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Deep learning methods for
music style transfer

Ondřej Cífka

Abstract

In music, composers, arrangers, performers and producers often adapt
existing pieces to different contexts and audiences. Recently, deep learn-
ing methods have enabled transforming musical material in a data-driven
manner, setting the ground for tools which could partially automate this
process. The research performed in this area so far has focused largely on
conversion between a small set of musical genres or instrument timbres,
and on tasks that involve completing a partial arrangement in a desired
style. The focus of this thesis, on the other hand, is on a family of tasks
which we refer to as (one-shot) music style transfer, where the goal is to
transfer the style of one musical piece or fragment onto another. We pro-
pose two specific tasks in this direction: (1) accompaniment style transfer
for symbolic music representations (i.e. digital scores or MIDI files), and
(2) timbre transfer for audio recordings. For each of these tasks, we pro-
pose novel methods based on deep learning, as well as evaluation protocols.
Additionally, we present a broader contribution related to the processing
of sequences (music or otherwise) using Transformer neural networks.

In the first part of this work, we focus on supervised methods for sym-
bolic music accompaniment style transfer, aiming to transform a given piece
by generating a new accompaniment for it in the style of another piece. The
method we have developed is based on supervised sequence-to-sequence
learning using recurrent neural networks (RNNs) and leverages a synthetic
parallel (pairwise aligned) dataset generated for this purpose using existing
accompaniment generation software. We propose a set of objective metrics
to evaluate the performance on this new task and we show that the pro-
posed system is successful in generating an accompaniment in the desired
style while following the harmonic structure of the input. We also present
additional analyses aimed at a better understanding of the system.

In the second part, we investigate a more basic question: the role of
positional encodings (PE) in music generation using Transformers. In par-
ticular, we propose stochastic positional encoding (SPE), a novel form of
PE capturing relative positions while being compatible with a recently pro-
posed family of efficient Transformers. The main theoretical contribution
of this work is to draw a connection between positional encoding and cross-
covariances of correlated stochastic processes. We demonstrate that SPE
allows for better extrapolation beyond the training sequence length than
the commonly used absolute PE. We follow up on this work with an ex-
periment studying how PE can be better exploited for music generation by
making it encode more musically meaningful information.

Finally, in the third part, we turn from symbolic music to audio and
address the problem of timbre transfer. Specifically, we are interested in
transferring the timbre of an audio recording of a single (but not neces-
sarily monophonic) musical instrument onto another such recording while
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preserving the pitch content of the latter. We present a novel method for
this task, based on an extension of the vector-quantized variational au-
toencoder (VQ-VAE), along with a simple self-supervised learning strategy
designed to obtain disentangled representations of timbre and pitch. As in
the first part, we design a set of objective metrics for the task. We show
that the proposed method is able to outperform existing ones.

We believe that our contributions open interesting directions for follow-
up work. Firstly, our approach to timbre transfer is promising, but may
benefit from more advanced audio synthesis techniques to improve the
sound quality of the outputs. We are also interested in investigating
whether the approach could be adapted to symbolic music by combining it
with efficient Transformers; this could lead to a more robust system for ac-
companiment or arrangement style transfer. Finally, regarding positional
encodings in Transformers, we see a need for a more careful investigation
of their role not only in music generation, but in sequence generation in
general.
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Méthodes d’apprentissage profond
pour le transfert de style musical

Ondřej Cífka

Résumé

Les compositeurs, les arrangeurs, les interprètes et les producteurs de
musique adaptent souvent des morceaux existants à des contextes et publics
différents. Récemment, les méthodes d’apprentissage profond ont permis
d’effectuer des transformations du matériel musical basées sur les données
(data-driven), ce qui pourrait aider à créer des outils permettant d’auto-
matiser une partie de ce processus. Les travaux antérieurs dans ce domaine
se sont concentrés principalement sur la conversion entre un petit nombre
de genres musicaux ou de timbres. L’objet de cette thèse est d’étendre
ce cas de figure et de considérer le problème plus général du transfert de
style musical, dont le but est de transférer de manière automatique le style
d’un morceau à un autre. Nous proposons deux tâches différentes dans ce
sens : (1) le transfert de style des accompagnements dans une représenta-
tion symbolique (c’est-à-dire sous forme d’une partition numérique ou un
fichier MIDI), et (2) le transfert de timbre des enregistrements audio. Pour
chacune de ces tâches, nous proposons une approche basée sur l’apprentis-
sage profond, ainsi qu’un protocole d’évaluation. Nous apportons également
une contribution plus large liée au traitement de séquences (musicales ou
autres) à l’aide de réseaux de neurones appelés les Transformers.

