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Abstract

This thesis lies in the field of Statistical Inference and more precisely in Bayesian
Inference, where the goal is to model a phenomenon given some observed data while
taking into account prior knowledge on the model parameters.

The availability of large datasets sparked the interest in using complex models
for Bayesian Inference tasks that are able to capture potentially complicated struc-
tures inside the data. Such a context requires the development and study of adaptive
algorithms that can efficiently process large volumes of data when the dimension of
the model parameters is high.

Two main classes of methods attempt to fulfil this role: sampling-based Monte
Carlo methods and optimisation-based Variational Inference methods. By relying
on the optimisation literature and more recently on Monte Carlo methods, the lat-
ter have made it possible to construct fast algorithms that overcome some of the

computational hurdles encountered in Bayesian Inference.

Yet, the theoretical results and empirical performances of Variational Inference
methods are often impacted by two factors: one, an inappropriate choice of the ob-
jective function appearing in the optimisation problem and two, a search space that
is too restrictive to match the target at the end of the optimisation procedure.

This thesis explores how we can remedy the two issues mentioned above in
order to build improved adaptive algorithms for complex models at the intersection
of Monte Carlo and Variational Inference methods.

In our work, we suggest selecting the a-divergence as a more general class of
objective functions and we propose several ways to enlarge the search space beyond
the traditional framework used in Variational Inference.

The specificity of our approach in this thesis is then that it derives numerically
advantageous adaptive algorithms with strong theoretical foundations, in the sense
that they provably ensure a systematic decrease in the a-divergence at each step. In
addition, we unravel important connections between the sampling-based and the
optimisation-based methodologies.
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The thesis is then organised as follows:
e Chapter 1 (Introduction)

We present the central notions this thesis builds on and we sum up our main results.

e Chapter 2 (Based on Daudel, Douc, and Portier, 2021)
We introduce the («,I")-descent, a novel iterative algorithm operating on measures
that performs a-divergence minimisation. This gradient-based procedure extends
the commonly-used variational approximation by adding a prior on the variational
parameters in the form of a measure. It is shown to lead at each step to a systematic
decrease in the a-divergence for a rich family of functions I' and convergence re-
sults are also derived. It recovers the Entropic Mirror Descent algorithm as a special
case and provides an alternative algorithm called the Power Descent. By resorting to
Monte Carlo approximations, both algorithms can notably be used to optimise the
mixture weights of any given mixture model without any information on the un-
derlying distribution of the variational parameters. We demonstrate empirically the
benefit of using the Power Descent and going beyond the Entropic Mirror Descent
framework, which fails as the dimension grows.

e Chapter 3 (Based on Daudel and Douc, 2021)
We establish the full proof of the convergence of the Power Descent towards the op-
timal mixture weights when a < 1. Observing that this algorithm is defined for all
a € R\ {1} and since the a-divergence recovers the widely-used forward Kullback-
Leibler when o goes to 1, we then extend the Power Descent to the case o = 1 and
show that we obtain an Entropic Mirror Descent. This leads us to further investigate
the link between Power Descent and Entropic Mirror Descent: first-order approxi-
mations allow us to go beyond the (o, I')-descent framework and to introduce the
Renyi Descent, a new algorithm for which we prove an O(1/N) convergence rate.
Lastly, we compare numerically the behavior of the unbiased Power Descent and of
the biased Renyi Descent and we discuss the potential advantages of one algorithm
over the other.

e Chapter 4 (Based on Daudel, Douc, and Roueff, 2021)
We propose a complete methodology to carry out a-divergence minimisation by en-
suring a systematic decrease in the a-divergence at each step. In its most general
form, our framework allows us to simultaneously optimise the weights and compo-
nents parameters of a given mixture model. Our approach permits us to build on
various methods previously proposed for a-divergence minimisation such as Gra-
dient or Power Descent schemes and to enhance them. Furthermore, we shed a new
light on an integrated Expectation-Maximization algorithm. By applying our work
to the particular case of Gaussian Mixture Models optimisation via Monte Carlo ap-
proximations, we finally provide empirical evidence that our methodology yields
improved results, all the while illustrating the numerical benefits of having intro-
duced some flexibility through the parameter a of the a-divergence.

e Chapter 5 (Conclusion)

We provide concluding remarks and outline some future directions of research.



Introduction

The aim of this chapter is to introduce the main concepts arising in this thesis. We
first recall the basics of Bayesian Inference and underline its core challenges when
applied to complex models. Then, we explain how Monte Carlo and Variational
Inference methods tackle these difficulties in order to carry out Bayesian Inference
tasks, before summarising the contributions we make in the remaining chapters of
this thesis.

1.1 Bayesian Inference

Statistical Inference is the process of modelling a phenomenon given some data. As
a subclass of Statistical Inference, Bayesian Inference methods seek to fit a parame-
terised probability model to a set of observed data, with the particularity that prior
knowledge on the model parameters is incorporated in the methods.

The framework of Bayesian Inference can then be defined as follows. Let (Y, Y, v)
be a measured space, where v is a o-finite measure on (Y,)). Assume that we
have access to some observed variables Z generated from a dominated probabilistic
model with density p(2|y) parameterised by a hidden random variable y € Y that is
drawn from a certain prior with density py with respect to v. At the heart of Bayesian
Inference is the posterior density of the latent variable y given the data Z:

_ (4, 2) _ po)p(Zly)

=)~ e

where p(2) = [, po(y)p(2|y)v(dy) is called the marginal likelihood or model evidence.
The posterior density is used to quantify the uncertainty of the parameter y after
observing the data & through quantities of interest such as the marginal likelihood
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p(2) or the posterior mean

/ y p(y|2)v(dy) .
Y

Broadly speaking, given a function g defined on Y, the success of Bayesian Inference
methods will rely on our ability to calculate integrals of the form

/Y o()p(y| 2)(dy) . (L1)

The problem above is a difficult one as there exists no general analytical form for
(1.1) and even when an analytical form does exist for selected choices of probabilistic
models, it might be too expensive to compute in practice (e.g. the computation of
the marginal likelihood for a Bayesian Mixture of Gaussians, see Blei, Kucukelbir,
and McAuliffe, 2017 for details).

This is particularly true in the context of Big Data, where modelling large amount
of data with potentially complicated underlying structure inside the data will in-
duce a complex and hard-to-compute posterior density. It is thus crucial to be able
to find methods rendering Bayesian Inference computationally efficient and scalable

to large datasets.

Since exact Bayesian Inference is often impossible, one may resort to approximate
Bayesian Inference methods, which mainly fall into two broad categories: (i) Monte
Carlo methods (e.g. Adaptive Importance Sampling (Oh and Berger, 1992), Markov
Chain Monte Carlo (Neal, 1993), Sequential Monte Carlo (Doucet, Freitas, and Gor-
don, 2001)), that are sampling methods (ii) Variational Inference methods (e.g. Vari-
ational Bayes (Jordan et al., 1999), Expectation Propagation (Minka, 2001)), that rely
on optimisation techniques.

In particular, Variational Inference methods are known for their numerical suc-
cess when applied to large-scale learning tasks with complex probabilistic models
(Hoffman et al., 2013; Kingma and Welling, 2014, Ranganath, Gerrish, and Blei,
2014). However, contrary to their Monte Carlo counterparts, Variational Inference
methods use optimisation techniques over a constrained set of densities; this means
that there is a possible mismatch between the posterior density and the approxima-
tion that is returned at the end of the optimisation procedure, which results in a lack
of theoretical guarantees (Yao et al., 2018; Campbell and Li, 2019).

As a consequence, the literature is becoming increasingly interested in construct-
ing scalable Variational Inference algorithms that are theoretically well-justified (e.g.
Alquier, Ridgway, and Chopin, 2016; Domke, 2019; Alquier and Ridgway, 2020)
while another active field of research focuses on combining Monte Carlo and Vari-
ational Inference methods (to name but a few: Burda, Grosse, and Salakhutdinov,
2016; Li and Turner, 2016; Mandt, Hoffman, and Blei, 2017; Naesseth et al., 2018;
Thin et al., 2020; Naesseth, Lindsten, and Blei, 2020).

