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Summary of the Thesis

Resource allocation problems, broadly defined as situations involving decisions on dis-
tributing a limited budget of resources in order to optimize an objective, ubiquitously
appear in many real-life situations. These problems have attracted attention from a va-
riety of scientific disciplines that study them from a wide range of perspectives. In par-
ticular, many of them involve interactions between competitive decision-makers and
between them and their environment, which can be well captured by game-theoretic
models that constitute the class of resource allocation games.

In this thesis, we choose to investigate resource allocation games. We primarily
focus on the Colonel Blotto game (CB game)—one of the simplest and most well-known
resource allocation games. In the CB game, two competitive players, each having a fixed
budget of resources, simultaneously distribute their resources toward = battlefields.
Each player evaluates each battlefield with a certain value. In each battlefield, the
player who has the higher allocation wins and gains the corresponding value while
the other loses and gains zero. Each player’s payoff is her aggregate gains from all
the battlefields. Despite its apparent simplicity and long-standing history, there still
remain crucial and fundamental open questions in studying the CB game (and other
resource allocation games sharing its basic structure).

We examine resource allocation games under the light of two perspectives coming
from two different disciplines. First, in the game-theoretic perspective, we model them
as one-shot complete-information games and analyze players’ strategic behaviors. We
conduct extensive analyses of several prominent variants of the CB game and their
extensions in which, the leading open question is to find strategies guaranteeing good
payoffs for players. Our first main contribution is a class of approximate (Nash) equilibria

in these games for which we prove that the approximation error can be well-controlled.
Moreover, we construct these approximate equilibria with simple and efficient meth-
ods; thus, these solutions are scalable and practical.

Second, we model resource allocation games as online learning problems to study
situations involving sequential plays and incomplete information. In particular, we
focus on the subclass of resource allocation games with combinatorial structures that
poses interesting challenges. We exploit the particular structure of these games to
make a connection between their online learning versions (with the online discrete
CB game as a leading case study) and online shortest path problems. Our second
main contribution is a set of novel regret-minimization algorithms for generic instances
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of online shortest path problems under several restricted feedback settings. These
algorithms provide significant improvements in regret guarantees and running time
in comparison with existing solutions. Finally, we apply these findings to several
prominent online resource allocation games with combinatorial structures, including
the online discrete CB game, showing how a player may use the structures of these
games to improve performance and implementability.
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Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Resource Allocation Problems and Games

Resource allocation problems, broadly defined as situations involving decisions on
distributing a limited budget of resources in order to optimize an objective, are om-
nipresent and ubiquitous. We human beings and our society are impacted, either
directly or indirectly, by such problems everyday: from mundane tasks such as per-
sonal time-management on a daily basis to more vital decisions such as rationing in
wars; from applications like patrolling problems to more unnoticeable usages such as
ads bidding for online search. A basic mathematical formulation of resource alloca-
tion problems is defined by Ibaraki and Katoh (1988) as follows (here, [=] denotes the
set {1, 2, . . . , =}):1

min 5 (G1 , G2 , . . . , G=)

s.t.
=∑
8=1

G8 ≤ -.

Naturally, resource allocation problems have attracted interest from a variety of
scientific disciplines that tackle them from a wide range of perspectives and with a
diversity of techniques. Solutions of resource allocation models have also been imple-
mented in real-world applications with positive results, validating the importance and
relevance of this class of problems. A well-known example is the Koopman’s prob-
lem in distributing search effort, introduced in the book series of Koopman (1956a,b,
1957), in which a searcher distributes his effort on a one-dimensional line (or toward
= locations) trying to maximize the probability of detecting a target. Extensions of
this problem are also studied in several works, e.g., by De Guenin (1961) and Stone
(1976), and it is considered to be the original problem of the field of resource allocation
optimization (e.g., see Ibaraki and Katoh (1988)). Another famous resource allocation

1Note that the objective function 5 in this formulation not only depend on the allocations {G8}8∈[=] but
also possibly depend on other variables and/or are subject to randomness.
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problem is optimizing the portfolio selection in which one wants to choose a set of =
investments (whose returns are random variables) in order to attain the maximum re-
turn (see e.g., Elton et al. (1976) and Markowitz (1952)). This problem essentially leads
to the framework of portfolio theory, also known as the mean-variance theory (see e.g.,
El-Yaniv (1998) for a survey). Resource allocation is also one of the main focuses of the
field of operational research; notably in (capacitated) lot-sizing problems (see e.g., the
reviews of Bahl et al. (1987) and Karimi et al. (2003)) and supply chains (see e.g., the
book by Ganesh et al. (2015)). Other notable applications of resource allocation prob-
lems include, but are not limited to, contest theory in economics and political science
(see e.g., surveys of Fu and Wu (2019) and Kvasov (2007a)), scheduling and distributed
manufacturing systems in operational research (see e.g., surveys of Lombardi and
Milano (2012) and Tharumarajah (2001)), networking in telecommunications (see e.g.,
surveys of Altman et al. (2006) and Herrera and Botero (2016)) and high performance
computing (see e.g., the survey of Hussain et al. (2013)).

Within the scope of resource allocation, a number of problems involve interac-
tive situations between several competitive decision-makers, and between them and
their environment. In these situations, the involved interactions are often essential
for making the decisions. For instance, in (multi-prize) auctions (see e.g., Clark and
Riis (1998a)), the payoff of each bidder—as a decision-maker—depends not only on
her own bid but also on the decisions of other bidders and possibly on the reserve
price of the auctioneer (i.e., the environment). Likewise, in security problems, the
utility of a defender depends both on its actions as well as on the attackers’ actions.
Another type of such interaction can be found in situations requiring decision-makers
to choose a sequence of actions based on their predictions about the environment
(the decision-makers may not have complete information about the environment): the
predictions can only be improved by repeatedly interacting with the environment and
observing the outcomes. Examples include radio resources management problems
where the systems’ performance usually suffers unpredictable noises and online ad-
vertising problems where rewards (e.g., click-through-rate) are randomly drawn each
time a customer visits a website and it is only known precisely when an advertisement
campaign is run.

Among possible approaches, game theory is especially suitable to model prob-
lems involving interactions between competitive decision-makers; as Aumann (1985)
famously stated: “Briefly put, game and economic theory are concerned with the inter-
active behavior of Homo rationalis—rational man.” (p. 35). Moreover, game models
can also serve as the motivation as well as a “testbed” to study the prediction problems
with sequential decisions; we cite a statement from Cesa-Bianchi and Lugosi (2006) on
this matter: “there exists an intimate connection between sequential prediction and
some fundamental problems belonging to the theory of learning in games.” (p. 180).
For these reasons, in this thesis, we examine resource allocation problems that are
modeled as games (but our work is not limited to game-theoretic analyses). There
is a large collection of these games that are proposed and studied in the literature.
However, it appears that there is currently no universal consensus on notation nor
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there exists a general framework for this kind of games. We commonly address them
as resource allocations games hereinafter and present our definition of this class of games
in Chapter 2. Simply put, a resource allocation game is any strategic game where
players’ strategies are =-tuples whose summation of components does not exceed pre-
defined budgets (we call this the budget constraints). Some well-known examples of
resource allocation games are the Von Neumann’s hide-and-seek game (introduced by
Von Neumann (1953) and extended by Flood (1972)), the Colonel Blotto game (intro-
duced by Borel (1921)), the Tullock rent-seeking game (introduced by Friedman (1958)
and Tullock (1980)), the minority game (introduced by Challet and Y.-C. Zhang (1998)).
Resource allocation games have a large scope of applications, especially in economic
competitions, networking planning and security problems. They also involve a large
range of interesting challenges and provides a rich sets of open questions to study.

1.1.2 Colonel Blotto as a Resource Allocation Game

The Colonel Blotto game (hereinafter, the CB game) is one of the simplest and most well-
known game-theoretic models in resource allocation. The CB game has a long-standing
history; it was introduced by Borel (1921) which is considered (by e.g., Myerson (1991))
as one of the earliest works in modern game-theory. A general description of the CB
game is given as follows:

In the CB game, two competitive players, each having a fixed budget of resources,
simultaneously distribute their resources toward = battlefields. Each player
evaluates each battlefield with a certain value. In each battlefield, the player
who has the higher allocation wins and gains the corresponding value while
the other loses and gains zero. Each player’s payoff is then her aggregate gains
from all the battlefields.

The first impression that one might have about the CB game is its eccentric name
and terminology—they are military-related. This is, in fact, a tradition adopted by
the literature that can be traced all the way back to the fictional background story
introduced by Gross and Wagner (1950): the players are two colonels, whose names
are Blotto and Enemy, competing in a war campaign.2 The term “Blotto” is also adopted
to refer to a larger family of games (extended from the model of the CB game), called
Blotto games—this terminology was first proposed by Blackett (1958) who gave a general
description of a Blotto game as follows:

2In fact, “blotto” is an informal word used in the early 20th century to refer to drunkards (we do not
know for certain if this is the reason inspiring Gross and Wagner (1950) to name in that way the colonels
in their game).
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In a Blotto game, players simultaneously distribute their forces toward = battle-
fields; if player A has an allocation plan of (01 , . . . , 0=) (such that

∑
8∈[=] 08 ≤ -�)

and player B has an allocation of (11 , . . . , 1=) (such that
∑
8∈[=] 18 ≤ -�); then

the gain of player ) ∈ {�, �} at location 8 is '
)

8 (08 , 18) and her total payoff is∑
8∈[=] '

)

8 (08 , 18).

Intuitively, to formulate a (generic) Blotto game, one replaces the functions determining
the gains that players receive in each battlefields in the CB game by a generic rule,

denoted here as '
)

8 .3 Several particular instances of Blotto games will be introduced
in detail in Chapter 3 and throughout this thesis, we present results regarding these
games. We note that the strategies of the players in the CB game (and other Blotto
games) can be considered as =-tuples that satisfy the budget constraints (here, = is the
number of battlefields); thus, the CB game (and other Blotto games) belongs to the
class of resource allocation games as defined above.

Thanks to the simplicity of its framework, the CB game (and other Blotto games)
possesses the elegance and generality that allow it to capture many situations in prac-
tice. We first review here several notable applications of the CB game; applications
of Blotto games will be presented when we introduce each instance in particular
(see Chapter 3). One of the original applications of the CB game is the military lo-
gistics, see e.g., Gross (1950) and Gross and Wagner (1950); in this setting, the forces
might be soldiers, equipment or weapons. Another example is the use of the CB game
in modeling problems in politics: players are the political parties who distribute their
resources (time, people, money, etc.) to compete over voters (or states as in the US
presidential election),4 see e.g., Kovenock and Roberson (2012), Myerson (1993), and
Roberson (2006). On the other hand, Chia (2012) and Schwartz et al. (2014) use the
CB game to model problems in cybersecurity where the players are an attacker and
a defender while battlefields are security targets (e.g., phishing sites) and resources
are security forces or effort. The CB game is also used to model competitive contests
in online advertising (see e.g., Masucci and Silva (2014, 2015)): two marketing cam-
paigns allocate promotional gifts to compete for royalty of social networks’ customers
with high network value (i.e., high influence over peers). An example of applying the
CB game into telecommunications is the following radio-spectrum management sys-
tem (see e.g., Hajimirsaadeghi and Mandayam (2017)): two network service providers
(NSP) (i.e., the players), each with a limited amount of bandwidth (resource), com-
pete strategically by bidding on the users (battlefields), the user chooses to connect to
the NSP that provides the larger bandwidth bid. A depiction of this radio-spectrum
management system is given in Figure 1.1. The applications discussed above are

3Here, '
)

8
is a function that depends not only on the allocations but also on other parameters of the

game (and/or possibly on some random variables).
4Applications of the CB game in politics often involve the majority-rule version; i.e., the player whose

aggregate values (or the number) of battlefields won by her exceed a given threshold (often chosen to be
50%) wins the whole game and receive a positive payoff; the player who won less than that threshold
receives a zero payoff.
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summarized in Table 1.1.

Figure 1.1: Illustration of modeling a radio spectrum allocation system as a CB game
(a depiction of the system introduced by Hajimirsaadeghi and Mandayam (2017)).

Table 1.1: Several practical applications of the Colonel Blotto game.

Applications Players Resource Battlefields References
Politics Political

parties
Effort/
money

Voters/
states

Kovenock and Roberson
(2012), Myerson (1993),
and Roberson (2006).

Advertising Marketing
campaigns

Promotional
gifts

Network
users

Masucci and Silva (2014,
2015).

Security Attackers/
defenders

Effort/
forces

Security
targets

Chia (2012) and Schwartz
et al. (2014).

Radio man-
agement

Network
providers

Bandwidth Mobile
users

Hajimirsaadeghi and
Mandayam (2017).

Beyond these direct applications, the CB game (and other Blotto games) is also
analyzed under a large range of approaches from a diversity of communities and disci-
plines; it also connects to many other problems. These studies have provided a variety
of important theoretical contributions. Because of this interdisciplinarity, instances of
Blotto games are not always addressed under the same name and terminology and
they are sometimes considered as instances of more general frameworks. For example,
in the series of works by Laslier (2002, 2005) and Laslier and Picard (2002), the CB
game, under the name “divide-a-dollar” problems,5 is described in a slightly different
manner: two players compete by distributing one unit of goods (one dollar) among
a population of individuals that are partitioned into = groups (corresponding to =

5Note that this model differs from the two-player cooperative game with a similar name, proposed
by Nash (1953).
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battlefields). Analyses of the optimal strategies of the competitive players in this game
are exploited to study coalition-forming strategies of the population (see also Baron
and Ferejohn (1989) and Primo (2007)). On the other hand, the CB game can also
be considered as an instance of multi-prize contests (see e.g., Fu and Wu (2019) and
Konrad and Kovenock (2009) for surveys on contests). To be more precise, the CB
game is a contest with budget constraints and use-it-or-lose-it costs (these terms are
adopted from Kovenock and Roberson (2010)). In the contest theory literature, one
of the most well-known models is the Tullock contest (introduced by Friedman (1958)
and reintroduced by Tullock (1980)); it relates closely to the Lottery Blotto game—an
instance of Blotto games (we discuss this with more details in Chapter 3). The study of
the Lottery Blotto game extends further the literature on Tullock contests. Moreover,
Blotto games also relates to the class of search games—introduced by Morgenstern and
Von Neumann (1953) and later developed into the field of search theory (see Hohzaki
(2016) for a survey on search games).

1.1.3 Perspectives of the Thesis and Main Challenges

In this thesis, we study resource allocation games—with the CB game as a case study—
under two main settings: the offline setting and the online learning setting, each can
be used to model a different set of applications.

The Offline Setting

We first consider resource allocation games involving situations where players have
full access to information about the game before making decisions.6 Here, the leading
question is how to play strategically in order to optimize payoffs. The simplest and
most natural approach to capture these situations of resource allocation games is to
model them in the one-shot complete-information strategic form:7 a game is played
one time where players know all parameters and simultaneously choose their strate-
gies. To analyze players’ behaviors in this model, it is common in the game-theory
literature to consider the well-known notion of Nash equilibria (see Section 2.1 for a
formal definition). It turns out, however, that even in the CB game with its simple
rule, this problem is non-trivial: despite the long-standing history of being studied
intensively, it still remains unknown how to completely characterize and compute Nash equi-

libria of the CB game in its most generalized parameters configurations (see Section 3.3.1 for
a more detailed discussion). The difficulty encountered here essentially comes from
the budget constraints forcing a correlation between allocations of a player in differ-
ent battlefields.8 Note that partial results have been obtained in several restricted cases
of the CB game (and they are applied to the corresponding practical situations—see
Section 3.3.1) but the involved assumptions are not satisfied in many other applica-

6For example, in the CB game, each player knows the rule of the game, the number of battlefields and
their values, as well as her budget and that of the opponent.

7A formal definition of the one-shot complete-information game is given in Section 2.1.
8Recall that budget constraints are essential elements found in all resource allocation games.
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tions. Therefore, it is crucial to find strategies that can guarantee good payoffs for players in

the CB game with general configuration of parameters. Moreover, in many applications of
the CB game (and of other resource allocation games), the scale of the involved param-
eters can be very large while it often requires players to make decisions quickly; thus,
we aim for strategies whose constructions are scalable. Besides that, the simplicity
and interpretability of the proposed solutions are also important. By giving solutions
satisfying these conditions, the scope of applications of the CB game model can be
extended much further.

Our approach to solve this problem is to look for a special class of strategies in the
CB game that guarantee near-optimal payoffs for players and such that the involved
errors can be well-controlled. In other words, we look for good approximate equilibria of the

CB game with general configurations of parameters (see Section 2.1 for a formal definition
of approximate equilibria). Moreover, these approximate equilibria are required to be

constructed simply and efficiently. Next, we study how this approach can be extended
into other resource allocation games. In particular, we choose to first consider the
family of Blotto games since they share a common basic structure with the CB game.
In studying each instance of Blotto games, we determine new challenges and derive
adjustments to overcome them. Showing extensions of results obtained in the CB
game to other Blotto games, we aim to shed some light on the generalization and
transferability of the CB game into other resource allocation games. In summary, the

first high-level challenge that we consider in this thesis is the following:

In the one-shot complete-information CB game, how to find strategies that can be efficiently

constructed and provably guarantee good payoffs for the players? In particular, even

though optimality is not required for such strategies, the difference between the payoff

derived from using these strategies and the optimal payoff is requires to be well-controlled

and negligible, especially in large-scale instances. Can we extend this approach to other

Blotto games?

The Online Learning Setting

Second, we consider situations in which players need to repeatedly play a resource
allocation game when they do not have complete information about the game’s param-
eters; thus, they need to make predictions based on their (restricted and incomplete)
observations about their payoffs in the past (several examples are given in Chapter 7).
Hereinafter, we refer to these situations as the online setting (or online version) of re-
source allocation games. Among the cases of interest, we focus on resource allocation
games where players’ strategy sets have combinatorial structures; an example is the
CB game where players’ budgets and allocations are constrained to be integers (we
call it the online discrete CB game, defined formally in Chapter 7). This set of games
is particularly interesting to investigate because it is commonly found in practice and
it poses considerable challenges in finding solutions guaranteeing good performance
while maintaining implementability. It is natural to model the online versions of these
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games as online learning problems and to conduct a regret-minimization analysis.9 In
that case, the leading challenge is how to find algorithms generating strategies (based on

observed feedback) for a player to play at each stage in online resource allocation games (with

combinatorial structures) such that it provides a good guarantee on the regret; moreover, these

algorithms are required to be efficiently implementable.10

Our approach to solve this problem is to cast online resource allocation games with
combinatorial structures into online shortest path problems (OSP)—an important sub-
class of the online combinatorial optimization (OComb) framework, then use available
tools from OComb and OSP as bases to develop better learning policies in these games.11
We can carry out such conversions for several prominent online resource allocation
games with combinatorial structures (including the online discrete CB game) by ex-
ploiting the games’ structures.12 The state-of-the-art algorithms in OComb and OSP

still have issues in the performance’s guarantees as well as the running time and there
is still room for improvement (see also Section 7.3 for a literature review). We aim to
first study and design improved algorithms for generic instances of OSP, then apply
these findings into the instances corresponding to the online resource allocation games
under consideration and show achievable benefits. Moreover, particular cases of online
resource allocation games motivates us to study novel instances of OSP, e.g., the online
discrete CB game with semi-bandit feedback motivate us to introduce and provide
solutions for the OSP with side-observations model—an instance of OSP that has not
been studied explicitly in the literature (see Section 7.2 and Section 8.1). In summary,
the second high-level challenge that we consider in this thesis is the following:

How to play repeatedly online resource allocation games with combinatorial structures

(e.g., the online discrete CB game) and guarantee a good payoff? In particular, can

we design regret-minimization algorithms that run efficiently in the OSP instances

corresponding to these games (if available) and provide improved regret guarantees in

comparison with existing algorithms? Do these algorithms hold similar results in generic

instances of OSP?

9A formal definition of online learning problems can be found in Cesa-Bianchi and Lugosi (2006)
while a formal definition of regret is given in Section 2.2. Intuitively, regret of a player is the difference
between her cumulative payoff and the optimal payoff in the hypothetical scenarios where she knows all
information and chooses a fixed strategy to play in all stages.

10We say that a regret-minimization algorithm in an online resource allocation game is efficient if it
runs in polynomial time in terms of basic parameters of the game; e.g., in the online CB game, these
parameters are the number of battlefields and the budgets.

11Briefly put, in an OSP, at each stage, edges on a graph are embedded with adversarially chosen losses;
unknowing this, a learner has to choose a path and suffers the sum of losses of edges belonging to that
path. See Section 2.2 for formal definitions of OComb and OSP.

12See Chapter 7 for a more detailed discussion on conversions of several online resource allocation
games into OComb and OSP.
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1.2 Contributions and Structure of the Thesis

In this thesis, we choose resource allocation games as the main objects of study and
we focus on the CB game as a case study. Our results come mainly from applying
methods and techniques from two different, but related, disciplines: game theory and
online learning. They are used to address the two key challenges described above. Our
solution for the first high-level challenge is to propose a class of simply-constructed ap-
proximate Nash equilibria of (one-shot and complete-information) Blotto games with
well-controlled approximation errors. In the online setting, our solution for the second

high-level challenge is to model the online discrete CB game (and several other online
resource allocation games with combinatorial structures) as an online shortest path
problem (OSP) and design efficiently implementable algorithms with good (expected)
regret guarantees for OSP under several different feedback settings. This thesis is
organized into three parts: Part I (Chapters 3, 4, 6 and 5) and Part II (Chapters 7, 8
and 9) respectively present the results in the two settings mentioned above, and Part III
is dedicated to our conclusions on the obtained results and some discussions about
future works. Note that we defer the in-depth reviews on the literature related to the
CB game (and other related resource allocation game) and online learning problems to
the first chapter of Part I and Part II respectively. A more detailed outline of the thesis
and an overview of the results are presented below.

Chapter 2 serves as a background chapter in which for the sake of completeness,
we revisit several preliminary definitions and results from the game theory and online
learning literature. This includes the definition of strategic games and solution con-
cepts such as Nash equilibrium and approximate (Nash) equilibrium; we also review
definitions of online learning frameworks such as online linear optimization, online
combinatorial optimizations, multi-armed bandits and online shortest path problems.
Moreover, we introduce a general definition and several examples of resource alloca-
tion games.

Chapter 3 introduces formulations of the (one-shot complete-information) Blotto
games that are our primary focus in Part I of this thesis. We start with the defini-
tion of the generalized CB game—the variant with the most generalized parameters
configurations. Based on this basic model, we introduce two important variants: the
constant-sum CB game (where players have the same evaluation of battlefields’ val-
ues) and the discrete CB game (where budgets and all allocations are constrained to
be integers). We also define two new extensions of the generalized CB game, called
the generalized Lottery Blotto game (where the winner-determination rule is replaced
by a generic contest success function) and the generalized-rule CB game (where the
winner-determination rule is modified to capture situations involving pre-allocations
and resources with asymmetric effectiveness). We conclude this chapter by discussing
the literature and main challenges in characterizing Nash equilibria of the CB game
and its variants/extensions.

In Chapter 4, we present our first main contribution: we propose a class of strate-
gies (the independently uniform (IU) strategies) yielding approximate equilibria of
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the generalized CB game. To do this, we revisit the state-of-the-art results on optimal
univariate distributions of players in this game and construct the IU strategies based
on these distributions. We then characterize approximation errors of the IU strategies
in terms of the game’s parameters and prove that these errors are negligible when
the number of battlefields is large. Recall that characterizing exact equilibria of the
generalized CB game remains a challenging open question; moreover, even if an ex-
act equilibrium is found, it is most likely that its construction would be complicated.
Therefore, our simply-constructed approximate equilibria are useful and they extend
further the scope of applications of the CB game model.

In Chapter 5, we consider the one-shot version of the discrete CB game and show an
approximate equilibrium for this game with an approximation error that is negligible
under a condition on the number of battlefields and the budgets (this is our second

main contribution). We obtain this approximate equilibrium of the discrete CB game
from modifying the IU strategies in the generalized CB game with a non-trivial round-
up process. Although it can be proved that exact equilibria of the discrete CB game
exist, the state-of-the-art methods for finding these equilibria still remain computa-
tionally impractical for large-size game instances. In contrast, the construction of the
proposed approximate equilibria can be done by an efficient algorithm. We discuss the
trade-off between the efficiency of this solution and the involved approximation error,
in comparison with state-of-the-art results related to exact equilibria computations.
Several numerical experiments are conducted to illustrate this trade-off.

Chapter 6 extends the results obtained in the previous chapter to other extensions
of the CB game. More specifically, we prove that the class of IU strategies also yields an
approximate equilibrium of the generalized Lottery Blotto game (LB game). Moreover,
we can establish a connection between the CB game and some special cases of the LB
game and give a characterization of approximation errors of IU strategies in these LB
instances. This is our third main contribution; note that this extended result involves
non-trivial analyses. Next, we also obtain several initial results in the generalized-rule
CB game. We show that in this game, a modified version of IU strategies provides a
similar approximate results (this is our fourth main contribution). To do this, we study
the model of all-pay auctions with favoritism and completely characterize the exact
equilibria of this game; this side-result fills in a gap in the all-pay auction literature.

Chapter 7 begins our analysis of online resource allocation games with combina-
torial structures (i.e., the start of Part II). In particular, we define the online discrete
CB game under three feedback settings:13 full-information (i.e., the player observes all
the game’s parameters and her opponent’s plays), semi-bandit (i.e., the player observes
her gains in each battlefield but not the opponent’s plays) and bandit (the player only
observes her total payoff obtained from each stage and nothing else). We cast the online
discrete CB game into the online shortest path problem (OSP) framework. We then dis-
cuss on similar conversions (into OSP) of several other online resource allocation games.
To pinpoint the challenges and introduce bases for our studies in online resource allo-
cation games, we give an in-depth literature review on regret-minimization analyses in

13These are information that a player may observe after making decisions at each stage.
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bandit problems and other related works (including the literature of OComb and OSP).
Finally, we also introduce a new instance of OSP, called OSP with side-observations
(SOOSP), as a preparation for the following chapters.

In Chapter 8, we conduct an regret-minimization analysis of online shortest path
problems with side-observations (SOOSP). This analysis is actually motivated by the
fact that side-observations can be deduced in the online discrete CB game with semi-
bandit feedback and that this game can be cast as an SOOSP. Existing algorithms
(from the literature of OComb) that can be used for SOOSP have several drawbacks
in the running-time (it lacks an overall guarantee on the efficiency) and regret-bound
guarantees (a literature review is given in Section 7.3.3). We design a novel algorithm,
Exp3-OE, that runs efficiently14 in any instance of SOOSP and yields an improved regret
bound in several cases of interest. This is our fifth main contribution. We then apply
our novel algorithm to several online resource allocation games with combinatorial
structures, including the online (discrete) semi-bandit CB game, the online hide-and-
seek game and the online (discrete) CB game with full-information feedback. We end
this chapter by discussing the benefits of using Exp3-OE in these games.

Chapter 9 presents initial results on the regret-minimization analysis of the online
discrete CB game under the bandit feedback setting, being cast as an OSP with bandit
feedback (OSPBand). State-of-the-art algorithms for OSPBand still have issues in im-
plementation and there is still room for improvement in the performance guarantees.
Our sixth main contribution is an algorithm, called Edge, that we obtain by introduc-
ing new modifications to the ComBand algorithm (introduced by Cesa-Bianchi and
Lugosi (2012)). Unlike classical ComBand, the Edge algorithm always runs efficiently
on any instance of OSPBand. Moreover, Edge allows more choices of inputs than other
efficient algorithms in the literature, e.g., CombD by Sakaue et al. (2018); this upgrade
eventually improves regret guarantees. We address the open question (posed by Cesa-
Bianchi and Lugosi (2012)) on how to choose inputs for Edge (and ComBand) to run
in OSPBand by providing a heuristic procedure that efficiently outputs an exploration
distribution helping Edge improve its regret guarantee. We conduct several numerical
experiments to illustrate these improvements in the case of the online CB bandit game.

Part III contains the conclusion of the thesis and our discussion on open directions
for future research. In Appendix, we provide formal proofs and supplementary mate-
rials of all results presented in the previous chapters. Note that some of the ideas and
results presented in this thesis have previously appeared in several of our publications;
a full list of publications is given after Part III. In these publications, we conducted sev-
eral computational studies and numerical experiments (that are also presented in this
thesis) and published our codes of each result for the sake of reproducibility. We collect
all these codes here at https://github.com/dongquan11/CBGame_ApproxEqui_and_
OnlLearning and we also give the links (url) pointing toward related published codes
where it is relevant in the thesis.

14Exp3-OE always runs efficiently in polynomial time in terms of the number of edges in the graph
related to SOOSP.
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Chapter 2

Preliminaries

For the sake of completeness, we review in this chapter several important concepts that
serve as a basic for the results presented in this thesis. In particular, essential elements
of game-theory and online combinatorial optimization are presented in Section 2.1
and 2.2 respectively. We note that this chapter only serves as a background chapter
and that it is not a formal and exhaustive introduction to game theory or online
learning; therefore, readers might find that the definitions that we give below are less
abstract and contain less details than the ones often found in textbooks. We also omit
several non-basic assumptions and concepts that lead to unnecessarily heavy notation.

2.1 Elements of Game Theory

Game theory is a collection of mathematical tools used to model strategic interactions
which are situations where multiple agents try to make decisions with objectives
or preferences that also depend on other agents’ decisions. Modern game theory
can be considered to be founded in the beginning of the last century with works by
pioneers such as Borel (1921), Von Neumann (1928), and Zermelo (1913). Important
breakthroughs come from the book by Morgenstern and Von Neumann (1953) and
the series of works by Nash (1950, 1951). Some of the most basic concepts are the
strategic game (also called the normal form game) and the Nash equilibrium. Below,
we redefine these concepts in our notation, loosely based on the definitions in the
books of Osborne and Rubinstein (1994) and Myerson (1991).

2.1.1 Strategic Game and Nash Equilibrium

A strategic game can be defined by a tuple Γ =

(
N ,

(
( 9

)
9∈N ,

(
D 9

)
9∈N

)
, where:

N is the set of (selfish and rational)1 players; |N | = # ;

( 9 is the set of actions of player 9 ∈ N ;

1As often the case in the literature, here, “rational” players mean the ones satisfying the assumptions
of Von Neumann (1953) and of Savage (1972) (see more details in e.g., Osborne and Rubinstein (1994) p.5).
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D 9 : ( → R is the utility function (i.e., payoff function) of player 9 ∈ N ; here we
denote [#] = {1, 2, . . . , #} and ( :=

>

9∈[#]
( 9 .

A one-shot complete-information strategic game Γ =

(
N ,

(
( 9

)
9∈N ,

(
D 9

)
9∈N

)
is inter-

preted as follows: it models an event that occurs only once where each player 9 ∈ N
knows all the parameters and the details of the game (that is N , ( 9 and D 9 for any
9 ∈ N) and all players choose their actions simultaneously2 and independently. Each
element of ( 9 is called a pure strategy of player 9 ∈ N ; and each element of ( is referred
to as a strategy profile.

In the remainder of this chapter, unless stated differently, we refer to a one-shot
complete-information strategic game as a strategic game (or simply, a game). We also
note that a more general definition of a strategic game can be found in the literature, in
which, one replaces the utility functions in the above definition by a set of preference
relations � 9 (for 9 ∈ N) on the profiles set (.3 Under a large range of circumstances,
these definitions are equivalent; for the purposes of this thesis, we choose to present
it with the above manner which we find to be a simpler and more intuitive definition.
Throughout the thesis, we also often mention a class of games, called constant-sum

games, defined as games where the summation of all players’ payoffs is always the
same regardless of players’ actions. A well-known instance of the constant-sum game
is the two-player zero-sum game where the gain or loss of utility of a player is ex-
actly balanced by the loss or gain of the utility of the other player. We use the term
non-constant-sum to refer to games that do not satisfy the condition of the constant-
sum game.

Next, we present the definition of Nash equilibrium—one of the most important
solution-concepts in game theory. Essentially, it is a steady state notion of the plays in
strategic games.

Definition 2.1.1 (Nash equilibrium). In a strategic game Γ =

(
N ,

(
( 9

)
9∈N ,

(
D 9

)
9∈N

)
, a

Nash equilibrium is a strategy profile B∗ = (B 9∗)9∈N ∈ ( such that for every player 9 ∈ N ,

we have:

D 9(B∗) ≥ D 9(B 9 , B−9∗ ),∀B 9 ∈ ( 9 .
Here, the notation B

−9
∗ denotes the collection of strategies of all players except 9 in

the strategy profile B∗ and (B 9 , B−9∗ ) denotes the strategy profile where one takes B∗ and
replaces B

9
∗ by B 9 . Intuitively, a strategy profile B∗ is a Nash equilibrium when there

exists no player that can unilaterally deviate from B∗ and gain a strictly larger utility.
On the other hand, given B−9 ∈ >

9′∈N\{ 9} (
9′, the set of best-response of player 9

against B−9 is the following:

� 9(B−9) = {B̃ 9 ∈ ( : D 9(B̃ 9 , B−9) ≥ D 9(B 9 , B−9),∀B 9 ∈ ( 9}.
2Here, “simultaneous” does not necessarily always mean that the actions are taken at the same time;

it rather means that when a player chooses her action, she is unaware of the choices being made by the
other players and that she does not have any extra information except from the game’s parameters to use
to interpret other players’ behaviors.

3That indicates that player 9 prefers one strategy profile than the other.
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Based on this notation, a Nash equilibrium of a game Γ can also be defined as any
strategy profile B∗ such that B

9
∗ ∈ � 9(B−9∗ ) for any 9 ∈ N .

In the special case of two-player constant-sum games (both players want to maxi-
mize the utility), Nash equilibrium is also equivalent to the following solution concept:

Definition 2.1.2 (Max-min strategy). Let Γ =
(
{�, �}, {(� , (�}, {D� , D�}

)
be a two-player

constant-sum game, a strategy profile (B�∗ , B�∗ ) is a max-min strategy if for any strategy B̃� ∈ (�
and B̃� ∈ (� of players A and B:

min
B�

D�(B�∗ , B�) ≥ min
B�

D�(B̃� , B�), (2.1)

min
B�

D�(B� , B�∗ ) ≥ min
B�

D�(B� , B̃�). (2.2)

Intuitively, if a player ) ∈ {�, �} plays a max-min strategy, she guarantees an optimal
payoff even in the worst-case scenario when her opponent −) plays the strategies that
minimize )’s payoff (no matters how it affects −)’s payoff).

Now, let Γ =

(
N ,

(
( 9

)
9∈N ,

(
D 9

)
9∈N

)
be a strategic game, we denote the set of all

probability distributions over ( 9 by Δ(( 9) and define the set Δ :=
>

9∈N Δ(( 9). We refer
to the elements of Δ(( 9) as the mixed strategies of player 9, and the elements of Δ as
mixed-strategy profiles. Hereinafter, we assume that in any game, the randomization
in players’ mixed strategies are independent. Trivially, any pure strategy of a game is
also a mixed strategy (but not reversely).

Next, we define the mixed extension of the strategic game Γ: it is the strategic game

Γ̃ =

(
N ,

(
Δ(( 9)

)
9∈N ,

(
* 9

)
9∈N

)
where * 9 : Δ → R is the utility function that takes any

mixed strategy profile (� 9)9∈N ∈ Δ as input and returns the expected value of D 9 with
respect to the randomness of � 9 for all 9 ∈ N .

Definition 2.1.3 (Mixed strategy Nash equilibrium). Given a strategic game Γ, a mixed

strategy Nash equilibrium of Γ is a Nash equilibrium of its mixed extension.

The concepts of best-response and max-min strategy are trivially extended to work
with mixed-strategies. Moreover, for finite strategic games (that is games where the
set of players and the players’ strategy sets are all finite), we have two important
propositions as follows:

Proposition 2.1.4 (extracted from Nash (1951)). Every finite strategic game has a mixed

strategy Nash equilibrium.

Proposition 2.1.5. Let Γ =

(
N ,

(
( 9

)
9∈N ,

(
D 9

)
9∈N

)
be a finite game, then �∗ ∈

>
9∈N Δ(( 9) is

a mixed strategy Nash equilibrium of Γ if and only if for any player 9 ∈ N , every pure strategy

in the support of �∗ is a best response against �
−9
∗ .

Beside the Nash equilibrium, there exist several other stable-state notions; however,
they do not relate to results in this thesis. Therefore, in the remaining chapters,
unless stated otherwise, we refer to a (mixed strategy) Nash equilibrium simply as
an equilibrium.
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2.1.2 Approximate Equilibria

The concept of Nash equilibrium is elegant and useful in predicting players’ behaviors.
However, there exist games that have no equilibrium (Proposition 2.1.4 only applies to
finite games). Moreover, even in the cases where equilibrium exists, it is not always easy
to construct them. Therefore, it is desired to have another stable state notion for games.
One approach is to relax the notion of equilibrium and allow some error margins.

Definition 2.1.6 (Approximate Equilibria). Given � ≥ 0, an �-equilibrium of a game

Γ =

(
N ,

(
( 9

)
9∈N ,

(
D 9

)
9∈N

)
is any strategy profile B∗ ∈ ( such thatD 9(B 9∗ , B−9∗ ) + � ≥ D 9(B 9 , B−9∗ )

for any 9 ∈ N and B 9 ∈ ( 9 . We use the generic term approximate equilibrium whenever the

approximation error � need not be emphasized.

Trivially, a 0-equilibrium corresponds to an (exact) equilibrium defined in the
previous section. Note also that approximate equilibria might exist even in games that
have no equilibrium. It is meaningful only for us to consider the �-equilibria that have
small approximation error �, relatively to the magnitude of players’ payoffs. Finally, in
the two-player constant-sum game, note also that the concept of approximate max-min

strategy can be trivially extended from Definition 2.1.2 and Definition 2.1.6.

2.1.3 Resource Allocation Games

As discussed in Chapter 1, this thesis takes special interest in a class of games, namely
resource allocation games. They are games that are used to model situations where
players need to distribute a limited budget of resources in order to optimize their
utility—these situations are commonly found in practice. Formally, in this thesis, by a
resource allocation game, we refer to the following definition.

Definition 2.1.7 (Resource allocation game). A strategic game Γ =

(
N ,

(
( 9

)
9∈N ,

(
D 9

)
9∈N

)
is a resource allocation game if for each player 9, there exist = 9 , - 9 ∈ (0,∞) such that there is a

one-to-one mapping between ( 9 and a subset of
{(
B
9

1 , . . . , B
9

= 9

)
:
∑
8∈[= 9] B

9

8 ≤ - 9
}
⊆ R= .

By this definition, the actions that players can choose are in the form of n-tuples
and - 9 is the limited budget of player 9. We call the condition

∑
8∈[= 9] B

9

8 ≤ - 9 by the
budget constraint of player 9. Note that to the best of our knowledge, similar definitions
have not been formally presented in the literature. The above definition is given in
our notation, we try to define it in a manner that is as general and abstract as possible.
This definition covers a variety of games models studied in the literature. Notably,
according to Definition 2.1.7 the Colonel Blotto game (as presented in Chapter 1) is a
resource allocation game. Several other notable examples are listed below.

Example 2.1.8 (Multi-looking hide-allocation game). The game involves two players: one

player hides a ball in one of = boxes and the other player searches for it. There are known

probabilities that the searcher will overlook the ball if he searches the correct box. The hider

wishes to minimize and the searcher wants to maximize the probability that the ball will be

found in < or fewer search (< ≤ =).
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This game is proposed by Subelman (1981). In this game, the hider’s budget is 1
and the searcher’s budget is <. This game relates to the class of hide-and-seek game,
introduced by Von Neumann (1953), in which players play on a matrix: the hider
chooses a cell, say (A, 2), and the searcher chooses a row (or a column); if the chosen
cell of the hider is in the row (or column) chosen by the searcher, the searcher gains a
value, say @A2 ; the searcher wants to maximize, the hider wants to minimize. There are
many variants and extensions of this hide-and-seek game; e.g., Morris (1962) extends
Von Neumann’s game by allowing searchers to search for cells instead of rows or
columns, Beck and Newman (1970) characterizes the equilibrium of the linear search
game, Bostock (1984) works on hide-and-seek game embedded on a simple network
with two nodes and three arcs, similar games on more complicated networks and trees
can be found in Alpern et al. (2008, 2009) and Dagan and Gal (2008). We will revisit
the hide-and-seek game in Chapter 8 with more details.

The hide-allocation game described above might also be considered as a search
game (see e.g., Hohzaki (2016) for a survey of search games). Another search game
that also belongs to the class of resource allocation game is the following:

Example 2.1.9 (Smuggling game). There are two players, an inspector and an inspectee.

During = stages, the inspectee has at most a chance to violate a treaty in order to obtain a

reward; while the inspector can choose to either “inspect” or “not inspect”; the inspector can

only “inspect” < times (< ≤ =). At each stage, in the cases when the inspectee violates

the treaty: the inspector receives a reward of one if he inspected, and the inspectee loses the

same amount of reward; players receive reserved rewards if no inspection was carried out. All

decisions are made before the sequence of stages takes place.

This game is studied by Avenhaus and Kilgour (2004) and Hohzaki (2007). There
exist sequential and stochastic multi-stage versions of this game, known as the inspec-
tion game (see e.g., Avenhaus and Canty (1996), Dresher (1962), and Maschler (1966);
these works are applied to make an inspection plan of the International Atomic En-
ergy Agency (IAEA) for the Non-Proliferation Treaty for Nuclear Weapons (NPT) (see
Hohzaki (2016) p.5)).

Example 2.1.10 (Search-search game). Two searchers have limited amounts of effort, denoted

by -� and -� respectively. The searchers simultaneously assign their search effort to = targets.

If the first searcher has allocation plan of (01 , . . . , 0=) (such that
∑
8∈[=] 08 ≤ -�) and the second

searcher has an allocation of (11 , . . . , 1=) (such that
∑
8∈[=] 18 ≤ -�); then the payoff of searcher

9 at target 8 is '
9

8 (08 , 18) and her total payoff is
∑
8∈[=] '

9

8 (08 , 18).

The generality of the utility functions '
9

8 used in this game model provides the
flexibility to cover a large set of game instances. We note that the Colonel Blotto
game—the main focus of this thesis—can be also considered as an instance of this
search-search game. The framework in Example 2.1.10 was actually proposed by
Blackett (1958), under the name Blotto game, as an 3-page technical report on some
necessary conditions for this game to have a pure equilibrium. Later on, it was extended
and studied under the name search-search game (see e.g., Garnaev (2007), Hohzaki
(2016), and Nakai (1986)).
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2.2 Elements of Online Combinatorial Optimization

In this section, we review the model of online combinatorial optimization problems
(hereinafter, OComb) which is an instance of the online linear optimization (hence-
forth, OLO)—a general framework that covers many classical problems, including the
well-known multi-armed bandits (hereinafter, MAB). These three models will be se-
quentially redefined under our notation in Section 2.2.1 and Section 2.2.2. All of them
belong to the class of prediction problems—each instance of this class can be consid-
ered to be a sequence of games played between a learner (also called a forecaster) and
an adversary (can possibly be nature); see e.g., the book of Cesa-Bianchi and Lugosi
(2006) for the relation between predictions and playing games. Note that the notion
of the strategic game presented in the previous section fails to capture the prediction
problem. This is due to the fact that predictions involve situations where there exist
essential links between the sequential plays, i.e., the learner not only needs to care
about her instantaneous payoff but also needs to think in a long-term manner because
her current actions may affect future payoffs; moreover, when making the decisions,
the learner may be uninformed about not only the plays of the adversary but also the
payoffs of the actions in the past and/or even some parameters of the game.

The literature on OComb and other related models is rather exhaustive and di-
versified; in this thesis, we focus only on the regret-based learning algorithms. An
important class of regret-minimization algorithms is Exp3; this is one of our main
focuses in Part II of this thesis. In Section 2.2.2, we formally present the most basic
version of Exp3, implemented in an MAB problem. Finally, in Section 2.2.3, we also
present a special instance of OComb, called the online shortest path problem (hence-
forth, OSP), that involves making decisions on directed acyclic graphs. We also review
a dynamic programming technique, called weight-pushing, used to efficiently sample
a path from a special distribution; this can be applied to improve the efficiency of the
Exp3-type algorithms when running in OSPs. Note finally that in this section, we only
present the definitions and we delay the literature review on the regret-minimization
algorithms used in OComb and OSP to Chapter 7.

2.2.1 Online Combinatorial Optimization

We begin with the model of online linear optimization problems. First introduced by
Hannan (1957), this model covers many classical problems that were introduced and
studied later on, e.g., the experts problem (see e.g., Cesa-Bianchi and Lugosi (2006)),
the online shortest path problem (see e.g., György et al. (2007) and Takimoto and
Warmuth (2003)) and the tree update problem (see e.g., Sleator and Tarjan (1985)).4
The following definition is adapted from Kalai and Vempala (2005) and Dani et al.
(2008), rewritten here in our notation:

4For a discussion on the relation between online linear optimization and these problems, see e.g., Kalai
and Vempala (2005).
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Definition 2.2.1. An online linear optimization problem (OLO) is a )-round game be-

tween a learner and an adversary () ∈ N\{0}), described as follows: let ( ⊂ R� be the action

set of the learner, where � ∈ N\{0} is fixed; at each stage C ∈ [)], a loss vector ℓ C ∈ [0, 1]�
is generated by the adversary; without knowing this, the learner chooses a vector p̃C ∈ (; then,

a scalar loss !
(
p̃C

)
= (ℓ C)⊤p̃C is incurred; at the end of the stage, the learner receives some

feedback about the losses. The learner’s objective is to control the regret, defined as

A) :=
)∑
C=1

!
(
p̃C

)
− min

p∈(

)∑
C=1

!
(
p
)
. (2.3)

Intuitively, the regret is the difference between the cumulative losses that the learner
suffers by playing p̃C at stage C and that of playing the best action in hindsight. Note
here that as a convention of notation, in OLO (and its instances including OComb and
OSP defined below), we use the letter p to denote an arbitrary action5 and use the
tilde notation (i.e., p̃C) to emphasize that this is the action chosen by the learner at stage C.
Additionally, we denote the 8-th coordinate of p as p(8).

More importantly, in this thesis, we consider algorithms (telling the learner how to
play in each stage) that involve randomization; and thus, we focus on analyzing the
minimization of the expected regret, defined as follows:6

') := max
p∈(
E

[
)∑
C=1

!
(
p̃C

)
−

)∑
C=1

!
(
p
) ]
. (2.4)

We call an algorithm guaranteeing an expected regret that is sub-linear in terms of
the time horizon ) as a no-regret algorithm (in this case, ')/) → 0 as ) → ∞). Note
also that besides the expected regret ') defined in (2.4), another main focus of the
literature is to have a guarantee on the regret with high probability (in this thesis, we
do not focus on this approach).

In Definition 2.2.1, we choose the bounded condition on the loss vector ℓ C =

(ℓ C(1), . . . , ℓ C(�)) generated by the adversary to be normalized into [0, 1]� ; however, it
can be relaxed such that

��(ℓ C)⊤p�� ≤ ",∀p ∈ ( (for a given 0 < " < ∞). Except from
this condition, there is no other assumption on how the adversary generates the loss
vector; that is, ℓ C can be an output of a function depending on the plays of the learner
in the past, i.e., depending on p̃B ,∀B ∈ [C − 1]; in that case, we call this an non-oblivious

adversary; otherwise, we call it an oblivious-adversary. Note that in OLO problems with
an oblivious adversary, the expected regret (given in (2.4)) can be rewritten as:

') = E

[
)∑
C=1

!
(
p̃C

) ]
− min

p∈(

)∑
C=1

!
(
p
)
. (2.5)

On the other hand, the feedback that the learner receives at the end of each stage has
not been indicated precisely in Definition 2.2.1; in practice, these feedback depend on

5The reason is to make it consistent with the online shortest path problem (see Section 2.2.3) where
each action is a path in a graph (here, p stands for “path”).

6Here, the expectation is taken with respect to the randomization in the actions selection, i.e., internal
randomization of the algorithms, and the randomization in the losses generation of the adversary.
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the situations to be modeled. The type of feedback is also important in designing the
algorithms running in OLO. Two basic feedback settings considered in the literature
on linear optimization are as follows:

The full-information setting: at the end of stage C, the learner observes the loss
vector ℓ C .

The bandit setting: at the end of stage C, the learner observes the scalar (total) loss
!(p̃C) = (ℓ C)⊤p̃C .

Intuitively, with full-information feedback, the learner knows the loss that she would
have suffered if she had chosen to play p̃C := p in stage C for any action p ∈ ( (regardless
of whether she really played it or not); on the other hand, in the bandit feedback setting,
the learner only observes the loss incurred by an action if and only if she chose to play
it. As a remark, the model of OLO with bandit feedback is often called as the non-

stochastic linear bandits or adversarial linear bandits;7 these terms are used to emphasize
the fact that no assumption is made on how the losses are generated. On the other
hand, it is common to use the term stochastic linear bandit to refer to the OLO with
bandit feedback and an additional condition that for any stage C ∈ [)], the loss vectors
ℓ C is generated independently from a certain distribution.

A literature review on the algorithms in OLO will be given in Chapter 7. Now,
one of the most important instances of OLO with many applications in practice is the
problem where the action set of the learner has a combinatorial structure. We formally
define it as follows:

Definition 2.2.2. An online combinatorial optimization (OComb) is an instance of
OLO where the action set ( ⊂ {0, 1}� .

In other words, OComb is an OLO problem where each action is a �-dimensional 0-1
vector. The OComb framework covers a variety of prediction problems, including the
well-known multi-armed bandit (we revisit it in Section 2.2.2) and the online shortest
path problem (we define it in Section 2.2.3); see e.g., Kalai and Vempala (2005) and
Kocák et al. (2014) for other applications of the OComb model. Naturally, all the
terminology of OLO will be transferred to OComb; particularly, the notions of regret,
expected regret, oblivious/non-oblivious adversary and the two defined feedback
settings. Note that the OComb with bandit feedback is also called a combinatorial bandit

(this term is adopted from Cesa-Bianchi and Lugosi (2012)). Beside the full-information
and bandit feedback described above, in OComb, another setting that is also considered
as standard is:

The semi-bandit feedback setting: at the end of stage C, the learner observes the
(scalar) losses ℓ C(8) for any 8 ∈ {8 ∈ [�] : p̃C(8) = 1}.

7Some works use these two terms interchangeably; however, there are works that use the term adver-

sarial linear bandit to indicate specifically the OLO with a non-oblivious adversary.
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Here, recall that ℓ C(8) and p̃C(8) respectively denote the 8-th coordinate of the loss vector
ℓ C and the action vector p̃C . Intuitively, in the semi-bandit setting, the learner observes
the coordinates of the loss vector ℓ C that correspond to the non-zero coordinates of
the chosen action p̃C . An equivalent way to describe the semi-bandit feedback is that
the learner observes all the products ℓ C(8) · p̃C(8),∀8 ∈ [�] at the end of stage C.8 Note
that besides the three standard settings introduced above, there exist other feedback
settings that are considered in the literature of OComb. One of them is the semi-bandit

feedback with side-observation setting, proposed by Kocák et al. (2014), defined as follows:

The semi-bandit with side-observations feedback setting: at the end of stage C, the
learner observes the (scalar) losses ℓ C(8) for any 8 ∈ $C where $C is a set such that
{8 ∈ [�] : p̃C(8) = 1} ⊆ $C ⊆ {1, . . . , �}.

Intuitively, in this setting, at the end of stage C, the learner observes the semi-bandit
feedback (corresponding to her chosen action p̃C), then additionally, she observes
some other elements of the loss vector (i.e., ℓ C(9) for some 9 such that p̃C(9) = 0). In
this definition, $C is the set of the observations of the learner at the end of stage C.
This observation system can also be presented by a directed graph with � vertices, in
which, if there is an edge from vertex 8 to vertex 9 and that p̃C(8) = 1, then the learner
observes both ℓ C(8) and ℓ C(9). This graph is called the observation graph at stage C; if it
is revealed to the learner before she makes the decision at each stage, it is called the
informed setting; otherwise, when it is revealed only at the end of the stage, it is called
the uninformed setting. We will review this feedback setting of OComb in more details
in Chapter 8.

As a summary, by using the notation - ≻ . to denote that with the same choice
of policies, the learner observes more information at the end of each stage in OComb

with the feedback setting - than in OComb with the feedback setting ., we have an
overview of all four feedback settings as follows:

Full information ≻ Semi-bandit with side-observation ≻ Semi-bandit ≻ Bandit.

2.2.2 The Exp3 Algorithm in Multi-armed Bandits and the ComBand Algo-

rithm in OComb with Bandit Feedback

The Adversarial Multi-armed Bandit

In this section, we give the formulation of the well-known multi-armed bandit (MAB)
model and Exp3—the basic variant of the class of algorithms that serves as the ground-
work for our analyses in Part II of this thesis. We also introduce a variant of Exp3,
called ComBand (introduced from Cesa-Bianchi and Lugosi (2012)), that is considered
as a standard algorithm for OComb.

First, we define the MAB problem as an instance of the OComb framework:

8If p̃C (8) = 0, then ℓC (8) · p̃C (8) = 0,∀ℓC (8); this means that the learner does not have any information on
the loss coordinate ℓC (8).
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Definition 2.2.3. An adversarial multi-armed bandit problem (MAB) (with � arms) is an

OComb with bandit feedback9 in which the learner’s action set is ( :=
{
e1 , e2 , . . . , e�

}
where

e 8 is the 8-th standard basis vector in R� . Each vector in ( is called as an arm.

Although we define MAB here as an instance of OComb, the MAB model was actually
invented long before the OComb and OLO problems (MAB is first considered by
Thompson (1933)). The classical formulation of MAB is equivalent to Definition 2.2.3
but it is often given under a slightly different description: the learner has � arms, labeled

from 1 to �; at each stage C, each arm 8 ∈ [�] is embedded with a loss !C(8); without knowing

these losses, the learner chooses one arm, then observes and suffers the corresponding loss; the

objective of the learner is also to minimize the regret. The equivalence between these two
definitions can be seen by observing that: in Definition 2.2.3, the action set ( has �
vectors corresponding to � arms in the classical description and by denoting the loss
vector ℓ C = (!C(1), . . . , !C(�)), the loss corresponding to each arm 8 (i.e., the vector
e 8 ∈ () is exactly equal to (ℓ C)⊤e 8 = !C(8). On the other hand, as a reversed perspective,
any OComb problem with bandit feedback and an arbitrary action set ( ⊂ {0, 1}� can
also be considered as an MAB problem with |( | arms; where each action vector in ( is
mapped with an arm.

Note also that Definition 2.2.3 defines the adversarial MAB (also called the non-
stochastic bandits) which is the MAB problem where we have no assumption on the
losses (except from being bounded); this is used to distinguish with the stochastic MAB
(also called the stochastic bandits) where the loss of each arm 8 at stage C is inde-
pendently drawn from a distribution (unchanged through time) whose mean remains
unknown to the learner. Finally, the notions of the (expected) regret, oblivious/non-
oblivious adversary in MAB are naturally transferred from the corresponding notions
in OComb and OLO.

The Exp3 Algorithm in Multi-armed Bandits

The literature on the MAB (both the stochastic and adversarial bandits) is extremely
rich, this problem has been studied in many approaches and the list of obtained results
is extensive. A literature review on the regret-minimization algorithms used in MAB
will be given in Chapter 7. Among them, Exp3 (which stands for the ”exponential-
weight algorithm for exploration and exploitation”) is one of the most important
classes. In the following, we present a basic variant of Exp3, designed for the adver-
sarial MAB by Auer, Cesa-Bianchi, Freund, et al. (2002). This is given in Algorithm 1,
rewritten under our notations and in a slightly more general formulation.

The main idea of the Exp3 algorithm is to keep a weight for each arm at each stage C
(denoted byFC(e 8) for arm e 8); then with probability 1−�, the learner samples randomly
an arm from the normalized weights (called the exploitation) and with probability �,
samples an arm uniformly at random (called the exploration) (line 4—Algorithm 1);

9In fact, in the OComb with ( :=
{
e1 , e2 , . . . , e�

}
, semi-bandit feedback coincides with bandit

feedback—the information that the learner observes in these cases are exactly the same.
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Algorithm 1: The Exp3 Algorithm for MAB.

Input: Set of � arms ( = {e1 , . . . , e�}; time horizon ) ∈ N\{0}, parameters
� ∈ [0, 1], � > 0.

1 Initialize F1(e 8) = 1,∀8 ∈ [�].
2 for C = 1, 2, . . . , ) do

3 For any 8 ∈ [�], the adversary chooses the loss !C(8) ∈ [0, 1] embedded to
the arm e 8 (unobserved by the learner).

4 ∀8 ∈ [�], GC(e 8)= (1−�) FC (e 8)∑
e∈( FC (e)+� 1

�

5 Sample an action e � from the distribution GC(e1), . . . , GC(e�)
6 Play the arm e � ; then, suffer and observe the loss !C(�).
7 Compute the estimated loss !̂C(8) = !C (8)

GC (e 8) I{8=�}, for any 8 ∈ [�].
8 ∀8 ∈ [�], update FC+1(e 8) := FC(e 8) exp

(
−�!̂C(8)

)
.

finally, based on the feedback, the learner estimates the loss of each arm10 and updates
the weights for the next stage (line 8—Algorithm 1). Importantly, the running time of

Exp3 is O(�)where� is the number of actions/arms. It can be proven that Exp3 is a no-
regret algorithm for any MAB problem; formally, we have the following proposition.

Proposition 2.2.4 (Extracted from Cesa-Bianchi and Lugosi (2012)). Running the Exp3

algorithm in the adversarial �-armed MAB (with appropriate parameters �, �),11 the expected

regret of the learner is:

') ≤ O
(√
)� ln(�)

)
.

The ComBand Algorithm for OComb with Bandit Feedback

As discussed above, any OComb with bandit feedback and an arbitrary action set
( ⊂ {0, 1}� can be rewritten as an MAB problem with |( | arms (each action corre-
sponds to an arm); therefore, in principle, one can apply directly the Exp3 algorithm
to any OComb problem (with bandit feedback). By doing this, the regret upper-bound
provided by Exp3 is in O(

√
2) |( | log |( |) and it runs in a polynomial time in terms of

|( |. However, in most of (if not all) the cases of interest in practice, the number of
actions in the OComb (i.e., |( |) is an exponential number in terms of �; therefore, the
above performance of Exp3 in OComb with bandit feedback is poor and needed to be
improved further.

An algorithm that improves the regret upper-bound in OComb is the ComBand

algorithm; it is proposed by Cesa-Bianchi and Lugosi (2012) as an improved variant of
the Exp3 algorithm. A pseudo-code of ComBand, written in our notation, is given as
Algorithm 2.

10Note that !̂C (8) in Algorithm 1 is an unbiased estimation of !C (8), i.e., E
[
!̂C (8)

]
= !C (8).

11See Cesa-Bianchi and Lugosi (2012) for more details.
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Algorithm 2: ComBand(�) for OComb with bandit feedback.

Input: (⊂ {0, 1}� , ) ∈N, �∈[0, 1], �>0, distribution � on (.
1 ∀p ∈ (, F1(p) := 1.
2 for C = 1, 2, . . . , ) do

3 Loss vector ℓ C ∈ [0, 1]� is adversarially chosen (unobserved by the learner).

4 ∀p ∈ (, �C(p) := FC (p)∑
q∈( FC (q) and GC(p)= (1−�)�C(p)+��(p).

5 Sample and play p̃C according to GC(p̃).
6 Suffer and observe the loss !(p̃C)= (ℓ C)⊤p̃C ≤ 1.
7 Compute the matrix �C := Ep∼GC (p)[pp⊤] ∈ M�×� .

8 Compute the estimated loss vector ℓ̂ C := !(p̃C)
(
�−1
C p̃C

)
=

(
ℓ C(p̃C)⊤

)
�−1
C p̃C .

9 ∀p ∈ (, FC+1(p) := FC(p)4−�(ℓ̂ C )
⊤p.

As in Exp3, at each stage C, ComBand keeps a weight FC(p) for each action p ∈ (

and it samples an action (line 5—Algorithm 2) from a distribution, called GC , mixing
between the exploitation distribution �C (normalization of the action weights) and an
exploration distribution � (unchanged over time). An unbiased estimator ℓ̂ C ∈ [0, 1]�,
based on the co-occurrence matrix �C := Ep∼GC (p)[pp⊤] ∈ M�×�, is used to estimate the
loss vector ℓ C . Then, the action weights are updated by the exponential rule using these
estimated losses (line 9—Algorithm 2).

In ComBand, the exploration distribution � is chosen a priori as inputs and it can
be any arbitrary distribution on ( such that ( is spanned by the support of �. Impor-
tantly, the performance guarantee of ComBand depends directly on the choice of �; to
highlight this, we parameterize ComBand with � and use the notation ComBand(�).
Consider the matrix "(�) = Ep∼�

[
pp⊤

]
, we denote by �∗["(�)] the smallest nonzero

eigenvalue of "(�) and let = := max{‖p‖1 , p ∈ (}. An upper-bound of the expected
regret provided by ComBand is given as the following proposition, extracted from
Cesa-Bianchi and Lugosi (2012) and rewritten here under our notations.

Proposition 2.2.5. In any OComb problem with bandit feedback and an arbitrary action
set ( ⊂ {0, 1}� , the ComBand(�) algorithm with appropriate parameters � and �,12
yields an expected regret

') ≤ 2

√[
2=

��∗["(�)] +1

]
)� log(|( |).

Here, the regret upper-bound provided by ComBand algorithm is in a logarithmic
order of |( |; this has improves much further the bound provided by applying directly
the classical Exp3 to OComb. Moreover, the larger �∗["(�)] is, the better the regret
bound that ComBand(�) guarantees. The problem of optimizing � and �∗["(�)] in
OComb with bandit feedback remains an open question in general (see Cesa-Bianchi
and Lugosi (2012) for several positive examples).

12See Cesa-Bianchi and Lugosi (2012) for the choices on these parameters.



24 2.2. Elements of Online Combinatorial Optimization

ComBand runs in Ω(|( | · )) where ) is the time horizon. Since |( | is exponential in
terms of�—the dimension of the action vector, it is inefficient to implement ComBand.
This is due to the weights-updating step (line 9—Algorithm 2), the sampling step (line 5—
Algorithm 2) and the computation of the co-occurrence matrix (line 7—Algorithm 2). We
will revisit the ComBand algorithm in Chapter 9 and provide alternative procedures
to improve these steps for an application of ComBand in the model of Colonel Blotto
game under online setting with bandit feedback.

2.2.3 Online Shortest Path Problems and Weight Pushing

Now we review the online shortest path problem (OSP)—another important instance
of the OComb framework. We will use the OSP model as the basis for our studies on the
online discrete CB game (presented in Part II). Note here that the term “online shortest
path” (adopted from György et al. (2007)) is often used interchangeably in the literature
of bandit problems with the term “path planning problem” (proposed by Cesa-Bianchi
and Lugosi (2006)). In this thesis, we choose to use the former because it provides a
more direct intuition and because the latter may create unnecessary confusions with
other similar terms in other communities.

Briefly put, OSP is an OComb problem where the action set of the learner is a set of
paths (from a source to a destination) on a directed acyclic graph (henceforth, DAG).
The original application of the OSP model (see György et al. (2007) and Takimoto and
Warmuth (2003)) is the prediction problem in routing where at each stage, a decision-
maker needs to choose a route for sending a packet in a network. Due to the traffic
at each stage, each edge in the network has a different delay that is unknown when
making the decisions. The objective is to minimize the aggregate delays incurred on
the edges along the chosen route.