Dans la première partie de la thèse, nous nous concentrons sur les mé-
thodes supervisées pour le transfert de style des accompagnements dans
une représentation symbolique. Plus précisément, l’objectif de ce travail
est de transformer un morceau en lui générant un nouvel accompagnement
dans le style d’un morceau différent. La méthode proposée est basée sur
l’apprentissage supervisé de séquence à séquence à l’aide de réseaux de
neurones récurrents (RNN), une technique développée pour la traduction
automatique. Le système est entraîné sur une base de données synthétiques
parallèle (alignée par paires) générée à cet effet à l’aide d’un logiciel exis-
tant de génération d’accompagnement. Nous proposons ainsi un ensemble
de mesures objectives pour évaluer la performance sur cette nouvelle tâche
et nous montrons que le système proposé réussit à générer un accompagne-
ment dans le style souhaité (pas forcément connu pendant l’entraînement)
tout en suivant la structure harmonique de l’entrée. En plus, nous présen-
tons des analyses supplémentaires visant à mieux comprendre le fonction-
nement du système proposé.

Dans la deuxième partie, nous étudions une question plus fondamen-
tale : le rôle des encodages positionnels dans la génération de musique
à l’aide des Transformers. Nous proposons l’encodage positionnel stochas-
tique (SPE), un nouvel encodage positionnel capable de coder des positions
relatives et compatible avec une classe récemment proposée de Transfor-
mers efficaces (Transformers à complexité linéaire). La principale contri-
bution théorique de ce travail est l’établissement d’un lien entre l’encodage
positionnel et la covariance croisée de processus gaussiens corrélés. Nous
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montrons expérimentalement que le SPE permet, mieux que la méthode
conventionnelle (l’encodage positionnel absolu), de modéliser des séquences
plus longues que celles rencontrées pendant l’entraînement. Nous poursui-
vons ce travail avec une expérience étudiant comment l’encodage position-
nel peut être mieux exploité pour la génération de musique en le faisant
coder des informations plus significatives musicalement.

Enfin, dans la troisième partie, nous passons de la musique symbolique
à l’audio et abordons le problème du transfert de timbre. Plus précisément,
étant donnés deux enregistrements audio, chacun d’un seul instrument
(mais pas forcément monophonique), nous cherchons à transférer le timbre
de l’un à l’autre, tout en préservant le contenu mélodique et harmonique du
dernier. Nous présentons une nouvelle méthode pour cette tâche, basée sur
une extension de l’autoencodeur variationnel quantifié (VQ-VAE), ainsi
qu’une stratégie d’apprentissage auto-supervisé. La méthode est conçue
pour obtenir des représentations séparées (démêlées) du timbre et de la
hauteur, ce qui permet d’effectuer le transfert de timbre. Comme dans la
première partie, nous concevons un ensemble de métriques objectives pour
la tâche. Nous montrons que la méthode proposée est capable de surpasser
des méthodes existantes.

