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Résumé

Cette thèse se concentre sur l’étude demodèles stochastiques de populations composées d’indi-
vidus interagissant entre eux ou avec leur environnement, et leurs approximations quand
le nombre d’individus tend vers l’infini. Nous nous focaliserons sur des modèles spatiaux
prenant en compte des interactions locales et non locales et sur la description de la structure
généalogique des populations intégrant une inhomogéneité temporelle.

Dans un première partie, nous considérons des systèmes à diffusion croisée pour deux
espèces. Nous développons une approche par dualité qui permet d’obtenir des estimées quan-
titatives de stabilité. Plus précisément, nous contrôlons l’évolution en temps de l’écart entre
deux solutions bornées, sous une distance adaptée, par leur conditions initiales. Comme con-
séquence nous obtenons un résultat d’unicité pour des solutions bornées qui est valide en
dimension générale sous une hypothèse de petitesse de la solution. Nous introduisons égale-
ment un modèle stochastique individu centré sur un espace discret. Les individus suivent des
marches aléatoires et sont sensibles au nombre d’individus de l’autre espèce sur le même site,
avec une dépendance linéaire dans leur taux de déplacement. Dans un premier temps, par
une approche classique nous obtenons une estimée générale pour la convergence du modèle
stochastique vers un système semi-discret, en montrant que pour avoir la convergence vers
le système continu demanderait un nombre superexponentielle d’individus sur chaque site.
Dans un deuxième temps, nous développons des estimés de dualité discrètes qui nous per-
mettent d’établir la convergence en loi du modèle stochastique vers les systèmes à diffusion
croisée lorsque le nombre d’individus par site est plus grand que le carré du nombre de sites,
en supposant des données initiales petites.

Dans une deuxième partie, nous obtenons un taux de convergence explicite pour certains
systèmes de diffusions en interaction de type champ moyen avec branchement binaire lo-
gistique vers les solutions de systèmes d’autodiffusion non locale avec croissance de masse
logistique, qui décrivent leurs approximations grande population. Cette quantification de la
convergence nous permet aussi d’obtenir au niveau du modèle stochastique une propreté
d’indépendance asymptotique des individus conditionnel à la taille du système. La preuve
repose sur un argument de couplage pour des diffusions branchantes binaires basé sur le trans-
port optimal, qui nous permet d’approcher la trajectoire de la population branchante sous in-
teraction par un système de particules indépendantes avec des naissances spatio-temporelles
aléatoires convenablement distribuées. Grâce à cet argument, nous obtenons des taux opti-
maux dans une distance adaptée pour des mesures finies, qui sont obtenus à partir des taux de
convergence pour la distance de Wasserstein entre une mesures empirique construite à par-
tir d’un échantillonnage de variables aléatoires indépendantes et identiquement distribuées
selon une loi donnée et cette même loi. Cette approche et résultat étendent des techniques et
idées de propagation du chaos dans des modèles cinétiques vers des systèmes des particules
avec interaction et branchement.

Finalement, dans une troisième partie, nous considérons l’arbre réduit associé aux proces-
sus de naissance et mort dans des environnements variables qui donne la structure généalo-
gique de la population. Nous décrivons géométriquement cet objet en utilisant la construc-
tion lookdown introduite par Kurtz et Rodrigues adapté pour des processus inhomogènes en
temps. Pour comparer les structures généalogiques en question, nous introduisons une dis-
tance du type variation totale sur les étiquettes des individus et leur durées de vie, avec un
poids temporel. En introduisant un couplage entre les représentations lookdown du proces-
sus de naissance et mort et de sa limite quand le nombre d’individus tends ver l’infini, connu
comme la diffusion de Feller dans environnement variable, nous approchons la généalogie en
grande population, à l’aide de cette distance.
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Abstract

This thesis focuses on the study of stochastic population models composed of individuals
interacting between them or with the environment, and their approximations when the num-
ber of individuals goes to infinity. We will focus on spatial models taking into account local
and non local interactions and on the description of the genealogical structure of populations
having a temporal inhomogeneity.

In a first part, we consider cross-diffusion systems for two species. We develop a duality
approach which allows to obtain quantitative stability estimates. More precisely, we control
the evolution in time of the gap between two bounded solutions, under an adapted distance,
by their initial conditions. As a consequence we obtain a uniqueness result for bounded so-
lutions which is valid in general dimension under an hypothesis of smallness of the solution.
We also introduce a stochastic individual-based model on a discrete space. The individuals
follow random walks and they are sensitives to the number of individuals of the other species
on the same site, with a linear dependence in their rates of motion. In a first step, by a classical
approach we obtain a general estimate for the convergence of the stochastic model towards a
semi-discrete system, showing that in order to have the convergence towards the continuum
system it would be necessary to have a superexponential number of individuals in each site.
In a second step, we develop discrete duality estimates that allow us to stablish the conver-
gence in law of the stochastic model towards the cross-diffusion systems when the number
of individuals per site is greater than the square of the number of sites, assuming small initial
conditions.

In a second part, we obtain an explicit rate of convergence for some systems of mean-field
interacting diffusions with logistic binary branching towards the solutions of non-local self-
diffusion systems with logistic mass growth, that describe their large population approxima-
tions. This quantification of the convergence also allows us to obtain a property of asymptotic
independence of individuals at the level of the stochastic model, conditional on the size of the
system. The proof relies on a coupling argument for binary branching diffusions based on
optimal transport, which allows us to approximate the trajectory of the interacting branching
population by a system of independent particles with suitably distributed random space-time
births. Thanks to this argument, we obtain optimal rates in an adapted distance for finite
measures, which are obtained from the rates of convergence for the Wasserstein distance be-
tween an empirical measure constructed from i.i.d. samples of a given law and this same law.
This approach and results extend techniques and ideas on propagation of chaos from kinetic
models to particle systems with interaction and branching.

Finally, in a third part, we consider the reduced tree associated with birth and death pro-
cesses in varying environments that gives the genealogical structure of the population. We
describe geometrically this object by using the lookdown construction introduced by Kurtz
and Rodrigues adapted for inhomogeneous in time processes. In order to compare the ge-
nealogical structures in question, we introduce a total variation type distance over the labels
and lifetimes of individuals, with a temporal weight. By introducing a suitable coupling be-
tween the lookdown representations of the birth and death process and its limit when the
number of individuals goes to infinity, known as the Feller diffusion in varying environment,
we approximate the genealogy in the large population regime with the help of this distance.
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CHAPTER 1

Introduction

Mathematical models can be understood as an abstracted, idealized and approximated repre-
sentation of reality by means of mathematical concepts and language. They lie at the core
of almost every basic discipline, such as physics, biology, chemistry and computer science,
as they serve to represent ideas and formalize observations of systems. Because of this, they
turn out to be indispensable scientific tools, as they help in the generation of insight, expla-
nation and prediction, and thus giving a basis for theoretical and empirical understanding.
Therefore, the importance of having precise mathematical models, while having in mind at
the same time the trade-off between realism and tractability.

This thesis focuses in the study of mathematical models arising from biological motiva-
tions. Mathematical biology has been an area of wide interest in recent decades, in particular
the last years have seen a very rich interplay between these two areas of science. In this
context, mathematical models are used to investigate the principles that govern the struc-
ture, development and behavior of systems of living organisms. The modeling of complex
biological processes became a fundamental tool for creating analytical and computational ap-
proaches to many different bio-inspired problems, coming from different branches such as
population dynamics, cell biology, genetics and epidemiology, to name but a few. The main
objective being to get biological insight as a result of mathematical analysis and thus helping
to understand fundamental questions about nature.

In particular, the models considered fall under the scope of what is known as dynamics
and evolution within the field of population models. These two branches correspond to the
study of how certain quantities of interest in a population evolve in time and the evolution-
ary process behind the diversity of populations. Broadly speaking, the study of populations
in ecology includes understanding, explaining, and predicting species behaviour. Why do
species inhabit particular areas, and how are they prevented from establishing beyond their
range limits? How do they grow? What are the genealogical relationships along their evo-
lutionary history and how does different factors affect this information? In particular such
range questions have become popular in the last decade or so in response to concerns about
climate change, and in particular their mathematical modeling, as ecologist effectively rely on
models.

Constructing precise population models is a problem that has attracted attention since
long time ago. We have seen through decades numerous efforts aiming in this direction,
starting with Robert Malthus proposing the unbounded exponential growth of the size of a
population in the presence of abundant resources. Then, with the logistic equation in where
the self-limiting effect that a population has over its growth and the availability of resources
is considered. Along with these lines, Lotka [89] and Volterra [116] developed a model for
a predator-prey or competing species dynamics as simultaneous nonlinear differential equa-
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tions, representing one of the major advances in modern mathematical ecology. Since then, a
whole variety of models taking into account interaction between species have emerged. For
example we have predator-prey models with complex density dependent interactions, useful
for the study of functional responses for example, or models based on partial differential equa-
tions for structured populations dynamics. All of these models are deterministic descriptions
of population dynamics. Nevertheless, when considering ecological models it is also natural
to think in some source of randomness, since many biological processes are stochastic. This
led to models incorporating randomness. In the last years this has been one of the principal
approaches of mathematical ecology.

The central aspect which is explored in this thesis is the microscopic origin of macroscopic
behaviour and its explicit approximation. This comes motivated from the idea that the huge
number of interactions in real ecosystems difficult any attempt to create a precise model. It
becomes natural then to approximate by a macroscopic behaviour, in order to obtain more
tractable models. In this sense, the precise quantification of these approximations is of im-
portance since then we can measure the error in which we incur by doing this simplification.
Also, this approach yields simplifications even when we consider microscopic systems evolv-
ing stochastically, since it is often claimed heuristically that stochasticity at individual level
can be ignored in the study of large groups.

Another notion that lies at the core of this work, is the role that interactions play in the
dynamics of a population. In a very broad sense interaction can be understood as a depen-
dence between two objects, where this dependence can be sideways or in only one sense.
Given a population we have for example interaction between the genetic material of the indi-
viduals, interaction of an species with its environment through their reproductive dynamics
or interaction between species at the level of their displacements. In this thesis some of these
mechanisms are explored.

In the first part, we study spatial interaction within a population model composed of two
differents species. The kind of interaction considered is known as local interaction, which
means that individuals affect each other when they are present in the same spatial point. Start-
ing from a stochastic microscopic model having local interaction, we show that in the regime
of large-population approximation there is a deterministic macroscopic evolution belonging
to the class of cross-diffusion systems. Moreover, we quantify this convergence obtaining an
optimal scale.

In the second part, we study another type of spatial interaction known as non-local in-
teraction. This means that individuals are allowed to interact with a whole region around
them by averaging the effect of the individuals within. We consider a previously introduced
stochastic microscopic model that approximates a deterministic behaviour showing this type
of interaction in its large-population approximation, and we focus on the case in where there
is only one species that interacts in this way with itself. For this model we prove quantitative
estimates for the approximation of the microscopic system by the macroscopic dynamics.

Lastly, in the third part, we are interested in a different type of model. At this point we
focus our attention on models regarding the evolution of the size of a population, while con-
sidering effects of the environment through the demographic rates. In particular, we study
the genealogical information associated to such models through a previously introduced par-
ticle representation, which allows to approximate the genealogy when we have a very large
number of individuals by the genealogy behind a macroscopic dynamics.

In what follows we introduce further the main ideas and problems handled in this thesis
and we informally explain the results addressing each chapter in order.

2



1.1 Cross-diffusion models

In this section we will focus on understanding how amodel showing segregation effects arises
from dynamics in which we consider local interaction between individuals, and the questions
that naturally come along, such as the approximation of these models.

1.1.1 Local interaction

Suppose that we have a population composed of only one species. In order to understand
how a model for the evolution of its spatial distribution arises, we can start by considering
the following equation

∂tu− ∆(au) = 0, (1.1.1)

where u is the unknown and a is a function given beforehand. From a probabilistic point of
view, such equation can be obtained as the macroscopic behaviour of a stochastic microscopic
particle system. Indeed, consider for example a collection of particles or individuals placed in
a finite number of sites with a periodic boundary. Suppose that each individual performs a
centered random walk and such that at each site x, it waits an amount of time exponentially
distributed with parameter a(x) before giving the next step. Given this dynamics, it can be
shown that when the number of sites and individuals go to infinity (with this last parame-
ter growing faster than the former), the properly rescaled empirical measure associated with
this system approximates the solution of (1.1.1). This allows to understand u as a density or
concentration per site of individuals (see for example [76] for the formalism of this approach).

Another interpretation for (1.1.1) comes from an heuristic argument. Suppose that u rep-
resents the concentration of particles in some medium. By expanding the laplacian, we have
two different contributions to the temporal variation of u

− ∆(au) = −∇ · (a∇u) − ∇ · (u∇a). (1.1.2)

First, we have a diffusion term −∇ · (a∇u), which Fick’s laws of diffusion describe as the
contribution to the change with respect to time of the concentration due to the movement
of particles from regions of high concentration to lower concentration ones. This, with a
diffusivity a determined by the medium, which in turn is related to the speed at which this
occurs. Secondly, we have a transport term with direction −∇a, describing the transport of
particles towards regions in where a is smaller.

Given these ways of reasoning, from a population dynamics point of view, (1.1.1) can be
thought of as a model for a species u evolving along with a species a of fixed concentration
over a common environment. Individuals of the species u will tend to leave sites faster as
more individuals of a are present at the same site. Also, they will avoid regions in where the
concentration of species a is high. Since the changes in concentration for the species u at
a given site depend on the presence of a at that same site, we say that the species interact
locally, with this interaction being only in one direction for the moment, since a is fixed.

Consider now that we have a population composed by two different species u and v. As-
suming that the species prefer the same environment to live and that they are under the
influence of intra and inter-specific pressures, using a similar heuristic as the one described
in the previous paragraphs, Shigesada, Kawasaki and Teramoto introduced in [108] the fol-
lowing system of equations for modeling the temporal evolution of the spatial distribution of
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the population

∂tu− ∆
[
(d1 + a11u+ a12v)u

]
= (r1 − s11u(t) − s12v(t))u(t),

∂tv − ∆
[
(d2 + a21u+ a22v)v

]
= (r2 − s21u(t) − s22v(t))v(t),

(SKT)

where d1 and d2 are the intrinsic diffusion coefficients, a11 and a22 the self-diffusion coeffi-
cients and a12 and a21 the cross-diffusion coefficients, all of which are non-negative constants.
On the right hand side we have a Lotka-Volterra-type of evolution governing the demograph-
ics of the model, where r1 and r2 represent the intrinsic growth rate of each species and sij
the competition for resources for i, j = 1, 2.

This system of strongly coupled parabolic equations is one of the best known models in
the class of cross-diffusion systems, namely those presenting nonlinearities of the form −∇ ·
(A(u)∇u) for vector-valued u and a diffusion matrix A. From an ecological point of view, the
system (SKT) has an interesting property: under certain conditions on the parameters, there
exists non constant steady states which represents the phenomena of pattern formation or
segregation. Furthermore, in this model intuition correspond to theory, in the sense that large
intrinsic diffusion coefficients prevent pattern formation, while having large cross-diffusion
coefficients helps in the formation of patterns. In fact, the main motivation in [108], was
to propose a model showing non constant steady states, since for example if we consider a
diffusive Lotka-Volterra system (that is, aij = 0 for i, j = 1, 2), then one can show that all of
its steady states are constant, which is not so convincing from a modeling point of view.

Several efforts have been made to understand and answer the natural questions arising
from the system (SKT), ranging from the basic questions regarding the existence and unique-
ness of solutions, to the analysis of steady states and the different regimes arising from differ-
ent sets of parameters. It is so rich in structure that it remains almost on its own as an active
area of research.

Analytical development of cross-diffusion systems

To summarize the development of the theory behind the system of two species, we start by
mentioning the first global existence result in the one dimensional setting, neglecting self-
diffusion and assuming that all the remaining diffusion coefficients are equal, obtained in [74].
Significant progress was made then by Amann in [4, 5], obtaining general results concerning
parabolic quasi-linear systems, which in particular allow to conclude that local regular solu-
tions exists for (SKT). Next, there are results with restrictive structural assumptions, such as
the triangular case (that is, a11 = a21 = a22 = 0 and a12 6= 0 in (SKT)) or assuming smallness
of the coefficients (see for example [91] and [43]). The first global existence results without
structural restrictions were obtained first in the one dimensional case in [63], and then gen-
eralized to arbitrary dimension in [29] and [30]. Regarding the analysis of steady states of
(SKT), one of the firsts studies was carried out in [96], showing spatial segregation for a set of
parameters different than the one originally analyzed in [108]. An important work was made
in [90], by describing the interplay between diffusion and cross-diffusion in pattern formation.
For more on this last subject we refer to [21] and references therein.

Concerning the generalization to the case with more than two species, we have fewer
results since, as expected, the system is more complicated to analyze. The first time that the
system (SKT) was derived and formulated for n different species was done in [117]. Then,
the global existence result for this n species system was obtained in [31]. In general, the
formulation for n different species in the case in where there are no reaction terms can be
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written as

∂tui − ∆

(
diui +

n∑

j=1

aijuiuj

)
= 0, (1.1.3)

for u = (u1, . . . , un).

Much of the theory used for showing the existence of weak solutions to (1.1.3), is based
in the boundedness-by-entropy method [71]. The key idea of this approach is to find a priori
estimates through a Lyapunov functional of the form

H(u) =
∫
h(u) dx,

for a very suitable choice of h. Indeed, and as we would expect from this Lyapunov functional
approach, under some conditions on the function h, it can be shown that this functional de-
creases along the trajectories of (1.1.3), that is, d

dt
H(u) ≤ 0. Moreover, this method provides

more information than just the monotonicity of this entropy functional. In fact, the existence
of an entropy structure is intimately tied to the existence of a transformation that yields the
system (1.1.3) symmetric (specifically its diffusion matrix). This allows the use of more stan-
dard techniques from the analysis of parabolic equations. As shown in [31], by setting

H(u) =
∫ n∑

i=1

πi
(
ui(x) log(ui(x)) − ui(x) + 1

)
dx, (1.1.4)

for coefficients πi > 0 satisfying the detailed balance condition

πiaij = πjaji, for i, j = 1, . . . , n, (1.1.5)

gives the monotonicity of the functional and also an a priori control over the gradient of both√
ui and ui, being this the key for obtaining the global existence result through an approxi-

mation procedure. Nevertheless, it is conjectured in [31] that the entropy for this system is
bounded for all times, all non-negative coefficients and all non-negative initial conditions, as
well as for all coefficients aij > 0.

Derivations from other systems

A central question that has gathered attention through the last decade, is the derivation of
models in the family of cross-diffusion systems by means of properly scaled models. This, in
order to justify in some sense that these systems of equations arise as natural limiting objects
for reasonable microscopic dynamics, since their conception in [108] was based purely in
heuristics.

The first time that the system (SKT) was derived following this objective was done in
[69]. There, the authors formally showed that the solution of the triangular system can be
approximated by means of properly scaled reaction-diffusion systems. This approach was
later formalized in [42].

A different formal derivation of the system can be obtained by following for example [99]
and [117]. There, a procedure for recovering a model in the class of (SKT) from a randomwalk
inspired lattice model was proposed, which we describe next. Let (xj)j∈Z be the lattice under
consideration, where h = xj − xj−1 > 0, and ui(xj) be the proportion of the i-th species on
xj . Suppose that the species jump from site j towards j ± 1 with rate rj,±i , that the particles
from j − 1 jump to j at rate rj−1,+

i , and that the particles from j + 1 jump to j at rate rj+1,−
i .

5



This dynamics yields, at a formal level, the following master equation for the evolution in
time of the proportion ui at the site xj

∂tui(xj) = rj−1,+
i ui(xj−1) + rj+1,−

i ui(xj+1) − (rj,+i + rj,−i )ui(xj),

for i = 1, . . . , n and j ∈ Z. The transition rates are defined by

rj,±i = σpi(u(xj))qi(un+1(xj±1)),

where u(xj) = (u1(xj), . . . , un(xj)), and also supposing that un+1(xj) = 1 − ∑n
k=1 uk(xj).

This assumption on the structure of the rates aims to model the following effect: if a site
is crowded or the neighbors are less occupied, then the species will tend to leave the site.
Specifically, pi measures the tendency of the species i to leave the j-th site and qi measures
the movement from the neighboring sites into the site j. In particular, we understand this
kind of model as if ui(xj) represents a volume fraction of occupancy and un+1 the volume
fraction not occupied by the species, yielding the effect known as volume-filling. By con-
sidering that qi(un+1) = 1 for all i = 1, . . . , n (no volume-filling effect) and taking n = 3
and pi(u) = di + ai1u1 + ai2u2, it was shown (formally) that one recovers the system (SKT)
without reaction terms when h → 0. This procedure already shines a light for developing a
microscopic approximation.

Another well-known approach to approximate a nonlinear partial differential equation is
by means of a system of stochastic differential equations describing a many particle system.
A derivation of (SKT) in this spirit was obtained partially in [28] and then extended in [27]
recovering the full model. There, the authors approximated the limiting system by performing
a two-step limit procedure. Starting from an interacting particle system, in where interactions
occur in a non-local way, they approached first an intermediary non-local cross-diffusion
system, when the number of particles goes to infinity, and then they studied the limit towards
local interaction, all of this seen through a single particle and the equation satisfied by its law.
We will revisit this terminology and approach in the next section.

Making ends meet

Following the approach of obtaining the system (SKT) as the limit of suitable scaled micro-
scopic models and motivated by understanding the origin of the entropy (1.1.4) and the de-
tailed balance condition (1.1.5), the authors of [37] introduced therein a stochastic microscopic
model and showed a link between its entropy structure (in the classical sense of entropy for
Markov chains) and (1.1.4) by means of a two-step limit procedure. This allowed them to
exhibit the detailed balance condition (1.1.5) as the detailed balance condition for finite-state
Markov chains. More precisely, givenM ∈ N

∗, the model introduced is a stochastic particle
system in where each particle evolves on the state space

ΩM = {xk : k = 0, . . . ,M − 1},

where xk = k/M and with periodic boundary. Taking into account the relative fractions
π1, . . . , πn, with πi > 0, of n species, the system is defined in a way such that there are ⌊πiN⌋
individuals of the i-th species, for i = 1, . . . , n. Thus, a state of this process is given by

x =
(
x1

1, . . . , x
⌊π1N⌋
1 , . . . , x1

n, . . . , x
⌊πnN⌋
n

)
∈ Ω

⊗(⌊π1N⌋+···+⌊πnN⌋)
M .
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Also, the system is endowed with a dynamics such that the configuration of particles evolves
as a continuous-time Markov chain that we describe next. Assuming that the particles are
indistinguishable, consider the following four transitions

x 7→ x + e
a
i + e

b
j

x 7→ x − e
a
i − e

b
j



 at rate δ(i,a) 6=(j,b)δxa

i
=xb

j

dij
N
, and

x 7→ x + e
a
i

x 7→ x − e
a
i

}
at rate di,

for i, j = 1, . . . , n, and where e
a
i ∈ Ω

⊗(⌊π1N⌋+···+⌊πnN⌋)
M denotes the vector whose entries are

zero everywhere except for the a-th particle of species i, with a = 1, . . . , ⌊πiN⌋, in where its
value is 1/M , and similarly for e

b
j . Only one of these transitions occurs at a jump time. The

process defined in this way turns out to be a reversibleMarkov process and having the uniform
distribution as invariantmeasure, meaning that each state has probabilityM−(⌊π1N⌋+···+⌊πnN⌋).
Furthermore, by denoting P

N
t the time marginal of the process for given t > 0, which is a

measure over the discrete set Ω
⊗(⌊π1N⌋+···+⌊πnN⌋)
M , and defining the entropy functional

H̃
(
P
N
t

)
=

∑

x∈Ω
⊗(⌊π1N⌋+···+⌊πnN⌋)
M

P
N
t (x) log

(
P
N
t (x)

M (⌊π1N⌋+···+⌊πnN⌋)

)
, (1.1.6)

it can be shown that this quantity decreases with respect to time, i.e. d
dt
H̃(PNt ) ≤ 0. This

last fact can be seen also as a consequence of a much general statement proved in [93], which
ensures that the law of such continuous-time Markov chain evolves as the gradient flow of
the entropy.

Under the assumption that as N goes to infinity particles become independent, stated as

P
N(x1

1, . . . , x
⌊π1N⌋
1 , . . . , x1

n, . . . , x
⌊πnN⌋
n ) ≈ u1(x

1
1) · · ·u1(x

⌊π1N⌋
1 ) · · ·un(x1

n) · · ·un(x⌊πnN⌋
n ),

it was shown formally in [37] that the marginals ui evolve as

d

dt
ui(x) = di(ui(x+ h) + ui(x− h) − 2ui(x))

+
n∑

j=1

dijπj(ui(x+ h)uj(x+ h) + ui(x− h)uj(x− h) − 2ui(x)uj(x)),
(1.1.7)

for i = 1, . . . , n, and that 1
N
H̃(PNt ) converges towards

∑n
i=1 πi

∑M−1
j=0 ui(xj) log(t, ui(xj)/M)

(which also decreases), making the connection of the entropy structure of both objects, the
process and the semi-discrete system (1.1.7), which eventually leads to (1.1.4) when the dis-
cretization stepM−1 goes to zero. The independence assumption is based in that as the inter-
action between two particles is scaled byN−1, this implies that the correlation between them
should also be scaled by the same factor, thus becoming independent in the limit N → ∞.
This assumption is known as propagation of chaos, notion that will be revisited later on.

1.1.2 Main question and answer

We have seen that the derivations of models in the family of cross-diffusion systems, from
models showing local interaction, have been done at a purely formal level. This takes us to
consider the natural question concerning the possibility of defining a random individual-based
model showing local interaction and having a dynamics reflecting plausible interactions, such
that in the macroscopic limit it behaves as a cross-diffusion system.
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Motivated by the previous question, we introduced a random microscopic model com-
posed of particles that perform repulsive random walks, and such that it has a cross-diffusion
system without self-diffusion nor reaction terms as its scaling limit. We moreover quantify
this approximation through the application of analytic techniques that are not so common
in the probabilistic setting, obtaining polynomial rates. These same techniques also allow to
obtain a stability result for bounded solutions of the cross-diffusion system considered. The
approach employed does not involve the use of an entropy structure and the approximation
of the microscopic model by the macroscopic behaviour is done in a one-step limit.

1.1.3 Our contribution

We focused on the study of the following system on the one dimensional torus T

∂tu− ∆
(
d1u+ a12uv

)
= 0,

∂tv − ∆
(
d2v + a21uv

)
= 0,

(1.1.8)

where di > 0 and aij > 0 for i, j = 1, 2. This system does not show self-diffusion nor reaction
terms, with the idea of dealing only with the main difficulty arising from the cross-diffusion
terms.

Given this system, we introduced a discrete microscopic model representing a population
composed by two species spatially distributed amongM ∈ N

∗ sites. Specifically, the approx-
imation is done through the convergence of the number of individuals of each species at each
site renormalized by a factor N , represented by the process (UM,N(t),V M,N(t))t≥0 taking
values in (N/N)M × (N/N)M . This approximation takes place in the regime in where the
number of individuals and the number of sites is very large.

The transitions of this process are as follows. For any vector of configurations (U ,V ) ∈
(N/N)M × (N/N)M , where U = (Ui)

M
i=1 and V = (Vi)

M
i=1, we have that

U 7→ U + (ei+θ − ei)N
−1 at rate 2M2NUi(d1 + a12Vi),

V 7→ V + (ei+θ − ei)N
−1 at rate 2M2NVi(d2 + a21Ui),

where (e)1≤j≤M is the canonical vector of RM , e0 = eM , eM+1 = e1 and θ ∈ {−1, 1}.
This transitions reflect two behaviours. First, that the particles perform independent random
walks. Secondly, that they are also under a localized effect as they tend to leave faster a given
site if the presence of particles of the other species is higher in that same site.

Through an analysis of the infinitesimal generator of the process previously defined, we
formally deduced that when the number of particles is big enough, leaving the number of sites
fixed, the system behaves like the solution (uM(t),vM(t))t≥0 of the semi-discrete system of
ordinary differential equations

d

dt
uM − ∆M(d1u

M + a12u
M ⊙ vM

)
= 0,

d

dt
vM − ∆M

(
d2v

M + a21u
M ⊙ vM

)
= 0,

(1.1.9)
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where ∆M is the periodic laplacian matrix defined by

∆M := M2




−2 1 0 · · · 1
1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1
1 · · · 0 1 −2



,

and ⊙ denotes the component wise product of vectors. Notice that this semi-discrete system
coincides with (1.1.7).

Given T > 0, we proved in a first instance that the process (UM,N(t),V M,N(t))t∈[0,T ]

converges towards (uM(t),vM(t))t∈[0,T ], solution of the previous system. Furthermore, we
quantify this convergence showing that it is necessary to consider

N ≫ M4 exp(CM4T ),

in order to pass to the limit in one step. Thus, it is concluded that the convergence towards
(1.1.8) following this approach demands a superexponential number of particles, which also
depends on T , with respect to the spatial discretization.

We next derived an alternative approach by considering another spatial discretization of
(1.1.8), denoted by (ûM(t), v̂M(t))t≥0, yielding in this way a new semi-discrete system to
compare with the process (UM,N(t),V M,N(t))t≥0. Moreover, the structure of the difference
between these two objects takes a form that is analogous to the discrete version of the con-
tinuous equation

∂tz − ∆(µz) = ∆f + r, (1.1.10)

where z plays the role of the difference between the two objects. This analogy led to the
development of what are known as duality lemmas. In the continuous setting these tools
allow to control in a suitable norm the solution of Kolmogorov-type equations by means of
the initial data and the diffusivity. In a first step, a tool of this kind was developed for the
continuous equation (1.1.10), assuming that the diffusivity µ is uniformly bounded, r = 0 and
also imposing an integrability condition over f . An application of this tool in the setting of
bounded solutions for the system (1.1.8) yields one of the main statements, which is a stability
result. Considering the norm

||| · |||T :=
(
‖ · ‖2

L∞(0,T ;H−1(Td)) + ‖ · ‖2
L2(QT )

)1/2
,

where Td is the periodic d-dimensional torus and QT = [0, T ] ×T
d the periodic cylinder, the

result reads as follows.

Theorem. Let T > 0. Consider a couple (u, v) and (u, v) of non-negative uniformly bounded

weak solutions of (1.1.8) in dimension d, respectively initialized by (u0, v0) and (u0, v0), both
bounded. If the smallness condition ‖u‖L∞(QT )‖v‖L∞(QT ) <

d1d2

a12a21
, is satisfied, then the follow-

ing stability estimate holds

|||u− u|||2T + |||v − v|||2T . ‖u0 − u0‖2
H−1(Td) + ‖v0 − v0‖2

H−1(Td)

+ T
(

[u0 − u0]
2
Td‖µ1(v0)‖L1(Td) + [v0 − v0]

2
Td‖µ2(u0)‖L1(Td)

)
,

where the constant behind. depends on the parameters of the model. In particular, if a bounded

non-negative solution satisfies the smallness condition, then there is no other bounded non-nega-

tive solution starting from the same initial data.
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Finally, we translated the continuous duality lemma to a discrete setting in order to obtain
quantitative estimates for the comparison between the process (UM,N(t),V M,N(t))t≥0 and
the alternative semi-discrete system (ûM(t), v̂M(t))t≥0. This allowed us to obtain a better
time and space scaling relation for the convergence to hold. By considering the piecewise
linear interpolation πM(u) of a vector u ∈ R

M and the system (1.1.8) on the one dimensional
torus, this second main result reads as follows.

Theorem. Assume the existence of a non-negative solution (u, v) of C1 regularity in time and

C4 regularity in space of the system (1.1.8), initialized by (u0, v0) ∈ C4(T) and satisfying the

same smallness assumption as before. Assuming the existence of a constant C0 such that,

‖UM,N(0)‖1,M + ‖V M,N(0)‖1,M ≤ C0, almost surely,

for allM,N ∈ N
∗, we have that for any T > 0,

E

[
|||πM(UM,N) − u|||2T + |||πM(V M,N) − v|||2T

]

. E

[
‖πM(UM,N(0)) − u0‖2

H−1(T) + ‖πM(V M,N(0)) − v0‖2
H−1(T)

]
+M−4 +

M2

N
,

where the symbol . depends on the parameters of the model.

We recall that the existence of local regular solutions for (1.1.8) is ensured by [4, 5].

1.2 Non-local self-diffusion models

Since understanding the spatial behaviour of a population interacting locally turns out to be a
challenging question, in this section we will consider another type of interaction which aims
to be weaker. To this endwewill focus onmodels in where the particles are allowed to interact
spatially within a region or neighborhood centered in the particles’ location.

1.2.1 Non-local interaction

We saw in the previous section that a pertinent macroscopic model for local interaction is
the one given by the system (SKT). Now, coming back to Kolmogorov’s equation (1.1.1), we
can modify this equation to derive heuristically, in the same way as before, another model
in where we relax the local interaction. Indeed, in order to take into account the effect that
the particles do not interact locally, we consider an interaction kernel ρ that will serve to
regularize the diffusivity at a given point. This yields the modified Kolmogorov equation

∂tu− ∆((ρ ∗ µ)u) = 0,

where µ is a given diffusivity coefficient. Recalling the decomposition (1.1.2), we can see again
this equation as the composition of two different behaviours, with the difference being that
now all the effects produced locally by µ are averaged according to ρ, yielding a non-local
type of interaction.

Models in this class, yet not thoroughly studied as local systems, have also been subject
of some attention in the recent years. For example, we have [62, 22, 23] and [46], to name but
a few. In general, works involving non-local interactions tend to treat the case in where we

10



have only the effect of transport of individuals or particles according to a non-local field of
velocities, that is, only taking into account a term of the form −∇ · (u∇(ρ ∗ µ)) in the spatial
evolution.

In a general setting, by considering a non-local effect one could argue in the same spirit of
[108], in order to obtain what can be seen as the translation of (SKT) to its non-local version,
namely the system

∂tu− ∆
[
(d1 +G11 ∗ u+G12 ∗ v)u

]
= (r1 − C11 ∗ u(t) − C12 ∗ v(t))u(t),

∂tv − ∆
[
(d2 +G21 ∗ u+G22 ∗ v)v

]
= (r2 − C21 ∗ u(t) − C22 ∗ v(t))v(t),

(1.2.1)

whereGij are interaction kernels andCij competition kernels, for i, j = 1, 2. In what follows,
we will be interested in models belonging to this class and its generalizations.

Derivation from a stochastic individual-based approach

As already stated, there is an interest in the derivation of models through the approximation
by microscopic models suitably scaled. A classical approach for doing this has been the prob-
abilistic method. This consists in introducing a random microscopic model such that in the
limit when the number of particles goes to infinity, known as large population approximation,
the empirical particle density of the system approximates, in a suitable sense, a deterministic
dynamics specified by a macroscopic equation. This approach turns out to be useful for spec-
ified existence of weak solutions for the macroscopic dynamics. The usual assumption in this
framework is that the population is large enough such that the law of large numbers makes
the random fluctuations negligible in the limit.

This approach, generally known as stochastic individual-based modeling in the ecological
context, spurred from the seminal paper of Fournier and Méléard [61], and since then it has
showed to be a very useful technique for deriving asymptotic results for microscopic models
when the number of individuals is very large. It started a fruitful branch of research and gave
rise to models and macroscopic dynamics that give useful insights of biological or ecological
systems (see for example [24, 26, 25] and [7]). Within this approach, the interest is focused in
giving a coherent dynamics to each specific individual and then on the equation that arises
when we consider the aggregated behaviour of the individuals, which is seen through an
empirical measure, rather than the particular laws that the particles follow in the infinite
limit. One of the central motivations for pursuing this approach comes from the idea that the
macroscopic dynamics is far more simple to analyze than the many particle dynamics when
the number of particles is very large, which usually yields an untractable system.

Nonetheless, and in a very general sense, the idea of approximating non-linear partial
differential equations through the convergence of an empirical measure associated with an
interacting particle system with mean-field interactions can be traced back to Sznitman [110]
(and references therein). An underlying notion that is present in this context is the propa-
gation of chaos property, which can be formally stated as follows. Consider E a measurable
metric space and (PN)N∈N a sequence of symmetric (exchangeable) probability measures over
EN . We say that this sequence is µ-chaotic if, for any k ∈ N

∗, the k-marginal PN
k of PN con-

verges weakly to µ⊗k as N → ∞, or equivalently, if the empirical measure associated to PN ,
that is, the empirical measure constructed using the entries of the vector sampled according to
PN , converges in law to the deterministic measure µ asN goes to infinity. We can understand
this notion of chaos as asymptotic independence of particles. In its seminal article, Kac [72]
introduced the notion of propagation of chaos while studying a process of colliding particles.
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In this work, Kac showed that the convergence of the many particle system followed from the
propagation of chaos property.

In this direction, system (1.2.1) arises in a somewhat natural way, as it turns out to be im-
possible to directly define an interacting particle system, composed of independent particles
evolving in a diffusive way, in where the particles undergo local interaction, since two inde-
pendent particles will never encounter. Thus, by the introduction of an interaction kernel,
this standard approach for approximating second order parabolic equations can be used for
generating weak solutions.

Following this and the individual-based approach, Fontbona and Méléard introduced in
[58] a stochastic particle model such that its large population limit satisfies a general version
of (1.2.1) and that we loosely describe in what follows. Consider a population composed of n
species, in where each one possesses its own spatial dynamics depending on the distribution
of the whole system, and demographically they are under competitive pressure. The spatial
configuration of the species i = 1, . . . , n, is described by the empirical measure

µi,Kt =
1

K

NK,i
t∑

n=1

δXn,i
t
, (1.2.2)

where K ∈ N
∗ is the charge capacity, NK,i

t := K〈µi,Kt , 1〉 the number of particles alive at
time t andXn,i

t ∈ R
d their positions in space. Each particle has two independent exponential

clocks, a reproduction clock of parameter ri and a mortality clock of parameter
∑n
j=1 C

i,j ∗
µj,Kt , both being functions of the particle’s position. During their lifetimes, the particles follow
a diffusion process with diffusion matrix ai( · , Gi,1 ∗ µ1,K

t , . . . , Gi,n ∗ µn,Kt ) and drift vector
bi( · , H i,1 ∗ µ1,K

t , . . . , H i,n ∗ µn,Kt ). The choice of coefficients reflect the effect that the spatial
density of the different species has through the interaction kernels.

One of the main result of [58] is the convergence in law, when K → ∞, of the former
empirical measure towards the weak solution of the system

∂tu
i =

1

2

d∑

k,l=1

∂2
xkxl

(
a

(kl)
i ( · , Gi,1 ∗ u1, . . . , Gi,n ∗ un)ui

)

−
d∑

k=1

∂xk

(
b

(k)
i ( · , H i,1 ∗ u1, . . . , H i,n ∗ un)ui

)
+

(
ri −

n∑

j=1

Ci,j ∗ uj
)
ui,

(1.2.3)

for i = 1, . . . , n, where ui represents the density of the i-th species. This system is a general-
ization of (1.2.1) to multiple species.

From non-local interaction towards local interaction

Systems presenting non-local cross-diffusion effects tend to simplify the analysis of solutions,
since the non-linearities of (1.2.1) are more tractable than those of (SKT), as the convolution
kernels, being smooth functions, tend to regularize the behaviour of the unknown.

Following this observation and a question that was left open in [58], regarding the conver-
gence of the non-local interaction kernels towards local interaction (i.e. G → δ), it was shown
first in [97] that the triangular non-local model associated with (1.2.3) converges towards the
model with local interaction, in the case without self-diffusion. This result was then extended
in [47] recovering the full model. This last results was obtained under a symmetry condition
on the interaction kernels that yields the existence of an entropy structure, which allows to
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handle the problem in the sense discussed in the previous section. Finally, in this direction,
it is worth mentioning again the works [28] and [27], that make use of the non-local limiting
system (1.2.3) as an intermediate system to show convergence towards local interaction.

1.2.2 Main question and answer

Given the weak convergence result obtained in [58], relating the stochastic microscopic model
(1.2.2) in its large population approximation with the non-local system (1.2.3), a natural ques-
tion arises in this approximation context: is it possible to quantify, in some suitable distance,
how close are the empirical measure of the interacting particle system and the weak solution
of the limiting equation?

To answer this question, we focused in the case in where there is one species, showing
only a self-diffusive spatial behaviour and having a demographic evolution of logistic type.
We developed a probabilistic approach to obtain quantitative estimates for a distance compat-
ible with the objects considered. Particularly, this was done using techniques inspired from
optimal transport, namely by the construction of an optimal coupling. Furthermore, the es-
timates derived allowed us to obtain a propagation of chaos property. Finally, this approach
also provides a procedure for constructing optimal couplings in non-conservative systems,
which is expected to generalize to more complex models.

1.2.3 Our contribution

We centered on the analysis of a single species in where its density evolves as a non-local
self-diffusion equation showing logistic growth, namely an evolution of the form

∂tµt =
1

2

d∑

i,j=1

∂2
xixj

(
a(ij)( · , G∗µt)µt

)
−

d∑

i=1

∂xi

(
b(i)( · , H ∗µt)µt

)
+ (r− c〈µt, 1〉)µt, (1.2.4)

understood in the weak sense, where b and σ are given drift and diffusion coefficients respec-
tively, with a := σσt and a given initial condition µ0.

Together with this equation, we considered the stochastic process introduced in [58] that
approximates its solution, which is represented by the empirical measure

µKt =
1

K

NK
t∑

n=1

δXn,K
t
.

