
HAL Id: tel-03500391
https://theses.hal.science/tel-03500391

Submitted on 22 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods for optimizing customer prospecting in
automated display advertising with Real-Time Bidding

Yang Qiu

To cite this version:
Yang Qiu. Methods for optimizing customer prospecting in automated display advertising with Real-
Time Bidding. Machine Learning [cs.LG]. Institut Polytechnique de Paris, 2021. English. �NNT :
2021IPPAX075�. �tel-03500391�

https://theses.hal.science/tel-03500391
https://hal.archives-ouvertes.fr

626 :

N
N

T
:2

02
1I

P
PA

X
07

5

Methods for optimizing customer
prospecting in automated display

advertising with Real-Time Bidding
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à l’École Polytechnique

École doctorale n◦626 : l’École Doctorale de l’Institut Polytechnique de Paris
(ED IP Paris)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 13/10/2021, par

YANG QIU

Composition du Jury :

Jean-Marc STEYAERT
Professor, École Polytechnique (LIX) Président

Nikos PARAGIOS
Professor, Paris-Saclay University (CentraleSupélec, Department of
Mathematics) Rapporteur

Dimitrios GUNOPULOS
Professor, National and Kapodistrian University of Athens
(Department of Informatics and Telecommunications) Rapporteur

Oana BALALAU
Researcher (ISFP), Inria (Inria Saclay) Examinatrice

Themis PALPANAS
Professor, University of Paris (LIPADE) Examinateur

Ioannis TSAMARDINOS
Professor, University of Crete (Department of Computer Science) Examinateur

Michalis VAZIRGIANNIS
Professor, École Polytechnique (LIX) Directeur de thèse

Nikolaos TZIORTZIOTIS
Senior Data Scientist, Jellyfish (R&D Department) Co-encadrant de thèse

Martial HUE
Senior R&D Manager, Jellyfish (R&D Department) Invité

Yang Qiu: Methods for optimizing customer prospecting in automated
display advertising with Real-Time Bidding © Oct 2021

A B S T R A C T

Online display advertising has become more and more popular
in recent years thanks to the automation of the ad buying process.
Specifically, Real-Time Bidding (RTB) allows the automated trading of
ad impressions between advertisers and publishers through real-time
auctions, at per-user level. The primary goal of RTB campaigns is to
help advertisers target the right person, in the right context, with the
right ad, and at the right time. Therefore, the accurate identification of
the ‘value’ of a user for the advertiser is of high importance. Under this
context, we examine two challenging display advertising problems:
the conversion prediction and the audience expansion. In both tasks,
we consider only the browsing history of the user as features, collected
from real logged data.

In the first part of this dissertation, we examine the conversion
prediction problem, where our objective is to predict whether a user
will convert (visit website, buy product, etc.) or not to a given ad-
vertiser. Inspired by natural language processing, we introduce three
self-supervised URL embedding models in order to compute seman-
tically meaningful URL representations. Then, we have examined
three different mapping functions to represent users that take as in-
put the already learned URL representations. The first one returns
the average of the URLs embedding vectors presented on the user’s
browsing history. The second one considers also the dependencies
among the features of the embedding vector returned by the average
mapping function. The third one uses the well-known Long Short
Term Memory network (LSTM) that is suitable to process variable-
length sequences. The main advantage of the third proposed user
representation function is consideration of the chronological order in
which the URLs appeared in the sequence. Finally, having computed
users’ representations, we are using the standard logistic regression
model to predict conversion probabilities. To demonstrate the effec-
tiveness of the different proposed conversion prediction models, we
have conducted experiments on real logged events collected from an
advertising platform. Experiments show that our proposed URL em-
bedding models are able to produce meaningful URL representations
by grouping together URLs of the same category. Apart from that, our
empirical analysis indicates that the user browsing history provides
useful information for predicting users’ visit on the advertiser’s web-
site, while the consideration of the chronological order of the visited
URLs significantly improves the model’s performance.

In the second part, we investigate the audience expansion problem.
Audience expansion, also known as audience look-alike targeting, is

iii

one of the major display advertising techniques that helps advertisers
to discover audiences with similar attributes to a target audience
(seed users) interested in advertisers’ products or services. In this
direction, we propose different (similarity-based) audience expansion
schemes able to identify users with similar browsing interests to those
of the seed users provided by the advertiser. The proposed schemes
are mainly based on different self-supervised representation models
that are able to capture the interests of the users according to their
browsing history. After, based on the computed meaningful user
representations, we compute the affinity score between users by using
any standard similarity metric. In the end, we rank the users based
on their affinity scores to their closest user in the seed set and we
select the top-ranked users as the target audience. Our experiments
show that the schemes that are based on the learning of compact
user representation outperform the schemes that represent users just
as a set of URLs and use standard or weighted Jaccard similarity
metrics. Last but not least, our analysis points out that the seed users
filtering (we only consider the users where their sequences of URLs
are not dominated by a single URL) plays a significant role on the
performance of the similarity-based audience expansion schemes as it
alleviates the effect of the websites’ automatic refreshments.

iv

R É S U M É

L’affichage publicitaire en ligne est devenu de plus en plus populaire
ces dernières années grâce à l’automatisation du processus d’achat
des inventaires. Spécifiquement, les enchères en temps réel (Real-
time bidding en anglais, ou RTB) permettent l’échange automatisé
d’impressions publicitaires entre les annonceurs et les éditeurs via des
enchères en temps réel, au niveau de l’utilisateur. L’objectif principal
des campagnes RTB est d’aider les annonceurs à cibler la bonne
personne, dans le bon contexte, avec la bonne publicité et au bon
moment. Par conséquent, l’identification précise de la ‘valeur’ d’un
utilisateur pour l’annonceur est très importante. Dans ce contexte,
nous examinons deux problèmes complexes de l’affichage publicitaire:
la prédiction de conversion et l’extension d’audience. Dans les deux
tâches, nous considérons uniquement l’historique de navigation de
l’utilisateur comme caractéristiques, collectées à partir de données
réelles.

Dans la première partie de cette thèse, nous examinons le prob-
lème de la prédiction de conversion, où notre objectif est de prédire
si un utilisateur se convertira (c’est-à-dire, s’il visitera le site web
de l’annonceur, s’il achètera son produit, etc.) ou non vers un an-
nonceur donné. Inspirés par le traitement du langage naturel, nous
introduisons trois modèles auto-supervisés de plongement d’URL
afin de produire des représentations d’URL sémantiquement signi-
ficatives. Ensuite, nous avons examiné trois différentes fonctions de
projection pour représenter les utilisateurs qui prennent en entrée les
représentations d’URL déjà apprises. La première renvoie la moyenne
des vecteurs de plongement d’URL présentés dans l’historique de
navigation de l’utilisateur. La seconde considère également les dépen-
dances entre les caractéristiques du vecteur de plongement renvoyé
par la fonction de projection moyenne. La troisième utilise le réseau
de neurones récurrents à mémoire court et long terme (LSTM) bien
connu qui est adapté au traitement des séquences de longueur variable.
L’avantage principal de cette fonction est d’apprendre la représenta-
tion de l’utilisateur avec une prise en compte de l’ordre chronologique
des URLs dans la séquence. Enfin, après avoir calculé les représenta-
tions des utilisateurs, nous utilisons le modèle de régression logistique
pour prédire les probabilités de conversion. Pour démontrer l’efficacité
des différents modèles de prédiction de conversion proposés, nous
avons mené des expérimentations sur des événements réels collectés
à partir d’une plateforme publicitaire. Les expériences montrent que
nos modèles de plongement des URLs proposés sont capables de
produire des représentations d’URL significatives en regroupant les

v

URLs de la même catégorie. Par ailleurs, notre analyse empirique
indique que l’historique de navigation de l’utilisateur fournit des infor-
mations utiles pour prédire la visite des utilisateurs sur le site web de
l’annonceur, et aussi que la prise en compte de l’ordre chronologique
des URLs visitées améliore considérablement la performance du mod-
èle.

Dans la deuxième partie, nous étudions le problème de l’extension
d’audience. L’extension d’audience, également connu sous le nom de
ciblage ‘look-alike’, est l’une des principales techniques de l’affichage
publicitaire qui aide les annonceurs à découvrir des audiences présen-
tant des attributs similaires à un public cible (seed users) intéressé
par les produits ou services des annonceurs. Dans cette direction,
nous proposons différents schémas de l’extension d’audience basés
sur la similarité (similarity-based), qui sont capables d’identifier les
utilisateurs ayant des intérêts de navigation similaires à ceux des util-
isateurs de référence fournis par l’annonceur. Les schémas proposés
sont principalement basés sur différents modèles de représentation
auto-supervisés qui sont capables de capter les intérêts des utilisateurs
selon leur historique de navigation. Ensuite, basé sur des représen-
tations d’utilisateur significatives calculées, nous calculons le score
d’affinité entre les utilisateurs en utilisant n’importe quelle métrique
de similarité standard. Au final, nous classons les utilisateurs en
fonction de leurs scores d’affinité avec l’utilisateur le plus proche dans
l’ensemble des utilisateurs de référence et sélectionnons les utilisateurs
les mieux classés comme public cible. Nos expériences montrent que
les schémas basés sur l’apprentissage de la représentation compacte
des utilisateurs surpassent les schémas qui représentent les utilisateurs
simplement comme un ensemble d’URLs et utilisent des métriques de
la similarité de Jaccard, standard ou pondérée. Enfin, notre analyse
souligne que le filtrage des utilisateurs de référence (nous ignorons
les utilisateurs dont les séquences d’URLs sont dominées par une
seule URL) joue un rôle important sur les performances des méthodes
d’extension d’audience basés sur la similarité, car il atténue l’effet des
rafraîchissements automatiques des sites Web.

vi

P U B L I C AT I O N S

The following publications are included in parts or in an extended
version in this thesis:

Qiu, Yang, Nikolaos Tziortziotis, Martial Hue, and Michalis Vazirgian-
nis (2020). « Predicting conversions in display advertising based on
URL embeddings. » In: AdKDD’20.

Tziortziotis, Nikolaos, Yang Qiu, Martial Hue, and Michalis Vazirgian-
nis (2021). « Audience expansion based on user browsing history. »
In: International Joint Conference on Neural Networks (IJCNN) 2021.

vii

A C K N O W L E D G M E N T S

First of all, I wish to express my sincere appreciation to my su-
pervisor Prof. Michalis Vazirgiannis at École Polytechnique and Mr.
Vincent Mady at Jellyfish France, without whom this dissertation
would not have been possible. I’m so grateful that they provided me
with this precious opportunity to tackle real-world problems using
cutting-edge machine learning models, which allowed me to gain
valuable experience on both the academic and industrial sides. Prof.
Vazirgiannis is a fantastic advisor. Throughout my Ph.D. studies, he
has consistently led, encouraged, and supported me, both academ-
ically and personally. During the toughest period of my Ph.D., he
continued to believe in me and gave me the freedom to find my way
to get out of the situation. I really appreciate it. I also thank Mr. Mady
for having faith in me and having taken great effort to initialize and
establish this Ph.D. project. In addition, I gratefully acknowledge
Jellyfish France who funded my work.

Secondly, I would like to thank my supervisors in the company,
also my close collaborators: Dr. Martial Hue and Dr. Nikolaos
Tziortziotis, for keeping a close eye on the progress of my Ph.D. and
their tireless support in the preparation of my presentations, papers,
and dissertation. Due to the company’s personnel changes, Martial
took me under his responsibility in the middle of the project. He
swiftly deciphered the clues and pointed me in a workable direction.
I learned a lot from his clear mind and problem-solving skills. Nikos
joined us later and gave me tremendous help. I’m always impressed
by and indebted to his expertise, efficiency, and rigorous attitude. I
can hardly express how fortunate I have been to have had him by my
side, working out all the puzzles and issues together.

Furthermore, I want to express my great gratitude to the distin-
guished researchers: Prof. Nikos Paragios, Prof. Dimitrios Gunopu-
los, Assistant Prof. Oana Balalau, Prof. Themis Palpanas, Prof. Ioan-
nis Tsamardinos, Prof. Jean-Marc Steyaert for agreeing to be part
of the committee members of my Ph.D. defense. I highly appreciate
their valuable feedback on my work and thought-provoking questions
during the defense. Particularly, I would like to thank Prof. Nikos
Paragios and Prof. Dimitrios Gunopulos for taking their precious time
to review my dissertation and providing insightful comments.

In addition, I would like to thank all my former and current col-
leagues, who I had the pleasure of interacting with and learning from
as well. In particular,

- from École Polytechnique: Guokan Shang, Changmin Wu, Sammy
Khalife, Olivier Pallanca, Stratis Limnios, Christos Xypolopoulos,

ix

Paul Boniol, Guillaume Salha, Giannis Nikolentzos, George Dasoulas,
George Panagopoulos, Johannes Lutzeyer, Jesse Read, Maria Rossi,
Konstantinos Skianis. A special thanks to my ’roommate’ Guokan for
his warm support and inspiring discussions.

- from Jellyfish France: Rafik Khereddine, Zied Yakoubi, Marouane
Azlaf, Dia Al Jrab, Charles Monzani, Matthieu Brito Antunes, Mehdi
Erraki, Pierre Mary, Hicham Akaoka, Lucas Merlette, Gaylord Cher-
encey, Sidi Mohamed Boukhary. A special thanks to Rafik Khereddine
and Zied Yakoubi, for taking charge of me at the early stage of my
Ph.D..

Last but not least, I would like to thank my family, friends, and loved
ones, for their presence and support along the way. I’m especially
grateful to my parents, Liping Zhu and Xiaoda Qiu, for their endless
love and unwavering support. I owe them so much.

A big thanks again to everyone who has accompanied me on this
wonderful adventure, whether my memory permits me to add them
here or not.

Yang Qiu
Paris, November 2021

x

N O TAT I O N S

This section provides a brief reference describing the notations used
through out this dissertation. Specific notations are given inside each
chapter.

Notation Description

x A scalar

x A vector

X A matrix

X> Transpose of matrix X

Xij or Xi,j The entry of i-th row and j-th column
of matrix X

x+ or x+ Non-negative part of x, i. e. , max(0, x)

{x1, x2} A set containing x1 and x2

(x1, x2) or [x1, x2] A sequence constructed by x1 and x2

R Set of real numbers

Z Set of integers

‖x‖F Frobenius norm of x

‖x‖p Lp norm of x

X ◦X′ Hadamard product (element-wise
product) of X and X′

∇x f Gradient of f with respect to x∫
f (x)dx Integral of f over x

exp(x) Exponentiation of x, i. e. , ex

σ Sigmoid function

tanh Hyperbolic tangent function

xi

C O N T E N T S

1 introduction 1

1.1 Display advertising & Real-Time Bidding 4

1.1.1 Programmatic media buying 5

1.1.2 Real-Time Bidding 8

1.2 Auction mechanism 10

1.3 Performance metrics of advertising campaigns 12

1.4 Cookie-based user identification & privacy 13

1.5 Data Quality 16

1.6 Thesis contributions and related work 21

1.6.1 URL embedding 22

1.6.2 User response prediction 24

1.6.3 Audience expansion 28

1.7 Thesis organization 32

2 preliminaries and background 33

2.1 Basic math 33

2.1.1 Algebra 33

2.1.2 Optimization 35

2.1.3 Activation functions 37

2.2 Machine learning basics 38

2.2.1 Machine learning categorization 38

2.2.2 Learning as optimization 40

2.2.3 Error decomposition 42

2.2.4 Regularization 44

2.2.5 Evaluation protocol 45

2.2.6 Evaluation metrics 46

2.3 Neural networks 49

2.3.1 Basic concepts 49

2.3.2 Notations 51

2.3.3 Type of layers 52

2.3.4 Optimization 54

2.3.5 Success reasons 55

2.4 Word representation 58

2.4.1 One-hot encoding 58

2.4.2 Word embedding 60

2.4.3 Contextual word embedding 64

2.5 Document embedding 71

2.5.1 Aggregate pre-trained word embeddings 72

2.5.2 Produce directly the document embedding 73

3 predicting conversions in display advertising

based on url embeddings 77

3.1 Related work 79

3.2 Proposed conversion prediction architecture 80

xiii

xiv contents

3.3 URL representation schemes 83

3.4 Experiments 84

3.4.1 Datasets 85

3.4.2 Settings 86

3.4.3 Results 88

3.5 Conclusions and future directions 97

4 audience extension 99

4.1 Related work 101

4.2 The proposed audience expansion methods 102

4.2.1 Audience expansion based on set similarity met-
rics 103

4.2.2 Audience expansion based on URL embeddings 105

4.2.3 Audience expansion based on User2Vec model 108

4.2.4 Audience expansion based on User2VecC model 108

4.3 Empirical analysis 109

4.3.1 Results 111

4.3.2 Ablation study 114

4.4 Conclusions and future directions 116

5 concluding remarks 117

5.1 Summary of contributions 117

5.2 Future directions 118

5.3 Epilogue 120

bibliography 121

L I S T O F F I G U R E S

Figure 1.1 Worldwide digital ad spending from 2018, with
forecast to 2023. Figure taken from eMarketer 1. 2

Figure 1.2 Online ad spending in the US, by format. Fig-
ure taken from eMarketer. 5

Figure 1.3 An overview of the ad delivery flow in RTB. 9

Figure 2.1 Overview of SVD and Truncated SVD on term-
document matrix Q of rank r. For Truncated
SVD, the selected part are marked with solid
lines. 34

Figure 2.2 A typical relationship between the capacity of
the model F , the training risk Ln(f̂) (training
error, dashed line) and the test risk L(f̂) (gener-
alization error, solid line) of the learned predic-
tor f̂ ∈ F . The training risk always goes down
when we increase the capacity of F , while the
test risk first goes down, then goes up, forming
a U-shaped curve. Figure taken from Belkin
et al., 2019. 43

Figure 2.3 Example of ROC curve on different classifiers
where a better (resp. worse) ROC curve will
be closer to the left upper corner (resp. right
lower corner) of the coordinate. Figure taken
from wikipedia 2. 47

Figure 2.4 A typical structure of biological neurons 3. The
dendrites receive the signals in a non-uniform
manner, aggregate and pass them to the cell
body, then the axon sends the aggregated signal
to other connected neurons through synapses. 50

Figure 2.5 A 4-layer feedforward neural network. Each
node represents an artificial neuron with the
directed link indicating the information flow
and each blue dashed rectangle represents a
layer. Only the output of each neuron is dis-
played on the node. 51

Figure 2.6 An example of critical points where the gradi-
ent equals to 0. From left to right, we present
local minimum, local maximum and saddle
point respectively. Figure taken from blog of
Rong Ge. 4

55

xv

xvi list of figures

Figure 2.7 Double descent phenomena for deep neural
networks. The typical U-shape behavior of the
generalization error (solid line) is kept before
the capacity of DNN (denoted as F) reaches
the interpolation threshold, where the train-
ing error reaches zero. After the interpolation
threshold, the generalization error goes down
again when we increase the capacity. Figure
taken from Belkin et al., 2019. 56

Figure 2.8 An example of non-distributed representation
(left) vs distributed representation (right). Fig-
ure taken from Garrett Hoffman’s blog 5. 57

Figure 2.9 Overview of Word2vec model architectures:
CBOW and Skip-gram. A window size of 2
(two words on the left and two words on the
right) is used in defining the surrounding words.
62

Figure 2.10 Simple overview of ELMo’s structure. Each
red cell represents a forward LSTM cell and
blue cell represents a backward LSTM cell. The
ELMo embedding of each word is a weighted
sum of its representation in each layer. Figure
taken from Karan Purohit’s blog 6. 65

Figure 2.11 A simple encoder-decoder framework example
where we aim to transform the source sequence
"XYZ" to the target sequence "WXYZ". <EOS> rep-
resents the special token indicating the begin-
ning or the end of the sequence. Figure taken
and modified from Sutskever, Vinyals, and Q. V.
Le, 2014. 67

Figure 2.12 Overview of the Transformer architecture where
the encoding (resp. decoding) part has two en-
coders (resp. decoders). Figure taken from
Jalammar’s blog 7. 69

Figure 2.13 Overview of BERT’s pre-training and find-tuning
procedure. Pre-training and fine-tuning share
the same architecture, except for the output
layers. During fine-tuning, all parameters get
fine-tuned. [CLS], [SEP] are special tokens
where [CLS] is added at the beginning of each
sentence and [SEP] serves as a separator of
two sentences. Figure taken from Devlin et al.,
2018. 71

Figure 2.14 Overview of the Doc2vec model structure. d,
w represent the document, the word, respec-
tively. 74

list of figures xvii

Figure 2.15 Overview of the Doc2vecC model structure. 75

Figure 3.1 A high-level overview of RTB procedure. 78

Figure 3.2 URL representation and conversion classifier
learning pipeline. The binary labels are not
needed for training the URL representation
model. 81

Figure 3.3 The proposed conversion prediction model ar-
chitecture. It consists of three parts: i) URL
embedding layer (fr), ii) URL sequence em-
bedding layer (fm), and iii) Logistic regression
classifier (fc). Only the unknown parameters
of the classifier layer and those of “LSTM” and
“dense” mappings are trainable. 82

Figure 3.4 The Skip-gram model architecture used for learn-
ing token embeddings. Only the (unknown)
parameters of the red blocks are trainable. The
dimensionality of the embedding matrices is
equal to the number of tokens × the preferable
size of the embedding space. 85

Figure 3.5 Analysis of the URL sequences lengths for the
data, Dd, Dd+1, and Dd+2. 87

Figure 3.6 Analysis of URL tokens frequencies. X-axis rep-
resents the number of times a token is present
in the dataset and y-axis shows the number of
tokens. In parentheses we give the number of
unique tokens. 87

Figure 3.7 t-SNE visualization of the thirty closest neigh-
bors of 24 different domains. The colors of
the points indicate the closest domain of each
URL. 89

Figure 3.8 t-SNE visualization of the embedding matrix
trained by Domain_only/1:4 representation model
after 0, 50, 100, 150, and 200 epochs, respec-
tively. 92

Figure 3.9 Average ROC curves of the ten conversion pre-
diction ({1:1} pos-neg ratio) models on the five
advertisers. Shaded regions represent the stan-
dard deviations over 5 independent runs. The
bottom right plot presents the AUC for each
one of the 25 independent runs (5 advertisers
× 5 independent runs for each advertiser) of
each model. The •, H and × marks indicate the
LR, DLR and RNN classification models, respec-
tively. 94

Figure 3.10 Average ROC curves of the ten conversion pre-
diction ({1:4} pos-neg ratio) models on the five
advertisers. Shaded regions represent the stan-
dard deviations over 5 independent runs. The
bottom right plot presents the AUC for each
one of the 25 independent runs (5 advertisers
× 5 independent runs for each advertiser) of
each model. The •, H and × marks indicate the
LR, DLR and RNN classification models, respec-
tively. 95

Figure 4.1 t-SNE visualization of the URL representation
vectors (X embedding matrix) learned by Url2Vec,
User2VecC+cbow, User2VecC+skipgram mod-
els. 114

Figure 4.2 t-SNE visualization of the user representations
produced by four representation models. The
red points indicate the seed users, the green
points indicate the positive candidate users,
and the blue points indicate the negative candi-
date users on the Newspaper_2 dataset. 114

Figure 4.3 Average precision-recall curves (5 independent
runs) of Url2Vec+idf+cosine audience expan-
sion model on the five advertisers for different
filtering thresholds of seed set S . 115

L I S T O F TA B L E S

Table 1.1 A summary of programmatic buying types 8. 6

Table 2.1 Confusion matrix of binary classification. 46

Table 2.2 Notations used in this chapter. 59

Table 3.1 Number of converted vs. non-converted records
for each one of the 5 advertisers on the training
and testing data. 86

Table 3.2 The 30-nearest neighbors of 24 different do-
mains according to our trained Domain_only/1:1

representation model. 90

Table 3.3 The 30-nearest neighbors of 24 different do-
mains according to our trained Domain_only/1:4

representation model. 91

Table 3.4 Avg (%) and std of the area under ROC curves
(5 independent runs) of the 10 prediction mod-
els on 5 advertisers. 93

Table 4.1 Notations used in this chapter. 104

xviii

list of tables xix

Table 4.2 Cardinality of seed (S) and candidate (C) sets
for each one of the 5 advertisers. 110

Table 4.3 Avg (%) and std of the area under ROC curves
(5 independent runs) of the 22 audience ex-
pansion models on 5 advertisers. Blue shows
best results in the specific category and bold
indicates best result for an advertiser. 112

Table 4.4 Avg (%) and std of the average precision (5 in-
dependent runs) of the 22 audience expansion
models on 5 advertisers. Blue shows best re-
sults in the specific category and bold indicates
best result for an advertiser. 112

1
I N T R O D U C T I O N

Advertising is the business of trying to promote products, services
or ideas to people. Due to its effectiveness (Pergelova, Prior, and
Josep, 2010), nowadays ads appear everywhere with different formats
in our daily life. You see them on posters on the street, on pages of
newspapers, or on the web-pages you visit. You hear ads on the radio
or between the songs you play via an application on the telephone.
You also watch ads on TV, Youtube, etc. In the beginning, advertising
was mainly used to persuade customers to buy products. With the
gaining power to do precise targeting (more data, more powerful
algorithms, more calculation resources), its aspect of idea influence
started to get more attention. For example, Gerber et al., 2011 claim
the strong but short-lived effects of televised campaign ads on US
president voting preference. And as a fact, the US political advertising
campaign spend has reached around 6 billion dollars 1, doubled from
2014. On the other side, people have noticed the inevitable influence
of advertising (Pollay, 1986) and they have started to be aware, or even
afraid of it (a steady 30% of the internet users use an ad-blocker 2).
The governments have also forced regulation such as General Data
Protection Regulation (GDPR) in Europe, to protect users’ privacy. The
present challenge for advertising is how to keep the personalization
power while preserving users’ privacy.

evolution of advertising : from traditional to online

The history of advertising has only been a few hundreds of years.
Nevertheless, it evolves very fast along with the development of the
society. It has become more apparent during the last few decades with
the invention and growth of the internet and trend of digitization.

The early sign of advertisement can be traced back to a long time
ago when Egyptians used papyrus to pass sales messages. The first
printed advertisement was introduced by William Caxton, who printed
advertisements for his book in the 1470s in England 3. After that, in
1704, the first newspaper advertisement was published by the Boston

1. Political Ad Spend to Reach $6 Billion for 2020 Election: https://www.emarke
ter.com/content/political-ad-spend-to-reach-6-billion-for-2020-election

2. Ad Blocking Growth Is Slowing Down, but Not Going Away: https://www.em
arketer.com/content/ad-blocking-growth-is-slowing-down-but-not-going-a

way

3. 10 Clever Tips to Inspire Your Next Print Advertisement Campaign: https:

//blog.bannersnack.com/print-advertisement/

1

https://www.emarketer.com/content/political-ad-spend-to-reach-6-billion-for-2020-election
https://www.emarketer.com/content/political-ad-spend-to-reach-6-billion-for-2020-election
https://www.emarketer.com/content/ad-blocking-growth-is-slowing-down-but-not-going-away
https://www.emarketer.com/content/ad-blocking-growth-is-slowing-down-but-not-going-away
https://www.emarketer.com/content/ad-blocking-growth-is-slowing-down-but-not-going-away
https://blog.bannersnack.com/print-advertisement/
https://blog.bannersnack.com/print-advertisement/

2 introduction

Figure 1.1 – Worldwide digital ad spending from 2018, with forecast to 2023.
Figure taken from eMarketer 5.

Newsletter in the U.S. Then in 1922, radio advertising 4 came out as
radio stations started to get business licenses and looked for profit. In
1941, the first TV advertisement was shown on WNBT for a Bulova
watches company for 10 seconds.

The aforementioned traditional advertising channels (newspapers,
magazines, radio, television) work quite well in general (Vries, Gensler,
and Leeflang, 2017) and are still widely used nowadays. However,
the degree of personalization stays limited at the group-level. For
example, people who read the same newspaper receive exactly the
same advertising message. The possibility of fine-grained personaliza-
tion to person-level arrived when online advertising rose as a modern
advertising method. On the internet, people express their intention by
searching answers in search engines, posting status on social media,
buying products on e-commerce websites, etc. By collecting richer data
from the users and the online media that they interact with, advertisers
can better understand the users’ interest and need for both short term
and long term, and provide specific and personalized advertisements
accordingly. As a result, online (digital) advertising keeps growing
rapidly with its spend reaching almost half of the global ad spending
in 2018 and is forecasted to be more than half for the year 2020 (see
Figure 1.1).

4. History of Radio Advertising: https://study.com/academy/lesson/history
-of-radio-advertising.html

5. Global Digital Ad Spending 2019: https://www.emarketer.com/content/glob
al-digital-ad-spending-2019

https://study.com/academy/lesson/history-of-radio-advertising.html
https://study.com/academy/lesson/history-of-radio-advertising.html
https://www.emarketer.com/content/global-digital-ad-spending-2019
https://www.emarketer.com/content/global-digital-ad-spending-2019

introduction 3

evolution of online display advertising ecosystem

At the beginning, advertisers were negotiating and making deals
directly with publishers (i. e. , the owners of websites), to buy a certain
amount of ad spaces at a fixed price, known as Direct Deals. The price
was usually proposed based on a thousand ad displays (impressions),
called cost-per-mille (CPM). Then, publishers were responsible for en-
suring their delivery. Nevertheless, advertisers had little control on
when, where and to whom the ads were going to be shown. After, due
to the booming development of the internet, the number of websites
and webpages exploded, so did the number of inventories. Thus, a lot
of inventories were left unsold after Direct Deals. Ad Network (AdN)
came as an intermediate broker, gathering remnant inventories from
multiple publishers, grouping them (e. g. , based on the contextual
information of the websites pages (Shuai Yuan, Jun Wang, and X.
Zhao, 2013)), and selling them in bulk to advertisers according to their
targeting rules. A common practice for advertisers was to connect
to multiple AdNs in order to find enough high-quality cheap inven-
tories. However, when more and more AdNs came into the market,
it becomes hard for the advertisers to choose which AdN to work
with because they often apply different strategies to group inventories.
Furthermore, it is difficult to split the advertising budget among many
AdNs efficiently. To overcome these issues, Ad Exchange (AdX) has
been created. Similar to a stock exchange, AdX matches the ad transac-
tion needs between advertisers and publishers in a programmatic way.
This makes the whole process transparent as the advertiser knows
exactly when, on which website and to which user his ad is going to
be shown. Meanwhile, the focus of the advertiser starts to shift from
the content of webpage to the user.

In the following five sections (Sec. 1.1 to Sec. 1.5), we navigate
different aspects of the Real-time Bidding (RTB) ecosystem. In Section
1.1, we first introduce major programmatic media buying types that
applied in online display advertising, then describe the ad delivery
flow of RTB along with its main participants. In Section 1.2, we intro-
duce two main auction mechanisms (first price auction and second
price auction) applied in RTB. Section 1.3 describes the performance
measures used in RTB campaigns. In Section 1.4, we explain how the
user is identified across RTB participants using cookie, as well as the
privacy concerns arise with. Finally in Section 1.5, we discuss RTB
data quality issues (data noise and ad fraud). For the rest parts of this
chapter, we give an overview of our contributions 6 realized in this
dissertation in Section 1.6 and state the thesis organization in Section
1.7.

6. For the background required to follow this part, one may need to refer to
Chapter 2.

4 introduction

1.1 display advertising & real-time bidding

Online advertising ecosystem involves three major participants:

• Publishers: Ad slots (ad inventories) owners. Their main objective
is the increase of their revenue by selling their ad spaces at a
high price.

• Advertisers: Ad slots buyers. In general, they are companies
who want to promote their products or services. With an ad-
vertising budget, they buy ad inventories on media channels to
display their ads, in order to fulfill their advertising strategies
(e. g. , increase brand awareness, acquire new customers, sell
products).

• Users: Ads audiences. With their own intent (e. g. , searching for
answers to their question, checking news, buying products), they
browse on the media channels of publishers. In the meantime,
they watch ads and react accordingly (e. g. , positive feedback:
click ads, visit advertiser’s website, buy advertiser’s products;
negative feedback: do nothing after seeing an ad).

For instance, when I see an ad of brand A on a website B: I am the user,
brand A is the advertiser, and website B is the publisher. The whole
advertising value chain is established around these three participants.
Intermediate players run their business by helping them optimize their
objectives (e. g. , increasing publisher’s revenue, enhancing advertiser’s
brand awareness, improving user’s browsing experience).

In practice, various types of advertising methods are used to reach
users through different channels, such as

• Display advertising: Advertisers use visual ads forms (text, im-
ages, videos, etc.) on internet channels (websites, apps, social
media, etc.) to deliver their ad messages.

• Paid search: It is also known as Search Engine Marketing (SEM).
Advertisers pay search engines (e. g. , Google, Bing) to show their
ads (usually in text forms) at the top of the search results.

• Email marketing: Advertisers send advertising messages through
emails, usually to a specific group of users.

Among them, display advertising is the most popular now, mainly
due to the reason that it can influence the users across the whole
conversion funnel (i. e. , awareness, interest, desire, action, loyalty) 7.
The other advertising types focus mainly on part of it. For example,
email marketing focuses mainly on increasing brand awareness. As
a fact, display advertising is estimated to get more than half of the
digital ad spending of the US in 2019 (Fig. 1.2).

It is worth mentioning that for the definition of display advertising,
in a narrower but common extent, the internet channels are restricted

7. The consumer decision journey: https://www.mckinsey.com/business-func
tions/marketing-and-sales/our-insights/the-consumer-decision-journey

https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/the-consumer-decision-journey
https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/the-consumer-decision-journey

1.1 display advertising & real-time bidding 5

Figure 1.2 – Online ad spending in the US, by format. Figure taken from
eMarketer.

to the websites. In this dissertation, we use this common extent
unless special instruction.

1.1.1 Programmatic media buying

Traditional media buying is accomplished through direct deals be-
tween advertiser and publisher which involve a lot of manual work.
Human intervention is needed typically in processes such as requests
for proposals, price negotiation, campaigns setting and optimization,
which make the dealing procedure slow and inefficient. Additionally,
ads are purchased in bulk where buyers have little control over the
condition under which the ads are going to be shown. Programmatic
media buying utilizes programs (and machine learning algorithms) to
automate and optimize this process which dramatically reduces the
operation cost and boosts the performance of ad campaigns. As a fact,
more than 80% of the digital display ad budget is spent programmati-
cally nowadays 8.

At first, programmatic media buying is executed in a sequential
manner, based on the priority that the publisher set to each buyer,
known as waterfall (or daisy-chaining) model. Under this model, pro-
grammatic advertising can be categorized to four types with priority
from high to low at the publisher side:

1. Programmatic Guaranteed,

2. Preferred Deals,

3. Private Marketplace (PMP),

8. US Programmatic Digital Display Advertising Outlook 2021: https://www.em
arketer.com/content/us-programmatic-digital-display-advertising-outlook-

2021

https://www.emarketer.com/content/us-programmatic-digital-display-advertising-outlook-2021
https://www.emarketer.com/content/us-programmatic-digital-display-advertising-outlook-2021
https://www.emarketer.com/content/us-programmatic-digital-display-advertising-outlook-2021

6 introduction

Properties

Types
Programmatic

Guaranteed
Preferred

Deals
PMP RTB

Auction No No Yes Yes

Buyer One One Multiple Multiple

Ad Server Priority Highest Above
PMP

Above
RTB

Lowest

Impressions Guaranteed Yes No No No

Negotiation Yes May or
May not

Minimum No

Table 1.1 – A summary of programmatic buying types 9.

4. Real-Time Bidding (RTB).

These types are summarized in Table 1.1, depending mainly on
whether an auction is involved and whether the publisher guarantees
the amount of inventory delivery.

In Programmatic Guaranteed and Preferred Deals, no auction takes
place and the publisher faces only one buyer. For the rest two types
with lower priorities, the inventories are sold in auction where multiple
buyers are involved.

programmatic guaranteed Also known as Programmatic direct,
Programmatic reserved. After negotiation between the publisher and the
advertiser (or its representative), the publisher promises to deliver a
guaranteed number of impressions at a fixed price (e. g. , fixed CPM)
to the advertiser, following its desired targeting setting (audiences
list, ad positions, etc.). This process is similar to Direct Deals but
in an programmatic (automated) way. It’s beneficial for both sides:
From the publisher side, it may be willing to sell premium inventories
(e. g. , homepage takeovers) here, because it can have a guaranteed
revenue and strengthens the long-term relationship with the advertiser.
From the advertiser side, as it knows on which websites the ads are
going to be shown, it reduces his brand safety concerns. The advertiser
is willing to pay a generally high price for these premium inventories.

preferred deals Also known as Private access, Spot buying. Com-
pared to Programmatic Guaranteed, in Preferred Deals, the price of
inventory is still fixed but the amount is not guaranteed. For the
advertiser, he still has the privilege to check the inventory before it
goes to auction. For the publisher, the risk is that as the amount
of impressions is not guaranteed, when the fill rate is low (i. e. , the
advertiser doesn’t buy enough), a lot of inventories go to auction
directly.

9. Source: The Four Types of Programmatic Deals https://www.adpushup.com/b

log/explainer-the-four-types-of-programmatic-deals/

https://www.adpushup.com/blog/explainer-the-four-types-of-programmatic-deals/
https://www.adpushup.com/blog/explainer-the-four-types-of-programmatic-deals/

1.1 display advertising & real-time bidding 7

private marketplace (pmp) Also known as Private Auction,
Invite-only Auction. Inside PMP, the auction is private for invite-only
buyers. This makes it more safe compared to open auctions as pub-
lishers can invite only the buyers that they trust (e. g. , to prevent ad
fraud). Still, it is possible that some potential advertisers who are
willing to pay a high price are not invited due to lack of information
on the publisher side.

real-time bidding (rtb) Also known as Open Auction, Open
Marketplace. RTB is the most popular type of programmatic advertising.
It is an open auction that any connected advertiser and publisher can
participate in, which results large volumes of available ad inventories.
As regard of the good aspects, it’s an efficient way for publishers
to sell their remnant ’tail’ inventories to gain potential high revenue
through auctions, without worrying about the fill rate. Also the set up
is easier compared to the other programmatic advertising types which
may still need deal negotiations. On the other hand, due to large
supply of ad inventories, the average price of impressions is relatively
low. And as it is an open auction, ad frauds (e. g. , malicious creatives)
happen more than other types where the buy side and sell side know
each other generally well. Finally, in this open auction mechanism,
accurate estimation of the value of each impression opportunity is
crucial to the final revenue of each side, because no delivery guarantee
exists and the number of competitors are quite high. Therefore, a too
optimistic bidding may waste money while a too pessimistic bidding
may loss winning opportunity.

As we have already seen, all these programmatic ad buying methods
have their own pros and cons. Therefore, advertisers and publishers
often use a combination of them to optimize their advertising strate-
gies. Two popular combination models exist nowadays: Waterfall and
Header bidding. The main difference between these two is that in the
waterfall model, aforementioned ad buying methods are combined
in a sequential manner while in header bidding, they are executed
simultaneously.

Roughly speaking, in the waterfall model, the impression opportu-
nity is first given to the buyers at higher priority. If they decline, it is
passed to the ones standing at lower priority, with a lower floor price
(the minimum price that the publisher is willing to sell the impression
opportunity). This process repeats until someone clears the floor price,
otherwise the publisher runs some in-house ads. Despite its simplicity,
it has two main drawbacks: The first one is the latency issue. This one-
by-one decision schema makes the execution to be potentially slow.
The second is that the publisher may not get the highest price for his
inventories. It happens because it’s highly possible that the inventory
is sold to the prior buyer even when the lower-ranked non-prior buyer
offers a better price.

8 introduction

To overcome these drawbacks, Header bidding is introduced and
gets popular. Under Header Bidding, the price offered from different
participants are considered together at the same time, with the same
priority. The simple rule is the offer with the highest price (higher
than floor price) wins. In this way, the publisher generally increases its
revenue by always selecting the highest price. Moreover, the decision
is made once only.

However, Header bidding is still not perfect. The latency issue is
not entirely solved because in the original format of Header bidding,
ad requests are treated simultaneously at the user’s browser which
causes long loading time. The existing solution is to move this process
to a specific server and the server just sends back the final decision.
Also as a large part of inventories are exposed to any buyer, it’s much
easier for fraudsters to collect the customers’ data of the publisher
without his permission. A practical way to deal with this data leakage
is to limit the information provided in bid requests to programmatic
buyers and let it be adjustable according to the buyers’ reliability and
priority level. Compared to its downside, the advantages of Header
Bidding are more attractive. As a fact, in 2019, nearly 80% of the 1000
most popular US websites (based on Alexa ranking) that sell ads in a
programmatic way used Header Bidding 10.

1.1.2 Real-Time Bidding

Real-Time Bidding (RTB) is considered as a game-changer for digital
advertising mainly due to the fact that the ad trading is done at
per inventory (impression) basis, which makes the trading process
transparent and targeting a specific user, at specific website, at a
specific time to be possible.

Also, the adoption of Header Bidding gives advertisers the possibil-
ity to buy ‘premium’ inventories through RTB. While in the waterfall
model, RTB mainly gets tail inventories as it stands at the lowest
priority.

In Figure 1.3, we present an overview of the ad delivery flow in
RTB, where each rectangle represents a key role (participant) in the
RTB process:

• Demand-Side Platform (DSP): DSPs are tools (platforms) used
by advertisers, to help them optimize their advertising strategies.
They typically use algorithms to determine the ‘value’ of each
impression based on their knowledge about the user (e. g. , be-
havior, geo-location, etc.) and offer a bid price wisely. They also
provide advertisers with functionalities to set up and track their
ad campaigns easily.

10. Five Charts: The State of Header Bidding: https://www.emarketer.com/cont
ent/five-charts-the-state-of-header-bidding

https://www.emarketer.com/content/five-charts-the-state-of-header-bidding
https://www.emarketer.com/content/five-charts-the-state-of-header-bidding

1.1 display advertising & real-time bidding 9

Figure 1.3 – An overview of the ad delivery flow in RTB.

• Supply-Side Platform (SSP): SSPs are tools (platforms) used by
publishers, to help them manage and sell their ad inventories
wisely in order to increase the revenue. Their functionalities
include: floor prices setting, allocating the inventories to different
partners, etc.

• Ad Exchange (AdX): It is an intermediate platform that connects
DSPs and SSPs. It matches the ad transaction needs between
them automatically, impression by impression. Typically it is
done by assigning the impression to the DSP that offers the
highest price.

• Data Management Platform (DMP): DMP is a platform that col-
lects, cleans and reorganizes user data from multiple resources.
It provides other participants (mainly DSPs) with extra user
information that they can use to understand and model better
the user.

• Agency or Trading Desk: They delegate the advertiser to connect
to DSPs. Advertisers may not have their own in-house team to
operate ad campaigns for different reasons (e. g. , lack of time,
insufficient budget), instead, they hire agencies or trading desks
to help them manage their advertising budget and optimize their
advertising campaigns.

Actually, a typical ad delivery flow (see Fig. 1.3) can be described as
follows:

1. An internet user visits the webpage of a publisher.

2. For each available ad slot on the webpage, the publisher sends a
bid request to the connected SSP and the SSP sends it to the AdX,
together with the floor price. The bid request mainly contains
the information about the website (e. g. , URL, publisher ID) and
the user (e. g. , user ID, geo-location, browser type) and the ad
inventory (e. g. , position, size).

10 introduction

3. After the AdX receives the bid request, it transfers the bid request
to multiple DSPs at the same time.

4. Each DSP decides if it will submit or not a bid response for this
impression opportunity, based on its information about the user
(extra user information may be provided by DMP), the website,
the ad to put on, also the ad campaign setting of the advertiser
(or their representative: agency, trading desk).

5. Each DSP sends the bid response (with the bid price) to the AdX,
under a constrained time.

6. The AdX determines the highest bid sent by the DSPs. If the
highest bid price is higher than the publisher’s floor price, the
impression opportunity is sold to the corresponding advertiser
that generally pays the second highest bid price (second price
auction, Vickrey, 1961). Otherwise, this inventory is considered
unsold. In the end, AdX announces the auction result to the SSP
and all the DSPs.

7. The SSP helps display the ad of the winner (advertiser) on the
corresponding ad slot of the publisher.

In fact, the whole process will be finished in around 100 milliseconds,
that’s why it’s called ‘real-time’.

In this dissertation, we focus on the banner case of display adver-
tising under the RTB process.

1.2 auction mechanism

As aforementioned, in Real-Time Bidding (RTB) an open auction is
launched inside the Ad Exchange (AdX). Each bidder (typically the
DSP who bids on behalf of the advertiser) proposes his bid price, and
the AdX platform assigns the impression opportunity to the bidder
offering the highest price. The winner either pays the highest bid price
(first price auction) or the second highest bid price (second price auction)
depending on the type of auction. As the cost of a single impression
is relatively low in practice, the bid price is counted per thousand
impressions, referred as cost-per-mille (CPM) or cost-per-thousand (CPT).

For example, suppose that we have three bidders A, B and C, who
offer bid price at 1.6$ CPM, 3$ CPM, 0.5$ CPM respectively. Then B
wins the bid as he offers the highest price. He will pay 3$ CPM in the
first price auction and 1.6$ CPM 11 in the second price auction.