We now give a formal definition of OSPs with a different terminology from the ones
used in OComb. First, we introduce several notations related to the DAGs. Each instance
of OSP will be defined with a DAG, denoted by �, that has the following properties:
there are two special vertices, a source and a destination, that are respectively called
B and 3; we denote by P the set of all paths starting from B and ending at 3 and let
% := |P|; the set of vertices and the set of edges of � will be respectively denoted by
V and ℰ; let + := |V| ≥ 2 and � := |ℰ | ≥ 1; we assume that each edge 4 ∈ ℰ belongs
to at least one path p ∈ P. Both the notations 4 ∈ p and p ∋ 4 indicate that the edge
4 ∈ ℰ belongs to the path p ∈ P. Finally, in �, we denote by = the length of the longest
path in P, that is ‖p‖1 ≤ =,∀p ∈ P.

Definition 2.2.6. Given a time horizon ) ∈ N, the online shortest path problem (OSP) on

the graph � is described as follows: at stage C ∈ [)], each edge 4 ∈ ℰ is embedded with a scalar

loss ℓ C(4) ∈ [0, 1] that is generated by an adversary; without knowing these losses, the learner

chooses a path p̃C ∈ P; the learner’s incurred loss at this stage, denoted by !C(p̃C), is the sum of

the losses from the edges belonging to p̃C , i.e., !C(p̃C) =
∑
4∈p̃C ℓ C(4). At the end of stage C, the

learner observes some feedback. The learner’s objective is to minimize the expected regret.

The OSP defined here is an instance of OComb (with the dimension of the action
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vectors is � := �); this can be seen by mapping each path p ∈ P to a vector in {0, 1}�
whose 4-th coordinate is p(4) = 1 if and only if the edge 4 ∈ p (thus, P ⊂ {0, 1}�) and
setting the loss vector to be ℓ C = (ℓ C(4))4∈ℰ . All the concepts related to OComb will
be transferred to OSPs, including the regret, the expected regret, the oblivious/non-
oblivious adversary and the settings of the feedback observed by the learner at the
end of each stage. The intuitions for the three basic feedback setting in OSPs are given
as follows:

The full-information setting: at the end of stage C, the learner observes the losses
of all edges, i.e., ℓ C(4),∀4 ∈ ℰ.

The semi-bandit feedback setting: at the end of stage C, the learner only observes
the losses of the edges belonging to the chosen path, i.e., ℓ C(4),∀4 ∈ p̃C .

The bandit setting: at the end of stage C, the learner only observes the aggregate
loss on the chosen path; she does not knows precisely the loss embedded with
any edge.

The semi-bandit with side-observation setting has not been considered in the literature
of OSPs; we formally define it and give more details in Chapter 8.

Finally, we review an important technique that relates to the OSPs, called weight

pushing. There exist variants of the Exp3 algorithm that are modified to run in the
OSPs (we analyze them in detail in Chapters 8 and 9). In these algorithms, it is needed
to have a sampling step as follows: given a DAG �, given a weight F(4) > 0 for each
edge 4 ∈ ℰ; one needs to sample a path p̃ ∈ P with the probability:

G(p̃) :=
[∏

4∈p̃
F(4)

] / [∑
p∈P

∏
4′∈p

F(4′)
]
. (2.6)

Note that the number of paths in a DAG � (denoted % = |P|) is an exponential number
in terms of the number of edges (� = |ℰ |) and the number of vertices (+ = V).
Therefore, a direct computation and sampling from G(p̃),∀p̃ ∈ P takes O(%) time,
which is very inefficient. It is desired to have a more efficient procedure (running in
polynomial time in terms of � and +). To do this, the weight pushing technique was
introduced by György et al. (2007) and Takimoto and Warmuth (2003); it is based on
dynamic programming. We present this technique, under our notation, as a collection
of two algorithms, called the WP and WPS algorithms, described below.

Let us respectively denote by C(D) and F(D) the set of the direct successors and
the set of the direct predecessors of any vertex D ∈ V. Moreover, let 4[D,E] and PD,E
respectively denote the edge and the set of all paths from vertex D to vertex E. We then
define the following terms for each pair of vertices D, E ∈ V:

�(D, E) :=
∑
p∈PD,E

∏
4∈p

F(4).

Intuitively, �(D, E) is the aggregate weight of all paths from vertex D to vertex E

and �(B, 3) is exactly the denominator in (2.6). As a convention of notation, we let
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�(D, D) = 1,∀D ∈ V and �(D, E) = 0 if PD,E = ∅. Now, let us label the vertices set by
V= {B = D0 , D1 , . . . , 3=D+−1} such that if there exists an edge connecting D8 to D9 then
8 < 9. The computation of all these terms �(D8 , D9) for any 8 , 9 ∈ {0, 1, . . . , + − 1} can be
done recursively by the following algorithm, called WP algorithm (i.e., Algorithm 3),
that runs in O(�+2) time, through dynamic programming.

Algorithm 3: The WP Algorithm.

Input: Graph �, set of weights {F(4), 4 ∈ ℰ}.
Output: �(D8 , D9), ∀8 , 9 ∈ [+ − 1] (that are �(D, E),∀D, E ∈ V).

1 for 9 ∈ {+ − 1, + − 2, . . . , 0} do

2 Initialization �(D9 , D9) := 1.
3 for 8 ∈ { 9 − 1, . . . , 0} do

4 �(D8 , D9) :=
∑

E∈C(D8)
F(4[D8 ,E])�(E, D9).

Algorithm 4: The WPS Algorithm.

Input: Graph �, set of weights {F(4), 4 ∈ ℰ}.
Output: p̃ ∈ P sampled from (2.6).

1 �(D, 3),∀D ∈ V are computed by Algorithm 3.
2 Initialize Q := {B}, vertex D := B.
3 while D ≠ 3 do

4 Sample a vertex E from C(D) with probability F(4[D,E])�(E, 3)
/
�(D, 3).

5 Add E to the set Q and update D := E.

6 Set p̃ ∈ P to be the path going through all the vertices in Q.

Based on the WP algorithm (i.e., Algorithm 3), we construct the WPS algorithm
(i.e., Algorithm 4) that uses the weights F(4), 4 ∈ ℰ as inputs and randomly outputs a
path in P. Intuitively, starting from the source vertex B = D0, Algorithm 4 sequentially
samples vertices by vertices based on the terms �(D, E) computed by Algorithm 3. It
is noteworthy that Algorithm 4 also runs in O(�) time and it is trivial to prove that the
probability that a path p is sampled from Algorithm 4 matches exactly G(p) defined
in (2.6).
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Part I

ONE-SHOT COMPLETE-INFORMATION

RESOURCE ALLOCATION

GAMES—APPROXIMATE EQUILIBRIA OF

BLOTTO GAMES
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Chapter 3

Blotto Games—Formulation and Related Works

Some of the ideas and definitions presented in this chapter have previously appeared

in our publications Vu, Loiseau, and Silva (2018a,b) and in our pre-print article Vu,

Loiseau, and Silva (2019a).

In this part (that includes Chapters 3, 4, 6 and 5), we tackle the first key question
of this thesis: how to play strategically in a one-shot complete-information Colonel
Blotto game (and other Blotto games) to obtain a good guarantee on payoffs? On this
question, the main focus of the literature is to look for Nash equilibria of these games.
In this thesis, we take a different perspective and tackle Blotto games from another
angle. We look for approximate equilibria of Blotto games with simple (and efficient)
constructions such that the involved approximation error is well-controlled and look
for conditions under which this error is negligible. Our results are scalable and they
extend the scope of applications of Blotto games to large-scale problems in practice.
Besides these results, we also aim to investigate the generalizability of the obtained
solutions into the general class of resource allocation games. Throughout this part
of the thesis, we refer to one-shot complete-information strategic games simply as
“games” (or “offline games” in order to distinguish with the model of “online learning
in games” studied in Part II).

Before diving into our results, we first dedicate this chapter (Chapter 3) to formally
define the model of the Colonel Blotto game and its variants/extensions and then give
an overview on the state-of-the-art in studying these games. The detailed outline is as
follows: in Section 3.1, we introduce the generalized Colonel Blotto game; in Section 3.2
we present several other variants and extensions, including the discrete Colonel Blotto
game, the generalized Lottery Blotto game and the generalized-rule Colonel Blotto
game; finally, in Section 3.3 we review the literature and the challenges encountered in
characterizing equilibria of these games and discuss more broadly related works.
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3.1 The Colonel Blotto Game

Colonel Blotto (CB game) is a famous game-theoretic model with a large range of appli-
cations (we invite the readers to see our discussions in Chapter 1 for a list of applications
of this game). For an intuition before defining the game formally (in Section 3.1.1), we
present in detail here a motivational example—an advertising competition that can be
modeled as a CB game:1

Two marketing campaigns, each with a fixed budget (in the form of promotional
gifts, coupons, etc.), want to optimize their direct marketing strategies on a common
set of potential customers (i.e., how to distribute the gifts to the customers). To each
marketing campaign, each customer has a certain value—the likeliness of buying the
product. We assume that these values are known (or might be estimated precisely
enough).2 Simultaneously, the marketing campaigns distribute their promotional gifts
towards the customers; and each customer prefers the product of the campaign giving
him/her more valuable gifts. The total payoff gained by each marketing campaign is
the aggregate values of customers choosing its products.

This is a typical application of the CB game. Two important features involved in
this application that are also characteristics of the CB game are: (i) customers choose
the campaign giving them the better gifts, regardless of the magnitude of the difference
between values of the gifts; (ii) unused resources, i.e., gifts that are not given away, do
not contribute to the final payoffs; this is the use-it-or-lose-it rule. Finally, to optimize
its payoff, each marketing campaign needs to take into account the optimization of its
opponent; therefore, knowing stable states of the game has a significant contribution
in predicting players’ behaviors in practice.

3.1.1 The Generalized Colonel Blotto Game

We consider the following one-shot, complete information game between two players
A and B. Each player has a fixed amount of resources (called the budgets), denoted -�

and -�, respectively. Without loss of generality, we assume that 0 < -� ≤ -�. Players
simultaneously allocate their resources across = battlefields (= ≥ 3). Each battlefield
8 ∈ [=] is embedded with two parameters F�

8 , F
�
8 > 0, corresponding to the values at

which player A and player B respectively assess this battlefield. A pure strategy of

player ) ∈ {�, �} is a vector x) =

(
G
)

8

)
8∈[=]

∈ R=≥0 that satisfies the budget constraint∑=
8=1 G

)

8 ≤ -). In each battlefield 8, when player ) allocates strictly more than her

opponent, she gains her embedded value F
)

8 while the opponent gains 0. In cases of a
tie, i.e., if G�8 = G�8 , then player A receives F�

8 and player B receives (1 − )F�
8 , where

1This motivational example is adopted from the problems studied by Masucci and Silva (2014, 2015)
in advertising competitions on social networks (also modeled as CB games) where a customer’s value is
the aggregate between an intrinsic value and a network value (i.e., the influence on his/her peers in the
network). Here, we simplify this model and do not include the network values to the customers’ values.

2See e.g., Domingos and Richardson (2001) and Richardson and Domingos (2002) on how marketing
campaigns may determine customers’ values in the case of advertising on social networks.
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 ∈ [0, 1] is a fixed parameter. Each player’s payoff is the summation of values she gains
from all battlefields; formally, for any pure strategy profile (x� , x�), the payoffs of players
A and B are Π�(x� , x�) = ∑=

8=1 F
�
8 · ��

(
G�8 , G

�
8

)
and Π�(x� , x�) = ∑=

8=1 F
�
8 · ��

(
G�8 , G

�
8

)
respectively; here, �� and �� (henceforth, we called them the Blotto functions) are
functions defined as follows:

��
(
G, H

)
=




1 , if G > H

 , if G = H

0 , if G < H

and ��
(
G, H

)
=




1 , if H > G

1 −  , if H = G

0 , if H < G

, for all G, H ∈ R≥0.

(3.1)

Definition 3.1.1. A generalized Colonel Blotto game, denoted by Cℬ= , is the game de-

scribed above; in particular, the action set of player ) ∈ {�, �} is {x) ∈ R=≥0 :
∑=
8=1 G

)

8 ≤ -)}
and her payoff is Π)(x� , x�) when players A and B play the pure strategies x� and x�.

In this game, a mixed strategy is a joint distribution on the allocations of all battle-
fields, such that any drawn pure strategy of a player is an =-tuple that satisfies her
budget constraint. We reuse the notations Π� (�� , ��) and Π� (�� , ��) to denote the
payoffs of players A and B when they play the mixed strategies �� and ��, respec-
tively. It is convenient to sometimes work with the notion of the normalized values of
the battlefields, defined as E�8 := F�

8 /,� and E�8 := F�
8 /,�, where,� :=

∑=
9=1 F

�
9 and

,� :=
∑=
9=1 F

�
9 for 8 ∈ [=]. Intuitively, ,� and ,� are the total values that players

could access on battlefields; they are also upper-bounds of the maximum payoffs that

players A and B can possibly obtain. We trivially observe that E
)

8 ∈ [0, 1] ,∀8 ∈ [=] and

that
∑=
9=1 E

)

9 = 1.
We emphasize again that the definition of Cℬ= given above allows the asymmetry

in the players’ budgets and the heterogeneity in the battlefields values; moreover, it
allows battlefield values to differ between the two players. Due to this asymmetry in
players’ assessment on battlefields’ values, the summation of players’ payoffs in Cℬ=

may vary according to the chosen strategies. For instance, if player A wins all the
battlefields, the total payoff of two players is,�, while this total payoff is,� if player
B wins all the battlefields. In other words, without other assumptions, the generalized

CB game is a non-constant-sum game. Furthermore, note that the term “generalized
CB game” used in this definition is adopted from Kovenock and Roberson (2015);
however, our formulation in Definition 3.1.1 is even more general than theirs: we
include a general tie-breaking rule. The defined payoff functions (involving �� and ��)
can be understood as if we randomly break the tie (if it happens) such that player A
wins battlefield 8with probability  while player B wins it with probability (1−). This
includes all the classical tie-breaking rules considered in the literature; for instance,
the rule of giving the whole value to player B used by Roberson (2006) and Schwartz
et al. (2014) corresponds to  = 0; the 50-50 rule used by Ahmadinejad et al. (2016),
Behnezhad, Dehghani, et al. (2017), and Kovenock and Roberson (2015) corresponds
to  = 1/2.
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Now, we recall the advertising competition presented in the beginning of this
section as an example on how one might use the generalized CB game to model
practical situations. We see clearly that it can be modeled as a Cℬ= game: players
correspond to the marketing campaigns; each customer is a battlefield and its value is
the customer’s value; the rule on how a customer chooses a product is given by the
Blotto functions (�� , ��) and the marketing campaigns’ payoffs are consistent with the
winner-takes-all rule of the generalized CB game.

Hereinafter, in places with no ambiguity, we drop the term generalized and simply
address the game Cℬ= as the CB game. Note finally that to lighten the notation, we
only include the subscript =—the number of battlefields—in the notation Cℬ= and
omit the other parameters; in particular the values -� , -�,  and F�

8 , F
�
8 for 8 ∈ [=].

We will discuss the state-of-the-art results related to equilibrium characterization of
the generalized CB game in Section 3.3.1. Before moving to definitions of other Blotto
games, we first present an important special case of the Cℬ= game in Section 3.1.2.

3.1.2 The Constant-sum Colonel Blotto Game

As discussed, with general configurations of parameters, the game Cℬ= defined in
Definition 3.1.1 is a non-constant-sum game. However, most works in the literature
(a review is given in Section 3.3.1) focus only on the constant-sum variant of this game
where players have the same evaluations on battlefields’ values. Naturally, all our
results for Cℬ= can be straightforwardly applied to this constant-sum version as well.
However, for the purpose of comparing with the literature and because we can show
stronger results in this special case, it is useful to also formally define the constant-sum
game variant as follows:

Definition 3.1.2. A constant-sum Colonel Blotto game, denoted by Cℬ�
= , is a game

that has the same formulation as the game Cℬ= but with the additional condition that

F�
8 = F�

8 ,∀8 ∈ [=].

Hereinafter, in the game Cℬ�
= , we use the notation F8 to commonly address the

valuesF�
8 = F�

8 . Similarly, we denote the common normalized valuation on battlefields
by E8 = E�8 =E

�
8 for all 8 ∈ [=] and the value of the game (i.e., the total payoffs of players)

by, :=,� =,�.

3.2 Other Blotto Games

In this section, we introduce several variants and extensions of the generalized CB
game presented in the previous section. They model a larger set of practical situations
and provide additional open challenges to study. Henceforth, we often commonly
refer to these games (including the generalized CB game) as Blotto games.
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3.2.1 The Discrete Colonel Blotto Game

First, there exist real-world situations where the involved resources are indivisible.
For example, in security problems, players (the attacker and the defender) need to
commit their human forces to protect (or destroy) security targets; these allocations of
resources must be integer numbers. In political competitions for voters, the budgets
and the resource allocations are also sometimes required to be rounded up to integers
(see e.g., Behnezhad, Blum, et al. (2018) and Behnezhad, Dehghani, et al. (2017)).
Another example is the military logistic application (proposed by Gross (1950) and
Gross and Wagner (1950)), in this case, if resources of players correspond to soldiers
(i.e., troops), these integer constraints are also essential. These situations cannot be
modeled directly by the Cℬ= game presented in Definition 3.1.1 in which the allocation
of a player ) ∈ {�, �} to a battlefield can be an arbitrary real number in

[
0, -)

]
. To

capture situations involving indivisible resources, we introduce the discrete Colonel
Blotto game (hereinafter, the DCB game), where players’ budgets and allocations are
constrained to be integers.

Definition 3.2.1. A discrete Colonel Blotto game with = battlefields, denoted by Cℬ�
= , is

the game that has the same formulation as the game Cℬ= but with additional conditions that

-� , -� ∈ N\{0} and that the strategy set of player ) ∈ {�, �} is



(G)1 , . . . , G

)
= ) : G

)

8 ∈ N,∀8 ∈ [=] and
∑
9∈[=]

G
)

9 ≤ -)



.

Naturally, other notations and related concepts of the generalized CB game (Cℬ=),
such as Π� ,Π� , E�8 , E

�
8 ,,

� ,,�, are transferred accordingly to the discrete CB game
(Cℬ�

= ). Moreover, by adding the constraint requiring that players have the same
evaluation on the battlefields’ values into the game Cℬ�

= , one can obtain the constant-

sum variant of DCB. As in the case of the generalized CB game, most of works on the
DCB game only focuses on this constant-sum variant. Unlike the Cℬ= game, the main
challenge in the Cℬ�

= game lies in the complexity of its solution, this is due to the fact
that the number of pure strategies of a player in Cℬ�

= is exponential in terms of the
number of battlefields and the budgets. We give a more complete literature review on
Cℬ�

= in Section 3.3.2.

3.2.2 The Generalized Lottery Blotto Game

In practice, there exist situations where the winner-takes-all rule of the CB game
(i.e., the player who wins a battlefield gains totally the value) is too restrictive. In
order to model these situations with more flexibility, in this thesis we also study
an extension of the generalized CB game, called the generalized Lottery Blotto game

(henceforth, LB game),3 where each player only gains a part of her value in each
battlefield. Alternatively, one can interpret the LB game as a version of the CB game

3Note that the generalized LB game is also a non-constant-sum game.
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in which each player wins a battlefields’ value with a certain probability depending
on players’ allocations on that battlefield and this probability can be non-zero even
for the player with smaller allocations. Some examples where the LB game model are
useful include online advertising competitions, political contests for voters’ attention,
research and development activities and radio-wave transmissions with noises.

We formulate the generalized LB game by presenting the players’ payoffs based on
the concept of contest success function (henceforth, CSF). CSFs, studied profoundly in
the rent-seeking literature (see e.g., Corchón (2007) and Skaperdas (1996)) are functions
that quantify the winning probability in contests, also called rent-seeking competitions,
where several players compete for a single prize by exerting resources/efforts. CSFs
can be defined for any number of players (see e.g., a general definition by Skaperdas
(1996)), but in this work, we focus only on the case of two players.

Definition 3.2.2. �� : R2
≥0 → R and �� : R2

≥0 → R are a pair of contest success functions

(CSFs) if and only if the following two conditions are satisfied:

(�1) ��(G, H), ��(G, H) ≥ 0 and ��(G, H) + ��(G, H) = 1, ∀G, H ≥ 0.

(�2) ��(G, H) (resp. ��(G, H)) is non-decreasing in G (resp. in H) and non-increasing in H

(resp. in G).

Intuitively, the function �� (resp. ��) maps any pair of players’ invested resources
to the probability that player A (resp. player B) might win the prize. Condition (�1)
indicates that the outputs of any pair of CSFs always satisfy the condition of a prob-
ability distribution. On the other hand, Condition (�2) states that a player’s winning
probability increases (or at least stays the same) when she increases her effort and
decreases (or at least stays the same) when her opponent increases her effort. We note
that Definition 3.2.2 allows a more general definition of CSFs (in two-player cases)
compared to the definitions given by Clark and Riis (1998b), Hirshleifer (1989), and
Skaperdas (1996) that contain other assumptions.4 While many of the CSFs considered
in the literature are continuous functions, we do not include continuity requirement
in Definition 3.2.2 to keep the generality. Importantly, the Blotto functions �� , �� of
the game Cℬ= (i.e., the winner-takes-all rule defined in (3.1)) satisfy Conditions (�1)
and (�2), hence �� , �� are CSFs. Besides these functions, some examples of other CSFs
considered in the literature are:

1. The Tullock CSF, first proposed by Friedman (1958) and re-introduced later by
Tullock (1980):

��(G, H) = G/(G + H) and ��(G, H) = H/(G + H); (3.2)

4For example, Skaperdas (1996) defines ��, �� with an axiom of anonymity; they also require that
any player who puts a strictly positive amount of resources has a strictly positive probability of winning
the prize; Clark and Riis (1998b) considers the CSFs additionally satisfying the Choice Axiom. These are
technical conditions needed for proving their results and we omit them here lest they unnecessarily limit
our scope of study.



34 3.2. Other Blotto Games

2. ��(G, H) = max
{
min

{
1
2+�(G−H), 1

}
, 0

}
and ��(G, H) = 1 − ��(G, H), proposed

by Che and Gale (2000), where � > 0 is a fixed parameter;

3. ��(G, H) = 1
2−

H−G
2H if G ≤ H and ��(G, H) = 1

2+
G−H
2G if G ≥ H; and ��(G, H) = 1 − ��(G, H),

proposed by Alcalde and Dahm (2007).

Building on the notions of CSF and the Colonel Blotto game, we now define a new
game model based on the following idea: in a game Cℬ= , we view each battlefield as
a contest between players where the prize is the battlefield’s value and players’ effort
correspond to their allocations; by doing this, each pair of CSFs defines an instance of
a new game where the probability of winning a battlefield follows them accordingly.

Definition 3.2.3. Let � = (�� , ��) be a pair of CSFs. A generalized Lottery Blotto game

with = battlefields, denoted ℒℬ=(�), is the game with the same players A and B and the same

strategy sets as in Cℬ= ; but where payoffs are given, for any pure strategy profile (x� , x�), by

Π
�
� (x� , x�) =

∑=

8=1
F�
8 · ��

(
G�8 , G

�
8

)
and Π

�
� (x� , x�) =

∑=

8=1
F�
8 · ��

(
G�8 , G

�
8

)
.

The generalized Lottery Blotto game model is more flexible than that of the gener-
alized Colonel Blotto game, as it allows choosing CSFs that define the players’ payoffs
for each specific practical situation. Intuitively, the players’ payoffs in a Lottery Blotto
game can be seen as the expected payoffs in the Colonel Blotto game with respect to
the following random process determining the winner in any battlefield 8: player A
wins with probability ��(G�8 , G�8 ) and player B wins with probability ��(G�8 , G�8 ) if they
allocate G�8 and G�8 respectively. As in the game Cℬ= , players’ payoffs in the ℒℬ=(�)
game are monotonic with respect to the allocations in a battlefield (due to Condition
(�2)). Note that the definition of the CSF (Definition 3.2.2) that we adopt here also
includes the Blotto-rule functions �� , �� (see (3.1)) as a special case; therefore, the CB

game is a particular case of the LB game. Throughout the thesis, for a generalized Lottery
Blotto game ℒℬ=(�) (where � does not coincide with the Blotto-functions), we call a
generalized Colonel Blotto game Cℬ= to be the corresponding game of ℒℬ=(�) (and
vice versa) if they have the same parameters =, -� , -� , F�

8 , F�
8 ,∀8 ∈ [=].

In the literature, the terms “loterry Blotto” or “Blotto-type game with lottery CSF”
are used in several works, but only to indicate the LB game with the Tullock CSF (de-
fined as (3.2)). To avoid the confusion, we emphasize again that we use the term (gen-
eralized) Lottery Blotto game to indicate the game with any generic CSF. Henceforth,
in places without ambiguity, we address a generalized LB game with = battlefields
and a generic CSFs simply by the notation ℒℬ= (that is we drop the notation of the
involved CSFs). We also remark that a possible extension of the ℒℬ= game is to allow
the winner of each battlefield to be determined by a different pair of CSFs. In this
thesis, we only consider the version, as defined in Definition 3.2.3, where one pair of
CSFs is used for all the battlefields, because it is simpler and more tractable.

As in the generalized CB game, the equilibrium characterization of the generalized
LB game is an open question (see also Section 3.3.3 for a literature review). In Chapter 6,
we investigate the connection between the CB and LB games; then, based on this
connection, we propose a class of approximate equilibria for the generalized LB game.
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3.2.3 The Generalized-Rule Colonel Blotto Game

In this section, we introduce yet another extension of the Colonel Blotto game, called
the generalized-rule Colonel Blotto game (henceforth, the GR-CB game), where the
winner-determination rule is generalized in order to capture more complicated sce-
narios often found in practice. In several cases of applications, players may have
resources committed to the battlefields before the CB game begins—we call them
the pre-allocations. This can be found in R&D contests, e.g., companies can use their
current products/technology to gain advantage when starting to develop new ones.
Pre-allocations are also very common in lobbying, e.g., in the competition for the rights
of operating 5G networks in Europe in 2020, Huawei Technologies Co., Ltd. received
disadvantages due to political reasons (see e.g., the articles by Reichert (2020) and
Stevis-Gridneff (2020)); here, the disadvantage of one player can be interpreted as ei-
ther she has a negative pre-allocation, or as if her opponent has positive pre-allocations.
On the other hand, the effectiveness of players’ resources are not always symmetric, e.g.,
in airport-surveillance problems, it usually required more than one security agent to
patrol one security target while it may only require one terrorist to make a successful
attack. Effectiveness may also vary among battlefields; e.g., in the US presidential
election, it is well-known that California is a reliable Democratic state; therefore, with
the same budget, the Republican party can attract voters more effectively in the swing-
states (e.g., Virginia) rather than in California. An example possibly involving both the
pre-allocations and the asymmetric resource’s effectiveness is the application of the CB
game in military logistics: before a military operation commences, it is often the case
that one side (or both sides) has already installed military forces in battlefields; more-
over, the effectiveness of resources (equipment, soldiers, etc.) are different among the
sides and they may also vary according to the landscapes/features of the battlefields.

A formal definition of the generalized-rule Colonel Blotto game (GR-CB game) is
given as follows:

Definition 3.2.4. A generalized-rule Colonel Blotto game with = battlefields (denoted

Gℛ−Cℬ=) is the game with the same players (A and B) and the same strategy sets as in the

generalized CB gameCℬ= but players’ payoffs when they play the pure strategies x� =
(
G�8

)
8∈[=]

and x� =
(
G�8

)
8∈[=] are defined by:

Π
�
GR-CB

(
x� , x�

)
=

∑
8∈[=]

F�
8 · ��

(
G�8 , @8G

�
8 − ?8

)
, (3.3)

Π
�
GR-CB

(
x� , x�

)
=

∑
8∈[=]

F�
8 · ��

(
G�8 , @8G

�
8 − ?8

)
. (3.4)

Here, ?8 ∈ R and @8 > 0 are two parameters additionally embedded with each battlefield 8 ∈ [=]
(they are known by the players before making decisions), and �� , �� are the functions defined

in (3.1).

Intuitively, the GR-CB game can be interpreted as a modified version of the gener-
alized CB game where the rule determining the winner in each battlefield is replaced
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by the following new rule: assuming that players A and B respectively allocate G�8 and
G�8 to battlefield 8; if G�8 > @8G

�
8 − ?8 , player A wins and gains the value F�

8 and player B
gains 0; reversely, if G�8 < @8G

�
8 − ?8 , player B wins and gains F�

8 while player A gains 0;
finally, if G�8 = @8G

�
8 − ?8 , player A gains F�

8 and player B gains (1 − )F�
8 , where

 ∈ [0, 1] is a given parameter. As in CB game, the payoff of each player in this game
is the summation of gains she obtains from all the battlefields. On the other hand, the
parameters ?8 and @8 indicated in the above definition of the Gℛ−Cℬ= game can be
intuitively interpreted as follows:

(8) The parameters ?8 ,∀8 ∈ [=] are used to model situations where players already
have resources committed to the battlefields before the actual beginning of the CB
game; we call these committed resources the pre-allocations of the players and they
are not included in the players’ budget -� and -�. Then, when the CB game
begins, players simultaneously allocate their resources (with budgets -� , -�)
toward the battlefields (as usual, we call these the allocations). After that, in each
battlefield, the winner is determined as the player who has a larger total amount
of resources at that battlefield, i.e., the summation of the pre-allocation and the
allocation. Therefore, if we set ?8 to be the difference between player A’s allocation
and that of player B, the winner-determination rule becomes comparing between
the allocation of player A and the allocation of player B minus ?8 (when we set
@8 = 1,∀8 ∈ [=]). Note that by this interpretation, ?8 > 0 implies that player
A’s pre-allocation at battlefield 8 is larger than that of player B; reversely, ?8 < 0
implies that player B has a larger pre-allocation than player A.

(88) On the other hand, the parameters @8 ,∀8 ∈ [=] are used to model the asymmetry
in the effectiveness of players’ resources. In particular, in the Gℛ−Cℬ= game,
in battlefield 8, each unit of player B’s resource is worth @8 units of player A’s
resource. Therefore, the winner of battlefield 8 is player A if her allocation is
larger than @8 times the allocation of player B; reversely, if player A’s resource is
less than @8 times player B’s resource then player B is the winner of this battlefield
(where we set ?8 = 0,∀8 ∈ [=]). According to this interpretation, in battlefield 8,
if 0 < @8 < 1, the resource of player A is more effective than that of player B; and
reversely, if @8 > 1, player B’s resource is more effective.

Finally, we note that if ?8 = 0 and @8 = 1,∀8 ∈ [=], the Gℛ−Cℬ= game coincides
with the generalized CB game Cℬ= (see Definition 3.1.1). Moreover, the functions
��(G, H) := ��(G, @8H − ?8) and ��(G, H) := ��(G, @8H − ?8) satisfy the conditions to be a
pair of CSFs; therefore, technically, the GR-CB game is an instance of the generalized
LB game. However, due to its special winner-determination rule and the motivation
for its formulation, we consider the GR-CB game separately from the class of LB games.
Note also that this formulation of the GR-CB game (with both the pre-allocations and
asymmetric effectiveness) is novel and we are not aware of any other work in the
literature studying a similar model.
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3.3 Literature Review on Blotto Games and Other Related

Works

As discussed above, most of works in the literature study Blotto games by looking for
their Nash equilibria in the one-shot complete information models. In this section,
we will sequentially (from Section 3.3.1 to Section 3.3.4) review the state-of-the-art
in equilibria characterization of the Blotto games defined in the previous sections.
Besides this approach, there also exist other related research directions, either on
game-theoretic solutions different from Nash equilibrium or on other game versions
obtained from relaxing and modifying Blotto games’ formulations; we review some
worth-mentioning results in Section 3.3.5.

3.3.1 Equilibria Analyses of the Generalized CB Game

As previously discussed, the Colonel Blotto game has been studied profoundly in the
literature; but it mostly focus on the constant-sum variant Cℬ�

= . Even in this simpler
version, the equilibria characterization is still not completely solved. Partial results are
obtained in several restricted cases as follows:

- When players have symmetric budgets (i.e., -� = -�), the equilibria of Cℬ�
= are

constructed by Borel and Ville (1938) in the game involving three battlefields,
and by Gross (1950) and Gross and Wagner (1950) in the game containing any
number of battlefields (see also Laslier (2002), Laslier and Picard (2002), and
Thomas (2017) for a modern presentation of this solution).

- When players have asymmetric budgets, the equilibria characterization remains
an open question in general; the exceptions are the following restricted cases: the
game with only two battlefields (see Gross and Wagner (1950) and Macdonell and
Mastronardi (2015)), the game with any number of battlefields but homogeneous
values, i.e., F8 = F 9 ,∀8 , 9 (see Roberson (2006)), and the game where there exists
a sufficient number of battlefields of each possible value (Schwartz et al. (2014)).

At a high-level, all the previous works mentioned above are based on the following
two-step scheme in order to find the equilibrium of the constant-sum CB game:

Step 1: Determine the optimal univariate distributions of players in each battle-
field; i.e., relax the budget constraints to be held only in expectation and seek
for the optimal allocation in each battlefield (given that the opponent is doing
the same). A formal definition of the concept of optimal univariate distributions
is given in Definition 4.1.1.

Step 2: Construct an =-variate joint distribution of the univariate distributions
found in Step 1 such that any strategy drawn from this joint distribution satisfies
the budget constraint (i.e., it is a mixed strategy).
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A toy example is the simple case of the constant-sum CB game with 3 battlefields
where players have symmetric budgets (Example 3.3.1).

Example 3.3.1 (Equilibrium of Cℬ�
= where = = 3, -� = -� and  = 1/2). This is clearly

a symmetric game; therefore, in equilibrium, players’ strategies are the same. First, if there

exists a battlefield having the value strictly larger than the sum of the other two battlefields’

values, there exists a trivial pure equilibrium: both players allocate all their resource on the

battlefield having the maximum value. Each player’s equilibrium payoff is,/2.5

Otherwise, one can follow the scheme mentioned above:

Step 1: if player ) ∈ {�, �} draws her allocation toward battlefield 8 ∈ {1, 2, 3} from

the uniform distribution U
(
0, 2-)F8

,

)
, then it is optimal for player −) to do the same;

moreover, by doing that, the budget constraint of player ) holds in expectation (i.e.,

U
(
0, 2-)F8

,

)
are the optimal univariate distributions in this game).

Step 2: If player ) draws her allocation toward battlefield 8, say G8 , independently from

U
(
0, 2-)F8

,

)
, the summation G1 + G2 + G3 may exceed the budget. We now describe

a procedure for the players to guarantee that their drawn allocations at each battlefield

8 follow U
(
0, 2-)F8

,

)
and that the budget constraints are satisfied. They construct a

non-degenerate triangle, called Triangle ), such that its sides have the lengths of F1 , F2

and F3 (it can be constructed due to the conditions on values’ battlefields). They then

inscribe a circle within this triangle and erect a hemisphere upon it (Figure 3.1). Player

) ∈ {�, �} chooses a point on this hemisphere uniformly at random and projects it to

a point, namely "), within the triangle. She plays the strategy (G1 , G2 , G3) such that

G1+ G2+ G3 = -) and that G1 : G2 : G3 = �1 : �2 : �3 where �1 , �2 and �3 are the area

of the triangles constituted by ") and the sides (with lengths F1 , F2 , F3 respectively)

of the Triangle ).

Figure 3.1: Illustration of an equilibrium construction in the Cℬ�
= game with three

battlefields and -� = -�.

The equilibrium presented in Example 3.3.1 is called the Disk Solution, proposed
by Gross and Wagner (1950); it is illustrated in Figure 3.1. As shown here, even in this
extremely simple setting, Step 2 is non-trivial. The main challenges in characterizing

5If a player deviate from this, he only gain at most the sum of values of the two small battlefields, that
is strictly less than,/2.
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equilibria of the CB game is how to construct mixed strategies (guaranteeing budget
constraints) having the marginals that are optimal in each battlefield. In the cases that
are more complicated than Example 3.3.1, the optimal univariate distributions are not
simply the uniform distributions and Step 2 is even more challenging. For example, for
the constant-sum CB game with homogeneous battlefields (i.e., F8 = F 9 ,∀8 , 9 ∈ [=]),
Roberson (2006) propose a solution based on Copula theory that has a complicated
representation and non-trivial implementation. We encounter similar problems in
studying the generalized CB game: we can compute the players’ optimal univariate
distributions in each battlefield separately but it is unknown whether there exists a
mixed strategy constructed from these distributions. It is unlikely that one can extend
the solutions from previous works to the generalizedCℬ= game because these solutions
depend heavily either on the symmetry assumption of the budgets (e.g., Gross (1950),
Gross and Wagner (1950), Laslier (2002), and Thomas (2017)) or on the homogeneity
of battlefields’ values (Roberson (2006) and Schwartz et al. (2014)). We will revisit this
discussion and give more details on the univariate optimal distributions in the game
Cℬ= in Chapter 4.

Besides the results mentioned above for the constant-sum variant, there also exist a
few works considering the non constant-sum CB game. Kovenock and Roberson (2015)
define and study the generalized CB game (as given in Definition 3.1.1) but only with
a fixed tie-breaking rule. They provide a set of optimal univariate distributions of this
game. They then indicate a sufficient condition for these distributions to become the
marginals of an equilibrium6—which is identical to that of Schwartz et al. (2014) for
the constant-sum case—that only covers a restricted range of games. This leads to the
complete characterization of equilibria of the General Lotto game (i.e., a version of the
CB game where the budget constraints are relaxed to be held only in expectation—see
also Section 3.3.5). Kovenock and Roberson (2015) also show a necessary condition
where there is no equilibrium satisfying such a set of marginals in the generalized
CB game. On the other hand, several other works also consider restricted variants of
the generalized CB game that are non constant-sum games, though with a significantly
different flavor than our perspective. For example, Hortala-Vallve and Llorente-Saguer
(2012) consider a discrete version of the Cℬ= game7 and identify conditions under
which a pure Nash equilibrium exists while Kvasov (2007b) and Roberson and Kvasov
(2012) consider the relaxation of the use-it-or-lose-it rule that changes the payoffs. As
for approximate equilibria of the generalized CB game, to the best of our knowledge,
there exists no work that explicitly considers this research direction. The only work
that mentions approximate results is from Weinstein (2005) who discusses approximate
equilibria (with a fixed approximation error) of a variant of the constant-sum CB game
with the majority objective (see Section 3.3.5 for a definition) and only 3 battlefields.

6Briefly put, this sufficient condition on the attainability of equilibria is that if the set of battlefields are
partitioned such that two battlefields are in the same partition if they have the same (normalized) values;
then, there exists a sufficient number of battlefields in each partition.

7In discrete CB games, there always exists at least one mixed equilibrium because they are finite games.
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A characterization of equilibria in the generalized CB game with a general configuration

of parameters remains an open question and alternative stable-state solutions, such as

an approximate equilibrium, are important for analyzing players’ behaviors. Following

the latter approach, the leading question is as follows: how to construct approximate

equilibria of the generalized CB game such that the involved approximation errors are

negligible (especially in large-scale applications)?

Finally, it is worth mentioning that there exist a variety of problems related to
the generalized CB game and the all-pay auction (APA) is one of the most important
classes.8 Equilibria of APA are often used as tools to study equilibria of the CB game
(more specifically, for constructing the optimal univariate distributions in Step 1 of the
two-step scheme mentioned above). In an all-pay auction, a number of players secretly
decide their bids to compete for a common item; the highest bidder wins the item
and gains its value; then, all players pay their bids (regardless of the winner). Nash
equilibrium is one of the main focuses of the APA literature and its equilibria have
been completely characterized by Baye, Kovenock, and De Vries (1994) and Hillman
and Riley (1989) (in the game with any number of bidders). In Section 6.2.1, we will
revisit the (single-item) APA in the case of two players and present its formal definition
and particular results. We then consider an extension of APA, called the APA with
favoritism model, to use as tools to study the generalized-rule CB game. A definition
of APA with favoritism is given in Section 6.2.1 and a literature review is presented in
Section 3.3.4.

3.3.2 Equilibria Analyses of the Discrete CB Game

First, note that although we present the discrete Colonel Blotto game as a variant
of the generalized CB game (see Definition 3.2.1), it is not too uncommon to find in
the literature that the DCB game is considered as the primary model and the variant
without integer constraints on players’ allocations (as in Cℬ=) is an extension from
it. Moreover, in several works, Cℬ�

= is simply referred to as the Colonel Blotto game
(e.g., Ahmadinejad et al. (2016) and Behnezhad, Dehghani, et al. (2017)) and Cℬ=

is called the continuous CB game. DCB can also be described quite differently from
Definition 3.2.1; one of the most well-known descriptions of the DCB game is from Hart
(2008) which is given in a slightly different formulation than our Cℬ�

= game: after the
players finish their allocation, a battlefield is chosen uniformly at random, the winner
of this battlefield wins the whole game (the winner’s payoff is 1 and the loser’s payoff
is -1). This game is equivalent to our definition of Cℬ�

= where the battlefields’ values
are all equal to 1/= (and the payoffs are normalized), i.e., a constant-sum discrete CB
game with homogeneous battlefields.

Unlike the generalized CB game, the discrete CB is a finite game with the additional
integer constraints on the players’ allocations and budgets. Therefore, in principle,
its equilibrium exists and can be solved numerically in general cases through linear

8We defer the literature review on other problems related to the generalized CB game to Section 3.3.5.
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programming. However, standard solutions to compute the Nash equilibria in the DCB
game face the issue that the strategy space of the players grows exponentially with the
number of battlefields and the budgets (see Table 3.1 for some examples).9 Finding
a more efficient computation of its equilibrium is the main challenge in studying the
DCB game. This problem has gained traction recently in the algorithmic game theory
community and partial results are obtained for the constant-sum variant of the DCB
game (in fact, as in Cℬ= , most of works in the literature only consider the constant-sum
variant of Cℬ�

= ). In particular, two algorithms were proposed for this variant, relying
on transforming players’ strategy sets into linear programming (LP) formulations, that
significantly improve the complexity: Ahmadinejad et al. (2016) propose an algorithm
based on a reduction to an exponential-size LP and a clever use of the Ellipsoid method
to solve it in polynomial time, and Behnezhad, Dehghani, et al. (2017) propose another
algorithm that obtains a polynomial-size LP and solves it using the simplex method.10
Yet, these algorithms still become computationally impractical when the number of
battlefields and/or the budgets are large. Applications such as security or politics
frequently involve large-scale parameters.

Table 3.1: Number of strategies in several instances of the discrete CB game

Number of battlefields Budgets Number of strategies
5 5 126
10 20 10015005
10 50 > 1.26 × 1010

50 10 > 6.28 × 1010

Besides the research direction mentioned above, there are several other results in
the literature that also relate to the DCB game. Hart (2008) studies the constant-sum
discrete CB game where battlefields’ values are homogeneous; however, the author
focuses on a special set of uniform distributions and look for the conditions (on the
game’s parameters) such that these distributions can be obtained; these results are then
used to study the bounds of the value of the game in several cases. Similar results can
also be found in C. Cohen and Sela (2007) and extended results to the General Lotto
game (i.e., where budget constraints are only required to be satisfied in expectation) can
be found in Dziubiński (2013). Another approach is proposed by Behnezhad, Blum,
et al. (2018) where the main focus is to characterize the (D, ?)-maxmin strategy11 in the
constant-sum discrete CB game. Notably, the discrete CB game has also attracted the
attention from the behavior game theory community with results using experimental

9The number of strategies of a player who has a budget equal :, in a discrete CB game with = battlefields

is in the order of Ω
(
2min{=−1,:}

)
.

10In a DCB game with = battlefields and players have at most< troops, the complexity of the algorithm
from Ahmadinejad et al. (2016) is Ω(<12=4) while the algorithm from Behnezhad, Dehghani, et al. (2017)
requires to solve an LP with Ω(<2=) constraints and Ω(<2=) variables.

11An (D, ?)-maxmin strategy of player ) is the one that guarantees for ) a payoff of at least D with
probability at least ?, regardless of the strategy of player −).
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data; e.g., the simulated round-robin experiments from Wittman (2011) and the real
plays by humans from Project Waterloo12—an application on Facebook that allows
users to invite both friends and strangers to play the DCB game against them (the
results were collected and analyzed by Kohli et al. (2012)).

There exist algorithms to compute an equilibrium of a DCB game; however, they are still

impractical to be implemented for medium and large size instances in practice. The open

question is how to efficiently compute a strategy for a player in the DCB game with good

guarantees on her payoff? In particular, can we give a fast procedure to construct an

approximate equilibrium of DCB and what is the trade-off between the error suffered from

using this approximate equilibrium and the obtained improvements in running time?

3.3.3 The Generalized LB Game and Contest Success Functions

Among the instances of the generalized LB game, the game with the Tullock CSF (this
CSF is defined in (3.2)) is the one that attracts the most attention from the literature:
Friedman (1958) and Kovenock and Roberson (2010) investigate the pure equilibrium
of the constant-sum variant; these results are extended into the case with more than
two players (Duffy and Matros (2015)), to the games where players asymmetrically
assess battlefields’ values (G. J. Kim et al. (2018)), and to the case where the surplus is
allowed, i.e., unused resources are included into the payoffs (J. Kim and B. Kim (2017)).
A similar function to define the winning probabilities is also used by Rinott et al. (2012)
to study a variant of the CB game involving sequential tournaments. Moreover, another
version of the LB game with Tullock CSFs and the weighted majority objective (i.e., a
player wins the game if the aggregate values of battlefields won by her exceeds 50%
of the total value) is also studied by Duffy and Matros (2015) and B. Kim and J. Kim
(2019); in this case, the equilibrium is partially characterized. An extension of this
model with a generalization of the Tullock CSF13—belonging to the broader class of
ratio-form CSFs—has actually been introduced previously by Shubik and Weber (1981);
however, no explicit result on its equilibrium has been given (we also address this game
instance in Chapter 6 and call it the LB game with Power-form CSF). The same model
is studied by Osório (2013) (coincidentally, it is also called there as the lottery Blotto
game); however, only numerically computed approximate-results of the equilibrium
are proposed and no tractable close-form solution is provided in the general cases
where battlefields’ values are asymmetric across players.

To the best of our knowledge, the formulation of the generalized LB game (with
generic CSFs) that we define in Definition 3.2.3 is novel and has not appeared in any
previous work. However, the idea of considering an extension of the CB game with
a CSF in the place of the winner-determination rule can also be found in Kovenock

12It used to be available at http://apps.facebook.com/msrwaterloo/; however, at the time when this
thesis is written, this link is temporarily inaccessible.

13In particular, for a given ' > 0, these CSFs are defined as ��(G, H) = G'/(G' + H') and
��(G, H) = H'/(G' + H').



Chapter 3. Blotto Games—Formulation and Related Works 43

and Roberson (2010); note importantly that such an extension has not been explicitly
defined there. Kovenock and Roberson (2010) actually consider a larger class of prob-
lem, called conflicts with multiple-battlefields (that covers both the LB and CB games);
following their terminology, the generalized LB game can be categorized as a conflict
with multiple battlefields having the budget-constraint and use-it-or-lose-it cost. Un-
like Blotto games, in a conflict, players’ strategies may or may not have the structural
linkage (e.g., the budget-constraint), moreover, battlefields’ outcomes can be defined
by a generic CSF and players’ payoffs are the difference between their objective func-
tions (not necessary the summation of the gains from the battlefields) and their cost
functions. Kovenock and Roberson (2010) summarize the results on the equilibrium
of a variety of instances of this generic framework of conflicts. Concerning conflicts
with budget constraints, the only results given by Kovenock and Roberson (2010) are
either in the CB game (see the related works in Section 3.3.1) or in the LB game with
the Tullock CSF that we have discussed above. Additionally, there are many results in
other kinds of conflicts defined with these kinds of CSFs, but they are for games where
players allocate without the budget constraints. In these cases, the equilibrium are par-
tially characterized; however, due to the lacking of budget constraints, these results do
not straightforwardly solve the problem of equilibria characterization in the general-
ized LB game. Some notable results are the multi-item all-pay auction14 (see also Baye,
Kovenock, and Vries (1996) and Hillman and Riley (1989)) and the multi-item contests
using the Tullock CSF to determine the outcomes of the battlefields15 (see e.g., Klumpp
and Polborn (2006), Robson (2005), and Snyder (1989)). The idea of Blotto-type games
with a generic CSF also appears in Klumpp, Konrad, et al. (2019); however, it is a
sequential variant of CB game with the majority rule (see Section 3.3.5 for a definition
of this game variant); moreover, only results under a sufficiently-concave assumption
on the CSFs are given. The idea of using the generic CSF is also mentioned by Snyder
(1989) but without an explicit formulation.

A method analyzing the equilibria of the generalized Lottery Blotto with generic CSFs

has not been studied in the literature. Even in the LB game with well-used CSFs, such

as ratio-form CSFs,a equilibria are also unknown in the case with general configura-

tions of parameters. Alternatively, one can look for an approximate equilibrium of the

generalized LB game; in this case, the question becomes how to control the involving

approximation error.

aSee Section 6.1.2 for more details

14In the terminology used by Kovenock and Roberson (2010), this is a conflict without budget constraints
where battlefields’ outcomes are determined by the Blotto-rules and payoffs involve the linear cost.

15In the terminology used by Kovenock and Roberson (2010), this is a conflict without budget constraints
played on multiple battlefields; battlefields’ outcomes are determined by the lottery CSF and the cost
function is the linear cost.
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3.3.4 The Generalized-Rule CB Game and the All-pay Auction with Fa-

voritism

The generalized-rule Colonel Blotto game (GR-CB game) is obtained by allowing the
players in the CB game to have pre-allocations of their resources and to have asymmetric
effectiveness. Although there is no work in the literature considering precisely the
GR-CB model, an idea that is similar to the sets of additional parameters ?8 and @8
(8 ∈ [=]) used in the GR-CB game can be found in all-pay auctions with favoritism
problems (henceforth, F-APA)—an extension of the all-pay auction framework.16 In
the F-APA, a bidder may have an additive favoritism to include into its bids and a
multiplicative favoritism that handicaps its opponents’ bids. A formal definition of
F-APA is given in Section 6.2.1.

In the following, we give a literature review on the model of all-pay auction with
favoritism (also called the APA with head-starts and handicaps; or the APA with
incumbency advantages). An equilibrium of the two-player F-APA is characterized by
Konrad (2002) but only in the case where players assess the item with the same value,
the tie-breaking rule is to share the value equally among the bidders and that both kinds
of favoritism are in favor of one player. We will revisit these results in Section 6.2.2.
On the other hand, Clark and Riis (2000), Kirkegaard (2012), and Kitahara and Ogawa
(2010) focus on the incomplete information game where the item’s values to each player
is drawn from a distribution and kept as private information. Siegel (2009, 2014) studies
the APA with a general transformation in the winner-determination rule where the
additive and multiplicative favoritism are functions of players’ bids; however, these
works focus on an axiomatic approach; particularly, defining a set of assumptions
such that an equilibrium may be constructed from an algorithm. Besides the results
considering the favoritism as exogenous factors; the model where an auctioneer needs
to decide a favoritism (mostly, only with the additive favoritism) to maximize the
revenue has also attracted attention, see e.g., Fu (2006) and Li and Yu (2012). The APA
with favoritism between a continuum of bidders is also studied by I. Pastine and T.
Pastine (2012). For surveys on APA and APA with favoritism, see e.g., Corchón (2007),
Fu and Wu (2019), and Konrad and Kovenock (2009).

On the other hand, while we are not aware of any work in the CB game literature
with the generalization on the resource’s asymmetric effectiveness, there are some
works allowing players to have pre-allocations, although with a different taste than
our perspective here. For example, Paarporn et al. (2019) focus on an incomplete
information game where battlefields’ values are randomly generated and players are
informed asymmetrically about the battlefields; the relation between the information
and the equilibrium value (and other games’ parameters) is characterized in the three-
battlefield constant-sum CB game. A three-stage CB game model that allows players to
pre-allocate their resources is studied by Chandan et al. (2020) (and the pre-allocations
are publicly known); the conditions where pre-allocating is advantageous are indicated
in two-player games; these results are extended into the three-player games where two

16The all-pay auction has been briefly introduced at the end of Section 3.3.1.
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players fight against an opponent on separate battlefields.

The generalized-rule CB game has not been studied in previous works and a game-

theoretic solution of this game is important for applying it to real-world situations.

Sharing the same issues with the generalized CB game, it is important to determine the

set of optimal univariate distributions and an approximate equilibrium of the generalized-

rule CB game—these problems remain open questions.

3.3.5 Broader Views on Blotto games: Other Extensions, Variants and Re-

sults

Finally, the literature on Blotto games and other related models is much broader than
what we discussed in the previous sections. Moreover, the Nash equilibrium is not
the only game-theoretic concept that is considered in studying these games. Although
they are not studied in this thesis, to have a more complete overview on Blotto games,
we mention several notable works on some other versions of these games as follows:

• The Colonel Blotto game with the majority rule is an important class, its main
applications are situations in politics; in this game, a player wins the game
(and receive a positive payoff) only if the aggregate values (or the number) of
battlefields won by her exceed a given threshold (often chosen to be 50%). To
distinguish with this version, in the literature, the Blotto games that we defined
previously in this chapter are sometimes referred to as the plurality Blotto game.
Partial results on the equilibrium of the majority rule Colonel Blotto game are
provided in several works, e.g., Kvasov (2007a), Laslier (2005), Roberson and
Kvasov (2012), and Weinstein (2005). The LB game with the Tullock CSF and the
majority rule is also studied by Klumpp and Polborn (2006) and Snyder (1989)
with results on pure equilibria in several special cases.

• A sequential version of the generalized CB game is proposed by Powell (2009) as
a Stackelberg’s leadership model; the existence of subgame perfect equilibria is
proven in this game. Another sequential version is the Colonel Blotto Gladiator
game studied by Rinott et al. (2012) where players distribute their troops into =
groups and let these groups fight sequentially; the group with a larger number
of troops wins the fight and moves on to fight the next group of the opponent.

• The class of General Lotto games is also studied intensively; briefly put, it is the CB
game where budget constraints are relaxed to hold in expectation. In this game,
players do not have the issue of constructing the mixed strategy from the optimal
univariate distributions as in the CB game (simply drawing independently the
allocations from these distributions is a feasible strategy in the General Lotto
game) and its equilibria are completely characterized (see Myerson (1993) for
the case of homogeneous battlefields, see Hart (2008) for a discrete variant and
Kovenock and Roberson (2015) for a non-constant sum version). Another version



46 3.3. Literature Review on Blotto Games and Other Related Works

is the Captain Lotto where players choose non-negative random variable values
bounded from above by a cap and its sum’s expectation is equal to a given budget.
This game is formulated by Hart (2016) and extended by Amir (2018).

• The CB game with incomplete information has also attracted the attention of the
literature. Adamo and Matros (2009) and Kovenock and Roberson (2011) study
the CB game where players are equally uninformed about either the opponent
budgets and/or battlefields’ values; symmetric Bayes-Nash equilibria are char-
acterized in these games. As mentioned, Paarporn et al. (2019) also concerns an
incomplete information game.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To keep track of all the different variants mentioned previously, we summarize
the names of the Blotto games in Table 3.2. In this table, the games whose names are
written in bold letters are studied with details in this thesis and the results regarding
their approximate equilibria will be presented sequentially in Chapters 4, 5 and 6. The
position of Blotto games in the broader context of conflicts and their relations with
other problems are presented as a diagram in Figure 3.2.

Table 3.2: Summary of variants and extensions in the class of Blotto Games

Blotto functions General CSFs Generalized-rule
(�� , ��) (�� , ��)

No additional
constraint

Generalized CB (Cℬ=)

(Chapter 4)

Generalized

LB (ℒℬ=)

(Chapter 6)

Generalized-rule
CB (GR-CB)

F�
8 = F�

8 ,∀8
Constant-

sum CB

(Cℬ�
= )

Constant-sum

discrete CB

(DCℬ<,?
= )

(Chapter 5)

Constant-sum

LB game

Constant-sum

GR-CB

(Chapter 6)
-� , -� ∈ N
and
(� , (� ⊆ N=

Discrete CB Discrete LB Discrete GR-CB

Summary: In this chapter, we introduced the class of Blotto games including the
generalized CB game, its variants (the constant-sum CB game and the discrete
CB game) and its extensions (the generalized LB game and the generalized-
rule CB game). We presented the formulations of these games, discussed the
motivation for studying them and gave a literature review on the equilibria
characterization problem in each game.
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Chapter 4

Approximate Equilibria of the Generalized

Colonel Blotto Game

Some of the ideas and results presented in this chapter have previously appeared in

our pre-print article Vu, Loiseau, and Silva (2019a).

The generalized Colonel Blotto game (see Definition 3.1.1), as the name suggests, is
the game with the most generalization of parameters’ configuration among the variants
of the CB game. It still remains an open question to prove (or disprove) the existence
of a Nash equilibrium of the generalized CB game and to construct an equilibrium if
it exists. In Section 3.3.1, we discussed the challenges and state-of-the-art results in
equilibria characterization of various restricted variants of the generalized CB game. In
this chapter, we change our perspective and do not focus on this approach; instead we
provide solutions for the following question: how to construct an approximate equilibrium

of the generalized CB game such that the involved approximation error is negligible (especially

in large-scale applications)?1

For the ease of reading, we recall several important notations in the definition of
a generalized CB game Cℬ= (Definition 3.1.1) as follows: = denotes the number of
battlefields; -� , -� denote players’ budgets; F�

8 , F
�
8 are the values and E�8 , E

�
8 are

the normalized values that players A and B assign to battlefield 8 ∈ [=];  is the tie-
breaking parameter and we often use x) to denote a pure strategy (i.e., an allocation)
of a player ). Moreover, in this chapter, we often work with an additional assumption
that battlefields’ values are bounded away from zero and infinity (see Assumption
(�0) below). This is a fairly mild assumption that is satisfied in most of (if not all)
practical applications.

(�0) ∃
¯
F, F̄ > 0 :

¯
F ≤ F

)

8 ≤ F̄,∀8 ∈ [=],∀) ∈ {�, �}.

As a direct consequence, the normalized values satisfy

¯
F

=F̄
≤ E

)

8 ≤ F̄

=
¯
F
, ∀8 ∈ [=],∀) ∈ {�, �}. (4.1)

1See Definition 2.1.6 for a definition of approximate equilibria.
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The outline of this chapter is as follows: in Section 4.1, we revisit several prelimi-
nary results on optimal univariate distributions of players in the generalized CB game;
then, in Section 4.2, we propose a simply-constructed class of approximate equilibria
of the generalized CB game (Section 4.2.1), study the relation between the involved ap-
proximation error and the game’s parameters (Section 4.2.2) and analyze the particular
case of the constant-sum CB game (Section 4.2.3).

4.1 Preliminaries on Optimal Univariate Distributions

In this section, we briefly review some results from the literature that are useful for
our analyses of the generalized CB game; and we show new bounds on the involved
parameters, based on Assumption (�0), that are essential for the asymptotic analysis
in the next sections. First, we introduce an important terminology that will be used
regularly throughout the thesis:

Definition 4.1.1. In the Cℬ= game, a set of univariate distributions
{
��8 , �

�
8

}
8∈[=] is called

optimal univariate distributions2 if they satisfy the following two conditions:

• If player ) draws the allocation toward battlefield 8 from �
)

8 for any 8 ∈ [=], then her

budget constraint holds in expectation; formally,3

∑
8∈[=]

[
E
G
)

8 ∼�
)

8

G
)

8

]
≤ -) . (4.2)

• It is optimal4 for player ) ∈ {�, �} to draw her allocation toward battlefield 8 from �
)

8

when player −)’s allocation toward battlefield 8 follows �
−)
8 ; in other words, for any pure

strategy x̃) of player ), the sum of expected gains from all the battlefields satisfies the

following inequality:∑
8∈[=]
EG∼��8 ,H∼�

�
8

[
F�
8 �

�(G, H)
]
≥

∑
8∈[=]
EH∼��8

[
F�
8 �

�(G̃�8 , H)
]
, (4.3)

∑
8∈[=]
EG∼��8 ,H∼�

�
8

[
F�
8 �

�(G, H)
]
≥

∑
8∈[=]
EG∼��8

[
F�
8 �

�(G, G̃�8 )
]
. (4.4)

Importantly, we recall that the payoff of player ) in the Cℬ= game is defined by

Π)(x� , x�) :=
∑
8∈[=] F

)

8 �
)(G�8 , G�8 ) when players play the pure strategies x� and x�.

Therefore, if there exists a mixed-strategy profile (that is a pair of =-variate distributions
on the players’ strategy sets) that yields the marginals matching the optimal univariate
distributions, then the left-hand-side of (4.3) and (4.4) becomes player )’s payoff when

2We adopt the terminology from Roberson (2006) who calls them the “optimal univariate marginal
distributions” (they are only implicitly defined by Roberson (2006)) but we drop the word “marginal”
since our definition does not involve a joint distribution.

3Here, the notation G ∼ �
)

8
denotes that G is drawn from the random variable corresponding to �

)

8
.

4We only consider sets of distributions satisfying (4.2) (this is implied by (4.3) and (4.4)).
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both players follow this mixed-strategy profile and the right-hand-side of (4.3) and (4.4)
becomes player )’s payoff when she plays the pure strategy x̃) and player −) plays by
the mixed-strategy profile. Note that in Definition 4.1.1, we avoid to call these involved
terms by the payoffs since the budget constraints might not hold here and drawing

(independently) the allocations from �
)

8 is not necessarily a feasible mixed-strategy.5
From the notion of optimal univariate distributions, we have the following impor-

tant proposition:

Proposition 4.1.2. In any Cℬ= game, let
{
��8 , �

�
8

}
8∈[=] be optimal univariate distributions of

the players; if for any ) ∈ {�, �}, there exists an =-variate joint distribution of
{
�
)

8

}
8∈[=]

such

that any realization of this joint distribution satisfies the budget constraint of player ), then the

strategy profile constituted from these joint distributions is an equilibrium of the Cℬ= game.

Proposition 4.1.2 can be trivially proved based on the definition of optimal univari-
ate distributions. This proposition straightforwardly implies that if equilibria exist in
the Cℬ= game, then we can find an equilibrium by following two steps: (8) search for
a set of optimal univariate distributions of Cℬ= ; (88) construct the joint distributions
from these optimal univariate distributions satisfying the budget constraint. In several
restricted cases of Cℬ= , equilibrium existence is proved and an equilibrium is charac-
terized by following the two-step scheme mentioned above (see Section 3.3.1 for an
extensive review on these results). However, in the Cℬ= game with generic configu-
rations of parameters (that is our main focus of this chapter), despite many studies, it
still remains an open question to prove (or disprove) the existence of equilibria and to
characterize them.

