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"If you want to understand function, study structure"
F. Crick
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Thesis summary in English

All the cells in an organism, despite their wide distinct functions, have an identical
genome, which contains the information to produce all the necessary proteins. Dur-
ing the development, the identity and the function of the cells are established through
gene regulation, where specific genes are expressed in some cells and silenced in oth-
ers. In addition, the environment of the cells can induce changes in gene expression, as
response to stimuli and signals from external players. The regulation of the activity of
a given gene depends on certain important regions of the genome: the promoter and
the enhancers. The promoter is located in proximity of the transcription start site (TSS)
of the gene and is typically few hundred base-pairs long. It contains binding sites for
transcription factors (TFs) that recruit the RNA polymerase and the basal components
of the transcriptional machinery. Enhancers are gene-distal regulatory regions, since
they can be found up to some thousands of kilobases far from the gene, and play a
crucial role in the regulation of gene expression and in the nuclear organization of the
genome by promoting physical contacts between promoters and enhancers and the re-
cruitment of the transcriptional machinery. How these important regions get in contact
despite their great genomic distance, together with the entire three dimensional archi-
tecture of the DNA, have been deeply studied in the last decade. Some key concepts
about these studies are reported hereafter.

If we stretched the entire human DNA, we would obtain a linear length of about 2
meters. All this DNA is contained into a cell nucleus with a diameter of about 5µm.
These values provide an idea of how complex is the architecture of the DNA inside the
nucleus. Indeed, DNA is bound to proteins, called histones, which have the fundamen-
tal role of packaging the DNA in a more condensed manner. Together with the DNA,
histones form a reinforced complex, the so-called chromatin.

Chromosomes are the highest level of chromatin organization. Different organisms
show different number of chromosomes, and each chromosome can be present in a dif-
ferent number of copy (ploidy). The largest part of the eukaryotic organisms is diploid,
i.e. they present two homologous copies per chromosome. It has been observed that
each chromosome occupies a specific position in the nucleus, called chromosome terri-
tory (CT). Furthermore, chromatin can show two structural forms that are tightly linked
to gene regulation: euchromatin, rich of genes, more dispersed and less compacted,

4



and heterochromatin, much more condensed and closer to the nuclear envelope. Re-
markably, heterochromatin is usually less accessible to TFs and polymerase and conse-
quently transcriptionally silent compared to euchromatin. Finally, two genomic regions
that are at a great genomic distance can be physically close in the 3D space. This impor-
tant feature of the three dimensional structure of chromatin plays a fundamental role
in the interaction between enhancers and promoters and has been shown it has a direct
consequence on gene regulation.

In the last decade, new experimental approaches based on high-throughput se-
quencing have been developed in order to further investigate genome-wide the topo-
logical properties of chromatin and its impact on the regulation of transcription. These
approaches are based on the chromosome conformation capture (3C) technique, and
enable the estimation of the frequency of the interaction between different loci across
a cell population. Briefly, the four key steps of 3C-based techniques are as follows:
firstly, crosslinking of cells is performed, and the segments of chromatin that are physi-
cally close in space are linked by covalent bonds. Then, there is a fragmentation process
on the cross-linked chromatin, by using digestion enzymes. The generated fragments
are then ligated and form hybrid DNA molecules. Finally, a purification allows to de-
tect and analyze the pairwise interactions, that can be quantified. Hi-C experiments
are one of the most used 3C-based techniques. The results of the Hi-C experiments are
shown as matrices, where each entry Hij corresponds to a value that is proportional to
the frequency of interaction between the locus i and the locus j. To visualize the exper-
imental data, the matrices are presented as heatmaps, where the color represents the
frequency of interaction. In the standard Hi-C experiments, the values Hij represent
an average over a cell population, while recent work led to the single cell Hi-C maps
(scHi-C), where the matrices refers to a single cell, unmasking a significant variabil-
ity among the cells. By analyzing Hi-C data, some important chromatin features have
been discovered, concerning the 3D organization of chromatin in the cell nucleus, such
as chromatin loops and topologically associated domains (TADs). A chromatin loop
emerges when two regions of the same chromosome, but at a great genomic distance,
show a strong interaction. Looking at a heatmap, chromatin loops appear as isolated
points with a strong interaction, and they play a crucial role in gene regulation, linking
promoters and enhancers. Moreover, loops are conserved across different cell types
and correlate with the presence of CTCF proteins and with the boundaries of another,
important architectural feature, the topologically associated domains (TADs). Looking
at a Hi-C map, TADs are visually recognizable as squares of enriched contacts along
the diagonal, and they represent fundamental, isolated units along the genomic coor-
dinates. Practically, they are characterized by the fact that the regions inside a domain
show a strongly enriched interaction, while they interact much less with the regions
outside.

Several studies proposed a scenario where the mentioned three dimensional fea-
tures of chromatin in the cell nucleus and gene regulation are tightly associated and
reciprocally involved, besides the contact between promoters and enhancers. However,
the exact cause-consequence link is still unclear. This relationship is especially interest-
ing in the context of the cell-cycle. During mitosis, in fact, a dramatic reorganization
of the nucleus occurs: nuclear envelope is disassembled, chromatin is compacted and
mitotic chromosomes are formed. As a consequence, long-range interactions and TADs
are disrupted, most TFs and the basal transcriptional machinery are evicted from chro-
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matin and transcription is globally downregulated. To ensure the cell well-functioning
after division, transcription has to be re-initiated at the appropriate set of genes, once
mitosis is completed. Interestingly, Hi-C experiments on synchronized cell populations
have revealed the kinetic process by which different levels of chromatin structure are
reformed after mitosis. Moreover, recently live-imaging and biochemistry experiments
have shown that some TFs are capable of binding mitotic chromosomes. It is believed
that this phenomenon, known as mitotic bookmarking, helps maintaining cell identity
by propagating gene regulatory programs from mother to daughter cells. However, it
is still unclear how bookmarking may influence the precise kinetics of chromatin struc-
ture reorganization and transcription re-activation after mitosis.

In this thesis, we tried to uncover the existing link between the three-dimensional or-
ganization of chromatin and the regulation of the transcriptional machinery, by combin-
ing computational analyses and mathematical modeling of data from high-throughput
experiments, such as RNA-Seq and Hi-C. In particular, the aims of this research are to
reveal the key regulators responsible for the reactivation of the transcription exiting the
mitosis, and to infer the most important factors driving the structural reorganization of
the chromatin through the cell-cycle. Thereafter, the main points and results of this
study will be summarized.

Firstly, to study the hierarchical organization of the 3D structure of chromatin, we
adopted a graph-based approach to detect communities in networks. To do so, we mod-
eled chromatin as a network where nodes are chromatin regions and edges represent
physical contacts between regions determined by Hi-C data. Then, to detect chromatin
domains at different resolutions, we used the stability algorithm, which measures the
regions-quality as community structures, leveraging on the dynamical evolution of a
Markov process that takes place on the chromatin network across different time scales.
The detected communities were then called diffusion associated domains (DADs). In
this approach, the time represents a parameter which determines the resolution of the
detected domains, identifying different hierarchical levels of the chromatin structure.
This computational method was applied to published Hi-C data obtained at different
stages of Drosophila Melanogaster (Dmel) embryogenesis. Although recent literature
stated that the chromatin architecture of Dmel emerges with the onset of transcription
activation in the zygote, while prior to zygotic genome activation the cell nucleus is
mostly unstructured, by using our diffusion-like approach, we showed the presence of
a “backbone” of the structure in the earliest developmental stages, with almost 68%
of the three-dimensional architecture that is kept through the development. A similar
analyis was performed on a population of synchronized HeLa cells by mitotic arrest,
for which timing Hi-C datasets were obtained at different timepoints exiting mitosis,
showing a DADs conservation level of almost 66% between mitotic chromatin and latest
experimental timepoints.

These promising results suggested an early gene expression, and directed our re-
search to investigate transcription reactivation during and exiting mitosis. To do so, we
analyzed published data based on metabolic labeling of RNA (EU-RNA-Seq) of syn-
chronized population of Human Hepatoma cells HUH7. In this study, the authors
highlighted the presence of low levels of transcription during mitosis and the fact that
housekeeping genes and not cell-specific genes are activated earlier during the mitotic
exit. However, the study did not consider that mitotic-arrested cell populations pro-
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gressively de-synchronize after the block release, and therefore the reported measure-
ments are performed on mixture of cells at different internal cell-cycle times. We devel-
oped a mathematical model, assuming that after synchronization there is a stochastic
lag time until cells can start again the cell-cycle progression, and that there is a certain
average time tm to complete the mitosis. We introduced the concept of internal cell-cycle
time, defined as the effective cell-cycle time progression of every single cell, starting
once the lag time is over. By using our mathematical model, we were able to deconvolve
the expression of every gene given by the EU-RNA-Seq data to the internal cell-cycle
time, in order to solve the uncertainty due to the progressive de-synchronization of the
cell population. Moreover, using imaging data on the time evolution of the fraction
of mitotic cells observed after synchronization treatment release, we could fit the mean
and standard deviation of the distribution of lag times and the average time to complete
the mitosis, that we estimated to be, respectively, 3.43, 0.74 and 67 minutes. That was
crucial to individuate clusters of earlier activated genes, and to divide genes in groups
based on their first activation peak of expression.

Another main goal of the research project was to find the key factors determining
the expression kinetics. To do so, we developed a linear model assuming that the EU-
RNA-Seq expression of genes at a given time point of the cell-cycle progression is a
linear combination of the activities of all the TFs that can bind on their promoters. By
knowing the deconvolved gene expression and integrating data on transcription fac-
tors motif affinities, we calculated the activity of every expressed TF. This has the major
advantage of describing the problem of the reactivation with much less parameters,
since we passed from the analysis of about 12000 genes to only about 330 TFs. More-
over, this analysis allowed to divide the TFs in groups according to the importance
of their activity over the internal cell-cycle time, identifying key factors that are early
active with respect to the others and that may play a crucial role in the transcription
re-activation during and exiting mitosis. In addition, further analyses were performed
to compare our results with the behavior of TFs that have been proposed as candidates
for bookmarking activity. Interestingly, we did not see any correlation between known
bookmarking factors as FOXA1 and the speed at which their target genes are reacti-
vated. However, we identified around 60 TFs that are highly active during mitosis and
represent new candidates of mitotic bookmarking factors. This surprising result leads
to wonder what is the real purpose of the bookmarking, that apparently is not always
directly involved in the expression of genes. Among the hypotheses, the role of the
mitotic bookmarking could be structural, with some TFs binding the mitotic DNA to
keep the chromatin open and accessible to other factors and to the RNA polymerase,
in order to make possible the re-initiation of the transcription starting from the latest
stages of the mitosis.

Lastly, to further test the mutual relationship between gene regulation and 3D struc-
ture of chromatin in the nucleus, we applied the linear model mentioned above to infer
the transcription factors activity during formation and development of TAD bound-
aries. We used published time dependent Hi-C data on synchronized HeLa cells ob-
tained during mitotic exit and early interphase. TADs detected 11 hours after the release
of the mitotic arrest were considered as a reference, and a total of almost 4000 bound-
aries were found. The insulation score (IS) was used as a metric for the boundaries
strength, and it was calculated at each earlier experimental timepoint in correspon-
dence of the position of the reference boundaries. By knowing the IS and integrating
data on transcription factors motif affinities on the boundaries, we inferred the activity
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of almost 400 TFs. Thanks to this analysis we could identify new TFs that may play an
important role in the formation of TADs after mitosis.

In conclusion, we developed a computational method that allows to detect commu-
nities in the chromatin with a network-based approach, by using an algorithm where
the diffusion time plays a crucial role as a parameter determining the resolution of
the detected chromatin domains, allowing to reveal different hierarchical levels of the
three-dimensional chromatin structure. Furthermore, our studies provided a linear
mathematical model to sort the TFs according to their importance on the reactivation
of post-mitotic transcription, as well as find clusters of TFs that show similar activity
dynamics over the cell-cycle. By applying our model to RNA-Seq data, we did not see
any correlation between known bookmarking factors and the speed at which their tar-
get genes are reactivated. However, we identified around 60 TFs that are highly active
during mitosis and represent new candidates of mitotic bookmarking factors.
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Thesis summary in French

Toutes les cellules d’un organisme, en dépit de leurs fonctions très distinctes, ont
un génome identique qui contient les informations nécessaires pour produire les
protéines. Au cours du développement, l’identité et la fonction des cellules sont
établies par la régulation des gènes, où des gènes spécifiques sont exprimés dans
certaines cellules et inactivés dans d’autres. En outre, l’environnement des cellules
peut induire des changements dans l’expression des gènes, en réponse à des stimuli
et des signaux provenant de facteurs externes. La régulation de l’activité d’un gène
donné dépend de certaines régions importantes du génome : le promoteur et les
amplificateurs (enhancers). Le promoteur est situé à proximité du site d’initiation de
la transcription (en anglais, transcription start site, TSS) du gène et est généralement
long de quelques centaines de paires de bases. Il contient des sites de liaison pour
les facteurs de transcription (FT) qui recrutent l’ARN polymérase et les composants
basaux de la machinerie transcriptionnelle. Les amplificateurs sont des régions
régulatrices distales du gène, puisqu’ils peuvent se trouver jusqu’à plusieurs milliers
de kilobases du gène. Ils jouent un rôle crucial dans la régulation de l’expression des
gènes et dans l’organisation nucléaire du génome en favorisant les contacts physiques
entre les promoteurs et les amplificateurs, ainsi que le recrutement de la machinerie
transcriptionnelle. La façon dont ces régions entrent en contact malgré les grandes
distances génomiques qui les séparent, ainsi que toute l’architecture tridimensionnelle
de l’ADN, ont été étudiées en profondeur au cours de la dernière décennie. Certains
concepts clés de ces études sont présentés ci-après.

Si nous étirions l’ADN humain dans son intégralité, nous obtiendrions une longueur
linéaire d’environ 2 mètres. Tout cet ADN est contenu dans un noyau de cellule d’un di-
amètre d’environ 5µm. Ces valeurs donnent une idée de la complexité de l’architecture
de l’ADN à l’intérieur du noyau. En effet, l’ADN est lié à des protéines, appelées hi-
stones, qui ont le rôle fondamental de compacter l’ADN de manière plus condensée.
Avec l’ADN, les histones forment un complexe renforcé : la chromatine.

Les chromosomes sont le plus haut niveau d’organisation de la chromatine. Dif-
férents organismes présentent un nombre différent de chromosomes, et chaque chro-
mosome peut être présent dans un nombre différent de copies (ploïdie). La plus grande
partie des organismes eucaryotes est diploïde, c’est-à-dire qu’ils présentent deux copies
homologues par chromosome. Il a été observé que chaque chromosome occupe une
position spécifique dans le noyau, appelée territoire chromosomique (TC). De plus,
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la chromatine peut présenter deux formes structurelles étroitement liées à la régula-
tion des gènes: l’euchromatine, riche en gènes, plus dispersée et moins compactée,
et l’hétérochromatine, beaucoup plus condensée et plus proche de l’enveloppe nu-
cléaire. Il est remarquable que l’hétérochromatine soit généralement moins accessible
aux FT et à la polymérase et, par conséquent, moins active sur le plan de la transcription
que l’euchromatine. Enfin, deux régions génomiques qui sont à une grande distance
génomique, peuvent être physiquement proches dans l’espace 3D. Cette caractéristique
importante de la structure tridimensionnelle de la chromatine joue un rôle fondamen-
tal dans l’interaction entre les activateurs et les promoteurs et il a été démontré qu’elle
a une conséquence directe sur la régulation des gènes.

Au cours de la dernière décennie, de nouvelles approches expérimentales basées
sur le séquençage à haut débit (en anglais, next generation sequencing, NGS) ont été
développées afin d’étudier plus en détail les propriétés topologiques de la chromatine
à l’échelle du génome et son impact sur la régulation de la transcription. Ces approches
sont basées sur la technique de capture de la conformation chromosomique (3C) et per-
mettent d’estimer la fréquence de l’interaction entre différents loci dans une popula-
tion cellulaire. En bref, les quatre étapes clés des techniques basées sur la 3C sont les
suivantes: tout d’abord, la réticulation des cellules (crosslinking) est effectuée, et les
segments de chromatine qui sont physiquement proches dans l’espace sont liés par des
liaisons covalentes. Ensuite, il y a un processus de fragmentation sur la chromatine
réticulée, en utilisant des enzymes de digestion. Les fragments générés sont ensuite
ligaturés et forment des molécules d’ADN hybrides. Enfin, une purification permet de
détecter et d’analyser les interactions par paires, qui peuvent être quantifiées.

