constitutes another scaling problem.

Moreover, it is apparent that there is, generally speaking, still room for im-
provement in the quality of the outputs – in particular, in the generalization to
novel styles. This suboptimal one-shot generalization capability may be due to an
insufficient number of styles in the training set (in spite of our efforts to make this
number as large as possible) or a discrepancy between BIAB styles and the test
inputs (which likely exists, despite BIAB styles being fairly realistic and diverse).
We believe that both problems may be alleviated by training at least partially
on open-domain, non-BIAB data as outlined above.

Lastly, the applicability of Groove2Groove is limited by the fact that it works
with symbolic music only. An extension capable of processing audio inputs, or
even producing audio end-to-end, would certainly be interesting and is left as
another natural next step.

69

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.0 0.5 1.0

0.4

0.6

0.8

1.0

0.0 0.5 1.0

Time-pitch vs. α

0.0

0.5

1.0

0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0

Onset-duration vs. α

(a) Examples for specific style pairs; the solid line and the dashed
line show the similarity to the outputs generated from σ0 (i.e. for
α = 0) and σ1 (for α = 1), respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Average similarity by α

time-pitch
onset-duration

(b) α-wise average and standard deviation of
the metrics plotted in (a) (solid line) over 100
style pairs.

Figure 4.14 – Style similarity to interpolation endpoints as a function of the
interpolation coefficient α. © 2020 IEEE.

70

(a) All embeddings by instrument

(b) Bass embeddings by genre

(c) Guitar embeddings by genre

Figure 4.15 – PCA + t-SNE projections of style embeddings. Each point corre-
sponds to a single track of a single segment from Bodhidharma. The colors in
(a) represent MIDI instrument groups with drums added as an extra category.
The colors of the genres in (b) and (c) are determined by the locations of their
centroids. © 2020 IEEE.

71

72

5. Positional encodings for music
generation

Sections 5.1.1, 5.1.2, 5.2 and 5.3 in this chapter are based on the paper ⟨ICML2021⟩
by Liutkus, Cífka (equal contribution) et al.

In Chapter 4, we identified the need to develop models capable of jointly gen-
erating multiple tracks in order to capture inter-track dependencies, as well as
handling longer temporal contexts. This involves scaling up the input size and
model capacity, a difficult challenge and an interesting problem in itself. One of
the obstacles is that more powerful models like Transformers, which have a better
ability to model complicated dependencies and have recently become the tool of
choice for music generation, also come with increased computational complexity,
which becomes prohibitive for very long sequences.

For this reason, we make a detour from style transfer in this chapter in order
to study music generation using the recently proposed linear complexity
Transformers (see Section 5.1.1 below) with particular focus on positional
encoding schemes.

After some background (Section 5.1), we present in Section 5.2 our main,
theoretical contribution of this chapter: stochastic positional encoding (SPE), a
novel positional encoding (PE) scheme that addresses a fundamental incompat-
ibility between linear complexity Transformers and relative positional encoding
(RPE). We experimentally validate the proposed technique on music generation
in Section 5.3 (with additional experiments on non-music tasks included in Ap-
pendix A.2). In Section 5.4, we follow up with some preliminary results on how
PE may be better exploited for music generation by making it encode more mu-
sically meaningful information. Section 5.5 concludes the chapter.

5.1 Background

5.1.1 Linear complexity Transformers
The Transformer model [Vaswani et al., 2017] has been described in Section 3.1.2.
We recall here Eqs. (3.4) and (3.5), expressing the computation of Transformer
(self-)attention from queries Q, keys K and values V:

Attention(Q, K, V) =
[︄∑︁N

n=1 exp(emn)vn∑︁N
n′=1 exp(emn′)

]︄
m

,

emn = q⊤
mkn

/︂√
D.

Defining the (unnormalized) attention matrix A = [amn]mn as

A ≡ [exp(emn)]mn = exp
(︂
QK⊤

/︂√
D
)︂
, (5.1)

we can rewrite Eqs. (3.4) and (3.5) as
Attention(Q, K, V) = S−1AV, (5.2)

S = diag(A1N), (5.3)

73

where 1N is an all-ones vector of length N . The multiplication by S−1 is simply
a way to express row-wise normalization (division by row sums) of A.

Tsai et al. [2019] and Choromanski et al. [2021] introduce a generalization
where A is expressed in terms of a kernel function K : RM × RN → R+:

A = [K(qm, kn)]mn . (5.4)

In the original Transformer [Vaswani et al., 2017], we have, according to Eq. (5.1):

K(q, k) = exp
(︂
q⊤k

/︂√
D
)︂
. (5.5)

Other choices of K are possible, yielding different variants of the Transformer as
in Choromanski et al. [2021] and Katharopoulos et al. [2020].

The original Transformer architecture explicitly computes the attention ma-
trix A, leading to a O(MND) complexity (quadratic in the case of self-attention,
where M = N), which prevents it from scaling to very long sequences. Although
this is not necessarily a problem when sequence lengths are barely on the order
of a few hundreds, as in some language processing tasks, it is prohibitive for very
large signals like high-resolution images or audio.

Focusing on this scalability issue, several approaches have been recently in-
vestigated to allow for long sequences:

• Attention clustering schemes group items among which dependencies are
computed through regular attention. This is either done by using sim-
ple proximity rules within the sequences, leading to chunking strategies
[Dai et al., 2019], or by clustering the keys and values [Roy et al., 2021].
Inter-cluster dependencies are either ignored or summarized via fixed-length
context vectors that are coined in as memory [Wu et al., 2020].

• Assuming the attention matrix to be sparse. In this case, only a few amn

are nonzero [Child et al., 2019].

• Assuming A has a particular (low-rank) structure and can be decomposed
as the product of two smaller matrices. A prototypical example is the
Linformer [Wang et al., 2020a], which is limited to fixed-length inputs.
Another very recent line of research in this same vein takes:

A ≈ ϕ(Q)ϕ(K)⊤, (5.6)

where ϕ : RD → RR is a non-linear feature map applied to each key kn and
query qm, and R ≪ min(M, N) [Shen et al., 2021, Katharopoulos et al.,
2020].

• When K in Eq. (5.4) is a positive (semi-)definite kernel, the Performer
[Choromanski et al., 2021] leverages reproducing kernel Hilbert spaces to
show that a random ϕ may be used to exploit this convenient decomposi-
tion (5.6) on average, even when A is not low rank:

K ⪰ 0⇔ A = Eϕ

[︂
ϕ(Q)ϕ(K)⊤

]︂
, (5.7)

where ϕ is drawn from a distribution chosen based on K. A simple example
is ϕW(kn) = max(0, Wkn), with a random W ∈ RR×D for some R ∈ N.

74

In schemes like (5.6) and (5.7), the improved time and space complexity comes
from the fact that the outputs can be obtained efficiently without computing the
attention coefficients amn:

Attention(Q, K, V) ≈ S−1
[︂
ϕ(Q)

[︂
ϕ(K)⊤V

]︂]︂
, (5.8)

S = diag
(︂
ϕ(Q)

[︂
ϕ(K)⊤1N

]︂)︂
. (5.9)

Notice that the multiplication ϕ(K)⊤V has time complexity O(NRD) and the re-
sult has dimensions R×D (independent of the input length). The whole attention
mechanism then has time complexity O((M + N) RD) instead of O(MND) and
space complexity O(MR + NR + ND + RD) instead of O(MN + (M + N) D).
Hence, we avoid the MN term and obtain a linear complexity Transformer.

5.1.2 Relative positional encoding
Relative positional encoding (RPE, Shaw et al. [2018]) has already been mentioned
in Section 3.1.2. The corresponding attention matrix can be written as follows:

A = exp
(︂(︂

QK⊤ + Ω
)︂/︂√

D
)︂
, (5.10)

Ω =
[︄

D∑︂
d=1

qmdPd(m− n)
]︄

mn

, (5.11)

where Pd : Z → R is the d-th component – activated by query dimension d – of
the (learnable) relative positional encoding.

Although RPE is beneficial for performance [Shaw et al., 2018, Dai et al.,
2019, Tsai et al., 2019], we are only aware of implementations that either require
the computation of A, and clustered attention schemes, which in fine decompose
A into smaller attention matrices, and compute them. This is in sharp contrast
to Eqs. (5.8) and (5.9), which never compute the attention matrix.

5.1.3 Music generation with Transformers
Recent years have seen increasing amounts of work on applying Transformers to
music generation [Huang et al., 2019a, Payne, 2019, Donahue et al., 2019a, Jiang
et al., 2020, Huang and Yang, 2020, Wu and Yang, 2020, Muhamed et al., 2021],
largely motivated by the well-known ability of the self-attention mechanism to
model long-range dependencies. To make scaling to longer sequences computa-
tionally feasible, some works [Donahue et al., 2019a, Huang and Yang, 2020, Wu
and Yang, 2020] have adopted Transformer-XL [Dai et al., 2019], a variant of the
Transformer enhanced with a recurrence mechanism. This model allows training
on arbitrarily long sequences, but only a fixed-length past context is available
through the self-attention mechanism. Due to this property, it also needs to be
used together with relative attention (RPE).

MIDI-like token-based representations, such as the one used in Section 4.3,
seem to be the most popular output format [Huang et al., 2019a, Payne, 2019,
Donahue et al., 2019a]. Huang and Yang [2020] observe the same issues with
regular rhythms as we did in Section 4.3.2, and propose REMI (revamped MIDI-
derived format). In a similar spirit to our beat-relative encoding from Section 4.4.1,

75

REMI has Bar events that mark a downbeat (the start of a new bar) and Position
events that indicate the offset from the last downbeat.

Regarding PE, the vast majority of works use absolute (APE) or relative
(RPE) positional encoding based on token indices as usual. Huang et al. [2019a]
employ a generalized, relation-aware variant of RPE [Shaw et al., 2018], encoding
the time and pitch difference between two notes in addition to the difference
between token indices. This is found to improve performance, but comes with
an increased computational cost; this is likely why the authors only use this
technique in the first layer of the network. To our knowledge, this is the only
existing music generation work where PE is based on other kinds of information
than solely token indices.

5.2 Stochastic positional encoding – theory
We now introduce our stochastic positional encoding (SPE), a novel positional
encoding scheme designed to generalize RPE (Section 5.1.2 above) while being
compatible with linear complexity Transformers (Section 5.1.1 above). A key
idea for SPE is to draw a connection between positional encoding and cross-
covariance structures of correlated random processes, as we will explain in the
following. This will allow us to design a way to augment keys and queries in the
attention mechanism so that a given relative positional pattern arises when they
are multiplied together.

Index set. For generality, let us consider input/output sequences indexed by
n ∈ N and m ∈M, respectively, where N ,M⊆ T and T is called the index set.
As before, the sequence lengths are denoted N = |N | and M = |M|.

Note that in all our experiments, we will work with regularly sampled se-
quences, i.e. T = N, but more settings are possible, such as irregularly sampled
time series (T = R) or images (T = N2). Also, we will only operate in the self-
attention setting (as opposed to encoder-decoder attention), where the ‘input’
and ‘output’ sequence are the same (N =M = {1, . . . , N}) and the indices n, m
simply pertain to keys {kn}n∈N and queries {qm}m∈N , respectively, computed
based on this sequence.

Assumptions. We seek an attention matrix A given by:

A = exp
⎛⎝[︄ D∑︂

d=1
qmdPd(m, n)knd

]︄
mn

/︄√
D

⎞⎠, (5.12)

where {Pd}D
d=1 are position kernels. Defining Pd ≡ [Pd(m, n)]mn, this can be

written in matrix form as:

A = exp
(︄

D∑︂
d=1

diag(q∗d)Pd diag(k∗d)
/︂√

D

)︄
, (5.13)

which is understood as having D positional attention templates Pd jointly acti-
vated by the queries q∗d and keys k∗d. Note that while original RPE in Eqs. (5.10)
and (5.11) is different from this formulation, it can be seen as a special case where
some entries are kept constant.

76

Positional attention as covariance. The key idea for SPE is to see the po-
sition kernel Pd(m, n) as a covariance:

(∀M,N) (∀m, n) Pd(m, n) = E
[︂
Q̄d(m)K̄d(n)

]︂
, (5.14)

where Q̄d(m) and K̄d(n) are two real-valued random variables, which will be
chosen with the single condition that their covariance function matches Pd. Se-
mantically, they should be understood as (randomly) encoding position m for
queries and position n for keys, respectively. When multiplied together as in
dot-product attention, they yield the desired attention template Pd(m, n) on av-
erage. The central intuition is that the actual positional encodings do not matter
as much as their dot product.

In what follows, we will impose specific structures on the cross-covariance
Pd(m, n), which will allow us to design random processes Q̄d = {Q̄d(m)}m∈M and
K̄d = {K̄d(n)}n∈N such that (5.14) holds. The core advantage of this construction
is to allow for Pd to be factorized. Let us for now assume that we construct Q̄d, K̄d

in such a way that we can sample from them (we will see how in Section 5.2.1)
and consider R independent realizations of them for given M and N , gathered
in the M ×R and N ×R matrices Q̄d and K̄d, respectively:

Q̄d ∼ [Q̄d(m)]mr, K̄d ∼ [K̄d(n)]nr. (5.15)

For large R, by the law of large numbers, we obtain:

Pd ≈ Q̄dK̄⊤
d

/︂
R. (5.16)

This leads to A in Eq. (5.13) being given by:

A ≈ exp
⎛⎝ D∑︂

d=1
diag(q∗d)Q̄dK̄⊤

d

R
diag(k∗d)/

√
D

⎞⎠ (5.17)

≈ exp

(︄
D∑︁

d=1
diag(q∗d)Q̄d

)︄(︄
D∑︁

d=1
diag(k∗d)K̄d

)︄⊤

R
√

D
. (5.18)

Here, a crucial observation is that for large R, the cross-terms Q̄dK̄⊤
d′ ̸=d are neg-

ligible due to independence, provided that the processes are zero-mean. Finally,
picking queries and keys as:

Q̂←
D∑︂

d=1
diag(q∗d)Q̄d

/︂
4
√

DR, (5.19)

K̂←
D∑︂

d=1
diag(k∗d)K̄d

/︂
4
√

DR, (5.20)

we see from Eqs. (5.18) to (5.20) that we get back to the usual multiplicative
scheme (5.4) with A = exp(Q̂K̂⊤/

√
R), where the queries/keys now have di-

mension R and can be used in Eq. (5.8) to directly obtain the outputs without
computing A.

77

The procedure is summarized in Algorithm 1: we provide a way (5.19–5.20) to
achieve PE in the keys domain, such that the desired model (5.12) is enforced in
the attention domain, parameterized by the attention kernels Pd. Interestingly,
this is done without ever computing attention matrices, complying with linear
complexity Transformers. The remaining challenge, which we discuss next, is to
generate Q̄d and K̄d enforcing Eq. (5.16).

Algorithm 1 Stochastic Positional Encoding.
Input:

• position kernel P(m, n), number of replicas R.
• initial M ×D and N ×D queries Q and keys K.

Positional encoding:
• Draw the D independent tuples {(Q̄d, K̄d)}d of M ×R and N ×R matrices

as in Section 5.2.1.
• Set Q̂ and K̂ as in Eqs. (5.19) and (5.20).

Inference: Compute outputs Y with a linear complexity Transformer as in
Eqs. (5.8) and (5.9), i.e.:

S← diag
(︂
ϕ(Q)

[︂
ϕ(K)⊤1N

]︂)︂
, Y← S−1

[︂
ϕ(Q)

[︂
ϕ(K)⊤V

]︂]︂
.

5.2.1 Drawing stochastic positional encodings

Inspecting (5.14), we notice that our objective is to draw samples from D pairs
of centered random processes {Q̄d, K̄d}d with a prescribed cross-covariance struc-
ture Pd. It is reasonable to use Gaussian processes for this purpose [Williams
and Rasmussen, 2006], which have the maximum entropy for known mean and
covariance. Such distributions are frequently encountered in geophysics in the co-
kriging literature [Matheron, 1963, Genton and Kleiber, 2015], where scientists
routinely handle correlated random fields. The particular twists of our setup are:
we have a generative problem, e.g. as in Vořechovský [2008]; however, as opposed
to their setting, we are not directly interested in the marginal covariance function
of each output, provided that the desired cross-covariance structure holds.

The most straightforward application of SPE arises when we pick Pd(m, n) =
Pd(m− n), i.e. a stationary position kernel, which was coined in as choosing
relative attention in Shaw et al. [2018] and boils down to enforcing a Toeplitz
structure for the cross-covariance matrix Pd ≡ [Pd(m− n)]m,n between Q̄d and
K̄d.

We propose two variants of SPE to handle this important special case, illus-
trated in Fig. 5.1. The first variant yields periodic covariance functions. It can be
beneficial whenever attention should not vanish with large lags, e.g. as in traffic
prediction [Xue and Salim, 2020]. The second variant generates vanishing co-
variance functions; a concept which has recently been shown useful [Wang et al.,
2021].

