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Introduction

In the past twenty years, health insurance information systems and state agencies
gathered data on citizens’ healthcare consumption. This data is very rich and bears
the promise of improving citizens’ health, the healthcare system, and public health
decision making. The work presented in this manuscript focuses on modeling health
trajectories of French patients using claims data available in Système National des
Données de Santé (SNDS, formerly known as Système National d’Information Inter-
Régimes – SNIIR-AM). Access to SNDS resulted from a research partnership between
Ecole Polytechnique and Caisse Nationale de l’AssuranceMaladie (CNAM), the French
agency managing the national health insurance system.

In that respect, the first contribution consisted in developing innovative ways
of processing this large database (see Chapter I) as data volume and complexity
initially hindered methodological research. The second contribution focused on
improving longitudinal risk estimation of rare events (Chapter II). The resulting
methodology successfully detected both long and short-term adverse drug reactions
(ADRs) in applications detailed in Chapter II and III. Finally, extensive experiments
were conducted to assess if pre-trained representations of medical event sequences
could ease model estimation on multiple tasks (Chapter IV). This introduction gives
a quick overview of these works, which are thoroughly developed in the following
chapters.

1 Use of large observational databases for research
When statistical studies are performed to provide health safety information, ran-
domized control trials (RCTs) are considered the “gold standard.” RCTs consist of
recruiting subjects with specific characteristics and dividing them into two similar
groups. Subjects in one of the two groups receive treatment, while the others get a
placebo. Subjects are then observed over a given period to assess the effectiveness
and safety of the treatment. Thanks to tight control over the recruitment condition,
group stratification, and randomization, RCTs provide a way to estimate unbiased
treatment effects [Gro+04] and perform causal inference. However, they are costly
to conduct and are unfeasible in some cases due to ethical concerns [Bee66; HS+79].
For example, an RCT involving a drug presumed harmful would put the treated group
in danger willfully, which is unethical. Moreover, RCTs might suffer from small

1



Introduction

sample size and short study periods as they are very costly to conduct. When it comes
to rare or long-term outcomes, RCTs might fail to detect adverse drug reactions such
as the association between pioglitazone and bladder cancer [Azo+12; Neu+12].

Observational studies can circumvent some of these issues. Indeed, observa-
tional studies do not control the subjects’ assignment to treated and non-treated
groups [Ros+10], which might be more ethical than RCTs in some cases. Further-
more, they can be conducted by re-purposing administrative data gathered by health-
care actors such as hospitals or insurance providers. The resulting datasets are often
larger, longer, and much cheaper to acquire than RCTs data, with millions of patients
followed over several years [Mad+14]. These databases’ size allows the observation
of sporadic events and specific sub-populations challenging to reach when using
RCTs. Besides, observational data also provides a picture of real-life healthcare con-
sumption, which might differ significantly from the tight design of RCTs [HA13]. As
such, this alternative perspective might provide valuable insights for policymakers
and practitioners. While observational studies have a long history, the use of large
observational databases rose during the last fifteen years [Mad+14] thanks to their
increased availability and advances in computational processing power.

1.1 Characterization of large observational databases in health-
care

Data acquired by re-purposing administrative data comes in two flavors: electronic
health records (EHRs) and claims data. EHRs are produced by care providers to sup-
port and evaluate clinical care and the associated billing. They contain demographic
information (such as birth date, gender, location, height, and weight) and sometimes
observations regarding patients’ living habits (e.g. smoker status or alcohol consump-
tion) and medical history. More importantly, EHRs record information regarding
the care provided, such as medical acts, diagnoses, vital signs, laboratory analysis
results, imaging reports, and associated clinical observations or results. Because of its
production process, EHRs data is often scattered across multiple care providers and
might be hard to link with other records. Electronic health records can thus be seen
as a very detailed and narrow perspective of a subject’s interaction with healthcare
services. Such data is available in the freely accessible MIMIC-III database [Joh+16],
featured in numerous publications. Some EHRs can contain unstructured data such
as medical imaging results or electrocardiograms.

In contrast, claims databases result from the aggregation of data primarily used
for reimbursement purposes. Indeed, to be paid by insurance companies or agencies,
healthcare providers must submit information supporting their services. Such data
might consist of timestamped pharmacy claims of prescription drugs (e.g. drugs
dispensed, quantity, manufacturer), acts, or exams performed on inpatients or outpa-

2
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tients2 and, eventually, the associated diagnoses. This information is far less detailed
than the corresponding electronic health record. For example, a claim database
might record that a subject underwent a physical exam at a specific date, but it will
not record the associated exam results. Besides, it will only record reimbursed care
and will not provide data regarding over-the-counter drugs, for example.

Such databases are maintained either by private companies (e.g. MarketScan
Commercial Claims and Encounters [ACH08] provided by IBM) or state agencies
(e.g. Système National des Données de Santé – SNDS [Tup+17a] provided by CNAM).
Depending on the country, claims databases based on private insurance data might
not reflect the general population because of socioeconomic biases and significant
subject turnover as they change their subscription [Bro+10].

The French national system of health data (SNDS). A significant part of this
thesis focused on developing tools and algorithms leveraging claims data from SNDS.
French national health insurance consists of several insurance schemes depending on
the beneficiaries’ occupation. Local agencies handle their beneficiaries’ reimburse-
ments under the supervision of the CNAM, the national agency. Established in 2016,
SNDS is an extension of SNIIR-AM, gradually developed since 1999. It aggregates
data from multiple authorities such as hospitals and local agencies. SNDS gathers re-
imbursements data frommost state health insurance schemes and their beneficiaries’
demographic information. At its creation, it contained health reimbursements of
66 million inhabitants, which represents 98.8% of the French population [Tup+17a].
SNIIR-AM was initially used to monitor health expenditures and to evaluate health
care utilization across the country. This database began to be used to conduct epidemi-
ological studies in 2006, thanks to individual data availability. Since then, SNDS has
led to many publications, some of which resulting in health policy changes [Neu+12;
Tup+17a].

SNDS provides three years of history and twenty additional years of archived
data submitted to an authorization from the national data protection authority (Com-
mission Nationale de l’informatique et des libertés – CNIL). The quality of SNDS data
results from mandatory logging of reimbursed care, three data validation stages, and
pseudonymization routines. Thanks to its history length, high population coverage,
and quality, the SNDS can be used to conduct epidemiological studies with high
statistical power and almost exempt of representativity biases [Tup+17a]. Data con-
tained in SNDS comes from two sources: Données de Consommation Inter-Régimes
(Inter-scheme consumption data – DCIR) gathers outpatients health care billing
and reimbursement information, while Programme de Médicalisation des Systèmes
d’Information (medical information system program – PMSI) contains private and

2Inpatients are hospitalized persons. In opposite, outpatients are persons whose medical care does
not require an overnight hospital stay.
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public hospital data.
DCIR contains demographic information of the beneficiaries (date of birth, gen-

der, date of death, the town of residence, and variables indicating if patients are
beneficiaries of specific social subsidies depending on specific conditions or eco-
nomic rules), and information on their eventual disabilities or long-term diseases. It
also provides timestamped reimbursement information concerning drug purchases
(coded with the Anatomical Therapeutic Chemical – ATC – classification system),
medical procedures (codedwithClassification Commune des Actesmédicaux – French
medical procedures classification – CCAM), laboratory analyses (coded with the clas-
sification of clinical pathology procedures, nomenclature des actes de biologiemédicale
– NABM) and medical products (Liste des produits et prestations – list of product and
services – LPP).

PMSI is divided into four databases,Médecine, Chirurgie, Obstétrique et Odontolo-
gie (acute care ward – MCO), Soins de Suite et Réadaptation (rehabilitation care –
SSR), Hospitalisation À Domicile (home to home care – HAD) and psychiatric care
(PSY). In this thesis, we focus on themost stable and complete of these databases, that
is PMSI-MCO. These databases contain pseudonymized hospital stays summaries,
i.e., the starting and ending dates of the stays, and diagnoses (International Classifi-
cation of Diseases, 10th revision – ICD-10), procedures, exams, and specific expenses.
Contrary to EHR data, there is no information regarding the order or the temporality
of the events happening throughout the hospital stay. PMSI also contains similar,
more precisely timestamped information for outpatient consultations.

SNDS data access requires authorization from the CNIL, the French data protec-
tion authority. CNIL assesses the legal compliance and public interest of the projects
applying for SNDS access. Five security rules protect SNDS data: (i) accessed data is
pseudonymized, (ii) people accessing the data are strongly authenticated, (iii) their
operations on the data are logged, (iv) audited periodically to check their compliance
with security guidelines (v) taught to the data users.

To enforce these rules, users access SNDS data stored on CNAM Exadata [Ora08]
servers through secured computers running SAS Enterprise Guide software [Sup76].
This setup has been adequate for the current SNDS uses, such as conducting epi-
demiological or economic studies using classical methodologies. However, it can
hinder methodological research as it relies on closed-source, hard-to-customize soft-
ware. Thanks to the research partnership between CNAM and Ecole Polytechnique,
this thesis benefited from privileged access to an extract of SNDS data. An offline
research cluster located in the CNAM datacenter hosted the data and ran the model
estimations. Access and use of this cluster were subject to the security constraint
described above.

At the time of writing of this thesis, a new governmental agency called Health
Data Hub [Cug+18] is being created to ease methodological research on such data
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by centralizing health data and providing accesses with similar freedom in terms of
hardware and software infrastructure, under the CNIL’s supervision.

As SNDS contains healthcare reimbursement logs for 66 million French patients,
representing 20 billion raw events each year, data manipulation is challenging. A
part of these events represents purely administrative cash flows, which do not bring
additional information regarding beneficiaries’ health and needs to be filtered out.
The remaining events correspond to reimbursements that must be joined with tables
giving medical details, such as the molecules composing the reimbursed drugs or
details regarding diagnoses. Figure 1 gives a simplified overview of the SNDS struc-
ture, illustrating the necessity of join operations. Finally, once only relevant events
are identified and then detailed by this joining process, they need to be combined
to identify events that are meaningful for statistical or epidemiological analysis (see
discussion on phenotyping Section 2.1 below).

1.2 Barriers to methodological research

Healthcare administrative data is not collected for research purposes. Codes used to
justify reimbursements are not very good ontologies for representing practitioners’
observations and actions on the patients [Alb+18]. Hence, even in the absence of
coding errors, using raw codes to qualify the patients’ health status is likely to provide
mediocre estimates. Instead, raw codes should be translated to clinical concepts.
This operation is called phenotyping and might be done manually or using machine
learning.

Manual phenotyping is time-consuming to design and maintain. Indeed, it
requires clinical experts, database experts, and data engineers to define and evaluate
complex queries. These experts might also introduce their own bias by doing so. For
example, identifying a bladder cancer in SNDS might be done crudely by keeping
events with the ICD-10 code corresponding to bladder cancer (“C67”). Alternatively,
a definition involving combinations of ICD-10 codes and surgical acts occurring in a
well-defined time window leads to a more precise identification of bladder cancer
events [Neu+12]. Misspecification in event identification algorithms can result in
undetected events or false detections. Subsequent analyses are then likely to result
in spurious conclusions.

Unfortunately, automatic phenotyping is still in its early stages and is not ready
to be used in actual studies [Ban+18]. A middle-ground option can reduce event
identification costs by using an existing mapping between codes and phenotypes.
Large mapping databases such as PheCodes [Den+13] are publicly available and
maintained by a college of experts. However, phenotyping remains one of the main
bottlenecks of large-scale mining of large observational databases [HA13].

Most of the research effort trying to solve this issue rely on international or
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Figure 1 – Simplified structure of the SNDS database. This figure represents the
main tables of the DCIR and PMSI MCO databases used in this thesis. Each
rectangle represents a table, while arrows represent tables that can be joined
together. This figure does not represent tables and sub-databases unnecessary to
the applications presented in this work.
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American vocabularies. Hence, SNDS cannot benefit from most of these works
as it relies on coding vocabularies specific to France. Developing an efficient and
reliable method to extract patients’ care pathways from SNDS is thus the first and
foremost challenge to solve. This extraction process is very complicated because of
the database structure and size, which might hinder the reproducibility and reuse of
research results.

Extracting meaningful patients care pathways involves two tasks. First, all the
data corresponding to a set of patients need to be identified and collected. When the
data is not normalized around the patients, this task requires several join operations,
which can be very computationally intensive as the data volume increases. Second,
medical concepts have to be correctly identified from administrative codes: this
phenotyping task relies heavily on a combination of medical and database knowledge.
The algorithms used to perform concept extraction from administrative data are either
disclosed through scientific publications or shared as lengthy SQL queries of varying
quality [Loo19]. As a result, building a study from scratchmight be faster than reusing
poorly documented code from previous works [Loo19; PDZ06]. Besides, accessing
SNDS relies on proprietary software such as SAS [Sup76] or SPSS [IBM68]. While
these tools are suitable to produce public health studies, they hinder methodological
research as they do not interact readily with R or Python packages implementing
state-of-the-art machine learning algorithms.

Several research programs produced tools to alleviate some of these issues. An
extensive research effort aims at promoting data integration and interoperability by
producing standard data models and terminologies to be shared across institutions
(Observational Medical Outcomes Partnership Common Data Model (OMOP CDM)
supported by the Observational Health Data Sciences and Informatics (OHDSI) re-
search program [Hri+15], and the Informatics for Integrating Biology & the Bedside
(i2b2) data model [Mur+10]).

Both models are normalized data models3 centered around the patients, thus
reducing the number of join operations required to access a specific patient history.
However, the process of transforming an existing database to comply with such
standards is costly, as it requires to build complex mappings. Establishing such a
mapping for the SNDS database is still a work in progress [Dou+20].

In other fields, web-scale analytics have shifted from normalized SQL databases
towards NoSQL technologies relying on distributed computing, denormalization, and
columnar storage. Distributed computing produced gains in computational power by
using low cost, commodity servers instead of expensive dedicated hardware [Bon+17].
To our knowledge, there is no implementation of a similar approach to extractmedical
concepts from large healthcare databases.

3These data models were specifically designed to operate within SQL databases.
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1.3 Contribution: a framework for reproducible and fast data
processing

SCALPEL3, an open-source framework, was developed during this thesis to answer
reproducibility and scalability challenges posed by LOD concept extraction. This
framework adopts an approach combining denormalization and distributed com-
puting to large health databases. SCALPEL3 is divided into three components, as
illustrated in Figure 2.

SCALPEL3 uses on Apache Spark [Zah+16], a robust and widely adopted dis-
tributed in-memory computation framework. Spark provides a powerful SQL-like
high-level API and a more granular API to perform data operations. Spark can be
used in combination with the Hadoop File System (HDFS) [Shv+10], which splits
large files into small chunks, distributed and replicated4 over a computing cluster.
Large-file reading operations are then performed in a distributed manner, improving
their speed and robustness to failures.

(i) SCALPEL-Flattening. As mentioned earlier, performing data analysis on
SNDS requires many joins and can consequently be extremely slow. The data are
denormalized to circumvent this issue. Sequential joins of the tables produce a
big table in which each line corresponds to a patient identifier and a complete
representation of an event.

Denormalizing a star-schema database results in a massive table due to values
replications. The denormalized data is stored in Parquet [Voh16] files to avoid storage
and computational issues. Well-integrated in the Spark ecosystem, Apache Parquet
is an open-source columnar storage format implementing Google’s Dremel [Mel+10]
data model. Spark directly benefits from columnar storage data compression and
query optimization [Arm+15]. A set of monitoring statistics are computed through-
out the denormalization process to avoid data loss and complex debugging. SCALPEL-
flattening can be used as a library through its Scala [Ode+04] application program-
ming interface (API), or as a packaged application through and text file configurations.
End-users looking for optimal reproducibility are encouraged to use the packaged
version with versioned5 text file configurations.

(ii) SCALPEL-Extraction provides fast extractions of medical concepts from
the denormalized tables produced by SCALPEL-Flattening. By providing ready-to-
use medical events, SCALPEL-extraction encapsulates SNDS technical knowledge.
Nonetheless, it keeps medical data as raw as possible so that end-users have access to
fine-grained data, which is critical when designing observational studies [Hon+18;

4By default, three replicas of each data chunk are spread across the cluster.
5Versionning can be performed with version control systems such as git, for example.
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SCALPEL-Flatteningconfiguration file

SNDS
(csv files)

read

write

SCALPEL-Extraction
Patient,	Event,	Extractor,	Transformer

configuration file

read

SCALPEL-Analysis
Cohort,	CohortCollection,	CohortFlow,	FeatureDriver

CohortCollection*
(Patients and events datasets, Parquet files)

write

Denormalized SNDS
(Parquet files)

read

Scala API (batch)

Python API (interactive)

Interactive Machine Learning
(TensorFlow or Pytorch Tensor,numpy ndarray)

Figure 2 – SCALPEL3 workflow. SCALPEL3 consists of three independent open-
source libraries plugged one after another. SCALPEL-Flattening, implemented
in Scala/Spark, denormalizes the input database exported as CSV or Parquet
files into a single big flat database. Then, SCALPEL-Extraction, implemented in
Scala/Spark, extracts concepts from this flat database. Finally, SCALPEL-Analysis,
implemented in Python/PySpark, loads extracted concepts to perform in-memory
interactive analysis and feed machine learning algorithms.

Wan+16]. The extracted concepts are organized around two abstractions: Patient
and Event. The Patient abstraction has a unique patientID, a gender, a birthDate
and eventually a deathDate. The Event abstraction allows to represent any event
associated to a patient. It can be punctual (e.g. medical act) or continuous (e.g.
hospitalization).

All concepts are automatically extracted into Patient or Event objects by a set
of Extractors and Transformers, designed to fetch the data in the relevant tables
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and columns of the SNDS Sources.
As illustrated in Figure 3, Extractors successively refines data from the input

(wide denormalized tables) by (1) identifying the relevant columns, (2) filtering
out null values according to some columns, and (3) conform the extracted data to
a standardized schema as illustrated in Figure 3. These three operations are very
fast when performed on columnar data, as they exploit data sparsity6 and consist
of simple look-ups over hash tables containing columns metadata. An optional
step filtering rows by value can occur before step (3). This operation is slower as it
manipulates row values, but it typically occurs on small data since it happens near
the end of the extraction process.

As SCALPEL-flattening, SCALPEL-Analysis provides a Scala API and a packaged
mode using text configuration files.

(iii) SCALPEL-Analysis is implemented in Python/PySpark [Zah+16] since it is
designed for interactive environments, such as Jupyter notebooks [Klu+16]. This
module is based on the Cohort abstraction, defined as a set of Patients and their
associated Events in a [startDate, endDate] time-window. Basic operations such
as union, intersection, and difference can be performed between Cohorts, while a
human-readable description is automatically added to the results. More granular
control is kept available through accesses to the underlying Spark DataFrames (using
Spark DataFrame API). This combination allows easy data engineering and fine-
grained yet reproducible experiments.

International guidelines [Ben+15] regarding studies based on LODs insist on the
explanation of cohort construction to highlight eventual population biases, moti-
vating the CohortFlow abstraction. A CohortFlowCohortFlow is an ordered iterator
defined as the following left fold operation

foldl(𝑐 ∶ CohortCollection, ∩) ∶= (((𝑐0 ∩ 𝑐1) ∩ 𝑐2) ∩ … 𝑐𝑛)

assuming an input CohortCollection 𝑐 of length 𝑛, where ∩ denotes an intersection
of the Cohorts’ patients. The CohortFlow iterator was designed to track transforma-
tion stages leading to a final Cohort. To ease this tracking, each intermediate Cohort
is stored with a description of filtering rules used to produce the next Cohort.

Finally, the scalpel.stats sub-module produces descriptive statistics on a
Cohort and their associated plots. For now, it contains more than 25 Patient-centric
or Event-centric statistics, adding a custom one being very easy. When combined
with CohortFlow, scalpel.stats computes various statistics at each analysis stage,
helping to dectect biases induced by successive population filtering operations (see
example in Appendix I.A of Chapter I).

6Null values are not represented in the data.
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Step 1: projection to fetch relevant columns
columnar operation (instantaneous)

Wide denormalized table

Step 2: filter out null values
leverages column sparsity (fast)

filter_values

write Parquet file

build_event

optional step: filter rows based on their values 
(row operation ; slow)

Step 3: output converted to Event schema 
columnar operation (fast)

lossy data com
pression

filter_null

get_input

null values

Figure 3 – Extractor design. Extractors implemented in SCALPEL-Extraction
successively refines the input table (a large denormalized table) by taking advan-
tage of fast columnar operations to produce ready-to-use medical events. Step 1
selects the relevant columns (equivalent to a hash table look-up) while Step 2 re-
moves rows where null values are detected in specific columns, taking advantage
of the sparsity of columnar representation (null values are not encoded in the
data). Optionally, this extraction process filters out rows based on their values.
Finally, Step 3 conforms the data to the Event schema, and is written to a Parquet
file.
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Knowledge reuse. SCALPEL-Flattening and SCALPEL-Extraction implement
algorithms encapsulating SNDS expert knowledge. They implement flexible rules
to assess data quality and extract predefined concepts that can be reused across
studies. While we cannot guarantee that this growing library of concepts meets
all the use-cases, it provides a good starting point when beginning a study. Even
if SCALPEL does not automate the whole process, we believe it can dramatically
accelerate research.

Reproducibility. Abstractions provided by SCALPEL3 can be used to study SNDS
data by mostly using high-level operations, resulting in a smaller and more readable
study-specific code. As a result, this code is easier to maintain and debug, while high-
level operations provided by SCALPEL3 are tested and versioned using commonly
used continuous integration tools. Besides, the use of text configuration files7 allows
for the reproducibility of flattening and extraction jobs while automated statistics
reports monitoring operations performed on data. These tools greatly facilitate the
reproducibility, maintainability, and the audit of conducted studies.

Scalability. SCALPEL3 was successfully used to perform the extraction of complex
concepts for studies featured in Chapters II and III of this manuscript, featuring up to
14.5million patients observed over three years (corresponding tomore than 15 billion
healthcare events and roughly 15 terabytes of data) in less than 49 minutes on a
small 15 nodes HDFS cluster. Besides, SCALPEL3 scales almost linearly (provided
the workers’ resources are not shared) with the number of executors as illustrated if
Figure 4 (see Chapter I for more details).

Adoption. SCALPEL3 reduces entry barriers to medical observational studies by
providing ready-to-use concepts while easing data manipulation thanks to abstrac-
tions allowing concept extraction, high-level cohort manipulation, and production
of data compatible with machine learning libraries formats. SCALPEL3 makes
studies based on SNDS much simpler and more scalable than the existing frame-
work [Tup+17a]. It is now used at the agency collecting SNDS data, at the French
Ministry of Health and soon at the National Health Data Hub in France [Cug+18].
We believe that its use will continue to grow and that its genericity can address other
LODs.

7Written in Human-Optimized Config Object Notation (HOCON) [Typ16]
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Figure 4 – SCALPEL-Extraction scaling experiments. The solid blue line represents
the mean total running time (in seconds) of the benchmark extraction job (de-
scribed in Chapter I) when varying the number of worker nodes used to perform
the computation. Five small blue dots represent individual run time measure-
ments for each experiment, while the big blue dot represents the corresponding
means. Light blue bands represent one standard deviation computed over five
runs. The dotted line corresponds to a theoretical performance assuming a perfect
horizontal linear scaling (based on the single node performance). Dashed lines
represent the runtime of similar queries on the SNDS SAS-Oracle infrastructure
using a single run. Multiple runs were not performed on SAS-Oracle as com-
puting resources allocation is dynamic and might differ over several runs. The
scaling gains then slow down around 28 executors as at this point, the cluster
resource used by the storage services (HDFS) comes into conflict with computa-
tion (SCALPEL3). Note that SCALPEL3 has been recently updated and should
be slightly more performant.
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2 Adverse drug reactions detection

Improving Adverse Drug Reaction (ADR) detection is one of the promises carried
by the increased volume and availability of observational data [Sta+10]. ADRs can
be defined as a harmful event following a single dose or prolonged use of a drug.
An ADR can be related to the dose or not. Dose effects can be caused by supra-
therapeutic doses (toxic effect resulting from an excessive dosage), sub-therapeutic
doses (hyper-susceptibility), or at standard therapeutic doses (collateral effects, such
an effect occurring in a non-targeted tissue) [AF03]. Dose relationships are tough
to assess when using data from SNDS, as prescriptions are not known, and drug
packaging is standardized [Tup+17a]. Hence, this thesis focuses on the temporality
of ADRs. Indeed, while some ADRs can be time-independent (e.g. digoxin toxicity
caused by potassium depletion [AF03]), many of them might happen either at the
first dose (e.g. anaphylaxis after first penicillin use) or with some delay of varying
length. Delayed effects might occur at the time of drug withdrawal (e.g. opiates) later
on (e.g. carcinogenesis [AF03]). Individual susceptibility might heavily affect the
occurrence and timing of ADRs [AF03]. Figure 5 represents examples of ADR risk
patterns.

Historically, post-marketing surveillance relies on spontaneous reports from
physicians and consumers [Sch+16], thus depending on human detection of adverse
effects. Reports then trigger statistical confirmation studies, eventually using claims
data such as [Neu+12]. Unfortunately, relying on human detection has been shown
to result in ADRs under-reporting [Alv+98]. Indeed, when ADR events are rare,
joining the dots might be very hard for a human observer. Data mining LODs might
complement human detection by screening a vast amount of drug and reaction
combinations to improve ADR detection.

2.1 Modeling challenges

Several methodological challenges specific to LODs such as SNDS complicate this
task. Indeed, healthcare data is the result of three intertwined processes [Alb+18;
Hag+14]:

(i) An epidemiological process, reflecting the physiology and pathophysiology of
the observed patients.

(ii) A behavioral process related to the patients’ lifestyles and healthcare utilization
habits.

(iii) An institutional process related to the structure and the operation of the health-
care system.
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Figure 5 – Examples of risk patterns associated with adverse drug reactions. The
probability of experiencing an event in a time interval is proportional to the
corresponding area under the risk curve. Curves represent the relative risk of
an event evolution after drug exposure start. Rapid effects occur at the first
dose. Early reactions occur early in the treatment before decreasing due to the
development of drug tolerance. An intermediate effect may or may not happen
after some delay. If they do not occur after a fixed period, they will never occur.
Late effect risk slowly increases over time. Delayed effect risk suddenly increases
after some delay, e.g. at the time of drug withdrawal.

As a result, studies using this data should consider the peculiarities described in the
next paragraphs.

Missing information and coding errors. While SNDS is very rich, it does not
contain information that might be critical, depending on the conducted studies. Typ-
ical examples are socioeconomic characteristics (income, marital status), lifestyle
habits (smoking status, alcohol consumption, nutrition), examination results, test
results, over-the-counter drugs, drugs delivered during hospital stays, and prescrip-
tions and accurate drugs dosage. SNDS records the cause of death since 2018. The
absence of such informationmight cause biases depending on the statisticalmodeling
strategies.

Besides, data can be inaccurate. While some errors can be random, the healthcare
billing systems might lead to systematic errors. For example, French hospitals are
paid based on a flat price corresponding to a stay’s “main diagnosis.” Therefore, they
are incited to code health events in a specific way to optimize both their revenue
and practitioners’ time. The resulting recordings may thus conflict with the nominal
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definition of a concept [HA13]. These errors can be correlated to individual health-
care providers, depending on their coding policy and working habits. In the case of
SNDS, this issue might influence hospital stay data. However, as outpatient care is
automatically recorded, it should be less affected by such coding biases [Tup+17a].

Pathways. Specific pathways might influence the results of studies based on obser-
vational data. When the studied molecules are often prescribed in a given sequential
order, it is hard to separate their individual influence on an event of interest [Hri+16].

Reverse dynamics. Healthcare data capture beneficiaries’ interactions with the
healthcare system rather than a direct recording of their physiology, resulting in
feedback loops and reversed dynamics [HA13]. Indeed, diseases precede their symp-
toms in terms of physiology. The data may record the symptoms (through exams or
medical acts, for example) before the actual identification of the disease [HAP11].

Not-at-random sampling. The beneficiaries’ events recording occurs when they
interact with the healthcare system, i.e., data is only sampled when beneficiaries
have health issues. As such, data sampling should not be considered random. In
response, some studies impute data [Piv+14], use the information missingness as a
feature8 [Hag+14] or use flexible models, which is the approach developed in this
thesis.

These issues might result in biases, the most pervasive one being the indication
bias when it comes to observational studies. This bias occurs when an indication
(e.g. fever) both prompts an exposure (e.g. paracetamol) and causes outcomes (e.g.
asthma) [Aro+18]. Following this example, a study ignoring the fact that some viral
infections causing fever increase the risk of developping asthma would wrongly
associate asthma with paracetamol. Such biases are hard to avoid, especially when
using SNDS as drug prescriptions are not recorded. For now, the only solution is to
tailor the studies to address each database peculiarities [Mad+14]. The approach
developed in this thesis relies on careful phenotyping and study designs, flexible
model, and cautious interpretation to derive useful insights on many aspects of the
healthcare system and its beneficiaries. However, causal inference is hindered by
many unobserved confounding variables and the impossibility of taking actions on
healthcare policies for research purposes.

8For example, the patient rate of visits can be a proxy for patient adherence and access to care
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2.2 Mathematical tools
This section quickly introduces several mathematical tools used in this thesis. The
works presented here aim at estimating temporal associations of diverse health-
care events. Statistical learning methods were used to establish general patterns
structuring the data under study. The ADR detection problem was formulated as a
supervised learning problem, aiming to predict a specific longitudinal event based
on other longitudinal health events. The modeling of temporal dynamics borrows
concepts from point processes theory and survival analysis. Estimating the resulting
models’ parameters relies on sparsity inducing penalties, proximal operators, and
stochastic optimization.

Supervised learning. Given a training sample of annotated examples

𝒟𝑛 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} ,

where 𝑥𝑖 ∈ 𝒳 ⊂ ℝ𝑑 are 𝑑-dimensional input features and 𝑦𝑖 ∈ 𝒴 ⊂ ℝ are values to be
predicted, supervised learning consist in learning a prediction function ℎ ∶ 𝒳 → 𝒴.

A goodness-of-fit function 𝑓 is used to measure how well a statistical model fits a
dataset𝒟𝑛 given the model parameters 𝜃. For example, the negative log-likelihood
function of a model, the quadratic loss, or the cross-entropy loss might serve as
goodness-of-fit functions depending on the supervised task. In this thesis, a data
sample corresponds to the history of patient 𝑖. Data samples are assumed to be
generated independently. As a result, the goodness-of-fit functions are commonly
decomposed as an average of individual losses 𝑓𝑖 computed over each sample

𝑓(𝜃) = 1
𝑛

𝑛

∑
𝑖=1

𝑓𝑖(𝜃),

where 𝑓𝑖 implicitly depends on the data sample. Fitting the model to a dataset consist
in solving the minimization problem

min
𝜃∈ℝ𝑑

𝑓(𝜃).

Penalization andproximal operators. Statisticalmodels considered in this thesis
require the estimation of parameters 𝜃 ∈ ℝ𝑑 given a goodness-of-fit function 𝑓(𝜃) ∶
ℝ𝑑 → ℝ. When the number of parameters𝑑 is large, there is a risk of model overfitting.
In this case, the model is too closely adjusted to the training dataset and does not
generalize well to other datasets. To prevent overfitting, the parameters’ space can be
constrained using a sparsity-inducing norm 𝑔 ∶ ℝ𝑑 → ℝ leading to an optimization
problem of the form

min
𝜃∈ℝ𝑝

𝑓(𝜃) + 𝜆𝑔(𝜃), (1)
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where 𝜆 > 0 is the penalization strength. A cross-validation procedure selects the
best performing penalization strength 𝜆 according to some performance metric. The
function 𝑓 is assumed to be differentiable and 𝐿−smooth, i.e.

‖∇𝑓(𝑢) − ∇𝑓(𝑣)‖ ≤ 𝐿‖𝑢 − 𝑣‖,

for any 𝑢, 𝑣 ∈ ℝ𝑑 where ‖.‖ is the Euclidean norm on ℝ𝑑 and 𝐿 > 0 is the Lipschitz
constant. The penalty 𝑔 can be non-differentiable but it is assumed to be prox-capable,
in the sense that its proximal operator (see definition below) can be easily computed.
A range of methods can be used to solve Equation (1). Techniques known as proximal
methods are particularly adapted to such problems thanks to their good convergence
rates and scalability [Bac+12].

The proximal operator associated to 𝜆𝑔 is defined as

prox𝜆𝑔(𝑣) ∶= arg min
ᵆ∈ℝ𝑑

(𝑔(𝑢) + 1
2𝜆‖𝑢 − 𝑣‖22) , (2)

for any 𝑣 ∈ ℝ𝑑. The proximal operator is well-defined and unique since the objective
in Equation (2) is strongly convex. If 𝒞 is a closed nonempty convex set, it is inter-
esting to remark that if 𝑔 is the indicator function 𝐼𝒞(𝑥) equal to 0 when 𝑥 ∈ 𝒞 and
+∞ otherwise, then the proximal operator associated to 𝑔 consist in an orthogonal
projection onto 𝒞. The proximal operator can then be seen as a generalization of
projection. Indeed, the point prox𝜆𝑔(𝑣) is a compromise between minimizing 𝜆𝑔
and being near to 𝑣, weighted by the parameter 𝜆. When combined with appropriate
optimization algorithms, proximal operators can solve problems such as (1) in a rea-
sonable amount of time [Bac+12], especially when 𝑔 is non-differentiable. Proximal
operators of penalties used in this thesis are quickly introduced below.

The Lasso penalty, also known as the ℓ1-norm penalty, is used to induce sparsity
by setting a number of coefficients 𝑣𝑗, 𝑗 = 1,… , 𝑑 exactly equal to zero depending on
the penalty strength 𝜆. Denoting (𝑥)+ = max(𝑥, 0), the proximal operator associated
to 𝑔ℓ1 = ‖ ⋅ ‖1 can be computed as follows [Bac+12]:

[prox𝜆𝑔ℓ1
(𝑣)]𝑗 = (1 − 𝜆

|𝑣𝑗|
)
+

𝑣𝑗.

The ℓ1/ℓ2-norm penalty (or group-Lasso) [TVW05; YL06] is used to induce sparsity
over groups of coefficients 𝑗 ∈ 𝒥, where 𝒥 is a partition of {1,… , 𝑑}. To take the group
size into account, 𝜆 is usually normalized by √Card(𝑗). As the coefficient groups
considered in this work share the same size, we ignore this normalization to simplify
the notations. Depending on the penalty strength 𝜆, all the coefficients belonging to
some group 𝑗⋆ will be set exactly to zero. The penalty writes as follows

𝑔ℓ1/ℓ2(𝑣) = ∑
𝑗∈𝒥

‖𝑣𝑗‖2,
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and its proximal operator can be computed using the closed form [Bac+12]

[prox𝜆𝑔ℓ1/ℓ2
(𝑣)]𝑗 = (1 − 𝜆

‖𝑣𝑗‖2
)
+

𝑣𝑗, 𝑗 ∈ 𝒥.

The Total Variation (TV) penalty was first introduced in the image processing com-
munity [ROF92] to perform denoising by encouraging piecewise constant signals.
When working on a single dimensional signals, it writes

𝑔𝑇𝑉−1𝐷(𝑣) =
𝑝−1

∑
𝑖=1

|𝑣𝑖+1 − 𝑣𝑖|.

Although there is no closed-form expression to compute the proximal operator associ-
ated to this penalty, it can be computed efficiently (in𝑂(𝑑)) and exactly using [Con13].

Computing the proximal operator associated to a combination of several penalties
is not straightforward. However, group-Lasso and Total Variation can be combined
as follows. Considering integer intervals 𝑗′ ∈ 𝒥′ ⊂ J1, 𝑑K, and

[prox𝜆1𝑔𝑇𝑉−1𝐷(𝑣)]𝑗′ = ∑
𝑖,𝑖+1∈𝑗′

|𝑣𝑖+1 − 𝑣𝑖|,

the TV-Lasso proximal operator associated to

[𝑔𝑇𝑉𝐿]𝑗′ ∶= 𝑣 → 𝜆1 [𝑔𝑇𝑉−1𝐷(𝑣)]𝑗′ + 𝜆2 [𝑔ℓ1/ℓ2(𝑣)]𝑗′

can be computed as

[prox𝜆𝑔𝑇𝑉𝐿(𝑣)]𝑗′ = [prox𝜆2𝑔ℓ1/ℓ2
([prox𝜆1𝑔𝑇𝑉−1𝐷(𝑣)]𝑗′)]𝑗′

where 𝜆 = (𝜆1, 𝜆2) as shown in [Zho+12].

Optimization algorithms. Training the supervised learning models introduced
in this thesis can be expressed as solving the following optimization problem

min
𝜃∈ℝ𝑑

𝐹(𝜃) with 𝐹(𝜃) = 𝑓(𝜃) + 𝜆𝑔(𝜃), where 𝑓(𝜃) = 1
𝑛

𝑛

∑
𝑖=1

𝑓𝑖(𝜃). (3)

This paragraph introduces the basic ideas behind optimization methods used to
minimize Equation (3). Algorithms such as second-order methods (e.g. Newton’s
method) will not be addressed here are they are hard to use in practice with high-
dimensional datasets.
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Batch gradient descent algorithms can be used whenever 𝐹 is differentiable. From
an initial guess 𝜃0, it iteratively updates the parameters in the opposing direction of
the gradient

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐹(𝜃𝑡),
where 𝜂 > 0 is the step size, controlling the size of the updates. The choice of the step
size is critical. A small step size can lead to very slow convergence, while a very large
step size might result in poor convergence with updates repeatedly overshooting
the minimum. Several methods (e.g. line search) aim to tune automatically the step
size [Ber99; Nes83]. Several algorithms (e.g. ISTA [BT09]) have been developed to
solve problems such as Equation (3) through the use of proximal operators, leading
to the following update

𝜃𝑡+1 = prox𝜆𝑔/𝐿 (𝜃𝑡 −
1
𝐿∇𝜃𝑓(𝜃𝑡)) ,

whenever 𝐹 is differentiable and 𝐿−smooth, and 𝑔 is prox-capable convex function.
Note that these algorithms do not exploit the fact that 𝑓(𝜃) is an average of func-

tions. Moreover, ISTA requires computing the objective gradient on thewhole dataset
in order to perform a single update of 𝜃𝑡. In practice, it might result in a very slow algo-
rithmwhen the dataset does not fit inmemory despite fast convergence rates [Rud16].

When 𝑓 is an average of functions 𝑓𝑖 associated with each training sample,
stochastic gradient descent9 (SGD) [RM51] might be more efficient. This method
approximates the full gradient with the random variable 𝜙𝑡 = ∇𝑓𝐼(𝜃𝑡). If 𝐼 is uni-
formly distributed over {1,… , 𝑛}, 𝜙𝑡 is an unbiased estimator of the full gradient, i.e.
𝐸(𝜙𝑡) = ∇𝑓(𝜃𝑡) [RM51].

Uniform SGD exploits this idea by performing an update of 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝑓𝑖(𝜃𝑡)
per data sample 𝑖. The iterate is then updated 𝑛 times for each pass (or epoch) over
the dataset when batch gradient descent would perform a single update. However,
∇𝑓𝑖(𝜃𝑡) does not converge towards zero as 𝜃𝑡 approaches the minimum, hindering the
convergence towards a precise solution. The algorithm then overshoots theminimum
repeatedly if the step size 𝜂 is constant. Using decreasing step sizes can mitigate
this issue [Rud16], though it can result in slow converge speed. Alternatively, using
mini-batchesmight stabilize the congergence, by using 𝑘 ≪ 𝑛 samples per update
instead of one to estimate 𝜙𝑡, i.e.

𝜙𝑘𝑡 =
1
𝑘 ∑
𝑖∈𝒦,|𝒦|=𝑘

∇𝑓𝑖(𝜃𝑡).

The update 𝜙𝑘𝑡 has typically lower variance than 𝜙𝑡, and can be computed efficiently
by using parallel computation [Rud16].

9Also known as Robbins-Monro algorithm.
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Other algorithms, such as stochastic variance reduced gradient (SVRG) [JZ13]
use variance reduction techniques to converge towards a more precise minimum.
They reach the precision of batch methods while using quick iterations alike SGD.
Similar to batch algorithms, several stochastic algorithms have been adapted to solve
problem (3) using proximal operators, such as Prox-SVRG [XZ14].

Point processes. Point processes model random occurrences of points (medical
events in our case). They can be used to describe spatio-temporal phenomena,
such as earthquakes [Oga99] or infectious diseases [Mey+18; Rei+18]. Some useful
definitions and results related to point processes are introduced below. Further
details on point processes can be found in [DV03].

Let us consider a set of distinct event times 𝜉 = {𝑡1,… , 𝑡𝑛} occurring in an interval
[0, 𝑇], where 𝑛 is an integer random variable. A point process can be represented
by considering the associated counting process 𝑁(𝑎, 𝑏] = ∑𝜏∈𝜉 𝟙𝜏∈(𝑎,𝑏] representing
the number of event times in the interval (𝑎, 𝑏] ⊂ [0, 𝑇]. To ease the notations, let us
write 𝑁𝑡 = 𝑁(0, 𝑡], 𝑡 ≤ 𝑇. The distribution of a counting process is characterized by a
conditional intensity function

𝜆(𝑡|ℱ𝑡) = lim
𝑑𝑡→0

ℙ(𝑁𝑡+𝑑𝑡 − 𝑁𝑡 = 1|ℱ𝑡)
𝑑𝑡 ,

representing the infinitesimal probability of an event occurrence at time 𝑡, given the
information available up to time 𝑡, denoted ℱ𝑡. The conditional intensity is a very
useful tool for statistical inference, as (i) it can be used to simulate the process [Oga81]
and (ii) it can be used to express the likelihood of the process in a closed form. Indeed,
the associated negative log-likelihood writes

∫
𝑇

0
𝜆(𝑠|ℱ𝑠)𝑑𝑠 −

𝑁𝑇

∑
𝑘=1

log 𝜆(𝑡𝑘|ℱ𝑡𝑘),

see [DV03].

Poisson Process. The simplest point process is the homogeneous Poisson point
process with intensity 𝜆 > 0. It is defined by three properties:
(i) The number of events in each finite interval (𝑎, 𝑏] has a Poisson distribution

with intensity 𝜆(𝑏 − 𝑎),

(ii) the number of events in disjoint intervals are independent random variables,

(iii) 𝑁(0) = 0.
If the intensity depends on time, the Poisson process is inhomogeneous, in which
case 𝑁(𝑎, 𝑏] has Poisson distribution with intensity ∫𝑏

𝑎 𝜆(𝑡)𝑑𝑡. Note that 𝜆(𝑡)might
depend on exogenous longitudinal variables, but not on previous event times [DV03].
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Survival analysis. Survival analysis models the expected time until one or more
events of interest happen (time-to-event, TTE). For example, such events might be
hard drive failure times [Dat19], or bladder cancer diagnoses [Neu+12]. Let us denote
the random time of such an event 𝑇, and define the survival function as

𝑆(𝑡) = ℙ(𝑡 < 𝑇).

For some samples, the event of interest might not occur during their observation.
These samples are said to be right-censored. In epidemiology, censoring might result
from patients leaving the study or deceasing before they had a chance to experience
the event. Censoring information prevents the model from incorrectly considering
that the samples who have not yet experienced will never do.

Let us denote the time of censoring 𝐶. In practice, we observe the time 𝑇 ∧ 𝐶
and 𝛿 = 𝟙𝑇≤𝐶 indicating if a sample is censored or not. Let us consider a dataset of
𝑛 i.i.d samples {(𝑇𝑖, 𝐶𝑖), 𝑖 = 1,… , 𝑛} and associated covariates 𝑥𝑖 ∈ ℝ𝑑. Assuming
that censoring times 𝐶𝑖 and event times 𝑇𝑖 are independent, let us define 𝛿𝑖 = 𝟙𝑇𝑖≤𝐶𝑖

,
𝑌𝑖(𝑡) = 𝟙𝑇𝑖∧𝐶𝑖<𝑡 and the counting process 𝑁𝑖 = 𝛿𝑖(1 − 𝑌𝑖(𝑡)) for each sample. The
intensity associated to 𝑁𝑖(𝑡) then writes

𝛼𝑖(𝑡) = lim
ℎ→0

ℙ(𝑡 ≤ 𝑇 ≤ 𝑡 + ℎ|𝑡 ≤ 𝑇)
ℎ = −𝑆

′(𝑡)
𝑆(𝑡)

.

When assuming 𝑁𝑖 to generate at most one event time, the intensity can be reduced
to 𝛼𝑖(𝑡) = 𝜆𝑖(𝑡)𝑌𝑖(𝑡). The function 𝜆𝑖(𝑡) is called hazard function, and the cumulative
hazard function is defined as

Λ𝑖(𝑡) = ∫
𝑡

0
𝜆(𝑠)𝑑𝑠.

Survival analysis aims to estimate either 𝑆(𝑡), 𝜆(𝑡) or Λ(𝑡) and eventually to
analyse the influence of covariates on these functions. One can use parametric,
semi-parametric or non-parametric approaches to estimate these functions [Cox72;
Mil11].

The Cox model. The Cox model, introduced in [Cox72], is a semi-parametric
approach of modelling the hazard function as follows:

𝜆𝑖(𝑡) = 𝜆0(𝑡) exp (𝑥⊤𝑖 𝜃) ,

where 𝜆0 is a baseline hazard independent of the covariates 𝑥𝑖. Instead of modelling
𝜆0 using a parametric form and to estimate all the parameters using the model’s full
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likelihood, the Cox model only estimates 𝜃 relying on the partial likelihood of the
model, by considering the hazard ratios of two patients,

𝜆𝑖(𝑡)
𝜆𝑗(𝑡)

= exp ((𝑥𝑖 − 𝑥𝑗)
⊤ 𝜃) .

The conditional likelihood then writes

𝐿𝑃(𝜃) =
𝑛

∏
𝑖=1

(
exp (𝑥⊤𝑖 𝜃)

∑𝑗∈𝑅𝑖
exp (𝑥⊤𝑗 𝜃)

)

𝛿𝑖

,

where 𝑅𝑖 = {𝑗 ∶ 𝑌𝑗 ≥ 𝑌𝑖} denotes the samples who have experienced the event or the
censoring time after sample 𝑖. While this model is very popular thanks to its capacity
to model only the effect of covariates on the hazard function without requiring the
estimation of the baseline risk, this approach is not straightforward to scale to a very
large dataset due to the necessity of ordering patients to compute 𝑅𝑖 [Ach+15].

Rare events and Zero-inflation. In survival analysis, events of interest are failure
times. As such, they are supposed to happen only once. When confronted with
rare events, a survival process might be approximated by a Poisson process of low
intensity. While a Poisson process might be easier to estimate than a Cox model on
large datasets, its estimation might be affected by the presence of many censored
samples in the dataset, i.e. patients who have not experienced the event before their
censoring time. In this case, the dataset is zero-skewed, and the model estimation is
problematic. Indeed, when samples without events are overrepresented, the model
tends to estimate almost null intensities and predict an overall absence of events.
In the case of Poisson regression, using zero-inflated losses is a way to circumvent
this issue. Such losses use a mixture of random variables. First, a Bernoulli random
variable controls if an event will occur or not. Then, a Poisson random variable
models the event count given it is not null [Zuu+09]. While there exist longitudinal
extensions of such models [BW17], they are not very fit to problems where events are
infrequent and do not happenmore than once in the observed datasets. Besides, most
of these longitudinal formulations rely on Markov processes. However, when events
occur more than once, the Markov property is not likely to be verified in healthcare,
as past disease occurrence might increase the probability of relapse (e.g. myocardial
infarction).

2.3 Commonmethodologies
Besides the mathematical model formulation and estimation, the design of ADR
detection studies is crucial, even more, when using LOD data. The Observational
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Medical Outcomes Partnership (OMOP) pioneered an alert system based on vast
amounts of claims data [Rya+12; Rya+13b]. Their approach relied on designs and
models usually employed in observational studies. These designs can be divided into
four categories.

Multiple groups designs

Such designs compare subjects who experienced the adverse effect (cases) with
subjects who did not (controls).

Cohort studies compare groups of patients selected according to their exposure to
some risk factor. For example, the risk associated with a drug might be studied with a
new-users cohort. In this case, patients newly exposed to the drug of interest (DoI) is
juxtaposed with a comparator population. The comparator group might be patients
exposed to a drug of a different pharmacologic class sharing the DoI’s indication; or
patients with a diagnosis for the DoI’s indication.

The Case-controlmethod compares two population groups according to the oc-
currence of an adverse effect. The patients who experienced an adverse effect (the
cases) are compared with the patients who did not (the controls). When performed
on administrative databases, such designs are always nested within a cohort.

Comparing the different groups can be made by estimating odds ratios using a
logistic regression model predicting the target event from drug exposure. Odds ratios
are said unadjusted when estimated with univariate logistic regression predicting
the target event from drug exposure. Odds ratios are adjusted when estimated using
multivariate logistic regression to control confounding variables. When using a Cox
model (described Section 2.2), the survival time and the incidence rates are estimated
and compared between the patient groups.

These approaches are very sensitive to residual systematic differences between
the studied groups. Thus, their performance heavily depends on measuring confu-
sion factors or ensuring that the compared groups share similar characteristics (e.g.
demographics, life habits, or existing diseases).

Single group designs

Such designs, called Self-controlled designs, include only cases who experienced the
studied adverse event. They compare subjects considered to be at risk of experiencing
the event (risk periods) with themselves when they are not at risk (control or risk-
free periods). As each included patient is known to have experienced the studied
event, statistical models are conditional to this event occurrence. These approaches
are not sensitive to observed or unobserved covariates that are constant over time.
However, self-controlled designs remain sensitive to systematic differences between
risk periods and control periods. A few single group designs are introduced below.
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The Case-Crossover method compares, for each individual, a single risk period
immediately preceding the adverse event to one or several control periods, always
preceding the risk period. The length of these risk and control periods are the same
for all individuals. The association between drug exposure and the adverse effect is
measured through case crossover odds ratios defined as the rate of exposure during
the risk period divided by the rate of exposure during control periods. These rates
can be estimated using a conditional logistic regression or a conditional Poisson
model [AGT14].

Similarly, the Self-Controlled Case Series (SCCS) design relies on case data. How-
ever, instead of relying on time-periods common to all patients, risk and control
periods are defined individually according to the information available during the
whole observation period [FW06]. An observation period is defined according to
assumptions often associated with the event of interest. Then, risk periods (or ex-
posure periods) are characterized according to drug exposures times and a set of
assumptions specific to the drugs or event under study. The control periods are
defined as the periods when individuals are observed but not exposed. In opposition
to case-crossover, this method is bi-directional as it uses information from both the
periods preceding and following the event time. The relative risk of being exposed
is estimated using a conditional Poisson model. The drug effect is then assessed by
comparing the target event relative risk during exposure and control periods.

