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Abstract

This thesis lies in the field of Statistical Inference and more precisely in Bayesian
Inference, where the goal is to model a phenomenon given some observed data while
taking into account prior knowledge on the model parameters.

The availability of large datasets sparked the interest in using complex models
for Bayesian Inference tasks that are able to capture potentially complicated struc-
tures inside the data. Such a context requires the development and study of adaptive
algorithms that can efficiently process large volumes of data when the dimension of
the model parameters is high.

Two main classes of methods attempt to fulfil this role: sampling-based Monte
Carlo methods and optimisation-based Variational Inference methods. By relying
on the optimisation literature and more recently on Monte Carlo methods, the lat-
ter have made it possible to construct fast algorithms that overcome some of the

computational hurdles encountered in Bayesian Inference.

Yet, the theoretical results and empirical performances of Variational Inference
methods are often impacted by two factors: one, an inappropriate choice of the ob-
jective function appearing in the optimisation problem and two, a search space that
is too restrictive to match the target at the end of the optimisation procedure.

This thesis explores how we can remedy the two issues mentioned above in
order to build improved adaptive algorithms for complex models at the intersection
of Monte Carlo and Variational Inference methods.

In our work, we suggest selecting the a-divergence as a more general class of
objective functions and we propose several ways to enlarge the search space beyond
the traditional framework used in Variational Inference.

The specificity of our approach in this thesis is then that it derives numerically
advantageous adaptive algorithms with strong theoretical foundations, in the sense
that they provably ensure a systematic decrease in the a-divergence at each step. In
addition, we unravel important connections between the sampling-based and the
optimisation-based methodologies.
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The thesis is then organised as follows:
e Chapter 1 (Introduction)

We present the central notions this thesis builds on and we sum up our main results.

e Chapter 2 (Based on Daudel, Douc, and Portier, 2021)
We introduce the («,I")-descent, a novel iterative algorithm operating on measures
that performs a-divergence minimisation. This gradient-based procedure extends
the commonly-used variational approximation by adding a prior on the variational
parameters in the form of a measure. It is shown to lead at each step to a systematic
decrease in the a-divergence for a rich family of functions I' and convergence re-
sults are also derived. It recovers the Entropic Mirror Descent algorithm as a special
case and provides an alternative algorithm called the Power Descent. By resorting to
Monte Carlo approximations, both algorithms can notably be used to optimise the
mixture weights of any given mixture model without any information on the un-
derlying distribution of the variational parameters. We demonstrate empirically the
benefit of using the Power Descent and going beyond the Entropic Mirror Descent
framework, which fails as the dimension grows.

e Chapter 3 (Based on Daudel and Douc, 2021)
We establish the full proof of the convergence of the Power Descent towards the op-
timal mixture weights when a < 1. Observing that this algorithm is defined for all
a € R\ {1} and since the a-divergence recovers the widely-used forward Kullback-
Leibler when o goes to 1, we then extend the Power Descent to the case o = 1 and
show that we obtain an Entropic Mirror Descent. This leads us to further investigate
the link between Power Descent and Entropic Mirror Descent: first-order approxi-
mations allow us to go beyond the (o, I')-descent framework and to introduce the
Renyi Descent, a new algorithm for which we prove an O(1/N) convergence rate.
Lastly, we compare numerically the behavior of the unbiased Power Descent and of
the biased Renyi Descent and we discuss the potential advantages of one algorithm
over the other.

e Chapter 4 (Based on Daudel, Douc, and Roueff, 2021)
We propose a complete methodology to carry out a-divergence minimisation by en-
suring a systematic decrease in the a-divergence at each step. In its most general
form, our framework allows us to simultaneously optimise the weights and compo-
nents parameters of a given mixture model. Our approach permits us to build on
various methods previously proposed for a-divergence minimisation such as Gra-
dient or Power Descent schemes and to enhance them. Furthermore, we shed a new
light on an integrated Expectation-Maximization algorithm. By applying our work
to the particular case of Gaussian Mixture Models optimisation via Monte Carlo ap-
proximations, we finally provide empirical evidence that our methodology yields
improved results, all the while illustrating the numerical benefits of having intro-
duced some flexibility through the parameter a of the a-divergence.

e Chapter 5 (Conclusion)

We provide concluding remarks and outline some future directions of research.



Introduction

The aim of this chapter is to introduce the main concepts arising in this thesis. We
first recall the basics of Bayesian Inference and underline its core challenges when
applied to complex models. Then, we explain how Monte Carlo and Variational
Inference methods tackle these difficulties in order to carry out Bayesian Inference
tasks, before summarising the contributions we make in the remaining chapters of
this thesis.

1.1 Bayesian Inference

Statistical Inference is the process of modelling a phenomenon given some data. As
a subclass of Statistical Inference, Bayesian Inference methods seek to fit a parame-
terised probability model to a set of observed data, with the particularity that prior
knowledge on the model parameters is incorporated in the methods.

The framework of Bayesian Inference can then be defined as follows. Let (Y, Y, v)
be a measured space, where v is a o-finite measure on (Y,)). Assume that we
have access to some observed variables Z generated from a dominated probabilistic
model with density p(2|y) parameterised by a hidden random variable y € Y that is
drawn from a certain prior with density py with respect to v. At the heart of Bayesian
Inference is the posterior density of the latent variable y given the data Z:

_ (4, 2) _ po)p(Zly)

=)~ e

where p(2) = [, po(y)p(2|y)v(dy) is called the marginal likelihood or model evidence.
The posterior density is used to quantify the uncertainty of the parameter y after
observing the data & through quantities of interest such as the marginal likelihood
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p(2) or the posterior mean

/ y p(y|2)v(dy) .
Y

Broadly speaking, given a function g defined on Y, the success of Bayesian Inference
methods will rely on our ability to calculate integrals of the form

/Y o()p(y| 2)(dy) . (L1)

The problem above is a difficult one as there exists no general analytical form for
(1.1) and even when an analytical form does exist for selected choices of probabilistic
models, it might be too expensive to compute in practice (e.g. the computation of
the marginal likelihood for a Bayesian Mixture of Gaussians, see Blei, Kucukelbir,
and McAuliffe, 2017 for details).

This is particularly true in the context of Big Data, where modelling large amount
of data with potentially complicated underlying structure inside the data will in-
duce a complex and hard-to-compute posterior density. It is thus crucial to be able
to find methods rendering Bayesian Inference computationally efficient and scalable

to large datasets.

Since exact Bayesian Inference is often impossible, one may resort to approximate
Bayesian Inference methods, which mainly fall into two broad categories: (i) Monte
Carlo methods (e.g. Adaptive Importance Sampling (Oh and Berger, 1992), Markov
Chain Monte Carlo (Neal, 1993), Sequential Monte Carlo (Doucet, Freitas, and Gor-
don, 2001)), that are sampling methods (ii) Variational Inference methods (e.g. Vari-
ational Bayes (Jordan et al., 1999), Expectation Propagation (Minka, 2001)), that rely
on optimisation techniques.

In particular, Variational Inference methods are known for their numerical suc-
cess when applied to large-scale learning tasks with complex probabilistic models
(Hoffman et al., 2013; Kingma and Welling, 2014, Ranganath, Gerrish, and Blei,
2014). However, contrary to their Monte Carlo counterparts, Variational Inference
methods use optimisation techniques over a constrained set of densities; this means
that there is a possible mismatch between the posterior density and the approxima-
tion that is returned at the end of the optimisation procedure, which results in a lack
of theoretical guarantees (Yao et al., 2018; Campbell and Li, 2019).

As a consequence, the literature is becoming increasingly interested in construct-
ing scalable Variational Inference algorithms that are theoretically well-justified (e.g.
Alquier, Ridgway, and Chopin, 2016; Domke, 2019; Alquier and Ridgway, 2020)
while another active field of research focuses on combining Monte Carlo and Vari-
ational Inference methods (to name but a few: Burda, Grosse, and Salakhutdinov,
2016; Li and Turner, 2016; Mandt, Hoffman, and Blei, 2017; Naesseth et al., 2018;
Thin et al., 2020; Naesseth, Lindsten, and Blei, 2020).

In this thesis, we will be particularly interested in investigating how Adaptive
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Monte Carlo methods, and more specifically Adaptive Importance Sampling meth-
ods, can be paired up with scalable Variational Inference procedures to provide
theoretically-sound algorithms for Bayesian purposes.

To this end, let us start by recalling the basics of Monte Carlo methods for Bayesian

Inference up till Adaptive Importance Sampling methods.

1.2 Monte Carlo methods for Bayesian Inference

Monte Carlo methods as a whole seek to approximate integrals of the form

I(g) == /Y o(y)p(y)(dy) |

where g is an integrable function defined on Y and p is a probability density function
with respect to v on (Y, )). Denoting by IP the probability measure on (Y,)) with
Radon-Nikodym derivative with respect to v given by dP/dv = p, this problem can
be reframed as the calculation of the expectation of g with respect to the probability
distribution P:

where Y is a random variable defined on the probability space (Y, ), P).

The first idea of Monte Carlo methods is to replace the explicit calculation of the
expectation of the random variable g(Y') by an approximation involving the empiri-
cal mean of M independent realisations.

1.2.1 Vanilla Monte Carlo

Let Y7, Y, ... be an infinite sequence of independent and identically distributed ran-
dom variables with common probability distribution PP. Setting for all M € N*

R 1 M
Du(g) =57 2 9(Ym) (1.2)
m=1

we obtain that the estimator I);(g) of I(g) is unbiased (i.e. E,[Ij(g)] = I(g)). No-
tably, assuming that /(g) = E,[|g(Y1)|] < oo, the law of large numbers yields

lim Ip/(g)=1I(g), almost-surely,

M—+o0
and if we further assume that E,[|g(Y7)|?] < oo, we obtain by the central limit theo-
rem that /M (I)/(g) — I(g)) converges in distribution to (0, Var,[g(Y1)]) as M goes

to infinity.

To apply Monte Carlo methods for Bayesian Inference tasks, we would like to
set p(y) = p(y|2) for all y € Y: provided that we know how to sample from the

posterior distribution, the estimator (1.2) would serve as an approximation of (1.1).
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However, for many important Bayesian Inference models we do not know how
to sample from the posterior distribution, nor do we know the value of the normal-
ising constant p(Z). One example of such a model is Bayesian Logistic Regression
for binary classification, as described below.

Example 1 (Bayesian Logistic Regression). We use the same setting as in Gershman,
Hoffman, and Blei, 2012. We observe the data 9 = {c, x} which is made of I binary class
labels, ¢; € {—1,1}, and of L covariates for each datapoint, x; € RL. The hidden variables
y = {w, B} consist of L regression coefficients w, € R and a precision parameter 3 € R*.
We assume the following model

po(B) = Gamma(f;a,b) ,
po(welB) = N(we; 0,871, 1< L,
1

g I<i</I,

p(ci = l\wi,w)
where a and b are hyperparameters (shape and inverse scale, respectively) that we assume
to be fixed. For all y € Y, we thus have p(y, 2) o po(y) [T, p(cil:, y) with po(y) =
Hlepo(wg\ﬁ)pg(ﬁ). As the sigmoid does not admit a known conjugate prior, we do not
know how to sample from the posterior distribution and p(2) is intractable in this model.
Consequently, the posterior predictive distribution, which given an unseen data Tyew pre-
dicts the label cpow

p(cnew|mnewa -@) = /Yp(cnew|wnewa y)p(y|.@)l/(dy)

is also an intractable integral.

Fortunately for us and as we shall see next, Importance Sampling methods come
in handy to bypass these issues.

1.2.2 Importance Sampling

The key idea of Importance Sampling is to introduce a certain probability density
q with respect to v on (Y,)) and to assume that (i) we know how to sample from
q and (ii) the support of ¢ contains the support of g x p, that is for a given y € Y,
g(y)p(y) # 0 implies ¢(y) > 0 (a sufficient condition being that the support of ¢
contains the support of p). In this case, setting w(y) = p(y)/q(y) for ally € Y, the
following holds

19) = [ swo(n) = | o2 a(o)u(dy) = £y lw(¥)g(v)]
Y Y q(y)
Letting this time Y7, Y, ... be an infinite sequence of independent and identically
distributed random variables sampled according to ¢ and based on what we have

seen so far, the novel (unbiased) estimator of I(g) that comes to mind is given for all
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M € N* by

1 M
17 2 W(Ym)g (V) - (1.3)
m=1

Iii (9) =
If we put this into perspective with the Bayesian framework, we see that we have
made some progress, as we do not need to be able to sample from the posterior
distribution anymore to estimate integrals of the form (1.1).
One obstacle still remains, since as we underlined before the posterior density
can often only be evaluated up to a proportional constant. This brings us to the Self-
normalised Importance Sampling (SNIS) estimator defined below for all M € N*

FSNIS (o) — 7 Lot W(Yin)g(Yin) '

M M
ﬁ Zm:1 U}(Ym)

Contrary to the estimators we have introduced previously, 1575 (g) is biased. Nev-
ertheless, assuming that the condition of support are met and E,[|w(Y7)g(Y1)|] < oo,
the law of large number allows us to obtain the almost sure convergence towards
I(g) for both I1%(g) and I5V15(g).

Further assuming that E,[|w(Y1)g(Y1)|?] < oo (and for the SNIS estimator that
E,[w(Y1)?(1 4+ g(¥1)?)] < o) also yields

VM(I1 (9) — 1(9)) =2 N(0, Var[w(Y1)g(Y1)])
VMM (g) — 1(g)) = N(0, Varg[w(¥1)(9(Y1) — 1(9))])

where —, denotes the convergence in distribution. Notably, Var,[w(Y1)g(Y1)] and
Varg[w(Y1)(9(Y1) — I(g))] are minimal when ¢ o |g| x p and ¢ x |g — I(g)|p respec-
tively.

This illustrates the fact that the performance of Importance Sampling methods
for Bayesian Inference purposes is tied to the choice of the sampler ¢ (see Robert and
Casella, 2005 and Figure 1.1). Interestingly, when integrals of the form (1.1) are to
be computed for many functions g, it becomes less efficient to have ¢ depend on g
as per written in the above results, which supports the idea that one should target p
directly (Delyon and Portier, 2021).

As we may not know in one go what a good sampler for a complex probabilistic
model looks like, adaptive procedures may be constructed in order to refine the
proposal progressively and this brings us to the concept of Adaptive Importance
Sampling.
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0.40 4 — tue
—— good sampler
0.35 —— bad sampler

—4 -2 0 2 4 6 8 10

FIGURE 1.1: Here, the label “true” stands for the targeted distribu-
tion. The two remaining above samplers are then likely to provide
different results in estimating I(g).

1.2.3 Adaptive Importance Sampling

Starting from an initial sampler ¢, the aim of Adaptive Importance Sampling is to
build an iterative sequence of sampler (¢, ),>1 that leads to more accurate estimators
as n increases.

While originally limited to a two-step procedure (Kloek and Van Dijk, 1978;
Geweke, 1989), Adaptive Importance Sampling methods have since evolved to multi-
stage schemes (Oh and Berger, 1992) so that we can expect a typical Adaptive Im-
portance Sampling algorithm to be described as in Algorithm 1.

Algorithm 1: Adaptive Importance Sampling

Input: N: total number of iterations, (M, )1<n<n: allocation policy, ¢;: initial
sampler.

Output: Return the pairs (Yo, n, Wi (Yonn)) 1<m<, 1<n<N-

forn=1...Ndo

1. Draw independently M,, samples (Y, n)1<m<nm,, from gp,.

2. Compute the Importance Sampling weights (wy,(Y;n.n))1<m<n,,, where
forally € Y, w,(y) = p(y)/qn(v).

3. Update the sampler g,.

end

Letting p(y) = p(y, Z) for all y € Y, the outputted pairs in Algorithm 1 can then
be used to estimate integrals of the form (1.1), e.g. by considering at time n the

estimate X y
j’f/[NAIS(g) _ M, Zmil wn(Ymm)g(Ym,n)
nyN Mn .
i Zmit Wn(Yimn)

Notable advances in Adaptive Importance Sampling include methods tailoring the

sequence of samplers (g, )n>1 according to a certain criterion (e.g. Douc et al., 2007a;
Douc et al., 2007b; Cappé et al., 2008 and Portier and Delyon, 2018) as well as refine-
ments beyond the traditional importance sampling weights (Martino et al., 2017).
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We refer to Bugallo et al., 2017 for a detailed review of Adaptive Importance Sam-
pling methods and we now move on to presenting Variational Inference methods.

1.3 Variational Inference methods for Bayesian Inference

Variational Inference methods (Jordan et al., 1999) seek to approximate the posterior
density by a simpler variational density ¢ belonging to some density family Q and
that can be used to facilitate the computation of integrals of the form (1.1).

These approaches consider this objective purely as an optimisation problem in-
volving a certain measure of dissimilarity D between the posterior distribution P,
and the variational distribution Q

inf D(Q|IP|2) ,
qeQ

where P|; and Q are assumed to be probability measures on (Y,))) that are abso-
lutely continuous with respect to v (which we denote Q < v, Pl =X v) and with
associated Radon-Nikodym derivatives with respect to v given by ¢ = dQ/dv and
p(|12) = dPz/dv.

The core of Variational Inference methods then consists in choosing D properly
and in designing approximating families Q which enable efficient optimisation and
which are able to capture complicated structure inside the posterior density.

In this section, we will first recall the most traditional choices for D and Q in the
Variational Inference literature. We will then detail advances in this field that are
relevant for the thesis.

1.3.1 Traditional Variational Inference

A traditional choice in Variational Inference that has extensively been used in the
literature corresponds to letting D be the Kullback-Leibler divergence (Kullback and
Leibler, 1951), whose definition is recalled now.

Definition 1 (Kullback-Leibler divergence). Let Q and IP be two probability measures on
(Y,Y) that are absolutely continuous with respect to v i.e. Q < v, P < v. Let us denote
by q = % and p = & the Radon-Nikodym derivatives of Q and P with respect to v. The
Kullback-Leibler (KL) divergence is defined by:

Dis(@IP) = [ 1o (;gﬁ) a()(dy)

which is always well-defined in [0, 4-o00].
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In traditional Variational Inference, one can then seek to either minimise the for-
ward Kullback-Leibler

inf Drer,(Q||P)) (1.4)
qeQ

or to minimise the reverse Kullback-Leibler
inf Dy (P . 1.5
inf kL(P12]|Q) (1.5)

Special interest in the Variational Inference community has notably been dedicated
to attempting to solve (1.4), due to the so-called Evidence Lower BOund (ELBO)
property: for all ¢ € Q it holds that

Drsl@Pz) = [ atwto (1) viay) + 10gp(2)

= —ELBO(q; 2) +logp(2) ,

where the ELBO function is defined for all ¢ € Q by

9

ELBO(: 7) = | a(u)log <p(y )) v(dy) (16)
Y q(y)

The result above means that the ELBO can act as a surrogate objective function which

does not involve the bothersome normalising constant p(Z) anymore. Thus, it is

equivalent to consider instead of (1.4) the optimisation problem

sup ELBO(¢; 2) .

qeQ
The name ELBO in itself then comes from the fact that Jensen’s inequality applied
to the strictly concave function u > log(u) implies D1 (Q|[P|5) > 0 so that we can
write ELBO(q; 2) < log p(2) with equality if and only if Q = P|y; this, in turn, pro-
vides a lower bound on the log of the marginal likelihood (i.e. the model evidence).

From there, a traditional choice for the variational family Q is to work within
the Mean-field approximating family, which we next describe. This will allow us
to explain briefly how the forward Kullback-Leibler divergence and the Mean-field
approximation have been paired up together for Variational Inference purposes.

The Mean-field approximation consists in assuming that the latent variable y is
made of L independent components (y1,...,yr) € Y1 X ... x Y, such that Q is of
the form

L
Q= {q:yH qu(ye)}

(=1

and each latent variable y, is governed by its own variational density ¢, with v(dy) =
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®€L:1 ve(dye). Plugging this fully factorised variational density into the ELBO (1.6)
and fixing all the variational factors but the one with coordinate ¢, the following

optimal update can then be derived for this factor:
q; (ye) o< exp (E_(flog p(y, Z)]) , for ve-almost all y, € Y¢ , (1.7)

where we have denoted by E_, the expectation with respect to ¢ omitting the factor
q¢- Indeed, observe that under the Mean-field assumption,

BLBO(: 7) = [ aly) log (M) v(dy)

q(y
_ / 2 E_¢ llog ply, 2)] va(dye) — / ae(ye) 1og qu(ye)ve(dye) + e
Yy Ye
_ op (P Elogp(y, 7)) .
= /Yé qe(ye) 1 g( 2 (w) ) o(dye) + c—¢

where c_, is a constant that does not depend on ¢, (and for convenience we have
made a slight abuse of notation in E_ [log p(y, Z)] by using the same notation for
the variables (yj)1<k<r k¢ and the random variables under Hé:l, oy qr)-

Then, as a consequence of Jensen’s inequality the left-hand side is maximised
when ¢,(y¢) is proportional to exp (E_,[log p(y, Z)]) for vy-almost all y, € Y, and we
recover the aforementioned optimality condition (1.7) for the factor g,.

Based on this result, a natural idea of an iterative algorithm consists in perform-
ing the update (1.7) successively for ¢ = 1...L and in repeating this cycle until
convergence towards a (local) optimum is reached: this procedure is called the Co-
ordinate Ascent Variational Inference (CAVI) algorithm (Bishop, 2006) and it is sum-
marised in Algorithm 2.

Algorithm 2: Coordinate Ascent Variational Inference (CAVI)

Input: (¢¢)1<¢<y: initial variational factors.
Output: Return the optimised Mean-field variational density ¢ satisfying:
forally €Y, q(y) = TT{—y ae(ye)-

while the ELBO has not converged do

for/=1...Ldo

| set qo(ye) < exp (E_g[logp(y, 2)]) , for vp-almost all y, € Yy

end

Compute the ELBO.
end

To see how CAVI updates are derived in practice and observe what type of Mean-
field variational density ¢ is obtained after optimisation, we next provide in Exam-
ple 2 below a toy example taken from Hernandez-Lobato et al., 2016 in which the

posterior density is known.
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Example 2 (Bayesian Linear Regression). We observe the data 9 = {c, x} that is made
of I 1-D class labels (c;)1<i<r and of I 2-D covariates (x;)1<;<1, where for each datapoint
(ci,x;) € R x R2. The hidden variables consist of two regression coefficients y = {y1,y2} €
R2. We assume the following model

pO(?/) = N(y7 ﬂOaAal) )
p(cl|mlay) :N(Ci;mii702) ) 1 < 1 < I 3

where p, Ao and o are hyperparameters that are assumed to be fixed.
Then, the posterior density is known and we have

p(Z) = N(y; u, A7)

with A = Ao + 020 @l and Ay = Aopo + 02 31| ci;. Under the Mean-field
assumption q(y) = q1(y1)q2(y2) so that for all ¢ = {1, 2}, we want to find

qe(ye) o< exp (E_4[log p(y, 2)]) -

Introducing the notation 1 = (pe)1<e<2 and A = (Mg ) 1<e k<2 With Ay o2 = Ao 1, we have

1) x5 (B |3 {0 — )0 +20 = ) — 12}

1
X exp (‘2 {y%Al,l —2y1 [ A1 — (Eg, [ye] — M2)A1,2]}> )

so that we can deduce q1(y1) = N (y1; 1 — AH(E,}2 [y2] — p2)A1 2, Al’%) and by symmetry
that q2(y2) = N (yo; po — Aié(qu [y1] — ,ul)Al,g,AQ’é). Consequently, denoting m; =
Eq, [y1]) and mo = Eqy, [y2], the CAVI algorithm amounts to performing the iterations

mi1 < (1 — Al_&(TnQ — MQ)ALZ

Mg < g — Ag_é(ml —p1)Ai2 .

Since the only stable fixed point is given by m; = py and mg = pa, we finally obtain that
q1(y1) = N (y1; pa, Al’}) and qa2(y2) = N (y2; 2, Ag;) Visually, the posterior distribution
and the optimised variational distribution can be observed on Figure 1.2, where we have
taken p =10,0], A11 = Ao =3and Ay o = —2.

More generally, the CAVI algorithm may result in tractable updates when ap-
plied to conjugate exponential family models, some of such instances being Gaus-
sian Mixture Models (Bishop, 2006) and latent Dirichlet allocation (Blei, Ng, and
Jordan, 2003).

To be precise, given the dataset ¥ = (), /<, conjugate exponential family
models introduce the latent variables y = {3, w1, ...,wr} where 3 is seen as a global
latent variable and for all [ = 1...L, wy is a local latent variable associated to the
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FIGURE 1.2: Mean-field approximation for the Bayesian Linear Re-
gression from Example 2 (adapted from Hernandez-Lobato et al.,
2016). The labels “true” and “MVFI” respectively stand for the poste-
rior distribution and the Mean-field approximation obtained by for-
ward Kullback-Leibler minimisation (with one-sigma contours).

datapoint z, so that

L
p(y, 2) = p(B) | [ p(we, zel B) -

(=1

They next consider the following Mean-field variational approximation ¢

L
a(Blv) H (welge) ,

where {9, ¢1, ..., ¢} correspond to the variational parameters to be optimised via
the CAVI algorithm. These models can then be proven to yield tractable updates for
the variational parameters by making appropriate choices for p(3), p(we, z¢|3), ¢(5|¢)
and q(wy|¢¢) (see Blei, Kucukelbir, and McAuliffe, 2017 for details regarding Gaus-
sian Mixture Models and latent Dirichlet allocation).

We have seen how tractable variational parameters updates based on the CAVI
algorithm can be derived when D is the forward Kullback-Leibler, @ belongs to
the Mean-field family and we work with well-chosen conjugate exponential family
models. In the context of Big Data, one last hurdle must be overcome to obtain a
fully-usable algorithm: the CAVI algorithm becomes inefficient for large datasets
as it must optimise the local variational parameters {¢1, ..., ¢1} for each datapoint
before re-estimating the global variational parameter ).

To remedy this situation, scalable methods relying on stochastic optimisation
techniques (Bottou, 2010; Robbins and Monro, 1951) were developed to enable large-
scale learning. These methods fall under the name of Stochastic Variational Infer-
ence (Hoffman et al., 2013) and were applied to some complex probabilistic models
including latent Dirichlet allocation.

The numerical success of this approach on datasets comprising millions of data-
points has led to renewed interest in Variational Inference methods (and we refer the
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reader to Blei, Kucukelbir, and McAuliffe, 2017 and Zhang et al., 2019 for compre-
hensive reviews around modern Variational Inference methods). In the rest of the
section, we limit ourselves to revisiting the main advances in Variational Inference

that are relevant in the subsequent chapters of the thesis.

1.3.2 Monte Carlo meets Variational Inference

As we have stressed previously, Variational Inference is particularly amenable to
coordinate-ascent optimization when we work with the forward Kullback-Leibler
divergence and under the Mean-field assumption.

However, one of the main limitations of this approach is that not only the Mean-
field family restricts the choice of models but also that tractable updates are model-
specific and require by-hand derivation (see Blei, Kucukelbir, and McAuliffe, 2017
and Figure 1.2).

For these reasons, Black-Box Variational Inference techniques (Ranganath, Ger-
rish, and Blei, 2014) have been deployed as a generic class of Variational Inference
algorithms for forward Kullback-Leibler minimisation that renders Variational In-
ference methods applicable to a wide range of models. Letting D be the forward
Kullback-Leibler and assuming that we are working with a general parametric fam-

ily of the form
Q={y—k(0,y) : 0T} (1.8)

(where T is for example R?) the main idea of Black-Box Variational Inference is to
use the gradient of the ELBO paired up with Monte Carlo approximations in order
to carry out the optimisation procedure. Indeed, under common differentiability
assumption and following Paisley, Blei, and Jordan, 2012, the gradient of the ELBO
(1.6) is given by:

B r(y, 2)
= /Y;g(e )V [log k(0, )] log ( 50.9) > v(d

- [ Vre.pviay
Y

where we have used that for all y € Y, Vk(0,y) = k(6,y)V [logk(6,y)], an opera-

tion known as the REINFORCE trick in the literature (Williams, 1992). By further

noticing that [\, Vk(0,y)v V (Jy k( (dy)) = 0, we deduce

VELBO(k(0,-); 7) — /Y k(0,9)V [log k(6, 1)] log( ((ya’ @))> V(dy)
p(

= B, [Vlog [£(6,Y)] x log <k(e,g))>]
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so that the gradient of the ELBO can be expressed as an expectation with respect
to the variational approximation & (6, -). This is where Monte Carlo techniques inter-
vene: given M independent and identically distributed random variables Y7, ..., Y),
sampled according to k(6, -), an unbiased estimate of the expectation above is

= mZ:l Vlog [k(0,Y)]log <k('9,Y)>

The Black-Box Variational Inference algorithm in itself then consists in introducing a
sequence of learning rates (7, ),>1 and performing Stochastic Gradient Descent steps

to construct a sequence (6,,),>1 according to Algorithm 3 below (notice the “+” sign
in the gradient step, as we seek to maximise the ELBO and thus minimise —ELBO).

Algorithm 3: Black-Box Variational Inference

Input: N: total number of iterations, (M,,),>1: allocation policy, (v )n>1:
learning rate policy, 6;: initial parameter value.

Output: Return the optimised parameter 0 ;.

forn=1...Ndo

1. Draw independently M,, samples (Y, n)1<m<n,, from k(6,,-).
2. Set
M,
1 pYmn: 2)
it = O + 1 Yon)] l9—o,, log | o 22
On1 = O+ Mn;v 0g [k(6, Yinn)] lo=0, log (k(en,Ym,n)
end

The particularity of this scheme is that Stochastic Gradient Descent steps are be-
ing performed using an unbiased estimate of the gradient of the ELBO. This means
that, under appropriate assumptions on the learning rate policy and on the ob-
jective function (Ranganath, Gerrish, and Blei, 2014; Domke, 2019; Domke, 2020),
(k(0n,-))n>1 converges towards an optimum of the ELBO, which effectively min-
imises (at least locally) the forward Kullback-Leibler divergence.

As Black-Box Variational Inference methods might suffer from high variances
of the estimated gradients, much of the success of these schemes came from vari-
ance reduction techniques (e.g. Rao-Blackwellization, control variates (Ranganath,
Gerrish, and Blei, 2014), reparametrisation (Kingma and Welling, 2014) and Quasi-
Monte Carlo methods (Buchholz, Wenzel, and Mandt, 2018)).

So far, the choice of D has been limited to considering the forward and reverse
Kullback-Leibler. However, another main appeal of Black-Box Variational Inference
methods is that they can be used to optimise alternative objective functions beyond
the particular case of the Kullback-Leibler divergence. In particular, efficient proce-
dures have been designed when D belongs to the a-divergence family.
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1.3.3 Variational Inference within the a-divergence family

Variational approximation distributions obtained by forward or reverse Kullback-
Leibler minimisation are known to encounter practical issues (Minka, 2001; Hoffman
et al., 2013; Blei, Kucukelbir, and McAuliffe, 2017), e.g. underestimating / overes-
timating the posterior variance for the forward/reverse Kullback-Leibler (posterior
variance underestimation is even sometimes reinforced when additionally working
under the mean-field assumption for the forward Kullback-Leibler, see Figure 1.2).

Therefore, another branch of Variational Inference methods focused on designing
algorithms based on alternative families of divergences. Notably, some early works
building on the a-divergence (Zhu and Rohwer, 1995a; Zhu and Rohwer, 1995b) can
be found in Minka, 2004 and Minka, 2005. Before getting into the details of how
the a-divergence family can be used for Variational Inference methods, let us first
review basic concepts and ideas around this family.

The a-divergence family is a well-known family of divergence measures in the
Information Geometry literature (e.g. Cichocki and Amari, 2010) which generalises
the Kullback-Leibler divergence and whose definition for two probability measures
Q and P is given below.

Definition 2. Let « € R\ {0,1}. Let Q and IP be two probability measures on (Y,Y) that
are absolutely continuous with respect to v i.e. Q < v, P < v. Let us denote by q = ‘3%9
and p = 3—15 the Radon-Nikodym derivatives of Q and P with respect to v. The a-divergence

between Q and P is defined by :

pat@le) = [ s [(22) -1 pwtan).

which is always well-defined in [0, +o0].

Under common differentiability assumptions, it holds that the a-divergence ad-
mits the forward and reverse Kullback-Leibler as limiting cases: forally €'Y,

2 [ (1) ) = v [ (1))

q(y)>
= —log | —=
© (p(y)
and similarly

s [ Gn) 2l =v R Ge) -]

a=0

so that limy—0 Do (Q||P) = Dir(P||Q) and limy—1 Do (Q||P) = D r(Q||P).
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The definition of the a-divergence can thus be extended to 0 and 1 by continuity
and we will use the notation Dy(Q||P) = Dgr(P||Q) and D1(Q||P) = Dk (Q||P)
from now on. Notice also that special cases of the a-divergence family include the
Hellinger distance and the y?-divergence which correspond respectively to order
a=05and a =2

Letting f, be the convex function on (0, +00) defined by fy(u) = v — 1 — log(u),
fi(u) =1 —u+ulog(u) and fo(u) = ﬁ [u®—1—a(u—1)]foralla € R\ {0,1},
we then have that for all o € R,

Da@P) = [ £ (%) p(y)v(dy) (19)
Written under that form, the r.h.s of (1.9) corresponds to the general definition of
the a-divergence (Cichocki and Amari, 2010). This formulation also tells us that a-
divergences are members of the f-divergence family (Morimoto, 1963a; Morimoto,
1963b) through the convexity of f,.

The fundamental properties of the a-divergence are given in the next proposi-
tion (and we refer to Minka, 2005; Cichocki and Amari, 2010; Cichocki, Cruces, and
Amari, 2011; Erven and Harremoes, 2014 and Sason, 2018 for more details around
the a-divergence family).

Proposition 3. The a-divergence (extended by continuity to the cases o = 0 and o = 1) is
always non-negative and it is equal to zero if and only if Q = P. Furthermore, it is jointly
convex in Q and P and the definition of the a-divergence is invariant with respect to the
transformation fo.(u) = fuo(u) 4+ c(u — 1) for any arbitrary constant c, that is f,, can be
equivalently replaced by fo . in (1.9).

A more general optimisation problem than forward and reverse Kullback-Leibler

minimisation as written in (1.4) and (1.5) then consists in considering
inf Do (Q||Py») . 1.10
inf Da(Q[Fyg) (1.10)

Interestingly, it has been observed in Minka, 2005 that the characteristics of the re-
sulting optimised variational density will vary depending on the value of the hyper-
parameter o.

More precisely, there are two main regimes: either o < 0 and the a-divergence
is mass-covering, meaning that it will favor variational densities that cover all the
modes or o > 1 and the a-divergence is mode-seeking, that ¢ will tend to be attracted
to the mode with the largest probability mass (the case a € (0, 1) corresponding to a
mix of the two worlds). This comes from the fact that D, (Q||P) will blow up if the
support of ¢ is bigger than the support of p when « > 1 and conversely, D, (Q||P)
will blow up if the support of p is bigger than the support of ¢ when o < 0.
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FIGURE 1.3: The Gaussian ¢ which minimizes the a-divergence to

the multimodal distribution p, for varying values of «. (adapted from

Cevher’s lecture notes available at https://www.ece.rice.edu
/~vc3/elec633/AlphaDivergence.pdf)

An illustration of this mass-covering/mode-seeking property can be found in
Figure 1.3, where given a targeted multimodal distribution, we seek to find the op-
timal Gaussian ¢ in terms of the a-divergence for varying values of .

Following up from earlier, the effect of a on the optimal Mean-field variational
approximation ¢ for the model considered in Example 2 is also depicted in Figure
1.4 (detailed derivations can be found in Appendix A.1), which further underlines

the mass-covering/mode-seeking property of the a-divergence family.

1.0
0.5
0.0

—0.54 — g=0.5

—1.01

T T T
-1.5 -1.0 -05 0.0 0.5 10 15

FIGURE 1.4: Optimal mean-field approximation with varying val-

ues of a for the Bayesian Linear Regression model from Example 2

(adapted from Hernandez-Lobato et al., 2016). The label “true”

stands for the posterior distribution and the various Mean-field ap-

proximations are obtained by «a-divergence minimisation (with one-
sigma contours).

The mass-covering/mode-seeking property renders the optimisation problem
(1.10) attractive for Variational Inference means, as it interpolates between the for-
ward and reverse Kullback-Leibler divergence behaviors, which explains the interest
dedicated to this family of divergences in Minka, 2004 and Minka, 2005. Yet, these
works were limited to exponential family distributions.

With the advent of Monte Carlo Variational Inference, novel methods based on
the a-divergence have been designed and have been found to provide promising
empirical results (Hernandez-Lobato et al., 2016; Li and Turner, 2016; Dieng et al.,
2017; Kuleshov and Ermon, 2017).

These methods exploit the fact that the specific form of f, allows us to remove
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the marginal likelihood p(Z) appearing in the optimisation problem (1.10) and can
be classified in two groups: biased methods (Hernandez-Lobato et al., 2016; Li and
Turner, 2016) and unbiased methods (Dieng et al., 2017; Kuleshov and Ermon, 2017).

Biased methods consider a slightly modified version of (1.10) which relies on the

closely-related Renyi’s a-divergence (Rényi, 1961; Erven and Harremoes, 2014)

= L [ log (/Y q(y)ap(y)D‘lV(dy))

= 1 log (1 4+ afa— 1)Da(QIP)

DM(QIP) =

In particular, Li and Turner, 2016 formalised the concept of Variational Renyi (VR)
bound, a novel objective function which generalises the ELBO and is defined for all
a € R\ {1} and for any variational density ¢ € Q by

11—«
Lo(q; D) = ﬁlog </Y (p(qy(’y)@)> Q(y)V(dy)>

and they thus aim at finding

sup Lo(q; 2) .
qeQ

This VR bound is shown to provide a lower or upper bound on the log-likelihood
log p(Z) depending on the sign of a and to recover the ELBO when a — 1 (Li and
Turner, 2016, Theorem 1).

Optimisation is then carried out for a parametric family of the form (1.8) in a
Black-Box Variational Inference manner by performing Stochastic Gradient Descent
steps on —L,(q; Z), which brings into play a biased Monte Carlo estimator of the
gradient of the VR bound due to the log. On the other hand, unbiased methods
consider the objective function given by: forall ¢ € Q,

v, ;@::/ a<Q(y)> , Dv(d

(@:2):= | a5y gy )P 2 dy)

and aim at solving the following equivalent (see Appendix A.2) optimisation prob-
lem

inf U, (q; 2 1.11
Inf (; 2) (1.11)

via unbiased Stochastic Gradient Descent.

Advances in a-divergence-based Variational Inference notably include automat-
ically tuning the hyperparameter o (Wang, Liu, and Liu, 2018) as well as attempts at
getting a better theoretical and practical understanding of which approach is best be-
tween biased and unbiased a-divergence Variational Inference (Geffner and Domke,
2020a; Geffner and Domke, 2020b).

We have reviewed the basics of Adaptive Importance Sampling methods and
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seen a variety of Variational Inference methods which seek to improve on the typ-
ical Mean-field Variational Inference framework with the forward Kullback-Leibler
divergence, ranging from Black-Box Variational Inference techniques to considering
more general objective functions. Yet and as we shall see next, some further im-
provements on these methods can be made in order to better capture the complexity
of the posterior density.

1.4 Goal of the thesis and chapters overview

From an Adaptive Importance Sampling perspective, one cannot help but notice
that Variational Inference techniques can be reframed as an instance of Step 3 in
Algorithm 1 since they build a sequence of samplers that is refined iteratively in
terms of a certain objective function.

Even more interestingly, in Black-Box Variational Inference techniques (be it for
forward Kullback-Leibler or more generally a-divergence minimisation), the past
samples generated to construct the sequence of samplers (k(6,, -)),>1 can readily be
used to approximate integrals of the form (1.1).

For this reason, one can be inclined to take a Variational Inference approach to de-
rive improved Adaptive Monte Carlo methods. In that case, since the performances
of Variational Inference methods are limited by the choice of the approximating fam-
ily Q and of the divergence D, one may wonder whether it is possible to enrich Q
beyond the framework of Black-Box Variational Inference for a-divergence minimi-
sation while still maintaining efficient optimisation.

To answer this question, this thesis explores novel scalable Variational Inference
algorithms for a-divergence minimisation that (i) can be used in Adaptive Impor-
tance Sampling schemes and (ii) increase the expressiveness of the approximating
family Q. More precisely, our work can be decomposed in three chapters, which are

based on three separate papers:

¢ Chapter 2 Daudel, Douc, and Portier, 2021.
“Infinite-dimensional gradient-based descent for Alpha-divergence minimisation”.
To appear in the Annals of Statistics.

¢ Chapter 3 Daudel and Douc, 2021.
“Mixture weights optimisation for Alpha-divergence Variational Inference”.
Submitted as a conference paper at the time of writing.

¢ Chapter 4 Daudel, Douc, and Roueff, 2021.
“Monotonic Alpha-divergence minimisation”.

Submitted as a journal paper at the time of writing.

The common thread between these three works is that we were interested in creating
iterative Variational Inference algorithms that ensured a systematic decrease in the a-
divergence at each step. We provide below an overview of each chapter, giving
particular emphasis to our own contributions.
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1.4.1 Chapter 2: Infinite-dimensional a-divergence minimisation

In order to enlarge the parametric variational family
Q={q:y—k(0,y) : 0T}

where 6 is typically tuned through Stochastic Gradient Descent optimisation on ei-
ther W, (k(0,-); Z) or —L,(k(6,-); Z), our firstidea is to add a prior on the variational
parameter 6 in the form of a measure, that is we seek to perform a-divergence min-

imisation over
Q= {q Ly / n(dO)k(0,y) = pe M} : (1.12)
T

where M is a convenient subset of M;(T), the set of probability measures on T (and
in this case, we equip T with a o-field denoted by 7).

In doing so, we extend the minimizing set to a larger space since a parameter
6 can be identified with its associated Dirac measure dy and our approach com-
plements already-existing Hierarchical Variational Inference methods (Ranganath,
Tran, and Blei, 2016; Yin and Zhou, 2018; Titsias and Ruiz, 2019).

Indeed, while these methods restrict themselves to the forward Kullback-Leibler
as objective function and consider that x4 is parameterised by another parametric
model so that

0- {q e /TA¢(9)k(9,y)d9 e A}

with 1(df) = Ay(0)df and where ¢ is optimised via Stochastic Gradient Descent, our
framework sets the a-divergence as a more general objective function and allows us
to target the important class of mixture models by taking ;. as a weighted sum of
Dirac measures.

Furthermore, another advantage of the approximating infinite-dimensional family
(1.12) is that minimising the a-divergence with respect to ;1 between the variational
density ¢ and the targeted posterior density yields a convex optimisation problem,
while the optimisation problem obtained when using a parametric variational fam-
ily (be it parameterised by 6 or ¢) often does not.

More formally, letting K : (6, A) — [, k(6,y)v(dy) be a Markov transition kernel
on T x Y with kernel density £ defined on T x Y, letting ¢ € Q be defined as in
(1.12) and denoting pk(y) = [ u(dy)k(0,y) forall u € Mi(T) and all y € Y, we are
interested in designing an iterative scheme that we hope will converge towards the

global optimum of the a-divergence

inf Do(Q||Pyy) = inf W, (uk; D) .
Inf (QlIP15) Jnfl (uk; 2)
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For notational convenience, we define for all measurable positive function p on
(Y,Y) and all probability density g with respect to v on (Y, ))

oy q(y) y
Vo(g;p) '_/Yfa <p(y)>p(y) (dy) , (1.13)

where we may drop the dependency on p and use the shorthand notation ¥, (¢; 2)
when p = p(-, Z) to denote ¥, (q; p(-, Z)), so that the general optimisation problem
we consider in Chapter 2 is

inf W, (uk) . (1.14)
pEM

To solve the optimisation problem (1.14), we assume that we work under the mild

assumption

(1.A1) The density kernel k on T xY, the function p on Y and the o-finite measure v on
(Y, D) satisfy, for all (6,y) € TxY, k(0,y) > 0, p(y) > 0and [, p(y)v(dy) < co.

and we introduce the exact («, I')-descent, an iterative algorithm relying on a certain
function I' : Dom, — R.q. This algorithm is described as follows: given an initial
measure ;1 € M;(T) such that U, (u1k) < oo and k € R, the iterative sequence of
probability measures (i, )nen+ is defined by setting

Hn+1 = Ia(/’Ln) ) n € N* )

where for all 4 € M;(T) and all § € T, we have set

_ 11(d8) - T(bua(f) + %) _ , ((HR(y)
,0)(a8) = MO D) and () - /Y k0012 (25 ) i)

We are able to motivate the formulation of this algorithm by considering the partic-
ular case where given n > 0, the function I is of the form

(v)=¢e". (1.15)

In that case, applying the transition ;1 — Z,(u) corresponds to performing one
step of the (infinite-dimensional) Entropic Mirror Descent algorithm with the a-
divergence as objective function and with a learning rate  [and we refer to Hsieh,
Liu, and Cevher, 2019, Appendix A for some theoretical background on the Infinite-
Dimensional Entropic Mirror Descent].

