
N°d’ordre NNT : 2021LYSE1144

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par :

l’Université Claude Bernard Lyon 1

Ecole Doctorale N°512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 09/07/2021, par :

Adel HAMDI

Chiffrement fonctionnel pour le traitement des données
externe en aveugle

Functional encryption for blind external data processing

Devant le jury composé de :

CHEVALIER Céline Rapporteure

Maître de Conférences, Université Paris 2, CRED, Paris

VERGNAUD Damien Rapporteur

Professeur, Sorbonne Université, LIP6, Paris

ABDALLA Michel Examinateur

Directeur de Recherche, CNRS, DIENS, Paris

GUERIN LASSOUS Isabelle Examinatrice

Professeure, Université Lyon 1, LIP, Lyon

LAGUILLAUMIE Fabien Directeur de thèse

Professeur, Université de Montpellier, LIRMM, Montpellier

CANARD Sébastien Co-Directeur de thèse

Ingénieur de recherche, Orange Labs, Caen

REMERCIEMENTS

La légende raconte que cette partie est le plus consultée. Fort heureusement, ce n’est

qu’une légende. Je dédie ces prochaines lignes à toutes les personnes qui de près, ou

même de (très) loin, ont pu contribuer à la réalisation de ce long travail de thèse. Pour

ne pas faire de jaloux, je vais choisir un ordre totalement non arbitraire.

D’abord, mes remerciements vont à mes chers directeurs de thèse, Sébastien Canard

et Fabien Laguillaumie. C’est un privilège d’avoir travaillé avec vous. Sébastien, j’ai

eu l’honneur de découvrir le monde merveilleux du chiffrement fonctionnel à travers un

stage. Merci de m’avoir accordé ta confiance pour se lancer dans cette quête de nouveaux

usages. Bien évidemment, merci également Fabien pour ta patience et ton encadrement

riche en questions précises et constructives. Une thèse se construit sur un temps long

et on se souvient surtout des bons moments. Vos encouragements et conseils m’ont

toujours permis de retrouver le chemin adéquat quand j’étais coincé. Pour une fois, ce

paragraphe n’est pas assez long pour décrire ma reconnaissance.

Un grand merci à Céline Chevalier et Damien Vergnaud d’avoir accepté de rapporter

ma thèse. Ce manuscrit a largement bénéficié de vos remarques et suggestions. Merci

aussi à Michel Abdalla et Isabelle Guerin Lassous d’avoir accepté de compléter mon jury.

Dans cette contrée normande, au bord d’une impasse et en face d’un stade, je remercie

la meilleure équipe qu’on puisse avoir pour un travail de recherche: l’équipe SPI (Security,

Privacy and Innovation) d’Orange. Merci particulièrement à Jean-François qui maintient

un espace incroyablement bienveillant et chaleureux.

Attends attends attends, qui fait quoi là ? Merci à toi Guillaume, collègue et doctor-

ant dans ce même petit bureau. Merci pour ta patience avec mes idées farfelues dans la

construction de schémas cryptographiques de plus en plus tordus, pour ta critique des

3

3-chocolatines (ou pains aux trois chocolats) de Toulorge et aussi pour tes références

culturelles incroyables. Je remercie aussi Aïda pour ta bonne humeur et le récit de tes

voyages inattendus. Aïda, Guillaume, on peut dire qu’on a eu une pandémie mondiale

durant notre thèse. Les nerfs sont détendus maintenant.

Une pensée chaleureuse pour mes autres collègues: Maxime, Paul, Olivier1, Stéphane,

Takoua, Monir, Marie, Solenn, Anaïs, Loïc, Dominique, Jacques, Bastien, Donald,

Quentin, Nicolas, Olivier, Yacine... J’en oublie sûrement, mais sachez que j’ai apprécié

travailler et discuter de thèmes très variés à vos côtés. Enfin, une pensée particulière et

nostalgique pour le regretté Yvan.

Au regard des circonstances, je n’ai pas eu l’occasion d’être souvent présent à Lyon au

LIP. J’en garde néanmoins de très bons souvenirs. Je remercie le personnel administratif

des différentes entités (Orange, LIP, Université Lyon 1, Université de Montpellier) de

m’avoir simplifié mes démarches à distance !

Je remercie également tous les enseignants (de Bordeaux ou d’Oran) qui ont nourri

ma curiosité. En particulier, Sœur Agnès et sa belle poésie égyptienne mais aussi M.

Tsouria qui a déclenché indirectement ma passion pour les mathématiques.

Arrive la partie avec mes amis et proches d’ici ou d’ailleurs, que j’espère revoir plus

souvent. Merci à Mourad pour ta présence indéfectible 2 et pour tous ces moments

légendaires, Rafik pour nos improvisations de guitare (et la station Madeleine à 6h30),

Amine et Amine pour toutes nos aventures, Azmi pour nos années à l’université, ses

soirées mais pour le reste aussi3! Nadir 92, Sarah, Sarah et Dimitri depuis presque

10 ans maintenant, Bernard, Livia, Agathe, Abdou, Ahcene, Jean-Louis, Lucette... Ici

aussi, vous me pardonnerez si j’en oublie.

Cette thèse n’aurait probablement pas pu aboutir dans de bonnes conditions sans

le soutien et la présence de celles qui partagent ma vie. Amandine, merci d’avoir été

patiente et encourageante dans ces moments particulièrement stressants. Je suis heureux

de continuer à partager de belles nouvelles aventures avec notre nouvelle belle xérixoutte4.

Enfin, je vais conclure cette épopée en remerciant tout naturellement ma famille, mes

soutiens de toujours, qui m’aident à avancer sereinement dans ma vie. Ma gratitude est

sans limite envers Maman et Papa qui ont tant donné à mes formidables sœurs (bien

évidemment les meilleures du monde) et moi. Vous m’apportez à chaque instant le

courage et la force de continuer dans mes aventures et je peux toujours compter sur

vous. Cette thèse, j’espère, vous rend grâce.
1Je ne vais pas faire la blague sur les stagiaires
2bla mangoulek
3Rak Ghaya sous-place?
4Prononcer chérichoutte

4

RÉSUMÉ

Le besoin croissant d’externalisation des services numériques et l’augmentation notoire

de la quantité d’informations disponibles se heurtent aux différentes questions de la

protection des données. Il est devenu crucial de s’appuyer sur des méthodes cryp-

tographiques suffisamment avancées pour concilier fonctionnalité et sécurité. Cette thèse

s’articule autour du chiffrement fonctionnel qui permet, grâce à un chiffré et une clef dite

fonctionnelle, de déléguer en externe et de manière très fine une fonctionnalité spécifique.

En particulier, nous explorons plusieurs pistes et proposons différents modèles formels

pour résoudre des problématiques concrètes. D’abord, nous étudions l’interactivité du-

rant la phase de génération de clefs fonctionnelles et identifions des cas d’usages où la

protection des spécificités de la fonctionnalité est pertinente. Pour ce faire, nous intro-

duisons une notion d’aveuglement, proposons une transformation générique l’atteignant

ainsi qu’une construction efficace ad-hoc pour le produit scalaire. Additionnellement,

nous traitons du problème de ré-identification d’individus dans une base de données et

établissons des liens entre confidentialité différentielle et sécurité du chiffrement. Par-

tant d’une base chiffrée, nous développons une variante du chiffrement fonctionnel pour

des requêtes linéaires aléatoires compatibles avec ce besoin. Notre approche permet de

bénéficier en même temps de la délégation fine d’un calcul mais aussi de l’anonymisation

du résultat obtenu. Finalement, nous déployons un protocole pratique respectant la vie

privée de ses utilisateurs et permettant l’agrégation de données mobiles. Notre proposi-

tion modifie une variante du chiffrement fonctionnelle dans un contexte multi-utilisateurs

couvrant ainsi notre cas d’usage. En outre, la technique utilisée permet de garantir une

tolérance aux pannes, où nous autorisons la défaillance de certains utilisateurs pendant

l’exécution du protocole.

5

ABSTRACT

The increasing need for externalization of digital services as well as the significant rise

in the amount of available information brings various data protection issues into play. It

has become crucial to rely on advanced cryptographic methods to reconcile functionality

and security. This thesis focuses on functional encryption which allows, thanks to an

encrypted and a so-called functional key, to externally delegate a specific functionality

in a fine-grained manner. In particular, we explore several approaches and propose dif-

ferent formal models to solve concrete problems. First, we study interactivity during the

functional key generation phase and identify use cases where protecting the specificities

of the functionality is relevant. To this end, we introduce a notion of blindness, pro-

pose a generic transformation achieving it as well as an efficient ad-hoc construction for

the scalar product. Additionally, we address the problem of individual re-identification

in a database and establish links between differential privacy and encryption privacy.

Starting from an encrypted database, we develop a variant of functional encryption for

random linear queries compatible with this need. Our approach allows to benefit from

the fine-grained delegation of a computation but also from the anonymisation of the

obtained result. Lastly, we deploy a practical protocol that respects its users’ privacy

and allows aggregation of mobile data. Our proposal modifies a variant of functional

encryption in a multi-user context thereby covering our use case. Moreover, the used

technique allows to guarantee a fault-tolerance property, where we allow users drops

during the execution of the protocol.

7

Contents

Remerciements 3

Résumé 5

Abstract 7

Contents 10

Résumé long en français 11

1 Introduction 25

1.1 General context . 25

1.2 Our contributions . 28

1.2.1 A General Framework for Function’s Protection 28

1.2.2 Obtaining Differential-Privacy via FE 30

1.2.3 Privacy-Preserving Mobile Data Usage 32

1.2.4 Other contribution . 36

1.3 Organization of this thesis . 36

2 Preliminaries 37

2.1 Mathematical background . 37

2.2 Cryptographic building blocks . 41

2.2.1 Security foundations . 41

2.2.2 Cryptographic building blocks . 42

2.3 Functional Encryption . 47

2.3.1 Security Definitions for Functional Encryption 49

2.3.2 DSum Multi-client Functional Encryption 51

3 Function’s protection in Functional Encryption 55

3.1 Definitions and Security Model . 58

8

Contents

3.1.1 Syntactic Definitions for Interactive FE 58

3.1.2 A Trivial Example or FE is IFE . 60

3.1.3 High-Level View of Security Properties 61

3.1.4 Message-Privacy for Interactive FE 63

3.1.5 Obtaining MP secure IFE from MP secure FE: leak-freeness 65

3.1.6 Function-Privacy for Interactive FE 68

3.1.7 Blindness for Interactive FE . 72

3.2 On the Relationship between Blindness and Function Privacy 73

3.3 IFE from non-interactive FE . 78

3.3.1 Definition of PFE . 79

3.3.2 The scheme . 81

3.3.3 Using FHE: a special case . 89

3.3.4 Efficient Blind Interactive Inner-Product FE 91

3.4 Conclusion . 97

4 User’s protection via Differential-Private Mechanisms 99

4.1 Differential Privacy . 104

4.1.1 Preliminaries . 104

4.1.2 DP-compliant noise distributions 106

4.2 Randomized FE for DP Functionalities . 108

4.2.1 DP Randomized FE for Linear Queries 109

4.2.2 Correctness for RIPFE . 110

4.2.3 Simulation-Security for RIPFE . 111

4.3 Construction . 113

4.3.1 High-Level Overview . 113

4.3.2 Construction from DDH . 117

4.3.3 Correctness of the scheme . 119

4.3.4 Simulation-Security of our Scheme 120

4.3.5 Towards a construction from any IPFE. 126

4.4 Conclusion . 129

5 Computing fault-tolerant private statistics for mobile usage 131

5.1 Our case study . 132

5.2 General definition of WeStat . 137

5.3 Security definitions . 139

5.3.1 Requestor security . 141

9

Contents

5.3.2 Aggregator security . 142

5.4 Our proposed solution for WeStat . 143

5.4.1 The proposed system . 144

5.4.2 Security proof . 148

5.5 Instantiation from bilinear maps . 157

5.6 Conclusion . 159

6 Conclusion and open problems 161

Bibliography 165

10

RÉSUMÉ LONG EN FRANÇAIS

Chaque groupe de personnes est confronté, dans sa gestion structurelle, à la question

du maintien, de manière presque inévitable, de la qualité de la transmission de toute

information. Avoir la certitude de la véracité de concepts généraux est fondamental

pour comprendre des systèmes complexes ou réaliser des objectifs communs. Parallèle-

ment, en réponse à des situations dont les résultats sont inconnus, minimiser et prévoir

l’incertitude est un comportement naturel.

La théorie de l’information est un champ fondamental qui étudie certains aspects de

l’incertitude. Initié par Nyquist [95], Hartley [78] et plus fondamentalement par Shan-

non [108], ce domaine met en exergue les méthodes mathématiques permettant de com-

prendre et, plus important encore, de quantifier la façon dont l’information est transmise

au cours d’une communication. Un aspect essentiel est la notion d’encodage (et de dé-

codage). Par opposition à de l’information brute, cette opération transforme un système

de langage en un autre, ayant la propriété d’être adaptable efficacement aux ressources

disponibles.

L’implication de cette théorie est considérable dans l’ère du développement des or-

dinateurs, du stockage, de la compression de données ou des télécommunications mo-

biles; chaque aspect de la technologie moderne puise dans les idées de la théorie de

l’information.

Cryptographie ou la science du secret. Disposer de secrets est un processus qui

consiste à rendre certaines informations cachées ou indisponibles pour une entité non

fiable. Les anciennes méthodes étaient généralement basées sur l’intuition et la ruse

: des croyances personnelles ou la complexité des systèmes suffisaient à convaincre les

11

Contents

concepteurs (ou les utilisateurs) de l’inviolabilité de leurs mécanismes. La Cryptologie

fait référence à ces aspects généraux de conception de systèmes secrets et précède ini-

tialement l’abstraction mathématique de la théorie de l’information. Considérée d’abord

comme un art, activement utilisée à des fins militaires, elle a retrouvé un intérêt par-

ticulier depuis l’arrivée des premiers ordinateurs à la fin de la seconde guerre mondiale

en 1945. La récente conversion de plusieurs secteurs de la société au monde numérique

propulse la cryptologie au premier plan. Aujourd’hui, les cartes à puce, les transac-

tions commerciales avec les banques, les interactions sociales avec les médias sociaux

populaires et les applications de messagerie mobile sont de parfaites illustrations de ses

différents usages.

La cryptologie est en fait un terme générique qui couvre plusieurs domaines. Plus

populaire, la Cryptographie regroupe un ensemble de méthodes visant, en fonction d’un

contexte donné, à atteindre des propriétés spécifiques de sécurité. Comme notion com-

plémentaire, la Cryptanalyse fait référence à l’analyse du comportement d’un système

cryptographique en examinant comment un adversaire malveillant peut obtenir des in-

formations non autorisées.

En substance, la sécurité d’un système est une danse perpétuelle entre les concepteurs

d’un schéma cryptographique et ses attaquants. Prétendre qu’un schéma est inviolable,

c’est être certain qu’il n’existe aucun chemin possible pour obtenir des informations sur

le message ciblé sous-jacent. De surcroît, avoir innocemment confiance dans le con-

cepteur du système ne fournit véritablement pas la garantie totale qu’un schéma est

effectivement sûr. Une analyse des constructions historiques [58] montre que même les

systèmes les plus complexes peuvent être cassés. Par conséquent, il est crucial de mettre

en place une notion pertinente modélisant la finalité de tout adversaire malveillant. en

définissant les protagonistes, avec leurs pouvoirs respectifs lorsqu’ils interagissent avec

un système, un modèle de sécurité établit cette base de référence pour analyser les dif-

férentes failles potentielles. Ainsi, la sécurité d’un système est par nature un processus

évolutif qui dépend fortement des ressources disponibles au cours d’une période donnée.

En réalité, une simple percée technologique ou une avancée des connaissances en matière

de recherche académique conduit à une remise en cause urgente des prétendues garanties

de sécurité.

Cryptographie prouvée. Une preuve de sécurité en cryptographie a pour objectif de

justifier formellement que le pouvoir d’un adversaire est limité lors d’une l’attaque. La

cryptographie prouvée moderne permet donc de rassembler un ensemble de techniques

pour montrer qu’un schéma est effectivement sûr. Dans la recherche actuelle, il est

12

Contents

d’usage de s’intéresser aux aspects calculatoire de sécurité. De manière informelle, les

modèles mathématiques de calcul sont des idéalisations du comportement d’un ordina-

teur. L’idée est alors d’étudier les limites possibles d’un adversaire, en analysant ses

capacités pour récupérer des informations non autorisées dans ce modèle de calcul.

Motivé par une notion mathématique de sécurité parfaite, Shannon [108] a introduit

et étudié, dans un résultat fondateur, certains concepts de sécurité au sens de la théorie

de l’information. Le désormais populaire système de chiffrement connu sous le nom de

masque jetable (ou one-time pad) est l’exemple parfait où un chiffré (qui est l’encodage

d’un message) ne contient aucune information sur le message sous-jacent, même pour

un adversaire disposant de ressources illimitées.

Le résultat de Shannon est important puisqu’il fournit la preuve mathématique et

surtout statistique qu’un chiffré ne révèle aucune information sur son contenu. Par

ailleurs, ce résultat illustre sur la manière dont des outils de mesure de l’incertitude (la

probabilité) peuvent fournir des certitudes sur la sécurité d’un schéma. Il existe cepen-

dant une limite en termes d’efficacité pour certaines usages modernes. Le chiffrement

one-time pad sert néanmoins de base à plusieurs autres primitives cryptographiques

avancées. Il est donc ainsi possible d’envoyer une information en étant convaincu que le

chiffré sous-jacent ne fournit aucun indice utile sur sa nature.

Avec la naissance de la cryptographie à clef publique [47,54,69,100,103], Goldwasser

et Micali [69] assouplissent la définition parfaite de Shannon en considérant qu’étant

donné un certain chiffré, tout ce qui est efficacement calculable à propos du message

original, est également calculable sans le chiffré. En d’autres termes, il n’est possible

d’apprendre et déduire que l’information donnée par le message. Le terme efficace est

crucial et modélise le pouvoir dont dispose un adversaire lors d’une attaque, en fonction

du modèle de calcul sous-jacent. En particulier, alors que la définition de Shannon

considère des adversaires non limités en ressources, Goldwasser et Micali [69] considèrent

plusieurs types possibles d’adversaires suivant les situations.

La sécurité calculatoire permet une certaine efficacité et flexibilité, mais il est souvent

difficile d’analyser directement les actions d’un attaquant. Un compromis intéressant

consiste à faire des hypothèses. La technique la plus utilisée actuellement consiste à

réduire la sécurité d’un système à celle d’une attaque sur des problèmes qui sont supposés

être difficiles, dans un modèle déterminé de calcul.

La robustesse de la cryptographie moderne repose alors sur ces certitudes (mathé-

matiques) et dépend fortement de notre capacité à prévoir les développements éventuels

dans la résolution de ces problèmes difficiles. Comme exemple, il est courant [87] de

mesurer les ressources disponibles en temps ou en espace.

13

Contents

D’autres propriétés de sécurité sont envisagées par les schémas contemporains au

masque jetable. Parmi les plus populaires, on peut mentionner l’intégrité qui protège

des altérations ou de l’authentification qui permet de vérifier la validité d’un message.

La combinaison de ces propriétés de sécurité est la base même de la conception moderne

de systèmes cryptographiques complexes.

Flexibilité avec le chiffrement homomorphe et fonctionnel. Les technologies

telles que l’informatique en nuage (ou cloud computing) offrent aujourd’hui de nouvelles

perspectives de travail aux utilisateurs : stockage de données, délégation de calculs à des

serveurs plus puissants ou services d’apprentissage automatique. Pour la cryptographie,

il est ainsi primordial d’assurer la continuité des propriétés de sécurité de base lors d’une

communication avec le cloud, tout en accordant suffisamment de flexibilité pour proposer

des services variés.

Le chiffrement homomorphe est une extension attrayante du chiffrement classique

qui offre un algorithme supplémentaire capable de calculer sur des données chiffrés sans

avoir besoin de les déchiffrer. Introduit dans les années 1970 par Rivest et al. [102], le

chiffrement homomorphe a exploré de nouveaux horizons avec la percée de Gentry en

2009 [62] qui a proposé le premier résultat théorique d’un schéma entièrement homomor-

phe qui permet un système complet d’opérateurs (addition et multiplication), évaluant

ainsi théoriquement toute fonction possible sur des données chiffrées.

Plus récemment, une généralisation intéressante du chiffrement classique, le chiffre-

ment fonctionnel (ou FE pour Functional Encryption) [26,96], apparaît comme un cadre

général et très prometteur offrant la flexibilité et la possibilité de conserver le contrôle

des informations divulguées. Contrairement aux chiffrements classique et homomorphe,

où une seul clef pour chiffrer et déchiffrer est en jeu, avec FE fournit une clef spéciale

associée à une certaine fonction. Cette dernière permet avec le chiffré d’un message de

révéler l’évaluation de la fonction sur ce message.

Il s’agit de l’une des formes les plus générales de chiffrement puisqu’elle permet

théoriquement de déléguer n’importe quel calcul à un tiers tout en révélant le minimum

d’informations sur les données sous-jacentes.

Nos contributions

Nous abordons dans la section suivante les principales notions que nous avons traitées

au cours de notre thèse. Nous fournissons, pour chacune des trois contributions, un

cas d’usage motivé ainsi que les problèmes de sécurité qui en découlent. De plus, nous

14

Contents

présentons un aperçu de la solution que nous proposons dans chaque cas.

Cette thèse expose des résultats qui ont été publiés. Nous présentons cependant

deux généralisations des articles [34] (en collaboration avec Sébastien Canard et Fa-

bien Laguillaumie) et [32] (en collaboration avec Sébastien Canard, Nicolas Desmoulins,

Sébastien Hallay et Dominique Le Hello) et qui font l’objet respectivement des Chap. 3

et Chap. 5. Le chapitre 4 propose une nouvelle notion et les résultats obtenus sont en

cours de soumission pour évaluation (en collaboration avec Sébastien Canard et Fabien

Laguillaumie).

Un cadre général pour la protection des fonctions

Avec la croissance des activités en ligne, de multiples données (e-mails confidentiels,

contrats de travail, transactions bancaires, etc.) sont transmises et stockées sur dif-

férentes plateformes externes. Basés sur ces données, une concurrence acharnée entre

plusieurs acteurs se développe afin d’offrir des services particuliers, répondant ainsi pos-

itivement à une demande croissante. Par exemple, on peut s’abonner à un service de

détection de logiciels malveillants (ou un filtre anti-spam) qui vise à identifier les motifs

malicieux sur certains messages entrants et, au mieux, à les refuser. Dans un autre

cas d’usage, une entreprise ou un centre de recherche publique spécialisés dans les algo-

rithmes d’apprentissage automatique pourrait trouver un intérêt à obtenir des données

spécifiques auprès d’un détenteur de base de données afin d’améliorer ses algorithmes.

Le détenteur correspond à des individus qui possèdent des caractéristiques spécifiques

liées, par exemple, aux soins de santé, ou des entreprises avec un certain type de données

pour, par exemple, la détection des menaces liées à la navigation sur Intranet/Internet.

En même temps, plusieurs préoccupations concernant la sécurité et la confidentialité des

données manipulées apportent de nouveaux challenges à ces organisations. Le chiffre-

ment est un instrument qui permet d’atteindre la conformité et la sécurité/protection des

données exigées par les législation actuels en matière de sécurité (par exemple, RGPD
5). Cependant, concilier la confidentialité des données et la fonctionnalité pourrait être

une tâche difficile en utilisant l’approche basique tout ou rien des schémas de chiffrement

traditionnels, où aucun calcul n’est possible, sauf en déchiffrant les données elles-mêmes,

ce qui diminue la sécurité obtenue, ou rend la mise en pratique de ces systèmes lourdes

en efficacité.

En conséquence, nous considérons un scénario avec une entité qui essaie d’obtenir en

clair une fonction sur certaines données chiffrées. Ainsi, nous nous intéressons aux mises

5https://ec.europa.eu/info/law/law-topic/data-protection/

15

https://ec.europa.eu/info/law/law-topic/data-protection/

Contents

en œuvre possibles d’un chiffrement fonctionnel FE pour ces cas d’utilisation pratiques.

Ainsi, une étape importante consiste généralement à un protocole interactif de génération

de clefs fonctionnelles. En outre, notre sujet concerne un fournisseur de filtres anti-spam

qui articule son activité autour d’une fonction sensible. Cela correspond à certaines

règles de détection éventuellement protégées [33]. Par conséquent, il est pertinent et

crucial de cacher la structure sous-jacente au propriétaire de la clef secrète principale,

appelée clef maîtresse, servant à générer des clefs fonctionnelles.

Cependant, cacher la fonction à une entité peut avoir différentes significations selon

le contexte. En conséquence, il est important d’explorer la possibilité de définir une

notion de aveuglement (ou blindness) pour un protocole interactif de génération de clef

fonctionnelle, où un utilisateur génère une clef fonctionnelle mais ne partage aucune

information sur la fonction sous-jacente.

Nos contributions.

Dans cette thèse, nous présentons d’abord une étude systématique et générale de cette

problématique en définissant la notion de chiffrement fonctionnel aveugle (ou blind func-

tional encryption), qui est donc un FE avec un protocole de génération de clef fonc-

tionnelle interactif et aveugle. En particulier, le propriétaire de la clef secrète maîtresse

n’apprend rien sur la fonction. Nos contributions pourraient être synthétisées comme

suit.

1. Une définition générale du FE interactif et aveugle. Nous définissons la no-

tion de chiffrement fonctionnel interactif (IFE) avec une considération de sécurité

adaptée et générale pour les notions classiques de message-privacy (ou confidential-

ité des messages) et de function-privacy (ou confidentialité des fonctions) décrites

dans la littérature, dans les cas à clef privée et clef publique. La clef fonctionnelle

n’est pas nécessairement conservée par le propriétaire de la fonction : dans une

application de filtrage du spam, cette clef peut être installée sur un serveur de

messagerie qui appartient à un client de l’éditeur du filtre anti-spam. De plus,

nous définissons formellement la propriété blindness (ou aveuglement) qui vise

à répondre positivement au scénario suivant : un propriétaire de clef maîtresse

génère une clef fonctionnelle sans apprendre d’informations supplémentaires sur

la fonction (en particulier le choix de l’utilisateur). Nous donnons une notion

générale de blindness qui pourrait être trouvée dans la terminologie des signatures

aveugles [81] et généralisons les constructions existantes dans le contexte de l’IBE

aveugle de [30, 75]. Avec notre notion, nous concluons qu’elle est différente (et

16

Contents

complémentaire) de la sécurité bien connue de la function-privacy.

2. Une construction générique à partir de tout FE. Nous proposons une con-

struction générique de IFE aveugle à partir de n’importe quel schéma de FE (non

interactif). Cette construction utilise des techniques provenant d’une calcul à deux

parties en deux passes [105] (MPC) et de preuves de connaissance génériques à di-

vulgation nulle de connaissance [66].

3. Un schéma de produit scalaire spécifique. De nombreuses applications,

telles que la fouille de données ou le calcul statistique, ont besoin comme sous-

programmes d’évaluation de produit scalaire. C’est pourquoi plusieurs construc-

tions IPFE (pour Inner Product Functional Encryption) ont récemment été pro-

posées [1,11,38]. La plupart extraient des clefs fonctionnelles sous la même forme,

et se trouve aussi être un produit scalaire. En utilisant la flexibilité du schéma

de chiffrement homomorphe linéaire [37], nous concevons une construction efficace

pour ce cas spécifique de FE [1, 11] en utilisant un nouveau protocole efficace de

calcul de produit scalaire aveugle, à deux parties.

Cette contribution est décrite dans le chapitre 3.

Obtention de la confidentialité différentielle via FE

Considérons maintenant une entreprise détenant certaines données sensibles sur des in-

dividus et qui pourrait trouver un intérêt (commercial) à rendre ces données disponibles

pour un usage externe, en visant par exemple à devenir un intermédiaire et permettre

à d’autres parties d’exécuter certaines statistiques sur les individus concernés. Évidem-

ment, la principale préoccupation est de ne pas agir au détriment de la vie privée des

individus. La principale responsabilité d’une telle entreprise doit donc être de proposer

des solutions qui minimisent le risque de ré-identification, c’est-à-dire la probabilité de

relier chaque individu avec les données qui lui appartiennent. Les statistiques peuvent

généralement être représentées comme des fonctions linéaires.

Le chiffrement est l’une des premières approches communes. L’idée ici est de pro-

téger les données sensibles/personnelles en stockage, en recourant à des techniques de

chiffrement standard, ou en utilisation, en se servant des primitives cryptographiques

avancées telles que FHE ou MPC.

Le choix du système cryptographique avancé pertinent dépend fortement du scénario

en question et en particulier de l’architecture (comment gérer les clefs) et de la fonction à

exécuter sur les données chiffrées. Mais dans tous les cas, il y a trois parties principales

17

Contents

: (i) le chiffrement des données, (ii) le traitement sur les données chiffrées et (iii) le

calcul/déchiffrement du résultat.

Une autre approche courante consiste à protéger la quantité d’informations que l’on

peut finalement obtenir à partir de données sensibles/personnelles, après leur utilisation.

Dans ce cas, une partie autorisée peut déduire certaines informations de ces données,

mais la quantité et la qualité de ces résultats sont limitées par une protection technique.

Ces techniques sont généralement appelées anonymisation ou pseudonymisation et re-

posent principalement sur des outils de base tels que le hachage par clef, le masquage,

la tokenisation, le brouillage,...etc.

La confidentialité différentielle (ou DP pour differential privacy [50]) est un frame-

work puissant et bien développé pour protéger les informations recueillies d’utilisateurs

dans un certain jeux de données. Tout mécanisme DP donne des garanties par rapport

à une certaine notion prédéfinie de confidentialité, qui est concrètement paramétrée par

une relation de voisinage entre les entrées. La conséquence est que, pour un ensemble

de données d’entrée x, le résultat de sortie relative à φ(x) pour une certaine requête φ,

est indépendant de la présence de tout individu au sein de x. Un mécanisme différen-

tiellement privé est généralement obtenu en construisant un algorithme randomisé (ou

aléatoire). Le bruit est calibré par une certaine quantité, généralement appelée sensi-

bilité [50, 94], et mesure l’impact sur la sortie lors de l’ajout ou de la soustraction d’un

individu dans la base de données. Plus précisément, lorsque les données présentent une

certaine structure de sortie additive, l’idée est généralement d’ajouter un certain bruit à

la sortie φ(x) comme, par exemple, fφ(x) = φ(x)+e, où e est une quantité aléatoirement

bien choisie. Dans la littérature sur le DP, la valeur e est généralement générée suivant

la distribution laplacienne, gaussienne ou géométrique [49,63].

Nos contributions.

Alors que le chiffrement et la confidentialité différentielle fournissent tous deux cer-

taines garanties de sécurité/confidentialité, il est tentant d’entremêler ces deux processus

pour obtenir le meilleur des deux mondes, c’est-à-dire pour protéger les données sensi-

bles/personnelles durant le stockage, pendant mais aussi après leur utilisation. L’idée

principale que nous considérons est alors de :

• chiffrer d’abord les données sensibles/personnelles x en utilisant comme schéma

un MPC/FHE/FE ;

• ensuite exécuter une fonction différentiellement privée dans le domaine chiffré ;

18

Contents

• si le résultat est toujours chiffré (dans les cas MPC/FHE), il doit être (peut-être

conjointement dans le cas de MPC) déchiffré. Sinon (dans le cas de FE), il est

directement obtenu dans le domaine clair.

Il est maintenant commun que les versions généralisées de MPC/FHE/FE sont con-

formes à la Turing-complets, de sorte qu’elles peuvent en théorie être utilisées pour

évaluer n’importe quelle fonction (même inefficace); y compris notre fonction aléatoire

fφ par rapport à toute requête φ. Par conséquent, il est théoriquement possible de

récupérer génériquement le résultat d’un calcul DP, mais avec une complexité qui rend

le système irréalisable en pratique.

À travers cette thèse, nous nous concentrons sur le cas de l’utilisation de FE et

nous examinons la possibilité de modéliser précisément la combinaison du FE avec les

mécanismes DP. Nos contributions peuvent être résumées comme suit.

1. Une définition du IPFE aléatoire. Nous proposons une nouvelle extension de

l’IPFE, où nous considérons que la fonctionnalité (représentée comme une fonction

linéaire, ou un produit scalaire) doit donner une sortie conforme à DP. Pour cela,

nous introduisons la notion de Randomized IPFE (ou RIPFE) pour les mécanismes

DP. De manière globale, en utilisant un schéma de chiffrement fonctionnel, on

garantit la confidentialité, et toute personne possédant une clef fonctionnelle spé-

cifique ne peut obtenir que l’évaluation de la fonction autorisée sur les données

sous-jacentes. La nouveauté est de fournir une réponse DP, c’est-à-dire une sortie

qui est conforme aux spécificités de la DP. Pour ce faire, nous donnons un modèle

de sécurité formel, inspiré de la littérature sur le FE Randomisé (ou RFE) [13,73], et

nous fournissons une adaptation qui s’accorde avec la confidentialité différentielle.

2. Un schéma spécifique pour les requêtes linéaires. Nous proposons une

solution efficace conforme à la DP pour le produit scalaire qui est basée sur une

le problème difficile Diffie-Hellman Décisionnel dans les groupes cycliques. Notre

construction combine et exploite de manière astucieuse des idées puissantes de la

variante à deux entrées de l’IPFE.

3. Une tentative de construction générique. Enfin, nous esquissons une général-

isation étant donné un quelconque IPFE en fournissant notamment une ébauche de

preuve de sa sécurité.

Les résultats de cette contribution sont donnés dans le chapitre 4.

19

Contents

Utilisation des données mobiles préservant la vie privée

Le problème du calcul du fonction somme sur certaines données chiffrées est un problème

bien connu et très étudié en cryptographie. On peut remonter au paradigme général du

chiffrement homomorphe, où des schémas pouvaient être utilisés pour obtenir un (chiffré

de la) somme de deux données quelconques à partir de la version chiffré chacune d’entre

elles. Un système de vote est l’un de ces exemples où il est possible de calculer la somme

de tous les choix de certains électeurs pendant une élection, d’une manière qui respecte

la vie privée ainsi que les lois en vigueur.

La fonction somme trouve plusieurs applications en cryptographie, du calcul mul-

tipartite [114] à la cryptographie à seuil [46]. En fait, selon les parties impliquées, les

scénarios d’attaque et les cas d’utilisation pratiques, il est possible d’obtenir plusieurs

solutions (pour chacune des architectures considérées). Notre travail se concentre sur

une architecture particulière motivée par un cas d’utilisation dédié et expliqué dans le

paragraphe suivant.

Collecter l’utilisation des données mobiles tout en préservant la vie privée.

Considérons une équipe de chercheurs en sciences sociales qui souhaitent mieux connaître

les habitudes des utilisateurs de leurs téléphones. Cela correspond par exemple à étudier

l’impact sur une population prédéterminée de l’utilisation, par exemple, d’applications

de réseaux sociaux ou à mesurer les causes et les effets de l’addiction aux smartphones.

Traditionnellement, ce type d’études est mené à sous la forme d’entretiens, de sondages

ou d’enquêtes. Les participants sont invités ainsi à déclarer eux-mêmes la fréquence ou

la durée de leur utilisation des applications de réseaux sociaux par le biais de questions

précises : "A quelle fréquence ouvrez-vous votre application de réseaux sociaux ? Moins

d’un mois ; une fois par mois ; une fois par semaine ; etc. Cette approche est répan-

due dans la communauté de recherche en sciences sociales. Cependant, elle souffre de

plusieurs inconvénients. En effet, les réponses des participants au questionnaire peuvent

être biaisées par plusieurs facteurs : la subjectivité (les personnes peuvent sous-estimer

ou surestimer leur utilisation des réseaux sociaux), les limites de la mémoire humaine

(il est difficile de se rappeler quand ou à quelle fréquence ils ouvrent l’application) ou

la volonté (par peur du regard des autres). Par conséquent, les questions doivent être

choisies et posées de manière réfléchie afin d’éviter les biais. De plus, les questionnaires

et les enquêtes ne couvrent qu’un petit échantillon de la population. Tous ces défauts

des outils conventionnels d’étude des sciences sociales conduisent naturellement à la

mise en œuvre de moyens lourds, parfois inefficace (bonnes questions à poser), à faible

20

Contents

représentativité (petit échantillon) et à des résultats inexacts (réponses biaisées).

Par conséquent, afin d’obtenir des résultats précis et d’éviter les limites susmen-

tionnées, l’équipe de chercheurs en sciences sociales peut rechercher les informations

pertinentes à la source. Les données d’utilisation des téléphones portables regroupent

un large ensemble d’informations. Il s’agit par exemple des horodatages d’ouverture et

de fermeture des applications, des actions effectuées dans l’application (comme le bouton

"j’aime"), des paramètres de configuration...etc. En complément des outils traditionnels,

le fait d’avoir une vision fine à grande échelle avec des échantillons évolutifs ne pourrait

que réduire les biais éventuels.

Sondage et confidentialité. Ce cas d’utilisation soulève plusieurs problèmes de con-

fidentialité. La nature des informations disponibles doit permettre une certaine vigilance

sur le traitement final. Le point de départ évident est de donner aux individus le choix

d’appliquer leur consentement à la collecte et au traitement de leurs données pour une

analyse statistique. Dans le cas où le consentement est donné, les informations collectées

étant sensibles à la vie privée, elles doivent être protégées au regard de la législation en

vigueur.

Par ailleurs, un système fournissant un tel service devrait inclure des mécanismes de

protection de la vie privée, en particulier conformément au RGPD, le consentement est

une première condition essentielle pour collecter et traiter les données des utilisateurs

(articles 6, 7 et 8 du RGPD). Ainsi, avant chaque nouvelle étude, il est demandé aux util-

isateurs de donner leur consentement (éclairé et explicite) sur la collecte et le traitement

de leurs données. En outre, pour respecter le principe de la protection de la vie privée

dès la conception, exigé par le RGPD (articles 25 et 32), le présent cas d’usage doit

tirer parti de solutions techniques pour la protection des données. L’objectif principal

de ces mécanismes techniques est de réduire le risque de ré-identification des données

d’un individu.

Pour le spécialiste en sciences sociales, cette situation pose un dilemme. L’algorithme

utilisé doit à la fois assurer la confidentialité des données et permettre de dériver les

statistiques ci-dessus sur les données agrégées. Par conséquent, l’une des exigences en

matière de confidentialité est que la possibilité d’obtenir les données d’un seul utilisateur

doit être infaisable. De même, il doit être impossible de calculer les opérations sur un

ensemble de données provenant d’un seul utilisateur, sinon, cet utilisateur sera directe-

ment ré-identifié. Cela implique que les opérations d’analyses statistiques ne doivent

pas être effectuées avant l’agrégation des données provenant de plusieurs sources. Enfin,

comme le consentement est donné pour une étude ou un traitement de données, effectuer

21

Contents

d’autres analyses sur les données qui ont été collectées à d’autres fins doit naturellement

être irréalisable.

Une autre considération importante est qu’une personne peut prévoir de participer

mais décider ensuite de ne pas le faire (ou simplement échoue). Ceci est tout à fait

naturel et ne devrait pas poser de problème tant au niveau du résultat final que de la

vie privée de cet individu (et de celle des autres).

Nos contributions.

À la lumière de la discussion ci-dessus, notre idée est alors de fournir un nouveau service

indépendant, que nous avons appelé WeStat, pour l’analyse préservant la vie privée des

données d’utilisation des téléphones mobiles auprès des utilisateurs enregistrés.

Nous résumons les principales contributions dans ce qui suit.

1. Un protocole général pour WeStat. Nous proposons une architecture in-

teractive générale basée sur trois entités : utilisateurs, un agrégateur et un de-

mandeur d’une étude. L’objectif de ces interactions est d’obtenir des statistiques

d’utilisation mobile en préservant la vie privée. Pour cela, nous décrivons un proto-

cole cryptographique ainsi qu’un modèle de sécurité. Pour ce faire, nous définissons

les sécurités du demandeur et de l’agrégateur dans le but de modéliser les attaques

possibles sur la vie privée de l’utilisateur pour chaque entité impliquée. Nous de-

mandons en outre de restreindre le nombre d’interactions entre tous les acteurs.

En effet, nous considérons tout d’abord qu’une solution basée sur la participation

active des utilisateurs n’est pas assez pérenne, en se basant sur le fait supplémen-

taire que ces derniers ne se connaissent pas. Les principales opérations doivent

donc être gérées par un agrégateur uniquement. De plus, nous préférons égale-

ment, dans les différentes étapes, diminuer le rôle du demandeur. En particulier,

nous pouvons considérer que ce dernier effectue une requête pour une étude au

début du protocole, et ne souhaite pas forcément être très actif. Le demandeur ne

doit donc participer, de manière non interactive, qu’à (i) la création de l’étude et

(ii) au calcul des statistiques.

2. Une construction générale basée sur une variante de FE. Nous concevons

un protocole WeStat en exploitant une construction bien connue d’une variante

multi-client de FE. En particulier, nous partons du schéma FE multi-client, décen-

tralisé, dynamique de Chotard et al. [42] pour le calcul de la fonction somme, mais

qui ne correspond pas exactement à notre architecture. Nous montrons comment

22

Contents

une adaptation de ce dernier avec une modification d’une idée d’arbre binaire de

Chan et al. [39], peuvent être utilisées ensemble pour réaliser notre solution qui

est résistante même si des utilisateurs ne participent pas (ou échouent).

Dans ce contexte, l’équipe de chercheurs en sciences sociales contacte (en jouant le rôle

d’un demandeur dans notre système) l’agrégateur avec une demande d’analyse spécifique.

Elle propose des statistiques (comptage, durée moyenne, régression linéaire...) sur une

ou un ensemble d’applications utilisées pendant une période donnée. Les demandes

d’analyse spécifient les attributs sur lesquels ils souhaitent que les opérations d’analyse

soient effectuées (par exemple, l’âge, le jour de la semaine, le mois, la durée d’utilisation,

etc. L’agrégateur effectue alors l’analyse demandée sur les données agrégées de l’individu

collectées pendant la période d’observation spécifiée et renvoie les résultats de l’analyse

à l’équipe de recherche. Ayant accès à ces résultats, l’équipe de recherche peut en

tirer des conclusions sociales sur l’étude. Notre solution WeStat consiste à utiliser des

techniques de chiffrement avec FE directement du côté de l’individu. Du point de vue

du RGPD, cela correspond à une technique de pseudonymisation, à la différence qu’en

cas de compromission, le responsable du traitement (au sens RGPD) n’a pas à informer

la personne concernée, mais seulement l’agrégateur.

Nous renvoyons au chapitre 5 pour une présentation de ces résultats.

