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Abstract

Doctor of Philosophy

Integrating somatic and germline multi-omics data to improve our

understanding of lung cancer: a computational biology perspective.

by Aurélie GABRIEL

Cancer is a complex disease caused by endogenous and exogenous factors and im-

pacting multiple omics layers. In the past decades, the high-resolution interrogation

of these layers provided valuable insights on cancer etiology and development. In

the case of lung cancer, both germline susceptibility and somatic landscapes were

widely explored. However, the identification of disease-causal pathways is still

challenging and certain cancer types remain understudied. Molecular characteriza-

tion of lung cancer could thus provide new insights. Such characterization requires

though to apply computational methods adapted to the complexity and the high

dimensionality of omics data. In this thesis, we took advantage of integrative anal-

yses to explore lung cancer omics data. Firstly, multi-omics data were integrated for

the molecular characterization of lung neuroendocrine neoplasms. Machine learn-

ing methods identified molecular subgroups which had distinct prognosis and were

clinically relevant. Subsequently, a molecular map integrating six previously pub-

lished transcriptomic datasets was built. The map corroborated previous biological

hypotheses and was designed to encourage the generation of new hypotheses by

providing the underlying homogenized dataset as well as resources promoting re-

producibility and data reuse. Finally, the interplay between germline and somatic

layers in lung cancers have been explored. Associations between germline suscep-

tibility to lung cancer and mutational burden in lung tumors were identified. While

tobacco smoking susceptibility SNPs were major drivers, pleiotropic effects were

also detected, suggesting that other pathways might be involved.

Keywords: Omics data, Computational biology, Data integration, Lung cancer
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Intégration de données multi-omiques constitutionnelles et

somatiques, pour une meilleure compréhension du cancer du

poumon : une approche computationnelle.

Résumé

Le cancer est une maladie complexe causée par des facteurs endogènes et ex-

ogènes, impactant différentes couches omiques. Au cours des dernières décennies,

l’interrogation de ces couches à haute résolution a permis d’étudier l’étiologie et le

développement des cancers. Dans le cas du cancer du poumon, les profiles con-

stitutionnels et somatiques ont été largement explorés. Toutefois, l’identification

des gènes responsables de la maladie reste limitée et certains types de cancer sont

peu étudiés. La caractérisation moléculaire des cancers du poumon pourrait donc

améliorer les connaissances actuelles. Elle nécessite cependant l’application de méth-

odes adaptées à la complexité et la grande dimension des données omiques. Dans

cette thèse, nous avons mené plusieurs approches intégratives pour explorer ces

données au sein du cancer du poumon. Premièrement, nous avons intégré des don-

nées multi-omiques pour décrire les tumeurs neuroendocrines (TNE) du poumon

et avons identifié, grâce à des méthodes d’apprentissage automatique, des groupes

moléculaires de pronostic différents. Par la suite, une carte moléculaire intégrant six

jeux de données transcriptomiques de TNE du poumon a été établie afin de favoriser

la génération de nouvelles hypothèses et la réutilisation des données. Enfin, nous

avons exploré l’interaction entre les évènements constitutionnels et somatiques au

sein des cancers du poumon. Une association, majoritairement due à la susceptibil-

ité au tabac, a été détectée entre les variants constitutionnels et la charge mutation-

nelle des tumeurs. Cependant, des effets pléiotropiques ont également été détectés,

suggérant que d’autres mécanismes pourraient être impliqués.

Mots clés: Données omiques, Biologie computationnelle, Intégration de données,

Cancers du poumon.
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Intégration de données multi-omiques constitutionnelles et somatiques, pour une

meilleure compréhension du cancer du poumon : une approche computationnelle.

Résumé en français

Le cancer est une des premières causes de décès à travers le monde.  La maladie peut toucher tous

les organes du corps humain et tient son origine d’une cellule normale dont le génome, porteur de

notre matériel génétique, a été altéré. Les altérations génomiques s’accumulent au fil du temps et

confèrent  aux  cellules  cancéreuses  certaines  caractéristiques  biologiques  permettant  une

prolifération non contrôlée. Ces altérations peuvent correspondre à des mutations génétiques mais

aussi  à  des  modifications  épigénétiques  comme  la  méthylation  de  l’ADN  ou  les  modifications

d’histones. Elles influencent donc diverses étapes nécessaires à l’expression de gènes en protéines

et diverses couches omiques telles que le génome, le transcriptome, le méthylome ou encore le

protéome sont donc impactées.   En ce qui concerne les mutations, deux catégories existent. La

première catégorie de mutations est présente dans les cellules germinales et est héritée de nos

parents à la naissance. Ces mutations, dites constitutionnelles, sont donc détectables dans toutes

les  cellules  de  notre  corps,  aussi  bien  dans  les  cellules  normales  qu’au  sein  des  cellules

cancéreuses chez un individu atteint de cancer. La seconde catégorie de mutations est acquise tout

au  long  de  notre  vie,  on  parle  de  mutations  somatiques.  Elles  peuvent  être  le  résultat  de

mécanismes endogènes, comme l’apparition d’erreurs lors de la réplication de l’ADN, mais aussi de

phénomènes exogènes, par exemple à la suite d’expositions environnementales telles que le tabac

ou encore les rayons UV. Chacun de ces évènements laisse des traces qui peuvent être détectées

en analysant les différentes couches omiques. L’accumulation de mutations, par exemple, génère

ce qu’on appelle des signatures mutationnelles, propres à chaque processus mutationnel. Aussi,

des profils d’expression ou de méthylation peuvent refléter diverses activités cellulaires propres à

chaque type de tumeurs et permettre de les distinguer. 

Au  cours  des  dernières  décennies,  les  technologies  développées  en  génomique  et

épigénétique  ont  permis  d’interroger  les  données  omiques  à  haute  résolution  afin  d’étudier

l'étiologie  et  le  développement des cancers,  tout  d’abord à petite échelle puis  par le  biais  de

projets de grande échelle favorisant le partage de données au sein de la communauté scientifique.

On  peut  citer  l’un  de  ces  premiers  projets  de  grande  envergure,  le  projet  TCGA (The  Cancer

Genome  Atlas),  qui  rassemble,  pour  33  types  de  cancers  différents,  des  données  omiques

multiples, comportant des données du séquençage de l’exome (partie codante du génome) et du

transcriptome, des données de méthylation ainsi que des données cliniques pour chaque patient.

L’analyse de données omiques introduit cependant plusieurs difficultés principalement dues à leurs

grandes dimensions et à leur complexité biologique.  Des méthodes computationnelles adaptées

sont nécessaires pour analyser et interpréter ces données. Utilisant le cancer du poumon comme

support  d’étude,  les  travaux  présentés  dans  cette  thèse  soulignent  comment  des  approches

intégratives peuvent améliorer l’analyse et la compréhension des données omiques en s'appuyant

sur des méthodes telles que les méthodes d’apprentissage automatique. Le cancer du poumon est

l'un des cancers les plus répandus dans le monde, avec environ 2 millions de nouveaux cas en



2018. Plusieurs types de cancers du poumon existent. Les plus courants sont généralement divisés

en deux groupes : les cancers du poumon à petites cellules (CPPC) et les cancers du poumon non à

petites cellules (CPNPC), qui représentent respectivement environ 20 et 75% des cas de cancers du

poumon. Il existe également des formes plus rares de cancer du poumon. Certains de ces cancers

ont été regroupés dans une catégorie, appelée tumeurs neuroendocrines (TNE) du poumon, par la

classification 2015 de l'Organisation Mondiale de la Santé (OMS). 

Les  deux  premiers  chapitres  de  la  thèse  portent  sur  cette  classe  de  cancer  du  poumon.  Elle

comprend  les  carcinoïdes  pulmonaires,  subdivisés  en  carcinoïdes  typiques  et  atypiques,  les

carcinomes  neuroendocriniens  à  grandes  cellules  (CNEGC)  ainsi  que  les  CPPC  mentionnés

précédemment.   Les  quatre  types  diffèrent  sur  plusieurs  points.  Les  CNEGC et  CPPC sont  des

carcinomes de haut grade, qui ont un mauvais pronostic et nécessitent des traitements agressifs ;

tandis  que les  carcinoïdes  typiques  et  atypiques  sont,  respectivement,  des  tumeurs  de bas  et

moyen grade, qui présentent un meilleur pronostic (taux de survie globale à 5 ans de 82 à 100% et

de 50% respectivement) et peuvent faire l'objet d'une résection chirurgicale. Etablir un diagnostic

précis et correct de ces tumeurs est donc essentiel. Cependant, les critères actuels sont imparfaits,

des variations de diagnostic entre pathologistes sont courantes et les marqueurs de diagnostics

insuffisants. 

Dans le premier chapitre de la thèse, nous avons effectué une caractérisation moléculaire

des TNE du poumon, et plus particulièrement des carcinoïdes atypiques sous-étudiés. Des données

multi-omiques, d'expression et de méthylation, ont été intégrées à l'aide de méthodes supervisées

et non supervisées afin de mieux comprendre les différences et les relations entre les types de

tumeurs et d'améliorer le diagnostic et la gestion cliniques de ces tumeurs. Un modèle basé sur la

méthode du « random forest » (forêts d’arbres décisionnels),  a été entrainé à prédire les sous-

types histologiques des échantillons à partir des données transcriptomiques et du méthylome.

Cette  analyse  supervisée  a  montré  que  la  classification  moléculaire  ne  correspondait  pas

exactement à la classification histologique et que les données moléculaires pourraient être utiles

pour le diagnostic de ces cancers. Deux groupes de carcinoïdes atypiques, dont le prognostique

diffère, ont été identifiés. L’un des groupes présentait une survie globale à 10 ans de 88%, similaire

à celle des carcinoïdes typiques, et l'autre groupe une survie globale à 10 ans de 27%, similaire à

celle du groupe des CNEGC. D'autre part, une analyse non supervisée a révélé l’existence de sous-

groupes,  caractérisés  dans  cette  étude  sur  le  plan  moléculaire  dans  le  but  d’identifier  des

marqueurs  avec  d’éventuelles  implications cliniques.  Enfin,  nous  avons  identifié le  groupe des

supra-carcinoïdes qui comprend des TNE avec une morphologie de type carcinoïde mais dont les

caractéristiques moléculaires et cliniques correspondent aux CNEGC. Cette observation soutient

l’hypothèse,  précédemment  proposée,  d’un  lien  moléculaire  entre  les  néoplasmes

neuroendocriniens pulmonaires de bas et de haut grade.  

Dans une seconde partie, nous avons généré une carte moléculaire des TNE du poumon en

intégrant  six  jeux de données transcriptomiques et  avons fourni  de multiples  ressources  pour

reproduire  et  étendre  la  carte  moléculaire  dans  le  futur.  Afin de  favoriser  la  réutilisation des

données  générées  lors  de  l’étude  présentée  dans  le  chapitre  précédent,  les  pipelines  de



prétraitement à suivre et les points de contrôles qualité à valider ont été décrit pour permettre

l’intégration avec d'autres données, précédemment publiées ou futures. En utilisant ces pipelines,

nous avons harmonisé les données transcriptomiques de cette première étude avec cinq autres

jeux de données. En appliquant la méthode de réduction de dimensions UMAP (Uniform Manifold

Approximation and Projection) aux données homogénéisées, une carte moléculaire des TNE du

poumon résumant l’expression de plus de 50,000 gènes en deux dimensions a été construite. Afin

d’évaluer la qualité de cette carte, nous avons dans un premier temps vérifié qu’elle corroborait les

groupes  moléculaires  identifiés  et  les  hypothèses  biologiques  formulées  dans  les  précédentes

études.  Dans  un  second  temps,  la  préservation  du  voisinage  des  échantillons  et  des

autocorrélations spatiales entre le jeu de données initial et la projection en deux dimensions a été

estimée. Nous avons montré que l’intégration des jeux de données et la génération de la carte

moléculaire permettaient de réidentifier les groupes moléculaires précédemment observés.  De

surcroit, les groupes identifiés par deux précédentes études indépendantes se sont avérés être les

mêmes entités sur la carte moléculaire (superposition des échantillons des deux études sur la

carte). Enfin, nous avons mis en avant diverses ressources afin de favoriser l’exploration de cet

ensemble de données, la génération de nouvelles hypothèses, ainsi que l’intégration de données

futures.  En  effet,  les  pipelines  utilisés  pour  le  prétraitement  des  données  sont  basés  sur  des

langages  et  outils  computationnels,  tels  que  Nextflow,  Docker  et  Singularity,  favorisant  la

reproducibilité  et  la  portabilité  des  analyses.  Aussi,  les  données  homogénéisées  et  le  code,

nécessaires  à  la  reproduction  de  la  carte  moléculaire  des  TNE  du  poumon  et  des  analyses

effectuées  qui  en  découlent,  ont  été  mis  à  disposition  sur  GitHub  et  dans  un  journal

computationnel  interactif  sur  Nextjournal.  Enfin,  la  carte  moléculaire obtenue est  en ligne sur

TumorMap, un outil permettant une exploration interactive et statistique de cartes moléculaires

comme celle proposée dans ce chapitre.

Le  troisième  chapitre  de  la  thèse  porte  sur  l’intégration  de  données  constitutionnelles  et

somatiques au sein des cancers du poumon non à petites cellules (CPNPC). Ce groupe est subdivisé

en deux sous-groupes principaux : les adénocarcinomes pulmonaires (lung adenocarcinoma, LUAD)

et  les  carcinomes  épidermoïdes  du  poumon  (lung  squamous  cell  carcinoma,  LUSC).   Jusqu'à

présent, la plupart des études visant à comprendre l'étiologie et le développement de ces cancers

ont concentré leurs efforts sur l’analyse des variations constitutionnelles ou sur les analyses de

profiles somatiques de manière indépendante. Sur le plan constitutionnel, des études d’association

pangénomiques (genome-wide association studies, GWAS) ont identifié plusieurs variants associés

au cancer du poumon. Parmi eux, les variants liés à la consommation de tabac ont les effets les

plus importants. Sur le plan somatique, les LUAD et LUSC ont été décrits, entre autres, comme

faisant partie des cancers les plus mutés et présentant, pour les cancers associés au tabac, une

signature  mutationnelle  associée  aux  dommages  causés  par  les  composants  mutagènes  de  la

cigarette et caractérisée par un excès de changements nucléotidiques de type C (base cytosine de

l’ADN)  vers  A  (base  adénine  de  l’ADN)  (généralement  appelée  Signature  4).   Cependant,

l'association directe entre les variants constitutionnels associés au cancer du poumon et la charge

mutationnelle somatique dans les tumeurs du poumon n'a, à notre connaissance, pas été testée.



Pourtant, étudier les interactions entre les événements constitutionnels et somatiques pourrait

d'une  part,  faciliter  l'identification  des  gènes  responsables  de  la  susceptibilité  au  cancer  du

poumon et d'autre part, mettre en lumière les mécanismes de développement de ces cancers. En

utilisant les résultats statistiques de GWAS rendus publiques ainsi que les données de génotypage

et de séquençage de la  base de données TCGA,  nous avons étudié  cette interaction à travers

différentes approches. Tout d'abord, nous avons établi des scores de risque génétique (polygenic

risk score, PRS) afin de combiner les effets de plusieurs variants constitutionnels en une mesure de

risque de développer un cancer du poumon. Une association entre ces PRS avec le nombre total de

mutations  somatiques  ainsi  qu'avec  le  nombre  de  mutations  attribuables  à  la  signature

mutationnelle 4, liée à l'exposition au tabac, a été observée. Cependant, cette association était

principalement due aux variants liés au tabagisme et s’est avérée plus forte chez les LUAD que chez

les LUSC. Afin de tester le lien causal entre la cigarette et la charge mutationnelle, nous avons

utilisé  la  méthode  de  randomisation  mendélienne  qui  permet,  sous  certaines  hypothèses,  de

tester un effet causal entre une exposition et un phénotype en utilisant les variations génétiques,

également appelées instruments génétiques, comme substitut de l'exposition. Bien que le lien de

causalité entre l’exposition à la cigarette et la charge mutationnelle ait été confirmé par plusieurs

tests de randomisation mendélienne, un effet pleiotropique a également été détecté par le test de

Egger,  ce qui  suppose que d’autres mécanismes sont impliqués. Des analyses complémentaires

évaluant l’influence de chaque variant étudié ont identifié un locus du chromosome 15q25, situé

dans la région du gène CHRNA5 (sous-unité de récepteurs nicotiniques), comme étant responsable

de  l’effet  causal  détecté.  Des  analyses  supplémentaires  limitées  à  ce  locus  seraient  donc

nécessaires. En effet, la pléiotropie mise en évidence pourrait être liée à ce locus dont l’influence

sur plusieurs phénotypes a déjà été caractérisée. 

En conclusion,  les travaux présentés dans ce manuscrit  ont intégré différents jeux de données

omiques afin de : i) explorer la diversité moléculaire des tumeurs neuroendocrines du poumon, ii)

tirer  parti  de  jeux  de  données  transcriptomiques  indépendants  de  TNE  du  poumon  afin

d’augmenter  le  nombre  d’échantillons  étudiés  ainsi  que contraster  les  profils  moléculaires  des

tumeurs  à  travers  la  génération  d'une  carte  moléculaire,  et  iii)  explorer  l'interaction  entre  la

susceptibilité au cancer du poumon et la charge mutationnelle de ces tumeurs. Dans une dernière

partie, nous proposons d’éventuelles améliorations et extensions des analyses décrites dans les

différents  chapitres  et  discutons  les  résultats  présentés  dans  cette  thèse  dans  le  contexte  de

projets génomiques actuels et futures.
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Chapter 1

Introduction

1.1 The biology of cancer

Cancer was the second cause of death worldwide, with almost 10 million deaths,

in 2018 [1] and could in a near future become the leading cause [2]. The disease

can affect different parts of the body, although some tissues are more frequently al-

tered than others. Lung cancer, on which the work described in this manuscript will

focus, is one of the most common cancers and the deadliest according to the 2018

GLOBOCAN database (a project of the International Agency for Research on Can-

cer (IARC) providing worldwide cancer statistics) [1]. Cancer is a complex disease

that is highly controlled by the genome [3, 4]. It originates from normal cells whose

genetic information has been altered. Those alterations can result from endogenous

processes as well as from exogenous processes like environmental exposures and

lifestyle [5, 6]. As a result of these alterations, tumor cells have acquired specific

capabilities that allow them to grow in an uncontrolled way as opposed to normal

cells. These capabilities are referred to as the hallmarks of cancer and are listed in

Figure 1.1 [7].
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Chapter 1. Introduction

FIGURE 1.1: The hallmarks of cancer. From Hanahan et al. [7]

The first part of the introduction describes how genomic changes can influence

cancer development and how the technological advances in the genomics area have

enabled to shed lights on the mechanisms involved.

1.1.1 The central dogma of molecular biology

At the beginning of the 19th century, Avery and colleagues isolated and identified

the Deoxyribonucleic acid (DNA) as the molecule constituting our chromosomes,

defined previously as carriers of our hereditary material by Avery et al. [8, 9]. In

1953, Watson and Crick proposed a new structure for the DNA molecule, the double

helix structure [10] (See Figure 1.2A). In 1968, Nirenberg et al. received the Nobel

prize for interpreting the genetic code leading to protein synthesis. The process is

described by what is called the central dogma of molecular biology (Figure 1.2B-C).
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FIGURE 1.2: The DNA molecule and the central dogma of molecular

biology. A) The structure of DNA: the double helix molecule is com-
posed of two complementary strands of nucleotides. B) Representation
of the steps described by the central dogma of molecular biology. C)
Illustration of the molecules resulting from the central dogma transfers

at a higher resolution. Created with BioRender.com

Three main transfers are described by the central dogma: replication, transcrip-

tion and translation (See Figure 1.2B). During replication, the DNA molecule is

duplicated to provide the needed information to progeny cells. Through the two

other steps, the information contained in DNA is used to generate proteins. Firstly,

the process of transcription consists in reading the DNA sequence to synthesize a

single-stranded molecule of the same length, the Ribonucleic acid (RNA). During

translation, the transcribed molecule is then read using a reading frame of three nu-

cleotides that form what is called a codon encoding for one amino acid, the unit of a

protein (See Figure 1.2C). Note that the genetic code is redundant; multiple codons

can encode an amino acid. The conversion of the information encoded in our genes

to functional gene products like proteins is referred to as gene expression.

Since the statement of the central dogma, other mechanisms have been identified

as determinant for the expression of a protein. Firstly, the RNA molecule resulting
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from the transcription process, containing regions coding for the final amino acids

sequence (exons) and non-coding regions (introns), is actually a precursor messen-

ger RNA (pre-mRNAs). The step transforming precursor RNA to mature messen-

ger RNAs (mRNAs) is called splicing and consists in truncating intronic regions and

joining different exons together (See Figure 1.2B). One pre-mRNA can lead to mul-

tiple mRNAs that are then transported outside of the nucleus to be translated into

different isoforms. While around 20,000 genes are described, much more proteins

are generated as a result of this process called alternative splicing.

Although all our cells share the same genetic information and follow the same

dogma, it is known that cells in distinct tissues differentiate and do not express the

same proteins, at the same time. Such differences can be explained by the fact that

several regulatory processes control gene expression levels. Firstly, genes transcrip-

tion is dependent on transcription factors that represent around 7% of the genes

[11]. They specifically bind to control regions of genes, provide or prevent access to

the DNA and can control multiple genes [11]. The fact that genes, for example the

transcription factors, can influence multiple genes and thus sometimes multiple un-

related phenotypes is referred to as pleiotropy. After transcription, mRNAs can also

be regulated through other RNA molecules, like the micro RNAs (miRNAs), that can

degrade mRNAs. Besides, differences in gene expression can be controlled via non-

genetic mechanisms like epigenetic processes, including histone modifications and

DNA methylation. Histones are proteins around which the DNA is wrapped and

hence control DNA accessibility (Figure 1.3). For example, histone phosphorylation

leads to the condensation of the chromatin and inhibits gene expression [11]. DNA

methylation consists in the addition of a methyl group to cytosine nucleotides lo-

cated in cytosine–phosphate–guanine (CpG) dinucleotides sites (cytosine followed

by a guanine nucleotide). Such positions are not homogeneously distributed across

the genome and are more frequently observed in what is called CpG islands, them-

selves mainly observed in regulatory regions of genes, the promoters. It has been

observed that the methylation of CpG sites in promoters can repress gene expres-

sion while methylation of positions in the gene body positively correlates with gene

expression [12].
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Finally, post-translational events like enzymatic modifications of proteins or pro-

tein cleavage can occur and affect proteins functions, hence adding an additional

layer of complexity.

As such, the numerous steps of transferring the DNA sequence information to

proteins reflect the complexity behind protein expression. Any of these steps can be

disrupted and result in altered molecules and proteins, leading to cancer develop-

ment.

1.1.2 Cancer: a genomic disease

Our DNA continuously undergoes diverse alterations and their accumulation over

time can cause cancer. Researchers started to investigate the role of genomes in

cancer at the end of the 19th century. In 1890, David von Hansemann, by observ-

ing cancer cell division under a microscope, identified for the first time abnormal

chromosomes. This observation, among others, led Theodor Boveri 20 years later
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to suggest that cancer was a consequence of alterations in our inherited DNA [3].

His hypothesis was supported in the mid 20th century by the identification of a

recurrent alteration resulting in a peculiar chromosome 22 (the Philadelphia chro-

mosome), in chronic myelogenous leukemia (CML). While those alterations have

been observed at the chromosomal level, genomes can be impacted by a multitude

of alterations detectable at a higher resolution, the modification of one nucleotide in

the DNA sequence being the highest resolution.

At any position of the genome, the nucleotides might vary from an individual

to another as well as between cells of an individual; those variations are called Sin-

gle Nucleotide Variations (SNVs). Also, larger events like nucleotides insertions or

deletions (indels) of up to 1,000 bases and structural variations (chromosomal re-

arrangements or large indels) can alter the DNA sequence. All of these genomic

changes are called mutations.

sic
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FIGURE 1.4: The timing of somatic mutations acquisition. Mutations
can be inherited at birth (germline mutations, in green) or acquired dur-
ing life course (somatic mutations, in yellow, blue and red). They can
have little to no impact (passenger mutations represented by circles) or
confer an advantage to the cell (driver mutations represented by stars).

Adapted from Stratton et al. [3]

Mutations can occur at different moments in life (See Figure 1.4). Some muta-

tions are inherited at birth since they are present in the germ line cells (sperm and

egg) transmitted by parents to the offspring. They are called germline mutations

and are found in all the cells of an individual, normal cells as well as tumor cells.

Such mutations are observed at different frequencies in different populations and

are called Single Nucleotide Polymorphism (SNP)s. Another category of mutations

can also be found in all cells of the body even if they were not transmitted by our

parents, if they occur early in life during the development, at gestation. They are
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called de novo mutations. Finally, the rest of the mutations found in humans are

acquired later in life as a result of errors in the DNA maintenance or exogenous

damages (See next section). Those mutations occur in cells outside the germ line

and are called the somatic mutations.

Also, whether they are germline or somatic, mutations can have different im-

pacts. Most mutations have, due to the redundancy of the genetic code or due to

their location in the genome (i.e in non-coding regions), little to no impact on the

genes encoded around them, they are the passenger mutations [13]. Others though

alter the gene product or its expression levels and confer a selective advantage to the

cell, e.g. a faster proliferation or a better survival in comparison to neighbour cells

[3]. Those mutations are called driver mutations as they are thought to contribute

to “driving the carcinogenic process” and are preserved by positive selection. In

2018, the Cancer Gene Census described more than 700 driver genes (genes carry-

ing driver mutations). Among them, 90% were associated with somatic mutations

and 20% contained germline mutations [14, 15]. Generally, two types of driver genes

exist, oncogenes and Tumor Suppressor Genes (TSG). Oncogenes are genes whose

functions are thought to promote cell growth, proliferation or inhibit apoptosis and

usually result from a gain of function. A mutation in an oncogene can thus lead

to a dysregulation of one of these processes, hence resulting in uncontrolled prolif-

eration and cancer. The first mutation identified as causing cancer was discovered

in 1982 by Reddy et al. and activates an oncogene named HRAS [16]. Besides mu-

tations, other processes like over-expression of genes via amplification or chromo-

somal translocations can activate this category of genes. In contrast to oncogenes,

TSGs are restraining cellular growth and proliferation and are often referred to as

the "gatekeepers" genes. Mutations in TSGs tend to result in a loss of function; the

latter genes are inactivated, and their negative regulation of cell proliferation is can-

celled, which leads to abnormal growth. In 1971, Knudson proposed the two hit

hypothesis, which stipulates that both alleles (versions of a gene inherited by our

mother and father, identical alleles leading to the homozygous state while two dif-

ferent alleles to the heterozygous state) of a TSG must be inactivated or lost for the

gene to lose its normal functions [17]. This hypothesis seemed to explain some fa-

milial cases such as retinoblastoma or Wilms’ tumor [18]. Indeed when the first hit is

an inherited germline mutation, the cancer susceptibility of a person increases since

only one alteration is needed to alter the TSG functions. The second alteration can

result from different events: a mutation in the second allele, the loss or translocation

of chromosome pieces or the loss of an entire chromosome. The two latter events

causing what is called loss of heterozygosity (LOH) [5].
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In the case of the two hit hypothesis, two mutations in the same gene are re-

quired for cancer initiation. However, it has been described that cancer usually

results from a multi-step process, meaning that multiple mutations and more than

one gene are usually involved. A certain number of alterations in key pathways

are necessary, and it can take several years for cancer to develop [11]. However,

the multi-step process can be accelerated. Firstly, as mentioned previously, the in-

heritance of germline mutations speeds up the cancer development as one driver

mutation might be present from birth, increasing the probability that the remain-

ing necessary events, which generally follow a stochastic process, will also occur.

[11]. Also, even if multiple DNA repair mechanisms fix most of the alterations that

a genome endures, the DNA repair pathways themselves can be disrupted, leading

to an acceleration of the accumulation of alterations. Such an event increases the

mutation rate of an individual and generates what is called a "mutator phenotype"

[3, 19]. Finally, driver genes can also be altered by epigenetic changes that are more

frequent. Such changes increase the chance of disrupting key biological pathways

for cancer development.

1.1.3 Cancer: an environmental disease

Mutations can arise from endogenous processes, for example, errors happening dur-

ing DNA replication. In that regard, the appearance of mutations across the genome

seems random, and the advent of a driver mutation leading to cancer development

seems associated with bad luck. This idea has been developed by Tomasetti et al.

[20] in a controversial paper, published in 2015, suggesting that the majority of can-

cer mutations were due to "bad luck". In 2017, the same authors confirmed that

mutations due to random errors represent a large proportion of mutations in mul-

tiple cancers while specifying that if luck and randomness do play a role in cancer

development, other factors like exogenous processes also impact our DNA and con-

tribute to cancer development [21]. Note that this study is, for some cancers, in

contradiction with the work of a study estimating intrinsic risk of different cancers

and being critical of the initial controversial paper [22].

Cancer incidence varies depending on the countries considered. Lung cancer in-

cidence, for example, is much higher in Asia, Europe and North America than in

Africa [23]. Those differences can be explained by the fact that cancer has a her-

itable component that differs in different parts of the world and by the fact that

environmental exposures are different across countries. It has been shown, though,

in studies exploring cancer rates in migrants populations, that the differences ob-

served among populations could not be explained only by the genetic component
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[24]. In the second half of the 20th century, epidemiological studies have indicated

that several environmental exposures were associated with cancer incidence, show-

ing that many cancers could be prevented. One of the most striking findings was

that of Doll et al. showing that smokers had a twenty-fold higher risk of developing

lung cancer than non-smokers [25]. At the same period, chemical agents have been

identified as being able to induce cancer, i.e. being carcinogenic [26]. Some of these

agents were also defined as mutagenic agents, i.e. agents inducing DNA damages.

Some carcinogens can impact cancer evolution without causing DNA alterations;

they are non-mutagenic agents and are considered as tumor promoters. One exam-

ple of tumor promoter is alcohol which is a cytotoxic substance. Its consumption

leads indeed to the death of epithelial cells in the mouth and throat, which triggers

the division of the stem cells to regenerate the epithelium. If tobacco consumption

precedes this event, tobacco-induced mutations might be present in the dividing

cells, and clonal expansion of these mutations may lead to cancer [11]. In that case,

smoking acts as a tumor initiator and alcohol as a promoter by stimulating cell pro-

liferation. Such interaction between alcohol and smoking is observed in head and

neck cancers. Note, however, that alcohol can also have a mutagenic effect due

to metabolites, like acetaldehyde, generated during ethanol oxidation in the liver

[27]. Other examples of tumor promoters are steroid hormones acting as mitogenic

agents or chronic inflammation (e.g. due to viruses).

We have seen that mutations in our genome can result from endogenous pro-

cesses like replication errors or DNA repair defects and from exposition to carcino-

gens. Observing these mutations across the whole genome have revealed patterns.

Indeed, each of these processes can generate what is called mutational signatures, i.e.

specific combinations of mutations [28]. The first studies of mutational signatures

focused on single base nucleotide substitutions (six possible substitutions: C>A,

C>T, C>G, T>A, T>C, T>G) and their tri-nucleotide contexts (the 5’ and 3’ nu-

cleotides flanking the substitution) leading to 96 possible classes of mutations. The

classification of all mutations found in cancer genomes in those 96 groups and the

use of mathematical methods (See section 1.4) to decompose the mutational pro-

cesses enable the identification of a limited but diverse set of signatures. In the case

of lung cancers, comparing the DNA of smokers with that of non-smokers revealed

an increase of mutations in smokers mainly due to an elevation of C to A (C>A)

mutations, probably caused by the tendency of tobacco carcinogens to induce this

particular change [29]. In melanoma samples, an increase of C>T substitutions has

been identified as a result of Ultraviolet (UV) light exposition [30]. In 2015, COSMIC

provided a curated set of 30 mutational signatures based on previously published
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studies on different cancer types [31]. Recently the methods to disentangle muta-

tional signatures in human genomes have been extended. In 2020, Alexandrov et al.

have considered higher context to classify single base substitutions by considering

two flanking bases around the positions of the mutations and analyzed as well other

types of mutations like double base substitutions and indels. This work led to an

expansion of the repertoire of mutational signatures with more than 60 signatures

in total [32].

Although some signatures are resulting from endogenous processes, like defects

in DNA repair or unknown processes, multiple signatures have been associated

with preventable exposures. Considering the important impact of environmental

exposures, Wild et al. suggested in 2005 the concept of the exposome which corre-

sponds to all the exposures encountered by an individual during his lifetime (e.g.

life-style, exposures to chemicals). He expressed the need to improve the measure-

ment of such exposures at the same scale of the genomic events measurements [33].

Indeed on the genome side, remarkable technological advances were made in the

past decades allowing researchers to explore the human genome at high resolution.

The evolution of these technologies is described in the next section.

1.2 The era of genomics

1.2.1 From arrays to next generation sequencing

The identification of the genomics variations leading to cancer has been enabled by

multiple technical and technological advances that occurred after the discovery of

the DNA structure. Since that discovery, researchers have attempted to decipher

the hidden information contained in the double helix molecule. One fundamen-

tal advancement in genomics has been the development of the first generation se-

quencing by Frederic Sanger in the 1970s. After automatization, this technique led

indeed to the sequencing of the first human genome in the context of the Human

Genome Project (HGP) that started in the 1980s, took 13 years and cost around 3

billion dollars to lead, in 2003, to the sequencing of the 3 billion nucleotides that our

DNA constitutes. At that time, the largest genome sequenced was the 20,000 times

smaller genome of the Epstein-Barr virus [34]. While many researchers thought it

was impossible, the project completed and delivered the first version of the human

genome reference which, after being revised and improved, is now used on a day-

to-day basis in genomics. However, the first generation sequencing technology was
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too long and costly to be applied in larger research projects aiming in that period to

catalogue the genetic variations involved in human diseases.

The array technology

At the same period, the microarrays technologies were far less expensive. This tech-

nique consists in disposing, on an array, DNA sequences, called probes, designed

to bind (by hybridization) to target sequences in a sample. The target sequences are

labelled to measure the hybridization and quantify the target molecules.

Next Generation Sequencing (NGS) methods 
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FIGURE 1.5: Microarrays. A) SNP arrays: fragmented DNA sequences
bind to designed probes on the microarray, which generates an inten-
sity signal that varies depending on the allele carried by the DNA se-
quences. B) Expression arrays: tagged complementary DNA, reverse-
transcribed from mRNAs molecules, bind to gene-specific probes,
which generates a fluorescence signal used to compare expression lev-

els in different cell conditions. Created with BioRender.com

In order to study genomic variations across the genome, specific microarrays

were developed, the genotyping or SNPs arrays. Those arrays contain unique probe

sequences, targeting specific positions of the genome, which hybridize to single-

stranded DNA that has been fragmented. This generates intensities signals varying
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depending on the allele carried by the DNA sequence binding to each probe. This

intensity, indicating the presence or absence of each allele, is then converted into

genotypes [35] (See Figure 1.5A). The SNP arrays developed for commercial pur-

poses have evolved, interrogating from 10,000 to millions of sites simultaneously

in a given individual [36]. Key produces of these technologies were developed

by Affymetrix and Illumina inc. Those arrays have been used so far for different

purposes. They allowed the identification of copy number changes or, for arrays

with high marker density regions, the detection of LOH events by identifying re-

gions without heterozygous positions [37, 38]. They have also been used to identify

germline variants that associate with a certain disease through Genome-Wide Asso-

ciation Studies (GWAS) [39]. As illustrated in Figure 1.6, GWAS interrogate millions

of positions across the genome by testing their association with a specific trait, like

smoking traits, individually and reveal positions significantly associated with that

trait.
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FIGURE 1.6: Genome-wide association studies. The figure illustrates
a GWAS identifying SNPs associated with the number of cigarettes
smoked per day. For each position, the association between the vari-
ant genotypes and the number of cigarettes per day is tested (rs789 ex-
ample). The associations p-values are represented in a Manhattan plot
(left panel). SNPs reaching the genome-wide significance threshold of
5.10−8 are considered as true associations. Those SNPs do however not
always correspond to the causal variant but often tag a nearby SNP in

linkage disequilibrium. Created with BioRender.com

Although SNPs arrays are limited to the positions assayed, much more posi-

tions can be studied based on the arrays. Indeed, SNPs are transmitted to the off-

spring linked to other close SNPs in blocks called haplotypes. This correlational re-

lationship between SNPs is called linkage disequilibrium (LD). Knowing the SNPs

composition of a haplotype enables to predict the genotype of SNPs that were not

assayed by the array by using the information of the assayed positions in the hap-

lotype. Hence, genotyping hundred thousands of SNPs allows actually to impute

the genotype of millions of other variants thanks to LD. The definition of the haplo-

types required though to study such genomic structure in different samples to build

a map as reference. Those were the goals of the Haplotype Map project (HapMap)

started in 2002 [40, 41].

Micro-arrays platforms have also been used to study the other molecular layers
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like the transcriptome and the methylome. For the analysis of the expression profile,

micro-arrays have enabled to measure and compare the expression levels of specific

genes in cells under different conditions, e.g. diseased versus healthy cells or treated

versus non-treated cells. Figure 1.5B describes the main steps of an expression array

experiment. The extracted mRNAs molecules from both types of cells, after being

reverse-transcribed to complementary DNA (cDNA) and labelled with fluorescent

dye, hybridize to the genes specific probes fixed on the array. The array is then

scanned using fluorescent imaging [42]. The fluorescence amount detected at each

probe is proportional to the amount of mRNAs in cells. While these measures do not

provide absolute quantification of gene expression levels, they enable to compare

the expression levels in the different conditions.

Arrays have also been used to study the epigenome by allowing the detection

and the analysis of methylation events. The most commonly used methylation ar-

rays are the Illumina arrays [43]. Probes are designed to target specific loci of the

human genome, CpG positions. The number of positions interrogated by such ar-

rays can vary from 25,000 to 850,000 positions depending on the array (e.g. Illumina

25K, 450K and 850K arrays). Probes are designed and fixed to the array to bind

to both methylated and unmethylated loci (Figure 1.7). This binding is enabled

by a chemical process called bisulfite conversion, which converts unmethylated cy-

tosines to uracil and leave methylated cytosine unchanged. At the hybridization

step, a single-based extension is performed with labelled nucleotides, allowing to

distinguish for each locus a methylated vs non-methylated signal (Figure 1.7). The

ratio between the two signals at a locus provides a value, called β value, which indi-

cates the level of methylation. This value ranges between 0 and 1, 0 corresponding

to a non-methylated and 1 a methylated position.
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FIGURE 1.7: The Illumina Infinium methylation assay (From [43]).
This figure represents the probes used for methylation profiling by Il-
lumina. A) Infinium type I probes. Two site-specific probes are found
on the array: probes allowing methylated sites with the preserved cy-
tosine to bind (methylated bead M) and probes designed for the un-
methylated site with the thymine nucleotide resulting from bisulfite
conversion and whole-genome amplification (methylated bead U). B)
Infinium type II probes. Only one probe per locus is required to bind
to both methylated and unmethylated sites. In that case, single-base

extension with labelled nucleotides is used.

Next-generation sequencing

While the SNP arrays enabled to access the genotype information of millions of posi-

tions, there was still a need to re-sequence human genomes more efficiently and ac-

cess the complete DNA sequence to better identify genetic variations. Around 2005,

the second generation of sequencing methods called Next Generation Sequencing

(NGS) has been developed.
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FIGURE 1.8: Next Generation Sequencing methods. The figure de-
scribes the NGS steps consisting in: i) fragmenting the nucleic acid
molecule, ii) amplifying the fragments (using Polymerase Chain Reac-
tion (PCR)), iii) sequencing the resulting copies using single-base exten-
sion that adds one after the other labelled nucleotides whose signals are
detected using digital imaging. The sequencing reads are then aligned
to a reference genome to assemble the reads in a single sequence or to
detect mutations across the genome. In the case of RNA sequencing,
the reads align to exonic regions of the genes and they are counted to

quantify gene expression levels. Created with BioRender.com

The main change in these new methods in comparison to the first one was the

parallelization of the sequencing, which allowed to produce millions of sequences,

called reads, at the same time and hence to decrease drastically the time of se-

quencing as well as its cost [44] (Figure 1.8). NGS methods enabled the rapid re-

sequencing of different parts and lengths of the genome. The entire genome se-

quence (except some highly problematic regions) can be accessed with Whole Genome
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Sequencing (WGS). The restricted sequencing of coding regions (exonic regions) can

be performed with Whole Exome Sequencing (WES). Finally, it is possible to se-

quence specific regions of the genome, usually genes, using targeted sequencing.

Based on these techniques, bioinformatics methods have been developed to detect

germline as well as somatic variants. They consist in mapping (or aligning) the se-

quenced reads to a reference genome, and positions that vary from the reference

are identified as variations (Figure 1.8). A mismatch between a sequenced genome

and the reference genome is expected around every 1,000 bases. To distinguish so-

matic from germline mutations, both tumor and normal cells DNA from the same

individual have to be sequenced. The tumor DNA is compared to the normal DNA

and variations found in the tumor cells only are classified as somatic mutations.

Somatic mutations are expected every 1,000,000 bases approximately depending on

the cancer type [28].

While the DNA sequencing techniques have been used to detect DNA mutations,

they do not explore the expression or methylation layers. In 2008, the sequencing

of the RNA molecule (RNA Sequencing (RNA-Seq)) had been performed to study

expression profiles. In this technique, the mRNAs molecules are fragmented and

converted to complementary DNA before sequencing, and the resulting reads are

aligned to the reference genome [45]. After the alignment step, the reads can be

assigned to genes and the abundance of reads mapped on a gene, quantified us-

ing the number of mapped reads, reflects the expression level of the gene (Figure

1.8). A high read count value indicating that a gene is active and transcribed in that

sample. The comparison of the read counts distributions in samples from differ-

ent conditions, e.g. samples with and without disease or diseased samples under

different treatment, can be used to identify genes involved in or causing a specific

condition. RNA-Seq can also be used to identify different transcripts of a gene as

well as gene rearrangements like translocations.

Note that other recent techniques, while not described in the thesis, also exist

to access different omics layers. A new sequencing technique has been developed

for the analysis of the methylome, the bisulfite sequencing, which in contrast with

the methylation arrays, can interrogate millions of CpGs positions across the whole

genome as well as positions in targeted regions. Also, the study of chromatin ac-

cessibility and DNA-binding proteins is possible thanks to Assay of Transposase

Accessible Chromatin sequencing (ATAC-seq) and Chromatin immunoprecipitation

experiments followed by sequencing (Chromatin immunoprecipitation Sequencing

(ChiP-Seq)) respectively [46, 47]. Finally, while the sequencing methods presented

so far process DNA coming from a bulk of cells, single-cell sequencing methods
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have been developed to perform molecular characterization at the cell level. These

methods allow the identification of distinct populations of cells in a tumor and hence

the study of tumor heterogeneity and tumor microenvironment [48, 49].

The decreasing costs of genotyping and sequencing methods have enabled the

establishment of genomics studies involving large cohorts [44]. Sequencing a hu-

man genome today costs less than 1,000 dollars using NGS methods while it would

still cost millions if the Sanger method was chosen. Multiple research groups have

coordinated their efforts to create large consortia for that purpose and in many cases

have shared the resulting data to the scientific community. The next section provides

an overview of some of these initiatives.