A class of optimal univariate distributions of the gameCℬ= is proposed by Kovenock
and Roberson (2015) (i.e., the Step (8) is solved). To find these distributions, observe
that we can break down the problem of finding the best-response of a player against a
fixed strategy of her opponent into solving = all-pay auctions involving the Lagrange
multipliers corresponding to the budget constraints (see e.g., Kovenock and Roberson
(2015), Roberson (2006), and Schwartz et al. (2014)). Equilibria of two-player all-pay
auctions are well-known (see e.g., Baye, Kovenock, and Vries (1996) and Hillman and
Riley (1989) and we also rewrite these results in Proposition 6.2.3 in Chapter 6). Based
on these results, Kovenock and Roberson (2015) present a class of optimal univariate
distributions parameterized by positive solutions6 of a special equation (we analyze
these results in detail below). Note that since this equation can have multiple solutions,
there might be more than one set of optimal univariate distributions in the Cℬ= game.

As for Step (88) in the scheme mentioned previously, unfortunately, it still remains
unknown how to construct joint distributions of the sets of optimal univariate distribu-
tions found by Kovenock and Roberson (2015) such that any realization from these joint

5On the other hand, in the General Lotto game—a relaxed version of the CB game where budget
constraints are only required to hold in expectation—, an equilibrium is where player ) ∈ {�, �} draws

independently his allocation to battlefield 8 from �
)

8
for any 8 ∈ [=], where {��

8
, ��
8
}8∈[=] satisfy Defini-

tion 4.1.1.
6Kovenock and Roberson (2015) also prove the existence of such solutions of this equation.
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distributions satisfies the budget constraints. Therefore, equilibria characterization in
Cℬ= game is still an open question.7

Although in this thesis we do not attempt to solve the open question of the equilibria
characterization of the generalized Colonel Blotto game, we still use several preliminary
results from this approach to construct an approximate equilibrium of the games. We
present below the results on optimal univariate distributions of the gameCℬ= obtained
by Kovenock and Roberson (2015) using a notation similar to that of these authors.

For each instance of the game Cℬ= , for any � ∈ (0,∞), we define

Ω�(�) :=
{
8 ∈ [=] : E�8 /E�8 > �

}
,

and consider the following equation with the variable � (other coefficients are the
parameters of Cℬ=):

-��

-�
=

�2 ∑
8∈Ω�(�)

(E�8 )2

E�8
+∑

8∉Ω�(�) E
�
8∑

8∈Ω�(�) E
�
8 + 1

�2

∑
8∉Ω�(�)

(E�8 )2
E�8

. (4.5)

Let us denote by S(4.5)
= the set containing all positive solutions of Equation (4.5) corre-

sponding to the game Cℬ= (or ℒℬ=).8 Based on Brouwer’s fixed-point theorem, the
following lemma is proved by Kovenock and Roberson (2015).

Lemma 4.1.3. For any game Cℬ= (or ℒℬ=), Equation (4.5) has at least one positive solution;

i.e., S(4.5)
= ≠ ∅.

Equation (4.5) may have more than one solution and it can be solved in O(= ln(=))
time.9 Now, corresponding to each positive solution �∗ ∈ S(4.5)

= , we define two con-
stants,10 namely �∗

�
and �∗

�
as follows:

�∗
� :=

(�∗)2
2-�

∑
8∈Ω�(�∗)

(
E�8

)2

E�8
+ 1

2-�

∑
8∉Ω�(�∗)

E�8 , (4.6)

�∗
� :=

1
2-�

∑
8∈Ω�(�∗)

E�8 +
1

2(�∗)2-�

∑
8∉Ω�(�∗)

(
E�8

)2

E�8
. (4.7)

7We refer the interested readers to Section 3.3.1 for our discussion on results obtained by Kovenock
and Roberson (2015) in the Cℬ= under several (restricted) assumptions.

8Note that (4.5) and S(4.5)
= also depend on other parameters of the game Cℬ= but we use the notation

with only the subscript = and omit other parameters to lighten the notation.
9To solve this equation algebraically, we first sort out all ratios E�

8
/E�
8

in a non-decreasing order

(which can be done in O(= ln(=))), then there are three possible cases: �∗ < min{E�
8
/E�
8
, 8 ∈ [=]} or

�∗ ≥ max{E�
8
/E�
8
, 8 ∈ [=]} or ∃9 : �∗ ∈

[
E�
9
/E�
9
, E�
9+1/E

�
9+1

)
. In all of these cases, Equation (4.5) becomes a

cubic equation. Finding numerically the solutions of Equation (4.5) and which one of them is positive is
even more costly.

10These constants are the Lagrange multipliers corresponding to the budget constraints in finding
players’ best-response; see Kovenock and Roberson (2015) for more details.
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Note importantly that we have �∗ = �∗
�
/�∗

�
(see Lemma A.1 in Appendix A.1 for a

proof). We now use these constants�∗
�

and�∗
�

to define several important distributions.

Definition 4.1.4. Given a game Cℬ= , for any �∗ ∈ S(4.5)
= and the corresponding constants

�∗
�
,�∗

�
, we define the following random variables and distributions,11 for each 8 ∈ [=]:

(a) If 8 ∈ Ω�(�∗) (i.e.,
E�8
�∗
�
>

E�8
�∗
�
), we define �(�∗ ,8 and �,�∗ ,8 as the random variables whose

distributions are

��(
�∗ ,8

(G) :=
G�∗

�

E�8
,∀G ∈

[
0,
E�8
�∗
�

]
, (4.8)

��,
�∗ ,8

(G) :=

E�8
�∗
�
− E�8

�∗
�

E�8
�∗
�

+
G�∗

�

E�8
,∀G ∈

[
0,
E�8
�∗
�

]
. (4.9)

(b) If 8 ∉ Ω�(�∗) (i.e.,
E�8
�∗
�
≤ E�8

�∗
�
), we define �,�∗ ,8 and �(�∗ ,8 as the random variables whose

distributions are

��,
�∗ ,8

(G) :=

E�8
�∗
�
− E�8

�∗
�

E�8
�∗
�

+
G�∗

�

E�8
,∀G ∈

[
0,
E�8
�∗
�

]
, (4.10)

��(
�∗ ,8

(G) :=
G�∗

�

E�8
,∀G ∈

[
0,
E�8
�∗
�

]
. (4.11)

To lighten the notation, hereinafter, we often commonly denote these random variables as follows

(the corresponding distributions are denoted by ��∗
8
and ��∗8 ):

�∗
8 :=

{
�(�∗ ,8 if 8 ∈ Ω�(�∗)
�,�∗ ,8 if 8 ∉ Ω�(�∗) and �∗

8 :=

{
�(�∗ ,8 if 8 ∉ Ω�(�∗)
�,�∗ ,8 if 8 ∈ Ω�(�∗) . (4.12)

We term these distributions the uniform-type distributions: ��(
�∗ ,8

(G) is the contin-

uous uniform distribution on
[
0, E�8 /�∗

�

]
and ��,

�∗ ,8
(G) is the distribution placing a

positive mass
(
E�8
�∗
�
− E�8

�∗
�

)/
E�8
�∗
�

at 0 and uniformly distributing the remaining mass on(
0, E�8 /�∗

�

]
; similarly, ��(

�∗ ,8
is the uniform distribution on [0, E�8 /�∗

�
] and ��,

�∗ ,8
is uni-

form on (0, E�8 /�∗
�
] with a positive mass at 0. More importantly, we have the following

proposition (see Lemma A.1-(888) and Lemma A.5 in Appendix A for a proof):

11Here, the superscripts ( and , , standing for strong and weak, are used to emphasize the
intuition on players’ incentive to play according to these distributions in the CB games: if

8 ∈ Ω�(�∗) :=
{
8 : E�

8
/�∗

�
> E�

8
/�∗

�

}
, player A has a “stronger" incentive to win battlefield 8 and player

B has a “weaker" incentive; if 8 ∉ Ω�(�∗), the roles of players are exchanged.
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Proposition 4.1.5. In the Cℬ= game, for any �∗ ∈ S(4.5)
= , the distributions

{
��∗

8
, ��∗8

}
8∈[=] are

optimal univariate distributions of the players.

We note also that although �∗
8 and �∗

8 have finite upper-bounds,12 and that among
these random variables, some may (with strictly positive probability) exceed the bud-
gets -� , -� for certain parameters’ configuration of the game; therefore, allocating
according to ��∗

8
, ��∗8 may violate the budget constraints and it is then trivial that there

exists no equilibrium yielding ��∗
8
, ��∗8 ,∀8 ∈ [=] as marginals. On the other hand, given

fixed -� , -�, if = is large enough, we can guarantee that �∗
8 , �

∗
8 do not exceed the

budgets for each 8; however, even in this case, we still do not have guarantees on the
summation of allocations sampled from all �∗

8 , �
∗
8 , 8 ∈ [=], i.e., it is still unknown if

there exists an equilibrium yielding ��∗
8
, ��∗8 , 8 ∈ [=] as marginals. Note importantly

that the budget-constraints violation of �∗
8 , �

∗
8 does not affect our work and our results

hold for any parameters’ configuration of the games.
Finally, under Assumption (�0), we obtain a novel result, presented below as

Proposition 4.1.6, stating that the parameters �∗ ,�∗
�

and �∗
�

are all bounded. The main
results of this chapter are based on asymptotic analyses in terms of the number of
battlefields of the game; therefore, it is noteworthy that the bounds of these parameters
do not depend on =. The proof of this proposition is given in Appendix A. From the
proof of Proposition 4.1.6, we observe that as the ratios F̄/

¯
F and (or) -�/-� increase,

the ranges to which �∗ and �∗
�
,�∗

�
belong also become larger (i.e., the ratios �̄/

¯
� and

�̄/
¯
� also increase).

Proposition 4.1.6. Under Assumption (�0), for any game Cℬ= , there exist positive constants

¯
�, �̄,

¯
�, �̄, that do not depend on =, such that for any �∗ ∈S(4.5)

= and its corresponding �∗
�
,�∗

�
,

we have
¯
�≤�∗≤ �̄ and

¯
�≤�∗

�
,�∗

�
≤ �̄.

4.2 Approximate Equilibria of the Generalized CB Game

In this section, we propose a class of strategies in the generalized Colonel Blotto game
Cℬ= , called the independently uniform strategies, and we show that it is an approx-
imate Nash equilibrium (and an approximate max-min strategy in the constant-sum
case)—see Section 2.1 for the definitions of approximate equilibria (and approximate
max-min strategy).

4.2.1 The Independently Uniform Strategies

Given a gameCℬ= , consider the corresponding Equation (4.5) and its positive-solutions
set S(4.5)

= . For any �∗ ∈ S(4.5)
= , we define in Definition 4.2.1 a mixed strategy via an al-

gorithm: Algorithm 5. We term this strategy as the independently uniform strategy (or
IU�∗

strategy), parameterized by �∗. Intuitively, this strategy is constructed by a simple

12Trivially from Proposition 4.1.6, the random variables �∗
8
, �∗

8
,∀=,∀8 ∈ [=] are upper-bounded by

F̄/(
¯
F=

¯
�). In the remainder of the chapter, we sometimes need an upper-bound of these random variables

that does not depend on =: we can prove that they are bounded by 2-� (see Lemma A.1 in Appendix A.1).
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procedure: players start by independently drawing = numbers from the uniform-type

distributions defined in Definition 4.1.4, then they re-scale these numbers to guarantee
the budget constraints.

Definition 4.2.1 (The independently uniform strategy). For any �∗ ∈ S(4.5)
= and any

player ) ∈ {�, �}, IU�∗

)
is the mixed strategy of player ) where her allocation x) is randomly

generated from Algorithm 5.

Algorithm 5: IU�∗
strategy-generation algorithm.

Input: = ∈ N, F�
8 , F

�
8 ∈ [

¯
F, F̄],∀8 ∈ [=], budgets -� , -�, �∗ ∈ S(4.5)

=

Output: x� , x� ∈ R=≥0

1 Draw 08 ∼ ��∗
8
, 18 ∼ ��∗8 ,∀8 ∈ [=] independently

2 if
∑
9∈[=] 0 9 = 0 then

3 G�8 := 0,∀8 ∈ [=]
4 else

5 G�8 := 08∑
9∈[=] 0 9

-� ,∀8 ∈ [=]

6 if
∑
9∈[=] 1 9 = 0 then

7 G�8 := 0,∀8 ∈ [=]
8 else

9 G�8 := 18∑
9∈[=] 1 9

-� ,∀8 ∈ [=]

Henceforth, we use the term IU�∗
strategy to denote the strategy profile (IU�∗

�
, IU�∗

�
).

We also simply use the notation IU�∗
in some places to commonly address either IU�∗

�

or IU�∗

�
strategy in case the name of the player need not be specified. Observe that

for any player ) ∈ {�, �}, any output x) from Algorithm 5 is an =-tuple that satisfies
her budget constraint. In other words, IU�∗

)
is a mixed strategy that is implicitly

defined by Algorithm 5 and each run of this algorithm outputs a feasible pure strategy
sampled from IU�∗

)
. Note that the marginals of the IU�∗

strategy are not the uniform-
type distributions ��∗

8
, ��∗8 , 8 ∈ [=] defined in Section 4.1. In terms of computational

complexity, Algorithm 5 terminates in O(=) time. Below we discuss the specificity of
the outputs of Algorithm 5 in the cases where

∑
9∈[=] 0 9 = 0 or

∑
9∈[=] 1 9 = 0.

Remark 4.2.2. If
∑
9∈[=] 0 9 = 0 or

∑
9∈[=] 1 9 = 0, the IU�∗

? strategy allocates zero resource

to all battlefields for the corresponding player (line 3 and line 7 of Algorithm 5). It may

seem more natural that, if
∑
9∈[=] 0 9 = 0, player A allocates equally on all battlefields, i.e.,

set G�8 := -�/=,∀8 ∈ [=] in line 3 of Algorithm 5 (and similarly for player B). In reality

though, these assignments can be chosen to be any arbitrary =-tuple x? in R=≥0 as long as∑
8∈[=] G

?

8 ≤ -? without affecting the results in our work. This comes from the fact that in most

cases, the conditions in line 2 and 6 hold with probability zero. They can happen with a positive

probability only when one player is the “weak player" and the other is the “strong player"

on all of the battlefields (i.e., either Ω�(�∗) = ∅ or Ω�(�∗) = [=]), e.g., in a constant-sum
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game Cℬ�
= . Yet, even in this case, this probability decreases exponentially as the number of

battlefields increases (see (29) in A.2). The asymptotic order of the approximation error in all

of our results is larger than this probability; therefore, it does not matter which assignment we

choose in lines 3 and 7 of Algorithm 5. Here, we choose to assign G�8 = 0,∀8 and G�8 = 0,∀8
to ease the notation in the proofs of the results in the following sections; in particular, it avoids

creating a discontinuity outside 0 in the CDF of the effective allocation in each battlefield (see

also Lemma A.3 in Appendix A.2).

4.2.2 Approximate Equilibria of the Generalized CB Game Cℬ=

We now present the main result of this chapter, stating that the IU�∗
strategy is an

approximate equilibrium with an error that is only a negligible fraction of the maximum
payoffs that the players can achieve, quickly decreasing as = increases. In the following
results, note that since we focus on the setting of games with a large number of
battlefields, we now focus on characterizing the approximation error according to
= and treat other parameters of the Cℬ= games, including -� , -� ,

¯
F, F̄ and , as

constants (but not the values F
)

8 , E
)

8 ,∀8 ∈ [=], ) ∈ {�, �}). We recall the notation Õ: it
is a variant of the big-O notation that ignores the logarithmic factor.

Theorem 4.2.3.

(i) In any game Cℬ= , there exists a positive number � = Õ(=−1/2) such that for any

�∗ ∈ S(4.5)
= , the following inequalities hold for any pure strategy x� and x� of play-

ers A and B:

Π
�(x� , IU�∗

�
) ≤ Π

�(IU�∗

�
, IU�∗

�
) + �,� , (4.13)

Π
�(IU�∗

�
, x�) ≤ Π

�(IU�∗

�
, IU�∗

�
) + �,� . (4.14)

(ii) There exists a constant �∗ > 0 such that for any � ∈ (0, 1] and in any game Cℬ=

with =≥ �∗�−2 ln
(

1
min{�,1/4}

)
, (4.13) and (4.14) hold for any �∗ ∈ S(4.5)

= , any pure

strategy x�, x� of players A and B.

A proof of this theorem is presented in Appendix A.2. The two results given
in Theorem 4.2.3 are two equivalent statements that can be interpreted from different
perspectives. Result (8) states that given a priori a game Cℬ= , there exists no unilateral
deviation from the IU�∗

strategy that can profit any player ) ∈ {�, �} more than a
small portion of her maximum payoff ,). As a trivial corollary, the IU�∗

strategy is
an approximate equilibrium of the game Cℬ= ; this is formally stated as follows:

Corollary 4.2.4. In any game Cℬ= , there exists a positive number � = Õ
(
=−1/2

)
such that

for any �∗ ∈ S(4.5)
= , the IU�∗

strategy is an �,-equilibrium where, := max{,� ,,�}.

Now, we interpret the above results in a sequence of games Cℬ= having larger
and larger numbers of battlefields (i.e., = increases) to see the relation between the
approximation error of the IU�∗

strategies and the game’s parameters in a clearer way.



56 4.2. Approximate Equilibria of the Generalized CB Game

The first question that might arise is: does the approximation error always decreases as =

increases? Our answer for this question is negative. We note that as = increases, the
error �, of the approximate equilibrium might not decrease to 0. This is due to the
fact that although � decreases as = increases, , might not: we recall that ,� and
,� are the total values that players A and B assess on the battlefields; therefore, as
we add more battlefields, it is inevitable that ,�, ,� and , = max{,� ,,�} do
not decrease. This, however, does not reduce the contribution of our results and the
applicability of the IU�∗

strategies. In fact, we have not asked the right question. It is not
meaningful to compare the magnitude of approximation errors of IU�∗

strategies in two
Cℬ= games having different sizes. Instead, we should compare the ratio between the
approximation error and ,—an upper-bound on players’ payoffs—which is relative
to the scale of the considered games. This ratio is exactly � (we call this the level of error).
As discussed above, as we consider the CB games with larger and larger number of
battlefields, � indeed quickly tends to 0. The bound Õ(=−1/2) indicates the order of
and how fast � decreases as = increases.13

Moreover, note that this upper-bound on � also depends on other parameters of
the game Cℬ= , including -� , -� ,

¯
F, F̄ and .14 We can extract from the proof of The-

orem 4.2.3 that as F̄/
¯
F and/or -�/-� increases, � also increases, i.e., for games with

higher heterogeneity of the battlefields values and/or higher asymmetry in players’
budgets, the IU�∗

strategy yields higher errors. Additionally, we note that to keep the
generality, Result (8) is presented such that the approximation error � is commonly
addressed for any IU�∗

strategy with any �∗ ∈ S(4.5)
= . For each specific solution �∗ of

Equation (4.5) (implying �∗
�

and �∗
�
), the corresponding IU�∗

strategy is an approxi-
mate equilibrium of Cℬ= with an approximation error that is at most (and it might be
strictly smaller than) �.

On the other hand, Result (88)-Theorem 4.2.3 indicates the number of battlefields
that a Cℬ= game needs to contain in order to guarantee a desired level of the ap-
proximation error by using the IU�∗

strategy as an approximate equilibrium. Hence,
in practical situations involving large instances of the Colonel Blotto game, the IU�∗

strategy (simply and efficiently constructed by Algorithm 5) can be used as a safe
replacement for any Nash equilibrium whose construction may be unknown or too
complicated. Now, let us introduce an important notation:

Definition 4.2.5. Corresponding to the players’ allocations toward each battlefield 8 ∈ [=],
let ��=8 and ��=8 denote the univariate marginal distributions of the IU�∗

�
and IU�∗

�
strategies

(see (12) and (13) in Appendix A.2 for a more explicit formulation of ��=8 and ��=8 ).

Intuitively, Result (88) can be proved by showing the two following results: (a)

when player B’s allocation to the battlefield 8 ∈ [=] follows ��∗8 , the best response

13Note that an alternative perspective is to consider a sequence of Cℬ= games (where = increases)
whose the battlefields values are re-scaled such that , = 1 in all games. In this case, Corollary 4.2.4
indicates that the IU�∗

strategy is an �-equilibrium of Cℬ= and � → 0 when = → ∞.
14This dependency is implicitly presented in the asymptotic notation Õ in Result (8) and the constant

�∗ in Result (88).
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of player A is to play such that her allocation to 8 follows the distribution ��∗
8

(and
vice versa); (b) as =—the number of battlefields—increases, ��=8 and ��=8 uniformly
converge toward the distributions ��∗

8
and ��∗8 , i.e., the marginal distributions of the

IU�∗
strategy approximate the distributions ��∗

8
and ��∗8 . This convergence can be

proved by applying concentration inequalities on the random variables
∑
9∈[=] �

∗
9 and∑

9∈[=] �
∗
9 (see Lemma A.6 in A.2); moreover, the relation between � and = in the results

of Theorem 4.2.3 depends directly on the rate of this convergence. In this work, we
use the Hoeffding’s inequality (see Hoeffding (1963)) that yields a better convergence
rate than working with other types of concentration inequalities (e.g., Chebyshev’s
inequality). To complete the proof of Result (88), we finally show that as = increases,
when player−) ∈ {�, �}plays the IU�∗

−) strategy, the IU�∗

)
’s payoff of player) converges

toward her best-response payoff. Note that these payoffs can be written as expectations
with respect to different measures (see (14), (15) and Lemma A.4 in Appendix A.2).
To prove the convergence of payoffs, we use a variant of the portmanteau theorem
(see Lemma A.7 in Appendix A.2) regarding the equivalent definitions of the weak
convergence of a sequence of measures. Note importantly that a direct application of
the portmanteau theorem leads to a slow convergence rate (notably, (4.13) and (4.14)
only hold when = = Ω(�−4)). This is due to the fact that the players’ payoffs involve
the bounded Lipschitz functions ��∗

8
and ��∗8 and that these functions depend on =,

particularly, their Lipschitz constants (that are either �∗
�
/E�8 or �∗

�
/E�8 ) increase as =

increases. In order to obtain the convergence rate as indicated in Theorem 4.2.3, we
exploit the special relation between ��=8 and ��∗

8
, and between ��=8 and ��∗8 ; then we

apply a telescoping-sum trick allowing us to avoid the need of using the Lipschitz
properties (for more details, see the proof of Lemma A.7 in Appendix A.7).

4.2.3 Approximate Equilibria of the Constant-sum CB Game Cℬ�
=

In this section, we discuss the constant-sum variant Cℬ�
= of the Colonel Blotto game,

defined in Definition 3.1.2. As an instance of the generalized game Cℬ= , the game
Cℬ�

= satisfies all results presented in Sections 4.2.1 and 4.2.2. Additionally, we show
that any IU�∗

strategy is an approximate max-min strategy of the game Cℬ�
= .

In any game Cℬ�
= , Equation (4.5) has a unique solution �∗=-�/-�≥1; this �∗

uniquely induces �∗
�
=1/(2-�) and �∗

�
= -�/(2-�2). Moreover, in Cℬ�

= , we have
that E�8 /E�8 = 1 ≤ -�/-� = �∗

�
/�∗

�
,∀8 ∈ [=]; therefore, we have Ω�(�∗) = ∅; intuitively,

player A is the “weak player” (and B the “strong player”) in all battlefields. Recall the
notation, := max{,� ,,�}, in the constant-sum game Cℬ=

= , we have, =,� =,�.
Applying Theorem 4.2.3, we obtain the following result:

Corollary 4.2.6. In any game Cℬ�
= , there exists a positive number � ≤ Õ(=−1/2) such that

the IU�∗
strategy is an �,-equilibrium with �∗ ∈ S(4.5)

= =
{
-�/-�

}
.

Note that if a Nash equilibrium exists in Cℬ�
= , then the set of equilibrium univariate

marginal distributions is unique (see e.g., Corollary 1 of Kovenock and Roberson
(2015)) and they correspond to the distributions ��,

�∗ ,8
and ��(

�∗ ,8
, defined in (4.10)
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and (4.11), where �∗
�

and �∗
�

are respectively replaced by 1/(2-�) and -�/(2-�2).
The marginals of the IU�∗

strategy with �∗ = -�/-� converge toward these unique
equilibrium marginals.

Finally, we also deduce that the IU�∗
strategy is an approximate max-min strategy

of the game Cℬ�
= ; formally stated as follows:

Corollary 4.2.7. In any game Cℬ�
= , there exists a positive number � ≤ $̃(=−1/2) such that

the following inequalities hold for �∗ ∈ S(4.5)
= =

{
-�/-�

}
and any strategy B̃ and C̃ of players

A and B:

min
C

Π
�(B̃ , C) ≤ min

C
Π
�(IU�∗

�
, C) + �,, (4.15)

min
B

Π
�(B, C̃) ≤ min

B
Π
�(B, IU�∗

�
) + �,. (4.16)

Intuitively, if player ) ∈ {�, �} plays the IU�∗
? strategy, she guarantees a near-

optimal payoff even in the worst-case scenario when her opponent −) plays strategies
that minimize )’s payoff (no matters how it affects −)’s payoff). The proofs of Corol-
lary 4.2.6 and Corollary 4.2.7 can be trivially deduced by applying specifically Theo-
rem 4.2.3 to the constant-sum Colonel Blotto games and thus are omitted in this work.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary: In this chapter, we considered the generalized Colonel Blotto game.
While most of (if not all) works in the literature attempt (but do not completely
succeed) to construct an exact equilibrium of (variants of) this game, we took a
different angle: We proposed a class of strategies called the IU�∗

strategies that
is simply constructed by an efficient algorithm; the IU�∗

strategies guarantee the
budget constraints but their marginals are not the uniform-type distributions.
Yet, we proved that the IU�∗

strategies are approximate equilibria of the gen-
eralized CB game with errors that are negligible relative to the magnitude of
players’ payoffs when the number of battlefields is large.
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Chapter 5

Approximate Equilibria of the Discrete Colonel

Blotto Game

Some of the ideas and results presented in this chapter have previously appeared in

our publications Vu, Loiseau, and Silva (2018a,b).a The numerical experiments pre-

sented in this chapter have also appeared in these publications and the corresponding

codes are available at https://github.com/dongquan11/Approx_discrete_

Blotto.

aA note on the terminology: in Vu, Loiseau, and Silva (2018a,b), the constant-sum variant
of the game DCB is the main focus and it is simply called the Colonel Blotto game there.

We now turn our focus to the discrete Colonel Blotto game (henceforth, DCB game) a
variant of the generalized CB game that is used to model situations involving indivisible
resources (see Section 3.2.1 for a formal definition of the DCB game and a discussion on
its motivation). Briefly put, the DCB game has the same formulation as the generalized
CB game (Definition 3.1.1) with additional constraints requiring players’ budgets and
allocations to be integers. In this chapter, we focus on the constant-sum version of DCB
(i.e., the DCB game where players have the same evaluation of battlefields’ values) as
this version is simpler, more tractable and it has also been studied in the literature
with notable results that we can use as benchmarks. The results we obtained in this
constant-sum version can be extended to the non-constant-sum version of the DCB
game (see Section 5.2).

Unlike the generalized CB game, the (constant-sum) DCB game is a finite game;
therefore, it has at least one (mixed) equilibrium (see Proposition 2.1.4). Moreover, the
equilibrium can be found numerically in general cases through linear programming.
Therefore, the main focus of the literature so far is aiming to design efficient and
practical algorithms that compute an equilibrium of the DCB game, and the main
challenge comes from the fact that the number of pure strategies of a player in this
game is exponentially large in terms of the number of battlefields and the magnitude
of players’ budgets (numbers of strategies in several DCB instances are presented in
Table 3.1). The main idea of state-of-the-art algorithms for computing equilibrium of
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the (constant-sum) DCB game is to find a better representation of players’ strategy sets,
then convert the problem to a linear programming. As seen in our literature review
in Section 3.3.2, although these algorithms provide polynomial-time/size solutions,
their running time grows fast (in an order of high-degree polynomials) in terms of
the number of battlefields and the budgets. They are still too impractical for real-life
situations. For example, it takes over 1 day for the algorithm of Behnezhad, Dehghani,
et al. (2017) to solve instances with 45 battlefields and a budget of 75 in our simulations
(on a computer with an Intel core i5-7500U 2.60GHz processor and 8GB of RAM—more
results are reported in Section 5.3). Note that the size of practical applications of the
DCB game can be scaled up to hundreds or thousands.1

Our main contribution in this chapter is to propose a special approximate equilib-
rium of the constant-sum DCB game that can be quickly constructed. This approximate
equilibrium, called the DIU strategy, is based on the idea of the class of IU�∗

strategies
defined in the generalized CB game (see Section 4.2.1) with necessary adjustments
to guarantee that the integer constraints are satisfied. We give the formal definition
of the DIU strategy in Section 5.1. In Section 5.2, we show that DIU is efficiently
constructed and that the approximation error in using DIU as an approximate equilib-
rium is negligible under specific conditions on the number of battlefields and players’
budgets. Finally, in Section 5.3, we propose an efficient algorithm, based on dynamic
programming, that computes a best response of a player against a given strategy of
her opponent; based on this algorithm, we conduct and analyze several numerical
experiments to illustrate the trade-off between the efficiency and the accuracy of using
the DIU strategy in the constant-sum DCB game.

Throughout this chapter, in order to emphasize the integer constraints in the DCB
model and to set an intuition about the setting, we change some notations and ter-
minology making them slightly differ from the description of the (non-constant-sum)
DCB game in Section 3.2.1 (and the generalized CB game): resources will be referred
to as troops,2 the budgets will be denoted by < and ? (for players A and B respectively)
instead of -� , -� (<, ? ∈ N\{0} and< ≤ ?) and integer allocations are denoted with a
hat (e.g., Ĝ). To avoid the confusion, we rewrite below a definition of the constant-sum
DCB game using this new notation; and we will use this definition for the remainders
of this chapter.

Definition. The constant-sum DCB game, denoted by DCℬ<,?
= , is the game that involves

two players, A and B, who simultaneously allocate their troops to = battlefields (= ≥ 3). A

pure strategy of player A is a vector x̂G ∈ N= , with integer elements Ĝ�8 ≥ 0 representing the

allocation to battlefield 8 ∈ [=] and satisfying the constraint
∑=
8=1 Ĝ

�
8 ≤ <. Similarly, a pure

strategy of player B is a vector x̂H ∈ N= such that the constraint
∑=
8=1 Ĝ

�
8 ≤ ? holds. Each

1For instance, in airport security, the number of security targets (corresponding to battlefields) can be
scaled up to hundreds and security forces (corresponding to budgets) might be up to tens of thousands
(e.g., in 2011, the United States Transportation Security Administration (TSA) was tasked to protect 400
airports by allocating approximately 48000 TSA officers for security screening—see Pita et al. (2011) and
TSA (2011)).

2This convention of terminology is inspired by the military setting in the description of the CB game
by Gross (1950) and Gross and Wagner (1950).
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battlefield 8 is commonly assessed by players with a fixed value F8 > 0. Players’ payoffs are

Π�(x̂� , x̂�) = ∑=
8=1 F8 · ��

(
Ĝ�8 , Ĝ

�
8

)
and Π�(x̂� , x̂�) = ∑=

8=1 F8 · ��
(
Ĝ�8 , Ĝ

�
8

)
when players

play the pure strategies x̂� , x̂� (here, the Blotto-rule functions �� , �� are defined in (3.1)).

In this chapter, we also reuse other notation in the generalized CB game for the
DCℬ<,?

= game, including , =
∑=
8=1 F8—the total value of all battlefields;  ∈ [0, 1]—

the tie-breaking parameter (implicitly presented in the definition of �� , ��) and we
introduce the notation # := ?/<—the ratio of players’ budget. Note importantly that
the results in this chapter are also obtained under Assumption (A0) presented in Chap-
ter 4, i.e., all battlefields’ values belong to a bounded range: F8 ∈ [

¯
F, F̄] ,∀8 ∈ [=], with

0 <
¯
F ≤ F̄. In the above definition, to lighten the notation, we only include the

subscript = (the number of battlefields) and the superscripts <, ? (players’ budgets)
in the notation DCℬ<,?

= ; however, this game also depends on  and F8 ,∀8 ∈ [=] (and

¯
F, F̄). Finally, given a game DCℬ<,?

= , we say that a game Cℬ= is the continuous CB

game corresponding to DCℬ<,?
= when it has the same parameters as the DCℬ<,?

= game
but without the integer constraints.

5.1 The DIU Strategy

In this section, we propose a mixed strategy of the DCℬ<,?
= game—called the Dis-

crete Independently Uniform strategy (DIU strategy)—which will be proven to be an
approximate equilibrium of the game. Intuitively, under the DIU strategy, players first
draw independently numbers from some particular uniform-type distributions; then they
rescale these numbers to guarantee the budget constraints; finally, they use a specific
rounding process to ensure the discrete/integer requirements.

The first (naive) idea that we can attempt to follow is to consider the continuous
game corresponding to DCℬ<,?

= , say Cℬ= , then we construct the IU�∗
strategy of

Cℬ= (based on the optimal univariate distributions in Cℬ=) and simply round-up the
allocations drawn from this IU�∗

strategy to the closest integers (to satisfy the integer
constraints in DCℬ<,?

= ). However, this procedure has a serious flaw: due to the
rounding-up step, the budget constraints might be violated and it is non-trivial how
to exploit the optimality of the marginals of the IU�∗

strategy (in Cℬ=) to control the
approximation error of the proposed mixed strategy in DCℬ<,?

= . Moreover, it might
happen that a non-tie situation in the continuous game can lead to a tie situation in
the discrete game; these situations can make a significant difference in the payoffs.
Therefore, we need to adjust the IU�∗

strategy in a more elegant manner—somehow
capturing the relation between DCℬ<,?

= and its corresponding continuous game, this
is our objective in designing the DIU strategy proposed below.

To formalize the DIU strategy definition, in any game DCℬ<,?
= , for any 8 ∈ [=], we

introduce the uniform-type distributions:

��̃∗
8
(G) :=

(
1 − 1

#

)
+ G

2F8,#

1
#
,∀G ∈

[
0, 2

F8
,

#
]
, (5.1)
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��̃∗8
(G) :=

G

2F8,#
,∀G ∈

[
0, 2

F8
,

#
]
. (5.2)

These distributions depend on = (the number of battlefields), # (the ratio of players’
budgets) and F8/, (the normalized value of battlefield 8). Moreover, we observe
that ��̃∗8

is the (continuous) uniform distribution on
[
0, 2F8#/,

]
and ��̃∗

8
is the dis-

tribution where we set a probability mass
(
1 − 1/#

)
at 0 and uniformly distribute the

remaining mass on
(
0, 2F8#/,

]
. We denote by �̃∗

8 and �̃∗
8 the random variables that

correspond to ��̃∗
8
and ��̃∗8

. Note importantly that the distributions ��̃∗
8
and ��̃∗8

are not
the optimal univariate distributions of players to battlefield 8 in the continuous game
that corresponds to DCℬ<,?

= . Instead, they are, at a high-level, the optimal univariate
distributions of players in a “normalized” version of it.3 We choose to work with ��̃∗

8

and ��̃∗8
because in the DIU strategy (defined below), there is an additional step (that

has not appeared in constructing the IU�∗
strategy for Cℬ=) designed specifically to

guarantee the integer constraints in DCℬ<,?
= . This step is based on a rounding function,

defined as A< :
[
0, ?<

]
→

{
0, 1

< ,
2
< , . . . ,

?
<

}
, such that A<(G) = Ĝ

< ,∀G, where Ĝ ∈ N is
uniquely determined and satisfies Ĝ

< − 1
2< ≤ G < Ĝ

< + 1
2< .

Definition 5.1.1 (The DIU strategy). In the game DCℬ<,?
= , DIUA (respectively, DIUB) is

the mixed strategy where player A’s allocation x̂G (respectively, player B’s allocation x̂H) is

randomly generated from Algorithm 6.

Algorithm 6: DIU strategy generation algorithm.

Input: =, <, ? ∈ N, and F8 ∈ [
¯
F, F̄],∀8 ∈ [=]

Output: x̂G , x̂H ∈ N=
1 # := ?/< ≥ 1
2 Draw 08 ∼ ��̃∗

8
,∀8 ∈ [=] independently

3 if
∑=
9=1 0 9 = 0 then repeat line 2

4 Draw 18 ∼ ��̃∗8
,∀8 ∈ [=] independently (and independently with line 2)

5 B�0 = B�0 = 0
6 for 8 ∈ [=] do

7 B�8 =
∑8
:=1

0:∑=
9=1 0 9

; B�8 =
∑8
:=1

1:∑=
9=1 1 9

?
<

8 Ĝ�8 := <
[
A<

(
B�8

)
− A<

(
B�8−1

) ]
9 Ĝ�8 := <

[
A<

(
B�8

)
− A<

(
B�8−1

) ]

Hereinafter, we use the term DIU to refer to the strategy profile (DIU� ,DIU�) and
also to commonly address either DIUA or DIUB when it is unnecessary to emphasize
a particular player.

3In fact, ��̃∗
8

and ��̃∗8
are the optimal univariate distribution of players’ allocations toward battlefield

8 in the (constant-sum) Cℬ= game where player A has the budget 1, player B has the budget # and
battlefield 8’s value is F8 .
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Algorithm 6 guarantees that the outputs are integers and satisfy the budget con-
straints (with equality, i.e., without any unallocated resource). More importantly, the
DIUA (resp., (DIUB)) strategy is only implicitly defined via Algorithm 6, that is to say it
is the joint distribution of all allocations {Ĝ�8 }8 (resp., {Ĝ�8 }8). Each pure strategy output
from Algorithm 6 is only one realization of the DIU strategy. In other words, Al-
gorithm 6 computes directly a realization of the strategy, rather than computing the
mixed strategy of the players (i.e., the equilibrium distribution) as in Ahmadinejad
et al. (2016) and Behnezhad, Dehghani, et al. (2017). In practice, this is what a player
would need to generate his allocation. Besides, it is possible to generate this distribu-
tion with arbitrary precision simply by generating many realizations independently
using Algorithm 6.

Algorithm 6 is easy to implement and runs very fast in expected time O(=). Note
that the loop in lines 2-3 is not guaranteed to end in a finite time. However, the proba-

bility that the loop runs over : times is
(
1 − 1/#

) :=
and converges to zero exponentially

fast in : and =. To guarantee that the algorithm ends in finite time, it is possible to put
a stopping criterion and assign an arbitrary allocation to player A if it is reached. For
instance, we can set 08 = 0,∀8 ∈ [=] as in the IU�∗

strategy in the generalized CB game
Cℬ= . As the condition on line 3 will happen with increasingly low probability as =
grows, it can be seen from the proof of Theorem 5.2.1 that the result will still hold. On
the other hand, the summation

∑=
9=1 1 9 equals 0 only happens with probability zero,

therefore we do not need an additional condition to guarantee that the output from
line 4 satisfying

∑=
9=1 1 9 > 0.

When applying the DIU strategy, player A’s allocation to battlefield 8 ∈ [=] follows
the (marginal) distribution ���8 while player B ’s allocation follows ���8 whose corre-
sponding random variables are defined as:

��8 = <
[
A<

(∑8

:=1
�̃=:

)
− A<

(∑8−1

:=1
�̃=:

)]
, (5.3)

��8 = <
[
A<

(∑8

:=1
�̃=:

)
− A<

(∑8−1

:=1
�̃=:

)]
, (5.4)

where for any : ∈ [=],

�̃=: :=
�̃∗
:∑=

9=1 �̃
∗
9

and �̃=: :=
�̃∗
:∑=

9=1 �̃
∗
9

?

<
, (5.5)

and the random variables �̃∗
:
, �̃∗

:
have distributions (5.1)-(5.2).

We end this section by briefly describing the intuition behind ���8
, ���8 and the

construction of the DIU strategy in definition 5.1.1. These distributions are A<-rounded
from terms expressed by distributions ��̃=8

and ��̃=8
, which in turn, uniformly converge

towards ��̃∗
8

and ��̃∗8
when = → ∞. The key idea is that, the requirement to have

discrete allocations in the discrete game DCℬ<,?
= is less and less significant when the

granularity of the game increases (i.e. <
= ,

?
= → ∞), which makes DCℬ<,?

= similar to its
corresponding continuous game. Thus, based on the optimality of ��̃∗

8
against ��̃∗8

(and
vice versa) in the generalized (continuous) variant, we expect to have near-optimality
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in playing DIUA strategy against DIUB strategy (and vice versa), with any arbitrary
error �̄, > 0, given large parameters =, <, ?.

5.2 Approximate Equilibria of the Constant-sum Discrete CB

Game

We present the main result of this chapter in the following theorem (its proof is given
in Section 5.4):

Theorem 5.2.1.

(i) The DIU strategy is an �̄,-equilibrium of the game DCℬ<,?
= (< ≤ ?), where, is the

total value of all battlefields and �̄ ≤ max{Õ(=−1/2),O(=/<)}.4

(ii) Fix # ≥ 1 and �̄ > 0; there exists # ∗ = O
(
�̄−2 ln(�̄−1)

)
such that for = ≥ # ∗, there

exists "∗ = O(=/�̄) such that for < ≥ "∗ and ? = <# ∈ N, for any pure strategies x̂G

and x̂H of player A and B,

Π
�

(
x̂G ,DIUB

)
≤ Π

� (DIUA ,DIUB) + �̄,, (5.6)

Π
�
(
DIUA , x̂

H
)
≤ Π

� (DIUA ,DIUB) + �̄,. (5.7)

The two statements in Theorem 5.2.1 are two equivalent results. In Result (i), the
upper bound on �̄ is important because it allows us to evaluate the approximation
error in terms of the number of battlefields and amount of troops. At a high level,
it confirms the intuition that if the number of battlefields and the budgets are large
enough, then the DIU strategy yields a near-optimal payoff against the opponent’s DIU
strategy. Moreover, this result goes much beyond merely showing this convergence
and it is interesting and non-trivial in a number of ways. We notice in particular that if
the ratio </= is small, then the approximation may not be good, however large = gets.
Furthermore, Result (i)-Theorem 5.2.1 (also Result (ii)) involves a double limit, with
two growing parameters (= and <), and it identifies a precise scaling regime (i.e., ratio
between the two growing parameters) under which the convergence holds. Here, it
shows that the DIU strategy converges towards an equilibrium as soon as < grows at
least as fast as =3/2. This implies that, if we first make< grow to infinity, and then make
= grow to infinity, the result will hold. However, the reverse is not true: if = grows first,
or simply if< grows too slowly compared to =, then the DIU does not converge towards
an equilibrium. Intuitively, if the number of troops is low compared to the number of
battlefields, then the average number of troops per battlefield at equilibrium becomes
low and the DIU strategy based on a discretization of a uniform-type distribution is
no longer close to optimal.

On the other hand, Result (ii) tells us exactly how the parameters< and = should be
to reach a given level of approximation when we consider the class of DCℬ<,?

= games

4We recall again that the Õ notation is a variant of the big-O notation that “ignores" logarithmic factors.
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where players’ budgets have a fixed ratio (i.e., a fixed asymmetry in players’ strength).
Note that we limited the statement of our result here to emphasize the dependence
on = and < but our proof also allows extracting the dependence of �̄ on ,

¯
F, F̄ and

#. A more precise definition of the constants given in Result (ii)-Theorem 5.2.1 is

# ∗ := O
(

2
�̄2 ln

( 4
�̄

) [
2
(
F̄

¯
F

)2
+ #

]2 (
¯
F
F̄

)2

)
and "∗ := O

(
4=F̄
�̄
¯
F#

)
max

{
1, 1

#−1

}
. One then ob-

serves that the convergence is slower if F̄/
¯
F is larger (i.e., the battlefields heterogeneity

is higher) and if # is larger (i.e., the players asymmetry is higher). Note that we have
written the above discussion with <. The exact same holds with ? instead.

Now, we remark that DCℬ<,?
= is a constant-sum game. Therefore, by using in-

equalities (5.6) and (5.7), we can straightforwardly prove that the DIU strategy is an
approximately max-min strategy of the game. This is presented as the following
corollary of Theorem 5.2.1.

Corollary 5.2.2. ∀# ≥ 1,∀�̄ > 0, ∃# ∗ = O(�̄−2 ln(�̄−1)) : ∀= ≥ # ∗, ∃"∗ = O(=/�̄) :
∀< ≥ "∗, ? = <# ∈ N, in the game DCℬ<,?

= , for any strategy B̂ and Ĉ of player A and B,

min
�̂

Π
�(B̂ , �̂) ≤ min

�̂
Π
�(DIUA , �̂) + �̄,, (5.8)

min
�̂

Π
�(�̂, Ĉ) ≤ min

�̂
Π
�(�̂,DIUB) + �̄,. (5.9)

This corollary ensures that the DIU strategy gives the near-optimal payoff to any
player ) ∈ {�, �} even in the worst-case (when the opponent −) plays the strategy
that minimizes )’s payoff). This emphasizes the fact that players can “safely" use the
DIU strategy in practice.

Finally, we discuss the generalizability of the obtained results to the non-constant-

sum DCB game—i.e., the DCB game where player ) ∈ {�, �} assesses battlefield 8

with a value F
)

8 and her payoff is Π)(x̂� , x̂�) = ∑=
8=1 F

)

8 · �)
(
Ĝ�8 , Ĝ

�
8

)
(here, it allows

that F�
8 ≠ F�

8 ). We can show that the approximation scheme using the DIU strategy
can easily be extended to construct the approximate equilibria of the non-constant-sum
discrete CB game: we only need to replace the distributions ��̃∗

8
and ��̃∗8

in Algorithm 6
by the corresponding optimal univariate distributions of the players in the “normal-
ized” (continuous) generalized CB game where player A has the budget of 1, player B
has the budget of # and players evaluate the battlefields’ values by F�

8 , F
�
8 ,∀8 ∈ [=].

The approximation error of these approximate equilibria can be bounded in an order
of <, = and ? that is similar to that in Theorem 5.2.1.

5.3 Numerical Evaluation

In this section, we turn to the numerical computation of quantities related to the DIU
strategy, in particular to evaluate the quality of the approximation it gives depending
on the game’s parameters.
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5.3.1 A Best-Response Algorithm in the Discrete CB Game

First, computing the value of �̄ (or how close a given mixed strategy of player A
is to equilibrium) requires finding player B’s optimal allocation given that player A’s
allocation to battlefield 8 = 1, 2 . . . , = follows a given marginal distribution {�8}8=1,2,...,= .
This itself is a non-trivial problem since there is in principle an exponential number
of possible allocations to investigate. We propose an efficient algorithm based on
dynamic programming to solve this problem (see e.g., Bertsekas (2017) for a definition
of dynamic programming). This is formally presented as the following proposition.

Proposition 5.3.1. Algorithm 7 finds a best response strategy of player B and his optimal

payoff against any set of player A’s marginals with complexity O
(
?2 · =

)
.

Algorithm 7: Dynamic programming algorithm searching for player B’s best-
response (tie-breaking rule  = 0).

Input: =, <, ? ∈ N, E ∈ [
¯
F, F̄]= and marginals {�8}8∈[=] of player A

Output: Payoff Π(?, =) and the best-response
{
Ĝ�1 , · · · , Ĝ�=

}
against {�8}8∈[=]

1 for 9 = 0, 1, . . . , ? do

2 Π(9 , 0) = 0
3 for 8 = 1, 2, . . . , = do

4 �(9 , 8) = F8�8(9)
5 Π(9 , 8) = max

:=0,..., 9

{
Π (:, 8 − 1) + �

(
9 − :, 8

)}
6 9 = ?

7 for 8 = =, = − 1, . . . , 1 do

8 Ĝ�8 = arg max
:=0,1,..., 9

{
Π

(
9 − :, 8 − 1

)
+ �(:, 8)

}
9 9 = 9 − Ĝ�8

Note that, although our primary motivation is to compute a best-response of a
player to the DIU strategy, Algorithm 7 has a broader applicability since it works for
any mixed strategy of the adversary.5 We discuss here the main intuition behind
Algorithm 7 and give a descriptive proof of Proposition 5.3.1. Note firstly that the
algorithm is presented here with tie-breaking parameter  = 0 for simplicity but
could straightforwardly be adapted to any tie-breaking rule. In this algorithm, �(9 , 8)
denotes the expected payoff that player B gains from battlefield 8 by allocating 9 troops
to it, which is computed via the equation in line 4. More specifically, since  = 0, by
allocating 9 troops to battlefield 8, player B wins the value F8 if 9 is at least equal to
player A’s allocation. Since�8 is the marginal distribution of player A in this battlefield,
then �8(9) is exactly the probability of this event, which implies the expected gain of
player B. There are

(
? + 1

)
= terms �(9 , 8) to be computed yielding the complexity of

O(? · =) to do so.

5Not that this algorithm is used again in our numerical experiments in Chapter 9 computing the regret
in the online learning setting of the DCB game.
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On the other hand, we denote Π(9 , 8) the optimal payoff of player B when he is
allowed to spend 9 troops over the set {1, 2, . . . , 8} of battlefields; thus, Π(?, =) is
exactly the best-response payoff of player B. The computation of Π(9 , 8) is done by
working backwards with the recursive equation given in line 5. To spend 9 troops over
8 battlefields {1, 2, . . . , 8}, player B has to choose : ∈

{
0, 1, . . . , 9

}
which is the number

of troops he would then allocate across the first 8−1 battlefields (whose optimal payoff
is denoted Π(:, 8 − 1)), and put the remaining (9 − :) troops on 8Cℎ−battlefield (which
induces the payoff �(9 − :, 8)). He then optimizes the payoff to find Π(9 , 8) by selecting
the number : which maximizes the summation between the payoffs gained from these
two parts. There are O(? · =) terms Π(9 , 8) needed to be computed, each is done by
comparing between at most (? + 1) terms; thus it yields the complexity of O(?2 · =)
to do so. Finally, the algorithm finds a best response strategy yielding this optimal
payoff with complexity O(? · =) as in lines 7-9. Therefore, we conclude the proof of
Proposition 5.3.1.

Reversing the roles of A and B, we can construct a similar algorithm with complexity
O

(
<2 · =

)
to find the best response payoff of player A against any given set of player

B’s marginals.

5.3.2 Numerical Experiments

In practice, we first observe that a pure strategy instructing players to allocate their
resources following the DIU strategy can be generated from Algorithm 6 in time O(=),
which is negligible even for extremely large values of the parameters.

On the other hand, since the marginal allocations at battlefield 8 under the DIU
strategy, ���8 and ���8

, are not known in closed-form; we approximate them by the

corresponding empirical CDFs denoted �̄��8
and �̄��8

computed by drawing “many”
realizations of the DIU strategy from Algorithm 6. Indeed, it is known by the Glivenko-
Cantelli theorem (see e.g., Vaart (1998)) that the empirical CDF converges uniformly
towards the actual CDF, with a maximum difference in O( −1/2)where  is the number
of realizations drawn. Then, to guarantee that the approximation of the DIU’s CDF
by its empirical CDF does not affect the computed value of �̄, we only need to take
 ≥ O(=) (since �̄ is of the order Õ(=−1/2) according to the previous section). Overall,
generating a good approximation of the DIU’s marginal distribution therefore takes
time O(=2), still negligible even for large values. Finally, to compute �̄, for each player
) ∈ {�, �}, we compare the expected payoff Π)(DIUA ,DIUB) to player )’s best-
response payoff obtained from Algorithm 7 against the set of marginal distributions{
�̄(−))�8

}
8
of player −).

We construct several numerical experiments using R to illustrate the efficiency of
using the DIU strategy as an approximate equilibrium of the discrete constant-sum
Colonel Blotto games6. Our experiments run on a computer with an Intel core i5-
7500U 2.60GHz processor and 8GB of RAM. In all the experiments, we keep  = 0 and
# = ?/< fixed, thus, the values of < and ? always have the same growth rate (up to

6Our code for these experiments can be found at https://github.com/dongquan11/Approx_discrete_Blotto
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the multiplicative constant #). For each instance (of =, <, ?, (F1 , F2 , . . . , F=)) we run
the simulations 3 times then take the average results.

Figure 5.1(a) shows the results. We first notice that when < (and ?) increases,
the error �̄ generally decreases in consistency with Theorem 5.2.1. Moreover, when
< is relatively small, the error �̄ is higher with instances having higher number of
battlefields =. This is predicted by Theorem 5.2.1, stating that when the ratios </=
and ?/= are low (they decrease when = increases), the upper bound of �̄ is not good.
For instances with higher values of <, these ratios are sufficiently large to ensure that
�̄ decreases when either< or = (or both) increase. This interpretation is also consistent
with the results shown in Figure 5.1(b). When the value of = increases, at the beginning
where the ratio </= is still sufficiently large, �̄ decreases. However, since we keep <

(and ?) fixed in this experiment, the ratio </= gradually decreases, which makes
the errors eventually get worse. Note that, for each experiment presented here, we
independently generate a value for each battlefield uniformly distributed in [

¯
F, F̄],

with
¯
F = 1 and F̄ = 8. This process explains the randomness observed in the plots.

<

�̄

(a) < (and ?) increases, # =
?
< = 6/5, log-scale x-axis.

=

�̄

(b) < = 425, ? = 510, # = 6/5, =
increases.

Figure 5.1: Approximation error �̄ of the DIU strategy stated in Theorem 5.2.1 as a
function of the game parameters.

We finally compare our work with the algorithm proposed in Behnezhad, De-
hghani, et al. (2017),7 which finds an exact equilibrium of the game (we denote it by the
Algorithm EQ). Table 5.1 shows the computation time of evaluating the error in using
DIU strategy and elapsed time of Algorithm EQ for several instances. We observe that
it takes remarkably less time to compute the DIU strategy payoffs and give an upper
bound of the potential error by using Algorithm 7. Note that the computation times
shown here include the time to compute the empirical CDF of the DIU strategy by
drawing sufficiently many realizations (here we take  = 10 · = guaranteeing not to
affect the evaluation on �̄) and the elapsed time of Algorithm 7. Moreover, the last
column of Table 5.1 shows that the DIU strategy payoffs are very close to the exact

7We use the authors’ implementation from https://github.com/Soben713/ColonelBlotto
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equilibrium payoffs, even for instances with small values of the parameters<, = and ?.
In conclusion, it is important to note that we do not claim that our algorithm can

replace more efficiently the algorithm of Behnezhad, Dehghani, et al. (2017) (in fact, we
are not computing the same thing). However, our results show that, for large values of
= and ?, the DIU strategy, which can be computed very efficiently, can be safely used
by the players as it provides a good approximation to the equilibrium.

Table 5.1: Comparison between DIU error evaluation time and Algorithm EQ

Instances
(# = 6/5)

DIU error’s
evaluation time

Algo. EQ
elapsed

time

|DIU−EQ|
,

∗

eCDF
generating

Algorithm 7 Total

= = 20, < = 50 0.12s 0.36s 0.49 2540.2s 0.0066
= = 35, < = 50 0.34s 0.67s 1.01s 10238.7s 0.0054
= = 50, < = 100 0.83s 1.99s 2.83s 1.5 day N/A
= = 100, < = 5000 106.46s 1396.33s 1502.79s N/A N/A
= = 150, < = 8000 380.14s 5153.11s 5533.25s N/A N/A
= = 200, < = 10000 895.36s 10991.66s 11887.02s N/A N/A

*The maximum difference between DIU payoffs and exact equilibrium payoffs (rescaled by the total payoff,).

5.4 Proof of Theorem 5.2.1

We end this chapter by presenting the main elements of the proof of Result(ii)-
Theorem 5.2.1. We note that, although the main idea behind the DIU strategy is
quite simple, the proof of this theorem is non-trivial and requires careful analysis to
achieve the upper bound on �̄. We give here the proof of Inequality (5.6); the proof of
(5.7) can be similarly done. More technical details are presented in Appendix B.

If �̄ > 1, (5.6) and (5.7) trivially hold. In the following, we consider �̄ ≤ 1 and # ≥ 1.

Proof. We start by rewriting (5.6). If player A plays a pure strategy x̂G against DIUB, he
strictly wins battlefield 8 with probability ���8

(
Ĝ�8 − 1

)
and has a tie with probability

%(��8 = Ĝ�8 ). Hence, according to our general tie-breaking rule,

Π
�

(
xA ,DIUB

)
=

=∑
8=1

F8���8

(
Ĝ�8 − 1

)
+

=∑
8=1

F8%
(
��8 = Ĝ�8

)
.

Similarly, player A’s payoff when both players play the DIU strategy is

Π
� (DIUA ,DIUB) =

=∑
8=1


F8

<∑
Ĥ=0

���8

(
Ĥ − 1

)
%

(
��8 = Ĥ

)
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+
=∑
8=1


F8

<∑
Ĥ=0

%
(
��8 = Ĥ

)
%

(
��8 = Ĥ

)
.

Therefore, to prove (5.6), it is sufficient to prove that, for all 8,8

=∑
8=1

F8���8

(
Ĝ�8 −1

)
≤

=∑
8=1


F8

<∑
Ĥ=0

���8

(
Ĥ−1

)
%

(
��8 =Ĥ

)
+ �̄

2
,, (5.10)

%
(
��8 = Ĝ�8

)
≤

<∑
Ĥ=0

%
(
��8 = Ĥ

)
%

(
��8 = Ĥ

)
+ �̄

2
,∀ ≠ 0. (5.11)

We observe that (5.10) and (5.11) relate to the distributions ���8 and ���8 , which are
not expressed in closed form. However, we can approximate them with the distribu-
tions ��̃∗

8
and ��̃∗8

defined in (5.1)–(5.2), as stated in the following lemma (its proof is
given in Appendix B):

Lemma 5.4.1. Fix # ≥ 1, for any �̄1 ∈ (0, 1], there exists # ∗ := O
(
�̄−2

1 ln
(
�̄−1

1

) )
, such that

for any = ≥ # ∗, there exists"0 := O (=/�̄1), such that for any< ≥ "0 and 8 ∈ {1, 2, . . . , =},
we have

sup
Ĝ∈N

�������8 (Ĝ) − ��̃∗
8

(
Ĝ

<

)���� < �̄1 and sup
Ĝ∈N

�������8 (Ĝ) − ��̃∗8

(
Ĝ

<

)���� < �̄1.

Since��8 is a discrete random variables for any 8, as a direct corollary of Lemma 5.4.1,
for any = ≥ O

(
�̄−2

1 ln
(
�̄−1

1

) )
and < ≥ O (=/�̄1), for Ĝ ∈ N, we have that�����̃��8 (Ĝ) − �̃�̃∗

8

(
Ĝ

<

)���� < �̄1 ,∀8 ∈ {1, 2, . . . , =}, (5.12)

where we define

�̃�̃∗
8

(
Ĝ

<

)
:= ��̃∗

8

(
Ĝ

<

)
− ��̃∗

8

(
Ĝ − 1
<

)
and �̃��8 (Ĝ) := %

(
��8 = Ĝ

)
= ���8

(Ĝ) − ���8 (Ĝ − 1) .

Step 1: We now prove (5.10) in 3 sub-steps.

Step 1.1: Upper bound of the left-hand-side of (5.10). Applying Lemma 5.4.1 with

�̄1 = �̄/4, for any = ≥ # ∗, < ≥ "0 and any pure strategy x̂G of player A, we have

=∑
8=1

F8���8

(
Ĝ�8 − 1

)

≤
=∑
8=1

F8

[
��̃∗8

(
Ĝ�8 − 1

<

)
+ �̄

4

]
≤

=∑
8=1

F8

(
Ĝ�8 − 1

<

,

2F8#
+ �̄

4

)

=

=∑
8=1

,Ĝ�8
2#<

−
=∑
8=1

,

2#<
+ �̄

4
, ≤ ,

2#
−

=∑
8=1

,

2#<
+ �̄

4
,. (5.13)

8Trivially, if  = 0, then (5.10) implies directly (5.6); therefore, we focus on the cases where  ≠ 0.
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Here, the second inequality comes from the definition of ��̃∗8
and the last inequality

comes from the constraint
∑=
8=1 Ĝ

�
8 ≤ <.

Step 1.2: Approximation of the right-hand-side of (5.10). We now need to show
that the right-hand-side of (5.10) has a lower bound matching the upper bound
given in (5.13). Based on Lemma 5.4.1 and Inequality (5.12), a naive approach

would be to simply approximate ���8
(
Ĥ − 1

)
%

(
��8 = Ĥ

)
by ��̃∗8

(
Ĥ−1
<

)
�̃�̃∗

8

(
Ĥ
<

)
, for each

Ĥ = 0, 1, . . . , <. However, summing all these approximation errors would lead to an
error in O (< �̄), a large number when < → ∞. Hence, we must do a finer approxi-
mation. To do so, we note that the probability of ��8 being larger than

⌈ 2F8
, ?

⌉
can be

bounded from above by a term independent of <. Specifically, let �′ := �̄/8; applying
Lemma 5.4.1 with �̄1 = �′/3, for any = ≥ # ∗ and < ≥ "̄ := O (=/�̄), we get that

%
(
��8 >

⌈
2
F8
,
?
⌉)

= 1 − ���8
(⌈

2
F8
,
?
⌉)

≤ 1 − ��̃∗
8

(⌈
2
F8
,
?
⌉ 1
<

)
+ �′

3
= 1 − 1 + �′

3
=

�′

3
,

where the second-to-last equality comes from the fact that
⌈
2F8, ?

⌉
1
< ≥ 2F8,#. Moreover,

������
<∑
Ĥ=0

���8

(
Ĥ−1

)
%

(
��8 = Ĥ

)
−
⌈2

F8
, ?⌉∑
Ĥ=0

���8

(
Ĥ−1

)
%

(
��8 = Ĥ

) ������≤
�′

3
. (5.14)

Now, we can show that this approximate summation in (5.14) is very close to the
term expressed with ��̃∗

8
and ��̃∗8

. Indeed, we have

������
⌈2

F8
, ?⌉∑
Ĥ=0

���8

(
Ĥ − 1

)
%

(
��8 = Ĥ

)
−
⌈2

F8
, ?⌉∑
Ĥ=0

��̃∗8

(
Ĥ − 1

<

)
�̃�̃∗

8

(
Ĥ

<

)������
≤

������
⌈2

F8
, ?⌉∑
Ĥ=0

���8

(
Ĥ − 1

) (
�̃��8

(
Ĥ
)
− �̃�̃∗

8

(
Ĥ

<

))������+
������
⌈2

F8
, ?⌉∑
Ĥ=0

(
���8

(
Ĥ−1

)
− ��̃∗8

(
Ĥ−1

<

))
�̃�̃∗

8

(
Ĥ

<

)������ .
(5.15)

Rearranging the first term and applying corollary (5.12) with �̄1 := �′/3, there exists
an "* := O (=/�̄) such that for < ≥ "* , we have����∑⌈2

F8
, ?⌉

Ĥ=0
���8

(
Ĥ − 1

) (
�̃��8

(
Ĥ
)
− �̃�̃∗

8

(
Ĥ

<

))����
≤

����∑⌈2
F8
, ?⌉

Ĥ=0
�̃��8

(
Ĥ − 1

) (
1 − ���8

(
Ĥ
)
− 1 + ��̃∗

8

(
Ĥ

<

))����
≤

∑⌈2
F8
, ?⌉

Ĥ=0
�̃��8

(
Ĥ − 1

) ������̃∗
8

(
Ĥ

<

)
− ���8

(
Ĥ
) ����

≤ �′

3

∑⌈2
F8
, ?⌉

Ĥ=0
�̃��8

(
Ĥ − 1

)
≤ �′

3
. (5.16)
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Here, the first inequality comes from the fact that9 ���8 (Ĥ−1) =
Ĥ−1∑
Î=0

�̃��8
(Î); which implies

⌈2
F8
, ?⌉∑
Ĥ=0

���8

(
Ĥ − 1

) (
�̃��8

(
Ĥ
)
− �̃�̃∗

8

(
Ĥ

<

))

=

⌈2
F8
, ?⌉∑
Ĥ=0

Ĥ−1∑
Î=0

�̃��8
(Î)

(
�̃��8

(
Ĥ
)
− �̃�̃∗

8

(
Ĥ

<

))

=

⌈
2F8
, ?