In this particle system, each particle follows a diffusion process of the form

dXn
t = b

(
Xn
t , H ∗ µKt (Xn

t )
)

dt+ σ
(
Xn
t , G ∗ µKt (Xn

t )
)

dBn
t ,

and at the same time it produces an offspring at its current position at a constant rate r > 0.
On the other hand, particles in this system independently die at rate cNK

t /K , for c > 0, as a
result of competition.

By considering BL(Rd) the space of Lipschitz-continuous bounded functions on R
d en-

dowed with the norm

‖ϕ‖BL = sup
x 6=y

|ϕ(x) − ϕ(y)|
‖x− y‖ + sup

x
|ϕ(x)|,
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one has the corresponding dual norm ‖ · ‖BL∗ on the space M(Rd) of finite signed measures,
which is given by

‖µ− ν‖BL∗ = sup
‖ϕ‖BL≤1

|〈µ− ν, ϕ〉|.

Also, for every µ ∈ M+(Rd) we will denote by µ̄ the normalization by its mass.

Motivated by the comparison of theweak solution of (1.2.4) with the approximating empir-
ical measure under the previous distance, we first showed that the following general relation
holds for any µ, ν ∈ M+(Rd)

‖µ− ν‖BL∗ ≤ 〈µ, 1〉W1(µ̄, ν̄) + |〈µ, 1〉 − 〈ν, 1〉|, (1.2.5)

where the p-Wasserstein distanceWp(µ̄, ν̄) between two probability measures µ̄, ν̄ ∈ P(Rd)
is defined by

Wp(µ̄, ν̄) =

(
inf

π∈Π(µ̄,ν̄)

∫

Rd×Rd
|x− y|p π(dx, dy)

) 1
p

,

withΠ(µ̄, ν̄) being the set of probability measures overRd×R
d that have µ̄ and ν̄ respectively

as first and second marginals.

In parallel, by writing in a more succinct way (1.2.4), one has

∂µt
∂t

= L∗
µt
µt +

(
r − c〈µt, 1〉

)
µt, (1.2.6)

where Lµ is a generator defined for φ ∈ C2(Rd) by

Lµφ(x) =
1

2
Tr (a(x,G ∗ µ(x))Hess(φ)(x)) + b(x,H ∗ µ(x)) · ∇φ(x),

and L∗
µt
its formal adjoint. This took us to consider the equation satisfied by the renormalized

solution of (1.2.6), namely the evolution

∂µ̄t
∂t

= L∗
µt
µ̄t,

where µ̄t = µt

〈µt,1〉 . This holds only when r and c do not depend on space, which is the case
treated here. We identified the previous equation as the evolution of the law of a diffusion
process of the form

dYt = b(Yt, H ∗ µt(Yt)) dt+ σ(Yt, G ∗ µt(Yt)) dWt. (1.2.7)

Based on the relation (1.2.5) and the previous observation, we considered the process
(Yt)t≥0, solution of the stochastic differential equation (1.2.7), as an analogous of the non-
linear process in the McKean-Vlasov framework. Then, by following the ideas developed in
[35] for the construction of an optimal coupling between an empirical measure and a flow
of probability measures in a conservative system, and the results obtained in [60], concern-
ing the quantification of the convergence of the empirical measure of an i.i.d. sample with
common law towards such law, we developed an optimal coupling construction in this non-
conservative setting. This construction allows to obtain explicit estimates yielding thus the
following main result.
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Theorem. Under some assumptions on b, σ,G and H , and given the convergence in law of the

initial conditions, if supK E(〈µK0 , 1〉p) < ∞ for some p ≥ 4 and the initial condition µ0 of (1.2.6)
has finite q-moments for some q > 2, then for all K ∈ N

∗ and T > 0 we have that

sup
t∈[0,T ]

E

(
‖µKt − µt‖BL∗

)
≤ CTΨd,q(K),

where the explicit rate function Ψd,q(K) → 0 as K → ∞, with a speed that depends on the

dimension and on the moments that µ0 has, and CT is a constant depending on T, p, q and the

data of the model.

As a consequence of this result, we also obtain a propagation of chaos property for the
system.

Definition. Let (NK)K∈N∗ be random variables in N going in law to ∞ as K → ∞. We

say a family ((Y 1,K , . . . , Y NK ,K))K∈N∗ of random vectors, (Rd)N
K

-valued and exchangeable

conditionally on NK for each K , is conditionally P -chaotic given (NK)K∈N∗ if for some P ∈
P(Rd) and every j ∈ N

∗ the (random) conditional laws (L(Y 1,K , . . . , Y j∧NK ,K |NK))K∈N∗

given NK and the event {NK ≥ j} converge in distribution in P((Rd)j) to P⊗j as K → ∞.

Corollary. For each t ≥ 0 the family ((X1,K
t , . . . , X

NK
t , K

t ))K∈N∗ is conditionally P -chaotic
given (NK

t )K∈N∗ with P = µt/〈µt, 1〉.

1.3 Genealogical constructions of branching processes

We have seen in the previous sections how interaction affects the evolution of a population.
We now focus in what can be seen, in an abstract way, as another type of interaction by con-
sidering a population evolving in an environment that changes. Here we have a oneway inter-
action in the sense that the environment affects the evolution and not the other way around.
More precisely, we will be centered on models for the growth of the size of a population in an
heterogeneous environment and on the genealogical relations between its individuals.

1.3.1 Branching processes and their genealogies

When modeling the evolution of the size of a population, under some broad assumptions on
the reproductive dynamics, branching processes turn out to be the classical choice. One of
the most classical models in this spirit are Galton-Watson processes ([6] being the classical
reference on these objects). These discrete time and space models rely on the assumptions
that all individuals are of a single type, they do not affect the reproduction of each other and
such that the offspring distribution does not change in time (or generations). Their continuous
time and space counterpart are continuous-state branching processes, which first appeared in
[56]. A few years later, they were formally introduced by Jiřina in [70] and have been studied
thoroughly since then. More precisely, we say that a [0,∞]-valued strong Markov process
(Xt)t≥0, together with a family of laws (Px)x≥0, is a continuous-state branching process if it
is càdlàg and satisfies the branching property: for all θ ≥ 0 and x, y ≥ 0

Ex+y

(
e−θXt

)
= Ex

(
e−θXt

)
Ey

(
e−θXt

)
, ∀t ≥ 0.

This can be understood as that the sum of the size of two independent populations starting
from sizes x and y is equal in distribution to the size of a population starting from size x+y. In

15



fact, this identity characterize the law of the process. Furthermore, there is a limiting relation
[85, 64] between continuous-state branching processes and Galton-Watson processes, which
allows us to understand that the former processes may model the evolution of renormalized
large populations on a large time scale.

Further generalization of these models have emerged since their introduction, such as
multi-type branching processes, models with immigration or considering competition effects.
One generalization of particular interest is the case in where the underlying offspring distri-
bution is allowed to vary according to another process, which is seen as the environment in
where the population lives. From a modeling point of view, this class yields an even more re-
alistic approach. They were first studied by Smith and Wilkinson [109] in the Galton-Watson
case. Their scaling limits were analyzed in [77] and more recently in [11] in a very general
setting. Their continuous time and space analogue, known as continuous-state branching
processes in random environments, have also been subject of interest in the lasts years (see
for example [19] for the continuous paths case and [66, 100] for a more general framework).
Given the rapidly changing environment in which we live, due to climate change and related
effects, one special case needs to be pointed out from the chain of generalizations and it is the
case in where catastrophes occur. This scenario, which was first explored in [12] and then
studied more profoundly in [10], deals with the existence of dramatical punctual events that
kill a fraction of the population.

One of the questions that naturally arises when modeling the demographic evolution of
a population, is how to describe the genealogical structure behind the successive births and
deaths. In this direction, we have the famous continuum real tree introduced by Aldous ([1, 2]
and [3]) and its connections with the underlying genealogy branching processes, through the
coding of the tree via excursion theory (we refer to the survey [86] on this subject). For
general continuous-state branching processes a construction in this manner was done later
in [87], and it proved to be useful for studying the genealogy of branching processes with
immigration [81]. Another kind of genealogical construction was introduced by Bertoin and
Le Gall via stochastic flows of bridges ([13, 14, 15] and [16]), which allowed them to provide
a notion of the genealogy for a measure-valued branching process. Other approaches include
splitting trees [82] and tree-valued processes [41].

In general, from an individual-based point of view, the structure of the genealogical tree is
usually implicit in the description of the corresponding population model, but once we pass to
the diffusive limit or large population approximation, along with losing the notion of a single
individual in the population, we also often lose their genealogical information. Because of
this, it is of great help to have an approach that allows us to pass to the limit while preserving
the genealogical relations between individuals. This can be done by representing the limiting
population model by means of a more tractable system.

Lookdown construction: a first approach

Motivated by the study of the Fleming-Viot process, a measure-valued process that corre-
sponds to the large population limit of Moran-type models (one of the most well-known dis-
crete genetic models), the authors of [48] constructed therein a particular infinite particle
system such that its empirical measure corresponds in distribution to a Fleming-Viot process.
The advantage of this construction is that this countable representation gives more informa-
tion about the underlying genealogy of this last process. We describe this construction in
what follows.

Consider a population in where each individual is characterised by a trait x belonging to
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some space E. Starting with N individuals, each one is endowed with a level, which in this
case will refer to an index ranging from 1 toN , and this assignment will be uniform between
all possible assignations. The dynamics of this process is then defined as follows: to each
pair of levels (i, j) we append a Poisson process of parameter λ such that when its associated
exponential clock rings, the individual with the highest level (i or j) is removed and replaced
with a copy of the individual with the lower level. Given this evolution, the generator of the
process is then defined for f ∈ B(EN) by

ANf(x) =
∑

1≤i<j≤N
λ
(
f(Φij(x)) − f(x)

)
,

where Φij(x) is obtained from x by replacing xj by xi. Furthermore, we can think formally
in its extension to an infinite number particles given by the generator

Af(x) =
∑

1≤i<j
λ
(
f(Φij(x)) − f(x)

)
,

defined in this case for f ∈ ∪N≥0B(EN), noticing that when f ∈ B(EN) we have that
Af = ANf . This particle process first appeared in [40] with the goal of studying the support
of a Fleming-Viot process. The name lookdown for this construction comes from the fact that
a level j waits a period of time exponentially distributed with parameter λ(j − 1) and then
looks down at a level uniformly distributed between the first j − 1 levels, adopts its value and
then continues its evolution.

In [48] it was shown that in fact one can couple this construction with a Moran-type
model for a population of size N , such that the empirical measure associated with the first
N levels (X1, . . . , XN) coincides with the empirical measure associated to this N -Moran
model. Furthermore, it was shown that the infinite particle system (X1, X2, . . . ) turns out to
be exchangeable, and thus, by de Finetti’s theorem for infinite exchangeable sequences [67],
its empirical measure exists. Since the identification of the first N particles with a Moran-
type model holds, the de Finetti measure should correspond to a Fleming-Viot process. Also,
this gives the conclusion that the genealogy of these first particles is governed by Kingman’s
coalescent [75]. This is one of the main results obtained in [48], proving that the limiting
empirical measure exists as a process and that it corresponds indeed with a Fleming-Viot
process.

Behind this infinite particle model we have also a projective property, in the sense that
when N > M theM -particle model is embedded in the N -particle model, which simplifies
passing to the limit. Moreover, from the construction and this last observation, it can be seen
that the genealogy of the first n < N particles does not change whenN grows, thus showing
the preservation of genealogy property of this construction.

This construction was later improved in [49], and then in [50] in order to cover a broader
class of models. Since their development, lookdown-type constructions have served to study
different processes from a genealogical point of view. For example, in [17] the lookdown
construction is used for relating the genealogical structure of a particular class of branching
processes with coalescent processes. Also, we have constructions of this type for the non
spatial Λ-Fleming-Viot in [18] and for its spatial version in [113].

The Markov mapping theorem and a refined approach

The seemingly equivalence in the martingale problems for the Moran model and the look-
down construction introduced in [48] led to the development of what is known as the Markov
mapping theorem in [78] (see also [79]).
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Recall that a process (Xt)t≥0 is a solution of the martingale problem for the generator A
if there is a filtration (Ft)t≥0 such that (Xt)t≥0 is Ft-adapted and satisfies that

f(Xt) − f(X0) −
∫ t

0
Af(Xs) ds,

is a Ft-martingale for each f ∈ D(A), the domain of A. Let us suppose that we have another
filtration (Gt)t≥0 such that Gt ⊂ Ft for t ≥ 0, and let πt be the conditional distribution of Xt

given Gt, i.e., πt(dx) = P(Xt ∈ dx | Gt). Then, a classical observation regarding this is that
for every f ∈ D(A)

πtf − π0f −
∫ t

0
πsAf ds,

is a Gt-martingale, where πtf = E(f(Xt) | Gt). Under some technical assumptions on A and
its domain D(A), the Markov mapping theorem yields a converse for this last observation.
This type of tool allows the study of what is called a filtered martingale problem [79].

More precisely, given a Markov process (Xt)t≥0 with generator A and letting Yt := γ(Xt)
for some measurable transformation γ, the filtered martingale problem in this case refers to
the martingale problem satisfied by the conditional law ofXt with respect to the process Y up
to time t, in the sense of the previous paragraph. As it was shown in [78], and following the
conclusions of [79], as a corollary of amore general filtering result we have that by considering
α to be a transition function satisfying

∫
h(γ(z))α(y, dz) = h(y) for all bounded measurable

h, and the transformation

C =

{(∫
f(z)α(·, dz),

∫
Af(z)α(·, dz)

)
: f ∈ D(A)

}
,

with ν0 =
∫
α(y, ·)µ0(dy) for some probability measure µ0, then the following holds: if there

exists a solution Ỹ for the (C, µ0) martingale problem, then there exists a solution X for the
(A, ν0) martingale problem such that Ỹ and Y = γ(X) have the same distribution. More-
over, we have that P(Xt ∈ Γ | (Ys)s≤t) = α(Yt,Γ). Finally, if uniqueness holds for the (A, ν0)
martingale problem, then uniqueness holds for the (C, µ0) martingale problem. The main
advantage of the Markov mapping theorem is that it simplifies proofs of equivalence of seem-
ingly different martingale problems.

Following this direction, we can obtain some of the conclusions of [48] by means of this
tool. Indeed, for given N > 0, by considering γ(x1, . . . , xN) = 1

N

∑N
i=1 δxi

and the corre-
sponding transition kernel α, the conclusion that follows from an application of the previous
theorem is that whenwe forget the particular labelling of the firstN particles in the lookdown
construction from [48], we obtain the Moran model for a population of size N that is related
to the construction, and since existence holds for the martingale problem associated to this
model, we can conclude the existence of a solution for the martingale problem related to the
lookdown construction.

This powerful tool motivated the development of a general lookdown construction in [80],
covering a wider range of models, notably ones that present a branching structure that de-
pends on spatial positions of individuals in the model. More recently, this type of construc-
tion was extended further in [52], giving in this way a very rich toolbox for constructing in
a genealogical way different mechanisms that can be considered when building a population
model such as: multiple births and deaths, immigration, mutations and spatial motion among
others. By composing these mechanisms it is possible to construct more complex population
models with this approach.
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1.3.2 Main question and answer

Given the full genealogical tree of a population, a subtree which is of interest is the so-called
reduced tree, also known as reconstructed tree or coalescent tree. This tree corresponds to the
genealogy of the living individuals in the population at a given time, neglecting the branches
associated with individuals that are no longer present at this particular time. A natural ques-
tion concerning this object is whether we can describe the reduced genealogy of a birth and
death process in varying environment and approximate it when we have a very large number
of individuals.

Using the approach given by the genealogical constructions introduced in [80], we de-
scribed the reduced tree for a birth and death process in varying environment. Moreover,
thanks to the nested property of the construction used, we approximated this tree in the
regime of large population by the tree associated with the Feller diffusion in varying environ-
ment. The approach used provides an explicit coupling construction that is expected to yield
quantitative estimates for the approximation.

1.3.3 Our contribution

We focused on the description of the genealogy of a birth and death process in varying envi-
ronment, particularly on the case in where punctual catastrophic events occur. Such process
is approximated in the large population regime by the solution of

Xt = X0 +
∫ t

0
b(s)Xs ds+

∫ t

0

√
2σ(s)Xs dBs +

∑

j≥1, t≥tj

(
β(mtj )

−1 − 1
)
Xt−

j
, (1.3.1)

where b, σ, β, (tj)j∈N and (mtj )j∈N are parameters of the model. Here, tj represents a catastro-
phe time andmtj its intensity, which in turn is modulated by the function β ≥ 1. In particular,
we studied the reduced tree associated with the genealogy of these processes. To this end, we
used the lookdown construction introduced in [80], which we recall next.

Given K ∈ N
∗, consider the state space EK =

⋃∞
n=0[0, K]n. For u = (u1, . . . , un), let

f(u) =
∏n
i=1 g(ui), where g is a continuously differentiable function satisfying 0 ≤ g ≤ 1

and g(ui) = 1 for each ui > K . Define the following generator for f as before

AKt f(u) = f(u)
n∑

i=1

2σ(t)
∫ K

ui

(g(v) − 1)dv + f(u)
n∑

i=1

(
σ(t)u2

i − b(t)ui
)g′(ui)

g(ui)
. (1.3.2)

Under the conditions σ(t) ≥ 0 andKσ(t) − b(t) ≥ 0, the stochastic process described by this
generator is a particle system in where each particle is characterized by a real value, which is
called level. The level of each particle evolves according to

u(t)′ = σ(t)u(t)2 − b(t)u(t).

A particle with level u at time twill produce a new particle at rate 2σ(t)(K−u), and the level
of its offspring will be uniformly distributed in [u,K]. When the level of a particle reaches
the value K , it is removed. Also, we consider another mechanism in the evolution of the
process, which will be understood as catastrophes. This is specified by (tj)j∈N, the sequence
of catastrophe times and (mtj )j∈N their respective intensities. Starting from a given initial
condition, we let the process evolve according to the generator (1.3.2) until a catastrophe time
arrives. At the catastrophic event occurring at time tj , we multiply the level of each particle

19



by β(mtj ), and then we let the process evolve according to the generator (1.3.2) starting with
an updated initial condition. We denote the resulting process by (UK

t )t≥0.

Following the results obtained in [80], by considering the number of particles with level
less than K , we obtain a quantity that evolves in law as a birth and death process with rates
Kσ(t) andKσ(t) − b(t) respectively, and such that at each catastrophe time tj , each particle
is removed independently with probability β(mtj )

−1.

On the other hand, when K → ∞ we can heuristically obtain another generator from
(1.3.2). The process encoded by this new generator follows a similar dynamics than the previ-
ously described. The difference is that now a particle with level u at time twill produce a new
particle with uniformly distributed level in the interval [u+ ℓ1, u+ ℓ2], for 0 ≤ ℓ1 ≤ ℓ2, at rate
2σ(t)(ℓ2 − ℓ1). Also, when the level of a particle hits infinity, it is removed. Concerning the
catastrophes, the dynamics stays the same, i.e., the level of each particle is amplified at each
catastrophic event. We denote this process by (Ut)t≥0.

Similarly as before, by following [80], we have that limN→∞
1
N

∑
i 1[0,N ](U

i
t ) is equal in

distribution to a process that evolves according to (1.3.1).

Both of these representations yield an explicit way of constructing a branching process
together with its genealogy, and in particular their reduced genealogy. Indeed, given T > 0
and the processes (UK

t )t≥0 and (Ut)t≥0, the genealogy of the individuals alive at time T in
each process is given by the collection of particles whose levels remain belowK and infinity
respectively, until that time. Moreover, to determine which particles remain below a given
value, it suffices to look at the deterministic evolution of the levels, which in turn is the same
for all particles.

Specifically, in order to endow the processes with a genealogical structure, we start by
enumerating the particles at time 0 according to the increasing order of their levels, and we
label them according to this numbering. Then for each particle we consider the product set
of its label times its lifetime, which is [0, T ], and then we take the union of all of these sets.
When a new particle is created at time t′, we label it by following the Ulam-Harris-Neveu
formalism [98] using the set U =

⋃
n≥0(N

∗)n, and again we consider the product set of its
label times its lifetime, which in this case is [t′, T ], for then taking the union of this set with
what we already have. Iterating this procedure yields a chronological tree, which turns out
to be a subset of U × [0, T ].

Given this procedure, we defineR
K
T as the chronological tree constructed from (UK

t )t∈[0,T ]

considering only the particles with levels belowK , andRT the chronological tree constructed
from (Ut)t∈[0,T ] considering only the particles with levels that do not reach infinity.

In order to compare these two objects, we introduced the following distance

dTg (T,T′) =
∑

u∈U

∫ T

0
|1(u,s)∈T − 1(u,s)∈T

′|g(s) ds,

where the function g : [0, T ] → R+ represents a temporal weight that allows taking into
account the fact that the number of branches in the trees go to infinity as we get closer to
T , since the reproductive rates explode at this time. Given this, g satisfies an integrability
condition to ensure the finiteness of the distance.

Our main result is an approximation under this distance of R
K
T by RT .

Theorem. Suppose that b and σ are continuous, bounded and such that b(t) ≤ 0, σ(t) ≥ 0 and

σ is bounded away from zero. Then, we have that

E

(
dTg (RT ,R

K
T )
)

→ 0, as K → ∞.
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CHAPTER 2

Stability of a cross-diffusion system and
approximation by repulsive random walks: a

duality approach
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2.1 Introduction and notation

Approximations of interacting large populations is motivated by physics, chemistry, biology
and ecology. A famous macroscopic model was introduced by Shigesada, Kawasaki and Ter-
amoto in [108] to describe competing species which diffuse with local repulsion. In the case
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of two species, it writes




∂tu− ∆
(
d1u+ a11u

2 + a12uv
)

= u(r1 − s11u− s12v),

∂tv − ∆
(
d2v + a21uv + a22v

2
)

= v(r2 − s21u− s22v),

where u and v are the densities of the two species and di, ri, aij and sij are non-negative real
numbers. Completed by initial and boundary conditions, this system (that we simply refer
to as the SKT system) offers a model for the spreading of two interacting species which mu-
tually influence their propensity to diffuse, through the cross-diffusion terms aij . The other
coefficients represent either natural diffusion (di coefficients), reproduction (ri coefficients)
or competition (sij coefficients). The main motivation of [108] was to propose a population
dynamics model able to detect segregation, that is the existence of non-constant steady states
u and v having disjoint superlevel sets of low threshold value. As a consequence of this moti-
vation, the first mathematical results dealing with this system focused on sufficient conditions
for the coefficients to ensure existence of non-constant steady states, with a careful study of
the stability of the latter. This study of possible segregation states is still active and we refer
to the introduction of [21] for a nice state of the art. It is a striking fact that during its first
years of existence within the mathematical community, the SKT system has not been studied
through the prism of its Cauchy problem. As a matter of fact, existence of solutions has been
tackled only a few years later: the first paper dealing with this issue is [74] and explores the
system under very restrictive conditions. Several attempt followed, but only with partial re-
sults. A substantial progress was achieved by Amann [4, 5], who proposed a rather abstract
approach to study generic quasilinear parabolic systems. The scope of this technology goes
far beyond the sole case of cross-diffusion systems. In the specific case of the SKT system, it
offers existence of local (regular) solutions, together with a criteria of explosion to decide if
the existence is global or not. This fundamental result of Amann has been then used by several
authors to establish existence of global solutions for particular forms of the SKT system. This
is done, in general, under a strong constraint on the coefficients. For instance, [92] treats the
case of equal diffusion rates in low dimension and [68], settles the one of triangular systems
(that is, for two species, when a12a21 = 0). However, the general question of existence of
global solution for the complete system remains open, even in low dimension.

Another way to produce a global solution is to sacrifice the regularity of the solutions,
and deal with only weak ones. This strategy relies on the so-called entropic structure of the
system: SKT systems as the one previously introduced, admit Lyapunov functionals which
decay along time and whose dissipation allows to control the gradient of the solution. This
method has been used successfully in [30] to prove, for the first time, existence of global
weak solutions for the SKT system, without restrictive assumptions on its coefficients. After
it first discovery in [63], this entropic structure has been explored and generalized to several
systems, allowing for the construction of global weak solutions for variants of the original
SKT system (see [71] and the references therein). With this low level of regularity for the
solutions, uniqueness becomes an issue in itself. It has been studied either under simplifying
assumptions on the system like in [104, 32] or in the weak-strong setting thanks to the use of
a relative entropy (see [33]).

2.1.1 Objectives and state of the art

This work is initally motivated by yet another mathematical challenge offered by the SKT
system: its rigorous derivation. The diffusion operator used in the SKT system is specific. We
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focus in this paper on the main difficulty raised by this operator, which is the non-linearity of
diffusion term. The initial goal of the work is to approximate the conservative SKT system,
without self-diffusion, that is the following one

{
∂tu− ∆(d1u+ a12uv) = 0,

∂tv − ∆(d2v + a21uv) = 0,
(2.1.1)

where u and v are densities and all the coefficients di and aij are assumed to be positive.
Whereas (possibly heterogeneous) diffusion of lifeless matter (e.g. ink or any type of chemical
substance) uses the Fick diffusion operator−div(µ∇·) to express the spread, SKT systems rely
on the (more singular) operator −∆(µ ·). As it was already explained in [108], this choice of
diffusion operator is at the core of the repulsivemechanism allowing the segregation to appear.
However, the justification proposed in [108] was rather formal, leaving open the question of
the rigorous justification of SKT systems. As far as our knowledge goes, there exist mainly
three approaches for the derivation of SKT systems

(i) The first path was proposed in [69], where an SKT model is obtained as an asymptotic
limit of a family of reaction-diffusion systems. In this approach the idea is that one of
the two species exists in two states (stressed or not), and switch from one to the other
with a reaction rate which diverges. This was used in [69] to obtain formally a triangular
cross diffusion system. This strategy has been followed with a rigorous analysis, mainly
to produce triangular systems (see [111] and references therein) and more recently for
a family of "full" systems in [38] which, however, do not include the SKT one.

(ii) Another strategy was proposed by Fontbona and Méléard in [58]. The idea is to start
from a stochastic populationmodel in continuous space where the individuals’ displace-
ments depend on the presence of concurrents. Then, the large population limit (under
adequate scaling) leads to a non-local cross-diffusion model. In comparison with the
system (2.1.1), the limit model rigorously derived in [58] is a lot less singular, because of
several convolution kernels. It was explicitly asked in [58], whether letting the convo-
lution kernels vanish to the Dirac mass was handable limit or not. A first partial answer
was given in [97], but applied for only specific triangular systems. More recently, it was
discovered [47] that even for the non-local systems, it is possible to ensure the persis-
tence of the entropy structure, allowing to answer fully to the question of Fontbona and
Méléard, at least for the standard SKT system. Let us mention also [28, 27] which also
use a non-local model as an intermediate to derive variants of the SKT system.

(iii) The third path was proposed in [37] and justifies the SKTmodel through a semi-discrete
one. The latter is itself derived from a stochastic population model in discrete space
where individuals are assumed to move by pair, in order to ensure reversibility of the
process and the existence of an entropy for the limit model. In [37] the link to the
stochastic was done formally whereas the asymptotic analysis linking the semi-discrete
model to the SKT system was proved rigorously, relying on a compactness argument
which is allowed thanks to the existence of the Lyapunov functional for the semi-
discrete system.

In this paper, we are interested in connections between microscopic random individual-
based models (or particle system) and such macroscopic deterministic dynamics, in the spirit
of strategies (ii) and (iii) described above. We do not use any non-local approximated system,
being inspired instead by the semi-discrete approach proposed in [37]. We consider also a
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discrete space and that each species moves randomly and is only sensitive to the local size of
the other species. Let us comment the main differences and novelties of this work compared
to [37]. First, we prove rigorously that the suitably scaled stochastic process converges in law
in Skorokhod space to SKT system (2.1.1) and we perform this space and time scaling limit at
once. Besides, individuals of each species move independently with a rate proportional to the
number of individuals of the other species, on the same site. We do not need to make them
move by pair, which may be hard to justify regarding phenomenon at stake. Indeed, we do
not need a reversibility property and do not use the entropic structure. The main difficulty
to prove convergence of the stochastic process at once lies in the control of the cumulative
quadratic rates due to local interactions when the number of sites becomes large. As far as we
have seen, entropy structure does not provide the suitable control of these non-linear terms
and a way to get tightness and identification in general. We use a different approach based
on generalized duality. This provides quantitative estimates in terms of space discretization
and size of population. Moreover, at the level of the PDE system, it implies a local uniqueness
result for bounded solutions of the SKT system. The duality approach allows to compare
locally the stochastic process with its semi discrete deterministic approximation. It is optimal
in the sense that it provides the good time space scaling for such an approximation.

Let us describe now the stochastic individual-based model. The population is spatially
distributed among M sites. The process under consideration is a continuous time Markov
chain (U (t),V (t))t≥0 taking values in N

M × N
M . The two coordinates count the number of

individuals of each species at each site, for each time t ≥ 0. Each individual of each species
follows a random walk and its jumps rate increases linearly with respect to the number of
individuals of the other species. The dynamic is defined by the jump rates as follows. For any
vector of configurations (u,v) ∈ N

M × N
M , the transitions are

u 7→ u +
(
ei+θ − ei

)
at rate 2ui(d1 + a12vi),

v 7→ v +
(
ei+θ − ei

)
at rate 2vi(d2 + a21ui),

where (ej)1≤j≤M is the canonical basis ofRM , e0 = eM , eM+1 = e1 and θ ∈ {−1, 1}with both
values equally likely. Let usmention that hydrodynamic limits of other stochastic models with
repulsive species have been considered, in particular in the context of exclusion processes, see
e.g. [106]. In that case, local densities are bounded so difficulties and limits are different. In
an other direction, stochastic versions of the limiting SKT systems have been considered, see
e.g. [44, 45].

This work contains two main results which at first sight can appear unrelated in their
formulation. The first result is a quantitative stability estimate on the SKT system which
bounds the distance between two solutions in terms of their initial distance. This result is
based on a new duality lemma and applies for bounded solutions, only if one of them is small
enough. As a by-product of this stability estimate, we prove uniqueness of (small) bounded
solutions of the conservative SKT system. This result is valid in arbitrary dimension and is,
as far as our knowledge goes, new. Uniqueness theorems for (only) bounded solutions of the
full SKT system are missing in the current literature [32, 33, 104].

The second main result is the convergence of the properly scaled sequence of processes
(UM,N ,V M,N)M,N∈N to the SKT system. We obtain quantitative estimates of the gap be-
tween the trajectories of this process extended to the continuous space and the solution of
SKT system, in a large population and diffusive regime. This analysis is performed in a one
dimensional setting for the space variable. The strategy is to insert the semi-discrete model
proposed in [37] and estimate separately the gap between our stochastic process and this
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semi-discrete system and then, estimate (with enough uniformity) the distance between the
semi-discrete system and the continuous SKT limit. Following this plan, we first propose a
general estimate, which rely on naive bounds of the quadratic diffusion term. Roughly, we
simply bound locally the size of the population by the (constant) total number of individuals.
These bounds allow for convergence with a fixed number of sites but lead to an unreasonable
assumption of a superexponential number of individuals per site when the number of sites
increases. When we faced this difficulty, we tried to obtain an estimate as sharp as possible
to capture the good scales and compare the semi-discrete system and the continuous one. It’s
during this step that we discovered the stability estimate described above, which is interesting
for its own sake. A nice feature of this stability estimate is that we can transfer it onto the
semi-discrete and stochastic setting. We obtain then the convergence of the stochastic model
towards the SKT system, with sharp estimates and relevant size scales. This asymptotic study
shares a similar limitation as the previous paragraph: it holds only under the assumption of
small regular solution of the SKT system, which is ensured by Amann’s theorem [4, 5].

The paper is organized as follows. In the end of this section, we collect several notations
which will be used throughout the paper. In Section 2.2 we define the (sequence of) stochastic
processes we consider, we recover the semi-discrete system introduced in [37] and state our
twomain results. In Section 2.3 we show the convergence in law in path space of the stochastic
process towards the semi-discrete system when the number of individuals goes to infinity
but the number of sites remains fixed. We provide a quantification of this convergence. It
implies the general (no restriction on the limiting SKT system) but naive (in terms of scales)
convergence discussed above. Then, Section 2.4 is dedicated to the duality estimates with
source terms and their consequences. These duality estimates account for the interacting
system when one of the population is seen as an exogenous environment, which amounts to
decouple the two species. In a first short paragraph (Subsection 2.4.1) we state and prove the
generalized duality lemma and its application to the stability estimate of the SKT system in the
continuous setting. This paragraph is the only one of the study in which we work in arbitrary
dimension for the space variable. Then, the rest of Section 2.4 focuses on the translation of
these estimates in the semi-discrete setting. This includes the definition of reconstruction
operators, the study of the discrete laplacian matrix and the translation of classical function
spaces into the discrete setting. Eventually in Section 2.5, we apply the previous machinery
to the difference between the stochastic process and the approximated system that solutions
of (2.1.1) solve when looked at a semi-discrete level. We then deduce our main asymptotic
theorem by controlling some martingales and approximation errors. In a short appendix, we
also give a dictionary which gives the correspondence of different objects in the discrete and
continuous settings.

2.1.2 Notation

Finite-dimensional vectors

Throughout the article, vectors will always be written in bold letters and if not stated oth-
erwise, the components of the vector u ∈ R

M are (ui)1≤i≤M . The canonical basis of RM

will be denoted (ej)1≤j≤M . Due to the periodic boundary condition that we will use, we will
frequently use the convention e0 = eM and eM+1 = e1.

GivenM ∈ N and p ∈ [1,∞] we denote by ‖ · ‖p =
(∑M

i=1 |xi|p
)1/p

the usual ℓp norm on
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R
M and ‖ · ‖p,M the rescaled norm defined for x ∈ R

M by

‖x‖p,M :=

(
1

M

M∑

i=1

|xi|p
)1/p

for p < ∞, and ‖x‖∞ := max
1≤i≤M

|xi|.

Similarly, the corresponding (rescaled) euclidean inner-product of RM is denoted (·|·)M :

(x|y)M =
1

M

M∑

i=1

xiyi,

so that ‖ · ‖2
2,M = (·|·)M .

The symbol ⊙ is the internal Hadamard product on R
M , that is (x ⊙ y)i = xiyi. We will

also often use (when it makes sense) the operator x ⊘ y defined by (x ⊘ y)i = xi/yi and the
“vectorial” square-root x1/2 whose components are (

√
xi)1≤i≤M .

The arithmetic average of all the components of a vector x will be denoted

[x]M :=
1

M

M∑

i=1

xi.

The vector of RM for which every component equals 1 is denoted 1M . The orthogonal
projection onto Span

R
(1M)⊥ is denoted with a tilde, that is: x̃ = x − [x]M1M .

For x,y ∈ R
M we write x ≥ y whenever x − y ∈ R

M
+ .

Functions

We will manipulate random and deterministic functions which may depend on the time vari-
able t ∈ R+ and the space variable x ∈ T

d, where T := R/Z is the flat periodic torus. We will
rely on the following convention for functions: uppercase letters will be reserved for random
elements whereas lowercase letters will represent deterministic functions. Accordingly to the
previous paragraph, vector valued functions will be denoted in bold whereas scalar valued
functions will be denoted with the normal font.

Quite often results will be stated on a fixed time interval [0, T ]. For this reason, we intro-
duce the periodic cylinder QT := [0, T ] × T

d. For any function space E defined on T
d or QT ,

the corresponding norm will be denoted ‖ · ‖E , e.g. ‖ · ‖L2(Td). In case of a Hilbert structure,
the inner-product will be denoted by (·|·)E , e.g. (·|·)L2(Td). We will use frequently two Sobolev
spaces on T

d, the definition of which we briefly recall for the reader’s convenience.

Any distribution ϕ ∈ D ′(Td) decomposes

ϕ =
∑

k∈Zd

ck(ϕ)ek,

where ek(x) := e2iπk·x, and ck(ϕ) := 〈ϕ, ek〉. For s ∈ R we define Hs(Td) as the subspace of
D ′(Td) whose elements ϕ satisfy

∑

k∈Zd

|ck(ϕ)|2(1 + |k|2)s < +∞,

equipped with the norm

‖ϕ‖Hs(Td) =




∑

k∈Zd

|ck(ϕ)|2(1 + |k|2)s




1/2

.
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By analogy with notation for the average of the previous paragraph, for any integrable func-
tion ϕ defined on T

d, we denote

[ϕ]Td :=
∫

Td
ϕ,

in general and [ϕ]Td = c0(ϕ) if ϕ is merely a distribution. The expression

‖ϕ‖Ḣs(Td) :=




∑

k∈Zd

|ck(ϕ)|2|k|2s




1/2

,

is only a semi-norm on Hs(Td) and is a norm on the homogeneous Sobolev space Ḣs(Td)
constituted of those elements ϕ belonging to Hs(Td) and having a vanishing mean, i.e. for
which [ϕ]T = c0(ϕ) = 0. We use mainly these spaces for s = 1 and s = −1.

Finally, for any metric space X , D([0, T ], X) denotes the space of càdlàg functions from
[0, T ] to X endowed with the Skorokhod topology.

2.2 Main objects and results

Before stating our main results, we need to define precisely the objects that we aim at consid-
ering.

2.2.1 Repulsive random walks and scaling

Let us define the stochastic process by means of a trajectorial representation using Poisson
point measures. We consider a probability space (Ω,F ,P) satisfying the usual conditions. We
introduce a family of independent Poisson point measure (N j)j∈N onR+×R+×{−1, 1}with
common intensity ds ⊗ dρ ⊗ β(dθ), where β is the law of a Bernoulli

(
1
2

)
random variable.

Almost surely the initial data (U (0),V (0)) belongs to N
M × N

M , and the corresponding
process (U (t),V (t))t≥0 is then defined as the unique strong solution in D([0,∞),N2M) of
the following system of stochastic differential equations (SDEs) driven by the aforementioned
measures




U (t) = U (0) +
∫ t

0

∫

R+×{−1,1}

M∑

j=1

1ρ≤2Uj(s−)(d1+a12Vj(s−))

(
ej+θ − ej

)
N j(ds, dρ, dθ),

V (t) = V (0) +
∫ t

0

∫

R+×{−1,1}

M∑

j=1

1ρ≤2Vj(s−)(d2+a21Uj(s−))

(
ej+θ − ej

)
N j(ds, dρ, dθ),

where the jump rates d1, d2, a12 and a21 are the one of (2.1.1). Uniqueness and existence for the
previous system of SDEs are obtained easily from a classical inductive construction. Indeed,
the total population size of each species is constant along time: ‖U (t)‖1,M = ‖U (0)‖1,M ,
‖V (t)‖1,M = ‖V (0)‖1,M . Therefore, conditionally on the initial value (U (0),V (0)), the
process (U (t),V (t))t≥0 is a pure jump Markov process on a finite state space with bounded
rates.

We are interested in the approximation (hydrodynamic limit) when the population size
and the number of sites tend to infinity. Informally, we consider (U (M2t)/N,V (M2t)/N)t≥0

and interaction now occurs through the local density of individuals. The scaling parameter
N ∈ N

∗ yields the normalization of the population per site and provides a limiting density
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when N goes to infinity. The initial population per site is of order of magnitude N and each
species’ motion rate is an affine function of the density of the other species on the same
site. The motion of each individual is centered and we consider the diffusive regime. As
a consequence, we accelerate the time by the factor of M2, which amounts to multiply the
transition rates byM2.

We denote the renormalized process by (UM,N(t),V M,N(t))t≥0. Moreover, for u, v ∈ R

and i, j = 1, 2 we set

ηM,N
1,j (t) := 2M2NUM,N

j (t)
(
d1 + a12V

M,N
j (t)

)
,

ηM,N
2,j (t) := 2M2NV M,N

j (t)
(
d2 + a21U

M,N
j (t)

)
.

For a given initial condition (UM,N(0),V M,N(0)), the process (UM,N(t),V M,N(t))t≥0 is the
unique solution in D([0,∞),R2M

+ ) of the following system of SDEs





UM,N(t) = UM,N(0) +
∫ t

0

∫

R+×{−1,1}

M∑

j=1

1ρ≤ηM,N
1,j

(s−)

ej+θ − ej

N
N j(ds, dρ, dθ),

V M,N(t) = V M,N(0) +
∫ t

0

∫

R+×{−1,1}

M∑

j=1

1ρ≤ηM,N
2,j

(s−)

ej+θ − ej

N
N j(ds, dρ, dθ).

(2.2.1)

2.2.2 The intermediate (semi-discrete) system

To estimate the gap between the discrete stochastic process (2.2.1) and the SKT system (2.1.1),
we are going to use a third system on which our asymptotic analysis will pivot





d

dt
uM(t) − ∆M(d1u

M(t) + a12u
M(t) ⊙ vM(t)

)
= 0,

d

dt
vM(t) − ∆M

(
d2v

M(t) + a21u
M(t) ⊙ vM(t)

)
= 0,

(2.2.2)

where the unknowns are the vector valued curves uM ,vM : R+ → R
M , and the matrix ∆M

is the periodic laplacian matrix, that is

∆M := M2




−2 1 0 · · · 1
1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1
1 · · · 0 1 −2




∈ MM(R). (2.2.3)

This semi-discrete system corresponds to a large population approximation but fixed number
of sites M . Existence and uniqueness for (2.2.2) can be proven using the standard Picard-
Lindelöf theorem, as this is done in [37] where this semi-discrete system has been introduced.