Meanwhile, the publisher may set a reserve price (also known as
floor price) for his inventory (Myerson, 1981) which roughly represents
the minimum price that his is willing to sell this inventory. If the
highest bid is below this price, the inventory is unsold. Otherwise, the
auction process is fulfilled normally by including the reserve price as

11. Usually the AdX charges extra 0.01$ CPM in second price auction (Edelman,
Ostrovsky, and Schwarz, 2007).

1.2 auction mechanism 11

the bid price of a ‘virtual’ bidder. Considering the previous example
with the three bidders, if the reserve price is set to 2$ CPM, B still
wins the auction as his bid is above the reserve price. He pays 3$
CPM in the first price auction and 2$ CPM in the second price auction
(2$ is the corresponding second highest price). On the other hand, if
the reserve price is set higher than 3$ CPM, the inventory is unsold.
Setting the reserve price encourages the bidder to bid higher because
if the bidder bids always below the reserve price, it cannot win any
auction. However, if the reserve price is set too high (too aggressive),
the publisher may not able to sell enough inventories. The discovery
of the optimal reserve price is a challenging task that has been studied
recently (Shuai Yuan, Jun Wang, B. Chen, et al., 2014). Moreover, for
the same inventory, it is possible that the publisher sets a personalized
reserve price for each bidder (Paes Leme, Pal, and Vassilvitskii, 2016).

In fact, the aforementioned reserve price is known as hard floor price.
There exists also soft floor price (Zeithammer, 2019), where the situation
is slightly more complicated. In a nutshell, the soft floor price is a bid
level set above the hard floor, and acts as a switch between the first
and second price auction model. When the highest bid is above the
soft floor, a second price auction takes place. Otherwise, the first price
auction takes place. For example, we keep the hard floor at 2$ CPM.
If we set the soft floor at 5$ CPM, then B clears the auction at 3$ CPM
because we are running the first price auction. If we set the soft floor
at 2.5$ CPM, then B clears the auction at 2.5$ CPM because we are
running a second price auction. Consequently, by properly setting the
floor prices, the publisher can drive the maximum profit in the price
range between the hard floor and soft floor (as it’s running the first
price auction) and keep the behavior of bidders with high bid price
unchanged (as it’s running the second price auction). Thus, by tuning
the floor price of each inventory wisely, publishers are able to increase
their revenue by selling their ad slots at higher prices (Shuai Yuan,
Jun Wang, B. Chen, et al., 2014; J. Li et al., 2017).

In practice, the AdX platform typically employs the second price
auction. In this case, the dominant bidding strategies for each bidder
is to bid truthfully. It means that the bidder should bid exactly how
much he values the impression (Matthews, 1995), no matter what
the other bidders do (Milgrom, 2004). It has been shown that this
strategy maximizes the utility (value of the impression - price paid) of
the bidder. Whereas for the first price auction, there is no dominant
strategy, each bidder needs to adapt his bid according to the other
bidders’ behavior. However, due to the nature design of the second
price auction and the floor prices that publishers applied, buyers have
little information about how much they will pay in the end. In the
meantime, first price auction starts to grow in favor (e. g. , Google is

12 introduction

moving to first-price auction 12) due to the transparency in the final
price paid and the popularity of Header Bidding.

1.3 performance metrics of advertising campaigns

In Real-time bidding, advertiser and publisher typically use CPM as
the pricing model for impressions transactions. The publisher wants
to sell impressions at high CPM while the advertiser wants to buy
impressions (through DSP) at low CPM. However, based on the ad
campaign’s objective, the advertiser’s ultimate goal can be different
from that.

The objective that the advertiser wants to optimize is often referred
to as Key Performance Indicator (KPI). Given a fixed advertising budget,
the advertiser typically wants to generate a maximum number of
ad impressions, ad clicks, and conversions. The ‘conversion’ here
means certain valuable actions predefined by the advertiser such as
visiting the advertiser’s website, register as advertiser’s customer, buy
advertiser’s product. Thus, advertisers often use normalized KPIs
such as cost-per-mille (CPM), cost-per-click (CPC) and cost-per-action
(CPA) as the maximum price they are willing to pay in average for
each generated impression, click, conversion, respectively. DSP uses
these KPIs target to determine the value of the impressions and guide
his bid prices.

Taking CPA as KPI for example, we can roughly decompose the
expected CPM value of one specific impression as:

CPM =
ad spend

number of impressions
× 1000

=
ad spend

number of conversions
× number of conversions

number of impressions
× 1000

= CPA× CVR× 1000
(1.1)

where CVR indicates the conversion rate, i. e. , the probability that an
impression will bring a conversion. Thus, given the CPA target of an
advertiser, an accurate estimation of the CVR provides a reasonable
value for the present impression opportunity. This value is commonly
used by the DSP to offer his bid accordingly (e. g. , in second price
auction, the optimal strategy is to bid truthfully at a price equal to the
value of the impression, Sec. 1.2).

Correspondingly, the actual performance of DSP is judged by the
effective KPI that he realized. For example, effective CPM (eCPM) is
calculated by dividing the actual ad spend by the realized number of
impressions. The main objective of DSP is to have the eCPM smaller
than the CPM target provided by the advertiser, and keep it as low as
possible.

12. Google Switches To First-Price Auction: https://www.adexchanger.com/onli
ne-advertising/google-switches-to-first-price-auction/.

https://www.adexchanger.com/online-advertising/google-switches-to-first-price-auction/
https://www.adexchanger.com/online-advertising/google-switches-to-first-price-auction/

1.4 cookie-based user identification & privacy 13

1.4 cookie-based user identification & privacy

In order to identify and possibly track users, websites generally use
cookies (Kristol, 2001). Cookie is a small text file sent by the website
and stored in the user’s web browser, when the user first visits the
website. It stores essentially the user’s unique identification (user ID)
associated with this website, but it can also contain other information
about the user such as language and theme preferences, browsing
activities. Each time the user revisits the website, this cookie will be
sent back to the website, allowing it to identify the user and generate
personalized recommendations, contents, etc. It should be noticed
that each cookie is website-specific (domain-specific), which means
that website A can not read the cookie of website B and vice versa. For
example, the same user is known as USER_123 to the website A but as
user USER_456 to the website B.

In the context of RTB ecosystem, each platform (DSP, SSP, DMP,
etc.) acts as a ‘website’ which has his own user identification system.
Taking DSP for example, with the permission of his clients, he places
a specific code on the clients’ (advertisers’) websites. Each time when
the user visits the advertiser’s website, this code makes him requests
simultaneously the DSP’s domain. As a result, the DSP can create his
own cookie to identify users across his clients’ websites. For instance,
if website A and B are both the DSP’s client, then the DSP can match
the user id USER_123 and USER_456 with his own user id USER_ABC.
Actually, the type of cookie on DSP side is referred as third-party cookie
while the cookie created on the website that the user actually visits is
referred as first-party cookie.

cookie matching The aforementioned mechanism does not al-
low the user information to be synchronized between two different
platforms. However, as we have seen previously, the user needs to be
identified across different RTB platforms (DSP, SSP, DMP, etc.) to real-
ize efficient ad bidding and user targeting. Cookie matching technique,
also known as cookie mapping or cookie syncing, is commonly used as a
solution to this problem. In fact, this matching is done along with the
ad request and commonly implemented through exchanging a URL
of invisible pixel image between two platforms. To be more precise,
let’s consider the user matching between SSP and DSP for instance.
When a user visits a website A which has an ad slot, website’s SSP
partner can drop its cookie and create the corresponding user ID due
to the specific code placed on website A. In the meantime, the SSP also
creates a URL corresponding to an invisible image (dimension 1 pixel
× 1 pixel, known as pixel tags) served from its DSP partner. The URL
of this image includes the user ID of the SSP side (USER_ABC). Loading
this URL (served from DSP) on the user’s web browser allows the DSP
to drop his cookie and creates the user ID of the DSP side (USER_XYZ).

14 introduction

As DSP can extract the user ID of the SSP side from the given URL, he
creates a matching-table that maps the user ID of both sides. Also, the
DSP can do the same reversely (puts the user ID of the DSP side on a
URL and sends it back to the SSP) to let SSP have his own matching
table. Thus, using this trick, we can synchronize the user ID between
platforms.

The main downside of cookie-based user identification mechanism
is that it relies totally on the existence and consistency of the cookie.
For instance, if the user clears the cookies of his browser or changes the
browser, then this user is treated completely as a new user. Alternative
choices such as device fingerprint (Laperdrix et al., 2020) uses features
of device’s hardware and software to provide unique identification of
the user using an fingerprinting algorithm (Rabin, 1981, Broder, 1993).
The fingerprinting algorithm can be seen as a high-performance hash
function. Device fingerprint can be used solely or combined with the
usage of cookies to enhance the identification ability. Eckersley, 2009

states that in the best case, only 1 in 286, 777 browsers will share its
fingerprint with the others.

privacy Using cookie (matching) enables identifying users and
sharing data across different RTB players, offering better ad targeting.
For instance, a user may visit an advertiser’s website, browse some
products and leave. When the same user arrives at another website,
the advertiser can still target him (retargeting) by showing the products
that he has looked or other recommended similar products, in order
to bring him back to the advertiser’s website to finish the purchase.

However, this also makes the user feel being tracked continuously
and raises the concern of user privacy, even though certain people
consider this as a trade-off for convenience and personalization (Koko-
lakis, 2017). As a fact, according to a survey of Pew Research Center 13,
the majority of Americans (72%) feel all most of what they do online
is being tracked by advertiser and (79%) concern about the usage of
their data by the companies. For this reason, 42% of internet users
report using an ad blocker 14. People also use virtual private network
(VPN) to mask their true IP addresses and browser in private to prevent
activities tracking. In the meantime, regulations are established to
protect user’s data and privacy. For example, General Data Protection
Regulation 15 (GDPR) has come into force across the European Union
since 2018. Its most important idea is the consent. It demands that the
organizations who want to collect personal data from users, must ask

13. Americans and Privacy: Concerned, Confused and Feeling Lack of Control
Over Their Personal Information: https://www.pewresearch.org/internet/2019/
11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-contr

ol-over-their-personal-information/

14. Ad Blocker Usage and Demographic Statistics in 2021: https://backlinko.co
m/ad-blockers-users/

15. Complete guide to GDPR compliance: https://gdpr.eu/

https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://backlinko.com/ad-blockers-users/
https://backlinko.com/ad-blockers-users/
https://gdpr.eu/

1.4 cookie-based user identification & privacy 15

for the users’ consent in a clear way. Actually, the user needs to have
the option to choose whether he accepts the cookie or not.

post third-party cookie era Due to the complexity of com-
plying strictly with GDPR and rising concerns about user privacy,
many browsers (Google 16, Firefox 17, Safari 18) have started to block
third-party cookies. Thus, the original targeting strategies which
rely heavily on user tracking through third-party cookies need to be
adapted to the new situation. There are several possible solutions
being studied recently:

• Back to contextual advertising
As we mentioned previously, RTB shifts the ad targeting focus
from the websites’ context to the users. Under the disappearance
of third-party cookies, it seems that returning back to contextual
advertising (Anagnostopoulos et al., 2007; Niu, J. Ma, and D.
Zhang, 2009) could be a workaround. The main benefit is that it’s
not impacted by user privacy regulations. Also, as it’s relevant to
what you are looking at, and it usually does not interrupt your
browsing experience. This is the core idea of Native advertising
(Manic, 2015) which is emerging in news feeds and social media
domains.

• Federated Learning
Federated Learning of Cohorts (FLoC, Google, 2020) is a type of
web tracking method based on Federated Learning (Konečný et al.,
2016). It is proposed by Google in its Privacy Sandbox project
(Google, 2021). The main idea is to keep the user data (e. g. , on-
line activity) locally on the device (e. g. , browser) and use it to
deduce the interest of the user. After, we group users who share
similar interests using SimHash (Charikar, 2002) algorithm. For
a given user, we can send his cohort ID (group ID) to the AdX to
realize interest-based targeting. Thus, we preserve user’s privacy
by storing user data locally and weaken the user identification
concerns by providing only his cohort ID.

• Rethink the usage of the first-party data
As third-party cookies are banned, publishers and advertisers
should rely more on their first-party data, even though that
the number of users can be targeted are less than before. This
situation encourages them to focus more on improving their
knowledge about their customers and their user experience. For

16. Chrome tracking protection: https://blog.chromium.org/2020/01/building
-more-private-web-path-towards.html

17. Firefox tracking protection: https://blog.mozilla.org/en/products/firef
ox/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining

-by-default/

18. Safari tracking protection: https://webkit.org/blog/10218/full-third-par
ty-cookie-blocking-and-more/

https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.mozilla.org/en/products/firefox/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://blog.mozilla.org/en/products/firefox/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://blog.mozilla.org/en/products/firefox/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/

16 introduction

example, advertisers may design proper quizzes, interactive con-
tent or educational surveys to know their customer better, and
use this knowledge to deliver personalized and relevant adver-
tising messages that fit the needs and preferences of the users.
In this way, customers gain trust on advertisers (publishers) and
they are willing to reveal more personal information to them, in
order to get more precise and personalized services, which help
both parts in the long run.

1.5 data quality

Garbage in, garbage out (GIGO) is a well-known sentence in the area
of computer science, which means that one needs to ensure the quality
of data before feeding it into the algorithm. In any other case, the
learned algorithm will perform poorly or even be misleading.

In the context of RTB, considering DSP (ad buyer) as an example,
we can collect log level data from the ad requests and user feedback.
The log level data mainly come from five different sources:

• Bid request: data that describes a bid request.

• Impression: data returned if we won an auction.

• Conversion: data returned if the user converted and the conver-
sion is attributed to our impression.

• Click: data returned if the user clicked on our impression.

• Segmentation: segment that the user belongs to.

where impression, conversion and click logs are used the most often.
Actually, each log (event) is an interaction result among user, pub-

lisher and advertiser, with features described as follows:

• User side features:

- USER_ID: user ID.

- RIP: user IP address (truncated).

- ZIP: zip code of the user’s address.

- CITY: city name of the user’s address.

- UA: user agent. We can deduce the device type, browser
type, operation system from it.

- SEG_ID: segment ID. The segment that the user belongs to.

• Publisher side features:

- PUB_ID: publisher ID.

- URL: URL of the page.

• Advertiser side features:

- ADV_ID: advertiser ID.

- CP_ID: campaign ID.

1.5 data quality 17

- CRE_ID: ad ID.

- PL_ID: placement ID of the ad. It’s can be roughly seen
as an ID that represents the position of of the ad on the
website.

- SZ: size of the ad.

• General features:

- AU_ID: auction ID. The unique id to identify a bid re-
quest. It is used to connect an impression to the winning
bid request and to connect a conversion (or click) to the
impression that generated it.

- TM: timestamp of the log.

- TY: a string that specifies the type of the event.

Additionally, each specific log has its own other features. For instance,
in bid request data, it also has the value of the bid as a feature. In
impression data, the view time of the impression is also noted. In click
data, we generally know which ad the user has clicked.

The data quality in RTB is impacted from two aspects: i) data noise
and ii) ad fraud. The noise of data rises mainly due to the nature of
RTB data. It is easier to be detected with the help of posterior analysis,
compared to the ad fraud which is mostly generated by non-human
traffic.

data noise Due to the nature of RTB data, noise appears at dif-
ferent sources. Next, we give some examples of commonly seen data
noise that comes from user ID, bid request, impression and click. At
the same time, we show practical solutions to prevent or reduce the
noise.

• User ID noise: As we mentioned previously in Section 1.4,
the user is identified based on the cookie stored in his web
browser. If the user clears his cookie or browses in private, he
is considered as a totally new user. Thus, one single user may
be identified with different user IDs in the system. To truly
follow the user’s entire browsing activities, additional features
or detection mechanism are needed.

• Bid request noise: As we have seen previously, a bid request is
created each time a user visits a website which has a biddable
ad slot. An interesting case is that the website may apply an
auto refresh mechanism. According to Google 19, websites can
basically define different ways that an auto refresh of ads is
triggered. For example, ads can be refreshed if there is no user
activity on a predefined time interval (time-based refresh). That is

19. Google Real-time Bidding Proto: https://developers.google.com/authoriz
ed-buyers/rtb/realtime-bidding-guide#autorefreshsettings-object

https://developers.google.com/authorized-buyers/rtb/realtime-bidding-guide#autorefreshsettings-object
https://developers.google.com/authorized-buyers/rtb/realtime-bidding-guide#autorefreshsettings-object

18 introduction

to say, if you leave several windows of your browser open (it hap-
pens very often), those webpages keep generating bid requests
without actual user visits. Also, ads can be refreshed due to an
event-driven content change of the website, such as match scores
change (event-driven refresh). Actually, this auto-refresh mecha-
nism can create noise and harm the advertiser’s ad performance.
First, in the case of time-based refresh, the advertiser may spend
extra money for non-viewable impressions as the user has ac-
tually left his screen. Second, one may want to reconstruct the
browsing history of one user, by grouping visited URLs using
bid request data. Nevertheless the constructed browsing history
is not complete as not all websites have available and biddable
ad slots. Additionally, due to the website auto refresh, the brows-
ing history contains false visit traces. Therefore, if a model is
directly built on the collected browsing history, it may be biased.
• Impressions noise: When you buy a banner impression, you

know that it’s loaded on the website. But you don’t really know
if the user has actually seen the ad. For example, for ads at the
bottom of the webpage, it is possible that the user has closed the
webpage before he scrolls down to their position. In practice,
we typically use a feature related to “viewtime” of the ad to
examine if it is actually seen by the user. For example, according
to Google ads rules 20, a display ad is counted as viewable when
at least 50% 21 of its area is visible on the screen for at least 1
second.
• Clicks noise: We typically treated the click of an ad as a positive

feedback of the user. However, it’s possible that the user just
clicked it by accident. For example, when a user wants to
close an ad in a mobile app, if the close button is too small
or not well positioned, he can easily misclick it and close it
quickly. To prevent advertisers from being charged for misclicks,
some service providers like Yandex add an extra validation step
for suspicious ad clicks where Go to site and Cancel buttons
appear after the ad gets clicked 22. Then, the advertiser is charged
only when the user clicks the Go to site button. Apart from
using specific web design, machine learning algorithms are also
under study. Researchers try to combine other information in the
data to define if a click is truly positive or not. For example, C.
Wu et al., 2021 propose to separate the feedback in news feed into
implicit weak feedback (click and skip), explicit feedback (share
and dislike) and implicit strong feedback (finish reading or quick
close). For this purpose, they use an attention network that uses

20. Understanding viewability and Active View reporting metrics: https://supp
ort.google.com/google-ads/answer/7029393?hl=en

21. For large display ads of 242, 500 pixels or more, the percentage is set to 30%
22. Yandex confirming site clicks: https://yandex.com/support/partner2/tech

nologies/antifraud.html

https://support.google.com/google-ads/answer/7029393?hl=en
https://support.google.com/google-ads/answer/7029393?hl=en
https://yandex.com/support/partner2/technologies/antifraud.html
https://yandex.com/support/partner2/technologies/antifraud.html

1.5 data quality 19

the representations of stronger feedback to distill positive and
negative parts from implicit weak feedback such as clicks.

ad fraud Ad fraud, referred also as invalid traffic, is another cause
of data quality issues in RTB. Ad fraud is generally harder to be
detected than the data noise, because the counterpart (fraudsters) can
use various tools and methods to fulfill the fraud, and also change
their pattern regularly. Actually, in RTB, ad fraud generally comes
from the publisher side and the advertiser side is the victim.

A common definition of ad fraud (Kotila and Dhar, 2016) is: “an
activity where impressions, clicks, actions or data events are falsely
reported to criminally earn revenue, or for other purposes of deception
or malice”. As explained in «IAB Europe’s Guide to Ad Fraud» (IAB,
2020), there exist plenty ways of making ad frauds, generated not only
by non-human traffic, but also by human traffic.

Taking the click frauds as an example, fraudsters may use sophis-
ticated designed bots that click their ads automatically to generate
revenue. But also they can hire a large group of low-paid workers
to intentionally click their ads, known as click farms. Right after, we
present three primary types of ad fraud: impression fraud, click fraud,
conversion fraud, as follows.

• Impression fraud: This kind of fraud happens on impressions
where fraudsters mainly want to cheat advertisers to buy ad
slots that do not actually exist or of lower quality than expected.

- Domain spoofing
It’s also known as impression laundering. The Fraudster (low-
quality publisher) cheats advertisers by pretending to be
a premium publisher, in order to make his ad slots more
valuable and increase the demand. This is done through a
number of complex redirects and nested ad calls, so that
the advertiser sees premium publisher’s URL instead of the
fraud one. Domain spoofing not only wastes advertisers’
money, but also produces brand safety concerns as adver-
tisers’ ads are actually displayed on low-quality websites.

- Stacked and hidden ads
Dishonest publishers may stack multiple ads on top of each
other while only the topmost ad can be viewed, or simply
make them all invisible. By doing this, they generate multi-
ple impressions from a single page view which increases
the ad traffic.

- Ad injection
Ad injection is a technique where fraudsters inject ads into a
website without its knowledge or permission. The injected
ads can be on top of the existing ads which makes them
invisible (like ad stacking) or replace the existing ones or

20 introduction

even appear on pages that were not supposed to display
ads at all. This is often caused by plugins installed on the
user’s web browser.

• Clicks fraud: In performance-based ad campaigns, advertisers
are charged for each click or conversion generated. For click
fraud, fraudsters generate false clicks in order to gain revenue
from advertisers. We present several common click fraud types
at following:

- Bots
Bots are computer programs that run automated tasks over
the internet. In the area of advertising, the tasks can be view
ads, click ads, watch videos, etc. To charge advertisers who
use payer-per-click (PPC) pricing model (advertiser pays pub-
lisher every time the ad is clicked), fraudsters set up web
pages and use bots to automatically click their ads. Simple
bots are relatively easy to be blocked as they generally have
static IP addresses, user agents, etc. Advertisers can simply
move them to blacklist if an unusually high click-through-
rate (CTR) is detected on those websites. Sophisticated
bots, on the other hand, may change their user agent, IP
address regularly, keep the click-through-rate normal, or
even imitate human click behavior to surpass the detection.

- Botnets
Botnets are typically referred to computers or devices that
have been controlled by fraudsters using malware or com-
puter virus. The owner of the device usually is not aware
that the device has been partially or fully manipulated.
Fraudsters then use these botnets to click ads for them. It’s
hard to detect and block botnets, because except for the sus-
picious click behavior, all other characteristics correspond
to real users.

- Click Farms
Fraudsters hire a large group of low-paid workers to in-
tentionally click their ads and even fill forms, in order to
generate clicks and conversions.

• Conversions fraud: For conversion fraud, fraudsters generate
false conversions in order to gain revenue from advertisers.

- Click fraud methods
In general, aforementioned methods which generate click
fraud can be also applied in conversion fraud. As advertis-
ers can define different types of conversions such as visit
websites, fill form, buy products, some click fraud may not
be able to apply.For example, simple bots may be applied to
generate website visits, but sophisticated designed bots or

1.6 thesis contributions and related work 21

human (click farms) are needed in order to fill forms. Some
conversion types such as buying advertiser’s products are
generally hard to be achieved.

- Cookie stuffing
In affiliate marketing, affiliates get paid for each customer he
brings to the advertiser. By using cookie stuffing, fraudsters
insert multiple (third-party) cookies on the user’s browser,
in order to claim the conversion attribution.

The actual amount of ad fraud cost is hard to count because ad fraud
methods keep evolving so that not all of them are known. However,
it has been estimated that around 20% to 40% of impressions are
fraudulent 23.

There are several ways to prevent ad fraud. First, advertisers may
want to adopt industry standards which reduce the possibility of
involving illegal players. For example, the ‘Ads.txt’ file that was
proposed by IAB tech lab 24 is a straightforward solution to avoid
domain spoofing fraud. The idea is simply that publishers use this
file as a whitelist to decide who can sell ads on their websites. Second,
advertisers should look closely at the statistics of their ad campaigns
performance. For example, ad campaigns who have a high num-
ber of impressions and a low click-though-rate may be affected by
stacked and hidden ads. What’s more, for non-trivial fraud behaviors
(e. g. , making fraud using bot or botnets), it is possible to use data
mining and machine learning methods to find the underlying pattern
in order to detect them (R. Oentaryo et al., 2014; Blaise et al., 2020;
Xing et al., 2021).

1.6 thesis contributions and related work

This dissertation contributes pipelines, models, components, and
new insights to problems that arise in the area of online display
advertising.

In particular, we focus on developing novel approaches to address
two challenging display advertising tasks: conversion prediction and
audience expansion. For both of the tasks, we propose to consider
only the browsing history (a sequence of URLs) of the user as features,
collected from real logged data. Additionally,

• For conversion prediction task, we mainly introduced three self-
supervised URL embedding models that can learn semantically
meaningful URL representations based on the collected user
browsing history.

23. Programmatic ad fraud rates: https://www.statista.com/statistics/7787
14/programmatic-ad-fraud-rates-worldwide-country/

24. Ads.txt – Authorized Digital Sellers: https://iabtechlab.com/ads-txt/

https://www.statista.com/statistics/778714/programmatic-ad-fraud-rates-worldwide-country/
https://www.statista.com/statistics/778714/programmatic-ad-fraud-rates-worldwide-country/
https://iabtechlab.com/ads-txt/

22 introduction

• For audience expansion task, we proposed various similarity-
based audience expansion schemes, focusing on the learning a
high-quality user embedding. A data-driven weight factor was
also introduced to intentionally alleviate the frequency redun-
dancy of URLs that affected by the website refreshment.

Next, we provide an overview of the contributions of the disserta-
tion, together with related work.

1.6.1 URL embedding

Embedding techniques are generally referred to methods that project
a term (e. g. , word, product, node, graph) to a vector, while the close-
ness of the terms are kept in the vector space. Technically speaking,
in neural network models, the embeddings are learned through an
embedding layer, jointly learned with other layers. The training of the
embedding layer can be done in a supervised way or self-supervised
way, depending on the task. After the learning process, each term has
its own embedding vector which forms a lookup table (matrix) where
the row corresponds to the term and the column corresponds to the
embedding vector.

The term ‘embedding’ comes originally from the Word2vec model
(Mikolov, K. Chen, et al., 2013; Mikolov, Sutskever, et al., 2013) where
the authors try to produce a semantically meaningful vector for each
word by using non labeled word sequences (document), based on
assumption that the words used in similar contexts share similar
meanings (Harris, 1954). The semantic closeness of words is kept in
the embedding (vector) space where the word analogy can be deduced
from simple mathematical operations, e. g. , : embedding(“king”) -
embedding(“queen”) ≈ embedding(“man”) - embedding(“woman”).
A common practice is to use word embeddings that are trained on
large unannotated corpus directly on downstream tasks (or slightly
fine-tuned based on task-specific data). Results show that this gen-
erally improves the performance of the downstream tasks (Mikolov,
K. Chen, et al., 2013; Devlin et al., 2018). Later, researchers attempted
to apply the same idea to different terms such as documents (Q. Le
and Mikolov, 2014), products (Barkan and Koenigstein, 2016; Vasile,
Smirnova, and Conneau, 2016), nodes of graph (Grover and Leskovec,
2016), graphs (Narayanan et al., 2017).

URL (Uniform Resource Locator), i. e. , the address of a webpage, can
be seen as a specific type of term. It is quite diverse, as a small change
in the URL string results in a totally different URL. Also, its cardinality
is very large which easily reaches billions, and keeps growing as new
URLs (e. g. , the URLs of articles in the news website) are generated
continuously. Thus, directly using one-hot encoding to represent each
URL separately leads to a high-dimensional sparse vector, which can
easily cause the curse of dimensionality issue (Bellman, 1957, 1961).

1.6 thesis contributions and related work 23

At the same time, different URLs may share the same part of the
URL string (e. g. , all webpages of the same website share the same
domain). This information is dismissed in a one-hot encoding vector.
As a result, how to project each URL to a meaningful dense vector
(URL embedding) has attracted researchers’ attention recently.

Basically, a URL string can be seen as a sequence of terms where
the term here can be either a character, a token or a component, with
granularity from high to low.

• URL as a sequence of components
Generally, one URL is delimited to three components 25: proto-
col, domain (host), and path, from left to right. Taking the URL
“http://www.exampledomain.net/index.html” for instance, the
“http” is its protocol, the “www.exampledomain.net” is its do-
main and the “index.html” is its path. In the case of the protocol
component, it could be either “http” (Hypertext Transport Pro-
tocol) or “https” (Hypertext Transfer Protocol Secure). In general,
the domain component can be considered as the main page of
the website. In the domain component, the rightmost token
(“.net” in the example) is the top level domain (TLD). The token
just before it (“exampledomain” in the example) is the domain
name. Path is what is left after the domain component, which
corresponds to the relative directories of the webpages.

• URL as a sequence of tokens
In another point of view, a URL can be also seen as a sequence
of tokens. How to tokenize the URL depends on the experi-
ence and the methods applied. A simple choice could be the
splitting of the URL every time where we encounter a special
character (e. g. , “:”, “/”, “.”). Thus the aforementioned URL
can be tokenized as: [“http”, “www”, “exampledomain”, “net”,
“index”, “html”]. At the same time, as not all the tokens provide
distinguishable and sufficient information, a preprocessing step
is often applied before feeding them to the model. A common
approach is to select tokens based on their frequency: tokens that
appear too frequently (similar to stop words) or rarely (noise
tokens) are removed. For example, “http”, “www”, “net” and
“html” will be removed as they appear commonly on all URLs,
providing little information. Other more sophisticated tokeniza-
tion methods (Sennrich, Haddow, and Birch, 2016; Y. Wu et al.,
2016; Kudo, 2018; Kudo and J. Richardson, 2018) that have been
developed and used in the NLP area with the goal to extract
informative subwords, may also be applied here.

• URL as a sequence of characters
URL is considered as a string (a sequence of characters) without
special treatment.

25. The components of a URL: https://www.ibm.com/docs/en/cics-ts/5.1?top
ic=concepts-components-url

https://www.ibm.com/docs/en/cics-ts/5.1?topic=concepts-components-url
https://www.ibm.com/docs/en/cics-ts/5.1?topic=concepts-components-url

24 introduction

Once the decomposition of a URL to terms is decided, the embedding
of a URL can be obtained by aggregating the embeddings of its corre-
sponding terms. Different methods that can be applied to compress a
sequence of vectors into a single vector, such as: simple average, CNN
with max-pooling (H. Le et al., 2018), RNN-based model (Cho et al.,
2014; J. Cheng, Dong, and Lapata, 2016). The existing URL embedding
methods in literature are generally a combination of the URL-to-term
decomposition and term embeddings aggregation. For instance, H. Le
et al., 2018 consider a URL as a sequence of characters and a sequence
of tokens (referred to “words” in the article) at the same time. A
CNN layer with max-pooling is applied on top of each sequence and
concatenated to construct the final embedding of the URL. T. T. T.
Pham, Hoang, and Ha, 2018 simply consider each URL as a sequence
of characters and add a CNN or LSTM on top of it. H. Yuan et al.,
2018 consider a URL as a sequence of five components (protocol, sub
domain name, domain name, domain suffix, URL path). For each
character, a skip-gram model is applied to learn their embeddings.
Then, the embedding of each component is considered as the average
of all the embedding vectors of its characters.

our contribution Although the aforementioned approaches
have good performance in general, their applications and data are
still limited in the domain of malicious URL detection while the URL
embeddings are mostly learned in a supervised way. Inspired by
Word2vec (Mikolov, K. Chen, et al., 2013) models, in our work (Qiu
et al., 2020; Tziortziotis et al., 2021), we learn the URLs embeddings in
a self-supervised way, using user browsing history data collected from
RTB campaigns. Here, user browsing history is analogous to document
and URL is analogous to word. As for the URL-to-term decomposition,
we simply remove the protocol component (“http://” or “https://”
part) of the URL and split the rest part by "/" to construct tokens.
The embedding of URL is obtained by aggregating the embeddings
of its tokens, proposed in three different ways. Domain_only uses the
embedding of the domain token as URL embedding, while Token_avg

(resp. Token_concat) averages (resp. concatenates) all the three token
embeddings to construct URL embedding.

1.6.2 User response prediction

As we have seen previously, in performance-driven RTB campaigns,
advertisers generally want to control their cost for each acquisition
of positive user response (e. g. , click, conversion, etc.). For example,
cost-per-action (resp. cost-per-click) is used as the maximum price
where they are willing to pay in average for each generated conversion
(resp. click). A representative of an advertiser (e. g. , DSP, agency, etc.)
typically uses cost-per-action (CPA) or cost-per-click (CPC) to guide

1.6 thesis contributions and related work 25

his bid price of each impression, depending on the ad campaign’s
objective. Actually, the expected value of one specific impression
(CPM/1000) can be decomposed to CPA× CVR (see Eq. 1.1, Sec. 1.3)
or CPC× CTR where CVR (conversion rate) and CTR (click-through
rate) represent the probability that this impression will lead to a
conversion and a click, respectively. Thus, an accurate estimation of
CVR or CTR is required to provide a reasonable value for the present
impression opportunity. This value is important for the following
bidding strategy because the bidder generally needs to know it in
order to offer the bid accordingly 26 (e. g. , in second price auction, the
optimal strategy is to bid truthfully at a price equal to the value of
the impression). Too optimistic estimation of this value causes budget
waste and reduces the number of impressions one can buy, while
a too passive estimation may lead to no winning bids and miss ad
impressions likely to lead to user actions.

In the following, we present a number of related works about the
CTR and CVR estimation, respectively. Typically, supervised models
are used here where each impression that leads to click/conversion
is labeled as positive and the rest are labeled as negative. The main
features used in the models are the features of impressions, as already
presented in Sec. 1.5. Additional features can be also added. For
example, one can consider the number of times that the user has seen
the ad from this advertiser as a feature.

ctr estimation The goal of a CTR estimator is to estimate the
probability that a user will click or not on the displayed ad of the
advertiser. At the beginning, classical shallow models such as Logistic
Regression (M. Richardson, Dominowska, and Ragno, 2007; Olivier
Chapelle, Eren Manavoglu, and Romer Rosales, 2015), and Decision
Tree models (J. H. Friedman, 2001; X. He et al., 2014) have been
proposed. Early attempts of model improvement focus on two main
issues: scalability and dataset imbalance.

• Scalability
In RTB, the buyer needs to decide the bid price in less than 100
milliseconds. Thus the model needs to be highly scalable in
order to give an estimation of the CTR in real time. Due to high
cardinality of categorical features such as URL, user-agent, di-
rectly using one-hot encoding can cause curse of dimensionality
issues (Bellman, 1957, 1961). Hashing trick (Weinberger et al.,
2009) is commonly adopted (Olivier Chapelle, Eren Manavoglu,
and Romer Rosales, 2015; Juan et al., 2016) as a simple and easy
to implement solution in order to reduce the feature dimension.

• Dataset imbalance
In practice, the CTR is generally less than 1%, which means that

26. In practice, for DSP, multiple ads are considered together. DSP often chooses
the one with the highest value to bid on.

26 introduction

the data is highly imbalanced, with way less positive samples
than negative ones. Researchers have developed many tech-
niques to deal with class imbalance, where two most popular
categories of solutions are the data-level and the algorithm-level
approaches (Leevy et al., 2018). In the case of the data-level
approaches, data sampling strategies are adopted where either
the major class is down-sampled (Wilson, 1972; Laurikkala, 2001;
J. Zhang and Mani, 2003) or the minor class is over-sampled
(Chawla et al., 2002; Han, W.-Y. Wang, and Mao, 2005; H. He
et al., 2008). For the algorithm-level approaches, cost-sensitive
learning techniques (Elkan, 2001; X.-y. Liu and Z.-h. Zhou, 2006)
are commonly adopted here, where we give different weights
at each class during the learning. For instance, a simple but
common practice is to give each class a weight that is reversed to
its portion in the data, so that minor (resp. major) class samples
get more (resp. less) importance.

Due to the aforementioned issues, linear models such as Logistic
Regression (LR) are commonly used in practice (King and Zeng, 2001;
Szwabe, Misiorek, and Ciesielczyk, 2017). Factorization machines
(Rendle, 2010, FM) and its extensions (Juan et al., 2016; Pan et al.,
2018) improve the LR model by taking also the interaction between
features into account. Specifically, in the case of FM, each feature is
assigned with a learnable embedding vector. The interaction between
two features is modeled as the inner product of their corresponding
feature embedding vectors.

As neural network (NN) models showed their effectiveness in vari-
ous tasks, researchers started to investigate and use them in the CTR
task. Instead of directly using sparse vectors to represent categorical
features, NN models learn dense vector representations (embedding)
of them. Then, these feature vectors are fed to Deep Neural Networks
(DNN, e. g. , multi-layer perceptron) to model high-order feature in-
teractions (H.-T. Cheng et al., 2016). Typically it is done by applying
a feature interaction layer (Weinan Zhang et al., 2021). For example,
the feature interactions in the FM model can be seen as a specific
case of an Inner Product-based Neural Network (IPNN) or an Outer
Product-based Neural Network (OPNN) (Yanru Qu et al., 2016). Con-
volution Neural Networks (Krizhevsky, Sutskever, and Geoffrey E
Hinton, 2012; Q. Liu et al., 2015; Bin Liu et al., 2019) and Attention
Mechanism (Vaswani et al., 2017; Xiao et al., 2017; G. Zhou et al., 2018)
have been also used to model feature interactions.

However, stacking DNN directly on top of the feature interaction
layer (refereed as single tower model (Weinan Zhang et al., 2021)) is
possible to loss low-order feature interactions information. To over-
come this weakness, dual tower models that put the feature interaction
layer and the DNN in parallel have been used. Wide & Deep network
(H.-T. Cheng et al., 2016) is one of the earliest attempts that add DNN

1.6 thesis contributions and related work 27

(referred as deep part) along with a standard LR model (referred as
wide part). Guo et al., 2017 use a FM as the wide part, while the FM
and DNN share the same feature embedding layer that is learned in
an end-to-end way. Recently, Y. Cheng and Xue, 2021 propose the
usage of a Discrete Choice Model (DCM, Train, 2009) to redefine CTR
prediction problem, showing that most of the existing CTR prediction
models can be included into a general architecture.

It is worth mentioning that click data is usually noisy and may even
contain fraud (see Sec. 1.5). Therefore, it does not mean that a click
represents positive user feedback for sure. The detection of this ‘false’
information has attracted the attention of research community recently
(R. Oentaryo et al., 2014; Tolomei et al., 2018; C. Wu et al., 2021).

cvr estimation The main objective of a CVR estimator is to
estimate the probability that the displayed impression of one advertiser
leads to a conversion such as visiting the advertiser’s website, buy
advertiser’s product, etc. To a certain degree, the CVR task is very
similar to the CTR task. They share the same impression data, while
only the label changes. Dataset imbalance issue is more severe in the
CVR task as conversion is generally rarer than clicks. That’s to say,
the techniques and models that deal with CTR tasks can generally be
adopted in CVR tasks. The major difference between CVR and CTR
task is that click feedback is instantaneous, but conversion feedback
has a delay. For example, a user may purchase an advertiser’s product
several days after he saw the advertiser’s ads. To define whether a
conversion is happening due to a displayed ad, a conversion window is
set and used by advertiser. The length of the conversion window is
variable and depends on the type of the conversion. Roughly speaking,
a conversion window of 30 days means that starting from the time
at which an impression is displayed, if a conversion happens during
the next 30 days, it’s possible that this conversion be attributed to this
impression. Any conversion out of this window will be ignored.

A major difficulty caused by delayed feedback is that it causes “false
negative” samples. A negative impression sample that has not led to a
conversion yet may lead to a conversion later. Common solutions share
a similar schema where the CVR model is decomposed to two models:
i) a conversion model to predict whether a conversion will arrive or
not, and ii) a time delay model to predict the conversion delay time. O.
Chapelle, 2014 uses generalized linear models for both conversion and
time delay models where an exponential distribution is used to model
the delay time. Yoshikawa and Imai, 2018 argue that non-parametric
models should be used to model the delay time since the delay time
distribution may have various shapes depending on the context of the
ad and the user. In order to better capture the information in the user
feedback sequence, Y. Su et al., 2020 applie deep learning structures
such as GRU (Cho et al., 2014), attention mechanism (Vaswani et al.,

28 introduction

2017) in both models. More details about CTR and CVR modeling can
be found at the next survey papers: Gharibshah and Xingquan Zhu,
2021; Weinan Zhang et al., 2021.

our contribution In our work (Qiu et al., 2020), we investigate
a conversion prediction problem where our objective is to predict if a
user will convert or not the next day. We consider a user as converted
if he has visited the advertiser’s website. In contrast to other related
works that use a combination of features related to the user profile
(e. g. , ad information and website information), we consider only
the user’s browsing history. Specifically, user’s browsing history
is collected from bid request data, in a single day. Using user’s
browsing history is end-user friendly as it doesn’t contain any other
information (e. g. , user-agent, ip address, etc.) that could be used
in order to identify the user. Another advantage of using a user’s
browsing history is that it typically reflects the interests of the user.
Due to the high cardinality and diversity of URLs, the direct use of
sparse transformations, such as the one-hot encoding, is not practical.
Following the idea of Word2vec models (Mikolov, K. Chen, et al.,
2013), we learn dense URL representations (URL embeddings, see
details in Sec. 1.6.1). Having computed the URL embeddings, an
aggregation layer is added on top of the URL embedding layer along
with a dense layer that estimates the conversion probability of the
user. The output of the aggregation layer can be considered as the
user representation. Actually, we propose three different variants of
the aggregation layer: average (averaging all the URL embeddings
in the sequence), dense (a dense layer with same dimension of URL
embedding), LSTM (a LSTM layer where the hidden state dimension
is the same with URL embedding). In total, we have introduced ten
different prediction conversion models. To evaluate the effectiveness
of the proposed prediction conversion models, we have conducted
large scale experiments on real log data collected from ad campaigns.
The empirical results show that our representation models are able to
group together URLs of the same category, and user browsing history
alone is useful to predict users’ visit on the advertiser’s website.

1.6.3 Audience expansion

In online advertising, advertisers’ goal is to deliver advertisements
about their products or services to the right audiences (users), in order
to increase their profit. The right audience here refers to the existing
customers or the potential ones. Audience expansion, also known as
look-alike targeting, is a popular strategy used to discover potential
customers for the advertisers. By applying an audience expansion
advertising strategy, the advertiser first provides a set of seed users who
have already shown their interest in advertiser’s products or services

1.6 thesis contributions and related work 29

(e. g. , converted users). Then, the agency (DSP) helps the advertiser to
discover more users with similar interests (browsing behavior). The
data used in the general audience expansion problem depends on
what the agency (DSP) has available on his side. When no specific
criteria is given by the advertiser, user behavior data are used as they
are highly related to the user’s ad responses. The main difficulties of
an audience expansion task are:

• Seed users selection criteria
Theoretically, advertisers are allowed to give any kind of seed
users as they prefer, where the selection criteria of the seed users
is not always clear and may even be unrevealed 27. Consequently,
the seed user set may contain a lot of noise, such as outlier users
or multiple subgroups of users.

• Satisfaction of multiple objectives
The expanded audiences often need to satisfy multiple objectives
or constraints defined by the advertiser. For example, the agency
or DSP needs to balance the number of expanded audiences
(should be sufficiently large in order to have enough reach) and
the budget constraint. Meanwhile, the expanded audiences are
desired to have comparable performance (in terms of generated
CTR, CVR, etc.) to the seed users.

• Scalability
In online advertising ad campaigns, millions of users need to be
examined, under a restricted runtime (minutes, or even seconds
in real-time). Thus, the applied audience expansion methods
need to be highly scalable in order to fulfill the needs of the
continuously created ad campaigns.

The audience expansion problem can be treated in a supervised
or unsupervised way. The general idea behind the supervised ap-
proaches (referred also as regression-based) is to consider the seed users
as positive samples and the rest users as negative samples. Then, a
classifier is trained using these labeled samples, trying to distinguish
the positive from the negative users. However, it’s worth mentioning
that not all non-seed users in the user pool are negative users. How to
carefully select true negative users from non-seed users is important
for the performance of the learned classifier. This problem is known as
positive-unlabeled learning (PU learning) problem (Bekker and Davis,
2020). For example, Jiang et al., 2019 examine multiple sampling
strategies (Bing Liu et al., 2003; Mordelet and Vert, 2014) for selecting
reliable negative samples from non-seed users.

In the case of unsupervised audience expansion approaches (known
also as similarity-based), we focus on selecting a suitable metric to
measure the similarity between users. Then, we can select the top-K
closest users to the seed users as the expanded audience set. Method-

27. In practice, advertisers commonly provide converted users as seed users.

30 introduction

ologies of these two categories (regression-based and similarity-based)
are often combined together (deWet and Ou, 2019) to achieve better
performance.

Next, we briefly present existing similarity-based audience expan-
sion methods applied in industry. For similarity-based models, with-
out the need of specific treatment for the features, Locality-Sensitive
Hashing (LSH, Slaney and Casey, 2008) technique is widely used in
production (H. Liu et al., 2016; Q. Ma et al., 2016; Qiang Ma et al., 2016;
deWet and Ou, 2019) to efficiently calculate the similarity between
user. By using proper hashing functions, it puts similar inputs (users
in our case) together (in same the ‘bucket’) with high probability. Due
to its low computational cost, it can scale up to handle hundreds of
millions of users (deWet and Ou, 2019).

