RÉSUMÉ EN FRANÇAIS

Les systèmes de communication émergents se doivent désormais d'être polyvalents et compatibles avec plusieurs normes ou standards de communication, et parfois simultanément. Ceci a généré une demande nouvelle de composants RF ou micro-ondes pouvant fonctionner sur plusieurs plages de fréquences tout en conservant des spécifications exigeantes en termes de compacité, de performances radio-électriques ou encore de coût. Parmi tous les composants d'une chaîne d'émission/réception, les filtres passe-bande jouent un rôle clé dans la sélection des signaux d'intérêt. Ils y occupent aussi une surface importante de par leur nombre et leur encombrement. Leur importance et leur empreinte est donc d'autant plus grande dans les systèmes multibandes et leur intégration d'autant plus difficile.

Les filtres multi-bandes apparaissent ainsi comme une solution attractive pour sélectionner simultanément plusieurs bandes de fréquence tout en réduisant l'empreinte et le coût des circuits.

Ils font l'objet d'une attention particulière du monde de la recherche depuis le début des années 2000 avec de nombreux travaux sur les cas bi-ou tri-bandes notamment [1,2,3,4,5,6].

Les travaux proposant un nombre de bandes plus importants sont beaucoup plus rares [7,8]. L'objectif de cette thèse est donc d'étudier et de développer des nouvelles solutions de synthèse et de nouvelles méthodes de conception de filtres multibandes avec un nombre quelconque de bandes passantes simultanées. Leur implémentation en technologie microruban sous diverses topologies a également été mise en oeuvre.

Le mémoire se décline en 6 chapitres (incluant l'introduction formant le chapitre 1 et les conclusions et perspectives décrites au chapitre 6) auxquels s'ajoute une annexe donnant des éléments théoriques ou expérimentaux complémentaires non décrits directement dans le corps du manuscrit par souci de clarté.

Chapitre 2 : État de l'art

Après une présentation des principaux outils théoriques associés au développement de filtres qui seront utilisés dans le cadre de cette thèse, le mémoire commence par un état de l'art des filtres micro-ondes multibandes. Il a ainsi été mis en évidence quatres méthodes principales pour concevoir de tels filtres. La première méthode consiste simplement à connecter ensemble des filtres passe-bande et coupe-bande [4,5,6]. Un exemple simplement basé sur l'association série d'un filtre passe-bande avec un filtre coupe-bande est présenté en Figure 1.

La seconde méthode consiste simplement à connecter ensemble plusieurs filtres mono-ou bi-bandes [9,10]. La Figure 2 présente un exemple de filtre bi-bande conçu suivant ce concept [9]. Deux filtres passe-bandes composés de résonateurs en anneaux en boucle ouverte repliés permettent d'obtenir ce filtre bi-bande, chaque filtre pouvant être facilement réglé individuellement. L'utilisation de résonateurs multi-modaux constitue la brique de base de la troisème méthode de conception de filtres multibandes. Ces résonateurs multimodaux sont des structures pouvant supporter simultanément plusieurs modes de résonance dont les fréquences ne sont pas les harmoniques les unes des autres. C'est une solution très attractive notamment pour la conception de filtres multibandes compacts. En technologies planaires, ce sont surtout des résonateurs à saut d'impédance (SIR pour Stepped-Impedance Resonator en anglais) qui sont utilisés [11,12,13].
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Cette méthode est aussi relativement facilement applicable à des technologies volumiques [14,15] (cf. Figure ).

Résumé en français

(a) (b)

Figure 3 -Photographie d'un filtre bi-bande volumique (a) et réponses associées (b) [14].

La dernière méthode fait appel à des techniques avancées basées sur des outils plus théoriques comme l'optimisation de matrices de couplage [7,[START_REF] Bila | Chebyshev synthesis for multiband microwave filters[END_REF] ou la transformation de fréquence [START_REF] Macchiarella | A design technique for symmetric dualband filters[END_REF][START_REF] Macchiarella | Design techniques for dual-passband filters[END_REF].

Si l'approche basée sur les matrices de couplage donne de très bons résultats (cf. [START_REF] Bila | Chebyshev synthesis for multiband microwave filters[END_REF].

suivante dans le cas d'un filtre multibande à N bandes passantes :

Ω = T (N ) (ω) = b 0 ω ω 0 - ω 0 ω - N -1 k=1 1 b k ω ω k - ω k ω (1) 
... 
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savoir les fréquences de coupure basses et hautes des différentes bandes passantes (ω L i et ω H i , cf. Figure 5).

L'équation de transformation de fréquence proposée ici (1) conduit à des résonateurs multibandes en étoile comme le présente la Figure 6. Une capacité du prototype passe-bas normalisé est alors transformée en un résonateur multibande composé d'un résonateur passe-bande et de N -1 résonateurs coupe-bandes en parallèle (cf. A la fin de ce chapitre, l'aspect très général de cette technique de synthèse de filtres multibandes est mis en avant à travers divers exemples de filtres en lignes idéales utilisant d'autres approximations (Butterworth, elliptique). Certaines limites sont aussi présentées. Enfin, une conclusion vient terminer ce chapitre en résumant les points majeurs qui y sont présentés. . 
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(a) Chapter 1

INTRODUCTION

Motivation

The recent emergence of advanced communication systems with a high degree of versatility has generated strong demand for novel devices with multi-functional performance. Compact, high performance, and lower cost RF/microwave devices are required today. Among these devices, band-pass filters, which allow signal pass-through in a specified band of frequencies, play an important role in RF/microwave communication systems. Filters are key components in radio-frequency transceivers in multiband operations. Their integration is challenging with regard to requirements. In new terminal generations providing several communication standards simultaneously, and especially in mobile terminals, embedded systems or satellites, the footprint of the filtering parts needs to be reduced in order to meet mass and volume requirements of the whole system. Thus, multiband band-pass filters (MBPFs) appear as an attractive solution to select multiple bands with a relatively compact circuit size.

Regarding this important issue, numerous researchers have suggested various synthesis techniques. This leads to numerous significant works created in recent years. Various approaches and technologies for constructing MBPFs of different degrees of complexity have been suggested

with various numbers of bands and orders of the filter. However, there are still several obstacles to address when developing MBPFs with more than three pass-bands and high orders in order to fulfill rigorous specifications. In particular one needs to be paid attention to:

-Synthesis and realization of filters with controllable bandwidth exceeding three passbands.

-Easy-to-implement topological structure, universal realization method based on various technologies (microstrip, SIW, waveguide, etc.)

-Achievements of multiple pass-bands in a larger frequency range, that is to say, a larger center frequency ratio to be achieved between individual pass-band.

The aim of this thesis is to investigate and develop novel synthesis and designs methods for MBPFs. To address the above-mentioned issues, several chapters are proposed and quickly described in the next section.

Chapter 1 -Introduction

Overview of the thesis

The work presented in this thesis is divided in six chapters, including introduction and conclusion, to which must be added an appendix. The details of each chapter will be given in the following:

Chapter 1 introduces the motivations and objectives in this thesis and presents an overview of the main chapters of this dissertation. Chapter 6 concludes the whole thesis, summing up the contribution of this research and providing some prospects for future works.

An appendix section completes the thesis giving additional equation developments and results not presented in the main part of the dissertation in a sack of clarity.

Chapter 2

LITERATURE REVIEW

Fundamental theory of filters

Fundamental theory of two-port network

In wireless communication systems such as mobile communications, satellite communications, radar, and remote sensing, microwave filters are essential components. They allow a perfect frequency selection and interference suppression and are therefore key components in microwave systems. With the advent of the 5G era, the fast-developing information markets put more stringent requirements on wireless communication systems and related equipment or components. In particular, filters must offer superior performance, compact size, low-cost, and need to be easy-to-integrate radio frequency components. In this chapter, we summarize the well-known and fundamental concepts of filter design principles which are relevant to the theory presented in this dissertation. 

a m = 1 2 V m √ Z m + Z m I m (2.1) b m = 1 2 V m √ Z m -Z m I m (2.2)
For filter synthesis, we mainly focus on the scattering parameters of the two-port network, defined in terms of the wave variables as: 

S 11 = b 1 a 1 | a 2 =0 (2.3)
S 12 = b 1 a 2 | a 1 =0
(2.4)

S 21 = b 2 a 1 | a 2 =0
(2.5)

S 22 = b 2 a 2 | a 1 =0 (2.6) 
The parameters S 11 and S 22 are also called reflection coefficients, whereas S 12 and S 21 are transmission coefficients. These are the parameters that can be directly measured at microwave frequencies using vector network analysers. In a common case, S-parameters are complex and they are usually expressed in terms of amplitude and phase. Amplitudes of S-parameters are often used in the logarithmic scale for convenience:

L A = 20 log |S 21 | (2.7) L R = 20 log |S 11 | (2.8)
where L A denotes the insertion loss between the two ports, and L R represents the return loss.

It is often required to convert S parameter to other types of matrices describing m port systems such as impedance and admittance networks. The relationships between any types of parameters are well-known [START_REF] Hong | Microstrip filters for RF/microwave applications[END_REF][START_REF] Martin | Balanced microwave filters[END_REF].

A classical and theoretical way to design filters starts with the definition of a normalized low-pass prototype [START_REF] Martin | Balanced microwave filters[END_REF]. This definition is made through a transfer function which will give the in-band and out-of-band behaviors of this low-pass prototype [START_REF] Martin | Balanced microwave filters[END_REF] before its transformation into a high-pass, band-pass or band-stop denormalized filter. The transfer function of a two-port filter network is a mathematical description of S 21 . Typically, the transfer function for a lossless passive filter network is defined as:

|S 21 (jΩ)| 2 = 1 1 + 2 F 2 n (Ω) (2.9)
where is a constant defining the in-band ripple, F n (Ω) represents a characteristic function,

and Ω is a normalized frequency variable in low-pass prototype domain. It has a upper cutoff frequency at Ω = 1 and a lower cut-off frequency at Ω = -1.

F n (Ω) represents the approximation function. The filter synthesis consists in choosing the best approximation function according to the filter specifications (in-band and out-band requirements). The most classical ones are Butterworth (maximally flat), Chebyshev and elliptic functions. A Butterworth filter exhibits monotonically rising attenuation. In the near-out-ofband region, the Butterworth filter provides less attenuation than an equivalent Chebyshev or elliptic filter [START_REF] Cameron | Microwave filters for communication systems: fundamentals, design, and applications[END_REF]. In practical applications, we prefer the latter two types of filters. In the following, we will give more details about the latter ones.

The Chebyshev response exhibits an equal ripple pass-band and a maximally flat stop-band.

The amplitude squared transfer function that describes this type of response is:

|S 21 (jΩ)| = 1 1 + 2 T 2 n (Ω) (2.10)
where the ripple constant is related to a given pass-band ripple L A r (expressed in dB) by: = 10

L A r 10 -1 (2.11)
T n (Ω) is a Chebyshev function of the first kind of order n, which is defined as:

T n (Ω) =    cos(n cos -1 ) |Ω| ≤ 1 cosh(n cosh -1 ) |Ω| ≥ 1 (2.12)
The elliptic function response provides equal-ripple in both pass-band and stop-band. Its transfer function for this type of response is:

|S 21 (jΩ)| = 1 1 + 2 E 2 n (Ω) (2.13)
For n is even, For n ≥ 3 is odd,

E n (Ω i ) = M n/2 i=1 Ω 2 i -Ω 2 n/2 i=1 Ω 2 s /Ω 2 i -Ω 2
E n (Ω i ) = N Ω (n-1)/2 i=1 Ω 2 i -Ω 2 (n-1)/2 i=1 Ω 2 s /Ω 2 i -Ω 2 (2.15) 
where Ω i (0 < Ω i < 1) and Ω s > 1 represent the in-band normalized frequencies and the out-of-band ones. The terms M and N are constants [START_REF] Martin | Balanced microwave filters[END_REF]. E n (Ω i ) oscillates between ±1 for

|Ω i | ≤ 1, and E n (Ω i = ±1) = 1.
A key aspect of filter design is to build the relationship between theoretical and mathematical concepts and the actual or equivalent circuit elements for its fabrication. The characteristic polynomials described above for Chebyshev and elliptic lossless low-pass prototype filters are based on lumped circuit elements. The circuit configuration of such a low-pass prototype filter corresponds to a ladder network [START_REF] Martin | Balanced microwave filters[END_REF][START_REF] Cameron | Microwave filters for communication systems: fundamentals, design, and applications[END_REF]. The circuit model of the prototype filter provides the link to the physical realization of the filter networks.

The determination of the element values can be obtained from the characteristic polynomial of a desired low-pass prototype filter. In [START_REF] Cameron | Microwave filters for communication systems: fundamentals, design, and applications[END_REF] These two circuits with the same order can have same responses.

The two types of low-pass prototype ladder-type networks introduced above, exhibit normalized element values with regard to the source and load impedance/conductance [START_REF] Cameron | Microwave filters for communication systems: fundamentals, design, and applications[END_REF]. In practice high-pass, band-pass or band stop filters at any operating frequency may be designed from low-pass filters. Filters with required termination values and cut-off or center frequencies could be derived by impedance and frequency transformation from low-pass prototype filter. The impedance transformation can be done by scaling the normalized generator impedance or conductance. To do so, a scaling factor S γ is defined as:

S γ = Z 0 /g 0 g 00 /Y 0 (2.16)
Here Z 0 and Y 0 are the source (load) impedance or admittance. The scaling factor in the first equation holds for g 0 defined as a resistance whereas the second holds for g 00 defined as a conductance. Using the scaling factor in (2.16) the inductance L will be scaled as S γ L and the conductance C will be scaled as C/S γ . The classical low-pass Chebychev circuit in low-pass domain and the lumped element ladder network of low-pass prototype transformed network are presented in Fig. 2.4(a) and Fig. 2.4(b).

Low-pass to other types filters transformation

To transform a low-pass prototype filter with unity cut-off frequency to a low-pass filter with cut-off frequency ω c , the frequency variable has to be scaled by a factor of 1/ω c , or the cut-off frequency 1 has to be mapped to a realistic cut-off frequency ω c . The transformation procedure is achieved by replacing ω c by ω/ω c , which is:

Ω → ω ω c
(2.17)

L n = S γ g n ω c C n = g n S γ ω c (2.18)
and all capacitance or inductance values should also be scaled as shown in (2.18). The transformation schematic is shown in Fig. 2.5 For a low-pass to high-pass frequency transformation, the transformation is as follows:

Ω → - ω c ω (2.19) L n = S γ ω c g n C n = 1 S γ ω c g n (2.20)
The transformed circuit is shown in Fig. 2.7.

For a low-pass to band-pass frequency transformation, the principle remains identical. However, instead of using a single cut-off frequency for low-pass to high-pass transformation, two different cut-off frequencies are imposed, ω 1 and ω 2 , to define the lower and upper pass-band edges. Then, the transformation is performed by replacing Ω with the following expression: where F BW stands for fractional bandwidth, and is defined as

Ω → 1 F BW ω ω c - ω c ω (2.21)
F BW = ω 2 -ω 1 ω c (2.22)
In this equation, ω c represents the center frequency of the transformed band-pass filter. It can be written as ω c = √ ω 1 ω 2 . The series elements in the low-pass prototype filter are transformed to series resonant circuits. At the same time, the shunt elements are converted to parallel resonant circuits. Both types of series and parallel resonant circuits have the same resonant frequency ω c . The element values in the series resonators can be determined as:

L sn = g n S γ F BW ω c C sn = F BW S γ ω c g n (2.23)
and the element values in the shunt resonators can also be determined as: For a low-pass to band-stop frequency transformation, a similar principle applies. The two frequencies ω 1 and ω 2 are now used to denote the lower and upper stop-band edges. The transformation is done by replacing Ω such as:

L pn = F BW S γ g n ω c C pn = g n F BW S γ ω c (2.
Ω → - 1 F BW ω ω c - ω c ω -1 (2.25) 
In this context, F BW stands for the fractional bandwidth of the stop-band, and remains defined as

F BW = ω 2 -ω 1 ω c (2.26)
where ω c corresponds to the center frequency of the transformed band-stop filter. It also can be expressed as ω c = √ ω 1 ω 2 . Under this transformation, a series inductive element in the low-pass prototype is transformed to a parallel resonant circuit, which is opposite to that of the low-pass to band-pass transformation:

L sn = F BW g n S γ ω c C sn = 1 F BW S γ ω c g n (2.27)
Reciprocally, a capacitance shunt element is transformed into a series L-C circuit with the following values:

L pn = S γ F BW g n ω c C pn = F BW g n S γ ω c (2.28)
The transformed schematic and the transformed circuit are shown in Fig. 2.10 and Fig. 2.11, respectively.

Immittance inverters

There are two types of immittance inverter, which are classified as impedance inverter and admittance inverter. An impedance inverter is used to convert a shunt element in a series one and an admittance one to convert a series element to a shunt one. Such a transformation creates a phase shift of ±90 0 according to topology. The most classical inverter in microwave technology consists of a quarter-wavelength line. An ideal impedance inverter can be regarded as a quarterwavelength impedance transformer with a normalized characteristic impedance K at all working frequencies. Fig. 2.12 (a) shows a two-port impedance inverter with one port terminated by a load R b . The input impedance seen from the other port is:

Z a = K 2 R b (2.29)
In a similar way, the admittance inverter can also be regarded as a quarter-wavelength transformer with normalized characteristic admittance of J at all frequencies. As shown in Fig. 2.12 (b), given the load admittance G b at one port, the input admittance Y a at the other port writes:

Y a = J 2 G b (2.30)
The immittance inverter is useful in converting a series capacitor/inductor to a shunt inductor/capacitor with a phase shift of ±90 0 or an odd multiple there of and vice versa. This is its most attractive feature. As illustrated in Fig. 2.9, the ladder network of a band-pass prototype filter is composed of series inductances in cascade with shunt capacitances in an alternate arrangement. Making use of the immittance inverters, the low-pass prototype can be converted to a filter network shown in Fig. and R B , as well as the termination conductance G A and G B , can be arbitrarily chosen. The g i parameters are the element values that are derived for a n-order low-pass prototype filter, the values can be referenced in [START_REF] Hong | Microstrip filters for RF/microwave applications[END_REF]. The design equations for low-pass filters can be expressed as: 

K 0,1 = R A L a1 g 0 g 1 (2.31) K k,k+1 | k=1 to n-1 = L ak L a(k+1) g k g k+1 (2.32) K n,n+1 = L an R B g n g n+1 (2.33)
J 0,1 = G A C a1 g 0 g 1 (2.34) J k,k+1 | k=1 to n-1 = C ak C a(k+1) g k g k+1 (2.35) J n,n+1 = C an G B g n g n+1 (2.36)
With a similar conversion procedure, the band-pass prototype can be converted to a network that consists of only shunt elements connected via admittance inverters, as shown in Fig. 2.14.

The transformed bandpass filter and its dual with immittance inverter K (Fig. 2.14(a)) or J (Fig.

2.14(b)), are shown in Fig. 2.14. The design equations for band-pass filters can be expressed as: 

K 0,1 = R A F BW ω 0 L r1 g 0 g 1 (2.37) K k,k+1 | k=1 to n-1 = F BW ω 0 L rk L r(k+1) g k g k+1 (2.38) K n,n+1 = F BW ω 0 L m R B g n g n+1 (2.39) J 0,1 = G A F BW ω 0 C r1 g 0 g 1 (2.40)
J k,k+1 | k=1 to n-1 = F BW ω 0 C rk C r(k+1) g k g k+1 (2.41) J n,n+1 = F BW ω 0 C rn G B g n g n+1 (2.42)
Where F BW is the fraction bandwidth , ω is the center frequency of the band-pass filter. The values of L rk and C rk , termination resistance R A and R B , as well as the termination conductance G A and G B , can also be arbitrarily chosen as for the low-pass case.

The presented two generalized networks are composed of series or shunt lumped resonators and impedance or admittance inverters. In practice, these series or shunt LC resonators can be constructed in various forms, such as transmission line, waveguide or SIW resonators. In this context, resonant frequency ω 0 and slope parameter are usually used to characterize such a resonator regardless of their types. For a series resonator with reactance X ( ω), the slope parameter is defined as:

x = ω 0 2 dX(ω) dω ω=ω 0 (2.43)
For a shunt resonator with susceptance B ( ω), the susceptance slope parameter is:

b = ω 0 2 dB(ω) dω ω=ω 0 (2.44) K 0,1 = R A F BW x 1 g 0 g 1 (2.45) Chapter 2 -Literature review K k,k+1 | k=1 to n-1 = F BW x k x k+1 g k g k+1 (2.46) K n,n+1 = F BW x n R B g n g n+1 (2.47) J 0,1 = G A F BW b 1 g 0 g 1 (2.48) J k,k+1 | k=1 to n-1 = F BW b k b k+1 g k g k+1 (2.49) J n,n+1 = F BW b n G B g n g n+1 (2.50)
By generalizing the series and shunt resonators with the specified reactance and susceptance, we can build up a generalized band-pass filter network as shown in Fig. 2.15. The introduction of this network is quiet essential. In the next chapter we make use of a similar method for the synthesis and the design of multiband band-pass filters with star-like topology by frequency transformation method.