Les expériences Hi-C sont l’une des techniques les plus utilisées basées sur le 3C.
Les résultats des expériences Hi-C sont présentés sous forme de matrices, où chaque
entrée Hij correspond à une valeur qui est proportionnelle à la fréquence d’interaction
entre le locus i et le locus j. Pour visualiser les données expérimentales, les matrices
sont présentées sous forme de cartes de chaleur (heatmaps), où la couleur représente la
fréquence d’interaction. Dans les expériences Hi-C standard, les valeurs Hij représen-
tent une moyenne effectuée sur une population de cellules, alors que des travaux ré-
cents ont permis l’élaboration de cartes Hi-C à cellule unique (en anglais, single-cell
Hi-C, scHi-C), où les matrices permettent d’effectuer ces mesures sur une seule cel-
lule. Ces dernières ont permis de mettre en évidence une variabilité significative en-
tre les cellules. En analysant les données Hi-C, certaines caractéristiques importantes
de la chromatine ont été découvertes, notamment sur son organisation tridimension-
nelle qui présente des boucles (chromatin loops) et des domaines topologiquement as-
sociés (en anglais, Topologically Associated Domains, TAD). Une boucle de chromatine
émerge lorsque deux régions du même chromosome, séparées par une grande distance
génomique, présentent une forte interaction. Sur une carte de chaleur, les boucles de
chromatine apparaissent comme des points isolés montrant une forte interaction. Elles
jouent un rôle crucial dans la régulation des gènes en liant les promoteurs et les am-
plificateurs. De plus, les boucles sont conservées dans différents types de cellules. Ces
sites présentent le plus souvent un enrichissement pour la protéine CTCF et se retrou-
vent près des limites des domaines topologiquement associés (TAD). En regardant une
carte de chaleur Hi-C, les TAD sont visuellement reconnaissables comme des carrés de
contacts enrichis le long de la diagonale. Ils représentent des unités fondamentales,
isolées le long des coordonnées génomiques. Concrètement, ils se caractérisent par le
fait que les régions à l’intérieur d’un domaine montrent une interaction fortement en-
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richie, alors qu’elles interagissent beaucoup moins avec les régions à l’extérieur.
Outre les contacts entre les promoteurs et les activateurs, plusieurs études ont pro-

posé un scénario dans lequel les caractéristiques tridimensionnelles de la chromatine
dans le noyau cellulaire et la régulation des gènes sont étroitement associées et récipro-
quement impliquées. Toutefois, les relations de cause à effet ne sont pas encore très
claires. Cette relation est particulièrement intéressante dans le contexte du cycle cellu-
laire. En effet, au cours de la mitose, une réorganisation radicale du noyau se produit
: l’enveloppe nucléaire est désassemblée, la chromatine est compactée et des chromo-
somes mitotiques sont formés. En conséquence, les interactions à longue distance et
les TAD sont perturbés, la plupart des FT et la machinerie de transcription basale sont
expulsées de la chromatine et la transcription est globalement régulée à la baisse. Pour
assurer le bon fonctionnement de la cellule après la division, la transcription doit être
relancée au niveau de l’ensemble des gènes appropriés, une fois la mitose terminée.
Il est intéressant de noter que les expériences de Hi-C sur des populations de cellules
synchronisées ont révélé le processus cinétique par lequel différents niveaux de struc-
ture de la chromatine sont reformés après la mitose. De plus, des expériences récentes
d’imagerie et de biochimie ont montré que certains FT sont capables de se lier aux
chromosomes mitotiques. On pense que ce phénomène, connu sous le nom de mi-
totic bookmarking (mise en signet mitotique), aide à maintenir l’identité des cellules
en propageant les programmes de régulation des gènes des cellules mères aux cellules
filles. Cependant, on ne sait toujours pas comment le mitotic bookmarking peut influ-
encer la cinétique précise de la réorganisation de la structure de la chromatine et de la
réactivation de la transcription après la mitose.

Dans cette thèse, nous avons tenté de découvrir le lien existant entre l’organisation
tridimensionnelle de la chromatine et la régulation de la machinerie transcriptionnelle,
en combinant des analyses informatiques et la modélisation mathématique de données
provenant d’expériences à haut débit telles que le RNA-Seq et le Hi-C. Ces recherches
visent principalement à mettre en évidence les principaux régulateurs responsables de
la réactivation de la transcription à la sortie de la mitose, et à identifier les facteurs les
plus importants de la réorganisation structurelle de la chromatine dans le cycle cellu-
laire. Les principaux points et résultats de cette étude seront résumés ci-après.

Tout d’abord, afin d’étudier l’organisation hiérarchique de la structure 3D de la
chromatine, nous avons adopté une approche basée sur les graphes pour détecter les
régions les plus fortement connectées (appelées communautés) dans les réseaux. Pour
ce faire, nous avons modélisé la chromatine comme un réseau où les nœuds sont des
régions de chromatine et les liens représentent les contacts physiques entre les régions
déterminées par les données Hi-C. Ensuite, pour détecter les domaines de chromatine à
différentes résolutions, nous avons utilisé l’algorithme de stabilité (stability algorithm).
Cet algorithme évalue chaque région pour déterminer son appartenance éventuelle aux
communautés en s’appuyant sur l’évolution dynamique d’un processus de Markov qui
se déroule sur le réseau de chromatine à différentes échelles de temps. Les commu-
nautés détectées sont appelées domaines associés à la diffusion (en anglais, diffusion
associated domains, DAD). Dans cette approche, le temps représente un paramètre
qui détermine la résolution des domaines détectés, en identifiant les différents niveaux
hiérarchiques de la structure de la chromatine. Cette méthode de calcul a été appliquée
sur des données publiées de Hi-C obtenues à différents stades de l’embryogenèse de
la drosophile mélanogaster (Dmel). La littérature récente indique que l’architecture de
la chromatine de Dmel émerge avec le début de l’activation de la transcription dans le
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zygote, alors qu’avant l’activation du génome zygotique le noyau cellulaire est essen-
tiellement non structuré. Cependant, en utilisant notre approche de diffusion, nous
avons montré la présence d’un "squelette" de structure même à l’état mitotique, avec
près de 68% de l’architecture tridimensionnelle conservée tout au long du développe-
ment.

Une analyse similaire a été effectuée sur une population de cellules HeLa synchro-
nisées pendant la sortie mitotique, pour laquelle des ensembles de données Hi-C de
synchronisation ont été obtenus à différents points temporels sortant de la mitose, mon-
trant un niveau de conservation des DAD de près de 66% entre la chromatine mitotique
et les derniers points temporels expérimentaux.

Ces résultats prometteurs suggèrent une expression génétique précoce, et ont
orienté nos recherches vers l’étude de la réactivation de la transcription pendant
et après la mitose. Pour ce faire, nous avons analysé des données publiées, basées
sur le marquage métabolique de l’ARN (EU-RNA-Seq) d’une population de cellules
synchronisées d’hépatome humain HUH7. Dans cette étude, les auteurs ont souligné
la présence de faibles niveaux de transcription pendant la mitose et le fait que les gènes
domestiques (housekeeping genes) et non spécifiques aux cellules sont activés plus tôt
pendant la sortie de la mitose. Cependant, l’étude n’a pas pris en compte le fait que les
populations de cellules arrêtées en mitose se désynchronisent progressivement après
la reprise du cycle, et les mesures rapportées sont donc effectuées sur un mélange de
cellules à différents stades du cycle cellulaire interne. Nous avons développé un mod-
èle mathématique, en supposant qu’après la synchronisation, il y a un temps de latence
stochastique jusqu’à ce que les cellules puissent recommencer la progression du cycle
cellulaire, et qu’il y a un certain temps moyen tm pour terminer la mitose. Nous avons
introduit le concept de "temps de cycle cellulaire interne", défini comme la progression
effective du temps de cycle cellulaire de chaque cellule, commençant une fois que le
temps de latence est terminé. En utilisant notre modèle mathématique, nous avons pu
déconvoluer l’expression de chaque gène issue des données EU-RNA-Seq en fonction
du temps du cycle cellulaire interne, afin de résoudre l’incertitude due à la désyn-
chronisation progressive de la population cellulaire. De plus, en utilisant les données
d’imagerie sur l’évolution temporelle de la fraction de cellules mitotiques observée
après l’arrêt du traitement de synchronisation, nous avons pu ajuster la moyenne et
l’écart-type de la distribution des temps de latence et du temps moyen pour achever la
mitose, que nous avons estimé à respectivement 3.43, 0.74 et 67 minutes. Cette étape
était cruciale pour identifier les groupes de gènes activés précocement ainsi que pour
regrouper les gènes en fonction du moment où apparait leur premier pic d’activation.
Un autre objectif majeur du projet de recherche était de trouver les facteurs clés
déterminant la cinétique d’expression. Pour ce faire, nous avons développé un modèle
linéaire dans lequel les données d’expression EU-RNA-Seq d’environ 12 000 gènes de
la lignée cellulaire HUH7 à un point donné de la progression du cycle cellulaire résulte
de la combinaison des activités des FT pour lesquelles un motif de liaison est connu
et pourrait se lier aux promoteurs du gène. En connaissant l’expression des gènes
calculée par rapport à la durée du cycle cellulaire interne et en intégrant les données
sur les affinités des motifs de FT, nous avons déduit l’activité de chaque FT exprimé.
Ceci a l’avantage majeur de décrire le problème de la réactivation avec beaucoup moins
de paramètres, puisque nous sommes passés de l’analyse d’environ 12 000 gènes à
environ 330 FT seulement. De plus, cette analyse a permis de diviser les FT en groupes
selon l’importance de leur activité au cours du cycle cellulaire interne, en identifiant
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les facteurs clés qui sont activés précocement par rapport aux autres et qui peuvent
jouer un rôle crucial dans la réactivation de la transcription après la sortie de la mitose.

En outre, des analyses supplémentaires ont été effectuées pour comparer nos ré-
sultats avec le comportement des FT qui ont été proposés comme candidats à l’activité
de bookmarking. En particulier, nous avons montré que les gènes associés au facteur
de transcription FOXA1, observés au microscope dans les chromosomes mitotiques, at-
teignent leur pic d’expression plus tard par rapport à la moyenne de tous les gènes. Ce
résultat surprenant amène à se demander quel est le but réel du bookmarking, qui ap-
paremment n’est pas toujours directement impliqué dans l’expression des gènes. Parmi
les hypothèses, le rôle du mitotic bookmarking pourrait être structurel, avec quelques
FT liant l’ADN mitotique pour maintenir la chromatine ouverte et accessible à d’autres
facteurs et à l’ARN polymérase, afin de rendre possible la reprise de la transcription à
partir des dernières étapes de la mitose.

Enfin, pour tester davantage la relation mutuelle entre la régulation des gènes et la
structure 3D de la chromatine dans le noyau, nous avons appliqué le modèle linéaire
décrit ci-dessus pour déduire l’activité des facteurs de transcription pendant la forma-
tion et le développement des limites des TAD. Nous avons utilisé des données de syn-
chronisation Hi-C publiées sur des cellules HeLa synchronisées pendant la sortie mito-
tique, afin de pouvoir accéder aux données concernant la sortie de l’arrêt de la promé-
taphase, jusqu’à 12 heures plus tard. Ces mesures ont été réalisées en 16 points au cours
du temps. Les TAD à 11h sont considérés comme le point de référence, avec un total de
près de 4000 limites identifiées. Le score d’isolement (en anglais, insulation score, IS) a
été utilisé comme mesure de la robustesse de ces limites. Il a été calculé en fonction de
la position des limites de référence pour chaque étape temporelle. En connaissant l’IS
et en intégrant les données sur l’affinité des motifs présents sur les limites, nous avons
déduit l’activité de près de 400 FT. Grâce à cette analyse, nous avons pu identifier de
nouveaux FT qui pourraient jouer un rôle important dans la formation des TAD après
la mitose. Cependant, notre modèle n’a pas détecté la présence de CTCF dont plusieurs
études antérieures ont démontré la forte corrélation avec la formation des limites des
TAD. Des recherches supplémentaires sont donc nécessaires pour valider la puissance
de notre méthode et la liste des nouveaux TF identifiés.

En conclusion, nous avons développé une méthode de calcul qui permet de détecter
des communautés dans la chromatine par une approche de réseau qui utilise un algo-
rithme où le temps de diffusion joue un rôle crucial comme paramètre déterminant
la résolution des domaines de chromatine détectés. Cela permet de révéler différents
niveaux hiérarchiques de la structure tridimensionnelle de la chromatine. En outre, nos
études ont fourni un modèle mathématique linéaire permettant de trier les FT selon leur
importance pour la réactivation de la transcription, ainsi que de trouver des groupes
de FT qui présentent une dynamique d’activité similaire au cours du cycle cellulaire.
En appliquant notre modèle aux données RNA-Seq, nous n’avons vu aucune corréla-
tion entre les facteurs de signet connus et la vitesse à laquelle leurs gènes cibles sont
réactivés. Cependant, nous avons identifié environ 60 FT qui sont très actifs pendant la
mitose et représentent de nouveaux candidats de mitotic bookmarking.
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1
Introduction

Premise 1: as decided in the Official Bulletin of the Ministry of Education, 2016, n. 35
(September 29th, 2016, cf 3.2.2 and 4.2.3), figures taken from other papers must have a
maximum definition of 400 x 400 pixels and a maximum resolution of 72 DPI. In order
to follow these rules, some picture from this chapter might be not of high quality. How-
ever, the reference of every picture is indicated in the caption, so then we refer to the
original papers for better resolution figures.

Premise 2: according to the decision of the Administrative Council of the University
of Strasbourg (November 24, 2009), a part of the thesis must be written in French. Then,
besides the summary, also captions of figures from this chapter are in French.

In the last decade, several studies proposed a scenario where the three-dimensional
organization of chromatin in the cell nucleus and gene regulation are tightly associated
and reciprocally involved. This relationship is especially interesting in the context of the
cell-cycle, where a dramatic, structural reorganization of the nucleus occurs, affecting
the functional activities of the cells. However, the exact cause-consequence nexus is still
unclear.

In this thesis, we tried to uncover the existing link between the three-dimensional or-
ganization of chromatin and the regulation of the transcriptional machinery, by combin-
ing computational analyses and mathematical modeling of data from high-throughput
experiments, such as RNA-Seq and Hi-C. In particular, the aims of this research are to
reveal the key regulators responsible for the reactivation of the transcription exiting the
mitosis, and to infer the most important factors driving the structural reorganization of
the chromatin through the cell-cycle.

In this chapter, some concepts and recent experiments from literature will be pre-
sented, in order to put our study in the right context and provide a comprehensive
biological view.
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1.1. Gene regulation

1.1 Gene regulation

Distinct types of cells in the same organism have the same genome, which contains
complete information to transcribe any molecules of RNA and proteins. During the de-
velopment, identity and function of the cells are established by regulation of the tran-
scription, with specific genes that are expressed in some cells and silenced in others.
In addition, the environment of the cells can induce changes in gene expression [1], as
response to stimuli and signals from external players.

The regulation of the activity of a given gene depends on some important regions
of the genome: the promoter and the enhancers. The promoter is located in proximity
of the Transcription Start Site (TSS) of the gene and is few hundreds base-pairs long. It
is a docking platform for Transcription Factors (TFs), RNA polymerase and the other
components of the transcriptional machinery. The enhancers are gene-distal regulators,
since they can be found up to some thousands of kilobases far from the gene, and play
a crucial role in the regulation of the gene expression and in the nuclear organization,
in the scenario of the physical contacts between promoters and enhancers [4].

There are different levels at which the control of the gene expression can occur [1]:
transcriptional control, that is how many times the transcription of a specific gene occurs;
RNA processing control, controlling the splicing; the transport and localization of RNA,
regulating exportation of completed mRNA outside the nucleus and its localization
in the cytosol; translational control, establishing mRNAs in cytoplasm that have to be
translated; control of the degradation of mRNA; protein activity control, concerning protein
activity after their production.

In principle, each of these steps can be regulated in order to establish which genes
are finally expressed. However, for the majority of the genes, initiating the RNA tran-
scription is the key step for controlling the whole process, being the only way to avoid
the synthesis of unnecessary intermediate products.

The recent, fast development of new experimental technologies such as new gener-
ation sequencing (NGS) allowed to measure the quantity and sequences of RNA in a
population of cells (RNA-Seq) or in a single cell (scRNA-Seq), at a given time. Putting
together these techniques with time-course experiments represents a stimulating chal-
lenge for a quantitative analysis of the dynamics of gene regulation.

1.2 3D organisation of the chromatin in the nucleus

In the cell nucleus of eukaryotic organisms, DNA is bound to some proteins, called hi-
stones, which have the fundamental role of packaging the DNA in a more condensed
manner. Together with the DNA, histones form a reinforced complex, called chromatin.
Moreover, it has been shown that histone modifications play a crucial role in gene reg-
ulation [2].