At the same time, learning high quality embedding of feature helps
to uplift the model’s performance, as proven in the success of various
embedding methods (Mikolov, K. Chen, et al., 2013; Pennington,
Socher, and C. Manning, 2014; Devlin et al., 2018; Peters et al., 2018).
A two-stage model structure is commonly adopted in practice. At the
first stage, users embeddings are learned (usually offline) either in a
supervised or self-supervised way. At the second stage, the model
compute the similarity score of each user to its closest seed users and
output the top-K users as expanded user set. For instance, deWet and
Ou, 2019 propose to learn users embeddings based on the user-item
(user-Pin) interaction data collected by Pinterest. Then, LSH is applied
on the learned users embeddings to project similar users to the same
region (‘bucket’). This process is repeated for multiple times, where
the density of seed users in each region is calculated each time. The
affinity score of one candidate user to the seed user set is calculated
as the average of the seed user density in his bucket.

Y. Liu et al., 2019 work on a news feed recommendation system for
Wechat, where latest/hot/quality articles are considered as seed set (it
is updated continuously). First, the Youtube DNN model (Covington,
Adams, and Sargin, 2016) has been adopted to learn user embedding,
which is a stack of an embedding, an average pooling (for features
of the same field), a concatenation and a multiple layer perceptron
(MLP) layer. The output of the MLP layer is considered as the user
representation. In order to handle heterogeneous and multi-fields
features, the concatenation layer has been replaced with an attention
merge layer. Then, a supervised look-alike model based on attention
and clustering algorithm (k-means, Hartigan and Wong, 1979) is used
to predict a candidate user’s label. The main reason for using k-means
is for reducing the computational cost that is necessary for delivering
real-time recommendations.

Meanwhile, as mentioned previously, the seed user set may con-
tain a lot of noise. To tackle the issue, Zhuang et al., 2020 propose a
two-stage audience expansion system (named Hubble) that uses the

1.6 thesis contributions and related work 31

well-designed knowledge distillation mechanism (G. Hinton, Vinyals,
and Dean, 2015), to eliminate the coverage bias (the gap between the
seeds and the actual audiences) introduced by the provided seed set.
Specifically, at the first stage, user embeddings are learned based
on the user-campaign bipartite graph by using an adaptive and dis-
entangled graph neural network (AD-GNN). Next, besides the hard
label that indicates if a user is a seed user or not, a softened label is
created for each user with the help of the knowledge obtained by the
AD-GNN (i. e. , through knowledge distillation). A classifier is then
learned by considering both the hard and the softened label. In this
way, the coverage bias of seed users is alleviated.

our contribution In our work (Tziortziotis et al., 2021), we have
proposed and examined different similarity-based audience expansion
schemes based on users browsing history data, where the seed users
are the converted users. Thus, ideally, the expanded uses are users
who share similar browsing interests with the seed users. Specifically,
the proposed audience expansion models are generally two-stage
models, where users representations are learned at the first stage and
user similarity comparison is executed at the second one.

To learn users embeddings, we have adopted various NLP tech-
niques where each user (represented by his browsing history) is
analogous to a document (a sequence of words) and each visited
URL is analogous to word. Actually, we have proposed User2Vec and
User2VecC models which borrow the idea of document embedding
techniques Doc2Vec (Q. Le and Mikolov, 2014) and Doc2VecC (M. Chen,
2017), respectively. These two techniques learn document embeddings
in a self-supervised way. Then, user similarity comparison is done
pair-wisely by using cosine or euclidean similarity metrics. Beside
projecting each user to a single vector, we also examine methods that
compare directly the users by considering them as sequences of URLs
(Jaccard, 1912; S. Ioffe, 2010; Kusner et al., 2015). We have also pro-
posed a data-driven weight for each URL which is inspired by the
inverse document frequency (IDF, Sparck Jones, 1988), in order to
alleviate the frequency redundancy of URLs that comes by website
refreshment. Additionally, we have examined the effect of seed user
filtering by removing users whose browsing history is dominated
by few URLs. Our experiments on real world data have shown that
the Continuous Bag of Words (CBOW) version of User2VecC model,
combined with IDF transformation and euclidean similarity, is the
best choice among the proposed audience expansion schemes. Last,
we have seen that the seed user filtering is of high importance for
achieving a good model performance.

32 introduction

1.7 thesis organization

The remainder of the dissertation is organized as follows. Chapter 2

presents some preliminaries and introduces some general machine
learning concepts, such as neural network models, popular word em-
bedding techniques, etc. The next two chapters (Chapter 3 and 4)
present in detail the methodologies proposed in this thesis that try to
solve two challenging tasks in the area of display advertising. Specifi-
cally, Chapter 3 presents our work on the user conversion prediction
task where we predict user conversion based on user browsing history
data. One of the main novelties of this work is the learning of URL
embeddings in a self-supervised way using only the user’s browsing
history. Chapter 4 presents our work on the audience expansion task
using user browsing histories. In this work, we propose and examine
different similarity-based audience expansion schemes, focusing on
learning a high-quality user embedding. Finally, Chapter 5 concludes
the dissertation and gives further promising research directions.

2
P R E L I M I N A R I E S A N D B A C K G R O U N D

In this chapter, we introduce necessary preliminary knowledge
concerning this dissertation. We first introduce basic concepts and
notations (Section 2.1) that we need in order to understand this chap-
ter (algebra, optimization, etc). Then we briefly introduce the main
concepts of machine learning (Section 2.1) including its categorization
(Section 2.2.1), the training (Section 2.2.2) and the evaluation proce-
dure (including evaluation protocol in Section 2.2.5 and evaluation
metrics in Section 2.2.6), underfitting and overfitting issues (Section
2.2.3) and how to prevent overfitting through regularization (Section
2.2.4). After, we introduce a specific type of machine learning model,
the neural networks (Section 2.3), which achieves state-of-the-art re-
sults in various domains such as computer vision, natural language
processing, AI game playing where standard machine learning models
fail to get close performance. Finally, we present models that can
learn dense and meaningful representations of words (Section 2.4) and
documents (Section 2.5) from unannotated corpus, with main interest
in methods that use neural networks to learn those representations
in a self-supervised way, because of their impressive performance in
downstream tasks.

2.1 basic math

2.1.1 Algebra

vector All the vectors in this dissertation are by default column

vectors. A p-dimensional vector v ∈ Rp is denoted as

v1
...

vp

 or

[v1, · · · , vp]T where T is the transpose operator.

eigenvalue and eigenvector A non-zero vector v of dimen-
sion n is an eigenvector of a square n× n matrix A if it satisfies the
linear equation Av = λv where λ is a scalar, referred as the eigenvalue
corresponding to v.

orthogonal matrix A p× p real square matrix A is an orthog-
onal matrix iff. AAT = ATA = I where I is identity matrix. Its
columns and rows are orthogonal vectors.

33

34 preliminaries and background

Figure 2.1 – Overview of SVD and Truncated SVD on term-document matrix
Q of rank r. For Truncated SVD, the selected part are marked
with solid lines.

positive-definite matrix A p× p symmetric real matrix A is
said to be positive-definite iff. v>Av > 0 for all non zero vector v ∈ Rp.

svd Matrix factorization methods decompose a matrix as a prod-
uct of matrices where new matrices are often with useful properties
(e. g. , orthogonal, triangle). It facilitates future operations and latent
factors discovery (e. g. , word-document co-occurrence matrix is de-
composed to word-topic, topic-document matrices). Singular Value
Decomposition (SVD, Golub and Reinsch, 1970) is the widest used
matrix factorization method, it decomposes a given matrix Q of size
v× n and rank r (r 6 min(v, , n)) in the following way:

Q = UΣV >, (2.1)

where U , V are orthogonal matrices of size v× r, n× r respectively
and Σ is a diagonal matrix of size r × r. More specifically, Σ =

diag(σ1, . . . , σr) where {σi} are known as singular values of Q, sorted
in descending order (σ1 > σ2 · · · > σr).

Some practical applications such as data compression, denoising,
search for the best low-rank approximation Q̃ ofQ, where the objective
is to minimize the Frobenius norm between Q̃ and Q (i. e. , ‖Q̃−Q‖F =√

∑i ∑j |Q̃i,j −Qij|2), under the constraint that rank(Q̃) = k < r.
Eckart–Young–Mirsky theorem (Eckart and Young, 1936) proves that
this problem has an analytic solution of the form:

Q̃ = UkΣkV
T

k , (2.2)

where Uk,ΣK and Vk are partitions of U , Σ and V respectively, cor-
responding to Q′s k-largest singular values (See Figure 2.1). This

2.1 basic math 35

approach is known as Truncated SVD. In practice, k is chosen so that
most information (often 90%) in Q is kept, i. e. , ∑k

i=1 σi ≈ 0.9 ∑r
i=1 σi.

Truncated SVD is often served as an efficient dimension reduction
method because k� min(n, v) when Q is sparse.

convolution operator Convolution operator ∗ takes two func-
tions g1 and g2 as input, and outputs a third function g1 ∗ g2 which
describes how the shape of g1 is affected by g2, formulated as follows:

(g1 ∗ g2)(t) =
∫
τ

g1(τ)g2(t− τ)dτ , t ∈ Rp. (2.3)

Its discrete version, where g1, g2 are both discrete functions defined
on Zd, is formulated as:

(g1 ∗ g2)(t) = ∑
τ

g1(τ)g2(t− τ), t ∈ Zp. (2.4)

Convolution operator is widely used in signal processing tasks to
examine frequency peaks of an input signal by taking the convolution
of the original signal with sinusoidal functions of different frequencies.
Additionally, by reflecting one of the two input functions on y-axis,
we obtain a close related operator named cross-correlation, where its
discrete version is defined as:

(g1 ? g2)(t) = ∑
τ

g1(τ)g2(t+ τ), t ∈ Zp. (2.5)

2.1.2 Optimization

partial derivative Given a function L : Rq → R of variable
w = [w1, · · · , wq]>, its partial derivative with respect to wi is defined as

∂

∂wi
L(w) = lim

h→0

L(w1, . . . , wi + h, . . . , wq)−L(w1, . . . , wi, . . . , wq)

h
(2.6)

which measures how L changes along the i-th dimension of its variable
w.

gradient Given a function L : Rq → R of variable w, its gradient
is defined as

∇wL(w) =

[
∂

∂w1
L(w), · · · ,

∂

∂wp
L(w)

]>
(2.7)

As a fact, −∇wL(w) is the direction where L(w) decreases the fastest.

optimization and optimizer Optimization is the process of
using the algorithms called optimizers to either maximize or minimize
an objective function L : Rq → R on a feasible set F ⊂ Rq. As

36 preliminaries and background

maximizing L equals to minimizing −L and vice versa, we only
present the minimization case in the following discussion.

We first introduce the unconstrained optimization case where F =

Rq. In this case, we are interested to find ŵ that minimize L(w),
i. e. , ŵ = argminw L(w). Supposing L is smooth enough so that its
gradient exists everywhere, then for each w where L(w) reaches a
local minimum, we have

∇wL(w) = 0. (2.8)

Otherwise, we can move w along the opposite direction of the non-
zero valued partial derivative, L(w) will still decrease. Let’s consider
a simple situation first where only one minimum exists, i. e. , local
minimum equals to global minimum. In this case, if the analytic
solution of ∇wL(w) = 0 is possible, we can find the global minimum
point easily by solving this equation. If analytic solution is not possible,
which is often the case, gradient descent-based solutions are adopted.
They are based on the fact that the opposite direction of the gradient
∇wL(w) is where L decreases the fastest. In a nutshell, we randomly
select a starting point w0, we then let it move along the opposite
direction of its gradient with small step size, we repeat this process
until we reach a point ŵ where the gradient is 0 (in practice, we only
require the gradient to be small enough due to computational limits),
i. e. , reaches the global minimum point.

For the more general constrained case where the feasible set F ⊂ Rq,
a generic framework which includes the most popular iterative gradient
decent optimizers is provided by Reddi, Kale, and Kumar, 2019. Within
this framework, the learning rate applied on the optimizer is changed
adaptively in each iteration, under an online optimization setting.
Roughly speaking, following this family of gradient decent optimizers,
we can generally approach to the minimum point of an objective
function L(w) in a convergence speed that is linearly correlated with
the total iteration rounds T. From now on, we follow the setting
in their work to introduce this framework, with slight change of the
notation. We denote S+

q as the set of all q× q positive definite matrices;
L(w) as the empirical risk (see Section 2.2.2) of training samples with
parameter w, which represents the objective function to be minimized;
Lt(w) as the empirical risk of the t-th mini-batch. We denote the
projection of any pointw′ onto F as ΠF (w

′) = argminw∈F‖w′−w‖2,
the projection of w′ onto F with a positive definite matrix A as
ΠF ,A(w

′) = argminw∈F‖A
1
2 (w′ −w)‖2. The generic framework is

described in Algorithm 1 (Reddi, Kale, and Kumar, 2019), where αt is

referred as the step size and αtV
− 1

2
t as the learning rate of the algorithm,

φt : F t → Rq and ψt : F t → S+
q are two aggregation functions. For

each iteration t, we update the present pointwt following the direction
of −∇Lt (wt), with a step size αt decreasing with the iteration t.

2.1 basic math 37

Algorithm 1: Generic framework for most popular iterative
gradient descent algorithms

Input: w1 ∈ F , step size {αt > 0}T
t=1, sequence of functions

{φt, ψt}T
t=1;

for t = 1 to T do
gt = ∇wLt (wt)
mt = φt (g1, . . . , gt)
Vt = ψt (g1, . . . , gt)

w′t+1 = wt − αtV
− 1

2
t mt

wt+1 = Π
F ,V

1
2

t

(
w′t+1

)
end

The classical (mini-batch) Stochastic Gradient Descent (SGD, Robbins
and Monro, 1951) algorithm belongs to the case where

φt (g1, . . . , gt) = gt, ψt (g1, . . . , gt) = I , αt = α/
√

t. (2.9)

2.1.3 Activation functions

Here, we present some basic activation functions (sigmoid, hyper-
bolic tangent, softmax, ReLU) used in the models presented in this
dissertation.

sigmoid The sigmoid activation function σ takes a scalar z as input,
transforms it into a value between 0 and 1 (interpreted as probability),
defined as follows:

σ(z) =
1

1 + ez , z ∈ R (2.10)

It is often served as the last layer of a binary classification model
(e. g. , Logistic Regression) where it outputs the predicted probability
for the positive class.

hyperbolic tangent function Hyperbolic tangent function (Tanh)
takes a scalar z as input, transforms it into a value between −1 and 1,
defined as follows:

tanh(z) =
ex − e−x

ex + e−x =
e2x − 1
e2x + 1

, z ∈ R (2.11)

softmax The softmax function takes a vector z ∈ Rk as input,
normalizes it into a probability distribution p proportional to the
exponentiation of z, i. e. ,

pi = so f tmax(z)i =
ezi

∑k
j=1 ezj

, for i = 1, . . . , k. (2.12)

38 preliminaries and background

It’s an extension of sigmoid activation function for k-class classification
model where each position of the softmax’s output is the predicted
probabilities for each class.

relu The Rectified Linear Unit (ReLU) activation function (Nair and
Geoffrey E. Hinton, 2010) takes a scalar z as input, returns z if it is
positive and 0 otherwise. i. e. ,

ReLU(z) = z+ = max(0, z), z ∈ R (2.13)

The advantages of using ReLU are that the function and its gradient
are extremely easy to compute, which reduces the computation time
comparing to using sigmoid. Also, it introduces sparsity as negative
input are squashed to 0.

2.2 machine learning basics

Machine learning (ML) is often considered as a measure to realize
Artificial Intelligence (AI). It focus on designing computer models (al-
gorithms) which automatically learn from data to solve specific tasks.
Compared to rule-based models which require large amount of human
experts’ investigation for each encountered problem, learning-based
models are typically adapted to a type of problems and require only
enough data with moderate human supervision. ML is the core of
various applications such as spam detection (Dada et al., 2019), image
classification (Krizhevsky, Sutskever, and Geoffrey E Hinton, 2012;
K. He et al., 2015), product recommendation (Linden, Smith, and
York, 2003; Q. Chen et al., 2019), language translation (Bahdanau, Cho,
and Yoshua Bengio, 2016; Johnson et al., 2016; Y. Wu et al., 2016),
autonomous driving (Grigorescu et al., 2019). Taking the spam detec-
tion task as an example, the objective is to design an algorithm that
automatically identify whether an email is a spam or not. The main
questions to be answered here are: How the model learns from data?
Can we confirm the model has learned something? What is the actual
performance of the learned model? In the following sections, we
introduce the main concepts in machine learning by trying to answer
these questions.

2.2.1 Machine learning categorization

In machine learning domain, the data is typically presented in form
of dataset, which is a collection of samples (examples). As computers
can only take numeric inputs, each sample is typically represented by
a multi-dimensional tensor where each entry represents a qualitative
or quantitative measure of its characteristic (feature). Without loss
of generality, we suppose each input is a vector, denoted as x ∈ Rp

where p is the dimension of the feature space. A dataset with n

2.2 machine learning basics 39

examples is denoted as a set {xi}n
i=1 or a matrix X ∈ Rp×n as the

feature dimension p is the same for all samples.
In the spam detection task, for example, we can represent an email

using two features: the number of special characters in the email and
the domain of the sender’s email address. An email which contains
100 special characters and sent from xxx@gmail.com can be repre-
sented by a 2-dimensional vector [100, 4]> where 100 is the number of
special characters in the email and 4 is the index of gmail.com in the
vocabulary of domains.

Depending on the types of data that machine learning algorithms are
allowed to use, most of them can be included in two categories (Hastie,
Robert Tibshirani, and J. Friedman, 2001; Bishop, 2006): supervised
learning and unsupervised learning.

supervised learning Given an annotated dataset {(xi, yi)}n
i=1,

the goal of supervised learning is to learn how to correctly predict
y knowing x. The y is referred as target, with a role to guide and
supervise the learning process. Actually, depending on the type of
the target y, we can generally separate supervised learning tasks to
regression and classification. In regression tasks, y is a scalar, i. e. , y ∈ R.
For example, predicting the salary of an employee given his gender,
years of experience and job title is a regression task. In classification
tasks, y is a class (category), i. e. , y ∈ {0, . . . , k − 1}, k > 2 where k
is the number of predefined classes. In practice, classification can
be further divided into three settings: 1) binary classification: each
example can only be labeled with one of two classes (k = 2, e. g. , spam
or non-spam), 2) multi-class classification: similar to the binary one,
but with more possible classes (k > 2), 3) multi-label classification: each
example can belong to multiple classes at the same time (y ∈ {0, 1}k).

unsupervised learning For unsupervised learning, we are
given an unannotated dataset {xi}n

i=1. Without the guidance of the
labels {yi}n

i=1, the goal is to learn the underlying properties or struc-
tures of {xi}n

i=1 (Pearson, 1901; Goodfellow et al., 2014; Kingma and
Welling, 2014) or to classify them into different groups (MacQueen,
1967; Ester et al., 1996; Rokach and Maimon, 2005). Unsupervised
models often involve comparing the similarity between two samples
(e. g. , if two samples are close, they are clustered together) where the
similarity measure has a heavy impact on the model’s performance,
which should be coincident with the nature of the data.

Although we are in the era of Big Data where huge amounts of data
are produced, processed and stored at every second, annotated data’s
quantity is still limited, due to the fact that high quality data labeling
requires large amount of careful human work. On the other side, unan-
notated data such as images, text corpus, videos, seem to be ‘unlimited’
and can be collected easily. To take profit of these unlimited resources,

40 preliminaries and background

self-supervised learning (sometimes considered as a specific type of
unsupervised learning) attracts more and more attention (Arora et al.,
2019; Xiao Liu et al., 2021), especially in Natural Language Processing
(NLP) domain (Mikolov, K. Chen, et al., 2013; Devlin et al., 2018). The
general idea is to create proper labels directly from the unannotated
dataset, then run supervised learning models on top of it. Instead
of focusing on the performance of the auxiliary supervised models,
self-supervised learning focus on learning meaningful intermediate
representations. The learned representations will be used directly
or be fine-tuned to serve downstream tasks. For example, in NLP
domain, a common practice is to mask (hold) a word from a sentence
and let the model to predict the masked word (e. g. , masked language
model in Section 2.4.3). By doing this, the model is forced to learn
semantically meaningful representation of words which is used later
in downstream task to improve the task’s performance (Hendrycks
et al., 2019; J. D. Lee et al., 2020).

Other categories of machine learning models also exist. Semi-
supervised learning (Xiaojin Zhu, 2005) is a mixture of supervised
learning and unsupervised learning where the algorithms are given a
small amount of labeled data and much larger amount of unlabeled
data. In Reinforcement learning (Sutton and Barto, 2018), the algorithm
(referred as the ‘agent’) interacts with an environment instead of a
fixed dataset and interactively gets feedback (reward) from the envi-
ronment according to its actual state and next action, with the goal to
maximize the total reward. These two categories will not be covered
in this dissertation.

2.2.2 Learning as optimization

In this section, we introduce the learning (training) procedure of
machine learning algorithms (models) focusing on supervised learning
under a probabilistic setting.

Machine learning tasks typically involve three components: dataset,
model and loss function. In supervised learning, we are given an
annotated dataset {(xi, yi)}n

i=1 consisting of n input-target pairs where
each pair (x, y) is drawn independently from a fixed but unknown
joint distribution P. A machine learning model (algorithm), considered
as a family of functions { f | f ∈ F} that it can realize where each f
corresponds to a specific setting of it, models the dependency of y
on a given x. f (x) (often denoted as ŷ) is an estimator of y where f
is referred as predictor. The discrepancy between the target y and its
estimator ŷ is measured by `(ŷ, y) where ` is the loss function.

We denote the expected risk (also known as expected loss, generalization
error) of a given predictor f as

L(f) = E[`(f (x), y)] =
∫

`(f (x), y)dP(x, y). (2.14)

2.2 machine learning basics 41

It measures the general approximation quality of f under the data
distribution P. Indeed, ideally we would like to learn (find) the oracle
best predictor f ? which minimizes L(f) over all possible functions,
i. e. , to learn

f ? = argmin
f
L(f). (2.15)

However, we have two main issues here: First, we don’t have access to
the underlying distribution P, we only have its samples in the dataset.
Second, it’s not possible to test all the functions. For the first issue,
in practice, we use the empirical risk (also known as empirical error,
training error) Ln(f), calculated based on the dataset, as a proxy of the
expected risk L(f) where

Ln(f) =
1
n

n

∑
i=1

`(f (xi), yi). (2.16)

For the second issue, we constrain the search of f on a set F (repre-
senting the model) that we think probably suits the task. Thereupon,
the original goal of finding f ? (Eq. 2.15) is transferred to find f̂ ∈ F
where

f̂ = argmin
f∈F

Ln(f). (2.17)

In most cases, f ∈ F is parameterized by a fixed number of parameters,
denoted as a vector w ∈ Rq (the number of parameters q can be
different from the input’s dimension p). By replacing f with fw, we
rewrite the Equation 2.17 to

ŵ = argmin
w∈W

Ln(w), (2.18)

where

Ln(w) =
1
n

n

∑
i=1

`(fw(xi), yi) (2.19)

withW being the candidate set of w. Once the aforementioned three
components (dataset, model, loss function) of the learning problem are
defined, we typically use optimization algorithms such as the gradient
descent based optimizer introduced in Algorithm 1, Section 2.1.2 to
find ŵ.

Taking again the spam detection (binary classification) task for
example, one typical choice of the models is logistic regression (Cox,
1958) where we estimate the probability of an email being a spam in a
log-linear way, formulated as follows:

ŷ = fw(x) = σ(w>x), (2.20)

where σ is the sigmoid function, w ∈ Rp. The corresponding loss
function l is log loss (also known as logistic loss or cross-entropy loss),
where its binary-class version is defined as follows,

`(ŷ, y) = −(y log(ŷ) + (1− y) log(1− ŷ)). (2.21)

42 preliminaries and background

Actually, the choice of loss function ` is not unchangeable for a
given model. In spam detection task, one intuitive loss function could
be the 0-1 loss:

`(g(ŷ), y) = 1g(ŷ) 6=y =

{
1, if g(ŷ) 6= y

0, if g(ŷ) = y
(2.22)

where g(ŷ) is the corresponding label of ŷ and 1 is the indicator
function. To be more precise, g(ŷ) = 1ŷ>thres where thres represents a
threshold, typically set to 0.5. However, as regard of the optimization
process, convexity is a desirable property for the objective function to
be minimized. It can guarantee that only one minimum exists (local
minimum equals to the global minimum). So instead of using 0-1
loss, we typically use log loss (Eq. 2.21). Meanwhile, the choice of `
can be task-dependent and objective-dependent, as one can argue that
it should be more critical to misclassify a non-spam email as spam
because the receiver may miss important messages. In this scenario, a
weighted version of log loss should be considered.

In addition, most algorithms specifically model a bias term by
adding a dimension in the input feature vector x with value 1. Thus,
instead of having x = [x1, . . . , xp], we have

x = [x1, . . . , xp, 1]. (2.23)

For the rest of this dissertation, we include the bias term by default while
keeping the same notation unchanged.

2.2.3 Error decomposition

We expect the learned predictor f̂ (Eq. 2.17) to have a good per-
formance in practice, expressed by a low generalization error L(f̂).
This error is closely related to the capacity (complexity) of the model
F which is typically measured by Vapnik–Chervonenkis dimension (VC-
dimension, Vapnik, 1995). To be more precise, a classification model
with VC-dimension n means there exists a set of n points that can
be shattered by it, and no set of n + 1 points can be shattered. The
‘shatter’ here means that for any label assignment (with label 0 or 1)
of each data point, their exists at least one function inside the function
set, that separates the data points with no mistake. For example,
the set of hyperplanes in 2-d space (i. e. , lines) is of VC-dimension 3
because any label assignment of 3 data points that are not colinear can
be separated perfectly (i. e. , shattered) by it, and no set of 4 points can
be shattered.

Denoting f ?F the predictor which minimizes the expected risk L(f)
on the candidate function set F , i. e. ,

f ?F = argmin
f∈F

L(f), (2.24)

2.2 machine learning basics 43

Figure 2.2 – A typical relationship between the capacity of the model F , the
training risk Ln(f̂) (training error, dashed line) and the test risk
L(f̂) (generalization error, solid line) of the learned predictor
f̂ ∈ F . The training risk always goes down when we increase
the capacity of F , while the test risk first goes down, then goes
up, forming a U-shaped curve. Figure taken from Belkin et al.,
2019.

the expectation of the generalization error of the learned predictor f̂
can be decomposed as sum of three error terms as follows (Bottou and
Bousquet, 2008):

E[L(f̂)] = E[L(f̂)−L(f ?F)] + E[L(f ?F)−L(f ?)] + E[L(f ?)]

= εest + εapp + E[L(f ?)],
(2.25)

where the expectation is taken on the random choice of the training
data. The estimation error εest measures the impact of using empirical
risk instead of expected risk when searching the best predictor. Vap-
nik–Chervonenkis theory (VC theory, Vapnik, 1995) shows that εest can
be bounded by some term which increases with the VC-dimension of
F and decreases with the number of training samples n. The approx-
imation error εapp measures how closely the optimal solution found
in F (i. e. , f ?F) approximates the oracle one (i. e. , f ?), it decreases
when we choose a larger set of F . The final error term E[L(f ?)] is
an irreducible error, corresponding to the generalization error of the
oracle best solution f ?, which is the smallest generalization error over
all functions. When we fix the number of training samples n, E[L(f̂)]
only depends on the choice of the candidate function set F .

In general, a U-shaped curve is formed for the generalization error
L(f̂) when we tune F ’s (the model’s) capacity (complexity) from low
to high, see Figure 2.2. The increase of F ’s capacity is typically done
by adding functions into it, i. e. , using larger F , and vice versa. This
U-shaped curve is closely related to two major problems in machine
learning: underfitting and overfitting. At the left part of the curve, F ’s
capacity is relatively low, we are at underfitting zone with high εapp

44 preliminaries and background

and low εest. The training error and generalization error both go down
along with the increase of F ’s capacity. At the right part of the curve,
F ’s capacity is relatively high, we are at overfitting zone with low εapp

and high εest. The training error still goes down but the generalization
error goes up with the increase of the F ’s capacity. Therefore, in order
to have the lowest generalization error, one need to find the optimal
tradeoff point of F ’s capacity which sits at the bottom of ‘U’ (marked
as ‘sweet spot’ in the figure).

This tradeoff is also known as bias-variance tradeoff (Geman, Bienen-
stock, and Doursat, 1992), often analyzed and presented in the case
where the loss function ` is the square loss, i. e. , `(ŷ, y) = (y− ŷ)2.
The approximation error εapp represents the bias and the estimation
error εest represents the variance.

In practice, as f̂ , the minimizer of Ln(f), needs to be found with lim-
ited time and calculation resources, we generally stop the optimization
process at a point f̃ when we think we are close enough to f̂ . Taking
the gradient descent optimizer for example, we stop it either when
the maximum number of iterations is reached or when the change
of loss is inside a predefined tolerance range. The expectation of the
generalization error of the practical solution f̃ can be decomposed as
follows (Bottou and Bousquet, 2008):

E[L(f̃)] = E[L(f̃)−L(f̂)] + E[L(f̂)−L(f ?F)]+

E[L(f ?F)−L(f ?)] + E[L(f ?)]

= εopt + εest + εapp + E[L(f ?)].

(2.26)

Therefore, in practice, the choice of optimizer and the number of
iterations used in the optimization process also influence the final
performance of the model.

2.2.4 Regularization

In order to prevent overfitting and ill-posed optimization problem
during the learning procedure, regularization is needed. Different
strategies exist, such as early stopping (Yao, Rosasco, and Caponnetto,
2007), Lp-norm penalties (A. N. Tikhonov, 1963), bagging (Breiman,
1996). Quite often, regularization could be expressed as adding an
penalty term on the objective function which can be seen as a preference
or prior imposed on the solution that the algorithm should find. The
regularized version of the optimization problem, corresponding to the
Equation 2.17, is:

f̂ = argmin
f∈F

Ln(f) + λR(f), (2.27)

2.2 machine learning basics 45

where R is the penalty term on f and λ is a hyper-parameter which
controls the degree of regularization. When f is parameterized by w,
we have the regularized estimator of w as:

ŵ = argmin
w∈W

Ln(w) + λR(w). (2.28)

For Lp-norm regularization, two common used terms are L2 and L1

regularization, where we penalize large weights of parameters. For
the L2 regularization (also known as weight decay, Hanson and Pratt,
1989), R(w) = ‖w‖2

2. In the linear regression case, adding this term
(Ridge regression, Hoerl and Kennard, 1970) resolves the ill-posed
optimization problem when the features are highly linear correlated to
each other. For L1 regularization, R(w) = ‖w‖1. In linear regression
case, adding this term (Lasso, R. Tibshirani, 1996) shrinks the weights
of some parameters to zero which implies implicitly a feature selection
and introduces sparsity in the model.

2.2.5 Evaluation protocol

Hyper-parameters, such as the degree of regularization (λ of the Equa-
tion. 2.27), control the high-level behavior of the learning algorithms.
They are set before the learning procedure starts. In order to choose
the best one, we need to access the generalization error L(f̂) of the
learned predictor f̂ under each hyper-parameter. However, as the un-
derlying distribution P is unknown, we use the empirical error Ln(f̂)
on unseen dataset (validation set) as a proxy. Meanwhile, in order
to have an idea about the performance of the final chosen predictor
(learned under the best hyper-parameter), another unseen dataset (test
set) is required. So in the end, during the whole machine learning
process, we need three datasets: training set, validation set and test
set. All of them should come from the same underlying distribution P
and be independent from each other.

In practice, instead of three independently collected datasets, we of-
ten have one whole dataset at hand. To create aforementioned datasets,
we randomly split the data into three disjoint partitions, usually with
a train-validation-test cut equals to a%-b%-c% where a > b > c > 0.
However, this one-shot split may potentially cause the model’s perfor-
mance to depend on a particular random choice of train-validation
split and it reduces the amount of data that the training set can use. A
cross-validation strategy (Stone, 1974) is adapted to solve these issues
where the test set is still held out for final evaluation, but the training
and validation set are created repeatedly by randomly taking parts
of the rest data. In a common k-fold cross-validation approach, the
data is randomly split to k equal-sized subsets (folds). Given a hyper-
parameters setting, for each one of the k folds, we take the rest k− 1
folds as training set to train the algorithm and this fold as evaluation

46 preliminaries and background

set to evaluate the algorithm. The performance of the given hyper-
parameter setting is judged by the average evaluation performance of
k rounds. We then take the best hyper-parameter setting, retrain the
algorithm using the whole k folds data to get our final predictor f̂ . In
the end, the actual performance of the final predictor f̂ is evaluated
on the test set.

2.2.6 Evaluation metrics

Evaluation metrics are the measures that the model is eventually
evaluated with, which can be different from the objective function used
in the learning procedure. Theoretically, we can chose any measure
we want, but an ideal one should reflect the real world needs of the
task on which we apply the model. The common reason that we do
not directly optimize our model using the actual evaluation metrics
is that quite often, they are non-convex or not even smooth, e. g. , the
error rate (the average of 0-1 loss on all samples).

Taking the logistic regression for example, as we have seen pre-
viously, we use the log loss as loss function (Eq. 2.21). The actual
evaluation metrics can be accuracy, F1-score, Receiver operating char-
acteristic (ROC) curve, Precision-Recall (PR) curve, etc. , depending on
the practical needs. In the following, we first introduce several basic
measure components and then use them to present ROC curve and
PR curve which we’ll use in our experiments, focusing on the binary
classification case.

2.2.6.1 Basics concepts

Predicted class

positive negative

Actual class
positive TP FN

negative FP TN

Table 2.1 – Confusion matrix of binary classification.

For binary classification tasks, given a discrimination threshold
thres, a sample is classified as positive (P) if the predicted probability
p (that the sample belongs to the positive class) is greater or equal
than the predefined threshold, i. e. , p > thres. On the other hand,
if p < thres, it is classified as negative (N). In general, thres is set
to 0.5. By comparing the predicted class of each sample with its
actual class, we can tell if the predictions we made are true (T) or
false (F). Therefore, we can separate the prediction outcomes to four
types, summarized as a confusion matrix (also known as error matrix,
Stehman, 1997) shown in Table 2.1, where TP (True Positives), FP
(False Positives), TN (True Negatives), FN (False Negatives) represents

2.2 machine learning basics 47

Figure 2.3 – Example of ROC curve on different classifiers where a better
(resp. worse) ROC curve will be closer to the left upper corner
(resp. right lower corner) of the coordinate. Figure taken from
wikipedia 1.

the number of samples that correctly predicted as positive, incor-
rectly predicted as positive, correctly predicted as negative, incorrectly
predicted as negative respectively.

2.2.6.2 ROC curve & AUC score

We denote True positive rate (TPR) and False positive rate (FPR) as
follows:

TPR =
TP

TP + FN
,

FPR =
FP

FP + TN
,

(2.29)

where TPR represents the ratio of samples correctly predicted as
positive (TP) among all positive samples (TP+FN) and FPR represents
the ratio of samples incorrectly predicted as positive (FP) among all
negative samples (FP+TN).

ROC curve (Fawcett, 2006) is a graphical curve where each point
on the curve specifies (FPR, TPR) tuple of certain discrimination
threshold thres. Specifically, by decreasing thres gradually from 1 to 0,
ROC curve starts at (0, 0) where all samples are classified as negative
and ends at (1, 1) where all samples are classified as positive. Figure
2.3 presents an illustrated example of several classifiers with different
performance. Generally speaking, the better (resp. worse) the classifier
is, the closer it approaches the left upper corner (resp. right lower
corner) of the coordinate. A perfect classifier (classifies all samples

1. https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

48 preliminaries and background

correctly) assigns probability p = 1 for ever positive sample and p = 0
for every negative sample, i. e. , TPR = 1 ∀FPR and FPR = 0 ∀TPR.
A random classifier, sitting on the diagonal of the coordinate, has
TPR = FPR all the time.

In practice, to compare different ROC curves in a straightforward
way, Area Under the Curve (AUC) score is often used where we simply
calculate the surface of the area that covered by the ROC curve. It is
equal to the probability that a classifier will rank a randomly chosen
positive sample higher than a randomly chosen negative one (Fawcett,
2006), which indicates a classifier’s general performance.

Despite its wide usage, ROC curve may not be that informative
(Davis and Goadrich, 2006) when applied on an highly imbalanced
dataset with few minor class samples and many major class samples.
Suppose that minor class is positive class, then due to the large number
of negative samples (FP+TN), FPR will not be sensitive to the change
of FP. Thus, two algorithms with important gap of FP may still be
comparable on ROC curve. To overcome this, Precision-Recall (PR
curve) is used as an alternative for highly imbalanced dataset with a
focus on the positive (minor) class.

2.2.6.3 PR Curve & AP score

We denote Precision and Recall as follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

(2.30)

where Precision, Recall represent the ratio of samples correctly pre-
dicted as positive (TP) among all positive predictions (TP+FP) and
among all positive samples (TP+FN), respectively. In other words,
Precision shows how accurate the positive predictions are and Recall
(exactly the True Positive Rate (TPR) in Equation 2.29) shows the
coverage of actual positive samples in the predictions.

Same as ROC curve, PR curve can be obtained by varying the
discrimination threshold (thres) of the classifier where each point on
the PR curve specifies (Recall, Precision) tuple of the corresponding
threshold. Specifically, by decreasing thres gradually from 1 to 0, PR
curve starts at (0, 1) where are samples classified as negative and ends
at (1, r) where all samples are classified as positive, with r the ratio of
positive samples in the dataset (r = 0.5 for a balanced dataset). The
PR curve of a random classifier is represented by a horizontal line
where the value on y-axis is r. A better (resp. worse) classifier will
approach closer to the upper right corner (resp. lower left corner) of
the coordinate.

To summarize PR curve in one single score, unlike ROC curve,
we can’t use its AUC score because linear interpolation of points is

2.3 neural networks 49

typically involved in calculating the AUC score, it will give overly-
optimistic estimate of the classifier’s performance (Davis and Goad-
rich, 2006). Instead, we use the Average precision (AP) score which is
a weighted sum of the Precisions achieved at each threshold thres,
defined as follows:

AP = ∑
n
(Recalln − Recalln−1)Precisionn, (2.31)

where Precisionn and Recalln are the Precision and Recall at n-th
threshold respectively.

Comparing to ROC curve which looks at all outcomes equally, PR
curve focus mainly on the prediction results corresponding to the
positive class where True Negatives (TN) are totally ignored. Thus, PR
curve suits well the case where the positive class is more important
than the negative class, or the positive class is the minor class in
an imbalanced dataset. Under other conditions, using ROC curve is
preferred.

2.3 neural networks

Artificial Neural Networks (ANNs), or Neural Networks (NNs) in short,
is a specific kind of machine learning models which is originally
inspired from neuroscience to imitate human brains’ working mecha-
nism. Nowadays, they go beyond that and are more sophisticatedly
designed which achieve state-of-the-art results across various domains,
such as computer vision (K. He et al., 2015; Tan and Q. V. Le, 2020),
Natural Language Processing (NLP) (Devlin et al., 2018; Brown et al.,
2020), game playing (Silver et al., 2016; Justesen et al., 2017), where
standard machine learning algorithms fail to get close performance.
In the following discussion, first, we briefly introduce biological neu-
rons’ working mechanism and how artificial neurons imitate them in
a mathematical way. Then, we introduce the concept of layer, which is
the basic building block of NNs and we provide several examples of
commonly used types of layers. Finally, we discuss the reasons why
neural networks are so successful nowadays and the challenges they
potentially face.

2.3.1 Basic concepts

Human brains are able to deal with extremely complex tasks such
as visioning, feeling, talking, reasoning, which involve cooperation of
huge amount of different neurons as information carriers. Information,
in form of impulses and chemical signals, is transmitted by neurons
through different areas of the brain. A typical structure of neurons
can be seen in Figure 2.4 where the dendrites receive the signals in
a non-uniform manner, aggregate and pass them to the cell body,

50 preliminaries and background

Figure 2.4 – A typical structure of biological neurons 2. The dendrites receive
the signals in a non-uniform manner, aggregate and pass them
to the cell body, then the axon sends the aggregated signal to
other connected neurons through synapses.

then the axon sends the aggregated signal to other connected neurons
through synapses if the aggregated signal passes certain threshold
(activated).

Artificial neurons are introduced as mathematical models that imitate
the biological neurons’ working mechanism in a simplified manner.
For a basic artificial neuron, given an input signal x ∈ Rp, the output
signal o is formulated as follows:

o = g(z) = g(w>x), (2.32)

where w ∈ Rp is the weight vector, g is typically a non-linear function
known as activation function (Section 2.1.3), and z ∈ R is the aggregated
signal.

Artificial neural networks (ANNs), consisting of artificial neurons, are
introduced to imitate functionalities of our brain. They are generally
presented as a stack of layers where each layer is a group of artificial
neurons that operate together to provide certain functionality at a
specific depth of NN. Each layer transforms its input to a slightly more
composite, often more abstract representation. Generally speaking,
for a neural network, the very first layer which just takes the input as
it is is referred as input layer and the last layer which gives the output
of the NN is referred as output layer. The rest layers in between are all
denoted as hidden layers. We denote the depth of NN as the number of

2. source: https://www.yumpu.com/en/document/read/33756198/axon-dendrit
e-cell-body-neuron-nerve-cell-anatomy-synapse

https://www.yumpu.com/en/document/read/33756198/axon-dendrite-cell-body-neuron-nerve-cell-anatomy-synapse
https://www.yumpu.com/en/document/read/33756198/axon-dendrite-cell-body-neuron-nerve-cell-anatomy-synapse

2.3 neural networks 51

Figure 2.5 – A 4-layer feedforward neural network. Each node represents an
artificial neuron with the directed link indicating the information
flow and each blue dashed rectangle represents a layer. Only
the output of each neuron is displayed on the node.

layers it has, excluding the input layer. We often call a neural network
as Deep Neural Network (DNN) if its depth is profound.

2.3.2 Notations

We present a 4-layer FeedForward Neural Network (FFNN) (a basic
type of NN) in Figure 2.5 to introduce some basic notations of NN.
In the figure, each node (circled unit) represents an artificial neuron,
each blue dashed rectangle represents a layer. The directed links, often
referred as edges, indicate the flow of information where each node
receives information from the nodes pointing to it and sends informa-
tion to the nodes it points to. Thus, for this FFNN, the information
travels only in the forward direction. It starts from the input layer, goes
through two hidden layers and ends at the output layer. It’s worth to
mention that for each neuron, only its output (o) is displayed on the
node, the other information (g, z, w in Equation 2.32) is omitted.

In general, for a NN with L layers (depth L− 1), we denote the l-th
layer as a function Φ[l] which takes o[l−1] (the output of layer l − 1) as
input and gives o[l] as output, i. e. ,

o[l] = Φ[l](o[l−1]) ∀l ∈ [1, . . . , L], (2.33)

where o[0] = x and Φ[1](x) = x. Specifically, we denote o[1] as x for
the input layer and o[L] as ŷ for the output layer. Considering the
whole L-layer NN as a function f , given the input x, we get its output
as

ŷ = f (x) = Φ[L]
(
· · ·Φ[2]

(
Φ[1](x)

)
· · ·
)

. (2.34)

52 preliminaries and background

2.3.3 Type of layers

The aforementioned FFNN is just a simple example of NNs, one
can design various formats of NNs by stacking different types of
layers (Leijnen and Veen, 2020). Here we introduce several popular
and commonly used layers. Without loss of generality, each layer is
denoted simply as a function ΦW where W specifies its parameters.

fully connected layer Fully connected (FC) layer (also known
as Dense layer) is the essential building block of FFNN where each
node inside the layer is connected to all the nodes in the previous
layer. For a FC layer with k nodes (i. e. , with k-dimensional output),
we formulate it as

ΦW (x) = g(W>x) ∈ Rk, (2.35)

where x ∈ Rp is the input vector,W ∈ Rp×k represents the parameters
and g is an activation function.

The ’brute force’ FC layer can be computationally expensive when
p× k is large due to its full connectivity with previous layer (p× k
parameters to learn). Typically, it is served as the last layer of NN in
classification task with g being the softmax activation function. In this
case, the input vector is transformed to a probability distribution as
output where the output’s dimension k is the number of classes.

convolutional layer Convolutional (CONV) layer is the essen-
tial building block of Convolutional Neural Network (CNN) which has
a big success in computer vision area for tasks such as image classi-
fication (Krizhevsky, Sutskever, and Geoffrey E Hinton, 2012; K. He
et al., 2015; Simonyan and Zisserman, 2015), video analysis (Karpathy
et al., 2014). It also shows good performance in other tasks such as
sentence classification (Kalchbrenner, Grefenstette, and Blunsom, 2014;
Kim, 2014), time series analysis (B. Zhao et al., 2017).

Traditionally, CONV layer is designed to take two-dimensional data
(e. g. , an image) as input. For each operation, a matrix multiplication
is performed between a part of the input (e. g. , a part of the image)
and a weight matrix (referred as a filter or a kernel). This operation is
applied repeatedly (with the same kernel) along different axis of the
input, known as 1D CONV if applied along one single axis (Kim, 2014)
and 2D CONV for two axis (Krizhevsky, Sutskever, and Geoffrey E
Hinton, 2012).