Notre travail ouvre des pistes intéressantes pour le futur. D’abord, notre
approche au transfert de timbre est prometteuse, mais bénéficierait d’une
méthode plus avancée de synthèse sonore afin d’améliorer la qualité des ré-
sultats. Nous envisageons aussi la possibilité d’adapter cette approche à la
musique symbolique en la combinant avec les Transformers efficaces ; cela
permettrait d’obtenir un système plus robuste de transfert de style d’ac-
compagnement ou d’arrangement. Enfin, concernant les encodages posi-
tionnels, nous voyons un besoin d’étudier davantage leur rôle non seulement
dans la génération de musique, mais plus généralement dans la génération
de séquences.
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Notation
v = [ vn ]n column vector with entriesvn

A = [ amn ]mn matrix with entries amn

am = [ amn ]n m-th row of matrix A

a� n = [ amn ]m n-th column of matrix A

x scalar or unspeci�ed object

[u; v] concatenation of vectorsu; v

[a b] closed interval froma to b

(a b) open interval from a to b

(v1; v2; : : : ; vN ) tuple or row vector

0N or 0 zero vector(0; 0; : : : ; 0
| {z }

N

)>

1N or 1 all-ones vector(1; 1; : : : ; 1
| {z }

N

)>

1n one-hot vector(0; 0; : : : ; 0
| {z }

n� 1

; 1; 0; 0; : : :)>

diag(v) diagonal matrix with the entries of v on the diagonal
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1. Introduction

In music, composers, arrangers, performers and producers often adapt existing
pieces to di�erent contexts and audiences. For instance, music of the Renaissance
period was often based on popular melodies, such asL'homme armé, a Medieval
secular tune that gave rise to dozens of masses. Mussorgsky'sPictures at an Ex-
hibition exists in hundreds of di�erent arrangements for various instrumentations,
with Ravel's orchestration being known to a wider audience than the original pi-
ano version. In modern popular music, cover songs are a common phenomenon;
if su�ciently di�erent in style from the original, a cover version may make the
song accessible to a di�erent audience, like Jimi Hendrix's classic rendition of
All Along the Watchtower by Bob Dylan. More broadly, any performance of a
musical piece can be viewed as the artist's personal interpretation of the piece,
adapted to some extent to the context in which it is performed.

With technological advances of the late 20th century, it became possible to
combine and transform existing recordings, leading to practices such asremixing
and sampling, which became especially widespread with the advent of digital
audio. A common example are dance remixes, altering the sound of a song to
make it better suited for the dance �oor, mainly by adding or replacing tracks or
applying audio e�ects. Recordings may also be edited (shortened) to make them
suitable for radio broadcasting or a TV advertisement.

More recently, developments in algorithms, signal processing and machine
learning have brought the promise of directly manipulating more high-level, mu-
sically meaningful features. For example, it has become possible to automatically
harmonize melodies [Ebcio§lu, 1990, Simon et al., 2008, Huang et al., 2017], gener-
ate sophisticated accompaniments or `improvised' solos (see e.g. Band-in-a-Box1),
turn scores into expressive performances [Dixon et al., 2005, Widmer et al., 2009]
or transfer sound textures from one recording onto another [Driedger et al., 2015,
Grinstein et al., 2018].

One area where such automated music transformations can be applied is the
very act of music making. In a practice calledhuman-AI co-creation, artists2

experiment with integrating machine learning models into their creative process,
using them to transform or complete existing musical fragments or generate new
musical ideas from scratch [Roberts, 2019, Huang et al., 2020]. Neural audio
synthesis methods [Engel et al., 2017, 2020] enable artists to explore new timbres
and, when combined with pitch estimation, to employ them as virtual instruments
controlled by audio input.3

Another application lies in generating music for short videos, such as adver-
tisements or tutorials. Finding music that matches a video may be di�cult and
time-consuming and is complicated by copyright issues [Frid et al., 2020]. This has
inspired services4 that o�er `AI-generated music' based on di�erent user-speci�ed
parameters. There has also been work on the retrieval of music based on video
content [Prétet et al., 2021]. An interesting opportunity for innovation then lies

1https://www.pgmusic.com/
2e.g. https://yacht.bandcamp.com/album/chain-tripping
3https://g.co/tonetransfer
4e.g. https://www.aiva.ai/ , https://www.ampermusic.com/
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in automatically generating or transforming music in order to match the content
of a video or mimic the style of a given song.