However, the interplay between DNA and histones is not the only organisational
level of the chromatin. For example, if we stretched the entire human DNA, we wuold
obtain a linear lenght of about 2 meters, and these DNA is contained into a cell nucleus
with a diameter of about 2µm: these values provide an idea of how complex is the
architecture of the chromatin inside the nucleus.

Chromosomes are the higest level of this architecture. Different organisms show
different number of chromosomes, and each chromosome can be present in a different
number of copy (ploidy). The largest part of the eukaryotic organisms are diploid, i.e.
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1.2. 3D organisation of the chromatin in the nucleus

they present two homologous copies of each chromosome. For instance, human cells
have 23 different couples of chromosomes while mice have 20. Chromosomes occupy
a specific position inside the nucleus, called chromosome territories (CTs) [3], as shown in
fig. 1.1.

Figure 1.1. Territoires chromosomiques dans le noyau de fibroblastes de poulet, observés par
microscopie par hybridation fluorescente in situ (FISH). Différentes couleurs indiquent dif-
férents chromosomes. Les chromosomes homologues sont situés dans différents territoires.
Adaptée de [3]

Another organisational level is strictly linked to the gene regulation. In fact, chro-
matin can show two structural forms: euchromatin, rich of genes, more dispersed and
less compacted, and heterochromatin, much more condensed and closer to the nuclear
envelope. For its structural form, heterochromatin is usually less accessible to poly-
merase and consequently gene-poor, if compared to the euchromatin.

Recently, new high-resolution experimental techniques led to discover other orga-
nizational levels of the chromatin in the cell nucleus, as it will be explained in the next
sections.

1.2.1 3C-based techniques

As discussed above, microscopy techniques using fluorescence (FISH) have been used
to uncover the organisation of the cell nucleus, revealing the existence of chromosome
territories. Despite these techniques have been a crucial step for the comprehension
of the general architecture of the nucleus, some technical limitations made them inad-
equate for the whole understanding of the chromatin organization. For instance, the
high specificity of the probe sequences and the low resolution do not allow to reveal
the genome-wide pattern of the chromatin [5].

In the last few years, some new experimental approaches based on the high-
throughput sequencing data have been developed, in order to uncover the genome-
wide topological properties of the chromatin and the impact of such a structure on
the functional mechanisms of the cells. These approaches leverage the chromosome
conformation capture (3C) techniques, and enable the estimation of the frequency of
the interaction between different loci across a cell population. More attention is given
to the fact that two genomic regions that are at a great genomic distance could be
phisically close in the 3D space. This is an important feature which play a fundamental
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1.2. 3D organisation of the chromatin in the nucleus

role in the interaction between enhancers and promoters, shedding further light on the
gene regulation.

These techniques will be briefly presented hereafter. All the 3C based techniques
present the same 4 key steps, as shown in fig. 1.2, panel a. Firstly, crosslinking of cells is
performed, and segments of chromatin that are physically close in space are linked by
covalent bonds. Then, there is a fragmentation process on the crosslinked chromatin, by
using some digestion enzymes such as HindIII, DpnII or NcoI. The generated fragments
are then ligated to form hybride DNA molecules. Finally, a purification allows to detect
and analyse the pairwaise interactions, that can be quantified. This last step (detection
and quantification) differentiates the distinct 3C based approaches [6]. Hybrid DNA

Figure 1.2. Présentation des techniques basées sur 3C. a: Étapes expérimentales des techniques
basées sur 3C. b: Détection 3C, 4C et 5C du produit de la ligature. Adaptée de [6]

molecules produced by the ligation process are detected one by one by using PCR in
classical 3C experiments, through the use of specific primers. 3C is mostly used to test
candidate interacting loci, such as promoters and enhancers. 4C experiments are based
on inverse PCR. Here, the interactions of a single locus are analysed genome-wide. 5C
is instead the analysis of many-vs-many segments, analysing the long-range interactions
of all the restriction fragments, up to some megabases of distance. A brief summary of
these techniques is shown in fig. 1.2, panel b.

1.2.2 Hi-C experiments

In 2009, Lieberman-Aiden and others [10] proposed Hi-C, a new experimental 3C-based
method to investigate the long range interactions of the chromatin in the cell nucleus.
After the crosslinking of the cells by using formaldehyde, the digestion takes place leav-
ing a biotin residue on the staggered ends. After the ligation, the DNA molecules are
purified and sheared, and the biotin residues are pulled down. The reconstruction
of the frequency of interactions genome-wide is allowed by the biotinylated junctions,
which make recognizable the origin fragments, sequenced on the genome.
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1.2. 3D organisation of the chromatin in the nucleus

Resolution of Hi-C experiments is given by the depth of the sequencing: deeper the
sequencing, shorter can be the windows of fixed length the genome is divided into. A
schematic outlook of Hi-C method is shown in fig. 1.3.

Figure 1.3. Étapes fondamentales des expériences Hi-C. De gauche à droite: réticulation; di-
gestion par des enzymes de restriction; remplir les extrémités décalées et marquer avec de la
biotine; ligature; purification; séquencage. Adaptée de [10]

Results of Hi-C experiments are shown as matrices H, where each entry Hij corre-
sponds to a value that is proportional to the frequency of interaction between the locus
i and the locus j. To facilitate an immediate comprehension of the data, the matrices
are presented as heatmaps, with different colours meaning different frequency of in-
teraction (see fig. 1.4 for an example). In standard Hi-C experiments, the values Hij

reprensent an average of a cell population, while recent work led to the single cell Hi-C
(scHi-C), where the matrices refer to single cells [7], unmasking a significant variability
among different cells. Hi-C data are mostly used to analyse intra-chromosomal inter-
actions (also called in-cis interactions), but some literature about inter-chromosomal
interactions (in-trans) analysis can be found, such as [9].

1.2.3 Chromatin loops

By analysing Hi-C data, some important chromatin features have been discovered, con-
cerning the 3D organisation of the chromatin in the cell nucleus. A chromatin loop
emerges when two regions of the same chromosome, but at a great genomic distance,

Figure 1.4. Matrice de contact Hi-C
provenant de cellules souches embri-
oniques de souris (mESC), chromo-
some 10, 38-40,5 Mb, à 10 ko de ré-
solutions. À gauche, une barre de
couleur indique l’intensité des inter-
actions. Adaptée de [15]
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1.2. 3D organisation of the chromatin in the nucleus

Figure 1.5. Exemple d’une boucle de
chromatine sur une carte thermique
Hi-C, mise en évidence par le carré
bleu. Dans le coin inférieur gauche, la
valeur maximale de la matrice est in-
diquée. Modifiée à partir de [8]

show a strong interaction. Looking at a heatmap, chromatin loops appear as isolated
points with a strong interaction. An example is given in the fig. 1.5. As shown in [8],
chromatin loops play a crucial role in the gene regulation, linking promoters and en-
hancers. Moreover, loops are conserved across different cell types and correlate with
the presence of CTCF proteins and with the boundaries of the Topologically Associated
Domains, that will be introduced in the section 1.2.5.

1.2.4 A/B compartments

By using Principal Component Analysis (PCA) on correlation matrices of Hi-C data,
Lieberman-Aiden and others [10] showed that loci in the chromosomes can be divided
into two categories, called A and B. Regions associated with the A and B compartments,
having a size ranging from few Mb up to almost 10 Mb, are characterized by a strong
self-interaction. In fact, contacts between loci belonging to same categories are highly
enriched with respect to the loci belonging to different categories, giving to the Pearson
correlation Hi-C matrix a charateristic plaid pattern. In addition, Lieberman-Aiden and
other showed that A and B categories correlate with euchromatin and heterochromatin
respectively (fig. 1.6).

1.2.5 Self-interacting domains

An other, smaller organizational level of the chromatin inside the nucleus is represented
by the self-interacting domains, as shown by Dixon and others [11]. They are character-
ized by the fact that the regions inside a domain show a strongly enriched interaction,
while they interact much less with the regions outside. The typical size of the domains
showed in [11] is 0.5− 1.0Mb. Diverse nomenclatures and methods have been used to
show the presence of self-interacting domains, such as Topological Associated Domains,
TADs ([12]) or generically contact domains ([8]), the latter ones with a smaller average
length of about 200kb. Other algorithms that should be mentioned have been devel-
oped by Zhan and others ([13]) and by Fraser and others ([14]), where a hierarchical
structure of domains-within-domains (metaTADs) have been revealed.
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1.2. 3D organisation of the chromatin in the nucleus

Figure 1.6. En bas, la corrélation de
Pearson de la carte thermique Hi-C du
chromosome 14 (lignée cellulaire hu-
maine GM06990) à 100 kb de résolu-
tion. En haut, les caractéristiques de
l’euchromatine en corrélation avec le
vecteur propre (composant principal).
Adaptée de [10]

Looking at a Hi-C heatmap, domains are visually recognizable as squares of en-
riched contacts along the diagonal (fig. 1.7), and they represent fundamental, isolated
units along the genomic coordinate. From the epigenetic point of view, the domain
boundaries correlate with the presence of CTCF, and loci inside the same domains
present correlation in histone modifacations for eight different factors ([8]). Despite
the relative abundance of algorithms and methods to identify the domains, the biolog-
ical mechanisms that regulate their formation is still unclear, and investigating such
mechanisms by crossing omics and structural data is an open and attractive field.
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Figure 1.7. Cellules souches embri-
oniques de souris (mESC), carte ther-
mique Hi-C du chromosome 2, 53-58
Mb. Les valeurs vont du bleu profond
(faible interaction) au rouge fort (forte
interaction). En utilisant l’algorithme
Index de directionnalité (DI) [14], 6 do-
maines ont été trouvés, comme le
montrent les carrés blancs le long de
la diagonale. Adaptée de [14]

1.3 Gene regulation and 3D structure of the chromatin

Several studies proposed a scenario where the 3D structure of the chromatin in the cell
nucleus and the regulation of the genes are hardly associated and reciprocally involved,
as explained by Vermunt and others in the review [16]. At the higest level, as seen in
1.2.4, chromatin regions tend to be segregated into two distinct compartments, called
A and B, correlating with euchromatin and heterochromatin chromatin, respectively.
Moreover, we already mentioned in section 1.1 that 3D structure of the chromatin and
in particular chromatin loops are fundamental to intermediate the contact between gene
promoters and distal enhancers.

Besides, some literature ([17][18][19]) highlighted the impact of some structural
changes in terms of deaseses, without any variation in the genome sequences. Also,
it has been proved that human cancer can correlate with an important level of struc-
tural alterations [20].

Taken together, these results shed light on the importance of the 3D structure on the
gene regulation and, eventually, on the functional defects that could affect the health of
the cells. Understanding which chromosomal regions are in contact and the dynamics
of the 3D structure during the cell development is crucial.

In the section 1.5 we will present some studies about the 3D structure of the cell
nucleus through the cell-cycle.

1.4 Gene regulation and cell cycle

Cell division is a complex process which needs a perfect replication of the entire
genome. Mature cells present a quite robust pattern of gene regulation, that is chal-
lenged by the division [24]. To maintain their own identity, cells have to reorganize
their structure and their epigenomic features through the cell cycle. It has been shown
([25][26]) that defects and epigenomic instability during this process cause replication
stress, which could lead to dangerous alterations in the chromatin trasmitted to the
doughter cells. A pictorial representation of this scenario is proposed in fig 1.8.
Hereafter in this section, we will briefly present the principal steps of the cell cycle,
with particular attention to the mitosis and introducing some models and discoveries
concerning the maintenance of the epigenomic pattern and cell identity during cell
division and replication.
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1.4. Gene regulation and cell cycle

Figure 1.8. Une représentation
picturale du cercle vicieux établis-
sant quand il y a des défauts dans
la transmission des informations
épigénomiques de la mère à la cellule
fille. Adaptée de [24]

1.4.1 Cell cycle

Every organism adopts the same strategy to make a new cell, that is duplicating an
already existing cell. Regardless of the cell type, an ordered sequence of steps, together
called cell cycle, characterizes cell reproduction.

Two main phases characterize the cell cycle: the S phase, with the S being for syn-
thesis, where the DNA is duplicated; and the M phase, with the M being for mitosis,
where the chromosomes are segregated and cell divides. M phase in turn can be sep-
arated in two subphases, i.e. nuclear division, also called mitosis, with the formation
of two daughter nuclei containing the copied chromosomes, and the cytokinesis, where
cell divides in two [1].

Besides S and M phases, some gap phases are required for some cell cycles. In par-
ticular, G1 takes place between M and S, and G2 between S and M.

Together, G1, S and G2 are called interphase. To provide an idea of the temporal
duration, here are some numbers: in culture human cells, interphase takes about 23
hours out of a total of 24 hours, with mitosis lasting for 1 hour. Figure 1.9 provides
a summary of the cell cycle. If there are no propitious condition, such as unfavorable

Figure 1.9. Les quatre phases princi-
pales du cycle cellulaire. Adaptée de
[1]

extracellular environment, before G1, an other gap phase (G0) can occur. In principle,
G0 can last several hours or, in extreme cases, cells can remain stuck inG0 until they die.
But once cells reach a restriction point, at the end of G1, they are committed to replicate
the DNA [1].

In the next section, we will provide some little information more about the mitosis,
that is a crucial step of the cell cycle, where cells undergo the most dramatic changes.
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1.4.2 Mitosis

Five stages characterize the mitosis: prophase, prometaphase, metaphase, anaphase and
telophase.

During prophase, the condensation of the copied chromosomes occurs, and pairs of
rigid rod-shaped chromosomes, called sister chromatids, are formed.

In prometaphase, the nucleare membrane breaks down, and microtubules invade the
nucleus, to form a bipolar array called mitotic spindle, to which chromosomes attach,
starting active movements.

In metaphase, chromosomes allign at the equator of the mitotic spindle.
During anaphase, sister chromatids simultaneosly unattach to form the daughter

chromosomes, and each of them is pulled toward a pole of the spindle.
Finally, in telophase, the two sets of chromosomes reach the poles of the spindle, and

undergo a decondensation. A new nuclear membrane forms around each of the set.
Cell is now ready for the cytokinesis, consisting in the division of the mother cell in
two daughters.

From a regulatory point of view, the highly-condensed shape of the mitotic chro-
mosomes seems to make the transcription of the genes very difficult [21]. The historical
scenario presents the mitosis as a transcriptional silent stage, with the eviction of most
of the transcription factors and the arrest of the activity of the RNA polymerases [29].

This leads to the question of how the cell identity is kept and how the transcrip-
tion is reinitiated after the mitosis. Different theories have been developed to address
the problem, such as a chromatin-properties approach (DNA methylation or histone
modification, [29]).

In the next section, we will introduce the mitotic bookmarking, an hypotesis by which
a subset of transcription factors binds the DNA during mitosis, giving rise to the reac-
tivation of the transcription.

1.4.3 Mitotic Bookmarking

As explained in the previous section, mitosis corresponds to the most striking reor-
ganisation of the cell nucleus. The nuclear envelope breaks down, increasing the dif-
fusive volume of the transcription factors, then reducing the local concentration and
making more difficult the specific binding between regulators and DNA. In addition,
condensed and rod-shaped chromosomes are observed [23] (see fig. 1.10). Therefore, in
principle, mitotic chromatin is not favorable for the standard gene regulation machin-
ery. As a consequence, most of the transcription factors are evicted and the transcription
is donwregulated [27][28]. However, it has been shown that some TFs are capable of
binding mitotic chromosomes. It is believed that this phenomenon, known as mitotic
bookmarking [23], helps conveying gene regulatory information from mother to daugh-
ter cells. To understand the mitotic bookmarking theory with respect the other possible
approaches, we report the very explicative fig. 1.11.

Although several transcription factors that have been identified as potential candi-
date for the bookmarking activity, only few of them have been confirmed to be specif-
ically bound to the DNA, thanks to experimental observations. For example, Kadauke
and others [29] found that GATA1 shows mitotic binding on genes responsible for
hematopoietic regulation; also, Caravaca and others [30], found that FOXA1 remains
specifically bound to the mitotic chromosomes in hepatocytes. Other experimental ob-
servations concerning transcription factors being strong candidate to be bookmarking
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Figure 1.10. Chromosome mitotique
de cellule humain. Figure obtenue par
micrographie électronique à balayage.
Adaptée de [1]

factors, are reported in the fig. 1.12.