Autre contribution

L’objectif de ce manuscrit est de mettre en évidence les différentes utilisations de FE

pour résoudre des problèmes cryptographiques pratiques. Au cours de cette thèse,

nous avons aussi participé à l’élaboration et à la promotion d’un jeu éducatif appelé

CYBERCRYPT [15]. Nous ne donnerons pas tous les détails mais le but premier est de

présenter (par le biais d’ateliers) les principales techniques cryptographiques de manière

ludique et récréative. Nous exposons par exemple le chiffré de César et sa cryptanalyse,

la machine Enigma, en plus des considérations avancées modernes comme le chiffrement

à clef publique ou la signature. Un article contenant les détails techniques a été rédigé

à cet effet [15] et a été accepté pour le volet exposition de la conférence HistoCrypt

2019 [104].

Organisation de cette thèse

Les prochaines parties de ce manuscrit sont présentées comme suit. Le chapitre 2 est

consacré au rappel du cadre cryptographique existant, y compris les définitions de sécu-

23

Contents

rité pour les primitives utilisées tout au long de cette thèse. Ensuite, dans le chapitre 3,

nous donnons notre framework pour la protection des fonctions. Le chapitre 4 fournit

notre solution reliant la confidentialité différentielle au chiffrement fonctionnel. Enfin,

au chapitre 5, nous exposons notre solution WeStat pour l’agrégation de l’utilisation des

données mobiles, avant de conclure au chapitre 6.

24

CHAPTER 1

INTRODUCTION

1.1 General context

Every group of persons is faced in its organizational management with the question

of maintaining, in an almost evident manner, the communication or the transmission

qualities of any information. Having certainty about the truthiness of general concepts

is fundamental in understanding complex systems or realizing common goals. At the

same time, minimizing and predicting uncertainty, is a natural behaviour as a response

to situations with unknown outcomes.

Information theory is a fundamental field studying some aspects of uncertainty. Initi-

ated by Nyquist [95], Hartley [78] and more fundamentally abstracted by Shannon [108],

this area sheds light on the mathematical methods to understand and, may be more

importantly, quantify how information is transmitted during a communication. An crit-

ical aspect is the notion of encoding (and decoding). As opposed to raw information,

this operation transforms one system of language into another one with the property

of being efficiently usable for the available resources. The implication of such theory is

considerable in the modern era with the development of computers, data storage, data

compression or mobile telecommunication; every aspect of modern technology draws on

ideas from information theory.

Cryptography or the science of secret. Having secrets is a general phenomenon of

making some information hidden or unavailable to untrusted entity. Early methods were

generally based on intuition and guile: personal beliefs or complicated constructions were

25

1.1. General context

good enough to convince the builders (or users) that these mechanisms are inviolable.

Cryptology refers to these general aspects of making secret schemes and initially pre-

dates the mathematical abstraction of information theory. Considered first as an art,

actively used for military purposes, it has regained a particular interest since the arrival

of the first computers at the end of world war in 1945. The recent conversion of different

sectors of the society into the digital world brings cryptology to the forefront. Today,

smartcards, commerce transactions with banking, social interactions with popular social

media and mobile message applications are examples of cryptology’s usages.

Cryptology is an umbrella that covers different fields. Cryptography is the most

popular one and regroups a set of general methods that aims to reach specific secrecy

properties, depending on a given context. As a complementary notion, Cryptanalysis

refers to the analysis of a cryptographic system behaviour’s by analysing how a malicious

adversary could obtain unauthorized information.

In essence, the security of a system is a perpetual dance between the designer of

a cryptographic construction and adversaries attacking it. Claiming that a scheme is

unbreakable, is being certain that there is no possible path for obtaining information

about some targeted underlying message. Moreover, innocently having trust into the

designer of the system does not provide substantially the full guarantee that a scheme

is indeed secure. Historical analysis of old constructions [58] shows that even the more

complex schemes could be broken. In fact, it is crucial to put forward a meaningful notion

of what it is intended by any malicious adversary. A security model fixes a baseline for

analysing the different potential flaws of a system, by defining the protagonists with their

respective powers when interacting with it. Thus, security of a system is by essence an

evolutive process that highly depends on the available resource during a time period. In

fact, a simple technology breakthrough or an advanced research knowledge could lead

to a catastrophic questioning about the claimed security properties.

Modern provable cryptography. A security proof in cryptography has the purpose

to give formal evidence that the power of an adversary is limited during the attack.

This is the aim of provable cryptography which regroups a set of techniques to prove

that a scheme is indeed secure. In modern cryptographic research, it is common to rely

on the computational security aspects of a scheme. Informally, mathematical models of

computation are idealizations of computer’s behaviour. Hence, the idea is to analyse

the possible limitations of an adversary in this computational model when attacking the

scheme, by leveraging its capabilities to retrieve unauthorized information.

Motivated by a mathematical notion of perfect security, Shannon [108] introduced

26

1. Introduction

and studied in a popular and seminal work some concepts of secrecy in the information

theoretical sense. The now popular encryption scheme known as one-time pad is the

perfect example where a ciphertext (which is the encryption of a message) contains

no information about the underlying message, even for an adversary with unlimited

resources. Shannon’s result is powerful since it provides mathematical and statistical

evidence that a ciphertext does not reveal anything about its content. As a side, this is

an example of how uncertainty (or probability) measure tools could be used to provide

certainty about the security of scheme. There is some caveat in term of efficiency for some

modern usages. However, the one-time pad serves as a basis for several modern advanced

cryptographic primitives. It is possible to send an information with the conviction that

the underlying encoded message does not provide any useful hints about its nature.

With the birth of public-key cryptography [47, 54, 69, 100, 103], Goldwasser and Mi-

cali [69] relaxes the perfect definition of Shannon by considering that given some cipher-

text, whatever is efficiently computable about the original message, is also efficiently

computable without the ciphertext. In other words, we can only learn, from any cipher-

text, the inherent leakage given from the message. The term efficient is crucial and

models the power that an adversary has during an attack, depending on the underlying

computational model. In particular, while Shannon’s definition considers unbounded

adversaries, Goldwasser and Micali [69] consider several types of adversaries.

Computational security allows some flexibility and efficiency, but it is often difficult

to directly analyse the actions of an attacker. An interesting compromise is to make

assumptions. The most currently used way is to reduce security to that of attacking

problems which are supposed to be difficult, given a determined model of computation.

The solidity of modern cryptography relies then on these (mathematical) beliefs and

heavily depends on our ability to predict hypothetical developments in solving these

difficult problems. For example, it is classical [87] to measure the available resources

(for e.g. time or space memory).

Other security properties are considered by modern schemes. As an example, in-

tegrity protects from alterations, or authentication permits to verify the validity of a

message. Combining several security properties is the basics for the design of complex

cryptographic systems.

Flexibility with Homomorphic and Functional Encryptions. Technologies such

as cloud computing offer new working perspectives for remote users today: data storage,

delegation of computation to more powerful servers or machine-learning services. For

cryptography, it is crucial to ensure the continuity of bringing the basic security prop-

27

1.2. Our contributions

erties during communication with the cloud while giving enough flexibility to propose

various services.

Homomorphic encryption is an interesting extension of encryption which allows an

extra algorithm that could compute over the underlying encrypted data without the need

to decrypt it. Introduced in the 1970s by Rivest et al. [102], homomorphic encryption

has explored new horizon with the Gentry’s breakthrough in 2009 [62] that proposed the

first theoretical result of a Fully Homomorphic Encryption scheme that allows a complete

system of operators (addition and multiplication), thus evaluating any possible function

over some encrypted data.

More recently, an interesting generalization, Functional Encryption (or FE) [26, 96],

arises as a general and very promising framework giving the flexibility and the possibility

to retain control of leaked information. Unlike traditional encryption or homomorphic

encryption, where there is one involved key that serves to encrypt and decrypt, FE

provides a special key associated to some function that reveals the evaluation of the

function over the data, given its encryption.

This is one of the most general form of encryption since it permits theoretically to

delegate any computation for a third party while revealing the minimum information

about the underlying data.

1.2 Our contributions

We discuss in the following section the main notions that we have treated during our

thesis. We provide, for each of the three contributions, a motivated use case as well as

the security issues that it brings. Moreover, we present an overview of our proposed

solution.

This thesis presents results that have been published. Nevertheless, we present two

generalizations of our articles [34] (with Sébastien Canard and Fabien Laguillaumie)

and [32] (with Sébastien Canard, Nicolas Desmoulins, Sébastien Hallay and Dominique

Le Hello) which are covered in Chap. 3 and Chap. 5 respectively. The chapter 4 proposes

a new notion and the obtained results are currently under submission for evaluation (with

Sébastien Canard and Fabien Laguillaumie).

1.2.1 A General Framework for Function’s Protection

With the growth of online activities, multiple data (confidential emails, employment

contracts, bank transactions, etc.) are transmitted and stored over different external

28

1. Introduction

platforms. A ruthless competition between several actors is ongoing in order to offer

particular services, based on those data, thus answering positively to an increasing de-

mand. For example, one could subscribe to a malware detection service (or a spam

filter) that aims to identify bad patterns over some incoming messages and, at best, to

reject them. In a different use case, a company or an institution specialized in machine

learning algorithms could find interest to obtain some specific data from a data owner to

improve its algorithms: individuals with specific characteristics related to e.g., health-

care, or companies with some specific kind of data for e.g., threats detection related to

Intranet/Internet browsing. At the same time, several concerns about the security and

privacy of manipulated data bring new challenges to those organizations. Encryption

mechanism is one enabler to achieve the compliance and data security/privacy that is

required in today’s security interest (for e.g. GDPR 1). However, conciliate data confi-

dentiality and functionality could be a hard task by using basic all-or-nothing approach

of traditional encryption schemes, where no computation are possible, except by decrypt-

ing the data itself, then decreasing the obtained security. From a higher perspective,

we consider a scenario with an entity that tries to get in clear a function over some

encrypted data.

Our first scenario covers possible implementations of FE for practical use-cases using a

functional interactive key generation protocol. Amongst other concerns, we give interest

to a situation where a spam filter provider builds its activity around a sensitive function.

This corresponds to some possibly protected detection rules [33]. Hence, it is relevant

and crucial to hide the underlying structure to the master secret key owner. Hiding the

function to an entity can have different meanings depending on the context.

As a consequence, it is important to explore the possibility of defining a notion of

blindness for an interactive functional key generation protocol, where a user generates a

functional key but does not get any information on the underlying function.

Our Contributions.

In this thesis, we first present a systematic and general study of this problematic by

defining the notion of blind functional encryption, which is a FE with a blind interactive

functional key generation protocol. In particular, the master secret key owner learns

nothing about the function. Our contributions could be resumed as follows.

1. A general definition of blind interactive FE. We define the notion of interac-

tive functional encryption (IFE) with an adapted and general security consideration

1https://ec.europa.eu/info/law/law-topic/data-protection/

29

https://ec.europa.eu/info/law/law-topic/data-protection/

1.2. Our contributions

for the classical notions of message-privacy and function-privacy presented in the

literature in both the private and public key settings. The functional key is not

necessarily kept by the owner of the function: in a spam filtering application, this

key can be installed on a mail server which belongs to a customer of the spam filter

editor. Moreover, we formally define the blindness property that aims to positively

answer to the following scenario: a master key owner generates a functional key

without learning any additional information on the function(in particular user’s

choice). We give a general notion of blindness that could be found in the termi-

nology of blind signature [81] and generalize known constructions in the context

of blind IBE of [30, 75]. With our notion, we conclude that it is different (and

complementary) from the well known function-privacy security.

2. A generic construction from any FE. We propose a generic construction of

blind IFE starting from any (non-interactive) FE scheme. This construction uses

techniques from a two-move private function evaluation [105] and generic zero-

knowledge proofs of knowledge [66].

3. A specific inner-product scheme. Many applications, such as data mining or

statistical computation need as subroutines inner-product evaluation. That is why

several IPFE constructions have recently been proposed [1, 11, 38]. Most of known

schemes extract functional keys of the same shape which is also an inner product.

Using the flexibility of linearly homomorphic encryption scheme [37], we design an

efficient construction for the specific case of the Inner Product FE (or IPFE) [1,11]

by using a new efficient blind two-party inner product protocol which could be of

independent interest.

This contribution is described in Chapter 3.

1.2.2 Obtaining Differential-Privacy via FE

Let us now consider a company holding some sensitive data about individuals and which

could find (commercial) interest in making such data available for an external use, aim-

ing for example to become a data broker and allowing other parties to execute some

statistics about the involved individuals. Obviously, the main concern is to not proceed

in the detriment of individual’s privacy. As a main responsibility for such company must

therefore to propose solutions that minimize the risk of re-identification, i.e. the proba-

bility of linking each individual with its belonging data. The statistics could generally

be represented as linear functions.

30

1. Introduction

Encryption is one of the first common approach. The idea is here to protect the

sensitive/personal data in storage, using standard encryption techniques, or in use, using

advanced cryptographic primitives such as FHE or MPC. The choice of the relevant

advanced cryptographic scheme strongly depends on the studied practical scenario and in

particular on the architecture (how to manage the keys) and the function to be executed

on encrypted data. But in all cases, there are three main parts: (i) data encryption, (ii)

treatment over encrypted data, and (iii) result computation/decryption.

Another common approach is to protect the amount of information one can finally

obtain from sensitive/personal data, after its use. In this case, an authorized party can

infer some information from those data, but the quantity and quality of such output is

limited by a technical protection. Those techniques are usually referred as anonymization

or pseudonymization, and are mainly based on some basic tools such as keyed-hashing,

masking, tokenization, blurring, etc.

Differential Privacy (or DP) [50] is now a powerful and well-developed framework

for protecting user’s recording on some datasets. Any DP mechanism gives guarantees

with respect to some predefined notion of privacy, which is concretely parametrized by

a neighbouring relation between inputs. The consequence is that, for an input dataset

x, the output result related to φ(x) for some query φ, is independent from the presence

of any individual within x. A differentially private mechanism is generally obtained

by constructing a randomized algorithm whose noise is calibrated by some quantity,

usually called sensitivity [50, 94], measuring the impact on the output when adding or

subtracting an individual in the database. More precisely, where the data has some

additive output structure, the idea is generally to add some noise to the output φ(x) as,

for example, fφ(x) = φ(x) + e, where e is some well-chosen random variable. In the DP

literature, the value e is typically drawn from the Laplacian, Gaussian or the Geometric

distribution [49,63].

Our contributions.

While both encryption and differential-privacy provides some security/privacy guaran-

tees, it is tempting to intertwine both these process to obtain the best of both worlds, i.e.

to protect the sensitive/personal data in storage, in use, and after its use. The principal

idea we consider is then to:

• first encrypt the sensitive/personal data x using a MPC/FHE/FE scheme;

• then execute differentially-private function in the encrypted domain;

31

1.2. Our contributions

• if the result is still encrypted (in the MPC/FHE cases), it should be (perhaps jointly

in the case of MPC) decrypted. Otherwise (in the FE case), it is directly obtained

in the plain domain.

It is now well-known that the generic versions of MPC/FHE/FE are Turing compliant,

so that they can in theory be used to evaluate any function (even inefficiently), including

our randomized fφ function w.r.t. any query φ. Hence, it is theoretically possible to

generically recover the result of a differential-private computation, but with a complexity

that makes it unrealistic in practice.

Through this thesis, we focus on the case of using FE, as it is relevant in many prac-

tical scenarii, and ask the possibility to precisely model the combination of encryption

with DP mechanisms. Our contributions could be resumed as follows.

1. A definition of Randomized IPFE. We propose a new extension of IPFE, where

we consider that the functionality (represented as a linear function) should give

a DP-compliant output. For this, we introduce the notion of Randomized IPFE

(RIPFE) for DP mechanisms. At a high level, using a functional encryption scheme,

data are protected thanks to encryption, and anyone having a specific functional

decryption key could only obtain the evaluation of the authorized function over

the underlying data, given its encryption. The novelty is to provide a differential

private answer, i.e an output which is DP-compliant. Moreover, we give a formal

security model, inspired from the Randomized FE (or RFE) literature [13,73], and

we provide an adaptation that fits with differential privacy.

2. A specific scheme for linear queries. We propose an efficient DP-compliant

solution for the inner-product which is based on a the Decisional Diffie-Hellman

hardness assumption in cyclic groups. Our construction combines in a clever way

and exploits powerful ideas from the two-input IPFE, which is a variant of IPFE.

3. An attempt for a generic construction. Finally, we sketch a generalization

for our basic solution given any IPFE and we provide evidence about its security.

The results of this contribution are given in Chapter 4.

1.2.3 Privacy-Preserving Mobile Data Usage

The problem of computing the sum function over some encrypted data is a well known

and old hugely studied problem in cryptography. We could trace back to the general ho-

momorphic encryption paradigm, where schemes could be used to obtain an (encryption

32

1. Introduction

of the) sum of any two data starting from the underlying encrypted version of each one

of them. As we will see in our thesis, this primitive allows one to design many practical

cryptographic primitives. A voting system is one of this example where it is possible to

compute the sum of all some voters’ choice during an election, in a privacy-persevering

manner.

The basic sum functionality founds several applications in cryptography, from multi-

party computation [114] to threshold cryptography [46]. In fact, depending on the

involved parties, the attack scenarios and the practical use cases, it is possible to obtain

several ways (for each of the considered architecture). Our work focus on a particular

architecture motivated by a dedicated use-case and explained as follows.

Collecting mobile data usage while preserving privacy. Consider a team of

social scientists that are interested in having a better knowledge of users habits using

their phones. This corresponds for example to study the impact on, a predetermined

population, the usage of e.g., social network applications or measure the causes and

effects of smartphone addiction. Traditionally, this type of studies is conducted through

tools such as face-to-face interviews or surveys. Participants would be asked to self-

report the frequency or the duration of their use of social networks apps via questions

such as “How frequently do you open your social networks application? Less than a

month; once a month; once a week; etc.”. This approach is spread in the social science

research community. However, it suffers from several drawbacks. Indeed, participants’

answers to the questionnaire may be biased by several factors: subjectivity (people may

underestimate or overestimate their use of social networks), human memory limitations

(it is hard to remember when or how often they open the application) or willingness

(for fear of other’s eyes). Hence, questions must be thoughtfully chosen and asked in

order to avoid biases. Additionally, questionnaires and surveys only cover a small sample

of the population. All these flaws of conventional tools for social science studies lead

to ineffective implementation (right questions to ask), poor representativeness (small

sample) and inaccurate results (biased answers).

Therefore, in order to obtain accurate results and avoid the aforementioned limita-

tions, the team of social scientists must search for the relevant information at source.

Mobile usage data regroups a large set of information. That consists for example of

timestamps of application opening and closing, actions performed in the application

(such as “like” button), configuration parameters...etc. As a complement to social scien-

tist’s traditional tools, having a fine-grained insights at large scale with scalable samples

could only reduce the eventual biases.

33

1.2. Our contributions

Privacy issues This use case raises several privacy concerns. The nature of available

information needs to provide a degree of vigilance on the final treatment. The obvious

starting point is to provide individuals the choice to give their consent to the collection

and processing of their data for a specific study, hence a specific statistical analysis.

In case consent is given, as collected information is privacy-sensitive, they should be

protected with regard to the current legislation.

As a side, a system providing such service should include mechanisms for privacy

protection, in particular in accordance with the GDPR, Consent is a first key condition

to collect and process users’ data (Articles 6, 7 and 8 of the GDPR). Therefore, before

each new study, users are requested to give their (informed and explicit) consent on the

collection and processing of their data.. Furthermore, to fulfil the principle of privacy-

by-design requested by the GDPR (Articles 25 and 32), the present use case should

leverage technical solutions for data protection. The main purpose for those technical

mechanisms is to reduce the risk of re-identification of any individual’s data.

For the social scientist this poses a dilemma. The used algorithm should both pro-

vide data confidentiality and allow to derive the above statistics on the aggregated data.

Similarly, it must be impossible to compute the analytics operations on a dataset orig-

inating from a single user; otherwise, this user will straightforwardly be re-identified.

This implies that analytics must not be performed before multi-source data are aggre-

gated. Finally, as consent is given for one study or one data processing, it must be

infeasible to perform any other analytics on the data that have been collected for other

purposes.

Another important issue is that an individual may plan to participate but then decide

not (or fail) to. This is quite natural and should not pose any problem regarding both

the final result and the privacy of this individual (and the one of the others).

Our contributions.

In the light of the above discussion, our idea is then to provide a new independent

service, that we have called WeStat, for privacy-preserving analytics on mobile usage

data collected from registered users.

We resume the main contributions in the following.

1. A general protocol for WeStat. We propose a general interactive architecture

based on three entities: users, an aggregator and a requestor. The aim of these

interactions is to perform data mobile usage in a privacy-preserving manner. For

this, we describe a cryptographic protocol as well as a security model. Namely, we

34

1. Introduction

define requestor’s and aggregator’s securities with the aim to model the possible

attacks on user’s privacy for each involved entity. We moreover request to restrict

the number of interactions between all actors. Indeed, we first consider that a

solution based on the active participation of individuals is not enough sustainable,

based on the additional fact that individuals do not know each other: the main

operations should be managed by an Aggregator solely. Furthermore, we also

prefer, in the different steps, to lower the role the Requestor, asking for a study.

In particular, we can consider that the latter requests a service from the former,

and does not necessarily want to be very active. The Requestor should then only

participate, in a non-interactive way, in (i) the creation of the study and (ii) the

computation of the final statistics.

2. A general construction based on a variant of FE. We design a WeStat pro-

tocol using a well known construction of a multi-client variant of FE. In particular,

we exploit the dynamic decentralized multi-client of FE of Chotard et al. [42] for

computing the sum function which does not fit exactly with our architecture. We

show how an adaptation of this scheme, as well as a modification of a binary tree

idea of Chan et al. [39] can be used together to achieve our fault-tolerant solution.

In this context, the team of social scientists contacts (playing the role of a Requestor

in our system) the Aggregator with a specific analytics request. It will request some

statistics (counting, average duration, linear regression...) on one or a set of apps are

used for a given period of time. The analytics requests specify the attributes on which

they would like the analytics operations to be performed (for instance, age, day of

the week, month, duration of use etc.) as well as the operation to be performed on

the data. The Aggregator then performs the requested analytics on the individual’s

aggregated data collected during the specified observation period and sends back the

analytics results to the research team. Having access to the result, the research team

can derive social conclusions about the study. Our WeStat solution is to make use of

encryption techniques directly on the individual’s side. For the GDPR’s point of view,

this corresponds to a pseudonymization technique, with the difference that in case of

private data compromise, the data controller does not have to inform the data subject,

but only the authority.

We refer to Chapter 5 for a presentation of these results.

35

1.3. Organization of this thesis

1.2.4 Other contribution

The focus of this manuscript is to highlight the different uses of FE for resolving prac-

tical cryptographic problems. During this thesis, we participate in the elaboration and

promotion of an educational game called CYBERCRYPT [15]. We will not give the full

details but the primary goal is to present (through workshops) the main cryptographic

techniques in a playful and recreational manner. We exhibit for example the basic Caesar

cipher and its cryptanalysis, the Enigma machine, in addition to the modern advanced

considerations such as public key encryption or signature. An article with the technical

details has been written for this purpose [15] and has been accepted for the exposition

track of the HistoCrypt 2019 conference [104].

1.3 Organization of this thesis

The next parts of this manuscript are presented as follows. Chapter 2 is dedicated to

the relevant cryptographic background, including the security definitions for the used

primitives through this thesis. Then, in Chapter 3, we give our framework for function’s

protection. Chapter 4 provides our solution connecting differential privacy with func-

tional encryption. Finally, in Chapter 5, we exhibit our WeStat solution for mobile data

usage aggregation, before concluding in Chapter 6.

36

CHAPTER 2

PRELIMINARIES

In this chapter we collect the necessary background that will be useful in the rest of this

thesis. The first section is devoted to fix the terminology as well as the mathematical

background. Most part of the next section is dedicated to present the main cryptographic

building blocks. Finally, we expose the central tool of our thesis, Functional Encryption

and describe the main security properties.

2.1 Mathematical background

Basic notations. For integers n, m ∈ N with n ≤ m ∈ N, let [n, m] be the ordered set

{n, n+1, . . . , m}. If S is a finite set, we denote by |S| its cardinal. The Cartesian product

of two sets A and B, denoted by A×B, is the set of all pairs (a, b) where a ∈ A and b ∈ B.

Similarly, for ℓ > 0 be a natural integer, we define the set Aℓ := A× · · · ×A
︸ ︷︷ ︸

ℓ times

where each

element in a ∈ Aℓ is a vector a := (a1, . . . , an) with ai ∈ A and are written in bold font.

We denote f : A → B to be a function over the set A with co-domain B. For a ∈ Aℓ,

we define the element f(a) ∈ Bℓ as the vector satisfying f(a) := (f(a1), . . . , f(aℓ)).

Let G be a group. The order of a (finite) group G is its cardinal |G|. A group G is

cyclic if there exists an element called generator g such that every element x ∈ G can be

written as gk for a certain integer k ∈ Z. In particular, cyclic groups are Abelian. We

use in our thesis prime order groups which are cyclic groups where the order is a prime

number.

37

2.1. Mathematical background

Probability background. We use the basic terminology of probability theory to

describe a random phenomenon in terms of its sample space and the occurrence frequency

of events. A discrete random variable X is a function defined over some randomness set,

generally omitted, and has output some finite set S. The probability mass function is a

function that assigns a real number in (0, 1) to each possible outcome. Given a discrete

random variable X, for all possible s ∈ S in the output space, it is denoted by Pr[X = s]

and verify
∑

s∈S Pr[X = s] = 1. We say sometimes that X is distributed according to

f if its probability mass function is equal to some function f . The (discrete) uniform

distribution over a set S is defined such that Pr[X = s] = 1
|S| . The notation s← S (resp.

over D(S) for a distribution D) means that we sample an element s from S according to

the uniform distribution over S (resp. to distribution D over S). We see in this thesis

further distributions that will be useful for our results.

Complexity of an algorithm. Evaluating the difficulty of solving a problem using al-

gorithms depends on the computational model one has to consider. As traditionally done

in the cryptography literature, We use special Probabilistic Polynomial Time (denoted

hereafter PPT) Turing Machines (TM) that has the specificity to make some proba-

bilistic choices dictated by a fixed probability distribution. In general, the terminology

random coins refers to the randomness used during the computation. We talk about

PPT algorithm referring to the underlying TM machine. Unless specified, we write the

PPT algorithms in calligraphic font and in addition for any PPT algorithm A, we write

A(x) to indicate that A takes some input x. The notation z ← A stands for an element

which is sampled from the output space of A according to the distribution defined over

the random coins of A. The notation AB stands for an oracle call, which says that A

has an input/output access to an algorithm B.

A particular class of algorithms important for us when considering differential privacy

is a special case of PPT Turing machines called randomized algorithms. In order to

explain the difference, We detail first how one can view algorithms that makes some

probabilistic choices. There is in fact two ways [66] of viewing them.

1. The first possibility is to consider that the algorithm is making random “toss coins”

and its output is seen as a random variable. A natural way to manage such random

output is to consider the probability Pr[A(x) = z] that an algorithm will give a

value z on input x. If we denote by Ar(x) the output of A on input x when r

is the outcome of the internal coin tosses, then the probability Pr[A(x) = z] is

simply the fraction of r for which Ar(x) = z, divided by the number of toss coins

38

2. Preliminaries

made by A. This corresponds to the theory [51] that is usually considered for a

differential private mechanism A since it mainly studies the class of functions f

that implements A

2. The second one makes use of some auxiliary input whose purpose is to manage

the underlying randomness. In this case, a randomized algorithm A is viewed as a

deterministic function with two inputs: the formal one x, and the randomness r. In

this case, the algorithm is denoted by A(x; r). In order to evaluate the distribution

of the output A(x; r), the natural way is to consider uniformly distributed elements

r over some randomness space R. This makes it particularly well-suited when

considering pseudo-random functions (defined over R).

Randomized algorithms have the particularity to always output a correct answer with

some significant probability (say ≥ 1
2). When the answer is not correct, then randomized

algorithm always detect it with probability 1. In fact, these algorithms are in fact PPT

algorithms but PPT are more general in the sense that they accept non-determinism in

the definition. We do not discuss these concepts in more details but we refer for e.g.

to [91] for an exhaustive definition.

Therefore, our own formulation of randomized algorithms uses the first approach

in the sequel, considering internal coin tosses and forgets how randomness spaces are

generated. More formally, we specify by adapting existing definition of randomized

algorithm’s notion which is based on the one of probability simplex, denoted ∆(Y) and

defined over a discrete set Y as:

∆(Y) := {p ∈ R
|Y| : pi ≥ 0 for all i and

|Y|
∑

i=1

pi = 1}.

Using this probability simplex, we can consider the following definition of randomized

algorithm issued from [51].

Definition 2.1.1 (Randomized Algorithm [51]). A randomized algorithm A defined

over a (discrete) domain X and a range Y is associated with a mapping pA : X → ∆(Y)

with the following property:

• on input x ∈ X , the algorithm A outputs y ∈ Y such that if (PA(x)) := (p1, . . . , p|Y|),

then Pr[A(x) = y] := py.

The probability space here is taken over coin tosses of the algorithm A.

39

2.1. Mathematical background

We finish this paragraph by providing a notion that will be useful for our considera-

tion in Chapter 3: feasible entropy distribution.

Definition 2.1.2 (Feasible entropy distribution). Let Wf (·) be a universal functional

oracle defined as Wf (x) := f(x), let Fλ denote a family of functions, D(Fλ) any distri-

bution over Fλ and U(Fλ) the uniform distribution over Fλ. We say that D is a feasible

entropy distribution, if for all non-uniform polynomial time algorithm A, it holds that:

∣
∣
∣Prf←D(Fλ)

[

AWf (·)(λ) = 1
]

− Prf←U(Fλ)

[

AWf (·)(λ) = 1
]∣
∣
∣ ≤ negl(λ).

Instead of using the uniform distribution, we can replace D and U by two distri-

butions D0 and D1. We can define then the notion of pair of ensembles of feasible

entropy distribution. An interested reader can refer to [80] for a discussion about this

notion, the question of efficient samplable distributions and links to indistinguishability

obfuscation [17,60].

Circuits. Another important model of computation in complexity theory is the class

of circuits which are more powerful than Turing Machines [14]1. ∀n, m ∈ N, a circuit C

is a directed acyclic graph. It contains n nodes with no incoming edges; called the input

nodes and m nodes with no outgoing edges, called the output nodes. All other nodes are

called gates and are labelled with boolean operation OR, AND and NOT. The OR and

AND nodes have fanin of 2 and the NOT node has fanin 1. Two important measures

of complexity are considered in this model. The size of C, denoted by size(C), is the

number of nodes in C and the depth of C is the length of the longest path in the graph

from an input node to the output node. The OR, AND and NOT gates form a universal

basis, i.e. every function from {0, 1}n to {0, 1}m can be implemented by a boolean circuit

using the AND, OR, NOT gates.

We call description of a circuit C: the underlying graph, gates, size and depth of the

circuit. We implicitly suppose that there is always a way to encode this information as

a vector of binary strings. For every string u ∈ {0, 1}n, we denote by C(u) the output

of the circuit C on input u. We consider a poly-sized log-depth family of circuits, which

is a sequence {Cn}n∈N of circuits where each Cn has n inputs, m outputs and size(C) is

at most polynomial with logarithmic depth.

For n ∈ N, we associate to a function f : {0, 1}∗ → {0, 1}l(n) with a family of

circuits denoted {fn}n∈N, where fn represents the restriction of f to a n-bit input, i.e.

1Circuits can be considered as Turing Machines with advices that has some auxiliary inputs in addition
to the classical input.

40

2. Preliminaries

fn : {0, 1}n → {0, 1}l(n) for a certain length-output l(n) function depending only of the

input-length n. We represent functions f in some set F by a poly-sized family of circuits

{fn}n∈N and we sometimes use the abuse notation f instead of fn.

2.2 Cryptographic building blocks

In this section, we review some known techniques that will be useful for our consideration.

2.2.1 Security foundations

A convenient tool when proving security is to use a series of experiments or games [110].

Informally, it is an interaction between an adversary attacking the system and some

oracles or challengers. The adversary is asked to find a way or a strategy to win the

game by having access to a certain amount of information provided by a challenger.

In general, measuring this strategy uses probability theory by analysing the possible

outcome of the adversary while running the experiments.

When the general analysis of an experiment is complex, another classical technique

[66] is to consider transitions and modifications between two (or more) experiments.

These methods produce several intermediate games that help to analyse the complexity

of the security proof. More importantly, for each step, when a modification occurs in the

experiment, one has to measure the potential information that an adversary can obtain

during these transitions.

We mention finally the notion of transitivity in a reduction. Suppose that a scheme

A is secure and a scheme B is reduced to scheme A. Then scheme B inherits from the

underlying security for scheme A. This property serves as a basis for all the constructions

that we consider here. For a formal definition of the Game-Based approach, we refer

to [110]).

Hard problems. The main cryptographic primitives are build around supposed hard-

ness of certain problems in complexity theory.

We consider in particular the DDH assumption. In a cyclic group G of prime

order q with generator g, the Decisional Diffie-Hellman Problem (DDH) in G considers

an adversary (called distinguisher) that has the capability of discerning the following

two distributions (g, ga, gb, gab) and (g, ga, gb, gc), with a, b, c picked uniformly and inde-

pendently at random in Z
∗
q . The DDH assumption in some group G is the intractability

of the DDH problem for any PPT distinguisher.

41

2.2. Cryptographic building blocks

Another problem that we consider is the general Hard Subgroup Membership

assumption (HSM). For a finite Abelian group G, consider G′ as a subgroup of G. The

HSM assumption states that it is hard to distinguish the elements of G
′ from G (We

refer to [112] for a more precise statement).

2.2.2 Cryptographic building blocks

We provide in this following the main cryptographic blocks.

Two-party computation. Some of our protocols are inspired by general techniques

from multiparty computation [67, Chap. 7]. In particular, we consider the two-party

case. There exists some protocol P that can compute a functionality between two

parties on a pair of inputs. In more details, for some function f : {0, 1}∗ × {0, 1}∗ →

{0, 1}∗ × {0, 1}∗, where f = (f1, f2) with fi : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ for i ∈ {1, 2},

there exists a protocol P such that for x1, x2 ∈ {0, 1}n, the output-pair is a random

variable (f1(x1, x2), f2(x1, x2)). The first party (which has input x1) wishes to obtain

f1(x1, x2) and the second party (with input x2) wishes to obtain f2(x1, x2).

The view of the i-th party (i ∈ {1, 2}) during an execution on (x1, x2) is denoted by

Viewi(x1, x2) and is equal to
(
xi, ri; mi

1, . . . , mi
t

)
, where ri equals the contents of the i-th

party’s internal random coins, and the mi
j ’s represent the j-th message that it received.

Finally, the output of the i-th party, denoted by Outputi(x1, x2), contains the ele-

ments that can be computed from its own view of the execution.

Security is given by simulation. In more details, the idea is to consider the capability

of generating Viewi(x1, x2) only from the inputs and the outputs of each party. To

formalize this, PPT simulators S1,S2 must exist such that Si(x1, x2, fi(x1, x2), f(x1, x2))

has to be indistinguishable from Viewi(x1, x2) for each i = 1, 2.

We refer to [67, Chap.7] for an exhaustive presentation of this notion.

Zero-Knowledge Proofs of Knowledge (ZKPoK). They are mechanisms to ensure

that some computations are done correctly. In particular, such techniques consider

language L containing elements x (named input) and w (named witness) that verify

RL(x, w) = 1 for some given relation RL.

Definition 2.2.1. An n-round interactive (perfect, statistical, computational) Zero Knowl-

edge Proof of Knowledge (ZKPoK) (P,V) between a PPT prover P and a PPT verifier V,

for a language L with relation RL is any pair of algorithms such that V and the following

conditions hold:

42

2. Preliminaries

• Completeness. (P,V) is complete, if for any x ∈ L with a membership witness w:

Pr[(P(w),V)(x) = 1] ≥ 2/3;

• Knowledge Extraction. (P,V) is knowledge-extractable with knowledge error κ, if

there exists an PPT algorithm Ext and a polynomial p such that for any input x,

for any prover P∗, the oracle algorithm ExtP
∗

(which is Ext that has access to P∗)

runs in expected polynomial time and satisfies

Pr[w′ ← ExtP
∗
(·) : RL(x, w′) = 1] ≥

ǫ− κ

p(|x|)
,

where ǫ denotes the probability that V accepts when interacting with P∗ on common

input x;

• Zero-Knowledge. (P,V) is (perfectly, statistically, computationally) zero-knowledge,

if for every PPT V∗ there exists a probabilistic simulator Sim running in expected

polynomial time such that for every x ∈ L,

ViewPV∗(x) ≈ Sim(x),

where ViewPV∗(x) consists of the internal random tape of V∗ together with the se-

quence of all messages he received from P on input a witness w such that R(x, w) =

1.

We use the notation ZKPoK{(x, w) : RL(x, w) = 1} to specify that there exist a

prover that uses a witness w and a verifier that use x (with RL(x, w) = 1), executing a

ZKPoK protocol as in the description of the above definition.

Public key Encryption with homomorphism. Public key encryption is one of the

fundamental primitive in cryptography. Over a message space M it is given by the

following definition.

Definition 2.2.2. Let λ ∈ N. A tuple (Setup, Enc, Dec) is an encryption scheme de-

scribed as follows.

• Setup(1λ) is a PPT algorithm which takes as input a security parameter 1λ and

outputs a secret key sk and a public key pk.

• Enc(pk, m) is a PPT algorithm which takes as input a public key pk and a message

m ∈M and returns a ciphertext c.

43

2.2. Cryptographic building blocks

• Dec(sk, c) is a PPT algorithm which takes as input a secret key sk, a ciphertext c

and outputs a string z.

For correctness, we require that for all m ∈ M , given (pk, sk) ← Setup(1λ) and c ←

Enc(pk, m), we have

Pr [Dec(sk, c) = m] ≥ 1− negl(λ).

To model security, the adversary has access to an oracle Encb(pk, ·, ·) such that for

any bit b ∈ {0, 1}, it takes as inputs x0 and x1 and returns Enc(pk, xb). More formally,

The indistinguishability under chosen-plaintext attack (hereafter IND− CPA) consists of

the following experiment.

Definition 2.2.3. Let b ∈ {0, 1}. An encryption scheme (Setup, KeyGen, Enc, Dec) over

a message space M is IND− CPA if for any PPT adversary A, there exists a negligible

function negl(λ) such that

∣
∣
∣Pr

[

Exp
(0)
A,IND−CPA(λ) = 1

]

− Pr
[

Exp
(1)
A,IND−CPA(λ) = 1

]∣
∣
∣ ≤ negl(λ),

where the experiment Exp
(b)
A,IND−CPA(λ) is defined as

1. (pk, sk)← Setup(1λ)

2. b′ ← AEncb(pk,·,·)(1λ, pk)

3. output b′ = b.

The quantity

∣
∣
∣Pr

[

Exp
(0)
A,IND−CPA(λ) = 1

]

− Pr
[

Exp
(1)
A,IND−CPA(λ) = 1

]∣
∣
∣ ,

is called the advantage of A and is denoted AdvA,IND−CPA(1λ).

Next, we discuss the notion of FHE (for Fully Homomorphic Encryption) which is

informally an encryption mechanism that has the capability of evaluating any function

over some encrypted data. The definition of a FHE is given as follows and is adapted

from [62].

Definition 2.2.4 (Fully Homomorphic Encryption). Let C = {Cλ} be a set of circuits.

A tuple of algorithms FHE = (Gen, Enc, Dec, Eval) is a homomorphic encryption scheme

with respect to C if (Gen, Enc, Dec) is a public key encryption as in Def. 2.2.2 with the

following Eval algorithm running for all C ∈ C, all m ciphertexts cm1 , . . . , cmℓ
encrypting

messages m1, . . . , mℓ such that

44

2. Preliminaries

• Eval(pk, f, cm1 , . . . , cml
) is a PPT algorithm which provide an outputs a ciphertext

c′ that is distributed as a random encryption Enc(f(m1, · · · , ml), pk).

We say that a scheme is fully homomorphic if

1. for every polynomial p = p(λ) it is homomorphic with respect to the family C =

{Cλ} where Cλ is the set of all circuits of size at most p.

2. the running time (and the output size) of both the encryption and decryption algo-

rithm is also polynomial in λ. If this condition is not satisfied, We say that it is

size-dependent.

The fully homomorphic encryption scheme of Gentry given in [62] realize all the

properties described above. Other schemes exists based on various hardness assumptions

[29,40,56,113]. If we consider size-dependent construction, a possible instantiation under

the DDH assumption is given in [18].

Linearly homomorphic scheme. A special class of circuits that we use in the next

chapters is the class of linear functions sometimes referred to linearly homomorphic

encryption [37]. A FHE can compute linear functions, but we can mention the follow-

ing schemes that support this specific class of linear functions [37, 45, 69, 98]. For our

construction in Chapter 3, we use the following Castagnos-Laguillaumie linearly homo-

morphic scheme (hereafter CL) and presented in [37]. The construction is highlighted in

the following paragraph.

CL encryption scheme. The main idea of the CL scheme is to consider a framework

that consists of the description of a DDH group G with an easy discrete logarithm sub-

group in G. In addition, it requires a special hardness membership subgroup assumption

which states that it is hard to distinguish between elements of a subgroup from G. This

scheme (and its variants) provides IND− CPA security, based on various assumption de-

pending on the desired efficiency. The original scheme [37] is based on DDH over the

group G while in [38, 112], it relies on the hard subgroup membership assumption. We

provide a high-level description based on the second construction.

The general parameters for the scheme is given by a tuple (p, s̃, g, f, gp,G, F, Gp)

where the set (G, ·) is a cyclic group of order ps, for an unknown integer s, p is a prime

number such that gcd(p, s) = 1. The only known information on s is an upper bound

s̃ of s. The set Gp = {gp, g ∈ G} is the subgroup of (unknown) order s of G, and F is

45

2.2. Cryptographic building blocks

the subgroup of order p of G, so that G = F ×Gp. The elements f, gp and g = f · gp are

respective generators of F , Gp and G.

The discrete logarithm problem is easy in F , which means that there exists a deter-

ministic polynomial time algorithm Solve that efficiently solves the discrete logarithm

problem in F . The message space of CL is Zp. We refer the reader to [37, 38, 112] for a

more precise description and some generalization of this scheme. Informally, it is given

by the following algorithms.

The secret key sk is an integer x← {0, . . . , s̃p−1} and the public key is pk = gx
p ∈ Gp.

The encryption procedure returns a ciphertext cm = (c1, c2) where c1 ← gr
p ∈ Gp and

c2 ← fmpkr ∈ G for a random r and a message m ∈ Zp. The decryption algorithm first

computes M ← c2/cx
1 ∈ F and returns m using the Solve algorithm on M(= fm). It is

not difficult to see that this scheme is linearly homomorphic.

Non Interactive Key exchange (NIKE). In the following, we describe chameleon

hashing and NIKE as primitives needed for our protocol in Chapter 5. Informally, NIKE

permits to non interactively share a common secret key between two parties. Moreover,

it serves as a basis for the DSum functional encryption presented in Sec. 2.3.4. Hence,

we implicitly assume the obtained underlying security properties of both NIKE and

chameleon hashing and will only provide instantiations of this primitives on groups.