78

Variant I. Periodic attention (sineSPE). In our first approach, we consider
the case where Pd is periodic, which gets a convenient treatment. We assume:

Pd(m, n) =
K∑︂

k=1
λ2

kd cos(2πfkd (m− n) + θkd) , (5.21)

where K ∈ N is the number of sinusoidal components and fd ∈ [0 1]K , θd ∈
[−π π]K and λd ∈ RK gather their K frequencies, phases, and weights, respec-
tively. By using the matrix notation, we can rewrite (5.21) as:

Pd = Ω(M, fd, θd) diag
(︂
λd̈

)︂2
Ω(N , fd, 0)⊤, (5.22)

where v̈ ≡
[︂
v⌊p/2⌋

]︂
p
∈ R2K denotes a twice upsampled version of a vector v ∈ RK ,

⌊·⌋ denotes the floor operation, and for an index set I, Ω(I, a, b) is a matrix of
size |I| × 2K, with entries (0-based indexing):

[Ω (I, a, b)]nl =

⎧⎨⎩cos(2πakn + bk) if l = 2k

sin(2πakn + bk) if l = 2k + 1

It can be shown that if θd = 0 and M = N , we get back to the (unique)
Vandermonde decomposition for positive definite Toeplitz matrices1 [Yang et al.,
2016], which boils down in our context to assuming that (∀τ) Pd(0) ≥ Pd(τ).
Since this is not always desirable, we keep the more general (5.22).

At this point, we can easily build Q̄d and K̄d. We draw a 2K × R matrix
Zd with independent and identically distributed (i.i.d.) Gaussian entries of unit
variance, and define:

Q̄d ← Ω(M, fd, θd) diag
(︂
λd̈

)︂
Zd

/︂√
2K , (5.23)

K̄d ← Ω(N , fd, 0) diag
(︂
λd̈

)︂
Zd

/︂√
2K . (5.24)

It is easy to check that such a construction leads to (5.16). Its parameters are
{fd, θd, λd}d, which can be trained through stochastic gradient descent (SGD) as
usual.

Variant II. Vanishing attention with regular sampling (convSPE). Due
to their periodic structure, the covariance functions generated by Variant I are
non-vanishing. Yet, our framework is flexible enough to allow for vanishing co-
variance structures, which may be more desirable depending on the application
[Wang et al., 2021].

As opposed to Variant I, where we imposed a specific structure on Pd, we will
now follow an indirect approach, where Pd will be implicitly defined based on our
algorithmic construction. In this case, we assume that the signals are regularly
sampled (typical in e.g. text, images, audio), and we will exploit the structure of
Gaussian random matrices and basic properties of the convolution operation.

For ease of notation, we assume self attention, i.e. M = N . Let {ΦQ
d , ΦK

d }d

denote a collection of filters, which will ultimately be learned from training data.
The size and the dimension of these filters can be chosen according to the input
data (i.e. can be vectors, matrices, tensors). We then propose the following
procedure, which leads to a Toeplitz Pd by means of convolutions:

1If Pd ⪰ 0 and K ≥ N , Eq. (5.22) still holds but is not unique.

79

sinusoidal convolutional

gating

(a) The two SPE variants and gating

ga
tin

g

layer l

(b) Layer-wise SPE sharing

Figure 5.1 – (a) Generation of Q̄ and K̄, which approximate the templates Pd

when multiplied together. (b) Q̄ and K̄ can be shared across layers. At each
layer l, different gating is (optionally) used before applying Eqs. (5.19) and (5.20)
to generate new queries Q̂ and keys K̂.

• We first draw an M×R random matrix Zd with i.i.d. standard Gaussian en-
tries. For multidimensional signals, Zd gathers R random vectors, matrices,
cubes, etc.

• The desired Q̄d and K̄d are obtained by convolving Zd with respective filters
ΦQ

d and ΦK
d :

Q̄d = Zd ∗ΦQ
d , K̄d = Zd ∗ΦK

d , (5.25)

where ∗ denotes convolution with appropriate dimension (e.g. 1D, 2D or
3D). Using convolutions with finite filters ensures vanishing covariance (see
the appendix of ⟨ICML2021⟩ for a proof).

Due to the independence of the entries of Zd, for large R, the product ZdZ⊤
d /R

will tend to the identity matrix. Given the fact the convolution operations in
(5.25) can be equivalently expressed as a multiplication by triangular Toeplitz
matrices constructed from the respective filters, it can be shown that, as R→∞,
Q̄dK̄⊤

d /R tends to the product of two triangular Toeplitz matrices. Hence, by
using the properties of triangular Toeplitz matrices (cf. Kucerovsky et al. [2016,
Theorem 2.4]), we conclude that, as R → ∞, our construction yields a Toeplitz
matrix Pd as desired. This approach is parameterized by the filters {ΦQ

d , ΦK
d }d,

which will be learned from training data through SGD.
The variety of attention patterns P(m− n) that can be obtained directly de-

pends on the kernel sizes, which is a classical result from signal processing [Vetterli
et al., 2014]. Cascading several convolutions as in the VGGNet [Simonyan and
Zisserman, 2015] may be a convenient way to augment the expressive power of
this convolutional SPE variant.

From a more general perspective, the two operations in (5.25) can be un-
derstood as producing PE through filtering white noise. Other classical signal

80

processing techniques may be employed, such as using infinite impulse response
filters. Such considerations are close to the ideas proposed by Engel et al. [2020].

To summarize, the core difference between the two proposed constructions
(5.23–5.24) and (5.25) lies in the behaviour of RPE beyond a maximum lag,
implicitly defined through the frequencies fd for (5.23–5.24) and through the sizes
of the filters for (5.25). While the sinusoidal construction leads to a periodic RPE,
the filtering construction leads to a vanishing RPE. Both may be the desired
option depending on the application.

5.2.2 Gating and sharing
Although RPE and the generalization (5.13) we propose are novel and efficient
strategies to handle position information, it may be beneficial to also allow for
attention coefficients that are computed without positional considerations, simply
through q⊤

mkn. As a general gating mechanism, we propose to weight between
positional and non-positional attention through a gate parameter δd ∈ [0 1]:

Pd ≡ [δd + (1− δd)Pd(m, n)]m,n. (5.26)

This gating scheme can be implemented simply by augmenting Q̄d and K̄d gen-
erated as above through:

q̄d,m ←
√︂

1− δdq̄d,m +
√︂

δdϵd, (5.27)

k̄d,m ←
√︂

1− δdk̄d,m +
√︂

δdϵd, (5.28)

where ϵd ∈ RR in Eqs. (5.27) and (5.28) is the same and has i.i.d. standard
Gaussian entries.

In practice, we can share some SPE parameters across the network, notably
across layers, to strongly reduce computing time and memory usage. In our
implementation, sharing means generating a single instance of Q̄ and K̄ for each
head, on which a layer-wise gating is applied before Eqs. (5.19) and (5.20). This
is illustrated in Fig. 5.1.

5.3 Stochastic positional encoding – experimen-
tal results

In this section, we present experiments studying the performance of the proposed
SPE on music generation.

Besides these experiments, we also include in Appendix A.2 results on the
Long-Range Arena (LRA) benchmark [Tay et al., 2021], consisting of text and
image classification tasks. On this benchmark, SPE tends to perform comparably
to absolute positional encoding, with the sinusoidal variant bringing a consider-
able performance boost on one task.

The companion website2 for SPE contains listening examples, as well as a link
to the source code. See also Appendix C for a complete list of available resources.

2https://cifkao.github.io/spe/

81

https://cifkao.github.io/spe/

5.3.1 Accompaniment continuation

This section presents an updated and extended version of the accompaniment con-
tinuation results from ⟨ICML2021⟩.

In this experiment, we evaluate Performers [Choromanski et al., 2021] with dif-
ferent positional encodings on an accompaniment continuation task. Similar to
the accompaniment style transfer task from Section 4.4, the model is given a
short example of an accompaniment (a ‘style input’) and is expected to continue
generating in the same style; however, there is no content input to guide the
generation, and the model simply generates freely. This is achieved simply by
training the model for unconditional generation, then priming it with a short
prompt (2-bar musical fragment) and letting it generate a continuation. We then
observe whether the generated continuation matches the style of the prompt.

This experiment is specifically designed to investigate training on relatively
short sequences (512 tokens) and generalization beyond the training length. This
also enables us to train the original Transformer architecture (computing the full
attention matrix) in the same setting, allowing to perform a direct comparison of
SPE and RPE.

Experimental setup

The models have 24 layers, 8 attention heads and dmodel = 512 and are trained
on sequences of length N = 512, corresponding to 2–10 bars. At test time, the
model is prompted with 2 bars in a style not seen during training and new tokens
are sampled to complete the sequence to a length of 1024, i.e. twice the training
length.

As a baseline, we include ‘vanilla’ Transformers/Performers, which add clas-
sical sinusoidal absolute positional encoding to the input (APE). The SPE-based
models (sineSPE, convSPE) use layer-wise sharing and layer-specific gating. As
an ablation experiment to investigate the importance of positional encodings in
music generation, we include a Performer with no positional encoding (noPE).

On the Transformer side, we additionally include two variants of RPE, both
of which are implemented exactly (without approximation) by modifying the
computation of the attention matrix. First, the original RPE from Eqs. (5.10)
and (5.11). Second, sineRPE, a sinusoidal version of RPE, where Pd in Eq. (5.11)
is obtained via our (learnable) sinusoidal scheme (5.21).

Training data

We use the synthetic dataset from Section 4.4.1. We only use the training section
of the dataset and perform a custom training/validation/test split such that each
section contains a unique set of BIAB styles (2761 for training and 50 each for
validation and testing).

We convert each accompaniment to a trio consisting of bass, drums and an-
other randomly selected accompaniment track (e.g. piano, guitar). We then per-
form random data augmentation by skipping measures at the beginning, dropping
some of the instruments, and transposition.

82

Data representation

We use a representation similar to the beat-relative encoding from Section 4.4.1,
but adapted to a multi-track setting, taking inspiration from Donahue et al.
[2019a]. Specifically, we encode a piece of music as a sequence of the following
types of event tokens, each with two integer arguments:

• NoteOn(track, pitch): Begins a new note at the given pitch (0–127).

• NoteOff(track, pitch): Ends the note at the given pitch (0–127).

• TimeShift(beats, offset): Advances current time by a given number of
beats and then sets the offset within the beat, given as the number of ticks
from its beginning (0–11). The maximum possible shift is (2, 0).

Results and discussion

We use the time-pitch, onset-duration and onset-drum metrics from Section 4.2 to
quantify the similarity of the generated continuation to the style of the prompt.
When listening to the generated music, we notice a drift in quality along time. For
this reason, we divide each generated sample into four successive chunks based
on token position and evaluate them separately.

The results are displayed in Fig. 5.2. In the Transformer experiments, both
RPE and sineRPE stay close to sineSPE, which is encouraging and confirms the
soundness of our proposal.

For positions up to 512, neither of the positional encodings seems to have a
substantial advantage over the others. This is an interesting finding, especially in
the case of noPE, suggesting that positional encoding is not particularly important
here. While seemingly surprising, this is in agreement with the literature, e.g. Irie
et al. [2019] and Tsai et al. [2019], who found that removing positional encoding
altogether in the decoder part of Transformer-based architectures only leads to
a small drop in performance, and in some cases even a slight performance boost.
This is explained by the fact that the causal masking, where the set of available
keys strictly increases with query position, already provides a strong positional
signal.

On the other hand, for positions exceeding the training length 512, the perfor-
mance of APE drops sharply, while the other positional encodings are more stable
(convSPE more so than sineSPE). This includes noPE, which achieves comparable
or slightly better results than SPE.

To conclude, the experiment suggests that our proposed SPE behaves similarly
to RPE on music generation, and in particular, it seems to inherit one of the
celebrated advantages of RPE, its ability to generalize beyond training sequence
lengths [Huang et al., 2019a]. On the other hand, we are able to obtain similar
benefits by removing PE altogether. This raises the important question whether
PE in general is beneficial at all – or even detrimental – in music and sequence
generation. A more thorough investigation is needed to answer this question; we
present follow-up results in this direction in Section 5.4.

83

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e-
pi

tc
h

Performer-softmax Transformer

0.0

0.2

0.4

0.6

0.8

1.0

On
se

t-d
ur

at
io

n

0 256 256 512 512 768 768 1024
0.0

0.2

0.4

0.6

0.8

1.0

On
se

t-d
ru

m

Performer-softmax
APE sineSPE convSPE noPE

0 256 256 512 512 768 768 1024

Transformer
APE sineSPE sineRPE RPE

Figure 5.2 – Musical style similarity between output and initial prompt (higher
is better). The results are sorted along the x axis by token position; positions
≥ 512 were not encountered during training. Each data point corresponds to a
single BIAB style.

84

(a) APE (b) sineSPE (c) convSPE

Figure 5.3 – Examples of attention patterns observed at inference time in the
Performers trained for pop piano music generation. The plots are for sequence
length M = N = 3072 while training sequences have length 2048.

5.3.2 Pop piano music generation

This section presents the contribution of S.-L. Wu and Y.-H. Yang. The content is
reproduced from ⟨ICML2021⟩ and edited with their permission. See the paper for
more details.

In this section, we present another music generation experiment, this time scaling
up to longer sequences (2048 tokens) and focusing on unconditional generation
of solo piano music.

Experimental setup

In this experiment, Performers, again with 24 layers and 8 heads per layer, were
trained on a dataset composed of 1747 pop piano tracks, encoded using REMI
[Huang and Yang, 2020]. The models were trained with sequence length N =
2048, corresponding to ∼1 minute of music. 5 models are included, differing only
in the PE strategy, namely baseline APE, as well as sineSPE and convSPE, with
or without gating.

Results and discussion

For qualitative assessment, we first display in Fig. 5.3 one attention pattern for
each PE model: APE and sineSPE/convSPE (gated), obtained as an average over
20 from-scratch generations for a chosen layer-head pair. More plots can be
found in Fig. B.3 in the appendix. Interestingly, we notice that for early layers,
APE attention does not go much beyond training sequence length; this would
explain the poor extrapolation performance of APE observed in Section 5.3.1, as
well as below. This behaviour is not found in SPE variants, which consistently
attend to all positions. Another remarkable feature of the proposed model (only
displayed in the appendix) is that gating visually disables PE altogether for some
layers/heads, in which case attention is global.

Since the literature suggests that RPE improves generalization performance
[Shaw et al., 2018, Zhou et al., 2019, Rosendahl et al., 2019], we display in Fig. 5.4
validation cross entropy as a function of the target token position. The values

85

Figure 5.4 – Validation cross entropy (lower is better) vs. token position on the
pop piano music generation task. The black vertical line indicates the maximum
position to which the models are trained.

Figure 5.5 – PE evaluation metrics [Wang et al., 2021] for the pop piano music
generation task in the 1st layer (lower is better), w.r.t. query positions. Training
sequence length is 2048. Only query-key offsets <128 are considered here.

86

indicate how well the models predict the token at a certain position given the
preceding tokens, for tracks in the validation set. As in Section 5.3.1, we notice
that all SPE variants, especially ungated convSPE, behave much better than APE
for token positions ≥2048. There is less difference between the different PEs for
positions <2048, but gated convSPE seems to perform the best here, achieving
slightly but consistently lower cross entropy values than APE.

Recently, Wang et al. [2021] defined metrics for the evaluation of PE, sug-
gesting that translation invariance and monotonicity are desirable properties.
Translation invariance states that the distance of two PEs should only depend
on their relative position (i.e. be translation-invariant), while monotonicity states
that neighboring positions should be assigned PEs that are close to each other,
compared to faraway positions. Following their identical word probing method-
ology, these metrics are reported in Fig. 5.5. As expected, SPE variants greatly
outperform APE in terms of translation invariance. This is not the case for mono-
tonicity; still, SPE scores are remarkably stable across positions, contrarily to
APE, which again rapidly degrades beyond the training length.

5.4 Metrical positional encoding
The experiments in the previous section seemed to suggest that PEs of either kind
are not particularly beneficial for symbolic music generation using Transformers.
However, one aspect that we omitted is the fact that the usual way PE is used
in music generation is not musically meaningful. This is because in token-based
representations, token indices do not have any obvious semantics besides deter-
mining order. In particular, the indices of two tokens generally do not convey
any information about the delay between the corresponding musical events, and
do not even allow to determine whether the events occur simultaneously or not.
Hence, the question arises whether PE could be better leveraged by making it en-
code more musically relevant position information, e.g. metrical timing of events
as in Huang et al. [2019a]. In this section, we propose an experiment that revisits
this question.

Experimental setup

We train Linear Transformers3 [Katharopoulos et al., 2020] for music generation.
The networks are relatively large with 28 layers, 8 attention heads, dmodel = 1024
and a maximum sequence length of N = 1024. We compare the following:

(a) classical (sinusoidal) APE, encoding token indices (APE);

(b) metrical positional encoding: APE encoding the metrical time in ticks
(12ths of a beat) from the beginning of the piece (MPE);

(c) no positional encoding (noPE).
3Linear Transformers are simpler compared to Performers in that they use a deterministic

feature map, and they achieved better results in the LRA benchmark in Appendix A.2. Here,
following Katharopoulos et al. [2020], we use the feature map ϕ(x) = ELU(x) + 1, where ELU
is the exponential linear unit activation [Clevert et al., 2016].

87

Even though SPE (especially the sinusoidal variant) is in principle capable of nat-
urally handling irregularly sampled sequences as in (b), we unfortunately found it
computationally infeasible in this context. This is mainly because each example
in a training batch has a distinct index set N , which prevents sharing the same Q̄
and K̄ within the batch, leading to high memory consumption. For this reason,
we limit ourselves to APE (vanilla or timing-flavored) in this experiment.