Overview of the topologies and technology for the design of multiband band-pass filters

With the recent rapid development of communication systems, multiband band-pass filters (MBPFs) can support several frequency bands with high-performance and compact size [START_REF] Zhu | Microwave bandpass filters for wideband communications[END_REF],

combining single-band filters in a single circuit. In satellite communication systems [1], a multiband filter can be used to transmit several non-contiguous channels to the same geographic region through one beam for high throughput satellite (HTS) system. In this case, only a single high-power amplifier is needed, which simplifies system architecture and reduces DC power consumption. Moreover, MBPFs can work with low noise amplifiers and power amplifiers, receiving and transmitting signals of multiple wireless through a single antenna. The simplification enables designing transponder with an increased number of channels, thus improving the system's efficiency.

The dual-band filter was proposed more than two decades ago [2]. Since then, researchers have proposed various synthesis methods, topologies and technologies to develop dual-band filters. Nevertheless, MBPFs with three or more bands present greater challenges in terms of filtering performance and compactness. This lead to a growing interest in MBPFs in the recent years. Typically, there are four different ways to design multiband band-pass filters (MBPFs) with different technologies [3].

Design of multiband band-pass filters by connecting band-pass and band-stop filters

A first and simple method for multiband filter design consists in introducing TZs into a singleband filter. One of the first proposed dual-band filters by this method was presented in [4]. It was realized by the series association of a band-pass filter and a band-stop filter. The band-pass and band-stop filters were synthesized and designed separately and optimized to achieve optimum filtering performances. The proposed dual-band filter is presented in Fig. 2.16. The filter is composed of of a band-pass filter on its left part in series with a band-stop filter on its right part. A tri-band filter based on this approach was proposed in [5] using dual-behavior resonator (DBR). This design is shown in Fig. 2.17. The second order filters are realized by cascading two same sections, each one has three open shunt stubs. The proposed structure consists of only band-stop resonators that can create TZs at specified frequencies and pass-bands between two consecutive TZs. By adjusting the length and width of the DBR, the required TZs and slope parameters can be realized. This type of filter seems to have arbitrary pass-bands responses.

However, the absence of the slope parameters in the synthesis of equations makes the realization of high-order DBR MBPFs difficult to achieve . Another tri-band configuration was proposed in [6]. In this paper, two same units (a quarter-wavelength transmission line loaded with shunt-open and short-circuited stepped impedance resonators (SIR)) connected with a quarter wavelength transmission line as shown in Fig. 2.18 were used to achieve tri-band responses. Nevertheless, the pass-band region is not easily controlled due to the presence of harmonic frequencies. This structure provides three TZs, two of which are realized by two harmonics frequencies.

Design of multiband band-pass filters by connecting individual band-pass filters

The second method of MBPF design consists in combining several single-band or dual-band filters to obtain a response with two or more bands. A simple dual-band microstrip filter using folded open-loop ring resonators (OLRRs) was first presented in [9] by the combination of two individual filters as shown in Fig. 2.19. Both magnetic and electric coupling structures were implemented to provide high performance pass-band response. The first and second bands of the designed dual-band filter can be easily and accurately shifted to the desired frequency by adjusting the physical dimensions of OLRRs. A planar dual-band band-pass filter based on a novel feed scheme was presented in [10]. The proposed filter employed two sets of resonators operating at several frequencies to generate two pass-bands (resonator 1 and resonator 4 resonating at the first pass-band; resonator 2 and resonator 3 resonating at the second pass-band as 

Design of multiband band-pass filters by employing multi-mode resonators

The third method to achieve MBPFs relies on multi-mode resonators (MMRs). MMRs are structures that support several different resonant modes whose resonant frequencies are not harmonically related. MMRs can offer more design freedom than single-mode resonators. Also, MMRs support several modes with a single resonator, which is a very attractive feature. It is, therefore, a promising platform for small filtering devices.

For planar microstrip technology, the main types of MMRs are resonators with SIRs and stub-loaded resonators implemented in microstrip technology [11,[START_REF] Luo | A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes[END_REF]12,[START_REF] Zhang | Dual-band bandpass filters using stubloaded resonators[END_REF][START_REF] Gao | Novel multi-stub loaded resonators and their applications to various bandpass filters[END_REF][START_REF] Chen | Tri-band bandpass filter using stub loaded resonators[END_REF][START_REF] Chen | A new tri-band bandpass filter based on stubloaded step-impedance resonator[END_REF]13].

In [11], a dual-mode dual-band band-pass filter with two transmission poles in both pass-bands using a single ring resonator was proposed. Two feeding ports are placed along the ring resonator and coupled with the ring via parallel-coupled lines (shown in 2.21(a)), leading to synchronous excitation of two transmission poles in the two pass-bands. Fig. 2.21(a) shows the schematic of the proposed dual-mode dual-band band-pass filter using a single uniform ring resonator.

In a similar way, a class of tri-band BPFs with two reflection zeros in each pass-band was proposed in [START_REF] Luo | A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes[END_REF] using three pairs of degenerated modes in a ring resonator. However, the band-to-band isolation is not so good. To improve the selectivity of such kinds of filters, Sun [12] proposed a simple microstrip ring-resonator for a novel design of dual-band dual-mode band-pass filter. Good isolation and upper stop-band performance are obtained with the two first-order degenerate modes. Apart from the SIRs, the stub-loaded resonators (SLRs) could be a good candidate to construct MBPFs. Numerous structures have been proposed with a different shows the tuned near-band responses of the manufactured filter compared with the simulation responses. For this case, the spurious mode at a higher frequency is relatively close to the passband, as shown in Fig. 2.23(c). Unfortunately, the spurious-free window is difficult to expand due to the intrinsic mode distribution of the elliptical cavity.

Substrate-integrated waveguide (SIW) is an up-and-coming platform for designing MBPFs.

For MMRs, typically, there are three methods to obtain the multiband responses using SIW Chapter 2 -Literature review [START_REF] Zhou | Substrate-integrated waveguide dual-mode dualband bandpass filters with widely controllable bandwidth ratios[END_REF][START_REF] Zhou | Dual-mode characteristics of half-mode siw rectangular cavity and applications to dual-band filters with widely separated passbands[END_REF][START_REF] Ieu | Compact dual-mode dual-band hmsiw bandpass filters using source-load coupling with multiple transmission zeros[END_REF][START_REF] Xie | Substrate-integrated waveguide triple-band bandpass filters using triple-mode cavities[END_REF][START_REF] Li | Substrate integrated waveguide dual-mode filter using slot lines perturbation[END_REF][START_REF] Rezaee | Realisation of new single-layer triple-mode substrateintegrated waveguide and dual-mode half-mode substrate-integrated waveguide filters using a circular shape perturbation[END_REF][START_REF] Shen | A novel single-cavity dual mode substrate integrated waveguide filter with non-resonating node[END_REF][START_REF] Zhou | Substrate-integrated waveguide triple-band filter with improved frequency and bandwidth allocations[END_REF]. The first method is to use a rectangular SIW resonator, which can be regarded as a special rectangular waveguide with negligible thickness. The first two modes are TE101 and TE201 modes. As described in [START_REF] Zhou | Substrate-integrated waveguide dual-mode dualband bandpass filters with widely controllable bandwidth ratios[END_REF], dual-mode dual-band band-pass filters with widely controllable bandwidth occur when TE101 and TE201 modes are excited in SIRC1, SIRC2 and SIRC3 cavities (presented in Fig. 2.24(a)) are exploited. By adjusting the width and length, the two modes can be excited at required frequencies. The coupling window between cavities allows to get the desired coupling coefficients. Layout and filter's response are shown in Fig. 2.24(a) and Fig. 2.24(b) respectively. Similar methods were also reported in [START_REF] Zhou | Dual-mode characteristics of half-mode siw rectangular cavity and applications to dual-band filters with widely separated passbands[END_REF][START_REF] Ieu | Compact dual-mode dual-band hmsiw bandpass filters using source-load coupling with multiple transmission zeros[END_REF]. The second method consists in disturbing the guided wave propagation mode in the SIW [START_REF] Xie | Substrate-integrated waveguide triple-band bandpass filters using triple-mode cavities[END_REF][START_REF] Li | Substrate integrated waveguide dual-mode filter using slot lines perturbation[END_REF][START_REF] Rezaee | Realisation of new single-layer triple-mode substrateintegrated waveguide and dual-mode half-mode substrate-integrated waveguide filters using a circular shape perturbation[END_REF][START_REF] Shen | A novel single-cavity dual mode substrate integrated waveguide filter with non-resonating node[END_REF][START_REF] Zhou | Substrate-integrated waveguide triple-band filter with improved frequency and bandwidth allocations[END_REF] to adjust the resonance frequencies. (see Fig. 2.28(a)) also presented a planar SIW quint-band band-pass filter using two dualmode SIW resonators (SIRC3 11 , SIRC2 11 ) coupled with six single-mode ones (SIRC1, SIRC2 1 , SIRC3 1 , SIRC4 1 , SIRC5 1 , SIRC6) as shown in 2.28(a). The frequencies responses is the splittype tri-band and dual-band [START_REF] Zhou | Synthesis design of siw multiband bandpass filters based on dual-mode resonances and split-type dual-and triple-band responses[END_REF]. This approach has been shown to be very applicable for the design of filters with more than triple pass-bands.

Overview of the topologies and technology for the design of multiband band-pass filters

(a) (b) (c) (d)

Design of multiband band-pass filters by advanced methods

The fourth approach employs classical filter design theory, such as filter transfer functions, coupling matrix optimization, and frequency transformations [7,[START_REF] Bila | Chebyshev synthesis for multiband microwave filters[END_REF][START_REF] Nicholson | Design of multiple-passband filters using coupling matrix optimization[END_REF][START_REF] Zhang | Analytical synthesis of generalized multi-band microwave filters[END_REF][START_REF] Macchiarella | Accurate synthesis of inline prototype filters using cascaded triplet and quadruplet sections[END_REF][START_REF] Rosenberg | Novel coupling schemes for microwave resonator filters[END_REF][START_REF] Cameron | Advanced coupling matrix synthesis techniques for microwave filters[END_REF][START_REF] Macchiarella | A design technique for symmetric dualband filters[END_REF]. Typically, this type of theory can be applied to any type of filter based on different topologies and technologies (waveguide resonators, microstrip resonators, dielectric resonators). The optimization methods for the generation of multiband responses will be presented firstly [7,[START_REF] Bila | Chebyshev synthesis for multiband microwave filters[END_REF][START_REF] Nicholson | Design of multiple-passband filters using coupling matrix optimization[END_REF]. In [7], authors presented an efficient optimization method for generating multiband characteris- tics. The computational part consists of a differential correction-like algorithm proven to be convergent. It also guaranteed the optimality of the response. A similar optimization method was presented in [7] for synthesizing multiband filters with asymmetrical characteristics. The algorithm can also guarantee precise critical specifications in the pass and stop-band. However, a high number of optimization parameters must be optimized and this method requires large computational resources. This technique is therefore impossible to be generalized. In [START_REF] Nicholson | Design of multiple-passband filters using coupling matrix optimization[END_REF][START_REF] Mokhtaari | Coupling-matrix design of dual and triple passband filters[END_REF][START_REF] Mokhtaari | Coupling-matrix design of dual/triple-band uni-planar filters[END_REF],

the study presents the design of microwave filters based on the coupling matrix approach. The determination of the matrix was based on a hybrid optimization algorithm [START_REF] Nicholson | Design of multiple-passband filters using coupling matrix optimization[END_REF]. One of the proposed topologies is shown in Fig. 2.29(a) and the response is shown in Fig. 2.29(b). Relying on optimization algorithms is the major drawback of this type of procedure since their convergence is not guaranteed. Computing time is also very sensitive to the initial guess. Moreover, due to the applicability of the method on various filter topologies, optimization methods do not give a unique solution for the coupling matrix.

The second approach presented in this section is based on frequency transformation methods.

The first dual-band band-pass filter was proposed in [START_REF] Macchiarella | A design technique for symmetric dualband filters[END_REF], and was realized using classical filter design theory. The proposed procedure allowed the design of symmetrical dual-band filters to have equal return loss, bandwidths and various technologies can implement the filters. A more straightforward method was presented in [START_REF] Lamperez | Analytical synthesis algorithm of dual-band filters with asymmetric pass bands and generalized topology[END_REF], and applied to dual-band filters with asymmetrical responses. However, the two pass-bands cannot be independently positioned, which is a major drawback. Moreover, this method can not be applied to all filter topologies. In [START_REF] Macchiarella | Design techniques for dual-passband filters[END_REF], Macchiarella first proposed the frequency transformation method to design dual-band band-pass filter. The proposed frequency transform function was expressed as,

Ω = T (ω) = b 0 ω ω 0 - ω 0 ω - 1 b 1 ω ω 1 - ω 1 ω (2.51)
where Ω is the normalized angular frequency. Variables A dual wideband filter design implemented by SIRs, which involved the frequency transformation method, was presented in [START_REF] Liu | A dual wideband filter design using frequency mapping and stepped-impedance resonators[END_REF]. Unlike the waveguide configuration, based on SIRs, it is possible to design dual-band band-pass filter in a wide frequency range. This method was also applied for SIW technology and extended to the triple-band case. In [START_REF] Chen | Dual-band and triple-band substrate integrated waveguide filters with chebyshev and quasi-elliptic responses[END_REF], the author first presented a dual-band filter with frequency transformation method. As shown in Fig. 2.32(a), In [START_REF] Di | Synthesis of cross-coupled triple-passband filters based on frequency transformation[END_REF], the tri-band filter circuits with cross-coupled configuration have been constructed, with up to three pass-bands [START_REF] Lee | Design of triple-passband microwave filters using frequency transformations[END_REF]. Even though a more general frequency transformation method was presented in [START_REF] Garcia-Lamperez | Single-band to multiband frequency transformation for multiband filters[END_REF], while overcoming many drawbacks of other techniques, this method is still not completely general, and the computation of the mapping function is not straightforward.

All in all, two drawbacks limit the application of the existing frequency transformation method. The first one is the lack of comprehensive formulas for filters beyond tri-band. The second one deals with the challenge to implement more than tri-band filters in single-layer planar circuits. Breaking these two limitations will greatly improve the application of the frequency transformation method. Fortunately, we have overcome the above two limitations. This contribution is described in the next chapter.

Conclusion

This chapter started with the introduction of the basic concepts for microwave filters. Then we gave an overview of the design technology for MBPFs, and presented four different techniques for synthesizing and designing MBPFs, illustrating the advantage and disadvantages of each technique through the presentation of some examples.

As a promising method to synthesis and design MBPFs, in this dissertation, we undertake an in-depth investigation of the frequency transformation method with different topologies. The frequency transformation technique offers significant advantage since it can be used to synthesize an arbitrary number of pass-band filters starting from a low-pass prototype filter. Theoretically, this synthesis allows determining analytically all the resonant angular frequencies and slope parameters of all the pass-band filters from the low and high cut-off angular frequencies used as initial specifications whatever the number of bands. However, there is the lack of comprehensive formulas for filters beyond tri-band and for their implementation in single-layer planar circuits.

In next chapter, we will present a generalized frequency transformation method with starlike topology. A rigorous mathematical analysis process is presented to obtain the generalized transform function for arbitrary number of pass-bands. It extends the frequency transformation proposed in [START_REF] Macchiarella | Design techniques for dual-passband filters[END_REF] to arbitrary number of pass-band. Several examples with non-coupled structures and coupled structures will also be presented to validate the proposed theory.

Chapter 3

DIRECT SYNTHESIS OF MULTIBAND BAND-PASS FILTERS WITH FREQUENCY TRANSFORMATION METHODS

The theory of generalized frequency transformation methods

A generalized frequency transformation function will be proposed here, this transfer function is based on the method proposed in [START_REF] Macchiarella | A design technique for symmetric dualband filters[END_REF] for a dual-band case. In order to show the transformation process, here we start from the well-known low-pass to band-pass frequency transformation equation in a single-band case, the transformation equation can be written as:

Ω = ω 0 F BW ω ω 0 - ω 0 ω (3.1)
where Ω is the frequency variable for low-pass prototype in normalized frequency domain and ω is the frequency variable in de-normalized frequency domain. ω 0 is the centre frequency of the de-normalized pass-band. FBW is the equal fraction bandwidth of the de-normalized passband. 

Ω = T (2) (ω) = b 0 ω ω 0 - ω 0 ω - 1 b 1 ω ω 1 - ω 1 ω (3.2)
T (2) (ω) is the transformation function for dual-band cases. ω 0 and b 0 are respectively the resonant angular frequency and the susceptance slope parameter of the wide band-pass resonators,

where ω 1 and b 1 are the ones of the stop-band resonators. By mapping all the pass-band edge frequencies to the low-pass domain, this function could be solved perfectly. Then, the coupling values associated with the solved ω 0 , b 0 , ω 1 and b 1 can be obtained by using the general equations presented in [START_REF] Macchiarella | A design technique for symmetric dualband filters[END_REF].

This enables to perform the filter implementation using various technologies. Based on this initial idea, we extend this method in a more general way. The transformation from a classical low-pass prototype to an N -bands band-pass filter is schematically presented in Fig. 3.2. The general function can be written as below: First, the U (N ) (ω) function as follow:

Ω = T (N ) (ω) = b 0 ω ω 0 - ω 0 ω - N -1 k=1 1 b k ω ω k - ω k ω (3.3) T (N ) (ω)
U (N ) (ω) = T (N ) (ω) -1 (3.4) Substituting equation (3.3) for T (N ) (ω) in (3.4) leads to a new expression U (N ) (ω) consisting
in a ratio of two polynomials:

U (N ) (ω) = N (ω) D(ω) = ω 2N + 2N -1 p=0 n p ω p 2N -1 q=0 d q ω q (3.5)
where d q is equal to 0 when q is even and -n q when q is odd. A first expression of the 2N n p

(p ∈ [0; 2N -1]
) coefficients is then obtained as functions of the output parameters.

We now assumed that the lower cut-off angular frequencies ω L i and the upper cut-off angular frequencies ω H i (i ∈ [1; N ]) are mapped to -1 and +1 in the Ω normalized domain respectively.

As T (N ) (ω) is an odd function, we then have:

T (N ) (-ω L i ) = T (N ) (ω H i ) = 1 i ∈ [1; N ] (3.6)
Therefore, the N high cut-off angular frequencies and the opposite of the N lower cut-off ones are the 2N roots of U (N ) (ω). A second expression of the n p coefficients is thus obtained as functions of the input parameters this time.

So, 2N equations (one for each n p coefficient) link the N resonant angular frequencies, ω k , and the

N slope parameters, b k ((k ∈ [0; N -1])), to the N low cut-off angular frequencies, ω L i ,
and the N high cut-off ones,

ω H i (i ∈ [1; N ]).
As presented below, an analytical expression can be obtained for each output parameter.

The general expressions of the n p coefficients (p ∈ [0; 2N -1]) according to the cut-off angular frequencies on the one hand and according to the resonant angular frequencies and slope parameters on the other hand will be presented in the following. In order to simplify the writing of these equations and make the understanding easier, we first introduce specific mathematical expressions in section 3.1.1.

Specific mathematical operators

Let Z (r→s) be a set of real numbers z i with i ∈ [r; s] (r ∈ N and s ∈ N ):

Z (r→s) = {z i } s i=r (3.7)
We then denote Z (r→s) {j} the same set of real numbers z i with i = j ((i; j) ∈ [r; s]):

Z (r→s) {j} = {z i } s i=r \ {z j } = {z r , z r+1 , • • • , z j-1 , z j+1 , • • • , z s-1 , z s } (3.8)
Let P a Z (r→s) be the sum of all the different products of a elements of Z (r→s) . As a consequence, P a Z (r→s) is a sum of s -r + 1 a terms, each of them being a product of a elements of Z (r→s) . For instance:

P 1 Z (1→3) = z 1 + z 2 + z 3 P 2 Z (1→3) = z 1 z 2 + z 1 z 3 + z 2 z 3 P 3 Z (1→3) = z 1 z 2 z 3
and

P 2 Z (1→4) {3} = z 1 z 2 + z 1 z 4 + z 2 z 4
Finally, we denote:

P 0 Z (r→s) = 1 (3.9)

General synthesis development

As explained just before, the 2N n p coefficients used in (3.5) can be obtained as functions of the frequency transformation input parameters, i.e the cut-off angular frequencies of the N bands. We use here the fact that the N high cut-off angular frequencies ω H i and the opposite of the low cut-off ones ω L i , with i ∈ [1; N ], are the zeros of U (N ) (ω). We thus obtain a first system of 2N equations (one for each cut-off angular frequency) with 2N unknowns (n p , p ∈ [0; 2N -1]).