• DL Based Chameleon Hashing The starting point to build NIKE is a certain

type of hashing. In a nutshell, a chameleon hashing corresponds to a collision-

resistant algebraic hash function with a trapdoor for finding collisions. In their

paper [86], Krawczyk and Rabin have introduced such concept (together with the

one of chameleon signature schemes) and have proposed several constructions. We

here focus on the Discrete Logarithm (DL) based one.

At a high-level, this DL-based construction considers p and q to be prime numbers

such that p = kq + 1 for some positive integer k. Let g of order q in Z
∗
p. The secret

key for the chameleon hashing consists of a trapdoor ck ∈ Z
∗
q and the corresponding

hashing public key is hk = gck (mod p). Given a message m ∈ Z
∗
q , the hashing

procedure first chooses at random r ∈ Z
∗
q and computes h = gmhkr (mod p). To

find collision, the secret key ck is used. Indeed, given message m′, a value r′

such that gmhkr = gm′
hkr′

(mod p), it is possible having ck to solve the equation

m + ck · r = m′ + ck · r′ (mod q).

We will use chameleon hashing for our instantiation of the NIKE primitive (see

the next paragraph) from the protocol described in Chapter 5.

46

2. Preliminaries

We focus now on the NIKE given and studied by Freire et al. [57]. It corresponds to

a public-key cryptographic primitive which enables two parties to agree on a symmetric

shared key without requiring any interaction. Each party owns a key pair (ski, pki) and

is able to compute a shared key by using her private key sk1 (resp. sk2) and the public

key pk2 (resp. pk1) of the other party.

For our main construction, we make use of the pairing-based construction, still given

in [57]. Let (G1,G2,GT , p, g1, g2, e) be a bilinear environment, where G1,G2,GT are

groups of order prime p, g1 ∈ G1 and g2 ∈ G2 and e is a bilinear map. For a more formal

definition of bilinear environment, we refer to [59] for an exhaustive presentation.

In order to build NIKE following Freire et al. [57], we take u, u1, u2 ∈ G
∗
1 and let hk, ck

be as described above for the chameleon hash function. All those values compose the

parameters of the NIKE scheme. In fact, we note that in the construction of Freire et

al. [57] that we consider, the collision secret key ck is not use explicitly in the construction

but rather to prove the security of the scheme. See [57] for details.

We describe next the primitive. To generate a common key, a key generation phase is

executed by each party i = 1, 2 that consists of choosing at random xi ∈ Zp and ri ∈ Z
⋆
q

(as in the chameleon hash function above), then computing Zi = gxi
2 , t = gH2(Zi)hkri

(mod p) (this is a chameleon hash), Yi = u0uti
1 u

t2
i

2 and Xi = Y xi

i . The public key pki is

then (Xi, Zi, ri) and the private key ski is xi.

Finally, the computation of the shared key K1,2 = K2,1 is done as follows: using

a public key pk1 and a private key sk2, one computes t1 = gH2(Z1)hkr1 (mod p) and

generates the key K1,2 = e(Sx2 , Z1) if and only if e(X1, g2) = e(u0ut1
1 u

t2
1

2 , Z1).

In fact, this scheme is a modification of the initial description given in [57]. We

have first removed the identity part and we have then replaced Z by H2(Z) during the

computation of t, where H2 : {0, 1}∗ → Z
∗
q is a hash function. This is due to the fact

that when considering a practical instance for the NIKE scheme, using the chameleon

hash, Z should be in G2 while the value to be chameleon hashed should be in Z
∗
q , as

explained in [86]. In addition, the construction given below is secure (as defined in [57])

under the Decisional Bilinear Diffie Hellman [59], which is a variant of DDH in bilinear

groups (for type 2 pairings).

2.3 Functional Encryption

In this section, we discuss our principal tool for this thesis: functional encryption.

The general concept of public key encryption permits to recover, thanks to some

secret key associated to a public key, the original message being encrypted, and nothing

47

2.3. Functional Encryption

more. The main novelty behind Functional Encryption (or FE) [26, 96] is to give a way

to generate several keys, called functional keys, and attached to some known functions

f , that are used to recover related information about the original message. In fact,

it is possible to recover the evaluation of the function f over the underlying message.

Classical encryption is a special case since there is only one such functional key (the

classical secret key) corresponding to the identity function, then permitting to obtain

f(m) := m for any message m.

Having such general notion allows naturally to obtain many existing primitives in

cryptography, by considering several classes of functions [1,16,23,26,71,74,83]. Predicate

Encryption [71, 83] is an example where a message can be decrypted if and only if the

evaluation of some predicate P over the message has a True value.

As FE is general, the classical concepts of security has to be adapted and the

IND− CPA of classical encryption is not sufficient. For example, the adversary can

learn many functional keys for a simple function or many functional keys for possibly

different functions.

We recall in the following the definition of Functional Encryption taken from [26].

We fix an arbitrary set of functions F . In addition, we fix a message space M , where

each m ∈M ⊆ {0, 1}∗ is represented by a string input of any f ∈ F .

Public key Functional Encryption. A public key Functional Encryption is defined

as follows. [26]

Definition 2.3.1. Let λ ∈ N. A functional encryption scheme for a set of functions F

consists of a tuple FE = (Setup, KeyGen, Enc, Dec) defined as follows.

• Setup(1λ) is a PPTalgorithm which takes as input a security parameter 1λ, and

outputs a master secret key msk and a master public key mpk.

• KeyGen(msk, f) is a PPTalgorithm which takes as input a master secret key msk,

a description of the function f ∈ F and outputs a functional key skf .

• Enc(mpk, m) is a PPT algorithm which takes as input the master public key mpk

and a message m ∈M , and returns a ciphertext c.

• Dec(mpk, skf , c) is a PPT algorithm which takes as input a master public key mpk,

a functional key skf and a ciphertext c and outputs a string z.

For correctness, we require that for all f ∈ F and m ∈ M , given keys (mpk, msk) ←

48

2. Preliminaries

Setup(1λ), skf ← KeyGen(msk, f) and c← Enc(mpk, m), we have

Pr
[

Dec(mpk, skf , c) = f(m)
]

≥ 1− negl(λ).

Private key FE. The above definition can easily be adapted to the private key setting

where encryption is only possible for the entity knowing msk. In this case, the Setup

algorithm outputs msk and some public parameters params; the KeyGen algorithm takes

as inputs params; the encryption algorithm Enc uses the master secret key msk in order

to encrypt the message; and Dec algorithm takes as inputs params instead of mpk.

Note that if it is not specified, params will always be known during the invocation of

the above algorithms.

2.3.1 Security Definitions for Functional Encryption

We provide in this section the main security properties that an FE should provide.

A note on the terminology. The classical terminology used for security of FE is

to consider Indistinguishability under Chosen Plaintext Attack, or IND− CPA. In this

thesis, we call it message-privacy (MP) since we also deal with a related notion of

function-privacy for FE. Such choice permits to avoid confusion or heavy notation.

Message-privacy for FE

The basic security consideration for FE is related to the standard notion of message-

privacy security with different functional keys [26,70]. As it is usually done, we consider

the adaptive form of message-privacy with multiple messages and multiple functional

keys.

We specify first some oracles. The adversary has access to a KeyGen(msk, ·) oracle

which extracts a functional key when the adversary requests it for a chosen input function

f . For any bit b ∈ {0, 1}, we define Encb(mpk, ·, ·) to be an oracle which takes as inputs x0

and x1 and returns Enc(mpk, xb). More oracles will be defined all along this manuscript

when needed.

Definition 2.3.2 (Message-privacy for FE). Let b ∈ {0, 1}. We say that a public key

FE scheme (Setup, KeyGen, Enc, Dec) over a message space M and a function space F is

message-private (MP) if for any PPT adversary A, there exists a negligible function

negl(λ) such that the following difference of two probabilities, called the advantage of A

49

2.3. Functional Encryption

and denoted AdvA,MP(1λ), verifies

∣
∣
∣Pr

[

Exp0
A,MP(λ) = 1

]

− Pr
[

Exp1
A,MP(λ) = 1

]∣
∣
∣ ≤ negl(λ),

and the experiment Expb
A,MP(λ) is defined as

1. (mpk, msk)← Setup(1λ)

2. b′ ← AKeyGen(msk,·),Encb(mpk,·,·)(1λ, mpk)

3. output b′ = b

The output b′ depends on some conditions. We require that for all f ∈ F and (m0, m1)

coming from A’s calls to the oracles KeyGen and Encb respectively, if f(m0) 6= f(m1)

then set b′ to be a random bit.

From such definition, an adversary could ask as many messages as she wants. In

the public key setting, it is not difficult to see that many-MP security is equivalent to

one-MP security using standard hybrid [66, 69] arguments. We then suppose that the

adversary is making one single request to the encryption oracle.

In the private key setting, the definition is the same (replacing Encb(mpk, ·, ·) with

Encb(msk, ·, ·)). Moreover, as the adversary cannot naturally encrypt messages of its

choice, we additionally provide the oracle Enc(msk, ·) which encrypts messages m of

adversary’s choice, with the inherent condition that f(m) = f(m0) = f(m1) for all

requested f (otherwise it could trivially win the game). It is the analogue of the find-

then-guess security which can be shown to be equivalent to our notion [22].

Function-privacy for FE. Several other security properties have been considered for

FE in the literature and we do not review all of them. However, We consider in the

sequel the notion of function-privacy which informally states that a functional key skf

does not give any additional information about the underlying function f , except from

what is given by the evaluations over some data being encrypted [8, 24, 28, 84]. More

details will be given in Chapter 3, as it is close to our new notion of blindness.

Inner-product FE (IPFE). The particular case of inner-product for FE, or IPFE [1,

11,38,112], has been extensively studied as it is one basic functionality for which we can

provide very efficient constructions.

The way to define such specific functionality can be done in the following way.

The input elements are represented as x ∈ {0, . . . , Bx}
ℓ and functions are given as

50

2. Preliminaries

y ∈ {0, . . . , By}
ℓ for some integer bounds Bx, By. In particular, for each input x =

(x1, . . . , xℓ), a linear (or inner-product) function is given by

〈x, y〉 :=
ℓ∑

i=1

xi · yi ∈ Z

for a certain vector y = (y1, . . . , yℓ).

An IPFE scheme is an FE scheme for the class of function F := {〈·, y〉, y ∈ {0, . . . , By}}.

This important primitive can be instantiated from several assumptions [1,11,38] and we

consider it in Chapter 3 and Chapter 4.

2.3.2 DSum Multi-client Functional Encryption

Traditionally, FE considers a single user setting, where there is one master secret key msk

that also serves to general functional keys. Naturally, several works extend this primitive

into the multi-user, or more traditionally called multi-client setting [42]. Informally, in

this situation, a coalition (or a group) of users controls the setup, the encryption and

the functional key algorithms, and collaborate in order to delegate a computation as in

FE. We refer to [42] for more details.

The core of our cryptographic system for the WeStat construction that is presented

in Chapter 5, is the DSum scheme which is a special multi-client FE given in [42] that we

present in this paragraph. This primitive allows a set of users to agree on the following

functionality: encrypting an input to a group of users, then recovering the sum of them

with the restrictive condition that all participants of the same group (under some label)

indeed sent their contribution. We recall in the following an adapted definition of this

notion, where we define the message space over any finite Abelian group (G, +). We fix

a set of users indexed by a subgroup I of G.

Definition 2.3.3 (DSum [42]). The DSum multi-client functional encryption for the

sum function over G consists of the following (Setup, Enc, KeyGen, Dec) algorithms.

• Setup(1λ): a PPT algorithm that outputs public parameters param which are in-

cluded to all the other algorithms.

• KeyGen(i ∈ I): a PPT algorithm that outputs (pki, ski), where pki is party i’s

public key and ski is the corresponding secret key.

• Enc((pki, ski), x, {pkj}j∈J , ℓ): a PPT algorithm that takes as inputs a couple (pki, ski)

generated during KeyGen, an input data x to encrypt, a set of public keys {pkj}j∈J

51

2.3. Functional Encryption

indexed by some subset J ⊆ I and a label ℓ. If i /∈ J returns ⊥. Otherwise, this

algorithm outputs a ciphertext cti,ℓ.

• Dec(param, {ctj,ℓ}j∈J): a deterministic algorithm that takes as inputs param and

a set of ciphertexts {ctj,ℓ}j∈J then outputs a value y ∈ G.

The correctness condition states that for all security parameter λ, a label ℓ, for all

J ⊆ I, if {pkj}j∈J represents the set of users issued using KeyGen and all corresponding

ciphertexts {ctj,ℓ}j∈J under the same set J and label ℓ, then we have

Pr[Dec(param, {ctj,ℓ}j∈J) =
∑

j∈J
xj] = 1.

Notice that the correctness condition states that if all users of the same group provide

the corresponding ciphertexts, then it is possible to recover the sum of all their inputs.

We discuss the main security definition for this primitive. Informally, even if there

are some corrupted users, it is difficult to obtain any additional information about the

inputs of the remaining honest users.

Definition 2.3.4 (IND− DSum). For any PPT adversary A, consider the following

experiment.

• Initialization: the experiment starts by generating param ← Setup(λ). A random

bit b ∈ {0, 1} is chosen and param is given to A.

• Honest User creation: A has access to a QHKeygen oracle, which on input an index

i, runs (pki, ski)← KeyGen() and returns pki to A.

• Corrupt User creation: A has access to a QCKeyGen oracle, which on input an

index i, gets the corresponding ski of any user i of its choice.

• Data challenge: A has an adaptive access to an oracle QEncrypt, which on inputs

the elements (i, x0
i , x1

i , ℓ) and a set J returns

cti,ℓ,b ← Enc((pki, ski), xb
i , {pkj}j∈J , ℓ).

• Guessing challenge: A makes a guess b′.

The output b′ of the game depends on some conditions. Consider CS the set of

corrupted users from QCKeygen and HS the set of honest users from QHKeygen. If

there exists a set J and {(j, x0
j , x1

j , ℓ)}j∈J such that
∑

j∈J x0
j 6=

∑

j∈J x1
j with

52

2. Preliminaries

• x0
j = x1

j for all j ∈ CS ∩ J ;

• QEncrypt(i, x0, x1, ℓ) queries have been asked for all j ∈ HS ∩ J ,

then set b′ to be a random bit. Otherwise, the advantage of A is then defined as the

quantity

Adv(A) = |Pr[b′ = b]− 1/2|.

The last condition in the security definition captures the situation when A could

trivially guess the bit b.

Construction and instantiation. In Chotard et al. [42], a generic DSum construction

is given and makes use of NIKE [57] with a new concept they have called All-or-Nothing

Encapsulation that we will not introduce. For the instantiation, we make use of the

discussed construction given in Sec. 2.2.2 and that will fully presented in Chapter 5.

53

CHAPTER 3

FUNCTION’S PROTECTION IN FUNCTIONAL ENCRYPTION

Overview of our problematic

In functional encryption, the functional key skf is derived from a master secret key

msk and the function f . The master key owner is then very powerful since it can also

decrypt all the ciphertexts. In most use cases, the functional key generation protocol

is interactive between the manager of the master secret key msk and the user knowing

the function to be used. While the natural approach to obtain skf is to send f to

the master secret key owner, we enlight a situation where the evaluation function f is

sensitive. We consider in the sequel some possible implementations of FE motivated by

some use cases. In particular, we describe in the following situations where a meaningful

function’s protection is desirable.

FE for Spam filter. On internet, one desirable feature is the possibility of detecting

if some incoming data/packet contains or not a malicious program such as malware or

spam. Historically, anti-virus software editors have been able to offer solutions in re-

sponse to the growing demand of protection against these malicious programs. We will

not review all of the solutions but generally speaking, the main feature is to have a local

access in order to provide a deep analysis about the incoming traffic. Thanks to this

access privilege, the antivirus protects the final subscriber of the service from obtain-

ing malware programs but nothing prevents it from bypassing their initial functions.

As a consequence, it is also possible to obtain even more (undesired) data that could

potentially compromise the privacy of subscribers.

55

3. Function’s protection in Functional Encryption

A way to circumvent this problem using FE is to provide, as a naive solution, a key

to the antivirus editor that could permits to evaluate its algorithms over the encrypted

data. Eventually, with this solution, the only leaked information in the end of the

computation would be the protection of data without compromising the data being

encrypted. Hence, with a master secret key msk, it is possible to produce a functional

key skf corresponding to a function f representing a complex function known by the

anti-virus editor, that should lead to the correct malware detection output. Beside, data

remains encrypted and the editor could hope to build its activity using these particular

detection services while promoting the privacy of its consumers.

Taking a regard back to the beginning of this chapter, recall that the functional key

generation is interactive. The antivirus editor could find interest to blind the function

towards msk owner’s. Indeed, the function might be related to some specific spam rules

and correspond to the market compliance defined in e.g. [33] which shows the sensitivity

of the rules given by the security editor. However, for a possible implementation of

FE, any owner of msk needs to somehow obtain the underlying (malware detection)

function f to generate the functional key skf . A naive implementation that consists of

sending f in clear would result to a situation where the master secret owner learns all

the information about it.

FE for data analytics. In the last decades, there is undeniably a particular growth

and interest in massive data analytics algorithms. The most famous ones are issued for

the machine learning community. The set of algorithms are used among other concerns

to better detect a specific disease or general commercial tendencies. These mechanisms

are sometimes linked to some very particular and rare know-how behaviour.

Since these algorithms could manipulate some sensitive data, the growth of privacy-

preserving solutions emerge as a natural concept. It is not difficult to imagine that FE

could potentially be used in this situation. The data remains encrypted and a master

secret key owner could provide a functional key to any complex machine learning al-

gorithm that could safely be executed through the encrypted data. If sometimes these

algorithms are seen as black-box, there is however some parameters that could potentially

be relevant, even crucial, to blind for any particular use. As a consequence, a blindness

notion seems again necessary anytime the underlying structure of these algorithms needs

to be hidden to the master secret key owner.

Generality of our approach. We deliver in two previous examples a view of how

FE could be potentially used in some specific cases and where it is crucial to protect the

56

3. Function’s protection in Functional Encryption

function. Besides, it is instructive and natural to first question the necessity of consid-

ering any notion of blindness. Indeed, while our two presentations are business-oriented

examples of the usefulness of FE for interactive privacy preserving solutions, we argue

that treating this intuition for the general case for any function is still meaningful. In

fact, a notion of blindness, more generally blind interactive FE, here after blind IFE, is

not new. Our work focuses on the initial results of Green and Hohenberger [75] or Ca-

menisch et al. [30]. We remarked that no such study has been done for the more general

case of functional encryption and since FE is a generalization of many cryptosystems, it

is natural to consider a general comprehensive framework that encompasses these previ-

ous works. Our notion of blindness could roughly be resumed in the following sentence:

there is no link between a functional key skf and the interactions that help to generate

it.

Having theses examples motivate our study. From a theoretical perspective, a blind

IFE notion is interesting on its own. Eventually, it also could potentially be used as a

building block for other cryptographic primitives or protocols, for example by considering

some specific class of families, as in the previous works for IBE or ABE.

Insufficiency of function-privacy. Several other security properties have been con-

sidered for FE in the literature and we will not review all of them. However, we could

mention the known [8, 24, 28] notion of function-privacy (FP) which informally states

that a functional key skf does not give any additional information about the underlying

function f , except from what is given by the evaluations over some data being encrypted.

Function privacy looks similar to our consideration of blindness. Since FP is a FE

related notion, we need first to adapt and propose its generalization in the context of

interactive FE. Informally, this is done by adding interactive oracles to the defintion in

order to consider potential leakage during the interaction. Comparing our new notion of

blindness and the existing one of function privacy is not immediate. Depending on the

public or private key setting and the presence or not of the functional key skf in the mas-

ter secret key owner’s output, we obtain several disconnections between function-privacy

and blindness security properties. Informally, this is due to the nature of the considered

options. Indeed, the FP security asks any adversary which does not have necessarily

an access to an encryption oracle, to obtain unwanted information about the function

f from skf and eventually the interaction. The blindness security game concerns in

another context, a bad msk’s owner with the capability of encrypting arbitrary messages

using msk which makes the functional keys skf linked to the interactions. Our main

result in a nutshell says that these two properties are distinct, and then complementary.

57

3.1. Definitions and Security Model

Other related works. The notion of interactive functional key generation, without

any consideration of blindness, was first considered in the Accountable Authority Identity

Based Encryption (IBE) in [72] in order to mitigate the inherent key escrow problem in

identity-based encryption. Controlled functional encryption [93] is also a variant of FE

with an interactive behaviour where a fresh functional key is generated in accordance to

ciphertext. While similar to our general approach of hiding the function to a master key

owner, the model is different from ours. In fact, we only view two parties in our model

where the master secret key owner is the only party to provide functional keys. In [93],

it is only possible to produce functional keys that depends on the ciphertext and is only

used once, while we consider multiple users, functional keys and ciphertexts.

The first closest consideration of blindness appears in the work of Green and Hohen-

berger in [75] followed after by the work of Camenisch et al. [30] for IBE where it was used

as a building block for two primitives, respectively a simulatable oblivious transfer and a

public key encryption with oblivious keyword search. In [101], an adaptation is proposed

for the case of the Attribute-Based Encryption (ABE) primitive. The notion of blindness

considered in these papers are inspired from the terminology of blind signature.

Organization of this chapter

We start by providing definitions that capture the situation of a user holding a function

f , namely FuncOw and asking the msk’s holder MskOw for a corresponding functional

key skf during an interactive protocol. This leads us to formally introduce the notion

of interactive FE and study the impact on existing security properties from the classical

FE literature. Then, we consider the case where when user FuncOw wants to protect the

function f from MskOw, introducing the notion of blindness and comparing with the

well known function-privacy notion.

Next sections consider a generic construction of IFE from FE and the specific case of

IPFE is given.

3.1 Definitions and Security Model

3.1.1 Syntactic Definitions for Interactive FE

The natural starting point is to define a public key interactive functional encryption

(IFE).

58

3. Function’s protection in Functional Encryption

From FE to interactive FE. Syntactically, a definition of an interactive FE is nat-

urally derived from the one of FE with a slight modification on the KeyGen algorithm

of Def. 2.3.1. In more details, we develop the notion of Interactive Functional Encryp-

tion (IFE) which is mainly adapted from the classical definition of FE, i.e we maintain

Setup, Enc, Dec and the correctness condition, except that we replace the KeyGen al-

gorithm by an IKeyGen two-party protocol between two players. For our purpose, the

parties are modelled by considering the two following entities:

1. a PPT algorithm that represents a function’s holder of some function f and denoted

by FuncOw; and

2. a PPT algorithm that represents a msk’s holder of some master secret key msk and

denoted by MskOw.

Definition 3.1.1 (Public key IFE). Let λ be a positive integer. A public key interactive

functional encryption scheme with some fixed function space F consists of a tuple of

algorithms IFE = (Setup, IKeyGen, Enc, Dec) defined as

• Setup(1λ) is a PPT algorithm which takes as input a security parameter 1λ, and

outputs a master secret key msk and a master public key mpk.

• Enc(mpk, m) is a PPT algorithm which takes as input a master public key mpk and

a message m ∈M , and returns a ciphertext c.

• IKeyGen(MskOw(msk), FuncOw(mpk, f)) is a two-party interactive protocol between

MskOw which has as input a master secret key msk and FuncOw which has as inputs

a master public key mpk (generated using the Setup algorithm) and a function f ∈

F . The output of this protocol is, on the MskOw’s side an element Output(MskOw)

and on the FuncOw’s side, a functional key skf .

• Dec(mpk, skf , c) is a PPT algorithm which takes as input a master public key mpk,

a functional key skf and a ciphertext c and outputs a string z.

Similarly, we adapt the correctness condition as following. The IFE scheme described

above is considered as correct if for all f ∈ F and all m ∈ M , if for (mpk, msk) ←

IFE.Setup(1λ), skf is the result from the execution of functional key generation protocol

IFE.IKeyGen(MskOw(msk), FuncOw(mpk, f)) and Cm ← IFE.Enc(mpk, m) then

Pr
[

IFE.Dec(mpk, skf , Cm) = f(m)
]

≥ 1− negl(λ).

59

3.1. Definitions and Security Model

We conclude this paragraph by mentioning that the private-key setting can easily be

adapted from the definition.

A 2PC formulation. With the two-party computation terminology of sec. 2.2.2, we

can reformulate the above IKeyGen protocol and state that from two parties MskOw with

input x := msk and FuncOw with inputs y := (mpk, f), there exists a (two-party) protocol

IKeyGen that can compute the functionality that outputs the pair (Output(MskOw), skf),

where Output(MskOw) can be deduced from the View of MskOw (see sec. 2.2.2). In this

situation, skf is some functional decryption key satisfying the correctness condition of

Def. 3.1.1. Notice that skf could be the result of a (possibly) randomized evaluation

on inputs the master secret key msk, the function f and some randomness used in the

interaction. We will discuss about the influence Output(MskOw) in the next paragraphs.

3.1.2 A Trivial Example or FE is IFE

As already mentioned, for practical implementation of FE use-cases, the functional key

generation KeyGen is most of the time interactive. The non-interactive case could for-

mally be obtained by letting FuncOw := MskOw. In this situation the master key owner

generates the functional key locally by its own without any interaction and the IKeyGen

protocol is just the execution of KeyGen. A trivial, but still interesting, implementation

of a simple IFE is given in the following paragraph.

Trivial IFE from FE. Start from any FE = (Setup, KeyGen, Enc, Dec) following Defi-

nition 2.3.1, it is easy to define a trivial interactive FE scheme following the above Def-

inition 3.1.1. The Trivial.IFE := (Setup, Trivial.IKeyGen, Enc, Dec) scheme has the same

Setup, Enc, Dec algorithms as the initial FE. The protocol Trivial.IKeyGen next uses the

KeyGen algorithm of the FE scheme as described in Fig. 3.1. In fact, FuncOw sends f to

MskOw in order to execute the KeyGen algorithm over f and obtains the corresponding

skf . This simple and natural example of IFE will be used in our study for the security

properties related to a general interactive FE.

Validity of skf . One instructive issue of this trivial example is that MskOw may have

sent to FuncOw a functional key that is not generated using the specification of KeyGen.

Thus, FuncOw should have a way to verify its validity. One solution was given for

interactive blind IBE [30, 75]. In this situation, both the ciphertext and the functional

key are associated with an identity. The underlying function permits to recover a message

only if it is the same identity, i.e fid′(id, m) := m ⇐⇒ id = id′. The authors [30, 75]

60

3. Function’s protection in Functional Encryption

MskOw(msk, mpk) FuncOw(mpk, f)
f

←−−−−−−−−−
skf ← KeyGen(msk, f)

skf
−−−−−−−−−→

Output (f, skf) Output skf

Figure 3.1: Trivial.IKeyGen.

propose to encrypt a polynomial number of random messages with the targeted id, then

try to decrypt it using the obtained identity related functional key. Using the correctness

of the IBE scheme, the authors conclude that it is sufficient to be convinced about the

validity of the key.

A first idea can be to proceed similarly, which works quite well in the public key

setting and in the case of (indexed) functions of the form of fk(m, y) := m⇐⇒ R(k, y) =

1 where R is a publicly known relation and k is the index’s function. However, in

the general case, this method may obviously not convince a user of the validity of the

functional key, since not all functions are of this form. In addition, this is definitely not

possible in the private key setting because it is obviously not possible for FuncOw to

encrypt arbitrary messages.

A solution to this verifiability problem consists in using zero-knowledge proof of

knowledge mechanisms generated by MskOw to prove that it has correctly computed

skf , generating a proof π ← ZKPoK(msk) : {skf = KeyGen(msk, f)}. Using this method,

we ensure that skf is honestly generated by MskOw.

We stress that considering the validity of skf is an additional requirement. ZKPoK

could be used to provide the validity of skf but other approaches are possible. We will

not develop more about this notion and leave it as a natural extension of our work. We

remark that we will use ZKPoK for MskOw that will ensure that skf is well constructed.

3.1.3 High-Level View of Security Properties

Unsurprisingly, an interactive FE should verify a modified version of the message-privacy

property by considering some adapted interactive oracles. This will be detailed in Sec-

tion 3.1.4. We will also consider function-privacy in addition to our new notion of

blindness. This is due to the different ways the output of MskOw can be managed.

61

3.1. Definitions and Security Model

Output of MskOw. The fact that we want to hide the function to MskOw is at first

related to the MskOw’s view of the interactive protocol. Indeed, intuitively, the best

case would be an MskOw which does not learn anything more than what it already

knew before the interaction. The view of MskOw consists of (msk, r; m1, . . . , mt), with

r represents some random elements, and mj the jth message that it received during its

interaction.

Intuitively, we want to ensure a notion of blind functional key generation algorithm.

This would mean that the MskOw cannot obtain from the received messages mj any

information about FuncOw’s choice of the function.

A start could be to adapting the definition of blind signature [81] such that MskOw

has to link a functional key skf generated during an interaction with the corresponding

function f . We present in the following a similar definition for the case of IFE. To the

best of our knowledge, it is new in the general context of functional encryption. We

treat this security notion in depth in Section 3.1.7.

1. Considering f in the output. If f , or some informations about f is leaked

during the execution (i.e. is contained in one of the mjs), it is clear that it is

easy to link a function with the interaction. As an example, the construction of

Trivial.IFE of sec. 3.1.2) cannot be blind.

2. Considering skf in the output. The functional key skf is used to decrypt

ciphertexts cm of some messages m in order to obtain values f(m). For MskOw,

which is in possession of msk, it is possible to encrypt any message m of its choice.

If skf can be deduced from its view, then MskOw can learn too much information

about f by encrypting any message m, thus obtaining f(m) of its choice. This

statement remains true even if skf have some hiding property that does not leak

any information about the function f .

If we use the same blindness definition, it seems difficult to attain the desired

security property due to this inherent capability of having access to an unlimited

evaluation of the function f .

In addition, we notice that the same problem arises in the context of function-

private public key functional encryption [24,28] where hiding information about f

in skf gives the same restrictions. In Section 3.1.6, we give a generalization in the

context of interactive FE of this known function-privacy framework.

In light of this discussion, we have two different security properties that should

be defined for interactive FE: function-privacy (see Section 3.1.6) and blindness (see

62

3. Function’s protection in Functional Encryption

Section 3.1.7). But there may also be some relations between both and we will provide

a discussion on this point in Section 3.2.

On simulation-based security. These security requirements could of course be de-

fined in terms of simulatability which informally enables to design an ideal functionality

that captures all the previous discussed properties (message-privacy, function-privacy

and blindness) at the same time and consider interdependent executions with other

protocols while preserving the main security characteristics.

However, we took the classical approach to provide a natural generalization of the

blindness property from the literature, as well as the classical security notions for FE

(i.e. message/function privacy) in the presence of an interactive key generation protocol.

This has the benefits to only adapt existing definition by adding some interactive oracles,

and may avoid some subtle negative results, as in the context of simulation-based blind

signature [4]. In addition, our solution fits exactly with the existing constructions for the

special cases of blind interactive IBE/ABE [30, 75, 77, 101] presented in some previous

works.

3.1.4 Message-Privacy for Interactive FE

There are different approaches for defining the message-privacy of an interactive scheme.

We decide to choose the one that could easily integrate the underlying message-privacy of

FE. For this purpose, we present generalized notion of leak-freeness that was previously

considered for the specific case of blind IBE [30,75] or ABE [77]. The leak-freeness (see

Sec.3.1.4) property is a real/ideal world definition that gives a way to transfer the FE

security into IFE. the message-privacy property. For convenience, using leak-freeness

provides a reduction to the underlying FE message-privacy property. Notice that this

notion is not general as in the simulatability paradigm but we believe that it is sufficient

to fill with our requirements.

Syntactic definitions. We here adapt the definition of message-privacy to our inter-

active setting. The main difference relies on the fact that some information could leak

during the interactive key generation. We introduce the following interactive oracle that

will serve in our description of the IFE’s message-privacy.

IKeyGen(O(msk), ·): this oracle has msk hardwired in its description and takes as input

a function f ∈ F . On every call, the oracle acts as in the interactive protocol by

63

3.1. Definitions and Security Model

playing the role of an honest MskOw. The output of this interaction is a functional

key skf .

We are now ready to give the following definition that extends Definition 2.3.2 in the

public key setting.

Definition 3.1.2 (Message-privacy for IFE). Let IFE = (Setup, IKeyGen, Enc, Dec) be a

public key IFE. The message-privacy for IFE is the same as the one defined in Def. 2.3.2,

except that we replace the oracle KeyGen(msk, ·) with the above oracle IKeyGen(O(msk), ·).

The other oracles and the experiment Expb
A,MP(λ) are unchanged.

There are different ways to prove that an interactive FE is message-private. Obvi-

ously, one can directly build a scheme and proves that it satisfies the message-privacy

of Definition 3.1.2. Another convenient method relies on using a scheme FE for building

an IFE with the hope that it inherits the security from FE. We will now focus on the

second option. For that, we need to study the message-privacy of the trivial IFE given

above.

Message-privacy of Trivial IFE. Consider the IFE with the Trivial.IKeyGen from

Example 3.1.2. Recall that the user sends f and the MskOw generates skf using msk.

We have the following proposition.

Proposition 1. The Trivial.IFE of Example 3.1.2 is message-private if the underlying

FE scheme is message-private. For any adversary A there exists an adversary B such

that AdvTrivial.IFE,A,MP(1λ) = AdvFE,B,MP(1λ).

Proof. The proof is immediate. Suppose there is an adversary A attacking the Trivial.IFE

scheme. We will consider the following adversary B that can break the message-privacy

of the FE scheme.

• For the KeyGen’s requests, it uses the same function requests that A makes to the

Trivial.KeyGen oracle.

• It uses the same message (m0, m1) that A makes to the Encb oracle.

• Finally, it returns the same bit that A outputs.

Note that the inputs of A are well distributed and B is a valid adversary against the FE

scheme because from the interaction in Trivial.IKeyGen, the adversary A learns exactly

the function f and skf which are already known after the KeyGen oracle’s request.

In particular, B has exactly the same advantage of A in winning the message-privacy

security game.

64

3. Function’s protection in Functional Encryption

For the Trivial IFE, the curious user does not learn any information about the master

secret key msk that could help her to break the MP security game of the underlying FE

scheme. Considering interactions, we note however that the messages exchanged could

potentially leak information about msk which is problematic.

Now, consider the construction of a new IFE and its message-privacy property. In

the sequel, we propose to use the message-privacy of the Trivial IFE and the fact that

the difference between the proposed interactive key generation and the one of the Trivial

IFE does not compromise the message-privacy of the new proposed construction. This

is based on the notion of leak-freeness that is inspired by the work done for IBE [30,75].

3.1.5 Obtaining MP secure IFE from MP secure FE: leak-freeness

Let FE = (Setup, KeyGen, Enc, Dec) be a message-private scheme.

The leak-freeness for functional encryption aims at providing a condition to pre-

serve from learning any additional information due to the interactive key generation

in order to break the message-privacy. Informally, it makes possible to prove that

an IFE.IKeyGen protocol executed with an honest MskOw does not leak more infor-

mation than the Trivial.IKeyGen from Example 3.1.2, with the same honest MskOw.

Such notion can then be used to prove that the resulting interactive functional en-

cryption IFE = (Setup, IKeyGen, Enc, Dec) is indeed message-private. Informally, this

notion says that we cannot obtain additional information other than what is leaked

from Trivial.IKeyGen. We provide a generalization of the Leak-Freeness property of [75].

Definition 3.1.3 (Leak-Freeness). We say that an IKeyGen protocol is leak-free with

respect to KeyGen of any FE scheme if, for all efficient adversaries A, there exists an

efficient simulator S such that for all value λ, no distinguisher D can determine whether

it is playing GameReal or GameIdeal where

• GameReal: Run Setup(1λ). As many times as D wants, A chooses a function f and

executes the IKeyGen(MskOw, ·) protocol input f with an honest authority MskOw.

A produces a view and sends it toD which returns a bit.

• GameIdeal: Run Setup(1λ). As many times as D wants, S chooses a function f

and asks Trivial.IKeyGen(msk, ·) to obtain a functional key skf on input f . Then,

S returns the resulting view to D which returns a bit.

The quantity AdvD,leak−free(1
λ) := |Pr[DGameReal(1λ) = 1]− Pr[DGameIdeal(1λ) = 1]| is the

advantage of D and IKeyGen is leak-free w.r.t KeyGen if it is negligible.

65

3.1. Definitions and Security Model

We discuss in the following some remarks about the definition.

• We require to start from an FE scheme with some specific KeyGen algorithm in

addition to the existence of a simulator (which interacts with a specific oracle

Trivial.IKeyGen). This simulator is then asked to produce a consistent view to any

distinguisher. As mentioned in previous sections, a two-party protocol would not

necessarily offer the blindness property for free. In Example 3.1.2, Trivial.IKeyGen

is by definition leak-free w.r.t KeyGen but cannot be blind since f is given to

MskOw.

• The adversary in GameIdeal does not appear in the definition. As pointed in [75],

the leak-freeness definition implies that the function (for the key being extracted)

is extractable from the IKeyGen protocol (with all but negligible probability), since

for every adversary it must exists a simulator S that should be able to interact

with A, in order to learn which functions to submit to the Trivial.IKeyGen(msk, ·)

oracle.

We can now focus on our main result, which makes the link between leak-freeness

and message-privacy. Informally, it states that any IKeyGen protocol with leak-freeness

composes with the existing message-privacy of (non-interactive) FE. This result was

stated without proof for blind IBE [75]. We provide in the following a proof of this fact

for the general case of IFE.

Theorem 3.1.1. Let FE = (Setup, Enc, KeyGen, Dec) be a message-private secure FE

scheme. Let IFE := (Setup, Enc, IKeyGen, Dec). If IFE.IKeyGen is leak-free with respect to

KeyGen, then IFE is message-private. For any adversary A there exists an adversary D

such that

AdvA,MP−IFE(1λ) ≤ AdvD,leak−free(1
λ) + AdvA,MP−FE(1λ).

Proof. We will prove this proposition via a sequence of games, where we reduce the MP

security of the IFE scheme to the MP security of the initial FE scheme. Suppose there is

an adversary A against the MP security of the IFE scheme as in Def. 3.1.2. By definition

of the leak-freeness property, there exists a simulator S as described in Def. 3.1.3 which

interacts with A. Fix a random bit b ∈ {0, 1} and for each following game, denote by

AdvA,Game i(1
λ) the advantage that A has to win (i.e returns a bit b′ such that b′ = b)

the game i, i ∈ {0, 1}. We will use the public key version of the proof, but it can easily

be adapted to the private key setting.

Game 0. This is the original message-privacy game against IFE. More specifically, con-

sider the following phases.

66

3. Function’s protection in Functional Encryption

• In the Setup phase, the master secret key msk is generated and the corresponding

public key mpk is given to A.

• Whenever the oracle IKeyGen is invoked on input f ∈ F , A participates in an inter-

active protocol with the oracle playing the role of an honest MskOw in possession

of the master secret key msk. The adversary finally gets the output functional key

skf . Notice that it also has extra information (messages exchanged) related to the

interaction.

• By definition, the oracle Encb returns Enc(mpk, xb) on input (x0, x1) with f(x0) =

f(x1), on all the functions f asked in the previous IKeyGen phase.

• Note that A still has access to the IKeyGen oracle with the above inherent condition

on (f, x0, x1), and finally returns a bit b′. Notice that

AdvA,Game 0(1λ) = AdvA,MP-IFE(1λ).

Game 1. This is the same game as the previous one, except that we change the answers

of IFE.KeyGen oracle by exploiting the simulator S of the leak-freeness property. The

Setup and the Encb phases remain the same.

We modify the IKeyGen phase in the following way. When A chooses an input f ,

the simulator S uses the same input f and invokes the Trivial.IKeyGen oracle in order

to obtain a corresponding functional skf . Then, by the leak-freeness property S uses

his simulated view of the interaction and gives it to A. Recall that S can simulate the

message exchanged during the interaction and can give functional keys corresponding to

A′s requests.

In order to prove that the IFE scheme is message-private, we first state the following

lemma.

Lemma 3.1.2. For any PPT adversary A, there exists a PPT adversary D such that

we have |AdvA,Game 0(1λ)− AdvA,Game 1(1λ)| ≤ AdvD,leak−free(1
λ).

Before proving this result, first assume that Lemma 3.1.2 is true and consider the

adversary A in Game 1. By Proposition 1, the Trivial.IKeyGen is message-private if the

FE with KeyGen (in the non-interactive sense) is message-private.

In Game 1, the adversary obtains no additional information other than what it can

learn from Trivial.IKeyGen, i.e. from the simulator S except with negligible probability.

This fact is induced by the leak-freeness property. We can deduce that in Game 1 we

have AdvA,Game 1(1λ) ≤ AdvA,MP-FE(1λ). It remains to prove the Lemma 3.1.2.

67

3.1. Definitions and Security Model

Proof. (of Lemma 3.1.2) We claim that, if A can distinguish between Game 0 and Game

1 with non-negligible advantage, then we can build an adversary D that can distinguish

with non-negligible advantage between GameReal and GameIdeal in the leak-free security

game (leading to a contradiction). Consider a distinguisher (for the leak-free property)

D that works as follows.

• In GameReal: run Setup(1λ) then D uses the same function requests that A makes

to the IKeyGen oracle in Game 0. D can obtain in the end of each interaction the

resulting view (i.e. transcript) from A.

• In GameIdeal: run Setup(1λ) then D uses the same function requests that A makes

to the IKeyGen oracle in Game 1. Notice that in this situation, the answers are

given by a simulator S with its access capability to the Trivial.IKeyGen oracle. Here

again, D can also obtain the information that A obtains after each interaction with

S.

From the above requests, we conclude that the probability of success for D in distin-

guishing GameReal and GameIdeal is exactly the same as the probability that A has in

distinguishing Game 0 from Game 1. Indeed, to see this, we first remark that the view of

A is consistent (i.e. it provides valid functional keys skf) by definition of the simulator

S and the resulting view given by A to D is the view given by S which are again well

simulated thanks to the leak-freeness property.

However, we also conclude by this last property that if such D exists, it has a negligi-

ble advantage in distinguishing GameReal from GameIdeal. This leads to a contradiction

and we conclude the proof of Lemma 3.1.2 by deducing that A has a negligible advan-

tage of distinguishing between Game 0 and Game 1. Then, Game 0 and Game 1 are

indistinguishable.

Returning back to the proof of the lemma, we have

AdvA,MP-IFE(1λ) ≤ AdvD,leak-free(1
λ) + AdvA,MP-FE(1λ),

which are negligible and where AdvD,leak-free(1
λ) is the (negligible) probability resulting

from Lemma 3.1.2. We conclude the proof of the Theorem 3.1.1.

3.1.6 Function-Privacy for Interactive FE

In this section, we present some adapted definitions of function-privacy for FE with in-

teractive key generation. Our plan is not to provide a function-private IFE scheme but,

68

3. Function’s protection in Functional Encryption

as we will see, there are some close relations between this existing notion of function-

privacy and our new notion of blindness. Informally speaking, function-privacy (FP)

security ensures that a functional key skf gives no information about the function f .