We adopt the multi-track token-based representation from Section 5.3.1, but
besides the beat-relative encoding of timing (with TimeShift(beats, offset)
tokens), we alternatively use a ∆-encoding (as in Chapter 4) with tokens of the
form TimeShift(delta), simply encoding the time differences between consecu-
tive events. The basic time unit for both representations is a 12th of a beat.

Note that our proposal (b) is different from that of Huang et al. [2019a]
(outlined in Section 5.1.3) in two key aspects. First, Huang et al. use RPE, which
is not feasible with our large sequence length and model size;4 moreover, absolute
timing carries additional information such as the offset within the current beat,
which may help anchor the generated music to the metrical grid. Second, we
do not encode token indices (unlike Huang et al., who encode both indices and
timing information), as we have argued in Section 5.3.1 that this is not necessary.

Also note that neither MPE nor the beat-relative encoding provide any addi-
tional information about the metrical grid (since beats happen at regular intervals
and the first beat is assumed to occur at time 0) compared to the other options
we consider; what they do provide is simply a more explicit representation of this
information.

We evaluate the trained models on a music continuation task as in Sec-
tion 5.3.1. Specifically, we prime the model with a 16-beat prompt (4 bars assum-
ing that the time signature is 4

4) and let it generate a continuation not exceeding
the training length, employing nucleus sampling [Holtzman et al., 2020] with
p = 0.8 and softmax temperature τ = 0.9. We then measure the style similarity
between the continuation and the song from which the prompt was extracted.

Training data and procedure

We use the ‘full’ version (LMD-full) of the Lakh MIDI Dataset5 [Raffel, 2016],
containing 178 k MIDI files. As in Section 5.3.1, we obtain a dataset of trios by
randomly choosing three tracks – drums, bass, other – from each file (here, how-
ever, the third track is not necessarily an accompaniment track). We train for 10
epochs (∼44 h on a Tesla V100 GPU) while applying similar data augmentation
techniques as in Section 5.3.1. We also employ a form of curriculum learning
[Bengio et al., 2009] where we gradually increase the length of the training se-
quences from 32 to 1024 for the first ∼3.4 epochs.

Results and discussion

As before, we use the metrics from Section 4.2 to quantify the style similarity
of the generated continuation to the prompt. Because LMD includes files with
mixed time signatures and files where downbeat (measure boundary) locations

4The authors themselves note that their relation-aware RPE does not scale beyond Bach
chorales.

5https://colinraffel.com/projects/lmd/

88

https://colinraffel.com/projects/lmd/

cannot be reliably identified, we modified the onset-duration and onset-drum
metrics so that the onset time is now represented relative to the current beat and
not the last downbeat. Our (preliminary) results on the validation set are shown
in Fig. 5.6.

The ∆-encoding turns out to be very sensitive to the choice of PE: with APE,
it scores the lowest of all setups on all three metrics, but with MPE, it scores the
highest. The beat-relative encoding maintains relatively good performance for
all three PEs, but is still outperformed by the ∆-encoding with MPE on 2 of the
3 metrics.

We notice two surprising results. Firstly, noPE tends to achieve better results
than APE (always comparing results on the same metric and with the same token-
based representation). This effect is especially strong with the ∆-encoding. This
suggests that injecting token positions via APE is actually harmful in this case,
perhaps acting mostly as noise that the network can easily get distracted by
and/or overfit to.

Secondly, the beat-relative encoding, which appeared superior to the ∆-en-
coding in Section 4.4.2, does not yield the best results even when combined with
MPE. We do not have a convincing explanation for this, but we speculate that,
provided that metrical timing information is present in the input, it may be easier
for the network to predict a simple relative time shift than to compute the next
beat-relative position.

We also display in Table 5.1 the validation losses achieved by the different
models. Interestingly, the results do not correlate with those in Fig. 5.6: all the
values for APE and MPE are close to 0.613, with APE slightly lower – i.e. better –
than MPE; on the other hand, the value for noPE is considerably higher in both
cases (0.6368, 0.6256). Hence, we can see that choices which clearly benefit
generation, possibly by making ‘errors’ less likely to occur, do not necessarily
make the learning task easier.

We would also like to remark that our objective metrics in Fig. 5.6 should not
be taken as an absolute measure of output quality and that the ideal evaluation
method is a subjective listening test. This is especially true here (as opposed to
when working with synthetic BIAB data as in Chapter 4 and Section 5.3.1), since
a good continuation might diverge significantly from the style of the prompt.

Listening to the generated outputs,6 we notice that all models are capable
of imitating the style of the prompt almost perfectly, often copying the prompt
only with small but meaningful variations. On the other hand, all of the models
also occasionally enter an ‘arhythmic state’ and fail to produce any musically
meaningful material, or quickly drop some of the instruments of the trio. (Note
that the latter issue cannot be captured by our metrics, which evaluate each
instrument separately.) These issues seem to be more common with ∆-encoding
+ APE/noPE than the other models.

5.5 Conclusion
In this chapter, we studied positional encodings (PEs) and their role in music
generation using efficient Transformers. In Sections 5.2 and 5.3, we presented

6https://cifkao.github.io/metrical-pe/

89

https://cifkao.github.io/metrical-pe/

time-pitch onset-duration onset-drum

0.0

0.2

0.4

0.6

0.8

1.0
sim

ila
rit

y

-encoding + APE
-encoding + noPE
-encoding + MPE

beat-relative encoding + APE
beat-relative encoding + noPE
beat-relative encoding + MPE

Figure 5.6 – Musical style similarity between output and initial prompt (higher
is better). The triangles indicate the mean. Each data point corresponds to a
single file from the validation set.

∆-encoding beat-relative encoding
APE noPE MPE APE noPE MPE

0.6135 0.6368 0.6140 0.6122 0.6256 0.6125

Table 5.1 – Validation cross entropies (lower is better) achieved by the models.
Note that the results for ∆-encoding and beat-relative encoding are not neces-
sarily comparable.

90

SPE, a novel PE that generalizes RPE, allowing to induce a given relative at-
tention pattern while avoiding any explicit computation in the attention domain.
This makes it compatible with linear complexity Transformers, allowing for the
first time to test RPE-like attention at scale. Our experimental results confirm
that SPE behaves like RPE on music generation, in particular inheriting its gen-
eralization capabilities on sequence lengths unseen during training. At the same
time, we observe similar behavior when PE is ablated; this raises a question about
the real benefits of RPE – and PE in general – in sequence generation tasks.

We partly answered this question in Section 5.4, conducting an experiment
which suggests that (i) conventional absolute PE, encoding token indices, can
be detrimental for music generation compared to no PE, and (ii) absolute PE
which encodes metrical time instead of indices (called here metrical positional
encoding) is beneficial to at least the same extent as token-based representations
that explicitly encode the metrical grid. It will be interesting to see whether
these results generalize to architectures like Transformer-XL [Dai et al., 2019],
which rely on RPE, and how metrical PE behaves together with – and compares
to – more sophisticated token-based representations like REMI [Huang and Yang,
2020].

Coming back to music style transfer, the main topic of this thesis, we are
excited about the observed ‘style imitation’ capabilities of efficient Transform-
ers, especially when combined with timing-based PE. We are hoping to leverage
these capabilities to improve upon the one-shot style transfer performance of our
Groove2Groove system (Section 4.4).

91

92

6. Self-supervised audio timbre
transfer

This chapter is based on the paper ⟨ICASSP2021⟩ by Cífka et al. © 2021 IEEE.

Let us now turn from symbolic music to audio, and specifically to one-shot au-
dio timbre transfer, a challenging problem that has received little attention in
prior work. We view this task as a variant of music style transfer, but with a
considerably different definition of style and content than in previous chapters.
Namely, we consider single-instrument1 (but not necessarily monophonic) audio
recordings, and define style as timbre (understood roughly as instrument identity,
including any audio effects) and content as pitch. Our goal is then to transfer
the timbre of the style input onto the content input while preserving the pitch
content of the latter.

Clearly, pitch is a local (fast-changing) feature, while timbre, in our definition,
is a global feature (staying largely the same over the course of a recording). Note
that there are other features that characterize a recording, notably loudness. In
this work, we do not prescribe (or evaluate) whether or to what extent such
features are transferred. However, we intuitively expect that local variations in
these features end up being part of content, while global characteristics (e.g.
average loudness) should belong to style.

To address the task, we develop a single generic model capable of encoding
pitch and timbre separately and then combining their representations to pro-
duce the desired output. Unlike many previous music style transformation works
(e.g. Engel et al. [2020], Wang et al. [2020b], Nercessian [2020], as well as our
own work in Chapter 4), we neither assume the training data to be paired or
otherwise annotated, nor do we rely on existing models or algorithms to create
artificial annotations (e.g. pitch contours or timbre-related descriptors). This
leads to the need for data-driven disentanglement of the pitch and timbre rep-
resentations learned by the model. In this work, we propose to perform this
disentanglement using a combination of discrete representation learning (via an
extension of the vector-quantized variational autoencoder, or VQ-VAE [van den
Oord et al., 2017]), self-supervised learning, and data augmentation.

The contributions presented in this chapter can be summarized as follows:

• We propose the first neural model for one-shot instrument timbre transfer.
The model operates via mutually disentangled pitch and timbre representa-
tions, learned in a self-supervised manner without the need for annotations.

• We train and test our model on a dataset where each recording contains
a single instrument. Using a set of newly proposed objective metrics, we
show that the method constitutes a viable solution to the task, and is able
to compete with baselines from the literature.

1Considering multi-instrument recordings would lead to a more challenging and open-ended
task closer to instrumentation transfer, which includes assigning an instrument (or set of in-
struments) to each note.

93

• Since our approach to disentanglement is largely data-driven, it should be
extensible to other music transformation tasks, such as arrangement or
composition style transfer.

The companion website2 for this project contains audio examples, as well as links
to the source code and a demo notebook. See also Appendix C.

6.1 Background

6.1.1 Vector-quantized variational autoencoder
The vector-quantized variational autoencoder (VQ-VAE ; van den Oord et al.
[2017]), is an autoencoder with a discrete latent space. Its latent representa-
tion is a sequence of discrete symbols from a (learned) finite dictionary, which
puts an explicit limit on its capacity. While the authors’ goal is not represen-
tation disentanglement, they show experimentally that after training this model
on speech with conditioning on the speaker identity, it is possible to achieve
voice conversion simply by switching the speaker label. They conclude that the
model learns ‘a high-level abstract space’ capable of representing an utterance in
a speaker-invariant way – in other words, the autoencoder’s latent space becomes
disentangled from the speaker embedding space.

A VQ-VAE consists of an encoder, which maps the input x to a sequence Z
(z1, . . . , zL) of discrete code vectors from a codebook, and a decoder, which tries
to map Z back to x. Formally, given the input x, the encoder neural network
E first outputs a sequence E(x) = E ∈ RL×D of D-dimensional feature vectors,
which are then passed through a quantization (discretization) operation Q which
selects the nearest vector from a discrete embedding space (codebook) Q ∈ RK×D:

zi = Q(ei) = arg min
qj ,1≤j≤K

⃦⃦⃦
ei − qj

⃦⃦⃦
. (6.1)

The model is trained to minimize a reconstruction error Lae between the input
x and the output of the decoder D(Q(E(x))) = D(Z). The backpropagation of
its gradient through the discretization bottleneck Q to the encoder is enabled via
straight-through estimation, where the gradient with respect to Q(E(x)) received
from the decoder is instead assigned to E(x). To ensure the alignment of the
codebook Q and the encoder outputs E(x), two other terms appear in the VQ-
VAE objective – the codebook loss and the commitment loss:

Lcbk = 1
L

L∑︂
i=1

⃦⃦⃦
sg [zi]− ei

⃦⃦⃦2
, (6.2)

Lcmt = 1
L

L∑︂
i=1

⃦⃦⃦
zi − sg [ei]

⃦⃦⃦2
. (6.3)

Here sg[·] stands for the ‘stop-gradient’ operator, defined as identity in the forward
computation, but blocking the backpropagation of gradients. The two losses are
therefore identical in value, but the first only affects (i.e. has non-zero partial

2https://adasp.telecom-paris.fr/s/ss-vq-vae

94

https://adasp.telecom-paris.fr/s/ss-vq-vae

VQ-VAE

x
content
encoder c1, . . . , cL

y
style

encoder
s

decoder x̂

�

Figure 6.1 – A high-level depiction of the proposed method. We extract pairs
of segments from audio files and use them for self-supervised learning of a VQ-
VAE with an additional style encoder. The content representation c1, . . . , cL is
discrete, the style representation s is continuous. © 2021 IEEE.

derivatives w.r.t.) the codebook Q (via Q), while the second only affects the
encoder E. A weighting hyperparameter β is applied to Lcmt in the total loss:

L = Lae + Lcbk + βLcmt (6.4)

6.1.2 Self-supervised learning
Self-supervised learning is a family of techniques for learning representations of
unlabeled data. The basic principle is to expose the inner structure of the data –
by splitting each example into parts or by applying simple transformations to it –
and then exploit this structure to define an artificial task (sometimes called the
pretext task) to which supervised learning can be applied. Notable examples in-
clude predicting context (e.g. the neighboring words in a sentence [Mikolov et al.,
2013] or a missing patch in an image [Pathak et al., 2016]), the original orienta-
tion of a rotated image [Gidaris et al., 2018] or the ‘arrow of time’ in a (possibly
reversed) video [Wei et al., 2018]. The representation arising from (pre-)training
on the pretext task is then typically used as features for a downstream task.

In the present work, following this principle, we extract pairs of excerpts from
audio files and rely on them to learn a style representation as detailed in the
following section. Nevertheless, the method we propose is not a typical self-
supervised one, since we do not have a pre-training stage followed by fine-tuning
on a downstream task. Instead, we simply train our model on the pretext task
(a reconstruction task) and then directly use it to perform style transfer.

6.2 Method
Given the goal of mapping two inputs – the content input x and the style input y –
to an output, it is natural to define an encoder-decoder model with two encoders
(one for each input) and a single decoder. It remains to describe how to train
this model, and in particular, how to ensure the mutual disentanglement of the
style and content features. Our proposal, illustrated in Fig. 6.1, rests on two key
points:

(i) We use a discrete representation c1, . . . , cL for content and train the model
to reconstruct the content input, x; hence, the content encoder together

95

with the decoder form a VQ-VAE. This is motivated by the success of the
VQ-VAE on voice conversion as mentioned in Section 6.1.1.

(ii) The output of our style encoder is a single continuous-valued embedding
vector s. To ensure that the style encoder only encodes style (i.e. to make
it content-independent), we employ a simple self-supervised learning strat-
egy where we feed a different input y to the style encoder such that x
and y are different segments of the same audio recording (with some data
augmentation applied; see Section 6.2.1 for details).

These choices are complementary to each other, as we will now see.
Firstly, (i) necessarily means that the content encoder will drop some infor-

mation from the content representation c. Since this alone does not guarantee
that only content information will be preserved, (ii) is introduced to guide the
encoder to do so. Our reasoning is that providing a separate style representation,
not constrained by the discretization bottleneck, should make it unnecessary to
also encode style information in c.

Secondly, it can be expected that in a trained model, only information useful
for reconstructing x will influence the output. Hence, due to (ii) and provided
that x and y do not share any content information, we expect s to only encode
style. Also note that the discretization bottleneck in (i) is key for learning a
useful style representation s: without it, y may be completely ignored by the
model.

Once trained, the model is used for inference simply by feeding the content
input and the style input to the respective encoders.

6.2.1 Data
Our self-supervised learning strategy consists in training on pairs of segments x, y
where each such pair comes from a single recording. The underlying assumption
is that such x and y have the same style (timbre) but different content. We
combine data from two different sources, chosen to easily satisfy this assumption:

1. LMD. The ‘full’ version (LMD-full) of the Lakh MIDI Dataset3 [Raf-
fel, 2016], containing 178 k MIDI files (about a year’s worth of music in
a symbolic representation). We pick a random non-drum part from each
file, sample two 8-second segments of this part and render them as audio
using a sample-based synthesizer (FluidSynth), with the SoundFont picked
randomly out of 3 options (Fluid R3 GM, TimGM6mb, and Arachno Sound-
Font).4

2. RT. A set of audio tracks from PG Music;5 specifically, the 1526 Real-
Tracks included with Band-in-a-Box UltraPAK 2018. Each RealTrack (RT)
is a collection of studio recordings of a single instrument playing either an
accompaniment part or a solo in a single style. We extract pairs of short

3https://colinraffel.com/projects/lmd/
4See the MuseScore SoundFont list: https://musescore.org/en/handbook/soundfonts-

and-sfz-files
5https://www.pgmusic.com

96

https://colinraffel.com/projects/lmd/
https://musescore.org/en/handbook/soundfonts-and-sfz-files
https://musescore.org/en/handbook/soundfonts-and-sfz-files
https://www.pgmusic.com

segments totalling up to 20 min per RT, and clip each segment to 8 s after
performing data augmentation (see below).

We perform two kinds of data augmentation. Firstly, we transpose each seg-
ment from LMD up or down by a random interval (up to 5 semitones) prior to
synthesis; this ensures that the two segments in each pair have different content,
but does not affect their timbre.

Secondly, we apply a set of random timbre-altering transformations to increase
the diversity of the data:

• (LMD only.) Randomly changing the MIDI program (instrument) to a dif-
ferent one from the same broad family of instruments (keyboards & guitars;
basses; winds & strings; . . .) prior to synthesis.