1.2.2 Large public databases

The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) is a public database providing access to 10,000

patients whose tumors have undergone multi-omics characterization. The project

was launched in 2005 by the National Institutes of Health (NIH) and aimed at char-

acterizing the genomic alterations underlying several cancer types. For that pur-

pose, multiple omics data were generated [50]. The tumor and normal samples from

most of the TCGA participants have been sequenced using WES. Based on these

data, multiple variant callers have been used to catalogue the germline and somatic

mutations present in each sample. Genotyping has been performed to analyze copy

number variations. The transcriptome of most samples has also been sequenced,

using RNA and miRNAs sequencing. The methylation profiles of the tumors were

explored with the use of 25K or 450K methylation arrays. Finally, protein expres-

sion profiling has been performed based on Reverse-Phase Protein Array (RPPA).

In addition to the molecular data, clinical and environmental exposures data were

collected when possible. The TCGA projects also delivered the histopathological

images associated to each tumor. Based on these diverse omics and clinical datasets,

"marker papers" describing the molecular landscape of each tumor type have been

published. While the tissues explored at the beginning of the initiative were limited

to lung, brain and ovaries, the TCGA data encompass today molecular data from

33 different cancer types. Those cancer-specific studies led to the identification of

genomics alterations causing each cancer type, hence the discovery of new driver

genes and potential cancer biomarkers, i.e. molecules found in the body as an in-

dicator of a disease or specific condition. Also, cancer subtypes were characterized
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on the molecular level and subtype-specific alterations were identified, which re-

sulted in new clinical managements of tumors [51]. In parallel to the cancer-specific

studies, the TCGA research network launched, in 2012, the Pan-Cancer Atlas ini-

tiative aiming at exploring the commonalities between cancer types, distinguishing

tissue-specific determinants of cancer as well as increasing the statistical power for

the identification of genomic alterations [51]. This initiative was completed in 2018

and the data have been released and associated to 27 papers, published in Cell, fo-

cusing on three main topics: i) cell-of-origin patterns and cancers subgrouping, ii)

oncogenic processes, and iii) signaling pathways involved in cancer [52].

The International Cancer Genome Consortium (ICGC) initiatives

The TCGA studies focused their efforts on the characterization of the cancer exomes.

However, exomes represent only 1% of the human genome and much more can be

discovered by exploring the remaining 99% of the genome. In 2007, the Interna-

tional Cancer Genome Consortium (ICGC) project was launched to study more than

20,000 whole genomes from 50 cancer types having an impact in multiple regions

of the world (the 25k initiative). The international consortium aimed at generat-

ing a catalogue of the somatic mutations in those cancer types, sharing the resulting

datasets and complementing them with transcriptomic and epigenomic datasets [53,

54]. Based on the samples included in the TCGA and the ICGC projects, the Pan-

Cancer Analysis of Whole Genomes (PCAWG) project, an ICGC initiative also know

as the Pan-Cancer project, has arisen [55]. The project relied on more than 2600 sam-

ples from 38 different tumor types and aimed at meta-analyzing whole-genome data

across cancers along the same lines as the PanCancer Atlas project. The first results

from these data have been released in 2020 in a series of publications in Nature [54].

While the TCGA initiative enabled the study of the coding regions of the samples,

the PCAWG project, thanks to the use of whole genome sequences, was designed

to explore broader mutational patterns in the coding and non-coding regions, from

small to large events like structural variations. For example, chromoplexy and chro-

mothripsis events, which are complex chromosomal rearrangements resulting from

catastrophic genomic events, have been observed in more cancers than expected,

17.8% and 22.3% of the tumors, respectively [54]. Also, one major result from the

PCAWG project has been the expansion of the mutational signatures mentioned in

section 1.1 [32], as well as the discovery of 16 structural variants signatures [56].
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UKbiobank

The previously described projects mainly targeted the somatic landscape of genomes.

Other large projects have enabled the research community to explore the germline

component of human disease. The largest public dataset, focusing on germline ge-

netics, has been generated by the UKbiobank project, which started in 2010 in the

UK. This project gathered data from a population-based cohort of around 500,000

participants between 40 and 69 [57] and had as main objective to improve our un-

derstanding of the interaction between genetics and multiple human diseases. For

that purpose, all participants were genotyped. Besides, multiple other biological

samples, like urine, blood and saliva as well as physical measures, e.g. brain Mag-

netic Resonance Imaging (MRI), heart and eye measurements, were collected. It is a

prospective cohort; participants are followed up and are linked to electronic health

records [58]. The genotyping data of the full cohort were released in 2017. Based on

this dataset and the large panel of phenotypes, a multitude of GWAS studies related

to human diseases have been performed and their resulting summary statistics were

made available. In 2019, around 100 GWAS studies resulting from the UKbiobank

data were available on the GWAS catalogue, which provides curated GWAS sum-

mary statistics results [59]. The follow-up of the patients has established that, in

2018, 79,000 of the participants were diagnosed with cancer [58], which means that

cancer-related traits can also be studied using this dataset. After the release of the

genotyped and imputed data, WES and WGS sequencing of the samples have been

initiated. Part of the exome data, around 50,000 exomes, have already been released

and about 200,000 exomes should be expected by the end of 2020. These data fore-

shadow future key findings in genomics, a better understanding of molecular and

phenotypic interactions and probably an improvement of the translation of those

findings in the clinic.

Data sharing

With the increasing number of genomics studies, public repositories, like the Database

of Genotypes And Phenotypes (dbGAP), the European-Genome Phenome Archive

(EGA) or Gene Expression Omnibus (GEO), have been established to store petabytes

of genomics data that can be accessed by the research community. In addition, large

projects, like the TCGA and ICGC, have worked on solutions to improve data stor-

age and accessibility. One of the goals of those projects was to promote open-access

data and the development of tools to foster the reuse of the data by the research

community [51, 53]. In 2010, the TCGA provided the data in open access for the first
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time [60] and updated and extended the content of the open access data over the

years. In 2016, the Genomic Data Common (GDC) was launched by the National

Cancer Institute (NCI) to store all the TCGA data [61]. For each omics, the data are

categorized by levels: low-level data (raw and unnormalized data) that generally

enable individuals re-identification are under controlled access, while higher-level

data (processed data, clinical data) that do not permit re-identifiability are available

without any requirement. In addition to providing the data storage, the GDC also

aimed at harmonizing and sharing the bioinformatics pipelines used to process the

data [61, 62]. The processed data resulting from the PanCancer Atlas papers are also

available via the NIH GDC website [63] and allow researchers to explore broader

genomic features like immune variables [64] or biological pathway measures [65].

Also, cloud computing solutions have been developed to facilitate the analyses of

large public genomic datasets while avoiding the download and duplication of the

data. The TCGA and ICGC data are available and can be analyzed on the cloud, for

example via the Cancer Genomics Cloud (CGC) [66] or the ISB Cancer Genomics

Cloud (ISB-CGC) [67]. Also, the ICGC consortium, to process the PCAWG data,

has developed a computational tool, Butler, which simplifies genomic analyses that

have to be run on clouds environments (academic or commercial) [68].

In the past decades, the development of genomics technologies and the imple-

mentation of large consortia have enabled to characterize human cancers on the

molecular level. The understanding of cancer causes and the biological mechanisms

underlying tumor development has been improved. Also, due to the identification

of correlations between molecular events and patient’s prognosis and response to

treatments, molecular studies have impacted the way that tumors are classified and

managed in the clinic.
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1.3 The example of lung cancer

1.3.1 Lung cancer subtypes and etiology

Rare; Often peripheral; Found in heavy 
smokers; 5y SR ~30% 

Large cell neuroendocrine  
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FIGURE 1.9: Lung cancer subtypes. Each lung cancer type occurs at
different frequencies as well as at distinct locations in the lung (from
proximal to distal locations). Each box on the figure is associated to one
cancer type and provides their characteristics (frequency, localisation,
etiology and overall 5-year survival rate (5y SR)) [69, 70, 71, 72]. Figure

created with BioRender.com

As mentioned at the beginning of the dissertation, lung cancer is one of the most

common and deadliest cancer worldwide. Several subtypes of lung cancers have

been identified (Figure 1.9). The most common lung cancers are usually divided

into two groups: the Small Cell Lung Cancer (SCLC) and the Non Small Cell Lung

Cancer (NSCLC) samples, representing respectively around 20 and 75% of the lung

cancers [73]. The second group is further separated into two main subgroups: the

Lung Adenocarcinomas (LUAD) and the Lung Squamous Cell Carcinomas (LUSC).

Also, rarer forms of lung cancer exist. Multiple lung cancer subtypes, including such

rarer cancers, were grouped in one category named the lung neuroendocrine tu-

mors by the World Health Organization (WHO) 2015 classification [74]. This group

comprises the pulmonary carcinoids, including the typical and atypical carcinoids,
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Large Cell Neuroendocrine Carcinoma (LCNEC) as well as the previously men-

tioned SCLC tumors. Each lung cancer type can be distinguished by different eti-

ologies, histopathological characteristics, molecular profiles and clinical outcomes

(See Figure 1.9).

The strongest risk factor for lung cancer is smoking. Indeed, SCLCs and LC-

NECs are frequently found in heavy smokers. Smoking is also a major risk factor

for LUAD and LUSC cancers [75]. However, lung cancer can also develop in non-

smokers. In particular, the LUAD category corresponds to the lung cancer type most

commonly found in never smokers. Although the etiology of the pulmonary carci-

noids is not clear, the majority of these tumors are found in nonsmokers [70]. In

addition, around only 15% of smokers develop lung cancer suggesting than other

factors mediate lung cancer risk. Such factors include indoor pollution from cooking

fumes, radon, and occupational exposures like those from smelting heavy metals or

asbestos exposure [76].

1.3.2 Lung cancer susceptibility

While diverse exposures have been identified as lung cancer risk factors, genetics

is also contributing to the disease risk. In line with this hypothesis, it has been

shown that having a family history of lung cancer confers a 2.5 fold lung cancer

risk increase [77]. Further evidence of lung cancer germline susceptibility has been

revealed by GWAS studies, with the identification of common variations associated

with lung cancer. Genes involved in nicotine addiction (CHRNA genes), telomere

activities (TERT) as well as genes related to the DNA repair and cell-cycle pathways

(e.g. Check2, RAD52 or CDKN2A) have been identified [78]. Also, some lung cancer

associated variants were identified as related to the propensity to smoke [79, 80] and

genetic correlations between lung cancer and smoking traits, like smoking initiation,

smoking cessation or smoking intensity have been described [80]. Such observa-

tions provided evidence that susceptibility variants could influence lung cancer risk

through environmental exposures. Hence, GWAS studies have enabled to gain in-

sights on lung cancer etiology as well as on the biological pathways involved in the

disease. However, the variants identified so far do not account for most of the her-

itability of lung cancer, estimated at 18% and remaining today largely unexplained

[80].
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1.3.3 Lung cancer molecular profiling

In the past decades, molecular profiles of human tumors, including lung tumors,

have also been explored thanks to the development of NGS studies. Such studies

have, for example, established that lung cancers are among the cancer types with the

highest mutational burden (total number of mutations for a given part of DNA) [81].

As mentioned in Section 1.1, in smoking-related cancers, those mutations revealed a

signature associated with tobacco consumption. Among the Catalogue Of Somatic

Mutations In Cancer (COSMIC) signatures identified by Alexandrov et al. [28, 32],

the smoking signature corresponds to the Signature 4 (COSMIC version 2) and SBS

4 (COSMIC version 3). Those signatures are the results of DNA damages caused

mainly by benzo[α]pyrene, which is a mutagenic compound found in tobacco smoke

and whose effects on DNA has been shown in experimental mutagenesis studies

[29]. Even though smoking does heavily impact the lung tissue, it has been shown

that quitting smoking can restore the damaged tissue [82].

In addition, molecular analyses of lung tumors have identified cancer driver

genes in the different cancer types. Among those genes, the Epidermal Growth Factor

Receptor (EGFR) gene, which is part of the protein kinase family currently known to

be mutated in around 15% of the LUAD samples [83], has been related to therapeu-

tic response in 2004 [73]. Indeed LUAD samples, carrying activating mutations in

the EGFR gene, are responsive to tyrosine kinase inhibitor therapy and have an im-

proved survival in comparison to other cancer patients treated with chemotherapy.

Such molecular studies largely influenced the way that lung tumors are classified

by leading to the sub-classification of NSCLC. Guidelines were published in 2013

to include molecular testing, mainly based on EGFR and ALK alterations testing, in

the clinical practice for the NSCLC patients. In 2018, those guidelines were updated

and new alterations, like rearrangements in the tyrosine kinase ROS1, are now rec-

ommended for molecular testing [84]. In 2012 and 2014, the TCGA marker papers

on the two lung cancer cohorts (LUAD and LUSC) were published. The authors ex-

panded the molecular profiling of these tumors and hence the list of drivers genes,

improving the understanding of the biological mechanisms involved and providing

new opportunities for patients management [85, 83]. Those studies also explored

the transcriptomic, methylation and proteomic data from the lung tumors. Based

on their expression profiles, the LUAD tumors, were divided into subtypes that

could help to refine those tumors classification [83].

The identification of driver genes in lung cancer has also led to the proposal of

molecular targets for early detection. The molecular profiling of SCLCs is an ex-

ample of such an application. SCLCs are characterized by universal inactivation of
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both RB1 and TP53 genes [86, 87, 88]. In 2016, Fernandez-Cuesta et al. analyzed

circulating tumor DNA (ctDNA), which are fragments of tumor DNA released in

the bloodstream that can be used as molecular biomarkers, in SCLCs. They showed

that TP53 mutations were detectable in the ctDNA of the SCLC cases [89]. ctDNA

applications are viable for multiple cancer types. In 2018, Cohen et al. described a

blood test called CancerSEEK, detecting proteins and mutations in cell-free DNA for

the early detection of eight different cancer types, including lung cancer [90]. Such

tests face though sensitivity issues due to the low abundance of mutated DNA in

body fluids, hence adapted bioinformatics tools are needed. I contributed to the op-

timization of such tool, Needlestack, a highly sensitive multi-sample variant caller

[91].

Even though rare forms of lung cancers are less explored than the common

lung cancers, recent molecular studies have started to characterize the lung neu-

roendocrine tumors as well [92, 93, 94, 95]. Those studies have revealed that, on

top of their histopathological differences, the lung neuroendocrine neoplasms were

also distinct molecular entities [88]. Low mutational burden has been observed in

the atypical and typical pulmonary carcinoids in contrast to the highly mutated

LCNECs and SCLCs [70]. Also, the transcriptomic profiling of those tumors has

been investigated. These analyses identified molecular subgroups in different can-

cer types, revealing the molecular heterogeneity in those tumors [93, 96]. The work

described in chapters 2 and 3 of this thesis contributed to the molecular characteri-

zation of the lung neuroendocrine tumors.

The discoveries described in this section were enabled thanks to the large amount

of data generated during the era of genomics (See Section 1.2). However, the analy-

ses of these data have raised multiple challenges that required the use and develop-

ment of specific computational methods. The next section intends to describe those

aspects.

1.4 Interpreting high dimensional data

The evolution of genotyping and sequencing technologies led to the generation of

high dimensional datasets. In Section 1.2, we have seen for example that arrays can

interrogate thousands to millions of positions across the genome and that sequenc-

ing techniques can provide the entire genome sequence or the expression levels of

thousands of genes. While the amount of information unveiled by these methods is
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colossal, it can also bring about several challenges and adapted computational meth-

ods are required to analyze and interpret the data. The issues resulting from high

dimensionality are associated to what is called the curse of dimensionality, firstly

introduced by Bellman in 1961 and stipulating that the number of samples needed

to interpret high dimensional data analyses appropriately increases exponentially

with the number of dimensions [97]. In omics datasets, even though large cohorts

have been implemented (see section 1.2), the number of variables (also known as

features), p, to analyze can be largely superior to the number of samples, n, included

in the study. This introduces the n << p problem, which leads to multiple issues.

Firstly, usual statistical models like regression models need to be adapted since they

require p < n. There is also a substantial amount of noise in the generated data

that can mask the true signal in the data, i.e. not all the measured features are of

interest [98, 99]. In addition, when the number of dimensions increases, the data

points can occupy a more voluminous space and a larger proportion of this space

will be empty, we say that the data are sparse (See Figure 1.10) [97]. High data spar-

sity influences basic properties to which we are used to in two or three dimensions

like distances. In high dimensions, distances between points increase and all points

seem at the same distance from each other [99, 97]. Also, the higher the dimensions,

the lower the correlations between the features will be. For those reasons, it is thus

statistically more difficult to identify groups of points with similar characteristics

compared with random events, as such larger sample sizes are required to distin-

guish meaningful relationships. Another issue resulting from high dimensionality

is multi-collinearity. Since the number of features is high, the information they carry

can be correlated and become redundant; some variables might be defined as a lin-

ear combination of others which makes the data interpretation more difficult [97].

Finally, the nature of omics datasets complicates the visualization of the data. In this

section, we will discuss in a first instance different strategies to explore such com-

plex datasets and secondly focus on methods that attempt to diminish the problem

of the curse of dimensionality: the dimensionality reduction methods.
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FIGURE 1.10: Illustration of data sparsity. Figure from [99]. The figure
represents how the data occupy the available space when going from a
one-dimensional space to two and three-dimensional spaces (from left

to right panels).

1.4.1 Supervised and unsupervised methods

Different approaches exist to analyze high dimensional data like omics data. In

the case where specific biological hypotheses need to be tested, confirmatory data

analyses based on inference models can be used. It can also happen that there are

no predefined hypotheses and that the goal is to "let the data talk", in that case,

exploratory data analyses (EDA) will be more adapted [100]. A broad panel of sta-

tistical methods exists to assist both approaches. Among them, a large proportion

can be grouped in the popular category of machine learning methods. The term

machine learning (ML) was used for the first time by Arthur Samuel around 1950

and defined a group of computer algorithms able to learn without being explicitly

programmed to learn. Depending on the definition of learning, different classes of

ML methods have been established. In 1997, Tom Mitchell proposed a formal defi-

nition of algorithms learning saying that "A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P if

its performance at tasks in T, as measured by P, improves with experience E." [101].

This definition matches a class of ML methods, the supervised learning methods,

used for classification and regression tasks. A common example is the identification

of spam emails, where labelling emails in the spam or non-spam categories would

be the task T, learning from a set of labelled emails would be the experience, and

the proportion of correctly classified emails would be the performance measure P.

However, ML algorithms that simply learn from the input dataset without prede-

fined ground truth (labelled data) also exist and are part of the unsupervised ML

methods. Those methods learn underlying structures in the data; hence algorithms

like clustering or dimensionality reduction methods such as Principal Component

Analysis (PCA), which was developed even before ML, are often included in the

unsupervised learning category. In the next paragraphs, both supervised and unsu-

pervised learning are described (See Figure 1.11).
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FIGURE 1.11: Machine learning methods: supervised vs non-

supervised methods. A) Supervised methods: a model is trained on
several variables, features, to recognize predefined labels. The trained
model is then applied to an unlabelled dataset for prediction purposes.
B) Unsupervised methods: a model learns structures underlying a
dataset that has not been labelled. Those methods are divided into two
main categories: clustering methods to identify subgroups of samples
and dimensionality reduction methods to explore the data in lower di-
mensions and highlight specific structures. Figure adapted from [102].

Supervised analyses

The goal of supervised methods is to predict the value of an outcome based on

a set of features given as inputs. Depending on the type of outcome, supervised
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analyses can be further divided into two main categories: classification or regres-

sion problems. In classification problems, the outcome is categorical, e.g. a binary

variable distinguishing a diseased or healthy status or a multi-classes variable like

cancer subtypes. In regression problems, the objective is to predict a continuous

variable. Note that some regression models, like logistic regressions, where the out-

come variable is discrete, can be used though to perform classification. The main

steps of supervised analyses consist in: i) defining the labels of each sample in the

dataset, ii) train the model to classify the samples in the correct category, and iii) use

the generated model on a dataset containing independent and unknown instances

(Figure 1.11A). Several types of supervised methods exist and have to be chosen

with regard to the nature of the data. The simplest supervised models are regression

models. While the most common regression algorithms model linear relationships,

other methods like Support Vector Machines (SVM) or neural networks can adapt

to non-linear data. Another parameter that determines the type of methods to use

is the data type; some methods deal only with numerical features while others like

decision trees are more flexible. Figure 1.12 describes a method based on decision

trees, the random forest algorithm.
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FIGURE 1.12: The random forest method. Figure from [103]. A la-
belled dataset (A) is taken as input and processed by multiple decision
trees (B and C) built using random selections of features and samples.
The decision trees form a random forest (D). Each tree classifies the
input samples and the votes given by the different trees are then com-
bined to provide the final predictions. The label with the most votes

being chosen (here red label).

Regardless of the method used, the model and its results have to generalize to

other datasets. In order to assess generalizability, the ML algorithm has to be trained
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on a training dataset, and a testing dataset containing independent samples has to

be used to validate the results. Two main errors underlying the generalization issue

exist: bias and variance [98]. The first scenario occurs when the model is under-

fitting the data, i.e. the model has a poor performance even on the training data

for example because of a model that is not complex enough (See Figure 1.13 left

panel). When the model is underfitting the data, it is as well unable to generalize

to other datasets. In the second case, when the number of features is too large or

the number of samples small, the chances to encounter features that can perfectly

discriminate two output categories or perfectly predict an outcome increase. The

model, in that case, performs correctly on the training dataset but fails to generalize

to other datasets and is qualified as high variance model. Such performance dis-

crepancy indicates that the model overfits (See Figure 1.13 right panel). Note that

in high dimensional data, overfitting and data sparsity, resulting from the n << p

problem mentioned at the beginning of this section, can be linked. Indeed, in such

data, since the number of samples in the training dataset is fixed and limited, the en-

tire input space is not covered. Thus the machine learning algorithm has not faced

all possible configurations during the learning phase and the ability of the model to

generalize can be diminished.

Underf tting, high biasi iGood balance Overf tting, high variance

FIGURE 1.13: High bias and high variance models. Created with
BioRender.com.

One method that can be used to overcome overfitting is cross-validation. The

method consists in randomly splitting the dataset in k folds and iteratively training

the model on k − 1 folds while reserving the remaining kth fold for testing (See

Figure 1.14). The overall performance of the model can be assessed by averaging

the performances in the testing folds from each iteration. As a result, while none

of the samples is used simultaneously in the training and testing group, the entire

dataset is used for training as well as is used in the testing phase. Hence, cross-

validation can also be beneficial in studies with low sample sizes. One extreme case

of cross-validation is the leave-one-out analysis, where k = 1. Each sample is set

aside from the training set and predicted at each iteration.
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FIGURE 1.14: K-fold cross-validation. Figure from [104]. The figure
illustrates 5-fold cross-validation. Five rounds are thus represented. In
each of them, 4 folds are used to train the model and the model is tested
on the remaining fold. The performances resulting from the test phase
in each round are then averaged to estimate the overall performance of

the model and its ability to generalize.

In addition, to find a compromise between bias and variance, parameter tuning

and algorithm optimization might be required. Note that a third dataset, referred

to as the validation dataset, can be introduced for the optimization step. In this

setting, multiple models (e.g. one algorithm with different sets of parameters or dif-

ferent algorithms) learn on the training set, and their performances are evaluated on

the validation dataset. The model with the best performance can then be applied on

the testing dataset.

Unsupervised analyses

Unsupervised algorithms are hypothesis-free methods and can be associated to

exploratory analyses [105]. The goal of such methods is usually to identify and

extract useful properties of the data [106]. In contrast to the supervised methods,

each element of the dataset is not labelled, no predefined groups are given to the

algorithms. Thus, it is not possible to compare the algorithm output with a pre-

defined truth and the data do not need to be split in training and testing datasets

(Figure 1.11B). Since there is thus no feedback on the performance of the unsuper-

vised model, often the validation of the results is required.

As for the supervised analyses, there are several unsupervised algorithms. A

commonly used category of unsupervised methods that can unveil structure in the

data is the group of clustering algorithms (e.g. k-means clustering, hierarchical clus-

tering, density-based clustering). Those methods aim at grouping elements together
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based on common patterns observed in the set of features. In the field of cancer,

clustering algorithms can be used, for example, to identify new subtypes of cancers

based on molecular data. The second most commonly used unsupervised method is

the group of dimensionality reduction methods. In the next paragraph, more details

about such methods are provided.

1.4.2 Dimensionality reduction methods

The goal of dimensionality reduction (DR) methods is to transform a high dimen-

sional dataset into a low dimensional representation of the data while preserving

as much as possible its initial structure. More specifically, if three clusters exist in

the studied dataset, a lower dimensional representation of the same data should

also reveal the initial three clusters. DR methods are part of the feature extraction

techniques which aim at finding latent structures in the data. Those methods al-

low to summarize and transform a large number of features in a smaller number

of variables, which mitigates the curse of dimensionality and is valuable for data

visualization. Note that these methods are different from feature selection methods,

which make a selection of the most important features in the initial dataset [107].

Mainly two families of DR methods exist: matrix factorization methods (e.g. PCA,

PLS, ICA, NMF) or neighbour graphs approaches (e.g. t-SNE and UMAP).

Matrix factorization methods examples

Omics datasets, after pre-processing, often result in data matrices. For example,

in the case of RNA-Seq, after aligning the reads to a reference genome (See Figure

1.8), reads counting is performed and generates a matrix in which rows represent

the genes (the features) and columns the read counts for each sample (the observa-

tions). Matrix factorization consists in decomposing an initial matrix in two smaller

matrices (Figure 1.15). This decomposition leads to the generation of new variables,

in smaller numbers.

48



1.4. Interpreting high dimensional data

G
en

es

Omics data

S1S2S3S4S5S6S7

Samples

S1S2S3S4S5S6S7

New 

variables

G
en

es �
��� ���

F
ac

to
r 
2

Patterns revealed 

in groups of 

samples

N
e
w

 

v
a
ri
a
b
le

s

FIGURE 1.15: Matrix factorization methods. The input matrix is de-
composed, under specific constraints, in two smaller matrices defined
by new variables that can be used to reveal structures and patterns in

the data.

A classical matrix factorization method is Principal Component Analysis (PCA).

The goal of PCA is to project the data to a lower dimensional space while maximiz-

ing the variance in the data within this lower dimensional space. In PCA, the new

variables correspond to a linear combination of the initial features. The matrix fac-

torization results in the loading and score matrices. In the first matrix, the columns

correspond to the new variables, called principal components and the rows indi-

cate the contribution of each feature to the latent variables. The principal compo-

nents are orthogonal; they correspond to the directions of maximal variance and are

ranked by the importance of variance explained, i.e. the first principal component

captures most of the variation in the dataset. The second matrix contains the coor-

dinates of the samples in the projected space. While PCA maximizes the variance in

the data, similar methods use other criteria. For example, Independent Component

Analysis (ICA), which is a method attempting at disentangling independent signals

that are linearly mixed, maximizes the independence between the new variables.

Other methods have in addition specific constraints [108]. Non-negative Matrix fac-

torization (NMF), for example, enforces the decomposed matrices to be positive;

this method has enabled the extraction of de novo mutational signatures from whole

genome sequencing data [109]. One limitation of those methods is that they are lin-

ear models. In the following paragraphs, two non-linear methods based on neigh-

bour graphs are presented.

Neighbor graphs methods examples
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The principle of DR methods based on neighbor graphs models is to use neigh-

bors distances and similarities to represent the structure of the data in high dimen-

sions and then to embed this representation in a lower dimensional space.

A method called t-Distributed Stochastic Neighbor Embedding (t-SNE) [110] has

been widely used in the past years to perform DR. The t-SNE method can be seen as

a neighbor graph based algorithm [111] in a sense that similarity scores based on Eu-

clidean distances between neighbors are computed to embed the high dimensional

structure in a two-dimensional space. Samples positions in the two-dimensional

space are randomly initialized and are then moved iteratively so that the pair-wise

samples similarities match the ones in the original space. t-SNE has limitations

though. Firstly, the method can be computationally intensive when applied to huge

datasets. Also, the interpretation of the t-SNE representation must be performed

with caution. Indeed, the method retains local structures but has limited ability to

maintain global structure [111].

Recently, a novel method called Uniform Manifold Approximation and Projec-

tion (UMAP) [111] was developed and is more and more replacing the t-SNE method.

UMAP is based on topological theory. The algorithm builds what is called a simpli-

cial complex which is a representation of the data as a weighted graph (See Figure

1.16), the weights corresponding to the likelihood that there is a connection between

two points [112, 113].

Simplicial complexSimplices

FIGURE 1.16: UMAP topological representation. A) The building
blocks of a simplicial complex, the simplices. B) An example of a sim-

plicial complex. Figures from [112].

As mentioned at the beginning of Section 1.4, in high dimensional spaces data

sparsity increases. To connect all the points in the simplicial complex, UMAP varies

the radius in which the search of neighbors is performed by fixing the number of
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neighbors to consider around each point [112, 113]. This number of neighbors influ-

ences how the data structure is preserved, low and high values favoring local and

global structures, respectively. Once the graphical representation of the high dimen-

sional data is constructed, a low dimensional representation of the data is optimized

so that it is as close as possible to the high dimensional representation. One of the

advantages of UMAP over t-SNE is that the method better maintains the global

structure of the data. Also, UMAP is computationally more efficient [111]. Note

that UMAP can be applied on a lower dimensional dataset resulting, for example,

from a DR method like PCA.

1.4.3 Multi-omics data integration

The methods previously described consider as input a single dataset. DR methods

processing multiple matrices also exist and can be used to integrate multi-omics

datasets. Such integration raises, though, multiple challenges. Firstly, the data to

integrate are heterogeneous. The nature of the collected data is different, hence their

statistical properties can vary. Also, it can happen that all the omics datasets are

not available for each sample included in the analysis for technical reasons or due

to quality issues. Hence, distinct patterns of missing data can occur in each omic

dataset. Besides, integrating multiple datasets amplifies the curse of dimensionality

issues already encountered in each dataset individually.

In 2018, a method called Multi-Omics Factor Analysis (MOFA) was developed to

integrate multi-omics data while considering the previously mentioned challenges

[114]. MOFA is an unsupervised analysis based on matrix factorization (See Section

1.4), and can be seen as an extension of PCA to multi-omics data, called modalities

or also views. It is a factor analysis method which reduces the dimensions of the

data to a smaller number of unobserved factors, called the latent factors. These fac-

tors differ from the PCA components. The latter are linear combinations of the initial

features, while in factor analyses the initial features are expressed as linear combi-

nations of the latent factors, plus a residual noise term. To enable multi-omics data

(modalities) integration, MOFA supports different noise models depending on the

nature of the data (continuous, counts or binary data). Based on this model, MOFA

identifies different sources of variations across multiple omics data. MOFA presents

though several limitations. The model does not capture non-linear relationships and

assumes features independence [114]. Also, additional features accounting for sam-

ples structure, such as groups of samples, batches or samples conditions, were not

available in the initial version of MOFA but have been recently introduced in a sec-

ond version, MOFA+ [115]. In this framework, the MOFA dimensionality reduction
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is performed with regards to additional samples information (e.g. batch or cluster

information) to identify sources of variations shared between groups or exclusive to

one of them.

Other integrative methods can take into consideration samples structure. For

example, the Partial Least Squares (PLS) method, which is a matrix factorization

method, attempts to relate two matrices: a response matrix and a matrix gathering

explanatory variables. The advantage of this method is that it ensures that the new

variables resulting from the dimensionality reduction explain the response data. In

that sense, the PLS method can be considered as a supervised DR framework. While

PCA maximizes the variance of the components, PLS maximizes the covariance be-

tween the latent components of the response and explanatory datasets [116, 107].

When the response data is a categorical variable, a variant of PLS called PLS dis-

criminant analysis (PLS-DA) can be used to perform classification tasks, e.g. sam-

ples groups prediction. In 2017, Lê Cao team published the mixOmics framework

implementing multivariate analyses tools, including the PLS methods previously

described [117]. The mixOmics tools also include the Data Integration Analysis for

Biomarker discovery using Latent cOmponents (DIABLO) method, which is a mul-

tivariate dimension reduction method that can be used for supervised multi-omics

data integration [118]. DIABLO maximizes the correlation between the features of

the different omics datasets, one of this dataset corresponding to the labelled sam-

ples. Hence, the method extracts what the authors call multi-omics signatures that

are discriminant and can be used for prediction in a supervised framework.

1.5 Axes of the thesis

In the previous section, we discussed different methods available to analyze high di-

mensional omics datasets and overcome some of the challenges related to the curse

of dimensionality. Another challenging aspect of omics data is their biological com-

plexity. As described in Section 1.1, multiple biological layers (e.g. genome, tran-

scriptome, methylome, exposome) interact. The work presented in this thesis high-

lights how integrative approaches can improve the understanding of such complex

systems by relying on the computational methods described previously and using

lung cancer as an example.

Firstly, while single-omics approaches explain a substantial amount of mecha-

nisms involved in cancer, it is difficult to capture all the complexity of the disease

using each omic layer individually [119]. The integration of multi-omics data could

52



1.5. Axes of the thesis

thus expand our understanding of cancer. Chapter 2 of the thesis describes the

multi-omics characterization of lung neuroendocrine neoplasms. As mentioned in

Section 1.3, those rare tumors have not been comprehensively characterized, espe-

cially the pulmonary carcinoids. While a low mutational burden has been observed

in those tumors, more insights on their carcinogenesis might be provided by other

omics data like expression and methylation. Machine learning methods were ap-

plied on RNA-Sequencing and methylation arrays data to reveal differences and

similarities between the lung neuroendocrine neoplasms (lung NENs) (or LNEN)

cancer types.

Secondly, the increase of large genomics initiatives has enabled to perform analy-

ses contrasting the molecular profiles of distinct tumor types. Such studies implying

the concatenation of datasets from different studies raise challenges, including data

harmonization and interpretation. In chapter 3, we integrated six transcriptomic

datasets from Lung Neuroendocrine Neoplasm (LNEN) tumors in order to produce

a pan-LNEN molecular map. This map and especially the underlying data are in-

tended to be reused and integrated with future similar datasets. For that purpose,

the pre-processing and the quality controls performed on the data were described

precisely, and additional resources promoting reproducibility and data reuse were

provided.

The two first chapters focus on somatic molecular characterization of lung can-

cers. In the past decades, lung cancer susceptibility has also been explored mostly

by GWAS studies which revealed multiple variants across the genome. However,

the identification of causal genes involved in lung cancer susceptibility has raised

challenges. While adding information from other biological layers (e.g. expression

data) has been proposed to identify causal genes, investigating the germline and

somatic interplay could also bring new insights on lung cancer oncogenesis. In the

final chapter, we integrate germline and somatic data from lung adenocarcinomas

and lung squamous cell carcinomas in order to explore the association between lung

cancer susceptibility variants and mutational burden.
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Chapter 2

Somatic molecular characterization of

lung neuroendocrine neoplasms using

multi-omics data

2.1 Context

Today cancer is considered as a very heterogeneous disease, each cancer is different.

Under the microscope, pathologists can distinguish cancers from different tissues

but also subtypes originating from the same primary site. Characterizing the molec-

ular landscape of tumors has confirmed these observations and can be leveraged

to understand this heterogeneity and its consequences for the patient. Firstly, even

if tumor classification is still mostly based on histopathological criteria, molecular

studies have introduced ample changes in the way that tumors are classified. Lung

cancer is a good example to illustrate how molecular profiles have assisted this shift

in cancer diagnosis. While a few decades ago, lung cancers were stratified in only

two categories, SCLCs and NSCLCs, it is now clear that there is a need for a more

precise classification. As mentioned in the introduction section 1.3, molecular pro-

filing of those tumors has identified recurrent alterations in specific subtypes, like

the EGFR mutations in LUAD samples, influencing the patient’s prognosis and re-

sponse to different intervention therapies [120, 73]. Molecular studies have also im-

proved the way cancers are diagnosed by identifying new targets for early detection.

The use of ctDNA methods has, for example, been developed for some cancers early

detection [90, 121]. These non-invasive methods aim at detecting alterations found

in tumors and released in body fluids to diagnose cancer at the early stages of the

disease. In addition, genomics datasets have enabled to provide a molecular-based

taxonomy of cancer [122]. Cancer types have been stratified in molecular subgroups

that can be distinguished by different biological pathways as well as different prog-

nosis. The molecular characteristics identified can thus be used as biomarkers at
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diagnosis to inform the tumor classification and the patient’s prognosis. In this con-

text, gene expression profiling, which is a technique already used in clinical practice

for example for breast cancer [123] is an illustration of the potential clinical transla-

tion of multi-omics studies. Finally, an increasing number of studies has highlighted

the importance of integrating multi-omics data for molecular characterization. In-

deed, driver events can impact multiple omic layers. Depending on the type of al-

teration, some layers might be more adapted than others to detect alterations [119].

Also, in cancers with low mutation rate, exploring the transcriptome and epigenome

of tumors as well as their interactions can bring new insights on their carcinogenesis

[124].

In the last years, comprehensive somatic molecular characterizations of various

tumors have been performed, in part thanks to multiple initiatives like the TCGA

or ICGC. However, those projects mainly focus on the characterization of common

subtypes. Hence more studies are still required for rarer cancers that collectively

represent around 25 to 30% of cancer diagnoses and 25% of cancer deaths [125]. In-

deed, the lower incidence of those cancers is a major limitation for such studies. In

the context of rare cancers, identifying new genomic alterations may provide to re-

searchers new targets for the diagnosis, classification and treatment of the patient’s

tumor. Recently, the Rare Cancer Genomics initiative [126] has been developed by

Dr. Lynnette Fernandez-Cuesta and Dr. Matthieu Foll and aims at performing a

molecular characterization of rare cancers, including the rare lung neuroendocrine

neoplasms. In this chapter, we explored the molecular landscape of the lung neu-

roendocrine tumors using integrative analyses of multi-omics data.

2.2 Research contribution

2.2.1 Introduction

The lung NENs represent 25% of the lung cancers and are divided into subgroups

(Figure 2.1) [88]. On one hand, the atypical carcinoids and typical carcinoids form

the group of the rare neuroendocrine tumors (NET) and account for 2% of the lung

NENs. On the other hand, LCNECs and SCLCs account for 3% and 20% of the lung

NENs respectively and are part of the neuroendocrine carcinomas (NECs). The four

types differ at different levels. NECs are high grade carcinomas, have a poor prog-

nosis and require aggressive treatments; while typical and atypical carcinoids are

low- and intermediate-grade tumors respectively, show a better prognosis and are

eligible for surgical resection [88]. Thus, the proper clinical management of lung
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FIGURE 2.1: The different types of lung neuroendocrine neoplasms.
Four types of lung NENs exist: the typical and atypical carcinoids
that form the group of the pulmonary carcinoids, the LCNECs and the
SCLCs. The four types have distinct prognosis and are classified mostly

based on histopathological criteria.

NENs rely on an accurate classification. Currently, this classification is based on

histopathological criteria such as the number of mitosis and necrosis as well as on

immunohistochemistry markers [88, 71]. However, those criteria are imperfect and

a consensus is often difficult to reach. Indeed, the study of Swarts et al. [127] has

assessed the reproducibility of pulmonary carcinoids classification by contrasting

the diagnosis of five pathologists and showed that only 55% of the cases were unan-

imously classified [127]. Hence, molecular studies on these tumors could help to

identify new biomarkers and improve their diagnosis. In addition, even if the num-

ber of molecular studies on these cancer types has increased in the past years [86,

128, 92, 87, 93], their etiology has not yet been clearly determined, the mechanisms

underlying their oncogenesis remain unknown and their therapeutic opportunities

limited. The lack of markers for these cancers is thus a drawback not only for the

proper diagnosis but also for the follow-up of the patients.

In the study presented in this chapter, we performed a molecular characteri-

zation of the lung NENs (or LNEN) with a particular focus on the understudied

atypical carcinoids. Multi-omics data were integrated using supervised and unsu-

pervised methods to better understand the differences and relations between the

LNEN subtypes in order to improve diagnosis and management.

2.2.2 Material and methods

For this study, WES/WGS, RNA sequencing and EPIC 850k methylation array data

from 83 lung NENs, including 63 carcinoids and 20 LCNECs, have been generated.
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The samples were obtained in the context of the LungNEN network. They were col-

lected based on surgical resection and were reviewed by independent pathologists.

These newly produced data have been integrated with previously published data

[86, 92, 87, 93], increasing thus the samples size to 257 LNEN samples including 116

carcinoids, 75 LCNECs and 66 SCLCs. Integrative methods, considering the multi-

ple layers of omics data, have been used to perform a molecular characterization of

the different subgroups.
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FIGURE 2.2: Description of the methods used for the LNENs molecu-

lar characterization. A) Unsupervised analysis using MOFA based on
expression and methylation data. B) Supervised analysis based on the
random forest algorithm applied on expression and methylation data.

Pathologists classified each LNEN sample in this dataset in the different LNEN

cancer types. As described previously, this classification is difficult, especially for

the pulmonary carcinoids types. The use of a supervised machine learning (ML)

model on the available omics data was thus suited to assess if molecular data could

predict those cancer types and assist histopathological classification. We applied

random forest algorithm, which is a classifier based on decision trees (See intro-

duction section 1.4), to the expression and methylation data in order to distinguish

atypical carcinoids, typical carcinoids and LCNEC samples (Figure 2.2). Since both

omics data were not available for all samples, the method was applied to expression

and methylation data separately to maximize the samples size for further analyses.

Also, as described in the general introduction section 1.4, multi-omics data that are

high dimensional datasets and are prone to overfitting issues. Indeed, the samples

58



2.2. Research contribution

sizes of the expression and methylation datasets in this study were small in contrast

with their respective number of features. For this reason, the leave-one-out method

(see introduction section 1.4) was used to classify each sample. The most variable

features were selected and normalized on the training set, consisting of all the sam-

ples minus the test sample to classify. The model was trained on this training set and

used on the test sample to compute the probability of belonging to each of the three

histopathological groups. For each case, the group with the highest probability was

defined as the ML prediction. However, when the ratio between the two highest

probabilities was higher than 1.5, the sample was considered as "unclassified". This

category allows identifying samples with an intermediate molecular profile. For

each sample, we then compared the expression and methylation-based predictions

to reach a consensus. When the two omics layers led to discordant classifications,

the sample was classified in the "unclassified" category.

In parallel, an unsupervised analysis has been performed using multi-omics fac-

tor analysis (MOFA) (Figure 2.2) [114]. MOFA, as described in the introduction (See

general introduction Section 1.4), is a generalization of PCA to multi-omics data.

It thus allows to reduce the dimension of the multi-omics datasets by identifying

latent factors that unveil multiple sources of variations that are either shared by

the different omics data or specific to one layer. As for the supervised approach,

MOFA was applied using two layers: the expression and methylation data. The two

first latent factors, capturing most of the variance in the datasets, were then used

to perform a consensus clustering in order to reveal distinct molecular subgroups.

These unsupervised methods were applied on the LCNECs and carcinoids as well

as on carcinoids only. The molecular groups identified by the clustering were finally

characterized based on differential expression and methylation analyses as well as

Gene Set Enrichment Analyses (GSEA). Also, to support the clinical relevance of the

molecular groups identified, survival analyses were performed using Cox’s propor-

tional hazard models.

2.2.3 Results

A supervised analysis based on random forest was performed to predict the LNEN

histopathological categories based on molecular features like expression and methy-

lation levels.
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FIGURE 2.3: Supervised analysis results. A) Confusion matrix rep-
resenting the ML classifications, the histopathological categories are
represented on the x-axis and the ML predicted classes on the y-axis.
B) Comparison of the survival between the ML prediction groups (top
panel) and comparison of the survival of the LNEN histological classes

(bottom panel).