There exist different definitions depending on the situation (public vs. private key set-

ting). We give the adaptations of existing definitions to the case of an interactive FE

since the transcript of the interactive protocol could reveal some information about the

function f .

Function-privacy for private key IFE. The private key setting follows the left-

or-right terminology [28, 84]: the adversary guesses which of the two chosen functions

is used in a interactive key generation protocol. We then introduce the new following

oracle

IKeyGenb(msk, ·, ·) on input f0 and f1, runs (an honest) IKeyGen protocol on input the

function fb for a bit b, then generates transb which contains the messages exchanged

during the protocol and the private user’s output skfb
. The oracle finally sends

transb and skfb
to the adversary.

We can now provide an adapted definition of function-privacy or the IFE case, in the

private-key setting. In particular, we consider a Left-Or-Right definition.

Definition 3.1.4 (LoR function-privacy). We say that a private key IFE scheme IFE =

(Setup, IKeyGen, Enc, Dec) over a message space M and a function space F is function-

private if for any adversary A, there exists a negligible function negl such the following

difference of two probabilities, called the advantage of A and denoted AdvA,LOR−FP(1λ),

verifies
∣
∣
∣Pr

[

Exp0
A,FP(λ) = 1

]

− Pr
[

Exp1
A,FP(λ) = 1

]∣
∣
∣ ≤ negl(λ).

where Expb
A,FP(λ) is defined as

1. (params, msk)← Setup(1λ)

2. b′ ← AIKeyGenb(msk,·,·)(1λ, params)

3. output b = b′

with the descriptions of f0 and f1 that A queries have the same length1.

1This restriction is asked to avoid trivial attacks.

69

3.1. Definitions and Security Model

If a function-private FE is implemented for real-world applications, an eavesdropper

could try to get some information about f starting from the transcript. Note that we

do not give the adversary an access to an encryption oracle since it permits to easily

win the game (see the public key case below). Such limits can be easily surrounded by

establishing a secure channel first.

Example. The Trivial.FE of Example 3.1.2 is obviously not FP in the sense of IFE

according to the above definition since the transcript contains the function itself. This

argument holds even if the original FE is function-private. Fortunately, we could easily

modify it by using a secure channel (for example using one-time encryption) to transmit

the function and the functional key. Note that the MskOw would still have access to the

function f .

Function-privacy for public key IFE. If an adversary can encrypt messages of its

choice (in the public key setting or in the case of a malicious MskOw having access to

msk), the previous LoR definition 3.1.4 fails since a simple attack consists in encrypting

a message m and get c = Enc(mpk, m) (or Enc(msk, m) respectively), such that f0(m) 6=

f1(m). Then, the adversary can use its challenge functional key skfb
in order to decrypt c

and get fb(m). The above Left-Or-Right definition is thus not possible in the public-key

setting.

To overcome this issue, the real-or-random (RoR) approach was proposed in [8,25] by

adding some hypothesis about the entropy of the function space. The RoR-FP security

below informally states that as long as the adversary asks a functional key for a function

sampled from a feasible entropy distribution (see Definition.2.1.2), it can not decide if

this key is actually coming from his distribution or from a uniform one.

We will consider both a passive adversary (not involved in the protocol but having

access to exchange data) and an active one (acting as the involved MskOw). Let mode ∈

{real, random} and case ∈ {weak, strong} be formal variables. We first define the

real-or-random function-private oracle as follows.

Definition 3.1.5 (Real-or-random key generation oracle). The real-or-random IKeyGen

oracle, denoted RoRIKeyGen(case, ·, ·, ·), takes as input triplets of the form (mode, msk, D),

where mode ∈ {real, random}, msk is the master secret key and D is a feasible entropy

distribution over F (if not, the oracle aborts). If mode = real then the oracle samples

f ← D. If mode = random then the oracle samples f ← U(F). There are then two cases.

• If case = weak, the oracle runs both parties of the IKeyGen protocol, which outputs

trans, Output(O) and skf . It returns trans and skf to A.

70

3. Function’s protection in Functional Encryption

• If case = strong, the oracle (playing the role of the FuncOw) interacts with the

adversary (playing the role of the MskOw) in the IKeyGen protocol. At the end of

the protocol, the FuncOw output skf is given to A.

The RoR-FP security game follows by using such RoRIKeyGen oracle, where the

adversary is asked to distinguish between the real and the random mode, and is restricted

to distributions with feasible entropy.

Definition 3.1.6 (RoR function-privacy). We say that an IFE scheme over a message

space M and a function space F is RoR-FP secure if for any adversary A, there exists

a negligible function negl(λ) such that

∣
∣
∣Pr

[

ExpA,real,FP(1λ) = 1
]

− Pr
[

ExpA,random,FP(1λ) = 1
]∣
∣
∣ ≤ negl(λ),

where ExpA,mode,case,FP(λ) is defined for mode ∈ {real, random} as

1. (mpk, msk)← Setup(1λ);

2. if case = weak, mode′ ← ARoRIKeyGen(weak,mode,msk,·),IKeyGen(λ, mpk);

3. if case = strong, mode′ ← ARoRIKeyGen(strong,mode,msk,·)(λ, msk);

4. output 1 if mode′ = mode, 0 otherwise.

In the weak case (without any reference to a transcript since it is not interactive), our

notion exactly meets the classical FP defined in [28]. To the best of our knowledge, the

strong case has never been proposed in the literature and is the strongest requirement

one can get for function-privacy in public key IFE. Notice that since any public key IFE

can be converted into a private key IFE scheme, we can also use Definition 3.1.6 in the

private key setting.

Thus, a private key IFE can be proved to be RoR-FP or LoR-FP secure, while a

public key IFE can only be proved to be RoR-FP secure.

On the feasible entropy condition. A natural question is whether it is possible

to avoid the restriction on the distributions with feasible entropy. We can allow the

adversary to choose a function f and get either the functional key skf related to f or

a functional key skg related to a function g randomly chosen in the set of all functions

with the same length description as f . However, in the strong case, as in the context

of the public key setting, the adversary controls the master secret key and could find

71

3.1. Definitions and Security Model

a message m such that f(m) 6= g(m). We cannot control the evaluation of g(m) since

it is chosen randomly and could be different from f(m). In the private key setting and

for the special weak case, it is possible to control the encryption oracle. We trace all

the requests m and f that an adversary can ask, and get a uniform sample g such that

g(m) = f(m), but it seems to be a strong restriction and we will not consider it here.

3.1.7 Blindness for Interactive FE

In this section we formally define our new blindness property. Intuitively, following the

usual definition for blind signatures [81], blindness means that the MskOw cannot link

a functional key to an interaction it had with an honest user. This is clearly related to

the information that the MskOw has at the end of the key generation protocol, namely

Output(MskOw).

It is possible to define a unique notion of blindness independently for both the private

and public key settings. Our objective is to simulate an adversary who can choose

maliciously the parameters but follows the specification of the protocol. Its aim is to

decide which of two chosen functions f0, f1 has been used to generate the functional keys

skf0 and skf1 in two sequential executions with an honest user FuncOw. This notion

corresponds to a variant of the selective-failure blindness security considered in [30,75] for

IBE. This additional security requirement was used in order to build oblivious transfer

[75] or searchable encryption [30]. Here, we considered the basic definition and leave the

additional requirement for possible applications.

We introduce the interactive oracle IKeyGen(·,O(mpk, f)) in which the adversary

plays the role of the MskOw and only obtains his own output. In the game below, we

write AIKeyGen(1)(·,O(f0))/IKeyGen(1)(·,O(f1)), which means that A can query each oracle only

once (hence the notation IKeyGen(1)) and that the two oracles can be invoked in an

arbitrary order but in a sequential manner2.

Definition 3.1.7 (Blindness). Let b ∈ {0, 1}. An IFE is blind, if every adversary A

has a negligible advantage in the following experiment

1. (mpk, f0, f1, stfind)← ASetup(·)(find, 1λ)

2. stissue ← A
IKeyGen(1)(·,O(mpk,fb))/IKeyGen(1)(·,O(mpk,f1−b))(issue, stfind), at the end of

the executions, this step produces local outputs (possibly undefined) skfb
and skf1−b

respectively

2By standard hybrid arguments, it is possible to show that it is equivalent to multiple session, as
done in [81] for blind signatures.

72

3. Function’s protection in Functional Encryption

3. If skf0 = ⊥ or skf1 = ⊥, set (skf0 , skf1) = (⊥,⊥)

4. b′ ← A(guess, skf0 , skf1 , stissue)

The advantage of A in this game is AdvA,Blind := |Pr[b′ = b]− 1/2|.

This definition can easily be adapted to the private key setting.

It is important to notice, as in the context of blind signature, that any information

about skf that can be deduced during the interaction from Output(MskOw) lead our

definition to fail. Indeed, for example if A gets skf in the end of the interaction, it will

obviously win the game by just interacting with one of the two oracles. In fact, any

Left-Or-Right definition would fail, since during the interaction there is always a way

to distinguish between two keys/interactions. This difficulty comes from the inherent

capabilities of the FE scheme. From the encryption of a certain message m such that

f0(m) 6= f1(m) and an interaction giving skfb
at the end of one of the two interactions,

it is always possible to decrypt and get fb(m). Since f0 and f1 are chosen by A, it

seems clear that the blindness implies in particular that the malicious MskOw does not

get informations about skf and f during (or in the end of) the interaction. Notice the

similarities with the function-privacy notion in the public key case. We will discuss in

the next section in further details the relationship between these notions.

3.2 On the Relationship between Blindness and Function

Privacy

Depending on the public or private key setting and the presence or not of skf in the

MskOw’s output, we obtain several (dis)connections between function-privacy and blind-

ness security properties. Informally, this is due to the nature of the considered options.

Indeed, FP security is not specific to any entity and asks an adversary to obtain un-

wanted information about the function f from skf and eventually the interaction. The

blindness security game only concerns MskOw with the capability of encrypting arbitrary

messages using the master secret key msk. We deduce that in the private key setting, we

can compare both the RoR-FP and the LoR-FP properties to the blindness one. In the

public key setting, we can only compare the RoR-FP security property to the blindness

one. We now give our main theorem which, in a nutshell, says that these two properties

are distinct, and then complementary.

Theorem 3.2.1. Function-Privacy and Blindness properties are different, for both private-

key and public-key IFE. There exists a set of functions with a family of computationally

73

3.2. On the Relationship between Blindness and Function Privacy

secure constructions, based on hardness assumptions and satisfying the following rela-

tions:

• blind secure IFE scheme that is not (weak/strong)-RoR-FP secure;

• (weak/strong)-RoR-FP secure IFE scheme that is not blind;

• blind secure IFE scheme that is not LoR-FP secure;

• LoR-FP secure IFE scheme that is not blind.

In the next section, we give the proof of this theorem.

Proof of Theorem 3.2.1. First, we start with the obvious implications. Recall that

Strong RoR-FP implies Weak RoR-FP by definition, and the converse is not true in

general because we give more power to the adversary. The argument works for both

public/private key IFE.

Next, for each of the remaining cases, we will exhibit an IFE, and in particular a set

of function F , such that it verifies one security property but fails to verify the other one.

A blind scheme that is not (strong/weak)-RoR-FP. In this section we will build

a scheme that is blind and not strong/weak-RoR-FP. Fix a finite field Fp, an integer

ℓ ≥ 1 and consider the following set of functionalities F := {〈·, y〉, y ∈ F
ℓ
p}, where for

〈x, y〉 :=
∑ℓ

i=1 xi · yi. Remark that if we note ei := (0, . . . , 1, . . . , 0), where the 1 is at

position i, we have trivially for all y = (y1, · · · , yℓ) the result 〈y, ei〉 = yi. We can deduce

that for a given functional key sky for a certain vector y corresponding to a function

〈·, y〉 ∈ F , if one can encrypt the vector ei (in the public key case for example), then it

could get the i-th component of the vector y which is yi. This is inherent to any IPFE

supporting this family F . In the public key setting, or in the case of a curious MskOw

(knowing msk), it is possible to encrypt this kind of vectors. We anticipate a little and

consider our blind construction of sec. 3.3.4 for this set of functionalities. Recall that

depending on the case, the functional keys enjoy the same structure (i.e an inner-product

over the integers). Indeed, in most of the known schemes [1, 11, 38, 111], the functional

key has the form of sky := (y, 〈s, y〉) mod q for a certain vector s ∈ F
ℓ
p. Notice that the

key y is given in the functional key. Intuitively, we could rapidly conclude that every

IFE for this set F is not function private. However, there is a subtlety in the definition

of the RoR-FP security game.

The adversary is asked to give a distribution D with a feasible entropy condition, which

means that the adversary is restricted to some unpredictable set of vectors y. Given

74

3. Function’s protection in Functional Encryption

sky, its goal is to distinguish if y was chosen in D or from a uniform distribution. In

particular, in our case it corresponds to the situation where y is in the description of

sky and is coming from a unpredictable set.

At first glance, this view seems to contradict the intuition that the scheme is not

function private. However, notice that the feasible entropy condition does not mean

that D is the uniform distribution, it is classical to approximate it using for example

rejection sampling. The adversary has the capability to find some elements that could

distinguish this two distributions but makes the distribution D with enough entropy to

fit the feasible entropy condition.

In fact, we will see how we can build an adversary that can break the RoR-FP

security in our IFE scheme for the inner-product construction of sec. 3.3.4. We have the

following Lemma.

Lemma 3.2.2. The IIPFE scheme of sec. 3.3.4 is not RoR-FP secure. In particular,

there exists an IFE scheme that is blind and not RoR-FP secure.

Proof. Fix the parameters for the construction of sec. 3.3.4. Consider the following

RoR-FP privacy adversary A.

• A computes the distribution D that samples a uniformly distributed y ∈ F
ℓ
p for

which the most significant bit of y (represented as an integer) is equal to 0. Note

that this step could be done by using rejection sampling to obtain a sufficiently

good approximation of the uniform distribution over F
ℓ
p.

• Then, it asks the RoR − IKeyGen(Case, mode) oracle in order to get a key sky no

matter the Case is strong/weak.

• It parses the received functional key as sky = (y, 〈s, y〉) and returns 1 if the most

significant bit of y is equal to 0. Otherwise it returns 0.

Next, we remark that the above adversary has an advantage 1− 1
2 in distinguishing

the real mode from the random mode, thereby breaking the function-privacy. To see

this, note that when mode = real the adversary wins the game with probability 1 and

when mode = random, it returns 1 when the most significant bit of y is equal to 0 which

happens with probability exactly 1
2 .

We deduce that the adversary has advantage 1 − 1/2 = 1/2 in distinguishing the

real mode from the random mode, which is a non-negligible advantage. Notice however

that we will prove in sec. 3.3.4 that this scheme is blind.

75

3.2. On the Relationship between Blindness and Function Privacy

Notice that our result also holds for any blind construction of the inner-product case

and is not specific to our construction.

A (weak/strong)-RoR-FP scheme that is not blind. In this section, we build an

IFE scheme that is RoR-FP and not blind. The intuition behind is related to the nature

of the security games.3 For any IFE scheme denoted by IFE = (Setup, IKeyGen, Enc, Dec),

let the following IFE′ := (Setup, IKeyGen′, Enc, Dec), where we only modify the IKeyGen

protocol and does not change the other algorithms. The IKeyGen′ protocol is described

as follows.

IKeyGen′: MskOw holds a master secret key msk and the user FuncOw holds an input

(f, mpk), and they run protocol IKeyGen(MskOw(msk), FuncOw(mpk, f)) protocol.

In the the end of the interaction PPf has a functional key skf . The modification

consists of FuncOw sending skf to MskOw.

The resulting IFE′ scheme is clearly correct and we have the following lemma.

Lemma 3.2.3. Suppose that IFE scheme is weak/strong-RoR-FP secure. Then IFE′ is

weak/strong-RoR-FP secure and not blind.

Proof. We start with the weak/strong RoR-FP security. Recall that an adversary A

interacts with the RoRIKeyGen oracle in order to get a functional key skf where f is

chosen from a feasible entropy distribution or a uniform one. The task for the adversary

is to distinguish these two cases. In our situation, remark that last message of the

interaction for IKeyGen′, FuncOw sends the functional key to the MskOw. We deduce

that when an adversary is using RoRIKeyGen′ oracle, it receives twice the function skf

from an honest party and this final interaction does not give additional information. We

deduce that this is exactly the same as if the adversary is using the RoRIKeyGen oracle.

Consider an adversary B attacking the RoR-FP security for the IFE′ scheme. We

build an adversary A that breaks the RoR-FP security of the IFE scheme using the

adversary B as follows

• A runs B and gets a distribution D with the feasible entropy condition. In addition,

A eventually records the transcript that B generates when it calls the RoRIKeyGen

oracle on input D. This transcript contains the elements that B used in the IKeyGen

protocol with an honest user O.

3i.e linking a functional key to a function versus a functional key does not give information about the
function

76

3. Function’s protection in Functional Encryption

• A asks for each case ∈ {weak, strong} and mode ∈ {real, random}, the above

RoRIKeyGen′(case, mode, msk, ·) oracle, on input the distribution D and the cor-

responding transcript. A receives a functional key skf where f ∈ D or chosen

uniformly from the set of functions F .

• A forwards the functional key skf to the adversary B attacking the RoR-FP secu-

rity of IFE′ scheme and returns the same bit output as B.

Note that all the values are well-distributed and we can conclude that the adversary A

has exactly the same advantage as B in breaking the IFE scheme The IFE′ scheme is then

RoR-FP.

The scheme is not blind. Consider the following adversary A against the blindness

security game. It chooses two functions f0, f1 and a message m such that f0(m) 6= f1(m).

A random bit b ∈ {0, 1} is chosen and A runs honestly the protocol IKeyGen′ with an

oracle user FuncOwb(fb). Note that at the end of the interaction, it receives skfb
. It can

uses an encryption cm ← Enc(msk, m) of the message m. If Dec(skfb
, cm) = f0(m), A

returns 0, else, it returns 1. The adversary has probability 1 to find the bit b and the

scheme is not blind.

A blind scheme that is not LoR-FP. We anticipate and we argue that the IPFE in

sec. 3.3.4 is blind but not LoR-FP since y is in the description of sky. We can build an

adversary A that can win the LoR-FP security game as follows. It chooses two functions

(y0, y1) with the same length in Z
2ℓ
p with y0 6= y1. After receiving the functional key

skyb := (yb, 〈yb, s〉) for a certain bit b corresponding to one of the two keys y0, y1, it

parses skyb and returns 0 if the first coordinate yb is equal to y0, and 1 otherwise. It

is easy to see that A will win the game with probability 1. In addition, we prove in

sec. 3.3.4 that the underlying interactive IPFE is blind.

LoR-FP secure IFE scheme that is not Blind. Consider any non-interactive LoR-

FP FE implemented following the Trivial.FE example. Fix any secure private-key en-

cryption scheme SE := (Gen, E, D) with the standard CPA security4. We suppose that

MskOw and FuncOw shares the same private key K for encryption and decryption. We

modify the Trivial.FE as follows. The user and the MskOw generates the parameters for

the secure encryption. The user then encrypts, using the algorithm E and the key K the

description of the function f . The MskOw decrypts the received ciphertext using D and

the key K and obtain f . It generates the functional key skf then returns an encryption

4or any secure channel.

77

3.3. IFE from non-interactive FE

of skf using E and the key K. Finally, FuncOw decrypt the received ciphertext and

return skf .

This modified scheme is clearly LoR-FP since a passive adversary does not learn

anything about the function f thanks to the security of the SE scheme. Notice however

that the MskOw learns the function f during the interaction and the scheme could not

be blind.

3.3 IFE from non-interactive FE

In this section, we develop our general construction from any set of functions that trans-

forms an FE to an IFE. On our previous published work, Canard et al. [34], we build

a generic IFE scheme from any FE using fully homomorphic encryption. The idea is to

encrypt a function f using FHE, then homomorphically evaluates KeyGen(msk, ·) over

the encrypted data. The resulted ciphertext is an encryption of the functional key.

Moreover, we provide ZKPoK to prove the validity of the computations. The way we

used this primitive is a special case of a more general setting of the notion of Private

Function Evaluation (hereafter PFE). In a nutshell, it is a special case of a two-party

computation, where a Party 1 has input x and Party 2 inputs (y, g) for a function g such

that Party 2 obtains in the end of the interaction g(x, y) while Party 1 obtains nothing.

The problem of Private Function Evaluation (PFE) can be reduced to the problem

of secure computation using 2PC. 5 It is also believed [97] that using (circuit-private)

fully homomorphic encryption scheme with adapted zero knowledge proofs gives some

feasibility result and can be used to achieve PFE for all functions.

An interesting path is to generalize our previous published work and eventually, in

some cases, obtain more efficient consideration. For this purpose, we point that several

other works [82, 89, 90] aim at improving the efficiency (communication cost, round

complexity) or at reducing the assumption in order to get practical instantiation by

using universal circuit, homomorphic encryption or secret sharing respectively.

The novelty of this thesis is to extract the needed properties to propose, using PFE,

a modular approach for building IFE from FE.

Intuition. FuncOw and MskOw agree on a two-round secure private function evalu-

ation protocol on inputs a master secret key msk and a function f and eventually the

5by using a universal machine/circuit U defined by U(x, Cg) := g(x) for every circuit Cg implement-
ing the function g. Than PFE can be solved by having the parties run a standard general two-party
computation for U .

78

3. Function’s protection in Functional Encryption

user obtains the evaluation of the circuit KeyGen(msk, ·) on input f , which is a valid

functional key skf . The protocol has the following properties: the FuncOw sends the

first message, the MskOw replies and the outputs stay on user’s side. Thereby, the PFE

hides to the MskOw both the function f and the key skf and hence the pair (f, skf)

cannot be deduced from the interaction or Output(MskOw).

We now highlight the requirement and the limitation of this basic idea and a brief

comparison with our FHE-based construction.

1. In order to reduce the message privacy security game to the security of the PFE

scheme, we need to extract the underlying function. However, after seeing the

(possibly) first message of the PFE protocol, it is not clear how a simulator can

generate the second message that should be consistent with the specification of

the PFE scheme. In comparison with the FHE based construction presented in our

article [34], the first message consists of an encryption of f . In the proof, we used

ZKPoK in order to extract the function in addition to a weak function indistin-

guishablity property in order to give provide well formed distributions. Having this,

we exploited the homomorphic structure of the underlying FHE scheme in order

to create consistent elements during the interaction. We adapt this requirement

for the PFE situation since we are not necessarily in the presence of homomorphic

properties.

2. Concerning blindness, even if MskOw does not learn the FuncOw’s inputs, it could

cheat to make the output within two interactions depend on the function in differ-

ent manners. As an illustration, the adversary could use during two interactions,

two master secret keys (compatible with the scheme) that makes it deduce the

FuncOw’s choice. For our FHE-based construction, we exploit the indistinguisha-

bility of two ciphertexts (with ZKPoK) to argue that each interaction is independent

from any function choice. We propose an adapted property for the case of PFE.

Inspired by the work of [61] in the context of blind signature, we can fix this limita-

tions and produce a generic construction using any PFE scheme.

3.3.1 Definition of PFE

We will define formally our need of a two-round PFE. Consider two parties (P1, P2). We

suppose that P1 holds a circuit C and P2 holds an input x. In our situation, the P1

holds KeyGen(msk, ·) and P2 the description of circuit computing a function f .

79

3.3. IFE from non-interactive FE

Experiment 1 Experiment 2
(msg1, C, st)← A(1λ) (msg1, C, st1)← A(1λ)

x← PFEExt(1λ, msg1)
msg2 ← PFE2(1λ, msg1, C) msg2 ← PFEFake2(1λ, msg1, C(x))
b← A(msg2, st) b← A(msg2, st)

Figure 3.2: P2’s privacy experiment.

Definition 3.3.1 (from [61]). A two-move private function evaluation protocol is de-

scribed by three PPT algorithms (PFE1, PFE2, PFE3) such that

• the algorithm PFE1 is executed by P2 on input x and outputs (msg1, st1) where

msg1 is sent to P1 and st1 represents the state of party P2.

• the algorithm PFE2 is executed by P1 on input C ∈ C and outputs (msg2, st2),

where msg2 is sent to P2.

• the algorithm PFE3 is executed by P2 on inputs msg2, st1 and outputs a quantity

msg3.

In addition, for the construction, we require the following security properties.

• Perfect correctness. With probability 1, we have that msg3 = C(x).

• P2’s privacy. The party P1 cannot distinguish between two different P2’s incoming

messages. More formally, for a random bit b ← {0, 1}, for any PPT adversary A,

the advantage AdvA,P2(1λ) := |Pr[b = b′]− 1/2| in the following game is negligible

– (x0, x1, st1)← A(1λ)

– (msg, st2)← PFE1(xb)

– b′ ← A(msg2, st)

• P1’s privacy. If P1 knows x (simulated by an extraction algorithm PFEExt.), then

instead of applying PFE2 with circuit C, it can compute C(x) and uses it in the

protocol via some function PFEFake2. More formally, suppose there exists a PPT

algorithm PFEExt that extracts P ′2s input x6 on every message msg1, then there

exists a PPT algorithm PFEFake2 such that the following holds: for any adversary

A, the advantage AdvA,P2(1λ) := |Pr[b = b′]− 1/2| in Fig. 3.2 is negligible.

6i.e. returns x with non-negligble probability.

80

3. Function’s protection in Functional Encryption

• IFE.Setup(1λ): Output (mpk, msk)← FE.Setup(1λ).

• IFE.IKeyGen(MskOw(msk), FuncOw(mpk, f)) is de-
scribed in Fig. 3.4

• IFE.Enc = FE.Enc

• IFE.Dec = FE.Dec

Figure 3.3: Generic blind IFE from PFE

We will consider in the following deterministic circuits. The condition simplifies our

security definition for PFE in this setting. Indeed, all that the party learns from the

execution of the protocol is essentially implied by the output itself (in the deterministic

case) and as noted in [67, Sec.7.2.2], it suffices to consider the views of the parties sepa-

rately. Otherwise in the randomized case, since the output could be a random variable,

one has to take into account the joint distribution of party’s output (We refer to [67] for

a more detailed discussion). While it seems as a strong restriction, we argue that if we

consider PPT algorithms represented by probabilistic poly-sized circuit, then a classical

result [14] (Adleman’s theorem) on complexity theory states that it is possible to deran-

domize these circuits, in a sense that it is possible to consider poly-sized deterministic

circuits that represent them. Of course, when derandomizing, additional cares should

be taken and verification about the proper output distribution of the computation for

each step need to be verified. From that observations, we consider in the following PFE

for deterministic circuits.

3.3.2 The scheme

We suppose that FE.KeyGen is a deterministic algorithm that is described by a circuit

of depth d(λ). Let λ > 0 be a security parameter and consider a family of functions

F = {Fλ}λ whose input size n(λ) which is polynomial in λ. Suppose that all functions

f ∈ F can be encoded as a P (λ)-bit string (for a polynomial P). Consider a FE scheme

for this family F . Finally, consider a two move PFE computing the FE.KeyGen algorithm.

Our interactive blind functional encryption for the class of function F is described in

Fig 3.3 and 3.4.

We have the following theorem.

81

3.3. IFE from non-interactive FE

MskOw(msk, mpk) FuncOw(mpk, f)

Let y := (mpk, f)
(msg1, st1)← PFE1(y)

msg1
←−−−−−−−−−−−−−−

πFuncOw ← ZKPoK(f) : {f ∈ F

∧ (msg1, st1)← PFE1(mpk, f)}
←−−−−−−−−−−−−→

If Verify(πFuncOw) = 0 aborts
Let KGmsg1,msk the constant circuit
equal to (msg1, KGmsk)

(msg2, st2)← PFE2(KGmsg1,msk)
with KGmsk := FE.KeyGen(msk, ·)

msg2
−−−−−−−−−−−−−−→

πMskOw ← ZKPoK(msk) : {

(msg2, st2)← PFE2(KGmsg1,msk)}
←−−−−−−−−−−−−→

If Verify(πMskOw) = 0 aborts
Output skf ← PFE3(msg2, st1)

Figure 3.4: Interactive Key Generation IFE.IKeyGen.

Theorem 3.3.1. The IFE scheme described in Fig. 3.3 is a blind IFE if PFE is a secure

private function evaluation as in def. 3.3.1 and proofs πFuncOw and πMskOw are zero-

knowledge proofs of knowledge.

We begin with the message-privacy.

Proposition 2. The IFE scheme described in Fig. 3.3 is message-private if πFuncOw and

πMskOw are zero-knowledge proofs of knowledge and PFE is secure as in def. 3.3.1.

Proof. We prove that the IFE.KeyGen protocol is leak-free with respect to this FE.KeyGen

and by Prop. 3.1.1, it implies that the IFE is message-private. From the leak-freeness

definition 3.1.3, we have to show that for any adversary A, there exists a simulator S

such that no distinguisher D can distinguish between the GameReal experiment (where

A is allowed to interact with an honest AUT) and the GameIdeal experiment (where S

interacts with a Trivial.IKeyGen).

Informally, to achieve this property, we first consider any adversary A interacting

as in the GameReal experiment. Then we describe the ideal simulator S in GameIdeal

using the information obtained from A. Considering any distinguisher D playing the two

above games, we have to show that it has a negligible advantage to distinguish between

82

3. Function’s protection in Functional Encryption

both experiments. We fix an adversary A that will interact with an honest authority

AUT and consider a potential distinguisher D.

Recall that for any adversary A (that interacts with an honest MskOw denoted by

O), we need to build a simulator S (which has access to the FE.Trivial.KeyGen oracle)

that simulates the view of A. Intuitively, we use the extractor simulator of theZKPoKand

its rewinding capability in order to extract the corresponding function. Then, we use

the FE.Trivial.KeyGen oracle and generate a valid functional key for this extracted value.

Finally, instead of computing the second message of the PFE protocol honestly, we

exploit the PFEFake2 algorithm. By the security property of the PFE protocol (i.e P1’s

privacy) this modification does not affect the view of the adversary. More formally, for

any adversary A, we describe the ideal simulator S in GameIdeal as follows.

• The simulator S has the capability of rewinding an instance of the adversary A

that he runs internally. In order to achieve this, S simulates the communication

between any possible PPT algorithm D and A by passing D’s input to A and A’s

output to D.

• By definition of GameReal, the adversary A chooses a function f ∈ F and runs

the IFE.IKeyGen(O(msk), ·) protocol with an honest MskOw. In the first message

of the protocol, the adversary runs (msg1, st1) ← PFE1(mpk, f) and sends msg1

to the honest O(msk). A must generate a valid proof ZKPoK πA corresponding to

the correct evaluation of the PFE1 algorithm.

• After this interaction, S can check the validity of the proof and if there is a

failure, then could abort. S needs to produce a second message msg2 corre-

sponding to PFE2. Recall that S does not know msk but has an access to an

ideal Trivial.IKeyGen(msk, ·; ·) oracle which produces on input f a functional key

skf := FE.KeyGen(msk, f). As mentioned in a previous remark Rem.3.1.5, S

needs to extract the function f in order to obtain a corresponding functional keys

skf . This is possible in this situation thanks to the extractability condition of

the ZKPoK. Indeed, there exists an extractor Ext that S can use, such that for

x := msg1, Ext returns a valid witness wA := f with all but negligible probability.

S is now capable of calling the Trivial.IKeyGen(msk, ·; ·) oracle on input f to obtain

skf .

• The next step is to build a consistent msg2. Consider the PFEFake2 algorithm

83

3.3. IFE from non-interactive FE

from def. 3.3.1. S can use it (instead of PFE2) and compute

msg2 := PFEFake2(1λ, msg2, skf).

• Finally, S needs to generate two valid views corresponding to the ZKPoK, i.e.

πA, πMskOw without having access to the master secret key msk. Thanks to the

rewinding capability of S and the zero-knowledge property of the ZKPoK, there

exists two probabilistic simulators Sim,Sim′ that S can use in order to sim-

ulate the view of eachZKPoKinteraction between A and an honest MskOw in

the GameReal experiment for any input. In particular, Sim(msg1) is indistin-

guishable from ViewMskOw
A (msg1) for πA and Sim′(msg2) is indistinguishable from

ViewMskOw
A (msg2) for πMskOw. Finally, the simulator S returns

(msg1, msg2,Sim(msg1),Sim′(msg2)).

Analysis. We argue that our simulator S correctly simulates the view of any adversary

A, hence any D which plays the leak-freeness game cannot distinguish between Game-

Real and GameIdeal (leading to a contradiction). Assume that such a distinguisher D

exists with non negligible advantage in distinguishing between these two games. The ex-

tractability property of ZKPoK and the rewinding capability of S to extract the elements

f permits to use the algorithm PFEFake2 (see definition 3.3.1).

In addition, the ideal Trivial.IKeyGen(msk, ·; ·) oracle produces a valid functional key

skf . The Zero-Knowledge property of the proofs ensures that Sim and Sim′ produce

consistent views. We next analyse the distribution of msg2 produced by S.

First notice that msg2 is not produced as in the description of the scheme. In

particular, the simulator used the algorithm PFEFake2. Recall however, that the PFE

scheme verifies the P2’s privacy property in def. 3.3.1, so by definition, the adversary

does not notice the difference when receiving the value msg2 from an honest evaluation.

Hence, D has a negligible advantage of distinguishing GameReal and GameIdeal.

We deduce that The IFE.IKeyGen does not leak any additional information than

FE.Trivial.KeyGen and we conclude that the protocol is leak-free with respect to FE.KeyGen

algorithm. Assuming the above properties ofZKPoKand the PFE scheme, we deduce that

the IFE scheme in 3.3 is message private by Prop. 3.1.1.

Next, we propose a proof that our scheme verifies the blindness property.

84

3. Function’s protection in Functional Encryption

Proposition 3. The IFE scheme described in Fig. 3.3 is blind if πFuncOw and πMskOw

are zero-knowledge proofs of knowledge and PFE is secure as in def. 3.3.1.

Proof. Suppose having an adversary A attacking the blindness game. Recall that it

chooses the public parameters (mpk, msk) and two functions f0 and f1 and runs two

sequential interactions with honest user FuncOw(mpk, fb) and FuncOw(mpk, f1−b) re-

spectively where b is a random bit. At the end of the interactions, if not defined, A

received the two functional keys (skf0 , skf1) or (⊥,⊥) corresponding to (f0, f1). The

goal for A is to find the bit b with non-negligible probability. We prove the blindness

property via a sequence of games. The proof will use the following path.

• We invoke the extractor simulator in order to extract the witness from the ZKPoK

of msk given by the adversary.

• We will use this key msk to generate a functional key skf locally and answer the

adversary with this keys (instead of sending the first message using PFE1).

• We modify the first message concerning f and the proof such that the transcript

is independent of f .

We note b̄ := 1− b.

Game 0. This is the original game as in Def. 3.1.7. We give more details about each

interaction in Fig. 3.5. We describe the interaction of the adversary with each oracle

user FuncOwb and FuncOwb̄. Lines 1,6,10-11 describe the behaviour of A during the

blindness game and the remaining lines the users behaviour.

Game 1. We modify Game 0 in the following sense. In this game, thanks to the ZKPoK,

we know that there exists extractors Extb and Extb̄ that can extract the witnesses from

π′b and π′
b̄

(the second proofs in line 7) providing w∗b = msk∗b for each bit b ∈ {0, 1}. We

add the following quantities for each user in line 8

w∗b := msk∗b w∗
b̄

:= msk∗
b̄
.

Game 2. We modify the Game 1 as follows. If the master secret keys does not match,

i.e msk∗b 6= msk∗
b̄
, the user oracles in the two interactions aborts and we set (skf0 , skf1) =

(⊥,⊥). Otherwise, we set msk := msk∗b and instead of decrypting executing PFE3 in line

9, we exploit the extracted value msk and the FE.KeyGen(msk, ·) algorithm on input fb

85

3.3. IFE from non-interactive FE

Game 0

1. (mpk, f0, f1)← ASetup(·)(1λ)

2. (msg1,b, st1,b)← PFE1(mpk, fb) (msg1,b̄, st1,b̄)← PFE1(mpk, fb̄)

3. wb := fb wb̄ := fb̄

4. mb := msg1,b mb̄ := msg1,b̄

5. πb ← ZKPoK(O(wb),A(mb)) πb̄ ← ZKPoK(O(wb̄),A(mb̄))

6. (msg2,b, msg2,b̄)← A((πb, mb), (πb̄, mb̄))

7. π′b ← ZKPoK(A(w′b),O(msg2,b)) π′
b̄
← ZKPoK(A(w′

b̄
),O(msg2,b̄))

8. If Verify(π′b) = 1 If Verify(π′
b̄
) = 1

9. skfb
← PFE3(msg2,b, st1,b) else skfb

←⊥ skfb̄
← PFE3(msg2,b̄, st1,b̄) else skfb̄

←⊥

10 b′ ← A(skf0 , skf1)
11. returns 1 iff b′ = b

Figure 3.5: Blindness experiment.

(resp. (fb̄) to obtain valid functional key(s). We replace line 9 by the new line (depending

on the bit b)

skfb
← FE.KeyGen(msk, fb), skfb̄

← FE.KeyGen(msk, fb̄).

If the proof does not fail, the oracles return (locally) skfb
(resp. skfb̄

). Otherwise, they

returns (skf0 , skf1) = (⊥,⊥). Finally, we give as in line 10. (skf0 , skf1) to A.

Game 3. We change the behaviour of user FuncOw1 while maintaining unchanged

the one of FuncOw0. Consider the zero function 0 (equal to zero in all point) with

size description equals to f1 with a modified proof π1 in the first message. In more

details, there exists a zero-knowledge simulator Sim1 for π that can simulate the proof of

knowledge without knowing the underlying witness. We replace the corresponding term

in line 3. for FuncOw1 with

msg1,1 ← PFE1(mpk, 0).

Next, we simulate the corresponding term line 5. with

π∗1 ← Sim1(π1).

In addition, there exists a simulator Sim′1 for π′1 such that the line 7. becomes

π∗∗1 ← Sim′1(π′1).

86

3. Function’s protection in Functional Encryption

Game 4 We change the behaviour of FuncOw0 as in the previous Game 3 by considering

the zero function 0 (equal to zero in all points) with size description equals to f0 with

a modified proof π0 in the first message. In more details, there exists a zero-knowledge

simulator Sim0 for π that can simulates the proof of knowledge without knowing the

underlying witness. We replace the corresponding term in line 2. for FuncOw0 with

msg2,0 ← PFE1(mpk, 0).

Next, we simulate the corresponding term in line 5. with

π∗0 ← Sim0(π0).

In addition, there exists a simulator Sim′0 for π′0 such that the line 7. becomes

π∗∗0 ← Sim′0(π′0).

The proof of the blindness property is a corollary of the following lemma.

Lemma 3.3.2. Assuming that the proofs π′ are proofs of knowledge, then we have that

Game 0 is indistinguishable from Game 1.

Proof. The matching condition prevents the adversary to use two different master secret

keys. Thanks to the extractability condition, the rewinding techniques of the ZKPoK,

it is possible to efficiently extract the corresponding witness, and for the adversary, the

success probability remains the same (except with negligible probability). So, Game 0 is

indistinguishable from Game 1.

Lemma 3.3.3. Assuming that the PFE scheme is correct and the underlying FE is

correct, then Game 1 is indistinguishable from Game 2.

Proof. Since the PFE scheme is perfectly correct, applying the following algorithm

PFE3(msg2,b) or generating directly the functional key with FE.KeyGen(msk, fb), b ∈

{0, 1} yields to the same result. Notice that theZKPoKprevents the adversary from

using another circuit. We can deduce that Game 1 is indistinguishable from Game 2.

Lemma 3.3.4. Assuming that the PFE scheme is secure and the proofs π, π′ are zero-

knowledge, then Game 2 is indistinguishable from Game 3.

Proof. The adversary cannot guess whether the message received corresponds to the the

function 0 thanks to the privacy of user 1 (P2’s privacy in def. 3.3.1). Also, the view

87

3.3. IFE from non-interactive FE

of A is correctly distributed. Indeed, suppose there is an attacker that can distinguish

between Game 2 and Game 3 with non-negligible advantage, then we show how to build

an adversary B that breaks the P2’s privacy in the PFE security game as in Def. 3.3.1. B

has the following behaviour. It runs A in order to get f0, f1, mpk and uses them for the

PFE security game by choosing the messages (0, f1). It forms msg1,0 := PFE1(mpk, f0)

and receives msg⋆ corresponding to the execution of PFE1 over one of the two functions

{0, f1} from the PFE challenger.

Then, it uses A in the following way by interacting as a legitimate user. It simulates

the first messages of FuncOw0 with (m0 := msg1,0) and FuncOw1 with (m1 := msg⋆).

Up to this point, it could use the zero knowledge property to simulate the corresponding

proofs π∗1 and π∗∗1 . Finally, B returns the same output of A (the same bit).

Now, returning to the user’s privacy security game, if msg⋆ corresponds to the func-

tion f1, then this situation corresponds to Game 2 experiment. Otherwise, msg⋆ repre-

sents the function 0 then it corresponds to Game 3 by construction.

Unless the proofs are not zero-knowledge, the advantage of B for breaking P2’s privacy

in the PFE scheme is the same as the advantage of A in distinguishing between Game 2

and Game 3. We deduce that Game 2 is indistinguishable from Game 3.

Lemma 3.3.5. Assuming that the PFE scheme is secure and the proofs π, π′ are zero-

knowledge, then Game 3 is indistinguishable from Game 4.

Proof. This is similar to the previous lemma 3.3.4. Suppose there is an attacker that

can distinguish between Game 3 and Game 4 with non-negligible advantage, then we

show how to build an adversary B that breaks the P2′s security of the PFE scheme. B

has the following behaviour. B runs A in order to get f0, f1, mpk and uses them for the

PFE security game by choosing the messages (f0, 0). It forms msg1,1 := PFE1(mpk, f0)

and receives msg⋆ corresponding to the execution of PFE1 over one of the two functions

{f0, 0} from the PFE challenger.

Then, it uses A in the following way by interacting as a legitimate user. It simulates

the first messages of FuncOw0 with (m0 := msg⋆) and FuncOw1 with (m1 := msg1,1).

Up to this point, it could use the zero knowledge property to simulate the corresponding

proofs π∗0 and π∗∗0 . Finally, B returns the same output of A (the same bit).

Now, returning to P ′2s privacy security game, if msg⋆ corresponds to the function

f0, then this situation corresponds to Game 3 experiment. Otherwise, msg⋆ represents

the function 0 then it corresponds to Game 3 by construction. Unless the proofs are not

zero-knowledge, the advantage of B breaking P ′2s privacy in the PFE scheme is the same

88

3. Function’s protection in Functional Encryption

as the advantage of A in distinguishing between Game 2 and Game 3. We deduce that

Game 2 is indistinguishable from Game 3.