• (RT only.) Audio resampling, resulting in joint time-stretching and trans-
position by up to ±4 semitones.

• 0–4 audio effects, drawn from reverb, overdrive, phaser, and tremolo, with
randomly sampled parameters.

An identical set of transformations is applied to both examples in each pair to
ensure that their timbres do not depart from each other.

After this procedure, we end up with 209 k training pairs (119 k from LMD6

and 90 k from RT).

6.2.2 Model and training details
We represent the audio signal as a log-scale magnitude STFT (short-time Fourier
transform) spectrogram with a hop size of 1/32 s and 1025 frequency bins. To
obtain the output audio, we invert the STFT using the algorithm of Griffin and
Lim [1983].

The model architecture is depicted in Fig. 6.2. The encoders treat the spec-
trogram as a 1D sequence with 1025 channels and process it using a series of
1D convolutional layers which serve to downsample it (i.e. reduce its temporal
resolution). The last layer of the style encoder is a GRU (gated recurrent unit;
Cho et al. [2014]) layer, whose final state s (a 1024-dimensional vector) is used as
the style representation. This vector s is then fed to the 1st and the 4th decoder
layer by concatenating it with the preceding layer’s outputs at each time step.

The decoder consists of 1D transposed convolutional layers which upsample
the feature sequence back to the original resolution. GRU layers are inserted for
better temporal modeling, particularly to combine the content and style repre-
sentations in a context-aware fashion.

We train the model using Adam [Kingma and Ba, 2015] to minimize the VQ-
VAE loss from Eq. (6.4), defining the reconstruction loss Lae as the mean squared
error between x and x̂. We train for 32 epochs, taking about 20 hours in total on
a Tesla V100 GPU.

6The final number is lower than the number of files in LMD due to corrupt MIDI files and
parts with insufficiently many notes being discarded.

97

x

conv [4, 2]2×

conv [1, 1]
+

VQ [K = 2048]

y

conv [4, 2]

conv [1, 1]
+

GRU

conv⊤ [1, 1]
final
state

GRU
+

conv⊤ [4, 2]

2×

conv⊤ [1, 1]

GRU
+

max(0, ·)

x̂

Content
encoder

Style
encoder

Decoder

Figure 6.2 – The proposed timbre transfer model architecture. All convolutions
are 1D, with the kernel size and stride shown. All layers have 1024 channels,
except for the last two (conv⊤ & GRU), which have 1025 (the number of frequency
bins). All layers except for the input layers and the VQ are preceded by batch
normalization and a Leaky ReLU activation [Maas et al., 2013]. conv⊤ stands for
transposed convolution. © 2021 IEEE.

98

6.3 Evaluation
As in Chapter 4, we wish to evaluate our method on two criteria: (a) content
preservation and (b) style fit. In timbre transfer, these should express (a) how
much of the pitch content of the content input is retained in the output, and (b)
how well the output fits the target timbre. To this end, we propose the follow-
ing objective metrics for measuring pitch and timbre dissimilarity, respectively,
between an output and a reference recording:

(a) Pitch: We extract pitch contours from both recordings using a multi-pitch
version of the MELODIA algorithm [Salamon and Gómez, 2012] imple-
mented in the Essentia library [Bogdanov et al., 2013]. We round the pitches
to the nearest semitone and express the mismatch between the two pitch
sets A, B at each time step as the Jaccard distance:

dJ(A, B) = 1− |A ∩B|
|A ∪B|

We report the mean value of this quantity over time.

(b) Timbre: Mel-frequency cepstral coefficients (MFCCs) 2–13 are generally
considered to be a good approximate timbre representation [Richard et al.,
2013]. Since they are computed on a per-frame basis, instead of comparing
them directly, we apply metric learning [Hoffer and Ailon, 2015] on top of
them to aggregate them over time and get a single dissimilarity score.
More precisely, we use a triplet network with a convolutional architecture,
which receives a sequence of MFCC vectors (only coefficients 2–13) and
outputs an embedding. The metric is then computed as the cosine distance
Dcos in this embedding space. The network is trained to minimize the triplet
hinge loss:

L
(︂
x, x+, x−

)︂
= max

{︂
0, Dcos

(︂
f(x), f(x+)

)︂
−Dcos

(︂
f(x), f(x−)

)︂
+ 0.1

}︂
,

where f is the function implemented by the network, x is an anchor, x+

is a positive example and x− is a negative example. The training dataset
consists of 7381 such triplets extracted from the Mixing Secrets data so that
x and x+ are from the same file and x− is from a different file. The aim is
to make the metric good at discriminating between different instruments,
but largely pitch-independent.

We compare our method to 2 trivial baselines and 2 baselines from the literature:

• cp-content: Copies the content input to the output.

• cp-style: Copies the style input to the output.

• U+L: The algorithm of Ulyanov and Lebedev [2016] (not specifically de-
signed for timbre transfer), consisting in optimizing the output spectrogram
for a content loss and a style loss.
We tune the ratio of the weights (λc, λs) of the two losses on a small synthetic
validation set to minimize the log-spectral distance (LSD) to the ground

99

truth (see Section 6.3.1 below). However, since the ratio found by this
procedure (λs = 10−2.1λc) is too small for the style input to have any
noticeable effect on the output, we also include results with a larger style
weight (λs = 10λc) chosen manually so that the effect of both inputs is
clearly audible. (In both cases, the weights are normalized: λs + λc = 1.)

• Musaicing: A freely available implementation7 of the musaicing algorithm
of Driedger et al. [2015]. Note that this implementation involves a pre-
processing step which automatically transposes (pitch-shifts) the style input
to all 12 keys and concatenates the results.

6.3.1 Artificial benchmark
First, we evaluate our method on a synthetic dataset generated from MIDI files.
Although such data is not completely realistic, it enables conducting a completely
objective benchmark by comparing the outputs to a synthetic ground truth.

We generated the data based on the Lakh MIDI Dataset (LMD) similarly as
in Section 6.2.1, but using a set of files held out from the training set, and with
no data augmentation. We rendered the music using the Timbres Of Heaven
SoundFont,4↑ not used in the training set.

We randomly drew 721 content-style input pairs and generated a correspond-
ing ground-truth target for each pair by synthesizing the content input using
the instrument (MIDI program) of the style input. To avoid pairs of extremely
different inputs (e.g. bass line + piccolo duet) for which the task would make
little sense, we sorted all instrument parts into 4 bins using two median splits:
on the average pitch and on the average number of voices (simultaneous notes);
we then formed each pair by drawing two examples from the same bin. To obtain
a balanced distribution of instruments, we limited the total number of examples
per MIDI program to 4.

Both the pitch and timbre distance are measured with respect to the ground-
truth target. Additionally, we measure an overall distance to the target as the
root-mean-square error computed on dB-scale mel spectrograms; this is known
as log-spectral distance or LSD.

6.3.2 ‘Real data’ benchmark
We created a more realistic test set based on the ‘Mixing Secrets’ audio library,8
containing over 400 multi-track recordings from various (mostly popular mu-
sic) genres. After filtering out multi-instrument, vocal and unpitched percussion
tracks, we extracted 690 content-style input pairs similarly as in Section 6.3.1.
(In this case, we used multi-pitch MELODIA to estimate the average pitch and
number of voices of each track, then used this information to perform the median
splits.)

As no ground truth is available in this dataset, we compute the pitch and
timbre metrics with respect to the content and style input, respectively.

7https://github.com/ctralie/LetItBee/
8https://www.cambridge-mt.com/ms/mtk/

100

https://github.com/ctralie/LetItBee/
https://www.cambridge-mt.com/ms/mtk/

Artificial Real
System LSDT TimbreT PitchT TimbreS PitchC

cp-content 14.62 0.3713 0.5365 0.4957
cp-style 20.36 0.2681 0.8729 0.9099
U+L, λc/λs = 10−2.1 (tuned) 14.50 0.3483 0.5441 0.4792 0.1315
U+L, λc/λs = 10 23.08 0.3645 0.6508 0.4579 0.6043
Musaicing 14.51 0.2933 0.6445 0.2319 0.6297
This work 12.16 0.2063 0.5500 0.2278 0.6197

Table 6.1 – Evaluation results. Distances marked S, C, and T are computed w.r.t.
the style input, the content input, and the synthetic target, respectively. Results
that are trivially 0 are omitted. U+L = Ulyanov and Lebedev [2016]; Musaicing
= Driedger et al. [2015]. © 2021 IEEE.

6.4 Experimental results
The results of both benchmarks are shown in Table 6.1. First, our system out-
performs all baselines on LSD and the timbre metric. The difference to the
cp-content baseline is negative in more than 75 % of examples on both of these
metrics and in both benchmarks. Hence, viewing our system as a timbre transfor-
mation applied to the content input, we can say that this transformation changes
the input in the correct ‘direction’ in more than 75 % of cases. We may also
notice that the result of cp-style on timbre is, somewhat counter-intuitively,
outperformed by our system. This may be a sign that the timbre metric is still
somewhat influenced by pitch.

Turning to the pitch distance metric, we note that its values seem rather high
(> 0.5 on a scale from 0 to 1). However, most of this error should be attributed
to the pitch tracking algorithm rather than to the systems themselves. This is
documented by the fact that the pitch distance of cp-content to the ground-
truth target is 0.54 instead of 0. Another useful value to look at is the result
of cp-style: as the style input is selected randomly, its pitch distance value
should be high, and is indeed close to 0.9. Using these two points of reference, we
observe that our system’s result is much closer to the former than to the latter
in both benchmarks, which is the desired outcome. Moreover, it outperforms the
musaicing baseline in both cases, albeit only slightly on real inputs.

6.5 Discussion
We will now attempt to explain the results from the previous section and comple-
ment them with our subjective observations. We encourage the reader to listen
to the provided audio examples, which should make the following more obvious.

6.5.1 Our system
Our subjective observations upon examining the outputs mostly match the ob-
jective evaluation. We find that, although the sound quality of our outputs is

101

not nearly perfect, their timbre typically does sound much closer to the style
input than to the content input. (Low synthesis quality and various artifacts are
somewhat expected, as they are a common occurrence with the Griffin-Lim algo-
rithm, as well as decoders based on transposed convolutions [Pons et al., 2021].
However, synthesis quality is not the main focus of this preliminary work.)

The pitch of the content input is generally well preserved in the output, yet
faster notes and polyphony seem to pose a problem. We believe this is caused by
a low capacity of the discrete content representation. Even though a codebook
size of 2048 seems more than sufficient in theory, we found that on both of our test
sets combined, only 81 of the codebook vectors are actually used in practice. This
means, for example, that at a tempo of 120 BPM, only 25.4 bits of information
can be encoded per beat. This ‘codebook collapse’ [Dieleman et al., 2018] is a
known issue with VQ-VAEs.

We also observe that our method works better on target instruments with a
temporally ‘stable’ sound, e.g. piano; this might also explain why our method
achieves better evaluation results on synthetic inputs (generated using samples)
than on real ones, which are less predictable. A likely culprit is our use of a
deterministic model, which cannot possibly capture the acoustic variability of in-
struments like saxophone or violin while being able to convert from an instrument
that lacks this variability. This could be remedied by replacing our decoder with
a probabilistic one which models a fully expressive conditional distribution, such
as WaveNet [van den Oord et al., 2016].

Finally, choosing a more suitable loss function, such as a perceptual loss
[Manocha et al., 2020] or an adversarial loss [Donahue et al., 2019b] could also
help improve the output quality.

6.5.2 Baselines

The musaicing baseline, which uses fragments from the style input to construct
the output, generally matches the target timbre very precisely, but is often less
musically correct than ours. For example, note onsets tend to lack clear attacks;
pitch errors and spurious notes occur, especially when the style input is non-
monophonic or fast.

As for U+L, we have already mentioned that tuning it automatically resulted
in a style weight which is too small (about 100 times lower than the content
weight). It is therefore unsurprising that the tuned variant performs close to
the cp-content baseline on all metrics (i.e. achieving excellent results on pitch,
but poor on timbre). In other words, it seems that for U+L, the best strategy
to minimize LSD – which captures both timbre and pitch – is to ignore timbre
altogether.

By increasing the style weight manually to achieve subjectively better timbre
transfer, we were able to improve the timbre metric on the real test set (though it
is still far behind our system) but all other metrics deteriorated. When listening to
the outputs, we notice that the algorithm is able to transfer fragments of the style
input to the output, but cannot transpose (pitch-shift) them to match the content
input. This is a sign that the style representation is heavily pitch-dependent, and
therefore not suitable for this task.

102

6.6 Conclusion
In this chapter, we have proposed a novel approach to one-shot timbre transfer,
based on an extension of the VQ-VAE, along with a simple self-supervised learning
strategy. Our results demonstrate that the method constitutes a viable approach
to the timbre transfer task and is able to outperform baselines from the literature.

The most important shortcoming of our method seem to be artifacts and in
general subjectively poor output audio quality. We believe that a more expressive
decoder such as a WaveNet, RNN or Transformer should allow improving the per-
formance especially on instruments with great temporal variability, and perhaps
enable extensions to more challenging style transfer tasks, such as arrangement
or composition style transfer. Alternatively, it may be possible to improve the
output quality by a more careful choice of loss function.

103

104

7. Conclusion
In this work, we studied music style transfer, a family of tasks where the goal is
to transfer the style of one musical piece or fragment onto another. Our main
contribution lies in proposing novel approaches and evaluation metrics for two
tasks which have received little attention in prior work: accompaniment style
transfer and audio timbre transfer. We have also contributed to the field of
symbolic music generation and to research on positional encodings in Transformer
models.

In the rest of this final chapter, we give a more detailed summary of our
contributions, followed by directions for future research.

7.1 Summary of contributions
Task definitions. We hope to have helped clear the terminological vagueness
around music style transfer by proposing the terms style conversion, style trans-
lation and one-shot style transfer. We also echo the call of Xia and Dai [2018] for
more precise definitions of different variants of these tasks and we have followed
it to the best of our ability in defining our accompaniment style conversion and
timbre transfer tasks.

Music style conversion methods. We have proposed two novel methods for
music style conversion: (1) an approach to accompaniment style transfer (and
as an intermediate step, accompaniment style translation), based on supervised
learning from a synthetic dataset; (2) an approach to audio timbre transfer, based
on an extension of the vector-quantized variational autoencoder (VQ-VAE), along
with a simple self-supervised learning strategy. Our results demonstrate the abil-
ity of our methods to transfer the style from the style input while preserving
the content of the content input. We also provide additional experiments and
analyses aimed at a better understanding of the proposed methods.

Music style conversion evaluation. For both (1) and (2) above, we have
designed objective metrics measuring content preservation and style fit, two es-
sential criteria for evaluating style conversion. To our knowledge, these metrics
constitute the first automatic evaluation protocol for music style transfer that
considers both of these criteria.

Symbolic music generation. As a general contribution to symbolic music
generation, we have proposed two novel, beat-aware encodings of timing for event-
based representations: beat-relative encoding and metrical positional encoding.
Our results suggest that both lead to improved generation quality.

Positional encodings for Transformers. We have proposed stochastic posi-
tional encoding (SPE), a novel positional encoding strategy for Transformer mod-
els capturing relative positions while being compatible with a recently proposed

105

family of efficient Transformers. In music generation experiments, we demon-
strated that SPE allows for better extrapolation beyond the training sequence
length than the commonly used absolute positional encoding (APE). We also
evaluated SPE on a non-music benchmark and found that it performs at least as
well as APE (bringing a performance boost on one task).

On the other hand, our ablation experiments suggest that in music genera-
tion, positional encodings in general (including SPE) bring little to no benefit in
the form that is commonly used, compared to not using any positional encoding
whatsoever. To further investigate the importance of positional encodings in mu-
sic generation, we have proposed the aforementioned metrical positional encoding
as a way to use (absolute) positional encodings to more robustly encode metrical
timing in music. Unlike the classical index-based APE, this novel timing-based
APE appears to be strongly beneficial for music generation.

Reproducibility. We have made publicly available the data pre-processing,
training and evaluation code, as well as complete hyperparameter settings for all
the published papers. We have also released the Groove2Groove MIDI Dataset,
generated for training our accompaniment style transfer system, making it to
our knowledge the first publicly available parallel (pairwise aligned) symbolic
music dataset. Another remarkable feature of this data are the exceptionally
fine-grained style labels.

7.2 Future directions
Symbolic music style transfer. While we have shown our supervised ap-
proach to one-shot accompaniment style transfer to be effective, we have also
identified some important limitations, namely:

• It is restricted to accompaniments, i.e. it is not designed to handle melodies
or music without a clear melody-accompaniment distinction.

• It does not account for interactions between different instruments.

• There is room for improvement in the one-shot generalization to novel styles.

An approach capable of overcoming these issues will need to be able to model
multi-track music without strong independence assumptions, perhaps using tech-
niques similar to those that we have explored in our work on music generation
using efficient Transformers. It will also need to be trained on more open-
domain data, calling for methods capable of learning from non-parallel (un-
aligned) datasets. One such method is our ‘self-supervised VQ-VAE’, which was
developed for audio timbre transfer, but may be equally applicable to accompa-
niment or arrangement style transfer. An interesting future direction is then to
tackle these tasks by combining a Transformer decoder with a vector-quantized
encoder and a variant of our self-supervised learning strategy.

Another possible improvement is to modify the approach to make it capable
of taking audio (as opposed to MIDI files) as input, rendering the system more
accessible to end users.