Self-controlled Cohort is a self-controlled design applied directly to a popula-
tion as a whole in contrast with the previous designs modeling individual patients’
trajectories [RSM13]. It estimates Incidence Rate Ratios (IRRs) as

𝐼𝑅𝑅 =
(𝑥0/𝑡0)
(𝑥1/𝑡1)

,

where 𝑡0 (resp. 𝑡1) are the length of post-exposure (resp. pre-exposure) risk periods,
and 𝑥0 (resp. 𝑥1) the number of adverse events observed during post-exposure (resp.
pre-exposure) risk periods.

Hybrids

Other approaches borrow ideas from the two design families previously described.
Information Component Temporal Pattern Discovery (ICTPD) is a variant of self-
controlled cohort comparing patients with themselves (self-control) and assessing the
existence of systematic differences by comparing case time intervals with equivalent
periods in a control group (case-control). This approach adds a comparator group to
self-controlled designs to control systematic differences between the risk and control
periods. However, this approach remains sensitive to systematic differences between
risk and control periods unique to the case group [Nor+13].
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Others

Disproportionality analysis directly compares drug-event pairs co-occurrences using
𝜒2 tests to identify pairs which are more often reported together [Mon+11].

Longitudinal Gamma Poisson Shrinker is based on a similar idea, adapted to
longitudinal data [Sch11]. Instead of merely counting events or non-events occurring
within or outside drug exposure periods, it considers the length of drug exposure
and non-exposed time to detect disproportionality. This approach is combined with
LEOPARD, an algorithm comparing drug prescription rates in a fixed window, before
and after the occurrence of a target event. It allows us to detect false positives caused
by protopathic bias, i.e. situations when a drug is prescribed to cure the target event
or its early manifestation instead of causing it [Fai15].

Comparison

OMOP developed benchmarks to evaluate these approaches’ performance on ADRs
detection when using claims databases [Rya+12; Rya+13b]. To perform these bench-
marks, the researchers produced an ADRs database containing drug and adverse
events pairs. They estimated different combinations of models and designs, varying
hypotheses, and hyperparameters to produce binary answers for each (drug, reaction)
pair. These answers were compared to a database [Rya+13a] listing positive and neg-
ative associations between molecules and reactions. These benchmarks concluded
to a better performance of self-controlled designs over case-controlled designs. The
scarcity of demographic and individual habits data in claims databases may explain
this conclusion as it hinders control matching when using case-control designs.
However, the evaluation method presented in [Rya+13b] has several shortcomings:

• Estimates are produced iteratively on drug and reaction pairs, which poses a
high risk of obtaining estimates biased by unobserved confounding variables.

• Their ground truth ADR database has since been criticized for having misclas-
sified some of the considered pairs [HAF16].

• The method used to choose between the many assumptions and hyperparame-
ters is likely to overfit the ADR corpus, as they did not use an ADR testing set
distinct from their training set.

2.4 Selected approach
Both human detection of ADR and tailored risk quantification studies are not scal-
able enough to perform large scale ADR screening. Indeed, the latter requires a
tremendous amount of manual tuning to provide results, see for example [Neu+12].
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Moreover, LOD-specific issues raised in Section 2.1 show that developing a fully
automated ADR detection system on SNDS data would suffer from too many biases
to be effectively used in practice [Mad+14]. However, the OMOP benchmarks de-
scribed in Section 2.3 indicate that models combined with self-control designs might
be robust enough to derive useful information from claims data when it comes to
detecting ADRs. These observations motivated the development of a new model to
improve ADR detection. The goals of this model are the following:

• To be easily interpretable and easy to use in order to foster its adoption by
practitioners.

• To be as robust as possible to unobserved confounding factors.

• To handle sparse data and rare events as ADRs are mainly rare events.

• To ease exposure or risk period definition.

• To be flexible enough to use as little prior knowledge as possible.

• To be scalable to large populations and many drugs.

Let us assume that data is available from a global observation period (𝑎, 𝑏], where
the time can be either calendar ormeasured by patients’ age. Each patient 𝑖 = 1,… ,𝑚
has an observation period (𝑎𝑖, 𝑏𝑖] ⊂ (𝑎, 𝑏], in which we observe:

• the time occurrences 𝑡𝑖,1 < 𝑡𝑖,2 < ⋯ of the event of interest (also called outcome
in what follows), or, equivalently a counting process 𝑁𝑖, defined as 𝑁𝑖(𝑡) =
∑𝑘≥1 𝟙𝑡𝑖,𝑘≤𝑡 and 𝑛𝑖 = ∫(𝑎𝑖,𝑏𝑖] 𝑑𝑁𝑖(𝑡) the total number of outcomes of patient 𝑖,

• a vector of 𝑑 longitudinal features

𝑋𝑖 = (𝑋𝑖(𝑡) = (𝑋1
𝑖 (𝑡) ⋯ 𝑋𝑑

𝑖 (𝑡)) ∶ 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]),

where in the context of drug safety studies, 𝑋𝑗
𝑖 (𝑡) gives us information about

the exposure of patient 𝑖 to drug 𝑗 at time 𝑡 ∈ (𝑎, 𝑏].

The modelization uses point processes as they are a natural tool to represent
irregularly-sampled series of events while focusing on interpretability. Building upon
the Cox model was ruled out, as this model is hard to scale [Ach+15]. Following the
works on SCCS model [Far95; FW06; Sch+16], using a conditional Poisson process
seemed to be a good starting point. As such, the model relies on the usual SCCS
model key assumptions [FW06]. Namely, we assume that

(i) The features are exogenous, meaning that the counting process 𝑁𝑖 does not
have any influence on the features 𝑋𝑖;
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(ii) The interval of observation (𝑎𝑖, 𝑏𝑖] is independent of 𝑁𝑖;

(iii) The process 𝑁𝑖 is a Poisson process conditionally to (𝑋𝑖(𝑡) ∶ 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]).

Assumption (i) allows to condition on the full trajectory of the longitudinal
features 𝑋𝑖 in (4). In addition, thanks to (ii), the following derivations have to be
understood conditionally to (𝑎𝑖, 𝑏𝑖]. We may then define the conditional intensity of
the process 𝑁𝑖 as

𝜆𝑖(𝑡, 𝑋𝑖) = ℙ(𝑑𝑁𝑖(𝑡) = 1 | 𝑋𝑖) (4)

for 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]. Therefore, this model can be understood as a regression model,
allowing to regress the outcomes in 𝑁𝑖 on the longitudinal features 𝑋𝑖.

In order to study acute vaccine adverse effects, [FW06] considers the following
model for the intensity:

𝜆(𝑡, 𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙(𝑡) + 𝑋𝑖(𝑡)
⊤𝛽),

where 𝜓𝑖 is the baseline incidence of patient 𝑖 and 𝛾𝑖 is a sum of non-temporal fixed
and random individual effects. The parameter 𝜙(𝑡) is a time-dependent baseline
which is common to all individuals. If age serves as the time scale, this term can
help to capture age effects. The vector of parameters 𝛽 ∈ ℝ𝑑 quantifies the effect
of the longitudinal features 𝑋𝑖(𝑡) on the intensity. The idea of the SCCS method is
to condition on both 𝑋𝑖 and 𝑛𝑖. Usual arguments (see Chapter II) imply that the
likelihood of 𝑁𝑖|(𝑋𝑖, 𝑛𝑖) of 𝑖 = 1,… ,𝑚 independent patients is proportional to

𝑚

∏
𝑖=1

𝑛𝑖
∏
𝑘=1

𝜆𝑖(𝑡𝑖,𝑘, 𝑋𝑖)

∫𝑏𝑖
𝑎𝑖
𝜆𝑖(𝑠, 𝑋𝑖)𝑑𝑠

=
𝑚

∏
𝑖=1

𝑛𝑖
∏
𝑘=1

exp (𝜙(𝑡𝑖,𝑘) + 𝑋𝑖(𝑡𝑖,𝑘)
⊤𝛽)

∫𝑏𝑖
𝑎𝑖
exp (𝜙(𝑠) + 𝑋𝑖(𝑠)

⊤𝛽)𝑑𝑠
. (5)

Note that the conditioning with respect to 𝑛𝑖 induced two notable properties of
Equation (5):

• Improved scalability: the likelihood only depends on patients 𝑖 such that 𝑛𝑖 ≥ 1
(while the “full” likelihood of 𝑁𝑖|𝑋𝑖 does depend on patients 𝑖 for whom 𝑛𝑖 = 0).
This is beneficial when studying rare adverse effects in large LODs.

• Robustness to non-longitudinal confounders: the non-longitudinal effects 𝜓𝑖 and
𝛾𝑖 cancel out in the likelihood (Equation (5)). This trait makes SCCS models
particularly robust to the patient’s susceptibility.

These two properties mitigate issues related to missing variables and data scale,
which is valuable when working with LODs such as claims databases. However, only
relative incidences can be computed by taking the exponential of the corresponding
coefficient, such as exp(𝜙(𝑡)) for the baseline relative incidence.
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2.5 Contribution: Convolutional SCCS
SCCS models were initially designed for vaccine safety studies [Far95], using the
suspected ADR as the outcome. In this context, estimating the relative incidence of
drug use requires defining related time-at-risk periods in which the suspected ADR
might occur. The longitudinal features 𝑋𝑖(𝑡) then denote if the patient 𝑖 is at risk or
not at time 𝑡 for a particular drug. One must then determine how long patients are
at risk after each drug exposure and if this risk occurs either immediately or after
some delay. Defining proper time-at-risk windows is a challenging problem when
studying a single (drug, ADR) pair, which worsens even further when considering a
set (drug1,ADR),… , (drug𝑑,ADR) of such pairs. In the case of ADR screening over
numerous drugs, such a methodology might even become infeasible.

Discrete SCCS. As LOD data is discrete (e.g. SNDS data is recorded daily), the
intensity 𝜆 is assumed to be constant over time intervals 𝐼𝑘 = (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 1,… , 𝐾
that form a partition of the observation interval (𝑎, 𝑏], for 𝑖 = 1,… ,𝑚. Without loss
of generality, 𝐼𝑘 were chosen to be of constant length 1. In practice, the smallest
granularity allowed by data is used as the length of these intervals. Hence, we
can assume that (𝑎𝑖, 𝑏𝑖] ∩ 𝐼𝑘 is either ∅ or 𝐼𝑘 for all 𝑖 = 1,… ,𝑚, and 𝑘 = 1,… , 𝐾,
which means that the observation period of each individual is a union of intervals 𝐼𝑘.
Denoting by 𝜆𝑖,𝑘 the value of 𝜆(𝑡, 𝑋𝑖(𝑡)) for 𝑡 ∈ 𝐼𝑘, and defining 𝑦𝑖𝑘 ∶= 𝑁𝑖(𝐼𝑘), the
discrete SCCS likelihood can be written as

𝐿(𝑦𝑖1,… , 𝑦𝑖𝐾|𝑛𝑖, 𝑋𝑖) = 𝑛𝑖!
𝐾

∏
𝑘=1

(
𝜆𝑖𝑘

∑𝐾
𝑘′=1 𝜆𝑖𝑘′

)
𝑦𝑖𝑘

.

ADR flexible estimation. When prior knowledge on time-at-risk windows is not
available, a simple method is to use a large window in order to be sure to capture the
potential effect. However, this strategy typically “dilutes” the risk over the window,
see [Xu+11], leading to a model unable to detect ADRs.

A different approach relies on fitting time-dependent parameters to estimate the
risk of ADR over large risk windows. The model estimates a time-varying relative
incidence function along with the risk window instead of assuming it to be constant.
This approach was first used in [GWF16; GWF17; Sch+16], who used splines to
model the drug effect as a function 𝜃 depending on longitudinal exposures. However,
both [Sch+16] and [GWF16; GWF17] seem restricted to the study of a single (drug,
ADR) pair at a time. This limitation can be problematic since SCCS is sensitive to
time-varying confounders and benefits from studying multiple drugs at once, as
shown by both [Sim+13] and [MRM16].

In order to derive a multivariate flexible model, we simplified the formulation
of the effect of longitudinal features by using convolutions of low-granularity step
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functions with point drug exposures. Assuming that the intensity is constant on each
𝐼𝑘, it writes

𝜆𝑖𝑘(𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙𝑘 +
𝑘

∑
𝑘′=𝑎𝑖

𝑋⊤
𝑖𝑘′𝜃𝑘−𝑘′),

where 𝑋𝑖𝑘 stands for the value of 𝑋𝑖(𝑡) for 𝑡 ∈ 𝐼𝑘, 𝜃 ∈ ℝ𝑑×𝐾, where 𝜓𝑖 is the baseline
incidence of patient 𝑖 and 𝛾𝑖 is a sum of non-temporal individual effects. The parame-
ter 𝜙𝑘 is a time-dependent baseline which is common to all individuals, such as the
effect of age.

We observe 𝑙 = 1,… , 𝐿𝑗𝑖 starting dates of exposures 𝑐
𝑗
𝑖𝑙 and introduce the features

𝑋𝑗
𝑖𝑘 = ∑𝐿𝑗𝑖

𝑙=1 𝟙𝑘=𝑐𝑗𝑖𝑙
, which leads to the following intensity

𝜆𝑖𝑘(𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙𝑘 +
𝑑

∑
𝑗=1

𝐿𝑗𝑖
∑
𝑙=1

𝜃𝑗
𝑘−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘 − 𝑐𝑗𝑖𝑙)). (6)

The quantity exp(𝜃𝑗𝑘) corresponds to the relative incidence of an exposure to drug 𝑗
that occurs 𝑘 time units after an exposure start. Finally, the likelihood writes

𝐿(𝑦𝑖𝑘,… , 𝑦𝑖𝐾|𝑛𝑖, 𝑋𝑖) =
𝐾

∏
𝑘=1

⎛
⎜
⎜
⎝

exp (𝜙𝑘 +∑𝑑
𝑗=1∑

𝐿𝑗𝑖
𝑙=1 𝜃

𝑗
𝑘−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘 − 𝑐𝑗𝑖𝑙))

∑𝐾
𝑘′=1 exp (𝜙𝑘′ +∑𝑑

𝑗=1∑
𝐿𝑗𝑖
𝑙=1 𝜃

𝑗
𝑘′−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘′ − 𝑐𝑗𝑖𝑙))

⎞
⎟
⎟
⎠

𝑦𝑖𝑘

and depends only on the parameters 𝜃 for the exposures and the time-dependent
baseline 𝜙. Such a flexible risk modeling combined with binary exposures have been
shown to provide optimal results when no prior knowledge on ADRs dynamics is
available [GAB15].

Feature selection. This formulation of intensity (6) is flexible since it allows to
capture an immediate effect in 𝜃𝑗0, or delayed ones using 𝜃

𝑗
𝑘 for 𝑘 ≥ 1. This flexibility

comes at a cost: it increases the number of parameters to be estimated significantly,
eventually leading to inaccurate estimations and dataset overfitting. Therefore, we
introduce a penalization that regularizes the parameters and helps the interpretation
of the estimated relative risks.

We introduce groups 𝜃𝑗 = [𝜃𝑗1⋯𝜃𝑗𝑝] ∈ ℝ𝑝 of parameters quantifying the impact
of exposures to drugs 𝑗 = 1,… , 𝑑 at different lags 𝑘 = 1,…𝑝. To avoid an overlapping
of the exposure effects, we assume that exposure starting times are far enough, that
is min𝑙,𝑙′ |𝑐

𝑗
𝑖𝑙 − 𝑐𝑗𝑖𝑙′| > 𝑝. We want to induce two properties on the relative risks

of drugs exposures: a “smoothness” property over lags 𝑘 = 1,… , 𝑝, namely we
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2. Adverse drug reactions detection

want consecutive relative risks exp(𝜃𝑗𝑘) and exp(𝜃
𝑗
𝑘−1) to be close; and the possibility

for a drug to have no effect, namely to induce that 𝜃𝑗 can be the null vector. This
can be achieved with the following penalisation that combines total-variation and
group-Lasso

pen(𝜃) = 𝛾tv
𝐽

∑
𝑗=1

𝑝−1

∑
𝑘=1

|𝜃𝑗𝑘+1 − 𝜃𝑗𝑘| + 𝛾gl
𝐽

∑
𝑗=1

‖𝜃𝑗‖2. (7)

The effect of the 1-D total-variation penalty is illustrated Figure 6.
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Figure 6 – Illustration of the Total Variation penalization effect. Assuming a risk
period starting at 0 and lasting for 30 periods, ConvSCCS will estimate a 30-period
piece-wise constant relative risk curve. The level of Total Variation penalization
controls the total size of the jumps. A high (resp. low) level of penalization results
in more (resp. less) restricted relative risk curves, illustrated by the small orange
dashes (resp. long blue dashes) curve. The model’s fitting algorithm aims to reach
a good balance between the detail level and the estimated relative risk curves’
smoothness.

Estimation. The penalised negative log-likelihood of our model then writes as
follows:

−ℓ(𝜙, 𝜃) + pen(𝜃) = −1𝑛

𝑛

∑
𝑖=1

𝐾

∑
𝑘=1

𝑦𝑖𝑘 log (
𝜆𝑖𝑘(𝜙, 𝜃)

∑𝐾
𝑘′=1 𝜆𝑖𝑘(𝜙, 𝜃)

) + pen(𝜃), (8)

where pen is given by (7) and 𝜆𝑖𝑘 by Equation (6).
The objective (8) is convex and ℓ(𝜙, 𝜃) is L-smooth. However, since the sparsity-

inducing penalisation pen(𝜃) is not differentiable, we use a proximal first-order
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method to minimise efficiently (8). Namely, we use the state-of-the-art SVRG algo-
rithm from [XZ14], which is a fast stochastic proximal gradient descent algorithm,
using a principle of variance reduction of the stochastic gradients. Finally, the hy-
perparameters 𝛾tv and 𝛾gl are selected using stratified V-fold cross-validation on the
negative log-likelihood.

Interpretability. ConvSCCS estimates a relative risk curve exp(𝜃𝑗) of length 𝑝 for
each feature 𝑗 = 1,… , 𝑑. When using point exposures, these curves can easily be
interpreted as the relative risk 𝑘 = 0,… , 𝑝 periods after exposure start. Confidence
intervals for these curves can be estimated using parametric bootstrap, as explained
in Chapter II.

Implementation. ConvSCCS is available in tick [Bac+17b], an open-source
machine learning library. This implementation provides a Python API, while com-
putationally intensive operations are implemented in C++. Cross-validation is
parallelized over multiple CPUs.

Performance on synthetic data. ConvSCCS was compared with the state-of-
the-art SCCS models, namely SmoothSCCS [GWF16] and NonparaSCCS [GWF17].
Patient histories were simulated using random drug exposures (see Chapter II for
more details) and relative risks represented in Figure 5. The performance was mea-
sured as the mean absolute error between the estimates and true values for the
relative incidences 𝜃𝑗 and the longitudinal baselines 𝜙. Figure 7 shows that fitting
the effect of several drugs at the same time and using our penalization provides a
better estimation accuracy than NonParaSCCS and SmoothSCCS, the improvement
being larger for the estimation of drugs exposures risks profiles than for the baseline.
Figure 8 gives the run times of all three procedures. ConvSCCS seems to scale better
than both SmoothSCCS and NonParaSCCS when fitting a large number of feature
such as 𝑑 = 14 on 𝑚 > 2000 cases. In small studies, however, when 𝑑 = 4 for
example, SmoothSCCS is the fastest algorithm, while NonParaSCCS is overall slower
than the two other algorithms.

2.6 Applications

Existing works on ADRs screening such as [Rya+13b] evaluated the performance of
their methodology by comparing their results to an adverse drug reaction database
containing established positive and negative association [Rya+13a]. While this
approach is convenient, ADRs databases’ reliability has been criticized as there is
evidence of misclassified associations [HAF16]. In place of this evaluation scheme,
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Figure 7 – Results on synthetic data using risk profiles illustrated in Figure 7) with
𝑚 = 4000 cases. The boxplots represent the distribution of mean absolute error,
computed over 100 simulated populations. Left: MAE distribution of the drug
exposure relative incidences 𝜃. Right: MAE distribution of the baseline relative
incidences 𝜙, constrained so that their integral is equal to one.
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Figure 8 – Run times of ConvSCCS, SmoothSCCS and NonParaSCCS for
1000, 2000, 3000, 4000 cases. Left: run times on 4 features. Left: run times on
14 features. As SmoothSCCS and NonParaSCCS can only handle one feature
at a time, we report the time required to fit them on each studied feature while
ConvSCCS is fitted on all the features simultaneously. For each model, a fit
includes cross-validation of the hyperparameters and estimation of confidence
bands (see Chapter II for more details).

we evaluate our screening methodology by comparing our results to existing meta-
analyses and results obtained with other methodologies. The two use-cases presented
below considered homogeneous groups of molecules against an adverse event.

The first one focused on antidiabetic molecules exposure and bladder cancer,
which is an ADR developing slowly over time. These associations were already
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studied in [Neu+12] which is our baseline.
The second application focused on Anxiolytics, Hypnotics, Antidepressants, and

Neuroleptics (AHANs) use. AHANs can induce changes in perception or drowsiness,
causing falls and fractures among the elderly. Fall-related fractures are likely to
occur more suddenly than ADRs such as cancers. This screening study was not
aiming at reproducing existing results, but rather at extending the knowledge on
these associations (see Chapter III) on which there is no consensus.

Note that while SNDS is often used to perform drug safety studies [Bez+17;
Tup+17a], it has been used only very recently to perform ADR screening [Thu+20]
using methods close to the ones described in [Rya+13b].

Antidiabetics and bladder cancer

Pioglitazone was withdrawn in France in 2011 due to an association with bladder
cancer amongmen. This association has been observed using SNDS data in [Neu+12].
This study was tailored to SNDS data to minimize potential bias, at the cost of many
ad hoc assumptions.

The study focused on French beneficiaries aged from 40 to 79 years on 2006/12/31
who filled at least one prescription for a glucose-lowering drug in 2006. The observa-
tion period ended on 2009/12/31. Using similar data, we used ConvSCCS to assess
if the ADR (bladder cancer) was correctly detected by the model when using fewer
assumptions than the initial study.

We used the same definition for the bladder cancer outcome as in [Neu+12].
The cohort contained 1699 cases of bladder cancer, which is roughly 400 missing
cases in comparison to [Neu+12]. We also had less history before the follow-up to
filter prevalent cases, due to French data regulation imposing patients information
deletion after ten years10. More details about the cohort structure and construction
can are available in Chapter II. Patients were exposed to a molecule as soon as they
purchased a drug containing this molecule. Exposures were not limited in time.
As diabetic patients use hypoglycemic agents continuously, exposure starting dates
might be noisy. Time intervals were set to 30-days based on calendar time to take
into account the small number of cases. The risk windows lasted 𝐾 = 24months
after drug exposure start. The validity of ConvSCCS assumptions for this dataset is
discussed in Chapter II.

Figure 9 displays the estimated relative risk curves (RRCs, or relative incidence
curve) and 95% bootstrap confidence intervals for all investigated glucose-lowering
drugs. Thanks to the penalization used in ConvSCCS, the estimated RRCs and confi-
dence intervals are piece-wise constant on large steps: this is particularly interesting
since it allows us to detect only significant variations of the relative risks.

10This deletion delay has been extended to twenty years since then.
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Figure 9 – Estimated relative incidence curves of glucose lowering drugs on the risk
of bladder cancer. Dark blue curves represent the estimated relative incidence
curves 𝑘 = 0,… , 23months after the beginning of an exposure. Light blue bands
represent 95% confidence intervals estimated by the parametric bootstrap, with
200 bootstrap samples.

As shown in Figure 9, a strong positive association between pioglitazone and the
risk of bladder cancer was recovered. The corresponding relative incidence increases
over time from 6 to 24 months after exposure start. The values and breakpoints of
this relative incidence curve are consistent with the results presented in [Neu+12]
(see Chapter II for more details).

The results comparison for other hypoglycemic agents hazard ratios was more
challenging since [Neu+12] did not estimate longitudinal risks for these molecules.
While [Neu+12] did not found the other hypoglycemic agents to be statistically sig-
nificant, our model cancels out the effect of rosiglitazone and finds that the other
molecules are non-significant statistically during most of the lags after exposure start.
However, sulfonylurea and “other” have significant positive estimates from lags 9 to
11, as well as insulin from lag 0 to 5. The shape of these three curves suggests there
might be some colinearity issues between these three features. Indeed, themagnitude
of their relative incidence curves seems to either match or be of opposite signs for
similar lag values. Metformin seems to be non-significant overall, despite few coeffi-
cients suggesting a positive association. While these results are not a perfect match
to [Neu+12], they show that our model might be useful when exploring quickly large
sets of molecules with a reduced amount of data preprocessing, even when the con-
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ditions are sub-optimal (noisy timestamps, possible feature endogeneity, and feature
colinearity). Indeed, when compared to [Neu+12], our methodology is scalable in
the number of drugs since it does not require the same precise preprocessing work.

Contribution: Screening AHANs association with fracture risk among the
elderly

This second application aims at screening associations between AHANs and fractures
among the elderly using SNDS data.

AHANs and fracture risk associations have already been investigated at different
levels of granularity and scopes in numerous clinical and observational studies. Frac-
tures among the elderly are a prominent public health issue as they are associated
with high morbidity and mortality [Dea+10; Vri+18]. They can be caused by reduced
bone mineral density or postural instability [All+05], both of which might be influ-
enced by the use of AHANs. Meta-analyses, such as [Sep+18a] or [Woo+09] highlight
how hard establishing a comprehensive mapping of fracture risk and molecules as-
sociation can be, as most studies scope is limited to a single drug or drug class. To
raise the level of evidence, [Sep+18a] calls for studies investigating pharmacological
subgroups rather than large drug classes, as well as duration effects, which is the
purpose of ConvSCCS.

Design. This study uses a self-control design on new-users, i.e. on patients who
started to use AHANs during the observation period. Excluding patients already
exposed to AHANs in the first year of observation prevented the risk dynamics
estimated by the model to be affected by prevalent11 drug use. Note that this strategy
was hardly feasible in the study on bladder cancer described above, as diabetic
patients’ condition requires continuous antidiabetic use. Subjects entering the cohort
had to:

(i) Be covered by the universal health insurance coverage, which is the case for
98.8% of France inhabitants [Tup+17a],

(ii) be 65 y.o. or older on the 1𝑠𝑡 of January 2015,

(iii) receive their first outpatient target drug prescription at least 365 days after
study starts on the 1𝑠𝑡 of January 2014 to prevent prevalent users or to provide
a sufficient wash-out delay.

Restriction to 65+ y.o. patients result in a more homogeneous population in terms
of professional activity (retirees), behaviour (response to a fall, sports practice),

11Drug exposure starting before the observation period.
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and characteristics (bone density), all of which might affect fracture risk. Patients
meeting all these conditions entered the cohort on the 1𝑠𝑡 of January 2014. They
exited the cohort exit was defined as (i) death; or (ii) end of the study period, the 31𝑡ℎ
of December 2017.

Drug exposures computation differed from themethod used in the bladder cancer
application. Indeed, existing literature on AHANsmolecules suggests a rapid onset of
fall-related ADRs. The length of the time intervals was set to one day to take this into
account. Exposures were limited in time and preceded by pre-exposure risk periods,
as illustrated in Figure 10. Such use of pre-exposure risk windows is not new [NN19;
Pra+11; Req+20], especially when using flexible longitudinal models. This exposure
construction allowed for multiple exposure periods for a single molecule within
a patient’s history. Fracture events were extracted following the query presented
in [Bou+20]. Chapter III provides additional details regarding exposures and fracture
identification.

Drug purchase Drug exposure Slack period Pre-exposure

t0 t0 + 30 t1 t0 + 30 t2

(a)

t0 t1 t2t0 + 45 t1 + 45

(b)

t0 − 14 t0 t1 t1 + 30 t2 − 14 t2

(c)

Figure 10 – Drug exposures computation. Exposures are assumed to last for 30 days
(90 days for large drug packaging) after drug purchases (i). A slack period is
added (ii) to account for slight variability in drug purchasing dates. Exposures
which overlap with other exposures or other exposures’ slack period are merged
(iii). A 14-day pre-exposure period is then added before each exposure starting
point (iii).

Relative risk curves interpretation. Pre-exposure relative risk curves (RRCs)
are useful to assess biases resulting from LOD-specific care pathways. A pre-exposure
RRC > 1 suggests an indication bias, when the molecule is likely to be prescribed
in reaction to an event associated with the target event. On the contrary, a pre-
exposure RRC < 1might highlight protective environments such as hospitalizations
preventing patients from experiencing a fracture. It typically occurs when a molecule
is prescribed during a stay for post-hospitalization care. The drug delivery date
then always follows a protective period. Both effects can mingle when the studied
event has a chance to cause hospitalization and is an indication for the molecule.
The resulting pre-exposure RRC is greater than one at the start of pre-exposure,
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then decreases sharply to values below one. This interpretation was consistent with
sensitivity analysis experiments restricting the fracture definition to a given severity
level (see Chapter III for more details). Even though pre-exposure estimates do
not prevent biases resulting from indication biases or protective environment, they
create a useful context to understand screening results properly. This additional
information might be valuable when designing further confirmation studies.

Results. The cohort selection process resulted in 126,567 fracture cases (as detailed
in Chapter III). Dynamic risk estimation produced a broad set of relative risk curves,
resulting in more informative results than point estimates providing yes/no answers.
As such, this approach fosters human interpretation of data-mined patterns rather
than pursuing a fully automated alert generation system.

Overall, the results were consistent with meta-analyses (Chapter III). For the
sake of conciseness, this introduction only features the relative risk curves (RRCs) of
antidepressants, represented Figure 11.

Antidepressants RRCs were consistent with the results presented in separate stud-
ies [Sep+18a; Ves09]. The increase in relative risks after exposure was smaller among
tricyclic antidepressants (TCAs) than selective serotonin reuptake inhibitors (SSRIs),
serotonin-norepinephrine reuptake inhibitors (SNRIs), and tetracyclic antidepres-
sants (TTCAs). We also observed decreasing RRCs for citalopram, escitalopram,
sertraline, mianserin, mirtazapine, and venlafaxine similarly to [Hub+03]. However,
we estimated a constant RRC for amitriptyline while [Hub+03] found a decreasing
RR. Amitriptyline pre-exposure RRC was above one, indicating a potential confound-
ing by indication, perhaps resulting from its use in neuropathic pain management,
especially after spinal cord injury [AJ17]. Aside from amitriptyline, pre-exposure
RRCs were either non-significant or below 1, which suggests post-hospitalization pre-
scriptions but no indication bias. This observation is consistent with SSRIs [Mor+13]
and mirtazapine [Hon+07] being prescribed following a myocardial infarction.

2.7 Discussion

We showed that our approach mixing cautious study design and an easy-to-tune
flexible statistical algorithm could be used to produce broad results highlighting
eventual associations and indication or database-specific longitudinal biases. This
approach is easy to implement as it relies on open-source, scalable libraries. It does
not require much fine-tuning; it can handle large populations and many molecules;
it relies on a few ascertainable assumptions and provides easily interpretable results.
Cohort construction and exposure and event definitions help to mitigate some of
the database biases, without injecting over-restrictive prior knowledge to retain
model plasticity. Flexible longitudinal pre and post-exposure relative risk curves

38



2. Adverse drug reactions detection

1

2

3 Imipramine

1

2

3 Clomipramine

1

2

3 Trimipramine

1

2

3 Amitriptyline

1

2

3 Doxepin

1

2

3 Dosulepin

1

2

3 Amoxapine

1

2

3 Maprotiline

1

2

3 Tianeptine

1

2

3

Re
la

tiv
e 

ris
k Fluoxetine

1

2

3
Citalopram

1

2

3 Escitalopram

1

2

3 Paroxetine

1

2

3 Sertraline

1

2

3 Fluvoxamine

1

2

3 Moclobemide

1

2

3 Mianserin

1

2

3 Mirtazapine

1

2

3 Venlafaxine

1

2

3 Milnacipran

−10 0 10 20 30

1

2

3 Duloxetine

−10 0 10 20 30

1

2

3 Agomelatine

−10 0 10 20 30
Relative time w.r.t exposure time (in days)

1

2

3 Vortioxetine
Exposure RR (95\% CI)
Pre-exposure RR (95\% CI)
Exposure starting time

Figure 11 – Fracture relative risk curves estimated before and after antidepressant
exposure. Exposure time is represented by the vertical black bar at 𝑥 = 0. Blue
(resp. orange) solid lines represent post-exposure (resp. pre-exposure) relative
risk, with 95% Confidence Intervals (CI) depicted in blue right hatched bands
(resp. orange left hatched). Molecules considered in the three first rows are
tricyclic antidepressants, followed by selective serotonin reuptake inhibitors in
rows 4 and 5, and serotonin-norepinephrine reuptake inhibitor row 7.
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provide information on healthcare pathways, helping to highlight large observational
databases specific biases. While the properties of our approach make it robust to
some biases and can detect additional ones, its result should still be interpreted with
care, and rely on the co-operation of medical experts and statisticians. Extensive
sensitivity analysis, such as the one featured in Chapter III, greatly help to spark
stimulating and fruitful discussions with health professionals. We believe it can
perform risk detection on large sets of molecules effectively while contextualizing
these risks to ease further confirmation studies.

3 Learning representations for health data
Labels in healthcare data can be scarce (e.g. rare diseases, see [MH20]) or expen-
sive [Shi+18] to obtain. Even when using large databases, the relevant study popula-
tions might be small, depending on the task. For example, the cohort of 1.4 million di-
abetic patients featured above resulted in 1,699 cases of bladder cancer (Table II.E.1).

Small populations are likely to result in low-quality estimates, even more as the
model complexity grows [RJ+91]. Multitask learning can be a way to bypass this issue
when several tasks are related and can be performed using a shared representation.
The improvement is twofold. First, learning on several tasks can increase the quantity
of available labeled data as each task might bring new labeled samples. Second, each
task might provide a different perspective of the studied phenomenon, resulting in
more robust representations of data points [Car97]. Thus, a multitask model can
eventually generalize better than single-task models.

However, models such as ConvSCCS are not readily adaptable to multitask setups.
Indeed, ConvSCCS requires assumptions that might be incompatible across several
tasks. For example, assumptions on exposures might conflict: finite repeated expo-
sures performs well at short-term risk estimation, while infinite unique exposures are
better for long-term risk estimation. Restrictive assumptions help control database-
specific biases (e.g. coding errors, noise in timestamps) and model estimation on
small datasets by introducing useful constraints. However, they hinder multitask-
learning, which requires more flexible models able to learn rich and polyvalent
representations.

In the last few years, recurrent deep learning models produced slight improve-
ments on several tasks related to healthcare. These models seem to benefit from
multitask learning [Har+19]. Contrary to the earlier approach, deep learning models
learn from (almost) raw data and do not require restrictive assumptions defining con-
cepts such as drug exposures. These algorithms consist of stacking several smaller
differentiable models (layers). Ideally, each layer progressively learns to extract
higher-level features from the previous layer’s output [LBH15]. Such algorithms
have the advantage of requiring fewer assumptions and data preprocessing, but they
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require large amounts of data and are difficult to interpret [Cha+17]. Note that the
training of deep learning algorithms is usually a non-convex problem. Hence, opti-
mization algorithms must be adapted and can only reach a local optimum [LBH15;
Rud16].

Despite the flexibility of deep learningmodels, a multitaskmodel must be learned
from scratch when a new task arises, which can be a significant drawback. Unsu-
pervised pre-training can be an answer [Rad+19]. Unsupervised learning does not
require human-labeled data, allowing to use more samples from large observational
databases. Pre-training is a form of transfer learning12, consisting of training a model
on a pretext task designed to learn useful input data representations (see Section 3.2
below for examples). Here, “useful” means that the pre-trained representation could
easily be adapted to other tasks (downstream tasks) unknown at training time. Note
that contrary to multitask learning, it is possible to reuse pre-trained models on new
tasks unanticipated at its pre-training time. The pre-trained model adaptation to
downstream tasks can be made by adding one or several task-specific layers. Thanks
to efficient pre-learned representations, the resulting model’s training is faster and
requires fewer data to reach similar performance than a model trained from scratch.

Unsupervised pre-training was an essential ingredient of recent successes in Nat-
ural Language Processing (NLP) [Dev+18; Rad+19], but also for time series [FDJ19]
and computer vision, where deep encoders are pre-trainedusing self-supervised [DZ17]
or contrastive [Che+20; OLV18] approaches. A parallel is often drawn between EHR
data and NLP [Aya+20; SRB19], since both can be represented as sequences of tokens,
corresponding to words or word pieces in NLP and medical codes in EHR. Recent
attention models and pre-training strategies resulted in considerable improvements
on many NLP tasks [Dev+18; Rad+19; You+18]. In particular, transfer learning has
recently proved to be very effective for NLP, while it was already the case in computer
vision [HR18].

Self-supervised learning is a recent form of unsupervised learning, which involves
a pre-training step on a large unsupervised dataset, using a pretext task, followed by
a fine-tuning step for specific supervised tasks. One of the most famous examples is
Bidirectional Encoder Representations from Transformers (BERT) [Dev+18], with
numerous extensions [Dai+19; Lan+19; Liu+19; Yan+19]. The work presented
below tries to adapt some of these approaches to EHRs.

12Transfer Learning focuses on solving a machine learning problem by reusing knowledge gained
from solving another problem.
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3.1 Deep learning architectures for healthcare: From NLP to
EHR.

While both text data and EHR are sequences of tokens with large vocabularies, EHR
exhibit characteristics that do not exist in NLP:

(i) The order of tokens in texts is somewhat self-evident, while the ordering of
tokens in EHR is specific to the medical practice. Temporal relationships
between types of codes is a crucial component of EHR that does not exist in
NLP.

(ii) As discussed in Section 2.1, EHRs are not direct recordings of the patients’
physiology, but rather captures their interactions with the healthcare system,
resulting in feedback loops and reversed dynamics [HA13].

(iii) EHR can contain much longer dependencies than text. For instance, a diabetes
diagnosis is a risk factor all along with a patient’s life, or some surgeries can
prohibit other interventions, even decades later [Shi+18].

Formalisation. Each EHR can be considered as a sequence of timestamped events
𝑧𝑖 = (𝑥𝑖, 𝑡𝑖), where 𝑥𝑖 ∈ ℝ𝑑 are tokens representing medical codes and 𝑡𝑖 are the asso-
ciated timestamps. These sequences are first embedded to reduce the dimensionality
of the feature space. Dense embeddings considered in this work are learned vectors
of dimension 𝐷 ≪ 𝑑 corresponding to a specific token. Timestamps embedding can
also use fixed representations based on multiple dilated sine waves [Vas+17]. The
embedding of 𝑧𝑖 is denoted 𝑒𝑖.

Sequence encoding. Tasks considered in this section encode event sequences into
representations useful to learn several tasks. A part of the model called the encoder
takes as input a sequence of event embeddings e = [𝑒1,… , 𝑒𝑛], where 𝑒𝑖 ∈ ℝ𝐷 for
𝑖 = 1,… , 𝑛 and outputs a sequence of contextualized embeddings of the same length.
Several deep learning architectures described below can be used to perform sequence
encoding. These architecture consist of multiple layers 𝑙 = 1,… , 𝐿, computing hidden
states h𝑙 = [ℎ𝑙1,… , ℎ𝑙𝑛] from the results of the previous layer, h𝑙−1. The input of the
first layer is the sequence embeddings h0 = e.

Convolutional models. Convolutional Neural Networks (CNNs) can have good
performance in time-seriesmodeling [Tsa+17]. They can build a sequence representa-
tion by convoluting a weights tensor called kernel along the temporal axis. ConvSCCS
presented earlier can be formulated as a single layer CNN using 1−dimensional
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convolutions. CNN layers’ structure (see Figure 12) makes them invariant to transla-
tion[Geh+17]. They can leverage Graphical Processing Units (GPUs) computational
capabilities as their computation is parallelizable. However, their shift-invariance can
be an issue when global order matters (e.g. when the recent past is more informative
than the distant past) [Cho18].

e1 e2 e3 ... en

h3h1 h2 ...

e4 e5

e1 e2 e3 ... en

h3h1 h2 ...

e4 e5

e1 e2 e3 ... en

... hk

e4 e5

...

A

B

C

Figure 12 – Representations of three families of deep learning models for sequence
modelling. The first layer is represented to illustrate the different sequence repre-
sentation mechanisms. These layers compute hidden states ℎ = ℎ1,… , ℎ𝑛 from
a sequence of embeddings 𝑒 = 𝑒1,… , 𝑒𝑛. (A): Convolutional Neural Network
(CNN) layer, using a kernel of dimension 3 and “same” zero-padding. Same
zero-padding consist of adding zeros on both sides of the sequence 𝑆 so that the
sequence 𝑆′ resulting from the convolution has the same length as 𝑆. Each rep-
resentation ℎ𝑘 is computed from 𝑒𝑘−1, 𝑒𝑘, 𝑒𝑘+1, for 𝑘 = 1,… , 𝑛. (B): Recurrent
Neural Network (RNN) layer. Each representation ℎ𝑘 is computed from ℎ𝑘−1
and 𝑒𝑘. (C): Attention model layer. Each representation ℎ𝑘 is computed from
sequence elements 𝑒𝑗, 𝑗 ∈ 𝒥 selected by an attention mechanism.

Recurrent neural networks. Recurrent neural networks (RNNs) update an inter-
nal state ℎ𝑡 recursively, based on their previous state ℎ𝑡−1 and the current sequence
element 𝑒𝑡 (see Figure 12). The structure of RNNs makes them suitable to process
variable-length sequences with constant model size as they share weights across time.
They have been used successfully to perform time-series prediction [HBB20] and
sequence classification [Har+19; Kab+19]. However, they are computationally slow
as they cannot fully leverage GPUs for training. Indeed, their recursive structure
triggers regular memory I/O to load sequence chunks, quickly becoming a bottleneck
and resulting in an under-utilization of the GPUs’ computation capabilities. This
issue grows with the length of the sequences [HS15].
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Attentionmodels. Models relying exclusively on attentionmechanisms have been
designed to represent sequences without processing the data in order (see Figure 12).
Thanks to this feature, they can fully leverage GPUs’ parallel computation capabilities
resulting in faster training than RNNs. They have been used extensively in NLP and
led to large pre-trained models such as BERT [Dev+18] or GPT [Rad+19]. Contrary
to RNNs and CNNs, attentionmodels leverage tokens order by embedding their index
in the sequence (positional embeddings) instead of using their actual position.

Contrary to NLP, EHR sequences contain timestamps. Besides, these sequences
are not sampled regularly like economic time series. This irregular sampling can
cause issues when using RNNs, as the memory mechanisms used to update hidden
states might not take temporal gaps into account. A similar issue arises with CNNs
as their performance might suffer from their inability to learn a global order. These
issues have been mitigated by performing various types of data interpolation to build
regularly sampled time-series from sparse EHR data [Har+19; Tan+20]. However,
even if EHR data is sparse, it can consist of very long sequences with a large feature
space. Imputed time series can then be very costly in GPU memory. It might result
in slow training when using a large dataset designed for self-supervised pre-training.
The work featured in Chapter IV tries to use attention models using timestamp
embeddings to express temporality in order to solve this issue. This approach would
allow working on sparse EHRs sequences while leveraging parallel computations
on GPUs. This aspect is critical when using large volumes of data to build reusable,
pre-trained models.

The Transformer encoder proposed by [Vas+17] can be used to build a represen-
tation of an 𝑛-input sequence by stacking Multi-head Self-Attention (MSA) layers.
Considering 𝐿 layers, ℎ heads and 𝑑-dimensional token representations, an MSA
layer writes as follows:

Q𝑖 = HW𝑄
𝑖 , K𝑖 = HW𝐾

𝑖 , V𝑖 = HW𝑉
𝑖 ,

V′
𝑖 = softmax (

Q𝑖K⊤
𝑖

√𝑑
)V𝑖, (9)

MSA(H) = [V′
1,… ,V′

ℎ]W𝑂
𝑖 ,

whereW𝑄
𝑖 ∈ ℝ𝑑×𝑑𝑘, W𝐾

𝑖 ∈ ℝ𝑑×𝑑𝑘, W𝑉
𝑖 ∈ ℝ𝑑×𝑑𝑣 andW𝑂

𝑖 ∈ ℝℎ𝑑𝑣×𝑑 are learned
parameters and H ∈ ℝ𝑑 is the MSA input. The dot product between the queries
Q𝑖 and the keys K𝑖 in Equation (9) weights the values V𝑖 to which the MSA pays
attention. MSA layers are stacked on 𝐿 layers as follows

Z𝑙 = LayerNorm (H𝑙 +MSA(H𝑙))

H𝑙+1 = LayerNorm (Z𝑙 + FFN(Z𝑙))
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whereH𝑙 ∈ ℝ𝑛×𝑑 (resp.H𝑙+1) is the input (resp. output) to the 𝑙𝑡ℎ-layer and FFN is a
dense feed forward network13. The input to the encoder isH0 = e, the 𝑛-sequence of
token embeddings.

Linear transformer A well-known issue with models based on self-attention is
their quadratic complexity w.r.t. the length of the sequence 𝑛. This complexity comes
from the fact that the attention mechanism may focus on any event of the overall
sequence. The EHR sequences lengths are approximately distributed according
to a power law, which means that a significant proportion of health records has
many events. Long sequences generally induce performance issues for Transformer-
like models and can even lead to out-of-memory errors. Some recent approaches
focused on dealing with long sequences without sacrificing efficiency. Towards this
end, [Chi+19] introduced sparse factorizations of the attention matrix to reduce
the self-attention complexity to 𝒪(𝑛√𝑛). [KKL20] further reduced the complexity
to 𝒪(𝑛 log(𝑛)) using locality-sensitive hashing. Recently, [Kat+20] introduced the
linear transformer model that reduces complexity to 𝒪(𝑛) by using a kernel-based
formulation of self-attention and the associative property of matrix products to
calculate the self-attention weight. More precisely, the authors proposed to rewrite
Equation (9) as follows:

V′
𝑖 =

𝜙(Q𝑖)
𝑇∑𝑁

𝑗=𝑖 𝜙(K𝑗)V𝑇
𝑗

𝜙(Q𝑖)
𝑇∑𝑁

𝑗=𝑖 𝜙(K𝑗)
,

where 𝜙(𝑥) is a feature map associated to a kernel 𝑘(𝑥, 𝑦) ∶ ℝ𝑑 × ℝ𝑑 → ℝ+. Note
that the feature map 𝜙(⋅) is applied row-wise to the matrices Q andK.

Attention models on a graph. When using Graph Attention Networks (GATs)
introduced in [Vel+17], each EHR sequence 𝒳𝑖 is represented by a graph 𝒢𝑖 (see
Figure 13). The labels𝒴𝑖 are not encoded in the graph. Considering an EHR sequence
of length 𝐿, let us denote visit nodes of the graph 𝑣𝑡0,… , 𝑣𝑡𝐿, and the event-modality
nodes 𝑥𝑑,𝑚𝑑

where 𝑑 = 1,… ,𝐷 indexes the event types and 𝑚𝑑 = 1,… ,𝑀𝑑 their
modality. To ease notation, we write 𝑑,𝑚 instead of 𝑑,𝑚𝑑. Denoting 𝑒 the edges of
the graph,

𝒢𝑖 ∈ {{𝑣}𝑡, {𝑥}𝑑,𝑚, {𝑥}𝑒→𝑣, {𝑒}𝑣𝑡→𝑣𝑡′,𝑡<𝑡′
}

Times differences Δ𝑡,𝑡′ = 𝑡′ − 𝑡 can be stored on the edges {𝑒}𝑣𝑡→𝑣𝑡′
, while they

are set to Δ = 0 for edges {𝑥}𝑒→𝑣. The graph is constructed by allowing visit nodes to

13A dense feed forward layer applies a linear transformation to the incoming data ℎ′ = ℎ𝐴⊤ + 𝑏
followed by a non-linear function such as a sigmoid function
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Figure 13 – Graph representation. A timestamped EHR sequence (A) can be repre-
sented by the graph (B). A visit is created for each timestep in which medical
events occur. Event nodes are created each time this event occurs during a
visit. Visit nodes are initialized with the sum of the [visit] token embedding
and the corresponding positional embedding, while event nodes are initialized
with the embedding of the corresponding modality. In practice, the graph is
implemented as depicted in panel (C) to improve the representation sparsity.
For a given EHR sequence, event nodes are created only once per observed
modality (event-modality nodes). Each visit node in which an event occurred
can attend to the corresponding event-modality nodes. Note that there is no
information flowing into these event-modality nodes when updating the graph
through the layers. As such, there is no causality break nor data leak when
using this representation. Event-modality nodes are uniquely learned by the
embedding layer.
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look back to the 𝑘 previous visits by adding the edges {𝑒}𝑣𝑡→𝑣𝑡′,𝑡<𝑡′
. The model first

embeds the nodes 𝑥 using a dense embedding layer of dimension 𝐹

𝑥 = EmbeddingLayer(𝑥).

Nodes 𝑣𝑡 are initialized as follows

𝑣𝑡 = EmbeddingLayer(𝑣) + PositionalEncoding(𝑡),

where EmbeddingLayer(𝑣) is common to all visits. Let us denote the graph with
embedded nodes 𝒢0𝑖 = 𝒢𝑖. This representation is then updated successively by several
GatLayers [Vel+17].

Let us ignore the distinction between visit and event-modality nodes for amoment,
denoting ℎ = {ℎ1,… , ℎ𝑛}, ℎ𝑖 ∈ ℝ𝐹 the nodes of the graph. A GatLayer takes an
input graph 𝒢𝑛𝑖 , and produces a new graph 𝒢𝑛+1𝑖 in which only nodes representation
ℎ = {ℎ′1,… , ℎ′𝑛}, ℎ𝑖 ∈ ℝ𝐹′ have been updated while the edges remain unchanged.
The attention layer is parametrized byW ∈ ℝ𝐹′×𝐹, 𝑎 ∈ ℝ2𝐹′. It writes

𝛼𝑖𝑗 =
exp (LeakyReLU (𝑎⊤ [Wℎ𝑖||Wℎ𝑗]))

∑𝑘∈𝒩𝑖
exp (LeakyReLU (𝑎⊤ [Wℎ𝑖||Wℎ𝑘]))

,

where ⊤ denotes transposition, || concatenation, 𝒩𝑖 the 𝑘-order neighborhood of
ℎ𝑖 = {ℎ𝑗 ∈ 𝒢𝑖 𝑠.𝑡. 𝑒ℎ𝑗→ℎ𝑖}. LeakyReLU defines as

LeakyReLU(𝑥) = { 𝑥 𝑖𝑓𝑥 > 0,
𝑎𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑎 is either fixed to a small value (such as 0.01) or learned by the model. Nodes
are updated as

ℎ′𝑖 = 𝜎( ∑
𝑗∈𝒩𝑖

𝛼𝑖𝑗Wℎ𝑗)

where 𝜎 is a non-linearity. As in [Vas+17], the attention mechanism can use several
attention head. While Self Attention described in [Vas+17] splits the input represen-
tation over the dimension 𝐹 to feed the heads and concatenates the results of each
head, GAT heads takes an inputs of size 𝐹 average their outputs. The GatLayer
applies the update rule defined in Equation (3.1) to each node of the input graph.
The embedded graph 𝒢0𝑖 flows through 𝐿 GatLayer [Vel+17].