We conclude that Game 0 is indistinguishable from Game 4. In Game 4, the view of

A is independent of b: the functional keys skfb
, skfb̄

do not depend on the values sent

by A by construction. Thus, the probability of guessing the bit b is exactly 1/2. Hence,

by combining all the above lemma, we conclude that this scheme satisfies the blindness

property.

This ends the proof of the proposition.

3.3.3 Using FHE: a special case

As it was already mentioned, in our published work [34], we used the power of fully

homomorphic encryption FHE with adapted ZKPoK in order to obtain a blind IFE from

any FE. We will see that this construction could be considered in the language of PFE.

We will recall the result from our paper [34] in the following.

Our approach starts from an existing FE scheme for a class of function F and up-

grades it to a blind IFE scheme from the same class F , by only modifying the KeyGen

algorithm. FuncOw starts by encrypting an encoded version of some function f with a

fully homomorphic scheme [62] under her own key and sends the ciphertext Cf to MskOw.

With msk, the party MskOw homomorphically evaluates the circuit KeyGen(msk, ·) using

the FHE.Eval algorithm on Cf , then sends back a ciphertext Cskf
of the corresponding

functional key skf . FuncOw can now decrypt with her (FHE) secret key the received

ciphertext and recover skf . Thereby, the FHE blinds to MskOw both the function f and

the key skf .In addition, we used ZKPoK as in the PFE construction.

In the langage of PFE, we have the following description that we will present for

completeness. Let λ > 0 be a security parameter and consider a family of functions F =

{Fλ}λ whose input size n(λ) which is polynomial in λ. Suppose that all functions f ∈ F

can be encoded as a P (λ)-bit string (for a polynomial P). Consider a FE scheme for this

family F . We can suppose in our case that FE.KeyGen is a randomized or deterministic as

in the PFE construction which was discussed in the last paragraph of Sec.3.3.1. algorithm

that is described by a circuit of logarithmic depth d(λ). Consider (a possibly size-

dependent) FHE = (Setup, Enc, Dec, Eval) be a fully homomorphic encryption scheme,

where the input of the encryption algorithm is a bit string with size at least P (λ) and

supports evaluation of circuits of depth at least d(λ). Our interactive blind functional

encryption for the class of function F is described in Figures 3.6 and 3.7.

89

3.3. IFE from non-interactive FE

• IFE.Setup(1λ): Output

(mpk, msk)← FE.Setup(1λ).

• IFE.IKeyGen(MskOw(msk), FuncOw(mpk, f)) is de-
scribed in Fig. 3.7

• IFE.Enc = FE.Enc

• IFE.Dec = FE.Dec

Figure 3.6: Our generic blind IFE from FHE

MskOw(msk, mpk) FuncOw(mpk, f)

(pk, sk)← FHE.Setup(1λ)
ctf ← FHE.Enc(pk, f ; R)

pk, ctf←−−−−−−−−−−−−−−−−−−
πFuncOw ← ZKPoK(sk, f, R) : {f ∈ F

∧ (sk, pk) = FHE.Setup(1λ)

∧ ctf = FHE.Enc(pk, f ; R)}
←−−−−−−−−−−−−−−−−−→

If Verify(πFuncOw) = 0 aborts

Select random R′, R′′

ctskf
← FHE.Eval(pk, KGmsk,R′ , ctf ; R′′)

with KGmsk,R′ := FE.KeyGen(·, msk; R′)
ctskf−−−−−−−−−−−−−−−−−−→

πMskOw ← ZKPoK(msk, R′, R′′) : {
ctskf

= FHE.Eval(pk, KGmsk,R′ , ctf ; R′′)}
←−−−−−−−−−−−−−−−−−→

If Verify(πMskOw) = 0 aborts

Output skf ← FHE.Dec(sk, ctskf
)

Figure 3.7: Our interactive key generation IFE.IKeyGen from FHE

90

3. Function’s protection in Functional Encryption

As we can see this construction is a special case of generic construction from any PFE.

Informally, in the language of PFE, PFE1 consists of running the FHE.Setup algorithm,

then encrypt the function f using FHE.Enc. In addition, PFE2 consists of homomorphi-

cally evaluating the circuit KG· (equal to FE.KeyGen(·)). Finally, PFE3 is the decryption

algorithm FHE.Dec.

In fact, our generic proof for the PFE case is inspired from our previous work for

the FHE case. P1’s privacy in the definition 3.3.1 thanks is by definition the analogue of

CPA security of FHE scheme and P2’s privacy is similar to the extractability condition

of the ZKPoK in combination with an specific property of weak-function indistinguisha-

bility [18] (for FHE) that is also considered in our paper [34]. 7

From two-party computation protocol. A possible approach to derive generically

an interactive FE would be to use a secure two-party computation of the IKeyGen pro-

tocol. We insist that such an approach does not achieve the blindness property we are

interested in. Indeed, although the authority does not learn the user’s input with 2PC,

it could make the functional keys output by two users in the blindness security game

depend on the function in different ways. This is possible by using for example two

different master keys.

Our notion of PFE is inspired by the work that was introduced in the context of

secure two-move blind signature [61]. Generically, it is a two-party protocol with some

additional properties that are sufficient in order to obtain a blind signature scheme.

It seems possible, similarly to [61] (see also [18]), to use Yao’s Garbled circuit [115]

combined with any two-messages oblivious transfer [92] (which leads to a semi-honest

2PC), in addition to ZKPoK, to finally get the properties needed to instantiate a two-

round secure PFE.

3.3.4 Efficient Blind Interactive Inner-Product FE

Many applications, such as data mining or statistical computation need as subroutines

inner-product evaluations. We propose in this section a blind interactive functional

encryption for inner-product, which is inspired by our construction from the fully ho-

momorphic case. Notice that, again, generically, it is possible to obtain general PFE or

FHE-based protocol that computes the inner-product with adapted ZKPoK.

7Informally, this notion guarantees that any adversary (even if it knows the secret key of the FHE)
cannot produce any FHE ciphertext cty, for input y, two circuits C0, C1 with C0(y) = C1(y) such
that it could distinguish between FHE.Eval(pk, C0, cty) and FHE.Eval(pk, C1, cty) (we refer to [18] for a
definition).

91

3.3. IFE from non-interactive FE

For most of the known IPFEs, we show that it is possible to provide an instantiation

using the power of linearely homomorphic encryption scheme [37]. Indeed, the structure

of the underlying KeyGen for IPFE is a linear function. Thus, it is natural to choose this

primitive and which will be sufficient for our purpose as we will describe in the following

paragraphs.

On IPFE’s.KeyGen. Several IPFE constructions have recently been proposed [1, 11,

38, 111]. Most of these schemes extract functional keys following the same shape:

(y, 〈msk, y〉) where msk, y ∈ Z
ℓ
p for a (large) prime p, the master secret key msk and

the functional key represented by the vector y.

In fact, the choice of p depends on the scheme. Before, remark that the classical

IPFE functionality computes inner-products modulo some prime q, while the functional

key, which is in these schemes also an inner-product, is considered eventually modulo a

different prime p. The ElGamal-based schemes of [1,11,111] consider msk, y as well as

the functional keys for the modulo the same prime integer q used for the functionality,

i.e. p = q.

Moreover, there is some schemes [11,38] that computes the functional keys as inner-

product over the integers (which is important for security). This means that we have

to consider the size of the eventual inner-product. Then, we can always choose a large

prime p bigger than maximum size of the functional keys and view them modulo p. In

particular, this prime p is eventually different from q the module of the functionality.

Our contribution is to give an efficient two-party protocol computing these functional

keys with the blindness property, and which can be used in the constructions whose

functional key is an inner-product. Following our FHE-based construction, we show how

to adapt our construction.

On the choice of the linearly homomorphic encryption scheme. As we men-

tioned, the functional key is an inner-product between msk and a vector y that imposes

a size on the functional keys. In general, this is a relatively large integer in Z and the

choice of the linearly homomorphic scheme is impacted.

While impossibility results hold for unconditionally secure two party inner-product

computation [99], there exist protocols that rely on linear homomorphic encryption

schemes to securely compute inner-products as in [65].

A direct option would have been to use the additive variant of ElGamal [53] modulo

p, but this would imply to compute a final discrete logarithm which is not possible for

large p. The Paillier encryption scheme [98] is also a possibility as an alternative to this

92

3. Function’s protection in Functional Encryption

size problem, but we remarked that proofs of knowledge are less efficient for the purpose

of our protocol.

Hereafter, we modify the former construction [65] by using the Castagnos-Laguillaumie

(CL) linear homomorphic encryption [37] since we need inner-product computed in Zp.

The scheme provided in [37] puts forward a general framework for linearly homomorphic

encryption schemes, by considering similarly to the Paillier encryption, a group that has

some subgroup where the Discrete Logarithm problem is easy to solve.

The choice of CL scheme has positive consequences: it allows to tune the size of the

prime p according to the applications and it is asymptotically more efficient (since best

known attacks have a subexponential complexity of parameter 1/2 instead of 1/3 for

factoring). We refer to [37] for a more detailed definition of this scheme.

On zero-knowledge proofs. For our consideration, ZKPoK are proofs for classical

discrete logarithm-based expressions. We choose to focus on the ElGamal-based IPFE

that has the particularity of considering all elements msk, y, sky modulo the same prime

q. The proofs that concerns the group coming from the IPFE setup could be computed

using a standard Schnorr proof [106].

The main subtleties concern the CL part since it uses a group of unknown order.

As in [36], the solution is to use repeated GPS proofs [64] with binary challenges for

exponents sampled from some bounded set and used as randomness (or private key).

We refer to [36] or [112] for a more detailed presentation .

Taking a step back, using Paillier encryption instead of CL prevents the necessity to

repeat a GPS proof with binary challenge. It however necessitates to add (i) a proof

that the Paillier modulus N has truly been computed as the multiplication of two primes

[31], (ii) a proof of knowledge of a plaintext m and its randomness r composing the given

Paillier ciphertext c = (1 + n)mrN (mod N2), which can be done using techniques given

in [44] and (iii) a proof that m < p in a group of composite order [27]. We argue

that this implies a heavier global zero-knowledge proof than what we propose using CL

encryption.

Using the CL scheme, we can then directly embed our protocol into secure DDH-based

IPFE schemes like those of [1, 11].

Description of our IFE for known IPFE. For most of the known IPFE scheme [1,11],

the Setup algorithm consists of a description of a cyclic group G of large prime order

p > 2λ with generator g ← G. For each i ∈ {1, . . . , ℓ}, it samples si ← Zp and compute

hi = gsi . Finally, define the master secret key as msk := (si)
ℓ
i=1 and the master public

93

3.3. IFE from non-interactive FE

key as mpk :=
(

G, g, {hi}
ℓ
i=1

)

.

We use the same prime p for both the CL scheme 2.2.2 and IPFE. This is possi-

ble thanks to the flexibility of the CL key generation. The interactive key generation

IKeyGen(MskOw(s ∈ Z
ℓ
p), FuncOw(mpk, y ∈ Z

ℓ
p)), consisting of the two party computa-

tion of an inner-product is then as follows.

• The user FuncOw generates a pair of keys pk = gx
p and sk = x for the CL scheme

over the message space Zp. It encrypts each coordinate yi for i ∈ {0, . . . , ℓ} as

ci = (c1,i, c2,i) = (gri
p , fyihri) for uniformly random ri in a set S included in Z

8. Let cy := (ci)i=1,...,ℓ, it sends pk, cy to MskOw and a zero-knowledge proof of

knowledge πFuncOw such that

{(x, ri, yi) : h = gx
p ∧ c1,i = gri

p ∧ c2,i = fyihri for i ∈ {1, . . . , ℓ}}.

• If the proof fails, MskOw aborts. Otherwise, it homomorphically computes csky
:=

(c1,sky
, c2,sky

)←−
((
∏ℓ

i=1 csi

1,i

)

gr′

p ,
(
∏ℓ

i=1 csi

2,i

)

hr′
)

for some random r′ in S that it

sends to FuncOw as well as a proof πMskOw that:

{(r′, si) : {gsi = hi}
ℓ
i=1 ∧ csky

=

((
ℓ∏

i=1

csi

1,i

)

gr′
,

(
ℓ∏

i=1

csi

2,i

)

hr′

)

}.

• If πMskOw fails, FuncOw aborts. Otherwise, it decrypts csky
and gets sky :=

(y, 〈s, y〉) ∈ Z
ℓ
p × Zp.

Description of the proofs. We will discuss in the following how the proofs could

be performed. Recall that a Schnorr proof of knowledge h = gs consists of sending

a commitment T = gt (mod p) for a random t ∈ Z
⋆
p, receiving a uniformly random

challenge c in a set [0, B − 1] then answering u := t + sc (mod p) that should verify

gu = T ·hc. This proof may be eventually repeated ℓ times in order to obtain a soundness

of 1
Bℓ . For our purpose, we use this proof in πMskOw several times in the first part, one

for every i, to prove that hi = gsi .

The GPS proof [64] consists of a proof of knowledge h = gs for an s ∈ [0, S − 1] and

g is a generator of group of unknown order. Then, the proof starts with a commitment

T = gt for a uniformly random t ∈ [0, B − 1]. For a binary challenge c ∈ {0, 1}, the

8See [112] for a more detailed justification

94

3. Function’s protection in Functional Encryption

answer consists of u := t + cs ∈ Z as in Schnorr. The equation gu = T · hc should also

hold as well as an additional check that u ∈ [0, B + S].

The resulted ZKPoK provides soundness of 2−ℓ as long as ℓ is polynomial and ℓS/B

is negligible. For our purpose, we use this proof in πFuncOw for proving that h = gx
p (for

πFuncOw)

For the encryption part concerning the group of unknown order (in both πMskOw

and πFuncOw), we have as a high-level to prove that (c1 = gr
p, c2 = fmhr) is indeed an

encryption of some message m ∈ Zp under the public key h = gx
p for x ∈ [0, S], we

consider an adaptation of GPS proof. Let as a commitment an encryption of a random

element r2 ∈ Zp using randomness r1 ∈ [0, B − 1], i.e. computes t1 := gr1
p , t2 = fr2hr1 .

For a binary challenge c ∈ {0, 1}, compute u1 := r1 + cr ∈ Z, u2 := r2 + cx ∈ Zp.

The verification consists of checking if u1 ∈ [0, B + S] and t2 · c
c
2 = hu1fu2 as well as

t1 · c
c
1 = gu1

p . Here, we have similarly a soundness 2−ℓ as long as ℓ is polynomial and

ℓS/B is negligible.

Concrete efficiency. A precise efficiency analysis of GPS-like proof in the context

of CL encryption has been performed in [36] or [112]. It is implemented within class

groups of some imaginary quadratic fields. The cost of such a proof is dominated by the

computation of exponentiations in the class group. [36, Fig. 9] gives some measurements:

on their architecture, an exponentiation takes 55ms for a 128 bit security. For the proof

described in Eq. 3.3.4 with ℓ = 1, there are essentially 4 exponentiations in the class

groups. This protocol has to be repeated say 40 times to get a soundness error of 2−40,

which means that such a proof costs less than 10 second (with ℓ = 1). The overall cost

is then linear in ℓ, which means that our interactive blind IFE has a reasonable practical

cost of ℓ times tens of seconds. This is even more reasonable that this extraction is done

only each time that a functional key is necessary, which most of the time happens once

for all.

Analysis of Our Inner Product IFE. The following result is a corollary our previous

result and a proof is given next.

Theorem 3.3.6. The scheme described above is message-private and blind assuming

that CL scheme is CPA-secure and the πFuncOw, πMskOw are zero-knowledge proofs of

knowledge.

This theorem is a corollary of our previous construction. The only difference with

our FHE-based construction [34] is that we suppose that the FHE is weak-function indis-

95

3.3. IFE from non-interactive FE

tinguishable. And this notion was used in the leak-freeness security game. The blindness

proof can easily be adapted since it is the same as in our construction for FHE and we

will omit to describe it.

Proof. We prove that the IFE.KeyGen protocol is leak-free with respect to this IPFE.KeyGen.

By Prop. 3.1.1, it implies that the IFE scheme is message-private.

More formally, for any adversary A, we describe the ideal simulator S in GameIdeal

as follows.

• First in the leak freeness security game, there is a distinguisher D that interacts

with A. Note that the simulator S has the capability of rewinding an instance of

the adversary A that he runs internally. In order to achieve this, S simulates the

communication between D and A by passing D’s input to A and A’s output to D.

• By definition of GameReal, the adversary A chooses a vector y ∈ Z
ℓ
p and runs

the IFE.IKeyGen(O(msk), ·) protocol with an honest MskOw. In the first message

of the protocol, the adversary runs (pk := gx
p , sk := x) ← CL.Setup(1λ) for a

certain x and must send to the honest oracle representing MskOw, and denoted

by O(msk) the parameters for the CL scheme, i.e the public key pk. In addition,

for each i ∈ {1, · · · , ℓ} ,A generates a ciphertext corresponding to one encryption

of his choosing vector (c1,i, c2,i) = (gri
p , fyihri), from some randomness ri and a

ZKPoKπFuncOw that all the values were correctly generated.

After this first interaction, if the proof πFuncOw fails, S aborts. Otherwise, thanks

to the extractability condition of the ZKPoK, we find an extractor Ext that S can

use to extract a valid witness wFuncOw = (x, y, r) with probability 2−ℓ (see [36])

such that x = (pk, (c1,i, c2,i)).

• S generates a randomness r′[0, S] where S is an integer from the CL specification.

It then invokes the oracle Trivial.KeyGen(msk, ·) on input y which means it gets

back a corresponding functional key sky := (y, 〈s, y〉) ∈ Z
ℓ
p × Zp for the vector y.

• S computes an encryption of sky as csky
:= (gr′

p , fskyhr′
), for randomness r′ in [0, S]

that it sends to FuncOw. To be consistent, S needs to generate a proof πMskOw

that these values were correctly generated. Note that it does not have access to

the master secret key s. Thanks to the rewinding capability of S and the zero

knowledge property, there exists a probabilistic simulator Sim that S can use in

order to simulate the view of the ZKPoK interaction between A and an honest

O(msk) in the GameReal experiment for any input and this without knowing s.

96

3. Function’s protection in Functional Encryption

We deduce the result from the following remarks.

• Thanks to the soundness property of the proof of knowledge, such extractor Ext

exists, and S can extract the input y from the ZKPoK in order to generate the

corresponding functional keys.

• The CL ciphertext is correctly distributed, so that the adversary does not notice

the difference when receiving the value ctsky
from an honest evaluation (thanks to

the CPA security of [37,38]) and remark that other values are correctly distributed.

• Finally, with the zero-knowledge property, the verifier A is convinced about the

validity of the proofs.

Now suppose that there exists a distinguisher D that have a black-box access to A.

Clearly, the simulator S acts as a valid honest MskOw and simulates, as mentioned

before, any view that D wish to obtain on any inputs y ∈ Zp.

We deduce that the IFE.IKeyGen does not leak any additional information than

IPFE.Trivial.KeyGen and we conclude that the protocol is leak free with respect to

FE.KeyGen algorithm. Assuming the above properties of ZKPoK and the CPA secu-

rity of the CL scheme, we deduce that the IFE scheme is message private by Prop. 3.1.1.

3.4 Conclusion

In this chapter, we tackle the problem of providing a precise framework for a blindness

security in a scenario where protecting some function towards an entity is meaningful.

Functional encryption is classically consider as a non-interactive primitive. Our work

leads to rethink the main security properties by carefully analysing the impact of adding

interactivity when implementing FE for practical use-cases. We show that a notion of

blindness could emerge and is meaningful in several situations.

From a theoretical perspective, we show that a secure generic construction is possible

from any non-interactive FE supporting some set of functions. Generalizing our previous

construction from FHE, we provide a more general construction from private function

evaluation equipped with the corresponding ZKPoK.

Having a generic solution comes with a significant computational cost. Nevertheless,

keeping in mind the developed techniques, we could exploit the linearity of the particular

inner product function and present an efficient solution. We compared existing solution

97

3.4. Conclusion

to tackle this problem, and thanks to the flexibility of some linear homomorphic encryp-

tion schemes such as the CL scheme with the adapted ZKPoK, we proposed a secure

blind interactive IPFE.

98

CHAPTER 4

USER’S PROTECTION VIA DIFFERENTIAL-PRIVATE

MECHANISMS

Overview of our contribution. In this chapter, we provide a construction bringing

differential privacy and FE in a common study. More precisely, we show how it is possible

to provide a new DP mechanism by considering a functional encryption primitive as

a building block. The main contribution consists of designing a differential private

mechanism for linear queries in encrypted databases, based on a randomized variant of

IPFE, named RIPFE.

It is well-known that linear queries can ben implemented (without DP) using IPFE.

Our solution combines in a new way ideas from variants of IPFE. The randomized

algorithm enjoys from both the confidentiality property inherited from encryption and

the required DP noise from privacy, obtaining the best of both worlds.

We first present and express a general definition as well as a security model adapted

to suit the particular use with DP mechanisms. We focus on the private-key setting,

since it is sufficient in a lot of scenarii, including ours. We then provide a construction

based on the DDH assumption by carefully introducing the required DP noise into a

modified version of classical IPFE. Finally, we sketch some possible generalizations of

our approach using a general variant of IPFE, namely two-input IPFE.

Confidentiality against privacy. Similarly to the case discussed in the introduction,

consider a scenario where an entity stores its dataset on a public domain (for example

a cloud). Moreover, it could be interested to give the possibility of performing compu-

tation over the dataset such as statistics. A common requirement is to ensure that the

99

4. User’s protection via Differential-Private Mechanisms

manipulated data nor the output of a computation do not permits to leak additional

information about the content of the dataset.

Thanks to some advanced cryptographic primitives, there are multiple possibilities

of protecting the underlying data. With FHE for example, it is theoretically possible

to compute any function over the underlying dataset before being revealed. Hence,

regarding our scenario, it is possible to publish an encrypted dataset on a cloud and

perform any statistics on it. Then, an interaction with the owner(s) of the FHE secret

key is needed to recover the content.

Another consideration when releasing sensitive dataset consists of avoiding re-identification

attacks. Indeed, reconstruction or tracing attacks [52] are powerful statistical methods

that identify each individual entry on a dataset, based only on the published information.

Techniques to prevent from these attacks are one of the topics of Differential Privacy

[51]. This notion gives a general anonymization framework for privately sharing dataset.

In particular, if some information are subject to manipulation (such as statistics), then

DP provides a modification on the dataset to avoid these re-identification attacks by

relying on randomized algorithms [51].

Considering the FHE example, it is possible to make adjustments on the encrypted

data by simply evaluating the required (randomized) algorithm. However, an extra

interaction for FHE decryption is needed to recover the final statistics.

While in the end, there is a need of protecting the information from disclosure to

unauthorized parties (encryption) as well as from statistical attacks (DP), it is challeng-

ing to find a cryptographic primitive that suits for this purpose.

Confidentiality with privacy. In this work, we consider the possibility of reconciling

these two frameworks by bringing a new primitive using FE that guarantees confiden-

tiality and (DP) privacy.

More precisely, consider a protocol for providing statistics as in the discussed use

cases. We put several requirements in its architecture:

• the dataset is stored in an external platform and the data confidentiality is achieved

thanks to encryption;

• several functions based on linear queries (or inner product) can be evaluated over

the underlying data, while maintaining a differential private output;

• a coalition of entities should not be able to learn any additional information about

the input data even when using several queries (unless from what is leaked inher-

ently);

100

4. User’s protection via Differential-Private Mechanisms

• the output of the system should provide significant useful statistics.

As discussed, FHE could be a solution but requires the owner(s) of the secret key to be

available for decryption. This leads us to consider how FE could be helpful for providing

such model. Recall that FE permits to delegate several evaluation of functions to a third

party. The natural starting point is then to consider FE that supports functions which

are adjusted according to the DP specifications.

However, classical definitions of FE consider deterministic functions. In particular,

since DP mechanisms are randomized functions by essence [51], it is natural to consider

a variant for our particular setting. Goyal et al. [73] study the randomized Functional

Encryption for general class of randomized functions. Syntactically, it consists of the

same algorithm of Def. 2.3.1 with a difference in the correctness condition [73]. In RFE,

the randomness used for the underlying randomized algorithm is completely unknown

to the decryptor.

We will exploit this variant of FE but we identify that the current literature does not

consider the specificities of differential privacy, hence cannot be used directly.

Main strategy. We consider the classical output perturbation technique for releasing

statistics [51]. Let x be an input dataset and φ a function query. A differential private

mechanism is a randomized function represented as f(x) = φ(x) + e for a noise e. The

DP’s literature tells us that giving this noisy version of the output φ(x) allows to immune

against known reconstruction attacks.

As in existing generic constructions of RFE, our idea is to start from a sufficiently

expressive FE scheme that supports a (deterministic) derandomized version of the un-

derlying (randomized) DP function. More precisely, we start from an FE scheme that

allows to manage the query φ and to transform it into the function fφ(x) = φ(x)+e with

e being a DP-compatible noise. The important point is that e must be freshly sampled

and be kept secret (otherwise DP is compromised).

From a security point of view, we require that the input elements remain protected,

even if an adversary has access to several (say polynomially bounded number) queries

functions φ. The only information that should be revealed is fφ(x) for possibly mul-

tiple fφ. We define the security of a DP-RFE using the simulation-security framework,

adapting the work that has been done by Agrawal and Wu in [13]. It is in particular

important to restrict the adversary from learning the underlying randomness used in the

DP mechanism in order to ensure the semantic security of the input data as well as the

DP requirement.

101

4. User’s protection via Differential-Private Mechanisms

The linear query case. Several statistics can be represented as an inner-product

function. To have a DP solution, we can consider generic constructions of RFE [13, 73]

but they are inefficient.

Just as in FE, considering specific functions (such as IPFE) has some benefits in

term of efficiency. Another contribution for this thesis is then to design an efficient

scheme for inner-product, or linear query as in DP terminology [51]. The function φ is

given by an inner-product 〈·, y〉 for a vector y and the related randomized function is

f〈·,y〉(x) := 〈x, y〉+ e as before. For our situation, we provide a derandomized version of

f〈·,y〉 by considering a noise e that can also be expressed as an inner-product.

Discussion and related works. Traditionally, differential privacy [50] is studied in a

setting there is a central data owner that collects raw entries for a dataset, then releases

an output of any query, in a differential-private manner.

There is a distinction between a interactive vs. non-interactive differential-privacy.

In the former [20], a relatively small set of (possibly online) queries are made to the

dataset owner that must outputs DP answers for each query. In the latter [50], the idea

is to release a summary of the dataset that must be generated without knowing the set

of queries in advance.

Our construction could be seen as a specific differential-private mechanism where the

dataset owner encrypts once for all the data, then share them in a public domain (this

corresponds to a summary). However, to make statistics, a statistician must specify the

set of queries to be able to decrypt the received ciphertexts. In particular, our work

lies in between the interactive and the non-interactive cases and has the benefit to be

flexible enough.

Another line of work considers the notion of structured encrypted database that sup-

port differential private queries [5]. While it looks similar to our use case, we explain

the main differences. Similarly to the result of this chapter, a dataset is encrypted

in [5]. Moreover, a differential private noise is added anytime an operation is queried.

The supported functions are search functions and Agarwal et al. [5] uses homomorphic

encryption to obtain a secure solution. In particular, their works corresponds to the

interactive setting discussed in the last paragraph. Our approach gives the ability to

evaluate more interesting functions such as inner-product while retaining the control of

leaked information and as discussed,using functional encryption.

Randomized Functional Encryption. As a generalization of FE, randomized FE

has been introduced in [73] and studied in the general setting in both [73] and [13].

102

4. User’s protection via Differential-Private Mechanisms

In [73], the authors focus on the public key setting and provide a generic construc-

tion from indistinguishable obfuscation. Another generic construction, using standard

assumptions, is then given in [13]. In the private key setting, the idea of the generic

construction from (expressive) Function-Private FE is proposed in [85]. As mentioned

above, we do consider a generic construction in this work, but focus on the inner-product.

Our security is given in the private-key setting, using standard assumptions, namely the

DDH assumption.

Relation to NoisyLinFE from [6, 7, 12] . The related work that is closest to ours is

the notion of Noisy linear FE (NoisyLinFE). It has been introduced by Agrawal [7] in the

context of building indistinguishable obfuscation (iO). NoisyLinFE is like a regular FE

for the class of inner-product functionalities, except that this quantity is recovered only

up to some bounded error term. From a ciphertext cx and a functional key sky, it is

possible to retrieve the value 〈x, y〉 + noise for some vectors x, y and a bounded error

term noise. This noise term needs to satisfy some weak pseudorandomness property in

order to be useful for building iO [7]. Indistinguishability should take into account such

noise, and is then guaranteed as long as two ciphertexts approximately lead to the same

inner-product (up to some polynomial bounded term). As far as we know, there are now

two different NoisyLinFE constructions in the literature [6, 7]:

1. a non-succinct1 construction using an IPFE as a building block. In fact, in the

above sketch of construction, if we consider ey := (γ, 1) and ex := (µ, δ) 2, the

decryption algorithm given in [6] recovers 〈x, y〉 + µ · γ + δ. Note that this work

only considers a stateful KeyGen, in order to trace the used noises. It is interesting

to notice that since Agrawal considers a public-key variant, the adversary has the

ability to encrypt the messages of its choice and could also learn in the plain some

partial noises. However, by combining the noise flooding techniques (with a stateful

KeyGen), the result is proved secure [6] in an indistinguishable-like definition;

2. a succinct construction, useful for building iO, using new non-standard assumptions

from lattices. Such construction adapted the same kind of techniques to compute

the desired noise as a structured linear combination of several carefully chosen

ones.

1In the sense that the ciphertext size is sublinear in the number of requested functional keys.
2where γ is distributed according to some discrete Gaussian distribution of width large enough to

flood some bounded error B, and where µ is taken from a distribution of width large enough so that µ

is indistinguishable from µ + 1 and δ is such that δ + γ floods γ.

103

4.1. Differential Privacy

While the aim of [7] is to provide a specific output noise in order to build iO, a careful

cryptanalysis study of this scheme, given in [12], shows that the second construction is

in fact insecure when there are more requested ciphertexts.

Coming back to our need, it is mentioned in [7] that NoisyLinFE could be used to

provide DP mechanism, but without any additional discussion. Indeed, an adaptation

of the above NoisyLinFE non-succinct construction seems compatible with our consider-

ation. However, we remark that we do not not need the full power of this primitive,

especially the noise flooding techniques. In fact, our construction from two-input FE

provides new techniques for building a simplified version of NoisyLinFE where the error

terms are only required to be compatible with the DP mechanisms, without any pseu-

dorandomness restriction on the desired output (which is necessary to build an iO). In

addition, while [6, 7, 12] consider an indistinguishable security, we provide in this thesis

a stronger simulation security and we leave as an interesting open question to provide

connections between those notions.

Organization We now organize the following chapter as follows. We first recall the

main technical ingredients related to differential privacy. Section 4.2 introduces the for-

mal definition and security requirements for private-key randomized functional encryp-

tion schemes for differential-private functionalities. Our construction and its security

analysis are given in Section 4.3 and we finally conclude in Section 4.4.

4.1 Differential Privacy

In this section, we present the needed background and tools for our study. We first start

by a presentation of basic differential privacy definitions.

4.1.1 Preliminaries

Differential privacy is a mathematical definition of privacy for datasets which contain

some sensitive information about individuals. In a nutshell, an algorithm is said to

be differentially private if by looking at the output of its execution, one cannot tell the

presence of any individual’s input on it. The traditional way to model such intuition is to

view the effect of a computation (by considering the output distribution) on two datasets

that differs by one entry. Today, this notion is coupled with a set of different probability

tools to provide such differential private algorithms. We give below an overview of the

main concepts behind this theory and refer to e.g. [50,51] for more details.

104

4. User’s protection via Differential-Private Mechanisms

Notation and terminology of this chapter. Let ℓ ≥ 1 be an integer, we define

a dataset x = (x1, . . . , , xℓ) ∈ D
ℓ as an ordered tuple of ℓ rows, where each row xi is

drawn from a discrete data universe D. The ℓ1-norm of a dataset x ∈ Dℓ is defined as

‖x‖1 =
∑ℓ

i=1 |xi|. For two datasets x and x′, the ℓ1-distance between x and x′ is defined

as ‖x − x′‖1. Note that ‖x‖1 gives the number of records the dataset contains, while

‖x − x′‖1 is a measure of how many records differ between x and x′: it gives a way to

compare those two datasets. In the DP literature, the notion of neighbours is sometimes

used when ‖x− x′‖1 ≤ 1.

Randomized algorithms. The concept of differential privacy is strongly related to

the notion of randomized algorithm and in this thesis, our purpose is to combine such a

concept with functional encryption. Recall that according to [66], there are two equiv-

alent ways to define a randomized algorithm that are denoted by the letter M (for

Mechanism) and which are described in section 2.1.

Basic definitions. We now recall some definitions from the differential privacy liter-

ature. Let x ∈ Dℓ be a dataset. Let F be a set of queries on datasets and let φ ∈ F be

a query done on x.

Definition 4.1.1 (Differential private mechanism [50, 51]). A randomized algorithm

M : Dℓ×F → Y is (ǫ, δ)-differential private if for all S ⊆ Y, every φ ∈ F and every

adjacent datasets x, x′ ∈ Dℓ

Pr[M(x, φ) ∈ S] ≤ eǫ · Pr[M(x′, φ) ∈ S] + δ.

Note that the smaller ǫ, the better the privacy. We refer to [51] for a complete

background on the impact of this parameter. What is important here is that the value ǫ

gives the quantity of noise that is added to φ(x). In fact, there are two ways to proceed:

the noise is either (i) generically chosen so as to manage any function and any input, but

the risk is to add too much noise, and thus obtain a less suitable answer, or (ii) adapted

and calibrated with a less noise, but for a specific set of functions.

Adapting the noise to the function is precisely the purpose of the so-called sensitivity:

calibrate the standard deviation of the noise according to the sensitivity of the function

φ. In a nutshell, the ℓ1-sensitivity of a query φ captures the magnitude by which a single

individual’s data can change the function φ in the worst case, and therefore, intuitively,

the uncertainty in the response that we must introduce in order to hide the participation

of a single individual.

105

4.1. Differential Privacy

Definition 4.1.2 (Sensitivity [50, 51]). Let (x, x′) be two datasets in Dℓ × Dℓ. The

ℓ1-sensitivity of a function (or query) φ is the quantity

∆φ := max
(x,x′)∈Dℓ×Dℓ,‖x−x′‖1≤1

||φ(x)− φ(x)′||1.

In our case, as the dataset is encrypted, one may wonder whether it will still be

possible to use this ℓ1-sensitivity. In fact, the entity who encrypts the dataset is the one

that will also give its agreement for a query φ. Thus, the data owner will be the entity

that will add the noise during both the encryption and the functional key generation

phases, so that it can easily manage such ℓ1-sensitivity.

Statistical/Computational DP. The definition of differential privacy above is given

as a statistical one. There exists in the literature [88] some adaptations in the compu-

tational setting. For example, the indistinguishable-DP (IND-DP) is defined for every

possible PPT distinguisher A as

Pr[A(M(x)) = 1] ≤ eǫ · Pr[A(M(x′)) = 1] + negl(λ),

for some security parameter λ.

Our construction in Sec. 4.3 satisfies computational DP but as treated in [76], it is

still possible to convert this scheme to get statistical DP.

4.1.2 DP-compliant noise distributions

Our main goal is to use of a noise that is both compatible with the DP principles,

and does not compromise the security (see Sec. 4.2.3) of our randomized functional

encryption scheme. We should also take into account, for those two aspects, that the

noise is generated both during the encryption and the functional key generations steps.

Usual distributions. There are several important distributions that have been stud-

ied in the DP literature, depending on the level of differential privacy one want to

consider. The most explored one is the Laplacian distribution (centered on 0) with scale

b, given by its probability mass function on any (real) point x:

Lap(x|b) =
1

2b
e−

|x|
b .

106

4. User’s protection via Differential-Private Mechanisms

Another example could be found on the traditional Gaussian distribution denoted by

N (µ, σ2).

A discrete variant of Lap. Since we work with discrete groups to design our protocols,

the most suited distribution is the two-sided Geometric distribution, which can be seen

as a discrete version of the Laplacian one [63,79].

Definition 4.1.3 ([63,79]). Let α ∈ (0, 1) be a parameter.

• A random variable X is distributed according to the (discrete) one-sided geometric

distribution denoted by Geo+(α) if it has a mass function defined for every positive

integer k ∈ Z as

Pr[X = k] = αk−1(1− α)

• Similarly a random variable X is distributed according to Geo(α), called a two-

sided geometric distribution if for every integer k

Pr[X = k] =
1− α

1 + α
· α|k|.

We will simply refer to the geometric distribution when talking about Geo.

Moreover, based on the fact that in our construction (see Section 4.3), the noise

that should follow such a distribution is computed in two steps, using first ex during

encryption and using then ey during functional key generation, we need to find their

right linear combination to eventually obtain a noise following the two-sided geometric

distribution. For this purpose, we base our choice on the following result using the

one-sided geometric distribution (see [79] for a proof).

Lemma 4.1.1 (Proposition 3.1 in [79]). Let α ∈ (0, 1). A random variable Y is dis-

tributed according to Geo(α) if and only if Y = X1−X2, where X1, X2 are two indepen-

dent and identically distributed random variables distributed according to Geo+(α) with

i = 1, 2.

This lemma gives us the insurance that if both ex and ey are sampled from the

one-sided geometric distribution, then the final noise e := ex − ey will have the desired

output distribution.

107

4.2. Randomized FE for DP Functionalities

Noise distribution and DP. Given any of the above distributions, and assuming that

the query function φ has some additive structure (as it is the case in our whole study),

we can now define a DP mechanism M verifying the definition 4.1.1.

Lemma 4.1.2 (DP mechanism). Fix some ǫ > 0 (resp. δ ≥ 0). Let F be a set of queries

on datasets and φ ∈ F . Consider E be a random variable distributed according to the

geometric (resp. Laplacian, Gaussian) distribution, whose parameter depends on ∆φ,

the ℓ1-sensitivity of φ. The geometric (resp. Laplacian, Gaussian) mechanism defined

as

M(x, φ, ǫ) := φ(x) + E,

is (ǫ, 0) (resp. (ǫ, δ)) differential private.

For the geometric distribution, we need to set α = exp(ǫ
∆φ

) to reach the (ǫ, 0)-DP

with the ℓ1-sensitivity. This result can be found in [63,109], while the ones for Laplacian

and Gaussian are given in [51].

We finish this section by illustrating how our definition of randomized algorithm fits

in this situation. To satisfy Def. 2.1.1 with the geometric distribution, we consider the

associated mapping PM, defined for a mechanism M, that takes as inputs x, φ, ǫ and

that outputs the probabilities (centered on φ(x)) defined by pk := 1−α
1+α · α

|k| for k ∈ Z

and α defined as above. In this case, it is obvious that Def. 2.1.1 is satisfied since

Pr[M(x, φ, ǫ) = k] = pk.

4.2 Randomized FE for DP Functionalities

In the previous section, we have seen in Lemma 4.1.2 that a way to achieve differential-

privacy for linear queries is to compute, from a dataset x and a query y, the value

〈x, y〉 + e where e is a random element drawn from the geometric distribution. Given

that x is the vector to be encrypted, and y is assimilated to the function behind the

functional key, we have to design a (randomized) inner-product functional encryption,

for a specific class that makes the output DP-compliant.

The natural choice for a security model is then to consider the existing definitions

for RFE [13,73] and while we do not need this general definition, we present in the sequel

an adaptation for linear queries and in the case of differential privacy.

Remark. As mentioned in [13,73], while a randomized algorithm permits, each time it is

executed, to obtain different fresh outputs, a party executing the FE decryption procedure

on input one given ciphertext for a message x and one given functional key for a vector

108

4. User’s protection via Differential-Private Mechanisms

y should always get the same output. In addition, given two different ciphertexts and

one functional key, such party should get two independent outputs. The idea behind

is that the latter cannot repeatedly sample the functionality to obtain multiple outputs

for different random coins. In our situation, this means that when a ciphertext and a

functional key are generated, running the decryption algorithm leads to the same value

〈x, y〉+ e.

4.2.1 DP Randomized FE for Linear Queries

In this section, we present our version of Randomized Inner-Product Functional Encryp-

tion, hereafter RIPFE, in which we first consider linear queries, reducing the functionality

to an inner-product, and then integrate the geometric distribution to manage random-

ness.

Definitions and Security Model for randomized inner-product. For α ∈ (0, 1),

we define the randomized version of the above inner-product, according to the geometric

distribution, as

fy(x) = 〈x, y〉+ e =
ℓ∑

i=1

xi · yi + e (mod q),

where x = (x1, . . . , xℓ) ∈ X
ℓ, y = (y1, . . . , yℓ) ∈ Y

ℓ, and where e is sampled according to

the geometric distribution Geo(α) (see Section 4.1.1).

We finally define the family of differential-private inner-product functions, according

to the geometric distribution, as

FX ,Y,ℓ,α,q := {fy : X ℓ → Zq}.

Given such family of DP-friendly functions, we need to come back to the notion of

ℓ1-sensitivity. In fact, it is easy to see that the magnitude of the inner-product function,

denoted ∆fy
, is given in this case by ∆fy

:= Bx ·By.

RIPFE for Linear Queries We are now ready to present the syntax of a RIPFE scheme

in the private-key setting, adapted from [13, 73], for the family of functions FX ,Y,ℓ,α,q

defined above.

Definition 4.2.1 (Private-Key RIPFE). Let λ > 1 be a security parameter. A private-

key randomized functional encryption scheme RIPFE for the family of functions FX ,Y,ℓ,α,q

consists of a tuple (Setup, KeyGen, Enc, Dec) defined as follows.

109

4.2. Randomized FE for DP Functionalities

• Setup(1λ) is a PPT algorithm which takes as input a security parameter 1λ, and

outputs a master secret key msk and possibly some public parameters param which

are included in all the other algorithms.

• KeyGen(msk, fy) is a PPT algorithm which takes as input a master secret key msk

and a description of the function fy ∈ FX ,Y,ℓ,α,q and outputs a functional key sky.

• Enc(msk, x) is a PPT algorithm which takes as input the master secret key msk

and a message x ∈ X , and returns a ciphertext cx.

• Dec(sky, cx) is a deterministic algorithm which takes as input a functional key sky

and a ciphertext cx and outputs a string z ∈ Zq.

4.2.2 Correctness for RIPFE

As shown in Chap. 2, Sec 2.3, the classical definition for an IPFE informally ensures

that during the decryption procedure for one ciphertext cx and one functional key sky,

it is possible to obtain the inner-product 〈x, y〉. In the more general case of RFE, as

mentioned in [73, Remark 2.2], we need to define correctness for multiple ciphertexts

and functional keys.

Our decryption procedure outputs an element of the form 〈x, y〉 + e, where e is

distributed according to Geo(α) for some α. Following [13, 73], the definition considers

that given a fresh encryption of a message x or a fresh key for a function fy, the

output of the decryption algorithm is (computationally/statistically) indistinguishable

from evaluating fy(x) = 〈x, y〉+ e with some fresh randomness output. In our case, e is

drawn from the two-sided geometric distribution.