106

Positional encodings for Transformers. Our research on positional encod-
ings raises interesting questions that merit further investigation, namely:

• How important are strong positional encoding schemes for different tasks?
In which tasks are they critical?

• Can positional encoding do harm in sequence generation tasks?

• How do our results on timing-based positional encodings generalize to other
Transformer architectures used for music generation, more sophisticated
token-based representations or even tasks other than music generation?

Audio timbre transfer. The most important shortcomings of our timbre
transfer method seem to be artifacts and in general subjectively poor output
audio quality. This could be attributed to the use of a deterministic decoder,
the chosen loss function or the Griffin-Lim reconstruction algorithm. We believe
that a perceptual loss function or a more expressive model such as a WaveNet,
recurrent network (RNN) or generative adversarial network (GAN) should allow
improving the performance.

In practical applications, real-time processing will also be desirable, as it will
enable timbre transfer to be used during live performances.

Style transfer in other modalities. Due to the data-driven nature of our
‘self-supervised VQ-VAE’, we believe that it may not only be applicable to dif-
ferent kinds of music style transfer, but also serve as a general style transfer
framework for other modalities such as speech, images and text.

Cross-modal conditioning. Whereas we have focused on transferring style
from a given music example, follow-up work should explore music transforma-
tions controlled by non-musical inputs, as we have described in the introduction.
Examples include transforming music to convey a given emotion or mood or to fit
the narrative of a video, a gameplay situation, a real-life occasion or the musical
taste of a specific user or demographic group. The methods that we have devel-
oped in this work could serve as a basis for implementing such transformations.

107

108

Bibliography
H. F. Aarabi and G. Peeters. Music retiler: Using NMF2D source separation for audio

mosaicing. In Proceedings of the Audio Mostly 2018 on Sound in Immersion and
Emotion. ACM, 2018. doi: 10.1145/3243274.3243299. URL https://doi.org/10.
1145/3243274.3243299.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. In 3rd International Conference on Learning Representations
(ICLR 2015), 2015. URL http://arxiv.org/abs/1409.0473.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, page 41–48. Association for Computing Machinery, 2009. doi: 10.1145/1553374.
1553380. URL https://doi.org/10.1145/1553374.1553380.

A. Bitton, P. Esling, and T. Harada. Vector-quantized timbre representation. In In-
ternational Computer Music Conference, July 2021. URL https://hal.archives-
ouvertes.fr/hal-03208036.

D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera, O. Mayor, G. Roma, J. Sala-
mon, J. R. Zapata, and X. Serra. Essentia: An audio analysis library for music
information retrieval. In Proceedings of the 14th International Society for Music In-
formation Retrieval Conference. ISMIR, 2013. doi: 10.5281/zenodo.1415016. URL
https://doi.org/10.5281/zenodo.1415016.

J.-P. Briot, G. Hadjeres, and F.-D. Pachet. Deep Learning Techniques for Music Gen-
eration. Springer International Publishing, 2020. doi: 10.1007/978-3-319-70163-9.
URL https://doi.org/10.1007/978-3-319-70163-9.

P. F. Brown, J. Cocke, S. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty, R. L. Mer-
cer, and P. S. Roossin. A statistical approach to machine translation. Computational
Linguistics, 16:79–85, 1990.

Y. Broze and D. Shanahan. Diachronic changes in jazz harmony. Music Perception:
An Interdisciplinary Journal, 31(1):32–45, 2013. doi: 10.1525/mp.2013.31.1.32.

G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer. MIDI-VAE: Modeling dynamics
and instrumentation of music with applications to style transfer. In Proceedings of
the 19th International Society for Music Information Retrieval Conference. ISMIR,
2018a. doi: 10.5281/zenodo.1492525. URL https://doi.org/10.5281/zenodo.
1492525.

G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao. Symbolic music genre transfer
with CycleGAN. In IEEE 30th International Conference on Tools with Artificial
Intelligence. IEEE, 2018b. doi: 10.1109/ICTAI.2018.00123. URL https://doi.
org/10.1109/ICTAI.2018.00123.

M. Caccia, L. Caccia, W. Fedus, H. Larochelle, J. Pineau, and L. Charlin. Language
GANs falling short. In Critiquing and Correcting Trends in Machine Learning:
NeurIPS 2018 Workshop, 2018.

109

https://doi.org/10.1145/3243274.3243299
https://doi.org/10.1145/3243274.3243299
http://arxiv.org/abs/1409.0473
https://doi.org/10.1145/1553374.1553380
https://hal.archives-ouvertes.fr/hal-03208036
https://hal.archives-ouvertes.fr/hal-03208036
https://doi.org/10.5281/zenodo.1415016
https://doi.org/10.1007/978-3-319-70163-9
https://doi.org/10.5281/zenodo.1492525
https://doi.org/10.5281/zenodo.1492525
https://doi.org/10.1109/ICTAI.2018.00123
https://doi.org/10.1109/ICTAI.2018.00123

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN:
Interpretable representation learning by information maximizing generative adversar-
ial nets. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, 2016.

R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse
Transformers. CoRR, abs/1904.10509, 2019. URL http://arxiv.org/abs/1904.
10509.

K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using RNN encoder–decoder for statisti-
cal machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Association for Computational Linguis-
tics, 2014. doi: 10.3115/v1/D14-1179. URL https://www.aclweb.org/anthology/
D14-1179.

K. Choi, C. Hawthorne, I. Simon, M. Dinculescu, and J. Engel. Encoding musical style
with transformer autoencoders. In Proceedings of the 37th International Conference
on Machine Learning. PMLR, 2020. URL https://proceedings.mlr.press/v119/
choi20b.html.

K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlós,
P. Hawkins, J. Q. Davis, A. Mohiuddin, L. Kaiser, D. B. Belanger, L. J. Colwell,
and A. Weller. Rethinking attention with Performers. In 9th International Con-
ference on Learning Representations (ICLR 2021). OpenReview.net, 2021. URL
https://openreview.net/forum?id=Ua6zuk0WRH.

D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning
by exponential linear units (ELUs). In 4th International Conference on Learning
Representations (ICLR 2016), 2016. URL http://arxiv.org/abs/1511.07289.

K. Collins. An introduction to procedural music in video games. Contemporary Music
Review, 28(1):5–15, 2009. doi: 10.1080/07494460802663983. URL https://doi.
org/10.1080/07494460802663983.

Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Pro-
ceedings of the 57th Conference of the Association for Computational Linguistics
(ACL 2019). Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-
1285. URL https://doi.org/10.18653/v1/p19-1285.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional Transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT 2019). Association for
Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL https://doi.
org/10.18653/v1/n19-1423.

S. Dieleman, A. van den Oord, and K. Simonyan. The challenge of realistic music gen-
eration: modelling raw audio at scale. In Advances in Neural Information Process-
ing Systems, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
3e441eec3456b703a4fe741005f3981f-Abstract.html.

110

http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://proceedings.mlr.press/v119/choi20b.html
https://proceedings.mlr.press/v119/choi20b.html
https://openreview.net/forum?id=Ua6zuk0WRH
http://arxiv.org/abs/1511.07289
https://doi.org/10.1080/07494460802663983
https://doi.org/10.1080/07494460802663983
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2018/hash/3e441eec3456b703a4fe741005f3981f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3e441eec3456b703a4fe741005f3981f-Abstract.html

S. Dixon, W. Goebl, and G. Widmer. The “air worm”: an interface for real-time
manipulation of expressive music performance. In Proceedings of the 2005 Interna-
tional Computer Music Conference (ICMC 2005). Michigan Publishing, 2005. URL
http://hdl.handle.net/2027/spo.bbp2372.2005.048.

C. Donahue, H. H. Mao, Y. E. Li, G. Cottrell, and J. McAuley. LakhNES: Improving
multi-instrumental music generation with cross-domain pre-training. In Proceedings
of the 20th International Society for Music Information Retrieval Conference, pages
685–692. ISMIR, 2019a. doi: 10.5281/zenodo.3527902. URL https://doi.org/10.
5281/zenodo.3527902.

C. Donahue, J. J. McAuley, and M. S. Puckette. Adversarial audio synthesis. In 7th In-
ternational Conference on Learning Representations (ICLR 2019). OpenReview.net,
2019b. URL https://openreview.net/forum?id=ByMVTsR5KQ.

J. Driedger, T. Prätzlich, and M. Müller. Let it Bee – towards NMF-inspired audio
mosaicing. In Proceedings of the 16th International Society for Music Information
Retrieval Conference. ISMIR, Oct. 2015. doi: 10.5281/zenodo.1415698. URL https:
//doi.org/10.5281/zenodo.1415698.

K. Ebcioğlu. An expert system for harmonizing chorales in the style of J. S. Bach. The
Journal of Logic Programming, 8(1):145–185, 1990. ISSN 0743-1066. doi: https://
doi.org/10.1016/0743-1066(90)90055-A. URL https://www.sciencedirect.com/
science/article/pii/074310669090055A.

D. Eck and J. Schmidhuber. Finding temporal structure in music: blues improvisation
with LSTM recurrent networks. In Proceedings of the 12th IEEE Workshop on Neural
Networks for Signal Processing (NNSP 2002). IEEE, 2002. doi: 10.1109/NNSP.2002.
1030094. URL https://doi.org/10.1109/NNSP.2002.1030094.

A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 2001). ACM, 2001. URL https://dl.acm.org/citation.
cfm?id=383296.

J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Simonyan.
Neural audio synthesis of musical notes with WaveNet autoencoders. In Proceed-
ings of the 34th International Conference on Machine Learning. PMLR, 2017. URL
https://proceedings.mlr.press/v70/engel17a.html.

J. H. Engel, L. Hantrakul, C. Gu, and A. Roberts. DDSP: Differentiable digital
signal processing. In 8th International Conference on Learning Representations,
(ICLR 2020). OpenReview.net, 2020. URL https://openreview.net/forum?id=
B1x1ma4tDr.

A. Fan, M. Lewis, and Y. Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, 2018. doi: 10.18653/
v1/P18-1082. URL https://www.aclweb.org/anthology/P18-1082.

E. Frid, C. Gomes, and Z. Jin. Music creation by example. In CHI ’20: CHI Confer-
ence on Human Factors in Computing Systems. ACM, 2020. doi: 10.1145/3313831.
3376514. URL https://doi.org/10.1145/3313831.3376514.

111

http://hdl.handle.net/2027/spo.bbp2372.2005.048
https://doi.org/10.5281/zenodo.3527902
https://doi.org/10.5281/zenodo.3527902
https://openreview.net/forum?id=ByMVTsR5KQ
https://doi.org/10.5281/zenodo.1415698
https://doi.org/10.5281/zenodo.1415698
https://www.sciencedirect.com/science/article/pii/074310669090055A
https://www.sciencedirect.com/science/article/pii/074310669090055A
https://doi.org/10.1109/NNSP.2002.1030094
https://dl.acm.org/citation.cfm?id=383296
https://dl.acm.org/citation.cfm?id=383296
https://proceedings.mlr.press/v70/engel17a.html
https://openreview.net/forum?id=B1x1ma4tDr
https://openreview.net/forum?id=B1x1ma4tDr
https://www.aclweb.org/anthology/P18-1082
https://doi.org/10.1145/3313831.3376514

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural
networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2016). IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.265. URL
https://doi.org/10.1109/CVPR.2016.265.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional se-
quence to sequence learning. In Proceedings of the 34th International Conference
on Machine Learning. PMLR, 2017. URL http://proceedings.mlr.press/v70/
gehring17a.html.

M. G. Genton and W. Kleiber. Cross-covariance functions for multivariate geostatistics.
Statistical Science, pages 147–163, 2015.

S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by pre-
dicting image rotations. In 6th International Conference on Learning Representations
(ICLR 2018). OpenReview.net, 2018. URL https://openreview.net/forum?id=
S1v4N2l0-.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, 2014. URL https://proceedings.neurips.cc/paper/
2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

M. Grachten, S. Lattner, and E. Deruty. BassNet: A variational gated autoencoder for
conditional generation of bass guitar tracks with learned interactive control. Applied
Sciences, 10(18), 2020. ISSN 2076-3417. doi: 10.3390/app10186627. URL https:
//www.mdpi.com/2076-3417/10/18/6627.

D. W. Griffin and J. S. Lim. Signal estimation from modified short-time Fourier
transform. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP ’83). IEEE, 1983. doi: 10.1109/ICASSP.1983.1172092. URL
https://doi.org/10.1109/ICASSP.1983.1172092.

E. Grinstein, N. Q. K. Duong, A. Ozerov, and P. Pérez. Audio style transfer. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2018). IEEE, 2018. doi: 10.1109/ICASSP.2018.8461711. URL https:
//doi.org/10.1109/ICASSP.2018.8461711.

G. Hadjeres, J. Sakellariou, and F. Pachet. Style imitation and chord invention in
polyphonic music with exponential families. CoRR, abs/1609.05152, 2016. URL
http://arxiv.org/abs/1609.05152.

G. Hadjeres, F. Pachet, and F. Nielsen. DeepBach: A steerable model for Bach chorales
generation. In Proceedings of the 34th International Conference on Machine Learn-
ing. PMLR, 2017. URL https://proceedings.mlr.press/v70/hadjeres17a.
html.

S. H. Hakimi, N. Bhonker, and R. El-Yaniv. BebopNet: Deep neural models for person-
alized jazz improvisations. In Proceedings of the 21st International Society for Music
Information Retrieval Conference. ISMIR, 2020. doi: 10.5281/zenodo.4245562. URL
https://doi.org/10.5281/zenodo.4245562.

T. B. Hashimoto, H. Zhang, and P. Liang. Unifying human and statistical evalua-
tion for natural language generation. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2019), 2019.

112

https://doi.org/10.1109/CVPR.2016.265
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://www.mdpi.com/2076-3417/10/18/6627
https://www.mdpi.com/2076-3417/10/18/6627
https://doi.org/10.1109/ICASSP.1983.1172092
https://doi.org/10.1109/ICASSP.2018.8461711
https://doi.org/10.1109/ICASSP.2018.8461711
http://arxiv.org/abs/1609.05152
https://proceedings.mlr.press/v70/hadjeres17a.html
https://proceedings.mlr.press/v70/hadjeres17a.html
https://doi.org/10.5281/zenodo.4245562

P. He, X. Liu, J. Gao, and W. Chen. DeBERTa: Decoding-enhanced BERT with
disentangled attention. In 9th International Conference on Learning Representations
(ICLR 2021). OpenReview.net, 2021. URL https://openreview.net/forum?id=
XPZIaotutsD.

D. Herremans and E. Chew. MorpheuS: Generating structured music with constrained
patterns and tension. IEEE Transactions on Affective Computing, 10(4):510–523,
2017.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner. beta-VAE: Learning basic visual concepts with a constrained vari-
ational framework. In 5th International Conference on Learning Representations
(ICLR 2017). OpenReview.net, 2017. URL https://openreview.net/forum?id=
Sy2fzU9gl.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

E. Hoffer and N. Ailon. Deep metric learning using triplet network. In International
Workshop on Similarity-Based Pattern Recognition. Springer, 2015.

A. Holtzman, J. Buys, M. Forbes, A. Bosselut, D. Golub, and Y. Choi. Learning to
write with cooperative discriminators. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2018. doi: 10.18653/v1/P18-1152. URL https:
//www.aclweb.org/anthology/P18-1152.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural
text degeneration. In 8th International Conference on Learning Representations
(ICLR 2020). OpenReview.net, 2020. URL https://openreview.net/forum?id=
rygGQyrFvH.

C. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon, C. Hawthorne, N. Shazeer, A. M.
Dai, M. D. Hoffman, M. Dinculescu, and D. Eck. Music transformer: Generating
music with long-term structure. In 7th International Conference on Learning Repre-
sentations (ICLR 2019). OpenReview.net, 2019a. URL https://openreview.net/
forum?id=rJe4ShAcF7.

C.-Z. A. Huang, T. Cooijmans, A. Roberts, A. C. Courville, and D. Eck. Counter-
point by convolution. In Proceedings of the 18th International Society for Music
Information Retrieval Conference. ISMIR, 2017. doi: 10.5281/zenodo.1416370. URL
https://doi.org/10.5281/zenodo.1416370.

C.-Z. A. Huang, H. V. Koops, E. Newton-Rex, M. Dinculescu, and C. Cai. AI song
contest: Human-AI co-creation in songwriting. In Proceedings of the 21st Inter-
national Society for Music Information Retrieval Conference. ISMIR, 2020. doi:
10.5281/zenodo.4245530. URL https://doi.org/10.5281/zenodo.4245530.

S. Huang, Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse. TimbreTron: A
WaveNet(CycleGAN(CQT(audio))) pipeline for musical timbre transfer. In 7th In-
ternational Conference on Learning Representations (ICLR 2019). OpenReview.net,
2019b. URL https://openreview.net/forum?id=S1lvm305YQ.

113

https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://www.aclweb.org/anthology/P18-1152
https://www.aclweb.org/anthology/P18-1152
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=rJe4ShAcF7
https://doi.org/10.5281/zenodo.1416370
https://doi.org/10.5281/zenodo.4245530
https://openreview.net/forum?id=S1lvm305YQ

Y.-S. Huang and Y.-H. Yang. Pop music Transformer: Beat-based modeling and gener-
ation of expressive pop piano compositions. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia. Association for Computing Machinery, 2020. doi:
10.1145/3394171.3413671. URL https://doi.org/10.1145/3394171.3413671.