According to expressions presented in (3.7)-(3.9), we denote

L (1→N ) = {ω L i } and H (1→N ) = {ω H i }, i ∈ [1; N ]
. Solving this first system then leads to:

n p = p r=0 (-1) N -r P N -r H (1→N ) P N +r-p L (1→N ) for p ∈ [0; N -1] = 2N r=p (-1) 2N -r P 2N -r H (1→N ) P r-p L (1→N ) for p ∈ [N ; 2N -1] (3.10)
We now express the 2N n p coefficients as functions of the frequency transformation output parameters, i.e the resonant angular frequency, ω 0 , and the slope parameter, b 0 , of the wide band-pass resonator, and the parameters

ω k and b k (k ∈ [1; N -1]
). We recall that these parameters are the resonant angular frequencies and the slope parameters of the stop-band resonators respectively. This is based on the introduction of the expression of T (N ) (ω) from

(3.
3) in (3.4) which allowed us to obtain the expression of U (N ) (ω) given in (3.5). We thus obtain a second system of 2N equations giving each n p coefficient as a function of the output parameters.

Here, we denote W (0→N -1) = {ω 2 k } the set of all the resonant angular frequency squares and W (1→N -1) = {ω 2 k } the set of the resonant angular frequency squares of the stop-band resonators only. We distinguish three cases for p = 0, p odd and p even, p ∈ [0; 2N -1].

-For p = 0, we have:

n 0 = (-1) N P N W (0→N -1) = (-1) N N -1 r=0 ω 2 r (3.11)
-For p odd, we denote p = 2q -1, q ∈ [1; N ]. We then have:

n p = n 2q-1 = (-1) N -q+1 ω 0 b 0 P N -q W (1→N -1) (3.12)
Chapter 3 -Direct synthesis of multiband band-pass filters with frequency transformation methods -For p even, we denote p = 2q, q ∈ [1; N -1], and then we obtain: ). In a practical way, we have to reverse this equations system in order to express the output parameters as functions of the 2N n p coefficients, these latter being calculated from the input parameters (ω L i and ω H i

n p = n 2q = (-1) N -q      P N -q W (0→N -1) + ω 0 b 0 N -1 k=1 ω k b k P N -q-1 W (1→N -1) {k}      (3.
(i ∈ [1; N ])) using (3.10).
First, using the expressions of n 0 , n 1 and n 2N -1 and whatever the number of bands N , we can easily demonstrate that the resonant frequency ω 0 and the slope parameter b 0 of the wide band-pass filter can be written as:

ω 0 = - n 0 n 2N -1 n 1 (3.14) b 0 = - n 0 n 1 n 2N -1 (3.15)
Using (3.12) for all the odd value of p, we can also demonstrate that (as presented in Appendix This equation can also be rewritten as follows:

N -1 k=1 ω k b k P N -q-1 W (1→N -1) {k} = P N -q W (0→N -1) -(-1) N -q n 2q n 2N -1 (3.17)
for q ∈ [1; N -1]. Using (3.17) for each value of q, we obtain an N -1 linear equations system with (N -1) unknowns (i.e each b k , or more precisely 1/b k ). This system can be written as

The theory of generalized frequency transformation methods

follows:

X N -1,N -1 B N -1 = A N -1 (3.18)
where X N -1,N -1 is the (N -1 × N -1) matrix of x q,k coefficients with:

x q,k = ω k P N -q-1 W (1→N -1) {k} (3.19)
B N -1 is the vector of the N -1 unknowns:

B N -1 = 1 b 1 , 1 b 2 , • • • , 1 b N -1 t (3.20)
and A N -1 is the vector of already known coefficients a

(N ) q : A N -1 = [a 1 , a 2 , • • • , a N -1 ] t (3.21)
with

a q = P N -q W (0→N -1) -(-1) N -q n 2q n 2N -1 (3.22) 
The slope parameters are then determined by inverting the matrix X N -1,N -1 :

B N -1 = X -1 N -1,N -1 A N -1 (3.23) b k = ω k N -1 j=1,j =k ω 2 k -ω 2 j N -1 j=1 Y j ω 2j-2 k (3.24) Y j = n 2j - n 0 n 2j+1 n 1 - n 2j-1 n 2N -1 n 2N -1 (3.25)
where k ∈ [1; N -1], N 3.

Application: the case of tri-bands

To well explain these generalized equations, we proposed here to develop them in a tri-band case. To determine the slope parameters of the tri-band resonators, we first determine the parameters of X 2,2 ,

X 2,2 =    x (3) 1,1 x (3) 1,2 x (3) 2,1 x (3) 2,2    n (3) 5 (3.40) 
After determination of the resonant frequencies and the slope parameters of the pass-band and stop-band elements of the multiband resonators, we use them to implement multiband filters. We first propose an ideals lump -elements implementation based on a classical ladder structure is composed of series inductances and shunt capacitances, a low-pass prototype filter can be modified to use only parallel capacitances separated by J admittance inverters. Using the generalized frequency transformation technique presented in Section 3.1.1, the i th capacitance, C LP i , of such a low-pass prototype can be transformed into a multi-band band-pass resonator as shown in Fig. 3.3. The multi-band band-pass resonator then obtained consists in the parallel association of one band-pass resonator (L

(i) 0 ; C (i) 0 ) and N -1 band-stop ones (L (i) k ; C (i) k ), k ∈ [1; N -1]
whose values are given by the equations below: 

L (i) 0 = 1 b 0 C LP i ω 0 (3.41) C (i) 0 = 1 L (i) 0 ω 2 0 (3.42) L (i) k = b k C LP i ω k (3.43) C (i) k = 1 L (i)
J 01 = G S β (1) 0 b 0 g 0 g 1 (3.45) J i,i+1 = 1 b 0 β (i) 0 β (i+1) 0 g k g k+1 (3.46) J M,M +1 = G L β (M ) 0 b 0 g M g M +1 (3.47)
where the g i coefficients are the low-pass prototype parameters, G S and G L are the source load impedances, and

β (i) 0 =ω 0 C (i) 0 .
In order to use only band-pass resonators, as it was been done in the following, all the stopband LC-series elements can be transformed in LC-parallel ones using another set of J-inverters.

A MBPR then consists only in LC-parallel resonators (see Fig. 3.5), the main one (L S.m -1 ). All multi-band band-pass resonators use a star-like structure connecting N stubs at a same point allowing the implementation of such multi-band filters without a significant increase of the circuit size compared to mono-band one. All prototypes were simulated and optimized using ADS software from Keysight Technologies © and fabricated by laser engraving using a LPKF Protolaser U4.

(i) 0 , C (i) 0 ) being separated from the others (L (i) k , C (i) k ), k ∈ [1; N -1] and i ∈ [1; M ], by additional J-
J (i) k = β (i) 0 β (i) k b 0 b k (3.48) with β (i) k =ω k C (i) k .

Synthesis and experimental validation of the proposed multiband band-pass filters

Tri-band to quint-band band-pass filters

Tri-band band-pass filter

To synthesize a tri-band band-pass filter using the frequency transformation method proposed here, one needs to take N = 3 in equations (3.14) to (3.25). We have already obtained these equations in 3.1.3 with details.

The specifications of a tri-band band-pass filter given in terms of low and high cut-off angular frequencies can then be transposed in terms of resonant angular frequencies and slope parameters. As an example, the arbitrary following specifications are proposed: The resulting resonant frequencies and slope parameters are: 

f 0 = ω 0 /2π = 2.604 GHz, f 1 = ω 1 /2π = 2.191 GHz, f 2 = ω 2 /2π = 2.

Quad-band band-pass filter

Table 3.1 -Component values of the ideal L-C triple-band third-order band-pass filter. The quad-band MBPFs specifications will be introduced in this part. One should be aware of the fact that there are still few papers paying attention to the high-order quad-band MBPFs, in [8] the author proposed a third-order SIW quad-band BPFs with multilayer technologies and the configuration of the filter as well as the turning process of the filter is not easy to achieved.

Resonators (i ∈ [1; 3]) L (i) 0 = 1.586 nH L (i) 1 = 1.902 nH L (i) 2 = 1.603 nH C (i) 0 = 2.412 pF C (i) 1 = 2.892 pF C (i) 2 = 2.355 pF L (i) 3 = 1.315nH C (i) 3 = 2.211 pF J (i) 1 = 0.0078 S J (i) 2 = 0.0074 S J (i) 3 = 0.0067 S Inverters (J i,i+1 ) J 01 = J 34 = 0.
Until now nearly all the quad-band MBPFs are second-order filters so the out-of-band rejections are typically not so good. Our synthesis method allows a much easier design of quad-band (and beyond) MBPFs with high out-of-band rejections.

In the same way as for the tri-band case, the synthesis of a quad-band band-pass filter using this frequency transformation method starts with the determination of the expression of the resonant angular frequencies and the associated slope parameters as functions of the low and high cut-off frequencies. To do so, one takes N = 4 in equations (3.14) to (3.25). The resulting equations are presented in Appendix 7.2 for a sake of clarity.

A first set of specifications are also proposed here as an example to design, fabricate and measure a third-order quad-band band-pass filter. The specifications proposed for this filter show different bandwidths for each band and are the following:

1. Pass-band 1: 2.00 GHz-2.08 GHz (BW: 80 MHz); The resulting resonant frequencies and slope parameters are: f 0 = ω 0 /2π = 2.573 GHz, They leads to the following resonant frequencies and slope parameters: Table 3.3 -Component values of the ideal L-C quint-band third-order band-pass filter. 

f 1 = ω 1 /2π = 2.146 GHz, f 2 = ω 2 /2π = 2.501 GHz, f 3 = ω 3 /2π = 2.
f 0 = ω 0 /2π = 2.548 GHz, f 1 = ω 1 /2π = 2.178 GHz, f 2 = ω 2 /2π = 2.480 GHz, f 3 = ω 3 /2π = 2.
Resonators (i ∈ [1; 3]) L (i) 0 = 1.602 nH L (i) 1 = 1.874 nH L (i) 2 = 1.645 nH L (i) 3 = 1.388 nH L (i) 4 = 1.241 nH C (i) 0 = 2.436 pF C (i) 1 = 2.850 pF C (i) 2 = 2.502 pF C (i) 3 = 2.333 pF C (i) 4 = 2.080 pF J (i) 1 = 0.0070 S J (i) 2 = 0.0072 S J (i) 3 = 0.0069 S J (i) 4 = 0.0064S Inverters (Ji,i+1) J01 = J34 = 0.013 S J12 = J23 = 0.0069 S ( 

Sixfold-band band-pass filters or beyond

For sixfold-band cases and beyond, it's impossible to determine analytically the resonant frequencies of the stop-band resonators using (3.16) because the degree of this equation. So a numerical resolution of this equation is needed, but only of this one. The direct frequency mapping method presented previously in this chapter is so possible to design multiband bandpass filter with six bands or more.

Nevertheless, the implementation used for the previous examples becomes more and more difficult with the increase of the number of bands. Indeed, as the number of pass-bands increase, all the needed short-ended microstrip branches are difficult to map in a single-layer because two major challenges. The first one is that at the junction of band-pass and band-stop resonators, too many branches will lead to the discontinuity of impedance, thereby affecting the performance of the filter. The second one is the adjacent band-stop resonators will couple with each other, which will affect the stop-band performance.

To cope with these challenges, a multilayer configuration is proposed putting some stubs in another layer. The configuration investigated here is presented in Fig. We can observe that the return losses are good for all the pass-bands, high rejection level are also achieved for all the stop-bands. However, the insertion losses are relatively large as the frequencies increase. Moreover, the largest insertion loss about 8.1 dB can be observed in the last pass-band. It may because the introduction of via-connectors between the top and bottom layers on the one hand and the emergence of the cavity between the two ground layers on the other hand.

Finally, due to a lack of time to optimize this sixfold-band filter and additional constraints imposed by the prospective manufactured (necessity of two ground metal layers from either side of the prepreg layer), we had chosen not to realize this filter. Nevertheless, even if such a solution needs a relatively important design time, we think it is a very interesting solution in order to develop multiband filters with a high number of bands in planar technologies.

Extension to other technological configurations

Implementation of star-like multiband filters with coupled structures

In the above sections, we mainly focus on direct synthesis technology for MBPFs with the use of resonators' slope parameters and implementation using stubs in a star-like topology.

However, coupled structures are also often used to design MBPFs because of their compact size, high-quality factors and easy-integrated characteristics. The frequency transformation method we propose in this thesis can be applied to these coupled structures using waveguides, microstrip, and other technologies.

To do that, we need to determine the coupling coefficients and the quality factors between the consecutive resonator and/or source or load. For a given network topology, there is an infinite number of combinations of slope parameters and g i values (the capacitance values in low-pass domain, associated to the chosen approximation function and the return loss level) that can be chosen to achieve the same filtering response if we reduce or expand all coupling coefficients by the same multiple. So, if all the slope parameters in the above-mentioned star-like topology with directly synthesis methods are taken equal to 1, we will have β

(i) 0 = β (i) k = 1 with i in[1; M ] and k in[1; N -1]
where M is the filter order and N the number of bands. We can also normalize the admittance of source and load G s = G l = 1. Equations (3.45)-(3.48) are then scaled to:

J 01 = G S β (1) 0 b 0 g 0 g 1 = 1 b 0 g 0 g 1 = m 01 1 b 0 (3.49) J i,i+1 = 1 b 0 β (i) 0 β (i+1) 0 g i g i+1 = 1 b 0 1 g i g i+1 = m i,i+1 b 0 (3.50) J M,M +1 = G L β (M ) 0 b 0 g M g M +1 = 1 b 0 g M g M +1 = m M,M +1 1 b 0 (3.51) J (i) k = β (i) 0 β (i) k b 0 b k = 1 b 0 b k (3.52)
where m i,j (i, j ∈ [0; M +1]) are the normalized coupling coefficients in the low-pass domain. The different combinations of parameters result in the same electrical performance for the MBPFs, and this is well proved in [START_REF] Mansour | Design of filtering microstrip antenna using filter synthesis approach[END_REF]. For a filter with a specified return loss level, the g i values can be looked up in book [START_REF] Hong | Microstrip filters for RF/microwave applications[END_REF]. For example, for a second order filter with a Chebyshev approximation and 20 dB return loss, g 0 = 1, g 1 = 0.6648, g 2 = 0.5445, g 3 = 1.2210, which corresponds to

m 01 = m 23 = 1.2264, m 12 = 1.6620.
We an then define the coupling coefficients between two consecutive band-pass resonators as defined in Fig. 3.3.1 in a triple-band case as:

K i,i+1 = m i,i+1 b 0 with i ∈ [1; M -1] (3.53)
the last resonator and the load in the other hand are defined from the external at the input and Q el at the output. They can be expressed as:

Q es = b 0 G s = b 0 m 2 01 = b 0 g 0 g 1 (3.54) Q el = b 0 G l = b 0 m 2 M,M +1 = b 0 g M g M +1 (3.55) 
In the same way, the coupling coefficients inside a multiband resonator between the band-pass resonator and the k th band-stop resonators can be written as:

K S,0k = 1 √ b 0 b k with k ∈ [1; N -1] (3.56)
For practical implementation, in this thesis, we only focus on microstrip technology. In order to avoid using too many metalized-vias, we use half-wavelength resonators as band-pass and band-stop resonators, as we use quarter-wavelength resonators with vias previously. For such coupled structures, the coupling coefficients are achieved by adjusting the coupling distance between the resonators while for direct synthesis method the couplings are achieved by quarterwavelength J inverters. The coupling coefficients can be extracted with EM software. For our cases, all the simulations are implemented with ADS software from Keysight Technologies. The extracted methods are well explained in [START_REF] Hong | Microstrip filters for RF/microwave applications[END_REF] and [START_REF] Mansour | Design of filtering microstrip antenna using filter synthesis approach[END_REF].

The external quality factors Q es and Q el , which are equal in our case, can be calculated directly by dividing the 3dB bandwidth ∆ f and the centre frequency f 0 as follows (see. Fig.

3.16(a))

:

Q es = Q el = f 0 ∆ f 3dB (3.57)
The coupling between two adjacent resonators can be extracted considering them identical The coupling coefficient is then:

K i,i+1 = f 2 i+1 -f 2 i f 2 i+1 + f 2 i (3.58)
where f i and f i+1 are the resonant frequencies of resonators i and i + 1 respectively when the two band-pass resonators are coupled (see. Fig. 3.16(b)).

Finally, the coupling coefficient between band-pass and band-stop resonators of a individual multiband resonator can be expressed as:

K 0,k = 1 2 f r2 f r1 + f r1 f r2 f 2 p2 -f 2 p1 f 2 p2 + f 2 p1 - f 2 r2 -f 2 r1 f 2 r2 + f 2 r1 (3.59)
where f p1 and f p2 are the lower and higher resonant frequencies of the two coupled resonators while f r1 and f r2 are their self-resonant frequencies in each resonant mode without coupling. 

Examples of star-like multiband filters implemented with coupled structures

Two examples of multiband band-pass filters based on a star-like topology and implemented with coupled lines are presented here: a triple-and a quad-band filter. Both initial low-pass For each example, once again, we propose arbitrary specifications in terms of low and high cut-off frequencies and we determine the resonant frequencies and slope parameters using the method proposed in Section 3.1.2. The two multiband band-pass filters were fabricated in microstrip technology on Rogers 6010 substrate with a thickness h = 1.27 mm, a relative permittivity ε r = 10.2 and a loss tangent tan δ = 0.0023, associated with a double-sided copper layer with a thickness of 18 µm and a conductivity of 5.8 × 10 7 S.m -1 . For each resonator, the band-pass and the band-stop parts were implemented using half-wavelength open-ended stubs resonators with the same line width of 1 mm. All prototypes were simulated and optimized using ADS software from Keysight Technologies © . The fabrication of the circuits were made by laser engraving using a LPKF Protolaser U4.

Example 1: tri-band coupled-lines filter

For this first example of a tri-band filer, the three pass-bands were chosen as follow: The resulting resonant frequencies and slope parameters are: 

f 0 = ω 0 /2π = 3.310 GHz, f 1 = ω 1 /2π = 3.156 GHz, f 2 = ω 2 /2π = 3.373 GHz, f 3 = ω 3 /2π = 3.

Discussion

As shown in the synthesis process proposed in this chapter, a multiband response could be produced simply by replacing the low-pass resonators of any prototype with the transformed star-like circuits. Each sub-band will become the frequency-translated and bandwidth-scale equivalents of the original prototype. Therefore, if our low-pass filter have transmission zeros (TZs), the multiband version will have additional TZs between each band. For instance, we provide here an example of the synthesis of a multiband elliptic filter with a quint-band response.

We consider a 4 th -order filter with an elliptic approximation (23 dB RL with normalized TZs at ±2.2j). The specifications for this example are the followings: The resonating frequencies and slope parameters can be easily obtained once again using the generalized formulas presented in Section 3.1.2. Fig. 3.22 shows the ideal circuit response for this quint-band elliptic filter. The additional TZs clearly appear on either side of each band as expected. The stop-band region between each pass-band is thus improved.

In addition to the elliptic function filter mentioned above, we also give an example of a Butterworth filter. This type of filter is characterized by the maximally flat response as shown in [START_REF] Hong | Microstrip filters for RF/microwave applications[END_REF]. Here, we build a tri-band band-pass filter based on Butterworth low-pass prototype filters (g 0 = g 4 = 1.0, g 1 = g 3 = 1.0, g 2 = 2.0) with a classical attenuation L Ar = 3-dB at Ω c with the following specifications: The response for the proposed tri-band filter is presented in Fig. 3.4 with a zoom in Fig. 3.4 around 3 dB to well see the cut-off frequencies.

More generally, using our proposed transform function, we always assume that lower cut-off angular frequencies ω L i and the upper cut-off angular frequencies ω H i (i ∈ [1; N ]) are respectively mapped to -1 and +1 in the Ω low-pass normalized domain, which presents a symmetric behaviour. This implies that only transfer functions that are symmetric in the low-pass domain can be used in this method. Chebyshev, Butterworth and elliptic filters have all symmetrical structures where the symmetry is defined as g 0 = g n+1 , g 1 = g n , g 2 = g n-1 , etc., in low-pass normalized prototypes. There are all therefore compatible with our proposed synthesis method.

For Gaussian low-pass prototype (flat-group-delay), filters with order n = 1 are identical to the first-order Butterworth low-pass prototype and can also be synthesized with this method.

Gaussian filters with order n ≥ 2 are structurally asymmetrical as discussed in [START_REF] Hong | Microstrip filters for RF/microwave applications[END_REF]. It is therefore impossible to synthesize multiband Gaussian filter with this method. Nevertheless, flat groupdelay can also be obtained with symmetrical structures using cross-coupling as presented in the case of single-band filters in [START_REF] Manchec | Cross-coupled microstrip dual behavior resonator (dbr) filter[END_REF][START_REF] Lu | Five-pole parallel-coupled microstrip cascade quadruplet filters for high selectivity and flat group delay[END_REF].