2.2.3 Formal insight

Before stating our main results, let us give an informal argument to see how the stochastic
process (2.2.1) can be linked with the SKT system (2.1.1), through the semi-discrete system
(2.2.2).
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We first introduce the infinitesimal generator LM,N of the process (2.2.1). For this pur-
pose, we define the translation operator τa for any vector a ∈ R

M . It acts on any function
G : RM → R by the formula τaG(·) := G(·+a). Then, for 1 ≤ j ≤ M , we define the operator

LN
j = τN−1(ej+1−ej) + τN−1(ej−1−ej) − 2Id,

for G : RM → R. We recall here the periodic convention: e0 = eM and eM+1 = e1. Then, for
any measurable and bounded function F : R2M

+ → R , we define for (u,v) ∈ R
2M
+

LM,NF
(
u,v

)
=

M∑

j=1

1

2

{
ηM,N

1,j (uj, vj)LN
j [F

(
·,v

)
](u) + ηM,N

2,j (uj, vj)LN
j [F

(
u, ·

)
](v)

}
.

For N going to infinity and F differentiable, Taylor’s approximation ensures that LM,NF
converges to

LMF (u,v) =
(
∆M(d1u + a12u ⊙ v)

∣∣∣∇uF (u,v)
)

+
(
∆M(d2v + a21v ⊙ u)

∣∣∣∇vF (u,v)
)
,

where (·|·) is the inner product on R
M and ∆M is the discrete laplacian matrix defined in

(2.2.3). Roughly, this ensures that for a fixed number of sites, the stochastic model can be
approximated in large population by the semi-discrete system (2.2.2). Then, as M goes to
infinity, the discrete laplacian represented by ∆M is expected to be formally replaced by the
laplacian, thus the components of uM and vM are expected to approach the values of u and
v on a uniform grid of step 1

M
, yielding the cross-diffusion system (2.1.1).

2.2.4 Statements

Our first main result is a stability estimate for the conservative SKT system (2.1.1). As far as
our knowledge goes, this result is new in the context of weak solutions for the SKT system.
To measure the distance between two solutions on a time interval [0, T ], we introduce the
following norm

||| · |||T :=
(
‖ · ‖2

L∞([0,T ];H−1(Td)) + ‖ · ‖2
L2(QT )

)1/2
. (2.2.4)

We define also the affine functions µi : R → R for i = 1, 2, by µi(x) := di + aijx with
{i, j} = {1, 2}.
Theorem 2.1. Let T > 0 and consider a couple (u, v) ∈ L∞(QT )2 and (u, v) ∈ L∞(QT )2

of non-negative bounded weak solutions of the SKT system (2.1.1), respectively initialized by

(u0, v0) ∈ L∞(Td)2 and (u0, v0) ∈ L∞(Td)2. If the following smallness condition

‖u‖L∞(QT )‖v‖L∞(QT ) <
d1d2

a12a21

, (2.2.5)

is satisfied, then we have the stability estimate

|||u− u|||2T + |||v − v|||2T . ‖u0 − u0‖2
H−1(Td) + ‖v0 − v0‖2

H−1(Td)

+ T
(

[u0 − u0]
2
Td‖µ1(v0)‖L1(Td) + [v0 − v0]

2
Td‖µ2(u0)‖L1(Td)

)
,

where the constant behind . depends only on aij, di, ‖ū‖L∞(QT ), ‖v̄‖L∞(QT ), and ||| · |||T is de-

fined by (2.2.4). In particular, if a bounded non-negative solution satisfies (2.2.5) then, there is no
other bounded non-negative solution sharing the same initial data.
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Remark 2.2.1. In case of equality in the smallness condition (2.2.5), uniqueness remains but the

stability estimate controls only the H−1 part of the ||| · |||T norm.

The proof of Theorem 2.1 relies on a generalized duality lemma presented in Subsec-
tion 2.4.1 and on the concept of dual solutions developed in [97], for the Kolmogorov equa-
tion. The uniqueness result contained in Theorem 2.1 is conditional: if there exists a bounded
(non-negative) solution (u, v) satisfying (2.2.5), then it is unique in the class of bounded weak
solutions. The existence of global bounded solutions for the SKT system is a long standing
challenge in the context of cross-diffusion systems. Partial results are known, in the wake
of the quest of even more regular solutions (which are in particular bounded), like [68] or
[92] that we already cited. In the weak solutions setting, the paper [117] gives sufficient –yet
restrictive– conditions on the coefficients of the SKT system to ensure boundedness. Since
the previous results are rather constraining on the coefficients, we prefer to rely on Amann’s
theory [4, 5] and understand Theorem 2.1 as a local result which holds for sufficiently small
initial data. Indeed, Amann’s theory proves existence of regular solutions, which exist at least
in a neighborhood of the origin. Starting from an initial data satisfying (2.2.5), we recover in
this way a small interval on which the estimates remains valid. As the proof of Theorem 2.1
(which is done in Subsection 2.4.1) is totally insensitive to the dimension d, it is here stated in
full generality. However, the remaining part of the paper (which deals with the approximation
of the SKT system by stochastic processes) will focus on the case d = 1.

Before stating our second main result, let us comment briefly the Section 2.3 in which we
propose a first approach to estimate the gap between the stochastic process defined by (2.2.1)
and the semi-discrete system (2.2.2) on a fixed interval [0, T ]. The methodology at stake in
this paragraph, which is quite rough, allows for asymptotic quadratic closeness between these
two objects, provided that, as N,M → +∞, we have the following

N ≫ M4 exp(cM4T ), (2.2.6)

where c is some constant which will become more explicit in the next section. Combining
this fact with the compactness result [37, Theorem 8], we obtain convergence (up to a sub-
sequence) of our stochastic process towards a weak solution of the SKT system. The result
is general in terms of parameters and form of the solution. However, the drawbacks of this
approach are twofold. First, this necessitates a self-diffusion term in the system (which tends
indeed to regularize the solution) in order to use the compactness result of [37]. Second, and
most importantly, the scaling condition (2.2.6) involves a superexponential and time depen-
dent number of individuals per site in order to make the law of large numbers to hold on each
site and to be able to sum local estimates. As we will see, and as we can guess from the form
of quadratic variations, it is too restrictive.

We propose instead a different approach, based on the discrete translation of Theorem 2.1.
This alternative method does not rely on [37], so that self-diffusion is not needed in the sys-
tem. The convergence result is obtained by means of a quantitative estimate which bounds
the expectation of the ||| · |||T -norm of the gap between the stochastic processes and the so-
lution of the SKT system. In particular, there are no compactness tools used and the entropy
of the system is not needed. Convergence is then guaranteed only with a quadratic number
of individuals per site. This corresponds to the expected scaling for having local control of
the stochastic process by its semi-discrete approximation, since beyond this scaling quadratic
variations do not vanish. The main disadvantage of this new method is that, like for The-
orem 2.1, it works only in a perturbative setting: it needs the existence of a small regular
solution.
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In order to state the following result, we need to introduce, for any integer M ≥ 1, the
discretization of the flat (one dimensional) torus T

TM := {x1, x2, · · · , xM}, with xk =
k

M
, for 1 ≤ k ≤ M. (2.2.7)

Given a vector u ∈ R
M , classically there exists exactly one continuous piecewise linear func-

tion defined on T for which its value on each point xk of TM is given by uk; we denote this
function πM(u). We adapt the same notation if instead ofu one considers a vector valuedmap
U (which could depend on the event ω or the time t for instance), so that πM(U ) becomes a
real-valued map.

Theorem 2.2. In the one dimensional case d = 1, assume the existence of a non-negative solu-

tion (u, v) of C1 regularity in time and C4 regularity in space of the system (2.1.1), initialized
by (u0, v0) ∈ C4(T) and satisfying the smallness assumption (2.2.5). Consider the stochastic
processes (UM,N ,V M,N) defined by (2.2.1) and assume the existence of a constant C0 such that

for allM,N ∈ N,

‖UM,N(0)‖1,M + ‖V M,N(0)‖1,M ≤ C0, almost surely. (2.2.8)

Then, for any (M,N) ∈ N
2 such that N/M2 is large enough, for any T > 0,

E

[
|||πM

(
UM,N

)
− u|||2

T
+ |||πM

(
V M,N

)
− v|||2

T

]

. E

[
‖πM

(
UM,N(0)

)
− u0‖2

H−1(T) + ‖πM
(
V M,N(0)

)
− v0‖2

H−1(T)

]
+M−4 +

M2

N
, (2.2.9)

where ||| · |||T is defined (2.2.4) and the symbol. depends onC, T, di, aij, ‖u‖L∞(QT ), ‖v‖L∞(QT ).

This immediately implies the following convergence for the ||| · |||T -norm.

Corollary 2.2.1. Let T > 0. Under the assumptions of Theorem 2.2, consider an extraction

function φ : N → N such that M2 = o(φ(M)). If the initial positions of the individuals are
well-prepared in the sense that

E

[
‖πM

(
UM,φ(M)(0)

)
− u0‖2

H−1(T) + ‖πM
(
V M,φ(M)(0)

)
− v0‖2

H−1(T)

]
−→

M→+∞
0,

then we have

lim
M→∞

E

[
|||πM

(
UM,φ(M)

)
− u|||2

T
+ |||πM

(
V M,φ(M)

)
− v|||2

T

]
= 0.

Similarly to Theorem 2.1, we still have a smallness condition (2.2.5) on the target solution.
In some sense, this restriction is not so surprising. Even though it is a bit more hidden in this
asymptotic context, the estimate (2.2.9) already contains a kind of uniqueness property for
the target solution (u, v), just as the quantitative estimate of Theorem 2.1. At the very least,
(2.2.9) states that among all possible weak solutions, (u, v) is the one which “attracts” such
stochastic processes. And then, a natural way to select such a solution is to ensure uniqueness
by means of sufficient regularity. These two differences come from the fact that, contrary to
the previous result, Theorem 2.2 estimates the distance between a vector-valued stochastic
process and a deterministic function which is defined on the whole torus T. This obliges to
consider corrector terms. The first one consists in the martingale termwhich measures locally
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the gap between the stochastic process and the semi-discrete deterministic approximation.
Here, we observe that the estimates are sharp and the scales obtained for convergence are
optimal: when N = φ(M) is of orderM2, the local behavior of the size of the population in
the individual based model will remain stochastic at the limit. This limiting stochastic regime
should be interesting for future works. The second correction term consists in replacing u by
a continuous piecewise linear function in order to be able to compare it to the semi-discrete
system and thus with πM(UM,N). As a matter of fact, the proof of Theorem 2.2 relies on
a careful translation of the (idealized) functional setting of Theorem 2.1 to the discrete level,
together with the treatment of those corrective terms. This analysis necessitates, among other
things, discrete duality lemmas including potential singular error terms. These are stated and
proved in Subsection 2.4.4. Let us end up with a remark and perspectives. Another appraoch
for future works would be to prove ℓ∞ estimates for the semi-discrete system such that it is
independent of M . With this one could show that the semi-discrete system is not far from
verifying the limiting equation, and from here evoke the continuous version of the duality
estimates in order to quantify the convergence. Also, the results obtained can be extended to
the case in where the system (2.1.1) presents self-diffusion and a source term (which would
correspond to adding births and deaths in the stochastic process).

2.3 A general and rough estimate

The trajectorial representation (2.2.1) yields for each coordinate of UM,N

UM,N
i (t) = UM,N

i (0) − 1

N

∫ t

0

∫

R+×{−1,1}
1ρ≤ηM,N

1,i
(s−) N i(ds, dρ, dθ)

+
1

N

∫ t

0

∫

R+×{−1,1}
1ρ≤ηM,N

1,i−1(s−)1θ=1 N i−1(ds, dρ, dθ)

+
1

N

∫ t

0

∫

R+×{−1,1}
1ρ≤ηM,N

1,i+1(s−)1θ=−1 N i+1(ds, dρ, dθ). (2.3.1)

By compensating the Poisson point measure, we obtain the semimartingale decomposition

UM,N(t) = AM,N(t) + MM,N(t), (2.3.2)

where AM,N = (AM,N
i )1≤i≤M is a continuous process defined by

AM,N(t) = UM,N(0) +
∫ t

0
d1∆MUM,N(s) ds+

∫ t

0
a12∆M

(
UM,N(s) ⊙ V M,N(s)

)
ds,

with ∆M as defined in (2.2.3), and MM,N
i is a square integrable martingale whose predictable

quadratic variation is given by

〈
MM,N

i

〉
(t) =

M2

N

∫ t

0
d1

(
2UM,N

i (s) + UM,N
i+1 (s) + UM,N

i−1 (s)
)

ds (2.3.3)

+
M2

N

∫ t

0
a12

(
2UM,N

i (s)V M,N
i (s) + UM,N

i+1 (s)V M,N
i+1 (s) + UM,N

i−1 (s)V M,N
i−1 (s)

)
ds.

The analogous decomposition holds for the coordinates of (V M,N(t))t≥0, the second species.

Let us give first estimates of the gap between the stochastic process and its approximation
in large population for a fixed number of sites. Let

UM,N(t) = UM,N(t) − uM(t), VM,N(t) = V M,N(t) − vM(t).
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Proposition 2.3.1. Assume that there existsC0 > 0 such that almost surely, for anyM,N ≥ 1,

max(‖UM,N(0)‖1,M , ‖V M,N(0)‖1,M , ‖uM(0)‖1,M , ‖vM(0)‖1,M) ≤ C0.

Then, for any T ≥ 0, there exist c1, c2 > 0 such that for anyM,N ≥ 1,

E

(
sup
t∈[0,T ]

∥∥∥UM,N(t)
∥∥∥

2

2,M
+ sup

t∈[0,T ]

∥∥∥VM,N(t)
∥∥∥

2

2,M

)

≤
(
E

(∥∥∥UM,N(0)
∥∥∥

2

2,M
+
∥∥∥VM,N(0)

∥∥∥
2

2,M

)
+ c1

(
M2

√
N

+ T
M3

N

))
e
c2

(
M4+ M2

√
N

)
T
,

where c1 only depends on the diffusion parameters and the initial bounds and c2 only depends on

the diffusion parameters.

In particular, this estimate guarantees that the normalized stochastic process converges to
the semi discrete SKT system when the population size becomes large and the number of sites
is fixed. As evoked in the introduction, this is a first step for convergence to the continuous
SKT system, when the semi discrete system itself indeed converges to the expected continuous
limit.

Proof. First, using the fact that the total number of individuals is constant along time, we
observe that under our assumptions

max(‖UM,N(t)‖1,M , ‖V M,N(t)‖1,M) = max(‖UM,N(0)‖1,M , ‖V M,N(0)‖1,M) ≤ C0, (2.3.4)

almost surely for anyM,N ≥ 1, and

max(‖uM(t)‖1,M , ‖vM(t)‖1,M) = max(‖uM(0)‖1,M , ‖vM(0)‖1,M) ≤ C0, (2.3.5)

for anyM ≥ 1. Combining (2.3.2) and (2.2.2), we notice that the process UM,N(t) has finite
variations and satisfies

UM,N(t) = UM,N(0) +
∫ t

0
d1∆MUM,N(s) ds

+
∫ t

0
a12∆M

(
UM,N(s) ⊙ V M,N(s) − uM(s) ⊙ vM(s)

)
ds+ MM,N(t).

Consider now the square of its coordinates

UM,N
i (t)2 = UM,N

i (0)2 +
∫ t

0
2 UM,N

i (s−) dUM,N
i (s) +RM,N

i (t),

for i = 1, . . . ,M , where

RM,N
i (t) =

∑

0<s≤t

{
UM,N
i (s)2 − UM,N

i (s−)2 − 2 UM,N
i (s−)

(
UM,N
i (s) − UM,N

i (s−)
)}

=
(

1

N

)2 ∑

0<s≤t
1UM,N

i
(s) 6=UM,N

i
(s−),
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since the jumps of UM,N
i and UM,N

i are of size 1/N . Putting the two expressions together
yields

UM,N
i (t)2 = UM,N

i (0)2 + 2d1

∫ t

0
UM,N
i (s)

(
∆MUM,N(s)

)
i
ds

+ 2a12

∫ t

0
UM,N
i (s)

(
∆M

(
UM,N(s) ⊙ V M,N(s) − uM(s) ⊙ vM(s)

))
i
ds

+ 2
∫ t

0
UM,N
i (s−) dMM,N

i (s) +RM,N
i (t).

Given u ∈ R
M let us introduce the discrete gradient vector ∇+

Mu = (M(ui+1 − ui))1≤i≤M
(recalling the periodic convention). Summing over all the sites i ∈ {1, . . . ,M} and using
discrete integration by parts in the second and third terms of the right hand side yields

∥∥∥UM,N(t)
∥∥∥

2

2
=
∥∥∥UM,N(0)

∥∥∥
2

2
− 2d1

∫ t

0

∥∥∥∇+
MUM,N(s)

∥∥∥
2

2
ds

− 2a12

∫ t

0

M∑

i=1

(
∇+
MUM,N(s)

)
i

(
∇+
M

(
UM,N(s) ⊙ V M,N(s) − uM(s) ⊙ vM(s)

))
i
ds

+ 2
M∑

i=1

∫ t

0
UM,N
i (s−) dMM,N

i (s) +
∥∥∥RM,N(t)

∥∥∥
1
.

Dropping the second termwhich is negative, taking absolute value in the third term and using
2|ab| ≤ |a|2 + |b|2 ensures that
∥∥∥UM,N(t)

∥∥∥
2

2
≤
∥∥∥UM,N(0)

∥∥∥
2

2
+ a12

∫ t

0

∥∥∥∇+
MUM,N(s)

∥∥∥
2

2
ds

+ a12

∫ t

0

∥∥∥∇+
M

(
UM,N(s) ⊙ V M,N(s) − uM(s) ⊙ vM(s)

)∥∥∥
2

2
ds

+ 2
M∑

i=1

∫ t

0
UM,N
i (s−) dMM,N

i (s) +
∥∥∥RM,N(t)

∥∥∥
1
.

Let us observe that
∥∥∥RM,N(t)

∥∥∥
1
is given by the number of jumps before time t

E

(∥∥∥RM,N(t)
∥∥∥

1

)
= 2N−2

E(#{t ≥ 0 : UM,N(s) 6= UM,N(s−)}).

Moreover, the total jump rate in the scaled process UM,N , when the number of individuals of
each species in site i is equal to (ui, vi), is

2M2
M∑

i=1

ui

(
d1 + a12

vi
N

)
≤ 2M2‖u‖1

(
d1 + a12

‖v‖1

N

)
≤ C ′

0M
3N(1 +M),

where C ′
0 = 2(d1 + a12)C0, by (2.3.4). Then we get

E

(∥∥∥RM,N(t)
∥∥∥

1

)
≤ 2C ′

0 t
M3

N
(1 +M).

Lets us now deal with the third and fourth terms. We notice that

(
∇+
MUM,N(s)

)2

i
=M2

(
UM,N
i+1 (s) − UM,N

i (s)
)2

≤ 2M2
(
UM,N
i+1 (s)2 + UM,N

i (s)2
)
,
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Similarly, using also |ab− cd| ≤ |a− c|b+ c|b− d| to deal with the difference of products of
positive terms, we get
(
∇+
M(UM,N(s) ⊙ V M,N(s) − uM(s) ⊙ vM(s))

)2

i

≤ 4M2
(

‖uM(0)‖2
1 VM,N

i+1 (s)2 + ‖uM(0)‖2
1 VM,N

i (s)2

+ ‖V M,N(0)‖2
1 UM,N

i+1 (s)2 + ‖V M,N(0)‖2
1 UM,N

i (s)2
)

≤ 4C2
0M

4
(

VM,N
i+1 (s)2 + VM,N

i (s)2 + UM,N
i+1 (s)2 + UM,N

i (s)2
)
,

using (2.3.4) and (2.3.5). Gathering these bounds, taking supremum and then expectation gives
us

E

(
sup
s∈[0,t]

‖UM,N(s)‖2
2

)

≤ E

(
‖UM,N(0)‖2

2

)
+ 4a12M

2
∫ t

0
E

(
‖UM,N(s)‖2

2

)
ds

+ 8C2
0a12M

4
(∫ t

0
E

(
‖VM,N(s)‖2

2

)
ds+

∫ t

0
E

(
‖UM,N(s)‖2

2

)
ds
)

+ 2
M∑

i=1

E

(
sup
s∈[0,t]

∫ s

0
UM,N
i (r−) dMM,N

i (r)

)
+ 2C ′

0 T
M3

N
(1 +M).

For the martingale part, we use Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities
which together with (2.3.3) and (2.3.4) yield

E

(
sup
s∈[0,t]

∫ s

0
UM,N
i (r−) dMM,N

i (r)

)2

≤ E

(
sup
s∈[0,t]

∣∣∣∣∣

∫ s

0
UM,N
i (r−) dMM,N

i (r)

∣∣∣∣∣

2)

≤ E

(∫ t

0
UM,N
i (r−)2 d

〈
MM,N

i

〉
(r)

)

≤ 2
M2

N
E

(∥∥∥UM,N(0)
∥∥∥

1

(
d1 + a12

∥∥∥V M,N(0)
∥∥∥

1

) ∫ t

0
UM,N
i (s)2 ds

)

≤ C ′
0

M3

N
(1 +M)

∫ t

0
E

(
UM,N
i (s)2

)
ds.

Using that
√

1 + x ≤ 1 + x for all x ≥ 0, we obtain

E

(
sup
s∈[0,t]

∫ s

0
UM,N
i (r−) dMM,N

i (r)

)
≤
√

2C ′′
0

M2

√
N


1 +

∫ t

0
E

(
UM,N
i (s)2

)
ds


.

Putting everything together and using again (2.3.4) yields

E

(
sup
s∈[0,t]

‖UM,N(s)‖2
2

)
≤ E

(
‖UM,N(0)‖2

2

)
+ 2

√
2C ′′

0

M3

√
N

+ 2C ′
0T
M4

N

+

(
8C0a12M

4 + 2
√

2C ′′
0

M2

√
N

)∫ t

0
E

(
sup
r∈[0,s]

‖UM,N(r)‖2
2

)
ds

+ 8C0a12M
4
∫ t

0
E

(
sup
r∈[0,s]

‖VM,N(r)‖2
2

)
ds,
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for some C ′′
0 > 0. In a similar way we can obtain analogous bounds for V M,N . Adding the

two inequalities and then applying Gronwall’s lemma leads us to the desired conclusion.

The proof above is general in the sense that we have no conditions on the limiting SKT
system. But as explained in the previous sections, convergence with a large number of sites
requires a superexponential number of individuals per site. The bounds in the previous proof
are indeed not sharp at several steps. In particular, we have controlled the quadratic terms
by bounding the local size of one species by the total number of individuals, which is fixed
and thus controlled quantity. Similarly, the gradient term has been dominated by brute force
since we have summed the components. To go beyond these estimates and deal with the
quadratic term, we develop a duality approach. This will bring stability property and allow
us to compare the terms involved in the stochastic process to those of the targeted SKT limit.
The stochastic process will then appear as a stable perturbation of this SKT system.

2.4 Duality estimates

2.4.1 The continuous setting

The duality lemma is a tool first introduced by Martin, Pierre and Schmitt [94, 105], in the
context of reaction-diffusion systems. It consists in an a priori estimate for solutions of the
Kolmogorov equation. The strength of the estimate is that it requires very low regularity on
the diffusivity (merely integrability), which allows its use when dealing with rather weak so-
lutions. We propose below a small generalization of the duality lemma, which was suggested
in [97, Remark 7]. As a matter of fact, we will not directly use the duality lemma presented
in this paragraph, but rather translate it in a discrete setting (see Subsection 2.4.4 below). The
purpose of this paragraph is then twofold. First, prove Theorem 2.1. Second, explain, avoid-
ing several technicalities inherent to the discrete setting, the core ideas that will be used in
Subsection 2.4.4. Below, we call a weak solution a solution in the distributional sense. During
(and only in) this whole paragraph, we work in arbitrary dimension d.

Lemma 2.4.1. Consider µ ∈ L∞(QT ) such that α := infQT
µ > 0, z0 ∈ H−1(Td) and f ∈

L2(QT ). Then, there exists a unique z ∈ L2(QT ) that solves weakly the Kolmogorov equation

{
∂tz − ∆(µz) = ∆f,

z(0, ·) = z0.
(2.4.1)

Furthermore, this solution z belongs to C([0, T ];H−1(Td)) and satisfies the duality estimate

‖z(T )‖2
H−1(Td) +

∫

QT

µz2 ≤ ‖z0‖2
H−1(Td) + [z0]

2
Td

∫

QT

µ+
1

α

∫

QT

f 2. (2.4.2)

Remark 2.4.1. This duality estimate is stronger than the one stated in [97]: it contains a (sin-

gular) source term and allows a uniform-in-time control of the H−1(Td) norm.

Proof. The proof of existence and uniqueness is exactly the same as [97, Theorem 3]: fol-
lowing the naming of this article, z is the unique dual solution of (2.4.1). For this z, the
regularity C([0, T ];H−1(Td)) is obtained classically from the belongings z ∈ L2(QT ) and
∂tz ∈ L2([0, T ];H−2(Td)), which come from the equation itself. We can thus focus here on
the duality estimate which needs to be proven only in the case when every function involved
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in (2.4.2) is smooth, in the sense that they areC∞. Indeed, the assumptions on the data give us
a smooth sequence (µn, zn0 , fn)n∈N converging to (µ, z0, f) in L1(QT ) ×H−1(Td) × L2(QT ),
with a uniform bound for the first component. Let’s call (zn)n∈N the corresponding sequence
of solutions. Note that, by parabolic regularity, the zn’s are also smooth. Then, if the duality
estimate (2.4.2) is proved in the smooth setting, we get (up to some subsequence) weak(-⋆)
convergence of (zn)n∈N, in L∞([0, T ];H−1(Td)) ∩ L2(QT ). But, by uniqueness of the target
equation, the only possible limit point is precisely z, the solution of (2.4.1). The whole se-
quence (zn)n converges therefore weakly(-⋆) towards z, and (2.4.2) is recovered by the usual
semi-continuity argument for weak convergence.

So, without loss of generality, we assume now that µ, z0, f and z are smooth. This allows
to justify rigorously the following computations. For any functionw defined onTd and having
zero average there exists a unique function φ of zero average satisfying ∆φ = w (which is
easily seen via the Fourier coefficients). In particular, for any t ∈ [0, T ] there exists a unique
φ(t) of vanishing mean such that −∆φ(t) = z(t) − [z(t)]Td . By integrating the Kolmogorov
equation we get

d

dt
[z(t)]Td = 0,

so that [z(t)]Td = [z0]Td and −∂t∆φ = ∂tz. In particular, we have by integration by parts
∫

Td
φ(t) ∂tz(t) =

1

2

d

dt

∫

Td
|∇φ(t)|2.

Therefore, multiplying equation (2.4.1) by φ and using integration by parts

1

2

d

dt

∫

Td
|∇φ(t)|2 +

∫

Td
µz(z − [z0]Td) = −

∫

Td
(z − [z0]Td)f.

Integrating in time and using Young’s inequality for the right hand side, we get

1

2

∫

Td
|∇φ(T )|2 +

∫

QT

µz2 ≤
∫

QT

µz[z0]Td +
1

2

∫

Td
|∇φ(0)|2

+
1

2

∫

QT

(z − [z0]Td)2µ+
1

2

∫

QT

f 2

µ
,

and thus, using µ ≥ α > 0,
∫

Td
|∇φ(T )|2 +

∫

QT

µz2 ≤
∫

Td
|∇φ(0)|2 + [z0]

2
Td

∫

QT

µ+
1

α

∫

QT

f 2.

Noticing that ‖z(t)‖Ḣ−1(Td) = ‖z(t) − [z0]Td‖H−1(Td) = ‖∇φ(t)‖2, once we add [z0]Td to each

side of the inequality to get the full H−1(Td) norms, the proof is over.

In Subsection 2.4.4, we will give (in the discrete setting) variants of the previous duality
lemma which include in the r.h.s. some error term, which is possibly singular in the time vari-
able. Being able to take into account those error terms will be crucial in the final asymptotic
limit studied in Section 2.5. However, already in its current form, the previous duality lemma is
a valuable piece of information. We highlight this with an application of this lemma: the proof
of Theorem 2.1, which applies to the conservative SKT system (2.1.1) that we consider here
with (u0, v0) as initial data. We recall the definition of the affine functions µi(x) := di + aijx
for i, j = 1, 2, so that (2.1.1) rewrites

{
∂tu− ∆(µ1(v)u) = 0,

∂tv − ∆(µ2(u)v) = 0.
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In particular, we recover the framework of Lemma 2.4.1, as soon as v and u are bounded and
non-negative.

Proof of Theorem 2.1. Let’s introduce z := u− u and w := v − v, so that, by substraction

∂tz − ∆(µ1(v)z) = ∆f,

∂tw − ∆(µ2(u)w) = ∆g,

where f := a12u(v − v) and g := a21v(u− u). Since u and v are bounded and non-negative,
we recover the structure of Lemma 2.4.1 and we get

‖z(T )‖2
H−1(Td) + d1

∫

QT

z2 ≤ ‖z0‖2
H−1(Td) + [z0]

2
Td

∫

QT

µ1(v) +
a2

12

d1

‖u‖2
L∞(QT )

∫

QT

w2,

‖w(T )‖2
H−1(Td) + d2

∫

QT

w2 ≤ ‖w0‖2
H−1(Td) + [w0]2

Td

∫

QT

µ2(u) +
a2

21

d2

‖v‖2
L∞(QT )

∫

QT

z2,

since infQT
µi ≥ di, |f | ≤ a12|w|‖u‖L∞(QT ) and |g| ≤ a21|z|‖v‖L∞(QT ). By combining the

two inequalities we infer

‖z(T )‖2
H−1(Td) + d1

∫

QT

z2 ≤ ‖z0‖2
H−1(Td) + [z0]

2
Td

∫

QT

µ1(v)

+
a2

12

d1d2

‖u‖2
L∞(QT )

(
‖w0‖2

H−1(Td) + [w0]
2
Td

∫

QT

µ2(u)
)

+ d1

(
a12a21

d1d2

)2

‖u‖2
L∞(QT )‖v‖2

L∞(QT )

∫

QT

z2.

In particular, if we want to absorb the last term of the r.h.s. in the l.h.s. the inequality that
we need is exactly the smallness condition (2.2.5). If the later is satisfied, and if we allow the
symbol . to depend on di, aij, ‖u‖L∞(QT ) and ‖v‖L∞(QT ), we have actually established

‖z(T )‖2
H−1(Td) +

∫

QT

z2 . ‖z0‖2
H−1(Td) + ‖w0‖2

H−1(Td)

+ [z0]
2
Td

∫

QT

µ1(v) + [w0]
2
Td

∫

QT

µ2(u).

Since the previous computation is still valid replacing T by any t ∈ [0, T ], we have in fact

|||z|||2T . ‖z0‖2
H−1(Td) + ‖w0‖2

H−1(Td) + [z0]
2
Td

∫

QT

µ1(v) + [w0]
2
Td

∫

QT

µ2(u).

Exchanging the roles (z, u, v, u, v) ↔ (w, v, u, v, u), the previous right hand side remains
unchanged: we have exactly the same estimate for ‖w‖2

T on the left hand side. The proof is
over once we notice that

∫
QT
µ1(v) = T

∫
Td µ1(v0) and

∫
QT
µ2(v) = T

∫
Td µ2(u0), since the

space integrals of u and v are conserved through time.

2.4.2 Reconstruction operators

As explained in the previous paragraph, we plan now to transfer the previous duality and
stability estimates into a discrete setting. The purpose is to be able to use these results on the
semi-discrete system (2.2.2). We will have to manipulate several norms on R

M , reminiscent
of classical function spaces of the continuous variable. As the number of points M of the
discretization will be sent to infinity, it will be crucial to have estimates which do not depend
on this parameter. In particular, the following notion of uniform equivalence will be relevant.
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Definition 2.4.1. Given norms P1,M and P2,M on R
M , we say that P1,M and P2,M are uni-

formly equivalent if there exists α, β > 0 such that

∀M ∈ N, ∀u ∈ R
M , αP1,M(u) ≤ P2,M(u) ≤ βP1,M(u).

If this is satisfied, we write P1,M ∼ P2,M .

Given a discretization like (2.2.7), there are several ways to build a function defined on the
whole torus T. The generic approach is to fix a profile θ (generally compactly supported) and
consider

x 7→
M∑

k=1

θ (M(x− xk))uk. (2.4.3)

Definition 2.4.2. For u ∈ R
M and θ := 1(−1,0], the function defined by (2.4.3) is a step

function that we denote σM(u). For u ∈ R
M and θ(z) := (1 − |z|)+, the function defined by

(2.4.3) is a piecewise linear function that we denote πM(u). The corresponding vector space
of functions (step and continuous piecewise linear functions respectively) are denoted

sM :=
{
σM(u) : u ∈ R

M
}

and pM :=
{
πM(u) : u ∈ R

M
}
.

If t 7→ u(t) is a map from [0, T ] toRM , we simply denote by σM(u) and πM(u) the respective
maps from [0, T ] to sM and pM respectively.

Proposition 2.4.1. For u ∈ R
M we have ‖u‖∞ = ‖σM(u)‖L∞(T) = ‖πM(u)‖L∞(T) and for

p < ∞ we have ‖u‖p,M = ‖σM(u)‖Lp(T) ≥ ‖πM(u)‖Lp(T). For u ∈ R
M
+ we have furthermore

‖σM(u)‖Lp(T) ∼ ‖πM(u)‖Lp(T) (with a small abuse of notation, because the uniform equivalence

holds only on a positive cone).

Proof. We first notice 1[−1,0] ⋆ 1[0,1](x) =
∫ 0

−1 1[0,1](x − y) dy = (1 − |x|)+. In particular, we
infer for ϕ(x) = (1 − |x|)+

ϕk,M(x) := ϕ (M(x− xk)) =
∫

1[−1,0] (M(x− xk) − y) 1[0,1](y) dy

= M
∫

1[−1,0] (M(x− z − xk)) 1[0,1](Mz) dz

= θk,M ⋆ ρM(x),

where θk,M(x) = 1[−1,0] (M(x− xk)) and ρM(x) = M1[0,1](Mx). We have thus established
πM(u) = σM(u) ⋆ ρM where, (ρM)M is an approximation of the identity. Therefore, we have
‖πM(u)‖Lp(T) ≤ ‖σM(u)‖Lp(T).

Conversely, assume u ≥ 0. By definition we have

πM(u) =
M∑

k=1

ukϕk,M ,

with ϕk,M(x) = ϕ(M(x − xk)) and ϕ(x) = (1 − |x|)+. Recall that for any vector w ∈ R
M ,

one hasM1/p‖w‖p,M ≤ M‖w‖1,M . In particular, using uk ≥ 0, we infer at any point x ∈ T

πM(u)(x) =
M∑

k=1

ukϕk,M ≥
(

M∑

k=1

upkϕ
p
k,M(x)

)1/p

,
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from where we conclude

‖πM(u)‖Lp(T) ≥ M‖u‖pp,M‖ϕ‖pLp(T) = ‖σM(u)‖pLp(T)

2

p+ 1
,

using that ‖ϕk,M‖pLp(T) = 1
M

‖ϕ‖pLp(T) = 1
M

2
p+1

.

We end this paragraph with an estimate that belongs to the folklore of the finite element
method and omit the proof. It is usually proved using the Bramble-Hilbert lemma, but since
here we focus here on the one dimensional case, it is also possible to give a direct, elementary
proof.

Lemma 2.4.2. For ϕ ∈ H2(T) andM ∈ N
∗ there exists a unique ιM(ϕ) ∈ pM matching the

values of ϕ on the grid (xk)1≤k≤M . It satisfies

‖ϕ− ιM(ϕ)‖Ḣ−1(T) .M−2‖ϕ‖Ḣ2(T),

‖ϕ− ιM(ϕ)‖L2(T) .M−2‖ϕ‖Ḣ2(T),

‖ϕ− ιM(ϕ)‖Ḣ1(T) .M−1‖ϕ‖Ḣ2(T),

where the symbol . means that the inequality holds up to a constant independent of ϕ andM .

2.4.3 Prerequisites on the discrete Laplacian matrix

We give in this paragraph several useful properties linked to the discrete periodic Lapla-
cian matrix introduced in (2.2.3). This matrix ∆M is not invertible, we have the relations
Ker(∆M) = Span

R
(1M) and Ran(∆M) = Ker(∆M)⊥ = {u ∈ R

M : [u]M = 0}. We refer to
Subsection 2.1.2 for the definition of 1M and [·]M .

Definition 2.4.3. For each u ∈ Ran(∆M) there exists a unique Φ ∈ Ran(∆M) such that
u = ∆MΦ. By a small abuse of notation we write then Φ = ∆−1

M u.

Proposition 2.4.2. The matrix −∆M is symmetric non-negative and admits therefore a unique

symmetric non-negative square root that we denote
√

−∆M .

Proof. The proof is standard and we simply note that the spectrum of −∆M is given by

{
M2

(
2 − 2 cos

(
2πk

M

))
: 0 ≤ k ≤ M − 1

}
=

{
4M2 sin2

(
πk

M

)
: 0 ≤ k ≤ M − 1

}
⊂ R+,

which establishes the non-negativeness.

Proposition 2.4.3. For any Φ ∈ R
M we have the estimate ‖Φ − [Φ]M‖2,M ≤ ‖∆MΦ‖2,M .

Remark 2.4.2. This is the discrete counterpart of the following consequence of the Poincaré-

Wirtinger inequality ‖ϕ− [ϕ]T‖L2(T) . ‖∆ϕ‖L2(T), for ϕ ∈ H2(T).

Proof. Using the identity sin (πk/M) = sin (π(M − k)/M), the spectrum of −∆M that we
identified in the proof of Proposition 2.4.2 rewrites

{
4M2 sin2

(
πk

M

)
: 0 ≤ k ≤ M − 1

2

}
.
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In particular, using the inequality sin(x) ≥ 2
π
x valid on [0, π/2] we see that apart from 0 all

the eigenvalues of−∆M are lower-bounded by 16. −∆M being symmetric, its diagonalization
can be written in an orthonormal basis of RM that we denote (wk)0≤k≤M−1, with w0 being
the (only) element of this set belonging to Ker(∆M). We have therefore

‖Φ − [Φ]M‖2
2,M =

1

M

M−1∑

k=1

|(Φ|wk)|2 ≤ 1

M

1

162

M−1∑

k=1

λ2
k|(Φ|wk)|2 =

1

162
‖∆MΦ‖2

2,M .

Before introducing an analog of the negative Sobolev norm, we recall a standard compu-
tation linked with the Lagrange finite elements method for which we need to introduce the
following matrix

BM :=




2
3

1
6

0 · · · 1
6

1
6

2
3

1
6

· · · 0
...

. . . . . . . . .
...

0 · · · 1
6

2
3

1
6

1
6

· · · 0 1
6

2
3



. (2.4.4)

Proposition 2.4.4. For w ∈ R
M we have

− (w|∆Mw)M =
∫

T

|∇πM(w)(x)|2 dx, (2.4.5)

where we recall that (·|·)M denotes the rescaled inner product on R
M (see Subsection 2.1.2). Fur-

thermore, for any u ∈ R
M we have

BMu = −∆Mw ⇐⇒ ∀ψ ∈ pM ,
∫

T

ψ(x)πM(u)(x) dx =
∫

T

∇ψ(x) · ∇πM(w)(x) dx.

(2.4.6)

Proof. pM is the vector space spanned by the functions ϕk,M(x) := ϕ(M(x − xk)) where
ϕ(x) := (1 − |x|)+, so the r.h.s. of the equivalence (2.4.6) boils down to

∫

T

ϕk,M(x)πM(u)(x) dx =
∫

T

∇ϕk,M(x) · ∇πM(w)(x) dx,

for k ∈ {1, . . . ,M}, and one checks that
∫

T

ϕi,M(x)ϕj,M(x) dx =
1

M

(
2

3
1i=j +

1

6
1|i−j|=1

)
,

∫

T

∇ϕi,M(x) · ∇ϕj,M(x) dx = M(21i=j − 1|i−j|=1),

where the equality |i−j| = 1 has to be understood moduloM . Expanding πM(u) and πM(w)
on the basis (ϕk,M)1≤k≤M , we get the equivalence (2.4.6). Formula (2.4.5) is obtained in the
same fashion, expanding πM(w) on the basis.

We observe that u 7→ −(u|∆−1
M u)M is non-negative, due to the symmetry and non-

negativity of −∆M (see Proposition 2.4.2). For u ∈ R
M , recalling that ũ = u − [u]M1M ,

we have then −(ũ|∆−1
M ũ)M ≥ 0. This enables us to introduce the following norm ‖ · ‖−1,M ,

which is a discrete counterpart of the H−1(T) norm.

Definition 2.4.4. For u ∈ R
M , we define

‖u‖−1,M :=
√

−(ũ|∆−1
M ũ)M + [u]2M .

This is a norm on R
M .
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Proposition 2.4.5. We have the equivalence

M‖πM(·)‖H−1(T) + ‖πM(·)‖L2(T) ∼ M‖ · ‖−1,M + ‖πM(·)‖L2(T). (2.4.7)

Moreover for any u ∈ R
M ,

‖u‖−1,M ≤ ‖u‖2,M . (2.4.8)

Remark 2.4.3. The above definition is reminiscent of the equality

‖ϕ− [ϕ]T‖2
H−1(T) = −

∫

T

(ϕ− [ϕ]T)ψ,

where ψ is the unique solution of −∆ψ = ϕ− [ϕ]T.

Proof. We first observe the uniform equivalences

‖πM(u)‖L2(T) ∼ ‖πM(ũ)‖L2(T) + |[u]M |,
‖πM(u)‖H−1(T) ∼ ‖πM(ũ)‖H−1(T) + |[u]M |,

‖u‖−1,M ∼ ‖ũ‖−1,M + |[u]M |.

