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préparée à l’École polytechnique
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Résumé

Parmi les sources d’énergie marine en cours de développement, les éoliennes offshores flot-
tantes offrent de nombreux avantages. Elles permettent d’étendre la zone d’exploitation,
là où le vent est plus fort et plus régulier. Néanmoins, la démonstration de leur faisabilité
est complexe et la fiabilité de ces structures doit être garantie.

Cette fiabilité est notamment assurée par le système d’ancrage du support flottant qui lim-
ite les mouvements de l’éolienne. Nous cherchons dans cette thèse à proposer une approche
permettant d’optimiser la configuration des lignes d’ancrage, en minimisant le coût des
matériaux tout en respectant des contraintes d’un état limite de fatigue. Conformément
aux normes internationales en état limite de fatigue, le système d’ancrage doit limiter les
mouvements du flotteur pour assurer la production de l’éolienne, éviter la compression
dans les lignes d’ancrage et résister aux dégâts causés par la fatigue des matériaux avec
une probabilité annuelle de défaillance inférieure à 10−4. En effet, ces contraintes héritent
du caractère aléatoire des conditions environnementales ainsi que d’incertitudes sur des
paramètres du modèle.

Par conséquent, nous sommes confrontés à un problème d’optimisation avec une fonction
coût déterministe et des contraintes impliquant des probabilités de dépassement de seuil de
maximum et d’intégrale sur une période [0, T ] de processus aléatoires dépendant du temps.

La principale difficulté est de devoir évaluer ces probabilités à chaque boucle de l’algorithme
d’optimisation. Une approche näıve telle que la méthode de Monte Carlo nécessite de
calculer avec un simulateur coûteux en temps de calcul, de nombreuses réalisations des
processus aléatoires. Malheureusement, le coût de calcul d’une seule réalisation est trop
élevé pour appliquer une telle approche. L’estimation de ces probabilités est d’autant plus
difficile que nous sommes confrontés à des événements rares.

Pour résoudre efficacement ce problème, nous proposons une méthodologie en deux étapes.
Premièrement, en considérant que T est suffisamment grand, nous utilisons les propriétés
des contraintes et les théorèmes limite de la théorie des valeurs extrêmes et de la théorie
ergodique pour reformuler les contraintes initiales en contraintes indépendantes du temps.
Nous obtenons ainsi un problème équivalent pour lequel les algorithmes classiques sont
peu performants. La deuxième étape de notre procédure consiste à résoudre le problème
reformulé avec une nouvelle méthode basée sur une stratégie de krigeage adaptative. Cette
méthode est appelée AK-ECO pour Adaptive Kriging for Expectation Constraints Opti-
mization et permet de résoudre efficacement des problèmes d’optimisation avec des con-
traintes faisant intervenir des espérances.

Le cas académique d’un oscillateur harmonique présentant toutes les caractéristiques du
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problème industriel est introduit afin d’illustrer notre méthodologie. La procédure est
ensuite appliquée avec succès au problème de l’éolienne flottante.

Bien que cette méthodologie soit proposée dans le but de résoudre ce problème, les deux
étapes qui la composent sont introduites dans un cadre général afin de pouvoir être
appliquées à d’autres problèmes d’optimisation impliquant des contraintes probabilistes
dépendant de maximum et d’intégrale de processus aléatoires.
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Abstract

Among the marine sources of energy under development, the floating offshore wind tur-
bine (FOWT) solution offers a panel of advantages. It enables to extend the exploitation
area where the wind is stronger and steadier. Nevertheless, its feasibility demonstration
is complex and the reliability of the FOWT must be guaranteed.

The reliability of the structure is ensured especially by the mooring system of the floating
support which restricts the wind turbine motions. The work of this thesis is to propose
a feasible methodology to optimize the configuration of the mooring lines by minimizing
the material cost while satisfying Fatigue Limit State (FLS) constraints. In accordance
with international design standards in FLS, the mooring system must limit the floater
movements to ensure the turbine production, avoid compression in the mooring lines and
withstand the damage caused by fatigue, with an annual failure probability less than 10−4.
Indeed, these constraints inherit the randomness of the marine environment as well as un-
certainties on material properties and model parameters.

Therefore, we face an optimization problem with a deterministic cost function and con-
straints involving probabilities of threshold exceedance of the maximum and the integral
over a period [0, T ] of time-dependent random processes.

Having to evaluate these failure probabilities at each loop of the optimization algorithm
is the main difficulty. A näıve approach such as the Monte Carlo method requires com-
puting with a time-consuming simulator, many realizations of the random processes. Un-
fortunately, the computation cost of a single realization is too high to apply such basic
approaches. The estimation of these probabilities is all the more challenging as we are
dealing with rare events.

To solve this problem efficiently, we propose in this thesis a two-step methodology. First,
considering that T is sufficiently large, we use the properties of the constraints and limit
theorems of the extreme value theory and the ergodic theory to reformulate the original
constraints into time-independent ones. We thus obtain an equivalent problem for which
classical algorithms perform poorly. The second step of the procedure consists in solving
the reformulated problem with a new method based on an adaptive kriging strategy well
suited to the reformulated constraints. This method, called AK-ECO for Adaptive Kriging
for Expectation Constraints Optimization, enables to efficiently solve optimization prob-
lems with constraints involving expectations.

An academic case of a harmonic oscillator presenting all the characteristics of the indus-
trial problem is introduced to illustrate the methodology. The procedure is then applied
with success to the FOWT problem.
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Although this methodology is proposed to solve this problem, the two steps that compose
it are introduced in a general framework so that they can be applied to other optimiza-
tion problems involving probabilistic constraints depending on maximum and integral of
random processes.
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Introduction

1 Context

The wind power capacity installed in Europe has doubled over the last decade (see Figure
1) and has reached 220 GW including 25 GW (11,4%) offshore (WindEurope (2020)).
Wind energy currently meets 16.4% of electricity demand across EU and UK (WindEu-
rope (2020)).

Figure 1: Evolution of the total wind installations in Europe (WindEurope (2020))

Although bottom-fixed offshore wind turbine technology has made it possible to exploit
the offshore wind resources, it is limited to land and coastal areas. These structures, di-
rectly fixed to the seabed, are not economically attractive for sea depths greater than 60m
(WindEurope (2017)).

To extend the exploitation area, the complementary technology of floating offshore wind
turbine (FOWT) was then proposed. Underwater foundations are avoided by equipping
the wind turbine with a floating structure connected to the seabed by an anchoring system
that stabilizes it.

There are currently three dominant structure designs under development (see Figure 2):

� semi-submersible. The floating platform is semi-submerged and is anchored to the
seabed by catenary mooring lines composed of steel chains, steel wire ropes or syn-
thetic ropes;
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� Spar-buoy. The stability of the structure is ensured by its center of gravity lower in
the water than its center of buoyancy. Such a floater is also equipped with catenary
mooring lines;

� Tension leg platform. This semi-submerged floating structure is anchored to the
seabed by taut mooring lines with high tension.

Figure 2: From left to right: Spar-buoy - Semi-submersible - Tension leg platform (Carbon
Trust (2015))

Floating wind turbines can access areas further offshore where wind blows stronger and
its flow is more consistent which significantly reduces the cost of electricity production
(WindEurope (2017)). In addition, far-from-shore projects reduce the visual and noise
footprint for local residents.

This technology has many advantages and its development would be facilitated by reducing
its manufacturing costs and ensuring the long-term reliability of the structure.

2 Problem statement

To assess the competitiveness of different energy technologies, the levelized cost of energy
(LCOE) measures the cost of a unit of energy produced taking into account all the costs
occurring over their lifetimes. For floating wind turbines, the manufacturing cost of the
mooring system is a significant contributor to the LCOE (Yu et al. (2018)). Besides,
several constraints are usually imposed by international standards (Det Norske Veritas
(2013); IEC 61400-3 (2009)) for the design of the mooring system to ensure the reliability
of the structure. These constraints involve different type of limit states:

� the Ultimate Limit State (ULS) which considers the capacity of the individual moor-
ing lines to resist the load effect imposed by extreme environmental excitations with
50-year return period;
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� the Accidental Limit State (ALS) that ensures that the mooring system is able to
withstand the failure of one mooring line or one thruster failure for unknown reasons;

� the Fatigue Limit State (FLS) which deals with the damage accumulation of the
individual mooring lines due to cycle loading during the FOWT service life.

In this context, the objective of this thesis is to propose an efficient method to optimize the
configuration of the mooring lines by minimizing their material cost while respecting con-
straints imposed by international standards (Det Norske Veritas (2013)). To identify such
a method, we choose to make several simplifications. In this thesis, as a first step towards a
complete approach covering all the design limit states, we consider only the FLS constraint
and wind loads are represented by constant values, neglecting the turbulence variation.
We then consider that an acceptable configuration must limit the floater movements to
ensure the turbine production, avoid compression in the mooring lines, and withstand ac-
cumulated damage caused by marine conditions, with annual failure probability less than
10−4 (Det Norske Veritas (2013)). Indeed, to propose a reliable solution, different sources
of uncertainty are considered on model parameters which are represented by random vari-
ables. Moreover, the motion of the structure results from waves impacting the platform.
These waves are also considered random and are modeled by a time-dependent process
which leads to motions of the structure described by random processes. Therefore, we face
an optimization problem with a deterministic cost function and probabilistic constraints
depending on random variables and time-dependent processes.

The main difficulty to solve this problem is the estimation of these probabilities at each
iteration of the optimization algorithm since:

� time-consuming simulations are required to compute the structure motions over time;

� the methods estimating probability need many simulations, especially when the
threshold probabilities are low.

3 Content of the thesis

The work of this thesis lies in the research field of reliability optimization. An overview of
the current state of the art in this domain is proposed in chapter 1. In this chapter, the
mathematical formulation of the problem under study is briefly introduced to highlight
its main features.

To solve this problem efficiently, we propose a methodology in two steps. Instead of tack-
ling the problem with constraints involving time-dependent probabilities, we first use the
properties of the processes and limit theorems to reformulate the probabilities into time-
independent ones that are easier to estimate. This reformulation procedure is detailed in
chapter 2. In this chapter, we introduce an academic case based on a harmonic oscillator
presenting all the characteristics of the industrial problem.

The second step of the methodology is to solve the reformulated problem. Confronted with
limitations of methods of the literature, we introduce in chapter 3 a new optimization al-
gorithm based on an adaptive kriging procedure suited to the reformulated problem and
called AK-ECO (for Adaptive Kriging for Expectation Constraints Optimization). This
method is then validated on the academic problem and a comparison with state-of-the-art
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methods introduced in chapter 1 is carried out.

The two steps of this methodology are introduced in a general framework in order to be
applied to other problems presenting the same characteristics as the problem under study
in this thesis.

In chapter 4, two analyses are proposed to complete our methodology. A global enrichment
procedure is presented. This approach builds accurate initial metamodels for AK-ECO and
aims to ensure a fast convergence of the algorithm. Moreover, a new sensitivity analysis
adapted to probabilistic constraints is also proposed and provides a better understanding
of the influence of each uncertainty on the constraints.

The FOWT problem which considers a case study inspired by the semi-submersible FOWT
of (Robertson et al. (2014a)), is presented in more details in chapter 5 and is solved with
the two-step methodology introduced in chapters 2 and 3.

Finally, we will highlight the main results and discussed the perspectives of our work in
the conclusion of this thesis.
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Chapter 1

State of the art

Contents

1 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Approximation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Simulation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Metamodel-based approach . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Reliability-Based Design Optimization . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Double-loop approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Single-loop approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Decoupled-loop approach . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Metamodel-based approach for RBDO . . . . . . . . . . . . . . . . . 24
2.5 Hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Time-dependent Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Approximation of the time-dependent process . . . . . . . . . . . . . 28
3.2 Out-crossing approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Extreme value approach . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Time-dependent Reliability-Based Design Optimization . . . . . . . . . . . . 29
5 Introduction of the FOWT problem . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Definition of the design variables . . . . . . . . . . . . . . . . . . . . . 31
5.2 Definition of the time-dependent processes involved in the constraints 31
5.3 Definition of the constraints . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 The FOWT time-dependent RBDO problem . . . . . . . . . . . . . . 34

Due to a lack of knowledge or to inherently random physical phenomena, it is common in
engineering to consider uncertainties on the inputs of a numerical model that propagate to
its outputs. Several fields of research have emerged with the introduction of uncertainties
in models. In Reliability Analysis (RA), the objective is to evaluate the probability that
a certain event, considered as a failure, occurs. In the context of optimization, we refer
to a Reliability-Based Design Optimization (RBDO) problem when the constraints
involve failure probabilities. The RA and RBDO problems are said to be time-dependent
when the model inputs include time-dependent random processes.

Taking uncertainties into account usually leads to many calls to the simulator with dif-
ferent realizations of the random inputs in particular when one deals with probabilities of
rare events (Bourinet (2018)). One of the main challenges in RA and RBDO is thus to
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CHAPTER 1. STATE OF THE ART

solve the considered problem when each simulation is computationally expensive.

The problem under study in this thesis falls within these domains of research and therefore
a review of the literature in proposed in this chapter. In the last section of the chapter,
we will briefly introduce the FOWT problem to highlight its main characteristics.

1 Reliability Analysis

In the context of reliability analysis, the uncertainties are represented by a random vector
X = (X1,⋯,XnX

) taking values in ΩX ⊂ RnX . In this chapter, we consider that this
vector is composed of nX continuous random variables with known probability density
functions and we assume that its marginal distribution functions are strictly increasing.
The quantity of interest is the failure probability defined as:

pf = P (g(X) < 0) (1.1)

where g ∶ RnX → R is called the performance function and failure occurs when the
function is negative. One evaluation of the performance function often requires a call to
a time-consuming simulator. Therefore, the methods proposed in RA aim at evaluating
the failure probability accurately and with as few calls to g as possible. Since the function
g is usually complex, the distribution of g (X) cannot be calculated analytically and a
numerical approximation of the failure probability is adopted.

We say that we deal with a rare event when pf is small (in our context pf < 10−3).
Estimating probability of occurrence of rare events is especially difficult because it requires
many calls to the simulator to be accurate.

Definition 1.1. The performance function g (also called limit-state function) defines
three domains of ΩX :

� the failure domain: {x ∈ ΩX , g(x) < 0};

� the safe domain : {x ∈ ΩX , g(x) > 0} ;

� the limit-state surface: {x ∈ ΩX , g(x) = 0}.

The failure probability is therefore the probability that X belongs to the failure domain.

Three main approaches have been proposed to estimate pf : the approximation meth-
ods, the simulation methods and metamodel-based methods. We introduce theses
approaches below.

Since the random vector X has a known probability density function, the failure prob-
ability can be written as a multidimensional integral. Thus, we could also estimate pf
with a quadrature method (chapter 7 of Owen (2013) discusses the most popular ones).
However, in practice, this approach is rarely considered since it is too expensive in number
of calls to the function g.

1.1 Approximation methods

The approximation methods consider pf defined in (1.1) as the following probability:

pf = P(G(U) < 0) (1.2)
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CHAPTER 1. STATE OF THE ART

where U is a vector composed of independent standard Gaussian random variables. To
obtain (1.2), we introduce the isoprobabilistic transformation T which is a diffeomor-
phism from ΩX to RnX such that:

T −1(U) =X (1.3)

and
P (g(X) < 0) = P (g ○ T −1(U) < 0) . (1.4)

We denote G(u) = g ○ T−1(u). When X1,⋯,XnX
are independent random variables with

respective cumulative distribution functions F1,⋯, FnX
, T is defined as follows:

T (X) = (Φ−1 (F1(x)) ,⋯,Φ−1 (FnX
(x))) (1.5)

with Φ the standard Gaussian cumulative distribution function. We refer to Bourinet
(2018) and Lebrun (2013) for the definition of T when the coordinates of X are not inde-
pendent.

The approximation methods rely on the identification of the Most Probable failure
Point (MPP) denoted u∗ which is solution (assumed to exist and to be unique) of the
following optimization problem:

u∗ = argmin
RnX

{∣∣u∣∣, G(u) ≤ 0}. (1.6)

The solution of problem (1.6) cannot be determined analytically. Several algorithms have
been proposed to efficiently solve this problem (Bourinet (2018); Yang et al. (2020b)).

Assuming that G is differentiable at u∗, the First-Order Reliability Method (FORM)
(Hasofer and Lind (1974); Madsen et al. (2006)) considers a linear approximation G̃ of G
at u∗ using a first-order Taylor expansion. The failure probability P(G(U) < 0) is then
approximated by P(G̃(U) < 0) since the latter can be deduced analytically (see proposition
1 of Lemaire (2013)):

P (G̃(U) < 0) = Φ (−∣∣u∗∣∣) . (1.7)

The norm ∣∣u∗∣∣ is called the reliability index and is often denoted β.

Figure 1.1 illustrates the strategy of FORM for a reliable analysis in 2D. The contour lines
of the probability density function of X (resp. U) are displayed in blue on the left (resp.
on the right). After identifying the MPP, the FORM approximation is performed at this
point and the failure probability is estimated from β.

The Second-Order Reliability Method (SORM) (Breitung (1984, 1989))is based on
the same principal except that G is assumed to be twice differentiable at u∗ and a second-
order Taylor expansion of G at the MPP is used. We refer to Bourinet (2018) for a detailed
description of the FORM and SORM methods.

In the approximation methods, the performance function g is only called during the res-
olution of problem (1.6) which makes the estimation of the failure probability effective.
However, these approaches suffer from two main drawbacks:

1. their accuracy relies on the regularity of the function G. The error committed by
replacing G by its approximation G̃ is not controlled. Therefore, an inaccurate
approximation of pf can be obtained if G is highly nonlinear;
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Figure 1.1: FORM approximation (Lopez and Beck (2012))

2. despite the speed of execution of these methods, the resolution of the optimization
problem (1.6) sometimes requires a prohibitive number of calls to g.

1.2 Simulation methods

The Monte Carlo method enables to estimate an expectation E [Y ] where Y is a random
variable from which it is possible to draw realizations. The Monte Carlo estimator IMC

is defined as follows:

IMC =
1

nMC

nMC

∑
i=1

Yi (1.8)

where (Y1,⋯, YnMC
) is a sequence of i.i.d random variables with the same distribution as

Y and nMC is the size of the Monte Carlo sample. The Monte Carlo estimator is unbiased
and converges almost surely to E [Y ]. Its coefficient of variation δnMC

is given by the
following equation:

δnMC
=
√
Var[IMC]
E [IMC]

= 1
√
nMC

√
Var (Y )
E [Y ]

. (1.9)

In RA, we consider Y = 1g(X)<0 and thus, δnMC
=
√

1−pf
nMC pf

.

The Monte Carlo method is versatile since the only condition required is that Y has a
finite variance. It also possesses the good property that, if Y is a function of a random
vector, as it is the case in RA, the speed of convergence of the estimator does not depend
on the dimension of this vector. However, as Bourinet (2018) points out, the coefficient of
variation of the estimator is proportional to 1√

nMC
which leads to a slow convergence of the

Monte Carlo method, especially when one deals with rare events. Hence, for an estima-
tion with a coefficient of variation of 10%, approximately 100/pf realizations are necessary.

Different simulation techniques have been proposed to keep the good properties of the
Monte Carlo estimator and increase the rate of convergence. The Importance Sam-
pling (IS) (Melchers (1989)) and Subset Simulation (SS) (Au and Beck (2001)) are
among the most used in RA. We refer to Bourinet (2018) for a detailed description of
these techniques. More recent developments are proposed in Munoz Zuniga (2011), Yun
et al. (2018), Papaioannou et al. (2019), Papaioannou and Straub (2021), and Rashki
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(2021).

Although the improvements of the Monte Carlo method significantly increase the con-
vergence speed of the simulation method, the number of realizations of the variable Y
required often remains prohibitive when one evaluation of g is time-consuming.

1.3 Metamodel-based approach

Metamodels

Let consider an expensive model M ∶ x ∈ Ωx ⊂ Rnx →M(x) ∈ R. When an analysis requires
many evaluations of M , the strategy of substituting M by an approximated and fast-to
evaluate model M̃ is often adopted in engineering. This latter model is called metamodel
(also known as surrogate model, emulator or response surface model). Among the
most widespread metamodels, we can refer to the polynomial approximations (Myers
et al. (2016)), the Artificial Neural Networks (ANN) (Lippmann (1987)), the Radial
Basis Functions (RBF) (Buhmann (2003)), the Support Vector Machines (SVM)
(Moustapha (2016)), the Polynomial Chaos Expansion (PCE) (Wiener (1938)), and
the Gaussian process regression also called kriging (Krige (1951); Rasmussen and
Williams (2006)).

These metamodels are defined by a set of hyperparameters that must be calibrated. To
do so, the function M is evaluated over a sample of its input space called Design of
Experiment (DoE) and the responses are used to fit the metamodel.

Design of experiment

Different classes of DoEs exist and differ in the way they span the input space (a review of
these classes is provided in Alizadeh et al. (2020)). A DoE optimally covering the entire
domain in order to capture the general form of the function M is called space-filling.
Among the most popular DoE, the Latin Hypercube Sampling (LHS) (McKay et al.
(1979)) allows to fill the input space such that the one-dimensional projections of the
points of experiment on each component are uniformly distributed. To compute a LHS
of nLHS points in the space [0,1]nx , for each dimension i = 1,⋯, nx, the interval [0,1] is
divided into nLHS subintervals Ii1⋯, IinLHS

with the same length. The DoE is a LHS if for
each dimension i and each interval Iij , a unique point of the design of experiments has its

i-th coordinate in the interval Iij . Figure 1.2 illustrates an example of a 5 points LHS over
the space [0,1] × [0,1].
To ensure the space-filling condition, it is common to select the DoE which optimizes a
criterion such as the maximin criterion (Johnson et al. (1990)) aiming to maximize the
shortest distance between two points of experiment.

Gaussian process regression or kriging

We present the kriging model in more detail since this technique is at the core of the work
of this thesis. The standard method relies on the assumption that the expensive function
M is a realization of a stationary Gaussian random process M̃ defined as:

M̃(x) =
p

∑
j=1

βjfj(x) +Z(x) (1.10)
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Figure 1.2: LHS of 5 points of [0,1] × [0,1]

where the sum ∑p
j=1 βjfj(x) defines the trend of the process characterized by the unknown

coefficients β1,⋯, βp and the known functions f1,⋯, fp. Besides, Z is a stationary Gaussian
process with zero mean and its covariance function is given by:

E[Z(x)Z(x′)] = σ2Cθ(x − x′). (1.11)

The value of p, the functions fj (j = 1,⋯, p) as well as the function C are chosen by the user
(the latter can be chosen from a family of parametric correlation functions (Rasmussen and
Williams (2006))). The unknown parameters σ2 and θ are called the hyper-parameters
and characterize the correlation between two points of the process Z. They represent
respectively the variance and the correlation length of Z.

Let {xi, i = 1,⋯, nDoE} be a DoE of Ωx. We introduce the following notations:

f(x) = [fj(x)]1≤j≤p , F = [fj(xi)]1≤i≤nDoE ,1≤j≤p (1.12)

rθ(x) = [Cθ(xi − x)]1≤i≤nDoE
, Rθ = [Cθ(xi − xj)]1≤i≤nDoE ,1≤j≤nDoE

(1.13)

and m the vector [M (xi)]1≤i≤nDoE
.

The DoE and m are used to fit σ and θ usually with the cross-validation method (Latan-
iotis et al. (2017)) or the maximum-likelihood (ML) method (Roustant et al. (2012)).

The parameter β can be treated in two ways, both approaches leading to similar results
(Helbert et al. (2009)). The first approach is to evaluate β with ML whose solution is
given by:

β̂ = (F TR−1θ F)−1 F TR−1θ m. (1.14)

On the other hand, the Bayesian approach consists in assuming a prior Gaussian distri-
bution of β with a covariance matrix B and to evaluate the posterior expectation of β
conditionally to the DoE and m. In this case and when ∥B−1∥ → 0, the mean of the
posterior distribution tends to β̂.

Whether the ML or the Bayesian approach is considered for the definition of β̂, it is shown
that the prediction of the metamodel at a new point x0, conditionally to the DoE and m,

follows a normal distribution N (µM̃(x0), σ
2
M̃
(x0)) with:

µM̃(x0) = f(x0)
T β̂ + rθ(x0)TR−1θ (m − Fβ̂) (1.15)
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and

σ2
M̃
(x0) = σ2 (1 − rθ(x0)TR−1θ rθ(x0) + uθ(x0)T (F TR−1θ F)−1 uθ(x0)) (1.16)

with uθ(x0) = F TR−1θ rθ(x0) − f(x0).

The mean µM̃(x0) of this random variable is used as predictor of M at x0 while the stan-
dard deviation σM̃(x0) measures the accuracy of this prediction.

It follows from equations (1.15) and (1.16) that the kriging method is an interpolation
technique: for any point x of the DoE used for its calibration, the prediction of the meta-
model µM̃(x) equals M(x) and its variance σ2

M̃
(x) is zero.

We have introduced in this section the noise-free kriging model since this model will be used
throughout this thesis. For the introduction of the kriging model with noisy observations,
we refer to Rasmussen and Williams (2006).

Use of metamodels in RA and active learning

In recent years, many articles have adopted the strategy of substituting the costly perfor-
mance function for a metamodel. Thereby, the failure probability can be estimated with
simulation methods since the sample size is no longer an issue. However, this approach can
lead to large errors if the metamodel fitting is of poor quality. Thus, an initial calibration
of the metamodel is usually followed by an adaptive enrichment procedure (also called
active learning). To improve the metamodel, new points are selected and added to the
DoE. The identification of those points is generally done by maximizing a criterion called
learning function over the sample space of X or among the sample of the simulation
method. The performance function is then evaluated at those points and the responses are
used to recalibrate the metamodel. Since the accuracy of the failure probability estimation
is mainly due to the ability of the metamodel to correctly predict whether a point belongs
to the failure domain, the learning function is usually a tradeoff between the proximity of
a point to the limit-state surface and the uncertainty of the metamodel at that point.

In RA, many adaptive methods have been proposed and vary according to the choice
of metamodel, the learning function, the enrichment stopping criterion, and the simu-
lation technique used to estimate the failure probability. For instance, SVM (Roy and
Chakraborty (2020); Ling and Lu (2021)), PCE (Marelli and Sudret (2018); Cheng and
Lu (2020)) and ANN (Xiang et al. (2020)) have been applied to estimate the failure prob-
ability with suited active learning methods.

The kriging model is particularly well adapted to active learning since it provides a mea-
sure of the prediction uncertainty at each point of the input space. This feature explains
the intensive use of this technique in RA. Many learning functions have been proposed,
namely the EFF function (Bichon (2010)), the U function in AK-MCS (Echard et al.
(2011); Echard (2012)), the H function (Lv et al. (2015)), the REIF2 criterion (Zhang
et al. (2019)) or the LIF function (Sun et al. (2017)) with adapted enrichment stopping
conditions. In these methods, one point is selected at each enrichment step but multipoint
enrichment has also been proposed as in AK-MCSi (Lelièvre et al. (2018)).
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An extensive review and a comparison of these adaptive approaches for different meta-
models and active learning strategies are detailed in Teixeira et al. (2021).

2 Reliability-Based Design Optimization

A RBDO problem is an optimization problem aiming at minimizing a deterministic cost
function and whose constraints involve failure probabilities. It is formulated as follows:

min
d∈Ωd

cost(d) such that

PXd,Xp (gi (Xd,Xp) < 0) < ps,i (i = 1,⋯, nc)
(1.17)

where Ωd ⊂ Rnd is the design space, d the design variables, and Xd, Xp are two random
vectors with respective size nd and np. The distribution ofXd depends on d contrary to the
distribution of Xp. The i-th constraint is satisfied if the corresponding failure probability
is less than a threshold probability ps,i.

Notation. In this thesis, the notations PX and EX mean that the probability and the
expectation are considered with respect to the distribution of X (X can be a random
variable, a random vector or a random process).

Many RBDO problems have a cheap-to-evaluate cost function and the difficulty lies in
the estimation of the failure probabilities at each iteration of the optimization algorithm.
Many methods have been proposed to solve (1.17) while limiting as much as possible the
number of evaluations of the performance functions gi (i = 1,⋯, nc). They can be grouped
into four different approaches: the double-loop methods, the single-loop methods, the
decoupled methods, and methods based on metamodels. In the following sections, we in-
troduce these approaches and we describe in particular the RIA, PMA, SORA and Stieng
methods which will be used as comparison methods in chapters 3 and 5.

Benchmarks of the double-loop, single-loop and decoupled methods are available in
Aoues and Chateauneuf (2010) and Lopez and Beck (2012).

2.1 Double-loop approach

The intuitive way to solve a RBDO problem is to couple a classical optimization algorithm
and a method to estimate the failure probabilities. This approach is called double-loop
since two loops are nested: one estimates the failure probabilities, the other updates the
design point. The Reliability Index Approach (RIA) and the Performance Mea-
sure Approach (PMA) (Tu et al. (1999)) are among the most popular double-loop
approaches. For RIA, the failure probabilities are estimated with FORM. In PMA, the
initial constraints are replaced with equivalent ones which are evaluated with an inverse
reliability analysis. A double loop strategy can also use a simulation method as in Barrera
et al. (2016) and Chaudhuri et al. (2020).

Remark 1.1. In RA, the term ”design point” is sometimes used to refer to the Most
Probable failure Point (see section 1.1.1). In this thesis, when we consider an optimization
problem, the term ”design point” refers to a point from the design space of the problem.

Reliability Index Approach (RIA)

The RIA method (Madsen et al. (2006)) follows the double-loop approach and estimates
the failure probabilities involved in the constraints of problem (1.17) with FORM. The
RBDO problem becomes:
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min
d∈Ωd

cost(d) such that

PU (Gi,d(U) < 0) < ps,i (i = 1,⋯, nc)
(1.18)

where Gi,d = gi ○ T −1d and Td is the isoprobabilistic transformation mapping (Xd,Xp) to
U , a vector composed of nd + np standard Gaussian and independent random variables.

Considering the reliability index βi(d) of the failure probability involved in the i-th con-
straint at d evaluated with FORM, we have βi(d) ≃ −Φ−1 (PU (Gi,d(U) < 0)). Therefore,
denoting βs,i = −Φ−1(ps,i), problem (1.18) is sometimes also formulated as follows:

min
d∈Ωd

cost(d) such that

βi(d) > βs,i (i = 1,⋯, nc).
(1.19)

Performance Measure Approach (PMA)

In RIA, the i-th constraint is satisfied at d if βi(d) is greater than βs,i with βi(d) solution
of the following problem:

min
u∈Rnd+np

{∣∣u∣∣, Gi,d(u) ≤ 0}. (1.20)

Solving (1.20) can be tedious, therefore it is proposed in the PMA method to reformulate
the constraints of problem (1.19). Let considerG∗i (d) the solution of the following problem:

min
u∈Rnd+np

{Gi,d(u), ∣∣u∣∣ = βs,i}. (1.21)

The solution G∗i (d) represents the smaller value of Gi,d on the sphere of radius βs,i. Thus,
if G∗i (d) > 0 (assuming that the failure domain is a connected space not contained in a
sphere of radius smaller than βs,i), the solution of (1.20) is greater than βs,i. Therefore,
βi(d) > βs,i is equivalent to G∗i (d) > 0. Besides, solving problem (1.21) is easier than
the resolution of (1.20) since the solution of the former must be searched on the sphere of
radius βs,i. The PMA method then consists in approaching the RBDO problem formulated
as follows:

min
d∈Ωd

cost(d) such that

G∗i (d) > 0 (i = 1,⋯, nc).
(1.22)

The quantity G∗i (d) is obtained performing an inverse reliability analysis which con-
sists in solving (1.21). This resolution can be carried out efficiently with the Hybrid
Mean Value method (HMV) proposed by Youn et al. (2003) or with more recent tech-
niques (Du et al. (2004); Jung et al. (2020); Wang and Zhang (2020); Keshtegar et al.
(2021)).

We denote uRIA
i,d and uPMA

i,d the points (assumed to be unique) such that ∣∣uRIA
i,d ∣∣ = βi(d)

and Gi,d(uPMA
i,d ) = G∗i,d. The authors of Lopez and Beck (2012) emphasize that these

points are only equal when the i-th reliability constraint is active. Apart from this case,
uPMA
i,d only represents the point of the sphere of radius βs,i which minimizes Gi,d.
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2.2 Single-loop approach

In practice, the nesting of the two loops turns out to be too costly in terms of number
of calls to the performance functions. The single-loop approach has been proposed to
overcome this drawback. To avoid the failure probability estimation at each iteration,
the RBDO problem is transformed into a deterministic problem. In the Single-Loop
Approach (SLA) (Liang et al. (2008); Li et al. (2019); Yang et al. (2020a)), the constraints
of the problem are replaced by the performance functions. These performance functions
are evaluated at specific points which are updated at each iteration of the optimization
algorithm in order to propose a final design fulfilling the optimality conditions of the
reliable version of the problem.

2.3 Decoupled-loop approach

The decoupled approach consists in solving a sequence of deterministic optimization prob-
lems. The final design point of an optimization cycle is the starting point of the next one.
In the Sequential Approximation Programming (SAP) (Cheng et al. (2006)), problem
(1.19) of RIA is solved at each cycle substituting the constraints with local approxima-
tions. The Sequential Optimization and Reliability Assessment method (SORA)
(Du and Chen (2004)) separates the optimization and the reliability loops. A deterministic
optimization cycle is carried out for fixed values of the uncertain parameters. The latter
are then shifted at the next cycle to make the minimum more reliable. Different methods
(Torii et al. (2016); Biswas and Sharma (2021); Jiang et al. (2020); Wang et al. (2020);
Zhang et al. (2021b)) use the same approach as SORA but propose a different shifting
strategy.

Sequential Optimization and Reliability Assessment (SORA)

In SORA, the distribution of Xd is assumed to be centered at d (i.e. E [Xd] = d). During
each cycle of the method, an optimization problem representing a deterministic version
of the RBDO problem (1.17) is solved. The optimization problem considered for the first
cycle is the following:

min
d∈Ωd

cost(d) such that

gi (d,E [Xp]) > 0 i = 1,⋯, nc.
(1.23)

At the end of the first cycle, a design point d1, solution of (1.23), is obtained. If the
i-th deterministic constraint is active at d1, the solution is not reliable since, considering
the uncertainties at this point, the i-th failure probability at d1 probably exceeds the
maximum threshold. The SORA method then proposes to shift the constraint to gain in
reliability. A sequence of deterministic optimization problems then begins. The problem
solved during the k-th cycle (k ≥ 2) is:

min
d∈Ωd

cost(d) such that

gi(d − ski , xkp,i) > 0 i = 1,⋯, nc

(1.24)

starting from dk−1: the design point obtained at the previous cycle. The gain in reliability
is achieved by choosing the proper values ski and xkp,i for each constraint i. In SORA, they
are defined as:

ski = dk−1 − xk−1i,MPP , xkp,i = pk−1i,MPP . (1.25)
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The quantities xk−1i,MPP and pk−1i,MPP are computed with an inverse reliability method at the
end of cycle k − 1:

uk−1i,MPP = argmin
u∈Rnd+np

{Gi,dk−1(u), ∣∣u∣∣ = βs,i}

and
(xk−1i,MPP , p

k−1
i,MPP ) = T−1dk−1(u

k−1
i,MPP ), (1.26)

where T−1
dk−1 denotes the inverse function of the iso-probabilistic transformation at dk−1.

The cycles of SORA end when the reliability constraints are satisfied and the difference
between the cost function evaluations at the design points obtained between two consec-
utive cycles is small.

Figure 1.3 illustrates the shift carried out at the end of the k-th cycle on the design
variables in the case where the design space Ωd is in 2D and only the uncertainties on
the design variables are considered. The design space and the sample space of Xd1 and
Xd2 are superposed. In the figure, the design point obtained at the end of the k-th cycle
is denoted (dk1, dk2), it is represented with a red point and the density of (Xdk1

,Xdk2
) at

(dk1, dk2) is indicated. The second red point represents xkMPP which is obtained with the
inverse reliability analysis performed at (dk1, dk2). It is then used to define the shift (sk1, sk2)
of the design variables during the (k + 1)-th cycle of SORA.

Figure 1.3: SORA shift (Lopez and Beck (2012))

2.4 Metamodel-based approach for RBDO

In RBDO, the failure probabilities depend on the design point d and therefore, multiple
metamodel-based approaches can be considered. An overview of the different strategies
using metamodels in RBDO is presented in Moustapha and Sudret (2019a).

Usually, as in RA, metamodels replace the performance functions to speed up the estima-
tion of the failure probabilities and active learning strategies are implemented to refine
the limit-state surface of each performance function.

A general modular framework is proposed in Moustapha and Sudret (2019a) to solve a
RBDO problem with metamodels: the user can choose the adaptive metamodel, the relia-
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bility analysis method, and the optimization algorithm. A single metamodel is calibrated
for each performance function. In Shang et al. (2021), a combination of the PCE and RBF
is chosen. For the methods introduced in Moustapha and Sudret (2019a) and Shang et al.
(2021), the enrichment of the metamodels is performed before starting the optimization.

In Dubourg (2011) and Li et al. (2020), kriging models subsituting the performance func-
tions are enriched during the optimization algorithm. In Moustapha et al. (2015), the
constraints of problem (1.17) are replaced by constraints involving quantiles and the en-
richment of the krigings are performed both before and during optimization.

In the following sections, we introduce the notion of augmented space (Dubourg (2011);
Moustapha and Sudret (2019a)) as well as the enrichment stopping condition proposed by
Dubourg (2011).

Augmented space

When the approach of building a single metamodel for solving the RBDO problem is
adopted, the choice of the domain to be spanned by the initial DoE is crucial. Since the
inputs of the i-th performance function gi are the outcomes of (Xd,Xp), the metamodel
replacing gi must accurately predict the values of gi for every outcomes of (Xd,Xp) that
may be encountered during the optimization resolution and therefore, for different design
points d. To restrict this domain, it is interesting to consider the space Ωaug such that,
for any d ∈ Ωd, it is almost certain that a realization (xd, xp) of (Xd,Xp) belongs to Ωaug.

Let d = (d1,⋯, dnd
) ∈ Ωd = Ωd1 ×⋯×Ωdnd

⊂ Rnd be a design point and Xd1 ,⋯,Xdnd
the ran-

dom variables with respective quantile functions F−1d1
,⋯, F −1dnd

describing the uncertainties

at this point. The random vector Xp is composed of np random variables Xpj (j = 1,⋯, np)
with quantile functions denoted F −1pj (j = 1,⋯, np). The space Ωaug is defined by:

Ωaug =
nd

∏
i=1

Ωaug
di
×

np

∏
j=1

Ωaug
pj (1.27)

with

Ωaug
di
=
⎡⎢⎢⎢⎢⎣

inf
di∈Ωdi

F−1di
(α), sup

di∈Ωdi

F −1di
(1 − α)

⎤⎥⎥⎥⎥⎦
, (1.28)

Ωaug
pj = [F

−1
pj (α), F

−1
pj (1 − α)] (1.29)

where α is a degree of confidence chosen by the user (different values of α could be con-
sidered for each set Ωaug

di
(i = 1,⋯, nd) and Ωaug

pj (j = 1,⋯, np)).

Thereby, for all i ∈ {1,⋯, nd}, di ∈ Ωdi and j ∈ {1,⋯, np}, the probabilities P (Xdi ∈ Ω
aug
di
)

and P (Xpj ∈ Ω
aug
pj ) are greater or equal to 1 − 2α.

The space Ωaug is called the augmented space.

Enrichment stopping condition

In the method proposed by Dubourg (2011) to solve a RBDO problem, a kriging model
g̃i is built for each performance function gi in the augmented space such that, for all
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(xd, xp) ∈ Ωaug, the distribution of g̃i (xd, xp) is N (µi (xd, xp) , σi (xd, xp)2).

After each iteration of the optimization algorithm, the metamodel is sequentially enriched
until a stopping condition is met. This condition checks whether the estimation of the
failure probability p̃f,i(d) at the current design space d is accurate enough. To do so, the
author proposes low and high estimations of pf,i(d) that we denote p̃f,i

−(d) and p̃f,i
+(d).

These quantities are defined as follows:

p̃f,i
−(d) = PXd,Xp (µi (Xd,Xp) + kσi (Xd,Xp) < 0) , (1.30)

p̃f,i(d) = PXd,Xp (µi (Xd,Xp) < 0) , (1.31)

p̃f,i
+(d) = PXd,Xp (µi (Xd,Xp) − kσi (Xd,Xp) < 0) , (1.32)

with k a chosen constant and thus:

p̃f,i
−(d) ≤ p̃f,i(d) ≤ p̃f,i+(d). (1.33)

The spread between p̃f,i
−(d) and p̃f,i

+(d) measures the accuracy of the estimation p̃f,i(d).
Therefore, the enrichment of g̃i continues until the following condition is met:

log10 (
p̃f,i
+(d)

p̃f,i
−(d)

) ≤ ϵ (1.34)

where ϵ is an accuracy threshold chosen by the user.

2.5 Hybrid approach

Finally, other approaches combine metamodels with PMA (Du et al. (2020)), SORA
(Goswami et al. (2019); Song et al. (2021); Zhang et al. (2020b)) or SLA (Zhang et al.
(2020a)). The method proposed in Stieng and Muskulus (2020) that we will call the
Stieng method approximates the performance function by the product of two functions:
one depending only on the design variables which is the performance function evaluated
at the mean value of the uncertainties and the other depending on the uncertain variables.
A metamodel is fitted on the second function. The RBDO problem is then solved with
sequential cycles of optimization. Each cycle is composed of the update of the metamodels
and a resolution with PMA of the problem.

The Stieng method

In the method introduced in Stieng and Muskulus (2020), only parametric uncertainties
are considered and the i-th performance function is written as:

gi (d, xp) = ri (d, xp) − qi (d, xp) = ri (d, xp) −
qi (d, xp)

qi (d,E (Xp))
qi (d,E (Xp)) (1.35)

where only the function qi is expensive to evaluate and ri (d, xp) is generally a threshold.