Taking the 2D CONV layer for image classification task as an exam-
ple, we denote the input image as a matrix X ∈ Rp1×p2 where p1 and
p2 refer to its height and width respectively, the kernel as W ∈ Rk1×k2

(k1 6 p1, k2 6 p2). Then, the output of the 2D CONV layer is a matrix

2.3 neural networks 53

ΦW (X) ∈ R(p1−k1+1)×(p2−k2+1). Its entry of i-th row and j-th column
is formulated as:

ΦW (X)i,j = (W ?X)(i, j) =
k1

∑
n=1

k2

∑
m=1

Wn,mXi+n,j+m (2.36)

where ? represents the cross-correlation operator (see convolution oper-
ator, Section 2.1.1 for details).

Comparing to FC layer, CONV layer has local connectivity and pa-
rameter sharing as properties. In FC layer, each node is connected
to all the previous nodes (i. e. , dense connections), while in CONV
layer, each node is only connected to a local region the previous nodes
(i. e. , sparse connections). This local connectivity can be seen as an
analogy to cells in animal’s vision system where they only look at a
preferred location of images (Hubel and Wiesel, 1959; Lindsay, 2020).
Also, all the nodes in the CONV layer share the same parameters
(same convolution kernel W) which significantly reduces the number
of parameters to learn.

recurrent layer Recurrent layer (RNN layer) is the essential build-
ing block of Recurrent Neural Network (RNN) which is commonly used
in sequential tasks, especially in NLP area, such as language transla-
tion (Cho et al., 2014; Sutskever, Vinyals, and Q. V. Le, 2014), speech
recognition (Alex Graves, Mohamed, and G. Hinton, 2013). RNN
layer takes a sequence of vectors (x1, . . . ,xT) as input, and output
a sequence of vectors (o1, . . . , oT) of the same size, where T is the
length of the sequence, often referring to ‘time’. Thus, the RNN layer
can be generally expressed as:

ΦW (x1, . . . ,xT) = (o1, . . . , oT), (2.37)

where W groups all the parameters in the RNN layer. To be more
precise, for each time step t, an output vector ot as well as a hidden
vector ht is produced in a recursive manner. In the standard RNN
layer, ht and ot are defined as follows:

ht = gh(Whht−1 +Wxxt),

ot = go(Woht),
(2.38)

where gh and go are the activation functions, Wh,Wx,Wo are the
weight matrices, and the initial hidden state h0 is often set to 0. It’s
worth to mention that if we setWh = 0, then we’ll have no information
flowing between each time step. The RNN layer turns to a simple
two-layer FFNN at each time step, running in parallel.

A well-known issue for the standard RNN layer is that it can’t learn
long term dependency in the sequence due to vanishing gradient and
exploding gradient problems (Hochreiter, 1998; Pascanu, Mikolov, and
Yoshua Bengio, 2013). Variants such as Long Short-Term Memory (LSTM,

54 preliminaries and background

Hochreiter and Schmidhuber, 1997), Gated Recurrent Unit (GRU, Cho
et al., 2014) are introduced to solve this issue by adding ‘gate’ units to
control information flow in the layer. In our dissertation, we mainly
use LSTM as variant of RNN, where its output ot at time step t is
calculated as follows (Hochreiter and Schmidhuber, 1997):

Ft = σ(W f hot−1 +W f xxt)

It = σ(Wihot−1 +Wixxt)

Ot = σ(Wohot−1 +Woxxt)

c̃t = σ(Wchot−1 +Wcxxt)

ct = Ft ◦ ct−1 + It ◦ c̃t

ot = Ot ◦ tanh(ct).

(2.39)

Ft, It, Ot, ct refer to the forget gate, input gate, output gate, cell state,
respectively. Basically, at each time step t, the present cell state ct

(corresponding to the hidden state ht in standard RNN layer) is up-
dated as a sum of previous cell state ct−1 through forget gate Ft and
additional cell state c̃t through input gate It. The output ot is then
obtained as a tanh-transformed cell state through the output gate Ot.

2.3.4 Optimization

backpropagation As regard of training the neural networks, we
can put it inside the framework of Equation 2.18 as an optimization
problem, using the gradient decent optimizer (introduced in Section
2.1.2) to find the optimal weight parameters w that minimize the neu-
ral network model’s training error Ln(w) . In order to do that, we need
to calculate the gradient ∇w f where f is the function that represents
the NN. However, as NNs are generally a stack of sophisticated layers
with non-linear functions, the form of f could be extremely complex
which makes it hard to calculate ∇w f directly. Backpropagation (BP,
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, 1988) algorithm is
widely adopted due to its efficiency on calculating the gradient. In
fact, based on the chain rule, the gradient of the f with respect to any
parameter wl

i at layer l, can be decomposed as a multiplication of other
derivatives which can be calculated in a layer-wise manner. To prevent
redundant calculation, the calculating is proceeded in a backward way
that starts from the very last layer (the output layer). As for training
RNNs, a similar version called Backpropagation Through Time (BPTT,
Werbos, 1990) is used by unfolding the calculation through time.

global minimum? For convex optimization problem, as we have
already discussed previously in Section 2.1.2, (first-order) gradient
descent based algorithms such as Algorithm 1, guarantee to find the
global minimum point. Unfortunately, in non-convex optimization
problem, there’s no such guarantee. In fact, they’ll find critical points

2.3 neural networks 55

Figure 2.6 – An example of critical points where the gradient equals to 0.
From left to right, we present local minimum, local maximum
and saddle point respectively. Figure taken from blog of Rong
Ge. 3

(the points where the gradient goes to 0) which can be either local
minimum, global minimum or saddle point. An example of local minimum
and saddle point is shown in Figure 2.6.

Actually, the function f which represents the neural networks is
typically non-convex. Taking the FFNN in Figure 2.5 as an example:
one can easily permute the position of two nodes in a specific layer
along with their associated edges and weights to x, this operation
does not change the value of the objective function to be optimized
which violates the definition of convexity. In practice, both saddle
points and local minima seem not a big issue for deep neural net-
works, optimized using adaptive optimizers. For local minima issues,
Choromanska et al., 2015 show that for large size NN, local minima
are close to the global minimum and local minima points are of high
quality (measured by test error). For saddle points issues, Dauphin
et al., 2014 argue that they are more critical than local minima issues,
especially in high dimension space. The authors propose a second-
order saddle-free Newton method which is able to escape the saddle
points rapidly. As regard of first-order gradient descent algorithms,
Staib et al., 2020 state that adaptive optimizers can efficiently escape
from saddle points. They provide a convergence proof under certain
conditions, by considering adaptive optimizers as preconditioned SGD
in an online manner.

2.3.5 Success reasons

Deep Neural Networks (DNNs) seem to be extremely powerful that
they achieve state-of-the-art results for various tasks in many do-
mains 4, such as computer vision (K. He et al., 2015; Tan and Q. V. Le,
2020), NLP (Devlin et al., 2018; Brown et al., 2020), recommendation

3. Escaping from Saddle Points: https://www.offconvex.org/2016/03/22/sad
dlepoints/

4. Browse State-of-the-Art: https://paperswithcode.com/sota

https://www.offconvex.org/2016/03/22/saddlepoints/
https://www.offconvex.org/2016/03/22/saddlepoints/
https://paperswithcode.com/sota

56 preliminaries and background

Figure 2.7 – Double descent phenomena for deep neural networks. The
typical U-shape behavior of the generalization error (solid line)
is kept before the capacity of DNN (denoted as F) reaches the
interpolation threshold, where the training error reaches zero.
After the interpolation threshold, the generalization error goes
down again when we increase the capacity. Figure taken from
Belkin et al., 2019.

system (Hidasi et al., 2016; Berg, Kipf, and Welling, 2017; Kang and
McAuley, 2018; Sun et al., 2019). At the same time, they are sophis-
ticated designed by stacking various types of layers, which makes it
not easy to interprete the exact reasons of their success. Nevertheless,
several insights have been provided by researchers.

strong expressiveness According to the Universal Approxima-
tion Theorem (Cybenkot, 2006), a simple 2-layer FFNN with arbitrary
nodes in hidden layer (bounded depth, unbounded width) and a suf-
ficiently smooth activation function can generally approximate any
continuous function closely. Kidger and Lyons, 2020 further show the
dual case where Deep Narrow Networks (unbounded depth, relative
small width) have the same approximation power. Therefore, for any
oracle best solution f ?, we may find one NN structure close enough
to it, i. e. , having very small approximation error εapp (Eq. 2.25).

generalization power As mentioned previously in Section
2.2.3, strong expressiveness generally means complex models, which
may lead to overfitting (right part of the U-shaped curve in Fig. 2.2).
For NNs, regularization techniques such as batch normalization (Sergey
Ioffe and Szegedy, 2015), layer normalization (Ba, Kiros, and Geoffrey
E. Hinton, 2016), dropout (Srivastava et al., 2014), early stopping (Yao,
Rosasco, and Caponnetto, 2007) are commonly applied to prevent it.

Interestingly, recent work of Belkin et al., 2019 show that over-
parameterized DNNs, generalize surprisingly well instead of overfit-
ting. The generalization error first goes down then goes up just like
traditional U-shaped curve, when we increase the capacity of DNN
(denoted as F). However, it goes down again once the interpolation
threshold of DNN’s capacity is reached where the training error equals
to zero, see Figure 2.7. This phenomena is known as double descent, of

2.3 neural networks 57

Figure 2.8 – An example of non-distributed representation (left) vs dis-
tributed representation (right). Figure taken from Garrett Hoff-
man’s blog 5.

which exact causes are still under investigation (C. Zhang et al., 2017;
C. Li et al., 2018; Zitong Yang et al., 2020).

distributed representation Distributed representation is a core
idea in DNNs where we assume that the data is generated as a com-
position of attributes or features, and usually in a hierarchy way
(e. g. , stack of layers), which have already proven its reasonableness
in computer vision area (Zeiler and Fergus, 2013).

Let’s take a look at the differences between a distributed represen-
tation and a non-distributed one. Supposing that we are asked to
describe four different graphic shapes, shown in each row of Figure
2.8. For non-distributed representation, such as one-hot encoding
(Section 2.4.1), each graphic shape is represented by a specific attribute
(entry) in the feature space, independent from each other (see the left
figure of Figure 2.8). Classical machine learning algorithms, such as
decision trees (Loh, 2011), k-Nearest Neighbours (k-NN, Cunningham and
Delany, 2020), take this representation, split the input feature space
into disjoint regions, and use the information of label y in each region
to learn the predictor. For distributed representation, each graphic
shape is represented by a composition of attributes, shared with each
other (see the right figure of Figure 2.8). In practice, those attributes
may not be explicitly defined and their values are learned either in a
supervised way or in a self-supervised way (e. g. , word2vec, Mikolov,
K. Chen, et al., 2013) depending on the data and the task.

Compared to non-distributed representation, distributed represen-
tation has several advantages. First, as the number of regions that
it can represent is exponential with the dimension of feature (24 for
this example), we can significantly reduce the dimension of input

5. How neural networks learn distributed representations:
https://www.oreilly.com/content/how-neural-networks-learn-distributed-
representations/

https://tinyurl.com/4hky9vc8
https://tinyurl.com/4hky9vc8

58 preliminaries and background

feature space, so that prevent the curse of dimensionality (Bellman,
1957, 1961). Secondly, unlike in non-distributed representation where
the feature values has equal distance with each other, for distributed
feature representations, their distances are not the same and can be
deduced by comparing the corresponding feature vectors.

2.4 word representation

People expect intelligent machines to act in a way close to how
humans perceive and process information in its natural form. Un-
fortunately, unlike humans, machines can only understand and treat
data in numerical format. That is to say, non-numerical data, like text,
must be transformed to numerical format in order to be treated by
machines.

Text data is hierarchical and sequential in nature. Its smallest atom
is the character. A sequence of characters forms a word, a sequence
of words form a sentence, a sequence of sentences form a document
and a set of documents form a collection. Depending on the nature of
the task, the view of people and the methods used, text data can be
considered and treated in different ways. For example, one can simply
consider the word as the smallest atom of text instead of the character,
or consider a document as a set of sentences instead of a sequence of
sentences.

From now on, we denote character, word, document, collection as c,
w, d, D, respectively. All the related notations are given in Table 2.2
which will serve the rest part of this dissertation.

In the following subsections, we mainly introduce different ways
to transform words to vectors. We first introduce the basic one-hot
encoding that transforms a word (more generally a categorical feature)
to a sparse vector. Then we focus on word embedding methods that
learn dense representations of words using unannotated corpus.

2.4.1 One-hot encoding

Given a vocabulary of words V of size v where each word w is
identified by its index i, the one-hot encoding of w is an extremely
sparse vector ow ∈ Zv

{0,1} with only one non-zero entry on position i.
It is commonly used due to its simplicity where no special treatment

is required. But it has three main limitations: sparsity, scalability, and
information lost. 1) The sparsity is trivial as the one-hot encoded
vector is full of zeros except at one position, which causes the sample-
feature matrix (e. g. , the word-document matrix) to be extremely
sparse. To overcome that, special storage formats are proposed to
reduce the storage cost 6. Also, classical algorithms (which originally

6. Sparse matrices formats used in SciPy library: https://docs.scipy.org/doc
/scipy/reference/sparse.html

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html

2.4 word representation 59

Table 2.2 – Notations used in this chapter.

Notation Description

c Character.

w Word.

wi Word of position i in a word sequence.

wi Word with index i in word vocabulary.

d Sentence/Paragraph/Document. A se-
quence of words (w1, . . . , wT) where T
is the length of the sequence.

D Collection. A set of sentences/para-
graphs/documents.

n Number of documents in collection D.

V The vocabulary of all words appearing
in D. All words are indexed.

v Size of the vocabulary V.

C ∈ Zv×n
+ Word-Document occurrence matrix.

Q ∈ Zv×v
+ Word-Word co-occurrence matrix.

o ∈ Zv
{0,1} One-hot encoding vector of word.

b ∈ Zv
+ Bag-of-Words (BoW) representation

vector of document.

t ∈ Zn
+ Document frequency representation

vector of word.

x ∈ Rp embedding vector of a term (word, n-
gram, etc.)

60 preliminaries and background

take a dense vector as input) are modified to take only the non-zero
values of a sparse input vector, in order to reduce computational cost
(B. McMahan, 2011; H. B. McMahan et al., 2013). 2) Scalability issues
appear when we want to use higher order features, especially when
the vocabulary size v gets large. For example, n-gram method takes
n consecutive words as features, the dimension of the feature space
grows rapidly with respect to n. 3) The semantic similarity between
words get ignored as the distance between any two one-hot encoded
vectors is equivalent. However, words like “cat” and “dog” are similar
at some degree (both are animal, pet), they should be closer in the
vector space than the other non-relevant words with the distance
reflecting their semantic closeness.

2.4.2 Word embedding

The distributional hypothesis in linguistics (Harris, 1954) suppose
that words which are used and occur in similar contexts tend to
have similar meanings. Based on this hypothesis, word embedding
models try to learn a short, dense vector representation of words
(often referred as word vector or word embedding) where the similarity
between words is encoded in the vector space, compared to a long,
sparse one-hot encoded one. In the following, we’ll introduce several
most famous and popular word embedding models: LSA, GloVe,
Word2vec, fastText, ELMo, BERT, which can be generally separated to
Count-based and Prediction-based (Z. Zhang, 2019).

2.4.2.1 Count-based

Count-based word embedding methods learn word vectors gener-
ally from analyzing a matrix which is related to word and its context’s
co-occurrence statistics. They share a common framework with 5 steps
(Z. Zhang, 2019):

1. Preprocess the documents with tokenization, annotation, tagging,
parsing, etc.

2. Construct a count-based information matrix with format of row
× column as word × document, word × word, etc.

3. Transform and re-weight the matrix using Term Frequency–Inverse
Document Frequency (TF-IDF, Sparck Jones, 1988), Pairwise Mutual
Information (PMI, Church and Hanks, 2002), etc.

4. Factorize the transformed matrix using Singular Value Decomposi-
tion (SVD, Golub and Reinsch, 1970), Non-negative Matrix Factorization
(NMF, D. Lee and Seung, 1999), etc.

5. Compare the produced vectors using distance measures such as
euclidean, cosine.

In the following, we adopt and follow this framework to explain
count-based word embedding methods, with step 1 ignored.

2.4 word representation 61

lsa Latent Semantic Analysis (LSA, Dumais, 2004), or Latent Semantic
Indexing (LSI, Deerwester et al., 1990) in the domain of information
retrieval, tries to project words and documents to a ‘topic’ space, by
factorizing word-document occurrence matrix using Trucated SVD.

In step 2: We construct a word-document occurrence matrix C ∈
Zv×n
+ (v is the size of word vocabulary V, and n is the size of document

collection D) where Cij represents the times that the word wi appears
in document dj.

In step 3: We keep the matrix C as it is in this step.
In step 4: We use Truncated SVD (Section 2.1.1) as dimension

reduction technique. C is approximated by C̃ with C̃ = UkΣkV
>

k
where Uk ∈ Rv×k is the word-topic matrix, Vk ∈ Rn×k is the document-
topic matrix and Σk ∈ Rk×k.

In step 5: We denote the corresponding document frequency vector
of a word w as t ∈ Zn

+. To compare different words in the same
low-dimensional space (topic space), we project t to Σ−1

k V T
k t. We then

use task-specific distance to measure the similarity between projected
word vectors.

LSA is easy to implement as only constructing a word-document
occurrence matrix and running a Truncated SVD are required. It is
effective in dealing with word similarity problems such as synonymy,
polysemy (Rosario, 2001). However, it shows poor performance on
word relation tasks such as word analogy (Turney, 2004).

glove Global Vectors (GloVe, Pennington, Socher, and C. Manning,
2014) proposes to model the word-word co-occurrence through a log-
bilinear regression model, which takes advantages of global corpus
statistics and local context window information at the same time.

In step 2: We construct a word-word co-occurrence matrixQ ∈ Zv×v
+

where Qij represents how many times that word wj appears in the
context window of word wi.

In step 3: We calculate the probability that word wj (target word)
appears in the context window of word wi (context word), denoted as
follows: Pij = P(wj|wi) =

Qij
Qi

, where Qi = ∑v
j=1 Qij.

In step 4: The authors argue that the relationship between word
wi and wj should not be directly represented by Pij. Instead, they
propose to examine it by studying the ratio of their co-occurrence
using various auxiliary words, i. e. , by studying Pik

Pjk
with different k.

In order to have linear operation in the vector space, Pik
Pjk

is modeled as:

Pik

Pjk
= exp(x̃k>(xi − xj)), (2.40)

where x and x̃ represent the embedding vector of target word and
context word respectively. With some extra consideration of symmetry

62 preliminaries and background

Figure 2.9 – Overview of Word2vec model architectures: CBOW and Skip-
gram. A window size of 2 (two words on the left and two words
on the right) is used in defining the surrounding words.

for swapping the role of context and target word, the model finally
aims to minimize

v

∑
i,j=1

g(Qij)
(
xT

i x̃j + ri + r̃j − log Qij

)2
, (2.41)

where g is a weight function which penalizes low frequency co-
occurrence Qij due to lack of confidence, ri and r̃j are both bias terms.

Thus, while exploiting statistical information, GloVe forces the
model to learn linear relationship between words in the vector space
which fill the weakness of LSA in word analogy tasks.

2.4.2.2 Prediction-based

Prediction-based word embedding models learn word vectors gen-
erally by solving a task of predicting a target word’s occurrence given
its context or vice versa.

word2vec Word2vec (Mikolov, K. Chen, et al., 2013; Mikolov,
Sutskever, et al., 2013) is one of the most famous and used word
embedding methods. Two architectures are proposed: continuous bag
of words (CBOW) and skip-gram. For CBOW, we predict the occurrence
of the target word using its surrounding words. In reverse, skip-gram
predicts the occurrences of the surrounding words given the target
word. Figure 2.9 presents an overview of these two structures. As they
are similar in design, we only present the skip-gram architecture in
detail at following.

Given a center word wt as input, skip-gram tries to predict the
occurrence of its surrounding words {wt+j| − c 6 j 6 c, j 6= 0} as
output, where c is the window size. To be more precise, the objective
is to maximize

1
T

T

∑
t=1

∑
−c6j6c,j 6=0

log p(wt+j|wt), (2.42)

where the conditional probability p(wO|wI) is defined as the similarity
score between the output (context) word wO and the input (target)

2.4 word representation 63

word wI , normalized by softmax over the whole word vocabulary,
formulated as follows:

p(wO|wI) =
exp(s(xwI ,x

′
wO

))

∑w∈V exp(s(xwI ,x′w))
. (2.43)

xw and x′w are the embedding vector of word w as input word and
as output word respectively, V is the word vocabulary, s is the score
function which measures the similarity between two word embedding
vectors. Specifically, we take s as dot product function here, i. e. ,

s(xwI ,x
′
wO

) , xwI
>x′wO

. (2.44)

Directly calculating the full softmax is costly, especially when vo-
cabulary V is large. It can be calculated efficiently using hierarchical
softmax (Morin and Yoshua Bengio, 2005) which uses a Huffman tree
(Huffman, 1952) to reduce calculation or negative sampling (Mikolov,
Sutskever, et al., 2013) which approximates it by sampling negative
instances. According to the authors 7, hierarchical softmax works
better for infrequent words while negative sampling works better for
frequent words and better with low dimensional vectors. We describe
the negative sampling strategy below.

Negative sampling approximates the multi-class classification task
related to softmax by k+ 1 binary classification tasks. The goal changes
from predicting the occurrence of one word in v words to distinguish-
ing an input-output pair of words presented on the training data from
k input-random pairs that are not (v � k). To be more precise, the
objective term log p(wO|wI) in Equation 2.42 is replaced by

log σ(s(xwI ,x
′
wO

)) +
k

∑
i=1

Ewi∼Pn(w)[log σ(−s(xwI ,x
′
wi
)], (2.45)

where k is the number of random words sampling from a given
noise distribution Pn (e. g. , uniform distribution) and σ is the sigmoid
function. Thus the objective of the new task is to distinguish the
output word wO from k random sampled noise words, given input
word wI .

fasttext Word2vec methods treat each word completely individ-
ually which ignores word’s morphological structure. To consider
word’s internal structure, fastText (Bojanowski et al., 2016) propose to
represent a word as a bag of terms (character n-grams with n ∈ [3, 6]
and the word itself). Through learning the embedding vector for each
term, we obtain the embedding of word as a sum of the embedding
vectors of its terms. Specifically, in order to distinguish the same n-
gram in different positions (prefix, middle of the word, suffix), special
characters: < and >, are added at the beginning and at the end of each

7. Word2vec source code: https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

64 preliminaries and background

word respectively. Take the word actor and n = 3 as an example, it
will be represented by the term set including its 3-grams: <ac, act,

cto, tor, or> and itself (as a special character sequence): <actor>.
As regard of the learning process, we follow the Word2vec (Equation

2.42 and 2.43), while only changing the score function s (Equation
2.44) to

s(xwI ,x
′
wO

) , ∑
g∈GwI

xg
>x′wO

, (2.46)

where xg is the embedding vector of term g in the word wI ’s term set
GwI , xwO is the embedding vector of word wO as a special character
sequence. Thus, fastText can provide a reasonable guess of the unseen
word’s embedding by treating each word as a set of its n-grams, which
can not be done by Word2vec.

2.4.3 Contextual word embedding

Previously presented word embedding methods learn a fixed vector
for each word, however, one word may have different meanings de-
pending on the context they are used in. For example, the word right
in "a right choice" and "turn right" clearly have different meanings.
Contextualized word embedding methods such as ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2018) try to overcome this issue by
taking account the contextual information on the word’s embedding.
It makes the embedding vector of a word changeable depending on
its context.

Contextualized word embedding is often packaged as a pre-trained
language model on a large unannotated corpus. In the following part of
this subsection, we introduce the general language model, and two
popular language model-based word embedding methods (ELMo and
BERT).

language model (lm) Given a sentence (w1, . . . , wT), a forward
language model (LM) decomposes the probability of the sentence as

p(w1, w2, · · · , wT) =
T

∏
t=1

p(wt | w1, w2, . . . , wt−1), (2.47)

while for a backward language model

p(w1, w2, · · · , wT) =
T

∏
t=1

p(wt | wt+1, wt+2, . . . , wT). (2.48)

Taking the forward LM as an example, the goal is to maximize
the log-likelihood logp(w1, . . . , wT) where the conditional probability
of present word wt knowing its previous words w1, · · · , wt−1 is com-
monly modeled and learned using neural networks (Yoshua Bengio
et al., 2003), the embedding of words are produced during the learning
process.

2.4 word representation 65

Figure 2.10 – Simple overview of ELMo’s structure. Each red cell represents
a forward LSTM cell and blue cell represents a backward LSTM
cell. The ELMo embedding of each word is a weighted sum
of its representation in each layer. Figure taken from Karan
Purohit’s blog 8.

elmo The base of Embeddings from Language Models (ELMo, Peters
et al., 2018) is a bidirectional LM (biLM), which contains a forward pass
and a backward pass at the same time in order to better capture the
context information flows in both directions of the sequence, trained
using unannotated corpus. The ELMo embedding is task-specific and
is calculated as a weighted sum of all the intermediate embeddings
produced from the pre-trained biLM, with the weights learned using
task-specific data.

Precisely, the dependency between a present word and its context
(preceding words for the forward LM and following words for the
backward LM) is encoded using a stacked L-layer bidirectional LSTM
(see Figure 2.10 with L = 2).

The objective is to maximize

T

∑
t=1

(log p(wt | w1, w2, . . . , wt−1;W x,
−→
W LSTM,W s)

+ log p(wt | wt+1, wt+2, . . . , wT;W x,
←−
W LSTM,W s)),

(2.49)

whereW x,
−→
W LSTM,

←−
W LSTM,W s are the parameters of the embedding

layer, the forward LSTM layers, the backward LSTM layers, the output
layer respectively, learned jointly using unannotated corpus.

For each word wt, we denote its representation produced by the
embedding layer as xt, its representation produced by the bidirectional
LSTM (hidden state of forward and backward LSTM) at l-th layer as

8. Learn contextual word embeddings with ELMo: https://medium.com/saarthi-
ai/elmo-for-contextual-word-embedding-for-text-classification-24c9693b0045

https://tinyurl.com/7aky3szh
https://tinyurl.com/7aky3szh

66 preliminaries and background

ht,l = [
←−
h t,l ,

−→
h t,l]. In total, we have 2L + 1 representations of wt,

denoted as
Rt = {xt,

←−
h t,l ,

−→
h t,l |l = 1, · · · , L}

= {ht,l |l = 0, · · · , L}.
(2.50)

For a supervised downstream task, given the pre-trained biLM, the
task-specific ELMo embedding ELMotask

t of a word wt is a weighted
sum of its different representations in Rt, described as follows:

ELMotask
t = γtask

L

∑
l=0
stask

l ht,l , (2.51)

where the weight vectors stask (normalized by softmax) and the scale
factor γtask are both learned during the training of the downstream
task.

bert Unlike ELMo which uses a stacked multi-layer bidirectional
LSTM to encode contextual information in the sentence, Bidirectional
Encoder Representations from Transformers (BERT, Devlin et al., 2018) use
Transformers (Vaswani et al., 2017) based on self-attention mechanism
which largely improve state-of-the-art results in many NLP tasks
(Devlin et al., 2018).

Transformers are widely used in sequence-to-sequence (seq2seq) tasks,
such as machine translation (Junczys-Dowmunt, 2019; Xiaodong Liu et
al., 2020), text summarization (P. J. Liu et al., 2018; Radford et al., 2019),
question answering (Shao et al., 2019), where we are asked to transform
a source sequence to a target sequence (both can be of arbitrary
length). In the following discussion, we denote the source sequence as
(x1, · · · , xT) and the target sequence as (y1, · · · , yT′) where T, T′ are
the sequence lengths.

For seq2seq tasks, encoder-decoder framework are widely adopted.
Generally speaking, the encoder first compresses the source sentence
to a fixed length vector c, often referred as context vector, as a summary
of the sentence. Then the decoder uses this compressed vector to
produce the target sentence. A common example of encoder-decoder
framework is shown in Figure 2.11 where we aim to transform the
source sequence "ABC" to the target sequence "WXYZ". The encoder
uses its last hidden state, corresponding to the input token "C, as
the context vector. During the training phase, the decoder takes the
shifted target sequence "<EOS>WXYZ" (shifted one position to the left
side) as input, with the help of the context vector, it tries to output
the target sequence "WXYZ<EOS>", where <EOS> represents the special
token indicating the beginning or the ending of the sequence. The
embedding of tokens and the encoder, decoder parameters are trained
jointly using source-target sequence pairs. During the test (inference)
phase, taking the context vector produced by encoder as initial value
of the decoder’s hidden state, the decoder produces the output tokens

2.4 word representation 67

Figure 2.11 – A simple encoder-decoder framework example where we aim
to transform the source sequence "XYZ" to the target sequence
"WXYZ". <EOS> represents the special token indicating the begin-
ning or the end of the sequence. Figure taken and modified
from Sutskever, Vinyals, and Q. V. Le, 2014.

iteratively and continuously, until the <EOS> token is outputted (or the
maximum allowed length for the sequence is attained in practice).

RNN based encoder and decoder: Sutskever, Vinyals, and Q. V. Le,
2014 suggest to use (multi-layer) RNN (LSTM) as both encoder and
decoder. We denote the hidden states of RNN encoder as (h1, · · · ,hT),
the hidden states of RNN decoder as (s1, · · · , sT′). Under this setting,
the context vector c is constructed as follows:

c = m(h1, · · · ,hT), (2.52)

where m is a aggregation function that merges all hidden states of
encoder ({ht}T

t=1) to one single vector. Quite often, the last hidden
state hT of the RNN encoder is served as the context vector (Sutskever,
Vinyals, and Q. V. Le, 2014), i. e. ,

m(h1, · · · ,hT) = hT. (2.53)

Then the RNN decoder is initialized with this context vector (s1 = c)
and outputs the distribution of each target word through a dense layer
with softmax activation function.

RNN based encoder and decoder with attention: Although using
LSTM reduces the issues of memorizing long term dependencies com-
pared to standard RNN, common RNN based approaches are still
prone to have information loss as the entire sentence is compressed
to one single context vector. Bahdanau, Cho, and Yoshua Bengio,
2016 resolve this issue by introducing an attention mechanism. Un-
der this mechanism, when producing each output word yt′ in the
target sentence, the decoder looks at the entire source sentence with
different attention to create a dynamic context vector ct′ (dynamic
representation of the source sentence), instead of a fixed one. ct′ is
calculated as a weighted sum of all the hidden states in the source
sentence produced by the encoder, as follows:

ct′ =
T

∑
t=1

αt′tht, (2.54)

68 preliminaries and background

where the weight score αt′t represents the degree of importance of
input word xt to produce current output word y′t. αt′t is actually
calculated as an alignment score between the decoder’s previous state
st′−1 and the encoder’s hidden state ht (softmax normalized over t),
defined as follows:

αt′t = align(st′−1,ht)

,
exp(score(st′−1,ht))

∑T
i=1 exp(score(st′−1,hi))

,
(2.55)

where different formulas of score function are proposed in the liter-
atures (Alex Graves, Wayne, and Danihelka, 2014; Luong, H. Pham,
and C. D. Manning, 2015; Bahdanau, Cho, and Yoshua Bengio, 2016;
Vaswani et al., 2017). Here the authors propose to use a FFNN with
one hidden layer (known as Additive attention) to present the score
function.

Attention-based Transformer: Following the same idea but slightly
different from the traditional attention mechanism, self-attention (J.
Cheng, Dong, and Lapata, 2016; Zichao Yang et al., 2016; Vaswani et
al., 2017), also known as intra-attention, is adopted, in the case where
only the source sequence is involved in the model (i. e. , no target
sequence). The goal is to have an adjustable summary for the source
sequence when looking at different positions of it. For any position
t′ ∈ [1, T] in the source sequence, the corresponding summary of the
sequence is formulated as follows:

ct′ =
T

∑
t=1

align(xt′W
q,xtW

k)xtW
v, (2.56)

where W q,W k,W v are the transformation matrices that applied on
the original sequence {xt}T

t=1, learned during the training.
Actually, aforementioned two attention mechanisms can be gener-

alized to a query-key-value (q-k-v) architecture where based on a list
of key-value vector pairs, a dynamic value vector for a given query
is formed, by calculating the alignment score between the query and
each key in the list, then taking the weighted sum of the corresponding
values using the alignment scores as weights. Thus, the value vector
ct′ for a query qt′ is calculated as follows:

ct′ = Attention(qt′ , {kt}, {vt})

,
T

∑
t=1

align(qt′ ,kt)vt

=
T

∑
t=1

exp(score(qt′ ,kt))

∑T
i=1 exp(score(qt′ ,ki))

vt

(2.57)

where qt′ , {kt},{vt} are the query, the keys, the values, respectively,
score is a score function that measures the similarity between a query
and a key.

2.4 word representation 69

Figure 2.12 – Overview of the Transformer architecture where the encoding
(resp. decoding) part has two encoders (resp. decoders). Figure
taken from Jalammar’s blog 9.

Specially we have

qt′ = st′−1,kt = ht, vt = ht, (2.58)

for the standard attention mechanism (Equation 2.54 and Equation
2.55) and

qt′ = xt′W
q,kt = xtW

k, vt = xtW
v, (2.59)

for the self-attention mechanism (Equation 2.56).
Transformer architecture (Vaswani et al., 2017) takes advantages of

both attention mechanisms where the input of encoder and decoder
are both transformed through a self-attention layer before feeding to
the next layers, and the decoder takes the encoder’s information using
standard attention layer (Figure 2.12). Specifically, for generating the
context vector, Scaled Dot-Product Attention is used here where the
score function is defined as follows:

score(qt′ ,kt) =
q>t′ kt√

dk
, (2.60)

where dk is the dimension of the key and the query vector.
In fact, in order to further capture different subspace information,

Multi-Head (Self) Attention is applied, where the query, key, value
vectors are created respectively through multiplying a separate matrix
for each head, compared to a single head attention as shown in
Equation 2.56. Then the produced context vector of each head are
concatenated and transformed again to form the final representation
of the input. i. e. ,

MultiHead(qt′ , {kt}, {vt}) = Concat(head1, · · · , headh)W
o

where headi = Attention(qt′W
q
i , {ktW k

i }, {vtW v
i })

(2.61)

9. The Illustrated Transformer: http://jalammar.github.io/illustrated-tra
nsformer/

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

70 preliminaries and background

with W q
i ,W k

i ,W v
i the transformation matrix for query, key, value of

head i respectively, and W o the final transformation matrix.
There are two details need to be mentioned when applying atten-

tion mechanism in Transformer. 1) As in attention mechanism, the
sequential aspect of the input is ignored. A fixed or learned positional-
embedding is added to the embedding of each input (see left bottom of
Fig. 2.12), which gives the model the information about the position
of the current input in the sequence. The authors (Vaswani et al.,
2017) propose to use a fixed embedding vector (denoted as PE) con-
structed by sine and cosine functions of different frequencies, defined
as follows:

PE(pos, 2i) = sin(pos/100002i/d),

PE(pos, 2i + 1) = cos(pos/100002i/d),
(2.62)

where pos is the position of the input in the input sequence, i is the
position of the entry in the positional embedding vector, d is the
dimension of the positional embedding vector. 2) For self-attention
mechanism, each position in the sequence can access the whole se-
quence. The first (Multi-Head) self-attention layer of the decoder (see
bottom right of Fig. 2.12), is modified to a Masked (Multi-Head) self-
attention layer, in order to prevent the current position from seeing its
following positions. The mask is done by setting the value of the score
function (Eq. 2.60) directly to −∞ of all illegal connections between
two positions.

Transformer-based BERT: BERT (Devlin et al., 2018) is basically a
stack of Transformer encoders which is pre-trained through a Masked
Language Model (MLM) task and a Next Sentence Prediction (NSP) task.
It is fine-tuned to serve specific downstream tasks without changing
the architecture (except for the output layers, see Figure 2.13 for an
overview).

Concerning the pre-training of BERT, our first task is a Masked
Language Model (MLM) where the goal is to learn a good contextual
representation of each word. Traditional language models (LMs)
(Section 2.4.3) don’t allow to have multi-layer bidirectional blocks
because in higher layer, each word can actually ‘see’ itself which
makes the target word prediction task trivial to solve. Actually, ELMo’s
bidirectional LSTM is still unidirectional where the information flows
either forward or backward, compared to self-attention which is truly
bidirectional. BERT resolves this issue by using a MLM where 15% of
the input is masked at random by a special <MASK> token and then the
model predicts these masked words just like in traditional LM. In fact,
in the fine-tuning step of downstream tasks, <MASK> token will never
appear. In order to mitigate this mismatch between pre-training and
fine-tuning, for the word chosen to be masked, it is replaced with the
<Mask> token for 80% of the time, with a random word for 10% of the
time and with itself for the rest 10% of the time.

2.5 document embedding 71

Figure 2.13 – Overview of BERT’s pre-training and find-tuning procedure.
Pre-training and fine-tuning share the same architecture, except
for the output layers. During fine-tuning, all parameters get
fine-tuned. [CLS], [SEP] are special tokens where [CLS] is
added at the beginning of each sentence and [SEP] serves as
a separator of two sentences. Figure taken from Devlin et al.,
2018.

Our second task is next sentence prediction (NSP) task where the
goal is to understand the relationship between sentences, which plays
an important role in solving Question Answering (QA) and Natural
Language Inference (NLI) tasks. In this NSP task, for a given sentence
pair (A, B), we want to predict if B is the next sentence of A. When
constructing the training pairs, we let B follow A for 50% of the time.

It’s worth to mention that for each input word, except for its em-
bedding vector, a positional embedding vector (indicating the position
of the word in the input sequence) and a segment embedding vector
(indicating which sentence it belongs to) are summed together, to feed
BERT. Different from Transformer, the positional embedding in BERT
is trainable.

After the pre-training process, for downstream tasks, we simply
plug BERT with specific output layers and fine-tune all or part of the
parameters using task-specific data. Depending on the type of tasks,
different parts of the representations produced by BERT are used. For
example, for sentence-level tasks such as sentence classification, only
the representation of the [CLS] token is used as a summary of the
entire sequence. For token-level tasks such as sequence tagging, the
contextual representation of each word is used.

2.5 document embedding

Document embedding models often consider the document as a
flatten sequence of words while discarding its sub-level paragraph
or sentence structure. From now on, we refer the term "document"
to a sequence of words in general, ranging from sentence, paragraph

72 preliminaries and background

to document. Under this setting, many applications and tasks, such
as sentiment analysis, document classification, duplicate questions
identification 10, are document-level problems.

As regard of document embedding models, while supervised model
structures exist, our focus here is self-supervised (unsupervised) ap-
proaches that learn a semantically meaningful representation of the
document which can be used directly in downstream tasks. These
self-supervised approaches are often an extension of word embedding
techniques presented in Section 2.4.2. We separate these document
embedding approaches to two categories: those which aggregate pre-
trained word embeddings and those which produce directly the document
embedding. In the following discussion, we consider the document
d as a sequence of words (w1, . . . , wT) where T is the length of the
document.

2.5.1 Aggregate pre-trained word embeddings

For approaches in this category, we assume that we have already
the vector representation of each word {xw|w ∈ V} at hand. The
word representation can be produced by various word embedding
models, contextual or not, such as LSA, Word2vec, fastText, BERT
(Section 2.4.2), or simply by using one-hot encoding. The document’s
representation vector xd can be simply calculated as an average of all
the word vectors in the document, either in a uniform manner like
Bag-of-Words (BoW, C. D. Manning, Raghavan, and Schütze, 2008) or
in a weighed manner like Term Frequency–Inverse Document Frequency
(TF-IDF, Sparck Jones, 1988). Thus, in a general form, xd is formulated
as:

xd =
1
T ∑

w∈d
g(w, d, D)xw (2.63)

where g(w, d, D) is a weight function depending on the word w, the
document d and the document collection D.

bag-of-words Regarding the Bag-of-Words (BoW) representation,
the document is treated simply as a bag of its words where the order
of words gets ignored but their frequencies are kept. Precisely, we
have

g(w, d, D) = cw, (2.64)

where cw represents the raw count of word w in document d. It
is widely used as a simple and easy to implement method which
converts a variable-length word sequence into a fixed-length vector.

term frequency–inverse document frequency Other than
the raw count which takes only the information of w in the document

10. Quora Question Pairs competition: https://www.kaggle.com/c/quora-quest
ion-pairs

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs

2.5 document embedding 73

d, the weight function g(w, d, D) can have other forms that involve
information in the whole collection D. TF-IDF is a commonly used
form, where TF stands for Term Frequency (Luhn, 1957) and IDF
stands for Inverse Document Frequency. The TF-IDF weight function is
formulated as follows:

g(w, d, D) = TF(w, d)× IDF(w, D), (2.65)

with

IDF(w, D) = log
|D|

|{d ∈ D : w ∈ d}| , (2.66)

where TF(w, d) is the term frequency of word w in d, |D| is the number
of documents in the collection D and |{d ∈ D : w ∈ d}| represents
the number of documents in the collection that contain the word w.
For TF(w, d), various choices can be made. It can be the raw count cw,
logarithm of the raw count log(1 + cw) in order to lower the impact
of extremely frequent word, etc. For IDF(w, D), the intuition is that
if a word appears commonly in the collection (e. g. , stop-words: ‘the’,
‘is’, etc.), it does not provide valuable information to represent the
document, which leads to a small IDF weight. Conversely, if a word
appears rarely in the collection (e. g. , appears only in the document
d), it provides a lot of information, which leads to a large IDF weight.
By combing the TF and IDF weights together, the TF-IDF weight takes
both the local and the global importance of words, which generally
conducts better results than simple BoW.

2.5.2 Produce directly the document embedding

Similar to word embeddings (Section 2.4.2), document embedding
approaches of present category can further be divided into two main
categories: count-based and prediction-based.

For count-based approaches, we refer to models that extract docu-
ment embeddings based on corpus statistics, such as LSA (Dumais,
2004) in Section 2.4.2.1 which factorizes the word-document occur-
rence matrix as a product of word-topic and topic-document matrix,
where the embedding of words and documents are obtained at the
same time and both are on the topic space.

For prediction-based approaches, we refer to models that directly
extend prediction-based word embedding models in Section 2.4.2.2,
where the context information used to predict the target word contains
the document embedding vector. The document embedding is trained
jointly with the word embeddings in a self-supervised way. In the
following, we introduce Paragraph Vector (Doc2vec, Q. Le and Mikolov,
2014) model and Document Vector through Corruption (Doc2vecC, M.
Chen, 2017) model which we mainly use in our work.

doc2vec Word2vec (Mikolov, K. Chen, et al., 2013) model has two
architectures (Figure 2.9), CBOW and skip-gram, which are similar in

74 preliminaries and background

Figure 2.14 – Overview of the Doc2vec model structure. d, w represent the
document, the word, respectively.

design. CBOW uses surrounding words as contextual information to
predict center word and skip-gram uses center word as contextual in-
formation to predict surrounding words (see Section 2.4.2.2 for details).
For Doc2vec model, similar designs are inherited (Figure 2.14), where
the Distributed Memory (DM) and Distributed Bag of Words (DBOW)
architectures are analogy to CBOW and skip-gram of Word2vec, re-
spectively. As they are similar in design, we only introduce the DBOW
architecture in detail.

For DBOW version of Doc2vec model, the embedding vector of
document is used as contextual information to predict the occurrence
of the words in the document. To be more precise, given a document
d, represented as a sequence of words (w1, · · · , wT), the objective is to
maximize

1
T

T

∑
t=1

log p(wt+j|d) (2.67)

where the conditional probability p(wO|d) is defined as follows:

p(wO|d) ,
exp(xd

>x′wO
)

∑w∈V exp(xd
>x′w)

. (2.68)

x′wO
and xd are the embedding vectors of the output (context) word

wO and of the document d respectively. At the training stage, the em-
bedding of words and the embedding of document are jointly learned
using an unannotated document corpus. At the inference stage, the
pre-trained embedding vectors of words are kept fixed, the embedding
vectors of unseen documents get trained accordingly. In the end, the
authors use a concatenation of the embedding vectors obtain by DM
and DBOW as the final embedding vector of the document.

doc2vecc Although Doc2vec model improves results on several
text classification and sentiment analysis tasks (Q. Le and Mikolov,
2014), however, its main limitation is that in the inference phase, a non-
trival training procedure for producing the document’s embedding
vector is involved. It contains sufficient steps of updating the docu-
ment’s embedding vector, which is costly when we have large number
of documents to infer. Doc2vecC model (M. Chen, 2017) mitigates
this by representing each document as a simple average of embed-
ding vectors of its words. Thus, in the inference phase, no training

2.5 document embedding 75

Figure 2.15 – Overview of the Doc2vecC model structure.

is needed. Again, for Doc2vecC model, we have two architectures
analogy to CBOW and skip-gram respectively. An overview of these
two architectures can be seen in Figure 2.15.