Without loss of generality we can therefore establish the uniform equivalence (2.4.7) under
the assumption [u]M = 0.

We have ‖u‖2
−1,M = −(u|∆−1

M u)M = −(∆MΦ,Φ)M where Φ := −∆−1
M u. Thanks to

Proposition 2.4.4 we have therefore

‖u‖2
−1,M = ‖∇πM(Φ)‖2

L2(T). (2.4.9)

The matrix BM defined by (2.4.4) satisfies 6BM = M−2∆M + 6IM , so it commutes with ∆M .
In particular, the equation u = −∆MΦ is strictly equivalent to

BMu = −∆Mw,

where w := BMΦ. We obtain from Proposition 2.4.4 that this last equation is exactly equiv-
alent to

∀ψ ∈ pM ,
∫

T

ψ(x)πM(u)(x) dx =
∫

T

∇ψ(x) · ∇πM(w)(x) dx.

Since we assumed [u]M = 0, we also have that [πM(u)]T = 0 and we can therefore solve
−∆ϕM = πM(u), for a unique ϕM ∈ Ḣ2(T). We have then, by integration by parts,

∀ψ ∈ pM ,
∫

T

ψ(x)πM(u)(x) dx =
∫

T

∇ψ(x) · ∇ϕM(x) dx.

In particular, we have established

∀ψ ∈ pM ,
∫

T

∇ψ(x) · (∇πM(w)(x) − ∇ϕM(x)) dx = 0,

and this equality holds in particular for ψ = πM(w). We deduce that for each ψ ∈ pM

∫

T

|∇πM(w)(x) − ∇ϕM(x)|2 dx

=
∫

T

(∇πM(w)(x) − ∇ϕM(x) + ∇ψ(x) − ∇πM(w)(x)) · (∇πM(w)(x) − ∇ϕM(x)) dx

=
∫

T

(∇ψ(x) − ∇ϕM(x)) · (∇πM(w)(x) − ∇ϕM(x)) dx,
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and we get by the Cauchy-Schwarz inequality

‖∇πM(w) − ∇ϕM‖L2(T) ≤ inf
ψ∈pM

‖∇ψ − ∇ϕM‖L2(T).

Taking ψ = ιM(ϕ) and using successively ‖∇f‖L2(T) = ‖f‖Ḣ1(T), by the third estimate of
Lemma 2.4.2, we get

‖∇πM(w) − ∇ϕM‖L2(T) ≤ ‖∇ιM(ϕ) − ∇ϕM‖L2(T)

= ‖ιM(ϕ) − ϕM‖Ḣ1(T)

.
1

M
‖ϕM‖Ḣ2(T),

where we refer to Subsection 2.1.2 for the definition of the homogeneous norms ‖ · ‖Ḣs(T).
Recalling that −∆ϕM = πM(u), we have the equalities ‖πM(u)‖Ḣ−1(T) = ‖∇ϕM‖L2(T) and
‖ϕM‖Ḣ2(T) = ‖∆ϕM‖L2(T) = ‖πM(u)‖L2(T). All in all, using the reversed triangular inequal-
ity we have established

∣∣∣∣‖∇πM(w)‖L2(T) − ‖πM(u)‖Ḣ−1(T)

∣∣∣∣ .
1

M
‖πM(u)‖L2(T).

To conclude, due to (2.4.9), it is sufficient to prove that ‖∇πM(w)‖L2(T) ∼ ‖∇πM(Φ)‖L2(T),
where we recall w = BMΦ. This last equality implies in particular

πM(w) =
2

3
πM(Φ) +

1

6
τ 1

M
πM(Φ) +

1

6
τ− 1

M
πM(Φ),

where we recall for a ∈ R the translation operator τa defined by τaf(x) = f(x+ a). We have
therefore

∇πM(w) =
2

3
∇πM(Φ) +

1

6
τ 1

M
∇πM(Φ) +

1

6
τ− 1

M
∇πM(Φ). (2.4.10)

Both ∇πM(w) and ∇πM(Φ) belong to sM(T) i.e. are respectively equal to some functions
σM(λ) and σM(γ), for some λ,γ ∈ R

M .

Note thatBM is uniformlywell-conditioned: the spectral radii ofBM andB−1
M are bounded

independently ofM . This can be seen writing BM = 2
3
IM + 1

6
JM , where JM is the matrix

JM :=




0 1 0 · · · 1
1 0 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 0 1
1 · · · 0 1 0



.

The eigenvalues of JM are
{
2 cos

(
2πk
M

)
: k ∈ {0, . . . ,M − 1}

}
, so the spectrum of BM lies

within [1/3, 1].

The identity (2.4.10) shows that λ = BMγ, and we have just controlled the euclidean
subordinate norms of BM and B−1

M : we have ‖γ‖2,M ∼ ‖BMγ‖2,M , and therefore we ob-
tain ‖∇πM(w)‖L2(T) ∼ ‖∇πM(Φ)‖L2(T), thanks to Proposition 2.4.1, concluding the proof of
(2.4.7).

Let us turn to the proof of (2.4.8). Using Proposition 2.4.3, ‖∆−1
M ũ‖2,M ≤ ‖ũ‖2,M and

Cauchy-Schwarz inequality entails that −(ũ|∆−1
M ũ)M ≤ ‖ũ‖2

2,M . By Pythagore’s identity,
we obtain (2.4.8), since u = ũ + [u]M1M and ‖[u]M1M‖2

2,M = [u]2M .
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Proposition 2.4.6. For w ∈ C1([0, T ]; Ran(∆M)), we have

−(∆−1
M w(t)|w′(t))M =

1

2

d

dt
‖w(t)‖2

−1,M ,

where as usual (·|·)M denotes the rescaled inner-product on R
M .

Proof. If v(t) := −∆−1
M w(t), we have ∆Mv(t) = −w(t) and therefore ∆Mv′(t) = −w′(t),

with still [v′(t)]M = 0. We then have v′(t) = −∆−1
M w′(t). We infer, by symmetry of

√
−∆M ,

−(∆−1
M w(t)|w′(t))M = −

(
v(t)|∆Mv′(t)

)
M

=
(√

−∆Mv(t)|
√

−∆Mv′(t)
)

M

=
1

2

d

dt

(√
−∆Mv(t)|

√
−∆Mv(t)

)

M

= −1

2

d

dt
(v(t)|∆Mv(t))M =

1

2

d

dt
‖w(t)‖2

−1,M .

2.4.4 The discrete duality lemma

We are now all set to state and prove the discrete duality lemmas. These estimates will apply
to linear differential equations with source terms. We first consider the case when the source
term is continuous and then the case when it is not regular, respectively Lemma 2.4.3 and
2.4.4. We need to combine them to deal with the approximation of the stochastic process and
this is achieved in Proposition 2.4.7.

Lemma 2.4.3. Consider µ ∈ C([0, T ];RM
>0) so that each component is uniformly (w.r.t. to time

and index) lower bounded by a positive constant α > 0. Assume that z ∈ C1([0, T ];RM) solves

z′(t) = ∆M

[
z(t) ⊙ µ(t) + f(t)

]
+ r(t),

where f and r are two functions in C([0, T ];RM). Then we have the following estimate, for any

parameter a > 0

sup
t∈[0,T ]

‖z(t)‖2
−1,M +

∫

QT

σM(z ⊙ µ1/2)(s, x)2 ds dx

≤ (1 + a)
[
‖z(0)‖2

−1,M + [z(0)]2M

∫ T

0
[µ(s)]M ds+

1

α

∫

QT

σM(f)(s, x)2 ds dx
]

+ (1 + a−1)

(
T + T

∫ T

0
[µ(s)]M ds+

1

α

)∫

QT

σM(r)(s, x)2 ds dx, (2.4.11)

where the Hadamard product ⊙ and the square-root µ1/2 are defined in Subsection 2.1.2.

This is a counterpart of Lemma 2.4.1. In the case, r = 0, one can get rid of a.

Proof. We follow the proof of the continuous case, Lemma 2.4.1. Since Ran(∆M) ⊆ 1
⊥
M , we

claim

[z(t)]′M =
1

M
(z′(t),1M) = [r(t)]M ,
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and therefore

[z(t)]M = [z(0)]M +
∫ t

0
[r(s)]M ds. (2.4.12)

Recalling the definition z̃(t) := z(t) − [z(t)]M we also have

z′(t) = z̃′(t) + [r(t)]M .

Now, taking the inner-product with the vector ∆−1
M z̃(t) in the differential equation solved

by z, we get, using the symmetry of ∆M and the fact ∆−1
M z̃(t) ∈ Span

R
(1M)⊥ (see Subsec-

tion 2.4.3),

−
(

∆−1
M z̃(t)

∣∣∣z̃′(t)
)

M
+
(

z̃(t)
∣∣∣z(t) ⊙ µ(t)

)

M
= −

(
z̃(t)

∣∣∣f(t) + ∆−1
M r̃(t)

)

M
.

We use Proposition 2.4.6 to identify the first term of the l.h.s. and get

1

2

d

dt
‖z̃(t)‖2

−1,M +
(

z̃(t)
∣∣∣z(t) ⊙ µ(t)

)

M
= −

(
z̃(t)

∣∣∣f(t) + ∆−1
M r̃(t)

)

M
. (2.4.13)

Using that the entries ofµ(t) are all lower-bounded byα > 0we have the following inequality
(see Subsection 2.1.2 for the notation ⊘), for any vector g ∈ R

M

∣∣∣∣
(

z̃(t)
∣∣∣g
)

M

∣∣∣∣ =
∣∣∣∣
(

z̃(t) ⊙ µ(t)1/2
∣∣∣g ⊘ µ(t)1/2

)

M

∣∣∣∣

≤ ‖z̃(t) ⊙ µ(t)1/2‖2,M‖g ⊘ µ(t)1/2‖2,M

≤ 1√
α

‖z̃(t) ⊙ µ(t)1/2‖2,M‖g‖2,M

≤ 1

2
‖z̃(t) ⊙ µ(t)1/2‖2

2,M +
1

2α
‖g‖2

2,M

=
1

2

(
z̃(t)|z̃(t) ⊙ µ(t)

)

M
+

1

2α
‖g‖2

2,M ,

where we used Young’s inequality. We use this estimate in (2.4.13) with g := f(t) + ∆−1
M r̃(t)

1

2

d

dt
‖z̃(t)‖2

−1,M +
(

z̃(t)
∣∣∣∣z(t) ⊙ µ(t)

)

M

≤ 1

2

(
z̃(t)

∣∣∣∣z̃(t) ⊙ µ(t)
)

M
+

1

2α
‖f(t) + ∆−1

M r̃(t)‖2
2,M ,

which, after expanding the definition z̃(t) := z(t) − [z(t)]M , becomes

1

2

d

dt
‖z̃(t)‖2

−1,M +
1

2

(
z(t)

∣∣∣∣z(t) ⊙ µ(t)
)

M

≤ 1

2
[z(t)]2M [µ(t)]M +

1

2α
‖f(t) + ∆−1

M r̃(t)‖2
2,M .

Using Proposition 2.4.3 to infer ‖∆−1
M r̃(t)‖2,M ≤ ‖r̃(t)‖2,M ≤ ‖r(t)‖2,M and the convex

inequality (x+ y)2 ≤ (1 + a)x2 + (1 + a−1)y2 we eventually get, after integration in time

‖z̃(t)‖2
−1,M +

∫ t

0
‖z(s) ⊙ µ(s)1/2‖2

2,M ds

≤ ‖z̃(0)‖2
−1,M +

∫ t

0
[z(s)]2M [µ(s)]M ds

+
1 + a

α

∫ t

0
‖f(s)‖2

2,M ds+
1 + a−1

α

∫ t

0
‖r(s)‖2

2,M ds. (2.4.14)
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On the other hand, using once more the above convex inequality, we claim from (2.4.12) and
Cauchy-Schwarz inequality that

[z(t)]2M ≤ (1 + a)[z(0)]2M + (1 + a−1)T
∫ T

0
[r(s)]2M ds.

Summing the two last inequalities we obtain (2.4.11) since for any vector u ∈ R
M we have

‖u‖2,M = ‖σM(u)‖L2(T).

Lemma 2.4.4. Consider µ ∈ C([0, T ];RM
>0) so that each component is uniformly (w.r.t. to time

and index) lower bounded by a positive constant α > 0. Assume that zd : [0, T ] → R
M solves

zd(t) =
∫ t

0
∆M

[
zd(s) ⊙ µ(s)

]
ds+ xd(t), (2.4.15)

where xd is any càdlàg RM valued function over [0, T ]. Then we have the following estimate

sup
t∈[0,T ]

‖zd(t)‖2
−1,M +

∫

QT

σM(zd ⊙ µ1/2)(s, x)2 ds dx

. sup
t∈[0,T ]

‖xd(t)‖2
−1,M +

∫ T

0
[µ(s)]M [xd(s)]

2
M ds, (2.4.16)

where the constant behind . is universal and µ1/2 denotes the vector map whose entries are the

square-roots of the ones of µ.

Remark 2.4.4. In this lemma we consider the (discrete) Kolmogorov equation with a singular

source term xd. The mere integrability of this term forbids to differentiate in time this equation,

so we cannot proceed as we have done in the proof Lemma 2.4.3.

Proof. Using (2.4.15), we first remark that [zd]M = [xd]M and therefore

z̃d(t) =
∫ t

0
∆M

[
zd(s) ⊙ µ(s)

]
ds+ x̃d(t).

We take as usual the inner product with −∆−1
M z̃d(t) and use symmetry to write

−
(

∆−1
M z̃d(t)

∣∣∣z̃d(t)
)

M
+
∫ t

0

(
z̃d(s)

∣∣∣zd(s) ⊙ µ(s)
)

M
ds = −

(
∆−1
M z̃d(t), x̃d(t)

)

M
.

Using the definition of the ‖ · ‖−1,M norm (see Proposition 2.4.5) and that z̃d = zd − [zd]M we
infer

‖z̃d(t)‖2
−1,M +

∫ t

0
‖zd(s) ⊙ µ(s)1/2‖2

2,M ds

=
∫ t

0
[zd(s)]M

(
1M |zd(s) ⊙ µ(s)

)

M
ds−

(
∆−1
M z̃d(t), x̃d(t)

)

M
.

The first term of the r.h.s. can be handled using Young’s inequality to absorb a part of it in
the l.h.s. and get

‖z̃d(t)‖2
−1,M +

∫ t

0
‖zd(s) ⊙ µ(s)1/2‖2

2,M ds

.
∫ t

0
[zd(s)]

2
M‖µ(s)1/2‖2

2,M ds−
(

∆−1
M z̃d(t), x̃d(t)

)

M
. (2.4.17)
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Now, defining ΦM := ∆−1
M z̃d and ΨM := ∆−1

M x̃d we have that using Cauchy-Schwarz’s
inequality, the definition of the ‖ · ‖−1,M norm and the symmetry of the discrete laplacian
matrix

−
(

∆−1
M z̃d(t)

∣∣∣ x̃d(t)
)

M
= −

(
ΦM(t)

∣∣∣ ∆MΨM(t)
)

M

=
(√

−∆MΦM(t)
∣∣∣
√

−∆MΨM(t)
)

M

≤ ‖
√

−∆MΦM(t)‖2,M‖
√

−∆MΨM(t)‖2,M

= ‖z̃d(t)‖−1,M‖x̃d(t)‖−1,M .

Pluging this estimate in (2.4.17), we have

‖z̃d(t)‖2
−1,M +

∫ t

0
‖zd(s) ⊙ µ(s)1/2‖2

2,M ds .
∫ t

0
[zd(s)]

2
M‖µ(s)1/2‖2

2,M ds+ ‖x̃d(t)‖2
−1,M .

Recalling that [zd]
2
M = [xd]

2
M and adding this term to the inequality, we get (2.4.16).

Proposition 2.4.7. Consider µ ∈ C([0, T ];RM
>0) so that each component is uniformly (w.r.t.

to time and index) lower bounded by a positive constant α > 0. Assume that z : [0, T ] → R
M

solves

z(t) = z(0) +
∫ t

0
∆M

[
z(s) ⊙ µ(s) + f(s)

]
ds+ x(t),

where f is a function in C([0, T ];RM) and x = xr + xd, with the regular component xr ∈
C1([0, T ],RM) and the singular component xd is any càdlàg R

M valued function over [0, T ].
Then we have the following estimate, for any a > 0,

sup
t∈[0,T ]

‖z(t)‖2
−1,M +

∫

QT

σM(z ⊙ µ1/2)(s, x)2 ds dx

≤ (1 + a)2

[
‖z(0)‖2

−1,M + [z(0)]2M

∫ T

0
[µ(s)]Mds+

1

α

∫

QT

σM(f)(s, x)2 ds dx

]

+ (1 + a)(1 + a−1)

(
T + T

∫ T

0
[µ(s)]Mds+

1

α

)∫

QT

σM(x′
r)(s, x)2 ds dx

+ C(1 + a−1)
[

sup
t∈[0,T ]

‖xd(t)‖2
−1,M +

∫ T

0
[µ(s)]M [xd(s)]

2
M ds

]
, (2.4.18)

where C > 0 is a constant.

Proof. Let’s define zr ∈ C1([0, T ];RM) as the unique solution of

zr(t) = z(0) +
∫ t

0
∆M

[
zr(s) ⊙ µ(s) + f(s)

]
ds+ xr(t),

which, since xr is continuously differentiable, is equivalent to the Cauchy problem

z′
r(t) = ∆M

[
zr(t) ⊙ µ(t) + f(t)

]
ds+ x′

r(t), (2.4.19)

zr(0) = z(0). (2.4.20)

Now, defining zd := z − zr, one readily checks that it solves

zd(t) =
∫ t

0
∆M

[
zd(s) ⊙ µ(s)

]
ds+ xd(t).

48



The Cauchy problem (2.4.19) – (2.4.20) is exactly the one of Lemma 2.4.3, with r(t) := x′
r(t),

we therefore infer from this very lemma, for any a > 0

sup
t∈[0,T ]

‖zr(t)‖2
−1,M +

∫

QT

σM(zr ⊙ µ1/2)(s, x)2 ds dx

≤ (1 + a)

[
‖z(0)‖2

−1,M + [z(0)]2M

∫ T

0
[µ(s)]M ds+

1

α

∫

QT

σM(f)(s, x)2 ds dx

]

+ (1 + a−1)

(
T + T

∫ T

0
[µ(s)]M ds+

1

α

)∫

QT

σM(x′
r)(s, x)2 ds dx.

Now, since z = zd + zr, combining the triangular inequality and the convex inequality
(x+ y)2 ≤ (1 + a)x2 + (1 + a−1)y2, implies

sup
t∈[0,T ]

‖z(t)‖2
−1,M +

∫

QT

σM(z ⊙ µ1/2)(s, x)2 ds dx

≤ (1 + a)

[
sup
t∈[0,T ]

‖zr(t)‖2
−1,M +

∫

QT

σM(zr ⊙ µ1/2)(s, x)2 ds dx

]

+ (1 + a−1)

[
sup
t∈[0,T ]

‖zd(t)‖2
−1,M +

∫

QT

σM(zd ⊙ µ1/2)(s, x)2 ds dx

]
,

so that the proof follows from Lemma 2.4.4, which focuses on the non-regular component.

2.5 Quantitative estimates and proof of Theorem 2.2

Let u, v be a C1([0, T ];C4(T)) solution of the system (2.1.1). We have, by Taylor expansion,
for any h > 0 and C4(T) function f

τhf = f + hf ′ +
h2

2!
f ′′ +

h3

3!
f ′′′ + Oh→0(h

4),

τ−hf = f − hf ′ +
h2

2!
f ′′ − h3

3!
f ′′′ + Oh→0(h

4),

where Oh→0 refers to the L∞(QT ) norm. We have therefore

τhf + τ−hf − 2f

h2
= f ′′ + Oh→0(h

2).

In particular, denoting by ûM(t) and v̂M(t) the respectives values of u and v at the points
(t, xk) for k = 1, . . . ,M , we have the following discrete system:

∂tû
M(t) = ∆M

[
d1û

M(t) + a12û
M(t) ⊙ v̂M(t)

]
+ rM(t),

∂tv̂
M(t) = ∆M

[
d1v̂

M(t) + a21v̂
M(t) ⊙ ûM(t)

]
+ sM(t),

with

‖rM(t)‖∞ + ‖sM(t)‖∞ .M−2, (2.5.1)

uniformly for t on compact intervals.
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On the other hand, we recall that our stochastic process satisfies

UM,N(t) = UM,N(0) +
∫ t

0
∆M

(
d1U

M,N(s) + a12U
M,N(s) ⊙ V M,N(s)

)
ds+ MM,N(t),

V M,N(t) = V M,N(0) +
∫ t

0
∆M

(
d2V

M,N(s) + a21U
M,N(s) ⊙ V M,N(s)

)
ds+ NM,N(t),

where MM,N is square integrable martingale whose quadratic variation is given by (2.3.3)
and NM,N satisfies similar properties. By symmetry, we can focus on the first species UM,N .
Denoting

ZM,N(t) = ûM(t) − UM,N(t), XM,N(t) =
∫ t

0
rM(s) ds− MM,N(t),

we have yet another system satisfied by these quantities

ZM,N(t) = ZM,N(0) +
∫ t

0
∆M

(
ZM,N(s) ⊙ Λ

M,N(s) + FM,N(s)
)

ds+ XM,N(t), (2.5.2)

where

Λ
M,N(t) = d11M + a12V

M,N(t),

WM,N(t) = v̂M(t) − V M,N(t),

FM,N(t) = a12û
M ⊙ WM,N(t).

We can now apply the discrete duality lemma developed in the previous section to control the
gap ZM,N . This is the core of the next result, which yields Theorem 2.2. For z : [0, T ] → R

M ,
let

|||z|||T,M :=

(
sup
t∈[0,T ]

‖z(t)‖2
−1,M + ‖σM(z)‖2

L2(QT )

)1/2

.

Proposition 2.5.1. Let u, v be a solution of C1 regularity in time and C4 regularity in space of

the system (2.1.1). If
a12a21

d1d2

‖u‖L∞(QT )‖v‖L∞(QT ) < 1,

then for any (M,N) ∈ N
2 such that N/M2 is large enough

E

(
|||ZM,N |||2T,M + |||WM,N |||2T,M

)

. |||ZM,N(0)|||2T,M(1 + [V M,N(0)]M) + |||WM,N(0)|||2T,M(1 + [UM,N(0)]M)

+
(
1 + T 2 + T 2[UM,N(0) + V M,N(0)]M

)
M−4 + TM2N−1.

(2.5.3)

Proof. We first observe that t 7→ [ΛM,N(t)]M is constant and we set

λ
M,N
T = T + T

∫ T

0
[ΛM,N(s)]Mds+

1

d1

= T + T 2(d1 + a12[V
M,N(0)]M) +

1

d1

.

By applying Proposition 2.4.7 with xd := −MM,N and

xr : t 7→
∫ t

0
rM(σ) dσ,
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we obtain for any a > 0 that

sup
t∈[0,T ]

‖ZM,N(t)‖2
−1,M +

∫

QT

σM
(
ZM,N ⊙ (ΛM,N)1/2

)
(s, x)2 dsdx

≤ (1 + a)2
(

‖ZM,N(0)‖2
−1,M + [ZM,N(0)]2M

∫ T

0
[ΛM,N(s)]M ds

+
1

d1

∫

QT

σM(FM,N)(s, x)2 dsdx
)

+ (1 + a)(1 + a−1)λM,N
T

∫

QT

σM(rM)(s, x)2 dsdx

+ C(1 + a−1)
(

sup
t∈[0,T ]

‖MM,N(t)‖2
−1,M +

∫ T

0
[ΛM,N(s)]M [MM,N(s)]2M ds

)
, (2.5.4)

for some constant C > 0. Moreover, since we have that ΛM,N
i ≥ d1 and |σM(FM,N)(s, x)| ≤

a12‖u‖L∞(QT )|σM(WM,N)(s, x)|, as ûM takes the values of u in the grid, we obtain

1

d1

sup
t∈[0,T ]

‖ZM,N(t)‖2
−1,M +

∫

QT

σM(ZM,N)(s, x)2 dsdx

≤ (1 + a)2

d1

(
‖ZM,N(0)‖2

−1,M + T [ZM,N(0)]2M [ΛM,N(0)]M

+
(a12‖u‖L∞(QT ))

2

d1

∫

QT

σM(WM,N)(s, x)2 dsdx
)

+
1

d1

(1 + a)(1 + a−1)λM,N
T

∫

QT

σM(rM)(s, x)2 dsdx

+
C

d1

(1 + a−1)
(

sup
t∈[0,T ]

‖MM,N(t)‖2
−1,M +

∫ T

0
[ΛM,N(s)]M [MM,N(s)]2M ds

)
.

As the roles of ZM,N and WM,N are symmetric in the previous inequality, we have a similar
estimate for WM,N . Thus, by setting

Γ
M,N(t) = d2 + a21U

M,N(t),

and

γ
M,N
T = T + T

∫ T

0
[ΓM,N(s)]Mds+

1

d2

= T + T 2(d2 + a21[U
M,N(0)]M) +

1

d2

,

we get

1

d2

sup
t∈[0,T ]

‖WM,N(t)‖2
−1,M +

∫

QT

σM(WM,N)(s, x)2 dsdx

≤ (1 + a)2

d2

(
‖WM,N(0)‖2

−1,M + T [WM,N(0)]2M [ΓM,N(0)]M

+
(a21‖v‖L∞(QT ))

2

d2

∫

QT

σM(ZM,N)(s, x)2 dsdx
)

+
1

d2

(1 + a)(1 + a−1)γM,N
T

∫

QT

σM(sM)(s, x)2 dsdx

+
C

d2

(1 + a−1)
(

sup
t∈[0,T ]

‖NM,N(t)‖2
−1,M +

∫ T

0
[ΓM,N(s)]M [NM,N(s)]2M ds

)
.
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Plugging now this inequality in the estimate for ZM,N gives us

1

d1

sup
t∈[0,T ]

‖ZM,N(t)‖2
−1,M +

∫

QT

σM(ZM,N)(s, x)2 dsdx

≤ (1 + a)2

d1

(
‖ZM,N(0)‖2

−1,M + T [ZM,N(0)]2M [ΛM,N(0)]M
)

+
(1 + a)4

d2

(
a12‖u‖L∞(QT )

d1

)2(
‖WM,N(0)‖2

−1,M + T [WM,N(0)]2M [ΓM,N(0)]M
)

+ (1 + a)4
(
a12a21‖u‖L∞(QT )‖v‖L∞(QT )

d1d2

)2 ∫

QT

σM(ZM,N)(s, x)2 dsdx

+
(1 + a)2

d2

(
a12‖u‖L∞(QT )

d1

)2

(1 + a−1)
(

(1 + a)γM,N
T

∫

QT

σM(sM)(s, x)2 dsdx

+ C
(

sup
t∈[0,T ]

‖NM,N(t)‖2
−1,M +

∫ T

0
[ΓM,N(s)]M [NM,N(s)]2M ds

))

+
1

d1

(1 + a)(1 + a−1)λM,N
T

∫

QT

σM(rM)(s, x)2 dsdx

+
C

d1

(1 + a−1)
(

sup
t∈[0,T ]

‖MM,N(t)‖2
−1,M +

∫ T

0
[ΛM,N(s)]M [MM,N(s)]2M ds

)
.

By using our assumption on the bound of ‖u‖L∞(QT )‖v‖L∞(QT ) and then fixing a to be small
enough, we can absorb the third term on the r.h.s. of the previous inequality in the l.h.s. in
order to recover the definition of ||| · |||T,M . Thus, letting . to depend on these parameters,
this yields

|||ZM,N |||2T,M . ‖ZM,N(0)‖2
−1,M + T [ZM,N(0)]2M [ΛM,N(0)]M

+ ‖WM,N(0)‖2
−1,M + T [WM,N(0)]2M [ΓM,N(0)]M

+
(
λ
M,N
T + γ

M,N
T

) ∫

QT

(
σM(rM)(s, x)2 + σM(sM)(s, x)2

)
dsdx

+ sup
t∈[0,T ]

‖MM,N(t)‖2
−1,M +

∫ T

0
[ΛM,N(s)]M [MM,N(s)]2M ds

+ sup
t∈[0,T ]

‖NM,N(t)‖2
−1,M +

∫ T

0
[ΓM,N(s)]M [NM,N(s)]2M ds.

The previous r.h.s. is again invariant with respect to the roles of ZM,N and WM,N . Then
using the uniform bounds on σM(rM) and σM(sM) from (2.5.1) and taking expectation, we
get

E

(
|||ZM,N |||2T,M + |||WM,N |||2T,M

)

. ‖ZM,N(0)‖2
−1,M + T [ZM,N(0)]2M [ΛM,N(0)]M

+ ‖WM,N(0)‖2
−1,M + T [WM,N(0)]2M [ΓM,N(0)]M +

(
λ
M,N
T + γ

M,N
T

)
M−4

+ E

(
sup
t∈[0,T ]

‖MM,N(t)‖2
−1,M

)
+ [ΛM,N(0)]M

∫ T

0
E

(
[MM,N(s)]2M

)
ds

+ E

(
sup
t∈[0,T ]

‖NM,N(t)‖2
−1,M

)
+ [ΓM,N(0)]M

∫ T

0
E

(
[NM,N(s)]2M

)
ds. (2.5.5)
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We are left then with controlling the local martingale terms that appear at the end. Since

[MM,N(s)]2M =
(

1

M

M∑

i=1

MM,N
i (s)

)2

≤ 1

M

M∑

i=1

MM,N
i (s)2 ≤ 1

M

M∑

i=1

sup
t∈[0,T ]

MM,N
i (t)2,

and recalling that [ΛM,N(0)]M = [d1 + a12V
M,N(0)]M , we have

[ΛM,N(0)]M

∫ T

0
E

(
[MM,N(s)]2M

)
ds

≤ (d1 + a12‖V M,N(0)‖1,M)
T

M

M∑

i=1

E

(
sup
t∈[0,T ]

MM,N
i (t)2

)
.

Besides, we also have using (2.4.8)

E

(
sup
t∈[0,T ]

‖MM,N(t)‖2
−1,M

)
≤ E

(
sup
t∈[0,T ]

‖MM,N(t)‖2
2,M

)

≤ E

(
sup
t∈[0,T ]

(
1

M

M∑

i=1

MM,N
i (t)2

))

≤ 1

M

M∑

i=1

E

(
sup
t∈[0,T ]

MM,N
i (t)2

)
.

Now, Doob’s inequality ensures that E
(
supt∈[0,T ] MM,N

i (t)2
)
. E(〈MM,N

i 〉(T )), where the

expression of the quadratic variation 〈MM,N
i 〉 is found in (2.3.3). Moreover, since

M∑

i=1

(
2UM,N

i (s)V M,N
i (s) + UM,N

i+1 (s)V M,N
i+1 (s) + UM,N

i−1 (s)V M,N
i−1 (s)

)

.
M∑

i=1

(
UM,N
i (s)2 + V M,N

i (s)2
)

= ‖UM,N(t)‖2
2 + ‖V M,N(t)‖2

2,

we get

1

M

M∑

i=1

E

(
sup
t∈[0,T ]

MM,N
i (t)2

)

.
1

M
E

(
M2

N

∫ T

0
‖UM,N(s)‖1 ds+

M2

N

∫ T

0

(
‖UM,N(s)‖2

2 + ‖V M,N(s)‖2
2

)
ds
)

Moreover ‖UM,N(s)‖1 = ‖UM,N(0)‖1 a.s. and we recall that UM,N(t) = ûM(t) − ZM,N(t)
and V M,N(t) = v̂M(t) − WM,N(t) for any s ≥ 0. Adding that boundedness assumption on
the solution of the SKT system and (2.3.4) ensure that

T
M2

N
‖UM,N(0)‖1,M +

M2

N

∫

QT

σM
(
ûM

)2
+ σM

(
v̂M

)2
= TO

(M2

N

)
,
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we finally have

1

M

M∑

i=1

E

(
sup
t∈[0,T ]

MM,N
i (t)2

)

.
M

N

∫ T

0
E

(
‖ZM,N(s)‖2

2 + ‖WM,N(s)‖2
2

)
ds+ T

M2

N

.
M2

N

∫

QT

E

(
σM

(
ZM,N

)
(s, x)2 + σM

(
WM,N

)
(s, x)2

)
dsdx+ T

M2

N

.
M2

N
|||ZM,N |||2T,M +

M2

N
|||WM,N |||2T,M + T

M2

N
.

By symmetry we have bounds of the same order for the terms involving (NM,N(t))t≥0. We

plug these bounds in (2.5.5) and gather the terms |||ZM,N |||2T,M and |||WM,N |||2T,M in the left
hand side. For N/M2 large enough, we can contol the left hand side and get

E(|||ZM,N |||2T,M + |||WM,N |||2T,M)

. ‖ZM,N(0)‖2
−1,M + T [ZM,N(0)]2M [ΛM,N(0)]M

+ ‖WM,N(0)‖2
−1,M + T [WM,N(0)]2M [ΓM,N(0)]M

+
(
λ
M,N
T + γ

M,N
T

)
M−4 + T

(
1 + [ΛM,N(0) + Γ

M,N(0)]M

)
M2

N
.

Using that T [u]2M ≤ ‖σM(u)‖2
L2(QT ) for any u ∈ R

M , by rearranging the terms we conclude
the proof.

Now we can prove the remaining main result.

Proof of Theorem 2.2. We have

ζM,N := πM(UM,N) − u

= πM(UM,N − ûM) + πM(ûM) − u = πM(ZM,N) + ιM(u) − u,

where the interpolation operator ιM is the one used in Lemma 2.4.2. Using the triangular
inequality, we infer

E

[
sup
t∈[0,T ]

‖ζM,N(t)‖2
Ḣ−1(T) + ‖ζM,N‖2

L2(QT )

]

≤ E

[
sup
t∈[0,T ]

‖πM(ZM,N)(t)‖2
Ḣ−1(T) + ‖πM(ZM,N)‖2

L2(QT )

]

+ sup
t∈[0,T ]

‖ιM(u) − u‖2
Ḣ−1(T) + ‖ιM(u) − u‖2

L2(QT ). (2.5.6)

Now, using Proposition 2.4.1 we have that ‖πM(ZM,N)‖L2(QT ) ≤ ‖σM(ZM,N)‖L2(QT ), and
using the equivalence (2.4.7) of Proposition 2.4.5 we get for all t ∈ [0, T ]

‖πM(ZM,N)(t)‖H−1(T) . ‖ZM,N(t)‖−1,M +M−1‖πM(ZM,N(t))‖L2(T).

This means that the expectation term in the r.h.s. of (2.5.6) satisfies the following bound for
M ≥ 1

E

[
sup
t∈[0,T ]

‖πM(ZM,N)(t)‖2
Ḣ−1(T) + ‖πM(ZM,N)‖2

L2(QT )

]
.T E

[
|||ZM,N |||2T,M

]
.
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All in all, using Proposition 2.5.1, we get

E

[
sup
t∈[0,T ]

‖πM(ZM,N)(t)‖2
Ḣ−1(T) + ‖πM(ZM,N)‖2

L2(QT )

]
.T εM,N ,

where εM,N is the r.h.s. of (2.5.3). Getting back to (2.5.6), we still have to control the second
expectation term of its r.h.s., for which invoke Lemma 2.4.2 which allow us to write

sup
t∈[0,T ]

‖ιM(u) − u‖2
Ḣ−1(T) + ‖ιM(u) − u‖2

L2(QT ) .M−4‖u‖2
L∞∩L2([0,T ];H2(T)).

Gathering all the terms leads to the conclusion.

A Appendix: discrete–continuous dictionary

Discrete Continuous
∆M ∆

‖ · ‖p,M ‖ · ‖Lp(T)

(·|·)M (·|·)L2(T)

‖ · ‖−1,M ‖ · ‖H−1(T)

||| · |||T,M ||| · |||T
[·]M [·]T
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CHAPTER 3

Quantitative large-population asymptotics
for mean-field interacting branching

diffusions via optimal transport
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This chapter is based on [59], written in collaboration with Joaquín Fontbona.

3.1 Introduction

Mathematical models of interacting and randomly evolving populations have been intensively
studied the last decades through probabilistic and analytic approaches. Both points of view
are able to integrate several biologically or ecologically meaningful features, including in-
dividuals’ displacements, reproduction and deaths, competition for resources, selection, and
dispersive or attractive interactions. While PDE and analysis methods can provide aggregate
deterministic descriptions of the collective or macroscopic behavior of such populations (see
[108, 23, 22, 46, 62] and [31], to name but a fewworks), probabilistic methods have successfully
been employed to describe the random behaviors and interactions of individuals at the micro-
scopic (or finite population) level, and to justify, in a rigorous way, that solutions of certain
nonlinear evolution PDEs are the limits in law of the empirical measures of some individual-
based models, when the population size goes to infinity (see for example [61, 7, 58, 28] and
[27]). Nevertheless, although it is clear that certain law of large numbers for exchangeable
systems lies beneath the passage from the microscopic to the macroscopic scale here as in
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other settings, the speed of this convergence is not explicitly known for branching popula-
tion models, even in the simple case of pure binary branching diffusions.

In this work, we develop a probabilistic approach to obtain quantitative convergence es-
timates for the large population limit of a class of spatially branching diffusions with logistic
growth and mean-field interactive spatial dynamics. Specifically, we assume that during its
life-span, each individual’s position evolves in R

d following the SDE

dXn
t = b

(
Xn
t , H ∗ µKt (Xn

t )
)

dt+ σ
(
Xn
t , G ∗ µKt (Xn

t )
)

dBn
t , n = 1, . . . , NK

t , (3.1.1)

where (Bn)n≥1 are independent Brownian motions in R
d, and σ and b are regular coefficients

depending on the position Xn
t and of the empirical measure µKt = 1

K

∑NK
t

k=1 δXk
t
of all NK

t in-
dividuals alive at time t. The functions H and G are regular kernels controlling the strength
and the range of the interaction of an individual with the population, through the empirical
density of the latter (precise assumptions will be given later on). The parameter K measures
the population size, and can be interpreted as the carrying capacity of the underlying envi-
ronment (see [7]).

Furthermore, each individual gives birth to one offspring at its current position at constant
rate r > 0 independently and, as a result of global competition, dies at rate cNK

t /K , with
c ≥ 0 a fixed parameter. Additionally, a random number NK

0 of individuals can also be given
birth at time 0 at random positionsXn

0 , n = 1, . . . , NK
0 , such that the corresponding empirical

measure µK0 converges in law to some deterministic finite measure µ0 on R
d as K → ∞.

This model corresponds to a subclass of some non local Lotka-Volterra cross-diffusion
systems, introduced in [58] as a microscopic, individual-based counterpart of the celebrated
Shigesada-Kawasaki-Teramoto cross-diffusion system [108]. More precisely, in the model of
[58], the competition for resources on one hand, and the spatial dispersion resulting from
individuals repulsions or environmental conditions on the other, can take place at different
macroscopic spatial ranges, and heterogeneously in space. In order to address the question of
quantifying the large-population limit, we consider a simplified setting of one single species
with self-interactions in the displacements, and we moreover assume that the demographic
parameters determining the individual births and deaths are spatially homogeneous. In par-
ticular, the competition kernel of [58] is a constant here. This amounts to say that the com-
petitive pressure is exerted on each individual simultaneously by the whole population alive,
proportionally to its total size.

Following [58], when K goes to infinity, the empirical measure process (µKt )t∈[0,T ] con-
verges in law for each T > 0 (in the Skorokhod space of finite measure valued paths on [0, T ])
towards a deterministic continuous measure-valued function (µt)t∈[0,T ], that is the unique
weak solution of the non-local self-diffusion equation

∂tµt =
1

2

d∑

i,j=1

∂2
xixj

(
a(ij)( · , G∗µt)µt

)
−

d∑

i=1

∂xi

(
b(i)( · , H ∗µt)µt

)
+ (r− c〈µt, 1〉)µt, (3.1.2)

with a = σσt, and the initial condition µ0. In this case, the total mass nt := 〈µt, 1〉 of the
finite measure µt evolves in time logistically: ∂tnt = (r − cnt)nt.

It is well known that convergence of the empirical probability distribution ofN exchange-
able particles to some deterministic probability measure, when N is a non-random integer
that goes to infinity, is equivalent to the property of propagation of chaos, or asymptotic
independence of the particles ([110, 95]). In order to establish an explicit convergence rate
for the measure process (µKt )t∈[0,T ] as K goes to infinity, we will extend to the branching
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populations setting probabilistic techniques developed to quantify propagation of chaos in
particle systems arising in kinetic theory ([35, 36]). A natural strategy to establish bounds in
that framework is by coupling the interacting particle system to a certain auxiliary system of
particles with less (typically without) interactions between them, suitably constructed in the
same probability space. It is then possible to derive non asymptotic bounds from quantitative
estimates available for independent objects.

Generalizing this idea to interacting branching populations, we will construct a coupling
of the system of interacting particles with logistic branching, with certain system of inde-
pendent diffusions, with random births and deaths suitably distributed in time and space. The
fundamental feature of this coupling, allowing us to put in place the abovementioned strategy,
is that the random birth positions in the auxiliary system “mimic” the branching positions in
the original system in the best possible way, in the sense of mean quadratic error. We are able
to do this adapting to this setting optimal transport based techniques, developed in [35] to
prove quantitative chaos estimates for particle systems with binary jumps. Our construction
will thus allow us to transfer the rate of convergence in Wasserstein-2 distance of empirical
measures ofN i.i.d. samples, established in [60], to an analogous (in terms ofK) convergence
rate for the dual bounded-Lipschitz distance of the empirical processes (µKt )t∈[0,T ]. The ideas
and techniques developed can in principle be refined and extended to more general systems
of interacting branching populations, including the general setting of [58]. Nevertheless, this
requires to deal with significant additional technicalities, and we have chosen to focus here
on the basic ideas, leaving possible extensions for future work.