Figure 2.3A represents the prediction results in a confusion matrix and shows

that the classifier accurately distinguished LCNEC samples from the pulmonary

carcinoids since 99% of the LCNECs were correctly classified. However, the dis-

tinction between atypical carcinoids and typical carcinoids appeared to be more dif-

ficult. Only 31% of the atypical carcinoids were classified as atypical, while another

third of atypical carcinoids was predicted as typical carcinoids. Also, for 18% and

29% of the typical and atypical carcinoids respectively, the classification algorithm

hesitated between two subtypes. These samples, that we labelled "unclassified sam-

ples", are representative of samples with intermediate molecular profiles. These

results show that the molecular data do not perfectly match the histopathological

classification of the lung NENs. Since the histopathological classification was used

here to train the model, this outcome indicated that the current classification might

not be appropriate and that molecular data could bring additional information to

stratify LNEN samples. Based on the supervised analysis results, we defined five

distinct groups of ML predictions: i) the atypical carcinoids predicted as atypical
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carcinoids, ii) the atypical carcinoids reclassified as typical carcinoids, iii) the typical

carcinoids predicted as typical carcinoids, iv) the LCNECs predicted as LCNECs,

and v) the unclassified samples. We then compared their overall survival (Figure

2.3 top panel). The survivals of the two groups of atypical carcinoids were sig-

nificantly different. The atypical carcinoids reclassified as typical carcinoids had a

better survival, similar to that of the typical carcinoids group and the atypical car-

cinoids confirmed as atypical carcinoids had a poor prognosis, similar to that of the

LCNEC group (10-year overall survival of 88% and 27% respectively). This obser-

vation was in contrast with what is observed when comparing the survival of the

histopathological groups (Figure 2.3 bottom panel). The samples diagnosed as atyp-

ical by the pathologists showed indeed an intermediate survival in comparison with

those diagnosed as LCNEC and typical.

The MOFA analysis based on the pulmonary carcinoids and the LCNECs re-

vealed three clusters: cluster A enriched for typical carcinoids, cluster B enriched

for atypical carcinoids and cluster LCNEC mainly composed of LCNEC samples.

While each cluster was enriched for one of the histopathological group, atypical

and typical carcinoids were not clearly separated, based on their molecular profiles.

These results are concordant with the supervised analysis. More specifically, most

of the atypical carcinoids clustering in the typical-enriched cluster A were predicted

by the ML algorithm as typical carcinoids. The atypical carcinoids confirmed atyp-

ical by the ML were part of the cluster B. Also, the intermediate molecular profiles

identified based on the supervised approach were borderline samples when consid-

ering the unsupervised molecular clusters. In addition to the clusters, the MOFA

analysis unveiled a novel sub-group of pulmonary carcinoids, the supra-carcinoids.

These samples have the morphological features of the atypical carcinoids but molec-

ular features and survival similar to that of the LCNECs. On the molecular level,

those samples were characterized by high expression levels of immune checkpoint

inhibitors and Major Histocompatibility Complex (MHC) class I and II genes.

Finally, the MOFA analysis performed only on the carcinoids samples stratified

the cluster A in two groups, clusters A1 and A2. GSEA analyses performed on the

MOFA latent factors identified the immune system and the retinoid and xenobiotic

metabolism as disrupted pathways in the pulmonary carcinoids. Using expression

and methylation data, the clusters A1, A2 and B were further characterized on the

molecular level. This molecular characterization highlighted potential candidate

targets with potential clinical applications. For example, DLL3, an inhibitor of the
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Notch pathway, which is already considered in clinical trials as a target, was over-

expressed in the cluster A1. Cluster B was characterized among others by low ex-

pression levels of the gene OTP, which has been suggested previously as a prognos-

tic marker for pulmonary carcinoids. This gene’s expression also differed between

the poor-prognosis and the good-prognosis atypical groups identified by the ML

algorithm.

2.2.4 Conclusion and discussion

LNEN samples diagnosis is currently based on histopathological criteria. This study

by integrating expression and methylation data identified molecular subgroups that

were contrasted with the histopathological initial classification. On one hand, a su-

pervised learning method, trained on these omics data to recognize the histopatho-

logical classification, was able to further divide the histopathological groups into

molecular groups with different survival profiles. On the other hand, unsupervised

analyses revealed molecular clusters which were further characterized and have po-

tential clinical implications. Together these analyses allowed us to gain insights on

the molecular characteristics of the lung neuroendocrine neoplasms, especially on

the understudied atypical carcinoids samples.

Application of both supervised and unsupervised methods to omics data iden-

tified distinct lung neuroendocrine molecular profiles that do not exactly match

the current histopathological classification, suggesting that molecular data could

be beneficial for the diagnosis of these cancers. The supervised method, based on

random forest, identified a subgroup of atypical carcinoids with a poor prognosis,

similar to the prognosis of the aggressive LCNEC samples which could explain the

so far observed intermediate survival of atypical carcinoids. Although these results

revealed discrepancies between histopathological and molecular classification, they

do not argue the relevance of pathological features that are still critical for cancer

classification. Recent studies have shown, using computational histopathology, that

histopathological features can be predictive of prognosis (Courtiol et al. 2019 [129])

as well as correlate with genomic alterations including structural variants and muta-

tions in driver genes (Fu et al. 2019 [130]). Such studies indicate that histopathologi-

cal and molecular data could complement each other, and further multi-disciplinary

studies integrating those information would be beneficial for tumor diagnosis.

Using the unsupervised approach based on MOFA and clustering, different molec-

ular clusters were identified. This analysis unveiled the supra-carcinoids exhibiting

the molecular features of LCNECs while having the morphology of carcinoids. The
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observation of such samples supports the previously proposed link between carci-

noids and LCNEC samples [131, 94] and could inform future classifications of the

lung neuroendocrine tumors. Also, the observation of intermediate cases could re-

flect potential transitional states between subtypes and if confirmed, inform on the

progression of these diseases.

The unsupervised analysis also suggested the immune system and the retinoid

and xenobiotic metabolism as biological pathways involved in pulmonary carci-

noids. A molecular characterization of the different clusters identified as well po-

tential targets that could influence the clinical management of the patient. However,

one limitation of this study is that the molecular profile observed for one sample is

not the molecular profile of the whole tumor but rather the profile of one piece of the

tumor. The biomarker identified by such studies could not be representative of the

whole tumor because of tumor heterogeneity. More and more spatial studies are be-

ing conducted and show that this heterogeneity should be considered for biomarker

evaluation [132].

Another limitation of this study is related to the small samples size of the col-

lected dataset, which is due to the rarity of the tumors studied. This limitation

raises multiple issues. Firstly, it reduced the possibilities in model parameter tuning

and thus potentially caused sub-optimal results. Also, the small sample size did not

allow us to replicate our results. Further studies of larger sample sizes would be

needed to confirm the existence of the new molecular clusters identified, especially

the group of supra-carcinoids (around 5% in our series). One possibility to achieve

this goal is to take advantage of all molecular studies already performed on the lung

Neuroendocrine neoplasm (NEN) tumors by integrating the data and thus increas-

ing the sample size of the datasets. However, integrating datasets resulting from

different study designs can be challenging. In the following chapter 3, we address

some of these challenges and propose a molecular map of the lung NEN samples

that integrate molecular data from six different studies.

2.2.5 Contribution

In this chapter, my contribution focused on the supervised machine learning anal-

ysis, based on random forest and aiming at classifying the lung neuroendocrine

tumors. This analysis identified molecular groups with different prognostic values.

I contrasted the results from the supervised and unsupervised analyses. Finally,

I took part in the discussions and interpretation of the other analyses conducted.

Overall, I contributed to the generation of main figures, the redaction of the paper

(mainly the sections related to the supervised analyses) and its reviewing process,
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in particular with the addition of the supplementary Figures 9 to 12 and 27 available

in the Annex A.

2.3 Article 1: Integrative and comparative genomic anal-

yses identify clinically relevant pulmonary carcinoid

groups and unveil the supra-carcinoids
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ARTICLE

Integrative and comparative genomic
analyses identify clinically relevant pulmonary
carcinoid groups and unveil the supra-carcinoids
N. Alcala et al.#

The worldwide incidence of pulmonary carcinoids is increasing, but little is known about their

molecular characteristics. Through machine learning and multi-omics factor analysis,

we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35

atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers.

Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify

atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and

27%, respectively. We identify therapeutically relevant molecular groups of pulmonary car-

cinoids, suggesting DLL3 and the immune system as candidate therapeutic targets;

we confirm the value of OTP expression levels for the prognosis and diagnosis of these

diseases, and we unveil the group of supra-carcinoids. This group comprises samples with

carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC,

further supporting the previously proposed molecular link between the low- and high-grade

lung neuroendocrine neoplasms.

https://doi.org/10.1038/s41467-019-11276-9 OPEN
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A
ccording to the WHO classification from 20151 and
a recent IARC-WHO expert consensus proposal2,
pulmonary carcinoids are low-grade typical and

intermediate-grade atypical well-differentiated lung neuroendo-
crine tumours (LNETs) that belong to the group of lung neu-
roendocrine neoplasms (LNENs), which also includes the high-
grade and poorly differentiated small-cell lung cancer (SCLC) and
large-cell neuroendocrine carcinomas (LCNEC). Pulmonary
carcinoids are rare malignant lesions, annual incidence of which
has been increasing worldwide, especially at the advanced stages3.
Pulmonary carcinoids account for 1–2% of all invasive lung
malignancies: typical carcinoids exhibit good prognosis, although
10-23% metastasise to regional lymph nodes, resulting in a 5-year
overall survival rate of 82–100%. The prognosis is worse for
atypical carcinoids, with 40–50% presenting metastasis, reducing
the 5-year overall survival rate to 50%.

Contrary to pulmonary carcinoids, most of which are eligible
for upfront surgery at the time of diagnosis3, LCNEC and SCLC
require upfront aggressive, multimodal treatment for most of the
patients. Owing to these differences in clinical management and
prognosis, the accurate diagnosis of these diseases is critical.
However, there is still no consensus on the optimal approach for
their differential diagnosis;2 the current criteria, based on mor-
phological features and immunohistochemistry, are imperfect and
inter-observer variations are common, especially when separating
typical from atypical carcinoids4, as well as atypical carcinoids
from LCNEC in small biopsies5. Ki67 protein immune-reactivity
has been suggested as a good marker of prognosis in LNENs as a
whole, and for the differential diagnosis between carcinoids and
SCLC6,7, whereas this marker does not faithfully follow the
defining histological criteria of typical and atypical carcinoids4.
The difficulties in finding good markers to separate these diseases
might be due to the limited amount of comprehensive genomic
studies available for SCLC, LCNEC, and typical carcinoids, and
the complete lack of such studies for atypical carcinoids8. In
addition, such studies would also be needed to validate the recent
proposed molecular link between pulmonary carcinoids and
LCNEC9,10.

In this study, we provide a comprehensive overview of the
molecular traits of LNENs—with a particular focus on the
understudied atypical carcinoids—in order to identify the
mechanisms underlying the clinical differences between typical
and atypical carcinoids, to understand the suggested molecular
link between pulmonary carcinoids and LCNEC, and to find new
candidates for the diagnosis and treatment of these diseases.

Results
Data. We have generated new data (genome, exome, tran-
scriptome, and methylome) for 63 pulmonary carcinoids
(including 27 atypical) and 20 LCNEC. In order to perform
comparative analyses, we have reanalysed published data for 74
pulmonary carcinoids11, 75 LCNEC12, and 66 SCLC13,14. Taken
together, we have performed multi-omics integrative analyses on
116 pulmonary carcinoids (including 35 atypical), 75 LCNEC,
and 66 SCLC (Supplementary Fig. 1 and Supplementary Data 1).

Molecular groups of pulmonary carcinoids and LCNEC. We
performed an unsupervised analysis of the expression and
methylation data of the LNENs (i.e., 110 pulmonary carcinoids
and 72 LCNEC) using the Multi-Omics Factor Analysis imple-
mentation of the group factor analysis statistical framework
(Software MOFA)15 (MOFA LNEN; Fig. 1a and Supplementary
Figs. 2 and 3). We identified five latent factors explaining more
than 2% of the variance in at least one data set, and among them,
three latent factors provided consistent groups of samples with

similar expression and methylation profiles (i.e., clusters). MOFA
latent factors one (LF1) and two (LF2) explained a total of 45%
and 34% of the variance in methylation and expression, respec-
tively, and were both associated with survival (Supplementary
Fig. 4). Using consensus clustering on these two latent factors
(which explained most of the variation and thus carried most of
the biological signal; Supplementary Figs. 5–7 and Supplementary
Data 2–3), we identified three clusters, each of them enriched for
samples of one of the three histopathological types (Fig. 1a).
Cluster Carcinoid A was enriched for typical carcinoids (75%;
Fisher’s exact test p-value < 2.2 × 10−16); cluster Carcinoid B was
enriched for atypical carcinoids (54%; Fisher’s exact test p-value
< 2.2 × 10−16) and male patients (79%; Fisher’s exact test p-value
= 1.6 × 10−9); and cluster LCNEC included 92% of the histo-
pathological LCNEC (Fisher’s exact test p-value < 2.2 × 10−16).
Note that clustering based on LF1 to LF5, weighted by their
proportion of variance explained, leads to the exact same clusters
(Supplementary Fig. 8).

To assess whether the current histopathological classification
could be improved by the combination of molecular and
morphological characteristics, we undertook a machine-learning
(ML) analysis. To do so, we combined the predictions from two
independent random forest classifications, based on only-
expression or only-methylation data. Using two independent
models allowed the inclusion of samples for which only one of
these data sets was available, thus maximising the power of
subsequent analyses (Fig. 1b and Supplementary Fig. 9 for an
alternative analysis based on both ‘omic data sets simultaneously,
but restricted to fewer samples). In order to avoid overfitting the
data, we performed a leave-one-out cross-validation, with feature
filtering and normalisation learned from the training set and
applied to the test sample. To identify intermediate profiles, we
defined a prediction category (unclassified) for samples that had a
probability ratio between the two most probable classes close to
one. We present in Fig. 1b the results for a cutoff ratio of 1.5, and
show in Supplementary Fig. 10 the robustness of our results with
regard to this ratio. Ninety-six per cent of the carcinoids
predicted as typical by the ML were in cluster Carcinoid A
(Fig. 1a). Similarly, the majority of ML-predicted atypical
carcinoids (87%) belonged to cluster Carcinoid B.

We selected the ML-prediction groups with >10 samples
(gathering the unclassified samples in one single group) and
compared their overall survival using Cox’s proportional hazard
model (coloured groups in Fig. 1b). The machine learning trained
on the histopathology stratified atypical carcinoids into two
prognostic groups: the good-prognosis group (atypical reclassified
as typical, in pink in Fig. 1b, c) with a 10-year overall survival
similar to that of samples confirmed by ML as typical carcinoids
(in black in Fig. 1b, c; 88% and 89%, respectively; Wald test p-
value= 0.650); and the bad-prognosis group (atypical predicted
as atypical, in red in Fig. 1b, c) with a 10-year overall survival
similar to that of samples confirmed by ML as LCNEC (in blue in
Fig. 1b, c; 27% and 19% respectively; Wald test p-value= 0.574;
see also Supplementary Fig. 11). Machine-learning analyses based
on other features -combined expression and methylation data
(Supplementary Fig. 9), MOFA latent factors (Supplementary
Fig. 12A), and Principal component analyses (PCA) principal
components explaining more than 2% of the variance (Supple-
mentary Fig. 12B)- led to qualitatively similar results.

Atypical carcinoids with LCNEC molecular characteristics. Six
atypical carcinoids clustered with LCNEC in the MOFA LNEN
(supra-carcinoids; Fig. 1a). Consistent with this clustering, this
group displayed a survival similar to the other samples in the
LCNEC cluster (10-year overall survival of 33% and 19%,
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respectively; Wald test p-value= 0.574; Fig. 2a). The observed
molecular link appears to be between supra-carcinoids and
LCNEC rather than with SCLC, as shown by PCA and MOFA
including expression data for 51 SCLC (Supplementary Figs. 6
and 13, respectively).

These samples originated from three different centres (two
from each), and included two previously published samples
(S01513 and S01522)11, implying that this observation is unlikely
to be the result of a batch effect. The limited number of supra-
carcinoids did not allow to explore aetiological links; however, it
is of note that one of them (LNEN005) belonged to a patient with
professional exposure to asbestos (which is known to cause
mesothelioma)16 (Table 1), and the tumour harboured a splicing
BAP1 somatic mutation (a gene frequently altered in mesothe-
lioma)17. This sample showed the highest mutational load
(37 damaging somatic mutations; Supplementary Data 4). Gene
set enrichment analyses (GSEA) of mutations in the hallmarks of
cancer gene sets18,19, showed a significant enrichment for the
hallmark evading growth suppressor (q-value= 0.0213; Fig. 2b
and Supplementary Data 5), while the hallmark genome
instability and mutation was significant only at the 10% false
discovery rate (FDR) threshold (q-value= 0.0970; Fig. 2b and
Supplementary Data 5). We had access to the Haematoxylin and
Eosin (H&E) stain for three of these supra-carcinoids, on which
the pathologists discarded misclassifications with LCNEC, SCLC,
or mesothelioma in the case of the asbestos-exposed BAP1-
mutated sample (Fig. 2c and Table 1).

While generally similar to LCNEC, and albeit based on small
numbers, the supra-carcinoids appeared to have nonetheless
some distinct genomic features based on genome-wide expression
and methylation profiles (Fig. 2d). Supra-carcinoids displayed
higher levels of immune checkpoint genes (both receptors and
ligands; Fig. 2e), and also harboured generally higher expression
levels of MHC class I and II genes (Fig. 2e and Supplementary
Fig. 14). Interestingly, the interferon-gamma gene—a prominent
immune-stimulator, in particular of the MHC class I and II genes
—also showed high-expression levels in these samples (Supple-
mentary Fig. 14). The differences in immune checkpoint gene
expression levels between groups were not explained by the
amount of infiltrating cells, as estimated by deconvolution of gene
expression data with software quanTIseq (Fig. 2f, left panel).
However, supra-carcinoids contained the highest levels of
neutrophils (greater than the 3rd quartile of the distributions of
neutrophils in the other groups; Fig. 2f, right panel). Permutation
tests showed that these levels were significantly higher than in
other carcinoid groups and in SCLC, but not than in LCNEC
(Supplementary Fig. 15). Concordantly, GSEA showed that
MOFA LNEN LF1 (separating LCNEC and supra-carcinoids
from the other carcinoids) was significantly associated with
neutrophil chemotaxis and degranulation pathways (Supplemen-
tary Data 6). By contrast, no such association was observed in the
MOFA performed only on carcinoids and SCLC samples
(Supplementary Figs. 6C and 13C and Supplementary Data 6).

Mutational patterns of pulmonary carcinoids. In a previous
study, mainly including typical carcinoids, we detected MEN1,
ARID1A, and EIF1AX as significantly mutated genes11. We also
found that covalent histone modifiers and subunits of the SWI/
SNF complex were mutated in 40% and 22.2% of the cases,
respectively. Genomic alterations in these genes and pathways
were also seen in the new samples included in this study (Fig. 3a,
Supplementary Fig. 16, and Supplementary Data 4). Apart from
the above-mentioned genes, ATM, PSIP1, and ROBO1 also
showed some evidence, among others, for recurrent mutations in
pulmonary carcinoids (Fig. 3a). In addition to point mutations

and small indels, the ARID2, DOT1L, and ROBO1 genes were also
altered by chimeric transcripts (Fig. 3b). MEN1 was also inacti-
vated by genomic rearrangement in a carcinoid sample
with a chromothripsis pattern affecting chromosomes 11 and 20
(Fig. 3c). The full lists of somatically altered genes, chimeric
transcripts, and genomic rearrangements are presented in Sup-
plementary Data 4, 7, and 8, respectively. Of note, MEN1
mutations were significantly associated with the atypical carcinoid
histopathological subtype (Fisher’s exact test p-value= 0.0096), as
well as MOFA LNEN LF2.

Altered pathways in pulmonary carcinoids. The third latent
factor from the MOFA LNEN accounted for 8% and 6% of the
variance in expression and methylation, respectively, but unlike
LF1 and LF2, LF3 was not associated with patient survival
(Supplementary Fig. 4). The molecular variation explained by LF3
appeared to capture different molecular profiles within cluster
Carcinoid A (Supplementary Fig. 13B). We therefore undertook
an additional MOFA restricted to pulmonary carcinoid samples
only (MOFA LNET; Fig. 4a and Supplementary Fig. 17). This
MOFA identified five latent factors that explained at least 2% of
the variance in one data set. As expected, the first two latent
factors of the MOFA LNET were highly correlated with LF2 and
LF3 from the MOFA LNEN, respectively, (Pearson correlation
>0.96; Supplementary Fig. 13B), and explained 41% and 35% of
the variance in methylation and expression, respectively. Inte-
grative consensus clustering using LF1 and LF2 of the MOFA
LNET identified three clusters (Supplementary Fig. 18): cluster
Carcinoid A1 and cluster Carcinoid A2, that together correspond
to the samples in cluster Carcinoid A of the MOFA LNEN, plus
the supra-carcinoids; and cluster Carcinoid B (as for the clus-
tering of LNEN samples, a clustering based on LF1-LF5 weighted
by their proportion of variance explained, led to the exact same
clusters; Supplementary Fig. 8). LF2 was associated with age, with
cluster Carcinoid A1 enriched for older patients ((60, 90]
years old) and cluster Carcinoid A2 enriched for younger patients
((15, 60] years old).

We applied GSEA to identify the pathways associated with the
different latent factors. We found significant associations with the
immune system and the retinoid and xenobiotic metabolism
pathways (Supplementary Data 6). Numerous Gene Ontology
(GO) terms and KEGG pathways were related to the immune
system, immune cell migration, and infectious diseases. The GO
terms and KEGG pathways related to immune cell migration
included leucocyte migration, chemotaxis, cytokines, and
interleukin 17 signalling. In particular, the expression of all
β-chemokines (including CCL2, CCL7, CCL19, CCL21, CCL22,
known to attract monocytes and dendritic cells)20 (Supplemen-
tary Data 6), and all CXC chemokines (such as IL8, CXCL1,
CXCL3, and CXCL5, known to attract neutrophils)21, were
positively correlated with MOFA LNEN LF1 (separating
pulmonary carcinoids from LCNEC) and negatively correlated
with MOFA LNET LF2 (separating clusters Carcinoid A1
and A2).

The different LNET clusters did not differ in their total
amounts of estimated proportions of immune cells, but they did
differ in their composition (Supplementary Fig. 19): cluster
Carcinoid A (particularly A1) was significantly enriched in
dendritic cells, and cluster Carcinoid B, in monocytes (Fig. 4b,
upper panel). As monocytes can differentiate into dendritic cells
in a favourable environment22, we assessed the levels of LAMP3
and CD1A dendritic-cells markers23, and found that samples in
cluster Carcinoid A1 presented high-expression levels of these
genes (Fig. 4b, lower panel), implying that this cluster was indeed
enriched for dendritic cells. We pursued this further by assessing
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the CD1A protein levels by immunohistochemistry (IHC) in an
independent series of pulmonary carcinoids, and found that 60%
of them (12 out of 20) were enriched in CDA1-positive dendritic
cells, confirming the presence of dendritic cells in a subgroup of
pulmonary carcinoids (Fig. 4c and Supplementary Data 9).

Regarding the retinoid and xenobiotic metabolism pathways
(e.g., elimination of drugs and environmental pollutants), the
main genes driving the correlation with MOFA latent factors
were the phase II enzymes involved in glucuronosyl-transferase
activity (Supplementary Data 6), but also the phase I cytochrome
P450 (CYP) proteins. These pathways were positively correlated
with MOFA LNEN LF2 (separating LNEN clusters A and B) and
negatively correlated with MOFA LNET LF1 (separating LNET
clusters A1 and A2 from cluster B). Indeed, we found that
samples in cluster Carcinoid B were characterised by high levels
of the CYP family of genes, and a very strong expression of
several UDP glucuronosyl-transferases UGT genes (median
FPKM= 4.6 in UGT2A3 and 28.1 in UGT2B genes; Fig. 4d),
which contrasts with the low levels in other carcinoids (median
FPKM= 0 for both UGT2A3 and UGT2B; Fig. 4d), LCNEC
(median FPKM= 0 and 1.2 for UGT2A3 and UGT2B; Supple-
mentary Fig. 20) and SCLC (median FPKM= 0 and 0.3 for
UGT2A3 and UGT2B; Supplementary Fig. 20).

Molecular groups of pulmonary carcinoids. We explored the
molecular characteristics of each cluster from the MOFA LNET
based on their core differentially expressed coding genes (core-
DEGs, the expression levels of which defined a given group of
samples), corresponding promoter methylation profiles (Fig. 5a
and Supplementary Data 10), and their somatic mutational pat-
terns (Figs. 3a and 4a). To achieve this goal, we computed the
DEGs in all pairwise comparisons between a focal group and the
other groups, and then defined core-DEGs as the intersection of
the resulting gene sets. We show in Supplementary Fig. 21 that
core-DEGs are almost exclusively a subset of the DEGs between
the focal group and samples from all other groups taken together.
We correlated the gene expression and promoter methylation
data of the core-DEGs to identify genes, which expression could

be mainly explained by their methylation patterns (Fig. 5a).
One of the top correlations was found for HNF1A and HNF4A
homeobox genes (Supplementary Fig. 22), which were strongly
downregulated in cluster Carcinoid A1 samples (Supplementary
Fig. 23). In addition, the promoter regions of these genes also
harboured core-DMPs (differentially methylated positions) of
cluster Carcinoid A1, indicating that their methylation profile is
specific of this cluster (Supplementary Data 11). These two genes
have been reported as having a role in the transcriptional reg-
ulation of ANGPTL3, CYP, and UGT genes24, and could thus
explain the differential expression of these genes between the
clusters. Samples in cluster Carcinoid A1 were also characterised
by high-expression levels of the delta like canonical Notch ligand
3 (DLL3, 75% with FPKM > 1) and its activator the achaete-scute
family bHLH transcription factor 1 (ASCL1) (Fig. 5a and Sup-
plementary Data 10), similar to SCLC and LCNEC (Fig. 5b);
however, the expression levels of NOTCH genes did not differ
between the different groups (Supplementary Fig. 24). The supra-
carcinoids were negative for DLL3 expression (Fig. 5b), and had
generally high-expression levels of NOTCH1-3 (Supplementary
Fig. 24). We additionally tested the DLL3 protein levels in the
aforementioned independent series of 20 pulmonary carcinoids
and found 40% (eight out of 20) with relatively high expression of
DLL3 (Fig. 4d and Supplementary Data 9), while in the
other 12 samples DLL3 was strikingly absent (Fig. 4d and Sup-
plementary Data 9). Furthermore, we found a correlation
between the protein levels of DLL3 and CD1A (Pearson test
p-value= 0.00034; Supplementary Fig. 25), providing additional
evidence for the existence of a DLL3+ CD1A+ subgroup of
carcinoids. Core-DEGs in cluster Carcinoid A2 included the
low levels of SLIT1 (slit guidance ligand 1; 97% with FPKM <
0.01), and ROBO1 (roundabout guidance receptor 1; 56% with
FPKM < 1) (Fig. 5a, b and Supplementary Data 10). This cluster
also contained the four samples with somatic mutations in the
eukaryotic translation initiation factor 1A X-linked (EIF1AX)
gene (Fig. 4a). Concordantly, samples with EIF1AX mutations
had significantly higher coordinates on the MOFA LNET LF2
(t-test p-value= 0.0342).

Table 1 Characteristics of supra-carcinoids

LNEN005 LNEN012 LNEN021 LNEN022 S01513 S01522

Classification
Histopathology Atypical Atypical Atypical Atypical Atypical Atypical
Morphological
characteristics

Carcinoid morph. 2 mitoses/2
mm2 No necrosis

Carcinoid morph. 2 mitoses/2
mm2 No necrosis

LCNEC morph. 4 mitoses/2
mm2 No necrosis

NA NA NA

Machine learning LCNEC LCNEC Unclassified Unclassified Atypical Unclassified
Clinical data
Sex Male Female Female Female Male Male
Age at diagnosis 80 70 83 58 58 63
TNM Stage IB IIIC IA1 IIB IIIA IV
Overall survival
(months)

144.6 111.7 29.8 36.1 59 7

Epidemiology
Smoking status Former NA NA NA Never Current
Other known
exposure

Asbestos NA NA NA NA NA

Multi-omics data
Data available WES, RNAseq, Epic 850K RNAseq Epic 850K Epic 850K WGS, RNAseq WES,

Epic 850K
Cluster
MOFA LNEN

LCNEC LCNEC LCNEC LCNEC LCNEC LCNEC

Cluster
MOFA LNET

Carcinoid A1 Carcinoid A1 Carcinoid A1 Carcinoid A1 Carcinoid A1 Carcinoid A1

Selected
mutated genes

JMJD1C, KDM5C, BAP1 NA NA NA DNAH17 TP53

Mean FPKM of IC
genesa

8.12 10.32 NA NA 3.15 NA

MKI67 FPKM 2.6 7.3 NA NA 1.9 NA

FPKM refers to Fragments Per Kilobase per Million reads. The median FPKM of immune checkpoint (IC) genes was calculated based on the genes included in Fig. 2e, excluding HLA genes because of

their very large expression levels
aIC genes median FPKM values for pulmonary carcinoids, LCNEC and SCLC are 1.0, 3.5, and 3.2, respectively
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As expected based on Fig. 4d, several UGT genes were core-
DEGs of cluster Carcinoid B (Fig. 5a). Also, accordingly with the
worse survival of patients in this cluster (Fig. 2a), these samples
were also characterised by the expression of angiopoietin like 3
(ANGPTL3, 90% with FPKM > 1), and the erb-b2 receptor
tyrosine kinase 4 (ERBB4, 67% with FPKM > 1) (Fig. 5b). This
cluster was also characterised by the universal downregulation of
orthopedia homeobox (OTP; 90% with FPKM < 1), and NK2
homeobox 1 (NKX2-1; 90% FPKM < 1) (Fig. 5b). Interestingly,
the SCLC-combined LCNEC sample (S00602) that clustered with
the pulmonary carcinoids in the MOFA LNEN (Fig. 1a) was the
only LCNEC in our series harbouring high-expression levels of
OTP (290.26 FPKM vs. 9.89 FPKM for the 2nd highest within
LCNEC, the median for LCNEC being 0.22 FPKM). UGT genes,
ANGPTL3, and ERBB4 were also core-DEGs of cluster B samples
when compared to LNEN clusters Carcinoid A and LCNEC
(Supplementary Data 12), which indicates that their expression
levels also significantly differed from that of LCNEC. Cluster
Carcinoid B included all observed MEN1 mutations, which is
consistent with the fact that samples with MEN1 mutations had
significantly lower coordinates on the MOFA LNET LF1 (t-test
p-value= 7 × 10−6; Fig. 4a). Nevertheless, mutations in this gene

did not explain the poorer prognosis of this group of samples
compared to other LNET (logrank p-value > 0.05; Supplementary
Fig. 26). To gain some insights into what might be driving the bad
prognosis of cluster Carcinoid B samples, we performed a GSEA
of mutations in hallmarks of cancer gene sets18,19; while clusters
Carcinoid A1 and A2 were not enriched for any hallmark of
cancer, cluster Carcinoid B was significantly enriched for genes
involved in evading growth suppressor, sustaining proliferative
signalling, and genome instability and mutation at the 5% FDR
(Fig. 5c). We also performed a Cox regression with elastic net
regularisation based on the core-DEGs of this cluster; the model
selected eight coding genes explaining the overall survival, OTP
being one of them (Fig. 5d and Supplementary Data 13). Further
supporting their prognostic value, we found that the expression of
four of these genes was significantly different between the good-
and the poor-prognosis atypical carcinoids based on the machine-
learning predictions (Fig. 1c, upper panel and Supplementary
Fig. 27).

Finally, we also checked the MKI67 expression levels in the
different molecular groups and found relatively low levels in the
clusters Carcinoids A1, A2, and B (78% with FPKM < 1) and high
levels in the supra-carcinoids (FPKM > 1 in the three samples). As
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expected, LCNECs and SCLCs carried high levels of this gene
(FPKM > 1 in 99% and 92% of the samples, respectively).
Although the levels of MKI67 for each of the clusters were
different, further analyses showed that MKI67 expression levels
alone were not able to accurately separate good- from poor-
prognosis pulmonary carcinoids (Supplementary Fig. 11B, C).

An overview of the different molecular groups of pulmonary
carcinoids and their most relevant characteristics is displayed in
Fig. 6.

Discussion
Lung neuroendocrine neoplasms are a heterogeneous group of
tumours with variable clinical outcomes. Here, we characterised
and contrasted their molecular profiles through integrative ana-
lysis of transcriptome and methylome data, using both machine-
learning (ML) techniques and multi-omics factor analyses
(MOFA). ML analyses showed that the molecular profiles could
distinguish survival outcomes within patients with atypical car-
cinoid morphological features, splitting them into patients with
good typical-carcinoid-like survival and patients with a clinical
outcome similar to LCNEC. Overall, out of the 35 histopatholo-
gically atypical carcinoids, ML reclassified 12 into the typical
category.

Unsupervised MOFA and subsequent gene-set enrichment
analyses unveiled the immune system and the retinoid and
xenobiotic metabolism as key deregulated processes in pulmonary
carcinoids, and identified three molecular groups—clusters—with
clinical implications (Fig. 6). The first group (cluster A1) pre-
sented high infiltration by dendritic cells, which are believed to
promote the recruitment of immune effector cells resulting in a
strongly active immunity25. Samples in cluster A1 showed over-
expression of ASCL1 and DLL3. The transcription factor ASCL1
is a master regulator that induces neuronal and neuroendocrine
differentiation. It regulates the expression of DLL3, which
encodes an inhibitor of the Notch pathway26. Overexpression of
ASCL1 and DLL3 is a characteristic of the SCLC of the classic
subtype26 and of type-I LCNEC12. We validated the expression of
DLL3 in an independent series of 20 pulmonary carcinoids
assessed by immunohistochemistry (IHC; 40% positive). The fact
that we found a correlation between the protein levels of DLL3
and CD1A (a marker of dendritic cells also assessed by IHC in
this series; 60% positive) provides orthogonal evidence to support
the existence of this molecular group. Phase I trials have provided
evidence for clinical activity of the anti-DLL3 humanised
monoclonal antibody in high–DLL3-expressing SCLCs and
LCNECs27, and additional clinical trials are ongoing in other
cancer types.

The second group (cluster A2) harboured recurrent somatic
mutations in EIF1AX, and showed downregulation of the SLIT1

and ROBO1 genes. SLIT and ROBO proteins are known to be
axon-guidance molecules involved in the development of the
nervous system28, but the SLIT/ROBO signalling has also been
associated with cancer development, progression, and metastasis.
Pulmonary neuroendocrine cells (PNEC) represent 1% of the
total lung epithelial cell population29, they reside isolated
(Kultchinsky cells) or in clusters named neuroepithelial bodies
(NEBs), and are believed to be the cell of origin of most lung
neuroendocrine neoplasms30. In the normal lung, it has been
shown that ROBO1/2 are expressed, exclusively, in the PNECs,
and that the SLIT/ROBO signalling is required for PNEC
assembly and maintenance in NEBs31. In cancer, this pathway
mainly suppresses tumour progression by regulating invasion,
migration, and apoptosis, and therefore, is often downregulated
in many cancer types28. More specifically, the SLIT1/ROBO1
interaction can inhibit cell invasion by inhibiting the SDF1/
CXCR4 axis, and can attenuate cell cycle progression by
destruction of β-catenin and CDC4228. Potential clinical avenues
to this finding exist, especially the ongoing development of
CXCR4 inhibitors.

The third molecular group (cluster B) was enriched in
monocytes and depleted of dendritic cells, and had the worst
median survival. Even in the presence of T cell infiltration, this
immune contexture suggests an inactive immune response,
dominated by monocytes and macrophages with potent immu-
nosuppressive functions, and almost devoid of the most potent
antigen-presenting cells, dendritic cells, suggesting dendritic cell-
based immunotherapy as a therapeutic option for this group of
samples32. Cluster B was also characterised by recurrent somatic
mutations in MEN1, the most frequently altered gene in pul-
monary carcinoids and pancreatic NETs33, which is in line with
the common embryologic origin of pancreas and lung.MEN1 was
inactivated by genomic rearrangement due to a chromothripsis
event affecting chromosomes 11 and 20 in one of our samples.
This observation, together with two additional reported cases
involving chromosomes 2, 12, and 1311, and chromosomes 2, 11,
and 2034, respectively, suggest that chromothripsis is a rare but
recurrent event in pulmonary carcinoids. Interestingly, MEN1
mutations did not have a clear prognostic value in our series.
Regarding the above-mentioned deregulation of the retinoid and
xenobiotic metabolism in pulmonary carcinoids, samples in
cluster B presented high levels of UGT and CYP genes. In line
with previous studies35,36, these samples also harboured low levels
of OTP, which gene expression levels were correlated with sur-
vival in the ML predictions. High levels of ANGPTL3 and ERBB4
were also detected in this group of samples, representing candi-
date therapeutic opportunities. ANGPTL3 is involved in new
blood vessel growth and stimulation of the MAPK pathway37.
This protein has been found aberrantly expressed in several types

Fig. 5 Molecular groups of pulmonary carcinoids. a Heatmaps of the expression of core differentially expressed genes of each molecular cluster, i.e., genes

that are differentially expressed in all pairwise comparisons between a focal cluster and the other clusters. Green bars at the right of each heatmap indicate

a significant negative correlation with the methylation level of at least one CpG site from the gene promoter region. The colour scale depends on the range

of q-value (q) and squared correlation estimate (R²) of the correlation test. b Boxplots of the expression levels of selected cancer-relevant core genes, in

fragment per kilobase million (FPKM) units, where centre line represents the median and box bounds represent the inter-quartile range (IQR). The

whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the 1.5-fold IQR. c Characteristic hallmarks of

cancer in each molecular cluster (Carcinoid A1 without the supra-carcinoids, A2, and B), LCNEC, and SCLC. Coloured concentric circles correspond to the

molecular clusters. For each cluster, dark colours highlight significantly enriched hallmarks (Fisher’s exact test q-value < 0.05). The mutated genes

contributing to a given hallmark are listed in the boxes. Recurrently mutated genes are indicated in brackets by the number of samples harbouring a

mutation. d Survival analysis of pulmonary carcinoids based on the expression level of eight core genes of cluster Carcinoid B. The genes were selected

using a regularised GLM on expression data. For each gene, coloured lines correspond to the Kaplan–Meier curve of overall survival for individuals with a

high (green) and low (orange) expression level of this gene. Cutoffs for the two groups were determined using maximally selected rank statistics

(Methods). The percentage of samples in each group is represented above each Kaplan–Meier curve and the logrank test p-value is given in bottom right

for each gene. Data necessary to reproduce the figure are provided in Supplementary Data 5, 10, and in the European Genome-phenome Archive
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of human cancers37. Similarly, overexpression of the epidermal
growth factor receptor ERBB4, which induces a variety of cellular
responses, including mitogenesis and differentiation, has also
been associated with several cancer types38,39.

For many years, it has been widely accepted that the lung well-
differentiated NETs (typical and atypical carcinoids) have unique
clinico-histopathological traits with no apparent causative rela-
tionship or common genetic, epidemiologic, or clinical traits with
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the lung poorly differentiated SCLC and LCNEC3. While mole-
cular studies have sustained this belief for pulmonary carcinoids
vs. SCLC11,13,14, the identification of a carcinoid-like group of
LCNECs10,12, the recent observation of LCNEC arising within a
background of pre-existing atypical carcinoid40, and a recent
proof-of-concept study supporting the progression from pul-
monary carcinoids to LCNEC and SCLC9, suggest that the
separation between pulmonary carcinoids and LCNEC might be
more subtle than initially thought, at least for a subset of patients.
Our study supports the suggested molecular link between pul-
monary carcinoids and LCNEC, as we have identified a subgroup
of atypical carcinoids, named supra-carcinoids, with a clear car-
cinoid morphological pattern but with molecular characteristics
similar to LCNEC. In our series, the proportion of supra-
carcinoids was in the order of 5.5% (six out of 110 pulmonary
carcinoids with available expression/methylation data); however,
considering the intermediate phenotypes observed in the MOFA
LNEN, the exact proportion would need to be confirmed in larger
series. We found high estimated levels of neutrophil infiltration in
the supra-carcinoids. For both supra-carcinoids and LCNEC (but
not SCLC), the pathways related to neutrophil chemotaxis and
degranulation, were also altered. Neutrophil infiltration may act
as immunosuppressive cells, for example through PD-L1
expression41. Indeed, the supra-carcinoids also presented levels
of immune checkpoint receptors and ligands (including PDL1
and CTLA4) similar—or higher—than those of LCNEC and
SCLC, as well as upregulation of other immunosuppressive genes
such as HLA-G, and interferon gamma that is speculated to
promote cancer immune-evasion in immunosuppressive
environments42,43. If confirmed, this would point to a therapeutic
opportunity for these tumours since strategies aiming at
decreasing migration of neutrophils to tumoral areas, or
decreasing the amount of neutrophils have shown efficacy in
preclinical models44. Similarly, immune checkpoint inhibitors,
currently being tested in clinical trials, might also be a therapeutic
option for these patients.

Overall, although preliminary, our data suggest that supra-
carcinoids could be diagnosed based on a combination of
morphological features (carcinoid-like morphology, useful for the
differential diagnosis with LCNEC/SCLC) and the high expres-
sion of a panel of immune checkpoint (IC) genes (LCNEC/SCLC-
like molecular features, useful for the differential diagnosis with
other carcinoids); the levels of IC genes, such as PD-L1, VISTA,
and LAG3, could also be used to drive the therapeutic decision for
patients harbouring a tumour belonging to this subset of very
aggressive carcinoids. Nevertheless, due to the very low number
of supra-carcinoids identified so far (n= 6), follow-up studies are
warranted to comprehensively characterise these tumours from
pathological and molecular standpoints, to evaluate the immune
cell distribution, and to establish if the diagnosis of these supra-
carcinoids can be undertaken in small biopsies. Finally, the cur-
rent classification only recognises the existence of grade-1 (typi-
cal) and grade-2 (atypical) well-differentiated lung NETs, while
the grade-3 would only be associated with the poorly differ-
entiated SCLC and LCNEC; however, in the pancreas, stomach
and colon, the group of well-differentiated grade-3 NETs are well
known and broadly recognised45. Whether these supra-carcinoids
constitute a separate entity that may be the equivalent in the lung
of the gastroenteropancreatic, well-differentiated, grade-3 NETs
will require further research.

In summary, this study provides comprehensive insights into
the molecular characteristics of pulmonary carcinoids, especially
of the understudied atypical carcinoids. We have identified three
well-characterised molecular groups of pulmonary carcinoids
with different prognoses and clinical implications. Finally, the
identification of supra-carcinoids further supports the already

suggested molecular link between pulmonary carcinoids and
LCNEC that warrants further investigation.

Methods
Sample collection. All new specimens were collected from surgically resected
tumours, applying local regulations and rules at the collecting site, and including
patient consent for molecular analyses as well as collection of de-identified data,
with approval of the IARC Ethics Committee. These samples underwent an
independent pathological review. For the typical carcinoids and LCNEC, on which
methylation analyses were performed, the DNA came from the samples included in
already published studies4,11–14,35, for which the pathological review had already
been done.