Y. Hung, I. Chiang, Y. Chen, and Y. Yang. Musical composition style transfer via
disentangled timbre representations. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2019). ijcai.org, 2019. doi:
10.24963/ijcai.2019/652. URL https://doi.org/10.24963/ijcai.2019/652.

K. Irie, A. Zeyer, R. Schlüter, and H. Ney. Language modeling with deep Transformers.
In 20th Annual Conference of the International Speech Communication Association
(INTERSPEECH 2019). ISCA, 2019. doi: 10.21437/Interspeech.2019-2225. URL
https://doi.org/10.21437/Interspeech.2019-2225.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional
adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, (CVPR 2017). IEEE Computer Society, 2017. doi: 10.1109/CVPR.
2017.632. URL https://doi.org/10.1109/CVPR.2017.632.

J. Jiang, G. G. Xia, D. B. Carlton, C. N. Anderson, and R. H. Miyakawa. Transformer
VAE: A hierarchical model for structure-aware and interpretable music represen-
tation learning. In 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2020), 2020. doi: 10.1109/ICASSP40776.2020.9054554.

Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song. Neural style transfer: A review.
IEEE Transactions on Visualization and Computer Graphics, 2020. doi: 10.1109/
TVCG.2019.2921336. URL https://doi.org/10.1109/TVCG.2019.2921336.

M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Viégas,
M. Wattenberg, G. Corrado, et al. Google’s multilingual neural machine transla-
tion system: Enabling zero-shot translation. Transactions of the Association for
Computational Linguistics, 5:339–351, 2017.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for gen-
erative adversarial networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2019). Computer Vision Foundation / IEEE,
2019. doi: 10.1109/CVPR.2019.00453. URL http://openaccess.thecvf.com/
content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_
for_Generative_Adversarial_Networks_CVPR_2019_paper.html.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are RNNs: Fast
autoregressive transformers with linear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning. PMLR, 2020. URL https://proceedings.
mlr.press/v119/katharopoulos20a.html.

L. Kawai, P. Esling, and T. Harada. Attributes-aware deep music transformation.
In Proceedings of the 21st International Society for Music Information Retrieval
Conference. ISMIR, 2020. doi: 10.5281/zenodo.4245520. URL https://doi.org/
10.5281/zenodo.4245520.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations (ICLR 2015), 2015. URL
http://arxiv.org/abs/1412.6980.

114

https://doi.org/10.1145/3394171.3413671
https://doi.org/10.24963/ijcai.2019/652
https://doi.org/10.21437/Interspeech.2019-2225
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/TVCG.2019.2921336
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://doi.org/10.5281/zenodo.4245520
https://doi.org/10.5281/zenodo.4245520
http://arxiv.org/abs/1412.6980

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In 2nd International
Conference on Learning Representations (ICLR 2014), 2014. URL http://arxiv.
org/abs/1312.6114.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling.
Improved variational inference with inverse autoregressive flow. In Proceedings of
the 30th International Conference on Neural Information Processing Systems. Curran
Associates Inc., 2016.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

D. Kucerovsky, K. Mousavand, and A. Sarraf. On some properties of Toeplitz matrices.
Cogent Mathematics, 3(1), 2016. doi: 10.1080/23311835.2016.1154705. URL http:
//doi.org/10.1080/23311835.2016.1154705.

G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, and M. Ranzato. Fader
networks: Manipulating images by sliding attributes. In Advances in Neural Infor-
mation Processing Systems, 2017. URL https://proceedings.neurips.cc/paper/
2017/hash/3fd60983292458bf7dee75f12d5e9e05-Abstract.html.

G. Lample, A. Conneau, L. Denoyer, and M. Ranzato. Unsupervised machine trans-
lation using monolingual corpora only. In 6th International Conference on Learning
Representations (ICLR 2018). OpenReview.net, 2018. URL https://openreview.
net/forum?id=rkYTTf-AZ.

S. Lattner and M. Grachten. High-level control of drum track generation using learned
patterns of rhythmic interaction. In 2019 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2019.

K. Lee and M. Slaney. Acoustic chord transcription and key extraction from audio
using key-dependent HMMs trained on synthesized audio. IEEE Transactions on
Audio, Speech, and Language Processing, 16:291–301, 2008.

F.-F. Li, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28:594–611, 2006.

W. T. Lu and L. Su. Transferring the style of homophonic music using recurrent neural
networks and autoregressive models. In Proceedings of the 19th International Society
for Music Information Retrieval Conference. ISMIR, 2018. doi: 10.5281/zenodo.
1492523. URL https://doi.org/10.5281/zenodo.1492523.

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2015. doi:
10.18653/v1/D15-1166. URL https://www.aclweb.org/anthology/D15-1166.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learn-
ing word vectors for sentiment analysis. In The 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies, Proceed-
ings of the Conference. The Association for Computer Linguistics, 2011. URL
https://aclanthology.org/P11-1015/.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models, 2013. URL https://ai.stanford.edu/~amaas/papers/
relu_hybrid_icml2013_final.pdf.

115

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://doi.org/10.1080/23311835.2016.1154705
http://doi.org/10.1080/23311835.2016.1154705
https://proceedings.neurips.cc/paper/2017/hash/3fd60983292458bf7dee75f12d5e9e05-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3fd60983292458bf7dee75f12d5e9e05-Abstract.html
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
https://doi.org/10.5281/zenodo.1492523
https://www.aclweb.org/anthology/D15-1166
https://aclanthology.org/P11-1015/
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

I. Malik and C. H. Ek. Neural translation of musical style. CoRR, abs/1708.03535,
2017. URL http://arxiv.org/abs/1708.03535.

P. Manocha, A. Finkelstein, R. Zhang, N. J. Bryan, G. J. Mysore, and Z. Jin. A
differentiable perceptual audio metric learned from just noticeable differences. In
Proceedings of the Annual Conference of the International Speech Communication
Association (INTERSPEECH), 2020.

G. Matheron. Principles of geostatistics. Economic geology, 58(8):1246–1266, 1963.

M. Mauch and S. Dixon. PYIN: a fundamental frequency estimator using probabilistic
threshold distributions. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2014). IEEE, 2014. doi: 10.1109/ICASSP.2014.6853678.
URL https://doi.org/10.1109/ICASSP.2014.6853678.

C. McKay. Automatic genre classification of MIDI recordings. M.A. Thesis, McGill
University, 2004.

C. McKay and I. Fujinaga. The Bodhidharma system and the results of the MIREX
2005 symbolic genre classification contest, 2005. URL http://jmir.sourceforge.
net/publications/ISMIR_2005_MIREX_Symbolic.pdf.

MIDI Manufacturers Association. General MIDI system level 1, 1991. URL https:
//www.midi.org/specifications-old/item/general-midi.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. In 1st International Conference on Learning Representations
(ICLR 2013), 2013. URL http://arxiv.org/abs/1301.3781.

N. Mor, L. Wolf, A. Polyak, and Y. Taigman. A universal music translation network. In
7th International Conference on Learning Representations (ICLR 2019), 2019. URL
https://openreview.net/forum?id=HJGkisCcKm.

A. Muhamed, L. Li, X. Shi, S. Yaddanapudi, W. Chi, D. Jackson, R. Suresh,
Z. C. Lipton, and A. J. Smola. Symbolic music generation with Transformer-
GANs. Proceedings of the AAAI Conference on Artificial Intelligence, 2021. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16117.

N. Nangia and S. R. Bowman. ListOps: A diagnostic dataset for latent tree learning. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL-HLT 2018). Association for Computational
Linguistics, 2018. doi: 10.18653/v1/n18-4013. URL https://doi.org/10.18653/
v1/n18-4013.

S. Nercessian. Zero-shot singing voice conversion. In Proceedings of the 21st Inter-
national Society for Music Information Retrieval Conference. ISMIR, 2020. doi:
10.5281/zenodo.4245370. URL https://doi.org/10.5281/zenodo.4245370.

J. Nistal, S. Lattner, and G. Richard. DarkGAN: Exploiting knowledge distillation
for comprehensible audio synthesis with gans. CoRR, abs/2108.01216, 2021. URL
https://arxiv.org/abs/2108.01216.

116

http://arxiv.org/abs/1708.03535
https://doi.org/10.1109/ICASSP.2014.6853678
http://jmir.sourceforge.net/publications/ISMIR_2005_MIREX_Symbolic.pdf
http://jmir.sourceforge.net/publications/ISMIR_2005_MIREX_Symbolic.pdf
https://www.midi.org/specifications-old/item/general-midi
https://www.midi.org/specifications-old/item/general-midi
http://arxiv.org/abs/1301.3781
https://openreview.net/forum?id=HJGkisCcKm
https://ojs.aaai.org/index.php/AAAI/article/view/16117
https://doi.org/10.18653/v1/n18-4013
https://doi.org/10.18653/v1/n18-4013
https://doi.org/10.5281/zenodo.4245370
https://arxiv.org/abs/2108.01216

D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders:
Feature learning by inpainting. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2016). IEEE Computer Society, 2016. doi: 10.1109/
CVPR.2016.278. URL https://doi.org/10.1109/CVPR.2016.278.

C. Payne. MuseNet. OpenAI, 2019. URL https://openai.com/blog/musenet/.

G. Peeters and G. Richard. Deep Learning for Audio and Music. In Multi-faceted Deep
Learning: Models and Data. Springer, 2021.

J. Pons, S. Pascual, G. Cengarle, and J. Serrà. Upsampling artifacts in neural au-
dio synthesis. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2021). IEEE, 2021. doi: 10.1109/ICASSP39728.2021.9414913.
URL https://doi.org/10.1109/ICASSP39728.2021.9414913.

L. Prétet, G. Richard, and G. Peeters. Cross-modal music-video recommendation: A
study of design choices. In Special Session of the International Joint Conference on
Neural Networks (IJCNN 2021), 2021. URL https://hal.telecom-paris.fr/hal-
03208323.

D. R. Radev, P. Muthukrishnan, V. Qazvinian, and A. Abu-Jbara. The ACL anthology
network corpus. Language Resources and Evaluation, 47(4):919–944, Jan. 2013. doi:
10.1007/s10579-012-9211-2. URL https://doi.org/10.1007/s10579-012-9211-
2.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving
language understanding by generative pre-training, 2018. URL https:
//cdn.openai.com/research-covers/language-unsupervised/language_
understanding_paper.pdf.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
models are unsupervised multitask learners, 2019. URL https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf.

C. Raffel. Learning-based methods for comparing sequences, with applications to audio-
to-MIDI alignment and matching. PhD thesis, Columbia University, 2016.

D. Rezende, S. Mohamed, I. Danihelka, K. Gregor, and D. Wierstra. One-shot gen-
eralization in deep generative models. In Proceedings of The 33rd International
Conference on Machine Learning. PMLR, 2016. URL https://proceedings.mlr.
press/v48/rezende16.html.

G. Richard, S. Sundaram, and S. Narayanan. An overview on perceptually motivated
audio indexing and classification. Proceedings of the IEEE, 101(9):1939–1954, 2013.
doi: 10.1109/JPROC.2013.2251591.

A. Roberts. YACHT’s new album is powered by ML + artists. Magenta Blog, 2019.
URL https://magenta.tensorflow.org/chain-tripping.

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. A hierarchical latent
vector model for learning long-term structure in music. In Proceedings of the
35th International Conference on Machine Learning. PMLR, 2018. URL https:
//proceedings.mlr.press/v80/roberts18a.html.

117

https://doi.org/10.1109/CVPR.2016.278
https://openai.com/blog/musenet/
https://doi.org/10.1109/ICASSP39728.2021.9414913
https://hal.telecom-paris.fr/hal-03208323
https://hal.telecom-paris.fr/hal-03208323
https://doi.org/10.1007/s10579-012-9211-2
https://doi.org/10.1007/s10579-012-9211-2
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://proceedings.mlr.press/v48/rezende16.html
https://proceedings.mlr.press/v48/rezende16.html
https://magenta.tensorflow.org/chain-tripping
https://proceedings.mlr.press/v80/roberts18a.html
https://proceedings.mlr.press/v80/roberts18a.html

A. Roberts, J. Engel, Y. Mann, J. Gillick, C. Kayacik, S. Nørly, M. Dinculescu,
C. Radebaugh, C. Hawthorne, and D. Eck. Magenta Studio: Augmenting creativity
with deep learning in Ableton Live. In Proceedings of the 6th International Work-
shop on Musical Metacreation. MUME, 2019. doi: 10.5281/zenodo.4285266. URL
https://doi.org/10.5281/zenodo.4285266.

G. Ros, L. Sellart, J. Materzynska, D. Vázquez, and A. M. López. The SYNTHIA
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2016). IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.352. URL
https://doi.org/10.1109/CVPR.2016.352.

J. Rosendahl, V. A. K. Tran, W. Wang, and H. Ney. Analysis of positional encodings
for neural machine translation. In 16th International Workshop on Spoken Language
Translation (IWSLT), 2019. doi: 10.5281/zenodo.3525024. URL https://doi.org/
10.5281/zenodo.3525024.

A. Roy, M. Saffar, A. Vaswani, and D. Grangier. Efficient content-based sparse at-
tention with routing Transformers. Transactions of the Association for Compu-
tational Linguistics, 9:53–68, 2021. doi: 10.1162/tacl_a_00353. URL https:
//aclanthology.org/2021.tacl-1.4.

J. Sakellariou, F. Tria, V. Loreto, and F. Pachet. Maximum entropy models capture
melodic styles. Scientific Reports, 2017.

J. Salamon and E. Gómez. Melody extraction from polyphonic music signals using
pitch contour characteristics. IEEE Transactions on Speech and Audio Processing,
20(6):1759–1770, 2012. doi: 10.1109/TASL.2012.2188515. URL https://doi.org/
10.1109/TASL.2012.2188515.

J. Salamon, R. M. Bittner, J. Bonada, J. J. Bosch, E. Gómez, and J. P. Bello. An
analysis/synthesis framework for automatic F0 annotation of multitrack datasets.
In Proceedings of the 18th International Society for Music Information Retrieval
Conference. ISMIR, 2017. doi: 10.5281/zenodo.1415588. URL https://doi.org/
10.5281/zenodo.1415588.

M. N. Schmidt and M. Mørup. Nonnegative matrix factor 2-D deconvolution for blind
single channel source separation. In Independent Component Analysis and Blind
Signal Separation, 6th International Conference (ICA). Springer, 2006. doi: 10.
1007/11679363_87. URL https://doi.org/10.1007/11679363_87.

M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE trans-
actions on Signal Processing, 45(11):2673–2681, 1997.

P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-
HLT). Association for Computational Linguistics, 2018. doi: 10.18653/v1/n18-2074.
URL https://doi.org/10.18653/v1/n18-2074.

Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li. Efficient attention: Attention with
linear complexities. In IEEE Winter Conference on Applications of Computer Vision
(WACV 2021). IEEE, 2021. doi: 10.1109/WACV48630.2021.00357. URL https:
//doi.org/10.1109/WACV48630.2021.00357.

118

https://doi.org/10.5281/zenodo.4285266
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.5281/zenodo.3525024
https://doi.org/10.5281/zenodo.3525024
https://aclanthology.org/2021.tacl-1.4
https://aclanthology.org/2021.tacl-1.4
https://doi.org/10.1109/TASL.2012.2188515
https://doi.org/10.1109/TASL.2012.2188515
https://doi.org/10.5281/zenodo.1415588
https://doi.org/10.5281/zenodo.1415588
https://doi.org/10.1007/11679363_87
https://doi.org/10.18653/v1/n18-2074
https://doi.org/10.1109/WACV48630.2021.00357
https://doi.org/10.1109/WACV48630.2021.00357

I. Simon and S. Oore. Performance RNN: Generating music with expressive timing
and dynamics. Magenta Blog, 2017. URL https://magenta.tensorflow.org/
performance-rnn.

I. Simon, D. Morris, and S. Basu. MySong: automatic accompaniment generation
for vocal melodies. In Proceedings of the 2008 Conference on Human Factors in
Computing Systems (CHI 2008). ACM, 2008. doi: 10.1145/1357054.1357169. URL
https://doi.org/10.1145/1357054.1357169.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations (ICLR
2015), 2015. URL http://arxiv.org/abs/1409.1556.

B. L. Sturm, J. F. Santos, O. Ben-Tal, and I. Korshunova. Music transcription modelling
and composition using deep learning. CoRR, abs/1604.08723, 2016. URL http:
//arxiv.org/abs/1604.08723.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learn-
ing with neural networks. In Advances in Neural Information Process-
ing Systems, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder,
and D. Metzler. Long Range Arena: A benchmark for efficient Transformers. In
9th International Conference on Learning Representations (ICLR 2021). OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=qVyeW-grC2k.

J. Thickstun, Z. Harchaoui, D. Foster, and S. Kakade. Coupled recurrent models
for polyphonic music composition. In Proceedings of the 20th International Society
for Music Information Retrieval Conference. ISMIR, 2019. doi: 10.5281/zenodo.
3527806. URL https://doi.org/10.5281/zenodo.3527806.

C. J. Tralie. Cover song synthesis by analogy. In Proceedings of the 19th International
Society for Music Information Retrieval Conference. ISMIR, 2018. doi: 10.5281/
zenodo.1492381. URL https://doi.org/10.5281/zenodo.1492381.