Conclusion

In this chapter, we discuss the synthesis of MBPFs with a generalized frequency transformation methods. A rigorous mathematical analysis process is presented to obtain the generalized transform function for an arbitrary number of pass-bands, extending the frequency transformation proposed in [START_REF] Macchiarella | Design techniques for dual-passband filters[END_REF] in a dual-band case. Based on this method, tri-, quad-, and quint-band MBPFs with ideal LC circuits are synthesized and realized in microstrip technology with noncoupled structures. Such an implementation leads to a clear synthesis process and requires little optimization. Very good results are achieved between simulation and measurement. Neverthless, for such a star-like topology, it is a challenge work to implement filters with more than five bands. Indeed, on the one hand, the based band-pass filter is difficult to have a very wide-band.

As the number of pass-bands increase, each pass-band will become narrow and the insertion loss will be larger and larger. On the other hand, it is difficult to map two many resonators in a single layer PCB because the limited mapping space will introduce unexpected cross-coupling effects between adjacent resonators. To cope with the second issue, multilayer structures were proposed to design MBPFs more than five pass-bands. However, the multilayer structure is also difficult to implement and it will be affected by the connection vias between layers, which may introduce losses in the filters.

To support the generality of this synthesis method, we also discuss the possibility to use coupled structures to realized multiband band-pass filters in a star-like topology. For coupled filters, there are two significant advantages. First of all, there is no need to consider the slope parameters of a single resonator, which makes the design of the filter more flexible. Secondly, due to the tight coupling structure, the miniaturization of the filter is easily to be realized. Two examples related 3 and 4 bands were developed and once again validated experimentally. Nevertheless, the synthesis process is quite time-consuming because there are many cross-coupling between the resonators. Moreover, the proposed technological implementation is difficult to be extended to an higher number of bands.

As we described above, due to the heavy loading of the band-pass resonators especially with an increasing number of bands, this direct frequency transformation method with a starlike topology could be difficult to implement. To solve this problem, a new type of transform function will be proposed in next chapter with an in-line topology.

Chapter 4

SYNTHESIS OF MULTIBAND BAND-PASS FILTERS WITH IN-LINE TOPOLOGY

In chapter 3, we have mainly focused on the synthesis of multiband band-pass filter (MBPFs) with a star-like topology. The basic resonator of such a multiband filter is represented again in Fig. 4.1(a). However, as mentioned previously, the implementation of such filters is more and more difficult when the number of bands increases. Indeed, more and more stop-band resonators all connected to the same point are then needed and their mapping in a limited space could be very difficult. If some solutions were proposed at the end of Chapter 3, notably based on multilayer structures, their optimization and fabrication could be quite complex. To solve this problem, in this chapter 4, we propose to use an in-line topology as presented in Fig. 4.1(b). This topology gives more freedom to map all the resonators and enables us to achieve high number of pass-bands. This topology can also be developed starting from the frequency transformation approach but with the transfer function defined as: 

Ω = T (N ) (ω) = b 0 ω ω 0 - ω 0 ω - 1 b 1 ω ω 1 -ω 1 ω - 1 b 2 ω ω 2 - ω 2 ω - 1 b 3( ω ω 3 - ω 3 ω ) •••- 1 b N -1 ω ω N -1 - ω N -1 ω , ( 4 
1 1 1 u 0 ,b 0 u 1 ,b 1 u 2 ,b 2 u N-1 ,b N-1

Extraction of the output parameters

Extracting synthesis parameters with frequency mapping technique

The first technique proposed to synthesize an N -band band-pass filter in an in-line topology follows the same procedure as the one used in the star-like topology case but with the new transformation function given in (4.1). So, in order to obtain the design parameters, we assume once again that the lower cut-off angular frequencies for the N pass-bands

ω L i (i ∈ [1; N ]) map
to -1 in the normalized domain Ω, while the upper ones, ω H i (i ∈ [1; N ]), map to +1. Because of the odd symmetry of T (ω), we obtain

T (-ω L i ) = T (ω H i ) = 1 (4.2)
The high cut-off angular frequencies and the opposite of the low cut-off angular ones are therefore the zeros of the function G(ω) defined as

G(ω) = T (ω) -1 (4.3)
Therefore (4.3) can be expressed as

G (N ) (ω) = - ω 2N + n 2N -1 ω 2N -1 + n 2N -2 ω 2N -2 • • • + n 0 n 2N -1 ω 2N -1 + n 2N -3 ω 2N -3 • • • + n 1 ω (4.4)
The n p coefficients (p ∈ [0; 2N -1]) are then expressed as functions of the output parameters

(ω k and b k (k ∈ [0; N -1])).
Then, another expression of these parameters is obtained as functions of the input parameters using the fact that these latter are the zeros of G (N ) (ω). These two sets of expressions of the n p coefficients make possible to link input and output parameters and so to determine the latter according to the first. These two sets of n p coefficients expressions are presented in Appendix 7.4 for the tri-and quad-band cases.

Therefore, this first method based on a direct frequency mapping is easy-understanding.

However, for MBPFs beyond five-bands, it is challenging to obtain analytical synthesis equations, the computer-aided methods will be needed to find the design values. A second and simplest method is therefore proposed in Section 4.1.2.

Extracting synthesis parameters with circuit approach

The second method consists of looking the multiband resonator of Fig. representation, the following equations can be obtained to link voltages and currents:

V 1 = A(s)V 2 + B(s)I 2 (4.5a) V 2 = C(s)V 2 + D(s)I 2 (4.5b)
Considering a short-circuit on the output port as in Fig. 4.3, V 2 = 0 and then:

Y in = I 1 V 1 = D(s) B(s) (4.6)
In order to show the procedure of the proposed extraction method, let take the simple example of a third-order low-pass network containing only LC elements as shown in Fig. 4.4. We can easily write the ABCD matrix of this low-pass network as:

M ABCD = 1 + s 2 L 2 C 3 sL 2 s(C 1 + C 3 ) + s 3 C 1 L 2 C 3 1 + s 2 L 2 C 1 (4.7)
The input admittance can then be expressed as:

Y in = D(s) B(s) = 1 + s 2 C 1 L 2 sL 2 (4.8)
The first step is to extract the value of C 1 , supposing that we insert the short circuit between C 1 and L 2 . It means that all the LC elements behind C 1 are connected to the ground. So there is only C 1 in the circuit. In this case, the value of the first component C 1 can be extracted when

Extraction of the output parameters

s → +∞ as following: 

Y in s = D(s) sB(s) s→+∞ = 1 + s 2 C 1 L 2 s 2 L 2 s→+∞ = C 1 (4.
M A 1 B 1 C 1 D 1 = 1 0 -sC 1 1 1 + s 2 L 2 C 3 sL 2 s(C 1 + C 3 ) + s 3 C 1 L 2 C 3 1 + s 2 L 2 C 1 = 1 + s 2 L 2 C 3 sL 2 sC 3 1 (4.10)
The same procedure can be applied here again to extract the value of L 2 .

sY

(1)

in = s D 1 (s) B 1 (s) s→+∞ = 1 L 2 (4.11)
Up to now, we have got all the values except the value of the last component, C 3 . We use the same method by premultiplying

M A 1 B 1 C 1 D 1 by the inverse [ABCD] matrix of the L 2 . So we can get the matrix M A 2 B 2 C 2 D 2 : M A 2 B 2 C 2 D 2 = 1 -sL 2 0 1 1 + s 2 L 2 C 3 sL 2 sC 3 1 = 1 0 sC 3 1 (4.12)
This matrix only have one element C 3 . We can use the following equation to get the needed

value of C 3 : Y (2) in s = D 2 (s) sB 2 (s) s→+∞ = C 3 (4.13)
We can finally obtain all the values of the ladder network by this method, supposing that we know a priori the value of each individual [ABCD] matrix or at least of each Y in .

As mentioned above, our transformation function leads to the equivalent circuit shown in Fig. 4.2. The ladder network includes here normalized J-inverters but the same technique can still be applied. Indeed, extracting the inverter just inverts the input admittance as it will be shown later on the example of a tri-band resonator.

However, such ladder networks result generally into asymmetric filters. It means that the center frequencies are not always resonating at the pass-band center. Moreover, the stop-band resonant frequencies also deviate from the center resonance frequency of the based wideband BPFs. This implies that the presented immittance polynomials introduced in the above section cannot be implemented with only capacitors or inductors. In order to solve this problem, To simplify the extraction parameters process, this circuit, which corresponds to the multiband band-pass resonator in the de-normalized domain, is normalized to a multiband low-pass ladder network shown in Fig. 4.5(b). At each node level, considering the normalization/denormalization process, the equivalent admittance can then be written as follow:

Y BP (ω) = jC k ω + 1 jL k ω + jB k = j C Lk F BW ω ω BP - ω BP ω + jB Lk (4.14)
with:

ω BP = √ ω L 1 ω H N (4.15) F BW = ω H N -ω L 1 ω BP = ω H N -ω L 1 √ ω L 1 ω H N (4.16)
in the de-normalized band-pass case (Fig. 4.5(a)), ω BP being the center angular frequency of the based whole pass-band and F BW its fractional bandwidth, and transformation between both domain as follow:

Y LP (s) = sC Lk + jB Lk (4.
Ω L i = 1 F BW ω L i ω BP - ω BP ω L i (4.18a
)

Ω H i = 1 F BW ω H i ω BP - ω BP ω H i (4.18b)
The behaviour of the ladder network in the low-pass domain is then like the one presented in Fig. 4.6. Note that the sub-bands cut-off angular frequencies then varies inside -1 and 1 with

Ω L 1 = -1 and Ω H N = 1.
As explained in [START_REF] Cameron | Microwave filters for communication systems: fundamentals, design, and applications[END_REF], a specific frequency mapping function, Ω (Ω), is necessary in order to map all the cut-off angular frequencies of the multiband low-pass resonator to -1 or +1 in the normalized cut-off frequencies of a single-band prototype. In fact, in our case, this mapping function is equivalent to the admittance function, Y (N ) 0

, synthesizing the ladder network presented in Fig. 4.5(b). This admittance function is: [START_REF] Cameron | Microwave filters for communication systems: fundamentals, design, and applications[END_REF]) can be rewritten as a ratio of two polynomials in the normalized frequency domain:

Y (N ) 0 (s) = sC L0 + jB L0 + 1 sC L1 + jB L1 + 1 sC L2 + jB L2 + • • • 1 sC LN -1 + jB LN -1 (4.19) Equation (4.
Y (N ) 0 (Ω) = j U (Ω) V (Ω) = j Ω N + u N -1 Ω N -1 + u N -2 Ω N -2 • • • + u 0 v N -1 Ω N -1 + v N -1 Ω N -2 • • • + v 0 (4.20)
where u i (i ∈ [0; N ]) and v i , (i ∈ [0; N -1]) are the coefficients of the numerator and denominator respectively.

To determine the value of these coefficients, it is important to note that the mapping function alternates N times between -1 (for each Ω L i ) and +1 (for each Ω H i , i ∈ [1; N ]). Therefore, 2N linear equations are obtained as follow:

Y (N ) 0 (Ω L i ) = -1 (4.21a) Y (N ) 0 (Ω H i ) = +1 (4.21b)
and the resolution of this equation system gives the numerator and denominator coefficients of

Y N 0 (Ω)
whose knowledge is the starting point of the parameters extraction method presented in this section. To apply this method, the following three principles should be keep in mind:

1. The first extracted parameter is always C L0 , and then B L0 , C L1 , B L1 until B LN -1 .

2. When encountering immittance inverters, it must pre-divided by 1 before extracting the next parameters.

3. When all the values are successfully extracted, all the parameters should be de-normalized to the real frequencies ranges.

Based on these principles and the knowledge of Y 

C (N ) L0 = lim Ω→∞ Y (N ) 0 (Ω) jΩ = 1 v N -1 (4.22a) B (N ) L0 = 1 j lim Ω→∞ Y (N ) 0 (Ω) -jC (N ) L0 Ω = u N -1 v N -1 - v N -2 v 2 N -1 (4.22b)
Then, we can continue step-by-step in the same way using the following three equations succes-

sively from k = 0 to k = N -1. Y (N ) k+1 = Y (N ) k -jC (N ) Lk Ω -jB (N ) Lk (4.23a) C (N ) Lk = lim Ω→∞ 1 jY (N ) k Ω (4.23b) B (N ) Lk = lim Ω→∞ 1 j 1 Y (N ) k -jC (N ) Lk Ω) (4.23c)
Once all the values are extracted, they should be de-normalized to real frequencies. In our 

b k = C Lk F BW (4.24
)

ω k = ω BP   - B Lk F BW 2C Lk + B Lk F BW 2C Lk 2 + 1   (4.25)

Example of application: a triple-band band-pass resonator

To make it clear, we propose to develop this method a triple-band band-pass resonator. We arbitrary set the three following bands:

1. Pass-band 1: 2.00 GHz-2.30 GHz (normalized low-pass frequency range: -1,-0.3088);

2. Pass-band 2: 2.40 GHz-2.60 GHz (normalized low-pass frequency range: -0.1000,0.2923);

3. Pass-band 3: 2.85 GHz-3.00 GHz (normalized low-pass frequency range: 0.7448,1).

We first determine the normalized cut-off angular frequencies of each band in the multiband low-pass domain using (4.18a) and (4.18b):

1. Pass-band 1: Ω L 1 = -1 and Ω H 1 = -0.3088; The input admittance of the low-pass ladder network in this triple-band case is:

Y (3) 0 (Ω) = j U (Ω) V (Ω) = j Ω 3 + u 2 Ω 2 + u 1 Ω + u 0 v 2 Ω 2 + v 1 Ω + v 0 (4.26) 
By mapping the normalized frequencies to the single-band low-pass domain using equations (4.21a) and (4.21b), we obtain the coefficients of all polynomials. The equation (4.26) can be expressed as:

Y (3) 0 (Ω) = j Ω 3 -0.3142Ω 2 -0.4130Ω + 0.0079 0.6694Ω 2 -0.3063Ω -0.0824 (4.27) 
The parameter extraction can start with C

(3) L0 and B

(3) L0 using (4.22a) and (4.22b) respectively:

C (3) L0 = 1 v 2 = 1 0.6694 = 1.4938 (4.28a) B ( 3 
) L0 = u 2 v 2 - v 1 v 2 2 = -0.3142 0.6694 + 0.3063 (0.6694) 2 = 0.2142 (4.28b)

Implementation method and examples for the proposed multiband band-pass filters

As mentioned in the introduction of this chapter, we have chosen a coupled-lines structure to implement the examples of MBPFs based on the in-line topology presented in the previous section. A general coupling schematic of the proposed in-line MBPFs is shown in Fig. 4.7.

The needed parameters of all multiband band-pass resonators are obtained using one of the two methods presented previously. The based main-line band-pass filter (in the black rectangle in Fig. 4.7) can be also designed with different coupling paths with or without cross-coupling. In the examples presented here, no cross-coupling is used but such a solution could be of interest to add new transmission zeros for instance. In the same way, there is no cross-coupling between the band-stop parts of different multiband resonators.

As explained in Section 3.3, the design of coupled-lines structure implies the determination of the coupling coefficients. At the main-line band-pas level, we can use exactly the same formulas than in Section 3.3, that is to say:

Q es = b 0 m 2 01 = b 0 g 0 g 1 (4.31) 
Q el = b 0 m 2 M,M +1 = b 0 g M g M +1 (4.32) K i,i+1 = m i,i+1 b 0 for i ∈ [1; M -1] (4.33)
where M is the filter order, m i,i+1 = 1/ √ g i g i+1 and g i is the approximation coefficient of the i th resonator. As the stop-band parts of each multiband resonator are not all connected to the pass-band cell unlike in the star-like topology but to one another, we need to define the couplings inside an individual multiband resonator (blue oval box in Fig. 4.7, that is to say the coupling between the band-pass cell and the first stop-band one and between two consecutive band-stop ones. This coupling coefficient is:

K s k,k+1 = 1 b k b k+1 with k ∈ [0; N -1] (4.34) 
We applied this implementation method to the design of four 2 nd -order multiband band-pass filters to validate both the two proposed synthesis methods and the implementation technique.

Each example was designed with a Chebyshev approximation in order to achieve a return loss level of 20 dB in the pass-band region. Therefore, the low-pass approximation coefficients are selected as g 0 = 1, g 1 = 0.6648, g 3 = 0.5445, g 3 = 1.2210, which corresponds to m 01 = m 23 =

Main-line bandpass filter

Individual multiband resonator S 2 S 1 1.2264 and m 12 = 1.6620. The choice of identical order and return loss for each example was made for the sake of simplicity in the filter design.

P 2 P 1 P m S r S 1 S 2 S 1 S r S 2 S r Q el Q es K M-1,M K 12 K s,0k+1 K s,01 K s,02
Various technologies could be applied here to implement the four MBPFs. In this work, we have chosen planar microstrip technology because of its simple fabrication process, low-cost integration and compact-size. Fig. 4.8 illustrates a general structure of the proposed MBPFs consisting in multiple half-wavelength parallel-coupled lines. They are arranged in an in-line configuration so that adjacent resonators are parallel to each other. This parallel arrangement can achieve relatively large coupling coefficients for a given spacing between resonators. Correlation between these coupling coefficients and the relative position of two coupled lines were extracted using EM software in the same way as explained in Section 3.3. In Fig. 4.8, the yellow lines denote the feeding line of the MBPF, the red lines represent the band-pass resonators and the gray ones are the band-stop resonators with different resonant frequencies.

All the MBPFs designed in this chapter were fabricated on a RT/Duroid 6010 laminate substrate from Rogers Corporation with a thickness h = 1.27 mm, a relative permittivity ε r = 10.2 and dissipation factor tan δ = 0.0023, associated with a double-sided copper layer of 17.5 µm thickness and a conductivity of 5.8×10 7 S.m -1 . For each resonator, the band-pass and the bandstop parts were implemented using half-wavelength lines, open-ended on both side and with the same line width of 1 mm. One thing must be noted is that the effect of even and odd mode characteristic impedances must be taken into account in the resonator implementation. This can be done by adjusting the line length in a small range or more accurately by the even-and odd-mode open-end analysis methods [START_REF] Wu | Direct synthesis of quad-band band-pass filter by frequency transformation methods[END_REF].

Example 1: triple-band in-line filter

The first example is a triple-band filter with the arbitrary following specifications:

-Pass-band 1: 3.00 GHz-3.08 GHz (FBW: 80 MHz); -Pass-band 2: 3.25 GHz-3.38 GHz (FBW: 130 MHz); -Pass-band 3: 3.60 GHz-3.70 GHz (FBW: 100 MHz). These specifications given in terms of low and high cut-off angular frequencies can be transposed in terms of resonant frequencies and slope parameters using one of the two extracting parameters methods proposed in Sections 4.1.1 and 4.1.2. As explained at the end of the Section 4.1.2, the two methods give exactly the same results. In this example, the resulting resonant frequencies and slope parameters are The filter has been successfully implemented in coupled-lines microstrip technology with the substrate characteristics given above. A picture of the fabricated triple-band band-pass filter is shown in Fig. 4.10(a). The dimensions of the filter are presented in Table 4.2. The dimension symbols refer to those used in Fig. 4.8. The total size of the prototype is about 2.06λ g × 0.254λ g (71.1 × 9.35 mm 2 ) without considering the 50 Ω access lines, λ g is the guided wavelength of the center frequency of the filter. 

f 0 = ω 0 /2π = 3.327 GHz, f 1 = ω 1 /2π = 3.346 GHz, f 2

Example 2: quad-band in-line filter

With a similar synthesis method as for the triple-band case, the synthesis of a quad-band band-pass filter using the in-line topology is now proposed. Once again, both extracting methods can be used equivalently to obtain the output parameters, i.e the resonant angular frequencies and slope parameters.

Arbitrary specifications are also proposed here as an example to design, fabricate and mea- Using one of the two extracting methods, the multiband resonator parameters are The coupled-lines quad-band filter was also implemented in the same topology and technology as the previous one. A photography of the fabricated filter is shown in Fig. 4.12(a) and its dimensions are given in dB, 1.63 dB, 1.28 dB from the first to the fourth band and the measured RLs are better than 10.8 dB, 13.9 dB, 14.5 dB and 12.9 dB, successively. Good isolation (31.1 dB between the first and the second pass-band, 46.7 dB between the second and the third one, and 29.1 dB between the third and the fourth one) are again achieved between all the pass-bands.

f 0 = ω 0 /2π = 3.346 GHz, f 1 = ω 1 /2π = 3.357 GHz, f 2 = ω 2 /2π = 3.336 GHz, f 3 = ω 3 /2π = 3.