Clinical data. Collected clinical data included age (in years), sex (male or female),
smoking status (never smoker, former smoker, passive smoker, and current smo-
ker), Union for International Cancer Control/American Joint Committee on
Cancer stage, professional exposure, and survival (calculated in months from
surgery to last day of follow-up or death). These data were merged with that from
Fernandez-Cuesta et al.11, George et al.12, and George et al.14. In order to improve
the power of the statistical analyses, we regrouped some levels of variables that had
few samples. Age was discretized into three categories ((15, 40], (40, 60], and (60,
90] years), Union for International Cancer Control stages were regrouped into four
categories (I, II, III, IV), and smoking status was regrouped into two categories
(non-smoker, that includes never smokers and passive smokers, and smoker, that
includes current and former smokers). In addition, one patient (S02236) that was
originally classified as male was switched to female based on its concordant whole-
exome, transcriptome, and methylome data; and one patient (LNEN028) for whom
no sex information was available was classified as male based on its methylation
data (Supplementary Fig. 28; see details of the methods used in the DNA
sequencing, expression, and methylation sections of the methods), because we had
no other data type for this sample. Note that two SCLC samples from George
et al.14 displayed Y chromosome expression patterns discordant with their clinical
data (S02249 and S02293; Supplementary Fig. 28B), but because we did not per-
form any analysis of SCLC samples that used sex information, this did not have any
impact on our analyses. See Supplementary Data 1 for the clinical data associated
with the samples.

We assessed the associations between clinical variables—a batch variable
(sample provider), the main variable of interest (histopathological type), and
important biological covariables (sex, age, smoking status, and tumour stage)—
using Fisher’s exact test, adjusting the p-values for multiple testing. Using samples
from all histopathological types (typical and atypical carcinoids, LCNEC, and
SCLC), we found that the sample provider was significantly associated with the
histopathological type (Supplementary Fig. 29A). Indeed, the 20 carcinoids from
one of the providers (provider 1) are all atypical carcinoids. Nevertheless, because
there are also seven atypical carcinoids from a second provider and five from a
third one, variables provider and histopathological type are not completely
confounded and we could check for batch effects in the following molecular
analysis by making sure that the molecular profiles of atypical carcinoids from
provider 1 overlap with that from the two other providers. The histopathological
type was significantly associated with all other variables (Supplementary Fig. 29A,
B, and C).

Pathological review. Some of the samples included in this manuscript had already
undergone a Central Pathological Review in the context of other published studies,
so we used the classifications from the supplementary tables of the corresponding
manuscripts4,11,12,14,35. For the new ones, an H&E (hematoxylin and eosin) stain
from a representative FFPE block was collected for all tumours for pathological
review. All tumours were classified according to the 2015 WHO classification by
three independent pathologists (E.B., B.A.A., and S.L.). An H&E stain was also
performed in order to assess the quality of the frozen material used for molecular
analyses and to confirm that all frozen samples contained at least 70% of
tumour cells.

Immunohistochemistry. FFPE tissue sections (3 µm thick) from 20 atypical and
typical carcinoids were deparaffinized and stained with the Ventana DLL3 (SP347)
assay, UltraView Universal DAB Detection Kit (Ventana Medical Systems and
Amplification Kit (Ventana Medical Systems—Roche) on Ventana ULTRA auto-
stainer (Ventana, Roche, Meylan, France), and with the CD1 rabbit monoclonal
antibody (cl EP3622) (Ventana). The positivity of DLL3 was defined by the per-
centage of tumour cells exhibiting a cytoplasmic staining, whatever the intensity.
The positivity of CD1A was defined by the percentage of the total surface of the
tumour exhibiting a membrane staining with 1 corresponding to less than 1%, 2 to
a percentage between 1 and 5%, and 3 to greater than 5%. Results are presented
in Supplementary Data 9 and representative slides are shown in Fig. 4c.

Statistical analyses. All tests involving multiple comparisons were adjusted using
the Benjamini–Hochberg procedure controlling the false discovery rate46 using the
p.adjust R function (stats package version 3.4.4). All tests were two-sided. Also, a

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11276-9

12 NATURE COMMUNICATIONS |         (2019) 10:3407 | https://doi.org/10.1038/s41467-019-11276-9 | www.nature.com/naturecommunications



summary of the statistics associated with survival analyses is provided in Supple-
mentary Data 14.

Survival analysis. We performed survival analysis using Cox’s proportional
hazard model; we assessed the significance of the hazard ratio between the refer-
ence and the other levels using Wald tests, and assessed the global significance of
the model using the logrank test statistic (R package survival v. 2.41-3).
Kaplan–Meier and forest plots were drawn using R package survminer (v. 0.4.2).
Note that three LCNEC samples from George et al.14 had missing survival censor
information and were thus excluded from the analysis (samples S01580, S01581,
and S01586).

DNA extraction. Samples included were extracted using the Gentra Puregene
tissue kit 4g (Qiagen, Hilden, Germany), following the manufacturer's instructions.
All DNA samples were quantified by the fluorometric method (Quant-iT Pico-
Green dsDNA Assay, Life Technologies, CA, USA), and assessed for purity by
NanoDrop (Thermo Scientific, MA, USA) 260/280 and 260/230 ratio measure-
ments. DNA integrity of Fresh Frozen samples was checked by electrophoresis in a
1.3% agarose gel.

RNA extraction. Samples included were extracted using the Allprep DNA/RNA
extraction kit (Qiagen, Hilden, Germany), following manufacturer's instructions.
All RNA samples were treated with DNAse I for 15 min at 30 °C. RNA integrity of
frozen samples was checked with Agilent 2100 Electrophoresis Bioanalyser system
(Agilent Biotechnologies, Santa Clara, CA95051, United States) using RNA 6000
Nano Kit (Agilent Biotechnologies).

Whole-genome sequencing (WGS). Whole-genome sequencing was performed
on three fresh frozen pulmonary carcinoids and matched-blood samples by the
Centre National de Recherche en Génomique Humaine (CNRGH, Institut de
Biologie François Jacob, CEA, Evry, France). After a complete quality control,
genomic DNA (1 µg) has been used to prepare a library for whole-genome
sequencing, using the Illumina TruSeq DNA PCR-Free Library Preparation Kit
(Illumina Inc., CA, USA), according to the manufacturer's instructions. After
normalisation and quality control, qualified libraries have been sequenced on a
HiSeqX5 platform from Illumina (Illumina Inc., CA, USA), as paired-end 150 bp
reads. One lane of HiSeqX5 flow cell has been produced for each sample, in order
to reach an average sequencing depth of 30x for each sample. Sequence quality
parameters have been assessed throughout the sequencing run and standard
bioinformatics analysis of sequencing data was based on the Illumina pipeline to
generate fatsq files for each sample.

Whole-exome sequencing (WES). Whole-exome sequencing was performed on
16 fresh frozen atypical carcinoids in the Cologne Centre for Genomics. Exomes
were prepared by fragmenting 1 μg of DNA using sonication technology (Bior-
uptor, Diagenode, Liège, Belgium) followed by end repair and adapter ligation
including incorporation of Illumina TruSeq index barcodes on a Biomek FX
laboratory automation workstation from Beckman Coulter (Beckman Coulter,
Brea, CA, USA). After size selection and quantification, pools of five libraries each
were subjected to enrichment using the SeqCap EZ v2 Library kit from NimbleGen
(44Mb). After validation (2200 TapeStation; Agilent Technologies, CA, USA), the
pools were quantified using the KAPA Library Quantification kit (Peqlab, Erlan-
gen, Germany) and the 7900HT Sequence Detection System (Applied Biosystems,
Waltham, MA, USA), and subsequently sequenced on an Illumina HiSeq
2000 sequencing instrument using a paired-end 2 × 100 bp protocol and an allo-
cation of one pool with 5 exomes/lane. The expected average coverage was
approximately 120x after removal of duplicates (11 GB).

Targeted sequencing. Targeted sequencing was performed on the same 16 fresh
frozen atypical carcinoids and 13 matched-normal tissue for the samples with
enough DNA. Three sets of primers covering 1331 amplicons of 150–200 bp were
designed with the QIAGEN GeneRead DNAseq custom V2 Builder tool on
GRCh37 (gencode version 19). Target enrichment was performed using the
GeneRead DNAseq Panel PCR Kit V2 (QIAGEN) following a validated in-house
protocol (IARC). The multiplex PCR was performed with six separated primers
pools [(1) 1 pool covering 786 amplicons, (2) 4 pools covering 498 amplicons, and
(3) 1 pool covering 47 amplicons]. Per pool, 20 ng (1) or 10 ng (2 and 3) of DNA
were dispensed and air-dried (only 2 and 3). Subsequently 11 µL (1) or 5 µL (2 and
3) of the PCR mix were added [containing 5.5 µL (1) or 2.5 µL (2 and 3) Primer
mix pool (2x), 2.2 µL (1) or 1 µL (2 and 3) PCR Buffer (5x), 0.73 µL (1) or 0.34 µL
(2 and 3) HotStar Taq DNA Polymerase (6 U/µL) and 0.57 µL (1) or 1.16 µL (2
and 3) H2O] and the DNA were amplified in a 96-well-plate as following: 15 min at
95 °C; 25 (1), 21 (2), or 23 (3) cycles of 15 s at 95 °C and 4min at 60 °C; and 10 min
at 72 °C. For each sample, amplified PCR products were pooled together, purified
using 1.8x volume of SeraPure magnetic beads (prepared in-house following
protocol developed by Faircloth & Glenn, Ecol. And Evol. Biology, Univ. of
California, Los Angeles) (1) or NucleoMag® NGS Clean-up from Macherey-Nagel
(2 and 3) and quantified by Qubit DNA high-sensitivity assay kit (Invitrogen

Corporation). One-hundred nanograms of purified PCR product (6 µL) were used
for the library preparation with the NEBNext Fast DNA Library Prep Set (New
England BioLabs) following an in-house validated protocol (IARC). End repair was
performed [1.5 µL of NEBNext End Repair Reaction Buffer, 0.75 µL of NEBNext
End Repair Enzyme Mix, and 6.75 µL of H2O] followed by ligation to specific
adapters and in-house prepared individual barcodes (Eurofins MWG Operon,
Germany) [4.35 µL of H2O, 2.5 µL of T4 DNA Ligase Buffer for Ion Torrent, 0.7 µL
of Ion P1 adaptor (double-stranded), 0.25 µL of Bst 2.0 WarmStart DNA Poly-
merase, 1.5 µL of T4 DNA ligase, and 0.7 µL of in-house barcodes]. Bead pur-
ification of 1.8x was applied to clean libraries and 100 ng of adaptator ligated DNA
were amplified with 15 µL of Master Mix Amplification [containing 1 µL of Pri-
mers, 12.5 µL of NEBNext High-Fidelity 2x PCR Master Mix, and 1.5 µL of H2O].
Pooling of libraries was performed equimolarly and loaded on a 2% agarose gel for
electrophoresis (220 V, 40 min). Using the GeneClean™ Turbo kit (MP Biomedicals,
USA) pooled DNA libraries were recovered from selected fragments of 200–300 bp
in length. Libraries quality and quantity were assessed using Agilent High Sensi-
tivity DNA kit on the Agilent 2100 Bioanalyzer on-chip electrophoreses (Agilent
Technologies). Sequencing of the libraries was performed on the Ion TorrentTM

Proton Sequencer (Life Technologies Corp) aiming for deep coverage (> 250x),
using the Ion PITM Hi-QTTM OT2 200 Kit and the Ion PITM Hi-QTM Sequencing
200 Kit with the Ion PITM Chip Kit v3 following the manufacturer’s protocols.

DNA data processing. WGS and WES reads mapping on reference genome
GRCh37 (gencode version 19) were performed using our in-house workflow
(https://github.com/IARCbioinfo/alignment-nf, revision number 9092214665).
This workflow is based on the nextflow domain-specific language47 and consists of
three steps: reads mapping (software bwa version 0.7.12-r1044)48, duplicate
marking (software samblaster, version 0.1.22)49, and reads sorting (software
sambamba, version 0.5.9)50. Reads mapping for the targeted sequencing data was
performed using the Torrent Suite software version 4.4.2 on reference genome
hg19. Local realignment around indels was then performed for both using software
ABRA (version 0.97bLE)51 on the regions from the bed files provided by Agilent
(SeqCap_EZ_Exome_v2_probe-covered.bed) and QIAGEN, respectively, for the
WES and targeted sequencing data. Consistency between sex reported in the
clinical data and WES data was assessed by computing the total coverage on X and
Y chromosomes (Supplementary Fig. 28A).

Variant calling and filtering on DNA.WES data: We re-performed variant calling
for all typical and atypical carcinoid WES, including already published data, in
order to remove the possible cofounding effect of variant calling in the subsequent
molecular characterisation of carcinoids. Software Needlestack v1.1 (https://github.
com/IARCbioinfo/needlestack)52 was used to call variants. Needlestack is an ultra-
sensitive multi-sample variant caller that uses the joint information from multiple
samples to disentangle true variants from sequencing errors. We performed two
separate multi-sample variant callings to avoid technical batch effects: (1) The 16
WES atypical carcinoids newly sequenced in this study were analysed together with
64 additional WES samples sequenced using the same protocol from another study
in order to increase the accuracy of Needlestack to estimate the sequencing error
rate; (2) The 15 WES LNET (ten typical and five atypical carcinoids) previously
analysed (Fernandez-Cuesta et al.)11 were reanalysed with their matched-normal.
For both variant callings, we used default software parameters except for the
minimum median coverage to consider a site for calling, the minimum mapping
quality, and the SNV and INDEL strand bias13 threshold (they were set to 20, 13, 4,
and 10, respectively). Annotation of resulting variant calling format (VCF) files was
then performed with ANNOVAR (2018Aprl16)53 using the PopFreqAll (maximum
frequency over all populations in ESP6500, 1000G, and ExAC germline databases),
COSMIC v84, MCAP, REVEL, SIFT, and Polyphen (dbnsfp30a) databases.

We performed the same variant filtering after each of the two variant callings,
based on several stringent criteria. First, we only retained variants that have never
been observed in germline databases or present at low frequency (≤ 0.001) but
already reported as somatic in the COSMIC database. Second, we only retained
variants that were in coding regions and that had an impact on expressed proteins:
we filtered out silent, non-damaging single nucleotide variants (based on MCAP,
REVEL, SIFT, or Polyphen2 databases) and variants present in non-expressed
genes (mean and median FPKM < 0.1 over all carcinoid tumours). Additionally, for
calling (2), we re-assessed the somatic status of variants reported by Needlestack in
light of possible contamination errors. Indeed, Needlestack is a very sensitive caller
and will sometimes detect low allelic fraction variants in normal tissue that actually
come from contamination by tumour cells. In such cases the variant is found in
both matched samples and is reported as germline, but we still considered a variant
as somatic if its allelic fraction in the normal tissue was at least five times lower
than the allelic fraction observed in the tumour.

Targeted sequencing data: Software Needlestack was also used to call variants on
targeted sequencing data from 16 atypical carcinoids and their matched-normal
tissue. We performed the calling with default parameters except for the phred-
scaled q-value and minimum median coverage to consider a site (20 and 10,
respectively). These parameters were decreased compared to WES variants calling
because we wanted a larger sensitivity in the validation set than in the discovery set.
The annotation procedure was the same as for WES data. No other filters
were used.
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Validation: For both previously published data and data generated in this study,
we only report somatic mutations that were validated using a different technique:
targeted sequencing, RNA sequencing (see below for variant calling in RNA-seq
data), or Sanger sequencing. Results are presented Supplementary Data 4.

Structural variant calling. Somatic copy number variations (CNVs) were called
from WGS data using an in-house pipeline (software WGinR, available at https://
github.com/aviari/wginr) that consists of three main steps. First, the dependency
between GC content and raw read count is modelled using a generalised additive
smoothing model with two nested windows in order to catch short and long
distance dependencies. The model is computed on a subset of human genome
mappable regions defined by a narrow band around the mode of binned raw counts
distribution. This limits the incorporation of true biological signal (losses and
gains) by selecting only regions with (supposedly) the same ploidy. In a second
step, we collect heterozygous positions in the matched-normal sample and GC-
corrected read counts (RC) and alleles frequencies (AF) at these positions are used
to estimate the mean tumour ploidy and its contamination by normal tissue. This
ploidy model is then used to infer the theoretical absolute copy number levels in
the tumour sample. In the third step, a simultaneous segmentation of RC and AF
signals (computed on all mappable regions) is performed using a bivariate Hidden
Markov Model to generate an absolute copy number and a genotype estimate for
each segment.

Somatic structural variants (SV) were identified using an in-house tool
(crisscross, available at https://github.com/anso-sertier/crisscross) that uses WGS
data and two complementary signals from the read alignments: (a) discordant pair
mapping (wrong read orientation or incorrect insert-size) and (b) soft-clipping
(unmapped first or last bases of reads) that allows resolving SV breakpoints at the
base pair resolution. A cluster of discordant pairs and one or two clusters of soft-
clipped reads defined an SV candidate: the discordant pairs cluster defined two
associated regions, possibly on different chromosomes and the soft-clipped reads
cluster(s), located in these regions, pinpointed the potential SV breakpoint
positions. We further checked that the soft-clipped bases at each SV breakpoint
were correctly aligned in the neighbourhood of the associated region. SV events
were then classified as germline or somatic depending on their presence in the
matched-normal sample. Results are presented as Supplementary Data 8 and one
sample is highlighted in Fig. 3c.

Gene-set enrichment analysis of somatic mutations. Gene-set enrichment for
somatic mutations was assessed independently for each set of Hallmark of cancer
genes18 using Fisher’s exact test. We built the contingency tables used as input of
the test taking into account genes with multiple mutations and used the fisher.test
R function (stats package version 3.4.4). We also included validated mutations (we
removed silent and intron/exon mutations) reported in SCLC13. In each group the
p-values given by Fisher’s exact test performed for all Hallmarks were adjusted for
multiple testing. Supplementary Data 5 lists the altered hallmarks, including the
mutated genes and the associated q-value for each group, as well as the mutated
genes for each hallmarks present in each supra-carcinoid, cluster LNET, LCNEC,
and SCLC samples.

We performed several robustness analyses to assess the validity of our results, in
particular with regards to outlier samples/genes that would have a high leverage on
the statistical results, i.e., that would alone drive the significance of a particular
hallmark. First, we assessed the leverage of each individual sample using a jackknife
procedure (i.e., for each sample, we performed the GSE test after removing this
sample). Second, we assessed the leverage of each gene using a jackknife procedure
(i.e., for each gene, we performed the GSE test without this gene). We observed that
when we removed sample LNEN010 from the cluster LNET B, the sustaining
proliferative signalling hallmark enrichment became non-significant at the 0.05
false discovery rate threshold, but was still significant at the 10% threshold (q-value
= 0.075; Supplementary Data 3). Similarly, we observed that for several SCLC
samples, once the sample was removed, the deregulating cellular energetics and
inducing angiogenesis hallmarks became significant at the 0.05 false discovery rate
threshold (Supplementary Data 5). For supra-carcinoids samples, we performed
GSE for each sample individually. The code used for the gene set enrichment
analyses on somatic mutations (Hallmarks_of_cancer_GSEA.R) is available in the
Supplementary Software file 1 and the associated results are reported in
Supplementary Data 5.

RNA sequencing. RNA sequencing was performed on 20 fresh frozen atypical
carcinoids in the Cologne Centre for Genomics. Libraries were prepared using the
Illumina® TruSeq® RNA sample preparation Kit. Library preparation started with
1 µg total RNA. After poly-A selection (using poly-T oligo-attached magnetic
beads), mRNA was purified and fragmented using divalent cations under elevated
temperature. The RNA fragments underwent reverse transcription using random
primers. This is followed by second strand complementary DNA (cDNA) synthesis
with DNA Polymerase I and RNase H. After end repair and A-tailing, indexing
adapters were ligated. The products were then purified and amplified (14 PCR
cycles) to create the final cDNA libraries. After library validation and quantification
(Agilent 2100 Bioanalyzer), equimolar amounts of library were pooled. The pool
was quantified by using the Peqlab KAPA Library Quantification Kit and the

Applied Biosystems 7900HT Sequence Detection System. The pool was sequenced
by using an Illumina TruSeq PE Cluster Kit v3 and an Illumina TruSeq SBS Kit v3-
HS on an Illumina HiSeq 2000 sequencer with a paired-end (101x7x101 cycles)
protocol.

RNA data processing. The 210 raw reads files (89 carcinoids, 69 LCNEC, 52
SCLC) were processed in three steps using the RNA-seq processing workflow based
on the nextflow language47 and accessible at https://github.com/IARCbioinfo/
RNAseq-nf (revision da7240d). (i) Reads were scanned for a part of Illumina’s
13 bp adapter sequence ′AGATCGGAAGAGC′ at the 3′ end using Trim Galore
v0.4.2 with default parameters. (ii) Reads were mapped to reference genome
GRCh37 (gencode version 19) using software STAR (v2.5.2b)54 with recommended
parameters55. (iii) For each sample, a raw read count table with gene-level quan-
tification for each gene of the comprehensive gencode gene annotation file (release
19, containing 57,822 genes) was generated using script htseq-count from software
htseq (v0.8.0)56. Gene fragments per kilobase million (FPKM) of all genes from the
gencode gene annotation file were computed using software StringTie (v1.3.3b)57 in
single pass mode (no new transcript discovery), using the protocols from Pertea
et al.57 (nextflow pipeline accessible at https://github.com/IARCbioinfo/RNAseq-
transcript-nf; revision c5d114e42d).

Quality control of the samples was performed at each step. Software FastQC
(v. 0.11.5; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to
check raw reads quality, software RSeQC (v. 2.6.4) was used to check alignment
quality (number of mapped reads, proportion of uniquely mapped reads). Software
MultiQC (v. 0.9)58 was used to aggregate the QC results across samples.
Concordance between sex reported in the clinical data and sex chromosome gene
expression patterns was performed by comparing the sum of variance-stabilised
read counts (vst function from R package DESeq2) of each sample on the X and Y
chromosomes (Supplementary Fig. 28B).

Variant calling on RNA. Software Needlestack was also used to call variants on the
20 RNA sequencing data for WES variant validation. Default parameters were used,
except for the phred-scaled q-value, minimum median coverage to consider a site,
and minimum mapping quality (20, 10, and 13, respectively). The annotation
procedure was the same as for WES data.

Fusion transcript detection. RNA-seq data was processed as previously
described11,13 to detect chimeric transcripts. In brief, paired-end RNA-seq reads
were mapped to the human reference genome (NCBI37/hg19) using GSNAP.
Potential chimeric fusion transcripts were identified using software TRUP59 by
discordant read pairs and by individual reads mapping to distinct chromosomal
locations. The sequence context of rearranged transcripts was reconstructed
around the identified breakpoint and the assembled fusion transcript was then
aligned to the human reference genome to determine the genes involved in the
fusion. All interesting fusion-transcript were validated by Sanger sequencing. The
code used for the fusion transcript detection is available on https://github.com/
ruping/TRUP. All the associated results are presented Supplementary Data 7, and
selected genes are highlighted in Fig. 3b.

Unsupervised analyses of expression data. The raw read counts of 57,822 genes
from the 210 samples were normalised using the variance stabilisation transform
(vst function from R package DESeq2 v1.14.1)60; this transformation enables
comparisons between samples with different library sizes and different variances in
expression across genes. We removed genes from the sex-chromosomes in order to
reduce the influence of sex on the expression profiles, resulting in a matrix of gene
expression with 54,851 genes and 210 samples. We performed four analyses, with
different subsets of samples. (i) An analysis with all 210 samples (LNEN and
SCLC), (ii) an analysis with LNEN samples only (158 samples), (iii) an analysis
with LNET and SCLC samples only (139 samples), and (iv) an analysis with LNET
samples only (89 samples). For each analysis, the most variable genes (explaining
50% of the total variance in variance-stabilised read counts) were selected (6398,
6009, 6234, and 5490 genes, respectively, for i, ii, iii, and iv). Principal component
analysis (PCA) was then performed independently for each analysis (function dudi.
pca from R package ade4 v1.7-8)61. Results are presented in Supplementary Fig. 6;
see the Multi-omic integration section of the methods for a comparison of the
results of the unsupervised analysis of expression data with that of the other 'omics.

We used the results from the PCA to detect outliers and batch effects in the
expression data set. We did not detect any outliers in any of the analyses from
Supplementary Fig. 6. We further studied the association between expression data,
batch (sample provider), and five clinical variables of interest (histopathological
type, age, sex, smoking status, and stage) using a PCA regression analysis. For each
principal component, we fitted separate linear models with each of the six
covariables of interest (provider plus the five clinical variables) and adjusted the
resulting p-values for multiple testing. Results highlighted an association between
principal component 2 and provider, histopathological type, and sex, and an
association between principal components 4 and 5 and stage (Supplementary
Fig. 30A). The fact that both histopathology and sample provider are jointly
significantly associated with PC2 is expected given their non-independence
(Supplementary Fig. 29A, B). In order to assess whether there was a batch effect
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explaining the variation on PC2, we investigated the range of samples from each
provider on PC2 (Supplementary Fig. 30B). We can see that samples from Provider
1 and provider 2 span a similar range on PC2 (from values less than –20 to values
greater than 40). Restricting the analysis to atypical carcinoids, we can further see
that AC samples from provider 2 have a range included in that of provider 1, which
is expected given their differing sample sizes (five from provider 2 compared to 20
from provider 1). Overall, this shows that samples from the two providers have
similar profiles and can be combined. In addition, we found that the samples that
were independently sequenced in a previous study11 and in this study (samples
S00716_A and S00716_B, respectively) were spatially close in the PCA (technical
replicates highlighted in Supplementary Fig. 30B).

Supervised analysis of expression data. We performed three distinct differential
expression (DE) analyses. (i) A comparison between histopathological types; (ii) A
comparison between pulmonary carcinoid (LNET) clusters A1, A2, and B (see
Fig. 5a and the Multi-omic integration method section); (iii) a comparison between
lung neuroendocrine neoplasm (LNEN) clusters Carcinoid A, Carcinoid B, and
LCNEC (see the Multi-omic integration method section).

For each differential expression (DE) analysis, among the 57,822 genes from the
raw read count tables, genes that were expressed in less than 2 samples were
removed from the analysis, using a threshold of 1 fragment per million reads
aligned. We also removed samples with missing data in the variables of interest
(either histopathological types, LNET clusters, or LNEN clusters) or in any of the
clinical covariables included in the statistical model (sex and age). This resulted in
excluding two samples with missing age data from the three analyses (samples
S01093, S02236), and further excluding three samples with no clear
histopathological type (classified as carcinoids in Supplementary Data 1) from
analysis (i) (samples S00076, S02126, S02154). For each analysis, we then identified
DE genes from the raw read counts using R package DESeq2 (v. 1.21.5)60. For each
analysis, we fitted a model with the variable of interest (type, LNET cluster, or
LNEN cluster) and using sex (two levels: male and female), and age (three levels:
(16, 40], (40, 60], (60, 90]) as covariables. We then extracted DE genes between
each pair of groups, and adjusted the p-values for multiple testing. In order to select
the genes that have the largest biological effect, we tested the null hypothesis that
the two focal groups had less than 2 absolute log2-fold changes differences. For
each analysis, we define the core genes of a focal group as the set of genes that are
DE in all pairwise comparisons between the focal group and other groups; they
correspond to genes, which expression level is specific to the focal group. For
example, given three groups—A, B, and C—to find core genes, which expression
levels uniquely define A compared to both B and C, we select DE genes that
differentiate A from B (A vs. B), DE genes that differentiate A from C (A vs. C) and
take the intersection of these gene sets [(A vs. B)∩(A vs. C)]. The code used for the
DE analyses (RNAseq_supervised.R) is available at https://github.com/
IARCbioinfo/RNAseq_analysis_scripts. Results of analysis (i) are reported in
Supplementary Data 15 and Supplementary Fig. 31; results of analysis (ii) are
reported in Supplementary Data 10 and Fig. 5a; results of analysis (iii) are reported
in Supplementary Data 12. See section Multi-omics integration for comparisons
between the analyses based on histopathological types [analysis (i)] from all ‘omics
perspectives.

Note that an alternative method for finding DE genes would be to compare a
focal group to all the other samples together. For example, comparing group A to
both groups B and C simultaneously [denoted A vs. (B and C) or A vs. the rest].
Note that this would find genes that are DE between A and the average level of
expression of B and C, and thus this alternative method would have the unwanted
behaviour of including the genes that are strongly DE in the comparison of A vs. B,
but with similar expression levels in A and C. In order to compare the methods we
used to detect core genes with this alternative method, we performed an analysis
similar to analysis (ii) but comparing a focal group to all the other samples
simultaneously (A vs. the rest). The comparison between our method and the
alternative one is presented in Supplementary Fig. 21 and shows that our analysis
provides conservative results compared to testing the focal group vs. the rest.
Indeed, core DE genes reported are almost exclusively a subset of the genes found
when comparing the focal group vs. the rest.

Immune contexture deconvolution from expression data. We quantified the
proportion of cells that belong to each of ten immune cell types (B cells, macro-
phages M1, macrophages M2, monocytes, neutrophils, NK cells, CD4+ T cells,
CD8+ T cells, CD4+ regulatory T cells, and dendritic cells) from the RNA-seq
data using software quanTIseq (downloaded 23 March 2018)62. quanTIseq uses a
rigorous RNA-seq processing pipeline to quantify the gene expression of each
sample, and performs supervised expression deconvolution in a set of genes
identified as informative on immune cell types, using the least squares with
equality/inequality constrains (LSEI) algorithm with a reference data set containing
expected expression levels for the ten immune cell types. Importantly, quanTIseq
also provides estimates of the total proportion of cells in the bulk sequencing that
do and do not belong to immune cells.

We tested whether immune composition differed between histopathological
types, LNET clusters, LNEN clusters, and supra-carcinoids using linear
permutation tests (R package lmperm, v. 2.1.0). Permutations tests are exact
statistical tests that do not rely on approximations and assumptions regarding the

data distribution, and are thus well-fitted to test whether a few samples come from
the same distribution as a larger group of samples. As such, they were well-fitted to
handle the tests involving supra-carcinoids, for which only three samples had
RNA-seq data. For each of the three analyses (histopathology, LNET clusters, and
LNEN clusters), and for each pair of groups, we fitted one model per immune cell
type, with the proportion of this cell type in each sample as explained variable and
the cluster membership as explanatory variable. We adjusted the p-values for
multiple testing. The code used for these three analyses is available on https://icbi.i-
med.ac.at/software/quantiseq/doc/index.html and the associated results are
presented Figs. 2f, 4b, and Supplementary Figs. 15, 19, and 32.

EPIC 850k methylation array. Epigenome analysis was performed on 33 typical
carcinoids, 23 atypical carcinoids, and 20 LCNEC, plus 19 technical replicates.
Epigenomic studies were performed at the International Agency for Research on
Cancer (IARC) with the Infinium EPIC DNA methylation beadchip platform
(Illumina) used for the interrogation of over 850,000 CpG sites (dinucleotides that
are the main target for methylation). Each chip encompasses eight samples, so 12
chips were needed for the 95 samples. We used stratified randomisation to mitigate
the batch effects, ensuring that the three histopathological types were present on
every chip, while also controlling for potential confounders (the sample provider,
sex, smoking status, and age of the patient); replicates were placed on
different chips.

For each sample, 600 ng of purified DNA were bisulfite converted using the EZ-
96 DNA Methylation-GoldTM kit (Zymo Research Corp., CA, USA) following the
manufacturer's recommendations for Infinium assays. Three replicates included
half the amount (300 ng). Then, 200 ng of bisulfite-converted DNA was used for
hybridisation on Infinium Methylation EPIC beadarrays, following the
manufacturer’s protocol (Illumina Inc.). This array shares the Infinium HD
chemistry (Illumina Inc.) and a similar laboratory protocol used to interrogate the
cytosine markers with HumanMethylation450 beadchip. Chips were scanned using
Illumina iScan to produce two-colour raw data files (IDAT format).

Methylation data processing. The resulting IDAT raw data files were pre-
processed using R packages minfi (v. 1.24.0)63 and ENmix (v. 1.14.0)64. We first
removed unwanted technical variation in-between arrays using functional nor-
malisation of the raw two-colour intensities, and computed the β-values for the
866,238 probes and 96 samples. Then, we filtered four types of probes that could
confound the analyses. (i) We removed probes on the X and Y chromosomes,
because we were interested in variation between tumours and treated sex as a
confounder. (ii) We removed known cross-reactive probes—i.e., probes that co-
hybridise to other chromosomes and thus cannot be reliably investigated. (iii) We
removed probes that had failed in at least one sample, using a detection p-value
threshold of 0.01, where p-values were computed with the detection P function
from R package minfi, that compares the total signal (methylated+ unmethylated)
at each probe with the background signal level from non-negative control probes.
(iv) We removed probes associated with common SNPs—that reflect underlying
polymorphisms rather than methylation profiles—using a threshold minor allele
frequency of 5% in database dbSNP build 137 (function dropLociWithSnps from
minfi). (v) We removed probes putatively associated with rare SNPs by detecting
and removing probes with multimodal β-value distributions (function nmode.mc
from R package ENmix). Next, we removed duplicated samples, randomly
choosing one sample per pair so as to minimise potential discrepancies, and we
removed one sample that came from a metastatic tumour rather than a primary
tumour. The final data set contained the β-values of 767,781 CpGs for 76 samples.

We performed quality controls of the raw data. Two-colour intensity data of
internal control probes were inspected to check the quality of successive sample
preparation steps (bisulfite conversion, hybridisation). We did not find outliers
when comparing the methylated/unmethylated channel intensities of all samples,
nor did we find samples with overall low detection p-values (the sample with the
lowest mean p-value had a value of 0.001). Concordance between the sex reported
in the clinical data and the methylation data was assessed using a predictor based
on the median total intensity on sex-chromosomes, with a cutoff of –2 log2
estimated copy number (function getSex from minfi). Consistently with the WES
and RNA-seq data, we found one sample with a mismatch between reported and
inferred sex (see results in Supplementary Fig. 28C). We investigated batch effects
at the raw data level using surrogate variable analysis. We used function ctrlsva
from package ENmix to compute a principal component analysis of the intensity
data from non-negative control probes. We retained the first ten principal
components—hereafter referred to as surrogate variables—explaining >90% of the
variation in control probes intensity. The ten surrogate variables were included as
covariables in later supervised analyses to mitigate the impact of batch effects on
the results. We checked the association of surrogate variables with batch (chip,
position on the chip, and sample provider) and clinical variables (histopathological
type, age, sex, smoking status) using PCA regression analysis, fitting separate linear
models to each surrogate variable with each of the seven covariables of interest and
adjusted the p-values for multiple testing. We show in Supplementary Fig. 33A that
surrogate variables 1, 2, 3, and 10 are significantly associated with the chip (variable
Sentrix id) or position on the chip (variable Sentrix position), while surrogate
variables 4, 5, and 10 are significantly associated with the sample provider. The
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code used to perform all the pre-processing procedure of these data is available at
https://github.com/IARCbioinfo/Methylation_analysis_scripts.

Unsupervised analysis of methylation data. The β-values of 767,781 CpGs for
76 samples were transformed into M-values to perform unsupervised analyses;
indeed, contrary to β-values, M-values theoretically range from −∞ to +∞ and are
considered normally distributed. We performed two analyses, with different subsets
of samples: (i) an analysis with all carcinoid and LCNEC samples (76 samples), and
(ii) an analysis with carcinoid samples only (56 samples). For each analysis, the
most variable CpGs (explaining 5% of the total variance in M-values) were selected
(8,483 and 7,693 CpGs, respectively, for (i) and (ii). PCA was then performed
independently for each analysis (function dudi.pca from R package ade4 v1.7-8)61.
Results are presented in Supplementary Fig. 7; see the Multi-omic integration
section of the methods for a comparison of the results of the unsupervised analysis
of methylation data with that of the other 'omics.

We used the results from the PCA to detect outliers and batch effects in the
methylation data set. We did not detect any outliers in any of the analyses from
Supplementary Fig. 7. We also performed a PCA regression analysis using the same
protocol as described in the data processing section above. Results highlighted no
association between any principal component and array batches (chip and position
in the chip; Supplementary Fig. 33A). Principal component 2 was associated with
the sample provider; further examination of the PCA (Supplementary Fig. 33B)
revealed that this effect was driven by the samples from provider 1, which have the
largest range of coordinates on PC2 (from < –30 to >100). Nevertheless, the fact
that their coordinates on PC2 overlap with that of samples from other providers,
and the fact that the vast majority of atypical carcinoid samples come from one
provider, suggest that the large range of values of provider 1 samples on PC2 is
driven by the biological variability of carcinoid methylation profiles. In addition,
note that samples that cluster with LCNEC are not solely from provider 1. We
assessed the impact of functional normalisation on batch effects by performing the
same analysis on the M-values of the 5% most variable CpGs obtained without
normalisation (Supplementary Fig. 33A). Compared to the PCA of the 5% most
variable CpGs with normalisation (Supplementary Fig. 33A), we find that the chip
position (variable Sentrix position) is significantly associated with PC10, and that
PC2 is not associated with histopathology. This suggests that the functional
normalisation reduced batch effects and revealed some of the biological variability
in methylation data.

The PCA is also informative about associations between methylation profiles
and clinical variables. We find a significant association between PC1,
histopathological type, age, and smoking status, with LCNEC, smokers, and larger
age classes located at higher PC1 coordinates (Supplementary Fig. 33A); these
associations are expected, given that the difference between LCNEC and carcinoids
is expected to be the main driver of variation in methylation, and given known the
aetiology of the diseases8. We find an association between principal component 2,
histopathology, and sex, with male and atypical carcinoids having overall larger
PC2 coordinates. We find associations of larger components, in particular PC3 and
age, and PC7 and 9, and sex.

Supervised analysis of methylation data. We detected differential methylation at
the probe level (DMP) in three independent analyses: (i) between histopathological
types (TC, AC, and LCNEC), (ii) between LNET clusters (clusters A1, A2, and B),
and (iii) between LNEN clusters (clusters A, B, and LCNEC).

To detect DMPs, for each analysis, linear models were first fitted independently for
each CpG to its M-values (function lmFit from R package limma version 3.34.9)65,
using the variable of interest (histopathology, LNET cluster, or LNEN cluster), in
addition to the sex, age group, and the ten surrogate variables as covariables. Then,
moderated t-tests were performed by empirical Bayes moderation of the standard
errors (function eBayes from package limma), and p-values were computed for each
CpG. Moderation enables to increase the statistical power of the test by increasing the
effective degrees of freedom of the statistics, while also reducing the false-positive rate
by protecting against hypervariable CpGs, and are thus favoured in array analyses.
The p-values were adjusted for multiple testing, and CpGs with a q-value <0.05 were
retained. The code used for the DMPs identification (DMP.R) is available in the
Supplementary Software 1 and the associated results of analyses (i), (ii), and (iii)
are presented Supplementary Data 16, Supplementary Data 11, and 17, respectively.
See section Multi-omics integration for comparisons between the analyses based
on histopathological types [analysis (i)] from all ‘omics perspectives. Analysis (iii)
confirmed most DMPs associated with DEGs reported in Fig. 5a for cluster B relative
to LNET clusters (TFF1, OTOP3, SLC35D3, APOBEC2) were also DMPs for cluster
B relative to LNEN clusters, showing that they harboured specific methylation levels
that made them different from the LCNEC cluster, as well as from other carcinoid
clusters.

Multi-omics integration. We performed an integrative analysis of the WES, WGS,
RNA-seq, and 850 K methylation array data, using the validated somatic mutations
(Supplementary Data 4), the variance-stabilised read counts, and the M-values,
respectively. The full data set consisted of 243 samples, but some analyses focused
on a subset of the data.

Unsupervised continuous multi-omic analyses. To perform continuous latent
factors identification, we performed an integrative group factor analysis of the
expression and methylation data using software MOFA (R package MOFAtools
v. 0.99)15. MOFA identifies latent factors (LF, i.e., continuous variables) that explain
most variation in the joint data sets. We did not include the somatic mutations in the
model because the low level of recurrence (only four recurrently mutated genes in
Supplementary Data 4) resulted in a sample by mutation matrix of much lower
dimension than the other ‘omics, which is known to bias the analyses15. Also, we did
not consider expression and methylation from the sex-chromosomes, because we were
interested in differences between tumours independently of the sex of the patient.

We performed four analyses, with different subsets of samples. (i) An analysis
with all 235 samples for which expression or methylation data was available (LNEN
and SCLC), (ii) an analysis with LNEN samples only (183 samples), (iii) an analysis
with LNET and SCLC samples only (163 samples), and (iv) an analysis with LNET
samples only (111 samples). For each analysis, the most variable genes for
expression (explaining 50% of the total variance) were selected (6398, 6009, 6234,
and 5490 genes, respectively, for i, ii, iii, and iv), and the most variable CpGs
(explaining 5% of the total variance) were selected (8483, 8483, 7693, and 7693
CpGs, respectively, for i, ii, iii, and iv). Note that these lists of genes and CpGs are
the same as the ones used to perform the unsupervised analyses of expression and
methylation data (see above sections). Also note that we did not have EPIC 850k
methylation array data for SCLC; MOFA was shown to handle missing data,
including samples with entire ‘omic techniques missing, by using the correlated
signals from several data sets (e.g., expression and methylation) to accurately
reconstruct latent factors. MOFA was performed independently for each analysis,
setting the number of latent factors to 5, because subsequent latent factors
explained <2% of the variance of both ‘omic data sets (function runMOFA from R
package MOFAtools v0.99.0). Because MOFA uses a heuristic algorithm, we
assessed the robustness of the results using 20 MOFA runs. We then computed the
correlations between each of the five first-latent factors across each run, resulting in
a correlation matrix of 100 by 100 entries (Supplementary Figs. 2 and 17). We
found that the correlations across runs were very high (> 0.95 for >80% of runs) in
all analyses, suggesting that the results are robust. In addition, we found that
correlations between latent factors within runs were small (typically below 0.2),
which suggests that latent factors capture quasi-independent sources of variation in
the data sets. For each analysis, we selected the MOFA run that resulted in the best
convergence, based on the evidence lower bound statistic (ELBO). Results are
presented in Figs. 1a, 4a, and Supplementary Fig. 13. Interestingly, we find that
MOFA latent factors 1 to 3 for analysis (i) (LNET, LCNEC, and SCLC) correspond
to MOFA LF2 to 4 for analysis (ii) (LNET and LCNEC), and to MOFA LF3 to 5 for
analysis (iv) (LNET alone); this suggests that each histopathological type introduces
an independent source of variation, resulting in a new LF. The code used for the
unsupervised continuous molecular analyses (integration_MOFA.R) is available on
https://github.com/IARCbioinfo/integration_analysis_scripts.