Let’s take the skip-gram version of Doc2vecC for more details.
Unlike Doc2vec model which always uses the whole document d as
context information to predict the output words, Doc2vecC uses a
dynamic one. A sampled document dt is produced for every position
t, by removing each word of the document with a probability q. Our
objective is to maximize

1
T

T

∑
t=1

∑
−c6j6c,j 6=0

log p(wt+j|dt, wt), (2.69)

where the conditional probability p(wO|dt, wt) is defined as follows:

p(wO|dt, wt) ,
exp((xdt + xwt)

>x′wO
)

∑w∈V exp((xdt + xwt)
>x′w)

, (2.70)

with

xdt =
∑w∈dt

xw

(1− q) · T (2.71)

x′w, xw refer to the embedding vectors of the word w as output word
and as input word respectively, V is the word vocabulary and q is the
probability that we drop each word when constructing the sampled
document.

At the inference stage, the representation of a document d is simply
calculated as the average of the embeddings of its words, i. e. ,

xd =
1
T ∑

w∈d
xw , (2.72)

which can be calculated easily and efficiently.

3
P R E D I C T I N G C O N V E R S I O N S I N D I S P L AY
A D V E RT I S I N G B A S E D O N U R L E M B E D D I N G S

In online display advertising (J. Wang, W. Zhang, and S. Yuan,
2017), advertisers promote their products by embedding ads on the
publisher’s web page. The majority of all these online display ads are
served through Real-Time Bidding (RTB) (Google, 2011). RTB allows the
publishers to sell their ad placements via the Supply-Side Platform (SSP)
and the advertisers to purchase these via the Demand-Side Platform
(DSP). More specifically, each time a user visits a website that contains
a banner placement, an auction is triggered. The publisher sends
user’s information to the SSP, which forwards this information to the
Ad exchange (AdX), and finally the AdX sends a bid request to the
DSPs. Then each DSP decides if it will submit or not a bid response for
this impression, based on its information about user, advertisement,
urls, etc. Once the DSPs send back to the AdX their bids, a public
auction takes place with the impression to be sold to the highest
bidder. Figure 3.1 briefly illustrates the procedure of online display
advertising.

DSPs are agent platforms that help advertisers optimize their adver-
tising strategies. Roughly speaking, DSPs try to estimate the optimal
bid price for an ad impression in order to maximize the audience
of the campaigns of their advertisers, given some budget constraints.
The bid price of an ad impression is highly related to the additive
value that this impression could have on the advertising campaign
(i.e., the number of ad impressions, clicks or conversions, etc.). In
this context, advertisers have at their disposal a number of different
pricing models. In the case where the objective of the advertisers is
to maximize the exposure of their advertising message to a targeted
audience, paying per impression, referred as cost-per-mille (CPM), is
probably the best option for them. Nevertheless, in most of the cases,
performance display advertising is more attractive to advertisers that
are interested in accomplishing specific goals reducing their risks. In
this case, advertisers are willing to pay for an ad impression if and
only if that impression will drive the user to take a predefined action
(Mahdian and Tomak, 2007), such as a visit on the advertiser’s website,
a purchase of a product, etc. Two performance payment models have
been introduced for this purpose, referred as cost-per-click (CPC) and
cost-per-action (CPA).

In performance-driven display advertising, DSPs submit a bid for a
given ad impression based on the CPC or CPA that the advertiser is
willing to pay. To determine the optimal bid price for an ad impres-

77

78 predicting conversions in display advertising based on url embeddings

Figure 3.1 – A high-level overview of RTB procedure.

sion, DSPs estimate the expected cost per impression, called eCPI, which
is either equal to the click-through-rate (CTR) for this impression multi-
plied by the value of CPC, or the conversion rate (CVR) multiplied by
the value of CPA (Y. Chen et al., 2011). As a result, accurate CTR/CVR
prediction plays an important role in the success of online advertising.
For this purpose, DSPs build CTR/CVR prediction models able to
estimate the probability a user converting after their exposure to an
advertisement. The accuracy of these models is of high importance for
the success of the campaign as if we overestimate click or conversation
rates, we will probably submit quite higher bids than we should do,
winning possible useless ad impressions. On the other hand, if these
rates are underestimated, we will probably miss ad impressions likely
to lead to a user action.

In the work presented on this chapter, we examine the user conver-
sion problem, where given an advertiser, we want to predict if a user
will convert or not the next day. In contrast to previous works that
use a number of features related to the user profile, ad information
and context information, we consider only the user’s browsing history.
More specifically, each user is represented as a sequence of URLs
visited by him in a single day. Therefore, the problem examined in
this work can be formally described as: given a user’s sequence of
URLs from a single day, predict the probability this user to take a
predefined action on the next day. In our case, a user is considered
as converted if they visit the advertiser’s website. Due to the high
cardinality and diversity of URLs, a compact semantically meaningful
representation of URLs is of high importance. For this purpose, we
build and examine three URL embedding models following the idea
of word embeddings (Mikolov, Sutskever, et al., 2013). The sequential
dependency between URLs in the user’s browsing history has also
been considered by using a Recurrent Neural Network (RNN, A. Graves,
2012). In total, ten different prediction conversion models have been
introduced. A number of large scale experiments have been executed
on a data collected from a real-world advertising platform in order to
reveal and compare the prediction abilities of the proposed prediction
schemes. Finally, our empirical analysis validates our claims about the

3.1 related work 79

effectiveness of our representation models showing that they achieve
to group together URLs of the same category. It means that URLs with
the same or similar context are also close on the embedding space.

3.1 related work

As the performance of a campaign is directly related on how pre-
cisely the CVR/CTR is estimated, it has been the objective of con-
siderable research in the past few years. Typically, the problem of
CVR/CTR estimation is formulated as a standard binary classification
problem. Logistic regression has been extensively used to accurately
identify conversion events (M. Richardson, Dominowska, and Ragno,
2007; H. B. McMahan et al., 2013; O. Chapelle, E. Manavoglu, and
R. Rosales, 2014). Graepel et al., 2010 introduced a Bayesian learn-
ing model, called Bayesian probit regression, which quantifies the
uncertainty over a model’s parameters and hence about the CTR of a
given ad-impression. A precise user representation (a set of features
describing user behaviour) constitutes also the foundation for building
a linear model able to estimate CVR with high accuracy. Nevertheless,
in most cases it requires a lot of feature engineering effort and the
knowledge of the domain. Moreover, linear models are not capable
to reveal the relationship among feature. To overcome this problem,
models such as Factorization Machines (FM, R. J. Oentaryo et al., 2014;
Ta, 2015) and Gradient Boosted Regression Trees (GBRT,X. He et al., 2014)
have been also proposed to capture higher order information among
features. A number of different deep learning methods have been also
proposed recently for CTR prediction (Y. Zhang et al., 2014; Q. Liu
et al., 2015; Chan et al., 2018; G. Zhou et al., 2018).

Representation learning has been applied with success in several
applications and has become a field in itself (Y. Bengio, Courville, and
Vincent, 2013) in the recent years. The URL representation architec-
tures presented in this manuscript have been inspired by those used
in Natural Language Processing (NLP) tasks. Learning high-quality rep-
resentations of phrases or documents is a long-standing problem in a
wide range of NLP tasks. Word2Vec (Mikolov, Sutskever, et al., 2013)
is one of the most well-known word embeddings algorithms. The main
idea behind Word2Vec is that words that appear in similar contexts
should be close in the learned embedding space. For this purpose, a
(shallow) neural network model is applied that consists of an input,
a projection, and an output layer. Its simple architecture makes the
training extremely efficient. Grbovic et al., 2016 proposed search2vec

model that learns user search action representations based on contex-
tual co-occurrence in user search sessions. URLNet (H. Le et al., 2018)
is a well-known work that learns a URL representation but for the
task of malicious URL detection. In contrast to our self-supervised
representation scheme, URLNet is an end-to-end (supervised) deep

80 predicting conversions in display advertising based on url embeddings

learning framework where its character-level and word-level CNNs
are jointly optimized to learn the prediction model.

3.2 proposed conversion prediction architecture

The goal of this work is to predict the probability that a user will
convert one day after, given their browsing history on a single day.
More specifically, we consider each user as an ordered sequence of
URLs, sorted chronologically. The notion of conversion corresponds
to an action of interest for the advertiser, such as visit on the landing
page, purchase of a product, registration, etc. Therefore, we can treat
the problem of predicting the user conversion as a binary classification
problem (Bishop, 2006), where given a sequence of URLs visited by a
user

un = [urln
1 , . . . , urln

Tn
], n = 1, 2, . . . , N, (3.1)

we want to predict if un will be converted or not (with label yn ∈
{0, 1}). The length of the URL sequence, Tn, may be different for each
user.

As an analogy to text classification, we view a sequence of URLs
as a document, or a sequence of sentences. In our case, a URL is
itself a sequence of tokens, of length at most three (we ignore the rest
tokens as they are quite noisy). Each URL 1 is split with a ‘/’ (slash)
character, where the first token corresponds to the domain name. For
instance, https://en.wikipedia.org/wiki/Main_Page is mapped to
[en.wikipedia.org, wiki, Main_Page].

In order to apply any supervised classification model, such as logis-
tic regression, etc., a semantically meaningful representation of each
URL is needed. Therefore, a key intermediate step in our model is
the learning of a URL representation. More precisely, the proposed
conversion prediction scheme is composed of two consecutive training
phases. The first one corresponds to the learning of the URL represen-
tations, while the second one corresponds to the training of a classifier
using the learned URL representations. A high-level overview of the
pipelines of these two training phases is illustrated at Fig.3.2.

Due to the high cardinality of URLs, we learn the URL represen-
tations implicitly by learning and aggregating their tokens represen-
tations. In this study, we present and examine four different URL
representation models, fr: url → xurl , where xurl ∈ Rr and r is the
dimensionality of the embedding space. The first one is the simple
one-hot encoding that treats tokens as atomic units. The URL represen-
tation is calculated as an average of the one-hot encoding vectors of
its tokens. The main limitation of this model is that the representation
is sparse with its size growing with the size of the dataset and it
doesn’t consider the similarity between URLs. To overcome these

1. The http(s):// and www parts of each URL are stripped.

https://en.wikipedia.org/wiki/Main_Page

3.2 proposed conversion prediction architecture 81

1
2...

URL
Sequences

N
representation

model, fr

(a) URL representation learning

1
2...

URL
Sequences

N

label1label2...
labelN

Representation
model, fr

1
2...

URL
Embeddings
N

label1label2...
labelN

fm
Classifier, fc

(b) Conversion prediction model learning

Figure 3.2 – URL representation and conversion classifier learning pipeline.
The binary labels are not needed for training the URL represen-
tation model.

issues, we propose three URL embedding models that learn dense and
semantically meaningful URL representation.

After having trained a representation model, fr, and given a training
set D = {(un, yn)}N

n=1, we produce a new dataset D′ = {(Xn, yn)}N
n=1

where Xn = [xn
url1

, . . . ,xn
urlTn

] is a sequence of length Tn with ele-
ments xn

urlt
= fr(urln

t). In a nutshell, D′ contains sequences of URL
embedding vectors along with their labels. Then, we apply mapping
fm: X → z that aggregates the URLs embeddings into an embedding
vector z ∈ Rm, where m can be different from r. It results in a single
compact representation z for each sequence of URLs. Next, our goal
is to discover a classification model fc: z → ŷ from a set F of possible
models with the minimum empirical risk

min
fc∈F

E(X ,y)∼D′ [`(fc(fm(X)), y)], (3.2)

where ` is a non-negative loss function. In fact, classifier fc is trained
on dataset D′′ = {(zn, yn)}N

n=1. In this work, we use logistic regression
as classifier fc. To learn the unknown model parameters, the cross-
entropy loss is applied.

Next, we are describing the three different mapping functions fm

adopted in our work: “average”, “dense” and “LSTM”. The first one
returns the average of the URLs embedding vectors presented on a
sequence:

f (1)m (X) =
1
T

T

∑
t=1
xurlt . (3.3)

The second one considers the dependencies among the features of the
embedding vector returned by the first mapping function. To be more
precise, on top of f (1)m (X) (average of the URLs embedding vectors),
a dense layer with rectified linear units (ReLU, Nair and Geoffrey E.
Hinton, 2010) is applied, i. e. ,

f (2)m (X) = g(w(1)> f (1)m (X) + b(1)), (3.4)

82 predicting conversions in display advertising based on url embeddings

url1 url2 urlT

Time

URL Embedding layer, fr

url1 embedding url2 embedding urlT embedding

fr(url1) fr(url2) fr(urlT)

URL Sequence
Embedding Layer, fm

{average, dense, LSTM}

xurl1 xurl2 xurlT

Dense Layer, fc

(Sigmoid)

z = fm(X = [xurl1 ,xurl2 , . . . ,xurlT])

Loss function
`(fc(z), y)

fc(z) = σ(w>z + b) Label: y

Figure 3.3 – The proposed conversion prediction model architecture. It con-
sists of three parts: i) URL embedding layer (fr), ii) URL se-
quence embedding layer (fm), and iii) Logistic regression clas-
sifier (fc). Only the unknown parameters of the classifier layer
and those of “LSTM” and “dense” mappings are trainable.

where g is the ReLU activation function with g(z) = max{0, z}. The
main limitation of applying one of the two aforementioned mappings
is that they do not take into account the sequential order in which
the URLs appeared on the sequence. To overcome this limitation, we
resort to the well-known Long Short-Term Memory network (Hochreiter
and Schmidhuber, 1997) that is a special kind of RNNs (David E.
Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, 1988) and is
suitable to process variable-length sequences. To be more precise, the
third mapping function f (3)m is an LSTM network (see Section 2.3.3 for
details) which is able to map an input sequence of URL embeddings X
to a fixed-sized vector z, that can be considered as the representation
of the whole sequence, i. e. ,

f (3)m (X) = LSTM(X) (3.5)

In all cases, we are feeding the produced vector z to a final dense
layer with sigmoid activation function. In the rest contents, we denote
as LR, DLR and RNN the prediction conversion models which are using
the “average”, “dense” and “LSTM” mapping functions, respectively.
A graphical illustration of the proposed conversion prediction model
architecture is presented at Fig. 3.3.

3.3 url representation schemes 83

3.3 url representation schemes

This section introduces the four URL representation models pro-
posed in our work. These models can be divided in two categories: i)
one-hot encoding, and ii) embedding representation. There is no need
for learning in the case of one-hot encoding. On the other hand, the
embedding representations of URL tokens are learned in advance and
then used to form the final URL representation. A representation is
also learned for the so-called <rare> and <Pad> tokens, respectively.
A token is considered <rare> if it is present less than a predefined
number (we set it equal to 20) of times in our data. And the <Pad>

token is used to pad the URL with few tokens (explained later in this
section). We denote the representation vector of token as xtoken.

one-hot encoding First, we introduce a variant of the standard
one-hot encoding that treats the token as atomic unit instead of the
entire URL. The model using one-hot encoding is served as our base-
line model. As already mentioned, the token representations are used
to get the URL representation. To be more precise, we encode a URL
by taking the average of the one-hot encodings of its tokens:

fr(url) =
1

n_tokens

n_tokens

∑
i=1

xtokeni . (3.6)

The cardinality of the one-hot encoding is equal to the number of all
possible tokens appearing in our data.

embedding learning Despite its simplicity, the aforementioned
one-hot encoding vector is sparse and does not take into account the
similarity between URLs, while on the same time its dimension grows
linearly with the corpus. To tackle these problems, we propose three
representation schemes inspired by the idea of Word2Vec (Mikolov,
Sutskever, et al., 2013) which learn dense and semantically meaningful
vectors. More specifically, our representation schemes use the skip-
gram model that given a target word (URL in our case), we try to
predict its context words. More formally, the skip-gram model tries to
find word representations that can be used for predicting the words
in its neighborhood. Therefore, given a sequence of words (URLs)
url1, . . . , urlT, our objective is the maximization of the average log
probability

1
T

T

∑
t=1

∑
−c6j6c,j 6=0

log p(urlt+j|urlt), (3.7)

where c specifies the neighborhood of target URL. The conditional
probability is defined by using the softmax function, as

p(urlc|urlt) ,
exp(x>urltx

′
urlc)

∑url∈V exp(x>urlt
x′url)

, (3.8)

84 predicting conversions in display advertising based on url embeddings

where xurlt and x′urlc are the representations for target and context
URLs respectively, and V is the vocabulary of URLs.

Due to the softmax calculation in Eq. 3.8, the direct optimization
of Eq. 3.7 is computationally expensive when |V| is large. Thus, we
adopt the negative sampling approach (Mikolov, Sutskever, et al., 2013).
In negative sampling, we treat the word’s representation learning as a
binary classification task where we try to distinguish the target-context
pairs of words presented on the training data from those that are not
(see Section 2.4.2.2 for details). Following the suggestions of Mikolov,
Sutskever, et al., 2013, for each positive pair we are creating k negative
(target-context) pairs.

In contrast to the original Word2Vec model, the proposed repre-
sentation learning architectures try to learn the tokens representa-
tions, instead of the URL representations directly. A token repre-
sentation is also learned for the case of a <Pad> token. For instance,
https://en.wikipedia.org/ is mapped to [en.wikipedia.org, <Pad>,
<Pad>]. Since URLs are padded, the number of tokens of each URL
is equal to three. Then, by combining the token representations we
form the final URL representation that will be used for the training
of the conversion prediction classifier. Actually, the second phase of
our model (conversion prediction classifier) can be seen as a way to
test the effectiveness of our representation models. The main differ-
ence between the three proposed embedding representation models
is how the token representations are combined to form the final URL
embedding vector:
• Domain_only representation uses only the representation of the

first token to represent the URL, ignoring the representations of
the other two tokens.
• Token_avg representation takes the average of the token embed-

ding vectors to represent the URL.
• Token_concat representation concatenates the token embedding

vectors to represent the URL. In this case, the dimension of the
URL embedding vector is three times the dimension of the token
embedding vectors.

For instance, let {xtokeni}3
i=1 be the token embedding vectors of

the three tokens presented on a target URL, represented as url =

[token1, token2, token3]. Then, the Domain_only representation is equal
to xtoken1 , the Token_avg representation is equal to 1

3 ∑3
i=1 xtokeni , and

the Token_concat representation is given as [x>token1
,x>token2

,x>token3
]>. A

graphical illustration of the proposed embedding learning architecture
is provided at Fig. 3.4.

3.4 experiments

This section presents the results of our empirical analysis.

https://en.wikipedia.org/

3.4 experiments 85

Target URL
urlt = [token(t)

1 , token(t)
2 , token(t)

3]

Token Embedding Layer
(dic_size × embedding_dim)

Target Token Embedding

Target token(t)
1 embedding x

token(t)
1

Target token(t)
2 embedding x

token(t)
2

Target token(t)
3 embedding x

token(t)
3

Target URL embedding layer
Domain_only, Token_avg, Token_concat

Context URL
urlc = [token(c)

1 , token(c)
2 , token(c)

3]

Token Embedding Layer
(dic_size × embedding_dim)

Context Token Embedding

Context token(c)
1 embedding x′

token(c)
1

Context token(c)
2 embedding x′

token(c)
2

Context token(c)
3 embedding x′

token(c)
3

Context URL embedding layer
Domain_only, Token_avg, Token_concat

Similarity Layer
Dot Product

xurlt x′urlc

Dense Layer
(Sigmoid)

x>urltx
′
urlc

y ∈ {0, 1}

Figure 3.4 – The Skip-gram model architecture used for learning token em-
beddings. Only the (unknown) parameters of the red blocks
are trainable. The dimensionality of the embedding matrices
is equal to the number of tokens × the preferable size of the
embedding space.

3.4.1 Datasets

A real-world RTB dataset was used to train and analyze the perfor-
mance of the proposed prediction models. We built our dataset by
using the auction system logs from campaigns launched in France. It
should be also mentioned that our dataset is anonymized, and only
visited URLs are considered. In this way, each record of the dataset
corresponds to a chronologically ordered sequence of visited URLs
along with a binary label (specific to the advertiser) that indicates
whether or not a conversion has happened on the advertiser’s website
on the next day. More precisely, the data composed of sequences of
URLs along with their labels of three successive dates, Dd, Dd+1, and
Dd+2, where Dd is used for learning representations (conversion labels
are ignored here), and Dd+1 and Dd+2 for training and testing the
prediction models, respectively. Moreover, the maximum length of a

86 predicting conversions in display advertising based on url embeddings

Table 3.1 – Number of converted vs. non-converted records for each one of
the 5 advertisers on the training and testing data.

Advertiser Category Training (5, 452, 577) Testing (7, 164, 109)

Banking (3, 746− 5, 448, 831) (8, 539− 7, 155, 570)

E-shop (1, 463− 5, 451, 114) (1, 821− 7, 162, 288)

Newspaper_1 (1, 406− 5, 451, 171) (2, 923− 7, 161, 186)

Newspaper_2 (1, 261− 5, 451, 316) (1, 291− 7, 162, 818)

Telecom (1, 781− 5, 450, 796) (2, 201− 7, 161, 908)

URL sequence is set equal to 500, where only the most recently visited
URLs are kept in each sequence.

To provide more details about the statistics of the used data, in
Figure 3.5, we present the distribution of URL sequence lengths for
each dataset. As it can be easily observed, the length of the URL
sequences for most of the records is less than 500. In Figure 3.6, we
show the token frequency distribution of the first three URL tokens
for each dataset. As it was expected, the tokens at the last two spots
are more rare in the data. Also, the number of unique tokens in the
first place (domain token) is significantly smaller than the number of
unique tokens on the other two spots. In our analysis, we consider a
token “rare” if it appears less than 20 times.

In total we examine the performance of the models on five advertis-
ers, belonging to four different categories: banking, e-shop, newspaper,
and telecommunications (see Table 3.1).

3.4.2 Settings

All our predictors assume the existence of a URL representation
model in order to vectorize the sequence of URLs for each one of
the dataset records. Our baseline, One_hot/LR, represents the URL
sequences using a one-hot encoding vector of size 193, 409, where
the first two entries correspond to the <unknown> (out of vocabulary)
and <rare> tokens, respectively. The other models rely on already
trained token embedding matrices. Each token is embedded into a
100-dimensional vectors, different for context URL and target URL.
The first three rows correspond to the <unknown>, <rare>, and <Pad>

tokens, respectively. The rest rows contain the embedding vector of
all non-rare tokens observed in the dataset Dd. The number of non-
rare tokens is 22, 098 for the Domain_only, and 187, 916 for both the
Token_Average and Token_Concatenation. To train representations,
we have considered two different {pos:neg} ratios of negative sampling:
{1:1} (corresponding to k = 1) and {1:4} (corresponding to k = 4).

The number of units of the hidden dense layer (dimensionality of
its output space) of DLR model is set to 30. Furthermore, the number
of hidden units of LSTM is set to 10 on the RNN model. A dense layer

3.4 experiments 87

(a) Dataset Dd (b) Dataset Dd+1 (c) Dataset Dd+2

Figure 3.5 – Analysis of the URL sequences lengths for the data, Dd, Dd+1,
and Dd+2.

(a) Dataset Dd

(b) Dataset Dd+1

(c) Dataset Dd+2

Figure 3.6 – Analysis of URL tokens frequencies. X-axis represents the num-
ber of times a token is present in the dataset and y-axis shows
the number of tokens. In parentheses we give the number of
unique tokens.

88 predicting conversions in display advertising based on url embeddings

with a sigmoid activation function is applied at the end of each one
of the three mapping functions fm (“average”, “dense”, “LSTM”) in
order to form a binary classifier. Through our empirical analysis we
have observed that the DLR and RNN prediction models are prone to
overfitting. To enhance the generalization capabilities of these two
models, we are using dropout that is set to 0.5. To be more precise, a
dropout layer is added right after the fm layer of the DLR model, while
both the dropout and the recurrent_dropout parameter of LSTM layer
are set equal to 0.5 on the RNN model.

For the training of all representation and prediction models, the
mini-batch stochastic optimization has been applied by using Adam
optimizer with the default settings in Tensorflow 2.0 2 (i.e., lr=0.001,
beta1 = 0.9, beta2 = 0.999). More precisely, to train the representation
models we are doing one full pass over the whole data that is divided
to 200 parquet 3files. The total number of epochs is 200, equal to the
number of parquet files. At each epoch we are producing the positive
and negative pairs based on the data contained on a single parquet
file and are feeding them to the representation model. On the other
hand, the size of batches for training prediction models is 64, while
the number of epochs and number of steps per epoch is set to 100
in both cases. To tackle the problem of our unbalanced dataset (see
Table 3.1), the ratio of positive and negative URL sequences is {1:1}

in the batches used for the training of the classifiers.

3.4.3 Results

In this section, we formally present the results of our empirical
analysis.

3.4.3.1 Visualization

Firstly, to get an intuition about the ability of the three introduced
URL embedding schemes (Sec. 3.3) to group together URLs that belong
to the same category (i.e., sports, news, etc.), we will visualize (Fig. 3.7)
the embedding vectors of 24 selected domains along with those of
the thirty closest URLs of each one of them. To be more precise, we
are using the embedding matrices learned by the Domain_only/1:1

(Fig. 3.7a) and Domain_only/1:4 (Fig. 3.7b) representation models.
Cosine similarity has been used to measure the similarity between
the embedding vectors of two URLs. To project the original high-
dimensional embedding vectors on a 2-dimensional space, we apply
the Barnes-Hut t-SNE 4 algorithm that is able to preserve the pairwise

2. Tensorflow guide: https://www.tensorflow.org/guide/effective_tf2
3. Apache Parquet: https://parquet.apache.org/
4. We have used t-SNE provided by scikit-learn library with its perplexity to be

equal to 15 and using cosine similarity metric.

https://www.tensorflow.org/guide/effective_tf2
https://parquet.apache.org/
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

3.4 experiments 89

(a) Domain_only/1:1 URL representation model

(b) Domain_only/1:4 URL representation model

Figure 3.7 – t-SNE visualization of the thirty closest neighbors of 24 different
domains. The colors of the points indicate the closest domain of
each URL.

distance between points (i.e. nearby points correspond to similar URLs
and that distant points correspond to dissimilar URLs).

To verify that the URLs belong to the same category with that
of their closest domain, Tables 3.2 and 3.3 provide the 30-nearest
URLs for each one of the 24 domains for the Domain_only/1:1 and
Domain_only/1:4, respectively. For instance, in both cases, all URLs
that are on the neighborhood of expedia.fr are related to traveling.
Moreover, all the neighbors of sport.fr (16) are URLs about sports.

The visualization of Figs. 3.7a and 3.7b illustrate the ability of
the Domain_only/1:1 and Domain_only/1:4 representation models to
produce semantically meaningful embeddings. Actually, it becomes
apparent that we are getting 24 clearly distinguished clusters in both
cases. Moreover, the clusters of ‘similar’ domains are also close on
the embedding space. For example, the URLs embeddings of clusters
(10) [auto-moto.com] and (19) [renault-laguna.com] are close as they
are related to the automobile category. The same also holds for the

https://expedia.fr
https://sport.fr
https://auto-moto.com
https://renault-laguna.com

90 predicting conversions in display advertising based on url embeddings

Table 3.2 – The 30-nearest neighbors of 24 different domains according to
our trained Domain_only/1:1 representation model.

Domain 30-nearest neighbors (URLS)

huffingtonpost.es sevilla.abc.es; elconfidencial.com; smoda.elpais.com; verne.elpais.com; elmon.cat; elcorreo.com; expansion.com; infolibre.es; vozpopuli.com; blogs.elconfidencial.com; el-
diario.es; okdiario.com; cope.es; m.eldiario.es; elespanol.com; elperiodico.com; levante-emv.com; diariodesevilla.es; eleconomista.es; elcaso.elnacional.cat; periodistadigital.com;
farodevigo.es; guiadelocio.com; libertaddigital.com; 20minutos.es; motor.elpais.com; mitele.es; diariodenavarra.es; lasexta.com; diariovasco.com

lesechos.fr business.lesechos.fr; latribune.fr; afrique.latribune.fr; financedemarche.fr; bfmbusiness.bfmtv.com; mieuxvivre-votreargent.fr; photo.capital.fr; capital.fr; challenges.fr; journal-
dunet.com; lopinion.fr; mtf-b2b-asq.fr; marianne.net; hbrfrance.fr; contrepoints.org; journaldeleconomie.fr; boursier.com; zonebourse.com; investopedia.com; manager-go.com;
e-marketing.fr; actufinance.fr; argent.boursier.com; btf-b2b-asq.fr; linkedin.com; mtf-finance-asq.fr; nasdaq.com; btf-finance-asq.fr; lecoindesentrepreneurs.fr; 07-ros-btf-
laplacemedia-3.fr

orange.fr actu.orange.fr; login.orange.fr; finance.orange.fr; tendances.orange.fr; lemoteur.orange.fr; meteo.orange.fr; messagerie.orange.fr; programme-tv.orange.fr; sports.orange.fr;
news.orange.fr; boutique.orange.fr; auto.orange.fr; zapping-tv.orange.fr; webmail.orange.fr; people.orange.fr; occasion.auto.orange.fr; mescontacts.orange.fr; video-
streaming.orange.fr; pro.orange.fr; mail02.orange.fr; agenda.orange.fr; tv.orange.fr; cineday.orange.fr; mail01.orange.fr; belote-coinchee.net; 118712.fr; ww.orange.fr; cliquojeux.com;
freecell.fr; mundijeux.fr

leparisien.fr btf-actu-asq.fr; lefigaro.fr; marianne.net; scoopnest.com; legorafi.fr; cnews.fr; actu17.fr; bfmtv.com; tendanceouest.com; atlasinfo.fr; opex360.com; jeuneafrique.com; lejdd.fr;
video.lefigaro.fr; lalibre.be; rtl.be; liberation.fr; fdesouche.com; causeur.fr; 24matins.fr; amp.lefigaro.fr; courrierinternational.com; bladi.net; tunisienumerique.com; lci.fr;
courrier-picard.fr; 7sur7.be; air-defense.net; mixcloud.com; pss-archi.eu

reddit.com pcgaming.reddit.com; smashbros.reddit.com; old.reddit.com; funny.reddit.com; gaming.reddit.com; europe.reddit.com; france.reddit.com; soccer.reddit.com; askred-
dit.reddit.com; anime.reddit.com; memes.reddit.com; globaloffensive.reddit.com; starcitizen.reddit.com; freefolk.reddit.com; nintendoswitch.reddit.com; popular.reddit.com;
games.reddit.com; aww.reddit.com; leagueoflegends.reddit.com; gameofthrones.reddit.com; politics.reddit.com; redditad.com; dota2.reddit.com; all.reddit.com; total-
war.reddit.com; knowyourmeme.com; pcmasterrace.reddit.com; movies.reddit.com; tinder.reddit.com; nba.reddit.com

expedia.fr skyscanner.fr; kayak.fr; momondo.fr; fr.hotels.com; fr.lastminute.com; vol.lastminute.com; liligo.fr; quandpartir.com; esky.fr; govoyage.fr; opodo.fr; lonelyplanet.fr; virail.fr;
carnetdescapades.com; voyage.lastminute.com; lastminute.com; bravofly.fr; edreams.fr; easyvols.fr; tripadvisor.fr; locations.lastminute.com; ebookers.fr; voyages.bravofly.fr;
opodo.com; reservation.lastminute.com; trainhotel.lastminute.com; flights-results.liligo.fr; voyageforum.com; voyagespirates.fr; govoyages.com

tractorfan.fr forum.farm-connexion.com; discountfarmer.com; heure-ouverture.com; technikboerse.com; meteo-sud-aveyron.over-blog.com; ovniclub.com; materiel-agricole.annuairefrancais.fr;
enviedechasser.fr; mash70-75.com; unimog-mania.com; pecheapied.net; renault5.forumactif.com; srxteam.forums-actifs.net; palombe.com; spa-du-dauphine.fr; foreca.fr;
meteopassion.com; fiatagri.superforum.fr; meteosurfcanarias.com; super-tenere.org; actu-automobile.com; opel-mokka.forumpro.fr; motoconseils.com; fr.agrister.com; esoxiste.com;
v-strom.superforum.fr; view.robothumb.com; sudoku-evolution.com; refugebeauregard.forumactif.com; m.meteorama.fr

welt.de zeit.de; tagesspiegel.de; sueddeutsche.de; faz.net; sport1.de; badische-zeitung.de; merkur.de; rp-online.de; kicker.de; handelsblatt.com; tz.de; tvmovie.de; abendblatt.de;
sportbild.bild.de; nzz.ch; bild.de; seattletimes.com; express.de; morgenpost.de; bz-berlin.de; netzwelt.de; bunte.de; derwesten.de; t-online.de; general-anzeiger-bonn.de; mopo.de;
transfermarkt.de; techbook.de; finanzen.net; aargauerzeitung.ch

foreca.fr meteo81.fr; meteosurfcanarias.com; sudoku-evolution.com; meteopassion.com; mxcircuit.fr; ledicodutour.com; pecheursunisdelille.com; moncompte-espaceclient.com; impactfm.fr;
discountfarmer.com; meteo-normandie.fr; monde-du-velo.com; fr.tutiempo.net; meteojura.fr; ovniclub.com; palombe.com; sur.ly; videos-chasse-peche.com; retroplane.net;
pointeduraz.info; carriere.annuairefrancais.fr; meteo-sud-aveyron.over-blog.com; horaires-douverture.fr; banquesenfrance.fr; genealogic.review; fr.meteovista.be; baboun57.over-
blog.com; meteonews.ch; pecheapied.net; fournaise.info

auto-moto.com feline.cc; largus.fr; news.autojournal.fr; auto-mag.info; test-auto.auto-moto.com; automobile-magazine.fr; caradisiac.com; neowebcar.com; essais.autojournal.fr; promoneuve.fr;
autojournal.fr; latribuneauto.com; motorlegend.com; turbo.fr; actu-moteurs.com; worldscoop.forumpro.fr; palais-de-la-voiture.com; voiture.autojournal.fr; autoplus.fr; moni-
teurautomobile.be; recherche.autoplus.fr; news.sportauto.fr; abcmoteur.fr; fiches-auto.fr; ww2.autoscout24.fr; constructeur.autojournal.fr; zeperfs.com; essais-autos.com;
motoservices.com; sportauto.fr

az-online.de alittlecraftinyourday.com; theorganisedhousewife.com.au; brittanyherself.com; directoalpaladar.com.mx; mikseri.net; homeplans.com; thesurvivalgardener.com; dmv.org;
milliondollarjourney.com; symbols.com; xataka.com.co; kiwilimon.com; mu-43.com; houseofjoyfulnoise.com; leinetal24.de; turniptheoven.com; wetterkanal.kachelmannwetter.com;
thinksaveretire.com; lovechicliving.co.uk; wereparents.com; cookrepublic.com; foodinjars.com; lettermenrow.com; raegunramblings.com; thedailytay.com; losreplicantes.com;
intmath.com; arthritis-health.com; ourpaleolife.com; juneauempire.com

tempsdecuisson.net cuisinenligne.com; mamina.fr; scally.typepad.com; audreycuisine.fr; atelierdeschefs.fr; temps-de-cuisson.info; aux-fourneaux.fr; uneplumedanslacuisine.com; cuisine-facile.com;
gateaux-et-delices.com; chefnini.com; humcasentbon.over-blog.com; yummix.fr; fruitsdelamer.com; toutlemondeatabl.canalblog.com; lesjoyauxdesherazade.com; gateaux-
chocolat.fr; petitsplatsentreamis.com; pechedegourmand.canalblog.com; certiferme.com; yumelise.fr; quelquesgrammesdegourmandise.com; toques2cuisine.com; ricardocui-
sine.com; companionetmoi.com; recettessimples.fr; docteurbonnebouffe.com; cuisinealafrancaise.com; lighttome.fr; recetteramadan.com

cnn.com us.cnn.com; grimsbytelegraph.co.uk; stadiumtalk.com; uk.reuters.com; euronews.com; expressandstar.com; thedailymash.co.uk; politico.eu; nbcnews.com; thedailybeast.com;
trendscatchers.co.uk; lancashiretelegraph.co.uk; blogs.spectator.co.uk; itpro.co.uk; standard.co.uk; kentonline.co.uk; doityourself.com; deliaonline.com; puzzles.independent.co.uk;
breakingnews.ie; oxfordmail.co.uk; slashdot.org; sportinglife.com; abcactionnews.com; huffpost.com; indy100.com; anagrammer.com; drivepedia.com; nigella.com; trumpexcel.com

portail-
cloture.ooreka.fr mur.ooreka.fr; bricolage-facile.net; forum-maconnerie.com; decoration.ooreka.fr; porte.ooreka.fr; abri-de-jardin.ooreka.fr; fr.rec.bricolage.narkive.com; expert-peinture.fr;

muramur.ca; amenagementdujardin.net; tondeuse.ooreka.fr; desinsectisation.ooreka.fr; aac-mo.com; fenetre.ooreka.fr; bricoleurpro.com; recuperation-eau-pluie.ooreka.fr;
pergola.ooreka.fr; volet.ooreka.fr; papier-peint.ooreka.fr; arrosoirs-secateurs.com; carrelage.ooreka.fr; assainissement.ooreka.fr; pierreetsol.com; poele-cheminee.ooreka.fr;
forumbrico.fr; poimobile.fr; parquet.ooreka.fr; forum-plomberie.com; deconome.com; serrure.ooreka.fr

sport.fr infomercato.fr; topmercato.com; mercatofootanglais.com; parisfans.fr; footlegende.fr; pariskop.fr; le10sport.com; allpaname.fr; le-onze-parisien.fr; vipsg.fr; planetepsg.com;
mercatoparis.fr; paristeam.fr; buzzsport.fr; canal-supporters.com; football.fr; culturepsg.com; footparisien.com; foot-sur7.fr; footradio.com; mercatolive.fr; olympique-et-
lyonnais.com; planetelille.com; footballclubdemarseille.fr; blaugranas.fr; 90min.com; sportune.fr; footmarseillais.com; livefoot.fr; foot01.com

anti-crise.fr echantillonsclub.com; cfid.fr; gesti-odr.com; plusdebonsplans.com; promoalert.com; forum.anti-crise.fr; madstef.com; franceechantillonsgratuits.com; cataloguemate.fr; mesechan-
tillonsgratuits.fr; argentdubeurre.com; auchan.fr; maximum-echantillons.com; forum.madstef.com; tous-testeurs.com; jeu-concours.biz; vos-promos.fr; tiendeo.fr; echantil-
lonsgratuits.fr; echantinet.com; pubeco.fr; bons-plans-astuces.com; lp.testonsensemble.com; toutdonner.com; conforama.fr; clubpromos.fr; vente-unique.com; ofertolino.fr;
promo-conso.net; fr.testclub.com

auchan.fr conforama.fr; but.fr; rueducommerce.fr; vente-unique.com; cdiscount.com; touslesprix.com; webmarchand.com; anti-crise.fr; fr.shopping.com; cataloguemate.fr; leguide.com;
offrespascher.com; promoalert.com; fr.xmassaver.net; promobutler.be; plusdebonsplans.com; tiendeo.fr; promopascher.com; destockplus.com; meilleurvendeur.com; idealo.fr;
pubeco.fr; cdiscountpro.com; argentdubeurre.com; clubpromos.fr; mistergooddeal.com; prixreduits.net; clients.cdiscount.com; horaires.lefigaro.fr; fr.clasf.com

paris-
sorbonne.academia.edu cnrs.academia.edu; ehess.academia.edu; uclouvain.academia.edu; ephe.academia.edu; univ-paris1.academia.edu; univ-paris8.academia.edu; univ-lorraine.academia.edu;

mindtools.com; univ-catholyon.academia.edu; ancient.eu; ffmedievale.forumgratuit.org; oxford.academia.edu; unil.academia.edu; iprofesional.com; theartstory.org; univ-
amu.academia.edu; marineinsight.com; mapsofindia.com; trend-online.com; coniugazione.it; diggita.it; docsity.com; biografiasyvidas.com; infoplease.com; fr.actualitix.com;
docplayer.es; thelocal.de; lectures49.over-blog.com; diariodocentrodomundo.com.br; cinemagia.ro

renault-laguna.com megane3.fr; gps-carminat.com; megane2.superforum.fr; r25-safrane.net; diagnostic-auto.com; renault-zoe.forumpro.fr; techniconnexion.com; gamblewiz.com; forum-super5.fr;
lesamisdudiag.com; forum.autocadre.com; minivanchrysler.com; renault-clio-4.forumpro.fr; bmw-one.com; club.caradisiac.com; lesamisdelaprog.com; forum-bmw.fr; alfaromeo-
online.com; marcopolo.superforum.fr; v2-honda.com; alfa147-france.net; question-auto.fr; forum308.com; qashqai-passion.info; automobile-conseil.fr; fr.motocrossmag.be;
magmotardes.com; auto-evasion.com; btf-automoto-asq.fr; fr.bmwfans.info

excel-plus.fr tech-connect.info; jetaide.com; officepourtous.com; lame.buanzo.org; it.ccm.net; lecompagnon.info; patatos.over-blog.com; faclic.com; abracadabrapdf.net; faqword.com;
windows.developpez.com; thehackernews.com; jiho.com; cartoucherecharge.fr; questionbureautique.over-blog.com; comment-supprimer.com; cgsecurity.org; silky-
road.developpez.com; technologie.toutcomment.com; java.developpez.com; br.ccm.net; phptester.net; lephpfacile.com; blogosquare.com; monpc-pro.fr; python.developpez.com;
astuces.jeanviet.info; poftut.com; tecadmin.net; blog-nouvelles-technologies.fr

jeuxvideo.org pvpro.com; fallout.fandom.com; pokecommunity.com; xbox-mag.net; make-fortnite-skins.com; garrycity.fr; en.riotpixels.com; brainly.com; gtalogo.com; pngimg.com; 3daim-
trainer.com; creativeuncut.com; twitchoverlay.com; en.magicgameworld.com; frondtech.com; discord.me; 11anim.com; kiranico.com; dllme.com; jeugeek.com; myinstants.com;
online-voice-recorder.com; mugenarchive.com; honga.net; strawpoll.com; chompy.app; gamepressure.com; cleverbot.com; rp-manga.forum-canada.com; filedropper.com

farmville2free.com fv2freegifts.org; goldenlifegroup.com; fb1.farm2.zynga.com; juegossocial.com; fv-zprod-tc-0.farmville.com; megazebra-facebook-trails.mega-zebra.com; zy2.farm2.zynga.com;
gameskip.com; fv-zprod.farmville.com; actiplay-asn.com; iscool.iscoolapp.com; farmvilledirt.com; secure1.mesmo.tv; megazebra-facebook.mega-zebra.com; prod-web-
pool.miniclip.com; banner2.cookappsgames.com; puzzledhearts.com; zynga.com; buggle.cookappsgames.com; apps.facebook.com; deliresetamities.1fr1.net; bubble-
coco.cookappsgames.com; apps.fb.miniclip.com; rummikub-apps.com; amomama.fr; gifwi.com; jigsawpuzzlequest.com:3000; pengle.cookappsgames.com; webgl.exoty.com;
fr.opossumsauce.com

vogue.fr vanityfair.fr; vogue.com; fr.metrotime.be; vivreparis.fr; o.nouvelobs.com; apartmenttherapy.com; vice.com; lefaso.net; timeout.fr; unjourdeplusaparis.com; whosdatedwho.com;
pariszigzag.fr; wwd.com; gq.com; taddlr.com; vanityfair.com; elle.com; brain-magazine.fr; admagazine.fr; fashiongonerogue.com; people.com; glamourparis.com; lep-
lus.nouvelobs.com; unilad.co.uk; hellomagazine.com; maliactu.net; noisey.vice.com; france-hotel-guide.com; thisisinsider.com; lanouvelletribune.info

tripadvisor.fr monnuage.fr; cityzeum.com; fr.hotels.com; voyageforum.com; rome2rio.com; virail.fr; carnetdescapades.com; petitfute.com; kayak.fr; voyages.michelin.fr; lonelyplanet.fr;
expedia.fr; partir.com; quandpartir.com; salutbyebye.com; mackoo.com; actualitix.com; voyages.ideoz.fr; voyage.linternaute.com; week-end-voyage-lisbonne.com; skyscanner.fr;
toocamp.com; plages.tv; routard.com; momondo.fr; gotoportugal.eu; evous.fr; esky.fr; l-itineraire.paris; lepetitmoutard.fr

3.4 experiments 91

Table 3.3 – The 30-nearest neighbors of 24 different domains according to
our trained Domain_only/1:4 representation model.