Example 3: quint-band in-line filter

The third example is a quint-band band-pass filter. As explained before, for 5 bands or more, only the second extracting method based on the circuit approach (see Section 4.1.2 can be used to obtain the output parameters from the cut-off frequencies. These latters are arbitrary chosen as follows for this example:

-Pass-band 1: 2.92 GHz-3.00 GHz (FBW: 80 MHz); The application of the second extraction method leads to the output parameters given in Table 4.4. As for the two previous examples, theoretical responses of the quint-band filter are first presented in Fig. 4.13. They correspond once again perfectly to the specifications. The filter was fabricated using the same coupled-lines structure and the same materials characteristics. A picture of the fabricated filter is presented in Fig. 4.14(a). Its dimensions are summarized in Table 4.5. The total size of the circuit is 2.50λ g × 0.311λ g (86.9 × 10.82 mm 2 ). The output parameters corresponding to these specifications can be obtained using the same procedure as for the quint-band case. There are summarized with the intermediate values in 4.7).

The filter is fabricated with the same characteristics as the previous ones and its total size is about 2.90λ g × 0.347λ g (91.2 × 10.9 mm 2 ). 

Conclusion

The main topic of this chapter is the introduction of a class of multiband band-pass filters in an in-line topology. Two synthesis methods are proposed and used here to extract the synthesis parameters. The first one is a universal way to obtain the needed parameters. It is in the same way as the one proposed in Chapter 3 and can be used with any transformation functions for different implementation topologies such as star-like, in-line and also mixed topology. The second method can only be implemented for in-line topology. Note that for a mixed topology, one can use coupling matrix rotations to achieve a specific topology initially based on star-like or in-line topology.

In this chapter, the filter implementation of the few examples in an in-line topology have been achieved using microstrip technology. It allow to synthesize MBPFs with a relative wideband bandwidth. We can also use waveguide or SIW technology to make these filters, but it may be a challenging work to have a wide-band and a high number of pass-bands. Also, MBPFs based on in-line topology may have difficulties for optimization procedure, since the coupling coefficients are related between different band-stop resonators.

In the next and last chapter, the concept of associated band-stop resonators (ABSRs) will be presented. Based on ABSRs, several high numbers pass-band filters with wide-band performance will also be demonstrated.

resonant frequency f zi , which corresponds to a transmission zero. The behavior of the parallel association of the N -1 branches can then be written in term of total input admittance, Y tot , as:

Y tot = N -1 i=1 Y i = j N -1 i=1 (Z i2 tan( f f zi π 2 ) -Z i1 ) cot( f f zi π 2 ) Z i1 (Z i1 + Z i2 ) (5.1)
where Y i denotes the input characteristic admittance of the branch i, f is the working frequency, and Z i1 and Z i2 are the characteristic impedances of the first and the second parts of the i th short-ended stub (i ∈ [1; N -1]), respectively.

It is easy to find that the TZs are obtained when f = f zi . In this condition, the input admittance goes to infinity and each TZ f zi determines the length of its associated branch i independently of others. We will also use two additional TZs, the first one at the origin (f z0 = 0 Hz) and the last, called f z N , which is the first harmonic of f z1 (f z N = 2f z1 ). Of course, these two additional TZs cannot be fixed independently but they participate in the creation of the first and last bands respectively. One reflection zero can be obtained between two consecutive TZs leading to a total of N pass-bands. These reflection zeros appear when Y tot = 0. One should notice that (5.1) is non-linear. As a consequence, the equation bound to the slope parameters is also non-linear. In order to simplify the filter conception, an optimization is performed to determine the characteristic impedance Z i1 and Z i2 according to the pass-band specifications and considering that the first impedance needs to be as high as possible and that the second one must be relatively low to obtain narrow rejected bands between each pass-band. From the knowledge of the transmission and reflection zeros and the characteristic impedance pairs of each stepped-impedance stub, the slope parameters of each pass-band can then be determined 

from: b(ω) = ω 2 Im ∂Y tot ∂ω | ω=ωr = π 4 N -1 i=1 f f zi 1 (Z i1 + Z i2 ) csc 2 ( π 2 f f zi ) + Z i2 Z i1 sec 2 ( π 2 f f zi ) (5.

Some examples based on the proposed ABSRs

Dual-band band-pass filter

To validate our proposed synthesis method, a dual-band 3 rd -order Chebyshev band-pass filter is first presented here. First of all, according to the two specified pass-bands, we fix f z1 = 2.3

GHz, which will separate the two bands. Also, There are TZs at f z2 = 0 and the first harmonic frequency f z3 = 4.6 GHz, we so have three TZs. It's a great advantage of our ABSRs, because we can both utilize the two resonant frequencies instead of using three band-stop resonators to produce two pass-bands, as achieved with DBRs [START_REF] Quendo | General synthesis of n-band resonator based on n-order dual behavior resonator[END_REF]. It greatly reduces the dimension of the circuits. Another characteristic of the ABSRs is that we know the first harmonic frequency f z2 is two times the first stop-band frequency. The two pass-bands are located in the frequencies ranges from DC to f z1 and from f z1 to f z2 , respectively. Thus, a quiet large bandwidth be achieved and we can make full use of the frequency range to build more pass-bands. However, there are also some drawbacks for the proposed ABSRs. First, the resonating frequency of each pass-band are related to each other, optimization methods need to be used when specified pass-band location are required. Second, the harmonic frequency can not be controlled, it may influence the behavior of the last pass-band. Third, we can only have symmetrical responses due to the uncontrollable TZs in DC and first harmonic frequency. For dual-band case, we can calculate the resonant frequencies of each pass-bands according to (5.1) with N = 2. They are obtained by solving the following equation:

1 Z 11 (Z 11 + Z 12 ) Z 12 tan( f r f z1 π 2 ) -Z 11 cot( f r f z1 π 2 ) = 0 (5.
3)

The two resonant frequencies can be expressed as:

f r1 = 2 π f z1 arctan Z 11 Z 12 (5.4) 
and,

f r2 = π - 2 π f z1 arctan Z 11 Z 12 (5.5)
The determination of the resonant frequencies requires the knowledge of the characteristic impedance pairs of each branch of the multi-band band-pass resonators. They are selected according to the specification in an optimization process, in order to be sure that the resonant frequencies are located in the ranges of each individual pass-band. In practice, impedance values and resonant frequencies are therefore determined simultaneously. As a dual-band example, we arbitrary set the following specifications as:

1. Pass-band 1: 1.59 GHz-2.07 GHz (BW: 480 MHz); To determine values of the elements according to the specified bandwidths, the following steps can be implemented:

1. Determination of the TZ, here f z1 = 2.30 GHz. This step fixes the electrical length of each branch of the ABSR. We also deduce that f z2 = f z1 =4.6 GHz. 

Tri-band band-pass filter

A 3 rd -order tri-band band-pass filter with its implementation in microstrip technology is thus proposed as a second example in this section. By using our proposed ABSRs, there is no great challenge to design such MBPFs. The arbitrary pass-band frequencies specifications we have chosen to design this example are defined as follow: Following the same process as in the dual-band case, we first fix the TZs at f z1 = 3 GHz and f z2 = 4 GHz, we thus have f z3 = 2f z1 = 6 GHz. Then, we select the impedance of each branche in order that the resonant frequencies are related to their respective band, the latter being determined taking Y tot = 0 in (5.2) with N =3. Firstly, we choose the three TZs at f z1 = 1.60 GHz, f z2 = 2.0 GHz and f z3 = 2.4 GHz respectively. We so have f z4 = 2f z1 = 3.20 GHz. The impedance values of the ABSRs are then chosen following the same procedure and constraints as in the tri-band case. For this the filter order, the TZs performance (CTZs) (controllable or not), the center frequency (CF), the insertion loss (IL), the 3-dB bandwidth, the band-to-band isolation (ISO) between the i th and (i + 1) th pass-band (i ∈ [1; 4]) and the total filter sizes (λ g is the guided wavelength at the center frequency of all bands). Despite some limitations (total frequency range limited by the first harmonic of the first TZ, non-constant matching level), our proposed design method exhibits several advantages with respect to the former ones. First, the TZs between the bands are totally controllable for the proposed two cases. This is a great advantage compared with most of filters. Second, a few MBPFs can achieve high-order filtering responses. Our proposed method is adequate to achieve high-order and high numbers of pass-bands with a simple implementation method. Third, the band-to-band isolation is better than all existing MBPFs. Fourth, compared to coupled structure solutions, the proposed synthesis methods needs less optimization due to a low number of parameters, which is really important for a quick design of MBPFs with high-order responses.

2 i=1 1 Z i1 (Z i1 + Z i2 ) Z i2 tan( f r f i π 2 ) -Z i1 cot( f r f i π 2 ) = 0 (5.

Quad-band band-pass filter

= Z J34 = 78.0 Ω, Z J12 = Z J23 = 138.5 Ω.

Quint-band band-pass filter

A sixfold-band band-pass filter with 2 nd -order response is also described in Appendix 7.5

to show the generalization of this method. To have more pass-bands, the multilayer PCB configuration may be used to make implementations as presented in chapter 3 (section 3.2.2).

Conclusion

In this chapter, we proposed a simple but powerful synthesis method using ABSRs to design MBPFs. Five examples with dual-band to sext-band band-pass filters based on the proposed ABSRs were studied, simulated, implemented in microstrip technology and measured. Good in- band responses and high band-to-band isolation are easily obtained with this simple procedure.

However, there are also some drawbacks in this method. Filters occupy relatively large surface with respect to coupled-line filters. There are uncontrollable TZs before the first and last passbands. They are difficult to implement with other techniques. Some deeper research may need to be done to deal with these problems. However, conversely to the methods presented in chapters 3 and 4, this method is not analytical and need some optimization operations as soon as the ideal filter is developed. Nevertheless, these optimizations are relatively simple and do not need a lot of time.
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CONCLUSION AND PERSPECTIVES

Conclusion

In this dissertation, we mainly focused on theoretical and practical aspects of multiband 

Perspectives

Multiband filters with mixed topology

Besides the star-like and in-line topology, MBPFs can also be synthesized from mixed frequency transformation method. The mixed approach can be regarded as the mixture of the star-like and in-line topologies. The mixed frequency transformation can be expressed as: platform, the substrate integrated waveguide (SIW) represents a relevant candidate for the design of microwave and millimeter wave component due to high power handling capacity, light weight, and relative high Q factors. SIW could be well adopted to the implementation of the mixed topology.

Ω = T (m) (ω) = b 0 ω ω 0 - ω 0 ω - 1 b 1 ω ω 1 -ω 1 ω - 1 b 2 ω ω 2 - ω 2 ω •••- 1 b l ω ω l - ω l ω - 1 b l+1 ω ω l+1 - ω l+1 ω - 1 b m ω ωm -ωm ω -. . . , ( 6 

Multiband band-pass filter based on extracted pole technique

Extracted pole filters are fast growing solutions for the manufacture of microwave filters with several transmission zeros [START_REF] Macchiarella | Cooking microwave filters: Is synthesis still helpful in microwave filter design?[END_REF][START_REF] Snyder | Emerging trends in techniques and technology as applied to filter design[END_REF][START_REF] Rhodes | General extracted pole synthesis technique with applications to low-loss te/sub011/mode filters[END_REF][START_REF] Yu | Unified extracted pole filter synthesis: Bridging the gap between em and circuit simulations[END_REF][START_REF] Macchiarella | Design of extracted-pole filters: An application-oriented synthesis approach[END_REF][START_REF] Macchiarella | An application-oriented design procedure for cascadedblock extracted-pole filters[END_REF]. Extracted pole filter is a more efficient technique than the classical cross-coupled filter as the number of TZs increases. Another good reason for studying this technique is to implement TZs in an inline or quasi-inline topology. This is a very fascinating choice for a high selective filter involving about the same number of resonators [START_REF] Macchiarella | Design of extracted-pole filters: An application-oriented synthesis approach[END_REF][START_REF] Macchiarella | An application-oriented design procedure for cascadedblock extracted-pole filters[END_REF]. For multiband cases, for a giving filtering function, which contains the poles and TZs information, we can use the circuit approach described in [START_REF] Amari | Synthesis of inline filters with arbitrarily placed attenuation poles by using nonresonating nodes[END_REF] to extract the circuit values for each band-pass, band-stop resonator and non-resonating node step by step. Finally, this extracted circuits could be implemented by various techniques. In the same way, for q = N -2 (p = 2N -5), (7.2) becomes:

n 2N -5 = n 2N -1 P 2 W (1→N -1)
= n 2N -1 P 2 W Let's focus now on the case q = 1 (p = 1). First, using (7.2), we have: Of course, in this case, only the positive solutions are retained. ω 0 = -n 0 n 7 n 1 (7.12) 

ω

In-line topology sets of synthesis equations for tri-band and quad-band with the frequency mapping technique

Table 7.3 -Microstrip sixfold-band third-order band-pass filter: length and width dimensions. Using the mapping principles, the following synthesis equations can be obtained

ω 0 = -n 0 n 5 n 1 , ( 7.64 
) 

ω 1 = -n 1 n 5 X 1 X 2 (7.

Quad-band:

In the quad-band case, the transformation function is: 

U (4) (ω) =
ω 1 = -n 1 n 7 X 1 X 3 (7.75) ω 2 = -- X 3 X 1 n 5 n 7 - n 1 n 7 X 1 X 3 - X 2 X 1 n 3 n 7 - n 1 n 7 X 2 X 3 - X 3 X 1 (7.76
)

ω 3 = - n 3 n 7 - n 1 n 7 X 2 X 3 - X 3 X 1 n 5 n 7 - n 1 n 7 X 1 X 3 - X 2 X 1 (7.77) b 1 = - n 1 n 7
1 X 1 X 3 (7.78) shows we can achieve sharp and deep rejections between the adjacent pass-bands.

Conclusion and perspectives

Quad-band case with mixed-inline topology

This appendix presents the expressions of all the n p coefficients (n p ∈ [0; 7]) as a function of the cut-off angular frequencies firstly and then as a function of the resonant angular frequencies and the susceptance slope parameters. Abstract : Recent advances in the development of communication systems have greatly stimulated the demand on multi-function equipment. Compact, high performance, and lower cost RF/microwave devices are all necessary and required today. Among these devices, band-pass filters play an irreplaceable role in any type of RF/microwave communication systems. Even more recently, multiband filters have been widely studied due to the ability to operate at two or more independent frequency bands simultaneously. In this thesis, we focus on such components and more precisely on their synthesis and design with different topologies and make their implementation with microstrip technology.

In this dissertation, first, we explore the synthesis strategy with frequency transformation method. A star-like topology was proposed to synthesis and design multiband band-pass filters with non-coupled and compact coupled structures. Second, an advanced in-line topology was presented to design multiband band-pass filter up to sixfoldband. In the last part, a novel multiband resonator named associated band-stop resonator is proposed to design quickly highorder multiband band-pass filters. The abovementioned synthesis techniques have been verified theoretically and experimentally. The obtained experimental results, in very good correlation with simulated ones, prove the effectiveness of the proposed methods.
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 1 Figure 1 -Représentation schématique (a) et réponses en fréquence (b) d'un filtre bi-bande proposé dans [4].
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 2 Figure 2 -Représentation schématique (a) et réponses en fréquence (b) d'un filtre bi-bande proposé dans [9].
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 354 Figure 4 -Schéma de couplage d'un filtre multibande (a) et réponse associée basée sur un algorithme d'approximation (b) proposé dans [16].
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 5 Figure 5 -Transformation de fréquence d'un prototype passe-bas normalisé vers un filtre multibande dénormalisé. Dans cette équation, T (N ) est la fonction de transformation, ω 0 et b 0 sont respectivement la pulsation de résonance et le paramètre de pente du filtre passe-bande global et les paramètres ω k et b k (k ∈ [1; N -1]) sont ceux des N -1 filtres coupe-bandes venant diviser le premier en N bandes passantes. La procédure complète de synthèse pour un nombre N quelconque de bandes passantes est présentée en détails dans ce chapitre, avec l'ensemble des outils mathématiques associés. Cette procédure permet d'exprimer les paramètres de sorties (les pulsations de résonance ω k et les paramètres de pente b k (k ∈ [0; N -1])) en fonction des paramètres d'entrée, à
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 7678 Figure 6 -Représentation schématique d'un résonateur multibande en étoile.
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 94 Figure 9 -Photographie du filtre quadri-bandes à lignes couplées réalisés (a) et ses résultats de simulations EM (lignes continues) et de mesures (lignes discontinues) (b)
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 1011 Figure 10 -Représentation schématique d'un résonateur multibande en ligne (a) et circuit LC équivalent issu de la transformation d'une capacité du prototype passe-bas normalisé (b).
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 12513 Figure 12 -Représentation générale de filtres multibandes basés sur une topologie en ligne et implémentés en lignes couplées (en jaune : les lignes d'accès, en rouge les résonateurs passebandes et en gris les résonateurs coupe-bandes).

Figure 14 -

 14 Figure 14 -Topologie de résonateurs multibandes basés sur l'association de résonateurs coupebandes.

Figure 15 -Chapitre 6 :

 156 Figure 15 -Photographie du filtre à 5 bandes réalisé basé sur l'association de résonateurs coupe-bandes (a) et ses réponses associées en simulations EM (lignes continues) et en mesures (lignes discontinues) (b).

Chapter 2

 2 has two main parts. The first part introduces the basic theories used in the construction of band-pass filters. It contains several essential concepts in filters, which will be used later in this dissertation, such as the definition of S-parameters for two-ports network, the definition of different types of transfer function for various low-pass filters, the frequency transformation for filters from low-pass prototype to high-pass, band-pass and band-stop domain, as well as the electric circuits for band-pass filters employing immittance inverters. The second part deals with the literature review of the existing approaches to design and realize multi-band filter responses in various ways. Four different methods are thus presented to realize MBPFs. In the last part of this chapter, the frequency transformation methods for dual-band and tri-band MBPFs will be introduced and discussed.Chapter 3 is organized as follows: the theory of a generalized frequency transformation function is developed firstly. A rigorous mathematical analysis process is presented to obtain the generalized mapping function for an arbitrary number of pass-bands in a star-like topology.Several general formulas are obtained for the synthesis of MBPFs. Based on the proposed approach, three examples of MBPFs have been synthesized and experimentally validated with 3, 4 and 5 bands with non-coupled star-like topology, respectively. We also show the potential to extend this method to achieve more than quint-band with multi-layer configurations. In order to further reduce the footprint of the filter and demonstrate the different possibilities of this method, a tri-band and a quad-band MBPF based on coupled structures are developed validated through experiments. In the last part of this chapter, we demonstrate the universality of the frequency transformation method, discussing some other types of approximation function in Discussion. Finally, we show some advantages and disadvantages of the star-like topology. Chapter 4 is organized in three parts. The first part proposes a new type of transformation function in an in-line topology. Two methods, one based on frequency mapping as previously and the other on a circuit approach, are used to obtain the circuit values. In a second part, four synthesis examples with Chebyshev responses are presented to validate both proposed synthesis methods. In order to illustrate the versatility of this design methodology, these examples are provided with different center frequencies, bandwidths and pass-band numbers. Very compact and good filters responses are achieved for all the fabricated circuits based on this in-line topology. The last part summarizes the advantages and disadvantages of in-line structures. In chapter 5, we propose an optimization method to quickly design MBPFs based on as-1.2. Overview of the thesis sociated band-stop resonators (ABSRs), aiming to overcome the shortcomings of the previous frequency transformation methods. We begin our research from the theoretical study of the behavior the ABSRs. 0n the basis of ABSRs, five examples with dual-band to sext-band bandpass filters were studied, simulated, implemented in microstrip technology and measured. In addition, we have made some comparisons between the high-order MBPFs based on ABSRs and recently published works. The advantages and disadvantages of this method are discussed in the last part of this chapter.

Fig. 2 .

 2 Fig. 2.1 shows the layout of a classical two-port network connected with a source associated to its internal impedance (Z 1 ) and a load impedance (Z 2 ), where V 1 , V 2 and I 1 , I 2 are the voltage and current variables at the ports 1 and 2, respectively. The terms a m , b m (m ∈ [1; 2]) are wave variables often used as auxiliary variables to deal more easily with transmission / reflection of energy between the two ports. The variables a m indicate incident waves and b m indicate reflected waves at port m, respectively. They both can be expressed in terms of voltages and currents as follows:
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 21 Figure 2.1 -Two-port network showing network variables.
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 142 Literature review (a) (b) Elliptic function low-pass response

Figure 2 . 2 -

 22 Figure 2.2 -The low-pass fiter responses. (a) Chebyshev low-pass response. (b)Elliptic function low-pass response.

  chapters 6 -8, the synthesis procedures are presented to determine the element values from characteristic polynomials for any class of filter function like Chebyshev filters or elliptic filters. The prototype ladder-type networks are shown in Fig. 2.3. There are two types of low-pass prototypes, both can have even and odd number of orders. The first one starts with shunt capacitance, and the second starts with inductance.
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 23 Figure 2.3 -Ladder-type low-pass prototype starting with capacitance (a) or with inductance (b).
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 24 Figure 2.4 -Lumped element ladder network (a) of low-pass prototype network and transformed network (b).
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 25 Figure 2.5 -Low-pass with unity cut-off frequency to a low-pass filter with real cut-off frequency.
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 26 Figure 2.6 -Low-pass with unity cut-off frequency to a high-pass filter with real cut-off frequency.
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 27 Figure 2.7 -Low-pass to high-pass transformation.
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 28 Figure 2.8 -Low-pass to band-pass transformation-circuits transform.
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 29 Figure 2.9 -Low-pass to band-pass transformation-circuit transform.