In this light, b, »(f) can be understood as the gradient of 1 +— W¥,(uk). One
transition of the exact (o, I')-descent then consists in applying a transform function I
to the translated gradient b, (f)+~ and projecting back onto the space of probability
measures, which is why we call our approach is infinite-dimensional and gradient-
based. We now describe the main results obtained in Chapter 2 regarding the (o, I')-
descent.
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1.4.1.1 Main results

Theorem 1, the first main result of Chapter 2 (and the first monotonicity result of the
thesis) states conditions on I" and « so that one iteration of the exact («, I')-descent
leads to a monotonic decrease in the a-divergence. These conditions read as follows:

(1.A2) The function T' : Dom, — R+ is decreasing, continuously differentiable and
satisfies the inequality

[(a—1)(v—r)+1] (logT)(v)+1>0, veDom, .

Coming back to the Entropic Mirror Descent, one may for example notice that (1.A2)
is satisfied with @ = 1 and € (0,1] when I is as in (1.15) and as a consequence,
we obtain that one iteration of the Entropic Mirror Descent applied to the forward
Kullback-Leibler divergence systematically decreases the forward Kullback-Leibler
divergence.

Another important consequence of having derived a general condition of the
form (1.A2) is that it makes it possible to go beyond the Entropic Mirror Descent
framework. Indeed, by letting a« € R\ {1}, n € (0, 1], x be such that (¢ — 1)k > 0 and

T(v) = [(a—1)v+1]Ts ,

one can readily check that I" satisfies (1.A2). The resulting algorithm for this choice
of function I' is called the Power Descent algorithm in the following and the two cases
we have just mentioned are summarised in Table 1.1 below.

TABLE 1.1: Examples of allowed (T', ) in the («, I')-descent according
to Theorem 1.

Divergence considered Possible choices for (T, k)

Forward KL (o = 1) I'(v) =e"",n € (0,1] any s

a-divergence with o € R\ {1} | I'(v) = [(a — 1) v + 1}ﬁ, ne (0,1 | (a—1)k >0

Under our assumptions, the sequence (¥, (jnk))n>1 is decreasing and also hap-
pens to be bounded from below, which implies its convergence. The results that
follow then investigate more precisely the convergence of the algorithm.

Firstly, by strengthening the conditions on I' (i.e. notably assuming that the func-
tion I' is L-smooth), we obtain in Theorem 2 an O(1/N) convergence rate for the
exact (o, I')-descent of the form: for all N € N*,

Lo L,
o (k) = Vo) < = | KL(u i) + L7 ’jm : (1.16)

)
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where the constants L, 1, Ly and L, 3 depend on the function I" and are assumed
to be finite. Here p* is such that W (u*k) = infeen, , (1) Ya(Ck) where My, (T)
is the set of probability measures dominated by ;; and we have defined A; =

U (pnk) — Uo(uk) as well as K L(p*||u1) = [ log (gg:) dp*.

Secondly, by applying the results from Theorem 2 to the Entropic Mirror Descent
and the Power Descent, Theorem 3 states, under the assumption that § — b, ()
is bounded by a constant |b| o independent of 1, that (1.16) holds for all N € N*
when:

e I'(v) =e™,ne (0
Descent),

1 . . .
, m) and « is any real number (Entropic Mirror

e T(v)=[(a—1)v+ 1]ﬁ, n € (0,1], « > 1and x > 0 (Power Descent).

To put these results into perspective, letting J € N*, (61,...,60;) € T’ and set-
ting py = J1 ijl dp;, we consider in Example 4 the case of the (this time finite-
dimensional) Entropic Mirror Descent with o = 1 and we obtain the following con-
vergence rate for all € (0,1)

log J N V21og J|b|oc,a
nN I=mN

Wo(pn) — Wa(u*) <

Thus, for a constant learning rate n € (0, 1), the dominant term with respect to the
dimension J of the simplex is in log.J so that we achieve an overall O(log(J)/N)
convergence rate. This improves on standard Mirror Descent results, which under
similar assumptions typically only provide an O(y/J/N) and O(+/log(J)/N) rate
respectively for the Projected Gradient Descent and Entropic Mirror Descent by let-
ting the learning rate be proportional to 1/v/N, N being fixed (see Beck and Teboulle,
2003 or Bubeck, 2015, Theorem 4.2.).

Note also that when deriving our O(1/N) rate, another improvement is that we
did not require the objective function to be smooth, as opposed to accelerated ver-
sions of the Mirror Descent (e.g. Mirror Prox, see Nemirovski, 2004 or Bubeck, 2015,
Theorem 4.4.) that yield an O(1/N) convergence rate.

Lastly, the case a < 1 for the Power Descent being trickier, we handle it sepa-
rately in Theorem 4: under the assumption that (y,),>1 weakly converges towards

a certain p*, as well as (1.A3) below

(1.A3)

(i) T is a compact metric space and 7 is the associated Borel o-field;

(i) forally €Y, 6 — k(0,y) is continuous;

, a—1
(iii) we have [, supget k(0,y) X supgct (kée(ﬁ)) v(dy) < co.
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we obtain the convergence of (¥, (pnk))n>1 towards ¥, (p*k) where we establish
that W, (1*k) = infeen, , (1) Ya(Ck) and this concludes our theoretical results on the
exact (o, I')-descent.

As the exact (o, I')-descent involves intractable integrals, notice that a practical
version of this algorithm will require approximations. We thus resort to a stochas-
tic version of the exact («,I')-descent that builds a sequence (/i,),>1 via an unbi-
ased Importance Sampling estimate by, o a7(60) of by, o(#) at each time n, that is
fint1(d0) = To s (fin)(d6) o ﬂn(dG)I‘(lA)ﬂmmM(H) + k), M being the number of sam-
ples used in the Importance Sampling estimator. Complementary theoretical results
are then proved in the form of Theorem 5, Theorem 7 and Proposition 10, that we
briefly detail below, before presenting the main conclusions of numerical experi-

ments.

¢ Theorem 5 and Theorem 7 focus on the Entropic Mirror Descent and derive
bounds under minimal assumptions. More precisely, the former is an adaptation to
our framework of the classical result for Stochastic Entropic Mirror Descent from Ne-
mirovski et al., 2009. This result yields an O(1/v/N) bound on E[¥,, (N ! Eﬁle fnk)—
W, (u*k)] for a constant learning rate that is proportional to 1/v/N, the number of it-
erations N being fixed in advance. On the other hand, the latter provides a bound
on E[W,(N"'S°N fik) — W, (u*k)] of the form O(1/N) 4+ O(1/v/M), all the while
keeping the learning rate constant throughout the algorithm (e.g. 7 € (0,1) for the
forward Kullback-Leibler).

* Proposition 10 deals with the Power Descent algorithm and establishes the
total variation convergence of Z,, /(1) towards Z,(u) as M goes to infinity for all
pweM(T)and all o € R\ {1}.

1.4.1.2 Empirical results

For the numerical results, we let J € N* and we consider the case where [i; is a
weighted sum of J dirac measures, that is: ji; = Z}]:1 Ajdg; with 0y,...,0; € T and
A € S5, where S; is the simplex of R” and is defined by

J
Sy={A=(0,.. ., A)eR) Vje{l,....J}, \;=0and > N =1, . (L17)
7j=1

In this case, for any kernel K of our choice, the («,I')-descent procedure simplifies
and provides an update formula for the mixture weights of the corresponding mix-
ture model /i1 k(y) = 2}1:1 A\jk(0;,y): an immediate induction yields that for every
n € N*, [i, can be expressed as fi,, = 23-]:1 Ajndp; where Xy, = (A1 p, ..., Ayn) € Sy
satisfies the initialisation A; = A and the update formula: for all n € N* and all
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jed{l,...,J},

)\j,nr(i)ﬂn,a,M(ej) + K)
Sy AT (b ans (6:) + k)

Njnt1 =

Here, the unbiased estimate bun a,m(05) of b, (6;) is chosen to be

M .
ZA)A M i Z k(e Yo n+1 f/ (Mnk(ym,n—i—l))
Hn M —1 ,&nk mn—i—l) @ p(Ym,n+1)
with Yie1, ..o Yarnet iLd fink conditionally on F, and where F; = () and F,, =
n+ -+ y
U(Y:|_727...,YM’2,... 7Y1,na~ . 7YM,n) forn > 2.

This procedure is summarised in Algorithm 6 of Chapter 2 and we now make an
important remark: one main strength of the algorithm we have designed is that it
does not require any information on how the {61, ...,60;} have been obtained in or-
der to infer the optimal weights, as it draws information from samples that are gener-
ated from /i, k. Then, since the procedure leaves {0, ..., 0;} unchanged throughout
the optimisation of the mixture weights, a natural idea is to combine this algorithm
with an Exploration step of our choice that modifies the parameter set (Algorithm 7).

While any choice of Exploration step could be envisioned, we settle for a simple
exploration step in our numerical experiments (it is detailed in Section 2.4) and we
focus on investigating how the choice of o and I' plays a role in practice.

The key message from our numerical experiments is the following: as the di-
mension increases the Power Descent with o < 1 is a more scalable alternative to the
Entropic Mirror Descent, which sheds light on the importance of going beyond the
traditional Entropic Mirror Descent framework from the optimisation literature.

We visually support that claim in Figure 1.5 below where we target a mixture
density multiplied by a constant Z and where the Entropic Mirror Descent fails as
the dimension increases compared to the Power Descent (these figures correspond
to Figure 2.1 and 2.2 in Section 2.4).

In addition, we also consider a Bayesian Logistic Regression on a real-world
dataset in dimension 56: Figure 1.6 shows that our Power Descent algorithm has
the ability to outperform a typical computationally-equivalent Adaptive Importance
Sampling algorithm (see Section 2.4 for details).

This concludes our overview of Chapter 2, in which we build the novel frame-
work of the (o, I')-descent and demonstrate empirically the benefit of going beyond
the Entropic Mirror Descent framework for mixture weights optimisation by using
the Power Descent algorithm instead. Let us now advance to summarising the con-
tent of Chapter 3.
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FIGURE 1.5: Plotted on the first line is the VR bound for the Power
Descent and the Entropic Mirror Descent with o = 0.5 (0.5-Power
and 0.5-Mirror) while the second line is the Log-likelihood for the
Power Descent with o« = 0.5 and the Entropic Mirror Descent with
a =1 (0.5-Power and 1-Mirror). The dimension d varies in {8, 16, 32}
from left to right and the plotted quantities are averaged over 100
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FIGURE 1.6: Plotted are the average Accuracy and Log-likelihood
computed over 100 replicates for Bayesian Logistic Regression on the

Covertype dataset for the Power Descent with o = 0.5 (0.5-Power)
and a computationally-equivalent Adaptive Importance Sampling al-
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1.4.2 Chapter 3: Mixture weights optimisation with the a-divergence

150 175 200

Thanks to Chapter 2, we now have access to the Power Descent, an algorithm that

permits us to optimise the mixture weights of mixture models by a-divergence min-

imisation for all & € R\ {1}, regardless of the underlying distribution of its mixture

components parameters.

However, one may remark that the convergence of the (exact) Power Descent

towards the global optimum when a < 1 in Theorem 4 is guaranteed under the

assumption that (y,),>1 weakly converges towards a certain p*, that is later proved
to satisfy Wo (1*k) = infeen, , (1) YalCk).
This is a much stronger assumption compared to the ones made in Theorem 3

for the Entropic Mirror Descent and the Power Descent when o > 1 and in which
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convergence rates are available. Since the case o < 11is useful to tackle the challenges
of forward Kullback-Leibler optimisation, one would be interested in alleviating this
specific assumption to obtain a full proof of convergence.

Furthermore, one may also notice that the Power Descent is defined for all o # 1,
and thus the important case &« = 1 in (1.14) corresponding to forward Kullback-
Leibler minimisation is not handled by this algorithm.

The aim of Chapter 3 is to cover both of these aspects. In particular, studying the
extension of the Power Descent to the case a = 1 will also lead us to further look
into the connections between the Power Descent and the Entropic Mirror Descent.

We now describe the main results obtained in Chapter 3.

1.4.2.1 Main results

The first result of Chapter 3 establishes the full proof of the global convergence to-
wards the optimum for the mixture weights when a < 1.

Letting © = (01,...,0,) € T’ be fixed and setting 11y = Z},:1 Ajop; forall A € S,
Theorem 10 indeed considers the sequence (ji,,)nen+ defined by i1 = px and (1.4.1).
This amounts to studying the sequence (A,,)ncn+ satisfying the initialisation A; = A
and the update formula:

Ani1 = I (N,) , n e N*,

where we have set p,, = ijl Ajndg, for every n € N* and where forall X € Sy,

Z;nixt(A) = < )\]F(bﬂ)\ya(gﬂ) + K) )
1<g<sd

Zgzl AL (byy a(00) + K)

with (¢« — 1)k > 0and I'(v) = [(a — v + 1}ﬁ for all v € Domy,.

The convergence towards the optimal mixture weights when a < 1 is then de-
rived in Theorem 10 under the assumption that {K(61,-),...,K(8s,-)} are linearly
independent, paired up with (1.A1) and (1.A4) [where (1.A4) given below corre-
sponds to (1.A3) in the simplified case where ;. is a sum of Dirac measures].

(1.A4) (i) Forally €Y, 6 +— k(0,y) is continuous;

.\ 4 k(0,,y)\ >
(i) we have L 1%agjk(0] y) X 12(2(]( o) ) v(dy) < oo.

If « = 0, we assume in addition that / max
25959

log (%))p(yw(dy) < 0.

In terms of assumptions, notice that (1.A1) and (1.A4) are mild and that since the
objective function ¥, depends on A through p K, an identifiably condition was
to be expected in Theorem 10 in order to achieve the convergence of the sequence
(An)nen+. One may then observe that this identifiably condition notably holds when
K is a d-dimensional Gaussian kernel under the assumption that the 6;,...,6; are
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full-rank with J < d.

Next in line after the full proof of convergence for mixture weights when oo < 1in
the Power Descent is the extension of this algorithm to the case a = 1. Proposition 19
then establishes that under typical convergence and differentiability assumptions,
the Power Descent can be extended to the case a = 1 and that we recover an Entropic
Mirror Descent applied to the objective function ¥;.

As we already know from Theorem 3, this algorithm enjoys an O(1/N) conver-
gence rate. Yet, Proposition 19 shows that a deeper connection runs between the
Power Descent and the Entropic Mirror Descent beyond the (o, I')-descent frame-
work.

To better understand that connection, our idea is then to look at first-order ap-
proximations by considering the case where v € R\ {1} and b, (0) ~ p(b,«) for
all @ € T. As a result of these calculations, letting n > 0 and ¢ € M;(T), we find
that first-order approximations for one transition for the Power Descent and for the
Entropic Mirror Descent applied to y — ¥, (pk) are given by

n ba(0) — 11(bya)
a—1pulbya)+r+1/(a—1)
Zo(p)(df) = p(d0) [1 — 0 (bya(f) — n(bua))] (Entropic Mirror Descent).

Zo(p)(dO) = p(dO) |1 — (Power Descent)

Thus, these two approximations do not coincide, which brings us to introduce in-
stead the Renyi Descent one-step transition

p(do) exp [—ﬁ(a_n(,i‘féifz))ﬁ)ﬂ]
i (eXP [—U(afl)(ué)gfa)%)“})

since it shares the same first-order approximation as the Power Descent.

Zo(p)(d) = (Renyi Descent),

Here, the name of this one-step transition comes from the fact that it can been
seen as an Entropic Mirror Descent transition for all « € R \ {0, 1} applied this time
to the objective function p — W/ (uk; p), where for all probability density ¢ with
respect to v on (Y,)) and alla € R\ {0,1} we have set

I
ala—1)

Letting x = 0 and p = p(-, 2) in V2%E(q; p), we then recognise the VR bound L, (g¢; 2)
up to a proportional constant —a~!, hence the name Renyi Descent.

UAR(g;p) =

log (/Y q9(y)*p(y)' v (dy) + (o - 1)H> :

Contrary to the Power Descent, the Renyi Descent enjoys the typical O(1/v/N)
convergence rate results from the optimisation literature for Entropic Mirror De-
scent algorithms, which we further improve to an O(1/N) convergence rate in The-
orem 11 (and for clarity, Table 1.2 below recapitulates the theoretical contributions
from Chapter 3 compared to Chapter 2).
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TABLE 1.2: Comparison between the theoretical results in Chapter 3

and in Chapter 2
Power Descent Renyi Descent
Chapter 2 o < 1: convergence under restrictive assumptions; not covered
a > 1: O(1/N) convergence rate
Chapter 3 o < 1: full proof of convergence for mixture weights; O(1/N)
extensiontoa =1 convergence rate

We now present some numerical results.

1.4.2.2 Empirical results

Following Chapter 2, we approximate the Power Descent and the Renyi Descent
using Importance Sampling estimates, a procedure that written explicitly in Algo-
rithm 6 and 9 and not detailed here for the sake of conciseness. We then pair them
up with the same Exploration step as in Chapter 2 and we target a mixture density of
Gaussian distributions multiplied by a constant ¢ (we refer to Section 3.5 for details
regarding our numerical experiments).

The plot below, which corresponds to Figure 3.1, compares the Power Descent
and the Renyi Descent in dimension 16 as the number of samples M used in the
Importance Sampling estimates increases. It illustrates the theoretical link between
the two algorithms (and the Entropic Mirror Descent applied to ¥, is provided as a
reference).

FIGURE 1.7: Plotted is the average VR bound for the Power Descent
(PD), the Renyi Descent (RD) and the Entropic Mirror Descent ap-

plied to ¥, (EMD) in dimension d = 16 computed over 100 replicates
with 79 = 0.3 and o = 0.5 and an increasing number of samples M.

Dimension 16, @ = 0.5, 75 = 0.3 M = 100 Dimension 16, a = 0.5, 5y = 0.3 M = 1000 Dimension 16, a = 0.5, 7y = 0.3 M = 2000

Variational Renyi Bound
oL L
Variational Renyi Bound
T O
Variational Renyi Bound
R

We have thus found a novel algorithm for mixture weights optimisation that is
close to the Power Descent in the sense that it shares the same first-order approx-
imation. Theoretically-wise (and contrary to the Power descent when o < 1), it
benefits from the Entropic Mirror Descent optimisation literature so that O(1/v/N)
convergence rates hold, which we improve to O(1/N) convergence rates.

Note that a practical use of the Power Descent and of the Renyi Descent for mix-
ture weights optimisation involves unbiased estimates of b, o(#) + « for the former
while the latter uses biased estimates of b, «(6)/(tn(by, ) +++1/(a—1)). Finding
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which approach is most suitable between biased and unbiased a-divergence min-
imisation remains an open issue in the literature (Dieng et al., 2017; Li and Turner,
2016; Geffner and Domke, 2020a; Geffner and Domke, 2020b; Dhaka et al., 2021) that
is beyond the scope of this thesis.

Nevertheless, our work provides insights on potential links between unbiased
and biased a-divergence methods, as both the unbiased Power Descent and the bi-
ased Renyi Descent share the same first-order approximation.

So far in Chapter 2 and Chapter 3 we have insisted on the fact that our algorithms
could be paired up with any Exploration step we can think of and we have chosen
to keep the Exploration step simple in our numerical experiments. One may then
wonder if we can exhibit some examples of Exploration step that can successfully be
combined with our framework for mixture weights optimisation. This is what we

focus on in Chapter 4, which we summarise right after.

1.4.3 Chapter 4: Monotonic a-divergence minimisation

In Chapter 4, we aim at building a complete framework for mixture models opti-
misation that enables a systematic decrease of the a-divergence at each step. This
means that on top of our updates for mixture weight optimisation, we want to de-
rive update formulas for the mixture components parameters as well.

As we shall explain thereafter, the particularity of our work in Chapter 4 is that
it will permit us to simultaneously optimise the weights and the components param-
eters of a given mixture model.

1.4.3.1 Main results

The starting point of our approach in Chapter 4 is to go back to the typical Variational
Inference parametric family (1.8), that is

Q={q:y—Fk(0,y) : 0T},

and to construct a sequence (6,),>1 so that Uy (k(0p41,-)) < VUo(k(6y,-)) at time n.

We do so in Theorem 12, where under (1.A1), for all @ € [0,1) and all initial
01 € T such that ¥, (k(61,-)) < oo, we establish that a sufficient condition to obtain
a monotonic decrease in the a-divergence at each step is for the sequence (6,,),>1 to
satisfy foralln > 1,

k(0n, ) p(y)' k(Ons1,y)
/Y o log <M> v(dy) <0. (1.18)
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As a result, we deduce in Corollary 27 that (1.18) holds for all » > 1 when the
sequence (0y,)n>1 is iteratively defined by

Ony1 = argmaXeeT/Yk‘(9n,y)ap(y)1‘a log(k(0,y))v(dy), n=1. (1.19)

Strikingly, the above update formula is written as a maximisation problem involv-
ing the logarithm of the kernel k. This implies that it can be used to derive simple
update rules for (6,,),>1 for some well-chosen kernel k, a fact that we illustrate over
several examples, namely Example 8 (Gaussian), Example 9 (Student) and Exam-
ple 10 (Mean-field).

As it turned out, we can also obtain alternative schemes satisfying (1.18) beyond
the intuitive update (1.19). These results require additional smoothness conditions
on the sequence of functions (g,,),>1 where foralln > 1and all§ € T = R4

a -«
(@) = [ HOPIE T o (FER vy (120

and (¢, )n>1 is a positive sequence. Indeed, assuming that g,, is 3,,-smooth and letting
(Yn)n>1 be valued in (0, 1], Corollary 28 states that the sequence (6,,),>1 iteratively
defined by

Ot = O — g—"v%(enezan C on>1, (1.21)

satisfies (1.18) for all n > 1. An important remark is then that under common differ-
entiability assumptions, we can write: foralln > 1and all§ € T

Vou(®) = o [ FO PO G 1050, i)

Y a—1

so that, letting p = p(-, ), the two cases ¢, = 1and ¢, = (fy k(05 y)*p(y) v (dy)) !
at time n correspond to Gradient Descent steps applied to 6 — ¥, (k(0,); Z) and
0 — —La(k(0,-); 2) respectively with a learning policy proportional to (7,8, !)n>1-
We are thus able to connect our approach to typical Gradient Descent techniques
for a-divergence and Renyi’s a-divergence optimisation, especially since the condi-

tions on (g, )n>1 are met for a Gaussian kernel (Example 11).

At this stage, we have proposed several ways to carry out parameter optimisa-
tion for 6 — W, (k(6,-)) by decreasing the a-divergence at each step. We now move
on to our main goal, which is to extend the monotonicity property to the case of

mixture models: given J € N*, we consider the approximating family given by

J
0= {q:y»—)/ﬁ)\yek(y)ZAjk(aj,y) : )\GSJ,@ETJ} ,
j=1
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where we use the notation © = (01,...,0;) € T’ and ure = 25-121 A;jog, for all
X € Sy and all © € TY. This approximating family simplifies to (1.8) when J = 1,
and we are thus interested in treating the case J > 1.

Theorem 13, our first result for mixture models, generalises Theorem 12 and es-
tablishes sufficient conditions on both the mixture weights and the mixture compo-
nents parameters leading to a monotonic decrease in the a-divergence at each step.
More precisely, let us denote A, = (\j,)i1<j<s and ©,, = (6;,)1<j<s forall n > 1.
We also introduce the shorthand notation p,, = Z}']=1 Ajn0e;., and

a—1
unk(y)> (122)

A () = k(B ) ( el

fora € [0,1),allj =1...J,alln > 1and all y € Y. Lastly, we define S}r =
{AeS8; : Vjed{l,...,J}, A\; >0}

Using these notation and under (1.A1), Theorem 13 states that for all « € [0, 1)
and all initial parameter set (A1,01) € Sj x T7 such that ¥, (u1k) < oo, the sequence
(An, ©n)n>1 defined iteratively by: n > 1,

J n
e )\n
/Y > A _@1) log ( ;{“) v(dy) <0 (1.23)
j=1 I
J n
7'04(3/) k ‘9',71 Y
/YZ)\M ;_ o log ( ]E;(Jefly))) v(dy) <0 (1.24)
j=1 7,n

ensures a systematic decrease in the a-divergence at each step, thatis foralln > 1,
we have ¥, (n+1k) < Vo (pnk).

Here, a key property achieved by Theorem 13 is that (1.23) does not depend on
©,+1 and similarly (1.24) does not depend on A, 1. As aresult and as we announced
earlier, Theorem 13 provides a framework to optimise simultaneously the weights
and components parameters of a mixture model.

The following theoretical results then focus on finding iterative schemes satisfy-
ing (1.23) and (1.24), starting with (1.23) (since the dependency in ); ,+1 appearing in
(1.23) is simpler than the dependency in 0;,, 1 appearing in (1.24) that is expressed
through the kernel k).

e Theorem 14 identifies an update formula for (A,),>1, regardless of the choice
of the kernel k. Indeed, under (1.A1) and letting o € [0, 1), (1,,)n>1 be valued in (0, 1]
and x be such that (o — 1)k > 0, this result establishes that for all initial parameter
set (A1,01) € Sj x T, the sequence (A, ©,),>1 defined iteratively such that for all
n>1

Nim |y 10 ()0(dy) + (@ = s ™
St Mo |y v V() + (0= 1)k

Ajmg1 = =, j=1..J (1.25)
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and (1.24) holds will satisfy the conditions of Theorem 13.

e Building on the update for the mixture weights from Theorem 14, Corollary 30
and Corollary 31 respectively extend the updates (1.19) and (1.21) for J = 1 to the
more general case of mixtures models. More specifically, Corollary 30 considers the
update at time n given by

Ojnt1 = argmaxejeT/Yy;fa(y) log(k(8;,v))v(dy), j=1...J (1.26)

so that the full update from (A, ©,,) to (A, 41, ©,+1) can be written as the following
optimisation problem

(An+1,On41) = argmin)\eg}',@gr‘] (hn(X) + 9(0))

(the definition of the functions h,, and g,, can be found in (4.18) and (4.19) and we

refer to Section 4.3.1 and Section 4.3.2 for details about the above formulation).

As for Corollary 31, it sets at time n

Yin .
0j,n+l = 9]'7” — ﬂ] ngm(e)]g:gm 5 J = 1... J s (127)
]7n

where for all j = 1...J, (7n)n>1 is valued in (0, 1] and given a positive sequence
(¢jn)n>1, the set of functions (g; ,,)n>1 is defined by: foralln > landallf € T = RY,

500 = 50 [ B0 (10 (0 (1.28)

with each function g; ,, being assumed to be 3;,-smooth. Under common differen-
tiability assumptions one can then write: foralln > 1and all§ € T

Ve (y) .
Vo3l0) = 0 | LDV (logk(0.) vidy) . =17

and we recover Gradient Descent steps for a-divergence and Renyi’s a-divergence
minimisation by setting ¢;, = Ajn and ¢;n = Ajn(fy tnk(y)*p(y)'~v(dy)) ! re-
spectively when p = p(-, 7). Observe as a result that \;,, appears as a multiplicative
factor by design in both definitions of c;,, above, which could prevent learning in
practice for very small values of \; .

This is where the framework of Corollary 31 comes in handy, as another valid
choice for ¢;, is ¢jn = (f 'y;fa(y)y(dy))_l. In that case, \;, only appears through
fnk in the mixture components parameters update. This property, also shared with
the update (1.26) and that will come up again in our numerical experiments, fur-
ther underlines the importance of having worked under the general conditions on
(An, ©n)n>1 stated in Theorem 13.
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At this point, one may remark that the conditions on (©,,),>1 stated in (1.24)
are satisfied by letting the sequence (0,,),>1 be constant equal to © throughout the
algorithm and that in doing so we obtain the Power Descent algorithm (with 7, =
n/(1 — «)). The updates on the mixture weights in Theorem 14 thus correspond
to Power Descent one-step transitions and we have reached our announced goal,
which was to pair up the work from Chapter 2 and Chapter 3 with simultaneous
components parameters updates.

Furthermore, having recovered the Power Descent algorithm also tells us that it
is possible to derive monotonicity result beyond the case « € [0, 1) from Theorem 13,
at the cost of keeping the sequence (0,,),>1 constant (recall indeed that our mono-
tonicity results for the Power Descent from earlier chapters hold for all « € R and
all n € (0,1]). In fact, we show in Proposition 32 that the range of possible values of
7 can yet again be extended when o < 0 in the Power Descent.

Interestingly, the Power Descent is not the only special case that fits into the
framework of Theorem 13. Letting @« = 0, x = Oand 7, = 1foralln > 1in
Corollary 30, we recover the Mixture Population Monte Carlo (M-PMC) algorithm
from Cappé et al., 2008, which sheds light on the link between our approach and
an integrated Expectation-Maximisation algorithm from the Adaptive Importance
Sampling literature (see Section 4.3.4).

Finally, practical versions of our algorithms based on our maximisation approach
(1.26) and on our gradient-based approach (1.27) are derived for Gaussian Mixture
Models by resorting to usual Importance Sampling estimates involving a sequence
of samplers (¢, )n>1 (we refer to Algorithm 13 and 14 for details). While those are
the algorithms we will consider in our numerical experiments, we observe that ad-
ditional practical algorithms can also be derived within the Student’s distribution
family (e.g. Algorithm 15).

1.4.3.2 Empirical results

We revisit the example that targets a mixture density of two d-dimensional Gaus-
sian distributions multiplied by a positive constant c. This time, the approximating
family Q is given by the family of Gaussian Mixture Models in which the mixture
weights and the mixture means are updated while the variance matrices are kept
constant equal to o1 ,.

We study the impact of four parameters: (i) the learning rate policy (7, )n>1 (ii)
the constant « (iii) the sequence of samplers (g,)n>1 in the Importance Sampling
estimates and (iv) the value of a. We refer to Section 4.4 for details and we now
present our main conclusions.

o We first investigate (i), (ii) and (iii) and to do so, we set &« = 0 and o = 1. Now
letting the learning policy (7,),>1 be constant equal to 1, we consider two versions
of Algorithm 13:
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(@) The M-PMC(n, k) algorithm, that uses the best sampler at time n in the Impor-
tance Sampling estimates i.e. p,k. This family of algorithms notably includes
the M-PMC algorithm from Cappé et al., 2008, which also chooses this sampler
in practice and is plotted as a reference algorithm under the name M-PMC(1, 0).

(b) The UP-PMC(n, ) algorithm, that uses a uniform sampler at time n.

A comparison between M-PMC(7, k) and UP-PMC(n, k) for different values of n and
+ can then be found in Figure 1.8 below (corresponding to Figure 4.2 in Chapter 4),
that we now comment. [Note as a side remark that in these plots, we are interested
in the log Mean-Squared error LogMSE, however additional plots for log-likelihood
(the VR bound when « = 0) estimation can be found in Figure 4.1.]

Dimension 16, « = 0.0 M = 200 and —x = 0.0 Dimension 16, « = 0.0 M = 200 and —x = 0.1
1 M-PMC(y.) r M-PMC(;, %)
A\ — =10 —_ =10
| \ — =05 0- — =05
° \\ 1=02 3\ 1=02
2=01 \ =01
-1
wo-1- w
[l 4]
= =
El o UM-PMCy, i) ¥ 2r UM-PMC(y. x)
— =10 MW\/\'N — u=10
— =05 _al WWANW NG — =05
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FIGURE 1.8: LogMSE comparison for the M-PMC(#, k) and the UM-
PMC(n, k) algorithms in dimension d = 16 for n € {1.0,0.5,0.2,0.1}
and —x = {0, 0.1, 1} (over 200 replicates).

The key insight from these plots is that the choice of x, n and (¢, )n>1 heavily impacts
the convergence of the algorithm.

Focusing first on the effect of x and 7 in the M-PMC(n, ) curves, we obtain that
M-PMC(1, 0) underperforms due to a learning rate 7 that is too high in dimension 16.
As a result, it discriminates too much between the mixture weights and by setting
some of them to 0 in the early stages it prevents the algorithm from visiting the
mixture components parameters space well. Lowering the value of 7 thus results
in improved results and we observe that we can even further mitigate the issue of
setting mixture weights to 0 too early by enforcing a positivity of the weights via x.

In the same vein, it appears that using a uniform sampler ensures a fairer sam-
pling among all the components parameters throughout the algorithm and improves
the estimates of the intractable integrals appearing in Algorithm 13.
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Our general framework for mixture models optimisation thus strongly improves
on the M-PMC algorithm via the hyperparameters «, 7 and the choice of (¢5,)n>1 and
we finish up by presenting results linked to (iv).

e Regarding (iv), Figure 1.9 below (Figure 4.3 from Chapter 4) compares the per-
formances of the UM-PMC(7, k) algorithm depending on the value of . Impor-
tantly, we also include, under the name RGD(7, k), numerical experiments that use
Renyi’s a-divergence gradient-based updates for the mixture components parame-
ters updates (that is there is an additional multiplicative factor ), ,, in those updates,
see (4.28) and Algorithm 14). Furthermore, the M-PMC algorithm (M-PMC(1, 0))
and the PIMALIS algorithm (Martino et al., 2017) are provided as a reference.

Dimension 16, o> = 1.0, M = 200 and —x = 0.1 Dimension 16, o> = 1.0, M = 500 and —x = 0.1

— UM-PMC(0.1, 0.1), @ = 0.0
—— UM-PMC(0.1,0.1),0 = 0.5
—— RGD(0.1,0.1), a = 0.0
—— RGD(0.1,0.1), a =05

— UMPMC(0.1,0.1), 0 = 0.0
— UM-PMC(0.1,0.1),a =05
— RGD(0.1,01),a = 0.0
— RGD(0.1,0.1), a =05
— M-PMC(1.0,0.0)

— PIMAIS, o3, =10

—— PIMAIS, 03, =25.0
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FIGURE 1.9: LogMSE for UM-PMC(n, k) and RGD(7, k) in dimension

d = 16 for a € {0.,0.5}, 0% € {1,4}, 7 = 0.1 and —x = 0.1 compared

with the PIMAIS algorithm and the M-PMC(1., 0.) algorithm (over
200 replicates).

We find that there are benefits of going beyond the case @ = 0 when the value of o
changes in our numerical experiments. In addition, the plots for RGD(7, k) illustrate
the fact that the multiplicative factor \;, appearing in components parameters up-
dates (and that we already discussed from a theoretical point of view) does have a
negative impact on the speed of convergence of the algorithm numerically.

This wraps up our overview of Chapter 4, in which we introduce a novel method-
ology to carry out mixture model optimisation via a-divergence minimisation. Our
approach enables simultaneous updates for both the weights and components pa-
rameters and can be linked to Gradient Descent schemes. It notably recovers the
Power Descent algorithm and the M-PMC algorithm as special cases. Finally, empir-
ical evidence shows that our methodology can be used to enhance both the M-PMC
algorithm and Gradient Descent schemes and we also demonstrate the importance
of having some flexibility in the choice of a.
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Infinite-dimensional a-divergence
minimisation

The work presented in this chapter corresponds to the paper entitled “Infinite-dimensional
gradient-based descent for Alpha-divergence minimisation” (Daudel, Douc, and Portier,
2021) that has been accepted in the Annals of Statistics.

2.1 Introduction

As stated in Chapter 1, our objective in this thesis is to figure out ways to enrich the
variational approximating family Q beyond the framework of Black-Box Variational
Inference where

Q={q:y—k(f,y) : 0T}

and 0 is typically tuned through Stochastic Gradient Descent optimisation, all the
while maintaining efficient optimisation.

Hierarchical Variational Inference methods (Ranganath, Tran, and Blei, 2016; Yin
and Zhou, 2018; Titsias and Ruiz, 2019) do so by putting a prior on the variational
parameter ¢, that is itself parameterised by a certain ¢ to be optimised by Stochastic
Gradient Descent so that

0= {q:y»—>/_r)\¢,(9)k(9,y)d9 ; qbeA} .

In the spirit of Hierarchical Variational Inference methods, we will consider in this

chapter the approximating family given by

Q={q:yH/Tu(d9)k(9,y) : MGM} ,
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where M is a convenient subset of M; (T), the set of probability measures on T.

In contrast with already-existing Hierarchical Variational Inference methods, our
approach does not assume that p is parameterised and for this reason we call it
infinite-dimensional. We can motivate the formulation of this extended approximat-
ing family by noticing that it is large enough to include mixture models (as it corre-
sponds to choosing . as a weighted sum of Dirac measures).

Consequently, we aim at designing an iterative algorithm that performs infinite-
dimensional a-divergence minimisation with respect to ;1 between the approximate
variational density and the posterior density. For this purpose, let us introduce some
notation that will be used in this chapter (and in the rest of the thesis too) and state
more formally the optimisation problem we want to solve in this specific chapter.

Notation and problem statement Let (Y,),r) be a measured space, where v is a
o-finite measure on (Y,)) and let (T,7) be a measurable space. Furthermore, let
p be a measurable positive function on (Y, )) and for all probability density ¢ with
respect to v on (Y, )), we define

Volg;p) = /Yfa <z$> p(y)v(dy) ,

where f,, is the convex function on (0, +00) defined by fy(u) = u—1—log(u), fi(u) =
1 —u+ulog(u) and fo(u) = ﬁ [u*—1—a(u—1)]foralla € R\ {0,1}.

Let K : (0, A) — [, k(6,y)r(dy) be a Markov transition kernel on T x ) with ker-
nel density k defined on T x Y. Moreover, for all x € M;(T) and ally € Y, we denote
pk(y) = [7u(d0)k(,y) and we consider in this chapter the general optimisation

problem

arginf, cp Vo (1k;p) (2.1)

where we will drop the dependency on p for notational ease and when no ambiguity
occurs. As explained in Chapter 1 (and derived in Appendix A.2), the optimisation
problem (2.1) with p = p(-, ) amounts to performing a-divergence minimisation
with respect to u between the variational density ¢ = pk and the posterior den-
sity p(-, Z), so that the Bayesian case is embedded in the general framework of (2.1);
we may use the shorthand notation ¥, (¢q; 2) instead of ¥, (¢; p(+, Z)) to designate it.

The convexity of p — W, (uk) is straightforward from the convexity of f,, there-
fore a simple yet powerful consequence of enlarging the variational family is that

the optimisation problem now involves the convex mapping

= W (k) = /Yfa (lf(gf))) p(y)v(dy) ,
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whereas the initial optimisation problem was associated to the mapping

o0 [ 1o (’C;f;)) p(y)v(dy) |

which is not necessarily convex. We now detail the organisation of Chapter 2.

Outline The chapter is organised as follows:

* In Section 2.2, we describe the exact («, I')-descent, an iterative algorithm that
performs a-divergence minimisation by updating the measure pi. We establish in
Theorem 1 sufficient conditions on I' for this algorithm to lead at each step to a
systematic decrease in the a-divergence. We then investigate the convergence of the
algorithm in Theorem 2, 3 and 4.

Strikingly, the Infinite-dimensional Entropic Mirror Descent (Hsieh, Liu, and Cevher,
2019, Appendix A) is included in our framework and we obtain an O(1/N) conver-
gence rate under minimal assumptions, which improves on existing results and il-
lustrates the generality of our approach. We also introduce a novel algorithm called
the Power Descent, for which we prove convergence to an optimum and obtain an

O(1/N) convergence rate when o > 1.

¢ In Section 2.3, we define the stochastic version of the exact («, I')-descent and
apply it to the important case of mixture models (Jaakkola and Jordan, 1998; Gersh-
man, Hoffman, and Blei, 2012). The resulting general-purpose algorithm is Black-
Box and does not require any information on the underlying distribution of the vari-
ational parameters. This algorithm notably enjoys an O(1/v/N) convergence rate in
the particular case of the Entropic Mirror Descent if we know the stopping time of
the algorithm (Theorem 5).

¢ Finally, Section 2.4 is devoted to numerical experiments. We demonstrate the
benefit of using the Power Descent and thus of going beyond the Entropic Mirror
Descent framework. We also compare our method to a computationally equiva-
lent Adaptive Importance Sampling algorithm for Bayesian Logistic Regression on

a large dataset.

We thus start by describing the exact («, I')-descent, a novel iterative algorithm
to solve (2.1).

2.2 The (a,I')-descent

Throughout the chapter, we will assume the following conditions on k, p and v.

(2.A1) The density kernel &k on T xY, the function p on Y and the o-finite measure v on
(Y, ) satisty, forall (6,y) € TxY, k(0,y) > 0,p(y) > 0and [, p(y)v(dy) < co.

Under (2.A1), we immediately obtain a lower bound on ¥,,.



40 Chapter 2. Infinite-dimensional o-divergence minimisation

Lemma 4. Suppose that (2.A1) holds. Then, for all . € M;(T), we have
(k) > fo [ popwian)) > ~oc

where f, is defined on (0,00) by fo(u) = ufa(1/u).

Proof. Since falu) = ufa(1/u), we have

U (k) = /Yfa </Z§?y))) pk(y)v(dy) .

Recalling that f,, and hence f,,, is convex on R, Jensen’s inequality applied to f,
yields Wo(uk) > fo (Jy p(y)v(dy)) > —oo. O

Remark 5. Assumption (2.A1) can be extended by discarding the assumption that p(y) is
positive for all y € Y. As it complicates the expression of the constant appearing in the bound
without increasing dramatically the degree of generality of the results, we chose to maintain
this assumption in Chapter 2 for the sake of simplicity.

Thus, if there exists a sequence of probability measures {y, : n € N*}on (T,7)
such that ¥, (u1k) < co and ¥, (k) is non-increasing with n, Lemma 4 guarantees
that this sequence converges to a limit in R. We now focus on constructing such a
sequence {p, : n € N*}.

For this purpose, let © € M;(T). We introduce the one-step transition of the
(o, T')-descent which can be described as an expectation step and an iteration step:

Algorithm 4: Exact («, I')-descent one-step transition

1. Expectation step : b, (6) = /Yk:(O,y)fc’y (%) v(dy)

p(do) - T'(by,a(0) + k)
w(L (b, + K))

2. Iteration step : Za(p)(d0) =

Given a certain x € R, a certain function I" which takes its values in R+ and
an initial measure p; € M;(T) such that ¥, (u1k) < oo, the iterative sequence of
probability measures (uy, )nen+ is then defined by setting

Pl = La(pin) n € N*. (2.2)

A first remark is that under (2.A1) and for all « € R\ {1}, b,,  is well-defined. As
for the case o = 1, we will assume in the rest of the chapter that b, 1(0) is finite for
all p € Mi(T) and 6 € T. The iteration p — Z,(p) is thus well-defined if moreover
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we have
p(I(bpa +K)) <00 (2.3)

A second remark is that we recover the Infinite-Dimensional Entropic Mirror
Descent algorithm applied to the Kullback-Leibler (and more generally to the a-
divergence) objective function by choosing I" of the form

L(v)=em.

We refer to Hsieh, Liu, and Cevher, 2019, Appendix A for some theoretical back-
ground on the Infinite-Dimensional Entropic Mirror Descent. In this light, b, (6)
can be understood as the gradient of yi — W, (k). Algorithm 4 then consists in ap-
plying a transform function I to the translated gradient b, (¢) + x and projecting
back onto the space of probability measures.