We next provide a detailed description of the population model we will consider, referring
to [58] for additional background. We then state our assumptions and main result, and outline
the paper’s organization.

3.2 Model, notations and main result

The population and its evolution are described by a right-continuous measure-valued Markov
process (µKt )t≥0, taking values, for each fixed K ∈ N

∗, in the space of weighted finite point
measures over Rd:

MK(Rd) :=

{
1

K

N∑

n=1

δxn : xn ∈ R
d, N ∈ N

}
⊆ M+(Rd).

The notation M+(Rd) stands for the space of finite nonnegative measures on R
d, endowed

with the weak topology. Its subspace of probability measures is denoted by P(Rd). The
measure µKt describing the population at time t ≥ 0 is denoted by

µKt =
1

K

NK
t∑

n=1

δXn,K
t
, (3.2.1)

where NK
t := K〈µKt , 1〉 ∈ N is the number of living individuals at time t ≥ 0 and the

variables X1,K
t , . . . , X

NK
t ,K

t are their positions in R
d. In the sequel, we will simply write(

X1
t , . . . , X

NK
t

t

)
=
(
X1,K
t , . . . , X

NK
t ,K

t

)
when working with fixed K ≥ 1 and no ambiguity

is possible.

The labeling 1, . . . , NK
t of the atoms of µKt will be assigned according to some dynamic

rule, to be made explicit later (cf. Section 3.5), and will be such that the random vector
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(X1
t , . . . , X

NK
t

t ) is exchangeable conditionally on NK
t . The generator and thus the law of the

measure valued Markov process (µKt )t≥0 does nevertheless not depend on the chosen labeling
rule.

The dynamics of (µKt )t≥0 is summarized as follows:

• The initial population is represented by a random measure µK0 ∈ MK(Rd).

• Each living individual carries at each instant t > 0 two clocks, independent between
them and of the rest of the system: one reproduction clock, exponential of parame-
ter r > 0, and one mortality clock, conditionally exponential of parameter cNK

t /K
given the population size NK

t . If the reproduction clock of a particle rings at time t
when at position x, it gives birth to a new particle at that same position. If the mor-
tality clock rings the particle disappears. Equivalently, the process jumps from µKt− to
µKt = µKt− +K−1δx in the first case and to µKt = µKt− −K−1δx in the second.

• Between birth or death events, each individual Xn
t , n = 1, ..., Nt evolves according to

the diffusion processes (3.1.1), where (Bn)n≥1 are Brownianmotions inRd, independent
between them and independent of µK0 and of the birth and deaths events.

The following conditions will be enforced in what follows.

Hypothesis (H):

1. (〈µK0 , 1〉)K converges in law as K → ∞ to some deterministic value in (0,∞). More-
over, for each K ≥ 1, conditionally on 〈µK0 , 1〉 the NK

0 = K〈µK0 , 1〉 atoms of µK0 are
i.i.d. random variables with common law µ̄0 ∈ P(Rd) not depending on K .

2. The functions σ : Rd × R+ → R
d⊗d and b : Rd × R+ → R

d are Lipschitz. Moreover,
there exists Cσ > 0 such that for each x ∈ R

d and v ∈ R+,

|σ(x, v)| ≤ Cσ(1 + |v|).

3. The functions G,H : Rd → R are nonnegative, bounded and Lipschitz continuous.

Write a := σσt and, given µ ∈ M+(Rd), define a generator acting on C2(Rd) functions φ
by

Lµφ(x) =
1

2
Tr (a(x,G ∗ µ(x))Hess(φ)(x)) + b(x,H ∗ µ(x)) · ∇φ(x).

Under assumption (H), the process (µKt )t≥0 has finitely many jumps in each finite time in-
terval. Moreover, (µKt )t≥0 is Markov with infinitesimal generator LK given by

LK := LK
D + LK

J , (3.2.2)

where LK
D is the diffusion operator defined by

LK
DF (ν) = 〈ν, Lνφ〉f ′(〈ν, φ〉) + 〈ν, a(·, G ∗ ν)[φ′]2〉f ′′(〈ν, φ〉),

on functions F : MK(Rd) → R with the form F (ν) = f(〈ν, φ〉), for f ∈ C2
b (R) and φ ∈

C2(Rd), and LK
J is the jump operator

LK
J F (ν) = rK

∫
ν(dx)

(
F (ν +K−1δx) − F (ν)

)

+ c〈ν, 1〉K
∫
ν(dx)

(
F (ν −K−1δx) − F (ν)

)
.
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The above class of functions F is a core for the generator , and the law of (µKt )t≥0 is uniquely
determined by the operator LK . We refer to [58] for further details on the model and to [39]
for background on measure-valued Markov processes.

Assumption (H) 1) implies that (µK0 )K converges in probability to the deterministic finite
measure

µ0 := lim
K→∞

〈µK0 , 1〉µ̄0 ∈ M+(Rd),

(see Section 3.3), and holds for instance if KµK0 is for each K a Poisson point measure of
intensity Kµ0, with µ0 ∈ M+(Rd) given. As a particular case of Theorem 3.1 in [58], we
have the following result.

Theorem 3.1. Assume (H) and that for some p ≥ 3, supK E(〈µK0 , 1〉p) < +∞. The sequence of

processes (µK)K converges in law in D([0, T ],M+(Rd)) asK → ∞ to the unique (determinis-

tic) continuous finite measure valued function (µt)t∈[0,T ] solution of

〈µt, f(t, ·)〉 = 〈µ0, f(0, ·)〉 +
∫ t

0

〈
µs, ∂sf(s, ·) + Lµs

f(s, ·) + (r − c〈µs, 1〉)f(s, ·)
〉

ds,

∀t ∈ [0, T ] and every f ∈ C1,2
b ([0, T ] ×R

d) such that sup(t,x)∈[0,T ]×Rd(1 + |x|)|∇f(t, x)| < ∞.

Let now BL(Rd) denote the space of Lipschitz-continuous bounded functions in R
d en-

dowed with the norm

‖ϕ‖BL = sup
x 6=y

|ϕ(x) − ϕ(y)|
‖x− y‖ + sup

x
|ϕ(x)|.

The corresponding dual norm ‖ · ‖BL∗ on the space M(Rd) of finite signed measures on R
d

induces the distance
‖µ− ν‖BL∗ = sup

‖ϕ‖BL≤1
|〈µ− ν, ϕ〉|,

onM+(Rd), which generates theweak convergence topology. Given ameasureµ ∈ M+(Rd),
we denote its q-th moment for q ∈ [1,∞) by

Mq(µ) =
∫

Rd
|x|q µ(dx).

For each K ≥ 1 and p ≥ 1, we define also

Ip(K) = E

(∣∣∣∣〈µK0 , 1〉 − 〈µ0, 1〉
∣∣∣∣
p) 1

p

.

The following is our main result.

Theorem 3.2. Assume (H), that supK E(〈µK0 , 1〉p) < ∞ for some p ≥ 4 and thatMq(µ0) < ∞
for some q > 2. Then, for allK ≥ 1 and T > 0 one has

sup
t∈[0,T ]

E

(∥∥∥µKt − µt
∥∥∥

BL∗

)
≤CT





(
I4(K) +K− 1

4 +K− (q−2)
2q

)
, if d < 4 and q 6= 4,

(
I4(K) +K− 1

4 (log(1 +K))
1
2 +K− (q−2)

2q

)
, if d = 4 and q 6= 4,

(
I4(K) +K− 1

d +K− (q−2)
2q

)
, if d > 4 and q 6= d/(d− 2),

where CT is a constant depending on T, p, q and the data of the model.
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We will denote by Ψd,q(K) the function of K appearing on the right hand side of the
bound in Theorem 3.2.

The convergence rateΨd,q(K) in dual bounded-Lipschitz distance thus depend non-increa-
singly on the dimension d, and on how many finite moments the measure µ0 has, provided
that the initial total masses 〈µK0 , 1〉 converge at least as fast as K−1/4 in L4 to 〈µ0, 1〉. This
requirement is not too stringent (it holds e.g. in the aforementioned Poissonian setting, see
Lemma 3.3.3 below), and can be relaxed if the particles’ spatial dynamics do not interact (see
Section 3.6). For modeling purposes, the most relevant setting is d = 3, in which case Ψd,q(K)
is equivalent under the previous condition to K−1/4 if q ∈ [4,+∞), or to the slower rate

K− (q−2)
2q if q ∈ (2, 4).

The conditional independence in Assumption (H) 1) can be relaxed to a conditional ex-
changeability and chaoticity condition, to be made precise in Section 3.3, at the price of an
additional term in Theorem 3.2 associated with the initial empirical distribution. See also Sec-
tion 3.7 in that direction. Also, the same result, with the natural modification of the limiting
PDE, can be obtained in the case that each individual of the population additionally carries
an independent, autonomous exponential killing clock of a fixed parameter.

Definition 3.2.1. Let (NK)K∈N∗ be random variables inN going in law to ∞ asK → ∞. We
say a family ((Y 1,K , . . . , Y NK ,K))K∈N∗ of random vectors, (Rd)N

K

-valued and exchangeable
conditionally on NK for eachK , is conditionally P -chaotic given (NK)K∈N∗ if for some P ∈
P(Rd) and every j ∈ N

∗ the (random) conditional laws (L(Y 1,K , . . . , Y j∧NK ,K |NK))K∈N∗

given NK and the event {NK ≥ j} converge in distribution in P((Rd)j) to P⊗j as K → ∞.

In the case that NK = K is deterministic for all K ∈ N
∗, one recovers the well known

notion of P -chaoticity [110, 95]. Under the same assumptions of Theorem 3.2 we deduce the
following result, proved at the end of Section 3.7.

Corollary 3.2.1. For each t ≥ 0 the family ((X1,K
t , . . . , X

NK
t , K

t ))K∈N∗ is conditionally P -
chaotic given (NK

t )K∈N∗ with P = µt/〈µt, 1〉.

Structure of the paper

In Section 3.3 we recall some basic facts regarding distances on finite measures and prob-
ability measures, we state quantitative estimates in the Wasserstein−2 distance established
for i.i.d. samples in [60], and we show how they translate into estimates for random mea-
sures µK0 satisfying assumption (H) 1). We also make some complementary remarks on this
assumption.

In Section 3.4 we explain the core of the proof of Theorem 3.2, namely the construction
of a coupling of (µKt )≥0 with an auxiliary particle system (νKt )≥0, which has the structure
described in assumption (H) 1) at all times. We introduce condition (C) gathering three
properties that the auxiliary system and the coupling with it must satisfy, in order that the
asserted bounds for system (µKt )≥0 can be deduced, and we explain in details how and why
optimal transport must be used to do so.

In Section 3.5 we explicitly construct the coupled particle systems (µKt )≥0 and (νKt )≥0 in
terms of Brownian motions and a Poisson point measure, with help of a measurable construc-
tion in [35]. The latter allows us to dynamically sample from the atoms of the point measure
the realizations of optimal transport plans between a continuous flow of probability laws and
a predictable flow of random empirical distributions. We also check that the two simplest
properties in condition (C) are verified by this construction.
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In Section 3.6 we prove that the coupling satisfies the third and last property of condition
(C), in the simpler case of pure binary branching processes (i.e. with nomean-field interaction
between the particles nor competition). We then deduce Theorem 3.2 in that setting, with
slightly better bounds.

Finally, in Section 3.7 we prove that the last required condition on the coupling also holds
in the general case, and we deduce the proofs of the main results. We then end the paper com-
menting on potential extensions of the developed ideas and results to more general branching
population models.

3.3 Preliminaries

Recall that, for p ∈ [1,∞), the p-Wasserstein distance Wp(µ, ν) between two probability
measures µ, ν ∈ P(Rd) is defined by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫

Rd×Rd
|x− y|p π(dx, dy)

) 1
p

,

where Π(µ, ν) is the set of probability measures over Rd ×R
d that have µ and ν respectively

as first and secondmarginals. A coupling π ∈ Π(µ, ν) realizing the infimum always exists and
is called an optimal coupling between µ and ν for the transport cost c(x, y) = |x − y|p. The
quantityWp(µ, ν) defines a complete distance if restricted to the space of probability measure
with finite p-th moment, and is therein equivalent to the weak topology, strengthened with
the convergence of p-th moments. See [114] for background.

For every µ ∈ M+(Rd), we will throughout denote by µ̄ the probability measure on R
d

obtained from it by normalization:

µ̄ :=
1

〈µ, 1〉µ ∈ P(Rd).

We next state some simple but useful basic relations between finite measures and their
normalizations:

Lemma 3.3.1. Let µ, ν ∈ M+(Rd). We have that

‖µ− ν‖BL∗ ≤ 〈µ, 1〉‖µ̄− ν̄‖BL∗ +
∣∣∣〈µ, 1〉 − 〈ν, 1〉

∣∣∣,

and

‖µ̄− ν̄‖BL∗ ≤ inf
π∈Π(µ̄,ν̄)

∫
|x− y| ∧ 2π(dx, dy) ≤ W1(µ̄, ν̄).

Proof. Since ‖ν̄‖BL∗ = 〈ν̄, 1〉 = 1, we have

‖µ− ν‖BL∗ = ‖〈µ, 1〉 (µ̄− ν̄) + ν̄ (〈µ, 1〉 − 〈ν, 1〉)‖BL∗

≤ 〈µ, 1〉‖µ̄− ν̄‖BL∗ +
∣∣∣〈µ, 1〉 − 〈ν, 1〉

∣∣∣.

Now, for any µ, ν ∈ P(Rd), ‖µ − ν‖BL∗ = sup‖ϕ‖BL≤1

∣∣∣
∫
Rd×Rd(ϕ(x) − ϕ(y))π(dx, dy)

∣∣∣ for
each coupling π ∈ P(R2d) of µ and ν. Using the fact that |ϕ(x) − ϕ(y)| ≤ |x − y| ∧ 2 when
‖ϕ‖BL ≤ 1 and taking infimum over all π ∈ Π(µ, ν), we conclude that

‖µ− ν‖BL∗ ≤ inf
π∈Π(µ,ν)

∫
|x− y| ∧ 2π(dx, dy) ≤ W1(µ, ν).
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Let us now recall in the case p = 2 the quantitative bounds in p-Wasserstein distance for
empirical measures of i.i.d. samples proved in [60], on which our main result relies.

Theorem 3.3. Let µ̄ ∈ P(Rd) and (Xn)n∈N be an i.i.d. collection of random variables with law

µ̄. Assume thatMq(µ̄) < ∞ for some q > 2. There exists a constant Cd,q > 0 depending only

on d and q such that, for all N ≥ 1,

E

(
W 2

2

(
1

N

N∑

n=1

δXn , µ̄

))
≤ Cd,qM

2
q
q (µ̄)Rd,q(N),

where Rd,q : N∗ → R+ is defined by

Rd,q(N) :=





N− 1
2 +N− (q−2)

q , if d < 4 and q 6= 4,

N− 1
2 log(1 +N) +N− (q−2)

q , if d = 4 and q 6= 4,

N− 2
d +N− (q−2)

q , if d > 4 and q 6= d
d−2

.

We deduce analogous estimates for random empirical measures in MK(Rd) satisfying
condition (H) 1).

Lemma 3.3.2. Let µ ∈ M+(Rd) be such that Mq(µ) < ∞ for some q > 2 and let (N, νK)
be a random variable in N × MK(Rd) such that E(N) < ∞ and, conditionally on N , νK is

supported on N atoms that are i.i.d. random variables of law µ̄. Then, there exists a constant

Cd,q > 0 that depends only on d, q such that

E

(
N

K
W 2

2

(
ν̄K , µ̄

))
≤ Cd,qM

2
q
q (µ̄)E(1 ∨ (N/K))Rd,q(K). (3.3.1)

Proof. Write α = 1
2
when d < 4 or α = 2

d
when d > 4. Thanks to Theorem 3.3, for some

Cd,q > 0,

E

(
N

K
W 2

2

(
ν̄K , µ̄

) )
= E

(
N

K
E

(
W 2

2

(
ν̄K , µ̄

) ∣∣∣∣ N
))

≤ Cd,qM
2
q
q (µ̄)E

(
N

K

(
N−α +N− q−2

q

))

= Cd,qM
2
q
q (µ̄)

(
K−α

E

((
N

K

)1−α)
+K− q−2

q E

((
N

K

) 2
q
))

≤ Cd,qM
2
q
q (µ̄)

(
K−α

E

(
N

K

)1−α
+K− q−2

q E

(
N

K

) 2
q
)
,

using Jensen’s inequality in the last line. This implies the result for d 6= 4. When d = 4 we
get the bounds

E

(
N

K
W 2

2

(
ν̄K , µ̄

) )
≤ Cd,qM

2
q
q (µ̄)

(
K− 1

2 E

((
N

K

) 1
2

log(1 +N)

)
+K− q−2

q E

(
N

K

) 2
q
)

≤ Cd,qM
2
q
q (µ̄)

(
K− 1

2 E

(
N

K

) 1
2

E

(
log2(e+N)

) 1
2

+K− q−2
q E

(
N

K

) 2
q
)
.

The function x ∈ [e,∞) 7→ log2(x) being concave, we can extend it linearly on (−∞, e) to
get a C1 concave function on R. Jensen’s inequality then yields

E

(
log2(e+N)

) 1
2 ≤ log(e+KE(N/K)) ≤ 1 + log(1 +K) + log(1 ∨ E(N/K)),

and the case d = 4 follows.
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We end this section gathering some remarks on (H) 1) and related properties.

Lemma 3.3.3. a) Under (H) 1), (µK0 )K converges in law to the deterministic finite measure

µ0 := lim
K→∞

〈µK0 , 1〉µ̄0.

b) The same conclusion as in a) holds if (〈µK0 , 1〉)K converges in law as K → ∞ to a con-

stant in (0,∞) and there exists a µ̄0−chaotic family of exchangeable random vectors

((Y 1,N , . . . , Y N,N) : N ∈ N) such that for allK , conditionally onK〈µK0 , 1〉 = N the set

of atoms of µK0 has the same law as (Y 1,N , . . . , Y N,N).

c) (H) 1) holds if KµK0 is for each K a Poisson point measure on R
d of intensity Kν0 with

ν0 ∈ M+(Rd) fixed. In this case, µ0 defined in a) is equal to ν0. Moreover, in that case we

have I4(K) ≤ CK−1/2.

The proof is simple and is given in the Appendix for completeness.

Remark 3.3.1. If instead of (H) 1) one assumes that the initial condition µK0 satisfies only the

condition in Lemma 3.3.3 b), Theorem 3.2 still holds but with an additional term on the r.h.s.

of generic form: CTE
(

1
K

∑NK
0

n=1 ‖Xn
0 − Y n

0 ‖2
)
where, conditionally on the event {NK

0 = N},(
(X1

0 , . . . , X
N
0 ), (Y 1

0 , . . . , Y
N

0 )
)
is for each N,K ∈ N a coupling of the N atoms of µK0 and an

i.i.d. sample of sizeN of the law µ̄0. See Remark 3.7.1 for details and for the optimal value of this

term.

3.4 Strategy of the proof

The basis to obtain quantitative estimates forW 2
2 (µKt , µt) will be Lemma 3.3.2. However, the

conditional independence property required to apply that result holds only when t = 0, by
assumption (H) 1), and is lost as soon as t > 0, even in the case of binary branching diffusions
without any interactions.

The core of the proof will thus be the construction of an auxiliary system of particles in
MK(Rd) denoted

νKt :=
1

K

NK
t∑

n=1

δY n
t
, t ≥ 0,

and defined in the same probability space as (µKt )t≥0, such that the following condition holds.

Condition (C):

1) νK0 = µK0 and K〈νKt , 1〉 = K〈µKt , 1〉 = NK
t for all t ≥ 0 almost surely.

2) For each t ≥ 0, conditionally on 〈νKt , 1〉, the atoms of νKt are i.i.d. random variables of
law µ̄t.

3) For each T > 0 there is a constant CT > 0 depending on T and on the data of Theorem
3.2 such that

E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄

K
t

))
≤ CT (Rd,q(K) + I2

4 (K)).
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Under the assumptions of Theorem 3.2 and Condition (C) we have the following result.

Lemma 3.4.1. There is a finite constant CT > 0 as above such that for all t ∈ [0, T ]:

E

(
‖µKt − µt‖BL∗

)
≤ CT

(
R

1
2
d,q(K) + I4(K)

)
. (3.4.1)

The following bounds are needed in the proof of Lemma 3.4.1 and are proved in Section
3.7.

Lemma 3.4.2. For each T > 0 and p ≥ 1 there is a constant CT,p > 0 such that

sup
K

E

(
sup
t∈[0,T ]

〈µKt , 1〉p
)
< CT,p sup

K
E(〈µK0 , 1〉p).

Moreover, if supK E(〈µK0 , 1〉2) < ∞, for all T > 0 we have

E

((
〈µKt , 1〉 − 〈µt, 1〉

)2
)

≤ CT
(
I2

2 (K) +K−1
)
.

Lemma 3.4.3. For each T > 0 and q ≥ 2 there is a constant C ′
T > 0 such that

sup
t∈[0,T ]

Mq(µ̄t) < C ′
T (1 +Mq(µ̄0)).

Proof of Lemma 3.4.1. Since 〈µKt , 1〉 =
NK

t

K
, applying Lemma 3.3.1 and the triangle inequality

forW1 we get

E

(
‖µKt − µt‖BL∗

)
≤ E

(
NK
t

K
W1

(
ν̄Kt , µ̄

K
t

))
+ E

(
NK
t

K
W1

(
ν̄t
K , µ̄t

))

+ E

(∣∣∣〈µKt , 1〉 − 〈µt, 1〉
∣∣∣
)

≤
(
E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄t

) ) 1
2

+ E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄

K
t

) ) 1
2

)
E

(
NK
t

K

) 1
2

+ E

((
〈µKt , 1〉 − 〈µt, 1〉

)2
)1/2

≤ CT

(
E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄t

) ) 1
2

+ E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄

K
t

) ) 1
2

+ I2(K) +K−1/2

)
.

We have also used the Cauchy-Schwarz inequality and the inequalityW 2
1 ≤ W 2

2 in the second
line, and the bounds in Lemma 3.4.2 in the last one. Thanks to the first bound in Lemma 3.4.2,
Lemma 3.4.3 and conditions (C) 1) and 2), we can apply Lemma 3.3.2 to ν̄ = ν̄Kt , N = NK

t

and µ̄ = µ̄Kt , to bound the first term in the square parentheses by R
1
2
d,q(K). The second term

is bounded by CT (R
1
2
d,q(K) + I4(K)), due to (C) 3). Since I2(K) ≤ I4(K) andK−1/2 ≤ R

1
2
d,q,

the proof is complete.

Before providing a detailed pathwise construction of the coupling, let us briefly explain
how condition (C) will be accomplished through it. Condition (C) 1) will be automatically
granted since the system (νKt )t≥0 will be constructed in such a way that its birth and death
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events are simultaneous with those of (µKt )t≥0. Moreover, we will see that (C) 2) can be en-
sured by letting each atom Y n

t of νKt evolve, during its lifespan, independently of the others
and of the births and deaths events, following a specific diffusion process, defined in Propo-
sition 3.5.1, which has the law µ̄t at each time instant t from its random birth-time on.

The most important condition and the most difficult one to ensure is (C) 3). Assuming

that I4(K) vanishes not too slowly, this roughly requires E
(
NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

))
to be, over all

t ∈ [0, T ], of similar order in K as E
(
NK

t

K
W 2

2

(
ν̄Kt , µ̄t

))
. Notice that

E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄

K
t

))
≤ E

(
1

K

NK
t∑

n=1

‖Xn
t − Y n

t ‖2
)
,

sinceW 2
2

(
ν̄Kt , µ̄

K
t

)
≤ 1

NK
t

∑NK
t

n=1 ‖Xn
t −Y n

t ‖2, and sowe are led to define the pairings (Xn
t , Y

n
t )

of atoms of the two systems in such a way that the squared distance ‖Xn
t − Y n

t ‖2 is small in
average, at all times. We can partially achieve this by pairing particles with equal birth and
death times in the two systems, using the same Brownian motion for the two of them, and
relying on the Lipschitz character of the coefficients to control their distance during their
common life-span, in terms of their distance at their birth-time. Coupling efficiently the birth
positions of two paired particles in the two systems w.r.t. the squared Euclidean distance will
therefore be crucial. This is where optimal transport comes into play.

Indeed, recall that, on one hand, each new particle in the system (νKt )t≥0, given birth at
time s, is sampled inRd according to the law µ̄s. On the other hand, as a result of the branching
dynamics, each new particle in the system (µKt )t≥0 is given birth at time s, at the position of
one of the NK

s− atoms of µ̄Ks−, each of which is equally likely to branch at a given time. A
simple but key remark is that such branching event is equivalent to sampling a new particle
in R

d according to the empirical law µ̄Ks−. Thus, the best way to couple a new pair of atoms of
(νKt )t≥0 and (µKt )t≥0, in the sense ofmean quadratic distance, is by sampling at each branching
time s of the latter a pair in (Rd)2 with (random) distribution given by the optimal coupling
between the laws µ̄s and µ̄Ks− for the quadratic transport cost. This sampling must be done in
a measurable way in terms of the state of the process right before branching, which requires a
non-trivial construction carried out in [35] and adapted to our setting in Lemma 3.5.1 below.

We will then see that the coupling thus constructed ensures that E
(
NK

t

K
W 2

2

(
ν̄Kt , µ̄

K
t

))
has

the required order in K .

3.5 Pathwise constructions and coupling throughoptimal

transport

We will construct systems (µKt = 1
K

∑NK
t

n=1 δXn
t
)t≥0 and (νKt = 1

K

∑NK
t

n=1 δY n
t

)t≥0 from the
following set of independent stochastic inputs defined in a common, complete probability
space (Ω,F ,P):

• A sequence (W j)j≥1 of independent Brownian motions in R
d.

• A Poisson point measure N (ds, dρ, dθ) on [0,∞) × [0,∞) × [0,∞), with intensity
ds⊗ dρ⊗ dθ.

• A sequence (Zj
0)j≥1 of i.i.d. random vectors of law µ̄0.
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• A random variable NK
0 in N.

We will also make use of a diffusion process considered in [58], which can be seen as a
non-linear process in the sense of McKean [95]. In the particular case considered here, we
study it in more detail in next result.

Proposition 3.5.1. Let (µt)t≥0 be the unique weak solution in M+(Rd) of the nonlinear equa-
tion

∂µt
∂t

= L∗
µt
µt +

(
r − c〈µt, 1〉

)
µt. (3.5.1)

given by Theorem 3.1, with initial condition µ0. Let W be a d−dimensional Brownian motion

and Y0 an independent random variable in R
d with law µ̄0. There is pathwise existence and

uniqueness for the SDE

Yt = Y0 +
∫ t

0
b(Ys, H ∗ µs(Ys)) ds+

∫ t

0
σ(Ys, G ∗ µs(Ys)) dWs. (3.5.2)

Moreover, the flow of time-marginal laws of (Yt)t≥0 is the unique weak solution (µ̄t)t≥0 in P(Rd)
of the (linear, non-homogeneous in time) Fokker-Planck equation

∂µ̄t
∂t

= L∗
µt
µ̄t, (3.5.3)

with respect to test functions as in Theorem 3.1, and we have µ̄t = µt

〈µt,1〉 for all t ≥ 0. Last, for

every bounded measurable function f : Rd → R we have 〈µt, f〉 = E(f(Yt)nt), where nt is the
unique solution with n0 = 〈µ0, 1〉 of the logistic equation

dnt =
(
r − cnt

)
nt dt. (3.5.4)

Proposition 3.5.1 is proved in Section 3.7.

Remark 3.5.1. a) The pathwise properties of the SDE (3.5.2) stated in Proposition 3.5.1 imply

that if Y ′
τ is a random variable of law µ̄τ for fixed τ > 0, independent of W , then the

solution (Y ′
t )t≥τ of the SDE

Y ′
t = Y ′

τ +
∫ t

τ
b(Y ′

s , H ∗ µs(Y ′
s )) ds+

∫ t

τ
σ(Y ′

s , G ∗ µs(Y ′
s )) dWs.

has the same law as (Yt)t≥τ . In particular, Y ′
t has the law µ̄t for all t ≥ τ .

b) When σ and b depend only on the position and not on µ, the process (3.5.2) is the standard
diffusion associated with the generator

Lf(x) =
1

2
Tr
(
a(x)Hessf(x)) + b(x) · ∇f(x), (3.5.5)

which in that case also drives each of the particles of the branching system (µKt )t≥0.

Last, the following construction adapted from [35] will be used to efficiently couple the
births events of the two systems.
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Lemma 3.5.1. Let i : R → N denote the function defined by

ρ 7→ i(ρ) = ⌊ρ⌋ + 1,

and N be a positive integer. Let also (µ̄t)t≥0 be a flow of probability measures with finite second

order moments that is weakly continuous. There exists a measurable mapping

ΛN : R+ × (Rd)N × [0, N) → R
d, (t,x, ρ) 7→ ΛN

t (x, ρ),

with the following property: for every t ≥ 0 and x = (x1, . . . , xN) ∈ (Rd)N , if ρ is uni-

formly chosen from [0, N), then the pair (ΛN
t (x, ρ), xi(ρ)) is an optimal coupling between µ̄t and

1
N

∑N
i=1 δxi with respect to the cost function (u, v) 7→ |u− v|2. Moreover, if Y is any exchange-

able random vector in (Rd)N , then E

( ∫ j
j−1 φ(ΛN

t (Y, τ))dτ
)

= 〈µ̄t, φ〉 for any j ∈ {1, . . . , N},
and any bounded measurable function φ. Finally, the function Λ: N×R+ ×

(⋃
N∈N\{0}(R

d)N
)

×
R+ → R

d given by

Λ(N, t,x, ρ) = ΛN
t

(
(xn)Nn=1, ρ ∧N

)
,

if x = (xn)Nn=1 ∈ (Rd)N , and 0 ∈ R
d otherwise, is measurable.

Proof. Everything is proved in Lemma 3 of [35] except for the last assertion, which follows
noting that Λ−1(A) =

⋃
N 6=0{N} × (ΛN)−1(A) is a measurable set for any Borel set A ∈ R

d

such that 0 6∈ A, and

Λ−1({0}) =
( ⋃

N 6=0

{N} × R+ × ∪n6=N(Rd)n × R+

)
∪
( ⋃

N 6=0

{N} × (ΛN)−1({0})
)
.

Coupling algorithm

Before giving the algorithm, we also introduce a sequence of labelling processes

(jt(n) : t ≥ 0)n≥1,

taking values in the positive integers, that will be dynamically defined to select from (W j)j≥1

the Brownian motions driving each coupled pairs of particles (Xn
t , Y

n
t ), in between reproduc-

tion or death events.

The systems (µKt = 1
K

∑NK
t

n=1 δXn
t
)t≥0 and (νKt = 1

K

∑NK
t

n=1 δY n
t

)t≥0 are then constructed
simultaneously, through the following algorithm.

Algorithm (A):

0. We set Y n
0 = Xn

0 = Zn
0 for n ∈ {1, . . . , NK

0 } and µK0 = νK0 = 1
K

∑NK
0

n=1 δZn
0
. We also

set two counters: N
K
0 = NK

0 and m = 0, and we define T0 = 0. Last, we initialize
j0(n) = n for all n ≥ 1.

1. For t ≥ Tm, we set jt(n) = jTm
(n) and dBn

t = dW
jt(n)
t , n ≥ 1, and we define the

dynamics of the two populations by:

Xn
t = XTm

+
∫ t

Tm

b
(
Xn
s , H∗µKs (Xn

s )
)

ds+
∫ t

Tm

σ
(
Xn
s , G∗µKs (Xn

s )
)
dBn

s , n = 1, . . . , NK
Tm
,
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and

Y n
t = YTm

+
∫ t

Tm

b
(
Y n
s , H∗µs(Y n

s )
)

ds+
∫ t

Tm

σ
(
Y n
s , G∗µs(Y n

s )
)
dBn

s , n = 1, . . . , NK
Tm
,

until the first time t > Tm with (t, ρ, θ) an atom of N , such that

ρ < NK
Tm

and θ < r + cNK
Tm
/K.

We then set Tm+1 = t.

2. For (t, ρ, θ) = (Tm+1, ρ, θ) as before,

– If θ < r, we update NK
t := NK

t− + 1 and N
K
t := N

K
t− + 1, then we define:

X
NK

t
t := X

i(ρ)
t− and Y

NK
t

t := Λ
NK

t−
t

(
(Xn

t−)
NK

t−
n=1, ρ

)
.

– If r ≤ θ < cNK
Tm
/K , we update NK

t := NK
t− − 1, then we redefine:

(
X

i(ρ)
t , X

i(ρ)+1
t , . . . , X

NK
t

t

)
:=
(
X

i(ρ)+1
t− , X

i(ρ)+2
t− , . . . , X

NK
t−

t−
)
,

(
Y

i(ρ)
t , Y

i(ρ)+1
t , . . . , Y

NK
t

t

)
:=
(
Y

i(ρ)+1
t− , Y

i(ρ)+2
t− , . . . , Y

NK
t−

t−
)
,

and we set jt(n) := jt−(n+ 1) for all n ≥ i(ρ).

3. We increasem by one and go to Step 1.

Let us explain in words how the algorithm works. The systems (µKt )t≥0 and (νKt )t≥0 start
at time t = 0 from the same empirical measure, and pairs of particles are given birth or die in
the two systems simultaneously from then on. The variableNK

t counts the current number of

living particles in each system at time t. The variable N
K
t in turn counts how many particles

have been alive in each of the two systems or, equivalently, how many Brownian motions
from (W j)j≥1 have been used, during the whole time interval [0, t]. The usefulness of this
counter will come clear shortly.

Now, given an atom (t, ρ, θ), its coordinate t is used to sample a proposal of a birth or death
time, and θ an “action” among those two, according to whether θ < r or r ≤ θ < r+cNK

t−/K
respectively.

In a birth event, ρ < NK
t− samples two positions in space, one distributed according to µ̄Kt−

for the system µK and one according to µ̄t for the system νK , which are optimally coupled
as explained before. The pair of newborn particles picks upon birth at time t a new, common

driving Brownian motion (WN
K

t
s )s≥t that is independent of the past of the systems.

In a death event, ρ < NK
t− samples a uniformly distributed atom from µ̄Kt− for the system

µK and from ν̄Kt− for the system νK , with equal index i(ρ). The two corresponding particles
are then removed, and their common driving Brownian motion, which corresponds to some

W j with j ≤ N
K
t , is discarded forever. The indexes of the particles in the two systems

are then updated, as well as the Brownian motions from (W j)j≥1 labelled Bi(ρ), Bi(ρ)+1, ...,
in order that the particles still alive remain indexed by a full discrete interval of the form
{1, . . . , NK

t }, and that the underlying Brownian motion W j driving each pair is preserved.

Notice that, due to this updating rule, for all times t ≥ 0 we have jt(NK
t ) = N

K

t .
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We will denote by (Ft)t≥0 the complete filtration generated by all the random objects
effectively employed in the algorithm until each time:

Ft := σ
(
NK

0 , (Z
n
0 )n∈{1,...,NK

0 }, (N ((0, s], ·, ·) : s ≤ t), (Bn
s : s ≤ t)n∈{1,...,NK

t }
)
,

and by (Gt)t≥0 its subfiltration
Gt := σ (NK

s : s ≤ t).

Notice thatN is an (Ft)t≥0-Poisson process, and that the processes (NK
t )t≥0, (N

K
t )t≥0 and

(jt(n) : t ≥ 0), n ≥ 1 are adapted to (Gt)t≥0.

Remark 3.5.2. Thanks to Lemma 3.5.1, the mapping

(t, ω, ρ) 7→
(

Λ
NK

t−
t

(
(Xn

t−)
NK

t−
n=1, ρ

)
, X

i(ρ)
t−

)
=
(

Λ(NK
t−, t, (X

n
t−)

NK
t−

n=1, ρ ∧NK
t−), X

i(ρ)
t−

)
,

is measurable with respect to Pred(Ft) ⊗ B(R), with Pred(Ft) ⊆ B(R) ⊗ F the predictable

sigma-field associated with (Ft)t≥0.

The system (νKt )t≥0 satisfies (C) 1) by construction. The following lemma will be useful
to check, in the next paragraph, that it also satisfies (C) 2).

Lemma 3.5.2. Let (T j)j≥1 denote the sequence of consecutive birth times in (0,∞) of one new
particle in the system (νKt )t≥0, constructed with algorithm (A), and (T j, ρj) be the first two

coordinates of the atom (t, ρ, θ) corresponding to t = T j . Then, conditionally on FT j− and
{
ρj < NK

T j−

}
, Y

NK

T j

T j
= Λ

NK

T j

(
(Xn

t−)
NK

t−
n=1, ρj

)
has law µ̄T j

.

Proof. Let f : Rd → R be a bounded measurable function and (Ut)t≥0 a bounded (Ft)t≥0-
predictable process. We have

f

(
Y
NK

T j

T j

)
1{ρj<NK

T j −
}UT j

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
f
(

Λ
NK

t−
t

(
(Xn

t−)
NK

t−
n=1, ρ

))
1{ρ<NK

t−, N
K

t−=NK
0 +j−1, θ<r}Ut N (dt, dρ, dθ).

By Remark 3.5.2, we can use the compensation formula with respect to the filtration (Ft)t≥0,
and deduce with Lemma 3.5.1 that

E

(
f

(
Y
NK

T j

T j

)
1{ρj<NK

T j −
}UT j

)

=
∫ ∞

0

∫ ∞

0
E

(
〈µ̄t, f〉NK

t 1{NK

t =NK
0 +j−1, θ<r}Ut

)
dθdt

=E

(∫

[0,∞)3
〈µ̄t, f〉1{ρ<NK

t−, N
K

t−=NK
0 +j−1, θ<r}Ut N (dt, dρ, dθ)

)

=E

(
〈µ̄T j

, f〉1{ρj<NK

T j −
}UT j

)
.

Since any bounded random variable measurable w.r.t. FT j− can be written as UT j
for some

predictable process (Ut)t≥0, the statement is proved.
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Verification of condition (C) 2)

Lemma 3.5.3. For each t ≥ 0, conditionally on 〈νKt , 1〉, the atoms of νKt are i.i.d. random

variables of law µ̄t.

Proof. The proof will be done constructing an alternative system (ν̂Kt = 1
K

∑NK
t

n=1 δŶ n
t

)t≥0 with

the same law as (νKt )t≥0, for which the required property is easily checked. This system is
defined on the same probability space as (νKt )t≥0, by means of a variant of the construction
of (νKt )t≥0 in algorithm (A). The algorithm is as follows:

0. Define for all j ≥ 1:

Zj
t = Zj

0 +
∫ t

0
b
(
Zj
s , H ∗ µs(Zj

s)
)

ds+
∫ t

0
σ
(
Zj
s , G ∗ µs(Zj

s)
)

dW j
t , t ≥ 0.

Set Ŷ n
0 = Zn

0 for n ∈ {1, . . . , NK
0 } and ν̂K0 = 1

K

∑NK
0

n=1 δŶ n
0
. As before, we set the same

counters N
K
0 = NK

0 and m = 0, we define T0 = 0 and we initialize j0(n) = n for all
n ≥ 1.

1. For t ≥ Tm, we set jt(n) = jTm
(n) and dBn

t = dW
jt(n)
t , n ≥ 1, and we take

Ŷ n
t = Z

jt(n)
t , n = 1, . . . , NK

Tm
,

until the first time t > Tm, with (t, ρ, θ) an atom of N such that ρ < NK
Tm

and
θ < r + cNK

Tm
/K.We then set Tm+1 = t.

2. For (t, ρ, θ) = (Tm+1, ρ, θ) as before,

– If θ < r, we update NK
t := NK

t− + 1 and N
K
t := N

K
t− + 1, then we define:

Ŷ
NK

t
t := Z

N
K

t
t .

– If r ≤ θ < cNK
Tm
/K , we update NK

t := NK
t− − 1, and we redefine:

(
Ŷ

i(ρ)
t , Ŷ

i(ρ)+1
t , . . . , Ŷ

NK
t

t

)
:=
(
Ŷ

i(ρ)+1
t− , Ŷ

i(ρ)+2
t− , . . . , Ŷ

NK
t−

t−
)
,

and jt(n) := jt−(n+ 1) for all n ≥ i(ρ).

3. We increasem by one and go to Step 1.

Plainly, instead of sampling at each birth time T j the position of a new independent particle

Y
NK

T j from the atom (T j, ρ, θ) of N as in (A), we now add a new particle Ŷ
NK

T j to the sys-

tem by “turning on” at that time the nonlinear diffusion process Z
N

K

T j = ZNK
0 +j , which has

evolved independently since time t = 0, driven by the same Brownian motion WNK
0 +j that

drives the process

(
Y
NK

T j

t : t ≥ T j

)
in the construction (A). Call now

F̂t := σ
(

Ft ∨
(
Z
NK

0 +k

Tk
: NK

0 + k ≤ N
K
t

))
,
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the filtration containing the information effectively employed to construct the process (ν̂Kt ),
and let (Vt)t≥0 be a bounded left continuous process adapted to (F̂t)t≥0. Conditionally onNK

0 ,

VT j
depends only on N and (W k, Zk

0 ) for k < NK
0 + j, while

(
Z
NK

0 +j
t

)
t≥0

is independent of

them. Therefore, we have

E

(
f

(
Ŷ
NK

T j

T j

)
1{ρj<NK

T j −
}VT j

)
= E

(
f
(
Z
NK

0 +j

T j

)
1{ρj<NK

T j −
}VT j

)

= E

(
〈µ̄T j

, f〉1{ρj<NK

T j −
}VT j

)
,

by Remark 3.5.1 a). This implies that, conditionally on F̂T j− and {ρj < NK
T j−}, the random

variable Ŷ
NK

T j

T j
has the law µ̄T j

. Comparing this to the setting in Lemma 3.5.2, one can check

by induction on j that the processes (νKt )t≥0 and (ν̂Kt ) have the same law on each of their
(common) time intervals [0, T j], hence over all [0,∞).