⌉∑
Ĥ=1

�̃��8
(Ĥ − 1)



⌈
2F8
, ?

⌉∑
Î=Ĥ

�̃��8
(Î) −

⌈
2F8
, ?

⌉∑
Î=Ĥ

�̃�̃∗
8
( Î
<
)


≤

������
⌈2

F8
, ?⌉∑
Ĥ=0

�̃��8

(
Ĥ − 1

) (
1 − ���8

(
Ĥ
)
− 1 + ��̃∗

8

(
Ĥ

<

))������ .

For the second term of (5.15), we use again Lemma 5.4.1 with �̄1 := �′/3 to get "̄
such that for < ≥ "̄,

������
⌈2

F8
, ?⌉∑
Ĥ=0

(
���8

(
Ĥ − 1

)
− ��̃∗8

(
Ĥ − 1

<

))
�̃�̃∗

8

(
Ĥ

<

)������ ≤
∑⌈2

F8
, ?⌉

Ĥ=1

�′

3

�����̃�̃∗
8

(
Ĥ

<

)����
=

∑⌈2
F8
, ?⌉

Ĥ=1

�′

3

������̃∗
8

(
Ĥ

<

)
− ��̃∗

8

(
Ĥ − 1

<

)���� ≤ ∑⌈2
F8
, ?⌉

Ĥ=1

�′

3<
,

2F8#2

=
�′

3<
,

2F8#2
·
⌈
2F8
,

?

⌉
≤ �′

3<
,

2F8#2
·
(
2F8
,

? + 1

)

≤ �′

3#
+ �′(# − 1)

3#
=

�′

3
,∀< ≥ "+ , (5.17)

where we choose "+ := max
{
"̄, 3=F̄

#2
¯
F(#−1)

}
= O(=/�̄).

Finally, by injecting (5.16) and (5.17) into (5.15) and combining with (5.14), we
conclude that for any = ≥ # ∗ and < ≥ "1 = max {"* , "+ } = O (=/�̄),

������
<∑
Ĥ=0

���8

(
Ĥ−1

)
%

(
��8 = Ĥ

)
−
⌈2

F8
, ?⌉∑
Ĥ=0

��̃∗8

(
Ĥ−1

<

)
�̃�̃∗

8

(
Ĥ

<

)������ ≤ �′. (5.18)

Step 1.3: Lower bound of right-hand-side of (5.10). We can finally find a lower
bound of the approximated sum in (5.18) (its proof is given in Appendix B):

9We recall the notation that �̃��8
(G) = ���8

(G) − ���8 (G − 1),∀G
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Lemma 5.4.2. Fix # ≥ 1. For any �′ ∈ (0, 1] and = ≥ # ∗, there exists an "2 := O (=/�′),
such that for any < ≥ "2, we have

=∑
8=1


F8

⌈2
F8
, ?⌉∑
Ĥ=0

��̃∗8

(
Ĥ−1

<

)
�̃�̃∗

8

(
Ĥ

<

)
≥ ,

2#
−

=∑
8=1

,

2#<
− �′,. (5.19)

Conclusion of step 1. Combining (5.18) and (5.19) (with �′ = �̄/8), for any = ≥ # ∗

and < ≥ "�
1 := max {"0 , "1 , "2} = O

(
=
�̄

)
, we have that

=∑
8=1


F8

<∑
Ĥ=0

���8

(
Ĥ − 1

)
%

(
��8 = Ĥ

)
≥ ,

2#
−

∑=

8=1

,

2#<
− 2,�′

≥
=∑
8=1

F8���8

(
Ĝ�8 − 1

)
− �̄

4
, − 2,�′, (from (5.13))

which implies exactly (5.10) (recall that �′ = �̄/8).

Step 2: Proof of Inequality (5.11). Choosing any �2 = O(�̄), as another corollary of

Lemma 5.4.1, for any = ≥ # ∗ = O
(
�̄−2 ln(�̄−1)

)
and < ≥ "′ = O (=/�̄)), we have that

%
(
��8 = Ĝ

)
= ���8

(Ĝ) − ���8 (Ĝ − 1) is �2-approximated by �̃�̃∗8

(
Ĝ
<

)
:= ��̃∗8

(
Ĝ
<

)
− ��̃∗8

(
Ĝ−1
<

)
,

∀Ĝ ∈ N,∀8. We now prove that (5.11) holds ∀ ≠ 0 by proving that %(��8 = Ĝ�8 ) gets
arbitrary small when < and = increases.

- Case 1: if Ĝ�8 ∉
[
1, 2F8

, ? + 1
]
, we have ��̃∗8

(
Ĝ�8
<

)
= ��̃∗8

(
Ĝ�8 −1
<

)
(either both terms equal

0 or either they equal 1). By choosing �2 = �̄/(2) then %
(
��8 = Ĝ�8

)
is �2-close to 0,

which trivially leads to (5.11) when < ≥ "′.

- Case 2: if Ĝ�8 ∈
[
1, 2F8

, ?
]
, we have �̃�̃∗8

(
Ĝ�8
<

)
= 1

<
,

2F8#
.

On the other hand, if Ĝ�8 =
⌈ 2F8
, ?

⌉
, since # =

?
< , we also have

�̃�̃∗8

(
1
<

⌈
2F8
,

?

⌉)
= 1 −

⌈ 2F8
, ?

⌉
− 1

<

,

2F8#
≤ 1 −

2F8
, ?

<

,

2F8#
+ 1
<

,

2F8#
=

1
<

,

2F8#
.

Therefore, by choosing �2 = �̄/(4), for any < ≥ "�
2 := max

{
"′, 2=F̄

�̄
¯
F#

}
= O(=/�̄)

and any G�8 , we have

%
(
��8 = Ĝ�8

)
≤ �̃�̃∗8

(
1
<

⌈
2F8
,

?

⌉)
+ �̄

4
≤ 1
<

,

2F8#
+ �̄

4
≤ �̄

4
+ �̄

4
=

�̄

2
.

This directly implies (5.11).
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Step 3: Conclusion of the proof. We have proved inequalities (5.10) and (5.11); thus,

we conclude the proof of (5.6) by taking "∗ := max
{
"�

1 , "
�
2

}
= O (=/�̄).

We can prove similarly (5.7) for player B and conclude that DIU strategy is indeed
an �̄,-equilibrium of the game.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary: In this chapter, we studied the (constant-sum) discrete Colonel Blotto
game. We proposed the DIU strategy, defined by a simple algorithm, and proved
that it is an approximate equilibrium of the game. We also showed how large
the number of troops and the number of battlefields of the game should be
to ensure a certain level of approximation. We constructed a best-response
dynamic programming algorithm and evaluated the approximation error of the
DIU strategy via several numerical experiments. Our work extends the scope of
applications of discrete Colonel Blotto games by trading off the accuracy with
the computational efficiency, which is useful for analyzing games with large
values of the parameters.
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Chapter 6

Approximate Equilibria of Extensions of the

Colonel Blotto Game

Some of the ideas and results presented in this chapter have previously appeared in

our pre-print article Vu, Loiseau, and Silva (2019a). The numerical experiments

presented in this chapter are conducted with our codes that are published at https:

//github.com/dongquan11/GeneralizedRule_CBgame.

In this chapter, we consider two extensions of the Colonel Blotto game (CB game):
the generalized Lottery Blotto game (LB game) and the generalized-rule Colonel Blotto
game (GR-CB game). These games are used to capture situations where the CB game
model is too restrictive: in the LB game, the winner in each battlefield is determined by
a generic stochastic-rule (expressed as a contest success function); in the GR-CB game,
players can pre-allocate resources before the start of the game and in a battlefield, one
player’ resources may be more effective than the other’s. In Chapter 3, we presented
their formal definitions, reviewed several related results and discussed motivations for
studying them. To the best of our knowledge, our formulations of these games are the
most general variants studied so far in the corresponding classes of games. Despite
their high potential applicability, the literature still lacks detailed analyses on exact (and
approximate) equilibria of the generalized LB game (with generic CSFs) and the GR-CB
game. The key question still remains: how to play strategically in these games to obtain
good guarantees on payoffs? To solve this question, we aim to extend the ideas of the
IU strategies (Definition 4.2.1)—a class of approximate equilibria of the generalized CB
game studied in Chapter 4—to these games. In each of these extensions, we encounter
different sets of challenges and our contributions are to propose simply-constructed
approximate equilibria with well-controlled errors of these games.

We organize this chapter into two sections, Section 6.1 and Section 6.2, respectively
presenting results on our proposed approximate equilibria of the generalized Lottery
Blotto game and the generalized-rule Colonel Blotto game.
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6.1 Approximate Equilibria of the Generalized Lottery Blotto

Game

To begin this section, we recall the basic idea that we use to build the formulation of
a generalized LB game: starting from a generalized CB game with = battlefields, one
replaces the Blotto functions (�� , ��) by a pair of (generic) contest success functions
(CSFs) � = (�� , ��); we denote this game by ℒℬ=(�) (its formal definition is given
in Definition 3.2.3). Recall that for a given generalized LB gameℒℬ=(�), we address the
CB game used in formulating ℒℬ=(�) as its corresponding CB game (and vice versa).
Importantly, in any generalized LB game, the players’ strategy sets are the same as in
its corresponding CB game. As a consequence, the IU�∗

strategies (see Definition 4.2.1)
of a generalized CB game are also feasible (mixed) strategies of the corresponding
generalized LB game. In this section, we focus on the following questions: In a

generalized LB game, under which conditions do the IU�∗
strategies yield good approximate

equilibria? How to characterize the relation between the approximation errors derived from the

IU�∗
strategies and the parameters of some LB games with a particular form of CSFs?

In Section 6.1.1, we present our solution for the first question mentioned above: we
introduce novel notations to capture relations between a pair of arbitrary CSFs and the
Blotto functions then show that the IU�∗

strategies are approximate equilibria of the LB
game with approximation errors that depend on these relations. In Section 6.1.2, we
analyze the second question in the case of the LB games with the power-form CSF and
the logit-form CSF that are two instances of the ratio-form CSFs—the most well-known
class of CSFs used in the literature. In these instances of the LB game, under specific
conditions on the number of battlefields and parameters of the CSFs, we show that the
errors of the IU�∗

strategies, relative to the magnitude of players’ payoffs, are negligible.

For ease of reading, we recall several notations used in Chapter 4 for the gener-
alized CB game that we adopt and reuse here for the generalized LB game. Given
a game ℒℬ= ,1 for a player ) ∈ {�, �}, -� denote her budget, F�

8 is the value she

assesses on battlefield 8 ∈ [=], ,) =
∑
8∈[=] F

)

8 ; moreover, , = max{,� ,,�} and
 is the tie-breaking parameter. Corresponding to these parameters, we can rewrite
Equation (4.5) and use the notation �∗ ∈ S(4.5)

= to denote a positive solution of this
equation. Moreover, we reuse the notations ��∗

8
, ��∗8 (defined formally in (4.12)) to de-

note the optimal univariate distributions of players in the CB game (corresponding to
ℒℬ=) and the notations ��=8 , ��=8 to denote the marginals of the strategies IU�∗

�
and IU�∗

�

(corresponding to the allocations toward battlefield 8). Note finally that the results on
the generalized LB games that we derive in this section are obtained under Assumption

(�0) introduced in Chapter 4, that is ∃
¯
F, F̄ > 0 :

¯
F ≤ F

)

8 ≤ F̄,∀8 ∈ [=],∀) ∈ {�, �}.

1Recall that we use the notation ℒℬ= (without mentioning a specific pair of CSFs) to refer to a
generalized LB game with = battlefields and a generic CSF.
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6.1.1 Approximate Equilibria of the Generalized LB Game ℒℬ=(�) with

Generic CSFs

We start by defining a parameter that expresses the dissimilarity between a given pair
of CSFs � = (�� , ��) and the Blotto functions �� , �� (defined in (3.1)). Given any � > 0,
for any G∗ ∈ [0, 2-�] and H∗ ∈ [0, 2-�] (i.e., any number that can be sampled from
��∗

8
, ��∗8 , ��

=
8

or ��=8 ),2 we introduce the following sets:

X�(H∗ , �) :=
{
G ∈ [0, 2-�] : |��(G, H∗) − ��(G, H∗)| ≥ �

}
, (6.1)

Y�(G∗ , �) :=
{
H ∈ [0, 2-�] : |��(G∗ , H) − ��(G∗ , H)| ≥ �

}
. (6.2)

Definition 6.1.1. For any pair of CSFs � = (�� , ��), � > 0 and �∗ ∈ S(4.5)
= , we define the

following set3

Δ�∗(�, �) :=



� ∈ [0, 1] :




max
8∈[=]

max
H∗∈[0,2-�]

∫
X�(H∗ ,�)d��

∗
8
(G) ≤ �,

max
8∈[=]

max
G∗∈[0,2-�]

∫
Y�(G∗ ,�)d��

∗
8
(H) ≤ �



.

Intuitively, the set Δ�∗(�, �) contains all numbers � ∈ [0, 1] such that for any allo-
cation H∗ of player B toward an arbitrary battlefield 8, if player A draws an allocation
G from the distribution ��∗

8
, it only happens with probability at most � that the value

of the CSF �� at (G, H∗) is significantly different (i.e., �-away) from that of the Blotto
function ��; and we have a similar statement for the distribution ��∗8 of player B and
any allocation G∗ of player A. Note that the set Δ�∗(�, �) depends on ��∗

8
and ��∗8 , thus

it depends on �∗. We can trivially see that Δ�∗(�, �) is an interval with the form [�0 , 1]
since if �0 ∈ Δ�∗(�, �) then � ∈ Δ�∗(�, �) for any � ≥ �0.

Based on the convergence of ��=8 and ��=8 toward ��∗
8

and ��∗8 (see Lemma A.6
in Appendix A.2), we can prove the following lemma (a formal proof is given in
Appendix C.1):

Lemma 6.1.2. There exists !0 > 0, such that for any � ∈ (0, 1], any = ≥ !0�
−2 ln

(
1

min{�,1/4}

)
and any game ℒℬ=(�), �∗ ∈ S(4.5)

= , � ∈ Δ�∗(�, �) and 8 ∈ [=], we have:

max

{
sup

H∗∈[0,2-�]

∫
X�(H∗ ,�)

d��=8 (G), sup
G∗∈[0,2-�]

∫
Y�(G∗ ,�)

d��=8 (H)
}
≤ � + �. (6.3)

Intuitively, this lemma provides an upper-bound for the probability of the value of the
CSFs � being �-away from the Blotto functions when player A (resp. player B) plays
such that her allocation to battlefields 8 follows ��=8 (resp. ��=8 ), i.e., when she plays the
IU�∗

strategy.
Based on the definition of Δ�∗(�, �) and Lemma 6.1.2, we can now show the follow-

ing result on the IU�∗
strategy in the generalized Lottery Blotto games.

2Recall that for any = and 8 ∈ [=], the random variables �∗
8
, �∗

8
are upper-bounded by 2-�

(see Lemma A.1 in Appendix A) and by definition, the variables �=
8
, �=

8
are trivially upper-bounded

by -� , -� (and thus by 2-�).
3Note that ��∗

8
, ��∗8 are continuous, bounded functions on [0, 2-�]; therefore, they attain a maximum

on this interval.
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Theorem 6.1.3. (Approximate equilibria of the generalized Lottery Blotto game).

(i) In any game ℒℬ=(�), there exists a positive number � ≤ Õ(=−1/2) such that for any

�∗ ∈ S(4.5)
= and � ∈ Δ�∗(�, �), the following inequalities hold for any pure strategy x�

and x� of players A and B:4

Π
�
� (x� , IU

�∗

�
) ≤ Π

�
� (IU

�∗

�
, IU�∗

�
) + (8� + 13�),� , (6.4)

Π
�
� (IU

�∗

�
, x�) ≤ Π

�
� (IU

�∗

�
, IU�∗

�
) + (8� + 13�),� . (6.5)

(ii) There exists !∗ > 0, such that for any � ∈ (0, 1] and in any game ℒℬ=(�) where

= ≥ !∗�−2 ln
(

1
min{�,1/4}

)
, (6.4) and (6.5) hold for any �∗ ∈ S(4.5)

= , � ∈ Δ�∗(�, �) and

any pure strategy x� , x� of players A and B.

The proof of this theorem is given in Appendix C.1. The main idea to prove these
results is that we can approximate the players’ payoffs in the game ℒℬ=(�) when they
play the IU�∗

strategies by that in the corresponding game Cℬ= (the difference between
these payoffs is controlled by the parameter � ∈ Δ�∗(�, �)); and then use the results
from Chapter 4 for the game Cℬ= (involving the error �) to prove (6.4) and (6.5). The
coefficients (8 and 13) in front of the parameters � and � come from the application
of several triangle inequalities to connect these approximate results. Note that if the
CSFs �� and �� are Lipschitz continuous on [0, 2-�] × [0, 2-�], we can avoid the need
to approximate several terms involved in the analysis of using the IU�∗

strategy in the
game ℒℬ=(�) via the corresponding terms in the game Cℬ= ; thus, we can improve the
results in Theorem 6.1.3 to obtain an approximation error of 2�+5� instead of 8�+13�
(see Remark C.3 in Appendix C.1 for more details). Here, to keep the generality, we
do not include the continuity assumption of the CSFs in Theorem 6.1.3 (recall that our
definition of a CSF allows for discontinuity).

Intuitively, Result (8) of Theorem 6.1.3 determines the order of the approximattion
error while using IU�∗

in any given game ℒℬ=(�). Straightforwardly, we can deduce
that the IU�∗

strategy is an approximate equilibrium of the game ℒℬ=(�), formally
stated as follows:

Corollary 6.1.4. In any game ℒℬ=(�), there exists a positive number � ≤ Õ(=−1/2) such that

for any �∗ ∈ S(4.5)
= and � ∈ Δ�∗(�, �), the IU�∗

strategy is an (8� + 13�),-equilibrium where

, := max{,� ,,�}.

We observe that the error bound in Theorem 6.1.3 (and in Corollary 6.1.4) is valid
for any � of the set Δ�∗(�, �). Naturally, it is the tightest for �0 = min{� : � ∈ Δ�∗(�, �)};
but this quantity is not always easy to compute; for instance, in the Lottery Blotto
games with the power and logit form CSFs presented in Section 6.1.2. Still, we can
obtain a good error’s upper-bound for the IU�∗

strategy in these games by showing that
there exists an element of the corresponding set Δ�∗(�, �) that is negligibly small, given
appropriate parameter’s configurations of the game; these are all given in Section 6.1.2.

4Recall that Π�
�

and Π�
�

denote the payoffs functions of players A and B in the game ℒℬ=(�).
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Note that, on the other hand, the generalized CB game Cℬ= can be considered as an
instance of the game ℒℬ=(�) where the CSFs are �� = �� and �� = ��; therefore, it
also satisfies Theorem 6.1.3. In Cℬ= , we trivially have X�(H∗ , �) = Y�(G∗ , �) = ∅ for any
G∗ , H∗; thus Δ�∗(�, �) = [0, 1] for any � > 0 and min{� : � ∈ Δ�∗(�, �)} = 0.5 This is
consistent with results obtained in Theorem 4.2.3 in Chapter 4.

In Theorem 6.1.3, Result (88) is an equivalent statement of Result (8). It indicates the
number of battlefields needed to guarantee a certain level of approximation error when
using the IU�∗

strategy in the game ℒℬ=(�). For instance, to obtain an approximate
equilibrium of the game ℒℬ=(�) where the level of error is less than a certain number
�̄, one needs � ≤ �̄ such that we can find a � ∈ Δ�∗(�, �) satisfying 8� + 13� ≤ �̄; from
these parameters, by Result (88), one can deduce the sufficient number of battlefields
needed for an ℒℬ= game to yield that desired level of error.

Finally, in the constant-sum variant of the Lottery Blotto game (i.e., when F�
8 = F�

8 ,
∀8 ∈ [=]), denoted by ℒℬ2

=(�) , we can easily deduce from Theorem 6.1.3 that the IU�∗

strategy is also an approximate max-min strategy:

Corollary 6.1.5. In any gameℒℬ2
=(�),S

(4.5)
= is a singleton (more specifically,S(4.5)

= = {-�/-�}),
and there exists � ≤ Õ(=−1/2) such that for any �∗ = -�/-� and � ∈ Δ�∗(�, �), the following

inequalities hold for any strategy B̃ and C̃ of players A and B:6

min
C

Π
�
� (B̃ , C) ≤ min

C
Π
�
� (IU

�∗

�
, C) + (8� + 13�),,

min
B

Π
�
� (B, C̃) ≤ min

B
Π
�
� (B, IU

�∗

�
) + (8� + 13�),.

6.1.2 Approximate Equilibria of the Ratio-form LB Game

Besides the Lottery Blotto game with generic CSFs, we additionally consider LB games
corresponding to the CSFs that belong to a special class called the ratio-form CSFs.
These are the CSFs that are studied the most profoundly in the literature. We will use
the games with these ratio-form CSFs to illustrate the results obtained in Section 6.1.1
for the generalized LB game.

Definition 6.1.6. CSFs �� , �� : R2
≥0 → R≥0 are called ratio-form CSFs if they have the form:

��(G, H) =
�(G)

�(G) + #(H) and ��(G, H) =
#(H)

�(G) + #(H) ,

where �,# : R≥0 → R are non-negative functions such that �� and �� satisfy Definition 3.2.2.

Two classical ratio-form CSFs in the literature (see e.g., Corchón and Dahm (2010)
and Hillman and Riley (1989)) are the power form where �(I) = #(I) = I' ,∀I ≥ 0 and
the logit form where �(I) = #(I) = 4'I ,∀I ≥ 0, where ' > 0 is a parameter chosen a
priori. These functions yield the sharing 50-50 tie-breaking rule, i.e., if G = H, then

5Note also that for the case of the game Cℬ= , the left-hand side in (6.3) equals zero for any = and
8 ∈ [=].

6Recall that in the constant-sum variant,, := max{,� ,,�} =,� =,�.
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��(G, H) = ��(G, H) = 1/2. We define in Table 6.1 the generalized versions of these
ratio-form CSFs using the parameter  ∈ (0, 1) that leads to the general tie-breaking
rule as in the Colonel Blotto game Cℬ= .7 Henceforth, we use the terms power and logit
form to indicate the CSFs �' and �' with this generalization. It is trivial to verify that
both pairs (�'

�
, �'

�
) and (�'

�
, �'
�
) satisfy the Conditions (�1) and (�2). An important

remark is that both the power and logit form CSFs converge pointwise toward the Blotto
functions �� , �� as ' tends to infinity (we will revisit this remark with more details).
This convergence can be observed in Figure 6.1 that illustrates several instances of
the ratio-form CSFs in comparison with the Blotto functions. Note also that the LB
games with the CSF �' has been introduced by Shubik and Weber (1981); however, no
equilibrium (or approximate equilibrium) result has been given for this game. On the
other hand, in our knowledge, the LB game ℒℬ=(�') has not been studied before.

Table 6.1: Power and logit form CSFs with generalized tie-breaking rule ( ∈ (0, 1)).

Name Notation If G2 + H2 > 0 If G = H = 0

Power form �' := (�'
�
, �'

�
)

�'
�
(G, H) = G'

G'+(1−)H' ;

�'
�
(G, H) = (1−)H'

G'+(1−)H'

�'
�
(G, H) = 

�'
�
(G, H) = 1 − 

Logit form �' := (�'
�
, �'
�
)

�'
�
(G, H) = 4G'

4G'+(1−)4H'

�'
�
(G, H) = (1−)4H'

4G'+(1−)4H'

�'
�
(G, H) = 

�'
�
(G, H) = 1 − 

G

�
' �
(G
,4
)

(a) Power CSF, -� = 10,  = 0.6.

G

�
' �
(G
,4
)

(b) Logit CSF, -� = 10,  = 0.6.

Figure 6.1: Examples of power-form and logit-form CSFs in comparison with the
Blotto functions.

We now consider LB games ℒℬ=(�') and ℒℬ=(�'); henceforth, we call them the
ratio-form LB games. Note that for the CSFs �' and �', we do not consider the degen-

7When  = 1/2, the CSFs �' and �' match the classical power form and logit form CSFs. Note that
we exclude the cases where  = 0 or  = 1 since these are the trivial cases: in the corresponding Lottery
Blotto game, a player, say ? ∈ {�, �}, always has the payoff ,) while player −?’s payoff is always zero
regardless how they allocate their resources.
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erate cases where  = 0 or  = 1 in which trivial equilibria exist. The games ℒℬ=(�')
and ℒℬ=(�') are instances of the game ℒℬ=(�) studied in Section 6.1.1; therefore, by
Theorem 6.1.3 (and Corollary 6.1.4), the IU�∗

strategy is also an approximate equilib-
rium of them. In this section, we focus on characterizing the approximation error of
the IU�∗

strategy in these games according to = (the number of battlefields) and ' (the
corresponding parameter of the CSFs). We will show that this error quickly tends to
zero as = and ' increase under appropriate conditions. To do this, we first notice that
although it is non-trivial to analyze the closed form of the sets Δ�∗(�' , �) and Δ�∗(�' , �)
and find their minimum, we can find small elements of theses sets.

Lemma 6.1.7. Fix = ≥ 2, ' > 0 and  ∈ (0, 1). Setting  as the tie-breaking rule for the

games mentioned below, for any � < min{, 1 − }, we have:8

(8) in any game ℒℬ=(�'), there exists ��=min{1,O
(
=(� −1

' −1)
)
} such that �� ∈ Δ�∗(�' , �)

for any �∗ ∈ S(4.5)
= ;

(88) in any gameℒℬ=(�'), there exists ��=min{1,O
(
='−1 ln(�−1)

)
} such that �� ∈ Δ�∗(�' , �)

for any �∗ ∈ S(4.5)
= .

The proof of Lemma 6.1.7 is given in Appendix C.1. Note that for the sake of
generality, the parameters �� and �� are indicated in this lemma in such a way that

they do not depend on �∗, but for each �∗ ∈ S(4.5)
= , we can find smaller elements of

the corresponding sets Δ�∗(�' , �) and Δ�∗(�' , �). More importantly, for a fixed =, the
numbers �� and �� decrease as ' increases; but �� and �� increase as � decreases.
While the lemma is valid for any parameter values, since 1 is a trivial element of
Δ�∗(�' , �) and Δ�∗(�' , �), it is useful only if �� , �� < 1; this is guaranteed whenever
' ≥ O

(
= ln(�−1)

)
. Note finally that the condition � < min{, 1−} in the statement of

Lemma 6.1.7 does not limit its use since our goal is to obtain asymptotic results on the
IU�∗

strategy when � tends to 0. Moreover, in the games ℒℬ=(�') and ℒℬ=(�') where
 is either very close to 0 or 1, one player has a very high advantage and always obtains
large gains from all battlefields (where her allocation is strictly positive) while her
opponent gains very little regardless of her allocations; therefore, there exist (many)
trivial approximate equilibria with small errors.

Combining the results of Corollary 6.1.4 and Lemma 6.1.7, we can deduce directly
that in any game ℒℬ=(�') (resp. ℒℬ=(�')), there exists � ≤ Õ(=−1/2) such that for
any �∗ ∈ S(4.5)

= , the IU�∗
strategy is an (8� + 13��),-equilibrium (resp. (8� + 13��),-

equilibrium). Next, we look for the asymptotic relation between these error terms and
the parameters =, '. First, as = increases, the error level � decreases; on the other hand,
from Lemma 6.1.7, the number �� (and ��) decreases if ' increases with a faster rate
than Õ(=). However, there is a trade-off between � and �� (or ��): as � decreases, ��
(and ��) increases and vice versa. To handle this trade-off between �� and � (resp. ��
and �), we can first find a condition on = that generates a small error �, and then find
a condition on ' (with respect to =) such that the error �� (resp. ��) is of the same

8The asymptotic notations are taken w.r.t. when � → 0.
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order as �. Formally, we state the result that the IU�∗
strategy yields an approximate

equilibrium of the games ℒℬ=(�') and ℒℬ=(�') with any arbitrary small error in the
next theorem.

Theorem 6.1.8. (Approximate equilibria of the ratio-form Lottery Blotto games) For

any �̄ > 0 and  ∈ (0, 1) such that �̄ < min{, 1 − }, there exists !̃ > 0 such that for

any = ≥ !̃�̄−2 ln
(

1
min{�̄,1/4}

)
, ' ≥ O

(
=
�̄ ln

( 1
�̄

) )
and �∗ ∈ S(4.5)

= , the IU�∗
strategy is an �̄,-

equilibrium of any game ℒℬ=(�') and ℒℬ=(�') having  as the tie-breaking-rule parameter.

The proof of this theorem is based on Theorem 6.1.3 and Lemma 6.1.7 (see Ap-
pendix C.1 for more details). Theorem 6.1.8 involves a double limit in ' and =.
Intuitively, if = and ' increase but ' increases with a slower rate, then � decreases but
the corresponding �� and �� do not decrease; thus, the total error is not guaranteed
to decrease.

6.2 Approximate Equilibria of the Generalized-Rule Colonel

Blotto Game

In this section, we turn our focus to the generalized-rule Colonel Blotto game (or
GR-CB game in short). A definition of the Gℛ−Cℬ= game (i.e., a GR-CB game with
= battlefields) was presented in Definition 3.2.4. We emphasize again that there is
currently no work in the literature considering a similar model to ours (capturing
situations with both pre-allocations of resources and asymmetric effectiveness). By
Definition 3.2.4, the game Gℛ−Cℬ= is a non-constant-sum game. As in the case of the
generalized CB games, one can obtain the constant-sum variant of the GR-CB game
by simply adding the constraint requiring that players have the same evaluation on
each battlefield’s value. In this section, we limit ourselves to study only the constant-sum

variant of the GR-CB game since it is simpler and more tractable. We will discuss the
generalization of the obtained results into the non-constant-sum variant of the GR-CB
game in the end of this section. To avoid confusion, we redefine here the constant-sum
GR-CB game:

Definition 6.2.1. In the constant-sum generalized-rule Colonel Blotto game with = bat-

tlefields, denoted by Gℛ−Cℬ�
= , players A and B simultaneously allocate their resource (with

budgets -� and -�). Each battlefield 8 ∈ [=] has a value F8 > 0 commonly assessed by the

players; moreover, it is embedded with two extra parameters ?8 ∈ R and @8 > 0. Players’ payoffs

when they play the pure strategies x� and x� are Π�
GR

(x� , x�) = ∑=
8=1 F8 · ��

(
G�8 , @8G

�
8 − ?8

)
and Π�

GR
(x� , x�) = ∑=

8=1 F8 · ��
(
G�8 , @8G

�
8 − ?8

)
; where �� , �� are the Blotto functions de-

fined in (3.1).

Within this section, when there is no ambiguity, we drop the term “constant-sum” in
the name and address the Gℛ−Cℬ�

= game simply as the generalized-rule CB game. We
recall the intuition that the parameter ?8 indicates the difference between players’ pre-
allocations and @8 indicates the asymmetry in resources’ effectiveness at battlefield 8
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(see Section 3.2.3 for more elaborated details). We reuse the notations , :=
∑
8∈[=] F8

and  ∈ [0, 1] to denote the total of the battlefields’ values and the tie-breaking pa-
rameter (implicitly defined in the functions �� , ��) of the Gℛ−Cℬ�

= game. Moreover,
as in the previous chapters, some of the results in this section are obtained under
Assumption (A0), that is for any 8 ∈ [=], there exist

¯
F, F̄ such that 0 <

¯
F ≤ F8 ≤ F̄.

We address two key questions in this section: In a Gℛ−Cℬ�
= game, can we find a

set of optimal univariate distributions of the players? Can we use the ideas of the IU�∗
-

strategies (in the Cℬ= game) to obtain approximate equilibria of the game Gℛ−Cℬ�
=

yielding a similar control on the approximation errors? To answer the first question,
we study another model, called the all-pay auction with favoritism, and completely
characterize the exact equilibria of this game (in Section 6.2.1). Based on these results,
we construct an approximate equilibrium of the Gℛ−Cℬ�

= game in Section 6.2.4—this
is our solution for the second question posed above.

6.2.1 The All-pay Auction with Favoritism

As discussed in Chapter 3, the all-pay auction (henceforth, APA) is a well-known
problem that relates closely to the class of Blotto games. In APA, two players secretly
decide their bids to compete for a common item; the higher bidder wins the item
and gains its value; then, both players pay their bids. In the literature, it is common
to use APA as a tool to find optimal univariate distributions9 of the CB games (see
e.g., Roberson (2006) and Schwartz et al. (2014)). In this section, we study a special
extension of the APA model, called the all-pay auction with favoritism (or F-APA for
short) where the rule determining the winner among the bidders is shifted by an affine
transformation. We use the equilibria of this F-APA game to attempt to construct
optimal univariate distributions of the players in the game Gℛ−Cℬ�

= .10
A description of the F-APA game is as follows: It is an auction for a common item

by two players, A and B. The item is evaluated by each player with a value (denoted
D� and D� for players A and B (D� , D� > 0));11 moreover, it is embedded with two
additional parameters: ? ∈ R and @ > 0. Knowing these parameters, the players
simultaneously submit their bids, denoted by G� and G�, where G� , G� ≥ 0 (unlike in
Blotto games, players can bid as large as they want in F-APA). The winner-determination

rule of the game is defined as follows: if G� > @G� − ?, player A wins the item and
gains the corresponding value D�; reversely, if G� < @G� − ?, player B wins the item
and gains the value D�; in case of a tie, i.e., G� = @G� − ?, each player earns a portion
of the corresponding values: player A gains D� and player B gains (1 − )D� (here,
 ∈ [0, 1] is a given parameter). Finally, both players pay the bids that they submitted
(regardless of the winner). Formally, we have the following definition:

9See Definition 4.1.1 for a definition of the optimal univariate distributions in Cℬ= .
10A definition of optimal univariate distributions in the Gℛ−Cℬ�

= game can be easily extended from
the definition of optimal univariate distributions of the Cℬ= game (Definition 4.1.1) by replacing the
terms in (4.3) and (4.4) by the corresponding payoffs of Gℛ−Cℬ�

= .
11The case where either D� = 0 or D� = 0 is trivial (there exist trivial pure equilibria) and thus, is

omitted in this work.
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Definition 6.2.2. The all-pay auction with favoritism (henceforth, the F-APA game) is the

game with the above description and the players’ payoffs when player A bids G� and player B

bids G� are:

Π
�

(
G� , G�

)
= D� · ��

(
G� , @G� − ?

)
− G� , (6.6)

Π
�
(
G� , G�

)
= D� · ��

(
G� , @G� − ?

)
− G� . (6.7)

Here, the functions �� , �� are defined in (3.1).

The main novelty setting the F-APA game apart from the classical (two-player first-
price) APA is the parameters ? and @. From the above definition, we remark that if
? > 0, player A has an advantage (we call this the additive favoritism) in winning the item
and reversely if ? < 0, player B has this favoritism; likewise, when 0 < @ < 1, player A
has a multiplicative favoritism to win the item and when @ > 1, this type of favoritism
is in favor of player B. Trivially, when ? = 0 and @ = 1, the game F-APA coincides
with the classical APA and no player has favoritism nor advantage. Hereinafter, we
commonly address ? and @ as the favoritism parameters. Note also that Definition 6.2.2
can be easily extended to the all-pay auctions with favoritism involving more than two
players/bidders; however, in this work, we only analyze the two-player F-APA since it
relates directly to the generalized-rule CB game Gℛ−Cℬ�

=—that is our main focus.
Characterizing the equilibrium is one of the main focuses of the literature of APA

and F-APA. For the (classical) APA, its equilibria have been completely characterized
by Baye, Kovenock, and De Vries (1994) and Hillman and Riley (1989) (in games with
any number of bidders); for the sake of reference, the results in the two-player APA is
rewritten in our notation as follows:

Proposition 6.2.3 (extracted from Baye, Kovenock, and De Vries (1994) and Hillman
and Riley (1989)). In the two-player all-pay auction (i.e., an F-APA with ? = 0, @ = 1 and

 = 1/2), if D� > D�, there exists a unique mixed equilibrium where players A and B bid

according to the following distributions:

��(G) =
{

G
D�
,∀G ∈

[
0, D�

]
,

1 ,∀G > D� ,
and ��(G) =

{
D�−D�
D�

+ G
D�
,∀G ∈

(
0, D�

]
1 ,∀G > D� .

In this equilibrium, player A’s payoff is Π�
�%�

= D� − D�, player B’s payoff is Π�
�%�

= 0.

Intuitively, ��(G) is the uniform distribution on [0, D�] and ��(G) is the distribution
with a (strictly positive) probability mass at 0 and the remaining mass is distributed
uniformly in (0, D�]. In the case where D� > D�, players exchange their roles and a
similar statement to Proposition 6.2.3 can be easily deduced by symmetry.

A note on terminology: the name “all-pay auction with favoritism” is adopted
from Fu and Wu (2019); it is also referred to as the APA with head-starts and hand-
icaps by Kirkegaard (2012) and as the APA with incumbency advantages by Konrad
(2002). A review on the literature of all-pay auctions with favoritism was presented
in Section 3.3.4. In particular, Konrad (2002) studies the case where players assess the
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item with the same value and where the tie-breaking rule is sharing the value equally
among the bidders; in this setting, the equilibria is characterized only for the cases
where both kinds of favoritism is in favor of one player. For the sake of reference, we
rewrite this result in our notation as follows:

Proposition 6.2.4 (extracted from Konrad (2002)). In the F-APA where D� = D� = D,

? > 0, 0 < @ < 1 (i.e., player A has both kind of favoritism) and  = 1/2,

(8) If @D−? ≤ 0, there exists a unique pure equilibrium where players’ bids are G� = G� = 0
and their equilibrium payoffs are Π�

F-APA
= D and Π�

F-APA
= 0.

(88) If 0 < @D − ?, there exists no pure equilibrium; the unique mixed equilibrium is where

players A and B draw their bids from the following distributions:

��̄(G) =
{

?
@D + G

@D ,∀G ∈
[
0, @D − ?

]
,

1 ,∀G > @D − ?, and ��̄(G) =




1 − @ + ?
D ,∀G ∈

[
0, ?@

)
1 − @ + @·G

D ,∀G ∈
[
?
@ , D

]
,

1 ,∀G > D.

In this mixed equilibrium, players’ payoffs are Π�
F-APA

= D(1 − @) + ? and Π�
F-APA

= 0.

Intuitively, ��̄(G) is the distribution placing a positive mass at 0 and distributing the
remaining mass uniformly on (0, @D − ?] and ��̄(G) is the distribution placing a mass
at 0 and distributing the remaining mass uniformly on

(
?/@, D

]
. It is easy to deduce

similar results for the case where ? < 0 and @ > 1, i.e., player B has both kind of
favoritism (it is not stated explicitly in Konrad (2002)).

The formulation of the F-APA game that we introduce in Definition 6.2.2 is more
general than the definitions of the (two-player) models found in the works mentioned
above; notably, we allow players to have different evaluations on the item’s values and
we include a general tie-breaking rule (with a generic parameter ). This extension,
especially with asymmetry item’ values, is essential for the analysis of the Gℛ−Cℬ�

=

game. To the best of our knowledge, except from our work, only Siegel (2009) studies an
F-APA game with asymmetric values, a general tie-breaking rule, and where a player
has one kind of favoritism and her opponent has the other. However, Siegel (2009)
does not explicitly construct the equilibrium strategies of the bidders in these cases.

6.2.2 Exact Equilibria of the All-pay Auction with Favoritism

In this section, we analyze in detail and give explicit solutions for the exact equilibria
of the F-APA game with any parameters configuration (that are important for our
study of the approximate equilibria of the Gℛ−Cℬ�

= game presented in Section 6.2.3
and Section 6.2.4). To do this, we need to consider the F-APA in several cases of its
parameters configuration.

The F-APA game with ? ≥ 0 and any @ > 0.

Theorem 6.2.5. In the F-APA game where ? ≥ 0, we have the following results:
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(8) If @D�−? ≤ 0, there exists a unique pure equilibrium where players’ bids are G� = G� = 0
and their equilibrium payoffs are Π�

F-APA
= D� and Π�

F-APA
= 0 respectively.

(88) If 0 < @D�−? ≤ D�, there exists no pure equilibrium; there is a unique mixed equilibrium

where player A (resp. player B) draws her bid from the distribution ��+
2

(resp. ��+2 )

defined as follows:

��+
2
(G) =

{
?

@D�
+ G

@D�
,∀G ∈

[
0, @D� − ?

]
,

1 ,∀G > @D� − ?,
(6.8)

and ��+2 (G) =




1 − @D�

D�
+ ?

D�
,∀G ∈

[
0, ?@

)
,

1 − @D�

D�
+ @·G

D�
,∀G ∈

[
?
@ , D

�
]
,

1 ,∀G > D� .

(6.9)

In this mixed equilibrium, players’ payoffs are Π�
F-APA

= D� − @D� + ? and Π�
F-APA

= 0.

(888) If @D� − ? > D�, there exists no pure equilibrium; there is a unique mixed equilibrium

where player A (resp. player B) draws her bid from the distribution ��+
3

(resp. ��+3 )

defined as follows:

��+
3
(G) =

{
1 − D�

@D�
+ G

@D�
,∀G ∈

[
0, D�

]
,

1 ,∀G > D� ,
(6.10)

and ��+3 (G) =




0 ,∀G ∈
[
0, ?@

)
,

− ?

D�
+ @·G

D�
,∀G ∈

[
?
@ ,

D�+?
@

]
,

1 ,∀G >
D�+?
@ .

(6.11)

In this mixed equilibrium, players’ payoffs areΠ�
F-APA

= 0 andΠ�
F-APA

= D�−(D�+?)/@.

A detailed proof of Theorem 6.2.5 in given in Appendix D. In the notations used
for the distributions involved in this theorem, the superscript + refers to the condition
? ≥ 0 that is being considered (to distinguish with the case with ? < 0 presented later)
and the subscript index—either 2 or 3—simply indicates that these distributions are
the equilibrium in the Result (88) or (888). Note that we can easily verify that all the
functions ��+

2
, ��+2 , ��

+
3

and ��+3 in Results (88) and (888) of Theorem 6.2.5 satisfy the
conditions of being distributions (under the corresponding conditions of the game’s
parameters in each case); these functions are also continuous on [0,∞).

Now, we present here an intuition for the equilibria presented in Theorem 6.2.5.
First, we observe that in all equilibria, player A does not bid more than min{D� , @D�−?}
and player B does not bid more than min{D� , (D� + ?)/@}. This can be explained by
the observation that no player has an incentive to bid more than the value she assesses on
the item: if player A (resp. player B) bids strictly more than D� (resp. D�), she surely
receives a negative payoff (even if she wins the item); on the other hand, by bidding
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Moreover, in Result (88), as long as the condition 0 < @D� − ? ≤ D� is satisfied, the
larger ? becomes and/or the smaller @ gets, the larger the equilibrium payoff that
player A obtains. This is in coherence with the intuition that when player A has an
advantage, she can gain more. However, if ? is too large (and/or @ is too small)
such that the condition in Result (8)-Theorem 6.2.5 is satisfied, player B will give up
totally and player A gains a fixed payoff D� even if ? keeps increasing (and/or @ keeps
decreasing). Similar intuition can be addressed for player B and Result (888).

It is clear that in the classical all-pay auction (i.e., the F-APA game with ? = 0, @ = 1,
 = 1/2), only the condition in Result (88) of Theorem 6.2.5 is satisfied; and the equilib-
rium in this case coincides with the classical result stated in Proposition 6.2.3. Likewise,
Result (8) and (88) of Theorem 6.2.5 are also in coherence with Proposition 6.2.4 for the
game F-APA where the item has the same value to the players.13

The F-APA game with ? < 0 and any @ > 0

Now, we consider the F-APA game where ? < 0. The results in this case will be based
on results of the case ? ≥ 0 in the previous section. We first define ?′ = −?/@ and
@′ = 1/@. If ? < 0, we have ?′ > 0. Moreover, for any G� , G�, we have:

�)
(
G� , @G� − ?

)
= �)

(
@′G� − ?′, G�

)
,∀) ∈ {�, �}.

Therefore, the F-APA game with ? < 0, @ > 0 is equivalent to an F-APA game with
?′ > 0, @′ > 0 in which the roles of players are exchanged.14 Applying Theorem 6.2.5
to this new game, we can deduce the following theorem:

Theorem 6.2.6. In the F-APA game where ? < 0, we have the following results:

(8) If (D� + ?)/@ ≤ 0,15 there exists a unique pure equilibrium where players’ bids are

G� = G� = 0 and their equilibrium payoffs areΠ�
F-APA

= 0 andΠ�
F-APA

= D� respectively.

(88) If 0 < (D� + ?)/@ ≤ D�,16 there exists no pure equilibrium; there is a unique mixed

equilibrium where player A (resp. player B) draws her bid from the distribution ��−
2

(resp. ��−2 ) defined as follows:

��−
2
(G) =




1 − D�

@D�
− ?

@D�
,∀G ∈

[
0,−?

)
,

1 − D�

@D�
+ G

@D�
,∀G ∈

[
−?, D�

]
,

1 ,∀G > D� ,

(6.12)

and ��−2 (G) =



− ?

D�
+ @G

D�
,∀G ∈

[
0, D

�+?
@

]
1 ,∀G >

D�+?
@ .

(6.13)

13Note that Proposition 6.2.4, extracted from Konrad (2002), does not concern the conditions involved
in Result (888) of Theorem 6.2.5.

14The tie-breaking rule does not change, i.e., in cases where @′G� − ?′ = G�, player A gains D� and
player B gains (1 − )D�.

15That is @′D� − ?′ ≤ 0.
16That is 0 ≤ @′D� − ?′ ≤ D�.
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guarantee the budget constraints in expectation; it is the best response (among strategies
guaranteeing budget constraints in expectation) against the allocation of the opponent
in each battlefield. Based on the equilibria of the F-APA game found in the previous
section, we can construct such a set of distributions. To do this, we first introduce new
notation and definitions. Given a Gℛ−Cℬ�

= game as defined in Definition 6.2.1, for
each pair of numbers

(
�� , ��

)
∈ R2

>0, let us define the following sets:

�+1 (�� , ��) :=
{
8 ∈ [=] : ?8 ≥ 0, @8F8�� − ?8 ≤ 0,

}
�+2 (�� , ��) :=

{
8 ∈ [=] : ?8 ≥ 0, 0 < @8F8�

� − ?8 ≤ F8�
�
}

�+3 (�� , ��) :=
{
8 ∈ [=] : ?8 ≥ 0, @8F8�� − ?8 > F8�

�
}

�−1 (�� , ��) :=
{
8 ∈ [=] : ?8 < 0, F8�� ≤ −?8

}
�−2 (�� , ��) :=

{
8 ∈ [=] : ?8 < 0,−?8 < F8�

� ≤ @8F8�
� − ?8

}
�−3 (�� , ��) :=

{
8 ∈ [=] : ?8 < 0, F8�� > @8F8�

� − ?8
}

It is trivial to see that

[
3⋃
9=1
�+9 (�� , ��)

] ⋃ [
3⋃
9=1
�−9 (�� , ��)

]
= [=] for any (�� , ��) ∈ R2

>0,

i.e., these sets are disjoint and they contain the indices of all the battlefields in the
game Gℛ−Cℬ�

= . Hereinafter, we refer to these 6 sets by the indices sets. Note that
the superscript + (resp. −) in the notation of these sets implies that they include
battlefield 8 with the corresponding parameter ?8 ≥ 0 (resp. ?8 < 0). The subscript
9 ∈ {1, 2, 3} in the notations �+9 (resp. notations �−9 ) indicates that the conditions in �+9
(resp. �−9 ) corresponds to the conditions in the Results (8), (88) or (888) of Theorem 6.2.5

(resp. Theorem 6.2.6) where we replace ? = ?8 , @ = @8 , D� = F8 · �� and D� = F8 · ��.
Note also that depending on the parameters configurations of Gℛ−Cℬ�

= and values of
�� , ��, these sets can be empty. Henceforth, in places where it is not necessary to state
the particular parameter �� , ��, we lighten the notation by writing �+9 and �−9 instead

of �+9 (�� , ��) and �−9 (�� , ��).
Now, based on the sets introduced above, we have the following definition.

Definition 6.2.7. Given (�� , ��) ∈ R2
>0 and a game Gℛ−Cℬ�

= , for each 8 ∈ [=], we define

�
���,��

8

and �
��

�,��

8

to be the pair of distributions that forms the equilibrium of the all-pay

auction with favoritism F-APA where ? = ?8 , @ = @8 , D
� = F8 · �� and D� = F8 · ��. The

explicit formulas of these distributions are given in Table 6.2, defined for each configuration

of F8 , ?8 , @8 , �
� and �� (i.e., when battlefield 8 belongs to one of the indices set �+9 or �−9 ,

9 ∈ {1, 2, 3}).

From this definition and the fact that the profile

(
�
���,��

8

, �
��

�,��

8

)
is the equilibrium

of the corresponding F-APA game, we can easily prove the following: in a game
Gℛ−Cℬ�

= , player A (resp. player B) has no pure strategy (and no feasible mixed
strategy) that provides her a better payoff than when she draws her allocation in
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each battlefield 8 ∈ [=] from the distribution �
���,��

8

(resp. �
��

�,��

8

), given that her

opponent’s allocation to this battlefield follows �
��

�,��

8

(resp. �
���,��

8

). This implies

that for any (�� , ��) ∈ R2
>0, the set

{
�
���,��

8

, �
��

�,��

8

}
8∈[=]

satisfies the second condition

in the definition of optimal univariate distributions of the game Gℛ−Cℬ�
= . To check if{

�
���,��

8

, �
��

�,��

8

}
8∈[=]

are optimal univariate distributions or not, we need to check the

first condition, that is to answer the following question: when will it happen that by

drawing allocations from

{
�
���,��

8

}
8∈[=]

(resp.

{
�
���,��

8

}
8∈[=]

), player A (resp. player

B) can guarantee that her budget constraint holds in expectation? In other words, we
need to solve the following system of equation (with variables �� , ��):




∑
8∈[=] EG∼�

�
��,��

8

[G] = -� ,∑
8∈[=] EG∼�

�
��,��

8

[G] = -� ,
(6.16)

Applying the definition of �
���,��

8

and �
��

�,��

8

, we can rewrite the system (6.16) as

the following system of equations:

{
5 �(�� , ��) = �� ,

5 �(�� , ��) = �� ,
(6.17)

where 5 � , 5 � : R2 → Rare defined as follows (for each given instance of theGℛ−Cℬ�
= game):

5 �
(
�� , ��

)
=

1
-�


∑

8∈�+2 (�� ,��)

(
@8F8�

�
)2−

(
?8

)2

2@8F8
+

∑
8∈�+3 (�� ,��)

(
F8�

�+?8
)2−

(
?8

)2

2@8F8


+ 1
-�


∑

8∈�−2 (�� ,��)

(
F8�

�+?8
)2

2@8F8
+

∑
8∈�−3 (�� ,��)

(
@8F8�

�
)2

2@8F8


,

and 5 �
(
�� , ��

)
=

1
-�


∑

8∈�+2 (�� ,��)

(
@8F8�

� − ?8
)2

2@8F8
+

∑
8∈�+3 (�� ,��)

(
F8�

�
)2

2@8F8


+ 1
-�


∑

8∈�−2 (�� ,��)

(
F8�

�
)2 − ?2

8

2@8F8
+

∑
8∈�−3 (�� ,��)

(
@8F8�

� − ?8
)2 − ?2

8

2@8F8


.

We can have a trivial proposition:

Proposition 6.2.8. Given a gameGℛ−Cℬ�
= , assume that System (6.17) has a positive solution

(��∗ , ��∗ ) ∈ R2
>0; then the distributions

{
�
�
��∗ ,��∗
8

, �
�
��∗ ,��∗
8

}
8∈[=]

that correspond to (��∗ , ��∗ ) are

optimal univariate distributions of the game.
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Table 6.2: Uniform-type distributions of the Gℛ−Cℬ�
= game. Here, F-APA∗ is the

all-pay auction with favoritism where ? = ?8 , @ = @8 , D� = F8 · �� and D� = F8 · ��.

Conditions Definition Notes

8 ∈ �+1 (�� , ��)
�
���,��

8

(G) := 1,∀G ≥ 0,

�
��

�,��

8

(G) := 1,∀G ≥ 0.

8 ∈ �+2 (�� , ��)
�
���,��

8

(G) :=

{
?8

@8F8��
+ G

@8F8��
,∀G ∈

[
0, @8F8�� − ?8

]
,

1 ,∀G > @8F8�
� − ?8 ,

corrsp. to
��+

2
and

��+2 of

F-APA∗.�
��

�,��

8

(G) :=




1 − @8�
�

��
+ ?8

F8��
,∀G ∈

[
0, ?8@8

)
,

1 − @8�
�

��
+ @8 ·G

F8��
,∀G ∈

[
?8
@8
, F8�

�
]
,

1 ,∀G > F8�
� .

8 ∈ �+3 (�� , ��)
�
���,��

8

(G) =
{

1 − ��

@8��
+ G

@8F8��
,∀G ∈

[
0, F8��

]
,

1 ,∀G > F8�
� ,

corrsp. to
��+

3
and

��+3 of

F-APA∗.�
��

�,��

8

(G) =




0 ,∀G ∈
[
0, ?8@8

)
,

− ?8
F8��

+ @8 ·G
F8��

,∀G ∈
[
?8
@8
,
F8�

�+?8
@8

]
,

1 ,∀G >
F8�

�+?8
@8

.

8 ∈ �−1 (�� , ��)
�
���,��

8

(G) := 1,∀G ≥ 0,

�
��

�,��

8

(G) := 1,∀G ≥ 0.

8 ∈ �−2 (�� , ��)
�
���,��

8

(G) :=




1 − ��

@8��
− ?8

@8F8��
,∀G ∈

[
0,−?8

)
,

1 − ��

@8��
+ G

@8F8��
,∀G ∈

[
−?8 , F8��

]
,

1 ,∀G > F8�
� ,

corrsp. to
��−

2
and

��−2 of

F-APA∗.�
��

�,��

8

(G) :




− ?8
F8��

+ @8 ·G
F8��

,∀G ∈
[
0, F8�

�+?8
@8

]
,

1 ,∀G >
F8�

�+?8
@8

.

8 ∈ �−3 (�� , ��)
�
���,��

8

(G) =



0 ,∀G ∈
[
0,−?

)
,

?

@D�
+ G

@D�
,∀G ∈

[
−?, @D� − ?

]
,

1 ,∀G > @D� − ?,
corrsp. to
��−

3
and

��−3 of

F-APA∗.�
��

�,��

8

(G) =
{

1 − @D�

D�
+ @·G

D�
,∀G ∈

[
0, D�

]
,

1 ,∀G > D� .

In principle, if we can construct an =-variate joint distribution of these optimal
univariate distributions such that any realization satisfies the budget constraint, we
have found an exact equilibrium of Gℛ−Cℬ�

= . However, the construction of this
joint distribution is as challenging as in the case of the Cℬ= game and it still remains
unknown (even its existence is still an open question). As a different perspective, we
can apply a similar idea to that of the IU�∗

strategy in the Cℬ= game (see Chapter 4) to
construct an approximate equilibrium of the Gℛ−Cℬ�

= game with a well-controlled
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case, (6.17) becomes {
(��)2/2 = 2�� ,
(��)2/2 = 2�� .

This system has a unique solution in R2
>0, which is �� = �� = 4. However, this solution does

not satisfy the condition 0 ≤ �� , �� ≤ 2; therefore, (6.17) has no positive solution in Region I.

Similarly, we can check for all the remaining cases. We see that there is no positive solution

of (6.17) in the cases corresponding to Regions II, III, IV and VI of Figure 6.4. Only when

2 < �� < min{�� , ��/2 + 2} (i.e., the point (�� , ��) lies within Region V in Figure 6.4), we

have �−2 = {1} and �+3 = {2} and thus, System (6.17) becomes:{
(��)2/2 + (�� − 2)2 = 2�� ,
(��)2/2 + (��)2 − 22 = 2�� .

This system has a unique solution in R2
>0 that is �� = 2 +

√
4/3 and �� = 2 +

√
12. This

solution satisfies the conditions in this case; therefore, it is a positive solution of System (6.17).

6.2.4 Heuristic Algorithms Finding an Approximate Solution of System (6.17)

We aim to find a more efficient method to solve System (6.17) or at least to efficiently
find a good approximation of one of its positive solution in order to construct an
approximate equilibrium of the game Gℛ−Cℬ�

= . First, we address the question: does
there exist a positive solution of System (6.17)? Recall that in Chapter 4, to obtain
the optimal univariate distributions of the generalized CB game Cℬ= , we also need to
resolve Equation (4.5) (with the variable �). To prove the existence of a positive solution
of this equation, Kovenock and Roberson (2015) convert it to the form 5 (�) = � and
use the intermediate value theorem to prove that the function 5 has a fixed point.
Generalizing this approach, for each game instance Gℛ−Cℬ�

= , we define the function:

� : R2 →R2

(�� , ��) ↦→�(�� , ��) =
(
5 �(�� , ��) − �� , 5 �(�� , ��) − ��

)
.

We also denote ��(�� , ��) := 5 �(�� , ��)−�� and ��(�� , ��) := 5 �(�� , ��)−��. Then,
System (6.17) can be rewritten under the form �(�� , ��) = (0, 0). Therefore, to prove
that System (6.17) has a positive solution, we only need to prove that � has a posi-
tive zero.19 A possible generalization of the intermediate value theorem to the cases
involved functions with 2-dimensional inputs and outputs is the Poincaré-Miranda the-
orem (see e.g., Kulpa (1997)). Unfortunately, we have not succeeded in proving that
the sufficient condition of this theorem is satisfied by the function � corresponding
to any instance of the game Gℛ−Cℬ�

= ; therefore, whether one can use the Poincaré-
Miranda theorem to prove the existence of positive solution of System (6.17) is an
open question.20

19A zero of a function � : R2 → R2 is any point (G, H) such that �(G, H) = (0, 0).
20Note that, even in the case of the generalized CB game Cℬ= where it requires to find a fixed-point

of a 1-dimensional inputs and outputs function, which is considerably easier, the Brouwer’s fixed point
theorem (and the Poincaré-Miranda theorem) is not applicable (see Kovenock and Roberson (2015) for
more details).
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Another approach is to use the main theorem of connectedness in topology, stated
briefly as follows: let - and . be topological spaces and let 6 : - → . be a continuous
function; if - is connected then the image 6(-) is also connected (see e.g., Viro et al.
(2008) for a definition of connectedness). It is easy to check that the function � in any
Gℛ−Cℬ�

= game is continuous (with respect to the standard topology of R2); therefore,
if we can find a subset of R2, say �, in the first quadrant of the ��-�� plane21 such
that it is a connected space (e.g., � can be a convex subset of R2) and that its image
�(�) (⊂ R2) contains the point (0, 0), we can deduce that there exists a zero of � in �.
However, to prove (theoretically) the existence of such a set � for any instance of the
game Gℛ−Cℬ�

= turns out to be non-trivial and we leave it here as an open question.
As a numerical solution for this question, we propose a heuristic procedure (Al-

gorithm 8) to find such a set � in R2 for the function � corresponding to any instance
of the game Gℛ−Cℬ�

= (if it exists). Moreover, this heuristic procedure also helps us
quickly compute an approximate (positive) solution of System (6.17) with an arbitrary
small approximation error �̃ > 0; that is, given a game Gℛ−Cℬ�

= , we can find a point
(�̃� , �̃�) such that




�̃� > �̃, �̃� > �̃,����(�� , ��)�� = �� 5 �(�̃� , �̃�) − ��
�� ≤ �̃,����(�� , ��)�� = �� 5 �(�̃� , �̃�) − ��
�� ≤ �̃.

(6.18)

Intuitively, any (�̃� , �̃�) satisfying (6.18) is bounded away from (0, 0) and �(�̃� , �̃�) is
�̃-closed to (0, 0). Hereinafter, we call such (�̃� , �̃�) as a �̃-approximate solution of
System (6.17).

Intuitively, Algorithm 8 is a dichotomy procedure (i.e., a bisection method) where,
starting from a rectangle � in the first quadrant of the ��-�� plane, we verify to see
whether the point (0, 0) is contained in its image via the function � (i.e., whether
(0, 0) ∈ �(�) ⊂ R2). This can be done by computing the winding number of �(�)
around (0, 0).22 If this winding number is non-zero, �(�) contain (0, 0). Now, the
rectangle � (including its boundary and interior) is a convex subset of R2, thus it is a
connected space (with the standard subspace topology); due to the main theorem of
connectedness, we know that there exists a point inside� yielding to be a zero of � (i.e.,
the image via � of this point is (0, 0)). We divide the rectangle� into smaller rectangles
and repeat the above procedure for each one of them. The algorithm terminates when
it finds a rectangle, say �∗, such that �(�∗) is small enough (with a diameter smaller
than �̃) and �(�∗) has a non-zero winding number around (0, 0). There exists a zero
of � inside �∗ and the value of � at the center of �∗ is �̃-closed to (0, 0). Therefore, this
center satisfies (6.18) and it is a �̃-approximate solution of (6.17).

This algorithm is heuristic since we do not have a proof guaranteeing the existence
of a positive solution of System (6.17), that is a positive zero of �. Therefore, it might

21i.e., if (�� , ��) ∈ � then �� > 0 and �� > 0
22Briefly put, the winding number of a closed curve in the 2-D plane around a given point is the integer

representing the total number of times that curve travels counterclockwise around the point.
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Algorithm 8: Heuristic algorithm finding a �̃-approximate solution of (6.17)

Input: Gℛ−Cℬ�
= game, �̃ > 0, " ≫ �̃.

Output: (�� , ��) ∈ R2
>0 satisfying (6.18).

1 Let � be the rectangle with four vertices (�̃, �̃), (�̃, "), (","), (", �̃)
2 Set $� to be the winding number of �(�) around (0, 0)
3 if $� = 0 then

4 M:= 2M and �̃ := �̃/2 , then repeat line 1
5 else if $� ≠ 0 then

6 Divide � into two rectangles, �1 and �2, with equal areas
7 Set $�1 to be the winding number of �(�1) around (0, 0)
8 if $�1 ≠ 0 then

9 if diameter of �(�1) is less than �̃ then

10 Stop and return output to be the center of �1

11 else

12 Set � := �1 and repeat line 6

13 else

14 if diameter of �(�2) is less than �̃ then

15 Stop and return output to be the center of �2

16 else

17 Set � := �2 and repeat line 6

happen that for certain instances of Gℛ−Cℬ�
= , there exists no rectangle � such that23

$� ≠ 0 and thus, Algorithm 8 will loop infinitely at line 4. However, we conjecture
that there indeed exists a positive zero of � and that by enlarging the search space, i.e.,
increasing the size of the rectangle � (as in line 4), we will eventually find a rectangle
large enough to contain this zero. Our numerical experiments (see below) support
this conjecture: we do not find any instance of Gℛ−Cℬ�

= such that when using it as
inputs, Algorithm 8 does not terminate. Note also that if the winding number of �(�)
around (0, 0) is non-zero, among the smaller rectangles constituting�, there must exist
at least one rectangle whose �-image also has an non-zero winding number around
(0, 0) (this is due to the additive property of the winding number).24 Therefore, as
long as we find a rectangle whose image has a non-zero winding number, Algorithm 8
surely terminates.25 Note that � may have multiple (positive) zeros, but Algorithm 8
only computes an approximation of one zero among them and that in order to obtain
a �̃-approximate solution with smaller and smaller �̃, it takes Algorithm 8 longer time
to terminate (because of the loop in lines 6-17).