In the rest of the section, we investigate some core properties of the aforemen-
tioned sequence of probability measures (uy,)nen+. We start by establishing condi-
tions on (I, k) such that the (o, I')-descent diminishes ¥, (1, k) at each iteration for
all pi1 € M (T) satisfying W, (u1k) < oo.

2.2.1 Monotonicity

To establish that the («,I')-descent diminishes ¥, (i, k) at each iteration, we first
derive a general lower-bound for the difference ¥, (uk) — Vo (Ck). Here, (¢, p) is
a couple of probability measures where ¢ is dominated by ;. which we denote by
¢ = p. This first result involves the following useful quantity

_ o (9O k)
Ao [ vty [ u(de)k‘(@,y)fa< g )[1 4(0)] . 2.4

where g is the density of ( w.r.t u, i.e. ((df) = p(df)g(6).

Lemma 6. Assume (2.A1). Then, for all j1,¢ € My (T) such that ¢ < pand ¥, (puk) < oo,
we have
Aa < \I]a(uk) - \Ija(ck) . (25)

Moreover, equality holds in (2.5) if and only if { = p.

Proof. To prove (2.5), we introduce the intermediate function

[, p(dO)k(0,y) . (9(0)uk(y)
ha(Gon) = [ oty [ HEDRE g (SO0EY

Then, the convexity of f, combined with Jensen’s inequality implies that

V(dy)p(y) fo (fT “(dei’(*;f’y)g(e)> S vl (k). (26)

ha(C, 1) 2/

Y
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Next, set ug, = % and v, = l;k(%)

thatforall @ € T, forally € Y, fo(vy) = falugy) + fo(ugy)(vy — ugy), thatis

#h(y) 9OukW) . o (9OHk) ) 1h)
fo ( p(y) > g fa( p(y) ) +f“< p(y) > oy 19O (27)

Since the function f, is convex, we have

Now integrating over T with respect to %’gg’y) and then integrating over Y with

respect to p(y)v(dy) in (2.7) yields

Va(pk) 2 ha(Cp) + Aa . (2.8)

Combining this result with (2.6) gives (2.5). The case of equality is obtained using
the strict convexity of f, in (2.6) and (2.7) which shows that ¢ is constant p-a.e. so
that ¢ = p. O

We now plan on setting ¢ = Z,(x) in Lemma 6 and obtain that one iteration of
the (o, I')-descent yields ¥ (Z,(u)k) < Wo(uk). Based on the lower-bound obtained
in Lemma 6, a sufficient condition is to prove that taking g o I'(b, o + &) in (2.4)
implies A, > 0. For this purpose, let us denote by Dom,, an interval of R such that
forall @ € T, forall u € Mi(T), bya(f) + s and pu(b, o) + & € Dom, and let us make

an assumption on (I, k).

(2.A2) The function T" : Dom, — Rq is decreasing, continuously differentiable and
satisfies the inequality

[(—=1)(v— &)+ 1] (logT)(v)+1>0, ve Dom, .

We now state our first main theorem.

Theorem 1. Assume (2.A1) and (2.A2). Let p € M;(T) be such that (2.3) holds and
U, (pk) < oo. Then, the two following assertions hold.

(1) We have U, (Zo(n)k) < Vo (uk).
(i) We have Vo, (Z,(p)k) = Vo (uk) if and only if p = Lo ().

Proof. To prove (i), we set g o< I'(b, o + &) in (2.4) and we will show that A, > 0.
Then, the proof is concluded by setting ( = Z,(¢) in Lemma 6 as

Vo (Za(p)k) < Wa(pk) — Aa < Vo(uk) . (2.9)

We study the cases « = 1 and a € R\ {1} separately.
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(a) Case a = 1. In this case f](u) = logu and we have
/[, o (SO
A= [ vta) [ uaoyio.pton (“CXED ) 1 )

= [ vty [ uao)eio.) frowg(o) + 1 (“52) | - gto
k

= /T 14(d6) [logg(@)—i— /Y k(0,y)f1 <‘;((5))) v(dy)] [1—g(0)]

_ /T () [log g(8) + b1 (6) + ] [1 — 9(6)] .

where we used that u[k(1—g)] = 0in the last equality. Setting T'(v) = T'(v) /(T (b, 1+
%)) for all v € Domy, we have g = T o (b, 1 + ). Let us thus consider the probability
space (T,7,u) and let V be the random variable V' (0) = b,,1(8) + . Then, E[1 —

['(V)] = 0 and we can write

Ay = E[(logT(V) + V)(1 = T(V))] = Cov(logT(V) + V,1 = T(V)) .

Under (2.A2) with a = 1, v + log T'(v) + v and v ~ 1 — I'(v) are increasing on Dom;
which implies A; > 0.

(b) Case o € R\ {1}. In this case f/,(u) = —==[u®~! — 1] and we have

~ a—1
_{, 1 gO)uk(y)\* " 3
Ao= vt [ u(d9)k(9,y)a_1[( k) 1] 1 - g(0)
_ L (k@)™
= [ vtan [ uaoio.n 2 () a0 - g0
= [ 1) [B060) + ] a0 1= 9001
i

Again, setting I'(v) = T'(v) /(T (bya+#)) for allv € Dom,, we have g = T'o(b, o +k).
Let us consider the probability space (T,7, ) and let V' be the random variable
V(0) = bu.a(0) + k. Then, we have E[1 — T'(V)] = 0 and setting ' = x — -1+ we can

a—1
write

Ay =E[(V — T Y V)1 = T(V))] = Cov((V — kT L(V), 1 —=T(V)) .

Under (2.A2) with o € R\ {1}, v+ (v — &) [*"*(v) and v — 1 — T'(v) are increasing
on Dom,, which implies A, > 0.

Let us now show (ii). The if part is obvious. As for the only if part, ¥, (Z,(pn)k) =
U, (pk) combined with (2.9) yields

Vo (Za(p)k) = Yo uk) — Ao,

which is the case of equality in Lemma 6. Therefore, Z,, (1) = p. O
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Possible choices for (I', k). At this stage, we have established conditions on
(T, k) such that U, (Z,(u)k) < U,(pk) and identified the case of equality. Notice
in particular that the inequality in (2.A2) is free from the parameter x when o = 1,
which implies that the function I'(v) = e satisfies (2.A2) for all n € (0,1]. As
a consequence, the case of the Entropic Mirror Descent with the forward Kullback-
Leibler divergence as objective function is included in this framework.

One can also readily check that I'(v) = [(a — 1) v + 1]"/(1=®) gsatisfies (2.A2) for
all @ € R\ {1}, for all s such that (« — 1)x > 0 and for all n € (0, 1]. We will refer
to this particular choice of I' as the Power Descent thereafter. These two examples are
summarised in Table 2.1 below.

TABLE 2.1: Examples of allowed (T', ) in the (o, I')-descent according
to Theorem 1.

Divergence considered Possible choices for (T, k)
Forward KL (o = 1) F(v)=e"m,ne (0,1] any
a-divergence with o € R\ {1} | I'(v) = [(a — 1) v + 1]ﬁ, ne 0,1 | (a—1)k =0

Improving upon Lemma 6. In the following lemma, we derive an explicit lower-
bound for ¥, (uk) — ¥ (Zo (1) k) in terms of the variance of b, . Let us thus consider
the probability space (T, 7, ) and denote by Var,, the associated variance operator.

Lemma 7. Assume (2.A1) and (2.A2). Let pn € M;(T) be such that (2.3) holds and
U, (uk) < oco. Then,

Vary, (bya) < Wa(pk) = ¥a(Za(p)k) | (2.10)
where

e . _ _ !/ : 1/
Loy = ve})n(){;na {[(a = 1)(v— k) + 1] (log)’(v) + 1} x veglofma I(v) .
Proof. On the probability space (T, T, i), consider the random variable U () = b,,.(6)
++ and let V be an independent copy of U. For all uw € Dom,, define I'(u) =
I'(u)/E[I']. Let us now prove that

Lal

Ay > 2’ Var,(by,a) -

We study the cases & = 1 and o € R\ {1} separately.

(a) Case a = 1. In this case,

Ay = Cov(logT(U) + U, 1 —T(U)) .
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Using that E[1 — I'] = 0, we can rewrite A; under the form

A1 = JE[(0g F(0) + U~ logT(V) + V)(-F(0) + F(V))]

1_ [logD(U) + U — (logD(V) + V) =T'(U) + T(V) )
=_E -

2 U-V o-v U=V

L

(b) Casea € R\ {1}. Set ' = k — ——. In this case,
a—1

Ay = Cov((U — &)1 (U),1 = T(U)) ,

which, using once again that E[1 — I'] = 0, can be rewritten as

Ay = %E (U = )TN ) = (V = /)T (V) (=) + T(V))]
L[ =) ) = (V= k)P N(V) —T(U) + T(V)
-3 o Tl Ok
> Y ar, (b

Combining with (2.5) yields (2.10).
O

Lemma 7 can be interpreted in the following way: provided that L, ; > 0, (2.10)
states that the case of equality is reached if and only if the variance of the gradient
b, equals zero. Such a result, which holds for any transform function I satisfying
(2.A2), quantifies the improvement after one step of the («a, I')-descent.

Interestingly, monotonicity properties akin to Lemma 7 have previously been de-
rived under stronger smoothness assumptions in the context of Projected Gradient
Descent steps. For example, in the particular case where the objective function f is
assumed to be g-smooth on R, for all © € R it holds (see for example Bubeck, 2015,
Equation 3.5) that

! 2 - u—l u
VI < 7(w) f( LV >).

This result is then used to obtain improved convergence rates for the Projected Gra-
dient Descent algorithm. Consequently, we are next interested in proving a rate of
convergence for the exact («, I')-descent by leveraging Lemma 7 .

2.2.2 Convergence

Let ;11 € M;(T). We want to study the limiting behavior of the exact («,I')-descent
for the iterative sequence of probability measure (ji,,)nen+ defined by (2.2). To do so,
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we first introduce the two following useful quantities

Lyb:= inf (~logD)(v) and Ljh:= inf T(v).

vEDomyg, veDomy,

We define M; ,,, (T) as the set of probability measures dominated by /1. Next, we

strengthen the assumptions on I' as follows.

(2.A3) The function I" : Dom, — R+¢ is L-smooth and the function —logI" is concave
increasing.

We are now able to derive our second main result.

Theorem 2. Assume (2.A1), (2.A2) and (2.A3). Further assume that Ly 1, Lo2 > 0 and
that 0 < inf,cpom, ['(v) < sup,epem, ['(v) < co. Moreover, let j11 € My (T) be such that
U, (k) < oco. Then, the following assertions hold.

(i) The sequence (i, )nen+ defined by (2.2) is well-defined and we have that the sequence
(¥o(pnk))nen+ is non-increasing.

(ii) Forall N € N*, we have

La,2
N

L,
Vo (k) — Wa (k) < [Kumml)m 2 %} RN RED

a,l
where p* is such that Vo (u*k) = infeeny, , (1) Ya(Ck) and where we have defined
Ay = Vo (k) — Ualp*k) and KL(p*||pu1) = [1log (f}%) dp*.

Proof of Theorem 2. We prove the assertions successively.

(i) The proof of (i) simply consists in verifying that we can apply Theorem 1. For
all © € M;(T), (2.3) holds as we have

Dby +) < s 1)) <
veEDomg
and since at each step n € N*, Theorem 1 combined with ¥, (u,k) < oo implies
that ¥, (int1k) < Uo(unk) < 0o, we obtain by induction that (¥, (p4nk))nen+ is non-
increasing.

(ii) For the sake of readability, we only treat the case x = 0 in the proof of (ii).
Note that the case v # 0 unfolds similarly by replacing b, o by b, « + x everywhere
in the proof below. Let n € N* and set A,, = ¥, (unk) — Uy (u*k). We first show that

duy, L
Ay < Lao [/ log ( H +1> dp* + =Vary, (by, .a)Las]| - (2.12)
T d,U'n 2

The convexity of f, implies that

A, < /T b o (djin — dyr*) = /T (i) — by )"
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In addition, the concavity of —logI' implies that for all u,v € Dom,,,
~logT(u) < —logT(v) + (~ log I/ (v) (u — v)
ie
(—logT) (v)(v —u) <logD'(u) — logT'(v) .
Since by assumption — logI' is increasing, (—logI')’(v) > 0 and we deduce

logI'(u) — log I'(v)
v—u < (ZTog 1)/ (0) . (2.13)

We can apply (2.13) with v = b, () and v = py,(bp,,,o) Which yields

log F(bun,a(e)) — log F(Mn(bun,a))
(—1ogT') (1n(bpun,a))

Now integrating with respect to di*, we obtain

Mn(bun,a) - bun,a(g) <

1
(—1og ) (1t (by )

By definition of ;*, we have that A,, > 0 and combining with the fact that
(—1og ') (pen(bun,a)) > 0, we can deduce

An <

/T o8 T (By) — 108 T (st (b )] dis*

/T [log T (b, ) — 108 T(jin (bys, 0))] di* = 0.

Consequently, we obtain

Ap < Lag / [logT'(by,.a) — log T'(ttn (byy,a))] dp* (2.14)
.

dpn
~ Loa [ Jiog (Y25 4 1080 (Dl0y.0) ~ 108 O]

dpin N
— Loa | 108 (G ) a4 108 10 (T 0y ) = 08T 0 )] -

Next, we show that

L
log /’Ln(r(bﬂnya)) - IOgF(Mn(bun,a)) g §Varun (bun7a)La73 .

By assumption I' is L-smooth on Dom,,, thus for all § € T and for all n € N*,

F(bun,a(e)) < F(Nn(bun,a)) + F/(:un(bun,a))(bun,a(g) - Nn(bun,a))

L

+ 5 (pnal®) = by ))?



48 Chapter 2. Infinite-dimensional o-divergence minimisation

which in turn implies

L
/"Ln(r(bﬂ'rua)) < F(/’Ln(bﬂn,a)) + §Va'rl/4n (bM7L70¢) .

Finally, we obtain

LVar,, (by, o
108 fin(T(bys.0)) < 10g T4t (b)) + log <1+ WW) _

2 D (ptn (B 0)

Using that log(1 4+ u) < v when u > 0 and that 1/T" is increasing, we deduce

L
log /’Ln(]‘_‘(bﬂnya)) < logl—‘(/"bn(bﬂnaa)) + §Varﬂn (b/ﬁnya) LOC73 )

which combined with (2.14) implies (2.12). To conclude, we apply Lemma 7 to g =

% and combining with (2.12), we obtain

d,un+1> LLa3
A, < L /10 ( Adpt + 2203 (A, = A
2 [ g (g, ) T ( +1)

where by assumption L 1, Ly2 and L, 3 > 0. As the rh.s involves two telescopic
sums, we deduce

N
1 * LOI,Q * *
2 Wl ~ Waluth) < E2 [ KL ) - KL )
n=1
La,3
+LL71(A1 —Any1)| (2.15)

and we recover (2.11) using (i), that K L(p*||un+1) = 0 and that Ay > 0.
O

Remark 8. Note that the convexity of the mapping p — Vo (uk) in (2.15) implies an
O(1/N) convergence rate for iy = + 25:1 Lin, as well:

* La
Vo (fink) — Va(p'k) < =22 | KL(p*||m) + L

N A

La,3
«a

Lo

)

We now wish to comment on the constants appearing in (2.11) and in particular
the two constants K L(;*||p1) and Ay (since the remaining constants Lq 1, La2, La,3
and L all involve the function I', which has not been chosen yet in Theorem 2).

To do so, we consider in Example 3 the finite-dimensional case where y; is a
weighted sum of dirac measures. As we shall explain in more details later on in
Section 2.3, this case is of particular relevance to us as our procedure can then be

used to optimise the mixture weights of any given mixture model.

Example 3 (Simplex Framework). Let J € N*, let (6,...,60;) € T7 and let us consider
wp = J1 ijl dg;. Then, p* is of the form ijl Aj6g; where (A7, ..., \;) belongs to
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the simplex of dimension J. Moreover, the two quantities K L(p*||p1) and Ay can easily be
bounded in terms of J. Indeed, using that log u < u—1 for all w > 0 and that Zle M2 <1,
we obtain that

J

KL(p*||m1) = Xjlog j + log J
j=1

< log J .
As for Ay, we have by convexity that

Ay < [p1 — ) (bpy )

and, using Pinsker’s inequality as well as the bound on K L(p*|| 1) we have established just

above, we can deduce

Aq [Ml - M*](b,ul,a - E#l [bul,a])

<
< VRVRL( i) | max s al03) = by (07)

<ha'<d

< VQIOgJIgn?RiJ’bm,a(ej) - bu1,a(9j’)| .

AVEVERS

In the next Theorem, we state several practical examples of couples (I, ) which
satisfy the assumptions from Theorem 2.

Theorem 3. Assume (2.A1). Define |b|o,o = Supget pem, (1) [bp.a(0)| and assume that
|b]oo,a < 00. Let (I, k) belong to any of the following cases.

(i) Forward Kullback-Leibler divergence (v = 1): T'(v) = ™", n € (0,1) and k is any

real number (Entropic Mirror Descent);
(ii) Reverse Kullback-Leibler (o = 0) and c-Divergence with ov € R\ {0, 1}:

(a) T(v) =e",n e (0, m) and k is any real number (Entropic Mirror

Descent);

®) I'(v) =[(a—1)v+ 1]%, n € (0,1], « > 1and x > 0 (Power Descent);

Let iy € My (T) be such that W, (u1k) < oo. Then, the sequence (pin)nen+ defined by (2.2)
is well-defined and the sequence (Vo (pnk))nen+ is non-increasing with a convergence rate
characterized by (2.11).

The proof of Theorem 3 can be found in Section 2.A.1. In terms of assumptions,
we only require the gradients of the function 1 — ¥, (uk) to be bounded in I-norm,
which is a standard assumption, and the objective function to be finite at the starting
measure /i1, i.e. W, (k) < oo, which again is a mild assumption that can even be
discarded for all o # 0, as written in Remark 9 below.
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Remark 9 (Assumption ¥, (p1k) < oo in Theorem 3). The assumption VU, (pu1k) < oo
can be discarded in Theorem 3 for all o # 0. Indeed, for all o € R and for all u > 0, we have
that uf! (u) = afo(u) +u — 1 and thus we can write

k
11 (b 0) = a/ fo <“1 (y)> p(y)v(dy) — / p(y)v(dy) +1.
Y p(y) Y
Under (2.A1), it holds that [, p(y)v(dy) < co. Combined with the fact that we have as-
sumed that |b|s o < 0o in Theorem 3, we obtain that W, (u1k) < oo.

Let us now illustrate the benefits of our approach with an example where the
different constants appearing in (2.11) are bounded explicitly and where we com-
pare the convergence rate we obtain with typical Mirror Descent convergence results
from the optimisation literature.

Example 4 (Simplex framework and forward Kullback-Leibler). Let J € N*, let
(01,...,05) € T’ and let us consider py = J~! Z}-]:1 bo,. In addition, let o = 1 and
I'(v) = e with v € Dom, = [—|bloc,1 + K, |bloo,1 + k] and k € R. Then, we have
Ly =(1- n)nefnlbloo,a*nﬁ, Lis= n1, Liz= eMblos.atns gud I, — 772en\b\oo,afnf$_

In the particular case of the Entropic Mirror Descent, the constant k does not appear
in the update formula (2.2) due to the normalisation, so we can choose it however we want
without impacting the convergence of the algorithm. Notice then that by choosing k =
—3|b| o, and based on Example 3, we obtain the following convergence rate for all n € (0, 1)

logJ v/2log J|blso.a
\Ila NNk - \Ila /j,*k < + —
U] = el < S T

Thus, in the particular case of Example 4, the dominant term in (2.11) with re-
spect to the dimension J of the simplex is in logJ so that we achieve an overall
O(loj%,‘]) convergence rate. Furthermore, the range of possible values for 7 is stated

explicitly, since the result holds for all € (0,1).

This is an improvement compared to standard Mirror Descent results, which un-
der similar assumptions only provide an O(1/v/N) convergence rate and assume
an O(1/v/'N) learning rate (see Beck and Teboulle, 2003 or Bubeck, 2015, Theorem
4.2.). Indeed, Projected Gradient Descent and Entropic Mirror Descent typically
achieve an O(/J/N) and O(+/log(.J)/N) convergence rate respectively in the Sim-
plex framework. This means that Theorem 3 improves with respect to both N and
J compared to Projected Gradient Descent and that it improves with respect to N
for the Entropic Mirror Descent with a small cost in terms of the dimension J of the
simplex.

Moreover, while accelerated versions of the Mirror Descent (e.g. Mirror Prox, see
Nemirovski, 2004 or Bubeck, 2015, Theorem 4.4.) also yield an O(1/N) convergence
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rate, they require the objective function to be sufficiently smooth, an additional as-
sumption that we have bypassed when deriving our results.

The case of the Power Descent for @ < 1 is not included in Theorem 3. This
case is trickier and must be handled separately in order to obtain the convergence
of the algorithm. For this purpose, we first introduce the following additive set of
assumptions

(2.A4)

(i) T is a compact metric space and 7 is the associated Borel o-field;

(i) forally €Y, 0 — k(6,y) is continuous;

i a—1
(iii)y we have ||, supget k(0,y) X supg et (%) v(dy) < oo.

If o« = 0, assume in addition that ||, supyct ‘log (k;?yg)) ‘p(y)y(dy) < o0.

Here, the condition (2.A4)-(iii) implies that b, (f) and ¥, (uk) are uniformly
bounded with respect to ;1 and 6, which is rather weak condition under (2.A4)-(i)
since we consider a supremum taken over a compact set (and T will always be cho-
sen as such in practice). We then have the following theorem, which states that the
possible weak limits of (uy,)nen+ correspond to the global infimum of p +— W, (uk).

Theorem 4. Assume (2.A1) and (2.A4). Let o < 1, K < Oand set T'(v) = [(a —1)v +
1]/ (=) for all v € Domy. Then, for all { € My(T), any n > 0 satisfies (2.3) and
U, (Ck) < oo.

Let n € (0,1]. Further assume that there exist uy,p* € Mi(T) such that the (well-
defined) sequence (ju,)nen+ defined by (2.2) weakly converges to p* as n — oo. Then the
following assertions hold

(i) (Vo (pnk))nen+ is non-increasing,
(ii) p* is a fixed point of Z,,,
(ZZZ) \Ija (/,L*k') = infCGMl,ul (T) \Pa(Ck)

The proof of Theorem 4 is deferred to Section 2.A.2. Intuitively, we expect ;/* to
be a fixed point of Z,, based on Theorem 1. The core difficulty of the proof is then
to prove Assertion (iii) and to do so, we proceed by contradiction: we assume there
exists ;i € My ,, (T) such that ¥, (u*k) > ¥, (ftk) and we contradict the fact that
(ttn)nen+ converges to a fixed point.

The impact of Theorem 3 and Theorem 4 is twofold: not only our results im-
prove on the O(1/v/N) convergence rates previously established for Mirror Descent
algorithms but they also allow us to go beyond the typical Entropic Mirror Descent
framework by introducing the Power Descent.
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Another interesting aspect is that the range of allowed values for the learning rate
n is given explicitly in some cases (namely, the Power Descent and the Entropic Mir-
ror Descent with the forward Kullback-Leibler). This is in contrast with usual Mirror
Descent convergence results where the optimal learning rate depends on |b|« o, the
Lipschitz constant of ¥, which might be unknown in practice.

The results we obtained thus far are summarized in Table 2.2 below.

TABLE 2.2: Examples of allowed (T', ) in the (a, I')-descent according
to Theorem 3 and Theorem 4.

Divergence considered Possible choice of (T', k)

Forward KL (o = 1) F(v)=e"",ne(0,1) any K

Z_inlgré%e i L) =e™, 1 € 0, priplaas) any k
a>1,Tw =[(a-Dv+1]7a, e 0,1] | £>0
a<1,T(w)=[a-1)v+1Ts,ne 0,1 | k<0

As Algorithm 4 typically involves an intractable integral in the Expectation step,

we now turn to a stochastic version of this algorithm.

2.3 Stochastic (o, [')-descent

We start by introducing the notation for the stochastic version of Algorithm 4. Let
M € N* and let i € M;(T). The Stochastic (o, I')-descent algorithm one-step transi-
tion is defined as follows.

Algorithm 5: Stochastic (o, I')-descent one-step transition

1. Sampling step : Draw independently Y7,..., Yy ~ pk
1 M k(0,Y,, k(Yo
L §n K0, Ym) 4 (M ( ))

2. Expectation step : b, q.(0) =

M 5=y pk(Yim) "%\ p(Yi)
3. Tteration step : o 1y(1)(a6) = P10 T et (0) + 1)

M(P(bu,mM + K))

Let us now denote by (€2, 7, P) the underlying probability space and by E the
associated expectation operator. Given ji; € M;(T), the stochastic version of the
exact iterative scheme defined by (2.2) is then given by

finer = Zonr(fin) . nENF, (2.16)
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where we have defined forall € T and foralln > 1,

2.17)

Bﬂ aM i . ]f 0 Ym n+1 <:&nk(Ym,n+1>>

" M —1 fink mn—H) fa p(Ym,n-i-l)
with Y1 41, -+, Yarnt1 i1 fink conditionally on F,, and where 7; = () and F,, =
ocYi2,....Ym2,..., Yin,...,Yuy,) for n > 2. Notice that we use ji,,k as a sampler
instead of £(¢, -) in (2.17). As our algorithm optimises over j, sampling with respect
to fi,k is not only cheaper computationally, but it also gives preference to the inter-

esting regions of the parameter space.

A first idea to study this algorithm is to adapt Theorem 2 to the stochastic case.
This can be done for the Entropic Mirror Descent algorithm and in that case a bound
onE[U, (NN fi,k) — W, (1*k)] of the form O(1/N) +O(1/v/M) can be derived
for a wide range of constant learning rates 7 (see Section 2.A.3 for the formal state-
ment of the result and its proof). Maintaining an O(1/N) bound however requires
M > N2, which yields an overall computational cost of order N 3. Another option
consists in adapting Nemirovski et al., 2009 to our framework. This option involves
a learning rate policy (1, )nen and notably yields an O(1/v/N) bound for a constant
policy 1, = 1m0/ /N, as written in Theorem 5 below.

Theorem 5. Assume (2.A1). Let M € N* and let 15 € M;(T). Given a sequence of
positive learning rates (1, )nen, we let (fin)nen+ be defined by dél*ﬂ“ o e~Mbim.a and we

— su su k(9,y) 1k (y) ?
By = <MEMRT)/Y99'£T k(0',y) (p(y) )

and define Vo (u*k) = infeem, , (1) Ya(Ck). Then, for any N € N¥,

set w,, = 2137:"1 oal > 1. Further assume that

/2
V(dy)> < 00, (2.18)

BN m2/2  KL(u*||i
< QZ]GZl 77n/ + g\l]j“ Hlu’l) 7 (219)
ZHZI Mn Zn:l Min

N
v, <Z wnﬂnk> — U, (1*k)
n=1

In particular, the decreasing policy 0, = no/+/n yields an O(log(N)/v/N) bound in (2.19).
Furthermore, the constant policy 1, = 1no/v/'N yields an O(1/+/N) bound in (2.19), which
is minimal for ng = B, 1\/2K L(p*||f11).

The proof of Theorem 5 can be found in Section 2.A.3 and we give below an

example satisfying condition (2.18).

Example 5. Consider the case Y = R and oo = 1. Let r > Oand let T = B(0,r) C R%
Furthermore, let K}, be a Gaussian transition kernel with bandwidth h and denote by ky, its
associated kernel density. Finally, let p be a mixture density of two d-dimensional Gaussian
distributions multiplied by a positive constant Z such that for all y € Y, p(y) = Z x
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[0.5N (y; 0%, Ia) + 0.5N (y; 05, I4)], where 05,05 € T and I is the identity matrix. Then,
(2.18) holds and we can apply Theorem 5 (see Section 2.A.3 for details).

Notice that the O(1/v/N) convergence rate from Theorem 5 holds under minimal
assumptions on ¥,. However, bridging the gap with the O(1/NN) convergence rate
in Theorem 3 typically requires much stronger smoothness and strong-convexity as-
sumptions on ¥, which can be hard to satisfy in practice (see Bubeck, 2015, Theorem
6.2 for the statement of this result and Chérief-Abdellatif, Alquier, and Khan, 2019
for an example in Online Variational Inference). Bypassing any of these assumptions
like we did in the ideal case in Theorem 3 in order to improve on Theorem 5 consti-
tutes an interesting area of research which is beyond the scope of this thesis.

As for the stochastic version of Power Descent, we establish the total variation
convergence of Z, ys(11) towards Z, (1) as M goes to infinity for all x € M;(T). To
do so, consider i.i.d random variables Y7, Y3, ... with common density pk w.rt v,
defined on the same probability space (€2, F,P) and denote by E the associated ex-
pectation operator. We then have Proposition 10 below.

Proposition 10. Assume (2.A1). Let « € R\ {1}, n > 0, k be such that (« — 1)k > 0
and set T'(v) = [(a —1)v + 1]~ for all v € Domy,. Let u € My(T) be such that
U, (uk) < oo, (2.3) holds and

n

ROV (pk)NT T
/Tu(dH)E {uk(Yl) <p(Y1) ) + (« 1)/&} < 00 . (2.20)

Then,

lm || Zoar (@) — Za(p) =0, P-as.

M—o0

lov

The proof is deferred to Section 2.A.7. The crux of the proof consists in applying
a Dominated Convergence Theorem to non-negative real-valued (7 ® F, B(Rx))-
measurable functions, which requires to consider a Generalized version of the Dom-
inated Convergence Theorem (Lemma 17) and an Integrated Law of Large Numbers
(Lemma 18).

Mixture Models. We now address the case where /i; corresponds to a weighted
sum of Dirac measures. This case is of particular interest to us since as we shall see,
for any kernel K of our choice, the («, I')-descent procedure simplifies and provides
an update formula for the mixture weights of the corresponding mixture model /i, K.

Let J € N*and let 0y,...,0; € T be fixed. We start by introducing the simplex of
R

J
Sy=4x=(,... . ) eR) 1 Vje{l,...,J}, \;>0and > N\=1,,
j=1
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and for all A € S, we define px € Mi(T) by ux = Z}I:1 Ajog;. Then, uxk(y) =
Zj:1 Ajk(8;,y) corresponds to a mixture model and if we let (i, ),en+ be defined by
fi1 = px and

fint1 = j-a,M(/ln) ) n e N*,
an immediate induction yields that for every n € N*, fi,, can be expressed as i, =
ijl Ajndo; Where A, = (A, -5 Agn) € Sy satisfies the initialisation A; = A and
the update formula: foralln € N*and all j € {1,...,J},

NjnL (b, a0 (05) + K)
S ML (B0 (67) + )

Ajnt1 =

)

with gﬂn,a,M(ej) given by (2.17) forall j = 1...J and Y1 541, ..., Y nt1 drawn in-
dependently from ji,,k conditionally on F,,. This leads to Algorithm 6 below.

Algorithm 6: Mixture Stochastic (o, I")-descent
Input: p: measurable positive function, K: Markov transition kernel, M:

number of samples, ©; = {0;,...,0;} C T: parameter set.
Output: Optimised weights A.

Set A = [)\1,1, ey )\‘]’1].
while not converged do

Sampling step : Draw independently M samples Y7, ..., Yy from pyk.

Expectation step : Compute By = (bj)1<j<s whereforallj=1...J

M
= 50 M) (1)
M = puxk(Yin) p(Ym)
and deduce W, = (/\jl“(bj + H))1<]‘<J and wy = Zj:l )\jF(bj + H).

Iteration step : Set

1
)\<—fW)\

end

In this particular framework, most of the computing effort at each step lies within
the computation of the vector (IA)ﬂma, m(0j))1<j<s. Interestingly, these computations
can also be used to obtain an estimate of the Evidence Lower Bound (resp. the VR

bound (Li and Turner, 2016)) when p = p(-,Z). These two quantities, which are
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recalled in Chapter 1 and are given in our particular case by

J
ELBO(jink; Z) = — Y Ajnbj.a(0
7j=1

J
1
Laljink; 7) = T——log | (a —1) )>  Ajmbjn.alfy) +1
Jj=1

allow us to assess the convergence of the algorithm and provide a bound on the log-
likelihood (see Li and Turner, 2016, Theorem 1). Note also that if there is a need for
very large J, one can approximate the summation appearing in /i, k using subsam-

pling.

An important point is that Algorithm 6 does not require any information on how
the {61, ...,0;} have been obtained in order to infer the optimal weights as it draws
information from samples that are generated from px k. Since the algorithm leaves
{601,...,0;} unchanged throughout the optimisation of the mixture weights (we call
it an Exploitation Step), we then combine Algorithm 6 with an Exploration step that
modifies the parameter set, which gives Algorithm 7 below.

Algorithm 7: Complete Exploitation-Exploration Algorithm

Input: p: measurable positive function, a: a-divergence parameter, (I, ):
chosen as per Table 2.1, go: initial sampler, K: Markov transition kernel,
(My)¢: number of samples, (J;):: dimension of the parameter set.

Output: Optimised weights A and parameter set ©.

Draw 61, ..., 60,0 from go. Set t = 0.

while not converged do

Exploitation step : Set © = {f14,...,0,}. Perform Mixture Stochastic

(a, T')-descent and obtain A.

Exploration step : Perform any exploration step of our choice and obtain
(91715_5_1, .. ,9Jt+17t+1. Sett=t+1.

end

Note that this algorithm is very general, as any Exploration Step can be envi-
sioned. We also have several other levels of generality in our algorithm since we are
free to choose the kernel K, the a-divergence being optimised and we have stated
different possible choices for the couple (I, x).

As a side remark, notice also that we recover the mixture weights update rules
from the Population Monte Carlo algorithm applied to reverse Kullback-Leibler
minimisation (Douc et al., 2007a) by considering the Power Descent with o« = 0
and 1 = 1. We have thus embedded this special case into a more general framework.
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We now move on to numerical experiments in the next section.

2.4 Numerical experiments

In this part, we want to assess how Algorithm 7 performs on both toy and real-world
examples. To do so, we first need to specify the kernel K and an algorithm for the
Exploration Step.

Kernel. Let K}, be a Gaussian transition kernel with bandwidth / and denote by
ky, its associated kernel density. Given J € N* and 6y,...,0; € T, we then work
within the approximating family

J
y e uakn(y) =Y Nkn(y —05) : AE€S,
j=1

Exploration Step. Attimet = 1...T, we resample among {61, ...,0, .} accord-
ing to the optimised mixture weights A. The obtained sample {61 11, ...,07,., ++1}
is then perturbed stochastically using the Gaussian transition kernel Kj,, which
gives us our new parameter set. The hyperparameter h; is adjusted according to

1/ (4+d), where d is the dimension of the latent

the number of particles so that hy oc J,
space (the optimal rate in nonparametric estimation when the function is at least 2-

times continuously differentiable and the kernel has order 2 (Stone, 1982)).

Next, we are interested in the choice of a. The hyperparameter « allows us to
choose between mass-covering divergences which tend to cover all the modes (o < 0)
and mode-seeking divergences that are attracted to the mode with the largest proba-
bility mass (o > 1), the case o € (0, 1) corresponding to a mix of the two worlds (see
for example Minka, 2005).

Depending on the learning task, the optimal o may differ and understanding
how to select the value of « is still an area of ongoing research. However, the case
a < 1 presents the advantage that b, ./ is always finite. Indeed, for all a € R \ {1},

we have

1 k(0,y) (ply.2)\" 1
buel®) = 5= 1/Y 1k (y) ( 1k (y) ) HRAd) = 5

and as the dimension grows, the conditions of support are often not met in prac-
tice, meaning that there exists A € Y such that p(4, Z) = 0 and pk(A) > 0. This
implies that whenever @ > 1 we might have that b, /() = oo and that the a-
divergence (or equivalently the VR bound) is infinite, which is the sort of behavior
we would like to avoid. Thus, we restrict ourselves to the case o < 1 in the follow-
ing numerical experiments. Note that the limiting case o = 1, corresponding to the
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commonly-used forward Kullback-Leibler objective function, also suffers from this
poor behavior, but is still considered in the experiments as a reference.

We now move on to our first example where we investigate the impact of differ-
ent choices of I'. The code for all the subsequent numerical experiments is available
athttps://github.com/kdaudel /AlphaGammaDescent.

24.1 Toy Example

Following Example 5, the target p is a mixture density of two d-dimensional Gaus-

sian distributions multiplied by a positive constant Z such that
p(y) = Z x [0.5N (y; —sua, Ia) + 0.5N (y; suq, Ia)]

where ugq is the d-dimensional vector whose coordinates are all equal to 1, s = 2,
Z = 2 and I is the identity matrix. (J;); and (M;) are kept constant equal to J =
M = 100, k = 0 and the initial weights are set to be [1/J,...,1/J]. The number
of inner iterations in the (o, I")-descent is set to N = 10 and foralln = 1... N, we
use the adaptive learning rate 1, = n9//n with g = 0.5. We set the initial sampler
to be a centered normal distribution with covariance matrix 5I4. We compare three

versions of the (o, I')-algorithm:

e (.5-Mirror Descent : I'(v) = e~ with a = 0.5,

e 0.5-Power Descent : I'(v) = [(a — 1) v + 1]"/(1=®) with a = 0.5,

e 1-Mirror Descent : I'(v) = e with a = 1.

For each of them, we run T' = 20 iterations of Algorithm 7 and we replicate the
experiment 100 times for d = {8,16,32}. The results for the 0.5-Mirror and 0.5-
Power Descent are displayed on Figure 2.1.

FIGURE 2.1: Plotted is the average VR bound (the Renyi-Bound axis)

for the 0.5-Power and 0.5-Mirror Descent in dimension d = {8, 16, 32}
computed over 100 replicates with 1y = 0.5.

Dimension 8, a = 0.5, 7, = 0.5 Dimension 16, a = 0.5, 7y = 0.5 Dimension 32, @ = 0.5, 7, = 0.5
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A first remark is that we are able to observe the monotonicity property from The-
orem 2 (the VR bound varies like ¥, (1,,k)* 1) for the 0.5-Power Descent, the jumps
in the VR bound corresponding to an update of the parameter set. Furthermore, we
see that the 0.5-Mirror Descent (which would have been the default choice based on
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the existing optimisation literature) converges more slowly than the 0.5-Power De-
scent in dimension 8. An even more striking aspect however is that, as the dimension
grows, the 0.5-Mirror Descent is unable to learn and the algorithm diverges.

These two different behaviors for the Power and Mirror Descent can be explained
by rewriting the update formulas for any o < 1 under the form

Mirror: X, s [ Dbiy o 65)+ (=11

Power: \j, x eTa log[(a_l)b”n’a((’j)ﬂa_l)ﬂ] .
In the Power case, an extra log transformation has been added, which allows to
discriminate between small values of b, .. Since the values of b, . tend to get
smaller as the dimension grows, the impact of adding an extra log transformation
becomes increasingly visible: the Mirror Descent becomes more and more unable to
differentiate between the different particles {61, ...,60;} and is thus unable to learn.

Finally, we compare how the 0.5-Power and 1-Mirror Descent perform at ap-
proximating the log-likelihood in dimension d = {8, 16, 32}. The results are plotted
on Figure 2.2. Again, the 0.5-Power Descent comes across as faster and more stable
compared to the 1-Mirror Descent as the dimension grows. Furthermore, it also does
not fail in dimension 32, unlike the 1-Mirror Descent.

FIGURE 2.2: Plotted is the average Log-likelihood for 0.5-Power and

1-Mirror Descent in dimension d = {8,16,32} computed over 100
replicates with 1y = 0.5.
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Consequently, we see on this simple yet illustrative example that the Power De-
scent is a suitable alternative to the Mirror Descent as the dimension grows.

We are next interested in seeing how the («, I')-descent performs on a real-data
example. Based on the numerical results obtained so far, we rule out the Mirror

Descent for o < 1 and we focus on the Power Descent in our second example.

2.4.2 Bayesian Logistic Regression

We consider the Bayesian Logistic Regression from Example 1 witha = 1 and b =
0.01.

We test our algorithm for the Covertype dataset (581,012 data points and 54 fea-
tures, available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/d
atasets/binary.html). Computing p(y, Z) constitutes the major computation
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bottleneck here, since p(y, Z) = po(y) [ [; p(xily) with a very large number of data
points. We can conveniently address this problem by approximating p(y, ) with
subsampled mini-batches. We adopt this strategy here and consider mini-batches of
size 100.

Weseta =05 N=1,T=500,k=0,Jyp = My=20and Jy11 = My 1 = Jy + 1
for t = 1...T in Algorithm 7. The initial weights in the (a,I")-descent are set to
Ainitt = [1/J¢, ..., 1/J] and the learning rate is set to 79 = 0.05.

One thing that is very specific to the Exploration step that we used to run our
experiments (and sampling-based Exploration steps algorithms in general) is that
the particles {0 ¢,...,0,, .} are sampled from a known distribution at each Explo-
ration step. This means that we are able to infer information on {61 ¢, ...,0, ;} using
Importance Sampling (IS) weights. We thus compare the Power («, I')-descent with
a state-of-the-art Adaptive Importance Sampling-based (AIS) algorithm (see for ex-
ample Oh and Berger, 1992; Kloek and Van Dijk, 1978; Chopin, 2004 and Delyon and
Portier, 2021).

We initialise {61, . .., 0,0} by sampling Jy points independently from the prior
po(y) = po(B)po(w|5) and we set gy = po. Given ¢; at time ¢, we draw J; i.i.d samples
(05.t)1<<, from ¢ and we define g;41(y) = Z}Itz1 Ajtkn, (y — 0;¢) where

p(05,4,9) AIS
Njgoc g a5e) (A1), (2.21)

~

T(buy,,, ot (056) + ) (Power) .

Note that these two algorithms are computationally equivalent. Indeed, we choose
Ji = My and N = 1, that is we use an average of one sample from each k(6;,-) to
infer information on the relevance of the {64, ...,0, +} with respect to one another.
Comparatively, the AIS algorithm uses information directly available by computing
the IS weights for {61 ¢,...,0;:}.

We replicate the experiments 100 times. The Accuracy and Log-likelihood aver-
aged over the 100 trials for both algorithms are displayed on Figure 2.3 and we see
that the 0.5-Power Descent outperforms the AIS algorithm.

FIGURE 2.3: Plotted are the average Accuracy and Log-likelihood
computed over 100 replicates for Bayesian Logistic Regression on the
Covertype dataset for the 0.5-Power Descent and the AIS algorithm.
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2.5 Conclusion and perspectives

We introduced the (o, I')-descent and studied its convergence. Our framework re-
covers the Entropic Mirror Descent and allows us to introduce the Power Descent.
Furthermore, our procedure provides a gradient-based method to optimise the mix-
ture weights of any given mixture model, without any information on the under-
lying distribution of the variational parameters. We demonstrated empirically the
benefit of going beyond the Entropic Mirror Descent framework by using the Power
Descent algorithm instead, which is a more scalable alternative.

At this stage, we can think of several directions to extend our work on both a
theoretical and a practical level.

(i) Convergence. One could seek to establish additional convergence results for
the Power Descent. For example, since the case av < 1 is advantageous in practice
due to its mass-covering property, one may want to alleviate some of the hard-to-
satisfy assumptions in Theorem 4 leading to the convergence of the Power Descent
when a < 1.

(ii) Numerical results. One can also be interested in understanding more pre-
cisely why the Entropic Mirror Descent appears to fail numerically compared to
the Power Descent, even though these algorithms are linked to one another via the
(o, I')-descent framework.

(iii) Exploration Step. As the (a,I')-descent does not make assumptions on the
variational parameter ¢, many methods can be envisioned as an Exploration step
and combined with the («,I")-descent besides the one we have used in Chapter 2
for illustrative purposes. One may then attempt to find Exploration steps that can
efficiently be paired up with the («, I')-descent.

In the following chapter, we will focus on the aspects raised in (i) and (ii), while
Chapter 4 is devoted to (iii).
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2.A Deferred results

2.A.1 Proof of Theorem 3

We start with a side note on Dom,,. A typical choice for Dom, is
Domg = [—|blos,a + £, [bloc,a + K] - (2.22)
However, when o € R\ {1}, we might consider instead

1 .
— 4+ K, |bloc.a + K, ifa>1
s+ o b+ .