24 )Fig. 2 .

 242 Fig. 2.8 shows the schematic of low-pass to band-pass transformation and Fig. 2.9 presents the
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 2 Figure 2.10 -Low-pass to band-stop transformation.

Figure 2 .

 2 Figure 2.11 -Low-pass to band-stop transformation-circuit transform.
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 213212213 Figure 2.12 -The schematic of immittance inverters : (a) Impedance inverter, (b) Admittance inverter.
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 2 Figure 2.14 -Band-pass prototype filter with (a) impedance inverter, (b) admittance inverter.
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 1215 Figure 2.15 -Generalized bandpass filters with (a) impedance inverter, (b) admittance inverter.
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 216 Figure 2.16 -Schematic view (a) and frequency responses (b) of the dual-band filter proposed in [4].
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 217 Figure 2.17 -Schematic view (a) and frequency responses (b) of the dual-band filter proposed in [5].
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 218 Figure 2.18 -Schematic view (a) and frequency responses (b) of the tri-band filter proposed in [6].
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 219 Figure 2.19 -Schematic view (a) and frequency responses (b) of the dual-band filter proposed in [9].
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 2220 Figure 2.20 -Schematic view (a) and frequency responses (b) of the dual-band filter proposed in [10].
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 221 Figure 2.21 -Schematic view (a) and frequency responses (b) of the ring filter proposed dualband filter in[11]; schematic view (c) and frequency responses (d) of the tri-band filter proposed in[23].
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 2223 Figure 2.22 -Figure (a): Photograph of the proposed filter and (b) filter's responses [14].
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 224 Figure 2.24 -Schematic view (a) and frequency responses (b) of the dual-band filter proposed in [29].
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 225 Figure 2.25 -Configuration (a) and electric field distributions of triple-mode SIW resonators (b) and coupling schematic (c) of the dual-band filter proposed in [30]. The fabricated circuit (d) and filter responses (e).

Fig. 2 .

 2 25(b) depicts the configuration of the proposed SIW tri-mode square cavity perturbed by centered cross-shaped metalized via holes in[START_REF] Xie | Substrate-integrated waveguide triple-band bandpass filters using triple-mode cavities[END_REF]. The perturbations are arranged along the two diagonals of the cavity with the arm length of m and n as shown in 2.25(a). The electric field distributions of the first three modes (mode 1, mode 2, and mode 3) in the perturbed square cavity have been changed as those in 2.25(b). Based on the resonator, a third-order tri-band band-pass filter, synthesized with Chebyshev response and a fourth-order tri-mode band-pass filter, synthesized with quasi-elliptic response have been realized as shown in 2.25(e). In[START_REF] Shen | A novel single-cavity dual mode substrate integrated waveguide filter with non-resonating node[END_REF], authors proposed slot lines perturbation to design BPFs and the filter occupies a similar area in comparison with conventional two-pole SIW filters but with better frequency selectivity. In[START_REF] Zhou | Substrate-integrated waveguide triple-band filter with improved frequency and bandwidth allocations[END_REF], an advanced planar SIW tri-band BPF composed of two dual-mode SIW resonators (SIRC1, SIRC4) coupled with two single-mode ones (SIRC2 1 , SIRC3 1 ) were synthesized and designed by the combination of the dual-mode (TE101 and TE201) resonances. This topology can achieve split-type dualband symmetrical frequency response. The coupling schematic is shown in Fig.2.27(a), the simulation and measurements, in good agreement, are presented in Fig.2.27(b). Zhou et al.
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 226227 Figure 2.26 -Photograph (a) and S parameters (b) of the fabricated SIW third-order Quasielliptic filtering responses.

Figure 2 . 28 -Figure 2 . 29 -

 228229 Figure 2.28 -Schematic view (a) and frequency responses (b) of the quint-band filter proposed in [37].
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 230 Figure 2.30 -Schematic response (a) for the dual-band filter employing the resonators. Scheme of the dual-band filter (b) obtained with the frequency transformation method [18].

ω 0 and ω 1

 1 represent the self-resonant frequencies of the band-pass and band-stop resonators, respectively, and b 1 and b 2 are the slope parameters of each resonator, respectively. This transformation replaces each single-band resonator in the prototype by a dual-band resonator (one band-pass resonator and one band-stop resonator). By mapping the cut-off frequencies of the two individual bands to the low-pass filter, the transformation function can be written as a function of the input parameters (ω L1 , ω H1 , ω L2 , ω H2 ) on the one hand. On the other hand, according to the resonant angular frequencies and slope parameters, the transformation equation can be expressed in terms of (b 1 , b 2 , ω 1 , ω 2 ). By comparing two sets of formulas obtained by the two methods, we can get the values of slope parameters and resonating frequencies. The schematic response for the dual-band filter employing the resonators and the transformed dual-band circuit model are shown in 2.30(a) and 2.30(b), respectively. Various technological solutions can be used to implement the resulting filters. In [18], the dual-band BPF was realized by waveguide resonators. The layout and measurements are shown in Fig. 2.31.

resonators 1 -Figure 2 . 31 -

 1231 Figure 2.31 -Combine dual-band filter (a) and filter responses (b).

  microstrip ring resonators are used to realized the filter. The topology and filters' layout are shown in Fig. 2.34(a) and Fig 2.34(b). Also, various authors continued with similar transformations and demonstrated multiband responses, but all the transformation methods were limited

  (a) layout of the proposed dual-band SIW filter. (b) Dual-band SIW filter responses.

Figure 2 . 32 -

 232 Figure 2.32 -Schematic view (a) and frequency responses (b) of the dual-band filter proposed in [47].

Figure 2 . 33 -

 233 Figure 2.33 -Schematic view (a) and frequency responses (b) of the tri-band filter proposed in [47].

Figure 2 . 34 -

 234 Figure 2.34 -Topology structure (a); layout of the cross-coupled tri-band filter (b) (1-4 bandpass resonators, the rest are band-stop resonators) [49].

  Figure 3.1 -Low-pass to band-pass frequency transformation in a single-band case.

Figure 3 . 2 -

 32 Figure 3.2 -Low-pass to band-pass frequency transformation in a multiband case.

  is the transformation function, N the number of bands of the MBPF. ω 0 and b 0 are respectively the resonant angular frequency and the susceptance slope parameter of the wide band-pass resonators, while ω k and b k (k ∈ [1; N -1]) are the ones of the N -1 stop-band resonators. The goal of the synthesis process is to link the 2N output parameters of the transformation function (the resonant angular frequencies ω k and the slope parameters b k , k ∈ [1; N -1]) to the input ones, i.e the low and high cut-off angular frequencies of the N bands (ω L i and ω H i , i ∈ [1; N ]) as defined in Fig. 3.2.

  13) Equations (3.11) to (3.13) give an expression of the 2N n p as functions of the output parameters of the frequency transformation technique (i.e ω k and b k , k ∈ [0; N -1]

7. 1 ) 1 r=0n

 11 the resonant angular frequencies of the band-stop resonators (ω k , k ∈ [1; N -1])) are the N -1 positive solutions of (3.16): N -2r+1 ω 2r k = 0 (3.16) Once the resonant angular frequencies of the band-stop resonators are determined using (3.16), the remaining unknowns are the slope parameter coefficients b k , k ∈ [1; N -1] in (3.13).

k ω 2 kFigure 3 . 3 -

 233 Figure 3.3 -Transformation of a low-pass prototype capacitance into a multi-band band-pass resonator (MBPR).

Figure 3 . 4 -

 34 Figure 3.4 -Prototype of the proposed MBPFs-the based wide-band BPF.

Figure 3 . 5 -

 35 Figure 3.5 -Multiband band-pass resonators (MBPR) with parallel LC resonators.

For

  validating the frequency transformation method and the implementation proposed in the previous sections, three examples of multi-band band-pass filters have been synthesized and experimentally validated with 3, 4 and 5 bands respectively. In the first case (tri-band filter), all the output parameters expressions obtained from (3.14) to (3.23) were presented in section 3.1.3. In the two other cases, for the sake of clarity, these expressions are presented in Appendix 7.2. The three test filters are of order 3 with a Chebyshev approximation and 20 dB pass-band return loss (RL). There are implemented in microstrip technology using a RO4003C Rogers substrate (dielectric constant: ε r = 3.55, height: h = 0.508 mm, dissipation factor: tan δ = 0.0027) with copper metallization (metal thickness: t = 17.5 µm, conductivity: σ = 5.8 × 10 7

Fig. 3 .

 3 Fig.3.7(c) presents the EM-simulated and measured frequency responses of the fabricated tri-band band-pass filter. The correlation between both responses is very good over the entire frequency band. The measured return loss (RL) are 12.3 dB, 14.9 dB and 14.1 dB from the first to the last pass-band and the measured insertion loss (IL) are 1.98 dB, 2.17 dB, and 2.01 dB respectively. The isolation between the three pass-bands reaches 58.1 dB and 57.6 dB.

013 S J 12 = J 23 =Figure 3 . 6 -Figure 3 . 7 -

 12233637 Figure 3.6 -Tri-band filter with ideal responses.

3. 2 .Figure 3 . 8 -

 238 Figure 3.8 -Ideal frequency response of the specified quad-band band-pass filter.

2 .

 2 Pass-band 2: 2.30 GHz-2.40 GHz (BW: 100 MHz); 3. Pass-band 3: 2.65 GHz-2.80 GHz (BW: 150 MHz); 4. Pass-band 4: 3.04 GHz-3.20 GHz (BW: 160 MHz).

Figure 3 . 9 -

 39 Figure 3.9 -Layout of the fabricated quad-band band-pass filter (a); the photo of the fabricated quad-band filter (b); EM-simulated (dotted lines) and measured (solid lines) S-parameters of the quad-band band-pass filter (c).

3. 2 .

 2 Synthesis and experimental validation of the proposed multi-band band-pass filters b 1 = 6.381, b 2 = 5.697 and b 3 = 8.066. An ideal L-C structure implementation is then made as in the tri-band case and all the resonators are again fixed identical by taking all the C LP i equal.All the resonator component values and J-inverter ones are provided in Appendix 7.3 (see table7.1). As shown in Fig.3.2.1, the four obtained bands are, as previously, in perfect agreement with the specifications. This filter is also realized in microstrip technology. Fig. 7.2 presents the layout of the fabricated quad-band band-pass filter. All lengths and lines of resonators and inverters are given in appendix. The quad-band filter is 98.247 × 70.597 mm 2 without taking into account the two 50 Ω access lines. Fig. 3.9(c) presents the simulated and measured frequency responses of the fabricated quad-band band-pass filter. The picture is also presented in Fig. 3.9(b).Another quad-band case (see Appendix 7.3) with equal bandwidth was published in[START_REF] Guo | Design method for multiband filters with compact configuration in substrate integrated waveguide[END_REF] and illustrated in Fig.7.1(a) with a photo shown in Fig.7.1(b). Good agreement has also achieved between simulation and measurement. Fig.3.9 presents the EM-simulated and measured frequency responses of the fabricated quad-band band-pass filter. As in the tri-band case, both responses are are in near perfect agreement. The measured RL are 12.1 dB, 14.2 dB, 14.2 dB, 14.3 dB from the first to the fourth pass-band and the measured IL are 2.90 dB, 2.94 dB, 2.95 dB, 2.65 dB respectively. Very good isolation are here again achieved between all the pass-bands.Quint-band band-pass filterIn the same way as for the two previous cases, one can derive the equations of the resonant angular frequencies and the slope parameters for the quint-band band-pass filters as functions of the low and high cut-off angular frequencies by taking N = 5 in (3.14) to(3.23). The resulting equations are presented in Appendix 7.2 for a sake of brevity.The arbitrary specifications proposed here to design an example of quint-band band-pass filter are:1. Pass-band 1: 2.00 GHz-2.10 GHz (BW: 100 MHz); 2. Pass-band 2: 2.30 GHz-2.38 GHz (BW: 80 MHz); 3. Pass-band 3: 2.60 GHz-2.69 GHz (BW: 90 MHz); 4. Pass-band 4: 2.88 GHz-2.98 GHz (BW: 100 MHz); 5. Pass-band 5: 3.20 GHz-3.30 GHz (BW: 100 MHz).

797 GHz, f 4 = ω 4

 44 Fig. 3.11.

Figure 3 . 10 -

 310 Figure 3.10 -Ideal frequency response of the specified quint-band band-pass filter.

Figure 3 . 11 -

 311 Figure 3.11 -Layout of the fabricated quint-band band-pass filter (a); the photo of the fabricated quint-band filter (b); EM-simulated (dotted lines) and measured (solid lines) S-parameters of the quint-band band-pass filter (c).

  3.14 in the case of a sixfold-band filter. The top and bottom layers own the same characteristic h 1 = h 2 = 0.508 mm, ε r = 3.55 and tan δ = 0.004. Both layers are connected to the ground (centered between these two conductive layers) by copper vias. They are also linked to each other by copper vias through the common ground. The two substrates are sticked by a prepreg layer (h 4 = 0.2 mm, ε r = 3.52 and tan δ = 0.004). The diameter of the copper pillar is 0.4 mm. The layouts of the top layer and the bottom layer are shown in Fig. 3.14(a) and Fig. 3.14(b), respectively. The dimensions of the filter are shown in Fig. 7.2 and all the values are available in Appendix (Table.7.3) in the case of the following arbitrary specifications: 1. Pass-band 1: 2.00 GHz-2.10 GHz (BW: 100 MHz); 2. Pass-band 2: 2.30 GHz-2.38 GHz (BW: 80 MHz); 3. Pass-band 3: 2.58 GHz-2.67 GHz (BW: 90 MHz); 4. Pass-band 4: 2.85 GHz-2.96 GHz (BW: 100 MHz); 5. Pass-band 5: 3.10 GHz-3.22 GHz (BW: 100 MHz); 6. Pass-band 6: 3.50 GHz-3.58 GHz (BW: 100 MHz). The resonant frequencies numerically determined are f 0 = 2.645 GHz, f 1 = 2.170 GHz, f 2 = 2.460 GHz, f 3 = 2.755 GHz, f 4 = 3.050 GHz and f 5 = 3.451 GHz. The slope parameters are analytically determined and are b 0 = 4.560, b 1 = 6.601, b 2 = 6.968, b 3 = 9.114, b 4 = 15.840, b 5 = 12.740 respectively. The theoretical responses are shown in Fig. 3.12. The simulation results obtained using CST software with the proposed multilayer is plotted in Fig. 3.14(c).

Figure 3 . 12 -

 312 Figure 3.12 -Theoretical responses of the proposed sixfold-band band-pass filter with multilayer configuration.

Figure 3 . 13 -

 313 Figure 3.13 -Multilayer PCB layout.

Figure 3 . 14 -

 314 Figure 3.14 -Layouts and responses of the proposed sixfold-band band-pass filter: on the top layer (a) the first, second, third and fourth band-stop resonators; on the bottom layer (b) the fifth band-stop resonators and the band-pass ones; (c) EM simulated S-parameters.
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 315 Figure 3.15 -Topology of a coupled-lines star-like multiband filter: case of a triple-band filter.

Figure 3 . 16 -

 316 Figure 3.16 -Arrangements for extracting the coupling coefficients: for extracting the external quality factor (a); for extracting the coupling coefficient between two band-pass resonators (b); for extracting the coupling coefficient between band-pass and band-stop resonators (c).

Fig. 3 .

 3 Fig. 3.16 shows the layouts of the coupling schematic for extracting the Q factor (a) and the coupling coefficients between two band-pass resonators (b) and between band-pass and bandstop resonators (c). Fig. 3.17 shows the associated S-parameters responses. Once we fix the coupling length (calculated according to the obtained resonant frequencies from the frequency transformation synthesis), we can only change the gaps G 0 , G b and G S respectively to extract the needed values.

Figure 3 .

 3 Figure 3.17 -S-parameter responses used for extracting the external quality factor (a), the coupling coefficient between band-pass resonators (b) and the coupling coefficient between bandpass and band-stop resonators (c).

1 .Fig. 3 .

 13 Fig. 3.19(a) shows the layout of the fabricated filter with dimension details inTable 4.2.

Figure 3 . 18 -

 318 Figure 3.18 -Theoretical responses of the designed tri-band coupled filter.

Example 2 :

 2 quad-band coupled-lines filterIn this second example of quad-band coupled-lines filter, in the same way, we specify arbitrary bandwidths as follow:1. Pass-band 1: 3.05 GHz-3.12 GHz (BW: 70 MHz); 2. Pass-band 2: 3.22 GHz-3.30 GHz (BW: 80 MHz);

3. 3 .Figure 3 . 19 -Chapter 3 -Figure 3 . 20 -

 33193320 Figure 3.19 -Layout (a) and picture (b) of the fabricated tri-band band-pass filter; associated EM-simulated (solid lines) and measured (dotted lines) S-parameters (c).

  569 GHz, b 0 = 12.73, b 1 = 22.09, b 2 = 17.51 and b 3 = 22.78. The Q factors and the coupling coefficients are then Q es =Q el =8.4637, K 1,2 =0.1306, K 01 = 0.05963, K 02 = 0.06698 and K 03 = 0.05872. The theoretical response of this quad-band filter is shown in Fig. 3.20. The layout of the quad-band filter is presented in Fig. 3.21(a) with its associated dimensions in Table 4.3. A picture of the fabricated filter is shown in Fig. 3.21(b). Fig. 3.21(c) presents its simulated and measured frequency responses. Both are once again in good correlation. The measured RL are 20.0 dB, 15.2 dB, 15.4 dB, 18.3 dB, from the first to the fourth band and the minimum insertion losses in the pass-band are 1.36, 2.18, 2.97 and 1.78 dB, respectively. The isolation is better than 20 dB for all the stop-bands.

Figure 3 . 21 -

 321 Figure 3.21 -Layout (a) and picture (b) of the fabricated quad-band band-pass filter; associated EM-simulated (solid lines) and measured (dotted lines) S-parameters (c).

2 .

 2 Pass-band 2: 3.30 GHz-3.40 GHz (BW: 100 MHz); 3. Pass-band 3: 3.60 GHz-3.70 GHz (BW: 100 MHz); 4. Pass-band 4: 3.90 GHz-4.00 GHz (BW: 100 MHz); 5. Pass-band 5: 4.20 GHz-4.30 GHz (BW: 100 MHz).

1 .

 1 Pass-band 1: 1100 MHz -1200MHz (3-dB BW: 100 MHz); 2. Pass-band 2: 1300 MHz -1400MHz (3-dB BW: 100 MHz); 3. Pass-band 3: 1500 MHz -1600MHz (3-dB BW: 100 MHz).

Figure 3 . 22 -

 322 Figure 3.22 -Ideal frequency response of the specified quint-band elliptic band-pass filter.

Figure 3 . 23 -

 323 Figure 3.23 -Theoretical response for the tri-band Butterworth band-pass filter (a) and focus on the 3 dB region (b).
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 141 Figure 4.1 -Different topologies for multiband band-pass filter: (a) star-like topology; (b) in-line topology; PB represents pass-band resonator and SB represents stop-band resonator.

Figure 4 . 2 -

 42 Figure 4.2 -Resulting new equivalent LC circuits with the transformation function of equation (4.1). ω 0 , ω 1 , ω 2 , ω N -1 and b 0 , b 1 , b 2 and b N -1 are the resonant angle frequencies and slope parameters, respectively.

Figure 4 . 3 -

 43 Figure 4.3 -Schematic representation of a single-port Ladder type network.

4 . 2

 42 as a single-port ladder network. Based on a method presented in[START_REF] Cameron | Microwave filters for communication systems: fundamentals, design, and applications[END_REF], it is possible to extract step by step all the parameters defining the transformation, i.e the resonant angular frequencies, ω k , and the slope parameters, b k (k ∈ [0; N -1]).

Figure 4 . 4 -

 44 Figure 4.4 -Single port ladder type network-third-order ladder type low-pass network

9 ) 1 [

 91 Once we get the values of C 1 , two unknown elements of the third-order low-pass network remain, L 2 and C 3 . If we premultiply the [ABCD] matrix M ABCD by the inverse of the C ABCD] matrix, a new [ABCD] matrix with L 2 and C 3 only is obtained:

Figure 4 . 5 -

 45 Figure 4.5 -Multiband resonators using FIRs: (a) band-pass; (b) low-pass prototype. B k and B LK (k ∈ [0; N -1]) are the FIRs in band-pass and low-pass domain.