𝒢𝑙𝑖 = GatLayer𝑙(𝒢𝑙−1𝑖 ), 𝑙 = 1… , 𝐿

to update the graph representation. Note that all nodes are updated simultaneously.
Besides, as there are no edges directed towards nodes 𝑥, the representation of event-
modality nodes is not updated. This could be done by adding edges 𝑒𝑥𝑑,𝑚→𝑥𝑑,𝑚. The
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final graph representation 𝒢𝑛𝑖 can then be used to perform tasks such as node classi-
fication (LOS task on visit nodes) or graph classification (IHM task by pooling visit
nodes).

3.2 Pre-training strategies.

Masked LanguageModel. Masked Language Model (MLM) has been introduced
in [Dev+18] to learn language representations. It introduces two pretext tasks. The
first one consists in selecting 15% of the sequence tokens randomly. They aremodified
as follows: 80% of these tokens are replaced by the [MASK] token, 10% of them are
replaced by a random code, and another 10% remain unchanged. The pretext task
consists in predicting the true token given the rest of the sequence. The second task
consists in predicting the next sentence, given the current one. While the first pretext
task can adapt to EHRs, the second one does not as the “sentence” concept is hard to
define for healthcare data.

Triplet loss. Triplet loss training consists of predicting if several sub-sequences
belong to a given sequence or not. The triplet loss was shown to produce good time
series representations by employing an unsupervised causal model [FDJ19]. The
sampling algorithm extracts random sub-sequences 𝑥ref and 𝑥pos (a positive example)
of a given sequence 𝑦𝑖, and samples 𝐾 of 𝑥neg (negative examples) that are chosen
at random in different random time series 𝑦𝑗 with 𝑗 ≠ 𝑖. Then, on the one hand,
the representation of 𝑥ref should be close to that of 𝑥pos, while on the other hand,
the representation of 𝑥ref should be distant from the ones of 𝑥neg. This leads to the
minimization of the triplet loss, given by

ℒtriplet = − log(𝜎(𝑓(𝑥ref, 𝜃)⊺𝑓(𝑥pos, 𝜃))) −
𝐾

∑
𝑘=1

log(𝜎(−𝑓(𝑥ref, 𝜃)⊺𝑓(𝑥neg𝑘 , 𝜃))),

where 𝜎 is the sigmoid function and 𝑓(⋅, 𝜃) is a deep neural network encoder, where
the parameters 𝜃 are to be trained.

Contrastive Predictive Coding. Contrastive Predictive Coding (CPC), as formu-
lated in [OLV18], learns representations by training neural networks to predict the
representations of “future” observations from those of “past” ones. The main idea of
CPC consists of maximizing themutual information between the encoded representa-
tions and not between the original labeled data. When predicting future information
the authors propose to encode the target 𝑥 (future) and context 𝑐 (present) into a
compact distributed vector representations via non-linear learned mappings. These
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representations are designed to maximally preserve themutual information (MI) of
the original signals 𝑥 and 𝑐 defined as

𝐼(𝑥; 𝑐) = ∑
𝑥,𝑐

𝑝(𝑥, 𝑐) log
𝑝(𝑥|𝑐)
𝑝(𝑥)

.

By maximizing the mutual information between the encoded representations (which
is bounded by the MI between the input signals), CPC extracts the underlying latent
variables that inputs have in common. The architecture of CPC is as follows: first, a
non-linear encoder 𝑓𝜃 maps the input sequence of observations 𝑥𝑖 to a sequence of
latent representations 𝑧𝑖 = 𝑓𝜃(𝑥𝑖). Next, an auto-regressive model 𝑔ar summarizes all
𝑧 ≤ 𝑡 in the latent space and produces a context latent representation 𝑐𝑖,𝑡 = 𝑔ar(𝑧𝑖 ≤ 𝑡).
The authors model a density ratio which preserves the mutual information between
𝑥𝑖,𝑡+𝑘 and 𝑐𝑖,𝑡 as follows:

𝑓𝑘(𝑥𝑖,𝑡+𝑘, 𝑐𝑖,𝑡) = exp (𝑧𝑇𝑖,𝑡+𝑘𝑊𝑘𝑐𝑖,𝑡).

Both the encoder and auto-regressive models are trained to jointly optimize a loss
based on Noise Contrastive Estimation (NCE), which is called InfoNCE. Given a set
𝑋 = {𝑥1,… , 𝑥𝑁} of 𝑁 random samples containing one positive sample from𝑝(𝑥𝑡+𝑘|𝑐𝑡)
and 𝑁 − 1 negative samples from the distribution 𝑝(𝑥𝑡+𝑘), we optimize

ℒ = −𝔼[ log
𝑓𝑘(𝑥𝑖,𝑡+𝑘, 𝑐𝑖,𝑡)
∑𝑥𝑗∈𝑋

𝑓𝑘(𝑥𝑗, 𝑐𝑡)
].

This loss function encourages the prediction ̂𝑧𝑖+𝑘 to bemost similar to the one positive
sample 𝑧𝑖+𝑘 among a set of randomly selected negative samples 𝑧𝑙 [Hén+19]:

ℒInfoNCE = −∑
𝑖,𝑘
log (

exp( ̂𝑧𝑇𝑖+𝑘𝑧𝑖+𝑘)
exp( ̂𝑧𝑇𝑖+𝑘𝑧𝑖+𝑘) + ∑𝑙 exp( ̂𝑧

𝑇
𝑖+𝑘𝑧

′
𝑙)
).

Related works.

As explained previously, adapting state-of-the-art architectures for NLP to structured
EHR is a non-trivial task. Only a few relevant papers can be found in the literature
on this topic. BEHRT [Li+20] develops pre-trained models to predict the occurrence
of any disease in future visits. It uses positional embeddings to distinguish different
visits and adds an age layer to imply temporal orders. However, BEHRT only uses
disease sequences besides basic demographic information, discarding other medical
information such as lab exams and drug consumption, which might hinder its reuse
for other tasks. G-BERT [Sha+19] adapts MLM pre-training to align disease and
drug representations within a single visit to predict medications from diseases and
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conversely. However, they discard order and temporal information in the process,
making this approach unusable to perform forecasting tasks. Med-BERT [Ras+20]
adapts BERT for pre-training contextualized embedding models on a larger cohort
and longer visit sequences compared to BEHRT and G-BERT. Interestingly, this paper
introduces the pretext task of prolonged length of stay in hospital (LOS) and fine-
tunes the model on two tasks concerning disease-prediction. However, Med-BERT
only exploits diagnosis information and does not include the elapsed time between
visits, leading to a significant loss of information.

Graph Convolutional Transformer introduced in [Cho+20] incorporates a self-
attention mechanism. Medical visits are represented as graphs, of which edges are
estimated by using self-attention. Self-attention is constrained to enforce specific
chains of events such as observed symptoms cause diagnoses and diagnoses cause
prescription. The representations of visits are computed with convolutional graph
networks over the estimated graphs. This approach supposes to have access to fine-
grained information in the dataset. However, data such as symptoms are not often
available in EHRs.

3.3 Contribution: comparison of multiple attention models
and pre-training strategies

This work brings new contributions with the evaluation of several transformer archi-
tectures combined with several unsupervised pre-training strategies for structured
EHR. Pre-trained representations are fine-tuned with a single additional output layer
for the considered specific downstream task. The experiments were performed using
the freely accessible MIMIC-III database [Joh+16], that is featured in numerous
publications, see [Har+19; Shi+18; Son+18] among many others. Experiments
conducted in this work use current best practices for hyperparameters tuning (see
Section IV.2.4).

Method

Apart from patient demographics (e.g., age, gender) and some other static features,
a structured EHR consists, for each patient, of a sequence of medical events, such
as a diagnosis, medication codes, or medical acts, for example.14 Each event is
timestamped with a precision called time unit, that depends on the database. Since
the time unit is generally relatively large (an hour or a day), many events are co-
occurring, i.e. share the same timestamp.

14Medical concepts used in EHR and associated codes usually come from pre-defined standards,
such as the International Classification of Diseases (ICD)
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Timeline versus graph representation. A patient EHR with several types of
events is illustrated in Figure 13A using a timeline representation. Another rep-
resentation illustrated in Figure 13C uses a directed graph representation, where
successive nodes representing time units replace the timeline. Another set of nodes
represent the events happening during a time unit. The edges correspond to existing
structural associations between events such as next time unit event on the timeline,
medical events associated with the same time unit, diagnosis (or treatment) events
associated with a symptom event. Such a representation was introduced by [Cho+18]
and inspired other works, such as [Cho+20] and [Het+19]. The graph representation
used in this work is similar to that of [Het+19], but sequences of events are modeled
through temporal point processes therein, while we use deep attention models. The
choice of the representation is driven by the architecture used, as explained below.

Models architecture. The models considered in this work all share the same
neural network architecture illustrated in Figure 14. Following the data flow, the
architecture contains four components: an embedding component, an encoder, a
pooler, and a final dense layer for operating a given task. We use a two-step training
strategy: the encoder is first pre-trained in an unsupervised way using some pretext
task, and the final dense layer is fine-tuned on some specific clinical supervised task.

+

Sequence of EHR event 
embeddings

Positional Embedding

EHR encoded representation

+

Task-specific 
Dense LayerEmbedding Encoder Pooler

Static Features Embedding

Static Features Embeddings

Pool
sequence?
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Sequence of EHR events:
Timestamps:

Static features :
Inputs:

+ + =
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Figure 14 – Overview of the generic model architecture. The EHR representation
(see Figure 13) is used as input data to an architecture with four components:
an Embedding component, a attention-based encoder, a Pooler and a final dense
layer for operating a given pre-training or downstream task.
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Embedding component. Each event from the EHR representation corresponds to
a code and/or numeric variables (see Figure 13A).These codes/variables are tokenized
and embedded: each unique token is individually mapped to a low-dimensional
embedding vector. The relative position (timestamp) of each event is encoded using
fixed positional embeddings (added to each event embedding) following [Vas+17],
in which the ordered position number is replaced by the elapsed time relative to the
timestamp of the first event of the sequence. Finally, a unique token [CLS] is added
at the end of the sequence and is embedded. Moreover, static features (including
patient demographics, e.g. age, and gender) are also embedded and summed out into
a single vector used as input to the encoder component, see Figure 14.

Encoder. An encoder is used to encode the whole EHR representation into a new
sequence with the same length. The static features embedding is then added to each
element of this new sequence. This work compares the following attention-based
encoders:
(i) The Vanilla Transformer [Vas+17], which allows building a representation of

an input sequence by stacking Multi-head Self-Attention (MSA) layers;

(ii) The Linear Transformer [Wu+20], which significantly reduces the memory
footprint and scales linearly with respect to the sequence length compared
to [Vas+17], allowing to feed entire sequences without length restrictions;

(iii) The Graph Attention Network (GAT) [Vel+17; Ye+19], which uses fully con-
nected graphs with an self-attention mechanism which does not involves
queries and keys as MSA. For this encoder, we use the graph representation
described in Section 3.3 and Figure 13 C.

In each case, causal attentions are used: at any given position, the attention
mechanism is not allowed to put attention on any data involving future positions, so
that the output sequence of the encoder preserves causality.

Pooler. As explained in Section 3.3 below, two types of downstream supervised
tasks can be considered: (i) tasks that operate on each event embedding of the
sequence coming out of the encoder (e.g. length of stay prediction) and (ii) tasks that
exploit the overall sequence (e.g. mortality prediction). A pooler is required only
for (ii). We follow [Dev+18] where only the last element of the encoded sequence is
kept (which explains the use of the [CLS] token above).

Unsupervised pre-training

As summarized in Figure 15, the unsupervised pre-training strategies described in
Section 3.2 were considered:
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(i) Masked Language Modeling (MLM) [Dev+18],

(ii) Triplet Loss [FDJ19],

(iii) Contrastive Predictive Coding (CPC or InfoNCE) [Che+20; Sun+19].

All architectures were trained from scratch and independently for each pre-training
strategy.
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Figure 15 – Overview of the unsupervised pre-training and evaluation procedures.
First, three encoders are pre-trained separately in an unsupervised manner. The
obtained representation for each token in the sequence is then passed into the
Pooler if the downstream supervised task requires it. In the next step, we add a
classifier network on the top of the encoder, which is trained in a supervised
manner separately for each downstream task.

Supervised fine-tuning, losses and metrics

All the combinations of encoder architectures and pre-training strategies are as-
sessed using several clinical supervised tasks ([Har+19], see Section 3.4 below). For
each model combinations and supervised tasks, the following training strategies are
compared:

(i) Fine-tuning, using the supervised task, of the whole architecture, with the
embedding component and encoder initialized with the weights learned during
the pre-training phase;
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(ii) fine-tuning of the final dense layer only (the embedding component and en-
coder weights are fixed to the pre-trained values);

(iii) end-to-end supervised training of the whole architecture, with random initial-
ization of all the weights.

Depending on the supervised tasks, the following standard losses and assessment
metrics were used: cross-entropy loss for binary and multi-class classification, with
AUROC and AUPRC metrics for assessing binary classification tasks and Cohen’s
linear weighted kappa metric for multi-class classification. hyperparameters and
training details are thoroughly described in Section IV.2.4 of Chapter IV.

3.4 Experiments
The experiments were conducted on MIMIC-III data. MIMIC-III (Medical Informa-
tion Mart for Intensive Care) is a single-center database containing de-identified
data about patients admitted to intensive care units (ICU) [Joh+16] between 2001
and 2012. Following [Har+19; Son+18], the experiments used a cohort of 33,798
unique patients with a total of 42,276 ICU stays. Population selection, features, and
labels were generated following [Har+19] (see Table IV.3.1 in Chapter IV). Training,
validation, and testing sets are respectively 70%, 15%, and 15% of the ICU stays,
reusing the same sampling as [Har+19]. ICU stays with less than five events are
excluded.

Three clinical prediction tasks15 from [Har+19] were considered:

(i) In-Hospital Mortality (IHM): the outcome is a binary variable indicating wheter
a patient dies during a given ICU stay or not. It is treated as a binary classifi-
cation problem. True mortality labels are curated by comparing the times of
death, hospital admission, and discharge. The mortality rate within the cohort
is 13%.

(ii) Length-of-Stay (LOS): the outcome is the remaining time spent in ICU. It is
bucketized into ten buckets (≤ 1 day; 1; 2;… ; 7 days, [1, 2) weeks; ≥ 2 weeks)
and is considered as a 10-class classification problem.

(iii) Phenotyping (PHE): the outcome is a category corresponding to one of 25 dis-
eases. It is treated as a classification problem and called acute care phenotyping.
The disease is predicted retrospectively from data about the ICU stay of a pa-
tient. The data contains 25 diseases, including 12 critical respiratory/renal

15We do not use the decompensation task, since it is highly correlated with IHM and leads to a
highly unbalanced binary classification problem that does not provide more insights than the ones
considered here.
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failures, 8 chronic conditions such as diabetes or atherosclerosis, and 5 “mixed”
conditions such as liver infections. Patients with multiple phenotypes are
excluded.

Results

Combinations of the architectures and pre-training strategies detailed in Section 3.3
were compared using supervised tasks related to clinical prediction tasks (Section 3.4)
on MIMIC-III. The corresponding metrics, computed on the test set, are reported in
Table 1.

Table 1 – Test metrics obtained by all combinations of architectures and pre-training
strategies (rows) on clinical prediction tasks (columns) using the MIMIC dataset..
Due to its underwhelming performances, GAT was not trained for all the tasks and
training strategies to avoid computation waste. ∗ The Length Of Stay (LOS) task
in [Har+19] slightly differ from ours. They predict the remaining LOS at each hour,
while our experiments do so each time there is a new patient measurement. Thus,
performance comparison cannot be made directly between these two approaches.

Encoder In-hospital mortality Length of Stay Phenotyping
AUPRC/AUROC Kappa AUROC

End-to-end supervised
Multi-task LSTM [Har+19] 0.533/0.870 0.450∗ 0.774
Vanilla Transformer 0.394/0.809 0.535 0.736
Linear Transformer 0.355/0.790 0.584 0.676
GAT 0.132/0.528 0.218 0.503

MLM Pre-training
Vanilla Transformer 0.409/0.817 0.554 0.749
Linear Transformer 0.344/0.785 0.405 0.708
GAT 0.154/0.572 – –

Triplet Loss Pre-training
Vanilla Transformer 0.357/0.781 0.451 0.729
Linear Transformer 0.330/0.774 0.577 0.686

CPC Pre-training
Vanilla Transformer 0.391/0.805 0.466 0.741
Linear Transformer 0.333/0.770 0.521 0.675

According to this table, we first note that GAT shows inferior performance on
all tasks, using pre-training or not. Increasing 𝑘, the number of past visits GAT
could attend to did not result in any improvement. As aggregating events into visits
according to a similar graph structure resulted in good representation in [Cho+20],
this poor performance might be rooted in the attention mechanism. Indeed, GAT
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uses an attention formulation relying only on node similarity rather than the query,
key, values mechanism used in MSA. Besides the performance aspect, the graph
formulation was very effective in GPUmemory usage, allowing to process the longest
sequences and use larger mini-batches. Moreover, attention on a graph is easy to
implement since no ad-hoc masking is required to enforce causality, and it easily
handles sequences of varying lengths. Blending this approach with an attention
mechanism closer to MSA could be an exciting extension, as an analoguous approach
resulted in promising results in NLP [Ye+19].

As explained in Section 3.1, the vanilla transformer could not handle long se-
quences under the memory constraints of a few GPUs due to its quadratic complexity
in the sequences’ length. In our experiences, limiting the length of the sequences
seemed to hinder its performance. The linear transformer could handle longer
sequences, but it did not result in performance improvements over standard MSA.

Fine-tuning with frozen encoder weights led to worse results than fine-tuning
with unfrozen weights and are not reported here. We observed that it took only 5 to
15 epochs, depending on the task, to achieve good performances when performing
fine-tuning with unfrozen encoder weights. The training for each architecture, pre-
training strategy and prediction took less than 5 hours, except MLM, for which
training could last up to two days. We observed that MLM improved the scores of
end-to-end supervised Vanilla Transformer, while Triplet Loss and CPC pre-training
led to minor improvements. Regarding triplet loss, the random sampling of triplets
𝑥ref, 𝑥pos, 𝑥neg might be an issue. Indeed, even simple models can quickly learn to
choose between 𝑥pos and 𝑥neg when they are chosen at random. In this case, the
average triplet loss quickly converges towards zero, resulting in very slow parameter
updates [Wu+17]. Adapting the sampling strategy to EHR data could be a way of
improving results on triplet loss.

Contrastive pre-trainingmight not have revealed all of its capabilities in our exper-
iments since it was understood only recently for computer vision problems [Che+20]
that data-augmentation is a crucial ingredient in such unsupervised strategies. Build-
ing pertinent data-augmentation on EHR data remains, to the best of our knowledge,
a fascinating open question that requires to be addressed by future works since it
would, in our opinion, enable important advances in learning representations for
health pathways in an unsupervised fashion.

Finally, this work was kept general enough to be used with claims data in place
of EHR data. While many publications feature deep learning models on EHR data,
only [Kab+19] uses such models on claims data. Claims databases such as SNDS
are likely to benefit the most from pre-training because of its scale and exhaustiv-
ity. Pursuing this work’s development on such a database could eventually lead to
significant innovations in public health.
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Chapter I

SCALPEL3: a scalable
open-source library for
healthcare claims databases

Objective: This article introduces SCALPEL3 (SCAlable Pipeline for
hEaLth data), a scalable open-source framework for studies involving
Large Observational Databases (LODs). It focuses on scalable medical
concept extraction, easy interactive analysis, and helpers for data flow
analysis to accelerate studies performed on LODs.

Materials and methods: Inspired from web analytics, SCALPEL3 rely on
distributed computing, data denormalization and columnar storage. It
was compared to the existing SAS-Oracle infrastructure by performing
several queries on a dataset containing a three years-long history of
healthcare claims of 13.7 million patients.

Results and Discussion: SCALPEL3 horizontal scalability allows han-
dling large tasks quicker than the existing infrastructure while it has
comparable performance when using only a few executors. SCALPEL3
provides a sharp interactive control of data processing through legible
code, which helps to build studies with full reproducibility, leading to
improved maintainability and audit of studies performed on LODs.

Conclusion: SCALPEL3 makes studies based on Système National des
Données de Santé (SNDS)much easier andmore scalable than the existing
framework [Tup+17b]. It is now used at the agency collecting SNDS
data, at the French Ministry of Health and soon at the National Health
Data Hub in France [Cug+18].

Keywords: Large observational database, Healthcare claims data, ETL, Scalability,
Reproducibility, Interactive data manipulation
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I.1 Introduction
In the past decade, the volume of healthcare data and its accessibility rose quickly.
For instance, in France, the SNDS claims database contained 86% of the French
population in 2010 [Tup+10a] to reach 98.8% in 2015 [Tup+17b] leading to one of
the world’s largest health Large Observational Database (LOD) [Bez+17; Tup+17b].
The exhaustivity of LODs such as Système National des Données de Santé (SNDS) has
proven useful for public health research, by improving the statistical power of algo-
rithms using this data and by mitigating the sensitivity to selection biases [Tup+17b].

However, such an abundance of data comes at a cost: SNDS is a very complex
database, with data spread across hundreds of tables and columns. Its scale makes
data manipulation non-trivial. More importantly, using this data requires a tremen-
dous amount of knowledge from SNDS experts. Many coding or data recording
subtleties, such as data duplication caused by administrative complexity, might be-
wilder inexperienced users. Deriving proper health events definitions and extracting
them accurately is, therefore, a difficult task, having important consequences on the
derived studies [Han+13; Tup+17b]. These issues are of course not unique to SNDS
but shared by many LODs [Mad+14].

This paper proposes an answer to this problem by introducing SCALPEL3 (SCAL-
able Pipeline for hEaLth data), an open-source framework intending to reduce such
entry barriers to LODs. This framework attempts to simplify medical concept extrac-
tion by providing a set of tools performing batch Extract-Transform-Load (ETL) tasks,
while an interactive API eases the manipulation and the exploration of longitudinal
cohorts. Thus, this research focuses on the following objectives:

(i) Design and implement a scalable tool allowing to extract and manipulate
longitudinal patient data from large observational databases;

(ii) Simplify methodological research by reducing SNDS data complexity and by
easing data loading into formats used by common machine learning libraries;

(iii) Foster reproducibility by monitoring the data flow and by following best prac-
tices for clean code;

(iv) Promote reusability and extensibility by documenting and publishing an open-
source implementation of SCALPEL3.

The main concepts used by SCALPEL3 and some related works are presented in
Section I.2. The LOD for which SCALPEL3 was initially designed for is described in
Section I.3, together with SCALPEL3 methods and abstractions. The scalability of
SCALPEL3 is evaluated in Section I.4, while Section I.5 discusses its strengths and
limitations.
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I.2 Background
LODs are not designed to perform medical research. Electronic Health Records
(EHR) data directly supports clinical care and are used to justify care billing and
reimbursement, while claims data are primarily used for reimbursement purpose.
The data models and terminologies used in such databases were optimized to suit
these particular goals, resulting in normalized datamodels built around hospital stays,
transactions, or cash flows [Tup+17b]. Extracting meaningful patients care pathways
from such data can be decomposed into two tasks. First, all the data corresponding to
a set of patients need to be identified and collected. When the data is not normalized
around the patients, this task requires several join operations which can be very costly
in terms of computations as the data volume increases. Second, medical concepts
have to be properly identified from administrative codes: this phenotyping task relies
heavily on a combination of medical and database knowledge. The algorithms
used to perform concept extraction from administrative data are either disclosed
through scientific publications or shared as lengthy SQL queries [Loo19]. Their code
or the description of the algorithms involved can vary in quality, hindering reuse,
and reproducibility. As a result, building a study from scratch might be faster than
reusing poorly documented code from previous works [Loo19; PDZ06]. Besides,
access to LODs such as SNDSmight rely on proprietary software such as SAS [Sup76]
or SPSS [IBM68]. While these tools are suitable to produce public health studies,
they hinder methodological research as they do not interact easily with R or Python
packages that implement state-of-the-art machine learning algorithms. All of these
challenges are complex to solve and exacerbated by the data volume at hand.

Related works
Several research programs produced tools in order to alleviate some of these issues.
An important research effort aims at easing data integration and interoperability by
producing standard data models and terminologies to be shared across institutions.
Observational Medical Outcomes Partnership Common Data Model (OMOP CDM),
which is supported by the Observational Health Data Sciences and Informatics
(OHDSI) research program [Hri+15], and the Informatics for Integrating Biology &
the Bedside (i2b2) data model [Mur+10], can be considered as the most pervasive
data models developed for this purpose. OMOP CDM can be used to standardize
EHR or claims data, while i2b2 is focused on EHR data.

Both models are centered around the patients, thus reducing the number of join
operations required to access a specific patient history. They also rely on a normalized
data model combined with SQL databases. A collection of open-source software
has been developed on top of these models, implementing analytics or visualization
tools [Hus+16]. These softwares can take the form of R libraries [Hus+16], or
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compiled Java [SM14] programs with a graphical user interface. While making these
softwares freely available is an important step to foster methodological research, they
do not seem to be easily extensible or interoperable as they do not provide documented
APIs to build new software upon it. Besides, the process of transforming an existing
database in order to conform to such standards is costly, as it requires to build complex
mappings between shared representations expressed through highly heterogeneous
codes from one information system to the other. In the case of the SNDS database
considered in this work, such a mapping is still work in progress [Dou+20].

In other fields, web-scale analytics have shifted from the use of normalized SQL
databases towards NoSQL technologies relying on distributed computing, denormal-
ization, and columnar storage. The use of distributed computing allowed gains in
computational power using low cost, commodity servers instead of expensive dedi-
cated hardware [Bon+17]. A work from OHDSI [Pow16] compared the ACHILLES
software (R [Cor17], PostgreSQL [Pos96]) with Apache Spark [Zah+16] using com-
mon SQL requests. They observed performance gains for Spark even on a single server
or small clusters, at the exception of requests leading to large network I/O, since
such operations are known to be the slowest operations in a distributed computing
framework because of network latencies and throughput. It can create bottlenecks
when many data chunks are sent across the servers in the cluster to perform a join or
a groupby operation (leading to so-called shuffles). Denormalization can be a way to
circumvent this issue by performing a set of join operations beforehand, once and
for all [Deh+15; LP14; Wei+08], reducing join operations to simple look-ups over
a very large table. The data duplication resulting from such joins operations might
lead to storage issues, which can be mitigated with the help of columnar storage
formats [LP14; Mel+10] using compression strategies.

To the best of our knowledge, such an approach has not been implemented to
perform ETL on large health databases. Prior works are either relying on SQL and
normalized schemas [Jan+17; Ong+17] or applied to small datasets [Har+18]. This
paper describes and implements such an approach for large health databases, as
explained in the next section.

I.3 Material andMethods
This work focuses on (i) denormalizing the data in combination with columnar
storage and distributed computing to perform concept extraction, (ii) providing a
structured and re-usable concept library, and (iii) introduce useful abstractions to
handle cohort data. Scalability issues are handled by (i), while (ii) and (iii) foster
the reuse of code and knowledge across studies. This is achieved by reducing both
study-specific code and database entry barriers by providing ready-to-use concepts.
SCALPEL3 provides Scala [Ode+04] and Python APIs to ensure easy extension and
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interoperability with numerous libraries. All the code supporting this paper is open
source and freely available.

This paper is not about data integration from disparate sources, such as multiple
EHR systems, but rather about an ETL based on batch distributed processing of a
large, centralized claims database.

I.3.1 The SNDS database
This work was performed using the Système National des Données de Santé (SNDS), a
large claims database containing pseudonymized data on 98.8% of the French popu-
lation (66 million patients in 2015) [Bez+17; Tup+17b]. It contains time-stamped in-
formation about medical events leading to reimbursement (see Table 1 in [Tup+17b]
for an exhaustive list of available data) in the last 3 years1. It contains more than
20 billion health events per year, representing roughly 70TB of data.

SNDS is composed of multiple “sub-databases”, each one with a star schema. The
central table records events leading to cash flows that need to be joined to many other
tables to access medical information2. In this form, retrieving patient information
for statistical studies is very costly in terms of computation and expert knowledge:
targeted data can be spread across multiple databases, tens of tables, and hundreds
of columns, and its identification requires a deep administrative knowledge of the
French health-care reimbursement mechanisms. Mitigating these issues is precisely
the motivation of the SCALPEL3 framework.

I.3.2 SCALPEL3: a SCAlable Pipeline for hEaLth data
SCALPEL3 is based on Apache Spark [Zah+16], a robust and widely adopted dis-
tributed in-memory computation framework. Spark provides a powerful SQL-like
high-level API and amore granular API to perform data operations. It can be coupled
with the Hadoop File System (HDFS) [Shv+10] replication system to accelerate large
files reading and distribution over a computing cluster. SCALPEL3 is an open-source
framework organized in the following three components.

SCALPEL-Flattening [Kum+19] denormalizes the data “once and for all” to avoid
joining many tables each time the data of a patient is accessed. Its input is a set of
CSV files extracted from the original SNDS database.

SCALPEL-Extraction [Pau+19] defines concepts extractors that process the de-
normalized data and transformers, that compute more complex events based on

1which can be extended up to 20 years under some restrictions.
2We work with two main sub-databases containing data relevant for public-health research. When

working on drug safety studies, each of these two databases contains 8 relevant tables, representing
approximately 5 billion lines per year when restricted to 65+ y.o. subjects.
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extractors output. For example, extractors can fetch all drug dispenses or medical
acts.

SCALPEL-Analysis [Seb+19] implements powerful and scalable abstractions that
can be used for data analysis, such as easy ways to investigate data quality issues. It
can load data into formats commonly used in machine learning, such as TensorFlow
or PyTorch tensors or NumPy arrays.

As SCALPEL-Flattening and SCALPEL-Extraction perform batch operations,
they need to read (resp. write) input (resp. output) data from the file-system (local or
HDFS). They are implemented in Scala in order to access Spark’s low-level API and
take advantage of functional programming and static typing, resulting in rigorous
automated testing (94% of the Scala code is covered by unit tests). Both can be
configured through textual configuration files or be used as libraries. SCALPEL-
Analysis is a python module implemented in Python & PySpark and designed for
interactive use. It can be used in a Jupyter notebook [Klu+16] for instance. This
workflow is illustrated in Figure I.1.

I.3.3 SCALPEL-Flattening: denormalization of the data
As mentioned earlier, performing data analysis on SNDS patients’ health requires
many joins and can consequently be extremely slow. To circumvent this issue, the
data are denormalized by joining the tables sequentially to obtain a big table in which
each line corresponds to a patient identifier and a wide representation of an event.

Denormalizing a star-schema database results in a really big table due to values
replications. To circumvent storage and computation issues, the denormalized data
is stored in Parquet [Voh16] files, an open-source columnar storage format imple-
menting Google’s Dremel [Mel+10] data model. Parquet is well-integrated in the
Spark ecosystem [Arm+15], allowing us to take advantage of the columnar storage
in terms of data compression and query optimization. SCALPEL-Flattening first
converts the input CSV files containing exports of SNDS tables to Parquet files. Then,
it recursively performs left joins with these tables, starting with the central table.
Finally, it writes the results in a single Parquet file. To ensure the scalability of these
big join operations, the input data can be automatically divided with respect to some
time unit (such as years, months) before performing the join operations. In this case,
the joins results are sequentially appended to the output parquet file. These opera-
tions are repeated for each SNDS sub-databases. The size of the temporal slicing used
in the joins, the schema, and the joining keys can be tuned by the end-user through
a configuration file, which defaults to the denormalization of tables containing only
medical data (as opposed to econometric and administrative data). A set of statistics
that monitors the denormalization process is automatically computed along the steps
involved in it, in order to ensure that no loss of information occurs.
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SCALPEL-Flatteningconfiguration file

SNDS
(csv files)

read

write

SCALPEL-Extraction
Patient,	Event,	Extractor,	Transformer

configuration file

read

SCALPEL-Analysis
Cohort,	CohortCollection,	CohortFlow,	FeatureDriver

CohortCollection*
(Patients and events datasets, Parquet files)

write

Denormalized SNDS
(Parquet files)

read

Scala API (batch)

Python API (interactive)

Interactive Machine Learning
(TensorFlow or Pytorch Tensor,numpy ndarray)

Figure I.1 – SCALPEL3 workflow. SCALPEL3 is made of three independent open-
source libraries plugged one after another. SCALPEL-Flattening, which is
implemented in Scala & Spark, denormalizes the input database exported as
CSV or Parquet files into a single big flat database. Then, SCALPEL-Extraction,
implemented in Scala & Spark, extracts concepts from this flat database. Fi-
nally, SCALPEL-Analysis, implemented in Python & PySpark loads extracted
concepts to perform in-memory interactive analysis and feed machine learning
algorithms.
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I.3.4 SCALPEL-Extraction: extraction of concepts
SCALPEL-Extraction provides fast extractions of medical concepts from the denor-
malized tables produced by SCALPEL-Flattening. By providing ready-to-use medical
events, SCALPEL-extraction encapsulates SNDS technical knowledge but keeps med-
ical data as raw as possible, so that end-users have access to fine-grained data which
is critical when designing observational studies [Hon+18; Wan+16]. The extracted
concepts are organized around two abstractions: Patient and Event.

The Patient abstraction has a unique patientID, a gender, a birthDate and
eventually a deathDate.

The Event abstraction allows to represent any event associated to a patient. It can
be punctual (e.g., medical act) or continuous (e.g., hospitalization).

All concepts are automatically extracted into Patient or Event objects by a set
of Extractors and Transformers, designed to fetch the data in the relevant tables
and columns of the SNDS Sources.

The Extractor abstractionmaps a Row of a Source to zero or many Events:

Extractor: Row ↦ List[Event].

Extractors successively refines data from the input (wide denormalized tables) by
(1) identifying the relevant columns, (2) filtering out null values according to some
columns and (3) conform the extracted data to a standardized schema. These three
operations are very fast when performed on columnar data, as they exploit sparsity
(null values are not represented in the data) and consist in simple look-ups over hash
tables containing columns metadata. An optional step that filters rows by value can
occur before step (3). This operation is slower as it manipulates row values, but since
it is performed near the end of the extraction process, it typically occurs on small
data. This process is illustrated Figure I.2.

Many extractors are available to fetch medical acts, diagnoses, hospital stays,
among others, an example being the drug dispense Extractor which allows extract-
ing events related to specific subsets of drugs and to output events at multiple levels of
granularity (drug, molecule, ATC class, custom classes) as defined in a configuration
file. This simple architecture makes it easy to add new Extractors and to answer to
any extraction need.

The Transformer abstraction transforms a collection of Events related to a unique
Patient into a list of more complex Events (complex diseases, drug exposures, …):

Transformer: List[Event] ↦ List[Event].

A Transformer is based on specific algorithms requiringmultidisciplinary knowl-
edge from epidemiologists, statisticians, physicians, and SNDS experts [Tup+17b].
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Step 1: projection to fetch relevant columns
columnar operation (instantaneous)

Wide denormalized table

Step 2: filter out null values
leverages column sparsity (fast)

filter_values

write Parquet file

build_event

optional step: filter rows based on their values 
(row operation ; slow)

Step 3: output converted to Event schema 
columnar operation (fast)

lossy data com
pression

filter_null

get_input

null values

Figure I.2 – Extractor design. Extractors implemented in SCALPEL-Extraction
successively refines the input table (a large denormalized table) by taking ad-
vantage of fast columnar operations to produce ready-to-use medical events.
Step 1 selects the relevant columns (equivalent to a hash table look-up) while
Step 2 removes rows where null values are detected in specific columns, tak-
ing advantage of the sparsity of columnar representation (null values are not
encoded in the data). Optionally, this extraction process filters out rows based
on their values. Finally, Step 3 conforms the data to the Event schema, and is
written to a Parquet file.
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Transformers usually combine events built by Extractors to build more com-
plex events, such as computing drug exposures from timestamped drug dispenses.
Extractors and Transformers can be used through a Scala API or controlled us-
ing a textual configuration file. Many Transformers used in several studies such
as [Mor+20; Neu+12] are implemented and ready to use.

Besides Parquet files containing extracted events, SCALPEL-Extraction outputs
metadata tracking the data used to build each type of extracted events. This file can
be leveraged by SCALPEL-Analysis to build Cohorts and flowcharts, as explained
below.

I.3.5 SCALPEL-Analysis: interactive manipulation and analy-
sis of cohorts

While SCALPEL-Flattening and SCALPEL-Extraction are implemented in Scala &
Spark for performance and maintainability, SCALPEL-Analysis is implemented in
Python & PySpark [Zah+16] since it is designed for interactive environments, such
as Jupyter notebooks [Klu+16]. SCALPEL-Analysis eases the manipulation and
analysis of cohort data. It is based on the following abstractions:
The Cohort abstraction is a set of Patients and their associated Events in a time-
window [startDate, endDate]. Basic operations such as union, intersection, and
difference can be performed between Cohorts, while a human-readable description
is automatically updated in the results. More granular control is kept available
through accesses to the underlying Spark DataFrames (using Spark DataFrame API).
This combination allows easy data engineering and fine-grained, yet reproducible,
experiments.
The CohortCollection abstraction is a collection of Cohorts on which operations
can be jointly performed. The CohortCollection has metadata that keeps the in-
formation about each Cohort, such as the successive operations performed on it,
the Parquet files they are stored in and a git commit hash of the code producing the
extraction from the Source.

International guidelines [Ben+15] regarding studies based on LODs insist on the
explanation of cohort construction to highlight eventual population biases, motivat-
ing the following CohortFlow abstraction.
The CohortFlow abstraction is an ordered iterator defined as the following left fold
operation

foldl(𝑐 ∶ CohortCollection, ∩) ∶= (((𝑐0 ∩ 𝑐1) ∩ 𝑐2) ∩ … 𝑐𝑛)

assuming an input CohortCollection 𝑐 of length 𝑛, where ∩ denotes an intersection
of the Cohorts’ patients. It is meant to track the stages leading to a final Cohort,
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where each intermediate Cohort is stored along with textual information about the
filtering rules used to go from each stage to the next one.

The scalpel.stats module produces descriptive statistics on a Cohort and their
associated plots. For now, it contains more than 25 Patient-centric or Event-centric
statistics, adding a custom one being very easy. Among other things, this module
provides automatic reporting as text or graphical displays, with performance opti-
mization through data caching. It can be combined with CohortFlow to compute
various statistics at each analysis stage, to assess the biases induced along with suc-
cessive population filtering operations. Flowcharts can easily be produced to track
how many subjects were removed at each stage. Flowcharts can be produced either
from a CohortFlow, or the metadata tracking the data extraction process produced
by SCALPEL-Extraction. Examples are provided in Supplementary Material.

SCALPEL-Analysis also provides tools producing datasets in formats compat-
ible with popular machine learning libraries. At the core of these tools is the
FeatureDriver abstraction.

The FeatureDriver abstraction is used to transform Cohorts into data formats
suitable for machine learning algorithms, such as numpy.ndarray [Har+20], or
tensors from tensorflow [Mar+15] or pytorch [Pas+17] libraries. It is mainly
a transformation of a Spark dataframe representation into a tensor-based format.
FeatureDrivers perform several sanity checks, such as time-zone and event dates
consistency, and can be easily extended by end-users, thanks to the PySpark API.

I.4 Results
Scaling experiments presented in this section were performed on a SNDS subset
containing 13.7 million patients followed up to three years described in Table I.1.
Data from this sample is structured data containing common data types (timestamps,
integers, floats, small strings), normalized according to the SNDS data model. The
testing data consisted in outpatient data (DCIR) and inpatient data excepted home
hospitalization, rehabilitation centers and psychiatric hospitals (PMSI-MCO). Raw
data was extracted from the SNDS by CNAM, the French agency that manages this
database. Extracts were dumped on the testing cluster as a set of CSV files.

SCALPEL3 was tested on a Mesos [Hin+11] cluster of commodity servers with
14 worker nodes driven by 4 master nodes. Worker nodes resources amount to 224
2.4Ghz logical cores, 1.7Tb of RAM, and 448Tb of storage distributed over 88 spinning
hard drives. These resources are shared over the cluster by HDFS [Shv+10] for data
storage and by Spark for memory storage and computations. This cluster and the
configuration of the jobs were not fine-tuned for the usage of SCALPEL3, but follow
standard guidelines for cluster configuration for distributed computing with Spark.
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Table I.1 – Characteristics of the dataset used for experiments. Results are produced
on a subset of SNDS containing 13.7 million subjects, followed up to three years.
The scope is restricted to outpatient data (DCIR) and inpatient data excepted
hospitalization at home, rehabilitation centers and psychiatric hospitals (PMSI-
MCO). The central fact table of DCIR records cash flows resulting fromhealthcare
reimbursements to patients covered by the French national healthcare insurance.
One line in this table correspond to one cash flow (such as the reimbursement
of a drug bought following a prescription). The central fact table of PMSI-MCO
records hospital stays. Events occurring during the stay are stored in dimension
tables linked to this central table.

Count DCIR PMSI-MCO

Rows in the central table 10,579,545,716 35,375,046
Rows in the denormalized table 10,636,094,654 3,208,682,967
Patients 13,762,623 7,807,517
Drug reimbursements events 1,933,985,925 NA
Distinct drug codes 16,289 NA
Reimbursed medical acts events 210,847,422 97,484,303
Distinct medical acts codes 7254 7591
Diagnoses events NA 120,212,253
Distinct diagnoses codes NA 16,895
Source data set disk size (CSV, GB) 6,416.3 48.7
Source data set disk size (Parquet, GB) 572.7 5.9
Flattened data set disk size (Parquet, GB) 690.6 8.9

Denormalizing this dataset using SCALPEL-Flattening took about 6 hours using
the 14 worker nodes. During the conversion of CSV tables to parquet files, worker
nodes CPU and memory usage are maxed out on most worker nodes. During the
join operations, resource usage is first dominated by network I/O to shuffle the data
across the workers, followed by an increase in CPU and memory usage reaching
two-thirds of the cluster capacity. Note that the current framework used for SNDS
data cannot handle such denormalization so that there is no element of comparison
for SCALPEL-Flattening with it.

SCALPEL-Extraction was evaluated on the following extraction tasks, that corre-
spond to typical events required for public health research studying relations between
fractures and some drug exposures: (a) extraction of patient demographics (gender,
age, eventual date of death), (b) extraction of drug dispenses, (c) filtering of patients
w.r.t their first date of drug use (prevalent drug users, 65 drugs), (d) computation of
drug exposures based on drug dispenses dates, (e) extraction of reimbursed medical
acts, (f) extraction of diagnoses, (g) identification of fractures using the algorithm
described in [Bou+20] based on medical acts and diagnoses.
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Indicative baseline performance was established by executing similar queries on
the current SNDS infrastructure, based on SASEnterprise Guide for analytics [Sup76],
connected to an Oracle SQL database hosted on Oracle Exadata servers [Ora08].
This baseline performance was computed with a single run, as the current SNDS
framework is designed to allocate resources dynamically each time a new query is
submitted. The monitoring of resource usage on this SAS-Oracle infrastructure is not
straightforward, since computations are divided between SAS and Oracle jobs, and
since the resources of the Oracle Exadata infrastructure are divided across servers
focused on storage or computation. At peak use (for task (c)), the Oracle job was
using 10 CPUs supported by 4.9GB of PGA memory, while SAS was using 1 to 6GB
of RAM.

An assessment of the horizontal scaling of SCALPEL3 is performed by varying
the number of executors (4 logical cores and 25 GB RAM) to perform these queries.
All the results are displayed in Figure I.3.

SCALPEL-Analysis aims at providing useful abstractions to ease cohort data
manipulation. We provide in Supplementary Material, see Section I.A herein, exam-
ples that illustrate how these abstractions can be leveraged to perform typical data
preparation in a few lines of code.

I.5 Discussion

SCALPEL-Extraction reaches performances similar to SQL-SAS based SNDS frame-
work when using 6 executors (Figure I.3 (h)). It is consistently faster on tasks in-
volving large data volumes or complex operations such as tasks (b), (c), (d), and
(g). On the other hand, tasks involving the PMSI-MCO database (tasks (e) and (f))
exhibit poor performance. This is rooted in the flat table structure as PMSI-MCO
is not sparse-by-block like DCIR (see the difference in the ratio of Rows in central
table w.r.t. denormalized table in Table I.1). It results in performing more tests on
row values and data shuffle than necessary when performing queries on PMSI-MCO.
Performance on these tasks could be further improved by slightly modifying the join
strategy in the flattening step to ensure PMSI-MCO sparsity by block.

The cost of data denormalization should be considered to be fixed as this operation
is done once and for all. The denormalized data can then be updated incrementally
when new data are fed into the cluster (typically a few times a year).

SCALPEL-Extraction scales almost linearly from 4 to 16 executors. The scaling
gains then slow down, reaching peak performance at 28 executors (see Figure I.3).
These diminishing returns can be caused by the cluster resource sharing between
storage services (HDFS) and computation (SCALPEL3). As a result, SCALPEL3
resource usage can be in conflict with HDFS resources as soon as the number of
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Figure I.3 – SCALPEL-Extraction scaling experiments. The blue solid line repre-
sents the mean total running time (in seconds) of queries (a) – (g) described
in Section I.4 when varying the number of worker nodes used to perform the
computation. Figure (h) represents the total running time of the (a) – (h) queries.
Light blue bands represent one standard deviation computed over 5 runs. The
dotted line corresponds to a theoretical performance assuming a perfect hor-
izontal linear scaling (based on the single node performance). Dashed lines
represent the runtime of similar queries on the SNDS SAS-Oracle infrastruc-
ture using a single run. Multiple runs were not performed on SAS-Oracle as
computing resources are dynamically allocated for each queries and cannot be
set beforehand.

70



I.5. Discussion

nodes used by SCALPEL3 excess one-third of the cluster3. Splitting the cluster nodes
between storage nodes and computation nodes could improve horizontal scalability.
Note that for very small tasks (such as (c), (d), (g)), runtime is dominated by I/O
operations and do not benefit particularly from additional CPUs.

Besides performance considerations, note that SCALPEL3 uses only open-source,
free software and runs on commodity hardware, which is likely cheaper than Oracle
Exadata servers and easier to scale if the data volume increases: a Spark cluster easily
scales “horizontally” by adding more nodes.

The performance comparison between the two infrastructures is limited by (i)
the impossibility to set the resources used by SAS-Oracle beforehand for these ex-
periments does not allow for multiple runs and (ii) slight differences in query im-
plementation caused by design differences such as columnar vs row orientation.
Nonetheless, it shows that SCALPEL3 can be used as a viable open-source alternative
running on commodity hardware while benefiting from horizontal scaling on very
large jobs.

Besides, SCALPEL3 greatly improves the maintainability, audit, and reproducibil-
ity of studies using SNDS. First, continuous integration of code updates and large
code coverage (94%) with unit testing is a big improvement in terms of maintain-
ability over copy-pasted SQL snippets. Secondly, SNDS expertise encapsulation for
events extraction is fully tested and maintained in SCALPEL3, so it eases extraction
algorithms reuse for studies and lowers the entry-barrier to SNDS. Obviously, design
and maintenance of SNDS concept extractors by a team of developers and SNDS
specialists is a mandatory task, as the database contents are constantly evolving.
Moreover, the relevance of extracted data (to answer a trade issue) requires some
SNDS knowledge and is the responsibility of the user.

The combination of expert knowledge encapsulation (SCALPEL-Extraction) and
interactive cohort manipulation (SCALPEL-Analysis) results in smaller and more
readable user-code, leading to easily shared and reproducible studies, supported by
data tracking and automated audit reports. Finally, SCALPEL3 allows producing
datasets compatible with several Pythonmachine learning libraries formats, fostering
methodological research on SNDS data, which was not possible with the proprietary
software that is currently used.

The choice of the Python language might help SCALPEL3 adoption among the
data science and machine learning community, while it might hinder its use among
public health researchers who are traditionally using proprietary statistical softwares
or the R language. SCALPEL3 can be used in standalone mode4 or in distributed
mode5 whenworking on large datasets. The knowledge and skills required tomanage

3HDFS is configured to replicate the data across the worker nodes three times; HDFS performance
is thus not much impacted if one-third of the nodes are not available at some point.

4Using a single large server.
5Using a computing cluster.
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a computing cluster are not yet widespread which could also impede a large adoption
of the distributed mode among small organizations.

Finally, while SCALPEL3 does not support international data standards yet, the
development of vocabulary mapping tables in France was anticipated so as to ease
future support of data standards such as OMOP-CDM [Rei+10] or FHIR [BS13] to
SCALPEL3.

I.6 Conclusion
SCALPEL3 could be further improved by optimizing the flattening step, so as to
ensure optimal block-sparsity of the resulting denormalized databases automatically.
Besides, optimizing the cluster design to separate storage from computation as well
as using YARN instead of Mesos to manage resources could help to improve its per-
formance further by lowering data access times. Finally, using Apache ORC [Apa15]
instead of Parquet could also lead to further performance improvements. Parquet
was initially chosen over ORC because of better integration with Spark. ORC is now
well-integrated in it and has been reported to have better performances and a higher
compression factor on non-nested data.

I.7 Summary Table
• Strengths:

– Expert knowledge encapsulation lowers entry barriers to SNDS use
– Important improvement of query performance on sparse-by-block denor-
malized data

– Horizontal scalability
– Code versioning and rigorous testing
– Low hardware cost
– Open-source software
– Inter-operates with rich ecosystems (Python, Scala) providing many ma-
chine learning and data analysis libraries

• Weaknesses:

– Suppose familiarity with Python programming. While it can be assumed
that most data scientists are fluent in Python, it might not be the case
among the public health community.