Dom, =
[—bloc,a + &, 7= + K], ifa<1

to underline the fact that for all v € Dom,,, (& — 1)v + 1 > (a — 1)x. Unless specified
otherwise, we let Dom,, be as in (2.23) whenever a € R\ {1}.

Proof of Theorem 3. Let us recall the different conditions that must be met in order to
verify that we can apply Theorem 2 in each of the cases mentioned in Theorem 3:

1. 0 < infyepom, I'(v) and sup,cpom, I'(v) < oo.

2. The function I' : Dom, — Ry is decreasing, continuously differentiable and

satisfies the inequality

[(—1)(v—k)+1] (logD)(v)+1>0.

3. Lo,1 = infyepom, {[(a@ —1)(v — &) + 1] log ') (v) + 1} X infyepom, —I"(v) > 0.

4. The function T" : Dom,, — R<( is L-smooth and the function —logI" is concave

increasing.
5. La2 = (infyepom, (—logI')'(v)) ™" > 0.

(i) Forward Kullback-Leibler divergence (o = 1): I'(v) = e, n € (0, 1), any real
k. Since the update formula does not depend on , there is no constraint on s

and we assume that x = 0 for simplicity.

- Condition 1 is satisfied since |b|o,; is finite.

- Condition 2 is satisfied with I (v) = —ne " and (logI')'(v) = —n.
- Condition 3 is satisfied with L; ; > (1 — n)ne*"“"w»l.

- Condition 4 is satisfied.

- Condition 5 is satisfied with L; o = %

(ii) Reverse Kullback-Leibler (ov = 0) and a-Divergence with o € R{0,1}:
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(@) T(v) =e ", n e (0, m), any real . The only difference with
the previous case lies in the inequality (i.e. Condition 2), which can be rewrit-
ten for all v € Dom,, as

12 (e - D -r)+1]

Since 0 < (o —1)(v — k) +1 < | — 1||b|c,a + 1, this inequality is then satisfied
for n € (0, m)

(b) Casea > 1.T'(v) = ((a— 1)v+1)ﬁ, n € (0,1] and « satisfies («—1)x >
0. Then, the condition (o — 1)k > 0 ensures that I' is well-defined on Dom,,.
From there, we deduce:
- Condition 1 is satisfied since |b|« q is finite.
- Condition 2 is satisfied: I''(v) = —n((a — 1)v + l)ﬁfl, (logT) (v) =
and the inequality can be rewritten for all v € Dom,, as

—_n
(a—1)v+1

(a— 1)k

L] § L L
Y PR R

which is satisfied for n € (0, 1].

- Condition 3 is satisfied (the condition (aw — 1)k > 0 is of crucial importance

here).
- Condition 4 is satisfied with (—1logT')"(v) = % (note that we need
a > 1 here).

- Condition 5 is satisfied and here again we use that (a« — 1)x > 0.

2.A.2 Proof of Theorem 4

In this part, recall that we focus on the particular case &« < 1, K < 0 and I'(v) =
[( = 1) v+1]" (=) for all v € Dom,. In the following, we use the notation y,, = u*
for the weak convergence of measures in M;(T). For all ( € M;(T), forall § € T,
define

9¢(0) = (a = 1)(b¢a(0) +K) + 1.
We first derive four useful lemmas.

Lemma 11. Assume (2.A1) and (2.A4). Suppose that ,, = p*. Then the following asser-
tions hold.

(i) Forally € Y, upk(y) tends to *k(y) as n — oo.

(ii) Forall ¢ € My(T), the function 6 — g¢(8) is continuous. Furthermore for all 6 € T,
Gu,, (0) tends to g,+(0) as n — oo.

(iii) There exist 0 < m_ < mq < oo such that, for all ¢ € My(T)and 0 € T, g¢:(6) €

[m—v m-i-]'
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(iv) For all continuous, positive and bounded function h,

0 [ (AL (,.0(6) + 1(8) = | " (@Dt a(6) + WIAO)

Proof. We prove the assertions successively.

Proof of (i). For all y € Y, the function # — k(¢,y) is continuous on a compact
set, hence bounded. The weak convergence p,, = p* thus implies the pointwise
convergence of .,k to p*k.

Proof of (ii). Forall 8 € T and ¢ € M;(T), we write

gc(0) = /Y ac(®,y)v(dy) + (o — D) ,

a—1
where we set for all (6,y) € T x Y, ac(0,y) = k(0,y) (%) . The continuity of
g¢(0) follows from the Dominated Convergence Theorem, since for all y € Y, the
function 6 — a¢(6,y) is continuous on T by (2.A4)-(ii) and for all (#,y) € T x Y, we

have

" a—1
lac(8,)] < sup k(@.1) x sup (’C(‘) ’y)) , (2.24)
0'cT 0T p(y)

which is integrable w.r.t v(dy) by (2.A4)-(iii). The second part of (ii) is obtained
similarly. Using (i) and that u — u®~! is C!, we get that, for all (9,y) € T x Y,

lim k(6, y) <unk(y)>“‘1 . <M*k(y)>°‘_1 |

n—o0 p(y) p(y)

ie. nlgrolo au, (0,y) = a,+(0,y). Thebound (2.24) and (2.A4)-(iii) provide a domination
criterion and we get that g, () tends to g,«(#) as n — oo, which concludes the proof
of (ii).

Proof of (iii). For all (¢,¢) € T x M;(T), we have g;(0) € [m_, m ] where

— : / : k(0" y) ot
m_ = /Yelfléfrk(e ,Y) X e}lléfT ( o) > v(dy) + (o — 1)k, (2.25)

k(0" y)
p(y)

me ::/Ysup k(0 ) x sup ( >a1 (dy) + (= 1) .

0'eT 0"eT
We have that m is finite by (2.A4)-(iii). Furthermore, u — u“~! does not vanish
on (0,00). Together with (2.A1), we thus have that for any y € Y, the functions
0 — k(0,y) and 6 — (k(6,y)/p(y))* " are continuous and positive on the compact
set T, from which we deduce that m_ > 0.
Proof of (iv). Using (ii), the function 6 +— I'(b,+ «(0) + x)h(0) is continuous, and,
since T is compact, i, = p* gives that

im [ in(d0)T(bye o (8) + £)1(8) = / SO (b o (0) + R)R(O) . (226)
T T

n—o0
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Next we show that

lim | 4n(A0) [T (B a(0) + ) = T(Byta(6) + ) | (0) = 0 (2.27)

n—oo
ie

n n

tin | n(46) g3, ()77 — g (0) 5

h(6) =0

n—0o0

Using (iii), since u uTs is Lipschitz on [m_, m.], there exists a constant C' such
that

_n_ _n_
Gun (‘9) I=e — gy~ (0) 1o

] < Couph®) [ 1a(d6) I, (6) - 9.-(0)

Hn [
0T

— Csuph(0) /Y lan(w)lv(dy)

0eT

a—1 * a—1
where a,,(y) := pnk(y) {(W) — (m) } Now, forally €,

k(0 y)\
an(y)| < 2supk(f,y xsup( ,
lan(9)] 0eT (6,9) get \ P(Y)

which is integrable w.r.t v by (2.A4)-(iii). Moreover, by (i) and by continuity of u
u®~!, we have lim,, oo an(y) = 0, and (2.27) follows by dominated convergence.
Finally, combining (2.26), (2.27) and

M, [F(b#n,a((g) + H)h] = Un [F(b,u,n,oz(a) + ’f)h - F(bu*,a(e) + K>h]
+ pin [T(bys o (0) + £)A]

we obtain (iv), and the proof is concluded. O

Lemma 12. Assume (2.A1). Let p*, p € My (T) and assume that there exists i € My ,,(T)
such that W, (k) < U, (u*k). Then, there exists 6 > 1 such that

(g > op*(gps)) > 0. (2.28)
Proof. Let ¢, € M;(T). Then, by convexity of f, we have,
16 = 1@ (6) < Walg) = WalCB).
that is
1= €1a0)010) > (@ = 1) (9a(6F) = Wa(CB) - (229)

Furthermore, for all 6 > 1, (6 — 1)p*(g9y+) = 0. Let us define A5 = {g,» >
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dp*(gu+)} and show that fi(As) > 0 for some § > 1. To do so, we proceed by contra-
diction. Suppose that fi(As) = 0 for all 6 > 1, so that
g — W (gu)] = Al(gur — 1" (gpr)) Lag] < (6 — D)p*(gpr) -

Using (2.29), we get that, forall 6 > 1,

0 < (a—1)(Va(fik) — Vo (uk)) < fl(gus — 1 (gp))] < (6 = D" (gpr) -
Letting 6 | 1, we obtain a contradiction, which finishes the proof. O

Lemma 13. Assume (2.A1). Let p* € M;(T) be a fixed point of I, and let n > 0. Let
p € My (T) and assume that there exists fi € My ,(T) such that W, (u*k) > Vo (fik). Then,
there exists 0 > 1 such that

AAT (byr.a + k) > 6" (C(byra + £))} > 0.

Proof. Note that (2.3) holds for any > 0 and (¢ (in particular ¢ = p*) by Lemma 11-
(iii). As p* is a fixed point of Z,, g, is pi*-almost all constant. Consequently, we have
that y* (g, )"/~ = ,u*(ngl_a) = T (bys.o + K)). Forall § > 1,8 := §1=2)/m > 1
and

AT by ) > 0 (Db 0+ 1))} = 1 { g > 500/ (g )00/
= g > "1 (gu)) -
We conclude by applying Lemma 12. O

Lemma 14. Assume (2.A1) and (2.A4). Let n > 0, let 1 € M1 (T) and define the sequence
(ttn)nenx according to (2.2). Suppose that p,, = p* for some fixed point p* € My(T) of Z,.
Further assume there exists i € My ,,, (T) such that Y, (u*k) > W (k). Then, there exist
0 > 1 and n € N* such that

H ( ﬂ {F(bum,a + k) > 5:um(F(bum,a + K))}> >0.

m>=n

Proof. First note that the sequence (i, )nen+ is well-defined for any > 0 by Lemma 11-
(iii), which implies ji,(I'(by,.o + £)) > 0 for all n € N*. For all { € M;(T), set
h¢(0) = T'(b¢ o (0) + k). We further have that

nh_{goﬁ ( ﬂ {Ppin > 5#m(hum)}> =p (U ﬂ {hp, > 5Mm(hum)}>

m>n n=lm>2n

~ ... hu,(0) })
= 0T : liminf —£= >4 .
: <{ n—00 Mn(hun)
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Furthermore, applying (ii) and (iv) in Lemma 11, we have, lim,, o hy,, (6) = hyu+(6)
forall @ € T and lim, o0 ftn(hp,) = p*(hy+). Hence, forall 0 € T,
() _ hu(6)

h
lim inf —£2 = .
n—0o0 Mn(hun) N*(hu*)

The proof is concluded by applying Lemma 13. O

Proof of Theorem 4. Assume (2.A1) and (2.A4).

Lemma 11-(iii) is exactly the first result we want to obtain, that is: for all { €
M;(T), any n > 0 satisfies (2.3) for (. Furthermore, |V, (Ck)| < oo by (2.A4)-(iii).

Assume that (1, ) nen weakly converges to p* € M (T). First note that Lemma 11-
(iii) implies that for any n > 0 the sequence (i, )nen+ is well-defined and p* satisfies
(2.3). Using Theorem 1, we obtain that the sequence (i, )nen+ is decreasing for all
n € (0, 1], which gives Assertion (i).

We now prove Assertions (ii) and (iii) successively.
Proof of (ii). Forall ¢ € My(T) and ally € Y, set ac(y) = fa (L(y)) p(y), leading to

p(y)
W (Ch) = /Y ac(y)w(dy) - (2.30)
Then, forally €Y,
k(eay))’
oc(u)] < sup fa< ) ot (2.31)

which is integrable w.r.t v(dy) by (2.A4)-(iii). Furthermore, recall that forally € Y,

S i (dO)T (by,, o (0) + K)K(6, )
[Zo(pn)K)(y) = =4 fT%(de);(buma(e)H)

By applying twice Lemma 11-(iv) with h(f) = 1 and h(6) = k(0, y), we have that for
ally €,

lim [Za (1)) (y) = [Za ()] (y) - (2.32)

n—o0

Now, since f, is C', we obtain from Lemma 11-(i) and (2.32) respectively that for
ally €Y, limy, o0 ay, (y) = ay+(y) and lim, o az, (,,) () = az,(.+)(y). Combining
with (2.31) and (2.30) we can thus apply the Dominated Convergence Theorem to
obtain

lim W (pnk) = Wa(u"k) (2.33)

n—oo

and

ngolo \Ila(ﬂn-‘rlk) = nlLH;O \Ija(l—a(,un)k) = \Ija(za(ﬂ*>k) : (234)
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Finally, (2.33) and (2.34) together yield ¥, (p*) = Yo (Zo(pn*)k), which in turn
implies that ;/* is a fixed point of Z,, according to Theorem 1-(ii).
Proof of (iii). We prove (iii) by contradiction. Suppose that 1, = p©*, where p* is a
tixed point of Z,, that satisfies

Uy (k) > inf  U,(Ck).
(#8) > nf  Wa(H

Then, there exists i € My ,,, (T) such that ¥, (u*k) > ¥, (k). Now for all n € N*, set

B, = {9 €T () {hpn(6) > 5um(h#m)}} :
m>n
where for all ( € M(T), forall @ € T, h¢(0) :=T'(b¢ o (8) + ). There exist, according
to Lemma 14, a well chosen § > 1 and a sufficiently large ng such that i(By,) > 0.
Furthermore ;i ~ (1 by definition, where ( = p if and only if for all A € T:
¢(A) > 0 is equivalent to 111(A) > 0. Since 0 < I'(b,, o (f) + k) < oo for pi-almost
alld € T and j—ﬁf x I'(by, o + k), we also have up = 1. Then by induction, pu, = 11
for all n € N*. Finally, p,(Br,) > 0. Moreover, for all § € B, and all m > ny,

% > 0 and consequently
hy,, 1 (6)
K ( 0) By H 1( )Nmfl(h,um,l) H 1( 0)

By induction on m we get that, for all m > ng, pm(Br,) = 0™ ™ty (By,). This
contradicts the previously obtain facts that § > 1 and i, (By,) > 0. Therefore we
get a contradiction and the proof is concluded. O

2.A.3 Adapting Theorem 3 in the stochastic case

Here, we want to adapt Theorem 3 to the stochastic case for the Entropic Mirror
Descent. Given ji; € M;(T) with ¥, (fi1k) < oo and letting (/i,,)nen+ be defined by
(2.16), we will need the following additionnal assumption on the sequence of iterates
(t4n)nen+, which controls the difference |l§,;ma, M (0) —bj,, o (0)| uniformly with respect
to 0.

(2.A5) Assume that there exists o > 0 such that for all n € N*,

. (o
E |sup (b, 0,0 (0) = bjn.a(0)|| < —= -
|:21€l$ fin, ,M( ) Hny ( ) ‘:| \/M

Before stating the result, let us first comment on the validity of this assumption.

Validity of Assumption (2.A5), an example. Set g,(0,y) = lljﬁ(yy)) fh (ﬂ ;Zf;”) for all
6 € T,alln € N*and all y € Y. In the particular case of the Simplex framework (see

Example 3), which is the case we use in practice, (2.A5) holds with o = 2C %,
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where C is a positive constant satisfying |g,(0;, Yimn+1)| < C almost-surely for all
j=1...J,allneNandallm=1... M.

Proof. For all u > 0, we have by Jensen’s inequality that
eUE[maxlgng M |bay, a0 (05) by . (65)]] <E [e“ maxi gy M|i)gn,a,M(9j)*bﬂn,a(9j)q (2.35)

Furthermore, Hoeffding’s lemma implies

w202
E [eu{gnwf"’mvwl)—bﬂw<9f>}} <e'T

and consequently

Mu2c?
se 2

E [QUM{éﬂn,a,M(9j)—bﬁn,a(9j)}] <
Similarly, we have

E [e*“M{Z’ﬂn,a,M(b’j)*bﬂn,a(93')}} < Murc?
which implies
Mu2c?
Muc?

E [euM|5ﬂn,a,M<ej>—bﬂn,a<9j>!} < 2

Then, combining with (2.35), we have

~ 22
euIE[maxlg]-gJ M‘bﬂn,a,]\l (Gj)—bﬁn’a (QJ)H < 2.]e 1V1u2C

and we obtain

E[max M

NS

- log(2J) MuC?
bjin .01 (05) _bﬂn,a(gj)u < i )+ 7

2log(2J)
MC?

Setting v = yields the desired result, as we have

log(2.J)

O]

We now state in the next Theorem an O(1/v/N+O(1/v/M)) bound on E[W,, (fi,, k) —
U, (p*)] in the particular case of the Stochastic Entropic Mirror Descent.

Theorem 6. Assume (2.A1). Let i1 € M1(T) be such that U, (fi1k) < 0o, let (fin)nen+ be
defined by (2.16) and assume that (2.A5) holds. Define ]l;|oo,a =

SUD,en« geT \Bﬂn7a7M(0)|, assume that |3|oo,a < oo and let I'(v) = e~ "". Finally, let (n, k)
belong to any of the following cases.
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(i) Forward Kullback-Leibler divergence (ov = 1): m € (0, 1) and k is any real number;

(i) Reverse Kullback-Leibler (o« = 0) and a-Divergence with o € R\ {0, 1}:

n € (0, !

m) and k is any real number;
a— 00,

Then, the sequence (fin,)nen~ is well-defined and for all N € N*, we have

N
~ 1 La 3 1 LLa 3La 40
~ (1*k KL(y* L7%A 3,
(NZM > )] Nn[ (b lp) + L7 1}+ Tt
where p* is such that U, (u*k) = infeen, 1) Ya(Ck) and where we have defined Ay =
W (k) — Walu*k), KL(#*||fin) = [ log (d -) du and

Loga:= sup T(w)* 'x sup T(v)'™ [1—|—

veEDomyg, vEDomyg,

SUPyeDome F(’U):|
infve]:)oma F(U)

The first step to prove this result is to see what becomes of Lemma 7 in the
stochastic framework, which we investigate in Lemma 15 below.

Lemma 15. Assume (2.A1) and (2.A2). Let i; € M;(T) be such that ¥, (jnk) < oo, let
(fin)nen+ be defined by (2.16) and assume that (2.A5) holds. Further assume that L, 4 < oo.
Then, for all n € N*,

La,l

E [Varﬂn (z},}n,mMﬂ < E [Wa(fink) — Yalfini1k)] + Las—— (2.36)

T
Proof. We consider the case x = 0 for simplicity. Set g, () = f((;,lma’ m(0)) forall 6 €
T and for all n € N*, where I'(u) = T'(u)/Ej, [[]. Based on the proof of Theorem 1,
we have

Ao < Vo (fink) — Volfint1k) , (2.37)
where
. {fT fin(06) l0g §1(0) + by, 1(6) + K] [L = 3, (0)]  ifa =1
R WA WET) [bﬂma(e) v ﬁ} Gn(8) 11 — gn(8)], otherwise.
Now defining

Ey = fin ([éﬂn,a,M - bﬂn, } g [1 - gn])

and based on the proof of Lemma 7 we can rewrite (2.37) as

(Z;ﬂn,a,M> < \I’a(/:‘nk) - \Iloc(/ln—l—lk) + E
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and we deduce

[ %[é T W] B =g

< i 2 s~ ] )
g

<Lo¢4

VM
O

Next, we derive the stochastic version of Theorem 2 in the particular case of the

Entropic Mirror Descent.

Theorem 7. Assume (2.A1). Set T'(v) = e~ and let n be such that (2.A2) and (2.A3)
hold. Let j1; € M1 (T) be such that U, (ji1k) < oo, let (fin)nen+ be defined by (2.16) and as-
sume that (2.A5) holds. Further assume that L, 1, Lo 2 > 0and that 0 < inf,epom, I'(v) <
SUPyeDom,, L (v) < 0o. Then, for all N € N*, we have

1 L 3 1 LL 3La40'
— U, (u*k KL(p* + L= A]+ Lo
( Zﬂn> )] S [KL07 ) + L3520, | Eheate

Proof. We consider the case « = 0 for simplicity. Let n € N* and set A,, = ¥ (ji,k) —
U, (k). Then,

E[A,] <E / b o (djin dm] (2.38)
LJT
=E / E [éﬂn,a,M\fn} (dfin — du*)]
LJT

=E / l;ﬂn,a,M(dﬂn - d/‘*):|
LJT

=E /T(ﬂn(imn,a,M) - Bﬂn,a,M)dM*] :
By adapting the proof of Theorem 2, we deduce

1

E[A,] <E .
(—log ') (fin (b, ,0,01))

/T [1og T (b a,01) — log F(ﬂn@ﬂn,a,m)} du*] :

In the particular case of the Entropic Mirror Descent (for which I'(v) = ™) we
obtain that —(logI')’ = 7, thatis Lo 2 = % and by following the proof of Theorem 2

we have

1 dfins1 L 7
E[A,] < -E| [ 1 *4 ZVars (by anr) Las| - 2,
[A] ” [/T 0g< an, >du + 2V3run (bun, 7M> ,3] (2.39)
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By assumption on inf,cpom, I'(v) and on sup,cpom, I'(v), we have that L, 4 < oo
and combining with Lemma 15, we obtain

E(A) < E [ [ 1o (dggj) A+ 5252 W)~ %mnﬂkn] p Lhoslos o
As the r.h.s involves two telescopic sums, we deduce

1 & 1 o Las LLosLos o

N;E Bnl <N {KL(/J i) + LLQ71A1:| iy AT
and we conclude using the convexity of the mapping p +— W, (1k). O

With all these elements in hand, we can now prove Theorem 6.

Proof of Theorem 6. The proof follows from a straightforward adaptation of the proof
of Theorem 3 for the Entropic Mirror Descent (we replace |b|oo o by |b|oo.o) combined
with Theorem 6. O

Proof of Theorem 5

Proof of Theorem 5. The proof of Theorem 5 can be adapted from the proof of Ne-
mirovski et al., 2009, Section 2.3. We consider the case x = 0 for simplicity. Note
that the case x # 0 unfolds similarly by replacing b;,, « by b;, .« + k everywhere in
the proof below. Let n € N* and set A,, = ¥, (fink) — Vo (u*k). The convexity of f,
implies that

A, < / b (it — dir*) .
T

Now taking the expectation, we obtain that

i) < B [ b0l - dm] (2.40)

=K /ri)ﬂma,]\/[(dﬂn - d,u*)] .
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In addition, using that % o e~Mbin.ant and noting that the integral of any con-
stant w.r.t i, — p* is null, we deduce

1 dj 1 dj
=— [ log ( Hin dji, — — [ log < Aﬂn > dp”
M JT n JT dfin+1

1 d/%) . . . }
—— |/l _ dfiy, — dfine1) — KL(fino1|liin
o [/T g<dun+1 (dix fin+1) (fin+1|fon)
1

+ - [KL(p*||fin) — KL(p*|| ftng1)]

n

Let us first consider the term inside the first brackets. We have that

djin o . o
/ log (dA > (dﬂn - d,un—&-l) = nn/ bﬂn,a,M(dﬂn - dMn—i—l)
T Hn41 T

< nn’b|ﬁn,M,a ”ﬂn - ﬂn+l||TV )

where we have set

i 9 Ym n+1)

bl 2o =
Hﬂm o Tun Ym,n-i—l)

/ (ﬂnk(ym,n-i-l) > ‘

P(Ym,n+1)

and where we have used that d“ ntl o e~Mbin.a and that the integral of any con-

stant w.r.t i, — fin+1 is null. Moreover, Pinsker’s inequality yields

. . 1. . 2
K LGiallio) < 5 i = o [y

Now combining with the fact that 7, |b|, m0a — a®/2 < (0|4, 01,0)? /2 Which is
valid for all a > 0, we get:

1 dfin - I N[B[0
— | 1og (dftn — dfins1) = K L(jins1|lfin) | < ——2edle (2,47
M LJT dfint1 2

Furthermore, using Jensen’s inequality and (2.18), we have that
Z < 9 Ym n—l—l) f(; </lnk(ym,n+1)> ‘) 2
M p (Ym,n-‘rl)

E[b2 val <
U ’Mn’M GGT Mn m n+1)
and as a consequence, we obtain from (2.40) and (2.41) that

< B2

a

B[] < mpBa/2 + E[(K L(p*||fin) — K L(k*||fin41))] -
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Finally, as we recognize a telescoping sum in the right-hand side, we have

N N
> mE[A] < )i B2/2+ KL(u"[|jn)
n=1 n=1
that is we have, by convexity of the mapping p — ¥, (1k),

B2V 279 KL(u*||i
aXn=1 /2 | KLUlli) g )

E
an:1 Tin ZnNzl Mn

<

N
T, (Z wnﬂnk> — U, (uk)
n=1

Then,

e setting 7, = no/+/n for alln > 1in (2.42) yields

N 2,2 *[7
g o, (anﬂnk> _%W)] o (4 loa(N)BEn/2 + KL(u* )
n=1

on/ﬁ

e setting 1, = 10/V/N foralln = 1... N in (2.42) yields

Bang/2 + KL [lin)

E
WO\/N

<

1 N
\I/a NT An _\Ila *
(an_:lu k) )

Furthermore, the r.h.s is minimal for g = B, '\/2K L(p*||f11) that is for

nn:Bgly/Wforallnzl...N.

O
Example 5 and Condition (2.18)
Proof that Condition (2.18) is satisfied in Example 5.
We h ke (0.0 — e—lly—0112/(2n2) d _7x o 5e—||y—e{u2/2 0 56—\\.@:—05\\2/2
e have ky( ,y)—Wan p(y) = Z x |0. W+ 0 oz

forall @ € T and all y € Y. Since we have chosen o = 1, we have f/ (u) = log(u) for
all u > 0 and we are interested in the following quantity

2 2
B?:= sup / sup kh(ﬁ,,y) log (,ukh(y)>
peMy () Jy 0.0eT kn(0,y) p(y)

v(dy) .
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For simplicity, we consider the case Z = 1. Recall that by assumption T = B(0, ).
Then, for all ,6" € T and for all y € Y, we can write

kn(6,v) —lly=01%+]ly—0"))? 2<y.0-0">—| 0> +||6’|*
/ = e 2h2 = e 2h2
kh<6 7y>
2\<y,o—9’>\+2\|0n2+u9’n2
<e 2h
Hyu||9—§’u+r2
ek
llyl|2r+r>
g [ h2

Furthermore, we also have forall y € Y

ly—6]2

e SWPoeT Tz L (27rh2)d/2ukh(y) <1

2
ly—0x 1

e~ MaxXic (1,2} 2 < (27T)d/2p(y) <1

and we can deduce for all x € M;(T) and ally € Y

#k‘h(y)>‘ ly — 0|1? ly — 672
log | —7 5 )| <sup =5 + max " +d|logh
‘ g( p(y) per  2h2 ie{la} 2 |log 7|

(lyll +r)* [ 1

< +1]—|—d\logh|.

h2
Consequently, we have

lyl|2r+r2

2
2 e K Cig—op2/cn?y (Ul +7)% [ 1

J/

<e(wl-n3/er?)

that is By < cc. L]

2.A4 Lemma 16: statement and proof

Recall that Y7,Y5,... are iid random variables with common density pk w.r.t v,
defined on the same probability space (2, F,P) and we denote by E the associated
expectation operator. Here, I is chosen as I'(v) = [(a — 1) v + 1]7/(1=2),

Lemma 16. Assume (2.A1). Let « € R\ {1}, n > 0 and k be such that (o« — 1)k > 0. Let
p € My (T) be such that p(|b,.«|) < oo and

n

k(0,Y1) (pk(Yi)\ " e
/T,u(dH)]E { RY) ( () > + (a — 1)/—@} <00, (2.43)

Then,

lim pu(T(bpanm + k) = pw(T(bpa+ k), P—as. (2.44)

M—o0



76 Chapter 2. Infinite-dimensional o-divergence minimisation

Proof. Set g(6,y) =
1)k + 1. Note that IE

3( S 4 (0= Dk, 6 = 2 and hu) = (o~ Du+ (o -
Y1)] = h(bya(6)) and h? =T

(i) We start with the case ¢ ¢ [0,1]. Our goal is to apply Lemma 17, which
is a generalized version of the Dominated Convergence Theorem. To do so, first
note that h(i)u,a, 1 (0))? is positive and combining with the convexity of the mapping
u— u®, we have forall M € N*and forall§ € T,

M
0 < by, (0)? < M~ [9(6, Vn))? . (2.45)

Since 1u(|by,a]) < 0o, the LLN for p-almost all # € T yields

A}I_I?OO b,u,a,M(‘g) = b,u,a(e) : (2-46)

Now applying successively (a) the LLN for py-almostall § € T (as stated in Lemma 18),
which is valid under (2.43), (b) Fubini’s Theorem and (c) again the LLN

M
[ty tim 27157 (g6, 0y 2 [ o) [{o(0. )]

m=1

M
Og { /T u(d&)[g(G,Y1)]¢] © ]\}im M > [9(0,Ym)]” (247)

—00
m=1

that is

M M
. -1 ) | — 1 -1 . ¢
p (A}gnooM mZ::l{g( Yo)} > Jim g (M mZ::l[g( ,Yom)] ) < oo
Combining with (2.45) and (2.46), we apply Lemma 17 and obtain

p (R(ba)?) = 1 (A}gnoo h(éu,a,MW) = Tim_p(a(ba)?)

M —oc0

that is
(Db 1)) = T (T (b0 + 1))

(i) We now turn to the case ¢ € (0,1]. Let M’ > 0. Since

M é
/r (M ' Z 9(0,Ym) 1{9 9Ym)<M’}> < N(h(bu,a,M)¢) )
m=1

the LLN for p-almost all § € T (Lemma 18) and the Dominated Convergence Theo-
rem yields

/T 1(d0) (E[g(0, Y1)1g00.v1)<ary))” < Hminf u(h(byua,n)?) - (2.48)

M—o0
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Using now (u +v)? < u® +v? and then Jensen’s inequality for the concave mapping

u— u?,
M ¢
p1(h(bpa,nm)?) < /TM(CW) (M_l > 9(9,Ym)1{g(e,ym)<M/}>
m=1
M ¢
+ (/T p(do)M—1 9(97Ym)1{g(6,Ym)>M’}>
m=1

By invoking the LLN for pi-almost all € T (Lemma 18) and the Dominated Conver-
gence Theorem for the first term of the rhs and the LLN combined with Fubini for
the second term, we get

limsup (kb anr)?) < /T 1(d0) (E[g(0, 1)1 1y 0501<a1])°

M—o0

+ </T N(dQ)E[Q(GuYl)l{g(G,Y1)>M’}]>¢

Letting M’ go to infinity both in this inequality and in (2.48) completes the proof of
(2.44).

2.A.5 General Dominated Convergence Theorem

We state and prove a generalized version of the Dominated Convergence Theorem,
adapted from Royden and Fitzpatrick, 2010, Theorem 19. We provide here a full
proof for the sake of completeness.

Lemma 17 (General Dominated Convergence Theorem). Let { € M;(T). Assume
there exist (anr), (bar), (car) three sequences of (T, B(R))-measurable functions such that
the limits imps_o0 aps(0), Hmps—so0 bar(0), imps—yo0 car(0) exist for -almost all 6 € T
and

li li < 00 .

Assume moreover that for all M € N* and for (-almost all § € T

anr(9) < bar(0) < em(0)

and

C( lim ap) = A}ii)noog(aM) (2.49)

M—o0

¢(Jim epr) = lim ¢lear) - (2.50)
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Then,
Cfim ban) = i <o)

Proof. We apply Fatou’s Lemma combined with (2.49) and (2.50) to the two non-
negative, (7, B(R))-measurable functions 6 — by (0) —an(0) and 6 — cpr(6) —bas(0)
and we obtain

C(liminf bys) < liminf ¢(bar)
M—o00

M—o0
C(liminf —bys) < liminf ¢(—byy)
M—o0

M—oc0

which proves the lemma, as liminf y/_,o bas(0) = limsupy,_,~ bar(0) for (-almost all
0ecT. O

2.A.6 Integrated Law of Large Numbers

Let Y1,Y5,... beiid. random variables on the same probability space ({2, F,P) and
let f be a non-negative real-valued (7 ® F, B(R>))-measurable function. We are

interested in showing

/g(de lim M~ ! Zf 0,Ym) /g (dO)E[f (0, Y1)] (2.51)
.

for ¢ € My (T) satisfying [; ¢(d0)E[f(6,Y1)] < co. While this result follows easily if
we can show that

M
P (ve €T, lim MY F(0,Yn) = E[f(e,Yl)]> =1 (2.52)

m=1

unfortunately the LLN only yields

(A}TOOMlzfey (91@])—1

for (-almost all § € T. The following lemma allows to show (2.51) without resorting

to the much stronger identity (2.52).

Lemma 18. Let ¢ € M(T) and assume that [ ((dO)E[f(0,Y1)] < co. Then, P — a.s.

o ctas) gim a3 76,32 = [ claoels .30

Proof. Set

M
— {(a,w) €TxQ: lim MY (0, Yin(w)) = E[f(e,yl)]} .

m=1
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Let o : (6,w) — 1p<(0,w) and y; = 1 —~p. According to the Fubini Theorem and the
LLN for M~} Z _1 f(6,Y},) where 6 is such that E[f(6,Y7)] < oo (which is satisfied
for ¢-almost all & € T by assumption),

Ucww } /cw 0(6,)] =

Therefore, [;((df)yo(f,) is P — a.s. null that is, there exists £ such that P(€2;) =1
and forallw € Q, A — [, {(df)70(0,w) is the null-measure on (T, 7), which in turn
implies that the measures ¢ and A — [, ((df)y1(#,w) coincide. The latter property
implies for all w € €y,

/ CADELf(6.1)] = / CAOEL (0, Y1) (6, w)
T T

- [ <)

M
:/Tg(de)MnglooM—ln;f(@,Ym(w))

M
Jim MUY (6, Yin(@)) | 11 (0)

2.A.7 Proof of Proposition 10

Proof of Proposition 10. Recall that we have taken I'(v) = [(a — 1) v + 1)/~ For
the sake of readability, we only treat the case x = 0 in the proof of Proposition 10.
Note that the case k # 0 unfolds similarly by replacing b, » by b, « + k everywhere
in the proof below.

A first remark is that ¥, (k) < oo implies p(|by.«|) < oco. This comes from the
fact that for all @ € R and for all u € R, ufl(u) = afa(u) + (v — 1) and we can

write
fa </;kég)) ’p(y)V(dy) +/Yp(y)l/(dy) +1

Under (2.A1), we have [, p(y)v(dy) < oo, which settles the case o = 0. As for the
case o € R\ {0}, we obtain from Lemma 4 that the r.h.s is finite if and only if ¥, (uk)

is finite, which is implied by the assumption ¥, (uk) < oo.
By the triangular inequality, for all M € N*, forall6 € T,

T (by,o, w»_r@ww><r@wa»1_MH%mm>
1@ bpans))  HT0w)) |~ w(C(bponr)) (T (bpua))
P (buo,01(68) ~ Dby (9))]
(I (bpa)
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Thus,
5 T (by,a1) L'(by,a)
Zom(p) —Za(p =pu £ - ’
<h- (T (o) | | p(T (buass) = (b))
N(F(bu,a ) N(F(bu,a))
For the first term of the rhs, Lemma 16 yields
. N(F(Eu o M))
lim |1— : =0. (2.53)
M—00 p(I(by,a))

As for the second term of the rhs, first note that forall M € N*, forall0 € T
0 < L (bua,m(6) = T(bya(@))] < T(buam(6)) + T(byal)) (2.54)

and since ;(I'(b,,o)) < oo by assumption, the LLN for p-almost all 6 € T yields

~

Jim D(bya0(0)) = D(bua(9)) - (2.55)

Furthermore, since ;(I'(by,«)) < 0o, Lemma 16 and (2.55) imply

lim g [D(buan) +F(bﬂ7a)} =u[ lim (F(3M7Q7M) +F(b#’a))} < o0

M—o0 M—o0

Combining with (2.54) and (2.55), we apply Lemma 17 and obtain

lim M(‘F@M,WM) - F(bu,am

TN (99 ) R

which, along with (2.53), finishes the proof. O
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Mixture weights optimisation with
the a-divergence

The work presented in this chapter corresponds to the paper entitled “Mixture weights op-
timisation for Alpha-divergence Variational Inference” (Daudel and Douc, 2021) that has
been submitted as a conference paper at the time of writing.

3.1 Introduction

Chapter 2 introduced the («,I')-descent, a general family of gradient-based algo-
rithms that are able to optimise the mixture weights of a given mixture model by
a-divergence minimisation, without any information on the underlying distribution
of its mixture components parameters.

The benefit of these types of algorithms is that they allow to select the mixture
components according to their overall importance in the set of components parame-
ters and from there, one is able to optimise the weights and the components param-
eters alternatively.

The (o, I')-descent framework recovers the Entropic Mirror Descent algorithm
(corresponding to I'(v) = e~ with > 0) and includes the Power Descent, an algo-
rithm defined for all @ € R\ {1} and all 5 > 0 thatsets T'(v) = [(a—1)v+1]"/1=)_ Al-
though these two algorithms are linked to one another from a theoretical perspective
through the (a,I')-descent framework, numerical experiments in Chapter 2 showed
that the Power Descent outperforms the Entropic Mirror Descent when a < 1 as the
dimension increases.

However, the global convergence of the Power Descent algorithm when o < 1, as
stated in Chapter 2, is subjected to the condition that the limit exists. Furthermore,
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even though the convergence towards the global optimum is derived, there is no
convergence rate available for the Power Descent when o < 1.

While there is no general rule yet on how to select the value of « in practice, the
case o < 1 has the advantage that it enforces a mass-covering property, as opposed to
the mode-seeking property exhibited when o > 1 (Chapter 1 and 2) and which often
may lead to posterior variance underestimation.

We are thus interested in studying Variational Inference methods for mixture
weights optimisation via a-divergence minimisation when a < 1. To do so, let us

introduce some notation and state the problem we aim at solving in this chapter.

Notation and problem statement We retain the notation from Chapter 2. Letting
p be any measurable positive function on (Y, )), the optimisation problem we con-
sider is then

arginf, cm Vo (1k;p) (3.1)

where for all ;1 € M;(T),

Ea(ukip) = [ Jo (“’“(y)) ply)(dy)

p(y)

and where we will be particularly interested in the case where y = Zle Ajdg,, J €
N5 A= (A,...,\y) € Syand © = (0y,...,0;) € T/. We will yet again drop the
dependency on p in the rest of the chapter and we now detail the organisation of
Chapter 3.

Outline The chapter is organised as follows:

e In Section 3.2, we recall for clarity the basics of the Power Descent algorithm
described in Chapter 2 alongside with the convergence result obtained in Chap-
ter 2when a < 1.

o In Section 3.3, we derive the full convergence proof of the Power Descent algo-
rithm towards the optimal mixture weights when o < 1 (Theorem 10).

o Since the a-divergence becomes the traditional forward Kullback-Leibler when
a — 1, we first bridge in Section 3.4 the gap between the two cases o < 1 and
a > 1 of the Power Descent: we obtain that the extension of the Power Descent
to the case a = 1 is an Entropic Mirror Descent performing forward Kullback-
Leibler minimisation (Proposition 19). We then keep on investigating the con-
nections between the Power Descent and the Entropic Mirror Descent by con-
sidering first-order approximations. In doing so, we are able to go beyond the
(c, I')-descent framework and to introduce an algorithm closely-related to the
Power Descent. We call it Renyi Descent and we prove in Theorem 11 that it
converges at an O(1/N) rate towards its optimum for all o € R.
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e Finally, we run some numerical experiments in Section 3.5 to compare the be-
havior of the Power Descent and the Renyi Descent altogether. We conclude
by discussing the potential benefits of one approach over the other.

3.2 Background on the Power Descent

The optimisation problem (3.1) can be solved for all « € R \ {1} by using the Power
Descent algorithm introduced in Chapter 2 : given an initial measure 1 € M;(T)
such that U, (u1k) < oo, € R\ {1}, n > 0 and « such that (o — 1)k > 0, the Power
descent algorithm is an iterative scheme which builds the sequence of probability
measures (fin)nen

pnt1 = La(tn) neN”, (3.2)

where for all 1 € M;(T), the one-step transition p — Z, (1) is given by Algorithm 8
and where for all v € Dom,, I'(v) = [(a — 1)v + 1]”/(1=® [and Dom,, denotes an in-
terval of R such that forall § € T, all n € M(T), b,a(0)+x and pu(byo)++ € Dom,].

Algorithm 8: Exact Power Descent transition; I'(v) = [(a — 1)v + 1]7/(1=2)

1. Expectation step : b, (6) = /Yk:(ﬁ,y)f(’x </;k(§f)>> v(dy)

11(d6) - T(b.a(6) + &)
P(L (b + )

2. Iteration step : Z,(p)(df) =

A remarkable property of the Power Descent algorithm, which has been proven
in Chapter 2 (it is a special case of Theorem 1 with I'(v) = [(a — 1)v 4 1]7/(1=9)), is
that under (3.A1) as defined below

(3.A1) The density kernel &k on T xY, the function p on Y and the o-finite measure v on
(Y, ) satisty, forall (6,y) € TxY, k(0,y) > 0, p(y) > 0and [, p(y)v(dy) < cc.

the Power Descent ensures a monotonic decrease in the a-divergence at each step
for all n € (0, 1].

Theorem 8 (Theorem 1 applied to the Power Descent). Assume that p and k are as in
(3.A1). Let « € R\ {1}, set T'(v) = [(a — 1)v + 1)1~ for all v € Domy,, let & be such
that (a — 1)k > 0, let u € M1 (T) and let n € (0, 1] be such that

0 < pu(T(bpa+r)) <oo (3.3)

holds and W, (uk) < oo. Then, the two following assertions hold.
(i) We have ¥, (Zo(1)k) < Wo(pk).

(ii) We have ¥, (Zo(pn)k) = Vo (k) if and only if p = Lo (1)
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Under the additional assumptions that x > 0 and

sup  |bual <oo and V,(mk) < oo, (3.4)
9T, ueM; (T)

the Power Descent is also known to converge towards its optimal value atan O(1/N)
rate when o > 1 (Theorem 3). On the other hand, when o < 1, the convergence
towards the optimum as written in Theorem 4 of Chapter 2 holds under different

assumptions including

(3.A2) (i) T is a compact metric space and 7 is the associated Borel o-field;

(i) forally €Y, 6 — k(0,y) is continuous;

s k(@’,y) a—1
(i) we have [, suppet k(0,y) X supger ( ) v(dy) < oo.

p(y)
20) [pyyv(dy) < oo.

If o« = 0, assume in addition that ||, supyct ‘log (’“p(yl)’)

so that Theorem 4, that is recalled below under the form of Theorem 9, states the

convergence of the Power Descent algorithm towards the global optimum.

Theorem 9 (Recalling Theorem 4). Assume (3.A1) and (3.A2). Let o« < 1 and let k < 0.
Then, for all p € My(T), Vo (pk) < oo and any n > 0 satisfies 0 < p(I'(bya + k) < oo.
Further assume that € (0, 1] and that there exist py, u* € My (T) such that the (well-
defined) sequence (fin)nen+ defined by (3.2) weakly converges to p* as n — oo. Finally,
denote by My ,,, (T) the set of probability measures dominated by 1,. Then the following
assertions hold

(i) (Vo (unk))nen is nonincreasing,
(ii) p* is a fixed point of Z,,,
(le) \Ija(u*k) = infCGMl,m (T) \Ifa(Ck)

The above result assumes there must exist i1, u* € M;(T) such that the sequence
(tn)nen+ defined by (3.2) weakly converges to u* as n — oo, that is it assumes the
limit already exists. Our first contribution consists in showing that this assumption
can be alleviated when 1 is chosen a weighted sum of Dirac measures, that is when

we seek to perform mixture weights optimisation by a-divergence minimisation.

3.3 Convergence of the Power Descent algorithm in the mix-

ture case

Before we state our convergence result, let us first make two comments on the as-
sumptions from Theorem 9 that shall be retained in our upcoming convergence re-
sult.