This leads to the following definition, adapted from [13,73] to the case of the inner-

product and the geometric distribution.

Definition 4.2.2 (Statistical (resp. Computational) Correctness). We say that an

RIPFE = (Setup, KeyGen, Enc, Dec) supporting the family of functions FX ,Y,ℓ,α,q is cor-

rect if for all λ ≥ 0, for every polynomial Q = Q(λ), and for every x1, . . . , xQ in X ℓ and

y1, . . . , yQ in Yℓ, the following two distributions are statistically (resp. computationally)

indistinguishable:

• Real(λ) := {Dec(skyi , cxj)}i,j∈[Q], where

(msk, param)← Setup(1λ)

cxj ← Enc(msk, xj) for all j ∈ [Q].

skyi ← KeyGen(msk, fyi) for all i ∈ [Q].

110

4. User’s protection via Differential-Private Mechanisms

• Ideal(λ) := {〈xi, yj〉+ ei,j)}i,j∈[Q]×[Q] for ei,j sampled according to the geometric

distribution Geo(α).

The main difference between our definition and those of [13, 73] is that we directly

consider the specific output distribution Geo(α). In [13,73], the general case of a random-

ized algorithm f is treated and the formulation uses the auxiliary input configuration

of randomized algorithms (see the discussion in Section 4.1.1). Our definition makes it

possible to easily prove that our scheme fulfills the correctness condition for this special

case of RIPFE. In particular, since our interest is for DP mechanisms, it is sufficient to

prove that our decryption algorithm outputs elements that are distributed according to

the specific geometric distribution.

4.2.3 Simulation-Security for RIPFE

In this section, we focus on the message privacy for an RIPFE supporting the family of

functions FX ,Y,ℓ,α,q. Informally, the main general objective for any functional encryption

scheme is to guarantee that an adversary who owns a functional secret key corresponding

to a function f cannot learn more than f(x) from the encryption of x (as shown in

Chap 2, Sec 2.3.1). The case of randomized FE is intricate since there are multiple

potential outputs for f(x).

As mentioned in [13, 73], considering an indistinguishability-based definition is hard

and could potentially provide circularity in the definition (see [73] for a more detailed

discussion). So we consider, as in [13, 73], a simulation-based definition that we adapt

to our specific case.

In [13, 73], the idea of the simulation-security for randomized FE is to simulate the

functional key generation and the message encryption using the set of values {fj(xi; ri,j)}i,j∈Q

where (1) {fj}j∈Q is the set of functions requested by the adversary, (2) {xi}i∈Q is the

set of messages output by the adversary, and (3) each ri,j is a uniformly chosen random

sample from Rλ, where R = {Rλ}λ∈N is the randomness space.

We insist that all previous approaches for RFE consider this view of randomized

functions as sampling uniformly from a random space3. As discussed in Section 2.1 from

Chapter 2, we have taken another approach for the definition of randomized functions,

which considers the specific output distribution. We then change the definition given

in [13,73] to fit with our discussion.

Also, we restrict our definition to the case of the one selective simulation security

3except for NoisyLinFE of [6, 7, 12], but this work is is not introduced or based as a special case of
RFE.

111

4.2. Randomized FE for DP Functionalities

(one-Sel-Sim), managing only one plaintext x⋆ coming from the adversary, and not a set

of messages as in [13, 73]. More formally, we have the following adapted definition for

adaptive simulation security of [13,73].

Definition 4.2.3 (Simulation-security for RIPFE). Let RIPFE = (Setup, Enc, KeyGen, Dec)

be a randomized IPFE according to the family of functions FX ,Y,ℓ,α,q. Let Sim = (S⋆
S,S⋆

E,S⋆
KG)

be a PPT simulator and let A be a PPT adversary. Consider the following experiments.

Expreal
A (1λ)

1 : (x⋆, st)← A(1λ)

2 : (param, msk)← Setup(1λ, st)

3 : (cx
⋆ , st′)← Enc(msk, x⋆)

4 : γ ← AKeyGen(msk,·)(param, cx
⋆ , st′)

Expideal
A,Sim(1λ)

1 : (x⋆, st)← A(1λ)

2 : (param⋆, st⋆)← S⋆
S (1λ, st)

3 : (c⋆, st′)← S⋆
E(st⋆, 1|x⋆|)

4 : γ ← AS⋆
KG(st⋆,st′,·)(param⋆, c⋆, st′)

In the real experiment, the KeyGen(msk, ·) oracle takes the master secret key msk, a query

y and returns a (real) functional key sky corresponding to y.

In the simulated experiment, the S⋆
KG(st⋆, ·) are the corresponding key generation

oracle. The S⋆
KG simulator has an oracle access to an ideal functional key generation

oracle KeyIdeal(x⋆, ·) which on input y⋆, outputs an element 〈x⋆, y⋆〉+e for e distributed

according to Geo(α). More formally, let y1, · · · , yQ be A’s queries to S⋆
KG(st⋆, ·), then

KeyIdeal pick (independent) ei from Geo(α) and define auxi := 〈x⋆, yi〉+ei for all i ∈ [Q].

Finally, it returns {yi, auxi, skyi} to SKG.

An RIPFE scheme satisfies the One Selective Simulation-Based (one-Sel-SIM)

security if there exists a PPT simulator Sim such that for all efficient PPT adversary A,

the outputs of the real and ideal experiments above are computationally indistinguishable.

In a FE-based indistinguishability game, there is an inherent condition imposed by

the output of the security game that no adversary should be allowed to query vectors

x0, x1 with f(x0) 6= f(x1). This condition badly translates in the randomized FE setting,

since we need to manage random values. It is unclear how it is possible to include this

parameter.

On Indistinguishability type definition. In the case of RFE, having an indistin-

guishability based definition implies some circularity [73]. Another related notion in the

literature is the one of noisy linear FE [6,7,12]. In this context, an indistinguishable-like

definition is provided, in which it is requested to guarantee the indistinguishability be-

tween two ciphertexts encrypting respectively x0, x1, as long as they have approximately

112

4. User’s protection via Differential-Private Mechanisms

the same inner-product. The given definition of [6, 7] also considers a one-message se-

curity. However, since indistinguishability type and simulation type definitions for RFE

are incomparable in general, as shown in [13, 73], it is an interesting problem to find

connections between those two notions.

4.3 Construction

In this section, we provide our construction of an RIPFE for the family of functions

FX ,Y,ℓ,α,q defined in the previous section. Our scheme is one-selective simulation secure

under the DDH assumption.

4.3.1 High-Level Overview

Denote by fy the corresponding randomized function: fy(x) = 〈x, y〉 + e, with e to be

some DP-compliant noise.

Having IPFE in mind, we have to add in both the encryption and the functional key

generation algorithms some partial noise that will imply, at the end of the decryption

phase, a noise e which is compatible with the specifications of DP. The main issue is to

ensure that this modification preserves the semantic security. We give in the following a

step-by-step description of our construction with the aim to provide the subtleties that

may arise when considering this primitive.

Fix a private-key FE scheme IPFE = (Setup, Enc, KeyGen, Dec) for the inner-product

functions. Let x, y be two vectors in some domain with say ℓ ≥ 1 coordinates. The

transition from 〈x, y〉 (for a given y) to the randomized function fy(x) = 〈x, y〉 + e

can be done by augmenting the vectors x and y with some randomness and considering

vectors x⋆, y⋆ with ℓ+1 coordinates such that 〈x⋆, y⋆〉 = 〈x, y〉+e. The natural point is

to incorporate e in one of the two vectors (augmenting the other element with 1 element).

We provide two important remarks about this method.

1. Considering x⋆ = (x, e) and y⋆ = (y, 1) provides the desired answer but yield the

same noise e for different functional decryption keys.

2. Considering x⋆ = (x, 1) and y⋆ = (y, e) is also a solution but notice that the noise

remains the same for different encrypted messages.

These behaviours need to be avoided in practice, since in the DP literature, the noise

must be freshly sampled for each output result.

113

4.3. Construction

Dividing DP noise. Starting from that, we give interest in the construction of [6]

and adapt it to divide the noise into two parts: one which is generated during the

encryption Enc, and another one that is chosen during the functional key generation

KeyGen. Remark that since we are considerinh IPFE, if we augment the vectors x, y

as x⋆ := (x, x′) and y⋆ := (y, y′) for any vectors x′, y′, we obtain by construction the

inner-product 〈x, y〉 + 〈x′, y′〉. Having this view of what IPFE could provide makes a

suggestion that if e is the targeted DP noise, then an appropriate choice of the elements

x′, y′ such that 〈x′, y′〉 = e could return a valid answer to our problem.

Suppose that e is written as a difference between two elements ex− ey (as suggested

by lemma 4.1.2) following the one-sided geometric distribution, then the natural form

is to view a plaintext having the following shape x⋆ = (x, ex, 1) where x is the vector

to be encrypted and ex the one-side geometric noise. Similarly, the functional key for

function fy is computed with the vector y⋆ = (y, 1,−ey), where ey is again a one-side

geometric noise. After the decryption we obtain 〈x, y〉+ ex − ey. Splitting e as ex − ey

gives us the targeted distribution.

It remains to fix some issues with this intuition.

1. Invoking the same KeyGen implies using the same ey and the resulted output could

be correlated. In particular, we still need to ensure correctness with fresh samples

any time the decryption algorithm is invoked.

2. A more technical problem in known (non-function private) IPFE schemes is that

the adversary has access (in addition to a ciphertext) to a functional key that

generally contains the description of the function. In particular, the value ey could

be deduced from the description of the functional key sky, which obviously allows

the adversary to learn the quantity 〈x, y〉+ ex from the output of the decryption.

This is clearly more than what is permitted and then it follows that this first

attempt could not be secure, and even not DP private.

3. It is still not clear how we split the noise e in two different separate noises.

Remark that we need somehow to hide the information related to the noise used

during the functional key generation (and encryption). However, we do not exactly

need a full function-private FE [28], in which the functional key should not reveal any

information about the underlying vectors. In our case, the input y may be known since

what we want to hide is the noise ey.

114

4. User’s protection via Differential-Private Mechanisms

Using a two-input FE. Our approach is to view the function that we want to im-

plement as a two-input function, and to consider a compatible functional encryption

scheme, namely multi-input FE (MIFE). Informally speaking, a MIFE manages several

encryption slots and given a functional key skf for a multi-input function f , it permits to

decrypt a set {Enc(d1), . . . , Enc(dn)} of potentially n independent ciphertexts to obtain

f(d1, . . . , dn) (and nothing more). Here, di is a certain vector of a certain size ℓ. We

target a private-key two-input IPFE (denoted 2IPFE) build upon the construction given

in [2] (which is itself based on any single-input IPFE scheme).

As in [2], we begin with their description of a one-time version of a private-key MIFE

for n slots and the inner-product.

• The master key is a set u of n random vectors ui.

• The encryption of a vector message di in slot i (i ∈ [n]) is given by ci := di + ui.

• The functional key for a vector y, with n components denoted yi, is given by

zy :=
∑

i∈[n]〈ui, yi〉.

• The decryption procedure, taking as input n ciphertexts ci (i ∈ [n]) constructed

as above, computes 〈d, y〉 :=
∑

i∈[n]〈di, yi〉 as
∑

i∈[n]〈ci, yi〉 − zy.

The scheme in [2] is proven to be one ciphetext selective simulation secure for multiple

instances, one instance corresponding to one slot.

We use a 2-slot (i.e n = 2) variant for vectors of size ℓ + 1: one for the vector x of

size ℓ and its noise, that is d := (x, ex) of size ℓ + 1, and the other one for the noise

related to the query y of size ℓ, that is d′ := (0ℓ,−ey).

Consider the master secret key as a two-component vector (u, u′), where u and u′

are both vectors of size ℓ + 1. The functional key is computed for a vector with two

components of size ℓ+1: (y, 1) and (1ℓ+1). The decryption gives us what we are looking

for: 〈d, (y, 1)〉+ 〈d′, (1ℓ+1)〉 which is by definition equal to 〈x, y〉+ ex − ey.

Remark that in the MIFE setting, the encryption slots are generated independently

from each other. This observation leads us to consider the encryption of second slot

during the KeyGen execution phase. In more details, our scheme is then constructed as

follows.

• During Setup, one generates the master secret key u for the first slot, together

with some additional parameters.

• During encryption procedure Enc for a vector x, we execute the encryption for the

first slot, as d = (x, ex) + u, where ex is a fresh sample.

115

4.3. Construction

• During the functional key generation KeyGen, on input the vector y, we first gen-

erate the master secret key u′ for the second slot. We then perform the encryption

for the second slot, as d′ = (0ℓ,−ey) + u′ for some fresh sample ey. After that, we

compute the functional key as given above: zy = 〈u, (y, 1)〉+ 〈u′, 1ℓ+1〉.

• The decryption takes as input (d, d′, zy) and finally outputs 〈x, y〉 + ex − ey as

explained above.

Using the security of the one-time MIFE [2], the resulting scheme is secure for one

ciphertext (using one instance/slot), and one functional key query (using the other in-

stance/slot). But what we want in our scenario is that several entities could request a

functional key for their own query, which means that we need one slot for the cipher-

text (during database encryption) and the possibility to use it several times, with an

unlimited number of functional key queries (using as many instances as needed). More

precisely, we need to transform this 2IPFE so that it can manage several instances.

Adding a layer of IPFE. Another interesting novelty given in [2] is their idea of

adding a layer of single-input IPFE on the top of this one-time encryption to obtain the

security for polynomially many challenges (achieving the many-adaptive indistinguisha-

bility property). Adapted to our scheme above and given any One-Selective simulation

secure IPFE scheme (for multiple instances), the construction now works as follows.

• The master key consists of the master key of the one-time MIFE, denoted u, and

the master secret key of the IPFE, denoted IPFE.msk.

• The encryption of a vector x consists in computing the one-time ciphertext d as

above, and then in encrypting the results using IPFE.Enc, as cx = IPFE.Enc(IPFE.msk, d).

• The functional key for a vector y is given by (i) the IPFE ciphertext cd′ cor-

responding to the encryption of d′ = (0ℓ,−ey) + u′ for a new master secret

key u′, given by cd′ = IPFE.Enc(IPFE.msk, d′), (ii) the functional key sk(y,1) =

IPFE.KeyGen(IPFE.msk, (y, 1)) of the used IPFE for the vector (y, 1), (iii) another

functional key sk(1ℓ,1) = IPFE.KeyGen(IPFE.msk, (1ℓ, 1)) of the used IPFE for the

vector (1ℓ, 1) and (iv) the functional key zy of the one-time MIFE, computed as

above using u, u′ and y.

• The decryption finally proceeds in two main steps. It first executes twice the

decryption procedure of the IPFE to obtain IPFE.Dec(sk(y,1), cx) = 〈d, (y, 1)〉 and

116

4. User’s protection via Differential-Private Mechanisms

IPFE.Dec(sk(1ℓ,1), cd′) = 〈d′, (1ℓ, 1)〉 (by construction). It finally extracts the result

〈x, y〉+ ex − ey as for the one-time decryption algorithm above, using zy.

Using this trick, we achieve our goal of being able to manage several key generation

executions (and thus several queries to the same encrypted database). We provide in

the following an instantiation from the DDH assumption using the IPFE given in [1] and

an attempt that our construction could be generalized by considerinng two-input IPFE.

4.3.2 Construction from DDH

In the following we consider an instantiation of the above high-level description from the

DDH assumption. We use the IPFE of from [1], in which the ciphertext is as following

cd := (C, D, E) such that C = gr, D = hr, and E = gdhr for a random r and vector d.

Next, given the related master secret key (s, t, h) of the IPFE, our functional key

generation produces one functional secret sk(y,1) for the vector (y, 1), another one sk(1ℓ,1)

for the vector (1ℓ, 1), and a final functional key for a one-time MIFE, as z := 〈u, (y, 1)〉+

〈u′, (1ℓ, 1)〉 (mod q).

Finally, using the IPFE decryption and the property of the two-input MIFE, we can

easily recover 〈x, y〉+ ex − ey.

For the description, we consider a subroutine called MSKGen which corresponds to a

Setup for IPFE and works on input g, h and proceeds as follows: for i ∈ [ℓ+1], it samples

uniformly at random si, ti←$Z⋆
q and computes hi := gsihti . Let u←$Zℓ+1

q be a uniform

element. Denote by

(s, t, h) := ((si)i∈[ℓ+1], (ti)i∈[ℓ+1], (hi)i∈[ℓ+1]),

then MSKGen finally returns the master secret key msk := (u, s, t, h).

We provide next the description of our scheme.

• Setup(1λ, 1ℓ): given the security parameter λ, this algorithm outputs the public

parameters param := (G, q, g, g, h,X ,Y, α) defined as follows. Let q be a λ-bit

prime and let G be a cyclic group of order q where the Decisional Diffie-Hellman

assumption holds. Let g, h be generators of G and let g = (g, · · · , g) be a vector

of size ℓ + 1. Let Bx, By ∈ Z be some integer bounds and let X = {0, . . . , Bx}

and Y = {0, . . . , By}. Let α be the parameter associated to the DP-privacy. We

now implicitly suppose that param is included in each of the following algorithms.

Next, we execute MSKGen described above to produce msk := (u, s, t, h).

117

4.3. Construction

• Enc(msk, x): using the master secret key msk, this algorithm returns an encryption

of a vector x ∈ X ℓ. It first computes an element ex over Z distributed according to

one-sided geometric distribution (see Def. 4.1.3) with parameter α and considers

the vector d := (x, ex) + u (mod q). For a uniform element r ∈ Z
⋆
q , the algorithm

returns a ciphertext cx := (C, D, E) defined as

C = gr, D = hr, E = gdhr.

• KeyGen(msk, y): this algorithm returns a functional key for the vector y ∈ Yℓ,

given the secret key msk. It first executes the MSKGen procedure (given in the

Setup above) to create an ephemeral master secret key msk′ = MSKGen(g, h) =

(u′, s′, t′, h′). It next selects an element ey over Z distributed according to one-

sided geometric distribution with parameter α. Let d′ := (0ℓ,−ey) + u′ mod q

and consider a uniformly random r′ ∈ Z
⋆
q . Next the algorithm proceeds as follows.

– It first computes an encryption of d′ under the fresh master key msk′, i.e

cd′ := (C ′ = gr′
, D′ = hr′

, E′ = gd′
h′r

′
).

– It then considers the two vectors (y, 1) and (1ℓ, 1) and computes

sk(y,1) := (〈s, (y, 1)〉, 〈t, (y, 1)〉),

sk(1ℓ,1) := (〈s′, (1ℓ, 1)〉, 〈t, (1ℓ, 1〉).

– It finally computes the final partial key z as

z := 〈u, (y, 1)〉+ 〈u′, (1ℓ, 1)〉 mod q

The output of the algorithm is sky := (cd′ , sk(y,1), sk(1ℓ,1), z).

• Dec(sky, cx): this procedure parses sky := (cd′ , sk(y,1), sk(1ℓ,1), z), cx = (C, D, E)

and cd′ = (C ′, D′, E′), and proceeds as follows.

– It first obtains

K1 :=

∏
E(y,1)

(C, D)sk(y,1)
, K2 :=

∏
E′(1

ℓ,1)

(C ′, D′)sk
(1ℓ,1)

– It then computes logg((K1 ·K2)/gz) = 〈x, y〉+ ex − ey.

118

4. User’s protection via Differential-Private Mechanisms

4.3.3 Correctness of the scheme

A direct computation shows that K1 = g〈d,(y,1)〉, K2 = g〈d
′,(1ℓ,1)〉, and finally we obtain

K1 ·K2 · g
−z = g〈x,y〉+〈ex,1〉+〈−ey,1〉 = g〈x,y〉+ex−ey .

Setting the parameters. We first give a precise analysis of the magnitude of the

elements that are used in our scheme to properly define the parameters we need to set.

There are two main issues that we have to manage at the same time: (i) to ensure that

the final computation result lies in a small domain in order to be correctly decrypted (as

we are using a discrete logarithm computation); and (ii) to ensure the differential-privacy

of the output.

1. We restrict the input messages to some interval X in Zq of width Bx, and the

functions keys fall into some interval Y of width By. Then, in order to decrypt

correctly, that is to be able to retrieve the discrete logarithm, we need to ensure

that |〈x, y〉 + ex − ey| ≤ L for some polynomially bounded L = poly(λ). Using

standard methods for computing such discrete logarithm, the exact value could be

recovered in time Õ(L1/2).

2. As explained in Section 4.1.1, we can ensure ǫ-differential privacy by choosing the

parameter α of the geometric distribution as α = exp(
Bx·By

ǫ) since, by a simple

calculation, the resulting ℓ1-sensitivity is ∆〈,〉 = Bx ·By.

3. Finally, as proved in [63], and similarly to [109], the geometric distribution has

unbounded magnitude. However, since the variance of Geo is 2α
(α−1)2 and

√
α

α−1 ≤
1

ln α ,

the magnitude of the error added is O(1
ln α) which is O(ǫ

Bx·By
) by our choice of α.

The introduced geometric error ex − ey is then bounded by O(ǫ
Bx·By

) with high

probability, and is independent of the size ℓ of the vectors. Since the input vectors

are picked from the domain X = {0, . . . , Bx} and functional vectors from the

domain Y = {0, . . . , By}, by applying the Cauchy-Schwarz inequality, the inner-

product of x and y is bounded by ℓ ·Bx ·By.

To conclude on this part, if there had been no noise, the decryption would have been

a successful if ℓ · Bx · By would have lied in some polynomial size range (which implies

that ℓ ·Bx ·By < q). In our case, with high probability adding our noise will imply that

the discrete log computation will lie in the following

[

−O

(

ǫ

Bx ·By

)

, O

(

(
ǫ

Bx ·By

)

+ ℓ ·Bx ·By

]

.

119

4.3. Construction

Then, to ensure correct decryption, this range size needs to be polynomial in the security

parameter λ.

Proof of correctness. We now prove that our scheme verifies the statistical correct-

ness of Definition 4.2.2 for a RFE scheme supporting the family of functions FX ,Y,ℓ,α,q.

Let λ ≥ 0, let Q = Q(λ) be a polynomial, and let x1, . . . , xQ in X ℓ and y1, . . . , yQ in

Yℓ. Let (msk, param) ← Setup(1λ) and let cxj ← Enc(msk, xj) for all j ∈ [Q]. Finally,

let skyi ← KeyGen(msk, fyi) for all i ∈ [Q].

We focus on the real game, and thus consider the following distribution {Dec(skyj , cxj)}i,j∈[Q]

for every possible bounded input xi and vector functions yj . Since the encryption Enc

and the functional key generation KeyGen algorithms are independently executed, we

first have that

{Dec(skyj , cxj)}i,j∈[Q] = {〈xi, yj〉+ ei − ej}i,j∈[Q],

where ei, ej are distributed according to the one-sided Geometric distribution produced

during Enc and KeyGen respectively. Using Lemma 4.1.1, we deduce that Dec(skyj , cxj)}i,j∈[Q]

is exactly distributed as {〈xi, yj〉 + ei,j}i,j∈[Q] for an element ei,j sampled according to

the distribution referred as Geo(α), which corresponds to the ideal game.

4.3.4 Simulation-Security of our Scheme

As discussed in the introduction, our proof is inspired by the techniques developed in the

case of MIFE [2]. Informally, this is done by using the security of the IPFE. Since we use

multiple invocations of the KeyGen algorithm, we exploit the one-Sel-SIM security of the

underlying IPFE [1] in the multi-instance setting. Our security proof can be summarized

by the following steps.

We first modify the encryption algorithm and encrypt a “dummy” message, i.e., the

zero vector. We then inject the expected intermediate value during the generation of

the first partial functional key. This technique is similar to the proof of the one-AD-

SIM security of [10]. In particular, we here only use the one-SEL-SIM security for one

instance.

The second step is to modify the MIFE ciphertexts generated during our functional

key generation step. We here follow the same approach as before, while requiring the

one-SEL-SIM security in the multi-instance setting, since there are potentially many

possible functional keys in our case.

Next, we modify the generation of the partial key z to include all the above changes,

and rely on some statistical arguments.

120

4. User’s protection via Differential-Private Mechanisms

Finally, in order to give a correct simulator, we plug the excepted final result (seen

as a true DP-output) into the element z.

Theorem 4.3.1. Under the DDH assumption, the scheme described in Section 4.3.2 is

one-Sel-SIM secure. More formally, there exists a simulator Sim such that for any PPT

adversary A, there exists a PPT B such that

|Expreal
A (1λ)− Expideal

Sim (1λ)| ≤ Q · Adv(B)DDH.

Proof. To prove our theorem, we proceed via a series of Games. Let A be a PPT

adversary playing the One-Sel-SIM security game and let λ be the security parameter.

We suppose that param is included in all below games.

Game 0. This is the real game, taken from Def. 4.2.3. For an adversary A, since

we are in the selective game, A starts with providing (x, st) ← A(1λ),then msk ←

Setup(1λ, st) := (u, s, t, h), (cx, st′)← Enc(msk, x) := (C, D, E) and γ ← AKeyGen(msk,·)(cx, st′).

Game 1. In this game, we modify the generation of the ciphertext cx during the

encryption algorithm, using (s,t) in msk, as C = gr0 , D = hr0 , E = gdCsDt, where

r0 ∈ Z
⋆
q . Remark that the ciphertext is identical to the one in Game 0.

We proceed similarly for the ciphertext generated during the functional key genera-

tion algorithm. In particular, we use (s′, t′) in msk′ to compute cd′ as C ′ = gr′
0 , D′ =

hr′
0 , E′ = gd′

C′s
′
D′t

′
, for some r′0 ∈ Z

⋆
q .

Game 2. We modify the generation of the two first components of the ciphertext cx by

generating uniformly random elements r0, r1 ∈ Z
⋆
q and setting C = gr0 and D = hr0+r1 .

Similarly, we modify the generation of the ciphertext cd′ by generating uniformly

random elements r′0, r′1 in Z
⋆
q and setting C ′ = gr′

0 and D′ = hr′
0+r′

1 .

Game 3. In this game, we modify the encryption algorithm. First, we encrypt the

element of the master secret key u and compute sk(y,1) as (sk
(1)
y , sk

(2)
y) where sk

(1)
y =

〈s, (y, 1)〉+ 1
r1
· 〈u− (x, ex), (y, 1)〉 and sk

(2)
y = 〈t, (y, 1)〉 − 1

ω·r1
· 〈u− (x, ex), (y, 1)〉.

Observe that up to this point, if ω = logg(h), we have (C, D) = (gr0 , gω·(r0+r1) More-

over, we now compute E := (E1, . . . , Eℓ+1) as, for all i = 1, . . . , ℓ+1, Ei = gui+ω·r1·ti ·hr0
i .

Putting all together, we obtain

E(y,1) = g〈u,(y,1)〉+ω·r1·〈t,(y,1)〉 · (g〈s,(y,1)〉 · h〈t,(y,1)〉)r0 ,

121

4.3. Construction

and

Csk
(1)
y ·Dsk

(2)
y = gr0·sk(1)

y +ω·r1·sk(2)
y hr0·sk(2)

y .

This leads to K⋆
1 = g〈d,y||1〉, where d = (x, ex) + u and the decryption still works

with those modifications.

Game 4. We proceed as in the previous game for the functional key generation. We

generate a uniformly random element u′ over Z
ℓ
q, and then compute the functional key

sk(1ℓ,1) as (sk
(1)′

y , sk
(2)′

y) where

sk
(1)′

y = 〈s′, (1ℓ, 1)〉+
1

r′1
· 〈u′ − (0ℓ, ey), (1ℓ, 1)〉,

sk
(2)′

y = 〈t′, (1ℓ, 1)〉)−
1

ω · r′1
· 〈u′ − (0m, ey), (1ℓ, 1)〉.

Again, we deduce that K ′2 = g〈d
′,(1ℓ,1)〉, where d′ = (0, ey) + u′ and again the decryption

works.

Game 5. In this game, we modify the generation of z. We first generate two uniformly

random elements zx, zy ∈ Z
⋆
q . We then modify the functional key generations as follows

sk
(1)
y = 〈s, (y, 1)〉+

1

r1
· (〈u, (y, 1)〉 − zx)

sk
(2)
y = 〈t, (y, 1)〉)−

1

ω · r1
· (〈u, (y, 1)〉 − zx)

sk
(1)′

y = 〈s′, (1ℓ, 1)〉+
1

r′1
· (〈u′, (1ℓ, 1)〉 − zy)

sk
(2)′

y = 〈t′, (1ℓ, 1)〉)−
1

ω · r′1
· (〈u′, (1ℓ, 1)〉 − zy).

Finally, we compute z := zx + zy − 〈(x, ex), (y, 1)〉 − 〈(0ℓ, ey), (1ℓ, 1)〉.

Game 6. This is the ideal Game. Giving some auxiliary information aux which cor-

responds to the functionality (i.e a true DP output), the simulator Sim is given by

(S⋆
S,S⋆

E,SKG) and defined as follows.

• S⋆
S(1λ, 1ℓ): the algorithm is identical to Setup, except that we set ω := logg(h). It

outputs param⋆ = param and st⋆ := (ω, u⋆, s⋆, t⋆, h⋆).

122

4. User’s protection via Differential-Private Mechanisms

• S⋆
E(msk⋆): it generates the ciphertext by sampling r0, r1 uniformly at random and

computing c⋆ := (C⋆, D⋆, E⋆) where C⋆ = gr0 , D⋆ = hr0+r1 and E⋆ = gu⋆
Cs⋆

Dt⋆
.

In addition, we add to the state information st⋆ the element (r0, r1).

• S⋆
KG(st⋆, st′, y): on input st⋆ = (ω, u⋆, s⋆, t⋆, h⋆, r0, r1), this algorithm uses the

KeyIdeal oracle that returns a vector y and the evaluation function aux := 〈x⋆, y〉+e

for a noise e distributed according to Geo(α). Then, S⋆
KGworks as follows.

It first runs st′′ := (ω, u′, s′, t′, h′)← S⋆
S(1λ, 1ℓ).

It computes the ciphertext by first sampling r′0, r′1 ∈ Z
⋆
q uniformly at random

and computing cu′ := (C ′, D′, E⋆) where

C ′ := gr′
0 , D′ := hr′

0+r′
1 , E⋆ := gu′

C ′s
′
D′t

′
.

It generates uniformly at random zx, zy ∈ Zq, and sets

z⋆ := zx + zy − aux.

It respectively computes sk⋆
(y,1) = ((y, 1), sk

(1)
y , sk

(2)
y) where

sk
(1)
y = 〈s⋆, (y, 1)〉+

1

r1
· [〈u⋆, (y, 1)〉 − zx],

sk
(2)
y = 〈t⋆, (y, 1)〉 −

1

ω · r1
· [〈u⋆, (y, 1)〉 − zx],

and sk′
(1ℓ,1)

= ((1ℓ, 1), sk
(1)′

y , sk
(2)′

y) where

sk
(1)′

y = 〈s′, (1ℓ, 1)〉+
1

r′1
· [〈u′, (y, 1)− zy〉],

sk
(2)′

y = 〈t′, (1ℓ, 1)〉)−
1

ω · r′1
· [〈u′, (y, 1)− zy〉].

• The algorithm finally returns the simulated functional keys as

(cu′ , sk⋆
(y,1), sk′(1ℓ,1), z⋆).

Analysis. Consider a challenger C that flips a coin b ∈ {0, 1}. If b = 0, it interacts

with the adversary A as in Gamei, else it interacts as in Gamej . At the end of the

123

4.3. Construction

interaction A will have to make its guess b′. We define Adv(A)ij := |Pr[b′ = b]− 1/2|,

for i = 0, . . . , 5 and j = i + 1.

From Game 0 to Game 1. As Game 0 and Game 1 are identically distributed, we

have Adv(A)01 = 0.

From Game 1 to Game 2. Regarding this transition, the ciphertext components

in both Game 1 and Game 2 are computed as similarly. As in [11], under the DDH

assumption, this modification does not significantly affect the adversary’s view. More

formally, we have the following lemma.

Lemma 4.3.2. There exists an adversary B such that Adv(A)12 ≤ Q ·Adv(B)DDH + 1
q−1 .

Proof. At first, we do not take into account the changes that we have done in the

functional key generation. This will be done in the second part of the proof.

Remark that E has exactly the same distribution in the two games. We then only

focus on C and D. Consider an adversary A that distinguish between Game 1 and

Game 2. We build an adversary B that, using A, can break the DDH assumption. Let

(gx, gy, Z) be a DDH challenge. B generates all the parameters as in the description of

the scheme, except for the element h which is build as h := gx. B flips a bit b. If b = 0,

it forms (C, D) := (gyr0 , Zr0) for some uniformly random r0 ∈ Z
⋆
q . Else, it computes

(C, D) := (gyr0 , Zr0 · hr1) for uniformly random r0, r1 ∈ Z
⋆
q . The other elements remain

unchanged. B finally provides to A all these elements and returns to its challenger

whatever A returns. Let us analyse this output by considering two cases.

• Suppose that Z = gxy. If the bit b = 0, then (C, D) = (gyr0 , gyxr0) = (gyr0 , hyr0)

which is distributed as in Game 1. If the bit b = 1, then (C, D) = (gyr0 , hyr0 · hr1)

which is distributed as in Game 2.

• Suppose now that Z is random. If b = 0, D has the same distribution as in Game

1 since r1 ∈ Z
⋆
q . Else, D = hr0+r1 , which corresponds as the Game 2.

We conclude that the advantage of B is exactly the one of A in distinguishing between

Game 1 and Game 2.

If we now consider the changes that we made on the functional key generation, the

same argument remains valid. We however have to consider the multi-instance setting

of the same problem since the adversary could ask for Q different functional keys. A

standard hybrid argument over all these instances induces a security loss proportional

to Q. Then, we have Adv(A)12 ≤ Q · Adv(B)DDH.

124

4. User’s protection via Differential-Private Mechanisms

From Game 2 to Game 3. This transition corresponds to a modification of the

master secret key of the IPFE, from (s, t) to some (̄s, t̄) where s̄ = s + 1
r1
· (u− (x, ex))

(mod q), and t̄ = t− 1
ω·r1
· (u− (x, ex)) (mod q).

Both have obviously the same distribution. Indeed, the elements u and ex are picked

after the adversary sends its selective challenge x, and are therefore independent of it.

In particular, we deduce this simple transformation does not affect the adversary’s view.

Note that this is however crucial to consider a selective challenge in this transition. We

then deduce that Adv(A)23 = 0.

From Game 3 to Game 4 In this Game, we use the same strategy as in the previous

transition. However, we have to manage the fact that the adversary could ask for

functional keys for a vector y of its choice. In particular, we have to consider an hybrid

argument across all the functional keys’ requests. Indeed, we obtain the following lemma.

Lemma 4.3.3. We have Adv(A)34 = 0.

We consider Q hybrids Game3,i, i ∈ [Q], one for each call to the S⋆
K oracle by the

adversary. We then modify each answer, for each request yi, i ∈ [Q], as shown in Game

4. For each of them, let u′i be a random element in Z
ℓ
q and let d′i := (0, ei

y) + u′i for a

ei
y which is independently chosen (unlike the previous game). As in the previous step,

each new transition corresponds to a modification of the master secret key of the IPFE,

from (s′i, t′i) to some (s̄′i, t̄′i) where

s̄′i = s′i + 1
r′i

1
· (u′i − (0, ei

y)) and t̄′i = t′i − 1
ω·r′i

1
· (u′i − (0, ei

y)).

Again, those distributions are obviously equals and we deduce that the advantage

for each transition is equal to 0. We can then conclude that Adv(A)34 = 0.

From Game 4 to Game 5. Here, we use the fact that for all y in the function query

space, the following distributions over Zq are equals: {zx − 〈(x, ex), (y, 1)〉} and {zx},

and also {zy − 〈(0
ℓ, ey), (1ℓ, 1)〉} and {zy}.

Indeed, for any function query y, the geometric noises ex, ey are generated indepen-

dently of the other quantities and the elements zx, zy are uniformly chosen at random,

independently of the challenge x (we rely on the fact that the games are selective). We

deduce that Adv(A)45 = 0.

From Game 5 to Game 6. Game 6 is obviously a rephrasing of Game 5, using

aux := 〈(x, ex), (y, 1)〉 − 〈(0ℓ, ey), (1ℓ, 1)〉.

125

4.3. Construction

Thanks to the statistical correctness condition that we discussed in sec.4.1.1, we deduce

that the Game 5 and Game 6 are identical. In particular, Adv(A)56 = 0.

Since Game 6 is the Ideal experiment, by combining all the previous results we have

|Expreal
A (1λ)− Expideal

Sim (1λ)| ≤ Q · Adv(B)DDH, which concludes the security proof.

We finish this section by the following possible improvement for the bound in the

conclusion of Thm. 4.3.1. Indeed, we have a security loss of Q where considering

an hybrid approach. In fact, it is also possible to build an adversary B such that

Adv(A)12 ≤ Adv(B)DDH + 1
q−1 . For this, consider the transition between Game 2 and

Game 3. We can use the random self reducibility of DDH by considering a variant

which is the Q-Fold DDH assumption as studied in [55]. In such Q-fold DDH, the

challenge consists in Q independent ones from the DDH assumption, which is precisely

our case. We then obtain in this situation a more tight construction and can argue that

Adv(A)12 ≤ Adv(B)DDH + 1
q−1 .

4.3.5 Towards a construction from any IPFE.

We provide some intuitions on how our construction could be generalized with generic

IPFE. In addition, we give evidence on why our construction could be proven secure but

we leave a formal proof in a future work.

Security for private-key 2IPFE. For the two-input IPFE setting (denoted hereafter

2IPFE), the situation is different. An adversary could mix-and-match different messages

and in the public key setting, it could learn much more information than the basic evalu-

ation of the function (for example by encrypting any x⋆ and learning 〈(x1, x⋆), (y1, y2)〉).

These capabilities must enforce additional restrictions that could make in some situation

the scheme useless (we refer to [68] for a discussion).

As in the context of classical IPFE, one can consider two different flavours of security:

simulation or indistinguishability . The simulation security for the general two-input

setting is more difficult to deal with, especially in the public-key setting. In 2IPFE, the

ideal functionality consists of the following (y1, y2, 〈(xj
1, x

j
2), (y1, y2〉)) for any possible

messages per slot j and any functional keys. The simulation security paradigm is quite

strong and yet no known general simulation secure constructions of 2IPFE (in the multi-

instance setting) are known.

There exists 2IPFE secure [2, 3] in an indistinguishable type security. However, we

used simulation type arguments in our DDH instantiation and we only need a one-time

126

4. User’s protection via Differential-Private Mechanisms

simulation secure 2IPFE which exists as builded in [2]. As a side, it is a interesting

challenge to build a simulation secure 2IPFE (or multi-input IPFE).

Fortunately, the needed 2IPFE for our construction (i.e. one selective simulation

secure) exists and is given in the high-level description (for n = 2) of Sec. 4.3.1.

Description of our solution from 2IPFE. As for the DDH construction, the idea is

to encapsulate the one-time construction into an IPFE. In particular, consider IPFE :=

(Setup, Enc, KeyGen, Dec) which is a secret key single-input IPFE and a one-time scheme

2IPFE = (Setup2IPFE, Enc2IPFE, KeyGen2IPFE, Dec2IPFE). In the following, we assume that

IPFE and 2IPFE handle vectors of length ℓ + 1.

Our RIPFE follows the same structure as for the DDH construction. We maintain

the notation for our previous construction.

• SetupRIPFE(1λ): this algorithm generates the master secret key msk. First, compute

u1←$ Setup2IPFE(1λ, ℓ + 1, 1) and (param, mskIPFE
1) ← SetupIPFE(1λ, 1ℓ+1). This

algorithm returns

msk := (param, u1, mskIPFE
1).

• EncRIPFE(msk, x): select a random ex according to the distribution Geo+(α), then

returns the encryption of x as

c1 := EncIPFE(mskIPFE
1 , Enc2IPFE(u1, (x, ex))).

• KeyGenRIPFE(msk1, y): we first generate a fresh parameter u2←$ Setup2IPFE(1λ, ℓ +

1, 2) and (param, mskIPFE
2)← SetupIPFE(1λ, 1ℓ+1). Select a random ey according to

distribution Geo+(α). Then, compute the following quantities.

c2←$ EncIPFE(mskIPFE
2 , Enc2IPFE(u2, (0ℓ,−ey)))

sk1←$ KeyGenIPFE(mskIPFE
1 , (y, 1))

sk2←$ KeyGenIPFE(mskIPFE
2 , (1ℓ, 1))

z←$ KeyGen2IPFE(u1, u2, ((y, 1), (1ℓ, 1)))

Finally, return sky := (c2, sk1, sk2, z).

• DecRIPFE(sky, c1): Parse sky := (c2, sk1, sk2, z). First run, di = DecIPFE(ci, ski) for

i = 1, 2. Then compute Dec2IPFE(z, d1, d2)

127

4.3. Construction

Correctness. For the correctness, remark informally that c1 encrypts the vector (x, ex)

and c2 encrypts (0ℓ,−ey). In particular, the decryption recovers the quantity

〈(x, ex), (y, 1ℓ)〉+ 〈(0ℓ,−ey), (1ℓ, 1)〉 = 〈x, y〉+ ex − ey mod L,

for some module L. Similarly to the previous DDH case, the correctness condition of

our scheme is similar and we do not provide the full details. We notice however that we

need a 2IPFE and IPFE scheme that ensure perfect correctness in order to provide the

statistical correctness.

Additional parameter selection. Observe that similarly to the DDH construction,

we could provide a precise analysis of the magnitude for the used elements in our scheme.

For this purpose, remark that unlike DDH, the decryption depends on the underlying

IPFE. For instance, it is not necessarily essential to ensure that the final computation

lies in a small domain. For example, the Paillier-based IPFE scheme of [11] implies an

efficient decryption process. Similarly, the CL-based IPFE (built upon CL homomorphic

scheme that we used in chapter 3) also enjoys this property. More importantly, to

define the parameters for DP, one has to ensure that the output is large enough to be

compatible with the requirement for DP.

On the security of the scheme. Intuitively, the proof of security follows the same

proof path as the previous DDH construction. We do not provide in this thesis a full

proof of this generalization and leave it for a future work. We conjecture in the sequel the

required security properties in order to obtain a one selective simulation secure scheme.

• Several queries could be requested for different functional keys, which means that

we need a one slot security for the ciphertext (during database encryption) con-

sisting of one instance of the One-Sel-SIM security of the 2IPFE scheme.

• In addition, we have the possibility to use this encrypted element several times,

with an unlimited number of functional key queries (using as many instances as

needed). It follows that we have to use the One-Sel-Sim security of IPFE and the

2IPFEot in the multi-instance setting. This property is verified by classical IPFE

schemes.

• Finally, as in the DDH case, embedding the functionality (which is a noisy DP

inner-product) into the functional keys in the proof requires some structural ho-

momorphism which are also verified by classical instances of popular IPFE schemes.