1.4.4 Large scale studying on mitotic bookmarking

As described in the previous section, by using diverse experimental techniques such
as ChIP-seq and fluorescence microscopy, some TFs have been found binding mitotic
chromosomes. ChIP-Seq experiments allow to identify specific binding on the DNA,
while fluorescence microscopy identifies the association between TFs and DNA with
no respect to enrichments on specific target regions. However, it is believed that is the
non-specific rather than specific DNA binding to drive the site specific search of the
transcription factors [31][32], and some evidences hint that microscopy observation of
TFs on the mitotic chromosomes are due to non-specific bindings [32].

On this basis, Raccaud and others [32] used live cell fluorescent microscopy to inves-
tigate the non-specific binding properties of almost 500 TFs in mouse embrionic stem
cells (mESC). They measured the mitotic chromosome binding (MCB), by using Mitotic
Bound Fraction (MBF) as a metric (see fig. 1.13), and proposed three main categories to
rank the analyzed transcription factors, based on visual examination of the fuorescent
signal of TFs with respect to the signal of cytoplasm: depleted, intermediate and enriched,
with the TFs signal that is lower, equal and higher than the signal in the cytoplasm,
respectively.
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Figure 1.11. Sur cette figure, les cases jaunes indiquent les cellules en interphase, tandis que la
case verte représente la cellule mitotique dans trois scénarios possibles, c’est-à-dire que toutes
les marques de chromatine sont maintenues (A); seul un sous-ensemble de régulateurs, les fac-
teurs de bookmarking mitotiques, sont maintenu (B); tous les régulateurs sont expulsés (C). A et B
sont des scénarios plus stables que C, tandis que B et C sont plus flexibles que A. Cela signifie
que le cas B, représentant le bookmarking mitotique, montre les avantages de A et C. Adaptée de
[23]

1.4.5 Transcription waves during re-activation of the cell cycle

In 2017, also Palozola and others [28] tried to unmask the mechanisms to maintain the
cell identity during mitosis, and to uncover the reactivation hierarchy, i.e. which genes
are priorly reactivated with respect to the others, during the mitotic exit and the early
interphase. To do so, they quantified pulse-labeled nascent transcripts (EU-RNA-Seq
experiments) in HUH7 human hepatoma cells, previously synchronized by inducing
mitotic arrest with nocodazole. They defined a transcription timing by collecting data
during the arrest, the mitotic-exit and in asynchronous cells. A summary of experiment
and timing is proposed in fig. 1.14.

In this study, the authors highlighted the presence of low levels of transcription
during mitosis and the fact that housekeeping genes and not cell-specific genes are ac-
tivated earlier during mitotic exit. In fact, first to be reactivated were genes categorized
as lumen/envelope in gene ontology (GO) nomenclature. Just after mitosis, genes in-
volved in basic cell structure and in the cell-growth are found, followed by adhesion
genes and, lastly, genes responsible for cell-cycle and DNA-replication, consistent with
the fact that cells are ready to enter in S phase.

However, the study did not consider that mitotic-arrested cell populations progres-
sively de-synchronize after the block release and therefore the reported measurements
are performed on mixture of cells at different internal cell-cycle times. This point was
addressed in our research, and it will be discussed in details in chapter 3.
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Figure 1.12. Une liste des TF qui ont été observés liés aux chromosomes mitotiques. En haut, la
technique expérimentale utilisée pour la détection est rapportée. IF et Live se réfèrent respec-
tivement à l’immunofluorescence microscopique et à l’imagerie microscopique en direct. De
plus, des études d’immunoprécipitation ont été prises en compte, provenant d’analyses PCR et
NGS (via ChIP-Seq). Les candidats les plus robustes sont écrits en rouge. Cellule jaune: résultat
débattu. Modifiée à partir de [23]

Figure 1.13. En haut, la définition mathématique de la fraction liée mitotique (MBF). En bas, le
MBF pour 501 TF, regroupés en trois catégories: depleted, intermediate et enriched. Un exemple
d’image de microscopie est montré pour chacune des catégories, le signal jaune représentant les
TF et le signal rouge l’ADN. Le nom d’un intermédiaire et de certains TF enrichis a été signalé.
Modifiée à partir de [32]
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Figure 1.14. Schéma des expériences EU-RNA-Seq avec les points temporels analysés. Adaptée
de [28]
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1.5 3D structure and cell development

Here, we introduce two different studies proposing an analysis of chromatin structure
by using Hi-C experimental approaches, in order to reveal the developmental stages
where the formation of different organizational features occurs. Importantly, data pro-
vided by the studies presented hereafter, will be used in our analyses, in chapters 2 and
4.

In 2017, Hug and others [33] analyzed Hi-C data from early development of
Drosophila melalogaster (Dmel) embryo.

The development of Dmel is characterized by a series of 13 nuclear cycles (nc), until
the zygoyic embryo cellularizes and the zygotic genome activation (ZGA) takes place,
in correspondence of nc14. Then, a new recruitment of RNA polymease II (RNA Pol II)
on a large-scale occurs, with the activation of transcriptional activity. Analysis of Hi-C
data from embryos at different developmental stages surrounding the zygotic genome
activation, highlighted dramatic changes in the chromatin structure in correspondence
of the ZGA: TADs establishment correlates with the activation of the gene expression,
while before ZGA the genome does not present any relevant structure. Importantly,
after a pharmacological inhibition of RNA Pol II, the establishment of TADs was not
precluded, but only some contact properties of the domains and the co-localization of
the boundaries with housekeeping gene-enriched regions were affected. This hints that
the mechanism of TAD formation does not depend on transcription, but transcription
is fundamental to maintain a proper organization of the chromatin.
The second study we mentioned above was published by Abramo and others in 2019
[34], where the authors used nocodazole induced mitotic arrest to synchronize HeLa
cells in prometaphase. Then, the arrest was released and cells could start again pro-
gressing into the cell-cycle. To investigate the changes of the structural conformation
of the chromatin in the cell nucleus between mitotic exit and G1 phase, fractions of the
cells were collected at different time points between the arrest (time t = 0hours) and
t = 12hours. Then, timing Hi-C analyses were performed. The authors showed that the
telophase represents a critical transitional step between the mitosis and the interphase,
from a conformational point of view. In fact, during mitosis, the chromosomes are
folded into helically organized array of nested loops, that are mediated by condensin,
a protein complex known to be fundamental for the segregation of the chromosomes
during the mitosis [35]. However, these loops are lost by telophase, and a loops-free
intermediate state is formed. By cytokinesis, TADs appear as well as new loops, me-
diated by the cohesin, a protein complex regulating the separation of sister chromatids
during the division of the cell [36]. Boundaries of the compartments are established
early too, while the long-range compartmentalization requires much more time, and
continues for hours after cells entering in G1.

To sum up, there is a critical transition during telophase, where the mediation of
the chromatin folding pass from the condensin to the cohesin.
Taken together, these results highlight once more the deep correlation between three-
dimensional organization of the cell nucleus and the gene regulation, as discussed in
the section 1.3.
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1.6 Inferring the Gene Regulatory Networks

When a gene is expressed, its product can induce the activation of other genes with
further expressions and products, with a chain of events which affect all the biological
function of cell. The entire biological system is governed by regulators which inter-
act with each other, such as DNA, RNA, TFs or other proteins. This interactions can
be direct or indirect, i.e. by involving their expression product [37]. All these regu-
lators and their reciprocal interactions form a complex network, called gene regulatory
network (GRN, see fig. 1.15 for an example). The usage of experimental data on inter-
actions between the regulators and the inference of their mutual relationship is funda-
mental to understand the regulatory mechanism and reconstruct and model the GRN
[38]. A full comprehension of the GRNs is still very challenging, but the recent exper-

Figure 1.15. Un exemple illustré de réseau de régulation des gènes. De [39]

imental advance in the field of the high-throughput techniques increased the parallel
understanding of the gene regulatory netwkork: ChiP-Seq, RNA-Seq, miRNA-Seq are
nowdays used to uncover the reciprocal mechanisms governing the regulators and to
investigate the dependencies between transcription factors and target genes [37]. Sev-
eral computational methods have been developed in the last few years, using different
mathematical and statistical approaches, such as information theory models, boolean
networks, differential equations models, baysian networks and neural networks [40].
Each of them leverages on different assumptions and depicts distinct characteristic of
the described gene regulatory network. What we will briefly described in the next sec-
tion is a method which aims to identify key regulatory factors to infer the activity of
the TFs.

1.6.1 Identify key regulatory factors to infer activity of TFs

In 2014, Balwierz and others [41] proposed ISMARA (Integrated System for Motif Activity
Response Analysis), a method which allows to model the gene expression in terms of
predictions of regulatory sites. ISMARA is a completely automatic computational tool,
freely usable by uploading data on a website. The principle is that, given as an input
genome-wide gene expression data in the form of RNA-Seq or microarray (miRNA)
across different samples (e.g. different cell conditions), ISMARA identifies the key reg-
ulatory factors driving the expression. The method counts on two previously collected
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datasets: an annotation of promoters in human and mouse, and a complete set of tran-
scription factors binding sites (TFBSs), predicted for all the promoters by using a com-
parative genomic Bayesian approach.
ISMARA can be summarized by the following linear model:

Eps =
∑

m

Npm ·Ams + cp + c̃s (1.6.1)

In the equation 1.6.1, Eps are the data provided by the user, i.e. the signal associate to
the promoter p in the sample s, in the form of RNA-Seq or microarray (miRNA). The
matrix Npm contains the information about the number of sites for the motif m in the
promoter p. Ams is the activity of the motif m at the sample (condition) s. Finally, cp is
the basal level for the promoter and c̃s is the basal level for the sample s.
To sum up, ISMARA is able to explain the signalEps by using the binding sitesNpm and
the activities Ams, that are inferred by the method and that represent the output of the
tool. Moreover, the profiles of the activities are sorted according to their significance in
the model, so that the most important motifs can be easily individuated.

A modified version of this linear model has been used in the context of our research,
and will be presented in the chapter 3, with all the mathematical details.
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2
A graph-based approach to detect domains in chromatin

As shown in the section 1.2.5, topologically associated domains (TADs) are one of the
organizational levels of chromatin. Several algorithms have been developed to detect
TADs, such as Directionality Index, DI [11] and Arrowhead algorithm [8]. However, a limi-
tation of these approaches is that they detect domains at a certain length-scale, without
revealing any higher or lower organizational level. Then, in the following years, other
methods have been published to detect chromatin domains at different length-scale,
revealing a hierarchical structure. In particular, in 2015, Fraser and colleagues [14] dis-
covered the existence of metaTADs, a domains-within-domains structure covering all
the possible genomic scales, from small sub-domains to the entire chromosome. Also,
in 2017, Zhan and colleagues [13] proposed CaTCH, an algorithm identifying hierar-
chical trees of chromatin domains, starting from Hi-C data. However, the existence of
preferential hierarchical levels and scales is still debated.
In this chapter, a computational method to dectect domains at all possible genomic
scales will be presented. It leverages on Markov process and random walk theory, as
well as on a network-based approach.

The algorithm, called stability algorithm, was originally developed to detect commu-
nities in graphs. Thus we modelled the chromatin as a network and applied the stability
algorithm on two different published Hi-C datasets: in the first case, on Hi-C datasets
obtained at different stages of Drosophila Melanogaster (Dmel) embryogenesis; in the
second case, on Hi-C datasets obtained from time-dependent experiments on synchro-
nized HeLa cells during mitotic exit, analyzing data from mitotic arrest up to 11 hours
later, for a total of 16 timepoints.

By using the stability algorithm, we showed the presence of a backbone of the struc-
ture in Dmel even before the zygotic genome activation (ZGA), suggesting an early ac-
tivation of transcription, although recent literature stated that chromatin architecture
emerges with the onset of transcription activation in the zygote, while prior to ZGA the
cell nucleus is mostly unstructured [33].

In addition, analysis on HeLa cells exiting mitosis revealed the presence of mitotic
3D structure that is conserved across the mitotic exit up to the latest available time-
points, i.e. several hours after the release of the mitotic block.

In the next section, we will briefly provide some fundamental concepts about
Markov processes and random walks, that will allow a full comprehension of the
principles behind the algorithm, described in the section 2.2. Then, our results will be
presented in sections 2.3 and 2.4.
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2.1 Markov processes and random walks

A Markov chain is a stochastic model that aims to describe a succession of events or
states with a fundamental properties: the transition to the next state depends exclu-
sively on the current state (memoryless property or Markov property). In other word, any
prediction on the future event can be made knowing only the present state of the sys-
tem. If the Markov chain takes place on a countable state space during time, it is called
Markov process.
A random walk (RW) is a mathematical object describing the trajectory given by a se-
quence of random steps on a certain space. The simplest example of RW is the one
taking place on the Z space of integers: at each step, only two events are possible, i.e.
−1 and +1. When the mathematical space is a graph, the random walk is a special case
of Markov chain [42]. This is the case which will be treated in the next section.

2.2 Community detection using the stability of a graph parti-

tion

Given a network characterized by a group of nodes linked by some connections (edges),
a community is defined as a subgroup of nodes more densely connected if compared
with nodes outside the community. Several computational and mathematical meth-
ods have been developed to detect communities in networks, i.e. to detect partitions.
However, determining how much stable are the network partitions and measuring the
quality of the found communities is still an open problem. In 2012, Delmotte and
Schaub proposed an algorithm [43], freely available and written in Matlab. It is based
on previous theoretical studies, such as [44] and [45], and aims to detect communities
in networks by defining a measure for the stability of a graph partition, leveraging on the
properties of a random walk. A brief recup of the mathematical concepts behind the
algorithm will be presented hereafter, while for further details we refer to the cited lit-
erature.
If we have a graph G whose edges Ai,j between each pair of nodes i and j are described
by the matrix A, we can write the standard dynamics of a RW as follows:

P (t) = e−MtP0 (2.2.1)

where P (t) is the probability vector of being in a state at time t, and M is the matrix A

normalized on the total number of degrees, so that Mi,j =
Ai,j∑
i Ai,j

. It can be shown that

such a dynamics converges to a stationary distribution π = dt

2m , with d = A1, i.e. the
vector of the degrees, and 2m ≡ 1Td, i.e. the sum over all degrees.

If N ×N is the size of the matrix A, we can introduce the presence of c communities
by using the matrix H , with a size N × c, such that Hi,j ∈ {0, 1}, i.e. 1 if the node i
belongs to the cluster j, 0 otherwise.

Moreover, by introducing the term Π = diag(π), we can define the clustered autoco-
variance of the process at a time t as follows:

R(t,H) = HT [ΠP (t)− πTπ]H (2.2.2)

Here, R(t,H) is a matrix with size c × c, whose diagonal elements provides the
propensity of a random walk of remaining in the starting community at time t. Then,
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we can define the stability of the partition H as:

r(t,H) = traceR(t,H) (2.2.3)

Thus, the optimization of 2.2.3 provides a list of optimal clusterings, with coarser com-
munities as the time increases, i.e. with the time playing the role of resolution parame-
ter. Furthermore, it can be mathematically demonstrated that 2.2.3 can be rewritten as
the modularity of a network G(t) that depends on time, where the modularity is a qual-
ity function which compares the density of edges inside a community to edges between
communities, in order to find the best partition of a weighted graph [46]. This last prop-
erty makes possibile the use of the Louvain method [47] for the modularity optimization,
that is implemented in the stability algorithm.

We used this computational method to detect domains in the chromatin. To do so,
we modelled chromatin as a network where nodes are chromatin regions and edges
represent physical contacts between regions determined by Hi-C data. The detected
communities were then called diffusion associated domains (DADs). As shown, with this
approach time represents a parameter which determines the resolution of detected do-
mains, identifying different hierarchical levels of the chromatin structure.

2.3 Identifying DADs in Drosophila Melanogaster embryo de-

velopment

We applied the stability algorithm systematically to in situ Hi-C data from [33], already
presented in section 1.5 (public database ArrayExpress: E-MTAB-4918). We did that
for developmental stages nuclear cycle 12 (nc12), nuclear cycle 13 (nc13), nuclear cycle 14
(nc14), 3 − 4 hours post fertilization (3-4hpf) and for mitosis, with a resolution of 10kb.
Fastq files were downloaded and and alligned by using bowtie2 [49] on the reference
genome Dmel r0.07. Files were then processed by using the pipeline HiCUP 0.5.9 [48]. A
genome digest file was produced by using hicup digester and the MboI digestion enzyme
sequence. Following parameters were set in HiCUP 0.5.9: Threads: 8, Quiet: 0, Keep: 0,
Zip: 1, Longest: 800, Shortes: 150. After processing, lowest 5-percentile of the Hi-C data
were exluded to correct for the background noise, and Hi-C data were normalized by
using ICE normalization [50], through the iced library in python [51].