Y. H. Tsai, S. Bai, M. Yamada, L. Morency, and R. Salakhutdinov. Transformer dis-
section: An unified understanding for transformer’s attention via the lens of kernel.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP 2019). Association for Computational Linguistics, 2019. doi:
10.18653/v1/D19-1443. URL https://doi.org/10.18653/v1/D19-1443.

D. Ulyanov and V. Lebedev. Audio texture synthesis and style transfer,
2016. URL https://dmitryulyanov.github.io/audio-texture-synthesis-and-
style-transfer/.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu. WaveNet: A generative
model for raw audio. In The 9th ISCA Speech Synthesis Workshop (SSW). ISCA,
2016. URL http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_
DS-4_van_den_Oord.html.

119

https://magenta.tensorflow.org/performance-rnn
https://magenta.tensorflow.org/performance-rnn
https://doi.org/10.1145/1357054.1357169
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1604.08723
http://arxiv.org/abs/1604.08723
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.5281/zenodo.3527806
https://doi.org/10.5281/zenodo.1492381
https://doi.org/10.18653/v1/D19-1443
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete
representation learning. In Advances in Neural Information Processing
Systems, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html.

G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and C. Schmid.
Learning from synthetic humans. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017). IEEE Computer Society, 2017. doi: 10.
1109/CVPR.2017.492. URL https://doi.org/10.1109/CVPR.2017.492.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

M. Vetterli, J. Kovačević, and V. K. Goyal. Foundations of signal processing. Cambridge
University Press, 2014.

M. Vořechovský. Simulation of simply cross correlated random fields by series expansion
methods. Structural safety, 30(4):337–363, 2008.

B. Wang, L. Shang, C. Lioma, X. Jiang, H. Yang, Q. Liu, and J. G. Simonsen. On
position embeddings in BERT. In 9th International Conference on Learning Repre-
sentations (ICLR 2021). OpenReview.net, 2021. URL https://openreview.net/
forum?id=onxoVA9FxMw.

S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with
linear complexity. CoRR, abs/2006.04768, 2020a. URL https://arxiv.org/abs/
2006.04768.

Z. Wang, D. Wang, Y. Zhang, and G. Xia. Learning interpretable representation for
controllable polyphonic music generation. In Proceedings of the 21st International
Society for Music Information Retrieval Conference. ISMIR, 2020b. doi: 10.5281/
zenodo.4245518. URL https://doi.org/10.5281/zenodo.4245518.

D. Wei, J. J. Lim, A. Zisserman, and W. T. Freeman. Learning and using the ar-
row of time. In 2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR 2018). Computer Vision Foundation / IEEE Computer Society, 2018.
doi: 10.1109/CVPR.2018.00840. URL http://openaccess.thecvf.com/content_
cvpr_2018/html/Wei_Learning_and_Using_CVPR_2018_paper.html.

G. Widmer, S. Flossmann, and M. Grachten. YQX plays Chopin. AI Magazine, 30:
35–48, 2009.

C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning, vol-
ume 2. MIT press Cambridge, MA, 2006.

Q. Wu, Z. Lan, J. Gu, and Z. Yu. Memformer: The memory-augmented Transformer.
CoRR, abs/2010.06891, 2020. URL https://arxiv.org/abs/2010.06891.

S. Wu and Y. Yang. MuseMorphose: Full-song and fine-grained music style transfer
with just one Transformer VAE. CoRR, abs/2105.04090, 2021. URL https://
arxiv.org/abs/2105.04090.

120

https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://doi.org/10.1109/CVPR.2017.492
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=onxoVA9FxMw
https://openreview.net/forum?id=onxoVA9FxMw
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://doi.org/10.5281/zenodo.4245518
http://openaccess.thecvf.com/content_cvpr_2018/html/Wei_Learning_and_Using_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wei_Learning_and_Using_CVPR_2018_paper.html
https://arxiv.org/abs/2010.06891
https://arxiv.org/abs/2105.04090
https://arxiv.org/abs/2105.04090

S.-L. Wu and Y.-H. Yang. The Jazz Transformer on the front line: Exploring the short-
comings of AI-composed music through quantitative measures. In Proceedings of the
21st International Society for Music Information Retrieval Conference. ISMIR, 2020.
doi: 10.5281/zenodo.4245390. URL https://doi.org/10.5281/zenodo.4245390.

G. G. Xia and S. Dai. Music style transfer: A position paper. In Proceedings of the 6th
International Workshop on Musical Metacreation (MUME 2018), 2018.

X. Xie, F. Tian, and H. S. Seah. Feature guided texture synthesis (FGTS) for artistic
style transfer. In Proceedings of the Second International Conference on Digital
Interactive Media in Entertainment and Arts (DIMEA 2007). ACM, 2007. doi: 10.
1145/1306813.1306830. URL https://doi.org/10.1145/1306813.1306830.

H. Xue and F. D. Salim. TRAILER: Transformer-based time-wise long term relation
modeling for citywide traffic flow prediction. CoRR, abs/2011.05554, 2020. URL
https://arxiv.org/abs/2011.05554.

R. Yang, D. Wang, Z. Wang, T. Chen, J. Jiang, and G. Xia. Deep music analogy
via latent representation disentanglement. In Proceedings of the 20th International
Society for Music Information Retrieval Conference. ISMIR, 2019. doi: 10.5281/
zenodo.3527880. URL https://doi.org/10.5281/zenodo.3527880.

Z. Yang, L. Xie, and P. Stoica. Vandermonde decomposition of multilevel Toeplitz
matrices with application to multidimensional super-resolution. IEEE Transactions
on Information Theory, 62(6):3685–3701, 2016.

P. Zhou, R. Fan, W. Chen, and J. Jia. Improving generalization of Transformer for
speech recognition with parallel schedule sampling and relative positional embedding.
CoRR, abs/1911.00203, 2019. URL http://arxiv.org/abs/1911.00203.

J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In IEEE International Confer-
ence on Computer Vision (ICCV 2017). IEEE Computer Society, 2017. doi:
10.1109/ICCV.2017.244. URL https://doi.org/10.1109/ICCV.2017.244.

A. Zils and F. Pachet. Musical mosaicing. In COST G-6 Conference on Digital Audio
Effects (DAFX-01), 2001.

121

https://doi.org/10.5281/zenodo.4245390
https://doi.org/10.1145/1306813.1306830
https://arxiv.org/abs/2011.05554
https://doi.org/10.5281/zenodo.3527880
http://arxiv.org/abs/1911.00203
https://doi.org/10.1109/ICCV.2017.244

122

A. Miscellaneous details

A.1 Chord chart generation

This section is adopted and modified from the paper ⟨TASLP2020⟩ by Cífka et al.
© 2020 IEEE.

To obtain the chord charts mentioned in Section 4.4.1, we sample from a chord
language model (LM) estimated on the iRb corpus [Broze and Shanahan, 2013],
which contains chord charts of over a thousand jazz standards. For this pur-
pose, each chord symbol is represented as a token composed of the chord’s root
expressed in relation to the song’s main key (e.g. I, ♭VII), the chord’s quality
(e.g. min6, 7♭9), and its duration. We extract the necessary features using the
jazzparser.sh script provided by Broze and Shanahan. We separate songs in
major keys from songs in minor keys, and train a smoothed bigram LM (using
Lidstone or add-ε smoothing with ε = 0.01) on each of the two. A bigram LM
models the conditional probability of a token given the previous token, and hence
allows for sampling new token sequences in a Markovian fashion. This yields
chord sequences similar to those from the iRb corpus, but the smoothing allows
for producing unexpected chord transitions occasionally, increasing the diversity
of the data.

Although the distribution of chords generated by the LM may not be appro-
priate for all musical styles, we assumed that it would be sufficiently diverse to
cover most styles thanks to the harmonic variability of jazz, and the LM smooth-
ing. Nevertheless, we acknowledge that expanding the dataset to chord charts
from other genres could provide some benefits.

We sample sequences from the LM repeatedly and concatenate them until we
reach the maximum number of measures. We then choose the key of the chord
chart at random (following the distribution of keys in iRb), and convert each
token to a chord symbol according to the chosen key.

We optionally add some of the following modifiers (defined by BIAB) to each
chord: (a) push: creates an 8th note anticipation; (b) hold: all instruments hit
the chord simultaneously and hold it until the next chord symbol; (c) shot: all
instruments play the chord staccato, followed by silence; (d) rest: all instruments
are silent until the next chord. (See e.g. bar 4 in Fig. 4.2, featuring a G minor
7th chord with shot and push modifiers.) These modifiers are turned on and off
at random, with probabilities chosen so that they are scattered sparsely through-
out the chord charts. This kind of data enhancement is necessary in order for
the trained system to be able to handle such rhythmic variations; notably, we
observed that the model from Section 4.3, which was trained without using this
technique, always produces continuous accompaniments even when the inputs
contain prominent breaks.

123

A.2 Long-Range Arena results

This section is based on the paper ⟨ICML2021⟩ by Liutkus, Cífka (equal contribu-
tion) et al.

We evaluate the proposed stochastic positional encoding (SPE) in the Long-Range
Arena (LRA, [Tay et al., 2021]), a benchmark for efficient Transformers, consisting
of sequence classification tasks with a focus on long-range dependencies. We use
the following tasks from this benchmark:

• ListOps: parsing and evaluation of hierarchical expressions. a longer variant
of Nangia and Bowman [2018];

• Text: movie review sentiment analysis on the IMDB corpus [Maas et al.,
2011];

• Retrieval: article similarity classification on the ACL Anthology Network
(AAN) corpus [Radev et al., 2013];

• Image: object recognition on the CIFAR10 dataset [Krizhevsky, 2009] rep-
resented as pixel sequences.

The tasks are challenging due to the large sequence lengths, deliberately increased
by choosing a character-/pixel-level representation. More details on the tasks are
given in Table A.1. We do not include Pathfinder (a synthetic image classification
task) as we were unable to reproduce the results of Tay et al. on this task, even
through correspondence with the authors.

We evaluate SPE (the gated variant) on two efficient Transformer models:
the (softmax) Performer [Choromanski et al., 2021], and a Linear Transformer
[Katharopoulos et al., 2020] with a ReLU feature map, i.e. choosing ϕ(·) =
max(0, ·) element-wise in Eq. (5.6).1 It should be noted that the ReLU fea-
ture map does not approximate the softmax kernel, which SPE is designed for
(see Eq. (5.12)). Nevertheless, it is possible to use SPE with any feature map in
practice, allowing us to include Linear Transformer-ReLU as an interesting test
of generalization to alternative kernels.

We adopt the configuration of Tay et al., only changing the PE and the batch
sizes/learning rates to allow training on limited hardware with similar results.
All other hyperparameters are kept identical to the original LRA. It is worth
noting that the Image models are different from the rest in that they employ a
single-layer network and only use the first position for prediction, dramatically
limiting their ability to benefit from relative positional information.

Since we observe some variation between different runs, we train and evalu-
ate each model 3 times (except for Performer with convolutional SPE, which is
computationally more costly) and report the mean and standard deviation of the
results.

The results of the benchmark are given in Table A.2. The accuracies achieved
by the baseline Linear Transformer-ReLU (APE) are similar to or surpass those
reported by Tay et al., which is a clear validation of our experimental setup.

1A model named ‘Performer’ is reported by Tay et al., but communication with the authors
revealed it to be in fact equivalent to our Linear Transformer-ReLU, as it does not use random
features. To avoid confusion, we refer to this model as such herein.

124

Name Dataset Input Length Goal # classes
ListOps ListOps expression with operations

on lists of numbers 0–9
2 k evaluate expression 10

Text IMDB movie review as byte string 8 k classify sentiment 2
Retrieval AAN pair of articles as byte strings 2× 4 k detect citation link 2
Image CIFAR10 8-bit gray-scale 32×32 image

as byte string
1 k recognize object 10

Table A.1 – Long-Range Arena classification tasks used in this work.

ListOps Text Retrieval Image
Best [Tay et al.] 37.27 65.90 59.59 44.24

(Reformer) (Linear Trans.) (Sparse Trans.) (Sparse Trans.)
Lin. Trans.-ReLU [Tay et al.] 18.01 65.40 53.82 42.77
Performer-softmax (APE) 17.80± 0.00 62.58± 0.22 59.84± 1.46 41.81± 1.16
Performer-softmax + sineSPE 17.43± 0.32 62.60± 0.50 60.00± 1.20 41.12± 1.70
Performer-softmax + convSPE 17.80 60.94 57.22 40.06
Lin. Trans.-ReLU (APE) 17.58± 1.01 63.98± 0.05 58.78± 0.93 42.25± 0.01
Lin. Trans.-ReLU + sineSPE 17.80± 0.00 64.09± 0.62 62.39± 0.59 41.21± 1.18
Lin. Trans.-ReLU + convSPE 9.50± 1.17 63.23± 1.31 61.00± 1.34 39.96± 1.31

Table A.2 – Long-Range Arena results (higher scores are better). Mean and
standard deviation of accuracy over three runs is reported, except for Performer
with convolutional SPE, where only a single run was completed. For comparison,
the best result reported by Tay et al. [2021], along with the name of the best-
performing model (in parentheses), is included.

Discussion. Results on ListOps are poor overall, with accuracies around 17 %.
This complies with Tay et al. [2021], who reason that ‘kernel-based models [e.g.
Performer, Linear Transformers] are possibly not as effective on hierarchically
structured data,’ leaving room for improvement. We also hypothesize this is
largely due to some issues with the training data for this task, which unfortunately
were unknown to us and had not been fixed at the time of our experiments.2

Regarding performance of SPE, we first notice that the sineSPE variant yields
the best results on three tasks, which is a strong achievement and validates our ap-
proach, especially considering the difficulty of this evaluation benchmark. While
it is only marginally better than APE for ListOps and Text, it is worth mention-
ing that sineSPE combined with the Linear Transformer-ReLU yields an accuracy
improvement of ∼3 % on Retrieval compared to the best result obtained by Tay
et al. [2021].

Regarding convSPE, its performance in the LRA is not as remarkable. This
mitigated result appears somewhat in contradiction with the discussion found in
Wang et al. [2021], which presents vanishing attention as a desirable property of
PE. On the contrary, we empirically observe that our non-vanishing sinusoidal
version sineSPE behaves better in these particular tasks.

Finally, the superior results of APE on Image are not unexpected, given the
limited ability of these models to exploit relative positions. On the contrary, the
relatively good performance of SPE on this task is in fact remarkable, especially

2The official data loader for ListOps contained a bug that caused it to inadvertently strip
some characters from the input sequences.

125

considering that the baseline systems for this task use learnable APE.
In sum, the performance of SPE is very much comparable to APE (which is

already encouraging) and in some cases considerably better, but this boost in
performance is not systematic. This raises interesting considerations:

(i) The variance of the Monte Carlo estimator might be problematic. We are
enthusiastic about the elegant formulation of stochastic feature maps as in
the Performer, which was a strong inspiration. Still, we must acknowledge
that their computation relies on a Monte Carlo estimator (5.18). We suspect
that the variance of the estimator might play a role in the final performance
in large dimensions, which opens up the direction of exploring variance-
reduced estimation methods, rather than plain Monte Carlo.

(ii) LRA tasks might not benefit from strong (R)PE schemes. The LRA was
designed to compare Transformer architectures, filling a gap in this domain
and standing as the de facto standard, justifying our choice. Still, although
PE is known to be important in many cases, it is not known whether it
is so in the LRA tasks. We feel that there is room for such a specialized
comparison, which is scheduled in our future work, possibly leading to new
long-range tasks where PE is critical.

126

B. Additional figures

-20
-15
-10
-5
0
5

10
15
20

ARPEGGIO A
(Country)

Acoustic Bass Acoustic Grand Piano String Ensemble 2

-20
-15
-10
-5
0
5

10
15
20

BEEBSLO A
(Blues)

Electric Bass (finger) Honky-tonk Piano Rock Organ

-20
-15
-10
-5
0
5

10
15
20

BRITROK8 B
(Pop)

Electric Bass (finger) Electric Grand Piano Overdriven Guitar

-20
-15
-10
-5
0
5

10
15
20

CREEDNCE B
(Country)

Electric Bass (finger) Electric Guitar (clean) Electric Guitar (clean)

-20
-15
-10
-5
0
5

10
15
20

CR_ERIC B
(Country)

Electric Bass (finger) Electric Piano 1 Synth Strings 2

-20
-15
-10
-5
0
5

10
15
20

Guajir2 A
(Latin)

Electric Bass (finger) Bright Acoustic Piano Acoustic Guitar (nylon)

-20
-15
-10
-5
0
5

10
15
20

Invited B
(Heavy Rock)

Fretless Bass Electric Guitar (clean) Rock Organ

0 1 2 3 4
-20
-15
-10
-5
0
5

10
15
20

c_rnb A
(Country)

Electric Bass (finger)

0 1 2 3 4

Acoustic Grand Piano

0 1 2 3 4

Acoustic Guitar (steel)

0.00 0.05 0.10 0.15 0.20 0.25

(a) Time-pitch (x: time difference, y: pitch dif-
ference)

0

1

2
Acoustic Bass Acoustic Grand Piano String Ensemble 2

0

1

2
Electric Bass (finger) Honky-tonk Piano Rock Organ

0

1

2
Electric Bass (finger) Electric Grand Piano Overdriven Guitar

0

1

2
Electric Bass (finger) Electric Guitar (clean) Electric Guitar (clean)

0

1

2
Electric Bass (finger) Electric Piano 1 Synth Strings 2

0

1

2
Electric Bass (finger) Bright Acoustic Piano Acoustic Guitar (nylon)

0

1

2
Fretless Bass Electric Guitar (clean) Rock Organ

1 2 3 4
0

1

2
Electric Bass (finger)

1 2 3 4

Acoustic Grand Piano

1 2 3 4

Acoustic Guitar (steel)

0.0 0.1 0.2 0.3 0.4 0.5

(b) Onset-duration (x: onset time, y:
duration)

Figure B.1 – Examples of style profiles (see Section 4.2.2) computed on the syn-
thetic test set from Section 4.4.1. Each row corresponds to one style, with the
short name and genre of the style displayed on the left. (More information about
the styles can be found on the supplementary website.) Each plot is labeled with
the MIDI instrument of the track on which it was computed. Reproduced from
⟨TASLP2020⟩. © 2020 IEEE.