72



I.8. Declarations of interest
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Appendix

I.A Scalpel Analysis usage examples

This section presents a quick example of the SCALPEL-Analysis API. In [ ] and
Out [ ] respectively indicate numbered input code and output results. Example
[1] shows how to load a cohort collection from a json file produced by SCALPEL-
Extraction. Examples [2], [3], [4] show how to access a cohort from a cohort
collection and to count their subjects. Example [5] shows how to use algebraic
manipulations over cohort to remove prevalent cases from a given population, and
times this operation to show that it fast enough for interactive use. Example [6]
highlight automatically generated captions for cohorts resulting from algebraic oper-
ations, while examples [7] and [8] show how to access subject and event data from
a cohort. Examples [9] and [10] illustrate how to use SCALPEL-Analysis to de-
fine a CohortFlow from a sequence of cohorts, then using scalpel.stats to obtain
statistics about the distributions of gender and age along the stages. In example [9],
excluding patients with a fracture does not introduce much changes in the gender
and age distributions. In example [10] however, keeping only patients with fractures
in the final stage leads to an older population, with an important change in the age
distribution of women (a well-known phenomenon related to osteoporosis).

In [1]: from scalpel.core.cohort_collection import CohortCollection

# metadata_path = '/path/to/some/metadata_file.json'
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cc = CohortCollection.from_json(metadata_path)
print(cc.cohorts_names)

Out[1]: {'follow_up', 'acts', 'fractures', 'extract_hospital_stays',
'filter_patients', 'liberal_acts', 'extract_patients', 'exposures',
'diagnoses', 'drug_purchases'}

In [2]: base_population = cc.get('extract_patients')
base_population.subjects.count()

Out[2]: 5186601

In [3]: exposed_subjects = cc.get('exposures')
exposed_subjects.subjects.count()

Out[3]: 2666662

In [4]: fractured_subjects = cc.get('fractures')
fractured_subjects.subjects.count()

Out[4]: 179072

In [5]: %%timeit
# Select subjects in base population who were exposed but
# have not experienced a fracture
final_cohort = (exposed_subjects.intersection(base_population)

).difference(fractured_subjects)
final_cohort.subjects.count()

11.3 s ± 4.5 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

Out[5]: 2542922

In [6]: final_cohort.describe()

Out[6]: 'Events are exposures. Events contain only subjects
with event exposures with extract_patients without
subjects with event fractures.'

In [7]: final_cohort.subjects.show()

+---------+------+-------------------+-------------------+
|patientID|gender| birthDate| deathDate|
+---------+------+-------------------+-------------------+
| Alice| 2|1934-07-27 00:00:00| null|
| Bob| 1|1951-05-01 00:00:00| null|
| Carole| 2|1942-01-12 00:00:00| null|
| Chuck| 1|1933-10-03 00:00:00|2011-06-20 00:00:00|
| Craig| 1|1943-07-27 00:00:00|2012-12-10 00:00:00|
| Dan| 1|1971-10-07 00:00:00| null|
| Erin| 2|1924-01-12 00:00:00| null|
| Eve| 2|1953-02-21 00:00:00| null|
+---------+------+-------------------+-------------------+
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In [8]: final_cohort.events.show()

+---------+--------+-------+-----+------+-------------------+-------------------+
|patientID|category|groupID|value|weight| start| end|
+---------+--------+-------+-----+------+-------------------+-------------------+
| Alice|exposure| null|DrugA| 1.0|2013-08-08 00:00:00|2013-10-07 00:00:00|
| Alice|exposure| null|DrugB| 1.0|2012-09-11 00:00:00|2012-12-30 00:00:00|
| Alice|exposure| null|DrugC| 1.0|2013-01-23 00:00:00|2013-03-24 00:00:00|
| Bob|exposure| null|DrugB| 1.0|2014-03-04 00:00:00|2014-05-03 00:00:00|
| Carole|exposure| null|DrugB| 1.0|2010-01-25 00:00:00|2010-12-13 00:00:00|
| Dan|exposure| null|DrugA| 1.0|2012-11-29 00:00:00|2013-01-28 00:00:00|
| Erin|exposure| null|DrugC| 1.0|2010-09-09 00:00:00|2011-01-17 00:00:00|
| Eve|exposure| null|DrugA| 1.0|2010-04-30 00:00:00|2010-08-02 00:00:00|
+---------+--------+-------+-----+------+-------------------+-------------------+

In [9]: from scalpel.stats.patients import distribution_by_gender_age_bucket
from scalpel.core.cohort_flow import CohortFlow

flow = CohortFlow([base_population, exposed_subjects, final_cohort])

for cohort in flow.steps:
figure = plt.figure(figsize=(8, 4.5))
distribution_by_gender_age_bucket(cohort=cohort, figure=figure)
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In [10]: from scalpel.stats.patients import distribution_by_gender_age_bucket
from scalpel.core.cohort_flow import CohortFlow

flow = CohortFlow([base_population, exposed_subjects, fractured_subjects])

for cohort in flow.steps:
figure = plt.figure(figsize=(8, 4.5))
distribution_by_gender_age_bucket(cohort=cohort, figure=figure)
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I.B List of SNDS databases currently denormalized.

Table I.B.1 – List of SNDS sub-databases which are currently denormalized by
SCALPEL-Flattening. IR_IMB_R and IR_BEN_R are tables and were sim-
ply converted to Parquet files.

Database Contents

DCIR Outpatients reimbursement data
PMSI Hospital discharges

MCO Acute ward
MCO CE Acute ward outpatients treatment
SSR Rehabilitation
SSR CE Rehabilitation outpatients treatment
HAD Home-to-home care

IR_IMB_R Long term chronic diseases
IR_BEN_R Patients socio-demographic information
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I.C List of available extractors

Table I.C.1 – List of implemented event extractors. This list is meant to grow over
time. More details are available in SCALPEL-Extraction [Pau+19]
wiki on GitHub at https://github.com/X-DataInitiative/
SCALPEL-Extraction/wiki.

Extractor Source databases Event Type

Medical acts
CCAM DCIR, MCO, MCOCE,

SSR, SSRCE, HAD
Punctual

NGAP DCIR, MCOCE Punctual
CSARR SSR Punctual

Biological acts DCIR Punctual
Practitioner encounter

Medical DCIR Punctual
Non-medical DCIR Punctual

Drug dispenses DCIR Punctual
Diagnoses

Main MCO, SSR, HAD Punctual
Associated MCO, SSR, HAD Punctual
Linked MCO, SSR, HAD Punctual
Long-term chronic disease IR_IMB_R Longitudinal

Hospital stay MCO Longitudinal
Emergency visit MCOCE Punctual
SSR Stay SSR Longitudinal
Hospital takeover SSR, HAD Punctual

Main Takeover reason HAD Punctual
Associated Takeover reason HAD Punctual

Patient IR_BEN_R, DCIR, MCO,
SSR, HAD

Person
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I.D List of the available transformers

Table I.D.1 – List of implemented transformers. This list is meant to grow over time.
More details are available in SCALPEL-Extraction [Pau+19] wiki on GitHub at
https://github.com/X-DataInitiative/SCALPEL-Extraction/wiki.

Transformer Source events [optional]

Observation period Patients, [Any]
Trackloss Patients, [drug dispenses]
Follow-up Patients, observation period, [trackloss, drug dispenses,

diagnoses]
Drug prescription Drug dispenses
Drug interaction Drug dispenses
Exposure

Limited in time Drug dispenses, Follow-up, [drug interaction]
Unlimited Drug dispenses, Follow-up, [drug interaction]

Outcomes
Fractures per body site Medical acts, diagnoses
Bladder cancer Medical acts, diagnoses
Infarctus Diagnoses
Heart failure Diagnoses
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Chapter II

ConvSCCS: convolutional
self-controlled case series
model for lagged adverse event
detection

With the increased availability of large electronic health records (EHRs)
databases comes the chance of enhancing health risks screening. Most
post-marketing detection of adverse drug reaction (ADR) relies on physi-
cians’ spontaneous reports, leading to under-reporting. To take up this
challenge, we develop a scalable model to estimate the effect of multiple
longitudinal features (drug exposures) on a rare longitudinal outcome.
Our procedure is based on a conditional Poisson regression model also
known as self-controlled case series (SCCS). To overcome the need of
precise risk periods specification, we model the intensity of outcomes
using a convolution between exposures and step functions, which are
penalised using a combination of group-Lasso and total-variation. Up to
our knowledge, this is the first SCCS model with flexible intensity able
to handle multiple longitudinal features in a single model. We show that
this approach improves the state-of-the-art in terms of mean absolute
error and computation time for the estimation of relative risks on simu-
lated data. We apply this method on an ADR detection problem, using
a cohort of diabetic patients extracted from the large French national
health insurance database (SNIIRAM), a claims database containing
medical reimbursements of more than 53 million people. This work
has been done in the context of a research partnership between Ecole
Polytechnique and CNAMTS (in charge of SNIIRAM).

Keywords: Conditional Poisson Model, Self-Controlled Case Series, Risk screening,
Penalisation, Scalability, Total Variation.
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II.1 Introduction
In recent years, there has been a rapid increase in health data volume and availability.
Large observational databases (LODs) such as claims databases contain electronic
health records (EHRs) of millions of patients. One way to leverage this data is adverse
drug reaction (ADR) detection. ADRs are adverse outcomes caused by drugs which
might not have been detected during prelicensing studies. ADRs can be related to
multiple factors such as dose or time effects or even to patients’ susceptibility due
to genetic variation, gender, age, etc. [AF03]. This paper focuses on time effects, i.e.
on the relationship between ADR occurrences and occurrences of other past events
(e.g. drug purchases), since it is known that some ADRs can be identified years after
commercialisation [Dow+17].

While LODs have been used to investigate ADRs after spontaneous reports, a
more extensive use could improve ADR detection by generating hypotheses directly
from the data using screening strategies [Tri+09]. In recent years, this perspective
led to an increased research effort involving the use of LODs [Hri+15].

However, using LODs for ADR screening is not a trivial task. This kind of data
can be quite heterogeneous, in terms of data types, structure, granularity and qual-
ity, due to fragmentation across multiple institutions for example. Several research
projects are focusing on mitigating these issues. The Observational Medical Out-
comes Partnership (OMOP, [Mar+12]), and later the Observational Health Data
Sciences and Informatics (OHDSI, [Hri+15]) produced data models standards and
methodologies allowing to improve EHR homogeneity across several institutions
across several countries. In this work, we focus on the large French national claims
database SNIIRAM [Tup+10b]. Its data is collected, harmonised and curated from
multiple institutions across the country by CNAMTS, resulting in a country-wide
claims database containing information on 83% of the French population. This
database might be less biased than many LODs due to its large population coverage
and quite accurate thanks to the automation of large parts of the data recording and
cleaning processes.

A first challenge comes from the scale of the data. Indeed, LODs allows to
study millions of patients across several years, hence it requires the use of scalable
algorithms. The scalability must also be thought in terms of the number of drugs
the patients are exposed to. When using LODs for risk screening, prior knowledge
on the potentially problematic drugs might be scarce, consequently, the number of
combination of drugs and outcomes to consider is potentially very large.

Many other challenges comes from the fact that EHR data tends to reflect the
healthcare system rather than the patients’ physiology. Indeed, EHR data are likely
to contain non-random errors, record gaps, misleading timestamps and uncontrolled
confounding [HA13]. For example, as the diagnoses result from clinical findings,
raw timestamps could suggest that diseases follow their effects [HAP11]. As a result,
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mapping complex, raw EHR data to clinical conditions is a very hard task, and is
a research field by itself. While our work does not solve this problem, we hope to
alleviate some it by using LODs to perform ADR screening.

There does not seem to be a clear consensus about which methods should be
preferredwhenworkingwith EHRs. However, models based on a self-control strategy,
such as univariate self-control case seriesmodel [Far95] or temporal pattern discovery
algorithms [Nor+10] seems to perform better empirically than cohort and case-
control methods [Rya+13b]. The poor performance of case-control methods can be
explained by the lack of proper “metadata” about patients (smoker status, wealth,
etc.) in LODs, which are used to find proper controls in case-control studies. Besides,
self-control methods might be more robust to unobserved confounders than cohort
methods as they ignore non-longitudinal confounders [Far95].

We focus on Self-Controlled Case Series (SCCS) models, originally developed
for vaccine safety studies [Far95], since then applied in post-marketing studies us-
ing LODs [Gau+17]. The SCCS model scales quite well since it is fitted on cases
only. Moreover, as explained below, its goodness-of-fit function cancels out non-
longitudinal confounders, which reduces potential non-longitudinal biases. Thus, an
SCCS model helps with the scalability and unobserved confounding issues described
earlier. However, an SCCS model relies heavily on the definition of a time-at-risk
period, which makes it hard to use in multivariate settings.

Previous attempts to solve this problem relied on the use of splines to provide a
more flexible modelling of drug effects [GWF16; GWF17; Sch+16]. However, the use
of splines makes the estimation of the model more complicated, resulting in models
able to fit the effect of a single drug in addition to a temporal baseline. This can
be problematic when performing ADRs screening, as SCCS is sensitive to temporal
confounders, and thus, to the omission of longitudinal features.

This paper introduces a new approach in the framework of SCCS models that
addresses the three challenges mentioned previously:

• it considers several longitudinal features at the same time (longitudinal drug
exposures),

• it cancels out non-significant drug effects automatically

• it learns automatically and in a flexible way the significant drug effects, with
no precise knowledge on a time-at-risk period,

• it runs faster than comparable algorithms when studying many drugs at a time.

Hence, it provides an important extension to the usage of SCCS models, allowing to
study multiple exposures at the same time, while requiring much less attention to the
definition of time-at-risk periods. An application of this methodology is described in
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Section II.4.2 below, and leads to a scalable approach with respect to the number of
drugs. On the one hand, it does not require a high precision work when preparing the
dataset (as done in [Neu+12]). On the other hand, it is not thought as a replacement
of such approaches but rather as a screeningmethod to identify potential problematic
drugs that might require specific subsequent investigations (using [Neu+12] types of
approach).

The paper is organised as follows. We first describe SCCS models in Section 2 and
construct our method in Section 3. Numerical experiments are given in Section 4.
It includes in Section II.4.1 experiments on simulated data, with a comparison to
state-of-the-art methods from the SCCS literature. In particular, these simulations as
designed to reproduce some of the problems met with the data used in Section II.4.2,
in order to test the robustness of our algorithm compared to the state-of-the-art.
Section II.4.2 gives an application of our method on a LOD from the French national
health insurance information system (SNIIRAM, a database built around medical
reimbursements of more than 53 million people). Our model produces consistent
results with a population-based cohort study [Neu+12] when estimating the effect
of pioglitazone (a hypoglycemic agent) on the risk of bladder cancer. A conclu-
sion is given in Section 5, and mathematical and numerical details are provided in
Supplementary Material.

II.2 Self-controlled case series models
SCCS models allow to estimate the impact of longitudinal features (such as time-
varying exposures to drugs) on the occurrence intensity of events of interest (such as
dates of adverse events), see [Far95]. An interesting particularity with this family
of methods is that individuals form their own controls: individuals who do not
experience the event of interest are not used to fit the model. This construction relies
on the property of order statistics of the Poisson process and the statistical output of
such models is an estimation of the relative incidence of the longitudinal features, i.e.
the relative increase of the outcomes intensity.

II.2.1 Conditional Poisson regression and SCCS models
Data is available from a global observation period (𝑎, 𝑏], where the time can be either
calendar or measured by the age of individuals. Each patient 𝑖 = 1,… ,𝑚 has an
observation period (𝑎𝑖, 𝑏𝑖] ⊂ (𝑎, 𝑏], in which we observe:

• the time occurrences 𝑡𝑖,1 < 𝑡𝑖,2 < ⋯ of the event of interest (also called outcome
in what follows), or, equivalently a counting process 𝑁𝑖, defined as 𝑁𝑖(𝑡) =
∑𝑘≥1 𝟙𝑡𝑖,𝑘≤𝑡 and 𝑛𝑖 = ∫(𝑎𝑖,𝑏𝑖] 𝑑𝑁𝑖(𝑡) the total number of outcomes of patient 𝑖,
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• a vector of 𝑑 longitudinal features

𝑋𝑖 = (𝑋𝑖(𝑡) = (𝑋1
𝑖 (𝑡) ⋯ 𝑋𝑑

𝑖 (𝑡)) ∶ 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]),

where in the context of drug safety studies, 𝑋𝑗
𝑖 (𝑡) gives us information about

the exposure of patient 𝑖 to drug 𝑗 at time 𝑡 ∈ (𝑎, 𝑏].

The model developed in this paper relies on the usual SCCS model key assump-
tions [FW06]. Namely, we assume that

(1.) The features are exogenous, meaning that the counting process 𝑁𝑖 does not
have any influence on the features 𝑋𝑖;

(2.) The interval of observation (𝑎𝑖, 𝑏𝑖] is independent of 𝑁𝑖;

(3.) The process 𝑁𝑖 is a Poisson process conditionally to (𝑋𝑖(𝑡) ∶ 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]).

Assumption (1.) allows to condition on the full trajectory of the longitudinal
features 𝑋𝑖 in (4). In addition, thanks to (2.), the following derivations have to be
understood conditionally to (𝑎𝑖, 𝑏𝑖]. We may then define the conditional intensity of
process 𝑁𝑖 as

𝜆𝑖(𝑡, 𝑋𝑖) = ℙ(𝑑𝑁𝑖(𝑡) = 1 | 𝑋𝑖) (II.1)

for 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]. This model can be, therefore, understood as a regression model,
allowing to regress the outcomes in 𝑁𝑖 on the longitudinal features 𝑋𝑖.

In order to study acute vaccine adverse effects, [FW06] considers the following
model for the intensity:

𝜆(𝑡, 𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙(𝑡) + 𝑋𝑖(𝑡)
⊤𝛽),

where 𝜓𝑖 is the baseline incidence of patient 𝑖 and 𝛾𝑖 is a sum of non-temporal fixed
and random individual effects. The parameter 𝜙(𝑡) is a time-dependent baseline
which is common to all individuals. If age is used as the time scale, this term can
help to capture age effects. The vector of parameters 𝛽 ∈ ℝ𝑑 quantifies the effect of
the longitudinal features 𝑋𝑖(𝑡) on the intensity. The idea of the SCCS method is to
condition on both 𝑋𝑖 and 𝑛𝑖. Usual arguments (see Section II.A in Supplementary
Material) imply that the likelihood of 𝑁𝑖|(𝑋𝑖, 𝑛𝑖) of 𝑖 = 1,… ,𝑚 independent patients
is proportional to

𝑚

∏
𝑖=1

𝑛𝑖
∏
𝑘=1

𝜆𝑖(𝑡𝑖,𝑘, 𝑋𝑖)

∫𝑏𝑖
𝑎𝑖
𝜆𝑖(𝑠, 𝑋𝑖)𝑑𝑠

=
𝑚

∏
𝑖=1

𝑛𝑖
∏
𝑘=1

exp (𝜙(𝑡𝑖,𝑘) + 𝑋𝑖(𝑡𝑖,𝑘)
⊤𝛽)

∫𝑏𝑖
𝑎𝑖
exp (𝜙(𝑠) + 𝑋𝑖(𝑠)

⊤𝛽)𝑑𝑠
. (II.2)

Note that the conditioning with respect to 𝑛𝑖 induced two notable properties of (5):
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• Improved scalability: the likelihood only depends on patients 𝑖 such that 𝑛𝑖 ≥ 1
(while the “full” likelihood of 𝑁𝑖|𝑋𝑖 does depend on patients 𝑖 for whom 𝑛𝑖 = 0).
This is beneficial when studying rare adverse effects in large LODs.

• Robustness to non-longitudinal confounders: the non-longitudinal effects 𝜓𝑖
and 𝛾𝑖 cancel out in the likelihood (5). This makes SCCS models particularly
robust to the patient’s susceptibility.

These twoproperties are appealingwhenworkingwith LODs such as claims databases,
as it helps to mitigate issues related to missing variables and the data scale. How-
ever, only relative incidences can be computed by taking the exponential of the
corresponding coefficient, such as exp(𝜙(𝑡)) for the baseline relative incidence.

SCCS models were initially designed for vaccine safety studies [Far95], using the
suspected ADR as the outcome. In this context, estimating the relative incidence
of drug use requires defining related time-at-risk periods in which the suspected
ADR might occur. The longitudinal features 𝑋𝑖(𝑡) are then used to express the fact of
being at risk or not at time 𝑡 for a particular drug. One must then determine for how
long patients are at risk after each exposure to a drug, and if this risk occurs either
immediately or after some amount of time. Defining proper time-at-risk windows
is a hard problem when studying a single (drug, ADR) pair, which worsens even
further when considering a set (drug1,ADR),… , (drug𝑑,ADR) of such pairs. In the
case of ADR screening over multiple drugs, such a methodology might even become
inappropriate.

II.2.2 Risk screening

When prior knowledge on time-at-risk windows is not available, a simple method is
to use a large window in order to be sure to capture the potential effect. However, this
strategy typically “dilutes” the risk over the window, see [Xu+11], leading to a model
unable to detect ADRs. Existing works propose to relax the time-at-risk window defi-
nition while trying to overcome this risk dilution. It is proposed in [Xu+11] to select
an optimal risk window by testing several window sizes, in a data-driven fashion.
However, this method is difficult to adapt for ADR screening when considering 𝑑
drugs and 𝑞 risk windows at the same time, since it requires to fit 𝑞𝑑 models.

A different approach relies on fitting time-dependent parameters in order to
estimate the risk of ADR over large risk windows. The model estimates a time-
varying relative incidence function all along the risk window instead of assuming it
to be constant. This approach is used in [Sch+16], where the drug effect is a function
𝜃 of the accumulated exposures. It uses a discrete model with daily granularity,
assuming that the integral of 𝑋𝑖(𝑡) over one day is equal to 1 when the patient is
exposed to the studied drug. Accumulated exposures up to time 𝑡 is measured by
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∫𝑡
𝑎𝑖
𝑋𝑖(𝑠)d𝑠, where 𝑋𝑖(𝑡) is univariate, and expresses the exposure to a single drug at

time 𝑡, leading to the following model for the intensity:

𝜆𝑖(𝑡, 𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙(𝑡) + 𝜃(∫
𝑡

𝑎𝑖

𝑋𝑖(𝑠)d𝑠) + 𝑋𝑖(𝑡)𝛽),

where the function 𝜃 is estimated using natural cubic splines. As the splines are not
regularised, this model might be prone to overfitting. Alternatively, [GWF16] use a
convolution to model drug effects, writing the intensity as

𝜆𝑖(𝑡, 𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙(𝑡))∫
𝑡

𝑎𝑖

𝑋𝑖(𝑠)𝜃(𝑡 − 𝑠)d𝑠.

In this model, 𝑋𝑖(𝑡) is either a point exposure 𝑋𝑖(𝑡) = 𝛿𝑐𝑖(𝑡) where 𝛿𝑐𝑖 stands for a
Diracmass at date 𝑐𝑖 ∈ ℝ+, or a continuous exposure to a constant quantity 𝑥, namely
𝑋𝑖(𝑡) = 𝑥𝟙(𝑐𝑖,𝑏𝑖](𝑡). In the former case, the intensity can be expressed as

𝜆𝑖(𝑡, 𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙(𝑡)) 𝜃(𝑡 − 𝑐𝑖). (II.3)

The function 𝜃 is estimated using M-splines (in order ensure positivity) in [GWF16;
GWF17], while the age effect 𝜙 is estimated by step functions in [GWF16] and by
splines in [GWF17]. The considered model could deal with multiple point exposures
𝑐𝑖 for the drug, given that the maximum time gap between successive exposures is
smaller than the support of 𝜃, but the authors have not developed this point.

Both [Sch+16] and [GWF16; GWF17] seem restricted to the study of a single
(drug, ADR) pair at a time. This can be problematic since SCCS is sensitive to time-
varying confounders and benefits from studying multiple drugs at once as shown by
both [Sim+13] and [MRM16]. In order to fit an SCCS model using several drugs at
the same time, [GWF17] propose to extend their work by modelling additional drugs
effect with step functions instead of splines. However, such functions are basically
not regularised, which can result in overfitting, and are very sensitive to the chosen
number of steps.

II.3 ConvSCCS: an extension of SCCS models
We now introduce our ConvSCCS model. It is an extension of the classical SCCS
model in several directions. First, it allows considering exposures to several drugs.
More importantly, our model is time-invariant thanks to a convolutional structure.
Hence it can learn the potential effects of the drug exposures even without prior
definition of precise time-at-risk periods.
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More specifically, we construct a model that estimates the effect of longitudinal
features using convolutions of low-granularity step functions with point drug expo-
sures. The low-granularity leads to an over-parametrised model with poor estimation
accuracy. We solve this issue in Section II.3.2 below by using a penalisation technique
that combines total-variation and Group-Lasso penalties. The second will perform
an automatic variable selection, while the first enforces longitudinal effects to be
piece-wise constant over larger steps whenever statistically relevant. As illustrated in
Section II.4, this leads to improvements over current state-of-the-art methods, and
provides interpretable results on the observational database considered in this paper,
see Section II.4.2.

II.3.1 Discrete convolutional SCCS

We assume that, for 𝑖 = 1,… ,𝑚, the intensity 𝜆 is constant over time intervals
𝐼𝑘 = (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 1,… , 𝐾 that form a partition of the observation interval (𝑎, 𝑏].
Without loss of generality, we choose 𝐼𝑘 to be of constant length 1. In practice, we use
the smallest granularity allowed by data. Hence, we can assume that (𝑎𝑖, 𝑏𝑖] ∩ 𝐼𝑘 is
either∅ or 𝐼𝑘 for all 𝑖 = 1,… ,𝑚, and 𝑘 = 1,… , 𝐾, which means that the observation
period of each individual is a union of intervals 𝐼𝑘. Denoting by 𝜆𝑖,𝑘 the value of
𝜆(𝑡, 𝑋𝑖(𝑡)) for 𝑡 ∈ 𝐼𝑘, and defining 𝑦𝑖𝑘 ∶= 𝑁𝑖(𝐼𝑘), the discrete SCCS likelihood can be
written as

𝐿(𝑦𝑖1,… , 𝑦𝑖𝑘|𝑛𝑖, 𝑋𝑖) = 𝑛𝑖!
𝐾

∏
𝑘=1

(
𝜆𝑖𝑘

∑𝐾
𝑘′=1 𝜆𝑖𝑘′

)
𝑦𝑖𝑘

,

where we use the convention 00 = 1, i.e. only the exposition period (𝑎𝑖, 𝑏𝑖] con-
tributes to the likelihood, and since 𝑁𝑖(𝐼𝑘) = 𝜆𝑖𝑘 = 0 whenever 𝐼𝑘 ∩ (𝑎𝑖, 𝑏𝑖] = ∅, see
Section II.B of Supplementary Material for more details. We consider an intensity
given by

𝜆𝑖(𝑡, 𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙(𝑡) +∫
𝑡

𝑎𝑖

𝑋𝑖(𝑠)
⊤𝜃(𝑡 − 𝑠)d𝑠).

Since the intensity is constant on each 𝐼𝑘, it can be rewritten as

𝜆𝑖𝑘(𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙𝑘 +
𝑘

∑
𝑘′=𝑎𝑖

𝑋⊤
𝑖𝑘′𝜃𝑘−𝑘′),

where 𝑋𝑖𝑘 stands for the value of 𝑋𝑖(𝑡) for 𝑡 ∈ 𝐼𝑘 and 𝜃 ∈ ℝ𝑑×𝐾. We observe 𝑙 =

1,… , 𝐿𝑗𝑖 starting dates of exposures 𝑐
𝑗
𝑖𝑙 and introduce the features 𝑋

𝑗
𝑖𝑘 = ∑𝐿𝑗𝑖

𝑙=1 𝟙𝑘=𝑐𝑗𝑖𝑙
,
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which leads to the following intensity

𝜆𝑖𝑘(𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙𝑘 +
𝑑

∑
𝑗=1

𝐿𝑗𝑖
∑
𝑙=1

𝜃𝑗
𝑘−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘 − 𝑐𝑗𝑖𝑙)). (II.4)

The quantity exp(𝜃𝑗𝑘) corresponds to the relative incidence of an exposure to drug 𝑗
that occurs 𝑘 time units after an exposure start. Finally, the likelihood is equal to

𝐿(𝑦𝑖1,… , 𝑦𝑖𝑘|𝑛𝑖, 𝑋𝑖) =
𝐾

∏
𝑘=1

⎛
⎜
⎜
⎝

exp (𝜙𝑘 +∑𝑑
𝑗=1∑

𝐿𝑗𝑖
𝑙=1 𝜃

𝑗
𝑘−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘 − 𝑐𝑗𝑖𝑙))

∑𝐾
𝑘′=1 exp (𝜙𝑘′ +∑𝑑

𝑗=1∑
𝐿𝑗𝑖
𝑙=1 𝜃

𝑗
𝑘′−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘′ − 𝑐𝑗𝑖𝑙))

⎞
⎟
⎟
⎠

𝑦𝑖𝑘

(II.5)
and depends only on the parameters 𝜃 for the exposures and the age effects 𝜙.

II.3.2 Penalised estimation
This formulation of intensity (6) is flexible since it allows to capture an immediate
effect in 𝜃𝑗0, or delayed ones using 𝜃

𝑗
𝑘 for 𝑘 ≥ 1. This flexibility comes at a cost:

it increases significantly the number of parameters to be estimated, which might
lead to inaccurate estimations and to overfitting of the dataset. To that end, we
introduce a penalisation technique which allows handling this issue, and which
provides interpretable estimations of the relative risks as a byproduct.

We introduce groups 𝜃𝑗 = [𝜃𝑗1⋯𝜃𝑗𝑝] ∈ ℝ𝑝 of parameters quantifying the impact
of exposures to drugs 𝑗 = 1,… , 𝑑 at different lags 𝑘 = 1,…𝑝. To avoid exposure
effects overlapping, we assume that exposure starting times are far enough, that
is min𝑙,𝑙′ |𝑐

𝑗
𝑖𝑙 − 𝑐𝑗𝑖𝑙′| > 𝑝. We want to induce two properties on the relative risks

of drugs exposures: a “smoothness” property along lags 𝑘 = 1,… , 𝑝, namely we
want consecutive relative risks exp(𝜃𝑗𝑘) and exp(𝜃

𝑗
𝑘−1) to be basically close; and the

possibility for a drug to have no effect, namely to induce that 𝜃𝑗 can be the null
vector. This can be achieved with the following penalisation that combines total and
group-Lasso

pen(𝜃) = 𝛾tv
𝐽

∑
𝑗=1

𝑝−1

∑
𝑘=1

|𝜃𝑗𝑘+1 − 𝜃𝑗𝑘| + 𝛾gl
𝐽

∑
𝑗=1

‖𝜃𝑗‖2 (II.6)

over the groups 𝜃𝑗 for 𝑗 = 1,… , 𝑑, where 𝛾tv ≥ 0 and 𝛾gl ≥ 0 are respectively levels of
penalisation for the total-variation and the group-Lasso. The group-Lasso introduced
in [YL06] acts like the lasso at the group level: depending on 𝛾gl, it can cancel out a
full block 𝜃𝑗. Total-variation penalisation is known to consistently estimate change
points for the estimation of the intensity of a Poisson process, see [AGG15].
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We write the penalised negative log-likelihood of our model as follows:

−ℓ(𝜙, 𝜃) + pen(𝜃) = −1𝑛

𝑛

∑
𝑖=1

𝐾

∑
𝑘=1

𝑦𝑖𝑘 log (
𝜆𝑖𝑘(𝜙, 𝜃)

∑𝐾
𝑘′=1 𝜆𝑖𝑘(𝜙, 𝜃)

) + pen(𝜃), (II.7)

where pen is given by (7) and where we recall that

𝜆𝑖𝑘(𝜙, 𝜃) = exp (𝜙𝑘 +
𝑑

∑
𝑗=1

𝐿𝑗𝑖
∑
𝑙=1

𝜃𝑗
𝑘−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘 − 𝑐𝑗𝑖𝑙)).

The function (8) is convex and ℓ(𝜙, 𝜃) is gradient-Lipschitz. However, since the
sparsity-inducing penalisation pen(𝜃) is not differentiable, we use a proximal first-
order method to minimise efficiently (8). Namely, we use the state-of-the-art SVRG
algorithm from [XZ14], which is a fast stochastic proximal gradient descent algorithm,
using a principle of variance reduction of the stochastic gradients.

Finally, the hyper-parameters 𝛾tv and 𝛾gl are selected using a stratified V-Fold
cross-validation on the negative log-likelihood.

II.4 Experiments
In this section, we compare ConvSCCS with the state-of-the-art, namely Smooth-
SCCS [GWF16] and NonparaSCCS [GWF17], that are described below, see also Sec-
tion II.2.2 for further details.

ConvSCCS is the method introduced in this paper: an extension of SCCS mod-
els allowing to fit the effect of several drugs on an ADR in a flexible way, see also
Table II.4.1 below. ConvSCCS is available in our open-source tick library, see Sec-
tion II.C in Supplementary Material for details.

SmoothSCCS is introduced in [GWF16], which uses splines to model the effect
of a single drug exposure to a disease and step functions to model the effect of age.
We use the SCCS R package implementation, available at http://statistics.open.
ac.uk/sccs/r.htm. We use 12 knots and six groups of age as suggested in [GWF16].
Since this model is designed to fit (drug, ADR) pairs, we fit the model on each drug
successively.

NonparaSCCS is introduced in [GWF17] which uses splines to model both the
effect of drug exposure and age. We use the same R package and settings as the ones
described for SmoothSCCS.

We did not include [Sch+16] as we have not found any open source implementa-
tion of this work. We have not tried to use [Sim+13] since we do not have precise
priors on relevant risk periods in the context of ADR screening.
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Table II.4.1 – Comparison of SCCS methods with ConvSCCS. MSCCS is introduced
in [Sim+13], ESCCS in [Sch+16], while SmoothSCCS and NonParaSCCS
are respectively introduced in [GWF16; GWF17]. Regularised models are
constrained to avoid overfitting, the constraint being controlled by hyper-
parameters. The models can either fit multiple features at a time or be limited
to study only one feature at a time. We do not consider SmoothSCCS and
NonParaSCCS as able to studymultiple features properly since only one feature
can be regularised.

Algorithm Regularised Multiple features Multiple exposures Flexible effect

MSCCS yes yes yes no
ESCCS no no accumulated yes

SmoothSCCS yes no no yes
NonParaSCCS yes no no yes

ConvSCCS yes yes yes yes

II.4.1 Simulations
The performances of our model against SmoothSCCS and NonParaSCCS are com-
pared in a simulation study. For this purpose, multivariate longitudinal exposures
and outcomes are simulated, with a correlation structure between exposures.

Simulation of longitudinal features. The simulation of correlated longitudinal
features is a difficult task, for which we use Hawkes processes, see [HO74], which is
a family of counting process with an autoregressive intensity, see Section II.E of the
Supplementary Material for more details. Our simulation setting has been chosen so
that it generates correlated exposures, as it is the case with actual exposures from the
LOD considered in this paper.

Simulation of relative risks. We assume that all simulated adverse outcomes
can take place at most 50 time intervals after the first exposure. We consider two sets
of relative risk profiles from [GWF17] and [AF03]. These sets are precisely described
in Section II.E of the Supplementary Material, and contain several types and shapes
of risks profiles.

Simulationof outcomes. Wesimulate𝑚 = 4000 patients’ exposures over𝐾 = 750
time intervals. The observation periods are set to [0, 𝑏𝑖], where 𝑏𝑖 = 𝐾 − 𝑒𝑖 and 𝑒𝑖 are
is from an exponential distribution with intensity 1/250. Intensities 𝜆𝑖𝑘 are set to zero
for all 𝑘 > 𝑏𝑖. The outcomes are simulated according to a multinomial distribution
Mult(1; 𝑝𝑖,0,… , 𝑝𝑖𝐾) where 𝑝𝑖𝑘 = 𝜆𝑖𝑘/∑

𝐾
𝑘′=1 𝜆𝑖𝑘′.

93



II. ConvSCCS

Sensitivity analysis. We perform extensive simulations to test the robustness of
our model to bias sources specific to EHR data using the following scenarios, namely
not-at-random missing data, noisy timestamps, missing longitudinal features, see
Section II.E of the Supplementary Material for more details.

Performance measure. The performance of the different models is computed
using the mean absolute error (MAE) between the estimated relative incidence and
the true risk profile, see Section II.E of the Supplementary Material for details. For
both sets of relative risk profiles, we simulate 𝑚 = 4000 cases and simulate 100
datasets for each scenario.

Results. Boxplots representing theMAEdistribution over the 100 simulated datasets
are represented in Figures II.4.1 and II.4.2. In Set 1 of relative exposures, which is an
“easy” setting (4 features and 8 non-zero correlations, see Supplementary Material),
the gain resulting from studying several drugs at a time seems to be balanced by the
bias resulting from using step functions when fitting smooth risk profiles. Indeed, as
shown by Figure II.4.1, the estimation errors of drug exposures relative risks are sim-
ilar across the three considered models. For the baseline estimation, NonParaSCCS
performs better than ConvSCCS and SmoothSCCS since the use of splines results in
a better approximation than the step functions with six groups of age.
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Figure II.4.1 – Simulations results using Set 1 or risk profiles (see Figure II.E.2)
with 𝑚 = 4000. The boxplots represent the distribution of mean absolute
error as defined in Section II.4.1, computed over 100 simulated populations.
Left: MAE distribution of the drug exposure relative incidences. Right: MAE
distribution of the baseline relative incidences, constrained so that their
integral is equal to one.
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In Set 2 of relative exposures, which is a more difficult setting (14 features, with
24 non-zero correlations, see Supplementary Material), ConvSCCS outperforms both
SmoothSCCS and NonParaSCCS. We observe in Figure II.4.2 that fitting the effect of
several drugs at the same time and using our penalisation provides a better estimation
accuracy than NonParaSCCS and SmoothSCCS, the improvement being larger for
the estimation of drugs exposures risks profiles than for the baseline. This illustrates
the benefits of fitting several drugs at the same time in the context of an SCCS model.
Figure II.4.3 gives the run times of all three procedures. ConvSCCS seems to scale
better than both SmoothSCCS and NonParaSCCS when fitting a large number of
feature such as 𝑑 = 14 on𝑚 > 2000 cases. In small studies, however, when 𝑑 = 4
for example, SmoothSCCS is the fastest algorithm, while NonParaSCCS is overall
slower than the two other algorithms. According to its improved performance and
scalability when studying several drugs, ConvSCCS seems to be a useful model for
ADR screening on LODs.
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Figure II.4.2 – Simulations results using Set 2 or risk profiles (see Figure II.E.3)
with 𝑚 = 4000. The boxplots represent the distribution of mean absolute
error as defined in Section II.4.1, computed over 100 simulated populations.
Left: MAE distribution of the drug exposure relative incidences. Right: MAE
distribution of the baseline relative incidences, constrained so that their
integral is equal to one.

The sensitivity analysis shows that the model is robust to small to moderate noise
in timestamps, but its performances degrade with large noise (see Figure II.E.4 in
SupplementaryMaterial). With large noise, themodel over-penalizes (with the group-
Lasso), resulting in a constant relative incidence for each feature. In such situations,
reducing the granularity might help to reduce the noise level, but it might also dilute
the risk. The model does not seem particularly sensitive to not-at-random missing
data or to slightly correlated missing features, see Figures II.E.5, II.E.6 and II.E.7 in
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Figure II.4.3 – Run times of ConvSCCS, SmoothSCCS and NonParaSCCS described
Section II.4 for 1000, 2000, 3000, 4000 cases. Left: run times on 4 features.
Left: run times on 14 features. As SmoothSCCS and NonParaSCCS can only
handle one feature at a time, we report the time required to fit them on each
studied feature while ConvSCCS is fitted on all the features simultaneously.
For each model, a fit includes cross-validation of the hyper-parameters and
estimation of confidence bands.

Supplementary Material for more details.

II.4.2 Application on data from the French national health
insurance information system

We investigate the association between glucose-lowering drugs and the risk of bladder
cancer in France with data from the SNIIRAM/PMSI database. Using similar data, a
significant association between pioglitazone (glucose-lowering drug) and bladder
cancer was reported in [Neu+12]. As a result of this study, the use of pioglitazone
was suspended in France in June 2011. Note that other studies, such as [Lew+15]
did not conclude to a significant effect on this particular association.

The SNIIRAM/PMSI database. The data was extracted from the French national
health insurance information system (Système National d’Information Inter-régimes
de l’Assurance Maladie (SNIIRAM), see [Tup+10b]) linked with the French hospi-
tal discharge database (Programme de Médicalisation des Systèmes d’Information
(PMSI), see [ATI] website), in the context of a research partnership between Ecole
Polytechnique and CNAMTS. The full SNIIRAM/PMSI database is an SQL database
containing hundreds of tables built around medical reimbursements of more than
53 million people (its size is between 150 and 200 TB). Our team set up a 15 nodes
Spark cluster and developed an ETL (Extract Transform Load) pipeline to transform
the data into a single patient-centric table that can be used to build features that feed
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various statistical inference algorithms.

Cohort, ADR and expositions definitions. The cohort includes patients covered
by the general insurance scheme aged 40 to 79 years on 2006/12/31 who filled at least
one prescription for a glucose-lowering drug in 2006. The end of the observation
period was set on 2009/12/31. The glucose-lowering drugs investigated are insulin,
metformin, sulfonylurea, pioglitazone, rosiglitazone, and other oral hypoglycemic
agents.

All patients with any bladder cancer-related events in the six months before
follow-up start have not been included. So although the depth of the data was 48
months, the cohort was followed for up to 42 months. The considered outcomes can
then be treated as incident cases. We use the same definition for the bladder cancer
outcome as in [Neu+12], which adds particular procedures to a hospital discharge
diagnosis (ICD-10-C67). The cohort contains 1699 patients with bladder cancer. Note
that we have roughly 400 cases missing in comparison to [Neu+12], and less history
prior to follow-up to filter prevalent cases, due to French data regulation imposing
patients information to be deleted after ten years. More details about cohort structure
can be found in Table II.E.1 in supplementary materials.

We consider that patients are exposed to a molecule as soon as they purchase a
drug containing this molecule. Once a patient has been exposed, she is considered
as exposed until the end of her follow-up. There is a potential bias concerning drug
exposures. Indeed, diabetic patients use hypoglycemic agents continuously. As a
result, exposure starting dates might exhibit noisy timestamps.

ConvSCCS. We apply ConvSCCS to the cohort with bladder cancer, and use the
smallest available granularity: 30-days time intervals based on calendar time and
consider a risk window of 24months. We do not use age-related features and consider
its effect to be part of patients’ baseline cancelled out during the model estimation.

ConvSCCS Assumptions (2) and (3) (see Section II.2.1) are considered to be unvi-
olated for the following reasons. Bladder cancer times and the observation period do
not seem to be correlated: among 1699 cases, we observe only 52 censoring times
occurring between 2 and 35 months after outcome times. We thus consider, follow-
ing [Far+11], that the model performance should not be affected. Assumption (3) is
valid when working on rare non-recurrent events [FW06]. Using the same outcome
definition as [Neu+12], we find 1699 cases over roughly 1.5 million patients. The
construction of this outcome also constrains it to occur only once over the 4 years
of observation. It considers successive bladder cancer events as multiple record-
ings of the same cancer, which is sensible regarding the study length. Hence, it
seems reasonable to consider bladder cancer as a rare, non-recurrent event, and thus,
Assumption (3), following [FW06].
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II. ConvSCCS

Concerning Assumption (1), we observe a small shift in the distribution of new
exposures to Insulin and Others after the outcome date among the studied cases.
If this shift is caused by the outcome time, it would violate the feature exogeneity
Assumption (1). However, it is also a characteristic of diabetes care pathways in
France: diabetic patients often begin their treatment with metformin, and then
switch to another group of molecules later on if it fails to regulate their diabetes,
and so on, with Insulin being one of the last options. Timestamps might also be
noisy, since diabetic patients are continuously exposed to hypoglycemic agents. As
a result, most of the patients in the cohort are already exposed at the beginning
of the follow-up (30% to 70% of the exposures start at beginning of the follow-up
depending on the molecule). This might introduce noise in the timestamps, as we
do not really know for how long patients have been exposed, and we have shown
in our simulation study that ConvSCCS is sensitive to noisy timestamps (see the
sensitivity analysis in Section II.4). However, this problemmet in the data is standard
would affect any other method similarly. Despite these unavoidable problems with
the data, ConvSCCS is able to detect, as explained below the stronger adverse effect
of pioglitazone pointed out in [Neu+12].

We selected the best hyper-parameters 𝛾∗𝑡𝑣 and 𝛾∗𝑔𝑙 using stratified 3-fold cross-
validation, with random search. Bootstrap confidence intervals are computed with
200 bootstrap samples obtained with the parametric bootstrap on the unpenalised
likelihood. We refit the model using the support of the parameters obtained with the
penalised procedure before using the bootstrap. Cross-validation and 95% bootstrap
confidence intervals computation took 188 seconds using a single thread of an Intel
Xeon E5–2623 v3 3.00 GHz CPU.

Study in [Neu+12]. The exposure to pioglitazone is measured in terms of duration
from the first purchase, categorised in three intervals. The exposure to other lowering
drugs starts when the patient buys the drug two times in a 6-month window, setting
the beginning of the exposure in the middle of the 6-month window. A multivariate
Cox model to estimate the bladder cancer hazard ratios for glucose-lowering drugs
(time-dependent) exposures, adjusted for age using groups of 5 years and gender,
was used.

Results. The estimated relative incidences and 95% bootstrap confidence intervals
for all investigated glucose-lowering drugs are represented in Figure II.4.4. Thanks to
the penalisation used in ConvSCCS, the estimated relative incidences and confidence
intervals are piecewise constant on large steps: this is particularly interesting since it
allows to detect only significant variations of the relative risks.

As shown in Figure II.4.4 we recover a strong positive association between pi-
oglitazone and the risk of bladder cancer, which consistently increases over time
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Figure II.4.4 – Estimated relative incidences of glucose lowering drugs on the risk
of bladder cancer. Blue curves represent the estimated relative incidences
𝑘 = 0,… , 23 months after the beginning of exposure. Light blue bands
represent 95% confidence intervals estimated by the parametric bootstrap,
with 200 bootstrap samples.

from 6 to 24 months after exposure start. Since our model estimates longitudinal
effects of exposures, we compare ourselves with the duration of pioglitazone use
estimates in [Neu+12] in the paragraph below. Our model estimated a hazard ra-
tio of 0.89 ([0.56, 1.29]) for the first 6 months after exposure to pioglitazone, 1.27
([0.88, 1.83]) between 6 and 14months after pioglitazone exposure start. [Neu+12]
found a hazard ratio of 1.05 ([0.82, 1.36]) for pioglitazone exposure of less than 12
months. For exposure greater than 12months, they estimated a hazard ratio of 1.34
([1.02, 1.75]) and 1.36 ([1.04, 1.79]) while our model found 1.39 ([0.95, 2.2]) from 14
to 22 months after pioglitazone exposure start and 2.3 ([1.17, 4.0]) from 22 to 24
after pioglitazone exposure start. Our results regarding pioglitazone are thus overall
consistent with [Neu+12].

The comparison for other hypoglycemic agents hazard ratios is more difficult
since [Neu+12] does not estimate longitudinal risks for these molecules. While other
hypoglycemic agents are non statistically significant in [Neu+12], our model cancels
out the effect of rosiglitazone and find the othermolecules non statistically significant
during most of the lags after exposure start. However, sulfonylurea and “other” have
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positive significant estimates from lags 9 to 11, as well as insulin from lag 0 to 5. The
shape of these three curves suggests there might be some colinearity issues between
these three features, since the magnitude of their relative incidence curves seems to
either match or be of opposite signs and magnitude in similar lag values. Metformin
seems to be non-significant overall, despite few coefficients suggesting a positive
association. While these results are not a perfect match to [Neu+12], they show that
our model might be useful when exploring quickly large sets of molecules with a
reduced amount of data preprocessing, even when the conditions are sub-optimal
(noisy timestamps, possible feature endogeneity, and feature colinearity). Indeed, in
contrary to [Neu+12] approach, our methodology is scalable in the number of drugs
since it doesn’t require the same precise preprocessing work.

II.5 Conclusion

In this paper, we introduced ConvSCCS, a multivariate SCCS method with a flex-
ible risk formulation. Our approach is based on a discrete-time version of the
SCCS model [Far95], enjoying its scalability and automatic adjustment for time-
independent confounders. Classical SCCS models usually require a precise prior
definition of risk windows, which might be unavailable in an adverse drugs reaction
screening context. Our model circumvents this problem by modelling exposures-
related relative incidences with low-granularity step functions, on which we apply
total-variation penalisation. ConvSCCS shows improvements in precision and com-
putational speed compared to the state-of-the-art in moderate to high dimension.
It relies on the usual SCCS assumptions: the outcomes are distributed as a Poisson
process, conditionally to the longitudinal features that are assumed to be exogenous,
and observation periods of the subjects should be independent from outcome times.
ConvSCCS exhibits robustness to a departure from the above mentioned SCCS as-
sumptions, as illustrated in extensive numerical experiments, but remains sensitive
to a large noise level in timestamps, which can be problematic depending on the data
source quality.

An other important advantage of ConvSCCS is its ability to consider exposures to
multiple drugs simultaneously in the model. ConvSCCS is, therefore, a flexible tool
which could be used for future ADR screening based on LODs. An application of
ConvSCCS is provided on a cohort of diabetic patients studied in [Neu+12], and it is
able to recover the ADR detected by the authors.
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Appendix

II.A Likelihood in SCCS models

From [Dal03], the Poisson likelihood of a single patient 𝑖 can then be written as

𝐿𝑖(𝑛𝑖; 𝑡𝑖|𝑋𝑖) = 𝑒−∫𝑏𝑖𝑎𝑖
𝜆𝑖(𝑠,𝑋𝑖)𝑑𝑠

𝑛𝑖
∏
𝑘=1

𝜆𝑖(𝑡𝑖𝑘, 𝑋𝑖),

and the total number of events 𝑛𝑖 = 𝑁𝑖([𝑎𝑖, 𝑏𝑖]) follows a Poisson distribution

ℙ(𝑛𝑖|𝑋𝑖) =
(∫𝑏𝑖
𝑎𝑖
𝜆𝑖(𝑠, 𝑋𝑖)𝑑𝑠)

𝑛𝑖

𝑛𝑖!
𝑒−∫𝑏𝑖𝑎𝑖

𝜆𝑖(𝑠,𝑋𝑖)𝑑𝑠.
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Conditioning the likelihood by the total number of events and on the covariates
histories leads to the SCCS likelihood of a patient history

𝐿𝑖(𝑡𝑖|𝑛𝑖, 𝑋𝑖) =
𝐿𝑖(𝑛𝑖; 𝑡𝑖|𝑋𝑖)
ℙ(𝑛𝑖|𝑋𝑖)

=
𝑒−∫𝑏𝑖𝑎𝑖

𝜆𝑖(𝑠,𝑋𝑖)𝑑𝑠∏𝑛𝑖
𝑘=1 𝜆𝑖(𝑡𝑖𝑘, 𝑋𝑖)

𝑒
−∫𝑏𝑖𝑎𝑖

𝜆𝑖(𝑠,𝑋𝑖)𝑑𝑠
(∫

𝑏𝑖
𝑎𝑖

𝜆𝑖(𝑠,𝑋𝑖)𝑑𝑠)
𝑛𝑖

𝑛𝑖!