The key idea of the approach is to locally approximate
qi (d, xp)

qi (d,E (Xp))
by a quantity that

only depends on xp. To do so, at the k-th cycle, the function yki (xp) is defined as:

yki (xp) =
qi (dk−1, xp)

qi (dk−1,E (Xp))
(1.36)
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where d0 is chosen by the user and dk for k ≥ 1 is the design point obtained at the end of
cycle k. Thus, the performance function can be approximated as follows:

gi (d, xp) ≃ ri (d, xp) − yki (xp) qi (d,E (Xp)) . (1.37)

The k-th cycle of the method begins with the sampling of Xp. The function yki is eval-

uated at these points, a metamodel ỹki is built to replace yki (xp) and gi (d, xp) can be
approximated by:

g̃ki (d, xp) = ri(d, xp) − ỹki (xp)qi (d,E (Xp)) . (1.38)

Then the following problem is solved:

min
d∈Ωd

cost(d) such that

G̃k,∗
i (d) > 0 (i = 1,⋯, nc).

(1.39)

where

G̃k,∗
i (d) = min

u∈Rnd+np
{G̃k

i,d(u), ∣∣u∣∣ = βs,i} (1.40)

with G̃i,d = g̃ki (d, xp) ○ T
−1 and T the isoprobabilistic transformation of Xp.

A new design point dk is obtained at the end of the cycle. In Stieng and Muskulus (2020),
the algorithm stops if the cost function value has converged, otherwise a new cycle starts
from dk.

Remark 1.2. The Stieng approach can be applied with any metamodel. In the paper,
the kriging model is chosen and the sampling of Xd is done using a Sobol sequence (Sobol’
(1967)) whose size increases with each new cycle.

3 Time-dependent Reliability Analysis

In time-dependent reliability analysis, the performance function involves a time-dependent
stochastic process denoted Y. The failure probability is usually written as follows:

pf = P (∃t ∈ [0, T ], g (X,Y(t), t) < 0) . (1.41)

The methods estimating this quantity can be classified into the out-crossing approach and
the extreme value approach. Most of them require a failure probability written as:

pf = P (∃t ∈ [0, T ], ĝ (X̂, t) < 0) (1.42)

where X̂ is a random vector. This second formulation can be obtained from the first one
with the use of a truncated expansion of the process Y such as the ones mentioned in
section 1.3.1. The methods in t-RA will then be introduced for the second formulation of
pf .
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3.1 Approximation of the time-dependent process

Most of the methods in t-RA require to be able to sample realizations of g (X,Y(t), t) at
a fixed time t. To do so, expansion techniques enable to approximate the process Y with
a function f depending on a random vector Y such that:

Y(t) ≃ f (Y, t) . (1.43)

Among the most widespread expansion methods, we can cite the Expansion Optimal
Linear Estimation (EOLE) (Li and Der Kiureghian (1993)), the Karhunen-Loève (KL)
expansion (Loeve (1977)), the Orthogonal Series Expansions (OSE) (Zhang and Elling-
wood (1994)) and the spectral representation (Shinozuka and Deodatis (1991)) for which
realizations of the process Y are used to identify the function f and the distribution of Y .

Grouping the random vectors in X̂ = (X,Y ), the failure probability can then be written:

pf = P (∃t ∈ [0, T ], ĝ (X̂, t) < 0) (1.44)

with ĝ (X̂, t) = g (X,f (Y, t) , t).

3.2 Out-crossing approach

Let consider pf,i(t) the instantaneous failure probability and the random variable N+(T )
representing the number of crossings from the safe domain to the failure domain in ]0, T ]:

pf,i(t) = P (ĝ (X̂, t) < 0) , (1.45)

N+(T ) = card{t0 ∈]0,T],∃ϵ > 0,∀t ∈ [t0 − ϵ, t0], ĝ (X̂, t) ≥ 0 and

∀t ∈]t0, t0 + ϵ[, ĝ (X̂, t) < 0}. (1.46)

Then, the failure probability can be bounded (Shinozuka (1964)) as follows:

max
t∈[0,T ]

pf,i(t) ≤ pf ≤ pf,i(0) +E [N+(T )] . (1.47)

The out-crossing approach seeks to estimate the upper bound of pf in equation (1.47) by
evaluating the out-crossing rate ν+(t):

ν+(t) = lim
∆t→0+

P (N+(t +∆t) = 1)
∆t

(1.48)

= lim
∆t→0+

P ({ĝ (X̂, t) ≥ 0} ∩ {ĝ (X̂, t +∆t) < 0})
∆t

. (1.49)

The mean of out-crossings E [N+(T )] is then computed with:

E [N+(T )] = ∫
T

0
ν+(t)dt. (1.50)

The out-crossing rate can be obtained in several ways (Hawchar (2017)). In the PHI2
method (Andrieu-Renaud et al. (2004)), ν+(t) is estimated by performing two reliability
analyses with FORM at t and t +∆t. When Y is stationary, the out-crossing rate need
to be estimated at only one time t whereas multiple evaluations are required for the non-
stationary case.
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3.3 Extreme value approach

The extreme value approach directly provides an estimation of the failure probability and
generally relies on the use of metamodels. Considering the function gmin such that:

gmin(X̂) = min
t∈[0,T ]

ĝ (X̂, t) , (1.51)

a first strategy is to estimate the failure probability with a RA method since:

pf = P (gmin(X̂) < 0) . (1.52)

In the ePCE and eLRA methods (Hawchar (2017)), the PCE and the Low Rank Approx-
imation (LRA) (Chevreuil et al. (2015)) are respectively used to replace gmin. In m-EGO
(Hu and Du (2015)), a kriging model is prefered. In these approaches, the enrichments
of the metamodel are performed by selecting x̂ in the sample space of X̂ with different
strategies and gmin (x̂) is then computed with a dedicated Efficient Global Optimization
(EGO) approach (Jones et al. (1998)).

In Ahmadivala et al. (2019), the interval [0, T ] is divided into several nodes ti and the fail-
ure probability is approximated by P (∪i (ĝ (X̂, ti) < 0)). For each time ti, a kriging model
replaces the performance function. These metamodels are then enriched with AK-SYS
(Fauriat and Gayton (2014)): a method used to carry out a system RA where multiple
performance functions are involved in the failure probability.

Other methods based on adaptive kriging of the performance function have been proposed
and rely on different metamodel strategies (Hu and Mahadevan (2016); Wang and Chen
(2016); Jiang et al. (2019); Hu et al. (2020)).

For all of these methods, a sequential active learning is usually performed to improve the
accuracy of the metamodel. The failure probability is then computed with Monte Carlo
and the enriched metamodel. In AK-co-IS and AK-co-SS (Ling et al. (2019)), the failure
probability is computed with IS and SS and the enrichment of the metamodel is adapted.

In Zhang et al. (2021a), the MPP is computed at each time of a discretization of [0, T ].
A kriging is then calibrated on the trajectory of these MPPs and enriched to select a new
time where to perform a MPP search. A procedure is proposed to estimate the failure
probability using the resulting metamodel.

Finally, the NERS method is introduced in Wang andWang (2012). We denote tmin(x̂) the
function such that tmin(x̂) = argmin

t∈[0,T ]
g(x̂, t) and it follows gmin(X̂) = g(X̂, tmin(X̂)). The

method proposes to substitute the tmin function by a kriging model which is sequentially
improved. The failure probability can then be estimated with a time-independent RA
such as FORM.

4 Time-dependent Reliability-Based Design Optimization

The time-dependent Reliability-Based Design Optimization (t-RBDO) methods seek to
solve optimization problems with constraints involving time-dependent performance func-
tions. The most straightforward approach to solve a t-RBDO problem is to couple an
optimization algorithm with a t-RA method to estimate the failure probabilities at each
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iteration of the optimization problem. Hence, a local eLRA is performed at each iteration
in TROL (Hawchar (2017)) whereas in Wang and Wang (2012), the NERS method is used
to evaluate the failure probability.

In TROSK (Hawchar et al. (2018)), PSO-t-IRS (Li and Chen (2019)), and in Shi et al.
(2020b), a kriging model of each performance function is built and enriched before the
optimization and then the resolution of the optimization is done using Monte Carlo with
the metamodel.

Finally, t-SORA and t-SLA are introduced in Shi et al. (2020a) and represent the time-
dependent versions of SORA and SLA.

5 Introduction of the FOWT problem

We have described in the previous sections the state of the art in RA, RBDO, t-RA and
t-RBDO. We now present the main characteristics of the FOWT problem under study in
this thesis to see how it falls within these research fields.

As mentioned in the introduction, for FOWTs to be competitive, it is crucial to pro-
pose configurations that are economically attractive and reliable. The work of this thesis
pursues this objective. For simplicity, we focus especially on the mooring system of a semi-
submersible FOWT since it represents an important part of the total cost of the structure
and is essential for the station keeping and proper functioning of the turbine (Carbon
Trust (2015); Yu et al. (2018)). More precisely, our objective will be to minimize the man-
ufacturing cost of the mooring lines while satisfying several constraints. The proposed
configuration should enable the mooring system to limit the movements of the structure
to ensure the turbine production, avoid compression in the mooring lines and excessive
loading on the electric cable, and to withstand the accumulated damage in the lines. These
constraints inherit the randomness of the marine conditions and uncertainties on material
properties and model parameters. We are therefore faced with an optimization problem
with time-dependent reliability constraints that need to be satisfied with high confidence
levels. Indeed, the threshold annual failure probability imposed by internationals standard
is 10−4 (Det Norske Veritas (2013)).

In this section, we briefly introduce the mathematical formulation of the studied problem
to highlight its main characteristics and the difficulties to solve it. The problem will be
presented in detail in chapter 5.

We emphasize that the purpose of our work is to identity an efficient strategy to solve this
type of problems. We thus consider in this thesis a simplified model. We refer to chapter
5 for the explanation of these simplifications.

The FOWT under study is inspired by the NREL (National Renewable Energy Labora-
tory) 5MW turbine (Jonkman et al. (2009)) placed on the DeepCwind semi-submersible
floating platform (Robertson et al. (2014a)). The floating platform is connected to the
seabed by three catenary mooring lines.
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5.1 Definition of the design variables

The cost of the mooring lines that we want to minimize depends on three design variables:

� the length d1 of the mooring line that can be added to, or deducted from, the nominal
mooring length. This variable takes values in [d−1 , d+1 ] (in m);

� the mass per unit length d2 ∈ [d−2 , d+2 ] (in kg/m);

� the position d3 of the connection of the lines to the columns of the floater. This
variable can vary from 0 (which corresponds to a connection at the bottom of the
columns) to 1 (top of the columns).

We denote d = (d1, d2, d3) and Ωd the design space such that Ωd = [d−1 , d+1 ]×[d−2 , d+2 ]×[0,1].
The cost function is denoted cost. It is a function from Ωd to R+ and is cheap to evaluate.
The cost function and the design space will be defined precisely in chapter 5.

5.2 Definition of the time-dependent processes involved in the con-
straints

The movements of the structure are determined from the environmental loads occurring
during the considered period [0, T ] (T is equal to one year) and in particular loadings
induced by waves and the wind.

Definition of the environmental conditions

The swell is modeled as a succession of waves (parallel in our case) meeting the structure
and defined by their height at any time at a given point. To account for all the differ-
ent possible sea state, we discretize the interval of time [0, T ] into nT subintervals Ii of
length ∆T . For each interval Ii the sea elevation is represented by a zero-mean stationary
Gaussian random process defined by its spectral density. The latter is characterized by
parameters called long term parameters grouped in si which will be called the sea state.

The sea elevation process on Ii is therefore denoted ηi (si; .). We consider that ηi (si; .)
and ηj (sj ; .) are independent processes for i ≠ j. We denote η the sequence of processes
(η1 (s1; .) ,⋯, ηnT

(snT
; .)).

Taking the wind into account in the calculations makes it possible to consider the forces
on the rotor-nacelle assembly which affect the movements of the float. It is customary
to consider a wind described by particular random processes (see standard IEC 61400-3
(2009)). For simplicity, we will only consider constant wind forces applied on the structure
for each sea state (see chapter 5 for the reasons of this choice).

The surge process

The swell and the wind cause motions of the floating platform described, at all times, by
the values of six movements called in mechanics degrees of freedom. They are repre-
sented in the figure 1.4.

We focus especially on the translation along the x-axis called the surge of the platform.
Since the movement of the platform inherit the randomness of the marine conditions, the
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Figure 1.4: Degrees of freedom (Hall (2013))

surge is represented by a time-dependent random process defined as:

S (d, xp; t) =
nT

∑
i=1
Si (d, xp, si; t)1Ii(t) (1.53)

where Si (d, xp, si; t) is a process depending on the design d considered, on parametric
variables (which will be detailed in chapter 5) grouped in xp, and on the sea state si
occurring during Ii.

The tension processes

The movements of the floater cause cycles of tension in the mooring lines. For catenary
lines, the maximum tension is at the top of the line and this location is considered as criti-
cal because of particular end effect on the loading. Depending on the constraint (maximum
tension, minimum tension, fatigue) the most critical point could be located elsewhere, for
example near the touchdown point. To simplify, we will consider in this thesis only the
tension at the top of the lines knowing that this simplification is not conservative for the
design. The extension to a more general study with a replacement by the most severe
constraint along the line does not change the methodology.

The tension at the top of the l-th mooring line (l = 1,2,3) is represented by the following
random process:

T l (d, xp; t) =
nT

∑
i=1
T l
i (d, xp, si; t)1Ii(t) (1.54)

where T l
i (d, xp, si; t) is a process depending on the design d considered, on the parametric

variables grouped in xp, and on the sea state si occurring during Ii.

The instantaneous damage processes and the total damage

When a material is subjected to a high number (millions) of repeated cycles of tension, it
accumulates damage also called polycyclic fatigue of the material. The marine conditions
and the floater movements cause this type of loads on the mooring lines.

As for the tension, we focus on the damage accumulated at the top of each mooring line.
We can represent the instantaneous damage occurring at the top of the l-th mooring line
(l = 1,2,3) with the following random process:
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Dl (d, xd2 , xp; t) =
nT

∑
i=1
Dl

i (d, xd2 , xp, si; t)1Ii(t) (1.55)

where Dl
i (d, xd2 , xp, si; .) is a process depending on the design d considered, on a resistance

parameter of the model xd2 which depend on d2 (this parameter will be specified in chapter
5), on the parametric variables xp, and on the sea state si occurring during Ii.

For fixed values of xd2 and xp, the total damage occurring at the top of the line l is

the random variable denoted the Dtotal,l
[0,T ] (d, xd2 , xp) and defined as the accumulation of the

instantaneous damage process over [0, T ]:

Dtotal,l
[0,T ] (d, xd2 , xp) = ∫

T

0
Dl (d, xd2 , xp; t)dt. (1.56)

5.3 Definition of the constraints

Introduction of uncertainties

The surge, the tension, and the damage processes depend on parameters denoted xd2 and
xp. We consider that these parameters are subject to uncertainties represented respectively
by the random variable Xd2 and the random vector Xp.

The surge constraint

To enable the wind turbine to operate correctly and to reduce the loading on the electrical
cable, it is necessary to restrict the amplitude of the surge. We therefore consider a
threshold Smax for the maximum of the surge. Taking into account the uncertainties on
the parametric variables and the marine conditions therefore leads to the formulation of
the first constraint:

PXp,η ( max
t∈[0,T ]

∣S (d,Xp; t)∣ > Smax) < 10−4. (1.57)

The threshold probability of 10−4 is recommended by international standards (Det Norske
Veritas (2013)) for mooring lines.

Remark 1.3. The surge constraint concerns the absolute displacement of the floater and
not the motion amplitude around the mean position of the floater (which varies with the
sea state).

The tension constraints

To avoid out-of-plan bending of the line, which would cause the material to break under
subsequent tensions, it is important to impose a positive tension at all times on the line. By
taking into account the different sources of uncertainties, the tension constraints become:

PXp,η (min
[0,T ]
T l (d,Xp; t) < 0) < 10−4 (1.58)

for l = 1,2,3.
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The fatigue constraints

The last constraints concern the damage accumulated at the top of each line. The fa-
tigue is the accumulation of the instantaneous damages occurring during the considered
period. Material failure occurs when the fatigue exceeds a certain threshold. For safety,
this threshold is considered uncertain and is represented by the random variable XR.
Taking into account all the uncertainties leads to the following formulation of the fatigue
constraints:

PXd2
,Xp,XR,η (∫

T

0
Dl (d,Xd2 ,Xp; t)dt >XR) < 10−4 (1.59)

for l = 1,2,3.

5.4 The FOWT time-dependent RBDO problem

In this thesis, we therefore face the following optimization problem:

min
d∈Ωd

cost(d) such that

PXp,η ( max
t∈[0,T ]

∣S (d,Xp; t)∣ > Smax) < 10−4

PXp,η ( min
t∈[0,T ]

T l (d,Xp; t) < 0) < 10−4 , l = 1,2,3

PXd2
,Xp,Xr,η (∫

T

0
Dl (d,Xd2 ,Xp; t)dt >XR) < 10−4 , l = 1,2,3

(1.60)

We consider that all the sources of uncertainties are independent.

Remark 1.4. A formulation of the constraints involving a system failure probability is
also proposed by the standards (Det Norske Veritas (2013)) but the failure of a mooring
line is critical enough to consider a threshold failure probability for each constraint.

This is a particular t-RBDO problem since the distribution of the processes involved in the
constraints depend on the design variables and on the parametric uncertainties. Moreover,
the fatigue constraints include the integral of a time-dependent process which is not the
usual formulation of constraints in t-RBDO problem.

Since the cost function is cheap to evaluate, the difficulty in solving problem (1.60) lies
in the estimation of the constraints. Indeed, evaluating the failure probabilities with a
sampling method or with more advanced techniques require to compute many realizations
of the time-dependent processes. For design variables d1, d2, and d3 and fixed variables xp
and xd2 , several minutes (for a resolution in the frequency domain (Le Cunff et al. (2008)))
to several hours (for a time-domain resolution) of simulation are necessary to compute a
realization of the surge and the tension processes.

Although some work has been done in offshore engineering to derive the statistical proper-
ties of the output processes from the sea elevation description (as discussed in Sclavounos
(2012)), we will see that some results of the Extreme Value Theory have not yet been
applied to approximate the threshold exceedance probabilities appearing in the surge and
tension constraints.
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Concerning the fatigue constraints, different approaches have been proposed to reduce the
computational cost of the estimation of the mean total damage. The methods proposed
by Müller and Cheng (2018) and Barrera et al. (2020) estimate the total fatigue from
a subset of the possible sea states. In Müller and Cheng (2018), a representative set
of environmental conditions is selected with a Sobol sequence (Sobol’ (1967)) while the
maximum dissimilarity algorithm (Camus et al. (2011)) is preferred in Barrera et al. (2020).
Adaptive kriging strategies have also been proposed in Huchet et al. (2019) and Teixeira
et al. (2019) to efficiently choose the sea states where simulations need to be performed.
However, these approaches require to compute many realizations (or one realization over a
long period of time) of the tension processes which is computationally expensive. Besides,
these approaches consider fixed design variables. Problem (1.60) is more challenging since
the fatigue failure probability must be estimated during each iteration of the optimization
resolution.

The proposed approach

Under the following simplifications (which will be explained in chapter 5):

� the non-linear hydrodynamic drag forces are linearized (Le Cunff et al. (2008));

� the effects of the second-order hydrodynamic forces on the FOWT are not considered;

it is possible to show that the surge and the tension processes are piece-wise stationary
Gaussian processes and their distributions can be deduced from the sea elevation distribu-
tion. In this case, the failure probabilities can be estimated without the need to compute
realizations of the processes which can be very interesting in terms of computation time.
We adopt these simplifications in this thesis and propose to use the resulting properties
of the outputs processes to reformulate the constraints of problem (1.60) in a way that is
easier to evaluate. The following chapter describes this reformulation of the constraints in
a general framework.
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Reformulation of time-dependent
failure probabilities
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1 Formulation of a t-RBDO problem with extreme-based
and integral-based constraints

Motivated by the problem (1.60) of minimization of the floating offshore wind turbine
manufacturing cost introduced in section 1.5, we consider the following t-RBDO problem
having the same characteristics as the FOWT problem:

min
d∈Ωd

cost(d) such that

P( min
t∈[0,T ]

gE (XrE ,Y(Xd,Xp, t)) < 0) < ps

P(∫
T

0
gI (XrI ,Y(Xd,Xp, t))dt < 0) < ps.

(2.1)

In the above equation, the cost function is deterministic and depends on design variables
gathered in the vector d. The design space is denoted Ωd and is a subset of Rnd . The
uncertainties on the design variables, on the model and on the resistance thresholds in
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the first and second constraints are respectively represented by the random vectors Xd,
Xp, XrE and XrI which are assumed to have known probability density functions. The
performance functions are defined by:

gE(XrE ,Y(Xd,Xp; t)) =XrE −Y(Xd,Xp; t), (2.2)

gI(XrI ,Y(Xd,Xp; t)) =XrI − f (Y (Xd,Xp; t)) , (2.3)

where f ∶ R→ R is measurable. The time-dependent process is denoted Y (xd, xp; .) and its
distribution depends on the outcomes of the random vectors Xd and Xp. The constraints
are satisfied if the failure probabilities do not exceed the failure probability threshold ps.

We will call extreme-based (resp. integral-based) constraint, constraints expressed as
the first (resp. second) constraint of problem (2.1). The failure probability involved in
an extreme-based (resp. integral-based) constraint will be denoted pE(d) (resp. pI(d))
and will be called extreme-based (resp. integral-based) failure probability. Extreme-based
failure probability refers to the usual failure probability in t-RBDO except that the pro-
cess distribution of Y depends on the random vectors Xd and Xp. The integral-based
failure probability is less studied in t-RBDO and represents the probability that the accu-
mulation of a quantity depending on Y exceeds some threshold over the time interval [0, T ].

In the industrial application, the evaluations of the functions gE and gI are costly, the time
T is large (one year) and the probability threshold ps is small (10−4).

Methods used to estimate failure probabilities in t-RA and t-RBDO are often time-
consuming as they require numerous evaluations of the performance functions and do
not exploit any assumption about the process Y. However, in some applications, for fixed
values of Xd, Xp, XrE and XrI the performance function is a time-dependent process
with known distribution. In offshore engineering, the wind speed and sea elevation are
usually represented as stationary Gaussian processes (Vorpahl et al. (2013)). When the
linearization of the momentum balance equation is a reasonable approximation, quantities
of interest such as the displacement of the structure inherit the stationary and Gaussian
properties of the input processes (Le Cunff et al. (2008)).

Therefore, instead of following the classical approaches in t-RBDO described in section 1.4,
we propose a two-step procedure better suited to the characteristics of the studied prob-
lem. The first step of the procedure is to reformulate the extreme-based and integral-based
failure probabilities into quantities that are easier to evaluate using spectral properties of
the time-dependent processes and limit theorems when T tends to infinity.

This reformulation is described in section 2.2 when Y is stationary and Gaussian. The
more general case when Y is a piece-wise stationary Gaussian process (which corresponds
to the industrial problem with a discretized joint probability of environmental parameters
(Vorpahl et al. (2013))) is dealt with in section 2.3. To illustrate the reformulation of
extreme-based and integral-based failure probabilities, an academic t-RBDO problem of
a harmonic oscillator having the same properties as the industrial problem is introduced
and its constraints are reformulated in this chapter.

At the end of this first step, a reformulated optimization problem is obtained. Chapter 3
will focus on the second step of the procedure: solving the reformulated problem with a
new efficient method.
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2 Constraints defined in terms of a stationary Gaussian pro-
cess

2.1 Reformulation principle

For fixed values xd and xp, we consider in this section that the process Y (xd, xp; .) intro-
duced in section 2.1 is a stationary Gaussian process with zero mean (the consideration of
a non-zero mean does not raise any difficulty and is discussed in remarks 2.4 and 2.6). Its
distribution is defined by its spectral density KY (xd, xp; .) which is the Fourier transform
of its autocorrelation function kY (xd, xp; .) that depends on xd and xp:

KY (xd, xp;ω) =
1

2π
∫
R
kY (xd, xp; t) e−iωtdt. (2.4)

The spectral moment of order n of Y (xd, xp; .) is defined as:

mY,n(xd, xp) = ∫
R
ωnKY (xd, xp;ω)dω. (2.5)

To separate in the calculations, the uncertainties represented by Xd and Xp and the
randomness of the time-dependent process, we consider the process Y (xd, xp; .) as output
of a linear filter and we introduce the zero-mean stationary Gaussian process η such that:

Y (xd, xp; t) = (hY (xd, xp; .) ∗ η) (t). (2.6)

Example 2.1. Let us consider a white noise η (i.e. a stationary Gaussian process
with zero mean and covariance function E [η(t)η(t′)] = δ(t − t′)) and a function hY(t) =
∫R eiωt

√
KY(ω)dω such that hY ∗ hY(t) = kY(t) with kY a stationary covariance function.

It follows that the process Y, defined as Y(t) = hY ∗ η(t), is a stationary Gaussian process
with zero mean, covariance function kY , and spectral density KY (Lindgren (2010)).

Remark 2.1. In this section, the introduction of the process η is only a convenient trick
to simplify the calculations. However, in the FOWT problem under study in this thesis
and in the oscillator problem introduced in section 2.2.4, the process η has a physical
meaning that we will specify.

Hence, by conditioning, the failure probabilities involved in problem (2.1) can be written:

pE(d) = EXd,Xp,XrE
[Pη∣Xd,Xp,XrE

( min
t∈[0,T ]

gE (XrE ,Y(Xd,Xp; t)) < 0)] (2.7)

and

pI(d) = EXd,Xp,XrI
[Pη∣Xd,Xp,XrI

(∫
T

0
gI (XrI ,Y(Xd,Xp; t))dt < 0)] . (2.8)

The first contribution of this thesis is to show that, for fixed values xd, xp, xrE , xrI of Xd,
Xp, XrE , XrI and when T is large enough, limit theorems for functionals of a stationary
Gaussian process provide good approximations of:

Pη ( min
t∈[0,T ]

gE (xrE ,Y(xd, xp; t)) < 0) and Pη (∫
T

0
gI (xrI ,Y(xd, xp; t))dt < 0) . (2.9)

Therefore, the failure probabilities pE(d) and pI(d) can be approximated by expectations
depending only on Xd, Xp, XrE and XrI . The resulting reformulated problem is much
easier to solve since the failure probabilities are no longer time-dependent. As we will see,
this approximation only uses the spectral properties of Y (xd, xp; .) and no sampling of the
time-dependent process is required.
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2.2 Approximation of the extreme-based failure probability

For fixed values of Xd, Xp and XrE , the probability Pη ( min
t∈[0,T ]

gE (xrE ,Y (xd, xp; t)) < 0)

involves the maximum of a stationary Gaussian process since:

Pη ( min
t∈[0,T ]

gE (xrE ,Y (xd, xp; t)) < 0) = Pη ( max
t∈[0,T ]

Y (xd, xp; t) > xrE) . (2.10)

Thus, the extreme value theory (Leadbetter et al. (1983)) and especially the following
theorem are well suited to provide a reformulation of pE(d).

Extreme value theory for a stationary Gaussian process

We present the theorem 8.2.7 of Leadbetter et al. (1983) for a stationary Gaussian process
{ξ(t); t ≥ 0} with zero mean, autocorrelation function kξ, spectral density Kξ and spectral
moment of order n denoted mξ,n.

Theorem 2.1. Suppose that the Gaussian stationary process ξ satisfies the following
conditions:

kξ(τ) =mξ,0 −
mξ,2τ

2

2
+ o(τ2) as τ → 0, (2.11)

kξ(τ) log(τ)→ 0 as τ →∞, (2.12)

then

P(aT ( max
t∈[0,T ]

ξ(t)
√
mξ,0

− aT) ≤ x)→ exp (− exp(−x)) as T →∞, (2.13)

with aT =
√
2 log (T /Tc) and Tc = 2π

√
mξ,0/mξ,2.

This formulation of theorem 2.1 is obtained by applying theorem 8.2.7 of Leadbetter et al.
(1983) to the process ξ (tTc).

Remark 2.2. It is possible to give sufficient conditions for theorem 2.1 that are explicit
in Kξ. Denoting K ′ξ the derivative of Kξ, conditions (2.11) and (2.12) are met if we have:

mξ,0 <∞,mξ,2 <∞, (2.14)

Kξ ∈ C1,Kξ and K ′ξ are integrable. (2.15)

For condition (2.15), we use that if Kξ ∈ C1 and Kξ and K ′ξ are integrable then ∃c > 0

such that ∣kξ(τ)∣ ≤ c
∣τ ∣ and therefore, condition (2.12) is met. Other sufficient conditions

on the spectral density are discussed in Berman (1991).

Reformulation of the extreme-based constraint

For fixed values xd and xp, if the process Y(xd, xp; .) meets conditions (2.14) and (2.15),
we can apply theorem 2.1 and obtain ∀x:

Pη
⎛
⎝
aT (xd, xp)

⎛
⎝
max
t∈[0,T ]

Y (xd, xp; t)√
mY,0 (xd, xp)

− aT (xd, xp)
⎞
⎠
≤ x
⎞
⎠
→ exp (− exp(−x)) as T →∞

(2.16)
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with aT (xd, xp) =

¿
ÁÁÀ2 log( T

2π

√
mY,2(xd,xp)
mY,0(xd,xp)). Therefore, it follows from equations (2.7),

(2.10) and (2.16) that for T large enough, it is reasonable to make the following approxi-
mation:

pE(d) ≃ EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝
exp
⎛
⎝
aT (Xd,Xp)2 −

aT (Xd,Xp)XrE√
mY,0 (Xd,Xp)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
(2.17)

with Fϵ(x) = 1 − exp(−x). The approximation error made in equation (2.17) can be
bounded with classical results (Kratz and Rootzén (1997)) and is discussed in section A.1
of appendix A.

Remark 2.3. The initial failure probability that depends on a random process has been
approximated by an expectation which only depends on random vectors. Furthermore, to
compute the quantity within the square brackets in (2.17), only two spectral moments of
Y (xd, xp; .) need to be evaluated (for each outcome of Xd and Xp).

Remark 2.4. The extreme-based constraint reformulation can be obtained for a process
Y (xd, xp; .) with a non-zero mean µY (xd, xp) by applying theorem 2.1 to Y (xd, xp; .) −
µY (xd, xp). The resulting approximation is the one provided by (2.17) replacing XrE by
XrE − µY (Xd,Xp).

2.3 Approximation of the integral-based failure probability

We focus now on the integral-based failure probability:

pI(d) = PXd,Xp,XrI
,η (∫

T

0
f (Y (Xd,Xp; t))dt >XrI) . (2.18)

For fixed values xd, xp, the process f (Y (xd, xp; .)) is denoted F(xd, xp; .). Since Y (xd, xp; .)
is stationary, F(xd, xp; .) is also stationary and we denote by kF(xd, xp; .) its autocovari-
ance function.

Ergodicity

Definition 2.1. A time-dependent stationary process ξ is said to be ergodic if:

1

T
∫

T

0
ξ(t)dt PÐ→

T→+∞
E [ξ(0)] (2.19)

where
PÐ→ refers to the convergence in probability. A sufficient condition for the stationary

process ξ to be ergodic (cf section 13.1 of Papoulis (1991)) is that its autocovariance
function is integrable.

Reformulation of the integral-based constraint

Suppose that F (xd, xp; .) is ergodic, then, for almost every x (more exactly, for all x ≠
Eη [F (xd, xp; 0)])

Pη (
1

T
∫

T

0
F (xd, xp; t)dt > x)→ 1Eη[F(xd,xp;0)]>x as T →∞. (2.20)
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Thus, for T large enough, it is reasonable to approximate the integral-based failure prob-
ability as follows:

pI(d) ≃ EXd,Xp [FrI (TEη [F (Xd,Xp; 0)])] , (2.21)

with FrI the cumulative distribution function of XrI (which is continuous because XrI has
a density). The approximation error made in equation (2.21) is discussed in section A.2
of appendix A.

Remark 2.5. To compute Eη [F (xd, xp; 0)], it is necessary to know the distribution of
Y (xd, xp; 0). Since the process Y (xd, xp; .) is Gaussian with zero mean, the variance of
Y (xd, xp; 0) determines its distribution. Hence, to compute the quantity within the square
brackets in (2.21), we only need to know the variance of Y (xd, xp; 0) for each outcome of
Xd and Xp (i.e. mY,0 (xd, xp)).

Remark 2.6. The integral-based constraint reformulation is the same for a process
Y (xd, xp; .) with non-zero mean µY (xd, xp). The value of µY (xd, xp) is taken into ac-
count in the computation of Eη [F (xd, xp; 0)].

2.4 Optimization problem involving a stationary harmonic oscillator

We present in this section a concrete optimization problem with constraints involving
extreme-based and integral-based failure probabilities and we apply the reformulation
procedure described in sections 2.2.2 and 2.2.3.

The stationary harmonic oscillator problem

Let us consider a harmonic oscillator on an interval of time [0, T ]: a spring/mass system.
We denote respectively by xd1 the mass of the object, xd2 the spring stiffness and xp the
damping coefficient. An external force is exerted on the system. To account for all the
sources of uncertainty of the experiment, the values of xd1 , xd2 , xp and the external force
are considered random. These uncertainties are respectively represented by the random
variables Xd1 , Xd2 , Xp and the stochastic process η(t). We denote Xd the random vector
(Xd1 ,Xd2) of outcome xd = (xd1 , xd2) whose distribution depends on certain design vari-
ables d = (d1, d2).

Consequently, for fixed values xd and xp, the displacement of the mass with respect to
the equilibrium position is expressed by a stochastic process denoted D(xd, xp; .) which is
solution of the harmonic oscillator equation:

xd1D
′′ (xd, xp; t) + xpD′ (xd, xp; t) + xd2D (xd, xp; t) = η(t) , t ∈ [0, T ] (2.22)

where D′ (xd, xp; .) and D′′ (xd, xp; .) are respectively the velocity and acceleration pro-
cesses whose sample paths are the first and second time derivatives of the sample path of
D (xd, xp; .).

The optimization problem consists in minimizing a linear function cost(d1, d2) while con-
straints are imposed on the design variables such that:

� the velocity and the acceleration of the oscillator must stay below given thresholds
xr1 and xr2 respectively (this is a simplified model for the extreme constraints of the
FOWT problem (1.60)).
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� the accumulated amount of acceleration of the object exceeding the threshold ρ must
remain under a resistance threshold xr3 (this is a simplified model for the fatigue
constraint of the FOWT problem (1.60))

The thresholds xr1 , xr2 , and xr3 are also random and therefore outcomes of random
variables denoted Xr1 , Xr2 and Xr3 . The optimization problem is formulated as follows:

min
d∈Ωd

cost(d) such that

PXd,Xp,Xr1 ,η
( max
t∈[0,T ]

D′ (Xd,Xp; t) >Xr1) < ps

PXd,Xp,Xr2 ,η
( max
t∈[0,T ]

D′′ (Xd,Xp; t) >Xr2) < ps

PXd,Xp,Xr3 ,η
(∫

T

0
(∣D′′ (Xd,Xp; t)∣ − ρ)

+
dt >Xr3) < ps

(2.23)

where Ωd ⊂ R2 is the design space and x+ = max(0, x). Thus, the two first constraints of
problem (2.23) are extreme-based constraints and the third constraint is integral-based.

The distributions of Xd and Xp are chosen such that the oscillator is underdamped for
almost all realizations (i.e. X2

p − 4Xd1Xd2 < 0 almost surely). Moreover, we assume that
the process η is stationary, Gaussian with spectral density:

Kη (ω) =
θ√
2π

exp(−(θω)
2

2
) (2.24)

with θ > 0.

Finally all the sources of uncertainty (Xd1 ,Xd2 ,Xp,Xr1 ,Xr2 ,Xr3 , η) are independent.

Useful properties of the velocity and acceleration processes

For fixed values of Xd, Xp, it follows from equation (2.22) and the stationarity of η (see
theorem 4.6 of Lindgren (2010)) that the process D (xd, xp; .) is stationary and can be
written as the output of a linear filter:

D (xd, xp; t) = (hD (xd, xp, .) ∗ η) (t) (2.25)

with hD defined by:

HD (xd, xp;ω) = FT (hD (xd, xp; .)) (ω) =
1

−ω2xd1 + iωxp + xd2
where FT refers to the Fourier transformation. It is shown (see theorem 4.1 and comment
page 100 of Lindgren (2010)) that the process D (xd, xp; .) is then also Gaussian with zero
mean and its spectral density is given by:

KD (xd, xp;ω) = ∣HD (xd, xp;ω)∣2Kη(ω). (2.26)

Furthermore, if the process D (xd, xp; .) has finite spectral moment of order 2 and 4, (see
theorem 2.2 and comment page 14 of Lindgren (2010)) the processes D′ (xd, xp; .) and
D′′ (xd, xp; .) are also stationary with zero mean and respective spectral densities, denoted
KD′ (xd, xp, .) and KD′′ (xd, xp, .), given by:

KD′ (xd, xp;ω) = ω2KD (xd, xp;ω) and KD′′ (xd, xp;ω) = ω4KD (xd, xp;ω) . (2.27)
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Remark 2.7. In fact, the result of theorem 2.2 of Lindgren (2010) holds for the first
and second order derivatives of D (xd, xp; .) in the quadratic mean sense. But under the
supplementary condition that the spectral moment of order 6 of D (xd, xp; .) is also finite,
the result holds for sample path derivatives too (see remark 2.3 of Lindgren (2010)).

The spectral moments of order n ofD′ (xd, xp; .)(resp. D′′ (xd, xp; .)), is denotedmD′,n (xd, xp)
(resp. mD′′,n (xd, xp)).

We show in appendix B that, for all xd, xp, the processes D′ (xd, xp; .) and D′′ (xd, xp; .)
meet the sufficient conditions that allow the reformulation of the three constraints of the
oscillator problem.

The reformulated oscillator problem

Since all the required conditions are met, for T large enough, we can apply the reformu-
lation steps described in sections 2.2.2 and 2.2.3 to the constraints of problem (2.23) and
we obtain the following reformulated problem:

min
d∈Ωd

cost(d) such that

EXd,Xp,Xr1

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝
exp
⎛
⎝
a1T (Xd,Xp)2 −

a1T (Xd,Xp)Xr1√
mD′,0 (Xd,Xp)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

EXd,Xp,Xr2

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝
exp
⎛
⎝
a2T (Xd,Xp)2 −

a2T (Xd,Xp)Xr2√
mD′′,0 (Xd,Xp)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

EXd,Xp [Fr3 (TEη [F (Xd,Xp; 0)])] < ps

(2.28)

with

a1T (xd, xp) =

¿
ÁÁÁÁÀ2 log

⎛
⎜
⎝
T

2π

¿
ÁÁÀmD′,2 (xd, xp)

mD′,0 (xd, xp)

⎞
⎟
⎠
and a2T (xd, xp) =

¿
ÁÁÁÁÀ2 log

⎛
⎜
⎝
T

2π

¿
ÁÁÀmD′′,2 (xd, xp)

mD′′,0 (xd, xp)

⎞
⎟
⎠
,

(2.29)

F(xd, xp; 0) = (∣D′′ (xd, xp; 0)∣ − ρ)
+

(2.30)

and Fr3 the cumulative distribution function of Xr3 .

3 Constraints defined in terms of a piece-wise stationary
Gaussian process

3.1 Definition of a piece-wise stationary process

We consider in this section the optimization problem (2.1) introduced in section 2.1 with
extreme-based and integral-based constraints except that the process Y is now piece-wise
stationary. The period [0, T ] is decomposed into nT intervals Ii = [(i − 1)∆T, i∆T ] , i =
1,⋯, nT and for fixed xd, xp the process Y is defined as:

Y(xd, xp; t) =
nT

∑
i=1
Yi (xd, xp, si; t)1Ii(t) (2.31)
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where s1,⋯, snT
is a sequence of elements of the set {s1,⋯, sns}. Thus, on each interval of

time Ii the process Y(xd, xp; .) is equal to the process Yi (xd, xp, si; .) whose distribution
depends on si.

The processes Y1 (xd, xp, s1; .) ,⋯,YnT
(xd, xp, snT

; .) are independent stationary Gaussian
processes with zero mean. For i ∈ {1,⋯, nT }, the distribution of Yi (xd, xp, si; .) is defined
by its spectral density KY(xd, xp, si; .) and we denote its spectral moment of order n:
mY,n (xd, xp, si). For j = 1,⋯, ns, we define nj and pj such that:

nj = card{i ∈ {1,⋯, nT }, si = sj} (2.32)

and

pj = nj

nT
. (2.33)

Finally, we introduce the independent zero-mean stationary Gaussian processes η1,⋯, ηnT

such that for i = 1,⋯, nT :

Yi (xd, xp, si; .) = (hY (xd, xp; .) ∗ ηi) (t). (2.34)

and the distribution of ηi depends on si. We denote η the sequence of processes (η1,⋯, ηnT
).

Remark 2.8. The definitions of the objects introduced in this section are motivated by the
FOWT case introduced in section 1.5. In this application, each process Yi (xd, xp, si; .) can
be seen as the displacement over time of the floating platform subjected to environmental
conditions characterized by a sea state represented by si, for given design xd and paramet-
ric variables xp. The constraints then relate to the maximum admissible displacement of
the structure or to the accumulated damage of the mooring lines. Furthermore, dividing
the time interval [0, T ] into nT intervals is standard in offshore models to represent the
different sea states encountered during the period [0, T ]. To stay close to the engineering
terminology, si will be called the state of the process Yi (xd, xp, si; .) throughout the thesis.

The reasoning for extreme-based and integral-based constraints reformulation is the same
as for the stationary case: the purpose is to provide good approximations of

Pη ( min
t∈[0,T ]

gE (xd, xp, xrE ,Y(t)) < 0) and Pη (∫
T

0
gI (xd, xp, xrI ,Y(t))dt < 0) (2.35)

that only rely on spectral properties of the processes Yi (xd, xp, si; .), i = 1,⋯, nT .