127

Even 8ths
Even 16ths
Swing 8ths
Swing 16ths

(a) all→bass, feel

Even 8ths
Even 16ths
Swing 8ths
Swing 16ths

(b) all→piano, feel (same as Fig. 4.8)

Country
Jazz
Pop

(c) all→bass, style group

Country
Jazz
Pop

(d) all→piano, style group

Ballad
Blues
Country
Funk
Heavy Rock
Jazz
Latin
Lite Pop
Modern Pop
Pop

(e) all→bass, genre

Ballad
Blues
Country
Funk
Heavy Rock
Jazz
Latin
Lite Pop
Modern Pop
Pop

(f) all→piano, genre

Figure B.2 – Style embeddings for two different models from Section 4.3
(all→bass and all→piano) labeled with ‘feel’, ‘style group’ and genre anno-
tations provided by BIAB. Dimensionality reduction was performed using linear
discriminant analysis (LDA) with the annotations as targets. Reproduced from
the supplementary material of ⟨ISMIR2019⟩.

128

Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7 Layer 1, Head 8

Layer 3, Head 1 Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 7 Layer 3, Head 8

Layer 12, Head 1 Layer 12, Head 2 Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5 Layer 12, Head 6 Layer 12, Head 7 Layer 12, Head 8

Layer 20, Head 1 Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 4 Layer 20, Head 5 Layer 20, Head 6 Layer 20, Head 7 Layer 20, Head 8

Layer 24, Head 1 Layer 24, Head 2 Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 6 Layer 24, Head 7 Layer 24, Head 8

(a) APE

Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7 Layer 1, Head 8

Layer 3, Head 1 Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 7 Layer 3, Head 8

Layer 12, Head 1 Layer 12, Head 2 Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5 Layer 12, Head 6 Layer 12, Head 7 Layer 12, Head 8

Layer 20, Head 1 Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 4 Layer 20, Head 5 Layer 20, Head 6 Layer 20, Head 7 Layer 20, Head 8

Layer 24, Head 1 Layer 24, Head 2 Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 6 Layer 24, Head 7 Layer 24, Head 8

(b) sineSPE (gated)

Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7 Layer 1, Head 8

Layer 3, Head 1 Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 7 Layer 3, Head 8

Layer 12, Head 1 Layer 12, Head 2 Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5 Layer 12, Head 6 Layer 12, Head 7 Layer 12, Head 8

Layer 20, Head 1 Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 4 Layer 20, Head 5 Layer 20, Head 6 Layer 20, Head 7 Layer 20, Head 8

Layer 24, Head 1 Layer 24, Head 2 Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 6 Layer 24, Head 7 Layer 24, Head 8

(c) convSPE (ungated)

Layer 1, Head 1 Layer 1, Head 2 Layer 1, Head 3 Layer 1, Head 4 Layer 1, Head 5 Layer 1, Head 6 Layer 1, Head 7 Layer 1, Head 8

Layer 3, Head 1 Layer 3, Head 2 Layer 3, Head 3 Layer 3, Head 4 Layer 3, Head 5 Layer 3, Head 6 Layer 3, Head 7 Layer 3, Head 8

Layer 12, Head 1 Layer 12, Head 2 Layer 12, Head 3 Layer 12, Head 4 Layer 12, Head 5 Layer 12, Head 6 Layer 12, Head 7 Layer 12, Head 8

Layer 20, Head 1 Layer 20, Head 2 Layer 20, Head 3 Layer 20, Head 4 Layer 20, Head 5 Layer 20, Head 6 Layer 20, Head 7 Layer 20, Head 8

Layer 24, Head 1 Layer 24, Head 2 Layer 24, Head 3 Layer 24, Head 4 Layer 24, Head 5 Layer 24, Head 6 Layer 24, Head 7 Layer 24, Head 8

(d) convSPE (gated)

Figure B.3 – Attention matrices (first 4 heads only) from the pop piano generation
experiment (Section 5.3.2). Max position = 2048. Reproduced and modified from
the supplementary material of ⟨ICML2021⟩.

129

130

C. Supplementary materials
This appendix gathers references to all the additional resources that accompany
the published articles and this thesis.

⟨ISMIR2019⟩ Supervised symbolic music style translation using synthetic data.

https://ondrej.cifka.com/posts/neural-music-style-translation/

– blog post with listening examples
https://github.com/cifkao/ismir2019-music-style-translation

– source code
https://collegerama.tudelft.nl/Mediasite/Showcase/ismir2019/
Presentation/f4dd611fbfa64c6da166efadce72a2611d

– ISMIR 2019 oral presentation
http://tiny.cc/musicstyle

– listening examples
http://doi.org/10.5281/zenodo.3250606

– supplementary files
https://bit.ly/2G5Jgnq

– interactive style embedding visualization
http://doi.org/10.5281/zenodo.3245374

– trained model parameters

⟨TASLP2020⟩ Groove2Groove: One-shot music style transfer with supervision
from synthetic data.

https://groove2groove.telecom-paris.fr/

– companion website with an interactive demo
https://github.com/cifkao/groove2groove

– source code
https://youtu.be/nytHX412u5I

– ICASSP 2021 oral presentation
https://youtu.be/a4XyFeuRM8k

– ICASSP 2021 demo video
https://www.youtube.com/playlist?list=PLPdw6Kin7U86tcz-
vlMmKqQmq4yL325aH

– additional listening examples (videos)
https://doi.org/10.5281/zenodo.3957999

– synthetic accompaniment dataset (Groove2Groove MIDI Dataset)
https://groove2groove.telecom-paris.fr/data/checkpoints/

– trained model parameters

131

https://ondrej.cifka.com/posts/neural-music-style-translation/
https://github.com/cifkao/ismir2019-music-style-translation
https://collegerama.tudelft.nl/Mediasite/Showcase/ismir2019/Presentation/f4dd611fbfa64c6da166efadce72a2611d
https://collegerama.tudelft.nl/Mediasite/Showcase/ismir2019/Presentation/f4dd611fbfa64c6da166efadce72a2611d
http://tiny.cc/musicstyle
http://doi.org/10.5281/zenodo.3250606
https://bit.ly/2G5Jgnq
http://doi.org/10.5281/zenodo.3245374
https://groove2groove.telecom-paris.fr/
https://github.com/cifkao/groove2groove
https://youtu.be/nytHX412u5I
https://youtu.be/a4XyFeuRM8k
https://www.youtube.com/playlist?list=PLPdw6Kin7U86tcz-vlMmKqQmq4yL325aH
https://www.youtube.com/playlist?list=PLPdw6Kin7U86tcz-vlMmKqQmq4yL325aH
https://doi.org/10.5281/zenodo.3957999
https://groove2groove.telecom-paris.fr/data/checkpoints/

⟨ICASSP2021⟩ Self-supervised VQ-VAE for one-shot music style transfer.

https://adasp.telecom-paris.fr/s/ss-vq-vae

– companion website with listening examples
https://github.com/cifkao/ss-vq-vae

– source code
https://youtu.be/pln-h9eclGc

– ICASSP 2021 oral presentation
https://colab.research.google.com/github/cifkao/ss-vq-vae/blob/
main/experiments/colab_demo.ipynb

– demo Colab notebook
https://adasp.telecom-paris.fr/rc-ext/demos_companion-pages/vqvae_
examples/ssvqvae_model_state.pt

– trained model parameters

⟨ICML2021⟩ Relative positional encoding for Transformers with linear com-
plexity.

https://cifkao.github.io/spe/

– companion website with listening examples
http://proceedings.mlr.press/v139/liutkus21a/liutkus21a-supp.pdf

– supplementary document (appendix)
https://github.com/aliutkus/spe

– source code
https://slideslive.com/38958574

– ICML 2021 oral presentation

https://cifkao.github.io/metrical-pe/

– listening examples from Section 5.4

132

https://adasp.telecom-paris.fr/s/ss-vq-vae
https://github.com/cifkao/ss-vq-vae
https://youtu.be/pln-h9eclGc
https://colab.research.google.com/github/cifkao/ss-vq-vae/blob/main/experiments/colab_demo.ipynb
https://colab.research.google.com/github/cifkao/ss-vq-vae/blob/main/experiments/colab_demo.ipynb
https://adasp.telecom-paris.fr/rc-ext/demos_companion-pages/vqvae_examples/ssvqvae_model_state.pt
https://adasp.telecom-paris.fr/rc-ext/demos_companion-pages/vqvae_examples/ssvqvae_model_state.pt
https://cifkao.github.io/spe/
http://proceedings.mlr.press/v139/liutkus21a/liutkus21a-supp.pdf
https://github.com/aliutkus/spe
https://slideslive.com/38958574
https://cifkao.github.io/metrical-pe/

D. Software packages
Besides the source code associated with the published papers, I have developed
and released the following open-source software packages in connection to my
work on this thesis:

HTML MIDI Player Web component for playing and displaying MIDI files.
The package provides the <midi-player> HTML element, which allows
embedding MIDI files in web pages, similarly to how audio files can be
inserted using the <audio> element. Moreover, real-time visualization (pi-
ano roll or score) is possible using the <midi-visualizer> element. Both
functionalities are powered by the Magenta.js package.1

https://cifkao.github.io/html-midi-player/
https://github.com/cifkao/html-midi-player

NoPdb Non-interactive (programmatic) Python debugger.
This Python package provides an easy-to-use API for debugger-like func-
tionality. With NoPdb, it is possible to write Python one-liners to:

• capture function calls, including arguments, local variables, return val-
ues and stack traces;

• set ‘breakpoints’ that trigger certain pre-defined actions, namely eval-
uating expressions or executing arbitrary code with local side effects.

This makes it a convenient tool for inspecting machine learning model in-
ternals such as Transformer attention matrices.
https://github.com/cifkao/nopdb

Confugue Hierarchical configuration framework.
Confugue is a Python package providing a wrapper class for nested config-
uration dictionaries (usually loaded from YAML files), which can be used
to easily configure complicated object hierarchies.
The package is ideal for configuring deep learning experiments. These often
have large numbers of hyperparameters and managing all their values glob-
ally can quickly get tedious. Instead, Confugue allows each part of the deep
learning model to be automatically supplied with hyperparameters from a
YAML configuration file, eliminating the need to pass them around or to
define the same hyperparameter in multiple places. The nested structure of
the configuration file follows the hierarchy of the model architecture, with
each part of the model having access to the corresponding section of the
file.
https://github.com/cifkao/confugue

1https://github.com/magenta/magenta-js

133

https://cifkao.github.io/html-midi-player/
https://github.com/cifkao/html-midi-player
https://github.com/cifkao/nopdb
https://github.com/cifkao/confugue
https://github.com/magenta/magenta-js

Titre : Méthodes d’apprentissage profond pour le transfert de style musical

Mots clés : apprentissage machine, transfert de style, transformation de musique, génération de musique,
synthèse sonore, réseaux de neurones

Résumé : Récemment, les méthodes d’apprentis-
sage profond ont permis d’effectuer des transforma-
tions du matériel musical basées sur les données
(data-driven). L’objet de cette thèse est le transfert de
style musical, dont le but est de transférer de manière
automatique le style d’un morceau à un autre.

Dans la première partie de ce travail, nous nous
concentrons sur les méthodes supervisées pour le
transfert de style des accompagnements dans une
représentation symbolique, visant à transformer un
morceau donné en lui générant un nouvel accompa-
gnement. La méthode proposée est basée sur l’ap-
prentissage supervisé de séquence à séquence à
l’aide de réseaux de neurones récurrents (RNN) et
s’appuie sur une base de données synthétiques pa-
rallèle (alignée par paires) générée à cet effet à l’aide
d’un logiciel de génération d’accompagnement exis-
tant. Nous proposons ainsi un ensemble de mesures
objectives pour évaluer la performance sur cette nou-
velle tâche et nous montrons que le système réussit
à générer un accompagnement dans le style souhaité
tout en suivant la structure harmonique de l’entrée.

Dans la deuxième partie, nous étudions une ques-
tion plus fondamentale : le rôle des encodages posi-

tionnels (PE) dans la génération de musique à l’aide
des Transformers. Nous proposons l’encodage posi-
tionnel stochastique (SPE), un nouveau PE capable
de coder des positions relatives et compatible avec
une classe récemment proposée de Transformers ef-
ficaces. Nous démontrons que le SPE permet, mieux
que la méthode conventionnelle (le PE absolu), de
modéliser des séquences plus longues que celles
rencontrées pendant l’entraı̂nement.

Enfin, dans la troisième partie, nous passons de
la musique symbolique à l’audio et abordons le
problème du transfert de timbre. Plus précisément,
nous nous intéressons à transférer le timbre d’un
enregistrement audio à un autre, tout en préservant
le contenu mélodique et harmonique de ce dernier.
Nous présentons une nouvelle méthode pour cette
tâche, basée sur une extension de l’autoencodeur va-
riationnel quantifié (VQ-VAE), ainsi qu’une stratégie
d’apprentissage auto-supervisé conçue pour obtenir
des représentations démêlées du timbre et de la hau-
teur. Comme dans la première partie, nous concevons
un ensemble de métriques objectives pour la tâche.
Nous montrons que la méthode proposée est capable
de surpasser des méthodes existantes.

Title: Deep learning methods for music style transfer

Keywords: machine learning, style transfer, music transformation, sound synthesis, music generation, neural
networks

Abstract: Recently, deep learning methods have en-
abled transforming musical material in a data-driven
manner. The focus of this thesis is on a family of tasks
which we refer to as (one-shot) music style transfer,
where the goal is to transfer the style of one musical
piece or fragment onto another.

In the first part of this work, we focus on super-
vised methods for symbolic music accompaniment
style transfer, aiming to transform a given piece by
generating a new accompaniment for it in the style
of another piece. The method we have developed
is based on supervised sequence-to-sequence learn-
ing using recurrent neural networks (RNNs) and lever-
ages a synthetic parallel (pairwise aligned) dataset
generated for this purpose using existing accompani-
ment generation software. We propose a set of ob-
jective metrics to evaluate the performance on this
new task and we show that the system is successful
in generating an accompaniment in the desired style
while following the harmonic structure of the input.

In the second part, we investigate a more basic

question: the role of positional encodings (PE) in
music generation using Transformers. In particular,
we propose stochastic positional encoding (SPE), a
novel form of PE capturing relative positions while be-
ing compatible with a recently proposed family of effi-
cient Transformers. We demonstrate that SPE allows
for better extrapolation beyond the training sequence
length than the commonly used absolute PE.

Finally, in the third part, we turn from symbolic mu-
sic to audio and address the problem of timbre trans-
fer. Specifically, we are interested in transferring the
timbre of an audio recording of a single musical in-
strument onto another such recording while preserv-
ing the pitch content of the latter. We present a novel
method for this task, based on an extension of the
vector-quantized variational autoencoder (VQ-VAE),
along with a simple self-supervised learning strategy
designed to obtain disentangled representations of
timbre and pitch. As in the first part, we design a set
of objective metrics for the task. We show that the
proposed method is able to outperform existing ones.

Institut Polytechnique de Paris
91120 Palaiseau, France

	List of publications
	Notation
	Introduction
	Music style conversion
	Structure and contributions

	Related work
	Deep learning preliminaries
	Audio-specific methods
	Domain translation with cyclic consistency
	Representation disentanglement
	Other related work
	Self-supervised music completion
	Music generation with constraints
	Expressive performance rendering

	Conclusion

	Background: Deep learning for sequence generation
	Autoregressive neural language models
	Generation
	Model architectures

	Sequence-to-sequence models
	Model architectures

	Conclusion

	Supervised symbolic music style conversion
	Methods overview
	Synthetic data generation

	Evaluation
	Content preservation
	Style fit

	Supervised style translation
	Method
	Experimental results

	Supervised style transfer (Groove2Groove)
	Method
	Experimental results

	Conclusion

	Positional encodings for music generation
	Background
	Linear complexity Transformers
	Relative positional encoding
	Music generation with Transformers

	Stochastic positional encoding – theory
	Drawing stochastic positional encodings
	Gating and sharing

	Stochastic positional encoding – experimental results
	Accompaniment continuation
	Pop piano music generation

	Metrical positional encoding
	Conclusion

	Self-supervised audio timbre transfer
	Background
	Vector-quantized variational autoencoder
	Self-supervised learning

	Method
	Data
	Model and training details

	Evaluation
	Artificial benchmark
	`Real data' benchmark

	Experimental results
	Discussion
	Our system
	Baselines

	Conclusion

	Conclusion
	Summary of contributions
	Future directions

	Bibliography
	Miscellaneous details
	Chord chart generation
	Long-Range Arena results

	Additional figures
	Supplementary materials
	Software packages