A particularly interesting situation arises in video game soundtracks, which
need to be su�ciently varied to avoid tiring the player during hours of game-
play. Moreover, the soundtrack needs to change dynamically in response to the
player's actions and the state of the environment. Consequently, video games
lend themselves toprocedural music [Collins, 2009] that adapts in real time to
various in-game variables, typically by using pre-composed building blocks that
are recombined in a randomized way, controlled by game-dependent logic. Such
soundtracks require large amounts of specialized engineering e�ort, creating an
exciting opportunity for methods capable of automating this process, e.g. to adapt
existing music to a gameplay context.

1.1 Music style conversion

After a broad introduction to context-based music transformations, let us focus
on a speci�c kind of transformation which we callmusic style conversion and
which is the main topic of this thesis. In general terms, given a piecex with
content C and style S, the aim of style conversion is to produce a piecey with
the same contentC, but a di�erent style T (the target style). For this de�nition
to be useful, we must also de�ne what we mean by style and content. However,
as we are about to see, there is no universal de�nition of these terms that could
cover all possible use cases, and their meaning will instead depend on the concrete
type of music style conversion task at hand.

Variety of style conversion tasks. Conceivable examples of music style con-
version include:

(a) Changing the instrumentation of a given recording.

(b) Changing the lead vocal track to resemble a di�erent singer.

(c) Changing the dynamics, timing or articulation to alter the mood of a per-
formance or to imitate a given performer.

(d) Generating a cover of a song in the style of another song or artist, or in a
given genre.

It should be apparent from these examples that style conversion can happen on
a number of di�erent levels. Xia and Dai [2018] de�ne three such levels:timbre,
performance control and composition style. For example, in (a) and (b), we
modify timbre while preserving the information on the other two levels; in (c),
we only modify performance control. However, in (d), the style features we wish
to modify may be spread across all three levels.

Style transfer and style translation. We may also categorize style conver-
sion tasks based on how the target styleT is speci�ed to the system. In this
work, we consider two basic options:
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(i) The set of possible styles is �nite (and typically small) and �xed in advance.
The target style T may be represented as a discrete label (ID) or may not
have an explicit representation (e.g. if a separate (sub-)system is trained for
each target style). We refer to this case asstyle translation .

(ii) The set of possible styles is potentially in�nite. The target styleT is repre-
sented by a singleexample, i.e. by a musical fragmentz in that style. This
may be understood asstyle transfer [Gatys et al., 2016], and borrowing
its terminology, we can callx the content input (since it bears the content
C) and z the style input (since it bears the target styleT).

As we will detail in Chapter 2, most prior work on music has focused on style
translation (i). Note that although some of these prior works also use the expres-
sion `style transfer', this con�icts with how the term is traditionally understood
[Efros and Freeman, 2001, Xie et al., 2007, Gatys et al., 2016], and the term `trans-
lation' [Isola et al., 2017, Zhu et al., 2017, Malik and Ek, 2017, Mor et al., 2019]
is in our opinion more appropriate and helps us draw the distinction between (i)
and (ii).

To further highlight this distinction, we will occasionally refer to (ii) as one-
shot style transfer . This is by analogy to one-shot learning, the problem of
learning the concept of a class from a single example (in order to perform classi�-
cation [Li et al., 2006] or to generate new samples from the class [Rezende et al.,
2016]). In our case, we use the term `one-shot' to emphasize that the system
must extract the (potentially previously unseen) styleT from a single examplez.

Tasks of interest. We are now ready to de�ne the tasks that are the focus
of this thesis. The �rst one is accompaniment style transfer , a task where
the inputs and outputs are popular music or jazz accompaniments in a symbolic
representation (in our case, MIDI5 �les). We de�ne the content of an accompani-
ment as the harmonic structure of the song � i.e. the information represented in
a chord chart � and style refers to the way musicians produce an actual accom-
paniment based on this information. Note that we do not consider styles to be
broad classes such asgenres� instead, we consider a style to represent the set of
patterns (e.g. ri�s, voicings, rhythmical patterns) characteristic of a given artist
or even an individual song. The task is illustrated in Fig. 1.1.