128

4. User’s protection via Differential-Private Mechanisms

4.4 Conclusion

This chapter proposes a construction that brings together techniques from functional

encryption and differential privacy literatures. Our result can be thought of as a design

of a randomized functional encryption scheme where instead of using generic results, it

proposes a new randomized inner product functional encryption scheme which is specif-

ically tuned to work with the geometric distribution and is thus DP-compliant. That is,

an analyst does not exactly learn the output of the inner-product but only a differentially

private version of it.

We present several new techniques in order to obtain these results. Special cares

were taken in order to integrate the desired noises where thinking about the security

definitions. In addition, while simple solutions would be to consider the noise directly as

a component in the functional key of a standard IPFE scheme (implying function hiding

schemes), we showed that this is not fully satisfactory. Our proposed solution relies on

a noise splitting technique particularly suitable with the use of a multi-input IPFE.

We believe that our solution provides an interesting new path to obtain non-interactive

differential encrypted database and we show that IPFE is a powerful primitive that could

be extended to handle more advanced primitives.

129

CHAPTER 5

COMPUTING FAULT-TOLERANT PRIVATE STATISTICS

FOR MOBILE USAGE

Overview of the problematic

In this section, we propose a solution for solving the problem of aggregating data from

different sources while maintaining the fault-tolerance of the scheme. We start from

prior works on this subject but relies on functional encryption. In particular, we use one

variant called dynamic multi-client FE which allows to aggregate a set of data issued

from a group of predetermined users. We show how to modify and implement this

primitive in order to fulfil the requirements of a practical scenario. Namely, we consider

the case where there is possibly some faulty users. We demonstrate in this chapter how

it is possible to collect some mobile data users and aggregate them, while reducing to a

minimum the information leakage to the involved parties.

We first start by describing our architecture, giving the different actors that par-

ticipate to this general protocol and highlighting the power of any potential malicious

behaviour from each entity. Moreover, we will discuss some possible security limitations.

Then, we exhibit our secure proposition to solve this problematic. At a high-level, we

embed the construction of Chotard et al. [42] (for the sum function) with a modification

using some ideas from the fault-tolerant scheme of Chan et al. [39].

Finally, we show an instantiation of the underlying primitives using classical sym-

metric in a bilinear environment.

131

5.1. Our case study

5.1 Our case study

Consider how to provide an additional tool to a team of social scientists in order to

improve their statistical analysis by having a fine-grained access to their mobile data

usage. One important requirement is to provide a privacy-preserving solution to control

how much information is leaked during a particular study.

The privacy concerns that we discussed are not limited to this specific example. This

work starts and was part of one of the problems addressed by the European research

project PAPAYA 1. It aims to question security and privacy concerns on situations

where some are delegated to an untrusted party.

There is of course other possible situations when our preoccupation could be relevant.

A particular example is given by Telemetry which is an old concept and a central tool

in many industrial or public areas. Transportation, logistics, energy monitoring...etc.

Several sensible systems have to collect a huge amount of information in order to exploit

them and enhance the underlying usage. With the rise and evolution of connected

devices, it makes no doubt that future practical companies must take into account that

their working environment will include multiple devices. Each device will report their

individual data usage and transmit over some untrusted networks. Similarly to the team

of social scientists, this comes with a challenging task of being (legally) compliant with

the privacy expectations (or regulations) about the data treatment.

In fact, in the PAPAYA project, we also consider the situation where we separate

an aggregator entity (that collects data) from the party who wishes to obtain the study

result. This could correspond to a third party platform initiated by a company or public

service where each time a study is required, the platform permits to collect the data

with for the production of the desire study.

We consider a system, that we called WeStat, where three types of actors are

possible:

• a set of individuals or users that will obtain a notification for each new study. After

having the precise information about the general context of it, they eventually

provide their participation consent leading to an aggregation step and their data

without knowing in advance which other users are going to participate;

• an Aggregator that can obtain individuals’ data so as to perform the statistics in a

privacy-preserving manner. It makes the interface with Requestors to prepare the

study and to permit them to obtain the results;

1https://www.papaya-project.eu/about

132

https://www.papaya-project.eu/about

5. Computing fault-tolerant private statistics for mobile usage

• Requestors, that can contact the Aggregator for a new study, filling some on-line

form (for eg. the type of statistics) with the parameters for a study.

Moreover, users must send the minimum number of messages. Another important feature

for practical situations, that will be crucial for our WeStat architecture, is fault-tolerance.

If one user fails, the final result should still be possible to compute over the remaining

users without compromising their privacy. The security treatment here is regarding to

these two above entities (Aggregator and Requestor).

As an additional requirements, we only consider statistics that can be managed using

an inner prodcut between a vector where each component is the entry of one individual

and another vector related to the study. For example, the sum (resp. mean) of all the

entries can be computed with vector (1, · · · , 1) (resp. (1, · · · , 1) divided by the number

of entries). More complex statistics can also be computed using inner-product, such as

e.g. linear regression or data classification.

Using FE and limitations. By its definition, FE is a choice for delegating an eval-

uation to an external entity while ensuring that only the result of the computation is

released. However, our context is a little different and fits into answering the above

privacy concerns about data aggregation for multiple sources that communicate with

untrusted entities.

Consider, as a potential implementation for WeStat, to set up a public key FE such

that the master secret key owner is the aggregator (which is responsible of the data

aggregation platform). We can then make users sending their encrypted data using

FE. However, basic FE schemes consider single input2 functions. Hence, this implies to

decrypt every single ciphertext for a certain function and eventually combine them for

the aggregation step. Moreover, it is not fully satisfactory to use a centralized solution.

Recall that individuals do not trust the aggregator which by definition can generate any

functional keys. In particular, they are not automatically convinced that the function

for which they give their consent is indeed the one used for the study.

Using known primitives. Of course, other solutions are possible. The literature

dealing with the desired functionality, i.e. privately computing over the encrypted data,

is huge and differs for one reference to the other depending on the architecture one has

to consider. As a high-level, they are all special purposes of a multi-party computation

protocol. While there are some generic constructions for general functionalities, previous
2Here single mean that f took one input, which could be a bit, a vector of bits, or more general

object.

133

5.1. Our case study

works (for example [21] and included references) try to obtain more efficient solutions

by exploiting the structure of some specific functions, such as summing over the inputs

or considering inner-products of data with some vectors. We provide in the following

some solutions for WeStat.

• (Threshold3) fully homomorphic encryption FHE provides a way of computing

(theoretically) any function over encrypted data. A simple solution consists of the

Requestor generating a public key for this primitive and consider each user sending

an encryption of their inputs using (Threshold) FHE with requestor’s public key.

Then, the Aggregator can compute a study function over the received ciphertexts

and can reveal the resulted homomorphic computation to the Requestor. Finally,

Requestor (or threshold requestors) decrypt the resulted ciphertext to obtain the

desired statistics.

• (Threshold, function) secret-sharing schemes permits to split a secret input into

different shares. Then, it is possible from a (threshold) number of shares to recon-

struct function over the shares [107] without revealing any additional information.

With this primitive, a user could split its input to the Aggregator and the Requestor

Then, it is possible to compute the statistics by reconstructing the received shares.

Even if these two sketched solutions seems to fit with our problematic, we however remark

that there is an inherent limitation of learning more functions that it is permitted. Hence,

they do not provide evidence that indeed the right computation is carried out. Moreover,

we need to impose that at least one party is trusted during the execution of protocol.

A way to circumvent this issue is to use ZKPoK to convince other parties that com-

putations were done correctly, and reject the trust if it is not verified. It would represent

a cost (especially if the users has some performance limitation) and we choose to focus

on solutions without generic ZKPoK.

From variants of FE. Since we are considering multiple source of data (users) for

WeStat, there is a generalization of FE that could be used for our case.

Decentralized Multi-Client FE (here after DMCFE) [41] is a symmetric-variant (each

user encrypts its data under some label4) of FE with the particularity of generating

functional keys in a completely decentralized way by the users (interactively or not). A

3A variant where it is possible to decrypt a ciphertext where at least a subset some decryptors provide
their secret keys.

4Which corresponds to time, a study...etc.

134

5. Computing fault-tolerant private statistics for mobile usage

decryptor can recover a function over the data only if she has access to all the ciphertexts

and the functional key generated by all the users (under the same label).

At first glance, it is suitable to use DMCFE for our problematic: the users dictate the

nature of the computation. For WeStat, all users interact during an initial Setup phase5

and then use an encryption algorithm to send their message. Whenever a function needs

to be evaluated by a Requestor, a functional key is generated. Having so, any decryptor

cannot obtain other than the predetermined function.

Viewing the specifications of DMCFE, we remark however that it does not give a

complete answer to our problematic and we highlight the main reasons in the following.

1. Each user has to know in advance the other participants in order to generate its

parameters. The set of users is then fixed and if one user does not contribute

with its part of a functional key (or ciphertext), it is not possible (by definition)

to obtain the evaluated function over the remaining users. In our case, we tolerate

the idea that some users could be dropped and will not participate during the

computation. The DMCFE based solution is not fault-tolerant.

2. The roles of the Aggregator and the Requestor are not clear. In fact, examinating

the definition of DMCFE allows us to conclude that this primitive is more suitable

for a situation where there is a set of users and one decryptor (for example the

Requestor). Providing an aggregation step needs to examinate in a non black-box

manner the details of DMCFE, which is not clear from known instantiations.

3. In a recent work, Chotard et al. introduce the notion of dynamic DMCFE which

provide more flexibility to users for their group belonging. Roughly speaking each

user can decide to contribute in the scheme for any subset of users of its choice.

The evaluation of the data is revealed only when all parties in the same group have

sent their contributions.

In other context, the Ad-hoc multi-input FE [9] is an FE where users can join a system

(by encrypting input) on-the-fly and functional keys can be generated in a decentralized

way, by each client, without any interaction. The main difference with DMCFE of [42]

is that each user encrypts its input once and for all using some public parameters (in-

dependent from other users) and the work is then transferred into the functional key

generation procedure. When asked, the user needs to know the set of users for which the

5In fact, there is a minimum of interaction in order to obtain the public and global parameters
(handled by some trusted party for example). After this initial Setup, if there is no direct interaction
between users, then the scheme is considered as totally decentralized.

135

5.1. Our case study

functional key is issued. To recover the result, it is possible to accumulate any choice

of ciphertexts, then asking the different involved parties to send the partial decryption

keys corresponding to their ciphertext.

Notice that in particular, after a functional key generation, if one user fails to send

one partial decryption key, then we have the same problem of users vs. one decryptor

discussed above.

From DMCFE to our solution. In fact, we exploit ideas from variants of FE in the

multi-client setting. More precisely, we puts some high-level ideas of our construction.

• To handle faulty users, we use the binary tree idea of the Private Stream Ag-

gregation6 scheme of Chan et al. [39] that we modify according to our WeStat

specification. Informally, we add redundancy by regrouping users into different

groups. Then, we consider a Dynamic DMCFE over each group. If some user fails,

than there is a way to recover remaining users.

• MCFE based constructions do not consider two entities (Aggregator and Requestor)

by essence as we do. In addition, all discussed multi party solutions suppose at

least a level of trust in one of the two entities. For our solution, we suppose there

is no collusion between the Requestor and the Aggregator.

The basic composition of the schemes of Chotard et al. [42] with Chan et al. [39]

does not answer to our model because the Aggregator can learn the sum of each of the

involved group. However, we modify the construction and leverage the Requestor by

carefully adding some masks that will hide the intermediate values.

In fact, regarding WeStat, we only need a DSum (for Distributed Sum) [42] which

is a particular class of Dynamic DMCFE 7, where there is no functional key generation

but it is possible to obtain the sum of inputs of a group of users only when all their

ciphertexts are available.

Summing up our contribution, the main challenge of our WeStat solution is to build

a protocol implementing a decentralized sum protocol robust to fault-tolerance. In par-

ticular, our solution combines the DSum from Chotard et al. [42] for different subgroups

and the fault-tolerant idea of Chan et al. [39].

6PSA is a centralized solution (with a trusted aggregator) of the problem of aggregating stream data.
7Authors provide a construction for the more general case of inner-product.

136

5. Computing fault-tolerant private statistics for mobile usage

Organization of this chapter

We start by providing a description of our WeStat architecture in Sec. 5.2. Then, we

develop in Sec. 5.3 the security model concerning the Aggregator and the Requestor,

discussing at the same time the limitation of the model. In Sec. 5.4, we propose a

construction of WeStat from any DSum scheme. Finally, we discuss one instantiation of

the scheme from bilinear maps in Sec.5.5.

5.2 General definition of WeStat

For the ease of the description, our model considers three phases and for each of them,

we describe a specific computation done by each entity. At high-level, there is an initial

setup for registration and study creation, an accumulation process for collecting data

from users and a final computation to recover the results.

Involved parties and general terminology. For the rest of this chapter, we fix

a set of users {Ui}i∈I (I represents the set of all users using the WeStat service), an

Aggregator Agg with the role of collecting all the informations from the users and a

Requestor R asking for a new study. These entities are represented as PPT algorithms.

A label represents in the following parameters that are related to a particular study.

Generally speaking, a label could correspond to the time where the protocol is executed

or some public information that are used in order to authenticate all involved parties.

A message designates the information sent between each entity, while the data cor-

responds to the user’s input to be evaluated.

WeStat architecture. We provide in the following the general description of the We-

Stat protocol. For each of the following phase, we describe algorithms or protocols that

are sequentially executed, while specifying at the same time the underlying concerned en-

tities. We suppose also that each communication (i.e. exchanged messages) between the

involved parties are executed through a secure and authenticated transmission channel.

Let λ be a security parameter.

Phase 1: study creation. This phase generates the starting parameters for a new

requested study. In particular, R is interested in the evaluation of a function f

over inputs.

Setup(λ): a PPT algorithm, executed by the aggregator Agg, with the help of R. It

takes as input a security parameter λ and outputs a global public parameters

137

5.2. General definition of WeStat

param, which is included in all of the involved algorithms executed by all the

entities.

StudyRq(Agg(param), R(param, ℓ)): this is a two-party protocol executed between the

requestor R, interested in a new study, and the aggregator Agg that agrees on

starting it. During this preliminary protocol, they generate a label ℓto perform

the study. In addition, during this step, R and Agg generate then output a pair

of keys. If so, for the label ℓ, we specify (skR,ℓ, pkR,ℓ) as the private and public

keys for R and (skAgg,ℓ, pkAgg,ℓ) for Agg. The function f is specified during this

interaction.

Finally, param is updated to include new public informations as param← param∪

{f, ℓ, pkAgg,ℓ, pkR,ℓ}.

KeyGen(λ, param): a PPT algorithm that returns a pair (ski, pki) which represents a

private key and public key for each user Ui. These elements are not necessarily

dependent on the label ℓ nor the function f . Each pki is included in param.

ParticipatingUsers(P, pkj): this deterministic algorithm is executed by the aggregator

Agg and maintains a list Pℓ of participating users (the starting list Pℓ contains

pkAgg,ℓ and pkR,ℓ). It takes as input a public registration list (represented as a set)

and updates it if user Uj participates Pℓ ← Pℓ ∪ {pkj}.

This list can be provided on-demand to any other party.

Phase 2: collecting Data. During this phase, Agg requests the data from users.

DataSend(xi, ski, param): This is a PPT algorithm that is executed by user Ui on input

some data xi, his personal secret key ski. The algorithm returns a message denoted

mi,ℓ that is transmitted to Agg.

ConnectedUsers(Cℓ): this deterministic algorithm is executed by the aggregator. Agg

receives from some user Ui a message mi,ℓ, then the algorithm updates Cℓ ←

Cℓ ∪ {pki}.

Phase 3: recovering the result. In this phase, the final result of the study is com-

puted.

Aggregate({mi,ℓ}i∈C , Pℓ, param, skAgg,ℓ): this is a PPT algorithm executed by the Ag-

gregator Agg. Having received messages from the previous connected users Cℓ and

using its secret key skAgg,ℓ, it returns an aggregated value Mℓ,C . This information

is transmitted to R.

138

5. Computing fault-tolerant private statistics for mobile usage

Recover(Mℓ,C , param, skR,ℓ): this is a PPT algorithm executed by R on input the aggre-

gated value Mℓ,C which extracts the result of the study using its secret key skR,ℓ

and output an element result.

Correctness. The correctness condition follows the idea that if some users are in a list

Cℓ of connected users (and of course in Pℓ), then result will correspond to f({xj}j∈Cℓ
).

More formally, for λ a security parameter, for any label ℓ, let param generated during

Setup(λ) and updated after StudyRq(Agg(param), R(param, ℓ)). Consider Pℓ generated

during ParticipatingUsers({pkAgg,ℓ, pkR,ℓ, ·}) and Cℓ as ConnectedUsers(∅) after respec-

tively the end of phase 1 and phase 2. Finally, consider pairs (pki, ski) for all i ∈ Pℓ

generated using KeyGen(λ, param). The correctness condition states that for each i ∈ Cℓ,

if mi,ℓ ← DataSend(xi, ski, param) and

Mℓ,C, ← Aggregate({mi,ℓ}i∈C , Pℓ, param, skAgg,ℓ),

then Recover(Mℓ,C,, param, skR,ℓ) = f({xj}j∈Cℓ
) with overwhelming probability.

On the arity of the function f . In the correctness condition, the function f has to

satisfy the arity constraint of accepting |Cℓ| inputs. Even if it can be seen as a strong

restriction, since we do not know in advance the position of the real connected users

that will effectively send a message, we argue in fact that for our consideration the

inner-product function 〈x, y〉 has the particular property that the arity needs not to be

specified when y is public. Indeed, by simply replacing some coordinates equal to 0 in

the underlying vector function (i.e. in y) for some specific places (i.e. in the indices

provided by the connected users), we can manage the above constraint.

5.3 Security definitions

In this section, we present the main security properties needed for WeStat.

Overview. The main guideline for any security property that we are considering is to

ensure that a minimum amount of information to each party is leaked during the com-

putation over the previous phases. Informally, there are three main coexisting entities

(Users, Agg,R) that interact and each of them one could involve a potential different

attacks depending on the elements it has access to. In more details, we develop in the

following the main issues.

139

5.3. Security definitions

1. The Requestor R asking for a study has the ability to learn the final result. Thanks

to our architecture, it does not have a direct access to the messages sent by the

users. However, any malicious R could corrupt, or simply add some fully-controlled

corrupted users, then produce some messages that could perturb the final result

computation. R could pollute the computation that leads to a corrupted result, a

secure scheme should ensure that a malicious R can not learn any additional useful

information about the remaining honest users, other than what it could learn with

the corrupted messages. In other words, corrupting some subset of users can not

help him to learn new information about the non-corrupted users.

2. The Aggregator Agg sees the message sent by the users, then a notion of oblivious-

ness for the aggregator is needed. Indeed, we want to verify that the aggregator

cannot have an access to any particular user’s data. However, cares should be taken

when formalizing such security property. As for the previous case, Agg could po-

tentially corrupt some users and proceed to an aggregation step over a mixed set

of corrupted and honest users. There is however two cases depending on whether

Agg has or has not access to the final result. In the former case, even if it looks

similar, this is not the exactly the same as in the previous consideration for R, since

Agg has more power than R. Agg could aggregate any set of values, learning at

the same time all possible partial results. The latter case however better restricts

the attack ability of a malicious Agg and security should ensure that Agg does not

learn anything about the received (honest) messages.

Recall that we are not considering a collusion between Agg and R. Otherwise, this

means that Agg and R has the same information as an aggregator with a direct access

to the result. Having fully collusion resistance is an ideal property that one wants to

ensure. As we mentioned in the beginning of the chapter, previous works (for e.g. [21]

and included references) provided a non-collusion condition between at least two parties.

We do not have a solution to this problem, and we leave it as an interesting question to

consider the general case. In particular, we suppose in the sequel that Agg and R do not

collude.

In the following section, we consider a PPT adversary with the aim to obtain ad-

ditional information depending on the leaked one it gets during the interactions. We

consider in the following two useful sets for our descripition: HU (for honest users) and

CU (for corrupted users).

140

5. Computing fault-tolerant private statistics for mobile usage

5.3.1 Requestor security

In this section, we formalize the security notion needed for the requestor. Notice that

unlike the aggregator, the requestor has no access to the elements mi,ℓ from any non-

corrupted users. More formally, we have the following definition.

Definition 5.3.1 (Ind− Req). For a PPT adversary A, consider the following experi-

ment.

• Initialization: the experiment starts by generating param ← Setup(λ). A random

bit b ∈ {0, 1} is chosen and param is given to A.

• Study request: A has access to a StudyRq oracle which on input param and a label

ℓ, permits to interact with an honest Agg and obtains the new updated parameters

param← param ∪ {f, ℓ, pkAgg,ℓ, pkA,ℓ} with the corresponding secret keys skAgg.

• Corrupt User creation: A has access to a QCKeygen oracle, which on input an

index i, runs (pki, ski)← KeyGen(λ, param) and returns ski to A and adds i to CU .

• Honest User creation: A has access to a QHKeygen oracle, which on input an index

i, runs (pki, ski)← KeyGen(λ, param), returns pki to A and adds i to HU ..

• Aggregation challenge: A has an adaptive access to a QAggregate oracle, which on

inputs the index i, updated param, a set of connected users (with possibly corrupted

users) and data {(x0
i,ℓ, x1

i,ℓ)}i∈C , first consider mb
i,ℓ ← DataSend(xb

i , ski, param),

then returns an element

M b
C,ℓ ← Aggregate({mb

i,ℓ}i∈C , Pℓ, param, skAgg,ℓ).

• Guessing challenge: A makes a guess b′.

The output b′ of the game depends on some trivial condition. Consider CU the set

of corrupted users and HU the set of the remaining honest users. Denote the requested

connected list by Cℓ deduced from the in the aggregating challenge. If for all i ∈ HU∩Cℓ,

there exist some (i, x0
i , x1

i , ℓ) such that f({x0
i }i∈Cℓ

) 6= f({x1
i }i∈Cℓ

) or x0
i = x1

i for all

i ∈ CU , then sets b′ to be a random bit. Otherwise, define the advantage of A is then

defined as the quantity

AdvA,IND−Req(1λ) = |Pr[b′ = b]− 1/2|,

and we say that the protocol is oblivious to the requestor if the advantage is negligible.

141

5.3. Security definitions

5.3.2 Aggregator security

We discuss in this section the security model for the aggregator.

No result access. Intuitively, the idea is that a malicious aggregator cannot distin-

guish between two incoming messages even if it could corrupt some users for each study

request initiated by an honest requestor R. This should hold without having direct access

to the final result. More formally, we have the following definition.

Definition 5.3.2 (Ind− Agg). For a PPT adversary A, consider the following experi-

ment.

• Initialization: A initiates the experiment by generating param ← Setup(λ). A

random bit b ∈ {0, 1} is picked.

• Study request: A has access to a StudyRq oracle which permits to interact with

an honest R and recover in a the new updated parameters param ← param ∪

{f, ℓ, pkA,ℓ, pkR,ℓ}.

• Corrupt User creation: A has access to a QCKeygen oracle, which on input an

index i, runs (pki, ski)← KeyGen(λ, param) and returns ski to A and adds i to CU .

• Honest User creation: A has access to a QHKeygen oracle, which on input an index

i, runs (pki, ski)← KeyGen(λ, param) and returns pki to A and adds i to HU .

• Data challenge: A has an adaptive access to an oracle QData, which on input

(i, x0
i , x1

i , ℓ, param) returns mb
i,ℓ ← DataSend(xb

i , ski, param).

• Guessing challenge: A makes a guess b′.

The output b′ of the game depends on some trivial condition. Consider CU the set

of corrupted users and HU the set of the remaining honest users. Denote by Cℓ all

the connected list of users resulting from ConnectedUsers deduced from A’s request. If

during the data challenge for all i ∈ HU ∩ Cℓ, there exists some (i, x0
i , x1

i , ℓ) such that

f({x0
i }i∈Cℓ

) 6= f({x1
i }i∈Cℓ

), or x0
i = x1

i for all i ∈ CU then sets b′ to be a random bit.

Otherwise, define the advantage of A as the quantity

AdvA,IND−Agg(1λ) = |Pr[b′ = b]− 1/2|,

and we say that the protocol is oblivious to the aggregator if the advantage is negligible.

142

5. Computing fault-tolerant private statistics for mobile usage

With result access. A natural extension of our security definition is to consider that

Agg has access to the final result (using some specific oracle) of the computation provided

by a honest R. Notice the similarities with the classical CCA security definition of FE.

We mention however that giving access an oracle that provides results on any request

represents a considerable leakage of information. Indeed, since Agg could aggregate any

sum of its choice, it could obtain polynomially many relations between the inputs.

A possible way to integrate this leakage would be to restrict the queries issued by

Agg in order to capture how much partial sums it could learn. We do not studied this

case in full detail and we leave it as an interesting open question to see how to measure

the potential leakage and how to adapt the definitions.

5.4 Our proposed solution for WeStat

In this section, we present our cryptographic construction to build WeStat. The starting

point is the binary tree idea of Chan et al. [39] that we modify according to our needs.

First, we split users in different groups. Then, each user is associated to one leaf in

a binary tree, and is related to all the nodes from her leaf to the root. We then run

a decentralized sum FE for each node, using the DSum construction given in [42] and

defined in Sec.2.3.2 If some users fail, we are then able to find a set of subgroups that can

cover the connected users. This gives us the fault-tolerant property. The problem with

this solution is that Agg can potentially obtain partial sums (one for each subgroup).

More precisely,

• each user Ui select a set N of nodes where it appears and generates a secret key

ski,N for each node N , using the KeyGen algorithm of the DSum scheme of Sec2.3.2;

• using the encryption algorithm of the DSum on input her contribution xi and the

secret key ski,N , user Ui generates as many ciphertexts as the number of nodes in

which she appears (in at most the depth of the binary tree);

• after having received the contribution of all participating users, the Aggregator

has to find a set of blocks that contains all of them. Then, these blocks permit to

obtain at first all partial sums, and then the whole result, which is finally sent to

the requestor R;

• to avoid learning partial informations, our solution is to introduce intermediate

masks to the partial sums by treating R as an extra user in the binary tree but

with the particularity that R is belonging to all leaves in the tree. The resulting

143

5.4. Our proposed solution for WeStat

sum is noised with some global randomness that it can be removed after having

received the result from the Aggregator.

Remark that the scheme of Chan et al. [39] argue their security, in particular when

considering partial sums, by relying on differential-privacy. Indeed, Chan et al. provide

several techniques that introduce noise to perturb (in a DP manner) the partial sums.

Security of all the aggregated value is provided following some composition lemma inher-

ited from the differential-privacy literature. Our attempt is to propose a solution solely

based on cryptographic primitives, as the one proposed in the previous sections. An

interesting path is to integrate differential-private techniques within our consideration.

5.4.1 The proposed system

We are now ready to describe our main construction. We fix a DSum denoted by

(Setup, Enc, KeyGen, Dec). In the sequel, we sometimes omit the label ℓ for the ease

of exposition. We define similarly to Chan et al. the notion of block (or segments) of

users: having some integers, r ≥ 0 and m ≥ 1, we define the following sets of integers

Br
m := {2r(m− 1) + s : 1 ≤ s ≤ 2r},

T (N) := {Br
m|n ≥ 0, m ≥ 1, Br

m ⊆ [1, N]}

B(i) := {B|B ∈ T (N) and i ∈ B}.

Suppose that N is a power of 2, i.e N = 2n for a certain n. Then, set of integers

Br
m corresponds to nodes in the binary tree construction. First, notice that these sets

correspond to integers between 2r(m − 1) + 1 and 2rm by definition. Moreover, the

integer r, which is the size of the block Br
m, corresponds to the level of the nodes in the

binary tree. The integer m corresponds to the index position of the nodes (from left

to right) for each level. In particular, we have B0
m = {m} for all integer m ≥ 1 which

corresponds to a leaf and Br
1 = {1, · · · , 2r} which corresponds to the root.

The above definition of blocks considers arbitrary r and m as well as T (N). However,

by our choice of N as a power of 2, T (N) represents the relevant blocks of a certain size

and can be seen as the set of all nodes in the binary tree with N leaf nodes. Finally, the

number of blocks is bounded by 2n.

Remark. An important observation that will be useful when recovering the set of con-

nected users (fault-tolerance) is the following mathematical facts. Notice that if i is in a

set [1, 2n], then i is contained in at most n + 1 blocks and, given 0 ≤ r ≤ n, in at most

one block of the form Br
m for a certain m ≥ 1. The first part is easy to check. For the

144

5. Computing fault-tolerant private statistics for mobile usage

second part, observe that for any r, since i is a positive integer, by Euclidean division,

we know that there exists (unique) a, b ∈ N such that i = 2r · a + b, where 0 ≤ b < 2r.

Then, i = 2r · (m− 1) + b for m := a + 1 ≥ 1, implies that i ∈ Br
m but with the condition

that 1 ≤ b < 2r. If b = 0, it follows that i = 2r · (a− 1 + 1) = 2r · (a− 1) + 2r. Because

i ≥ 1 and b = 0 implies that a ≥ 1, we deduce that i ∈ Br
m with m := a.

We will use this basic facts when providing the fault-tolerance of the scheme.

We are now ready to provide a description of our system using this binary tree idea.

Consider that there are at most N = 2n users in the system. The binary tree is defined

as follows

• each leaf is represented by a unique number from 1 (extreme left) to N (extreme

right);

• each internal node is represented by “[i, j]” where i is the extreme left number of

node’s left son, and j is the extreme right number of node’s right son.

Our proposed system is as follows (see an example in Figure 5.1 for an illustration).

Phase 1. We describe the main components of the first phase.

Setup(λ): Agg generates the binary tree of height n + 1 in such a way that each node

is associated with a set of cryptographic keys.

Each leaf of the tree represents a unique user and each user is related to the nodes

from the root to its leaf.

This tree is managed and maintained by the Aggregator and is common to all stud-

ies. The Aggregator also executes the DSum.Setup procedure (see Section 2.3.4),

which outputs param. All the details of the tree are also put on this set of param-

eters.

StudyRq(Agg(param), R(param, ℓ)) We describe in the following the protocol between

Agg and R. We consider a requestor who wants to create a new study, labelled

as ℓ. The Requestor is associated to every node in the tree. It computes its

public/private keys as {pkR,B, B ∈ T (N)} and {skR,B, B ∈ T (N)}), where

(pkR,B, skR,B)← DSum.KeyGen(1λ).

The Requestor then proceeds as follows, again for each B ∈ T (N):

• chooses uniformly random rB;

145

5.4. Our proposed solution for WeStat

[1, 8]

[1, 4]

[1, 2]

1 2

[3, 4]

3 4

[5, 8]

[5, 6]

5 6

[7, 8]

7 8

Figure 5.1: Tree structure. Here, each leaf of the tree represents a unique user and each
user is related to the nodes from the root to its leaf.

• computes ctR,B ← DSum.Enc((pkR,B, skR,B), rB, pkR,B, ℓ).

This makes available to the Aggregator the following set of ciphertexts ctR,B :=

{ctR,B, B ∈ T (N)}. Together with the above set of public keys, the public pa-

rameters pkR,ℓ := {pkR,B, B ∈ T (N)} consists of each generated public key. The

secret output of the Requestor, skR,ℓ := {skR,B, rB, B ∈ T (N)} is given by the set

of random number {rB, B ∈ T (N)} and the underlying DSum secret keys.

KeyGen(λ, param): We now consider that user Ui wants to register to the service. The

Aggregator sends him the parameter param and associates this new user to a

particular leaf on the tree (leaf number i). User Ui executes the DSum.KeyGen(1λ)

algorithm from the DSum for each node in the tree in which it is involved. In

particular, following our introduced notation for each block B ∈ B(i), user Ui

executes and returns (pki,B(i) := {pki,B, B ∈ B(i)}, ski,B(i) := {pki,B, B ∈ B(i)}),

where

(pki,B, ski,B)← DSum.KeyGen(1λ).

ParticipatingUsers(P, pkj): Maintained by the Agg, it starts with an empty list and add

each pki whenever a user is registered.

Phase 2: Sending Data for a Study We then consider the participation phase by

user Ui. First, Ui gets back all the public key sets as defined in the previous phase

and more specifically, obtain the ones related to his own nodes.

146

5. Computing fault-tolerant private statistics for mobile usage

DataSend(xi, ski, param): The user Ui takes then as input his entry xi and the label

ℓ corresponding to the study and computes the following ciphertexts using the

encryption scheme given by DSum and each block B in B(i):

• computes cti,B = DSum.Enc((pki,B, ski,B), xi, pki,B(i) ∪ pkR,B, ℓ).

Notice the inclusion of the requestor’s public key during the encryption (pki,B(i) ∪

pkR,B).

Finally, Ui computes mi,ℓ := {cti,B, B ∈ B(i)}. All the ciphertexts are then sent

by Ui to the Aggregator as a participation to the study.

ConnectedUsers(Cℓ): the Aggregator maintains the list of participating users whenever

there exists a message mi,ℓ.

Phase 3: Obtaining the Result Having access to all ciphertexts of all participating

users (plus the ones of the Requestor), the Aggregator and the Requestor can start

to proceed to the computation of the result.

Aggregate(): this algorithm proceeds as follows.

• Find “target nodes” uniquely covering all the leaves of participant: This al-

gorithm consists of finding the blocks BCℓ
⊆ T (N) such that it covers the

connected users Cℓ. We explain after the description how do we compute

these nodes (See the paragraph in Sec.5.4.1)

• Execute the decryption procedure for each given target node and aggregate the

whole blinded sum: Having the block set of the remaining users, consider for

the received messages mi,ℓ (:= {cti,B, B ∈ B(i)}), select in particular the

concerned blocks B ∈ B, then compute

Mℓ,B :=
∑

B∈B
DSum.Dec(param, {cti,B}i∈B)

Finally, it sends this partial result to the Requestor, together with the used

target nodes.

Recover(Mℓ,B, param, skR,ℓ): from B the set of blocks computed in the Aggregate algo-

rithm, R recovers the randomness rB for all block B ∈ B used during the initial

protocol with Agg, then it computes the following result

result := Mℓ,B −
∑

B∈B
rB.

147

5.4. Our proposed solution for WeStat

The final steps are always possible since we have obtained all the relevant ciphertexts,

which permits the Aggregator to obtain as many partial blinded sums8 as target nodes.

For example, in the tree given in Figure 5.1, if user 5 haven’t participated, one can

obtain the final result by using nodes [1, 4], 6 and [7, 8], which permit to scan all true

participants.

The way we can treat a more general inner-product with this scheme is quite easy:

each individual i can be associated to a scalar αi and can easily replace, in the above

computations, its input value xi by αi · xi.

Finding target nodes.

Suppose that there are some users 0 ≤ k < N that do not participate. By the specifica-

tion of the DSum scheme, this leads to a situation where it is not possible to recover the

exact sum for some blocks. In more details, similarly to Chan et al. [39], this implies

that the interval [1, N] is divided into k + 1 intervals. The main task is to efficiently

find a way to circumvent the lost of information and cover the users that ineed send a

message. We explain the procedure for one interval.

The key observation is to notice that every interval [s, t] within [1, N] can be uniquely

covered using this trick: for each integer in [s, t] it is possible to have exactly one block

of that contains it. One possible solution to build B is to observe that iteratively, for an

integer r decreasing from ⌈log(t)⌉ to ⌈log(s)⌉, we can build a block of size 2r (by using

our method described in remark 5.4.1) of the desired form Br
m that is contained in the

interval [s, t] and which is not contained in a previously constructed block. This leads

to a disjoint set of blocks such that their union cover the interval [s, t].

Notice however that even if the time for searching this covering blocks is reasonable,

we stress that there are some situations where there is an exponential blow-up in the

number of possible blocks. For example, the worst case scenario is when we have to

consider each individual block ([i, i]) in order to cover all the remaining users (this

corresponds to the unlucky situation where one out of two predetermined ordered users

fails).

5.4.2 Security proof

Our solution is obtained using the same arguments of [39] (without the DP part) and

our adaptation of the DSum functionality in [42].

8We consider the sum as blinded since, at this step, it still includes the secret randomness coming
from the Requestor.

148

5. Computing fault-tolerant private statistics for mobile usage

First, the security of the DSum dynamic DMFE building block given in [42] provides

the guarantee, using the fact that all the parties additionally make use of the same label

(which imposes a constraint on which values can be added together), that,

• for each block/node in the tree, the sum of the contributions is automatically

revealed when all the parties belonging to this block/node have sent their contri-

butions;

• the individual contributions of non-participating users, together with the sum re-

lated to block/nodes where there are non-participating users, remain hidden for

any actor, including the Aggregator that makes the computations.

As an example, if users 1, 3 and 4 have sent their contributions, but not user 2, the

partial sums of nodes 1, 3, 4 and [3, 4] can be retrieved, while the ones of nodes [1, 2],

[1, 4] and [1, 8] cannot, since the DSum is secure [42].

Then, from that result, the security of the fault-tolerant tree-based system given

in [39] permits us to argue that

• the sum of the contributions of all the participating users (including the one by

the Requestor, see below) is automatically revealed when all the parties have sent

their contribution;

• any other partial sum (except the above intermediate ones related to full groups/nodes)

cannot be obtained, since the users contribution are provided for the whole set of

“target nodes” of the tree that uniquely cover the participating users.

Recall that we do not consider the case of a coalition between the Aggregator and

the Requestor. Then, as the non-corrupted Requestor is seen as an extra user that

contributes to hide the intermediate values by adding/removing randomness to all nodes,

the Aggregator only obtains noised sum, so that even if it has compromised some users,

what it can get is either the sum of compromised users, or a noised sum of compromised

and non-compromised users.

Regarding the indistinguishability against the Requestor, we observe informally that

the only information that it could obtain is the final sum.

Proof of Aggregator security.

We have the following theorem.

149

5.4. Our proposed solution for WeStat

Theorem 5.4.1. Suppose that DSum multi-client FE is Ind secure as per Definition

2.3.4. The WeStat construction of Sec 5.4.1 is Ind− Agg Secure as per Definition 5.3.2.

More formally, for any PPT adversary A attacking the aggregator security game, there

exists a PPT adversary D such that

AdvA,Ind−Agg(1λ) ≤ 3n · (N − c) · AdvD,Ind−DSum(1λ),

where c is the number of calls to the QCKeyGen oracle.

Informally, we obtain the security of the WeStat construction by reducing the task for

any adversary to the task of breaking the underlying DSum scheme. However, applying

a direct reduction does not work, since we consider several instantiations of DSum. In

fact, one for each block. The difficulty is to argue that any advantage over a block does

not provide any useful advantage against another block. To provide such a result, we

will rely on a hybrid argument across all the used blocks as well as honest users.

We describe in the following the proof.

Proof. Let A be a PPT adversary playing the security game as in Def. 5.3.2. Let λ

be a security parameter and b a random bit. We prove the theorem via a series of

intermediate games.

For k ∈ [0, N], consider Gamek to be the following hybrid. During any QData request

and for any honest user i ∈ HU , let x0
i , x1

i be the i-th client input vector submitted by

A. For all users i ≤ k, compute i’s ciphertext using x0
i , and for all other i, computes i’s

ciphertext using xb
i . Remark that Game0 corresponds to the initial game, and GameN

is independent of the bit b since the oracle QData returns the encryption of x0
i for all

(honest) users i.

We have now to show that Gamek and Gamek+1 are computationally indistinguishable

for all k ∈ [0, N]. The main argument is to reduce each transition to the security of the

DSum primitive, thus we can build an adversary attacking the ind security game of

DSum as per definition 2.3.4. The main argument is to think over the underlying blocks

corresponding to user Uk (i.e. B(k)).

To argue about our proof, we need the following intermediate Games Gamek,t for

t = 0, 1, 2, 3.

• Gamek,0 is Gamek.

• Gamek,1 is similar to Gamek,0 with the difference in the generation of ctR,B ←

DSum.Enc((pkR,B, skR,B), rB, pkR,B, ℓ). A honest requestor generates all the uni-

formly random rB as in the description of the protocol. All random rB are

150

5. Computing fault-tolerant private statistics for mobile usage

used for ctR,B except for all blocks B ∈ B(k), where we consider instead an

encryption of the input 0. In addition, we modify the generation of ctb
k,B as

DSum.Enc((pkk, skk), xb
k + r′k,B, pkk,B(k) ∪ pkA′,B, ℓ) such that r′k,B is defined as

follows: having previously constructed rj,B for all j < k (recall that we are on a

hybrid argument for k), r′k,B is generated uniformly generated with the condition

r′k,B +
∑

j∈B,j<k rj,B := rB for all B ∈ B(k).

• Gamek,2 is similar to Gamek,1 except that ∀B ∈ B(k), we modify the encryption of

the challenge data by setting the following ciphertext ctb
k,B ← DSum.Enc((pkk, skk), x0

k+

r⋆
k,B, pkk,B(k) ∪ pkA′,B, ℓ) where r⋆

k,B = (xb
k − x0

k)− r′k,B. Observe that x0
k + r⋆

k,B =

xb
k − r′k,B.

• Gamek,3 is Gamek+1.

As we will show in the following lemmas, Gamek,t is computationally indistinguishable

from Gamek,t+1 for t = 0, 1, 2. From the result, we deduce that Gamek is computationally

indistinguishable from Gamek+1 and by a standard hybrid argument we have the claim

of the theorem. Let us now come back to the different transitions. We give and prove

them by the following lemmas.

Lemma 5.4.2. For any adversary A that distinguish between Gamek,0 and Gamek,1,

there exists a PPT algorithm A′ breaking the ind security of DSum such that

AdvA,Gamek,0,Gamek,1
(1λ) ≤ n · AdvA′,Ind−DSum(1λ).

Proof. Consider the following PPT algorithm A′ attacking the ind security of DSum and

that works as follows.

• Initialization: A′ receives paramDSum issued from the DSum.Setup(λ) executed by

the DSum challenger. In addition, A′ generates the corresponding parameters for

the WeStat construction, i.e. a tree with the parameters in the description. During

this procedure, A′ simulates an interaction between an honest requestor R andA by

following the description of the protocol (recall that there is no collusion between

an aggregator and the requestor). In particular, A′ output the following set of

ciphertexts ctR,T (N) := {ctR,B, B ∈ T (N)} together with an update of the public

parameters pkR,ℓ of the study. Up to this point the label ℓ is also provided and A

is given these elements. Recall that the ciphertexts ctR,B for each B ∈ T (N) are

as follows ctR,B = DSum.Enc((pkR,B, skR,B), rB, pkR,B, ℓ) for a uniformly random

rB except for all blocks B ∈ B(k). In this situation, A′ considers its QEncrypt

151

5.4. Our proposed solution for WeStat

oracle on inputs (rk,B, 0) for a uniformly random rk,B and obtains depending on

its DSum experiment an encryption of rk,B or 0.

• Honest User creation: A′ runs A to obtain the index i that it requests for honest

users and makes the same requests to its own QHKeygen oracle obtaining revealing

pki to A′.

• Corrupt User creation: A′ runs A to obtain the index i that it requests for cor-

ruption and makes the same requests to its own QCKeygen oracle obtaining the

corresponded ski.