A first comment is that (3.A1) is mild since the assumption that p(y) > 0 for all
y € Y can be discarded and is kept for convenience (see Remark 5 of Chapter 2). A
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second comment is that (3.A2) is also mild and covers (3.4) as it amounts to assuming
that b, o (#) and ¥, (pk) are uniformly bounded with respect to 1 and 6. To see this,
we give below an example for which (3.A2) is satisfied.

Example 6. Consider the case Y = R% with o € [0,1). Let r > 0 and let T = B(0,7) C
RY. Furtheremore, let K}, be a Gaussian transition kernel with bandwidth h and denote by
ky, its associated kernel density. Finally, let p be a mixture density of two d-dimensional
Gaussian distributions multiplied by a positive constant ¢ such that for all y € Y, p(y) =
¢ x [0.5N (y; 0%, I4) + 0.5N (y; 05, I4)] where 05,05 € T and I, is the identity matrix.
Then, (3.A2) holds (see Section 3.A.1).

Next, we introduce some notation that are specific to the case of mixture models
we aim at studying in this section. Given J € N*, we introduce the simplex of R”:

J
Sy={A=(,... ., ) eR) Vje{l,....J}, \;>0and > ;=1
j=1

and we also define ST = {A €Sy : Vje{1,...,J}, \; > 0}. In addition, we let
O = (6,...,0;5) € T be fixed and for all A € S;, we define px € M;(T) by ux =
ST Ao,

Consequently, uxk(y) = 23-]:1 A\jk(0;,y) corresponds to a mixture model and if
we let (in)nen+ be defined by 1 = px and (3.2), an immediate induction yields
that for every n € N*, u, can be expressed as u, = ijl Ajndg; where A, =
(A, ... Agn) € Sy satisfies the initialisation A; = A and the update formula:

Ani1 = IM(N,) , ne N* | (3.5)

where forall A € S,

ImiXt(A) — ( )‘jr(b,ux,a(ej) + KV) )
IS A

S AT by a(00) + k)

with I'(v) = [(« — 1)v + 1]& for all v € Dom,,. Finally, let us rewrite (3.A2) in the
simplified case where the initial measure 41; is a sum of Dirac measures, which gives
(3.A3) below.

(8.A3) (i) Forally €Y, 0+ k(0,y) is continuous;

. ' k(0,,y)\
(i) we have L 1I£Ja<XJk(HJ y) X 12}521 ( o) ) v(dy) < oo.

If « = 0, we assume in addition that max
vy 1<gsd

log (%) ‘ p(y)v(dy) < oo.

We then have the following theorem, which establishes the full proof of the global
convergence towards the optimum for the mixture weights under alleviated as-

sumptions when o < 1.



86 Chapter 3. Mixture weights optimisation with the a-divergence

Theorem 10. Assume (3.A1) and (3.A3). Let o < 1, let © = (01,...,05) € T/ be
fixed and let k be such that k < 0. Then for all X € Sy, Vo(ux) < oo and for any
n > 0 the sequence (Ap)nen+ defined by Ay € Sy and (3.5) is well-defined. If in addition
(A1,n) € S x (0,1] and {K(01,"),...,K(04,-)} are linearly independent, then

(i) (U, k))nenr is nonincreasing,
(ii) the sequence (A, )nen~ converges to some A, € Sy which is a fixed point of T2,
(iii) Wo(pua, k) =infycs, Valpnk).

The proof of this result builds on Theorem 8 and 9 and is deferred to Section 3.A.2.
Notice that since ¥, depends on A through px K in Theorem 10, an identifiably
condition was to be expected in order to achieve the convergence of the sequence
(An)nen+. Following Example 6, this identifiably condition notably holds for J < d
under the assumption that the 61, ..., 6; are full-rank.

We thus have the convergence of the Power Descent under less stringent condi-
tions when a < 1 and when we consider the particular case of mixture models. This
algorithm can easily become feasible for any choice of kernel K by resorting to an
unbiased estimator of (b, (0;))1<j<s in the update formula (3.5) (as already seen
in Algorithm 6 of Chapter 2).

Nevertheless, contrary to the case o« > 1 we still do not have a convergence
rate for the Power Descent when o < 1. Furthermore, the important case a = 1
in (3.1), which corresponds to performing forward Kullback-Leibler minimisation,
is not covered by the Power Descent algorithm. In the next section, we extend the
Power Descent to the case o = 1. As we shall see, this will lead us to investigate the
connections between the Power Descent and the Entropic Mirror Descent beyond the
(o, I')-descent framework. As a result, we will introduce a novel algorithm closely-
related to the Power Descent that yields an O(1/N) convergence rate when p = px
and a < 1 (and more generally when 1 € M;(T) and a € R).

3.4 Power Descent and Entropic Mirror Descent

Recall from Section 4.1 that the Power Descent is defined for all « € R\ {1}. In this
section, we first establish in Proposition 19 that the Power Descent can be extended
to the case @ = 1 and that we recover an Entropic Mirror Descent, showing that a
deeper connection exists between the two approaches beyond the one identified by
the («, I')-descent framework.

This result relies on typical convergence and differentiability assumptions sum-
marised in (D1)

(D1) Forsomee > 0:foralla e [1 —¢,1)ora € (1,1 +¢],

(i) there exists a function N : Y — (0,+4o00) satisfying: [, N(y)v(dy) < oo
and
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sup k(6,-) x sup <’“(9” '))a_l < N();

0cT 0'eT p()

(i) there exists a function M : Y — (0,+00) satisfying: [, M(y)v(dy) < oo

and
s (55)

(iii) forally €Y, we have/ i
y 0€T 0'eT

sup k(0,-) x sup
0T 0'eT

X sup
97T

>a1 <M();

("

nf k(0,y) x inf (k(#ly’ﬁ/))ail v(dy) > 0.

Note that these assumptions are mild if we assume that T is a compact metric
space, which is generally the case. In addition, assumption (D1)-(iii) is only required
when a > 1 to ensure that the quantity [(a — 1)(b,.o + &) + 1]ﬁ is bounded from
above. This assumption could also be replaced by the assumption that « is such that
(v — 1)k > 0. We then deduce Proposition 19 below.

Proposition 19 (Limiting case av — 1). Assume (3.A1) and (D1). Let n > 0 and « be such
that (o — 1)k > 0. Then, for all ;v € My(T) and all continuous and bounded real-valued
functions h on T, we have that

lim [Zo(p)](h) = [T (w)](R) ,

a—1

where for all p € My (T) and all § € T, we have set

11(d6)ebu1 ()

Z1(p)(dO) = ()

k(0,y)log <'l;k(;y))> v(dy). (3.6)

Proof. For all § € T, the Dominated Convergence Theorem and (D1)-(i) yield

and bu,1(9):/

Y

i — K = lim M a_ly =
lm (o= 1)(0,00) +0) + 1= iy [ 10 (“00) v o1

Then, using (D1)-(ii) we have that forall € T,

lim (o = 1) (by.a(6) + ) + 1] 7=

a—1
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In addition, by the Dominated Convergence Theorem (and (D1)-(iii) when o > 1),
we have

lim gt ([(e = 1) (Bpa + ) + 17

—u <exp [—n J (*;’“((yy))) u(de exp (=)

Thus,

lim [Zo (p1)] (h) =

a—1

M(dg)h(g)efnfyk(e,y)log(x;lz;?)y(dy) i h
/T G = [Ta(w)](h) -
w <e Yo p(y) >

O]

We recognise the one-step transition associated to the Entropic Mirror Descent
applied to 1 — Wy (pk) in (3.6). This algorithm is a special case of Chapter 2 with
I'(v) = e and a = 1 and as such, it is known to lead to a systematic decrease in
U, and to enjoy an O(1/N) convergence rate under the assumptions that (3.4) holds
and 7 € (0,1) Theorem 3.

We have thus obtained that the Power Descent coincides exactly with the En-
tropic Mirror Descent applied to ¥; when o = 1 and we now focus on understand-
ing the links between Power Descent and Entropic Mirror Descent when a € R\ {1}.
For this purpose, let x be such that (« — 1)x > 0 and let us study first-order approxi-
mations of the Power Descent and the Entropic Mirror Descent applied to ¥, when
by ,a(0) = pin(by, o) forall @ € T.

Letting n > 0, we have that the update formula for the Power Descent is given
by

pn(A9) [(@ = 1) (b0 (6) + 1) + 1]

na1(d6) = . . neN*.
pre1(40) pn([(@ = 1) by + £) +1]777) ©

Now using the first-order approximation uTe ~vTe — %v%_l (u—wv) withu =
(a—1)(buy,,a(0)+K)+1

(a=1)(p(bun ) +4)+1
formula

and v = 1, we can deduce the following approximated update

Ul b, a(f) — Nn(bun,a) *
i1 (d0) = pn(dO) |1 — ’ , neEN*.
ot (40) = ka0 | = o ) 5+ @D "

Letting ' > 0, the update formula for the Entropic Mirror Descent applied to ¥,

can be written as

() — PO D [ G a0) £ 0] 57

fin (€xp [=1 (byp0 + K)])
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and we obtain in a similar fashion that an approximated version of this iterative
scheme is

fn+1(d0) = fin(d6) [1 -1 (bpi,a(0) — Mn(bun,a))] , meNT.

Thus, for the two approximated formulas above to coincide, we need to set ' =
(@ — 1) (ttn(bu,.a) + %) +1]7'. Now coming back to (3.7), we see that this leads us
to consider the update formula given by

b 7L1a(9)
pin (d) exp [_n(a—l)(ﬂs(bun,a)+“)+1]

, N*. (3.8)
pn (50 [~y ) :

pint1(d0) =

Observe then that (3.8) can again be seen as an Entropic Mirror Descent, but applied
this time to the objective function y +— W/ (uk), where for all « € R\ {0, 1} and all
probability density ¢ with respect to v on (Y,)) we have set

1
AR o o -« _
Vo) = oo = 1) log (/Y q(y)*p(y) “v(dy) + (o 1)%) :
This means that we have applied the monotonic transformation
1
u ala=1) log (a(a —lDu+a+(l-a) /Yp(y)v(dy) + (a— 1)n>

to the initial objective function ¥,, (see Section 3.A.3 for the derivation of (3.8) based
on the objective function WA%).

Hence, in the spirit of Renyi’s a-divergence gradient-based methods for Varia-
tional Inference (e.g. Hernandez-Lobato et al., 2016; Li and Turner, 2016), we can
motivate the iterative scheme (3.8) by observing that we recover the VR bound in-
troduced in Li and Turner, 2016 up to a constant —a~! when weletp = p(-, ),k =0
and o > 0in WA (uk). For this reason we call the algorithm given by (3.8) the Renyi
Descent thereafter.

Contrary to the Entropic Mirror Descent applied to ¥, the Renyi Descent now
shares the same first-order approximation as the Power Descent. This might explain
why the behavior of the Entropic Mirror Descent applied to ¥, and of the Power De-
scent differed greatly when @ < 1 in the numerical experiments from Chapter 2 de-
spite their theoretical connection through the («, I')-descent framework (the former
performing poorly numerically compared to the later as the dimension increased).

Strikingly, we can prove an O(1/N) convergence rate towards the global opti-
mum for the Renyi Descent. Letting ' € R, denoting by Dom“? an interval of R
such that forall € T and all © € My(T),

R

bu,a(g) +1/(a—1) + % and ﬂ(bu,a) +1/(a—1)

/ A
(@ —=1)(p(bpa) +K)+1 (0 — D)(p(bua) + 1) + 1 + k" € Dom},
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and introducing the assumption on 7
(3.A4) Forallv € Dom2%, 1 —n(a —1)(v — &) > 0.
we indeed have the following convergence result.

Theorem 11. Assume (3.A1) and (3.A4). Let o € R\ {1} and let x be such that (o« —1)k >
0. Define |bloc,a := Supget pen, (1) [bpal() + 1/(a — 1)| and assume that [b|oc o < oo
Moreover, let j17 € Mi(T) be such that U, (k) < oco. Then, the following assertions hold.

(i) The sequence (pn)nen+ defined by (3.8) is well-defined and (Vo (pnk))nen+ is non-
increasing.

(i) Forall N € N*, we have

La 2 La 3
v, k) — W, (k) < == |KL(p* L—F"—— A, 3.9
(unk) (W'k) < = (1 [|pa) + Tot(o - Dr (3.9)
where p* is such that ¥, (u*k) = infeenr, , (1) U (Ck), My, (T) denotes the set of
probability measures dominated by juy, K L(p*||p1) = [+log (dp*/dpr) dp*, Ay =
Uo(mk) — Yo (k) and Lo o, L, Lo 3, Lo, are finite constants.

The proof of this result is deferred to Section 3.A.4 (alongside with the definition
of the constants Ly 2, L, Lo 3, Lo in (3.18)) and we present in the next example an
application of this theorem to the particular case of mixture models.

Example 7. Let o« € R\{1},let J € N*,let © = (0y,...,0;) € T/, let yy = J =1 Z}'le dg;

and let DomAR = [— (|§‘j°l")“ﬁ + K/, (‘2‘2‘1’)0; + k'] with k' € R. In addition, assume that

1 — || |bloc,a > 0. Then, taking r’ = —382‘;’"1’)“&, we obtain

la — 1|(|b]oc,a + |&|) |log J N V21og(J)|blso,a
N 7 (= D)r(L = || bloo,a) |

Vo(unk) = Vo (u'k) <

where we have used that K L(p*||p) < logJ, Ay < v/210g J|b|oo,o and that the constants

[bloo,a '

defined in (3.18) satisfy Lao = n Yo — 1|(|bleoa + |K]), L = n?e"@=0="" L, 5 =
[bloo,a ’ _ o lbloa s
eTa—Dr 1% gnd Lo = (1-— 77|/€|71|b|oo,a)776 Ta-n= =",

To put things into perspective, notice that under our assumptions the Renyi De-
scent enjoys an O(1/v/N) convergence rate as a Entropic Mirror Descent algorithm
for the sequence (¥, (N~} EnNzl fin)) Nen+= when 7 is proportional to 1/v/N, N being
fixed (see Beck and Teboulle, 2003 or Bubeck, 2015, Theorem 4.2.).

The improvement thus lies in the fact that deriving an O(1/N) convergence rate
usually requires stronger smoothness assumptions on ¥, (Bubeck, 2015, Theorem
6.2) that we do not assume in Theorem 11. Furthermore, due to the monotonicity
property, our result only involves the measure j v at time /N while typical Entropic
Mirror Result are expressed in terms of the average N ! Zﬁ[:l -
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TABLE 3.1: Summary of the theoretical results obtained in this chap-
ter compared to Chapter 2

Power Descent Renyi Descent
Chapter 2 a < 1: convergence under restrictive assumptions; not covered
a > 1: O(1/N) convergence rate
This chapter « < 1: full proof of convergence for mixture weights; O(1/N)
extensionto o =1 convergence rate

Finally, observe that the Renyi Descent becomes feasible in practice for any choice
of kernel K by letting ;1 be a weighted sum of Dirac measures i.e. u = px and by
resorting to an unbiased estimate of (b, +(0;))1<;<s (e.g. Algorithm 9).

The theoretical results we have obtained compared to Chapter 2 are summarised

in Table 3.1 for clarity and we next move on to numerical experiments.

Algorithm 9: Practical version of the Renyi Descent for mixture models

Input: p: measurable positive function, K: Markov transition kernel, M:
number of samples, © = {0;,...,0;} C T: parameter set, I'(v) = e~ with
n asin (3.A4), N: total number of iterations.

Output: Optimised weights A.

Set A = [)\171, e )\JJ].

forn=1...N do

Sampling step : Draw independently M samples Y7, ..., Yy from pyk.

Expectation step : Compute By = (b))1<;j<s where forallj =1....J

1 R k0, Ym) Ak (Vi)
b= M mzzzl MAk‘(Ym)fa ( p(Yin) )

and forallj=1...J

= bi
Tl =S bt R) + 1

and deduce W = (\;T'(b]; + ') 1<j<s and wy = ijl AT + &),

Iteration step : Set

1
A — fW)\
wWx

end
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3.5 Simulation study

Let the target p be a mixture density of two d-dimensional Gaussian distributions
multiplied by a positive constant ¢ so that forally € Y, p(y) = ¢x[0.5N (y; —sug, Iq)+
0.5N (y; sug, I4)], where ug is the d-dimensional vector whose coordinates are all
equal to 1, s = 2, c = 2 and I is the identity matrix. Given J € N*, the approximat-
ing family is described by

J
yHuAkh(y):Z)\jkh(y—é{j) : )\ESJ,QL...,QJET ,
j=1

where K, is a Gaussian transition kernel with bandwidth h and k;, denotes its asso-
ciated kernel density.

Since the Power Descent and the Renyi Descent operate only on the mixture
weights X of pxkj, during the optimisation, as seen in Chapter 2 a fully adaptive
algorithm is obtained by alternating 7" times between an Exploitation step where the
mixture weights are optimised and an Exploration step where the 6y, ...,0; are up-
dated, as written in Algorithm 10.

Algorithm 10: Complete Exploitation-Exploration Algorithm

Input: p: measurable positive function, a: a-divergence parameter, go: initial
sampler, Kj: Gaussian transition kernel, T": total number of iterations, J:
dimension of the parameter set.

Output: Optimised weights X and parameter set O.

Draw 61 1,...,0;1 from gqo.

fort=1...Tdo

Exploitation step : Set © = {61,...,0;}. Perform the Power Descent or

Renyi Descent and obtain the optimised mixture weights A.

Exploration step : Perform any exploration step of our choice and obtain

01,6415, 07041.

end

As mentioned in Chapter 2 many choices are possible for the Exploration step
of Algorithm 10 since there is no constraint on {61, ...,0;}. Here, we use the same
Exploration step as the one used in Chapter 2. This means that A is set to be propor-
tional to J~1/(4*4) and that the particles are updated by i.i.d sampling according to
pxkp, in the Exploration step.

As for the Power Descent and Renyi Descent, we perform NN transitions of these
algorithms at each time ¢ = 1...T according to Algorithm 6 with I'(v) = [(a — 1)v +
1]7/1=« and Algorithm 9, in which the initial weights are set to be [1/.J,...,1/.J],
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n =no/V'N with g > 0 and M samples are used in the estimation of (b, «(0;.))1<s
at each iterationn =1... N.

We take J = 100, M € {100, 1000,2000}, o = 0.5, k = 0, 79 = 0.3 and the initial
particles 61, ..., 0; are sampled from a centered normal distribution ¢y with covari-
ance matrix 514. We let T = 10, N = 20 and we replicate the experiment 100 times
independently in dimension d = 16 for each algorithm. The convergence is assessed
using a Monte Carlo estimate of the VR bound introduced in Li and Turner, 2016

(which requires next to none additional computations).

The results for the Power Descent and the Renyi Descent are displayed on Figure
3.1 below and we add the Entropic Mirror Descent applied to ¥, as a reference.
FIGURE 3.1: Plotted is the average VR bound for the Power Descent
(PD), the Renyi Descent (RD) and the Entropic Mirror Descent ap-

plied to ¥, (EMD) in dimension d = 16 computed over 100 replicates
with g = 0.3 and a = 0.5 and an increasing number of samples M.

Dimension 16, & = 0.5, 1y = 0.3 M = 100 Dimension 16, @ = 0.5, n, = 0.3 M = 1000 Dimension 16, & = 0.5, 1y = 0.3 M = 2000

Variational Renyi Bound
Loy

Variational Renyi Bound
Lo

Variational Renyi Bound
oL

— e -30 - — e
— P — P
ey —35- — RD
— EMD — EMD

o 25 50 75 100 125 150 175 200 7 [ 25 50 75 100 125 150 175 200
Iterations

We then observe that the Renyi Descent is indeed better-behaved compared to
the Entropic Mirror Descent applied to ¥, which fails in dimension 16. Further-
more, it matches the performances of the Power Descent as M increases in our nu-
merical experiment, which illustrates the link between the two algorithms we have

established in the previous section.

Discussion From a theoretical standpoint, no convergence rate is yet available for
the Power Descent algorithm when o < 1. An advantage of the novel Renyi De-
scent algorithm is then that while being close to the Power Descent, it also benefits
from the Entropic Mirror Descent optimisation literature and as such O(1/ V/N) con-
vergence rates hold, which we have been able to improve to O(1/N) convergence
rates.

A practical use of the Power Descent and of the Renyi Descent algorithms re-
quires approximations to handle intractable integrals appearing in the update for-
mulas so that the Power Descent applies the function T'(v) = [(a—1)v+1]"/1=®) to an
unbiased estimator of the translated gradient b, (¢) + ~ before renormalising, while
the the Renyi Descent applies the Entropic Mirror Descent function I'(v) = e~ to a
biased estimator of b, (6)/(tn(by,,) + £ + 1/(cc — 1)) before renormalising.

Finding which approach is best between biased and unbiased a-divergence min-
imisation is still an open issue in the literature, both theoretically and empirically
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(Geffner and Domke, 2020a; Geffner and Domke, 2020b; Dhaka et al., 2021). Due
to the exponentiation, considering the a-divergence instead of Renyi’s a-divergence
has for example been said to lead to high-variance gradients (Dieng et al., 2017; Li
and Turner, 2016) and low Signal-to-Noise ratio when o # 0 (Geffner and Domke,
2020b) during the Stochastic Gradient Descent optimization.

In that regard, our work sheds light on additional links between unbiased and
biased a-divergence methods beyond the framework of Stochastic Gradient Descent
algorithms, as both the unbiased Power Descent and the biased Renyi Descent share

the same first-order approximation.

3.6 Conclusion and perspectives

We investigated algorithms that can be used to perform mixture weights optimisa-
tion for a-divergence minimisation regardless of how the mixture parameters are
obtained. More precisely, we have established the full proof of the convergence of
the Power Descent algorithm in the case & < 1 when we consider mixture models
and bridged the gap with the case a = 1. We also introduced a closely-related al-
gorithm called the Renyi Descent. We proved it enjoys an O(1/N) convergence rate
and illustrated in practice the proximity between these two algorithms when the
number of samples M increases.

Further work could include establishing theoretical results regarding the stochas-
tic version of these two algorithms, as well as providing complementary empirical
results comparing the performances of the unbiased a-divergence-based Power De-
scent algorithm to those of the biased Renyi’s a-divergence-based Renyi Descent.

These aspects are beyond the scope of this thesis and we now move on to Chap-
ter 4, in which we focus on finding an appropriate Exploration step that can com-
bined with the mixture weights optimisation framework we have developed during

the course of Chapter 2 and Chapter 3.
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3.A Deferred results

3.A.1 Proof that (3.A2) is satisfied in Example 6

Proof that (3.A2) is satisfied in Example 6.

—ly—011%/(2n?) —ly—03112/2 —lly—05112/2
We have kh(g, y) = G&TW and p(y) =cX |:056(;7r)d1/2 -+ 056(;T3/2

forall # € T and all y € Y. Recall that by assumption T = B(0,7) C R? with r > 0.
Then, for all & € [0, 1), we are interested in proving

(i) We start by proving (3.10). First note that for all 6,6’ € T and for all y € Y we

can write

kn(0,y) —lly=0l*+|ly—0"|| 2<y,0-0">— 0|2 +6")|
2h2 212

=€

2|<y,0—0">|+]16]12+]10"112 llylllle—6’||+r>
2 < 2

<e 2h/ <e h

from which we deduce that forall §,6’ € Tand forally €Y,

kn(0,y) <. ”y”ig+*"2

kn(0'y) (312

and that

/Ysupk(&y)xsup (kf(ly’)y)y_l v(dy) < /Yli'(@,y)elylfy2 sup <k(9/’y)>a_ll/(dy

0T 6'cT 0'eT p(y)

~—

Additionally, Jensen’s inequality applied to the concave function u + u!~® implies

lyl2r+22 k(&’,y))al lyj2r2 p(y) e
k(0,y)e »T  sup ( v(dy) < / k(0,y)e 1—r* sup v(dy
/Y ©) oet \ P(Y) () Y ©:) oet k(0. y) ()

11—«
k(0 llyli2r+r?
< (/ sup n0y) S p(y)V(dy)>
Y

0.0cT kn(0,y)

Now using (3.12), we can deduce

k(6 lylj2r+r? lyl2r+r?
/ sup h( /7 y) e =17 p(y)v(dy) < / P (1+1_1Q)p(y)y(dy) < 0,
v o,0cT kn(0,y) Y

which yields the desired result.
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(ii) We now prove (3.11). Forally € Y and all # € T, we have

ly—6]?

e~ swPoet V5B < (2rh?) 20, (0, y) < 1

2
lly—67 I

e~ MaXie12} — 3 0_1(27T)d/2p(y) <1

and we can deduce forally € Yand allf € T

’“hw»@/))‘ |y — 6] ly — 622
fo <sup “ g + max ——— =+ d|log h| + [log
‘ g( P(y) SUp oy max T |log h| + | log ]

<<IIZ/H+"°>2[1

< 5 2t 1] + d|log h| 4 |logc| . (3.13)

Since we have
+r)?[1
[ (WE T ] o+ Hoset ) i) < o

we deduce that (3.11) holds.

3.A.2 Proof of Theorem 10

We start with some preliminary results. Let ¢,(’ € M;(T). Recall that we say that
(R(¢ if and only if (K = ('K and that M; ¢(T) denotes the set of probability mea-
sures dominated by (.

Lemma 20. Assume (3.A1). Let M be a convex subset of My (T) and let (1, (o € Mi(T) be
such that

U (C1k) = Vo (lok) = inf U, (Ck).
¢eM
Then, we have (1R(s.

Proof. Forally € Y, set uy, = (1k(y)/p(y) and vy, = (2k(y)/p(y). Then, forally € Y
and forall ¢t € (0,1), fa(tuy + (1 —t)vy) < tfaluy) + (1 —t)fo(vy) by convexity of f,

and we obtain
WaltGik + (1= Gk) < (WalGik) + (1~ OTalGah) = inf alch) . (314)

Furthermore, t(; + (1 — t){2 € M which implies that we have equality in (3.14).
Consequently, for all ¢ € (0,1) :

/Y [ futty) + (1= ) favy) — Faltuy + (1= )o,)] p(y)v(dy) = 0.

>0

Now using that f, is strictly convex, we deduce that for p-almostally € Y, (1k(y) =
(ok(y) thatis (1R a. 0
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Lemma 21. Assume (3.A1). Let o € R\ {1}, let k be such that (o — 1)k > 0 and let
p* € Mq(T) be a fixed point of Z,. Then,

U, (k) = inf W, (Ck). 3.15
(W*k) cend™, (Ck) (3.15)

Furthermore, for all ¢ € My ;= (T), Yo (*k) = Vo (Ck) implies that p*R(.

Proof. Let ¢ € My ,+(T) be such that ¥, (Ck) < ¥, (p*k). We have that
C(bu*,a - N*(bu*,a)) < \I’a(ck) - \I’a(/i*k) <0. (3.16)

Furthermore, since ;/* is a fixed point of Z,,, I'(b,» o + &), hence b, o + £+ 1/(ac — 1)
is p*-almost all constant. In addition, b,» o + & + 1/(ov — 1) is of constant sign by

assumption on . Since ( < p*, we thus deduce that
¢ (bu*,a - N*(bu*,a)) =0.

Combining this result with (3.16) yields ¥, (Ck) = ¥, (p*k) and we recover (3.15).
Finally, assume there exists ( € M; ,+(T) such that ¥,(u*k) = V,(Ck). Then,

since M ,,«(T) is a convex set, we have by Lemma 20 that ;*R(. O
We now move on to the proof of Theorem 10.

Proof of Theorem 10. For convenience, we define the notation ¥, () := U, (uxk) for
all A € ;. In this proof, we will use the equivalence relation R defined by: (R(’ if
and only if (K = ('K and we write M; ¢(T) the set of probability measures domi-
nated by (.

(i) Any possible limit of convergent subsequence of (An)nen~ is a fixed point of Tt

First note that by (3.A3), we have that |V, (A)| < oo and that (3.3) is satisfied for
all pix such that A € S;. This means that the sequence (A;,),en+ defined by (3.5) is
well-defined, that the sequence (U, (Ay))nen+ is lower-bounded and that ¥, (A,,) is
finite for all n € N*. As (U () )nen is nonincreasing by Theorem 8-(i), it converges
in R and in particular we have

lim 4 o0 T2Y(N,) — U (An) = 0.
Let (Ay(n))nen+ be a convergent subsequence of (A,)en+ and denote by A its limit.

Since the function A ~— W, o ZM**(X) — ¥, () is continuous we obtain that ¥,, o
Tt (\) = ¥, (A) and hence by Theorem 8-(ii), A is a fixed point of 72t

(i) Theset F = {X € Sy : X =TI X)} of fixed points of T** is finite.
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For any subset R C {1,...,.J}, define

SJ’R:{)\GSJ : ViGRC,)\iZO,VjERC,)\j#O} ,
SJJ{:{)\ESJ : ViERC,)\iZO} ,

and write
F = U (S JR NF ) .
RcC{1,...,J}
In order to show that Fis finite, we prove by contradiction that forany R € {1,...,J},
Sy r N F contains at most one element. Assume indeed the existence of two dis-

tinct elements A # A’ belonging to S;r N F. Since My, (T) = My, (T) =
{ par A" €Sy, R}, Lemma 21 implies that

T,(A) = inf T, () =T, (N).
N'eSyr
Applying again Lemma 21, we get uxRuy, that is, ux K = pys K. This means that
23‘]:1 (Aj =) K (0, ) is the null measure, which in turns implies the identity A = A’
since the family of measures {K(61,),..., K(0,-)} is assumed to be linearly inde-
pendent.

(iii) Conclusion.

According to Lemma 20 applied to the convex subset of measures M = S, the func-
tion W, attains its global infimum at a unique A, € S;. The uniqueness of A, actually
follows from the fact that, as shown above, uxRuy if and only if A = A’. Then, by
Theorem 8-(i) and by definition of A,

Ty o TN < TUQ(A) = inf Tu(X) < Uy 0 ZX(N,)
A'eS;
and hence, ¥, o ZM*Y(X,) = T, (), showing that A, € F by Theorem 8-(ii). Since
by (ii), F" is finite, there exists L > 1such that F' = {A‘ : 1 < ¢ < L}, where fori # j,
A’ = X, Without any loss of generality, we set A! = A, to simplify the notation.

We now introduce a sequence (W;) 1<« , of disjoint open neighborhoods of (A)1</<1,
such that forany ¢ € {1,...,L},

X wyn [ |Jw; | =0 (3.17)
i
This is possible since Z"**(A%) = A* and X — Z™**(\) is continuous.

By (i) , the set F' contains all the possible limits of any subsequence of (A;,),enx.
As a consequence, there exists N > 0 such that foralln > N, A\, € U1<K . We.
Combining with (3.17), there exists ¢ € {1,..., L} such that foralln > N, A, € W,.



3.A. Deferred results 99

Therefore A’ is the only possible limit of any convergent subsequence of (\,,)nen-

and as a consequence, lim,, oo Ay, = b

Thus, the sequence (ux, )nen+ Weakly converges to ¢ as n — oo and Theorem 9
can be applied. Since A; € S7, we have My, (T) = {ux : N € S;} and Theo-
rem 9-(iii) then shows that p,¢ is the global arginf of ¥, over all {uy : X € S;}.
Therefore, ¢ = 1,i.e., A’ = A = A, and

To(A) = jnf Wo(X).
J

3.A.3 Derivation of the update formula for the Renyi Descent

Forall « € R\ {0,1} and & such that (o — 1)k > 0, we are interested applying the
Entropic Mirror Descent algorithm to the following objective function

1

AR -
UL (pk) == ala—1)

o [ wb)*p(a)"-2w(an) + (e~ 1

a(@)+1/(a—1)
1) (p(by,a)+5)+1"

Lemma 22. Assume (3.A1). The gradient of AT (uuk) is given by 6 +— (abf

Proof. Lete > 0be small and let p1, i’ € M;(T). Then,

UL (uk + ep'k)
- a(al_l) log </Y[(M +epVk(y)]*p(y)' ™ v(dy) + (a — 1)/<;>
_ # o a ag’u/k(y) l-a,, o — 1)kt ofe
- a(a—l)l g(/Yuk(y) [1+ Mk(y)]p(y) (dy) + (o — 1)k + of )>

where we used that (1 + u)* =1+ au + o(u) as u — 0. Thus,

AR (uk + epl'k)

N 1k(y) (%gj)))w1 v(dy)

_ TAR
= o (k) + Jy 1k(y)op(y)t—ev(dy) + (a — 1w

log | 1+ ae + o(e)

ala—1)
L k) ()T )
a—1 [, pk(y)p(y)—ev(dy) + (o — 1)

1 bual®) +1/(a—1)
o — 1 plbya) + 5+ 1/(a— 1)

= UAR(uk) + ¢ - +o(¢e)

:wﬁmm+eﬁymm +oe)

using that log(1 + u) = u + o(u) as u — 0. O
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Consequently, the iterative update formula for the Entropic Mirror Descent ap-
plied to the objective function W4 % is given by

__n_ bun,a(6)
e a—1 pn (buy,a)+r+1/(a—1)

tnt1(d0) = pp,(dO) , neN".

bun,o

Ln (67% pn(Bri )+ 171 )

3.A.4 Proof of Theorem 11

As we shall see, the proof can be adapted from the proof of Theorem 2. For all
u € My(T), we will use the notation

bu,a(6)
w(dh) exp [—77(@_1)(,;21;“,@)%)“}

% (eXp [_n(afl)(unb(uﬁa)%)“})

to designate the one-step transition of the Renyi Descent algorithm. Note in passing

T2 (1) (d6) =

that for all ¥’ € R, this definition can also be rewritten under the form

b, (0
1(d6) exp [—”(a—l)(u‘fbufa))wwl T “,}

[ (exp [_”(a—l)(uf@ﬁa)+n)+1 + K,D |

T () (d6) =

We also define

Loo=n""! sup  [( —1)(bpa(f) + k) + 1]
0T, neM1(T)

L=n* sup e ™

v€DomA R
Lyz= sup €
vEDoméR
Lo1 = inf 1—n(a—1)(v—-r)} x inf e . 3.18
ol vEDomAE { 77( )( )} n'UGDomQR ( )

1. Recalling Lemma 6

Let (¢, ) be a couple of probability measures where ¢ is dominated by x which we
denote by ¢ < 1 and define

— o (9O pk(y)\
A= [ vtay) [ w(anyrio.)s, (p(y) )[1 g0, (19

where g is the density of ( w.r.t i, i.e. ((df) = p(df)g(6). We recall Lemma 6 from
Chapter 2 in Lemma 23 below.

Lemma 23 (Lemma 6). Assume (3.A1). Then, for all p,{ € My(T) such that ¢ < p and
U, (uk) < oo, we have
Aa < \I’a(,uk) - \Ija(ck) : (320)

Moreover, equality holds in (3.20) if and only if ¢ = p.
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2. Adaptation of Theorem 1

Lemma 24. Assume (3.A1) and (3.A4). Let o € R\ {1}, let  be such that (« — 1)k > 0
and let € My (T) be such that

o <uemw (g s ) < 20

holds and W, (uk) < oo. Then, the two following assertions hold.
(i) We have U (T2 (p)k) < o (k).
(i) We have U, (TAR(p)k) = U, (uk) if and only if p = TAR (p).

Proof. The proof builds on the proof of Theorem 1 in the particular case o € R\ {1}.
Indeed, in this case,

_ 1 9(0)uk(y)\* ™
Ao = [ vtan) [ oo [( ) —1] 1— g(0)

p(y)
_ A7)
= [ vtan [ utaorno.n) 2 () a0t - gce)
= [ ) [B06) + 2] a0 1= 9001
i
so that
bua(0) + =L
Ao = [l = () + )+ 1 [ pa0) P EET g0y 1 g0

where (o — 1)(u(by,a) + £) + 1 > 0 under (3.A1). Set

_fy bua+1/(a—1)
9=t ((a— 1) ((bpa) + 1) + 1)

where for all v € DomZ%,

~ 6—77”
I'(v) = :
bu,a+1l/(a—1)
a {eXp (‘”(a—fxmbu,a)mm - 77"”"') }
Finally, let us consider the probability space (T, 7, 1) and let V be the random vari-
able

bua(l) +1/(a—1) 4K
(@ = 1)(uby,a) +5) +1 .

Then, we have E[1 — I'(V)] = 0 and we can write

V(0) =

Aa = [(@ = 1)(p(bpa) + £) + 1] x E[(V — #)THV)(1 = T(V))]

(o = 1) (p(bya) + &) + 1] x Cov((V — T HV), 1 = T(V)) . (3.22)
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Under (3.A4) with a € R\ {1}, v+ (v — x/)[*"'(v) and v + 1 — T'(v) are increasing
on Dom?/"# which implies Cov(VT* 1(V),1 — T(V)) > 0 and thus A, > 0 since
(o = 1) (p(bp,a) + £) +1>0. O

3. Adaptation of Lemma 7

Consider the probability space (T, 7, ) and denote by Var,, the associated variance

operator.

Lemma 25. Assume (3.A1) and (3.A4). Let o € R\ {1}, let k be such that (o« — 1)k > 0,
and let . € My (T) be such that (3.21) holds and U, (uk) < oo. Then,

(o — 1)kL4 ( bua+1/(a—1) ) AR
—~V : k . k), (3.23
5 W\ (o= D)) 1)+ 1) S Talih) = LalZa (k) . (3.23)
where
Loy = veS?iAR {1-nla-1)(v—r)} x vel)igig}R ne .

Proof. The proof of Lemma 25 builds on the proof of Lemma 7. Using (3.22) com-
bined with the fact that under (3.A1), (o — 1)(p(bpa) + k) +1> (@ — 1)k >0

Ay = [(a@ = 1)(p(bpa) + K) +1] x Cov((V — T L(V),1 - T(V))
> (a — 1)k x Cov((V — kT V), 1 =T(V))

Furthermore,

Cov((V — k)T 1 (V),1 - T (V)
= SE[(U — W) ) — (v~ )T V) (P +F(V))]

~—

_ (U — &)L U) = (V = )T 1(V) —T(U) + (V)
=3t Uu-v U— w-vy
Loty +1/(a-1)
> St (e )
and we thus obtain (3.23). O

4. Adaptation of the proof of Theorem 2

Proof of Theorem 11. The proof of Theorem 11 builds on the proof of Theorem 2. We
prove the assertions successively.

(i) The proof of (i) simply consists in verifying that we can apply Lemma 24. For
all 4 € My(T), (3.21) with 1 = p, holds for all n € N* by assumption on |b| o
and since at each step n € N*, Lemma 24 combined with ¥, (u,k) < oo implies
that U, (pn4+1k) < ¥o(unk) < oo, we obtain by induction that (¥, (k) )nen+ is non-

increasing.
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(ii)) Let n € N*, set A, = Vy(unk) — Yo(u*k) and for all § € T, V,(0) =

bun o (0)+ 527 / -nV;
@D in G ayamsT T+, such that dpu, 1 oc e dpun.
We first show that
dpn L
Ap < Lap [/ log <N+1> du* + =Var,, (Vo) Las| - (3.24)
C Ut dpn 2 ;

The convexity of f, implies that

An < / by, (At — dpi”)
-

1
= [ (by o+ ——) (dun — dp*
/T<un,+a_1>(u 1)

_ (@ =D (pn(by,a) +5) +1 /T(un(nvn) —nVp)du* .

n
Then, noting that
—nV, = log iy, (e ) + log
dpn
we deduce
dpn
Ap < Loo / [unmvn) +log i (¢77"") + log (Q‘M“)] du* . (3.25)
T n

Since v — ¢~ is L-smooth on DoméR, for all @ € T and for all n € N* we can write

e VO L emmim(Vn) - pemmnlVa) (V, (60) — (Vi) + g (Va(6) = pn(Vi))?

which in turn implies
L
fin(e7 V) g7 Mn(Va) 4 §Varﬂn (V) .

Finally, we obtain

L Var,, (V,)
2 e=mun(Va) | 7

log Mn(e—UVn) < log 6_77U7L(V7L) + log (1 + —
Using that log(1 + u) < v when u > 0 and by definition of L, 3, we deduce

_ L
log (e nVn) < —Npn (Vi) + §Varun(vn)La,3 )

which combined with (3.25) implies (3.24). To conclude, we apply Lemma 25 to
g= % and combining with (3.24), we obtain

d/,Ln+1 LLas
AngLa /10 < >d*+’An_An )
| Lron () a4 p e )
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where by assumption L, 1, La2 and L, 3 > 0. As the r.h.s involves two telescopic

sums, we deduce

N
1 *
2 Yalpnk) = Va(p'k)
n=1

La,Q
N

La,3

< Rt b
La71(a — 1):‘<&

[Kme) KL(w ) + L (A1 = Aya)

and we recover (3.9) using (i), that K L(p*||un+1) = 0 and that Ay > 0.
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Monotonic a-divergence

minimisation

The work presented in this chapter corresponds to the paper entitled “Monotonic Alpha-
divergence minimisation” (Daudel, Douc, and Roueff, 2021) submitted as a journal paper at
the time of writing.

4.1 Introduction

In the two previous chapters, we have been interested in developing Variational
Inference iterative procedures that ensure a monotonic decrease in the a-divergence
at each step for an approximating family Q of the form

QZ{q:yH/TM(d@k(&y) : MGM} :

This choice of approximating family allowed us to target the class of mixture models
by letting the initial measure ;11 € M;(T) be a weighted sum of Dirac measures and
as a result, we have enabled mixture weights optimisation by a-divergence minimi-
sation.

Since our procedures maintain the components parameters fixed in order to carry
out the mixture weights optimisation, we suggested to alternate between them and a
suitable Exploration step in charge of updating the components parameters set. Yet,
the underlying question of how to select an Exploration step remains unexplored.

In this chapter, we offer to derive an iterative algorithm for components param-

eters optimisation that systematically decreases the a-divergence at each step. As
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we shall see, the particularity of our work in Chapter 4 will be that we are able to
optimise both the weights and the components parameters of a given mixture model
simultaneously, all the while maintaining the systematic decrease in the a-divergence.

The starting point of our approach will be to work within a parametric family of
the form

Q={q:y—k(b,y) : 0T}, (4.1)

which as we have seen in Chapter 1 is the natural idea in Variational Inference. Be-
fore getting into the details of our work, let us first introduce some notation and
specify the initial optimisation problem we consider in Chapter 4 in terms of the
approximating family (4.1).

Notation and problem statement We retain the notation from earlier chapters. In
particular recall that f, is the convex function on (0, +00) defined by fo(u) = u —
1 —log(u), fi(u) =1 —u+ ulog(u) and fu(u) = ﬁ [u® —1 — a(u—1)] for all
aecR\{0,1}.

For any measurable positive function p on (Y, )), the initial optimisation prob-
lem we consider in Chapter 4 is then

f\I’akG,, )
inf (k(0,-);p)

where for all probability density ¢ with respect to v on (Y, )),

V(o) = [ o (%) py)v(dy)

As usual, p will be dropped for notational ease unless we refer to the Bayesian case;
in that case we shall use the notation ¥, (¢q; &) instead of ¥, (q; p(-, 2)).

For all a € R\ {1}, we also let f, be the convex function on (0, +0c) defined by
fo(u) = —log(u) and fo(u) = ﬁ [u® — 1] otherwise. Notice the subtle change
here compared to the definition of f, since fo(u) = fo(u) + (v —1)/(1 — «) for all
a € R\ {1}. This change is for convenience in the proofs only as for all &« € R \ {1}

and all probability density ¢ with respect to v on (Y,)) we can write

Palq) :/Yfa <;Ez§> p(y)v(dy)

[ (2) 2 (22 ) ot

where we have set
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This means that under the assumption that o # 1 and [, p(y)v(dy) < oo, ¥s(q)
and VU, (q) differ solely by an additive constant. We now give below the outline of
Chapter 4.

Outline The chapter is organised as follows:

e In Section 4.2, we consider the typical Variational Inference case where ¢ be-
longs to a parametric family as in (4.1). In this particular case, we state in Theorem 12
conditions which ensure a systematic decrease in the a-divergence at each step for
all @ € [0,1). We then show in Corollary 27 that these conditions are satisfied for a
well-chosen iterative scheme.