Ultimately, accompaniment style transfer enables creating a cover version of
a given song by generating a new accompaniment for it in a given style. If su�-
ciently reliable, a system with this capability could be applied to aforementioned
game or video soundtracks in order to increase the stylistic variability of existing
material or even for personalization (adapting music to the listener's taste). In
any case, accompaniment style transfer systems could be used by music creators
to quickly try out di�erent musical styles or even to create remixes or mashups
in a human-AI co-creation setup.

The second task of interest isaudio timbre transfer , illustrated in Fig. 1.2,
where the inputs are single-instrument (but not necessarily monophonic) audio
recordings. In this case, content is de�ned as pitch and style is de�ned as timbre.
Again, we consider timbre in a very broad sense, including not only the identity
of the instrument, but also any audio e�ects applied on top of it.

5https://www.midi.org
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Figure 1.1 � An example of accompaniment style transfer. The accompaniments
in this example consist of a piano track and a bass track. The output follows
the harmony of the content input (the chords C7 and F) while employing the
samba-like rhythmic and melodic patterns of the style input. In general, the two
inputs need not be the same length. The chord symbols are shown for illustration
only and are not part of the data for the task.

Figure 1.2 � An example of timbre transfer. The inputs and outputs are audio
recordings. The output combines the pitch content of the content input with the
timbre of the style input.

This task has obvious applications in music making. In particular, a real-time,
high-�delity timbre transfer system would allow to turn a short audio sample
into a fully realistic virtual instrument controllable e.g. by singing or playing an
acoustic instrument.

1.2 Structure and contributions

The rest of the thesis is structured in the following manner:

ˆ In Chapter 2, we reviewrelated work on music style conversion.

ˆ In Chapter 3, we present some background ondeep learning techniques
for sequence generation , which are used extensively in this thesis.

ˆ Chapter 4 concernssupervised methods for accompaniment style
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conversion , in particular one-shot accompaniment style transfer and, as an
intermediate, simpler task, accompaniment style translation. The chapter
includes the following major contributions of this thesis:

� We propose a common framework for accompaniment style conversion
tasks based onsupervised learning from synthetic data.

� We design a common evaluation protocol for the tasks, consisting of
objective metrics ofcontent preservationand style �t .

� As a �rst step, we approach theaccompaniment style translation
task and develop a method capable of translating bass-and-piano ac-
companiments between 70 di�erent styles.

� We then extend the method to theone-shot accompaniment style
transfer setting while also proposing a more robust input/output rep-
resentation and an e�cient strategy for working with accompaniments
consisting of arbitrary combinations of instruments.

� Our experimental results demonstrate the performance of the proposed
systems on the respective tasks. We also present additional analyses
such as an ablation study and visualizations of the learned style rep-
resentations.

These contributions have been published in the papershISMIR2019 i and
hTASLP2020 i (see the List of publications).

ˆ In Chapter 5, we investigate a more basic question: the role ofpositional
encodings in symbolic music generation usingTransformers . The major
contributions presented here are as follows:

� We proposestochastic positional encoding(SPE), a novel form of po-
sitional encoding capturing relative positions (considered important
in music generation) while being compatible with recently proposed
linear complexity Transformers.

� We demonstrate that when applied to music generation, SPE allows
for better extrapolation beyond the training sequence length than the
commonly usedabsolute positional encoding(APE ).

� We follow up on this work with an experiment studying how positional
encodings can be better exploited for music generation by making them
encode more musically meaningful information.

The �rst two of these contributions have been published inhICML2021 i ,
along with some results on non-music data, additionally presented in Ap-
pendix A.2.

ˆ In Chapter 6, we turn from symbolic music to audio and present our con-
tributions addressing the problem oftimbre transfer :

� We propose a novel method for this task, based on an extension of
the vector-quantized variational autoencoder(VQ-VAE ), along with a
simple self-supervisedlearning strategy designed to obtain disentan-
gled representations of timbre and pitch.
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� We design an evaluation protocol for the task, consisting of objective
metrics of content preservationand style �t .

� Our experimental results show that the proposed method is able to
outperform baselines from the literature.

These contributions have led to the publicationhICASSP2021 i .