To perform comparisons with uni-omic unsupervised analyses, we compared the
results of MOFA with that of the unsupervised analysis of expression and
methylation data (Supplementary Fig. 3). To do so, we used the 51 LNEN samples
for which we had both expression and methylation data, and extracted their
coordinates in MOFA, expression PCA (see section unsupervised analysis of
expression data), and methylation PCA (see section unsupervised analysis of
methylation data). When using LNET and LCNEC samples (Supplementary
Fig. 3A), we found that MOFA LF1 is strongly correlated with expression PC1 and
methylation PC1 (|r| > 0.98; Supplementary Fig. 3D, E), and that expression PC1 and
methylation PC1 are strongly correlated between them (r= 0.97; Supplementary
Fig. 3C); LF2 was strongly correlated with expression PC3 (r= –0.86; Supplementary
Fig. 3P), and methylation PC2 (r= –0.98; Supplementary Fig. 3K), suggesting that
LF2 is more driven by methylation differences, but that it is nonetheless consistent
with a large proportion of expression variation. On the contrary, LF3 was more
strongly correlated with expression PC2 (r= 0.87; Supplementary Fig. 3J), suggesting
that PC3 is more driven by expression differences. All these observations are
consistent with the fact that the percentage of variance explained by LF2 and LF3 in
terms of expression and in terms of methylation are different: LF2 explains more
expression in methylation, while LF3 explains more variation in expression (Fig. 1a);
it is also coherent with the fact that clusters A1 and A2 are the most separated
clusters on expression PC2 (Supplementary Fig. 6B), while clusters A1 and B are the
most separated on methylation PC2 (Supplementary Fig. 7A). When using LNET
samples only (Supplementary Fig. 3B), we found that MOFA LF1 is strongly
correlated with expression PC2 and methylation PC1 (|r| > 0.86; Supplementary
Fig. 3M, H), and that expression PC2 and methylation PC1 are strongly correlated
between them (r= 0.72; Supplementary Fig. 3F); LF2 was strongly correlated with
expression PC1 (r= –0.88; Supplementary Fig. 3G), and methylation PC2 (r= 0.90;
Supplementary Fig. 3N), suggesting that LF2 is more driven by methylation
differences, but that it is nonetheless consistent with a large proportion of
expression variation. Again, all these observations are consistent with the fact that
the percentage of variance explained by LF1 and LF2 in terms of expression and
in terms of methylation are different (Fig. 4a); it is also coherent with the fact
that clusters A1 and A2 are the most separated clusters on expression PC1
(Supplementary Fig. 6D), while clusters A1 and B are the most separated on
methylation PC2 (Supplementary Fig. 7B).

To perform associations of latent factors with other variables, we used the
results from MOFA to detect outliers and batch effects in the data set. We did not
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detect any outliers in any of the analyses from Supplementary Fig. 13. We further
studied the associations between the first 5 LFs, batch (sample provider), and five
clinical variables of interest (histopathological type, age, sex, smoking status, and
stage) using regression analysis. For each latent factor, we fitted a linear model with
the six covariables of interest (provider plus the five clinical variables). Because of
the reported association between sex, age, and smoking status, we also included in
the model the interaction between sex and smoking status and between age and
smoking status; we adjusted the resulting p-values for multiple testing. Significant
associations (q-value < 0.05) are highlighted in Figs. 1a and 4a.

We also tested the association between MOFA clusters and mutations using
regression analysis. We tested genes recurrently mutated in carcinoids, using a
threshold of three samples (following Argelaguet et al.)15; indeed, non-recurrent
genes are not informative about molecular groups. Only two genes were retained:
MEN1 and EIF1AX. We also included recurrently mutated genes reported in
LCNEC12. Results are highlighted in Fig. 4a. Similarly, we tested the association
between pathways highlighted in Supplementary Fig. 16 (Lysine
demethyltransferases, polycomb complex, SWI/SNF complex) and MOFA LF using
regression analysis, but did not find any significant association at a false discovery
rate threshold of 0.05.

Unsupervised discrete multi-omic analyses. We identified molecular clusters—
groups of samples with similar molecular profiles—from MOFA results. Following
Mo et al.66, given a specified number of clusters K, we used the K – 1 latent factors
that explained most of the variation to perform clustering; this choice of number of
latent factors in Mo et al.66 is said to be primarily motivated by “a general principle
for separating g clusters among the n datapoints, a rank-k approximation where
k ≤ g− 1 is sufficient.” In addition, because the MOFA latent factors explaining the
most variance in gene expression and methylation are expected to capture more
biological signal compared to the ones explaining the least variance—expected to
represent more of the noise in the data set—we expect that using the first K – 1
latent factors would provide more biologically meaningful clusters than using all
latent factors. In addition, following the procedure from Wilkerson and Hayes67,
we performed consensus clustering to detect robust molecular clusters. This pro-
cedure involved multiple replicate clusterings (K-means algorithm; R function
kmeans), each on latent factors from an independent MOFA run done on a sub-
sample (80%) of the data. Pairwise consensus values were defined as the proportion
of runs in which two samples are clustered together and used as a similarity
measure, and used to perform a final hierarchical clustering (median linkage
method). Consensus clustering results for K from 2 to 5, for LNET plus LCNEC
samples, and LNET samples alone, are presented in Supplementary Figs. 5 and 18,
respectively. In the case of LNET alone, because the optimal Dunn index, which
evaluates the quality of clustering as a ratio of within-cluster to between-cluster
distances, corresponded to K= 3 clusters (Supplementary Fig. 18C), we chose the
solution with three clusters. Nevertheless, note that the cluster memberships for K
= 4 and K= 5 are almost perfectly nested into that for K= 3 (e.g., samples from
the blue cluster for K= 3, Supplementary Fig. 18B are split between a blue and a
purple cluster for K= 4), so the solutions with three and four clusters are coherent.
Cluster memberships are highlighted in Fig. 4a. Similarly, in the case of LNET plus
LCNEC samples (LNEN), because the optimal Dunn index is reached when K= 3,
we chose that solution, but note that the cluster memberships for K > 3 are also
nested into that for K= 3, so all results are coherent across values of K.

In order to test whether using additional latent factors could increase the power
to detect molecular clusters, we performed a similar analysis but using all five latent
factors identified by MOFA. In order to provide more importance to the factors
most likely to capture the biological variation in the data, the multiple replicate
clusterings were performed using a weighted k-means algorithm, where variables
(here MOFA latent factors) are given weights corresponding to their proportion of
variance explained. More specifically, instead of minimising the within-cluster sum
of squares, the weighted within-cluster sum of squares is minimised. Results for
K= 3 clusters of LNET and LNEN samples are presented in Supplementary Fig. 8.
We can see that the alternative approach (weighted K-means on five latent factors)
leads to the exact same cluster membership as the original approach (K-means on
K – 1 latent factors), both for LNEN and LNET clusters. Indeed, among the latent
factors, only the first 3 were associated with either the LNEN clusters (ANOVA
q= 4.09 × 10−84, 8.63 × 10−80, 0.66, 0.094, 0.24, respectively, for latent factors 1
through 5) or the LNET clusters (ANOVA q= 5.06 × 10−4, 5.99 × 10−47, 5.12 ×
10−46, 0.15, 0.052, respectively), which indicates that the first three latent factors
captured the differences between clusters. The code used for the clustering analyses
(integration_unsupervised.R) is available at https://github.com/IARCbioinfo/
integration_analysis_scripts.

GSEA on multi-omic latent factors. We performed gene set enrichment analysis
(GSEA) on the latent factors identified by MOFA using the built-in function
FeatureSetEnrichmentAnalysis15. This tests for each latent factor whether the
distribution of the loadings of features (genes or CpGs) from a focal set are sig-
nificantly different from the global distribution of loadings from features outside
the set. We performed the analysis using two reference databases of gene sets: GO
and KEGG. To retrieve the appropriate databases, for all genes from the muti-
omics integration analysis, we downloaded GO terms using R package biomaRt68,

and we retrieved KEGG pathways using R package KEGGgraph (v. 1.38.0)69.
Results are presented in Supplementary Data 6.

Expression and methylation correlation analysis. We performed correlation
tests in two analyses: (i) between LNET clusters (clusters A1, A2, and B), and (ii)
between LNEN clusters (clusters A, B, and LCNEC). We selected for each gene, the
set of CpGs in the region −2000 to +2000 from the transcription start site (TSS)
using function getnearestTSS from R package FDb.InfiniumMethylation.hg19
version 2.2.0 based on the IlluminaHumanMethylationEPICanno.ilm10b2.hg19
annotation (get Annotation function from R package minfi version 1.24.0)63.

We performed correlation test analyses (function cor.test from R package stats
version 3.5.1) using the core genes lists (Supplementary Data 10 and 12) to find
associations between expression and methylation data for each CpG, using
Pearson's correlation coefficient. The p-values were adjusted for multiple testing. In
addition, we explored the correlation between expression and methylation data by
fitting a linear model independently for each correlated CpG (function lm from R
package stats version 3.5.1). Finally, we calculated the interquartile distance of
β-values for each CpG. CpGs with a q-value < 0.05, r2 > 0.5 and an interquartile
distance greater than 0.25 were retained and, among these CpGs, only the one with
the smallest q-value has been represented in Supplementary Fig. 22. Results of
analyses (i) and (ii) are reported in Supplementary Data 10 and 12.

Survival analysis using penalised generalised linear model. We computed
a generalised linear model with elastic net regularisation (R package glmnet
v2.0-16)70 to select the genes associated with the survival of LNET samples. We
fixed the elastic net mixing parameter α to 0.5 and used leave-one-out cross-
validation to determine the regularisation parameter λ (cv.glmnet function from
glmnet package). To be more stringent, the optimal regularisation parameter
chosen was the one associated with the most regularised model with cross-
validation error within one standard deviation of the minimum. In order to
identify the genes associated with the poor survival of the cluster Carcinoid B, we
included in the model only the expression of the core genes of this cluster defined
in the MOFA considering only the LNET samples (see section Multi-omics inte-
gration). We used the normalised read counts, and centred and scaled them using
R package caret (v6.0-80). The genes with non-zero estimated coefficients are listed
in Supplementary Data 13. For each non-coding gene, we determined the optimal
cutpoint of expression (normalised read counts) that best separates the survival
outcome into two groups using the surv_cutpoint function based on the maximally
selected rank statistics and available in the R package survminer (v0.4.3). The
minimal proportion of samples per group was set to 10%.

Supervised multi-omic analyses. We performed supervised learning in order to
classify typical and atypical carcinoids, and LCNEC based on the different 'omics
data available: expression and methylation data.

Classification algorithm: Each classification was performed using a random
forest algorithm (R package randomForest v4.6-14). Considering the restricted
number of samples, we performed a leave-one-out cross-validation. For each run,
to increase the training set size, minority classes were oversampled so that all
classes reach the same number of training samples. Note that for the sample with
technical replication of RNA-seq data (S00716_A and S00716_B), in order to avoid
model overfitting, the two replicates were never simultaneously included in the
training and test sets. Also in order to avoid overfitting, we performed
normalisation and independent feature filtering within each fold, so that test
samples were excluded from this step. More specifically, for the expression data, the
features of the training set were first normalised using the variance stabilisation
transformation (vst function from R package DESeq2 v1.22.2), then mean-centred
and scaled to unit variance. Then, the variance stabilising transformation learned
from the training set was applied to the test set using the dispersionFunction
function from the DESeq2 package, and centreing and scaling were performed
using the values learned from the training set. For the methylation data, the M
values were computed using the R package minfi (v1.28.3); the features of the
training set were mean-centred and scaled to unit variance, then the test sample
features were centred and scaled using the values learned from the training set. For
each fold of the leave-one out, the training set was used for the feature selection.
Based on the training set, we selected the most variable features, representing 50%
and 5% of the total variation in expression and methylation data, respectively. The
code used for the machine learning analyses (ML_functions.r) is available in the
Supplementary Software 1 and the associated results are reported in Supplementary
Data 1.

Defining an Unclassified category: The random forest algorithm provides for
each predicted sample the class probabilities. We considered a sample as
unclassifiable (Unclassified category) if the ratio of the two highest probabilities
was below 1.5. In fact, this threshold allowed us to identify a category of samples
with intermediate molecular profiles, for which the algorithm assigns similar
probabilities to the two most probable classes. Because of the small sample size, this
parameter was chosen a priori and not tuned in order to avoid overfitting. In
Supplementary Fig. 10, we compared the classification results when considering
three different thresholds: 1 (which corresponds to no ratio and results in few
unclassified samples, i.e., only discordant expression and methylation-based
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predictions, see Integration of expression and methylation data below), 1.5 (which
corresponds to the ratio reported in the main text), and 3 (which corresponds to a
very stringent ratio resulting in more unclassified samples). Except for the size of
the unclassified classes that depends on the ratio used, the confusion matrices for
the three ratios were qualitatively similar, with most LCNEC samples correctly
classified, a majority of typical correctly classified, and almost as many atypical
classified as typical and classified as atypical. In addition, the survival analyses of
the three models also led to similar conclusions, with atypical carcinoids classified
as atypical by the machine learning having a survival that is not statistically
significantly different from that of LCNEC samples but that is lower from both that
of typical carcinoids predicted as typical carcinoids, and that of atypical predicted
as typical. However, in the case of the largest ratio, the small number of atypical
samples predicted in those categories did not enable the identification of two
groups of atypical carcinoids with significant different overall survival (p= 0.086).

Number of samples and features: To classify LCNEC against atypical and typical
carcinoids, 157 and 76 samples were considered using the expression and
methylation data, respectively. The number of features selected in each fold of the
leave-one-out are of the order of 6000 and 8000 for expression and methylation
features, respectively. For the analysis based on MKI67 only (Supplementary
Fig. 31C, left panel), the only feature considered was the expression of MKI67.

Integration of expression and methylation data: As the random forest algorithm
does not handle missing data directly, and because only 51 out of 182 LNEN
samples had both expression and methylation data available (Supplementary
Fig. 1), we performed random forest classification on expression and methylation
separately, and merged the classification results by combining the two sets of ML
predictions. Thus, the samples with both expression and methylation data were
associated with two predictions. When the two predictions were discordant we
applied the following rules: (i) if one prediction was Unclassified (see Defining an
Unclassified category above) and the other a histopathological category, we chose
the histopathological category (ii) if the two predictions were different
histopathological categories, we chose the Unclassified category.

Note that fitting independent random forest models on each data set separately
corresponds to maximising the number of samples (n) per model at the expense of
the number of features (p), because each model relies only on the number of
features in a single data set. An alternative approach is to maximise the number of
features (p) by combining both data sets, at the expense of the number of samples
n, because of the limited number of samples with both data types available. Indeed,
for fixed n increasing p requires less parameters and leads to a higher statistical
power. Nevertheless, in our case, because of missing data, increasing p by using
both omics layers would drastically reduce n, restricting our sample set (n= 157
and n= 76 for expression and methylation, respectively) to the set of samples with
both layers (n= 51, including only a single supra-carcinoid). Given the existence of
very rare entities such as the supra-carcinoids, accurately capturing the diversity of
molecular profiles in the training set was our priority, and thus we chose to
maximise n. In addition, by maximising n, we hypothetically ensured that we
would also maximise the power of the subsequent analyses based on the ML results.
To confirm this hypothesis, we performed the ML analyses on the restricted set of
samples, including both expression and methylation data in the same model and
compared the predictions of this model to the combined predictions based on
expression and methylation data separately. We found that the predictions
(confusion matrix in Supplementary Fig. 9) were similar, with 43/51 samples with
both data types predicted similarly in the two models. In addition, our main finding
—the existence of two groups of atypical samples, which tended to have a good and
bad prognosis (red and pink curves Fig. 1b)—still held, but that limited number of
samples impeded the statistical analyses. In fact, none of the Cox regression tests
were significant even for the groups displaying the largest differences (e.g., ML-
predicted LCNEC vs. ML-predicted typical samples), and even when comparing
the histological types reported by the pathologists (bottom panel Supplementary
Fig. 9). This supports our hypothesis that maximising p at the expense of n leads to
a decrease in power in subsequent analyses due to a smaller sample size, and
comforts our initial choice.

As matrix factorisation methods such as MOFA and PCA remove correlations
between features by finding latent factors that summarise them, they could
presumably improve the performance of ML. Nevertheless, by providing low-
dimensional approximations of the data, such techniques induce a loss of
information, which could reduce the performance of the ML. To assess the balance
between these beneficial and detrimental effects, we also performed ML using the
MOFA factors or the principal components of the PCA analysis, using factors or
components that explained at least 2% of the variance (five MOFA latent factors,
six expression PCs, and five methylation PCs, respectively). These analyses are
presented in Supplementary Fig. 12 and led to similar classification to the results
presented in the main text Fig. 1. In addition, in the case of MOFA factors, in
accordance with Fig. 1, atypical carcinoids were stratified into a group with an
overall survival similar to that of the LCNEC (in red) and a group with a higher
overall survival (in pink), similar to that of the typical carcinoids. When using the
principal components, despite a similar trend, the difference in survival between
the high- and low-survival groups was not significant. These results show that
dimensionality reduction does not lead to an increased classification ability, nor
does it provide a better explanation of clinical behaviour. We thus chose to
represent only the results of the ML analyses based on expression and methylation
data in the main text and figures.

Survival analysis based on expression and methylation data. We divided
the samples into different groups based on the ML predictions. We represented
the Kaplan–Meier curves of the predictions groups by selecting the groups
with >10 samples and gathering the unclassified samples in the same group.
Using Cox’s proportional hazard model and using the logrank test statistic
(R package survival v2.42-3) we compared the overall survival of LCNEC, aty-
pical and typical samples based on the histopathological classification and
based on the ML predictions (Supplementary Fig. 11A). Forest plots were drawn
using R package survminer (v0.4.3). The same survival analysis was performed
using the ML predictions based on MKI67 expression only (Supplementary
Fig. 11C).

Comparison between the supervised analyses of typical and atypical carci-

noids. We contrasted the results of the different supervised analyses between
typical and atypical carcinoids based on clinical data, specific markers (Ki67),
machine learning, differential expression, and differential methylation (Supple-
mentary Fig. 31). Survival analyses showed a significant difference between his-
topathological types (Supplementary Fig. 31A). Nevertheless, the machine learning
classifier based on the genome-wide expression or methylation data could not
properly distinguish atypical and typical carcinoids (Supplementary Fig. 31B): there
were 64–83% correctly classified typical carcinoids and only 30–41% correctly
classified atypical carcinoids. The differential expression analysis showed that
atypical carcinoids also presented very few core differentially expressed genes
(Supplementary Fig. 31C, middle panel and Supplementary Data 15) and differ-
entially methylated positions (Supplementary Fig. 31C, right panel and Supple-
mentary Data 17). Overall, these data suggest that the histopathological
classification, although clinically meaningful, does not completely match the
molecular classification.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The exome sequencing data, RNA-seq data, and methylation data have been deposited
in the European Genome-phenome Archive (EGA) database, which is hosted at the EBI
and the CRG, under accession number EGAS00001003699. Other data sets referenced
during the study are available from the EGA website under accession numbers
EGAS00001000650 (pulmonary carcinoids)11, EGAS00001000708 (LCNEC)12, and
EGAS00001000925 (SCLC)13,14. All the other data supporting the findings of this study
are available within the article and its supplementary information files and from the
corresponding author upon reasonable request. A reporting summary for this article is
available as a Supplementary Information file.

Code availability
The code and software sources from previously published algorithms used to perform the
analyses are detailed in the supplementary tables and online methods. Custom scripts are
provided in the Supplementary Software 1. All sources for the software used in the
manuscript are summarised in Supplementary Data 18.
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Chapter 3

Generation of a pan-LNEN tumor map

using data integration

3.1 Context

The rise of large genomics studies have not only continually led to a multitude

of molecular discoveries but have also increased the reuse potential of molecular

datasets. In this context, computational tools have been used to perform data in-

tegration. Such studies attempt to increase sample sizes as well as to contrast the

molecular profiles of tumors to provide new insights with potential applications in

the clinic. Firstly, the growth of initiatives like the TCGA and ICGC initiatives have

enabled researchers to access genomics data from different tumor types and to move

towards cross-cancer studies like the Pan-Cancer Atlas project [51]. These stud-

ies have the advantage to increase statistical power, for example, to identify cancer

genes mutated at intermediate frequencies [133], and allow to explore similarities

and contrasts between tumor types [75]. Tools recently used in pan-cancer studies

are molecular maps. They result from the integration of large datasets containing

thousands of molecular variables, called features (e.g. expression or methylation

levels, mutations or copy number variations) that have been embedded in a lower

dimensional representation of the molecular data. The integration of such datasets,

when coming from diverse and heterogeneous studies, require harmonized data

processing to enable the comparison of samples. As such molecular maps can be

considered as visualization and interpretation tools that are based on a complex but

homogenized set of features. Using such tools and data, diverse oncogenic processes

in tumors from distinct tissues have been observed [122, 134]. Hoadley et al. also

identified samples whose initial classification, mainly based on the tumor tissue of

origin, was in contradiction with their molecular taxonomy, hence revealing poten-

tial misclassifications [122]. It has been estimated that one out of ten samples could

be reclassified based on their molecular profile [122]. In addition to highlighting the
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molecular diversity of cancers, molecular maps have also been used to reveal sim-

ilarities between tumors with, for example, the identification of groups constituted

of a mixture of tissue subtypes by Bolouri et al. [135], a mixture of cancers from sim-

ilar cell of origin by Hoadley et al. [134] and the identification of a pan-cancer group

by Newton et al. [136].

The integration of omics datasets to produce such maps brings out however mul-

tiple challenges. Firstly, as mentioned in the Findable, Accessible, Interoperable,

Reusable (FAIR) principles [137], the data should be accessible and reusable. Sec-

ondly, the data need to be comparable. When the data to integrate come from mul-

tiple studies, samples are often sequenced in distinct centers and processed using

different protocols. In the case of large consortia like the TCGA, large efforts of ho-

mogenization have been made [62]. For smaller studies, available on different data

repositories, data harmonization is still required before integration to limit batch

effects. A common preprocessing workflow, using the same methods, the same soft-

ware versions, the same machines have to be developed.

As mentioned in the previous chapter (Chapter 2), in the case of rare cancers like

the lung neuroendocrine tumors, the sample size of molecular studies is limited.

Hence, a higher number of studies or the design of larger studies are required. In-

tegrating the datasets already published is a first step in that direction. In the work

presented in this chapter, we generated a molecular map of the LNEN tumors by

integrating datasets from six studies and provided multiple resources to reproduce

and expand the molecular map in the future.

3.2 Research contribution

3.2.1 Introduction

The previous chapter (Chapter 2) presented the lung neuroendocrine tumor types

as distinct diseases in terms of etiology, clinical characteristics but also in terms of

molecular profiles. The use of multi-omics data identified new molecular groups of

pulmonary carcinoids that were not perfectly matching the histopathological classi-

fication. Those molecular groups were clinically relevant as they had different prog-

nosis. The pulmonary carcinoids were stratified in three clusters A1, A2 and B and

the supra-carcinoids, a subgroup of carcinoids clustering with the LCNEC samples,

were unveiled. However, the sample size of these groups is limited, especially the

supra-carcinoids that formed a group of six samples. The molecular diversity of the

LNEN samples hence still needs to be further explored. Increasing the sample size
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of future studies would, on one hand, enable the validation of the newly identified

entities and on the other hand, the identification of new subgroups. Considering the

rarity of LNEN cancers, those objectives could be reached by integrating available

datasets from as wide a range of sources as possible, including for example public

data archives.

Also, the identification of the supra-carcinoids, as well as carcinoids samples

with intermediate profiles (Chapter 2), suggested that the lung neuroendocrine sub-

types could share more links than expected, which is a hypothesis supported by

previous molecular studies [95, 138]. Hence, integrating datasets from the different

LNEN subtypes could provide further evidence of those links and visualizing each

sample in the context of other tumor types could lead to new hypotheses.

In order to visualize omics datasets, which interpretation is complex due to the

large number of features (thousands of features, e.g. genes expression or methyla-

tion levels), adapted computational methods, like dimensionality reduction meth-

ods are needed (See section 1.4). A common method used to visualize data in lower

dimensions is PCA. However, PCA decomposes the data in multiple principal com-

ponents, each explaining a certain part of the variance in the data. To represent the

initial data in two dimensions for human visualization and interpretation, only two

principal components need to be chosen. The signals captured by the other axes are

thus lost. Also, the PCA method does not capture non-linear structure in the data.

In this work, we chose to use another dimensionality reduction method that over-

comes these issues, the Uniform Manifold Approximation and Projection (UMAP)

presented in Section 1.4, to generate a two-dimensional molecular map of the LNEN

tumors.

In this work, we took advantage of the study presented in the previous chapter

by reusing the transcriptomic data generated and integrating them with five other

datasets to build a molecular map of the LNEN samples. The preprocessing and

quality control steps performed on the first dataset were described and reused for

data homogenization, and resources to promote and facilitate further use of the data

were provided.

3.2.2 Material and methods

Supplementary description of the LNEN data presented in Chapter 2

The study presented in the previous chapter 2 generated omics data of lung NEN

samples [139]. In total, whole exome and whole genome data were generated for 16

and 3 samples respectively, transcriptomic data for 20 samples and EPIC 850k arrays
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data for 76 samples. The first part of the paper presented in this chapter provided

a complementary description of these data. The aim was to facilitate the reuse of

the data and promote its integration with other datasets. Data from different stud-

ies are generated under different conditions (different machines, protocols). Before

any integration analysis, it is thus necessary to preprocess each data set in the same

way and to assure that their quality is homogeneous to avoid batch effects in subse-

quent analyses. Hence, common quality controls (QC) and preprocessing protocols

are required. We described the preprocessing steps performed on the previously

mentioned data as well as their quality: i) sequence qualities for WGS, WES and

RNA sequencing, ii) quality of the DNA and RNA sequencing reads alignment, iii)

quality of the RNA sequencing reads assignments to genes, and iv) the quality of

the methylation arrays.

Integration of additional datasets

In a second part, the transcriptomic data from the previous dataset (See [139] and

Chapter 2), were integrated with other transcriptomic data generated by previous

studies characterizing the molecular patterns of different types of lung NEN tumors.

Pulmonary carcinoids (mostly typical carcinoids) have been described in 2014 by

Fernandez-Cuesta et al. [92] and in 2019 by Laddha et al. [140]. In 2018, the ex-

pression patterns of LCNEC samples were described by Georges et al. [93]. The

genome and the transcriptome of SCLC samples have been explored by Rudin et

al. [128] and George et al. [87]. For each dataset, transcriptomic data were avail-

able on the EGA [128, 92, 87, 93, 139] or GEO [140] data repositories. In total, six

transcriptomic datasets were gathered and for the purpose of homogenization, pro-

cessed in the same way following the steps described in the first part of the paper.

The pipelines used were coded using the workflow management system Nextflow

[141] and can be run using containerization tools like Docker [142] and Singularity

[143]. Nextflow allowed us to organize the several processing steps in a completely

automatized and reproducible pipeline. Containers are virtual machines that allow

to embed the required computing environment with all the needed softwares. It

thus firstly assures that the analyses are reproducible since the same softwares and

versions will be used to reprocess the data. Secondly, it provides portability, i.e. the

pipeline will run similarly on heterogeneous computing environments. The work-

flows, whose development was made in house and led by Dr. Alcala, are hosted

on GitHub [144]. The combination of all these tools enables future users to run the

90



3.2. Research contribution

pipelines using simplified command lines. Figure 3.1 provides the nextflow com-

mands needed to process RNA-Seq data from reads mapping to gene expression

quantification, following the steps used in this study.

1

2

3

4

RNA sequencing mapping and quality controls

BAM realignment

Base quality score recalibration

Gene expression quantification

FIGURE 3.1: Nextflow command lines to perform RNA-Seq pre-

processing. Where: folder_with_fastq_files is a folder with the
fastq files to process; ref_genome.fa.star.idx is a folder with the
genome reference files for the software STAR; ref_annot.gtf the an-
notation file; hg38_Gencode_v33.bed a bed file with a list of inter-
vals for further annotations by RSeQC; dbsnp_146.hg38.vcf.gz and
Mills_and_1000G_gold_standard.indels.hg38.vcf.gz are Variant Call For-
mat (VCF) files coming from the Genome Analysis Toolkit (GATK) bun-
dle hg38; input-transcript.txt is a file containing the samples ID, paths to

Binary Alignment Map (BAM) files, and read lengths per sample.

After homogenization of the six transcriptomic datasets, we built a pan-LNEN

molecular map using the Uniform Manifold Approximation and Projection (UMAP)

method [111]. UMAP is a dimensionality reduction method that is adapted, unlike

PCA, to capture non-linear dependencies in the data. The algorithm is based on

topology theory and follows two main steps. Firstly, it builds a graphical repre-

sentation of the high dimensional data and secondly finds a simpler representation

of the same graph in a lower space (See section 1.4 for more details). Reducing a
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dataset composed of more than 50,000 dimensions to two dimensions systemati-

cally distorts the initial data structure and hinders the preservation of the original

distances between samples. UMAP optimizes the dimensionality reduction to retain

as much as possible the main structures, local or global structures, depending on the

parameters chosen. According to the UMAP documentation [145], the most impor-

tant parameter that will determine if global or local structure will be preserved is the

n_neighbors parameter, which is the number of nearest neighbors considered in the

model to build the high-dimensional graph (See section 1.4). The higher the parame-

ter value, the higher is the number of connected points in the initial graph, hence the

better is the preservation of the global structure (See Figure 3.2). Considering this

parameter’s influence, we compared the UMAP representations obtained using re-

spectively the n_neighbors parameter default value of 15 and fixing the n_neighbors

parameter to 238, which is the total number of samples. This comparison showed

that the latter parameter choice led to better preservation of the global structure of

the data and was thus chosen for the final molecular map.

FIGURE 3.2: Illustration of the influence of the n_neighbors parameter

on UMAP representations. Representations of a mammoth skeleton
using UMAP (Data retrieved from the following GitHub repository:
MNoichl/UMAP-examples-mammoth-). Left panel: 3D representation
of the original dataset. Middle and right panels: UMAP two dimen-
sional representations fixing the parameter n_neighbors to 15 (UMAP

default value) and 100 respectively.

After producing the pan-LNEN molecular map, its quality was assessed using

three analyses. Firstly, we verified that the six molecular clusters previously estab-

lished in the different studies were re-identified and tested if biological hypothe-

ses generated by the same studies could be reformulated using the molecular map.

More specifically, in the different studies, samples have been reported to have dis-

cordant molecular and histopathological profiles. For those samples, we computed

and compared, on the pan-LNEN molecular map, their Euclidean distances to the

centroid of their molecular cluster and the centroid of their histopathological group.
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We then evaluated whether the samples neighbourhoods in the original high

dimensional space were preserved in low dimensional representation generated by

UMAP. For that purpose, we used the sequence difference (SD) metric, defined by

Martins et al. [146] as follows:

SDk(i) =
1
2 ∑

j∈V1
k (i)

[k − ρ1
i (j)].|ρ1

i (j)− ρ2
i (j)|+

1
2 ∑

j∈V2
k (i)

[k − ρ2
i (j)].|ρ1

i (j)− ρ2
i (j)|

(3.1)

This metric compares, for each sample i, the k nearest (using Euclidean distances)

samples in the neighborhoods, V1
k (i) and V2

k (i), of two spaces D1 and D2 respec-

tively. The metric evaluates the rank of each neighbor j in the two spaces (ρ1
i (j) and

ρ2
i (j)) and penalizes discordant rankings, a higher penalty being added for close

neighbors. Hence, values of SD close to zero indicates the preservation of the sam-

ples neighborhood. To assess the quality of the UMAP projection, we compared

UMAP to PCA dimensionality reduction results that we considered as references.

The SD metric was thus used to compare the samples neighborhoods in the orig-

inal space and UMAP representations as well as in PCA representations based on

the two and five first principal components (PC) respectively (PCA-2D and PCA-

5D). We expect PCA-2D to perform poorly in contrast to PCA-5D since the best

projection to capture the six molecular groups, previously identified in the different

studies, would have five dimensions. For the UMAP method, two representations

were considered, one fixing the n_neighbors parameters to the default value 15 and

the other to 238. For each comparison, we computed the mean SD values across

all samples while varying the parameter k to assess samples preservation at various

scales, from local to global scale. Note that this analysis guided the choice of the

n_neighbors parameter described previously.

Finally, we evaluated whether the molecular map was able to retain the gene ex-

pression structure in the original space. For that sake, the Moran index (MI), which

is a spatial-autocorrelation measure, was used. Genes with expression varying ran-

domly across the map will have an MI value of 0, genes with dissimilar expression

levels in nearby regions a value of -1 (negative auto-correlation) and genes with

similar expression levels in close samples a value of 1 (positive autocorrelation).

The Moran index value of each gene in the original space, the PCA-5D and the

UMAP projections were computed, and the top-ranking genes in the three spaces

compared.
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3.2.3 Results

Supplementary description of the LNEN data presented in Chapter 2

In the first part of the paper, the pipelines used to preprocess the data, as well as

the associated quality controls, were described. More specifically, for the RNA-Seq

data from Alcala et al. included in the molecular map, the reads bases and reads

assignments quality standards have been satisfied. All samples had: i) high means

per base sequence qualities (above 28), ii) more than 70% of reads were uniquely

mapped, iii) more than 75% of reads mapped in coding regions, and iv) more than

70% of reads were assigned to genes from the reference annotations.

A molecular map based on transcriptomic datasets integration

In this study, six RNA-Seq datasets were available and were processed homoge-

neously for data integration. Based on the harmonized dataset, a two-dimensional

UMAP representation of the pan-LNEN samples was obtained and is represented

in Figure 3.3. The map revealed distinct clusters of samples matching the molec-

ular clusters previously identified in the respective studies. Firstly, out of the six

studies, two from Alcala et al. [139] (See Chapter 2) and from Laddha et al. [140],

identified three clusters of carcinoids samples. Those three carcinoids clusters were

also distinguishable on the molecular map. Moreover, the clusters of the two stud-

ies matched perfectly: the clusters A1, A2 and B from the first study correspond

respectively to the clusters LC1, LC3 and LC2 from the latter (See Figure 3.3). Also,

the LCNEC samples were split into two groups, the previously identified LCNEC

type-I and LCNEC type-II samples [93]. Finally, the supra-carcinoids, which have

the morphology of carcinoids but the molecular features of LCNEC [139] as well as

one sample from the LC2 group, clustered with the LCNEC samples.

In addition, previous biological hypotheses were consistent on the pan-LNEN

map. For example, in 2018, George et al. [93] defined the SCLC-LCNEC like sam-

ples as histological SCLC samples having an LCNEC molecular profile and the LC-

NEC-SCLC like samples as histological LCNEC samples having an SCLC molecular

profile. On the pan-LNEN map the SCLC-LCNEC like samples were closer to the

LCNECs than the SCLCs and the LCNEC-SCLC like samples clustered with the

SCLCs rather than with the LCNEC samples.

To further assess the quality of the molecular map, the preservation of samples

neighborhood and spatial auto-correlations by UMAP were evaluated. To deter-

mine if the samples neighborhoods were correctly preserved, we computed for each
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FIGURE 3.3: The pan-LNEN molecular map. The x and y-axis repre-
sent respectively the first and second dimensions resulting from UMAP
dimensionality reduction. Each dot corresponds to one sample; the col-
ors describe the molecular clusters identified by the previous studies.

sample the SD metric (Equation 3.1) that allows to measure the dissimilarity be-

tween the sample’s neighborhood in the original space and the sample’s neighbor-

hood in lower dimensional representations. UMAP provided a trade-off between

the ability to visualize the samples in two dimensions and the conservation of the

structure in the data since the method improved the samples neighborhood preser-

vation over the PCA-2D representation. When comparing the UMAP representa-

tions based on different n_neighbors parameters, 15 (UMAP-15) and 238 (UMAP-

238), we observed that UMAP-15 had a better preservation when considering local

neighborhoods only, while UMAP-238 outperformed for global preservation. Fi-

nally, based on the MI measure, the preservation of spatial auto-correlation was

tested. The genes with the highest MI values in different representations of the

data - the original space, the PCA-5D representation and the UMAP representation

- were concordant. Indeed, 88.8% overlap between the three sets of top 1000 genes

was observed.

Along with the paper, multiple resources have been produced to facilitate the

reuse of the data and the integration of future datasets. The reproducible workflows

used for the data preprocessing are available on GitHub [144]. The paper is ac-

companied by a computational notebook on Nextjournal [147] (See notebook here),

which provides the nextflow command lines and the reference files used to perform
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the RNA-Seq data integration as well as the code needed to reproduce the results

presented in the paper. This integrative notebook could be reused to test different

parameters and evaluate their influences on the results. Finally, the molecular map

was uploaded on TumorMap [136] (See pan-LNEN tumor map here), which is a

genomics portal based on Google Maps technology to enable genomics data visual-

ization and exploration, and thus foster the generation of new hypotheses. External

users can indeed interactively manipulate the molecular map, e.g. by selecting sub-

sets of samples, manipulating metadata in order to identify variables exhibiting in-

teresting distributions on the map or performing statistical tests. Figure 3.4 presents

an example of the pan-LNEN map representation on TumorMap, when choosing to

represent MKI67 expression levels distribution across the samples.

FIGURE 3.4: Example of the pan-LNEN representation on TumorMap.
Each dot corresponds to one sample; the color gradient represents the
expression levels of MKI67. Note that the samples with the highest
MKI67 expression levels (bottom right corner) are the SCLCs and LC-

NECs.

3.2.4 Conclusion and discussion

In this study, we described the quality of the genomics data published by Alcala et al.

in 2019 and the preprocessing steps to follow to enable their integration with other
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datasets. Using the described workflows, we integrated the transcriptomic data

from this previous study with five other datasets to build the first two-dimensional

pan-LNEN molecular tumor map. Its quality was assessed by evaluating the preser-

vation of samples neighborhood and spatial auto-correlations, and by validating

previously identified molecular clusters. Finally, we provided the homogenized

data underlying the map as well as distinct resources to promote further integra-

tion and exploration of these datasets.

The pan-LNEN molecular map presented in this chapter was based on the inte-

gration of six transcriptomic datasets that led to the identification of distinct LNEN

molecular groups in previous studies. Two of them identified three groups of carci-

noids [139, 140]. On the pan-LNEN molecular map, the carcinoids groups found in

the two independent studies were consistent, suggesting that residual inter-study

variations are not the major sources of variations captured by the map. Note that

running PCA on the harmonized data supported this observation (See Figure in An-

nex B). The two studies might thus have identified the same carcinoids entities. This

result reflects how data integration could be valuable for research purposes not only

to reveal new molecular groups and to generate new hypotheses but also to confirm

previous discoveries, especially clustering results whose biological relevance are not

always easy to validate [99].

Besides their research relevance, molecular maps could be helpful in a clinical

setting. Indeed, some samples can be difficult to classify in one cancer type category,

or the tissue of origin of a tumor can be unknown, which complicates the diagnosis

and subsequent treatment options for the patients. In those cases, we could imagine

using the molecular map as a reference, project unknown samples on the map and

determine with which molecular group, the samples best fit [136]. This option faces

some limitations though. Firstly, the projection of samples would require to have a

fixed map. However, in our case, the molecular diversity of the LNEN might not yet

be fully discovered and larger studies would probably lead to a different structure.

As such, the reference map must be sufficiently robust to allow subsequent projec-

tion of a given patient sample. Also, UMAP method is based on a stochastic opti-

mization step and is sensitive to parameter choices which can be an issue if a fixed

and stable map is required. Secondly, dimensionality reduction methods are sensi-

tive to batch effects that could remain even after a homogenized data preprocessing.

The samples preservation method is an example highlighting this problem. Often,

samples are stored using the Formalin-Fixed Paraffin-Embedded (FFPE) method.

The method is known to degrade DNA and RNA and resulting data are difficult

to compare with frozen tissue data. Since our map is based on the latter, further
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development would be needed to integrate them with FFPE samples. Also, in our

map, only RNA-Seq datasets were integrated. However, other omics data could be

used to generate the map. In the context of methylation datasets, which are known

to be prone to stronger batch effects, additional steps might be needed to correct

for those effects. Indeed, the correlation between batch effect variables (e.g center,

plate, array position) and the factors resulting from the dimensionality reduction

used to produce the map could be tested prior to downstream analyses. Also, non-

negative control probes can be used to generate surrogate variables, which should

capture most of the variability associated to the control probes and could be used as

covariates in downstream statistical analyses.

We showed that the UMAP representation managed to provide a two-dimensional

representation of the LNEN data while preserving its global structure. However,

this trade-off was highly influenced by the parameters chosen and the interpreta-

tion of the molecular map should be performed with caution. For example, even if

UMAP can be tuned to retain as much as possible the global structure, the method,

like the t-SNE method, uses local distances and distort the initial space to build the

low dimensional representation. Hence, distances between clusters and the clus-

ter’s spread could be misleading [148]. New methods, den-SNE and densMAP, that

overcome the latter issue have been recently developed [149] and might replace the

initial t-SNE and UMAP methods. Also, one limitation of our methods to validate

the quality of the molecular map is that the metrics applied used euclidean dis-

tances. Since the ability of the Euclidean distance to discriminate nearest from far-

ther neighbors is weak in high dimensional data [99], the metrics might need to be

adapted.

The integration of the six transcriptomic datasets to generate the pan-LNEN map

required their download from two data repositories and the reprocessing of each

dataset, which also requires good computational infrastructures and skills. The

work presented in this chapter resulted in the sharing of a processed and homoge-

nized LNEN dataset. While we provide reproducible pipelines that could be used

to replicate the data processing and analyses, this dataset could be directly inte-

grated with new datasets processed with the same pipelines, which saves both data

storage and computation time. The pipelines are also portable and can thus be run

on any computational environment. Yet, depending on the samples sizes, this step

still requires access to computational resources that are not available in all research

groups. One solution could be to use the cloud model [150]. With the increase of the

genomics studies these last years, the size of the public data archives have largely
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increased with a size doubling every 18 months [150]. Cloud computing could fa-

cilitate data reuse by avoiding duplication of datasets, easy pipeline reuse thanks to

containerization tools (docker, singularity) and foster collaborations while ensuring

respect of data privacy. Such alternatives have been already put in place for large

studies like the TCGA. The GDC [61] hosting the data is indeed closely linked to

cloud platforms like the CGC [151]. We can imagine that such environments will be

further developed and used in the field of genomics in the future.

3.2.5 Contribution

In this work, I contributed to the data analyses which consisted in producing the

pan-LNEN molecular map and evaluating the quality of this map. Another major

aim of this paper was to promote the reuse of the data by the research commu-

nity. I contributed to this goal by describing in the paper the processing steps and

quality controls performed as well as by providing different resources to enable re-

producibility and reuse. Among these resources, I contributed to the code and data

provided on the IARCbioinfo/DRMetrics GitHub repository and to the computa-

tional notebook in Nextjournal. Finally, I had a major role in the redaction of the

paper and its review.

3.3 Article 2: A molecular map of lung neuroendocrine

neoplasms

99



GigaScience, 2020, 1–10

doi: xx.xxxx/xxxx

Manuscript in Preparation

Data Note

DATA NOTE

A molecular map of lung neuroendocrine neoplasms.

Aurélie AG Gabriel1,†, Emilie Mathian1,†, Lise Mangiante1, Catherine
Voegele1, Vincent Cahais2, Akram Ghantous2, James D McKay1, Nicolas
Alcala1, Lynnette Fernandez-Cuesta1,‡ and Matthieu Foll1,*,‡

1Section of Genetics, International Agency for Research on Cancer (IARC-WHO), Lyon, France and 2Section of

Mechanisms of Carcinogenesis, International Agency for Research on Cancer (IARC-WHO), Lyon, France

*Correspondence address. Matthieu Foll, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France.

E-mail: follm@iarc.fr

ORCID IDs: Aurélie AG Gabriel [0000-0002-0606-3622]; Emilie Mathian; Lise Mangiante [0000-0001-8309-0950]; Catherine Voegele; Vincent

Cahais [0000-0001-5530-4368]; Akram Ghantous [0000-0002-2582-6402]; James D McKay [0000-0002-1787-3874]; Nicolas Alcala

[0000-0002-5961-5064]; Lynnette FernandezCuesta [0000-0002-0724-6703]; Matthieu Foll [0000-0001-9006-8436]
†Contributed equally.
‡Jointly supervised.