The formulation of this iterative scheme is particularly convenient, a fact that we
illustrate over several examples. Furthermore, we derive in Corollary 28 additional
iterative schemes satisfying the conditions of Theorem 12, which we then use to
underline the links between our approach and Gradient Descent schemes for a-

divergence and Renyi’s a-divergence minimisation.

e In Section 4.3, we further extend the results from Section 4.2 to the more gen-
eral case of mixture models. We derive in Theorem 13 and 14 conditions to simulta-
neously optimise both the weights and the components parameters of a given mix-
ture model, all the while maintaining the systematic decrease in the a-divergence
initially enjoyed in Theorem 12.

These conditions are then met in Corollary 30 and 31, so that we can derive algo-
rithms that are applicable to a wide range of mixture models. Furthermore, we con-
nect our approach to the Power Descent algorithm from Chapter 2 and provide in
Proposition 32 additional monotonicity results which go beyond the case a € [0, 1).

We also apply our results to the particular case of Gaussian Mixture Models before
recovering the Mixture Population Monte Carlo (M-PMC) algorithm from Cappé et

al., 2008 as a special case.

e Lastly, we show in Section 4.4 that having enhanced our framework beyond
the particular example of the M-PMC algorithm also has practical benefits when we
consider multimodal targets and we provide numerical experiments to compare our
results to those obtained using a typical Adaptive Importance Sampling algorithm.

4.2 An iterative algorithm for optimising ¥, (k(0, -))

In this section, our goal is to define iterative procedures which optimise ¥, (k(0, -))
with respect to § and which are such that they ensure a systematic decrease in ¥, at
each step. For this purpose, we start by introducing some mild conditions on &, p
and v that will be used throughout the chapter.

(4.A1) The density kernel k on T xY, the function p on Y and the o-finite measure v on
(Y, ) satisfy, forall (6,y) € TxY, k(6,y) > 0, p(y) > 0and [, p(y)r(dy) < cc.
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Let us now construct a sequence (6,,),>1 valued in T such that (¥ (k(0n,))n>1 is
decreasing. The core idea of our approach will rely on the following proposition.

Proposition 26. Assume (4.A1). Forall « € [0,1) and all 0,0’ € T, it holds that

RO, ) p(y)' ™ | <k(9,y)
k(0 y)

Vo (k(0, ) < /

y  a-1 >V<dy>+%<k<9’,->>- (42)

Proof. We treat the two cases o = 0 and « € (0, 1) separately.

(a) Case a = 0, with fy(u) = — log(u) for all u > 0. This case is immediate since
k(6,
walk60.9) =~ | ptu)tog 572 ) v(d) + a(k(0',).
Y k(e 73/)

(b) Case a € (0,1) with fo(u) = a(alfl) [u® — 1] for all u > 0. We have that

kO.9) )" _
Fo(h(0, ) = | { jg’;)_ 3 i

p(y)l/(dy) + \ija(k(el’ ))

o [(FOm) " _
_ / (k(e’, y>> (&) 1]
vy \ p(y) a(a—1)
Furthermore, the concavity of the log function gives log(u®) < u* — 1 forall u > 0
and since a € (0, 1), we can write

- i . log(u) = a(al_l)log(uo‘) > folu) .
Thus,
/ « l-a
R e (:((g;,))) v(dy) + Ua(k(0',))
which is exactly (4.2).

This result then allows us to deduce Theorem 12 below.

Theorem 12. Assume (4.A1). Let a € [0,1) and starting from an initial 6; € T, let
(On)n>1 be defined iteratively such that for alln > 1,

k(6n,y)*p(y)' —* k(O y)
J e () e <o 0

Further assume that U, (k(61,)) < oo. Then, at time n, we have ¥, (k(0ni1,-)) <
Vo (k(On, ).

Proof. The result follows by setting § = 6,1 and ¢ = 6,, in (4.2) combined with
(4.3). O
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At this point, we seek to find iterative schemes satisfying (4.3). This leads us to
our first corollary.

Corollary 27. Assume (4.A1). Let o € [0,1) and starting from an initial 61 € T, let
(0r)n>1 be defined iteratively as follows

st — argmaxy.t /Y k(O 9)p(y) " log(k(0,p)(dy), n>1.  (44)

Then (4.3) holds and we can apply Theorem 12.

Proof. We have that (4.3) holds by definition of 6,,{; combined with the fact that
a € [0,1) and we can thus apply Theorem 12. O

Let us comment on Corollary 27. A remarkable aspect is that (4.4) is written as a
maximisation problem involving the logarithm of the kernel k. This means that we
can use (4.4) to derive simple update rules for (6,,),>1 for some notable choices of
kernel k, as illustrated in the following examples.

Example 8 (Gaussian distribution). We consider the case of a d-dimensional Gaussian
density with k(0,y) = N(y;m,X) and where 0 = (m,X) € T denotes the mean and
covariance matrix of the Gaussian density. Then, starting from 6, = (mq,31) € T, solving
(4.4) yields the following update formulas:

ML ap (y)'~y v(dy)
Yn>1l, mpy1= }Y (g = (dg)
3 _ fY m y)l a(y mn—i—l)(y mn+1)TV(dy)
" fy aply) v (dy) |

Example 9 (Student’s distribution). We consider the case of a d-dimensional Student’s
density of the form k(0,y) = T (y;m, X, v), where § = (m, %) € T denotes the mean and
covariance matrix of the Student’s density. Then, starting from 6; = (mq,%1) € T, solving
(4.4) yields the following update formulas:

Jy K( p(y) g™ (y)y v(dy)

vl Map = fy ap(y) =g (y)v(dy)
N = fy ) n(y)(y mn+1)(y—mn+1)T’/<dy)
" fY y)op(y) g (y)v(dy) ’

where we have set g"(y) = (v +d)/(v + (y — mn)T (Zn) "Ly — my)) forall y € Y and all
n>1.

Example 10 (Mean-field approximation). A generic member of the Mean-field variational
family is k(0,y) = [Ti_, KO 0O, yO) with 6 = (61, ... 61)) € T. Then, starting from
01 € T, solving (4.4) yields the following update formulas: for all n > 1,

6) | = argmaxy) /Y kO, 1) p(y) ' log (KO (09, yO))u(dy), 1<L<L,
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Interestingly, while Corollary 27 has a convenient formulation and corresponds
to the intuitive choice so that (4.3) holds, it is also possible to derive alternative
schemes satisfying (4.3) under additional smoothness conditions (see Section 4.A.1
for the definition of S-smoothness), as written in Corollary 28.

Corollary 28 (T = RY). Assume (4.A1). Let o € [0, 1), let (7,)n>1 be valued in (0,1] and
let (¢n)n>1 be a positive sequence. Starting from an initial 6, € T, let (6,,)n>1 be defined
iteratively as follows

0n+1 = 9n vgn( )‘Q:Bn , n Z 1 ’ (45)

B

where (gn)n>1 is the sequence of functions defined by: foralln > landall§ € T

e 11—«
i) = c, [ OS2 k%(ﬁgﬁﬁvmm, (46)

and gy, is assumed to be [3,-smooth. Then (4.3) holds and we can apply Theorem 12.

Proof. Since 7, € (0, 1] and g, is a 3,,-smooth function by assumption, we can apply
Lemma 37 and we obtain that foralln > 1,

n(02) = 00 (60 = T T0n(Ols, ) > 5 190, OV, |

Thus, by definition of 6,4 in (4.5), we have

0= gn(en) > gn(9n+1) )
which in turn implies (4.3) and the proof is concluded. O

Let us now reflect on the implications of Corollary 28. Under common differen-
tiability assumptions, we can write: foralln > land all§ € T

a l1-a
Vou(0) = cn | O G o k(6. )w).

Then, considering the two cases where ¢, = 1 and ¢, = ([, k(6n, y)*p(y)' v (dy)) !

at time n, (4.5) becomes respectively: foralln > 1,

n en’ « 11—«
i == 22 [ M ?ﬁ” V log k(6,) o=, () @7)
w1 KR( p(y) =V log k(6,y)lo=s, (dy))
1=t =3, (a—l fykwn,y)ap(y)l “(dy) S

Here, letting p = p(-, 2), the iterative schemes (4.7) and (4.8) can both be seen as
usual Gradient Descent iterations used to minimise 6 — ¥, (k(0,-); Z) and 0 +—
—L4(k(0,-); 2) with a learning policy proportional to (7,3, 1) n>1-
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This establishes the link between our approach and typical Gradient Descent
algorithms for a-divergence and Renyi’s a-divergence optimisation. Lastly, we give
an example where the conditions on (g, )n>1 from Corollary 28 are satisfied.

Example 11. We consider the case of a d-dimensional Gaussian density with k(0,y) =
N (y;0,0%14) where € T = R% and o > 0 is assumed to be fixed. Then g,, as defined in
(4.6) with ¢, = ([ k(6n, y)*p(y)'~*v(dy)) " is convex and under usual differentiability

assumptions

o2 [y k(0n,y)* y)l‘“(y 0)v(dy)

a—1 fy y)l al/(dy)

so that by setting B, = o~2(1 — a)~* and by denoting by ||.|| the Euclidean norm, we can
write forall 0,0' € Tandalln > 1

v.gn(a) =

IV gn(0) = Vgn (0l < Bull0 — 6] -

Hence, the conditions on (gp)n>1 from Corollary 28 are satisfied and we obtain the iterative
scheme given by: foralln > 1

B Jy £ (0n,9)* y)l‘a(y 0n)v(dy)
9n+1 — Hn + Tn fY y)l al/(dy)

1 fv y)1 “ y v(dy)

= (1=)6n fY op(y)=(dy)

The examples we have provided throughout the section underline the benefits of
the approach we used in Theorem 12. However, the class of mixture models, which
comes across as a very general and flexible parametric family, has yet to be included
in our framework. In the next section we extend the monotonicity property to the
case of mixture models.

4.3 Extension to mixture models

Given J € N*, we now consider the more general mixture model approximating

family given by
J
Q=1q:yr prek(y Z 0j,y) : A€8;,0€T/H |
where we used the notation © = (6y,...,0,) € T/ and ure = ijl Ajg; for all

A € Syand all © € T/. We thus aim at solving

inf  W,(uxek) .
A€S,;,0eTY
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Notice in particular that the framework from Section 4.2 corresponds to having taken
J = 1in the optimisation problem above.

Let us denote A, = (\j,)1<j<sand ©,, = (6;,)1<j<s foralln > 1 and recall from
Chapter 3 that we have also defined ST = {A € Sy : Vj € {1,...,J}, \; > 0}. For
convenience, we also introduce the shorthand notation pu,, = ijl Ajndy,,, and

a—1
Vio(y) = k(On,y) (M;?y(;/ )) (4.9)

fora € [0,1),allj = 1...J,alln > 1and all y € Y. The first step towards ex-
tending the approach of Section 4.2 to the case of mixture models is to generalise

Proposition 26, which brings us to Proposition 29 below.

Proposition 29. Assume (4.A1). Forall o € [0,1) and all (X,0),(X,0") € ST x T, it
holds that

L Nk i o k@)\ (A k(85,y)
aliaek) < / a—l ( p(y) > g\ NV k@) ) Y

+ \Ija(ﬂ)\l7@/k) . (410)

Furthermore, equality holds in (4.10) if and only for all j = 1...J, X\;k(0;,y) = N;k(0, y)
for v-almost all y € Y.

Proof. By convexity of f,, Jensen’s inequality implies

N ~ TNk (8,
Vo (px0k) = /Yfa (Zjl ( y)) p(y)v(dy)

p(y)

; Ak (95, )
/ Z EJ )\/ 9, )foc ( )M p(y)V(dy)
=t oY . i1 Ak (6),y)

J )\/ ~ )\k(ﬁ )M}J@/k()
/ R2Y e/k (Agk(eg, D ) ) Pwpdy). @D

We now treat the two cases a = 0 and « € (0, 1) separately.

(a) Case o = 0, with fo(u) = — log(u) for all > 0. In this case, (4.11) yields
—k(05 v)p(y) X\ k(0;,)
Wy k) / Aj x —————"1o 2D v(d
(hx.0 Z ok 5\ k@) |
LNk px ok (y)
—log | ———- v(d
/ < L efk [ g ( p(y) )] ply)(dy)

which implies (4.10) since for ally € Y, ZJ L NGRS y) ek (y) = 1
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(b) Case a € (0,1) with fo(u) = ﬁ [u® — 1] for all w > 0. In this setting,
(4.11) gives

p(y)v(dy)

o[£ o (55 (3"~
a(tx,e

MA/ @/kﬁ OZ(OZ — 1)

1
] p(y)v(dy)

A’,@’k( AN
/ J )\’ [(#p(y)y>
< p @/k afa—1)
" oY, @/k: o (N k(05,y)
/ Z)\ < ) I (Ag k(éw)) V{dy)

+/Y : <M>J @()/li(y)) p()(dy) (4.12)

where we have used that forally € Y, Z;} 1 Njk(05,9)/par o k(y) = 1. Furthermore,

recall from the proof of Proposition 29 that the concavity of the log function gives
log(u®) < u® — 1 for all u > 0 and since a € (0, 1), we can write

~ploa(u) = oy log(u”) > fulw).

1
ala—1

Thus, combining with (4.12) we deduce

J / a—1
)\ tar ek (y) Aj k(05,y)
, 1 J AT + U ey

which establishes (4.10) for a € (0, 1).

As for the case of equality, equality in (4.10) implies equality in (4.11) which in turn
by strict convexity of f, implies the desired result and concludes the proof of Propo-
sition 29. O

We can then state our second main theorem.

Theorem 13. Assume (4.A1). Let a € [0,1) and starting from an initial parameter set
(A1,07) € Sj x T, let (A, ©p)n>1 be defined iteratively such that for alln > 1,

J n
o )\n
/ Z)\jn%’ ) log ( J: +1> v(dy) <0 (4.13)
Y 4 Ta—1 )‘]n
J=1 ’
J n
fY’a(y) ]{3(9‘”4,_1 y)
Njn—2 log( ST v(dy) <0. (4.14)
/Y; i a1 % k) )Y

Further assume that ¥, (u1k) < oc. Then, at time n, we have WV, (pin+1k) < Yo (unk).

Proof. The results follows immediately by setting § = 6,1 and 6/ = 6,, in (4.10)
combined with (4.13) and (4.14). O
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We now plan on finding iterative schemes which satisfy (4.13) and (4.14). Strik-
ingly, (4.13) does not depend on ©,,,1 nor does (4.14) depend on A, . This means
that we can treat these two inequalities separately and thus that the weights and
components parameters of the mixture can be optimised simultaneously.

Observe also that the dependency in A, 41 appearing in (4.13) is simpler than the
dependency in 0, ,41 appearing in (4.14) and that is expressed through the kernel & .
For this reason, we will first study (4.13). As we shall see, while the natural idea is to
perform direct optimisation of the left-hand side of (4.13), a more general expression
for the mixture weights can be derived, which will lead to numerical advantages
later illustrated in Section 4.4.

4.3.1 Choice of (A,),>1

In the following theorem, we identify an update formula which satisfies (4.13), re-
gardless of the choice of the kernel k.

Theorem 14. Assume (4.A1). Let o € [0,1), let (1,)n>1 be valued in (0,1] and let k be
such that (o — 1)k > 0. Starting from an initial parameter set (A\1,01) € S} x T/, let
(An, On)n>1 be defined iteratively such that for all n > 1

N [ e @ (dy) + (0= 1) ™

S A [ almv(dy) + (= 1)s] "

Ajmi1 = j=1...J (4.15)

and (4.14) is satisfied. Then (4.13) holds. Further assume that U, (u1k) < oo. Then, the
two following assertions hold at iteration n.

(i) We have W, (pin+1k) < Yo (unk).

(i) Assuming that either {n, = 1 and k < 0} or {n, € (0,1)}, we have U, (pp+1k) =
Vo (pnk) if and only if Apy1 = Xy and forall j = 1...J, k(0jn+1,y) = k(0jn,y)
for v-almost all y € Y.

Proof. Since (4.14) is assumed, it remains to show (4.13) so that we can apply Theo-
rem 13, before characterising the case of equality. To prove (4.13), we treat the cases
n, = 1l and 7, € (0, 1) separately.

(a) Casen, = 1. Since (o — 1)k > 0 with a € (0, 1), we have that

J

K Z )‘j,n IOg()‘j//\jﬂJ 20
j=1

where we have used that Zj:1 Ajnlog(Nj/Ajn) < ijl Ajim(ANj/Ajm —1) = 0. In
other words, to obtain (4.13) in the particular case 7,, = 1, it is enough to show

J n J
/YZ)\LTL’Z’_(yl) log( i\,‘+1>y(dy)—|—/€§:)\j,nlog <§\7‘+1> <0
j=1 J,m

j=1 J,m
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that is

J
=1 J,n

Ajon [/ MV(dy) + ,{] log <Ai”“> <0. (4.16)

Y a—1

J
Notice then that by definition of (A ,+1)1<j<s When n, = 1, we can write

J n
p—_— argming, g+ E Ajm [/Y Ci’_(l)u(dy) + I€:| log <)\j]> )
j=1 n

[Indeed, setting 5; = A, UY ViaWv(dy) + (o — l)m} and 3; = Bj/ 22{:1 Be for all
j =1...J, wehave that }7_, 8;log (8;/};) > 0 and that this quantity is minimal
when \; = j3; for j = 1...J.] This implies (4.16) and settles the case 7, = 1.

(b) For the particular case 7, € (0,1), we will use that for all e > 0 and all u > 0,

log (1) = élog(ug) >1 <1 - 1) |

€ uc

Indeed, since fY Vzi(iy ) v(dy) +k < 0forall j =1...J, we can then write that for all

€e>0,

< 12‘]:&,” [/Y 7O{%C‘_(le)z/(dy) + ,{] [1 _ (;J”H . @17)

j’n+1

Now notice that by definition of (\;,+1)1<j<s We can write

J
. 1 Vi (W) Ajn \©
p—_— argminy ¢ g+~ Z)‘jv" [/Y 7;’_ T v(dy) + /{} [1 - < )]\ > ]
j

=1

1
1+e

when e satisfies 7, = 1. [Indeed setting 3; = \;, {fY Vo Wv(dy) + (0 — 1)/@]
and Bj = B;/ ZZZI Be for all j = 1...J, we have by convexity of the function u —
ulT¢ that 23‘7:1 (Bi/ ;) e Aj = (ijl ;)¢ and that this quantity is minimal when
\j = Bj for j = 1....J.] We then deduce that taking e = n,,* — 1 (it is always possible
since 7, € (0, 1) by assumption) yields

D[ 2 - () <o

which in turn yields (4.13) [since combined with (4.17) it implies (4.16) which itself
implies (4.13) as seen in the case 7,, = 1]. This settles the case 1, € (0,1).

We can thus apply Theorem 13 and we obtain (i). As for the case of equality,
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Theorem 13 implies that for all j = 1...J, A\jn41k(0n+1,y) = Ajnk(0jn,y) for v-
almost all y € Y. Since A\;; > Oforall j = 1...J, we also have \;,, > 0 for all
j =1...J under (4.A1). All that is left to do is thus to prove that A,;1 = A, so that
forallj =1...J, k(0jn+1,y) = k(jr,y) for v-almostall y € Y.

Under the assumption that {7, = 1 and x < 0} equality in (4.16) implies that

J
£Y Ajn1og(Ajni1/Ajn) =0
j=1

i.e. that A\, 11 = A, by strict concavity of the log function. As for the case 7,, € (0,1),
equality in (4.17) and the strict concavity of the log function implies that A, 11 = A,
which concludes the proof. O

Notice that as a byproduct of the proof of Theorem 14, the mixture weights up-
date given by (4.15) can be rewritten under the form: for alln > 1

Antl = argmin)‘esj hin(X)

where, setting e = 7, L _ 1, we have defined for all A € Sj,

(4.18)

ha(X) = 23'1:1 Ajn { Y V'iii(f)V(dy) + Fﬂ] log <A/>7Jn) , ifn, =1,
' - %23']:1 Ajn [ v sz;{i(ly)u(dy) + K{| [1 — ()‘/{—J")e} , ifn, € (0,1).

More specifically, h,(X) acts as an upper bound of the left-hand side of (4.15) and
we recover exactly the left-hand side of (4.15) in the particular case n,, = 1 and x = 0.

Now that we have established Theorem 14, we are interested in deriving update
formulas for the sequence (0,,),>1 satisfying (4.14).

4.3.2 Choice of (0,,),>1

We investigate three different approaches for choosing (©,,)n>1.

4.3.2.1 A minimisation approach

The first idea is to consider the update for (©,,),>1 given by: foralln > 1,
Opt1 = argming 179, (0)

where forall © € ST x T7,

J n .
m©) = [ 3 005 g (o) ) @19
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In this case, the full update (A, 41, ©,+1) can be written as the following optimisation
problem

(An—I—la @n-i-l) = argmin)\esﬁ@e?} (hn()\) + gn(G))
and we obtain Corollary 30.
Corollary 30. Assume (4.A1). Let o € [0,1), let (1,)n>1 be valued in (0,1] and let  be

such that (o« — 1)k > 0. Starting from an initial parameter set (A1,01) € ST x T/, let
(An, On)n>1 be defined iteratively for all n > 1 by (4.15) and

0jnt1 = argmaxy ot /Y Vo) log(k(0;,y))v(dy) , j=1...J. (4.20)

Then (4.14) holds and we can apply Theorem 14.

Proof. The result follows from the definition of ©,1 combined with the fact that
a € [0,1) and \j,, > Oforall j = 1...J, so that (4.14) holds and we can apply
Theorem 14. O

Consequently, under the assumptions of Corollary 30 we can define Algorithm
11, which leads to a systematic decrease in ¥, at each step and effectively generalises
the monotonicity property from Corollary 27 to the case of mixture models. In line
with Corollary 28, we next present another possible update formula for (A, ©;,),>1.

Algorithm 11: Mixture models optimisation based on (4.20)

At iteration n,
Forallj =1...J,set

N [ e @ (dy) + (o= 1)
S e [y b @)v(dy) + (0= 1]

>‘j,n+1 =

0jn+1 = argmaxy et /Y Vo (y) log(k(8;,y))v(dy) .

4.3.2.2 A Gradient Descent approach

We shall now resort to Gradient Descent steps to satisfy (4.13).

Corollary 31 (T = RY). Assume (4.A1). Let a € [0,1), let (1,)n>1 be valued in (0,1]
and let k be such that (« — 1)k > 0. Furthermore, for all j = 1...J, let (Vjn)n>1 be

valued in (0, 1] and let (¢j,)n>1 be a positive sequence. Starting from an initial parameter
set (A1,01) € S}r x T, let (A, ©p)n>1 be defined iteratively for all n > 1 by (4.15) and

Oimit = O — %ng,nwm:e,,n L oj=1...7, (4.21)
7,n
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where forall j = 1...J, (gjn)n>1 s defined by: foralln > 1andall§ € T,

na g7
Gin(0) = cjm /Y 7; _(ﬁ) log < k’(“e(] ny;)> v(dy) . 4.22)

and g; r, is assumed to be (;,-smooth. Then (4.14) holds and we can apply Theorem 14.

Proof. Since v;, € (0,1] and g;, is a 3;,-smooth function by assumption, we can

apply Lemma 37 and we obtain that foralln > landallj=1...J,

Y, Y,
9in(0jn) — jm <9j,n - j,nVQj,n(@)!ezoj,J > =2 Vg5 (0)]o=s,., || -
/Bj,n 2/6)]771

Thus, by definition of 6;,,,1 in (4.21), we have
0=gjn(0jn) = gjn(Ojns1)-

which in turn implies (4.14) so that we can apply Theorem 14. ]

This gives us the monotonicity property for Algorithm 12 by Corollary 31 and
we are now interested in possible choices for the constants c;,, appearing before g ,.
Under common differentiability assumptions we can write: for all n > 1 and all

0eT

VoY) .
Vo30) = 0 | LD (log k(O vidy) . =17

Algorithm 12: Mixture models optimisation based on (4.22)

At iteration n,
Forallj =1...J,set

A [ o)) + (o = Ds] "
i1 Ao |:fy Voo (®)V(dy) + (o = 1)"5} "

Y,
Ojnt1 = bjn — BJ,nVQj,n(G)\ezej,n :
J?n

)\j,n+1 =

As it turned out, the two most straightforward choices for ¢;,, correspond to
taking ¢jn, = Ajn and ¢jn = Ajn(fy pnk(y)*p(y)'~*v(dy)) ! forall j = 1...J and
all n > 1. Indeed, letting 7, ,, := v, € (0,1] and assuming that 3; ,, only depends on
nforall j =1...J, thatis ;, := B, the following update formulas ensue for ©,,;

at iteration n:

n Vi) :
Ojnt1 = 0jn — ’Y)\j,n/ eV log k(0,y)|o=g, . v(dy) , j=1...J,
/Bn Yy @ — 1

0, is =8 Yo Ain Sy Ve W)V 1og k(6, y)lo=p, , ¥ (dy)
7 P B (a=1) [y pnk(y)ep(y)iTev(dy)

j=1...J0. (423
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Letting p = p(-, ), we recognise usual Gradient Descent steps on © for minimising
Vo (pr,0k; Z) and —L,(1x 0; Z) using a learning policy proportional to (VB Hns1.

An important point to take into consideration however is that by having per-
formed a gradient step based on ¥, (ux ek; Z) (resp. —La(pr.0;2)), A\jn nOoW ap-
pears as a multiplicative factor by design in both updates. This is problematic since
this could prevent learning in the algorithm for very small values of A;,. Thank-
fully, we are able to circumvent this difficulty by choosing ¢;, = (fy fy;fa(y)y(dy))_l
so that we consider instead

o _p. I ay)VIogk( v, v(dy)
gt =g, (a—1) [y 7} (v)v(dy) ’

|
-

T (4.24)

In this case, we are still in the framework of Corollary 31 and );, only appears
through p,,k, a property also shared with the update we introduced in Corollary 30.
This further underlines the importance of having worked under the general condi-

tions on (A, ©,,),>1 stated in Theorem 13.

Finally, notice that the case where ©,, is kept fixed at iteration n, that is, we solely
optimise the mixture weights of a given mixture model, also maintains the mono-
tonicity property. In fact, this particular case can be linked to the Power Descent
(Daudel, Douc, and Portier, 2021) update formula for mixture models seen in Chap-
ter 2.

4.3.2.3 A Power Descent approach

The Power Descent algorithm introduced in Chapter 2 is a gradient-based algorithm
which operates on measures and performs a-divergence minimisation for all o €
R\ {1}. More precisely, denoting by M;(T) the space of probability measures and
letting 1 € M;(T), it seeks to optimise

Va(ub) = [ 1o (“’“(y)) ply)(dy)

p(y)

with respect to i, where pk(y) = [;(d0)k(6,y) for all p € My(T) and all y € .
Given an initial measure p; € M;(T), the optimisation is then done by applying
several one-step transitions of the Power Descent algorithm:

Hn4+1 = Ia(/j’n) ;o= 1 ) (425)
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where, for all € My(T), foralld € T,

bpal6) = /Yk<97y>ai1 [( ] (@)

(1) (d0) p([(a — 1)(1)#,0( + k) + 1] 70‘)

Observe then that by definition of 77, in (4.9) and for u, = Z}]:1 Ajnds;,, with
0, = 0 and 1, = n/(1 — a) at time n, (4.15) and (4.25) coincide.

Interestingly, the monotonicity property that has already been proved for the
Power Descent algorithm in Theorem 1 of Chapter 2 uses a different proof technique
compared to the one used in the proof of Theorem 14 to obtain that one transition of
the Power Descent algorithm leads to a systematic decrease of ¥,, for all &« € R\ {1},
foralln € (0,1] and all s such that (o — 1)k > 0.

This means that by maintaining ©,, fixed and equal to a certain © € T in Theo-
rem 14, it is possible to allow for a wider range of values of « and of 1, = /(1—a) to
be used while still preserving the monotonic decrease. In fact, we show a more gen-
eral result in Proposition 32 below, where the results from Theorem 1 of Chapter 2
are further extended beyond the case > 1 when a < 0.

Proposition 32. Assume that p and k are as in (4.A1). Let (a,n) belong to any of the

following cases.
(i) a < —landn € (0,(a—1)/al;
(i) a € (—=1,0)andn € (0,1 — aj;
(iii) a €10,1) or o > 1and n € (0,1].

Moreover, let 1 € M;(T) be such that W, (uk) < oo and let k be such that (o« — 1)k > 0.
Then, the two following assertions hold.

(1) We have U, (Zo(n)k) < Vo (uk).
(i) We have Vo, (Zo(p)k) = Vo (uk) if and only if p = Lo ().

The proof of this result is deferred to Section 4.A.2 and we now make two com-
ments. Firstly, while the results from Chapter 2 and Proposition 32 allow for a wider
range of values for a and 7 to be used, the strong improvement of Chapter 4 is that
by Theorem 14 we do not need to keep O,, constant anymore at each step of the algo-
rithm. From there, extending Theorem 14 beyond the case « € [0,1) and 7, € (0, 1]
is an interesting direction of research, which is left for future work.

Secondly, by connecting the Power Descent to (4.15), we now have a better under-
standing of the role of the parameter 7,, appearing in (4.15). Indeed, as underlined
in earlier chapters of this thesis, the Power Descent algorithm belongs to a more
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general family of gradient-based algorithms which includes the Entropic Mirror De-
scent algorithm, a typical optimisation algorithm for optimisation under simplex
constraints. Viewed from this angle, the parameter 7,, can be understood as a learn-
ing rate applied to b, «, the gradient of ¥,. This aspect will notably come in handy

when interpreting our numerical experiments in Section 4.4.

We have derived several examples where the conditions of Theorem 14 are met
and connected this theorem to the Power Descent algorithm. We will conclude this
section by presenting relevant particular cases of Algorithm 11. We start by investi-

gating the case where the kernel k belongs to the Gaussian family.

4.3.3 Algorithm 11 within the Gaussian family

We consider the case of d-dimensional Gaussian mixture densities with k(6;,y) =
N (y;m;,%;) and where §; = (m;,%;) € T denotes the mean and covariance matrix
of the j-th Gaussian component density. Then, solving (4.20), that is

0jn+1 = argmaxg et /Y Viia) log(k(0;,y))v(dy) , j=1...J

yields the following update formulas at time n for the means (m;,+1)1<j<s and

covariances matrices (2j7n+1)1gjgj:

n v(d
Vi=1...d, mju1= f} Vfﬂy’j(z(/;i (51;;) (4.26)
Y j,«
Ry = M)y = mya) v(dy)
e R LG - e

Due to the intractable integrals appearing in (4.15), (4.26), and (4.27), we shall then
use approximate update rules in practice. Many choices are possible here and for
simplicity we will restrict ourselves to using a sequence of samplers (gy),>1 and
performing typical Adaptive Importance Sampling estimation in order to approxi-
mate (4.15), (4.26), and (4.27). This leads to Algorithm 13 below, where based on (4.9)
we have defined forallj=1...J,ally € Yand alln > 1,

k(Ojn,y) (pnk(y)\ "
an(y) (p(y)> '

Vialy) =
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Algorithm 13: Gaussian Mixture Models optimisation with (4.20)
At iteration n,

1. Draw independently M samples (Y}, 1 )1<m<a from the proposal ¢,.

2. Forallj=1...J,set

Ajn [Z%:I %‘fa(Ym’”) +(a - 1)4 )

A+l = 5 T -
Zﬁzl )\f,n [Zm:l PVZO[(Ym,n) + (Oé - 1)K:|
M ~
m Zmzl ,YZQ(Ym’n) ’ Ym,n
Jyn+1l = M N
27]’\’1/[:1 &;a(ym,n) ' (Ymvn - mj,n-&-l)(Ym,n - mj,n—i—l)T
Yjnt1 =

M -
Emzl ’er'fa (Ym,n)

We have thus obtained a tractable version of Algorithm 11 which allows us to
iteratively update both the weights and components parameters of a Gaussian mix-
ture model by optimising the a-divergence between the mixture distribution and the
targeted distribution. We now make two remarks.

Remark 33. A practical version of Algorithm 11 can be derived in the particular case of
Student’s distributions, which could be useful for robustification purposes (see Algorithm 15
in Section 4.A.3).

Remark 34. We can obtain practical versions of Algorithm 12 by considering the case of
d-dimensional Gaussian mixture densities with k(0;,y) = N (y;0;,0214) where © € T
with T = R and 02 > 0 is assumed to be fixed. In this case, g, j is convex forall j = 1....J
and alln > 1.

Following (4.23) and letting c;, = Njn( [y pnk(y)*p(y)'~*v(dy)) =t in the definition
of gjn permits to choose B, = o~ %(1 — )~ [using that [, pnk(y)*p(y)'~*v(dy) =
ijl Sy Nin}a(y)v(dy)l. This gives the update formula at iteration n below

N XV (W) (y = 050)v(dy)
Iy pnk(y)ep(y)t—ov(dy)

0j,n+1:9j,n+7n j=1...J.
In addition, following (4.24) and letting c;, = (fy, V;fa(y)u(dy))_l in the definition of
gj.n also permits to choose Bj, = o~ 2(1 — )~ ! so that the update formula at iteration n is
N a() y v(dy)

Oini1=(1—,)0;n n , j=1...J,
J» +1 ( 7 ) Js +’7 fyf)/;l;a(y)y(dy) ]




4.3. Extension to mixture models 123

which coincides with (4.26) when ~y, = 1. Approximated versions of the two above iterative
formulas are then given respectively by

N Yomy Ao (Yimn) + Yo — 0.n)
Z] IZm 1 Jn'Yga(Ym,n)

S A (Ymn) + Yo
S Ay (Vo)

Vi=1...J, 0j7n+1 = Gj,n + Yn (4.28)

(4.29)

Ojnt1 = (1 =) Ojn +Tn

and tractable versions of Algorithm 12 for Gaussian mixture models can be deduced, as
written in Algorithm 14.

Algorithm 14: Gaussian Mixture Models optimisation with (4.28)/(4.29)
At iteration n,

1. Draw independently M samples (Y, »,)1<m<n from the proposal g¢,.

2. Forallj=1...J,set

Vi [ S 3o (Yonn) + (= )]

Aj,n—i—l —
ZZ 1 A [Zm 1 'Ye a(Ym,n) + (o — 1)&]
-nz 177 (men).(ymyn_g.n)
Ojn + Yn = 2l (4.28
T o T >, Z%/é[ 1 Aj.n%; n (Ymon) ( )
| (1= )0 + =y e L) T4 99)

S A (Yomm)

Lastly, we focus on the particular case o = 0 in Algorithm 11 (and its application
to the particular case of Gaussian Mixture Models as seen in Algorithm 13). As we
shall see, this case can be linked to the M-PMC algorithm and it will be used to drive

our numerical experiments.

4.3.4 The M-PMC algorithm as a particular case of Algorithm 11

We are interested in interpreting the results we have obtained thus far in the light of
the M-PMC algorithm (Cappé et al., 2008). To do so, we first recall the basics of the
M-PMC algorithm. For any measurable positive function p on (Y, )), the M-PMC
algorithm aims at solving the optimisation problem

J
sup [ 1og | S Ah(05.) | pwv(dy). (4.30)
j=1

(AeS;,0eT7) JY
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or equivalently, using a Variational Inference formulation, at minimising the Reverse
Kullback-Leibler

inf D K||P) ,
nesE s Dol o KIIP)
where for all A € Y, P(4) = [,p(y)v(dy)/ [, p(y)r(dy). This is done in Cappé
et al., 2008, Section 2 by 1ntroduc1ng the following iterative update formulas for all
j=1...Jandforalln >1

A nk 6 Y
Zé 1A€n efna pr
Aink(0in,y
0jmi1 = argmaxg ey | —ini ) log(k(0;, y)ply)(dy) . (432)

Y Z}Ll )\Z,nk(eé,na y)

Observing then that the two update formulas above correspond to having consid-
ered the particular case a = 0, 77, = 1 and s = 0 in Algorithm 11, it follows that the
M-PMC algorithm can be seen as a particular example of our framework.

Remark 35. Interestingly, equations (4.31) and (4.32) are presented in Cappé et al., 2008 as
integrated versions under the target distribution of the update formulas for the Expectation-
Maximisation (EM) algorithm applied to the mixture-density parameter estimation problem

sup log k(6 .
(AES;,0€TY) Z (Z )
Hence, we can interpret Algorithm 11 as a generalisation of an integrated EM algorithm
preserving the monotonicity property and extending it to the case o € [0, 1).

A practical version of the M-PMC algorithm has been introduced in Cappé et al.,
2008, Section 3 for the particular case of the Gaussian family, in which they use the
sampler

J

Thus, comparing Algorithm 13 to the original M-PMC algorithm for Gaussian Mix-
ture Models from Cappé et al., 2008, Section 3, we do not yet specify the sequence
of samplers (¢,)n>1 and now include additional choices for the sequence of learn-
ing rates (7, )r>1, the parameter « and the constant . This has important practical

consequences which we illustrate in our following numerical experiments.

4.4 Numerical Experiments: Multimodal Target

In our numerical experiments, we are interested in seeing how the choice of the

sequence of samplers (g,)n>1, the sequence of learning rates (7,),>1, the constant
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 and the choice of « influence the convergence of Algorithm 13. We use a similar
setting to the one considered in Cappé et al., 2008. The target p is a mixture density
of two d-dimensional Gaussian distributions multiplied by a positive constant c such
that

p(y) = ¢ x [0.56N (y; —suq, Ia) + 0.5N (y; sua, Ia)] ,

where ug4 is the d-dimensional vector whose coordinates are all equal to 1, s =
2, ¢ = 2 and Ig is the identity matrix. For all A € Y, we also denote P(A) =

! [, p(y)v(dy).

Numerical Experiment 1: study of the particular case « = 0. We take J = 100,
M = 200, d = 16, N = 100 such that the total computational budget is N x M =
20000 samples in Algorithm 13 with a = 0 and we will vary the sequence of learning
rates (7, )1<n<n, the constant x < 0 as well as the choice of the sampler.

We generate the initial parameter set for the means of the mixture distribution
by sampling from a centered normal distribution with covariance matrix 514 and we
set their associated initial weights to [1/J,...,1/J] (i.e. Ay = [1/J,...,1/J] at time
n = 1). For simplicity, we chose to keep the covariance matrices fixed equal to 0214
with 62 = 1 and to only update the means and the mixture weights. Furthermore, we
consider a constant policy for the sequence of learning rates (1, )1<n<n With 7, :=17
foralln=1...N.

As for the choice of sampler at time n, we are first interested in setting ¢, as in
(4.33), since this sampler is the best approximation to the targeted density we know
of at time n (in terms of Reverse Kullback-Leibler) and it is also the one used in the
M-PMC algorithm from Cappé et al., 2008. We denote the resulting algorithm M-
PMC(n, ), the case (1, k) = (1,0) corresponding to the initial M-PMC algorithm of
Cappé et al., 2008.

We let n € {1,0.5,0.2,0.1}, —x € {0,0.1,1} and we replicate the experiment 200
times independently for the M-PMC(n, ) algorithm. To assess the convergence, note
that since we have sampled M samples from g, at time n, these samples can readily
be used to obtain an estimate ¢ = M ~! Z%zl P(Ymn)/an(Ym n) of the normalising
constant ¢ = [, p(y)v(dy) with no additional computational cost.

Then, as we can see on Figure 4.1, the choice of 1 and of x does impact the con-
vergence of the algorithm. Notably, for a fixed «, choosing n < 1 results in improved
numerical results in the estimation of the normalising constant c.

This can be explained by the stochastic nature of the approximation that appears
in the update formula for the mixture weights of Algorithm 13. Recall from Sec-
tion 4.3.2.3 that performing our mixture weights update corresponds to applying
one transition of the Power Descent algorithm: since this algorithm is known to
share similarities with gradient-based algorithms, choosing 71, = 1 might not be the
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Dimension 16, a = 0.0, M = 200 and —x = 0.0 Dimension 16, a = 0.0, M = 200 and —x = 0.1
u

o} 2500 5000 7500 10000 12500 15000 17500 20000 ] 2500 5000 7500 10000 12500 15000 17500 20000
Sample size Sample size

Dimension 16, a = 0.0, M = 200 and —x = 1.0

] 2500 5000 7500 10000 12500 15000 17500 20000
Sample size

FIGURE 4.1: Normalisation constant estimation by the M-PMC(n, )
algorithm in dimension d = 16 for n € {1,0.5,0.2,0.1} and —x €
{0,0.1,1}.

best course of action in practice when we resort to approximations [much like choos-
ing a learning rate equal to 1 in a Stochastic Gradient Descent scheme might not be
the best choice in general].

Similarly, for a fixed n < 1, choosing —x > 0 leads to improved numerical re-
sults. The idea behind this is that by adding a positive constant —x, we enforce the
positivity of the mixture weights throughout the algorithm. This is handy in practice
to avoid setting some mixture weights to zero, which could for example be an unfor-
tunate consequence of having taken a learning large that is too large or having used
a sampler g, which is very different from the targeted density in the early stages.

We have thus seen that by changing the values of 1 and of s, we are able to
improve on the initial M-PMC algorithm of Cappé et al., 2008 for which (n,x) =
(1,0). Next, we are interested in using at time n a uniform sampler of the form

This is motivated by the fact that based on the form of the integrals appearing in
(4.15), (4.26), and (4.27), we would like to sample according to k(6;,,y) when up-
dating the parameters \;,m; and ¥;. This could easily become computationally
expensive as J increases, which is why we consider a uniform sampler as a cheaper
alternative.

We call the resulting algorithm UM-PMC(7, k) and we now want to compare it
to the M-PMC(7, ). To do so, we will use the Mean-Squared Error at time n for each
algorithm denoted MSE, which is computed as the average of ||mapprox,n — Miruel|?
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over 200 independent runs of the algorithm.

Here, ||.|| stands for the Euclidian norm, myy. = Ep[Y] for the mean of the tar-
geted density and mapprox,» for the mean of the approximating density at time n (in
our setting myrue = 0.uq and Mapprox,n = Z‘j]:l Ajnm;p). The logMSE (logarithm of
the MSE) can be visualised on Figure 4.2 below.
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FIGURE 4.2: LogMSE comparison for the M-PMC(n, ) and the UM-
PMC(n, k) algorithms in dimension d = 16 for n € {1.0,0.5,0.2,0.1}
and —x = {0,0.1,1}.

Notice then that for a relatively small number of samples M at each time n (here
M = 200), the UM-PMC(n, k) algorithm generally outperforms the M-PMC(n, x) al-
gorithm in terms of Mean-Squared Error, the latter one being more prone to missing
one of the two modes, especially for larger values of 7.

This means that the results of the M-PMC(7, ) algorithm are more sensitive to
the number of samples M used. As we increase the number of samples M, it can
however be observed that the performances of the M-PMC(n, ) algorithm in terms
of Mean-Squared Error are improved and become comparable to those of the UM-
PMC(n, k) algorithm (see Section 4.A .4 for additional plots when M = {500, 1000}).

We now move on to our second numerical experiment in which we are interested
in varying the parameter a.

Numerical Experiment 2: effect of a. We let & € {0,0.5} and our goal in this
numerical experiment will be to estimate my,,. = Ep[Y’], which is a typical Bayesian
Inference task.

We take J = 100, d = 16, M = {200, 500} and N such that the total computational
budget is N x M = 20000 samples in Algorithm 13. The initial parameter set is
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generated exactly like in Numerical Experiment 1. Based on our previous numerical
results, we focus mainly on the UM-PMC(7, k) algorithm, even though we will in
addition run the experiment for the M-PMC(1., 0.) algorithm, which corresponds to
the M-PMC algorithm from Cappé et al., 2008.

As for the covariance matrices, they are kept fixed equal to 0214 so that we only
update the means and the mixture weights and this time we let 02 € {1, 4} to inves-
tigate how the variance of the kernel impacts the convergence according to the value
of o. We consider yet again a constant policy forall 1 < n < N withn, :=n = 0.1
and we let —x = 0.1, as it appears to be a good tradeoff in terms of hyperparameters.