In this thesis, we will be particularly interested in investigating how Adaptive
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Monte Carlo methods, and more specifically Adaptive Importance Sampling meth-
ods, can be paired up with scalable Variational Inference procedures to provide
theoretically-sound algorithms for Bayesian purposes.

To this end, let us start by recalling the basics of Monte Carlo methods for Bayesian

Inference up till Adaptive Importance Sampling methods.

1.2 Monte Carlo methods for Bayesian Inference

Monte Carlo methods as a whole seek to approximate integrals of the form

I(g) == /Y o(y)p(y)(dy) |

where g is an integrable function defined on Y and p is a probability density function
with respect to v on (Y, )). Denoting by IP the probability measure on (Y,)) with
Radon-Nikodym derivative with respect to v given by dP/dv = p, this problem can
be reframed as the calculation of the expectation of g with respect to the probability
distribution P:

where Y is a random variable defined on the probability space (Y, ), P).

The first idea of Monte Carlo methods is to replace the explicit calculation of the
expectation of the random variable g(Y') by an approximation involving the empiri-
cal mean of M independent realisations.

1.2.1 Vanilla Monte Carlo

Let Y7, Y, ... be an infinite sequence of independent and identically distributed ran-
dom variables with common probability distribution PP. Setting for all M € N*

R 1 M
Du(g) =57 2 9(Ym) (1.2)
m=1

we obtain that the estimator I);(g) of I(g) is unbiased (i.e. E,[Ij(g)] = I(g)). No-
tably, assuming that /(g) = E,[|g(Y1)|] < oo, the law of large numbers yields

lim Ip/(g)=1I(g), almost-surely,

M—+o0
and if we further assume that E,[|g(Y7)|?] < oo, we obtain by the central limit theo-
rem that /M (I)/(g) — I(g)) converges in distribution to (0, Var,[g(Y1)]) as M goes

to infinity.

To apply Monte Carlo methods for Bayesian Inference tasks, we would like to
set p(y) = p(y|2) for all y € Y: provided that we know how to sample from the

posterior distribution, the estimator (1.2) would serve as an approximation of (1.1).
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However, for many important Bayesian Inference models we do not know how
to sample from the posterior distribution, nor do we know the value of the normal-
ising constant p(Z). One example of such a model is Bayesian Logistic Regression
for binary classification, as described below.

Example 1 (Bayesian Logistic Regression). We use the same setting as in Gershman,
Hoffman, and Blei, 2012. We observe the data 9 = {c, x} which is made of I binary class
labels, ¢; € {—1,1}, and of L covariates for each datapoint, x; € RL. The hidden variables
y = {w, B} consist of L regression coefficients w, € R and a precision parameter 3 € R*.
We assume the following model

po(B) = Gamma(f;a,b) ,
po(welB) = N(we; 0,871, 1< L,
1

g I<i</I,

p(ci = l\wi,w)
where a and b are hyperparameters (shape and inverse scale, respectively) that we assume
to be fixed. For all y € Y, we thus have p(y, 2) o po(y) [T, p(cil:, y) with po(y) =
Hlepo(wg\ﬁ)pg(ﬁ). As the sigmoid does not admit a known conjugate prior, we do not
know how to sample from the posterior distribution and p(2) is intractable in this model.
Consequently, the posterior predictive distribution, which given an unseen data Tyew pre-
dicts the label cpow

p(cnew|mnewa -@) = /Yp(cnew|wnewa y)p(y|.@)l/(dy)

is also an intractable integral.

Fortunately for us and as we shall see next, Importance Sampling methods come
in handy to bypass these issues.

1.2.2 Importance Sampling

The key idea of Importance Sampling is to introduce a certain probability density
q with respect to v on (Y,)) and to assume that (i) we know how to sample from
q and (ii) the support of ¢ contains the support of g x p, that is for a given y € Y,
g(y)p(y) # 0 implies ¢(y) > 0 (a sufficient condition being that the support of ¢
contains the support of p). In this case, setting w(y) = p(y)/q(y) for ally € Y, the
following holds

19) = [ swo(n) = | o2 a(o)u(dy) = £y lw(¥)g(v)]
Y Y q(y)
Letting this time Y7, Y, ... be an infinite sequence of independent and identically
distributed random variables sampled according to ¢ and based on what we have

seen so far, the novel (unbiased) estimator of I(g) that comes to mind is given for all
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M € N* by

1 M
17 2 W(Ym)g (V) - (1.3)
m=1

Iii (9) =
If we put this into perspective with the Bayesian framework, we see that we have
made some progress, as we do not need to be able to sample from the posterior
distribution anymore to estimate integrals of the form (1.1).
One obstacle still remains, since as we underlined before the posterior density
can often only be evaluated up to a proportional constant. This brings us to the Self-
normalised Importance Sampling (SNIS) estimator defined below for all M € N*

FSNIS (o) — 7 Lot W(Yin)g(Yin) '

M M
ﬁ Zm:1 U}(Ym)

Contrary to the estimators we have introduced previously, 1575 (g) is biased. Nev-
ertheless, assuming that the condition of support are met and E,[|w(Y7)g(Y1)|] < oo,
the law of large number allows us to obtain the almost sure convergence towards
I(g) for both I1%(g) and I5V15(g).

Further assuming that E,[|w(Y1)g(Y1)|?] < oo (and for the SNIS estimator that
E,[w(Y1)?(1 4+ g(¥1)?)] < o) also yields

VM(I1 (9) — 1(9)) =2 N(0, Var[w(Y1)g(Y1)])
VMM (g) — 1(g)) = N(0, Varg[w(¥1)(9(Y1) — 1(9))])

where —, denotes the convergence in distribution. Notably, Var,[w(Y1)g(Y1)] and
Varg[w(Y1)(9(Y1) — I(g))] are minimal when ¢ o |g| x p and ¢ x |g — I(g)|p respec-
tively.

This illustrates the fact that the performance of Importance Sampling methods
for Bayesian Inference purposes is tied to the choice of the sampler ¢ (see Robert and
Casella, 2005 and Figure 1.1). Interestingly, when integrals of the form (1.1) are to
be computed for many functions g, it becomes less efficient to have ¢ depend on g
as per written in the above results, which supports the idea that one should target p
directly (Delyon and Portier, 2021).

As we may not know in one go what a good sampler for a complex probabilistic
model looks like, adaptive procedures may be constructed in order to refine the
proposal progressively and this brings us to the concept of Adaptive Importance
Sampling.
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0.40 4 — tue
—— good sampler
0.35 —— bad sampler

—4 -2 0 2 4 6 8 10

FIGURE 1.1: Here, the label “true” stands for the targeted distribu-
tion. The two remaining above samplers are then likely to provide
different results in estimating I(g).

1.2.3 Adaptive Importance Sampling

Starting from an initial sampler ¢, the aim of Adaptive Importance Sampling is to
build an iterative sequence of sampler (¢, ),>1 that leads to more accurate estimators
as n increases.

While originally limited to a two-step procedure (Kloek and Van Dijk, 1978;
Geweke, 1989), Adaptive Importance Sampling methods have since evolved to multi-
stage schemes (Oh and Berger, 1992) so that we can expect a typical Adaptive Im-
portance Sampling algorithm to be described as in Algorithm 1.

Algorithm 1: Adaptive Importance Sampling

Input: N: total number of iterations, (M, )1<n<n: allocation policy, ¢;: initial
sampler.