3.2 Approximation of the extreme-based failure probability

To approximate the extreme-based failure probability, we claim that, for fixed xd, xp, xrE
and for ∆T large enough:

Pη ( max
t∈[0,T ]

Y (xd, xp; t) ≤ xrE) ≃
ns

∏
j=1

Pη1 ( max
t∈[0,Tpj]

Y1 (xd, xp, sj ; t) ≤ xrE) . (2.36)

This approximation is justified in section C.1 of appendix C and essentially comes from
the fact that the processes Yi (xd, xp, si; .) (i = 1,⋯, nT ) are independent.
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Therefore, if for all xd, xp, xrE , and for all states sj , the process Y1 (xd, xp, sj ; .) meets the
conditions of theorem 2.1, it follows from equation (2.36) and theorem 2.1 that for ∆T
sufficiently large, we can make the following approximation:

pE(d) ≃ EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

ns

∑
j=1

exp
⎛
⎝
aTpj(Xd,Xp, s

j)2 −
aTpj(Xd,Xp, s

j)XrE√
mY,0 (Xd,Xp, sj)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
(2.37)

with

aTpj(xd, xp, sj) =

¿
ÁÁÁÁÀ2 log

⎛
⎜
⎝
Tpj

2π

¿
ÁÁÀmY,2 (xd, xp, sj)

mY,0 (xd, xp, sj)

⎞
⎟
⎠
. (2.38)

Bounds on the approximation error of equation (2.37) are proposed in section D.1 of
Appendix D.

Remark 2.9. As for the stationary case, the extreme-based constraint reformulation can
also be obtained when each process Y1 (xd, xp, sj ; .) has a non-zero mean µY (xd, xp, sj).
The resulting approximation is the one provided by (2.37) replacingXrE byXrE−µY (Xd,Xp, s

j).

3.3 Approximation of the integral-based failure probability

Proposition 2.1. We denote by F1 (xd, xp, sj ; .) the process f (Y1 (xd, xp, sj ; .)). If for

all xd, xp, s
j , the process F1 (xd, xp, sj ; .) is ergodic, we have for almost every x:

Pη (
1

∆T
∫

T

0
f (Y (xd, xp; t))dt > x) Ð→

∆T→+∞
1∑ns

j=1 njEη1 [F1(xd,xp,sj ;0)]>x. (2.39)

The proof of proposition 2.1 is given in section C.2 of appendix C.

Using proposition 2.1, when ∆T is large enough, we can approximate the integral-based
failure probability as follows:

pI(d) ≃ EXd,Xp

⎡⎢⎢⎢⎢⎣
FrI

⎛
⎝
T

ns

∑
j=1

pjEη1 [F1 (Xd,Xp, s
j ; 0)]

⎞
⎠

⎤⎥⎥⎥⎥⎦
, (2.40)

with FrI the cumulative distribution function of XrI . The approximation error made in
equation (2.40) is discussed in section D.2 of appendix D.

3.4 Optimization problem involving a piece-wise stationary harmonic
oscillator

The piece-wise stationary oscillator problem

The oscillator problem presented in section 2.2.4 is slightly modified by considering a
piece-wise stationary process D as defined in section 2.3.1. For fixed values xd, xp and
for i = 1,⋯, nT , the process Di (xd, xp, si; .) is solution of the harmonic oscillator equation
(2.22) with an external force ηi. The time-dependent process ηi is a zero-mean stationary
Gaussian process with spectral density:

Kη (si;ω) =
si√
2π

exp(−(siω)
2

2
) , si > 0. (2.41)
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In the piece-wise stationary problem, the processes D′ and D′′ are defined by the following
equation:

D′ (xd, xp; t) =
nT

∑
i=1
D′i (xd, xp, si; t)1Ii(t) (2.42)

and

D′′ (xd, xp; t) =
nT

∑
i=1
D′′i (xd, xp, si; t)1Ii(t) (2.43)

withD′i (xd, xp, si; .) andD′′i (xd, xp, si; .) the first and second time derivatives ofDi (xd, xp, si; .)
(in the sample path sense). Hence, it follows from the reasoning of section 2.2.4 that the
processes D′i (xd, xp, si; .), and D′′i (xd, xp, si; .) are zero-mean stationary Gaussian pro-
cesses with respective spectral densities:

KD′ (xd, xp, si;ω) = ω2 ∣HD (xd, xp;ω)∣2Kη (si;ω) , (2.44)

KD′′ (xd, xp, si;ω) = ω4 ∣HD (xd, xp;ω)∣2Kη (si;ω) (2.45)

where HD (xd, xp;ω) has been defined in section 2.2.4.

The spectral moments of order n of D′i (xd, xp, si; .) and D′′i (xd, xp, si; .) are respectively
denoted mD′,n (xd, xp, si) and mD′′,n (xd, xp, si). Furthermore, the arguments used in the
stationary case allow to show that these processes meet all the conditions to use the
reformulation procedure describe in section 2.3.

Reformulated oscillator problem

If ∆T is large enough, it is reasonable to approximate the constraints of problem (2.23) by
applying the results of sections 2.3.2 and 2.3.3. We then obtain the following reformulated
problem:

mind∈Ωd
cost(d) such that

EXd,Xp,Xr1

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

ns

∑
j=1

exp
⎛
⎝
a1Tpj(Xd,Xp, s

j)2 −
a1
Tpj
(Xd,Xp, s

j)Xr1√
mD′,0 (Xd,Xp, sj)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

EXd,Xp,Xr2

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

ns

∑
j=1

exp
⎛
⎝
a2Tpj(Xd,Xp, s

j)2 −
a2
Tpj
(Xd,Xp, s

j)Xr2√
mD′′,0 (Xd,Xp, sj)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

EXd,Xp

⎡⎢⎢⎢⎢⎣
Fr3

⎛
⎝
T

ns

∑
j=1

pjEη1 [F1 (Xd,Xp, s
j ; 0)]

⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

(2.46)

with

a1Tpj(xd, xp, s
j) =

¿
ÁÁÁÁÀ2 log

⎛
⎜
⎝
Tpj

2π

¿
ÁÁÀmD′,2 (xd, xp, sj)

mD′,0 (xd, xp, sj)

⎞
⎟
⎠
, (2.47)

a2Tpj(xd, xp, s
j) =

¿
ÁÁÁÁÀ2 log

⎛
⎜
⎝
Tpj

2π

¿
ÁÁÀmD′′,2 (xd, xp, sj)

mD′′,0 (xd, xp, sj)

⎞
⎟
⎠
, (2.48)
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and
F1(xd, xp, sj ; 0) = (∣D′′1 (xd, xp, sj ; 0)∣ − ρ)

+
. (2.49)

The relation between Eη1 [F1 (xd, xp, sj ; 0)] and mD′′,0 (xd, xp, sj) is explicitly given in
appendix E.

Remark 2.10. To evaluate a1
Tpj
(xd, xp, sj), a2Tpj

(xd, xp, sj) and Eη1 [F1 (xd, xp, sj ; 0)],
the spectral momentsmD′,0 (xd, xp, sj),mD′,2 (xd, xp, sj),mD′′,0 (xd, xp, sj), andmD′′,2 (xd, xp, sj)
need to be numerically computed from the integrals ∫

R
ωn ∣HD (xd, xp;ω)∣2Kη (sj ;ω)dω

for n = 2,4,6 (see equations (2.44) and (2.45)). Hence, the evaluation of the spectral
moments represents the expensive part of the evaluation of the constraints.
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Chapter 3

A new active learning Kriging
approach for the reformulated
optimization problem: AK-ECO
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1 Motivation

We consider in this section the problem (2.1) introduced in section 2.1 involving a piece-
wise stationary process defined in section 2.3.1. After the reformulation of the constraints
presented in section 2.3, we end up with the following problem:

min
d∈Ωd

cost(d) such that

EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

ns

∑
j=1

exp (ME (Xd,Xp,XrE , s
j))
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

EXd,Xp

⎡⎢⎢⎢⎢⎣
FrI

⎛
⎝

ns

∑
j=1

Tpj (MI (Xd,Xp, s
j))
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

(3.1)
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with

ME (xd, xp, xrE , s
j) = aTpj (xd, xp, sj)

2 −
aTpj (xd, xp, sj)xrE√

mY,0 (xd, xp, sj)
, (3.2)

MI (xd, xp, sj) = Eη1 [F1 (xd, xp, sj ; 0)] . (3.3)

All the notations appearing in problem (3.1) have been introduced in section 2.3.

The cost function is supposed to be fast to evaluate. We remark that the problem is
now a time-independent one. Although the reformulated constraints are easier to evaluate
than the initial ones, for each realization xd, xp and for each state sj , the spectral mo-
ments of Y1 (xd, xp, sj ; .) are required to compute the quantities ME (xd, xp, xrE , sj) and
MI (xd, xp, sj). Since it is the case for the FOWT problem introduced in section 1.5, we
consider that the evaluation of those spectral moments requires the call to an expensive
simulator. Therefore, an estimation of one of the constraints with the Monte Carlo method
and a sample of size nMC would impose nMC × ns calls to the simulator. This would be
too computationally expensive especially when we deal with rare events (i.e. when ps ≪ 1).

We mentioned in section 1.2 existing methods that solve RBDO problems much faster than
the brute Monte Carlo. All the effective approaches in the literature of RBDO methods
rely on the assumption that the constraints are expressed as probabilities. We can also
write the extreme-based and integral-based reformulated constraints of problem (3.1) as
constraints involving failure probabilities as follows:

PXd,Xp,XrE
,Xϵ(Xϵ −

ns

∑
j=1

exp (ME (Xd,Xp,XrE , s
j)) < 0) < ps, (3.4)

PXd,Xp,XrI
(XrI −

ns

∑
j=1

TpjMI (Xd,Xp, s
j) < 0) < ps, (3.5)

where Xϵ is a random variable with an exponential distribution of parameter 1.

However, since each evaluation of the functions ME and MI requires a call to an expensive
simulator, one evaluation of the performance function of each of the constraints (3.4) and
(3.5) would need ns simulations. When ns is large, which is the case for offshore applica-
tions (Vorpahl et al. (2013)), the double-loop, single-loop and decoupled-loop approaches
can be too expensive. This is also the case for the adaptive metamodel approaches since
they always replace the whole performance function.

Motivated by the limitation of the existing approaches in RBDO, we propose a new method
better suited for the reformulated problem, which we call Adaptive Kriging for Expectation
Constraints Optimization (AK-ECO). The procedure of AK-ECO is described in section
3.2. In section 3.3, the oscillator problem introduced in section 2.3 is solved with AK-ECO
and state-of-the-art algorithms in RBDO: RIA, PMA, SORA and the Stieng method.

Remark 3.1. Presented as in problem (3.1), the reformulated constraints depend on the
same piece-wise stationary process Y. However, the resolution methods that are presented
in this chapter can be applied to constraints that depend on different processes. When
several constraints depend on the same process, it can be noticed that the outputs of each
simulation can be used in the estimation of the different constraints since they depend on
the same quantities (i.e. the spectral moments of the process).
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Remark 3.2. For simplicity, we present a problem with two constraints (one extreme-
based and one integral-based) but the resolution methods that we introduce can be applied
to several constraints of each type. Furthermore, a problem with extreme and integral
based constraints but with a stationary process Y can be solved with the same approaches
since the reformulated problem would be identical to the piece-wise stationary case con-
sidering ns = 1.

2 AK-ECO

In AK-ECO, for each expectation constraint of problem (3.1), a metamodel is built to
replace the expensive function involved in the reformulated failure probability. We thus
obtain as many metamodels as there are constraints. Then, cycles of optimization are
carried out. During each cycle, the metamodels are sequentially enriched and the design
vector is updated. The particularity of our approach lies in the metamodel and active
learning strategy which are adapted to the reformulated constraints of the studied problem.

2.1 Metamodel strategy: Kriging

In problem (3.1), since the expensive functions of the reformulated extreme-based and
integral-based constraints are ME and MI, we propose to build a metamodel for each of
these functions. Unlike other metamodel approaches, the metamodels do not replace the
performance functions. Thus, for each (xd, xp, xrE), the functions ME and MI need to be
evaluated only on the relevant states sj as we will see below. This will reduce the number
of calls to the simulator required to obtain accurate estimations of the constraints, espe-
cially when ns is large.

As in Dubourg (2011) and Moustapha and Sudret (2019a), for each constraint, we build
the metamodel in a so-called augmented space which makes it possible to use and enrich
a single model during the whole procedure of AK-ECO. To do so, the augmented space
spans both the design space and the space of uncertainties. The augmented spaces of ME

and MI are respectively denoted Ωaug
E and Ωaug

I . To define precisely those spaces, we need
to introduce some notations.

Let (d1,⋯, dnd
) ∈ Ωd = Ωd1 ×⋯×Ωdnd

⊂ Rnd be a design point and Xd1 ,⋯,Xdnd
the random

variables with respective quantile functions F −1d1
,⋯, F −1dnd

describing the uncertainties at

this point. The random vector Xp is composed of np random variables Xpi , (i = 1,⋯, np)
with quantile function F−1pi , (i = 1,⋯, np). Finally the quantile function of XrE is denoted

F −1rE
. The augmented spaces are then defined as follows:

Ωaug
E = Ωaug

d ×Ωaug
p ×Ωaug

rE
×ΩS , Ωaug

I = Ωaug
d ×Ωaug

p ×ΩS , (3.6)

with

Ωaug
d =

nd

∏
i=1

⎡⎢⎢⎢⎢⎣
inf

di∈Ωdi

F −1di
(α), sup

di∈Ωdi

F−1di
(1 − α)

⎤⎥⎥⎥⎥⎦
, (3.7)

Ωaug
p =

np

∏
i=1
[F−1pi (α), F

−1
pi (1 − α)] , (3.8)

Ωaug
rE
= [F−1rE

(α), F −1rE
(1 − α)] , (3.9)

ΩS = {s1,⋯, sns}, (3.10)
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and α is chosen by the user (different values of α could be considered for each set of the
Cartesian products Ωaug

d , Ωaug
p , and for Ωaug

rE ). The value of α should be set so that the
augmented space covers a large domain of the uncertainty space. Thus, the metamodel
calibrated on this domain can provide an accurate prediction for any likely outcome of the
random variables. In this thesis, α is set to 10−6.

The dimensions of Ωaug
E and Ωaug

I are respectively equal to nd+np+1+dims and nd+np+dims

(with sj ∈ Rdims for j = 1,⋯, ns). When nd + np + dims is relatively small (as it is the case
for the FOWT problem under study in this thesis for which this sum equals 9), the kriging
model is particularly well suited to our approach (we refer the reader to section 1.1 for a de-
scription of the kriging method). At each point of the augmented space, the kriging models
provide predictions of ME and MI in the form of Gaussian random variables. The means
of these random variables are used as predictors while the standard deviations measure
the accuracy of these predictors. This latter information makes kriging model particularly
well suited to active learning and therefore, this metamodel method is chosen in AK-ECO.

We can notice that Ωaug
E = Ωaug

I × Ωaug
rE . Thus, to calibrate the metamodels, we only use

one DoE of Ωaug
E . Using one DoE is interesting when the two constraints depend on the

same process Y since each simulation can be used to enrich both metamodels. Indeed,
in that case, we recall that to evaluate ME and MI at a point (xd, xp, xrE , sj), we only

need the spectral moments of the process Y1 (xd, xp, sj ; .). Although this approach is not
optimal to cover the space Ωaug

I , this is a simple way to use a common DoE for all the
metamodels.

Remark 3.3. In the stationary case (i.e. when ns = 1), it is not necessary for the
augmented spaces to span the space ΩS . Hence, the respective augmented spaces become
Ωaug
E = Ωaug

d ×Ωaug
p ×Ωaug

rE and ΩI = Ωaug
d ×Ωaug

p .

2.2 Procedure

To solve the reformulated problem (3.1), AK-ECO begins with the initialization of the
design point and the kriging models. Then, the reformulated problem is solved through
cycles of optimization. The initialization and the optimization cycle structure are de-
scribed below.

Initialization: the initial design point d0 is chosen by the user. An initial DoE, de-

noted DoE0, is computed and used to calibrate the initial metamodels M̃E
0
, M̃I

0

of the functions ME and MI with a procedure described below. At the end of the
initialization, the first cycle of optimization (k = 1) can begin.

Optimization cycle: we respectively denote dk−1, DoEk−1, M̃E
k−1

and M̃I
k−1

, the design
point, DoE and kriging models recovered from the initialization if k = 1 or from the
previous cycle if k > 1. Each cycle is numbered k and is decomposed into two steps:

Step 1. Local enrichment at dk−1 of the metamodels M̃E
k−1

and M̃I
k−1

:

Step 1.a. An accuracy criterion assesses the precision of each metamodel at
dk−1 (we detail this step in section 3.2.2).

Step 1.b. For each inaccurate metamodel, one local enrichment is carried out.
The local refinement of the metamodel consists in adding to the shared
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DoE, the point xenr = (xdk−1 , xp, xrE , sj) selected by the procedure de-
scribed below. The simulator is evaluated at this point and the spectral
moments obtained are used to recalibrate all the kriging models.

Steps 1.a and 1.b are repeated until each kriging model meets the accuracy
condition of Step 1.a. At the end of Step 1, the enriched DoE and kriging

models are denoted DoEk, M̃E
k
and M̃I

k
. For each point of their respective

augmented spaces, the means of the kriging models are respectively denoted
µk
E (xd, xp, xrE , sj) and µk

I (xd, xp, sj) and serve as predictions.

Step 2. The reformulated problem (3.1) is solved using the optimization algorithm
chosen by the user starting from dk−1. At each iteration of the optimization, the
constraints are estimated through Monte Carlo and the expensive functions are
replaced by their current surrogates. For a design d, these estimations, denoted
pkE(d) and pkI (d), are given by:

pkE(d) =
1

nMC

nMC

∑
i=1

Fϵ
⎛
⎝

ns

∑
j=1

exp (µk
E (xid, x

i
p, x

i
rE
, sj))

⎞
⎠
, (3.11)

pkI (d) =
1

nMC

nMC

∑
i=1

FrI

⎛
⎝

ns

∑
j=1

Tpj (µk
I (xid, x

i
p, s

j))
⎞
⎠
, (3.12)

where {(xid, x
i
p, x

i
rE
) , i = 1,⋯, nMC} = ΩMC(d) is the Monte Carlo sample of the

random vector (Xd,Xp,XrE).
Step 2 does not require any call to the expensive simulator. Once the optimiza-
tion algorithm has converged, a new design point denoted dk is obtained.

At the end of each cycle k, the following condition is evaluated:

∥dk−1 − dk∥ < ϵd OR ∣cost (dk−1) − cost (dk)∣ < ϵcost (stopping condition)

where d and cost (d) represent the normalized versions of d and cost(d) in [0,1]. If this
condition is met, AK-ECO is stopped and the minimum retained, denoted dmin, is dk,
otherwise, k = k + 1 and a new cycle begins from step 1. The stopping criterion of AK-
ECO does not include a condition on the satisfaction of the constraints since this point is
verified at the end of the optimization during step 2.

The full procedure of AK-ECO is summarized in Figure 3.1.

Remark 3.4. If the random vector Xd depends on d such that Xd = d+X with X a zero-
mean random vector, it is possible to use the same Monte Carlo sample ΩMC throughout
AK-ECO where ΩMC = {(xi, xip, xirE) , i = 1,⋯, nMC} is a sample of (X,Xp,XrE) and thus,

ΩMC(d) = {(d + xi, xip, xirE) , (x
i, xip, x

i
rE
) ∈ ΩMC}.

Kriging models initialization

The goal of the first kriging models is to provide good predictions of their respective
functions over the whole augmented spaces. A space-filling DoE is therefore appropriate.
As explained above, we use one DoE for both metamodels: only one sample of Ωaug

E is
needed. Therefore a space-filling DoE of n0

DoE points of Ωaug
d ×Ωaug

p ×Ωaug
rE is constructed.

We then concatenate to this DoE a uniform sample of n0
DoE points of ΩS . The resulting

DoE is denoted DoE0. The simulator is evaluated for each point of DoE0 to calibrate the

initial krigings models denoted M̃E
0
and M̃I

0
.
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Initialization: Choose d0, create DoE0, and calibrate M̃E
0
and M̃I

0
, cycle k = 0

New cycle of optimization k → k + 1

Is Criterion E.b met?

Select xenr among ΩMC (dk−1)
that maximizes LE

Add xenr to DoEk−1

Recalibrate M̃E
k−1

and M̃I
k−1

Is Criterion I.b met?

Select xenr among
ΩMC (dk−1) that maximizes LI

Add xenr to DoEk−1

Recalibrate M̃E
k−1

and M̃I
k−1

Step 1. Local enrichment

DoEk−1 → DoEk,

M̃E
k−1 → M̃E

k
, M̃I

k−1 → M̃I
k

Solve the reformulated problem
(3.1) starting from dk−1 and

estimating the constraints with pkE
and pkI given by (3.11) and (3.12).

New design point: dk

Step 2. Optimization

Is stopping
condition met?

End of AK-ECO :
dmin = dk

yes

no

no

yes

yes

no

Figure 3.1: Flowchart of AK-ECO
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Accuracy criteria

During step 1 of the k-th cycle of optimization, the current kriging model M̃E
k−1

at
(xd, xp, xrE , sj) follows a normal distribution with mean and standard deviation denoted

µk−1
E (xd, xp, xrE , sj) and σk−1

E (xd, xp, xrE , sj). To evaluate the precision of the approxi-

mation pk−1E (d) of the true reformulated failure probability at d, we adapt the approach
proposed by Dubourg (2011) and described in section 1.2. We compute the following
quantities:

pk−1E,+(d) =
1

nMC

nMC

∑
i=1

Fϵ
⎛
⎝

ns

∑
j=1

exp (µk−1
E (xid, x

i
p, x

i
rE
, sj) + 2σk−1

E (xid, x
i
p, x

i
rE
, sj))

⎞
⎠
, (3.13)

pk−1E,−(d) =
1

nMC

nMC

∑
i=1

Fϵ
⎛
⎝

ns

∑
j=1

exp (µk−1
E (xid, x

i
p, x

i
rE
, sj) − 2σk−1

E (xid, x
i
p, x

i
rE
, sj))

⎞
⎠
. (3.14)

As the exponential function and Fϵ are strictly increasing, we have:

pk−1E,−(d) < pk−1E (d) < pk−1E,+(d). (3.15)

The distance between pk−1E,−(d) and pk−1E,+(d) is an indicator of the uncertainty of the con-

straint estimation pk−1E (d). In Dubourg (2011), a criterion based on the ratio between
similar optimistic and pessimistic estimations of the failure probability is proposed. How-
ever, since it is useless to know precisely the true failure probability if it is far from ps, we
modify it and measure the accuracy of the metamodel at d with AE(d) defined as follows:

AE (d) =
∣pk−1E (d) − ps∣

pk−1E,+(d) − pk−1E,−(d)
. (3.16)

During the k-th cycle of AK-ECO, the metamodel is considered accurate enough if the
following condition is met:

AE (dk−1) > 1. (Criterion E)

This criterion is met if the distance between the low and high estimations of the constraint
at dk−1 is less than the distance between the estimation of the constraint at dk−1 and ps. In
this case, we have reasonable grounds to believe that the kriging model accurately predicts
whether a point near dk−1 belongs or not to the feasible domain.

For the integral-based constraint, a similar criterion is proposed. We consider the kriging

model M̃I
k−1

whose mean and standard deviation at (xd, xp, sj) are denoted µk−1
I (xd, xp, sj)

and σk−1
I (xd, xp, sj). The function FrI is also increasing and pj > 0 for j = 1,⋯, ns. Thus

we have, for all d:
pk−1I,− (d) < pk−1I (d) < pk−1I,+ (d) (3.17)

with

pk−1I,+ (d) =
1

nMC

nMC

∑
i=1

FrI

⎛
⎝

ns

∑
j=1

Tpj (µk−1
I (xid, x

i
p, s

j) + 2σk−1
I (xid, x

i
p, s

j))
⎞
⎠
, (3.18)

pk−1I,− (d) =
1

nMC

nMC

∑
i=1

FrI

⎛
⎝

ns

∑
j=1

Tpj (µk−1
I (xid, x

i
p, s

j) − 2σk−1
I (xid, x

i
p, s

j))
⎞
⎠
. (3.19)
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The accuracy criterion for the integral-based constraint at dk−1 is:

AI (dk−1) > 1 (Criterion I)

with

AI (d) =
∣pk−1I (d) − ps∣

pk−1I,+ (d) − pk−1I,− (d)
. (3.20)

To avoid a too large number of enrichment steps during the same cycle, a maximal number

nmax of enrichment steps is imposed for each metamodel and cycle. Finally, M̃E
k−1

is
considered accurate enough if

pk−1E,−(dk−1) > ps − ϵp and pk−1E,+(dk−1) < ps + ϵp (3.21)

where ϵp is chosen by the user (we proceed similarly for M̃I
k−1

). Hence, M̃E
k−1

, respectively

M̃I
k−1

, is enriched if Criterion E.b, respectively Criterion I.b, is not met and these criteria
are defined as:

Criterion E is met OR (nk
E ≥ nmax) OR (ps − ϵp < pk−1E,−(dk−1) < pk−1E,+(dk−1) < ps + ϵp)

(Criterion E.b)

Criterion I is met OR (nk
I ≥ nmax) OR (ps − ϵp < pk−1I,− (dk−1) < pk−1I,+ (dk−1) < ps + ϵp)

(Criterion I.b)

where nk
E and nk

I are the numbers of enrichment steps of each metamodel during cycle k.
Therefore, during each cycle of AK-ECO, the number of enrichments is at most equal to
nmax multiplied by the number of metamodels.

When both criteria Criterion E.b and Criterion I.b are met, step 1 ends and step 2 begins.

Selection of the enrichment point

In the metamodel-based approaches aiming to estimate a failure probability, the purpose
of the metamodel is to predict whether or not a point belongs to the safe space defined by
the performance function. The learning function then seeks to select enrichment points
close to the limit state surface. However, in problem (3.1), the reformulated failure proba-
bilities are expressed as expectations. For the first constraint, improving the estimation of
this expectation is not equivalent to enriching the metamodel of ME such that it correctly
predicts a specific contour line of ME. The same goes for the second constraint. Therefore,
the usual learning functions are not suitable for AK-ECO and we propose in this section
new ones adapted to our metamodel strategy.

During the k-th cycle, if Criterion E.b is not met, the model M̃E
k−1

is not considered
sufficiently accurate at dk−1. To improve its precision, a point xenr maximizing a learning
function LE is selected among the Monte Carlo sample ΩMC (dk−1) used in equation (3.11)

to estimate the extreme-based constraint at dk−1:

xenr = argmax
(xi

dk−1 , x
i
p, x

i
rE
) ∈ ΩMC (dk−1)

sj∈{s1,⋯,sns}

LE(xidk−1 , x
i
p, x

i
rE
, sj). (3.22)
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The goal of criterion LE is to favor points where the uncertainty of prediction of M̃E
k−1

implies important uncertainties on the constraint estimation at dk−1. Hence, we define LE

as follows:

LE(xid, x
i
p, x

i
rE
, sj) = f(Xd,Xp,XrE

) (x
i
d, x

i
p, x

i
rE
)

×
⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝
e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj)+2σk−1
E (xi

d,x
i
p,x

i
rE

,sj) + ∑
j′≠j

e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj
′)⎞
⎠

− Fϵ
⎛
⎝
e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj)−2σk−1
E (xi

d,x
i
p,x

i
rE

,sj) + ∑
j′≠j

e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj
′)⎞
⎠

⎤⎥⎥⎥⎥⎦
, (3.23)

with f(Xd,Xp,XrE
) the probability density function of the random vector (Xd,Xp,XrE).

Once xenr is selected, it is added to the current DoE, DoEk−1, and one call to the simu-
lator is made at this point.

Let us explain this learning function. We recall that, during the k-th cycle, the Monte
Carlo estimation of the considered constraint at d is:

pk−1E (d) =
1

nMC

nMC

∑
i=1

Fϵ
⎛
⎝

ns

∑
j=1

exp (µk−1
E (xid, x

i
p, x

i
rE
, sj))

⎞
⎠
. (3.24)

The learning function LE at (xid, x
i
p, x

i
rE
, sj) considers the uncertainties on the term

Fϵ
⎛
⎝

ns

∑
j=1

exp (µk−1
E (xid, x

i
p, x

i
rE
, sj))

⎞
⎠

(3.25)

of the sum in (3.24) accounting only for the uncertainty of the kriging at (xid, x
i
p, x

i
rE
) and

for the state sj for a given j. Therefore, high and low estimations of (3.25), considering
only the uncertainty at (xid, x

i
p, x

i
rE
, sj), are respectively given by:

Fϵ
⎛
⎝
e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj)+2σk−1
E (xi

d,x
i
p,x

i
rE

,sj) + ∑
j′≠j

e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj
′)⎞
⎠

(3.26)

and

Fϵ
⎛
⎝
e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj)−2σk−1
E (xi

d,x
i
p,x

i
rE

,sj) + ∑
j′≠j

e
µk−1
E (xi

d,x
i
p,x

i
rE

,sj
′)⎞
⎠
. (3.27)

The difference between (3.26) and (3.27) indicates the uncertainties on the term (3.25)
due to the uncertainty of the kriging at (xid, x

i
p, x

i
rE
, sj). The learning function LE thus

selects the point which maximizes this distance. Finally, we multiply this distance by
f(Xd,Xp,XrE

) (xid, x
i
p, x

i
rE
) to favor points where the probability density function of (Xd,Xp,XrE)

is high.

For integral-based constraint, the idea is the same, if Criterion I.b is not met, a new point
xenr is selected as follows:

xenr = argmax
(xi

dk−1 , x
i
p, x

i
rE
) ∈ ΩMC (dk−1)

sj∈{s1,⋯,sns}

LI(xidk−1 , x
i
p, s

j) (3.28)
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with:

LI(xid, x
i
p, s

j) = f(Xd,Xp) (x
i
d, x

i
p)

×
⎡⎢⎢⎢⎢⎣
FrI
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, (3.29)

with f(Xd,Xp) the probability density function of the random vector (Xd,Xp).

Remark 3.5. In equation (3.28), we note that LI does not depend on xirE . The coordinates

of xenr = (xidk−1 , x
i
p, x

i
rE
, sj) are such that (xi

dk−1 , x
i
p, s

j) maximizes LI and xirE corresponds

to (xi
dk−1 , x

i
p) in the Monte Carlo sample ΩMC (dk−1).

Remark 3.6. In the procedure of AK-ECO, we choose to rely on the standard deviation
of the kriging model to select a new enrichment point. Other adaptive kriging strategies
consider the observed error of the metamodel as well in the selection of the enrichment
point such as the method proposed in Le Gratiet and Cannamela (2015) which adjusts
the variance with the observed leave-one-out cross-validation (LOO-CV) error. Following
the same idea, the learning functions LE and LI can be weighted by the LOO-CV error in
AK-ECO to give more importance to areas of the augmented space where the metamodel
previously gave poor predictions.

3 Validation of AK-ECO on the harmonic oscillator prob-
lem

To validate the method proposed in section 3.2, we study the resolution of the reformulated
problem of the piece-wise stationary harmonic oscillator described in section 2.3. First,
a resolution of the problem with a double loop approach using the Monte Carlo method
to estimate the constraints is used as a reference. Then, the problem is solved with AK-
ECO and the resolution of its probabilistic formulation (see equations (3.4) and (3.5)
for the probabilistic formulations of extreme and integral based reformulated constraints)
is carried out with our implementation of RIA, PMA, SORA and the Stieng approach
presented in section 1.2.

3.1 Cost function, sources of uncertainties and parameters of the prob-
lem

Here the cost function is:
cost (d1, d2) = d2 − 10d1. (3.30)

The optimization problem is solved on the design space Ωd = [1,5] × [20,50] and for the
parameters ρ, nT , ∆T , T , ns and ps given in Table 3.1.

Parameter ρ nT ∆T T ns ps

Value 1 100 216 21600 7 10−4

Table 3.1: Parameters of the problem
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The distributions considered for the random variables Xd1 , Xd2 , Xp, Xr1 , Xr2 , and Xr3

are given in Table 3.2 and the couples (sj , pj), j = 1,⋯,7 in Table 3.3.

Uncertainty Distribution Uncertainty Distribution

Xd1 U [d1 − 0.3, d1 + 0.3] Xr1 N (1,0.12)
Xd2 U [d2 − 1, d2 + 1] Xr2 N (2.5,0.252)
Xp U[0.5,1.5] Xr3 N (15,32)

Table 3.2: Distributions of Xd1 ,Xd2 ,Xp,Xr1 ,Xr2 ,Xr3

The notations U[a, b] and N (µ,σ2) refer respectively to the uniform distribution on [a, b]
and the normal distribution of mean µ and standard deviation σ.

j 1 2 3 4 5 6 7

sj 1.20 1.16 1.10 1.05 0.99 0.95 0.90

pj 0.21 0.17 0.18 0.16 0.13 0.09 0.06

Table 3.3: Couples (sj , pj)

3.2 Graphs of the cost function and the failure probabilities

Here, the functions involved in the reformulated constraints are actually not very expen-
sive. Thus, for the i-th constraint (i = 1,2,3), the reformulated failure probabilities at any
design point d can be estimated by Monte Carlo with a sample of size 30000 (the result is
denoted pMC

i (d)). So we are able to check the performances of the different optimization
methods. The contour lines of the cost function and of log (pMC

1 ), log (pMC
2 ), log (pMC

3 )
are displayed in Figure 3.2. The black dotted line indicates the design points d such that
pMC
i (d) = 10−4 (i = 1,2,3).

3.3 Implementations

The reference results are obtained using the COBYLA (Powell (1994)) optimization algo-
rithm and a massive Monte Carlo method to estimate the reformulated failure probabilities
(this approach is denoted MC). The COBYLA algorithm, which is a local derivative-free
optimization solver, is also used for the other methods. This optimizer has been chosen
since in the FOWT problem, the derivative of the cost function is not known. Moreover,
all the comparison methods converge correctly with COBYLA.

The FORM method in RIA is performed with the Abdo-Rackwitz algorithm (Abdo and
Rackwitz (1991)) available in the OpenTURNS Python package (Baudin et al. (2016)).
The HMV algorithm (Youn et al. (2003)) is implemented to solve the inverse reliability
analysis in PMA. In SORA and Stieng, the SQP (Kraft (1988)) algorithm is chosen instead
of HMV since it performs better on the studied case. The size nMC of the sample used in
the MC method is 30000.
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(a) cost function (b) log (pMC
1 )

(c) log (pMC
2 ) (d) log (pMC

3 )

Figure 3.2: Contour lines of the cost function and of log (pMC
1 ), log (pMC

2 ), and log (pMC
3 )

In Stieng and AK-ECO, the kriging implementation of OpenTURNS is used with a con-
stant trend and an anisotropic 3/2-Matérn covariance kernel. Moreover, the hyperparam-
eters are updated at each calibration of the metamodels. The points of the successive
DoEs are normalized in [0,1] and each hyperparameter is selected in [10−5,10] using the
multistart Truncated Newton Constrained solver implemented in OpenTURNS from 20
initial points. In AK-ECO, the states si are treated as continuous variables by the kriging
kernel since, in the oscillator application, the sj , j = 1,⋯, ns are real numbers. In Stieng,
as proposed by the authors in Stieng and Muskulus (2020), the initial DoE is a Sobol
sequence (Sobol’ (1967)). The authors do not provide guidelines for the size of this DoE
but since the metamodel is calibrated in a 4-dimensional space, an initial DoE of size 12
is used for the first cycle, 40 for the second cycle, 160 for the third one and 400 for the
next cycles. For AK-ECO, the initial space-filling DoE is a Latin Hypercube Sampling
(LHS) maximin (Santner et al. (2018)) of size 50. The maximum number of enrichment
steps per cycle and per constraint nmax is set to 15.

For Stieng, SORA and AK-ECO, the cycles of optimization stop if the stopping condition
introduced in section 3.2.2 is met for ϵd and ϵcost equal to 10−3.
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3.4 Numerical results

The problem under study is solved with each approach starting from the center of the
design space (3,35). The results are displayed in Table 3.4. The first and second rows in-
dicate the design point dmin obtained by each approach and the value of the cost function
at this point. For i = 1,2,3, the i-th reformulated failure probability at dmin is then esti-
mated with a massive Monte Carlo of 30000 points. This estimation is denoted pMC

i (dmin).

The results displayed in Table 3.4 with the MC approach, with AK-ECO and the com-
putations of pMC

i (dmin) have all been done using the same Monte Carlo sample. This is
possible since, in the oscillator problem, the random vector Xd is centered in d (see remark
3.4).

As explained in remark 2.10, the expensive part of the constraints is the evaluation of the
spectral moments of D1 (xd, xp, sj ; .). Therefore, during the resolution of the problem, one

estimation of the spectral moments for one point (xd, xp, sj) is considered as one call to the
expensive simulator. The number of calls to the simulator by each method is denoted ncall.

It is important to notice that, unlike usual papers in reliability analysis, the number ncall

does not refer to the number of calls to the performance functions but to the number of
simulations. Hence, for RIA, PMA, SORA and Stieng, the number of calls to the perfor-
mance functions is equal to ncall/7 since ns = 7.

MC RIA PMA SORA Stieng AK-ECO

dmin (5.0, 35.74) (5.0, 35.22) (5.0, 35.04) (5.0, 36.77) (5.0, 37.29) (5.0, 35.73)

cost(dmin) -14.26 -14.78 -14.96 -13.23 -12.70 -14.27

pMC
1 (dmin) 0.8 × 10−4 1.0 × 10−4 1.0 × 10−4 0.4 × 10−4 0.3 × 10−4 0.8 × 10−4

pMC
2 (dmin) 1.0 × 10−4 1.3 × 10−4 1.3 × 10−4 0.6 × 10−4 0.5 × 10−4 1.0 × 10−4

pMC
3 (dmin) 0.1 × 10−4 0.8 × 10−4 0.4 × 10−4 0 0 0.1 × 10−4

ncall 3.57 × 106 791175 29393 15722 53200 252

Table 3.4: Results of AK-ECO and the comparison methods

The execution time of every method is discussed in section F.1 of appendix F.

We observe that all the methods converge towards the same design point. However, AK-
ECO provides the closest design point to the reference point obtained with MC and requires
far fewer calls to the expensive simulator than the comparison methods: only 252 calls
are required (50 for the initial DoE and 202 for the local enrichments of the metamodels
during the optimization cycles). This is due to the fact that AK-ECO is well adapted to
the reformulated problem: each call to the simulator allows to enrich every kriging models
and the simulation is performed only at the relevant states sj . Furthermore, among the
comparison methods and AK-ECO only RIA and AK-ECO provide an estimation of the
failure probabilities. At the design point obtained with RIA, the first, second and third
failure probabilities are estimated with FORM as 1.1 × 10−4,1.3 × 10−4, 0.8 × 10−4. The
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reformulated failure probabilities estimated with AK-ECO at the design point obtained
with this algorithm are 0.8×10−4, 1.0×10−4, 0.1×10−4. Hence, with AK-ECO, we observe
a good approximation of the failure probabilities since they are close to pMC

1 , pMC
2 , and

pMC
3 obtained with Monte Carlo on the real functions.

For SORA, the Stieng approach and AK-ECO, at the end of cycle k a design point dk is

obtained. The evolution of log (∣cost (dk−1) − cost (dk)∣) for each method and each cycle

k is displayed in Figure 3.3a and the evolution of log (∥dk − dk−1∥) in Figure 3.3b where

cost (dk−1) and dk refer respectively to the normalized versions of cost (dk) and dk in [0,1].

(a) Evolution of log (∣cost (dk−1) − cost (dk)∣) (b) Evolution of log (∥dk − dk−1∥)

Figure 3.3: Evolution of the stopping condition for SORA, Stieng and AK-ECO

We observe that the resolution of the studied problem takes 5 cycles for AK-ECO to con-
verge while 7 and 20 cycles are necessary for SORA and Stieng to meet the stopping con-
dition. In AK-ECO, the closer the design point is to the true infeasible domain boundary,
the more enrichment steps are performed. During the first cycle, 22 points are added to
the DoE while 45 simulations are performed during the second, third, fourth and last ones.

Moreover, pMC
1 , pMC

2 , pMC
3 have been evaluated with a Monte Carlo of 30000 points at the

design point obtained at the end of each cycle of SORA, Stieng and AK-ECO and their
evolution is displayed in Figure 3.4. We can see that with Stieng and AK-ECO, the true
constraints are satisfied at the end of each cycle while it takes 4 cycles for SORA (actu-
ally, with AK-ECO, pMC

2 is slightly above the threshold 10−4 at the end of the third cycle).

The resolution of the problem has been repeated with AK-ECO from 20 different start-
ing design points selected with a LHS of the design space. Each time, the initial kriging
models are calibrated with a new DoE. The results, displayed in section G.1 of appendix
G, show that the performance of AK-ECO is not affected by the initial DoE or the initial
design point since the algorithm converges towards the good design point each time and
with a number of simulations varying from 174 to 416 with a mean number of calls at 229.1.

The oscillator problem has also been solved using kriging models with Gaussian and 5/2-
Matérn covariance kernels: each time, AK-ECO converges towards the same design point
within a similar number of calls to the simulator. The mutlistart resolutions with these
kernels result in an average number of simulations of 190.5 and 191.1, respectively.
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Figure 3.4: Evolution of the Monte Carlo estimation of the failure probabilities at dk for
SORA, Stieng and AK-ECO

3.5 Visualization of the oscillator problem resolution with AK-ECO

We illustrate in Figure 3.5, the first cycle steps of AK-ECO applied to the oscillator prob-
lem. The contour lines of the cost function are displayed and the infeasible domain defined
by the three constraints and computed with Monte Carlo is the black hatched area. Af-
ter initialization of the metamodels, the first cycle of AK-ECO begins with step 1.a by
evaluating their accuracy at the initial design point d0 . Since they are not accurate
enough, enrichment candidates of the augmented space are considered (projections onto
the design space of several candidates are represented with transparent blue crosses ).
Enrichment points are then selected among these candidates until the precision criteria
are met (step 1.b). The projection of 5 of these points are indicated by blue crosses in
Figure 3.5. Once the accuracy criteria are met, step 2 begins and the optimization prob-
lem is solved with COBYLA using the enriched metamodels: therefore, no calls to the
simulator is needed during this step. The iterations of this optimization are represented
by grey triangles . This resolution provides a new design point d1 which will be the
starting point of the next cycle of AK-ECO.