Finally, to run Algorithm 8 more efficiently, we can choose to additionally use some

23Recall that we denote by $� the winding number of �(�) around (0, 0).
24Thus, at line 13 of Algorithm 8, we know that $�2 ≠ 0
25Due to the continuity of �, when we consider a sequence of smaller and smaller rectangles, their

images via � will eventually becomes small enough that Algorithm 8 terminates either by line 9 or 15.



Chapter 6. Approximate Equilibria of Extensions of the Colonel Blotto Game 97

techniques as follows. To check whether the winding number of a curve around a
given point is non-zero (involved in lines 3, 5 and 8 of Algorithm 8), we can simply
approximate it by the winding number of the curve’s piece-wise approximation, which
is a polygon. The winding number of a polygon around (0, 0) can be computed in O(+)
where+ is its number of vertices. The larger+ is, the more precise the approximation
becomes. In our numerical experiments, we heuristically set + to be 500.26 On the
other hand, the conditions at lines 9 and 14 of Algorithm 8 can be easily checked
by the following observation: given a rectangle � having four vertices denoted by
(+ 9

�
, +

9

�
) ∈ R2

>0 (9 ∈ {1, 2, 3, 4}), �(�) is contained inside the circle having the center

(0, 0) and the radius A := max9∈{1,2,3,4}{|��(+
9

�
, +

9

�
)|, |��(+ 9

�
, +

9

�
)|}.27

To illustrate the usefulness of Algorithm 8, we consider the following toy exam-
ples.28

Example 6.2.10. We recall the simple game instance Gℛ−Cℬ�
= (= = 2) considered in Exam-

ple 6.2.9 in which we know that the corresponding System (6.17) has one positive (exact) solution

(��∗ , ��∗ ) := (2+
√

4/3, 2+
√

12) ≈ (3.1547005, 5.4641016). With the input �̃ = 10−6," = 10,

Algorithm 8 running in this game outputs the solution (�̃� , �̃�) = (3.1547010, 5.4641018).
We observe that not only �(�̃� , �̃�) is �̃-closed to (0, 0) (guaranteed by Algorithm 8) but the

point (�̃� , �̃�) is also �̃-closed to the exact solution (��∗ , ��∗ ). The computation time here is

merely ∼ 2.78 seconds.

Example 6.2.11. Consider a game Gℛ−Cℬ�
= with = = 4, -� = 4, -� = 4; the battle-

field’s values are F1 = F3 = 1;F2 = F4 = 2, the favoritism parameters are ?1 = ?2 = 1;

?3 = ?4 = −1 and @8 = 1,∀8. We illustrate in Figure 6.5 the values of the function � : R2 → R2

corresponding to this game. Figure 6.5(a) represents the output plane where each point is mapped

with a color; e.g., if a point has the color blue, we know that both coordinates of this point are

positive. Figure 6.5(b) presents the input plane. Function � maps each point in this input plane

with a point in the output plane. Then, in Figure 6.5(b), we colorize each point in the input plane

with the corresponding color of its output (colors are chosen according to Figure 6.5(a)). For

example, in Figure 6.5(b), for �� ≥ 2 and �� ≤ 1 (corresponding to the region of green points),

by looking up the output plane and find the position of green points, we know that �(�� , ��)
has a negative G-coordinate and a positive H-coordinate. Finally, Figure 6.5(c) illustrates the

curve that is the image of a rectangle, called �, with the vertices (1, 1), (1, 4), (4, 4), (4, 1).29
We observe that in Figure 6.5(b), when one draws a curve around the point (2, 2) in the input

plane, this curve passes through all colors, which indicates that its image via � goes around the

26It would be interesting to theoretically characterize the relation between the choice of + and the
accuracy of the solution of Algorithm 8. However, in this thesis, we do not focus on this question and
leave it to future work.

27This result comes directly from the definitions of 5 � and 5 �. An illustration of this result for an
instance of the Gℛ−Cℬ�

= game is given in Figure 6.5(c).
28We publish the codes used in these examples at https://github.com/dongquan11/

GeneralizedRule_CBgame.
29For the sake of illustration, we choose � with this set-up instead of a rectangle with a vertex (e.g.,

(�̃, �̃)) that is very close to (0, 0) because although the �-image of the latter also contains (0, 0), it is hard
to illustrate visibly this fact.
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Algorithm 9: IU�̃� ,�̃� strategy-generation algorithm.

Input: = ∈ N, F8 ∈ [
¯
F, F̄],∀8 ∈ [=], budgets -� , -�, (�̃� , �̃�) ∈ R2

>0
satisfying (6.18)

Output: x� , x� ∈ R=≥0

1 Draw 08 ∼ �
��̃�,�̃�

8

, 18 ∼ �
��̃

�,�̃�

8

,∀8 ∈ [=] independently

2 if
∑
9∈[=] 0 9 = 0 then

3 G�8 := 0,∀8 ∈ [=]
4 else

5 G�8 := 08∑
9∈[=] 0 9

-� ,∀8 ∈ [=]

6 if
∑
9∈[=] 1 9 = 0 then

7 G�8 := 0,∀8 ∈ [=]
8 else

9 G�8 := 18∑
9∈[=] 1 9

-� ,∀8 ∈ [=]

main difference is that in the IU�̃� ,�̃�

)
strategy, player ) draws = independent numbers

from

{
�
��̃�,�̃�

8

}
8∈[=]

(instead of from ��∗
8

as in the IU�∗
strategy) before rescaling them

to guarantee the budget constraint. We emphasize that the IU�̃� ,�̃� is only implicitly
defined by Algorithm 9 and each output of this algorithm is a realization of the IU�̃� ,�̃�

strategy. Finally, we have the following result:

Theorem 6.2.13. In any game Gℛ−Cℬ�
= , under Assumption (A0), there exists a positive

number � = Õ
(
=−1/2

)
such that if there exists (�̃� , �̃�) ∈ R2

>0 satisfying (6.18) (i.e., a �̃-

approximate solution of (6.17)), the IU�̃� ,�̃� strategy is an (� + �̃),-equilibrium.

The proof of Theorem 6.2.13 is presented in Appendix D. This proof is based on
the proof of Theorem 4.2.3 (showing that the IU�∗

strategies are approximate equilibria
of the Cℬ= game) and the main difference is that proving Theorem 6.2.13 requires to
justify that the error �̃ in approximating a solution of System (6.17) only contributes
an additional term �̃, into the approximation error in the players’ payoffs where they
use the IU�̃� ,�̃� strategy. From Theorem 6.2.13, we make the following observation:
as the number of battlefields = increases, � decreases (the relation of these terms are
presented as � = Õ(=−1/2)), thus, the level of approximation error �̃ + � also decreases.
Therefore, assuming that System (6.17) has a positive solution, we can run Algorithm 8
with the input �̃ = � to obtain (�̃� , �̃�); in this case, the approximation error in using
the IU�̃� ,�̃� strategy in Gℛ−Cℬ�

= is 2�, . This error, relative to the magnitude of
the players’ payoffs (represented via ,—the players’ total payoff), is small when the
number of battlefields is large.

Now, to see how the favoritism (parameters ?8 and @8) changes the outcome of the
players in the Colonel Blotto games with favoritism, we can compute the approximate
equilibrium’s payoff. First, from the proof of Theorem 6.2.13, we note that when player
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) plays her IU�̃� ,�̃�

)
strategy, her allocation toward battlefield 8 follows the marginal

distribution that uniformly converge toward the distribution �
��̃�,�̃�

8

. Therefore, we

have a lower-bound on the payoff that player A obtains when both players follow the
IU�̃� ,�̃� strategy in Gℛ−Cℬ�

= as follows:

Π
�
GR

(
IU�̃� ,�̃�

�
, IU�̃� ,�̃�

�

)

≥
=∑
8=1

∫ ∞

0
F8�

��̃
�,�̃�

8

(
G + ?8
@8

)
d�

��̃�,�̃�

8

(G) − (� + �̃),

=

∑
8∈�+1 (�̃� ,�̃�)

F8�̃
� +

∑
8∈�+2 (�̃� ,�̃�)∪�

−
3 (�̃� ,�̃�)

[
F8(�̃� − @8�̃�) + ?8

]
− (� + �̃),. (6.19)

Similarly, a lower-bound of player B’s payoff when they play IU�̃� ,�̃� is:

Π
�
GR

(
IU�̃� ,�̃�

�
, IU�̃� ,�̃�

�

)

≥
=∑
8=1

∫ ∞

0
F8�

��̃�,�̃�

8

(
@8G − ?8

)
d�

��̃
�,�̃�

8

(G) − (� + �̃),

=

∑
8∈�+3 (�̃� ,�̃�)∪�

−
2 (�̃� ,�̃�)

[
F8

(
�̃� − �̃�

@8

)
+ ?8

@8

]
+

∑
8∈�−1 (�̃� ,�̃�)

[
F8�̃

�
]
− (� + �̃),. (6.20)

At a high-level, Inequality (6.19) supports the intuition that when ?8 increases
and/or @8 decreases, that is player A has more additive favoritism and/or multiplicative
in the battlefields, she can guarantee a better payoff. Reversely, Inequality (6.20)
indicates that player B can guarantee a better payoff when she has more favoritism (i.e.,
?8 decreases and/or @8 increases). However, these remarks remains only as intuitive
statement since in principle, when ?8 and @8 changes, the values of the solution (�̃� , �̃�)
found by Algorithm 8 also changes and we cannot explicitly keep track of these changes.
More careful numerical experiments are needed to analyze the relation between the
players’ payoffs in playing IU�̃� ,�̃� strategy and the favoritism parameters ?8 , @8 . We
leave this for future works.

Finally, we discuss the generalizability of the results obtained in this section to
the non-constant-sum generalized-rule CB game Gℛ−Cℬ= . Unlike the constant-sum
game Gℛ−Cℬ�

= considered above, in Gℛ−Cℬ= , each battlefield 8 may have different
values to each player (denoted by F�

8 and F�
8 ). This adds complexity into the problem

at hand, but in a high-level perspective, the main challenges encountered in character-
izing the equilibria and approximate equilibria of the game Gℛ−Cℬ= is not different
from what we encounter in the case of the game Gℛ−Cℬ�

= . A trivial generalization
is as follows: extend from Definition 6.2.7, we can obtain a set of distributions in the
Gℛ−Cℬ= game such that following them is the best response of each player at each
battlefield in Gℛ−Cℬ= ; specifically, for any (�� , ��) ∈ R2

>0, the pair of distributions
corresponding to battlefield 8 matches the equilibrium of the F-APA with ? := ?8 ,
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@ := @8 , D� := F�
8 �

� and F� := F�
8 �

�. However, the conditions determining that a
battlefield 8 of Gℛ−Cℬ= corresponds to which case in Theorem 6.2.5 or Theorem 6.2.6
(characterizing the equilibria of F-APA) is more complicated since we need to check all
configurations of F�

8 and F�
8 . We leave more detailed analyses for future work.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary: In this chapter, we studied the generalized Lottery Blotto game
(LB game)—an extension of the CB game model—and showed that the IU�∗

strategies are also the approximate equilibria of this game. We characterized
the approximation error of the IU�∗

strategies in two special instances—the LB
games with the power-form and logit-form CSFs—and showed that these errors
are negligible relative to the players’ payoffs under a condition of the number of
battlefields and the parameters of the involved CSFs.
Moreover, we presented several initial results in the constant-sum generalized-
rule Colonel Blotto game (Gℛ−Cℬ�

= ) (to the best of our knowledge, our anal-
ysis is the first study conducted for this game). First, we characterized the
exact equilibria (in all parameters’ configurations) of the all-pay auction with
favoritism and used these results as tools to study the Gℛ−Cℬ�

= game. We
encountered challenges in computing the exact optimal univariate distributions
of Gℛ−Cℬ�

= ; as an alternative, we proposed an efficient heuristic algorithm that
provides a set of distributions approximating optimal univariate distributions
of Gℛ−Cℬ�

= . We used these distributions to construct approximate equilibria
of the game Gℛ−Cℬ�

= (under an assumption on the existence of solutions of an
equation).
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Part II

ONLINE LEARNING IN RESOURCE

ALLOCATION GAMES WITH COMBINATORIAL

STRUCTURES
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Chapter 7

Online Resource Allocation Games as Online

Shortest Path Problems (OSPs)—Formulation

and Related Works

Some of the ideas and results presented in this chapter have previously appeared in

our following publications: Vu, Loiseau, and Silva (2019b) and Vu, Loiseau, Silva,

and Tran-Thanh (2020).

In this second part of the manuscript (that includes Chapters 7, 8 and 9), we consider
resource allocation games under an online learning setting in which a player plays and
learns on-the-fly a sequence of games (without having complete information of the
instantaneous game when making decisions). We aim to investigate a subclass of this
model that covers a wide range of applications: the set of resource allocation games with

combinatorial structures, i.e., cases where there exists a one-to-one mapping between
the strategy set (at each stage) of a player and a subset of {s ∈ N= :

∑
8∈[=] B8 ≤ -} (for

fixed =, - ∈ N). Several game models introduced in the previous chapters satisfy
such condition, including the discrete CB game and other discrete Blotto games (i.e.,
where players’ allocations are constrained to be integers) as well as the multi-looking
hide-allocation game and the hide-and-seek game (with discrete search).1

Among several possible approaches, we focus on the regret-minimization analysis

of online resource allocation games with combinatorial structures. Our high-level
perspective is to convert them into the online combinatorial optimization (OComb)
framework (see Section 2.2.1 for a definition of OComb) and the leading question is
how to exploit games’ structures in order to improve existing learning policies in
OComb when applying them to these games. As a case study, we investigate especially
the online discrete CB game in which at each stage, a learner is given a budget : to play
a discrete CB game against an adversary across = battlefields (see Section 7.1 for a
formal definition). We consider this game under several feedback settings (received

1See Section 3.2.1 for a definition of the discrete CB game and see Section 2.1.3 for discussions on the
multi-looking hide-allocation game and the hide-and-seek game.
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by the learner at the end of each stage) that model different sets of applications. The
online discrete CB game, among other online resource allocation games (with combi-
natorial structures), motivates us to study an important instance of OComb: the online
shortest path problem (OSP)—see Section 2.2.3 for a definition. There is still room
for improvement for state-of-the-art algorithms in OSP. We aim to first design new
algorithms running in any generic instance of OSP (under several feedback settings)
that improves the running time and regret guarantees in comparison with existing al-
gorithms. Then, we apply these findings into several online resource allocation games,
including the online discrete CB game and the online hide-and-seek game,2 and show
corresponding improvements.

The outline of this part is as follows: This chapter (Chapter 7) serves as an intro-
duction. In Section 7.1, we first give definitions of several online resource allocation
games; particularly, the online discrete CB game model is presented in Section 7.1.1,
the online version of other Blotto games and the online hide-and-seek game are dis-
cussed in Section 7.1.3. An important result in this chapter is that we show the connection

between online resource allocation games (with combinatorial structures) and the framework

of the online shortest path problem (OSP). In particular, the conversion of the online dis-
crete CB game into an OSP is presented in Section 7.1.2 and similar conversions for
other games are presented in Section 7.1.3. Next, as a preparation for our studies in
the following chapters, we also introduce the model of OSP with side-observations
(henceforth, SOOSP)—an instance of OSP that has not been explicitly formulated in
the literature. Finally, to pinpoint the challenges encountered in studying these games,
we review the literature of OComb, OSP and other related problems in Section 7.3.
In Chapter 8, motivated by the online discrete CB game with semi-bandit feedback,
we study the SOOSP model and design a novel regret-minimization algorithm that
provides improvements in performance guarantees and the running time. Then, we
turn our interest back to online resource allocation games (being cast as SOOSP) and
illustrate the benefits of this algorithm in playing the online semi-bandit CB game and
the online hide-and-seek game. We also discussed the application of the proposed al-
gorithm to the online discrete CB game with full-information feedback (see Chapter 8).
Finally, in Chapter 9, to provide an improving learning policy for playing the online
discrete CB game with bandit feedback, we study the OSP with bandit feedback model
and provide some methods to improve existing algorithms in this model.

A note on the terminology: Some results in this chapter are extracted from our
publications: Vu, Loiseau, and Silva (2019b) and Vu, Loiseau, Silva, and Tran-Thanh
(2020). In these publications, the online shortest path problem is actually referred
to as the path planning problem (the acronyms PPP and SOPPP are used instead
of OSP and SOOSP). In the literature of OComb and MAB, these terms are often used
interchangeably. However, it appears that the term “path planning” has also been used
by other communities. In this thesis, lest the readers have unnecessary confusions, we
make this change of the terminology and use the term online shortest path.

2The online hide-and-seek game is defined in Section 7.1.3.
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7.1 Online Resource Allocation Games

In the game-theory literature, a variety of resource allocation games have been studied
intensively in the one-shot complete-information form; in Part I of this thesis, we
analyze a subclass—the Blotto games—also in this perspective. Although it has been
showed to be applicable in many situations (e.g., see Chapter 1 for a list of applications
of the CB game), the one-shot complete-information game model has its limits and
fails to capture other type of applications in practice. In certain situations, it is more
natural to consider a model in which players need to play a sequence of games and
their objective is to maximize the cumulative payoffs. One of the common approaches
used to analyze these situations is to model them as online learning problems—a well-
established framework with many applicable results (see e.g., Cesa-Bianchi and Lugosi
(2006) for more details about online learning and the relations with games). We call
an online resource allocation game the model broadly defined as follows: a resource
allocation game, between a learner and an adversary, is played repeatedly in ) stages
() ∈ N\{0}); when making decisions at each stage, the learner may not be informed
about certain information (e.g., in the CB game, the parameters such as the values
of battlefields or the opponent’s budget could be unknown); after the strategies are
chosen and played, the learner receives (possibly restricted) feedback about the payoff
and/or the outcomes of the game at that stage. In this setting, players are often
required to sequentially learn the game on-the-fly and adjust the trade-off between
exploiting known information and exploring to gain new information. Note also that
besides the online learning setting, there exist other models used to study sequential
plays in games such as sequential games, repeated games, stochastic games or Markov
decision processes. We do not follow these approaches and only focus on the online
learning setting described above.

As previously discussed, we limit our study in this part of the thesis to the subclass
of online resource allocation games with combinatorial structures; one of them—the
online discrete Colonel Blotto game—especially attracts our attention. As discussed
in Chapter 1, this is one of the resource allocation games with the simplest rule and
description, it also possesses typical characteristics of the whole class. We study the
online discrete CB game intensively as an example of how one can exploit the structure
of the game to improve existing learning policies. In this section, we first define
formally this game in Section 7.1.1; then we develop an important result: any online
discrete CB game can be converted into an online shortest path problem (this is done
in Section 7.1.2); finally, we introduce the formulations of some other online resource
allocation games in Section 7.1.3 and show similar conversions.

7.1.1 The Online CB game

We first consider two motivational examples as follows:

In radio resource allocation (in a cognitive radio network), a solution obtaining
the balance between efficiency and fairness is to provide the users with fictional
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budgets (the same budget at each stage) and let them bid across = spectrum
carriers simultaneously to compete for obtaining as many bandwidth portions as
possible, the highest bidder to each carrier wins the corresponding bandwidth
(see e.g., Chien et al. (2019)).3 If this system only allows the bids to be integers
(that allows a simple transmission with fewer units of information), from the
point of view of each user, she is a learner who plays a sequence of discrete CB
games on = battlefields (i.e., = spectrum carriers).

In advertising, we consider an online marketing campaign who distributes the
broadcasting time (rounded up to integers) in = advertisement slots; once per
day, its performance is reviewed and based on this information, a better strategy
can be learned for the following days. If it is assumed that among two products
promoted by two competing marketing campaign on the same = slots, the one
with a longer broadcasting-time is more likely to be bought, then each marketing
campaign can be considered as a learner who needs to play a sequence of discrete
CB game on = battlefields (= advertisement slots).

Now, we present a formal definition of the online discrete CB game. Note that in
this definition, certain elements are similar to the definition of the one-shot discrete
CB game (Definition 3.2.1) presented in Chapter 3; for these elements, we reuse the
corresponding notations.

Definition 7.1.1. The online discrete Colonel Blotto game is a game between a learner

and an adversary over = ≥ 1 battlefields within a time horizon ) > 0. At stage C ∈ [)], each

battlefield 8 ∈ [=] has a value bC(8) > 0 (unknown to the learner) such that
∑=
8=1 bC(8) = 1. At

stage C, the learner needs to distribute : troops (: ≥ 1 is fixed) towards the battlefields while the

adversary simultaneously allocates hers; that is, the learner chooses a vector zC in the strategy

set (:,= := {z ∈ N= :
∑=
8=1 z(8) = :}. At stage C and at battlefield 8 ∈ [=], if the adversary’s

allocation is strictly larger than the learner’s allocation zC(8), the learner loses this battlefield

and she suffers the loss bC(8); if they have tie allocations, she suffers the loss bC(8)/2; otherwise,

she suffers no loss. The learner’s loss at each stage is the aggregate of the losses from all the

battlefields. At the end of stage C, the learner observes some (possibly restricted) feedback about

her instantaneous payoff, the parameters and/or the outcomes of the game played in that stage.

The objective of the learner is to minimize her expected regret.

In the remainder of this thesis, in places where there is no ambiguity, we drop the
term “discrete” and address the game defined in Definition 7.1.1 simply as the online CB

game. Hereinafter, we also refer to the elements of (:,= in the online CB game as the pure

strategies of the learner. On the other hans, in Definition 7.1.1, we note that the values of
battlefields4 are allowed to change over time and they are unknown to the learner when
she makes decisions at each stage. This setting is generic and it allows a large scope

3Note that in this model, the network users play the roles of players; this is unlike the radio management
system from Hajimirsaadeghi and Mandayam (2017) that we discussed in Chapter 1 (see also Figure 1.1)
where they are modeled as the battlefields.

4The battlefields may have different values to the learner and the adversary.
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of applications of the online CB game. For instance, in the motivational example of
radio resource allocation described above, the actual data rate of the bandwidth (which
corresponds to the values of battlefields) are often subject to unpredictably random
noises; therefore, they may change over time. On the other hand, the term “adversary”
here can indicates either a single opponent or a set of opponents of the learner (i.e.,
in each stage, we can consider an #-player CB game where # ≥ 2); moreover, we do
not impose any constraint on how the adversary generates her strategies, that is, the
adversary involved in the online CB game might be a non-oblivious adversary. Note
also that the adversary’s budget can be changed over time (as long as it is not larger
than = × :) and they are also unknown to the learner.5 Finally, another difference
from the one-shot discrete CB game is that we include, in Definition 7.1.1, the fixed
tie breaking rule sharing equally the value to the learner and the adversary. This is
simply to avoid unnecessary complications in the model; the results on the online CB
game that we present in the next chapters can easily be extended to the game with a
general tie-breaking rule.

Importantly, in Definition 7.1.1, the online CB game is defined with a generic
description of the feedback that the learner observes at the end of each stage. By
changing this feedback, we obtain different instances of the game. In this thesis, there
are three feedback settings that we study for the online CB game:

The full-information setting: at the end of stage C, the learner observes the values
of all battlefields (i.e., 1C(8), 8 ∈ [=]) and the allocations that the adversary chose
in that stage.

The semi-bandit setting: at the end of stage C, the learner only knows whether she
wins or loses (or has a tie) and the loss she suffers from each battlefield (but not

the adversary’s allocations).

The bandit setting: at the end of stage C, the learner only observes the aggregate
loss she suffers from all the battlefields and nothing else.

Hereinafter, we refer to the game defined in Definition 7.1.1 where the learner receives
the feedback according to the full-information setting (resp. the semi-bandit/ bandit
settings) shortly as the online full-information CB game (resp. the online semi-bandit CB

game and the online bandit CB game). The feedback settings described above are mod-
eled from common types of information available to the learners in the motivational
applications of the online CB game model. For example, the radio resource allocation
problem described at the beginning of this section can be modeled by an online CB
game with semi-bandit feedback if we allow each user to observe her own data rate
(the gain/loss) achieved via each carrier (corresponding to battlefields’ values) but not
other users’ bids. This is a realistic assumption since it is easy to measure the data
rate while it requires transmissions with more information units to keep track of all

5Technically, the model of the online CB game may allow the adversary to have any arbitrary finite
budget at each stage; however, the case when it is larger than = × : is trivial: the learner always loses at
all battlefields and suffers the same loss regardless of what she does; that is, the regret is always zero.
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Table 7.1: The feedback settings in the online CB game.

Adversary’s
allocations

Battlefields’
values

Battlefields’
outcomes

Aggregate loss
from battlefields

Full-information X X X X

Semi-bandit X X X

Bandit X

users’ bids (that might cause delays in the system). If it is needed to further reduce the
amount of information transmitted in the system for the purpose of this bidding pro-
tocol, we might let each user measures only the total data rate that she transmits rather
than that in each carrier; in this case, we may model this system as an online CB game
with bandit feedback. Another example of the bandit setting is resource allocation
problems in advertising (described above) under an additional assumption that the
marketing campaign (the learner) observes the total revenue of the day, i.e., the total
gains (also, the total loss), without knowing exactly which advertisement slot (among
which the ads is broadcasted) has encouraged the customer to buy the product. The
available information that the learner observes in each feedback setting of the online
CB game is summarized in Table 7.1.

One might observe that the terminology we use to address the feedback settings in
the online CB game correspond to the three standard settings of the online combinato-
rial optimization (OComb) framework (see Definition 2.2.2 for a definition). This is due
to the following simple observation: the online CB game can be formulated as a standard

OComb problem. In particular, in the game where the learner, at each stage, needs to al-
locate : troops across = battlefields, each pure strategy of the learner can be mapped to
a 0-1 vector of the form

(
p(1, 0), . . . , p(1, :), . . . , p(=, 0), . . . , p(=, :)

)
∈ {0, 1}:×= where

p(8 , 9) = 1 if and only if in that pure strategy, 9 troops are allocated on the 8-th battle-
field. One can easily verify that the feedback settings described above in the online CB
game match exactly with the definition of those settings in the corresponding OComb.

This connection between the online CB game and the OComb framework also
indicates that the learner in the online CB game can apply no-regret algorithms from
the OComb literature to obtain the corresponding guarantees on the expected regret.
However, there are two drawbacks to this approach: (i) the standard algorithms in
OComb provide no overall guarantee that they run in polynomial time in terms of
the dimension of the action vectors; this implies that in the worst-case scenarios of
the online CB game, their running time is exponential in terms of = (the number of
battlefields) and : (the budget)—too inefficient to be implemented in practice; (ii) these
algorithms—designed for generic setting of OComb—do not exploit the structure of the
CB game, thus there is still room for improvement in the regret guarantees provided
by these algorithms. We will emphasize these remarks again in Section 7.3 where we
review the literature of OComb and other related problems. Before doing that, in the
next section, we first introduce another presentation, somewhat more refined, of the
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online CB game: we view this game as an online shortest path problem.

7.1.2 The Online CB Game as an Online Shortest Path Problem (OSP)

The online shortest path problem (OSP) is a special instance of OComb in which
each element of the action set of the learner corresponds to a path on a directed
acyclic graph (DAG)—see Section 2.2.3 for a definition of OSP. Importantly, there exist
variants of regret-minimization algorithms for OComb, especially in the class of Exp3-
type algorithms,6 that run more efficiently in OSP than in OComb thanks to possible
exploitation of the graphical structure (more details are given in Section 7.3 where we
give a literature review on OSP). At a high-level, the OSP model is more tractable than
the OComb framework; therefore, we desire to see whether any arbitrary instance of
the online CB game can be cast into an OSP. Our answer to this question is positive.

Given a CB game with the parameters : and = as presented in Definition 7.1.1, we
create a DAG, denoted by � := �:,= , defined as follows:

Definition 7.1.2 (CB Graph). The graph �:,= is a DAG that contains:

(8) + := 2 + (: + 1)(= − 1) vertices arranged into = + 1 layers. Layer 0 and Layer =, each

contains only one vertex, respectively labeled B := (0, 0)–the source vertex and 3 := (=, :)–the

destination vertex. Each Layer 8 ∈ [= − 1] contains : + 1 vertices whose labels are ordered from

left to right by (8 , 0), (8 , 1), . . . , (8 , :).
(88) There are directed edges from vertex (0, 0) to every vertex in Layer 1 and edges from every

vertex in Layer = − 1 to vertex (=, :). For 8 ∈ {1, 2, . . . , = − 2}, if : ≥ 92 ≥ 91 ≥ 0, there exists

an edge connecting vertex (8 , 91) in Layer 8 to vertex (8 + 1, 92) in Layer (8 + 1).

An example illustrating the graph �:,= of an instance of the CB game is given in
Figure 7.1. From Definition 7.1.2, let us respectively denote by � and % the number of
edges and paths (going from vertex B to vertex 3) in the graph �:,= ; we have:

� = (: + 1) [4 + (= − 2)(:! + 2)] /2 = Ω(=:2), % =

(
= + : − 1
= − 1

)
= Ω(2min{=−1,:}).

The edge connecting vertex (8 , 91) to vertex (8 + 1, 92) for any 8 ∈ {0, 1, . . . , = − 1}
represents allocating (92 − 91) troops to battlefield 8 + 1. The length of every path from
B to 3 is =. More importantly, each path from B to 3 in the graph � represents a pure
strategy in (:,= . This is formally stated in Proposition 7.1.3.

Proposition 7.1.3. Given : and =, there is a one-to-one mapping between the strategy set (:,=
of the learner in the online CB game (with : troops and = battlefields) and the set of all paths

from vertex B to vertex 3 of the graph �:,= .

The proof of this proposition is trivial and can be intuitively seen in Figure 7.1. We note
that a similar graph is studied by Behnezhad, Dehghani, et al. (2017) (for the one-shot
complete information discrete CB game); however, it is used for a completely different

6See our discussion on this class of algorithms in Section 2.2.2.
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Battlefield 1

Battlefield 2

Battlefield = = 3

Figure 7.1: The graph �3,3 corresponding to the CB game with :===3. For example,
the bold-blue path represents the strategy (0, 0, 3) while the dash-red path represents
the strategy (2, 0, 1). Note that the different colors and the dash lines here are just for

the purpose of illustrating these examples.

purpose and it also contains more edges and paths than �:,= (that are not useful for
our purpose in this chapter).

From Proposition 7.1.3, we conclude that each instance of the online CB game model

is equivalent to an OSP where at each stage the learner chooses a path in �:,= and
the loss on each edge is generated from the allocations of the learner (corresponding
to that edge) and the adversary (in the corresponding battlefield) according to the
rules of the game. Moreover, we can see that the definitions of the three feedback
settings in the online CB game (described in the previous section) match exactly with
the definitions of OSP with full-information (i.e. observing the losses of all edges),
semi-bandit (i.e., only observing the losses of the edges belonging to the chosen path)
and bandit feedback (i.e., only observing the aggregate of the edges’ losses belonging
to the chosen path).7

Importantly, similar conversions can be conducted to cast other online resource
allocation games with combinatorial structures into OSP by constructing DAGs cor-
responding to the strategy’s set of the learner in these games (an example is given in
Section 7.1.3). For this reason, the high-level perspective of our studies in Chapters 8
and 8 is as follows: we consider OSP on generic graphs under different feedback set-
tings and aim to improve existing algorithms in these cases; after that, we analyze the
application of our findings into the particular OSP corresponding to the online CB
game (with the graph �:,=) and show how the learner benefits from that. In particular,
Chapter 9 investigates the algorithms in OSP (and the online CB game) with bandit
feedback. On the other hand, the case of online semi-bandit CB games motivates us
to introduce and study another feedback setting of OSP, called the OSP with side-
observations (SOOSP), that has not been explicitly analyzed in the literature.8 We give
the formulation of SOOSP in Section 7.2; then discuss the conversions of several online

7Formal definitions of these feedback settings in OSP are presented in Section 2.2.3.
8Indeed, the structure and rule of the online CB game allows the learner to deduce extra information

from the semi-bandit feedback (see present this in Section 8.1).
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resource allocation games into SOOSP and design new no-regret algorithms for it in
Chapter 8.

7.1.3 Other Online Resource Allocation Games and the Relation to OSPs

In this section, we discuss several online resource allocation games with combinatorial
structure other than the online CB game. We start with an interesting observation as
follows: in making the conversions of the online CB game into the OComb framework
(see Section 7.1.1) and into the OSP framework (see Section 7.1.2), only the strategy set
of the learner is involved and the Blotto-rule determining the winner in each battlefield
plays no particular role. Therefore, these conversions can be trivially generalized to
other Blotto games where the players have the same strategy sets as in the CB game.
For example, one can easily extend Definition 7.1.1 to define the online version of the
discrete Lottery Blotto game9 and also cast it into an OSP by the same conversion. Now,
we introduce another game that has different motivation and formulation from that of
the CB game.

The Online Hide-and-Seek Game

A one-shot version of the hide-and-seek game has been introduced in Section 2.1.
Briefly put, in a hide-and-seek game (with discrete search), a seeker chooses = among
: locations (= ≤ :) to search for a hider, who chooses the probability of hiding in each
location; the seeker’s payoff is the summation of the probability that the hider hides
in the chosen locations and the hider’s payoff is the probability that she successfully
escapes the seeker’s pursuit. Several variants of this game have been used to model
surveillance situations (see e.g., Bhattacharya et al. (2014)), anti-jamming problems (see
e.g., Navda et al. (2007) and Wang and M. Liu (2016)) and vehicles control problems
(see e.g.,Vidal et al. (2002)).

As in the case of the CB game, there exist applications of the hide-and-seek game
that requires players to play repeatedly the game and learn on-the-fly to improve the
payoffs (or reduce the losses). A motivational example is the following spectrum
sensing problem in the opportunistic spectrum access context (see e.g., Yucek and
Arslan (2009)):

The network users are classified into two groups: primary users who are priori-
tized to use the spectrum and secondary users who can only use the remaining
bandwidth after the usage of the primary users (if available). The secondary
users’ usage of the spectrum must not cause interference to the connection of the
primary users. To do this, at each stage, each secondary user—as a learner—
needs to choose to send the sensing signal to at most = among : channels (due to
energy constraints, she cannot sense all channels, thus = ≤ :) with the objective
of sensing the channels with the (total) availability as high as possible. Note

9See Definition 3.2.3 for a definition of a one-shot Lottery Blotto game.
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that the channels’ availability depend on primary users’ decisions that might
be non-stochastic.

Formally, the online Hide-and-Seek game (the online HS game) is a repeated game
(within the time horizon ) > 0) between a hider and a seeker. Here, we consider that
the learner plays the role of the seeker and the hider is the adversary. There are :
locations, indexed from 1 to :. At stage C, the learner sequentially chooses = locations
(1 ≤ = ≤ :), called an =-search, to seek for the hider, that is, she chooses zC ∈ [:]= (if
zC(8)= 9, we say that location 9 is her 8-th move). The hider maliciously assigns losses
on all : locations.10 The learner’s loss at stage C is the sum of the losses from her chosen
locations in the =-search at stage C, that is

∑
8∈[=], 9∈[:] I{zC (8)=9}bC(9). At the end of stage C,

the learner observes some feedback about her losses from the locations. The learner’s
objective is to minimize the expected regret over ).

In the application of spectrum sensing mentioned above, the secondary user, as the
learner, is a seeker; : spectrum channels correspond to : locations, each is embedded
with a loss that can be interpreted as the unreliability of the channel (these losses can
be normalized to represent the hiding probability of an artificial hider).

1st-move

2nd move

=-th move

Auxiliary edges

Figure 7.2: The graph �3,3,1 corresponding to the HS game with :===3 and :0=1.
E.g., the blue-bold path represents the (1, 1, 1) search and the red-dashed path

represents the (2, 3, 2) search. Note that the different colors and the dash lines here
are just for the purpose of illustrating these examples.

As in the case of the CB game, tackling the online HS game as a standard OComb is
computationally involved. As such, we follow the OSP formulation instead. First, we
note that there are a variety of instances of the online HS game that we can consider
since the =-search of the learner often needs to satisfy some constraints in practice. In
this thesis, as an example, we use the following constraint: for a fixed :0 ∈ [0, : − 1],
|zC(8) − zC(8 + 1)| ≤ :0 ,∀8 ∈ [= − 1] (called the :0-coherence constraint), i.e., the seeker
cannot search too far away from her previously chosen location.11 To cast an HS game

10For example, these losses can be the wasted time supervising a mismatch location or the probability
that the hider does not hide there.

11Our results can be applied to HS games with other constraints, for example, zC (8) ≤ zC (8 + 1),∀8 ∈ [=],
i.e., she can only search forward; or,

∑
8∈[=] I{zC (8)=:∗} ≤ :0, i.e., she cannot search a location :∗ ∈ [:] more

than :0 times.
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where the learner can do =-searches in : locations under a :0-coherent constraint to an
OSP, we create a DAG � := �:,=,:0 whose paths set has a one-to-one correspondence
to the set containing all feasible searches of the learner. Figure 7.2 illustrates the
corresponding graph of an instance of the HS game and we give a formal definition
of �:,=,:0 in Appendix E.6. This variant of the online HS game is equivalent to the
OSP where the learner chooses a path in �:,=,:0 and edges’ losses are generated by the
adversary (i.e., the hider’s probability of hiding in the corresponding location) at each
stage. Note also that to ensure all paths end at 3, there are = auxiliary edges in �:,=,:0

that are always embedded with 0 losses. In �:,=,:0 , there are � = O(:2=) edges and
% = Ω(:=−1

0 ) paths. .

Finally, note that we do not claim that any online resource allocation game (with
combinatorial structures) can be cast to OComb or OSP. In fact, the conversions used
for the cases of the online CB game and the online HS game depend on the fact that
there is linearity in the players’ payoff functions in these games. Therefore, it might
exists resource allocation game that is impossible to be cast into OComb nor OSP.

7.2 The Online Shortest Path Problem with Side-Observations

(SOOSP)

In our review on the OSP in Section 2.2.3, we have introduced three standard feedback
settings in OSP: full-information, semi-bandit and bandit. From the connection that
we established between online resource allocation games and OSP in the previous
sections, we observe that there exist situations where the feedback in these games are
not fully captured when converting them into OSP with the standard settings. This is
often due to the fact that structures of the games may allow extra information to be
deduced from the feedback (see Chapter 8 for an example—the case of the online semi-
bandit CB game). Therefore, in this section, we present the definition of OSP under
another feedback settings, called OSP with side-observations (denoted by SOOSP).12
To the best of our knowledge, SOOSP has not been explicitly defined in the literature;
although it can be considered as a special case of the online combinatorial optimization
with side-observations framework.13

As in the generic formulation of OSP (introduced in Section 2.2.3), SOOSP is also
defined on a directed acyclic graph (DAG), denoted by �. We also reuse several
notations with respect to � including its vertices set V, its edges set ℰ (and + =

|V|, � = |ℰ|), the source vertex B, the destination vertex 3, the set P containing all
paths starting from B and ending at 3 (and % := |P|); moreover, let = be the length of
the longest paths in P and ℓ C(4) be the loss generated by the adversary on edge 4 at
stage C. The formal definition of SOOSP, based on the OSP framework, is as follows:

12In Chapter 8, we show how the SOOSP model captures the feedback and side-observations in the
online CB game and the online HS game.

13See the definition of SOComb in Section 2.2.1.
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Definition 7.2.1. Given a time horizon ) ∈ N\{0} and a DAG �, an online shortest path

problem with side-observations (SOOSP) on � is an OSP (on �) such that the learner’s

feedback at the end of stage C ∈ [)] after choosing the path p̃C ∈ P is presented as follows:14

First, she receives semi-bandit feedback, i.e., she observes the edges’ losses ℓ C(4), for any 4

belonging to the chosen path p̃C . Additionally, each edge 4 ∈ p̃C may reveal the losses on several

other edges. To represent these side-observations at time C, we consider a graph, denoted �$C ,

containing � vertices: each vertex E4 of �$C corresponds to an edge 4 ∈ ℰ of the graph �.

There exists a directed edge from a vertex E4 to a vertex E4′ in �$C if, by observing the edge loss

ℓ C(4), the learner can also deduce the edge loss ℓ C(4′); we also denote this by 4 → 4′ and say

that the edge 4 reveals the edge 4′. The objective of the learner is to minimize the cumulative

expected regret.

Hereinafter, we use the term observation graphs to refer to �$C . In general, these
observation graphs can depend on the decisions of both the learner and the adversary.
On the other hand, all vertices in�$C always have self-loops, i.e., every edge in the graph
� reveals itself when get chosen (this comes from semi-bandit feedback). Naturally,
the feedback setting defined in SOOSP interpolates between the semi-bandit and full-
information of OSP. Indeed, in the case where none among �$C (C ∈ [)]) contains
any other edge than the self-loops, no side-observation is allowed and the problem is
reduced to the classical semi-bandit setting. If all �$C (C ∈ [)]) are complete graphs,
SOOSP corresponds to the full-information OSPs. On the other hand, there are two
situations regarding the observation graphs: in the informed setting, the learner observes
�C
$

before she makes the decisions; in the uninformed setting, the learner observes �$C
only after making the decisions at time C. In this thesis, we work with the uninformed
setting of SOOSP since it is more general and some cases of interest in studying online
resource allocation games belong to this setting.

7.3 Literature Review on Regret-Minimization Analysis in Ban-

dit Problems and Beyond

In the previous sections, we have shown that online resource allocation games (that
are our primary objects of study in this part of the thesis) have connections to a variety
of online learning frameworks; our aim is to improve existing regret-minimization
algorithms in these frameworks and apply our findings to have more effective and
efficient learning policies in these games. In order to gain an understanding of the
existing research and challenges we encounter in studying these problems, in this
section, we give a brief literature review on regret-minimization analyses in OLO,
OComb, OSP and MAB. Moreover, we also review the problem of learning equilibria
in games—another connection between online learning and game theory. This section
involves a quite intensive use of acronyms; for ease of reading, we summarize them in
Table 7.2. Throughout this section, we use the notation) for the time horizon, ( for the

14Recall that we use the letter p to denote an arbitrary path in P and use the tilde notation with a
subscript (i.e., p̃C ) to emphasize that this is the path chosen by the learner at stage C.
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action set of the learner, � to be the dimension of the action and = = maxp∈({‖p‖1}.
The asymptotic notations O , Õ and Ω are used with respect to ), =, � → ∞. We first
start with a review on the most basic model—the well-known MAB problem.

Table 7.2: Acronyms of several online learning models.

Acronyms Models
MAB Multi-armed bandit (with finitely many arms)
OLO Online learning optimization
OComb Online combinatorial optimization
SOComb Online combinatorial optimization with side-observations
OSP Online shortest path problem
OSPBand Online shortest path problem with bandit feedback
SOOSP Online shortest path problem with side-observations

7.3.1 The MAB with Finitely Many Arms

The multi-armed bandit problem (MAB) is one of the most basic models in sequential
learning (also sequential prediction) with limited feedback. The name “bandit” is
inspired by situations where a player, in a casino, faces a number of “one-armed
bandit” machines (a slang word to call casino’s slot machines) and she must repeatedly
choose one among these machines to pull, then observes and gains a reward (or suffers a
loss). There are two basic sub-classes of MAB: stochastic bandits and adversarial bandits.15
At a high-level, the adversarial bandit model is more general and contains the class of
stochastic bandits; however, in the literature, solving these classes involves different sets
of techniques. A definition of adversarial bandits has been introduced in Section 2.2.2.

In a stochastic bandit with � arms, at each stage, the loss on each arm 8 is indepen-
dently drawn from an unknown probability distribution, called �8 ; without knowing
this, a learner chooses one among� arms then observes and suffers the corresponding
loss. This model has a long-standing history; it can be traced back to Thompson (1933)
with applications in clinic trials. Modern analyses of stochastic bandits are considered
to begin with the work of Lai and Robbins (1985) in which the upper confidence bounds
(UCB) technique is first introduced.16 In a stochastic bandit, the performance of a learn-
ing policy is often measured by the (pseudo) regret, defined as ') =

∑
8∈[�] Δ8E�8());

where �8(B) is the number of times arm 8 is selected within the first B stages and we

15Markovian bandits are sometimes considered to be another basic subclass of MAB; however, since
the sets of techniques and results involved in Markovian bandits are very different from the ones related
to our results in this thesis, we do not review it in detail here. We refer the interested readers to see e.g.,
Gittins et al. (2011) and Mahajan and Teneketzis (2008) for surveys on Markovian bandits.

16Briefly put, UCB is based on the principle of optimism in the face of uncertainty and the use of
concentration inequalities.
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define Δ8 = <8 − <∗ where <8 is the mean of �8 and <∗ := min9∈[�]{< 9}.17 In the
case where the losses are bounded in [0, 1], the -UCB algorithm—proposed by Auer,
Cesa-Bianchi, and Fischer (2002), is essentially optimal (i.e., it provides a pseudo re-
gret’s upper-bound matching in order with a known lower-bound). It guarantees that
') ≤ ∑

8:Δ8>0
2
Δ8

log) + 
−2 ; i.e, the regret is logarithmic in terms of ) ( > 2). The

constants involved in this bound are improved by Bubeck, Cesa-Bianchi, et al. (2012)
and Garivier and Cappé (2011). Based on the UCB technique, several algorithms are
proposed with more refined results (i.e., the gap between the upper and lower bounds
is further reduced) including the UCB-V algorithm by Audibert, Munos, et al. (2009)
and the KL-UCB algorithm by Garivier and Cappé (2011) and Maillard et al. (2011).
On the other hand, in the worst-case analysis (i.e., with the worst distributions of
arms’ losses), the regret of -UCB is sub-optimal (it is in the order of

√
�) log)). To

improve this, Audibert and Bubeck (2010) modify UCB to design an algorithm, called
MOSS, that obtains the bound

√
�). For the cases where �8 , 8 ∈ [�] all belong to a

particular class of distributions, refined results can be obtained; e.g, Kaufmann et al.
(2012) re-discover that Thompson sampling is optimal for Bernoulli bandits, Kaufmann
et al. (2018), Korda et al. (2013), and Menard and Garivier (2017) prove the asymptotic
optimality for a variety of families of exponential distributions. Note also that the al-
gorithms mentioned above work with an assumption that the time horizon ) is known
in advance; a well-known technique to obtain an anytime algorithm is the “Doubling
Trick” that is often integrated into the other algorithms (see Besson and Kaufmann
(2018) for an overview on this technique). High-probability guarantees of UCB-type al-
gorithms are also studied by Audibert, Munos, et al. (2009) and Bubeck, Cesa-Bianchi,
et al. (2012). Finally, results on lower-bounds of minimax regret in special classes of
losses distributions can be found in several works; e.g., Auer, Cesa-Bianchi, Freund,
et al. (1995) give results in the cases of Bernoulli bandits, Gerchinovitz and Lattimore
(2016) provide results in Gaussian bandits with unit variance.

Note that in this thesis, our objects of study are online resource allocation games in

which, losses of each arm (i.e., of each pure strategy) may not be generated from i.i.d.

distributions over time; therefore, they cannot be modeled by stochastic bandits.

Unlike stochastic bandits, in adversarial bandits, no stochastic assumption is made
on how losses are generated (besides the requirement that the losses are bounded);
hence, they are also called the non-stochastic bandits. Adversarial bandits are also
often formulated as a sequence of games, between a learner and an adversary, that
involves the basic trade-off between exploration and exploitation in making decisions.
Note that in early works, adversarial bandits are developed and studied independently
from the stochastic bandit model; pioneer works that present adversarial bandits by
game-theoretic formulations are Banos et al. (1968) and Hannan (1957). One of the

17In the case of stochastic bandits, this definition of pseudo regret is equivalent to the definition of the
expected regret given in (2.5), i.e., the difference between the expected cumulative loss and the expected
loss from playing repeatedly the best arm.
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most common performance measure in adversarial bandits is the expected regret (see
Section 2.2.1 for a definition). An upper-bound of order O(

√
)� ln(�)) of the expected

regret in adversarial bandits is guaranteed by the Exp3 algorithm, proposed by Auer,
Cesa-Bianchi, Freund, et al. (2002). Exp3 is considered as a standard algorithm in
adversarial bandits and we have introduced this algorithm in detail in Section 2.2.2.
Note that Exp3 is based on a strategy called exponential weight algorithm that has
a longer history (see Littlestone and Warmuth (1989)). In the case with oblivious
adversaries,18 this bound is improved to O(

√
)�) by the class of INF algorithms pro-

posed by Audibert and Bubeck (2009) (which can also be viewed as an Mirror Descent
algorithm, see e.g., Audibert, Bubeck, and Lugosi (2011)). On the other hand, algo-
rithms designed for adversarial bandits do not work well in stochastic bandits and
vice versa. For example, it is proved that UCB can have a regret that is linear in )

when being applied to adversarial bandits and that Exp3 does not guarantee a regret
as good as that of UCB in several cases of stochastic bandits. To solve this problem,
an algorithm that can guarantee the “best of both worlds” regret bounds is proposed
by Bubeck and Slivkins (2012). Several works also consider a more general notion of
regret with respect to best-switching strategy (instead of the best fixed action in hind-
sight). For example, Audibert and Bubeck (2010) and Auer (2002) show that Exp3-type

algorithms obtain the bound of order
√
)�C̃ log()�/C̃) if one compares the cumula-

tive loss with that of the best strategy switching at most C̃ ≤ ) times. Concerning
high-probability bounds, a modified version of Exp3, called Exp3.P, is also proposed
by Auer, Cesa-Bianchi, Freund, et al. (2002), it provides a regret guarantee matching
that of Exp3 (see also Abernethy and Rakhlin (2009)). This bound is further improved

by Neu (2015) such that 'C ≤ O
(√

(log� + log(1/�)))�
)

happens with a probability

at least 1− �, � ∈ [0, 1]. Finally, as for the lower-bound in adversarial bandits, minimax
lower-bound in order of Ω(

√
)�) is given by Auer, Cesa-Bianchi, Freund, et al. (2002).

Online resource allocation games with combinatorial structures (where the learner’s

payoff at each stage can be deduced from feedback) can be modeled directly as adversarial

bandits such that each pure strategy corresponds to an arm. However, by doing this, the

feedback and information about the games are not fully captured in several situations.

Moreover, it is often the case that the number of strategies of the learner is exponential in

terms of games’ parameters (due to combinatorial structures), e.g., in the online CB game

and the online HS game. Therefore, the best regret guarantee and the best running time

(that are linear in terms of the number of arms) provided by algorithms in adversarial

bandits are still exponentially large (in terms of games’ parameters) and are not useful

in practice. For these reasons, we do not use adversarial bandits to model these games in

this thesis.

The literature of bandit problems goes much further than these two basic sub-
classes. Several worth-mentioning classes and extensions are: continuous bandits—
where the learner has infinitely many (stochastic) “arms” (see e.g., Bubeck, Munos,

18In these cases, the expected regret is also equivalent to the definition of the pseudo-regret.
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et al. (2011) and Kleinberg (2005)), Lipschitz bandits—where the expectation of the
loss is determined by a Lipschitz function (see e.g., Abernethy, Hazan, et al. (2008)),
sparse bandits—where most of the arms have means of rewards equal 0 (see e.g.,
Gerchinovitz (2013)), contextual bandits—where the learner has access to additional
information at the beginning of each round (see e.g., Kakade et al. (2008) and Rakhlin
and Sridharan (2016)) and bandits with knapsacks (see e.g., S. Agrawal and Devanur
(2014), Badanidiyuru et al. (2013), and Tran-Thanh et al. (2012)). Note that MAB can
also be considered as a specific case of a broader class, called partial monitoring (see
e.g., Lugosi et al. (2008) and Perchet (2011)). In the next section, we review some
generalizations of MAB, the OComb and OLO models, that are the main framework of
our results in this part of the thesis.

7.3.2 Regret-Minimization in OLO, OComb and OSP

The online linear optimization (OLO) model is an important generalization of adver-
sarial bandits with the main difference is that the set of arms is replaced with an action
set ( ⊂ R� and the loss that the learner suffers at each stage is a linear function of her
chosen action and an adversarially chosen loss vector. A definition of OLO and its con-
nection to MAB19 have been given in Section 2.2.1. In OLO with full-information feedback,
the Hedge algorithm, proposed by Freund and Schapire (1997), has been proved to be
optimal: it provides a regret upper-bound in O(

√
) log |( |) matching a lower-bound;

this setting is also considered quite intensively by Koolen et al. (2010). On the other
hand, OLO with bandit feedback provides more challenges. Dani et al. (2008) proposes
an algorithm, called Geometric Hedge, guaranteeing the expected regret to be at most
O(�3/2

√
))—this is the first algorithm having a regret bound in OLO with bandit feed-

back that is sub-linear in). Geometric Hedge is based on an Exp2 strategy mixing with
an exploration distribution that is uniform over a barycentric spanner of (. This bound
is improved (for cases with an oblivious adversary) to the order of O(

√
)� log(|( |)) by

the Exp2 with John’s exploration algorithm, proposed by Bubeck, Cesa-Bianchi, and
Kakade (2012). Note that the computation of a barycentric and a John’s ellipsoid of
( remains non-trivial and inefficient in general.20 Another line of works in OLO with
bandit feedback is the family of Online Mirror Descent (OMD) algorithms; that is based
on the Mirror Descent (MD) method in (offline) convex optimization (introduced by
Nemirovski and Yudin (1983)). The connection between MD and online learning is
first mentioned in Cesa-Bianchi and Lugosi (2006) and the first MD algorithm in OLO

with bandit feedback is from Abernethy, Hazan, et al. (2008). An improved variant
for the case where the actions set ( is a compact and convex set, called the OSMD for
the Euclidean ball, is proposed by Bubeck, Cesa-Bianchi, and Kakade (2012); it obtains
the expected regret upper-bound in the order of O(

√
�) log)). Mirror descent is also

applied to prove high probability bounds of OLO with bandit feedback by Abernethy
and Rakhlin (2009). Note that OSMD can also be considered to be equivalent to the

19That is each OLO can be considered as an MAB where each action vector in ( of the OLO corresponds
to an arm of the MAB; and reversely, each MAB can be modeled as an OComb that is an instance of OLO.

20The computation of a John’s ellipsoid of a set is an NP-hard problem.
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class of Follow-the-Regularized-Leader (FTRL) algorithms (see Rakhlin, Abernethy,
et al. (2009)); that, in turns, contains the class of Follow-the-Perturbed-Leader (FTPL)
algorithms introduced by Kalai and Vempala (2005) (by adding a perturbation of the
losses as an implicit form of regularization). There are two main issues in applying
MD-type (and FTRL-type) algorithms to OLO: (i) their performances depend (heavily)
on the chosen potential function; to our knowledge, currently, there is no universal
choice for the potential function and given an arbitrary OLO instance, it is non-trivial
which potential should be chosen or how to find it; (ii) they require an efficient oracle
solving a convex optimization problem at each stage; this is problem-dependent and
in general, this step might be computationally expensive.

It still remains an open question to design an algorithm that provides optimal (in order)

guarantees on the expected regret while runs efficiently in a general instance of OLO
with bandit feedback. In this thesis, we focus on a subclass of OLO, called OComb,

that allows more precise analyses when modeling online resources allocation games with

combinatorial structures.

An important case of OLO is online combinatorial optimization (OComb) in which
the action set of the leaner is ( ⊂ {0, 1}� . A definition of OComb, with the three
standard feedback settings (full-information, semi-bandit and bandit), was presented
in Section 2.2.1. Because of the combinatorial structure of the learner’s action set,
|( | = Ω(exp(�)). In the setting of OComb, it is desired to have algorithms not only
with good regret guarantees but also with implementability (we call an algorithm to
be efficient if it runs in polynomial time in terms of �).

The full-information feedback setting of OComb is first formalized by Kalai and Vem-
pala (2005); it is studied quite intensively by Koolen et al. (2010) who propose several
extended variants of the Hedge algorithm guaranteeing the regret in the order of
O(

√
)= log(�/=)) where = = maxp∈({‖p‖1}. Helmbold and Warmuth (2009) proposes

an OSMD-type algorithm in this setting with a similar regret bound. Several other
works consider OComb under full-information with specific action sets of the learner
are Takimoto and Warmuth (2003), Warmuth, Koolen, et al. (2011), and Warmuth and
Kuzmin (2008).

The model of OComb with bandit feedback (also called combinatorial bandits) is for-
mulated by Cesa-Bianchi and Lugosi (2012); an algorithm called ComBand is proposed
by these authors, it guarantees an expected regret of at most 2

√
)=2 log |( |/�∗+)� log |( |

where �∗ is the smallest eigenvalue of the co-occurrence of the exploration distribution
(see Chapter 9 for more details on these terms). Importantly, it is shown by Cesa-
Bianchi and Lugosi (2012) that in many instances21 of OComb with bandit feedback
(with specific action sets of the learner), by choosing the uniform distribution on (

as the exploration distribution (having �∗ = Ω(=2/�)), ComBand guarantees an ex-
pected regret of at most O(

√
)� log |( |). On the other hand, in general, ComBand

runs inefficiently in O(|( |)) = O(exp(�))) time. A modified version of ComBand is

21Note importantly that this excludes the case of the online shortest path problem (OSP).
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proposed by Combes et al. (2015), called the CombEXP algorithm. By mixing with
ideas of the OSMD algorithm, CombEXP improves the complexity of ComBand in sev-
eral cases22 while maintaining the regret guarantees. Note that CombEXP still uses
the uniform distribution as an exploration distribution that is sub-optimal in several
instances of OComb.

AS for the OComb with semi-bandit feedback, one of the earliest works is from György
et al. (2007) who consider the online shortest path problem; other instances of OComb

such as <-sets and ranking selection are also considered by Uchiya et al. (2010) and
Kale et al. (2010) with semi-bandit feedback. The state-of-the-art algorithm for OComb

with semi-bandit is a variant of the OSMD algorithm, proposed by Audibert, Bubeck,
and Lugosi (2014), that guarantees the expected regret to be at most 2

√
=�) log (�/=).

This upper-bound matches the order of a lower-bound (see e.g., Bubeck, Cesa-Bianchi,
et al. (2012)). Note that OSMD runs efficiently only if the action set satisfies a special
assumption and there exists an efficient optimization oracle (see Audibert, Bubeck,
and Lugosi (2014) for more details); moreover, its performance depends on choices of
potential functions. As discussed above, it still lacks a characterization for optimal
choices of these inputs of OSMD, given an arbitrary instance of OComb. On the
other hand, Neu and Bartók (2013) propose an FTPL-type algorithm, with losses
estimators based on the Geometric Resampling technique, yielding a regret’s upper-

bound of order O
(
=
√
�) log�

)
and it provides guarantees on the running time (that

is polynomial in terms of =) but only in expectation or either with high-probability.

For a general instance of OComb (under any feedback setting), it remains an open ques-

tion to design an algorithm that guarantees an efficient running time (i.e., polynomial in

terms of � and =) in worst-case scenarios while providing a good regret’s upper-bound.

Especially for the case of bandit feedback, there is still room for improvement in the regret

guarantees of existing algorithms.

Finally, we review the literature in one of the most important instances of the
OComb framework: the online shortest path problem (OSP) (also called the path
planning problem in the bandit literature)23, i.e., where the learner’s action set is
the set of paths of a directed acyclic graph. OSP has a large range of applications,
including the classical routing problem where it is needed to sequentially choose
paths on a network to send packets (György et al. (2007)). Another application of
OSP is the online recommendation systems where the strategy set of the learner (i.e.,
combinations/lists of recommended products) can be cast to a graph (see e.g., Kocák
et al. (2014)). Definitions of OSP under full-information, semi-bandit and bandit

22However, OSP with bandit feedback (OSPBand)—which is our main focus in Chapter 9—is not
explicitly considered in Combes et al. (2015) and it remains an open question whether any arbitrary
instance of the OSPBand satisfies the condition such that CombEXP can be efficiently implemented (i.e.,
the convex hull of the action set can be represented by a polynomial number of linear equations and
linear inequalities).

23Note that the term path planning problem is also used by other communities (e.g., in robotic motion
planning) to refer to other classes of problems.
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feedback settings are presented in Section 2.2.3. Additionally, we have also introduced
in Section 7.2 another feedback setting called the OSP with side-observations. The OSP
with full-information is studied by György et al. (2007) and Takimoto and Warmuth
(2003) and Koolen et al. (2010). The semi-bandit setting is also considered by György
et al. (2007).24 On the other hand, OSP with bandit feedback (OSPBand) is discussed
by Cesa-Bianchi and Lugosi (2012) (where it is addressed as path planning). The
literature review of OSP with side-observations will be presented in Section 7.3.3. In
the literature, it is common that OSP is not studied separately but often as an example
of OComb and the most well-used learning policies in OSP either come from direct
applications of algorithms in OComb or from their modified variants. Therefore, the

state-of-the-art regrets guarantees in OSP are the ones adopted from OComb. However, unlike
OComb, the graphical structure of OSP allows more efficient implementations of some
algorithms. A useful technique is weight pushing, employed by György et al. (2007)
and Takimoto and Warmuth (2003), that can be used to efficiently sample paths in Exp3-
type algorithms (see our discussion in Section 2.2.3 for more details). Sakaue et al.
(2018) also uses an extension of weight-pushing to efficiently compute estimated losses
in a variant of ComBand algorithm for OSP with bandit feedback. These applications
of weight-pushing help improve the running time in several Exp3-type algorithms;
however, to guarantee that a variant of Exp3 can be efficiently implemented, it is
needed to check whether the complexity of other steps can also be improved.

In OSP with bandit feedback, although there exist Exp3-type algorithms that run effi-

ciently (i.e., polynomial in terms of � and =) thanks to the weight pushing technique,

their regret’s guarantees can still be further improved. An open question (posed by Cesa-

Bianchi and Lugosi (2012)) is to efficiently find an optimal exploration distribution of

the ComBand algorithm when applying it to OSP. When designing new Exp3-type

algorithms for OSP, implementability needs to be re-verified since it is not always trivial

how the weight pushing technique can be integrated. Existing algorithms for OSP with

semi-bandit feedback are the ones adopted from OComb, thus they encounter the same

issues in implementation as in the literature of OComb (with semi-bandit feedback).

7.3.3 Side-observations Feedback in MAB, OComb and OSP

In practical applications of MAB, OComb and OSP, there are situations where infor-
mation in the feedback received by the learner are not captured completely by the
standard feedback settings presented above. Therefore, other feedback models inter-
polating these settings are needed.

MAB with side-observations is first formulated by Mannor and Shamir (2011); the
main difference of this model with the classical MAB is that at the end of each stage,
besides the loss of the chosen action, losses of several other non-chosen actions are also
revealed to the learner. The concept of observation graphs, denoted �C

$
, is introduced

24György et al. (2007) call this setting by the bandit feedback and refer to the bandit feedback (in our
definition) as the restricted bandit feedback.
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and elegantly represents this observability model: a vertex 8 is connected to a vertex 9 in
the observation graph if by playing action 8, the learner also observes the loss of action 9.
In the case where observation graphs are fixed, Mannor and Shamir (2011) propose the
ExpBan algorithm guaranteeing a regret at most O(

√
") log�) where " is the clique-

partition number25 of the observation graph. For the case where observations graphs
may change through time, another algorithm, called ELP,26 is proposed; it guarantees

a regret upper-bound in the order of O
(√

log�
∑
C∈[)] (�C$)

)
if �C

$
, C ∈ [)] are all

undirected graphs, and in the order of O
(√

log�
∑
C∈[)] "(�C$)

)
for directed graphs.