Output: Return the pairs (Yo, n, Wi (Yonn)) 1<m<, 1<n<N-

forn=1...Ndo

1. Draw independently M,, samples (Y, n)1<m<nm,, from gp,.

2. Compute the Importance Sampling weights (wy,(Y;n.n))1<m<n,,, where
forally € Y, w,(y) = p(y)/qn(v).

3. Update the sampler g,.

end

Letting p(y) = p(y, Z) for all y € Y, the outputted pairs in Algorithm 1 can then
be used to estimate integrals of the form (1.1), e.g. by considering at time n the

estimate X y
j’f/[NAIS(g) _ M, Zmil wn(Ymm)g(Ym,n)
nyN Mn .
i Zmit Wn(Yimn)

Notable advances in Adaptive Importance Sampling include methods tailoring the

sequence of samplers (g, )n>1 according to a certain criterion (e.g. Douc et al., 2007a;
Douc et al., 2007b; Cappé et al., 2008 and Portier and Delyon, 2018) as well as refine-
ments beyond the traditional importance sampling weights (Martino et al., 2017).
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We refer to Bugallo et al., 2017 for a detailed review of Adaptive Importance Sam-
pling methods and we now move on to presenting Variational Inference methods.

1.3 Variational Inference methods for Bayesian Inference

Variational Inference methods (Jordan et al., 1999) seek to approximate the posterior
density by a simpler variational density ¢ belonging to some density family Q and
that can be used to facilitate the computation of integrals of the form (1.1).

These approaches consider this objective purely as an optimisation problem in-
volving a certain measure of dissimilarity D between the posterior distribution P,
and the variational distribution Q

inf D(Q|IP|2) ,
qeQ

where P|; and Q are assumed to be probability measures on (Y,))) that are abso-
lutely continuous with respect to v (which we denote Q < v, Pl =X v) and with
associated Radon-Nikodym derivatives with respect to v given by ¢ = dQ/dv and
p(|12) = dPz/dv.

The core of Variational Inference methods then consists in choosing D properly
and in designing approximating families Q which enable efficient optimisation and
which are able to capture complicated structure inside the posterior density.

In this section, we will first recall the most traditional choices for D and Q in the
Variational Inference literature. We will then detail advances in this field that are
relevant for the thesis.

1.3.1 Traditional Variational Inference

A traditional choice in Variational Inference that has extensively been used in the
literature corresponds to letting D be the Kullback-Leibler divergence (Kullback and
Leibler, 1951), whose definition is recalled now.

Definition 1 (Kullback-Leibler divergence). Let Q and IP be two probability measures on
(Y,Y) that are absolutely continuous with respect to v i.e. Q < v, P < v. Let us denote
by q = % and p = & the Radon-Nikodym derivatives of Q and P with respect to v. The
Kullback-Leibler (KL) divergence is defined by:

Dis(@IP) = [ 1o (;gﬁ) a()(dy)

which is always well-defined in [0, 4-o00].
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In traditional Variational Inference, one can then seek to either minimise the for-
ward Kullback-Leibler

inf Drer,(Q||P)) (1.4)
qeQ

or to minimise the reverse Kullback-Leibler
inf Dy (P . 1.5
inf kL(P12]|Q) (1.5)

Special interest in the Variational Inference community has notably been dedicated
to attempting to solve (1.4), due to the so-called Evidence Lower BOund (ELBO)
property: for all ¢ € Q it holds that

Drsl@Pz) = [ atwto (1) viay) + 10gp(2)

= —ELBO(q; 2) +logp(2) ,

where the ELBO function is defined for all ¢ € Q by

9

ELBO(: 7) = | a(u)log <p(y )) v(dy) (16)
Y q(y)

The result above means that the ELBO can act as a surrogate objective function which

does not involve the bothersome normalising constant p(Z) anymore. Thus, it is

equivalent to consider instead of (1.4) the optimisation problem

sup ELBO(¢; 2) .

qeQ
The name ELBO in itself then comes from the fact that Jensen’s inequality applied
to the strictly concave function u > log(u) implies D1 (Q|[P|5) > 0 so that we can
write ELBO(q; 2) < log p(2) with equality if and only if Q = P|y; this, in turn, pro-
vides a lower bound on the log of the marginal likelihood (i.e. the model evidence).

From there, a traditional choice for the variational family Q is to work within
the Mean-field approximating family, which we next describe. This will allow us
to explain briefly how the forward Kullback-Leibler divergence and the Mean-field
approximation have been paired up together for Variational Inference purposes.

The Mean-field approximation consists in assuming that the latent variable y is
made of L independent components (y1,...,yr) € Y1 X ... x Y, such that Q is of
the form

L
Q= {q:yH qu(ye)}

(=1

and each latent variable y, is governed by its own variational density ¢, with v(dy) =
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®€L:1 ve(dye). Plugging this fully factorised variational density into the ELBO (1.6)
and fixing all the variational factors but the one with coordinate ¢, the following

optimal update can then be derived for this factor:
q; (ye) o< exp (E_(flog p(y, Z)]) , for ve-almost all y, € Y¢ , (1.7)

where we have denoted by E_, the expectation with respect to ¢ omitting the factor
q¢- Indeed, observe that under the Mean-field assumption,

BLBO(: 7) = [ aly) log (M) v(dy)

q(y
_ / 2 E_¢ llog ply, 2)] va(dye) — / ae(ye) 1og qu(ye)ve(dye) + e
Yy Ye
_ op (P Elogp(y, 7)) .
= /Yé qe(ye) 1 g( 2 (w) ) o(dye) + c—¢

where c_, is a constant that does not depend on ¢, (and for convenience we have
made a slight abuse of notation in E_ [log p(y, Z)] by using the same notation for
the variables (yj)1<k<r k¢ and the random variables under Hé:l, oy qr)-

Then, as a consequence of Jensen’s inequality the left-hand side is maximised
when ¢,(y¢) is proportional to exp (E_,[log p(y, Z)]) for vy-almost all y, € Y, and we
recover the aforementioned optimality condition (1.7) for the factor g,.

Based on this result, a natural idea of an iterative algorithm consists in perform-
ing the update (1.7) successively for ¢ = 1...L and in repeating this cycle until
convergence towards a (local) optimum is reached: this procedure is called the Co-
ordinate Ascent Variational Inference (CAVI) algorithm (Bishop, 2006) and it is sum-
marised in Algorithm 2.

Algorithm 2: Coordinate Ascent Variational Inference (CAVI)

Input: (¢¢)1<¢<y: initial variational factors.
Output: Return the optimised Mean-field variational density ¢ satisfying:
forally €Y, q(y) = TT{—y ae(ye)-

while the ELBO has not converged do

for/=1...Ldo

| set qo(ye) < exp (E_g[logp(y, 2)]) , for vp-almost all y, € Yy

end

Compute the ELBO.
end

To see how CAVI updates are derived in practice and observe what type of Mean-
field variational density ¢ is obtained after optimisation, we next provide in Exam-
ple 2 below a toy example taken from Hernandez-Lobato et al., 2016 in which the

posterior density is known.
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Example 2 (Bayesian Linear Regression). We observe the data 9 = {c, x} that is made
of I 1-D class labels (c;)1<i<r and of I 2-D covariates (x;)1<;<1, where for each datapoint
(ci,x;) € R x R2. The hidden variables consist of two regression coefficients y = {y1,y2} €
R2. We assume the following model

pO(?/) = N(y7 ﬂOaAal) )
p(cl|mlay) :N(Ci;mii702) ) 1 < 1 < I 3

where p, Ao and o are hyperparameters that are assumed to be fixed.
Then, the posterior density is known and we have

p(Z) = N(y; u, A7)

with A = Ao + 020 @l and Ay = Aopo + 02 31| ci;. Under the Mean-field
assumption q(y) = q1(y1)q2(y2) so that for all ¢ = {1, 2}, we want to find

qe(ye) o< exp (E_4[log p(y, 2)]) -

Introducing the notation 1 = (pe)1<e<2 and A = (Mg ) 1<e k<2 With Ay o2 = Ao 1, we have

1) x5 (B |3 {0 — )0 +20 = ) — 12}

1
X exp (‘2 {y%Al,l —2y1 [ A1 — (Eg, [ye] — M2)A1,2]}> )

so that we can deduce q1(y1) = N (y1; 1 — AH(E,}2 [y2] — p2)A1 2, Al’%) and by symmetry
that q2(y2) = N (yo; po — Aié(qu [y1] — ,ul)Al,g,AQ’é). Consequently, denoting m; =
Eq, [y1]) and mo = Eqy, [y2], the CAVI algorithm amounts to performing the iterations

mi1 < (1 — Al_&(TnQ — MQ)ALZ

Mg < g — Ag_é(ml —p1)Ai2 .