We obtained the dynamics of the diffusion associated domains (DADs) for all chro-
mosomes, by setting the following parameters in the Matlab code of the stability al-
gorithm: Linearised Stability, Normalised laplacian, Verbose mode: Yes, Number of Louvain
iterations: 100, Precision used: 1e − 09. 54 time values from an exponential distribution
were chosen, from 10−3.3 to 102, with an exponential step of 0.1. Regions without Hi-C
signal were excluded from simulation.

As a result, given a Hi-C dataset, for each diffusion time (that we will call timestep
from now on) we have a list of n indices to assign to the regions/nodes of the chro-
matin/network, indicating the community (DAD) they belong to. This allows to build
a temporal dynamic of DADs formation, corresponding to a hierarchical structure at
different size-scales, from the smallest one (at timestep t = 0 the number of regions
corresponds to the number of DADs) to the biggest one (at the end, all the regions be-
long to the same community, taking the entire chromosome). Note that there is no con-
straint for contiguity of the DADs, so we can obtain DADs formed by non contiguous
chromatin regions.
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DADs were represented by using the Matlab library imagesc. As a comparison, Hi-C
maps were generated by using the python function heatmaps from the library seaborn.
Results for chromosomes 2, 3, 4 and X are shown, respectively, in the figures 2.1, 2.2,
2.3, 2.4. These results have to be commented in the light of what Hug and colleagues
stated in their article [33], i.e. that the emergence of the three-dimensional structure
of the chromatin occurs in correspondence with the onset of the zygotic genome acti-
vation (ZGA), around the nuclear cycle 14, while in the earlier stages the chromatin is
mostly unstructured. Also, by a visual inspection of the normalized Hi-C maps at 10
kilobases of resolution, the authors of the cited study affirmed that there is a notice-
able difference in the 3D structure of the chromatin up to nuclear cycle 13, if compared
with the later developmental stages. In contrast, a visual inspection of detected DADs,
seemed to reveal that an organized structure of the chromatin exists in the earlier stages
of the embryogenesis. Besides, also mitotic chromosomes show well defined DADs if
compared with the other analyzed stages, suggesting that a hierarchical organization
of the chromatin makes an appearance during mitosis.

To quantify these observations and to compare the DADs-like structure of chromo-
somes at different stages, we used the Adjusted Rand Index (ARI), a version of the Rand
Index [52] adjusted for a chance-correction. The Rand Index R masures the similarity
between different clusterings or partitions, by assigning a value between 0 and 1.

Quantitatively: let us consider a set of n nodes S = {s1, s2, ...sn} and two partitions
of S, namely P1 = {X1, X2, ..., Xr} and P2 = {Y1, Y2, ..., Ys}, containing, respectively, r
and s subsets of S. The Rand Index R is then given by the following equation:

R =
a+ b

a+ b+ c+ d
=

a+ b
(

n
2

) (2.3.1)

where a is the number of pairs of nodes inS that are in the same subset both inP1 and in
P2, b the number of pairs of nodes in S that are in different subsets both in P1 and in P2,
c is the number of pairs of nodes in S that are in the same subset in P1 but in a different
subset in P2 and d is the number of pairs of nodes in S that are a different subset in P1

but in the same subset in P2. As mentioned above, the Adjusted Rand Index is adjusted
for a chance-correction. We have then, in general:

ARI =
R− expected(R)

max(R) − expected(R)
(2.3.2)

In principle, different models can be used to calculate an expected R. Traditionally, the
ARI is obtained with a permutation model for clusterings, i.e. the size and the number
of the clusters of a given partition are fixed, and random clusterings are obtained by
shuffling of the elements among the clusters. For more mathematical details, we refer
to [53].

To compare DADs-based structure of different developmental stages at any
diffusion time, we used the python function adjusted_rand_score from the library
sklearn.metrics.cluster. We used the developmental stages 3-4hpf as a reference, as it is
the latest one among the analyzed datasets. The DADs-like structure of all the other
stages was then compared with the 3-4hpf structure, by calculating the ARI. The results
are shown in the figure 2.5. In addition, an average over the simulation timesteps was
calculated for every chromosome and over all chromosomes. The results are reported
in figure 2.6. Even if the ARI score of mitotic stage was always the lowest one, it was
still significant. In fact, we obtained a mitotic ARI of 0.68, 0.63, 0.64, 0.69, 0.68 and 0.34
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2.3. Identifying DADs in Drosophila Melanogaster embryo development

Figure 2.1. Diffusion associate domains (DADs) and Hi-C maps for Dmel Chromosome 2L (left
arm, top) and 2R (right arm, bottom). DADs were represented assigning different colours to
different communities detected over the genomic coordinates (horizontal axis), over the simu-
lation timesteps progression of the algorithm (vertical axis). For the first timesteps, each region
corresponds to a community. Then, as the timesteps increase, coarser communities are detected
by the stability algorithm, until a saturation is reached, i.e. the entire network becomes one sin-
gle community, represented by one single color. Hi-C heatmaps are reported as a reference,
with the colorbar on the bottom right providing the percentage with respect to the maximum
value of the Hi-C matrix.
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2.3. Identifying DADs in Drosophila Melanogaster embryo development

Figure 2.2. Diffusion Associate Domains (DADs) and Hi-C maps for Dmel Chromosome 3L (left
arm, top) and 3R (right arm, bottom). See the description in figure 2.1

.

Figure 2.3. Diffusion Associate Domains (DADs) and Hi-C maps for Dmel Chromosome 4. See
the description in figure 2.1

.
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2.3. Identifying DADs in Drosophila Melanogaster embryo development

Figure 2.4. Diffusion Associate Domains (DADs) and Hi-C maps for Dmel Chromosome X. See
the description in figure 2.1

for, respectively, chromosomes 2L, 2R, 3L, 3R, X and 4.
These results may sugges that Dmel chromatin maintains a certain memory of its
organizational structure through the embryonic development, even during the earliest
stages. In fact, taken DADs detected in cells at 3-4 hpf as a reference, similarities from
63% to 80% were obtained in comparison with DADs detected at earlier developmental
stages. Lower results were obtained only for chromosome 4, with similarities going
from 34% to 55%. Furthermore, 68% was obtained by averaging the mitotic similarity
over all chromosomes, excluding the chromosome 4 (which instead shows a mitotic
similarity score of 34%). These results highlight the presence of a backbone of the
structure even in the mitotic state and, in the light of the strict relationship between
the three-dimensional organization of the chromatin and the transcriptional activity,
may suggest an early activated transcription.
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2.3. Identifying DADs in Drosophila Melanogaster embryo development

Figure 2.5. ARI scores for Dmel DADs-based structure detected at different developmental
stages with respect to 3-4 hours post fertilization. The ARI score versus simulation timesteps of
stability algorithm was calculated to compare the partitions generated by the DADs detected at
3-4 hours after the fertilization with all the earlier stages: nuclear cycle 12 (nc12), nuclear cycle
13 (nc13), nuclear cycle 14 (nc14) and mitosis.
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2.3. Identifying DADs in Drosophila Melanogaster embryo development

Figure 2.6. Average ARI score for Dmel DADs-based structure. a) The average ARI score per
chromosome was calculated over the simulation timesteps of the algorithm. Each colour cor-
responds to the chromosome indicated by the legend. b) The ARI score over all chromosomes
was calculated by averaging the curves shown in panel a.
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2.4. Identifying DADs in HeLa cells during mitotic exit

2.4 Identifying DADs in HeLa cells during mitotic exit

In 2019, Abramo and others [34] published time-dependent Hi-C data on synchronized
HeLa cells during mitotic exit, that we already presented in section 1.5 (GEO accession:
GSM3909714). The authors of the study provided Hi-C datasets at the time of the re-
lease from mitotic arrest, up to some hours later, for a total of 16 timepoints. We down-
loaded Hi-C data in cool format and accessed them by using the cooler package of python.
Lowest 5-percentile of data were excluded, in order to correct for the background noise.
Hi-C data were then normalized by using ICE normalization [50], through the iced li-
brary in python [51].

The stability algorithm was applied after setting all the parameters as shown in the
section 2.3. As well DADs and Hi-C heatmaps were represented by using the same tools
and packages shown in section 2.3.

As an example, in figure 2.7 results are shown for the chromosome 10, for 15 anal-
ysed timepoints. In analogy with what has been shown in the previous section, we
wanted to compare the structure of the earliest experimental timepoints exiting mitosis
with the latest ones. To do that, we compared the DADs-like structure of chromosomes
at different timepoints, by using the Adjusted Rand Index (ARI) seen in equation 2.3.2.
We used the timepoint 11hours as a reference, and the DADs-like structure of all the
previous timepoints was then compared with that reference structure. As an expamle,
results for 4 chromosomes are reported in figure 2.8. In addition, an average over the
simulation timesteps was calculated for every chromosome and over all chromosomes.
The results are reported in figure 2.9. Finally, we wondered which length scales of the
hierarchical organization were earlier reformed exiting mitosis. To do that, for every
timestep T of the algorithm, we took the set s of DADs detected at T, and calculated the
ARI over the experimental timepoints averaged over all chromosomes, normalizing all
the values between 0 and 1. Results are shown in figure 2.10.

Then, experimental timepoints corresponding to first reaching of 0.5 (half of their
height) for every timestep were collected. Results are shown in figure 2.11.

Noticeably, a local minimum is visible, correspondig to resolution timesteps 23,24
and 25. These timesteps correspond to an average length of 0.95Mb, 1.30Mb and 1.75Mb
respectively, suggesting that organizational structures at these length scales are the ones
that reform faster with respect to the others.

In conclusion, by detecting sistematically DADs on time-dependent Hi-C datasets
from HeLa cells, we showed that chromatin maintains a certain memory of its organi-
zational structure during the mitotic exit, showing a high percentage of structure that
is kept from mitosis to the latest experimental timepoints. Quantitatively, taken DADs
detected at experimental timepoint 11hours as a reference, similarities from 40% to 85%
were obtained in comparison with DADs detected at earlier timepoints. Furthermore,
66% was obtained by averaging the mitotic similarity over all chromosomes. Again,
these results highlight the presence of a backbone of the structure even in mitosis and,
in the light of the strict relationship between the three-dimensional organization of the
chromatin and the transcriptional activity, may suggest the possibility that transcription
occurs during mitosis and early interphase.

A further investigation on transcription reactivation during and exiting mitosis will
be shown in the next chapter.

42



2.4. Identifying DADs in HeLa cells during mitotic exit

Figure 2.7. Diffusion associate domains (DADs) and Hi-C maps for HeLa Chromosome 10.
DADs were represented assigning different colours to different communities detected over the
genomic coordinates (horizontal axis), over the simulation timesteps progression of the algo-
rithm (vertical axis). For the first timesteps, each region corresponds to a community. Then,
as the timestep increase, coarser communities are detected by the stability algorithm, until a
saturation is reached, i.e. the entire network becomes one single community, represented by
one single color. Hi-C heatmaps are reported as a reference, with the colorbar on the bottom
right providing the percentage with respect to the maximum value of the Hi-C matrix.
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2.4. Identifying DADs in HeLa cells during mitotic exit

Figure 2.8. ARI scores for Hela DADs-based structure at different experimenta timepoints
with respect to 11 hours after the release of synchronization. The ARI score versus simulation
timesteps of stability algorithm was calculated to compare the partitions generated by DADs de-
tected at 11 hours after the release of the synchronization with all the earlier timepoints, from
0 hours to 10 hours, as indicated by the legend on the right.

Figure 2.9. Average ARI score for HeLa DADs-based structure. a) The average ARI score per
chromosome was calculated over the simulation timesteps of the algorithm. Each colour cor-
responds to the chromosome indicated by the legend on the left. b) The ARI score over all
chromosomes was calculated by averaging the curves shown in panel a.
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2.4. Identifying DADs in HeLa cells during mitotic exit

Figure 2.10. ARI in function of experimental timepoints for different timesteps of stability al-
gorithm. ARI has been calculated over all experimental timepoints, and an average over all
chromosomes has been considered here. ARI values have been normalized between 0 and 1.
Each curve corresponds to the algorithm timestep indicated in the legend on the right. The
horizontal, dotted line has corresponds to 0.5, in order to highlights which resolution reaches
first the half of its height.

Figure 2.11. Differen velocity in structure reformation at different length scales. Experimen-
tal timepoints corresponding to first reaching of 0.5 (i.e. half of their height) were collected
and plotted in function of the timestep of the algorithm. Dotted vertical lines highlight local
minimum range, between timesteps 23 and 25.
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3
Regulation of transcription reactivation kinetics exiting mitosis

Premise: this chapter has the form of a stand-alone study. In fact, it has been submitted
as an independent article and is now under review. Only font and numerical conti-
nuity of references, equations and figures has been changed here with respect to the
submitted work, in order to make everything consistent with the rest of the thesis.

Authors

Sergio Sarnataro, Andrea Riba, Nacho Molina

3.1 Abstract

Proliferating cells experience a global reduction of transcription during mitosis, yet
their cell identity is maintained and regulatory information is propagated from mother
to daughter cells. Mitotic bookmarking by transcription factors has been proposed as
a potential mechanism to ensure the reactivation of transcription at the proper set of
genes exiting mitosis. Recently, mitotic transcription and waves of transcription reac-
tivation have been observed in synchronized populations of human hepatoma cells.
However, the study did not consider that mitotic-arrested cell populations progres-
sively desynchronize leading to measurements of gene expression on a mixture of cells
at different internal cell-cycle times. Moreover, it is not well understood yet what is
the precise role of mitotic bookmarking on mitotic transcription as well as on the tran-
scription reactivation waves. Ultimately, the core gene regulatory network driving the
precise transcription reactivation dynamics remains to be identified. To address these
questions, we developed a mathematical model to correct for the progressive desyn-
chronization of cells and estimate gene expression dynamics with respect to a cell-cycle
pseudotime. Furthermore, we used a multiple linear regression model to infer tran-
scription factor activity dynamics. Our analysis allows us to characterize waves of tran-
scription factor activities exiting mitosis and identify a core gene regulatory network
responsible of the transcription reactivation dynamics. Moreover, we identified more
than 60 transcription factors that are highly active during mitosis and represent new
candidates of mitotic bookmarking factors which could represent relevant therapeutic
targets to control cell proliferation.
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3.2 Introduction

Proliferating cells show a global downregulation of transcription during mitosis. This
results from the combination of three main processes: 1) nuclear envelope breakdown
leading to an increase of the volume that transcription factors (TFs) and the RNA poly-
merases II (RNAPII) can explore and therefore a decrease of their local concentration
around gene promoters; 2) major reorganization of chromatin architecture character-
ized by chromosome condensation, repositioning of nucleosomes in some regulatory
regions, loss of long-range interaction between enhancers and promoters and disassem-
bling of topological associated domains (TADs); and, 3) TF-DNA binding inactivation
through postranscriptionally regulated phosphorylation. As a consequence, most TFs
and the RNAPII are evicted from mitotic chromosomes and RNA synthesis is drasti-
cally reduced [60].

In spite of this global decrease of gene expression during mitosis, proliferating cells
are able to maintain their cell identity and propagate regulatory transcriptional pro-
grams from mother to daughter cells [56]. Mitotic bookmarking has been proposed as
a potential mechanism that could be involved in the transmission of regulatory infor-
mation during the cell-cycle [23]. Indeed, a significant fraction of TFs are able to remain
bound to chromatin during mitosis [32]. These mitotic-bound factors (MFs) show faster
interactions with mitotic chromatin than in interphase as reduced residence times have
been reported. It is believed that non-specific chromatin or protein-protein interactions
between MFs and chromosome coating proteins can explain this fast observed dynam-
ics [32, 31]. However, it has been shown for a handful of MFs, known as bookmarking
factors (BFs) [30, 54, 55, 64], their ability to interact specifically with at least a fraction
of their interphase target sites during mitosis, indicating that chromosomes are not as
compacted as previously thought [55]. In fact, chromatin accessibility and nucleosomes
landscape during mitosis remain unchanged on bookmarked regions bound by known
BFs [57, 58]. This ability of BFs to maintain chromatin structure locally could promote
a quick transcription reactivation exiting mitosis.

Transcription dynamics during mitosis and early G1 phase has recently been mea-
sured by metabolic labeling of RNA (EU-RNA-Seq) in synchronized population of Hu-
man Hepatoma cells HUH7[28]. Remarkably, this study showed a low but detectable
transcription activity during mitosis in up to 8000 genes. Furthermore, transcription
reactivation occurred in intense waves exiting mitosis and early G1 phase. However,
the study did not take into account that mitotic-arrested cell populations progressively
desynchronized once the block was released. As a consequence, RNA measurements
are performed on mixture of cells at different internal cell-cycle times. Moreover, it
is not understood yet what is the precise role of mitotic bookmarking on mitotic tran-
scription and the transcription reactivation waves. Ultimately, the core gene regulatory
network driving the precise transcription reactivation dynamics remains to be identi-
fied.