Here, (�C
$
) is the independence number of �C

$
.27 These results are then generalized

by the series of works from Alon, Cesa-Bianchi, Dekel, et al. (2015), Alon, Cesa-Bianchi,
Gentile, Mannor, et al. (2017), and Alon, Cesa-Bianchi, Gentile, and Mansour (2013)
where two new algorithms are proposed: Exp3-SET and Exp3-DOM, corresponding to
the uninformed setting (i.e., the learner only observes observation graphs after making
decisions) and the informed setting (i.e., observation graphs are revealed before making
decisions). The corresponding regret upper-bounds provided by Exp3-SET and Exp3-

DOM are Õ
(√

log�
∑
C∈[)] mas(�C

$
)
)

and Õ
(
log�

√
log(�))∑C∈[)] (�C$)

)
.28 Note

importantly that these algorithms involve the computation of maximum acyclic sub-
graphs and dominating sets, which is not computational tractable in generic graphs.
Extended results in the framework of online learning with graph-structured feedback
(which is more general than MAB) are also presented in Alon, Cesa-Bianchi, Dekel, et al.
(2015). Another extension is where observation graphs are never revealed completely
to the learner (see A. Cohen et al. (2016)).

A more general model than MAB with side-observations is OComb with side-
observations (SOComb), proposed by Kocák et al. (2014). A definition of SOComb

is presented in Section 2.2.1. Importantly, although it has not yet been explicitly
formulated in the literature, the OSP with side-observation model (SOOSP) that we
introduce in Section 7.2 can be considered as an instance of SOComb. The concept of
observation graphs in SOComb and SOOSP is adopted from the similar concept in MAB
with side-observations discussed above. The main difference between the observations
graphs �C

$
in SOOSP and that of MAB with side-observations is that the former

captures side-observations between edges (in the graph �) whereas the latter captures
side-observations between paths (i.e., actions/arms). Now, in SOComb, the standard
algorithm is the FPL-IX algorithm (introduced by Kocák et al. (2014)), which could be
applied directly to SOOSP. FPL-IX belongs to the family of follow-the-perturbed-leader
algorithms and it involves an implicit exploration by geometric resampling. FPL-IX

guarantees a regret at most O
(
log(=�))=3/2

√
(3 + �∑

C∈[)] (�C$))(log� + 1)
)
.29 In

25It is defined as the smallest number of cliques into which the nodes can be partitioned.
26ELP stands for “Exponentially-weighted algorithm with Linear Programming”.
27Briefly put, the independence number of a graph is the largest number of vertices without edges

between them. See Section 8.2.2 for a formal definition.
28Here, mas(�C

$
) is the size of the maximum acyclic sub-graph in �C

$
.

29Here, � is a constant chosen by Kocák et al. (2014).
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expectation, FPL-IX is efficiently implementable if there exists an efficient oracle solving
an optimization oracle at each stage; its expected running time is proved to be at most
� times the running time of the oracle; a high-probability guarantee in the running
time is also given by Kocák et al. (2014). Note also that Kocák et al. (2014) also considers
another algorithm, called Exp3-IX, that runs in SOComb; however, its running time is
exponential in terms of �, therefore, only the trivial case where = = 1 is analyzed.

The state-of-the-art algorithm for SOOSP is FPL-IX (adopted from the literature of

SOComb). However, in applying directly FPL-IX into SOOSP, we encounter three

main issues: (8) the efficiency of FPL-IX is not guaranteed in worst-case scenarios and

there is still room for improvement; (88) FPL-IX requires that there exists an efficient

oracle that solves an optimization problem at each stage; (888) FPL-IX is designed for

general cases of observation graphs and it still lacks analyses of several particular cases

that may allow improvements in regret’s guarantees.

7.3.4 Learning Equilibria in Games

As mentioned, adversarial bandits (and extended frameworks such as adversarial
OComb and OLO) can be formulated as repeated games between several players. An
interesting situation that might arise is when all players apply online learning policies;
particularly, where players do not know all parameters of the games and decisions
of each player only depends on past observations on her payoffs (and not opponents’
payoffs)—this is called the uncoupling ways of playing (see Cesa-Bianchi and Lugosi
(2006)). In this situation, it is important to characterize the conditions under which the
equilibria (and/or other game-theoretic solution concepts) of the game are learnable;
in other words, the leading question is: when will sequences of uncoupling behaviors
of the players converge toward the equilibria?

Although in this thesis, we do not focus on this question when analyzing online
resource allocation games, we review here some notable results in learning equilibria
in games since it is another important approach showing connections between online
learning and game-theory. In the literature, equilibria are (often) said to be learnable
in three (standard) different senses: (i) when the sequence of profile of player’s mixed
strategies (also called the actual sequence of plays) at stage C converges toward the set
of equilibria as C → ∞; (ii) the (marginal) empirical distributions of plays converges
to the set of equilibria and (iii) the joint empirical frequencies of plays converge to the
set of equilibria.30 A somewhat disappointed result is that there exists instances of
games in which none of the convergence described above occurs with Nash equilibria
(see Hart and Mas-Colell (2003)). On the other hand, it is proven that by following
exponential-weight strategies (Auer, Cesa-Bianchi, Freund, et al. (1995) and Freund
and Schapire (1997)), the empirical distribution of plays converge to coarse correlated

30See Cesa-Bianchi and Lugosi (2006) and Faure et al. (2015) for more details
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equilibria31 of the game (see Hart and Mas-Colell (2000)). This result does not always
provide interpretable predictions since coarse correlated equilbria may contain very
non-rational strategies (see also the discussion in Heliou et al. (2017)).

Importantly, in some specific class of games, Nash equilibria are learnable. An
example is the two-player zero-sum game (see Section 2.1 for a definition). In this
class of games, the (marginal) empirical distributions of plays converge almost surely
to the set of Nash equilibria (see Remark 7.4 in Cesa-Bianchi and Lugosi (2006)). On
the other hand, Nash equilibria of zero-sum games are not learnable for the case of the
joint empirical frequencies; but correlated equilibria are. Another class of games where
results are available is potential games: Palaiopanos et al. (2017) proves the convergence
towards Nash equilibrium of the multiplicative weight update rule; Heliou et al. (2017)
shows the convergence of the actual sequence of play converges to Nash equilibrium
(to an approximate equilibrium if the feedback is restricted).

It is interesting to analyze the conditions such that equilibria of resource allocation games

are learnable when players use regret-minimization policies in the corresponding online

versions. However, the set of techniques involved in this approach is very different from

that of our objectives and results presented in this thesis. We do not study the equilibria

learning problem here and leave it for future works.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary: In this chapter, we considered online resource allocation games. As
a case study, we defined the online CB game under a variety of feedback settings.
We then showed that this game can be cast into an OComb or an OSP which al-
lows us to use the corresponding regret-minimization algorithms/techniques.
We also discussed several other online resource allocations games, including the
online hide-and-seek game, and showed their conversions into the OSP frame-
work. We formally defined the OSP with side-observations model and reviewed
the literature of MAB, OComb, OSP and other related works as a preparation for
our studies on online resource allocation games in the following chapters.

31This stable state notion is proposed by Moulin and Vial (1978), it is essentially weaker than the notion
of Nash equilibrium.
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Chapter 8

OSP with Side-Observations—Applications to the

Online Semi-bandit CB Game and Beyond

Some of the ideas and results presented in this chapter have previously appeared in

our publication Vu, Loiseau, Silva, and Tran-Thanh (2020).a

aA note on the terminology: the online shortest path problem, defined and studied in this
thesis, is called the path planning problem in Vu, Loiseau, Silva, and Tran-Thanh (2020). These
terms are often used interchangeably in the literature of bandit problems and online learning.

In this chapter, we start our analysis on the online shortest path problem and its
applications to online resource allocation games with combinatorial structures; more
specifically, we focus on the SOOSP model which we introduced in Section 7.2. We
choose to study the SOOSP model because it allows a more refined1 representation of
the online semi-bandit CB game—the game we choose to use as the main motivation
of this chapter. By casting this game into the SOOSP framework, we are able not only
to exploit the structure of the learner’s strategy set (by its graphical representation) but
also to capture well all information available from the feedback that the learner observes
at the end of each stage. Importantly, the SOOSP model is also useful for studying
several other online resource allocation games and in fact, its scope of applications
goes even further than these games. Therefore, our perspective is to first study the
generic model of SOOSP and look for its solution (i.e., a regret-minimization algorithm)
then we apply our findings to online resource allocation game with combinatorial
structures that are cast to SOOSP, e.g., the online semi-bandit CB game, and analyze
the derived benefits.

The study of the SOOSP model entails two key challenges. First, state-of-the-art al-
gorithms in OComb with side-observations (SOComb), that are applicable to SOOSP, do
not guarantee efficient implementations in worst-scenarios. Second, these algorithms
are only analyzed in the generic setting of observation graphs and regret analyses for
several particular cases of interest are omitted (these cases are encountered in some

1The feedback system in the SOOSP model, interpolates between semi-bandit feedback and full-
information, is more refined and flexible than these two standard feedback settings (see Definition 7.2.1).
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SOOSP instances corresponding to online resource allocation games). Our goal in
this chapter is to design novel regret-minimization algorithms in SOOSP fixing the
issues mentioned above. The remainders of this chapter are arranged as follows: In
Section 8.1.1, we develop the conversion of the online semi-bandit CB game to the
SOOSP model to show a motivational example and justify this model. In Section 8.1.2,
we elaborate the state-of-the-art of the study of SOOSP (from the literature review on
SOComb and SOOSP presented in Section 7.3.3) and define explicitly our objectives in
studying the SOOSP model. In Section 8.2, we present a novel algorithm, called Exp3-

OE, working in any generic SOOSP and analyze its performance as well as its running
time. In Section 8.3, we turn our focus back to online resource allocation games (with
combinatorial structures) that can be cast into SOOSP and analyze the application of
the Exp3-OE algorithm to several of them, including the online semi-bandit CB game,
the online hide-and-seek game and the online CB game under the full-information
feedback setting.

8.1 Motivations and Challenges in SOOSP

In this section, we present the extra information that the learner can deduce in the
online semi-bandit CB game; this serves as a motivation for us to study SOOSP. We
also revisit the challenges and explicitly state our contributions in studying SOOSP.

8.1.1 The Online Semi-Bandit CB Game as an SOOSP

We first recall briefly the definition of the online semi-bandit CB game as follows: at
each stage, a learner who has a budget of : troops plays a discrete CB game against an
adversary across = battlefields (:, = ∈ N\{0} are fixed and known by the learner); at the
end of the stage, she receives limited feedback that is the gain (loss) she obtains from
each battlefield and whether she wins, loses or gets a tie there; finally, the learner’s
objective is to minimize the expected regret. It is natural to use this model to capture
several situations in practice; we refer the interested readers to Section 7.1.1 for some
motivational examples.

From our discussion in Section 7.1.2, we know that any CB game can be cast as
an online shortest path problem (OSP). In particular, the information that the learner
receives at the end of each stage in the online semi-bandit CB game straightforwardly
corresponds to the so-called semi-bandit feedback setting of OSPs, i.e., the learner
observes the edges’ losses belonging to her chosen path.2 Furthermore, since the
learner knows the winner-determination rule of the CB game (i.e., the learner wins
a battlefields as long as her allocation is higher than the opponent’s allocation), in
the online semi-bandit CB game, she can deduce (without any extra cost) further
information as follows:

If she allocates zC(8) troops to battlefield 8 and wins, she knows that if she had allo-

cated more than zC(8) troops to 8, she would also have won (and receives a loss 0 from

2See Section 2.2.3 for a formal definition of OSP with semi-bandit feedback.
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this battlefield).

If she knows the allocations are tie at battlefield 8, she knows exactly the adversary’s

allocation to this battlefield and deduces all the losses she might have suffered if she had

allocated differently to battlefield 8.

If she allocates zC(8) troops to battlefield 8 and loses, she knows that if she had allocated

less than zC(8) to 8, she would also have lost (and received a loss 1C(8) from this battlefield).

Recall that in casting online CB games into OSPs, we use the DAG �:,= , defined
in Definition 7.1.2, where each edge represents an allocation of troops to a battlefield.
Therefore, the extra information deduced above implies that in the OSP corresponding
to the online semi-bandit CB game, besides the losses of the edges belonging to the
chosen path (i.e., the semi-bandit feedback), the learner also observes losses of some
other edges that may not belong to the chosen path. This is the idea of the SOOSP
model that we introduced in Section 7.2. We formally state the following proposition:

Proposition 8.1.1. Any online semi-bandit CB game (where the learner allocates : troops

across = battlefields) can be cast as an SOOSP (on the graph �:,=).

The following example illustrates the side-observations (and the observation graphs)
in an instance of the online semi-bandit CB game, represented as an SOOSP.

Battlefield 1

Battlefield 2

Battlefield = = 3

Figure 8.1: The graph �3,3 corresponds to the CB game with = = : = 3. The edges are
labeled from 1 to � = 18.

Example 8.1.2. Consider an online semi-bandit CB game with = = 3 battlefields and that the

learner has : = 3 troops. In Figure 8.1, we illustrate the graph �3,3 corresponding to this

instance of the game.3 Now, at stage C, assume that the learner chooses to allocate 1 troop to each

battlefield; on the graph �3,3, this strategy is equivalent to choosing the path going through the

edges 2, 10 and 17. We assume that the adversary chooses the allocations such that the outcomes

of the game at this stage are the following: the learner loses in battlefield 1, wins in battlefield

2 and a tie occurs in battlefield 3. The learner trivially observes the losses of her chosen edges

including 2, 10 and 17 (the losses are 1C(1), 0 and 1C(3)/2 respectively); moreover, she can also

deduce the side-observations:

3This is actually the example that was already presented in Section 7.1.2: Figure 8.1 is exactly Figure 7.1
with the edges labeled from 1 to � = 18.
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Edge 2 (corresponding to allocating 1 troop to battlefield 1) reveals that the loss on edge

1 (corresponding to allocating 0 troop to battlefield 1) is also 1C(1) since she would also

have lost this battlefield by choosing this edge.

Edge 10 (corresponding to allocating 1 troop to battlefield 2) reveals that the losses on the

edges 6, 7, 8, 11, and 13 (corresponding to allocating at least 1 troop to battlefield 2) are

all 0 since she would also have won this battlefield by choosing these edges.

Edge 17 (corresponding to allocating 1 troop to battlefield 3) reveals the losses on the

edges 15, 16, 18 (corresponding to other possible allocations in battlefield 3) since she

knows that the adversary also allocates 1 troop in this battlefield (a tie occurs here) and

that she would have won or lost this battlefield if she had chosen these edges.

The observation graph corresponding to the allocations chosen by the learner and the outcomes

of the battlefields in this stage (also depending on the adversary’s allocations) is illustrated in

Figure 8.2. Note that since there are edges in�:,= that refer to the same allocation (e.g., the edges

5, 9, 12, and 14 in �3,3 all refer to allocating 0 troops to battlefield 2), in all the observation

graphs, the vertices corresponding to these edges are always connected.

Figure 8.2: The observation graph corresponding to the online semi-bandit CB game
given in Example 8.1.2. The (directed) red arrows illustrate the side-observations

depending on the particular allocations of the learner and the outcomes of the
battlefields; the vertices connected by (two-directional) blue arrows always mutually

reveal one another (they are always connected).

8.1.2 Challenges in SOOSP and Our Contributions

As an instance of the online combinatorial optimization with side-observations frame-
work (SOComb), the state-of-the-art regret-minimization algorithm in SOOSP is the
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FPL-IX algorithm—a member of the class of Follow-the-Perturbed-Leader algorithms;
it is proposed by Kocák et al. (2014) to study SOComb.4 However, in applying directly
FPL-IX into SOOSP, we encounter two main problems: (8) the efficiency of FPL-IX is
only guaranteed with high-probability and its running time is still in order of Ω()2/3)
where) is the time horizon; (88) FPL-IX requires that there exists an efficient oracle that
solves an optimization problem at each stage. Both of these issues are incompatible
with our aim of learning in the online semi-bandit CB game (and in other resource
allocation games with combinatorial structures): although the probability that FPL-IX
fails to terminate is small, this could lead to issues in implementing it in practice where
the learner is obliged to quickly give a decision in each stage; moreover, it is unclear
which oracle should be used in applying FPL-IX to this game.

In this chapter, we focus instead on another prominent class of OComb algorithms,
the family of Exp3-type algorithms (see Section 2.2.2 for basic variants of Exp3). One
of the key open questions in this field is how to design a variant of Exp3 with efficient
running time and good regret guarantees for OComb problems in each feedback setting
(see, e.g., Cesa-Bianchi and Lugosi (2012)). Our main contribution of this chapter is to
propose an Exp3-type algorithm for SOOSPs that solves both of the aforementioned is-
sues of FPL-IX and provides good regret guarantees; i.e., we give an affirmative answer
to an important subset of the above-mentioned open problem. In more details, our
proposed algorithm, called Exp3-OE, is applicable to any instance of SOOSP such that
(8) Exp3-OE is always guaranteed to run efficiently, i.e., its running time is polynomial
in terms of the number of edges of the graph in SOOSP and linear in ), without the
need of any auxiliary oracle; (88) Exp3-OE guarantees an upper-bound on the expected
regret matching in order with the best benchmark in the literature (the FPL-IX algo-
rithm). We also prove further improvements under additional assumptions on the
observation graphs that have been so-far ignored in the literature.

8.2 Exp3-OE - An Efficient Algorithm for SOOSP

In this section, we present a new algorithm for SOOSP, called Exp3-OE (OE stands for
Observable Edges). The guarantees on the expected regret of Exp3-OE in SOOSP is
analyzed in Section 8.2.2. Moreover, Exp3-OE always runs efficiently in polynomial
time in terms of �—the number of edges of �; this is discussed in Section 8.2.1. To pre-
pare for the presentation of the Exp3-OE algorithm, we introduce two new definitions
regarding side-observations in an SOOSP on a graph � (with the edges set ℰ and the
paths set P):

OC(4) :=
{
p ∈ P :∃4′∈p, 4′→ 4

}
,∀4 ∈ℰ ,

OC(p) :=
{
4 ∈ℰ :∃4′ ∈p, 4′→ 4

}
,∀p ∈P .

Here, recall that 4′ → 4 indicates that by choosing a path containing the edge 4′, both
the losses on the edges 4′ and 4 are revealed to the learner (in this case, we also say

4See Section 2.2.1 for a definition and see Section 7.3 for a literature review of SOComb.
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that 4′ reveals 4), i.e., in the corresponding observation graph, there is an edge from
the vertex corresponding to 4′ to the vertex corresponding to 4. Intuitively, OC(4) is the
set of all paths that, if chosen, reveal the loss on the edge 4 and OC(p) is the set of all
edges whose losses are revealed if the path p is chosen. Trivially, p ∈ O(4) ⇔ 4 ∈ O(p).
Moreover, due to the semi-bandit feedback in SOOSP, if p∗ ∋ 4∗, then p∗ ∈ OC(4∗) and
4∗ ∈ OC(p∗).

Apart from the results for SOOSP with general observation graphs, in this chapter,
we additionally present several results under two particular classes of observations
graphs, encountered in some practical instances (e.g., the online semi-bandit CB game
and the online HS game), that provide more refined regret bounds compared to cases
that were considered by Kocák et al. (2014):

(8) symmetric observation graphs where for each edge from E4 to E4′, there also exists an
edge from E4′ to E4 (i.e., if 4 → 4′ then 4′ → 4); i.e., �$C is an undirected graph;

(88) observation graphs that satisfy the following Assumption (�1) which requires that
if two edges belong to a path in �, then they cannot simultaneously reveal the loss of
another edge:

Assumption (G1): For any 4 ∈ℰ, if 4′→ 4 and 4′′→ 4, then ∄p ∈ P : p ∋ 4′, p ∋ 4′′.

Note also that although Definition 7.2.1 allows a non-oblivious adversary, in this
chapter, for the sake of simplicity of the model and to compare with the state-of-the-art,
we only focus on the SOOSP with an oblivious adversary (i.e., the generation of the
losses at each stage do not depend on the past actions of the learner). In this setting, re-
call that the expected regret can be rewritten as ') := E

[∑
C∈[)] !

(
p̃C

) ]
− min

p∈P

∑
C∈[)] !

(
p
)
.

The results presented in this chapter involving the Exp3-OE algorithm can also be ex-
tended to the case of non-oblivious adversary.

Algorithm 10: The Exp3-OE Algorithm for SOOSP.

Input: ), �, � > 0, graph �
1 Initialize F1(4) := 1, ∀4 ∈ ℰ
2 for C = 1 to ) do

3 Loss vector ℓ C ∈ [0, 1]� is chosen adversarially (unobserved).

4 GC(p) :=

∏
4∈p

FC (4)∑
p′∈P

∏
4′∈p′

FC (4′) ,∀p ∈ P.

5 Use WPS Algorithm (Algorithm 4) to sample a path p̃C ∈ P according
to GC(p̃C) .

6 Suffer the loss !C(p̃C) =
∑
4∈p̃C ℓ C(4).

7 Observation graph �$C is generated and ℓ C(4), ∀4 ∈ OC(p̃C) are observed.

8 ℓ̂ C(4) :=ℓ C(4)I{4∈OC (p̃C )}
/
(@C(4) + �), ∀4 ∈ℰ, where @C(4) :=

∑
p∈OC (4) GC(p) is

computed by Algorithm 11 (see Section 8.2.1).

9 Update the weights FC+1(4) := FC(4) · exp(−�ℓ̂ C(4)).
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The pseudo-code of Exp3-OE is given in Algorithm 10. As an Exp3-type algorithm,
Exp3-OE relies on the average weights sampling where at stage C we update the weight
FC(4) on each edge 4 by the exponential rule (line 9). For each path p, we denote the
path weight FC(p) :=

∏
4∈p FC(4) and rewrite the terms in line 4 of Algorithm 10 as

follows:

GC(p) :=

∏
4∈p

FC(4)∑
p′∈P

∏
4′∈p′

FC(4′)
=

FC(p)∑
p′∈P

FC(p′)
,∀p ∈ P . (8.1)

Line 5 of Exp3-OE involves a sub-algorithm, called the WPS algorithm, that samples a
path p ∈ P with probability GC(p) (the sampled path is then denoted by p̃C) from any
input {FC(4), 4 ∈ ℰ} at each stage C. This algorithm is based on a classical technique
called weight pushing that was presented as Algorithm 4 in Section 2.2.3.

Compared to other instances of the Exp3-type algorithms, Exp3-OE has two major
differences. First, at each stage C, the loss of each edge 4 is estimated by ℓ̂ C(4) (line 8)
based on the term @C(4) and a parameter �. Intuitively, @C(4) is the probability that the
loss on the edge 4 is revealed from playing the chosen path at C. Second, the implicit
exploration parameter � added to the denominator allows us to “pretend to explore"
in Exp3-OE without knowing the observation graph �$C before making the decision at
stage C (the uninformed setting).5 Unlike the standard Exp3, the loss estimator used in
Exp3-OE is biased, i.e., for any 4 ∈ ℰ,

EC

[
ℓ̂ C(4)

]
=

∑
p̃∈P

GC(p̃)
ℓ C(4)
@C(4)+�

I{4∈OC (p̃)}

=

∑
p̃∈OC (4)

GC(p̃)
ℓ C(4)∑

p∈OC (4)
GC(p)+�

≤ℓ C(4). (8.2)

Here, EC denotes the expectation w.r.t. the randomness of choosing a path at stage C.
Second, unlike standard Exp3 algorithms that keep track and update on the weight of
each path,6 the weight pushing technique is applied at line 5 (via the WPS algorithm)
and line 8 (via Algorithm 11 in Section 8.2.1) where we work with edges weights instead
of paths weights (recall that � ≪ %).

8.2.1 Running Time Efficiency of the Exp3-OE Algorithm

First, let us recall the complexity of the WPS algorithm used in line 5 of the Exp3-OE al-
gorithm; in other words, we recheck the running time of the weight pushing technique.
For the WPS algorithm to work, for any vertex D in �, it is needed to compute the terms

5Intuitively, the use of the parameter � guarantees a lower-bound of the probability of being chosen
of each path; this is called the implicit exploration scheme to distinguish with the explicit exploration
scheme, i.e., mixing the “exploitation” sampling based on weights with a exploration distribution (see
e.g., the ComBand algorithm, presented in Algorithm 2, for OComb with bandit feedback).

6In principle, each OSP problem can be rewritten as an MAB where each path corresponds to an arm;
if we apply directly the standard Exp3 (Algorithm 1) into this MAB, it is needed to keep track and update
the weight for each arm/path.
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�C(B, D) :=
∑

p∈PB,D
∏

4∈p FC(4) and �C(D, 3) :=
∑

p∈PD,3
∏

4∈p FC(4).7 Intuitively, �C(D, E) is
the aggregate weight of all paths from vertex D to vertex E at stage C. These terms
can be computed recursively based on dynamic programming: we have presented in
Section 2.2.3 the WP algorithm (Algorithm 3) that outputs �C(B, D), �C(D, 3),∀D from
any input {FC(4), 4 ∈ ℰ} in O(�) time. Then, a path in � is sampled sequentially edge-
by-edge based on these terms by the WPS algorithm. As a conclusion, the WP and
WPS algorithms run efficiently in O(�) time.

The final non-trivial step to efficiently implement Exp3-OE is to compute @C(4) in
line 8, i.e., the probability that an edge 4 is revealed at stage C. Note that @C(4) is the
sum of |OC(4)| = O(%) terms; therefore, a direct computation is inefficient while a naive
application of the weight pushing technique can easily lead to errors. To compute
@C(4), we propose Algorithm 11, a non-straightforward application of weight pushing,
in which we consecutively consider all the edges 4′ ∈ ℜC(4) := {4′ ∈ℰ : 4′→ 4}. Then, we
take the sum of the terms GC(p) of the paths p going through 4′ by the weight pushing
technique while making sure that each of these terms GC(p) is included only once, even
if p has more than one edge revealing 4 (this is a non-trivial step). In Algorithm 11,
we denote by C(D) the set of the direct successors of any vertex D ∈ V. We give a
proof that Algorithm 11 outputs exactly @C(4) as defined in line 8 of Algorithm 10 in
Appendix E.1. Algorithm 11 runs in O (|ℜC(4)|�) time; therefore, line 8 of Algorithm 10
can be done in at most O

(
�3

)
time.

Algorithm 11: Compute @C(4) of an edge 4 at stage C.

Input: 4 ∈ OC(p̃C), set ℜC(4) and FC(4̄),∀4̄ ∈ ℰ.
Output: @C(4).

1 Initialize F̄(4̄) := FC(4̄),∀4̄ ∈ ℰ and @C(4) := 0.
2 Compute �∗(B, 3) by WP Algorithm (Algorithm 3) with inputs � and

{FC(4̄), 4̄ ∈ ℰ}.
3 for 4′ ∈ ℜC(4) do

4 Compute �(B, D), �(D, 3), ∀D ∈ V by WP Algorithm with inputs �
and {F̄(4̄),∀4̄ ∈ ℰ}.

5  (4′) := �(B, D4′)·F(4′)·�(E4′ , 3); here, 4′ is the edge going from D4′ to
E4′ ∈ C(D4′).

6 @C(4) := @C(4) +  (4′)/�∗(B, 3).
7 Update F̄(4′) = 0.

In conclusion, Exp3-OE runs in at most O(�3)) time, this guarantee works even
for the worst-case scenario. For comparison, the FPL-IX algorithm runs in O(� |V|2))
time in expectation and in Õ(=1/2�3/2 log(�/�))3/2) time with a probability at least
1 − � for an arbitrary � > 0.8 That is, FPL-IX might fail to terminate with a strictly

7Recall that the notation PD,E denotes the set of all paths in � going from vertex D to vertex E.
8If one runs FPL-IX with Dĳkstra’s algorithm as the optimization oracle and with parameters chosen

by Kocák et al. (2014).
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positive probability9 and it is not guaranteed to have efficient running time in all
cases. Moreover, although the complexity bound (either in expectation or with high
probability) of FPL-IX is slightly better in terms of �, the complexity bound of Exp3-OE

improves that by a factor of
√
). As is often the case in no-regret analysis, we consider

the setting where T is significantly larger than other parameters of the problems; this is
also consistent with the motivational applications of the online semi-bandit CB game
presented in Section 7.1.1. Therefore, our contribution in improving the algorithm’s
running time in terms of ) is relevant.

8.2.2 Performance of the Exp3-OE Algorithm

In this section, we present an upper-bound of the expected regret achieved by the
Exp3-OE algorithm in SOOSP. For the sake of brevity, with GC(p) defined in (8.1), for
any C ∈ [)] and 4 ∈ ℰ, we denote:

AC(4) :=
∑

p∋4
GC(p) and &C :=

∑
4∈ℰ

AC(4)
/
(@C(4)+�).

Intuitively, AC(4) is the probability that the chosen path at stage C contains an edge 4 and
&C is the summation over all the edges of the ratio of this quantity and the probability
that the loss of an edge is revealed (plus �). We can bound the expected regret with
this key term &C .

Theorem 8.2.1. The expected regret of the Exp3-OE algorithm in the SOOSP satisfies:

') ≤ log(%)
/
� +

[
� + (= · �)

/
2
]
·
∑

C∈[)]
&C . (8.3)

A complete proof of Theorem 8.2.1 can be found in Appendix E.2 and has an ap-
proach similar to Alon, Cesa-Bianchi, Gentile, and Mansour (2013) and Cesa-Bianchi
and Lugosi (2012) with several necessary adjustments to handle the new biased loss esti-
mator in Exp3-OE. To see the relationship between the structure of the side-observations
of the learner and the bound of the expected regret, we look for the upper-bounds of
&C in terms of the observation graphs’ parameters. This result relates to the some
notions of the graphs defined as follows: an independent (vertex) set of a graph � is a
subset of the vertices set V such that no two vertices in this subset is connected by
an edge in �; and the independence number of � is simply the cardinality of the largest
independent sets of �. Now, let us denote C to be the independence number10 of �$C ,
we have the following statement.

Theorem 8.2.2. Let us define " := ⌈2�2/�⌉, #C := log
(
1+"+�

C

)
and  C := log

(
1+ ="+�

C

)
.

Upper-bounds of &C in different cases of �$C are given in the following table:

9A stopping criterion for FPL-IX can be chosen to avoid this issue but it raises the question on how
one chooses the criterion such that the regret guarantees hold.

10The independence number of a directed graph is computed while ignoring the direction of the edges.
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Satisfies (�1) Does not satisfy (�1)
Symmetric C =C
Non-Symmetric 1+2C#C 2= (1+C C)

A proof of this theorem is given in Appendix E.4. The main idea of this proof is
based on several graph theoretic lemmas that are extracted from Alon, Cesa-Bianchi,
Gentile, and Mansour (2013), Kocák et al. (2014), and Mannor and Shamir (2011). These
lemmas establish the relationship between the independence number of a graph and
the ratios of the weights on the graph’s vertices that have similar forms to the key-
term &C . The case where observation graphs are non-symmetric and do not satisfy
Assumption (�1) is the most general setting. Moreover, as showed in Theorem 8.2.2,
the bounds of &C are improved if the observation graphs satisfy either the symmetry
condition or Assumption (�1). Intuitively, given the same independence numbers, a
symmetric observation graph gives the learner more information than a non-symmetric
one; thus, it yields a better bound on &C and the expected regret. On the other hand,
Assumption (�1) is a technical assumption that allows us to use different techniques in
the proofs to obtain better bounds. These cases have not been explicitly analyzed in the
literature while they are satisfied by several practical situations, including the online
semi-bandit CB game (and the online Hide-and-Seek game considered in Section 8.3).

Finally, we give results on the upper-bounds of the expected regret, obtained by
the Exp3-OE algorithm, presented as a corollary of Theorem 8.2.1 and Theorem 8.2.2.

Corollary 8.2.3. In SOOSP, let  be an upper bound of C ,∀C ∈ [)]; with appropriate choices

of the parameters � and �, the expected regret of the Exp3-OE algorithm is:11

(8) ') ≤ Õ(=
√
) log(%)) in the general cases.

(88) ') ≤ Õ(
√
=) log(%) if Assumption (�1) is satisfied by the observation graphs �$C ,

∀C ∈ [)].

A proof of Corollary 8.2.3 and the choices of the parameters � and � (these choices
are non-trivial) yielding these results is given in Appendix E.5. We can extract from
this proof several more explicit results as follows:

(i) In the general case (i.e., Assumption (�1) may not hold): if observations graphs

are non-symmetric then ') ≤O
(
=
√
) log(%)[1+log(+ log()+�)]

)
; if they

are symmetric then ') ≤(3/2)=
√
) log(%)+

√
=).

(ii) If all observation graphs satisfy Assumption (�1): if the observations graphs are

non-symmetric then ') ≤O
(√
=) log(%)[1+2 log(1+�)]

)
; if they are all sym-

metric then ') ≤2
√
=) log(%)+

√
).

11Recall that Õ is the variant of the asymptotic notation O that ignores the logarithmic factors (in terms
of = and )).
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Note that a trivial upper-bound of C is the number of vertices of the graph �$C
which is � (the number of edges in �). In general, the more connected �$C is, the
smaller  may be chosen; and thus the better the upper-bound of the expected regret
is. In the (classical) semi-bandit setting, C = �,∀C ∈ [)] and in the full-information
setting, C = 1, ∀C ∈ [)]. Finally, we also note that, if % = O(exp(=)) (this is typical in
practice, including the CB and HS games), the bound in Corollary 8.2.3-(8) matches in
order with the bounds (ignoring the logarithmic factors) given by the FPL-IX algorithm
(see Kocák et al. (2014)). On the other hand, the form of the regret bound provided by
the Exp3-IX algorithm (see Kocák et al. (2014)) does not allow us to compare directly
with the bound of Exp3-OE in the general SOOSP. Exp3-IX is only analyzed by Kocák
et al. (2014) when = = 1, i.e., % = �; in this case, we observe that the bound given by our
Exp3-OE algorithm is better than that of Exp3-IX (by some multiplicative constants).

8.3 Exp3-OE in Online Resource Allocation Games

We now return to our initial motivation–the online resource allocation games and
discuss the application of Exp3-OE to several examples in this class of games, includ-
ing the online semi-bandit CB game (Section 8.3.1), the online hide-and-seek game
(Section 8.3.2) and the online CB game with full-information feedback (Section 8.3.3).

8.3.1 Exp3-OE in the Online Semi-Bandit CB Game

In Section 8.1.1, we have shown that any instance of the online semi-bandit CB game
(with : troops and = battlefields) can be cast to an SOOSP (on the corresponding
graph �:,=). Therefore, we can use the Exp3-OE algorithm as a regret-minimization
algorithm for the learner in the online semi-bandit CB game. From Section 8.2.1 and
the graphs �:,= , we see that running Exp3-OE in the online semi-bandit CB game (with
: troops and = battlefields) takes at most O(:6=3)) time. We remark again that Exp3-

OE’s running time is linear in ) and efficient in all cases unlike when we run FPL-IX in
the online semi-bandit CB game. Moreover, since there are edges in �:,= that refer to
the same allocation, in all the observation graphs, the vertices corresponding to these
edges are always connected. Therefore, an upper bound of the independence number
C of�$C in the CB game is CB = =(: + 1) = O(=:). Furthermore, we can verify that for
any C, the observation graph �$C of the CB game always satisfies Assumption (�1) and it
is non-symmetric. We can deduce the following result directly from Corollary 8.2.3:

Corollary 8.3.1. In the SOOSP corresponding to an online semi-bandit CB games where the

learner distributes : troops across = battlefields at each stage, the expected regret of the Exp3-OE

algorithm satisfies:12

') ≤ Õ(
√
=)CB log(%)) = Õ(

√
)=2:min{= − 1, :}).

12Here, % is the number of paths in �:,= and CB is an upper-bound of the independence numbers of
all observation graphs in the SOOSP.
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From Corollary 8.3.1, we note that in the online semi-bandit CB games, the order
of the regret bounds given by Exp3-OE is better than that of the FPL-IX algorithm
by a factor of

√
= (thanks to the fact that (�1) is satisfied). Note that = corresponds

to the number of battlefields in the CB game that can be large in applications; there-
fore, this improvement in the regret’s guarantee is relevant. More explicitly, in the CB

game, FPL-IX has a regret at most O
(
log(:2=2))

√
log(:2=)(:2=4+�=4:))

)
= Õ(

√
)=4:)

(C is a constant indicated by Kocák et al. (2014)) and Exp3-OE’s regret bound is

O
(√
=2:) ·min{=−1, :}[1+2 log(1+:2=)]

)
. If = − 1 ≤ :, we can rewrite this bound

of Exp3-OE as Õ(
√
)=3:); otherwise, it can be rewritten as Õ(

√
)=2:2).

Now, we additionally compare the regret guarantees given by our Exp3-OE algo-
rithm and by the OSMD algorithm (see Audibert, Bubeck, and Lugosi (2014)). OSMD
is the benchmark algorithm for OComb with semi-bandit feedback (i.e., OSMD ignores
the side-observations); note that OSMD does not run efficiently in general. We observe
that the expected regret’s guarantees of Exp3-OE is better than OSMD in the online

semi-bandit CB games if O
(
= · log (=3:5

√
))

)
≤ :. Intuitively, Exp3-OE is better than

OSMD in games where the learner’s budget is sufficiently larger than the number of
battlefields. We give a proof of this statement in Appendix E.7.

Next, we discuss the generalizability of our findings into other resource allocation
games under the online setting. First, we note again that our conversion of the online
CB game into OSP only depends on the strategy set of the learner (and not the specific
rule and/or the payoff functions in each game); therefore, it can be straightforwardly
applied to other resource allocation games such as the online LB game or the online
HS game (as seen in Section 7.1.3). On the other hand, the possibility of deducing
side-observations depends on the rule of the game; therefore, the specific type of side-
observations in the online semi-bandit CB game might not be found in other games.
For example, in the online setting of the discrete Lottery Blotto game with Tullock
CSFs (i.e., the game with the same formulation as the online semi-bandit CB game
but the Blotto-rule is replaced by the Tullock CSF (defined in (3.2)), even if the learner
knows her gain/loss in a battlefield after allocating a certain number of troops, she
cannot deduce precisely the losses of other alternative allocations (without observing
the precise allocation of the adversary). Note that the model of SOOSP is general and
also covers these cases where no side-observation is available; we can also run Exp3-

OE in these cases and get the regret’s guarantees as in Corollary 8.2.3 but only with
 = � (e.g., in the online Lottery Blotto game,  = � = O(=:2)) while the efficiency of
Exp3-OE is still maintained. On the other hand, the use of the Exp3-OE algorithm in
an instance of the online HS game will be presented in the next section.

8.3.2 Exp3-OE in the Online Hide-and-Seek Game

In Section 7.1.3, we presented the formulation of the online HS game and showed that
the instance where at each stage, the learner makes an =-search among : locations sat-
isfying the :0-coherence constraint (=, :, :0 ∈ N are fixed and 1≤=≤ :, :0 ∈ [0, : − 1])
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can be cast into an OSP by the use of a graph �:,=,:0 (for example, the graph �3,3,1 is
given in Figure 7.2). Recall that in this case, the strategy set of the learner at each stage
is:

(:,=,:0 = {z ∈ {1, . . . , :}= : |z(8) − z(8 + 1)| ≤ :0 ,∀8 ∈ [= − 1]} .
Here, z(8) = 9 ∈ [:] implies that in the =-search z, the learner has chosen location 9

as her 8-th move. Moreover, for the sake of simplicity, we only consider the HS games
with an oblivious adversary (note that our results can also be extended to the case
of non-oblivious adversary). In this section, we address the game instance described
above simply as the online HS game.

In the remainder of this section, we focus on the online HS game with the following
feedback setting: at the end of stage C, the learner only observes the losses from the
locations she chose in her =-search, and her objective is to minimize her expected regret
over ). In the application of the spectrum sensing problem presented in Section 7.1.3,
this feedback setting is equivalent to assuming that the learner (the secondary user) can
measure the reliability/unreliability (the gain/loss) of the channels that she sensed;
this can be done easily in practice. When converting the online HS game to OSP by
using the graph�:,=,:0 (see Section 7.1.3), this feedback correspond directly to the semi-

bandit feedback. We then introduce an additional condition on how the hider/adversary
assigns the losses on the locations in the online HS game:

(�1) At stage C, the adversary secretly assigns a loss bC(9) to each location 9 ∈ [:] (unknown to

the learner). These losses are fixed throughout the =-search of the learner.

Assuming that the learner knows that the adversary follows Condition (�1), from the
feedback described above, she can deduce the following side-observations: within a
stage, the loss at each location remains the same no matter when it is chosen among
the =-search, i.e., knowing the loss of choosing location 9 as her 8-th move, the learner
knows all the loss if she chooses location 9 as her 8′-th move for any 8′ ≠ 8. An example
can be seen on the graph �:,=,:0 corresponding to the case where : = = = 3, :0 = 1,
illustrated in Figure 7.2: the edges 1, 4, 6, 11, and 13 represent that location 1 is chosen;
thus, they mutually reveal each other. The semi-bandit feedback and side-observations
as described above generate the observation graphs �$C . Under Condition (�1), for
any C ∈ [)], the observation graph �C

$
is symmetric and does not satisfy (�1); its the

independence number is HS = :.
Finally, we consider a relaxation of Condition (�1):

(�2) At stage C, the adversary assigns a loss bC(9) on each location 9 ∈ [:]. For 8 = 2, . . . , =,

after the learner chooses, say location 98 , as her 8-th move, the adversary can observe that and

change the losses bC(9) for any location that has not been searched before by the learner,13 i.e.,

she can change the losses bC(9),∀9 ∉ { 91 , . . . , 98}.

By replacing Condition (�1) with Condition (�2), we can limit the side-observations
of the learner: she can only deduce that if 81 < 82, the edges in �:,=,:0 representing

13An interpretation is that by searching a location, the learner/seeker “discovers and secures" that
location; therefore, the adversary/hider cannot change her assigned loss at that place.
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choosing a location as the 81-th move reveals the edges representing choosing that
same location as the 82-th move; but not vice versa. In this case, the observation graph
�$C is non-symmetric; however, its independence number is still HS = : as in the HS
games with Condition (�1). We conclude by the following trivial proposition:

Proposition 8.3.2. Any instance of the online HS game where the =-search of the learner

satisfies the coherence constraint14 and the losses are under Condition (�1) (or Condition (�2))
can be cast as an SOOSP.

Now, we can use the Exp3-OE algorithm in this game and observe that it only
runs in at most O(:6=3)) time (see our discussion on the running time of Exp3-OE

in Section 8.2.1). Moreover, either with Conditions (�1) or (�2) we have the follow-
ing corollary:

Corollary 8.3.3. In the SOOSP corresponding to an online HS game with : locations and

=-search under coherence constraint, the expected regret of the Exp3-OE is

') ≤ Õ(=
√
)HS log(%)) = Õ(

√
)=3:). (8.4)

This result can be deduced directly from Corollary 8.2.3. Note that the regret bound

of Exp3-OE in the HS game with Condition (�1) (involving symmetric observation
graphs) is slightly better15 than that in the HS game with Condition (�2). At a high-
level, given the same scale on their inputs, from Corollary 8.3.1 and Corollary 8.3.3,
we see that the expected regret’s bounds of the Exp3-OE algorithm in the online semi-
bandit CB game has the same order of magnitude as that of the HS game. This can be
explained by the fact the independence numbers of the observation graphs in HS games
are smaller than in CB games (by a multiplicative factor of =) but Assumption (�1) is
satisfied by the observation graphs of the CB games and not by the HS games (that im-
proves the regret’s guarantees in the HS games). Moreover, in the HS games with (�1),
the regret bounds of the Exp3-OE algorithm improves the bound of FPL-IX but they are
still in the same order of the games’ parameters (ignoring the logarithmic factors).16 Fi-
nally, comparing with the OSMD algorithm, running in the HS games with Condition
(�1), the Exp3-OE has a better expected regret’s guarantee if O(= log :0) ≤ :; running
in the HS games with Condition (�2), it is better if = · log :0 log (=4:5

√
)) ≤ O(:). See

Appendix E.7 for proof of this statement. Intuitively, the regret guarantees of Exp3-OE

is better in the HS games where the total number of locations is sufficiently larger than
the number of moves that the learner can make in each stage.

14Results on online HS games with other type of constraints can be obtained similarly.

15It is better by a multiplicative term of order O
(√

log(=:)
)

that is hidden in the Õ notation in (8.4).

16More explicitly, in HS games with (�1), FPL-IX’s regret is

O
(
log(:2=2))

√
log(:2=)(:2=4 + �=3:))

)
= Õ()=3:) and Exp3-OE’s regret is

O
(
(3/2)

√
=3:) log(:)+

√
=:)

)
= Õ()=3:) (similar results can be obtained for the HS games with

Condition (�2)).
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8.3.3 Exp3-OE in the Online Full-information CB Game

Finally, we consider the online CB game with the full-information feedback setting
(see Section 7.1.1 for a formal definition). We first observe that this game can be cast
directly as an OComb with full information in which the Hedge algorithm (proposed
by Freund and Schapire (1997)) is an optimal algorithm, i.e., it provides a regret upper-
bound matching the regret’s lower-bound of this class of problems. However, the
classical variant of Hedge runs inefficiently: its running time is polynomial in terms of
in the number of actions, i.e., exponential in terms of the number of battlefields and
players’ budgets in the CB game.

On the other hand, we can also convert this game into an OSP with full-information
feedback, i.e., after choosing a path, the learner observes the losses of all edges on
the graph (see Section 7.1.2). There exist improved version of Hedge running in
this instance of OSP where the weight pushing technique is applied to guarantee an
efficient implementation (while providing optimal regret bounds). Therefore, at a
high-level, there is no fundamental open question in studying the online CB game
with full-information.

Despite this fact, for the sake of completeness, we show here how to apply our
findings in the SOOSP model to the online CB game with full-information. Recall
that our SOOSP model interpolates between the semi-bandit and the full-information
feedback settings of OSP. Therefore, naturally, the online full-information CB game
can also be cast as an SOOSP where all observation graphs are complete graphs and
they have the independence number equal 1. Therefore, Exp3-OE can also be applied
to this game. In this case, the term @C(4) in line 8 of Exp3-OE (see Algorithm 10)—i.e.,
the probability that an edge 4 is revealed at time C—is always equal to 1 due to the
full-information feedback. Therefore, we have two trivial results:

By setting � = 0 (i.e., in lines 8 and 9 of Algorithm 10, replace the estimated loss
ℓ̂ C(4) by the real loss ℓ C(4) that is observed for any 4 ∈ ℰ) and � =

√
=/), from

the proof of Theorem 8.2.1, we can deduce easily that Exp3-OE, running in the
online full-information CB game, guarantees an expected regret:

') ≤ O
(
log(%)/� + � · )

)
= O(

√
=))

Exp3-OE also runs efficiently in the online full-information CB game (in O(=2:4))
time) and the running time can even be further reduced by simply setting @C(4) = 1
for any 4 ∈ ℰ, i.e., there is no need for Algorithm 11.

In fact, our Exp3-OE algorithm running with � = 0 and @C(4) = 1,∀4 can be considered
as an efficient implementation (in the OSP) of the Hedge algorithm. As an unsurprising
result, the regret upper-bound of Exp3-OE provided above matches exactly to the
bounds obtained from applying Hedge to the OComb conversion of the online full-
information CB game (that is optimal).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Summary: In this chapter, we introduced a novel algorithm—the Exp3-

OE algorithm—for the online shortest path problem with side-observations
(SOOSP). Importantly, we designed Exp3-OE such that it is always efficiently
implementable in SOOSP. Moreover, we proved that Exp3-OE provides regret
guarantees matching to that of state-of-the-art algorithms in general cases of
observation graphs and Exp3-OE’s guarantees are better in several particular
cases of interest. We applied our findings to several online resource alloca-
tion games that are cast into SOOSP problems including the online semi-bandit
Colonel Blotto game and the online hide-and-seek game. We showed the ben-
efits of using Exp3-OE in these games including notable improvements in both
the running time and the regret guarantees.
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Chapter 9

OSP with Bandit Feedback

(OSPBand)—Applications to the Online Bandit

CB Game

Some of the ideas and results presented in this chapter have previously appeared in our

publication Vu, Loiseau, and Silva (2019b).a The numerical experiments presented

in this chapter have also appeared in this publication and the corresponding codes are

available at https://github.com/dongquan11/BanditColonelBlotto.

aA note on the terminology: the online shortest path problem, defined and studied in this
thesis, is called the path planning problem in Vu, Loiseau, and Silva (2019b). These terms are
often used interchangeably in the literature of bandit problems and online learning.

In this chapter, we turn our focus to a more restricted feedback setting of the online
shortest path problem: the bandit case. Our motivation to study this problem comes
from the online bandit CB game—an instance of online resource allocation games with
combinatorial structures. In this variant of the CB game, at the end of each stage,
the learner only observes the aggregate loss from all battlefields (without knowing
precisely the loss in each battlefield nor the adversary’s play). We presented its formal
definition and discussed some motivational examples in Section 7.1. As we discussed
in Chapter 7, any online CB bandit game can be cast into an OSP with bandit feedback
(OSPBand). Therefore, with the aim of providing efficient algorithm that guarantees
good payoffs in the online bandit CB game, we first study the OSPBand model.

State-of-the-art regret-minimization algorithms in OSPBand still have issues in
implementation and there is still room for improvement in regret guarantees. Our
objective of this chapter is twofold: (i) we design algorithms that improves regret guar-
antees in any instance of OSPBand while maintaining the efficiency in implementation,
and (ii) we aim to apply these findings into the online bandit CB game to provide better
learning policies for the learner. In particular, we focus on ComBand (defined in Sec-
tion 2.2.2)—a standard algorithm of OComb with bandit feedback and aim to improve
the regret guarantee and the running time of ComBand in OSPBand.
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The outline and our contributions in this chapter are as follows: In Section 9.1,
we review challenges in studying OSPBand and discuss several drawbacks of the
ComBand algorithm. In Section 9.2, we propose a new algorithm, called Edge(�),
that is modified from ComBand in which the main upgrade is a quick computation of
the involved co-occurrence matrix. Edge(�) is always efficiently implemented in any
arbitrary instance of OSPBand. On other hand, the regret’s upper-bound provided
by Edge(�) depends directly on the input �—the exploration distribution. Therefore,
a question that naturally arises is to efficiently search for an exploration distribution
that optimize the regret guarantee of Edge(�) (and of ComBand). This, however, still
remains an open question for medium and large-size instances (we discuss the involved
challenges in Section 9.3). Without an optimal solution, state-of-the-art algorithms in
OSPBand are often used with a simple exploration distribution; however, it does not
provide a good regret guarantee in several cases. Therefore, we propose a fast method
to compute an exploration distribution that can be used as the input of Edge(�) to
improve its regret guarantees. We conduct several numerical experiments to illustrate
the improvements provided by Edge(�) in the online bandit CB game, both in terms
of the performance and the computation time; this is done in Section 9.4. Finally, in
Section 9.5, we present an additional result: we construct instances of OSPBand and of
the online CB bandit game that provide a regret lower-bound for any learning policy;
we then compare this lower-bound with the regret upper-bound provided by Edge(�).

9.1 Challenges in OSP with Bandit Feedback (OSPBand)

The model of OSP with bandit feedback (hereinafter, OSPBand) is an important in-
stance of the OComb framework (under the bandit feedback setting, it is also called
the combinatorial bandits)—see e.g., the discussion by Cesa-Bianchi and Lugosi (2012).
However, the standard algorithms for OComb with bandit feedback and OSPBand have
several drawbacks and there is still room for improvement. In this chapter, we focus on
the ComBand algorithm—a standard algorithm in OComb with bandit feedback—that
is also applicable to OSPBand. We refer the interested readers to Section 2.2.2 for a
pseudo-code (Algorithm 2) and our detailed discussion on ComBand. Here, we briefly
recall that for any instance of OComb with bandit feedback (and thus, any OSPBand),
ComBand runs in exponential time in terms of the dimension of the action vectors
(i.e., number of edges of the DAG in OSPBand) and it provides an expected-regret’s
guarantee given in Proposition 2.2.5. In particular, given an online bandit CB game
where the learner allocates : troops across = battlefields at each stage, these results
imply that if we apply directly ComBand into the OSPBand corresponding to this game
(on the graph �:,= with � = O(=:2) edges and % = O(2min{=−1,:}) paths), the running
time of ComBand is an exponential number in terms of = and :. Moreover, it provides
an expected regret satisfying:

') ≤2

√[
2=

��∗["(�)] +1

]
)� log%=O

(√
)=min{=−1,:}

�∗["(�)] +)=:2 min{=−1,:}
)
. (9.1)
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Here, we recall several notations: � is a fixed distribution on the actions set (i.e.,
the paths set of OSPBand)—chosen as input of ComBand; "(�) denotes the matrix
Ep∼�

[
pp⊤

]
and �∗["(�)] denotes the smallest nonzero eigenvalue of "(�). From now

on, we use the notation ComBand(�) when it is needed to emphasize that ComBand

takes a distribution � as an input.

We encounter two key challenges in applying ComBand(�) to OSPBand:

Challenge 1: Optimizing the Exploration Distribution. ComBand(�) mixes an
exploitation procedure (sampling based on weights that are updated according to
an unbiased loss estimator) with an exploration distribution on the actions set (i.e., �).
In OSPBand, this guarantees that at each stage, each path p will be chosen with a
probability at least �(p).1 The regret bound given by ComBand algorithm depends
on the choice of the exploration distribution � via the parameter �∗["(�)]. It is
optimal to choose � such that �∗["(�)] is maximal. For OSPBand (and also for the
online bandit CB game), an efficient method to find an optimal exploration distribution
remains unknown. Several exploration distributions used in the literature such as the
uniform distribution on a barycentric spanner of the action set (see Dani et al. (2008))
and the John’s exploration (see Bubeck, Cesa-Bianchi, and Kakade (2012)) may derive
good regret bounds but are either unavailable or cannot be efficiently constructed in
a generic instance of OSPBand (see Section 7.3 for more details). On the other hand,
the simplest exploration distribution (that is the most well-used in the literature) is
the uniform distribution on the path set; however, in Cesa-Bianchi and Lugosi (2012),
it is proven that this choice can lead to very bad regret guarantees for several cases
of OSPBand: it can be exponential in terms of the number of edges. We aim to have
a fast procedure finding distributions that provide better performance guarantees for
ComBand-type algorithms when applying them to OSPBand.

Challenge 2: Implementation Issue. To obtain an implementation of ComBand(�),
it is needed at each stage to compute a co-occurrence matrix (see Section 9.2.1 for a
definition)—which is basically a sum of an exponential number of semi positive def-
inite matrices. The problem of finding an efficient and implementable procedure for
this computation has not been solved completely. In the case of OSPBand, Sakaue
et al. (2018) propose an algorithm, based on an extension of the weight-pushing tech-
nique,2 that efficiently computes the co-occurrence matrix corresponding to the path
sampling distribution for a particular instance of ComBand (where � is an uniform
distribution). However, this algorithm has a redundancy in representation (involving
5 sub-algorithms) and is still non-trivial to be implemented; moreover, it lacks the ex-
plicit analysis of the use of more generic exploration distributions. We desire a simpler
and more general representation of this efficient algorithm.

In the following sections, we sequentially investigate the two challenges mentioned

1This is often referred to as the explicit exploration scheme to distinguish with the implicit exploration, i.e.,
guaranteeing a lower-bound of the probability of being chosen of each path by controlling the estimated
losses (see e.g., the use of the parameter � in the Exp3-OE algorithm presented in Section 8.2).

2This is a dynamic programming techniques that are used to efficiently sample paths in Exp3-type
algorithms; we have reviewed this technique in Section 2.2.3.
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above: Challenge 2 is addressed in Section 9.2 and Challenge 1 will be considered in
Section 9.3. Before doing that, we note that there exist other variants of ComBand that
can also be applied to OSPBand (see Section 7.3 for a review on these algorithms); e.g.,
the CombEXP algorithm, proposed by Combes et al. (2015), improves the complexity of
ComBand. However, OSPBand is not explicitly considered in Combes et al. (2015) and
it remains an open question whether any arbitrary instance of the OSPBand satisfies the
condition such that CombEXP can be efficiently implemented. Therefore, ComBand is
still the state-of-the-art algorithm for our considering problems. Moreover, CombEXP

also uses the uniform exploration distribution that is sub-optimal in OSPBand (see
also Cesa-Bianchi and Lugosi (2012)); thus, the challenge in finding better exploration
distributions is relevant.

9.2 Edge—An Efficient Algorithm for OSPBand

In this section, we present our solution for Challenge 2 described in the previous
section; that is, we provide a variant of ComBand, with a simple representation, that
runs efficiently in OSPBand. The results presented in this section are applicable to any
instance of OSPBand with an arbitrary DAG� (with a source vertex B and a destination
vertex 3); we also use the notations ℰ and P to denote the edges set and the set of all
paths of � starting from B and ending at 3, and denote � := |ℰ | and % = |P|. As a
convention, henceforth, we often use � to denote an arbitrary distribution on the set P
such that its support spans P.

First, recall that the inefficiency of the standard implementation of ComBand(�) (see
Algorithm 2 in Section 2.2.2) comes from three steps that are executed at each stage:
the weight-updating step (line 9—Algorithm 2) that computes the weight embedded by
ComBand(�) on each path, the sampling step (line 5—Algorithm 2) that samples a path
on � based on a distribution mixing between sampling from these % weights (with a
normalization) and the exploration distribution �, and the computing the co-occurrence

matrix step (line 7—Algorithm 2) that is essential for estimating the losses of the paths.
As previously discussed, the use of weight pushing in improving the complexity

of the weight-updating step and the sampling step of ComBand(�) and other Exp3-
type algorithms (when being applied to variants of OSP) can be found in several
works in the literature, e.g., György et al. (2007) and Takimoto and Warmuth (2003).
We have reviewed the weight pushing technique in Section 2.2.3 as Algorithm 3 and
Algorithm 4. On the other hand, Sakaue et al. (2018) propose an application of weight
pushing to compute the co-occurrence matrix inO(�2)) time; particularly for ComBand

in OSPBand with the Zero-suppressed Binary Decision Diagrams. This computation
requires 5 sub-algorithms that involves heavy notations and unnecessary complexity
for our setting. Moreover, the algorithm of Sakaue et al. (2018) is only presented in the
case where the exploration distribution is chosen to be the uniform distribution; it is not
discussed explicitly how it can be used effectively if ComBand has other distributions as
inputs. In the next section, we use ideas similar to that of Sakaue et al. (2018) to derive
a procedure to compute the co-occurrence matrices efficiently; our computation has
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a simpler and more general representation. Furthermore, this representation is also
convenient when using co-occurrence matrices as tools for us to obtain other results
(e.g., in improving the exploration distribution).

9.2.1 Co-occurrence Matrices Computation

Given a DAG �, for any distribution � on the set P (here, �(p) denotes the probability
of sampling p ∈ P from �), we consider a matrix of the following form:

"(�) = Ep∼�(p)[pp⊤].

Hereinafter, we call"(�) the co-occurrence matrix corresponding to the distribution �. This
term is adopted from Cesa-Bianchi and Lugosi (2012); intuitively, each entry "(�)41 ,42
of this matrix (41 , 42 ∈ ℰ) is equal to the probability that a path sampled from� contains
both edges 41 and 42 (hence, a co-occurrence of 41 and 42). Note that "(�) also depends
on the structure of the graph under consideration; however, to lighten the notation, we
do not explicitly include this into the notation of "(�) (the involved graph is implicitly
declared via �). More importantly, when � has a support that spans P (which is the
condition to use � as the exploration distribution of ComBand), a direct computation
of this matrix might involve a sum of Ω(%) terms, this is inefficient for our purpose.
Therefore, we want to have a procedure such that for any given distribution � on
P, "(�) can be computed in polynomial time in terms of �. This remains an open
question; however, we can provide solution for the distributions satisfying a special
condition as follows:

Condition (WP): A distribution � on P is said to satisfy Condition (WP) if and only if

there exists a set of weights F̃ := {F̃(4) ≥ 0, 4 ∈ ℰ} such that for any path p ∈ P, we have

�(p) = ∏
4∈p

F̃(4)/ ∑
p′∈P

( ∏
4′∈p′

F̃(4′)).

Intuitively, if � satisfies Condition (WP), we can efficiently sample a path from �

by weight pushing and � can be represented by a �-dimensional (instead of %-
dimensional) vector. Note that the uniform distribution on P (used by most of works in
the literature) satisfies Condition (WP) (e.g., with the weights F(4) = 1,∀4). Moreover,
it might happens that one distribution can satisfy (WP) with different sets of weights;
however, each set of weights F̃ only determines a unique distribution �F̃ satisfying
Condition (WP). Henceforth, we use the notation �F̃ to denote a distribution satisfying

Condition (WP) with the set of weights F̃ := {F̃(4) ≥ 0, 4 ∈ ℰ}. We also can observe
trivially that if � satisfies Condition (WP) with a set of positive weights, then it has the
full support on P.

Now, let us recall two notations: PD,E denotes the set of all paths from vertex D to
vertex E and 4[D,E] denotes the edge going from vertex D to vertex E (if it exists). From
Section 2.2.3, we know that for any set of weights {F̃(4), 4 ∈ ℰ}, it takes O(�2) time
to compute all the terms �(D, E) :=

∑
p∈PD,E

∏
4∈p F̃(4) for any pair of vertices D, E in

the graph �. This can be done by the WP algorithm (Algorithm 3). Based on these
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terms, we propose the CMat Algorithm (its pseudo code is given in Algorithm 12) that
computes efficiently "(�F̃).

Algorithm 12: The CMat Algorithm (for computing co-occurrence ma-
trix "(�F̃)).

Input: � = (V , ℰ) with source vertex B, destination vertes 3; {F̃(4),∀4 ∈ ℰ}.
Output: The matrix "(�F̃).

1 Compute �(D, E) :=
∑

p∈P(D,E)

∏
4∈p F̃(4), ∀D, E ∈ V by WP algorithm

(Algorithm 3).
2 for 41 = 4[D1 ,E1] ∈ ℰ do

3 "(�F̃)41 ,41 =
�(B,D1)F̃(41)�(E1 ,3)

�(B,3) .

4 for 42 = 4[D2 ,E2] ∈ ℰ , 42 > 41 do

5 "(�F̃)41 ,42 =
�(B,D1)F̃(41)�(E1 ,D2)F̃(42)�(E2 ,3)

�(B,3) .

6 for 41 , 42 ∈ ℰ , 42 < 41 do "(�F̃)41 ,42 ="(�F̃)42 ,41 .