Since the only stable fixed point is given by m; = py and mg = pa, we finally obtain that
q1(y1) = N (y1; pa, Al’}) and qa2(y2) = N (y2; 2, Ag;) Visually, the posterior distribution
and the optimised variational distribution can be observed on Figure 1.2, where we have
taken p =10,0], A11 = Ao =3and Ay o = —2.

More generally, the CAVI algorithm may result in tractable updates when ap-
plied to conjugate exponential family models, some of such instances being Gaus-
sian Mixture Models (Bishop, 2006) and latent Dirichlet allocation (Blei, Ng, and
Jordan, 2003).

To be precise, given the dataset ¥ = (), /<, conjugate exponential family
models introduce the latent variables y = {3, w1, ...,wr} where 3 is seen as a global
latent variable and for all [ = 1...L, wy is a local latent variable associated to the
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FIGURE 1.2: Mean-field approximation for the Bayesian Linear Re-
gression from Example 2 (adapted from Hernandez-Lobato et al.,
2016). The labels “true” and “MVFI” respectively stand for the poste-
rior distribution and the Mean-field approximation obtained by for-
ward Kullback-Leibler minimisation (with one-sigma contours).

datapoint z, so that

L
p(y, 2) = p(B) | [ p(we, zel B) -

(=1

They next consider the following Mean-field variational approximation ¢

L
a(Blv) H (welge) ,

where {9, ¢1, ..., ¢} correspond to the variational parameters to be optimised via
the CAVI algorithm. These models can then be proven to yield tractable updates for
the variational parameters by making appropriate choices for p(3), p(we, z¢|3), ¢(5|¢)
and q(wy|¢¢) (see Blei, Kucukelbir, and McAuliffe, 2017 for details regarding Gaus-
sian Mixture Models and latent Dirichlet allocation).

We have seen how tractable variational parameters updates based on the CAVI
algorithm can be derived when D is the forward Kullback-Leibler, @ belongs to
the Mean-field family and we work with well-chosen conjugate exponential family
models. In the context of Big Data, one last hurdle must be overcome to obtain a
fully-usable algorithm: the CAVI algorithm becomes inefficient for large datasets
as it must optimise the local variational parameters {¢1, ..., ¢1} for each datapoint
before re-estimating the global variational parameter ).

To remedy this situation, scalable methods relying on stochastic optimisation
techniques (Bottou, 2010; Robbins and Monro, 1951) were developed to enable large-
scale learning. These methods fall under the name of Stochastic Variational Infer-
ence (Hoffman et al., 2013) and were applied to some complex probabilistic models
including latent Dirichlet allocation.

The numerical success of this approach on datasets comprising millions of data-
points has led to renewed interest in Variational Inference methods (and we refer the
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reader to Blei, Kucukelbir, and McAuliffe, 2017 and Zhang et al., 2019 for compre-
hensive reviews around modern Variational Inference methods). In the rest of the
section, we limit ourselves to revisiting the main advances in Variational Inference

that are relevant in the subsequent chapters of the thesis.

1.3.2 Monte Carlo meets Variational Inference

As we have stressed previously, Variational Inference is particularly amenable to
coordinate-ascent optimization when we work with the forward Kullback-Leibler
divergence and under the Mean-field assumption.

However, one of the main limitations of this approach is that not only the Mean-
field family restricts the choice of models but also that tractable updates are model-
specific and require by-hand derivation (see Blei, Kucukelbir, and McAuliffe, 2017
and Figure 1.2).

For these reasons, Black-Box Variational Inference techniques (Ranganath, Ger-
rish, and Blei, 2014) have been deployed as a generic class of Variational Inference
algorithms for forward Kullback-Leibler minimisation that renders Variational In-
ference methods applicable to a wide range of models. Letting D be the forward
Kullback-Leibler and assuming that we are working with a general parametric fam-

ily of the form
Q={y—k(0,y) : 0T} (1.8)

(where T is for example R?) the main idea of Black-Box Variational Inference is to
use the gradient of the ELBO paired up with Monte Carlo approximations in order
to carry out the optimisation procedure. Indeed, under common differentiability
assumption and following Paisley, Blei, and Jordan, 2012, the gradient of the ELBO
(1.6) is given by:

B r(y, 2)
= /Y;g(e )V [log k(0, )] log ( 50.9) > v(d

- [ Vre.pviay
Y

where we have used that for all y € Y, Vk(0,y) = k(6,y)V [logk(6,y)], an opera-

tion known as the REINFORCE trick in the literature (Williams, 1992). By further

noticing that [\, Vk(0,y)v V (Jy k( (dy)) = 0, we deduce

VELBO(k(0,-); 7) — /Y k(0,9)V [log k(6, 1)] log( ((ya’ @))> V(dy)
p(

= B, [Vlog [£(6,Y)] x log <k(e,g))>]
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so that the gradient of the ELBO can be expressed as an expectation with respect
to the variational approximation & (6, -). This is where Monte Carlo techniques inter-
vene: given M independent and identically distributed random variables Y7, ..., Y),
sampled according to k(6, -), an unbiased estimate of the expectation above is

= mZ:l Vlog [k(0,Y)]log <k('9,Y)>

The Black-Box Variational Inference algorithm in itself then consists in introducing a
sequence of learning rates (7, ),>1 and performing Stochastic Gradient Descent steps

to construct a sequence (6,,),>1 according to Algorithm 3 below (notice the “+” sign
in the gradient step, as we seek to maximise the ELBO and thus minimise —ELBO).

Algorithm 3: Black-Box Variational Inference

Input: N: total number of iterations, (M,,),>1: allocation policy, (v )n>1:
learning rate policy, 6;: initial parameter value.

Output: Return the optimised parameter 0 ;.

forn=1...Ndo

1. Draw independently M,, samples (Y, n)1<m<n,, from k(6,,-).
2. Set
M,
1 pYmn: 2)
it = O + 1 Yon)] l9—o,, log | o 22
On1 = O+ Mn;v 0g [k(6, Yinn)] lo=0, log (k(en,Ym,n)
end

The particularity of this scheme is that Stochastic Gradient Descent steps are be-
ing performed using an unbiased estimate of the gradient of the ELBO. This means
that, under appropriate assumptions on the learning rate policy and on the ob-
jective function (Ranganath, Gerrish, and Blei, 2014; Domke, 2019; Domke, 2020),
(k(0n,-))n>1 converges towards an optimum of the ELBO, which effectively min-
imises (at least locally) the forward Kullback-Leibler divergence.

As Black-Box Variational Inference methods might suffer from high variances
of the estimated gradients, much of the success of these schemes came from vari-
ance reduction techniques (e.g. Rao-Blackwellization, control variates (Ranganath,
Gerrish, and Blei, 2014), reparametrisation (Kingma and Welling, 2014) and Quasi-
Monte Carlo methods (Buchholz, Wenzel, and Mandt, 2018)).

So far, the choice of D has been limited to considering the forward and reverse
Kullback-Leibler. However, another main appeal of Black-Box Variational Inference
methods is that they can be used to optimise alternative objective functions beyond
the particular case of the Kullback-Leibler divergence. In particular, efficient proce-
dures have been designed when D belongs to the a-divergence family.
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1.3.3 Variational Inference within the a-divergence family

Variational approximation distributions obtained by forward or reverse Kullback-
Leibler minimisation are known to encounter practical issues (Minka, 2001; Hoffman
et al., 2013; Blei, Kucukelbir, and McAuliffe, 2017), e.g. underestimating / overes-
timating the posterior variance for the forward/reverse Kullback-Leibler (posterior
variance underestimation is even sometimes reinforced when additionally working
under the mean-field assumption for the forward Kullback-Leibler, see Figure 1.2).