To conclude, notice that the i.i.d processes (Zj
t )t≥0, j ≥ 1 have law µ̄t at each t ≥ 0, and

they are independent of the filtration (Gt)t≥0 with respect to which the process (NK
t )t≥0 is

measurable. Moreover, for each t ≥ 0, {Ŷ 1
t , . . . , Ŷ

NK
t

t } = {Zjt(1)
t , . . . , Z

jt(NK
t )

t } is a random

subset of {Z1
t , . . . , Z

N
K

t
t }, selected in a way that is measurable w.r.t. Gt. This readily implies

that, conditionally on NK
t = N , {Ŷ 1

t , . . . , Ŷ
N
t } are N i.i.d. random variables of law µ̄t, as

required.

3.6 Proof of Theorem 3.2: the pure binary branching case

We consider in this section the case where interactions take place only through the reproduc-
tion events, that is, due only to the fact that the position of a newborn individual coincides at
its birth with that of its parent (after which all individuals evolve completely independently).
Since convergence bounds are neither available in this basic setting, we provide the complete
proof for this case, as it might be of independent interest, and since it is useful to illustrate
directly the main arguments.

We thus assume in what follows that coefficients σ : Rd → R
d⊗d and b : Rd → R

d do
not depend on µKt and, moreover, that they are Lipschitz continuous, with σ bounded (for
simplicity). We will also assume that the individual instantaneous birth and death rates are
time inhomogeneous, and specified respectively by two measurable functions r, c : [0, T ] →
R+, bounded respectively by some positive constants r̄ and c̄.

The analog of Theorem 3.1 is standard in this scenario (or can be proved by the same
techniques used in [58]), and the limit in law of the process (µKt )t≥0 is given by the unique
weak solution in M+(Rd) to the linear evolution equation

〈µt, f(t, ·)〉 = 〈µ0, f(0, ·)〉 +
∫ t

0
〈µs, ∂sf(s, ·) + Lf(s, ·) + (r(s) − c(s))f(s, ·)〉 ds, (3.6.1)

for each t ∈ [0, T ] and every f ∈ C1,2([0, T ]×R
d), whereL is the time-homogeneous operator

defined in (3.5.5).

The construction of the coupling with the auxiliary system is essentially the same as in
Section 3.5, using algorithm (A) with two minor modifications:
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- Step 1 is carried out until the first time t > Tm, where (t, ρ, θ) is an atom of N such that
ρ < NK

Tm
and θ < r(t) + c(t), at which one sets Tm+1 = t.

- The updates in Step 2 are carried out according to whether θ < r(t) or otherwise r(t) ≤
θ < r(t) + c(t).

In between birth or deaths events, individuals in the system (µKt )t≥0 evolve according to
the SDEs

dXn
t = b(Xn

t ) dt+ σ(Xn
t ) dBn

t , n = 1, . . . , NK
t , (3.6.2)

as also do the individuals in the system (νKt )t≥0.

We next state the analog of Lemma 3.4.2 valid in the current setting.

Lemma 3.6.1. For each T > 0 and p ≥ 1 there is a constant CT,p > 0 such that

sup
K

E

(
sup
t∈[0,T ]

〈µKt , 1〉p
)
< CT,p sup

K
E(〈µK0 , 1〉p).

Moreover, if supK E(〈µK0 , 1〉) < ∞, for all T > 0 we have

E

(∣∣∣〈µKt , 1〉 − 〈µt, 1〉
∣∣∣
)

≤ CT
(
I1(K) +K− 1

2

)
.

Proof. The first claim is shown as in [58], Lemma 3.3. For the second assertion, we write the
dynamics of the number of particles in the system in terms of the Poisson point measure N
used in algorithm (A). We obtain

NK
t = NK

0 +
∫ t

0

∫

R+

∫

R+

1ρ≤NK
s−

(
1θ≤r(s−) − 1r(s−)<θ≤r(s−)+c(s−)

)
N (ds, dρ, dθ)

= NK
0 +

∫ t

0
(r(s) − c(s))NK

s ds+MK
t ,

where (MK
t )t≥0 is a martingale since, for all t ≥ 0,

E

(∫ t

0

∫

R+

∫

R+

∣∣∣∣1ρ≤NK
s

(
1θ≤r(s) − 1r(s)<θ≤r(s)+c(s)

)∣∣∣∣ dsdρdθ
)

≤ (r̄ + c̄)E

(∫ t

0
NK
s ds

)
< ∞,

by the first part and the assumption on first moments. Comparing this evolution to the ODE
(3.6.4) satisfied by the total mass of the limiting measure, we get the estimate

E

(∣∣∣∣
NK
t

K
− 〈µt, 1〉

∣∣∣∣
)

≤E

(∣∣∣∣
NK

0

K
− 〈µ0, 1〉

∣∣∣∣
)

+ (r̄ + c̄)
∫ t

0
E

(∣∣∣∣
NK
s

K
− 〈µs, 1〉

∣∣∣∣
)

ds+ E

( |MK
t |
K

)
.

The last term is controlled using the Burkholder-Davis-Gundy (BDG) inequality as follows:

E

(∣∣∣MK
t

∣∣∣
K

)
≤ 1

K
E

(∫ t

0

∫

R+

∫

R+

1{ρ≤NK
s−, θ≤r(s−)+c(s−)} N (ds, dρ, dθ)

) 1
2

=
E((

∫ t
0(r(s) + c(s))NK

s ds)
1
2

K

≤ CT√
K

(
sup
K

E(〈µK0 , 1〉)(r̄ + c̄)er̄t

) 1
2

,

for all t ∈ [0, T ]. We conclude by Gronwall’s lemma that

E

(∣∣∣∣
NK
t

K
− 〈µt, 1〉

∣∣∣∣
)

≤ CT

(
E

(∣∣∣∣
NK

0

K
− 〈µ0, 1〉

∣∣∣∣
)

+
1√
K

)
.
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Notice that in the case dealt within this section, Lemma 3.4.3 is a standard propagation of
moments result for diffusion processes under Lipschitz conditions. The analogue of Proposi-
tion 3.5.1 in this setting is rather elementary too, yet illustrative for the general case, so we
state it in detail next.

Proposition 3.6.1. Let (µt)t≥0 be the unique weak solution in M+(Rd) of the linear equation

∂µt
∂t

= L∗µt + (r(t) − c(t))µt, (3.6.3)

with initial condition µ0 (given as a particular case of Theorem 3.1), and (Yt)t≥0 be the unique

pathwise solution to the SDE

Yt = Y0 +
∫ t

0
b(Ys) ds+

∫ t

0
σ(Ys) dWs,

where W is a d-dimensional Brownian motion and Y0 and independent random variable in R
d

with law µ̄0. Then, the flow (µ̄t)t≥0 of time-marginal laws of (Yt)t≥0 is the unique weak solution

of the Fokker-Planck equation
∂µ̄t
∂t

= L∗µ̄t,

and satisfies µ̄t = µt

〈µt,1〉 for all t ≥ 0. In particular, for all bounded real function f we have

〈µt, f〉 = E(f(Yt)nt), where nt is the unique solution with n0 = 〈µ0, 1〉 of the linear differential
equation

dnt = (r(t) − c(t))nt dt. (3.6.4)

Proof. The first claim is standard and easily seen using Itô’s formula (uniqueness is also stan-
dard using for example the Feynman-Kac formula). The relation between the law of Yt and µt
for all t ≥ 0 is easily shown considering the function h(t, x) = 〈µt, 1〉f(t, x) and computing

〈µ̄t, h(t, ·)〉

= 〈µ̄0, h(0, ·)〉 +
∫ t

0
〈µ̄s, ∂sh(s, ·) + Lh(s, ·)〉 ds

= 〈〈µ0, 1〉µ̄0, f(0, ·)〉 +
∫ t

0
〈µ̄s, f(s, ·)∂s〈µs, 1〉 + 〈µs, 1〉∂sf(s, ·) + 〈µs, 1〉Lf(s, ·)〉 ds

= 〈〈µ0, 1〉µ̄0, f(0, ·)〉 +
∫ t

0
〈〈µs, 1〉µ̄s, ∂sf(s, ·) + Lf(s, ·) + (r(s) − c(s))f(s, ·)〉 ds.

This means that (〈µt, 1〉µ̄t)t≥0 satisfies equation (3.6.1). Uniqueness for that equation yields
〈µt, 1〉µ̄t = µt for all t ≥ 0 as claimed. This means that

〈µt, f〉 = E(〈µt, 1〉f(Yt)),

for all bounded f , and the fact that (〈µt, 1〉)t≥0 satisfies (3.6.4) is immediate.

In order to prove that Condition (C) 3) holds, one last additional control is needed.

Lemma 3.6.2. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two diffusion processes with generator L
driven by the same Brownian motion B. For each T > 0 there exists CT > 0 such that for all

0 < u < t < T

E(‖Xt − Yt‖2 − ‖Xu − Yu‖2) ≤ CT

∫ t

u
E(‖Xs − Ys‖2) ds.
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Proof. Let (τn)n∈N be the sequence defined by τn := inf{s ≥ 0 : ‖Xs‖2 + ‖Ys‖2 > n}, which
localizes the local martingale parts of X and Y . We first establish a control on the running
suprema of the processes. Using the fact that b is Lipschitz we obtain

sup
u∈[0,t∧τn]

‖Xu‖2 ≤ 2‖X0‖2 + CT + CT

∫ t

0
sup

u∈[0,s∧τn]
‖Xu‖2 ds

+ 2
d∑

i,j=1

(
sup

u∈[0,t∧τn]

∣∣∣∣∣

∫ u

0
σ(ij)(Xs) dB(j)

s

∣∣∣∣∣

)2

.

With the BDG inequality and the fact that σ is also Lipschitz we then get

E

(
sup

u∈[0,t∧τn]
‖Xu‖2

)
≤ 2E

(
‖X0‖2

)
+ CT + CT

∫ t

0
E

(
sup

u∈[0,s∧τn]
‖Xu‖2

)
ds.

Applying Gronwall’s lemma and then Fatou’s lemma upon letting n → ∞ we deduce

E

(
sup
s∈[0,T ]

‖Xt‖2

)
≤ CT (E(‖X0‖2) + 1), (3.6.5)

and a similar estimate for the process Y . Now, Itô’s formula shows that

‖Xt − Yt‖2 = ‖Xu − Yu‖2 +
∫ t

u
2(Xs − Ys)

t(b(Xs) − b(Ys)) ds

+
∫ t

u
2(Xs − Ys)

t(σ(Xs) − σ(Ys)) dBs +
d∑

i,j=1

∫ t

u
(σ(ij)(Xs) − σ(ij)(Ys))

2 ds.

The sequence (τn)n localizes the local martingale on the right hand side. Taking expectation
for the stopped process and using the Lipschitz character of b and σ leads to

E(‖Xt∧τn
− Yt∧τn

‖2) ≤ E(‖Xu − Yu‖2) + C
∫ t

u
E(‖Xs∧τn

− Ys∧τn
‖2) ds.

By dominated convergence using the bound (3.6.5), we can take n → ∞ and conclude.

Now we can state the bound leading to condition (C) 3) and to the proof of the main
result, in the case of pure binary branching.

Lemma 3.6.3. There exists a constant CT > 0 depending on d and q, such that for all K ∈ N

and t ∈ [0, T ]:

E

(
1

K

NK
t∑

n=1

‖Xn
t − Y n

t ‖2

)
≤ CT

∫ t

0
E

(
NK
s

K
W 2

2 (ν̄Ks , µ̄s)

)
ds.

Proof. Consider the product empirical measure ηKt := 1
K

∑NK
t

n=1 δ(Xn
t ,Y

n
t ) and the sequence of

jump times (Tm)m∈N of the process (NK
t )t≥0, defined through algorithm (A). We decompose

the evolution of ηKt in terms of (Tm)m∈N as follows:

ηKt = ηKt +
∞∑

m=1

(
1t≥Tm

(
ηKTm

− ηKTm−1

)
− 1Tm+1>t>Tm

ηKTm

)
+ ηK0 .
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DefiningAKt :=
∑
s≤t |∆NK

s |, where∆NK
s = NK

s −NK
s−, we can rewrite the previous equality

as

ηKt = ηK0 + ηKt − ηKT
AK

t

+
∞∑

m=1

1t≥Tm

(
ηKTm

− ηK
T−

m
+ ηK

T−
m

− ηKTm−1

)
.

The aim of this decomposition is to control separately what happens in between jumps and
at the jump instants. Integrating the function d2(x, y) := ‖x − y‖2 and taking expectation
yields

E(〈ηKt , d2〉) = E

(
〈ηK0 , d2〉

)
+ E

( ∞∑

m=1

1t≥Tm

(
〈ηKTm

, d2〉 − 〈ηK
T−

m
, d2〉

))

+ E

(〈
ηKt , d2

〉
−
〈
ηKT

AK
t

, d2

〉
+

∞∑

m=1

1t≥Tm

(
〈ηK
T−

m
, d2〉 − 〈ηKTm−1

, d2〉
))

. (3.6.6)

By Lemma 3.6.2, and since the evolution of ηKt is independent of the sigma field (Gt)t≥0 on
each interval [Tm−1, Tm), we get

E

(
1t≥Tm

(〈ηK
T−

m
, d2〉−〈ηKTm−1

, d2〉
) ∣∣∣Gt

)

= E

(
1

K

NK
Tm−1∑

n=1

‖Xn
T−

m
−Y n

T−
m

‖2 −‖Xn
Tm−1

−Y n
Tm−1

‖2

∣∣∣∣∣Gt
)

1t≥Tm

≤ 1

K

NK
Tm−1∑

n=1

C
∫ T−

m

Tm−1

E

(
‖Xn

s − Y n
s ‖2

∣∣∣ Gt
)

ds1t≥Tm

= C
∫ T−

m

Tm−1

E

(
〈ηKs , d2〉

∣∣∣ Gt
)

ds1t≥Tm
, (3.6.7)

and similarly, for the remaining time interval,

E

(
E

(〈
ηKt , d2

〉
−
〈
ηKTAKt

, d2

〉 ∣∣∣∣ Gt
))

≤ C
∫ t

TAKt

E

(
〈ηKs , d2〉

∣∣∣ Gt
)

ds.

Recalling Step 2 of the variant of algorithm (A) used in this section, the term involving the
jumps of the processes can be written as

E

( ∞∑

m=1

1t≥Tm

(
〈ηKTn

, d2〉 − 〈ηK
T−

n
, d2〉

))

= E

(
1

K

∫

[0,t]×R+×R+

(
1ρ≤NK

s−
1θ≤r(s−)

∥∥∥∥X
NK

s
s − Y NK

s
s

∥∥∥∥
2

− 1ρ≤NK
s−

1r(s−)<θ≤r(s−)+c(s−)

∥∥∥∥X
i(ρ)
s− − Y

i(ρ)
s−

∥∥∥∥
2)

N (ds, dρ, dθ)
)

≤ E

(∫

[0,t]×R+×R+

1

K
1ρ≤NK

s−
1θ≤r(s−)

∥∥∥∥X
i(ρ)
s− − Λ

NK
s−

s

(
(Xn

s−)
NK

s−
n=1 , ρ

)∥∥∥∥
2

N (ds, dρ, dθ)
)

= E

(∫ t

0

NK
s

K
r(s)W 2

2

(
µ̄Ks , µ̄s

)
ds
)
, (3.6.8)

where we used Lemma 3.5.1 and Remark 3.5.2 in the last equality. Since E(〈ηK0 , d2〉) = 0, by
combining the two previous estimates and writingC for some constant that may change from
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line to line, we deduce

E(〈ηKt , d2〉) ≤ C
∫ t

0
E(〈ηKs , d2〉) ds+ E

(∫ t

0

NK
s

K
r(s)W 2

2

(
µ̄Ks , µ̄s

)
ds

)

≤ C
∫ t

0
E(〈ηKs , d2〉) ds+ C

∫ t

0
E

(
NK
s

K
W 2

2

(
ν̄Ks , µ̄s

))
ds

+ C
∫ t

0
E

(
NK
s

K
W 2

2

(
µ̄Ks , ν̄

K
s

))
ds

≤ C
∫ t

0
E(〈ηKs , d2〉) ds+ C

∫ t

0
E

(
NK
s

K
W 2

2

(
ν̄Ks , µ̄s

))
ds,

where in the last inequality, we used the fact that

E

(
NK
t

K
W 2

2

(
µ̄Kt , ν̄

K
t

) )
≤ E

(
1

K

NK
t∑

n=1

‖Xn
t − Y n

t ‖2

)
, (3.6.9)

sinceW 2
2

(
µ̄Kt , ν̄

K
t

)
≤ 1

NK
t

∑NK
t

n=1 ‖Xn
t − Y n

t ‖2. We conclude by Gronwall’s lemma.

Corollary 3.6.1. Condition (C) 3) holds for this model with the improved bound: CTRd,q(K).

Proof. Combine inequality (3.6.9) with Lemma 3.6.3 and apply then Lemma 3.3.2.

Finally, under the assumptions of Theorem 3.2 and condition (C), the main result in this
case reads as follows.

Theorem 3.4. There exists a finite constant CT > 0 such that for all t ∈ [0, T ]

sup
t∈[0,T ]

E

(∥∥∥µKt − µt
∥∥∥

BL∗

)
≤CT





(
I1(K) +K− 1

4 +K− (q−2)
2q

)
, if d < 4 and q 6= 4,

(
I1(K) +K− 1

4 (log(1 +K))
1
2 +K− (q−2)

2q

)
, if d = 4 and q 6= 4,

(
I1(K) +K− 1

d +K− (q−2)
2q

)
, if d > 4 and q 6= d/(d− 2).

Proof. As in the proof of Lemma 3.4.1 we show that

E

(
‖µKt − µt‖BL∗

)
≤ CT

(
E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄t

) ) 1
2

+ E

(
NK
t

K
W 2

2

(
ν̄Kt , µ̄

K
t

) ) 1
2

+ E

(∣∣∣〈µKt , 1〉 − 〈µt, 1〉
∣∣∣
))

≤ CT

(
Rd,q(K)

1
2 + I1(K) +K− 1

2

)
,

using Lemma 3.3.2 and Lemma 3.6.1, and we conclude noting thatK− 1
2 ≤ Rd,q(K)

1
2 .

3.7 Proof of Theorem 3.2: the general case

We now address general processes (µKt )t≥0. We start by proving Proposition 3.5.1, which
relates the solution (µt)t≥0 of equation (3.5.1) with a non-linear process of McKean-Vlasov
type.
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Proof of Proposition 3.5.1. Pathwise existence and uniqueness for the SDE (3.5.2) comes from
the fact that the coefficients are Lipschitz functions. In order to characterize the flow of time-
marginal laws of (Yt)t≥0, consider a function f ∈ C1,2([0, T ] × R

d) satisfying the conditions
in Theorem 3.1. By Itô’s formula we obtain

f(t, Yt) = f(0, Y0) +
∫ t

0

∂f(s, Ys)

∂s
ds+

∫ t

0
∇f(s, Ys)

tb(Ys, H ∗ µs(Ys)) ds

+
∫ t

0
∇f(s, Ys)

tσ(Ys, G ∗ µs(Ys)) dWs +
1

2

∫ t

0
Tr(a(Ys, G ∗ µs(Ys))Hessf(s, Ys)) ds.

Taking expectation in this equation shows that the law of the time-marginal is a weak
solution of (3.5.3) with respect to that set of test functions. Now, consider the function
h(t, x) = 〈µt, 1〉f(t, x). By equation (3.5.3) we get

〈µ̄t, h(t, ·)〉

= 〈µ̄0, h(0, ·)〉 +
∫ t

0
〈µ̄s, ∂sh(s, ·) + Lµs

h(s, ·)〉 ds

= 〈〈µ0, 1〉µ̄0, f(0, ·)〉 +
∫ t

0
〈µ̄s, f(s, ·)∂s〈µs, 1〉 + 〈µs, 1〉∂sf(s, ·) + 〈µs, 1〉Lµs

f(s, ·)〉 ds

= 〈〈µ0, 1〉µ̄0, f(0, ·)〉 +
∫ t

0
〈〈µs, 1〉µ̄s, ∂sf(s, ·) + Lµs

f(s, ·) + (r − c〈µs, 1〉)f(s, ·)〉 ds,

which implies that (µ̃t)t≥0 := (〈µt, 1〉µ̄t)t≥0 satisfies the following “linearized” version of
equation (3.1.2)

〈µ̃t, f(t, ·)〉 = 〈µ0, f(0, ·)〉 +
∫ t

0

〈
µ̃s, ∂sf(s, ·) + Lµs

f(s, ·) + (r − c〈µs, 1〉)f(s, ·)
〉

ds.

With similar (indeed simpler) arguments as in the uniqueness part of Theorem 3.1 (see Section
4 in [58]) one can show that uniqueness of weak solutions (with respect to the same class of
test functions) of this equation holds. Since (µ̃t)t≥0 = (µt)t≥0 also is a solution, we deduce
that 〈µt, 1〉µ̄t = µt for all t ≥ 0.

The previous identity yields 〈µt, f〉 = E(〈µt, 1〉f(Yt)) for every bounded measurable f ,
and the fact that (〈µt, 1〉)t≥0 is the unique solution of equation (3.5.4) is readily obtained by
taking f = 1 in Theorem 3.1, recalling that the local Lipschitz character of the ODE’s coeffi-
cient ensures uniqueness for it.

We next prove Lemmas 3.4.2 and 3.4.3, which are needed to obtain the estimate in Lemma
3.4.1.

Proof of Lemma 3.4.2. For the first part concerning the bounds on the moments of the total
mass we refer to Lemma 3.3 in [58]. For the second part, we resort to algorithm (A) to repre-
sent the dynamics of the number of particles by

NK
t = NK

0 +
∫ t

0

∫
1ρ≤NK

s−

(
1θ≤r − 1

r<θ≤r+cNK
s−

K

)
N (ds, dρ, dθ)

= NK
0 +

∫ t

0

(
r − c

NK
s

K

)
NK
s ds+MK

t ,

(MK
t )t≥0 is a martingale since, for all t ≥ 0,

E

(∫ t

0

∫

R+

∫

R+

∣∣∣∣∣1ρ≤NK
s

(
1θ≤r(s) − 1

r<θ≤r+cNK
s−

K

)∣∣∣∣∣ ds dρ dθ

)
≤ (r+ c)E

(∫ t

0
(NK

s )2 ds

)
< ∞,
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by the previous part and the assumption on second moments. Taking into account that

〈µt, 1〉 = 〈µ0, 1〉 +
∫ t

0
(r − c〈µs, 1〉)〈µs, 1〉 ds,

we obtain with Itô ’s formula that

(
NK
t

K
− 〈µt, 1〉

)2

=

(
NK

0

K
− 〈µ0, 1〉

)2

+
∫ t

0
2

(
NK
s−
K

− 〈µs−, 1〉
)

d
(
MK

s

K

)

+
∫ t

0

[
2r

(
NK
s

K
− 〈µs, 1〉

)2

−
(
NK
s

K
− 〈µs, 1〉

)2(
NK
s

K
+ 〈µs, 1〉

)]
ds

+
∫ t

0

∫
1ρ≤NK

s−
1
r<θ≤r+cNK

s−
K

(
1

K

)2

N (ds, dρ, dθ)

+
∫ t

0

∫
1ρ≤NK

s−
1θ≤r

(
1

K

)2

N (ds, dρ, dθ).

Neglecting the negative term in the second line gives us the bound

(
NK
t

K
− 〈µt, 1〉

)2

≤
(
NK

0

K
− 〈µ0, 1〉

)2

+
∫ t

0
2r

(
NK
s

K
− 〈µs, 1〉

)2

ds+
∫ t

0

r

K

(
NK
s

K

)
ds

+
∫ t

0

c

K

(
NK
s

K

)2

ds+
∫ t

0
2

(
NK
s−
K

− 〈µs−, 1〉
)

d
(
MK

s

K

)
+ M̄K

t + M̃K
t

≤
(
NK

0

K
− 〈µ0, 1〉

)2

+
∫ t

0
2r

(
NK
s

K
− 〈µs, 1〉

)2

ds+
rT

K
sup
s∈[0,T ]

〈µKs , 1〉

+
cT

K
sup
s∈[0,T ]

〈µKs , 1〉2 +
∫ t

0
2

(
NK
s−
K

− 〈µs−, 1〉
)

d
(
MK

s

K

)
+ M̄K

t + M̃K
t , (3.7.1)

where (M̄K
t )t≥0 and (M̃K

t )t≥0 are compensated Poisson integrals. Let now (τm)m be the se-

quence of stopping times defined by τm = inf{t > 0 : N
K

t > m} form ≥ 1 and τ0 = 0. Since

N
K
s is increasing by one and N

K
r− ≥ m+ 1 = N

K
τm
> N

K
s− for all r > τm ≥ s, we have

∫ t∧τm

0
2

(
NK
s−
K

− 〈µs−, 1〉
)

d
(
MK

s

K

)
= 2

∫ t

0
1{NK

s−≤m}

(
NK
s−
K

− 〈µs−, 1〉
)

d
(
MK

s

K

)

= 2
∫ t

0

∫
φ(s, ρ, θ)Ñ (ds, dρ, dθ),

with Ñ the compensated measure associated with N and φ the predictable process

φ(s, ρ, θ) = 1
N

K

s−≤m1ρ≤NK
s−

1

K

(
1θ≤r − 1

r<θ≤r+cNK
s−

K

)(
NK
s−
K

− 〈µs−, 1〉
)
.
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The inequality NK
s ≤ N

K

s implies that

E

(∫ t

0

∫ ∞

0

∫ ∞

0
|φ(s, ρ, θ)| ds dρ dθ

)

≤ E

(∫ t

0
1
N

K

s ≤m(s)
NK
s

K

(
r + c

NK
s

K

)(
NK
s

K
+ 〈µs, 1〉

)
ds

)

≤ E

(∫ t

0

m

K

(
r + c

m

K

)(
m

K
+ 〈µs, 1〉

)
ds

)

≤ CT,K,m

(
1 + sup

s∈[0,T ]
〈µs, 1〉

)
,

and so the integral w.r.t. d
(
MK

s

K

)
in (3.7.1) is a martingale. By similar reasonings, the stopped

processes (M̄K
t∧τm

)t≥0 and (M̃K
t∧τm

)t≥0 are also seen to be martingales. Taking expectation in
(3.7.1) we get

E

((
NK
t∧τm

K
− 〈µt∧τm

, 1〉
)2)

≤ E

((
NK

0

K
− 〈µ0, 1〉

)2)
+ E

(∫ t∧τm

0
2r

(
NK
s

K
− 〈µs, 1〉

)2

ds

)
+
CT
K

≤ E

((
NK

0

K
− 〈µ0, 1〉

)2)
+
∫ t

0
2rE

((
NK
s∧τm

K
− 〈µs∧τm

, 1〉
)2)

ds+
CT
K
.

Using Gronwall’s lemma we obtain

E

((
NK
t∧τm

K
− 〈µt∧τm

, 1〉
)2)

≤
(
E

((
NK

0

K
− 〈µ0, 1〉

)2)
+
CT
K

)
e2rT . (3.7.2)

from which the conclusion follows, applying Fatou’s lemma.

Proof of Lemma 3.4.3. Wewill use the diffusion process (Yt)t≥0 considered in Proposition 3.5.1,
proven therein to satisfy E(‖Yt‖q) = Mq(µ̄t). Applying Itô’s formula to ‖Yt‖q for q ≥ 2 yields

‖Yt‖q = ‖Y0‖q +
∫ t

0
q‖Ys‖q−2Y t

s b(Ys, H ∗ µs(Ys)) ds+
∫ t

0
q‖Ys‖q−2Y t

s σ(Ys, G ∗ µs(Ys)) dBs

+
1

2

d∑

i,j=1

d∑

k=1

∫ t

0

(
q(q − 2)‖Ys‖q−4|Y (i)

s ||Y (j)
s | + δij‖Ys‖q−2

)

× σ(ik)(Ys, G ∗ µs(Ys))σ(jk)(Ys, G ∗ µs(Ys))) ds. (3.7.3)

Since b is Lipschitz, we have ‖b(Ys, H ∗ µs(Ys))‖ ≤ C
(
1 + ‖Ys‖ + |H ∗ µs(Ys)|

)
with

|H ∗ µs(Ys)| = | ∫ H(x − Ys)µs(dx)| ≤ ‖H‖∞ supt∈[0,T ] |〈µs, 1〉|, and similarly for σ and
G. We thus get that

‖b(Ys, H ∗ µs(Ys))‖ ≤ C
(
1 + ‖Xs‖

)
and ‖σ(Xs, G ∗ µs(Xs))‖ ≤ C

(
1 + ‖Xs‖

)
.

Using this in (3.7.3) gives us the bound

‖Yt‖q ≤ ‖Y0‖q + C
∫ t

0
‖Ys‖q−2 ds+ C

∫ t

0
‖Ys‖q−1 ds+ C

∫ t

0
‖Ys‖q ds

+
∫ t

0
q‖Ys‖q−2Y t

s σ(Ys, G ∗ µs(Ys)) dBs.
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Let now (τn)n∈N be a localizing sequence for the local martingale in the right hand side. Taking
expectation of the stopped process yields

E(‖Yt∧τn
‖q) ≤ E(‖Y0‖q) + C

∫ t

0
E(‖Ys∧τn

‖q−2) ds+ C
∫ t

0
E(‖Ys∧τn

‖q−1) ds

+ C
∫ t

0
E(‖Ys∧τn

‖q) ds.

Notice that, by Hölder’s inequality, one gets
∫ t

0
E(‖Ys∧τn

‖q−1) ds ≤
∫ t

0
E(‖Ys∧τn

‖q)
q−1

q ds ≤ CT + C
∫ t

0
E(‖Ys∧τn

‖q) ds,

and a similar bound holds for the term of order q−2. Combined with the previous, this entails

E(‖Yt∧τn
‖q) ≤ E(‖Y0‖)q + CT + C

∫ t

0
E(‖Ys∧τn

‖q) ds,

from where Gronwall’s lemma yields

E(‖Yt∧τn
‖q) ≤ CT (E(‖Y0‖)q + 1).

We conclude with Fatou’s lemma taking n → ∞.

Everything left to do is to show that condition (C) 3) holds. We will need two additional
bounds stated in the next two results.

Lemma 3.7.1. Let N and K ∈ N
∗ be fixed, and consider the diffusion processes (Xn)Nn=1 in

(Rd)N evolving according to

dXn
t = b(Xn

t , H ∗ µKt (Xn
t )) dt+ σ(Xn

t , G ∗ µKt (Xn
t )) dBn

t , t ≥ 0,

where (Bn)Nn=1 are independent Brownianmotions inRd andµKt stands for the empirical measure

µKt = 1
K

∑N
n=1 δXn

t
. Consider also N i.i.d. copies (Y n)Nn=1 of the process (3.5.2),

dY n
t = b(Y n

t , H ∗ µt(Y n
t )) dt+ σ(Y n

t , G ∗ µt(Y n
t )) dBn

t , t ≥ 0,

driven by the same Brownian motions. For each T > 0, there is CT > 0 not depending onK nor

on N such that for all 0 < u < t < T and each n = 1, . . . , N ,

E(‖Xn
t − Y n

t ‖2 − ‖Xn
u − Y n

u ‖2) ≤ CT

∫ t

u
E(‖Xn

s − Y n
s ‖2) ds+

∫ t

u
E

(∥∥∥µKs − µs
∥∥∥

2

BL∗

)
ds.

Proof. We first check that the running supremum of each process (Xn) is square integrable.
Using similar bounds as in the proof of Lemma 3.4.3, we get for each t ∈ [0, T ],

‖Xn
t ‖2 ≤ ‖Xn

0 ‖2 +
∫ t

0
2‖Xn

s ‖‖b(Xn
s , H ∗ µKs (Xn

s ))‖ ds

+
∫ t

0
2(Xn

s )tσ(Xn
s , G ∗ µKs (Xn

s )) dBs +
∫ t

0
‖σ(Xn

s , G ∗ µKs (Xn
s ))‖2 ds

≤ ‖Xn
0 ‖2 + CT + C

∫ t

0
‖Xn

s ‖ ds+ C
∫ t

0
‖Xn

s ‖2 ds+ C
∫ t

0
‖Xn

s ‖|H ∗ µKs (Xn
s )| ds

+ C
∫ t

0
|G ∗ µKs (Xn

s )|2 ds+
∫ t

0
2(Xn

s )tσ(Xn
s , G ∗ µKs (Xn

s )) dBs

≤ ‖Xn
0 ‖2 + CT + CT‖H‖2

∞

(
N

K

)2

+ CT‖G‖2
∞

(
N

K

)2

+ C
∫ t

0
‖Xn

s ‖2 ds

+
∫ t

0
2(Xn

s )tσ(Xn
s , G ∗ µKs (Xn

s )) dBs,

82



since, in the present lemma’s setting, 〈µKs , 1〉 = N
K

for all s ≥ 0. Let (τn)n∈N be a localizing
sequence for the local martingale in the previous inequality. As in the proof of Lemma 3.6.2
we localize and then we take supremum until time t∧ τn on both sides, obtaining in this way
that

sup
u∈[0,t∧τn]

‖Xn
u‖2 ≤ ‖Xn

0 ‖2 + CT + CT‖H‖2
∞ sup
s∈[0,T ]

〈µKs , 1〉2

+ CT‖G‖2
∞ sup
s∈[0,T ]

〈µKs , 1〉2 + C
∫ t

0
sup

u∈[0,s∧τn]
‖Xn

u‖2 ds

+
d∑

i,j=1

(
sup

u∈[0,t∧τn]

∣∣∣∣∣

∫ u

0
2(Xn

s )(i)σ(ij)(Xn
s , G ∗ µKs (Xn

s )) dB(j)
s

∣∣∣∣∣

)
.

The expectation of the last term is controlled using the BDG inequality by

d∑

i,j=1

E

(
sup

u∈[0,t∧τn]

∣∣∣∣∣

∫ u

0
2(Xn

s )(i)σ(ij)(Xn
s , G ∗ µKs (Xn

s )) dB(j)
s

∣∣∣∣∣

)

≤
d∑

i,j=1

E

((∫ t∧τn

0
4
(

(Xn
s )(i)σ(ij)(Xn

s , G ∗ µKs (Xn
s ))
)2

ds

) 1
2
)

≤ CE

((∫ t∧τn

0
‖Xn

s ‖2‖σ(Xn
s , G ∗ µKs (Xn

s ))‖2 ds

) 1
2
)

≤ CE

((
1 + ‖G‖2

∞

(
N

K

)2
) 1

2
(∫ t

0
‖Xn

s∧τn
‖2 ds

) 1
2
)

≤ CT + CT

∫ t

0
E(‖Xn

s∧τn
‖2) ds,

where we used the finiteness of the second order moment of the total mass. This allows us to
obtain that

E

(
sup

u∈[0,t∧τn]
‖Xn

u‖2

)
≤ E

(
‖Xn

0 ‖2
)

+ CT +
∫ t

0
E

(
sup

u∈[0,s∧τn]

‖Xn
u‖2

)
ds,

which implies by Gronwall’s lemma and then monotone convergence that

E

(
sup
t∈[0,T ]

‖Xn
t ‖2

)
< ∞. (3.7.4)

A similar argument can be applied to the process (Y n
t )t≥0 in order to obtain the same conclu-

sion.

We now apply Itô’s formula for fixed n as in (3.7.3) to get

‖Xn
t −Y n

t ‖2 = ‖Xn
u −Y n

u ‖2+
∫ t

u
2(Xn

s −Y n
s )t

(
b(Xn

s , H ∗µKs (Xn
s ))−b(Y n

s , H ∗µs(Y n
s ))

)
ds

+
∫ t

u
2(Xn

s − Y n
s )t

(
σ(Xn

s , G ∗ µKs (Xn
s )) − σ(Y n

s , G ∗ µs(Y n
s ))

)
dBn

s

+
d∑

i,j=1

∫ t

u

(
σ(ij)(Xn

s , G ∗ µKs (Xn
s )) − σ(ij)(Y n

s , G ∗ µs(Y n
s ))

)2
ds.
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Using the Lipschitz character of the coefficients we get the bound

‖Xn
t −Y n

t ‖2 ≤ ‖Xn
u−Y n

u ‖2+C
∫ t

u

(
‖Xn

s −Y n
s ‖2+‖Xn

s −Y n
s ‖|H∗µKs (Xn

s )−H∗µs(Y n
s )|

)
ds

+ C
∫ v

u

(
‖Xn

s − Y n
s ‖2 + |G ∗ µKs (Xn

s ) −G ∗ µs(Y n
s )|2

)
ds

+
∫ t

u
2(Xn

s − Y n
s )t(σ(Xn

s , G ∗ µKs (Xn
s )) − σ(Y n

s , G ∗ µs(Y n
s ))) dBn

s .

Recalling that the function H(· − x) is bounded and Lipschitz for each x ∈ R
d, we see that

∣∣∣H ∗ µKs (Xn
s ) −H ∗ µs(Y n

s )
∣∣∣ ≤

∣∣∣H ∗ µKs (Xn
s ) −H ∗ µs(Xn

s )
∣∣∣+ |H ∗ µs(Xn

s ) −H ∗ µs(Y n
s )|

≤ C‖µKs − µs‖BL∗ + C‖µs‖BL∗‖Xn
s − Y n

s ‖,

and similarly for the terms involving G. The uniform bound on the mass of (µt)t≥0 on finite
time intervals allows us to get for all 0 < u < t < T that

‖Xn
t − Y n

t ‖2 ≤ ‖Xn
u − Y n

u ‖2 + C
∫ t

u

(
‖Xn

s − Y n
s ‖2 + ‖Xn

s − Y n
s ‖‖µKs − µs‖BL∗

)
ds

+ C
∫ v

u

(
‖Xn

s − Y n
s ‖2 + ‖µKs − µs‖2

BL∗

)
ds

+
∫ t

u
2(Xn

s − Y n
s )t(σ(Xn

s , G ∗ µKs (Xn
s )) − σ(Y n

s , G ∗ µs(Y n
s ))) dBn

s

≤ ‖Xn
u − Y n

u ‖2 + C
∫ t

u

(
‖Xn

s − Y n
s ‖2 + ‖µKs − µs‖2

BL∗

)
ds

+
∫ t

u
2(Xn

s − Y n
s )t(σ(Xn

s , G ∗ µKs (Xn
s )) − σ(Y n

s , G ∗ µs(Y n
s ))) dBn

s ,

where we used Young’s inequality for the second inequality, and where C is a constant not
depending on K nor on N that might change from line to line. By considering a localizing
sequence (τn)n for the local martingale on the right hand side, we can take expectation of the
stopped process to obtain

E(‖Xn
t∧τn

− Y n
t∧τn

‖2) ≤ E(‖Xn
u − Y n

u ‖2) + C
∫ t

u
E(‖Xn

s∧τn
− Y n

s∧τn
‖2) ds

+
∫ t

u
E(
∥∥∥µKs∧τn

− µs∧τn

∥∥∥
2

BL∗) ds,

for all 0 < u < t < T . Thanks to the second moments controls on the running suprema of
Xn and Y n, and since the total mass of µKt is constant in the context of the present lemma, we
can use dominated convergence to take n → ∞ and conclude the proof.

The following additional convergence estimate for moments of the total mass will also be
needed to establish condition (C) 3), due to the nonlinearities coming from the interactions
in the dynamics.

Lemma 3.7.2. Suppose that supK∈N
E(〈µK0 , 1〉4) < ∞. Then, we have

E

((
NK
t

K
− 〈µt, 1〉

)4)
≤ CT

(
I4

4 (K) +
1

K

)
,

where CT > 0 is a constant that depends on r and T .
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Proof. Proceeding as in the proof of Lemma 3.4.2, we see that

(
NK
t

K
− 〈µt, 1〉

)4

=

(
NK

0

K
− 〈µ0, 1〉

)4

+
∫ t

0
4

(
NK
s−

K
− 〈µs− , 1〉

)3

d

(
MK

s

K

)

+
∫ t

0

[
4r

(
NK
s

K
− 〈µs, 1〉

)4

− 4

(
NK
s

K
− 〈µs, 1〉

)4(
NK
s

K
+ 〈µs, 1〉

)]
ds

+
∫ t

0

∫
1ρ≤NK

s−
1θ≤r

[(
NK
s−
K

− 〈µs−, 1〉 +
1

K

)4

−
(
NK
s−
K

− 〈µs−, 1〉
)4

− 4

(
NK
s−
K

− 〈µs−, 1〉
)3

1

K

]
N (ds, dρ, dθ)

+
∫ t

0

∫
1ρ≤NK

s−
1
r<θ≤r+cNK

s−
K

[(
NK
s−
K

− 〈µs−, 1〉 − 1

K

)4

−
(
NK
s−
K

− 〈µs−, 1〉
)4

+ 4

(
NK
s−
K

− 〈µs−, 1〉
)3

1

K

]
N (ds, dρ, dθ).