Domain 30-nearest neighbors (URLS)

huffingtonpost.es cope.es; m.eldiario.es; okdiario.com; verne.elpais.com; blogs.elconfidencial.com; vozpopuli.com; elespanol.com; smoda.elpais.com; libertaddigital.com; cadenaser.com;
sevilla.abc.es; elmon.cat; elperiodico.com; levante-emv.com; kiosko.net; elcorreo.com; motor.elpais.com; cronicaglobal.elespanol.com; elplural.com; ara.cat; rac1.cat; eldiario.es;
heraldo.es; elperiodico.cat; eleconomista.es; diariodesevilla.es; guiadelocio.com; lasexta.com; periodistadigital.com; mismarcadores.com

lesechos.fr latribune.fr; afrique.latribune.fr; business.lesechos.fr; bfmbusiness.bfmtv.com; financedemarche.fr; challenges.fr; investopedia.com; actufinance.fr; lopinion.fr; contrepoints.org;
rfi.fr; etudiant.lefigaro.fr; hbrfrance.fr; capital.fr; e-marketing.fr; marianne.net; journaldunet.com; 05-habillages-theplacetobid.fr; courrierinternational.com; nouvelobs.com; mtf-
b2b-asq.fr; lexpansion.lexpress.fr; zonebourse.com; start.lesechos.fr; lentreprise.lexpress.fr; boursier.com; manager-go.com; investing.com; boursedirect.fr; journaldeleconomie.fr

orange.fr actu.orange.fr; lemoteur.orange.fr; messagerie.orange.fr; login.orange.fr; finance.orange.fr; sports.orange.fr; meteo.orange.fr; tendances.orange.fr; programme-tv.orange.fr;
news.orange.fr; boutique.orange.fr; pro.orange.fr; chaines-tv.orange.fr; ww.orange.fr; agenda.orange.fr; people.orange.fr; zapping-tv.orange.fr; mescontacts.orange.fr;
mail01.orange.fr; occasion.auto.orange.fr; video-streaming.orange.fr; musique.orange.fr; tv.orange.fr; mail02.orange.fr; auto.orange.fr; webmail.orange.fr; 118712.fr; cine-
day.orange.fr; belote-coinchee.net; mahjonggratuit.fr

leparisien.fr cnews.fr; atlasinfo.fr; lefigaro.fr; lejdd.fr; jforum.fr; marianne.net; video.lefigaro.fr; tendanceouest.com; bladi.net; observalgerie.com; causeur.fr; scoopnest.com; etudiant.lefigaro.fr;
actu17.fr; lalibre.be; fdesouche.com; people.bfmtv.com; rmc.bfmtv.com; bfmtv.com; ici.radio-canada.ca; nouvelobs.com; amp.lefigaro.fr; breizh-info.com; fr.euronews.com;
observers.france24.com; tunisienumerique.com; courrierinternational.com; lopinion.fr; sfrpresse.sfr.fr; 94.citoyens.com

reddit.com imgur.com; old.reddit.com; askreddit.reddit.com; pcgamer.com; anime.reddit.com; france.reddit.com; gamefaqs.gamespot.com; totalwar.reddit.com; nintendoswitch.reddit.com;
gaming.reddit.com; knowyourmeme.com; redditad.com; pcgaming.reddit.com; funny.reddit.com; europe.reddit.com; leagueoflegends.reddit.com; all.reddit.com;
freefolk.reddit.com; pcmasterrace.reddit.com; soccer.reddit.com; globaloffensive.reddit.com; gamesradar.com; dankmemes.reddit.com; gfycat.com; gameofthrones.reddit.com;
overwatch.reddit.com; popular.reddit.com; smashbros.reddit.com; competitiveoverwatch.reddit.com; aww.reddit.com

expedia.fr momondo.fr; skyscanner.fr; kayak.fr; fr.lastminute.com; fr.hotels.com; flights-results.liligo.fr; ebookers.fr; esky.fr; opodo.com; secure.lastminute.com; bravofly.fr; opodo.fr;
vol.lastminute.com; vols.idealo.fr; locations.lastminute.com; quandpartir.com; opodo.ch; reservation.lastminute.com; quellecompagnie.com; trainhotel.lastminute.com; lonely-
planet.fr; easyvols.fr; voyages.bravofly.fr; edreams.fr; sejour.lastminute.com; rome2rio.com; voyagespirates.fr; jetcost.com; voyage.lastminute.com; virail.fr

tractorfan.fr discountfarmer.com; forum.farm-connexion.com; angleterre.meteosun.com; songs-tube.net; materieltp.fr; assovttroc.clicforum.fr; opel-mokka.forumpro.fr; spa-du-dauphine.fr;
vanvesactualite.blog4ever.com; calcul-frais-de-notaire.fr; sectr.net; cuir-creation.forum-box.com; fc-fief-geste.footeo.com; classements.snt-voile.org; rjm-radio.fr; gps-tomtom.fr;
v-strom.superforum.fr; migrateurs.forumgratuit.org; gazoline.forumactif.com; recuperation-metaux.annuairefrancais.fr; voitures-societe.ooreka.fr; fcplouay.footeo.com; equishop-
ping.com; annonce123.com; 36kines.com; bastia.onvasortir.com; renault5.forumactif.com; globaldjmix.com; enviedechasser.fr; squidtv.net

welt.de zeit.de; sueddeutsche.de; faz.net; tagesspiegel.de; sport1.de; kicker.de; saarbruecker-zeitung.de; tz.de; bild.de; sportbild.bild.de; hartgeld.com; nzz.ch; abendblatt.de; express.de;
n-tv.de; bunte.de; handelsblatt.com; merkur.de; bz-berlin.de; aargauerzeitung.ch; badische-zeitung.de; promiflash.de; focus.de; t-online.de; transfermarkt.de; finanzen.net; sport.de;
flashscore.de; rp-online.de; stylebook.de

foreca.fr my-meteo.com; fr.meteovista.be; fr.tutiempo.net; meteopassion.com; de.sat24.com; nosvolieres.com; meteo-sud-aveyron.over-blog.com; xn–mto-bmab.fr; palombe.com; cal-
culerdistance.fr; meteo81.fr; meteosurfcanarias.com; meteo-normandie.fr; meteobelgique.be; planete-ardechoise.com; parisbrestparis2007.actifforum.com; indicatifs.htpweb.fr;
etatdespistes.com; easycounter.com; hauteurdeneige.com; testadsl.net; m.meteorama.fr; discountfarmer.com; prevision-meteo.ch; refugeanimalierdupaysdelanderneau.over-
blog.com; infosski.com; grottes-france.com; meteolanguedoc.com; impactfm.fr; pont-ile-de-re.com

auto-moto.com caradisiac.com; largus.fr; news.autojournal.fr; test-auto.auto-moto.com; auto-mag.info; feline.cc; motorlegend.com; essais.autojournal.fr; automobile-magazine.fr; turbo.fr;
autoplus.fr; promoneuve.fr; automobile-sportive.com; neowebcar.com; latribuneauto.com; moniteurautomobile.be; palais-de-la-voiture.com; fr.automobiledimension.com;
motoservices.com; autotitre.com; fiches-auto.fr; autojournal.fr; blogzineauto.com; voiture.autojournal.fr; essais-autos.com; notice-utilisation-voiture.fr; sportauto.fr; abcmoteur.fr;
recherche.autoplus.fr; news.sportauto.fr

az-online.de abountifulkitchen.com; thesurvivalgardener.com; leinetal24.de; brittanyherself.com; symbols.com; ourpaleolife.com; msl24.de; milliondollarjourney.com; arthritis-health.com;
thehollywoodunlocked.com; preschoolmom.com; lovechicliving.co.uk; paleoglutenfree.com; lettermenrow.com; theeasyhomestead.com; raegunramblings.com; evolving-
science.com; mu-43.com; juneauempire.com; mikseri.net; e1.ru; thedailytay.com; alittlecraftinyourday.com; comfortablydomestic.com; chicksonright.com; brepurposed.porch.com;
kiwilimon.com; grandforksherald.com; catholicstand.com; greatandhra.com

tempsdecuisson.net cuisine-facile.com; temps-de-cuisson.info; yummix.fr; aux-fourneaux.fr; cuisinenligne.com; audreycuisine.fr; mamina.fr; uneplumedanslacuisine.com; cnz.to; ricardocuisine.com;
chefnini.com; cuisinealafrancaise.com; toutlemondeatabl.canalblog.com; marciatack.fr; atelierdeschefs.fr; lesepicesrient.fr; yumelise.fr; lacuisinededoria.over-blog.com; cuisinebas-
setemperature.com; recettessimples.fr; perleensucre.com; la-cuisine-des-jours.over-blog.com; lesjoyauxdesherazade.com; fraichementpresse.ca; gustave.com; gateaux-chocolat.fr;
toques2cuisine.com; recettesduchef.fr; petitsplatsentreamis.com; amandinecooking.com

cnn.com us.cnn.com; stadiumtalk.com; thedailybeast.com; itpro.co.uk; uk.reuters.com; euronews.com; theargus.co.uk; theatlantic.com; thedailymash.co.uk; trendscatchers.co.uk;
grimsbytelegraph.co.uk; lancashiretelegraph.co.uk; digg.com; spectator.co.uk; politico.eu; blogs.spectator.co.uk; newstatesman.com; huffingtonpost.co.uk; expressandstar.com;
puzzles.bestforpuzzles.com; chroniclelive.co.uk; derbytelegraph.co.uk; irishexaminer.com; globalnews.ca; sportinglife.com; slashdot.org; rte.ie; farandwide.com; kentonline.co.uk;
thenational.scot

portail-
cloture.ooreka.fr bricolage-facile.net; mur.ooreka.fr; pierreetsol.com; bricolage.jg-laurent.com; abri-de-jardin.ooreka.fr; aac-mo.com; fr.rec.bricolage.narkive.com; decoration.ooreka.fr; piscineinfoser-

vice.com; bricoleurpro.com; amenagementdujardin.net; betonniere.ooreka.fr; assainissement.ooreka.fr; fenetre.ooreka.fr; expert-peinture.fr; terrasse.ooreka.fr; tondeuse.ooreka.fr;
debroussailleuse.ooreka.fr; peinture.ooreka.fr; carrelage.ooreka.fr; parquet.ooreka.fr; amenagement-de-jardin.ooreka.fr; toiture.ooreka.fr; poimobile.fr; schema-electrique.net;
installation-electrique.ooreka.fr; forum-maconnerie.com; muramur.ca; wc.ooreka.fr; plaque-de-cuisson.ooreka.fr

sport.fr infomercato.fr; parisfans.fr; topmercato.com; vipsg.fr; footradio.com; mercatofootanglais.com; le10sport.com; buzzsport.fr; footparisien.com; foot-sur7.fr; planetepsg.com;
pariskop.fr; paristeam.fr; footlegende.fr; le-onze-parisien.fr; mercatoparis.fr; 90min.com; canal-supporters.com; allpaname.fr; sportune.fr; livefoot.fr; culturepsg.com; jeunesfoo-
teux.com; losclive.com; mercatolive.fr; footballclubdemarseille.fr; parisunited.fr; football-addict.com; olympique-et-lyonnais.com; football.fr

anti-crise.fr cfid.fr; forum.anti-crise.fr; gesti-odr.com; echantillonsclub.com; plusdebonsplans.com; cataloguemate.fr; promoalert.com; argentdubeurre.com; madstef.com; forum.madstef.com;
vos-promos.fr; mesechantillonsgratuits.fr; franceechantillonsgratuits.com; tiendeo.fr; tous-testeurs.com; maximum-echantillons.com; ofertolino.fr; auchan.fr; pubeco.fr;
echantinet.com; echantillonsgratuits.fr; promo-conso.net; bons-plans-astuces.com; commerces.com; lp.testonsensemble.com; grattweb.fr; promobutler.be; jeu-concours.biz;
mafamillezen.com; hitwest.com

auchan.fr but.fr; conforama.fr; vente-unique.com; rueducommerce.fr; fr.shopping.com; cdiscount.com; touslesprix.com; promobutler.be; webmarchand.com; mistergooddeal.com; offres-
pascher.com; argentdubeurre.com; cataloguemate.fr; leguide.com; promoalert.com; vos-promos.fr; fr.xmassaver.net; cdiscountpro.com; clients.cdiscount.com; promopascher.com;
meilleurvendeur.com; clubpromos.fr; tiendeo.fr; plusdebonsplans.com; promo-conso.net; iziva.com; destockplus.com; pubeco.fr; meonho.info; fr.clasf.com

paris-
sorbonne.academia.edu flux-info.fr; elmostrador.cl; makaan.com; univ-montp3.academia.edu; e-lawresources.co.uk; babycenter.com; newocr.com; insight.co.kr; grandes-inventions.com; police-

scientifique.com; entrainementfootballpro.fr; muyinteresante.es; ancient.eu; iprofesional.com; slovnik.aktuality.sk; midis101.com; quemas.mamaslatinas.com; adventureinyou.com;
wardrawings.be; esky.ro; puzzle-futoshiki.com; univ-paris8.academia.edu; letssingit.com; learn101.org; mindtools.com; medicoresponde.com.br; br.rfi.fr; lazycatkitchen.com;
realmenrealstyle.com; eve-adam.over-blog.com

renault-laguna.com megane3.fr; gps-carminat.com; megane2.superforum.fr; lesamisdudiag.com; car-actu.com; diagnostic-auto.com; r25-safrane.net; lesamisdelaprog.com; forum.autocadre.com;
renault-clio-4.forumpro.fr; renault-zoe.forumpro.fr; v2-honda.com; ccfrauto.com; minivanchrysler.com; techniconnexion.com; forum308.com; lemecano.fr; obd-data.com; forum-
super5.fr; club.caradisiac.com; toutsurlamoto.com; cliomanuel.org; forum-kia-sportage.com; tlemcen-electronic.com; focusrstteam.com; 306inside.com; cmonofr.net; 207.fr;
automobile-conseil.fr; gamblewiz.com

excel-plus.fr tech-connect.info; thehackernews.com; lecompagnon.info; panoptinet.com; slice42.com; aliasdmc.fr; astuces.jeanviet.info; nalaweb.com; patatos.over-blog.com; jiho.com;
abavala.com; ohmymac.fr; br.ccm.net; easy-pc.org; wisibility.com; filedesc.com; semageek.com; windows.developpez.com; jetaide.com; galaxynote.fr; fr.stealthsettings.com;
chezcyril.over-blog.com; tuto4you.fr; faclic.com; alvinalexander.com; thegeekstuff.com; hirensbootcd.org; faqword.com; openshot.org; zoomonapps.com

jeuxvideo.org alsumaria.tv; minecraft-zh.gamepedia.com; infovisual.info; everyonepiano.com; footstream.live; memedroid.com; darkandlight.gamepedia.com; mbti.forumactif.fr;
gachagames.net; honga.net; en.magicgameworld.com; garrycity.fr; satelis-passion.forumactif.com; blog-insideout.com; fallout.fandom.com; howtomechatronics.com; cshort.org;
fr.trackitonline.ru; openthefile.net; lutain.over-blog.com; alphabetagamer.com; solveyourtech.com; online-voice-recorder.com; png2jpg.com; ffxforever.over-blog.com; arkhamhor-
rorfr.forumactif.com; en.riotpixels.com; pexiweb.be; petri.com; rasage-traditionnel.com

farmville2free.com goldenlifegroup.com; fv2freegifts.org; juegossocial.com; fv-zprod-tc-0.farmville.com; fb1.farm2.zynga.com; zy2.farm2.zynga.com; gameskip.com; fv-zprod.farmville.com;
megazebra-facebook-trails.mega-zebra.com; farmvilledirt.com; megazebra-facebook.mega-zebra.com; iscool.iscoolapp.com; secure1.mesmo.tv; belote-prod-multi.iscoolapp.com;
jigsawpuzzlequest.com:3000; fr.puzzle-loop.com; connect.arkadiumhosted.com; pengle.cookappsgames.com; buggle.cookappsgames.com; banner2.cookappsgames.com;
apps.fb.miniclip.com; goobox.fr; prod-web-pool.miniclip.com; actiplay-asn.com; apps.facebook.com; snf-web.popreach.com; bubblecoco.cookappsgames.com; rummikub-
apps.com; watersplash.cookappsgames.com; zynga.com

vogue.fr vanityfair.fr; vogue.com; vivreparis.fr; fr.metrotime.be; brain-magazine.fr; o.nouvelobs.com; parismatch.be; pariszigzag.fr; admagazine.fr; unilad.co.uk; konbini.com; monblogde-
fille.com; affairesdegars.com; neonmag.fr; vice.com; nordpresse.be; leplus.nouvelobs.com; lataille.fr; people-bokay.com; commeuncamion.com; fr.euronews.com; demotivateur.fr;
star24.tv; madmoizelle.com; vl-media.fr; whosdatedwho.com; sciencepost.fr; physiquedereve.fr; ztele.com; twog.fr

tripadvisor.fr fr.hotels.com; cityzeum.com; voyages.michelin.fr; lonelyplanet.fr; monnuage.fr; voyageforum.com; rome2rio.com; toocamp.com; virail.fr; partir.com; carnetdescapades.com;
quellecompagnie.com; mackoo.com; expedia.fr; momondo.fr; salutbyebye.com; orangesmile.com; skyscanner.fr; voyages.ideoz.fr; cars.liligo.fr; quandpartir.com; kelbillet.com;
gotoportugal.eu; officiel-des-vacances.com; busradar.fr; week-end-voyage-lisbonne.com; les-escapades.fr; voyage.linternaute.com; bouger-voyager.com; voyagespirates.fr

92 predicting conversions in display advertising based on url embeddings

Figure 3.8 – t-SNE visualization of the embedding matrix trained by
Domain_only/1:4 representation model after 0, 50, 100, 150, and
200 epochs, respectively.

URLs embeddings of clusters (2) [lesechos.fr], (4) [leparisien.fr], and
(23) [vogue.fr] that belong to the news category.

We also observe that clusters close on the embedding space pro-
duced by Domain_only/1:1 are also close on the embedding space
of Domain_only/1:4. For instance, clusters (6) [expedia.fr] and (24)
[tripadvisor.fr] are close in both cases. That is normal, as these two
clusters contain URLs about travelling. The same also holds for the
URLs embeddings of clusters (2) [lesechos.fr], (4) [leparisien.fr], and
(23) [vogue.fr] that belong to the news category. Moreover, clusters
(10) [auto-moto.com] and (19) [renault-laguna.com] are also close as
both are related to automobile. Another example is that of clusters
(16) [anti-crise.fr] and (17) [auchan.fr] are about promotions (online
shopping).

Finally, Fig. 3.8 illustrates the t-SNE visualization of the embed-
ding matrix (22, 101× 100) trained by Domain_only/1:4 representation
model after 0, 50, 100, 150, and 200 epochs, respectively.

3.4.3.2 Numerical results

Next, we formally present the numerical results of ten prediction
models on five different advertisers. In order to distinguish the models,
their names consist of three parts separated by a slash (‘/’) character
apart from the One_hot/LR model. The first part indicates the type of
representation (Domain_only, Token_avg, Token_concat), the second
defines the kind of prediction model (LR, DLR, RNN), and the last one
shows the {pos:neg} ratio ({1:1}, {1:4}) hyper-parameter used for the
training of the representation model.

https://lesechos.fr
https://leparisien.fr
https://vogue.fr
https://expedia.fr
https://tripadvisor.fr
https://lesechos.fr
https://leparisien.fr
https://vogue.fr
https://auto-moto.com
https://renault-laguna.com
https://anti-crise.fr
https://auchan.fr

3.4 experiments 93

Table 3.4 – Avg (%) and std of the area under ROC curves (5 independent
runs) of the 10 prediction models on 5 advertisers.

Method

Advertiser
Banking E-shop Newspaper_1 Newspaper_2 Telecom

One_hot/LR 65.7± 0.093 66.4± 0.053 75.5± 0.379 73.3± 0.400 65.4± 0.085

Domain_only/LR/1:1 64.9± 0.138 66.7± 0.237 76.1± 0.109 72.9± 0.219 63.4± 0.479

Domain_only/LR/1:4 64.6± 0.300 66.6± 0.217 75.7± 0.507 73.2± 0.345 63.2± 0.168

Domain_only/DLR/1:1 69.2± 0.268 70.3± 0.383 77.4± 0.397 76.7± 0.333 67.0± 0.370

Domain_only/DLR/1:4 69.0± 0.214 69.7± 0.234 76.8± 0.342 75.7± 0.658 66.6± 0.303

Domain_only/RNN/1:1 71.9± 0.258 72.9± 0.149 80.3± 0.149 79.7± 0.146 71.7± 0.252

Domain_only/RNN/1:4 71.4± 0.144 72.6± 0.422 80.3± 0.168 79.4± 0.281 71.2± 0.250

Token_avg/LR/1:1 63.6± 0.188 66.4± 0.438 76.1± 0.076 72.3± 0.466 62.3± 0.380

Token_avg/LR/1:4 64.5± 0.241 67.2± 0.390 76.4± 0.152 73.1± 0.184 62.9± 0.468

Token_avg/DLR/1:1 68.9± 0.148 71.5± 0.219 78.9± 0.175 77.3± 0.279 67.3± 0.263

Token_avg/DLR/1:4 69.4± 0.294 72.1± 0.263 79.2± 0.242 77.7± 0.274 67.9± 0.348

Token_avg/RNN/1:1 71.7± 0.116 72.9± 0.184 80.8± 0.121 79.5± 0.119 71.4± 0.209

Token_avg/RNN/1:4 71.9± 0.082 73.1± 0.246 81.2± 0.153 80.2± 0.322 71.8± 0.153

Token_concat/LR/1:1 64.5± 0.142 67.3± 0.149 76.6± 0.174 73.3± 0.216 63.3± 0.672

Token_concat/LR/1:4 64.8± 0.241 67.2± 0.060 76.7± 0.179 73.4± 0.273 63.6± 0.425

Token_concat/DLR/1:1 69.0± 0.187 71.2± 0.274 78.7± 0.304 76.7± 0.232 67.0± 0.469

Token_concat/DLR/1:4 69.1± 0.222 70.8± 0.400 78.2± 0.285 76.7± 0.255 66.9± 0.310

Token_concat/RNN/1:1 71.5± 0.214 72.5± 0.264 80.9± 0.286 79.4± 0.318 71.2± 0.180

Token_concat/RNN/1:4 71.5± 0.224 72.5± 0.460 80.5± 0.192 79.1± 0.130 70.5± 0.278

To evaluate and compare the effectiveness of the models we are
using the area under ROC curve (AUC) metric. More specifically, we
consider the average (%) AUC across five independent runs (see Ta-
ble 3.4), where each run corresponds to a specific seed used for the
models initialization. Moreover, Figures 3.9 and 3.10 illustrate the
average ROC curves of the ten prediction models for each advertiser,
where {1:1} and {1:4} {pos:neg} ratios are used as hyper-parameters
for training representation models, respectively. The right lower cor-
ner of each figure presents the overall performance (AUC scores) of
each model on 25 independent runs (5 advertisers × 5 runs for each
advertiser).

Based on the results presented in Table 3.4, it can be easily veri-
fied that the prediction model’s performance is not so sensitive to
the change of the {pos:neg} ratio used in negative sampling, with the
{1:4} to give slightly better results. Actually, the Token_avg/RNN/1:4

model is more effective in predicting user’s conversions compared
to the rest models. Precisely, the Token_avg/RNN/1:4 model has the
highest average AUC in all advertisers. All models achieve their
highest performance on the newspaper advertisers. It is also worth
noticing that the performances of Domain_only/LR, Token_avg/LR, and
Token_concat/LR are highly competitive, compared to our baseline,
One_hot/LR, for both {pos:neg} ratio. More specifically, Token_concat/LR
clearly outperforms One_hot/LR in 2 out of 5 advertisers (E-shop,
Newspaper_1), and has slightly better or equal performance in one
of them (Newspaper_2). That remark validates our claims that the
proposed representation models produce meaningful embeddings, by

94 predicting conversions in display advertising based on url embeddings

Figure 3.9 – Average ROC curves of the ten conversion prediction ({1:1}
pos-neg ratio) models on the five advertisers. Shaded regions
represent the standard deviations over 5 independent runs. The
bottom right plot presents the AUC for each one of the 25
independent runs (5 advertisers × 5 independent runs for each
advertiser) of each model. The •, H and × marks indicate the
LR, DLR and RNN classification models, respectively.

3.4 experiments 95

Figure 3.10 – Average ROC curves of the ten conversion prediction ({1:4}
pos-neg ratio) models on the five advertisers. Shaded regions
represent the standard deviations over 5 independent runs.
The bottom right plot presents the AUC for each one of the 25
independent runs (5 advertisers × 5 independent runs for each
advertiser) of each model. The •, H and × marks indicate the
LR, DLR and RNN classification models, respectively.

96 predicting conversions in display advertising based on url embeddings

distinguishing URLs of the same category and placing them close to
the embedding space. Taking a closer look at the standard deviations,
we can see that the performance of One_hot/LR is quite stable in the
three advertisers. This was expected as the One_hot representation is
identical over all runs, and therefore the only variation of the perfor-
mance of One_hot/LR comes only from the training of the LR classifier.
The performance of LR model is almost the same for each represen-
tation model. The same also holds for DLR and RNN model where its
performance is more or less the same in the cases of Domain_only and
Token_concat, and slightly better in the case of Token_avg. On the
other hand, DLR performs significantly better when it is combined with
Token_avg and Token_concat, with Token_avg to be more preferable
(around 1% gain in the case of {1:4}).

Let us now compare the impact of the type of classifier on the
performance of the prediction model.

The overall comparisons presented at Figs. 3.9 and 3.10 demonstrate
that both DLR and RNN performs significantly better compared to LR,
with the RNN to be the best one. More precisely, the AUC of RNN is
around ∼7% and ∼3% higher compared to those of LR and DLR, re-
spectively. This means that the consideration of the sequential order in
which the URLs appeared on the sequence is of high importance. On
the other hand, choosing DLR over LR improves around ∼4% the per-
formance of the prediction models independent to the representation
model.

3.4.3.3 Summary

To sum up, the main conclusions of our empirical analysis are:

• All three proposed URL embedding models are able to learn
high-quality vector representations that capture precisely the
URL relationships. Even the Domain_only/LR, Token_avg/LR,
and Token_concat/LR models are able to predict with high ac-
curacy the probability that a user converts, and their perfor-
mance is quite close or better compared to that of our baseline
One_hot/LR.

• It can be easily verified by the reported results that the prediction
model performance is not so sensitive on the {pos:neg} ratio used
for training representation models.

• {1:1} performs better on the Domain_only representation com-
pared to {1:4} that performs better on Token_avg. On the other
hand, the performance of both {pos:neg} ratios are almost equiva-
lent for the Token_concat model.

• Among the three representation models, Token_avg seems to
be more adequate to capture the relationships between URLs,
with the Token_concat to be the second best. Moreover, the

3.5 conclusions and future directions 97

performance of Domain_only representation is quite close to that
of Token_concat.

• The consideration of the chronological order of the visited URLs
(RNN) and the learning of dependencies among the embedding
features (DLR) are also of high importance as both improve sig-
nificantly the performance of the conversion prediction model.
To be more precise, it is clear (see bottom right plot of Fig. 3.9
and Fig. 3.10) that the RNN model surpass the performance of the
rest two classifiers, while DLR performs better compared to LR.

• The best prediction conversion models are Domain_only/RNN and
Token_avg/RNN for {1:1} and {1:4} {pos:neg} ratios, respectively
(see bottom right plot of Fig. 3.9 and Fig. 3.10).

3.5 conclusions and future directions

In this chapter, we considered the problem of user conversion pre-
diction in display advertising. Ten conversion prediction models were
proposed to predict users response based on their browsing history.
To represent the sequence of visited URLs, four different URL repre-
sentations were examined. The effectiveness of the proposed models
has been experimentally demonstrated using real-world data for five
different advertisers. The impact of the sequential dependency be-
tween user’s visited URLs on the performance of the predictors has
also been examined. The main conclusions of our empirical analy-
sis were that all three proposed URL embedding models produce a
meaningful URL representation, and considering the sequential order
of the visited URLs by using RNN significantly improves the model’s
performance. In the future, we intend to take the time information into
account in our model to fully model the user’s browsing activities.

4
AU D I E N C E E X T E N S I O N

As digital advertising becomes more and more popular, the ne-
cessity of targeting advertising is more present than ever. Digital
advertising gives the opportunity to the advertisers to deliver promo-
tional content by executing campaigns through various channels, i.e.
display advertising, social media advertising, search-based advertising
and contextual advertising. Regardless of the advertising channel, the
main objective for the advertisers remains the maximization of the re-
turn of their investment. To achieve their objective, advertisers should
deliver advertisements about their products or services to the right
audience. Some of the most common metrics of effectiveness of ad-
vertising campaigns are the cost-per-click (CPC) ones, and cost-per-lead
or cost-per-action (CPA) ones, where the end goal is the maximization
of the number of clicks, or the number of visits on the advertiser’s
website.

Audience expansion, also named look-alike targeting, is a widely used
technique in online digital advertising that has been deployed with
success in different Ads serving platforms, i.e., LinkedIn (H. Liu et al.,
2016), Yahoo (Qiang Ma et al., 2016), Pinterest (deWet and Ou, 2019),
WeChat (Y. Liu et al., 2019), Ant Financial (Z. Liu et al., 2020; Zhuang
et al., 2020). Audience expansion systems aim to discover groups of
users who look like a set of seed users provided by the advertiser in
advance. In this way, advertisers promote their products by displaying
ads to audiences with similar behavior (e.g., visit, click, purchase,
etc.) to the seed-set. The main advantage of an audience expansion
system resides in its simplicity in improving the performance of ads
campaigns. Instead of specifying some ‘targeting criteria’ based on
their own experience, in an audience expansion system the advertisers
need only to provide a list of seed users along with the desired size of
the targeted audience.

In this work, we focus on online display advertising (J. Wang, W.
Zhang, and S. Yuan, 2017), where advertisers embed ads on a pub-
lisher’s web page in order to promote their products or services. In
this context, we introduce and examine a number of different audi-
ence expansion schemes that are based on the users’ browsing history.
Specifically, given only the browsing history of a set of seed users, the
proposed audience expansion schemes are able to identify groups of
users with similar browsing interests. As seed users we consider the
users that have been converted after their exposure to an advertise-
ment.

99

100 audience extension

The proposed audience expansion schemes are mainly based on dif-
ferent self-supervised (unsupervised) representation models that con-
sider the sequential order of visited URLs in order to represent users.
Inspired by natural language processing (NLP), we treat each user as
a document where words correspond to visited URLs. Learning high-
quality representations of sentences or documents is a long-standing
problem in NLP. In order to learn a semantically meaningful user
representation, we follow the idea of document embeddings (Mikolov,
K. Chen, et al., 2013). In practice, each user is mapped to a vector in
an embedding space, where users with similar ‘browsing’ interests
are close in the embedding space. Having computed high quality
users’ representations, we can compute the affinity scores between
candidate and seed users by executing a computationally efficient
similarity function, i.e. cosine similarity, euclidean distance. Then,
in order to expand our audience, we rank the candidate users based
on their maximum affinity scores to any user in the seed set and we
select the top-ranked users as the target audience. This is known as
similarity-based audience expansion strategy (see Section 4.1).

More precisely, the proposed audience expansion schemes can be
categorised into four different categories:

i) In the first group of audience expansion schemes (Sec. 4.2.1), the
users are simply represented as an unweighted or weighted set of
URLs. Then, using the standard or weighted Jaccard similarity we
compute the affinity scores between candidate and seed users. In
the case of weighted Jaccard similarity we apply a novel weight
function inspired by the inverse document frequency (Jones, 1973).

ii) Every audience expansion method included in this category (Sec. 4.2.2)
represents users based on pre-trained URL embeddings able to
represent URLs in a semantic meaningful way. Specifically, we
introduce the Url2Vec representation model that is built upon
the well-known Word2Vec model (Mikolov, K. Chen, et al., 2013;
Mikolov, Sutskever, et al., 2013). Then, we can consider either the
(weighted) average URL embeddings to represent users or Gaussian
user representation (Nikolentzos et al., 2017) that models each user
as a multivariate Gaussian distribution. A modified version of the
famous Word Mover’s Distance (WMD, Kusner et al., 2015) is also
introduced that computes the distance between users.

iii) The third group of audience expansion schemes (Sec. 4.2.3) adopts
the User2Vec (known as Doc2Vec in the field of NLP) model
introduced by Q. Le and Mikolov, 2014 to represent users. In fact,
we have considered both DBOW and DM versions of User2Vec

model.

iv) Finally, we introduce a number of audience expansion schemes
(Sec. 4.2.4) that adopt Document Vector through Corruption model
(M. Chen, 2017) in order to represent users. We call this model as
User2VecC, and it allows us to get users representations by just

4.1 related work 101

computing the (weighted) average of the embeddings of all visited
URLs.

Except for the audience expansion schemes that belong to the first
group, the rest use different representation models to generate high-
quality user representations. All these representation models are
trained in a self-supervision way and they are independent to the
advertisers. That means that we can train these representation models
offline and apply them to expand audiences for different advertis-
ers by simply computing the affinity scores between candidate and
seed users (different for each advertiser). Specifically, we have con-
sidered two simple and computationally efficient similarity functions,
the euclidean distance and the cosine similarity. Extensive offline
experiments are conducted to verify the effectiveness and efficiency
of the proposed audience expansion schemes. For this purpose, we
use a real dataset that is based on real logged events collected from
an advertising platform.

4.1 related work

Audience expansion approaches can be classified generally into two
main categories:

similarity-based audience expansion To discover look-alike
users, similarity based methods compare directly the similarity of
all possible pairs between seed and candidate users using a pairwise
similarity function, i.e. such as cosine similarity, euclidean distance,
or Jaccard index. Having ranked the users based on their maximum
affinity scores to any user in the seed set, we are selecting the top-
ranked users as the target audience. Locality-sensitive hashing (LSH,
Slaney and Casey, 2008) technique is widely used for reducing the
computational cost of pairwise similarity and allows the audience
expansion systems to be applied to millions of users (H. Liu et al.,
2016; Q. Ma et al., 2016; Qiang Ma et al., 2016).

The learning of high quality user representations plays a key role in
the performance of these kinds of methods. The Youtube DNN model
(Covington, Adams, and Sargin, 2016) is adopted to learn user repre-
sentations in Y. Liu et al., 2019 where an attention merge layer replaces
the concatenation layer to handle heterogeneous and multi-fields fea-
tures. deWet and Ou, 2019 propose a neural model that embeds users
and Pin topics on the same low dimensional embedding space to
capture relationships between users. In Doan, Yadav, and Reddy,
2019, authors propose an adversarial factorization auto-encoder that
learns a binary user representation able to encode complex feature
interactions.

102 audience extension

regression-based audience expansion All the methods that
belong to this category consider the audience expansion task as a
standard binary classification problem. Actually, we treat seed users as
positive samples, while negative samples are sampled from the non-
seed users (i.e., non-converted users who have seen advertiser’s ads).
Yan Qu et al., 2014 use logistic regression to predict the probability of
an unknown user to belong to the seed set. Then, Doan, Yadav, and
Reddy, 2019 examines the performance of different powerful classifiers,
such as 1-class SVM, Factorization Machine, Gradient Boosting Tree.
Qiu et al., 2020 propose different prediction models for estimating the
probability of a user converting, given their history of visited URLs.
In an abstract point of view, it can be considered as the model-based
version of our similarity-based audience expansion scheme where a
different prediction model is trained for each advertiser. It is worth
mentioning that we use the same representation model for learning
URL embeddings with the one used in Qiu et al., 2020.

The careful selection of seed (positive) and non-seed (negative) sam-
ples is important for the performance of the regression-based audience
expansion models. Jiang et al., 2019 examine multiple sampling tech-
niques of selecting negative samples from ‘unlabeled’ data (non-seed
users). Hubble (Zhuang et al., 2020) is a two-stage audience expansion
system that uses the well-designed knowledge distillation mechanism,
to eliminate the coverage bias (the gap between the seeds and the actual
audiences) introduced by the provided seed set. A Graph Neural
Network is also used to learn user representations, that is based on a
user-campaign bipartite graph. A reweighting mechanism is used in
Z. Liu et al., 2020 that adjusts the weight of each positive sample to
detect noise users within seeds.

4.2 the proposed audience expansion methods

This section presents the main components of the proposed look-
alike model. The main objective of our audience expansion method is
to help advertisers to increase the reach of their marketing campaigns.
The audience expansion problem can be formally defined as follows:

Definition 4.2.1 (Audience expansion). Audience expansion task seeks to
discover a subset of users from a set of candidate users C, C∗ ⊂ C, which are
similar to a set of seed users S . In most cases, the expansion framework is
conversion-oriented.

Having computed the affinity matrix A ∈ R|C|×|S|
[0,1] , where Auu′ ∈

R[0,1] is the entry of A that indicates the affinity score between u ∈ C
and u′ ∈ S users, we can discover the closest seed user for each one
of the candidates users. Then, we rank the candidate users based on

4.2 the proposed audience expansion methods 103

their similarity score to the closest seed user, and we keep the top,
let’s say K, users. It can be formally defined as:

C∗ = {u ∈ C : |{u′ ∈ C : f (u) < f (u′)}| < K}, (4.1)

where f (u) = maxu′∈S Auu′ .
In our scenario, each user is represented as a sequence of URLs

visited by them in a single day. Actually, user u is considered as a
chronologically sorted sequence of URLs:

u = [url1, . . . , urlτu], (4.2)

where τu > 1 represents the length of the sequence and varies for each
user. Each URL is split with a ‘/’ (slash) character, and is considered
itself as a sequence of tokens. In our case, we consider only the first
token that corresponds to the domain name, ignoring the other tokens.

Let’s also assume that users select to visit URLs from a finite size
vocabulary V of URLs (|V| = v). We denote as b ∈ Zv

+ and d ∈
Rv

+ the bag-of-words (BoW) and normalized bag-of-words (nBoW)
user representations, respectively. Specifically, if the ith URL in the
vocabulary (urli) is present ci times in the user’s browsing history, its
entry on the BoW vector is bi = ci and di =

ci
∑n

j=1 cj
on the nBoW vector.

Table 4.1 lists all the symbols used in this chapter.
Next, we introduce different techniques to compute the affinity score

between users. Actually, the proposed audience expansion schemes
can be grouped into four main categories.

4.2.1 Audience expansion based on set similarity metrics

The most trivial way to represent users is as unweighted or weighted
sets of URLs. (Weighted) Jaccard similarity metric can be used to com-
pute the similarity between two users. We denote as {u} the set of
(unique) URLs visited by u.

Jaccard Similarity Jaccard, 1901 is a simple measure of similarity
between two sets. The Jaccard similarity between two users u and u′

is computed as the number of shared URLs over the total number of
the unique URLs visited by both users:

J(u, u′) =
|{u} ∩ {u′}|
|{u} ∪ {u′}| . (4.3)

Weighted Jaccard Similarity (S. Ioffe, 2010), also known as Ruzicka
similarity, is a natural generalization of Jaccard similarity:

W J(u, u′) =
∑url∈{u}∪{u′}min(wu(url), wu′(url))

∑url∈{u}∪{u′}max(wu(url), wu′(url))
, (4.4)

104 audience extension

Table 4.1 – Notations used in this chapter.

Notation Description

S The set of seed users

C The set of candidate users

A ∈ R|C|×|S|
[0,1] Affinity matrix that keeps the scores

between C and S
u User’s browsing history

[url1, . . . , urlτu]

{u} The set of unique URLs visited by u

τu > 1 The total number of URLs visited by u

V The vocabulary of all URLs appeared
in data (|V| = v)

b ∈ Zv
+ Bag-of-words (BoW) user representa-

tion vector

bc ∈ Zv
+ BoW representation vector of the local

context

d ∈ Rv
+ Normalized BoW (nBoW) user repre-

sentation vector

X ∈ Rh×v Projection matrix that projects URLs to
a hidden space of size h

V ∈ Rh×v Projection matrix from hidden to origi-
nal space

Z ∈ Rh×n Projection matrix that projects users
to a hidden space of size h, used by
User2Vec model

T ∈ Rv×v Auxiliary ‘transport’ matrix used on
WMD, Tij > 0

where wu : url → R+ specifies the importance of url for user u.
The weight function proposed in our work is inspired by the inverse
document frequency (idf, Jones, 1973) and is defined as:

wu(url) =

 0, if url /∈ {u}
loge

(
τu
burl

+ 1
)

, otherwise.
(4.5)

It can be considered as a measure of how much information the url
provides. We intentionally penalize (i. e. , give lower weight to) high-
frequency URLs appeared in the user’s browsing history, as it’s more
likely due to the automatic refresh of the corresponding website (see
Section 1.5, Paragraph data noise, Block bid request noise for more
details). We also add 1 on the ratio inside the logarithm in order
to treat the special case where the user has visited only one website

4.2 the proposed audience expansion methods 105

through the day. In this case, we get wu(url) = loge(2), which is the
lower bound of the weight function. Note that the weighted Jaccard
similarity (Eq. 4.4) is equivalent to the standard Jaccard similarity
(Eq. 4.3) if we use binary BoW user representation without any term
weighting: wu(url) = 1 if url ∈ {u}, and wu(url) = 0 otherwise.

4.2.2 Audience expansion based on URL embeddings

Despite its simplicity and interpretability, (weighted) Jaccard sim-
ilarity is not able to capture the semantic similarity between the in-
terests of two users. Let’s consider a simple example with two users
u = [leparisien.fr] and u′ = [france24.com] each visiting a single
URL. The Jaccard score between these two users is equal to 0, imply-
ing the interests of these two users are completely different. This is
far from true as the context of these two URLs is more or less the
same (belong to news category). A more efficient approach to measure
similarity between users is by transforming users into real-valued em-
bedding vectors that embodies their interests. To be more precise, our
objective is to build a user representation space where users looking
for the same context are close on the embedding space.

In this section, we present different user representation models
fm :u → z, where z ∈ Rh and h is the dimension of the embedding
space. All these representation schemes are based on URL embeddings
that are high-dimensional vectors able to represent URLs in a semantic
meaningful way. In this context, we consider users as documents
where URLs play the role of words. Similar to Qiu et al., 2020, we build
a URL representation model fr : url → x, where x ∈ Rh, by employing
the idea of Word2Vec (Mikolov, Sutskever, et al., 2013). Specifically,
we use the skip-gram model that given a target URL predicts its context
URLs. More formally, the skip-gram model defines the probability that
the context (output) URL urlc ∈ [urlt−k, . . . , urlt−1, urlt+1, . . . , urlt+k]

to have been visited by the user given a target (input) URL urlt as:

p(urlc|urlt) ,
exp(v>urlcxurlt)

∑url∈V exp(v>urlxurlt)
, (4.6)

where xurl and vurl denote the columns vectors (correspond to url)
of the input X ∈ Rh×v and output V ∈ Rh×v projection matrices,
respectively. Therefore, given a sequence of URLs [url1, . . . , urlτ], our
objective is the maximization of the average log probability

1
τ

τ

∑
t=1

∑
−k6j6k,j 6=0

log p(urlt+j|urlt), (4.7)

where window k specifies the neighborhood of target URL.
As the direct optimization of Eq. 4.7 is computationally expensive,

we are adopting the negative sampling approach (Mikolov, Sutskever,

leparisien.fr
france24.com

106 audience extension

et al., 2013). In negative sampling, we treat the learning of the URL’s
representation as a binary classification task where we try to distin-
guish the target-context pairs of URLs presented on the training data
(i. e. , positive pairs) from those that are not (i. e. , negative pairs). Fol-
lowing the suggestions of Mikolov, Sutskever, et al., 2013, for each
positive pair we are creating multiple negative pairs.

Let’s now assume that we have trained our Url2Vec representa-
tion model fr and therefore we have access to the embedding matrix
X ∈ Rh×v for a finite size vocabulary V of URLs (|V| = v). The ith

column, xi ∈ Rh, corresponds to the embedding vector of the ith URL
of V . We also denote as w ∈ Rv the user representation with each
entry to be the normalized inverse document frequency of a URL (see
Eq. 4.5). Then, we present the audience expansion schemes that are
based on the URL embeddings returned by our Url2Vec model.

Average URL embeddings is a simple but effective way to calculate a
vector representation for a user u. Given X and nBoW vector d of
user, the user’s representation can be easily calculated as:

z = Xd. (4.8)

We also consider the weighted average of the URL embeddings to
represent a user:

z = Xw. (4.9)

Having computed the vector representations z1 and z2 of the two
users u1 and u2, their affinity score can be calculated either by using
cosine similarity

sim(z, z′) =
z>z′

‖z‖2‖z′‖2
, (4.10)

or euclidean distance, D(z1, z2) = ‖z1 − z2‖2,

sim(z, z′) =
1

1 + D(z1, z2)
. (4.11)

Gaussian user representation Nikolentzos et al., 2017 model each user
as a multivariate Gaussian distribution. Specifically, we assume that
the embedding vectors of the URLs visited by user u are generated by
a multivariate Gaussian distribution:

x ∼ N (µ,Σ), (4.12)

where µ ∈ Rh and Σ ∈ Rh×h are its mean vector and covariance
matrix, respectively. The maximum likelihood solution (Bishop, 2006) for
µ and Σ is given by the sample mean (see Eq. 4.8) and the empirical
covariance matrix:

Σ =
1
‖b‖1

(U −µ)(U −µ)>, (4.13)

4.2 the proposed audience expansion methods 107

where U , Xdiag(b) and diag(b) ∈ Rv×v returns a square diagonal
matrix with the elements of vector b on the main diagonal and zeros
on the entries outside of the main diagonal.