Note that the results from Remark 34 apply for this choice of covariance matri-
ces, that is it is also possible to perform gradient-descent steps for Renyi’s « diver-
gence minimisation when updating the means, as defined in (4.28) (see Algorithm
14 for the description of the full algorithm). We will then run the experiment with
Yn = 7 = 1 at iteration n. For a fair comparison, we will use a uniform sampler
and take the same hyperparameter as those used the UM-PMC(7, k) algorithm. The
resulting algorithm is denoted RGD(7, k).

We use the Parallel Interacting Markov AIS (PIMAIS) algorithm from Martino
et al., 2017 as a reference algorithm to compare our results with. Indeed, this algo-
rithm also approximate the targeted density by a mixture model. More precisely, it
alternates between two steps: (1) a parameter update step where the means of each
kernel is updated via several MH transitions (2) an Importance Sampling step pro-
viding weighted particles which are then used to estimate the desired quantity (in
our case Ep[Y]).

In the PIMAIS algorithm, we then employ the MH algorithm with a Gaussian
proposal with covariance matrix o3, Iq with o3, € {1,25} to construct the Markov
chains. We consider a mixture of J Gaussians with covariance matrices ¢2I4 and a
deterministic number of samples M /J is drawn from each mixand at time n, so that
this algorithm uses the same computational power as those we present.

Finally, M additional samples are generated at time n to estimate Ep[Y] following
the PIMAIS methodology which gives the estimator m%g@ﬁg% (we refer to Martino
et al., 2017 for more details on how this estimator is obtained). As for the UM-
PMC(n, k) algorithm (resp. the M-PMC(1., 0.) and the RGD(7, ) algorithms), we too
generate M additional samples and we consider at time n = 1... N the Importance
Sampling estimator of Ep[Y] given by

n M
A /
Mapprox,n = 5 5 Wm,n' Ym,n’

n’/=1m=1
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where (Y/

m,n’

Ji<m<m have been generated independently from u,/k at time n’ =
1...nand whereforalln’ =1...nand allm =1... M, we have defined

p(Yy ) "X
Wynpt X ———= " such that g E W = 1.
m,n

n’/=1m=1

We replicate the experiment 200 times independently for all the algorithms. To assess
the performance of the different algorithms, we consider the Mean-Squared Error at
time n denoted MSE, which is computed as the average of ||/approx.n — Mirue||? OVer

200 independent runs of our algorithms (resp. [[mLIMAIS — m || for the PIMAIS

approx,n

algorithm). The LogMSE (logarithm of the MSE) can then be visualised on Figure
4.3 below.

Dimension 16, o = 1.0, M = 200 and —x = 0.1 Dimension 16, o* = 1.0, M = 500 and —x = 0.1

—— UM-PMC(0.1,0.1), 0 = 0.0
—— UM-PMC(0.1,0.1),a = 0.5
—— RGD(0.1,0.1), a = 0.0

— UM-PMC(0.1, 0.1), 0 = 0.0
=S — UMPMC(0.1,01),0 = 0.5
— RGD(0.1,0.1),a = 0.0
— RGD(0.1,0.1),a =05
— M-PMC(10,0.0)

— PIMAIS, 0, =10

— PMAS, 02, -250 — PAS, o8, =250

log MSE
log MSE

[ S A S R )
L S Y
[ A S R )

L S Y

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Sample size Sample size

Dimension 16, 0> = 4.0, M = 200 and —x = 0.1 Dimension 16, 0> = 4.0, M = 500 and —« = 0.1
20 20

— UM-PMC(0.1,01), 0 = 0.0 — UM-PMC(0.1,0.1), 0 = 0.0
15- — UM-PMC(0.1,0.1),a =05 15+ —— UM-PMC(0.1,0.1), 0 = 05
— RGD(0.1,0.1), 0= 0.0 — RGD(0.1,0.1), 0 = 0.0
— RGD(0.1,0.1),a=0.5 [ — RGD(0.1,0.1),a = 0.5
— M-PMC(1.0,0.0) — M-PMC(1.0,0.0)

— PIMAIS, 0, =10 — PIMAIS, o, 1.0

00- —— PIMAIS, 0, =25.0 00- —— PIMAIS, 0, =25.0

log MSE
log MSE

0 2500 5000 7500 10000 12500 15000 17500 20000 T#2 0 2500 5000 7500 10000 12500 15000 17500 20000

Sample size

FIGURE 4.3: LogMSE for UM-PMC(#, k) and RGD(7, k) in dimension
d =16 for a € {0.,0.5}, 0% € {1,4},n = 0.1 and —x = 0.1 compared
with the PIMAIS algorithm and the M-PMC(1., 0.) algorithm.

Observe that for 02 = 1, all the versions of the UM-PMC(n, ) algorithm consid-
ered outperform the PIMAIS algorithm in terms of LogMSE and that the case o = 0
yields the best result. Notice also that since in this case the covariance matrix is well-
tailored to the problem, increasing the number of samples from M = 200 to M = 500
slows down the UM-PMC(n, ) algorithm.

As for the case 02 = 4, we obtain this time that the case o = 0.5 performs the best
and that the case & = 0 underperforms compared to the PIMAIS algorithm with
oy = 1 (even though it still outperforms the PIMAIS algorithm with o3y = 25).
This underlines the importance of having provided a framework which goes beyond
the typical case of the reverse Kullback-Leibler with oo = 0. Unsurprisingly, since we
have now considered a less favourable value for 02 with ¢ = 4, increasing the

sample size results in improved results.
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Moreover, observe that the RGD(7, k) algorithm underperforms in this numeri-
cal experiment. As already mentioned in Section 4.3.2.2, this is due to the fact that
\jn appears by design as a multiplicative factor in the update formula for the means.
This prevents learning when the algorithm produces small values for );,, a pitfall
avoided by the UM-PMC(n, k) algorithm. Finally, note that the M-PMC(1.,0.) al-
gorithm performs poorly in all four cases considered in Figure 4.3, which further
illustrates how we were able to successfully improve on this algorithm introduced
in Cappé et al., 2008 by including it into a wider framework.

4.5 Conclusion and perspectives

We introduced a novel methodology to carry out a-divergence minimisation via an
iterative algorithm ensuring a monotonic decrease in the a-divergence at each step.
Notably, our framework allows us to perform simultaneous updates for both the
weights and components parameters of a given mixture model for all o € [0, 1).

We then underlined the links between our approach and Gradient Descent al-
gorithms for a-divergence minimisation and connected our results to the Power
Descent algorithm. We also presented practical algorithms for Gaussian mixture
models parameters optimisation and recovered the M-PMC algorithm as a particular
case of our framework. Finally, we provided empirical evidence that our method-
ology can be used to enhance the M-PMC algorithm and Gradient Descent-based
algorithms. As a result we achieved better performances compared to the PIMAIS
algorithm and shed light on the importance of having some flexibility in the choice
of a.

To conclude, we state several directions to extend our work in Chapter 4. First of
all, now that we have established a systematic decrease for our iterative schemes, the
next step is to derive convergence rates and to compare them with those obtained
using typical Gradient Descent schemes. Based on the results from Proposition 32,
another interesting direction consists in generalising the monotonicity property from
Theorem 14 beyond the case a € [0, 1). Lastly, we also expect that resorting to more
advanced Monte Carlo methods in the estimation of the intractable integrals appear-
ing in (4.15), (4.26), and (4.27) will result in further improved numerical results.
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4.A Deferred results

4.A.1 Quantifying the improvement in one step of Gradient Descent

Here, (-, -) denotes an inner product defined on T x T with corresponding norm ||.||.
Typically, we will consider T = R? with d > 1, so that (,-) is the standard inner
product on R% and |.|| is the Euclidian norm.

Definition 36. A continuously differentiable function g defined on T is said to be 3-smooth
ifforall 0,6 €T,
lg(6) — g(&")]l < 116 —&"l| -

Lemma 37. Let v € (0, 1], let g be a 3-smooth function defined on T = R%. Then, for all
0 € T it holds that

9(0) — g (9 - gw(e)) > LIVeO)F

Proof. By assumption on g, we have that forall 6,6’ € T
B
9(0") = 9(0) = (Vg(0),0' = 0) < |6 — ]| .

In particular, setting ¢’ = 6 — ;Vg(0) yields

2
g(0) — g (e = 7Vg<e>) > %wa)u? - ;*Buww)nz

B
> 5 (1-3) Ve

Since 7y € (0, 1], we can deduce the desired result, that is

9(0) — g ( - gw(e)) > LIvgO)IP.

4.A.2 Monotonicity property for the Power Descent

Preliminary remarks First note that for convenience in the proofs, we redefine in
this section the function b, () for all 4 € M;(T) and all § € T by

a—1
b (6) = /Y K6, 9) T, (‘;’“(Sj)) v(dy)

Then, for all > 0, the iteration p — Z,(p) is well-defined if we have

0 < u(|bpa + K|T7) < 0. (4.34)
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Furthermore, Theorem 1 of Chapter 2 already established that one transition of the
Power Descent algorithm ensures a monotonic decrease in the a-divergence at each
step for all n € (0,1] and all x such that (&« — 1)k > 0 under the assumption of
Proposition 32, which settles the case (iii).

Finally, while we establish our results for (i) and (ii) in the general case where
p € My(T), the particular case of mixture models follows immediately by choosing
1 as a weighted sum of dirac measures.

Extending the monotonicity

Let (¢, ) be a couple of probability measures where ¢ is dominated by p, which
we denote by ¢ < p. A first lower-bound for the difference ¥, (uk) — ¥, (Ck) was
derived in Chapter 2 and was used to establish that the Power Descent algorithm
diminishes ¥, for all € (0, 1].

We now prove a novel lower-bound for the difference ¥, (1k) — ¥, (Ck) which
will allow us to extend the monotonicity results from Chapter 2 beyond the case
n € (0,1] when a < 0. This result relies on the existence of an exponent p satisfying
condition (4.A2) below, which will later on be used to specify a range of values for 7
ensuring that ¥, is decreasing after having applied one transition p — Z, ()

(4.A2) We have ¢ € R\ [0,1] and the function f,, : u — f.(u'/?) is non-decreasing
and concave on R+g.

Proposition 38. Assume (4.A1). Let o« € R\ {1}, assume that o satisfies (4.A2) and let k
be such that (o — 1)k > 0. Then, for all pi, ¢ € My(T) such that j1(|by.o|) < coand ¢ = p,

lol ™ {u(|bpar + 5]) = 1 (|bpa + Klg9)} < Walpk) — Pa(Ck) (4.35)

where g is the density of ¢ wrt p, i.e. ((df) = p(d0)g(8). Moreover, equality holds in (4.35)
if and only if { = p.
Proof. First note that for all o € R\ {1}, we have by (4.A2) that f;, ,(u) > 0 for all u >
0, and thus that sg(9) = sg(a — 1) where sg(v) = 1 if v > 0 and —1 otherwise. Since
sg(fl(u)) = sg(a—1) = sg(r) for all u > 0, this implies that o~ £ (u) = |o| | f~(u)],
o 'k = |p7 k| and finally that o= 1(b, o (0) + k) = |0 !||bua(f) + K| forall @ € T,
which will be used later in the proof.
Write by definition of f, , in (4.A2) and ¢,
- = (Ck
Va(Ck) = /Yfa <<(y)> p(y)v(dy)

p(y)

= /Y fa,g([ii(yy))] Q) p(y)v(dy) Q
e (w2 (25

[ o [ a0 S8 (SO ) s
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where the last inequality follows from Jensen’s inequality applied to the convex
function v — u? (since ¢ € R\ [0, 1]) and the fact that f,, , is non-decreasing. Now

set
k(0,y) (g(0)uk(y)\°
uy_/Tu(da 11k (y) ( p(y) )
1k () \

e < p(y )

and note that
_ (1k@)\® k0:9) o0py_
o (p(y) > </T w0k O 1> 37

Since fa,o is concave, fo o(ty) < fa,o(vy) + fh ,(vy)(uy — vy). Then, combining with
(4.36), we get

Fo(CH) < [ ool plo)o() (438)
< /Y Fovo0y)p(y)r(dy) + /Y £ o) (1 — v)p()(dy)

Note that the first term of the rhs can be written as

[ E (RO
/Y fa,o(vy)p(y)v(dy) = /Y fa ( ) )p(y) (dy) = Yo (k) (4.39)

Using now . (v,) = o 'vs/ ' ' (v}/?) and (4.37), the second term of the rhs of
g o, 0\"Y Y a\"Yy
(4.38) may be expressed as

/ Fho(0) (ty = v,)p(y)v(dy)
Y

() ()

p
(50 (o -

=o' [ atao ( J (’f(j))) u(dy>> 4°(0)
k
)

= Q_l {M (bu,a '99) - U(bu,a)}
= lol 7 {1 (|bpa + 519%) = p(bpa + 61D} + 107 KI(1 = u(g?))

where we have used that o7 1(b,(0) + k) = |07 }|bua(0) + x| for all @ € T and
that o~'x = |o~'x|. In addition, Jensen’s inequality applied to the convex function
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u — u? implies that p(¢?) > 1 and thus

/Yf&,g(vy)(uy —vy)p()r(dy) < lel™ {p (Ibpa + £lg°) = ulbua + £} - (440)

Combining this inequality with (4.38) and (4.39) finishes the proof of the inequality.
Furthermore, if the equality holds in (4.35), then the equality in Jensen’s inequality
(4.40) shows that g is constant p-a.e. so that ( = p, and the proof is completed. [

Remark 39. The proof of Proposition 38 relies on f!, being of constant sign, which is why
we used f., in the proof instead of f.

We now plan on setting { = Z, (1) in Proposition 38 and obtain that one iteration
of the Power Descent yields ¥ (Z,(u)k) < Vo (uk). For this purpose and based on
the upper bound obtained in Proposition 38, we strengthen the condition (4.34) as
follows to take into account the exponent o

_n_
0 < p(lbya + r|1==) < coand p(|bya + #l9%) < p([bpa + £l)

_n
with g = e trlZ8 g 41)
([bp atr] T )

This leads to the following result.

Proposition 40. Assume (4.A1). Let o € R\ {1}, assume that o satisfies (4.A2) and let
be such that (a« — 1)k > 0. Let u € My(T) be such that p(|bu.«|) < oo and assume that 7
satisfies (4.41). Then, the two following assertions hold.

(1) We have U, (Zo(pn)k) < Vo (uk).
(i) We have Vo (Z,(p)k) = Vo (uk) if and only if p = Lo ().

Proof. We treat the case x = 0 in the proof below (the case x # 0 unfolds simi-
larly). We apply Proposition 38 with ( = Z,(u) so that {(df) = u(df)g(f) with
9 = lbp.al = /1u(|ba| ' ~*)). Then,

Vo (Za(p)k) < Calpk) + ol ™ {1 (1bualg®) — n(lbual)} < Wal(uk) (4.42)

where the last inequality follows from condition (4.41).
Let us now show (ii). The if part is obvious. As for the only if part, ¥, (Z,(p)k) =
U, (k) combined with (4.42) yields

Vo (Za(m)k) = Waluk) + o™ {1 (Ibu.alg®) = nlbual)}
which is the case of equality in Proposition 38. Therefore, Z, (1) = p. O

While Proposition 40 resembles Theorem 1 of Chapter 2 in its formulation and in
the properties on the iteration 1 — Z, () it establishes, it is important to note that
the proof techniques used, and thus the conditions on 7 obtained, are different.
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This brings us to the proof of Proposition 32. The proof of this theorem requires
intermediate results, which are derived in Section 4.A.2 alongside with the proof of
Proposition 32.

Proof of Proposition 32

For the sake of readability, we only treat the case x = 0 in the proofs below (and the
case k # 0 unfolds similarly). In Proposition 38, the difference ¥, (Ck) — ¥, (uk) is
split into two terms

Vo (Ck) = Waluk) = A, Q) + lol ™ {1 (balg®) — l[bual)}

where ¢ = d¢/du. Moreover, Proposition 38 states that A(u,() is always non-
positive.

It turns out that the second term is minimal over all positive probability densities
g when it is proportional to |b,,o|'/(!79), as we show in Lemma 41 below.

Lemma 41. Let o € R\ [0, 1]. Then, for any positive probability density g w.r.t j1, we have

p(balg®) > [ (1bualV02)] 7

with equality if and only if g o< |b,, |/,

Proof. The function x ~ '7¢ is strictly convex for ¢ € R\ [0,1]. Thus Jensen’s
inequality yields, for any positive probability density g w.r.t. j,

-0\ ' ° o
p (bucls®) = [ wtas) <'b%> 90) > [ (1bua700)] " a83)

which finishes the proof of the inequality. The next statement follows from the case
of equality in Jensen’s inequality: g must be proportional to b, |"/(1~9). O

The next lemma shows that this choice leads to a non-positive second term, thus
implying that ¥, (Ck) < W, (uk).

Lemma 42. Assume (4.A1). Let o € R\ {1} and assume that o satisfies (4.A2). Then
n=(1—a)/(1— o) satisfies (4.41) for any p € My(T) such that u(|bu.q|) < oo.

Proof. We apply (4.43) with g = 1 and get that

[u <|bﬂ7a|1/<1—g>)r’9 < 1u(bpal) < o0 . (4.44)

Then (4.41) can be readily checked withn = (1 —«)/(1—p). Set ¢ = /(1 — ). Using
that 11(]b,.q]) < oo when ¢ < 0 and (4.A1) for ¢ > 0, we obtain p(|b, |?) > 0, which
concludes the proof. O
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While Lemma 42 seems to advocate for g = d¢/dp to be proportional to |b,, o|'/(1~9),
notice that this choice of g might not be optimal to minimize ¥, (Ck) — ¥, (uk), as
A(p, ¢) also depends on g through (. In the next lemma, we thus propose another
choice of the tuning parameter 7, which also satisfies (4.41) for any . € M;(T) such
that pu(]b,.a]) < oo.

Lemma 43. Assume (4.A1). Let « € R\ {1} and assume that o satisfies (4.A2). Let
p € My (T) be such that pu(|by.q|) < co. Assume in addition that |o| > 1, thenn = (a—1) /o
satisfies (4.41).

Proof. Setting g o< |by.q| 712, we get

1lbpalg?) = ullbual =20 (lbual =472 = Tullbual =918 < u(lbual)

where the last inequality follows from Jensen’s inequality applied to the convex
function v +— u~¢ (since || > 1). Since p(|bya|) < 00, the parameter n = (o — 1) /o
satisfies (4.41). Set ¢ = /(1 — «). Using that p(|b,.|) < oo when ¢ < 0 and (4.A1)
for ¢ > 0, we obtain p(|b,|?) > 0, which concludes the proof. O

Lemma 42 and Lemma 43 allow us to define a range of values for 7 that decreases
VU, after one transition of the Power Descent, under the assumption that g satisfies
(4.A2). Now, in order to prove Proposition 32 and given oo € R\ {1}, we need to

check which values of p satisfy the conditions expressed in (4.A2).

Proof of Proposition 32. The proof consists in verifying that we can apply Proposi-
tion 40, that is, given a € R\ {1}, we must find a range of constants ¢ which satisfy
(4.A2). We then use Lemma 42 or Lemma 43 to deduce that, for the provided con-
stants 7, (4.41) holds.

(i) Assumption (4.A2) holds for all o < 0, with f, (u) = —log(u)/o. Moreover,
by definition of b, », we get foralln > 1,

p
ltal) = [ bl () = [ plupwy) < oc
Combining with Lemma 42 and Lemma 43, (4.41) holds for all ¢ € M;(T) and for
any n € (0, 1].

(ii) Observing that for o ¢ {0,1},

1
= ale _ 1
fae(t) ala—1) (u ) ’
we get that (4.A2) holds for ¢ < « if & < 0 Lemmas 42 and 43 provide the corre-
sponding ranges for 7 in Cases (i) and (ii). To finish the proof, we now show that for

all € My(T), u(]bu,«]) is finite, so that Lemmas 42 and 43 can indeed be applied.



4.A. Deferred results 137

Since uf’ (u) = afo(u) +1/(a — 1), we have, forall n > 1,

e = [ | (20 1. (‘ffjﬂ)]m)u(dy) (4.45)
< e /Y

: uk(y)) ‘ 1
ol —= v(dy) +
f <p(y) p(y)v(dy) a1
Using that ¥, (k) > —oo (which is a consequence of (4.A1) and of Jensen’s inequal-

ity applied to the convex function v — wuf,(1/u)), the rh.s is finite if and only if
VU, (pk) is finite, which is what we have assumed and thus the proof is finished.

4.A.3 Algorithm 11 updates for the Student’s family

We consider the case of d-dimensional Student’s mixture densities of the form k(6;,y) =
T (y; mj, Xj,v;j), where 8; = (m;, ;) denotes the mean and covariance matrix of the
j-th Student’s component density. Then, based on Example 9, solving

0jnt1 = argmaxy 7 /Y NjnVia(y) log(k(0;,y))v(dy) , j=1...J
yields the following update formulas

Nt @)g (y)y v(dy)

Vi=1...J, mjns =

N a@)g? (y)v(dy)
oo N 3@ g5 W) (y = mjns1)(y — mjni)Tv(dy)
e K2 W) (y)v(dy) ’

where forall y € Y and forall j = 1...J, we have set

Vj +d
vi+ (v — mjn) T (Zjn) "Ny — mjn)

95 (y) =

Based on Algorithm 11 and given a sequence of samplers (¢, )n>1, One may consider
in practice Algorithm 15 below.



138 Chapter 4. Monotonic a-divergence minimisation

Algorithm 15: a-divergence minimisation for Student’s Mixture Models

At iteration n,

1. Draw independently M samples (Y, )1<m<n from the proposal ¢;,.

2. Forallj=1...J,set

N [ Fainn) + (o= 1]

A1 = o
i:l )\ZJL [Z%:l ’A)/Za(ym,n) -+ (Oé — l)ﬁ:|
Z%:l :YJT'fa (Ym,n)g;‘l(ym,n) ' Ym,n
Mjn+l = M n n
Zm:l ’Yj@ (Ym,n)gj (Ym,n)
) 2%:1 ’?}%a(ymﬁ)g;l(ymﬂ) : (Ymm - mj,nJrl)(Ym,n - mj,nJrl)T
J7n+1 =

>t A Yimn) g7 (Yinn)

4.A4 Additional numerical experiments

In this section we provide further plots based on the numerical experiments from
Section 4.4.

Numerical Experiment 1 when M € {500, 1000}.
We work within the same framework as the one from Numerical Experiment 1 ex-
cept that we now take M € {500,1000} samples at each step n while keeping the
total computational budget equal to N x M = 20000 samples. The experiment is
repeated 200 times independently for each algorithm considered and the results are
plotted on Figure 4.4 and Figure 4.5 below.

Observe that as M increases, the performances of the UM-PMC(7, k) algorithm
are improved and become comparable to the one of the M-PMC(, ) algorithm, es-
pecially for smaller values of 7.
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FIGURE 4.4: M = 500. LogMSE comparison for the M-PMC(7, ) and
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-k =1{0,0.1,1}.
) Dimension 16, a = 0.0, M = 1000 and — = 0.0 ) Dimension 16, a = 0.0, M = 1000 and —x = 0.1
M-PMC(y, x) M-PMC(y, x)
1- 1-
—_ =10 —_ =10
ol — =05 oh —_— =05
—_— =02 —_— =02
1- AR n=01 b n=01
] @
=2 =
E UM-PMC(y, x) Ei UM-PMC(y, )
30 —_ =10 31 —_ =10
Ll — =05 74 —_—— | — =05
— y=02 — =02
sl n=01 sl 2=01
-6- -6
25‘00 50‘00 75‘00 10[;00 125;00 15[;00 175;00 20600 25'00 50‘00 75‘00 100‘00 12 5;00 15600 175;00 20600
Sample size Sample size

Dimension 16, @ = 0.0, M = 1000 and —x = 1.0
2

) M-PMC(y, <)
— =10

o-
— p=02
1- 2=01

i

22
= al UM-PMC(y, )
— =10

4~
sl n=01

6~

2500 5000 7500 10000 12500 15000 17500 20000
Sample size
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Conclusion

In this thesis, we have been interested in pairing up Monte Carlo and Varia-
tional Inference methods in order to develop improved adaptive procedures that
enable complex modelling of large-scale datasets in a Bayesian setting.

Since Variational Inference methods are commonly limited by the choice of the
measure of dissimilarity and of the approximating family, we proposed in our work
to go beyond the traditional framework of forward Kullback-Leibler divergence
minimisation with a parametric family.

More specifically, we considered the a-divergence as a wider class of objective
functions. From there, we designed efficient algorithms that ensure a monotonic de-
crease in the a-divergence at each step and that permit us to extend the approximat-
ing family in two main ways: one, by putting a prior on the variational parameter
in the form of a measure and two, by working within the broad family of mixture
models.

Our approach is very general, in the sense that it recovers several algorithms
from the optimisation literature. In particular, it improves on Entropic Mirror De-
scent schemes in terms of convergence rates and makes Gradient Descent steps com-
patible with mixture weights updates for mixture models optimisation. Further-
more, it includes an integrated Expectation-Maximisation algorithm from the Monte
Carlo community, further shedding light on the connections between optimisation-
based and sampling-based methodologies. Finally, it allows us to propose novel,
and theoretically-sound, algorithms that empirically yield better results compared
to these aforementioned algorithms.

To conclude, we will share some possible future directions of research based on
the work carried out in this thesis.
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A first direction would be to establish additional theoretical results regarding
our algorithms. For example, one may seek to prove a convergence rate for the
Power Descent when a < 1. One could also investigate convergence results for
our mixture components parameters optimisation procedures, before attempting to
study the case where the mixture weights and the mixture components parameters
are optimised together. As our algorithms rely on Monte Carlo approximations in
practice, another possibility is to look into convergence results in the stochastic case.
Technical challenges that must be overcome to advance in that first direction will
then notably include (i) the uncommon form of the Power Descent updates in com-
parison with usual optimisation techniques and (ii) the non-convexity of the objec-
tive function once we start taking into account the mixture components parameters

updates.

A second direction would focus on numerical aspects. In order to improve on
our empirical results and for variance reduction purposes, one may want to resort to
more advanced Monte Carlo methods in our integral estimations. In addition, figur-
ing out which approach is most successful between unbiased (e.g. Power Descent)
and biased approaches (e.g. Renyi Descent) for a-divergence minimisation remains
an important question in the literature and so is the choice of the hyperparameter
a. On a more open-ended note, one could try to derive new well-chosen functions
I" that satisfy our assumptions for the («,I')-descent and to propose supplementary

choices of exploration steps.
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Appendices for Chapter 1

A.1 Detailed derivations for Example 2

o Letting o € R\ {0,1}, we first show that the optimal update for a certain
¢ e {1,..., L} while keeping the other components fixed is given by

L

-«
p(y, 2)'° H qk(yk)o‘ll ) , foryyalmostally €Y, .
k=1,k#0

q7 (ye) o< (Ee

To see this, observe that optimising (1.10) is equivalent to optimising

1

a(a—l)/yq(y)ap(y’ 7)"v(dy) .

Since ¢ is assumed to belong to the Mean-field family, we can write

1

m /Y a(y)*p(y, 2)' " “v(dy)

11—«
] N p(y, 2)
1 B vp(d
ala—1) /Yz ) E |:(H£U€# Qk(yk)> ] o

Now maintaining all other components fixed except ¢, we deduce by Jensen’s in-

equality combined with the strict convexity of the convex function u ﬁuka

when u > 0 that the optimal update is given by ¢;.

o Letting o € (0, 1), plugging in the model from Example 2 and assuming that g,

follows a Gaussian distribution with parameters m, and Ay, i.e. ¢(y) = N (y; mye, Ay)
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with ¢ € {1,2} (an assumption we did not need to make for the forward Kullback-
Leibler), we thus aim at finding

11—«

(07

) ([ exp | ~E5 20— 0= 0 = G = maa) )

: </Y2 o {_ . ; “ (y =" Ay —p) = %(yg - 2y2m2)A2] 1/2(y2)> e

Since (y — ) "A(y — 1) = (y1 — 1) A1+ 2(y1 — p1) (y2 — p2)A12 + (Y2 — p2)? Az,
by grouping each term we have that

(y— )" Ay — )
= yiA11 — 2y1 (A1 + pali o] + y3Aa — 2ya [ualoo — (Y1 — pu1) A1 2] + cte

where cte does not depend on y; nor y2. Consequently, we have

1 11—«
q1(y1) o< exp [—2 (Q%Al,l — 2 [M1A1,1 + M2A1,2])] X < . A(yl,y2)l/2(dyz)>
2
(A1)
where
11—« a
A(y1,y2) = exp [—( 5 ) (y3022 — 2y [oAos — (y1 — p1)A12]) — §(y§ - 2y2m2)1\2}
1
= €xp |:_2Ainte7" (y% - 2y2,uinte7‘)
with
Ninter = (1 — a)Ag 2 + aly (A.2)
Ainter,uinter = (1 - O[) [M?AQ,Z - (?/1 - Hl)Al,Q] + amaAy .
Thus,
1
ia 1 )
v, A(yly Yo V2 (dyg) X exp m/\mterﬂmter
Using that

(Minterttinter)® = (1 — a) [uaAas + 1 Ag o] + amaAs — y1 (1 — @)A1 2)?
=911 —a)’ATy — 2y1(1 — @)A1 2 (1 — @) [uafa2 + p1 A1 2] + amals)
+ cte ,
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where cte does not depend on y; nor y2, and plugging into (A.1), we deduce

1
q1(y1) o exp [—2 (y%Au — 21 [“11\1,1 + “2A172D %
1
exp [A (yi(1 = a)AT 5 — 2y1A12 (1 — @) [p2Ao2 + p1h1g] + amals))
inter

Asa consequence,
1

Ainter

A =Aig— (1- @)A%,z

and

1

Aimy = prAy g+ poli 2 — Ao (1 — ) [paA22 + 1Ay 2] + amas)

Ainter
1 ) 1
= Ay = (1= a@)Ajp | +pp | Mg — = Aia(l — @)z
inter inter
1
B Ainter A1,204m2A2
1
= A + pe [Al,z - Arp(1— a)A2,2] ~ A A2amahs
inter inter
Ao
= A + A (2 (Ninter — (1 — ) A2 2) — amaAg] .
inter

By definition of Ajper in (A.2) we get

1
A=A — 1—a)A?
1 1,1 (1— a)Aas —|—aA2( a)Ai
A1 2Moa

m1=M1—A1[( ][7”2—#2}

1-— OZ)A272 + als
and by symmetry we also obtain

1
(I—a)Ai1+aly
. _ A172A1a
2RI — a)ALs + o]

Ay =Nz — (1- a)A%,z

[m1 — p] -

e From there, we can deduce that the only possible stable fixed point for m; and
mg are mp = 1 and mo = po. As for A; and Ay, the fixed point conditions give for
Ali

1—a)A?
Av = Apy - (1-a) 1,21 :
(1-a)Aspta (A2,2 ~ Tk e (L a)A1,2)
1 —a)A?
~ - — aogiiia
Az :

2 (1—04)1\1714-0!/\1
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Our goal is thus to rewrite

1
A=A — < (A.3)
Ao — (1—0()/\1,1-{-0(1\1
. A .
as a second-order equation, where we have set a, = ﬁ Since,
1,2\

Qa . alq .
A <aa T 0—a)Ai+ aA1> = Aida (1—a)Ar1 +ah 1

that is

A ([T —a)Ag+aMi]ag — o) =[(1 — @)A1 + o] (A1aa — 1) —alq
= Al,l ((1 — a)ALlaa — 1) + O(Al (ALlaa — 1) ,

we deduce that (A.3) is equivalent to
aaaA% + aa(l — 20()A1’1A1 — A171 ((1 — a)ALlaa — 1) =0

whose solutions are given by

aaAl,l
1 4ah?,(1 - «)
=A — 20— 1)+ 4 /1 — ——————— | .
LY 9q (2 —1) \/ Ao oA 1

e For the numerical application, recall that we have taken Aj; = A22 = 3 and

1 4
A1:A171><2a<(2a—1)i 1- O‘)

A12 = Ag1 = —2 in Example 2. In that case, since we need to ensure A; > 0, we

must satisfy
B 4aA? 5(1 — )

>0
As oA

A2 ,(1- . e e
and A; > 0. As %ﬁf) < 4/9 for o € (0, 1), the first condition is satisfied. Now

1 4ah? (1 —a)
wi=— | (2a -1 QA
@ 20 (2a—1)+ \/ AsoAi

defining

the only solution for a@ < 0.87 is given by A1 = 0,A1,1 and (by symmetry) by Ay =
0al22,as1/2(1+ /1 —4/9) > 0.87. We have thus recovered the results announced
in Hernandez-Lobato et al., 2016.

Observe that letting @ — 1 in these expressions gives back the solutions Ay = Aq;
and Ap = Ay found in the forward Kullback-Leibler case. As for the case o — 0, de
’'Hopital’s rule gives A; = Ay — A%72A272 and Ay = Ags — A%72A171.
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A.2 Equivalence between optimising D, (Q||P|») and ¥,(q; 2)

e Case a = 1 with fi(u) =1 — u+ ulog(u) for all u > 0. Then,

Di(QIIBg) = / fl( iy _22)) p(412)(dy)

()
o

) v(dy) + log p(2)

y
) (v, 2)0(dy) + 1 — p(2) + log p(2)

/fl(

arginfqeng(Q\ |P|») < arginf coWi(q; 2)

Thus,

e Case a = 0 with fo(u) = u — 1 —log(u) for all u > 0.

Do(QIIPy) = / (2 solwtan
) )py@

Zp

|2
AW py|)w(dy) 1o p()

[RME
[l
sl

arginf o Do(Q||P|y) < arginf,coVo(q; 2)

Yy
) p(y. D)w(dy) + p(2) — 1 - p(2) log p(P)

Thus

e Case a € R\ {1} with fu(u) = ﬁ [u® —1—a(u—1)] forall u > 0.

Do (Q||P|»)

- /Yfa (i;ig)) p(y|2)v(dy)

iy SRS P
=00 [ o |Gog) oo + B2

=02 [ g (S ) vl 2wt +

Thus,
arginf o Dq Q| |}P’|9) & arginf oV, (q; 2)
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Introduction (en Francais)

L’objectif de ce chapitre est d'introduire les concepts fondamentaux apparaissant
dans la these. Nous commengons par rappeler les bases de 1'Inférence Bayésienne
en soulignant les principales difficultés rencontrées dans ce domaine des lors que
I'on travaille avec des modeles bayésiens complexes. Nous expliquons par la suite
comment les méthodes de Monte Carlo et les méthodes d’'Inférence Variationnelle
permettent de dépasser certaines de ces difficultés, avant de résumer les contribu-

tions que nous apportons dans ces deux domaines.

B.1 Inférence Bayésienne

L'Inférence Statistique regroupe les méthodes visant a modéliser un phénomene a
partir d'un jeu de données. En tant que sous-catégorie de I'Inférence Statistique,
les méthodes d’Inférence Bayésienne proposent de calibrer un modéle probabiliste
paramétrique afin de décrire des données observées, avec la particularité que ces
méthodes incorporent des connaissances a priori sur les parametres du modele con-
sidéré.

Plus précisément, le cadre de 'Inférence Bayésienne peut étre explicité comme
suit. Soit un espace mesuré (Y,),v), olt v est une mesure o-finie sur (Y,)). Sup-
posons que nous avons acces a un ensemble de données ¥ généré a partir d'un
modeéle probabiliste dominé ayant pour densité p(Z|y), ou le parametre y € Y est
une variable latente elle-méme simulée selon une distribution a priori de densité py
par rapport a v. La quantité phare de I'Inférence Bayésienne est la densité a posteriori
de la variable latente y étant donné I’ensemble 2 :

(Y, 2) _ po(y)p(2ly)
p(7) p(2)

p(yl?) =
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o p(2) = [y po(y)p(2]y)v(dy) est la loi marginale. Cette derniere permet de quanti-
fier I'incertitude du parametre y suite a 1’observation des données 7, au travers de

quantités telles que la loi marginale p(2) ou encore la moyenne a posteriori

/ y p(y|2)v(dy) .
Y

Plus généralement, le succes des méthodes d’Inférence Bayésienne repose sur notre
capacité a calculer des intégrales de la forme suivante :

/Y o()p(y 2)v(dy) | (B.1)

ou g est une fonction d’intérét définie sur Y.

Le probléme susmentionné est difficile a résoudre : il n’existe pas d’expression
analytique générale pour (B.1) et bien qu'une expression analytique soit connue
pour certains choix de modeles probabilistes, celle-ci requiert souvent des temps
de calculs trop longs en pratique (e.g. le calcul de la loi marginale pour un modele
de mélange Gaussien bayésien, voir Blei, Kucukelbir, and McAuliffe, 2017).

Cette difficulté a calculer (B.1) est particulierement prégnante dans le contexte
des données massives. En effet, la modélisation de grands volumes de données -
avec une structure sous-jacente des données potentiellement compliquée - engendre
des densités a posteriori trés complexes. Des lors, il devient crucial de trouver des
algorithmes d’Inférence Bayésienne applicables au traitement des données massives
et ce, avec des temps de calcul raisonnables.

Les méthodes d’Inférence Bayésienne exactes étant souvent impossibles & met-
tre en ceuvre en pratique, une alternative consiste a faire appel a des méthodes
d’Inférence Bayésienne approchées. Ces dernieres appartiennent principalement a
deux grandes catégories : (i) les méthodes de Monte Carlo (e.g. les méthodes par
échantillonnage préférentiel adaptatif (Oh and Berger, 1992), les méthodes de Monte
Carlo par chaines de Markov (Neal, 1993), les méthodes de Monte Carlo séquen-
tielles (Doucet, Freitas, and Gordon, 2001)), qui sont des méthodes d’échantillonnage
(ii) les méthodes d’'Inférence Variationnelle (e.g. 1’algorithme Variational Bayes (Jor-
danetal., 1999) et ’algorithme Expectation Propagation (Minka, 2001)), qui reposent
sur des techniques d’optimisation.

En 1’état, les méthodes d’'Inférence Variationnelle sont souvent plébiscitées du
fait de leurs avantages numériques. Elles ont en effet été appliquées avec succes a
des taches d’apprentissage automatique en grande dimension faisant intervenir des
modeles probabilistes complexes (Hoffman et al., 2013; Kingma and Welling, 2014;
Ranganath, Gerrish, and Blei, 2014). Néanmoins, et contrairement aux méthodes
de Monte Carlo, les méthodes d’Inférence Variationnelle utilisent des techniques
d’optimisation sur un espace de densités restreint ; cela signifie qu’il y a un po-

tentiel écart entre la densité a posteriori et 'approximation retournée a la fin de la
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procédure d’optimisation et donc que les garanties théoriques pour ces méthodes
font fréiquemment défaut (Yao et al., 2018; Campbell and Li, 2019).

De ce fait, la recherche s’est tournée vers la construction d’algorithmes d'Inférence
Variationnelle bénéficiant de solides garanties théoriques (e.g. Alquier, Ridgway,
and Chopin, 2016; Domke, 2019; Alquier and Ridgway, 2020). Ce processus s’est
également accompagné d’avancées permettant de combiner les méthodes de Monte
Carlo et d’Inférence Variationnelle (pour ne citer que quelques exemples : Burda,
Grosse, and Salakhutdinov, 2016; Li and Turner, 2016; Mandt, Hoffman, and Blei,
2017; Naesseth et al., 2018; Thin et al., 2020; Naesseth, Lindsten, and Blei, 2020).

Dans cette thése, nous nous attachons a étudier comment les méthodes de Monte
Carlo adaptatives, et plus spécifiquement les méthodes d’échantillonnage préféren-
tiel adaptatif, peuvent étre associées aux procédures d'Inférence Variationnelle afin
de construire des algorithmes fondés théoriquement et applicables au traitement des
données massives. Pour ce faire, nous commengons par rappeler les bases des méth-
odes de Monte Carlo en allant jusqu’aux méthodes d’échantillonnage préférentiel
adaptatif, en gardant en ligne de mire les applications au cadre bayésien.

B.2 Méthodes de Monte Carlo et Inférence Bayésienne

Les méthodes de Monte Carlo dans leur ensemble visent a approximer des intégrales
de la forme

I(g) == /Y g(y)p(y)v(dy) ,

ol g est une fonction intégrable définie sur Y et p est une densité de probabilité par
rapport a v. Notons maintenant P la mesure de probabilité définie sur (Y,)) et de
dérivée de Radon-Nikodym par rapport a v donnée par dP/dv = p. Le probleme
ci-dessus peut alors étre vu comme le calcul d'une espérance par rapport a la distri-
bution de probabilité PP :

ou1 Y est une variable aléatoire définie sur 'espace probabilisé (Y, ), P).
La premiere idée des méthodes de Monte Carlo est de remplacer le calcul ex-
plicite de I’espérance E,[¢(Y )] par une approximation faisant intervenir la moyenne

empirique de M réalisations indépendantes.

B.2.1 Monte Carlo standard

Soit Y71, Y, ... une suite de variables aléatoires indépendantes et identiquement dis-
tribuées partageant la méme distribution de probabilité P. Pour tout M € N¥,
l'estimateur I);(g) de I(g) donné par

. 1 M
In(g) = Vi Z g(Yom) (B.2)

m=1
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est sans biais (i.e. E,[Ir(g)] = I(g)) et la loi des grands nombres indique que sous
I'hypothese I(g) = E,[|g(Y1)|] < oo, nous pouvons écrire

A}gnoo Iv(g) =1(g), presque stirement.

En supposant de surcroit que E,[|g(Y1)|*] < oo, le théoréme central limite donne la
convergence en distribution de v M (I5(g) — I(g)) vers N (0, Var,[g(Y1)]) lorsque M
tend vers l'infini.

Ainsi, il s’agirait de choisir p(y) = p(y|Z) pour tout y € Y pour pouvoir utiliser
les méthodes de Monte Carlo dans un cadre bayésien. Il suffirait des lors de parvenir
a simuler sous la distribution a posteriori pour trouver en (B.2) une approximation
non-biaisée de (B.1).

Il existe cependant d'importants modeles bayésiens pour lesquels nous ne savons
pas simuler directement sous la distribution a posteriori et pour lesquels méme la
constante de renormalisation p(2) est inconnue. A titre illustratif, nous fournissons
ci-apres un exemple dans le cas d'un modele de Régression Logistique Bayésienne
pour de la classification binaire.

Exemple 1 (Régression Logistique Bayésienne). Ce modele est tiré de Gershman, Hoff-
man, and Blei, 2012. Nous observons les données 9 = {c, x} qui sont constituées de I vari-
ables binaires, ¢; € {—1,1}, et d'un vecteur de taille L pour chaque observation, x; € RL.
Les variables latentes y = {w, 5} correspondent aux L coefficients de la régression w; € R
ainsi qu’a un parametre de précision 3 € R*. Le modele choisi est le suivant :

pO(B) = Gamma(ﬁ; a, b) 3
po(welB) = N(we; 0,371, 1<¢<L,
1

= {iewrm LSisT

p(e; = 1|z, w)

oit a et b sont des hyperparamétres supposés fixés a I'avance. Pour tout y € Y, nous avons
alors p(y, 2) o po(y) [T/—y plcilzi, y) avec po(y) = TIi—y po(welB)po(B). La quantité
problématique dans ce modele est la fonction sigmoid, qui empéche de simuler selon la dis-
tribution a posteriori. Elle rend également la constante de renormalisation p(Z) inconnue,
tout comme la distribution prédictive a posteriori, en charge de prédire le label cyev, lorsque
nous sommes confrontés a une nouvelle observation ey

p(cnew’wnewa -@) = /Yp(cnew‘xnewa y)p(y\.@)l/(dy) .