Abstract

Background Lung neuroendocrine neoplasms (NENs) are rare solid cancers, with most genomic studies including a limited
number of samples. Recently, generating the first multi-omic dataset for atypical pulmonary carcinoids and the first
methylation dataset for large-cell neuroendocrine carcinomas (LCNEC) led us to the discovery of clinically relevant
molecular groups as well as a new entity of pulmonary carcinoids (supra-carcinoids). Results In order to promote the
integration of lung NENs molecular data, we provide here detailed information on data generation and quality control for
whole genome/exome sequencing, RNA sequencing, and EPIC 850k methylation arrays for a total of 84 lung NENs patients.
We integrate the transcriptomic data with other previously published data and generate the first comprehensive molecular
map of lung NENs using the Uniform Manifold Approximation and Projection (UMAP) dimension reduction technique. We
show that this map captures the main biological findings of previous studies and can be used as reference to integrate
datasets for which RNA sequencing is available. The generated map can be interactively explored and interrogated on the
UCSC TumorMap portal (https://tumormap.ucsc.edu/?p=RCG_lungNENomics/LNEN). The data, source code, and compute
environments used to generate and evaluate the map as well as the raw data are available respectively in a Nextjournal
interactive notebook
(https://nextjournal.com/rarecancersgenomics/a-molecular-map-of-lung-neuroendocrine-neoplasms/), and at the
EMBL-EBI European Genome-phenome Archive and Gene Expression Omnibus data repositories. Conclusions We provide
data and all resources needed to integrate it with future lung NENs transcriptomic studies, allowing to draw meaningful
conclusions that will eventually lead to a better understanding of this rare understudied disease.

Key words: Carcinoids, lung cancer, neuroendocrine neoplasms, rare cancers, genomics, Tumormap, lungNENomics project

Background

Lung neuroendocrine neoplasms (lung NENs or LNENs) are
rare understudied diseases with limited therapeutic opportu-
nities. Lung NENs include poorly differentiated and highly ag-

gressive lung neuroendocrine carcinomas (NECs)–i.e., small-
cell lung cancer (SCLC) and large-cell neuroendocrine carci-
noma (LCNEC)–as well as well-differentiated and less aggres-
sive lung neuroendocrine tumors (NETs)–i.e., typical and atyp-
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ical carcinoids (WHO classification 2015 [1]). Over the past
years several genomic studies have investigated the molecular
characteristics of these diseases in order to provide some evi-
dence for a more personalized clinical management [2, 3, 4, 5,
6, 7, 8]. Although lung NECs and NETs are broadly considered
as different diseases, several recent studies have suggested that
they may share some molecular characteristics [9, 10, 7, 11, 12].
However, due to the rarity of these diseases, the sample sizes
of these studies individually are limited, and the integration of
independent datasets is not an easy task.
Providing a way to interactively visualize and analyze these

pan-LNEN data would be of great interest for the scientific
community, not only to further explore the proposed molec-
ular link between lung NECs and NETs, but also to integrate
data from studies including fewer samples to reach the statis-
tical power needed to draw meaningful conclusions.

Data Description

Recently [7], we performed the first integrative and compar-
ative genomic analysis of lung NEN samples from all histo-
logical types, based on newly sequenced data: whole-exome
data (WES, 16 samples), whole-genome data (WGS, 3 sam-
ples), RNA-Seq data (20 samples), and EPIC 850K methylation
data (76 samples), as well as publicly available data. These
data correspond to the most extensive multi-omic dataset of
lung NENs, including the first methylation data for LCNEC
and the first molecular characterization of the rarest lung NEN
subtype (atypical carcinoids) [7]. This dataset, which pro-
vides the missing pieces for a complete molecular character-
ization of lung NENs, have been deposited at the EMBL-EBI
European Genome-phenome Archive (EGA accession number
EGAS00001003699). In order to facilitate the reuse of the data
generated in the previous manuscript [7], we provide here a
complementary data descriptor by outlining the preprocess-
ing and the quality control (QC) steps performed on each omic
dataset available on EGA.
Also, other studies have generated sequencing data and per-

formed a molecular characterization of lung NEN samples: pul-
monary carcinoids (mostly typical carinoids) have been charac-
terized by Fernandez-Cuesta et al. and Laddha et al. [4, 8], LC-
NEC by George et al. [6] and SCLC by George et al. [5] and Peifer
et al. [2]. We therefore generate the first pan-LNEN molec-
ular tumor map by integrating the transcriptomic data from
Alcala et al. [7] and the other published lung NEN transcrip-
tomic data [2, 4, 5, 6, 8]. This map provides an interactive way
to explore the molecular data and allows statistical interroga-
tion, based on the UCSC TumorMap portal [13]. The integrated
transcriptomic dataset resulting from these studies is available
on GitHub [14].

Data quality controls

Figure 1 provides a schematic view of the preprocessing steps
and the associated quality controls performed for each omic
dataset generated by Alcala and colleagues [7]. An overview of
the available omics and clinical data for each sample is provided
in Supplementary Table 1.

WES and WGS data

WES and WGS were performed respectively on 16 and 3 fresh
frozen atypical carcinoids in the Cologne Centre for Genomics
and the Centre National de Recherche en Génomique Humaine
(CNRGH). For WES, the SeqCap EZ v2 Library capture kit from
NimbleGen (44Mb) and the Illumina HiSeq 2000 machine (Il-

lumina Inc., CA, USA) were used for the sequencing. For WGS,
the Illumina TruSeq DNA PCR-Free Library Preparation Kit was
used for library preparation and the HiSeqX5 platform from Il-
lumina for the sequencing as describred in [7]. The sequencing
reads from the 16 atypical carcinoids whole-exomes and the 3
carcinoids whole-genomes were processed using the in-house
Nextflow [15] workflow available at IARCbioinfo/alignment-nf
[16] GitHub repository, revision number 9092214665. The
pipeline consists in three steps: mapping reads to the refer-
ence genome (GRCh37), marking duplicates and sorting reads
using bwa v0.7.12-r1044 (RRID:SCR_010910) [17], samblaster
v0.1.22 (RRID:SCR_000468) [18], and sambamba v0.5.9 [19]
respectively. For WES samples, local realignment using ABRA
v0.97b (RRID:SCR_003277) [20] was then run.

The quality controls of the WES and WGS data were per-
formed using FastQC v0.11.8 (RRID:SCR_014583) [21] and
QualiMap v2.2.1 (RRID:SCR_001209) [22] using the in-house
Nextflow [15] workflows available at IARCbioinfo/fastqc-
nf [23] and IARCbioinfo/qualimap-nf [24] repositories re-
spectively, and the results aggregated using MultiQC v1.7
(RRID:SCR_014982) [25] (Figure 1, left panel).

Figure 2A-B, show the per base sequence quality scores (left
panels) and the per sequence mean quality scores (right pan-
els). Regarding the per base sequence quality scores, the major-
ity of the base calls were of very good quality (>28, green area,
Figure 2A left panel) and of reasonable quality (>20, orange
area, Figure 2B left panel) for WES and WGS data respectively.
The most frequently observed sequence mean quality score was
around 30 for both techniques, which is equivalent to an error
probability of 0.1%. Table 1 provides the general statistics as-
sociated to the WES and WGS quality controls. The observed
median coverage for each sample was above the expected cov-
erage (30X for the WGS samples and 120X for the WES samples).
Concerning the alignment quality, all WES samples had more
than 99% of the reads aligned and all WGS samples had more
than 98% of the reads aligned.

RNA-Seq data

RNA-Sequencing was performed on 20 fresh frozen atyp-
ical samples. The Illumina TruSeq RNA sample prepa-
ration Kit was used for library preparation and the Illu-
mina TruSeq PE Cluster Kit v3 and the Illumina TruSeq SBS
Kit v3-HS kits were used on an Illumina HiSeq 2000 se-
quencer. The data generated were processed in five steps
(Figure 1, middle panel): i) reads trimming using Trim Ga-
lore v0.6.5 (RRID:SCR_011847) [26], ii) reads mapping to the
reference genome (GRCh38, gencode version 33 from bun-
dle CTAT from 6th April 2020 [27]) using STAR v.2.7.3a
(RRID:SCR_015899) [28], iii) realignment of the reads using
ABRA2 v2.22 (RRID:SCR_003277) [29], iv) base quality score
recalibration using GATK4 v4.0.5.1 (RRID:SCR_001876) [30, 31]
and v) gene expression quantification using StringTie v2.1.1
(RRID:SCR_016323) [32]. FastQC v.0.11.9 (RRID:SCR_014583)
[21], RSeQC v3.0.1 (RRID:SCR_005275) [33] and HTSeq
v0.12.4 (RRID:SCR_005514) [34] were used to control the
raw reads quality and assignments, and the results aggre-
gated using MultiQC v1.7 (RRID:SCR_014982) [25]. These
steps were performed using our in-house Nextflow [15]
pipelines available at the following GitHub repositories:
IARCbioinfo/RNAseq-nf [35] release v2.3, IARCbioinfo/abra-nf
[36] release v3.0, IARCbioinfo/BQSR-nf [37] release v1.1 and
IARCbioinfo/RNAseq-transcript-nf [38] release v2.1.

Figure 2C shows that the base calls, before trimming, are
of good quality since all samples have a mean per base se-
quence quality score higher than 28 (left panel) and for all
samples the most frequently observed per sequence mean qual-
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Table 1. General statistics associated to the quality controls of the WES and WGS data

Sample Sequencing Median coverage Total nb reads (M) >30x (%) Aligned (%) GC (%) Median insert size Duplicates (%)

LNEN002 WES 148 113.3 95.5 99.7 53.7 194 13.9

LNEN003 WES 146 110.3 95.8 99.7 53.7 194 13.4

LNEN004 WES 150 115.3 95.4 99.8 54.3 193 13.1

LNEN005 WES 135 103.4 94.7 99.8 54 195 12.1

LNEN006 WES 126 93.6 94.6 99.8 53.5 197 12.5

LNEN007 WES 145 116.3 94.4 99.8 54.5 195 14.8

LNEN009 WES 123 98.4 92.9 99.7 54.1 195 12.4

LNEN010 WES 138 104.1 95 99.7 53.3 196 13.4

LNEN011 WES 161 125.8 95.8 99.8 54.3 196 14.8

LNEN013 WES 131 99.2 94.3 99.8 53.5 193 13

LNEN014 WES 132 102.6 94 99.8 54.1 195 13.3

LNEN015 WES 148 111.3 95.7 99.6 54.1 197 10.1

LNEN016 WES 133 98 94.3 99.6 54.3 194 9

LNEN017 WES 158 116.4 95.9 99.6 54.1 192 8.9

LNEN020 WES 187 144.7 96.6 99.7 53.6 192 14.5

S00716_B WES 133 99.8 95.4 99.7 52.8 194 14.3

LNEN041 WGS 36 923.5 77.5 98.9 41 366 13.3

LNEN042 WGS 41 993.7 88.1 98.8 41.5 388 9.4

LNEN043 WGS 43 1033.1 89.7 99.3 41.6 392 8.8

ity is above 35, corresponding to an error probability of 0.03%,
(right panel). None of the samples presented more than 1% of
over-represented sequences, which assures a proper library di-
versity. RSeQC was used to control the alignment quality and
to assign mapped reads to different genomic features (coding
regions, introns, intergenic regions, TSS, TES). Figure 2D (left
panel) shows that every sample had more than 70% of reads
uniquely mapped and the reads distribution for each sample is
represented on Figure 2D (middle panel). All samples hadmore
than 75% reads mapped in coding regions (CDS-exons, 5’ and
3’ UTR exons). The reads counting was performed at the gene
level for 59,607 genes (genecode annotation, release 33) using
HTSeq [34]. Figure 2D (right panel) shows the reads assign-
ments, the percentage of assigned reads ranges from 71.3 to
87.3%. STAR, RSeQC and HTSeq metrics for each sample are
provided in Supplementary Tables 2-4. Note that three sam-
ples, LNEN008, LNEN014 and LNEN017, have a higher propor-
tion of reads classified as "Unmapped too short" and "Mapped
to multiple loci" (Figure 2D, left panel), reads mapped in in-
tronic regions (Figure 2D, middle panel) and a lower proportion
of reads assigned by HTSeq (Figure 2D, right panel) in compari-
son to the other samples. Unexpected results concerning those
samples should be thus considered with caution.

Finally, in order to apply dimensionality reduction meth-
ods to the RNA-Seq data (see below), the DESeq2 package

v1.26.0 (RRID:SCR_015687) [39] was used to transform the
read counts obtained using StringTie to variance stabilized read
counts (vst), enabling the comparison of samples with differ-
ent library sizes. To reduce sex influence on expression pro-
files, the genes located on sex chromosomes were not consid-
ered for subsequent analyses. Genes located on mitochondria
chromosomes were as well not considered.

Methylation data

The methylation analyses were performed based on the EPIC
850K methylation arrays and the Infinium EPIC DNA methy-
lation beadchip platform (Illumina) for 33 typical carcinoids,
23 atypical carcinoids, 20 LCNEC and 19 technical replicates in
total. These arrays interrogate more than 850,000 CpGs and
contain internal control probes that can be used to assess the
overall efficiency of the sample preparation steps. The raw in-
tensity data (IDAT files) were processed using the R package
minfi v.1.24.0 (RRID:SCR_012830) [40]. Figure 1 (right panel)
provides the packages, functions and publication used for the
data processing, quality control and filtering steps as imple-
mented in the IARCbioinfo/Methylation_analysis_scripts [41]
GitHub repository.
Figure 2E shows that no outliers were detected: i) the left

panel, representing the median log2 of the methylated and un-
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Figure 1. Bioinformatics workflows for data processing and associated quality controls. Bioinformatics tools used for the processing of the WES/WGS data,

RNA-Seq and methylation data are represented in the left, middle and right panels respectively. Green boxes correspond to quality controls (QC) steps.
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Figure 2. Quality controls performed on each omic dataset. A) Reads quality control using FastQC for WES data. B) Reads quality control using FastQC for WGS

data. C) Reads quality control using FastQC for RNA-Seq data. For A, B, and C, the left panels correspond to the sequence quality plots, the x-axis representing the

base position in the read and the y-axis the mean quality value; the right panels correspond to the per sequence quality scores plots, the x-axis representing the

mean quality score and the y-axis the number of reads. D) Quality control of the RNA-Seq data after trimming. Left panel: barplot representing the percentages

of reads uniquely mapped ("Uniquely mapped"), mapped to multiple loci ("Mapped to multiple loci" or "Mapped to too many loci" if the number of loci is higher

than 10), unmapped because the mapped reads’ proportion was too small ("Unmapped: too short"), unmapped because of too many mismatches ("Unmapped:

mismatches"), or unmapped for other reasons ("Unmapped: other"). Middle panel: cumulative barplot representing the percentages of reads mapped, using

RSeQC, at different locations in the genome (exons, introns, 5’ and 3’ UTR, intergenic regions, TSS, and TES). Right panel: cumulative barplot representing the

cumulative percentages associated to the different reads assignments using HTSeq ("Assigned": reads assigned to one gene, "Ambiguous": reads assigned to

multiple overlapping genes, "Aligned not unique": reads assigned to multiple non-overlapping genes, "No Feature": reads assigned to none of the features). E)

Left panel: samples’ quality based on log median intensities. The x-axis and y-axis correspond to the median of log2 methylated and unmethylated intensities,

respectively. Right panel: representation of the between-sample similarities based on the two first MDS dimensions. F) Histogram of the median detection p-value

for each sample. G) Distribution of the beta values for each sample before and after the filtering step (left and right panel respectively).

methylated intensities, indicates that all samples cluster to-
gether with a log median intensity above 11 for both channels,
which supports the absence of failed samples, ii) on the right
panel, the multidimensional scaling (MDS) plot shows that the
samples cluster together by histological groups. We used the
depectionP function (minfi package), which compares the DNA
signal to the background signal based on the negative control
probes to provide a detection p-value per probe, lower p-value
indicating reliable CpGs. Figure 2F represents the mean de-
tection p-values per sample and shows that all samples mean
detection p-valueswere lower than 0.01. To correct for the vari-
ability identified in the control probes, a normalization step
was applied to the raw intensities using the preprocessFunnorm
function from minfi.

After between-array normalization, different sets of probes
that could generate artefacts were removed successively from
the methylation dataset: i) 19634 probes on the sex chromo-
somes, in order to identify differences related to tumors but
unrelated to sex chromosomes, ii) 41818 cross-reactive probes
which are probes co-hybridizing with multiple CpGs on the
genome and not only to the one it has been designed for [42],
iii) 10588 probes associated with common SNPs (present in db-
SNP build 137), iv) 24363 probes with multi-modal beta-value
distribution, and v) 9697 probes having a detection p-value
higher than 0.01 in at least one sample. Supplementary Table
5 lists the sets of filtered probes. To assess the experimental
quality of the assay, the distributions of the beta values were
analyzed. As described previously, probes with multi-modal
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Figure 3. Two dimensional projection of lung NENs transcriptome data using UMAP. The representation was obtained from the TumorMap portal, using the

hexagonal grid view, each hexagonal point representing a lung NEN sample. Point colors correspond to the molecular clusters defined in the previous manuscripts.

distributions were removed at the filtering step and overall dis-
tributions of beta values for each sample before and after fil-
tering were plotted (Figure 2G). As expected, after filtering all
samples showed a bimodal profile, indicative of the good qual-
ity of the experiment. No experimental batch effects were iden-
tified after functional normalization (see Supplementary Fig.
33 from [7]). Based on all the quality controls performed, none
of the samples analyzed were identified as outlier. However,
one sample available on EGA (201414140007_R06C01), was re-
moved from the analyses because it came from a metastatic
tumor rather than the primary tumor. Samples metadata are
provided in Supplementary Table 6.

Generation of an integrative molecular map

Here we have generated a pan-LNEN molecular map with the
whole-transcriptomic (RNA-Seq) data available from individ-
ual studies of each lung NEN tumor type [2, 4, 5, 6, 7, 8]. This
dataset includes the RNA-Seq data for a total of 51 SCLC, 69 LC-
NEC, 118 carcinoids including 40 atypical and 75 typical carci-
noids. The different data underwent the same processing steps
described above since the generation of the molecular map re-
quires a homogenized dataset.

Dimensionality reduction using UMAP

UMAPmethod

The pan-LNEN map was obtained using the Uniform Man-
ifold Approximation and Projection (UMAP) method [43] on
the genes with the most variable expression (genes explaining
50% of the total variance). UMAP is a dimensionality reduc-
tion method based on manifold learning techniques, which are
adapted to non-linear data in contrast with the commonly used
PCA method. Firstly, it builds a topological representation of
the high-dimensional data, and secondly it finds the best low-
dimensional representation of this topological structure [43].
UMAP representations were generated using the umap function
from the R package umap (v. 0.2.5.0) [44]. All the parameters
were set to their default values except the n_neighbors param-
eter. This parameter defines the number of neighbors consid-
ered to learn the structure of the topological space. Varying
this parameter from small to large values enables the user to
find a trade-off between local and global preservation of the

space, respectively. In order to preserve the global structure of
the data (see "quality control of the UMAP projection" section
below), we built the pan-LNEN map setting the n_neighbors
parameter to 238, which corresponds to the total number of
samples.

Biological interpretation of the pan-LNEN TumorMap

Figure 3 shows the pan-LNEN map available on TumorMap
[45] (see "Re-use potential" section below), with colors repre-
senting the main molecular subtypes. To evaluate the accuracy
of the generated pan-LNEN map we firstly verified whether it
was consistent with the main biological findings from the orig-
inal studies, in particular whether it represented the molecular
subtypes of lung NENs previously identified, and their relation-
ship with histological types. We specifically tested whether
groups of samples previously described as having discordant
molecular and histopathological features were identified in our
map. To do so, given a focal molecular subtype and two ref-
erence histopathological types, we assessed whether samples
from the focal molecular subtype were closer to one of the two
references using a one-sided Wilcoxon test between the eu-
clidean distances of samples to the centroid of each reference
type.

First, the SCLC/LCNEC-like samples [6], which are histolog-
ical SCLCs presenting the molecular profile of LCNEC, tend to
cluster with the LCNECs rather than with the SCLCs (Wilcoxon
p-value = 6.2× 10–4). Similarly, the LCNEC/SCLC-like samples
[6], which are histological LCNECs having the molecular pro-
file of SCLC, tend to cluster with the SCLCs rather than with
the LCNECs (Wilcoxon p-value = 3.3× 10–3). In 2018, George et
al. showed also that LCNEC samples can be subdivided into
the type-I and type-II molecular groups [6]. We observed
that the type-I and type-II LCNECs were closer to each other
than to the SCLC/SCLC-like (Wilcoxon p-value = 9.9 × 10–14)
and that SCLC/LCNEC-like samples were closer to type-II than
type-I LCNECs [6] (Wilcoxon p-value = 3.9 × 10–3). Like the
LCNECs, pulmonary carcinoids have been subdivided in molec-
ular groups. Alcala et al. [7] identified three clinically rele-
vant molecular clusters, using a multi-omics factor analysis
(MOFA): Carcinoid A1, Carcinoid A2, and Carcinoid B [7]. In the
pan-LNEN map generated using UMAP, those three clusters
are clearly visible (Figure 3) and respectively correspond to the
three clusters identified in [8] named LC1, LC3 and LC2. Also,
in the study from Alcala and colleagues [7], two carcinoids that
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Figure 4. Quality controls performed on the UMAP projection. A) Comparison of the samples’ neighborhood preservation for UMAP, PCA-2D, and PCA-5D

dimensionality reductions. SD
′

k values are represented as a function of the number k of nearest neighbors considered, for different dimensionality reduction

methods: PCA-2D in purple, PCA-5D in blue, UMAP with n_neighbors = 238 (UMAP-nn-238) in yellow and UMAP with the default value n_neighbors = 15 (UMAP-

nn-15) in green. Error bars correspond to the means more or less the standard deviations computed across 1000 replicate simulations. B) Concordance between

gene expressions’ spatial auto-correlations in the original space, UMAP-nn-238, and PCA-5D dimensionality reductions. For each space, the genes were ranked

based on the spatial auto-correlations of their expression (mean MI values). The concordance is measured as the proportion of overlap between the top N genes

in the different spaces (colored lines). The yellow line corresponds to the proportion of overlap expected under the null hypothesis (based on the expected mean

of the hypergeometric law). The Euler diagram represents the overlaps between the top 1000 features (N = 1000, dashed line) resulting from the three spaces.

clustered with the carcinoids B (S00118 and S00089) were bor-
derline and located between cluster A1 and B. Similarly, a LC-
NEC sample and a SCLC sample clustered with the carcinoids
A1 [7]. These observations are also visible on the TumorMap
representation. Finally, in the same study, a novel entity of
carcinoids, named the supra-carcinoids was unveiled. These
samples were characterized by a morphology similar to that
of pulmonary carcinoids but the molecular features of LCNEC
samples. In the pan-LNEN TumorMap, the supra-carcinoids
also clustered with the LCNEC samples and were molecularly
closer to LCNECs than to SCLCs (Wilcoxon p-value = 5 × 10–2).
We also note that one sample from Laddha et al. [8] LC2 cluster
(SRR7646258) clusters with LCNEC.

Quality control of the UMAP projection

In any dimensional reduction technique, there is a trade-off
between preserving the global structure of the data and the
fine scale details, and UMAP has been designed to reach a better
balance compared to previous methods.

Based on the previously published analyses of lung NEN
data [2, 4, 5, 6, 7, 8], we expect the global structure of the
data to be composed of six molecular groups (SCLCs, type I
and type II LCNECs, Carcinoid A1, A2 and B). For this rea-
son, an ideal projection able to capture this large scale vari-
ation should contain five dimensions. To assess the quality
of the 2-dimensional representation generated by UMAP, we
propose a comparative analysis between UMAP and the tradi-
tional principal component analysis (PCA) based on the five
first principal components of PCA (PCA-5D) as implemented
in the dudi.pca function from the ade4 R package (v1.7-15) [46].
Because UMAP is aiming at preserving the global structure in
only two dimensions, we also compared it to the traditional
PCA based only on the two first principal components (PCA-
2D). We evaluated the performance of the methods based on
the preservation of: (i) the samples’ neighborhood and (ii) the
spatial auto-correlations.

Preservation of the samples’ neighborhood

We used the sequence difference view (SD) metric (eq. 3 from
[47]) to evaluate the preservation of the samples’ neighbor-
hood. This dissimilarity metric compares, for a given sam-
ple, its neighborhood in the low-dimensional space with that
in the original space, taking into account that preserving the
rank of a close neighbor is more important than for a dis-
tant neighbor (see [47] for details). SD values are positive
(SD ∈ [0 ; +∞)), with small values indicating a good preserva-
tion of the samples neighborhood. We denote by SDk the value
of SD averaged across samples for a fixed number of neighbors
k; SDk gives a sense of the overall preservation of the neigh-
borhood at different scales: local for low k values and global
for large k values. We calculated SDk for PCA-5D, PCA-2D,
UMAP with n_neighbors = 238 and UMAP with the default value
n_neighbors = 15. Because we are interested in the relative val-
ues of SDk for the different dimensionality reduction methods,
and because we use PCA as a reference, for each dimensionality
reduction method X we scaled the values of SDk using that of
PCA-5D and PCA-2D:

SD
′

k,X =
SDk,X – SDk,PCA–5D

SDk,PCA–2D – SDk,PCA–5D
. (1)

By definition, SD
′

k,PCA–5D = 0 and SD
′

k,PCA–2D = 1. Thus val-

ues of SD
′

k,X close to 0 indicate that X preserves k neighbor-
hoods as well as PCA-5D, whereas values close to 1 indicate
that X preserves k neighborhoods worse than PCA-5D but as
well as PCA-2D, and values greater than 1 indicate that X pre-
serves k neighborhoods worse than PCA-2D and PCA-5D. Note
that SD

′

k,X can be negative if X preserves k neighborhoods bet-

ter than SDk,PCA–5D. For the UMAP projection, we iterated the

computation of SD
′

k 1000 times, because the algorithm uses a
stochastic optimization step to define the projection.

As expected, increasing the n_neighbors UMAP parameter
from 15 to 238 leads to a better preservation of the global struc-
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ture, clearly visible for k > 30 (Figure 4A; mean SD
′

k>30 equals to
2.855 and 1.029 respectively), while only marginally reducing
the preservation of the local structure for k < 30 (mean SD

′

k<30
equals to -0.076 and 0.124 respectively), which is approxi-
mately the size of the smallest cluster. Globally, the SD

′

k values
over all k levels are lower for a n_neighbors value of 238 than 15
(paired t-test p-value = 6.09 × 10–8). With n_neighbors = 238,
the UMAP projection provides a clear improvement over PCA-
2D for k around 135 (mean SD

′

k < 1), offering a good trade-off
for visualisation in only two dimensions while being able to
maintain the global structure of the data, in particular the six
molecular groups previously identified. This observation high-
lights the importance of varying the n_neighbors parameter ac-
cording to the purpose of the projection. Some analyses would
require to maintain the local structure of the samples neigh-
borhood while others the global structure.

Preservation of spatial auto-correlations

Under the hypothesis that close points on projections share a
similar molecular profile, spatial auto-correlations were mea-
sured according to the Moran Index (MI) metric [48]. MI val-
ues range from -1 to 1, the extreme values indicating nega-
tive (nearby locations have dissimilar gene expression) or pos-
itive (nearby locations have similar gene expression) spatial
auto-correlation, respectively. The spatial auto-correlation of
the expression of each gene helps to identify the genes con-
tributing to the structure of the molecular map (MI≃ 1), and
conversely, the genes that are randomly distributed spatially
(MI≃ 0). The computation of MI requires a weight matrix that
determines the spatial scale at which auto-correlation is as-
sessed; we gave a weight of 1 to the k nearest neighbors based
on Euclidean distance, and 0 otherwise, so that we can con-
trol the scale at which MI is computed with parameter k. The
mean MI across k values was computed for all gene expression
features for: (i) the original space, (ii) the PCA-5D projection,
and (iii) the UMAP projection (with n_neighbors = 238). We
used the implementation of MI from the Moran.I function of R
package ape (v. 5.3) [49].

To evaluate the preservation of the spatial auto-
correlations, we ranked the top N genes based on the
mean MI values for these three cases and calculated the
overlap between the lists (Figure 4B). We found that the
PCA-5D is only slightly more conservative of the spatial
auto-correlations found in the original space than UMAP
(unilateral paired t-test p.value = 2.2 × 10–16). For example,
for N = 1000 (see Euler diagram inserted in Figure 4B), 88.8%
of the genes with the highest MI overlap between the PCA-5D,
UMAP and the original space.

Re-use potential

An interactive TumorMap

Newton and colleagues have recently developed a portal called
TumorMap [13, 50], an online tool dedicated to omics data vi-
sualization. This new type of integrated genomics portal uses
the Google Maps technology designed to facilitate visualization,
exploration, and basic statistical interrogation of high dimen-
sional and complex datasets. The pan-LNEN molecular map
that we generated in this work (Figure 3) has been shared on
the TumorMap platform. Along with the molecular map, the
main clinical, histopathological and molecular features high-
lighted in the previous studies were uploaded as attributes.
The interface enables users to explore and navigate through
the map: zooming in and out, coloring and filtering samples
based on attributes. The users can also create their own at-
tributes based on pre-existing ones by using operators such

as union or intersection. In addition, multiple statistical tests
are pre-implemented and available, for example: comparison
of attributes without considering the samples positions on the
map, comparison of attributes considering samples positions
on the map, and ordering attributes based on their potential
to differentiate two groups of samples. The interactive nature
of the map and the fact that its manipulation does not require
computational expertise, could enable the generation of new
hypotheses and expand the reuse potential of the dataset.

An interactive computational notebook

In the first part of the paper, we described the pre-processing
and quality control steps applied on the recently published
lung NEN multi-omics dataset [7] in order to facilitate its
reuse. To generate the pan-LNEN molecular map, the same
pre-processing steps were followed to homogenize indepen-
dently published transcriptomic data [2, 4, 5, 6, 7, 8]. For
that purpose, reproducible pipelines, developed in house, were
used and are available for reuse to the scientific community on
GitHub [51] (see the "availability of source code" section). In
addition, the code used to generate the molecular map and to
evaluate the quality of the dimensionality reduction is provided
as a notebook published on Nextjournal [52]. Along with the
code, the notebook provides the data and the dependencies re-
quired to run the analyses performed in this paper. Interested
researchers can thusmake a copy of this publicly available note-
book (called "Remix") to reproduce our results but also inter-
actively modify the code and explore the influence of different
parameters.

Integration of new samples

The homogenized read counts of the pan-LNEN data are avail-
able on GitHub [14]. Along with the available code, these data
could be used to integrate new samples for which RNA-Seq data
are available. The raw read counts of the new samples should
firstly be generated following the same processing steps de-
scribed in the section "Data quality controls" (Figure 1, middle
panel) and integrated to the pan-LNEN read counts. We also
provide in the Nextjournal notebook, the Nextflow command
lines allowing to obtain the read counts. The variance stabi-
lized transformation (DESeq2 [39]) should then be applied on
the combined data set and UMAP should finally be rerun to
project all samples together in a two dimensional space. All
together, we provide the resources to integrate additional sam-
ples into our molecular map, starting from raw sequencing
read counts.

Discussion

Genomic projects focused on rare cancers encounter the limita-
tion of availability of good quality biological material suitable
for such studies. This translates in small series of samples
usually underpowered to draw meaningful conclusions. Thus,
tools facilitating the integration of independent datasets into
larger sample series will lead to more informative studies. Re-
cently, the first multi-omic dataset for the understudied atyp-
ical pulmonary carcinoids and the first methylation dataset for
LCNECs was published [7]. Here we provide a parallel descrip-
tion of the pre-processing of these molecular data and provide
evidence of the good quality of the different ’omics data gen-
erated. This data collection associated with previous datasets
[2, 4, 5, 6, 8] completes the lung NENs molecular landscape
and provides thus a valuable resource to improve the molec-
ular characterization of lung NEN tumors. Notably, we show
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here the perfect concordance of the three molecular clusters of
pulmonary carcinoids independently identified in [7] and [8],
validating the discoveries made by these two studies and prov-
ing the usefulness of this integrative approach.

However, even when primary genomic data is available, bar-
riers to accessing the data still exist, often limiting its reuse
by the community [53]. In particular, downloading and re-
reprocessing large raw sequencing data requires dedicated in-
frastructure and bioinformatics skills. Indeed, in order to
minimize batch effects when integrating data from different
studies, one need to process it exactly in the same way (with
the same software and the same versions, the same reference
genome, the same annotation databases etc.). As more and
more data are generated, the previously mentioned reprocess-
ing will become untenable and replicating these efforts for each
new study in each research group represents a waste of re-
sources. Standardization of laboratory and computational pro-
tocols might become a reality when large national medical ge-
nomics initiatives will be fully operational [54]. In the mean-
time there is a need for better data sharing strategies than the
traditional “supplementary spreadsheet / raw data” combina-
tion that can accelerate the translational impact of molecular
findings.

One step in this direction is the generation of so called "tu-
mor maps", which provide an interactive way to explore the
molecular data and allow easy statistical interrogation, includ-
ing generating new hypotheses, but also projecting data from
future studies including fewer samples [13]. This integration
method has some limitations though. A fixed reference map
could be of interest for easier biological interpretations, but
the overall sample size of the datasets used to build the pan-
LNEN map remains relatively small. Thus, the map does prob-
ably not capture the complete molecular diversity of the lung
NENs, and integrating new samples will influence the map and
potentially change the clusters obtained after dimensionality
reduction. Also, if the harmonization of the new dataset to in-
tegrate is not enough to correct for strong batch effects, the
interpretation of the projections would be erroneous. Another
approach would be to project the new samples into a fixed refer-
ence map. However, the stochastic nature of UMAP embedding
and its sensibility to parameter tuning can lead to unstable pro-
jection results, thus this task is for now not straightforward
and requires further development [55]. In the meantime, fa-
voring the integration of datasets will, over the years, yield to
the constitution of molecular maps that will probably be more
and more accurate and more adapted to the projection of new
samples.

Conclusion

Here we provide a molecular map based on homogenized tran-
scriptomic data available for the four types of lung NENs from
six different studies. We show that this map represents well
both the local and global structure of the data, and captures
the main biological features previously reported. We provide
a full spectrum of data and tools to maximize its re-use po-
tential for a wide range of users: raw sequencing reads, gene
expression matrix, bioinformatics pipelines, interactive com-
putational notebooks and an interactive TumorMap. In partic-
ular, we indicate how one can update the molecular map by
integrating new samples starting from raw sequencing reads.
Considering the small sample sizes of molecular studies on rare
lung NENs, promoting data integration will empower more re-
liable statistical testing, and this map will therefore serve as a
reference in future studies.
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AC Atypical carcinoids

ABRA Assembly-based realigner

BAM Binary Alignment Map

CDS Coding Sequence

CGR Center for Genomic Regulation

CpG Cytosine–Phosphate–Guanine

CTAT The Trinity Cancer Transcriptome Analysis Toolkit

dbSNP The Single Nucleotide Polymorphism Database

DNA Deoxyribonucleic acid

EGA European Genome-phenome Archive

EMBL-EBI The European Bioinformatics Institute

GATK Genome Analysis Toolkit

IDAT File format of the raw methylation data

LCNEC Large-cell neuroendocrine carcinoma

LCNEC/SCLC-like
Large-cell neuroendocrine carcinomas with the
molecular features of small cell lung cancers

LNEN Lung neuroendocrine neoplasm

MDS Multidimensional scaling

MI Moran’s Index

MOFA Multi-omics factor analysis

NEC Neuroendocrine carcinomas

NEN Neuroendocrine neoplasm

NET Neuroendocrine tumors

PCA Principal Component Analysis

QC Quality control

RNA-Seq Ribonucleic acid sequencing

SCLC Small-cell lung cancer

SCLC/LCNEC-like
Small cell lung cancers with the molecular
features of large-cell neuroendocrine carcinomas

SCLC/SCLC-like
Small cell lung cancers with the molecular
features of small cell lung cancers

SD Sequence Difference view metric

SNP Single Nucleotide Polymorphism

STAR Spliced Transcripts Alignment to a Reference

TC Typical carcinoids

TES Transcription End Site

TSS Transcription Start Site

UCSC University of California Santa Cruz

UMAP Uniform Manifold Approximation and Projection

UTR Untranslated Transcribed Region

vst Variance Stabilized Transformation

WES Whole Exome Sequencing

WGS Whole Genome Sequencing

WHO World Health Organization
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Chapter 4

Exploring associations between

germline and somatic variations in the

lung

4.1 Context

In the past decades, Genome-Wide Association Studies (GWAS) have been per-

formed to identify genetic variants associated with multiple diseases. However,

such studies still lack the power to detect small genetic effects, and in most cases,

the variants identified so far explain a small proportion of the disease heritability.

This issue refers to a notion called the missing heritability [152]. Thanks to the rise

of large consortia, the size of GWAS is though being increased, suggesting that the

number of susceptibility loci will continue to grow and expand our knowledge on

many diseases, including cancer susceptibility. At the same time, the scope of cur-

rent GWAS study designs and results has been extended [153]. Methods have been

developed to meta-analyze GWAS summary statistics to detect novel loci or to in-

vestigate genetic correlations [154, 155]. Also, while the efforts focused at first on

individual SNPs effects, there is an increasing number of studies attempting to com-

bine the effects of multiple SNPs via the study of epistasis (SNPs interactions) [156]

or the use of Polygenic Risk Scores (PRS) analyses [157, 158]. PRS have been re-

cently used to combine the SNPs identified by GWAS in order to explain a larger

proportion of the disease risk and identify individual at risks. Indeed, as mentioned

previously, GWAS usually reveal SNPs with small effect sizes and complex diseases

like cancer are known to be polygenic, i.e. multiple genes are involved in the dis-

ease development. Another step ahead of the GWAS work consists in revealing

the biological mechanisms behind the detected associations [78]. Researchers at-

tempt to identify causal genes using pathways and functional annotations based

methods [159], causality models [160] or the integration of GWAS results with other
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data resources. The latter analyses essentially focused so far on expression data to

perform expression quantitative trait loci (eQTL) and transcriptome-wide associa-

tion study (TWAS) analyses [161]. eQTL analyses test the impact of SNPs identified

by GWAS studies on expression levels in different tissues. TWAS analyses rely on

both GWAS and eQTLs results to test associations between gene expression and the

disease phenotype to identify causal genes. Those methods have been largely ap-

plied on the Genotype-Tissue Expression (GTEx) data, whose 8th version has been

recently released [162]. Both methods take advantage of expression data to reveal

causal genes but other data types could be considered. Indeed, in parallel to GWAS,

exploring the germline susceptibility to cancers, initiatives like the TCGA have gen-

erated multi-omics data, improving the molecular characterization of multiple tu-

mor types. Together, these datasets give us the opportunity to explore associations

between germline variations and somatic events. Such study design could enable

to validate some of the susceptibility SNPs identified by GWAS by providing fur-

ther support of their causal effects on the disease and bring new insights on the

molecular mechanisms involved [163, 164]. So far, multiple studies have identified

germline-somatic interactions. Carter et al. recently showed that germline events

could influence the alteration frequency in cancer related genes [165]. Another ex-

ample is the identification of germline alterations inducing an enrichment in the

APOBEC signature in breast and bladder cancer [166, 167]. In this chapter, we fo-

cused on lung cancer susceptibility and its interaction with somatic mutational bur-

den in lung tumors by integrating the results of lung cancer and smoking related

traits GWAS with the somatic mutations data from the TCGA lung tumors.

4.2 Research contribution

4.2.1 Introduction

Lung cancer is one of the most common cancer worldwide, with around 2 million

new cases in 2018 [23]. About 80% to 85% of lung cancers are non-small cell lung

cancers and among them, lung adenocarcinomas (LUAD) and lung squamous cell

carcinomas (LUSC) are the most frequent. A major risk factor for both subtypes is

smoking. However smoking behaviours differ between the subtypes and around

only 15% of smokers develop lung cancers [76] (See Introduction section 1.1), sug-

gesting that smoking is not the only risk factor for this disease. Until now, most re-

search studies aiming at understanding lung cancer etiology and development have

focused their efforts either on germline analyses or on somatic analyses separately.
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Yet, disentangling the interactions between germline and somatic events could, on

one hand, facilitate the identification of the causal genes involved in lung cancer

susceptibility and on the other hand bring light on the molecular characteristics of

the lung tumors.

In the past decades, multiple GWAS have been performed to identify germline

variations associated with lung cancers. The first GWAS were conducted in 2008

and identified a strong susceptibility locus on the chromosome 15q25 region [168,

169, 79] where multiple genes including three nicotinic acetylcholine receptors are

located: the Cholinergic Receptor Nicotinic Alpha 5 Subunit (CHRNA5), the Cholinergic

Receptor Nicotinic Alpha 3 Subunit (CHRNA3) and the Cholinergic Receptor Nicotinic

Beta 4 Subunit (CHRNB4) genes [78]. The effect of the locus on smoking was assessed

and at the time, only one of the three studies suggested a direct effect rather than an

indirect effect through smoking [169]. To date, no consensus has been reached with

regard to this locus effect [170, 171, 172]. Although the locus on chromosome 15q25

region displayed the strongest effect in each GWAS, two other loci were identified

the same year, one on chromosome 6 by Wang et al. [173] and one on chromosome

5 by Wang et al. [173] and McKay et al. [174]. In contrast with the first locus, the

latter hits did not associate with smoking and their association with lung cancer

differed depending on the lung cancer subtypes considered, LUAD and LUSC [175].

In 2017, McKay et al. performed the latest and largest GWAS on lung cancer in

European ancestry and in addition to identify new loci, confirmed that lung cancer

susceptibility is heterogeneous across histological subtypes [80].

As mentioned before, tobacco smoking is a major lung cancer risk factor, its im-

pact on our cells has been widely studied and is known to cause DNA damages in-

duced by the carcinogens found among the tobacco chemicals [176]. If not repaired,

those damages accumulate in the lung tissues, hence increasing the mutational bur-

den of cells and leaving particular mutational patterns in the damaged cells [177].

Such mutational patterns caused by exogenous or endogenous processes are called

mutational signatures (See Introduction section 1.1). The most common signature

found in smoking related lung cancers is the Signature 4 which has been described

to be enriched for C > A substitutions and caused by DNA damages resulting from

benzo[a]pyrene exposure, a mutagenic carcinogen found in tobacco smoke [29, 177].

These observations imply that the more a person smokes, the higher the mutational

burden in its lung will be, hence the higher its risk of developing lung cancer. This

supports epidemiological studies such as those performed by Doll et al. showing

a 20 fold increase in lung cancer risk in smokers versus non-smokers [25]. While

those correlations are known, the direct association between lung cancer germline
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variants and somatic mutational burden in lung tumors has, to our knowledge, not

been tested. In this work, we investigated the association between lung cancer sus-

ceptibility variations and the somatic mutation burden in lung tumors using dif-

ferent approaches (Figure 4.1). Firstly, we built lung cancer genetic risk scores and

tested their association with the total number of somatic mutations as well as with

the number of mutations attributable to Signature 4, related to smoking exposure.

Secondly, the Mendelian randomization setting was used to assess the causal effect

between smoking traits and mutational burden in lung tumors.

Germline variants
Somatic mutational

burden
Smoking Lung cancer

• Nb of mutations

• Signature4 (C>A)

Causality ?