17

 17 

  ) in the normalized low-pass one (Fig. 4.5(b)), with s = jΩ is the normalized frequency variable. The cut-off angular frequencies of each pass-band in the de-normalized domain (ω Li and ω Hi , i ∈ [1; N ]) are at the same time transposed in the normalized low-pass domain using the classical

Figure 4 . 6 -

 46 Figure 4.6 -Multiband low-pass prototype using FIR.

  , we can evaluate C (N ) L0 at s = jΩ → +j∞ and then B (N ) L0 as follow:

4 . 1 .

 41 case, in order to prepare an implementation with coupled-lines structures, only the individual resonant angular frequencies, ω k , and slope parameters, b k (k ∈ [0; N -1]) of each node are necessary. They can be obtained considering a classical definition of the slope parameter for a shunt resonator for b k , and the fact that the admittance of the de-normalized node k of the ladder network equals to zero at ω = ω k (see equation (4.14)). So they are given by the following 92 Extraction of the output parameters equations:

2 .

 2 Pass-band 2: Ω L 2 = -0.1000 and Ω H 2 = 0.2923; 3. Pass-band 3: Ω L 3 = 0.7448 and Ω H 3 = 1.

Figure 4 . 7 -

 47 Figure 4.7 -Schematic view of a MBPF filter in in-line topology. The black dots represent the band-pass resonators, the gray dots represent the band-stop resonators. Inside the blue oval box is an individual multiband resonator; inside the black rectangle is the main-line based band-pass path; inside the red rectangular frame are the band-stop cell.

Figure 4 . 8 -

 48 Figure 4.8 -Layout of the MBPFs with coupled-line structure. The yellow microstrip represent the feeding line, the red and gray ones represent the band-pass and band-stop resonators respectively.
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 249 Figure 4.9 -Triple-band theoretical responses

Fig. 4 .

 4 Fig. 4.10(b) presents the EM-simulated and measured frequency responses of the fabricated triple-band band-pass filter. The correlation between both responses is very good for all the pass-bands. The measured insertion losses (ILs) are 1.92 dB, 1.23 dB and 1.37 dB from the first to the last pass-band and the measured return losses (RLs) are better than 12.1 dB, 15.3 dB, and 18.2 dB successively. We can also observe good band-to-band isolation between each pass-band (29.1 dB between the first and second pass-band, 38.9 dB between the second and the third).

Figure 4 . 10 -

 410 Figure 4.10 -Picture of the fabricated triple-band filter (a); associated EM-simulated (solid lines) and measured (dotted lines) S-parameters (b).

Figure 4 .

 4 Figure 4.11 -Quad-band theoretical responses.

  sure a second-order quad-band band-pass filter. They show different bandwidths for each band and are the following: -Pass-band 1: 2.95 GHz-3.05 GHz (FBW: 100 MHz); -Pass-band 2: 3.20 GHz-3.30 GHz (FBW: 100 MHz); -Pass-band 3: 3.50 GHz-3.58 GHz (FBW: 80 MHz); -Pass-band 4: 3.70 GHz-3.81 GHz (FBW: 110 MHz).

  454 GHz and b 0 = 8.587, b 1 = 4.399, b 2 = 15.91, b 3 = 5.795. The theoretical response of this quad-band filter is shown in Fig. 4.11.

Figure 4 . 12 -

 412 Figure 4.12 -Picture of the fabricated quad-band filter (a); associated EM-simulated (solid lines) and measured (dotted lines) S-parameters.

G 23 0. 79 -

 79 Pass-band 2: 3.15 GHz-3.21 GHz (FBW: 60 MHz); -Pass-band 3: 3.40 GHz-3.45 GHz (FBW: 50 MHz); -Pass-band 4: 3.60 GHz-3.66 GHz (FBW: 60 MHz); -Pass-band 5: 3.80 GHz-3.90 GHz (FBW: 100 MHz).

Fig. 4 .

 4 Fig. 4.14(b) illustrates the measured and simulation results. EM simulations and measurements are in good agreements. The measured ILs are 1.96 dB, 4.45 dB, 3.08 dB, 3.21 dB and 1.60 dB from the first to the fifth pass-band. The measured RLs are better than 12.1 dB, 12.5 dB, 19.1 dB, 18.2 dB, and 15.8 dB, successively. The measured isolation between two consecutive bands are 33.2 dB, 52.2 dB, 40.2 dB, 29.7 dB from the first stop-band to the last one.

4. 2 .Figure 4 . 13 -

 2413 Figure 4.13 -Quint-bands theoretical responses.

Example 4 :

 4 sixfold-band in-line filter The last example to show the effectiveness of the proposed strategy is a sixfold-band bandpass filter. The proposed specifications are here: -Pass-band 1: 2.95 GHz-3.00 GHz (FBW: 50 MHz); -Pass-band 2: 3.12 GHz-3.16 GHz (FBW: 40 MHz); -Pass-band 3: 3.30 GHz-3.35 GHz (FBW: 50 MHz); -Pass-band 4: 3.50 GHz-3.54 GHz (FBW: 40 MHz); -Pass-band 5: 3.70 GHz-3.78 GHz (FBW: 80 MHz); -Pass-band 6: 3.88 GHz-3.95 GHz (FBW: 70 MHz).

Figure 4 . 14 -

 414 Figure 4.14 -Picture of the fabricated quint-band filter (a); associated EM-simulated (solid lines) and measured (dotted lines) S-parameters (b).

4. 2 .Figure 4 . 15 -

 2415 Figure 4.15 -Sixfold-band theoretical responses.

4. 15 )

 15 , a picture of the fabricated filter (see Fig.4.16(a)), and its dimensions (see Table

Fig. 4 .

 4 Fig.4.16(b) gives the simulated and measured results, which show good agreement. Small inconsistency between both results for the second pass-band mainly comes from the practical implementation and testing. The measured ILs within the six channels are 1.97 dB, 4.18 dB, 2.28 dB, 3.46 dB, 3.03 dB, 1.56 dB from the first to the sixth pass-band, respectively. The measured RLs within the six channels are better 12.0 dB, 11.9 dB, 15.1 dB, 13.2 dB, 13.9 dB.The isolation between two consecutive bands is better than 21.1 dB, 24.4 dB, 41.5 dB, 33.6 dB, 21.7 dB for the five stop-band, respectively.

Figure 4 . 16 -

 416 Figure 4.16 -Picture of the fabricated sext-band filter (a). EM-simulated (solid lines) and measured (dotted lines) S-parameters of the sixfold-band band-pass filter (b).
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 25151 Figure 5.1 -Proposed MBPFs with associated band-stop resonators.

Figure 5 . 2 -

 52 Figure 5.2 -ABSRs: multiband resonators with star topology.

Figure 5 . 3 -

 53 Figure 5.3 -Dimension of the proposed third-order MBPFs.

2 . 3 . 4 .

 234 Selection of the impedance pairs of each stepped-impedance stub forming the multiband resonator according to the bandwidth specification. These values imply that f r1 = 1.60 GHz, f r2 = 3.0 GHz. To get a certain order, the multiband resonators are separated by admittance inverters, whose values J 01 and J 12 , are determined using an optimization process considering the pass-band ripple and each pass-band bandwidth. For this case the values are with J 01 = J 34 = 0.0129 Ω and J 12 = J 23 = 0.0072 Ω and so the impedance of the quarter-wavelength lines used to implement them are Z J01 = Z J34 = 77.72 Ω and Z J12 = Z J23 = 138.89 Ω. The concept can easily be used to design a filter with a high band-pass number. Different to examples, starting here with a tri-band filter, are proposed in this section and the following ones.

Fig. 5 .Fig. 5 .

 55 Fig. 5.4(a) presents the response of a single ABSR and Fig. 5.4(b) plots the responses of 3 rd filter. As expected, the two resonant frequencies are related to f r1 = 1.60 GHz, f r2 = 3.0 GHz. Fig. 5.5(a) shows the fabricated filter. Fig. 5.5(b) plots the EM simulation and measurement results. The filter was implemented in microstrip technology with a RO4003C Rogers substrate (dielectric constant: ε r = 3.55, height: h = 0.508 mm, dissipation factor: tan δ = 0.0027) with copper metallization (metal width: t = 17.5 µm, conductivity: σ = 5.8 × 10 7 S.m -1 ). Result shows good filter response in both band-pass and excellent measured band isolation (about 60 dB) in the stop-band. The return losses (RLs) for the first pass-band and second pass-band are better than 18.3 dB and 13.3 dB. The insertion losses (ILs) for the first pass-band is 1.26 dB and 1.99 dB for the second pass-band at center frequency. The fabricated filter's dimension are detailed in Table 5.1. The overall size of the filter is 81.96 × 39.7 mm 2 without taking into account the two 50 Ω access lines.

Figure 5 . 4 -

 54 Figure 5.4 -Frequency responses of an individual dual-band ABSR(a) and of the Dual-band filter based on this ABSR (b).

Figure 5 . 5 -

 55 Figure 5.5 -Photography of the fabricated ABSR-based dual-band filter (a) and its EMsimulated (solid lines) and measured(dotted lines) S-parameters (b).

6 )

 6 By solving the equation, the three resonant frequencies are located at 2.361 GHz, 3.419 GHz, and 4.616 GHz respectively with the choosen stubs impedance: Z 11 = 133.3 Ω, Z 12 = 35.7 Ω, Z 21 = 125.0 Ω, Z 22 = 33.3 Ω. With the same design procedures presented in the dual-band case, the inverters' values are selected as Z J01 = Z J34 = 73.3 Ω, Z J12 = Z J23 = 128.2 Ω. The filter ideal responses are shown in Fig. 5.6 with a maximum matching level of about 20 dB. It is interesting to note that this type of filters has a quasi-equal ripple characteristic in the pass-bands region. In other words, the ripple is not strictly flat in all pass-bands, but it has little influence on the performance of the filter. Simulation and measurement results are presented in Fig. 5.7(b) with the circuit board presented in Fig. 5.7(a). The simulation shows good filter response in each pass-band and excellent band isolation (about 58.6 dB between the first and second pass-band, 50.1 dB between the second and third pass-band). The measured RLs from the first to the third pass-band are better than 18.2 dB, 14.0 dB and 10.7 dB respectively. Owing to the limited accuracy of the etching process, we have chosen suitable values to avoid too narrow (less than 0.1 mm) or too wide (more than 4 mm) line width. The level of the ILs in the fabricated filter slightly deviates from the desired values. The measured ILs for each pass-band is 2.51 dB, 3.33 dB and 3.53 dB. The fabricated filter's dimension is shown in Table 5.2. The overall size of the filter is 54.2 × 53.4 mm 2 without taking into account the two 50 Ω access lines.

Figure 5 . 6 -

 56 Figure 5.6 -Frequency responses of an individual tri-band ABSR(a) and of the tri-band filter based on this ABSR (b).

Figure 5 . 7 -

 57 Figure 5.7 -The fabricated tri-band circuit (a) and its EM-simulated (solid lines) and measured(dotted lines) S-parameters (b).
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 58 Figure 5.8 -Quad-band Star-like Resonators S parameters (a); idea responses of the quad-band bandpass filter (b).

A 3

 3 rd -order quad-band band-pass filter and its implementation in microstrip technology are proposed in this section as another example. There are only few implementation examples for third-order quad-band MBPFs whatever the technology in the literature. Using our proposed ABSRs topology, there is here again no specific challenge to design such MBPFs. The arbitrary pass-band frequencies specifications we have chosen to design this example are defined as follows: 1. Pass-band 1: 1.38 GHz-1.51 GHz (BW: 130 MHz); 2. Pass-band 2: 1.75 GHz-1.85 GHz (BW: 100 MHz); 3. Pass-band 3: 2.10 GHz-2.18 GHz (BW: 80 MHz); 4. Pass-band 4: 2.50 GHz-2.59 GHz (BW: 90 MHz).

Fig. 5 .

 5 Fig.5.8 shows theoretical responses of the proposed quad-band ABSR (a) and quad-band filter. As highlighted for the tri-band case, the ripple is not perfectly constant for all passbands, but it has little influence on the performance of the filter and the final response is in accordance with the specifications. For this filter, the maximum level of the reflection coefficient in pass-band regions is about 20 dB.The proposed filter has been also implemented in microstrip technology using a RO4003C Rogers substrate. Fig.5.9(a) presents a schematic view of the quad-band band-pass filter. The dimensions of the filter are shown in Table5.3. Fig.5.9(b) presents the EM simulated and measured filter's responses. The fabricated filter's size is 101.5 × 100.1 mm 2 without taking into account the two 50 Ω access lines. We can observe good in-band responses and excellent band-to-band isolation of about 60 dB between each pass-band. The measured return loss for each band is better than 18.9 dB, 17.6 dB, 17.7 dB and 12.3 dB respectively. The measured insertion loss from the first pass-band to the fourth pass-band are 1.40 dB, 1.75 dB, 2.53 dB and 2.10 dB respectively.

5 . 2 .Figure 5 . 9 -Fig. 5 .

 52595 Figure 5.9 -The fabricated quad-band circuit (a) its EM-simulated (solid lines) and measured (dotted lines) S-parameters (b).

Figure 5 . 10 -

 510 Figure 5.10 -Quint-band Star-like Resonators S parameters (a); idea responses of the quad-band bandpass filter (b).

Figure 5 . 11 -

 511 Figure 5.11 -Picture of the quint-band circuit (a) and its EM-simulated (solid lines) and measured (dotted lines) S-parameters (b).

  band-pass filters (MBPFs) in planar microstrip technology. We developed the theory of a generalized frequency transformation. Based on the proposed approach, several examples have been successfully implemented with non-coupled and coupled structures. A new type of transformation function in an in-line topology was proposed. Two methods have been used to solve the transfer function and illustrated by coupled-line filters. We also discussed the design of MBPFs based on ABSRs, Some verifications are also presented. The major contributions of this research are outlined as follows: * First, in chapter 3, we present a generalized synthesis method for designing MBPF with a frequency transformation approach. Generalized analytical equations are presented for the construction of multiband filters with an arbitrary number of pass-bands. Several synthesis examples are also presented to illustrate the well-established theory. We also propose some examples the star-like implementation thus obtained with non-coupled and coupled structures. Very good filters performance have been observed for all the proposed MBPFs. * Second, in chapter 4, we propose a novel transformation function to synthesis MBPFs in an in-line topology. Based on this transformation function, MBPFs up to sext-band were synthesized, designed, and measured. Measurement are fully consistent with theory.* Third, in chapter 5, we present a simple method to quickly design MBPFs using AB-SRs. It simplify the frequency transformation method with star-like topology without sacrificing filter performance. Filters up to sext-band were presented to demonstrate the proposed approach.

Figure 6 . 1 -

 61 Figure 6.1 -Quint-band band-pass filter with mixed topology-mixed topology (a), (b) and (c).

. 1 )Figure 6 . 2 -

 162 Figure 6.2 -(a) dual-band band-pass filter with four TZs (±1.6j and ±0.1j) theoretically responses in normalized frequency; (b) topology based on extracted pole method.

Fig. 6 .

 6 Fig.6.2(a) presents a dual-band third order elliptic filter (4 TZs and 6 poles) and its potential implementation by using an in-line topology with extracted-pole method. The bandpass resonators (resonators 5-6) provide two poles and the non-resonating nodes (1-4) provide another 4 poles. The four TZs can be created by band-stop resonators (S 1 -S 4 ). Such a method could be a great opportunity to design high performance multiband filters with strict specifications in terms of rejected bands, in particular. Coparing this method to frequency transformation method. MBPFs based on frequency transformation methods can not control the in-band TZs. Also, MBPFs with arbitrary placed in-band TZs are rarely reported. So, with great interest, the extracted pole technique could be used for the synthesis multiband filter with flexible TZs. Moreover, the miniaturization of filters has always been a research hotspot.

4 k( 7 . 7 )

 477 = n 2N -5 + n 2N -3 ω 2 k + n 2N -1 ωContinuing thus for the other values of q from N -1 to 1, one can show that:n 2N -1 P N -q W

n 1 = 11 )

 111 (-1) N -1 n 2N -1 P N -1 W (1→N -1) = (-1) N -1 ω 2 k n 2N -1 P N -2 Wobtain the equation governing the resonant angular frequencies of the band-stop resonators :This equation has 2(N -1) solutions, one half being positive and the other half negative.
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 272 Resonant angular frequencies and slope parameters for quad-band band-pass to sext-band band-pass filter. Resonant angular frequencies and slope parameters for quadband band-pass to sext-band band-pass filter.Resonating angular frequencies and slope parameters for quad-band band-pass filters in a star-like topology.

(7. 48 )

 48 Figure 7.1 -EM-simulated (dotted lines) and measured (solid lines) S-parameters of the quadband band-pass filter with same bandwidth (a); picture of the fabricated quad-band filter (b).

Figure 7 . 2 -

 72 Figure 7.2 -Dimension of the proposed sixfold-band band-pass filter: (a) top layer and (b) bottom layer.

11 7. 4 6 + 5 p=0 n p ω p -(n 5 ω 5 +

 114655 In-line topology sets of synthesis equations for tri-band and quad-band with the frequency mapping techniqueTri-band:For triple band case, the frequency transformation function can be rewritten as: U(3) (ω) = ω n 3 ω 3 + n 1 ω)(7.63) 

ω 8 + 7 p=0 n p ω p -(n 7 ω 7 + n 5 ω 5 + n 3 ω 3 +

 7753 n 1 ω)(7.72) Using the same mapping principle as mentioned above, the following synthesis equations can also be expressed in the quad-band case as follow:

7. 5

 5 Sixfold-band band-pass filter based on ABSRs.This part give the theoretical responses and measurement results for sixfold-band band-pass filters based on ABSRs. Fig.7.3 shows the layout of the filter and its simulated and measured S-parameters. Table.7.4 give the filters' dimensions. A good correlation is obtained by EM simulation and measurement except in terms of insertion losses. Nevertheless, the important measured losses (between 3.3 and 5.5 dB according to the band) are mainly due to the internal low-cost laser etching realization process which alters the substrate characteristics. The adjacent band-to-band isolation are above 36.1dB, 41.1dB, 38.4dB, 41.7dB and 39.2dB respectively which

Figure 7 . 3 -n 7 ω 6 3 + n 5 ω 4 3 + n 3 ω 2 3 + n 1 7 X 1 ω 4 3 + X 2 ω 2 3 + X 3 ( 7

 73333173237 Figure 7.3 -Schematic of sext-band band-pass filter based on ABSRs (a); EM-simulated (dotted lines) and measured(solid lines) S-parameters of the sext-band band-pass filter (b).

Titre:

  Développement de filtres multibandes en technologies planaires Mots clés : Filtre hyperfréquence, multibande, filtre passe-bande, technologie planaire Résumé : Les évolutions récentes dans le développement des systèmes de communicationont grandement stimulé la demande d'équipe-ments multifonctions. Les composants micro-ondes doivent aujourd'hui être compacts, très performants et faible coût. Parmi tous les composants d'un système de communication, les filtres passe-bandes joue un rôle essentiel. Depuis quelques temps, les filtres multibandes font l'objet de nombreuses études pour leur capacité à opérer simultanément sur au moins deux bandes de fréquences distinctes. Dans cette thèse, nous nous concentrons sur ce type de composants et plus particulièrement sur leur synthèse et leur conception dans différentes topologies et sur leur implémentation en technologie microruban. Dans ce document, nous explorons tout d'abord une première technique de conception de filtres multibandes basée sur une méthode de transformation de fréquences. Une topologie en étoile est proposée pour synthétiser et implémenter ces filtres mutlibandes en utilisant soit des structures non couplées soit au contraire des structures couplées. Une seconde topologie d'implémentation en ligne cette fois est ensuite proposée pour concevoir des filtres multibandes. Cette seconde topologie permet plus facilement d'augmeter le nombre de bandes passantes au delà de 6 simultanément. Enfin, une dernière topologie de résonateurs multibandes basée sur l'association de résonateur coupe-bande est proposée. Elle permet d'obtenir rapidement des structures présentant un grand nombre de bandes. Toutes les méthodes de conception proposées ci-dessus ont été validées théoriquement et expérimentalement. Les résultats expérimentaux obtenus, en très bonne corrélation avec les simulations, démontrent l'efficacité de ces méthodes. Title : Development of Multiband Band-Pass Filters in Planar Technologies Keywords : Microwave filter, multiband, band-pass filter, planar technologies

  

Table 3 .

 3 4 -Microstrip quint-band third-order band-pass filter: length and width dimensions (in mm).

		Resonators		
	L0 = 17.73	L1 = 19.50	L2 = 17.40
	W0 = 1.55	W1 = 3.44	W2 = 3.36
	L3 = 15.33		L4 = 13.50	
	W3 = 3.10		W4 = 3.01	
	LJ1 = 21.40	LJ2 = 19.30	LJ3 = 17.05	LJ4 = 15.33
	WJ1 = 0.14	WJ2 = 0.17	WJ3 = 0.10	WJ4 = 0.10
		Inverters		
	L01 = 17.71		L12 = 18.34	
	W01 = 0.50		W12 = 0.11	

Table 4

 4 
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Fig. 3.19(b) is the photography of the circuit. Fig. 3.19(c) presents the simulated and measured

Table 3 .