The similarity between two users u1 and u2 is set equal to the convex
combination between the similarities of their mean vectors µ1 and µ2

and their covariance matrices Σ1 and Σ2:

sim(u, u′) , αsim(µ,µ′) + (1− α)sim(Σ,Σ ′), (4.14)

where α ∈ [0, 1]. The similarity between the mean vectors µ1 and µ2

is computed using cosine similarity (see Eq. 4.10) and the similarity
between matrices Σ1 and Σ2 is computed as:

sim(Σ,Σ ′) = ∑Σ ◦Σ ′
‖Σ‖F × ‖Σ ′‖F

, (4.15)

where (· ◦ ·) is the element-wise (Hadamard) product, ‖ · ‖F is the
Frobenius norm.
Word Mover’s Distance (WMD) is a powerful method introduced
by Kusner et al., 2015 for measuring the dissimilarity between two
documents. WMD builds upon the idea of Tao, Cuturi, and Yamamoto,
2012 that uses the Earth Mover’s Distance (EMD 1, Rubner, Tomasi,
and Guibas, 1998) to compute the distance between two documents.
Let d, d′ be the v-dimensional nBoW vectors for two users, and T ∈
Rv×v be an auxiliary ‘transport’ matrix where Tij > 0 describes how
much of URL i in d travels to URL j in d′. Formally, WMD solves
the following linear program in order to learn T that minimize the
cumulative cost of moving d to d′:

D(u, u′) = min
T>0

v

∑
i,j
Tij‖xi − xj‖2, s.t. (4.16)

v

∑
j
Tij = di and

v

∑
i
Tij = d′j, ∀i, j ∈ {1, . . . , v},

where di (d′i) is the ith element of vector d (d′).
A relaxed version of WMD, called RWMD, has been also introduced

by Kusner et al., 2015 to accelerate WMD that comes with the cost
of high complexity. To achieve this, we relax the WMD optimization
problem by removing one of the two constraints. The solution of
RWMD yields a lower bound for the WMD, and is much faster. Next,
we propose a normalized version of WMD that considers the diversity
of the visited URL:

D(u, u′) =
D(u, u′)

∑v
i=1 1di>0 ∑v

i=1 1d′i>0
. (4.17)

In the end, having computed the WMD distance between users u and
u′, we calculate their similarity using Eq. 4.11.

1. EMD is also known as the Wasserstein distance (Levina and Bickel, 2001).

108 audience extension

4.2.3 Audience expansion based on User2Vec model

Paragraph Vectors is an self-supervised learning algorithm intro-
duced first in Q. Le and Mikolov, 2014. It is able to learn vector
representations of input sequences (sequences of URLs in our case)
of variable length. Specifically, each user is now mapped to a single
vector, represented by a column of the projection matrix Z ∈ Rh×n

(n is equal to the number of users in data), that aims to capture the
interests of the user. Similar to the Url2Vec model, every URL is also
mapped to a vector represented by a column of the projection matrix
X ∈ Rh×v. Then, the user and context URL representation vectors are
averaged to predict next URL (urlt) in context:

p(urlt|bc, z) =
exp(v>urlt(Xbc + z))

∑url′∈V exp(v>url′(Xbc + z))
, (4.18)

where vurl denotes the column in output projection matrix V for url, bc

is the BoW representation vector of the local context [urlt−k, . . . , urlt−1]

and z ∈ Z is the vector representation of the user. This model is
known as Distributed Memory (DM) model.

A simplified version of the DM model, called Distributed Bag of
Words (DBOW) model, ignores the context information in the input
and predicts URLs randomly sampled by the user’s browsing history
(see Eq. 4.2):

p(urlt|z) =
exp(v>urltz)

∑url′∈V exp(v>url′z)
, (4.19)

Both DM and DBOW models consist of two phases: i) the learning
phase of the URL embeddings (X and V projection matrices), and ii)
the inference phase where we get the user embeddings Z by keeping
fixed the other parameters of the model. Furthermore we can also
represent a user as a combination of the two vectors returned by the
DM and DBOW models. We call it CON and it actually concatenates
the two vectors returned by the DM and DBOW models.

4.2.4 Audience expansion based on User2VecC model

The main limitation of the User2Vec model is its complexity that
grows linearly with the number of users. Despite the fact that we
can limit the size of URLs vocabulary V , the size of training corpus
can be extremely large. Apart from that, we need to execute an
expensive inference to get the vector representations of unseen users.
To overcome all these issues, we adopt Document Vector through
Corruption (called User2VecC in our case) model introduced by M.
Chen, 2017.

User2VecC model allows us to learn vector representations for
unknown users as a simple average of the embeddings of all visited

4.3 empirical analysis 109

URLs (just like in the case of the Url2Vec at Sec. 4.2.2). Therefore
the model does not need to learn directly a separate projection matrix
for representing users anymore. It means that its complexity depends
only on the size of URL vocabulary V and not on the size of the
corpus.

Similar to Url2Vec, User2VecC consists of a projection layer X and
an output layer V to predict the target URL. To represent each user we
get the average of the embeddings of a set of URLs randomly sampled
from the user’s browsing history. For this purpose, an unbiased
dropout corruption has been adopted to generate a global context b̃ at
each update,

b̃i =

{
0, with probability q

bi
1−q , otherwise

(4.20)

where q ∈ [0, 1] is the probability to dropout a URL appearing on the
browsing history of a user. Then, the probability of observing a target
URL (urlt) given its local bc and global b̃ contexts is defined as:

p(urlt|bc, b̃) =
exp(v>urlt(Xbc +

1
τXb̃))

∑url′∈V exp(v>url′(Xbc +
1
τXb̃))

. (4.21)

Finally, having learned projection matrix X , we can represent each
user as the average (Eq. 4.8) or the weighted average (Eq. 4.9) of the
embeddings of their visited URLs.

4.3 empirical analysis

Dataset: We conducted experiments on a real-world RTB dataset 2

in order to evaluate the effectiveness of the different proposed audi-
ence expansion schemes. The performance of the audience expansion
models have been examined on five advertisers, belonging to four
different categories: Banking, E-shop, Newspaper, and Telecommu-
nications. Specifically, we have used the same dataset with the one
used by Qiu et al., 2020. It is an anonymized dataset that has been
constructed by using the auction system logs of campaigns launched
in France. To be more precise, each record of the dataset corresponds
to a chronologically ordered sequence of visited URLs along with a
binary label (depends on the advertiser) that indicates whether or not
a conversion has happened on the advertiser’s website on the next
day. The maximum length of a user’s browsing history (on a single
day) u is set equal to 500, where only the most recently visited URLs
are kept, τu 6 500.

To be more precise, the dataset consists of sequences of URLs along
with their labels of three successive dates, Dd, Dd+1, and Dd+2. More
precisely, Dd is used for training Url2Vec (Sec. 4.2.2), User2Vec (Sec.

2. For a full presentation of the dataset please refer to Section 3.4.1 of Chapter 3.

110 audience extension

Table 4.2 – Cardinality of seed (S) and candidate (C) sets for each one of the
5 advertisers.

Advertiser Category Seed Users (S) Candidate Users (C)

Banking 3, 746 17, 078

E-shop 1, 463 3, 642

Newspaper_1 1, 406 5, 846

Newspaper_2 1, 261 2, 582

Telecom 1, 781 4, 402

4.2.3) and User2VecC (Sec. 4.2.4) representation models. As seed
users S we consider the converted users of Dd+1 where the dominant
visited URL appears less than 20% on the user’s browsing history. We
examine the impact of this filtering threshold later in our empirical
analysis (Sec. 4.3.2). The candidate set of users C consists of converted
and non-converted users of Dd+2, where the set of non-converted
users has been randomly selected and its size is equal to that of the
converted users. It is worth noting that the seed and candidate sets
are different for each advertiser (see Table 4.2).

Representation models setup: Apart from the audience expansion
schemes that are based on the Jaccard and Weighted Jaccard affinity
metrics (Sec. 4.2.1), the rest expansion schemes assume the existence
of a representation model (Url2Vec, User2Vec, User2VecC) that
projects users into an embedding space. Each domain and user is pro-
jected into a 100-dimensional vector. A representation is also learned
for the so-called ‘rare’ domains, respectively. We consider a domain
as ‘rare’ if it appears less than 20 times in the dataset Dd. The number
of non-rare domains in Dd is equal to 22, 098 (|V| = 22100 as we
also consider the ‘rare’ and ‘unknown’ domains). To compute WMD
we use the Fast EMD library 3. Similar to Nikolentzos et al., 2017

we set α = 0.5 for Url2Vec+Gaussian scheme. For the training of
Url2Vec model the mini-batch stochastic optimization is applied by
using Adam optimizer with the default TensorFlow 2.0 settings. In
the case of User2Vec model, the projection matrices X and V are
initialised with the URL representation produced by the User2Vec

model. Then, we infer user representations by keeping fixed these
two matrices. In User2VecC model we use the C implementation of
Doc2VecC 4.

Metrics: To evaluate the different audience expansion schemes we
treat audience expansion as a standard binary classification problem.
In this way, the affinity score of a user u to the closest seed user can
be seen as the probability user u to be considered as positive on

3. PyEMD library: https://pypi.org/project/pyemd/
4. Doc2VecC source code: https://github.com/mchen24/iclr2017.

https://www.tensorflow.org/guide/effective_tf2
https://pypi.org/project/pyemd/
https://github.com/mchen24/iclr2017

4.3 empirical analysis 111

the classification task. To compare the effectiveness of the audience
expansion schemes we are using the area under ROC curve (AUC) and
Average Precision (AP, W. Su, Y. Yuan, and M. Zhu, 2015) metrics. More
specifically, we consider the average (%) AUC and AP across five
independent runs, where each run corresponds to a specific seed used
for the initialization of the representation models.

4.3.1 Results

Next, we present the numerical results of different audience expan-
sion schemes on five different advertisers. In total we have examined
22 different audience expansion schemes, each belongs to one of the
four categories mentioned in Section 4.2:

1. Jaccard and W_Jaccard

2. Url2Vec+{avg, idf}+{cosine,euclidean}

Url2Vec+{gaussian, wmd}

3. User2Vec+ {dbow,dm,con}+{cosine,euclidean}

4. User2VecC+{cbow,skipgram}+{avg,idf}+ {cosine,euclidean}

where avg (Eq. 4.8) and idf (Eq. 4.9) refer to the way under which
we compute the user representation given URL representations. On
the other hand, cosine (Eq. 4.10) and euclidean (Eq. 4.11) indicates
the way where we compute the affinity score between two users given
their representations.

Tables 4.3 and 4.4 present the average and standard deviation of
the AUC and AP across five independent runs, respectively. Based
on the average AUC metric, the User2VecC+cbow+idf+euclidean

model is the most effective audience expansion model as is capable
of identifying and top-rank (assign high affinity scores) the users that
are highly likely to be converted in the future. Actually, it achieves the
best performance in the Banking and E-shop, while it is the second
best in the Newspaper_2. On the other hand, Url2Vec+wmd has the
best performance according to average AP metric, as it outperforms
the other models in 3 out of the 5 advertisers, and is the second best
in the other two advertisers.

It can be seen that Weighted_Jaccard outperforms Jaccard ac-
cording to both metrics. At the same time, its performance is close
to these of the other user representation based models as regards the
average AUC. Nevertheless, it does not hold on the AP metric, where
it is clearly outperformed by the most of the user representation based
models.

Among the audience expansion methods that are based to the
URL embeddings computed by the Url2Vec model (Sec. 4.2.2), the
Url2Vec+wmd is the based one. Also, the performance of the models,
that represent users as the weighted average (idf, Eq. 4.9) of the
representations of their visited URLs, is significantly better compared

112 audience extension

Table 4.3 – Avg (%) and std of the area under ROC curves (5 independent
runs) of the 22 audience expansion models on 5 advertisers. Blue
shows best results in the specific category and bold indicates best
result for an advertiser.

Method

Adv

Banking E-shop Newspaper_1 Newspaper_2 Telecom

jaccard 63.4± (0.000) 65.4± (0.000) 73.7± (0.000) 69.0± (0.000) 60.2± (0.000)

w_jaccard 66.4± (0.000) 67.0± (0.000) 74.8± (0.000) 71.5± (0.000) 63.1± (0.000)

U
r

l
2
Ve

c

a
v

g cosine 62.2± (0.140) 61.7± (0.293) 74.5± (0.138) 67.0± (0.301) 55.8± (0.099)

euclidean 61.7± (0.172) 61.1± (0.229) 74.0± (0.077) 68.4± (0.046) 59.0± (0.067)
i
d

f cosine 63.7± (0.333) 61.6± (0.483) 77.0± (0.202) 70.5± (0.412) 59.8± (0.153)

euclidean 64.3± (0.054) 63.4± (0.174) 76.8± (0.060) 72.0± (0.067) 61.6± (0.033)

gaussian 61.7± (0.108) 63.1± (0.143) 73.1± (0.150) 67.1± (0.301) 55.7± (0.180)

wmd 66.2± (0.083) 66.0± (0.032) 76.6± (0.036) 74.0± (0.020) 65.0± (0.030)

U
s
e
r

2
Ve

c

d
b
o

w

cosine 64.2± (0.281) 64.3± (0.443) 75.6± (0.109) 70.0± (0.492) 58.6± (0.178)

euclidean 65.4± (0.218) 65.4± (0.387) 76.7± (0.214) 71.1± (0.345) 61.9± (0.339)

d
m

cosine 66.5± (0.131) 66.1± (0.130) 75.0± (0.189) 70.3± (0.055) 66.8± (0.067)

euclidean 64.7± (0.237) 64.8± (0.154) 72.9± (0.191) 67.9± (0.109) 65.0± (0.154)

c
o

n cosine 67.0± (0.138) 66.7± (0.134) 76.2± (0.111) 71.4± (0.122) 66.2± (0.141)

euclidean 66.3± (0.170) 66.0± (0.145) 75.4± (0.169) 70.5± (0.086) 66.0± (0.253)

U
s
e
r

2
Ve

c
C c

b
o

w

a
v

g cosine 62.5± (0.101) 64.3± (0.047) 74.7± (0.076) 68.8± (0.078) 58.0± (0.120)

euclidean 65.2± (0.067) 68.0± (0.036) 73.1± (0.031) 69.9± (0.032) 59.4± (0.062)

i
d

f cosine 65.7± (0.069) 66.0± (0.141) 77.4± (0.095) 71.6± (0.121) 62.6± (0.204)

euclidean 67.6± (0.028) 68.6± (0.040) 75.3± (0.042) 72.1± (0.027) 63.8± (0.085)

s
k

i
p
g

r
a

m

a
v

g cosine 58.2± (0.257) 63.3± (0.388) 73.6± (0.094) 65.7± (0.144) 56.1± (0.075)

euclidean 60.5± (0.112) 63.3± (0.153) 67.2± (0.106) 61.9± (0.138) 55.0± (0.108)

i
d

f cosine 62.0± (0.201) 64.5± (0.316) 77.0± (0.128) 72.0± (0.442) 59.3± (0.189)

euclidean 65.0± (0.089) 66.1± (0.107) 70.9± (0.079) 67.8± (0.115) 59.7± (0.094)

Table 4.4 – Avg (%) and std of the average precision (5 independent runs) of
the 22 audience expansion models on 5 advertisers. Blue shows
best results in the specific category and bold indicates best result
for an advertiser.

Method

Adv

Banking E-shop Newspaper_1 Newspaper_2 Telecom

jaccard 60.1± (0.000) 60.9± (0.000) 69.8± (0.000) 65.7± (0.000) 57.6± (0.000)

w_jaccard 62.3± (0.000) 62.8± (0.000) 71.7± (0.000) 68.0± (0.000) 59.9± (0.000)

U
r

l
2
Ve

c

a
v

g cosine 59.7± (0.079) 59.2± (0.306) 75.6± (0.079) 63.7± (0.255) 54.8± (0.145)

euclidean 59.9± (0.086) 59.8± (0.148) 75.8± (0.033) 66.6± (0.091) 58.0± (0.055)

i
d

f cosine 59.9± (0.189) 59.2± (0.223) 77.5± (0.198) 68.6± (0.339) 58.3± (0.069)

euclidean 63.0± (0.047) 62.4± (0.162) 78.0± (0.064) 71.9± (0.061) 60.7± (0.028)

gaussian 58.9± (0.095) 59.8± (0.130) 73.4± (0.264) 63.9± (0.250) 54.6± (0.177)

wmd 65.2± (0.043) 65.1± (0.042) 77.8± (0.019) 74.6± (0.004) 65.0± (0.027)

U
s
e
r

2
Ve

c

d
b
o

w

cosine 61.1± (0.258) 61.2± (0.321) 76.5± (0.110) 66.8± (0.371) 57.1± (0.229)

euclidean 62.7± (0.191) 62.6± (0.176) 77.2± (0.128) 68.4± (0.317) 59.8± (0.368)

d
m

cosine 64.2± (0.108) 63.3± (0.135) 75.7± (0.203) 68.2± (0.142) 64.1± (0.096)

euclidean 63.3± (0.234) 62.3± (0.217) 73.1± (0.244) 66.5± (0.129) 63.5± (0.101)

c
o

n cosine 64.2± (0.118) 63.8± (0.089) 77.0± (0.099) 69.4± (0.238) 63.4± (0.204)

euclidean 64.7± (0.180) 63.8± (0.098) 76.5± (0.080) 69.1± (0.138) 63.8± (0.296)

U
s
e
r

2
Ve

c
C c

b
o

w

a
v

g cosine 60.7± (0.084) 61.1± (0.031) 74.8± (0.044) 65.3± (0.060) 56.9± (0.120)

euclidean 62.9± (0.043) 64.7± (0.043) 74.1± (0.017) 67.8± (0.067) 58.7± (0.059)

i
d

f cosine 62.6± (0.035) 63.0± (0.121) 77.4± (0.083) 69.7± (0.108) 60.7± (0.089)

euclidean 64.5± (0.034) 65.8± (0.026) 75.8± (0.056) 71.3± (0.070) 62.1± (0.064)

s
k

i
p
g

r
a

m

a
v

g cosine 56.6± (0.173) 59.7± (0.244) 73.0± (0.107) 62.0± (0.044) 55.4± (0.080)

euclidean 59.9± (0.122) 62.2± (0.140) 68.0± (0.145) 60.7± (0.189) 54.1± (0.061)

i
d

f cosine 57.8± (0.086) 61.0± (0.285) 76.5± (0.119) 69.3± (0.368) 58.4± (0.141)

euclidean 63.9± (0.092) 65.8± (0.129) 72.3± (0.127) 68.7± (0.122) 59.5± (0.076)

to the performance of the schemes that use the average (avg, Eq. 4.8)
URL representations to represent the users. Another remark is that
the models compute the affinity scores between candidate and seed
users based on the euclidean distance (euclidean, Eq. 4.11) performs
better compared to the models that use the cosine similarity (cosine,
Eq. 4.10). Additionally, the performance of the Url2Vec+gaussian is
close to that of Url2Vec+avg+cosine. Actually, it does not surprise
as both use the empirical mean to generate user representation and
the cosine similarity to check the similarity between users.

Let’s now have a closer look on the performance of the methods that
are based on the User2Vec model (Sec. 4.2.3). Based on our results,
the best performance is achieved by using the user representations

4.3 empirical analysis 113

produced by concatenating the representations returned by the other
two models, dm and dbow. Moreover, the User2Vec+dm model
outperforms the User2Vec+dbow model. As regards the similarity
measures, we don’t have a clear winner. Specifically, it seems that
euclidean distance performs better when it is combined with the
User2Vec+dbow model.

Concerning the performance of the methods that are based on the
User2VecC model (Sec. 4.2.4), we can see that cbow constantly out-
performs skipgram. Specifically, User2VecC+cbow+idf+euclidean

achieves the best performance. Additionally, similar to the Url2Vec

based models, it is more preferable to represent users as the weighted
average (idf, Eq. 4.9) of the representation of their visited URLs, and
to use euclidean distance (euclidean, Eq. 4.11) to compute the affinity
scores between candidate and seed users.

To conclude, our empirical results indicate that the performance of
the Url2Vec+wmd is competitive or better to that of User2VecC+cbow

+idf+euclidean. Nevertheless, the computation of the similarity be-
tween users by using wmd is expensive. The same also holds for the
User2Vec based audience expansion schemes, as we need to execute
an expensive inference step to get the vector representations of unseen
users. Apart from that, the complexity of User2Vec based schemes
is coupled from the size of the training set. This is not acceptable
in display advertising, as the number of different users can become
extremely large (millions or billions). On the other hand, these issues
do not exist on the Url2Vec and User2VecC based schemes that rep-
resent users by just computing the average or weighted average URL
representations of their browsing history. Taking all the above into ac-
count, we can safely conclude that User2VecC+cbow+idf+euclidean

is the best audience scheme on display advertising as its performance
is quite competitive compared to the other schemes, while on the
same the inference of the users representations is not computation-
ally expensive. Also, its performance is competitive to the prediction
conversion models presented at Qiu et al., 2020.

Figure 4.1 illustrates the URL representations learned by Url2Vec,
User2VecC+cbow, and User2VecC+skipgram models using the Barnes-
Hut t-SNE algorithm (Maaten, 2014). On the other hand, Figure 4.2 vi-
sualizes the user representations learned by Url2Vec+idf, User2VecC
+{cbow,skipgram}+idf, and User2Vec+concat models on the News-
paper_2 advertiser. As we can see, the seed users (red points) are
closer to the positive candidate users (green points) on the embedding
space compared to the negative candidate users (blue points). More-
over, we can verify that all these four schemes are able to distinguish
the positive from negative candidate users as they create two clusters
of candidate users.

114 audience extension

Url2Vec User2VecC+cbow User2VecC+skipg.

Figure 4.1 – t-SNE visualization of the URL representation vectors (X
embedding matrix) learned by Url2Vec, User2VecC+cbow,
User2VecC+skipgram models.

Url2Vec+idf User2Vec+concat

User2VecC+cbow+idf User2VecC+skipgram+idf

Figure 4.2 – t-SNE visualization of the user representations produced by
four representation models. The red points indicate the seed
users, the green points indicate the positive candidate users,
and the blue points indicate the negative candidate users on the
Newspaper_2 dataset.

4.3.2 Ablation study

As aforementioned, we consider as seed users the converted users
on Dd+1 where the dominant visited URL appears less than 20%

4.3 empirical analysis 115

Figure 4.3 – Average precision-recall curves (5 independent runs) of
Url2Vec+idf+cosine audience expansion model on the five
advertisers for different filtering thresholds of seed set S .

of the time in user’s browsing. In this way, we filter out the se-
quences of URLs dominated by a single URL probably due to the
automatic refresh of the specific website. For instance, if we set the
filtering threshold to 0.9 we will include on the seed set sequences
where a single URL is possible to appear on the 90% of the time.
Let’s now examine the impact of this free hyper-parameter on the
performance of our proposed audience expansion schemes. Specif-
ically, Fig. 4.3 presents the average precision-recall curves for the

116 audience extension

Url2Vec+idf+cosine scheme on the five advertisers for different fil-
tering thresholds, thres = {0.2, 0.3, . . . , 1}. It is clear that as we relax
this threshold the performance of the Url2Vec+idf+cosine is getting
worse and worse. Specifically, in the case where we set thres > 0.6, it
behaves almost in a random way without being able to identify the
positive candidates with success.

4.4 conclusions and future directions

In this work, we considered the problem of expanded advertisers’
audiences in display advertising. In this direction, we introduced and
examined different audience expansion schemes that are classified
into four main categories. Apart from the audience expansion systems
of the first category that represent users as a set of the visited URLs,
all the others are based on self-supervision representation models.
Specifically, the representation models that used to represent users
(Url2Vec, User2Vec, User2VecC) are inspired by NLP. With the help
of the pre-trained representation models, we can easily compute the
affinity scores between candidate and seed users by using any standard
computationally efficient similarity metric. In the future, we intend to
examine representation models that consider the chronological order
of visited URLs (Mikolov, Karafiát, et al., 2010). Additionally, we
plan to evaluate the effectiveness of the proposed audience expansion
systems on real-world online scenario.

5
C O N C L U D I N G R E M A R K S

In this chapter, we conclude the dissertation by first summarizing
our main contributions described in Chapters 3 and 4. Then we outline
the promising future research directions unexplored at the time of
writing.

5.1 summary of contributions

In the context of online advertising, especially in Real-Time Bidding,
how to deliver the right ad, to the right person, in the right context
(webpage), at the right time is essential for advertisers. Thus, accu-
rately identifying a user’s value to the advertiser is of high importance.
Under this context, in this dissertation, we focused on developing
novel approaches to address two challenging display advertising tasks:
conversion prediction and audience expansion.

conversion prediction Conversion prediction task aims to
predict if a user will convert (e. g. , visit website, buy product) or not
at a specific moment. In our work (Qiu et al., 2020, see Chapter 3

for details), we considered the case where the objective is to predict
whether a user will visit the advertiser’s website the next day based
on his browsing history. Due to the high cardinality and diversity
of URLs, we introduced three self-supervised schemes that are able
to learn dense and meaningful URL embeddings. Specifically: 1)
Each URL (after removing the http(s) protocol component) is split to
tokens by ’/’, constrained to have maximum 3 tokens. 2) By using
only the user browsing history, a skip-gram model is applied to learn
URL embedding, where each URL is treated as a word and the user’s
browsing history as a document. Moreover, the URL embedding
is represented as an aggregation of its token embeddings, either by
using the embedding of its first token (Domain_only), or by averaging
(Token_avg) or concatenating (Token_concat) its token embeddings. 3)
In the end, the user’s browsing history is given as input into an neural
network architecture that consists of i) a URL embedding layer, ii)
an aggregation layer, iii) and a dense layer with sigmoid activation
function and outputs the user conversion probability. The empirical
results showed that our proposed URL embedding models are able to
produce meaningful URL representations by grouping together URLs
of the same category. Furthermore, we saw that user browsing history
provides useful information to predict users’ visit on the advertiser’s
website. Finally, considering the chronological order of the visited

117

118 concluding remarks

URLs (using RNN-based model in aggregation layer) significantly
improves the model’s performance.

audience expansion Given a set of seed users provided by the
advertiser, the objective of the audience expansion task is to discover
more users with similar interests. In our work (Tziortziotis et al., 2021,
see Chapter 4 for more details), the converted users are considered as
the seed users, and by using only their browsing history we try find
users with similar behavior. The proposed similarity-based audience
expansion schemes rank each candidate user based on its similarity
to the seed users, and selects the top-ranked users as the expanded
user set. Specifically, the proposed audience expansion schemes can
be grouped into four main categories, where except for the first cat-
egory that each user is represented as a set of the visited URLs, all
the others are based on self-supervised representation models for
learning user representations. More precisely, user embeddings are
learned in a self-supervised way based on user browsing histories
where the users and the visited URLs are considered as documents
and words, respectively. Then, each user is either considered as a
sequence of URL embeddings (URL2Vec model) or as a single vector
(User2Vec & User2VecC model). Apart from that, we also introduced
a data-drive weight factor (IDF) for each URL in order to intention-
ally alleviate the frequency redundancy of URLs that affected by
the website refreshment. Our experiments shown that the proposed
User2vecC+CBOW+IDF+EUCLIDEAN audience expansion scheme is
the best choice among all the proposed schemes due to its competitive
performance and its fast inference speed.

5.2 future directions

An essential building block that is shared by our proposed con-
version prediction and audience expansion models is the learning
of meaning URL embeddings. The process that we have followed
to laern URL embedding consists of three main steps: i) URLs tok-
enization, ii) aggregate URL’s token embeddings to form the URL
embedding, and iii) then the URLs’ embeddings are learned through
an auxiliary (classification) task. Next, we present possible ways that
could be followed to improve these three steps of the proposed URL
representation learning architecture.

• Tokenization
In our applied URL embedding methods, we split the URL by
’/’ to get its tokens. This simple tokenization is not robust to the
slight change of the token characters. For instance, the domain
’ABC.com’ and ’ABC.fr’ should share a certain degree of similar-
ity. Nevertheless, our tokenization approach treat these as two
completely different tokens. In this direction, it would be may

5.2 future directions 119

useful to consider more sophisticated tokenization techniques
that extract informative subwords (Sennrich, Haddow, and Birch,
2016; Y. Wu et al., 2016; Kudo and J. Richardson, 2018).

• Token aggregation
By averaging token embeddings to construct URL embedding,
we ignore the sequential property and hierarchy of the tokens
appeared on a URL. Methods such as positional embedding
(Devlin et al., 2018), RNN based models (David E. Rumelhart,
Geoffrey E. Hinton, and Ronald J. Williams, 1988; J. Cheng, Dong,
and Lapata, 2016) that preserve the sequential property of the
tokens may be used. Also, to better capture different meaning
of one token in different positions (e. g. , "apple" as domain
name refers to the company Apple and "apple" in other position
may refer to the fruit), the idea of contextual representation
methods (Devlin et al., 2018; Peters et al., 2018) which provide
an adaptive meaning of token according to its applied context
(e. g. , surrounding tokens) may be useful to construct a better
URL embedding.

• Time gap between URL pairs consideration
The position of URLs is used for labeling the URL pairs. It
should be noticed that these labeled URLs are then used for the
training of the URL embedding model. Precisely, for a given
URL, all its neighbors in the browsing history are considered
as positive, without taking into account the time gap between
them. However, it is possible that two URLs next to each other
are with a long time gap, which indicates that they are not
visited together. Therefore, an interesting future direction is the
consideration also of the time gap between visited URLs during
the labeling process of the URL pairs.

Another interesting direction of future work would be the further
improvement of the rest blocks of the proposed model architectures.

conversion prediction Basically, user’s browsing history is a
chronologically ordered sequence of URLs. We have have examined
its sequential aspect by using an RNN-based model that uplifts the
conversion prediction model’s performance (Chapter 3). Adding the
chronological aspect allows us to fully model user’s browsing activities.
Therefore, using specific time-aware models such as time-LSTM (Y.
Zhu et al., 2017) or time-aware attention (P.-C. Chen et al., 2017; Cai et
al., 2018) may be beneficial. For instance, D. Gligorijevic, J. Gligorijevic,
and Flores, 2020 propose a prediction model with time-aware attention
block to model heterogeneous sequences of users’ activities.

audience expansion As we have already introduced in Sec.1.6.3,
seed users typically contain noise (e. g. , outliers, subgroups). Our
experiments in Chapter 4 showed that filtering seed users by only

120 concluding remarks

keeping users whose dominant URL appears less than 20% on the
total browsing history improve the model’s results. Therefore, we
believe that a ‘clean’ and purified seed users set improves model
performance. In this direction, Zhuang et al., 2020 propose the usage
of a knowledge distillation mechanism (G. Hinton, Vinyals, and Dean,
2015), to eliminate the gap between the seeds and the actual audiences
introduced by the provided seed set.

5.3 epilogue

Advertising shows a powerful influence on people’s daily life.
Throughout this dissertation, we have presented our understand-
ing of this area, Real-time Bidding in particular, and provided our
contributions for optimizing customer prospecting through examining
challenging real-world problems. Although numerous work has been
conducted in this domain, a number of unanswered questions and
challenging problems remain. I sincerely hope that the findings in this
dissertation will provide some insight into future research and appli-
cations that ultimately improves the advertising ecosystem, especially
the user experience.

B I B L I O G R A P H Y

Jaccard, Paul (1901). « Étude comparative de la distribution florale
dans une portion des Alpes et des Jura. » In: Bulletin del la Société
Vaudoise des Sciences Naturelles 37, pp. 547–579 (cit. on p. 103).

Pearson, K. (1901). « On Lines and Planes of Closest Fit to Systems of
Points in Space. » In: Philosophical Magazine 2, pp. 559–572 (cit. on
p. 39).

Jaccard, Paul (1912). « THE DISTRIBUTION OF THE FLORA IN THE
ALPINE ZONE.1. » In: New Phytologist 11.2, pp. 37–50 (cit. on p. 31).

Eckart, C. and G. Young (1936). « The approximation of one matrix by
another of lower rank. » In: Psychometrika 1.3, pp. 211–218 (cit. on
p. 34).

Robbins, Herbert and Sutton Monro (1951). « A Stochastic Approxima-
tion Method. » In: The Annals of Mathematical Statistics 22.3, pp. 400–
407 (cit. on p. 37).

Huffman, David A. (1952). « A Method for the Construction of Minimum-
Redundancy Codes. » In: Proceedings of the IRE, pp. 1098–1101 (cit.
on p. 63).

Harris, Zellig (1954). « Distributional structure. » In: Word 10.2-3,
pp. 146–162 (cit. on pp. 22, 60).

Bellman, Richard (1957). Dynamic Programming. 1st ed. Princeton, NJ,
USA: Princeton University Press (cit. on pp. 22, 25, 58).

Luhn, H. P. (1957). « A Statistical Approach to Mechanized Encoding
and Searching of Literary Information. » In: IBM Journal of Research
and Development 1.4, pp. 309–317 (cit. on p. 73).

Cox, David R. (1958). « The Regression Analysis of Binary Sequences
(with Discussion). » In: J Roy Stat Soc B 20, pp. 215–242 (cit. on p. 41).

Hubel, David H. and Torsten N. Wiesel (1959). « Receptive Fields of
Single Neurons in the Cat’s Striate Cortex. » In: Journal of Physiology
148, pp. 574–591 (cit. on p. 53).

Bellman, Richard (1961). Adaptive Control Processes: A Guided Tour.
Princeton Legacy Library. Princeton University Press (cit. on pp. 22,
25, 58).

Vickrey, William (1961). « Counterspeculation, Auctions, And Compet-
itive Sealed Tenders. » In: Journal of Finance 16.1, pp. 8–37 (cit. on
p. 10).

A. N. Tikhonov (1963). « On the solution of ill-posed problems and
the method of regularization. » In: Dokl. Akad. Nauk SSSR 151.2,
pp. 501–504 (cit. on p. 44).

MacQueen, J. (1967). « Some methods for classification and analysis of
multivariate observations. » In: (cit. on p. 39).

121

122 bibliography

Golub, G. H. and C. Reinsch (1970). « Singular Value Decomposition
and Least Squares Solutions. » In: Numer. Math. 14.5, pp. 403–420

(cit. on pp. 34, 60).
Hoerl, A. E. and R. W. Kennard (1970). « Ridge Regression: Biased Es-

timation for Nonorthogonal Problems. » In: Technometrics 12, pp. 55–
67 (cit. on p. 45).

Wilson, Dennis L. (1972). « Asymptotic Properties of Nearest Neighbor
Rules Using Edited Data. » In: IEEE Transactions on Systems, Man,
and Cybernetics SMC-2.3, pp. 408–421 (cit. on p. 26).

Jones, Karen Sparck (1973). « Index term weighting. » In: Information
Storage and Retrieval 9.11, pp. 619–633. issn: 0020-0271 (cit. on pp. 100,
104).

Stone, M. (1974). « Cross-validatory choice and assessment of statistical
predictions. » In: Roy. Stat. Soc. 36, pp. 111–147 (cit. on p. 45).

Hartigan, J. A. and M. A. Wong (1979). « A K-Means Clustering Al-
gorithm. » In: Journal of the Royal Statistical Society: Series C (Applied
Statistics) 28.1, pp. 100–108 (cit. on p. 30).

Myerson, Roger B. (1981). « Optimal Auction Design. » In: Math. Oper.
Res. 6.1, pp. 58–73 (cit. on p. 10).

Rabin, M.O. (1981). Fingerprinting by Random Polynomials. Center for
Research in Computing Technology: Center for Research in Com-
puting Technology. Center for Research in Computing Techn., Aiken
Computation Laboratory, Univ. (cit. on p. 14).

Pollay, Richard (Apr. 1986). « The Distorted Mirror: Reflections on the
Unintended Consequences of Advertising. » In: Journal of Marketing
50, pp. 18–36 (cit. on p. 1).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1988). « Neurocom-
puting: Foundations of Research. » In: MIT Press. Chap. Learning
Representations by Back-propagating Errors, pp. 696–699. isbn: 0-
262-01097-6 (cit. on p. 54).

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams
(1988). « Learning Representations by Back-Propagating Errors. » In:
Neurocomputing: Foundations of Research, pp. 696–699 (cit. on pp. 82,
119).

Sparck Jones, Karen (1988). « A Statistical Interpretation of Term Speci-
ficity and Its Application in Retrieval. » In: Document Retrieval Sys-
tems. GBR: Taylor Graham Publishing, pp. 132–142. isbn: 0947568212

(cit. on pp. 31, 60, 72).
Hanson, Stephen and Lorien Pratt (1989). « Comparing Biases for Min-

imal Network Construction with Back-Propagation. » In: Advances
in Neural Information Processing Systems. Vol. 1. Morgan-Kaufmann
(cit. on p. 45).

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K.
Landauer, and Richard Harshman (1990). « Indexing by latent se-
mantic analysis. » In: JOURNAL OF THE AMERICAN SOCIETY FOR
INFORMATION SCIENCE 41.6, pp. 391–407 (cit. on p. 61).

bibliography 123

Werbos, Paul (Nov. 1990). « Backpropagation through time: what it
does and how to do it. » In: Proceedings of the IEEE 78, pp. 1550–1560

(cit. on p. 54).
Geman, Stuart, Elie Bienenstock, and René Doursat (1992). « Neural

Networks and the Bias/Variance Dilemma. » In: Neural Computation
4.1, pp. 1–58 (cit. on p. 44).

Broder, Andrei Z. (1993). « Some applications of Rabin’s fingerprinting
method. » In: Sequences II: Methods in Communications, Security, and
Computer Science. Springer-Verlag, pp. 143–152 (cit. on p. 14).

Matthews, Steven A. (1995). A Technical Primer on Auction Theory I: In-
dependent Private Values. Tech. rep. Northwestern University, Center
for Mathematical Studies in Economics and Management Science
(cit. on p. 11).

Vapnik, Vladimir N. (1995). The Nature of Statistical Learning Theory.
Berlin, Heidelberg: Springer-Verlag. isbn: 0387945598 (cit. on pp. 42,
43).

Breiman, Leo (1996). « Bagging Predictors. » In: Mach. Learn. 24.2,
pp. 123–140. issn: 0885-6125 (cit. on p. 44).

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu (1996).
« A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. » In: KDD’96. Portland, Oregon: AAAI
Press, pp. 226–231 (cit. on p. 39).

Tibshirani, R. (1996). « Regression Shrinkage and Selection via the
Lasso. » In: Journal of the royal statistical society series b-methodological
58, pp. 267–288 (cit. on p. 45).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). « Long Short-Term
Memory. » In: Neural Computation 9.8, pp. 1735–1780 (cit. on pp. 54,
82).

Stehman, Stephen (Oct. 1997). « Selecting and interpreting measures of
thematic classification accuracy. » In: Remote Sensing of Environment
62, pp. 77–89 (cit. on p. 46).

Hochreiter, Sepp (1998). « The Vanishing Gradient Problem during
Learning Recurrent Neural Nets and Problem Solutions. » In: Int. J.
Uncertain. Fuzziness Knowl.-Based Syst. 6.2, pp. 107–116 (cit. on p. 53).

Rubner, Y., C. Tomasi, and L. J. Guibas (1998). « A metric for distri-
butions with applications to image databases. » In: ICCV (cit. on
p. 107).

Lee, Daniel and H. Seung (Nov. 1999). « Learning the Parts of Objects
by Non-Negative Matrix Factorization. » In: Nature 401, pp. 788–91

(cit. on p. 60).
Elkan, Charles (2001). « The Foundations of Cost-Sensitive Learning. »

In: Proceedings of the 17th International Joint Conference on Artificial
Intelligence - Volume 2. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., pp. 973–978 (cit. on p. 26).

124 bibliography

Friedman, Jerome H. (2001). « Greedy function approximation: A
gradient boosting machine. » In: The Annals of Statistics 29, pp. 1189–
1232 (cit. on p. 25).

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The
Elements of Statistical Learning. Springer Series in Statistics. New
York, NY, USA: Springer New York Inc. (cit. on p. 39).

King, Gary and Langche Zeng (2001). « Logistic Regression in Rare
Events Data. » In: Political Analysis 9 (2), pp. 137–163 (cit. on p. 26).

Kristol, David M. (2001). « HTTP Cookies: Standards, Privacy, and
Politics. » In: ACM Trans. Internet Technol. 1.2, pp. 151–198 (cit. on
p. 13).

Laurikkala, Jorma (2001). « Improving Identification of Difficult Small
Classes by Balancing Class Distribution. » In: Artificial Intelligence in
Medicine. Springer Berlin Heidelberg, pp. 63–66 (cit. on p. 26).

Levina, E. and P. Bickel (2001). « The Earth Mover’s distance is the
Mallows distance: some insights from statistics. » In: ICCV (cit. on
p. 107).

Rosario, B. (2001). « Latent Semantic Indexing : An Overview 1 Latent
Semantic Indexing : An overview INFOSYS 240 Spring 2000 Final
Paper. » In: (cit. on p. 61).

Charikar, Moses S. (2002). « Similarity estimation techniques from
rounding algorithms. » In: STOC ’02: Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing. ACM, pp. 380–388

(cit. on p. 15).
Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip

Kegelmeyer (2002). « SMOTE: Synthetic Minority over-Sampling
Technique. » In: J. Artif. Int. Res. 16.1, pp. 321–357. issn: 1076-9757

(cit. on p. 26).
Church, Kenneth and Patrick Hanks (July 2002). « Word Association

Norms, Mutual Information, and Lexicography. » In: Computational
Linguistics 16 (cit. on p. 60).

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jan-
vin (Mar. 2003). « A Neural Probabilistic Language Model. » In: J.
Mach. Learn. Res. 3.null, pp. 1137–1155. issn: 1532-4435 (cit. on p. 64).

Linden, G., B. Smith, and J. York (2003). « Amazon.com recommenda-
tions: item-to-item collaborative filtering. » In: IEEE Internet Comput-
ing 7.1, pp. 76–80 (cit. on p. 38).

Liu, Bing, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S. Yu (2003).
« Building Text Classifiers Using Positive and Unlabeled Examples. »
In: Proceedings of the Third IEEE International Conference on Data
Mining. ICDM ’03. USA: IEEE Computer Society, p. 179 (cit. on
p. 29).

Zhang, J. and I. Mani (2003). « KNN Approach to Unbalanced Data
Distributions: A Case Study Involving Information Extraction. » In:
Proceedings of the ICML’2003 Workshop on Learning from Imbalanced
Datasets (cit. on p. 26).

bibliography 125

Dumais, S.T. (Jan. 2004). « Latent Semantic Analysis. » In: Annual
Review of Information Science and Technology 38, pp. 188–230 (cit. on
pp. 61, 73).

Milgrom, Paul (2004). Putting Auction Theory to Work. Churchill Lec-
tures in Economics. Cambridge University Press (cit. on p. 11).

Turney, Peter D. (2004). « Human-Level Performance on Word Analogy
Questions by Latent Relational Analysis » (cit. on p. 61).

Han, Hui, Wen-Yuan Wang, and Bing-Huan Mao (2005). « Borderline-
SMOTE: A New Over-Sampling Method in Imbalanced Data Sets
Learning. » In: Advances in Intelligent Computing, pp. 878–887 (cit. on
p. 26).

Morin, Frederic and Yoshua Bengio (2005). « Hierarchical Probabilistic
Neural Network Language Model. » In: Proceedings of the Tenth
International Workshop on Artificial Intelligence and Statistics, pp. 246–
252 (cit. on p. 63).

Rokach, Lior and Oded Maimon (2005). « Clustering Methods. » In:
Data Mining and Knowledge Discovery Handbook. Boston, MA: Springer
US, pp. 321–352 (cit. on p. 39).

Zhu, Xiaojin (2005). Semi-Supervised Learning Literature Survey. Tech.
rep. Computer Sciences, University of Wisconsin-Madison (cit. on
p. 40).

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag. isbn: 0387310738 (cit. on
pp. 39, 80, 106).

Cybenkot, G (2006). « Approximation by Superpositions of a Sigmoidal
Function *. » In: (cit. on p. 56).

Davis, Jesse and Mark Goadrich (June 2006). « The Relationship Be-
tween Precision-Recall and ROC Curves. » In: vol. 06 (cit. on pp. 48,
49).

Fawcett, Tom (2006). « An introduction to ROC analysis. » In: Pattern
Recognition Letters 27.8, pp. 861–874 (cit. on pp. 47, 48).

Liu, Xu-ying and Zhi-hua Zhou (2006). « The Influence of Class Im-
balance on Cost-Sensitive Learning: An Empirical Study. » In: Sixth
International Conference on Data Mining (ICDM’06), pp. 970–974 (cit.
on p. 26).

Anagnostopoulos, Aris, Andrei Z. Broder, Evgeniy Gabrilovich, Vanja
Josifovski, and Lance Riedel (2007). « Just-in-Time Contextual Adver-
tising. » In: Proceedings of the Sixteenth ACM Conference on Conference
on Information and Knowledge Management. CIKM ’07, pp. 331–340

(cit. on p. 15).
Edelman, Benjamin, Michael Ostrovsky, and Michael Schwarz (2007).

« Internet Advertising and the Generalized Second-Price Auction:
Selling Billions of Dollars Worth of Keywords. » In: American Eco-
nomic Review 97.1, pp. 242–259 (cit. on p. 10).

Mahdian, Mohammad and Kerem Tomak (2007). « Pay-per-action
Model for Online Advertising. » In: ADKDD (cit. on p. 77).

126 bibliography

Richardson, Matthew, Ewa Dominowska, and Robert Ragno (2007).
« Predicting Clicks: Estimating the Click-through Rate for New
Ads. » In: Proceedings of the 16th International Conference on World
Wide Web WWW. Association for Computing Machinery, pp. 521–
530 (cit. on pp. 25, 79).

Yao, Yuan, Lorenzo Rosasco, and Andrea Caponnetto (Aug. 2007).
« On Early Stopping in Gradient Descent Learning. » In: Constructive
Approximation 26, pp. 289–315 (cit. on pp. 44, 56).