ˆ Chapter 7 concludes the thesis, summarizes its contributions and o�ers
some directions for future research.

The above contributions are accompanied by websites with listening examples
and/or interactive demos, as well as source code and other resources. Their list
can be found in Appendix C.

Moreover, three open-source software packages, HTML MIDI Player, NoPdb
and Confugue, described in Appendix D, have been released as a by-product of
this work.
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2. Related work
This chapter will discuss prior work closely related to the style transfer task. In
general, we are interested in learning style from data, and we therefore mostly
omit methods that are rule-based and/or tailored to speci�c styles. We also focus
more on deep learning-based approaches, as they are the topic of this thesis.

We open in Section 2.1 with some elementary background on deep learning for
music and audio processing. In Section 2.2, we review methods that are speci�c to
audio data (especially as opposed to symbolic music representations) and usually
rely on theoretical understanding of audio signals and traditional digital signal
processing methods. On the other hand, Sections 2.3 and 2.4 give an account
of methods that are more strongly data-driven and are applicable across data
modalities. We leave various other (more loosely related) works for Section 2.5.
Section 2.6 concludes the chapter with some �nal remarks.

2.1 Deep learning preliminaries

In this section, we brie�y introduce some deep learning concepts which will ap-
pear in the rest of this chapter. For a more complete overview of deep learning
techniques for audio and music processing, see Peeters and Richard [2021].

Convolutional neural networks (CNN). CNNs have become widespread
as a means to process data presented as a regular grid, e.g. images or regularly
sampled time series. Their core building block is aconvolutional layer, which
convolves its input with a set of learnable�lters , essentially applying the same
linear operation to di�erent `patches' of the input.

In the case of images, the input to each layer is usually a 3D tensor with
2 spatial dimensions (width, height) and 1 channel dimension; in this case, the
�lters of each layer make up a 4D tensor (kernel) with dimensions corresponding
to width, height, input channels and output channels (i.e. number of �lters); 2D
convolution along the 2 spatial dimensions is performed. When processing audio,
the input to the network is usually aspectrogram, i.e. a representation with a time
dimension and a frequency dimension. One option is to treat the spectrogram
as an image with a single channel and use 2D convolutions. However, depending
on the type of spectrogram and the task, it may be more appropriate to use 1D
convolution along the temporal dimension only.

A CNN then consists of a series of multiple such convolutional layers, inter-
laced with non-linearitites (activation functions) and pooling operations, which
downsample (i.e. reduce the spatial dimensions of) the features. A popular pool-
ing operation is max-pooling, which takes the maximum value in each spatial
region. An alternative to pooling is strided convolution, where the convolutional
�lter skips some locations as it slides over the input, also leading to downsam-
pling.

Recurrent neural networks (RNN). An RNN is a suitable architecture
whenever the input is a sequence of feature vectorsx1; : : : ; xN . It works by
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processing the input sequence from left to right and using each inputxn to up-
date its internal (`hidden') state vector. The resulting sequence of state vectors
h1; : : : ; hN can then be used for further processing. For example, if we wish to
classify the input sequence, we can use the last hidden statehN as input to a
linear classi�er. We can also use the whole sequence of hidden states to predict
a value for each position.

We will describe RNNs in more detail in Chapter 3, which will also explain
how RNNs can be used for sequence generation.

Autoencoders. An autoencoder is any neural network that is trained tore-
construct its input, i.e. to copy its input to its output. It consists of an encoder,
which maps the input x to a lower-dimensional intermediate representationz,
often called thelatent code, and a decoder, which then maps the latent codez to
a reconstructionx̂. The utility of an autoencoder lies precisely in its latent code,
which may be useful as features for a downstream task. In some cases, it is also
possible to use the autoencoder to generate new data samples or to alter inputs
by manipulating the corresponding latent codes.

Di�erent types of autoencoders exist, imposing di�erent constraints on the
latent code space in order to obtain some desirable properties. Arguably the
most popular kind is the variational autoencoder (VAE, Kingma and Welling
[2014]), which assumes a particularprior distribution p(z) over the latent codes,
typically the standard Gaussian.