In this paper we developed mathematical models and computational methods to
address these open questions. First, in order to correct for the progressive desynchro-
nization of cell populations we assumed that there is a stochastic lag time until a cell can
restart the cell-cycle progression again. We characterized the distribution of lag times
by analyzing how the observed fraction of mitotic cells evolves over time after the mi-
totic block is released. This allows us to deconvolve the EU-RNA-Seq data and produce
gene expression profiles with respect to a cell-cycle pseudotime and classify the differ-
ent waves of transcription reactivation in relationship with the cell-cycle progression
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instead of the experimental time. Moreover, we identified the key TFs determining the
transcription reactivation dynamics. To do that, we developed an ISMARA-like model
[41] assuming that the expression of genes at a given time point of the cell-cycle pro-
gression is a linear combination of the activities of all the TFs that can bind on their
promoters. By knowing the deconvolved gene expression and integrating data on tran-
scription factors motif affinities, we calculated the activity of every expressed TF and
its role in transcription reactivation exiting mitosis. Indeed, this analysis allows us to
divide TFs in groups according to their peak of activity with respect to the cell-cycle
pseudotime and identify a core regulatory network of TFs responsible of the observed
transcription waves. Interestingly, we do not see a strong correlation between known
BFs as FOXA1 and the speed at which their target genes are reactivated. However, we
identified around 60 TFs that are highly active during mitosis and represent new can-
didates of mitotic bookmarking factors.

3.3 Results

3.3.1 Deconvolution of gene expression data from desynchronized cell pop-
ulations

In 2017, Palozola et al. published a study based on metabolic labeling of RNA
(EU-RNA-Seq) of prometaphase synchronized population of Human Hepatoma
cells (HUH7) by arresting cell-cycle progression [28] with nocodazole. EU-RNA-Seq
experiments were performed to measure newly synthesized transcripts at 0 minutes,
40 minutes, 80 minutes, 105 minutes, 165 minutes and 300 minutes after mitotic
block release as well as for an asyncronous cell population. In this study, the authors
highlighted the presence of low levels of transcription during mitosis and the fact
that housekeeping genes and not cell-specific genes are activated earlier during the
mitotic exit. We reanalyzed the EU-RNA-Seq datasets and characterized the expression
dynamics at the gene level. By performing k-means clustering on the gene expression
profiles, we identified 5 different clusters, presenting diverse transcription reactivation
dynamics over the experimental time. Similarly as the authors reported one of these
group showed a peak in the expression at 40 minutes, while others showed a later
transcription reactivation (see Fig. 3.1, panel a).

Notably, the study did not consider that mitotic-arrested cell populations progres-
sively desynchronize after washing out nocodazole and therefore the reported mea-
surements are performed on mixture of cells at different internal cell-cycle times. In
addition, at every experimental time point there is contamination from cells that es-
cape mitotic block. We developed a mathematical model to correct for the desynchro-
nization and the contamination of non-synchronized cells. To do so, we assumed that
after mitotic block release there is a stochastic lag time until cells can start again the
cell-cycle progression that is log-normal distributed with a certain mean µ and stan-
dard deviation σ. We introduced the concept of internal cell-cycle pseudotime τ , defined
as the effective cell-cycle time progression of a cell, starting once the lag time is over.
We then assumed that there is an average time τmit that cells need to complete mitosis.
Finally, we fitted the parameters of the model τmit, µ and σ using data from cell imaging
reporting how the fraction of observed mitotic cells evolves over time after the mitotic
block is released [28]. This led to an estimated median lag time of 30 minutes and an
average time to complete mitosis of 67 minutes (see Fig. 3.1, panel b and c and Methods
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for a detailed mathematical derivation).
By applying our model, we deconvolved the time-dependent EU-RNA-Seq data and

mapped them onto the internal cell-cycle pseudotime τ . As a result we obtained gene
expression dynamics with respect to the cell-cycle progression, allowing us to highlight
the transition between mitosis and early G1 phase. Again, we identified 5 different clus-
ters of genes showing distinct transcription reactivation dynamics over the cell-cycle
pseudotime τ . Strikingly, around 2000 genes showed an expression wave very early
during mitosis, presumably around metaphase, while a large fraction of genes reach
their reactivation peak just before exiting mitosis, during telophase or during the tran-
sition to early G1 phase, as shown in Fig. 3.1, panel d. In summary, our analysis allows
us to correct for desynchronization of cell populations and study gene expression dy-
namics with respect to the cell-cycle pseudotime highlighting the waves of transcription
in relationship with the transition between mitosis and interphase.

3.3.2 Transcription factor activity dynamics during mitosis and early G1
phase

The transcription waves identified in the previous section are driven by regulatory tran-
scriptional programs mainly activated by transcription factors (TFs). To understand
which ones among all TFs are in fact the principal drivers of the transcription reactiva-
tion dynamics, we developed an ISMARA-like approach [41]. Thus, we assumed that
the normalized log-transformed expression egτ of a gene g at cell-cycle pseudotime τ
can be obtained as a linear combination of the cell-cycle dependent activities Afτ of
all TFs f that can potentially regulate the gene. The model can be summarized by the
following equation:

egτ =
∑

f

NgfAfτ (3.3.1)

where the values Ngf represent the entries of a matrix N containing the number of
binding sites for the TF f associated with promoter of the gene g, taking into account
the affinity between the motif of f and the sequence of the gene promoter [59]. From
the analysis, we excluded TFs associated to unexpressed genes. Furthermore, to avoid
overfitting we introduced a regularization term that enforces smooth TF activities over
the cell-cycle time and we calibrated using a cross-validation approach. For further
mathematical details we refer to Methods. Our analysis allows us to infer the activ-
ity of 332 TFs. This can be understood as a dimensionality reduction approach as we
describe the problem of transcription reactivation with much fewer parameters, since
we pass from the analysis of thousands of genes to only hundreds of TFs (see Fig. 3.2,
panel a). To analyze the activity dynamics we divide them in 3 clusters, according to
their profile over τ (see Methods). We showed that almost 19% of TFs present positive
activity during mitosis, with a peak in the first minutes, and then progressive decrease
of activity. Conversely, 36% of TFs present a negative activity during mitosis, and then a
high activity in early G1. Lastly, the remaining 45% of TFs show a moderate amplitude
in their dynamics suggesting that they play a minor role on transcription reactivation
dynamics (the results are shown in Fig. 3.2, panel b). Among TFs that are active dur-
ing mitosis, we obtain known bookmarking factors as C/EBP, HSF1, TBP, GATA1 and
ESRRβ [29, 28, 61, 62, 23] reassuring that our approach is able to identify relevant TFs.
Indeed, activities of TFs that are annotated to the Gene Ontology category cell-cycle
show an intense dynamics during mitosis and early G1 phase (see supp. Fig. 3.S4). In-
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terestingly, by sorting TFs according to when their highest peak of activity occurs, we
observed waves of activity suggesting an intrinsic TF hierarchy with respect to their
role on the temporal reactivation of transcription after mitosis (see Fig. 3.2 panel b).

Determining the molecular mechanisms underlying the TF activity dynamics that
we inferred goes beyond the scope of this study. However, we can have a first clue by
analyzing the correlation between the TF activity and the expression of the correspond-
ing TF gene. Indeed, a strong correlation indicates that changes in transcription may be
responsible for changes in activity. On the contrary, low correlations may suggest that
postranscriptional regulation is required to explain the TF activity dynamics. In Fig. 3.2
panel c, we show activities of mitotic- and early G1-active TFs with a high amplitude
dynamics together with their expression profiles. Interestingly, TBP, TAF1 and FOSL2
show a high positive correlation indicating that their activities may be regulated at the
transcriptional level. On the other hand, SOX13 and HNF1A show a clear delay between
expression and activity which could reflect the delay on the accumulation of active pro-
tein due to mRNA and protein half-lives or postranscriptional regulation. Strikingly,
POU5F1 shows a strong negative correlation which suggests that may act mainly as a
repressor. In summary, our analysis not only allows us to identify the activity dynamics
of key TFs involved in transcription reactivation, but also provides preliminary hints on
the molecular mechanisms that may be involved in such dynamics.

3.3.3 Bookmarking and transcription reactivation kinetic

Next, we investigated the role of mitotic bookmarking in the transcription reactivation
dynamics. To do that, we analyzed the expression of genes associated to FOXA1, a liver-
specific factor and one of the first identified bookmarking factors. We used mitotic
ChIP-Seq data from a study of Caravaca et al. [30]. We selected the genes associated
to FOXA1 ChIP-Seq peaks (see Methods) and we calculated the average expression of
these genes and compared it with the overall average gene expression. Surprisingly,
genes associated to FOXA1 reach their activation peak later than the overall peak of gene
expression that occurs during the transition between mitosis and early G1 phase (see
Fig. 3.3, panel a). Then, we compared the activity of FOXA1 with the average activity
of all TFs, revealing a negative peak during mitosis (see Fig. 3.3, panel b), in accordance
with the results shown in Fig. 3.3, panel a. These results suggest that FOXA1, despite its
presence on mitotic chromosomes through specific and non-specific interactions, is not
sufficient to promote quick transcription reactivation. However it may play a structural
function by keeping the chromatin open to promote binding of other TFs.

To scale up this analysis we took advantage of a recent large scale study by Rac-
caud et al. in 2019 [32]. The authors were able to systematically measure the mitotic
chromosome binding of 501 TFs in mouse fibroblast cells by live-imaging cell lines car-
rying exogenous florescence constructs. The mitotic bound fraction (MBF) was defined
as the fraction of fluorescence signal located on mitotic chromosomes over the total cell
signal. According to this score the TFs were divided in three categories (enriched, inter-
mediate and depleted) indicating their capacity to bind mitotic chromosomes and their
potential to be bookmarking factors. We then assumed that human TFs in HUH7 cells
behave similar as their mouse paralogs and assigned the corresponding MBF score. We
hypothesized that genes regulated by TFs with high MBF should be ready to be reac-
tivated earlier. To test this, we calculated a MBF weighted average score (MWAS) for
each promoter as the average MBF of all the TFs that regulate a given gene promoter
weighted by the number of their binding sites. Then, we divided genes in high and
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low MWAS and we calculated the average expression of these two groups (see Meth-
ods for further information). Genes associated to high MWAS, i.e genes that tend to
be regulated by TFs with high MBF, did not show a faster reactivation dynamics but a
significant larger expression during early G1 phase (see Fig. 3.3, panel c and d). Consis-
tently, we showed no significant difference between the MBF distribution of TFs with
high activity during mitosis or during early G1 (supplementary Fig. 3.S5). These re-
sults indicate that there is an absence of correlation between TF mitotic binding and
TF mitotic activity and quick transcription reactivation of their target genes. We can-
not rule out that the absence of correlation could be due to the fact that MBF scores
were measured with an artificial system in a different cell line of a different organism.
However, the absence of correlation suggests that previously reported mitotic bound
factors, as in the case of FOXA1, may have a structural function by keeping chromatin
open during mitosis and the speed of transcription reactivation may be then regulated
by other determinants.

Next, we studied whether promoter architecture could be one of the determinants
of early transcription reactivation. Surprisingly, just the total number of binding sites
within the gene promoter is a strong feature to predict early or late reactivation. In-
deed, average expression of genes with large number of binding sites shows a quick
transcription reactivation during mitosis, in contrast to a reactivation during early G1
of genes with small number of binding sites (see Fig. 3.3, panel e and f). Two non-
exclusive mechanisms could explain why strong promoters reactivate earlier: first, gene
promoters with more TF binding sites may be easier to kept accessible during mitosis
as more TFs could compete against nucleosomes leading to nucleosome free regions.
Second, large number of binding sites may facilitates that TFs find the promoters and
thus increase the chance to recruit the transcriptional machinery. Finally, as expected,
genes that have a large number of binding sites for TFs with a high inferred activity
during mitosis (high mitotic activity weighted average score, MAWAS), showed a high
mitotic transcription and a quick transcription reactivation (see Fig. 3.3, panel g and h).
Therefore, we believe that our method allows to identify new bookmarking factors that
should not only bind mitotic chromosomes but be able to bind specific DNA binding
sites during mitosis. In addition, we predict that promoters with large number of bind-
ing sites for these TFs should show a higher degree of chromatin accessibility during
mitosis.

3.3.4 Identification of the Core Regulatory Network responsible for the tran-
scription reactivation after mitotic exit

Next, we wanted to identify the TFs, among the 332 for which we are able to infer activ-
ities, that have a major role on the reactivation of transcription exiting mitosis. Namely,
the key TFs that if perturbed may affect more significantly the measured gene expres-
sion patterns. To do so, we calculated the fraction of explained variance as a measure of
the performance of our model to fit the data. Then, we defined a TF importance score
as the reduction on fraction of explained variance when the TFs is removed as an ex-
planatory variable from the multiple linear regression model (see Methods for further
details). Furthermore, in Fig. 3.4 we show a Core Regulatory Network (CRN) where
the nodes are formed by the 5% top most important TFs and the links represent poten-
tial regulatory interactions between the selected TFs according to the presence of TF
binding sites in their promoters. Interestingly, the CRN shows a large number of reg-
ulatory links (149 connections) while random networks with the same number of TFs
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produce a smaller number of connections (36 on average). Thus, the high interconnec-
tiviy of our CRN suggests that the identified TFs may be related functionally. Indeed,
some of them have been reported to be involved in cell-cycle or cell proliferation and
growth as ATF1, FOS, CEBPZ, SP3 and KLF4 [63]. Moreover, the CRN structure shows
multiple feedback loops rather than a hierarchical network as one could expect taking
into account the observed sequential waves of transcription reactivation. This type of
structure has the potential to show cycling dynamics which may be important not only
for the reactivation after mitosis but for the regulation of transcription across the whole
cell-cycle. In conclusion, we predict that these TFs could represent relevant therapeutic
targets to control cell proliferation.