= 𝑛𝑖!
𝑛𝑖
∏
𝑘=1

𝜆𝑖(𝑡𝑖𝑘, 𝑋𝑖)
∫𝑏𝑖
𝑎𝑖
𝜆𝑖(𝑠, 𝑋𝑖)𝑑𝑠

,

where we used the convention∏0
𝑘=1… = 1 (i.e., the likelihood is equal to 1 if a

patient does not have any event, namely 𝑛𝑖 = 0). The likelihood of 𝑚 patients can
therefore be expressed, up to constants independent on the intensities, as

𝐿 ∝
𝑚

∏
𝑖=1

𝑛𝑖
∏
𝑘=1

𝜆𝑖(𝑡𝑖𝑘, 𝑋𝑖)
∫𝑏𝑖
𝑎𝑖
𝜆𝑖(𝑠, 𝑋𝑖)𝑑𝑠

.

II.B Discrete time SCCS
Weassume that, for 𝑖 = 1,… ,𝑚, the intensity 𝜆(𝑡, 𝑋𝑖(𝑡)) is constant over time intervals
𝐼𝑘 = (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 1,… , 𝐾 that form a partition of the observation interval (𝑎, 𝑏].
We choose 𝐼𝑘 to be of constant length, chosen without loss of generality equal to
1. In practice, we use the smallest granularity allowed by data. We therefore can
assume that (𝑎𝑖, 𝑏𝑖] ∩ 𝐼𝑘 is either ∅ of 𝐼𝑘 for all 𝑖 = 1,… ,𝑚, and 𝑘 = 1,… , 𝐾, which
means that the observation period of each individual is a union of intervals 𝐼𝑘. The
discrete-time likelihood writes

𝐿(𝑡𝑖; 𝑛𝑖|𝑋𝑖) = exp (
𝐾

∑
𝑘=1

∫
𝐼𝑘

log(𝜆(𝑠, 𝑋𝑖(𝑠)))d𝑁𝑖(𝑠) −
𝐾

∑
𝑘=1

∫
𝐼𝑘

𝜆(𝑠, 𝑋𝑖(𝑠))d𝑠)

= exp (
𝐾

∑
𝑘=1

log(𝜆𝑖𝑘)𝑁𝑖(𝐼𝑘) −
𝐾

∑
𝑘=1

𝜆𝑖𝑘),

where 𝜆𝑖,𝑘 is the value of 𝜆(𝑡, 𝑋𝑖(𝑡)) for 𝑡 ∈ 𝐼𝑘, where 𝑁𝑖(𝐼𝑘) = ∫𝐼𝑘 𝑑𝑁𝑖(𝑡) and where
we used ∫𝐼𝑘 𝑑𝑡 = 1 and the fact that 𝑁𝑖(𝐼𝑘) = 0 and 𝜆𝑖𝑘 = 0 if 𝐼𝑘 ∩ (𝑎𝑖, 𝑏𝑖] = ∅. The
distribution of the total number of events for patient 𝑖 is given by

ℙ(𝑛𝑖|𝑋𝑖) =
(∫𝑏𝑖

𝑎𝑖
𝜆(𝑠, 𝑋𝑖(𝑠))d𝑠)

𝑛𝑖

𝑛𝑖!
𝑒−∫𝑏𝑖𝑎𝑖

𝜆(𝑠,𝑋(𝑠))d𝑠 =
(∑𝐾

𝑘=1 𝜆𝑖𝑘)
𝑛𝑖

𝑛𝑖!
𝑒−∑𝐾

𝑘=1 𝜆𝑖𝑘,
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which leads to

𝐿(𝑡𝑖|𝑛𝑖, 𝑋𝑖) =
𝐿(𝑛𝑖; 𝑡𝑖|𝑋𝑖)
ℙ(𝑛𝑖|𝑋𝑖)

=
exp (∑𝐾

𝑘=1 log(𝜆𝑖𝑘)𝑁𝑖(𝐼𝑘) − ∑𝐾
𝑘=1 𝜆𝑖𝑘)

(∑𝐾
𝑘=1 𝜆𝑖𝑘)

𝑛𝑖

𝑛𝑖!
𝑒−∑𝐾

𝑘=1 𝜆𝑖𝑘

= 𝑛𝑖!
𝐾

∏
𝑘=1

(
𝜆𝑖𝑘

∑𝐾
𝑘′=1 𝜆𝑖𝑘′

)
𝑁𝑖(𝐼𝑘)

,

wherewe use the convention 00 = 1, i.e. only the exposition period (𝑎𝑖, 𝑏𝑖] contributes
to the likelihood, and since once again 𝑁𝑖(𝐼𝑘) = 𝜆𝑖𝑘 = 0 whenever 𝐼𝑘 ∩ (𝑎𝑖, 𝑏𝑖] = ∅.
Then, defining 𝑦𝑖𝑘 ∶= 𝑁𝑖(𝐼𝑘), the previous equation can be rewritten as

𝐿(𝑦𝑖1,… , 𝑦𝑖𝑘|𝑛𝑖, 𝑋𝑖) = 𝑛𝑖!
𝐾

∏
𝑘=1

(
𝜆𝑖𝑘

∑𝐾
𝑘′=1 𝜆𝑖𝑘′

)
𝑦𝑖𝑘
.

II.C Numerical implementation
We use the state-of-the-art SVRG algorithm from [XZ14] for the minimization of our
penalized negative log-likelihoof. It is known to typically lead to faster convergence
than quasi-newton algorithms, such as L-BFGS-B, see [LN89], while allowing to deal
with non-smooth objectives. Solving (8) requires to compute the proximal operator
(see [Bac+12] for a definition) of pen(𝜃). This can be done very fast numerically:
pen(𝜃) can be separated into two separate proximal operators for total-variation and
group-Lasso, see [Zho+12]. The proximal operator of group-Lasso is explicit and
given by group soft-thresholding, see [Bac+12], while the prox of total-variation is
not, but can be computed very efficiently with the fast algorithm from [Con13].

II.D Software
Our model is implemented in the Tick library, see [Bac+17a], which is a Python
library focused on statistical learning for time dependent systems. It is open-source
and available at https://github.com/X-DataInitiative/tick. The implemen-
tation is done in C++, with a Python API, and is thoroughly documented at https:
//x-datainitiative.github.io/tick/.

II.E Simulations details
About the simulation of longitudinal features. Let us give some details on the
way we simulated longitudinal features using Hawkes processes.
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II. ConvSCCS

Namely, we simulate dates of purchases {𝑡𝑗𝑖 }𝑖≥1, of drugs 𝑗 = 1,… , 𝑑 using a
multivariate Hawkes process 𝑁𝑡 = [𝑁1

𝑡 ⋯𝑁𝑑
𝑡 ], for 𝑡 ≥ 0, where 𝑁𝑗

𝑡 = ∑𝑘≥1 𝟙𝑡𝑗𝑘≤𝑡
for

any 𝑡 ≥ 0. The process 𝑁𝑡 is a multivariate counting process, whose components 𝑁𝑗

have intensities

𝜆𝑗𝑡 = 𝜇𝑗 +
𝑑

∑
𝑗′=1

∑
𝑘≥1

𝐴𝑗,𝑗′𝛼 exp(−𝛼(𝑡 − 𝑡𝑗
′

𝑘 )) (II.8)

for 𝑗 = 1,… , 𝑑. This corresponds to a Hawkes process with so-called exponential
kernels. The 𝜇𝑗 ≥ 0 are called baselines intensities, and correspond to the exogenous
probability of being exposed to drug 𝑗. In the matrix 𝐴 = [𝐴𝑗,𝑗′]1≤𝑗,𝑗′≤𝑑, called the
adjacency matrix, the entry 𝐴𝑗,𝑗′ ≥ 0 quantifies the impact of past exposures to
drug 𝑗′ on the exposition intensity to drug 𝑗 and 𝛼 > 0 is a memory parameter. A
single matrix 𝐴 is simulated for the whole population, but a new one is generated in
each round of simulation. Recalling that the simulated events 𝑡𝑗𝑖 correspond to the
purchase date of drugs (this is the only information available in the LOD described
in Section II.4.2 below), we consider that a patient is exposed to a drug 𝑗 at time 𝑡𝑗1.
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Figure II.E.1 – Left: example of simulated dates of drugs purchases (vertical black
lines). Exposure starts at the date of the first purchase (gray horizontal lines).
Right: an example of generated adjacency matrix 𝐴 for longitudinal feature
simulation using the Hawkes process. This matrix encodes the correlation
structure of exposures to drugs. To ease the reading, this figure represents
the transposed adjacency matrix 𝐴⊤. For example, a purchase of a ‘null’ drug
increases the probability of purchasing a ‘Late3’ drug. In Left and Right we
simulate potential exposures to 8 drugs, each of them have a different risk
profile (named “null”, “constant”, “early”, etc.). These profiles are described
in Section II.E of the supplementary material.
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We sample 𝜇𝑗 using a uniform distribution on [0, 5 × 10−3], which will produce
unbalanced exposures in the simulations, and set 𝛼 = 0.5. The diagonal entries 𝐴𝑗,𝑗
are equal to 𝜇𝑗, and we sample 𝑞 non diagonal entries using a uniform distribution
[0, 5 × 10−3], while setting all other entries to zero. We set 𝑑 = 4, 𝑞 = 8 in the first
experiment, 𝑑 = 14, 𝑞 = 24 in the second experiment. We normalize 𝐴 so that its
largest singular value is 0.1, in order to ensure that the process does not generate too
much events. Simulation is achieved through the thinning technique, see [Oga81],
and easily achieved using the tick library, see [Bac+17a]. An example of simulated
matrix 𝐴 is illustrated in Figure II.E.1. Our simulation setup allows to generate
realistic exposures, since it can reproduce the following phenomena that are typically
observed in LODs:

• Depending on the drug, a patient using it has a higher probability to use it
again in the future: this is quantified by the value of the diagonal entries 𝐴𝑗,𝑗;

• Some drugs are often purchased at the same time, because of the underlying
medical treatment: a patient using drug 𝑗′ has a higher probability to use drug
𝑗, which is quantified by 𝐴𝑗,𝑗′;

• Most of the patients use only a subset of all available drugs during their obser-
vation period, so several entries of 𝐴 are zeros.

About the risk profiles. We provide below a precise description of the two sets of
risks profiles considered in our simulations.

• Set 1 of risk profiles corresponds to the ones used in [GWF17], and are rep-
resented in Figure II.E.2. We use a lower order of magnitude than [GWF17],
resulting in risk profiles with maximum between 1.5 and 2matching the mag-
nitudes encountered in our application. The first risk profile is unimodal, the
second has a constant effect, two others are continuously decreasing. In this
set, risk profiles length matches 𝑝 = 50.

• Set 2 of risk profiles represent effects described in [AF03]: rapid, early, inter-
mediate, late and delayed effect, see Figure II.E.3, with magnitudes similar to
Set 1. It contains the four shapes from Set 1, and a null risk, a unimodal risk
with a sharp drop and three shapes of continuously increasing risks. This set
contains risk profiles for which the optimal risk period is smaller than 𝑝 = 50.
We generate 7 features with “Null” risk profile, and one feature for each other
risk profile, resulting in 14 features.

Following [GWF17], we use for all patients a baseline relative incidence given by
𝜙(𝑡) ∝ 8 sin(.01𝑡) + 9 (see the right-hand side of Figure II.E.2) which can be thought
as the effect of age whenever each patient has the same age.
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Figure II.E.2 – Left. Set 1 of relative risk profiles. The effect of these relative in-
cidences starts with the exposure, and last 50 time periods. The effect on
the individual risk is multiplicative. Right. Temporal baseline used in all
simulations.
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Figure II.E.3 – Set 2 of relative risk profiles. The effect of these relative incidences
starts with the exposure, and last at most 50 time periods. The effect on the
individual risk is multiplicative. Note that we include 7 features with the
“null” risk profile in addition to one feature with each other risk profile in
Set 2, to simulate datasets in which there are irrelevant features.

About the performancemeasure. As defined in Section II.3.1, relative incidence
of drug 𝑗, 𝑘 periods after exposure start is defined as ̂𝑟𝑗𝑘 = exp( ̂𝜃𝑗𝑘), 𝑘 = 0,… , 𝑝
in our model. In [GWF16; GWF17], the estimated relative incidence is defined as
̂𝑟𝑗𝑘 = ̂𝜃𝑗(𝑘) > 0 for 𝑘 = 0,… , 𝑝, see Equation (II.3). Denoting the ground truth
relative incidence 𝑟∗, the MAE is given by

𝑀𝐴𝐸 = 1
𝑑𝐾

𝑑

∑
𝑗=1

𝐾

∑
𝑘=1

|𝑟𝑗∗𝑘 − ̂𝑟𝑗𝑘 |.

Since we assume that all the patients are affected by the baseline in the same way,
its order of magnitude cannot be properly estimated by the models. In order to be
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able to compare baseline relative risks, we constrain their integral to be equal to one
as [GWF17].

Regarding the sensitivity analysis We consider three scenarii for the perturba-
tions:

1. Not-at-random missing data. We simulate a hidden feature correlated to other
longitudinal features using a Hawkes process. For each simulated timestamp
of this feature, patients’ data is masked for a time period of length drawn uni-
formly in [0,𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ]. Outcomes are simulated using the non-perturbed
data, while exposures provided to the model are computed using the censored
timestamps. We vary the 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ parameter to assess the sensitivity of
ConvSCCS to this perturbation.

2. Noisy timestampsWe add a random noise draw uniformly in [0,𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ]
to the features. We vary the𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ parameter to assess the sensitivity of
ConvSCCS to this perturbation.

3. Missing longitudinal feature. We simulate more features. Outcomes are simu-
lated taking these features into account, while they are not used when fitting
the model. In a first scenario, we vary the number of hidden features at con-
stant relative incidence magnitude. In a second scenario, we vary the the
relative incidence magnitude of two hidden features.

All these experiments were performed using 2000 simulated cases.
Figures II.E.4 to II.E.7 present the results of this sensitivity analysis.

107



II. ConvSCCS

0 10 20 40 80 160
Noise level

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
ea

n 
Ab

so
lu

te
 E

rro
r

Noisy timestamps experiment

Figure II.E.4 – Sensitivity analysis adding a noise drawn uniformly in
[0, 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙] to features timestamps using Set 2 of risk profiles
(see Figure II.E.3) with𝑚 = 2000. The boxplots represent the distribution
of mean absolute error as defined in Section II.4.1, computed over 100
simulated populations.
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Figure II.E.5 – Sensitivity analysis simulating not-at-random missing data. A hid-
den feature timestamps are simulated in the same way as regular features.
At each time of this feature, other features data is masked for a period of
𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 𝑙𝑒𝑛𝑔𝑡ℎ. Other features are simulated using Set 2 or
risk profiles (see Figure II.E.3) with𝑚 = 2000. The boxplots represent the
distribution of mean absolute error as defined in Section II.4.1, computed
over 100 simulated populations.
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Figure II.E.6 – Sensitivity analysis simulating missing longitudinal features. Sim-
ulations results using Set 2 or risk profiles plus two hidden features (see
Figure II.E.3) with 𝑚 = 2000. The order of magnitude of hidden features
relative incidence vary from 1 to 5. The boxplots represent the distribution of
mean absolute error as defined in Section II.4.1 computed over 100 simulated
populations.
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Figure II.E.7 – Sensitivity analysis simulatingmissing longitudinal features. Simula-
tions results using Set 2 or risk profiles plus hidden features using similar risk
profiles (see Figure II.E.3) with𝑚 = 2000. The number of hidden features
vary from 0 to 14. The boxplots represent the distribution of mean absolute
error as defined in Section II.4.1 computed over 100 simulated populations.
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Regarding the cohort structure. Table II.E.1 compile demographic and drug
consumption data of the cohort used in this study.

Table II.E.1 – Demographics and glucose-lowering drug use of the cohort of French
diabetic patients covered by the general insurance scheme (i.e., in the SNI-
IRAM database), aged 40–79 years and followed from 2006 to 2009.

Characteristics Overall study population

N 1,428,637
Men 771,647
Bladder cancers 1,699
Age (years)
40–44 54,989
45–49 94,986
50–54 160,388
55–59 238,611
60–64 238,394
65–69 223,721
70–74 232,100
75–79 185,448
Number of patients exposed to glucose-lowering drugs
(a patient can appear in several lines)
Insulin 343,912
Other OHA 434,352
Rosiglitazone 157,346
Metformin 1,043,967
Pioglitazone 158,619
Sulfonylurea 836,572
Number of patients exposed to a single glucose-lowering drug
(each patient appears at most in a single line)
Insulin 102,021
Other OHA 34,927
Rosiglitazone 2,239
Metformin 208,331
Pioglitazone 4,486
Sulfonylurea 145,509
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Chapter III

Screening anxiolytics,
hypnotics, antidepressants and
neuroleptics for bone fracture
risk among elderly.
A nation-wide dynamic multivariate

self-control study using the SNDS claims

database.

Background and Purpose Existing screening works provide point esti-
mates for drug-outcome pairs risk assessment. We propose a flexible ap-
proach based on dynamic risk estimates to support alert generation while
providing additional information on risk qualification (delay, shape) and
LOD-specific biases. We illustrate this approach by studying the longi-
tudinal effect of anxiolytic, hypnotic, antidepressant, and neuroleptic
molecules on fractures using SNDS, a French large healthcare claims
database.

MethodsWe follow French new users who were 65 y.o. or older in 2014
for up to four years. We use ConvSCCS, a flexible longitudinal model
based on self-control case series. This model alleviates several observa-
tional claims data issues and does not require precise assumptions on
risk timings. The presence of eventual indication biases is assessed by
estimating dynamic pre-exposure relative risks.

Results Pre-exposure risk estimates suggest the presence of confounding
by indication in anxiolytics, hypnotics and neuroleptics estimates, while
it is not the case for antidepressants. Tricyclic antidepressants exhibit
lower relative risk than other antidepressants. Zolpidem relative risk is
consistently higher than Zopiclone across all sensitivity analyses.
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III. AHAN Screening

Conclusion This approach complements existing screening methods as
well as clinical or observational risk quantification studies by provid-
ing granular and dynamic risk estimates for many molecules using a
single model. It could be used to map molecules and adverse events,
pointing out the presence of eventual biases or associations for further
investigation.

Keywords: Large Observational Database, Dynamic analysis, Adverse drug reaction
screening, Elderly, Fracture, Anxiolytics, Hypnotics, Antidepressants, Neuroleptics.

Key Points
• Our screening methodology estimates pre and post-exposure dynamic relative
risk to go beyond existing approaches relying on point estimates.

• We perform a screening on all anxiolytic, hypnotic, antidepressant and neu-
roleptic (AHAN) molecules for bone fracture using a single flexible model on
four years of SNDS data.

• Our results shed lights on the dynamics associating AHANs to fractures in
claims data, and are consistent with the fragmented, existing literature.

III.1 Introduction
Observational healthcare data volume and availability increased over the last years
carrying the hope of improving Adverse Drug Reactions (ADRs) screening. ADRs
screening is defined as “drug-related risk identification and alert generation” in Bezin
et al. [Bez+17]. In this setup, there are no precise hypotheses regarding suspected
ADRs, and the screening algorithm is designed to assess several drug exposures effect
on an identified event of interest.

Observational data peculiar characteristics and ADRs various dynamics [GAB15]
make this task particularly difficult. Indeed, observational healthcare data, such a
Electronic Healthcare Records (EHRs) and claims data are often collected for eco-
nomic concerns rather than epidemiological purposes. As a result, such data reflect
as much the data recording process and care providers economic considerations
as patients’ health status [HA13], and can mis-represent some populations due to
eventual geographic or healthcare affordability constraints [Mad+14].

First screening approaches exploiting claims data relied on re-purposing classical
models to study many drug-outcome pairs (see examples in Ryan et al. [Rya+13b]
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or Thurin et al. [Thu+20]). They produced simple statistical models and designs,
contrasting with the tailored analyses observational data would require to handle
its specific biases [Mad+14]. More recent works alleviate some of these issues,
either thanks to careful designs [Tol+17] or mixed effects bayesian models [Gib+19].
However, these approaches produce point estimates relying on strong temporal
dynamics assumptions.

In this work, we use ConvSCCS [Mor+20], a recent flexible conditional Poisson
model (also known as Self-Control Case Series – SCCS) which does not require
precise assumptions on risk timings, provide dynamic risk estimates, and allows for
estimating many molecules associated risk within a single model. Combined with
a careful study design, we aim to provide detailed information on the underlying
dynamics of several drug exposures association with a target event.

We use this methodology to screen potential associations between anxiolytic, hyp-
notic, antidepressant and neuroleptic (AHAN) molecules use and fractures among
the elderly using data from the Système National des Données de Santé (SNDS, for-
merly known as SNIIRAM), a French large observational database containing most
of the population’s healthcare claims and hospital discharges. While SNDS is often
used to perform drug safety studies [Bez+17; Tup+17a], it has been used only very
recently to perform ADR screening Thurin et al. [Thu+20].

AHANs and fracture risk associations have already been investigated at differ-
ent levels of granularity and scopes in numerous clinical and observational studies.
Fractures among the elderly are a prominent public health issue as they are associ-
ated with high morbidity and mortality [Dea+10; Vri+18]. They can be caused by
reduced bone mineral density or postural instability [All+05], both of which might
be influenced by the use of AHANs. Meta-analyses, such as Seppala et al. [Sep+18a]
or Woolcott et al. [Woo+09], reviewed a very large corpus of papers investigating
such associations. These works highlight how hard establishing a broad mapping of
fracture risk and molecules association can be, as most studies scope is limited to a
single drug or drug class. To raise the level of evidence, Seppala et al. [Sep+18a] calls
for studies investigating pharmacological subgroups rather than large drug classes,
as well as duration effects, which is precisely what we are trying to achieve.

We aim to assess the capabilities of our approach to estimate the duration effects
of all the molecules belonging to AHAN classes using a single statistical model while
assessing the presence of eventual database-specific biases.

III.2 Materials and methods
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III.2.1 Data Source
This study is based on data from the SNDS, a nation-wide claims and hospital dis-
charge database containing of 98.8% of French population healthcare reimburse-
ments [Bez+17; Tup+17a]. When working on adult subjects, this database has
virtually no turnover apart from subjects moving abroad, resulting in almost no
censorship due to loss in follow-up. Besides basic demographic information (gender,
birth date), it contains timestamped outpatients dispensed drugs, procedures and
long-term diseases, and inpatients procedures and diagnoses [Tup+17a].

III.2.2 Study design
The studywas conducted as a self-control study on new-user data. To enter the cohort,
subjects had to be (1) covered by the universal health insurance coverage, which is the
case for 98.8% of France inhabitants [Tup+17a], (2) 65 y.o. or older on 1 January 2015,
(3) receive their first outpatient target drug prescription at least 365 days after study
start on 1 January 2014 to prevent prevalent users or to provide a sufficient wash-out
delay. Restriction to 65+ y.o. patients result in a more homogeneous population in
terms of professional activity (retirees), behaviour (response to a fall, sport practice)
and characteristics (bone density), all of which might have an effect on fracture risk.
Cohort entry was 1 January 2014 when all these conditions were met. Cohort exit
was defined as (1) death; or (2) end of the study period, 31 December 2017.

As we performed the analysis with an SCCS model, only cases were used to fit
the statistical model. We used a one-year time-window (entry condition (3)) as a
control period common to all subjects. To ensure we do not bias fracture risk during
the control period, patients with a history of fracture during this first year were not
excluded.

III.2.3 Case definition
We extracted fracture events following the algorithm presented in Bouyer et al.
[Bou+20]. Fractures from public and private hospitalisations were extracted using
International Classification of Diseases 10𝑡ℎ revision (ICD10) codes of stay diagnoses,
while non-hospitalised fractures were extracted based on outpatients’ medical proce-
dures using CCAM (French Common Classification of Medical Acts) codes matching
plastered or orthopedic immobilisation and fracture reduction. Extracted events
were categorised by fracture site and severity. Fracture severity was computed as an
index ranging from 1 to 4: (1) there was no hospital admission due to the fracture, (2)
fractured patients were hospitalized but did not have surgery, (3) fractured patients
were hospitalised and a surgery dedicated to the fracture was performed and (4)
indicates that the patient died during the hospital stay following its fracture.
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As a fracture can generatemultiple events in the healthcare system, we considered
same-site fracture events within a 4-month window following the first event as the
initial fracture subsequent events. To be consistent with our statistical analysis (see
Section III.2.5), we only studied the first fracture event of each subject.

III.2.4 Exposure definition
AHANs dispensations were identified using codes from the Anatomical Therapeutic
Chemical (ATC) classification system. We selected psychotropic drugs excepted those
commonly used for acute psychiatric indications or anaesthesia, listed in Appendix,
Tables III.A.1 to III.A.4.

We focused on fractures resulting from falls, and thus on short or mid-term
adverse reactions to AHANs use [All+05]. We used binary indicators of exposure
starting times in combination with a flexible model, which has been shown to be
the best modeling assumption when the ADRs’ true forms and prescribed doses are
unknown [GAB15], which is the case in SNDS [Bez+17; Tup+17a].

Drug purchase Drug exposure Slack period Pre-exposure

t0 t0 + 30 t1 t0 + 30 t2

(a)

t0 t1 t2t0 + 45 t1 + 45

(b)

t0 − 14 t0 t1 t1 + 30 t2 − 14 t2

(c)

Figure III.2.1 – Illustration of drug exposures computation. Exposures are assumed
to last for 30 days (90 days for large drug packaging) after drug purchases
(i). A slack period is added (ii) to account for slight variability in drug
purchasing dates. Exposures which overlap with other exposures or other
exposures’ slack period are merged (iii). Once the merging is done, 14-day
pre-exposure periods are added before each exposure starting points (iii).

Exposure start and end time were computed as follows: (1) drug exposure was
considered to start at the drug dispensation date. (2) subjects were assumed to use at
most one drug dose per day, resulting in 30 or 90-day exposures depending on the
drug packaging. (3) When a given exposure plus a 15-day slack period overlapped
with another exposure, they were merged, thus considered as a single exposure.
This slack period was used to account for small drug adherence variability across
patients. The size of this delay was chosen to fit most regular users while remaining
conservative, given the short half-life of the molecules under study [Wis+17]. (4)
Pre-exposure risk periods covering 14 days preceding exposure start were defined to
account for eventual confounding by indication.
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As a result, patients could have been exposed multiple times to each molecule.
Exposure and pre-exposure define two distinct sets of risk periods for each molecule,
the reference period being non-exposed time. Note that pre and post-exposure risk
periods were not stopped during hospitalisations as our statistical model requires
risk periods of a minimal fixed length (see Section III.2.5). Exposure computation is
illustrated Figure III.2.1.

III.2.5 Statistical Analysis
We aim to detect eventual association between fracture risk and drug exposure
without precise prior knowledge on risk timing or shape. To do so, we used Con-
vSCCS [Mor+20], a flexible conditional Poisson model (also known as Self-Control
Case Series – SCCS) allowing to estimate longitudinal variations of the risk resulting
from each exposure. As in any SCCS model, patients are their own control and the
model is robust to non-longitudinal confounding [Mor+20]. The new-user cohort
design allowed us to use the first year of study as the control period, which also
alleviated the prevalent user bias stated in Madigan et al. [Mad+14]. Such design
performs well on claims databases [MSR13; Rya+13b] which do not contain enough
information on patients’ demographics and life habits to find matching control pa-
tients [Tup+17a].

ConvSCCS estimates a longitudinal relative risk curve (RRC) for each studied
molecule, modeling the risk dynamics during risk periods. The length of those RRCs
can be at most the minimal length of the considered exposure type [Mor+20]. Our
risk periods definition resulted in 14-day pre-exposure and 30-day post-exposure
RRCs for eachmolecule. We used daily data, which is the lowest temporal granularity
available in SNDS. To avoid obtaining noisy estimates, RRCs variation were penalised
as described in Morel et al. [Mor+20]. Group Lasso penalisation cancels out RRCs
close to one, providing feature selection. Total Variation penalisation controls RRCs
discontinuities, leading the model to automatically select an optimal risk periods
partition, as illustrated in Figure III.2.2.

Reported 95% confidence intervals were estimated using parametric bootstrap
as described in Morel et al. [Mor+20], and statistical power was approximated as
described in Wasserman [Was13].

III.2.6 Sensitivity and subgroup analysis
To assess the robustness of our results, the following analyses were carried out:

(1) Single fractures: exclusion of patients with more than one fracture or hospital
admission with fracture diagnosis over the observation period. Multiple frac-
tures might reflect patients affected by osteoporosis or fractures resulting from
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Figure III.2.2 – Illustration of the Total Variation penalisation effect. Assuming a
risk period starting at 0 and lasting for 30 days, ConvSCCS will estimate a
30-day piece-wise constant relative risk curve. The total size of the jumps is
controlled by the level of Total Variation penalisation. A low (resp. high)
level of penalisation results in more (resp. less) detailed relative risk curves,
illustrated by the orange small dashes (resp. blue long dashes) curve. The
aim of the model fitting algorithm is to reach a good balance between the
detail level and the smoothness of the estimated relative risk curves.

severe crashes. Approximately 16% of the patients experienced two or more
fractures during the observation period (see Table III.3.2).

(2) 65–85 y.o.: analysis on the 65–85 y.o. subgroup. The average age of the elderly
moving into retirement homes is 85 years old [Mul17], in which case drug
purchase data might be less precise [Tup+17a].

(3) Epileptic patients exclusion: this condition is an indication for some of the
molecules under study thus leading to an eventual confounding [Dea+10;
Sep+18b].

(4) Gender: analysis of men andwomen subgroups. Bone density variations related
to gender might lead to differences in fracture risks [Sch+04]. Differences
between men and women subgroups regarding associations between fractures
and antidepressants have been reported in Vermeeren [Ver04].

(5) Additional control drugs: add exposures to other drugs which might have an in-
fluence on fractures. Additional molecules or group of molecules were opioids,
proton pump inhibitors [Sep+18b]; loop diuretics, digitalis, digoxin [Vri+18];
and anti-hypertensive drugs [Dea+10]. Exposures to these molecules or groups
of molecules were simply used as additional features, not to filter prevalent
users.
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(6) Fracture severity: restriction to a subset of fractures depending on their severity.
We restricted the fracture definition to severity 1, 1 or 2 and 3. The severity
4 fractures subgroup was not considered as a very high correlation between
death date and event date violates a ConvSCCS assumption (see discussion in
Section III.4.2).

(7) Specific fracture sites: restriction to hip, wrist or spine fracture.

Sensitivity analysis resulted in numerous RRCs, the all-fracture scenario being
the reference analysis. To ease results reading and interpretation, we report the
differences between reference RRCs and those estimated in sensitivity experiments
using the following method: (i) We consider only RRCs for which at least one value
is significantly different from reference estimates based on 95% bootstrap confidence
intervals. (ii) Some sensitivity analysis experiments result in smaller datasets with
only a few patients exposed to somemolecules. RRCs estimatedwith low power (< .2)
are excluded from the comparison, to avoid considering estimates to be “unstable”
when a poor estimate is caused by the lack of data. (iii) We then compute the mean
relative error,

̅𝑟𝑒 = 𝑇−1
𝑇

∑
𝑡=1

𝜃𝑡 − 𝜃𝑟𝑒𝑓𝑡

𝜃𝑟𝑒𝑓𝑡

,

between the RRCs 𝜃 = (𝜃1,… , 𝜃𝑇) selected in step (i) and the corresponding reference
estimates 𝜃𝑟𝑒𝑓 = (𝜃𝑟𝑒𝑓1 ,… , 𝜃𝑟𝑒𝑓𝑇 ), where 𝑇 is the length of the considered risk period.

III.2.7 Software
Cases and exposures extraction from SNDS was performed using the SCALPEL3 li-
brary [Bac+20], while the statisticalmodel was fitted using theTick library [Bac+17b].
Both libraries are open-source and freely available. The code used to produce the re-
sults presented in this paper is available at https://github.com/X-DataInitiative/
AHANScreening.

III.3 Results
From a source population containing 13, 762, 623 patients of 65 y.o. or older, we
extracted 126, 567 fracture cases among 1.969, 587 patients exposed to AHANs be-
tween 1 January 2015 and 31 December 2017 but not exposed in 2014 (see flow chart
Figure III.3.1). An overview of the studied cohort demographic characteristics is
presented in Tables III.3.1 and III.3.2. Exclusion of subjects not exposed to AHANs
did not result in major demographic changes (see Table III.3.2). Restriction of the
cohort to cases only led to an over-representation of 85+ y.o. patients (57% vs. 32%),
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women (72% vs. 58%), antidepressants (44% vs. 31%) and neuroleptics (21% vs. 7%)
users as compared to the study population (see Table III.3.1).

Patients covered by French universal health
insurance 65+ y.o. on 1 January 2015

n = 13,762,623

Patients with at least one AHAN dispensation
between 1 January 2014 and 31 December 2017

n = 6,848,388

Patients without AHAN dispensation in 2014
n = 1,969,587

Patients with at least one fracture event between 
1 January 2014 and 31 December 2017

n = 126,567

Figure III.3.1 – Flow chart of the study population. Subjects were first selected
based on their consumption of Anxiolytics, Hypnotics, Antidepressants or
Neuroleptics (AHANs). The cohort was then restricted to fracture cases.

Table III.3.1 – Demographics and Anxiolytics, Hypnotics, Antidepressants or Neu-
roleptics use by fracture adverse event. The first column reports the number
of 65+ y.o. new users patients cohort in the listed subgroups. The second
(resp. third) column reports the number of patients with at least one fracture
(resp. hip fracture) during the observation period within the study cohort and
the associated subgroups. Figures in parenthesis represent the relative size
(%) of a subgroup with respect to its population (𝑛).

Study population (%) Fracture cases (%) Hip fracture cases (%)

𝑛 1,969,587 (100.0) 126,567 (100.0) 46,699 (100.0)
Women 1,136,695 (57.7) 90,340 (71.4) 33,370 (71.5)
Age (years)
[65–70[ 576,854 (29.3) 17,123 (13.5) 2,755 (5.9)
[70–75[ 395,883 (20.1) 14,872 (11.8) 3,373 (7.2)
[75–80[ 366,227 (18.6) 19,858 (15.7) 6,102 (13.1)
[80–85[ 316,085 (16.1) 27,895 (22.0) 11,053 (23.7)
[85–90[ 204,989 (10.4) 27,544 (21.8) 13,060 (28.0)
[90–95[ 93,195 (4.7) 16,252 (12.8) 8,685 (18.6)
[95–100[ 13,594 (0.7) 2,585 (2.0) 1,411 (3.0)
> 100 2,760 (0.1) 438 (0.4) 260 (0.6)

Exposed to anxiolytics 1,381,068 (70.1) 83,581 (66.0) 30,013 (64.3)
Exposed to hypnotics 519,548 (26.4) 38,291 (30.3) 14,682 (31.4)
Exposed to antidepressants 603,511 (30.6) 50,937 (40.3) 20,493 (43.9)
Exposed to neuroleptics 144,303 ( 7.3) 18,464 (14.6) 9,554 (20.5)

Our model produces a set of two relative risk curves (RRCs) for each molecule.
The post-exposure RRC express the evolution of the relative risk 𝑡 = [0,… , 30]
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Table III.3.2 – Demographics of fractured patients. The first column reports the
number of 65+ y.o. SNDS French patients who experienced a fracture during
the observation period for each population subgroup. The second column
reports the number of these patients who were also exposed to one of the
Anxiolytic, Hypnotic, Antidepressant or Neuroleptic (AHAN) molecules
under study. The last column reports similar figures when restricting the
population to new users (i.e. patients who were not users during the first year
of study). Figures in parenthesis represent the relative size (%) of a subgroup
with respect to its population (𝑛).

Fractured 65+ y.o.
patients (%)

Patients exposed to
AHANs (%)

2015 new-users (%)

𝑛 729,647 (100.0) 513,303 (100.0) 126,567 (100.0)
with hip fracture 263,402 (36.1) 194,827 (38.0) 46,699 (36.9)
with multiple fractures 112,162 (15.4) 84,175 (16.4) 20,342 (16.1)

Women 549,795 (75.4) 398,847 (77.7) 90,340 (71.4)
Age (years)
[65–70[ 98,289 (13.5) 58,179 (11.3) 17,123 (13.5)
[70–75[ 83,654 (11.5) 54,025 (10.5) 14,872 (11.8)
[75–80[ 110,948 (15.2) 77,931 (15.2) 19,858 (15.7)
[80–85[ 153,538 (21.0) 113,022 (22.0) 27,895 (22.0)
[85–90[ 159,192 (21.8) 119,223 (23.2) 27,544 (21.8)
[90–95[ 101,589 (13.9) 75,146 (14.6) 16,252 (12.8)
[95–100[ 18,644 (2.6) 13,303 (2.6) 2,585 (2.0)
> 100 3,793 (0.5) 2,474 (0.5) 438 (0.3)

periods after exposure start. The coefficient associated with 𝑡 = 0 represent the
instantaneous relative risk, i.e. the risk associated to the day of exposure initiation.
Pre-exposure RRCs describe relative risk dynamics during the two weeks preceding
exposure start, with 𝑡 = [−1,… ,−14]. More details regarding RRCs interpretation
are provided in Section III.4. Estimated relative risk curves (RRCs) are compiled
Figure III.5.1 to III.5.8. Please note that the longitudinal variation of the risk is
controlled by the model penalisation and is not the result of explicit assumptions.

III.3.1 All fractures

Fractures RRCs before and after the drug exposure start are compiled in Figures III.5.1
to III.5.4. With the exception of diazepam, anxiolytics post-exposure RRCs (Fig-
ure III.5.1) are either flat, between 1.2 and 1.7, or decreasing over 30 days, starting
between 1.8 and 2.5 to fall between 1 and 1.5. Diazepam post-exposure RRC is
also decreasing, starting much higher at 6.0 to level at 2, thirty days after exposure
start. Other than buspirone, all anxiolytics pre-exposure risks are almost always
significantly higher than 1, with three distinct profiles: increasing pre-exposure RRC
(diazepam), decreasing RRCs starting between 1.9 and 3 before plummeting to 1 in 5
to 10 days and constant RRCs between 1.1 and 2.7.
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Hypnotics RRCs (Figure III.5.2) are either constant, with similar profiles, or
U-shaped in the case of zopiclone and zolpidem, for which post-exposure relative
risk decreases in 10 to 15 days before increasing slightly. Zolpidem post-exposure
relative risks are higher than zopiclone’s. Both molecules have sharp decreasing
pre-exposure RRCs. Temazepam and bromides RRCs are non-significant (at 95%).

Antidepressants RRCs (Figure III.5.3) can be separated in two groups. The first
group, consisting of selective serotonin reuptake inhibitors (SSRIs), serotonin and
norepinephrine reuptake inhibitors (SNRIs) and tetracyclic antidepressants (TTCAs)
exhibit decreasing post-exposure RRCs for most of the molecules. Those RRCs
range from 1.5 to 2.5. SSRIs relative risk stays high (> 1.5) during 30 days following
exposure start, while RRCs of TTCAs are non-significant 12 days after exposure
start for mianserin, and 22 days after exposure start for mirtazapine. Among these
molecules, fluoxetine, paroxetine, and duloxetine have a constant relative risk of
similar magnitude, while fluvoxamine, moclobemide and milnacipran exhibit very
low relative risks (between 1 and 1.2). These molecules pre-exposure RRCs tend to
be either decreasing or flat, but are always lower than 1 in the few days preceding
the exposure starting time.

The second group, made of tricyclic antidepressants (TCAs) and other antide-
pressants has constant post-exposure RRCs, either ranging from 1.5 to 2.0 or non-
significant. Those molecules have flat, non-significant pre-exposure RRCs, excepted
amitriptyline and agomelatine. Amitriptyline’s pre-exposure relative risks start at
around 1.5 in the 14 to 7 days before exposure starts, and non-significant 7 to 0 days
before exposure start, while agomelatine’s is constant, lower than one.

Most of neuroleptics RRCs are constant over the considered risk periods. However,
cyamemazine, haloperidol, and risperidone stand out, with post exposures starting
between 1.7 and 2.4, decreasing towards a relative risk between 1.2 and 1.5, 30
days after exposure start. These three molecules exhibit similar pre-exposure RRCs,
starting around 1.5 and decreasing to a non-significant relative risk or slightly less
than in the case of cyamemazine. Other neuroleptics RRCs are either non-significant
or constant, with a relative risk ranging from 1.1 to 1.6. They exhibit non-significant
pre-exposure RRCs excepted for loxapine and tiapride, whose pre-exposure RRCs
start around two, to non-significant levels a few days before exposure starting time.

Hip fracture

Restricting the study population to hip fractures resulted in 46,699 cases. RRCs are
represented Figures III.5.5 to III.5.8. The smaller number of cases seems to result
in a slight loss of power, leading to non-significant RRCs in some cases (such as
clomipramine), flatter RRCs (escitalopram) or wider confidence intervals (mirtazap-
ine).

Diazepam post-exposure RRC is now significantly lower, but still high starting at
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2.5 to level-off around 1.5 after one week. Estimated RRC increases for dosulepin
with a RR of 1.6 (1.2 previously) and duloxetine with RRC around 2.4 (1.7 previously).
Other molecules post-exposure RRCs are overall stable with respect to the all-fracture
analysis. A noticeable decrease in pre-exposure relative risk can be observed, es-
pecially among anxiolytics (Figure III.5.5) and hypnotics (Figure III.5.6), resulting
in several non-significant pre-exposures RRCs. It is not the case for neuroleptics
(Figure III.5.8) for which pre-exposure does not vary nor increases in the case of
haloperidol.

Sensitivity analysis

The relative differences between RRCs of the reference all-fracture analysis and
those estimated in sensitivity experiments are reported in Figure III.5.9. RRCs ex-
cluded from the comparison due to low power (< .2) are hatched on the graphical
representation. Detailed relative risk estimates for these sensitivity analyses are
provided in Supplementary Materials, Figures III.B.26 to III.B.37. Pre-exposure and
post-exposure RRCs are overall stable with respect to population design variations
(experiments 1 to 4 defined in Section III.2.6), with more variability when restricting
the population to men. Adding control drugs slightly shifted downwards anxiolytics
and Zopiclone and Zolpidem post-exposure RRCs, and their pre-exposure RRCs
even more. Changing target event definition using specific fracture sites or fracture
severity introduce some variations in post-exposure estimates, and heavily affects
pre-exposure relative risks. Defining the target event as wrist fracture or low severity
fractures leads to a smaller population (𝑛 = 9, 722), resulting in low power estimates.

III.4 Discussion

III.4.1 Key results

We presented a methodology designed to perform large scope screening studies
using claims data. It relies on using ConvSCCS [Mor+20], a flexible SCCS model,
with binary drug exposures. The flexibility of the model allows to estimate risk
dynamics without prior assumption on the risk shape, and prevent risk dilution
when the risk window is larger than the actual risk [Mor+20]. Binary exposures
encode the starting times of exposures, which has been show to be an optimal choice
when combined with a flexible model in situations where reliable prior knowledge
is unavailable [GAB15]. A new-user design prevents the risk dynamics estimated
by the model to be affected by prevalent drug use, starting before the observation
period. In addition to post-exposure risk, we also estimate pre-exposure flexible risk
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curves to highlight the presence of eventual biases linked to specific care pathways
or database-specific biases.

We applied this approach on observational claims data from SNDS [Tup+17a].
To our knowledge, only [Thu+20] performed ADRs screening on the full scale SNDS
database, using a methodology based on point estimates, similarly to Ryan et al.
[Rya+13a]. Dynamic risk estimation produced more detailed information than
binary answers sought by screening algorithms based on point estimates. Rather
than pursuing a fully automated alert generation system, our approach fosters human
interpretation of data-mined patterns.

We evaluate our screening approach by studying AHANs for bone fracture risk.
Some works on ADRs screening such as Ryan et al. [Rya+13b] evaluated the perfor-
mance of their methodology by comparing their results to an adverse drug reaction
database [Rya+13a] containing established positive and negative association. While
this approach is appealing because of its convenience, the reliability of such datasets
have been criticized by Hauben, Aronson, and Ferner [HAF16] as some associations
appear to have been mis-classified. In place of this evaluation scheme, we evaluate
our screening methodology by comparing our results to existing works on AHANs.
We compare our relative risk estimates and dynamics to meta-analyses and to results
obtained with other methodologies.

Overall, results from the main analysis (presented in Figures III.5.1 to III.5.8)
seem consistent with meta-analyses compiled in Table III.4.1. Our estimates for
benzodiazepines were slightly higher than pooled odds ratios (ORs) when consid-
ering all studies [Blo+13; Sep+18a; Woo+09], but they were close to pooled ORs
restricted to studies providing adjusted ORs [Sep+18a]. Note that grouping individ-
ual molecules into large categories might result in an averaging effect, smoothing
out risk estimates [Ver04]. Results for each molecule class are discussed below.

III.4.2 Limitations

Confounding by indication SNDS does not allow tomake a distinction between a
drug effect and its indication, whichmight bias the estimated associations [Tup+17a].
We used pre-exposure RRCs to assess biases resulting from LOD-specific care path-
ways. Such use of pre-exposure risk windows is not new [NN19; Pra+11; Req+20],
especially when using flexible dynamic models. A pre-exposure RRC above one
might indicate the presence of indication bias. In this case, the molecule is likely
to be prescribed in reaction to the target event occurrence. On the contrary, pre-
exposures RRCs below onemight highlight protective environments such as hospitals,
preventing patients to experience the studied event. It highlights situations where
patients are prescribed a molecule during a hospital stay and buy the said molecule
at discharge. Both effects can be mixed when the studied event is likely to cause an
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hospitalization, resulting in a pre-exposure RRC starting above one and decreasing
sharply (see zolpidem for example). This interpretation was consistent with sensi-
tivity analysis experiments restricting fracture definition to a given severity level.
Sensitivity analysis results summarised Figure III.5.9 showed that pre-exposure RRCs
were lower than the all-fracture study when considering only fractures requiring
surgery (severity 3), and conversely when considering fractures which did not require
surgery (severity 1 or 2) or did not require hospitalisation (severity 1). While pre-
exposure estimates do not prevent biases resulting from such dynamics, they allow
for contextualising screening results thus helping to design further confirmation
studies.

Comorbidities and unobserved confounding Potential biases linked to im-
paired vision, low BMI, physical or instrumental disability, cognition impairment,
Parkinson’s disease or rheumatic diseases [Dea+10] have a slow evolution. They
might result in almost-static individual effects, which should not have a significant
impact on our results thanks to self-controlled designs ability to ignore unmeasured
non-longitudinal biases [Far95]. Results were robust to the exclusion of 1678 epilep-
tic patients as shown in Figure III.5.9 (see Figures III.B.9 to III.B.41 for more details).
Depression might also be considered as a comorbidity [Dea+10] and lead to an
eventual confounding by indication but antidepressant pre-exposure RRCs did not
suggest the presence of short-term indication biases.

Fracture definition We studied the first fracture event of each case rather than
studying recurrent fractures. Results were robust to the exclusion of the 20,342
patients who experienced more than one fracture over the observation period (see
Figure III.5.9). We also controlled for an eventualmeasurement bias by restricting the
analysis to hip, wrist, or spine fractures. Due to a small number of cases, restriction
to wrist fracture resulted in low power estimates for many molecules. Restriction
to spine fractures resulted in higher anxiolytic and hypnotic pre and post-exposure
RRCs indicating a stronger indication bias for these molecules in this subgroup,
especially in the case of diazepam. Conversely, restriction to hip fractures resulted
in lower pre-exposure RRCs and a lower diazepam post-exposure RRC, while other
post-exposure RRCs were comparable with the reference analysis.

Population selection Restriction towomen resulted in slightly lower post-exposure
RRCs and lower pre-exposure RRCs, and conversely for men, which might be ex-
plained by differences in fractures site repartition betweenmen andwomen as a larger
proportion of men experienced spine (+6%) or ribs (+3%) fractures. Post-exposure
RRCs were robust to the exclusion of 85+ y.o. subjects.
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Model assumptions ConvSCCS relies on three assumptions: (1) exposure times
are independent of outcome times, (2) the observation period of each patient is inde-
pendent of its outcome times, (3) outcome times follow a Poisson process condition-
ally on the exposure times. Assumption (3) is verified by design as we consider only
the first fracture event. Assumption (2) was assessed by looking at the distribution of
the gaps between event times and time to death [Whi+18]. In our reference analysis,
7.35% of the cases event times were eventually correlated to time of death, which
seems reasonable. Excluding 85+ y.o. patients or high severity fractures reduced this
proportion while producing in similar results (see Figure III.C.1 in Supplementary
materials for more details). Assumption (1) is not likely to be verified as pre-exposure
RRCs suggested the presence of confounding by indication. While pre-exposures
help to capture this effect at least partially, we cannot rule out an eventual bias in
post-exposure RRCs.

Statistical power When our model estimation procedure leads to flat RRCs for
some molecules, it does not necessarily mean that the risk is actually flat. It can
be the result of a lack of statistical power when too few patients are exposed to a
molecule and risk variations are small. RRCs estimated to be constant over the risk
period can be interpreted as an “average risk” over the risk period, similarly to regular
SCCSmodels. In addition, low statistical power might lead to non-significant relative
risks for some molecules. In these cases, we conclude to an absence of detection
rather than an absence of risk. While using a large observational database brings
more cases, and thus more power, longitudinal screening of many molecules is data
intensive. Indeed, it relies on the estimation of many parameters as it cannot take
advantage of precise prior assumptions regarding RRCs shapes.

Scalability While the statisticalmodel has no particular issue in terms of scalability,
relying on a new-user design might result in too few available subjects when working
on many molecules with only a few years of data.

Long term ADRs The study described in this paper focuses on short term associ-
ations, and cannot detect long term associations in its current form. However, the
statistical model used in this study can do so when adopting different exposure and
risk window definitions [Mor+20].