2.2 Audio-speci�c methods

We start our literature review with a method which was in fact originally proposed
for images and only later adapted to audio, but is still somewhat domain-speci�c.
The method in question was introduced by Gatys et al. [2016] and constitutes
the �rst neural approach to style transfer . It is based on the observation that
in a CNN trained for image recognition, the deeper layers encode high-level infor-
mation about the composition of the image (content), while information about
textures present in the image (style) is captured by summary statistics of di�erent
layers.

The method is illustrated in Fig. 2.1. The input to the algorithm are two
images, the content imageI c and the style imageI s, which are then used to
extract content and style information, respectively, in the following way:

(a) The content imageI c is processed by the CNN and the activationsF lc (I c)
of one of the deeper (higher) layerslc are used as the content representation.

(b) The style imageI s is processed by the same CNN and the Gram matrix of
each layer of the network is computed. This Gram matrixGl (I s) of the layer
l captures the correlations between the activations in the di�erent feature
maps at this layer. The Gram matricesG1(I s); : : : ;GL (I s) of all the layers
are used together as a style representation.

Once the content representation and the style representation are extracted, we
wish to �nd an image I that matches both simultaneously, i.e. one that mini-
mizes a weighted sum of the following losses (Euclidean distances to the target
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Figure 2.1 � Image style transfer. Left: the content representation of the image
I c is obtained as the features produced by a speci�c layer of the pre-trained
CNN. Right: the style representation of the imageI s is computed as the Gram
matrices of the features produced by di�erent layers of the same CNN.Middle:
the content and style features of the (initially random) imageI are computed
analogously. The total loss (weighted sum of distances between representations)
is calculated and its gradient is propagated back toI .

representations):



 F lc (I c) � F lc (I )





2
the content loss,



 Gl (I s) � G l (I )





2
the style loss at layerl (8l).

This is done by initializing the image with random noise and then optimizing it
using gradient descent. In each step, the representationsF lc (I ), Gl (I ) are com-
puted with the use of the pre-trained CNN and the gradient is back-propagated
to update the image.

The technique has subsequently been improved and extended, as well as
adapted to speci�c kinds of style transfer. For a taxonomy of image and video
style transfer algorithms, see Jing et al. [2020].

Ulyanov and Lebedev [2016] and Grinstein et al. [2018] adapted and gen-
eralized this framework in order to transfer s̀ound textures '. As a proof-of-
concept, Ulyanov and Lebedev simply replace the image with the spectrogram
of an audio recording and use anuntrained (randomly initialized) single-layer
one-dimensional CNN to extract content and style features. On the other hand,
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Figure 2.2 � The NMF-driven musaicing method (a.k.a. `Let It Bee') of Driedger
et al. [2015]. The `source' (the buzzing of a bee) and the `target' (Let It Be
by The Beatles) correspond to our style input and content input, respectively.
Reproduced from Driedger et al. [2015].© 2015 Jonathan Driedger, Thomas
Prätzlich, Meinard Müller.

Grinstein et al. drop the content loss and instead use the content input for initial-
ization, letting the optimization converge to a nearby local optimum. They also
propose an alternative way to compute the style loss, based on a model emulating
the human auditory system. While both works achieve interesting results, the
approach is not speci�cally tailored to music and does not aim to transfer musical
timbre.

On the other hand, a method designed for music, and one that can be considered
to perform musictimbre transfer , is musical mosaicingor musaicing [Zils and
Pachet, 2001]. Musaicing is a form ofconcatenative synthesiswhich splits a
`source' audio recording into short frames (each a fraction of a second in duration)
and concatenates them so as to match the characteristics of another (`target')
recording.

Driedger et al. [2015] propose to combine this method withnon-negative ma-
trix factorization (NMF ), as illustrated in Fig. 2.2. The frames from the source
recording are used as a �xeddictionary W of spectral templates, and anacti-
vation matrix H is then obtained using an iterative update process so that the
product WH approximates the spectrogram of the target recording. The Gri�n-
Lim algorithm [Gri�n and Lim, 1983] is then applied to this approximation WH
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