Mendelian Randomization

 (MR)

Polygenic risk scores

 (PRS)

FIGURE 4.1: Outcome and exposures relationships. This figure
presents the variables involved in the relationship between the expo-

sure, smoking, and the outcome, mutational burden.

4.2.2 Material and methods

The study of the association between germline susceptibility and somatic muta-

tional burden in tumors required to use different sources of data. On one hand,

GWAS data were needed to identify variants associated with the traits of interests,

i.e. smoking traits and lung cancer. On the other hand, samples for which germline

and somatic data are available were required to test the effect of the previously men-

tioned variants on mutation burden. The TCGA dataset met this requirement with

multiple omics data available, including genotyping arrays and WES data for 33

cancer types, including lung cancer. For the germline data, the processing and qual-

ity control of the raw genotyping arrays data was carried out in order to perform

imputation to retrieve the genotyping information at non-assayed positions [178].

In parallel, the public somatic mutations files were processed to derive mutational

burden and mutational signature attributions.

Imputation of the TCGA samples

• Data download and samples selection

Genotyping was performed for the samples from the 33 TCGA cohorts on the

raw intensities CEL files downloaded on the GDC Legacy Archive portal using

gdc-client (v1.4.0) [179]. Only blood and/or normal tissue samples with DNA
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analyte were downloaded (in total 11837 files). The CEL files were then fil-

tered out if associated with one of the following TCGA non-rescinded annota-

tions: "Item flagged DNU", "Administrative Compliance", "Item does/may not

meet study protocol", "Qualified in error", "BCR Notification", "Normal tissue

origin incorrect", "Subject withdrew consent", "Normal class but appears dis-

eased", "Duplicate item", "Tumor tissue origin incorrect", "Tumor type incor-

rect", "Genotype mismatch", "Permanently missing item or object" and "Qual-

ification metrics changed". Also, when multiple samples were available for a

participant, blood samples were selected when available. 10443 samples re-

mained after filtering on annotations and removing duplicated samples.

• Genotyping

Prior to genotyping, a quality control function, apt-geno-qc, from Affymetrix

Power Tools (APT) has been applied to each cohort separately. As recom-

mended by Andrade et al. [180], samples with a contrast QC (CQC) value

of at least 0.4 were kept for genotyping. The largest TCGA cohort, Breast In-

vasive Carcinoma (BRCA), was then considered to define a list of probes with

good genotyping call rate (above 97%), used subsequently to genotype each

sample using the apt-probeset-genotype function and the birdseed algorithm.

Each TCGA cohort was genotyped a first time and all samples with genotyp-

ing call rate lower than 97% were excluded. After exclusion of the samples

with low genotyping quality, a second round of genotyping was performed

on each cohort. The genotyping outputs were converted to the plink format

using apt-result-format from the APT tools (version 2.10.2.2) with the following

annotation "GenomeWideSNP_6 .na35.annot.db" provided by the Affymetrix

Support by Product web page [181]. The sex column included in the pedigree

file was retrieved using the curated TCGA clinical data from Liu et al. study

[182]. Finally, the plink files associated with each TCGA cohort were merged

in a single dataset using the merge-list option from plink (v1.90b4).

• Origin inference

After controlling for the plink files integrity using the HRC-1000G-check-bim.pl

script available on the McCarthy web site (version 4.2.11) [183], the origin of

each sample was predicted using admixture [184] (version 1.3) in a supervised

mode. The HapMap Phase II dataset was considered as a reference dataset

[185] and the list of SNPs defined by Yu et al. in 2008 was used for the ori-

gin inference [186], among 12898 SNPs, 11630 were in common between the

HapMap and the TCGA datasets. The number of origins to infer (K) was
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fixed to three (Europeans, Africans, Asians). Admixture thus assigned, to

each sample, probabilities of belonging to each of the three population group.

The group with the highest probability defined the samples inferred ances-

try. Around 99% of the samples reported as “WHITE” by the TCGA clini-

cal data were predicted Europeans, around 90% of the samples reported as

“ASIAN” were predicted Asians and 95% of the samples reported “BLACK

OR AFRICAN AMERICAN” were predicted Africans.

• Samples statistics

In each ancestry group, reported sex for each sample was compared to im-

puted sex based on genotyping data using the check-sex option from plink

(v1.90b4). Samples relatedness was tested using the genome option from plink

(min parameter fixed at 0.185). Among the 9855 samples with reported sex, 46

samples with discordant reported sex and imputed sex and 17 pairs of relatives

were identified and flagged. Finally, plink was also used to compute heterozy-

gosity and genotyping missing rates (het and missing options, respectively).

Figure 4.2 represents, for each origin, the concordance between reported and

predicted sex across samples as well as the heterozygosity rate as a function

of the missing rate and shows that in each ancestry group, all samples had a

genotyping missing rate lower than 3% and a homogeneous heterozygosity

rate.
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Europeans Asians Africans

FIGURE 4.2: Samples quality control. For each ancestry group, the sex
checking F statistic distribution across samples is represented in the
upper panel (F < 0.2 and F > 0.8 leading to females and males calls
respectively), the concordance between the reported sex (points colors)
and the statistic is shown in the middle panel, and the heterozygosity

rate as a function of the missing rate in the bottom panel.

• SNPs filtering

SNPs were filtered out based on different criteria. Firstly, SNPs with geno-

typing call rate lower than 97% across all the TCGA samples and with Mi-

nor Allele Frequency (MAF) below 1% were excluded using plink. Secondly,

since SNPs allele frequencies vary depending on samples ancestry, the TCGA

dataset was split into different groups based on the origin inferred by admix-

ture. In each ancestry group, we applied the HRC-1000G-check-bim.pl script

from the McCarthy tools [183], which allows to remove the SNPs with un-

matched positions and/or alleles, duplicated SNPs, ambiguous SNPs with

MAF above 40% as well as SNPs with allele frequencies differing from the

allele frequency reported in the same population in the 1000 Genome dataset

(difference of more than 20%). SNPs with a genotyping call rate below 97%
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and showing strong deviation (p-value < 10-8) from the Hardy Weinberg equi-

librium (hwe plink option) in any of the ancestry groups were excluded. Fi-

nally, ambiguous SNPs were not considered. The Figure 4.3 represents for

each ancestry group the Alternative frequency (AF) of the remaining SNPs in

the TCGA dataset as a function of the SNPs AF in the 1000 Genome dataset

in the same population (left panels) and shows a high correlation between the

two datasets.
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FIGURE 4.3: SNPs filtering quality control. For each ancestry group
(EAS: Asians, EUR: Europeans, AFR: Africans), the left panel repre-
sents the AF of the remaining SNPs, after filtering, in the TCGA dataset,
as a function of the SNPs AF in the 1000 Genome dataset. The right

panel corresponds to the distribution of AF of all SNPs.
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• Imputation

After SNPs filtering, phasing and imputation were performed on each chromo-

some. Phasing was performed using eagle (v2.4.1) [187] and the 1000 Genome

phase 3 data as reference; the reference is available on the International Genome

Sample Resource (IGSR) as VCF files [188]. Bcftools (v1.8) was used to convert

the VCF files to Binary Variant Call Format, (BCF) files, select SNPs and indels

and to normalize variants in order to consider multi-allelic positions. Eagle

was run on each chromosome divided by chunks of 20 Mb using a flanking

region of 5 Mb. The resulting phased VCF files served as input to minimac4

(v1.0.1) [189], which performed the imputation with a window of 500 kb. Fig-

ure 4.4 provides a graphical representation, in the European ancestry group,

of the imputation quality. In the left panel, the distribution of minimac4 R2

quality measure is represented for three categories of SNPs: SNPs with MAF

> 5%, SNPs with MAF between 0.5 and 5% and SNPs with MAF below 0.5%.

We also compared the allele frequencies of the SNPs (with an R2 value above

0.3) in the imputed data, with the allele frequencies of the same SNPs in the

1000 Genome dataset (right panel) and observed that they were correlated.

The Annex Figure C.1 to C.3 complete the previously mentioned figures with

all ancestry groups in the TCGA data.

FIGURE 4.4: Imputation quality controls (European samples). Left
panel: minimac4 R2 quality measure distribution for each MAF cate-
gory (MAF > 5%, MAF between 0.5 and 5% and MAF below 0.5%).
Right panel: comparison of the SNPs AF (with an R2 value above 0.3) in
the imputed data with the same SNPs AF in the 1000 Genome dataset.
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Finally, since population stratification can be a confounding factor in genetic

studies, it is necessary to include ancestry variables as covariates in regression

models. The main ancestry population in the TCGA cohorts is the European

population. We thus selected the samples predicted as being Europeans by ad-

mixture and ran the software Eigenstrat [190] to correct for population struc-

ture among Europeans. We considered the list of SNPs defined by Yu et al. in

2008 [186] to run Eigenstrat without outliers removal.

Imputation pipeline

While the work presented in this study focused on the germline somatic interac-

tions in lung cancer, the data processing has been performed on all 33 TCGA co-

horts (more than 9000 samples). The code used to perform the imputation of those

samples has been adapted by a master student, which I co-supervised during five

months, in an automatized, reproducible and portable nextflow pipeline that is pub-

licly available on the IARCbioinfo/Imputation-nf GitHub repository. A docker and

a singularity container have been generated to allow future users to run the pipeline

without having to install the needed softwares. The pipeline performs the quality

controls and data processing necessary to carry out imputation locally but also to

submit imputation jobs to the Michigan imputation server [191] as well as to the

recently developed TopMed imputation server [192]. Finally, quality control figures

similar to those presented previously are generated by the pipeline automatically

(See Figures 4.2, 4.3 and 4.4).

Figure 4.5 provides an overview of the study design and analyses performed

based on the imputed data obtained following the steps described in the previous

paragraphs.
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FIGURE 4.5: Methods overview and study design. A) Steps of the PRS
analysis. A meta-analysis of lung cancer GWAS was performed (1).
The results of the meta-analysis were used in conjunction with smoking
traits GWAS to select different lists of SNPs to compute PRS (2 and
3). The association of these scores with mutational burden were then
tested. B) Mendelian Randomization (MR) analysis assumptions and
design (top and bottom panel, respectively). A two sample MR setting
was used to test the causal effect of smoking exposures on mutational

burden in lung tumors.

Lung cancer GWAS data

In order to increase the sample size of existing lung cancer GWAS, a family history

GWAS (GWAx) expanding traditional GWAS to familial cases, was performed on

the UKbiobank data. The resulting analysis was meta-analyzed with a previously

published GWAS on lung cancer based on the Transdisciplinary Research of Can-

cer in Lung of the International Lung Cancer Consortium (TRICL-ILCCO) dataset

[80], the meta-analysis was performed using the software metasoft with fixed-effects

model [193]. The SNPs resulting from the meta-analysis were pruned using plink to

remove SNPs in linkage disequilibrium (r2 threshold fixed at 0.1) and used for the

selection of lung cancer related SNPs. While the meta-analysis revealed multiple

significant lung cancer-associated hits (Figure 4.5A step 1), we attempted to select

relevant SNPs that did not pass the genome-wide significance threshold for further
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PRS analyses. Indeed, while PRS usually aggregate the effects of the genome-wide

significant SNPs, previous studies have shown that additional information could be

retrieved from other variants [194, 195]. In this study, we chose to select additional

SNPs based on their association with smoking related traits. For that purpose, sum-

mary statistics of previously published GWAS on smoking related traits have been

gathered (Figure 4.5A step 2). We chose the traits studied by the GWAS Sequenc-

ing Consortium of Alcohol and Nicotine (GSCAN) consortium in a large dataset

gathering up to 1.2 million samples [196]. This study explored four smoking traits

(cigarettes per day, smoking cessation, smoking initiation and age of initiation) as

well as drinking consumption. It has been shown by Jiang et al. that there is a shared

heritability, probably mostly driven by smoking, between lung cancer and head and

neck cancer [197]. Therefore, the summary statistics of the GWAS on head and neck

cancer performed by Lesseur et al. was also considered [198]. Our hypothesis was

that a SNP associated with one or more of those traits and associated with lung can-

cer could be valuable in a PRS predicting lung cancer. In order to select such SNPs,

the partial least square (PLS) model, which can be assimilated to a supervised PCA

(See introduction section 1.4), was used considering the Z scores (associations effect

sizes divided by the standard error) for each trait as explanatory variables and the

lung cancer Z scores as the response variable. Hence, this method generated latent

components that maximize the covariance between the smoking related traits sum-

mary statistics and the lung cancer summary statistics. The first component, pos-

itively correlated with the smoking trait, was used to rank the lung cancer GWAS

SNPs. The top 100 SNPs with the highest values on this component were selected

as the most relevant SNPs, the later list of SNPs will be referred to as the smoking

related SNPs. In addition to the genome-wide significant SNPs, the smoking related

SNPs were considered to compute and test the association of different PRS scores

with the mutational burden in the TCGA samples (See next paragraph on PRS com-

putation).

PRS computation and regression analyses

We built PRS using different lists based on the aforementioned SNPs using PRSice2

[199], which computes PRS values as a weighted sum of the SNPs imputed dosages,

the weights being the effect size of the SNPs on lung cancer (Figure 4.5A step 3).

Firstly, three PRS were generated based on the lung cancer genome-wide significant

SNPs (gw-SNPs): i) a PRS based on all the gw-SNPs, ii) a PRS based on the smoking

related gw-SNPs (19 out of the lung cancer gw-SNPs ranked in the top 100 smoking

related SNPs), iii) a PRS based on the non-smoking gw-SNPs. Secondly, three PRS
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were computed based on the top 100 smoking related SNPs described in the previ-

ous paragraph: i) a PRS including the 100 SNPs, ii) a PRS based on the gw-SNPs in

that list, iii) a PRS based the non gw-SNPs in that list. In each case, we tested the

PRS association with the total number of mutations in the tumors as well as with the

number of mutations attributable to Signature 4, which is related to smoking. Based

on the skewed distribution of the two mutational burden variables (See Figure 4.6),

the negative binomial regression, usually used for over-dispersed count variables,

was chosen to test the association (glm.nb function from the R package MASS). Mul-

tiple covariates were included in the model: age, gender and the 10 first principal

components resulting from Eigenstrat. The samples purity provided by the Pan-

Cancer Atlas files [52], was transformed in a categorical variable (purity less than or

equal to 30%, purity between 30 and 70% included and purity above 70%) and was

added to the covariates as well. Finally, when the LUAD and LUSC cohorts were

both considered, a categorical variable indicating the sample’s cohort was included

in the model.
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FIGURE 4.6: Distribution of the mutational burden in the TCGA lung

cancer samples. Distribution of the total number of mutations (left
panel) and the number of signatures attributable to Signature 4 (right

panel) in the TCGA lung cancer samples.

Mutational burden and mutational signatures

The somatic mutations of the TCGA samples were retrieved from the study of Ellrott

et al. [200] performed in the context of the Multi-Center Mutation Calling in Multiple

Cancers (MC3) project. The MC3 Mutation Annotation Format (maf) files gather the

curated results from seven different variant callers for all TCGA samples and report
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mutations found by at least two variant callers. In order to remove duplicated sam-

ples per patient, the variants flagged "nonpreferedpair" were removed (10224 sam-

ples left). Samples who were whole genome amplified or flagged "gapfiller"were

excluded from the analyses. The total number of mutations for each sample was

computed based on the set of filtered variants. Finally, the proportion of artifacts

or germline variants were computed to identify and remove potential low quality

samples (proportion higher than 10%) [201].

The filtered maf file was split into one maf file per cohort and converted to the

VCF format using a perl program downloaded from the following GitHub reposi-

tory: mskcc/vcf2maf. Based on those VCF files, signature contributions have been

computed using MutationalPatterns [202]. The software computes the contribu-

tions of the mutations to the known COSMIC signatures version 2 (30 signatures)

based on non-negative least squares (NNLS) method. The number of mutations

attributable to a signature has been computed by multiplying the total number of

mutations by the related signature contribution.

RNA-Seq data

Expression data were firstly used to identify potential misclassified samples that

could bias the association tests when stratifying the lung samples by histological

subtypes. For that purpose, the dimensionality reduction method UMAP [111]

was run on both TCGA lung cancer cohorts. The raw RNA-Seq data were pro-

cessed from the alignments of the reads to the reads counts computation using

in-house Nextflow [141] pipelines available at the following GitHub repositories:

IARCbioinfo/RNAseq-nf release v2.3, IARCbioinfo/abra-nf release v3.0,

IARCbioinfo/BQSR-nf release v1.1 and IARCbioinfo/RNAseq-transcript-nf release

v2.1. The read counts were normalized using the variance stabilization transfor-

mation (vst function from DESeq2 R package), sex and mitochondria chromosomes

were removed, and the most variable genes, explaining 50% of the variance were

kept to run UMAP. The UMAP representation of the samples allowed us to observe

two distinct clusters representing the two lung histopathological subtypes (See An-

nex Figure C.4). Samples with unexpected molecular clustering (LUAD samples

clustering with LUSC samples and vice versa) were excluded from the regression

analysis.

The RNA-Seq data were also used to perform Gene Set Variation Analysis (GSVA)

in order to identify differential pathways activities between carriers and non-carriers
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(homozygote groups) of the rs10519203 SNPs located on the chromosome 15q25 re-

gion. The analysis was run using the R package GSVA [203]. Ten genes sets de-

scribing the hallmarks of cancer [204] were considered. The gsva function computed

for each sample and each gene set enrichment scores, which measures the enrich-

ment of the genes inside a gene set in comparison to the genes outside the gene set,

and using the R package limma [205], the difference between the GSVA enrichment

scores of the two homozygote groups was tested.

Mendelian randomization (MR) analyses

PRS computation was used to test the association between lung cancer susceptibil-

ity and mutation burden. This method however does not enable to test the causal

mechanisms underlying the observed associations. For that purpose, we used MR

methods that attempt to test a causal effect between an exposure and an outcome us-

ing genetic variants, also called genetic instruments, as proxy for the exposure [206,

207, 208]. The idea is that, if genetic variants are associated with an exposure that

is causal for a disease, the same SNPs should be associated with the disease. The

MR analysis setting could be compared to Randomized Control Trials (RCT) with

groups being formed based on genetics. Indeed, following Mendel’s second law,

we can assume that the genetic variants are allocated at birth randomly. Thus, they

should not change over time due to environmental exposures, and confounders is-

sues faced in classical RCTs should hence be less problematic. However, three main

assumptions need to be respected [208] (Figure 4.5B top panel): i) the relevance as-

sumption, which implies that the genetic instruments do strongly associate with the

exposure, ii) the independence assumption, which implies no association of the ge-

netic variants with confounders of the exposure-outcome relation and iii) the exclu-

sion restriction assumption, which implies that the genetic variants do not impact

the outcome variable via other pathways than the exposure pathway (pleiotropic

effect).

In order to assess the causal link between smoking traits and mutational bur-

den, a two sample MR analysis was performed (Figure 4.5B bottom panel). The

two sample MR setting estimates the effects of the genetic variants on the expo-

sure and on the outcome in two independent datasets. For the dataset intended to

select the genetic variants associated to the smoking traits, we chose the GSCAN

study which is based on up to 1.2 million samples [196] and retrieved the variants

strongly associated (p-value above 10-8) with cigarettes per day (CPD), smoking ces-

sation (SmkCes), smoking initiation (SmkInit) and age of initiation (AgeInit). In this

study, only European ancestry samples were considered. The second dataset used
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to determine the association between each selected variant and the mutational bur-

den was the TCGA dataset, for which both germline and somatic data (described in

the previous paragraphs) are available.

In order to test a causal effect using MR methods, the use of multiple MR tests

relying on different assumptions is recommended [208] to ensure that the results are

reliable. We used the TwoSampleMR R package [209] to perform five tests (Inverse

Variance Weighted (IVW), weighted median, weighted mode and MR-Egger tests).

The MR-Egger test allowed to test also if pleiotropic effects are involved in the stud-

ied associations. Finally, to assess if the associations observed were driven by a few

SNPs, a leave-one-out analysis based on the IVW method was performed.

4.2.3 Results

Family history GWAS

The meta-analysis of the family history GWAS and the TRICL-ILCCO lung cancer

GWAS identified 65 genome-wide significant hits associated with lung cancer, those

hits being located in 20 distinct genomic regions. Among the genome-wide sig-

nificant (gw-SNPs), multiple SNPs were also associated to smoking traits, like the

number of cigarettes smoked per day, smoking cessation and initiation, while oth-

ers were related to other pathways like DNA repair. Considering these observations,

different PRS scores were built and their association with mutational burden were

tested. For that purpose, the gw-SNPs were stratified in smoking and non-smoking

related SNPs. For the PRS based on all the gw-SNPs, no association with muta-

tional burden was observed (Figure 4.7, β = 0.03 and p-value = 0.373). However,

when including only the smoking related SNPs in the PRS computation, associa-

tions with the total number of mutations as well as with the number of mutations

attributable to Signature 4 were observed (Figure 4.7, β of 0.09 and 0.13 and p-value

of 0.002 and 0.026 respectively). In order to determine if the significant associations

observed were driven by a restricted number of SNPs, a leave-one-out analysis was

performed on the previously mentioned list. This analysis revealed that removing

one SNP (rs72740955) located near the CHRNA5 gene, a nicotinic acetylcholine re-

ceptor subunit on the chromosome 15q25 region, dissolved the association between

the PRS and the mutational burden (p-value = 0.278 for the association with the to-

tal number of mutations, and p-value = 0.505 for the association with the Signature

4 mutations). These results suggested that the association observed was driven by
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this variant and that combining the effects of several SNPs for this PRS did not im-

prove the predictive power. We then assessed if increasing the number of SNPs by

including additional SNPs that did not reach genome-wide significance could add

valuable information to the PRS. Using additional summary statistics from GWAS

on smoking related traits (See method section), the selection method resulted in a

list of 100 relevant SNPs (smoking related SNPs). This list showed the strongest as-

sociation with mutational burden and Signature 4 mutations (Figure 4.7, β of 0.14

and 0.17 and p-value less than 0.0001 and 0.003 respectively). Also, leave-one-out

analysis performed on this list showed that the combination of several SNPs, in this

case, was valuable. Indeed, the removal of each individual SNPs did not dissolve

the observed associations with the total number of mutations nor with Signature 4

mutations (all p-values bellow 0.001 and 0.027 respectively), including the removal

of the chromosome 15 locus, identified previously as driver.
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FIGURE 4.7: Forest plots representing the associations between the

PRS scores and mutational burden. Results of the associations be-
tween the PRS scores and the total number of mutations are repre-
sented in panel A and with the number of signatures attributable to

Signature 4 in panel B.
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Differences between LUAD and LUSC samples

To assess if the association observed in the lung cancer samples was consistent in

LUAD and LUSC samples separately, we split the lung cancer samples into two

groups based on their histological subtype. Figure 4.8 highlights differences ob-

served in LUAD and LUSC samples. Firstly, Figures 4.8A and B show that the PRS

built on the smoking related SNPs is associated with the total number of mutations

as well as with the Signature 4 mutations only in the LUAD samples. Figure 4.8C

represents the distributions of the number of mutations in the different smoking

groups (never, current, former smokers who quit smoking since more than 15 years

and former smokers who quit smoking since less than 15 years) in each subtype. The

mutational burden was more variable between smoking categories in LUAD sam-

ples than in LUSC samples. There were though fewer never smokers in the LUSC

cohort in comparison to the LUAD cohort (2% of never smokers in LUSC versus

14% in LUAD), which could explain the differences observed between the two co-

horts. We thus tested the association between the PRS and mutational burden when

stratifying by smoking status (Figures 4.8A and B). In ever smokers, an association

between the PRS values and mutational burden was still observed. Nevertheless,

the strength of the association decreased and differences of associations were ob-

served when further stratifying in current and former smokers. Indeed, no associa-

tion between the PRS and mutation burden was observed in the current smokers.
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FIGURE 4.8: Comparison of LUAD and LUSC samples. Panels A and
B show respectively the forest plots representing the associations of
the smoking PRS with the total number of mutations and the number
of mutations attributable to Signature 4 when stratifying by histology
and smoking status. Panel C represents the distributions of the total
number of mutations (top) and Signature 4 mutations (bottom) in the
two cohorts across different smoking categories (never, current, former
smokers who quit smoking since more than 15 years and former smok-

ers who quit smoking since less than 15 years).
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Mendelian randomization (MR) analysis

The previous results suggested that the association between lung cancer suscepti-

bility SNPs and mutational burden is strongly related to smoking. Therefore, we

selected smoking instruments previously identified for cigarettes per day (CPD),

smoking cessation (SmkCes), smoking initiation (SmkInit) and age of initiation (AgeInit)

by the GSCAN consortium [210] to validate the causal effect of smoking on muta-

tional burden and to test for potential pleiotropic effects. Multiple MR tests were

performed to test the causal effects of each smoking trait on mutational burden.

Figure 4.9 provides a graphical representation of those tests results by represent-

ing the effects of the genetic instruments on the mutational burden as a function of

their effects on each smoking exposure variable. Table 4.1 provides the associated

summary statistics. Among the four exposures, only the CPD trait was attributed a

significant causal effect on mutational burden in at least two different MR tests. In-

deed, out of the five tests performed four concluded on a causal effect. One of these

tests was the MR-Egger test that, on top of confirming the causal effect detected by

the other tests, identified a pleiotropic effect (Intercept p-value of 0.0328). Also, on

the scatter plot related to the CPD exposure represented in Figure 4.9, one can no-

tice a potential outlier SNP, with a higher effect on the exposure, that could drive

the association. The outlier SNP, rs10519203, is located on the chromosome 15q25

locus identified as driver in the PRS analysis. Following this observation, a leave-

one-out analysis was performed and confirmed that removing this variant dissolves

the causal effect (IVW test, p-value = 0.86). The heterogeneity observed between the

genetic variants coupled with the MR-Egger test results suggests a pleiotropic effect

involved in the association between smoking and mutational burden and attests the

complexity of the smoking trait.
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FIGURE 4.9: Graphical representation of the MR tests results. Scatter
plots representing the effects on the total number of mutations and Sig-
nature 4 mutations on the y-axes (left and right columns respectively)
and the effects on the four exposures on the x-axes. The colored lines

correspond to the regression lines of the different MR tests.
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Total number of mutations Signature 4 mutations

Exposure Method NbSNP b se pval b se pval

CPD MR Egger 35 3.16 1.09 0.007 4.95 1.65 0.005

CPD Weighted median 35 2.31 0.72 0.001 3.43 1.39 0.014

CPD IVW 35 1.21 0.69 0.077 2.02 0.99 0.041

CPD Simple mode 35 1.06 2.15 0.626 2.44 3.36 0.474

CPD Weighted mode 35 2.09 0.73 0.007 3.4 1.24 0.01

Smoking cessation MR Egger 11 0.08 2.9 0.978 -0.09 4.88 0.986

Smoking cessation Weighted median 11 1.29 1.03 0.21 1.66 1.95 0.396

Smoking cessation IVW 11 2.23 0.9 0.013 3.21 1.55 0.038

Smoking cessation Simple mode 11 0.94 1.52 0.547 1.71 3.03 0.585

Smoking cessation Weighted mode 11 1.02 1.32 0.455 1.46 2.59 0.586

Age of initiation MR Egger 6 15.16 10.18 0.211 21.83 19.82 0.333

Age of initiation Weighted median 6 1.09 2.51 0.664 3.82 4.59 0.405

Age of initiation IVW 6 0.8 1.92 0.677 2.35 3.75 0.531

Age of initiation Simple mode 6 1.12 4.04 0.792 5.01 6.49 0.475

Age of initiation Weighted mode 6 2.6 4.04 0.548 4.84 5.95 0.453

Smoking initiation MR Egger 228 2.13 1.35 0.116 1.05 2.17 0.631

Smoking initiation Weighted median 228 1.24 0.43 0.004 0.81 0.79 0.305

Smoking initiation IVW 228 0.17 0.33 0.61 0.56 0.53 0.289

Smoking initiation Simple mode 228 2.29 1.36 0.094 2.06 2.37 0.387

Smoking initiation Weighted mode 228 2.29 1.14 0.046 2.06 1.91 0.283

TABLE 4.1: MR summary statistics. MR summary statistics associated
to five MR tests assessing the causal effects of four smoking traits on

total number of mutations and Signature 4 mutations.

Both the PRS and MR analyses highlighted the locus on chromosome 15q25 as

driver of the associations observed between lung cancer germline susceptibility and

somatic mutation load. Figure 4.10 represents the distribution of the total num-

ber of mutations (panel A) and the Signature 4 mutations (panel B) in the different

genotype group for the rs10519203 SNP in LUAD samples and shows a substantial

increase in both variables respectively between the two homozygote groups. Fur-

ther analyses would be required to understand how these extreme groups differ on

the molecular level.
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FIGURE 4.10: The chromosome 15q25 region. A) Distribution of the
total number of mutations in the three genotype groups for rs10519203.
B) Distribution of the number of Signature 4 mutations in the three
genotype groups for rs10519203. C) The ten hallmarks of cancer, red
circles highlight the hallmarks differentially expressed between the
rs10519203 homozygote groups (q-value threshold set at 0.1). D) Tissue-
specific functional networks retrieved from the HumanBase web site
[211] representing the genes functionally related to the CHRNA5 gene

in the lung tissue.
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4.2.4 Conclusion and discussion

In the past years, multiple GWAS studies have identified more than 40 lung cancer

susceptibility loci [78]. The impact of germline variations on lung tissue in conjunc-

tion with smoking still needs though to be explored. It is expected that an increase

in smoking increases as well the number of somatic mutations in the tumor and thus

induces a higher risk of lung cancer. In this study, we confirmed this hypothesis by

observing a significant correlation between the number of somatic mutations and

lung cancer susceptibility variants. However, the associations observed were het-

erogeneous across variants and different between the LUAD and LUSC subtypes

which suggests that other mechanisms might be involved.

The PRS analysis indicated an association between lung cancer germline sus-

ceptibility and somatic mutations in lung tumors. However, this association was

dependent on the SNPs included in the PRS. Among the genome-wide significant

SNPs, one variant on the chromosome 15q25 locus had a particularly strong effect

and drove the germline-somatic interaction in the lung tumors. This observation is

in line with multiple previous GWAS analyses highlighting the same region contain-

ing the hits with the strongest effects on lung cancer and smoking traits [168, 169, 79,

80]. Nevertheless, the selection of SNPs above the genome-wide significance thresh-

old did add independent information, as the association remained after exclusion of

individual SNPs in the leave-one-out analysis. This observation suggested that a

better selection of the SNPs could be valuable to explore germline-somatic interac-

tions. One solution to make this selection is to use prior information on each SNP

based on other datasets. In this study, we chose GWAS summary statistics of smok-

ing related traits but other data types, like eQTL data or SNPs annotations, e.g. the

SNPs impact or their associated genes, could be used. A lung cancer associated SNP

being an eQTL shows indeed stronger evidence and should be favoured in the PRS

SNPs selection. Additionally, integrating those data could provide insights into the

biological mechanisms involved in lung cancer susceptibility.

An unexpected result from this work was that the association observed between

germline variants and mutational burden was revealed in lung adenocarcinomas

only and not in lung squamous cell carcinomas. Previous studies have highlighted

so far differences between the two subtypes. At the molecular level, Campbell et al.

showed that LUSC can be closer to other squamous carcinomas than LUAD [212].

Also, the effects of several lung cancer susceptibility SNPs have been reported as

different between the histological subgroups [175, 80]. However, the chromosome

15q25 locus is not one of them and is strongly associated with smoking behaviour,

a common risk factor for both subtypes. While the differences observed between
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the two cohorts might be specific to the TCGA dataset, another reason could be that

even if smoking is a common risk factor, different smoking behaviours are observed

between the two cancer types (See Introduction section 1.1). In the TCGA lung can-

cer cohorts, those differences were observed, with a difference in the proportions of

never smokers in LUAD and LUSC. Hence, the selection of samples based on their

histology or on their smoking status could induce collider bias. This bias generally

occurs when an exposure and an outcome impact a third variable, the collider. How-

ever, it can also result from a non-representative selection of samples, e.g when the

exposure and the outcome variable drive the selection of the samples in the study

[213]. This bias could explain the absence of association in the LUSC samples and

more broadly could impact such analyses where only cancer cases are considered.

Using multiple MR tests, a causal effect has been identified between cigarettes

per day and mutational burden. However, pleiotropy has also been detected by the

MR-Egger test. In addition, leave-one-out analysis indicated that the causal effect

was driven by one genetic instrument located on the CHRNA5 region (chromosome

15q25 locus). Further analyses restricted to the chromosome 15q25 locus would be

needed since the detected pleiotropy might be related to this locus. This locus has

been indeed identified so far as associated to different traits (lung cancer, smoking

traits, chronic obstructive pulmonary disease (COPD)). Although the causal genes

involved have not been fully identified, two main genes have shown stronger ev-

idence: CHRNA5 and Iron Responsive Element Binding Protein 2 (IREB2) [214]. In

the work of Bosse et al., the knock-down of IREB2 has been associated with an in-

crease of DNA damages in human lung fibroblast [214]. As the biological mecha-

nisms impacted by the chromosome 15q25 locus remain unclear, the use of other

omics datasets could bring new insights. As a preliminary analysis, gene set vari-

ation analysis (GSVA) was performed on expression data. The expression profiles

of the two rs10519203 homozygote groups (See Figure 4.10A-B) were compared to

identify mechanisms underlying their molecular differences. The analysis revealed

a differential activity for two hallmarks of cancer: "Enabling replicative immortal-

ity", in which telomeres play a central role [7], and "Genome instability and muta-

tions" involving DNA repair mechanisms (q-values of 0.021 and 0.098 respectively,

Figure 4.10C). In line with these preliminary results, the HumanBase online portal

[211] reports that CHRNA5 might interact with DNA repair genes in the lung tis-

sue (see Figure 4.10D). To confirm the involvement of those pathways and identify

others potentially involved, other characteristics of the tumors, like the copy num-

ber variations, rearrangements, methylation profiles or other variables derived from

molecular data like immune context variables [64], could be explored and explain
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the observed heterogeneity. For that purpose, a supervised method like PLS-DA or

DIABLO could be used in order to identify molecular features discriminating the

two homozygote groups for rs10519203 (See Introduction section 1.4).

Currently, few studies are combining and taking advantage of both publicly

available GWAS and multi-omics data. Nevertheless, there is a wide range of op-

portunities for such studies. To begin with, the TCGA data processed here could be

further explored by investigating the other cancer types individually, e.g. one could

study the influence and mediation of Body Mass Index (BMI) on breast and colorec-

tal tumors or of alcohol on oesophagus tumors. Based on the same data, another

possibility would be to develop a pan-cancer approach. Alternatively, the ICGC

and PCAWG projects [55] (See Introduction section 1.2) represent other valuable re-

sources providing whole-genome sequencing data for around 40 cancer types.

Furthermore, while we focused our study on the total number of mutations and Sig-

nature 4 mutations in lung tumors, other mutational signatures identified in these

cancers could be investigated. Alexandrov et al. suggested that the Signatures 2 and

13 could be indirectly resulting from tobacco smoke, e.g. as a result of inflammation

or indirect outcome of DNA damage [177].

The study presented in this chapter faces several limitations. Firstly, in contrast

to the large datasets usually used to explore germline susceptibility, the sample size

used here, reaching less than 1000 samples, was relatively small. Depending on the

lists of susceptibility SNPs considered for the PRS or the MR analyses, the associ-

ation with mutational burden varied, indicated either that the association is more

complex than expected or that there is a lack of statistical power. Also, the somatic

landscape of a tumor can be complex; the interaction between somatic events could

make the interpretation of the results more difficult. For example, some somatic

mutations or tumor characteristics like Microsatellite Instability (MSI) status can in-

fluence the mutational burden of tumors. Such tumor characteristics could bias the

association studied here. For theses different reasons, replicating the results in an

independent dataset would be needed.

Additionally, our analyses considered only European samples, since the main

ancestry represented currently in public databases is the European ancestry. Ducan

et al. highlighted that 67% of the GWAS studies conducted between 2008 and 2017

were based on European populations and showed that PRS scores derived from

those studies under-performed in non-European populations due to differences in

genetic architecture and allele frequencies [215]. The lung cancer susceptibility locus

on chromosome 15q25 itself is not found in the Asian population. Hence, most of

the work presented here does not generalize to other populations. The sample size
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and the diversity of genetic studies are though currently increasing and projects

specifically aiming at exploring differences between cancers around the world are

emerging. One of these projects, the Mutographs project [216], is adapted to study

germline-somatic interactions since it attempts to explore, based on WGS, the mu-

tational signatures in five cancer types from diverse populations.

Finally, another limitation of the analyses relates to measurements errors. On

one hand, the mutational signatures were attributed based on the WES data, which

could lead to uncertainty, especially if the number of mutations in those tumors is

low. Thus transforming the number of mutations attributable to Signature 4 from

a continuous variable to a categorical variable (presence or absence of Signature 4)

might be more appropriate. Also, the Signature 4 which is associated to smoking can

be observed in patients exposed to other chemicals like arsenic, benzene or bisphe-

nol [217]. In this study, the presence of the Signature 4 was observed in some never

smokers, which could be explained by passive smoking cases, misclassifications or

the implication of one of the other exposures previously mentioned. Each case could

impact the association tested between germline susceptibility and the Signature 4

mutation burden. Besides, the work of Alexandrov et al. on the new mutational sig-

natures [32], highlighted that previous signatures could reflect overlapping signals

and be separated. This overlap of mutational processes could hinder the detection

of associations between germline events and mutational signatures and complicate

their interpretations. On the other hand, the choice of adapted variables to study

the smoking trait is not always straightforward. In 2008, Le Marchand et al. sug-

gested that cigarettes per day might not be a good measure of smoking dose [218].

They showed, for two variants on the chromosome 15q25, that carriers tended to

smoke more intensively (even for the same amount of CPD) and were thus exposed

to higher levels of nicotine per cigarette dose. While this observation points out a

limitation in our SNPs selection, especially the instruments for the MR analysis, it

might explain the pleiotropic effect associated to this loci. In addition to the dif-

ficulty to measure the smoking exposure, the heterogeneity of the trait is high (e.g

smoking depth will impact smoking heaviness in addition to the common CPD fea-

ture). Further work considering more diverse and adapted measurements of smok-

ing exposure would thus probably help to disentangle the several impacts of lung

cancer susceptibility on the lung tissue in conjunction with smoking. In this context,

Wooton et al. proposed recently a measure of lifetime smoking exposure by com-

bining multiple smoking traits measurement like smoking duration, heaviness and

cessation, in what they called the lifetime smoking index [219]. Instruments for this

index could replace the smoking-related instruments used in this work.
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4.2.5 Contribution

I performed most of the data processing and analyses presented in this chapter. In

terms of data processing, I performed the imputation of the TCGA samples from all

cohorts available and co-supervised a master student to automatize and improve

the workflow for future reuse. Regarding the analyses, I gathered the TCGA clinical

and somatic molecular data from public resources. I combined and harmonized

summary statistics coming from a GWAx on lung cancer (performed by Dr. Atkins)

and on smoking-related traits (from the GSCAN study). Based on the previously

mentioned datasets, I finally performed the PRS and MR analyses.
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Chapter 5

General discussion

The work presented in this thesis took advantage of omics datasets and integrative

analyses in order to shed light on distinct lung cancer types. Chapter 2 character-

ized the LNEN samples at the molecular level and identified relevant molecular

subgroups. In particular, the atypical carcinoids, usually described as having an

intermediate survival, were stratified in two groups with poor and good progno-

sis respectively. In Chapter 3, the generation of a molecular map of LNEN sam-

ples has been described, and data sharing and reuse were promoted by providing

both the transcriptomic data underlying the pan-LNEN molecular map as well as

the pipelines required to reproduce the analyses or to process new data following

the same workflows. Finally, in Chapter 4, germline and somatic data of NSCLC

cancer samples were integrated to investigate the germline somatic interactions in

these cancers. While associations between germline susceptibility to lung cancer

and mutational burden in lung tumors were identified, they were driven by tobacco

smoking susceptibility SNPs and pleiotropic effects were detected, suggesting more

complexity. While the main results of this thesis have been discussed in each chap-

ter, the following paragraphs expand on some of the limitations and possible exten-

sions of the different studies as well as on how those analyses fit in the current and

future field of cancer genomics.

5.1 Multiple ways of integrating omics data

The three chapters of this thesis take advantage of integrative analyses to explore

omics datasets. In cancer genomics, we can think of different types of data integra-

tion. Firstly, multi-omics data measured in the same individuals can be combined.

In this thesis, multiple layers of omics data, like expression and methylation, were

used to identify subgroups of tumors with specific molecular profiles and to char-

acterize them (chapters 2 and 3). One limitation of this approach though is that the
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interactions between the different layers are not taken into consideration. Indeed, as

described in the introduction section 1.1, cancer biology is based on complex regula-

tory networks that span all biological layers, including the genomic, transcriptomic,

post-transcriptomic, post-translational and epigenetic levels. Approaches that take

into account the biological relationship across omics would be valuable to iden-

tify and understand the mechanisms involved. While methods like MOFA (used

in chapter 2) can identify sources of variations shared across distinct omics layers,

it does not capture the underlying mechanisms, e.g. which methylation events reg-

ulate specific gene expressions. Such analyses could be expanded by focusing on

omics interactions. More and more studies, like the one presented in chapter 4, at-

tempt to decipher how molecular alterations impact each other. For example, corre-

lation analyses between omics datasets can be performed. Calabrese et al. identified

associations between DNA and RNA alterations, e.g. associations between muta-

tions and splicing events or fusions and rearrangements [124]. Another example is

the Enhancer Linking by Methylation/Expression Relationships (ELMER) method,

which was developed to infer regulatory elements by combining expression and

methylation data. Such methods have been used in regulatory networks analyses

[220] to have a deeper understanding of the processes of cancer development and

progression and to identify cancer drivers.

While integrating different omics layers brings valuable insights on cancer de-

velopment, they could be combined as well with non-omics data like clinical data.

Firstly, such integration is helpful to determine the value of the molecular groups

that could be identified by omics studies. In chapter 2, for example, we used the

histopathological classification to identify clinically relevant subgroups of pulmonary

carcinoids, whose survival data were contrasted. Besides, as described in this thesis,

aside from the endogenous molecular events, cancer can result from exogenous pro-

cesses like environmental exposures and lifestyle. In the work presented in chapter

4, we attempted to better understand the influence of lung cancer risk variants on

somatic events in conjunction with the smoking exposure. While an association be-

tween germline variants, related to lung cancer and smoking behaviours, and mu-

tational burden was identified, pleiotropy was also detected and its origin remains

unclear. In this case, a detailed description of the patient’s exposome would be bene-

ficial to understand the causal pathways of these associations. The description of the

exposome could go from a more detailed characterization of exposures (e.g. smoking

intensity, duration, type of smoking, other exposures like air pollution) to further

information on clinical characteristics such as the development of other chronic dis-

eases (e.g. COPD in the case of lung cancer), and measurements of lung functions
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(e.g. Forced Expiratory Volume (FEV)). Those information could, in our case, help

to disentangle the pleiotropic effects identified. However gathering comprehensive

clinical data is challenging [221, 54]. Patients can move around different centers in

the care system where medical records of patients are often not organized uniformly

across countries and even inside a single country. Thus, along with the molecular

data, improving the availability of such data in the next years would be required.