Therefore, another branch of Variational Inference methods focused on designing
algorithms based on alternative families of divergences. Notably, some early works
building on the a-divergence (Zhu and Rohwer, 1995a; Zhu and Rohwer, 1995b) can
be found in Minka, 2004 and Minka, 2005. Before getting into the details of how
the a-divergence family can be used for Variational Inference methods, let us first
review basic concepts and ideas around this family.

The a-divergence family is a well-known family of divergence measures in the
Information Geometry literature (e.g. Cichocki and Amari, 2010) which generalises
the Kullback-Leibler divergence and whose definition for two probability measures
Q and P is given below.

Definition 2. Let « € R\ {0,1}. Let Q and IP be two probability measures on (Y,Y) that
are absolutely continuous with respect to v i.e. Q < v, P < v. Let us denote by q = ‘3%9
and p = 3—15 the Radon-Nikodym derivatives of Q and P with respect to v. The a-divergence

between Q and P is defined by :

pat@le) = [ s [(22) -1 pwtan).

which is always well-defined in [0, +o0].

Under common differentiability assumptions, it holds that the a-divergence ad-
mits the forward and reverse Kullback-Leibler as limiting cases: forally €'Y,

2 [ (1) ) = v [ (1))

q(y)>
= —log | —=
© (p(y)
and similarly

s [ Gn) 2l =v R Ge) -]

a=0

so that limy—0 Do (Q||P) = Dir(P||Q) and limy—1 Do (Q||P) = D r(Q||P).
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The definition of the a-divergence can thus be extended to 0 and 1 by continuity
and we will use the notation Dy(Q||P) = Dgr(P||Q) and D1(Q||P) = Dk (Q||P)
from now on. Notice also that special cases of the a-divergence family include the
Hellinger distance and the y?-divergence which correspond respectively to order
a=05and a =2

Letting f, be the convex function on (0, +00) defined by fy(u) = v — 1 — log(u),
fi(u) =1 —u+ulog(u) and fo(u) = ﬁ [u®—1—a(u—1)]foralla € R\ {0,1},
we then have that for all o € R,

Da@P) = [ £ (%) p(y)v(dy) (19)
Written under that form, the r.h.s of (1.9) corresponds to the general definition of
the a-divergence (Cichocki and Amari, 2010). This formulation also tells us that a-
divergences are members of the f-divergence family (Morimoto, 1963a; Morimoto,
1963b) through the convexity of f,.

The fundamental properties of the a-divergence are given in the next proposi-
tion (and we refer to Minka, 2005; Cichocki and Amari, 2010; Cichocki, Cruces, and
Amari, 2011; Erven and Harremoes, 2014 and Sason, 2018 for more details around
the a-divergence family).

Proposition 3. The a-divergence (extended by continuity to the cases o = 0 and o = 1) is
always non-negative and it is equal to zero if and only if Q = P. Furthermore, it is jointly
convex in Q and P and the definition of the a-divergence is invariant with respect to the
transformation fo.(u) = fuo(u) 4+ c(u — 1) for any arbitrary constant c, that is f,, can be
equivalently replaced by fo . in (1.9).

A more general optimisation problem than forward and reverse Kullback-Leibler

minimisation as written in (1.4) and (1.5) then consists in considering
inf Do (Q||Py») . 1.10
inf Da(Q[Fyg) (1.10)

Interestingly, it has been observed in Minka, 2005 that the characteristics of the re-
sulting optimised variational density will vary depending on the value of the hyper-
parameter o.

More precisely, there are two main regimes: either o < 0 and the a-divergence
is mass-covering, meaning that it will favor variational densities that cover all the
modes or o > 1 and the a-divergence is mode-seeking, that ¢ will tend to be attracted
to the mode with the largest probability mass (the case a € (0, 1) corresponding to a
mix of the two worlds). This comes from the fact that D, (Q||P) will blow up if the
support of ¢ is bigger than the support of p when « > 1 and conversely, D, (Q||P)
will blow up if the support of p is bigger than the support of ¢ when o < 0.
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FIGURE 1.3: The Gaussian ¢ which minimizes the a-divergence to

the multimodal distribution p, for varying values of «. (adapted from

Cevher’s lecture notes available at https://www.ece.rice.edu
/~vc3/elec633/AlphaDivergence.pdf)

An illustration of this mass-covering/mode-seeking property can be found in
Figure 1.3, where given a targeted multimodal distribution, we seek to find the op-
timal Gaussian ¢ in terms of the a-divergence for varying values of .

Following up from earlier, the effect of a on the optimal Mean-field variational
approximation ¢ for the model considered in Example 2 is also depicted in Figure
1.4 (detailed derivations can be found in Appendix A.1), which further underlines

the mass-covering/mode-seeking property of the a-divergence family.

1.0
0.5
0.0

—0.54 — g=0.5

—1.01

T T T
-1.5 -1.0 -05 0.0 0.5 10 15

FIGURE 1.4: Optimal mean-field approximation with varying val-

ues of a for the Bayesian Linear Regression model from Example 2

(adapted from Hernandez-Lobato et al., 2016). The label “true”

stands for the posterior distribution and the various Mean-field ap-

proximations are obtained by «a-divergence minimisation (with one-
sigma contours).

The mass-covering/mode-seeking property renders the optimisation problem
(1.10) attractive for Variational Inference means, as it interpolates between the for-
ward and reverse Kullback-Leibler divergence behaviors, which explains the interest
dedicated to this family of divergences in Minka, 2004 and Minka, 2005. Yet, these
works were limited to exponential family distributions.

With the advent of Monte Carlo Variational Inference, novel methods based on
the a-divergence have been designed and have been found to provide promising
empirical results (Hernandez-Lobato et al., 2016; Li and Turner, 2016; Dieng et al.,
2017; Kuleshov and Ermon, 2017).

These methods exploit the fact that the specific form of f, allows us to remove
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the marginal likelihood p(Z) appearing in the optimisation problem (1.10) and can
be classified in two groups: biased methods (Hernandez-Lobato et al., 2016; Li and
Turner, 2016) and unbiased methods (Dieng et al., 2017; Kuleshov and Ermon, 2017).

Biased methods consider a slightly modified version of (1.10) which relies on the

closely-related Renyi’s a-divergence (Rényi, 1961; Erven and Harremoes, 2014)

= L [ log (/Y q(y)ap(y)D‘lV(dy))

= 1 log (1 4+ afa— 1)Da(QIP)

DM(QIP) =

In particular, Li and Turner, 2016 formalised the concept of Variational Renyi (VR)
bound, a novel objective function which generalises the ELBO and is defined for all
a € R\ {1} and for any variational density ¢ € Q by

11—«
Lo(q; D) = ﬁlog </Y (p(qy(’y)@)> Q(y)V(dy)>

and they thus aim at finding

sup Lo(q; 2) .
qeQ

This VR bound is shown to provide a lower or upper bound on the log-likelihood
log p(Z) depending on the sign of a and to recover the ELBO when a — 1 (Li and
Turner, 2016, Theorem 1).

Optimisation is then carried out for a parametric family of the form (1.8) in a
Black-Box Variational Inference manner by performing Stochastic Gradient Descent
steps on —L,(q; Z), which brings into play a biased Monte Carlo estimator of the
gradient of the VR bound due to the log. On the other hand, unbiased methods
consider the objective function given by: forall ¢ € Q,

v, ;@::/ a<Q(y)> , Dv(d

(@:2):= | a5y gy )P 2 dy)

and aim at solving the following equivalent (see Appendix A.2) optimisation prob-
lem

inf U, (q; 2 1.11
Inf (; 2) (1.11)

via unbiased Stochastic Gradient Descent.

Advances in a-divergence-based Variational Inference notably include automat-
ically tuning the hyperparameter o (Wang, Liu, and Liu, 2018) as well as attempts at
getting a better theoretical and practical understanding of which approach is best be-
tween biased and unbiased a-divergence Variational Inference (Geffner and Domke,
2020a; Geffner and Domke, 2020b).

We have reviewed the basics of Adaptive Importance Sampling methods and
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seen a variety of Variational Inference methods which seek to improve on the typ-
ical Mean-field Variational Inference framework with the forward Kullback-Leibler
divergence, ranging from Black-Box Variational Inference techniques to considering
more general objective functions. Yet and as we shall see next, some further im-
provements on these methods can be made in order to better capture the complexity
of the posterior density.