This algorithm runs in O(�2) time. The main intuition of Algorithm 12 is as follows:
First, the probability that a path sampled from �F̃ contains an edge 41, i.e., the entry
"(�F̃)41 ,41 , can be rewritten as

∑
p∋41

�F̃(p) =
∑

p∋41
∏

4∈? F̃(4)∑
p′∈P (∏4′∈p′ F̃(4′))

. (9.2)

On the other hand, by definition, �(D, E) can be interpreted as the sum of the products
of weights along all paths from D to E; note also that�(B, 3) is precisely the denominator
in the right-hand-side of (9.2). Moreover, in �, if a path p ∈ P contains an edge
41 = 4[D1 ,E1], then p also has to contain a path from node B to node D1 and a path from
node E1 to node 3. Hence, the numerator in the computation of "(�F̃)41 ,41 in line 3
of Algorithm 12 is equal to the numerator in the right-hand-side of (9.2). Similarly,
if a path p simultaneously contains the edges 41 = 4[D1 ,E1] and 42 = 4[D2 ,E2], then p also
contains a path from node B to node D1, a path from node E1 to node D2 and a path
from node E2 to node 3. Therefore, the entry "(�F̃)41 ,42 for 41 ≠ 42 can be computed by
line 5 of Algorithm 12. Finally, by definition, "(�F̃) is a symmetric matrix; therefore,
we can have the relation in line 6 of Algorithm 12.

9.2.2 The Edge(�) Algorithm

In this section, we combine the techniques presented in the previous sections to create
a modified variant of ComBand, called Edge, that runs efficiently in any OSPBand with
an arbitrary DAG �. Unlike ComBand, the Edge algorithm works on edges instead of
paths (hence, the name); in particular, at each stage C, it keeps a weight FC(4) on each
edge 4 ∈ ℰ (called the edges weights). We denote FC(p) =

∏
4∈p FC(4),∀p ∈ P; we call

these the paths weights. Let �F̃ be a distribution on P satisfying Condition (WP) with



148 9.2. Edge—An Efficient Algorithm for OSPBand

a set of weights F̃. Then, for any p ∈ P, we introduce two new terms:

�C(p) :=
FC(p)∑

p′∈P FC(p′)
=

∏
4∈p FC(4)∑

p′∈P (∏4′∈p′ FC(4′))
and GC(p)= (1−�)�C(p)+��F̃(p). (9.3)

Accordingly, we define "(�C) := Ep∼�C (p)[pp⊤] and "(�F̃) = Ep∼�F̃(p)[pp⊤]. We can
use Algorithm 12 (with inputs {FC(4), 4 ∈ ℰ} and {F̃(4), 4 ∈ ℰ}) to compute these two
matrices in O(�2) time (note that trivially, �C also satisfies Condition (WP)). On the
other hand, due to (9.3), the co-occurrence corresponding to GC , called �C , satisfies

�C := Ep∼GC (p)[pp⊤] = (1 − �)"(�C) + �"(�F̃). (9.4)

Therefore, we conclude that we can also efficiently compute �C by Algorithm 12 in
O(�2) time.

Now, we present a pseudo code of Edge in Algorithm 13, written with the input
�F̃ . As for the case of ComBand(�), we will use the notation Edge(�) when it is needed
to emphasize that this algorithm uses � as an exploration distribution. In Edge, at each
stage, a path is sampled efficiently (inO(�2) time) from the distribution GC (lines 4, 5 and
6 of Algorithm 13). Moreover, in line 9, the co-occurrence matrix �C is also computed
efficiently in O(�2) time. Note that Edge also allows us more freedom to choose the
exploration distribution (unlike the algorithm from Sakaue et al. (2018)). Moreover,
as long as this distribution satisfies Condition (WP), the variant of the Edge algorithm
taking �F̃ as an input and using it as an exploration distribution runs efficiently in
O(�2)) time. Note that a discussion on the choices of these exploration distributions
will be given in Section 9.3.

Algorithm 13: The Edge(�F̃) Algorithm for OSPBand.

Input: ) ∈ N,� ∈ [0, 1], � > 0, graph �, distribution �F̃ on P.
1 ∀4 ∈ ℰ, F1(4) := 1.
2 for C = 1, 2, . . . , ) do

3 Loss vector ℓ C ∈ [0, 1]� is chosen adversarially (unobserved).
4 Sample � from Bernoulli distribution ℬ(�).
5 if � = 0 then sample a path p̃C ∼ �C(p̃C) using WPS Algorithm

(Algorithm 4) with {FC(4), 4 ∈ ℰ} as inputs.
6 else sample a path p̃C ∼ �F̃(p̃C) using WPS Algorithm with {F̃(4), 4 ∈ ℰ}

as inputs.
7 Suffer and observe the loss !(pC)= (ℓ C)⊤p̃C ≤ 1.
8 Compute �C := Ep∼GC [pp⊤] based on (9.4) and Algorithm 12.

9 Estimate loss ℓ̂ C =
(
ℓ C(p̃C)⊤

)
�−1
C p̃C .

10 ∀4 ∈ ℰ, FC+1(4) := FC(4) · 4−�ℓ̂ C (4).

We conclude this section with the following proposition (note that theses results
work with OSPBand instances involving non-oblivious adversaries).
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Proposition 9.2.1. In any instance of OSPBand (with a time horizon)) on an arbitrary DAG

� where there are % paths, � edges and the length of the longest paths is =, Edge(�F̃) runs

efficiently in O(�2)) time; moreover, with the same choices of � and �, the expected regret of

Edge(�F̃) is equal to that of ComBand(�F̃) and satisfies

') ≤ 2

√[
2=

��∗["(�F̃)]
+1

]
)� log(%).

In particular, in the OSPBand corresponding to the online bandit CB game with : troops and =

battlefields, Edge(�F̃) runs in O(=2:4));3 the expected regret’s bound provided by Edge(�F̃)
in this case is:

') ≤ O
(√

)= · min{= − 1, :}
�∗["(�F̃)]

+ )=:2 min{= − 1, :}
)
.

9.3 Improving Exploration Distributions Used in the Edge Al-

gorithm

In this section, we study the problem of selecting a distribution to input into Edge

and use it as the exploration distribution such that Edge guarantees a good regret
bound. Now, recall that the notation �∗["] denotes the smallest non-zero eigenvalue
of a matrix ". From results presented in Proposition 9.2.1, the larger �∗["(�)] is, the
smaller the upper-bound regret guaranteeing by Edge(�) becomes. Therefore, given
an arbitrary instance of OSPBand (or an instance of the online bandit CB game), our
aim is to find a distribution � such that �∗["(�)] is as large as possible (while we can
still guarantee that Edge(�) runs efficiently).

Formally, let us label the paths in P by p1 , p2 , . . . , p% , we consider an eigenvalue-
optimization problem as follows (its search space is %-dimensional):

maximize �∗
[∑%

8=1
G8 ·

[
p8p

⊤
8

] ]
(9.5)

subject to x ∈ [0, 1]% ,
∑%

8=1
G8 = 1, (9.6)

{p8 : G8 > 0} spans P . (9.7)

A popular choice of the literature (e.g., György et al. (2007) and Sakaue et al. (2018))
on the exploration distribution when applying variants of ComBand in OSPBand is the
uniform distribution on the path set, denoted �uni. Trivially, �uni satisfies (9.6)-(9.7)
and also Condition (WP) (i.e., Edge(�uni) is efficiently implementable). However, there
exists an instance4 of OSPBand such that �uni yields the eigenvalue �∗["(�uni)] that
may be of order Ω(%−1), which implies that Edge(�uni) (and ComBand(�uni)) can only
guarantee a regret upper-bound that is exponentially large in terms of the number of
edges. In spite of this, due to its “popularity” in the literature, we often use �uni as a
benchmark for our findings in this section.

3This is in contrast with ComBand(�) that runs in O(exp(=))).
4An example of such case is presented by Cesa-Bianchi and Lugosi (2012).
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9.3.1 Optimizing Exploration Distributions By Semi-Definite Programming

To find an optimal exploration distribution to use in Edge (and ComBand) for OSPBand,
we want to solve the optimization problem (9.5)-(9.7) whose objective function relates
to the eigenvalues of matrices. One natural approach in solving (9.5)-(9.7) is to cast
it into a semi-definite programming problem (SDP). This approach is also suggested
by Cesa-Bianchi and Lugosi (2012). A formulation of an SDP that is equivalent to
(9.5)-(9.7) can be found in Appendix F.1. In principle, given a graph �, this SDP can be
solved exactly to find a distribution � on the corresponding paths set that maximizes
�∗["(�)]. However, in practice, this SDP formulation still cannot be solved efficiently
due to the fact that the feasible set still has dimension % and that it contains a constraint
relating to a summation of % terms. In our simulation, standard SDP solvers5 take a
long running time to solve this SDP problem even with small instances and they easily
run into computationally memory issues with moderate instances. In the next section,
we change the perspective and propose a fast method that can quickly find a “good”
feasible solution of (9.5)-(9.7) , although it might not be the optimal solution.

9.3.2 Derivative-free Optimization and Change of Search Space

Given an instance of OSPBand on a graph �, the challenge now is to find a fast
method providing an exploration distribution � to be used in Edge(�) that guarantees
a sufficiently good regret-bound. Moreover, it is desired to be able to efficiently sample
a path from � (line 6 of Algorithm 13) and to efficiently compute the matrix "(�) in
order to compute �C (line 8 of Algorithm 13). Note that a sufficient condition for this
is that � satisfies Condition (WP).

To efficiently find such a distribution, first, we note that the primary issue with the
problem (9.5)-(9.7) is the dimension of its search-space (i.e., the set of points satisfying
(9.6)-(9.7))—it is an exponential number in terms of the number of edges of �. To
mitigate this issue, we reformulate to reduce the dimension of the search space. We
consider the following problem whose search space is only �-dimensional:

max
F̃∈(0,∞)�

�∗("(�F̃)). (9.8)

Here, given F̃ ∈ (0,∞)�, recall that the notation �F̃ denotes a distribution on the paths
set such that �F̃(p) =

∏
4∈p

F̃(4)/ ∑
p′∈P

( ∏
4′∈p′

F̃(4′)) for any p ∈ P; in other words, it satisfies

Condition (WP) with the set of weights F̃ = {F̃(4) > 0, 4 ∈ ℰ}. This choice of F̃ also
guarantees that �F̃ has a full support on P (i.e., �F̃ satisfies (9.7)). More importantly,
for each feasible solution of (9.8), say w∗, we can construct a corresponding feasible
solution of (9.5)-(9.7); additionally, the objective function of (9.8) at w∗ equals to that
of (9.5) at G8 := �w∗(p8), 8 ∈ {1, 2, . . . , %}. The construction of �w∗ is actually in O(%)
time, but we do not need to explicitly do so in order to run Edge algorithm with
�w∗ . Instead, since �w∗ is guaranteed to satisfy Condition (WP), we can use the WP

5CVXOPT solver, available at https://cvxopt.org/ and Mosek solver https://www.mosek.com/, both use
primal-dual interior points methods.
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Algorithm to sample efficiently a path from �w∗ and use Algorithm 12 to compute
efficiently "(�w∗). Therefore, we can solve (9.8) to (implicitly) find an exploration
distribution and use it efficiently in Edge.

Figure 9.1: Diagram illustrating the derivative-free optimization for improving
exploration distributions of the Edge algorithm.

Although (9.8) reduces significantly the dimension of the search space compared
to (9.5)-(9.6), this formulation loses the structure that allows us to apply standard
convex optimization algorithms.6 Therefore, in this section, we use a derivative-free

algorithm to heuristically solve (9.8). Despite the fact that the solution found by this
method may not be optimal, we can still guarantee that this solution is at least as good
as the uniform distribution that is often used in the state-of-the-art algorithms (we
initialize our algorithm with �uni). Moreover, although the search space in (9.8) may
not cover the whole search space in (9.5)-(9.6), the solution found in (9.8) (which might
correspond to a sub-optimal for (9.5)-(9.6)) is guaranteed to be efficiently embedded
with Edge; on the other hand, even if we found an optimal solution of (9.5)-(9.6), it does
not guarantee to be efficiently usable in Edge (nor in ComBand). A diagram explaining
the intuition of our method to solve (9.8) can be found in Figure 9.1. We can use any
derivative-free optimization solver that goes with specific strategies of sampling new
points and justifying the current-best solution.

We denote by �free the distribution corresponding to the solution of (9.8) found
by our derivative-free method and note that �∗("(�free)) ≥ �∗("(�uni)).7 Finally, as a
trivial corollary of Proposition 9.2.1, we have:

Proposition 9.3.1. In any instance of OSPBand on an arbitrary DAG �, Edge(�free) runs

efficiently in O(�2)) time and guarantees an expected regret

') ≤ 2

√[
2=

��∗["(�free)]
+1

]
)� log(%).

In particular, in the OSPBand corresponding to the online bandit CB game with : troops and

= battlefields, Edge(�free) also runs in O(=2:4)) and guarantees an expected regret

') ≤ O
(√

)= · min{= − 1, :}
�∗["(�free)]

+ )=:2 min{= − 1, :}
)
.

6The function giving the smallest non-zero eigenvalue of a matrix"(�F̃) from an input F̃ is not known
to be convex or concave.

7This is due to the fact that we take w(4)=1,∀4 ∈ ℰ (corresponding to �uni) as the initialization point.
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9.4 Numerical Evaluation

We conduct several experiments to evaluate the performance of Edge and measure the
effect of optimizing the exploration distribution.8 In these experiments, without loss of
generality, a learner, having : troops at each stage, plays repeatedly a discrete CB game
on = battlefields against a single adversary who has :� troops (unknown to the learner).
We define a special adversary, called the extreme-strong adversary: an adversary having
:�= (=−1)(:+1)+(:−1) troops, she “blocks” =−1 battlefields (each has a value equal
to �/(= − 1) in any stage) by allocating :+1 troops to them; and allocates :−1 troops
to a certain battlefield 8 with value 1C(8)=1−� (unknown to the learner). In this case,
the losses on all paths are always 1 except for the single path representing that the
learner allocates all : troops to battlefield 8; this path yields the loss �. We choose this
adversary to follow an example in Cesa-Bianchi and Lugosi (2012) illustrating why �uni

fails to guarantee a good regret bound in OSP. The algorithms need to “explore" the
low-loss path as soon as possible to reduce the regret.

We use the Zoopt solver9 (see Y.-R. Liu et al. (2017)) embedded with the sRACOS
algorithm (Hu et al. (2017)) as the derivative-free optimization solver to heuristically
solve (9.8)—its output is called �free. Our experiments run on an Intel Core i5-7300U
CPU@ 2.60GHz and 8.00GB RAM. Each instance is run 5 times and the average results
are reported.

In the first experiment, we compare the running time between ComBand and Edge

and the results confirm that ComBand takes exponential time while Edge runs in
polynomial time in terms of : and =; these results are reported in Figure 9.2 (the
numbers of edges and paths in the corresponding �:,= are also reported for the sake
of comparison).
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Figure 9.2: ComBand(�free) vs Edge(�free); = = 2:, ) = 40000 fixed.

Next, we compare the performance of Edge when it uses �uni and �free as the
exploration distribution. Figure 9.3(a) (H-axes is drawn with log-scale) illustrates the

8Our code is given at https://github.com/dongquan11/BanditColonelBlotto.
9Available at https://zoopt.readthedocs.io/en/latest/. We run it in 100� iterations; this stopping criterion

is recommended by Hu et al. (2017); moreover, this criterion is enough to solve (9.8) optimally in our
experiments with small instances (:, = ≤ 3).
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(b) The actual regrets.

Figure 9.3: Performances evaluation of Edge(�uni) and Edge(�free) in the online bandit
CB game with the extreme-strong adversary.

trade-off between the time spent to find �free and the improvement in the eigenvalues
and the upper-bounds predicted by Proposition 9.3.1. Note that the smaller the ratios
boundfree/bounduni and�uni/�free are, the more improvement that Edge(�free)provides
compared to Edge(�uni). Finally, we compare the performance of Edge(�uni) and
Edge(�free) by their actual regrets (see Figure 9.3(b)). Note that to efficiently compute
the best hindsight loss (it is non-trivial), we apply Algorithm 7 (see Section 5.3.1) that
finds the best response against a set of allocations of the adversary. We observe that
the actual regret of Edge(�free) is better than Edge(�uni); as : increases, the difference
between these regrets also increases. For example, for instance : = 3, = = 6 and) = 105,
the ratio (Regretuni−Regretfree)/Regretuni equals 28% while this ratio of instance : = 5,
= = 10, ) = 105 is 38%. Note that Edge(�free) can run with larger instances (in :, =)
but we choose not to report here since Edge(�uni) is unavailable in these instances (it
requires extremely large )).10

Besides the extreme-strong adversary, we also consider two other adversary’s strate-
gies: the uniform-adversary (resp. the battlefields-wise adversary) who at each stage C
repeatedly draws a battlefield by the uniform distribution (resp. draws a battlefield
8 with a probability 1C(8)/

∑
9∈[=] 1C(9)) then allocates one troop to that battlefield until

she runs out of troops (the budget of the adversary at each stage is :�). Note that
for this experiment, the battlefields’ values 1C(8) are generated uniformly from [0, 8]
then they are normalized to guarantee that

∑
8∈[=] 1C(8) = 1. For each instance with

different parameters :, = and adversary’s strategies, we run each algorithm Edge(�uni)
and Edge(�free) 5 times and the average results of their actual regret are reported in
Figure 9.4. We notice that, at a high-level, the results from these cases are similar to
that of the extreme-strong adversary case.

10Both ComBand(�) and Edge(�) require that � ≤ 1 to run; therefore, the regret bounds given in

Proposition 9.2.1 and Proposition 2.2.5 can only be obtained if) ≥
[
= log(%)

]
/
[ (
�∗["(�)]

)2
(
�
= + 2

�∗["(�)]

)]
(parameters tuned by Cesa-Bianchi and Lugosi (2012)). When �uni is very small, it requires extremely
large time horizon ) to run Edge(�uni) that is impractical.
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Figure 9.4: Actual regrets of Edge(�uni) and Edge(�free) with other types of
adversaries.

9.5 A Regret Lower-Bound in the Online Bandit CB Game

In the previous sections, we have focused on the analysis of the regret upper-bounds
guaranteed by algorithms in the classes of OSPBand and the online bandit CB game.
To provide further justification of our findings, in this chapter, we consider the problem
of characterizing regret lower-bounds in these classes of problems.

In Audibert, Bubeck, and Lugosi (2014), an instance of OComb with bandit feedback—
where the learner’s action set is ( ⊂ {0, 1}� and that ‖z‖1 ≤ =,∀z ∈ (—is analyzed and
it is showed that for any learning policy, the expected regret suffered by the learner is
at least Ω(=

√
�)). We can follow this work and design an instance of OSPBand that

yields a similar result. Formally, we have the following proposition:

Proposition 9.5.1. There exists an instance of OSPBand on a graph, where the number of

edges is � and the length of the longest paths is =, such that

inf
strategies

sup
adversaries

') = Ω

(
=
√
�)

)
.

Here, the inf and sup are taken over all possible learning policies of the learner
and all (feasible) strategies of the adversary.11 A proof of this proposition is given in
Appendix F.2. From this result, we observe that if there exists an exploration distri-
bution � such that �∗["(�)] is of the order Ω(1/�), then Edge(�) (and ComBand(�))
yields a regret upper-bound that is tight with this lower bound. It remains an open
question to characterize which class of OSPBand satisfying that such an exploration
distribution exists.

For the particular class of OSPBand corresponding to the online bandit CB game
(i.e., playing on the graph �:,= and the losses are generated according to the Blotto-
rule—see Section 7.1.1), it remains an open question whether there exists an instance

11More precisely, the sup is taken over the class of all possible processes that generate the loss vector
ℓC ∈ [0, 1]� from measurable functions of the past information (i.e., p̃B , ℓ B , GB , ∀B ∈ {1, 2, . . . , C − 1}).
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such that the regret suffered by the learner always yields a lower-bound with the same
order as in Proposition 9.5.1. In this thesis, we can only prove a somewhat weaker
result as follows:

Proposition 9.5.2. There exists an instance of the online bandit CB game with 2= battlefields

(= ∈ N\{0}) such that in the corresponding OSPBand, we have

inf
strategies

sup
adversaries

') = Ω

(
=
√
)
)
. (9.9)

A proof of this proposition is given in Appendix F.3. The main idea of the proof
is to design a special instance of the online bandit CB game (including the choices on
number of battlefields, the budgets of the learner and the adversary, the battlefields’
values) that is similar to an instance of OComb with bandit feedback studied by Dani
et al. (2008) (for finding a lower-bound of OComb). We observe that in this special
game instance, for any exploration distribution � on the graph �:,= , the gap between
the regret lower-bound in (9.9) and the upper-bound provided by Edge(�) is always at
least of the order Ω(min{= − 1, :}).12 We conjecture that it is possible to find another
instance of the online bandit CB game yielding a larger lower-bound on the regret;
we leave this question for future studies. Finally, for the sake of comparison, note
that if there exists an instance of the online bandit CB game yielding the result in
Proposition 9.5.1, the corresponding regret lower-bound is of the order Ω(:=3/2

√
));

that is larger than the one in (9.9) by a factor of :
√
=.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary: In this chapter, we presented the Edge algorithm, a variant of the
well-known ComBand algorithm, that runs efficiently in any online shortest path
problem with bandit feedback (OSPBand). We also proposed a fast method to
compute exploration distributions to use as inputs in Edge that improves the
expected regret guarantees. We applied these findings to the online bandit CB
game, cast into an OSPBand. We presented regret lower-bounds for OSPBand

with a generic graph and for the set of OSPBand instances corresponding to
online bandit CB games. The results in this chapter not only extend the scope of
application of the online CB game in practice (even for large instances) but also
contribute to the literature of OSPBand.

12Here, recall that : is the budget of the learner at each stage.
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CONCLUSIONS AND PERSPECTIVES
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In this part of the manuscript, we present an overview of the results obtained in the
previous chapters and then discuss several related open challenges as well as directions
for potential future work.

Conclusions of the Thesis

In this thesis, we chose to investigate resource allocation games and we primarily
focused on the Colonel Blotto game (CB game) as a case study. We present below an
overview of the results obtained in several prominent instances of this class of games
under the two main settings: the offline setting and the online learning setting.

The Offline Setting

In Part I of the thesis, we modeled resource allocation games as one-shot complete-
information games and focused on analyzing players’ behaviors in a game-theoretic
perspective. In particular, we studied several resource allocation games belonging to
the family of Blotto games including the generalized CB game, the discrete CB game,
the generalized Lottery Blotto game (LB game) and the generalized-rule CB game. We
addressed the challenge of searching for strategies that can be efficiently constructed
such that they provably guarantee good payoffs for players in these Blotto games. We
obtained the following results:

(i) We defined the generalized CB game with a formulation that is more general
than that of any other work in the literature. We proposed a simply-constructed
class of strategies (the IU strategies) yielding approximate equilibria of this game
and proved that the approximation error in using the IU strategies (relative to the
magnitude of players’ payoffs) quickly decreases as the number of battlefields
increases. Therefore, this error is considerably negligible in the generalized CB
game with a large number of battlefields, showing the practicality of the IU
strategies. These results are presented in Chapter 3 and Chapter 4.

(ii) We studied the (constant-sum) discrete CB game. In this game, we efficiently
constructed a class of approximate equilibria by extending the ideas of the IU
strategies with a non-trivial round-up process. We characterized the involved
error in terms of the game’s parameters. We showed, by numerical experiments,
the benefits in running time when using the proposed approximate equilibria
(in comparison with exact equilibria computations that remain inefficient in
implementation) and the trade-off between these benefits and the approximation
errors in the players’ payoffs. These are the main results of Chapter 5.

(iii) We analyzed the generalized LB game—a natural extension of the CB game—
and showed that the IU strategies are also approximate equilibria of this game.
We applied this result to the LB games with the power-form and logit-form
CSFs (two of the most common CSFs in the literature) and showed that the
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involved approximation errors are negligible under a condition on the number of
battlefields and the parameters of the CSFs. Finally, we presented several initial
results on the (constant-sum) generalized-rule CB game (GR-CB game). As a
tool to study this game, we characterized the exact equilibria (in all parameters’
configurations) of the all-pay auction with favoritism. We used these results
to propose an efficient heuristic algorithm computing a set of distributions that
approximates the optimal univariate distributions of the GR-CB game. Based on
them, we then constructed a class of approximate equilibria of the GR-CB game
under an assumption. These results are given in Chapter 6.

From the analyses leading to these results, we inspected the difficulty in the (exact)
equilibrium characterization of the CB game: the correlation between allocations of
each player towards different battlefields. Essentially, this comes from the budget
constraints of the CB game—the kind of constraints that also appears in other resource
allocation games. The IU strategies and other extended ideas are our method to bypass
this difficulty in the CB game (and other Blotto games), with a trade-off involving small
errors. We conjecture that this approach might be applied similarly in other resource
allocation games with similar challenges. On the other hand, although the idea behind
the class of IU strategies is fairly simple and straightforward, we found that proving
meaningful results from this idea is often non-trivial. Moreover, we observed that a
modification in the formulation of the CB game, even small, can lead to new issues and
it requires a different set of techniques to solve them. Therefore, one really needs careful
consideration in implementing this approach on a given game. Finally, in constructing
the results mentioned above, we obtained several interesting side-results, including a
complete characterization of exact equilibria of all-pay auctions with favoritism and
an efficient algorithm, based on dynamic programming, to compute best-responses in
the discrete CB game.

The Online Learning Setting

In Part II of the thesis, we formulated the class of online resource allocation games to
capture situations where players play repeatedly a game without knowing all infor-
mation when making decisions. We addressed the question of how to play in online
resource allocation games with combinatorial structures to obtain a good guarantee on
payoffs while maintaining an efficient implementability. To answer this question, we
conducted a regret-minimization analysis on the online discrete CB game and several
other online resource allocation games (with combinatorial structures). We obtained
the following results:

(i) We defined the online (discrete) CB game and the online hide-and-seek game
(HS game) and showed that they can be cast into online shortest path problems
(OSP). To the best of our knowledge, these are the first online learning models
formulated for these games. We discussed similar conversions of several other
online resource allocation games with combinatorial structures. We also explic-
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itly defined a novel online learning model: OSP with side-observations (SOOSP).
These results are given in Chapter 7.

(ii) We studied the the SOOSP model and showed that it captures well the online
semi-bandit CB game. We designed a novel algorithm, called Exp3-OE, that runs
efficiently in any generic instance of SOOSP, i.e., its running time is polynomial in
terms of the number of edges of the graph in SOOSP. Moreover, in several cases of
interest, we proved that Exp3-OE improves the regret guarantees in comparison
with state-of-the-art algorithms for SOOSP. We applied these findings to the
online semi-bandit CB game and the online HS game, being cast into SOOSP,
and showed the benefits of this algorithm: it improves the regret guarantee and
always runs in polynomial time in terms of the games’ parameters. These results
are presented in Chapter 8.

(iii) We studied the OSP with bandit feedback (OSPBand) model. We designed an
algorithm, called Edge, that is a modified version of the classical ComBand al-
gorithm. Edge runs much more efficiently than ComBand in any instance of
OSPBand and it has a simpler representation than CombD—another efficient
algorithm in the literature. Moreover, we designed and analyzed Edge with
more choices of exploration distributions to use as inputs than CombD. We intro-
duced a procedure, based on derivative-free optimization, that quickly provides
a distribution �free such that when using Edge (or ComBand) with �free as an
exploration distribution, regret guarantees are improved compared to other set-
ups of ComBand used in the literature. We applied Edge to the online bandit CB
game and conducted numerical experiments confirming the improvements in
performance and implementability benefited from Edge. These results are given
in Chapter 9.

In the analyses leading to these results, we showed how to exploit structures of
online resource allocation games, such as the online CB game and the online HS
game, to make important connections with several online learning frameworks and
to improve learning policies. The scope of applications of our obtained results go
beyond merely solving online resource allocation games and they also contribute to
the literature of OSP in general.

Future Work

In this section, we discuss new questions and directions that our work opens up,
starting with the ones directly relating to the results obtained in this thesis, and then
moving to other interesting extensions and broader classes of problems.

Direct Extensions of the Obtained Results

In the offline setting, naturally, the leading open question concerns the exact equilib-
rium of the generalized CB game: can we prove (or disprove) its existence and if it
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exists, how to construct (or at least characterize) it? In our humble opinion, this ques-
tion is challenging (see also the discussion on this problem by Kovenock and Roberson
(2015)). From the results obtained in Chapter 4, we conjecture that the game with a large
number of battlefields might be an easier case to start the study on exact equilibrium.
This remark comes from our observation that when this parameter tends to infinity,
the IU strategies—our proposed approximate equilibria of this game—get closer to ob-
tain optimality (the approximation error, relative to the magnitude of players’ payoffs,
tends to zero). Another direction would be to extend the equilibrium construction,
based on the copula theory, of Roberson (2006) (for the restricted case of constant-sum
CB games with homogeneous battlefields) to the generalized CB game. In other Blotto
games, characterizing the exact equilibria is also a fundamental open question.

For approximate equilibria in Blotto games, it would be interesting to find other
strategies that also guarantee good payoffs for the players and compare them to our
solutions given in this thesis. In particular, our proposed approximate equilibria in the
generalized LB games are based on the analysis of the generalized CB game (adding
an extra term to the approximation error), and a relevant open question is to find
other solutions for the LB game without using its connection to the CB game. On
the other hand, in the generalized-rule CB game, our results are only obtained under
an assumption on the existence of a positive solution of an equation (Equation (6.17)
in Chapter 6). In our numerical simulations, however, this assumption appears to
always hold, and the solution seems to be unique. A direct open challenge in this
game is to prove theoretically these (numerical) results. This helps us to be able to
obtain similar results without the necessity of that assumption and also can lead to
improvements in the approximation error. Another direction that may extend further
the scope of applications of the GR-CB game is to analyze situations where players may
freely choose pre-allocations and effectiveness of resources (possibly under certain
constraints or with a cost) instead of considering them as exogenous factors as in our
model.

In the online learning perspective, our results open up several fundamental ques-
tions. In the SOOSP model (also for the online semi-bandit CB game and the online HS
game), there is still a gap between the regret upper-bound provided by our proposed
Exp3-OE algorithm and available regret lower-bounds in the literature. To tighten this
gap, we can either improve even further Exp3-OE or look for better lower bounds.
Besides this direction, we are also interested in looking for conditions on observations
graphs (other than the symmetry property and Assumption (A1) studied in Chap-
ter 8) such that when applying Exp3-OE to SOOSP satisfying such conditions, its regret
guarantee is improved.

In the OSPBand model (also for the online bandit CB game), the fundamental
question of finding an efficient method to compute the (exact) optimal exploration
distribution to use in our proposed Edge algorithm (and the ComBand algorithm)
still remains open. In Chapter 9, we proposed a heuristic procedure that efficiently
searches among the distributions satisfying Assumption (WP)—which technically does
not cover the set of all usable distributions. However, interestingly, in our numerical
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experiments for graphs having particular symmetries corresponding to the online
bandit CB game, it appears that the heuristic can find very near-optimal exploration
distributions. This raises two questions as follows: Can we prove that there exists a
distribution in the �-dimensional search-space defined by Assumption (WP) yielding
optimality? Which condition of the graphs in OSPBand is sufficient for this property to
hold? A better regret lower-bound for OSPBand (and for the online bandit CB game)
is another important challenge.

Finally, recall that in the online learning setting, we focused specifically on online
resource allocation games with combinatorial structures, with the online discrete CB
game as a case study. An obvious extension is to consider games with continuous
strategy sets, e.g., the online version of the generalized CB game. One natural direction
we can follow is to exploit techniques from the literature of multi-armed bandits with
continuum-arm (see e.g., R. Agrawal (1995)) and/or bandits in metric spaces (see e.g.,
Kleinberg et al. (2008)). However, in the particular case of the online generalized CB
game, it might be non-trivial to apply the results from these models because the losses
suffered by the learner are generated by discontinuous functions due to the rule of the
game.

Other Research Directions

Beyond the direct extensions mentioned above, the framework of resource allocation
games that we introduced in this thesis can lead to other research directions and more
broadly defined problems. One of the interesting situations appearing in practice is
resource allocation games where cooperative players can form coalitions. For example,
a security problem where # defenders want to cooperate to fight against a strong
attacker can be modeled as a CB game (with more than two players) with the setup as
follows: A set of # (selfish) players with small budgets compete against one opponent
with a larger budget. The “small” players win a battlefield if their aggregate allocations
is higher than the “big” player’s allocation and in that case, the value of this battlefield
is then shared among the small players. Each “small” player wants to optimize her
cooperation with others to gain as much as possible while the “big” player needs to
predict such coalitions and fights against them. Our results in the two-player CB game
may serve as bases for studying fundamental questions in this cooperative model such
as how important is each player to certain coalitions or what is the optimal payoff that
each player can achieve. Another applicable setting that may be considered, when
cooperation is allowed in resource allocation games, is where players in a team can
communicate but with a cost, and an interesting question is to find conditions under
which players have incentives to communicate.

Recall that in this thesis, we use the online learning perspective to model and study
sequential plays in resource allocation games with incomplete information (by the
regret-minimization analysis). An alternative approach is to model them as repeated
incomplete information games (e.g., by the model of Aumann et al. (1995)). For in-
stance, types of players can be defined by their budgets that will be drawn randomly
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(and kept as private information). Another interesting setting is the LB game where
contest success functions (CSFs) are drawn randomly from a given set, players may
know this set but not precisely the drawn CSFs. In these cases, a Bayes-Nash equilib-
rium analysis could be an important contribution. Another direction is where players
have asymmetric information about the games and the main objective is to determine
conditions in which a player has an incentive to reveal his information. An example is
the setting where players, without knowledge of her opponents’ budgets, can choose
to pre-allocate before the game starts; at a high-level, this pre-allocation is equivalent
to revealing partial information about their budget. Initial analyses of this approach
appeared in some works in the literature, e.g., Chandan et al. (2020).

Learning equilibria in games is another worth-mentioning direction that relates to
online learning techniques (see also our discussion in Section 7.3.4). On the one hand,
recall that in the literature of the (one-shot) constant-sum discrete CB game (which can
be easily transformed to a zero-sum game), it remains impractical to implement the
algorithms computing the exact equilibria in large-scale instances (see our discussion
in Chapter 5). On the other hand, when zero-sum games are played repeatedly, a
well-known result is that the (marginal) empirical distributions of plays converge
almost surely to the set of Nash equilibria. Therefore, it is interesting to look for
a method, based on this convergence, to compute the equilibria of the discrete CB
game, then compare its complexity (depending on the related rate of convergence)
with that of other available methods in the literature. Another fundamental question
is to study the convergence of the actual sequence of plays when players doing regret-
minimization policies in online resource allocation games. However, it seems that
when following this direction, the structure of resource allocation games does not
provide any particular advantage and the question in this case is as challenging as that
in a general setting.

Finally, we discuss an interesting class of problems having a close relation with
the resource allocation games considered in this thesis: multi-item auctions—simply
defined as situations where a bidder needs to decide the bids for several simultaneously
running auctions (selling different items) in order to optimize the aggregate payoffs. In
a multi-item auction requiring integer bids, the strategy set of a bidder (with a virtual
budget which is equal to the aggregate of the values that she assigns on the items) is
very similar to that of a player in the discrete CB game. Therefore, as in the online
(discrete) CB game, an online multi-item auction with integer bids, where a learner
plays and receives a stream of limited feedback, can also be cast into an online shortest
path problem. The question that arises is how a bidder can exploit particular auction
rules to improve her performance (e.g., in the first-price and second-price auctions,
side-observations might also exist and can be exploited).

Other settings in multi-item auctions are also interesting to study. There exist
applications where a bidder is provided a total budget to distribute throughout the
stages and toward many simultaneously running auctions; for example, a marketing
campaign is invested with a certain budget and is allowed to freely choose how to
distribute it in a certain time duration. This situation involves not only the correlation
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between the decisions in different auctions but also the correlation between decisions
in different stages. A possible approach is to model this problem into the multi-armed
bandit with knapsacks framework (see e.g., Badanidiyuru et al. (2013)). Another
crucial problem in online multi-item auctions is the optimization of the auctioneer. An
interesting question, in the mechanism design perspective, is the following: given the
freedom in choosing the auction rule, what is an optimal choice of an auctioneer such
that when all bidders conduct a specific no-regret policy, it brings the highest profit?
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Appendix

Appendix A

Supplementary Materials for Chapter 4 on the

Cℬ= Game

A.1 Preliminary Lemmas

Lemma A.1. Given a game Cℬ= (or ℒℬ=), for any �∗ ∈ S(4.5)
= , we have:

(8) �∗
�
,�∗

�
> 0 and �∗ = �∗

�
/�∗

�
.

(88) For any 8 ∈ [=], we have E[�(�∗ ,8] = 1
2
E�8
�∗
�
, E[�,�∗ ,8] =

(
E�8
�∗
�

)2
�∗
�

2E�8
, E[�(�∗ ,8] = 1

2
E�8
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and
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2E�8
.

(888) -� =
∑
8∈[=] E[�∗

8] and -� =
∑
8∈[=] E[�∗

8 ].

(8E) For any 8 ∈ [=], �∗
8 and �∗

8 have a constant upper-bound; particularly,

P
(
�∗
8 ≤2-�

)
=P

(
�∗
8 ≤2-�

)
=1.

Proof.

(8) The positivity of �∗
�

and �∗
�

follows from the positivity of �∗ and the definitions
of �∗

�
and �∗

�
in (4.6) and (4.7). By dividing (4.6) by (4.7) and combining with

(4.5), we trivially have that �∗ = �∗
�
/�∗

�
.

(88) These results come directly from the definitions of the distributions ��(
�∗ ,8

, ��,
�∗ ,8

��(
�∗ ,8

and ��,
�∗ ,8

.
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(888) We multiply both sides of (4.7) by -�/�∗
�

and both sides of (4.6) by -�/�∗
�

then
using the fact that �∗ = �∗

�
/�∗

�
to obtain the following:

-�
=

∑
9∈Ω�(�∗)

1
2

E�9

�∗
�

+
∑

9∉Ω�(�∗)

(
E�9

�∗
�

)2
�∗
�

2E�9
, (10)

-�
=

∑
9∈Ω�(�∗)

(
E�9

�∗
�

)2
�∗
�

2E�9
+

∑
9∉Ω�(�∗)

1
2

E�9

�∗
�

. (11)

Combining with (88), we deduce that -� =
∑
8∈[=] E[�∗

8] and -� =
∑
8∈[=] E[�∗

8 ].

(8E) If 8 ∈ Ω�(�∗), we have �∗
8 = �(�∗ ,8 and �∗

8 = �,�∗ ,8 . Recalling Definition 4.1.4, we

have that P
(
�(8 ≤ E�8 /�∗

�

)
= 1 and P

(
�,8 ≤ E�8 /�∗

�

)
= 1. On the other hand, from

(10), we deduce

-� ≥ -� ≥
∑

9∈Ω�(�∗)

E�9

2�∗
�

≥
E�8

2�∗
�

.

Therefore,

P(�(8 ≤2-�)≥P
(
�(8 ≤ E�8 /�∗

�

)
=1,

and P(�,8 ≤ 2-�) ≥ P(�,8 ≤ E�8 /�∗
�) = 1.

We conclude that for any 8 ∈ Ω�(�∗), �∗
8 , �

∗
8 are bounded by 2-�. If 8 ∉ Ω�(�∗),

we have �∗
8 = �,�∗ ,8 and �∗

8 = �(�∗ ,8 . Recalling Definition 4.1.4, we have that

P
(
�,8 ≤ E�8 /�∗

�

)
= 1 and P

(
�(8 ≤ E�8 /�∗

�

)
= 1. On the other hand, from (11),

we deduce

-� ≥
∑

9∉Ω�(�∗)

E�9

2�∗
�

≥
E�8

2�∗
�

.

Therefore,

P(�,8 ≤ 2-�) ≥ P
(
�,8 ≤ E�8 /�∗

�

)
= 1,

and P(�(8 ≤ 2-�) ≥ P(�(8 ≤ E�8 /�∗
�) = 1.

We conclude that for 8 ∉ Ω�(�∗), �∗
8 , �

∗
8 are also bounded by 2-�.

Proposition 4.1.6. Under Assumption (�0), for any game Cℬ= , there exist positive constants

¯
�, �̄,

¯
�, �̄, that do not depend on =, such that for any �∗ ∈S(4.5)

= and its corresponding �∗
�
,�∗

�
,

we have
¯
�≤�∗≤ �̄ and

¯
�≤�∗

�
,�∗

�
≤ �̄.

Proof. Let �∗ ∈ S(4.5)
= , we consider the following cases:
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Case 1: If 0 < �∗ < min
8∈[=]

{
E�8
E�8

}
. In this case, Ω�(�∗) = [=], and since �∗ is a solution of

(4.5), we deduce:

�∗
=
-�

-�

∑=
8=1 E

�
8∑=

8=1
(E�8 )2
E�8

≥ -�

-�

= ¯
F
=F̄

=

(
F̄
=
¯
F

)2

¯
F

=F̄

=
-�

-�

(
¯
F

F̄

)4
.

Here, the inequality comes directly from (4.1).

Case 2: If �∗ ≥ max
8∈[=]

{
E�8
E�8

}
. In this case, Ω�(�∗) = ∅, and since �∗ is a solution of (4.5),

we deduce:

�∗
=
-�

-�

∑=
8=1

(E�8 )2

E�8∑=
8=1 E

�
8

≤ -�

-�

(
F̄

¯
F

)4

.

Case 3: If ∃8 , 9 :
E�8
E�8

≤ �∗ <
E�9

E�9
. In this case, we have �∗ ∈

[ (
¯
F
F̄

)2
,
(
F̄

¯
F

)2
]
; this is trivially

deduced from (4.1), .
In conclusion, we conclude the bounds of �∗ as in the statement of Proposition 4.1.6;

here, we denote �̄ := max

{
-�

-�

(
F̄

¯
F

)4
,
(
F̄

¯
F

)2
}
= -�

-�

(
F̄

¯
F

)4
and

¯
� := min

{
-�

-�

(
¯
F
F̄

)4
,
(
¯
F
F̄

)2
}
.

On the other hand, from the definition of �∗
�

in (4.6), we deduce

�∗
� ≥ (�∗)2

2-�

∑
8∈Ω�(�∗)

(
¯
F

=F̄

)2 1
F̄
=
¯
F

+ 1
2-�

∑
8∉Ω�(�∗) ¯

F

=F̄

≥ min

{ (�∗)2
2-�

,
1

2-�

}
·
∑

8∈[=]
1
=

(
¯
F

F̄

)3

≥ min

{ (�∗)2
2-�

,
1

2-�

}
·
(
¯
F

F̄

)3
.

Similarly, we have the upper-bound

�∗
� ≤ max

{ (�∗)2
2-�

,
1

2-�

}
·


∑
8∈Ω�(�∗)

1
=

(
F̄

¯
F

)3

+
∑

8∉Ω�(�∗)

1
=

(
F̄

¯
F

)3
= max

{ (�∗)2
2-�

,
1

2-�

}
·
(
F̄

¯
F

)3

.

Similarly, we can prove that min
{

1
2-� ,

1
2�∗2-�

} (
¯
F
F̄

)3 ≤ �∗
�

≤ max
{

1
2-� ,

1
2�∗2-�

} (
F̄

¯
F

)3
;

therefore,

min

{
�∗2

2-�
,

1
2-�

,
1

2-�
,

1
2(�∗)2-�

} (
¯
F

F̄

)3
≤�∗

� ,�
∗
� ≤max

{
�∗2

2-�
,

1
2-�

,
1

2-�
,

1
2(�∗)2-�

} (
F̄

¯
F

)3

.

Since �∗ ∈ [
¯
�, �̄], �∗

�
and �∗

�
are bounded in [

¯
�, �̄], where

¯
� := min

{
¯
�2

2-�
,

1
2-�

,
1

2-�
,

1
2�̄2-�

} (
¯
F

F̄

)3
,
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�̄ := max

{
�̄2

2-�
,

1
2-�

,
1

2-�
,

1
2
¯
�2-�

} (
F̄

¯
F

)3

.

Finally, we prove a trivial result that will be used quite often in the remainder of
this section.

Lemma A.2. For any �̂ > 0 and �̂ ≥ 1, we have that (ln(�̂) + 1) ln
(

1
min{�̂,1/4}

)
≥ ln

(
�̂
�̂

)
.

Proof. Case 1: If �̂ < 1/4. In this case, we have ln(1/�̂) > 1; therefore,

(ln(�̂)+1) ln

(
1

min{�̂, 1/4}

)
= (ln(�̂) + 1) ln

(
1
�̂

)
= ln(�̂) ln

(
1
�̂

)
+ ln

(
1
�̂

)
> ln

(
�̂

�̂

)
.

Case 2: If �̂ ≥ 1/4. We have ln(1/�̂) ≤ 1; therefore,

(ln(�̂)+1) ln

(
1

min{�̂, 1/4}

)
= (ln(�̂)+1) ln

(
1

1/4

)
= ln(�̂)+1 ≥ ln(�̂)+ln

(
1
�̂

)
= ln

(
�̂

�̂

)
.

A.2 Proof of Theorem 4.2.3

First note that in the remainders of this section, for any bounded, non-negative random
variable / (i.e., ∃� > 0 : P(/ ∈ [0, �]) = 1), any measurable function 6 on R, we write∫ ∞

0
6(G)d�/(G) instead of

∫ �

0
6(G)d�/(G) if there is no need to emphasize the bounds

of /. For the sake of notation, we also denote by �=0 the event
{∑

9∈[=] �
∗
9 = 0

}
and

by �>0 its complement event, that is
{∑

9∈[=] �
∗
9 > 0

}
. Similarly, we denote by �=0 the

event
{∑

9∈[=] �
∗
9 = 0

}
and by �>0 the event

{∑
9∈[=] �

∗
9 > 0

}
.

Recall the notation ��=8 and ��=8 as the univariate marginal distributions corre-

sponding to battlefield 8 ∈ [=] of the IU�∗

�
and IU�∗

�
strategies (the corresponding

random variables are denoted �=8 and �=8 ).From the definition of the IU�∗
strategy (via

Algorithm 5), for any G ≥ 0 and 8 ∈ [=], we have:

��=8 (G) = P
({
�=8 ≤ G

} ⋂
�=0

)
+ P

({
�=8 ≤ G

} ⋂
�>0

)

= P (�=0) +P
({

�∗
8 · -�∑
9∈[=] �

∗
9

≤ G
} ⋂

�>0

)
. (12)

Here, we have used the fact that if
∑
9∈[=] �

∗
9 = 0 (i.e., when �=0 happens), then �=8 = 0

by definition and thus, P(�=8 ≤ G) = 1 and P
({
�=8 ≤ G

} ⋂
�=0

)
= P(�=0). Similarly

to (12), for any G ≥ 0 and 8 ∈ [=],

��=8 (G) = P (�=0) +P
({

�∗
8 · -�∑
9∈[=] �

∗
9

≤ G
} ⋂

�>0

)
. (13)

For the random variables �=8 and �=8 (8 ∈ [=]), we prepare a lemma stating several
useful results as follows (its proof is given in Appendix A.3).
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Lemma A.3. For any = and 8 ∈ [=], we have

(8) P(�=8 = 0) = P(�∗
8 = 0) and P(�=8 = 0) = P(�∗

8 = 0).

(88) P(�=8 = G) = P(�=8 = H) = 0 for any G ∈ (0,∞)\{-�} and H ∈ (0,∞)\{-�}.

(888) P(�=8 = -�) ≤
(
1 − ¯

�

�̄
¯
F2

F̄2

)=−1
and P(�=8 = -�) ≤

(
1 − ¯

�

�̄
¯
F2

F̄2

)=−1
.

Intuitively, Result (88) states that the function ��=8 (resp. ��=8 ) is continuous on
(0, -�) (resp. (0, -�)). The discontinuity of ��=8 (resp. ��=8 ) at -� (resp. at -�) is due
to the normalization step involved in the definition of the IU�∗

strategy; note that the
probability that �=8 = -� (resp. �=8 = -�) quickly tends to zero when = increases as
has been shown in Result (888). Finally, Result (8) shows that in some cases, ��=8 and ��=8
may be discontinuous at 0. This is due to the fact that the functions ��∗

8
and ��∗8 may

be discontinuous at 0. Moreover, recall that we chose the assignments of the outputs
in line 3 and 7 of Algorithm 5 to be allocating zero to every battlefield, i.e., the mass
at 0 of ��=8 and ��=8 is added by a (negligibly small) positive probability. While other
assignments do not affect our results, they make ��=8 (resp. ��=8 ) be discontinuous at
some points differing from 0 and -� (resp. -�), e.g., if in line 3 of Algorithm 5, we
assign G�8 = -�/=, the distribution ��=8 would also be discontinuous at the point-�/=.
Our choice of assignments provides more convenience in our analysis since we have
to consider their discontinuity at 0 in any case.

Finally, with all the preparation steps mentioned above, we are ready to prove
Theorem 4.2.3.

Theorem 4.2.3.

(i) In any game Cℬ= , there exists a positive number � = Õ(=−1/2) such that for any

�∗ ∈ S(4.5)
= , the following inequalities hold for any pure strategy x� and x� of play-

ers A and B:

Π
�(x� , IU�∗

�
) ≤ Π

�(IU�∗

�
, IU�∗

�
) + �,� , (4.13)

Π
�(IU�∗

�
, x�) ≤ Π

�(IU�∗

�
, IU�∗

�
) + �,� . (4.14)

(ii) There exists a constant �∗ > 0 such that for any � ∈ (0, 1] and in any game Cℬ=

with =≥ �∗�−2 ln
(

1
min{�,1/4}

)
, (4.13) and (4.14) hold for any �∗ ∈ S(4.5)

= , any pure

strategy x�, x� of players A and B.

Proof. In this section, we first give a proof of Result (88) of Theorem 4.2.3. Result (8)
will be deduced from (88). We first look for the condition on = such that (4.13) holds
for any pure strategy x� of player A. The proof that (4.14) holds for any pure strategy
of player B under the same condition can be done similarly and thus is omitted.

First, we write explicitly the payoffs of player A when player B plays the IU�∗

�

strategy and player A plays either the pure strategy x� or the IU�∗

�
strategy:

Π
�(x� , IU�∗

�
) = 

=∑
8=1

F�
8 P(�=8 = G�8 ) +

=∑
8=1

F�
8 P(�=8 < G�8 ), (14)
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Π
�(IU�∗

�
, IU�∗

�
) = 

=∑
8=1

F�
8 P(�=8 = �=8 ) +

=∑
8=1

F�
8 P(�=8 < �=8 )

= 

=∑
8=1

∫ ∞

0
F�
8 P(�=8 = G)d��=8 (G) +

=∑
8=1

∫ ∞

0
F�
8 P(�=8 < G)d��=8 (G).

(15)

We then prepare a useful lemma, its proof is given in Appendix A.4. Intuitively,
this lemma shows that as = is large enough, we can prove (4.13) without the need of
analyzing separately the case where players get tie allocations (that is our results hold
regardless of the tie-breaking-rule parameter ).

Lemma A.4. Given � ∈ (0, 1], there exists a constant �∗
0 > 0 (that does not depend on �) such

that for any = ≥ �∗
0 ln

(
1

min{�,1/4}

)
, for any game Cℬ= and �∗ ∈ S(4.5)

= the following inequality

is a sufficient condition of (4.13):

=∑
8=1

E�8 ��=8
(
G�8

)
≤

=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G) +

�

2
. (16)

In the remainders of the proof, we focus on (16) and look for the condition of = such
that it holds; this will be done in the following five steps. After that, from Lemma A.4,
we can conclude that (4.13) also holds with the corresponding condition on =.

Step 1: Prove that {��∗
8
}8 is optimal against {��∗8 }8 .

Lemma A.5. In any game Cℬ= , for any pure strategy x� of player A and �∗ ∈ S(4.5)
= , we have

=∑
8=1

E�8 ��∗8
(
G�8

)
≤

=∑
8=1

∫ ∞

0
E�8 ��∗8 (G)d��∗

8
(G). (17)

The proof of Lemma A.5 is given in Appendix A.5. This lemma can be interpreted as
follows: if the allocation of player B to battlefield 8 follows the distribution ��∗8 , then
it is optimal for player A to play such that her allocation at this battlefield follows ��∗

8

(we do not know if it is possible to construct a mixed strategy such that player A’s
allocation at battlefield 8 follows ��∗

8
for all 8 ∈ [=]; however, this does not affect our

results in this work). Using this lemma, we will analyze the validity of (16) by proving
that, as = → ∞, the terms in (16) respectively converge toward the terms in (17). To do
this, we consider the next step.

Step 2: Prove that ��=8 and ��=8 uniformly converge toward ��∗
8
and ��∗8 as = increases.

Lemma A.6. For any �1 ∈ (0, 1], there exists �1 > 0 (that does not depend on �1) such that

for any = ≥ �1�
−2
1 ln

(
1

min{�1 ,1/4}

)
and 8 ∈ [=],

sup
G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

��� ≤ �1 and sup
G∈[0,∞)

�����=8 (G) − ��∗8 (G)
��� ≤ �1. (18)
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A proof of this lemma is given in Appendix A.6. The main intuition of this result
comes from the fact that �=8 (resp. �=8 ) is the normalization of �∗

8 , 8 ∈ [=] (except for the
special cases of the events �=0 and �=0) and the use of concentration inequalities on
the random variables

∑
9∈[=] �

∗
9 (and

∑
9∈[=] �

∗
9). In this work, we apply the Hoeffding’s

inequality (Theorem 2, Hoeffding (1963)) to obtain the rate of convergence indicated
here in Lemma A.6.

Step 3: Prove that the left-hand-side of (16) converges toward the left-hand-side

of (17). Take �1 as indicated in Lemma A.6, we define �∗
1 :=16�1(ln(4)+1) and de-

duce that
�∗

1
�2 ln

(
1

min{�,1/4}

)
≥�1

( 4
�

)2
ln

(
1

min{ �
4 ,

1
4 }

)
.13 Therefore, take �1 := �/4, for any

= ≥ �∗
1�

−2 ln
(

1
min{�,1/4}

)
, we have = ≥ �1�

−2
1 ln

(
1

min{�1 ,1/4}

)
; apply Lemma A.6, for any

pure strategy x� of player A, we have�����
=∑
8=1

E�8 ��=8
(
G�8

)
−

=∑
8=1

E�8 ��∗8
(
G�8

) ����� ≤
=∑
8=1

E�8 sup
G∈[0,∞)

�����=8 (G) − ��∗8 (G)
���

≤
=∑
8=1

E�8
�

4
=

�

4
. (19)

Step 4: Prove that the right-hand-side of (16) converges toward the right-hand-side

of (17). We consider the difference of the involved terms as follows.�����
=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G) −

=∑
8=1

∫ ∞

0
E�8 ��∗8 (G)d��∗

8
(G)

�����
≤

=∑
8=1

E�8

∫ ∞

0

�����=8 (G) − ��∗8 (G)
���d��=8 (G) +

=∑
8=1

E�8

����
∫ ∞

0
��∗8 (G)d��=8 (G) −

∫ ∞

0
��∗8 (G)d��∗

8
(G)

���� .
(20)

Let us define �∗
2 := �1 · 64(ln(8)+1) (again, �1 is the constant indicated in Lemma A.6),

we have that �∗
2�

−2 ln
(

1
min{�,1/4}

)
≥ �1

( 8
�

)2
ln

(
1

min{ �
8 ,

1
4 }

)
.14 Therefore, take �1 := �/8,

for any = ≥ �∗
2�

−2 ln
(

1
min{�,1/4}

)
, we have = ≥ �−2

1 ln
(

1
min{�1 ,1/4}

)
and by Lemma A.6,

we have

=∑
8=1

E�8

∫ ∞

0

�����=8 (G) − ��∗8 (G)
���d��=8 (G) ≤

=∑
8=1

E�8

∫ ∞

0

�

8
d��=8 (G) =

=∑
8=1

E�8
�

8
. (21)

13This is due to �∗
1 · �−2 ln

(
1

min{�,1/4}

)
= �1

(
4
�

)2
· (ln(4) + 1) ln

(
1

min{�,1/4}

)
≥ �1 ·

(
4
�

)2
ln

(
4
�

)
; here,

we have applied Lemma A.2 with �̂ := � and �̂ := 4; moreover, �
4 = min{ �4 ,

1
4 } since � ≤ 1; thus, we can

rewrite ln
(

4
�

)
= ln

(
1

min{�/4,1/4}

)
.

14This is due to �∗
2 · �−2 ln

(
1

min{�,1/4}

)
= �1

(
8
�

)2
· (ln(8) + 1) ln

(
1

min{�,1/4}

)
≥ �1 ·

(
8
�

)2
ln

(
8
�

)
; here,

we have applied Lemma A.2 with �̂ := � and �̂ := 8; moreover, �
8 = min{ �8 ,

1
4 } since � ≤ 1; thus, we can

rewrite ln
(

8
�

)
= ln

(
1

min{�/8,1/4}

)
.
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Now, we need to find an upper-bound of the second term in the right-hand-side
of (20). To do this, we present a lemma, called Lemma A.7 (stated below), that is
based on the portmanteau lemma (see, e.g., Van der Vaart (2000)) regarding the weak
convergence of a sequence of measures. Note importantly that by a direct application
of the portmanteau lemma (since ��∗8 is Lipschitz continuous and from Lemma A.6, ��=8
uniformly converges to ��∗

8
), we can prove that

∫ ∞
0
��∗8 (G)d��=8 (G) converges toward∫ ∞

0
��∗8 (G)d��∗

8
(G) as = → ∞; however, note that the convergence rate obtained by doing

this is large due to the fact that the Lipschitz constant of ��∗8 (that is �∗
�
/E�8 ) increases as

= increases. To obtain a better convergence rate as indicated in Lemma A.7, we exploit
the properties of the involved functions that allow us to use the telescoping sum trick
(see Appendix A.7 for more details).

Lemma A.7. For any �2 ∈ (0, 1], there exists a constant �2 > 0 (that does not depend on �2)

such that for any = ≥ �2 · �−2
2 ln

(
1

min{�2 ,1/4}

)
and 8 ∈ [=], we have

����
∫ ∞

0
��∗8 (G)d��=8 (G) −

∫ ∞

0
��∗8 (G)d��∗

8
(G)

���� ≤ �2. (22)

The proof of Lemma A.7 is given in Appendix A.7. Based on this constant �2, we
define �∗

3 := 82�2(ln 8+1). Now, take �2 := �/8, we have that 15

�∗
3�

−2 ln

(
1

min{�, 1/4}

)
≥ �2�

−2
2 ln

(
1

min{�2 , 1/4}

)
;

therefore, = ≥ �∗
3�

−2 ln
(

1
min{�,1/4}

)
=⇒ = ≥ �2�

−2
2 ln

(
1

min{�2 ,1/4}

)
; by Lemma A.7, we

deduce ����
∫ ∞

0
��∗8 (G)d��=8 (G) −

∫ ∞

0
��∗8 (G)d��∗

8
(G)

���� ≤ �/8.

Combine this with (20) and (21), for any = = max{�∗
2 , �

∗
3}�−2 ln

(
1

min{�,1/4}

)
, we have

�����
=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G) −

=∑
8=1

∫ ∞

0
E�8 ��∗8 (G)d��∗

8
(G)

����� ≤
=∑
8=1

E�8 �/8 +
=∑
8=1

E�8 �/8 =
�

4
.

(23)

Step 5: Conclusion. For any = ≥ max{�∗
1 , �

∗
2 , �

∗
3}�−2 ln

(
1

min{�,1/4}

)
and any pure

strategy x� of player A, we conclude that

=∑
8=1

E�8 ��=8
(
G�8

)
≤

=∑
8=1

E�8 ��∗8
(
G�8

)
+ �

4
(from (19))

15Once again, apply Lemma A.2, �∗
3�

−2 ln
(

1
min{�,1/4}

)
= �2

(
8
�

)2
(ln(8) + 1) ln

(
1

min{�,1/4}

)
≥

�2

(
8
�

)2
ln

(
8
�

)
; moreover, we have �2 := �

8 =min
{
�
8 ,

1
4

}
.
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≤
=∑
8=1

∫ ∞

0
E�8 ��∗8 (G)d��∗

8
(G) + �

4
(from (17))

≤
=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G) +

�

4
+ �

4
(from (23))

=

=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G) +

�

2
.

This is exactly (16); thus, apply Lemma A.4 and denote �∗
(4.13) := max{�∗

0 , �
∗
1 , �

∗
2 , �

∗
3},

we have proved that (4.13) holds for any = ≥ �∗
(4.13)�

−2 ln
(

1
min{�,1/4}

)
. Similarly,

we can prove that there exists a constant �∗
(4.14) such that (4.14) holds for any = ≥

�∗
(4.14)�

−2 ln
(

1
min{�,1/4}

)
. Finally, define �∗ := max{�∗

(4.13) , �
∗
(4.14)}, we conclude the

proof for Result (88).
Now, to obtain Result (8), we prove that Result (88) implies Result (8). Note that the

constant �∗ found in the Result (88) does not depend on neither = nor �. Moreover, the
function

� : (0,∞) → (0,∞)

�̃ ↦→ �∗ �̃−2 ln

(
1

min{�̃, 1/4}

)
.

is continuous and increases to infinity when � tends to zero. Therefore, for any

= ≥ 1, there exists an � > 0 such that = = �∗�−2 ln
(

1
min{�,1/4}

)
. Now, apply Re-

sult (88), (4.13) and (4.14) hold in the game Cℬ= for any �∗ ∈ S(4.5)
= and pure strategies

x� , x�. We conclude the proof by notice that if � ≥ 1/4, we have = = �∗�−2 and thus
� =

√
=/�∗ = O(=−1/2); on the other hand, if � < 1

4 , we have ln
( 1
�

)
> 1 that induces

= = �∗�−2 ln
( 1
�

)
≥ �∗�−2 ≥ �∗

� , thus, 1
� ≤ =

�∗ . We deduce that

� =

√
�∗

=
ln

(
1
�

)
≤

√
�∗

=
ln

( =
�∗

)
= Õ(=−1/2).

A.3 Proof of Lemma A.3

(8) Assuming �∗
8 = 0, if

∑
9≠8 �

∗
9 = 0 then �=8 = 0 (due to line 3 of Algorithm 5) and

if
∑
9≠8 �

∗
9 > 0 then �=8 = �∗

8

/ ∑
9∈[=] �

∗
9 = 0. Reversely, assuming �=8 = 0, then

regardless whether
∑
9∈[=] �

∗
9 = 0 or

∑
9∈[=] �

∗
9 > 0, we have �∗

8 = 0. Therefore,
�=8 = 0 ⇔ �∗

8 = 0 for any = and 8 ∈ [=]. Similarly, we can prove that

�=8 = 0 ⇔ �∗
8 = 0.

(88) The results are trivial in cases where G > -� and H > -� due to the definition
of �=8 and �=8 (that guarantees that with probability 1, �=8 ≤ -� and �=8 ≤ -�).
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In the following, we consider the case where G ∈ (0, -�). For any =, 8 ∈ [=], we
denote /8 :=

∑
9≠8 �

∗
9 and obtain:

P(�=8 = G)

=P

(
{�=8 = G}

⋂
�>0

)
(since G > 0)

=P

({
�∗
8 =

G

-�

∑
9∈[=]

�∗
9

} ⋂
�>0

)
=P

({
�∗
8

(
1 − G

-�

)
=

G

-�

∑
9≠8
�∗
9

} ⋂
�>0

)

=P

({
�∗
8 =

/8 · G
-� − G

} ⋂
�>0

)
(note that -� − G > 0)

≤P({�∗
8 = /8 = 0} ∩ �>0) +

∫
I>0
P

(
�∗
8 =

I · G
-� − G

)
d�/8 (I)

≤P(�=0 ∩ �>0) +
∫
I>0

0 d�/8 (I)

=0.