We now focus on the second constraint since, in the resolution of the oscillator problem,
even though every reformulated failure probabilities are close to 10−4 at the final design
point dmin, only the second constraint is active. Using the notation introduced in section
2.3, the second reformulated constraint of the oscillator problem is:

EXd,Xp,Xr2

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

ns

∑
j=1

exp
⎛
⎝
a2Tpj(Xd,Xp, s

j)2 −
a2
Tpj
(Xd,Xp, s

j)Xr2√
mD′′,0 (Xd,Xp, sj)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
< 10−4. (3.31)

We denote by M2, the expensive function of this constraint and M̃2
k
its kriging model

obtained at the end of the k-th cycle of AK-ECO:

M2 (xd, xp, xr2 , s
j) = a2Tpj(xd, xp, s

j)2 −
a2
Tpj
(xd, xp, sj)xr2√

mD′′,0 (xd, xp, sj)
. (3.32)

62



CHAPTER 3. A NEW ACTIVE LEARNING KRIGING APPROACH FOR THE
REFORMULATED OPTIMIZATION PROBLEM: AK-ECO

Figure 3.5: Visualization of the first cycle of AK-ECO

In Figure 3.6, we can see the results obtained at the end of the initialization (Figure 3.6a),
of the first cycle (Figure 3.6b), the second cycle (Figure 3.6c), the third cycle (Figure 3.6d)
and when AK-ECO stops (Figure 3.6e). On each of these figures, we display:

� the real infeasible domain defined by the second constraint (3.31). This domain is
obtained by computing the second reformulated failure probability with Monte Carlo
and the real function M2. It is represented by the black hatched area in the figures;

� the contour lines of the reformulated failure probability estimated with the current

metamodel M̃2
k
(the contour line equal to 10−4 is indicated with black dotted lines);

� the projections onto the design space of the initial DoE used to calibrate the initial

metamodel M̃2
0
(they are represented by grey crosses);

� for each cycle k, the design point from which the local enrichment is performed and
the optimization algorithm starts is denoted dk−1 and the design point obtained at
the end of the optimization algorithm is dk (stars indicate their positions in the
figures);

� the projections onto the design space of the enrichment points (denoted xenr in
section 3.2.2) selected during each cycle of AK-ECO are represented by crosses. The
color of the enrichment points selected during cycle k corresponds to the color used
for dk−1.

Note that at each cycle k, the design point dk provided at the end of COBYLA is an ap-
proximation of the reference design point obtained with MC, and that this approximation
becomes better when k increases. Moreover, with each enrichment of the metamodel, the

approximation with the kriging model M̃2
k
of the real infeasible domain improves locally

around dk−1.

In Figure 3.6e, the design point d3, d4 and d5 are so close that they are superposed. The
figure corresponding to the end of the fourth cycle of AK-ECO is not displayed since there
is no visible difference with Figure 3.6e which represents the end of the fifth cycle.
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(a) End of the initialization (b) End of first cycle

(c) End of second cycle (d) End of third cycle

(e) End of AK-ECO (f) Legend

Figure 3.6: Resolution of the oscillator problem with AK-ECO: focus on the second con-
straint

4 Discussion and perspectives for AK-ECO

We have seen that since AK-ECO enables the simulator to be called only at the relevant
states sj and uses the outputs of the simulations to enrich all the metamodels, AK-ECO
performs better than state-of-the-art methods in RBDO for a problem with reformulated
extreme and integral based constraints. In this section, we discuss guidelines for the user
and possible improvements of the method.
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4.1 Discussion on the choice of AK-ECO parameters

During the definition of the augmented space in section 3.2, the parameter α is set to
10−6. Different values of this parameter are considered in Dubourg (2011) and Moustapha
(2016). In this thesis, little work has been devoted to the choice of α. Although, with
the current implementation of AK-ECO, this parameter only impacts the initial DoE, it
would be interesting to analyse the sensitivity of AK-ECO to α.

It is possible for the user to increase the desired accuracy of the estimation of the refor-
mulated failure probabilities with AK-ECO by changing the following quantities:

� the value 2 used in the estimations of pk−1E,+ , pk−1E,− , pk−1I,+ , and pk−1I,− (see equations
(3.13), (3.14), (3.18), and (3.19)). If this value gets larger, the low estimations will
get smaller and the high estimations larger. Therefore, more enrichments of the
metamodels will be necessary to meet Criterion E and Criterion I;

� the parameters ϵp and nmax (see equation (3.21) and Criterion E.b and Criterion
I.b).

4.2 Application of AK-ECO to other problems

The procedure of AK-ECO described in section 3.2.2 is introduced in the context of re-
formulated extreme and integral-based constraints but can easily be generalized to any
optimization problem with constraints expressed as:

EXd,Xp,Xr [F0 (
n

∑
i=1

Fi (M (Xd,Xp,Xr)))] < ps, (3.33)

if F0 and Fi (i = 1,⋯, n) are monotonic functions and M a function whose evaluation
requires a call to an expensive simulator.

4.3 Limitations of AK-ECO and perspectives

Although AK-ECO provides much better results than the comparison methods for the
studied problem, several points can still be improved and are discussed in this section.
We recall that nMC and ns correspond respectively to the size of the Monte Carlo sample
used in AK-ECO and to the number of different states considered.

Limitation due to the Monte Carlo method

When ps gets smaller than 10−4, using the Monte Carlo method can become cumbersome
even used with the metamodels since a greater sample size is required for the estimations
of the reformulated failure probabilities to be accurate. Indeed, one evaluation of pkE, p

k
I ,

pk−1E,+ , p
k−1
E,− , p

k−1
I,+ , or pk−1I,− requires nMC ×ns calls to the corresponding kriging model. For a

large sample, their estimations are time-consuming as well as the selection of the enrich-
ment points (see equations (3.22) and (3.28)).

To avoid this issue, AK-ECO would benefit to be coupled with a variance reduction tech-
nique such as Importance Sampling (Melchers (1989)).

Another issue to consider is the error made with the Monte Carlo estimation of the con-
straints. We discuss this point below in section 3.4.3.
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Limitation when the number of different states is large

When ns becomes large, the same problem as presented in the previous section will appear
and could be solved with a variance reduction technique.

The selection of the enrichment points is particularly sensitive to ns. Solving problems
(3.22) and (3.28) require nMC ×n2

s evaluations of the corresponding metamodel. It would
then be advisable to solve (3.22) and (3.28) with an optimization algorithm instead of
evaluating the learning functions for each state and each point of the sampling method.

Limitation due to the kriging method

The effectiveness of AK-ECO may also suffer from the limitations of the kriging technique:

� if the stationary assumption of the kriging method is not verified, the metamodel
can perform poorly leading to inaccurate predictions of the expensive function or to
an excessive number of simulations;

� another problem is the time of calibration of the metamodel when the size of the
DoE gets large. This problem is particularly relevant dealing with high-dimension
(when the dimension of the augmented space is large).

Different approaches have been proposed for non-stationary kriging models (Xiong et al.
(2007); Toal and Keane (2012); Moustapha and Sudret (2019b); Risser and Turek (2020))
and in high dimension (Bouhlel et al. (2016); Zhao et al. (2020); Zhou and Lu (2020);
Zhou and Peng (2020)) and could help AK-ECO to cope with these difficulties.

A multipoint enrichment as proposed by Lelièvre et al. (2018) could also decrease the
number of kriging calibrations and thus reduce the post-processing time.

Improving the low and high estimations of the reformulated failure probabili-
ties and of the active learning procedure

During the (k + 1)-th cycle of AK-ECO, the high and low estimations of the reformulated
integral-based failure probability at the design point d are given by:

pkI,+(d) =
1

nMC

nMC

∑
i=1

FrI

⎛
⎝

ns

∑
j=1

Tpj (µk
I (xid, x

i
p, s

j) + 2σk
I (xid, x

i
p, s

j))
⎞
⎠
, (3.34)

pkI,−(d) =
1

nMC

nMC

∑
i=1

FrI

⎛
⎝

ns

∑
j=1

Tpj (µk
I (xid, x

i
p, s

j) − 2σk
I (xid, x

i
p, s

j))
⎞
⎠
, (3.35)

where M̃I
k (xid, x

i
p, s

j) ∼ N (µk
I (xid, x

i
p, s

j) , σk
I (xid, x

i
p, s

j)2) is the kriging model of the ex-

pensive function MI at the point (xid, x
i
p, s

j).

In practice, since the uncertainties add up for each state and each sample in pkI,+(d) and
pkI,−(d), these estimations can become quiet pessimistic and remain distant even for an

accurate kriging model M̃I
k
.
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In order to avoid an enrichment stopping criterion Criterion I depending only on these
quantities, the user can indicate a minimum and a maximum number of enrichments of the
metamodel at each cycle of AK-ECO as it is proposed in the section 3.2.2. The constant
2 can also be reduced to this end.

A perspective for AK-ECO is to provide better estimations for high and low estimations
of the reformulated failure probability. Indeed, considering the uncertainty of the kriging
model, we denote:

p̃I
k(d) = 1

nMC

nMC

∑
i=1

FrI

⎛
⎝

ns

∑
j=1

Tpj (M̃k
I (xid, x

i
p, s

j))
⎞
⎠
. (3.36)

Using the properties of the kriging model, the random variable

Σk
I (xid, x

i
p) =

ns

∑
j=1

Tpj (M̃k
I (xid, x

i
p, s

j)) (3.37)

follows a normal distribution N (µΣk
I
(xi

d
,xi

p), σ
2
Σk

I
(xi

d
,xi

p)
) with a mean and a standard de-

viation that can be computed. Therefore, high and low estimations of the reformulated
failure probability could be:

pkI,+,bis(d) =
1

nMC

nMC

∑
i=1

FrI (µΣk
I
(xi

d
,xi

p) + 2σΣk
I
(xi

d
,xi

p)) , (3.38)

pkI,−,bis(d) =
1

nMC

nMC

∑
i=1

FrI (µΣk
I
(xi

d
,xi

p) − 2σΣk
I
(xi

d
,xi

p)) . (3.39)

The idea could also be applied to the learning function and the new procedure of enrich-
ment could be:

1. select the point (xd, xp) from the Monte Carlo sample maximizing:

[FrI (µΣk
I
(xi

d
,xi

p) + 2σΣk
I
(xi

d
,xi

p)) − FrI (µΣk
I
(xi

d
,xi

p) − 2σΣk
I
(xi

d
,xi

p))] × f(Xd,Xp) (x
i
d, x

i
p)

with f(Xd,Xp) the probability density function of the random vector (Xd,Xp).

2. then, select the state sj ∈ {s1,⋯, sns} reducing the variance of Σk
I (xd, xp).

The resulting enrichment point would be (xd, xp, sj).

This approach could also be applied to the reformulated extreme-based failure probability.
However, in this case, we have to be able to deduce from the properties of the kriging model
the distribution of the random variable:

Σk
E (xid, x

i
p, x

i
rE
) =

ns

∑
j=1

exp (M̃k
E (xid, x

i
p, x

i
rE
, sj)) (3.40)

Even if the distribution of Σk
E (xid, x

i
p, x

i
rE
) cannot be computed analytically, work has

been done to estimate the distribution of the sum of dependent random variables with
log-normal distributions (Mehta et al. (2007); Asmussen et al. (2011)).
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Concerning the choice of the optimization algorithm

Since AK-ECO only performs local enrichment of the metamodel during each cycle, it has
been implemented to be coupled with a local optimization algorithm and thus provides a
local optimum. To obtain a global optimum, it is possible to perform multistart optimiza-
tions with AK-ECO from several initial design points.

If the user wishes to use global optimization algorithms, it will be necessary to adapt the
AK-ECO enrichment strategy.

On the error made during the estimation of the reformulated failure probabil-
ities

The estimations of the reformulated failure probabilities are subject to two sources of er-
ror: the error made with Monte Carlo to approximate the expectations and the errors of
the kriging models.

Usually in RA, the Monte Carlo method is used to estimate a failure probability pf and
thus, the estimation consists in sampling a Bernoulli random variable whose parameter is
pf . When pf is small, a large sample is required to provide an accurate estimation of the
failure probability. However, with our methodology, the reformulated constraints involve
expectations of continuous random variables with small coefficients of variation. There-
fore, these expectations can be accurately estimated using Monte Carlo with a reasonable
sample size. Indeed, in the oscillator problem, the Monte Carlo estimation of the i-th
reformulated failure probability at dmin = [5.0,35.73] (i.e. the design point obtained with
AK-ECO) is denoted pMC

i (dmin) and we have:

� pMC
1 (dmin) = 0.8 × 10−4, σMC

1 = 19.2 × 10−4;

� pMC
2 (dmin) = 1.0 × 10−4, σMC

2 = 15.7 × 10−4;

� pMC
3 (dmin) = 0.1 × 10−4, σMC

3 = 1.1 × 10−4;

where σMC
i is the standard deviation of the Monte Carlo sample of 30000 points obtained

for the i-th constraint. Denoting pi the i-th reformulated failure probability, we thus
obtain the following confidence intervals:

P (p1 (dmin) ∈ [0.6 × 10−4,1.0 × 10−4]) ≃ 95%,

P (p2 (dmin) ∈ [0.8 × 10−4,1.2 × 10−4]) ≃ 95%,

P (p3 (dmin) ∈ [0.9 × 10−5,1.1 × 10−5]) ≃ 95%.

Therefore, we consider in this thesis that the sample size is large enough that the Monte
Carlo estimation error is negligible. However, we could take into account the uncertainty
of the method by simply replacing the Monte Carlo approximation in the constraint with
the upper bound of the confidence interval.

Concerning the kriging error, let us recall that, during the k-th cycle of AK-ECO, the
estimation of the reformulated extreme-based failure probability is written as follows:

pkE(d) =
1

nMC

nMC

∑
i=1

Fϵ
⎛
⎝

ns

∑
j=1

exp (µk
E (xid, x

i
p, x

i
rE
, sj))

⎞
⎠

(3.41)
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where µk
E is the mean of the kriging model M̃E

k
. Therefore, we could incorporate the

kriging uncertainty by considering the following constraint:

P (p̃kE(d) < ps) > pM (3.42)

where pM is a probability threshold chosen by the user and

p̃kE(d) =
1

nMC

nMC

∑
i=1

Fϵ
⎛
⎝

ns

∑
j=1

exp (M̃E
k (xid, x

i
p, x

i
rE
, sj))

⎞
⎠
. (3.43)

However the distribution of p̃kE is hard to estimate so it is difficult to compute the prob-
ability in equation (3.42). In AK-ECO, a simpler approach is adopted: we consider that
the errors due to the kriging models are sufficiently small if the kriging models satisfy the
accuracy criteria introduced in section 3.2.2.

Problem encountered with the scikit-learn Python package

A problem occurs using the kriging model implemented in the scikit-learn Python package
(Pedregosa et al. (2011)). For several DoEs encountered during the enrichment proce-
dure, the standard deviations of the kriging model were poorly computed. In particular,
the standard deviations of the metamodel evaluated at points belonging to the DoE were
large (although they should have been zero). This led to problems during the learning
procedure. Upon further investigation, the problem arises from the approximation error in
estimating the inversion of a matrix when calculating the posterior variance of the kriging
model.

Another problem occurred during the calibration of the kriging models with the scikit-
learn Python package: during some enrichments, the hyperparameters changed abruptly
from their values obtained at the end of the previous enrichment, which led to poor quality
kriging models. To solve this problem, we have added a prior information on the hyper-
parameters as described in Santner et al. (2018). More precisely, considering a hyperpa-
rameter θ, during the k-th cycle of enrichment, a uniform distribution U[θk−1 −1, θk+1 +1]
is assumed for the prior where θk−1 is the value of θ obtained at the end of the k−1-th cycle.

Both of these problems were not encountered with the OpenTURNS Python package.

Limit due to the quality of the initial DoE

If the initial DoE used during the initialization of AK-ECO to calibrate the initial meta-
models is not good enough, the minimum obtained at the end of this first cycle of AK-ECO
may be far from the true optimum due to a bad estimation of the reformulated failure
probabilities. This can increase the number of optimization cycles of AK-ECO and of calls
to the simulator.

To adress this issue, we propose in the next chapter a procedure of global enrichment of
the metamodels ensuring the accuracy of the kriging models used during the first cycle of
AK-ECO.
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A global enrichment procedure
and a RBDO-oriented sensitivity
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Let us recall that this thesis is motivated by the resolution of an optimization problem
with extreme and integral based constraints as introduced in section 2.1. After the refor-
mulation of the constraints described in section 2.3, we obtain the following problem:
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min
d∈Ωd

cost(d) such that

EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

ns

∑
j=1

exp (ME (Xd,Xp,XrE , s
j))
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps

EXd,Xp

⎡⎢⎢⎢⎢⎣
FrI

⎛
⎝

ns

∑
j=1

Tpj (MI (Xd,Xp, s
j))
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps.

(4.1)

We have introduced in chapter 3 a new method to solve problem (4.1) requiring few calls
to the expensive functions ME and MI. A DoE in the augmented space Ωaug

E defined in
section 3.2 is created and kriging models of ME and MI are calibrated during the initial-
ization step. Optimization cycles combining local enrichments of the metamodels and a
resolution of problem (4.1) using the Monte Carlo method with the kriging models are
then carried out.

In this chapter, we introduce a so-called global enrichment procedure of the metamodels
before starting AK-ECO as well as a new sensitivity analysis evaluating the influence of
each input random variable on the constraints.

1 Global Enrichment

1.1 Motivation for the global enrichment of the metamodels

During the first optimization cycle of AK-ECO, the initial krigings are built from a DoE
of the augmented space Ωaug

E . As mentioned in section 3.4, if this DoE is of poor quality,
the minimum obtained at the end of this first cycle of AK-ECO may be far from the
true optimum due to a bad estimation of the reformulated failure probabilities using those
metamodels. This can lead to a large number of optimization cycles before convergence
of AK-ECO and thus slow down the resolution of the problem. Therefore, we propose to
improve the metamodels before starting AK-ECO in order to ensure their quality during
the first optimization cycle. In opposition to the local enrichments in AK-ECO aiming
at improving the constraints estimations around the current design point, this enrichment
procedure will be called global since its purpose is to improve the estimation of the feasi-
ble domain boundary over the whole design space. Once this global enrichment procedure
is completed, the obtained kriging models will be considered as the initial metamodels of
AK-ECO.

Similar global enrichment strategies, performed before solving an optimization problem,
have been proposed in Moustapha et al. (2015), Moustapha and Sudret (2019a), and
Shang et al. (2021). These methods aim to select points near the limit-state surface of the
performance function to improve the metamodels accuracy. However, due to the particular
constraints of problem (4.1) involving expectations instead of failure probabilities and
our metamodel strategy, these enrichment procedures are not adapted to problem (4.1).
We therefore present in section 4.1 a new procedure of global enrichment (GE) of the
metamodels adapted to the kriging strategy introduced with AK-ECO.

1.2 Global enrichment procedure

A new enrichment procedure of the metamodels of ME and MI called global enrichment
(GE) is presented in this section. The purpose is to improve the quality of the metamod-
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els in order to estimate with accuracy the boundary of the feasible domain defined by
each reformulated failure probability over all the design space. The GE is composed of
cycles of enrichments. During each cycle, one enrichment of each inaccurate metamodel
is performed. The steps of the procedure are described below:

Initialization: This step is similar to the initialization of AK-ECO described in section
3.2. An initial DoE, denoted DoE0, is computed and used to calibrate the initial

metamodels M̃E
0
and M̃I

0
of the functions ME and MI. At the end of the initializa-

tion, the first cycle of enrichment (k = 1) begins.

Enrichment cycle: We denote DoEk−1, M̃E
k−1

, and M̃I
k−1

, the DoE and kriging models
recovered from the initialization if k = 1 or from the previous cycle if k > 1. For each
inaccurate kriging model, an enrichment is performed following steps 1 to 3:

Step 1: Calibration of the metamodel from DoEk−1;

Step 2: A design point denr ∈ Ωd is selected with the procedure described in sec-
tion 4.1.3. This point is chosen if the metamodel cannot predict with enough
certainty whether or not it belongs to the feasible domain;

Step 3: A local enrichment of the metamodel is performed at denr (we detail this
step in section 4.1.4). A point xenr is selected from the augmented space im-
proving the accuracy of the reformulated failure probability estimation at denr.
The simulator is evaluated at xenr and DoEk−1 is updated.

At the end of the enrichment cycle, every inaccurate metamodel has been enriched
once and all of the metamodels are recalibrated from the last DoE. The resulting DoE

and kriging models are denoted respectivelyDoEk, M̃E
k
, and M̃I

k
. For each enriched

metamodel, an accuracy criterion introduced in section 4.1.5 is then evaluated. The
metamodels considered accurate enough will not be enriched during the following
cycles. The global enrichment ends when each metamodel satisfies the accuracy
criterion or if ntot > ntot,max where ntot is the total number of every metamodel
enrichments performed since the beginning of the GE and ntot,max is the maximum
of enrichments allowed by the user. If the condition is not met, a new enrichment
cycle begins.

The full procedure of global enrichment is summarized in Figure 4.1.

1.3 Selection of the design point to perform the local enrichment

At the beginning of the k-th cycle of enrichment, the purpose of the metamodel M̃E
k−1

is
to be accurate enough in order to obtain a good estimation of the feasible domain defined
by the reformulated extreme-based constraint and computed with Monte Carlo and the
metamodel. Therefore, a local enrichment of the metamodel needs to be performed at a
design point d, if pk−1E wrongly predicts that d belongs to the feasible domain with:

pk−1E (d) =
1

nMC

nMC

∑
i=1

Fϵ
⎛
⎝

ns

∑
j=1

exp (µk−1
E (xid, x

i
p, x

i
rE
, sj))

⎞
⎠

(4.2)

and where {(xid, x
i
p, x

i
rE
) , i = 1,⋯, nMC} = ΩMC(d) is the Monte Carlo sample of the ran-

dom vector (Xd,Xp,XrE).
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Initialization: Create DoE0, calibrate M̃E
0
and M̃I

0
, cycle k = 0

New enrichment cycle k → k + 1

Does M̃E
k−1

meet its
accuracy criterion?

Calibrate M̃E
k−1

from DoEk−1

Select denr (see section 4.1.3)
Select xenr (see section 4.1.4)

Add xenr to DoEk−1

Perfom a simulation at xenr

Does M̃I
k−1

meet its
accuracy criterion?

Calibrate M̃I
k−1

from DoEk−1

Select denr (see section 4.1.3)
Select xenr (see section 4.1.4)

Add xenr to DoEk−1

Perfom a simulation at xenr

Enrichment of the metamodels

Recalibrate the meta-
models from DoEk−1

Denote DoEk−1 → DoEk,

M̃E
k−1 → M̃E

k
, M̃I

k−1 → M̃I
k

Evaluate the accuracy
criterion for each inacurate

metamodel (see section 4.1.5)

Is the GE
stopping

condition met?

End of the global enrichment

yes

no

no

yes

yes
no

Figure 4.1: Flowchart of the global enrichment procedure
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To select a design point, we use the high and low estimations of the reformulated failure
probability introduced in section 3.2.2 and denoted respectively pk−1E,+ and pk−1E,− . The design
point denr is selected by minimizing a criterion on the design space as follows:

denr = argmin
d∈Ωd

AE(d) (4.3)

with

AE(d) =
∣pk−1E (d) − ps∣

pk−1E,+(d) − pk−1E,−(d)
. (4.4)

We notice that the criterion AE is used to evaluate the accuracy of the metamodel in
AK-ECO (see section 3.2.2). It is used in GE to select the design point denr since AE

decreases when pk−1E (d) is close to ps and when the uncertainty measured by the distance
between pk−1E,+(d) and pk−1E,−(d) is high. Hence, we consider that a local enrichment of the

metamodel is needed at d if the distance between pk−1E (d) and ps is small and if the un-
certainty measured by pk−1E,+(d) − pk−1E,−(d) is large.

In a same way, to select the design point where the local enrichment of M̃I
k−1

is needed,
the following problem is solved:

denr = argmin
d∈Ωd

AI(d) (4.5)

with

AI(d) =
∣pk−1I (d) − ps∣

pk−1I,+ (d) − pk−1I,− (d)
(4.6)

and pk−1I (d), pk−1I,− (d), and pk−1I,+ (d) are defined in section 3.2.2.

To solve problems (4.3) and (4.5), new DoEs of Ωd are created during each cycle and are
denoted DoEk

E,enr and DoEk
I,enr. The solution of (4.3) (resp. (4.5)) is the point of DoEk

E,enr

(resp. DoEk
I,enr) minimizing AE (resp. AI).

1.4 Selection of the enrichment point in the augmented space

Once the point in the design space denr is selected, we need to determine the point xenr in
the augmented space for which the metamodel needs to be specified in order to improve
the estimation of the reformulated failure probability at denr. To do so, the learning func-
tions of AK-ECO, LE and LI defined respectively in equations (3.23) and (3.29) of section
3.2.2 are used.

Thus, during the k-th cycle, M̃E
k−1

is enriched by selecting xenr such that:

xenr = argmax
(xi

denr
, xi

p, x
i
rE
) ∈ ΩMC (denr)

sj∈{s1,⋯,sns}

LE(xidenr
, xip, x

i
rE
, sj) (4.7)

where ΩMC (denr) is the Monte Carlo sample used in the estimation of pk−1E (denr).

For the enrichment of M̃I
k−1

, once denr is identified, xenr is selected by solving the following
problem:
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xenr = argmax
(xi

denr
, xi

p, x
i
rE
) ∈ ΩMC (denr)

sj∈{s1,⋯,sns}

LI(xidenr
, xip, s

j). (4.8)

Then, the simulator is evaluated at point xenr and the results are added to the shared
DoE DoEk−1.

1.5 Accuracy criteria

When the GE starts, every metamodel is considered inaccurate. At the end of each enrich-
ment cycle, every inaccurate metamodel are recalibrated with the shared DoE. Then, for
each of them, a criterion assesses the stability of the feasible domain of the corresponding
constraint estimated from the current metamodel.

At the end of the k-th cycle, to evaluate the stability of the feasible domain estimated

with M̃E
k
, the following quantity is computed:

nk
E,stop = Card{d ∈DoEstop s.t. (pkE(d) − ps) × (pk−1E (d) − ps) < 0} (4.9)

where:

� DoEstop is a space-filling DoE of Ωd created at the beginning of the GE;

� pkE(d) is computed with the metamodel obtained at the end of the k-th cycle;

� pk−1E (d) is computed with the metamodel obtained at the end of the (k−1)-th cycle.

Hence, nk
E,stop corresponds to the number of points in DoEstop that belong to the feasible

domain estimated during the (k−1)-th cycle and to the infeasible domain at the next one
(or vice versa).

Similarly, we measure the stability of the feasible domain estimated with M̃I
k
thanks to

the following quantity:

nk
I,stop = Card{d ∈DoEstop s.t (pkI (d) − ps) × (pk−1I (d) − ps) < 0} . (4.10)

The feasible domain estimated with the metamodel of ME (resp. MI) is considered stable
when nk

E,stop ≤ nmax,stop (resp. nk
I ≤ nmax,stop) over nbstop consecutive enrichment cycles.

The choice of these parameters is discussed in section 4.4.1.

These criteria are inspired by the criterion proposed in Moustapha and Sudret (2019a)
but are adapted to our kriging strategy.

Once the feasible domain estimated from a metamodel is considered stable, this metamodel
will not be enriched during the following enrichment cycles and its accuracy criterion will
not be evaluated again.
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2 RBDO-oriented GSA

2.1 Motivation for a new sensitivity analysis approach

A brief state of the art in sensitivity analysis

When the outputs of a model depend on multiple random input parameters, the concern
arises of determining the respective contribution of each parameter to the output uncer-
tainties. Sensitivity Analysis (SA) (Saltelli et al. (2008)) methods have been proposed
to address this issue and provide engineers a better understanding of the model. The
purpose of SA is often to identify the most influential parameters: a more thorough study
of these parameters leads to a better accuracy of the model. One may also wish to iden-
tify the non-influential inputs. A model dimension reduction would then be possible by
fixing these parameters at nominal values without affecting the model outputs. We refer
to Chabridon (2018) for a more extensive list of objectives pursued in SA.

Most of the methods in SA provide an index for each of the input variables revealing a
hierarchy among them. They are usually divided into two categories:

� local SA: based on the gradient of the model with respect to its parameters, this
approach studies the influence of small input perturbations on the outputs at a
nominal value;

� global SA (GSA): these methods consider the effects of the input parameters on
the model when they vary in their entire domain. The screening techniques (Morris
(1991)) aggregate the results of local analyses performed throughout the definition
domain of the input parameters. The variance-based methods rely on the decom-
position of the model output variance as a sum of terms reflecting the contribution
of each input parameter. We present in more detail variance-based indices in sec-
tion 4.2. Finally, for each input, dissimilarity-based methods (Borgonovo (2007);
Da Veiga (2015)) compare the distribution of the output considering every input
uncertainties and the conditional distribution of the output given that one of the
parameters is fixed at a given value. A review of GSA methods is provided in Iooss
and Lemâıtre (2015) and Spagnol (2020).

To reduce the computational burden of classical SA method, several approaches propose
to take advantages of metamodels. A screening GSA is performed in Shang et al. (2020)
coupled with a RBF model. In Sudret (2008), Bhattacharyya (2020), and Ehre et al.
(2020) the variance-based indices are efficiently computed using PCE whereas an adaptive
kriging strategy is preferred in Guo and Dias (2020).

The SA is said goal-oriented when the quantity of interest is not directly the model
output (Fort et al. (2016)).

Hence, reliability-oriented SA methods have been introduced to account for the influ-
ence of the input variables on a failure probability. Importance factors interpreted as the
contribution of each input to the variance of the performance function are obtained as a
by-product of FORM (Madsen et al. (2006)). Reliability-oriented indices have also been
proposed by performing a variance-based method on the indicator of the performance
function (Cui et al. (2010); Luyi et al. (2012)). These indices are computed efficiently
with sampling techniques in Wei et al. (2012), Zhang et al. (2020c), and Liu and Li (2020)
or with adaptive metamodels strategies (He et al. (2020); Lei et al. (2021)). Several
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reliability-oriented indices are reviewed in Kala (2020b).

An optimization-oriented SA is introduced in Spagnol (2020). The sublevel set of in-
terest is defined as a subset of the design space including the design points where the
function to minimize is low and where the constraints are satisfied. Then, the influence
of the input on specific outputs are measured with kernel-based indices (Gretton et al.
(2005)). These outputs take into account the value of the cost function and the sublevel
set of interest. This analysis makes the optimization problem easier to resolve by reducing
the dimension of the design space which also leads to a degradation of the optimum.

Finally, to enhance the efficiency of RBDO methods, several approaches have been pro-
posed to evaluate the local sensitivity of the probabilistic constraints with respect to the
design variables during the resolution of the problem. In RIA (Hou (2004)), the impor-
tance factors mentioned above are used for this purpose and similar sensitivity measures
are analytically provided by Lee et al. (2010a) for PMA. In Lee et al. (2010b) and Lee
et al. (2011), score functions are used to express the sensitivity of the failure probabilities
to the design variables as expectations that can be estimated with Monte Carlo. The
performance functions are replaced by metamodels in the latter papers.

Limitation with current approaches

Many methods have been proposed in SA and applied to various problems. However, their
application to RBDO problems is limited to local SA performed during the optimization
to evaluate the sensitivity of the constraints to the design variables.

In this thesis, we are interested in knowing what are the influence of each source of uncer-
tainty involved in the constraints on their satisfaction. This SA encounters a new difficulty
since the sensitivity of the constraints in relation to each input depends on the design point
considered.

In this chapter, we tackle this problem and propose a new RBDO-oriented GSA approach
in section 4.2.

2.2 RBDO-oriented GSA procedure

We propose in this section a RBDO-oriented GSA approach aiming at identifying, for each
constraint, the contributions of the input uncertainties on the constraint satisfaction.

We face a difficulty since the contribution of the model inputs may differ depending on the
design point considered. A random variable may have a strong impact on the constraint
at a specific design point while it is of small influence at another design point. Since the
indices proposed in the SA literature are performed at fixed design, we propose to carry
out multiple GSAs for different points and to gather this information into new cumulative
indices.

We present our GSA approach in a general framework for a RBDO problem with con-
straints expressed as follows:

EU [Hd (U)] < ps (4.11)

where U = (U1,⋯, Unu) is a random vector grouping all the random inputs whose influence
on the constraint is to be evaluated. The components of U are assumed to be independent
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with known probability density functions. Moreover, for all design point d ∈ Ωd, Hd ∶
Rnu → R is a square-integrable function. We denote:

pf(d) = EU [Hd (U)] (4.12)

and
Yd =Hd (U) . (4.13)

The analysis presented in this section must be performed for each constraint of the con-
sidered RBDO problem independently.

2.3 GSA at a fixed design point with the Sobol indices

We detail here one of the most used GSA methods: the functional decomposition of the
variance and the Sobol indices. We will see later how they can be adapted to fit our need.

Variance decomposition and Sobol indices in SA

It is shown that if a function H defined on [0,1]nu is square-integrable, it can be decom-
posed into a sum of increasing dimension functions (Hoeffding (1992)). Let us consider
a random vector U = (U1,⋯, Unu) with independent components and known probability
density function, it follows from the decomposition of H that the variance of Y = H(U)
can be expressed as (Efron and Stein (1981); Sudret (2007)):

Var(Y ) =
nu

∑
s=1

nu

∑
i1<⋯<is

Di1⋯is =
nu

∑
i=1

Di +
nu

∑
i<j

Dij +⋯ +D1⋯nu (4.14)

with
Di = Var (E [Y ∣Ui]) , (4.15)

Dij = Var (E [Y ∣Ui, Uj]) −Di −Dj , (4.16)

and with the recursive definition:

Di1⋯is = Var (E [Y ∣Ui1 ,⋯, Uis]) −
s−1
∑
j=1

∑
k1 < ⋯ < kj

{k1,⋯,kj}⊂{i1,⋯,is}

Dk1⋯kj . (4.17)

The decomposition of equation (4.14) is called the functional decomposition of variance
or ANOVA (for ANalysis Of VAriance).

The Sobol indices introduced in Sobol’ (2001) and denoted Si1⋯is are defined by nor-
malizing the terms Di1⋯is with Var(Y ):

Si1⋯is =
Di1⋯is
Var(Y )

(4.18)

and it follows that ∑nu
s=1∑

nu
i1<⋯<is Si1⋯is = 1.

In particular the first-order Sobol index Si of Ui is:

Si =
Di

Var(Y )
= Var (E [Y ∣Ui])

Var(Y )
. (4.19)

Thus, the index Si1...is represents the proportion of the variance of Y due to the interaction
between the variables Ui1 ,⋯, Uis . The first-order index considers the influence of Ui on
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Var(Y ) without accounting for its interactions with the other input parameters.

The total-order Sobol index ST
i has been proposed in Homma and Saltelli (1996) to

accumulate the effects of all the combinations of input parameters involving Ui:

ST
i =

nu

∑
s=1

∑
i1 < ⋯ < is
i∈{i1,⋯,is}

Si1⋯is . (4.20)

Hence, using the total variance law, we obtain:

ST
i = 1 −

Var (E [Y ∣U∼i])
Var(Y )

= E [Var (Y ∣U∼i)]
Var(Y )

(4.21)

with U∼i = (U1,⋯, Ui−1, Ui+1,⋯, Unu).

The Sobol indices enable to evaluate between 0 and 1, the contribution of each input
parameter to the variance of the output. The closer the index of a parameter is to 1, the
more influential it is.

These indices can be computed with Monte Carlo (Saltelli (2002)) or with more efficient
methods (Saltelli et al. (2008); Iooss and Lemâıtre (2015)) such as the Sobol pick-freeze
approach (Sobol’ (2001); Janon et al. (2014)) or the Fourier Amplitude Sensitivity Testing
(FAST) method (Cukier et al. (1978); Saltelli et al. (1999)) which relies on a Fourier
expansion of the function Hd.

Application of Sobol indices for expectation constraints

We consider from now on the notations introduced in the beginning of section 4.2.

At a fixed design point d ∈ Ωd, we are interested in understanding the impact of the uncer-
tainty of every random variable Ui (i = 1,⋯, nu) on pf(d). Sobol indices naturally adapt
to this need by considering the Sobol indices of Yd defined in equation (4.13).

For each random variable Ui the first-order Sobol index, denoted Si(d) and the total-order
index ST

i (d) are defined as:

Si(d) =
VarUi (EU∼i[Yd∣Ui])

Var(Yd)
(4.22)

and

ST
i (d) = 1 −

VarU∼i (EUi [Yd∣U∼i])
Var(Yd)

. (4.23)

As explained in section 4.2.3, these indices measure the proportion of the variance of Yd
due to each input parameters at a fixed design point.

These indices are adapted to the expectation constraint defined in equation (4.11) since
they also reflect the influence of each input uncertainties on pf(d). The larger Si and ST

i

are, the more influential the i-th parameter is on pf(d).

Remark 4.1. This use of Sobol indices has been inspired from the reliability-oriented SA
proposed in Cui et al. (2010) and Luyi et al. (2012). Indeed, we find the same indices
when Hd(U) = 1g(d,U)≤0 with g(d,U) the performance function of the considered failure
probability.
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2.4 Definition of the critical domain and selection of the design points
where to perform GSA

The Sobol indices being calculated for fixed design points, we have to select the designs
for which we are interested to know the results of the GSA. Since it would be too ex-
pensive to perform a GSA for every points of the design space, we restrain the analysis
to a subdomain of Ωd. The influence of the input parameters on pf(d) are particularly
important if pf(d) is close to ps. Indeed, if d belongs to this region, variations of pf(d)
are directly linked to the satisfaction of the constraint at d. Hence, a parameter having a
strong impact on pf(d) can determine whether pf(d) > ps or pf(d) < ps.

We thus define the critical domain Ωcritical ⊂ Ωd such that:

Ωcritical = {d ∈ Ωd, pf(d) ∈ [p−s , p+s ]} (4.24)

where p−s , p
+
s are parameters chosen by the user such that p−s < ps < p+s (we discuss this

choice in section 4.4.2).

Our RBDO-GSA approach relies on the two following assumptions:

Assumption 1. If d ∈ Ωcritical and Ui is an influential parameter on pf(d) then Ui is an
influencial parameter on the satisfaction of the constraint at d.

Assumption 2. If d ∉ Ωcritical, the influence of the different sources of uncertainty on the
satisfaction of the constraint at d are negligible.

Hence, whether the objective of the RBDO-GSA is to identify the influential sources of
uncertainties on the definition of the feasible domain or to search for the non-influential
ones in order to reduce the dimension of the input space, it follows from assumptions 1
and 2 that only the GSA performed in the critical domain are relevant.

We therefore propose to select several points in the critical domain with the following
procedure:

1. we consider an empty set ΩSA and k = 1;

2. a space-filling DoE of size nk of the design space is created;

3. for each point d of the DoE, we compute pf(d). If d ∈ Ωcritical, d is added to ΩSA. A
metamodel strategy can be used to estimate pf(d) as we will see in section 4.2.6;

4. if card (ΩSA) ≥ nSA,min or if k > kmax, the procedure stops, otherwise, k = k + 1 and
go back to step 2.

The parameters n1,⋯, nkmax , and nSA,min are chosen by the user. The parameter nSA,min

must be determined such that, at the end of the procedure, enough points belong to ΩSA

to correctly span Ωcritical. If card (ΩSA) is too large, it can result in a high concentration
of points of ΩSA in the same area which would increase the computation time without
providing much information. This is why the size n1,⋯, nkmax is sequentially increased
and these parameters must be chosen to avoid such a phenomenon.

A GSA is then performed for each point of ΩSA: for each d ∈ ΩSA and each random
variable Ui (i = 1,⋯, nu), the first-order and total-order indices defined in section 4.2.3 are
computed.

80



CHAPTER 4. A GLOBAL ENRICHMENT PROCEDURE AND A
RBDO-ORIENTED SENSITIVITY ANALYSIS

Select design points belonging to the critical
domain Ωcritical according to the procedure de-

scribed in section 4.2.4 and grouped them in ΩSA

Compute the first-order and total-order indices
for each Ui, i = 1,⋯, nu and for each d ∈ ΩSA

Compute the cumulative indices defined in
section 4.2.5 for each component Ui,⋯, Unu .

Figure 4.2: Flowchart of the RBDO-oriented GSA

2.5 Introduction of the cumulative indices

The design points have now been selected, grouped in ΩSA and the Sobol indices of the
considered uncertainties have been evaluated at each of these design points. To aggregate
these results, we introduced for each random variable Ui (i = 1,⋯, nu), the first-order

cumulative Sobol index Si and the total-order cumulative Sobol index ST
i defined

as follows:

Si =
1

nSA
∑

d∈ΩSA

Si(d), (4.25)

ST
i =

1

nSA
∑

d∈ΩSA

ST
i (d), (4.26)

with nSA = Card (ΩSA).

Hence, Si (resp. ST
i ) represents the average of the first-order (resp. total-order) indices of

the i-th input parameter over ΩSA.

We propose also to consider the maximum of these indices over ΩSA and defined two other
cumulative indices:

Si,max = max
d∈ΩSA

Si(d) (4.27)

and
ST
i,max = max

d∈ΩSA

ST
i (d). (4.28)

These four cumulative indices allow to have a better understanding of the influence of
each uncertainty on pf(d) for different points belonging to Ωcritical and consequently its
influence on the feasible domain. The closer the cumulative indices of a parameter are to
one, the greater the impact on the definition of the feasible domain of the RBDO problem.