1.4 Goal of the thesis and chapters overview

From an Adaptive Importance Sampling perspective, one cannot help but notice
that Variational Inference techniques can be reframed as an instance of Step 3 in
Algorithm 1 since they build a sequence of samplers that is refined iteratively in
terms of a certain objective function.

Even more interestingly, in Black-Box Variational Inference techniques (be it for
forward Kullback-Leibler or more generally a-divergence minimisation), the past
samples generated to construct the sequence of samplers (k(6,, -)),>1 can readily be
used to approximate integrals of the form (1.1).

For this reason, one can be inclined to take a Variational Inference approach to de-
rive improved Adaptive Monte Carlo methods. In that case, since the performances
of Variational Inference methods are limited by the choice of the approximating fam-
ily Q and of the divergence D, one may wonder whether it is possible to enrich Q
beyond the framework of Black-Box Variational Inference for a-divergence minimi-
sation while still maintaining efficient optimisation.

To answer this question, this thesis explores novel scalable Variational Inference
algorithms for a-divergence minimisation that (i) can be used in Adaptive Impor-
tance Sampling schemes and (ii) increase the expressiveness of the approximating
family Q. More precisely, our work can be decomposed in three chapters, which are

based on three separate papers:

¢ Chapter 2 Daudel, Douc, and Portier, 2021.
“Infinite-dimensional gradient-based descent for Alpha-divergence minimisation”.
To appear in the Annals of Statistics.

¢ Chapter 3 Daudel and Douc, 2021.
“Mixture weights optimisation for Alpha-divergence Variational Inference”.
Submitted as a conference paper at the time of writing.

¢ Chapter 4 Daudel, Douc, and Roueff, 2021.
“Monotonic Alpha-divergence minimisation”.

Submitted as a journal paper at the time of writing.

The common thread between these three works is that we were interested in creating
iterative Variational Inference algorithms that ensured a systematic decrease in the a-
divergence at each step. We provide below an overview of each chapter, giving
particular emphasis to our own contributions.
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1.4.1 Chapter 2: Infinite-dimensional a-divergence minimisation

In order to enlarge the parametric variational family
Q={q:y—k(0,y) : 0T}

where 6 is typically tuned through Stochastic Gradient Descent optimisation on ei-
ther W, (k(0,-); Z) or —L,(k(6,-); Z), our firstidea is to add a prior on the variational
parameter 6 in the form of a measure, that is we seek to perform a-divergence min-

imisation over
Q= {q Ly / n(dO)k(0,y) = pe M} : (1.12)
T

where M is a convenient subset of M;(T), the set of probability measures on T (and
in this case, we equip T with a o-field denoted by 7).

In doing so, we extend the minimizing set to a larger space since a parameter
6 can be identified with its associated Dirac measure dy and our approach com-
plements already-existing Hierarchical Variational Inference methods (Ranganath,
Tran, and Blei, 2016; Yin and Zhou, 2018; Titsias and Ruiz, 2019).

Indeed, while these methods restrict themselves to the forward Kullback-Leibler
as objective function and consider that x4 is parameterised by another parametric
model so that

0- {q e /TA¢(9)k(9,y)d9 e A}

with 1(df) = Ay(0)df and where ¢ is optimised via Stochastic Gradient Descent, our
framework sets the a-divergence as a more general objective function and allows us
to target the important class of mixture models by taking ;. as a weighted sum of
Dirac measures.

Furthermore, another advantage of the approximating infinite-dimensional family
(1.12) is that minimising the a-divergence with respect to ;1 between the variational
density ¢ and the targeted posterior density yields a convex optimisation problem,
while the optimisation problem obtained when using a parametric variational fam-
ily (be it parameterised by 6 or ¢) often does not.

More formally, letting K : (6, A) — [, k(6,y)v(dy) be a Markov transition kernel
on T x Y with kernel density £ defined on T x Y, letting ¢ € Q be defined as in
(1.12) and denoting pk(y) = [ u(dy)k(0,y) forall u € Mi(T) and all y € Y, we are
interested in designing an iterative scheme that we hope will converge towards the

global optimum of the a-divergence

inf Do(Q||Pyy) = inf W, (uk; D) .
Inf (QlIP15) Jnfl (uk; 2)
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For notational convenience, we define for all measurable positive function p on
(Y,Y) and all probability density g with respect to v on (Y, ))

oy q(y) y
Vo(g;p) '_/Yfa <p(y)>p(y) (dy) , (1.13)

where we may drop the dependency on p and use the shorthand notation ¥, (¢; 2)
when p = p(-, Z) to denote ¥, (q; p(-, Z)), so that the general optimisation problem
we consider in Chapter 2 is

inf W, (uk) . (1.14)
pEM

To solve the optimisation problem (1.14), we assume that we work under the mild

assumption

(1.A1) The density kernel k on T xY, the function p on Y and the o-finite measure v on
(Y, D) satisfy, for all (6,y) € TxY, k(0,y) > 0, p(y) > 0and [, p(y)v(dy) < co.

and we introduce the exact («, I')-descent, an iterative algorithm relying on a certain
function I' : Dom, — R.q. This algorithm is described as follows: given an initial
measure ;1 € M;(T) such that U, (u1k) < oo and k € R, the iterative sequence of
probability measures (i, )nen+ is defined by setting

Hn+1 = Ia(/’Ln) ) n € N* )

where for all 4 € M;(T) and all § € T, we have set

_ 11(d8) - T(bua(f) + %) _ , ((HR(y)
,0)(a8) = MO D) and () - /Y k0012 (25 ) i)

We are able to motivate the formulation of this algorithm by considering the partic-
ular case where given n > 0, the function I is of the form

(v)=¢e". (1.15)

In that case, applying the transition ;1 — Z,(u) corresponds to performing one
step of the (infinite-dimensional) Entropic Mirror Descent algorithm with the a-
divergence as objective function and with a learning rate  [and we refer to Hsieh,
Liu, and Cevher, 2019, Appendix A for some theoretical background on the Infinite-
Dimensional Entropic Mirror Descent].

In this light, b, »(f) can be understood as the gradient of 1 +— W¥,(uk). One
transition of the exact (o, I')-descent then consists in applying a transform function I
to the translated gradient b, (f)+~ and projecting back onto the space of probability
measures, which is why we call our approach is infinite-dimensional and gradient-
based. We now describe the main results obtained in Chapter 2 regarding the (o, I')-
descent.
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1.4.1.1 Main results

Theorem 1, the first main result of Chapter 2 (and the first monotonicity result of the
thesis) states conditions on I" and « so that one iteration of the exact («, I')-descent
leads to a monotonic decrease in the a-divergence. These conditions read as follows:

(1.A2) The function T' : Dom, — R+ is decreasing, continuously differentiable and
satisfies the inequality

[(a—1)(v—r)+1] (logT)(v)+1>0, veDom, .

Coming back to the Entropic Mirror Descent, one may for example notice that (1.A2)
is satisfied with @ = 1 and € (0,1] when I is as in (1.15) and as a consequence,
we obtain that one iteration of the Entropic Mirror Descent applied to the forward
Kullback-Leibler divergence systematically decreases the forward Kullback-Leibler
divergence.

Another important consequence of having derived a general condition of the
form (1.A2) is that it makes it possible to go beyond the Entropic Mirror Descent
framework. Indeed, by letting a« € R\ {1}, n € (0, 1], x be such that (¢ — 1)k > 0 and

T(v) = [(a—1)v+1]Ts ,

one can readily check that I" satisfies (1.A2). The resulting algorithm for this choice
of function I' is called the Power Descent algorithm in the following and the two cases
we have just mentioned are summarised in Table 1.1 below.

TABLE 1.1: Examples of allowed (T', ) in the («, I')-descent according
to Theorem 1.