Neglecting the negative term in the second line and compensating the integrals with respect
to the Poisson point measure gives us

(
NK
t

K
− 〈µt, 1〉

)4

≤
(
NK

0

K
− 〈µ0, 1〉

)4

+
∫ t

0
4r

(
NK
s

K
− 〈µs, 1〉

)4

ds

+
∫ t

0
rNK

s

(
6

(
NK
s

K
− 〈µs, 1〉

)2
1

K2
+ 4

(
NK
s

K
− 〈µs, 1〉

)
1

K3
+

1

K4

)
ds

+
∫ t

0
cNK

s

NK
s

K

(
6

(
NK
s

K
− 〈µs, 1〉

)2
1

K2
− 4

(
NK
s

K
− 〈µs, 1〉

)
1

K3
+

1

K4

)
ds

+
∫ t

0
4

(
NK
s−

K
− 〈µs− , 1〉

)3

d

(
MK

s

K

)
+RK

t + R̄K
t ,

where (RK
t )t≥0 and (R̄K

t )t≥0 are compensated Poisson integrals. Using Young’s inequality we
deduce that
(
NK
t

K
− 〈µt, 1〉

)4

≤
(
NK

0

K
− 〈µ0, 1〉

)4

+ C
∫ t

0

(
NK
s

K
− 〈µs, 1〉

)4

ds+
C

K2

∫ t

0

(
NK
s

K
− 〈µs, 1〉

)2

ds

+
CT
K3

sup
s∈[0,T ]

〈µKs , 1〉 +
CT
K

sup
s∈[0,T ]

〈µKs , 1〉2 +
CT
K

sup
s∈[0,T ]

〈µKs , 1〉4

+
∫ t

0
4

(
NK
s−

K
− 〈µs− , 1〉

)3

d

(
MK

s

K

)
+RK

t + R̄K
t . (3.7.5)

Proceeding as in the proof of Lemma 3.4.2, we can verify again that the last three processes

are martingales if stopped at τn = inf{t > 0 : N
K
t > n}. Thus, stopping the inequality (3.7.5)
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and taking expectation yields

E

((
NK
t∧τn

K
− 〈µt∧τn

, 1〉
)4)

≤ I4
4 (K) +

CT
K

+ C
∫ t

0
E

((
NK
s∧τn

K
− 〈µs∧τn

, 1〉
)4)

ds

+
C

K2

∫ t

0
E

((
NK
s∧τn

K
− 〈µs∧τn

, 1〉
)2)

ds

≤ I4
4 (K) +

CT
K

+ C
∫ t

0
E

((
NK
s∧τn

K
− 〈µs∧τn

, 1〉
)4)

ds

+
CTT

K2

(
I2

2 (K) +
1

K

)
,

where we also used (3.7.2) to obtain the second inequality. Gronwall’s inequality and then
Fatou’s lemma yield at last

E

((
NK
t

K
− 〈µt, 1〉

)4)
≤ I4

4 (K) + CT

(
1

K
+
I2

2 (K)

K2

)
,

and we conclude noting that I2
2 (K) ≤

√
I4

4 (K) ≤ 1 + I4
4 (K).

We can finally state a bound allowing us to ensure condition (C) 3).

Lemma 3.7.3. For t ∈ [0, T ]

E

(
1

K

NK
t∑

n=1

‖Xn
t − Y n

t ‖2
)

≤ CT

[
I2

4 (K) +K− 1
2 +

∫ T

0
E

(
NK
s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

]
.

where CT > 0 is a constant that depends on the parameters of the model.

Proof. As in the proof of Lemma 3.6.3 we consider the product empirical measure ηKt :=
1
K

∑NK
t

n=1 δ(Xn
t ,Y

n
t ) and decompose again

E

(
1

K

NK
t∑

n=1

|Xn
t − Y n

t |2
)

= E(〈ηKt , d2〉),

in terms of the sequence of jump times (Tm)m∈N, as in (3.6.6). We can proceed in a similar
way as in (3.6.7) to control the evolution between jumps, now with help of Lemma 3.7.1, and
control the contributions in the jump instants in the same way as in (3.6.8), to obtain

E(〈ηKt , d2〉) ≤ C
∫ t

0
E(〈ηKs , d2〉) ds+ C

∫ t

0
E

(
NK
s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

+ C
∫ t

0
E

(
NK
s

K
‖µKs − µs‖2

BL∗

)
ds,

where C is a positive constant. Thus, with respect to the case dealt with in the previous
section, incorporating interactions at the level of the dynamics only results in the addition of
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the last term. In order to bound this new term, we use Lemma 3.3.1 to get

E

(
NK
s

K

∥∥∥µKs − µs
∥∥∥

2

BL∗

)
≤ E

(
NK
s

K

(
〈µs, 1〉‖µ̄Ks − µ̄s‖BL∗ +

∣∣∣∣
NK
s

K
− 〈µs, 1〉

∣∣∣∣
)2)

≤ 2 sup
u∈[0,T ]

〈µu, 1〉2
E

(
NK
s

K
‖µ̄Ks − µ̄s‖2

BL∗

)

+ 2E
(
NK
s

K

∣∣∣∣
NK
s

K
− 〈µs, 1〉

∣∣∣∣
2)

≤ CE
(
NK
s

K
‖µ̄Ks − ν̄Ks ‖2

BL∗

)
+ CE

(
NK
s

K
‖µ̄s − ν̄Ks ‖2

BL∗

)

+ 2E
(
NK
s

K

∣∣∣∣
NK
s

K
− 〈µs, 1〉

∣∣∣∣
2)
, (3.7.6)

where the control on the mass of the solution to equation (3.5.1) on finite time intervals is
used. To control the first term of the right hand side we relate it to the Wasserstein distance
using again Lemma 3.3.1, obtaining

E

(
NK
s

K
‖µ̄Ks − ν̄Ks ‖2

BL∗

)
≤ E

(
NK
s

K
W 2

2 (µ̄Ks , ν̄
K
s )
)

≤ E(
〈
ηKs , d2

〉
),

and we do the same with the second term to get

E

(
NK
s

K
‖µ̄s − ν̄Ks ‖2

BL∗

)
≤ E

(
NK
s

K
W 2

2 (µ̄s, ν̄
K
s )
)
.

We thus obtain the inequality

E(〈ηKt , d2〉) ≤ C
∫ t

0
E(〈ηKs , d2〉) ds+ C

∫ t

0
E

(
NK
s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

+ 2
∫ t

0
E

(
NK
s

K

∣∣∣∣
NK
s

K
− 〈µs, 1〉

∣∣∣∣
2)

ds, (3.7.7)

where only the last term needs to be controlled. Using Hölder’s inequality yields

E

(
NK
s

K

∣∣∣∣
NK
s

K
− 〈µs, 1〉

∣∣∣∣
2)

≤E

((
NK
s

K

)2) 1
2

E

(∣∣∣∣
NK
s

K
− 〈µs, 1〉

∣∣∣∣
4) 1

2

,

where the first factor on the r.h.s. is controlled by Lemma 3.4.2. Thanks to Lemma 3.7.2 we
obtain that

E(〈ηKt , d2〉) ≤ C
∫ t

0
E(〈ηKs , d2〉) ds+ C

∫ t

0
E

(
NK
s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds+ CT

(
I2

4 (K) +
1√
K

)
.

Finally, Gronwall’s lemma yields

E(〈ηKt , d2〉) ≤ CT

[
I2

4 (K) +
1√
K

+
∫ T

0
E

(
NK
s

K
W 2

2 (ν̄Ks , µ̄s)
)

ds

]
eCT .

We deduce the following result.
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Corollary 3.7.1. Condition (C) 3) holds.

Proof. Applying Lemma 3.7.3, Lemma 3.3.2 and noting that 1√
K

≤ CRd,q(K), we obtain the
bound

E(〈ηKt , d2〉) ≤ CT

(
I2

4 (K) +Rd,q(K)
)
. (3.7.8)

Combining this with the inequality E

(
NK

t

K
W 2

2

(
µ̄Kt , ν̄

K
t

))
≤ E

(
1
K

∑NK
t

n=1 ‖Xn
t − Y n

t ‖2
)
yields

the conclusion.

Proof of Theorem 3.2. Conditions (C) 1), 2) and 3) being established, it suffices to apply Lemma
3.4.1.

We next provide the proof of the conditional propagation of chaos property stated in
Corollary 3.2.1.

Proof of Corollary 3.2.1. Let Ψd,q(K) denote the function of K appearing on the right hand

side of the bound in Theorem 3.2. By exchangeability of
(
(X1

t , Y
1
t ), . . . ,

(
X

NK
t

t , Y
NK
t

t

))
con-

ditionally on NK
t , for all t ≥ 0 we get

E

(
NK
t

K
‖X1

t − Y 1
t ‖2

)
= E

(
1

K

NK
t∑

n=1

‖Xn
t − Y n

t ‖2

)
≤ CtΨ

2
d,q(K), (3.7.9)

thanks to (3.7.8). By Proposition 3.5.3, we have L
(
Y 1
t , . . . , Y

j
t | NK

t

)
= µ̄⊗j

t on the event

{j ≤ NK
t }. Now, letting ct := 〈µt, 1〉 ∈ (0,∞) denote the limit in law of NK

t /K , and using
the second inequality of Lemma 3.3.1 in the third bound below we get, for all ε > 0, that

P

(∥∥∥∥L
(
X1
t , . . . ,X

j∧NK
t

t

∣∣∣∣ N
K
t

)
− µ̄⊗j

t

∥∥∥∥
BL∗

> ε, NK
t ≥ j

)

≤ P

(
NK
t

K

∥∥∥∥L
(
X1
t , . . . , X

j
t

∣∣∣∣ N
K
t

)
− µ̄⊗j

t

∥∥∥∥
BL∗

(
NK
t

K

)−1

>
εct
2

2

ct
, NK

t ≥ j

)

≤ P

(
NK
t

K

∥∥∥∥L
(
X1
t , . . . , X

j
t

∣∣∣∣ N
K
t

)
− µ̄⊗j

t

∥∥∥∥
BL∗

>
εct
2
, NK

t ≥ j

)

+ P

(
NK
t

K
<
ct
2

)

≤ 2

εct
E

(
NK
t

K
E

( j∑

n=1

‖Xn
t − Y n

t ‖
∣∣∣∣∣ N

K
t

)
1{

NK
t ≥j

}
)

+ P

(
NK
t

K
<
ct
2

)

≤ 2j

εct
E

(
NK
t

K
‖X1

t − Y 1
t ‖
)

+ P

(
NK
t

K
<
ct
2

)

≤ 2j

εct
C ′
tΨ

2
d,q(K) + P

(
NK
t

K
<
ct
2

)
,

using also the Cauchy-Schwarz inequality, the estimate (3.7.9) and the fact thatE(NK
t /K)1/2 <

∞ in the last inequality. Since NK
t /K → ct in law, the terms in the last line go to 0 when

K → ∞. The convergence P(NK
t ≥ j) → 1 then yields

P

(∥∥∥∥L
(
X1
t , . . . , X

j∧NK
t

t

∣∣∣∣ N
K
t

)
− µ̄⊗j

t

∥∥∥∥
BL∗

> ε

∣∣∣∣ N
K
t ≥ j

)
−→ 0

as K → ∞ and the statement follows.
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We finish with some remarks regarding possible extensions of our approach, and the tech-
nical issues that must be solved in order to establish similar results in some related, more
general settings.

Remark 3.7.1. If instead of (H) 1) it is assumed that the initial data µK0 satisfies the condition

in Lemma 3.3.3 b), the arguments and construction leading to the proof of Theorem 3.2 must be

modified, along the following lines:

• In condition (C) 1), νK0 = µK0 is not enforced, but K〈νKt , 1〉 = K〈µKt , 1〉 = NK
t is kept.

• In the construction of the coupling using algorithm (A), the random variables (Y k)k≥1 are

chosen as before while, for anyK andN , the random vectors (X1
0 , . . . , X

N
0 ) are chosen on

the event {NK
0 = N}, suitably coupled with (Y 1

0 , . . . , Y
N

0 ). This results in an extra term

of the form E(〈ηK0 , d2〉) on the r.h.s. of the bounds in the statement and proof of Lemma

3.7.3 which in turn translates into an additional term CTE(〈ηK0 , d2〉)1/2 on the r.h.s. of the

bound in Theorem 3.2.

• In order to minimize the value of this additional term, the coupling of (X1
0 , . . . , X

N
0 ) and

(Y 1
0 , . . . , Y

N
0 ) must be chosen on each event {NK

0 = N} so as to realize the squared

Wasserstein−2 distance between the laws of (X1
0 , . . . , X

N
0 ) and µ̄⊗N

0 in (Rd)N . Denoting

W̃ 2
2 (L(X1

0 , . . . , X
N
0 ), µ̄⊗N

0 ) =
1

N
W 2

2 (L(X1
0 , . . . , X

N
0 ), µ̄⊗N

0 ),

the normalized squared Wasserstein-2 distance, the additional term E(〈ηK0 , d2〉)1/2 then

writes

E

(
NK

0

K
W̃ 2

2

(
L(X1

0 , . . . , X
NK

0
0 )|NK

0 ), µ̄
⊗NK

0
0

))1/2

.

The following possible generalizations are left for future work:

• The extension of the ideas here developed, to populations with spatially or density de-
pending birth or death events, as in the more general setting studied in [58], seems to
be possible but presents one major additional difficulty, namely that the jump times
are correlated with the spatial dynamics. The main consequence of this is that, in any
coupling with some auxiliary system of conditionally independent (or less dependent)
particles, the jump times cannot be expected to happen simultaneously. However, under
the condition of spatial Lipschitz continuity of the reproduction rate and the competi-
tion kernel, it should be possible to keep at least some subsystems effectively coupled on
finite time intervals, while controlling explicitly the discrepancy between jump times in
the two systems, in terms of the distance of the empirical measures of the systems them-
selves, and in such a way that the discrepancies asymptotically vanish as the population
size goes to infinity.

• A further desirable generalization regards the case of branching events more general
than binary ones. The natural extension of the argument used here would consist in
coupling all the offspring of a branching particle in the original system, with a set of
equally many independent new particles given birth at the same time in the auxiliary
system. However it is not clear how to make compatible the use of optimal transport
plans to couple the branching particle and the positions of the new particles in the aux-
iliary system, with the independence requirement in the auxiliary system. A possible
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way of coping with this problem could be to make a two-steps coupling construction:
first, between the branching particle in the original system and the positions of new
particles in the auxiliary system (which would define an exchangeable random vector
of particles in any case) and, in a second step, coupling those positions with independent
particles with the required law.

B Appendix

Proof of Lemma 3.3.3. Since condition (H) 1) assumed in a) is a particular case of the assump-
tions in b), it is enough to prove b) to get both parts. Taking µ = µ0 and ν = µK0 in Lemma
3.3.1, we get

lim sup
K

P(‖µ0 − µK0 ‖BL∗ ≥ ε) ≤ lim sup
K

P(‖µ̄0 − µ̄K0 ‖BL∗ ≥ ε/(2〈µ0, 1〉)), (B.1)

with µ̄K0 = 1
NK

0

∑NK
0

i=1 δXi
0
. On the other hand, for each δ > 0 andM > 0,

P(‖µ̄0 − µ̄K0 ‖BL∗ ≥ δ) ≤
∑

N≥M
E

[
P(‖µ̄0 − µ̄K0 ‖BL∗ ≥ δ|NK

0 = N)1NK
0 =N

]
+ P(NK

0 < M)

≤ sup
N≥M

P

(∥∥∥∥∥µ̄0 − 1

N

N∑

i=1

δY i,N

∥∥∥∥∥
BL∗

≥ δ

)
+ P(〈µK0 , 1〉 < M/K).

Since 〈µK0 , 1〉 converges weakly to a non null constant, the last term goes to 0 whenK → ∞.
On the other hand, it is well known that the assumed µ̄0−chaoticity is equivalent to the
convergence in distribution of the random probability 1

N

∑N
i=1 δY i,N to µ̄0 as N → ∞. If

follows that lim supK→∞ P(‖µ̄0 − µ̄K0 ‖ ≥ δ) = 0 which entails the claim in view of (B.1).

c) The r.v. NK
0 = K〈µK0 , 1〉 is Poisson of parameterK〈ν0, 1〉 and equals in law the partial

sum
∑K
i=1 N

i of i.i.d. Poisson r.v. (N i)i∈N of parameter 〈ν0, 1〉. By the law of large numbers,
〈µK0 , 1〉 = NK

0 /K converges in law to the constant 〈ν0, 1〉. It is immediate from basic proper-
ties of Poisson point measures that theNK

0 atoms of µK0 are i.i.d. of law ν̄0 given 〈µK0 , 1〉, and
we necessarily have µ0 = 〈ν0, 1〉ν̄0 = ν0. Lastly, the r.v. NK

0 is Poisson of parameterK〈µ0, 1〉
and so we have I4

4 (K) = K−3 (〈µ0, 1〉 + 3K〈µ0, 1〉2) ≤ CK−2.
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CHAPTER 4

Large population approximation of the
genealogy of branching processes in varying

environments
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4.1 Introduction

Models for the growth of the size of a population are of great importance in population dy-
namics, since they serve for example to study the development of population under abundance
of resources, the probability of fixation in biological invasion or the different scenarios that
arise in epidemiological settings. These models rely on independence of individuals and the
so-called branching property. They range from discrete state versions, classically known as
Galton-Watson processes, to their continuous state counterpart arising in their large popu-
lation approximations on large time scales (see for example [7]). These lasts processes have
been intensively studied in the last decades (we refer to [88] or [102] for their treatment).
Also, their generalizations to varying or random environments have received attention, start-
ing in [77] and more recently in [11], to name but a few. An important class of these models
are the ones that have been constructed as solutions of stochastic differential equations (see
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[100, 66] and [55]). In general, these models allow to take into account the variability of the
environment into the dynamics. This gives a general framework for studying questions of
great importance in ecology and population dynamics, such as long term behaviour [101] or
the effects of catastrophic events and extinction (see for example [10] and [9]).

Another question which is of great interest in population dynamics, and in particular in
models having reproductive dynamics, is to understand the genealogical structure behind the
branching process modeling its growth. In the case of finite population models or discrete
state process this information is implicit since we can trace the genealogical history of each
individual, but this becomes a more complex procedure when we pass to large population
approximations, as we loose the notion of a single individual. Throughout the years differ-
ent approaches have been developed in order to understand the genealogy behind branching
processes. Starting with the famous continuum random tree introduced in [1], which can be
obtained as the scaling limit of Galton-Watson trees, and later with its generalizations such
as Lévy trees, which are random trees models that correspond to general branching processes
[51], or the flow of bridges representation introduced in [14] and developed further in [15, 16].
Another approaches are spinal constructions [65], when there is a spatial component, or the
splitting trees approach [82].

One particular and useful approach for population models, in what respects to the de-
scription of their genealogical structure, is the one given by lookdown constructions. The
original lookdown construction was first introduced in [48] (later improved in [50]) as a way
of constructing an infinite (yet countable) particle system having the same distribution as a
Fleming-Viot process. This construction provides new insight about the genealogical struc-
ture of the process given this countable representation, simplifying its analysis. Later, in [80]
a construction in this spirit was given for producing countable representations of measure-
valued branching processes, allowing the branching rates to depend on the particles’ spatial
positions. A useful property of lookdown constructions is that when passing from finite pop-
ulation models to their high density limits, the genealogies are preserved by a projective prop-
erty of the associated martingale problem. More recently, in [52] a more complete toolbox was
given in order to construct representations of models presenting a variety of mechanisms of
evolution, in particular for models showing interaction between its individuals. In general,
the lookdown approach has been proved to be a powerful way for constructing processes aug-
mented with a genealogical structure (see for example [103, 18, 113] and references therein).

The aim of this work is to describe the tree spanned by the population alive at a certain
time, which is known as the reduced tree, in a large population regime for branching processes
in varying environments. This object is also known as the reconstructed tree in phylogenetics
or as the coalescent tree, seen as the tree generated backwards by the population alive at the
present time (related works concerning this object are [84] and [83]). An associated object to
this tree that is worth mentioning is its width process, called the reduced process, which has
also been object of study (see [57, 20, 115, 112] and [73]).

The description of the tree is achieved by means of a lookdown construction, which al-
lows to exploit a coupling in a Poissonian framework and quantify approximations. Using
the lookdown construction introduced in [80], we give an approximation of the reduced tree
for a birth and death process in varying environment by its large population approximation,
namely a Feller diffusion in varying environment. Specifically, we develop an approach to ap-
proximate the reduced tree of a birth and death process in the large population regime, by the
reduced tree associated with the branching process characterized by the following stochastic
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differential equation

Xt = X0 +
∫ t

0
b(s)Xs ds+

∫ t

0

√
2σ(s)Xs dBs −

∑

j≥1, t≥tj
FtjXt−

j
, (4.1.1)

where (tj)j≥1 are given catastrophes times and Ftj the fraction of the population that dies at
time tj , and this for b(t) ≤ 0 and σ(t) bounded away from zero. This last process arises as the
large population approximation of a birth and death process in where individuals have a small
mass and also reproduce and die very fast. Moreover, since the rates are big, the variance of
the increments persists in the limit, thus making appear the diffusive term. We have also the
effect of the environment through the reproduction rates of individuals, affecting the mean
behaviour and the diffusivity, and by punctual catastrophic events. With this structure and
parameters, the process belongs to the family of critical or subcritical branching processes in
varying environments.

By considering the lookdown representation of the birth and death process that approx-
imates the previous object, we proceed by filtrating each birth event in the particle process
by the probability of survival of the offspring until a given time T > 0. Using this procedure,
we construct a random chronological tree which takes values in a particular space endowed
with a distance that is tailored for the analysis of these objects. Then, by similar arguments
we construct a limit candidate and we show the convergence under the distance previously
introduced. This is done by a coupling argument that evokes the nature of the lookdown
representation.

We next provide a detailed description of the models under consideration, define the main
objects and state our main result.

4.2 Models and main result

In what follows we recall the framework introduced in [80].

4.2.1 Lookdown constructions

Consider the state space E =
⋃∞
n=0[0, K]n, the domain

D(AK) =

{
f(u) =

n∏

i=1

g(ui) : g ∈ C1([0, K]), 0 ≤ g ≤ 1, g(K) = 1, g′(K) = 0

}
, (4.2.1)

where u = (u1, . . . , un), and the generator

AKt f(u) = f(u)
n∑

i=1

2σ(t)
∫ K

ui

(g(v) − 1)dv + f(u)
n∑

i=1

(
σ(t)u2

i − b(t)ui
)g′(ui)

g(ui)
, (4.2.2)

for σ(t) ≥ 0 and b(t) two bounded functions. This operator represents the following stochas-
tic dynamics. We start with a collection of particles where each one has a real value assigned,
called level. The level associated to each particle evolves in time according to

u′
i(t) = σ(t)ui(t)

2 − b(t)ui(t). (4.2.3)

A particle with level u at time t, produces a new particle with uniformly distributed level in
the interval [u,K] at rate 2σ(t)(K − u). When a particle’s level reaches the value K , it is
removed from the system.
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This process is the lookdown construction for a birth and death process, introduced in [80].
The justification of this representation comes from the Markov mapping theorem (see Theo-
rem 4.2 in Appendix C). Indeed, letαK(n, du) be the joint distribution of n i.i.d. uniform [0, K]

random variables and f̂ =
∫
f(u)αK(n, du). By defining CK

t f̂(n) :=
∫
Atf(u)αK(n, du), it

can be shown that

CK
t f̂(n) = Kσ(t)n(f̂(n+ 1) − f̂(n)) + (Kσ(t) − b(t))n(f̂(n− 1) − f̂(n)). (4.2.4)

Under the condition Kσ(t) − b(t) ≥ 0 for each t ≥ 0, we obtain the generator of a birth and
death process. Thanks to the Markov mapping theorem, since there is existence of solutions
for the martingale problem associated with this generator, we have existence for the martin-
gale problem associated with (4.2.2). Another consequence of this theorem is that if we have
uniqueness for the martingale problem associated with (4.2.2), we obtain uniqueness for the
martingale problem associated to (4.2.4). Finally, the theorem also allows us to conclude that
the number of particles whose levels are below K is equal in distribution to the solution of
the martingale problem associated with (4.2.4).

We notice that the solution of the martingale problem associated with (4.2.4), once renor-
malized, can be approximated by the Feller diffusion. This remark leads us to analyze the
generator (4.2.2) when K → ∞, which gives us another generator that we introduce next.

Let now E = [0,∞)∞ ∪ ⋃∞
n=0[0,∞)n and consider the domain

D(A) =

{
f(u) =

∏

i>0

g(ui) : g ∈ C1([0,∞)), 0 ≤ g ≤ 1,∃vg such that g(v) = 1,∀v ≥ vg

}
,

and the operator defined by

Atf(u) = f(u)
∑

i

2σ(t)
∫ vg

ui

(
g(v) − 1

)
dv + f(u)

∑

i

(
σ(t)u2

i − b(t)ui
)g′(ui)

g(ui)
. (4.2.5)

This operator represents a slightly different dynamics than the one previously introduced. A
particle with level u at time t, will produce a new particle with uniformly distributed level in
the interval [u + ℓ1, u + ℓ2] for 0 ≤ ℓ1 ≤ ℓ2, at rate 2σ(t)(ℓ2 − ℓ1). This time, a particle is
removed from the system when its level reach the value infinite.

In this case, by letting α(z, ·) be the distribution of a Poisson process on [0,∞) with in-
tensity z and by defining Ctf̂(z) :=

∫
Atf(y)α(z, dy), we obtain that

Ctf̂(x) = σ(t)xf̂ ′′(x) + b(t)xf̂ ′(x). (4.2.6)

Then, by checking the existence of solutions for the martingale problem associated with this
last generator, which can be done by explicitly constructing a process with such generator,
we obtain as a consequence of the Markov mapping theorem that

lim
N→∞

1

N

∑

i

1[0,N ]

(
V i
t

) (d)
= Xt,

where (Xt)t≥0 is a process that evolves according to the generator (4.2.6) and (Vt)t≥0 the so-
lution of the martingale problem associated to (4.2.5). Moreover, thanks to the same theorem,
we also obtain that at time t the distribution of the levels is conditionally Poisson with mean
Xt.
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The connection between the two particle processes is explicit. By considering the solution
of the martingale problem for (4.2.5) and taking only into account the particles with levels
below K , we recover a solution of the martingale problem for (4.2.2), simply by restricting
the domain of the operator. As a consequence, the genealogies are embedded in a projective
way, which is one of the key features of the lookdown construction.

In this work we will also consider the effect of catastrophes in the evolution of the two
particle processes. For this, we let (tj)j≥1 and (mtj )j≥1 be given catastrophes times and inten-
sities, and β(m) ≥ 1 a modulating function for the catastrophes. Given the initial conditions,
we let the processes evolve according to (4.2.5) and (4.2.2) respectively. When we arrive at a
catastrophe time tj we amplify the level of each particle in both processes by a factor β(mtj ).
Then, we restart the dynamics specified by the generators (4.2.5) and (4.2.2) with the current
states as initial conditions. Following this construction, we denote the two resulting processes
by (Ut)t≥0 and (UK

t )t≥0 respectively.

With this construction we obtain that until the first jump time (catastrophic event), the
number of particles in (UK

t )t≥0 and (Ut)t≥0, renormalized in this last case, follow the evolution
given by the generators (4.2.4) and (4.2.6) respectively. At a catastrophic event, the update rule
used translates into removing each particle independently with probability β(mtj )

−1 ≤ 1 in
the birth and death process being represented by (UK

t )t≥0, as it was shown in [80]. At the
same time, in the branching process represented by (Ut)t≥0, a catastrophic event corresponds
to multiply by β(mtj )

−1 ≤ 1 the size of the population, yielding the effect of a dramatic event
that kills a fraction of the population. Then, since in the lookdown construction we can start
from any initial condition, by restarting the dynamics the same construction ensures that we
obtain a representation for the inhomogeneous branching processes after the jump. We thus
obtain a process (Ut)t≥0, in where its renormalized size is equal in distribution to (4.1.1), with
Ftj := −(β(mtj )

−1 − 1). This can be seen as the quenched version of the model proposed in
[80] for random catastrophes.

4.2.2 The reduced tree

Recalling that b, σ : R → R are continuous and bounded functions, and that β : R → R+ such
that β > 1, we further assume that b(t) ≤ 0 < σ(t) for each t ≥ 0.

Consider T > 0. Given the processes (UK
t )t≥0 and (Ut)t≥0 defined in the previous section,

we construct their reduced trees at time T as follows. First, let uKT and u∞
T be the solutions of

u(t) = u(s) +
∫ t

s
σ(r)u(r)2 dr −

∫ t

s
b(r)u(r) dr +

∑

j≥1, t≥tj≥s
(β(mtj ) − 1)u(t−j ), (4.2.7)

for each 0 ≤ s ≤ t < T , with terminal conditions uKT (T ) = K and limt→T u
∞
T (t) = ∞,

respectively. The existence of these solutions is ensured by the condition b(t) ≤ 0 < σ(t). We
then define R

K
T as the tree generated by the particles starting with levels below uKT (0) and

evolving according to (4.2.7). In this tree, a particle with level u at time t will produce a new
particle at rate 2σ(t)(uKT (t) − u) with uniformly distributed level on [u, uKT (t)]. Similarly, RT

will be defined as the tree generated by the particles whose levels are below u∞
T (0) at t = 0.

Here, a particle with level u at time t will produce a new particle at rate 2σ(t)(u∞
T (t) − u)

with uniformly distributed level on [u, u∞
T (t)]. These definitions come from filtrating each

birth event in the processes (UK
t )t≥0 and (Ut)t≥0 by their probability of survival until time T .

To endow this objects with a genealogical structure we start by considering the set U =⋃
n≥0(N

∗)n. At time 0 we enumerate the particles according to the increasing order of their
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levels and we label them according to this numbering. We then consider for each particle
the product set of its label times its lifetime, which is [0, T ], and we take the union of all of
these sets. When a new particle appears at time t′, we label it following the Ulam-Harris-
Neveu formalism [98] and we consider the product set of its label times its lifetime, which
is [t′, T ], and finally we take the union of this set with the set that we already had. Iterating
this procedure will yield a random chronological tree that is a subset of U × [0, T ]. These
objects are also known as (inhomogeneous) splitting trees (see [34] for more on these objects).
Furthermore, since we are interested in the closeness of the two objects, the structure of the
trees involved motivates the introduction of the following distance in order to compare them

dTg
(
T,T′

)
=
∑

u∈U

∫ T

0

∣∣∣1(u,s)∈T − 1(u,s)∈T
′
∣∣∣g(s) ds,

where g : [0, T ] → R+ is a function satisfying the integrability condition
∫ T

0
e
∫ s

0
2σ(r)u∞

T
(r) drg(s) ds < ∞. (4.2.8)

This distance can be seen as a weighted total variation distance between splitting trees.

Our main result is then an approximation of R
K
T by RT for large K , representing the

approximation of the reduced tree for a birth and death process in varying environment by
an object that plays the role of the reduced tree for the Feller diffusion in varying environment.
Assuming that the process (4.1.1) starts from x ∈ R+, the result is stated as follows.

Theorem 4.1. Let T > 0. Suppose that the functions b and σ are continuous, bounded and such

that b(t) ≤ 0, σ(t) ≥ 0 and σ is bounded away from zero. Then, we have that

E

(
dTg
(
RT ,R

K
T

))
→ 0, as K → ∞.

Given the assumptions, this result holds for critical and subcritical branching processes
since we need to assume b(t) ≤ 0 in order to ensure the required properties of (4.2.7). Also,
we are forced to chose g satisfying (4.2.8) since as we approach the final time T the number
of individuals in the trees explode, which leads to having to control an infinity of small time
intervals when computing the distance.

The proof of Theorem 4.1 relies on a coupling between the two objects, which allows
to exploit the projective property of the lookdown construction that we make use of. This
approach sets the ground for in a next step take advantage of the Poissonian framework in
order to obtain quantitative estimates. Also, Theorem 4.1 is expected to generalize to the case
of random catastrophes, in time and intensity, following a Poissonian law.

The rest of the chapter is organized as follows. In Section 4.3, we give preliminary def-
initions and set the formalism of chronological trees, specifically the space in which we are
going to consider the trees to be elements of and the distance that we use. In Section 4.4, we
give the proper construction of the trees and we construct a coupling between them in order
to prove the main result. Finally, in the Appendix C we recall the Markov mapping theorem
and how it applies in the inhomogeneous setting.

4.3 Preliminaries on trees

In this section, we introduce the necessary tools for giving mathematical sense to the ge-
nealogical information arising in our context.
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We start by defining the notion of a discrete tree. Such object can be coded by the Ulam-
Harris-Neveu [98] formalism. Let

U =
⋃

n≥0

(N∗)n,

be the set of finite sequences of positive integers, where (N∗)0 = {∅}. The root of the tree
is denoted by ∅ and each vertex of the tree is represented by a finite sequence of the form
v = (v1, . . . , vm) ∈ (N∗)m. We denote the i-th child of v by vi, were vw denotes the concate-
nation for v, w ∈ U . A discrete tree T is a subset of U that satisfies

(i) ∅ ∈ T.
(ii) If vj ∈ T, where j ∈ N

∗, then v ∈ T.
(iii) If v ∈ T, then vj ∈ T if and only if 1 ≤ j ≤ δv(T), for a positive integer δv(T).

We will say that w is an ancestor of v when there is a sequence z ∈ U such that v = wz. We
denote this relation by w ≺ v. Furthermore, we denote by v ∧ w the most recent common
ancestor of v and w, which is the longest sequence z ∈ U such that z ≺ v and z ≺ w.

Next, we are interested in augmenting the information encoded in the tree. If we want
to take into account the lifetime of individuals, the framework given by chronological trees
is the adequate. This kind of trees are particular cases of R-trees, which in turn are abstract
complete metric spaces satisfying two properties that characterize the natural notion of tree:
there is an unique path between two points and there are no loops (see for example [54]).

Definition 4.3.1. A chronological tree T is a subset of U × R+ such that

(i) ρ := (∅, 0) ∈ T.
(ii) T := PU(T) = {v ∈ U : ∃s ≥ 0, (v, s) ∈ T} is a discrete tree.
(iii) ∀v ∈ T, there exists 0 ≤ b(v) < d(v) ≤ ∞ such that (v, t) ∈ T if and only if t ∈

(b(v), d(v)].
(iv) ∀v ∈ T and i ∈ N

∗ such that vi ∈ T, we have that b(vi) ∈ (b(v), d(v)).
(v) ∀v ∈ T and i, j ∈ N

∗ such that vi, vj ∈ T, i 6= j ⇒ b(vi) 6= b(vj).

See Figure 4.1 for a graphical representation of a chronological tree.

t

v
v1

v2
v11

v3
v12

Figure 4.1: Example of chronological labelling for the progeny of a given label v ∈ U .

Given a chronological tree T, we define the set of individuals living at time t as

Vt(T) = {v ∈ U : (v, t) ∈ T}.

On the other hand, for any (v, s) and (w, t) belonging to T, we say that (v, s) is an ancestor
of (w, t), denoted (v, s) ≺ (w, t) as before, if v ≺ w, and s ≤ t if v = w or s ≤ b(vj) if v 6= w,
where j is the unique integer such that vj ≺ w.

As we are interested in trees at a given time T > 0, we will restrict the analysis to trees
that are subsets of U × [0, T ]. In our context it will be also important to be able to quantify
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the distance between two chronological trees. In order to do this we start by defining the set
in which we are going to be looking the trees as elements of. For this, we consider the set

T g :=

{
T ⊂ U × [0, T ] :

∫ T

0
NT(s)g(s) ds < ∞

}
,

where NT(t) := |Vt(T)| represents the number of individuals or labels in the tree at time t
and g : [0, T ] → R+ is a given function.

Definition 4.3.2. Given two chronological trees T,T′ ∈ T g, their g-weighted chronological
distance is defined by

dTg
(
T,T′

)
=
∑

u∈U

∫ T

0

∣∣∣1(u,s)∈T − 1(u,s)∈T
′
∣∣∣g(s) ds.

The idea behind introducing this notion of distance is that we want to compare the trees
by taking into account the differences between the labels of individuals in each tree and their
living times, which can be obtained through the evolution of their levels. Moreover, we remark
that (T g, dTg ) is a metric space.

In order to see how strong is the distance that we introduced, we can compare it to a known
distance between metric spaces. The natural framework in this setting is the one given by the
Gromov-Hausdorff distance. Recall that given a metric space (X , dX ), the Hausdorff distance
between two closed subsets A,B ⊂ X is defined by

dH(A,B) := inf{ε > 0 : A ⊂ Bε and B ⊂ Aε},

where U ε := {x ∈ X : dX (x, U) < ε} denotes the ε-neighborhood of U ⊂ X . The Gromov-
Hausdorff distance between two metric spaces is then defined by

dGH

(
(Y , dY), (Z, dZ)

)
:= inf

{
dH(φ(Y), ψ(Z))

}

where the infimum is taken over all isometric embeddings φ : Y → X and ψ : Z → X .

Given a chronological tree T we can endow it with a natural distance. Let us consider a
function q : [0, T ] → R+ and let p : U × [0, T ] → R+ be given by p((v, t)) =

∫ t
0 q(s)ds. By

defining the metric
d(w, v) = p(w) + p(v) − 2p(w ∧ v),

(T, d) turns out to be a complete metric space.

By setting q := g, we have the following comparison between metrics.

Lemma 4.3.1. Let ε > 0. If dTg
(
T,T′

)
≤ ε then dGH

(
T,T′

)
≤ ε.

Proof. Consider the space (T ∪ T
′, d). Given any element v = (v, t) ∈ T

′, we need to
show that v ∈ T

ε. Indeed, suppose that v /∈ T. The distance from v to its progenitor v̂

is given by
∫ t
b(v) g(s) ds, which is smaller than ε since dTg

(
T,T′

)
≤ ε. If v̂ ∈ T, then it is

clear that v ∈ T
ε, since we can add the branch {v} × [b(v), t] without enlarging the tree

further than ε under the distance d. If on the contrary v̂ /∈ T, then we can add the two
branches {v̂} × [b(v̂), t] ∪ {v} × [b(v), t], and since

∫ t
b(v̂) g(s) ds +

∫ t
b(v) g(s) ds < ε thanks to

dTg
(
T,T′

)
≤ ε, the same reasoning as before applies, yielding thus that v ∈ T

ε. Repeating
this argument inductively until arriving to the root gives the inclusion, and the same applies
for the other direction of the inclusion for the same ε.
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Poissonian construction of a chronological tree

We end this section by giving a construction of a chronological tree from a collection of Pois-
son point measures.

Let (Nv)v∈U be an i.i.d. collection of Poisson random measures with common intensity
κ(t)ds. Using these measures, we can recursively define a sequence of trees whose union
is a chronological tree in where each individuals lives up to time T . Starting with T1 =
{∅} × [0, T ] and b(∅) = 0, we define

Tn =
⋃

v∈PU (Tn−1)

Nv((b(v),T ]⋃

i≥1

{vi} × (b(vi), T ] ⊂ U × R+,

where PU(·) is the projection on U . The birth times are given by

b(v1) = inf{t > 0 | Nv((b(v), b(v) + t]) > 0}, if Nv((b(v), T ]) > 0,

b(vi) = inf{t > b(v(i− 1)) | Nv((b(v), b(v) + t]) > i}, 2 ≤ i ≤ Nv((b(v), T ]).

By defining T =
⋃
n≥1 Tn we obtain a chronological tree.

4.4 Construction of the trees and coupling

In this section, we describe in detail the construction of the reduced trees behind the particle
models involved. Then, we construct a coupling between the trees which allows us to prove
the main result.

In what follows we consider σ, b, β and (tj,mtj )j≥1 as given in Section 4.2.

Following for example the results of [57], in order to obtain the reduced process associated
with a discrete branching process observed until a given time T > 0, that is the process that
at each time t < T counts the number of individuals having progeny alive at time T , at each
birth event we need to filtrate each new particle according to its probability of survival until
time T . With this approach, recovering the reduced tree from the lookdown construction for
a birth and death process with catastrophes turns out to be an explicit procedure. Indeed,
given K ∈ N

∗, if we consider (UK
t )t≥0 the process defined by (4.2.2), filtrating a new particle

in this system according to its survival probability corresponds to look at its starting level in
order to see if it will die before time T . Specifically, we had that in this process the threshold
value for the level of the particles isK , meaning that when the level of a particle reaches this
value the particle is removed from the system. Then, in order to keep only the particles that
are alive at time T , we need to look at the solution of (4.2.3), including the upward jumps due
to catastrophes, taking the value K exactly at time T , and consider all the particles whose
levels’ remain below this curve. This procedure is then repeated analogously for the process
defined by (4.2.5) and the catastrophes, using this time the solution of (4.2.3) including jumps
and reaching ∞ at time T .

In what follows we will state some preliminary facts about the evolution of the levels that
will be used for the construction of the trees.
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4.4.1 Level evolution and threshold

Recall that the level of each particle satisfies the equation

u(t) = u(s) +
∫ t

s
σ(r)u(r)2 dr −

∫ t

s
b(r)u(r) dr +

∑

j≥1, t≥tj≥s
(β(mtj ) − 1)u(t−j ), (4.4.1)

which in between jumps translates as the evolution given by

u′(t) = σ(t)u(t)2 − b(t)u(t). (4.4.2)

Lemma 4.4.1. Given 0 ≤ s and u ≥ 0, the solution of equation (4.4.2) such that u(s) = u is

given by

u(t) =
ue−

∫ t

s
b(r) dr

1 − u
∫ t
s e

−
∫ r

s
b(w) dwσ(r) dr

, (4.4.3)

for each s ≤ t < T (s, u), where T (s, u) is the explosion time determined by

∫ T (s,u)

s
e−
∫ r

s
b(w) dwσ(r) dr =

1

u
.