3.3.5 Genes within in the same TAD show a higher correlation on the reac-
tivation kinetics

The connection between transcription and the 3D structure of chromatin is currently a
very active field of research. During mitosis, topologically associated domains (TADs)
are disrupted and rebuilt at different dynamics during the transition between mitosis
and G1 phase [65]. However, the causal connection between transcription reactivation
and chromatin structure reformation exiting mitosis is not known yet. As a first attempt
to investigate this relationship, we analyzed the correlation between transcription re-
activation profiles of genes belonging to the same TAD. To do that, we took two TAD
lists identified in human IMR90 and ES cells, from Hi-C experiments [11]. Although
these are different cells lines than the HUH7, it has been shown that TADs are highly
conserved between different cell-types and even different organisms [11]. We obtained
a total of 2290 and 3061 TADs respectively. For each TAD in both lists, we identified
the expressed genes that are located within its limits, finding respectively 10225 and
9849 genes. Pearson correlation coefficients were calculated between all pairs of genes
within the same TAD. As a control, expressed genes were randomly located into TADs
respecting the total number of genes in each TAD. Distribution of correlation coeffi-
cients as well as distribution of random coefficients are shown in Fig. 3.5. Interestingly,
genes belonging to the same TAD show a higher correlation than random pairs of genes,
indicating that transcription reactivation dynamics are similar between genes that are
located near in space within the same local self-interacting chromatin 3D structure. Fi-
nally, we hypothesized that TADs containing genes characterized by a quick transcrip-
tion reactivation should show a faster reformation exiting mitosis. Further experimen-
tal work would be required to validate our hypothesis.
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Figure 3.1. Deconvolution of gene expression data of synchronized cell population leads to
dynamic expression profile respect to cell-cycle average profile. a: Genes can be divided in
groups according to their dynamic expression profiles over time. Each row corresponds to a
gene. Black horizontal lines divide the different clusters of genes. The color scale represents
the level of the z-score of expression of each gene, as shown by the colorbar on the left. On the
right, the number of genes for each cluster is indicated as well as the color corresponding to the
cluster expression average shown on the bottom panel. b: We assume that cells have to wait a
stochastic, log-normally distributed lag time to start again the cell-cycle progression after the
release of the chemical cell-cycle arrest by nocodazole. Here, a pictorial representation of lag
time distribution, where the green part of area represents the fraction of cells that already ex-
ited mitosis at two different experimental time points. The dashed line indicates time τmit that
cells need to complete mitosis. c: Blue dots: quantification of cells showing condensed (mitotic)
and decondensed (non-mitotic) chromatin after synchronization release (data from [28]); Or-
ange line: model fitting used to infer τmit and the parameters of the log-normal distribution, σ
and µ. d: After the deconvolution, genes were divided in groups according the their dynamic
expression profile over the internal pseudo cell cycle time τ . The vertical white line represents
τmit and separates ideally mitosis from interphase in early G1 phase. The color scale represents
the level of the z-score of expression of each gene, as shown by the colorbar on the right. On
the right, the number of genes for every cluster is indicated as well as the color corresponding
to the cluster expression average shown on the bottom to one of the curves on the bottom.
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Figure 3.2. Transcription factor activity dynamics during mitosis and early G1 phase. a:
Schematic representation of the model: the expression egτ of the gene g at cell-cycle pseudo-
time τ is a linear combination of the activities of different transcription factors f binding the
promoter of g. Ngf represents the entries of a matrix N containing the number of sites for TF f
associated with promoter of the gene g, taking into account the affinity between the motif of f
and the sequence of the promoter. b: TFs can be divided in groups according to their activity
dynamics over the cell-cycle pseudotime τ . The vertical white line represents τmit, and indicates
the transition between mitosis and interphase. On the right, the number of TFs belonging to
each cluster is indicated. c: Activities of mitotic-active (orange curves) and early-G1-active (red
curves) TFs that show a high amplitude dynamics. Grey lines show the gene expression dy-
namics of the corresponding TF genes. Pearson correlation coefficients between the TF activites
and expressions are shown in each panel. Dashed lines represent τmit.
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Figure 3.3. Bookmarking and transcription reactivation dynamics. a: The average expression
of all genes (grey line) was compared with the average expression of FOXA1 target genes dur-
ing mitosis (green line). b: The activity of FOXA1 (blue line) in comparison with the average
activity of all TFs (grey line). c: Gene expression pattern as a function of the promoter MWAS
(MBF weighted average score). The average expression of all genes (grey line) was compared to
the average expression of genes whose promoters tend to be regulated by TFs with high MBF
(red line) and low MBF (blue line) (see Methods). d: The same as in panel c, but gene expres-
sion patterns have been processed as done when applied the linear model to infer the activity,
as described in Methods. e: Gene expression pattern as a function of the total number of TF
binding sites in the promoter. The average expression of genes with large (red) and low (blue)
number of promoter binding sites are compared to the overall averege expression (grey line).
f: The same as in panel e, but gene expression patterns have been processed as done when ap-
plied the linear model to infer the activity, as described in Methods. g: Gene expression pattern
as a function of the promoter MAWAS (mitotic activity weighted average score, see Methods).
The average expression of genes with high (red) and low (blue) MAWAS are compared to the
overall averege expression (grey line). h: The same as in panel g, but gene expression patterns
have been processed as done when applied the linear model to infer the activity, as described
in Methods. Dashed vertical lines in all panels indicate τmit.
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Figure 3.4. Identification of the Core Regulatory Network responsible for the transcription re-
activation after mitotic exit. Inferred core regulatory network (CRN) by selecting the top 5%
of the TFs according to their importance in explaining the gene expression patterns and their
inferred time-dependent activities. Colours indicate the cluster to which TFs belong, in accor-
dance with the in Fig. 3.2, panel b, vertical coloured bars on the right. Note that the majority
of TF motifs are associated uniquely to single TF, while some other motifs are shared by more
than one TF, precluding the inference of single TF activities of motifs which can be potentially
bound by more than one TFs.

Figure 3.5. Genes belonging to the same TADs show an higher correlation in expression. Corre-
lations between gene expressions for genes belonging to the same TAD were calculated, for two
different TADs sets (IMR90, hESC cells). In red, the KDE of the distribution of the correlation
is plotted, in comparison with a random model (grey plot). Dashed vertical lines represent the
average values of the corresponding distributions.
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3.4 Conclusion

Cell identity maintenance in proliferating cells is a biological process that has crucial
implications in developmental biology, regenerating medicine and cancer. Neverthe-
less, the precise molecular mechanisms responsible for the transmission of regulatory
information from mother to daughter cells are not fully understood yet. Mitotic book-
marking by TFs through specific DNA binding on mitotic chromosomes has been pro-
posed as a mechanism to reinforce cell identity maintenance during cell division. In
this paper we studied the regulation of transcription reactivation exiting mitosis and
the connection with mitotic bookmarking.

First, we reanalyzed time-dependent EU-RNA-Seq data on synchronized cell popu-
lations by a mitotic arrest, to correct for the progressive desynchronization of cells after
block release. This allowed us to estimate gene expression profiles with respect to a
cell cycle pseudotime with an explicitly defined transition between mitosis and early
G1 phase. Remarkably, we identified a set of genes that show a very early wave of tran-
scription reactivation during mitosis. However, the majority of genes showed a peak of
transcription at telophase or during the transition between mitosis and G1.

Next, we estimated TF activity dynamics of 332 expressed TFs by fitting a multiple
linear model to the deconvolved gene expression profiles. We observed time-dependent
waves of TF activities suggesting an intrinsic TF hierarchy with respect to their role on
transcription reactivation after mitosis. In addition, we investigated whether TFs previ-
ously reported to bind mitotic chromosomes were responsible for a faster reactivation
dynamics. Surprisingly, we did not find a strong correlation between genes regulated
by mitotic bound TFs and the speed of reactivation. However, our approach allowed
us to identify around 60 TFs that are highly active during mitosis and represent new
candidates of mitotic bookmarking factors. Therefore, we predict that the interactions
of these factors with their specific target sites during mitosis are the molecular mech-
anisms responsible for mitotic transcription and transcription reactivation. Moreover,
we hypothesize that these specific interactions may also play an important role main-
taining chromatin accessibility on mitotic chromosomes. Further experimental work
would be needed to validate our hypothesis and predictions.

Moreover, we reconstructed a core regulatory network underlying the dynamics of
transcription reactivation exiting mitosis, by selecting the key TFs that showed the high-
est explanatory power in our multiple linear regression model. Then, we propose a list
of candidates to be the crucial players in the process of reactivating the gene expression
in the first stages of the interphase, ensuring the cell identity. We predict that these
TFs could represent relevant therapeutic targets to control cell proliferation. Further
experiments are required to validate our predictions and prove the active role of TFs
on chromatin accessibility and 3D structure.

3.5 Methods

3.5.1 Fitting of model parameters for deconvolution of gene expression data

To estimate gene expression dynamics with respect to an internal cell-cycle pseudotime,
we assumed that after the release of the synchronization there is a stochastic lag time
until cells can start again the cell-cycle progression. According to our model, the cell-
cycle progression of a cell is represented by the internal cell-cycle pseudotime τ = t−η,
where t is the experimental time and η is the stochastic lag time that the cell had to
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wait until the cell-cycle progression was restarted again. We further assumed that the
lag time η is log-normally distributed with a certain mean µ and standard deviation
σ. Then, the probability of finding a cell in the population with an internal cell-cycle
pseudotime τ at a given experimental time t can be written as:

P (τ |t)dτ =
1√

2πσ2(τ − t)
e−

(log(t−τ)−µ)2

2σ2 dτ (3.5.1)

Assuming that cells require an average time τmit to complete mitosis we can calculate
the fraction of cells waiting for mitosis to be finished as q(t) =

∫ τmit
0 P (τ |t)dτ and solving

the integral we obtain:

q(t) =

{

1
2 − 1

2erf( log (t−τmit)−µ
√
2σ

) t > τ

1 t ≤ τ
(3.5.2)

Then, we fit the parameters of the stochastic model (τmit, µ and σ) by using data from
[28] on the time evolution of the number of mitotic cells observed after synchronization
treatment release. To do so, we define the likelihood of the data based on the assump-
tion that the cell counts follow a binomial distribution with probability q(t). Thus,

L =
∏

i

q(ti)
nmit
i (1− q(ti))

ntot
i −nmit

i (3.5.3)

where ntot
i and nmit

i are, respectively, the total number of cells and the number of cells in
mitosis counted at experimental time t0 = 0 minutes, t1 = 40 minutes, t2 = 80 minutes,
t3 = 105 minutes, t4 = 165 minutes and t5 = 300 minutes. Then, the log likelihood can
be written as:

logL =
∑

i

nmit
i log (q(ti)) +

∑

i

(ntot
i − nmit

i ) log (1− q(ti)) (3.5.4)

By performing an optimization of Eq. 3.5.4 (python scipy optimize package, nelder-mead
algorithm), we can infer the parameters τmit, µ and σ, obtaining, respectively, 67min,
3.43 and 0.74. Once the parameters have been inferred, the probability P (τ |t) is fully
determined and, therefore, we can recover the gene expression with respect to the in-
ternal cell-cycle pseudotime τ using the following convolution equation:

rg(t) =

∫ t

0
Eg(τ)P (τ |t)dτ (3.5.5)

where rg(t) represents the expression of the gene g at experimental time t (given by the
EU-RNA-Seq data), Eg(τ) is the expression of the same gene g at the cell-cycle pseudo-
time τ . This equation basically reflects that the gene expression measured at a certain
experimental time is the population average over the expressions of cells at different
cell-cycle times. In case of perfect synchronization over time, the probability P (τ |t)
would become a Dirac delta function and the gene expression in both times would be
the same. Furthermore, we took into account the fact that the samples were contami-
nated by a fraction πM = 0.23 of cells that never exited mitosis and a fraction πI = 0.075
of cells that did not response to the mitotic block and stayed in interphase (see Fig. 3.1,
panel c). It means that only a fraction πC = 1 − πM − πI starts again the cell cycle
progression within the duration of the experiment. Then, this can be summarized by
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describing the measured gene expression as a mixture of the three cell populations as
follows:

rg(t) = πC

∫ t

0
Eg(τ)P (τ |t)dτ + πMEg(0) + πIE

I
g (3.5.6)

rag = fmit

∫ τmit

0
Eg(τ)dτ/τmit + fIE

I
g (3.5.7)

where,EI
g is the average expression during interphase and an extra equation is included

to relate the gene expression rag measured on an asynchronous cell population as a
weighted average of the gene expression during mitosis and during interphase where
the weights reflect the fraction of the cell-cycle duration TC that cells expend on average
in each phase, i.e fmit = τmit/TC and fI = 1− fmit.

Then, to perform the deconvolution we discretized the cell-cycle pseudo-
time into small intervals (δτ = 1 min) and expressed the Eq. 3.5.6 and 3.5.7
into matricial from: rg = MEg, where the expression vectors are defined as
rg = (rg(0), rg(t0), rg(t1), . . . , r

a
g ) and Eg = (Eg(0), Eg(δτ), Eg(2δτ), . . . , E

I
g ) and the

matrix M is the sum of three components: M = MC + MM + MI that account
for the three distinct cell populations. First, the cell-cycle matrix MC models the
desynchronization of the cells that re-enter the cell cycle, as in Eq. 3.5.5, and can be
written as:

MC =













πCP

0
0
· · ·
0

0 0 · · · 0 0













(3.5.8)

where P is the discrete version of Eq. 3.5.2. Second, the mitotic matrix MM adds to the
model the contribution of the cells that are still in mitosis by mapping them into τ = 0.
Its explicit form is:

MM = πM





















1 0 · · · 0 · · · 0
1 0 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · ·
1 0 · · · 0 · · · 0









0
0
· · ·
0

0 0 0 · · · · · · · · · 0 0













(3.5.9)

And third, the interphase matrix MI exploits the asynchronous dataset to infer the av-
erage expression levels during interphase. The matrix takes the following form:

MI =





















0 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 · · · 0









πI
πI
· · ·
πI

1
TC

1
TC

· · · · · · · · · · · · · · · fI













(3.5.10)

where the cell cycle duration TC is set to 24h [1].
Hence, the deconvolution problem can be understood as a multiple linear regression

and, therefore, we can infer the gene expression in the space of the cell-cycle pseduotime
by optimizing the following quadratic loss function:
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LSM =
∑

g

| rg −MEg |2 +λ
∑

gi

| Eg,τ+1 − Eg,τ |2 (3.5.11)

where we added a smooth Ridge regularization term to be able to solve the overrepre-
sented linear model and avoid overfitting. Then, the solution is E∗

g = (Q+λI)−1MT
rg,

where Q = MTM and I is the regularization matrix.
Finally, To choose the parameter λ, we calculated the Akaike Information Criterion

(AIC) and the Bayesian Information Criterion (BIC) scores in function of λ, as follows
[66, 67]:

AIC = NE · χ2 + 2NG ·D (3.5.12)

BIC = NE · χ2 + 2NG ·D · log(NE) (3.5.13)

where NE is the number of experimental time points, NG the total number of genes,
χ2 =

∑

g | rg −ME
∗
g |2 is the minimum error and D is the degree of freedoms that, for

a multiple linear regression model with smooth Ridge regularitation, can be calculated
as D = Tr(M((Q + λI)−1MT ). The BIC score tends to introduce a stronger penalty
producing a solution more robust against overfitting, therefore we chose λ = 0.79 that
minimizes the BIC score (see supp. Fig.3.S1).

3.5.2 Visualization of the gene expression through heatmaps

To represent the gene expression as shown in Fig. 3.1 panel a, processed EU-RNA-Seq
data at the transcript level from [28] were used. Transcript FPKMs from the same gene
were then grouped to obtain gene level EU-RNA-Seq data, and all the genes with a low
expression on the asynchronous sample (< 36 FPKM) were excluded (see supp. Fig.
3.S1, panel a). Then, a z-score was calculated, correcting each FPKM value by subtract-
ing the mean µg and dividing by the standard deviation σg, both µg and σg calculated
over the corresponding gene. Genes were divided into 5 clusters (the optimum number
to obtain significantly different profiles) according to their z-score over time, by using
the KMeans tool from sklearn python library. The heatmap was represented by using
seaborn python library, ordering the genes of each cluster according to their norm with
respect to the corresponding cluster average expression.

3.5.3 Inference of transcription factor activities

We developed an ISMARA-like model [41] where the expression of a given gene with
respect to the cell-cycle pseudotime can be obtained as a linear combination of time-
dependent activities of all TFs that can potentially bind its promoter. First, a as pro-
posed in [41], we preprocessed our data as follows: to revert the z-score transformation
performed above we multiplied the gene expression values Egτ by the standard devia-
tion σg and added the average µg. Second, in order to calculate the log2 expression for
all genes, we add a pseudo-count to the correctedEgτ values, i.e. for every given time τ ,
we ranked all the values higher than zero and we calculated the 5th percentile pcτ . We
then added pcτ to the corresponding Egτ . After that, we calculated êgτ , i.e. normalized
values of the gene expression at a cell-cycle pseudotime τ , as follows:

êgτ = log2

[

106 · Egτ
∑

g′ Eg′τ

]

(3.5.14)
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We further normalized the expression of genes across pseudotime and genes resulting
in egτ = êgτ − 〈êg〉 − 〈êτ 〉+ 〈〈ê〉〉. Finally, we write the linear model as:

egτ =
∑

f

NgfAfτ (3.5.15)

where the value Ngf represents the number of binding sites for the TF f on the gene
promoter g, taking into account the affinity between the motif of f and the sequence of
the promoter, and the unknown parameter Afτ is the activity of the TF f at a given cell-
cycle pseudotime τ . The binding site matrix is further normalized to ensure

∑

g Ngf =
0. Note that the TF activities are then zero mean variables.

Then we used least square fitting to obtain the TF activites. To avoid overfitting we
included a Ridge regularization penalty. To estimate the weight of the regularization
we calculated the Mean Square Error (MSE) for a training and a test datasets and we
performed a 80-20 cross-validation. A regularization factor λ = 443 was chosen, corre-
sponding to the minimum of the MSE of the test dataset (see supp. Fig. 3.S2). In addi-

tion, we calculated the explained variance (EV) of the model, EV =
(egτ−ethgτ )

2

(egτ−µg)2
, where

ethgτ is the theoretical expression of the gene g at internal cell cycle time τ , i.e. calculated
using the inferred activity Afτ and the matrix Ngf , and µg is the mean among all the
values egτ . We obtained a regularization factor λ = 443, corresponding to the maxi-
mum of the EV of the test dataset (supp. Fig. 3.S2), in accordance with the minimum
obtained for the MSE.

3.5.4 Visualization of the TFs activities through heatmaps

To represent the TFs activities as shown in Fig.3.2, the TFs were divided into 3 clusters
according to their activity dynamics over τ . First, we calculated the standard devia-

tion over time of TF activities as σf =
√

∑

τ A
2
fτ and classify a TF as high amplitude

dynamic if σf > 0.07. Second, we sorted TFs according to when their maximum activ-
ity peak occurred and defined a TF as mitotic active if the peak appeared before τmit.
Therefore, TFs were classified as either mitotic active, early-G1 active or non-dynamic.
The heatmap in Fig.3.2 was represented by using seaborn python library, ordering the
TFs in each cluster by the the first reached maximum over τ .