III.4.3 Interpretation
Anxiolytics All anxiolytics exhibited a positive association with fracture risk,
either constant or decreasing over time. Decreasing of post-exposure RRCs follow
two scenarios: (1) the molecules can be prescribed for short-duration treatments
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(< 30 days, including a drug withdrawal phase [LTD09]), in this case, the effect
might disappear at the end of the treatment. The decline of the risk can be smooth,
as withdrawal might be implemented by slowly decreasing the doses patients are
using. (2) There can be some form of tolerance as described in Vermeeren [Ver04].
The tolerance can be pharmacokinetic when it results from a lesser absorption with
use, pharmacodynamic when the response to the molecule decreases with use, or
behavioural when the brain gradually learns to overcome drug-induced impairments.
As the estimated curves express an averaged effect over the studied population, they
can express dynamics resulting from both scenarios. Several anxiolytic pre-exposure
RRCs (such as clorazepate potassium or clobazam) indicated a potential indication
bias [Fai15]. In some cases such as oxazepam or etifoxine, a sharp decrease in pre-
exposure risk highlighted the presence of care pathways in which fracture is probably
followed by a hospital admission of two to ten days and a subsequent anxiolytic
prescription. Such pathways might occur when anxiolytics are used to manage
anxiety following the event leading to the fracture, or patient agitation in the case
of fractures that cannot be immobilised such as head or torso fractures. This was
confirmed by sensitivity analysis experiments restricted to specific fracture severity
levels (see Figure III.5.9; and Figures III.B.26 to III.B.37 in Supplementary Materials
for more details). Similar dynamics of anxiolytic prescriptions following car crashes
or fracture events were also observed in other studies [Gib+09; Req+20].

Our risk estimates were consistent with meta-analysis adjusted pooled Odds Ra-
tios (ORs) [Sep+18a], excepted for diazepam, for which estimated RRC was consider-
ably higher than other benzodiazepines in the all-fracture analysis. While a similarly
high diazepam RR has also been found in studies focusing on car crashes [Gib+09], it
is likely to be the result of a strong indication bias in our case. Indeed, pre-exposure
RRC of diazepam was much higher (peaking at 9) than what can be observed for
other anxiolytics. Results from our sensitivity analysis showed that this bias was
particularly important when restricting the study to spine fractures with a peak
RR around 42 (see Figure III.5.9; or Figure III.B.42 in Supplementary Materials for
more details). This strong association can be explained by prescriptions of diazepam
aiming to control spasticity after spinal cord injury [CL07; MTC91]. These biases
almost disappeared when restricting the study to hip fractures. Adding control drugs
(experiment 5) also resulted in a lower diazepam pre-exposure RRC, suggesting a
potential co-prescription bias with opioids (see Figure III.5.9; or Figure III.B.23 in
SupplementaryMaterials for more details). Note that such co-prescription bias might
be also affect other anxiolytics and hypnotics pre-exposure RRCs (see Figure III.5.9).
As a result, diazepam relative risk was probably overestimated when spine fractures
were included in cases definition and opioids exposure were not controlled in the
model.
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Hypnotics Hypnotic benzodiazepines exhibited lower RRCs than anxiolytic ben-
zodiazepines which can be consistent with their recommended use, at bedtime. Their
side effects such as drowsiness or dizziness might be less likely to lead to fractures
than anxiolytic benzodiazepines which are used during daytime [Ver04].

However, zopiclone and zolpidem association with fracture risk was similar or
even higher than anxiolytics. Those twomolecules have been extensively investigated
as a group (“Z-drugs”) or individually [Tre+17]. However, they seem to have been
compared only once in Pierfitte et al. [Pie+01] when it comes to fracture association.
Pierfitte et al. [Pie+01] also find odds ratio twice as high for zolpidem compared to
zopiclone’s, but they relied on a very small sample (less than 70 patients exposed to
each molecule, among whom there are at most 15 cases) which might result in large
confidence intervals and possibly low power.

Despite variations in pre-exposure risk, zolpidem post-exposure RRC was always
found to be higher than zopiclone’s across all sensitivity analysis experiments. This
might be explained by zolpidem’s sharper plasma concentration-time curve compared
to zopiclone [Dro04] and more impairing reported side effects, such as “strong visual
disturbances and changes in perception” for zolpidem while “tiredness, dry mouth,
metallic taste” were reported for zopiclone [Dro04]. This result might also indicate a
misuse of zolpidem [MFL16] in France.

Antidepressants Antidepressants RRCswere consistent with the results presented
in reviews [Sep+18a; Ves09]. The increase in relative risks after exposure was smaller
among tricyclic antidepressants (TCAs) than selective serotonin reuptake inhibitors
(SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs) and tetracyclic an-
tidepressants (TTCAs). We also observed decreasing RRCs for citalopram, escitalo-
pram, sertraline, mianserin, mirtazapine, and venlafaxine similarly to Hubbard et al.
[Hub+03]. However, we estimated a constant RRC for amitriptyline while Hubbard
et al. [Hub+03] found a decreasing RR. Amitriptyline pre-exposure RRC was above
one, indicating a potential confounding by indication, perhaps resulting from its
use in neuropathic pain management, especially after spinal cord injury [AJ17].
Aside from amitriptyline, pre-exposure RRCs were either non-significant or below 1,
which suggest post-hospitalization prescriptions but no indication bias. Such care
pathways are likely as SSRIs [Mor+13] or mirtazapine [Hon+07] might be prescribed
in reaction to post-myocardial infarction for example.

Neuroleptics Similarly to [Pra+11], neuroleptic pre-exposure RRCs suggested the
presence of indication bias whichmight be explained by the use of some neuroleptics
in neuropathic pain management [NS19]. Our post-exposure risk estimates were
consistent with Pratt et al. [Pra+11], while our pre-exposure risks were slightly lower.
We have not found a clear pattern relating estimated RRCs to neuroleptic sub-classes
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or their mechanism of action.

Hip fracture Restricting the study to hip fractures resulted in a sharp decrease of
pre-exposure RRCs with respect to the reference analysis. It can be explained by a
larger proportion of hospitalized fractures when restricting the cases to hip fractures,
shifting the whole RRC downward. However, pre-exposure RRCs decrease was not as
important when restricting the study to hospitalized fractures (severity 3), suggesting
another source of pre-exposure RRC diminution. This subgroup age repartition is
slightly skewed towards older subjects (see Table III.3.1) for whom benzodiazepine
prescription are not recommended by the French Health Authority (HAS) [San07],
probably resulting in a lesser confounding by indication.

III.5 Conclusion

We showed that our approach mixing cautious study design and an easy-to-tune
flexible statistical algorithm can be used to produce large scope results highlighting
eventual associations and indication or database-specific dynamic biases. Our ap-
proach is easy to implement as it relies on open-source, scalable libraries. It does not
require much fine-tuning, it can handle large populations and many molecules, it
relies on a few ascertainable assumptions and provides easily interpretable results.
Our cohort construction and exposure and event definitions help to mitigate some
of the database biases, without injecting over-restrictive prior knowledge to retain
model plasticity. Flexible dynamic pre and post-exposure relative risk curves pro-
vide information on healthcare pathways, helping to highlight large observational
databases specific biases. While the properties of our approach make it robust to
some biases and can detect additional ones, its result should still be interpreted with
care, and rely on the co-operation of medical experts and statisticians. We believe
it can be used effectively to perform risk detection on large sets of molecules while
contextualizing these risks so as to ease further confirmation studies.
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Figure III.5.1 – Fracture relative risk curves estimated before and after anxiolytics
exposure. Exposure time is represented by the vertical black bar at 𝑥 = 0.
Post-exposure (resp. pre-exposure) relative risk is represented in blue (resp.
orange) solid lines, with 95% Confidence Intervals (CI) depicted in blue
right hatched bands (resp. orange left hatched).
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Figure III.5.3 – Fracture relative risk curves estimated before and after antidepres-
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Figure III.5.4 – Fracture relative risk curves estimated before and after neuroleptics
exposure. Exposure time is represented by the vertical black bar at 𝑥 = 0.
Post-exposure (resp. pre-exposure) relative risk is represented in blue (resp.
orange) solid lines, with 95% Confidence Intervals (CI) depicted in blue
right hatched bands (resp. orange left hatched).
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Figure III.5.5 – Hip fracture relative risk curves estimated before and after anxiolyt-
ics exposure. Exposure time is represented by the vertical black bar at 𝑥 = 0.
Post-exposure (resp. pre-exposure) relative risk is represented in blue (resp.
orange) solid lines, with 95% Confidence Intervals (CI) depicted in blue
right hatched bands (resp. orange left hatched).
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Figure III.5.6 – Hip fracture relative risk curves estimated before and after hypnotics
exposure. Exposure time is represented by the vertical black bar at 𝑥 = 0.
Post-exposure (resp. pre-exposure) relative risk is represented in blue (resp.
orange) solid lines, with 95% Confidence Intervals (CI) depicted in blue
right hatched bands (resp. orange left hatched).
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Figure III.5.7 – Hip fracture relative risk curves estimated before and after antide-
pressant exposure. Exposure time is represented by the vertical black bar at
𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in blue
(resp. orange) solid lines, with 95% Confidence Intervals (CI) depicted in
blue right hatched bands (resp. orange left hatched). Molecules considered
in the three first rows are tricyclic antidepressants, followed by selective
serotonin reuptake inhibitors in rows 4 and 5, and serotonin-norepinephrine
reuptake inhibitor row 7.
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Figure III.5.8 – Hip fracture relative risk curves estimated before and after neurolep-
tics exposure. Exposure time is represented by the vertical black bar at 𝑥 = 0.
Post-exposure (resp. pre-exposure) relative risk is represented in blue (resp.
orange) solid lines, with 95% Confidence Intervals (CI) depicted in blue
right hatched bands (resp. orange left hatched).
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Figure III.5.9 – Summary of the significant changes in terms of mean relative differ-
ence over sensitivity analysis experiments. The top (resp. bottom) heatmap
represents the relative errors of pre-exposure (resp. post-exposures) relative
risks. To ease the reading, the mean relative difference between two relative
risk curves are reported only when there is at least one coefficient of these
curves being significantly different at 95% confidence with a power greater
than 0.2. The darkest squares indicate the most variable results, and the
hatched squares indicate relative risk curves for which power is less than 0.2.
Errors reported in red (resp. blue) means that the estimated risk is higher
(resp. lower) in the experiment than in the all-fracture, reference analysis.
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Appendix

III.A Codes

Table III.A.1 – Anxiolytics: Anatomical Therapeutic Chemical (ATC) codes be-
ginning with N05B*, N05CF*, N05CM11, N05CM16 and N05CX. Mida-
zolam was excluded, at it is mostly used as pre-medication for minor
surgery [Ver04].

Molecule ATC class Chemical class ATC Code

DIAZEPAM Benzodiazepine derivatives Benzodiazepines N05BA01
OXAZEPAM Benzodiazepine derivatives Benzodiazepines N05BA04
CLORAZEPATE POTAS-
SIQUE

Benzodiazepine derivatives Benzodiazepines N05BA05

LORAZEPAM Benzodiazepine derivatives Benzodiazepines N05BA06
BROMAZEPAM Benzodiazepine derivatives Benzodiazepines N05BA08
CLOBAZAM Benzodiazepine derivatives Benzodiazepines N05BA09
PRAZEPAM Benzodiazepine derivatives Benzodiazepines N05BA11
ALPRAZOLAM Benzodiazepine derivatives Benzodiazepines N05BA12
NORDAZEPAM Benzodiazepine derivatives Benzodiazepines N05BA16
ETHYLE LOFLAZEPATE Benzodiazepine derivatives Benzodiazepines N05BA18
CLOTIAZEPAM Benzodiazepine derivatives Benzodiazepines N05BA21
HYDROXYZINE Diphenylmethane derivatives Benzene and substituted derivatives N05BB01
BUSPIRONE Azaspirodecanedione derivatives Diazinanes N05BE01
ETIFOXINE Other anxiolytics Benzoxazines N05BX03

Table III.A.2 – Hypnotics: Anatomical Therapeutic Chemical (ATC) codes begin-
ning with N05CD*

Molecule ATC class Chemical class ATC Code

NITRAZEPAM Benzodiazepine derivatives Benzodiazepines N05CD02
ESTAZOLAM Benzodiazepine derivatives Benzodiazepines N05CD04
LORMETAZEPAM Benzodiazepine derivatives Benzodiazepines N05CD06
TEMAZEPAM Benzodiazepine derivatives Benzodiazepines N05CD07
LOPRAZOLAM Benzodiazepine derivatives Benzodiazepines N05CD11
ZOPICLONE Benzodiazepine derivatives Benzodiazepines N05CF01
ZOLPIDEM Benzodiazepine derivatives Benzodiazepines N05CF02
BROMURES Other Homogeneous halogens N05CM11
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III.A. Codes

Table III.A.3 – Antidepressants: Anatomical Therapeutic Chemical (ATC) codes
beginning with N06A*, excepted Oxitriptan

Molecule ATC class Chemical class ATC Code

IMIPRAMINE TCA Benzazepines N06AA02
CLOMIPRAMINE TCA Benzazepines N06AA04
TRIMIPRAMINE TCA Benzazepines N06AA06
AMITRIPTYLINE TCA Dibenzocycloheptenes N06AA09
DOXEPINE TCA Benzoxepines N06AA12
DOSULEPINE TCA Benzothiepins N06AA16
AMOXAPINE TCA Benzoxazepines N06AA17
MAPROTILINE TCA Anthracenes N06AA21
TIANEPTINE TCA Fatty Acyls N06AX14
FLUOXETINE SSRI Benzene and substituted derivatives N06AB03
CITALOPRAM SSRI Benzene and substituted derivatives N06AB04
ESCITALOPRAM SSRI Benzene and substituted derivatives N06AB10
PAROXETINE SSRI Piperidines N06AB05
SERTRALINE SSRI Tetralins N06AB06
FLUVOXAMINE SSRI Aralkylketone derivative N06AB08
MOCLOBEMIDE MAOI RIMA Benzene and substituted derivatives N06AG02
MIANSERINE Tetracyclic Benzazepines N06AX03
MIRTAZAPINE Tetracyclic Benzazepines N06AX11
VENLAFAXINE SNRI Phenol ethers N06AX16
MILNACIPRAN SNRI Unclassed N06AX17
DULOXETINE SNRI Naphtalenes N06AX21
AGOMELATINE Other Carboxylic acids and derivatives N06AX22
VORTIOXETINE Other Piperidines N06AX26

Table III.A.4 – Neuroleptics: Anatomical Therapeutic Chemical (ATC) codes be-
ginning with N05A* excepted Veralipride, Lithium and Chlorproethazin,
as they are mostly used as a mood stabiliser to treat bipolar disorders or
schizo-affective disorders rather than depression.

Molecule ATC class Chemical class ATC Code

CHLORPROMAZINE Phenothiazines with aliphatic side-chain Benzothiazines N05AA01
LEVOMEPROMAZINE Phenothiazines with aliphatic side-chain Benzothiazines N05AA02
CYAMEMAZINE Phenothiazines with aliphatic side-chain Benzothiazines N05AA06
FLUPHENAZINE Phenothiazines with aliphatic side-chain Benzothiazines N05AB02
PERICIAZINE Phenothiazines with aliphatic side-chain Benzothiazines N05AC01
HALOPERIDOL Butyrophenone derivatives Organooxygen compounds N05AD01
PIPAMPERONE Butyrophenone derivatives Organooxygen compounds N05AD05
FLUPENTIXOL Thioxanthene derivatives Benzothiopyrans N05AF01
ZUCLOPENTHIXOL Thioxanthene derivatives Benzothiopyrans N05AF05
PIMOZIDE Diphenylbutylpiperidine derivatives Benzene and substituted derivatives N05AG02
LOXAPINE Diazepines, oxazepines, thiazepines and ox-

epines
Benzoxazepines N05AH01

CLOZAPINE Diazepines, oxazepines, thiazepines and ox-
epines

Benzodiazepines N05AH02

OLANZAPINE Diazepines, oxazepines, thiazepines and ox-
epines

Benzodiazepines N05AH03

QUETIAPINE Diazepines, oxazepines, thiazepines and ox-
epines

Benzothiazepines N05AH04

SULPIRIDE Benzamides Benzene and substituted derivatives N05AL01
TIAPRIDE Benzamides Benzene and substituted derivatives N05AL03
AMISULPRIDE Benzamides Benzene and substituted derivatives N05AL05
RISPERIDONE Other Pyridopyrimidines N05AX08
PALIPERIDONE Other Pyridopyrimidines N05AX13
ARIPIPRAZOLE Other Diazinanes N05AX12
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III.B Sensitivity analysis
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Figure III.B.1 – Fracture relative risk curves estimated before and after anxiolytics
exposure on patients having experienced only one fracture during the ob-
servation period. Exposure time is represented by the vertical black bar
at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (respȯrange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.B.2 – Fracture relative risk curves estimated before and after hypnotics
exposure on patients having experienced only one fracture during the ob-
servation period. Exposure time is represented by the vertical black bar
at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (respȯrange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.B.3 – Fracture relative risk curves estimated before and after antidepres-
sant exposure on patients having experienced only one fracture during the
observation period. Exposure time is represented by the vertical black bar at
𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in blue
(respȯrange) solid lines, with 95% Confidence Intervals (CI) depicted in blue
right hatched bands (resp. orange left hatched). Molecules considered in the
three first rows are tricyclic antidepressants, followed by selective serotonin
reuptake inhibitors in rows 4 and 5, and serotonin-norepinephrine reuptake
inhibitor row 7.
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Figure III.B.4 – Fracture relative risk curves estimated before and after neurolep-
tics exposure on patients having experienced only one fracture during the
observation period. Exposure time is represented by the vertical black bar
at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (respȯrange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.B.5 – Fracture relative risk curves estimated before and after anxiolytics
exposure on 65 − 85 y.o. patients. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.6 – Fracture relative risk curves estimated before and after hypnotics
exposure on 65 − 85 y.o. patients. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.7 – Fracture relative risk curves estimated before and after antidepres-
sant exposure on 65 − 85 y.o. patients. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk
is represented in blue (respȯrange) solid lines, with 95% Confidence Inter-
vals (CI) depicted in blue right hatched bands (resp. orange left hatched).
Molecules considered in the three first rows are tricyclic antidepressants,
followed by selective serotonin reuptake inhibitors in rows 4 and 5, and
serotonin-norepinephrine reuptake inhibitor row 7.
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Figure III.B.8 – Fracture relative risk curves estimated before and after neuroleptics
exposure on 65 − 85 y.o. patients. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.9 – Fracture relative risk curves estimated before and after anxiolytics
exposure on non-epileptic patients. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.10 – Fracture relative risk curves estimated before and after hypnotics
exposure on non-epileptic patients. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk
is represented in blue (respȯrange) solid lines, with 95% Confidence Inter-
vals (CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.11 – Fracture relative risk curves estimated before and after antidepres-
sant exposure on non-epileptic patients. Exposure time is represented by
the vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative
risk is represented in blue (respȯrange) solid lines, with 95%Confidence In-
tervals (CI) depicted in blue right hatched bands (resp. orange left hatched).
Molecules considered in the three first rows are tricyclic antidepressants,
followed by selective serotonin reuptake inhibitors in rows 4 and 5, and
serotonin-norepinephrine reuptake inhibitor row 7.
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Figure III.B.12 – Fracture relative risk curves estimated before and after neurolep-
tics exposure after epileptic patients exclusion. Exposure time is repre-
sented by the vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure)
relative risk is represented in blue (resp. orange) solid lines, with 95% Con-
fidence Intervals (CI) depicted in blue right hatched bands (resp. orange
left hatched).
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Figure III.B.13 – Fracture relative risk curves estimated before and after anxiolytics
exposure on women only. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is repre-
sented in blue (resp. orange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).

154



III.B. Sensitivity analysis

1

2

3 Nitrazepam

1

2

3 Estazolam

1

2

3 Lormetazepam

1

2

3

Re
la

tiv
e 

ris
k Loprazolam

1

2

3 Temazepam

−10 0 10 20 30

1

2

3 Zopiclone

−10 0 10 20 30

1
2
3

Zolpidem

−10 0 10 20 30
Relative time w.r.t exposure time (in days)

1

2

3 Bromides
Exposure RR (95\% CI)
Pre-exposure RR (95\% CI)
Exposure starting time

Figure III.B.14 – Fracture relative risk curves estimated before and after hypnotics
exposure on women only. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is repre-
sented in blue (resp. orange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.15 – Fracture relative risk curves estimated before and after antide-
pressant exposure on women only. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk
is represented in blue (respȯrange) solid lines, with 95% Confidence Inter-
vals (CI) depicted in blue right hatched bands (resp. orange left hatched).
Molecules considered in the three first rows are tricyclic antidepressants,
followed by selective serotonin reuptake inhibitors in rows 4 and 5, and
serotonin-norepinephrine reuptake inhibitor row 7.
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Figure III.B.16 – Fracture relative risk curves estimated before and after neurolep-
tics exposure on women only. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is repre-
sented in blue (resp. orange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.17 – Fracture relative risk curves estimated before and after anxiolytics
exposure on men only. Exposure time is represented by the vertical black
bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is represented
in blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) de-
picted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.18 – Fracture relative risk curves estimated before and after hypnotics
exposure on men only. Exposure time is represented by the vertical black
bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is represented
in blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) de-
picted in blue right hatched bands (resp. orange left hatched).

159



III. AHAN Screening

1

2

3 Imipramine

1

2

3 Clomipramine

1

2

3 Trimipramine

1

2

3 Amitriptyline

1

2

3 Doxepin

1

2

3 Dosulepin

1

2

3 Amoxapine

1

2

3 Maprotiline

1

2

3 Tianeptine

1

2

3

Re
la

tiv
e 

ris
k Fluoxetine

1

2

3 Citalopram

1

2

3 Escitalopram

1

2

3 Paroxetine

1

2

3 Sertraline

1

2

3 Fluvoxamine

1

2

3 Moclobemide

1

2

3 Mianserin

1

2

3 Mirtazapine

1

2

3 Venlafaxine

1

2

3 Milnacipran

−10 0 10 20 30

1

2

3 Duloxetine

−10 0 10 20 30

1

2

3 Agomelatine

−10 0 10 20 30
Relative time w.r.t exposure time (in days)

1

2

3 Vortioxetine
Exposure RR (95\% CI)
Pre-exposure RR (95\% CI)
Exposure starting time

Figure III.B.19 – Fracture relative risk curves estimated before and after antide-
pressants exposure on men only. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk
is represented in blue (resp. orange) solid lines, with 95% Confidence Inter-
vals (CI) depicted in blue right hatched bands (resp. orange left hatched).
Molecules considered in the three first rows are tricyclic antidepressants,
followed by selective serotonin reuptake inhibitors in rows 4 and 5, and
serotonin-norepinephrine reuptake inhibitor row 7.
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Figure III.B.20 – Fracture relative risk curves estimated before and after neurolep-
tics exposure on men only. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is repre-
sented in blue (resp. orange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.21 – Fracture relative risk curves estimated before and after anxiolytics
exposure when adding additional drugs as control variables. Exposure
time is represented by the vertical black bar at 𝑥 = 0. Post-exposure (resp.
pre-exposure) relative risk is represented in blue (resp. orange) solid lines,
with 95% Confidence Intervals (CI) depicted in blue right hatched bands
(resp. orange left hatched).
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Figure III.B.22 – Fracture relative risk curves estimated before and after hypnotics
exposure when adding additional drugs as control variables. Exposure
time is represented by the vertical black bar at 𝑥 = 0. Post-exposure (resp.
pre-exposure) relative risk is represented in blue (resp. orange) solid lines,
with 95% Confidence Intervals (CI) depicted in blue right hatched bands
(resp. orange left hatched).
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Figure III.B.23 – Fracture relative risk curves estimated before and after exposure to
control drugs when adding additional drugs as control variables. Exposure
time is represented by the vertical black bar at 𝑥 = 0. Post-exposure (resp.
pre-exposure) relative risk is represented in blue (resp. orange) solid lines,
with 95% Confidence Intervals (CI) depicted in blue right hatched bands
(resp. orange left hatched).
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Figure III.B.24 – Fracture relative risk curves estimated before and after antidepres-
sant exposure when adding additional drugs as control variables. Exposure
time is represented by the vertical black bar at 𝑥 = 0. Post-exposure (resp.
pre-exposure) relative risk is represented in blue (resp. orange) solid lines,
with 95% Confidence Intervals (CI) depicted in blue right hatched bands
(resp. orange left hatched). Molecules considered in the three first rows
are tricyclic antidepressants, followed by selective serotonin reuptake in-
hibitors in rows 4 and 5, and serotonin-norepinephrine reuptake inhibitor
row 7.
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Figure III.B.25 – Fracture relative risk curves estimated before and after neurolep-
tics exposure when adding additional drugs as control variables. Exposure
time is represented by the vertical black bar at 𝑥 = 0. Post-exposure (resp.
pre-exposure) relative risk is represented in blue (resp. orange) solid lines,
with 95% Confidence Intervals (CI) depicted in blue right hatched bands
(resp. orange left hatched).
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Figure III.B.26 – Non-hospitalised fracture relative risk curves estimated before and
after anxiolytics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.27 – Non-hospitalised fracture relative risk curves estimated before and
after hypnotics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is repre-
sented in blue (resp. orange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).

167



III. AHAN Screening

1

2

3 Imipramine

1

2

3 Clomipramine

1

2

3 Trimipramine

1

2

3 Amitriptyline

1

2

3 Doxepin

1

2

3 Dosulepin

1

2

3 Amoxapine

1

2

3 Maprotiline

1

2

3 Tianeptine

1

2

3

Re
la

tiv
e 

ris
k Fluoxetine

1

2

3 Citalopram

1

2

3 Escitalopram

1

2

3 Paroxetine

1

2

3 Sertraline

1

2

3 Fluvoxamine

1

2

3 Moclobemide

1

2

3 Mianserin

1

2

3
Mirtazapine

1

2

3 Venlafaxine

1

2

3 Milnacipran

−10 0 10 20 30

1

2

3 Duloxetine

−10 0 10 20 30
1

2

3 Agomelatine

−10 0 10 20 30
Relative time w.r.t exposure time (in days)

1

2

3 Vortioxetine
Exposure RR (95\% CI)
Pre-exposure RR (95\% CI)
Exposure starting time

Figure III.B.28 – Non-hospitalised fracture relative risk curves estimated before and
after antidepressant exposure. Exposure time is represented by the verti-
cal black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Inter-
vals (CI) depicted in blue right hatched bands (resp. orange left hatched).
Molecules considered in the three first rows are tricyclic antidepressants,
followed by selective serotonin reuptake inhibitors in rows 4 and 5, and
serotonin-norepinephrine reuptake inhibitor row 7.
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Figure III.B.29 – Non-hospitalised fracture relative risk curves estimated before and
after neuroleptics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.30 – Fracture without surgery relative risk curves estimated before and
after anxiolytics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.31 – Fracture without surgery relative risk curves estimated before and
after hypnotics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is repre-
sented in blue (resp. orange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.32 – Fracture without surgery relative risk curves estimated before and
after antidepressant exposure. Exposure time is represented by the verti-
cal black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Inter-
vals (CI) depicted in blue right hatched bands (resp. orange left hatched).
Molecules considered in the three first rows are tricyclic antidepressants,
followed by selective serotonin reuptake inhibitors in rows 4 and 5, and
serotonin-norepinephrine reuptake inhibitor row 7.
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Figure III.B.33 – Fracture without surgery relative risk curves estimated before and
after neuroleptics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.34 – Fracture relative risk curves estimated before and after anxiolytics
exposure after epileptic patients exclusion. Exposure time is represented
by the vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure)
relative risk is represented in blue (resp. orange) solid lines, with 95% Con-
fidence Intervals (CI) depicted in blue right hatched bands (resp. orange
left hatched).
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Figure III.B.35 – Fracture requiring surgery relative risk curves estimated before
and after hypnotics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (respṗre-exposure) relative risk is repre-
sented in blue (resp. orange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.36 – Fracture requiring surgery relative risk curves estimated before
and after antidepressant exposure. Exposure time is represented by the
vertical black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk
is represented in blue (respȯrange) solid lines, with 95% Confidence Inter-
vals (CI) depicted in blue right hatched bands (resp. orange left hatched).
Molecules considered in the three first rows are tricyclic antidepressants,
followed by selective serotonin reuptake inhibitors in rows 4 and 5, and
serotonin-norepinephrine reuptake inhibitor row 7.
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Figure III.B.37 – Fracture requiring surgery relative risk curves estimated before and
after neuroleptics exposure. Exposure time is represented by the vertical
black bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is
represented in blue (respȯrange) solid lines, with 95% Confidence Intervals
(CI) depicted in blue right hatched bands (resp. orange left hatched).
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Figure III.B.38 – Wrist fracture relative risk curves estimated before and after anxi-
olytics exposure. Exposure time is represented by the vertical black bar at
𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.B.39 – Wrist fracture relative risk curves estimated before and after hyp-
notics exposure. Exposure time is represented by the vertical black bar at
𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.B.40 – Wrist fracture relative risk curves estimated before and after an-
tidepressant exposure. Exposure time is represented by the vertical black
bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented
in blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) de-
picted in blue right hatched bands (resp. orange left hatched). Molecules
considered in the three first rows are tricyclic antidepressants, followed
by selective serotonin reuptake inhibitors in rows 4 and 5, and serotonin-
norepinephrine reuptake inhibitor row 7.
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Figure III.B.41 – Wrist fracture relative risk curves estimated before and after neu-
roleptics exposure. Exposure time is represented by the vertical black bar
at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.B.42 – Spine fracture relative risk curves estimated before and after anxi-
olytics exposure. Exposure time is represented by the vertical black bar at
𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).

182



III.B. Sensitivity analysis

1

2

3 Nitrazepam

1

2

3 Estazolam

1

2

3
Lormetazepam

1

2

3

Re
la

tiv
e 

ris
k Loprazolam

1

2

3 Temazepam

0 20

2.5

5.0
Zopiclone

0 20

2.5

5.0

Zolpidem

0 20
Relative time w.r.t exposure time (in days)

0.0

0.5

1.0 Bromides
Exposure RR (95\% CI)
Pre-exposure RR (95\% CI)
Exposure starting time

Figure III.B.43 – Spine fracture relative risk curves estimated before and after hyp-
notics exposure. Exposure time is represented by the vertical black bar at
𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.B.44 – Spine fracture relative risk curves estimated before and after an-
tidepressant exposure. Exposure time is represented by the vertical black
bar at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented
in blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) de-
picted in blue right hatched bands (resp. orange left hatched). Molecules
considered in the three first rows are tricyclic antidepressants, followed
by selective serotonin reuptake inhibitors in rows 4 and 5, and serotonin-
norepinephrine reuptake inhibitor row 7.
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Figure III.B.45 – Spine fracture relative risk curves estimated before and after neu-
roleptics exposure. Exposure time is represented by the vertical black bar
at 𝑥 = 0. Post-exposure (resp. pre-exposure) relative risk is represented in
blue (resp. orange) solid lines, with 95% Confidence Intervals (CI) depicted
in blue right hatched bands (resp. orange left hatched).
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Figure III.C.1 – Robust regression (Huber) of censoring times versus event times.
The horizontal axis represents the number of weeks between event date and
censoring date, and the vertical axis the corresponding number of patients.
Markers represent the patient counts corresponding to each week bucket,
and the solid line represents the robust regression line. The closer the points
are to the regression lines, the more likely the assumption of independence
between event dates and observation dates is. Patients above the regression
line are susceptible to have a death event correlated with a fracture event.
In the all-fracture (reference) study featured in this paper, 9300 patients
(7.35%) death event might be considered to be correlated to their fracture
times. Note that the negative gradient of the regression line is explained by
the events repartition in the study: if events are assumed to be uniformly
distributed across the four years, there are fewer chances to observe events
separated by 200 weeks than 25 weeks.
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Chapter IV

Which attention model and
unsupervised pre-training
strategy for electronic health
records?

Motivated by recent advances in NLP (Natural Language Processing),
this paper explores several unsupervised pre-training strategies and sev-
eral transformer architectures for predictive modeling using structured
electronic health records (EHR).We use the MIMIC-III dataset to predict
in-hospital mortality, length-of-stay and phenotypes using physiologi-
cal measurements and demographic information of patients admitted
in intensive care units. We show that regular transformer models do
not achieve good performances on several tasks despite using various
pre-training strategies, while a graph representation combined with an
attentionmechanism and unsupervised pre-training turns out to efficient
both in terms of computation time and performance.

Keywords: Electronic Health Records, Transformers architectures, Unsupervised
pre-training

IV.1 Introduction

This paper focuses on structured EHR data, where we observe time-stamped se-
quences of medical codes (e.g. for diagnoses, medications, procedures) that describes
the health pathways of patients. A parallel is often drawn between such data and
NLP [Aya+20; SRB19], since both can be represented as sequences of tokens, cor-
responding to words or word pieces in NLP and to medical codes in EHR. Recent
attention models and pretraining strategies resulted in considerable improvements
onmany NLP tasks [Dev+18; You+18]. In particular, transfer learning was proved, in
the last few years, to be very effective for NLP, while this fact was already established
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in computer vision [HR18]. A recent trend is a form of unsupervised learning, called
self-supervised learning, which involves a pre-training step on a large unsupervised
dataset, using a pretext task, followed by a fine-tuning step for specific supervised
tasks. One of the most popular example is Bidirectional Encoder Representations
from Transformers (BERT) [Dev+18], with numerous extensions [Dai+19; Lan+19;
Liu+19; Yan+19].

Unsupervised pre-training. Obtaining labeled healthcare data can be either
expensive [Shi+18] or scarce (e.g. rare diseases, see [MH20]), which makes end-to-
end supervised training of deep architectures impossible in such cases. An answer
to this issue can be unsupervised pre-training, which is a key ingredient of the recent
successes in NLP mentioned above, but also for time series [FDJ19] and computer
vision, where deep image encoders are pre-trained using self-supervised [DZ17] or
contrastive [Che+20; OLV18] approaches.

Contributions. This is where this paper brings new contributions: we explore
several transformer architectures together with several unsupervised pre-training
strategies for structured EHR. Many combinations are compared using several down-
stream supervised tasks, in order to provide insights about the best general-purpose
combination of an architecture and of a pre-training strategy. Pre-trained repre-
sentations are fine-tuned with a single additional output layer, for the considered
specific downstream task. This is performed using the freely accessible MIMIC-III
database [Joh+16], that is featured in numerous publications, see [Har+19; Shi+18;
Son+18] among many others. In particular, this paper includes many of the best
practices for hyper-parameters tuning (see Section IV.2.4).

From NLP to EHR. While both text data and EHR are sequences of tokens from
large vocabularies, let us highlight the following specific issues with EHR that do
not exist in NLP. (1) The order of tokens in text is somewhat self-evident, while the
ordering of tokens in EHR is specific to the medical practice. Temporal relationships
between types of codes is a crucial component of EHR that does not exist in NLP.
(2) EHR are not always direct recordings of the physiologies of the patients, but
rather captures of their interactions with the healthcare system, resulting in feedback
loops and reversed dynamics [HA13]. For instance, data might exhibit biological
exams, followed by a treatment, other biological exams, a diagnosis code, and finally
another treatment. In physiology, the disease precedes the symptoms, but the data
might show the symptoms first (through exams or acts for example), followed by
the actual identification of the disease [HAP11]. (3) EHR can contain much longer
dependencies compared to text, for instance a diabetes diagnosis is a risk factor all
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along a patient’s life, or some surgeries can prohibit other interventions, even decades
later [Shi+18].

Related works. As explained previously, adapting state-of-the-art architectures
for NLP to structured EHR is a non-trivial task. To the best of our knowledge,
only few relevant papers can be found in literature on this topic. BEHRT [Li+20]
develops pre-trained models to predict the occurrence of any disease in future visits.
It uses positional embeddings to distinguish different visits and adds an age layer
to imply temporal orders. However, BEHRT only uses disease sequences besides
basic demographic information, discarding other medical information such as lab
exams and drugs consumption, which might hinder its reuse for other tasks. G-
BERT [Sha+19] adapts MLM pretraining to align disease and drug representations
within a single visit in order to predict medications from diseases and conversely.
However, they discard order and temporal information in the process, making this
approach unusable to perform forecasting tasks. Med-BERT [Ras+20] adapts BERT
for pre-training contextualized embedding models on a larger cohort and longer visit
sequences compared to BEHRT and G-BERT. Interestingly, this paper introduces the
pretext task of prolonged length of stay in hospital (LOS) and fine-tunes the model
on two tasks concerning disease-prediction. However, Med-BERT only exploits
diagnosis information and does not include the elapsed time between visits, which
can lead to an important a loss of information.

[Cho+20] introduce Graph Convolutional Transformer, which incorporates a
self-attention mechanism. Medical visits are represented as graphs, which edges
that are estimated by using self-attention. Self-attention is constrained to enforce
specific chains of events such as observed symptoms cause diagnoses, diagnoses
cause prescription, etc. The representations of visits are computedwith convolutional
graph networks over the estimated graphs. However, this approach supposes to have
access to fine-grained information in the dataset, while symptoms information is for
instance not often available in an EHR.

IV.2 Methods

Apart from patient demographics (e.g., age, gender, etc.) and some other static
features, a structured EHR consists, for each patient, of a sequence of medical
“events”, such as diagnosis, medication codes, medical acts, etc.1 These events can be
part of an hospital stay or can be events from a “city” medical consultation. Each
event is time-stamped with a precision called time unit, that depends on the database.

1Medical concepts used in EHR and associated codes are usually taken from pre-defined standards,
such as the International Classification of Diseases (ICD)
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Since the time unit is generally rather large (an hour or a day), many events are
co-occurring, i.e. share the same time-stamp.

TimelineVS graph representation. A patient EHRwith several types of events is
illustrated in Figure IV.2.1A using a time-line representation. Another representation
illustrated in Figure IV.2.1B and C uses a directed graph representation, where the
time-line is replaced by successive time unit events and where the edges correspond
to existing structural associations between events: next time unit event on the time-
line, medical events associated to the same time unit, diagnosis (or treatment) events
associated to a symptom event, etc. Time unit events with no associated medical
events are not coded. Such a representationwas introduced by [Cho+18] and inspired
other works, such as [Cho+20] and [Het+19]. The graph representation used in this
paper is similar to that of [Het+19], but sequences of events are modelled through
temporal point processes therein, whilewe use transformer architectures in this paper.
The choice of the representation is driven by the architecture used, as explained in
the next Section.

IV.2.1 Models architecture
The models considered in this paper all share the same neural network architecture
illustrated in Figure IV.2.2. Following the flow of the data, it contains four com-
ponents: an embedding component, an encoder, a pooler and a final dense layer
for operating a given task. We use a two-step training strategy: the encoder is first
pre-trained in an unsupervised way using some pretext task, and the final dense layer
is fine-tuned on some specific clinical supervised task.

Embedding component. Each event from the EHR representation corresponds
to a code and/or numeric variables (see Figure IV.2.1A). These codes/variables
are tokenized and embedded: each unique token is individually mapped to a low-
dimensional embedding vector. The relative position (timestamp) of each event is
encoded using fixed positional embeddings (added to each event embedding) follow-
ing [Vas+17], in which we replace the ordered position number by the elapsed time
relative to the timestamp of the first event of the sequence. Finally, a special token
[CLS] is added at the end of the sequence and is embedded as well. Moreover, static
features (including patient demographics, e.g. age and gender) are also embedded
and summed out into a single vector, that is used as input to the Encoder component,
see Figure IV.2.2.

Encoder. An encoder is used to encode the whole EHR representation into a new
sequence with the same length. The static features embedding is then added to each

190



IV.2. Methods

Medication
purchase Diagnosis Medical

procedure

Time-line representation of an individual EHR

Graph representation of an individual EHR

Set of
unordered
events

Star
t o

f

ob
se

rva
tio

n

t0 t1 t2 t3 t4 t5

A

B

Start End
Visit

Med. Purch.
modality 1

Diagnosis
modality 1

Med. Proc.
modality 1

Graph implementation

t0 t1 t2 t3 t4 t5

C

Visit

time

t0 t1 t2 t3 t4 t5

Diagnosis
modality 2

Med. Proc.
modality 1

Med. Purch.
modality 1

Figure IV.2.1 – Graph representation. A timestamped EHR sequence (A) can be
represented by the graph (B). A visit is created for each timestep in which
medical events occur. Event nodes are created each time this event occurs
during a visit. Visit nodes are initialized with the sum of the [visit] token
embedding and the corresponding positional embedding, while event nodes
are initialized with the embedding of the corresponding modality.
In practice, the graph is implemented as depicted in panel (C) to improve the
representation sparsity. For a given EHR sequence, event nodes are created
only once per observed modality (event-modality nodes). Each visit node in
which an event occurred can attend to the corresponding event-modality
nodes.
Note that there is no information flowing into these event-modality nodes
when updating the graph through the layers. As such, there is no causality
break nor data leak when using this representation. Event-modality nodes
are uniquely learned by the embedding layer.
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Figure IV.2.2 – Overview of the generic model architecture. The EHR representa-
tion (see Figure IV.2.1) is used as input data to an architecture with four
components: an Embedding component, a Transformer-based Encoder, a
Pooler and a final dense layer for operating a given pre-training or down-
stream task.

element of this new sequence.
We use and compare the following attention-based encoders. (1) The Vanilla

Transformer [Vas+17], which allows to build a representation of an input sequence by
stackingMulti-head Self-Attention (MSA) layers; (2)TheLinearTransformer [Wu+20],
which significantly reduces the memory footprint and scales linearly with respect
to the sequence length compared to [Vas+17], allowing to feed entire sequences
without length restrictions; (3) The Graph Attention Network (GAT) [Vel+17; Ye+19],
which uses fully-connected graphs with a self-attention mechanism which does not
involves queries and keys as MSA. For this encoder, we use the graph representation
described in Section IV.2 and Figure IV.2.1 C).

In each case, causal attentions are used: at any given position, the attention
mechanism is not allowed to put attention on any data involving future positions, so
that the output sequence of the Encoder preserves causality. Detailed descriptions of
each encoder are provided in Supplementary Material.

Pooler. As explained in Section IV.2.3 below, two types of downstream supervised
tasks can be considered: (1) tasks that operate on each event embedding of the
sequence coming out of the encoder (e.g. length of stay prediction) and (2) tasks that
exploit the overall sequence (e.g. mortality prediction). A pooler is required only
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for (2). We follow [Dev+18] where only the last element of the encoded sequence is
kept (which explains the use of the [CLS] token above).

IV.2.2 Unsupervised pre-training
We consider the following strategies for unsupervised pre-training of the encoder:
(1)Masked LanguageModeling (MLM) [Dev+18], (2)Triplet Loss [FDJ19] and (3)Con-
trastive Predictive Coding (CPC or InfoNCE) [Che+20; Sun+19] that are summarized
in Figure IV.2.3. A more detailed description of each approach is provided in Supple-
mentary Material. In our experiments, an architecture is trained from scratch and
independently for each pre-training strategy.
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Figure IV.2.3 – Overview of the unsupervised pre-training and evaluation proce-
dures. First, three Encoders are pre-trained separately in a unsupervised
manner. The obtained representation for each token in the sequence is then
passed into the Pooler if the downstream supervised task requires it. In the
next step, we add a classifier network on the top of the Encoder which is
trained in a supervised manner separately for each downstream task.

IV.2.3 Supervised fine-tuning, losses and metrics
All the combinations of encoder architectures and pre-training strategies are assessed
using several clinical supervised tasks ([Har+19], see Section IV.3 below). For each
model combinations and supervised tasks, we use and compare: (1) fine-tuning,
using the supervised task, of the whole architecture, with the embedding component
and encoder initialized with the weights learned during the pre-training phase;

193



IV. Attention and unsupervised pre-training for EHR

(2) fine-tuning of the final dense layer only (the embedding component and encoder
weights are fixed to the pre-trained values); (3) end-to-end supervised training of the
whole architecture, with random initialization of all the weights.

Depending on the supervised tasks, we use the following standard losses and
assessment metrics: cross-entropy loss for binary and multi-class classification, with
AUROC andAUPRCmetrics for assessment of binary classification tasks and Cohen’s
linear weighted kappa metric for multi-class classification.

IV.2.4 Hyper-parameters and training details

All hyper-parameters described below were tuned using cross-validation on the
validation set. We describe below the resulting best-performing choices for each
architecture. For Vanilla Transformers, we restrict the number of events in a se-
quence to 1024, and use hidden units of dimension 256, output units of dimen-
sion 512, 6 hidden layers and 4 attention heads. Linear Transformers use the same
hyper-parameters as Vanilla Transformers except for the dimensions of the hid-
den units (128), the output units (256) and the use of GeLU [HG16] instead of
ReLU activations. We use the implementations provided by [Kat+20] available at
https://github.com/idiap/fast-transformers. The Graph attention network
uses the graph representation of EHR where each token node is only connected to
its corresponding time unit node and each time unit node is connected to the three
previous time unit nodes. We use 4 layers with 2 heads for the first and fourth layers
and 4 heads for the second and the third.

In all cases, we use dropout with 𝑝 = 0.1 and batch normalisation2. We use the
Rectified Adam (RAdam) [Liu+20] optimiser in combination with the Lookahead
optimization algorithm [Zha+19] with learning rate 10−3 and momentum 0.9. We
use a maximum of 500 epoch using early stopping with a patience of 25 epochs and
tolerance 10−4.

Each model is trained on a single GPU, using mini-batches of 512 sequences.
When the batch size is too large for the GPU memory, gradient accumulation is
used to counterbalance the reduction of the batch size. For CPC pre-training, we
follow [Che+20] and use larger batch sizes (1024) in order to have more diversity in
the sampled negative examples (more details on CPC can be found in Supplementary
Material). For the three fine-tuning approaches described in Section IV.2.3, all the
training hyper-parameters are kept the same besides the mini-batch size (128).

2dropout is applied after each layer and layer normalization is used after each attention layer,
excepted for the [CLS] Pooler
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IV.3 Experiments
In this section we describe the data used in our experiments (MIMIC-III) together
with the considered supervised tasks. MIMIC-III (Medical Information Mart for
Intensive Care) is a large single-center database containing de-identified data about
patients admitted to intensive care units (ICU) [Joh+16] between 2001 and 2012.
Following [Har+19; Son+18], we use a cohort of 33,798 unique patients with a
total of 42,276 hospital admissions and ICU stays. Population selection, features
and labels are generated following [Har+19], where patient data is divided into
separate episodes containing both time-series of events and episode-level outcomes.
This results in 17 longitudinal features, among which 4 are categorical. Continuous
features are bucketized using inter-decile intervals computed on the training set. The
sample sizes for each task are given in Table IV.3.1. Training, validation and testing
sets are respectively 70%, 15% and 15% of the ICU stays, reusing the same sampling
as [Har+19]. ICU stays with less than 5 events are excluded.

Table IV.3.1 – Number of patients and ICU stays from MIMIC-III used in our exper-
iments. ICU stays with less than 5 events are excluded.

Cohort # patients # ICU stays # Excluded ICU stays

Pre-training, LOS, PHE 33 597 41 702 192
IHM 18 064 21 079 60

We consider 3 clinical prediction tasks3 from [Har+19].

(i) In-Hospital Mortality (IHM): the outcome is a binary variable indicating wheter
a patient dies during a given ICU stay or not. It is treated as a binary classifi-
cation problem. True mortality labels are curated by comparing the times of
death, hospital admission, and discharge. The mortality rate within the cohort
is 13%.

(ii) Length-of-Stay (LOS): the outcome is the remaining time spent in ICU. It is
bucketized into ten buckets (≤ 1 day; 1; 2;… ; 7 days, [1, 2) weeks; ≥ 2 weeks)
and is considered as a 10-class classification problem.

(iii) Phenotyping (PHE): the outcome is a category corresponding to one of 25 dis-
eases. It is treated as a classification problem and called acute care phenotyping.
The disease is predicted retrospectively from data about the ICU stay of a pa-
tient. The data contains 25 diseases, including 12 critical respiratory/renal

3We do not use decompensation, since it is highly correlated with IHM and leads to a highly unbal-
anced binary classification problem which do not provides more insights than the ones considered
here.

195



IV. Attention and unsupervised pre-training for EHR

failures, 8 chronic conditions such as diabetes or atherosclerosis, and 5 “mixed”
conditions such as liver infections. Patients with multiple phenotypes are
excluded.

IV.4 Results
All the combinations of the considered architectures (Section IV.2.1) and pre-training
strategies (Section IV.2.2) are compared using supervised tasks (Section IV.2.3) related
to clinical prediction tasks (Section IV.3) on MIMIC-III. The corresponding metrics,
computed on the test set, are reported in Table IV.4.1.

Table IV.4.1 – Test metrics obtained by all combinations of architectures and pre-
training strategies (rows) on clinical prediction tasks (columns) using the
MIMIC dataset.. Due to its underwhelming performances, GAT was not
trained for all the tasks and training strategies to avoid computation waste.
∗ The Length Of Stay (LOS) task in [Har+19] slightly differ from ours. They
predict the remaining LOS at each hour, while our experiments do so each
time there is a new patient measurement. Thus, performance comparison
cannot be made directly between these two approaches.

Encoder In-hospital mortality Length of Stay Phenotyping
AUPRC/AUROC Kappa AUROC

End-to-end supervised
Multi-task LSTM [Har+19] 0.533/0.870 0.450∗ 0.774
Vanilla Transformer 0.394/0.809 0.535 0.736
Linear Transformer 0.355/0.790 0.584 0.676
GAT 0.132/0.528 0.218 0.503

MLM Pre-training
Vanilla Transformer 0.409/0.817 0.554 0.749
Linear Transformer 0.344/0.785 0.405 0.708
GAT 0.154/0.572 – –

Triplet Loss Pre-training
Vanilla Transformer 0.357/0.781 0.451 0.729
Linear Transformer 0.330/0.774 0.577 0.686

CPC Pre-training
Vanilla Transformer 0.391/0.805 0.466 0.741
Linear Transformer 0.333/0.770 0.521 0.675

According to this table, we first note that GAT shows inferior performance on
all tasks, using pre-training or not. Increasing 𝑘, the number of past visits GAT
could attend to did not result in any improvement. As aggregating events into visits
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according to a similar graph structure resulted in good representation in [Cho+20],
this poor performance might be rooted in the attention mechanism. Indeed, GAT
uses an attention formulation relying only on node similarity rather than the query,
key, values mechanism used in MSA. Besides the performance aspect, the graph
formulation was very effective in GPUmemory usage, allowing to process the longest
sequences and use larger mini-batches. Moreover, attention on a graph is easy to
implement since no ad-hoc masking is required to enforce causality, and it easily
handles sequences of varying lengths. Blending this approach with an attention
mechanismmore similar toMSA could be an exciting extension, as a similar approach
resulted in promising results in NLP [Ye+19].