Bottou, Léon and Olivier Bousquet (2008). « The Tradeoffs of Large
Scale Learning. » In: Advances in Neural Information Processing Sys-
tems. Vol. 20. Curran Associates, Inc. (cit. on pp. 43, 44).

He, Haibo, Yang Bai, Edwardo A. Garcia, and Shutao Li (2008). « ADASYN:
Adaptive synthetic sampling approach for imbalanced learning. »
In: 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence), pp. 1322–1328 (cit. on
p. 26).

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze
(2008). Introduction to Information Retrieval. Cambridge, UK: Cam-
bridge University Press (cit. on p. 72).

Slaney, M. and M. Casey (2008). « Locality-Sensitive Hashing for Find-
ing Nearest Neighbors [Lecture Notes]. » In: IEEE Signal Processing
Magazine 25.2, pp. 128–131 (cit. on pp. 30, 101).

Eckersley, Peter (2009). How Unique Is Your Web Browser? Tech. rep.
Electronig Frontier Foundation (cit. on p. 14).

Niu, Xiaofei, Jun Ma, and Dongmei Zhang (2009). « A Survey of
Contextual Advertising. » In: 2009 Sixth International Conference on
Fuzzy Systems and Knowledge Discovery. Vol. 7, pp. 505–509 (cit. on
p. 15).

Train, Kenneth E. (2009). Discrete Choice Methods with Simulation. 2nd ed.
Cambridge University Press (cit. on p. 27).

Weinberger, Kilian, Anirban Dasgupta, John Langford, Alex Smola,
and Josh Attenberg (2009). « Feature Hashing for Large Scale Mul-
titask Learning. » In: Proceedings of the 26th Annual International
Conference on Machine Learning. ICML ’09, pp. 1113–1120 (cit. on
p. 25).

Graepel, T., J. Q. Candela, T. Borchert, and R. Herbrich (2010). « Web-
scale Bayesian Click-through Rate Prediction for Sponsored Search
Advertising in Microsoft’s Bing Search Engine. » In: ICML (cit. on
p. 79).

Ioffe, S. (2010). « Improved Consistent Sampling, Weighted Minhash
and L1 Sketching. » In: 2010 IEEE International Conference on Data
Mining, pp. 246–255. doi: 10.1109/ICDM.2010.80 (cit. on pp. 31,
103).

Mikolov, Tomas, Martin Karafiát, Lukás Burget, Jan Cernocký, and San-
jeev Khudanpur (2010). « Recurrent neural network based language
model. » In: INTERSPEECH (cit. on p. 116).

https://doi.org/10.1109/ICDM.2010.80

bibliography 127

Nair, Vinod and Geoffrey E. Hinton (2010). « Rectified Linear Units Im-
prove Restricted Boltzmann Machines. » In: Proceedings of the 27th In-
ternational Conference on International Conference on Machine Learning.
ICML’10. Haifa, Israel: Omnipress, pp. 807–814. isbn: 9781605589077

(cit. on pp. 38, 81).
Pergelova, Albena, Diego Prior, and Rialp Josep (Sept. 2010). « Assess-

ing Advertising Efficiency. » In: vol. 39, pp. 39–54 (cit. on p. 1).
Rendle, Steffen (2010). « Factorization Machines. » In: The 10th IEEE In-

ternational Conference on Data Mining ICDM. IEEE Computer Society,
pp. 995–1000 (cit. on p. 26).

Chen, Ye, Pavel Berkhin, Bo Anderson, and Nikhil R. Devanur (2011).
« Real-time Bidding Algorithms for Performance-based Display Ad
Allocation. » In: KDD (cit. on p. 78).

Gerber, Alan S., James G. Gimpel, Donald P. Green, and Daron R. Shaw
(2011). « How Large and Long-lasting Are the Persuasive Effects
of Televised Campaign Ads? Results from a Randomized Field
Experiment. » In: American Political Science Review 105.1, pp. 135–150

(cit. on p. 1).
Google (2011). The arrival of real-time bidding (cit. on p. 77).
Loh, Wei-Yin (Jan. 2011). « Classification and Regression Trees. » In:

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
1, pp. 14–23 (cit. on p. 57).

McMahan, Brendan (2011). « Follow-the-Regularized-Leader and Mir-
ror Descent: Equivalence Theorems and L1 Regularization. » In:
Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics. Vol. 15. Proceedings of Machine Learning
Research. PMLR, pp. 525–533 (cit. on p. 60).

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural
Networks. Vol. 385. Studies in Computational Intelligence. Springer.
isbn: 978-3-642-24796-5 (cit. on p. 78).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). « Ima-
geNet Classification with Deep Convolutional Neural Networks. »
In: Advances in Neural Information Processing Systems. Vol. 25. Curran
Associates, Inc. (cit. on pp. 26, 38, 52).

Tao, Jin, Marco Cuturi, and Akihiro Yamamoto (2012). « A Distance
Between Text Documents based on Topic Models and Ground Metric
Learning. » In: JSAI (cit. on p. 107).

Bengio, Y., A. Courville, and P. Vincent (2013). « Representation Learn-
ing: A Review and New Perspectives. » In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 35.8, pp. 1798–1828 (cit. on
p. 79).

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013).
« Speech recognition with deep recurrent neural networks. » In: 2013
IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6645–6649 (cit. on p. 53).

128 bibliography

McMahan, H. Brendan et al. (2013). « Ad Click Prediction: a View from
the Trenches. » In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD) (cit. on
pp. 60, 79).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013).
« Efficient Estimation of Word Representations in Vector Space. »
In: 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings
(cit. on pp. 22, 24, 28, 30, 40, 57, 62, 73, 100).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean (2013). « Distributed Representations of Words and Phrases
and their Compositionality. » In: NIPS (cit. on pp. 22, 62, 63, 78, 79,
83, 84, 100, 105, 106).

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). On the
difficulty of training Recurrent Neural Networks. arXiv: 1211.5063
[cs.LG] (cit. on p. 53).

Yuan, Shuai, Jun Wang, and Xiaoxue Zhao (2013). « Real-Time Bidding
for Online Advertising: Measurement and Analysis. » In: Proceed-
ings of the Seventh International Workshop on Data Mining for Online
Advertising. ADKDD ’13 (cit. on p. 3).

Zeiler, Matthew D. and Rob Fergus (2013). « Visualizing and Under-
standing Convolutional Networks. » In: CoRR abs/1311.2901. arXiv:
1311.2901 (cit. on p. 57).

Chapelle, O. (2014). « Modeling delayed feedback in display advertis-
ing. » In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining (cit. on p. 27).

Chapelle, O., E. Manavoglu, and R. Rosales (2014). « Simple and
Scalable Response Prediction for Display Advertising. » In: ACM
Trans. Intell. Syst. Technol. 5.4 (cit. on p. 79).

Cho, Kyunghyun, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio (2014). Learning Phrase Represen-
tations using RNN Encoder-Decoder for Statistical Machine Translation.
arXiv: 1406.1078 (cit. on pp. 24, 27, 53, 54).

Dauphin, Yann, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio (2014). Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization.
arXiv: 1406.2572 [cs.LG] (cit. on p. 55).

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio
(2014). Generative Adversarial Networks. arXiv: 1406.2661 [stat.ML]

(cit. on p. 39).
Graves, Alex, Greg Wayne, and Ivo Danihelka (2014). Neural Turing

Machines. arXiv: 1410.5401 [cs.NE] (cit. on p. 68).
He, X. et al. (2014). « Practical Lessons from Predicting Clicks on Ads

at Facebook. » In: Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising, ADKDD (cit. on pp. 25, 79).

https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1410.5401

bibliography 129

Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom (June 2014).
« A Convolutional Neural Network for Modelling Sentences. » In:
Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Asso-
ciation for Computational Linguistics, pp. 655–665 (cit. on p. 52).

Karpathy, Andrej, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei (2014). « Large-Scale Video Classi-
fication with Convolutional Neural Networks. » In: CVPR ’14. IEEE
Computer Society, pp. 1725–1732 (cit. on p. 52).

Kim, Yoon (2014). Convolutional Neural Networks for Sentence Classifica-
tion. arXiv: 1408.5882 [cs.CL] (cit. on p. 52).

Kingma, Diederik P and Max Welling (2014). Auto-Encoding Variational
Bayes. arXiv: 1312.6114 [stat.ML] (cit. on p. 39).

Le, Quoc and Tomas Mikolov (2014). « Distributed Representations of
Sentences and Documents. » In: ICML (cit. on pp. 22, 31, 73, 74, 100,
108).

Maaten, Laurens van der (2014). « Accelerating t-SNE using Tree-Based
Algorithms. » In: Journal of Machine Learning Research 15.93, pp. 3221–
3245 (cit. on p. 113).

Mordelet, F. and J.-P. Vert (2014). « A bagging SVM to learn from
positive and unlabeled examples. » In: Pattern Recognition Letters 37,
pp. 201–209 (cit. on p. 29).

Oentaryo, Richard et al. (2014). « Detecting Click Fraud in Online
Advertising: A Data Mining Approach. » In: J. Mach. Learn. Res. 15.1,
pp. 99–140. issn: 1532-4435 (cit. on pp. 21, 27).

Oentaryo, Richard J., Ee-Peng Lim, Jia-Wei Low, David Lo, and Michael
Finegold (2014). « Predicting Response in Mobile Advertising with
Hierarchical Importance-aware Factorization Machine. » In: WSDM
(cit. on p. 79).

Pennington, Jeffrey, Richard Socher, and Christopher Manning (Jan.
2014). « Glove: Global Vectors for Word Representation. » In: vol. 14,
pp. 1532–1543 (cit. on pp. 30, 61).

Qu, Yan, Jing Wang, Yang Sun, and Hans Marius Holtan (2014). Systems
and methods for generating expanded user segments. US Patent 8,655,695

(cit. on p. 102).
Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov (2014). « Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. » In: Journal of Machine
Learning Research 15.56, pp. 1929–1958 (cit. on p. 56).

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). « Sequence to
Sequence Learning with Neural Networks. » In: CoRR abs/1409.3215.
arXiv: 1409.3215 (cit. on pp. 53, 67).

Yuan, Shuai, Jun Wang, Bowei Chen, Peter Mason, and Sam Seljan
(2014). « An empirical study of reserve price optimisation in real-
time bidding. » In: Proceedings of the 20th ACM SIGKDD International

https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1409.3215

130 bibliography

Conference on Knowledge Discovery and Data Mining, KDD, pp. 1897–
1906 (cit. on p. 11).

Zhang, Y., H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T.-Y.
Liu (2014). « Sequential Click Prediction for Sponsored Search with
Recurrent Neural Networks. » In: AAAI (cit. on p. 79).

Chapelle, Olivier, Eren Manavoglu, and Romer Rosales (2015). « Sim-
ple and Scalable Response Prediction for Display Advertising. » In:
ACM Trans. Intell. Syst. Technol. 5.4 (cit. on p. 25).

Choromanska, Anna, Mikael Henaff, Michael Mathieu, Gérard Ben
Arous, and Yann LeCun (2015). The Loss Surfaces of Multilayer Net-
works. arXiv: 1412.0233 [cs.LG] (cit. on p. 55).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015).
« Deep Residual Learning for Image Recognition. » In: CoRR abs/1512.03385.
arXiv: 1512.03385 (cit. on pp. 38, 49, 52, 55).

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (2015). Distilling the
Knowledge in a Neural Network. arXiv: 1503.02531 [stat.ML] (cit. on
pp. 31, 120).

Ioffe, Sergey and Christian Szegedy (2015). Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Covariate Shift.
arXiv: 1502.03167 [cs.LG] (cit. on p. 56).

Kusner, Matt, Yu Sun, Nicholas Kolkin, and Kilian Weinberger (2015).
« From Word Embeddings To Document Distances. » In: Proceedings
of the 32nd International Conference on Machine Learning. Vol. 37. Pro-
ceedings of Machine Learning Research. PMLR, pp. 957–966 (cit. on
pp. 31, 100, 107).

Liu, Qiang, Feng Yu, Shu Wu, and Liang Wang (2015). « A Convolu-
tional Click Prediction Model. » In: CIKM (cit. on pp. 26, 79).

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015).
Effective Approaches to Attention-based Neural Machine Translation.
arXiv: 1508.04025 [cs.CL] (cit. on p. 68).

Manic, Marius (2015). « The Rise of native advertising. » In: Bulletin
of the Transilvania University of Brasov. Series V : Economic Sciences,
pp. 53–58 (cit. on p. 15).

Simonyan, Karen and Andrew Zisserman (2015). « Very Deep Con-
volutional Networks for Large-Scale Image Recognition. » In: 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (cit. on
p. 52).

Su, Wanhua, Yan Yuan, and Mu Zhu (2015). « A Relationship between
the Average Precision and the Area Under the ROC Curve. » In:
ICTIR (cit. on p. 111).

Ta, A. (2015). « Factorization machines with follow-the-regularized-
leader for CTR prediction in display advertising. » In: IEEE Big Data
(cit. on p. 79).

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). Layer
Normalization. arXiv: 1607.06450 [stat.ML] (cit. on p. 56).

https://arxiv.org/abs/1412.0233
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1607.06450

bibliography 131

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2016).
Neural Machine Translation by Jointly Learning to Align and Translate.
arXiv: 1409.0473 [cs.CL] (cit. on pp. 38, 67, 68).

Barkan, Oren and Noam Koenigstein (2016). Item2Vec: Neural Item
Embedding for Collaborative Filtering (cit. on p. 22).

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomás Mikolov
(2016). « Enriching Word Vectors with Subword Information. » In:
CoRR abs/1607.04606. arXiv: 1607.04606 (cit. on p. 63).

Cheng, Heng-Tze et al. (2016). « Wide & Deep Learning for Recom-
mender Systems. » In: Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems. DLRS 2016, pp. 7–10 (cit. on p. 26).

Cheng, Jianpeng, Li Dong, and Mirella Lapata (2016). « Long Short-
Term Memory-Networks for Machine Reading. » In: CoRR abs/1601.06733.
arXiv: 1601.06733 (cit. on pp. 24, 68, 119).

Covington, Paul, Jay Adams, and Emre Sargin (2016). « Deep Neural
Networks for YouTube Recommendations. » In: RecSys (cit. on pp. 30,
101).

Grbovic, M., N. Djuric, V. Radosavljevic, F. Silvestri, R. Baeza-Yates, A.
Feng, E. Ordentlich, L. Yang, and G. Owens (2016). « Scalable Seman-
tic Matching of Queries to Ads in Sponsored Search Advertising. »
In: SIGIR (cit. on p. 79).

Grover, Aditya and Jure Leskovec (2016). « Node2vec: Scalable Feature
Learning for Networks. » In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (cit.
on p. 22).

Hidasi, Balázs, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos
Tikk (2016). Session-based Recommendations with Recurrent Neural Net-
works. arXiv: 1511.06939 [cs.LG] (cit. on p. 56).

Johnson, Melvin et al. (2016). « Google’s Multilingual Neural Ma-
chine Translation System: Enabling Zero-Shot Translation. » In: CoRR
abs/1611.04558. arXiv: 1611.04558 (cit. on p. 38).

Juan, Yuchin, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin (2016).
« Field-Aware Factorization Machines for CTR Prediction. » In: Pro-
ceedings of the 10th ACM Conference on Recommender Systems. RecSys
’16. New York, NY, USA: Association for Computing Machinery,
pp. 43–50 (cit. on pp. 25, 26).

Konečný, Jakub, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon (2016). « Federated Learn-
ing: Strategies for Improving Communication Efficiency. » In: NIPS
Workshop on Private Multi-Party Machine Learning (cit. on p. 15).

Kotila, Rumin and Dhar (2016). Compendium of Ad Frau d Knowledge for
Media Investors. https://fr.slideshare.net/JeffMartinez4/comp
endium-of-ad-fraud-knowledge-for-media-investors. Accessed:
2021-06-14 (cit. on p. 19).

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1601.06733
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1611.04558
https://fr.slideshare.net/JeffMartinez4/compendium-of-ad-fraud-knowledge-for-media-investors
https://fr.slideshare.net/JeffMartinez4/compendium-of-ad-fraud-knowledge-for-media-investors

132 bibliography

Liu, Haishan, David Pardoe, Kun Liu, Manoj Thakur, Frank Cao,
and Chongzhe Li (2016). « Audience Expansion for Online Social
Network Advertising. » In: KDD (cit. on pp. 30, 99, 101).

Ma, Q., E. Wagh, J. Wen, Z. Xia, R. Ormandi, and D. Chen (2016).
« Score Look-Alike Audiences. » In: ICDMW (cit. on pp. 30, 101).

Ma, Qiang, Musen Wen, Zhen Xia, and Datong Chen (2016). « A
Sub-linear, Massive-scale Look-alike Audience Extension System A
Massive-scale Look-alike Audience Extension. » In: BigMine workshop
at KDD (cit. on pp. 30, 99, 101).

Paes Leme, Renato, Martin Pal, and Sergei Vassilvitskii (2016). « A
Field Guide to Personalized Reserve Prices. » In: WWW ’16. Inter-
national World Wide Web Conferences Steering Committee (cit. on
p. 11).

Qu, Yanru, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen,
and Jun Wang (2016). « Product-Based Neural Networks for User
Response Prediction. » In: 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 1149–1154 (cit. on p. 26).

Sennrich, Rico, Barry Haddow, and Alexandra Birch (Aug. 2016).
« Neural Machine Translation of Rare Words with Subword Units. »
In: Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Berlin, Germany: Associ-
ation for Computational Linguistics, pp. 1715–1725 (cit. on pp. 23,
119).

Silver, David et al. (2016). « Mastering the Game of Go with Deep
Neural Networks and Tree Search. » In: Nature 529.7587, pp. 484–489

(cit. on p. 49).
Vasile, Flavian, Elena Smirnova, and Alexis Conneau (2016). « Meta-

Prod2Vec - Product Embeddings Using Side-Information for Rec-
ommendation. » In: Proceedings of the 10th ACM Conference on Recom-
mender Systems, RecSys (cit. on p. 22).

Wu, Yonghui et al. (2016). « Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Machine Translation. »
In: CoRR abs/1609.08144 (cit. on pp. 23, 38, 119).

Yang, Zichao, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and
Eduard Hovy (2016). « Hierarchical Attention Networks for Doc-
ument Classification. » In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational
Linguistics, pp. 1480–1489 (cit. on p. 68).

Berg, Rianne van den, Thomas N. Kipf, and Max Welling (2017). Graph
Convolutional Matrix Completion. arXiv: 1706.02263 [stat.ML] (cit.
on p. 56).

Chen, Po-Chun, Ta-Chung Chi, Shang-Yu Su, and Yun-Nung Chen
(2017). « Dynamic time-aware attention to speaker roles and contexts
for spoken language understanding. » In: 2017 IEEE Automatic Speech

https://arxiv.org/abs/1706.02263

bibliography 133

Recognition and Understanding Workshop (ASRU), pp. 554–560 (cit. on
p. 119).

Chen, Minmin (2017). « Efficient Vector Representation for Documents
through Corruption. » In: ICLR (cit. on pp. 31, 73, 74, 100, 108).

Guo, Huifeng, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xi-
uqiang He (2017). « DeepFM: A Factorization-Machine Based Neural
Network for CTR Prediction. » In: Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence. IJCAI’17. AAAI Press,
pp. 1725–1731 (cit. on p. 27).

Justesen, Niels, Philip Bontrager, Julian Togelius, and Sebastian Risi
(2017). « Deep Learning for Video Game Playing. » In: CoRR abs/1708.07902.
arXiv: 1708.07902 (cit. on p. 49).

Kokolakis, Spyros (2017). « Privacy attitudes and privacy behaviour: A
review of current research on the privacy paradox phenomenon. »
In: Computers & Security 64, pp. 122–134 (cit. on p. 14).

Li, Juanjuan, Xiaochun Ni, Yong Yuan, Rui Qin, Xiao Wang, and
Fei-Yue Wang (2017). « The impact of reserve price on publisher
revenue in real-time bidding advertising markets. » In: 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC) (cit.
on p. 11).

Narayanan, Annamalai, Mahinthan Chandramohan, Rajasekar Venkate-
san, Lihui Chen, Yang Liu, and Shantanu Jaiswal (2017). « graph2vec:
Learning Distributed Representations of Graphs. » In: arXiv e-prints
(cit. on p. 22).

Nikolentzos, Giannis, Polykarpos Meladianos, François Rousseau,
Yannis Stavrakas, and Michalis Vazirgiannis (2017). « Multivariate
Gaussian Document Representation from Word Embeddings for
Text Categorization. » In: EACL (cit. on pp. 100, 106, 110).

Szwabe, Andrzej, Pawel Misiorek, and Michal Ciesielczyk (2017). « Lo-
gistic Regression Setup for RTB CTR Estimation. » In: Proceedings of
the 9th International Conference on Machine Learning and Computing,
ICMLC (cit. on p. 26).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin (2017).
« Attention Is All You Need. » In: CoRR abs/1706.03762. arXiv: 1706
.03762. url: http://arxiv.org/abs/1706.03762 (cit. on pp. 26, 27,
66, 68–70).

Vries, Lisette de, Sonja Gensler, and Peter S.H. Leeflang (2017). « Effects
of Traditional Advertising and Social Messages on Brand-Building
Metrics and Customer Acquisition. » In: Journal of Marketing 81.5,
pp. 1–15 (cit. on p. 2).

Wang, J., W. Zhang, and S. Yuan (2017). Display Advertising with Real-
Time Bidding (RTB) and Behavioural Targeting. Now Publishers Inc.
(cit. on pp. 77, 99).

Xiao, Jun, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-
Seng Chua (2017). « Attentional Factorization Machines: Learning

https://arxiv.org/abs/1708.07902
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

134 bibliography

the Weight of Feature Interactions via Attention Networks. » In:
Proceedings of the 26th International Joint Conference on Artificial Intelli-
gence. IJCAI’17. AAAI Press, pp. 3119–3125 (cit. on p. 26).

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals (2017). Understanding deep learning requires rethinking
generalization. arXiv: 1611.03530 [cs.LG] (cit. on p. 57).

Zhao, Bendong, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and
Dongya Wu (2017). « Convolutional neural networks for time series
classification. » In: Journal of Systems Engineering and Electronics 28.1,
pp. 162–169 (cit. on p. 52).

Zhu, Yu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu,
and Deng Cai (2017). « What to Do Next: Modeling User Behaviors
by Time-LSTM. » In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pp. 3602–3608 (cit. on
p. 119).

Cai, Xiangrui, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, Ying
Zhang, and Xiaojie Yuan (2018). « Medical Concept Embedding
with Time-Aware Attention. » In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence. IJCAI’18. Stockholm, Sweden:
AAAI Press, pp. 3984–3990. isbn: 9780999241127 (cit. on p. 119).

Chan, P. P. K., X. Hu, L. Zhao, D. S. Yeung, D. Liu, and L. Xiao
(2018). « Convolutional Neural Networks based Click-Through Rate
Prediction with Multiple Feature Sequences. » In: IJCAI (cit. on
p. 79).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
(2018). « BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. » In: CoRR abs/1810.04805. arXiv: 1810.0
4805 (cit. on pp. 22, 30, 40, 49, 55, 64, 66, 70, 71, 119).

Kang, Wang-Cheng and Julian McAuley (2018). Self-Attentive Sequential
Recommendation. arXiv: 1808.09781 [cs.IR] (cit. on p. 56).

Kudo, Taku (2018). « Subword Regularization: Improving Neural Net-
work Translation Models with Multiple Subword Candidates. » In:
Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Association for Computa-
tional Linguistics, pp. 66–75 (cit. on p. 23).

Kudo, Taku and John Richardson (2018). « SentencePiece: A simple
and language independent subword tokenizer and detokenizer for
Neural Text Processing. » In: Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstrations.
Association for Computational Linguistics, pp. 66–71 (cit. on pp. 23,
119).

Le, H., Q. Pham, D. Sahoo, and S. C. H. Hoi (2018). « URLNet: Learn-
ing a URL Representation with Deep Learning for Malicious URL
Detection. » In: CoRR (cit. on pp. 24, 79).

https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1808.09781

bibliography 135

Leevy, Joffrey L., T. Khoshgoftaar, Richard A. Bauder, and Naeem
Seliya (2018). « A survey on addressing high-class imbalance in big
data. » In: Journal of Big Data 5, pp. 1–30 (cit. on p. 26).

Li, Chunyuan, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski
(2018). Measuring the Intrinsic Dimension of Objective Landscapes. arXiv:
1804.08838 [cs.LG] (cit. on p. 57).

Liu, Peter J., Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan
Sepassi, Lukasz Kaiser, and Noam Shazeer (2018). « Generating
Wikipedia by Summarizing Long Sequences. » In: ICLR (cit. on
p. 66).

Pan, Junwei, Jian Xu, A. L. Ruiz, W. Zhao, Shengjun Pan, Yu Sun,
and Q. Lu (2018). « Field-weighted Factorization Machines for Click-
Through Rate Prediction in Display Advertising. » In: Proceedings of
the 2018 World Wide Web Conference (cit. on p. 26).

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer (2018). Deep
contextualized word representations. arXiv: 1802.05365 [cs.CL] (cit. on
pp. 30, 64, 65, 119).

Pham, Thuy Thi Thanh, Van Nam Hoang, and Thanh Ngoc Ha (2018).
« Exploring Efficiency of Character-Level Convolution Neuron Net-
work and Long Short Term Memory on Malicious URL Detection. »
In: Proceedings of the 2018 VII International Conference on Network,
Communication and Computing (ICNCC) (cit. on p. 24).

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning:
An Introduction. Second. The MIT Press (cit. on p. 40).

Tolomei, Gabriele, M. Lalmas, A. Farahat, and Andrew Haines (2018).
« You must have clicked on this ad by mistake! Data-driven iden-
tification of accidental clicks on mobile ads with applications to
advertiser cost discounting and click-through rate prediction. » In:
International Journal of Data Science and Analytics 7, pp. 53–66 (cit. on
p. 27).

Yoshikawa, Y. and Yusaku Imai (2018). « A Nonparametric Delayed
Feedback Model for Conversion Rate Prediction. » In: ArXiv abs/1802.00255

(cit. on p. 27).
Yuan, Huaping, Zhenguo Yang, X. Chen, Yukun Li, and W. Liu (2018).

« URL2Vec: URL Modeling with Character Embeddings for Fast and
Accurate Phishing Website Detection. » In: 2018 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Ubiquitous Comput-
ing & Communications, Big Data & Cloud Computing, Social Computing
& Networking, Sustainable Computing & Communications (ISPA/IUC-
C/BDCloud/SocialCom/SustainCom), pp. 265–272 (cit. on p. 24).

Zhou, Guorui, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu,
Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai (2018). « Deep
Interest Network for Click-Through Rate Prediction. » In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge

https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/1802.05365

136 bibliography

Discovery & Data Mining, KDD. ACM, pp. 1059–1068 (cit. on pp. 26,
79).

Arora, Sanjeev, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis
Plevrakis, and Nikunj Saunshi (2019). « A Theoretical Analysis
of Contrastive Unsupervised Representation Learning. » In: CoRR
abs/1902.09229. arXiv: 1902.09229. url: http://arxiv.org/abs/19
02.09229 (cit. on p. 40).

Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal (2019).
Reconciling modern machine learning practice and the bias-variance trade-
off. arXiv: 1812.11118 [stat.ML] (cit. on pp. 43, 56).

Chen, Qiwei, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou (2019).
« Behavior Sequence Transformer for E-commerce Recommendation
in Alibaba. » In: CoRR abs/1905.06874. arXiv: 1905.06874 (cit. on
p. 38).

Dada, Emmanuel Gbenga, Joseph Stephen Bassi, Haruna Chiroma,
Shafi’i Muhammad Abdulhamid, Adebayo Olusola Adetunmbi, and
Opeyemi Emmanuel Ajibuwa (2019). « Machine learning for email
spam filtering: review, approaches and open research problems. »
In: Heliyon 5.6. issn: 2405-8440 (cit. on p. 38).

deWet, Stephanie and Jiafan Ou (2019). « Finding Users Who Act Alike:
Transfer Learning for Expanding Advertiser Audiences. » In: KDD
(cit. on pp. 30, 99, 101).

Doan, Khoa D., Pranjul Yadav, and Chandan K. Reddy (2019). « Ad-
versarial Factorization Autoencoder for Look-Alike Modeling. » In:
CIKM (cit. on pp. 101, 102).

Grigorescu, Sorin Mihai, Bogdan Trasnea, Tiberiu T. Cocias, and Gigel
Macesanu (2019). « A Survey of Deep Learning Techniques for
Autonomous Driving. » In: CoRR abs/1910.07738. arXiv: 1910.0773
8 (cit. on p. 38).

Hendrycks, Dan, Mantas Mazeika, Saurav Kadavath, and Dawn Song
(2019). « Using Self-Supervised Learning Can Improve Model Ro-
bustness and Uncertainty. » In: CoRR abs/1906.12340. arXiv: 1906.1
2340 (cit. on p. 40).

Jiang, Jinling, Xiaoming Lin, Junjie Yao, and Hua Lu (2019). « Compre-
hensive Audience Expansion based on End-to-End Neural Predic-
tion. » In: eCom at SIGIR (cit. on pp. 29, 102).

Junczys-Dowmunt, Marcin (2019). « Microsoft Translator at WMT 2019:
Towards Large-Scale Document-Level Neural Machine Translation. »
In: Proceedings of the Fourth Conference on Machine Translation, WMT
2019, Florence, Italy, August 1-2, 2019 - Volume 2: Shared Task Papers,
Day 1. Ed. by Ondrej Bojar et al., pp. 225–233 (cit. on p. 66).

Liu, Bin, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and
Yuzhou Zhang (2019). « Feature Generation by Convolutional Neural
Network for Click-Through Rate Prediction. » In: The World Wide
Web Conference (cit. on p. 26).

https://arxiv.org/abs/1902.09229
http://arxiv.org/abs/1902.09229
http://arxiv.org/abs/1902.09229
https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1905.06874
https://arxiv.org/abs/1910.07738
https://arxiv.org/abs/1910.07738
https://arxiv.org/abs/1906.12340
https://arxiv.org/abs/1906.12340

bibliography 137

Liu, Yudan, Kaikai Ge, Xu Zhang, and Leyu Lin (2019). « Real-time
Attention Based Look-alike Model for Recommender System. » In:
KDD (cit. on pp. 30, 99, 101).

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever (2019). « Language Models are Unsupervised
Multitask Learners. » In: (cit. on p. 66).

Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar (2019). On the
Convergence of Adam and Beyond. arXiv: 1904.09237 [cs.LG] (cit. on
p. 36).

Shao, Taihua, Yupu Guo, Honghui Chen, and Zepeng Hao (2019).
« Transformer-Based Neural Network for Answer Selection in Ques-
tion Answering. » In: IEEE Access, pp. 26146–26156 (cit. on p. 66).

Sun, Fei, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou,
and Peng Jiang (2019). BERT4Rec: Sequential Recommendation with
Bidirectional Encoder Representations from Transformer. arXiv: 1904.06
690 [cs.IR] (cit. on p. 56).

Zeithammer, Robert (2019). « Soft Floors in Auctions. » In: Manag. Sci.
65.9, pp. 4204–4221 (cit. on p. 11).

Zhang, Zheng (2019). « Explorations in Word Embeddings : graph-
based word embedding learning and cross-lingual contextual word
embedding learning. » PhD thesis. Université Paris-Saclay. url:
https://tel.archives-ouvertes.fr/tel-02366013 (cit. on p. 60).

Bekker, Jessa and Jesse Davis (2020). « Learning from positive and
unlabeled data: a survey. » In: Mach. Learn. 109.4, pp. 719–760 (cit. on
p. 29).

Blaise, Agathe, Mathieu Bouet, Vania Conan, and Stefano Secci (2020).
« BotFP: FingerPrints Clustering for Bot Detection. » In: NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1–7 (cit. on p. 21).

Brown, Tom B. et al. (2020). Language Models are Few-Shot Learners.
arXiv: 2005.14165 [cs.CL] (cit. on pp. 49, 55).

Cunningham, Padraig and Sarah Jane Delany (2020). k-Nearest Neigh-
bour Classifiers: 2nd Edition (with Python examples). arXiv: 2004.04523
[cs.LG] (cit. on p. 57).

Gligorijevic, Djordje, Jelena Gligorijevic, and Aaron Flores (2020).
« Prospective Modeling of Users for Online Display Advertising
via Deep Time-Aware Model. » In: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, pp. 2461–
2468 (cit. on p. 119).

Google (2020). Evaluation of Cohort Algorithms for the FLoC API. htt
ps://github.com/google/ads-privacy/blob/master/proposals

/FLoC/FLOC-Whitepaper-Google.pdf. Accessed: 2021-06-14 (cit. on
p. 15).

IAB (2020). IAB Europe’s Guide to Ad Fraud. https://iabeurope.eu/wp
-content/uploads/2020/12/IAB-Europe-Guide-to-Ad-Fraud-1.p

df. Accessed: 2021-06-14 (cit. on p. 19).

https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1904.06690
https://arxiv.org/abs/1904.06690
https://tel.archives-ouvertes.fr/tel-02366013
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2004.04523
https://arxiv.org/abs/2004.04523
https://github.com/google/ads-privacy/blob/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf
https://github.com/google/ads-privacy/blob/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf
https://github.com/google/ads-privacy/blob/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf
https://iabeurope.eu/wp-content/uploads/2020/12/IAB-Europe-Guide-to-Ad-Fraud-1.pdf
https://iabeurope.eu/wp-content/uploads/2020/12/IAB-Europe-Guide-to-Ad-Fraud-1.pdf
https://iabeurope.eu/wp-content/uploads/2020/12/IAB-Europe-Guide-to-Ad-Fraud-1.pdf

138 bibliography

Kidger, Patrick and Terry Lyons (2020). Universal Approximation with
Deep Narrow Networks. arXiv: 1905.08539 [cs.LG] (cit. on p. 56).

Laperdrix, Pierre, Nataliia Bielova, Benoit Baudry, and Gildas Avoine
(2020). « Browser Fingerprinting: A Survey. » In: ACM Trans. Web
14.2 (cit. on p. 14).

Lee, Jason D., Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo (2020). Pre-
dicting What You Already Know Helps: Provable Self-Supervised Learning.
arXiv: 2008.01064 [cs.LG] (cit. on p. 40).

Leijnen, Stefan and Fjodor Veen (May 2020). « The Neural Network
Zoo. » In: Proceedings 47, p. 9 (cit. on p. 52).

Lindsay, Grace W. (2020). « Convolutional Neural Networks as a Model
of the Visual System: Past, Present, and Future. » In: Journal of
Cognitive Neuroscience, pp. 1–15 (cit. on p. 53).

Liu, Xiaodong, Kevin Duh, Liyuan Liu, and Jianfeng Gao (2020). « Very
Deep Transformers for Neural Machine Translation. » In: CoRR
abs/2008.07772 (cit. on p. 66).

Liu, Zhining, Xiao-Fan Niu, Chenyi Zhuang, Yize Tan, Yixiang Mu,
Jinjie Gu, and Guannan Zhang (2020). « Two-Stage Audience Expan-
sion for Financial Targeting in Marketing. » In: CIKM (cit. on pp. 99,
102).

Qiu, Yang, Nikolaos Tziortziotis, Martial Hue, and Michalis Vazirgian-
nis (2020). « Predicting conversions in display advertising based on
URL embeddings. » In: AdKDD (cit. on pp. 24, 28, 102, 105, 109, 113,
117).

Staib, Matthew, Sashank J. Reddi, Satyen Kale, Sanjiv Kumar, and Su-
vrit Sra (2020). Escaping Saddle Points with Adaptive Gradient Methods.
arXiv: 1901.09149 [cs.LG] (cit. on p. 55).

Su, Y., L. Zhang, Quanyu Dai, B. Zhang, Jinyao Yan, D. Wang, Yongjun
Bao, Sulong Xu, Y. He, and W. Yan (2020). « An Attention-based
Model for Conversion Rate Prediction with Delayed Feedback via
Post-click Calibration. » In: IJCAI (cit. on p. 27).

Tan, Mingxing and Quoc V. Le (2020). EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. arXiv: 1905.11946 [cs.LG]

(cit. on pp. 49, 55).
Yang, Zitong, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma

(2020). Rethinking Bias-Variance Trade-off for Generalization of Neural
Networks. arXiv: 2002.11328 [cs.LG] (cit. on p. 57).

Zhuang, Chenyi et al. (2020). « Hubble: An Industrial System for
Audience Expansion in Mobile Marketing. » In: KDD (cit. on pp. 30,
99, 102, 120).

Cheng, Yuan and Yanbo Xue (2021). « Looking at CTR Prediction
Again: Is Attention All You Need? » In: CoRR abs/2105.05563 (cit.
on p. 27).

Gharibshah, Zhabiz and Xingquan Zhu (2021). « User Response Pre-
diction in Online Advertising. » In: ACM Comput. Surv. 54.3 (cit. on
p. 28).

https://arxiv.org/abs/1905.08539
https://arxiv.org/abs/2008.01064
https://arxiv.org/abs/1901.09149
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2002.11328

bibliography 139

Google (2021). Building a privacy-first future for web advertising. https:
//blog.google/products/ads-commerce/2021-01-privacy-sandb

ox/. Accessed: 2021-06-14 (cit. on p. 15).
Liu, Xiao, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing

Zhang, and Jie Tang (2021). Self-supervised Learning: Generative or
Contrastive. arXiv: 2006.08218 [cs.LG] (cit. on p. 40).

Tziortziotis, Nikolaos, Yang Qiu, Martial Hue, and Michalis Vazirgian-
nis (2021). « Audience expansion based on user browsing history. »
In: 2021 International Joint Conference on Neural Networks (IJCNN)
(cit. on pp. 24, 31, 118).

Wu, Chuhan, Fangzhao Wu, Tao Qi, and Y. Huang (2021). « FeedRec:
News Feed Recommendation with Various User Feedbacks. » In:
ArXiv abs/2102.04903 (cit. on pp. 18, 27).

Xing, Ying, Hui Shu, Hao Zhao, Dannong Li, and Li Guo (Apr. 2021).
« Survey on Botnet Detection Techniques: Classification, Methods,
and Evaluation. » In: Mathematical Problems in Engineering 2021, pp. 1–
24 (cit. on p. 21).

Zhang, Weinan, Jiarui Qin, Wei Guo, Ruiming Tang, and Xiuqiang
He (2021). Deep Learning for Click-Through Rate Estimation. arXiv:
2104.10584 [cs.IR] (cit. on pp. 26, 28).

https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2104.10584

colophon

This document was typeset using the typographical look-and-feel
classicthesis based on Latex language. Most of the graphics in this
dissertation are generated using the Matplotlib library for the Python
programming language and online diagram software diagrams.net.

Titre : Méthodes d’optimisation de la prospection client dans l’affichage publicitaire automatisé par enchères
en temps réel

Mots clés : plongement d’URL, prédiction de conversion, extension d’audience, enchères en temps réel,
réseau de neurones artificiels, apprentissage automatique

Résumé : L’affichage publicitaire en ligne est de-
venu de plus en plus populaire ces dernières années
grâce à l’automatisation du processus d’achat des
inventaires. Spécifiquement, les enchères en temps
réel (Real-time bidding en anglais, ou RTB) per-
mettent l’échange automatisé d’impressions publici-
taires entre les annonceurs et les éditeurs via des
enchères en temps réel, au niveau de l’utilisateur.
L’objectif principal des campagnes RTB est d’aider
les annonceurs à cibler la bonne personne, dans le
bon contexte, avec la bonne publicité et au bon mo-
ment. Par conséquent, l’identification précise de la
‘valeur’ d’un utilisateur pour l’annonceur est très im-
portante. Dans ce contexte, nous examinons deux
problèmes complexes de l’affichage publicitaire: la
prédiction de conversion et l’extension d’audience.
Dans les deux tâches, nous considérons uniquement
l’historique de navigation de l’utilisateur comme ca-
ractéristiques, collectées à partir de données réelles.
Nous examinons d’abord le problème de la prédiction
de conversion, où notre objectif est de prédire si
un utilisateur se convertira (c’est-à-dire, s’il visitera
le site web de l’annonceur, s’il achètera son pro-
duit, etc.) ou non vers un annonceur donné. Ins-

pirés par le traitement du langage naturel, nous in-
troduisons trois modèles auto-supervisés de plon-
gement d’URL afin de produire des représentations
d’URL sémantiquement significatives. Ensuite, nous
avons examiné trois différentes fonctions de projec-
tion pour représenter les utilisateurs qui prennent en
entrée les représentations d’URL déjà apprises. En-
fin, après avoir calculé les représentations des utili-
sateurs, nous utilisons le modèle de régression logis-
tique pour prédire les probabilités de conversion.
Nous étudions ensuite la tâche de l’extension d’au-
dience dont l’objectif est d’aider les annonceurs à
découvrir des audiences présentant des attributs si-
milaires à un public cible (seed users) intéressé par
les produits ou services des annonceurs. Dans cette
direction, nous proposons différents schémas de l’ex-
tension d’audience basés sur la similarité (similarity-
based), se concentrant sur l’apprentissage de plonge-
ment d’utilisateur de haute qualité de manière auto-
supervisée. Les schémas proposés sont capables
d’identifier les utilisateurs ayant des intérêts de navi-
gation similaires à ceux des utilisateurs de référence
fournis par l’annonceur.

Title : Methods for optimizing customer prospecting in automated display advertising with Real-Time Bidding

Keywords : URL embedding, conversion prediction, audience expansion, real-time bidding, neural networks,
machine learning

Abstract : Online display advertising has become
more and more popular in recent years thanks to
the automation of the ad buying process. Specifically,
Real-Time Bidding (RTB) allows the automated tra-
ding of ad impressions between advertisers and pu-
blishers through real-time auctions, at a per-user le-
vel. The primary goal of RTB campaigns is to help ad-
vertisers target the right person, in the right context,
with the right ad, and at the right time. Therefore, the
accurate identification of the ‘value’ of a user for the
advertiser is of high importance. Under this context,
we examine two challenging display advertising pro-
blems: the conversion prediction and the audience ex-
pansion. In both tasks, we consider only the user’s
browsing history as features, collected from real log-
ged data.
We first examine the conversion prediction problem,
where our objective is to predict whether a user will
convert (visit the website, buy a product, etc.) or not

to a given advertiser. Inspired by natural language
processing, we introduce three self-supervised URL
embedding models in order to compute semantically
meaningful URL representations. Then, we have exa-
mined three different mapping functions to represent
users that take as input the already learned URL re-
presentations. Finally, having computed users’ repre-
sentations, we are using the standard logistic regres-
sion model to predict conversion probabilities.
We then investigate the audience expansion task,
whose goal is to help advertisers discover audiences
with similar attributes to a target audience interested
in advertisers’ products or services. In this direction,
we propose different (similarity-based) audience ex-
pansion schemes focusing on the learning of a high-
quality user embedding in a self-supervised way. The
proposed schemes are able to identify users with si-
milar browsing interests to those of the seed users
provided by the advertiser.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Abstract
	Resume
	Publications
	Acknowledgments
	Notations
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Display advertising & Real-Time Bidding
	1.1.1 Programmatic media buying
	1.1.2 Real-Time Bidding

	1.2 Auction mechanism
	1.3 Performance metrics of advertising campaigns
	1.4 Cookie-based user identification & privacy
	1.5 Data Quality
	1.6 Thesis contributions and related work
	1.6.1 URL embedding
	1.6.2 User response prediction
	1.6.3 Audience expansion

	1.7 Thesis organization

	2 Preliminaries and Background
	2.1 Basic math
	2.1.1 Algebra
	2.1.2 Optimization
	2.1.3 Activation functions

	2.2 Machine learning basics
	2.2.1 Machine learning categorization
	2.2.2 Learning as optimization
	2.2.3 Error decomposition
	2.2.4 Regularization
	2.2.5 Evaluation protocol
	2.2.6 Evaluation metrics

	2.3 Neural networks
	2.3.1 Basic concepts
	2.3.2 Notations
	2.3.3 Type of layers
	2.3.4 Optimization
	2.3.5 Success reasons

	2.4 Word representation
	2.4.1 One-hot encoding
	2.4.2 Word embedding
	2.4.3 Contextual word embedding

	2.5 Document embedding
	2.5.1 Aggregate pre-trained word embeddings
	2.5.2 Produce directly the document embedding

	3 Predicting conversions in display advertising based on URL embeddings
	3.1 Related work
	3.2 Proposed conversion prediction architecture
	3.3 URL representation schemes
	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Settings
	3.4.3 Results

	3.5 Conclusions and future directions

	4 Audience extension
	4.1 Related work
	4.2 The proposed audience expansion methods
	4.2.1 Audience expansion based on set similarity metrics
	4.2.2 Audience expansion based on URL embeddings
	4.2.3 Audience expansion based on User2Vec model
	4.2.4 Audience expansion based on User2VecC model

	4.3 Empirical analysis
	4.3.1 Results
	4.3.2 Ablation study

	4.4 Conclusions and future directions

	5 Concluding remarks
	5.1 Summary of contributions
	5.2 Future directions
	5.3 Epilogue

	 Bibliography
	Colophon