To represent the TFs activity as shown in supp. Fig. 3.S3, we inferred the mean
activity Āf of each factor f , as described in [41], and then we added Āf to the corre-
sponding Afτ values. Then, they were divided in 3 groups by performing a k-means,
through the KMeans tool from sklearn python library.

To represent the TFs activity as shown in supp. Fig. 3.S4 only TFs corresponding to
genes belonging to the Gene Ontology (GO) category (Cell Cycle - GO:0007049) were
considered.

3.5.5 Core Regulatory Network

To build the core regulatory network (CRN) we selected the TFs that showed a high
degree of explanatory power to reproduce the gene expression dynamics. To do that,
we assigned a score for each TF based on its contribution to the explained variance by

calculating a reduced explained variance EVf =
(egτf−e

′th
gτf

)2

(egτf−µg)2
, i.e. the EV as shown in the

section 3.5.3 but removing from the model the corresponding TF f . Then, we defined
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the importance score of a TF by the ratio EVf

EV
and we ranked all TFs according to this

score taking into account that the smaller is the ratio the higher is the impact of the
TF on the explanatory power of the model. The figure was then generated by using
digraph library in Matlab, by selecting relevant TFs and corresponding genes in the N

matrix.

3.5.6 Genes associated to TFs

To establish which genes are associated to FOXA1, as shown in Fig. 3.3, panel a, we took
into account the mitotic ChIP-Seq peaks of FOXA1 from [30]. Then, for every peak, we
selected the nearest expressed gene, using as references the corresponding TSS and the
average point of the selected peak. So, we obtained a list of expressed genes that we
defined as genes bound by FOXA1 during mitosis.

To establish which genes tend to be regulated by TFs with high or low MBF [32], as
shown in Fig. 3.3, panels c and d, we calculated what we called MBF weighted average
scores (MWAS) as follows: for each gene g, we took the number of binding sites Ngf

corresponding to the factors f for which we know the MBF score. Each of these values
was multiplied for the corresponding MBF, and then they were summed all together.
Finally, this sum was divided by the total number of binding sites, i.e. the sum

∑

f Ngf .
This score is what we called MWAS. Then we ranked the genes according to the MWAS,
and we removed the ones with MWAS = 0. The 10% of the genes with the highest
MWAS were then considered associated with enriched TFs ("enriched genes"), while the
10% of the genes with the lowest MWAS were considered associated with the depleted
TFs ("depleted genes").

To obtain genes enriched or depleted in binding sites, we calculated for each gene
promoter the total number of binding sites, i.e.

∑

f Ngf and then the 10% of the genes
with largest number of binding sites and the 10% of the genes with smallest number
were considered to calculate average expression profiles as shown in Fig. 3.3 panel e
and f.

To obtain genes with large number of binding sites for TFs with a high inferred
activity during mitosis, as as shown in Fig.3.3, panels g and h, we calculated what we
called (high mitotic activity weighted average score (MAWAS), i.e. we adopted the same
procedure used to calculate the MWAS, but taking into account average mitotic activity
instead of MBF score for each TF.

3.6 Supplementary Figures
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Figure 3.S1. Data processing for deconvolution. a: Log2 histogram of FPKM reads at gene
level for asynchronous data. The dashed vertical line represents the threshold we considered
to process our data: genes with asynchronous FPKM < 36.76 were excluded. On the vertical
axis, kernel density estimation is indicated. b: AIC and BIC scores were calculated in order to
establish the best λ parameter for the regularization of the deconvolution process (see Meth-
ods). Both AIC and BIC showed a minimum, and we choose λ = 0.79, corresponding to the
BIC minimum (dashed vertical line). c: Average gene expression of convolved (grey line) and
deconvolved (yellowish line) data were represented on the same plot.
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Figure 3.S2. Cross validation of the linear model. a: A cross-validation 80/20 was performed
to find the best λ regularization parameter for inferring the TFs activity (see section 3.5.3). A
value λ = 443 was chosen (dashed vertical line), corresponding to the minimum of the Mean
Squared Error (MSE) of the test dataset (see Methods). b: The same analysis shown in the
panel a was performed by using Explained Variance (EV) instead of MSE. The dashed vertical
line corresponds to the maximum λ = 443, in accordance with the minimum MSE.
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Figure 3.S3. Transcription factors dynamics taking into account their average activity. Here,
the mean activity Āf of each factor f was added to Afτ , and then TFs were clustered according
to the profile of their activity over the internal pseudo cell cycle time τ . The vertical white line
represents τmit, and separates ideally the mitosis from the interphase. On the right, the number
of TFs for every cluster is indicated.

65



3.6. Supplementary Figures

Figure 3.S4. Transcription factors dynamics taking into account only cell-cycle GO category.
Here, only TFs associated to genes belonging to the Gene Ontology (GO:0007049) category have
been shown and clustered. In this case, only 2 main groups of TFs have been individuated, and
both of them show a significant activity change over τ . The vertical white line represents τmit,
and separates ideally the mitosis from the interphase. On the right, the number of TFs for every
cluster is indicated.

Figure 3.S5. Average MBF for mitotic and early G1 active transcription factors. Boxplots show-
ing the average MBF for TFs with higher activity during mitotis (green box) and during early
G1 (orange box) respectively, in comparison with the average of all TFs (blue box).
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4
A preliminary analysis on 3D structure reformation after mitosis

The connection between transcription and the 3D structure of chromatin is currently a
very active field of research. During mitosis, topologically associated domains (TADs)
are disrupted and rebuilt at different dynamics during the transition between mitosis
and G1 phase [65]. However, the causal connection between transcription reactivation
and chromatin structure reformation exiting mitosis is not known yet.

Here, we applied the linear ISMARA-like model described in chapter 3 to infer
the activity of transcription factors during the formation and the development of the
boundaries of TADs. As we will show in the next sections, thanks to this preliminary
analysis we could identify new TFs that may play an important role in the formation
of TADs after mitosis, introducing new possible regulators in the scenario of the 3D
structure organization of the chromatin.

4.1 Transcription factors dynamics in boundaries reformation

during and exiting mitosis

The insulation score (IS) of a genomic region is defined as the average interaction oc-
curring in a certain vicinity of the region. Minima of IS reflect high insulation, and it’s
the most common way to classify TAD boundaries [68]. Using the IS, equation 3.3.1 can
be modified to describe the process driving the boundaries reformation exiting mitosis.
To do so, we assume that ISbt, the insulation score of the region b at time t, is a linear
combination of the activity Aft of different TFs f at time t. Then we have:

ISbt =
∑

f

KbfAft (4.1.1)

where the values Kbf represent the entries of a matrix K containing the number of sites
for TFs f on the regions b, taking into account the affinity between the motif of f and
the sequence of the regions.

4.2 Results

The equation 4.1.1 has been sistematically applied to the dataset published in [34] and
already presented and used in chapter 2, section 2.4, as described thereafter.
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We downloaded Hi-C data in cool format, and we processed them by using HiC-
Explorer tools [69]. hicConvertFormat was used to convert cool files in h5 files at 32kb of
resolution. ICE normalization was performed by using hicCorrectMatrix. We decided to
use TADs at 11 hours after the release of the mitotic block as a reference: each of the cor-
responding 4321 boundaries represents then a region b of length 32kb in the equation
4.1.1. TADs were called by using hicFindTADs, by using the following parameters: min-
Depth=96000, maxDepth=192000, step=32000, thresholdComparison=0.05, delta=0.01,
correctForMultipleTesting=fdr. hicFindTADs was also used to calculate the insulation
score (IS) in correspondence of the 4321 reference regions for datasets at previous ex-
perimental timepoints (0, 0.5, 1, 2, 2.5, 3, 3.5, 4.0, 4, 4.5, 5, 6, 7, 8, 9 and 10 hours after the
release of the mitotic block). To choose a reliable set of parameters, we tested different
combinations and compared, by a visual inspection, the TAD boundaries obtained in
correspondence of a sample region of asynchronous cells (36.5− 70Mb of chromosome
14) , with ChIP-Seq peaks for CTCF, that is indicated in literature as correlating with
TADs boundaries [70, 71]. To plot boundaries in comparison with ChIP-Seq peaks, we
used hicPlotTADs. ChIP-Seq data for CTCF for HeLa cells in wig format were down-
loaded from GEO accession: GSM3619487, and then converted in bigwig format by us-
ing the tool wigToBigWig [72]. Lengths of each human chromosome, needed to run
wigToBigWig, were downloaded from UCSC database [73].

The application of 4.1.1 also requests the knowledge of the values Kbf , that have
been obtained by using data from Homer database [74]. Here, possible motif positions
genome-wide on human genome are shown for a total of 425 TFs, by taking into account
the affinity between the motif and the sequences of the genome. Then, for each TF, we
obtained a list of possible hits on the human genome, and each of these hits is charac-
terized by a zero-or-one occurrences per sequence (zoops) type score [75]. Given a TF f , we
selected only the hits with a score above the average µf , calculated over all the scores
corresponding to f . Then, for every region b, we counted how many hits of f fall inside
b: this count indicates the value Kbf . We found an average of 3106 hits per region, with
a standard deviation of 214. By doing that and by knowing the insulation scores ISbt,
we could infer the activities Aft, by using the same data normalization, mathematical
and computational procedures seen in chapter 3, section 3.3.2. We performed a 80-20
cross-validation, and a regularization factor λ = 1623 was chosen.

We divided the TFs in 3 clusters, according to their profile over experimental time-
points. We showed that almost 28% of TFs present a positive activity during the first 2
hours after the block release, and then an almost constant negative value. Conversely,
13% of TFs present a negative acrivity during the first 2 hours post-mitotic arrest, and
then an almost constant positive value. Lastly, remaining 59% of TFs show as well a
significant activity, but that cannot be classified in the previous groups. The results are
shown in Fig. 4.1, panel a.

Then, to find the key regulators candidate to be responsible for boundaries refor-
mation exiting mitosis, we calculated the total explained variance (EV ≃ 45%) and the
reduced EV, as seen in section 3.3.4, and we selected the 5% most important TFs, that
are shown in Fig. 4.1, panel b.

Importantly, some of them have been reported to be involved in cell differentiation
or cell proliferation and growth, such as HOXA9, STAT3 and IL21, while mutation or
deficiencies of some others (GLIS3, SOX9, MYF5) are known to may cause diseases [63],
confirming the link between changes in topological domains and disorders, already
mentioned in section 1.3. In addition, we also found ESRRβ, already seen in chapter 3

68



4.3. Conclusions

to be a bookmarking factor.
Furthermore, our model detected DR1: the protein encoded by the corresponding

gene has been reported as a repressor which binds the TBP promoter, establishing a
mechanisms of altered DNA conformation that affects the rate of RNA Pol II transcrip-
tion [63].

Figure 4.1. Transcription factors dynamics for boundaries reformation. a: TFs can be divided in
clusters according to the profile of their activity over time after the release of the mitotic arrest.
Here, each row corresponds to a TF, and the color scale represents the level of activity, as shown
by the colorbar on the right, where also the number of TFs of each cluster is reported. Finally,
an identification colour is assigned to each cluster (vertical bars on the right). b: Names of most
important 5% of TFs have been reported, according to their reduced explained variance. The
colour of each name corresponds to the identification colour used in panel a.

4.3 Conclusions

In conclusion, we aimed to infer regulators responsible for reformation of topologi-
cal associated domains boundaries after mitosis in HeLa cells. To do so, we applied a
linear model combining motifs of 425 human transcription factors and Hi-C datasets
obtained at different timepoints during mitosis and early G1. This allowed us to derive
a set of regulators candidate to drive the boundaries reformation post-mitosis, estab-
lishing a certain level of insulation between domains, and then ensuring one of the
three-dimensional features of the chromatin.
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5
Discussion and future perspectives

In this thesis, we tried to uncover the existing link between the three-dimensional orga-
nization of chromatin and the regulation of the transcriptional machinery, by combin-
ing computational analyses and mathematical modeling of data from high-throughput
experiments, such as RNA-Seq and Hi-C.

We applied a diffusion-based method to detect diffusive associated domains (DADs)
on Hi-C datasets obtained at different stages of Drosophila Melanogaster (Dmel) em-
bryogenesis. Although mitosis is a phase for which chromatin has been mostly de-
scribed as unstructured and transcriptionally silent in literature, our computational
analyses showed important evidences suggesting the presence of a "backbone" of struc-
tural features in mitotic chromosomes. In fact, almost 68% of DADs are conserved from
mitosis to latest embryo developmental stages.

A similar analyis was perfomed on Hi-C datasets at different timepoints exiting
mitosis obtained from populations of synchronized HeLa cells, where we showed a
conservation level of DADs of almost 66% between chromatin in mitotic state and 11
hours after the release of the mitotic block.

These results highlight the existence of a non random mitotic structure, that is kept
until latest stages of cell development. Importantly, in the light of the strict relationship
between the three-dimensional organization of the chromatin and the transcriptional
activity, this may suggest the occurrence of gene expression during mitosis and early
interphase. This important point has been further investigated and addressed in our
studies.

To do that, we reanalyzed time-dependent EU-RNA-Seq data on synchronized cell
populations by a mitotic arrest, to correct for the progressive desynchronization of cells
after block release. This allowed us to estimate gene expression profiles with respect
to a cell-cycle pseudotime with an explicitly defined transition between mitosis and
early G1 phase. Remarkably, we identified a set of genes that show a very early wave
of transcription reactivation during mitosis. However, the majority of genes showed a
peak of transcription at telophase or during the transition between mitosis and G1.

Next, we estimated TF activity dynamics of 332 expressed TFs by fitting a multiple
linear model to the deconvolved gene expression profiles. We observed time-dependent
waves of TF activities suggesting an intrinsic TF hierarchy with respect to their role on
transcription reactivation after mitosis. In addition, we investigated whether TFs previ-
ously reported to bind mitotic chromosomes were responsible for a faster reactivation
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kinetics. Surprisingly, we did not find a strong correlation between genes regulated
by mitotic bound TFs and the speed of reactivation. However, our approach allowed
us to identify around 60 TFs that are highly active during mitosis and represent new
candidates of mitotic bookmarking factors. Therefore, we predict that the interactions
of these factors with their specific target sites during mitosis are the molecular mecha-
nisms responsible for mitotic transcription.

Moreover, we reconstructed a core regulatory network underlying the dynamics of
transcription reactivation exiting mitosis, by selecting the key TFs that showed the high-
est explanatory power in our multiple linear regression model. Then, we propose a list
of candidates to be the crucial players in the process of reactivating the gene expression
in the first stages of the interphase, ensuring the cell identity. We predict that these TFs
could represent relevant therapeutic targets to control cell proliferation.

In addition, our work aimed to infer regulators responsible for reformation of topo-
logical associated domains boundaries after mitosis in the synchronized population of
HeLa cells that we mentioned in the first part and that we used to detect DADs. To do
so, we developed a linear model combining motifs of 425 human transcription factors
and the Hi-C datasets obtained at different timepoints during mitosis and early G1.
This preliminary analysis allowed us to derive a set of regulators candidate to drive the
boundaries reformation post-mitosis, establishing a certain level of insulation between
domains, and then ensuring one of the three-dimensional features of the chromatin.

However, we are currently working to improve our method, and one of the goals
is to integrate ATAC-Seq data. In fact, one of the limitations we encountered is that
several TFs can potentially bind thousands of binding sites (averagely 3000) for each of
the boundaries we analyzed, that have a length of 32kb. This could affect the results,
taking into account a huge amount of potential bindings regardless the actual accessi-
bility of the binding sites. By using ATAC-Seq data we could exclude from the analysis
the motifs compatible with non accessible sequences, improving the accuracy of the
analysis.

Also, imaging experiments by using fluorescent microscopy would be helpful to
assess whether the new factors that we proposed for being mitotic active can effectively
bind the mitotic chromatin. As well, Chip-Seq analyses could be performed to check if
these TFs specifically bind chromatin during mitosis.

Certainly, one of the limitations of our study was that we tried to investigate the
correlation between transcription reactivation kynetics and boundaries reformation
exiting mitosis by using datasets from different cell lines. Ideally, time-dependent
EU-RNA-Seq experiments on HeLa cells or, alternatively, time-dependent Hi-C exper-
iments on HUH7 cells should be performed to further explore the connection between
gene expression and topological domains establishment. For example, analyzing
both the dynamics of genes and boundaries they belong to, we could detect temporal
shifts, which would shed light on the cause-consequence nexus, that is still unknown.
However, as a preliminary test, this analysis will be performed in the next future
by using the available data on HUH7 and HeLa cells, taking into account the high
conservation level of boundaries across different cell lines.
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