Moreover, u(t) is increasing, nonnegative and the flow associated to (4.4.2) is strictly monotone

with respect to the initial conditions.

Proof. By direct computation it can be checked that (4.4.3) satisfies (4.4.2). On the other hand,
given two non-negative initial conditions u1(0) and u2(0) such that u1(0) ≤ u2(0), thanks
to the monotony of x 7→ 1/(1 − x), it can be deduced that u1(t) ≤ u2(t). Furthermore,
we obtain the strict monotonicity by local uniqueness of the equation, since if two solutions
coincide at some point they are forced to be equal in all previous times and until right before
the explosion time. Finally, since the constant function u(t) = 0 is a solution of (4.4.2), we
obtain the positivity.

From here we notice that the condition b(t) ≤ 0 < σ(t) ensures two things, first that the
solutions of (4.4.2) are increasing, and secondly, that the explosion time is finite. Furthermore,
notice that the explosion time is monotone with respect to the initial condition.

Comparing the two solutions associated to these initial conditions yields the following
result.

Lemma 4.4.2. Given 0 ≤ u1 ≤ u2 and s ≥ 0, consider the two solutions u1(t) and u2(t) of
(4.4.2) associated with these initial conditions given by (4.4.3). For each t ∈ [s, T (s, u2)) we have

u2(t) − u1(t) ≤
(
u2 − u1

)
e
∫ t

s

(
|b(r)|+2|σ(r)|u2(r)

)
dr
. (4.4.4)

Furthermore, if u1 ր u2 then u1(t) converges uniformly to u2(t) in each compact subset of

[s, T (s, u2)).
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Proof. Thanks to the monotony of solutions we have that T (u2, s) ≤ T (u1, s), so both func-
tions are well defined in the stated interval. Now, given t ∈ [s, T (s, u2)) we have that

u2(t) − u1(t) = u2 − u1 +
∫ t

0
σ(s)(u2(s)

2 − u1(s)
2) ds−

∫ t

0
b(s)(u2(s) − u1(s)) ds

≤ u2 − u1 +
∫ t

0
σ(s)(u2(s) + u1(s))(u2(s) − u1(s)) ds

+
∫ t

0
|b(s)|(u2(s) − u1(s)) ds

≤ u2 − u1 +
∫ t

0

(
|b(s)| + 2|σ(s)|u2(s)

)
(u2(s) − u1(s)) ds.

An application of Gronwall’s lemma yields the bound. In particular, this implies that u1(t) ր
u2(t) as u1 ր u2. Thanks to Dini’s theorem we obtain the complete statement.

Since we need to look which evolutions of (4.4.1) hitK and ∞ at a given time T > 0, we
use the previous results in order to construct these solutions explicitly.

Given T > 0, denote by (tj)
M
i=1 the collection of catastrophes times that fall in the in-

terval [0, T ]. We will work backwards in order to construct the two functions that we need.
First, consider the time tM and define uKT (t) and u∞

T (t) for t ∈ [tM , T ], by (4.4.3) with initial
conditions

uKT (tM) =


e

−
∫ T

tM
b(r) dr

K
+
∫ T

tM
e

−
∫ s

tM
b(r) dr

σ(s) ds




−1

,

u∞
T (tM) =

(∫ T

tM
e

−
∫ s

tM
b(r) dr

σ(s) ds

)−1

.

With this, we have that uKT (T ) = K and limt→T u
∞
T (T ) = ∞ as desired. Now, for t ∈

[tM−1, tM) we define uKT (t) and u∞
T (s) as the solutions of (4.4.2) with terminal conditions

β(mtM )−1uKT (tM) and β(mtM )−1u∞
T (tM) respectively, which in turn can actually be obtained

explicitly by (4.4.3). Repeating this procedure in each time interval [tj, tj+1) gives us the two
functions uKT (t) and u∞

T (t) defined for each t ∈ [0, T ).

Remark 4.4.1. When there are no catastrophic events, for each t ∈ [0, T ) we have that uKT (t)
and u∞

T (t) are simply given by (4.4.3) with initial conditions

uKT (0) =


e

−
∫ T

0
b(r) dr

K
+
∫ T

0
e−
∫ s

0
b(r) drσ(s) ds




−1

,

u∞
T (0) =

(∫ T

0
e−
∫ s

0
b(r) drσ(s) ds

)−1

.

Lemma 4.4.3. uKT converges uniformly to u∞
T in every compact interval of [0, T ).

Proof. Given ε > 0 such that tM ≤ T − ε, we will show that uKT converges uniformly to u∞
T

on [0, T − ε]. Indeed, thanks to (4.4.4) and from the definition of uKT (tM) and u∞
T (tM), we

have that in [tM , T − ε], uKT converges uniformly to u∞
T . Next, on the interval [tM−1, tM ], we

have that since in (4.4.3) we can determine the initial condition that gives rise to a given final
condition, namely by computing

u(tM−1) =


e

−
∫ tM

tM−1
b(r) dr

u(t−M)
+
∫ tM

tM−1

e
−
∫ s

tM−1
b(r) dr

σ(s) ds




−1

,
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we can determineuKT (tM−1) andu∞
T (tM−1) explicitly aswe haveuKT (t−M) := β(mTM

)−1uKT (tM)
and u∞

T (t−M) := β(mTM
)−1u∞

T (tM) respectively. Finally, as the value of both functions at tM
depend continuously on their respective values at t−M , thanks to (4.4.4) we obtain convergence
on the aforementioned interval. Iterating this procedure yields the result.

4.4.2 Trees construction

For what follows we set Ψ(t, u) := σ(t)u2 − b(t)u.

Construction of R
K
T

Recall the particle process defined by the generator (4.2.2) and the catastrophes. In this pro-
cess, a particle with level u at time t gives birth to a new particle at rate 2σ(t)(K − u), where
the level of the new particle is uniformly distributed in [u,K]. On the other hand, when we
arrive at a catastrophe time tj we amplify the level of each particle by a factor β(mtj ), and we
let the process evolve with the new configuration of particles.

In order to obtain the reduced tree associated with the process previously described, we
need to filtrate each birth event by the probability of survival until time T . From the definition
of the process we have a straightforward way to determine if a particle will remain alive until
the final time. Lets suppose that we look at a particle with level u at time t that gives birth to a
new particle at that time. We have that if the starting level of its offspring falls in the interval
[uKT (t), K], this particle will reach the value K before time T , since uKT is exactly the curve
that is equal toK at time T and the evolution of the levels is monotone in the initial condition.
On the other hand, if the starting level of its offspring falls in [u, uKT (t)], the particle’s level
will remain under uKT (t) in the posterior times, and thus will be below K at time T .

We state the following result in order to formalize the previous observation.

Lemma 4.4.4. The survival probability pKT (t) of a particle born with uniformly distributed level

in [u,K] at time t ∈ [0, T ] is given by

pKT (t) =
uKT (t) − u ∧ uKT (t)

K − u
.

Proof. The proof is given by the last paragraph, since we have that

pKT = P(u(T ) < uKT (T )) = P(u < uKT (t)) =
uKT (t) − u ∧ uKT (t)

K − u
,

where u(s) for s ∈ [t, T ], is the evolution of a level starting from u.

Using this, we have that filtrating the birth rate 2σ(t)(K − u) according to the survival
probability gives us the new rate

2σ(t)
(
uKT (t) − u ∧ uKT (t)

)
.

Since we know that a uniform random variable conditioned to land in a smaller interval is
uniformly distributed in the smaller interval, we propose the following construction for the
reduced tree R

K
T .

Assume that we start with levels UK
0 =

(
U1,K

0 , . . . , UNK,K
0

)
, each one smaller than uKT (0).

We rearrange the entries of this vector in an increasing way and we denote it the same. We
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then assign a label i ∈ U to each entry, where i matches its index in the vector, that is i =
1, . . . , NK .

For each label i = 1, . . . , NK , we define ℓK(i, ·) as the solution of

ℓK(i, t) = U i,K
0 +

∫ t

0
Ψ
(
s, ℓK(i, s)

)
ds+

∑

j≥1, t≥tj
(β(mtj ) − 1)ℓK(i, t−), ∀t ∈ [0, T ].

Each one of these particles will produce a new particle according to a Poisson process of
parameter 2σ(t)

(
uKT (t) − ℓK(i, t)

)
. At each jump event of this process, we sample a uniform

random variable over the interval [ℓK(i, t), uKT (t)], and we set this value as the starting level
of the new offspring. For example, lets suppose that the j-th birth of the particle with label i
happens at time t∗. The new particle will have label ij and its level ℓK(ij, ·) will be defined
for all t ≥ t∗ as the solution of the problem

ℓK(ij, t) = ℓK(i, t∗) + θi,Kt∗ +
∫ t

t∗
Ψ
(
s, ℓK(ij, s)

)
ds+

∑

j≥1, t≥tj≥t∗
(β(mtj ) − 1)ℓK(ij, t−),

for each t ∈ [t∗, T ], where θi,Kt∗ is a uniform random variable over [ℓK(i, t∗), uKT (t∗)]. This

particle will have appended a Poisson process of parameter 2σ(t)
(
uKT (t) − ℓK(ij, t)

)
for pro-

ducing new particles. Iterating this procedure gives us the process representing the reduced
tree R

K
T .

Construction of RT

Recalling now the particle process represented by the generator (4.2.5) and the catastrophes,
we had that a particle with level u at time t produces a new particle with level in [u+ℓ1, u+ℓ2]
at rate 2σ(t)(ℓ2 − ℓ1). By following the exact same procedure as in Lemma 4.4.4, we have that
in this model filtrating the birth events according to the survival probability yields the rate

2σ(t)
(
u∞
T (t) − u ∧ u∞

T (t)
)
.

Given this, we construct the tree RT associated to the process (Ut)t≥0 determined by the
generator (4.2.5) and the catastrophes as follows.

Starting with levels U0 = (U1
0 , . . . , U

N
0 ), each one smaller than u∞

T (0), we rearrange the
vector as before and we assign the corresponding label to each particle. For each i = 1, . . . , N ,
we denote by ℓ(i, ·), the solution of the following equation

ℓ(i, t) = U i
0 +

∫ t

0
Ψ(ℓ(i, s)) ds+

∑

j≥1, t≥tj
(β(mtj ) − 1)ℓ(i, t−), ∀t ∈ [0, T ].

Each one of these particles will give birth to a new particle according to a Poisson process of
parameter 2σ(t)

(
u∞
T (t) − ℓ(i, t)

)
. When this process jumps, we sample a uniform random

variable over the interval [ℓ(i, t), u∞
T (t)] and we set this value as the starting level of the new

particle. This last particle will follow the same evolution than its progenitor, that is the one
given by Ψ and the catastrophic jumps. Iterating this procedure as before yields the process
behind the tree RT .

Both trees defined in this way can be seen as elements of the same space. Indeed, let
g : [0, T ] → R be a function satisfying the integrability condition (4.2.8). In particular, one
could consider the explicit choice g(s) := exp(− ∫ s

0 2σ(r)u∞
T (r) dr)h(s), with h any function

in L1([0, T ]). We then have the following result.
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Lemma 4.4.5. Given a function g satisfying the integrability condition (4.2.8), we have that R
K
T

and RT are elements of T g almost surely. Furthermore, the following bound holds

E

(
NRT

(t)
)

≤ E

(
NRT

(0)
)
e
∫ t

0
2σ(r)u∞

T
(r) dr, (4.4.5)

which is also valid for R
K
T .

Proof. Since each particle with level u at time t produces a new one at rate 2σ(t)(u∞
T − u)

in RT and 2σ(t)(uKT − u) in R
K
T , we can bound the rate of birth of each particle in each

tree by 2σ(t)u∞
T (t), since uKT (t) ≤ u∞

T (t). This allows to bound N
R

K
T

(t) := |Vt(RK
T )| and

NRT
(t) := |Vt(RT )| by a birth-only process with the previous rate, yielding in this way that

E

(∫ T

0
NRT

(s)g(s) ds

)
≤
∫ T

0
E

(
NRT

(0)
)
e
∫ s

0
2σ(r)u∞

T
(r) drg(s) ds < ∞,

and similarly for R
K
T , thus obtaining the conclusion of the statement.

We now have everything in order to prove the main result.

4.4.3 Coupling: proof of Theorem 4.1

Assume that the Feller diffusion with given catastrophes (4.1.1) that we approximate starts
from X0 = x.

Consider a complete probability space (Ω,F ,P). Over this space we consider a Poisson
point measure N (ds, dv, dρ, dθ, dθ̃) on [0,∞) × U × [0,∞) × [0, 1] × [0, 1] with intensity
ds⊗n(dv)⊗dρ⊗dθ⊗dθ̃, where n is the counting measure on U . Given x ≥ 0, consider also
an independent Poisson point measure N(x, ds) on [0,∞) with intensity xds. We consider
the natural filtration (Ft)t≥0 associated with these random elements. In what follows we give
an algorithmic construction of the coupling using these objects.

We start by considering all the atoms of N(x, ds) that fall under u∞
T (0). We enumerate

them as {U1, . . . , UN∞
x } where N∞

x := N(x, [0, u∞
T (0)]), and we assign them a label in U ac-

cording to their indices. We consider also all the atoms that fall below uKT (0), which we denote
by {U1, . . . , UNK

x } where as before NK
x := N(x, [0, uKT (0)]). Moreover, we consider also a

root {∅}. Given the previous, we immediately notice that {U1, . . . , UNK
x } ⊂ {U1, . . . , UN∞

x }.
We denote by RT the tree constructed starting with all the atoms under u∞

T (0) and by R
K
T

the tree constructed starting with all the atoms under uKT (0). These trees are then constructed
simultaneously following the next algorithm:

1. Set k = 0 and T0 = 0. Define ℓK(i, t) and ℓ(i, t) for i = 1, . . . , NK
x , as the solution of

the problem

ui(t) = U i
0 +

∫ t

0
Ψ
(
s, ui(s)

)
ds+

∑

j≥1, t≥tj
(β(mtj ) − 1)ui(t

−), ∀t ∈ [0, T ],

and ℓ(i, t) for i = NK
x + 1, . . . , N∞

x , as the solution of the same problem for the corre-
sponding U i

0. Finally, initialize V
K

0 := {1, . . . , NK
x } and V0 := {1, . . . , N∞

x }.

2. At the first time t > Tk with (t, v, ρ, θ, θ̃) an atom of N such that:
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2.1. v ∈ V K
t− and ρ ≤ 2σ(t−)

(
uKT (t−) − ℓK(v, t−)

)
, we add a new particle with its

corresponding chronological label ṽ, and we define its level curve as the solution
of

ℓK(ṽ, t′) = ℓK(v, t−) + θ(u∞
T (t−) − ℓK(v, t−))

+
∫ t′

t
Ψ(ℓK(ṽ, s)) ds+

∑

j≥1, t′≥tj≥t
(β(mtj ) − 1)ℓK(ṽ, t′

−
), ∀t′ ∈ [t, T ],

if θ ≤ uK
T

(t−)−ℓK(v,t−)

u∞
T

(t−)−ℓK(v,t−)
. Otherwise, in the previous equation set the initial condition

to ℓK(ṽ, t) := ℓK(v, t−) + θ̃(uKT (t−) − ℓK(v, t−)). Then, set

V K
t := V K

t− ∪ {ṽ}.

2.2. v ∈ Vt− and ρ ≤ 2σ(t−)
(
u∞
T (t−) − ℓ(v, t−)

)
, we add a new particle with its

corresponding chronological label ṽ and define its level curve by solving

ℓ(ṽ, t′) = ℓ(v, t−) + θ(u∞
T (t−) − ℓ(v, t−))

+
∫ t′

t
Ψ(ℓ(ṽ, s)) ds+

∑

j≥1, t′≥tj≥t
(β(mtj ) − 1)ℓ(ṽ, t′

−
), ∀s ∈ [t, T ].

Then, set
Vt := Vt− ∪ {ṽ}.

Finally, set Tk+1 := t.

3. Increase k by one and go back to the previous step.

After iterating this algorithmic procedure until time T , we can define the filtered measures

NK
v (ds) =

∫

R+×[0,1]2
1v∈V K

s−
1
ρ≤2σ(s−)

(
uK

T
(s−)−ℓK(v,s−)

)N (ds, {v}, dρ, dθ, dθ̃),

Nv(ds) =
∫

R+×[0,1]2
1v∈V

s− 1
ρ≤2σ(s−)

(
u∞

T
(s−)−ℓ(v,s−)

)N (ds, {v}, dρ, dθ, dθ̃),

and we can construct explicitly the chronological trees R
K
T and RT following the proce-

dure explained at the end of Section 4.3 with the families (NK
v (ds))v∈U and (Nv(ds))v∈U

respectively. Also, following the notation from section 4.3, have that V K
t = Vt(R

K
T ) and

Vt = Vt(RT ).

We now pass to the proof of the main result.

Proof of Theorem 4.1. We start by noticing that the subtree issued from the particles with la-
bels {NK

x + 1, . . . , N∞
x } will contribute to the distance from the beginning. Following this,

we denote by R
K
T ⊂ RT the subtree spanned by the initial particles with labels {1, . . . , NK

x }.
Consider TK ∈ [0, T ] the first time that the coupling fails, meaning that the trees R

K
T and

R
K
T are equal up to time T−

K . Given this and the observation of the previous paragraph, we
can write the distance between R

K
T and RT as

dTg
(
R
K
T ,RT

)
=
∑

u∈U

∫ T

TK

∣∣∣∣1(u,s)∈R
K
T

− 1
(u,s)∈R

K
T

∣∣∣∣g(s) ds+
∫ T

0
N

RT \R
K
T

(s)g(s) ds.

≤
∫ T

TK
N

R
K
T

(s)g(s) ds+
∫ T

TK
N

R
K
T

(s)g(s) ds

+
∫ T

0
N

RT \R
K
T

(s)g(s) ds, (4.4.6)
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recalling that NT(t) := |Vt(T)|, for a given chronological tree T. Lets treat first the last term
of the right hand side. Using the same argument as in Lemma 4.4.5 for obtaining the bound

(4.4.5), we can control the number of particles in RT \ R
K
T by a faster birth-only process

starting fromN∞
x −NK

x particles. Thus, once we take expectation, the last term is controlled
by

E

(∫ T

0
N

RT \R
K
T

(s)g(s) ds

)
≤
∫ T

0
E

(
N

RT \R
K
T

(0)
)
e
∫ s

0
2σ(r)u∞

T
(r) drg(s) ds

=
∫ T

0
E

(
N∞
x −NK

x

)
e
∫ s

0
2σ(r)u∞

T
(r) drg(s) ds

= E

(
N(x, [uKT (0), u∞

T (0)])
) ∫ T

0
e
∫ s

0
2σ(r)u∞

T
(r) drg(s) ds

≤ xC(u∞
T (0) − uKT (0)),

for some constant C depending on the integrability condition (4.2.8).

Next, we treat the two remaining terms in (4.4.6). Since R
K
T and RT are elements of T g,

it suffices to show that TK converges to T in probability. Indeed, for any 0 ≤ η ≤ T we have

E

(∫ T

TK
N

R
K
T

(s)g(s) ds

)

= E

(
1|TK−T |>η

∫ T

TK
N

R
K
T

(s)g(s) ds+ 1|TK−T |≤η

∫ T

TK
N

R
K
T

(s)g(s) ds

)

≤ E

(
1|TK−T |>η

∫ T

TK
N

R
K
T

(s)g(s) ds

)
+ E

(∫ T

T−η
N

R
K
T

(s)g(s) ds

)

≤ E

(
1|TK−T |>η

∫ T

0
N

R
K
T

(s)g(s) ds

)

+ xu∞
T (0)

∫ T

T−η
e
∫ s

0
2σ(r)u∞

T
(r) drg(s) ds,

where we used again the argument behind the bound (4.4.5) for controllingN
R

K
T

(s) by a faster

process starting from N(x, [0, uKT (0)]) individuals.

In order to show the convergence in probability of TK towards T , we notice that we can
control the probability of the event {T − TK > η} by the probability of the union of two
particular events. The first one, the event in where there exists a label present in both trees
and having the same level curve, that produces a new particle that is in one tree but not in the
other, meaning that there is a discrepancy in the birth time of this new particle. The second
one, the event in where we have a label in both trees with the same levels and such that it
produces a new particle but the starting levels in each tree do not match. In particular, we
notice that this last event is not optimal, in the sense that the trees can continue to be coupled,
but with high probability there will be a discrepancy latter created by this difference in the
levels.

In order to control this probability we introduce

γKT (v, s) := 2σ(s)(uKT (s) − ℓK(v, s)),

γ∞
T (v, s) := 2σ(s)(u∞

T (s) − ℓ(v, s)),
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to ease notation, and also

δK1 (v, s) = (γKT (v, s) − γ∞
T (v, s))1γ∞

T
(v,s)≤γK

T
(v,s),

δK2 (v, s) = (γ∞
T (v, s) − γKT (v, s))1γK

T
(v,s)≤γ∞

T
(v,s),

the random corrections that will help to determine the event in where a particle is born in
one tree but not in the other.

The reasoning of the previous paragraph yields the following bound

P(TK < T − η)

≤ P

(∫ T−η

0

∫

U×R+×[0,1]2
1v∈V K

s−∩Vs−1ℓK(v,s−)=ℓ(v,s−)

×
[(

1γK
T

(v,s−)∧γ∞
T

(v,s−)≤ρ<γK
T

(v,s−)∧γ∞
T

(v,s−)+δK
1 (v,s−)

+ 1γK
T

(v,s−)∧γ∞
T

(v,s−)≤ρ<γK
T

(v,s−)∧γ∞
T

(v,s−)+δK
2 (v,s−)

)

+ 1ρ≤γK
T

(v,s−)∧γ∞
T

(v,s−)1γK
T

(v,s−)/γ∞
T

(v,s−)<θ

]
N (dv, ds, dρ, dθ, dθ̃) > 1

)

≤ E



∫ T−η

0

∑

v∈V K
s ∩Vs

1ℓK(v,s)=ℓ(v,s)

(
δK1 (v, s)+δK2 (v, s)+γKT (v, s)∧γ∞

T (v, s)
(

1− γKT (v, s)

γ∞
T (v, s)

))
ds




≤ E



∫ T−η

0

∑

v∈V K
s ∩Vs

1ℓK(v,s)=ℓ(v,s)

(
δK1 (v, s) + δK2 (v, s) + 2σ(s)|u∞

T (s) − uKT (s)|
)

ds


,

where we used Markov’s inequality and the master formula for point processes ([107, Propo-
sition 12.1.10]). Moreover, in the event in where the levels of the particles in both trees are
equal we have

δK1 (v, s) + δK2 (v, s) ≤ γKT (v, s) ∨ γ∞
T (v, s) − γKT (v, s) ∧ γ∞

T (v, s)

≤ |γKT (v, s) − γ∞
T (v, s)|

≤ 2σ(s)|u∞
T (s) − uKT (s)|,

where we used that a ∧ b− a ∧ c ≤ |b− c|. This yields the bound

P(TK < T − η) ≤ (2‖σ‖ + 1)
∫ T−η

0
E

(
|V K
s ∩ Vs|

)
|u∞
T (s) − uKT (s)| ds

≤ (2‖σ‖ + 1)E
(
|V K
T−η ∩ VT−η|

) ∫ T−η

0
|u∞
T (s) − uKT (s)| ds. (4.4.7)

Furthermore, we can control the integral that appears in the previous inequality. Indeed,
Thanks to Lemma 4.4.2 we have

|u∞
T (s) − uKT (s)| ≤

(
u∞
T (tj(s)) − uKT (tj(s))

)
e

∫ s

tj(s)

(
|b(r)|+2σ(r)u∞

T
(r)

)
dr

≤ β(mtj(s)
)
(
u∞
T

(
t−j(s)

)
− uKT

(
t−j(s)

))
e

∫ s

tj(s)

(
|b(r)|+2σ(r)u∞

T
(r)

)
dr

where tj(s) is the last jump time before s. Iterating this bound yields

|u∞
T (s) − uKT (s)| ≤

∏

j≥1,s≥tj
β(mtj )

(
u∞
T (0) − uKT (0)

)
e
∫ s

0

(
|b(r)|+2σ(r)u∞

T
(r)

)
dr
.
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Coming back to (4.4.7) and using the previous inequality gives us

P(TK < T − η) ≤ C ′
T

(
u∞
T (0) − uKT (0)

)
E

(
|V K
T−η ∩ VT−η|

)
e
∫ T −η

0

(
|b(r)|+2σ(r)u∞

T
(r)

)
dr

≤ C ′
Txu

∞
T (0)

(
u∞
T (0) − uKT (0)

)
e

2
∫ T −η

0

(
|b(r)|+2σ(r)u∞

T
(r)

)
dr
,

where C ′
T = T (2‖σ‖ + 1)

∏
j≥1,tj≤T β(mtj ). In order to see that this last quantity converges

to 0, we can restate this convergence problem as follows. Let f : N → R be a decreasing
function converging to 0 and h : [0, T ) → R+ a continuous increasing function such that
limt→T h(t) = ∞. In order to justify the existence of a function η : N → R such that η(K) →
0 as K → ∞ and

f(K)h(T − η(K)) → 0, K → ∞,

we consider the generalized inverse h−(y) := inf{x : h(x) > y} and we set

η(K) = T − h−(η̃(K)),

for another function η̃ : N → R satisfying η̃(K) → ∞ as K → ∞. Since h is continuous

f(K)h(T − η(K)) = f(K)h(h−(η̃(K))) = f(K)η̃(K),

thus it suffices choosing η̃ growing slow enough in order to f(K)η̃(K) → 0 as K → ∞, for
example η̃(K) = | log(f(K))|.

Following this argument we show the existence of a sequence η(K) such that

P(|TK − T | > η(K)) → 0, as K → ∞. (4.4.8)

Considering this sequence, once we take expectation, (4.4.6) can be written as

E(dTg
(
R
K
T ,RT

)
) ≤ xC(u∞

T (0) − uKT (0)) + xu∞
T (0)

∫ T

T−η(K)
e
∫ s

0
2σ(r)u∞

T
(r) drg(s) ds

+ E

(
1|TK−T |>η(K)

(∫ T

0
N

R
K
T

(s)g(s) ds+
∫ T

0
N

R
K
T

(s)g(s) ds

))
.

Denoting by IK :=
∫ T

0 NR
K
T
(s)g(s) ds+

∫ T
0 N

R
K
T
(s)g(s) ds, we have that the sequence (IK)K∈N∗

is uniformly integrable, since it can be bounded uniformly inL1(P) using the argument of con-
trolling by a faster birth-only process from Lemma 4.4.5 and the integrability condition (4.2.8).
Moreover, thanks to this, for each ε > 0 there exists δ > 0 such that for every measurable
set A with P(A) < δ, we have supK∈N

E(1AI
K) < ε. Following (4.4.8), there exists K∗ such

that for all K ≥ K∗, P(|T − TK | > η(K)) < δ. Furthermore, there also exists K ′ such that∫ T
T−η(K) exp(

∫ s
0 2σ(r)u∞

T (r) dr)g(s) ds ≤ ε/(xu∞
T (0)) for everyK ≥ K ′ thanks to (4.2.8), and

there exists another K̃ such that (u∞
T (0) − uKT (0)) ≤ ε/(xC) for each K ≥ K̃ thanks to

Lemma 4.4.3. Gathering all, we conclude that for everyK ≥ max{K∗, K ′, K̃}, we have

E(dTg
(
R
K
T ,RT

)
) ≤ 3ε,

which terminates the proof.
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C Appendix

C.1 Markov mapping theorem

What follows is taken directly from [80] and it is presented for the sake of completeness.

Let (S, d) and (S0, d0) be complete, separable metric spaces,B(S) ⊂ M(S) be the Banach
space of bounded measurable functions on S, with ‖f‖ = supx∈S|f(x)| and Cb(S) ⊂ B(S)
be the subspace of bounded continuous functions. An operator A ⊂ B(S) ×B(S) (following
the general notation for multivalued operators from [53], which coincides with the graph of
a single-valued operator) is called dissipative if ‖f1 − f2 − ε(g1 − g2)‖ ≥ ‖f1 − f2‖ for all
(f1, g1), (f2, g2) ∈ A and ε > 0. A is called a pre-generator if A is dissipative and there are
sequences of functions µn : S → P(S) and λn : S → [0,∞) such that for each (f, g) ∈ A

g(x) = lim
n→∞λn(x)

∫

S

(
f(y) − f(x)

)
µn(x, dy), (C.1)

for each x ∈ S. A is graph-separable if there exists a countable subset (gk)k∈N ⊂ D(A)∩Cb(S)
such that the graph of A is contained in the bounded, pointwise closure of the linear span of
(gk, Agk)k∈N. More precisely, we should say that there exists (gk, hk)k∈N ⊂ A∩Cb(S)×B(S)
such that A is contained in the bounded pointwise closure of (gk, hk)k∈N, but typically A is
single-valued, so we use the more intuitive notation Agk. These two conditions are satisfied
by essentially all operators A that might reasonably be thought to be generators of Markov
processes. Note that A is graph-separable if A ⊂ L × L, where L ⊂ B(S) is separable in
the sup norm topology, for example, if S is locally compact, and L is the space of continuous
functions vanishing at infinity.

A collection of functions D ⊂ Cb(S) is separating if ν, µ ∈ P(S) and
∫
S f dν =

∫
S f dµ

for all f ∈ D imply µ = ν.

For an S0-valued, measurable process Y , F̂Y
t will denote the completion of the σ-algebra:

σ(Y (0),
∫ r

0 h(Y (s)) ds, r ≤ t, h ∈ B(S0)). Notice that for almost every t, Y (t) will be F̂Y
t -

measurable, but in general, F̂Y
t does not contain FY

t = σ(Y (s) : s ≤ t). Let T
Y = {t :

Y (t) is F̂Y
t measurable}. If Y is càdlàg and has no fixed points of discontinuity (i.e., for every

t, Y (t) = Y (t−) a.s.), then T
Y = [0,∞). D(S, [0,∞)) denotes the space of càdlàg, S-valued

functions with the Skorohod topology, andM(S, [0,∞)) denotes the space of Borel measur-
able functions, x : [0,∞) → S, topologized by convergence in Lebesgue measure.

Theorem 4.2. Let (S, d) and (S0, d0) be complete, separable metric spaces. Let A ⊂ Cb(S) ×
C(S) and ψ ∈ C(S), ψ ≥ 1. Suppose that for each f ∈ D(A) there exists cf > 0 such that

|Af(x)| ≤ cfψ(x), x ∈ S,

and define A0f(x) = Af(x)/ψ(x). Suppose that A0 is a graph-separable pre-generator, that

D(A) = D(A0) is closed under multiplication and is separating. Let γ : S → S0 be Borel

measurable, and let α be a transition function from S0 into S (i.e. y ∈ S0 → α(y, ·) ∈ P(S)
is Borel measurable) satisfying

∫
h ◦ γ(z)α(y, dz) = h(y) for y ∈ S0 and h ∈ B(S0), that is,

α(y, γ−1(y)) = 1. Assume that ψ̃(y) :=
∫
S ψ(z)α(y, dz) < ∞ for each y ∈ S0, and define

C =
{(∫

S
f(z)α(·, dz),

∫

S
Af(z)α(·, dz)

)
: f ∈ D(A)

}
.

Let µ0 ∈ P(S0), and define ν0 =
∫
α(y, ·)µ0(dy).
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1. If Ỹ satisfies
∫ t

0 E(ψ̃(Ỹ ))ds < ∞ for all t ≥ 0, and Ỹ is a solution of the martingale

problem for (C, µ0), then there exists a solution X of the martingale problem for (A, ν0)
such that Ỹ has the same distribution on M([0,∞), S0) as Y = γ ◦ X . If Y and Ỹ are

càdlàg, then Y and Ỹ have the same distribution on D([0,∞), S0).

2. For t ∈ T
Y ,

P(X(t) ∈ Γ|F̂Y
t ) = α(Y (t),Γ), Γ ∈ B(S).

3. If, in addition, uniqueness holds for the martingale problem for (A, ν0), then unique-

ness holds for the M([0,∞), S0)-martingale problem for (C, µ0). If Ỹ has sample paths

in D([0,∞), S0), then uniqueness holds for the D([0,∞), S0)-martingale problem for

(C, µ0).

4. If uniqueness holds for the martingale problem for (A, ν0), then Y restricted to T
Y is a

Markov process.

C.2 Inhomogeneous lookdown construction

In this section, we give an argument to apply the lookdown construction introduced in [80]
to birth and death processes with time dependent rates, and also to the Feller diffusion with
time dependent coefficients.

The lookdown construction relies on the Markov mapping theorem to ensure its existence
as a solution of the martingale problem associated with the construction. Furthermore, this
is obtained through the existence of solutions for the martingale problem associated with
the process that is being represented. This result is stated for martingale problems that are
not time dependent, thus giving rise to time homogeneous processes. In order to be able to
apply it in an inhomogeneous setting, we can consider the space-time process for obtaining
a time homogeneous object, which is usual procedure for translating results from the time
homogeneous setting. This will be the approach of what follows.

Let K > 0. Consider the state space E =
⋃∞
n=0[0, K]n, the domain D(AK) defined in

(4.2.1) and recall the operator AK : D(AK) ⊂ B(E) → B(E × [0,∞)) defined for u =
(u1, . . . , un) by

AKt f(u) = f(u)
n∑

i=1

2σ(t)
∫ K

ui

(g(v) − 1)dv + f(u)
n∑

i=1

(
σ(t)u2

i − b(t)ui
)g′(ui)

g(ui)
,

where b and σ are bounded continuous functions such that σ(t) ≥ 0 for each t ≥ 0. A process
(Ut)t≥0 defined over a probability space (Ω,F ,P) is a solution of the martingale problem for
AK if for each f ∈ D(AK)

f(Ut) −
∫ t

0
AKs f(Us) ds,

is an FU
t -martingale. This notion of solution differs from the classical one only because the

domain and the range of AK are contained in different spaces.

Now, consider the domain

D
(
A
K
)

=
{
fζ : f ∈ D(AK), ζ ∈ C1

c ([0,∞))
}
,

and the operator A
K

: D(A
K

) ⊂ B(E × [0,∞)) → B(E × [0,∞)) defined by

A
K
fζ(u, t) = AKt f(u)ζ(t) + f(u)ζ ′(t).

111



This last formulation corresponds to the martingale problem for the space-time process U t :=
(Ut, t). Furthermore, Theorem 4.7.1 in [53] ensures that solving the martingale problem for

A
K
(in the classical sense) is equivalent to solving the martingale problem forAK in the sense

previously defined.

Based on this last observation we have the following result that allows us to use the
lookdown construction in the inhomogeneous setting for a birth and death process. For
u = (u1, . . . , un) ∈ E, define

ψ(u, t) = 1 + (|b(t)| + σ(t))n,

γ(u, t) = (n, t) and α((n, t), d(u, s)) := α̃(n, du)δt(ds), where α̃(n, du) is the joint distri-
bution of n independent uniform random variables over [0, K]. Recalling the definition of γ̃
from Theorem 4.2, yields ψ̃(n, t) = 1 + (|b(t)| + σ(t))n.

Lemma C.1. Let K ∈ N
∗ and b, σ : R+ → R two bounded continuous functions satisfying

Kσ(t) − b(t) ≥ 0 and σ(t) ≥ 0 for each t ≥ 0. If XK is a solution of the martingale problem

for

CK
t f̂(n) = Kσ(t)n

(
f̂(n+ 1) − f̂(n)

)
+ (Kσ(t) − b(t))

(
f̂(n− 1) − f̂(n)

)
,

satisfying

E

(∫ t

0
ψ̃(XK(s), s) ds

)
< ∞, ∀t ≥ 0,

then there exists a solution UK of the martingale problem for AKt .

Proof. First we notice that

|AKfζ(u, t)| ≤ ‖ζ‖|AKt f(u)| + ‖f‖‖ζ ′‖
≤ ‖ζ‖‖g′‖(K2 +K)ψ(u, t) + ‖ζ ′‖
≤ cfζψ(u, t),

where cfζ is constant that depends on fζ . Then, since
∫
A
K
fζ(u, s)α((n, t), d(u, s)) =

CK
t f̂(n) + f̂(n)ζ ′(t), where f̂(n) =

∫
f(u)α̃(n, du), is the space-time generator associated

with the birth and death process, the result follows from the conclusions of Theorem 4.2.

We also have the same result for the Feller diffusion with time-dependent coefficients.

Consider now the state space E = [0,∞)∞ ∪ ⋃∞
k=0[0,∞)k, the generator At from (4.2.5)

and its corresponding domain D(A). As before, define D(A) and the space-time generator

Afζ(u, t) = Atf(u)ζ(t) + f(u)ζ ′(t).

Also, define for (u, t) ∈ E × [0,∞)

ψ(u, t) = 1 + (|b(t)| + |σ(t)|)
∑

i

e−ui ,

γ(u, t) = (lim supN→∞
1
N

∑
i 1[0,N ](ui), t) and α((y, t), d(u, s)) := α̃(y, du)δt(ds), where

α̃(y, du) is the distribution of a Poisson process of parameter y. In this casewe obtain ψ̃(y, t) =
1 + (|b(t) + σ(t)|)y.
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Lemma C.2. Let b, σ : R+ → R two bounded continuous functions such that σ(t) ≥ 0 for each

t ≥ 0. If Y is a solution of the martingale problem for

Ctf̂(y) = σ(t)yf̂ ′′(y) + b(t)yf̂ ′(y),

satisfying

E

(∫ t

0
ψ̃(Y (s), s) ds

)
< ∞, ∀t ≥ 0,

then there exists a solution U of the martingale problem for At.

Proof. As before, since

|Afζ(u, t)| ≤ ‖ζ‖|Atf(u)| + ‖f‖‖ζ ′‖
≤ ‖ζ‖‖g′‖(v2

g + vg)e
vgψ(u, t) + ‖ζ ′‖

≤ cfζψ(u, t),

and
∫
Afζ(u, s)α((y, s), d(u, s)) = Ctf̂(y) + f̂(y)ζ ′(t), where f̂(y) =

∫
f(u)α̃(y, du), the

conclusion follows as in the proof of the previous Lemma.
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Titre : Approximation quantitative en grande population de modèles stochastiques avec interaction ou envi-

ronnement variable
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Résumé : Cette thèse se concentre sur l’étude

de modèles stochastiques de populations composés

d’individus interagissant entre eux ou avec leur envi-

ronnement.

Dans un première partie, nous considérons des sys-

tèmes à diffusion croisée pour deux espèces. Nous

développons une approche par dualité qui permet

d’obtenir des estimées quantitatives de stabilité. Nous

introduisons également un modèle stochastique indi-

vidu centré sur un espace discret. Les individus suiv-

ent des marches aléatoires et sont sensibles au nom-

bre d’individus de l’autre espèce sur le même site,

avec une dépendence linéaire dans leur taux de dé-

placement. Nous établissons la convergence en loi

du modèle stochastique vers les systèmes à diffusion

croisée lorsque le nombre d’individus par site est plus

grand que le carré du nombre de sites, en supposant

des données initiales petites.

Dans une deuxième partie, nous obtenons un taux

de convergence explicite pour certains systèmes de

diffusions en interaction de type champ moyen avec

branchement binaire logistique vers les solutions de

systèmes d’autodiffusion non locale avec croissance

de masse logistique, qui décrivent leurs approxima-

tions grande population. La preuve repose sur un ar-

gument de couplage pour des diffusions branchantes

binaires basé sur le transport optimal, qui nous per-

met d’approcher la trajectoire de la population bran-

chante sous interaction par un système de par-

ticules indépendantes avec des naissances spatio-

temporelles aléatoires convenablement distribuées.

Finalement, dans une troisième partie, nous consid-

érons l’arbre réduit associé aux processus de nais-

sance et mort dans des environnements variables

qui donne la structure généalogique de la popula-

tion. Nous décrivons géométriquement cet objet en

utilisant la construction lookdown introduite par Kurtz

et Rodrigues. En introduisant un couplage et une

distance adaptés, nous approchons la généalogie en

grande population.

Title: Quantitative large population approximations for stochastic models with interaction or varying environ-

ment

Keywords: Population dynamics, large population approximations, rate of convergence, cross-diffusion,

branching processes, genealogies

Abstract: This thesis focuses on the study of

stochastic population models composed of individu-

als interacting between them or with the environment.

In a first part, we consider cross-diffusion systems for

two species. We develop a duality approach which

allows to obtain quantitative stability estimates. We

also introduce a stochastic individual-based model on

a discrete space. The individuals follow random walks

and they are sensitives to the number of individuals of

the other species on the same site, with a linear de-

pendence in their rates of motion. We stablish the

convergence in law of the stochastic model towards

the cross-diffusion systems when the number of indi-

viduals per site is greater than the square of the num-

ber of sites, assuming small initial conditions.

In a second part, we obtain an explicit rate of conver-

gence for some systems of mean-field interacting dif-

fusions with logistic binary branching towards the so-

lutions of non-local self-diffusion systems with logis-

tic mass growth, that describe their large population

approximations. The proof relies on a coupling argu-

ment for binary branching diffusions based on optimal

transport, which allows us to approximate the trajec-

tory of the interacting branching population by a sys-

tem of independent particles with suitably distributed

random space-time births.

Finally, in a third part, we consider the reduced tree

associated with birth and death processes in varying

environments that gives the genealogical structure of

the population. We describe geometrically this ob-

ject by using the lookdown construction introduced by

Kurtz and Rodrigues. By introducing a suitable cou-

pling and distance, we approximate the genealogy in

the large population regime.
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