The procedure of the RBDO-oriented GSA is summarized in Figure 4.2.
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2.6 RBDO-oriented GSA for the reformulated problem

The RBDO-oriented GSA approach proposed in this chapter has been introduced in a
general framework for RBDO problems with constraint expressed as in equation (4.11).
To apply our method to the reformulated problem (4.1), the notations of section 4.2 with
the reformulated extreme-based constraint give:

U = (X,Xp,XrE) with, ∀d,Xd = d +X (4.29)

and

Yd =Hd(U) = Fϵ
⎛
⎝

ns

∑
j=1

exp (ME (d +X,Xp,XrE , s
j))
⎞
⎠
. (4.30)

For the reformulated integral-based constraint, we also want to evaluate the sensitivity of
the constraint to the random variable XrI . Therefore, the reformulated failure probability
is written as follows:

EXd,Xp

⎡⎢⎢⎢⎢⎣
FrI

⎛
⎝

ns

∑
j=1

Tpj (MI (Xd,Xp, s
j))
⎞
⎠

⎤⎥⎥⎥⎥⎦
= EXd,Xp,XrI

[1XrI
≤∑ns

j=1 Tpj(MI(Xd,Xp,sj))] . (4.31)

In this case,
U = (X,Xp,XrI) (4.32)

and
Yd =Hd (U) = 1XrI

≤∑ns
j=1 Tpj(MI(d+X,Xp,sj)). (4.33)

For simplicity, we have considered the special case where the uncertainties on d represented
by Xd can be expressed as d+X but the GSA could also be applied to a more general case.

Moreover, the cumulative indices measure the influence of uncertainties on the reformu-
lated failure probabilities in the critical domain: where pf is close to ps. When a GE
procedure is carried out before the RBDO-oriented GSA, it is also in this region that the
metamodels have been enriched. Therefore, the evaluation of pf during the creation of
ΩSA described in section 4.2.4 and the evaluation of the cumulative indices can be per-
formed from these metamodels and the complete RBDO-oriented GSA procedure can be
carried out without any call to the expensive simulator.

3 Validation of the global enrichment and the sensitivity
analysis on the harmonic oscillator problem

The different analyses introduced in this chapter are applied to the reformulated problem
of the harmonic oscillator presented in section 2.3.4 with the parameters detailed in section
3.3 as follows:

1. metamodels are calibrated and enriched according to the global enrichment proce-
dure described in section 4.1;

2. using the enriched metamodels obtained at the end of the GE, the sensitivity analysis
defined in section 4.2 is performed for each constraint. Cumulative sensitivity indices
are obtained for each source of uncertainty and each constraint. These analyses do
not require any call to the expensive simulators since they are completely performed
with the metamodels;
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3. finally, the oscillator problem is solved with AK-ECO introduced in section 3.2. The
metamodels used during the first cycle of optimization are the ones obtained at the
end of the GE.

3.1 Global enrichment applied to the oscillator problem

For the i-th constraint of the oscillator problem, we denote Mi the expensive function,

M̃i
k
its kriging model after k cycles of global enrichments and pki the estimation of the

reformulated failure probability using Monte Carlo with M̃i
k
. The corresponding low and

high estimations are denoted pki,− and pki,+.

Implementation

For the initialization of GE, the DoE used to calibrate the initial metamodels is a LHS
maximin of the augmented space of size 50. The kriging implementation of OpenTURNS
is used with a constant trend and a 3/2-Matèrn covariance kernel.

During each cycle and for the i-th constraint, pki , p
k
i,−, and pki,+ are estimated with a Monte

Carlo sample of size 30000.

The local enrichments are performed at design points selected among a DoE of the 2D
design space. This DoE (denoted DoEk

E,enr or DoEk
I,enr in section 4.1.3) is a LHS of size

40. At each enrichment of the metamodels, the hyperparameters are updated.

The parameters nmax,stop and nbstop involved in the accuracy criteria are set respectively
to 0 and 2. To avoid increasing the computation time, these criteria are evaluated every
5 enrichment cycles.

Visualization of the first global enrichment cycle

To visualize the GE procedure, we display in Figures 4.3 and 4.4, the different steps of

enrichment of the kriging model M̃1
0
corresponding to the first constraint of the studied

problem, during the first cycle of global enrichment.

Figure 4.3 illustrates the first step of this enrichment: the selection of denr. The contour
lines of log (p01) (which is the estimation of the first reformulated failure probability with

M̃1
0
) are displayed in Figure 4.3a and the level set equal to log (10−4) is indicated with a

black dotted line. In Figure 4.3b, the contour lines of log (p01,+ − p01,−) are shown. In both
figures, the candidates for denr are indicated with transparent black stars . The point
denr, represented by a black star , is selected among them by minimizing the criterion
defined in section 4.1.3. We notice that denr is such that the numerator of this criterion
is small (p01 (denr) is close to 10−4) and its denominator (p01,+ (denr) − p01,− (denr)) is large.

Once denr is selected, a local enrichment of M̃1
0
is performed by choosing a point xenr from

the Monte Carlo sample ΩMC (denr). This step is illustrated in Figure 4.4 which shows
the contour lines of log (p01). The projections onto the design space of several enrichment
candidates are indicated by transparent black crosses . The enrichment point xenr is
represented with a black cross . The simulator is then evaluated at xenr and the DoE is
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(a) Contour lines of log (p01) (b) Contour lines of log (p01,+ − p01,−)

Figure 4.3: Selection of denr

updated. The first global enrichment cycle continues with the enrichment of the second

and third metamodels denoted respectively M̃2
0
and M̃3

0
.

Figure 4.4: Selection of xenr

Results of the global enrichment

The global enrichment procedure applied to the oscillator problem ends after 30 cycles.
The accuracy criterion is satisfied after 10 cycles by the metamodel of M1, after 25 cycles
for the metamodel of M2, and after 30 cycles for the one of M3. Therefore, 65 calls to the
expensive simulator were performed. At the end of the 30-th cycle, all the metamodels

are recalibrated and are denoted M̃1
30
, M̃2

30
, and M̃3

30
.

In Figures 4.5, 4.6, and 4.7, we display:

� the contour lines of log (p01), log (p02), and log (p03) (Figures 4.5a, 4.6a, and 4.7a)
computed from the initial metamodels with a massive Monte Carlo method;

� the contour lines of log (p301 ), log (p302 ), and log (p303 ) (Figures 4.5b, 4.6b, 4.7b) com-
puted from the enriched metamodels obtained at the end of the global enrichment.
In these figures, the stars ( → ☆) and crosses ( → ) represent the design points
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denr and the enrichment points xenr selected during all the enrichment cycles for the
considered metamodel. The darker the color of the symbol, the earlier the point is
selected during the GE procedure;

� the contour lines of log (pMC
1 ), log (pMC

2 ), and log (pMC
3 ) computed from the real

functions M1,M2, and M3 (Figures 4.5c, 4.6c, and 4.7c).

In each figure, the level set equal to log (10−4) of the estimated reformulated failure prob-
abilities is indicated by a black dotted line while white lines are used for the levels sets
log (10−5) and log (10−3).

(a) log (p01) (b) log (p301 ) (c) log (pMC
1 )

Figure 4.5: First constraint

(a) log (p02) (b) log (p302 ) (c) log (pMC
2 )

Figure 4.6: Second constraint

(a) log (p03) (b) log (p303 ) (c) log (pMC
3 )

Figure 4.7: Third constraint

We observe that when the GE ends, the infeasible domain defined by each constraint is
well estimated by the enriched kriging models. The local enrichments are often carried out
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in the vicinity of the feasible domain boundary but several points far from the boundary
are selected due to the uncertainty of the metamodel (especially for the third constraint).
The countour lines of log (p01,+ − p01,−), log (p02,+ − p02,−), and log (p03,+ − p03,−) representing
the uncertainties of the first, second and third constraint estimations using the initial
metamodels are displayed in Figure 4.8

(a) First constraint: i = 1 (b) Second constraint: i = 2 (c) Third constraint: i = 3

Figure 4.8: countour lines of log (p0i,+ − p0i,−) (i = 1,2,3)

We could be surprised that the metamodel of M3 required more enrichments than the
other ones since the estimation of the infeasible domain with the initial metamodel seems
better than for the other constraints. Two reasons can explain this behavior:

� the first and second constraints are sensitive to the same states (i.e. the states such
that sj and pj are small). Therefore, each enrichment of the metamodel of M1 also
improves the accuracy of the metamodel of M2 and vice versa. On the other hand,
the third constraint is sensitive to the states such that sj and pj are large. Thus,
the points selected during the enrichments of the metamodels of M1 and M2 do not
improve a lot the accuracy of the metamodel of M3. This could explain why more
enrichments were needed for this metamodel;

� Moreover, even though for the third constraint, the approximation of the infeasible
domain boundary is good from the start, the uncertainties on the estimations of the
reformulated failure probability are important and the level set 10−4 estimated with
the kriging model varies during the different enrichment cycles.

The global enrichment procedure has been repeated from 2 other initial DoEs. The results
are similar. The GE procedure stopped after 70 calls to the simulator with the second

DoE and with the third DoE as well. The metamodels M̃1
0
, M̃2

0
, M̃3

0
met the accuracy

criterion respectively after 15, 25, and 30 cycles with the second DoE and after 15, 15, and
40 cycles for the third DoE. With both DoEs, the infeasible domain of each constraint is
well estimated.

3.2 RBDO-oriented GSA applied to the oscillator problem

For the i-th (i = 1,2,3) constraint of the oscillator problem, as explained in section 4.2.6,

the GSA approach described in section 4.2 is carried out using the metamodels M̃i
30

obtained at the end of the GE procedure detailed in section 4.3.1. Therefore, the analysis
does not require any call to the expensive simulator. The design points selected during
the first step of the analysis are gathered in Ωi

SA. We then evaluate the cumulative indices
of the sources of uncertainties grouped in U i with:
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� U1 = (X1,X2,Xp,Xr1) for the first constraint;

� U2 = (X1,X2,Xp,Xr2) for the second constraint;

� U3 = (X1,X2,Xp,Xr3) for the third constraint;

and Xd = d +X = (d1 +X1, d2 +X2).

Implementation

In the application of our SA approach to the oscillator problem, we define the critical
domain for the i-th constraint as follows:

Ωi
critical = {d ∈ Ωd, p

30
i (d) ∈ [10−5,10−3]} , (4.34)

thus p−s = 10−5 and p+s = 10−3.

During the creation of the set Ωi
SA described in section 4.2.4, we consider that the number

of points in Ωi
SA must be larger than nSA,min = 10. To select these points, the size of the

consecutive DoEs of the design space are 20, 40, 80, 120, and 200 (for n1 to n5 and thus
kmax = 5).

The Fourier Amplitude Sensitivity Testing (FAST) (Cukier et al. (1978); Saltelli et al.
(1999)) method implemented in the OpenTURNS (Baudin et al. (2016)) Python package
is used to evaluate the Sobol indices. The FAST parameters (denoted N , M and Nr)
have been chosen following the recommendations of the OpenTURNS documentation and
such that the result of two consecutive FAST analyses performed at the same design point
provided the same results. We used N = 10000, M = 10 and Nr = 8.

Results of the RBDO-oriented GSA

The results of the RBDO-oriented GSA applied to the oscillator problem are shown in
Figures 4.9, 4.10 and 4.11:

� In Figures 4.9a, 4.10a, and 4.11a, the countour lines of the logarithm of each refor-
mulated failure probability estimated with the enriched metamodels are displayed.
The set Ωi

SA of design points selected during the first step of the RBDO-oriented
GSA and where the Sobol indices are computed is represented with white dots ;

� The cumulative Sobol indices evaluated with the enriched metamodels are indicated
in Tables 4.9b, 4.10b, and 4.11b;

� To verify the accuracy of the Sobol indices computed from the metamodels, the
indices have also been calculated with the real functions Mi at each point of Ωi

SA

(i = 1,2,3) and the cumulative indices are diplayed in Tables 4.9c, 4.10c, and 4.11c.

Let us recall that, for the i-th constraint, the first-order cumulative indices S and Smax re-
spectively represent the average and the maximum of the first-order indices of a particular
parameter calculated for the different design points of Ωi

SA. The total-order cumulative

indices ST and ST
max are the average and the maximum of the total-order indices calculated

for the different design points of Ωi
SA. We have omitted the subscript in the notation of

S, Smax, ST , and ST
max to avoid confusion with the number of the considered constraint.
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(a) Contour lines of log (p301 ) and Ω1
SA

S Smax ST ST
max

X1 0.003 0.006 0.869 0.948

X2 0.002 0.002 0.843 0.942

Xp 0.009 0.191 0.906 0.945

Xr1 0.019 0.041 0.944 0.950

(b) Cumulative indices estimated with M̃1
30

S Smax ST ST
max

X1 0.003 0.005 0.808 0.922

X2 0.002 0.003 0.788 0.938

Xp 0.013 0.031 0.913 0.946

Xr1 0.020 0.048 0.941 0.950

(c) Cumulative indices computed with M1

Figure 4.9: Results of the RBDO-oriented GSA applied to the first constraint of the
oscillator problem

(a) Contour lines of log (p302 ) and Ω2
SA

S Smax ST ST
max

X1 0.002 0.004 0.866 0.945

X2 0.001 0.002 0.861 0.939

Xp 0.010 0.023 0.928 0.948

Xr2 0.017 0.041 0.945 0.950

(b) Cumulative indices estimated with M̃2
30

S Smax ST ST
max

X1 0.003 0.008 0.786 0.908

X2 0.002 0.003 0.756 0.921

Xp 0.020 0.053 0.911 0.949

Xr2 0.025 0.073 0.938 0.949

(c) Cumulative indices computed with M2

Figure 4.10: Results of the RBDO-oriented GSA applied to the second constraint of the
oscillator problem

We notice that the cumulative indices estimated from the metamodels are close to those
calculated with the real functions which validate our approach. With the enriched meta-
models obtained from the GE, the sensitivity of each of the constraints with respect to
each source of uncertainty can be accurately assessed without additional call to the ex-
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(a) Contour lines of log (p303 ) and Ω3
SA

S Smax ST ST
max

X1 0.003 0.005 0.858 0.950

X2 0.003 0.005 0.813 0.950

Xp 0.004 0.012 0.950 0.951

Xr3 0.003 0.008 0.940 0.950

(b) Cumulative indices estimated with M̃3
30

S Smax ST ST
max

X1 0.002 0.004 0.902 0.950

X2 0.002 0.004 0.832 0.951

Xp 0.005 0.013 0.948 0.950

Xr3 0.006 0.009 0.939 0.950

(c) Cumulative indices computed with M3

Figure 4.11: Results of the RBDO-oriented GSA applied to the third constraint of the
oscillator problem

pensive simulator.

The results of the RBDO-oriented GSA show that, for each constraint and each input
parameter, the first-order cumulative indices are small while the total-order cumulative
indices are large. This means that the variability of each constraint is mainly explained
by the interactions between the different random variables. It is therefore necessary to
consider all these uncertainties in the RBDO problem resolution.

3.3 Resolution of the oscillator problem with global enrichment and
AK-ECO

The reformulated oscillator problem described in sections 2.3.4 and 3.3 is solved in this
section. After 30 cycles of global enrichment of the metamodels whose results are discussed

in section 4.3.1, we obtained three enriched metamodels M̃1
30
, M̃2

30
, M̃3

30
. At this stage,

115 calls to the expensive simulator have been carried out (50 for the initial DoE and 65
during the enrichment cycles). The oscillator problem is solved with AK-ECO except that
the metamodels used during the first optimization cycle are the ones provided by the GE
procedure. We denote this method GE+AK-ECO.

The results are displayed in Table 4.1. They are compared with the reference results
obtained with MC discussed in the section 3.3, as well as with the AK-ECO resolution
without preliminary global enrichment of the metamodel. The initial DoE of AK-ECO
is the same as the initial DoE used in GE for the GE+AK-ECO method. The execution
time of GE+AK-ECO is discussed in section F.1.2 of appendix F.

The implementation used for MC and AK-ECO are given is section 3.3 and the resolution
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of the oscillator problem starts from the center of the design space with coordinate (3,35).

MC AK-ECO GE + AK-ECO

dmin (5.0, 35.74) (5.0, 35.73) (5.0, 35.74)

cost(dmin) -14.26 -14.27 -14.26

pMC
1 (dmin) 0.8 × 10−4 0.8 × 10−4 0.8 × 10−4

pMC
2 (dmin) 1.0 × 10−4 1.0 × 10−4 1.0 × 10−4

pMC
3 (dmin) 0.1 × 10−4 0.1 × 10−4 0.1 × 10−4

ncall 3.57 × 106 252 223

Table 4.1: Result of GE+AK-ECO

The resolution with GE+AK-ECO required 3 cycles of optimization and 108 additional
simulations. Therefore a total of 223 calls were necessary for the full procedure (115 for
GE and 108 to solve the optimization problem). When no preliminary global enrichment
is performed, AK-ECO requires 252 calls to the simulator and converges within 5 cycles
of optimization. Moreover, the design point obtained with GE+AK-ECO is closer to the
reference result obtained with MC.

Finally, a multistart resolution of the oscillator problem has been carried out with GE+AK-
ECO. The oscillator problem is solved with AK-ECO starting from 20 different design
points. The metamodels used during the first cycle of AK-ECO for each resolution are

M̃1
30
, M̃2

30
, M̃3

30
. For each starting point, GE+AK-ECO converges toward the minimum

obtained with MC. The number of additional calls to the simulator varies from 90 to 179
with an average number of calls at 127.75. We have to add the 115 calls performed for
GE to obtain the total number of simulations which equals 2670 for the whole multistart
procedure GE+AK-ECO.

The multistart resolution has also been performed with AK-ECO and the same initial DoE
but without the preliminary GE. In this case, 2968 calls to the simulator were necessary.
Consequently, for this problem, better results are obtained regarding the number of calls
to the expensive code and the accuracy of the results with a preliminary global enrichment
of the metamodels.

The results of the multistart resolutions are displayed in section G.2 of appendix G.

4 Discussion and perspectives

We present in this section some guidance for the choice of different parameters appearing
in the GE and the RBDO-oriented GSA approaches. We also discuss limitations of these
methods as well as possible improvements.
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4.1 Concerning the global enrichment procedure

Remarks specific to GE

In the GE, several parameters involved in the stopping criteria of the procedure and
introduced in section 4.1.5 have to be chosen by the user. We recall that a metamodel
is considered accurate in GE when the boundary of the feasible domain estimated with
the metamodel remains stable over nbstop cycles of enrichment. To evaluate this stability,
the reformulated failure probabilities are evaluated at each point of a DoE in the design
space denoted DoEstop. In order for the metamodel to be accurate enough at the end, it
is important that:

� the size a space-filling DoEstop is large enough size to span the entire design space;

� the number nmax,stop of points is small enough to ensure that a large proportion of
the points in DoEstop remains in the same feasibility domain during the last cycle
of GE;

� the number of cycles nbstop is large enough to guarantee that the stability is achieved.

The accuracy of the metamodels at the end of the GE is mainly driven by these parameters.

Furthermore, as discussed in the implementation of the GE applied to the oscillator prob-
lem, since the evaluation of the accuracy criteria at each cycle can be cumbersome, they
can be evaluated only every n cycles.

The enrichment cycle of GE begins with the selection of denr described in section 4.1.3 by
solving an optimization problem on the design space (equations (4.3) and (4.5)). The res-
olution is done by evaluating candidates among a DoE in the design space. This approach
is reasonable when the dimension of the design space is small since a small DoE can cover
Ωd. For a higher dimensional space, an optimization algorithm might be more efficient.

Remarks common to AK-ECO and GE

Since GE and AK-ECO are based on similar kriging strategies, several remarks and limi-
tations of AK-ECO are also relevant for GE:

� the GE procedure can be applied for the more general formulation of the constraints
presented in equation (3.33);

� when ps become small or ns large, the estimation of the reformulated failure proba-
bilities with Monte Carlo may become cumbersome as well as the selection of xenr.
This problem is especially true in GE since many evaluations of pkE, p

k
E,−, p

k
E,+, p

k
I ,

pkI,−, and pkI,+ are required for the selection of denr and the evaluation of the accuracy
criteria;

� the GE also faces the limitations of the kriging technique.

We refer to section 3.4 for a detailed presentation of these issues and the solutions that
we proposed for each. In section 3.4, new estimations of low and high estimations of the
reformulated failure probabilities are proposed and could benefit the GE especially for the
selection of denr.
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4.2 Concerning the RBDO-oriented GSA

We have shown that the RBDO-oriented GSA proposed in this chapter can provide sen-
sitivity indices for the different sources of uncertainty revealing the influence of each on
the satisfaction of the constraints. However, the method was applied to a simple problem
with few input variables and it would take further investigation on high dimensional prob-
lems to validate the approach. Nevertheless, we can already discuss the choice of different
parameters and some improvements that could be made to the method.

On the critical domain definition

Our approach relies on assumptions 1 and 2 which state that the relevant GSAs are those
performed at design points in Ωcritical with:

Ωcritical = {d ∈ Ωd, pf(d) ∈ [p−s , p+s ]} . (4.35)

The choice of p−s and p+s should be driven by the requirement that the uncertainties at a
design point d should not affect the order of magnitude of pf(d). Hence, when ps = 10−4,
we suggest to choose p−s = 10−5 and p+s = 10−3.

Defining the critical domain remains a tricky task and further investigation would be
necessary to obtain precise guidance. In particular, the following questions should be
considered:

� Do the indices calculated for different points in Ωcritical vary greatly or are the influ-
ences of the parameters of the same order?

� How are the cumulative indices impacted by the choice of p−s and p+s ?

Additional work is needed to answer these questions.

It is also necessary to take into account in the definition of the critical domain that, if the
user wishes to use a metamodel for this analysis, the quality of this metamodel must be
assessed in the appropriate domain.

Taking into account the cost function in the definition of the critical space

In the work of Spagnol (2020), the cost function is taken into account in the definition of
the sublevel set of interest. In the same way, the cost function could be considered in the
definition of the critical domain. A simple way to do so is to consider:

Ωcritical = {d ∈ Ωd, pf(d) ∈ [p−s , p+s ] and cost(d) ≤ cmax} (4.36)

where cmax is a parameter chosen by the user.

The goal of the RBDO-oriented GSA would then be the analysis of the influence of each
source of uncertainty on the feasible domain but only where the solution of the optimization
problem could be found.
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Taking into account the definition of the critical domain in the accuracy criteria
of GE

Since the goal of GE is to obtain metamodels allowing to correctly estimate the feasible
space boundary, the accuracy criteria currently only assess the stability of the feasible
domain. These criteria could easily be adapted to RBDO-oriented GSA by evaluating the
stability of the critical domain.

SA dealing with rare event probabilities

During the application of the RBDO-oriented GSA to the oscillator problem, the estima-
tion of the Sobol indices with FAST provided several times a ”nan” result. When these
results were obtained, they were simply not included in the computation of the cumula-
tive indices. This problem might be due to a variance of Yd evaluated at 0. To avoid this
problem, it would be interesting to investigate the use of methods in GSA dealing with
rare events (Kala (2020a)).
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The work of this thesis was driven by an optimization problem seeking to minimize the
cost of the mooring lines of a floating offshore wind turbine (FOWT) under Fatigue Limit
State constraints. This problem has been briefly introduced in chapter 1 to highlight
its main characteristics. We will now present in more details the studied FOWT and the
framework used to model the processes involved in the constraints. Then, the optimization
problem will be solved by applying the methodology introduced in chapters 2 and 3.

1 The studied floating offshore wind turbine

The floating offshore wind turbine under study is inspired by the NREL (National Re-
newable Energy Laboratory) 5MW turbine placed on the DeepCwind semi-submersible
floating platform (Robertson et al. (2014a)). Figure 5.1 indicates the dimensions of the
structure.

(a) DeepCwind floating wind system design

(b) Plan view of the DeepCwind semisub-
mersible platform

Figure 5.1: DeepCwind FOWT (Robertson et al. (2014a))

The floating platform is composed of four columns: a central one and three offset columns.
The role of these columns is to support the weight of the turbine and to stabilize the struc-
ture. They are connected through a system of pontoons and cross braces, which allows
the structure to have low exposure to waves.

The platform is connected to the seabed by three catenary lines which are composed of
chains and are intended to hold the floater in place. The distance between the projection
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of the center of the floater to the seabed and the anchors is 837.6m. The angle between
two adjacent mooring lines is 120○. In this thesis, a difference with the structure described
in Robertson et al. (2014a) is that each mooring line is connected either to the outer
surface of the upper part of an external column or to the downward prolongation of this
column. In the second case, it is assumed that the heave plate (i.e. the larger surface at
the bottom of each offset column which aims at damping heave motion) has a hole through
which the mooring line passes. This modification facilitates the change of position of the
fairleads, which are the connections where the mooring lines are attached to the columns,
during the optimization. This leads to a nominal length of the mooring lines of 841.56m.
The axial stiffness, the hydrodynamic diameter, and the breaking load are calculated from
linear relations (determined by expert opinion) depending on the mass per unit length of
the mooring lines.

Finally we considered a water depth (i.e. the distance between the mean sea level and the
seabed) of 200m.

2 Floating offshore wind turbine modeling

2.1 Physics of FOWT modeling

The floating platform is a partially immersed body and its movements result from hy-
drodynamic and aerodynamic forces applied to the structure. The dynamic response of
a floating wind turbine, under wave and wind loading, can be numerically simulated by
different multiphysics (i.e. aero-servo-hydro-elastic) codes which can differ according to
their level of coupling (a comparison of these codes on the structure OC4 is provided in
Robertson et al. (2014b)).

Regarding the hydrodynamic forces, the floater is considered as a large structure (Molin
(2002)) compared to the amplitude of the waves and its size is comparable to their wave-
length: the flow remains attached to the body and the viscous effects are considered
negligible. The resulting hydrodynamic forces are composed of:

� the hydrostatic forces which refer to the static restoring forces due to buoyancy and
weight when the platform is moved from the equilibrium position;

� the diffraction forces which correspond to the excitation forces exerted by incident
and diffracted waves on the structure at rest;

� the radiation forces which represent the pressure forces applied to the structure by
the radiated waves created by the platform motion.

In addition to these effects, we consider an additional quadratic drag as recommended in
Robertson et al. (2014a). Finally, the second-order wave loads will not be considered in
our study which may lead to understimate the floater motion.

We briefly present the modeling of these efforts in a simplified framework and considering a
regular wave represented by a sinusoidal wave. Understanding how the structure reacts to
regular waves will allow to model the motion of the platform when subjected to a random
loading with a frequency domain solver (see section 5.2.5).

96



CHAPTER 5. RESOLUTION OF THE INDUSTRIAL PROBLEM

(a) Hydrostatic (b) Diffraction (c) Radiation

Figure 5.2: Hydrodynamic forces (Hall (2013))

2.2 Degrees of freedom of the platform

The movement of the floating platform can be described by six degrees of freedom (DoF)
represented in Figure 5.3: the surge, the sway, the heave, the roll, the pitch, and the yaw.
They are indicated in the coordinate system Oxyz where:

� O is the intersection of the vertical tower axis and the mean sea level;

� x, y and z are orthonormal vectors;

� the xy-plane represents the mean sea level;

� the x-axis is collinear and in opposite direction with the nominal wind and wave
direction;

� the z-axis is directed upward (opposite to gravity).

In this coordinate system, the surge, which will be the DoF of interest in our study, is
defined as the horizontal shift along the x-axis. We draw the reader’s attention to the
fact that the orientation of the vector x in our study is opposite to the one in Figure 5.3.
Therefore, a negative surge corresponds to a displacement of the platform in the wind
direction.

Figure 5.3: Degrees of freedom (Hall (2013))

2.3 Linearized equation of motion of the platform considering a regular
wave

We present in this section the equation of motion of the structure subjected to a regular
deterministic wave which means that the wave is represented by a sinusoidal function with
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angular frequency ω, amplitude Awave and an angle with respect to the x-axis called the
wave heading and denoted by xp1 (we refer to Molin (2002) for more details).

The movements of the platform at t are described by the DoFs grouped in the vector Y (t):

Y (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

surge(t)
sway(t)
heave(t)
roll(t)
pitch(t)
yaw(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.1)

and it follows from the Newton’s second law, that Y is solution of the motion equation:

MŸ (t) = F hydro(t) + F diff(t) + F rad(t) + F quad(t) + Fmoor(t) + Fwind(t) (5.2)

with

� M the mass matrix of the platform,

� F hydro(t) the hydrostatic force,

� F diff(t) the diffraction force,

� F rad(t) the radiation force,

� F quad(t) the quadratic damping,

� Fmoor(t) the mooring force which is a tension at the top of each mooring line,

� Fwind(t) the main component forces on the Rotor Nacelle Assembly in operational
mode: the thrust on the blades and the reaction torque of the turbine.

Hydrostatic

The i-th (i = 1,⋯,6) coordinate of the hydrostatic force applied to the structure is given
by (Robertson et al. (2014a)):

F hydro
i (t) = ρgV0δi3 −

6

∑
j=1

Chydro
ij Yj(t) (5.3)

with ρ the water density, g the gravitational acceleration constant, V0 the displaced volume
of fluid when the platform is in its undisplaced position and δ the Kronecker delta function.

This formulation decomposes the hydrostatic forces into two components. The first term
represents the buoyancy force from the Archimedes’ principle (i.e. the force directed
vertically upward and equal to the weight of the displaced fluid when the platform is in
its undisplaced position). The term Chydro

ij represents the change in the hydrostatic force

and moment as the platform is displaced. The matrix Chydro is called the stiffness matrix.
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Diffraction

Using the potential-flow theory (Molin (2002)), the diffraction forces can be written
(Duarte et al. (2014)):

F diff(t) = Re (AwaveX̂(ω,xp1)e
iωt) (5.4)

where Awave is the wave amplitude and X̂(ω,xp1) is the first-order wave load per unit
amplitude which depends on the wave angular frequency ω and the wave heading xp1 .

Radiation

For each DoF, the radiation forces are decomposed into two components: one in phase
with the body acceleration (the added mass term) and one in phase with the body velocity
(the damping term). We denote Ma(ω) the added mass matrix and Brad(ω) the damping
matrix. The potential-flow theory is used to compute these matrices (Robertson et al.
(2014a)).

Quadratic drag

As recommended in Robertson et al. (2014a), a quadratic drag is considered to accurately
represent the damping in real system. This extra damping represents the dissipation by
vortex shedding at the corner of column heave plates and Morison forces contribution on
thinner elements like braces. The i-th coordinate of the resulting force is given by the
following equation:

F quad
i (t) = −

6

∑
j=1

Bquad
ij ∣Ẏj(t)∣Ẏj(t). (5.5)

The matrix Bquad is referred as the additional quadratic drag matrix and we denote the
surge and pitch components xp2 = B

quad
11 and xp3 = B

quad
55 . The estimation of these terms

generally requires a comparison to complex CFD simulations or to a scaled basin experi-
ment (Burmester et al. (2020)).

Equation (5.5) is linearized following the principle of quasi-linearization described in
Borgman (1967) and Le Cunff et al. (2008) to obtain:

F quad
i (t) ≃ −

6

∑
j=1

Bquad,lin
ij (ω)Ẏj(t). (5.6)

Linearized Mooring Model

All the mooring lines contribute to the load on the support. These forces are described
by the following equation (Robertson et al. (2014a)):

Fmoor
i (t) = Fmoor,0

i −
6

∑
j=1

Cmoor
ij Yj(t) (5.7)

where F lines,0
i is the i-th component of the total mooring system load acting on the support

platform in its undisplaced position (pre-tension at the fairlead from the weight of the
mooring lines not resting on the seafloor). The matrix Cmoor is the linearized restoring
matrix which combines the elastic stiffness of the mooring lines and the effective geometric
stiffness due to the weight of the lines in the water.
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Wind loads

For simplicity, the wind is considered in the simulations only by means of constant thrust
and torque applied to the floating platform. Their values correspond to the mean of
dynamic simulations with DeeplinesWindTM including the turbine in operation and the
controller with a turbulence corresponding to a class B wind turbine (IEC 61400-3 (2009)).

Linear damping coefficients due to the turbine are also considered. The values were pro-
vided by time domain simulations with an operating turbine. This simplification also
comes from the fact that in the current version of the DeeplinesWindTM software we are
using, the aerodynamic simulation of wind turbine is only possible with a time domain
solver.

Linearized equation of motion and RAO

The linearized equation of motion can thus be formulated as:

M total(ω)Ÿ (t) +Btotal(ω)Ẏ (t) +CtotalY (t) = Re(AwaveX̂(ω,xp1)e
iωt) + F static (5.8)

with M total(ω) = M +Ma(ω), Btotal(ω) = Brad(ω) + Bquad,lin(ω), and Ctotal = Chydro +
Cmoor. The constant forces due to the wind, the hydrostatic and the mooring loads are
considered in F static.

We can decompose the vector Y (t) into two components as Y (t) = Y (t) + Y static with:

M total(ω)Ÿ (t) +Btotal(ω)Ẏ (t) +CtotalY (t) = Re(AwaveX̂(ω,xp1)e
iωt) (5.9)

and
CtotalY static = F static. (5.10)

Denoting Y (t) = Re(Ŷ (ω)eiωt), it follows from equation (5.9):

Ŷ (ω)
Awave

= (−ω2M total(ω) + iωBtotal(ω) +Ctotal)−1X̂(ω,xp1). (5.11)

The term on right-hand side is called the Response Amplitude Operator (RAO) (Molin
(2002)) with:

⎛
⎜⎜⎜⎜⎜⎜
⎝

RAO1(ω)
.
.
.

RAO6(ω)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= (−ω2M total(ω) + iωBtotal(ω) +Ctotal)−1X̂(ω,xp1) (5.12)

and RAO1 corresponds to the surge RAO. It depends on the design variables d that will
be specified later, on the wave heading xp1 , the surge and pitch drag coefficients xp2 and
xp3 , and the mean wind speed denoted u of the time series used to estimate the constant
thrust and torque as explained in section 5.2.3.
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2.4 Motion of the mooring lines and tension

Some of the constraints of the optimization problem considered in this thesis depend on
the tension in the mooring lines. As explained in section 1.5, we are particularly inter-
ested in the tension at the top of each line l (l = 1,2,3). The lines are composed of chains
modeled by 1D 2-node elements with linear elasticity. The tension in each element is de-
rived from the usual Finite Element approximation with linear functions of element node
displacements.

As for the platform DoFs, an equation of motion is considered to determine the motions
of the mooring lines nodes subjected to a regular wave. The external forces applied to
these lines are thus the gravity force, the floater reaction forces, the forces resulting from
Archimedes’ principle and the seabed, and the wave loads. For the latter, the mooring
lines are considered as small structures compared to the wave amplitude and the hydro-
dynamic forces on the lines are described by the empirical formula of Morison (Robertson
et al. (2014a)).

The Morison forces are then linearized (Le Cunff et al. (2008)) enabling to obtain a linear
relation between the regular wave and the motion of the nodes. From hereabove mentioned
post-processing of the tension and from the linearization of the Morison forces, it follows a
linear relation between the tension and the regular wave. Thus, similarly to what was done
for the DoF of the floating platform, the tension at the top of the line l is decomposed into
a static component and a dynamic component. The latter is solution of a linear equation
which enables us to obtain the RAO of the tension at the top of the l-th line denoted
RAOT l . This RAO depends on d, xp1 , xp2 , xp3 , and u as well. We denote xp the vector
(xp1 , xp2 , xp3).

2.5 From a regular wave to a random sea elevation process

The sea elevation process

We have presented how the DoFs of the platform and the tension are obtained when the
structure is subjected to a deterministic regular wave. However, to account for the ran-
domness of marine conditions, it is usual to represent the waves as a random stationary
process called the sea elevation process. When the water depth is important, the pro-
cess is considered Gaussian since its realizations can be seen as the superposition of a large
number of regular waves with different angular frequencies ω (Molin (2002)).

To represent the sea elevation at each instant, the considered period of time [0, T ] is
divided into nT subintervals Ii (i = 1,⋯, nT ) of length ∆T (by convention ∆T = 3 hours).
During each interval on time Ii, the sea elevation is represented by a stationary Gaussian
process with zero mean. Its distribution is defined by its spectral density (see section
2.2.1 for the definition of a spectral density) which depends on the long-term parameters
hs,i and tp,i where:

� hs,i is the significant waveheight during Ii;

� tp,i is the peak period during Ii;

� usually the spectral density is also characterized by a long-term parameter γ quan-
tifying the spread of the spectrum but we consider this parameter equal to 3 (which
is a value close to the value 2.87 taken in Robertson et al. (2014b)).
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We denote Kη (hs,i, tp,i; .) the spectral density of the i-th stationary Gaussian process.
The one-sided spectral density K+η (hs,i, tp,i; .) is the function such that:

K+η (hs,i, tp,i;ω) = 2Kη(hs,i, tp,i;ω) if ω ≥ 0
K+η (hs,i, tp,i;ω) = 0 if ω < 0.

In this study, we consider the JONSWAP one-sided spectral density (Hasselmann et al.
(1980)) defined as follows:

K+η (si;ω) = αh2s,i ω
4
p,i ω

−5 exp
⎛
⎝
−5
4
( ω

ωp,i
)
−4⎞
⎠
γβ(ω) (5.13)

with ωp,i = 2π/tp,i,

β(ω) = exp(−
(ω − ωp,i)2

2ω2
p s(ω)2

) (5.14)

and s(ω) = 0.07 if ω ≤ ωp,i and s(ω) = 0.09 otherwise. Finally, the constant α is chosen
such that:

h2s,i = 16∫
∞

0
K+η (hs,i, tp,i; ;ω)dω. (5.15)

The JONSWAP one-sided spectral density considering hs,i = 2.37m and tp,i = 8.03s is dis-
played in Figure 5.4.

Figure 5.4: JONSWAP one-sided spectral density

We denote ηi (hs,i, tp,i; .) the sea elevation process such that, for each instant t ∈ Ii, the
sea elevation is ηi (hs,i, tp,i; t). Moreover, η will represent the sequence of independent
processes (η1 (hs,1, tp,1; .) ,⋯, ηnT

(hs,nT
, tp,nT

; .)).

Definition of the sea states

For each long-term parameter combination (hs,i, tp,i) (i = 1,⋯, nT ), we associate a mean
wind speed ui. We will call the sea state during Ii, the vector si = (hs,i, tp,i, ui). Each
sea state s1,⋯, snT

is equal to an element of the set {s1,⋯, sns}.
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Usually, the set of possible sea states {s1,⋯, sns} encountered during [0, T ] as well as their
probability of occurrence {p1,⋯, pns} are given by a histogram called a scatter diagram
which groups several thousand or even tens of thousands of combinations of long-term
parameters (Vorpahl et al. (2013)).

In order to solve a simplified problem, only seven combinations of long-term parameters
are considered in this study. They are obtained by massively grouping adjacent blocks
in the scatter diagram created from buoy data collected during several decades on the
US east coast (Stewart et al. (2016)). This scatter diagram contains many combinations
of long-term parameters. The blocking is performed by considering only 7 wind speeds
u1,⋯, u7 among the wind speeds appearing in the scatter diagram. Then, for each uj

(j = 1,⋯,7), we associate the maximum significant height hjs and the mean peak period tjp
of the combinations in the scatter diagram for which the wind speed is equal to uj .

For each sea state sj (j = 1,⋯,7), we denote nj the number of intervals Ii in [0, T ] such
that si = sj and we define pj = nj

nT
. To estimate the parameters pj , we consider a random

variable U with a Weibull distribution (with a shape = 2.128 and a scale = 9.495) and
the pj (j = 1,⋯,7) are computed as follows:

� p1 = P (U ≤ u1 + 1);

� pj = P (U ∈ [uj − 1, uj + 1]) for j = 2,⋯,6;

� p7 = P (U ≥ u7 − 1).

The resulting sea states sj and the respective pj (j = 1,⋯,7) are presented in Table 5.1.

Sea state sj = (hjs, tjp, uj) pj

s1 = (2.37,8.03,4) p1 = 0.23

s2 = (2.51,8.09,6) p2 = 0.18

s3 = (2.86,8.12,8) p3 = 0.18

s4 = (3.47,7.61,10) p4 = 0.16

s5 = (4.04,7.12,12) p5 = 0.11

s6 = (4.3,6.50,14) p6 = 0.07

s7 = (5.08,6.64,16) p7 = 0.07

Table 5.1: Couples (sj , pj) with hjs (m), tjp (s), and uj (m/s)

It is to be noted that in buoy data the mean wind speed is given for 8 minutes. As the wind
stationary length of about 10 minutes is much shorter than that of wave, the international
standard of FOWT design usually recommend using a conservative transformation into
a mean wind speed over longer duration. For simplicity, this point is neglected in the
following of this thesis.

Remark 5.1. We recall that although pj is usually considered as an occurrence probability
in offshore engineering, we have defined the pj in the previous chapters as the proportion
of intervals Ii such that si = sj (see section 2.3.1 for more details).
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To simplify the notation, we will denote from now on, ηi (si; .) the sea elevation process
during Ii with spectral density Kη (si; .) even though these objects do not depend on ui.

The surge process

For a given sea state si, considering a sea elevation random process during Ii implies
that the surge becomes a random process as well. Since the sea elevation process is a
superposition of regular waves, the surge process during Ii denoted Si (d, xp, si; .) can be
decomposed as:

Si (d, xp, si; t) = µS (d, xp, si) + Si (d, xp, si; t) , ∀t ∈ Ii (5.16)

where µS (d, xp, si) is given solving (5.10) and Si (d, xp, si; .) is the superposition of ele-
mentary motions (Molin (2002)) solutions of equation (5.9) considering different angular
frequencies. It follows that :

Si (d, xp, si; .) = hS (d, xp, si; .) ∗ ηi (si; .) (5.17)

with, denoting TF the Fourier transformation,

TF (hS (d, xp, si; .)) (ω) = RAO1(ω). (5.18)

To remain consistent with the notation used from the beginning of the thesis, RAO1

will be denoted HS (d, xp, si; .). It follows from equation (5.17) and the properties of
the sea elevation process that Si (d, xp, si; .) is a stationary Gaussian process with mean
µS (d, xp, si) and spectral density:

KS (d, xp, si; .) = ∣HS (d, xp, si; .)∣2Kη (si; .) . (5.19)

Remark 5.2. We point out that HS represents the surge RAO while hs is a long-term
parameter on which the distribution of the sea elevation process depends.

The spectral moment of order n of Si (d, xp, si; .) is therefore defined as follows:

mS,n (d, xp, si) = ∫
R
ωnKS (d, xp, si;ω)dω. (5.20)

To take into account the different sea states, the surge process over [0, T ] is defined as:

S (d, xp; t) =
nT

∑
i=1
Si (d, xp, si; t)1Ii(t) , ∀t ∈ [0, T ] (5.21)

It is therefore a piece-wise stationary Gaussian process.