 3 5 -Dimensions of the tri-band band-pass filters implemented with coupled structures.

	Symbol	Values (mm)	Symbol	Values (mm)
	L 0	3.60	L g	9.02
	L 01	7.60	L 02	4.60
	L 03	7.0	L 11	3.40
	L 12	7.00	L 13	8.00
	L 14	2.10	L 21	23.40
	L m	3.16	W 21	0.12
	w 0	0.60	w g	0.20
	w s1	0.16	w s2	0.36
	w s3	0.16		
	frequency responses of the fabricated tri-band band-pass filter. Simulations and measurements
	are in a good correlation, except a slight frequency shift of the second transmission zero. This
	can be explained by the low-cost technology process which could imply some changes in the
	characteristics of the high permittivity PCB. The measured RL are 15.3 dB, 10.2 dB, 16.4 dB
	from the first to the third band and the minimum insertion losses are 1.75, 3.86 and 2.03 dB at
	the center frequencies of each pass-band, respectively. Good isolation (better than 27 dB) are
	achieved for both stop-bands.			

Table 3 .

 3 6 -Dimensions of the quad-band band-pass filters implemented with coupled structures.

	Symbol	Values (mm)	Symbol	Values (mm)
	L 0	3.00	L g	9.02
	L 11	10.0	L 12	7.20
	L 21	5.0	L 22	7.0
	L 23	7.95	L 24	1.05
	L 31	5.25	L 32	5.0
	L 33	6.60	W 0	0.60
	w 0	0.20	w g	0.12
	w 21	0.12	w s1	0.17
	w s2	0.22	w s3	1.39
	w s3	1.39	w s4	0.37
	1. Pass-band 1: 3.00 GHz-3.10 GHz (BW: 100 MHz);	

Table 4 .

 4 2 -Dimension of the triple-band band-pass filters with coupled structures.

	Symbol	Values (mm)	Symbol	Values (mm)
	L s	8.45	W s	1.16
	L t	3.60	W t	0.60
	L c	8.90	W c	0.20
	L g	3.27	L 0	16.50
	L 1	16.45	L 2	16.58
	G 0	0.36	G c	0.18
	G 01	1.62	G 12	0.73
	the stop-band resonators (20 dB here).		

Chapter 4 -

 4 Synthesis of multiband band-pass filters with in-line topology
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Table 4

 4 .3. The total size of this circuit is 2.74λ g × 0.294λ g (91 × 9.83 mm

	(a)

2 

). Its EM-simulated (solid lines) and measured (dotted lines) S-parameters are shown in Fig.

4

.12(b). Both are, once again, in good correlation. The measured ILs are 1.56 dB, 2.38

Table 4 .

 4 3 -Dimension of the quad-band band-pass filters with coupled structures.

	Symbol	Values (mm)	Symbol	Values (mm)
	L s	8.45	W s	1.17
	L t	3.60	W t	0.60
	L c	9.30	W c	0.20
	L g	3.31	L 0	16.20
	L 1	16.50	L 2	16.30
	G 0	0.26	G c	0.19
	G 01	0.45	G 12	0.78
	L 3	16.02		

Table 4 .

 4 4 -Intermediate and output parameters obtained using the second extraction method in the case of a quint-band filter.

			extracted parameters		
	k	0	1	2	3	4
	C Lk (F)	2.7678	0.7855	5.7743	0.9166	14.4515
	B Lk	-0.08034 0.028625 -0.0092 -0.02111 -2.109
	b k	9.531	2.705	19.884	3.1564	42.877
	f k (GHz)	3.3889	3.3568	3.3754	3.3859	3.3459

Table 4 .

 4 5 -Dimension of the quint-band band-pass filters with coupled structures.

	Symbol	Values (mm)	Symbol	Values (mm)
	L s	8.35	W s	1.16
	L t	4.00	W t	0.60
	L c	8.40	W c	0.20
	L g	3.27	L 0	16.20
	L 1	16.20	L 2	16.65
	G 0	0.27	G c	0.17
	G 01	0.43	G 12	0.98
	L 3	16.52	G 23	1.22
	L 4	16.01	G 34	1.08

Table 4 .

 4 6. 

	Table 4.6 -Intermediate and output parameters obtained using the second extraction method
	in the case of a sixfold-band filter.					
			extracted parameters		
	k	0	1	2	3	4	5
	C Lk (F)	3.0613	0.7681 5.3182	0.7720	6.3236	1.5054
	B Lk	-0.2161 0.05360 0.2083 -0.08435 0.08414 -0.03183
	b k	10.45	2.622	18.154	2.6352	21.586	5.1388
	f k (GHz) 3.4491	3.3789 3.3941	3.4687	3.4070	3.4242
	As for the previous examples, we present successively the theoretical responses (see Fig.

Table 4 .

 4 7 -Dimension of the sext-band band-pass filters with coupled structures

	Symbol	Values (mm)	Symbol	Values (mm)
	L s	8.30	W t	1.16
	L t	4.00	W t	0.60
	L c	8.70	W c	0.20
	L g	3.22	L 0	16.21
	L 1	16.40	L 2	16.35
	G 0	0.37	G c	0.15
	G 01	0.44	G 12	1.03
	L 3	16.00	G 23	1.08
	L 4	16.20	G 34	0.75
	L 5	16.21	G 45	1.56

Table 5 .

 5 1 -Dimensions of the dual-band band-pass filters with ABSR.

	Symbol	Values (mm)	Symbol	Values (mm)
	L J01	20.13	W J01	0.51
	L J02	20.85	W J02	0.13
	L 11	20.7	W 11	0.17
	L 12	19.0	W 12	2.20
	2. Pass-band 2: 2.52 GHz-3.00 GHz (BW: 480 MHz);	

Table 5 .

 5 2 -Dimensions of the tri-band band-pass filters with ABSR.

	Symbol	Values (mm)	Symbol	Values (mm)
	L J01	13.3	W J01	0.50
	L J02	20.8	W J02	0.10
	L 11	11.91	W 11	0.12
	L 12	15.94	W 12	1.95
	L 21	14.66	W 21	0.14
	L 22	10.92	W 22	2.25

Table 5 .

 5 3 -Dimensions of the quad-band band-pass filters with ABSR. Z 11 = 132.0 Ω, Z 12 = 24.0 Ω, Z 21 = 138.0 Ω, Z 22 = 20.8 Ω, Z 31 = 137.9 Ω, Z 32 = 24.0 Ω. The four resonant frequencies can then be calculated from (5.1) with N = 4. They are here located at f zr1 = 1.410 GHz, f r2 = 1.800 GHz, f r3 = 2.155 GHz and f r4 = 2.555 GHz. The J inverters impedance values are with Z J01

	Symbol	Values (mm)	Symbol	Values (mm)
	L J01	23.15	W J01	0.55
	L J02	24.0	W J02	0.13
	L 11	29.90	W 11	0.12
	L 12	27.20	W 12	2.50
	L 21	23.40	W 21	0.12
	L 22	21.50	W 22	3.01
	L 31	19.85	W 231	0.15
	L 32	17.97	W 32	3.00
	example, the impedance values are:		

Table 5 .

 5 4 -Dimension of the quint-band band-pass filters with ABSR.In order to reflect the characteristics of the MBPFs based on ABSR with hign number of pass-bands, Table5.5 gives a performance comparison of the proposed quad and quint-band MBPFs with some previous works available in the literature. Different characteristics are given:

	Symbol	Values (mm)	Symbol	Values (mm)
	L J01	22.05	W J01	0.53
	L J02	22.83	W J02	0.12
	L 11	29.83	W 11	0.12
	L 12	27.18	W 12	2.38
	L 21	25.90	W 21	0.11
	L 22	22.0	W 22	4.02
	L 31	21.80	W 231	0.12
	L 32	17.40	W 32	3.54
	L 41	19.20	W 41	0.10
	L 42	17.22	W 42	3.00

Table 5 .

 5 5 -Comparisons with the other quad-,quint-band MBPFs.

	Ref. PB Filter	CTZs	CF	IL	ISO	BW%	Size
		order		(GHz)	(dB)	(dB)	(3dB)	(λg × λg)
	[57]	2	No	1.91/3.55	0.6/1.65	ISO12>25, ISO23>13	16.5/6.9	0.23×0.12
				5.36/6.92	1.05/1.85	ISO34>20	7.4/5.4	
	[58]	2	No	0.96/2.51	0.12/0.7	ISO12>19, ISO23>19	109.4/30.4	0.14×0.14
				3.71/5.11	0.3/0.53	ISO34>19	5.11/35.2	
	[59]	2	No	0.96/2.51	0.12/0.7	ISO12>22, ISO23>40	6.9/9.4	0.2×0.2
				3.71/5.11	0.3/0.53	ISO34>23	3.8/4.9	
	[60]	2	No	0.96/2.51	0.12/0.7	ISO12>40, ISO23>40	6.7/4.2	0.19×0.15
				3.71/5.11	0.3/0.53	ISO34>30	3.7/14.8	
	This work	3	Yes	1.44/1.80 2.14/2.54	1.40/1.75 2.10/2.53	ISO12>61.3 ISO23>62.2	8.46/10.61 20.64/11.22	0.64×0.63
						ISO34>61.8		
	[57]	2	No	0.62/1.33 2.03/2.75	0.47/1.14 1.80/1.39	ISO12>32, ISO23>13 ISO34>20,ISO45>15	28.8/9.4 2.7/5.3	0.04×0.18
				3.45	1.26		5.5	
	[58]	2	No	0.94/2.42 3.7/4.6	0.12/0.68 0.28/0.65	ISO12>15, ISO23>15 ISO34>15,ISO45>15	110.6/33.5 17.6/16	0.14×0.14
				5.75	0.57		20	
	[61]	2	No	1.5/2.5 3.5/4.5	1.5/1.8 0.9/1.2	ISO12>35, ISO23>30 ISO34>35,ISO45>30	4.5/4.5 3.6/4.5	0.24×0.17
				5.8	2.5		2.7	
	[62]	3	No	0.6/0.9 1.2/1.5	2.8/2.9 2.9/2.6	ISO12>28, ISO23>26 ISO34>30,ISO45>15	5.8/5.2 5.8/8.2	0.22×0.05
				1.8	2.3		8	
	This work	3	Yes	1.46/1.77 2.01/2.28	1.72/3.22 3.63/3.81	ISO12>56.8 ISO23>60.1	14.31/8.64 6.10/6.47	0.72×0.60
				2.60	3.37	ISO34>61.4	5.83	
						ISO45>55.6		
					122			

Resonant angular frequencies and slope parameters for quint-band band-pass filters in a star-like topology.

  Resonant angular frequencies and slope parameters for quad-band band-pass to sext-band band-pass filter.R 4 = 2n2 7 -9n 3 n 5 n 7 + 27n 2 3 n 9 +27n2 7 n 1 -72n 1 n 5 n 9

	Y 1 = 7.2. (7.37) n 2 -n 0 n 3 n 1 -n 1 n 7 (7.26) n 7 Y 2 = n 4 -n 0 n 5 n 1 n 3 -n 7 n 7 (7.27) Y 3 = n 6 -n 0 n 7 n 1 R 1 = R 2 -4n 5 n 7 n 9 -n 3 7 -8n 3 n 2 9 4n 3 9 √ (7.38) R 0 n 5 -n 7 n 7 (7.28) R 5 = n 2 5 -3n 3 n 7 + 12n 1 n 9 (7.39)
	1 = -	n 5 3n 7	+ 3 Ω 1 + 3 Ω 2	(7.13)
	ω 2 = -ω 3 = -ω 1 = -n 5 3n 7 n 5 ω 0 = -+ ∆ 3 + ∆ 4 3n 7 n 7 4n 9 -1 2 ( R 0 + R 1 ) 3 Ω 1 + ∆ 4 3 Ω 2 3 Ω 1 + ∆ 3 n 0 n 9 n 1 3 Ω 2	(7.14) (7.29) (7.15) (7.30)
	b 0 = b 1 = ω 2 = -ω 1 (ω 2 -n 0 n 1 n 7 1 -ω 2 2 )(ω 2 1 -ω 2 3 ) Y 3 ω 4 1 + Y 2 ω 2 n 7 -1 2 ( R 0 -R 1 ) 4n 9 1 + Y 1 b 2 = ω 2 (ω 2 2 -ω 2 1 )(ω 2 2 -ω 2 3 ) Y 3 ω 4 2 + Y 2 ω 2 2 + Y 1 ω 3 = -n 7 4n 9 + 1 2 ( R 0 -R 1 )	(7.16) (7.31) (7.17) (7.18) (7.32)
	b 3 = ω 4 = -ω 3 (ω 2 3 -ω 2 1 )(ω 2 3 -ω 2 2 ) Y 3 ω 4 3 + Y 2 ω 2 3 + Y 1 n 7 4n 9 + 1 2 ( R 0 + R 1 )	(7.19) (7.33)
	where: where:			
	Ω 1 = ∆ 1 + ∆ 2 1 + ∆ 3 2 Ω 2 = ∆ 1 -∆ 2 1 + ∆ 3 2 R 0 = ( n 7 2n 9 ) 2 -2n 5 + R 3 3n 9 (3n 9 ) 2 R 3 + n 5 2 -3n 3 n 7 + 12n 1 n 9	(7.20) (7.21) (7.34)
	∆ 1 = ∆ 2 = ∆ 3 = R 2 = ( n 5 n 3 6n 2 7 n 3 3n 7 --9n 2 n 3 5 27n 3 7 n 2 5 7 -1 + j √ 3 n 7 2n 9 ) 2 -2n 5 3n 9 n 5 2 -3n 3 n 7 + 12n 1 n 9 -n 1 2n 7 -R 3 -(3n 9 ) 2 R 3 2 ∆ 4 = -1 -j √ 3 3n 9 3 2(R 4 + (R 2 4 -4R 3 5 )) 2 R 3 = R 5	(7.22) (7.23) (7.35) (7.24) (7.25) (7.36)
			132	

Resonant angular frequencies and slope parameters for sext-band band-pass filters in a star-like topology.

  

		b 0 = -	n 1 n 0 n 9	(7.40)
	b 1 =	ω 1 (ω 2 1 -ω 2 2 )(ω 2 1 -ω 2 3 )(ω 2 1 -ω 2 4 ) Y 4 ω 6 1 + Y 3 ω 4 1 + Y 2 ω 2 1 + Y 1	(7.41)
	b 2 =	ω 2 (ω 2 2 -ω 2 1 )(ω 2 2 -ω 2 3 )(ω 2 2 -ω 2 4 ) Y 4 ω 6 2 + Y 3 ω 4 2 + Y 2 ω 2 2 + Y 1	(7.42)
	b 3 =	ω 3 (ω 2 3 -ω 2 1 )(ω 2 3 -ω 2 2 )(ω 2 3 -ω 2 4 ) Y 4 ω 6 3 + Y 3 ω 4 3 + Y 2 ω 2 3 + Y 1	(7.43)
	b 4 =	ω 4 (ω 2 4 -ω 2 1 )(ω 2 4 -ω 2 2 )(ω 2 4 -ω 2 3 ) Y 4 ω 6 4 + Y 3 ω 4 4 + Y 2 ω 2 4 + Y 1	(7.44)
		Y 1 = Y 2 = Y 3 = Y 4 =	n 2 -n 4 -n 6 -n 8 -	n 0 n 3 n 1 n 9 n 0 n 5 n 1 n 9 n 0 n 7 n 1 n 9 n 0 n 9 n 1 n 9	----	n 1 n 9 n 3 n 9 n 5 n 9 n 7 n 9	(7.45) (7.46) (7.47)

  7.5. Sixfold-band band-pass filter based on ABSRs.

		b 2 =	-n 5 n 7	+	ω 2 X 1 n 1 n 7 X 1 X 3	+	X 1 X 2	(7.79)
	b 3 =	(	n 5 n 7	-ω 2 ω 3 1 + w 2 + w 2 2 + w 2 3 +	b 1 b 2 w 1 w 2	)b 2	(7.80)
			X 1 = X 2 = X 3 =	n 6 -n 4 -n 2 -	n 0 n 7 n 1 n 7 n 0 n 5 n 1 n 7 n 0 n 3 n 1 n 7	---	n 5 n 7 n 3 n 7 n 1 n 7	(7.81) (7.82) (7.83)

Table 7 .

 7 4 -Dimension of the sext-band band-pass filters with ABSR.

	Symbol	Values (mm)		Symbol	Values (mm)
	L J01	18.55				W J01	0.47
	L J02	19.0				W J02	0.18
	L 11	26.64				W 11	0.10
	L 12	23.81				W 12	2.35
	L 21	22.83				W 21	0.10
	L 22	20.73				W 22	2.38
	L 31	19.96				W 231	0.11
	L 32	17.60				W 32	3.55
	L 41	17.73				W 41	0.12
	L 42	15.60				W 42	3.36
	L 51	15.98				W 51	30.10
	L 52	13.80				W 52	3.55
		X 1 = X 2 = X 3 =	n 6 -n 4 -n 2 -	n 0 n 7 n 1 n 7 n 0 n 5 n 1 n 7 n 0 n 3 n 1 n 7	---	n 5 n 7 n 3 n 7 n 1 n 7	(7.92) (7.93) (7.94)

where

= ω 2 (3.29) so, the matrix X 2,2 can be expressed as, a

where

(3.32)

The values of ω k in terms of n are determined, from (3.14) and the solutions of (3.16). By using these relationships, we can express

The inverse matrix of X 2,2 is

)

3.1. The theory of generalized frequency transformation methods

By using (3.36), we can easily get the same results as we already proposed in section 3.1.1

(equations (3.24) and (3.25)).

Using equations (4.23a) to (4.23c), we then extract step-by-step the other parameters:

L0 Ω -jB

(3) L0

= j -0.2243Ω + 0.02553 0.6694Ω 2 -0.3063Ω -0.0824 (4.29a)

L1 Ω -jB 

GHz.

Table 4.1 -Extracted parameters for the triple-band case with the second method.

Extracted parameters

Note that the direct mapping technique proposed in Section 4.1.1, using of equations (7.63)-(7.71) presented in Appendix 7.4 gives exactly the same values of the resonant frequencies and the slope parameters than the ones obtained with this circuit approach.

Chapter 5

DIRECTLY SYNTHESIS OF MULTIBAND FILTERS WITH ASSOCIATED BAND-STOP

RESONATORS

In chapter 3 and chapter 4, we mainly focused on the frequency transformation methods to design MBPFs. These method are based on strict mathematical analysis and provide a mapping relationship between theory and implementation circuits. However, frequency transformation method have two significant disadvantages. The first disadvantage is that the TZs between the individual pass-bands are not controllable. In other words, the TZs are not independent.

Another disadvantage is that the bandwidth of each pass-band cannot be too wide, because the synthesis of this type of filter is based on synthesis methods. In this chapter, we will introduce a novel method to design MBPFs based on optimization approach, which can solve the above two problems to some extent allowing to design MBPFs with controllable in-band transmission zeros (TZs) and relative large individual pass-bands.

The proposed design method is based on the parallel association of N -1 band-stop steppedimpedance stubs to form a N pass-bands resonator. We show that such a simple design principle allows the accurate control of TZs positions. The principle and theory of such filters based on associated band-stop resonators (ABSRs) are exposed and their efficiency is shown through synthesis, design, simulation and measurement. In order to demonstrate the effectiveness and advantages of ABSRs, we provide dual-, tri-, quad-, and quint-band 3 rd filter examples in the next several sections with both theory study and microstrip implementation.

Theory of proposed associated band-pass resonators

The structure of the proposed MBPF based on ABSRs is shown in Fig. 5.1. A multi-band resonator is composed of N -1 short-ended stepped-impedance stubs in a star-like implementation (Fig. 5.2). Unlike the star-like resonators proposed in Chapter 3, the ABSRs do not include the shunt-connected stubs for band-pass. For simplicity, we assume that the electrical length of each part of a branch i (i ∈ [1; N -1]) of the ABSRs equals to λ/4 (or θ i = π/2 ) at its

Chapter 6 -Conclusion and perspectives

The employment of extracted-pole method may reduce the number of resonators to achieve a minimized footprint.

Chapter 7

APPENDIX

Expression governing the resonant angular frequencies of the band-stop resonators

As presented in Chapter 3, the resonant angular frequencies of the stop-band parts of an N -band band-pass resonator (MBPR) are the positive solutions of (3.16).

Proof : In the case of an N -band band-pass filters, the coefficients n p of the U (N ) (ω) function (see (3.5)) are given by (3.12) in the case of an odd value of p (p = 2q -1, q ∈ [1; N ]).

For q = N and so p = 2N -1, this equation leads to:

knowing that P 0 W (1→N -1) = 1 as defined in Section 3.1.1. So, (3.12) becomes:

Applying (7.2) with q = N -1 (p = 2N -3) leads to:

Considering any angular frequency of the stop-band parts ω k , k ∈ [1; N -1], this expression can be written as follow:

which implies that:

)