Fort heureusement, les méthodes dites d’échantillonnage préférentiel permettent
d’outrepasser ces complications.
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B.2.2 Fchantillonnage préférentiel

L’idée clef de I’échantillonnage préférentiel est d’introduire une certaine densité de
probabilité ¢ par rapport a v, que nous appelons la proposition. Nous supposons
deux choses sur ¢ : (i) nous savons simuler selon ¢ et (ii) le support de ¢ contient
le support de g x p, c’est-a-dire que pour tout y € Y, g(y)p(y) # 0 implique que
q(y) > 0 (une condition suffisante pour obtenir cette propriété étant que le support
de g contient le support de p). Dans ce cas, en définissant w(y) = p(y)/q(y) pour tout
y € Y, nous avons que :

Yy

1t9) = [ s = [ 92D atwrldy) = By fw(V)g(v)]
Y Y q(y)

Soit Y7, Ys, ... une suite de variables aléatoires indépendantes et identiquement dis-

tribuées simulées selon ¢, nous obtenons cette fois-ci qu'un nouvel estimateur (sans

biais) de I(g) est donné pour tout M € N* par

1 M
M Z w(Ym)g(Ym) . (B3)

m=1

If7(g) =

Si nous revenons maintenant au cadre de I'Inférence Bayésienne, une avancée
importante est alors que I'estimateur 717 (g) ne requiert plus de savoir simuler selon
la densité a posteriori afin d’estimer des intégrales de la forme (B.1).

Il nous reste toutefois un obstacle a surmonter, lié au fait que la densité a posteri-
ori est souvent calculable a une constante de normalisation pres. Nous considérons
pour cela 'estimateur normalisé (SNIS) donné pour tout M € N* par

1 St @ (V)9 (V)
ﬁ Z%:l w(Y)

5 () =

Contrairement aux estimateurs introduits précédemment, 1 SNIS(g) est biaisé. Néan-
moins, lorsque les conditions de support sont satisfaites et que E,[|w(Y7)g(Y1)|] < oo,
la loi des grands nombres fournit la convergence presque stire vers I(g) pour les
deux estimateurs 717 (g) et I5N'5(g).

Si nous ajoutons de plus ’hypothese que E,[|w(Y71)g(Y1)[?] < oo (et dans le cas de

l'estimateur SNIS que E, [w(Y1)?(1+¢(Y1)?)] < o0), nous obtenons le résultat suivant

VM(I1 (9) — I(g)) =2 N(0, Varg[w(Y)g(Y1)])
VM (g) — I(g)) =2 N(0, Varg[w(Y1)(g(Y1) — I(9))])

ot la notation — désigne la convergence en distribution.

Ce résultat permet d’observer que Var,[w(Y7)g(Y1)] et Var,[w(Y1)(g(Y1) — 1(9))]
sont minimales lorsque g  |g| x p et g & |g — I(g)|p respectivement, ce qui illustre le
fait que les performances des méthodes par échantillonnage préférentiel dépendent
fortement du choix de la proposition ¢ (voir Robert and Casella, 2005 et la Figure



154 Appendix B. Introduction (en Frangais)

B.1). A noter toutefois qu'il devient moins efficace de choisir une proposition ¢ qui
dépend de g dés lors que nous cherchons a estimer des intégrales de la forme (B.1)
pour un grand nombre de fonctions ¢ ; il convient alors de viser directement la den-
sité cible p (Delyon and Portier, 2021).

0.40 4 — tue
—— good sampler
0.35 —— bad sampler

—4 -2 0 2 4 6 8 10

FIGURE B.1: Dans cette figure, “true” représente la distribution cible
p. Les deux distributions restantes sont ainsi susceptibles de re-
tourner des estimations tres différentes de I(g).

Comme il n’est pas forcément aisé de savoir tout de go comment bien choisir ¢
lorsque nous sommes confrontés a un modele probabiliste complexe, des procédures
adaptatives au cours desquelles la densité g est progressivement améliorée peuvent
étre envisagées. Ceci nous amene au concept d’échantillonnage préférentiel adap-
tatif.

B.2.3 Echantillonnage préférentiel adaptatif

L’objectif des méthodes d’échantillonnage préférentiel adaptatif est de partir d'une
densité de probabilité initiale ¢; et de construire itérativement une suite de densités
de probabilité (¢,),>1 permettant d’améliorer nos approximations de /(g) au fur et
a mesure que n augmente.

Bien qu’initialement limitées & des procédures en deux étapes (Kloek and Van
Dijk, 1978; Geweke, 1989), les méthodes d’échantillonnage préférentiel adaptatif ont
depuis évolué vers des procédures multi-étapes (Oh and Berger, 1992) de sorte qu'un
algorithme d’échantillonnage préférentiel adaptatif peut typiquement s’écrire a la
maniere de I’Algorithme 16.

En choisissant p = p(-, Z), les paires retournées par 1’Algorithme 16 peuvent
des lors étre utilisées dans I'estimation d’intégrales de la forme (B.1), en ayant par
exemple recours a l'estimateur au temps n suivant :

My,
ASNAIS(g) _ ﬁn Zm:l wn(Ym,n)g(Ym,n) ‘

My,
m ]\/%l Zi\n/lzl W (Yonn)

Un état de I’art détaillé des méthodes d’échantillonnage préférentiel adaptatif est
disponible dans Bugallo et al., 2017. Parmi les avancées notables dans le domaine de
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Algorithme 16: Echantillonnage préférentiel adaptatif

Entrée: N: nombre total d’itérations, (M,,)1<n<n: politique de répartition
des ressources, g1: proposition initiale.

Sortie: Retourne les paires (Y, n, Wn(Ym,n))1<m< M, 1<n< N -

pourn =1...N faire

1. Générer M, points (Y, n)1<m<m, simulés indépendamment sous gj,.

2. Calculer les poids d’importance (wy (Y n))i1<m<um,, ol pour touty € Y,
nous définissons wy, (y) = p(y)/qn(y)-

3. Mettre a jour la proposition gj,.

fin

I’échantillonnage préférentiel adaptatif se trouvent alors des méthodes construisant
la suite (¢n)n>1 en minimisant un critére bien choisi a chaque étape (e.g. Douc et al.,
2007a; Douc et al., 2007b; Cappé et al., 2008 et Portier and Delyon, 2018) ainsi que des
méthodes proposant de nouveaux raffinements au niveau des poids d’importance
(Martino et al., 2017).

Nous présentons maintenant les méthodes d’Inférence Variationnelle.

B.3 Méthodes d'Inférence Variationnelle et Inférence Bayési-

enne

Les méthodes d’'Inférence Variationnelle (Jordan et al., 1999) cherchent a approcher
la densité a posteriori par une densité variationnelle plus simple ¢ appartenant a une
famille de densité Q et facilitant le calcul d’intégrales de la forme (B.1).

Pour ce faire, ces approches proposent de résoudre un probleme d’optimisation
faisant intervenir une certaine mesure de dissimilarité D entre la distribution a pos-

teriori | et la distribution variationnelle Q :
inf D(Q||P5) ,
inf D(QIPy)

ot P|» sont Q des densités de probabilités sur (Y, )) que I'on suppose absolument
continues par rapport a v (ce que nous indiquons aussi par la notation Q =< v,
Py = v) et de dérivées de Radon-Nikodym par rapporta v : ¢ = dQ/dv et p(-|Z) =
dPy/dv.

Les méthodes d’Inférence Variationnelle s’attachent alors a bien choisir D et a
trouver des familles variationnelles Q afin de mener la procédure d’optimisation
efficacement tout en étant capable de capturer une structure compliquée au sein de
la densité a posteriori.
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Dans cette section, nous rappelons en premier lieu le choix le plus traditionnel
pour D et Q en Inférence Variationnelle. Nous détaillons par la suite les avancées en

Inférence Variationnelle importantes & mentionner dans le cadre de cette these.

B.3.1 L’'Inférence Variationnelle au sens traditionnel

Un choix traditionnel et extrémement fréquent en Inférence Variationnelle consiste
a utiliser la divergence de Kullback-Leibler comme mesure de dissimilarité D. Nous
rappelons la définition de cette divergence maintenant.

Définition 1 (Divergence de Kullback-Leibler). Soient Q et P deux mesures de proba-
bilités sur (Y,)) absolument continues par rapport a v i.e. Q < v, P < v. Nous notons
q= %@ and p = & les dérivées de Radon-Nikodym de Q et P par rapport i v. La divergence
de Kullback-Leibler (KL) est alors donnée par:

Dis(@lP) = [ log (;g;) a(w)v(dy)

et est a valeurs dans [0, 400].

L'Inférence Variationnelle au sens traditionnel se concentre sur la minimisation

de la divergence de Kullback-Leibler exclusive
qeQ

ainsi que sur la minimisation de la divergence de Kullback-Leibler inclusive
inf D1 (P12]|Q) - (B.5)
qeQ

Parmi ces deux problemes d’optimisation, un intérét plus poussé a été porté sur la
résolution de (B.4) en raison de I'Evidence Lower BOund (ELBO) : pour tout ¢ € Q,

nous pouvons effectivement écrire que

Drsl@Pe) = [ atwto (1) viay) + 1gp(2)

= —ELBO(¢; 2) + logp(2) ,

ot la fonction ELBO est définie pour tout ¢ € Q par

p(y, 7

ELBO(: 7) = | a(u)log ( w )) v(dy) (5.6)
Y q(y)

Le résultat ci-dessus signifie que I'ELBO agit comme une fonction objectif alternative

ne faisant pas intervenir la constante de renormalisation p(Z), c’est-a-dire que le

probleme d’optimisation

sup ELBO(q; 2)
qeQ
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est strictement équivalent a (B.4).

Le nom ELBO tient alors son origine dans le fait que ELBO(q; 2) < log p(2) avec
égalité si et seulement si Q = P|5. Ce résultat, établi en utilisant I'inégalité de Jensen
appliquée a la fonction strictement concave u +— log(u) nous dit effectivement que
I’ELBO est une borne inférieure (lower bound) du log de la loi marginale p(2) (the
evidence).

Nous passons maintenant au choix de la famille variationnelle Q : 1'idée tradi-
tionnelle de I'Inférence Variationnelle est de fonctionner sous I’hypothese de champs
moyen, que nous allons expliciter ci-apres. Ceci nous permettra d’expliquer brieve-
ment comment 'ELBO et 1'approche par champs moyen peuvent étre combinées
ensemble dans le cadre de I'Inférence Variationnelle.

L’approche par champs moyen fait '’hypothése simplificatrice suivante : la vari-
able latent y est constituée de L composantes indépendantes (y1,...,yr) € Y1 x...x

Y, de sorte que Q se décompose de la maniere suivante :

L
Q= {q:yHHQe(ye)},

(=1

et que la dépendance en la variable latente 1, n’apparait qu’au travers de la densité
variationnelle associée gy (nous écrivons v(dy) = ®£:1 ve(dyy)).

Pour ce choix de famille variationnelle Q, I'expression de 'ELBO (B.6) se simpli-
fie. En maintenant tous les facteurs variationnels constants sauf celui correspondant
a la coordonnée ¢, nous pouvons alors déduire une formule de mise a jour optimale

pour le facteur g :

q; (ye) o< exp (E_¢[log p(y, 2)]) , pour v,-presque tout y, € Yy, (B.7)

ot nous utilisons la notation E_, pour désigner I’espérance par rapport a ¢ en omet-
tant le facteur ¢,. En effet, sous I'hypothése de champs moyen

Py, @)> V(dy)

ELBO(¢; 7) = /Y a(y) 10g<

q(y)
:/ qe(ye)E_¢ [log p(y, 2)] Vé(dyé)—/ qe(ye) log qe(ye)ve(dye) + c—¢
Yo Ye
_ o exp (E_¢[logp(y, 2))) | | .

ol c_y est une constante qui ne dépend pas de ¢, (et par commodité nous faisons
un léger abus de notation dans l'écriture de E_; [logp(y, Z)] en utilisant la méme
notation pour les variables (yx)1<r<r k¢ et les variables aléatoires sous H£:1, ket Q)

D’apres I'inégalité de Jensen, le terme de droite est maximisé lorsque gy(y,) est
proportionnel a exp (E_;[log p(y, 2)]) pour v,-presque tout yy € Yy ; nous retrouvons
ainsi la condition d’optimalité annoncée dans (B.7) pour le facteur g,.



158 Appendix B. Introduction (en Frangais)

L’'idée naturelle est maintenant de s’appuyer sur (B.7) pour effectuer la mise a
jour de chaque facteur ¢, de maniere cyclique, jusqu’a atteindre la convergence vers
un optimum (local) : cette procédure porte le nom de I’algorithme Coordinate Ascent
Variational Inference (Bishop, 2006) et elle est décrite dans 1’ Algorithme 17.

Algorithme 17: Coordinate Ascent Variational Inference (CAVI)

Entrée: (q¢)1<¢<1: facteurs variationnels initiaux.
Sortie: Retourne la densité variationnelle optimisée g définie pour tout
y €Y par q(y) = [Ty qe(ve)-
tant que 'ELBO n’a pas convergé faire
pour ! =1...L faire
| qe(ye) oc exp (E_[log p(y, Z)]) , pour v-presque tout y, € Y
fin

Calculer I'ELBO.
fin

L’exemple qui suit illustre la maniere dont les formules de mise a jour apparais-
sant dans 1’Algorithme 17 sont obtenues en pratique. Cet exemple jouet, tiré de
Hernandez-Lobato et al.,, 2016 et pour lequel la densité a posteriori est connue,
nous permettra également de visualiser les caractéristiques de I’approche par champ

moyen dans le cadre de I'Inférence Variationnelle.

Exemple 2 (Régression Linéaire Bayésienne). Nous observons les données 9 = {c,xz}
composées de I variables (c¢;)1<i<s en dimension 1 et de I vecteurs (x;)1<i<1 en dimension
2, oit chaque paire (c;, ;) appartient & R x R2. Les variables latentes correspondent aux
deux coefficients de la régression y = {y1,y2} € R2. Le modele choisi est le suivant :

pO(?/) = N(y7 ﬂOaAal) 5
p(cl|wlay) :N(Ci;mii70-2) ) 1 < 1 < I 3

ol o, Ao et o sont des hyperparametres supposés fixés.
Dans ce cas, la densité a posteriori est connue et elle vérifie

P Z) = N(y; 1, A7)

avec A = Ao+ 21 @l et Ay = Nopo+0—2 31, eia;. Sous I'hypothese de champs
moyen, nous cherchons q sous la forme q(y) = q1(y1)q2(y2) avec pour tout £ = {1,2} et
tout yp € Yy

qe(ye) o< exp (E_,[log p(y, 2)]) -
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En notant pp = () 1<e<2 et A = (Mg k) 1<e k<2 avec Ay o = Ao, il vient :

q1(y1) o< exp (qu [—; {(y1 = p)*Ara + 201 — ) (y2 — M2)A1,2}D

1
X exp <—2 {y%ALl -2y [,ulAl,l - (qu [y2] — #2)/\1,2]}) )

et nous en déduisons que q1(y1) = N (y1; 1 — AL (Eqgy[y2] — p2) A1 2, AT Y) ef par symétrie
que q2(y2) = N (y2; po — A;%(qu [y1] — p1)A12, Ag_é). Par conséquent, en notant my =
Eq, [y1] and mo = Eq, [y2], l'algorithme CAVI revient a effectuer les mises a jours suivantes

my 4= = Ay (me — p2) Ay

ma < p2 — AQ_é(ml —p1)Ar2 .

Le seul point fixe de ce schéma itératif étant donné par mi; = py1 et mo = o, nous
obtenons finalement que q1(y1) = N (y1; p1, Al’&) et g2(y2) = N (y2; pa, Ai%). Nous pou-
vons alors visualiser la distribution a posteriori et la distribution variationnelle optmisée par
'algorithme CAVI sur la Figure B.2, dans laquelle jo = [0,0], A1 1 = Ag o = 3et Ay o = —2.

1.0

0.5

0.0

-0.5 4

—_— true
-1.0 4 —_ MFVI

T T
-1.0 -05 00 0.5 1.0

FIGURE B.2: Approche par champs moyen pour la Régression

Linéaire Bayésienne de I'Exemple 2 (adaptée de Hernandez-Lobato

etal., 2016). Ici, “true” et “MVEFI” représentent respectivement la dis-

tribution a posteriori et la distribution sous I’hypothése de champs

moyen obtenue par minimisation de la Kullback-Leibler exclusive
(avec des contours de taille 1-sigma).

Plus généralement, I’algorithme CAVI permet d’obtenir des formules de mise a
jour explicites lorsque 'on travaille avec des modéles faisant intervenir des familles
exponentielles conjuguées bien choisies. Parmi ces modéles, nous trouvons no-
tamment les modeles de mélange gaussiens (Bishop, 2006) ainsi que les modeles
d’Allocation de Dirichlet latente (Blei, Ng, and Jordan, 2003).

En effet, partant d'un jeu de données 7 = (x¢), 4, ces derniers introduisent
les variables latentes y = {3, w1, ...,wr}, ol B est une variable latente globale et ol
pour tout ¢ = 1... L la variable latente locale wy est associée a x,, de sorte que

L

p(y, 2) = p(B) [ [ p(we, x| B)

(=1
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Ils choisissent ensuite une densité variationnelle vérifiant I’hypothése de champs
moyen suivante :

L
q(B1v) [ T alwelée) .
=1

ot {4, ¢1, ..., o1} sont les parametres variationnels a optimiser via I’algorithme CAVI.
Ils déduisent finalement des formules de mise a jour pour ces parametres variation-
nels grace a des choix appropriés de p(3), p(we, z¢|5), q(B|Y) et q(we|dr) (voir Blei,
Kucukelbir, and McAuliffe, 2017 pour les détails concernant les modéles de mélange

gaussiens et les modeles d’Allocation de Dirichlet latente).

Nous avons vu comment 1’algorithme CAVI permet d’obtenir des formules de
mise a jour pour les parametres variationnels lorsque D correspond a la Kullback-
Leibler exclusive, Q vérifie 'hypothese de champs moyen et p(-, Z) est un mod-
ele bien choisi appartenant aux modéles exponentiels conjugués. Dans le cadre des
données massives, il reste une derniere difficulté a surmonter pour obtenir un algo-
rithme utilisable en pratique : 1’algorithme CAVI doit d’abord optimiser 1’ensemble
des parametres variationnels locaux {¢1,..., ¢} avant de ré-estimer le parametre
variationnel global v, ce qui le rend inefficace lorsqu’il fait face a un grand volume
de données.

Pour remédier a cette situation, la littérature en Inférence Variationnelle a mis
a contribution les techniques d’optimisation stochastique (Bottou, 2010; Robbins
and Monro, 1951). L’algorithme Stochastic Variational Inference (Hoffman et al.,
2013) a ainsi permis l’apprentissage en grande dimension pour des modéles com-
plexes comme celui d’Allocation de Dirichlet latente et le succés numérique de cette
approche sur des jeux de données contenant des millions d’observations a ravivé
I'intérét pour les méthodes d’'Inférence Variationnelle (voir Blei, Kucukelbir, and
McAuliffe, 2017 et Zhang et al., 2019 pour des états de I'art sur ce domaine).

Le reste de cette section est dédié aux avancées majeures en Inférence Variation-
nelle que nous aurons 1'occasion de remettre en perspective au cours de cette these.

B.3.2 A larencontre des méthodes de Monte Carlo

Comme nous 'avons souligné précédemment, 1'usage de la Kullback-Leibler exclu-
sive sous des hypotheses de champs moyen facilite considérablement 1’application
des méthodes d’Inférence Variationnelle aux données massives.

Cependant, 1'une des principales limitations de cette approche provient du fait
que non seulement ’hypothese de champs moyen restreint le choix des modeéles,
mais également que les formules de mises a jour obtenues sont spécifiques au mod-
ele considéré et requierent de ce fait d’étre établies a la main (voir Blei, Kucukelbir,
and McAuliffe, 2017 et la Figure B.2).
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Pour répondre a cette difficulté, les techniques d’Inférence Variationnelle dites
“Black-Box” ont été déployées (Ranganath, Gerrish, and Blei, 2014) : cette nouvelle
classe d’algorithmes permet de minimiser la Kullback-Leibler exclusive pour un
choix de modeles beaucoup plus général. Prenons pour D la Kullback-Leibler exclu-
sive et supposons que nous travaillons avec une famille variationnelle paramétrique

de la forme :
Q={y—k(b,y) : 0T} (B.8)

(ott T est par exemple RY). L'idée centrale de 'algorithme Black-Box Variational
Inference est d’utiliser le gradient de I'ELBO ainsi que des approximations de Monte
Carlo au cours de la procédure d’optimisation. En se placant sous des hypotheses
de dérivabilité classiques et d’apres Paisley, Blei, and Jordan, 2012, le gradient de
I'ELBO (B.6) est en effet donné par :

VELBO(k(,-); 2) = V (/Y k(0,y) log< (( %> (dy)>

5w ¢ o (222 1] gay

_ p(y, 7)
= [ k6.7 hog ko, l1og (552 ) via) ~ [ whio,mpvian)

ol nous avons utilisé que pour tout y € Y, Vk(8,y) = k(6,y)V [logk(6,y)], une
astuce appelée le REINFORCE trick dans la littérature (Williams, 1992). Comme de

plus [, VE(0,y)v( V([ k( dy)) =0, il vient que

VELBO(k(0,-); 7) = /Y k(0,y)V [log k(0,1)] log (p((y’ 9;) v(dy)

= By, [v log [k (6, Y)] x log <k:((9, fm

c’est-a-dire que le gradient de 'ELBO s’écrit comme une espérance par rapport a
la densité variationnelle k(0, -). Les méthodes de Monte Carlo entrent alors en jeu :
étant données M variables aléatoires Y7, ..., Yy indépendantes et identiquement

distribuées selon k(6, -), un estimateur non-biaisé de 1'espérance ci-dessus est

435 st s (A2:2)).

L’algorithme Black-Box Variational Inference se base sur ce résultat pour introduire
une suite de vitesses d’apprentissage (v,)n>1 et effectuer des pas de Descente de
Gradient Stochastique afin de construire la suite (6,,),,>1 suivant 1’Algorithme 18 (le
signe “+” dans 1’étape de descente de gradient provenant du fait que 1’algorithme
maximise ’ELBO et minimise donc —ELBO).
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Algorithm 18: Black-Box Variational Inference

Entrée: N: nombre total d’itérations, (M, ),>1: politique d’allocation des
ressources, (y,)n>1: politique des vitesses d’apprentissage, ;: valeur
initiale.

Sortie: Retourne le parametre optimisé 0y 1.

pourn =1...N faire

1. Générer M,, points (Y, n)1<m<m, simulés indépendamment sous k(6,, -).
2. Définir

M,
L § Yo, 7
Ot = On+ s > V10g k{0, Yimn)] los, log <P()> '
" m=1

k(ena Ym,n)

fin

La particularité de ce schéma itératif se trouve dans le caractere non-biaisé des es-
timateurs du gradient de 'ELBO apparaissant dans les pas de Descente de Gradient
Stochastique. Sous certaines hypotheéses sur la politique des vitesses d’apprentissage
ainsi que sur la fonction objectif, la suite (k(6,, -))n>1 converge en effet vers un opti-
mum de I'ELBO : 'algorithme Black-Box Variational Inference permet donc de min-
imiser (au moins localement) la divergence de Kullback-Leibler exclusive.

I est important de noter qu'une grande variance des estimateurs du gradient
de I’ELBO pourrait constituer un revers potentiel des méthodes d’Inférence Vari-
ationnelle de type Black-Box. Le succes de ces méthodes a ainsi en grande partie
été attribué a la mise en ceuvre de diverses techniques de réduction de variance
(e.g. méthode de Rao-Blackwell, variables de contrdle (Ranganath, Gerrish, and Blei,
2014), reparamétrisation (Kingma and Welling, 2014) et méthodes de Quasi-Monte
Carlo (Buchholz, Wenzel, and Mandt, 2018)).

Nous nous sommes intéressés jusqu’a présent au cas de la Kullback-Leibler (ex-
clusive) dans notre choix de D. Néanmoins, un second attrait fondamental des
méthodes d’Inférence Variationnelle de type Black-Box est qu’elles autorisent une
gamme plus large de fonctions objectif par-dela la divergence de Kullback-Leibler
exclusive. En particulier, ces procédures permettent de travailler avec la famille des

a-divergences.

B.3.3 Méthodes d'Inférence Variationnelle basées sur la a-divergence

Les distributions variationnelles obtenues via la minimisation d"une divergence de
Kullback-Leibler présentent des caractéristiques parfois indésirables d"un point de
vue pratique (Minka, 2001; Hoffman et al., 2013; Blei, Kucukelbir, and McAuliffe,
2017), e.g. elles ont tendance a sous-estimer/sur-estimer la variance de la distri-
bution a posteriori pour la Kullback-Leibler exclusive/inclusive (un effet qui peut
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également étre amplifié lorsque ce choix de divergence s’accompagne d’une hy-
pothése de champs moyen, voir la Figure B.2).

Par conséquent, une autre ramification de la recherche en Inférence Variation-
nelle s’est penchée sur la question du choix de la mesure de dissimilarité D. Notam-
ment, Minka, 2004 et Minka, 2005 font partie des premiers travaux a faire appel a la
a-divergence (Zhu and Rohwer, 1995a; Zhu and Rohwer, 1995b) dans un contexte
d’Inférence Variationnelle. Nous mentionnons ici les principales propriétés de cette
famille, avant d’expliquer pourquoi elle constitue un outil privilégié en Inférence
Variationnelle.

La a-divergence est une famille de divergences qui tire son origine dans la littéra-
ture de la théorie de I'information (e.g. Cichocki and Amari, 2010) et qui généralise
la divergence de Kullback-Leibler. Nous rappelons ci-dessous sa définition entre
deux mesures de probabilité Q et IP.

Définition 2. Soit o € R\ {0,1}. Soient deux mesures de probabilité Q et P définies sur
(Y, ) et absolument continues par rapport a v i.e. Q < v, P < v. Nous notons q = % et
p = & les dérivées de Radon-Nikodym de Q et P par rapport i v. La a-divergence entre Q

et IP est donnée par :

Du(@®) = [ L [ (20) ] stypwtan

y a(a—1) [\p(y)

et est a valeurs dans [0, +00].

Sous des hypotheses de dérivabilité classiques, la a-divergence se prolonge par
continuité en o = 0 eten a = 1 de telle sorte que nous retrouvons la Kullback-Leibler

inclusive et exclusive : pour tout y € Y, nous pouvons en effet écrire :

s ams Goy) o] =7 G) -

m o[z () el v (s ) 3]

), (1)) 4
=1 p(y)Hg(p(y))p(y

a=0

ainsi que :

<

d’ott nous déduisons d'une part que lim,—,0 Do (Q||P) = Dk (P||Q) et d’autre part
que lim,—,1 Do (Q||P) = Dk r(Q||P) (nous utilisons par ailleurs les notations Dy(Q||P) =
Dk (P||Q) et D1(Q||P) = Dk 1(Q||P) dans 'ensemble du manuscrit).
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Il convient par ailleurs de noter que la famille des a-divergences inclut également
la distance de Hellinger et la divergence du x? correspondant chacune a l'ordre o =
0.5 et o = 2 respectivement.

Soit maintenant f, la fonction convexe définie sur (0, +o0) par fo(u) = u —1 —
log(u), fi(u) =1 —u+ ulog(u) et fo(u) = m [u® —1— a(u—1)] pour tout o €
R\ {0,1}. Dans ce cas, pour tout a € R,

Du(@P) = [ 1o (%) ). (89)
Ecrit sous cette forme, le terme de droite dans (B.9) peut se voir comme la définition
générale d'une a-divergence (Cichocki and Amari, 2010).

Cette formulation inscrit la a-divergence dans la famille des f-divergences (Mo-
rimoto, 1963a; Morimoto, 1963b) au travers de la convexité de f,, et la proposition
qui suit rappelle les propriétés essentielles de la a-divergence (voir Minka, 2005; Ci-
chocki and Amari, 2010; Cichocki, Cruces, and Amari, 2011; Erven and Harremoes,
2014 et Sason, 2018 pour plus de détails concernant la famille des a-divergences).

Proposition 3. La a-divergence (étendue par continuité en o = 0 et en ov = 1) est positive
et égale a zéro si et seulement si Q = P. De plus, elle est convexe en (Q, P) et la définition de
la a-divergence est invariante par rapport a la transformation fo .(u) = fo(u) + c(u — 1)
pour toute constante arbitraire c, c’est-a-dire que f,, peut-étre remplacée de maniere équiva-
lente par fa,c dans (B.9).

Ainsi, un probleme d’optimisation plus général que celui visant a minimiser la

divergence de Kullback-Leibler exclusive (B.4) ou inclusive (B.5) revient a considérer
inf D, (Q||Pg) . B.10
inf Da(Q[P)7) (B.10)

et les caractéristiques de la densité variationnelle solution du probléme d’optimisation
(B.10) vont varier selon la valeur de o (Minka, 2005).

Plus spécifiquement, il y deux régimes principaux : soit o < 0 et la a-divergence
est inclusive, c’est-a-dire qu’elle favorise les densités variationnelles ¢ couvrant tous
les modes, soit o > 1 et la a-divergence est exclusive, ce qui signifie que ¢ va étre
attirée par le mode de plus grande masse (le cas « € (0, 1) correspondant a un entre-
deux). Ces deux régimes s’expliquent par le fait que D, (Q||P) explose des que le
support de ¢ est plus grand que celui de p pour a > 1 et inversement, D, (Q|[P)
explose dés que le support de p est plus grand que celui de ¢ pour a < 0.

Cette propriété inclusive/exclusive de la a-divergence est illustrée dans la Fig-
ure B.3 ci-apres, dans laquelle la cible est une distrubution multimodale que nous
cherchons a approcher par la Gaussienne ¢ optimale en terme de la a-divergence
D, (Q||P), et ce, pour différentes valeurs de a.

Si nous reprenons maintenant le modele considéré dans I'Exemple 2, I'effet du

parametre « sur la densité variationnelle optimale vérifiant ’hypothese de champs
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FIGURE B.3: En bleu la cible p multimodale et en rouge la Gaussienne

¢ minimisant la a-divergence D, (Q||P) pour différentes valeurs de a.

(adapté des notes de cours de Cevher disponibles ici: https://ww
w.ece.rice.edu/~vc3/elec633/AlphaDivergence.pdf)

moyen peut étre observé sur la Figure B.4 (voir Appendix A.1 pour les détails des
calculs), ce qui met une fois de plus en évidence la propriété inclusive/exclusive de

la a-divergence.

1.0

0.5

true
a=1.0
a=0.75
a=0.5
a=0.25
a=0.0

15

0.0 1

—0.5

—1.0

T T T
-1.5 -1.0 -05 0.0 0.5

=
o

FIGURE B.4: Approximation variationnelle optimale sous

I'hypothese de champs moyen selon la valeur de « pour le

modele de Régression Linéaire Bayésienne de 'Exemple 2 (adapté

de Hernandez-Lobato et al., 2016). Ici, “true” est la distribution

a posteriori cible et les autres courbes désignent les distributions

variationnelles obtenues par a-divergence minimisation (avec des
contours de taille 1-sigma).

La propriété inclusive/exclusive de la a-divergence permet d’interpoler entre le
comportement de la Kullback-Leibler inclusive et celui de la Kullback-Leibler exclu-
sive, ce qui rend le probleme d’optimisation (B.10) attractif pour réguler la variance
de la densité variationnelle. Ceci explique 'intérét qui a été porté a cette famille de
divergences dans Minka, 2004 et Minka, 2005. Toutefois, ces travaux restent limités

a des distributions au sein de la famille exponentielle.

L’émergence d’algorithmes d’Inférence Variationnelle mettant a profit les méth-
odes de Monte Carlo a permis de construire de nouveaux algorithmes basés sur la
a-divergence aux performances empiriques prometteuses (Hernandez-Lobato et al.,
2016; Li and Turner, 2016; Dieng et al., 2017; Kuleshov and Ermon, 2017).

Ces méthodes exploitent le fait que la forme spécifique de f, permet de tra-
vailler sans la constante de renormalisation génante p(2) et elles se divisent en deux
groupes distincts : d'un coté les méthodes binisées (Hernandez-Lobato et al., 2016; Li
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and Turner, 2016) et de I’autre les méthodes non-biaisées (Dieng et al., 2017; Kuleshov
and Ermon, 2017).

Les méthodes biaisées considérent une version légerement modifiée de (B.10) qui
repose sur la tres liée a-divergence de Renyi (Rényi, 1961; Erven and Harremoes,
2014)

DM(QIP) =

ailbg<ﬁqu¢@W”vmw>

= - L -log (14 a(a— 1)Da(Q|P)) -

En particulier, Li and Turner, 2016 formalisent le concept de Variational Renyi (VR)
bound, une nouvelle fonction objectif généralisant I'ELBO et étant définie pour tout
a € R\ {1} et toute densité variationnelle ¢ € Q par

P B ply, 2)\'™° ,
EJ%@M—l_alg<L( “w:> q@)@@)

de telle sorte qu’ils cherchent a résoudre

sup La(q; Z) -

q€Q
IIs montrent que, selon le signe de «, la VR bound agit comme une borne inférieure
ou supérieure du log de la loi marginale log p(Z) et retrouvent I'ELBO lorsque oo — 1
(Li and Turner, 2016, Theorem 1).

La procédure d’optimisation est alors menée en suivant l'idée de 'algorithme
Black-Box Variational Inference, c’est-a-dire par Descente de Gradient Stochastique
sur —L,(q; Z), ol q appartient a une famille variationnelle paramétrique de la forme
(B.8). Du fait du log, cette procédure fait intervenir un estimateur biaisé du gradient
de la VB bound, 1a ot les méthodes non-biaisées considerent la fonction objectif
donnée pour tout ¢ € Q par

v, ;@::/a<q(y)) , D)v(d

(@9):= | Sl oy )P 20 dY)

et visent a résoudre par Descente de Gradient Stochastique le probleme d’optimisation
équivalent a (B.10) (voir Appendix A.2) suivant :

inf U, (q: 2) . B.11
Inf (: 2) (B.11)

Les avancées en Inférence Variationnelle par minimisation de la a-divergence in-
cluent notamment un calibrage automatique de I'hyperparametre o (Wang, Liu, and
Liu, 2018) ainsi que plusieurs tentatives pour comprendre quelle approche - biaisée
ou non-biaisée - choisir d"un point de vue a la fois théorique et pratique (Geffner
and Domke, 2020a; Geffner and Domke, 2020b).
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Nous avons rappelé les bases des méthodes d’échantillonnage préférentiel adap-
tatif et abordé un ensemble de méthodes d’Inférence Variationnelle dépassant le
cadre traditionnel de la minimisation de la divergence de Kullback-Leibler exclu-
sive sous des hypotheses de champs moyens (par des techniques dite Black-Box et
en offrant un choix plus large de fonctions objectif). Toutefois, et comme nous allons
le montrer au cours de cette thése, des améliorations plus poussées peuvent étre pro-

posées afin de mieux encore appréhender la complexité de la densité a posteriori.

B.4 Obijectif de la these et résumé des chapitres a venir

A ce stade, une premiere remarque intéressante est que les méthodes d’Inférence
Variationnelle construisent une suite de densités de probabilités qui est progressive-
ment améliorée afin de minimiser un certain critere. En ce sens, elles peuvent étre
vues comme un exemple d’étape 3 dans I’ Algorithme 16.

Parmi ces techniques, les méthodes d’Inférence Variationnelle de type Black-Box
(minimisant la Kullback-Leibler exclusive ou plus généralement la a-divergence) at-
tirent particulierement 'attention, les échantillons utilisés dans la construction de la
suite de propositions (k(fy,-))n>1 pouvant également servir a approcher des inté-
grales de la forme (B.1).

Il parait des lors pertinent de mettre a contribution les techniques vues en In-
férence Variationnelle dans le but d’améliorer les algorithmes de Monte Carlo adap-
tatifs. Les performances des méthodes d’Inférence Variationnelle étant limitées par
le choix de la famille variationnelle Q ainsi que celui de la mesure de dissimilarité D,
nous pourrions alors nous demander : dans quelle mesure est-il possible d’enrichir
Q par-dela le cadre de I'Inférence Variationnelle de type Black-Box pour de la min-
imisation de la a-divergence tout en maintenant des procédures d’optimisation effi-
caces ?

Afin de répondre a cette question, cette thése s’attache a construire de nouveaux
algorithmes d’Inférence Variationnelle pour de la minimisation de a-divergences (i)
pouvant étre utilisés en échantillonnage préférentiel adaptatif et (ii) augmentant le
degré d’expressivité de la famille variationnelle Q.

Plus précisément, nos travaux se décomposent en trois chapitres, qui sont basés
sur trois articles distincts. Le fil rouge entre ces trois travaux est que nous nous
sommes intéressés a la construction d’algorithmes d’Inférence Variationnelle itérat-
ifs entrainant une décroissance systématique de la a-divergence a chaque étape. Nous
fournissons un bref résumé de chacun de ces chapitres ci-apres.

e Chapitre 2 Daudel, Douc, and Portier, 2021.
“Infinite-dimensional gradient-based descent for Alpha-divergence minimisation”.
A paraitre dans Annals of Statistics.
Nous introduisons la (¢, I')-descent, un nouvel algorithme itératif agissant sur les
mesures et minimisant la a-divergence. Cette procédure basée sur le gradient étend
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la famille variationnelle usuelle en ajoutant un a priori sur les parametres variation-
nels sous la forme d’une mesure. Nous montrons qu’elle entraine une décroissance
systématique de la a-divergence pour une grande famille de fonctions I' et nous
obtenons des résultats de convergence. Nous recouvrons 1’algorithme Entropic Mir-
ror Descent comme cas particulier de cette procédure et nous présentons une alterna-
tive a cet algorithme appelée la Power Descent. Un aspect remarquable de ce travail
est qu’en faisant appel a des approximations de Monte Carlo, ces deux algorithmes
permettent d’optimiser les poids de mélange de n'importe quel modele de mélange,
sans requérir d’information sur la distribution des parameétres variationnels. Nous
démontrons empiriquement les bénéfices de I'approche Power Descent par rapport

a I’Entropic Mirror Descent lorsque la dimension augmente.

e Chapitre 3 Daudel and Douc, 2021.
“Mixture weights optimisation for Alpha-divergence Variational Inference”.
Soumis en tant qu’article de conférence au moment de la rédaction du manuscrit.

Nous établissons la preuve complete de la convergence de la Power Descent vers
les poids de mélange optimaux lorsque a < 1. Comme cet algorithme pour la
minimisation de a-divergences est défini pour tout & € R \ {1} et ne couvre donc
pas le cas classique de la minimisation de la Kullback-Leibler exclusive (o« = 1),
nous l'étendons au cas o = 1 et nous montrons que nous retrouvons un algorithme
d’Entropic Mirror Descent. Ceci nous amene a étudier plus en détail les liens entre
Power Descent et Entropic Mirror Descent : des approximations de premier ordre
nous permettent alors de dépasser le cadre de la («,I")-descent et d’introduire la
Renyi Descent, un nouvel algorithme pour lequel nous établissons une vitesse de
convergence en O(1/N). Enfin, nous comparons empiriquement le comportement
de la Power Descent (algorithme non-biaisé) a celui de la Renyi Descent (algorithme
biaisé) avant de discuter des avantages potentiels de ces algorithmes 1'un par rap-

port a l'autre.

e Chapitre 4 Daudel, Douc, and Roueff, 2021.
“Monotonic Alpha-divergence minimisation”.
Soumis en tant qu’article de journal au moment de la rédaction du manuscrit.

Nous proposons une méthodologie complete permettant la minimisation de a- di-
vergences par décroissance systématique de la a-divergence a chaque étape. Dans
sa forme la plus générale, notre travail nous permet de mettre a jour simultanément
les poids de mélange et les parametres des composantes d’un modele de mélange
donné. Notre approche nous permet d’améliorer plusieurs algorithmes déja utilisés
dans le cadre de la minimisation de a-divergence tels des algorithmes de Gradient
Descent et de Power Descent. De plus, nous revisitons sous un angle neuf et général-
isons un algorithme d’Expectation-Maximisation intégré. Enfin, en considérant le
cas particulier des modeles de mélange Gaussiens et en faisant appel a des approxi-
mations de Monte Carlo, nous démontrons empiriquement que notre méthodologie
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apporte des améliorations numériques, tout en illustrant les bénéfices pratiques liés
a la flexibilité nouvelle acquise au travers de I’hyperparametre « de la a-divergence.
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Titre : Méthodes de Monte Carlo adaptatives pour les modeles complexes

Mots clés : Méthodes de Monte Carlo, Inférence Variationnelle, Alpha-divergence

Résumé : Cette these s’inscrit dans le domaine de
'Inférence Statistique et plus précisément dans le
cadre de I'Inférence Bayésienne, dont le but est de
modéliser un phénomene a partir d’'un jeu de données
tout en incorporant des connaissances a priori sur les
paramétres de ce modéle.

L’émergence des données massives nécessite le re-
cours a des modeles bayésiens complexes a méme
de décrire la structure de ces données. De tels
modeéles requiérent a leur tour la construction et
I'étude d’algorithmes adaptatifs capables de traiter de
larges volumes de données lorsque les paramétres
du modéle choisi évoluent dans un espace en grande
dimension.

Deux catégories principales de méthodes tentent de
répondre a cette problématique : les méthodes de
Monte Carlo, s’appuyant sur de I'échantillonnage, et
les méthodes d’Inférence Variationnelle, reposant sur
de l'optimisation. En faisant appel a la littérature de
l'optimisation et plus récemment aux méthodes de
Monte Carlo, des avancées majeures en Inférence
Variationnelle ont permis de lever une partie des
obstacles computationnels rencontrés en Inférence
Bayésienne.

Toutefois, les résultats théoriques et empiriques des
méthodes d’Inférence Variationnelle sont souvent af-
fectés par : (i) un choix inapproprié de la fonction ob-
jectif apparaissant dans le probléme d’optimisation et
(i) un espace de recherche ne contenant pas la cible
car trop restreint.

Dans cette thése, nous cherchons a remédier aux
deux difficultés susmentionnées en construisant des
algorithmes adaptatifs applicables aux modéles com-
plexes et se situant a l'intersection des méthodes de
Monte Carlo et d’Inférence Variationnelle.

Nos travaux suggérent d’utiliser la «-divergence
comme fonction objectif plus générale et proposent
d’enrichir 'espace de recherche par-dela les schémas
traditionnels utilisés en Inférence Variationnelle. La
spécificité de notre approche réside dans I'obtention
de nouveaux algorithmes avantageux d’un point de
vue numérique et bénéficiant également de solides
fondements théoriques, qui se manifestent au travers
d’une décroissance systématique de la a-divergence
a chaque étape de nos algorithmes. En outre, nos tra-
vaux mettent en lumiére d’'importants liens entre les
méthodes de Monte Carlo et celles d’Inférence Varia-
tionnelle.

Title : Adaptive Monte Carlo methods for complex models

Keywords : Monte Carlo methods, Variational Inference, Alpha-divergence

Abstract : This thesis lies in the field of Statistical
Inference and more precisely in Bayesian Inference,
where the goal is to model a phenomenon given some
data while taking into account prior knowledge on the
model parameters.

The availability of large datasets sparked the inter-
est in using complex models for Bayesian Inference
tasks that are able to capture potentially complicated
structures inside the data. Such a context requires the
development and study of adaptive algorithms that
can efficiently process large volumes of data when the
dimension of the model parameters is high.

Two main classes of methods attempt to fulfil this
role : sampling-based Monte Carlo methods and
optimisation-based Variational Inference methods.
By relying on the optimisation literature and more
recently on Monte Carlo methods, the latter have
made it possible to construct fast algorithms that over-
come some of the computational hurdles encountered
in Bayesian Inference.

Yet, the theoretical results and empirical perfor-
mances of Variational Inference methods are often

impacted by two factors : one, an inappropriate choice
of the objective function appearing in the optimisation
problem and two, a search space that is too restric-
tive to match the target at the end of the optimisation
procedure.

This thesis explores how we can remedy the two
issues mentioned above in order to build impro-
ved adaptive algorithms for complex models at the
intersection of Monte Carlo and Variational Inference
methods.

In our work, we suggest selecting the «-divergence
as a more general class of objective functions and
we propose several ways to enlarge the search space
beyond the traditional framework used in Variational
Inference. The specificity of our approach in this the-
sis is then that it derives numerically advantageous
adaptive algorithms with strong theoretical founda-
tions, in the sense that they provably ensure a sys-
tematic decrease in the a-divergence at each step. In
addition, we unravel important connections between
the sampling-based and the optimisation-based me-
thodologies.
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