The tension processes

The reasoning presented for the definition of the surge process holds for the tension: for
a given sea state si, when we consider a random sea elevation process, the tension at the
top of the l-th line (l = 1,2,3) is represented by a random process such that:

T l
i (d, xp, si; t) = µT l (d, xp, si) + T l

i (d, xp, si; t) , ∀t ∈ Ii (5.22)

with T l
i (d, xp, si; .) = hT l (d, xp, si; .) ∗ ηi (si; .) and TF (hT l (d, xp, si; .)) (ω) = RAOT l(ω).
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The RAO RAOT l will be denoted HT l (d, xp, si; .). It follows from the properties of
the sea elevation process that T l

i (d, xp, si; .) is a stationary Gaussian process with mean
µT l (d, xp, si) and spectral density:

KT l (d, xp, si; .) = ∣HT l (d, xp, si; .)∣2Kη (si; .) . (5.23)

The spectral moment of order n of T l
i (d, xp, si; .) is therefore defined as follows:

mT l,n (d, xp, si) = ∫ ωnKT l (d, xp, si;ω)dω (5.24)

and the tension at the top of the line l (l = 1,2,3) over [0, T ] is defined as the following
piece-wise stationary Gaussian process:

T l (d, xp; t) =
nT

∑
i=1
T l
i (d, xp, si; t)1Ii(t) , ∀t ∈ [0, T ]. (5.25)

DeeplinesTM simulation outputs

We emphasize that to apply the methodology presented in this thesis to solve the FOWT
optimization problem, only the distributions of the surge and tension processes are re-
quired. As these processes are piece-wise stationary Gaussian, we are interested in their
means and spectral moments. The former are obtained by solving the static equation
while for the latter, the RAOs and the JONSWAP spectral density are used.

All these quantities are computed with the DeeplinesTM software. Our script takes as in-
put a sea state si, a design point d and parameters xp1 , xp2 , and xp3 , calls a DeeplinesTM

executable and returns the means and the spectral moments of the processes Si (d, xp, si; .)
and T l

i (d, xp, si; .).

Hence, for our approach, it is not necessary to sample realizations of the surge and tension
processes.

2.6 Modeling simplifications

Let us recap the modeling simplifications introduced in the section:

� first, during each interval of time Ii, the wind loads are replaced by a constant thrust
and a constant torque which leads to underestimate the fatigue on the mooring lines
by eliminating the variations due to aerodynamics;

� we do not consider the effects of the second-order hydrodynamic forces on the FOWT.
Despite the fact that Duarte et al. (2014) has shown their influence on the surge,
considering only the first-order wave forces is common in many FOWT studies as
can been shown in Robertson et al. (2014b).

� the wave heading xp1 is considered constant over [0, T ];

� all the non-linear forces (the quadratic drag and the Morison forces) are linearized.
Although the international design standards (Det Norske Veritas (2013)) recommend
to simulate in the time domain the behavior of the floating wind turbine to take into
account the non-linearities, we assume that a frequency calculation can provide a
good proxy for estimating the fatigue.
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An analysis has been conducted to determine the influence of these simplifications on
the surge and tension processes. More precisely, time series of these processes have been
computed considering the model framework introduced in this section and compared with
time series generated with external forces that are not linearized and wind loads that are
not constant. The results are displayed in section H.1 of appendix H.

The linear equations of motion obtained from these simplifications enable us to obtain
Gaussian stationary output processes. Finally, only 7 sea states were considered in the
modeling of the marine conditions.

3 Fatigue

When a component of a structure is subjected to repeated stress variations, damage accu-
mulates and a gradual degradation of the material is observed: this is called the material
fatigue. In metallic structures, this process results from the development of dislocations
within the polycristalline aggregate which creates surface irregularities. Subjected to mil-
lions of cycles, a crack can appear and propagate in the material due to the polycyclic
fatigue. Once this crack is large enough, the component is no longer able to withstand the
load imposed on it and failure occurs. Fatigue is a common cause of failure and is par-
ticularly difficult to estimate. Therefore, it is important that the design of the structure
enables to resist these cycles over a long period of time.

In offshore engineering and particularly for mooring lines, the common practice (Det Norske
Veritas (2005)) is to estimate the total damage accumulated by independent loading events
which is assumed to provide a reasonable estimate for stationary cases.

Thus, we can represent the total fatigue damage at the top of the line l (l = 1,2,3) over
the period [0, T ], denoted Dtotal,l

[0,T ] (d, xd2 , xp), as the accumulation of the instantaneous

damage Dl (d, xd2 , xp; t) over [0, T ] and thus write it as the following integral:

Dtotal,l
[0,T ] (d, xd2 , xp) = ∫

T

0
Dl (d, xd2 , xp; t)dt. (5.26)

Since the damage at the top of the line depends on the tension at this point, when
this tension is represented by a random process T l (d, xp; .), the instantaneous damage

Dl (d, xd2 , xp; .) is also a random process and the total damage Dtotal,l
[0,T ] (d, xd2 , xp) is a ran-

dom variable. Their distributions depend on the distribution of the tension process as well
as on the parameter xd2 that is introduced below. Furthermore, the instantaneous process
over [0, T ] is defined as:

Dl (d, xd2 , xp; t) =
nT

∑
i=1
Dl

i (d, xd2 , xp; t)1Ii(t) , ∀t ∈ [0, T ] (5.27)

where Dl
i (d, xd2 , xp; t) is the instantaneous damage caused by T l

i (d, xp, si; t), (i = 1,⋯, nT ).

Finally, we denote Dtotal,l
Ii

(d, xd2 , xp, si) the total damage occurring during Ii.

In practice, engineers do not have access to realizations of the instantaneous damage pro-
cess but use methods to estimate the total damage. Two approaches can be distinguished
to evaluate the mean total damage:
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� the time-domain approach which deduces the mean total damage from a unique
realization considered over a large enough period of time of the tension process;

� the spectral approach which uses the spectral moments of the tension process.

We will now present the time-domain method to extract the damage caused by a tension
history which will enable us to introduce different elements used in frequency-domain
methods.

3.1 Fatigue evaluation from a tension history

Let us consider a realization of the tension process T l
i (d, xp, si; .) over Ii. The total damage

over Ii is then a scalar that we denote dtotal,li .

Cycle counting methods

Polycyclic fatigue occurs as a result of millions of cycles of loading (stress or force like
tension) in the time history. The main influence of these cycles comes from the ampli-
tudes of the loading variations and to a lesser extent from the average tension which will
be neglected in this thesis. The first step of the total damage estimation is to extract
from the tension history the characteristics of these cycles. This is performed by a cycle
counting method. The rainflow counting method (Matsuishi and Endo (1968); Downing
and Socie (1982)) is considered as the most accurate counting procedure (an overview
of cycle counting methods is provided in Dirlik (1985)). From a tension time series, a
counting method provides a histogram. For each cycle, the tension range and the mean
tension are evaluated and the histogram indicates the number of cycles contained in the
tension history for each tension range and mean tension.

We will denote nc the number of cycles counted from the tension realization considered in
this section and rk the tension range of the k-th cycle.

The T-N curve

Once the tension cycles of the tension history have been characterized, it is necessary to
know the damage caused by each cycle on the material. The relation between a tension
range r and the number of cycles nr with this tension range that the material can withstand
is provided by the T-N curve. This relation is obtained by experimentally repeating cycles
of tension on the considered material with different tension range until failure. Fitting
parameters are then adjusted (see Figure 5.5) to obtain the following relation:

log (nr) = log (KD) −m log( r

BL(d2)
) (5.28)

where KD and m are given by the experiments and the breaking load BL depends on the
material considered.

Denoting xd2 =KDBL(d2)m, we have:

nr =
xd2
rm

. (5.29)

In this study, we consider the Stiff’s fatigue curve for chain with m = 3 (Rossi (2005)).
The breaking load is given by BL(d2) = c1×d2−c2, where c1 and c2 are values determined
by expert opinion, and d2 is the mass per unit length of the mooring lines.
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Figure 5.5: Fitting of the T-N curve (Rossi (2005))

The Palmgren-Miner rule

The total damage caused by the time history is finally obtained by summing the damage
caused by each cycle shown in the tension range histogram. This approach is known as the
Palmgren-Miner accumulated damage rule (Miner (2021)) and the total damage caused
by the considered tension history is given by:

dtotal,li =
nc

∑
k=1

1

nrk

=
nc

∑
k=1

rmk
xd2

. (5.30)

The Palmgren-Miner rule assumes that the order of occurrence of cycles has no influence.
This is considered as a limitation since cycles of low stress followed by high stress cause
more damage than would be predicted by the rule (Eskandari and Kim (2017)).

The time-domain approach enables to obtain a realization of the total damage random
variable from a realization of the tension process. For a FOWT application, a time series
of tension of one hour (discarding the first 200s of transition) is considered sufficiently
long to assume the ergodicity of the instantaneous damage process. Therefore, the mean
total damage caused during Ii can be deduced from one time series of tension.

3.2 Fatigue evaluation with a spectral approach: the Dirlik method

Contrary to the time-domain approach, the spectral methods directly consider the proper-
ties of the tension process to deduce the mean of the total fatigue damage random variable.
Considering not a realization but the complete tension process T l

i (d, xp, si; .), the number
of cycle nc and the range of tension of the k-th cycle denoted rk introduced in section
5.3.1 become random variables that we denote respectively Nc and Rk. It follows from
the Palmgren-Miner rule:

Eηi [D
total,l
Ii

(d, xd2 , xp, si)] = Eηi [
Nc

∑
k=1

Rm
k

xd2
] (5.31)
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where Nc and Rk depend on d, xp, and si. Under the assumption that the sequence of Rk

are i.i.d (Benasciutti and Tovo (2004)), we have:

Eηi [D
total,l
Ii

(d, xd2 , xp, si)] = ∑
nc≥0

P (Nc = nc)
nc

∑
k=1

E [
Rm

k

xd2
] (5.32)

= ∑
nc≥0

P (Nc = nc)ncE [
Rm

1

xd2
] (5.33)

= 1

xd2
E [Nc]E [Rm

1 ] . (5.34)

To simplify the notation, the spectral moment of order n of T l
i (d, xp, si; .) will be denoted

mn in this section (i.e. mn =mT l,n (d, xp, si)).

As explained in Benasciutti and Tovo (2004), for a stationary Gaussian tension process
T l
i (d, xp, si; .):

E[Nc] =∆T
1

2π

√
m4

m2
(5.35)

and
E [Rm

1 ] = ∫R+
rmpR1(r)dr (5.36)

with pR1 the probability density function of the tension range of the first cycle.

The density pR1 cannot be deduced analytically but several methods have been proposed
to approach this function (Benasciutti and Tovo (2004)). In particular, the Dirlik method
(Dirlik (1985)) proposes an approximation denoted pDir

R1
when considering a Gaussian

tension process based on the combination of an exponential and two Rayleigh densities:

pDir
R (r) =

1

2
√
m0
(D1

Q
e
−Z

Q + D2Z

R2
e−

Z2

2R2 +D3Ze−
Z2

2 ) (5.37)

with

Z = r

2
√
m0

, α2 =
m2√
m0m4

, m+1 = 2∫
∞

0
ωKT l (d, xp, si;ω)dω, (5.38)

xm =
m+1
m0

√
m2

m4
, D1 =

2(xm − α2
2)

1 + α2
2

, R = α2 − xm −D2
1

1 − α2 −D1 +D2
1

, (5.39)

D2 =
1 − α2 −D1 +D2

1

1 −R
, D3 = 1 −D1 −D2 , Q = 1.25(α2 −D3 − (D2R)

D1
. (5.40)

Using this approximation, if follows that:

Eηi [D
total,l
Ii

(d, xd2 , xp, si)] =
∆T

xd2

1

2π

√
m4

m2
(2
√
m0)m

⎛
⎝
D1Q

mΓ(1 +m)

+
√
2
m
Γ(1 + m

2
) (D2∣R∣m +D3)

⎞
⎠

(5.41)

where Γ is the gamma function.
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We will denote ET l (d, xp, si) the quantity such that:

Eηi [D
total,l
Ii

(d, xd2 , xp, si)] =
∆T

xd2
ET l (d, xp, si) . (5.42)

Besides, under the assumption that the instantaneous damage process Dl
i (d, xd2 , xp, si; .)

is stationary, we obtain:

E [∫
Ii
Dl

i (d, xd2 , xp, si; t)dt] =∆TE [Dl
i (d, xd2 , xp, si; 0)] = Eηi [D

total,l
Ii

(d, xd2 , xp, si)]
(5.43)

and it follows:

E [Dl
i (d, xd2 , xp, si; 0)] =

1

xd2
ET l (d, xp, si) . (5.44)

A comparison of the time-domain and the spectral approaches have been carried out on
the nominal configuration of the studied case and the results are available in section H.2
of appendix H. It shows that the Dirlik method provides a good approximation of the
fatigue which is why this method is chosen in this thesis. We refer the reader to Rychlik
(1996) for a more theoretical background on the damage due to continuous stochastic
processes irregular or smooth (e.g. stationary Gaussian processes with finite intensity of
local maxima).

4 Problem formulation

We now present in more details the cost function and the uncertainties of the FOWT
optimization problem introduced in chapter 1. We seek to minimize the manufacturing
cost of the mooring lines under constraints involving the surge of the platform, the tension,
and the fatigue at the top of each line over the considered period. These constraints
take into account several sources of uncertainties and therefore are expressed as failure
probabilities.

4.1 Cost function and design variables

In the considered optimization problem, the cost of materials used to manufacture the
mooring lines depends on three design variables:

� the length d1 of the mooring line that can be added to, or deducted from, the nominal
mooring length of 841.56 meters. This variable takes values in [−0.5,2] (in m);

� the mass per unit length d2 ∈ [70,180] (in kg/m);

� the position of the fairlead d3 (i.e. the location where each mooring line is attached
to the matching column). This variable can vary from 0 (which corresponds to a
connection at the bottom of the columns) to 1 (top of the columns).

The nominal configuration proposed in Robertson et al. (2014a) is d1 = 0, d2 = 113.35 and
d3 = 3/16.

The ranges of variation of the design variables have been determined by expert opinion.
We denote d = (d1, d2, d3) and the design space Ωd = [−0.5,2] × [70,180] × [0,1].
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Remark 5.3. The range of variation for d1 may seem small (considering that the nominal
length is 841.56 meters). But we cannot significantly reduce the length of the mooring
lines since the tension in the lines at the nominal configuration is already high. Moreover,
increasing d1 quickly activates the surge constraint. Therefore, we only allow a maximum
of 2 meters to be added.

The cost function is defined as follows:

cost ∶ Ωd = [−0.5,2] × [70,180] × [0,1] → R+
(d1, d2, d3) ↦ L(d1, d3) × c(d2)

(5.45)

where:

� L(d1, d3) is the length in meters of the mooring line:

L(d1, d3) = Linit(d3) + d1, (5.46)

where the function Linit(d3) represents the initial length of the mooring line. When
the platform is at rest, each line is composed of a part lying on the seabed and a part
linking the fairlead to the ground contact point. Initially, the first part measures
601.76m while the length of the latter depends on d3 and is computed with the
catenary equation (Chakrabarti (1987)). The initial mooring length Linit(d3) is the
sum of these lengths to which we add d1 meters to obtain L(d1, d3);

� c(d2) is the cost in euros of one meter of mooring line:

c(d2) =
⎧⎪⎪⎨⎪⎪⎩

a1(a2 × d2 − a3) − a4 if a2 × d2 − a3 < b
a5(a2 × d2 − a3) − a6 if a2 × d2 − a3 > b

(5.47)

where a1, a2, a3, a4, a5, a6, and b are confidential constants.

4.2 Definition of the model uncertainties and other parameters of the
problem

We consider that the values of the parameters xp1 , xp2 , xp3 , and xd2 introduced in sec-
tion 5.2 are uncertain. These uncertainties are represented by random variables denoted
respectively Xp1 , Xp2 , Xp3 , Xd2 and are defined as follows:

� the uncertainties on the wave heading is represented by the random variable Xp1

uniformly distributed between plus and minus 10○ around the wind turbine axis;

� to estimate the quadratic viscous drag coefficients for the surge and pitch, decay
tests are performed numerically with different codes in Robertson et al. (2020) con-
sidering the OC5-DeepCwind semi-submersible. The uncertainties resulting from
these simulations are transposed to the floater under study in this thesis to obtain
the distribution of Xp2 and Xp3 which follow uniform laws respectively on [105,106]
(in N.s2.m−2) and [3 × 1010,7 × 1010] (in N.m.s2.rad−2);

� we consider uncertainties on the fatigue law parameter KD introduced in section
5.3.1 which are represented by a random variable with distributionN (log(830),0.82)
whose parameters are chosen after the Stiff’s fatigue curve for chain (Rossi (2005))
and 0.8 is equal to twice the difference between the logarithm of the mean curve
intercept and the logarithm of the intercept of the fatigue design curve. Therefore,
the uncertainties on xd2 follow a distribution LN (log(830×BL(d2),0.82) since xd2 =
KDBL(d2)m.
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� for safety, the resistance threshold involved in the fatigue constraints is also consid-
ered uncertain and is represented by a random variable XR with XR ∼ LN (µR, σ

2
R),

µR = 1 and σR = 0.3 (Leira et al. (2005)).

Moreover, the random variables Xp1 , Xp2 , Xp3 , Xd2 , and XR are independent and we
denote Xp the random vector (Xp1 ,Xp2 ,Xp3). Their distributions are gathered in Table
5.2.

Uncertainty Distribution Unit

Xp1 (wave heading) U [−10,10] degree

Xp2 (surge quadratic viscous drag coefficient) U [105,106] N.s2.m−2

Xp3 (pitch quadratic viscous drag coefficient) U [3 × 1010; 7 × 1010] N.m.s2.rad−2

Xd2 (fatigue law parameter) LN (µd2 ,0.8
2)

XR (resistance threshold) LN (1,0.32)

Table 5.2: Distributions of Xp1 , Xp2 , Xp3 , Xd2 , and XR

Finally, we display in Table 5.3, the other parameters involved in the optimization prob-
lem including the threshold Smax appearing in the surge constraint, which is set to a
conservative value of 5% of the water depth.

Parameter Value

T (duration of the studied period) 365 × 24 × 3600(s)
∆T (duration of each subinterval of time Ii) 3 × 3600 (s)

nT (number of subintervals Ii) 2920

ns (number of sea states) 7

Smax (surge threshold) 10 (m)

Table 5.3: Parameters of the problem

4.3 Formulation of the FOWT time-dependent RBDO problem

As explained in chapter 1, constraints are imposed on the surge, the tension and the fatigue
in the lines to restrict the movements of the platform and to avoid risky configurations or
rupture of the mooring lines. The resulting time-dependent RBDO problem is formulated
as follows:

min
d∈Ωd

cost(d) such that

PXp,η ( max
t∈[0,T ]

∣S (d,Xp; t)∣ > Smax) < 10−4

PXp,η ( min
t∈[0,T ]

T l (d,Xp; t) < 0) < 10−4 , l = 1,2,3

PXd2
,Xp,XR,η (∫

T

0
Dl (d,Xd2 ,Xp; t)dt >XR) < 10−4 , l = 1,2,3.

(5.48)
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We recall that the failure probability thresholds of 10−4 are imposed by international stan-
dards (Det Norske Veritas (2013)).

Using the definition introduced in section 2.1, the surge and tension constraints are thus
extreme-based constraints while the fatigue constraints are integral-based.

We will show in the next section that under the assumptions introduced in this chapter,
the constraint reformulation described in chapter 2 can be applied to problem (5.48).
This will allow us to solve in section 5.6 the reformulated problem with AK-ECO. Thus,
no realization of the surge, the tension or the instantaneous damage processes will be
necessary to solve the problem under study.

5 Reformulation of the time-dependent constraints

The failure probabilities appearing in the surge, the tension and the damage constraints
on line l (l = 1,2,3) and at the design point d will be denoted respectively pS(d), pT l(d),
and pDl(d).

5.1 Properties of the surge and tension processes

As mentioned in section 5.2.5, under the assumptions outlined in section 5.2.6, for fixed
values of xp1 , xp2 , and xp3 , the surge process is a piece-wise stationary Gaussian process.
Over each interval Ii, it is equal to the process Si (d, xp, si; .) with mean µS (d, xp, si) and
spectral moment of order n denoted mS,n (d, xp, si).

In the same way, the tension process at the top of the line l over Ii is represented by a
Gaussian process T l

i (d, xp, si; .) with mean µT l (d, xp, si) and spectral moment of order n
denoted mT l,n (d, xp, si) (see section 5.2.5).

5.2 Reformulation of the extreme-based constraints

Reformulation of the surge constraint

The failure probability involved in the surge constraint is written as

pS(d) = PXp,η ( max
t∈[0,T ]

∣S (d,Xp; t)∣ > Smax) . (5.49)

The probability PXp,η (maxt∈[0,T ] S (d,Xp; t) > Smax) corresponds to the probability of a
horizontal shift of the platform greater than Smax meters in the opposite direction of
the wind propagation. Thus, we consider this probability negligible. Indeed, due to the
wind loads, the mean of the surge process is negative and besides, its variance is small.
Therefore, pS(d) can be approximated as:

PXp,η ( max
t∈[0,T ]

∣S (d,Xp; t)∣ > Smax) ≃ PXp,η ( max
t∈[0,T ]

−S (d,Xp; t) > Smax) . (5.50)

This approximation is justified in more details in appendix I.

Moreover, we prove in appendix J that the surge process meets the sufficient conditions to
apply the reformulation of extreme-based constraints described in section 2.3.2. Therefore,
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considering that ∆T is large enough, we can approximate the right-hand side of equation
(5.50) as follows:

pS(d) ≃ EXp

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

7

∑
j=1

exp
⎛
⎝
aTpj(d,Xp, s

j)2 −
aTpj(d,Xp, s

j) (Smax + µS (d,Xp, s
j))

√
mS,0 (d,Xp, sj)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
(5.51)

with aTpj(d, xp, sj) =

¿
ÁÁÀ2 log(Tpj

2π

√
mS,2(d,xp,sj)
mS,0(d,xp,sj)).

Reformulation of the tension constraints

The failure probability involved in the tension constraint of the l-th mooring line is defined
as:

pT l(d) = PXp,η ( min
t∈[0,T ]

T l (d,Xp; t) < 0) = PXp,η ( max
t∈[0,T ]

−T l (d,Xp; t) > 0) . (5.52)

We prove in appendix J that the tension process meets all the conditions to reformulate
the constraint. For ∆T large enough, the failure probability can thus be approximated as
follows:

pT l(d) ≃ EXp

⎡⎢⎢⎢⎢⎢⎣
Fϵ

⎛
⎜
⎝

7

∑
j=1

exp
⎛
⎜
⎝
blTpj(d,Xp, s

j)2 −
bl
Tpj
(d,Xp, s

j)µT l (d,Xp, s
j)

√
mT l,0 (d,Xp, sj)

⎞
⎟
⎠

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(5.53)

with bl
Tpj
(d, xp, sj) =

¿
ÁÁÁÀ2 log

⎛
⎝
Tpj

2π

√
mT l,2

(d,xp,sj)
mT l,0

(d,xp,sj)
⎞
⎠
.

5.3 Reformulation of the integral-based constraints

For a fixed sea state, it is commonly accepted that the instantaneous damage process
is ergodic. Thus, we will assume that for every design point d, parameters xp and xd2 ,
state sj and line l, the instantaneous process Dl

i (d, xp, xd2 , sj) is ergodic. We can thus
apply proposition 2.1 allowing to reformulate integral-based constraints and we obtain the
following approximation:

pDl(d) ≃ PXd2
,Xp,XR

⎛
⎝
XR ≤ T

7

∑
j=1

pjEη1 [D
l
1 (d,Xd2 ,Xp, s

j ; 0)]
⎞
⎠
. (5.54)

The expectation Eη1 [Dl
1 (d, xd2 , xp, sj ; 0)] can be approached using the Dirlik method

described in section 5.3.2 as:

Eη1 [D
l
1 (d, xd2 , xp, s

j ; 0)] ≃ 1

xd2
ET l (d, xp, sj) (5.55)

where ET l (d, xp, sj) is a quantity which depends on the spectral moments of the tension

process T l
1 (d, xp, sj ; .).
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Calculation of the conditional probabilities considering the uncertainties on
Xd2 and XR

We can simplify the estimation of the fatigue failure probabilities by calculating analyti-
cally the probabilities on Xd2 and XR as follows:

PXd2
,Xp,XR

⎛
⎝
XR ≤ T

7

∑
j=1

pj
1

Xd2

ET l (d,Xp, s
j)
⎞
⎠

(5.56)

=PXd2
,Xp,XR

⎛
⎝
XRXd2 ≤ T

7

∑
j=1

pjET l (d,Xp, s
j)
⎞
⎠

(5.57)

=PXd2
,Xp,XR

⎛
⎝
log(XR) + log(Xd2) ≤ log

⎛
⎝
T

7

∑
j=1

pjET l (d,Xp, s
j)
⎞
⎠
⎞
⎠

(5.58)

=EXp

⎡⎢⎢⎢⎢⎣
PXd2

,XR∣Xp

⎛
⎝
log(XR) + log(Xd2) ≤ log

⎛
⎝
T

7

∑
j=1

pjET l (d,Xp, s
j)
⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
(5.59)

=EXp

⎡⎢⎢⎢⎢⎢⎣
Φ
⎛
⎜
⎝

log (T ∑7
j=1 p

jET l (d,Xp, s
j)) − (µR + µd2)√

σ2
R + σ2

d2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
. (5.60)

We used in the last equation that XR and Xd2 are both log-normal random variables with
XR ∼ LN (µR, σ

2
R) and Xd2 ∼ LN (µd2 , σ

2
d2
).

5.4 Reformulated problem

The properties of the studied problem and the reformulation procedure enable to refor-
mulate the FOWT time-dependent RBDO problem (5.48) as follows:

min
d∈Ωd

cost(d) such that

EXp

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

7

∑
j=1

exp
⎛
⎝
aTpj(d,Xp, s

j)2 −
aTpj(d,Xp, s

j) (Smax + µS (d,Xp, s
j))

√
mS,0 (d,Xp, sj)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
< 10−4

EXp

⎡⎢⎢⎢⎢⎢⎣
Fϵ

⎛
⎜
⎝

7

∑
j=1

exp
⎛
⎜
⎝
blTpj(d,Xp, s

j)2 −
bl
Tpj
(d,Xp, s

j)µT l (d,Xp, s
j)

√
mT l,0 (d,Xp, sj)

⎞
⎟
⎠

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
< 10−4 , l = 1,2,3

EXp

⎡⎢⎢⎢⎢⎢⎣
Φ
⎛
⎜
⎝

log (T ∑7
j=1 p

jET l (d,Xp, s
j)) − (µR + µd2)√

σ2
R + σ2

d2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
< 10−4 , l = 1,2,3.

(5.61)
We recall that to evaluate the quantities aTpj (d, xp, sj), µS (d, xp, sj), bl

Tpj
(d, xp, sj),

µT l (d, xp, sj), and ET l (d, xp, sj), the spectral moments of the processes S1 (d, xp, sj , .)
and T l

1 (d, xp, sj , .) are required. All these spectral moments are output of a single simu-
lation. More precisely, this simulation provides the RAOs and the means of the processes
from which the spectral moments and the Dirlik fatigue approximation are computed as
explained in sections 5.2.5 and 5.3.2.

It takes about 30 seconds to run the code providing these spectral moments. It is still con-
sidered too computationally expensive since one estimation of the constraints with Monte
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Carlo and a sample size of 30000 points would require several days (30000×7×0.5/60/24 > 72
days). Even a variance reduction technique would be too expensive. Indeed, assuming
that a sample of only 100 points would be enough, one evaluation of one constraint would
still take about 6 hours (100 × 7 × 0.5/60 ≃ 5.8). Thus, considering 7 constraints and as-
suming that the optimizer needs about 50 evaluations of each constraint to converge, it
would take more than 85 days (100 × 7 × 0.5/60 × 7 × 50 > 85) to solve the reformulated
problem.

We therefore solve the reformulated problem with AK-ECO in the next section.

6 Resolution of the reformulated problem

We solve in this section the reformulated FOWT problem (5.61) with AK-ECO and three
comparison methods.

6.1 Implementation of AK-ECO

Definition of the expensive functions

The expensive functions involved in the reformulated constraints are MS , MT l , and MDl

(l = 1,2,3) with:

MS (d, xp, sj) = aTpj(d, xp, sj)2 −
aTpj(d, xp, sj) (Smax + µS (d, xp, sj))√

mS,0 (d, xp, sj)
(5.62)

MT l (d, xp, sj) = blTpj(d, xp, s
j)2 −

bl
Tpj
(d, xp, sj)µT l (d, xp, sj)
√

mT l,0 (d, xp, sj)
, l = 1,2,3 (5.63)

MDl (d, xp, sj) = ET l (d, xp, sj) , l = 1,2,3. (5.64)

Indeed, as mentioned in the previous section, evaluating all of these functions for a set of
inputs d, xp, and sj requires a call to a simulator which provides the RAOs and the means
of the surge and tension processes.

Definition of the augmented space and dimension reduction

We observe that the functions MS , MT l and MDl (l = 1,2,3) are defined on the same
input space. We thus can consider a common augmented space for all the constraints. As
explained in the introduction of AK-ECO, this enables us to create a single DoE of the
augmented space and to use the outputs of every simulation to calibrate and enrich all
the metamodels during AK-ECO.

A first option for the definition of the augmented space is the following:

Ωaug = Ωd ×Ωaug
p ×Ωhs ×Ωtp ×Ωu (5.65)

where Ωd is the design space and, denoting F −1pi the quantile function of Xpi (i = 1,2,3),

Ωaug
p =

3

∏
i=1
[F −1pi (α), F

−1
pi (1 − α)] (5.66)
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with α a degree of confidence chosen by the user and

Ωhs = {h
j
s, j = 1,⋯,7} , Ωtp = {tjp, j = 1,⋯,7} , Ωu = {uj , j = 1,⋯,7}. (5.67)

This augmented space Ωaug is therefore of dimension 9: Ωd ⊂ R3, Ωaug
p ⊂ R3, and Ωhs , Ωtp ,

and Ωu are subsets of R.

However, we recall that only 7 sea states s1,⋯, s7 are considered in our problem and we
can observe in Table 5.1 that these sea states are lumped such that hs determines tp and
u. Thus, it seems natural to consider the following functions:

M bis
S (d, xp, hjs) =MS (d, xp, sj) (5.68)

M bis
T l (d, xp, hjs) =MT l (d, xp, sj) , l = 1,2,3 (5.69)

M bis
Dl (d, xp, hjs) =MDl (d, xp, sj) , l = 1,2,3 (5.70)

and the augmented space Ωaug
bis = Ωd × Ωaug

p × Ωhs . This permits to reduce the dimension
of the augmented space from 9 to 7.

Remark 5.4. This dimension reduction of the augmented space is reasonable because
the 7 sea states considered are well ordered. In the case where we would consider a full
scatter diagram, this approach would not make sense and it would be more appropriate
to conserve the augmented space in dimension 9.

To calibrate the first kriging models of M bis
S , M bis

T l , M
bis
Dl (l = 1,2,3), a LHS maximin of 60

points of Ωd ×Ωaug
p is carried out. A uniform sample of 60 points of Ωhs is concatenated

to the LHS which provides the initial DoE of the augmented space.

Enrichment procedure for the fatigue constraints

Except that no uncertainties are considered on the design variables, the reformulated
extreme-based constraints of the FOWT problem have exactly the same formulation as
the one given in section 2.3.2. The enrichment procedure can thus be implemented as
described in section 3.2.2.

For the reformulated fatigue constraints however, the analytic calculation of the probabil-
ities on Xd2 and XR presented in section 5.5.3 leads to a reformulation of these constraints
different from the reformulation of the integral-based constraint described in section 2.3.3.
Indeed, the reformulated fatigue constraints of the FOWT problem are given by:

EXp

⎡⎢⎢⎢⎢⎢⎣
Φ
⎛
⎜
⎝

log (T ∑7
j=1 p

jMDl (d, xp, sj)) − (µR + µd2)√
σ2
R + σ2

d2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
< 10−4 (5.71)

while the reformulated integral-based constraint in the introduction of AK-ECO was pre-
sented as follows:

EXd,Xp

⎡⎢⎢⎢⎢⎣
FrI

⎛
⎝

ns

∑
j=1

Tpj (MI (Xd,Xp, s
j))
⎞
⎠

⎤⎥⎥⎥⎥⎦
< ps. (5.72)
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This difference requires a slight modification of the enrichment procedure described in
section 3.2.2. Indeed, as indicated in the perspectives of chapter 3, the AK-ECO procedure
adapts easily to any constraint being written:

EXd,Xp,Xr [F0 (
ns

∑
i=1

Fi (M (Xd,Xp,Xr)))] < ps, (5.73)

if F0 and Fi (i = 1,⋯, ns) are monotonic functions and M a function whose evaluation
requires a call to an expensive simulator.

6.2 The reference method: MC+K1600

Since it would be too expensive to solve the reformulated problem using Monte Carlo
directly with the costly functions MS , MT l , and MDl (l = 1,2,3), the method providing
the reference results consist in calibrating kriging models of the costly functions from a
large DoE.

To build these metamodels, a LHS maximin of 1600 points of Ωaug
bis is created following the

procedure for the initial DoE of AK-ECO. Kriging models of M bis
S , M bis

T l , and M bis
Dl (l =

1,2,3) are then calibrated. The reformulated problem is then solved with an optimization
algorithm and the constraints are evaluated with Monte Carlo on the kriging models during
each iteration. No enrichment of the metamodels is performed in this method. Thus, 1600
calls to the expensive simulator are needed for the resolution of the reformulated problem.
We will denote this method MC+K1600.

6.3 Implementation of SORA and the Stieng method

The resolution of the reformulated problem with RIA and PMA being too computationally
expensive, we will only present the results obtained with SORA and Stieng.

We recall that to apply these approaches, one must consider a RBDO problem with con-
straints expressed in terms of failure probabilities. We thus reformulate the problem (5.61)
as follows:

min
d∈Ωd

cost(d) such that

PXp,Xϵ

⎛
⎝
Xϵ ≤

7

∑
j=1

exp
⎛
⎝
aTpj(d,Xp, s

j)2 −
aTpj(d,Xp, s

j) (Smax + µS (d,Xp, s
j))

√
mS,0 (d,Xp, sj)

⎞
⎠
⎞
⎠
< 10−4

PXp,Xϵ

⎛
⎜
⎝
Xϵ ≤

7

∑
j=1

exp
⎛
⎜
⎝
blTpj(d,Xp, s

j)2 −
bl
Tpj
(d,Xp, s

j)µT l (d,Xp, s
j)

√
mT l,0 (d,Xp, sj)

⎞
⎟
⎠

⎞
⎟
⎠
< 10−4 , l = 1,2,3

PXp,Xr

⎛
⎜
⎝
Xr ≤

log (T ∑7
j=1 p

jET l (d,Xp, s
j)) − (µR + µd2)√

σ2
R + σ2

d2

⎞
⎟
⎠
< 10−4 , l = 1,2,3

(5.74)
where Xϵ is a random variable with an exponential distribution of parameter 1 and
Xr ∼ N (0,1).

We draw the reader’s attention to the fact Xr represents a random variable introduced
artificially to obtain a formulation of the constraints with failure probabilities whereas XR
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is the random variable which models the uncertainties on the fatigue threshold.

We use SQP (Kraft (1988)) for solving the inverse reliability analyses in SORA and Stieng
because we observed better performance of this approach compared to HMV (introduced
in section 1.2.1) on the oscillator problem.

A Sobol sequence (Sobol’ (1967)) of 30 points of the 3D output space of Xp is used to
calibrate the kriging models of the first cycle of Stieng. For the second cycle, the size of
the sequence is 90 and 300 for the next ones.

6.4 Numerical results

For AK-ECO, MC+K1600, and Stieng, a kriging with constant trend and an anisotropic
3/2-Matérn covariance kernel is used for every metamodel. At each calibration of a meta-
model during AK-ECO and Stieng, its hyperparameters are updated. The points of the
successive DoEs are normalized in [0,1] and each hyperparameter is selected in [10−5,10]
using the multistart Truncated Newton Constrained solver implemented in OpenTURNS
from 20 initial points. In AK-ECO and MC+K1600, the variable hs is considered as con-
tinuous by the kriging model.

The optimization algorithm applied for each approach is COBYLA (Powell (1994)) since
the derivative of the cost function is not known and this optimizer provides good results
when solving the oscillator problem.

For AK-ECO, SORA and Stieng, the cycles of optimization stop if the stopping condition
introduced in section 3.2.2 is satisfied for ϵd and ϵcost equal to 10−3.

The same Monte Carlo sample of Xp of size 30000 is used in MC+K1600 and AK-ECO
to estimate the reformulated failure probabilities.

The results obtained by each approach, considering an initial design point at the center
of the design space (0.75,125,0.5) are given in Table 5.4. The design point obtained by
each method is denoted dmin and cost(dmin) is the cost function evaluated at this point
normalized between [0,1]. The surge, tension, and fatigue failure probabilities at dmin

obtained by each method have been evaluated with Monte Carlo and the kriging mod-
els of the MC+K1600 method. The results are denoted pK1600

S (dmin), pK1600
T l (dmin) and

pK1600
Dl (dmin) (l = 1,2,3). Finally, the number of simulations performed during the reso-

lution of the studied problem with each method is denoted ncall. The execution time of
every method is discussed in section F.2 of appendix F.
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MC+K1600 SORA Stieng AK-ECO

dmin (0.862,108.86,0) (2,141.22,0) (2,140.58,0) (0.947,109.52,0)

cost(dmin) 0.2818 0.5883 0.5819 0.2867

pK1600
S (dmin) 1.0 × 10−4 0 0 0.9 × 10−4

pK1600
T l (dmin) (l = 1,2,3) 0 0 0 0

pK1600
Dl (dmin) (l = 1,2) 0 0 0 0

pK1600
D3 (dmin) 1.0 × 10−4 0.2 × 10−4 0.2 × 10−4 0.9 × 10−4

ncall 1600 16394 5754 305

Table 5.4: Results of AK-ECO and the comparison methods

We observe that each method provides a reliable optimum. However, the design proposed
by AK-ECO is much closer to the reference result obtained with MC+K1600 than the ones
proposed by SORA and Stieng. This difference is due to the inverse reliability analyses
performed during these methods which underestimate the reliability associated with the
last constraint. This leads to a sub-optimal design point provided by these approaches.
Furthermore, AK-ECO requires much less evaluations of the simulator since only 305 calls
were needed (60 for the initial DoE and 245 for the enrichment procedure during the op-
timization cycles).

For SORA, Stieng and AK-ECO, Figure 5.6a shows the evolution over the consecutive

cycles of optimization of ∣cost(dk−1) − cost(dk)∣ where dk is the design point obtained at

the end of the k-th cycle. Figure 5.6b displays the evolution of log (∥dk − dk−1∥) where dk

refers to the normalization of dk. For SORA and Stieng, it took 4 optimization cycles to
converge whereas 7 cycles were necessary for AK-ECO. During every cycle of AK-ECO,
35 enrichments were performed.

(a) Evolution of log (∣cost (dk−1) − cost (dk)∣) (b) Evolution of log (∥dk − dk−1∥)

Figure 5.6: Evolution of the stopping condition for SORA, Stieng and AK-ECO

At the end of each cycle of SORA, Stieng and AK-ECO, the failure probabilities at dk
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have been evaluated with MC and the kriging models used in MC+K1600. Only the esti-
mations of the first failure probability and the last one are displayed in Figure 5.7. They
are denoted respectively p S and p D3 in the legend of the figure. All the other failure
probabilities were always null.

Figure 5.7: Evolution of the Monte Carlo estimation of the failure probabilities for SORA,
Stieng and AK-ECO

We observe that the design points obtained at the end of every cycle of AK-ECO and
Stieng are reliable while it took 3 cycles for SORA to provide a reliable design. The surge
failure probability estimated at the design point proposed at the end of each cycle of Stieng
is zero. Therefore, it does not appear on the figure.

To ensure that the minimum provided by MC+K1600 is a global minimum, the resolution
of the problem has been repeated from a LHS of 9 points of the design space. The resulting
designs are always the same.

The multistart resolution has also been conducted with AK-ECO and the results are dis-
played in section G.3 of appendix G. The same initial DoE of 60 points is considered
for every resolution. The design points obtained by all the resolutions are close and the
number of additional calls to the simulator varies from 193 to 476 with a mean number
per resolution at 294.6.

To validate the estimation of the reformulated failure probabilities computed with the
kriging models of MC+K1600, the reformulated failure probabilities have also been eval-
uated from the real expensive functions MS , MT l , MDl (l = 1,2,3) and the same Monte
Carlo sample of Xp of size 30000. Theses estimations are denoted pMC

S , pMC
T l , and pMC

Dl

(l = 1,2,3). Due to the limited computing time budget, only the failure probabilities at
the design points obtained with MC+K1600 and AK-ECO have been estimated and the
results are shown in Table 5.5.
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MC+K1600 AK-ECO

pMC
S (dmin) 1.06 × 10−4 0.97 × 10−4

pMC
T l (dmin) (l = 1,2,3) 0 0

pMC
Dl (dmin) (l = 1,2) 0 0

pMC
D3 (dmin) 1.06 × 10−4 0.98 × 10−4

Table 5.5: Estimation of the reformulated failure probabilities at the design points obtained
with MC+K1600 and AK-ECO

We observe from the estimations displayed in Table 5.5, that the threshold probability
of 10−4 is slightly crossed at the design point obtained with MC+K1600 whereas AK-
ECO stopped at a reliable point. The estimations of probabilities from the final kriging
models of AK-ECO (calibrated from a DoE of 305 points) are therefore more accurate
than those from the krigings used in MC+K1600 (calibrated from a DoE of 1600 points).
These results also assure that even if the design points provided by SORA and Stieng are
reliable, they are not optimal.

Remark 5.5. The reformulated failure probabilities involved in problem (5.61) are written
as expectations of strictly positive random variables. However, in Table 5.4 and Table 5.5,
for different design points, some of these expectations are estimated to be zero. We remark
that these values correspond to numerical estimations, they are the results of numerical
approximations which depend on the machine precision.