Finally, another way of performing data integration consists in combining datasets

from different studies performing the same measurements on different sets of sam-

ples. This integration type has the advantage not only to increase the sample size of

the study but also to enable to compare samples coming from distinct tumor types

in the case of pan-cancer studies. In chapter 2, contrasting the pulmonary carci-

noids with the LCNEC samples has enabled to identify the supra-carcinoids having

the histopathological characteristics of the pulmonary carcinoids but the molecu-

lar features of the LCNEC samples. This observation highlighted aggressive pul-

monary carcinoids and supported the hypothesis of a potential link between low

and high grade LNENs. Hence, completing the data integration with other cancer

types could lead to the discovery of new entities and generate new hypotheses on

those potential links. Performing cross-cancer studies can also allow to identify and

better understand common carcinogenesis mechanisms [222]. Indeed, across can-

cer types, key dis-regulated pathways overlap, and the pleiotropic nature of can-

cer alterations, i.e. their ability to influence multiple pathways and diseases, could

be utilised to better understand cancer mechanisms. In risk prediction, it has been

shown that combining GWAS summary statistics on multiple traits can improve risk

prediction tasks in contrast to single-trait analyses [223]. In this context, the work

presented in chapter 4 on germline-somatic interactions could be extended. Based

on exomes or genomes, a GWAS on complex phenotypes like somatic features (e.g.

mutational burden or DNA repair molecular signatures) could be performed using

a cross-cancer cohort to explore further the influence of germline susceptibility on

molecular events. While the sample sizes of somatic studies are so far not compa-

rable to the one used in classical GWAS, future genomics projects will help to reach

the sample size needed to answer such questions.

In the work presented in this thesis, the data integration performed relied on

computational analyses based on different machine learning methods, both super-

vised methods with the use of random forest and regression analyses, and unsu-

pervised methods like dimensional reduction techniques. The complexity of the
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data to integrate, including the difficulty of gathering complete and accurate clin-

ical data, the high dimensionality and the biological complexity of the data, may

require though to expand on those methods.

5.2 Expanding on machine learning methods

People often think of machine learning or more broadly artificial intelligence as

methods able to outperform what humans can do. However, these algorithms face

biases similar to those impacting humans decision making [224]. For example, as

mentioned in this thesis, due to the curse of dimensionality and the limited size

of datasets, it is not easy to evaluate and describe rare events. Also, the methods

are used on data gathered, and in the case of supervised methods, labelled by hu-

mans, they are thus prone to errors. In chapter 2, a random forest classifier has been

trained on molecular data to recognize the histopathological classification of LNEN

samples. However, it is known that the classification of those samples is imperfect

and misclassifications can occur. To avoid training a model on uncertain labelled

data, one option could be to use semi-supervised learning. This category of machine

learning lies between supervised and unsupervised analysis since both labelled and

unlabelled data are considered. The idea is to first train the model on the labelled

data, the model is then applied on the unlabelled data and confident predictions are

iteratively incorporated in the labelled dataset to retrain a model that should be im-

proved [102, 225]. In the case of the LNEN data, samples for which a consensus was

reached among pathologists could be used as labelled data and the samples whose

classification is more uncertain as unlabelled samples.

The high dimensionality of genomics data, as well as the complexity of cancer

biology, complicate the analysis and interpretation of such data. In this thesis, we

used machine learning algorithms that can capture complex structures in the data,

like random forest and dimensionality reduction methods. In the past years, deep

learning, a branch of machine learning methods, has been commonly used in com-

puter vision and text processing to learn more complex features from the data. In

the field of cancer research, deep learning has been applied mostly on images like

histopathological slides [106]. Considering the increased number of genomics stud-

ies, such methods could though also be applied to genomics data. In the case of

smaller studies like the LNEN studies presented in this thesis, the applicability of

deep learning algorithms is however limited. One solution though, would be to

take advantage of the large databases and apply what is called transfer learning.

This method consists in reusing existing models, usually trained on large datasets.
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The parameters of the model are not randomly initialized since retrieved from a pre-

trained model. This way, the basic features in common between the training dataset

and the dataset, on which the model is transferred, do not need to be learned again.

In the deep learning field, repositories storing such models have been created and

called model zoos. One of them, named Kipoi [106], is dedicated to deep learning

models applied on genomics datasets and is in line with the promotion of open ac-

cess research. Such repositories will probably grow with the large amount of omics

data that will be available in the future, enabling the use of deep learning methods

on raw omics data like expression or methylation. Note that other solutions exist;

examples of transcriptomic data transformation to 2D images have indeed been al-

ready proposed to enable the use of deep learning method for cancer classification

[226, 227] and could be extended to multi-omics analyses. Also, apart from classifi-

cation problems, other research questions in genomics could be explored using deep

learning approach, e.g. GWAS variants prioritization [228].

While they can capture complex patterns in the data, often, machine learning

methods, in particular deep learning, are criticized for being difficult to interpret,

they are considered as "black box" models. Indeed the biological value of the pat-

terns identified by the methods can be explored only if the model is interpretable.

Multiple strategies already exist for that purpose [229]. Some methods perturb the

model inputs and explore the impact of the perturbations to identify important fea-

tures. Other methods, such as random forest, for example, can directly provide feed-

back on the most discriminating features by inspecting the model’s parameters. Our

work in chapter 2 could be improved in this context. Indeed, using random forest,

molecular subgroups of atypical carcinoids with different prognoses were identi-

fied. However, considering the limited number of samples and to limit overfitting,

a leave-one-out analysis was performed. This led to the generation of one classifi-

cation model for each sample and hence complicated the interpretation of the final

classifier. Gathering more samples, especially the atypical carcinoids, would allow

us to replicate the analyses and would be more adapted for the extraction of impor-

tant features characterizing the two groups of atypical carcinoids.

Integrative approaches, as well as computational methods like machine learning,

have been broadly applied in the past years to study lung cancer genomics on both

the germline and somatic levels. However, due to the complexity of cancer and

genomics data, which has been revealed to be more complex than initially thought,

multiple challenges remain.
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5.3 Future challenges in lung cancer genomics studies

The three chapters of the manuscript focused on lung cancers, which are tumors

that have been relatively well characterized over the past decades. From a germline

point of view, lung cancer GWAS have identified susceptibility loci associated with

lung cancer overall but also with lung cancer subtypes and with samples from dif-

ferent smoking status. In terms of risk prediction, lung cancer has been described

however as one of the cancer types for which PRS have a limited added value for

risk assessment in comparison to existing criteria [230], which is probably due to the

modest heritability of lung cancer [158] as well as the strong association of the dis-

ease with smoking. The sample size needed to explain 80% of the GWAS heritability

for this cancer type has been estimated to 1,000,000 cases [158]. Integrating existing

and new large datasets would increase the statistical power and lead to new suscep-

tibility loci identification. However, such scale for lung cancer cases analyses will be

difficult to reach in the near future. In the meantime, it has been suggested that the

next steps to undertake in lung cancer genetics would be to identify the causal genes

and pathways involved in the disease and to improve our understanding of the un-

derlying complex biological networks. Integrative and causal approaches like the

ones presented in chapter 4, contrasting germline susceptibility and somatic molec-

ular events, can help in this direction.

On the somatic level, omics studies of lung cancers have revealed clinically rele-

vant molecular profiles of lung cancers. However, most of these studies, including

the ones presented in this thesis focused on bulk tumor cells analyses. The molec-

ular profiles observed in those data result from a mixture of heterogeneous cells,

that can come from the tumor but also its microenvironment and thus might not be

representative of all cells issued from the clonal evolution of the tumor. Bulk tumor

cells studies are thus limited to explore tumor evolution and the influence of tumor

microenvironment on cancer development. Recently, the number of spatial studies

exploring multiple pieces of the tumor has increased to reach those goals. In the

case of lung cancers, the Tracking Cancer Evolution through Therapy (TRACERx)

project, launched in 2014, has been developed. The project is a longitudinal study

following more than 800 lung cancer patients and aiming at exploring NSCLC evo-

lution. The analysis of the first 100 cases have already provided valuable insights

on lung cancer progression and foreshadow a better comprehension of NSCLC evo-

lution in the next years [231]. Also, single-cell analyses have been developed to

explore omics data at the cell level and study the heterogeneity among millions of

cells. This large data scale is thus particularly appropriate to apply data integration

and methods like machine learning, in comparison with studies on bulk tumor cells
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whose low sample sizes lead to multiple challenges.

In addition, while common lung cancer tumors have been so far relatively well

characterized, rarer forms of lung cancers would benefit from further investiga-

tions. Chapter 2 performed a molecular characterization of the rare lung neuroen-

docrine tumors based on multi-omics data identifying distinct molecular clusters

of pulmonary carcinoids. Even if this study corresponds to the largest multi-omics

datasets on LNEN samples, the sample size is still limited, and the results require

validation, in particular the discovery of the supra-carcinoids, composed of only six

samples. Further characterization of those tumors would require to gather more

pulmonary carcinoids samples. In the near future, the LNEN molecular groups

identified will be further characterized in the context of the rare cancers genomics

initiative to confirm their existence as well as to explore their potential link with

other lung cancer types. In line with the latter objective, the molecular map de-

scribed in chapter 3 is currently being updated with the integration of other lung

tumors, LUAD and LUSC samples, and will be further completed with the data

from the new LNEN study.

Finally, the etiology of several lung cancers still needs to be explored. Indeed,

while smoking is the strongest lung cancer risk factor, lung cancers are also detected

in never smokers. For that purpose, a better description of the patient’s exposome is

required. As described at the beginning of this chapter, lung cancer genomics stud-

ies would benefit from the integration of omics with non-omics data such as clinical

information. One step in that direction would be to take advantage of the patient’s

electronic health records that would in future studies be more frequently available.

Although the analyses of such data raise challenges, like data heterogeneity and

complex data types (e.g. unstructured data), the use of methods, like machine learn-

ing, could help to integrate them in genomics studies.

As mentioned in the previous paragraphs, multiple lung cancer genomics stud-

ies would benefit from larger samples sizes. In the following sections, we describe

how future genomics projects around the world could assist and complete exist-

ing studies and how the analyses presented in this thesis could be translated in the

context of those new data.
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5.4 The establishment of larger omics datasets

The extension of large research projects

Across the three chapters of this thesis, one limitation has been the access to a lim-

ited number of samples. In the two first chapters, the fact that LNEN cancers are

rare is an obstacle to genomics data collection. The final sample size might not

provide a complete picture of the molecular profiles existing in these cancer types.

In the third chapter, the germline somatic interactions in LUAD and LUSC cancers

were explored. While those lung cancer types are common and the use of the TCGA

data allowed to reach almost 1000 samples, the genetic effects of common variants

tend to be weak. As such, larger samples sizes will be required to examine weak

genetic effects in this context extensively. As described in the introduction section

1.2, after the TCGA initiative, larger genomics projects like the ICGC or the UK-

biobank have emerged and are currently being extended for research purposes. The

ICGC has launched a new project called the Accelerate Research in Genomic On-

cology (ICGC-ARGO) project aiming at applying sequencing techniques on more

than 100,000 cancer samples. The project has already gathered more than 50,000

donors and plans to provide curated and complete clinical data to accompany the

genomics data, which, as mentioned previously, is usually a challenge for large ge-

nomics projects [54, 232]. Also, the 500,000 UKbiobank samples are going to be

whole-genome sequenced to explore further germline genetics. Finally, the coordi-

nation of several national health programs mentioned in the next paragraph could

provide additional access to genomics data. Those expansions give us the opportu-

nity to reproduce the studies presented in the manuscript on larger datasets in order

to replicate the results and to complement them with further analyses.

The development of clinical projects

In the past years, the genomics studies in academic research have influenced the

way cancer patients are managed and have paved the way to national genomics pro-

grams designed for the use of such data routinely in the clinic in order to advance the

field of precision medicine [233]. Indeed, multiple national genomics projects have

started worldwide. In France, for example, in the context of the "France médecine

génomique 2025" project, two sequencing platforms were launched in 2017 and the

sequencing of around 40,000 genomes is expected every year [234]. In the UK, the

100,000 genomes Project launched by Genomics England in 2012 planed to sequence

100,000 patients, including patients with cancer or rare diseases [235]. This initial
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goal was reached in 2018 and the plans were expanded to the sequencing of one

million genomes in the following years. Both projects aim at integrating genomics

data analyses in health care by taking advantage of what has already been learnt

in the era of genomics as well as to provide new insights on human diseases like

cancer. In the context of the latter goal, the Genomics England Clinical Interpreta-

tion Partnership (GeCIP), which forms groups of researchers, has been established

to study specific domains to improve our understanding of the different diseases

and the application of genomic medicine in clinical care [236].

Translating omics research results to the clinic

The generation of several genomics studies provides valuable knowledge on onco-

genesis processes that can be leveraged to inform individual or groups of newly

sequenced samples. One example of such an application is the Cancer Genome In-

terpreter (CGI). The CGI is an open platform that gathers and takes advantage of

genomics information from thousands of already sequenced tumors to explore mu-

tational patterns and identify clinically relevant driver alterations [237]. Similarly,

the approaches and results presented in this thesis could be used to inform the clin-

ical care of newly sequenced samples.

In the first chapter, taking advantage of expression and methylation datasets,

molecular subgroups of pulmonary carcinoids have been identified. Those clusters,

characterized by distinct prognoses, presented added value to the current histopatho-

logical classification. Future analyses validating and further characterizing these

clusters could allow to identify potential biomarkers and inform future classifica-

tion of LNEN tumors. This analysis provides an example of how genomics analyses

can guide the diagnosis of new patients. However, in the context of the current and

future clinical projects mentioned previously, efforts concentrate on one omic layer,

the genome. Analyses like the one presented in chapter 2 are based though on tran-

scriptomes and methylomes and suggest that incorporating the use of those data

in clinical settings, such as the national programs described previously, would be

beneficial for the patients.

In chapter 3, we suggested, in the discussion, that molecular maps could be used

as a reference to project new samples. In a future where thousands of samples will

be sequenced in the clinic, molecular maps could be explored to contrast the pro-

jected samples with the tumors already characterized. This could be particularly

valuable for cases that are difficult to classify and even lead to the identification

of misclassified samples. Also, using the molecular and prognostic characteristics
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of the reference tumors, to which the projected sample matches, could provide in-

sights on how the tumor might evolve and respond to different treatments. While

the main objective of the future clinical national programs is to use the patient’s

genome to identify known driver alterations to guide the clinical care, the previous

examples show how exploiting the similarities and differences between previously

characterized samples could guide the clinical care of new patients.

In chapter 4, PRS were used to provide a measure of lung cancer risk for each

individual. While in this study, PRS measures were correlated with mutational bur-

den to explore germline-somatic interactions, it could also be applied in a clinical

context for cancer prevention and early detection. Indeed, PRS can identify patients

with high risk for which early and regular screening protocols could be beneficial.

While we discussed that the use of PRS in lung cancer has, for now, limited value

in addition to smoking related criteria, PRS could be developed to stratify specific

categories of samples, e.g. among each smoking categories. In addition, PRS are still

often criticized for their lack of interpretability, which harms the credibility of these

methods for application in the clinic [195]. Approaches similar to the one proposed

in chapter 4 could be helpful to uncover the mechanisms underlying germline sus-

ceptibility and deal with interpretability issues.

Challenges of translational research

One difficulty raised by the application of research findings in the clinic is the se-

lection bias. Indeed, researchers need to keep in mind that the samples recruited

in an academic setting may not be representative of the whole population or of the

patients that are going to be treated in the clinic, due to various sources of bias.

Firstly, bias can occur due to inclusion criteria under which samples are selected

in cancer genomics studies. For example, samples under treatment or with previ-

ous disease conditions can be discarded. However, in a clinical setting, patients

with antecedents might be frequent. Hence, the results found in genomics research

could sometimes not replicate in a clinical setting. Surgical resections can not be

performed on all patients with cancer, and the use of biopsies is often not adapted

to genomics studies since they have poor cells content. Those samples are thus often

not represented in genomics studies. Also, samples included in research projects are

often collected at diagnosis and more clinically advanced cancers might be under-

represented. Finally, clinical genomics cohorts might themselves introduce biases

since the studies might focus on specific patients (e.g. patients that do not respond to

conventional treatments, patients whose diagnosis is difficult or rare cancer cases).

Such cohorts would not be ideal, for example, to generate a reference molecular map
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that would be used to characterize newly sequenced data, since the map would not

be representative of all tumors. These various biases bring additional sources of

heterogeneity in genomics studies and will thus complicate analyses like data inte-

gration.

Another major challenge of the implementation of cancer genomics datasets is to

increase diversity in the data to diminish disparities in cancer research. This chal-

lenge is often mentioned when considering germline studies involving, for example,

GWAS or PRS analyses. Indeed, most of the current GWAS studies were performed

on individuals from European ancestry. The identified associations and derived

measures, like PRS, do not generalize to other ancestries. The application of these

tools in the clinic is thus limited since it would not be beneficial for a large propor-

tion of the population. In addition, diversity is also a challenge to consider in studies

exploring the somatic landscape of tumors. In omics studies attempting to perform

molecular profiling of tumors, like the ones presented in chapter 2 and 3, the sam-

ple’s ethnicity is not always considered. Nevertheless, it has been shown that the

molecular profiles of tumors vary between ancestries and that those differences can

bias the results. Carrot-Zhang et al. showed, for example, that samples from African

origins harbour fewer mutations in the VHL and PBRM1 genes in renal cancer and

that ancestry can be an important confounder in genomics studies [238]. A large

proportion of omics studies, including the ones presented in this thesis, focused so

far on European samples. Considering that molecular features are being proposed

as biomarkers for clinical use, the inequalities observed in the data composition

might translate into disparities in clinical care. Including samples from diverse eth-

nicities in the genomics projects will not though be enough to overcome the current

disparities. Genome references data used in a large number of omics studies were

also built mostly on European participants and would need to be updated [239].

Finally, the lack of diversity in the datasets impacts also the interpretation and the

reuse of computational models like machine learning models. Indeed if the models

are trained on a biased and non-representative training set, it will hardly generalize

to the whole population [224].

The enlargement of academic genomics research projects and the development

of national clinical genomics projects provide multiple opportunities for data inte-

gration and foreshadow the ability to work on datasets with millions of samples in

the future. For this purpose, data sharing and open access research across the scien-

tific community worldwide is though required. The next section covers some of the

solutions and guidelines developed so far to achieve this goal.
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5.5 Sharing resources for genomics data analyses

In chapter 3, which integrated six transcriptomic datasets, we highlighted the im-

portance of harmonized processing workflows for data integration. In order to fa-

cilitate the reproducibility of our analyses and data reuse and integration, we pro-

vided: i) the pipelines built based on the Nextflow language and Docker containers

used for our analyses, ii) the homogenized dataset, and iii) interactive tools like a

computational notebook and a TumorMap. The work from this chapter is in line

with a broader effort towards open access data and research. Indeed, in the future

where datasets with millions of sequenced samples might be generated, tools that

can perform reproducible and automatized data processing and analyses will be

required.

Recently, multiple initiatives have collected such tools for promoting reproducibil-

ity. The nf-core framework has, for example, been created to provide a set of curated

and documented pipelines coded using Nextflow [240]. In addition to allowing

reproducibility, such pipelines provide the advantage of scaling to most computa-

tional environments like cloud servers. These environments enable researchers to

analyze large genomics data remotely without having to download and thus dupli-

cate them. Also, as the size of data increases, cloud infrastructures help to reduce

execution time and data storage by providing adjustable computational resources

for data analyses [150]. The Michigan and Topmed servers [191, 192] that perform

imputation on genotyping data in the cloud, as well as the Cancer Genome Collab-

oratory, a cloud resource developed to analyze the PCAWG data, can be considered

as examples [241].

Another way of promoting data re-investigation is to enable data exploration on

interactive platforms. To complement the integrated pan-LNEN dataset presented

in chapter 4, two interactive tools were used: a Nextjournal interactive computa-

tional notebook and the TumorMap portal. The latter enables future users to inter-

rogate the pan-LNEN molecular map directly, e.g through basic statistical testing,

hence favoring the generation of new hypotheses. In the past years, an increasing

number of such interactive tools emerged and encouraged data exploration by a

broader research community, since they can be exploited with little to no expertise

in computational biology. In the context of large genomic initiatives, a recent ex-

ample of an interactive platform, enabling online data query, is the Cancer Virtual

Cohort Discovery Analysis Platform (CVCDAP) [242]. The platform proposes to

perform pre-defined analyses on the TCGA data uniformly processed. With such

tools, any researcher can run genomics analyses without even accessing the data.

While multiple tools exist to analyze genomics data, data sharing itself raises
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challenges, especially if the data are coming from international collaborations. Re-

strictions principally due to variable legislation regarding health data sharing and

privacy exist. Indeed, sharing genomics data can present several risks. Those data

are sensitive since they could be used to re-identify patients included in the research

studies and could provide information that the patient might not want to share or

that might be used in discriminative ways. To assure the respectful use of genomics

data and overcome divergence in legislation, researchers have recently proposed

to elaborate an international code of conduct for data sharing [243]. In this con-

text, different initiatives like the Beyond 1 Million Genomes (B1MG) project and

the Global Alliance for Genomics and Health (GA4GH) are currently underway to

propose common protocols, in Europe and across the world respectively. These

projects aim at enabling data sharing across countries as well as developing an anal-

ysis framework for the forthcoming large genomics data while following legal and

ethical guidelines [244, 245]. The Collaboratory cloud resource mentioned previ-

ously, for example, has been developed in compliance with the GA4GH guidelines

and has enabled researchers around the globe to access and analyze thousands of

genomes. In Europe, 21 countries signed a declaration aiming at sharing 1 million

human genomes by 2022 [233]. This data sharing will operate through a European

law on data privacy, the General Data Protection Regulation (GDPR), which took

effect in 2018 and was an attempt to harmonize personal data protection regula-

tions in the European Union. In the context of genomics data, it imposes, for ex-

ample, pseudonymization, i.e. that samples included in research studies should not

be re-identifiable without any additional information. Together the regulations and

guidelines mentioned in this paragraph will allow researchers to share appropri-

ately, integrate and analyze omics data with samples sizes that could not have been

reached so far and thus promise important discoveries in cancer research in the next

years.

To conclude, the work presented in the manuscript has been developed around

integrative and computational analyses applied to different omics datasets in order

to: i) unveil the molecular diversity of the lung neuroendocrine tumors, ii) take ad-

vantage of independent LNEN transcriptomic datasets to increase sample size as

well as contrast tumor molecular profiles with the generation of a molecular map,

and iii) explore the interplay between germline susceptibility to lung cancer and tu-

mor mutational burden. Potential applications of the results described in this thesis
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in a clinical setting were discussed and range from risk prediction to tumor classi-

fication and prognosis inference. Finally, while the results and methods used en-

counter several limitations related to small samples sizes and data complexity, each

analysis could be enhanced in the context of larger genomics studies and clinical

programs whose data are going to be shared across the international scientific com-

munity in the next years.
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Appendix A

A.1 Supplementary material from Article 1: Integrative

and comparative genomic analyses identify clini-

cally relevant pulmonary carcinoid groups and un-

veil the supra-carcinoids
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Supplementary Information
Integrative and comparative genomic analyses identify
clinically relevant groups of pulmonary carcinoids and

unveil the supra-carcinoids

Alcala et al.
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Supplementary Figure 1 Overview of the multi-omic experimental design for LNEN samples. Overview of the number
of samples with whole-genome sequencing (WGS) or whole-exome sequencing (WES), RNA-sequencing (RNA-seq), and
Epic 850K methylation arrays (EPIC 850K array), for (A) typical carcinoids, (B) atypical carcinoids, (C) carcinoids, (D) large
cell neuroendocrine carcinoma (LCNEC), and (E) small cell lung cancer (SCLC). In all panels, new (light blue) and pub-
licly available (dark blue) data are mentioned separately. The total number of samples (n) are indicated next to each cancer
type. Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 2 Robustness of the MOFA latent factors presented in Figure 1A. Each panel corresponds to the
matrix of Pearson correlation coefficients between latent factors (LFs) from 20 replicate MOFA runs. Rows/columns corre-
spond to a single LF from a single MOFA run; rows/columns are clustered by LF (from 1 to 5), and ordered by run num-
ber (from 1 to 20) within a cluster (100 row/column in total). Colours represent the strength of the absolute correlation
(red for high correlation, blue for low correlation). A) Correlation between LF across runs for MOFA run on all LNEN
samples (the best run among the 20 is presented Figure 1A and Supplementary Figure 13B). B) Correlation between LF
across runs for MOFA run on all LNEN and SCLC samples (the best run among the 20 is presented Supplementary Figure
13A). In all panels, the red colour on the diagonal and the blue colours off-diagonal indicate a very good robustness of the
LF. Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 3 Correlations between MOFA latent factors (Figures 1A and 4A) and the principal compo-
nents of the PCA of expression (Supplementary Figure 6) and methylation (Supplementary Figure 7). Panels (A) and
(B) present the correlation matrices between expression and methylation PCA (left), between expression PCA and MOFA
(middle), and between methylation PCA and MOFA (right), for MOFA on LNEN samples and LNET samples, respec-
tively. Panels (C)-(P) highlight the strongest correlations from panels (A) and (B) in the form of scatter plots, and display
Pearson correlation coefficients and the p-values of the associated tests. Atypical, Typical and LCNEC samples are repre-
sented in red, black and blue respectively. Data necessary to reproduce the figure are provided in Supplementary Data 1, 2
and 3.
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(N=157)

(N=157)

Latent Factor 2

Latent Factor 1
(N=157)

Latent Factor 3

Supplementary Figure 4 Forest plot of the survival analysis based on the first three MOFA latent factors (LFs) of LNEN
samples from Figure 1A. Results correspond to a Cox proportional hazards model with coordinates of samples on the first
3 MOFA LFs as continuous explanatory variables. The black box represents estimated hazard ratios and whiskers repre-
sent the associated 95% confidence intervals. Wald test p-values are shown on the right; 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01,
and p < 0.001 are annotated by one, two, and three stars, respectively. Number of samples (N) for each group is given in
brackets. Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 5 Robustness of the consensus clustering of LNENs presented in Figure 1A. A) Heatmap of the
consensus matrix for four numbers of clusters K; cluster memberships and histopathological types are reported above the
columns, and the dendrogram represents a hierarchical clustering. B) Cluster membership as a function of K. C) Cluster-
ing quality metric (Dunn Index) for each value of K; the best clustering according to the metric is highlighted in pink. Data
necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 6 Principal Component Analysis (PCA) of transcriptome data. A) PCA of transcriptomes of typ-
ical and atypical carcinoids, LCNEC (i.e., LNEN), and SCLC. B) PCA of transcriptomes of typical, atypical carcinoids, and
LCNEC (i.e., LNEN). C) PCA of transcriptomes of typical, atypical carcinoids (i.e., LNET), and SCLC. D) PCA of transcrip-
tomes of typical and atypical carcinoids (i.e., LNET). On each panel, point colors correspond to histopathological types
(black for typical, red for atypical, grey for carcinoids, blue for LCNEC, beige for SCLC) and supra-carcinoids (orange),
polygons correspond to the LNEN clusters from Figure 1A, and filled surfaces correspond to LNET clusters from Figure
4A; their shapes correspond to the convex hull of samples from the focal cluster. The two technical replicates are circled in
black. Data necessary to reproduce the figure are provided in Supplementary Data 2.
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(LNEN). B) Analysis restricted to LNET samples. Figure design follows that of Supplementary Figure 6. Data necessary
to reproduce the figure are provided in Supplementary Data 3.
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Supplementary Figure 8 Comparison between consensus clustering on MOFA latent factors based on different clus-
tering algorithms. A) First column: copied from Supplementary Figures 5A and 18A; k-means clustering using the first
2 latent factors, for LNEN (top) and LNET (bottom) samples. Second column: weighted k-means clustering using the 5
latent factors identified by MOFA, weighted by their proportion of variance explained. B) Histopathological type (first col-
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to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 9 Analysis of the ML predictions based on a model integrating expression and methylation data
simultaneously. The analysis is similar to that used to produce Figure 1B-C, except that expression and methylation data
are integrated simultaneously in the model rather than independently (see Online Methods). Figure design follows that of
Figure 1B-C. Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 10 Comparison of the ML predictions when applying different thresholds to define the "Unclas-
sified" category. A) Copied from Figure 1B-C for reference. Upper panel : Confusion matrix associated with the ML pre-
dictions combined using expression and methylation-based predictions (see Online methods) and a threshold of 1.5 for
the definition of the "Unclassified" category. Lower panel: Kaplan-Meier curves of the overall survival of the different ML-
predictions groups. B) Upper panel: Confusion matrix associated with the ML predictions combined using expression and
methylation-based predictions and no threshold for the definition of the "Unclassified" category. In this case, the only sam-
ples predicted as "Unclassified" are the ones with discordant expression-based and methylation-based predictions. Lower
panel: Kaplan-Meier curves of the overall survival of the different ML-predictions groups. C) Upper panel: Confusion ma-
trix associated with the ML predictions combined using expression and methylation-based predictions and a threshold of
3 for the definition of the "Unclassified" category. Lower panel: Kaplan-Meier curves of the overall survival of the differ-
ent ML-predictions groups. For each Kaplan-Meier plot, the colour associated to each group matches that of the confusion
matrix in the upper panel. Next to each Kaplan-Meier plot, matrix layouts represent pairwise Wald tests between the refer-
ence group (in red) and the other groups, and the associated p-values; 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01, and p < 0.001 are
annotated by one, two, and three stars, respectively. Data necessary to reproduce the figure are provided in Supplemen-
tary Data 1.
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Supplementary Figure 11 Comparison of overall survival based on different classifications. A) Forest plot of hazard ra-
tios of overall survival for two alternative models. Left panel: a model based on the histopathological report. Right panel:
a model based on the machine learning predictions from expression and methylation data. For the two models, the same
set of 138 samples was considered (see Online methods). B) Boxplot of the expression level (in Fragments Per Kilobase
Million; FPKM) of MKI67 for each prediction group highlighted in Figure 1B. cTC (consensus typical) are typical samples
predicted as typical, PCA->UC carcinoids predicted as unclassified, AC->TC atypical samples predicted as typical, cAC
(consensus atypical) atypical samples predicted as atypical and cLCNEC (consensus LCNEC) LCNEC samples predicted
as LCNEC. Centre line represents the median and box bounds represent the inter-quartile range (IQR). The whiskers span
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the ML predictions based on MKI67 expression only. Left panel: Confusion matrix associated with the machine learning
predictions based on MKI67 expression. Middle panel: Kaplan-Meier curves of the overall survival of the different ML-
predictions groups. The colour associated to each group matches that of the confusion matrix (left panel). Right panel:
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two, and three stars, respectively. Number of samples (N) for each group is given in brackets. Data necessary to reproduce
the figure are provided in Supplementary Data 1.
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Supplementary Figure 12 Analysis of the ML predictions when considering (A) MOFA latent factors and (B) PCA prin-
cipal components as features in the classification model. The analyses are similar to that used to produce Figure 1B-C,
except that MOFA latent factors or PCA principal components are used instead of expression and methylation (see Online
Methods). The MOFA latent factors and principal components explaining more than 2 % of the variance were used in the
analysis. The design of each panel follows that of Figure 1B-C. Data necessary to reproduce the figure are provided in Sup-
plementary Data 1.
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Supplementary Figure 13 Consistency of MOFA across analyses including different histopathological types. A) MOFA
of transcriptomes and methylomes of LNEN and SCLC samples. B) MOFA of transcriptomes and methylomes of LNEN
samples. C) MOFA of transcriptomes and methylomes of LNET and SCLC samples. D) MOFA of transcriptomes and
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panel A with MOFA LF2 from panel B, where colors correspond to the strength of the absolute correlation; light: weak,
dark brown: strong). Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 14 Radar chart of the expression levels of HLA class I and related immunostimulatory genes
as a function of their molecular group. Expression levels are expressed in z-score; the different groups correspond to
the LNEN molecular clusters (Carcinoid A, Carcinoid B, and LCNEC clusters), supra-carcinoids (LNEN005, LNEN012,
S01513), LCNEC, and SCLC. Data necessary to reproduce the figure are provided in Supplementary Data 1, and in the Eu-
ropean Genome-phenome Archive.
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Supplementary Figure 15 Estimation of the amount of immune cells in the different pulmonary carcinoid groups from
transcriptome data. The upper panel represents immune cells of each LNEN cluster and supra-carcinoids (supra-ca). The
average proportion of each cell type in each group is represented. The lower panel represents the linear permutation test
significance (q-value; colours: dark for q <0.001, intermediate for q <0.01, light for q <0.05, white for q ≥0.05) of the differ-
ence in cell type composition, for each cell type (row), and each possible pairwise comparison between groups (columns).
Comparisons with a cell proportion difference greater than 2% are indicated by a black box. Estimates are computed using
software quanTIseq (see Online methods). Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 16 Cancer-relevant somatically altered pathways altered in typical and atypical carcinoids.
Colours correspond to the different types of genomic alterations. Data necessary to reproduce the figure are provided in
Supplementary Data 4.

17



Supplementary Figure 17 Robustness of the MOFA latent factors presented in Figure 4A. A) Correlation between LF
across runs for MOFA run on all LNET samples (the best run among the 20 is presented Figure 4A and Supplementary
Figure 13D). B) Correlation between LF across runs for MOFA run on all LNET or SCLC samples (the best run among the
20 is presented Supplementary Figure 13C). Figure design follows that of Supplementary Figure 2. Data necessary to re-
produce the figure are provided in Supplementary Data 1.
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Supplementary Figure 18 Robustness of the consensus clustering of pulmonary carcinoids presented in Figure 4A. A)
Heatmap of the consensus matrix for four numbers of clusters K; cluster memberships and histopathological types are
reported above the columns, and the dendrogram represents a hierarchical clustering. B) Cluster membership as a func-
tion of K. C) Clustering quality metric (Dunn Index) for each value of K; the best clustering according to the metric is high-
lighted in pink. Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 19 Estimation of the amount of immune cells in the different LNET clusters and supra-
carcinoids from transcriptome data. Figure design follows that of Supplementary Figure 15. Data necessary to reproduce
the figure are provided in Supplementary Data 1.
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Supplementary Figure 20 Expression levels of genes involved in phase I and phase II (cytochrome P450) xenobiotic
metabolism in the different LNET clusters, LCNEC and SCLC. Expression is measured in fragments per kilobase mil-
lion (FPKM) units; in each plot, beeswarm plots are superimposed to boxplots to display the distribution of expression
level in the corresponding groups. Centre line represents the median and box bounds represent the inter-quartile range
(IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the
1.5-fold IQR. Data necessary to reproduce the figure are provided in Supplementary Data 1, and in the European Genome-
phenome Archive.
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Supplementary Figure 21 Comparison of two methods to identify core differentially expressed (DE) genes of LNET
clusters. Panels (A), (B), and (C) present VENN diagrams contrasting the sets of genes that are DE in all pairwise com-
parisons between the focal group and other groups [e.g., denoted (A1vsA2)∩(A1vsB)], and the set of genes that are DE
between the focal group and all the rest (e.g., denoted A1vsRest).
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Supplementary Figure 22 Correlations between DNA methylation and gene expression for core genes of LNET clusters.
Panels (A), (B), and (C) provide DNA methylation and gene expression correlations in cluster A1, A2 and B, respectively.
For each coding gene, we only represent the CpGs from the promoter region and that display the strongest association (see
Online Methods). Each plot represents the correlation between the β-values of the CpG and the z-scores of the correspond-
ing gene; lines represent the best linear model fit; point colors represent the histopathological type; inner circles represent
LNET clusters, outer circles represent LNEN clusters. Pearson correlation coefficients (R), corresponding correlation test
q-values, and inter-quartile ranges (IQR) of the distribution of β-values of the CpG are mentioned in the top right. The
number of CpGs associated with each gene, denoted by n, is mentioned in the title of each plot. If the represented CpG
belongs to the core DMP of the cluster, this is mentioned in red under each plot. Data necessary to reproduce the figure are
provided in Supplementary Data 10 and 11.
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Supplementary Figure 23 DNA methylation and gene expression levels of HNF1A and HNF4A in LNET samples. DNA
methylation levels correspond to the mean β-value of the CpGs correlated to the gene expression from Supplementary
Data 10. Data necessary to reproduce the figure are provided in Supplementary Data 1, 10, and in the European Genome-
phenome Archive.
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Supplementary Figure 24 Expression levels of NOTCH genes in the different LNET clusters, supra-ca, LCNEC and
SCLC. The design of each panel follows that of Supplementary Figure 20. Data necessary to reproduce the figure are pro-
vided in Supplementary Data 1 and in the European Genome-phenome Archive.
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Supplementary Figure 25 Correlation between DLL3 and CDA1 expression based on immunohistochemistry in a val-
idation series. The fraction of tumor cells exhibiting a cytoplasmic staining for DLL3 are represented on the y axis. The
x axis corresponds to the CDA1 positivity classes based on the percentage of the total surface of the tumour exhibiting a
membrane staining: 1 corresponds to less than 1%, 2 to a percentage between 1% and 5%, and 3 to more than 5%. The p-
value and correlation coefficients of the Spearman correlation test are mentioned; 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01, and
p < 0.001 are annotated by one, two, and three stars, respectively. Data necessary to reproduce the figure are provided in
Supplementary Data 9.
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Supplementary Figure 26 Survival (Kaplan-Meier curve) of MEN1 wild type compared to mutant cases. A) Analysis
with all LNET samples. B) Analysis restricted to cluster Carcinoid B samples. The logrank test p-value is given at the bot-
tom right for each panel. Data necessary to reproduce the figure are provided in Supplementary Data 1 and 4.
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Supplementary Figure 27 Expression levels of core cluster B genes associated with survival (Figure 1B). For each gene
selected by the penalized Cox regression (Supplementary Data 13), the expression levels between the good- (histopatho-
logical (HP) atypical predicted by the machine learning (ML) as typical, in pink) and poor-prognosis groups of atypical
carcinoids (HP-atypical predicted as ML-atypical, in red) are compared. Expression is measured in fragments per kilobase
million (FPKM) units; in each plot, beeswarm plots are superimposed to boxplots to display the distribution of expression
level in the corresponding groups. Centre line represents the median and box bounds represent the inter-quartile range
(IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they extend no further than the
1.5-fold IQR. The q-values corresponds to the Benjamini-Hochberg adjusted p-value of permutation tests. Data necessary
to reproduce the figure are provided in Supplementary Data 1, 13, and in the European Genome-phenome Archive.
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Supplementary Figure 28 Sex reclassification and multi-omic validation of reported clinical sex. A) Total exome reads
coverage on the X and Y chromosomes for each sample. B) Total expression level of each sample on the X and Y chromo-
somes (in variance-stabilized read counts). C) Median methylation array total intensity on the X and Y chromosomes. In
each panel, point colors correspond to the sexes (blue for male, red for female), and samples with discordant reported clin-
ical sex and molecular patterns on sex chromosomes are indicated. Data necessary to reproduce the figure are provided in
Supplementary Data 1, and in the European Genome-phenome Archive.
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Supplementary Figure 29 Associations between clinical variables. A) Matrix of the significance (q-value) of the associ-
ations between pairs of variables, for all 242 samples from Supplementary Data 1. B) Matrix of the significance (q-value)
of the association between pairs of variables, for all 116 LNET samples from Supplementary Data 1. C) Proportion of each
level of each variable (rows) for each histopathological type (columns). In (A) and (B), associations are computed using
Fishers exact test, adjusting for multiple testing using the Benjamini-Hochberg procedure; because of symmetry, only the
upper diagonal was tested and represented. Data necessary to reproduce the figure are provided in Supplementary Data 1.
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Supplementary Figure 30 Associations between clinical variables and expression profiles of LNET. A) Matrix of the sig-
nificance (q-value) of the associations, computed using Fishers exact test, between clinical variables and expression prin-
cipal components. B) First two axes of the PCA from panel A, with sample providers highlighted (point shapes); red seg-
ments next to the axes indicate the range of the distribution of atypical carcinoids (AC) from each provider on each prin-
cipal component. Figure design follows that of Supplementary Figure 29. Data necessary to reproduce the figure are pro-
vided in Supplementary Data 1.
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Supplementary Figure 31 Supervised analysis of histological types. A) Kaplan-Meier curve of overall survival of
histopathological types (logrank test p-value is given bottom left). B) Boxplot of the expression level (in Fragments Per
Kilobase Million; FPKM) of MKI67 for each histopathological type. Centre line represents the median and box bounds rep-
resent the inter-quartile range (IQR). The whiskers span a 1.5-fold IQR or the highest and lowest observation values if they
extend no further than 1.5-fold IQR. The differential expression analysis q-value obtained from transcriptome-wide com-
parisons (Supplementary Data 15) is given above each comparison. C) Machine learning analysis associated with the clas-
sification of typical carcinoids, atypical carcinoids, and LCNEC. Left panel: confusion matrix associated with the classifi-
cation based on MKI67 expression only. Middle panel: confusion matrix associated with the classification based on expres-
sion data. Right panel: confusion matrix associated with the classification based on methylation data. D) Venn diagram
of core differentially expressed genes in pairwise comparisons between histopathological types. E) Venn diagram of core
CpGs in pairwise comparisons between histopathological types. F) Expression of core differentially expressed genes for
each histopathological type. Data necessary to reproduce the figure are provided in Supplementary Data 1, 15, and in the
European Genome-phenome Archive.
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Supplementary Figure 32 Estimation of the amount of immune cells in the different histopathological types from tran-
scriptome data. Figure design follows that of Supplementary Figures 15 and 19. Data necessary to reproduce the figure are
provided in Supplementary Data 1.
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Supplementary Figure 33 Assessment of the batch effects in the EPIC 850K methylation array analysis. A) Matrix of the
significance (q-value) of the associations, computed using Fishers exact test, between batch and clinical variables and: i)
methylation surrogate variables determined from non-negative control probes (left panel), ii) the principal components
of the most variable M-values (Online Methods), before functional normalization (middle panel), iii) the principal com-
ponents of the most variable M-values (Online Methods), after functional normalization (right panel). B) First two axes
of the PCA from panel C, with sample providers and histolopathological types highlighted (point shapes and colors, re-
spectively). Figure design follows that of Supplementary Figures 29 and 30. Data necessary to reproduce the figure are
provided in Supplementary Data 1.
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Appendix B

Appendix B

B.1 Supplementary material from chapter 3

Laddha et al.
Alcala et al.

FIGURE B.1: PCA axes correlating with study of origin. To verify that
inter-study variations were not the major sources of variations in the in-
tegrated dataset, a PCA has been performed based on the harmonized
transcriptomic datasets. The figure provides pair-wise representations

of the PCA axes (out of 10 axes) correlating with the study of origin.
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C.1. Supplementary material from chapter 4

Appendix C

Appendix C

C.1 Supplementary material from chapter 4

Imputation and samples quality control figures

FIGURE C.1: Imputation quality controls (European samples). Top
left panel: minimac4 R2 quality measure distribution for each MAF
category (MAF > 5%, MAF between 0.5 and 5% and MAF below 0.5%).
Bottom left panel: distribution of AF in the imputed dataset. Top right
panel: comparison of the SNPs AF (with an R2 value above 0.3) in the
imputed data with the same SNPs AF in the 1000 Genome dataset. Bot-
tom right panel: absolute AF difference between the imputed and 1000
Genome data across the chromosomes positions (consecutive chromo-

somes positions ordered on the x-axis).
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Appendix C. Appendix C

FIGURE C.2: Imputation quality controls (Asian samples). Same leg-
end as for Figure C.1
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C.1. Supplementary material from chapter 4

FIGURE C.3: Imputation quality controls (African samples). Same
legend as for Figure C.1.
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ples. The x and y-axis represent respectively the first and second di-
mensions resulting from UMAP dimensionality reduction. Four sam-
ples types are included in the representations: LUAD tumor and nor-
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