Divergence considered Possible choices for (T, k)

Forward KL (o = 1) I'(v) =e"",n € (0,1] any s

a-divergence with o € R\ {1} | I'(v) = [(a — 1) v + 1}ﬁ, ne (0,1 | (a—1)k >0

Under our assumptions, the sequence (¥, (jnk))n>1 is decreasing and also hap-
pens to be bounded from below, which implies its convergence. The results that
follow then investigate more precisely the convergence of the algorithm.

Firstly, by strengthening the conditions on I' (i.e. notably assuming that the func-
tion I' is L-smooth), we obtain in Theorem 2 an O(1/N) convergence rate for the
exact (o, I')-descent of the form: for all N € N*,

Lo L,
o (k) = Vo) < = | KL(u i) + L7 ’jm : (1.16)

)
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where the constants L, 1, Ly and L, 3 depend on the function I" and are assumed
to be finite. Here p* is such that W (u*k) = infeen, , (1) Ya(Ck) where My, (T)
is the set of probability measures dominated by ;; and we have defined A; =

U (pnk) — Uo(uk) as well as K L(p*||u1) = [ log (gg:) dp*.

Secondly, by applying the results from Theorem 2 to the Entropic Mirror Descent
and the Power Descent, Theorem 3 states, under the assumption that § — b, ()
is bounded by a constant |b| o independent of 1, that (1.16) holds for all N € N*
when:

e I'(v) =e™,ne (0
Descent),

1 . . .
, m) and « is any real number (Entropic Mirror

e T(v)=[(a—1)v+ 1]ﬁ, n € (0,1], « > 1and x > 0 (Power Descent).

To put these results into perspective, letting J € N*, (61,...,60;) € T’ and set-
ting py = J1 ijl dp;, we consider in Example 4 the case of the (this time finite-
dimensional) Entropic Mirror Descent with o = 1 and we obtain the following con-
vergence rate for all € (0,1)

log J N V21og J|b|oc,a
nN I=mN

Wo(pn) — Wa(u*) <

Thus, for a constant learning rate n € (0, 1), the dominant term with respect to the
dimension J of the simplex is in log.J so that we achieve an overall O(log(J)/N)
convergence rate. This improves on standard Mirror Descent results, which under
similar assumptions typically only provide an O(y/J/N) and O(+/log(J)/N) rate
respectively for the Projected Gradient Descent and Entropic Mirror Descent by let-
ting the learning rate be proportional to 1/v/N, N being fixed (see Beck and Teboulle,
2003 or Bubeck, 2015, Theorem 4.2.).

Note also that when deriving our O(1/N) rate, another improvement is that we
did not require the objective function to be smooth, as opposed to accelerated ver-
sions of the Mirror Descent (e.g. Mirror Prox, see Nemirovski, 2004 or Bubeck, 2015,
Theorem 4.4.) that yield an O(1/N) convergence rate.

Lastly, the case a < 1 for the Power Descent being trickier, we handle it sepa-
rately in Theorem 4: under the assumption that (y,),>1 weakly converges towards

a certain p*, as well as (1.A3) below

(1.A3)

(i) T is a compact metric space and 7 is the associated Borel o-field;

(i) forally €Y, 6 — k(0,y) is continuous;

, a—1
(iii) we have [, supget k(0,y) X supgct (kée(ﬁ)) v(dy) < co.
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we obtain the convergence of (¥, (pnk))n>1 towards ¥, (p*k) where we establish
that W, (1*k) = infeen, , (1) Ya(Ck) and this concludes our theoretical results on the
exact (o, I')-descent.

As the exact (o, I')-descent involves intractable integrals, notice that a practical
version of this algorithm will require approximations. We thus resort to a stochas-
tic version of the exact («,I')-descent that builds a sequence (/i,),>1 via an unbi-
ased Importance Sampling estimate by, o a7(60) of by, o(#) at each time n, that is
fint1(d0) = To s (fin)(d6) o ﬂn(dG)I‘(lA)ﬂmmM(H) + k), M being the number of sam-
ples used in the Importance Sampling estimator. Complementary theoretical results
are then proved in the form of Theorem 5, Theorem 7 and Proposition 10, that we
briefly detail below, before presenting the main conclusions of numerical experi-

ments.

¢ Theorem 5 and Theorem 7 focus on the Entropic Mirror Descent and derive
bounds under minimal assumptions. More precisely, the former is an adaptation to
our framework of the classical result for Stochastic Entropic Mirror Descent from Ne-
mirovski et al., 2009. This result yields an O(1/v/N) bound on E[¥,, (N ! Eﬁle fnk)—
W, (u*k)] for a constant learning rate that is proportional to 1/v/N, the number of it-
erations N being fixed in advance. On the other hand, the latter provides a bound
on E[W,(N"'S°N fik) — W, (u*k)] of the form O(1/N) 4+ O(1/v/M), all the while
keeping the learning rate constant throughout the algorithm (e.g. 7 € (0,1) for the
forward Kullback-Leibler).

* Proposition 10 deals with the Power Descent algorithm and establishes the
total variation convergence of Z,, /(1) towards Z,(u) as M goes to infinity for all
pweM(T)and all o € R\ {1}.

1.4.1.2 Empirical results

For the numerical results, we let J € N* and we consider the case where [i; is a
weighted sum of J dirac measures, that is: ji; = Z}]:1 Ajdg; with 0y,...,0; € T and
A € S5, where S; is the simplex of R” and is defined by

J
Sy={A=(0,.. ., A)eR) Vje{l,....J}, \;=0and > N =1, . (L17)
7j=1

In this case, for any kernel K of our choice, the («,I')-descent procedure simplifies
and provides an update formula for the mixture weights of the corresponding mix-
ture model /i1 k(y) = 2}1:1 A\jk(0;,y): an immediate induction yields that for every
n € N*, [i, can be expressed as fi,, = 23-]:1 Ajndp; where Xy, = (A1 p, ..., Ayn) € Sy
satisfies the initialisation A; = A and the update formula: for all n € N* and all
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jed{l,...,J},

)\j,nr(i)ﬂn,a,M(ej) + K)
Sy AT (b ans (6:) + k)

Njnt1 =

Here, the unbiased estimate bun a,m(05) of b, (6;) is chosen to be

M .
ZA)A M i Z k(e Yo n+1 f/ (Mnk(ym,n—i—l))
Hn M —1 ,&nk mn—i—l) @ p(Ym,n+1)
with Yie1, ..o Yarnet iLd fink conditionally on F, and where F; = () and F,, =
n+ -+ y
U(Y:|_727...,YM’2,... 7Y1,na~ . 7YM,n) forn > 2.

This procedure is summarised in Algorithm 6 of Chapter 2 and we now make an
important remark: one main strength of the algorithm we have designed is that it
does not require any information on how the {61, ...,60;} have been obtained in or-
der to infer the optimal weights, as it draws information from samples that are gener-
ated from /i, k. Then, since the procedure leaves {0, ..., 0;} unchanged throughout
the optimisation of the mixture weights, a natural idea is to combine this algorithm
with an Exploration step of our choice that modifies the parameter set (Algorithm 7).

While any choice of Exploration step could be envisioned, we settle for a simple
exploration step in our numerical experiments (it is detailed in Section 2.4) and we
focus on investigating how the choice of o and I' plays a role in practice.

The key message from our numerical experiments is the following: as the di-
mension increases the Power Descent with o < 1 is a more scalable alternative to the
Entropic Mirror Descent, which sheds light on the importance of going beyond the
traditional Entropic Mirror Descent framework from the optimisation literature.

We visually support that claim in Figure 1.5 below where we target a mixture
density multiplied by a constant Z and where the Entropic Mirror Descent fails as
the dimension increases compared to the Power Descent (these figures correspond
to Figure 2.1 and 2.2 in Section 2.4).

In addition, we also consider a Bayesian Logistic Regression on a real-world
dataset in dimension 56: Figure 1.6 shows that our Power Descent algorithm has
the ability to outperform a typical computationally-equivalent Adaptive Importance
Sampling algorithm (see Section 2.4 for details).