As explained in Section 3.1, the vanilla transformer could not handle long se-
quences under the memory constraints of a few GPUs due to its quadratic complexity
in the sequences’ length. In our experiences, limiting the length of the sequences
seemed to hinder its performance. The linear transformer could handle longer
sequences, but it did not result in performance improvements over standard MSA.

Fine-tuning with frozen encoder weights led to worse results than fine-tuning
with unfrozen weights and are not reported here. We observed that it took only 5 to
15 epochs, depending on the task, to achieve good performances when performing
fine-tuning with unfrozen encoder weights. The training for each architecture, pre-
training strategy and prediction took less than 5 hours, except MLM, for which
training could last up to two days. We observed that MLM improved the scores of
end-to-end supervised Vanilla Transformer, while Triplet Loss and CPC pre-training
led to minor improvements.

IV.5 Conclusion
This work proposes an extensive study of the combination of different transformer-
based encoder architectures and unsupervised pre-training strategies inspired by
recent advances in NLP and computer vision. Regarding triplet loss, the random
sampling of triplets 𝑥ref, 𝑥pos, 𝑥neg might be an issue. Indeed, even simple models can
quickly learn to choose between 𝑥pos and 𝑥neg when they are chosen at random. In
this case, the average triplet loss quickly converges towards zero, resulting in very
slow parameter updates [Wu+17]. Adapting the sampling strategy to EHR data could
be a way of improving results on triplet loss. Contrastive pre-training might not have
revealed all of its capabilities in our experiments since it was understood only recently
for computer vision problems [Che+20] that data augmentation is a crucial ingredient
in such unsupervised strategies. Building pertinent data-augmentation on EHR data
remains, to the best of our knowledge, a fascinating open question that requires to be
addressed by future works since it would, in our opinion, enable important advances
in learning representations for health pathways in an unsupervised fashion.
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Appendix

IV.A Encoders
The encoder takes as input a sequence of token embeddings e = [𝑒1,… , 𝑒𝑛], where
𝑒𝑖 ∈ ℝ𝐷 for 𝑖 = 1,… , 𝑛 and outputs a sequence of contextualized embeddings with
the same length.

IV.A.1 Vanilla transformer
The Transformer encoder proposed by [Vas+17] can be used to build a representation
of an 𝑛-input sequence by stacking Multi-head Self-Attention (MSA) layers. Con-
sidering 𝐾 layers, ℎ heads and 𝑑-dimensional token representations, an MSA layer
writes as follows:

Q𝑖 = HW𝑄
𝑖 , K𝑖 = HW𝐾

𝑖 , V𝑖 = HW𝑉
𝑖 , (IV.1)

V′
𝑖 = softmax (

Q𝑖K⊤
𝑖

√𝑑
)V𝑖, (IV.2)

MSA(H) = [V′
1,… ,V′

ℎ]W𝑂
𝑖 , (IV.3)

whereW𝑄
𝑖 ∈ ℝ𝑑×𝑑𝑘, W𝐾

𝑖 ∈ ℝ𝑑×𝑑𝑘, W𝑉
𝑖 ∈ ℝ𝑑×𝑑𝑣 andW𝑂

𝑖 ∈ ℝℎ𝑑𝑣×𝑑 are learned
parameters andH ∈ ℝ𝑑 is the MSA input. This structure is stacked on 𝐾 layers as
follows

Z𝑘 = LayerNorm(H𝑘 +MSA(H𝑘))
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H𝑘+1 = LayerNorm(Z𝑘 + FFN(Z𝑘)

where FFN is a dense feed forward network andH𝑘 ∈ ℝ𝑛×𝑑 (resp.H𝑘+1) is the input
(resp. output) to the 𝑘th-layer. The input to the encoder isH1 = e, the 𝑛-sequence of
token embeddings.

IV.A.2 Linear transformer
Awell-known issue with models based on self-attention is their quadratic complexity
w.r.t the length of the sequence 𝑛. This comes from the fact that the attention
mechanismmay focus on any event of the overall sequence. The length of sequences
in an EHR are approximately distributed according to a power law, which means
that a significant proportion of health records have a very large number of events.
This generally induces poor performances for Transformer-like models and can even
lead to out-of-memory errors. Some recent approaches focused on dealing with
long sequence without sacrificing efficiency. Towards this end, [Chi+19] introduced
sparse factorizations of the attention matrix to reduce the self-attention complexity
to 𝒪(𝑛√𝑛). Locality-sensitive hashing can further reduce self-attention complexity
to𝒪(𝑛 log(𝑛)) [KKL20]. Recently, [Kat+20] introduced the linear transformer model
that reduces complexity to𝒪(𝑛) by using a kernel-based formulation of self-attention
and the associative property of matrix products to calculate the self-attention weight.
More precisely, the authors proposed to rewrite Equation (IV.2) as follows:

V′
𝑖 =

𝜙(Q𝑖)
𝑇∑𝑁

𝑗=𝑖 𝜙(K𝑗)V𝑇
𝑗

𝜙(Q𝑖)
𝑇∑𝑁

𝑗=𝑖 𝜙(K𝑗)
, (IV.4)

where 𝜙(𝑥) is a feature map associated to a kernel 𝑘(𝑥, 𝑦) ∶ ℝ𝑑 × ℝ𝑑 → ℝ+. Note
that the feature map 𝜙(⋅) is applied row-wise to the matrices Q andK.

IV.A.3 Graph Attention Network
An alternative solution to Linear Transformer for reducing the quadratic complexity
problem is to use a directed graph attention mechanism. The main idea is, somehow,
to be able to specify the (limited) context accessible to each event (andmore generally
to each node at each step of the attention mechanism) using a directed graph as
illustrated on the Figure IV.2.1B and C. This process is very similar to GraphAttention
Network [Vel+17] or BP-transformer [Ye+19].

In our case, theMIMIC-III EHRdatabase is organized in visits. A visit corresponds
to a stay of a patient in an ICU. The directed graph is built as follows. We code each
visit 𝑣 using a node which stores the starting and ending dates (𝑡𝑠𝑡𝑎𝑟𝑡𝑣 , 𝑡𝑒𝑛𝑑𝑣 ) of the visit.
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Each visit node is linked with direct edges to one or more child nodes corresponding
to various events that occurred during this visit (drug prescription, medical exam,
medical procedure, diagnosis, etc). Visits with no events are not coded in the graph.
Each visit is linked to other visits with directed edges, whose weights express the
number of days between the two visits. Assuming the visits are not overlapping and
sorted according to their starting date (i.e. 𝑣𝑖, 𝑣𝑗, 𝑡𝑠𝑡𝑎𝑟𝑡𝑣𝑖 < 𝑡𝑠𝑡𝑎𝑟𝑡𝑣𝑗 ), the elapsed time
between visits is given by 𝑤𝑣𝑖→𝑣𝑗 = 𝑡𝑠𝑡𝑎𝑟𝑡𝑣𝑖 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑣𝑗 .

The context 𝒱(𝑢) of a node 𝑢 is defined as follows : (i) if 𝑢 is a child node of a
visit node, its context is the corresponding visit node and (ii) if 𝑢 is a visit node its
context will be the 𝑘 previous visit nodes.

The input to the encoder is a set of node features, ℎ = {ℎ1,… , ℎ𝑁}, ℎ𝑖 ∈ ℝ𝐹,
where 𝑁 is the number of nodes, and 𝐹 is the number of features in each node. The
encoder produces a new set of node features ℎ′ = {ℎ′1,… , ℎ′𝑁}, ℎ′𝑖 ∈ ℝ𝐹′ as its output.
In [Vel+17] the graph structure is injected into themechanism by performingmasked
attention. For each node 𝑖, and for each node 𝑗 in the neighborhood of node 𝑖, one
computes

𝛼𝑖,𝑗 =
LeakyReLU(𝑎⊤[Wℎ𝑖||Wℎ𝑗])

∑𝑗′∈𝒱(𝑖) LeakyReLU(𝑎
⊤[Wℎ𝑖||Wℎ𝑗])

, (IV.5)

where || stands for concatenation andW ∈ ℝ𝑑2, 𝑎 ∈ ℝ2𝑑, ℎ𝑗 ∈ ℝ𝑑 are parameters to
be trained. Then, given a non-linearity 𝜎, a single layer performs the following node
update

ℎ′𝑖 = 𝜎( ∑
𝑗∈𝒱(𝑖)

𝛼𝑖,𝑗Wℎ𝑗) . (IV.6)

The network builds nodes representations by stacking such layers. A multi-head
version of this attention can be implemented by performing these operations 𝑘 times
in parallel at each layer, and then by performing an average of the representations in
the last layer before applying the non-linearity 𝜎.

In practice, GAT self-attentional layers can easily be parallelized over edges and
the computation of output features can be parallelized over all nodes. The time
complexity of an attention head is 𝑂(|𝑉|𝑑2 + |𝐸|) where |𝑉| and |𝐸| are the number
of nodes and edges in the graph. Note that using multi-heads multiplies the required
storage by ℎ. We used a sparse implementation of GAT available in the DGL library,
which is supposed to be 𝑂(|𝑉| × |𝐸|) in terms of storage complexity.

IV.B Unsupervised Pre-training Strategies
We describe in this section the supervised and unsupervised strategies used in the
paper.
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IV.B.1 Masked Language Model
We apply MLM as in [Dev+18]. We select 15% of the codes at random, and modify
them according to the following probabilities: 80% of chance that a code is replaced
by the [MASK] token, 10% of chance that the code is replaced by a random code, and
another 10% chance that it was kept unchanged.

IV.B.2 Triplet loss
To the best of our knowledge, the triplet loss for unsupervised learning has never
been applied for pre-training purposes in health applications despite its proven
effectiveness [Erh+10]. One approach is to use an unsupervised causal model, as
proposed by [FDJ19]. The sampling algorithm extracts random sub-sequences 𝑥ref
and 𝑥pos (a positive example) of a given sequence 𝑦𝑖, and samples 𝐾 of 𝑥neg (negative
examples) that are chosen at random in different random time series 𝑦𝑗 with 𝑗 ≠ 𝑖.
Then, on the one hand, the representation of 𝑥ref should be close to that of 𝑥pos, while
on the other hand, the representation of 𝑥ref should be distant from the ones of 𝑥neg.
This leads to the minimization of the triplet loss, given by

ℒtriplet = − log(𝜎(𝑓(𝑥ref, 𝜃)⊺𝑓(𝑥pos, 𝜃))) −
𝐾

∑
𝑘=1

log(𝜎(−𝑓(𝑥ref, 𝜃)⊺𝑓(𝑥neg𝑘 , 𝜃))),

where 𝜎 is the sigmoid function and 𝑓(⋅, 𝜃) is a deep neural network encoder, where
the parameters 𝜃 are to be trained.

IV.B.3 Contrastive Predictive Coding
Contrastive Predictive Coding (CPC), as formulated in [OLV18], learns representa-
tions by training neural networks to predict the representations of “future” obser-
vations from those of “past” ones. The main idea of CPC consists of maximizing
the mutual information between the encoded representations and not between the
original labeled data. When predicting future information the authors propose to
encode the target 𝑥 (future) and context 𝑐 (present) into a compact distributed vector
representations (via non-linear learned mappings) in a way that maximally preserves
the mutual information (MI) of the original signals 𝑥 and 𝑐 defined as

𝐼(𝑥; 𝑐) = ∑
𝑥,𝑐

𝑝(𝑥, 𝑐) log
𝑝(𝑥|𝑐)
𝑝(𝑥)

. (IV.7)

By maximizing the mutual information between the encoded representations (which
is bounded by the MI between the input signals), CPC extracts the underlying latent

201



IV. Attention and unsupervised pre-training for EHR

variables that inputs have in common. The architecture of CPC is as follows: first, a
non-linear encoder 𝑓𝜃 maps the input sequence of observations 𝑥𝑖 to a sequence of
latent representations 𝑧𝑖 = 𝑓𝜃(𝑥𝑖). Next, an auto-regressive model 𝑔ar summarizes all
𝑧 ≤ 𝑡 in the latent space and produces a context latent representation 𝑐𝑖,𝑡 = 𝑔ar(𝑧𝑖 ≤ 𝑡).
The authors model a density ratio which preserves the mutual information between
𝑥𝑖,𝑡+𝑘 and 𝑐𝑖,𝑡 as follows:

𝑓𝑘(𝑥𝑖,𝑡+𝑘, 𝑐𝑖,𝑡) = exp (𝑧𝑇𝑖,𝑡+𝑘𝑊𝑘𝑐𝑖,𝑡). (IV.8)

Both the encoder and auto-regressive models are trained to jointly optimize a loss
based on NCE, which is called InfoNCE. Given a set 𝑋 = {𝑥1,… , 𝑥𝑁} of 𝑁 random
samples containing one positive sample from 𝑝(𝑥𝑡+𝑘|𝑐𝑡) and 𝑁 − 1 negative samples
from the distribution 𝑝(𝑥𝑡+𝑘), we optimize

ℒ = −𝔼[ log
𝑓𝑘(𝑥𝑖,𝑡+𝑘, 𝑐𝑖,𝑡)
∑𝑥𝑗∈𝑋

𝑓𝑘(𝑥𝑗, 𝑐𝑡)
]. (IV.9)

The objective set by this loss function is for the prediction ̂𝑧𝑖+𝑘 to be most similar
to the one positive sample 𝑧𝑖+𝑘 among a set of randomly selected negative samples
𝑧𝑙 [Hén+19]:

ℒInfoNCE = −∑
𝑖,𝑘
log (

exp( ̂𝑧𝑇𝑖+𝑘𝑧𝑖+𝑘)
exp( ̂𝑧𝑇𝑖+𝑘𝑧𝑖+𝑘) + ∑𝑙 exp( ̂𝑧

𝑇
𝑖+𝑘𝑧

′
𝑙)
). (IV.10)
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The works presented in this thesis aim to push forward the use of large observational
databases in healthcare. While such databases are very rich and become more
available, they pose numerous technical and methodological challenges. In the
previous chapters, some of them were addressed through contributions to several
fields.

Chapter I presents SCALPEL3, an open-source framework accelerating medical
concept extraction. This framework provides scalability gains thanks to a combina-
tion of data denormalization and columnar storage on a distributed architecture of
commodity hardware. A growing library of medical event extractors encapsulates
the knowledge needed to fetch relevant information from a large volume of admin-
istrative data. Continuous integration combined with careful unit and functional
tests ensures the robustness of these extractors. A suite of automated statistics helps
to monitor data manipulations, preventing data loss and errors. Finally, powerful
high-level abstractions ease the interactive manipulation of cohort data. Studies
using SCALPEL3 require only a few lines of readable code, resulting in easier debug-
ging and better reproducibility. This framework is now used at the agency collecting
SNDS data, at the French Ministry of Health, and soon at the National Health Data
Hub in France.

Chapter II introduces ConvSCCS, a newmodel designed to highlight associations
between a counting process and several longitudinal features. The model relies on a
conditional Poisson process, resulting in robustness to non-longitudinal confounding
variables. Using a convolution between step functions and temporal events gives
the model sufficient flexibility to fit various relationships between the target process
and multiple longitudinal features. Finally, a combination of group lasso and total
variation penalties provides automatic feature selection and eases interpretability.

ConvSCCS was used to perform adverse drug reaction detection using data from
the Système National de Données de Santé (SNDS), a massive observational database.
It was first tested by recovering a known association between bladder cancer and
a specific antidiabetic molecule in Chapter II. This model was then used to screen
numerous anxiolytics, hypnotics, antidepressants, and neuroleptics for fracture risk
among the elderly (Chapter III). This study results confirm previous results on
antidepressants while revealing exciting biases by estimating pre-exposure and post-
exposure longitudinal risk curves. These biases are tied to the studied molecules’
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prescription context and bring a new light on previous results on anxiolytics and
hypnotics.

Even if the volume of available healthcare data is growing, labels remain either
rare or costly to obtain. Chapter IV tried to build generic representations using
self-supervised learning to leverage existing troves of unlabeled healthcare data. This
work presents several strategies to pre-train attention models on EHR data. These
approaches were tested through several experiments using MIMIC-III data. While
the resulting performance is not satisfying yet, this work sets a fertile ground for
future research to grow.

Themethods proposed in this thesis bring answers to some of the challenges posed
by repurposing administrative healthcare data, with practical applications to drug
safety. They also set sound foundations for future research leveraging observational
healthcare data.

Future research could pursue the development of useful representations for
irregularly sampled longitudinal data. While the graph representation of electronic
health records has not resulted in good performances, it has interesting properties in
computational cost and memory usage. As graph representations led to good results
in non-longitudinal tasks [Cho+20], there should be a way to derive performant and
effective graphs models in a longitudinal setting.

The models tested in Chapter IV rely solely on attention mechanisms performing
successive aggregations of vectorized representations. Suchmodels were consistently
less performant than recurrent neural networks (RNNs) combined with imputation
strategies. There might be a structural reason for this: attention models might
struggle to learn concepts such as the derivatives of longitudinal measurements to
capture their evolution. The computations behind the imputations and the recurrent
neural networks might be emulated with graphs and graph convolutions such as
EdgeConv [Wan+19]. This research path could eventually lead to a model with
similar or better performances and computational properties than RNNs combined
with imputation.

Furthermore, leveraging existing hierarchies in medical codes such as ICD-
10 [Sha+19], as well as external information such as molecules properties [Wis+17]
could lead to even richer representations.

Besides, while several works are building patient history representations, all of
them rely on EHR data. One of the initial goals behind Chapter IV was to assess if
good representations could be derived from claims data. Regrettably, this aspect was
not developed due to a lack of human and computational time. While claims data
have different properties than EHRs, claims datasets are usually much larger. Such
large amounts of data could be a corpus of choice to pre-train very large models.

Finally, there is important work to be done on patient records simulation or at
least deformation. As the dynamics behind EHR and claims data are quite hard to
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derive, there are currently no robust techniques to perform data augmentation or
generate synthetic healthcare data. Such tools are likely to be an essential missing
part of the current efforts to build unsupervised patient records representations.
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Appendix A

Résumé des contributions

Durant les vingt dernières années, plusieurs organismes étatiques ou privés ont
accumulé des données sur les consommations de soins individuelles. La richesse de
ces données en fait un outil de choix pour guider les politiques en santé publique.
Cette thèse se concentre sur lamodélisation de parcours de soins, à partir des données
du SystèmeNational des Données de Santé (SNDS). L’accès à ces données résulte d’un
partenariat de recherche conclu entre l’École Polytechnique et la Caisse Nationale
de l’Assurance Maladie (CNAM). Cette dernière gère entre autres la collecte et la
consolidation du SNDS.

La première contribution de ce travail consiste en l’élaboration et la publication
de SCALPEL3, un système en libre accès qui facilite l’utilisation de bases de don-
nées observationnelles massives (BDOMs) à des fins de recherche (cf. Chapitre I).
La seconde contribution consiste en un modèle permettant l’estimation de risques
longitudinaux pour des évènements rares (Chapitre II). Ce modèle a été appliqué
avec succès à la détection d’effets secondaires médicamenteux à court et à long terme
(cf. Chapitre II and III). Enfin, la dernière partie de cette thèse évalue l’efficacité de
différents modèles d’attention et stratégies de préentraînement pour l’apprentissage
de représentations de parcours de soins de façon non supervisée (Chapter IV). Ce
chapitre a pour but de résumer succinctement ces travaux, plus amplement détaillés
dans les chapitres précédents.

A.1 Utilisationdebases dedonnées observationnelles

Les essais randomisés contrôlés (ERCs) sont souvent considérés comme une
référence lorsqu’il s’agit de produire des études statistiques en santé publique. Ils
permettent de contrôler finement de nombreux biais lors de l’estimation des effets
des traitements, grâce à une méthodologie éprouvée [Gro+04]. Cependant, les ERCs
sont coûteux, et ne peuvent pas toujours être mis en place en raison de contraintes
éthiques [Bee66 ; HS+79]. Par exemple, un ERC qui mettrait volontairement en
danger un groupe de patients contreviendrait aux principes éthiques en vigueur.
Par ailleurs, les ERCs peuvent être limités par leurs tailles d’échantillons, et ne sont
souvent pas conduits sur de longues périodes en raison de leur coût. Ils peuvent ainsi
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échouer dans la détection d’effets secondaires médicamenteux de long terme tels que
l’association entre le pioglitazone et le cancer de la vessie [Azo+12 ; Neu+12].

Les études observationnelles peuvent contourner quelques uns de ces problèmes.
En effet, la réutilisation de données historiques permet parfois de résoudre certains
problèmes éthiques posés par les expériences sur des sujets vivants [Ros+10]. Les
études observationnelles peuvent être menées sur des données administratives collec-
tées par différents acteurs de la santé, comme les hôpitaux ou les systèmes d’assurance
maladie. Les jeux de données qui en résultent couvrent souvent une large population
avec un long historique, et sont beaucoup moins coûteux à produire que les données
d’ERC [Mad+14]. Les données observationnelles permettent également d’observer
des évènements rares, ou des sous-populations parfois difficiles à atteindre dans le
cas des ERC. Enfin, elles fournissent une image réelle de la consommation de soins,
qui peut compléter les conclusions d’ERCs au design très contrôlé [HA13]. Ainsi,
l’utilisation de données observationnelles peut fournir des informations utiles pour
l’élaboration de politiques de santé publique. Bien que les données observationnelles
soient utilisées depuis longtemps, l’utilisation de bases de données massives ne s’est
largement développée que durant les quinze dernières années [Mad+14] grâce aux
progrès technologiques en informatique.

Les données observationnelles se divisent en deux catégories. Premièrement, les
dossiers médicaux informatisés (electronic health records, EHRs) fournissent une
image très détaillée, mais limitée dans le temps du parcours des patients. En effet,
ils contiennent de nombreuses informations concernant la physiologie des patients
ainsi que certaines de leurs habitudes de vie (consommation d’alcool ou de tabac par
exemple) en plus de variables démographiques comme le genre ou l’âge. MIMIC-III
(Medical InformationMart for Intensive Care) [Joh+16] en est un exemple, qui a donné
lieu à de nombreuses publications. Les EHRs peuvent parfois contenir des données
issues de capteurs, comme par exemple des electrocardiogrammes ou des données
d’imagerie. Deuxièmement, des bases de données administratives telles que le SNDS
contiennent des informations concernant des remboursements de soins. Ces données
sont initialement collectées afin de permettre la comptabilité du système d’assurance
maladie en France. Elles consistent en de nombreux évènements datés, qu’il s’agisse
de délivrances de médicaments remboursés, d’actes médicaux et de diagnostics1.
Ces informations sont bien moins détaillées que dans le cas des dossiers médicaux
informatisés. Par exemple, elles ne contiennent pas de mesures physiologiques ou
d’informations sur les habitudes de vie des patients ni sur les soins non remboursés.

Le système national de données de soins (SNDS). Le développement d’outils et
d’algorithmes permettant d’utiliser les données observationnelles du SNDS constitue
une part importante du travail effectué dans le cadre de cette thèse.

1Dans le SNDS, les diagnostics ne sont disponibles que pour les patients hospitalisés.
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Pour constituer le SNDS, la CNAM collecte et vérifie l’ensemble des données
fournies par les caisses primaires d’assurance maladie ainsi que certaines données
hospitalières. Le SNDS contient ainsi les données de remboursements de soins d’envi-
ron 98,8 % de la population française [Tup+17a]. Initialement destinée à contrôler les
dépenses en santé et l’utilisation des infrastructures de soins, cette base de données a
commencé à être utilisée pour produire de nombreuses études épidémiologiques à
partir de 2006 [Neu+12 ; Tup+17a].

Grâce à un historique de trois ans2 et une grande rigueur dans la collecte des
données, le SNDS permet de conduire des études sur une population quasi exhaus-
tive [Tup+17a].

Les données du SNDS proviennent des Données de Consommation Inter-Régimes
(DCIR) qui contient les remboursements des soins de ville, ainsi que du Programme
de Médicalisation des Systèmes d’Information (PMSI) qui contient des données
hospitalières. Ces deux bases de données sont massives, et possèdent une structure
complexe. Le DCIR est normalisé autour de la notion de remboursement, alors que
le PMSI l’est autour de la notion de séjour hospitalier. Les différents évènements
médicaux qui y sont enregistrés sont codés à l’aide d’ontologies spécifiques telles que
la Classification Internationale des Maladies (CIM). Le PMSI est lui-même divisé
en quatre bases de données en fonction du type de service hospitalier. Les travaux
présentés ici se concentrent sur le sous-ensemble Médecine, Chirurgie, Obstétrique
et Odontologie (MCO) du PMSI.

L’accès au SNDS suppose une autorisation de la Commission Nationale de l’Infor-
matique et des Libertés (CNIL), qui évalue la rigueur et l’intérêt des projets requérants.
Par mesure de sécurité, le SNDS est stocké sur des serveurs Exadata dans les centres
informatiques (datacenters) de la CNAM, et l’accès se fait par des postes sécurisés
utilisant le logiciel SAS Enterprise Guide [Sup76]. Bien que ces modalités d’accès
permettent la réalisation d’études épidémiologiques et économiques, elles sont très
contraignantes d’un point de vue méthodologique. Grâce au partenariat conclu entre
l’École Polytechnique et la CNAM, il a été possible d’utiliser un groupement de
serveurs (computer cluster) de recherche situé dans le centre informatique de la
CNAM.

Chaque année, le SNDS enregistre environ 20 milliards de traces de rembour-
sements. Le traitement de ces données peut donc s’avérer délicat en raison de leur
volume et de leur complexité. En effet, comme il s’agit d’informations administra-
tives, l’obtention des évènements médicaux nécessite un traitement qui suppose de
nombreuses jointures comme illustré par la Figure A.1.1. Par ailleurs, l’identification
de ces concepts nécessite également une très bonne connaissance de subtilités admi-
nistratives et techniques relatives au SNDS, qui peuvent rapidement représenter une
barrière à l’exploitation de ces données.

2Auxquels s’ajoutent vingt ans d’historique, accessible dans certains cas.
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Fig. A.1.1 – Structure simplifiée du SNDS. Cette illustration représente les tables
principales du DCIR et de PMSI MCO. Chaque rectangle représente une base de
données, tandis que les flèches montrent quelles sont les jointures qui peuvent
être réalisées.
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L’extraction de conceptsmédicaux ne peut pour lemoment pas être réalisée à l’aide
d’algorithmes d’apprentissage [Ban+18], et requiert donc un traitement manuel assez
lourd (c.f. l’identification des cancers de la vessie dans [Neu+12]). Une erreur dans
l’identification des évènements médicaux peut ajouter un bruit non négligeable dans
les données, avec les conséquences négatives que cela peut avoir sur la performance
de modèles d’apprentissage.

Concernant le SNDS, cette tâche est aujourd’hui principalement réalisée à l’aide
de programmes complexes sous SQL et SAS.

A.1.1 Contribution : un logiciel d’extraction rapide et reproduc-
tible de concepts médicaux

En premier lieu, cette thèse a contribué au développement de SCALPEL3, une
suite logicielle facilitant l’extraction de concepts médicaux du SNDS ainsi que la
manipulation de données de cohorte.

Contrairement aux approches existantes [Hri+15 ; Mur+10] qui reposent sur
des modèles de données normalisés, nous avons fait le choix de dénormaliser la
base de données afin de ne procéder aux jointures qu’une seule fois. La table qui
résulte de ces jointures est très volumineuse. Afin de pouvoir la manipuler aisément,
elle est stockée en utilisant un format orienté colonne ([Voh16]), ce qui permet de
bénéficier d’un facteur de compression important lorsque des valeurs sont répétées
sur plusieurs lignes [Mel+10]. Enfin, le traitement des données est implémenté de
façon à pouvoir être distribué sur un cluster de calcul. Ces techniques qui ont déjà
prouvé leur efficacité pour l’analyse de données de navigation internet [Bon+17]
sont ici adaptées aux bases de données massives en santé. La structure de cette suite
logicielle est illustrée Figure A.1.2, et développée dans le Chapitre I.

Un ensemble d’extracteurs de concepts médicaux affine successivement la version
dénormalisée du SNDS de la façon suivante :

(i) Identification des colonnes pertinentes.

(ii) Filtrage des valeurs nulles, et éventuellement par valeurs.

(iii) Conversion des résultats en un schéma préétabli.

Ces trois opérations sont très rapides à effectuer sur des données orientées colonne,
et peuvent être distribuées facilement. Un ensemble de Transformers peut par la
suite combiner les données extraites pour former des évènements médicaux plus
complexes. Un ensemble d’extracteurs et de Transformers permettent d’encapsuler
une grande partie des connaissances nécessaires à l’identification de concepts mé-
dicaux, réduisant ainsi l’une des barrières à l’utilisation de données SNDS. Ce code

211



A. Résumé des contributions

SCALPEL-Flatteningconfiguration file

SNDS
(csv files)

read

write

SCALPEL-Extraction
Patient,	Event,	Extractor,	Transformer

configuration file

read

SCALPEL-Analysis
Cohort,	CohortCollection,	CohortFlow,	FeatureDriver

CohortCollection*
(Patients and events datasets, Parquet files)

write

Denormalized SNDS
(Parquet files)

read

Scala API (batch)

Python API (interactive)

Interactive Machine Learning
(TensorFlow or Pytorch Tensor,numpy ndarray)

Fig. A.1.2 – Architecture de SCALPEL3. SCALPEL3 est divisé en trois librairies
indépendantes à source ouverte, qui peuvent être utilisées indépendamment
ou en combinaison. SCALPEL-Flattening, implémentée en Scala/Spark, dénor-
malise les bases de données en entrées (au format CSV) et produit une seule
table stockée au format Parquet. Ensuite, SCALPEL-Extraction, implémenté en
SCALA/Spark, extrait des concepts médicaux de cette table. Enfin, SCALPEL-
Analysis implémentée en Python/PySpark permet de manipuler ces concepts de
façon interactive, et d’alimenter des algorithmes d’apprentissage automatique.

est testé à l’aide de tests unitaires et fonctionnels afin de garantir la qualité des résul-
tats. Ces tests, associés à la gestion rigoureuse des versions de SCALPEL3, facilitent
notamment la reproductibilité des résultats obtenus avec cette suite logicielle.

Par ailleurs, SCALPEL3 fournit plusieurs abstractions de haut niveau détaillées
dans le Chapitre I. Ces abstractions permettent de réaliser des opérations telles
que des unions, intersections et différences entre des cohortes de patients. Ainsi, le
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volume de code nécessaire à la production d’études statistique s’en trouve réduit. Ce
code est donc plus facilement compréhensible et maintenable, favorisant ainsi sa
diffusion. Enfin, un sous-module implémente de nombreux indicateurs statistiques,
qui permettent de contrôler les opérations effectuées par SCALPEL3 tout au long du
processus.

L’ensemble des opérations décrites ci-dessus est basé sur Apache Spark. Celles-ci
peuvent donc être distribuées sur un cluster de calcul, en bénéficiant d’une scalabilité
horizontale quasi linéaire (cf. Chapitre I).

Pour conclure, SCALPEL3 facilite la production d’études basées sur le SNDS
tout en fournissant des gains en scalabilité. Cette suite logicielle est maintenant
utilisée à la CNAM, à la Direction de la Recherche, des Études, de l’Évaluation et
des Statistiques (Drees), et bientôt au sein de la Plateforme des Données de Santé
(Health Data Hub).

A.2 Détection d’effets indésirables médicamenteux

L’amélioration de la détection d’effets indésirables médicamenteux (EIM) est une
des promesses portées par l’utilisation de BDOMs [Sta+10]. Un EIM peut être défini
comme la survenance d’un évènement indésirable suite à l’utilisation prolongée ou
non d’un médicament. La survenance d’un EIM peut avoir des temporalités variées
et être lié à une dose spécifique ou non [AF03]. Établir un effet lié à un dosage en
utilisant les données du SNDS est ardu. En effet, l’estimation précise des doses utili-
sées par les patients est complexe, puisque les prescriptions ne sont pas consignées et
que les quantités de médicaments délivrées ne sont pas individualisées3 [Tup+17a].
Ainsi, cette thèse s’intéresse principalement à la temporalité des EIMs. Tandis que
certains EIMs peuvent être indépendants du temps (p. ex. toxicité de la digoxine
causée par une carence en potassium [AF03]), de nombreux EIMs peuvent survenir
dès la première prise (p. ex. anaphylaxie après une prise de pénicilline) ou avec un
délai plus ou moins important. Par exemple, les EIMs peuvent se produire à l’arrêt
du traitement (p. ex. opiacés) ou avec un délai de plusieurs mois (p. ex. carcinoge-
nèse) [AF03]. La vulnérabilité individuelle des patients peut également influencer
la survenance d’EIMs. La Figure A.2.1 représente quelques exemples de risques
longitudinaux d’EIMs.

Historiquement, la détection des EIMs après mise sur le marché repose sur
des signalements effectués par les professionnels de soins ou les patients [Sch+16].
Ces signalements sont ensuite étudiés a posteriori par des études statistiques telles
que [Neu+12]. Malheureusement, cette méthode qui repose sur des moyens hu-

3La quantité de médicament délivrée n’est pas égale à la quantité prescrite, en raison de la standar-
disation des quantités par boite.
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Fig. A.2.1 – Exemples de risques associés aux effets secondaires médicamenteux
(EIM). La probabilité d’occurrence d’un EIM est proportionnelle à l’aire sous les
courbes de risque correspondantes.

mains ne parvient à détecter qu’un sous-ensemble d’EIMs [Alv+98]. En effet, lorsque
les EIMs sont rares, il peut être difficile pour un observateur humain de faire des
rapprochements aboutissant à une alerte.

A.2.1 Défis méthodologiques

Plusieurs défis méthodologiques spécifiques aux BDOMs comme le SNDS com-
pliquent la détection d’EIMs. En effet, les données de soins résultent de trois processus
imbriqués [Alb+18 ; Hag+14] :

(i) Un processus épidémiologique, qui reflète la physiologie et la pathophysiologie
des patients.

(ii) Un processus comportemental, lié aux habitudes de consommation de soins
des patients et à leur hygiène de vie.

(iii) Un processus institutionnel, lié à la structure et au fonctionnement du système
de soins.

Ainsi, l’utilisation de ce type de données doit prendre en compte quelques spécificités
détaillées ci-dessous.
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Informations manquantes et erreurs de codage. Bien qu’il soit très riche,
le SNDS ne contient pas certaines catégories d’informations qui peuvent s’avérer
cruciales selon l’objectif mené. On peut citer par exemple certaines caractéristiques
socioéconomiques (revenu, statut marital), le style de vie (consommation d’alcool
ou de tabac, pratique sportive, nutrition), les résultats d’examen, ou l’utilisation
de médicaments non remboursés. Par ailleurs, les données enregistrées peuvent
être imprécises. Par exemple, le codage d’un évènement de santé peut différer entre
deux établissements de soins, pour des raisons purement administratives [HA13;
Tup+17a].

Parcours spécifiques. La présence de parcours de soins spécifiques peut affecter
les résultats d’une étude. En effet, si certaines molécules sont toujours délivrées dans
un ordre bien précis, il peut être complexe de séparer leurs effets individuels [Hri+16].

Dynamiques inversées. Les données de soins capturent les interactions des béné-
ficiaires plutôt que leur physiologie. Il peut en résulter une inversion des dynamiques
observées [HA13]. En effet, alors que les maladies précèdent leurs symptômes du
point de vue physiologique, les données enregistrent les symptômes avant l’identifi-
cation de la maladie [HAP11].

Échantillonnage non aléatoire. Les évènements de soins ne sont enregistrés que
lorsque les patients interagissent avec le système de soins, c.-à-d. les données ne sont
collectées que lorsque les patients ont des problèmes de santé.

En réponse à ces problèmes, il est possible d’utiliser des stratégies d’imputation
spécifiques [Piv+14], d’utiliser les informationsmanquantes comme une information
en soi4 [Hag+14] ou d’utiliser des modèles flexibles. Cette troisième approche est
celle retenue par cette thèse.

Ces spécificités méthodologiques peuvent produire de nombreux biais, le plus
répandu d’entre eux étant peut-être le biais par indication dans le cadre des études
observationnelles. Ce biais se produit lorsqu’une indication (p. ex. fièvre) cause à la
fois une exposition (p. ex. paracétamol) et un effet néfaste (p. ex. asthme) [Aro+18].
Suivant cet exemple, ignorer le fait que certaines infection virales causant la fièvre
augmentent le risque de développer de l’asthme pourrait conduire une étude à iden-
tifier une association fallacieuse entre le paracétamol et l’asthme.

De tels biais sont difficiles à identifier et à contrôler, notamment lorsque les
prescriptions ne sont pas enregistrées comme dans le cas du SNDS. L’unique solution

4Par exemple, le nombre de visites d’un patient peut être utilisé comme un proxy pour son adhé-
rence et son accès au système de soins
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consiste pour le moment à adapter finement le design des études aux spécificités des
données [Mad+14]. L’approche développée dans cette thèse s’appuie donc sur une
identification précise des évènements médicaux, l’utilisation de modèles flexibles et
une interprétation prudente des résultats.

Les outils mathématiques utilisés dans l’introduction de la thèse et développés
tout au long des chapitres ne seront pas rappelés ici dans un souci de concision. Il en
va demême pour lesmodèles et designs expérimentaux usuels décrits en introduction.

A.2.2 Approche retenue

Ni les signalements spontanés, ni les études de quantification de risque comme
par exemple [Neu+12] ne peuvent être utilisés à grande échelle. Par ailleurs, les
problèmes méthodologiques développés ci-dessus freinent le développement d’un
système de détection d’EIM complètement automatisé [Mad+14]. Enfin, des tests
de performance réalisés par l’Observational Medical Outcomes Partnership [Rya+12 ;
Rya+13b] suggèrent que les approches dans lesquelles les sujets sont leurs propres
témoins sont plus robustes que les approches qui comparent des groupes de sujets
appariés. Ces observations ont guidé le développement d’un nouveau modèle afin
d’améliorer la détection d’EIM. Les objectifs de ce modèle sont les suivants :

• Être facilement interprétable pour favoriser son adoption.

• Être suffisamment robuste pour limiter les biais causés par des informations
manquantes dans le SNDS.

• Être capable d’utiliser des données creuses pour l’étude des évènements rares.

• Utiliser une notion simple d’exposition aux molécules.

• Utiliser les hypothèses les moins contraignantes possibles pour être applicable
à plusieurs sujets d’étude.

• Pouvoir étudier de nombreuses molécules sur de grandes populations.

Supposons que les données sont disponibles sur une période d’observation globale
(𝑎, 𝑏]. Chaque patient 𝑖 = 1,… ,𝑚 est associé à une période d’observation individuelle
(𝑎𝑖, 𝑏𝑖] ⊂ (𝑎, 𝑏], durant laquelle sont observés :

• Les temps d’occurrence 𝑡𝑖,1 < 𝑡𝑖,2 < ⋯ d’évènements d’intérêt (aussi appelés
outcomes par la suite), ou de façon équivalente, un processus de comptage
𝑁𝑖, défini comme 𝑁𝑖(𝑡) = ∑𝑘≥1 𝟙𝑡𝑖,𝑘≤𝑡 et 𝑛𝑖 = ∫(𝑎𝑖,𝑏𝑖] 𝑑𝑁𝑖(𝑡) le nombre total
d’outcomes du patient 𝑖,
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• un vecteur de 𝑑 variable exogènes (features) longitudinales

𝑋𝑖 = (𝑋𝑖(𝑡) = (𝑋1
𝑖 (𝑡) ⋯ 𝑋𝑑

𝑖 (𝑡)) ∶ 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]),

où 𝑋𝑗
𝑖 (𝑡) fournit des informations sur l’exposition du patient 𝑖 à la molécule 𝑗

au temps 𝑡 ∈ (𝑎, 𝑏].

On se base sur la théorie des processus ponctuels, qui sert à modéliser des séries
de points échantillonnés de façon irrégulière [Dal03]. Les travaux existants sur les
modèles Self-Controlled Case Series (SCCS) [Far95 ; FW06 ; Sch+16] nous ont servi de
point de départ. Ce type de modèle repose sur un schéma d’expérience où les patients
sont leurs propres contrôles, et s’écrit comme un processus de Poisson conditionnel.
Il repose sur les hypothèses suivantes [FW06] :

(i) Les variables explicatives sont exogènes, c.-à-d. le processus de comptage 𝑁𝑖
n’influe pas sur les variables 𝑋𝑖 ;

(ii) L’intervalle d’observation (𝑎𝑖, 𝑏𝑖] est indépendant de 𝑁𝑖 ;

(iii) Le processus𝑁𝑖 est un processus de Poisson conditionnellement à (𝑋𝑖(𝑡) ∶ 𝑡 ∈
(𝑎𝑖, 𝑏𝑖]).

Comme détaillé dans le Chapitre II, la vraisemblance du modèle SCCS s’écrit
𝑚

∏
𝑖=1

𝑛𝑖
∏
𝑘=1

𝜆𝑖(𝑡𝑖,𝑘, 𝑋𝑖)

∫𝑏𝑖
𝑎𝑖
𝜆𝑖(𝑠, 𝑋𝑖)𝑑𝑠

(A.1)

où
𝜆𝑖(𝑡, 𝑋𝑖) = ℙ(𝑑𝑁𝑖(𝑡) = 1 | 𝑋𝑖) (A.2)

est l’intensité conditionnelle du processus 𝑁𝑖 pour 𝑡 ∈ (𝑎𝑖, 𝑏𝑖]. Ce modèle peut être
compris comme un modèle de régression des outcomes dans 𝑁𝑖 sur les variables
longitudinales 𝑋𝑖. On suppose que cette intensité est multiplicative, c.-à-d. qu’elle
s’exprime comme un produit. Il est intéressant de constater que le conditionnement
par 𝑛𝑖 génère deux propriétés intéressantes :

• Scalabilité : la vraisemblance ne dépend que des patients 𝑖 pour qui 𝑛𝑖 ≥ 1,
ce qui permet de travailler sur un échantillon réduit sans perte de puissance
statistique [Far+11]. Cette propriété est particulièrement intéressante lors de
l’étude d’évènements rares.

• Robustesse aux variables non observées non longitudinales : lorsque l’intensité
𝜆𝑖(𝑡, 𝑋𝑖) peut s’exprimer comme un produit, les effets non longitudinaux s’an-
nulent dans l’écriture de la vraisemblance. Cette propriété rend les modèles
SCCS particulièrement robustes aux variables non observées comme la vulné-
rabilité individuelle des patients. En revanche, cela signifie également que les
risques estimés sont relatifs à un risque de base non-estimé.
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A.2.3 Contribution : Convolutional SCCS
L’utilisation des modèles SCCS nécessite des hypothèses concernant les périodes

durant lesquelles les patients sont considérés comme étant à risque ou non [Far95].
Dans ce contexte, les variables longitudinales 𝑋𝑖(𝑡) expriment si le patient 𝑖 est à
risque ou non au temps 𝑡, pour une molécule et un EIM donnés. La définition de ces
périodes de risques à partir des dates de remboursement de médicament nécessite
des hypothèses assez fortes sur le délai d’occurrence des EIMs après le début de
traitement. En cas de mauvaise définition de ces périodes, le modèle ne peut tout
simplement pas estimer le risque recherché. La définition de telles périodes de risque
est un problème complexe, qui devient presque impossible à résoudre lorsque l’on
considère un ensemble de plusieurs molécules.

Pour résoudre ce problème, on se base sur une version discrétisée dumodèle SCCS.
On suppose que l’intensité 𝜆 est constante sur des intervalles de temps 𝐼𝑘 = (𝑡𝑘, 𝑡𝑘+1],
𝑘 = 1,… , 𝐾 qui forment une partition de (𝑎, 𝑏], pour 𝑖 = 1,… ,𝑚. Pour simplifier les
notations, on suppose que les intervalles 𝐼𝑘 sont de longueur 1. En écrivant 𝜆𝑖,𝑘 la
valeur de 𝜆(𝑡, 𝑋𝑖(𝑡)) pour 𝑡 ∈ 𝐼𝑘, et en définissant 𝑦𝑖𝑘 ∶= 𝑁𝑖(𝐼𝑘), la vraisemblance du
modèle SCCS discret s’écrit :

𝐿(𝑦𝑖1,… , 𝑦𝑖𝐾|𝑛𝑖, 𝑋𝑖) = 𝑛𝑖!
𝐾

∏
𝑘=1

(
𝜆𝑖𝑘

∑𝐾
𝑘′=1 𝜆𝑖𝑘′

)
𝑦𝑖𝑘

.

Courbes de risque. Lorsqu’il est difficile de définir une période de risque, on
peut être tenté d’utiliser une période plus grande que nécessaire pour être certain
de détecter l’EIM étudié. Cette stratégie a cependant pour conséquence de diluer
le risque sur l’ensemble de la fenêtre considérée [Xu+11], menant à un modèle
incapable de détecter le moindre EIM.

On retient une approche différente, qui consiste à modéliser le risque par une
courbe dépendante du temps plutôt que par un seul paramètre. Cette approche a
déjà été utilisée dans [GWF16; GWF17; Sch+16], qui utilisent des splines pour mo-
déliser l’effet des prises de médicament sur les intensités. Toutefois, ces modèles
sont restreints à l’étude d’une molécule à la fois. Cela peut se révéler probléma-
tique, car les modèles SCCS sont sensibles à l’omission de variables longitudinales
confondantes [MRM16; Sim+13].

Afin de formuler un modèle multivarié, on simplifie la formulation de la courbe
de risque en utilisant des fonctions escalier au lieu des splines. L’intensité peut être
définie par une convolution entre ces fonctions escalier et des indicateurs ponctuels
d’exposition. En supposant l’intensité constante sur chaque 𝐼𝑘, celle-ci s’écrit

𝜆𝑖𝑘(𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙𝑘 +
𝑘

∑
𝑘′=𝑎𝑖

𝑋⊤
𝑖𝑘′𝜃𝑘−𝑘′),
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où 𝑋𝑖𝑘 est la valeur moyenne de 𝑋𝑖(𝑡) dans 𝑡 ∈ 𝐼𝑘, 𝜃 ∈ ℝ𝑑×𝐾, 𝜓𝑖 est le risque du base
du 𝑖 et 𝛾𝑖 une somme d’effets individuels non longitudinaux. Le paramètre 𝜙𝑘 est un
risque de base dépendant du temps, commun à tous les individus (par exemple le
risque lié à l’âge).

On observe 𝑙 = 1,… , 𝐿𝑗𝑖 dates de début d’exposition 𝑐
𝑗
𝑖𝑙 et on introduit les variables

𝑋𝑗
𝑖𝑘 = ∑𝐿𝑗𝑖

𝑙=1 𝟙𝑘=𝑐𝑗𝑖𝑙
, pour aboutir à l’intensité

𝜆𝑖𝑘(𝑋𝑖) = exp (𝜓𝑖 + 𝛾𝑖 + 𝜙𝑘 +
𝑑

∑
𝑗=1

𝐿𝑗𝑖
∑
𝑙=1

𝜃𝑗
𝑘−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘 − 𝑐𝑗𝑖𝑙)). (A.3)

La quantité exp(𝜃𝑗𝑘) correspond au risque relatif d’une exposition à la molécule 𝑗, 𝑘
périodes après le début de l’exposition. La vraisemblance s’écrit donc

𝐿(𝑦𝑖𝑘,… , 𝑦𝑖𝐾|𝑛𝑖, 𝑋𝑖) =
𝐾

∏
𝑘=1

⎛
⎜
⎜
⎝

exp (𝜙𝑘 +∑𝑑
𝑗=1∑

𝐿𝑗𝑖
𝑙=1 𝜃

𝑗
𝑘−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘 − 𝑐𝑗𝑖𝑙))

∑𝐾
𝑘′=1 exp (𝜙𝑘′ +∑𝑑

𝑗=1∑
𝐿𝑗𝑖
𝑙=1 𝜃

𝑗
𝑘′−𝑐𝑗𝑖𝑙

𝟙[0,𝑝](𝑘′ − 𝑐𝑗𝑖𝑙))

⎞
⎟
⎟
⎠

𝑦𝑖𝑘

et ne dépend que des paramètres associés aux variables longitudinales, à savoir 𝜃 pour
les expositions et 𝜙 pour le risque de base longitudinal. Lorsque peu d’information
sur la temporalité des EIMs est disponible a priori, combiner des courbes de risques
flexibles et des indicateurs binaires d’exposition est la méthode de détection de risque
la plus performante [GAB15].

Sélection de variables. La flexibilité de cette formulation de l’intensité (A.3) a
un coût, puisqu’elle augmente fortement le nombre de paramètres à estimer. Cela
peut notamment conduire à un phénomène de surentraînement du modèle. On
utilise donc une stratégie de régularisation pour contraindre les paramètres, tout
en aidant par ailleurs l’interprétation des courbes de risque. Pour ce faire, on com-
bine les régularisations Group-Lasso et variation totale. On considère les groupes
𝜃𝑗 = [𝜃𝑗1⋯𝜃𝑗𝑝] ∈ ℝ𝑝 de paramètres qui correspondent aux courbes de risques pour
chacune des molécules étudiées 𝑗 = 1,… , 𝑑 à des retards différents 𝑘 = 1,…𝑝. La
régularisation s’écrit

pen(𝜃) = 𝛾tv
𝐽

∑
𝑗=1

𝑝−1

∑
𝑘=1

|𝜃𝑗𝑘+1 − 𝜃𝑗𝑘| + 𝛾gl
𝐽

∑
𝑗=1

‖𝜃𝑗‖2. (A.4)

L’effet de la variation totale unidimensionnelle introduit une contrainte sur la va-
riabilité des courbes de risque, comme illustré dans la Figure A.2.2. Le group Lasso
permet quant à lui d’effectuer une sélection de variables, en annulant les courbes
associées à des molécules sans effet.
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Fig. A.2.2 – Illustration de l’effet de la régularisation variation totale. En supposant
une période de risque allant de 0 à 30 périodes, ConvSCCS estime une courbe
de risque avec au plus 30 discontinuités. Le niveau de régularisation contrôle
la taille totale des sauts de la courbe de risque. Un fort (resp. faible) niveau de
pénalisation conduit à une courbe de risque plus (resp. moins) restreinte dans
ses variations, comme illustré par la courbe en tirets oranges (resp. longs tirets
bleus). Le but de la sélection de modèles est d’atteindre un bon équilibre entre
le niveau de détail de la courbe de risque et sa régularité.