6.5 Interpretation of the results

We recall that the coordinates of the design point d = (d1, d2, d3) correspond to:

� the length d1 of the mooring line that can be added to, or deducted from, the nominal
mooring length of 841.56 meters;

� the mass per unit length d2;

� the position of the fairlead d3. It is equal to 0 if the connection is at the bottom of
the columns and to 1 if it is at the top.

The nominal configuration proposed in Robertson et al. (2014a) is (0,113.35,3/16) and
the normalized cost function is equal to 0.316 at this point. The configuration proposed
by AK-ECO is (0.947,109.52,0) and the normalized cost function is equal to 0.287 at this
point. Therefore, the optimal configuration is obtained when 0.947m are added to the
mooring lines, with a mass per unit length of 109.52 kg/m and when the mooring lines
are connected to the bottom of the columns. Moreover, considering the different sources
of uncertainty of the studied problem, the nominal configuration is conservative since a
reliable and less expensive configuration is obtained with AK-ECO.

This conclusion is however relative since only a very limited number of sea states has been
considered. Moreover, the much larger Design Load Cases required by the standards,
included that of Ultimate Limit States have not been taken into account. However, this
study case has illustrated how the new approach proposed in this thesis could be used for
a reliable estimation of the fatigue risk with a limited CPU cost.
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7 Perspectives

In this chapter, we apply the methodology introduced in chapter 2 and 3 to the FOWT
problem (5.48). First, the constraints are reformulated and then we solve the reformulated
problem with AK-ECO. The implementation of this approach relies on modeling choices
detailed in section 5.2.6 leading to Gaussian output processes. We discuss in this section
the perspectives of work when a full scatter diagram is considered to represent the en-
vironmental conditions and when the modeling framework implies non-Gaussian output
processes.

7.1 Concerning the number of sea states considered

The decision to model the environmental conditions with only 7 sea states was made to
simplify the problem studied.

Besides the fact that the approximations described in section 5.5 become less precise when
the number of sea states increases (since this precision increases w.r.t Tpj), the reformula-
tion of the constraints does not depend on the number of sea states considered. Regarding
AK-ECO, our approach is already implemented to handle large number of sea states even
if some improvements could be considered to decrease the execution time (we refer to
section 3.4 for more details).

Moreover the simple dimension reduction proposed in section 5.6.1 is not reasonable when
dealing with a full scatter diagram. If a dimension reduction was considered on the sea
state variables, the latent variable method described in Zhang et al. (2020d) could for
instance be investigated.

7.2 Considering non-constant wind forces

In this chapter, the loads on the structure due to the wind are replaced by constant forces.
This simplification is made because the current version of the DeeplinesTM software does
not provide the transfer functions considering a turbulent wind. A perspective for the
FOWT problem is therefore to implement a spectral approach enabling to consider non-
constant wind loads as proposed in Pegalajar-Jurado et al. (2018).

7.3 When the output processes are not Gaussian

The linearization of the equation of motion described in section 5.2.3 and leading to
Gaussian output processes is not always feasible. In particular, the outputs are no longer
Gaussian when:

� considering extreme conditions where the linearization is too rough to be acceptable;

� second-order wave forces are considered.

In this case, the consequences are different for the extreme and the integral based con-
straints (i.e. for the surge or tension constraints and the fatigue constraints).

Concerning the extreme-based constraints

The reformulation of extreme-based constraints is presented in this thesis when a piece-
wise stationary Gaussian process is involved in the failure probability. If the process is no
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longer Gaussian, theorem 2.1 cannot be applied. However, the reformulation is based, for
the surge constraint, on the approximation of the conditional probability:

Pη ( max
t∈[0,Tpj]

−S1 (d, xp, sj ; t) > Smax) (5.75)

given xp. Thus, if one is able to approximate this probability for any d, xp, s
j , the refor-

mulation of the constraint could be carried out and the AK-ECO enrichment procedure
would need to be adapted to the resulting reformulated constraint. The same reasoning
could be applied to the tension constraints as well. This means that extreme value theory
for stationary non-Gaussian processes should be considered (Azäıs and Wschebor (2009)).

Concerning the integral-based constraints

Our approach concerning the fatigue constraints is mainly based on the ergodicity of the
instantaneous damage process. The Gaussian property of the tension processes is only
used to apply the Dirlik method and calculate the total damage over Ii:

Eηi [D
total,l
Ii

(d, xd2 , xp, si)] (5.76)

at (d, xd2 , xp, si) as explained in section 5.3.2.

This method enables us to quickly evaluate this expectation but our methodology can

already be applied with any method being able to evaluate Eηi [D
total,l
Ii

(d, xd2 , xp, si)].

Concerning the error of the Dirlik method

Although the error of the Dirlik method is not large compared to the time-domain approach
(see section H.2 in appendix H), it is possible to consider uncertainties on the Dirlik
approximation ET l (d, xp, si) introduced in section 5.3.2. A simple way to do so, is to
add a new random variable denoted XE , for example XE ∼ U[0.9,1.1], and to consider
XE ×ET l (d, xp, si) which would be in this case a random variable uniformly distributed
between 0.9 ×ET l (d, xp, si) and 1.1 ×ET l (d, xp, si).
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8 Conclusion

The work of this thesis was motivated by the need for an efficient method to identify a
configuration of a semi-submersible FOWT mooring system that minimizes its cost. This
configuration must also restrict the movements of the structure, avoid compression in the
mooring lines and withstand fatigue damage. In this thesis, the hydrodynamic forces act-
ing on the structure are linearized. Moreover, constant wind forces are considered and the
second-order wave effects are not taken into account. We consider that for FLS constraints,
a frequency calculation provides a good proxy for the fatigue estimation. As it is usual in
offshore engineering, we consider a random stationary Gaussian sea elevation process. To
ensure the reliability of the solution, we also represent uncertainties on parameters of the
model with random variables.

As a result, the constraints of the optimization problem depend on random variables and
on piece-wise stationary Gaussian processes. Thus, we face an optimization problem with
a fast-to-evaluate cost function and probabilistic constraints involving time-dependent pro-
cesses. We classify these constraints into two categories: the extreme-based constraints
and the integral-based constraints involving respectively the maximum and the integral
over a period [0, T ] of a random process. Finally, the threshold failure probability imposed
by international standards is 10−4. Therefore, the probability estimations need to be very
accurate to assure the reliability of the proposed configuration.

We have noticed from the state of the art presented in chapter 1, that the methods en-
abling to solve this problem require to sample realizations of the processes involved in
the constraints. We decide that this approach is too computationally expensive in our
case and, instead of solving the problem in its initial formulation, we introduce a two-step
methodology.

First, we use the characteristics of the constraints to reformulate them in a way that is
easier to estimate. The period [0, T ] is divided into subintervals of length ∆T during
which the output processes involved in the constraints are Gaussian stationary processes.
The reformulation consists in applying limit theorems which provide the asymptotic distri-
butions of the maximum and the integral of these processes when ∆T is large. In chapter
2, we use the extreme value theory to reformulate the extreme-based constraints. The
reformulation of integral-based constraints relies on the ergodicity of the process involved.

The reformulated problem is simpler to solve since it involves only constraints with time-
independent expectations depending on a small number of random variables. To estimate
these expectations, it is necessary to evaluate the spectral moments of the processes in-
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volved in the initial constraints. Since the evaluation of these spectral moments requires
the use of a time-consuming simulation, estimating these expectations is still expensive.

Therefore, we propose in chapter 3 a new efficient approach to solve the optimization prob-
lem with reformulated extreme and integral based constraints that relies on an adaptive
kriging strategy. This method is called AK-ECO for Adaptive Kriging for Expectation
Constraints Optimization. It starts with the calibration of initial metamodels of the ex-
pensive functions involved in the reformulated constraints. Then, optimization cycles are
carried out. During each cycle, an enrichment of the metamodels is performed and the re-
formulated problem is then solved starting from the design point obtained at the previous
cycle. The expectations in the constraints are estimated by using Monte Carlo simulations
and by replacing the expensive functions by their enriched metamodels.

This two-step methodology combining the constraints reformulation and AK-ECO is first
applied to an academic problem involving a harmonic oscillator and presenting all the
characteristics of the FOWT problem in chapters 2 and 3 and then to the FOWT problem
in chapter 5. For the latter, our approach provides a configuration that is less expensive
than the nominal configuration and that satisfies the reliability constraints. In both cases,
AK-ECO is compared with state-of-the-art algorithms and proves to be very efficient.

Several features of this method contribute to this performance:

� first, the metamodel strategy is adapted to the reformulated constraints. Indeed,
the reformulated constraints are written as:

EXd,Xp,Xr [F0 (
ns

∑
i=1

Fi (M (Xd,Xp,Xr)))] < ps, (5.77)

where F0 and Fi (i = 1,⋯, ns) are monotonic functions, M is a function whose
evaluation requires a call to an expensive simulator, and ps is the failure probability
threshold. Equation (5.77) corresponds to the general reformulation introduced in
chapter 2 where Xd, Xp, and Xr are random vectors representing respectively the
uncertainties on the design variables, on model parameters, and on thresholds. In
the FOWT problem, ns corresponds to the number of sea states considered and we
only consider uncertainties on model parameters.

In AK-ECO, the metamodel is built to replace M . Hence, one enrichment of the
metamodel corresponds to one call to the simulator. The approaches of the literature
are based on a formulation of the constraints involving a failure probability written
as:

PXd,Xp,Xr (g (Xd,Xp,Xr) < 0) < ps. (5.78)

The expectation of equation (5.77) can be written as a probability. However, with
these approaches ns simulations are needed for one evaluation of g;

� in the FOWT problem, each simulation provides information about all the costly
functions involved in each constraint. Hence, a common DoE is shared by the meta-
models in AK-ECO and each simulation is used to enrich all of them.

To improve the accuracy of the metamodels used during the first cycle of AK-ECO, a
procedure of global enrichment (GE) is introduced in chapter 4. Contrary to the enrich-
ments performed during the cycles of AK-ECO which aim at improving the estimation of
the reformulated constraints only locally, the global enrichment improves the metamodels
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such that the boundary of the feasible domain over the entire design space is accurately
predicted. The benefits of this global enrichment have been demonstrated on the oscillator
problem.

Moreover, a new sensitivity analysis is proposed in 4 to provide a better understanding of
the influence of the input parameter uncertainties on the constraints and is called RBDO-
oriented GSA. Since the impact of these uncertainties can vary depending on the design
point considered, a set of design points is first selected in a sub-domain (called critical
domain) of the design space containing the feasible domain boundary. For each selected
design point, the sensitivity of the constraints to each input random variable is measured
with Sobol indices. We then aggregate the information of these sensitivity analyses with
the introduction of cumulative indices. To reduce the number of calls to the simulator, it is
recommended to perform the RBDO-oriented GSA after the global enrichment phase with
the enriched kriging models (once the metamodels enriched, the GSA method does not
require any additional expensive simulation). This approach is applied to the oscillator
problem to reveal that all the input random variables involved have a strong influence on
the constraints.

9 Perspectives

9.1 Concerning the reformulation of the constraints

The approximation error made with the reformulation of the extreme and integral based
failure probabilities is discussed in appendix. However, we have not conducted numerical
experiments to compare the values of the initial failure probabilities and of the reformu-
lated ones. The results of this analysis for the oscillator and the FOWT problems would
provide a better understanding on how the error varies with respect to the different pa-
rameters of the problem and in particular w.r.t ∆T .

Although the reformulation of the constraints is introduced primarily to solve the FOWT
problem, its presentation in chapter 2 is formulated in such a way that it can be applied to
many time-dependent failure probabilities involving maximums and integrals of piece-wise
stationary Gaussian processes.

Regarding the reformulation of extreme-based constraints, it would be interesting to ex-
tend the reformulation to non-Gaussian processes. The resulting reformulation could then
be applied to the FOWT problem when non-Gaussian output processes are involved.
Concerning the integral-based constraints, the reformulation relies on the ergodicity of
the time-dependent process and can therefore be generalized to non-Gaussian processes.
However, in this case, the Dirlik method will no longer be suitable for the damage assess-
ment and another approach (such as the time-domain approach described in section 5.3.1)
will have to be considered for the fatigue estimation.

Our methodology could also be applied to other fields of research on optimization problems
with constraints involving the maximum or the integral of random processes over a long
period of time. We can refer for instance, to the evaluation of the risk of failure of
structures due to earthquake (Zentner (2010)).
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9.2 Concerning AK-ECO and the global enrichment

As explained in section 3.4, the enrichment strategy of AK-ECO and GE is introduced for
reformulated extreme and integral based constraints but can be applied to any constraint
formulated as in equation (5.77).

Although these methods are ready to handle problems with large ns, they currently rely on
a coupling with Monte-Carlo. A variance reduction technique such as Importance Sam-
pling would accelerate the enrichment procedure and the evaluation of the constraints.
Besides, a multipoint enrichment would reduce the number of calibrations to be per-
formed. The latter represents an important part of the post-processing time especially
when the DoE size becomes large. In addition, a multipoint procedure would take advan-
tage of parallel computing. We also propose in section 3.4, perspectives to improve the
high and low estimations of the reformulated constraints and we discuss different kriging
strategy improvements that could be used to deal with large dimension problems.

Finally, the enrichment procedure of AK-ECO is implemented to be coupled with a lo-
cal optimization algorithm since the enrichments aim to improve locally the constraint
estimation at the design point obtained with the previous optimization cycle. To identify
a global optimum, a multistart resolution is performed in this thesis. If one wishes to
couple AK-ECO with a global optimization algorithm (Picheny (2014)), the enrichment
procedure will need to be adapted.

We refer to sections 3.4 and 4.4.1 for more details.

9.3 Concerning the RBDO-oriented GSA

Different improvements of the sensitivity analysis proposed in this thesis are discussed in
section 4.4.2. Among the possible perspectives, the cost function could be taken into ac-
count in the definition of the critical domain. Besides, the critical domain definition could
also be involved in the accuracy criteria of the GE to provide more suitable metamodels
for the RBDO-oriented GSA.

Due to time constraints, the RBDO-oriented GSA proposed in this thesis could not be
tested on other cases than the oscillator problem. To better understand the validity
domain of this method, it would be interesting to apply it to other cases and in particular
to problems depending on a larger number of random variables.

9.4 Concerning the FOWT problem

The objective of this thesis was to tackle a simplified FOWT problem to identify an effi-
cient methodology that could then be improved to deal with complex industrial problems.
Some modeling choices have been made in this sense. The continuity of this thesis work
would thus be to study the performance of our approach to more realistic problems.

In particular, the first step would be to consider a full scatter diagram and evaluate the
effectiveness and limitations of our methodology in this case.

The next step would be to consider non-constant wind forces, non-linearized hydrodynamic
forces and second-order wave loads which would leads to non-Gaussian output processes.
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We would then be confronted with the real complexity of the industrial case. As we
have mentioned, dealing with Fatigue Limit State constraints with our methodology is
already feasible in this case. On the other hand, extreme-based constraints, such as ULS
constraints, would require more effort in order to evaluate the failure probability involving
maximums of non-Gaussian processes.
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Approximation error made with
the reformulation of failure
probabilities involving stationary
processes
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1 Extreme-based failure probability reformulation error

Bounds can be obtained on the approximation (2.17) using the theorem 2.2 of Kratz and
Rootzén (1997). We present here the theorem for a process ξ satisfying the conditions of
theorem 2.1 and we show how it can be applied to control the reformulation error.

1.1 Rate of convergence of theorem 2.1

Theorem A.1 (Theorem 2.2 of Kratz and Rootzén (1997)). Let ξ be the process intro-
duced in theorem 2.1 satisfying condition (2.11) and the following conditions:

E [(ξ′(t) − ξ′(0))]2 = 2 (k′′ξ (τ) − k
′′
ξ (0)) ≤ cτ

2, τ ≥ 0 (A.1)

∣kξ(τ)∣ ≤ Ct−α, ∣kξ(τ)∣ + k′ξ(τ)
2 ≤ C0t

−α, τ ≥ 0 (A.2)

for some α > 2 and constants c, C, C0. Then there is a constant K which depends on kξ
but not on u or T such that, for T ≥ T0 > 1,

∣P( max
t∈[0,T ]

ξ(t)
√
mξ,0

≤ u) − exp(−
√

mξ,2

mξ,0
Tµ(u))∣ ≤K

log (
√

mξ,2

mξ,0
T)

1+1/α

(
√

mξ,2

mξ,0
T)

δ
(A.3)
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with µ(u) = 1
2πe
−u2

2 , δ =min{1/2, infτ≥0 ρ(τ)} and ρ(τ) =
(1−

kξ(τ)
mξ,0

)
2

1− 1

m2
ξ,0

kξ(τ)2+ 1
mξ,0mξ,2

k′
ξ
(τ)∣k′

ξ
(τ)∣

.

When the process ξ is known through its spectral density Kξ, conditions (A.1) and (A.2)
are met if we have:

mξ,4 <∞, (A.4)

Kξ ∈ C3,K
(i)
ξ and ωK

(j)
ξ are integrable for i = 0,1,2,3 and j = 0,1,2 (A.5)

with K
(i)
ξ the i-th derivative of Kξ.

Proposition A.1. If a process ξ meets all the conditions of theorem A.1, it follows that
for all xr ∈ R:

∣P( max
t∈[0,T ]

ξ(t) ≤ xr) − exp(−e
a2T−

aT xr√
mξ,0 )∣ ≤K

log (2π T
Tc
)
1+1/α

(2π T
Tc
)
δ

+ exp
⎛
⎝
− T
Tc

exp
− x2r

2mξ,0
⎞
⎠
.

(A.6)

with aT =
√

2 log ( T
Tc
) and Tc = 2π

√
mξ,0

mξ,2
.

Proof A.1 (Proof of proposition A.1). Let us prove the preliminary result:

exp(−e
a2T−

aT xr√
mξ,0 ) ≤ exp(− T

Tc
exp(− x2r

2mξ,0
)) , ∀xr ∈ R. (A.7)

We have, ∀xr ∈ R:

a2T − aT
xr√
mξ,0

+ x2r
2mξ,0

≥ min
x′r∈R

a2T − aT
x′r√
mξ,0

+ x′r
2

2mξ,0
=
a2T
2

(A.8)

⇒ exp(a2T − aT
xr√
mξ,0

+ x2r
2mξ,0

) ≥ T

Tc
(A.9)

⇒ exp(a2T − aT
xr√
mξ,0

) ≥ T

Tc
exp(− x2r

2mξ,0
) (A.10)

⇒ exp(− exp(a2T − aT
xr√
mξ,0

)) ≤ exp(− T
Tc

exp(− x2r
2mξ,0

)) (A.11)

It follows from this result and theorem A.1 with u = xr√
mξ,0

that:

∣P( max
t∈[0,T ]

ξ(t) ≤ xr) − exp(−e
a2T−

aT xr√
mξ,0 )∣ (A.12)

≤ ∣P( max
t∈[0,T ]

ξ(t) ≤ xr) − exp(−
T

Tc
exp(− x2r

2mξ,0
))∣

+ ∣exp(−e
a2T−

aT xr√
mξ,0 ) − exp(− T

Tc
exp(− x2r

2mξ,0
))∣

(A.13)

≤ ∣P( max
t∈[0,T ]

ξ(t) ≤ xr) − exp(−
T

Tc
exp(− x2r

2mξ,0
))∣ + exp(− T

Tc
exp(− x2r

2mξ,0
)) (A.14)

≤K
log (2π T

Tc
)
1+1/α

(2π T
Tc
)
δ

+ exp(− T
Tc

exp(− x2r
2mξ,0

)) (A.15)
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1.2 Application of proposition A.1 to extreme-based failure probability
approximation

Proposition A.2. We denote by frE the probability density function ofXrE and Tc (xd, xp) =

2π

√
mY,0(xd,xp)
mY,2(xd,xp) . We assume the following conditions:

(1) ∃K,α, δ such that ∀xd, xp, the process Y (xd, xp; .) satisfies the conditions of theorem
A.1,

(2) ∃T1 > 0, T2 > 0,m1 > 0 such that ∀xd, xp, T1 ≤ Tc (xd, xp) ≤ T2 and m1 ≤mY,0 (xd, xp),

(3) ∃c1 > 0, cr > 0 such that ∀x, ∣x∣ ≥ c1, frE(x) ≤ cr exp (− x2

m1
).

Then, if
√
m1 log(T ) > c1, the error made in the approximation (2.17) can be bounded as

follows:

RRRRRRRRRRR
pE(d) −EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝
e
aT (Xd,Xp)2−

aT (Xd,Xp)XrE√
mY,0(Xd,Xp)⎞

⎠

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRR
≤K

log (2π T
T1
)
1+1/α

(2π T
T2
)
δ

+
T2 + cr

√
πm1√

T
.

(A.16)

Proof A.2 (Proof of proposition A.2).

RRRRRRRRRRRR
pE(d) −EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝
e
aT (Xd,Xp)2−

aT (Xd,Xp)XrE√
mY,0(Xd,Xp)⎞

⎠

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRR
(A.17)

=
RRRRRRRRRRRR
EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣
Pη ( max

t∈[0,T ]
Y (Xd,Xp; t) >XrE) − Fϵ

⎛
⎝
e
aT (Xd,Xp)2−

aT (Xd,Xp)XrE√
mY,0(Xd,Xp)⎞

⎠

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRR
(A.18)

≤EXd,Xp,XrE

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRRR
Pη ( max

t∈[0,T ]
Y (Xd,Xp; t) ≤XrE) − exp

⎛
⎝
−e

aT (Xd,Xp)2−
aT (Xd,Xp)XrE√

mY,0(Xd,Xp)⎞
⎠

RRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
(A.19)

≤EXd,Xp,XrE

⎡⎢⎢⎢⎢⎢⎢⎣

RRRRRRRRRRRRRRRR

K
log (2π T

Tc(Xd,Xp))
1+1/α

(2π T
Tc(Xd,Xp))

δ
+ exp(− T

Tc (Xd,Xp)
exp(−

X2
rE

2mY,0 (Xd,Xp)
))

RRRRRRRRRRRRRRRR

⎤⎥⎥⎥⎥⎥⎥⎦
(A.20)

≤K
log (2π T

T1
)
1+1/α

(2π T
T2
)
δ

+EXrE
[exp(− T

T2
exp(−

X2
rE

2m1
))] (A.21)

The two last equations are obtained using successively proposition A.1 and assumption
(2). Denoting αT =

√
m1 log(T ), it follows from assumption (3):
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EXrE
[exp(− T

T2
exp(−

X2
rE

2m1
))] (A.22)

=∫
αT

−αT

exp(− T
T2

exp(− x2

2m1
)) frE(x)dx + ∫R/[−αT ,αT ]

exp(− T
T2

exp(− x2

2m1
)) frE(x)dx

(A.23)

≤ exp(− T
T2

exp(−
α2
T

2m1
)) + ∫

R/[−αT ,αT ]
frE(x)dx (A.24)

≤ exp(−
√
T

T2
) + cr ∫

R/[−αT ,αT ]
exp(− x

2

m1
)dx (A.25)

≤ T2√
T
+ cr (∫

R
exp(− x

2

m1
)dx − 2∫

αT

0
exp(− x

2

m1
)dx) (A.26)

≤ T2√
T
+ cr
⎛
⎜
⎝
√
πm1 −

√
πm1

¿
ÁÁÀ1 − exp(−

α2
T

m1
)
⎞
⎟
⎠

(A.27)

≤ T2√
T
+ cr
√
πm1

⎛
⎝
1 −
√

1 − 1

T

⎞
⎠

(A.28)

≤ T2√
T
+ cr
√

πm1

T
. (A.29)

Equation (A.27) is obtained considering the integral I = ∫
αT

0 exp (− x2

m1
)dx, then I2 can

be bounded working in polar coordinates.

2 Integral-based failure probability reformulation error

Proposition A.3. We denote by frI the probability density function of XrI and for

fixed values xd, xp, ZT (xd, xp) the random variable 1
T ∫

T
0 F (xd, xp; t)dt. We assume the

following conditions:

(1) ∃c1 > 0, cr > 0 such that ∀x ≥ c1, frI(x) ≤
cr
x ,

(2) ∃T0, c2 > 0 such that ∀xd, xp and ∀T > T0, ZT (xd, xp) ≥ c2 almost surely,

(3) ∃cF > 0 such that for all xd, xp:

∫
R
∣kF(xd, xp; τ)∣dτ < cF . (A.30)

Then, if T > T0 and T > c1
c2
, we have:

∣pI(d) −EXd,Xp [FrI (TEη [F (Xd,Xp; 0)])]∣ ≤
cr
c2

√
2cF
T

. (A.31)
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Proof A.3 (Proof of proposition A.3).

∣pI(d) −EXd,Xp [FrI (TEη [F (Xd,Xp; 0)])] ∣ (A.32)

= ∣PXd,Xp,XrI
,η (∫

T

0
f (Y (Xd,Xp; t))dt >XrI) −EXd,Xp [FrI (TEη [F (Xd,Xp; 0)])]∣

(A.33)

=∣EXd,Xp,η [FrI (TZT (Xd,Xp))] −EXd,Xp [FrI (TEη [ZT (Xd,Xp)])] ∣ (A.34)

≤EXd,Xp,η [∣FrI (TZT (Xd,Xp)) − FrI (TEη [ZT (Xd,Xp)]) ∣] (A.35)

≤EXd,Xp,η [∣TZT (Xd,Xp) − TEη [ZT (Xd,Xp)] ∣max( cr
(TZT (Xd,Xp)

,
cr

(TEη [ZT (Xd,Xp)]
)]

(A.36)

≤EXd,Xp,η [T ∣ZT (Xd,Xp) −Eη [ZT (Xd,Xp)] ∣
cr
c2T
] (A.37)

≤cr
c2

EXd,Xp [
√
Var (ZT (Xd,Xp))] (A.38)

≤cr
c2

√
2cF
T

(A.39)

Conditions (1), (2) and T ≥ c1
c2

imply equation (A.36). In (A.38), we apply the Cauchy–Schwarz
inequality and equation (A.39) follows from:

Var(ZT (xd, xp)) =
1

T 2 ∫
T

0
∫

T

0
kF (xd, xp; ∣t − t′∣)dtdt′ (A.40)

= 2
T
∫

T

0
(1 − τ

T
)kF (xd, xp; τ)dτ (A.41)

≤ 2
T
∫

T

0
∣kF (xd, xp; τ) ∣dτ (A.42)
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1 Sufficient conditions for the extreme-based constraints

To apply the approximation (2.17) to the first and second constraints of the oscillator
problem, it is sufficient to show that for all xd, xp, the following conditions are satisfied:

mD′,0(xd, xp) <∞,mD′,2(xd, xp) <∞,mD′′,0(xd, xp) <∞,mD′′,2(xd, xp) <∞ (B.1)

KD′(xd, xp, .) ∈ C1,KD′(xd, xp, .) and K ′D′(xd, xp, .) are integrable, (B.2)

KD′′(xd, xp, .) ∈ C1,KD′′(xd, xp, .) and K ′D′′(xd, xp, .) are integrable. (B.3)

As we have the relations:

KD′ (xd, xp;ω) = ω2KD (xd, xp;ω) (B.4)

and
KD′′ (xd, xp;ω) = ω4KD (xd, xp;ω) , (B.5)

to show (B.1), (B.2) and (B.3), it is sufficient to prove that ωiK
(j)
D is integrable for the

appropriate values of i and j where K
(j)
D is the j-th derivative of KD. In fact, in our case

it is true for all i and j. Indeed, it follows from relation (2.26) that KD (xd, xp; .) is the
product of a rational function (with no real pole) and a Gaussian function. Hence, we can

demonstrate that ∀i ∈ N,∀j ∈ N, ωiK
(j)
D (xd, xp; .) is integrable.
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2 Sufficient condition for the integral-based constraint

To apply the approximation (2.21) to the third constraint of the oscillator problem, we
need to prove that for all xd, xp, the process (∣D′′ (xd, xp; .)∣ − ρ)+ is ergodic. To do so, we
show in this section that its covariance function is integrable. Introducing the following
notation:

f(x) = (∣x∣ − ρ)+ , Ut = f (D′′ (xd, xp; t)) ,

σ2 = Var (D′′ (xd, xp; 0)) , kt = Cov(D′′(xd,xp;0),D′′(xd,xp;t))
σ2 ,

(B.6)

we want to prove that ∫R ∣Cov (U0, Ut)∣dt <∞ with Cov (U0, Ut) = E [U0Ut] −E[U0]2 and

E [U0Ut] =
1

2πσ2
√
1 − k2t

∬ f(u)f(v) exp(−u
2 + v2 − 2ktuv
2σ2(1 − k2t )

)dudv. (B.7)

Let us consider the function g defined as

g(k, u, v) = 1

2πσ2
√
1 − k2

f(u)f(v) exp(−u
2 + v2 − 2kuv
2σ2(1 − k2)

) . (B.8)

Since g and its two first derivatives w.r.t k are dominated ∀k ∈ [−1
2 ,

1
2] by a integrable

function h(u, v), it follows that

∬ g(k, u, v)dudv =∬ g(0, u, v)dudv + k∬
∂g(0, u, v)

∂k
dudv +O(k2). (B.9)

Using that ∬ g(0, u, v)dudv = E [U0]2, we deduce that Cov(U0, Ut) = O(kt). Therefore,
Cov(U0, Ut) is integrable because the covariance function of the process D′′(xd, xp; .) is
integrable.
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1 Extreme-based failure probability reformulation

We recall that the notation nj (j = 1,⋯, ns) refers to the number of intervals Ii such that

the sea state si considered during Ii is equal to sj . Besides, we denote pj = nj

nT
(j = 1,⋯, ns)

with nT is the number of subintervals Ii in [0, T ].

For j = 1,⋯, ns, let us denote Ij = ⋃
i,si=sj

Ii. Hence, Ij is the union of nj intervals of

length ∆T . For fixed xd, xp, xrE , we have:

Pη ( max
t∈[0,T ]

Y(xd, xp; t) ≤ xrE) (C.1)

=Pη ( max
t∈[0,T ]

nT

∑
i=1
Yi (xd, xp, si; t)1Ii(t) ≤ xrE) (C.2)

=Pη (max
t∈I1

nT

∑
i=1
Yi (xd, xp, s1; t)1Ii(t) ≤ xrE ,⋯,max

t∈Ins

nT

∑
i=1
Yi (xd, xp, sns ; t)1Ii(t) ≤ xrE) (C.3)

=
ns

∏
j=1

Pη1,⋯,ηnT
(max

t∈Ij

nT

∑
i=1
Yi (xd, xp, sj ; t)1Ii(t) ≤ xrE) (C.4)

=
ns

∏
j=1

Pη1,⋯,ηnj ( max
t∈[0,nj∆T ]

nT

∑
i=1
Yi (xd, xp, sj ; t)1Ii(t) ≤ xrE) . (C.5)

The independence of Yi (xd, x,si; .) and Yi′ (xd, xp, si′ ; .) for all i ≠ i′ is used to obtain equa-
tion (C.4). The last equation results from the fact that Yi (xd, xp, sj ; .) and Yi′ (xd, xp, sj ; .)
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for i ≠ i′ are i.i.d processes.

Finally, when ∆T is large, we consider that each term of the product appearing in equa-
tion (C.5) can be approached by Pη1 (maxt∈[0,nj∆T ]Y1 (xd, xp, sj ; t) ≤ xrE) which leads to

approximation (2.36) since nj∆T = Tpj .

2 Integral-based failure probability reformulation

Proof C.1 (Proof of proposition 2.1). For fixed values xd, xp and x, we have:

Pη (
1

∆T
∫

T

0
f (

nT

∑
i=1
Yi (xd, xp, si; t)1Ii(t))dt > x) (C.6)

=Pη (
1

∆T

nT

∑
i=1
∫
Ii
f (Yi (xd, xp, si; t))dt > x) (C.7)

=Pη (
nT

∑
i=1

1

∆T
∫

∆T

0
f (Yi (xd, xp, si; t))dt > x) . (C.8)

The last equality is obtained using the stationarity of the processes f (Yi (xd, xp, si; .)) and
the independence between f (Yi (xd, xp, si; .)) and f (Yi′ (xd, xp, si′ ; .)) for i ≠ i′.
Let Ui,∆T be the random variable 1

∆T ∫
∆T
0 f (Yi (xd, xp, si; t))dt. It follows from the as-

sumption that f (Y1 (xd, xp, sj ; .)) is ergodic ∀sj :

Ui,∆T
PÐ→

∆T→+∞
ui (C.9)

with ui = Eηi [f (Yi (xd, xp, si; 0))]. Using the independence of Ui,∆T and Ui′,∆T for i ≠ i′,
we deduce that:

nT

∑
i=1

Ui,∆T
PÐ→

∆T→+∞

nT

∑
i=1

ui. (C.10)

Therefore, we have the convergence in distribution:

Pη (
nT

∑
i=1

1

∆T
∫

∆T

0
f (Yi (xd, xp, si; t))dt > x) Ð→

∆T→+∞
1∑nT

i=1 Eηi [f(Yi(xd,xp,si;0))]>x (C.11)

for all x ≠ ∑nT
i=1Eηi [f (Yi (xd, xp, si; 0))], with

nT

∑
i=1

Eηi [f (Yi (xd, xp, si; 0))] =
nT

∑
i=1

Eη1 [f (Y1 (xd, xp, si; 0))] (C.12)

=
ns

∑
j=1

njEη1 [f (Y1 (xd, xp, s
j ; 0))] . (C.13)
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1 Extreme-based failure probability reformulation error

Proposition D.1. We denote frE the probability density function ofXrE and Tc (xd, xp, sj) =

2π

√
mY,0(xd,xp,sj)
mY,2(xd,xp,sj) . We assume the following conditions:

(1) ∃K,α, δ such that ∀xd, xp, sj , the process Y1 (xd, xp, sj ; .) satisfies the conditions of
theorem A.1,

(2) ∃T1 > 0, T2 > 0,m1 > 0 such that ∀xd, xp, sj , T1 ≤ Tc (xd, xp, sj) ≤ T2 and m1 ≤
mY,0 (xd, xp, sj),

(3) ∃c1 > 0, cr > 0 such that ∀x, ∣x∣ ≥ c1, frE(x) ≤ cr exp (− x2

m1
).

Then, if
√
m1 log(∆T ) > c1 the error made in equation (2.37) can be bounded as follows:

RRRRRRRRRRR
pE(d) −EXd,Xp,XrE

⎡⎢⎢⎢⎢⎢⎢⎣

Fϵ

⎛
⎜⎜
⎝

ns

∑
j=1

e
a
Tpj
(Xd,Xp,sj)2−

a
Tpj

(Xd,Xp,s
j)XrE√

mY,0(Xd,Xp,sj)
⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRR

≤ ns

⎛
⎜⎜
⎝
nTK

log (2π∆T
T1
)
1+1/α

(2π∆T
T2
)
δ

+ (nT + 1)
T2 + cr

√
πm1√

∆T

⎞
⎟⎟
⎠
. (D.1)
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Proof D.1 (Proof of proposition D.1). We introduce the following notations:

Pj(T ) = Pη1 ( max
t∈[0,T ]

Y1 (xd, xp, sj ; t) ≤ xrE) , (D.2)

Ej(T ) = exp
⎛
⎜⎜
⎝
−e

aT (xd,xp,sj)2−
aT (xd,xp,sj)xrE√

mY,0(xd,xp,sj)
⎞
⎟⎟
⎠
, (D.3)

E−(T ) = min
j=1,⋯,ns

Ej(T ) , E+(T ) = max
j=1,⋯,ns

Ej(T ), (D.4)

p− = min
j=1,⋯,ns

pj , p+ = max
j=1,⋯,ns

pj . (D.5)

For fixed values of xd, xp, xrE , we have ∀j ∈ {1,⋯, ns}:

∣Pj (∆T )n
j

−Ej (Tpj)∣ ≤ ∣Pj (∆T )n
j

−Ej (∆T )n
j

∣ + ∣Ej (∆T )n
j

−Ej (Tpj)∣ . (D.6)

Besides, using Pj(∆T ) ∈ [0,1], Ej(∆T ) ∈ [0,1], proposition A.1 and assumption (2), we
obtain:

∣Pj (∆T )n
j

−Ej (∆T )n
j

∣ ≤ nj ∣Pj (∆T ) −Ej (∆T )∣ (D.7)

≤ nT

⎛
⎜⎜
⎝
K

log (2π∆T
T1
)
1+1/α

(2π∆T
T2
)
δ

+ exp(−∆T

T2
exp(−

x2rE
2m1
))
⎞
⎟⎟
⎠
. (D.8)

Since Ej(T ) is a decreasing function w.r.t to T and that its images are in [0,1], we have
for nj > 0:

−E+ (Tp−) ≤ Ej (∆T )n
j

−Ej (Tpj) ≤ E+ (∆T ) . (D.9)

It follows, with Tp− > 1 (i.e. if nj > 0,∀j) and applying the preliminary result of proof
A.1:

∣Ej (∆T )n
j

−Ej (Tpj)∣ ≤ E+(∆T ) ≤ exp(−∆T

T2
exp(−

x2rE
2m1
)) . (D.10)

We therefore can use equations (D.8) and (D.10) to bound the approximation error:
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RRRRRRRRRRRRRRRR
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To get equation (D.12), we use the following equalities:

pE(d) =EXd,Xp,XrE
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Equation (D.13) holds since, for ai, bi ∈ [0,1], n ∈ N∗, if ∣ai − bi∣ < c, i = 1,⋯, n then

∣∏n
i ai −∏n

i bi∣ < nc. Finally, in equation (D.17), the quantity EXrE
[exp(−∆T

T2
exp(−

X2
rE

2m1
))]

is bounded applying the reasoning of proof A.2.

2 Integral-based failure probability reformulation error

Proposition D.2. We denote frI the probability density function of XrI and for fixed
values xd, xp:

Z∆T (xd, xp) =
1

∆T
∫

T

0
f (Y (xd, xp; t))dt =

1

∆T

nT

∑
i=1
∫
Ii
f (Yi (xd, xp, si; t))dt, (D.20)

with kF1 (xd, xp, si; .) the autocovariance function of the process F1 (xd, xp, si; .). We as-
sume that the following assumptions are valid:

(1) ∃c1 > 0, cr > 0 such that ∀x ≥ c1, frI(x) ≤
cr
x ,

(2) ∃∆T0,∃c2 > 0 such that ∀xd, xp and ∆T >∆T0, Z∆T (xd, xp) ≥ c2 almost surely,
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(3) for each state sj , ∃cF ,sj > 0 such that for all xd, xp:

∫
R
∣kF1 (xd, xp, s

j ; τ)∣dτ < cF ,sj . (D.21)

Then, if ∆T > T0 and ∆T ≥ c1
c2
, the approximation error made in equation (2.40) can be

bounded as follows:
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Proof D.2. [Proof of proposition D.2]
We denote in this proof, for fixed values xd, xp:

Ai = ∫
Ii
f (Yi (xd, xp, si; t))dt, (D.23)

Fi (si; t) = f (Yi (xd, xp, si; t)) (D.24)

and

kFi,Fj(si, sj ; t, t
′) = Eηi,ηj [Fi (si; t)Fj (sj ; t′)] −Eηi [Fi (si; t)]Eηj [Fj (sj ; t′)] . (D.25)

We start by calculating Eη [Ai] ,Eη [AiAj] and Varη (Z∆T (xd, xp)) which are used further
down in the proof. For the first quantity, we use Fubini’s theorem to obtain:

Eη [Ai] =∆TEηi [Fi (si; 0)] . (D.26)

Besides,

Eη [AiAj] = Eη [∫
Ii
∫
Ij
Fi (si; t)Fj (sj ; t′)dtdt′] (D.27)

= ∫
Ii
∫
Ij
(kFi,Fj(si, sj , t, t

′) +Eηi [Fi (si; t)]Eηj [Fj (sj ; t′)])dtdt′ (D.28)

� if i ≠ j: by independence of Fi (si; .) and Fj (sj ; .) we have kFi,Fj (si, sj ; t, t′) = 0 and
it follows that Eη [AiAj] = Eη [Ai]Eη [Aj],

� if i = j: we use the stationarity of Fi (si, .) to obtain the following equalities:

Eη [A2
i ] = ∫

Ii
∫
Ii
(kFi,Fi(si, si, t, t

′) +Eηi [Fi (si; t)]2)dtdt′ (D.29)
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′∣)dtdt′ +∆T 2Eηi [Fi (si; 0)]2 (D.30)
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Let us calculate Varη (Z∆T (xd, xp)):

Varη (Z∆T (xd, xp)) (D.31)
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Equation (D.38) is obtained using assumption (3) of proposition D.2.
To bound the approximation error made in equation (2.40), the reasoning used in proof
A.3 in the stationary case is applied here: assumption (1), (2) and ∆T > c1

c2
imply equation

(D.43) while the Cauchy-Schwarz inequality is used to obtain equation (D.44):
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Appendix E

Computation of the expectation
involved in the integral-based
constraint of the oscillator
problem

We recall that the random variable D′′1 (xd, xp, sj ; 0) follows a normal distribution with zero

mean and standard deviation σD′′ (xd, xp, sj). Thus, we have for the oscillator problem:

Eη1 [F1 (xd, xp, sj ; 0)] (E.1)

=Eη1 [(∣D
′′
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⎞
⎠
du. (E.3)

We replace σD′′ (xd, xp, sj) by σ to simplify the following calculations:
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with Φ the cumulative distribution function of the standard normal distribution and it
follows:

144



APPENDIX E. COMPUTATION OF THE EXPECTATION INVOLVED IN THE
INTEGRAL-BASED CONSTRAINT OF THE OSCILLATOR PROBLEM

Eη1 [F1 (xd, xp, sj ; 0)] =
√
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π
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⎛
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Execution time of AK-ECO and
the comparison methods

Contents

1 Execution time to solve the oscillator problem . . . . . . . . . . . . . . . . . 146
1.1 Details of the execution time of AK-ECO . . . . . . . . . . . . . . . . 146
1.2 Global enrichment with AK-ECO . . . . . . . . . . . . . . . . . . . . 147

2 Execution time to solve the FOWT problem . . . . . . . . . . . . . . . . . . 148
3 Conclusion on the execution time . . . . . . . . . . . . . . . . . . . . . . . . . 149

1 Execution time to solve the oscillator problem

We display in Table F.1 the execution times of the methods introduced in section 3.3 of
chapter 3 to solve the reformulated oscillator problem. We recall that ncall corresponds
to the number of simulations required to solve the problem with each approach. For the
oscillator problem, the CPU time of one simulation is about 5 milliseconds.