• Data challenge: for all i ∈ [1, N] and for each block B ∈ B(i), each time A which

has an adaptive access to his oracle QData makes a request (i, x0
i , x1

i , ℓ), A′ first

run A to obtain these inputs and proceeds as follows:

For i 6= k and i ∈ HU (all honest users different from user k), A′ computes the

ciphertexts {cti,B} and forms the elements

ctb
i,B ← DSum.Enc((pki, ski), x0

i , pki,B(i) ∪ pkR,B, ℓ), i < k

ctb
i,B ← DSum.Enc((pki, ski), xb

i , pki,B(i) ∪ pkR,B, ℓ), i > k

using its own QEncrypt oracle (notice that we used pkR,B generated during the

initialization phase). Then, it forms mi,ℓ := {cti,B, B ∈ B(i)}.

Next, for user k that is a honest user, then A′ uses the uniformly random rk,B

for all B ∈ B(k), considers r′k,B as described in Gamek,1 with the condition

r′k,B +
∑

j∈B,j 6=k rj,B := rk,B and asks its own QEncrypt oracle (for DSum) on

input (xb
k, xb

k + r′k,B) in order to obtain

ctb
k,B ← DSum.Enc((pkk, skk), xb

k, pkk,B(k) ∪ pkA′,B, ℓ)

or

ctb
k,B ← DSum.Enc((pkk, skk), xb

k + r′k,B, pkk,B(k) ∪ pkA′,B, ℓ)

depending on its DSum experiment. A′ then computes

mb
k,ℓ := {ctb

k,B, B ∈ B(k)}.

Finally, mb
k,ℓ is given in addition to previous generated mi,ℓ to A by A′.

152

5. Computing fault-tolerant private statistics for mobile usage

• Guessing challenge: when A makes a guess b′ and A′ returns the same bit b′ to its

experiment.

When the QEncrypt oracle returns the encryption of the left input, then A′ simulates

the view of A playing Gamek,0, and where it returns the encryption on the right input

it simulates the view for Gamek,1. Indeed, these oracle queries (which have the same

distribution as before) do not change the result of the output and are legitimate since

xb
k,B + r′k,B +

∑

j∈B,j<k

(

x0
j,B + rk,j

)

+
∑

j∈B,j>k

(

x1
j,B + rk,j

)

=

xb
k,B +

∑

j∈B,j<k

x0
j,B +

∑

j∈B,j>k

x1
j,B

+

r′k,B +
∑

j∈B,j 6=k

rk,j

= xb
k,B +

∑

j∈B,j<k

x0
j,B +

∑

j∈B,j>k

x1
j,B + rk,B

Notice however that our claim is valid for a block B ∈ B(k). If we start with considering

another hybrid game where the modifications described above are done for every block

in B(k). Since the number of blocks containing user k is at most log N := n. We

deduce that we obtain for each block AdvA′,Ind−DSum(1λ). Hence, the result of the lemma

follows.

Lemma 5.4.3. For any adversary A that distinguish between Gamek,1 and Gamek,2,

there exists a PPT algorithm A⋆ such that

AdvA,Gamek,0,Gamek,1
(1λ) ≤ n · AdvA⋆,Ind−DSum(1λ).

Proof. We proceed as in the previous lemma by providing an adversary A⋆ that will

attack the security game of the underlying DSum. Indeed, A⋆ acts exactly as the pre-

viously described adversary A′ except that this time, A⋆ asks its own QEncrypt oracle

(for DSum) on input (xb
k + r′k,B, x0

k + r⋆
k,B) in order to obtain

ctb
k,B ← DSum.Enc((pkk, skk), xb

k + r′k,B, pkk,B(k) ∪ pkA′,B, ℓ)

or

ctb
k,B ← DSum.Enc((pkk, skk), x0

k + r⋆
k,B, pkk,B(k) ∪ pkA′,B, ℓ)

depending on its DSum experiment.

Here again, we clearly do not modify the view of the adversary and the queries are

legitimate since it is a simple change of variables. The argument is valid for each block

153

5.4. Our proposed solution for WeStat

B ∈ B(k) so we deduce the result of the lemma.

Lemma 5.4.4. For any adversary A that distinguish between Gamek,2 and Gamek,3,

there exists a PPT algorithm A† such that

AdvA,Gamek,0,Gamek,1
(1λ) ≤ n · AdvA†,Ind−DSum(1λ).

Proof. We use again the same approach as in the transition between Gamek,0 and

Gamek,1. The idea is to take a step back to the generation of the (honest) requestor

ciphertext by encrypting, instead of 0, the sum of r⋆
k,B as the new mask, i.e A† computes

r†k,B :=
∑

B∈B(k) r⋆
k,B with the previously chosen r⋆

k,B (which is in particular independent

of the bit b by construction). In addition, A† asks its QEncrypt oracle on input (0, r†k,B)

(instead of (0, rk,B)) to obtain a ciphertext corresponding to 0 or r†k,B. Then, A† asks

its own QEncrypt oracle (for DSum) on input (x0
k + r⋆

k,B, x0
k) with the same description

of r⋆
k,B to obtain

ctb
k,B ← DSum.Enc((pkk, skk), x0

k + r⋆
k,B, pkk,B(k) ∪ pkA′,B, ℓ)

or

ctb
k,B ← DSum.Enc((pkk, skk), x0

k, pkk,B(k) ∪ pkA′,B, ℓ),

depending on its DSum experiment. The proof of the lemma follows.

This concludes the lemma proofs. The conclusion of the theorem follows as we should

notice that we have used an hybrid argument over all honest users k. In particular,

summing up all the hybrids, we obtain the claim of the theorem, i.e. by letting D :=

(A′,A⋆,A†), we have

AdvA,Ind−Agg(1λ) ≤ 3n · (N − c) · AdvD,Ind−DSum(1λ).

Proof of Requestor security

We have the following theorem concerning the requestor security result.

Theorem 5.4.5. Suppose that DSum mutli-client FE is ind secure as per Definition

2.3.4. The WeStat construction of Sec 5.4.1 is Ind− Req to any requestor and is secure

as per Definition 5.3.1. More formally, for any PPT adversary A attacking the requestor

154

5. Computing fault-tolerant private statistics for mobile usage

security game, there exists some PPT adversary D such that

AdvA,Ind−Req(1λ) ≤ n · (N − c) · AdvD,Ind−DSum(1λ),

where c is the number of calls to the QCKeyGen oracle.

The proof is quite similar to the previous aggregator security one, except that a

malicious requestor does not see the resulted individual ciphertext coming from honest

users. In fact, as explained in the scheme description, the requestor is an extra user and

can thus act maliciously. The requestor could then influence the final result bit not the

honest ciphertexts. Since decryption of the DSum is performed by a honest Aggregator,

we are in the same situation as having an adversary attacking the ind security of the

IND security of DSum.

We use again an hybrid argument over all challenge messages xb
i for a bit b. In

addition, we also need an hybrid argument over the blocks to argue security. This time,

the proof is more direct than the previous one since we do not have to rely on secret

sharing argument.

Proof. Let A be a PPT adversary playing the security game as in Def. 5.3.1. Let λ to

be the security parameter and b to be a random bit. We will prove the theorem via a

series of intermediate games

For k ∈ [N], consider Gamek to be the following hybrid. During any QAggregate

request and for any honest user i ∈ HU , let x0
i , x1

i to be the i-th client input vector

submitted by A. For all users i ≤ k, compute i’s ciphertext using x0
i , and for all

other i, computes i’s ciphertext using xb
i . Remark that Game0 corresponds to the initial

game, and GameN is independent of the bit b since the oracle QData always returns the

encryption of x0
i for all (honest) users i.

We have now to show that Gamek and Gamek+1 are computationally indistinguishable

for all k ∈ [0, N]. The main argument is to reduce each transition to the security of the

DSum primitive, thus we can build an adversary that will attack the ind security game

of DSum as per definition 2.3.4. The main guideline is to reason over the underlying

blocks corresponding to user k (i.e B(k)).

We describe in the following the adversary A′ that attacks n copies of the underlying

DSum. Recall that n := log N , where N is the number of users.

• Initialization: A′ receives paramDSum issued by the DSum.Setup(λ) execution from

the DSum challenger. In addition, A′ generates the corresponding parameters for

the WeStat construction, i.e a tree with the above parameters in the description.

155

5.4. Our proposed solution for WeStat

In addition, A′ simulate an interaction between an honest aggregator R and A by

following the description of the protocol (recall that there is no collusion between

an aggregator and the requestor). Eventually, A returns the following set of ci-

phertexts ctA,T (N) := {ctA,B, B ∈ T (N)} together with an update of the public

parameters pkA,ℓ of the study. Up to this point a label ℓ is provided.

• Honest User creation: A′ runs A to obtain the index i that it requests for honest

users and makes the same requests to its own QHKeygen oracle obtaining revealing

pki to A′.

• Corrupt User creation: A′ runs A to obtain the index i that it requests for cor-

ruption and makes the same requests to its own QCKeygen oracle obtaining the

corresponded ski.

• Data challenge: for each block B ∈ B(i) for user i, A′ runs A which has an

adaptive access to his oracle QAggregate. This oracle takes inputs elements of

the form (i, x0
i , x1

i , ℓ). A′ first run A whenever it requests these inputs and for-

wards them to its own QEncrypt oracle (for DSum) in order to obtain ctb
i,B ←

DSum.Enc((pki, ski), xb
i , {pkB}B∈B(i), ℓ), for each block B ∈ B(i). A′ computes

M b
C,ℓ ← Aggregate({mb

i,ℓ}i∈C , Pℓ, param, ℓ)

=
∑

B∈BC

DSum.Dec(param, {ctb
i,B}i∈B)

where mb
i,ℓ ← DataSend(xb

i , ski, param) and BC is the recovering connected users.

Finally, the aggregated value M b
C,ℓ is given to A by A′.

• Guessing challenge: A makes a guess b′ and A′ returns the same bit b′.

We analyse the security of this reduction. First, notice that A′ correctly simulates the

view of A since the ciphertexts are well generated for all corrupted users.

The arguments are the same in the security of the Aggregator. Since A′ uses these

same requests as A, we deduce that Gamek is indistinguishable from Gamek+1. The

hybrid argument is over all honest users k and affected blocks that contain user Uk(at

most log N = n), we deduce that for D := A′, we have the claim of the theorem. In

particular, we get

AdvA,Ind−Req(1λ) ≤ n · (N − c) · AdvD,Ind−DSum(1λ),

where c is the number of calls to the QCKeyGen oracle by A.

156

5. Computing fault-tolerant private statistics for mobile usage

5.5 Instantiation from bilinear maps

In this section, we discuss a possible implementation of our instantiation of WeStat from

bilinear maps. We do not give in details the full description of the protocol but only the

DSum part and how the needed cryptographic primitives are used in the application.

In addition, the DSum construction of Chotard et al. [42] uses NIKE [57] together

with the concept of All-or-Nothing Encapsulation [42] that is also derived from chameleon

hash as described in Sec. 2.2.2 as well as some classical symmetric primitives. The full

description of the DSum is given in [42, Sec. 6.2].

Our next paragraph provides a direct adaptation. In particular, we provide instan-

tiations of all the underlying used primitives of the presented construction in [42, Sec.

6.2]. Hence, for NIKE we consider the DL-based chameleon hash scheme given in Sec.

2.2.2. Moreover, we use this instantiation to discuss our implementation issues. We

denote fo by xi[k] the k-th component of vector xi (similar notation is used for other

vectors).

Description of DSum. Let (G1,G2,GT , p, g1, g2, e) to be a bilinear environment where

G1,G2,GT are groups of order prime p and g1 ∈ G1 and g2 ∈ G2. Let q a prime number

and k an integer such that p = kq + 1 for some k. Let g of order q in Z
∗
p. Finally,

let H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → Z
∗
q be two hash functions. In addition, we

consider classical and known symmetric primitives such as AES algorithm and a hash-

based pseudo-random function (such as HMAC) that we denote by PRF-SHA256.

The instantiated DSum multi-client functional encryption consists of the following

(Setup, Enc, KeyGen, Dec).

• DSum.Setup(1λ). During the setup, one9 has to generate u0, u1, u2, S ∈ G1, gener-

ate ck ∈ Z
∗
q and compute hk = gck (mod p). The parameters param is then defined

as (u0, u1, u2, S, hk), together with the bilinear environment (G1,G2,GT , p, g1, g2, e)

and the two hash functions H1 and H2.

• DSum.KeyGen(i, param). The following steps for each user i, on input param are

executed:

– choose at random zi ∈ Z
∗
p and ri ∈ Z

∗
q ;

– compute Zi = gzi
2 and ti = gH2(Zi)hkri (mod p);

– compute Yi = u0uti
1 u

t2
i

2 and Xi = Y zi

i ;

9for example a Agg

157

5.5. Instantiation from bilinear maps

– choose at random vi ∈ Z
∗
p and compute Ti = gvi

2 .

The i-th public key is pki = (Xi, Zi, ri, Ti) and the corresponding private key is

ski = (zi, vi).

• DSum.Enc(ski, xi, I, ℓ). We encrypt a data xi defined as a vector of length L. The

encryption procedure is executed as follows:

– ∀j ∈ I, j 6= i, compute

∗ tj = gH2(Zj)hkrj ;

∗ Ki,j = e(Szi , Zj) iff e(Xj , g2) = e(u0u
tj

1 u
t2
j

2 , Zj);

∗ ri,j [k] = PRF-SHA256(Ki,j , I||ℓ‖k) for all k ∈ [0, L[;

– compute ci = xi +
∑

j<i ri,j −
∑

j>i ri,j (in the L-length vector space with ci

being then a vector of length L);

– choose wi ∈ Z
∗
p and compute Wi = gwi

2 ;

– compute Ki = e(H1(pki‖ℓ), (
∏

j Tj)wi), the ciphertext Ci = AES(Ki, ci);

– compute Si = H1(pki‖ℓ)
wi .

The ciphertext is finally cti = (Ci, Wi, Si, pki, ℓ).

• DSum.Dec(C := {cti}i∈I , param). It takes as input a set of ciphertexts C = {cti}i∈I
and works as follows:

– ∀i ∈ I, compute Ki = e(
∏

j Sj , Wi);

– ∀i ∈ I, compute ci = AES−1(Ki, Ci);

– compute the result R =
∑

i∈ I ci (which computes
∑

i∈ I xi).

As the initial encrypted message is given by a vector, this last step is performed

component-wise.

Intuitively, in the encryption algorithm, r serves as a user-dependent mask (for a set

of users I) and is derived using NIKE. The sum is obtained in a telescopic manner.

Moreover, the All-or-Nothing encapsulation step consists of bringing the elements Ki,

which are used as a symmetric keys (for AES), in order to encapsulate informations that

permits to recover the ciphertexts ci only when all the Wi’s and Si’s are all present.

158

5. Computing fault-tolerant private statistics for mobile usage

Practical implementation. This work has been implemented as a prototype in the

scope of the PAPAYA project 10. We present in the following some details about this

construction.

The studied use-case is to count the carbon emission of a smart phone when its owner

uses social networks apps. We would like to correlate such carbon emission w.r.t. the

age range and the residence area. One complex point we had to treat is the fact that

the group for the chameleon hash signature should be Z
∗
p of prime order q, and where

p should itself be the prime order of the groups G1, G2 and GT of the bilinear map

e. As this last step is the less flexible one (finding a pairing-friendly group is not as

easy [19,43]), we need first to fix p according to the used pairing environment, and then

test whether it is compatible with the chameleon hash. In fact, we are using BN-256

pairing-friendly elliptic curves, see [19] which provides 128-bits security. The resulted

scheme provides however 50-bits security (and not 128-bits as claimed in our published

paper [32]). This is mainly due to our choice of the chameleon hashing since we work

in Z
⋆
p which is a small subgroup and only provides 50-bits security. This is of course a

limitation.

A way to enhance our proposition is to consider another group of order p it is is

an interesting task to investigate a friendly chameleon hash that suits with this bilinear

environment. Moreover, a possible path is to increase all the parameters, with of course

an important impact over the global performance.

We refer to the published work [32] for a more detailed description about the im-

plementation (how data is parsed, cryptographic libraries usage, online/offline optimiza-

tion...etc) as well as the encouraging resulted benchmarks that ensure that such kind of

schemes are possible to imagine for real-world applications.

5.6 Conclusion

The main purpose of the WeStat architecture is to make an in-depth privacy-by-design

study of a real-life use case, namely mobile data usage statistics.

Motivated by the possible limitations for practical deployment, we have presented a

service platform called WeStat that could tolerate fault-tolerance aggregation of mobile

data users in a privacy-preserving manner. In this scenario, a special care will be given

to the information leakage delegated to an external entity.

Our work identifies the possible limitation of existing solutions and propose a general

formal cryptographic protocol that could provide useful statistics to third parties, in a

10https://www.papaya-project.eu/

159

https://www.papaya-project.eu/

5.6. Conclusion

multi-device environment with users failure.

We propose a security model with the aim of capturing the possible areas of attacks.

Our choice makes a focus on the sum function and shows how it is possible to exploit

and modify some advanced cryptographic mechanisms, such as variants of FE that have

recently been published, in order to control the leakage of delegated information as well

as to dictate the nature of authorized statistics.

160

CHAPTER 6

CONCLUSION AND OPEN PROBLEMS

In the umbrella of our discussed use cases, functional encryption arises in this thesis

as a base primitive for solving different problems in security that have in common one

objective: the control of information leakage to a designed external entity. We have

combined several techniques from the cryptographic literature and have seen how brining

functional encryption benefits to solve multiple practical scenarios.

In chapter 3, we have considered a new notion of function’s protection for an inter-

active FE, where it is possible to obtain a functional key for a function without revealing

the exact specification of it. Concretely, we have defined a general framework that con-

siders FE in an interactive setting. For this, we have introduced IFE, with an adapted

extension of the classical security properties of FE. Moreover, we have defined the new

security notion of blindness and our study has shown the possible interplay between all

these considerations. The formal model being on track, we have been able to provide a

generic secure construction of IFE from any FE by relying on a two-move private func-

tion evaluation and zero-knowledge proofs of knowledge. Finally, we have proposed an

efficient blind interactive IPFE. For this, we have exploited the power of a linearly ho-

momorphic encryption, using the Castagnos− Laguillaumie homomorphic scheme, with

some adapted zero-knowledge proofs.

For the chapter 4, we have highlighted the links between differential privacy and

functional encryption. In particular, we have suggested with our work a new view and

construction for a differential private mechanism based on FE. This leads us to consider

a randomized version of IPFE that we introduced in this thesis. As usual with a new

primitive, we have exhibited the desired security model with a focus on the special case

161

6. Conclusion and open problems

of linear queries. Using ideas from multi-input IPFE, we have designed in a non-black

box way a mechanism that permits to release an encrypted dataset, so that it becomes

possible to recover a DP-compatible statistics over it. Our work has shown that it is

possible to provide both confidentiality and differential privacy.

Finally, in the last chapter 5, we have tackled the problem of privacy-preserving

aggregation of mobile data usage, in a fault-tolerant manner. Motivated by the practical

objectives of the PAPAYA project, we have proposed an architecture, called WeStat, that

permits to describe a general protocol for computing specific analytics. Concretely, our

security model has permitted to guarantee that the only allowed leakage in the WeStat

architecture is the sum of all participating user inputs during one specific study. The

proposed secure solution is obtained by a modification of a variant of FE, in the multi-

user setting for the sum function, in combination with known adapted fault-tolerance

techniques.

Perspectives

Finding a balance between security and the growing need for functionality is a constant

challenge for modern cryptography. To address positively more complex demands, tools

such as homomorphic encryption and multiparty computation already exist, and will

surely play a determining role in the further evolution of the digital world.

As a part of these tools, functional encryption is a versatile primitive for delegating

computation. This thesis seeks to highlight the diversity in its usage by presenting

several scenarios where it brings new solutions. Of course, there remain many open

questions and directions that could be explored.

Blind IFE. On the theoretical side, the result of [75] shows that blind IBE implies

efficient oblivious transfer. Does any similar result or implications exist for blind IFE? A

future improvement is to consider our security properties on a more general setting such

as the Universally Composable (UC) framework [35]. While adapting blind signature

definitions is a challenging task in UC model [4], our blind IFE naturally inherits these

difficulties. We leave as an interesting path to explore a satisfying UC definition that

meets our requirements.

Another natural extension is to consider the multi-input or the multi-client settings.

The main challenge then is to handle several entities that derive a functional key. Since

our proposed constructions are a special two-party protocols, there is no doubt that

generic techniques from the multi-party computation literature could be adapted for

162

6. Conclusion and open problems

these generalizations.

Finally, as we did for the inner product IFE, is it possible to consider other specific

functionalities? There exists construction of quadratic FE [16]. Hence, designing a blind

protocol that computes quadratic functions is an intriguing open question.

Randomized FE and DP. Regarding security of our RIPFE, a first improvement con-

sists in providing a full proof for our generic construction from any IPFE. For the model,

studying the situation where an adversary could request multiple challenge ciphertexts

in an adaptive manner, should provide stronger guarantees.

Multi-input or multi-client RIPFEs (or more generally RFE) is a possible generaliza-

tion which is interesting on its own. Returning to DP, Local differential privacy [48]

is an important variant that provides DP mechanisms in a multi-user setting. Conse-

quently, providing a clear relationship between a DP-compliant multi-user RFE and local

differential privacy is an exciting future work.

Similarly to our previous work, we can also mention that having a DP compatible

RFE for quadratic functions is an interesting problem. For applications, the DP literature

is in fact diverse in terms of DP functionalities and of course, an obvious perspective is

to find a particular RFE that is suitable for specific DP randomized functions. In fact,

we believe that building general DP-compliant RFE for these described situations would

probably and remarkably require new techniques.

Improving WeStat. Further refinement for the WeStat design might improve its

security, its efficiency, or it supported functionality. Considering collusion between an

aggregator and requestor is one of the main challenges. Finding more suitable DSum

schemes could moreover leverage the efficiency of the global scheme. Furthermore, as in

the previous contributions, handling more functionalities fits in our planned work.

Another development consists of adding differential privacy into the WeStat architec-

ture. In fact, a possible start could be to consider a multi-user DP-compliant randomized

DSum as in Chapter 4. This merits to be inspected.

163

BIBLIOGRAPHY

[1] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional en-

cryption schemes for inner products. In J. Katz, editor, PKC 2015, volume 9020

of LNCS, pages 733–751. Springer, Heidelberg, Mar. / Apr. 2015.

[2] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional

encryption for inner products: Function-hiding realizations and constructions with-

out pairings. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I,

volume 10991 of LNCS, pages 597–627. Springer, Heidelberg, Aug. 2018.

[3] M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product func-

tional encryption from pairings. In J. Coron and J. B. Nielsen, editors, EURO-

CRYPT 2017, Part I, volume 10210 of LNCS, pages 601–626. Springer, Heidelberg,

Apr. / May 2017.

[4] M. Abe and M. Ohkubo. A framework for universally composable non-committing

blind signatures. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,

pages 435–450. Springer, Heidelberg, Dec. 2009.

[5] A. Agarwal, M. Herlihy, S. Kamara, and T. Moataz. Encrypted databases for

differential privacy. PoPETs, 2019(3):170–190, July 2019.

[6] S. Agrawal. New methods for indistinguishability obfuscation: Bootstrapping

and instantiation. Cryptology ePrint Archive, Report 2018/633, 2018. https:

//eprint.iacr.org/2018/633.

[7] S. Agrawal. Indistinguishability obfuscation without multilinear maps: New meth-

ods for bootstrapping and instantiation. In Y. Ishai and V. Rijmen, editors, EURO-

165

https://eprint.iacr.org/2018/633
https://eprint.iacr.org/2018/633

Bibliography

CRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer, Heidelberg,

May 2019.

[8] S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prab-

hakaran, and A. Sahai. On the practical security of inner product functional

encryption. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 777–798.

Springer, Heidelberg, Mar. / Apr. 2015.

[9] S. Agrawal, M. Clear, O. Frieder, S. Garg, A. O’Neill, and J. Thaler. Ad hoc

multi-input functional encryption. Cryptology ePrint Archive, Report 2019/356,

2019. https://eprint.iacr.org/2019/356.

[10] S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for

inner product functional encryption. In PKC 2020, Part I, LNCS, pages 34–64.

Springer, Heidelberg, 2020.

[11] S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for in-

ner products, from standard assumptions. In M. Robshaw and J. Katz, editors,

CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer, Heidel-

berg, Aug. 2016.

[12] S. Agrawal and A. Pellet-Mary. Indistinguishability obfuscation without maps:

Attacks and fixes for noisy linear FE. In V. Rijmen and Y. Ishai, editors, EURO-

CRYPT 2020, Part I, LNCS, pages 110–140. Springer, Heidelberg, May 2020.

[13] S. Agrawal and D. J. Wu. Functional encryption: Deterministic to randomized

functions from simple assumptions. In J. Coron and J. B. Nielsen, editors, EURO-

CRYPT 2017, Part II, volume 10211 of LNCS, pages 30–61. Springer, Heidelberg,

Apr. / May 2017.

[14] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, USA, 1st edition, 2009.

[15] M. Azraoui, S. Brunet, S. Canard, A. Diop, L. Eveillard, A. Filipiak, A. Hamdi,

F. Misarsky, D. N. Kuate, M. Paindavoine, Q. Santos, and B. Vialla. Cybercrypt:

Learn basic cryptographic concepts while playing. Cryptology ePrint Archive,

Report 2021/063, 2021. https://eprint.iacr.org/2021/063.

[16] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption

for quadratic functions with applications to predicate encryption. In J. Katz and

166

https://eprint.iacr.org/2019/356
https://eprint.iacr.org/2021/063

Bibliography

H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98.

Springer, Heidelberg, Aug. 2017.

[17] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,

CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, Aug.

2001.

[18] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message

security. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages

423–444. Springer, Heidelberg, May / June 2010.

[19] R. Barbulescu and S. Duquesne. Updating key size estimations for pairings. Jour-

nal of Cryptology, 32(4):1298–1336, Oct. 2019.

[20] A. Beimel, K. Nissim, and E. Omri. Distributed private data analysis: Simultane-

ously solving how and what. In D. Wagner, editor, CRYPTO 2008, volume 5157

of LNCS, pages 451–468. Springer, Heidelberg, Aug. 2008.

[21] J. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. Secure single-

server aggregation with (poly)logarithmic overhead. Cryptology ePrint Archive,

Report 2020/704, 2020. https://eprint.iacr.org/2020/704.

[22] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment

of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer Society

Press, Oct. 1997.

[23] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In

J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer,

Heidelberg, Aug. 2001.

[24] D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based en-

cryption: Hiding the function in functional encryption. In R. Canetti and J. A.

Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 461–478.

Springer, Heidelberg, Aug. 2013.

[25] D. Boneh, A. Raghunathan, and G. Segev. Function-private subspace-membership

encryption and its applications. In K. Sako and P. Sarkar, editors, ASI-

ACRYPT 2013, Part I, volume 8269 of LNCS, pages 255–275. Springer, Heidel-

berg, Dec. 2013.

167

https://eprint.iacr.org/2020/704

Bibliography

[26] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-

lenges. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.

Springer, Heidelberg, Mar. 2011.

[27] F. Boudot. Efficient proofs that a committed number lies in an interval. In

B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444.

Springer, Heidelberg, May 2000.

[28] Z. Brakerski and G. Segev. Function-private functional encryption in the private-

key setting. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume

9015 of LNCS, pages 306–324. Springer, Heidelberg, Mar. 2015.

[29] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from

(standard) LWE. In R. Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Com-

puter Society Press, Oct. 2011.

[30] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and anonymous

identity-based encryption and authorised private searches on public key encrypted

data. In S. Jarecki and G. Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages

196–214. Springer, Heidelberg, Mar. 2009.

[31] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the

product of two safe primes. In J. Stern, editor, EUROCRYPT’99, volume 1592 of

LNCS, pages 107–122. Springer, Heidelberg, May 1999.

[32] S. Canard, N. Desmoulins, S. Hallay, A. Hamdi, and D. Le Hello. WeStat: A

Privacy-Preserving Mobile Data Usage Statistics System, page 5–14. Association

for Computing Machinery, New York, NY, USA, 2021.

[33] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt. BlindIDS: Market-

compliant and privacy-friendly intrusion detection system over encrypted traffic.

In R. Karri, O. Sinanoglu, A.-R. Sadeghi, and X. Yi, editors, ASIACCS 17, pages

561–574. ACM Press, Apr. 2017.

[34] S. Canard, A. Hamdi, and F. Laguillaumie. Blind functional encryption. In ICICS

20, LNCS, pages 183–201. Springer, Heidelberg, 2020.

[35] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. Cryptology ePrint Archive, Report 2000/067, 2000. https://eprint.

iacr.org/2000/067.

168

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067

Bibliography

[36] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party

ecdsa from hash proof systems and efficient instantiations. To appear in Proc. of

CRYPTO 2019.

[37] G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from DDH.

In K. Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 487–505.

Springer, Heidelberg, Apr. 2015.

[38] G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted

inner product functional encryption modulo p. In T. Peyrin and S. Galbraith, edi-

tors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 733–764. Springer,

Heidelberg, Dec. 2018.

[39] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with

fault tolerance. In A. D. Keromytis, editor, FC 2012, volume 7397 of LNCS, pages

200–214. Springer, Heidelberg, Feb. / Mar. 2012.

[40] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic

encryption: Bootstrapping in less than 0.1 seconds. In J. H. Cheon and T. Takagi,

editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 3–33. Springer,

Heidelberg, Dec. 2016.

[41] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decen-

tralized multi-client functional encryption for inner product. In T. Peyrin and

S. Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages

703–732. Springer, Heidelberg, Dec. 2018.

[42] J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval. Dynamic

decentralized functional encryption. In H. Shacham and A. Boldyreva, editors,

CRYPTO 2020, Part I, LNCS, pages 747–775. Springer, Heidelberg, Aug. 2020.

[43] R. Clarisse, S. Duquesne, and O. Sanders. Curves with fast computations in the

first pairing group. Cryptology ePrint Archive, Report 2020/760, 2020. https:

//eprint.iacr.org/2020/760.

[44] E. Cuvelier, O. Pereira, and T. Peters. Election verifiability or ballot privacy:

Do we need to choose? In J. Crampton, S. Jajodia, and K. Mayes, editors,

ESORICS 2013, volume 8134 of LNCS, pages 481–498. Springer, Heidelberg, Sept.

2013.

169

https://eprint.iacr.org/2020/760
https://eprint.iacr.org/2020/760

Bibliography

[45] I. Damgård and M. Jurik. A generalisation, a simplification and some applications

of Paillier’s probabilistic public-key system. In K. Kim, editor, PKC 2001, volume

1992 of LNCS, pages 119–136. Springer, Heidelberg, Feb. 2001.

[46] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function

securely. In 26th ACM STOC, pages 522–533. ACM Press, May 1994.

[47] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22(6):644–654, 1976.

[48] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical

minimax rates. In 54th FOCS, pages 429–438. IEEE Computer Society Press, Oct.

2013.

[49] C. Dwork. Differential privacy (invited paper). In M. Bugliesi, B. Preneel, V. Sas-

sone, and I. Wegener, editors, ICALP 2006, Part II, volume 4052 of LNCS, pages

1–12. Springer, Heidelberg, July 2006.

[50] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity

in private data analysis. In S. Halevi and T. Rabin, editors, TCC 2006, volume

3876 of LNCS, pages 265–284. Springer, Heidelberg, Mar. 2006.

[51] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found.

Trends Theor. Comput. Sci., 9(3–4):211–407, Aug. 2014.

[52] C. Dwork, A. Smith, T. Steinke, and J. Ullman. Exposed! a survey of attacks on

private data. Annual Review of Statistics and Its Application, 4(1):61–84, 2017.

[53] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, volume 196 of

LNCS, pages 10–18. Springer, Heidelberg, Aug. 1984.

[54] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[55] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic frame-

work for Diffie-Hellman assumptions. In R. Canetti and J. A. Garay, editors,

CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidel-

berg, Aug. 2013.

170

Bibliography

[56] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.

Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/

2012/144.

[57] E. S. V. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson. Non-interactive key

exchange. In K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of

LNCS, pages 254–271. Springer, Heidelberg, Feb. / Mar. 2013.

[58] H. F. Gaines. Cryptanalysis a Study of Ciphers and Their Solutions. Dover Pub-

lications, Inc., USA, 1989.

[59] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.

Discrete Applied Mathematics, 156(16):3113–3121, 2008. Applications of Algebra

to Cryptography.

[60] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits. In 54th

FOCS, pages 40–49. IEEE Computer Society Press, Oct. 2013.

[61] S. Garg, V. Rao, A. Sahai, D. Schröder, and D. Unruh. Round optimal blind

signatures. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages

630–648. Springer, Heidelberg, Aug. 2011.

[62] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzen-

macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[63] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing

privacy mechanisms. In M. Mitzenmacher, editor, 41st ACM STOC, pages 351–

360. ACM Press, May / June 2009.

[64] M. Girault, G. Poupard, and J. Stern. On the fly authentication and signature

schemes based on groups of unknown order. Journal of Cryptology, 19(4):463–487,

Oct. 2006.

[65] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar product

computation for privacy-preserving data mining. In ICISC 2004, volume 3506 of

Lecture Notes in Computer Science, pages 104–120. Springer, 2004.

[66] O. Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge

University Press, Cambridge, UK, 2001.

171

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

Bibliography

[67] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-

bridge University Press, Cambridge, UK, 2004.

[68] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai,

E. Shi, and H.-S. Zhou. Multi-input functional encryption. In P. Q. Nguyen and

E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602.

Springer, Heidelberg, May 2014.

[69] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and

System Sciences, 28(2):270–299, 1984.

[70] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with

bounded collusions via multi-party computation. In R. Safavi-Naini and

R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179.

Springer, Heidelberg, Aug. 2012.

[71] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits

from LWE. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II,

volume 9216 of LNCS, pages 503–523. Springer, Heidelberg, Aug. 2015.

[72] V. Goyal. Reducing trust in the PKG in identity based cryptosystems. In

A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 430–447.

Springer, Heidelberg, Aug. 2007.

[73] V. Goyal, A. Jain, V. Koppula, and A. Sahai. Functional encryption for randomized

functionalities. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume

9015 of LNCS, pages 325–351. Springer, Heidelberg, Mar. 2015.

[74] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for

fine-grained access control of encrypted data. In A. Juels, R. N. Wright, and

S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press,

Oct. / Nov. 2006. Available as Cryptology ePrint Archive Report 2006/309.

[75] M. Green and S. Hohenberger. Blind identity-based encryption and simulatable

oblivious transfer. In K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of

LNCS, pages 265–282. Springer, Heidelberg, Dec. 2007.

[76] A. Groce, J. Katz, and A. Yerukhimovich. Limits of computational differential

privacy in the client/server setting. In Y. Ishai, editor, TCC 2011, volume 6597 of

LNCS, pages 417–431. Springer, Heidelberg, Mar. 2011.

172

Bibliography

[77] J. Han, W. Susilo, Y. Mu, J. Zhou, and M. H. Au. PPDCP-ABE: Privacy-

preserving decentralized ciphertext-policy attribute-based encryption. In M. Kuty-

lowski and J. Vaidya, editors, ESORICS 2014, Part II, volume 8713 of LNCS, pages

73–90. Springer, Heidelberg, Sept. 2014.

[78] R. V. L. Hartley. Transmission of information. The Bell System Technical Journal,

7(3):535–563, 1928.

[79] S. Inusah and T. J. Kozubowski. A discrete analogue of the laplace distribution.

Journal of Statistical Planning and Inference, 136(3):1090 – 1102, 2006.

[80] V. Iovino and K. Zebrowski. On the power of public-key functional encryption

with function privacy. Cryptology ePrint Archive, Report 2015/470, 2015. https:

//eprint.iacr.org/2015/470.

[81] A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures (extended

abstract). In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages

150–164. Springer, Heidelberg, Aug. 1997.

[82] J. Katz and L. Malka. Constant-round private function evaluation with linear

complexity. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073

of LNCS, pages 556–571. Springer, Heidelberg, Dec. 2011.

[83] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunc-

tions, polynomial equations, and inner products. In N. P. Smart, editor, EURO-

CRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, Heidelberg, Apr.

2008.

[84] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu. Function-

hiding inner product encryption is practical. In D. Catalano and R. De Prisco,

editors, SCN 18, volume 11035 of LNCS, pages 544–562. Springer, Heidelberg,

Sept. 2018.

[85] I. Komargodski, G. Segev, and E. Yogev. Functional encryption for randomized

functionalities in the private-key setting from minimal assumptions. In Y. Dodis

and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 352–

377. Springer, Heidelberg, Mar. 2015.

[86] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS 2000. The Internet

Society, Feb. 2000.

173

https://eprint.iacr.org/2015/470
https://eprint.iacr.org/2015/470

Bibliography

[87] A. K. Lenstra. Key length. contribution to the handbook of information security,

2004.

[88] I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan. Computational differential

privacy. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 126–142.

Springer, Heidelberg, Aug. 2009.

[89] P. Mohassel and S. S. Sadeghian. How to hide circuits in MPC an efficient frame-

work for private function evaluation. In T. Johansson and P. Q. Nguyen, editors,

EUROCRYPT 2013, volume 7881 of LNCS, pages 557–574. Springer, Heidelberg,

May 2013.

[90] P. Mohassel, S. S. Sadeghian, and N. P. Smart. Actively secure private function

evaluation. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume

8874 of LNCS, pages 486–505. Springer, Heidelberg, Dec. 2014.

[91] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

[92] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In S. R. Kosaraju,

editor, 12th SODA, pages 448–457. ACM-SIAM, Jan. 2001.

[93] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux, and

C. A. Gunter. Controlled functional encryption. In G.-J. Ahn, M. Yung, and N. Li,

editors, ACM CCS 2014, pages 1280–1291. ACM Press, Nov. 2014.

[94] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in

private data analysis. In D. S. Johnson and U. Feige, editors, 39th ACM STOC,

pages 75–84. ACM Press, June 2007.

[95] H. Nyquist. Certain factors affecting telegraph speed. Transactions of the Ameri-

can Institute of Electrical Engineers, XLIII:412–422, 1924.

[96] A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,

Report 2010/556, 2010. https://eprint.iacr.org/2010/556.

[97] R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. Maliciously

circuit-private FHE. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,

Part I, volume 8616 of LNCS, pages 536–553. Springer, Heidelberg, Aug. 2014.

174

https://eprint.iacr.org/2010/556

Bibliography

[98] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.

Springer, Heidelberg, May 1999.

[99] T. B. Pedersen and E. Savas. Impossibility of unconditionally secure scalar prod-

ucts. Data Knowl. Eng., 68(10):1059–1070, 2009.

[100] M. O. Rabin. Digital signatures and public key functions as intractable as factoriza-

tion. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology,

Jan. 1979.

[101] A. Rial. Blind attribute-based encryption and oblivious transfer with fine-grained

access control. Des. Codes Cryptography, 81(2):179–223, Nov. 2016.

[102] R. L. Rivest and M. Dertouzos. On data banks and privacy homomorphisms. 1978.

[103] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the Association for

Computing Machinery, 21(2):120–126, 1978.

[104] K. Schmeh and E. Antal, editors. Proceedings of the 2nd International Conference

on Historical Cryptology, HistoCrypt 2019, Mons, Belgium, June 23-26, 2019,

volume 158 of Linköping Electronic Conference Proceedings. Linköping University

Electronic Press, 2019.

[105] T. Schneider. Practical secure function evaluation. In Fachwissenschaftlicher

Informatik-Kongress (Informatiktage 2008), volume S-6 of LNI, pages 37–40, Bonn,

Germany, March 14, 2008. GI.

[106] C.-P. Schnorr. Efficient identification and signatures for smart cards (abstract)

(rump session). In J.-J. Quisquater and J. Vandewalle, editors, EUROCRYPT’89,

volume 434 of LNCS, pages 688–689. Springer, Heidelberg, Apr. 1990.

[107] A. Shamir. How to share a secret. Communications of the Association for Com-

puting Machinery, 22(11):612–613, Nov. 1979.

[108] C. E. Shannon. Communication theory of secrecy systems. Bell Systems Technical

Journal, 28(4):656–715, 1949.

[109] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving

aggregation of time-series data. In NDSS 2011. The Internet Society, Feb. 2011.

175

Bibliography

[110] V. Shoup. Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint Archive, Report 2004/332, 2004. https://eprint.iacr.org/

2004/332.

[111] J. Tomida and K. Takashima. Unbounded inner product functional encryption

from bilinear maps. In T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018,

Part II, volume 11273 of LNCS, pages 609–639. Springer, Heidelberg, Dec. 2018.

[112] I. Tucker. Functional encryption and distributed signaturesbased on projective hash

functions,the benefit of class groups. PhD thesis, 2020.

[113] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic

encryption over the integers. In H. Gilbert, editor, EUROCRYPT 2010, volume

6110 of LNCS, pages 24–43. Springer, Heidelberg, May / June 2010.

[114] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd

FOCS, pages 160–164. IEEE Computer Society Press, Nov. 1982.

[115] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th

FOCS, pages 162–167. IEEE Computer Society Press, Oct. 1986.

176

https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332

	Remerciements
	Résumé
	Abstract
	Contents
	Résumé long en français
	Introduction
	General context
	Our contributions
	A General Framework for Function's Protection
	Obtaining Differential-Privacy via FE
	Privacy-Preserving Mobile Data Usage
	Other contribution

	Organization of this thesis

	Preliminaries
	Mathematical background
	Cryptographic building blocks
	Security foundations
	Cryptographic building blocks

	Functional Encryption
	Security Definitions for Functional Encryption
	DSum Multi-client Functional Encryption

	Function's protection in Functional Encryption
	Definitions and Security Model
	Syntactic Definitions for Interactive FE
	A Trivial Example or FE is IFE
	High-Level View of Security Properties
	Message-Privacy for Interactive FE
	Obtaining MP secure IFE from MP secure FE: leak-freeness
	Function-Privacy for Interactive FE
	Blindness for Interactive FE

	On the Relationship between Blindness and Function Privacy
	IFE from non-interactive FE
	Definition of PFE
	The scheme
	Using FHE: a special case
	Efficient Blind Interactive Inner-Product FE

	Conclusion

	User's protection via Differential-Private Mechanisms
	Differential Privacy
	Preliminaries
	DP-compliant noise distributions

	Randomized FE for DP Functionalities
	DP Randomized FE for Linear Queries
	Correctness for RIPFE
	Simulation-Security for RIPFE

	Construction
	High-Level Overview
	Construction from DDH
	Correctness of the scheme
	Simulation-Security of our Scheme
	Towards a construction from any IPFE.

	Conclusion

	Computing fault-tolerant private statistics for mobile usage
	Our case study
	General definition of WeStat
	Security definitions
	Requestor security
	Aggregator security

	Our proposed solution for WeStat
	The proposed system
	Security proof

	Instantiation from bilinear maps
	Conclusion

	Conclusion and open problems
	Bibliography