Estimation. La log-vraisemblance négative pénalisée s’écrit donc

−ℓ(𝜙, 𝜃) + pen(𝜃) = −1𝑛

𝑛

∑
𝑖=1

𝐾

∑
𝑘=1

𝑦𝑖𝑘 log (
𝜆𝑖𝑘(𝜙, 𝜃)

∑𝐾
𝑘′=1 𝜆𝑖𝑘(𝜙, 𝜃)

) + pen(𝜃), (A.5)

où pen est donnée par l’équation (7) et 𝜆𝑖𝑘 par l’équation (6). Cet objectif est convexe,
mais la régularisation pen(𝜃) n’est pas différentiable. On résout ce problème de mini-
misation en utilisant un algorithme proximal du premier ordre, à savoir l’algorithme
SVRG introduit dans [XZ14]. Les hyperparamètres 𝛾tv et 𝛾gl sont sélectionnés par
validation croisée en utilisant la log-vraisemblance négative comme métrique.

Interprétatilité. ConvSCCS estime des courbes de risque relatifs exp(𝜃𝑗) de lon-
gueur 𝑝 pour chaque variable longitudinale 𝑗 = 1,… , 𝑑. Si ces variables expriment
des dates de début d’exposition, elles peuvent facilement être interprétées comme
le risque relatif 𝑘 = 0,… , 𝑝 périodes après le début des périodes d’exposition. Des
intervalles de confiance peuvent être estimés par bootstrap paramétrique, comme
expliqué dans le Chapitre II.

Performance sur des données synthétiques. ConvSCCS a été comparé à l’état
de l’art des modèles SCCS flexibles, nommément SmoothSCCS [GWF16] et Non-
paraSCCS [GWF17]. À l’aide de données simulées, on montre dans le Chapitre II
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que ConvSCCS obtient de meilleures performances lorsque le nombre de variables
explicatives s’accroit, pour un temps de calcul comparable ou moindre.

A.2.4 Applications
ConvSCCS a d’abord été appliqué à la détection d’une association connue entre

une molécule antidiabétique et le cancer de la vessie [Neu+12] (voir Chapitre II).
Par la suite, ce modèle a été appliqué à la détection d’association entre l’utilisation
d’anxiolytiques, d’hypnotiques, d’antidépresseurs, de neuroleptiques (AHANs) et les
fractures causées par des chutes chez les personnes âgées (c.f. Chapitre III).

Antidiabétiques et cancer de la vessie

Cette étude cherche à reproduire les résultats obtenus dans [Neu+12] avec une
cohorte similaire. En utilisant moins d’hypothèses, des intervalles de trente jours et
des périodes de risque de𝐾 = 24 intervalles après le début des expositions, ConvSCCS
estime les courbes présentées dans la Figure A.2.3.
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Fig. A.2.3 – Courbes de risques relatifs des antidiabétiques pour le cancer de la vessie.
Les courbes bleu foncé représentent les courbes de risques relatifs estimées 𝑘 =
0,… , 23mois après le début d’une exposition. Les bandes bleu clair représentent
les intervalles de confiance à 95 % estimés par bootstrap paramétrique, avec 200
tirages.
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Comme illustré dans la Figure A.2.3, ConvSCCS détecte l’association forte entre le
pioglitazone et le cancer de la vessie. La courbe de risque relative associée augmente
avec le temps, avec un risque relatif supérieur à un de 6 à 24 mois après le début de
l’exposition. Les valeurs ainsi que les points de rupture de cette courbe correspondent
aux résultats obtenus dans [Neu+12] (c.f. Chapitre II). Les résultats concernant les
autres antidiabétiques ne sont pas directement comparables, car [Neu+12] n’estime
pas l’évolution des risques associés avec le temps. L’analyse conduite dans [Neu+12]
ne détecte pas de risques significatifs pour ces molécules. ConvSCCS ne détecte
pas d’effet significatif pour le rosiglitazone. Le risque associé aux autres molécules
n’est pas significatif pour la plupart des périodes après le début d’exposition. En
revanche, les courbes associées aux sulfonylurées et à la catégorie “autres” présentent
un risque relatif positif des périodes 9 à 11, de même que l’insuline pour les périodes
0 à 5 après début d’exposition. La forme de ces trois courbes suggère la présence
éventuelle de colinéarité des variables d’exposition associées. En effet, l’ordre de
grandeur de ces courbes d’incidence est soit quasiment identique, soit opposé pour
des intervalles donnés. Tandis que ces résultats ne sont pas parfaitement les mêmes
que ceux de [Neu+12], ils montrent que ConvSCCS permet de détecter un EIM
même lorsque les conditions d’application ne sont pas idéales. En effet, dans cette
application, les dates de début d’exposition sont soumises à un aléa, certaines variables
pouvant avoir un effet endogène quand d’autres semblent colinéaires (c.f. Chapitre II
pour plus de détails). Notre méthode permet d’étudier un grand nombre de molécules
simultanément, puisqu’elle peut être utilisée sans nécessiter de travail complexe de
préparation des données pour formuler les expositions.

Contribution : Recherche d’associations entre les AHANs et le risque de
fracture chez les personnes âgées.

Les associations entre certains AHANs et le risque de fracture chez les personnes
âgées ont déjà été étudiées à différents niveaux de détails par plusieurs études cli-
niques et observationnelles. Les fractures chez les personnes âgées sont associées à
une augmentation du risque de mortalité et sont à ce titre un sujet majeur en santé
publique [Dea+10 ; Vri+18]. Ces fractures peuvent être causées par une perte de den-
sité osseuse ou une instabilité posturale [All+05], qui peuvent toutes deux résulter
d’une exposition à certains AHANs. Plusieurs méta-analyses, telles que [Sep+18a]
ou [Woo+09] ont souligné la difficulté d’établir une cartographie précise des asso-
ciations entre le risque de fractures et ces molécules. En effet, la plupart des études
existantes se limitent à quelques molécules limitant ainsi les comparaisons de risque.
Afin d’améliorer l’état des connaissances sur le sujet, [Sep+18a] suggère l’étude lon-
gitudinale de ces groupes pharmacologiques à l’échelle des molécules, ce qui est
l’objectif de notre analyse.
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Le design de cette étude utilise une cohorte de nouveaux utilisateurs5 de plus de 65
ans. Les détails sur la construction de cette cohorte sont précisés dans le Chapitre III.

Deux périodes de risque ont été associées aux expositions aux AHANs. Une
période de préexposition permet de détecter un risque lié au contexte de l’exposition,
et une période post-exposition permet de quantifier l’évolution du risque après le
début du traitement (c.f. Figure A.2.4). L’utilisation de périodes de préexposition
n’est pas nouvelle et est souvent combinée à l’utilisation de modèles flexibles [NN19 ;
Pra+11 ; Req+20]. L’identification des évènements de fracture a été réalisée selon la
méthode présentée dans [Bou+20]. Le Chapitre III fournit des détails additionnels
sur le calcul des expositions et des fractures.

Drug purchase Drug exposure Slack period Pre-exposure

t0 t0 + 30 t1 t0 + 30 t2

(a)

t0 t1 t2t0 + 45 t1 + 45

(b)

t0 − 14 t0 t1 t1 + 30 t2 − 14 t2

(c)

Fig. A.2.4 – Calcul des expositions aux AHANs. Les expositions sont supposées avoir
une durée de 30 jours (90 jours pour les délivrances en gros conditionnement)
après la date de délivrance du médicament (i). Une période tampon est ajoutée
(ii) à chaque exposition pour tenir compte d’irrégularités dans les dates d’achats
des traitements au long cours. Les expositions qui se superposent à d’autres
expositions ou aux périodes tampons d’autres expositions sont assimilées à
l’exposition initiale (iii). Enfin, une période de préexposition de 14 jours est
ajoutée avant la date de début d’exposition (iii).

Interprétation des courbes de risques relatifs. Les courbes de risques relatifs
(CRRs) des préexpositions sont utiles pour la détection de biais spécifiques aux
parcours de soins des patients. Une CRR > 1 suggère la présence d’un biais par
indication, c.-à-d. lorsque la prescription de la molécule est déclenchée par une
indication pré-existante, liée à la fracture. À l’inverse, une CRR < 1 peut indiquer
que le patient se trouve dans un environnement protecteur. Par exemple, un patient
déjà hospitalisé a probablement moins de risque de subir une fracture qu’un patient
non-hospitalisé. Ces deux effets peuvent être simultanés. Ce phénomène est discuté
plus amplement dans le Chapitre III. Ainsi, bien que les CRR de préexposition ne
suppriment pas les biais liés à des parcours spécifiques, elles permettent de mettre

5Les nouveaux utilisateurs sont les patients non exposés aux AHANs au moment du début de
l’étude.
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en perspective le reste des résultats obtenus. Cette information additionnelle peut
notamment se révéler utile lors de la production d’études confirmatoires.

Résultats. L’estimation de risques dynamiques a produit un grand nombre de
CRRs, fournissant des résultats plus informatifs que des estimations ponctuelles ou
non longtidunales. Cette approche favorise notamment l’interprétation humaine de
résultats qui condensent un large volume de données, en lieu et place d’un système
d’alerte complètement automatisé.

De manière générale, les résultats obtenus sont cohérents avec les méta-analyses
(Chapitre III). On ne citera ici que les résultats sur les antidépresseurs (Figure A.2.5)
à titre d’exemple.

Les CRRs des antidépresseurs sont cohérentes avec les résultats présentés dans
les revues de littérature [Sep+18a ; Ves09]. En effet, l’augmentation du risque relatif
après une exposition aux tricycliques est plus faible que celle qui est observée dans
le cas des inhibiteurs sélectifs de la recapture de la sérotonine, des inhibiteurs de la
recapture de la sérotonine et de la noradrénaline, et des tétracycliques. On observe
également des CRRs décroissantes pour le citalopram, l’escitalopram, la sertraline, la
miansérine, la mirtazapine et la venlaflaxine, ce qui est cohérent avec [Hub+03]. La
CRR associée à une préexposition à l’amitriptyline est supérieure à 1, ce qui suggère
un biais par indication. Ce biais peut notamment résulter de l’utilisation de cette
molécule dans le cas de douleurs neuropathiques, notamment après une atteinte
de la mœlle épinière [AJ17]. Les CRRs de préexposition des autres molécules sont
soit non-significatives, soit inférieures à 1. Dans ce dernier cas, ce résultat suggère
d’éventuelles prescriptions en sortie d’hôpital. Cette observation est cohérente avec
l’utilisation des inhibiteurs sélectifs de la recapture de la sérotonine [Mor+13] et de
la mirtazapine [Hon+07] après un infarctus du myocarde.

A.2.5 Discussion

Cette approche mêlant l’utilisation d’un algorithme flexible à grande échelle
et une construction de cohorte méticuleuse permet de produire rapidement des
résultats riches en information, qui révèlent des associations tout en précisant leur
contexte. Ce modèle ne nécessite pas un grand travail d’ajustement, peut analyser de
grandes populations et de nombreuses molécules et fournit des résultats facilement
interprétables. La construction de cohorte et la définition des expositions permettent
de contrôler certains des biais posés par l’utilisation de données SNDS sans pour
autant injecter d’hypothèses trop restrictives. L’étude des CRRs fournit de nombreuses
informations sur les parcours de soins, permettant une identification rapide de la
présence de certains biais. Bien que notre approche soit robuste à certains types de
biais et permette la détection d’autres biais, les résultats doivent néanmoins être
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Fig. A.2.5 – Courbes de risques relatifs (CRRs) avant et après une exposition à un
antidépresseur. Le temps de début d’exposition est représenté par la barre noire
verticale en 𝑥 = 0. Les lignes bleues (resp. orange) représentent les CRRs après
(resp. avant) exposition, entourées par des bandes qui représentent des inter-
valles de confiances à 95 %. Les trois premières lignes de cette figure représentent
les CRRs des antidépresseurs tricycliques. Les lignes 4 et 5 représentent les in-
hibiteurs sélectifs de la recapture de la sérotonine, suivis des inhibiteurs de la
recapture de la sérotonine et de la noradrénaline en ligne 7.
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interprétés avec précaution. Cette interprétation suppose notamment la coopération
entre des experts médicaux et des statisticiens. Une analyse de sensibilité, telle
que celle présentée en annexes du Chapitre III, permet notamment de susciter des
réflexions intéressantes tant sur les EIMs eux-mêmes que sur leur expression dans
les BDOMs. Cette approche permettant de détecter des risques d’EIMs sur des jeux
de données de grande taille tout en les contextualisant semble à même de générer
des alertes et de faciliter d’éventuelles études confirmatoires.

A.3 Apprentissage de représentations en santé
En santé, les labels sont souvent rares (p. ex. maladies rares, c.f. [MH20]) ou

coûteux [Shi+18] à obtenir. Même en utilisant de grandes bases de données telles
que le SNDS, la population pertinente pour conduire une analyse peut être très petite.
Par exemple, la cohorte de 1,4 million de patients diabétiques utilisée plus haut ne
contient que 1699 cas de cancers de la vessie (c.f. Table II.E.1).

La taille des échantillons peut compromettre la qualité des estimations, d’autant
plus lorsque la taille des modèles augmente [RJ+91]. L’apprentissage multitâche
peut permettre de contourner ce problème lorsque plusieurs tâches peuvent être ac-
complies à partir d’une représentation partagée. En effet, l’apprentissage de plusieurs
tâches permet d’augmenter la quantité de données labellisées disponibles. De plus,
l’apprentissage de chaque tâche fournit un point de vue légèrement différent du phé-
nomène étudié, ce qui peut produire des représentations plus robustes [Car97]. Ainsi,
un modèle multitâche peut se généraliser plus facilement qu’un modèle équivalent
qui apprendrait tâche par tâche.

Toutefois, les modèles tels que ConvSCCS ne peuvent pas être adaptés à ce genre
de contexte. En effet, ConvSCCS nécessite des hypothèses qui peuvent entrer en
conflit selon les tâches effectuées. Par exemple, il peut être nécessaire de suppo-
ser pour une des tâches que les expositions sont finies et peuvent se répéter, alors
que pour une autre tâche, elles soient infinies et débutent à la première prise de
médicament. De telles hypothèses sont nécessaires pour contrôler certains biais (p.
ex. erreurs de codage, bruit dans l’horodatage des évènements) et faciliter l’estima-
tion des paramètres du modèle lorsque les échantillons sont petits. Cependant, ils
limitent d’autant l’adoption d’approches telles que l’apprentissage multitâche, qui né-
cessite des modèles extrêmement flexibles capables d’apprendre des représentations
performantes et polyvalentes.

Depuis quelques années, des modèles d’apprentissage profond tels que les réseaux
de neurones récurrents (RNNs) ont permis des avancées dans l’accomplissement
de certaines tâches en santé. Ces modèles peuvent tirer parti de l’apprentissage
multitâche [Har+19]. Contrairement aux approches précédentes, les modèles d’ap-
prentissage profond permettent d’exploiter des données quasiment brutes, et ne
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nécessitent peu ou pas d’hypothèses concernant des concepts tels que les expositions.
Ces algorithmes reposent sur l’empilement de petits modèles différentiables

(couches). Idéalement, chaque couche apprend progressivement à extraire des repré-
sentations de plus haut niveau à partir des représentations obtenues par la couche
précédente. Bien que ces algorithmes nécessitent moins d’hypothèses et de travail de
préparation des données, ils ont besoin de grands jeux de données et sont souvent
difficiles à interpréter [Cha+17]. Par ailleurs, l’entraînement d’un modèle d’appren-
tissage profond se traduit généralement par un problème non convexe. Les méthodes
d’optimisation utilisées doivent ainsi être adaptées à ce contexte et ne parviennent
qu’à atteindre des optima locaux [LBH15; Rud16].

Par ailleurs, si flexible qu’il soit, un modèle multitâche doit être réappris dès lors
qu’une nouvelle tâche apparaît. Le préentraînement non supervisé peut être une
solution dans ce cas [Rad+19]. En effet, il ne nécessite pas de labellisation manuelle,
et permet donc d’utiliser l’ensemble des données présentes dans les bases de données
observationnelles. Le préentraînement est une forme d’apprentissage par transfert6,
qui consiste à entraîner un modèle sur une tâche prétexte, conçu pour favoriser
l’apprentissage de représentations utiles. Ici, “utile” signifie que cette représentation
doit pouvoir être adaptée à la résolution de nombreuses autres tâches inconnues lors
du préentraînement. L’utilisation d’un modèle préentraîné sur une autre tâche se fait
par exemple en ajoutant une ou plusieurs couches spécifiques à cette tâche. Grâce
aux représentations issues du préentraînement, ce modèle apprendra plus vite et
nécessitera moins de données labellisées qu’un modèle non-préentraîné.

Le préentraînement non supervisé a constitué une composante essentielle des pro-
grès récents en Traitement Automatique du Langage (TAL) [Dev+18 ; Rad+19], mais
aussi en analyse des séries temporelles [FDJ19] et en vision par ordinateur [Che+20 ;
DZ17 ; OLV18].

Un parallèle est souvent fait entre les données de parcours de soins et les données
textuelles [Aya+20 ; SRB19]. En effet, les deux peuvent être représentés comme une
suite de symboles qui correspondent aux mots en TAL et aux codes administratifs
médicaux en santé.

L’apprentissage auto supervisé est un type d’apprentissage non supervisé récent,
qui consiste à préentraîner un modèle en utilisant une tâche prétexte qui repose sur
une labellisation automatisée des données. BERT [Dev+18] (Bidirectional Encoder
Representations from Transformers) en est un exemple célèbre, qui a donné lieu à de
nombreux travaux [Dai+19 ; Lan+19 ; Liu+19 ; Yan+19]. Le travail qui suit essaie
d’adapter cette approche aux EHRs.

6L’apprentissage par transfert vise à résoudre un problème en utilisant les connaissances acquises
lors de la résolution d’un autre problème.
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A.3.1 Apprentissage profond en santé.

Tandis que le texte et les parcours de patients sont une suite de codes avec un
vocabulaire de grande dimension, certaines caractéristiques des données de santé ne
sont pas présentes en TAL :

(i) L’ordre des symboles dans un texte est évident, alors que celui des symboles
dans un parcours patient dépend de la pratiquemédicale qui peut différer selon
les établissements. Les relations temporelles entre ces codes sont cruciales en
santé, alors que seul compte l’ordre en TAL.

(ii) Comme abordé précédemment, les EHRs ne sont pas des enregistrements
directs de la physiologie des patients mais plutôt une compilation de leurs
interactions avec le système de soins. Cela peut introduire des boucles de
rétroaction et inverser les dynamiques [HA13].

(iii) Les dépendances des évènements contenus dans les EHRs peuvent être beau-
coup plus étendues que dans un texte. Par exemple, un diagnostic de diabète
est un facteur de risque important qui doit être pris en compte tout au long de
la vie d’un patient [Shi+18].

Formalisation. On considère les EHRs comme une suite d’évènements datés
𝑧𝑖 = (𝑥𝑖, 𝑡𝑖), où 𝑥𝑖 ∈ ℝ𝑑 sont les codes médicaux et 𝑡𝑖 les dates. Les évènement
qui forment ces séquences sont d’abord vectorisés (embedded) afin de réduire leur
dimensionnalité. Dans ce travail, on représente les évènements par des vecteurs
denses de dimension 𝐷 ≪ 𝑑 correspondant à un code spécifique. Ces vecteurs sont
appris par le modèle. Les dates sont vectorisées à l’aide de plusieurs sinusoïdes
dilatées [Vas+17]. La représentation vectorielle de 𝑧𝑖 est noté 𝑒𝑖.

Encodage de séquence. Les tâches considérées dans cette section reposent sur
l’encodage évènement contenu dans un EHR, c.-à-d. la construction progressive
de représentations pour chacun de ces évènements. Ces représentations ont pour
but de permettre l’accomplissement de plusieurs tâches par la suite. Un élément
important du modèle est donc l’encodeur qui, à partir d’une suite d’évènements
vectorisés e = [𝑒1,… , 𝑒𝑛] où 𝑒𝑖 ∈ ℝ𝐷 pour 𝑖 = 1,… , 𝑛, produit une suite de repré-
sentations contextualisées (ou états cachés) de même taille. Plusieurs architectures
d’apprentissage profond décrites en introduction permettent d’accomplir cette tâche.
Elles consistent en plusieurs couches 𝑙 = 1,… , 𝐿, qui calculent des états cachés
h𝑙 = [ℎ𝑙1,… , ℎ𝑙𝑛] à partir des résultats des couches précédentes, h𝑙−1. La première
couche du modèle prend en entrée la suite d’embeddings h0 = e.
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Modèles d’attention. On s’intéressera ici principalement aux modèles d’attention
(définis dans le Chapitre IV). Ces modèles reposent uniquement sur des mécanismes
d’attention et ont été créés pour représenter des suites de symboles tout en exploitant
au maximum les capacités de calculs des cartes graphiques (GPUs). Ils ont été utili-
sés avec succès en TAL pour préentraîner de grands modèles performants tels que
BERT [Dev+18] ou GPT [Rad+19]. Alors que d’autres types de modèles tels que les
réseaux de neurones récurrents (recurrent neural network, RNNs) ou les réseaux de
neurones convolutif (convolutional neural network, CNNs), les modèles d’attention
ne déduisent pas l’ordre des éléments d’une suite de leur position réelle, mais grâce à
une représentation vectorielle de leur index.

Contrairement aux textes, les données d’EHR sont datées. Par ailleurs, ces suites
ne sont pas échantillonnées avec un pas régulier comme c’est souvent le cas en analyse
des séries temporelles. La gestion de l’ordre par les modèles d’attention semble donc
être un choix naturel pour pouvoir utiliser des données d’EHR sans procéder à des
techniques d’imputation qui sont nécessaires avec les RNNs et les CNNs [Har+19 ;
Tan+20]. L’utilisation de données imputées peut être très coûteuses en mémoire et
en calcul. Cet aspect ne doit pas être négligé pour le préentraînement d’un modèle
sur de grands volumes de données.

Plusieurs types de modèles d’attention sont présentés en introduction et dans le
Chapitre IV. On s’intéresse notamment au Transformer [Vas+17] qui est un modèle
d’attention à l’origine de nombreux progrès en TAL, ainsi qu’au Linear Transformer,
qui est une adaptationmoins coûteuse en calcul et enmémoire. Par ailleurs, lemodèle
d’attention sur des graphes (Graph Attention Network, ou GAT) est aussi utilisé dans
ce qui suit. Les définitions de ces modèles ne seront pas rappelées ici.

A.3.2 Stratégies de préentraînement.

Masked Language Model. Masked Language Model (MLM) a été conçu pour ap-
prendre des représentations en TAL [Dev+18]. Cette stratégie utilise deux tâches
prétextes. La première consiste à sélectionner aléatoirement 15 % des symboles de
chaque séquence. Ces symboles sont ensuite soumis aux transformations suivantes :
80 % d’entre eux sont remplacés par un symbole [MASK], 10 % d’entre eux sont rem-
placés par un autre symbole sélectionné aléatoirement, et 10 % ne sont pas modifiés.
La tâche prétexte consiste à prédire quel était le code initial (avant transformation)
à partir du reste de la séquence de symboles. La seconde tâche consiste à prédire
la phrase suivante étant donné la phrase actuelle. Tandis que la première tâche est
adaptable aux EHRs, ce n’est pas le cas de la seconde étant donné que le concept de
“phrase” ne se transpose pas facilement aux données de soins.
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Triplet loss. L’entraînement avecTriplet loss consiste à prédire si une sous-séquence
appartient ou non à une séquence plus longue. Cette fonction de perte a été utili-
sée avec succès pour construire des représentations à l’aide d’un modèle causal
non supervisé [FDJ19]. Un algorithme d’échantillonnage extrait des sous-séquences
𝑥ref (exemple de référence) et 𝑥pos (exemple positif) aléatoirement à partir d’une
séquence source 𝑦𝑖. Par ailleurs, 𝐾 séquences 𝑥neg (exemples négatifs) sont choisies
aléatoirement à partir d’autres séries temporelles 𝑦𝑗 où 𝑗 ≠ 𝑖. On cherche à ce que la
représentation de 𝑥ref soit proche de celle de 𝑥pos, tandis que la représentation de 𝑥ref
doit être distante ce celle de 𝑥neg. Cela se traduit par la minimisation de la fonction
de perte suivante (triplet loss) :

ℒtriplet = − log(𝜎(𝑓(𝑥ref, 𝜃)⊺𝑓(𝑥pos, 𝜃))) −
𝐾

∑
𝑘=1

log(𝜎(−𝑓(𝑥ref, 𝜃)⊺𝑓(𝑥neg𝑘 , 𝜃))),

où 𝜎 est une fonction sigmoïde et 𝑓(⋅, 𝜃) est un encodeur dont les paramètres 𝜃 sont
à apprendre.

Contrastive Predictive Coding. Contrastive Predictive Coding (CPC), apprend des
représentations en entraînant un modèle à prédire les représentations d’observations
“futures” à partir de représentations “passées” [OLV18]. Cette idée repose sur la maxi-
misation de l’information mutuelle entre les représentations encodées. Les auteurs
proposent d’encoder les symboles futurs 𝑥 et leur contexte 𝑐 en une représentation
compacte à l’aide d’un modèle non linéaire. Ces représentations sont conçues de
façon à préserver au mieux l’information mutuelle (IM) entre 𝑥 et 𝑐, définie comme

𝐼(𝑥; 𝑐) = ∑
𝑥,𝑐

𝑝(𝑥, 𝑐) log
𝑝(𝑥|𝑐)
𝑝(𝑥)

.

En maximisant cette information mutuelle, CPC apprend les variables latentes com-
munes à 𝑥 et 𝑐. Cette stratégie d’apprentissage est plus amplement détaillée en intro-
duction de cette thèse et dans le Chapitre IV.

Travaux similaires.

Comme évoqué précédemment, l’adaptation de l’état de l’art en TAL aux données
de santé administratives n’est pas triviale. Quelques travaux s’y sont toutefois essayé.

BEHRT [Li+20] développe des modèles préentraînés qui prédisent les diagnostics
des visites futures. Cette approche utilise une représentation vectorielle de la position
de chaque visite médicale ainsi qu’une couche spécifique à l’âge des patients pour
représenter la temporalité. Cependant, BERHT n’utilise que les données de diagnostic
et démographiques, ignorant ainsi d’autres informations médicales telles que les
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examens ou la consommation de médicaments, ce qui limite sa réutilisation pour
d’autres tâches. G-BERT [Sha+19] adapte MLM pour aligner des représentations de
diagnostics et de consommation de médicaments au sein d’une même visite. Ces
représentations sont utilisées pour prédire les traitements à partir des diagnostics
et inversement. Toutefois, ils n’utilisent pas la temporalité, ce qui empêche la réuti-
lisation de ces représentations pour des tâches de prévision. Med-BERT [Ras+20]
adapte BERT pour préentraîner des représentations sur des séquences plus longues
et des populations plus grandes que ce qui a été fait avec BEHRT et G-BERT. Ce
travail introduit une tâche prétexte qui consiste à prédire si les patients ont subi
une hospitalisation longue durant leur historique de soins. Cette tâche remplace la
prédiction de phrase suivante utilisée dans BERT. Toutefois, Med-BERT n’utilise que
les informations de diagnostic et n’exploite pas le temps, mais uniquement l’ordre
des visites, ce qui limite son champ d’application. Graph Convolutional Transformer
décrit dans [Cho+20] représente les visites comme des graphes, dont les arêtes sont
estimées à l’aide d’un modèle d’attention similaire à celui défini dans [Vas+17]. Ce
modèle d’attention est contraint afin de garantir un ordre entre les relations de plu-
sieurs types d’évènements. Par exemple, les symptômes causent les diagnostics et les
diagnostics causent les prescriptions. La représentation des visites est calculée à l’aide
de réseaux de neurones convolutifs sur les graphes ainsi estimés. Cette approche
suppose un niveau de détail qui est rarement atteint dans les données d’EHR, où des
données telles que les symptômes peuvent être absentes.

A.3.3 Contribution : comparaison de modèles d’attention et de
méthodes de préentraînement

Ce travail apporte de nouvelles contributions en évaluant plusieurs modèles
d’attention combinés à plusieurs stratégies de préentraînement pour l’apprentissage
non supervisé de représentations d’EHRs. Les modèles préentraînés sont ensuite
adaptés par l’ajout d’une couche spécifique pour accomplir différentes tâches. Les
expériences présentées ici ont utilisé les données librement accessibles MIMIC-
III [Joh+16], qui ont servi dans de nombreuses publications [Har+19 ; Shi+18 ;
Son+18]. Ces expériences ont été menées en utilisant les recommandations actuelles
en matière de sélection des hyperparamètres (c.f. Section IV.2.4).

Méthodologie

En plus des informations démographiques (p. ex. âge, genre), un EHR structuré
consiste, pour chaque patient, en une suite d’évènements médicaux tels que des
diagnostics, des délivrances de médicaments, des mesures physiologiques ou des
actes médicaux. Chaque évènement est horodaté avec une précision qui dépend de
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la base de données utilisée. Selon la taille de l’unité de temps, plusieurs évènements
peuvent survenir au même moment et partager le même horodatage.

Représentation chronologique et graphes. La représentation chronologique
d’un parcours de patient avec plusieurs types d’évènements est illustré Figure A.3.2A.
Alternativement, le même parcours peut être représenté par un graphe dirigé (Fi-
gure A.3.2C) où un ensemble de nœuds successifs représente les unités de temps
durant lesquelles au moins un évènement a lieu. Un autre ensemble de nœuds repré-
sente les évènements qui surviennent durant une unité de temps données. Les arêtes
du graphe correspondent aux associations structurelles entre les évènements, telles
que “prochaine unité de temps” ou “évènementmédical associé à une unité de temps”.
Les unités de temps sans évènements médicaux associés ne sont pas encodées.

Une représentation similaire a été décrite dans [Cho+18], et a inspiré d’autres
travaux tels que [Cho+20] et [Het+19]. La représentation utilisée dans ce travail est
similaire à la formulation de [Het+19]. En revanche, on modélise les suites d’évè-
nements à l’aide de modèles d’attention, tandis que [Het+19] utilise des processus
ponctuels. Le choix de cette représentation est guidé par le modèle d’attention sur
graphes décrit ci-dessous.

Architecture des modèles. Tous les modèles considérés dans cette section par-
tagent la même architecture globale, illustrée Figure 14. Cette architecture est basée
sur quatre éléments : un embedding, un encodeur, un pooler et une couche dense
qui dépend de la tâche à accomplir. L’entraînement du modèle a lieu en deux étapes :
l’encodeur est d’abord préentraîné de façon non supervisée en utilisant une tâche
prétexte, puis le modèle est ajusté à une tâche clinique de façon supervisée après
l’ajout d’une couche dense.

Embedding. Chaque évènement de l’EHR (c.f. FigureA.3.2A) correspond à un code
administratif et/ou des valeurs numériques. Les valeurs numériques sont d’abord
discrétisées en utilisant les déciles calculés sur l’échantillon d’entraînement. Chaque
modalité est ensuite représentée individuellement à l’aide d’un vecteur de faible
dimension (embedding) entraîné par le modèle. Les positions relatives de chaque
évènement par rapport au premier évènement sont encodées à l’aide d’une représen-
tation vectorielle fixe, basée sur un ensemble de sinusoïdes dilatées [Vas+17]. Ces
positions sont calculées comme la différence entre la date et l’heure de l’évènement
considéré et la date et l’heure du premier évènement de la séquence. Les représenta-
tions vectorielles de la modalité et de sa date sont ensuite sommées pour produire la
représentation de l’évènement. Enfin, la représentation vectorielle du symbole [CLS]
est jointe à la fin de la séquence.
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Fig. A.3.1 – Architecture globale du modèle. La représentation de l’EHR (c.f. Fi-
gure A.3.2) est utilisée en entrée du modèle. Une couche d’embedding construit
d’abord la représentation des symboles et des dates associées aux évènements.
Un mécanisme d’attention encode ensuite les évènements en fonction de leur
contexte. Puis, un pooler agrège les représentations obtenues si la tâche nécessite
une représentation globale de la séquence d’évènements. Enfin, une couche
dense sert à accomplir les prédictions qui correspondent à une tâche donnée.

De plus, les variables non longitudinales (telles le genre et l’âge) sont également
vectorisées et sommées en un seul vecteur. Ce vecteur est utilisé en entrée de l’enco-
deur, c.f. Figure A.3.1.

Encodeur. Un encodeur sert à encoder l’ensemble des évènements de l’EHR de
façon à produire une nouvelle séquence de même taille, dont les éléments sont re-
présentés en fonction du contexte sélectionné par le mécanisme d’attention. Les
variables statiques vectorisées sont ensuite ajoutées à chaque élément de cette nou-
velle séquence. Ce travail compare différents encodeurs basés sur des mécanismes
d’attention :

(i) Le Transformer [Vas+17], qui permet de construire la représentation des élé-
ments d’une séquence grâce à une succession de couches de self-attention
multi-têtes (multi-head self-attention – MSA).

(ii) Le Transformer linéaire [Wu+20], qui utilise une quantité de mémoire linéaire
(𝒪(𝑛)) en la longueur de la séquence (𝑛). Cela permet de traiter des séquences
beaucoup plus longues queTransformer classique, dont les besoins enmémoire
sont quadratiques (𝒪(𝑛2)).
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Fig. A.3.2 – Représentation des EHRs. Un EHR correspond à une séquence horo-
datée d’évènements médicaux (A). Cette séquence peut être représentée par
le graphe (B). Un nœud visite est créé à chaque unité de temps dans laquelle
au moins un évènement médical survient. Des nœuds évènements sont créés à
chaque fois qu’ils surviennent durant une visite. Les nœuds visite sont initiali-
sées en sommant l’embedding du symbole [visit] et l’embedding de la date de
visite. Les nœuds évènements sont initialisés avec l’embedding des modalités
correspondantes. En pratique, le graphe est implémenté suivant la représenta-
tion (C) afin d’économiser la mémoire. Pour une séquence donnée, les nœuds
évènements ne sont créés qu’une fois par modalité observée (nœuds évènement-
modalité). Chaque nœud visite dans lequel un évènement s’est produit est lié au
nœud évènement-modalité correspondant. Comme aucune arête n’est dirigée
vers les nœuds évènement-modalité, leur représentation n’est pas mise à jour
par les couches du modèle. Ainsi, cette représentation maintient la causalité
temporelle et ne donne pas lieu à une fuite d’information.
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(iii) Le Graph Attention Network (GAT) [Vel+17 ; Ye+19], dont le mécanisme d’at-
tention n’utilise pas lemécanisme de clé et de requête (key-query). Cet encodeur
utilise la représentation de graphe décrite dans la Figure A.3.2 C.

Ces encodeurs sont décrits en détail dans les annexes du Chapitre IV.
Pour tous ces encodeurs, les attentions sont contraintes de façon à respecter une

causalité temporelle : les représentations d’un évènement ne peuvent être mises à
jour qu’à partir des représentations de cet évènement et des évènements antérieurs.
Cette contrainte permet d’éviter les fuites de données des évènements futurs vers un
évènement présent.

Pooler. Comme expliqué dans la Section A.3.4 ci-dessous, deux types de tâches
supervisées sont considérées : (i) les tâches qui nécessitent une prédiction par élément
de la séquence encodée (p. ex. prédiction longitudinale du temps d’hospitalisation
restant) et (ii) les tâches qui prédisent un label pour l’ensemble de la séquence (p. ex.
prédiction du décès éventuel durant le séjour hospitalier). L’utilisation d’un pooler
n’est nécessaire que pour les tâches (ii). De façon similaire à [Dev+18], le pooler
utilise la représentation du symbole [CLS] pour représenter la séquence.

Préentraînement non supervisé

Comme résumé dans la Figure 15, les stratégies suivantes de préentraînement
non supervisé (décrites dans la Section A.3.2) ont été utilisées :

(i) Masked Language Modeling (MLM) [Dev+18],

(ii) Triplet Loss [FDJ19],

(iii) Contrastive Predictive Coding (CPC or InfoNCE) [Che+20 ; Sun+19].

Toutes les architectures ont été entraînées indépendamment pour chacune des stra-
tégies de préentraînement.

Ajustement supervisé, fonctions de perte et métriques

Toutes les combinaisons d’encodeurs et de stratégies de préentraînement ont
été évaluées sur leur capacité à accomplir plusieurs tâches cliniques supervisées
formalisées par [Har+19] et décrites dans la Section A.3.4 ci-dessous. Pour chaque
combinaison de modèle et de tâche supervisée, les stratégies d’ajustement décrites
ci-dessous ont été comparées :

(i) Ajustement de l’ensemble de l’architecture en utilisant la tâche supervisée, y
compris l’embedding et l’encodeur qui sont alors initialisés avec les poids appris
durant le préentraînement.
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Fig. A.3.3 – Stratégies de préentraînement et procédures d’évaluation. Les trois en-
codeurs sont d’abord préentraînés indépendamment suivant les trois stratégies
de préentraînement. Une couche dense correspondant à la tâche à accomplir
est ensuite ajoutée au modèle, ainsi qu’un pooler si nécessaire. Ces deux élé-
ments utilisent les représentations produites par l’encodeur pour effectuer les
prédictions nécessaires à la tâche. La couche dense peut être entraînée indépen-
damment de l’encodeur. Il est également possible d’entraîner de façon supervisée
l’ensemble du modèle (embedding et encodeur compris) pour améliorer sa spé-
cialisation sur une tâche donnée. Cet entraînement ne nécessite en général que
quelques itérations sur le jeu de données labellisé.

(ii) Ajustement de la couche dense et du pooler uniquement. Les poids de l’enco-
deur et de l’embedding sont fixés et correspondent aux valeurs apprises durant
le préentraînement.

(iii) Apprentissage intégralement supervisé, sans préentraînement de l’ensemble
de l’architecture, avec initialisation aléatoire des poids.

Selon les tâches supervisées, les fonctions de pertes et les métriques de perfor-
mance suivantes ont été utilisées : l’entropie croisée a été utilisée pour les problèmes
de classification binaire et multiclasse. Les métriques AUROC et AUPRC ont été
utilisées pour évaluer les tâches de classification binaire, tandis que le Kappa de
Cohen a été utilisé pour la classification multiclasse. Des précisions concernant la
sélection des hyperparamètres et l’entraînement des différentes architectures sont
données dans le Chapitre IV.
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A.3.4 Expériences
L’ensemble des expériences a été accompli à l’aide de la base de données MIMIC-

III, qui contient des résumés de séjour en soins intensifs pseudonymisés, collectés
ente 2001 et 2012 [Joh+16]. De façon similaire à [Har+19 ; Son+18], les expériences
se basent sur une cohorte de 33798 patients, pour un total de 42276 séjours en soins
intensifs. La sélection de population, des variables et des labels se base sur le code
publié par [Har+19] (c.f. Table IV.3.1 dans le Chapitre IV pour plus de détails). Les
ensembles d’entraînement, de validation et de test comptent respectivement 70 %,
15 % et 15 % des séjours en soins intensifs. Le tirage de ces échantillons correspond à
ceux utilisés par [Har+19]. Les séjours en soins intensifs comprenant moins de cinq
évènements ont été exclus.

Trois tâches de prédiction clinique tirées de [Har+19] et décrites ci-dessous ont
été utilisées :

(i) In-Hospital Mortality (IHM) : le label est une variable binaire qui indique si un
patient décède durant un séjour donné ou non. Cette tâche est traitée comme
un problème de classification binaire. Le taux de mortalité dans la cohorte est
d’environ 13 %.

(ii) Length-of-Stay (LOS) : le label représente la durée restante de séjour en soins in-
tensifs. Cette durée est divisée en dix catégories (≤ 1 jour ; 1; 2;… ; 7 jours, [1, 2)
semaines ; ≥ 2 semaines). Cette tâche est ainsi considérée comme un problème
de classification à 10 classes. La prédiction a lieu pour chaque évènement de la
séquence.

(iii) Phenotyping (PHE) : le label correspond à une des 25 pathologies retenues
par [Har+19]. Cette tâche est traitée comme un problème de classification : la
pathologie est prédite a posteriori, à partir de l’ensemble des évènements du
séjour en soins intensifs. Parmi les 25 pathologies considérées, 12 concernent
des insuffisances respiratoires ou cardiaques, 8 concernent des pathologies
chroniques telles que le diabète ou l’athérosclérose, et 5 sont des pathologies
“mixtes” telles que les infections du foie. Les séjours pouvant avoir plusieurs
phénotypes sont exclus [Har+19].

Résultats

Les combinaisons de modèles et de stratégies de préentraînement décrites dans la
Section A.3.3 ont été évaluées suivant leurs performances pour les tâches supervisées
décrites ci-dessus. Les métriques correspondantes ont été calculées sur l’échantillon
de test, et sont reportées dans la Table 1.

On remarque premièrement les performances décevantes de GAT pour chacune
des tâches, avec ou sans utilisation de stratégie de préentraînement. Augmenter le
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Tab. A.3.1 – Métriques de performance des différents modèles et stratégies de pré-
entraînement (lignes) pour les différentes tâches de prédiction (colonnes) sur
des données MIMIC-III. Ces métriques ont été calculées sur l’échantillon de
test défini dans [Har+19]. En raison de ses mauvaises performances, GAT n’a
pas été entraîné pour toutes les tâches et stratégies de préentraînement afin de
ne pas consommer des ressources de calcul inutilement. ∗ La tâche Length Of
Stay (LOS) décrite [Har+19] est légèrement différente de la tâche considérée
ici. Alors que [Har+19] prédit la durée de séjour restante (LOS) chaque heure,
les modèles d’attention présentés ici font une prédiction pour chaque nouvel
évènement médical. Cette différence s’explique par l’inutilité de l’imputation
avec l’utilisation des modèles d’attention. Ainsi, les métriques de performance
concernant cette tâche ne sont pas tout à fait comparables.

Encoder In-hospital mortality Length of Stay Phenotyping
AUC-PR/AUC-ROC Kappa AUC-ROC

Intégralement supervisé
LSTMmultitâche [Har+19] 0.533/0.870 0.450∗ 0.774
Transformer 0.394/0.809 0.535 0.736
Transformer linéaire 0.355/0.790 0.584 0.676
GAT 0.132/0.528 0.218 0.503

Pré-entraînement MLM
Transformer 0.409/0.817 0.554 0.749
Transformer linéaire 0.344/0.785 0.405 0.708
GAT 0.154/0.572 – –

Pré-entraînement Triplet Loss
Transformer 0.357/0.781 0.451 0.729
Transformer linéaire 0.330/0.774 0.577 0.686

Pré-entraînement CPC
Transformer 0.391/0.805 0.466 0.741
Transformer linéaire 0.333/0.770 0.521 0.675

nombre de visites passées qui peuvent servir à la mise à jour des représentations de
visite n’améliore pas cette performance. Comme l’agrégation d’évènements par visite
en utilisant une structure de graphe a produit de bons résultats dans [Cho+20], cette
mauvaise performance s’explique probablement par une formulation inadéquate
du mécanisme d’attention dans ce contexte. En effet, l’attention dans GAT utilise
uniquement l’information du nœud plutôt qu’un mécanisme de requête, clé, valeur
utilisé dans les Transformers. Au-delà des métriques de performances, l’utilisation
d’un graphe a été efficiente en termes de mémoire GPU, permettant de traiter des
séquences d’évènements plus longues qu’avec lesTransformers. Par ailleurs, il est plus
naturel d’implémenter une attention causale sur un graphe puisque cela ne nécessite
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pas de masquage ad hoc. Combiner l’utilisation d’un graphe avec un mécanisme
d’attention plus proche de ce qui est utilisé par les Transformers constitue une piste
de recherche intéressante, encouragée par les résultats prometteurs d’une stratégie
analogue utilisée en TAL [Ye+19].

Comme expliqué précédemment, le Transformer peine à traiter des séquences
longues en raison de sa complexité quadratique en la longueur des séquences. Dans
nos expériences, limiter la longueur des séquences pour satisfaire les contraintes de
mémoire des GPUs diminue la performance de ce modèle. L’utilisation du Transfor-
mer linéaire a permis d’utiliser des séquences plus longues, sans que cela se traduise
par une augmentation des performances par rapport au Transformer classique.

Lors de l’ajustement des modèles préentraînés aux tâches, l’ajustement consistant
à entraîner uniquement la couche dense additionnelle en laissant l’encodeur inchan-
gé a produit de moins bons résultats (non reportés) que l’ajustement dumodèle entier.
L’ajustement du modèle entier initialisé avec des poids préentraînés n’a nécessité
qu’entre 5 et 15 itérations sur les données d’entraînement pour atteindre de bonnes
performances, selon la tâche considérée. Le temps d’entraînement de chacun des
modèles et des stratégies de préentraînement a duré moins de cinq heures, à l’excep-
tion de MLM dont l’entraînement a parfois duré jusqu’à deux jours. L’utilisation du
préentraînement MLM améliore les scores du Transformer par rapport aux scores
obtenus par entraînement intégralement supervisé. En revanche, le préentraînement
par triplet loss et CPC n’a produit que des gains de performance marginaux. S’agissant
de la triplet loss, le tirage des triplets 𝑥ref, 𝑥pos, 𝑥neg peut être la cause de ce constat.
En effet, même un modèle très simple peut apprendre rapidement à distinguer 𝑥pos
de 𝑥neg si ces sous-séquences sont choisies totalement aléatoirement. Dans ce cas, la
triplet loss converge rapidement vers zéro, ralentissant grandement la mise à jour des
paramètres [Wu+17]. Adapter la stratégie d’échantillonage pourrait certainement
permettre d’améliorer les résultats obtenus par cette méthode.

Le préentraînement contrastif (CPC) n’a probablement pas révélé toutes ses
capacités. Des travaux récents en vision par ordinateur ont montré que l’utilisation
de techniques d’augmentation des données (data augmentation) est cruciale dans
la mise en œuvre de ce type de préentraînement [Che+20]. Le développement de
techniques d’augmentation des données de type EHR reste à notre connaissance un
problème de recherche ouvert qui pourrait déboucher sur des améliorations majeures
du préentraînement non-supervisé en santé.

Ce travail a été conçu de façon à pouvoir être mis en œuvre avec des données
observationnelles du type SNDS au lieu des EHRs. Tandis que plusieurs publications
utilisent des modèles d’apprentissage profond sur des EHRs, à notre connaissance
seul [Kab+19] utilise ce type de modèle sur des données de santé administratives.
Les BDOMs telles que le SNDS, de par leur taille et leur exhaustivité, pourraient
grandement tirer partie des stratégies de préentraînement non-supervisées. La pour-
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suite de ce travail sur ce type de données pourrait éventuellement déboucher sur des
innovations significatives en santé publique.
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Titre: Apprentissage automatique pour les bases de données de santé massives.

Mots clés: Bases de données observationelles massives, ETL, analyse longitudinale, effet indésirable
médicamenteux, pré-entrainement non-supervisé.

Résumé: Cette thèse développe des méthodes
innovantes exploitant des bases de données ob-
servationelles massives (BDOM) en santé, et plus
particulièrement le Système National des Données
de Santé (SNDS). Ces bases de données, à visée
comptable et non épidémiologique, enregistrent des
informations administratives qui accompagnent les
soins et leur facturation. L’identification et l’extraction
des historiques de soins nécessite ainsi des transfor-
mations coûteuses.
Le premier chapitre introduit SCALPEL3, une suite
logicielle open-source qui facilite l’extraction de con-
cepts médicaux et la manipulation de données de co-
horte. Ce logiciel tire partie du calcul distribué, de la
dénormalisation des données, et du stockage orienté
colonne des données. SCALPEL3 est maintenant
utilisée au sein de la Caisse Nationale de l’Assurance
Maladie, à la Direction de la Recherche, des Études,
de l’Évaluation et des Statistiques, et bientôt au sein
du Health Data Hub.
Les deux chapitres suivants se concentrent sur la
détection d’effets indésirable médicamenteux à par-
tir de données du SNDS. Le chapitre 2 élabore Con-

vSCCS, un modèle basé sur des processus de Pois-
son et des techniques de régularisation. Une convo-
lution entre des fonctions étagées et des évènements
ponctuels permet l’estimation de courbes de risque
longitudinales facilement interprétables. Ce modèle
ré-identifie correctement une association connue en-
tre un anti-diabétique et le cancer de la vessie à par-
tir d’évènements de remboursement de médicaments
et de diagnostiques. ConvSCCS est ensuite ap-
pliqué à la détection d’association entre l’utilisation
d’anxiolytiques, d’hypnotiques, d’antidépresseurs et
de neuroleptiques et le risque de fractures chez les
personnes âgées (Chapitre 3). Cette étude révèle
des structures temporelles inédites ainsi que des biais
spécifiques au SNDS.
Enfin, le chapitre 4 s’intéresse à la construction de
représentations génériques de parcours de soins.
De nombreuses expériences y évaluent plusieurs
types de modèles d’attention et de stratégies de pré-
entrainement. Bien que les résultats ne soient pas
encore satisfaisants, ce travail ouvre des pistes de
recherche intéressantes.

Title: Machine learning for large observational datasets in healthcare.

Keywords: Large observational databases, ETL, longitudinal analysis, adverse drug reaction, unsupervised
pre-training.

Abstract: This thesis develops innovative tools and
methods to leverage large observational databases
(LODs) in healthcare, with a focus on the Système
National des Données de Santé (SNDS), one of the
largest healthcare claims database. These databases
record administrative information supporting the care
and its billing. As SNDS data was not initially de-
signed for research but for accounting purposes,
identifying patients’ healthcare history requires costly
transformations.
The first chapter introduces SCALPEL3, an open-
source framework easing medical concept extraction
and cohort data manipulation, focusing on scalability
and reproducibility. SCALPEL3 relies on distributed
computing, data denormalization, and columnar stor-
age. It is now used at the agency collecting SNDS
data, at the French Ministry of Health, and soon at the
national Health Data Hub in France.
The following two chapters focus on adverse drug re-

actions detection using SNDS data. Chapter 2 in-
troduces ConvSCCS, a new model based on con-
ditional Poisson processes and penalization tech-
niques. Using a convolution between step functions
and temporal events, this model estimates readily in-
terpretable longitudinal risks. Applied to a cohort of
diabetic patients, it recovers a known association be-
tween a molecule and bladder cancer from times-
tamped sequences of drug reimbursements and di-
agnoses. In Chapter 3, the same model is used to
screen anxiolytic, hypnotic, antidepressant, and neu-
roleptic molecules for bone fracture risk among the el-
derly. This study reveals original patterns and SNDS-
specific biases.
Finally, Chapter 4 focuses on building reusable repre-
sentation for health data. Extensive experiments eval-
uate several deep attention models and pre-training
strategies. While the results are not yet satisfying, this
work opens exciting tracks for future research.
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