This concludes our overview of Chapter 2, in which we build the novel frame-
work of the (o, I')-descent and demonstrate empirically the benefit of going beyond
the Entropic Mirror Descent framework for mixture weights optimisation by using
the Power Descent algorithm instead. Let us now advance to summarising the con-
tent of Chapter 3.
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FIGURE 1.5: Plotted on the first line is the VR bound for the Power
Descent and the Entropic Mirror Descent with o = 0.5 (0.5-Power
and 0.5-Mirror) while the second line is the Log-likelihood for the
Power Descent with o« = 0.5 and the Entropic Mirror Descent with
a =1 (0.5-Power and 1-Mirror). The dimension d varies in {8, 16, 32}
from left to right and the plotted quantities are averaged over 100
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FIGURE 1.6: Plotted are the average Accuracy and Log-likelihood
computed over 100 replicates for Bayesian Logistic Regression on the

Covertype dataset for the Power Descent with o = 0.5 (0.5-Power)
and a computationally-equivalent Adaptive Importance Sampling al-
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1.4.2 Chapter 3: Mixture weights optimisation with the a-divergence

150 175 200

Thanks to Chapter 2, we now have access to the Power Descent, an algorithm that

permits us to optimise the mixture weights of mixture models by a-divergence min-

imisation for all & € R\ {1}, regardless of the underlying distribution of its mixture

components parameters.

However, one may remark that the convergence of the (exact) Power Descent

towards the global optimum when a < 1 in Theorem 4 is guaranteed under the

assumption that (y,),>1 weakly converges towards a certain p*, that is later proved
to satisfy Wo (1*k) = infeen, , (1) YalCk).
This is a much stronger assumption compared to the ones made in Theorem 3

for the Entropic Mirror Descent and the Power Descent when o > 1 and in which
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convergence rates are available. Since the case o < 11is useful to tackle the challenges
of forward Kullback-Leibler optimisation, one would be interested in alleviating this
specific assumption to obtain a full proof of convergence.

Furthermore, one may also notice that the Power Descent is defined for all o # 1,
and thus the important case &« = 1 in (1.14) corresponding to forward Kullback-
Leibler minimisation is not handled by this algorithm.

The aim of Chapter 3 is to cover both of these aspects. In particular, studying the
extension of the Power Descent to the case a = 1 will also lead us to further look
into the connections between the Power Descent and the Entropic Mirror Descent.

We now describe the main results obtained in Chapter 3.

1.4.2.1 Main results

The first result of Chapter 3 establishes the full proof of the global convergence to-
wards the optimum for the mixture weights when a < 1.

Letting © = (01,...,0,) € T’ be fixed and setting 11y = Z},:1 Ajop; forall A € S,
Theorem 10 indeed considers the sequence (ji,,)nen+ defined by i1 = px and (1.4.1).
This amounts to studying the sequence (A,,)ncn+ satisfying the initialisation A; = A
and the update formula:

Ani1 = I (N,) , n e N*,

where we have set p,, = ijl Ajndg, for every n € N* and where forall X € Sy,

Z;nixt(A) = < )\]F(bﬂ)\ya(gﬂ) + K) )
1<g<sd

Zgzl AL (byy a(00) + K)

with (¢« — 1)k > 0and I'(v) = [(a — v + 1}ﬁ for all v € Domy,.

The convergence towards the optimal mixture weights when a < 1 is then de-
rived in Theorem 10 under the assumption that {K(61,-),...,K(8s,-)} are linearly
independent, paired up with (1.A1) and (1.A4) [where (1.A4) given below corre-
sponds to (1.A3) in the simplified case where ;. is a sum of Dirac measures].

(1.A4) (i) Forally €Y, 6 +— k(0,y) is continuous;

.\ 4 k(0,,y)\ >
(i) we have L 1%agjk(0] y) X 12(2(]( o) ) v(dy) < oo.

If « = 0, we assume in addition that / max
25959

log (%))p(yw(dy) < 0.

In terms of assumptions, notice that (1.A1) and (1.A4) are mild and that since the
objective function ¥, depends on A through p K, an identifiably condition was
to be expected in Theorem 10 in order to achieve the convergence of the sequence
(An)nen+. One may then observe that this identifiably condition notably holds when
K is a d-dimensional Gaussian kernel under the assumption that the 6;,...,6; are
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full-rank with J < d.

Next in line after the full proof of convergence for mixture weights when oo < 1in
the Power Descent is the extension of this algorithm to the case a = 1. Proposition 19
then establishes that under typical convergence and differentiability assumptions,
the Power Descent can be extended to the case a = 1 and that we recover an Entropic
Mirror Descent applied to the objective function ¥;.

As we already know from Theorem 3, this algorithm enjoys an O(1/N) conver-
gence rate. Yet, Proposition 19 shows that a deeper connection runs between the
Power Descent and the Entropic Mirror Descent beyond the (o, I')-descent frame-
work.

To better understand that connection, our idea is then to look at first-order ap-
proximations by considering the case where v € R\ {1} and b, (0) ~ p(b,«) for
all @ € T. As a result of these calculations, letting n > 0 and ¢ € M;(T), we find
that first-order approximations for one transition for the Power Descent and for the
Entropic Mirror Descent applied to y — ¥, (pk) are given by

n ba(0) — 11(bya)
a—1pulbya)+r+1/(a—1)
Zo(p)(df) = p(d0) [1 — 0 (bya(f) — n(bua))] (Entropic Mirror Descent).

Zo(p)(dO) = p(dO) |1 — (Power Descent)

Thus, these two approximations do not coincide, which brings us to introduce in-
stead the Renyi Descent one-step transition

p(do) exp [—ﬁ(a_n(,i‘féifz))ﬁ)ﬂ]
i (eXP [—U(afl)(ué)gfa)%)“})

since it shares the same first-order approximation as the Power Descent.

Zo(p)(d) = (Renyi Descent),

Here, the name of this one-step transition comes from the fact that it can been
seen as an Entropic Mirror Descent transition for all « € R \ {0, 1} applied this time
to the objective function p — W/ (uk; p), where for all probability density ¢ with
respect to v on (Y,)) and alla € R\ {0,1} we have set

I
ala—1)

Letting x = 0 and p = p(-, 2) in V2%E(q; p), we then recognise the VR bound L, (g¢; 2)
up to a proportional constant —a~!, hence the name Renyi Descent.

UAR(g;p) =

log (/Y q9(y)*p(y)' v (dy) + (o - 1)H> :

Contrary to the Power Descent, the Renyi Descent enjoys the typical O(1/v/N)
convergence rate results from the optimisation literature for Entropic Mirror De-
scent algorithms, which we further improve to an O(1/N) convergence rate in The-
orem 11 (and for clarity, Table 1.2 below recapitulates the theoretical contributions
from Chapter 3 compared to Chapter 2).
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TABLE 1.2: Comparison between the theoretical results in Chapter 3

and in Chapter 2
Power Descent Renyi Descent
Chapter 2 o < 1: convergence under restrictive assumptions; not covered
a > 1: O(1/N) convergence rate
Chapter 3 o < 1: full proof of convergence for mixture weights; O(1/N)
extensiontoa =1 convergence rate

We now present some numerical results.

1.4.2.2 Empirical results

Following Chapter 2, we approximate the Power Descent and the Renyi Descent
using Importance Sampling estimates, a procedure that written explicitly in Algo-
rithm 6 and 9 and not detailed here for the sake of conciseness. We then pair them
up with the same Exploration step as in Chapter 2 and we target a mixture density of
Gaussian distributions multiplied by a constant ¢ (we refer to Section 3.5 for details
regarding our numerical experiments).

The plot below, which corresponds to Figure 3.1, compares the Power Descent
and the Renyi Descent in dimension 16 as the number of samples M used in the
Importance Sampling estimates increases. It illustrates the theoretical link between
the two algorithms (and the Entropic Mirror Descent applied to ¥, is provided as a
reference).

FIGURE 1.7: Plotted is the average VR bound for the Power Descent
(PD), the Renyi Descent (RD) and the Entropic Mirror Descent ap-

plied to ¥, (EMD) in dimension d = 1