MC RIA PMA SORA Stieng AK-ECO

ncalls 3.57 × 106 791175 29393 15722 53200 252

Execution time 4h 50m 51s 1h 03m 37s 3m 12s 1m 34s 6h 13m 34s 3h 0m 35s

Table F.1: Execution time of AK-ECO and the comparison methods

For MC, RIA, PMA, and SORA, the simulations represent the main contribution to the
total execution time.

During the solution of the problem with the Stieng method, 33 minutes are spent on the
metamodel calibrations. The resolution of the optimization problem during each cycle
represents the major part of the total execution time (these resolutions take 5h 36m 16s).

1.1 Details of the execution time of AK-ECO

In Table F.2, we display the time dedicated to each step of AK-ECO to solve the oscillator
problem.

146



APPENDIX F. EXECUTION TIME OF AK-ECO AND THE COMPARISON
METHODS

Step of AK-ECO Execution time Proportion

Calibrations 56m 41s 31.4%

Selections of xenr 44m 56s 24.9%

COBYLA resolutions 28m 45s 15.9%

Stopping condition evaluations 48m 02s 26.6%

Simulations 1.5s 0.0%

Total 3h 0m 35s 100%

Table F.2: Execution time of AK-ECO

We note that the execution time is mainly allocated to the calibrations of the metamodels
(the calibration of the first metamodel takes 5 seconds but 30 seconds are required for the
last calibration), the selections of the enrichment points (the selection of the first and last
enrichment points take respectively 4 and 20 seconds), the resolution of the optimization
problem during each cycle of optimization (the resolutions take between 3m 53s and 8m
14s), and the evaluation of the stopping conditions (5s are required for the first evaluation
and 20s for the last one). The time dedicated to the simulations is negligible.

1.2 Global enrichment with AK-ECO

We indicate in this section the execution times to solve the oscillator problem by combin-
ing the global enrichment and AK-ECO as described in section 4.3.2 of chapter 4.

The global enrichment takes 6h 36m 12s. It starts with an initial DoE of 50 points and
then performs 65 enrichments. Most of the execution time is devoted to the selections of
the design points where the local enrichments of the metamodels need to be carried out
(225 seconds are needed for the selection of the first denr and 405 seconds for the selection
of the last one). During the first cycle of enrichment, the calibration, the selection of xenr,
and the evaluation of the stopping condition take respectively 5s, 5s, and 121s while they
take respectively 8s, 10s, and 171s during the last cycle.

Step of GE Execution time Proportion

Calibrations 6m 58s 1.8 %

Selections of denr 5h 41m 53s 86.3%

Selections of xenr 8m 37s 2.2%

Stopping condition evaluations 38m 43s 9.8%

Simulation 0.6s 0.0%

Total 6h 36m 12s 100%

Table F.3: Execution time of the global enrichment

147



APPENDIX F. EXECUTION TIME OF AK-ECO AND THE COMPARISON
METHODS

The reformulated oscillator problem is then solved with AK-ECO in 1h 44m 20s using
the metamodels obtained after GE and performing 108 supplementary simulations. The
details of the execution time is displayed in Table F.4. The procedure GE+AK-ECO thus
takes 8h 20m 32s.

Step of AK-ECO Execution time Proportion

Calibrations 35m 39s 34.2%

Selections of xenr 24m 59s 23.9%

COBYLA resolutions 15m 07s 14.5%

Stopping condition evaluations 26m 58s 25.8%

Simulations 0.5s 0.0%

Total 1h 44m 20s 100%

Table F.4: Execution time of AK-ECO after GE

2 Execution time to solve the FOWT problem

In Table F.5 we display the execution times of the methods introduced in section 5.6 of
chapter 5 to solve the reformulated FOWT problem. We recall that ncall corresponds to
the number of simulations required to solve the problem with each approach. For the
FOWT problem, the CPU time of one simulation is about 30s.

K1600 SORA Stieng AK-ECO

ncalls 0 16394 5754 305

Time 3h 28m 56s⋆ 25h 40m 13s⋆⋆ 7h 53m 50s⋆⋆ 9h 35m 44s

Table F.5: Execution time of AK-ECO and the comparison methods

⋆ The execution time indicated for K1600 takes into account only the resolution of the re-
formulated problem when the DoE of 1600 points is already computed and the metamodels
are already calibrated. To obtain the DoE, 2h 10m 7s are necessary using 36 processors
in parallel. The calibrations of the kriging models then take 35m 42s.

⋆⋆ For SORA and Stieng, to stay under the limitation of 5 days of computation allowed
with the supercomputer used in IFPEN, we use 7 processors in parallel to evaluate the
performance function.

For SORA, the simulations represent the main part of the total execution time. For
Stieng, 23s are used for the calibrations of the metamodels, 1h 17m for the resolutions
of the optimization problems, and the rest is devoted to the simulations used for the DoEs.

For AK-ECO, we do not use parallel computing. In Table F.6, we display the time
dedicated to each step of AK-ECO to solve the FOWT problem.
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Step of AK-ECO Execution time Proportion

Calibrations 1h 43m 22s 18.0%

Selections of xenr 55m 03s 9.6%

COBYLA resolutions 3h 24m 33s 35.5 %

Stopping condition evaluations 55m 09s 9.6 %

Simulations 2h 32m 30s 26.5%

Total 9h 35m 44s 100%

Table F.6: Execution time of AK-ECO

3 Conclusion on the execution time

We observe that, to solve the oscillator problem, some of the comparison methods are
faster than AK-ECO (in particular PMA and SORA). AK-ECO has been developed to
solve problem where the execution time of one simulation is large. This is why the different
approaches have been compared regarding the number of calls to the simulator in this
thesis. However, even for relatively low simulation times as in the FOWT problem with 30
seconds per simulation, AK-ECO becomes faster than the comparison methods (remember
that 7 processors are used with SORA and Stieng for this case). We can expect the gap
between the execution times of the methods to widen as the simulation time increases
since the total execution time of each approach will mainly depend on the number of calls
to the simulator (which is much smaller with AK-ECO).
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Results of the multistart
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1 Results of the oscillator problem with multistart AK-ECO
from different initial DoEs

In this section we display the result of the resolution of the oscillator problem described in
section 3.3 with a multistart AK-ECO mentioned in section 3.3.4. For each initial design
point d0, a different initial DoE is used to calibrate the initial kriging models. We recall
that the reference design point obtained with MC is dmin = (5.0,35.74) (see section 3.3.4).
In Table G.1, we indicate for each initial design point d0 of the multistart resolution, the
design point dmin obtained and the value of the cost function at this point. For i = 1,2,3,
the i-th reformulated failure probability at dmin is then estimated with a massive Monte
Carlo of 30000 points. This estimation is denoted pMC

i (dmin). The implementation of AK-
ECO is described in section 3.3. The number of calls to the simulator for each resolution
is denoted ncall and ncycles corresponds to the number of cycle that AK-ECO required to
converge.
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run d0 dmin cost (dmin) pMC
1 (dmin) , pMC

2 (dmin) , pMC
3 (dmin) ncycles ncall

1 (2.17,22.56) (5,35.70) −14.298 0.81 × 10−4,1.04 × 10−4,0.15 × 10−4 4 229

2 (4.03,31.12) (5,35.77) −14.225 0.74 × 10−4,1.00 × 10−4,0.13 × 10−4 4 230

3 (1.78,44.36) (5,35.72) −14.284 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 6 232

4 (4.26,38.73) (5,35.71) −14.290 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 3 174

5 (3.29,48.59) (5,35.69) −14.313 0.81 × 10−4,1.03 × 10−4,0.15 × 10−4 4 181

6 (3.80,35.74) (5,35.76) −14.237 0.75 × 10−4,1.00 × 10−4,0.13 × 10−4 4 220

7 (1.51,24.00) (5,35.72) −14.278 0.80 × 10−4,1.03 × 10−4,0.15 × 10−4 5 226

8 (2.46,37.99) (5,35.71) −14.287 0.81 × 10−4,1.03 × 10−4,0.15 × 10−4 5 210

9 (3.46,25.81) (5,35.75) −14.250 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 5 275

10 (2.97,29.54) (5,35.73) −14.268 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 5 254

11 (3.77,43.13) (5,35.72) −14.284 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 4 198

12 (4.63,47.07) (5,35.74) −14.259 0.77 × 10−4,1.00 × 10−4,0.14 × 10−4 4 193

13 (4.43,33.49) (5,35.76) −14.239 0.75 × 10−4,1.00 × 10−4,0.13 × 10−4 3 185

14 (3.03,46.11) (5,35.73) −14.272 0.77 × 10−4,1.00 × 10−4,0.14 × 10−4 5 207

15 (1.98,40.32) (5,35.73) −14.274 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 5 230

16 (2.34,26.26) (5,35.69) −14.311 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 6 300

17 (1.29,33.93) (5,35.77) −14.227 0.74 × 10−4,0.98 × 10−4,0.12 × 10−4 9 416

18 (1.04,28.63) (5,35.73) −14.271 0.76 × 10−4,1.00 × 10−4,0.13 × 10−4 4 193

19 (4.82,41.61) (5,35.72) −14.281 0.81 × 10−4,1.04 × 10−4,0.15 × 10−4 3 175

20 (2.62,21.29) (5,35.73) −14.268 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 5 254

Table G.1: Results of the oscillator problem with multistart AK-ECO from different initial
DoEs

2 Results of the oscillator problem with multistart AK-
ECO+GE

In this section we display the result of the resolution of the oscillator problem described in
section 3.3 with a multistart AK-ECO+GE mentioned in section 4.3.3. The GE procedure
requires 115 calls to the simulator (50 for the initial DoE and 65 for the enrichment of the
metamodels). AK-ECO is then launched from 20 initial design points. For each resolution,
the metamodels obtained with the GE are used during the first cycle of AK-ECO. We recall
that the reference design point obtained with MC is dmin = (5.0,35.74) (see section 3.3.4).
In Table G.2, we indicate for each initial design point d0 of the multistart resolution, the
design point dmin obtained and the value of the cost function at this point. For i = 1,2,3,
the i-th reformulated failure probability at dmin is then estimated with a massive Monte

151



APPENDIX G. RESULTS OF THE MULTISTART RESOLUTIONS

Carlo of 30000 points. This estimation is denoted pMC
i (dmin). The implementation of

AK-ECO is described in section 3.3. The number of additional calls to the simulator for
each resolution is denoted ncalls and ncycles corresponds to the number of cycle that AK-
ECO required to converge. In Table G.3, the results of the same analysis but conducted
without GE are displayed: the initial DoE used for each resolution is the same and it
corresponds to the one used as initial DoE in the GE procedure.

run d0 dmin cost (dmin) pMC
1 (dmin) , pMC

2 (dmin) , pMC
3 (dmin) ncycles ncall

1 (2.17,22.56) (5,35.78) -14.216 0.74 × 10−4,0.98 × 10−4,0.13 × 10−4 3 135

2 (4.03,31.12) (5,35.77) -14.227 0.75 × 10−4,0.99 × 10−4,0.12 × 10−4 3 135

3 (1.78,44.36) (5,35.77) -14.234 0.76 × 10−4,0.99 × 10−4,0.13 × 10−4 3 107

4 (4.26,38.73) (5,35.74) -14.257 0.77 × 10−4,1.00 × 10−4,0.13 × 10−4 3 114

5 (3.29,48.59) (5,35.71) -14.294 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 3 107

6 (3.80,35.74) (5,35.75) -14.245 0.76 × 10−4,1.00 × 10−4,0.13 × 10−4 3 114

7 (1.51,24.00) (5,35.75) -14.252 0.76 × 10−4,1.00 × 10−4,0.13 × 10−4 4 153

8 (2.46,37.99) (5,35.76) -14.239 0.76 × 10−4,1.00 × 10−4,0.13 × 10−4 3 107

9 (3.46,25.81) (5,35.74) -14.261 0.77 × 10−4,1.00 × 10−4,0.13 × 10−4 4 179

10 (2.97,29.54) (5,35.77) -14.234 0.76 × 10−4,0.99 × 10−4,0.13 × 10−4 4 167

11 (3.77,43.13) (5,35.75) -14.246 0.76 × 10−4,0.99 × 10−4,0.13 × 10−4 3 108

12 (4.63,47.07) (5,35.74) -14.261 0.77 × 10−4,1.00 × 10−4,0.14 × 10−4 3 109

13 (4.43,33.49) (5,35.83) -14.107 0.72 × 10−4,0.96 × 10−4,0.12 × 10−4 2 90

14 (3.03,46.11) (5,35.73) -14.272 0.77 × 10−4,1.00 × 10−4,0.14 × 10−4 3 107

15 (1.98,40.32) (5,35.77) -14.230 0.75 × 10−4,0.99 × 10−4,0.13 × 10−4 4 152

16 (2.34,26.26) (5,35.76) -14.245 0.76 × 10−4,0.99 × 10−4,0.13 × 10−4 4 163

17 (1.29,33.93) (5,35.76) -14.245 0.76 × 10−4,0.99 × 10−4,0.13 × 10−4 4 152

18 (1.04,28.63) (5,35.77) -14.226 0.75 × 10−4,0.99 × 10−4,0.13 × 10−4 3 107

19 (4.82,41.61) (5,35.76) -14.235 0.76 × 10−4,1.00 × 10−4,0.13 × 10−4 3 114

20 (2.62,21.29) (5,35.78) -14.216 0.75 × 10−4,0.98 × 10−4,0.13 × 10−4 3 135

Table G.2: Results of the oscillator problem with multistart AK-ECO+GE
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run d0 dmin cost (dmin) pMC
1 (dmin) , pMC

2 (dmin) , pMC
3 (dmin) ncycles ncall

1 (2.17,22.56) (5,35.77) −14.232 0.75 × 10−4,0.99 × 10−4,0.13 × 10−4 5 186

2 (4.03,31.12) (4.40,34.81) −9.204 0.21 × 10−4,0.53 × 10−4,0.02 × 10−4 1 45

3 (1.78,44.36) (5,35.81) −14.190 0.73 × 10−4,0.97 × 10−4,0.12 × 10−4 3 101

4 (4.26,38.73) (5,35.73) −14.268 0.77 × 10−4,1.00 × 10−4,0.14 × 10−4 4 168

5 (3.29,48.59) (5,35.77) −14.229 0.75 × 10−4,0.99 × 10−4,0.13 × 10−4 4 132

6 (3.80,35.74) (5,35.75) −14.255 0.77 × 10−4,1.00 × 10−4,0.13 × 10−4 3 125

7 (1.51,24.00) (5,35.79) −14.208 0.74 × 10−4,0.98 × 10−4,0.13 × 10−4 7 258

8 (2.46,37.99) (5,35.74) −14.257 0.77 × 10−4,1.00 × 10−4,0.13 × 10−4 4 132

9 (3.46,25.81) (5,35.76) −14.243 0.76 × 10−4,0.99 × 10−4,0.13 × 10−4 5 212

10 (2.97,29.54) (5,35.79) −14.210 0.74 × 10−4,0.98 × 10−4,0.13 × 10−4 5 219

11 (3.77,43.13) (5,35.69) −14.307 0.79 × 10−4,1.02 × 10−4,0.14 × 10−4 3 104

12 (4.63,47.07) (5,35.77) −14.233 0.75 × 10−4,0.99 × 10−4,0.13 × 10−4 3 116

13 (4.43,33.49) (5,35.82) −14.182 0.73 × 10−4,0.97 × 10−4,0.12 × 10−4 2 90

14 (3.03,46.11) (5,35.74) −14.261 0.77 × 10−4,1.00 × 10−4,0.13 × 10−4 5 165

15 (1.98,40.32) (5,35.80) −14.204 0.74 × 10−4,0.98 × 10−4,0.12 × 10−4 3 98

16 (2.34,26.26) (5,35.78) −14.222 0.75 × 10−4,0.98 × 10−4,0.13 × 10−4 5 207

17 (1.29,33.93) (5,35.76) −14.238 0.76 × 10−4,0.99 × 10−4,0.13 × 10−4 4 139

18 (1.04,28.63) (5,35.72) −14.284 0.78 × 10−4,1.01 × 10−4,0.14 × 10−4 4 136

19 (4.82,41.61) (5,35.77) −14.229 0.75 × 10−4,0.99 × 10−4,0.13 × 10−4 3 126

20 (2.62,21.29) (5,35.74) −14.263 0.77 × 10−4,1.00 × 10−4,0.14 × 10−4 6 209

Table G.3: Results of the oscillator problem with multistart AK-ECO from the same initial
DoE

In Table G.3, we observe that one resolution (run 2) does not converge towards the opti-
mum. This is not due to the enrichment of AK-ECO but to the stopping condition of the
optimization cycles: although the design point obtained at the end of the first cycle is far
from the initial design point, the values of the cost function at the two points are equal
(both points belong to the same level set). Therefore, the stopping condition is met.

3 Results of the FOWT problem with multistart AK-ECO
from the same initial DoE

In this section we display the result of the resolution of the FOWT problem with the mul-
tistart AK-ECO mentioned in section 5.6.4. The same initial DoE of 60 points is used for
every resolution. In Table G.4, we indicate for each initial design point d0 of the multistart
resolution, the design point dmin obtained and the value of the normalized cost function
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at this point. The estimations of the reformulated failure probabilities pK1600
S (dmin) and

pK1600
D3 (dmin) are indicated (see section 5.6.4 for more details). The estimations of the

other reformulated failure probabilities at dmin (pK1600
T l (dmin) (l = 1,2,3), pK1600

D1 (dmin),
and pK1600

D2 (dmin)) obtained by each resolution are equal to zero. The implementation
of AK-ECO is described in section 5.6. The number of additional calls to the simulator
for each resolution is denoted ncall and ncycles corresponds to the number of cycle that
AK-ECO required to converge.

run d0 dmin cost (dmin) pK1600
S (dmin) , pK1600

D3 (dmin) ncycles ncall

1 (0.54,116.13,0.41) (1.09,110.55,0) 0.294 1.01 × 10−4,0.86 × 10−4 8 280

2 (0.30,170.80,0.51) (0.95,109.51,0) 0.287 1.00 × 10−4,0.95 × 10−4 8 252

3 (1.93,75.12,0.03) (0.98,109.75,0) 0.288 0.93 × 10−4,0.92 × 10−4 11 371

4 (1.29,130.24,0.82) (1.13,110.75,0) 0.296 1.27 × 10−4,0.84 × 10−4 6 196

5 (1.70,85.56,0.75) (1.17,111.13,0) 0.299 1.02 × 10−4,0.82 × 10−4 8 252

6 (1.04,157.11,0.24) (0.91,109.27,0) 0.285 0.94 × 10−4,0.96 × 10−4 8 253

7 (−0.45,97.89,0.57) (1.1,109.93,0) 0.290 0.96 × 10−4,0.91 × 10−4 14 476

8 (−0.17,142.31,0.16) (0.99,109.83,0) 0.289 1.00 × 10−4,0.92 × 10−4 6 193

9 (0.84,154.63,0.93) (0.93,109.39,0) 0.286 0.97 × 10−4,0.95 × 10−4 11 378

Table G.4: Results of the FOWT problem with multistart AK-ECO from the same initial
DoE
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Appendix H

Comparison between time-domain
and spectral approaches
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In this appendix, we consider three models:

� in model 1, the equation of motion is not linearized and a turbulent wind correspond-
ing to a class B wind turbine (IEC 61400-3 (2009)) is considered with an average
wind speed equal to that considered for the other models;

� the equation of motion is not linearized in model 2 but constant wind forces are
considered for a class B wind turbine;

� the non-linear external forces are linearized and constant wind forces are considered
in model 3. It corresponds to the model used in this thesis and introduced in section
5.1.

For each model, we consider the nominal configuration of the structure.

In section H.1, we compare time series obtained with each model to examine the influence
of the model choice.

In section H.2, the total damage is estimated for every sea state and for each model.

1 Comparison of the time series

A realization of the sea elevation process is considered for each sea state sj (j = 1,⋯,7)
introduced in section 5.2.5. For each sea state and for each model, the corresponding real-
izations of the surge and the tensions processes are evaluated. The time series considering
model 1 and 2 are computed with a time-domain solver in DeelpinesTM. For the former,
the wind loads are estimated using the Blade Element Momentum (Blondel et al. (2016)).
For model 3, these time series are generated with a frequency-domain solver ( Le Cunff
et al. (2008)) in DeelpinesTM.
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The resulting time series are displayed in Figures H.1, H.2, H.3, and H.4. Only the time
series for the sea states s1, s4, and s7 are indicated. Moreover, to observe more clearly the
difference in the time series, only the time window [1200s,1700s] is visible. The power
spectral densities (obtained as the Fourier transforms of the temporal autocorrelation
functions) of the time series are evaluated with the psd function of the matplotlib Python
package and a NFFT parameter set to 1024. The results are displayed as well in Figures
H.5, H.6, H.7, and H.8.

In the legend of each figure, the results obtained with model 1, 2, and 3 are respectively
labelled ”Time Dynamic Aero”, ”Time Constant Aero”, and ”Frequential Constant Aero”.

We notice from this analysis the following elements:

� the results obtained with model 2 and model 3 are close: the times series overlap for
every figure. Therefore, the linearization of the external forces only slightly impacts
the outputs of the model. However, considering a constant wind load significantly
reduces the amplitude of the time series variations, as shown by the series obtained
considering model 1;

� for model 1, we observe in the tension PSDs, peaks corresponding to the rotor speed
(mean about 12 rpm thus 0.2Hz) harmonics. We observe peaks at tp and close to
the rotor frequency ;

� the difference between the PSDs obtained with model 1 and the ones considering a
constant wind loading is clearly visible at high frequencies.

(a) Surge time series for s1 (b) Surge time series for s4 (c) Surge time series for s7

Figure H.1: Time series of the surge

(a) Tension time series for s1 (b) Tension time series for s4 (c) Tension time series for s7

Figure H.2: Time series of the tension at the top at the line 1
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(a) Tension time series for s1 (b) Tension time series for s4 (c) Tension time series for s7

Figure H.3: Time series of the tension at the top at the line 2

(a) Tension time series for s1 (b) Tension time series for s4 (c) Tension time series for s7

Figure H.4: Time series of the tension at the top at the line 3

(a) Surge psd for s1 (b) Surge psd for s4 (c) Surge psd for s7

Figure H.5: PSD of the centered and normalized surge

(a) Tension psd for s1 (b) Tension psd for s4 (c) Tension psd for s7

Figure H.6: PSD of the centered and normalized tension at the top at the line 1
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(a) Tension psd for s1 (b) Tension psd for s4 (c) Tension psd for s7

Figure H.7: PSD of the centered and normalized tension at the top at the line 2

(a) Tension psd for s1 (b) Tension psd for s4 (c) Tension psd for s7

Figure H.8: PSD of the centered and normalized tension at the top at the line 3

2 Comparison of the fatigue estimations

In this section, we estimate for each model and for each sea state sj (j = 1,⋯,7), the mean
total damage caused by the tension at the top of each line during a time interval of one
year. This quantity is denoted in section 5.3 as follows:

E [∫
Ii
Dl

i (d, xd2 , xp, si; t)dt] =∆TE [Dl
i (d, xd2 , xp, si; 0)] = Eηi [D

total,l
Ii

(d, xd2 , xp, si)] .
(H.1)

We point out that, in the thesis, ∆T = 3 hours whereas, in the analyses performed in this
appendix, we consider ∆T = 1 year. Furthermore, the parameters d, xd2 , and xp are fixed
at their nominal values.

The damage is first estimated with the time-domain approach and then with the spectral
approach described in section 5.3. More precisely, in Figures H.9, H.10, and H.11, we
indicate for each sea states sj :

� the total damage estimated with the time-domain approach and considering succes-
sively model 1, 2, and 3. In the figures, the results are respectively labelled ”Aero
+ Rainflow”, ” ConstWind + Rainflow”, and ”Freq + Rainflow”;

� the total damage estimated with the spectral approach (i.e. the Dirlik method) and
considering model 3. This estimation is labelled ” Freq + Dirlik” in the figures.

For the time-domain approach, we use the Rainflow algorithm implemented by Jen-
nifer Rinker of Duke University (the Python script is distributed with GNU GPL at
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https://gist.github.com/jennirinker).

This analysis reveals that:

� the total damage considering model 1 and estimated with the time-domain approach
is always greater that the estimations provided with the other models. We conclude
that considering constant wind loads leads to underestimate the fatigue;

� the total damage estimations with the time-domain and the Dirlik method consid-
ering model 3 are close;

� a discrepancy persists between the estimated damage considering model 2 and model
3 but the gap decreases as the fatigue decreases. This point can be explained by
slight differences in the areas of the PSDs peaks. It is assumed that this difference
shows the limit of the quasi-linearization approach of Morison forces when the swell
amplitude increases. This discrepancy could also be due to the fact that, to avoid
non-linearities in the equation of motion in model 3, unlike in model 1 and 2, the
part of the mooring lines in contact with the seabed is considered fixed. This effect
is partially reduced by the small probability of occurrence of the most severe sea
states.

� finally, line 3 (which corresponds to the line aligned with the wind direction) suffers
more damage than the other two lines.

Figure H.9: Comparison of the one year total damage for line 1
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Figure H.10: Comparison of the one year total damage for line 2

Figure H.11: Comparison of the one year total damage for line 3
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Appendix I

Reformulation of the surge
constraint

The surge failure probability of the FOWT reformulated problem is expressed as:

PXp,η ( max
t∈[0,T ]

∣S (d,Xp; t)∣ > Smax) = PXp,η ( max
t∈[0,T ]

S (d,Xp; t) > Smax)

+ PXp,η ( max
t∈[0,T ]

−S (d,Xp; t) > Smax)

− PXp,η ( max
t∈[0,T ]

S (d,Xp; t) > Smax, max
t∈[0,T ]

−S (d,Xp; t) > Smax) .

(I.1)

Since the surge process satisfies the sufficient conditions (see appendix J), we can refor-
mulate the first term of the sum of the right-hand side of equation (I.1) as follows:

PXp,η ( max
t∈[0,T ]

S (d,Xp; t) > Smax)

≃ EXp

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

7

∑
j=1

exp
⎛
⎝
aTpj(d,Xp, s

j)2 −
aTpj(d,Xp, s

j) (Smax − µS (d,Xp, s
j))

√
mS,0 (d,Xp, sj)

⎞
⎠
⎞
⎠

⎤⎥⎥⎥⎥⎦
(I.2)

with aTpj(d, xp, sj) =

¿
ÁÁÀ2 log(Tpj

2π

√
mS,2(d,xp,sj)
mS,0(d,xp,sj)).

Let us denote

M+
S (d, xp, sj) = aTpj(d, xp, sj)2 −

aTpj(d, xp, sj) (Smax − µS (d, xp, sj))√
mS,0 (d, xp, sj)

. (I.3)

We have sampled 1600 points of the input space of M+
S and the simulator has been called

at each one to evaluate M+
S . This sample is the one used to calibrate the kriging models

in the MC+K1600 method (see section 5.6.2 for more details). The maximum value of
M+
S obtained from this sample is −389.05 (denoted M+

S,max). Assuming that this is the
maximum value of M+

S over its input space, we have:
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PXp,η ( max
t∈[0,T ]

S (d,Xp; t) > Smax) ≃EXp

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

7

∑
j=1

exp (M+
S (d,Xp, s

j))
⎞
⎠

⎤⎥⎥⎥⎥⎦
(I.4)

≤EXp

⎡⎢⎢⎢⎢⎣
Fϵ
⎛
⎝

7

∑
j=1

exp (M+
S,max)

⎞
⎠

⎤⎥⎥⎥⎥⎦
(I.5)

=Fϵ (7 exp (M+
S,max)) (I.6)

=Fϵ (7 × (−389.05)) (I.7)

and Fϵ (7 × (−389.05)) is numerically null. Therefore, it is reasonable to consider that the
probability in equation (I.2) is negligible in the estimation of the failure probability of the
surge constraint for every d ∈ Ωd which justifies the approximation of equation (5.50).
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Proof of the sufficient conditions
to reformulate the surge and
tension constraints

To apply the reformulation procedure of extreme-based constraints involving a piece-wise
stationary process described in section 2.3.1 to the surge and the tension constraints, for
all d, xp, and for all states sj , the processes S1 (d, xp, sj ; .) and T l

1 (d, xp, sj ; .) (l = 1,2,3)
must meet the conditions of theorem 2.1. Thus, it is sufficient to prove that these processes
satisfy the conditions (2.11) and (2.12) presented in section 2.3.1.

For the surge process, it is sufficient to show that for all d, xp, and sj :

mS,0 (d, xp, sj) <∞,mS,2 (d, xp, sj) <∞, (J.1)

KS (d, xp, sj ; .) ∈ C1,KS (d, xp, sj ; .) and K ′S (d, xp, sj ; .) are integrable. (J.2)

where ω →K ′S (d, xp, sj ;ω) is the derivative of ω →KS (d, xp, sj ;ω).

We recall that
KS (d, xp, sj ;ω) = ∣HS (d, xp, sj ;ω) ∣2Kη(sj ;ω), ∀ω (J.3)

where Kη(sj ; .) and HS (d, xp, sj ; .) are defined in section 5.2.5. Assuming that there is no

resonance phenomena and that ∀ω, ∣HS (d, xp, sj ;ω) ∣ < c1 with c1 > 0, it follows, for n = 0
and 2:

∣∫
R
ωnKS (d, xp, sj ;ω)dω∣ ≤ c1∫

R
∣ωnKη (sj ;ω)∣dω (J.4)

≤ c1∫
R+
∣ωn2K+η (sj ;ω)∣dω (J.5)

≤ c1 c2∫
R+
∣ω−5+n exp (−c3ω−4)∣dω (J.6)

≤ c1 c2∫
R+
∣ω−5+n exp (−c3ω−4)∣dω (J.7)

≤ c1 c2 (∫
1

0
∣ω−5+n exp (−c3ω−4)∣dω + ∫

∞

1
∣ω−5+n∣dω) (J.8)

with c2 > 0, c3 > 0 and K+η (sj ; .) is defined in section 5.2.5. In equation (J.8), the inte-
grand of the first integral is a bounded function over [0,1] and the integrand of the second
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integral is integrable over [1,∞] since −5 + n < −1. Therefore, condition (J.1) is met and
KS (d, xp, sj ; .) is integrable.

Moreover, using the same arguments and assuming that HS (d, xp, sj ; .) is differentiable

and that its derivative w.r.t to ω is bounded, we can show that K ′S (d, xp, sj ; .) is inte-
grable. Therefore condition (J.2) is satisfied as well.

Similar calculations and assumptions enable us to show that the tension processes meet
the sufficient conditions for the reformulation of the tension constraints.
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Stewart, G. M., Robertson, A., Jonkman, J., and Lackner, M. A. (2016). The creation of
a comprehensive metocean data set for offshore wind turbine simulations. Wind Energy,
19(6):1151–1159.

Stieng, L. E. S. and Muskulus, M. (2020). Reliability-based design optimization of offshore
wind turbine support structures using analytical sensitivities and factorized uncertainty
modeling. Wind Energy Science, 5(1):171–198.

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models–
Contributions to structural reliability and stochastic spectral methods. HDR, Université
Blaise Pascal, Clermont-Ferrand, France.

175



BIBLIOGRAPHY

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliabil-
ity Engineering & System Safety, 93(7):964–979. Bayesian Networks in Dependability.

Sun, Z., Wang, J., Li, R., and Tong, C. (2017). LIF: A new Kriging based learning function
and its application to structural reliability analysis. Reliability Engineering & System
Safety, 157:152–165.

Teixeira, R., Nogal, M., and O’Connor, A. (2021). Adaptive approaches in metamodel-
based reliability analysis: A review. Structural Safety, 89:102019.

Teixeira, R., Nogal, M., O’Connor, A., Nichols, J., and Dumas, A. (2019). Stress-cycle
fatigue design with Kriging applied to offshore wind turbines. International Journal of
Fatigue, 125:454–467.

Toal, D. J. J. and Keane, A. J. (2012). Non-stationary kriging for design optimization.
Engineering Optimization, 44(6):741–765.

Torii, A. J., Lopez, R. H., and Miguel, L. F. F. (2016). A general RBDO decoupling
approach for different reliability analysis methods. Structural and Multidisciplinary
Optimization, 54(2):317–332.

Tu, J., Choi, K. K., and Park, Y. H. (1999). A New Study on Reliability-Based Design
Optimization. Journal of Mechanical Design, 121(4):557–564.

Vorpahl, F., Schwarze, H., Fischer, T., Seidel, M., and Jonkman, J. (2013). Offshore wind
turbine environment, loads, simulation, and design. WIREs Energy and Environment,
2(5):548–570.

Wang, Z. and Chen, W. (2016). Time-variant reliability assessment through equivalent
stochastic process transformation. Reliability Engineering & System Safety, 152:166–
175.

Wang, Z., Li, H., Chen, Z., Li, L., and Hong, H. (2020). Sequential optimization and
moment-based method for efficient probabilistic design. Structural and Multidisciplinary
Optimization, 62:387–404.

Wang, Z. and Wang, P. (2012). A Nested Extreme Response Surface Approach for
Time-Dependent Reliability-Based Design Optimization. Journal of Mechanical De-
sign, 134(12). 121007.

Wang, Z. and Zhang, Y.and Song, Y. (2020). A Modified Conjugate Gradient Approach
for Reliability-Based Design Optimization. IEEE Access, 8:16742–16749.

Wei, P., Lu, Z., Hao, W., Feng, J., and Wang, B. (2012). Efficient sampling methods for
global reliability sensitivity analysis. Computer Physics Communications, 183(8):1728–
1743.

Wiener, N. (1938). The Homogeneous Chaos. American Journal of Mathematics,
60(4):897–936.

WindEurope (2017). Floating Offshore Wind Vision Statement. WindEurope report.

WindEurope (2020). Wind energy in Europe. 2020 Statistics and the outlook for 2021-
2025. WindEurope report.

176



BIBLIOGRAPHY

Xiang, Z., Chen, J., Bao, Y., and Li, H. (2020). An active learning method combining deep
neural network and weighted sampling for structural reliability analysis. Mechanical
Systems and Signal Processing, 140:106684.

Xiong, Y., Chen, W., Apley, D., and Ding, X. (2007). A non-stationary covariance-based
Kriging method for metamodelling in engineering design. International Journal for
Numerical Methods in Engineering, 71(6):733–756.

Yang, M., Zhang, D., and Han, X. (2020a). Enriched single-loop approach for reliability-
based design optimization of complex nonlinear problems. Engineering with Computers,
pages 1–19.

Yang, M., Zhang, D., and Han, X. (2020b). New efficient and robust method for structural
reliability analysis and its application in reliability-based design optimization. Computer
Methods in Applied Mechanics and Engineering, 366:113018.

Youn, B. D., Choi, K. K., and Park, Y. H. (2003). Hybrid Analysis Method for Reliability-
Based Design Optimization. Journal of Mechanical Design, 125(2):221–232.

Yu, W., Müller, K., and Lemmer, F. (2018). Qualification of innovative floating substruc-
tures for 10MW wind turbines and water depths greater than 50 m. Technical report,
LIFES50+ project.

Yun, W., Lu, Z., and Jiang, X. (2018). A modified importance sampling method for
structural reliability and its global reliability sensitivity analysis. Structural and Multi-
disciplinary Optimization, 57(4):1625–1641.

Zentner, I. (2010). Numerical computation of fragility curves for NPP equipment. Nuclear
Engineering and Design, 240(6):1614–1621.

Zhang, H., Aoues, Y., Lemosse, D., and De Cursi, E. S. (2020a). A single-loop approach
with adaptive sampling and surrogate kriging for reliability-based design optimization.
Engineering Optimization, pages 1–17.

Zhang, J. and Ellingwood, B. (1994). Orthogonal Series Expansions of Random Fields in
Reliability Analysis. Journal of Engineering Mechanics, 120(12):2660–2677.

Zhang, J., Xiao, M., and Gao, L. (2020b). A new local update-based method for reliability-
based design optimization. Engineering with Computers.

Zhang, X., Lu, Z., Yun, W., Feng, K., and Wang, Y. (2020c). Line sampling-based local
and global reliability sensitivity analysis. Structural and Multidisciplinary Optimization,
61(1):267–281.

Zhang, X., Wang, L., and Sørensen, J. D. (2019). REIF: A novel active-learning function
toward adaptive Kriging surrogate models for structural reliability analysis. Reliability
Engineering & System Safety, 185:440–454.

Zhang, Y., Gong, C., and Li, C. (2021a). Efficient time-variant reliability analysis through
approximating the most probable point trajectory. Structural and Multidisciplinary
Optimization, 63(1):289–309.

Zhang, Y., Tao, S., Chen, W., and Apley, D. W. (2020d). A Latent Variable Approach to
Gaussian Process Modeling with Qualitative and Quantitative Factors. Technometrics,
62(3):291–302.

177



BIBLIOGRAPHY

Zhang, Z., Deng, W., and Jiang, C. (2021b). A PDF-based performance shift approach
for reliability-based design optimization. Computer Methods in Applied Mechanics and
Engineering, 374:113610.

Zhao, L., Wang, P., Song, B., Wang, X., and Dong, H. (2020). An efficient kriging modeling
method for high-dimensional design problems based on maximal information coefficient.
Structural and Multidisciplinary Optimization, 61(1):39–57.

Zhou, T. and Peng, Y. (2020). Kernel principal component analysis-based gaussian process
regression modelling for high-dimensional reliability analysis. Computers & Structures,
241:106358.

Zhou, Y. and Lu, Z. (2020). An enhanced Kriging surrogate modeling technique for high-
dimensional problems. Mechanical Systems and Signal Processing, 140:106687.

178



Titre : Optimisation sous contraintes probabilistes d’un système complexe – Application au dimensionnement
d’une éolienne offshore flottante

Mots clés : RBDO, théorie des valeurs extrêmes, krigeage adaptatif, Monte Carlo, éolienne offshore flottante,
fatigue

Résumé : Nous proposons dans cette thèse une
approche permettant d’optimiser la configuration des
lignes d’ancrage d’une éolienne flottante offshore,
en minimisant le coût des matériaux tout en res-
pectant des contraintes d’un état limite de fatigue.
Ces contraintes héritent du caractère aléatoire des
conditions environnementales ainsi que d’incertitudes
sur des paramètres du modèle. Par conséquent,
nous sommes confrontés à un problème d’opti-
misation avec une fonction de coût déterministe
et des contraintes impliquant des probabilités de
dépassement de seuil du maximum et de l’intégrale
de processus aléatoires dépendant du temps, évalués
sur une période [0, T ].
La principale difficulté est de devoir évaluer ces pro-
babilités à chaque boucle de l’algorithme d’optimisa-
tion. En effet, les méthodes de fiabilité nécessitent
de nombreux appels à un code de calcul coûteux.
L’estimation de ces probabilités est d’autant plus diffi-
cile que nous sommes confrontés à des événements
rares. Pour résoudre efficacement ce problème,
nous proposons une méthodologie en deux étapes.
Premièrement, en considérant que T est suffi-

samment grand, nous utilisons les propriétés des
contraintes et des théorèmes limite de la théorie
des valeurs extrêmes et de la théorie ergodique
pour reformuler les contraintes initiales en contraintes
indépendantes du temps. Nous obtenons ainsi un
problème équivalent pour lequel les algorithmes clas-
siques sont peu performants. La deuxième étape de
notre procédure consiste à résoudre le problème re-
formulé avec une nouvelle méthode basée sur une
stratégie de krigeage adaptative. Cette méthode est
appelée AK-ECO pour Adaptive Kriging for Expecta-
tion Constraints Optimization.
Le cas académique d’un oscillateur harmo-
nique présentant toutes les caractéristiques du
problème industriel est introduit afin d’illustrer notre
méthodologie. La procédure est ensuite appliquée
avec succès au problème de l’éolienne flottante. Les
deux étapes qui composent cette méthodologie sont
décrites dans un cadre général afin de pouvoir être
appliquées à d’autres problèmes d’optimisation im-
pliquant des contraintes probabilistes dépendant du
maximum ou de l’intégrale de processus aléatoires.

Title : Chance constraint optimization of a complex system - Application to the fatigue design of a floating
offshore wind turbine mooring system

Keywords : RBDO, extreme value theory, adaptive Kriging, Monte Carlo, floating offshore wind turbine, fatigue

Abstract : In this thesis, we propose a methodology
to optimize the configuration of the mooring lines by
minimizing the material cost while satisfying Fatigue
Limit State (FLS) constraints. These constraints inhe-
rit the randomness of the marine environment as well
as uncertainties on material properties and model pa-
rameters. Therefore, we face an optimization problem
with a deterministic cost function and constraints in-
volving probabilities of threshold exceedance of the
maximum and the integral over a period [0, T ] of time-
dependent random processes.
Having to evaluate these failure probabilities at each
loop of the optimization algorithm is the main diffi-
culty. Indeed, reliability methods require many time-
consuming simulations. The estimation of these pro-
babilities is all the more challenging as we are dea-
ling with rare events. To solve this problem efficiently,
we propose a two-step methodology. First, conside-
ring T sufficiently large, we use the properties of the

constraints and limit theorems of the extreme value
theory and the ergodic theory to reformulate the ori-
ginal constraints into time-independent ones. We thus
obtain an equivalent problem for which classical al-
gorithms perform poorly. The second step of the pro-
cedure consists in solving the reformulated problem
with a new method based on an adaptive kriging stra-
tegy well suited to the reformulated constraints. This
method is called AK-ECO for Adaptive Kriging for Ex-
pectation Constraints Optimization.
An academic case of a harmonic oscillator presenting
all the characteristics of the industrial problem is intro-
duced to illustrate the methodology. The procedure is
then applied with success to the FOWT problem. The
two steps composing this methodology are described
in a general framework so that they can be applied
to other optimization problems involving probabilistic
constraints depending on the maximum or the inte-
gral of random processes.
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