Here, the second-to-last inequality comes from the fact that IG
-�−G > 0, ∀I > 0,

∀G ∈ (0, -�) and P(�∗
8 = 0) = 0 for any 0 > 0. Similarly, we can prove that

P(�=8 = H) = 0 for any H ∈ (0, -�).

(888) We have

P(�=8 = -�) = P ©«


�∗
8 =

∑
9∈[=]

�∗
9



⋂

�>0
ª®¬

≤ P ©«
∑
9≠8

�∗
9 = 0

ª®¬
=

∏
9≠8

P

(
�∗
9 = 0

)
.

Here, the last equality comes from the fact that �∗
9 , 9 ∈ [=] are non-negative and

independent.

Now, if there exists 9 ≠ 8 such that 9 ∈ Ω�(�∗), then P(�∗
9 = 0) = 0 due to

the fact that �∗
9 = �(�∗ , 9 and the definition of �(�∗ , 9 (see (4.8)). In this case,∏

9≠8 P

(
�∗
9 = 0

)
= 0. On the other hand, if 9 ∉ Ω�(�∗) for any 9 ≠ 8, then

�∗
9 = �,�∗ , 9 for 9 ≠ 8; therefore,

∏
9≠8

P

(
�∗
9 = 0

)
=

∏
9≠8

[(
E�9

�∗
�

−
E�9

�∗
�

)/
E�9

�∗
�

]
=

∏
9≠8

(
1 −

E�9

E�9

�∗
�

�∗
�

)

≤
(
1 − ¯

�

�̄

¯
F
=F̄
F̄
=
¯
F

)=−1

=

(
1 − ¯

�

�̄
¯
F2

F̄2

)=−1

.
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Here, to obtain the last equality, we use (4.1) for the bounds of E�9 , E
�
9 and

Proposition 4.1.6 for the bounds of �∗
�
,�∗

�
.

Similarly, we can obtain P(�=8 = -�) ≤
(
1 − ¯

�

�̄
¯
F2

F̄2

)=−1
.

A.4 Proof of Lemma A.4

Fix � ∈ (0, 1] and assume that (16) is satisfied, we prove that (4.13) also holds by
comparing the terms in (16) with the terms in (4.13). First, due to the fact that  ≤ 1,
we can find a lower bound of the left-hand side of (16) as follows:

=∑
8=1

E�8 ��=8
(
G�8

)
=

=∑
8=1

E�8 P(�=8 = G�8 ) +
=∑
8=1

E�8 P(�=8 < G�8 )

≥ 

=∑
8=1

E�8 P(�=8 = G�8 ) +
=∑
8=1

E�8 P(�=8 < G�8 )

= Π
�(x� , IU�∗

�
)/,�. (24)

Now, we turn our focus to the right-hand-side of (16), we can rewrite the involved
term as follows.

=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G) =

=∑
8=1

∫ ∞

0
E�8 P(�=8 = G)d��=8 (G) +

=∑
8=1

∫ ∞

0
E�8 P(�=8 < G)d��=8 (G).

We observe that
=∑
8=1

∫ ∞
0
E�8 ��=8 (G)d��=8 (G) is very similar to the expression ofΠ�(x� , IU�∗

�
)

stated in (15). The main difference lies at the coefficient of the term related to the tie
cases that is the tie-breaking parameter . Therefore, we consider the following two
cases of :

Case 1:  = 1. For any =, divide two sides of (15) (with  = 1) by,� and recall that

E�8 := F�
8 /,� ,∀8, we trivially have

=∑
8=1

∫ ∞
0
E�8 ��=8 (G)d��=8 (G) = Π�(IU�∗

�
, IU�∗

�
)/,� .

Case 2:  < 1. From Results (88) and (888) of Lemma A.3, for any G > 0, we have

P(�=8 = G) ≤ �=−1 where we define � :=
(
1 − ¯

�

�̄
¯
F2

F̄2

)
< 1. We consider two cases of 

as follows.

• If 2(1−) ≤ 1, define �̂1 := 1
ln(1/�)+1 > 0, we have that16 �̂1 ln

(
1

min{�,1/4}

)
≥ log� �+1;

therefore, for any = ≥ �̂1 ln
(

1
min{�,1/4}

)
, we obtain = − 1 ≥ log� � and

�=−1 ≤ �log� �
= � ≤ �

2(1 − ) (note that � < 1 and in this case 2(1−) ≤ 1).

16If � < 1/4, then ln(1/�) > 1 and �̂1 ln
(

1
min{�,1/4}

)
=

ln(1/�)
ln(1/�) + ln(1/�) > log� � + 1; otherwise, if

� ≥ 1/4, we have ln(1/�) ≤ 1 and �̂1 ln
(

1
min{�,1/4}

)
= 1

ln(1/�) + 1 ≥ ln(1/�)
ln(1/�) + 1 = log� � + 1 (note that

ln(1/�) > 0 since � < 1).
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• If 2(1−)>1, define �̂2 := 1
ln(1/�) +

ln(2−2)
ln(1/�) +1>0 and deduce that17

�̂2 ln

(
1

min{�, 1/4}

)
≥ log�

�

2(1 − ) +1.

We conclude that for any = ≥ �̂2 ln
(

1
min{�,1/4}

)
, we obtain = − 1 ≥ log�

(
�

2(1−)

)
and

�=−1 ≤ �
log�

�
2(1−) =

�

2(1 − ) .

Let us define�∗
0 = max{�̂1 , �̂2} > 0, we conclude that for any  < 1, = ≥ �∗

0 ln
(

1
min{�,1/4}

)
,

8 ∈ [=] and G > 0, we have

P(�=8 = G) ≤ �=−1 ≤ �

2(1 − ) . (25)

Note also that P(�=8 = �=8 = 0) = P(�=8 = 0)P(�=8 = 0) = P(�∗
8 = 0)P(�∗

8 = 0) = 0,∀8,18
we conclude that when  < 1, for any = ≥ �∗

0 ln
(

1
min{�,1/4}

)
, we have

=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G)

=

[
=∑
8=1

∫ ∞

0
E�8 P(�=8 < G)d��=8 (G) + 

=∑
8=1

∫ ∞

0
E�8 P(�=8 = G)d��=8 (G)

]

+ (1 − )
=∑
8=1

∫ ∞

0
E�8 P(�=8 = G)d��=8 (G)

=Π
�(IU�∗

�
, IU�∗

�
)/,� + (1 − )

=∑
8=1

E�8

∫
(0,∞)

�

2(1 − )d��
=
8
(G)

+ (1 − )
=∑
8=1

E�8 P(�=8 = �=8 = 0)

=Π
�(IU�∗

�
, IU�∗

�
)/,� + (1 − )

=∑
8=1

E�8

∫
(0,∞)

�

2(1 − )d��
=
8
(G) + 0

≤Π�(IU�∗

�
, IU�∗

�
)/,� + (1 − ) �

2(1 − )
=Π

�(IU�∗

�
, IU�∗

�
)/,� + �/2.

17If � < 1/4, we have �̂2 ln
(

1
min{�,1/4}

)
= log� � +

(
log1/� (2 − 2) + 1

)
ln

(
1
�

)
> log� �−log� (2 − 2)+1;

otherwise, if � ≥ 1/4, we have �̂2 ln
(

1
min{�,1/4}

)
= �̂2 ≥ ln(1/�)

ln(1/�)+
ln(2−2)
ln(1/�) +1 ≥ log� �−log� (2−2)+1

(since 1 ≥ ln
(

1
�

)
).

18Note that if 8 ∈ Ω�(�∗) then P(�∗
8
= 0) = 0, if 8 ∉ Ω�(�∗) then P(�∗

8
= 0) = 0 (see (4.8)-(4.12)); therefore,

P(�∗
8
=0)P(�∗

8
=0)=0,∀8.
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In conclusion, regardless of the value of , for any = ≥ �∗
0 ln

(
1

min{�,1/4}

)
, we have

=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G) ≤ Π

�(IU�∗

�
, IU�∗

�
)/,� + �/2. (26)

Combine (24), (26) and the assumption that (16) holds, for any = ≥ �∗
0 ln

(
1

min{�,1/4}

)
,

we have

Π�(x� , IU�∗

�
)

,�

(24)
≤

=∑
8=1

E�8 ��=8
(
G�8

) (16)
≤

=∑
8=1

∫ ∞

0
E�8 ��=8 (G)d��=8 (G)+�/2

(26)
≤

Π�(IU�∗

�
, IU�∗

�
)

,�
+�.

By multiplying both sides of this inequality by,�, we obtain (4.13).

A.5 Proof of Lemma A.5

We compute the right-hand-side of (17) based on the definition of ��∗
8

and ��∗8 (see
Definition 4.1.4).

=∑
8=1

∫ ∞

0
E�8 ��∗8 (G)d��∗

8
(G)

=

∑
8∈Ω�(�∗)

∫ ∞

0
E�8 ��,�∗ ,8

(G)d��(
�∗ ,8

(G) +
∑

8∉Ω�(�∗)

∫ ∞

0
E�8 ��(�∗ ,8

(G)d��,
�∗ ,8

(G)

=

∑
8∈Ω�(�∗)

∫ E�
8

�∗
�

0
E�8

©«
E�8
�∗
�
− E�8

�∗
�

E�8
�∗
�

+ G

E�8
�∗
�

ª®®¬
1
E�8
�∗
�

dG +
∑

8∉Ω�(�∗)

∫ E�
8

�∗
�

0
E�8

G

E�8
�∗
�

1
E�8
�∗
�

dG

=

∑
8∈Ω�(�∗)

E�8

(
1 −

E�8 �
∗

2E�8

)
+

∑
8∉Ω�(�∗)

(E�8 )2
1

2�∗E�8
. (27)

On the other hand, for any pure strategy x� of player A, we have:

=∑
8=1

E�8 ��∗8
(
G�8

)
=

∑
8∈Ω�(�∗)

E�8 ��,�∗ ,8

(
G�8

)
+

∑
8∉Ω�(�∗)

E�8 ��(�∗ ,8

(
G�8

)

≤
∑

8∈Ω�(�∗)
E�8

©«
E�8
�∗
�
− E�8

�∗
�

E�8
�∗
�

+
G�8 �

∗
�

E�8

ª®®¬
+

∑
8∉Ω�(�∗)

E�8

(
G�8 �

∗
�

E�8

)

≤
∑

8∈Ω�(�∗)

(
E�8
�∗
�

−
E�8
�∗
�

)
�∗
� + �∗

�-
� (since

∑=

8=1
G�8 ≤ -�)

=

∑
8∈Ω�(�∗)

E�8

(
1 −

E�8 �
∗

2E�8

)
+

∑
8∉Ω�(�∗)

(E�8 )2
1

2�∗E�8
. (28)
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Here, to obtain the last equality, we use (10) to rewrite -�. Finally, from (27) and (28),
we conclude that (17) holds for any x� and �∗.

A.6 Proof of Lemma A.6

Since the definition of ��=8 involves P(�=0) (see (12)), we first look for an upper-bound

of P(�=0). For any = and �∗ ∈ S(4.5)
= , if Ω�(�∗) ≠ ∅, i.e., there exists 8 such that

�∗
8 = �(�∗ ,8 , then P(�∗

8 = 0) = 0 due to the definition of �(�∗ ,8 (see (4.8)); in this case,

P(�=0) =
∏

9∈[=] P
(
�∗
9 = 0

)
= 0. On the other hand, if Ω�(�∗) = ∅, then �∗

9 = �,�∗ , 9 for

any 9 ∈ [=]; therefore,

P(�=0) =
∏
9∈[=]
P

(
�∗
9 = 0

)
=

∏
9∈[=]

[(
E�9

�∗
�

−
E�9

�∗
�

)/
E�9

�∗
�

]
=

∏
9∈[=]

(
1 −

E�9

E�9

�∗
�

�∗
�

)
≤

(
1 − ¯

�

�̄
¯
F2

F̄2

)=
.

(29)
Here, the last inequality comes directly from (4.1) and Proposition 4.1.6. Recall the nota-

tion� :=
(
1 − ¯

�

�̄
¯
F2

F̄2

)
and define �̃0 := ln(4)+1

ln(1/�) >0, we have �̃0 ln
(

1
min{�1 ,1/4}

)
≥ log�

( �1
4

)
.19

Therefore, for any =≥ �̃0 ln
(

1
min{�1 ,1/4}

)
we have = ≥ log� (�1/4) and since � < 1

we have:

P(�=0) ≤ �= ≤ �log�(�1/4)
= �1/4. (30)

Now, we look for an upper-bound of P(�>0). For any =, define the constants

&= := �1
4 ¯

F

=F̄�̄
and � := 1

-�

(
F̄
=
¯
F
¯
�

1
&=

+ 1
)
= 1

-�

[
4�̄
�1 ¯
�

(
F̄

¯
F

)2
+ 1

]
, we consider the following

term for any 8 ∈ [=]:

P

({
�∗
8 −

�∗
8∑

9∈[=] �
∗
9

-� > &=

} ⋂
�>0

)

≤ P
({������∗

8 −
�∗
8∑

9∈[=] �
∗
9

-�

����� > &=

} ⋂
�>0

)

≤ P
(
�∗
8

���∑
9∈[=]

�∗
9 − -�

���>&=
∑

9∈[=]
�∗
9

)
= P

(
�∗
8

���∑
9∈[=]

�∗
9 − -�

���>&=-
�−&=

(
-�−

∑
9∈[=]

�∗
9

))
≤ P

(
�∗
8

���∑
9∈[=]

�∗
9 − -�

���>&=-
�−&=

���∑
9∈[=]

�∗
9 − -�

���)

= P

(���∑
9∈[=]

�∗
9 − -�

���> &=-
�

�∗
8+&=

)

≤ P
(���∑

9∈[=]
�∗
9 − -�

���> &=-
�

F̄
=
¯
F
¯
� + &=

)

19This is due to the fact that �̃0 · ln
(

1
min{�1 ,1/4}

)
= 1

ln(1/�) (ln(4) + 1) ln
(

1
min{�1 ,1/4}

)
≥ ln(4/�1)

ln(1/�) = log�
( �1

4

)
;

here, we have applied Lemma A.2 (see Appendix A.1) for �̂ := �1 and �̂ := 4.
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= P

(���∑
9∈[=]

�∗
9 − -�

���> 1
�

)
. (31)

Here, the second-to-last inequality comes from the fact that for any 8 ∈ [=], �∗
8 is

upper-bounded by either E�8 /�∗
�

or E�8 /�∗
�

(see (4.8) and (4.10)), thus, it is bounded by
F̄/(=

¯
F
¯
�) (due to (4.1) and Proposition 4.1.6).

Recall that-� = E

[
=∑
9=1
�∗
9

]
(see Lemma A.1-(888)), we use the Hoeffding’s inequality

(see e.g., Theorem 2, Hoeffding (1963)) on the random variables �∗
8 , 8 ∈ [=] (bounded

in [0, F̄/(=
¯
F
¯
�)]) to obtain

P
©«
������
∑
9∈[=]

�∗
9 − -�

������ >
1
�

ª®¬
≤2 exp

©«
−2 1

�2∑
9∈[=]

(
F̄
=
¯
F
¯
�

)2

ª®®®®¬
=2 exp

[
−2=
�2

(
¯
�
¯
F

F̄

)2
]
. (32)

Now, we define �̃1 := 1
2

(
4
-�

�̄

¯
�
F̄2

¯
F2 + 1

-�

)2
(ln 8 + 1)

(
F̄

¯
F
¯
�

)2
; due to the definition of �, we

have that20 �̃1 · 1
�2

1
ln

(
1

min{�1 ,1/4}

)
≥ �2

2 ln
(

8
�1

) (
F̄

¯
F
¯
�

)2
; therefore,∀= ≥ �̃1�

−2
1 ln

(
1

min{�1 ,1/4}

)
,

we can deduce that 2=
�2

(
¯
F
¯
�
F̄

)2
≥ ln

(
8
�1

)
and thus,

2 exp

[
−2=
�2

(
¯
�
¯
F

F̄

)2
]
≤ 2 exp

[
− ln

(
8
�1

)]
=

�1

4
. (33)

Combining (31), (32) and (33), we deduce that

P

({
�∗
8 −

�∗
8∑

9∈[=] �
∗
9

-� > &=

} ⋂
�>0

)
≤ �1

4
,∀= ≥ �̃1�

−2
1 ln

(
1

min{�1 , 1/4}

)
. (34)

Finally, note that for any =, 8 ∈ [=] and G ≥ 0, we also have

P

({
�∗
8 · -�∑
9∈[=] �

∗
9

≤ G

} ⋂
�>0

)

=P
©«


�∗
8-

�∑
9∈[=]

�∗
9

≤ G


⋂ 


�∗
8−

�∗
8-

�∑
9∈[=]

�∗
9

≤ &=



⋂

�>0

ª®®¬
20This is due to �̃1 · 1

�2
1

ln
(

1
min{�1 ,1/4}

)
= 1

2

[
1
-�

(
4
�1

�̄

¯
�
F̄2

¯
F2 + 1

�1

)]2
· (ln(8)+1) ln

(
1

min{�1 ,1/4}

)
·
(
F̄

¯
F
¯
�

)2
≥

�2

2 · ln
(

8
�1

)
·
(
F̄

¯
F
¯
�

)2
; here, we have used Lemma A.2 with �̂ := �1 and �̂ := 8 and the fact that 1/� ≥ 1.
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+ P
©«


�∗
8 ·-�∑

9∈[=]
�∗
9

≤ G



⋂ 


�∗
8−

�∗
8-

�∑
9∈[=]

�∗
9

>&=



⋂

�>0

ª®®¬
≤P

(
{�∗

8 ≤ G+&=}
)
+ P

©«


�∗
8−

�∗
8-

�∑
9∈[=]

�∗
9

>&=



⋂

�>0

ª®®¬
. (35)

Therefore, define �1 := max{�̃0 , �̃1}, for any = ≥ �1�
−2
1 ln

(
1

min{�1 ,1/4}

)
, from (12),

we have

��=8 (G) − ��∗
8
(G)

=P (�=0) + P
({

�∗
8 · -�∑
9∈[=] �

∗
9

≤ G

} ⋂
�>0

)
− ��∗

8
(G)

≤ �1

4
+P

(
{�∗

8 ≤ G+&=}
)
+P

©«


�∗
8−

�∗
8-

�∑
9∈[=]

�∗
9

>&=



⋂

�>0

ª®®¬
− ��∗

8
(G) (from (30) and (35))

≤ �1

4
+ ��∗

8
(G + &=) +

�1

4
− ��∗

8
(G) (due to (34)). (36)

The final step is to bound the term ��∗
8
(G + &=) − ��∗

8
(G); we present this as the

following lemma.

Lemma A.8. For any & > 0, = > 0, 8 ∈ [=] and G ∈ [0,∞), we have ��∗
8
(G + &) − ��∗

8
(G) ≤ &�∗

�

E�8
.

Proof. If 8 ∈ Ω�(�∗), then �∗
8 = �(�∗ ,8 and

��(
�∗ ,8

(G + &) − ��(
�∗ ,8

(G) =




(G+&)�∗
�

E�8
− G�∗

�

E�8
=

&�∗
�

E�8
, if 0 ≤ G <

E�8
�∗
�
− &

1 − G�∗
�

E�8
≤ &�∗

�

E�8
, if

E�8
�∗
�
− & ≤ G ≤ E�8

�∗
�

1 − 1 ≤ &E�8
�∗
�
, if G >

E�8
�∗
�

. (37)

On the other hand, if 8 ∉ Ω�(�∗), then �∗
8 = �,�∗ ,8 and we have

��,
�∗ ,8

(G + &) − ��,
�∗ ,8

(G) =




(G+&)�∗
�

E�8
− G�∗

�

E�8
=

&�∗
�

E�8
, if 0 ≤ G <

E�8
�∗
�
− &

1 −
E�
8

�∗
�
−
E�
8

�∗
�

E�
8

�∗
�

− G�∗
�

E�8
≤ &�∗

�

E�8
, if

E�8
�∗
�
− & ≤ G ≤ E�8

�∗
�

1 − 1 ≤ &E�8
�∗
�
, if G >

E�8
�∗
�

. (38)

Combine this lemma with (36) and recall the definition of &= (which induces that

&=�
∗
�
/E�8 ≤ �1/2), we conclude that ��=8 (G)−��∗

8
(G) ≤ �1 for any = ≥ �1�

−2
1 ln

(
1

min{�1 ,1/4}

)
.
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Similarly, for = ≥ �1�
−2
1 ln

(
1

min{�1 ,1/4}

)
and 8 ∈ [=], we deduce that for any G ∈ [0,∞),

��=8 (G)−��∗
8
(G)≥−�1. Therefore,

= ≥ �1�
−2
1 ln

(
1

min{�1 , 1/4}

)
=⇒ sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

��� ≤ �1.

The inequality sup
G∈[0,∞)

�����=8 (G)−��∗8 (G)
��� ≤ �1 can be proved in a similar way.

A.7 Proof of Lemma A.7

In this proof, we will use the notations

E 5 (-) :=
∫ ∞

0
5 (I)d�/(G) and Eℐ 5 (-) :=

∫
ℐ
5 (I)d�/(G),

for any function 5 , random variable / and interval ℐ. To simplify the notation, let
us define " := �̄

¯
�
F̄2

¯
F2 and we denote by ℐ8 the interval

[
0, E�8 /�∗

�

]
. For any �2 ∈ (0, 1],

we define �2 := �2
6+2" . We first consider the case where 8 ∈ Ω�(�∗), i.e., �∗

8 = �,�∗ ,8 .

Note that ��=8 (G) = ��∗
8
(G) = 1 for any G ≥ 2-� (see Lemma A.1-(8E)); the left-hand-side

of (22) can be rewritten as follows.���E��∗8 (�=8 ) − E��∗8 (�∗
8 )
���

=

����
∫
[0,2-�]

��∗8 (G)d��=8 (G) −
∫
[0,2-�]

��∗8 (G)d��∗
8
(G)

����
≤

���E[0,E�8 /�∗
�
]��,

�∗ ,8
(�=8 ) − E[0,E�8 /�∗

�
]��,

�∗ ,8
(�∗

8 )
��� +

�������
∫

(E�8 /�∗
�
,2-�]

d��=8 (G)−
∫

(E�8 /�∗
�
,2-�]

d��∗
8
(G)

�������
=

���Eℐ8��,
�∗ ,8

(�=8 ) − Eℐ8��,�∗ ,8 (�
∗
8 )
��� + �����=8 (2-�) − ��=8 (E

�
8 /�∗

�) − ��∗
8
(2-�) + ��∗

8
(E�8 /�∗

�)
���

≤
���Eℐ8��,

�∗ ,8
(�=8 ) − Eℐ8��,�∗ ,8 (�

∗
8 )
���+ 2 sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

��� . (39)

We now focus on bounding the first term in (39). Let us define  :=
⌈
"
�2

⌉
and  + 1

points G 9 such that G0 := 0 and G 9 := G 9−1 + E�8
�∗
�
 ,∀9 ∈ [ ]. In other words, we have

the partitions ℐ8 =
⋃ 
9=1 %9 where we denote by %1 the interval [G0 , G1] and by %9 the

interval (G 9−1 , G 9] for 9 = 2, . . . ,  . For any G, G′ ∈ %9 ,∀9 ∈ [ ], from the definition of
�,�∗ ,8 , we have

|��,
�∗ ,8

(G) − ��,
�∗ ,8

(G′)| =
�∗
�

E�8
|G − G′ | ≤

�∗
�

E�8
·
E�8
�∗
�

· 1
 

≤ �̄=F̄

¯
F

· F̄

=
¯
F
¯
�
· 1
 

=
"

 
≤ �2. (40)

Now, we define the function 6(G) :=
 ∑
9=1
��,

�∗ ,8
(G 9)1%9 (G). Here, 1%9 is the indicator

function of the set %9 . From this definition and Inequality (40), we trivially have
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|��,
�∗ ,8

(G) − 6(G)| ≤ �2, ∀G ∈ ℐ8 . Therefore,

���Eℐ8��,
�∗ ,8

(�=8 ) − Eℐ8 6(�=8 )
��� ≤ ∫

�8

�����,
�∗ ,8

(G) − 6(G)
���d��=8 (G) ≤

∫
ℐ8
�2d��=8 (G) ≤ �2 , (41)

���Eℐ8��,
�∗ ,8

(�∗
8 ) − Eℐ8 6(�∗

8 )
��� ≤ ∫

�8

�����,
�∗ ,8

(G) − 6(G)
���d��∗

8
(G) ≤

∫
ℐ8
�2d��∗

8
(G) ≤ �2. (42)

Now, we note that for any 9 ∈ [ ], ��,
�∗ ,8

(G 9) =
9∑

<=0

[
��,

�∗ ,8
(G<) − ��,

�∗ ,8
(G<−1)

]
; here, for the

sake of notation, we denote by G−1 an arbitrary negative number (that is ��,
�∗ ,8

(G−1) = 0).

Using this, we have:

��Eℐ8 6 (
�=8

)
− Eℐ8 6

(
�∗
8

) ��
=

������
 ∑
9=1

��,
�∗ ,8

(G 9)
[
Eℐ81%9

(
�=8

)
− Eℐ81%9

(
�∗
8

) ] ������
=

������
 ∑
9=1

��,
�∗ ,8

(G 9)
[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] ������
=

������
 ∑
9=1

(
9∑

<=0

[
��,

�∗ ,8
(G<) − ��,

�∗ ,8
(G<−1)

] [
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] )������
≤

������
[
��,

�∗ ,8
(G0) − ��,

�∗ ,8
(G−1)

]  ∑
9=1

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] ������
+

������
 ∑
<=1

©«
[
��,

�∗ ,8
(G<) − ��,

�∗ ,8
(G<−1)

]  ∑
9=<

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ]ª®¬
������ . (43)

Note thatP
(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

)
=��=8 (G 9)−��=8 (G 9−1)−��∗

8
(G 9)+��∗

8
(G 9−1).21 Moreover,

due to the fact that G0 = 0 and ��,
�∗ ,8

(G−1) = 0, we can rewrite the first term in (43) as fol-

lows: ������
[
��,

�∗ ,8
(G0) − ��,

�∗ ,8
(G−1)

]  ∑
9=1

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] ������
=

��������,�∗ ,8 (0) ·

 ∑
9=1

(
��=8 (G 9) − ��=8 (G 9−1) − ��∗

8
(G 9) + ��∗

8
(G 9−1)

)
������

=

�����,
�∗ ,8

(0) ·
[
��=8 (G ) − ��=8 (G0) − ��∗

8
(G ) + ��∗

8
(G0)

] ���
21For any 9 ≥ 2, this is trivially since %9 := (G 9−1 , G 9]. For %1 = [0, G1], we have that

P

(
�=
8
∈ %1

)
−P

(
�∗
8
∈ %1

)
= P(�=

8
∈ (0, G1])−P(�∗

8
∈ (0, G1])+P(�=8 = 0)−P(�∗

8
= 0); moreover, due to

Lemma A.3-(8), we also note that P(�=
8
=0)=P(�∗

8
=0).
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≤��,
�∗ ,8

(0) · 2 sup
G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���
≤2 sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���. (44)

Now, recall that G< = G<−1 + E�8 /(�∗
�
·  ),∀< ∈ [ ], by the definition of ��,

�∗ ,8
, we

deduce that ��,
�∗ ,8

(G<) − ��,
�∗ ,8

(G<−1) =
E�8
�∗
�
 

�∗
�

E�8
≤ �̄

¯
�
F̄2

¯
F2

1
 = "

 ,∀< ∈ [ ]. Therefore, the

second term in (43) is������
 ∑
<=1

©«
[
��,

�∗ ,8
(G<) − ��,

�∗ ,8
(G<−1)

]  ∑
9=<

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ]ª®¬
������

=

������
 ∑
<=1

©«
[
��,

�∗ ,8
(G<) − ��,

�∗ ,8
(G<−1)

]  ∑
9=<

[
��=8 (G 9) − ��=8 (G 9−1) − ��∗

8
(G 9) + ��∗

8
(G 9−1)

]ª®¬
������

=

�����
 ∑
<=1

( [
��,

�∗ ,8
(G<) − ��,

�∗ ,8
(G<−1)

] [
��=8 (G ) − ��=8 (G<−1) − ��∗

8
(G ) + ��∗

8
(G<−1)

] )�����
≤

 ∑
<=1

(
��,

�∗ ,8
(G<) − ��,

�∗ ,8
(G<−1)

)
· 2 sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���
≤

 ∑
<=1

"

 
· 2 sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���
=2" sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���. (45)

Inject (44) and (45) into (43), we obtain that��Eℐ8 6 (
�=8

)
− Eℐ8 6

(
�∗
8

) �� ≤ (2 + 2") sup
G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���. (46)

Apply the triangle inequality and combine (41), (42), (46), we have that:���Eℐ8��,
�∗ ,8

(�=8 ) − Eℐ8��,�∗ ,8 (�
∗
8 )
��� ≤ 2�2 + (2 + 2") sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���.
From this and (39), we obtain that

|E��∗8 (�
=
8 ) − E��∗8 (�

∗
8 )| ≤ 2�2 + (4 + 2") sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���. (47)

Recall the constant�1 indicated in Lemma A.6, we define�2 :=�1(6 + 2")2 [ln(6+2")+1]
(note that �2 does not depend on = nor �2) and deduce that �2�

−2
2 ln

(
1

min{�2 ,1/4}

)
≥

�1�
−2
2 ln

(
1

min{�2 ,1/4}

)
.22 Take �1 := �2, for any = ≥ �2�

−2
2 ln

(
1

min{�2 ,1/4}

)
, we have

22Apply Lemma A.2, we have �2�
−2
2 ln

(
1

min{�2 ,1/4}

)
= �1

(
6+2"
�2

)2
[ln(6+2")+1] ln

(
1

min{�2 ,1/4}

)
≥

�1

(
6+2"
�2

)2
ln

(
6+2"
�2

)
. Moreover, since �2

6+2" = min
{ �2

6+2" , 1
4

}
= min

{
�2 ,

1
4

}
(due to the fact that

�2 = �2/(6 + 2") < 1/4). Therefore, we have �2�
−2
2 ln

(
1

min{�2 ,1/4}

)
≥ �1�

−2
2 ln

(
1

min{�2 ,1/4}

)
.
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= ≥ �1�
−2
1 ln

(
1

min{�1 ,1/4}

)
and by Lemma A.6, we have sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���≤ �1 = �2

and thus by applying (47), we obtain:

|E��∗8 (�
=
8 ) − E��∗8 (�

∗
8 )| ≤ 2�2 + (4 + 2") �2 = (6 + 2")�2 = �2.

This is exactly (22). We can have a similar result in the case where 8 ∉ Ω�(�∗) (its proof
is omitted here) and we conclude the proof of this lemma.
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To prove Lemma 5.4.1, we first need the uniform convergence of the continuous dis-
tributions ��̃=8

and ��̃=8
towards ��̃∗

8
and ��̃∗8

(defined in (5.5) and (5.1), (5.2)). This is
stated as follows.

Lemma B.1. Fix # ≥ 1, for any �2 ∈ (0, 1], there exists an # ∗ := O
(
�−2
2 ln(�−1

2 )
)

such that

for any = ≥ # ∗ and 8 ∈ [=], we have

sup
G∈[0,∞)

�����̃=8 (G) − ��̃∗
8
(G)

��� ≤ �2 and sup
G∈[0,∞)

�����̃=8 (G) − ��̃∗8 (G)
��� ≤ �2 .

Proof. Choosing � := �2 ¯
F#2

=F̄ , for any 8 ∈ [=], we have

%
(���̃=8 − �̃∗

8

�� > �
)
= %

©«

���������
�̃∗
8

=∑
9=1
�̃∗
9

− �̃∗
8

���������
> �

ª®®®®¬
= %

©«
�������̃∗

8

©«
1 −

=∑
9=1

�̃∗
9

ª®¬
������ > �

������
=∑
9=1

�̃∗
9

������
ª®¬

≤ %
©«
�������̃∗

8

©«
1 −

=∑
9=1

�̃∗
9

ª®¬
������ > � − �

������1 −
=∑
9=1

�̃∗
9

������
ª®¬

= %
©«
������
(
�̃∗
8 + �

) ©«
1 −

=∑
9=1

�̃∗
9

ª®¬
������ > �

ª®¬
≤ %

©«
������1 −

=∑
9=1

�̃∗
9

������ >
�

2 F̄#=
¯
F + �

ª®¬
. (48)

The last equality comes from the fact that the random variable �̃∗
8 is upper bounded by

2F8,# ≤ 2 F̄
=
¯
F#,∀8. Let � := �

2 F̄#=
¯
F +�

. Using the fact that �

[
=∑
9=1
�̃∗
9

]
= 1 and applying the

Hoeffding’s inequality on bounded random variables {�̃∗
8 }8∈[=] (in the range

[
0, 2 F̄

=
¯
F#

]
),

we have

%
©«
������1 −

=∑
9=1

�̃∗
9

������ > �
ª®¬
≤ %

©«
�������


=∑
9=1

�̃∗
9


−

=∑
9=1

�̃∗
9

������ ≥ �
ª®¬



199

≤ 2 exp
©«
− 2�2

=∑
8=1

(
2F8
, #

)2

ª®®®¬
≤ 2 exp

©«
− 2�2

#2= 4
=2

(
F̄

¯
F

)2

ª®®¬
= 2 exp

(
−�2=

2#2

(
F̄

¯
F

)2
)
.

On the other hand,

1
�2

=

(
2F̄#

=
¯
F�

+ 1

)2

=

(
2F̄#

=
¯
F

�2 ¯
F#2

=F̄

+ 1

)2

=

(
2

(
F̄

¯
F

)2
1

�2#
+ 1

)2

≤ * :=
1

�2
2

[
2
#

(
F̄

¯
F

)2

+ 1

]2

, since �2
2 ≤ �2 ≤ 1.

That means, �2 ≥ 1
* . Therefore, by the fact that �[

=∑
9=1
�̃∗
9] = 1, we have:

%
(���̃=8 − �̃∗

8

�� > �
)
≤ 2 exp

(
− =

2*#2

(
F̄

¯
F

)2
)

≤ �2
2
,∀= ≥ # ∗

where

# ∗ := 2*#2 ln

(
4
�2

) (
¯
F

F̄

)2
=

2

�2
2

[
2

(
F̄

¯
F

)2

+ #

]2

ln

(
4
�2

) (
¯
F

F̄

)2
= O(�−2

2 ln(�−1
2 )).

Now, for any 8 ∈ [=] and G ∈ [0,∞),

��̃=8
(G) − ��̃∗

8
(G) = %(

{
�̃=8 ≤ G

}
) − ��̃∗

8
(G)

≤ %
({
�̃=8 ≤ G

}
∩

{���̃=8 − �̃∗
8

�� ≤ �
})

+ %
(���̃=8 − �̃∗

8

�� > �
)
− ��̃∗

8
(G)

≤ %
({
�̃=8 ≤ G

}
∩

{
�̃∗
8 ≤ �̃=8 + �

})
+ %

(���̃=8 − �̃∗
8

�� > �
)
− ��̃∗

8
(G)

≤ %
(
�̃∗
8 ≤ G + �

)
+ �2

2
− ��̃∗

8
(G) ,∀= ≥ # ∗
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= ��̃∗
8
(G + �) − ��̃∗

8
(G) + �2

2
,∀= ≥ # ∗

≤ �

2F8,#2
+ �2

2
,∀= ≥ # ∗

≤ �2 ,∀= ≥ # ∗.

Similarly, we can deduce the inequality ��̃=8
(G)−��̃∗

8
(G) ≥ −�2 ,∀G ∈ [0,∞),∀= ≥ # ∗,

∀8 and we conclude that sup
G∈[0,∞)

�����̃=8 (G) − ��̃∗
8
(G)

��� ≤ �2 .

The inequality corresponding to player B sup
G∈[0,∞)

�����̃=8 (G) − ��̃∗8 (G)
��� ≤ �2 can be proved

in a similar way (the bounds in the above proof are chosen for both random variables{
�̃∗
8

}
8
and

{
�̃∗
8

}
8
, thus, the precise definition of # ∗ given above also works to prove this

inequality).

Proof of Lemma 5.4.1

Lemma 5.4.1. Fix # ≥ 1, for any �̄1 ∈ (0, 1], there exists # ∗ := O
(
�̄−2

1 ln
(
�̄−1

1

) )
, such that

for any = ≥ # ∗, there exists"0 := O (=/�̄1), such that for any< ≥ "0 and 8 ∈ {1, 2, . . . , =},
we have

sup
Ĝ∈N

�������8 (Ĝ) − ��̃∗
8

(
Ĝ

<

)���� < �̄1 and sup
Ĝ∈N

�������8 (Ĝ) − ��̃∗8

(
Ĝ

<

)���� < �̄1.

Proof. For any random variables * and + , from the definition of rounding function
A< , for any <, Ĝ ∈ N, we have23

* −+ ≤ Ĝ

<
⇒ A< (*) − A< (+) ≤ Ĝ

<
⇒ * −+ <

Ĝ + 1
<

,

which induces

%

(
* −+ ≤ Ĝ

<

)
≤ %

(
A< (*) − A< (+) ≤ Ĝ

<

)
≤ %

(
* −+ ≤ Ĝ + 1

<

)
.

Therefore, for each 8 ∈ [=], by replacing* :=
∑8
:=1 �̃

=
:

and + :=
∑8−1
:=1 �̃

=
:

together with
definition of ��8 given in (5.3), for any Ĝ ∈ N, we have

��̃=8

(
Ĝ

<

)
≤ ���8

(Ĝ) ≤ ��̃=8

(
Ĝ + 1
<

)
.

On the other hand, applying Lemma B.1 with �2 := �̄1/2, for any = ≥ # ∗ where
# ∗ := O

(
�−2
2 ln(�−1

2 )
)
= O

(
�̄−2

1 ln(�̄−1
1 )

)
, for any 8 ∈ [=], we have

������̃=8
(
Ĝ

<

)
− ��̃∗

8

(
Ĝ

<

)���� < �̄1

2
and

������̃=8
(
Ĝ + 1
<

)
− ��̃∗

8

(
Ĝ + 1
<

)���� < �̄1

2
.

23If * − + ≤ Ĝ
< , then A<(*) ≤ A< (+ + Ĝ/<) = A<(+) + Ĝ/<. If A< (*) − A< (+) ≤ Ĝ/<, then

* < A<(*) + 1
2< ≤ A<(+) + Ĝ

< + 1
2< ≤ + + Ĝ+1

< .
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Therefore, for any = ≥ # ∗, for any Ĝ , < ∈ N, we have that

��̃∗
8

(
Ĝ

<

)
− �̄1

2
< ���8

(Ĝ) < ��̃∗
8

(
Ĝ + 1
<

)
+ �̄1

2

⇒��̃∗
8

(
Ĝ

<

)
− �̄1

2
< ���8

(Ĝ) < ��̃∗
8

(
Ĝ

<

)
+ 1
<

,

2F8#2
+ �̄1

2
. (49)

The last inequality in (49) is trivially deduced from the definition of �̃∗
8 . Now, we can

choose"0 := =Emax
�̄1Emin#2 = O (=/�̄1); thus,∀< ≥ "0, 1

<
,

2F8#2 ≤ 1
"0

,
2F8#2 =

�̄1Emin#
2

=Emax

,
2F8#2 ≤ �̄1

2 .

Combining with (49), for any = ≥ # ∗, < ≥ "0, we have sup
Ĝ∈N

������8 (Ĝ) − ��̃∗
8

(
Ĝ
<

)��� < �̄1.

The inequality with respect to ���8 and ��̃∗8
can be similarly proven.

Proof of Lemma 5.4.2

Lemma 5.4.2. Fix # ≥ 1. For any �′ ∈ (0, 1] and = ≥ # ∗, there exists an "2 := O (=/�′),
such that for any < ≥ "2, we have

=∑
8=1


F8

⌈2
F8
, ?⌉∑
Ĥ=0

��̃∗8

(
Ĥ−1

<

)
�̃�̃∗

8

(
Ĥ

<

)
≥ ,

2#
−

=∑
8=1

,

2#<
− �′,. (5.19)

Proof. Recalling that �̃�̃∗
8

(
Ĥ
<

)
= ��̃∗

8

(
Ĥ
<

)
− ��̃∗

8

(
Ĥ−1
<

)
, to ease the notation, for any

Ĥ = 1, 2, . . . ,
⌈
2F8, ?

⌉
− 1, we denote

��̃∗8

(
Ĥ − 1

<

)
�̃�̃∗

8

(
Ĥ

<

)
=

(
Ĥ − 1

)
(,)2

#<2
(
2F8#

)2
:= g

(
Ĥ
)
,

while ��̃∗8

(
⌈2

F8
, ?⌉−1
<

)
�̃�̃∗

8

(
⌈2

F8
, ?⌉
<

)
does not have the form g

(⌈
2F8, ?

⌉)
.

Then, we have

⌈
2F8
, ?

⌉∑
Ĥ=0

[
��̃∗8

(
Ĥ − 1

<

)
�̃�̃∗

8

(
Ĥ

<

)]

=

⌈
2F8
, ?

⌉
−1∑

Ĥ=1

g
(
Ĥ
)
+ ��̃∗8

( ⌈
2F8, ?

⌉
− 1

<

)
�̃�̃∗

8

( ⌈
2F8, ?

⌉
<

)

=

⌈
2F8
, ?

⌉∑
Ĥ=1

g
(
Ĥ
)
+

[
��̃∗8

( ⌈
2F8, ?

⌉
− 1

<

)
�̃�̃∗

8

( ⌈
2F8, ?

⌉
<

)
− g

(⌈
2
F8
,
?
⌉)]

:=�1 + �2. (50)
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Here, the term �1 will be bounded from below by an approximation of the up-
per bound given in (5.13), which is the objective of this lemma. Indeed, for any
< ≥ "�1 := =Emax√

2#�′Emin#
≤ O (=/�′), we have

�1 :=
∑⌈

2F8
, ?

⌉
Ĥ=1

g
(
Ĥ
)
=

(,)2

#<2
(
2F8#

)2

∑⌈
2F8
, ?

⌉
Ĥ=1

(
Ĥ − 1

)

=
(,)2

#<2
(
2F8#

)2

⌈
2F8
, ?

⌉∑
Ĥ=1

Ĥ − (,)2

#<2
(
2F8#

)2

⌈
2F8
, ?

⌉∑
Ĥ=1

1

=
(,)2

#<2
(
2F8#

)2

(⌈
2F8
,

?

⌉
+ 1

) ⌈
2F8
,

?

⌉
− (,)2

#<2
(
2F8#

)2

⌈
2F8
,

?

⌉

≥

(
2F8
,

?
<

)2

(
2F8,#

)2

1
2#

−
2F8, ? + 1

#<2
(
2F8,#

)2
≥ 1

2#
− 1
<

,

2F8#
− �′

2
. (51)

Here, the last inequality in (51) comes from # := ?
< ≥ 1 and < ≥ "�1 .

Similarly, we can prove that for any < ≥ "�2 := =Emax
�′#2Emin

= O (=/�′), since ? = #<,
we have

�2 :=

[
��̃∗8

( ⌈
2F8, ?

⌉
− 1

<

)
�̃�̃∗

8

( ⌈
2F8, ?

⌉
<

)
− g

(⌈
2
F8
,
?
⌉)]

=

(⌈
2F8
,

?

⌉
− 1

)
,

2F8<#

(
1
#

−
⌈
2F8
,

?

⌉
,

2F8<#2

)

≥
(⌈

2F8
,

?

⌉
− 1

)
,

2F8<#

(
1
#

− 2F8?

,

,

2F8<#2
− ,

2F8<#2

)

=

(⌈
2F8
,

?

⌉
− 1

)
,

2F8<#

(
− ,

2F8<#2

)

≥ −
(
2F8
,

?

)
,

2F8<#

(
,

2F8<#2

)

≥ − �′

2
.

Combining this with the inequalities (50) and (51), for any = ≥ # ∗ and < ≥ "2 where
"2 := max {"�1 , "�2} = O

(
=
�′
)
, we conclude that

=∑
8=1


F8

⌈2
F8
, ?⌉∑
Ĥ=0

��̃∗8

(
Ĥ − 1

<

)
�̃�̃∗

8

(
Ĥ

<

)
≥

=∑
8=1

F8

(
1

2#
− 1
<

,

2F8#
− �′

)
,

which is exactly (5.19).



203

Appendix C

Supplementary Materials for Section 6.1 on the

ℒℬ= Game

C.1 Proof of Result in Section 6.1 on Lottery Blotto Games

Proof of Lemma 6.1.2

Lemma 6.1.2. There exists !0 > 0, such that for any � ∈ (0, 1], any = ≥ !0�
−2 ln

(
1

min{�,1/4}

)
and any game ℒℬ=(�), �∗ ∈ S(4.5)

= , � ∈ Δ�∗(�, �) and 8 ∈ [=], we have:

max

{
sup

H∗∈[0,2-�]

∫
X�(H∗ ,�)

d��=8 (G), sup
G∗∈[0,2-�]

∫
Y�(G∗ ,�)

d��=8 (H)
}
≤ � + �. (6.3)

Fix H∗ ∈ [0, 2-�], we look for the condition on = such that
∫
X�(H∗ ,�) d��=8 (G) ≤ �+�

holds. The condition corresponding to the inequality
∫
Y�(G∗ ,�) d��=8 (G) ≤ � + � with

G∗ ∈ [0, 2-�] can be proved similarly and thus is omitted in this section.
First, we note that if X�(H∗ , �) is empty,

∫
X�(H∗ ,�) d��=8 (G) = 0 and the result trivially

holds. Now, let us assume thatX�(H∗ , �) ≠ ∅, we can writeX�(H∗ , �) = �1
⋃
�2

⋃
�3 with24

�1 := {G ∈ [0, 2-�] : G = H∗ , |��(G, H∗) −  | ≥ �},
�2 := {G ∈ [0, 2-�] : G < H∗ , ��(G, H∗) ≥ �},
�3 := {G ∈ [0, 2-�] : G > H∗ , 1 − ��(G, H∗) ≥ �}.

It is trivial that �1 is either an empty set or a singleton; on the other hand, due to the
monotonicity of the CSF �� (see (�2), Definition 3.2.2), �2 and �3 are either empty sets
or half intervals. Moreover, for any arbitrary distribution �, we have that

∫
G∈�′

d�(G) =



0 , if �′ = ∅,
�(0) , if �′ = {0}, i.e., �′ is a singleton,
�(1) − �(0) , if �′ = (0, 1], i.e., �′ is a half interval.

Therefore, we can deduce that

∫
X�(H∗ ,�)

d��=8 (G) −
∫
X�(H∗ ,�)

d��∗
8
(G) =

3∑
9=1

(∫
�9

d��=8 (G) −
∫
�9

d��∗
8
(G)

)

≤ 5 sup
G∈[0,∞)

|��=8 (G) − ��∗
8
(G)|.

24Recall that by definition, ��(G, H∗) =  if G = H∗, ��(G, H∗) = 0 if G < H∗ and ��(G, H∗) = 1 if G > H∗
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Recall the constant �1 indicated in Lemma A.6, we define !0 := �152(ln(5) + 1). Note
that !0 does not depend on the choice of H∗. Take �1 := �/5, we can deduce that

!0�
−2 ln

(
1

min{�,1/4}

)
≥ �1�

2
1 ln

(
1

min{�1 ,1/4}

)
.25 Therefore, for any = ≥ !0�

−2 ln
(

1
min{�,1/4}

)
,

we have = ≥ �1�
2
1 ln

(
1

min{�1 ,1/4}

)
and by Lemma A.6, sup

G∈[0,∞)
|��=8 (G) − ��∗

8
(G)| ≤ �1 = �/5.

Hence, for any = ≥ !0�
−2 ln

(
1

min{�,1/4}

)
and � ∈ Δ�∗(�, �),

∫
X�(H∗ ,�)

d��=8 (G) ≤
∫
X�(H∗ ,�)

d��∗
8
(G) + 5 · �/5 ≤ � + �.

Proof of Theorem 6.1.3

Theorem 6.1.3. (Approximate equilibria of the generalized Lottery Blotto game).

(i) In any game ℒℬ=(�), there exists a positive number � ≤ Õ(=−1/2) such that for any

�∗ ∈ S(4.5)
= and � ∈ Δ�∗(�, �), the following inequalities hold for any pure strategy x�

and x� of players A and B:26

Π
�
� (x� , IU

�∗

�
) ≤ Π

�
� (IU

�∗

�
, IU�∗

�
) + (8� + 13�),� , (6.4)

Π
�
� (IU

�∗

�
, x�) ≤ Π

�
� (IU

�∗

�
, IU�∗

�
) + (8� + 13�),� . (6.5)

(ii) There exists !∗ > 0, such that for any � ∈ (0, 1] and in any game ℒℬ=(�) where

= ≥ !∗�−2 ln
(

1
min{�,1/4}

)
, (6.4) and (6.5) hold for any �∗ ∈ S(4.5)

= , � ∈ Δ�∗(�, �) and

any pure strategy x� , x� of players A and B.

Proof. We first give the proof of Result (88). For the sake of brevity, we only focus on
(6.4). The proof that (6.5) holds under the same condition can be done similarly and
thus is omitted. Note that in this proof, we often use the Fubini’s Theorem to exchange
the order of the double integrals.

Recall that x� = (G�8 )8∈[=], by the definition of the payoff functions in ℒℬ=(�), (6.4)
can be rewritten as

=∑
8=1

©«
E�8

∞∫
0

��
(
G�8 , H

)
d��=8

(
H
)ª®¬

−
=∑
8=1

©«
E�8

∞∫
0

∞∫
0

��
(
G, H

)
d��=8 (G)d��=8

(
H
)ª®¬

≤ 8�+ 13�.

(52)
We now prove that (52) holds under appropriate parameters values. To do this, we
prepare two useful lemmas as follows.

25Note that �1 = �
5 and apply Lemma A.2, !0 · �−2 ln

(
1

min{�,1/4}

)
= �1

(
5
�

)2
· (ln(5)+1) ln

(
1

min{�,1/4}

)
≥

�1 ·
(

5
�

)2
ln

(
5
�

)
; moreover, �

5 = min{ �5 ,
1
4 } since � ≤ 1; thus, we can rewrite ln

(
5
�

)
= ln

(
1

min{�/5,1/4}

)
=

ln
(

1
min{�1 ,1/4}

)
.

26Recall that Π�
�

and Π�
�

denote the payoffs functions of players A and B in the game ℒℬ=(�).
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Lemma C.1. For any pair of CSFs � = (�� , ��), any � ∈ (0, 1] and G∗ ∈ [0, 2-�], the

following results hold:

(8) For any =, 8 ∈ [=] and � ∈ Δ�∗(�, �),������
∞∫

0

��
(
G∗ , H

)
d��∗8

(
H
)
−

∞∫
0

��
(
G∗ , H

)
d��∗8

(
H
) ������ ≤ � + �. (53)

(88) There exists a constant !1 > 0 such that for any = ≥ !1�
−2 ln

(
1

min{�,1/4}

)
, 8 ∈ [=] and

� ∈ Δ�∗(�, �),������
∞∫

0

��
(
G∗ , H

)
d��=8

(
H
)
−

∞∫
0

��
(
G∗ , H

)
d��=8

(
H
) ������ ≤ � + 2�. (54)

Lemma C.2. Given � ∈ (0, 1], there exists !2 > 0 such that for any = ≥ !2�
−2 ln

(
1

min{�,1/4}

)
,

any game ℒℬ=(�), any � ∈ Δ�∗(�, �) and 8 ∈ [=], we have:������
∞∫

0

��
(
G, H

)
d��=8

(
H
)
−

∞∫
0

��
(
G, H

)
d��∗8

(
H
) ������ ≤ 2� + 4�,∀G ≥ 0, (55)

������
∞∫

0

∞∫
0

��
(
G, H

)
d��∗

8
(G)d��∗8

(
H
)
−

∞∫
0

∞∫
0

��
(
G, H

)
d��∗

8
(G)d��=8

(
H
) ������ ≤ 2� + 3�, (56)

������
∞∫

0

∞∫
0

��
(
G, H

)
d��=8

(
H
)
d��∗

8
(G) −

∞∫
0

∞∫
0

��
(
G, H

)
d��=8

(
H
)
d��=8 (G)

������ ≤ 2� + 4�. (57)

Lemma C.1 states the relation between the first term appearing in the left-hand-side
of (52) and the corresponding terms when we replace the CSF � by the Blotto functions
� and replace ��=8 by ��∗8 . A proof of Lemma C.1 is given in subsubsection C.1. On
the other hand, Lemma C.2 indicates several useful inequalities involving the players’
payoffs in the game ℒℬ= (when they play according to the IU�∗

strategy or playing
such that the marginals are ��∗

8
, ��∗8 ). Its proof is given in subsubsection C.1 that is

based on Lemma C.1 and the convergence of the distributions ��=8 , ��=8 toward ��∗
8
, ��∗8

(i.e., Lemma A.6).
We have another remark: for any = and 8 ∈ [=],

P(�∗
8 = �∗

8 = G) = 0,∀G ≥ 0. (58)

This can be trivially proved as follows: first, P(�∗
8 = �∗

8 = G) = P(�∗
8 = G)P(�∗

8 = G) since
they are independent; now, if G > 0, both ��∗

8
and ��∗8 are continuous at G and thus

P(�∗
8 = G) = P(�∗

8 = G) = 0; on the other hand, if G = 0, in the case where 8 ∈ Ω�(�∗),
since �∗

8 = �(�∗ ,8 , we have P(�∗
8 = G) = 0, in the case where 8 ∉ Ω�(�∗), since �∗

8 = �(�∗ ,8 ,
we have P(�∗

8 = G) = 0.
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Finally, use Lemma C.1 and Lemma C.2 and take !∗ = max{!1 , !2}, for any

= ≥ !∗�−2 ln
(

1
min{�,1/4}

)
, � ∈ Δ�∗(�, �) and any pure strategy x� of player A, we have:

=∑
8=1

©«
E�8

∞∫
0

��
(
G�8 , H

)
d��=8

(
H
)ª®¬

≤
=∑
8=1

©«
E�8

∞∫
0

��
(
G�8 , H

)
d��∗8

(
H
)ª®¬

+
=∑
8=1

E�8 (2� + 4�) (due to (55))

=

=∑
8=1

©«
E�8

∞∫
0

��
(
G�8 , H

)
d��∗8

(
H
)ª®¬

+ 2� + 4� (note that
∑=

8=1
E�8 = 1)

≤
=∑
8=1

©«
E�8

∞∫
0

��
(
G�8 , H

)
d��∗8

(
H
)ª®¬

+ 3� + 5� (due to (53))

=

=∑
8=1

[
E�8

(
P(�∗

8 = G�8 ) + P(�∗
8 < G�8 )

) ]
+ 3� + 5�

≤
=∑
8=1

E�8 ��∗8
(
G�8

)
+ 3� + 5� (since  ≤ 1)

≤
=∑
8=1

©«
E�8

∞∫
0

��∗8 (G)d��∗
8
(G)ª®¬

+ 3� + 5� (due to Lemma A.5)

=

=∑
8=1

©«
E�8

∞∫
0

P(�∗
8 < G)d��∗

8
(G)ª®¬

+ 3� + 5� (due to (58))

≤
=∑
8=1

©«
E�8

∞∫
0

∞∫
0

��
(
G, H

)
d��∗8

(
H
)
d��∗

8
(G)ª®¬

+ 3� + 5�

≤
=∑
8=1

©«
E�8

∞∫
0

∞∫
0

��
(
G, H

)
d��∗8

(
H
)
d��∗

8
(G)ª®¬

+ 4� + 6� (due to (53))

≤
=∑
8=1

©«
E�8

∞∫
0

∞∫
0

��
(
G, H

)
d��∗

8
(G)d��=8

(
H
)ª®¬

+ 6� + 9� (due to (56))

≤
=∑
8=1

©«
E�8

∞∫
0

∞∫
0

��
(
G, H

)
d��=8

(
H
)
d��=8 (G)

ª®¬
+ 8� + 13� (due to (57)).

Hence, we conclude that for = ≥ !∗�−2 ln
(

1
min{�,1/4}

)
(52) holds and thus, (6.4) also holds.

To prove that Result (88) implies Result (8), we can proceed similarly to the proof that
Theorem 4.2.3-(88) implies Theorem 4.2.3-(8) (see Section A.2). We conclude this proof.
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Proof of Lemma C.1

First, we prove (53). Note that ��∗8 (H) = 1,∀H > 2-� (see Lemma A.1-(8E)), for any =,
8 ∈ [=] and � ∈ Δ�∗(�, �), we have������

∞∫
0

��
(
G∗ , H

)
d��∗8

(
H
)
−

∞∫
0

��
(
G∗ , H

)
d��∗8

(
H
) ������

≤
∫
Y�(G∗ ,�)

����(G∗ , H) − ��(G∗ , H)
��d��∗8 (H) +

∫
[0,∞)\Y�(G∗ ,�)

����(G∗ , H) − ��(G∗ , H)
��d��∗8 (H)

=

∫
Y�(G∗ ,�)

��1 − ��(G∗ , H) − 1 + ��(G∗ , H)
��d��∗8 (H)

+
∫
[0,2-�]\Y�(G∗ ,�)

��1 − ��(G∗ , H) − 1 + ��(G∗ , H)
��d��∗8 (H)

=

∫
Y�(G∗ ,�)

����(G∗ , H) − ��(G∗ , H)
��d��∗8 (H) +

∫
[0,2-�]\Y�(G∗ ,�)

����(G∗ , H) − ��(G∗ , H)
��d��∗8 (H)

≤
∫
Y�(G∗ ,�)

d��∗8
(
H
)
+

∫
[0,2-�]\Y�(G∗ ,�)

�d��∗8
(
H
)

≤� + �. (59)

Here, the second-to-last inequality comes from the fact that 0 ≤ ��(G, H), ��(G, H) ≤ 1
for any G, H and the definition of Y�(G∗ , �) while the last inequality is due to the
definition of Δ�∗(�, �).

Now, in order to prove (54), we proceed similarly as in (59) to show that������
∞∫

0

��
(
G∗ , H

)
d��=8

(
H
)
−

∞∫
0

��
(
G∗ , H

)
d��=8

(
H
) ������

≤
∫
Y�(G∗ ,�)

d��=8
(
H
)
+

∫
[0,2-�]\Y�(G∗ ,�)

�d��=8
(
H
)

≤
∫
Y�(G∗ ,�)

d��=8
(
H
)
+ �. (60)

Finally, by Lemma 6.1.2, for any = ≥ !0�
−2 ln

(
1

min{�,1/4}

)
and � ∈ Δ�∗(�, �), we have∫

Y�(G∗ ,�) d��=8
(
H
)
≤ �+�. Combine this with (60), we conclude that (54) holds for any

= ≥ !0�
−2 ln

(
1

min{�,1/4}

)
and � ∈ Δ�∗(�, �). Take !1 := !0, we conclude the proof.

Proof of Lemma C.2

In this proof, we use the notations

Eℎ(-, H) :=
∫ ∞

0
ℎ(G, H)d�-(G) and Eℎ(G, .) :=

∫ ∞

0
ℎ(G, H)d�.(H),

where -,. are arbitrary non-negative random variables and ℎ is any function.



208 C. Supplementary Materials for Section 6.1 on the ℒℬ= Game

Proof of (55): For any 8 ∈ [=] and G ≥ 0, we have

������
∞∫

0

��
(
G, H

)
d��=8

(
H
)
−

∞∫
0

��
(
G, H

)
d��∗8

(
H
) ������

≤
��E��(G, �=8 )−E��(G, �=8 )��+��E��(G, �=8 )−E��(G, �∗

8 )
��+��E��(G, �∗

8 )−E��(G, �∗
8 )
�� . (61)

We notice that upper-bounds of the first and third terms in the right-hand-side of (61)
are given by (54) and (53) from Lemma C.1. We focus on finding an upper-bound of
the second term of (61); to do this, we rewrite this term as follows.

E��(G, �=8 ) =
∫
H<G

d��=8 (H) + P(�=8 = G) = ��=8 (G) − (1 − )P(�=8 = G), (62)

and E��(G, �∗
8 ) =

∫
H<G

d��∗8 (H) + P(�∗
8 = G) = ��∗8 (G) − (1 − )P(�∗

8 = G). (63)

If  = 1, we trivially have
��E��(G, �=8 ) − E��(G, �∗

8 )
�� = �����=8 (G) − ��∗8 (G)

���. In the following,

we assume that  < 1 and consider three cases:
Case 1: If G = 0. From Lemma A.3-(8), we have P(�=8 = 0) = P(�∗

8 = 0) and thus

��E��(0, �=8 ) − E��(0, �∗
8 )
�� =

�����
∫
H<0

d��=8 (H) −
∫
H<0

d��∗8 (H) + P(�=8 = 0) − P(�∗
8 = 0)

����� = 0.

Case 2: If G > 0, P(�∗
8 = G) = 0 by definition. On the other hand, from Results (88)

and (888) of Lemma A.3, we have P(�=8 = G) ≤ �=−1 where we define � :=
(
1 − ¯

�

�̄
¯
F2

F̄2

)
.

Following (25), for any = ≥ �0 ln
(

1
min{�,1/4}

)
(here, �0 is defined as in Section A.4), we

have �=−1 ≤ �
2(1−) . Therefore, for any = ≥ �0 ln

(
1

min{�,1/4}

)
, we have

��E��(G, �=8 ) − E��(G, �∗
8 )
��

≤|��=8 (G) − ��∗8 (G)| + (1 − )
��P(�=8 = G)

�� (due to (62) − (63))

≤ sup
G∈[0,∞)

|��=8 (G) − ��∗8 (G)| + (1 − ) �

2(1 − )

= sup
G∈[0,∞)

|��=8 (G) − ��∗8 (G)| +
�

2
.

In conclusion,
��E��(G, �=8 ) − E��(G, �∗

8 )
�� ≤ sup

G∈[0,∞)
|��=8 (G) − ��∗8 (G)| + �/2 for any G ≥ 0,

 ∈ [0, 1] and = ≥ �0 ln
(

1
min{�,1/4}

)
. Now, define �′

1 = �1 ·4(ln(2)+1) (where �1 is indi-

cated in Lemma A.6); take �1 := �/2, we have�′
1�

−2 ln
(

1
min{�,1/4}

)
≥ �1�

−2
1 ln

(
1

min{�1 ,1/4}

)
.

Therefore, for any = ≥ �′
1�

−2 ln
(

1
min{�,1/4}

)
, we have = ≥ �1�

−2
1 ln

(
1

min{�1 ,1/4}

)
and ap-

ply Lemma A.6, we have sup
G∈[0,∞)

|��=8 (G) − ��∗8 (G)| ≤ �1 = �/2.
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We deduce that for any G ≥ 0, for any = ≥ max{�0 , �
′
1}�−2 ln

(
1

min{�,1/4}

)
and

8 ∈ [=], we have: ��E��(G, �=8 ) − E��(G, �∗
8 )
�� ≤ �/2 + �/2 = �. (64)

Finally, apply Lemma C.1 to (61) to bounds the first and third term of its right-hand-
side, use (64) to bound its second-term and take !(55) = max{!1 , �0 , �

′
1}, we deduce

that for any = ≥ !(55)�
−2 ln

(
1

min{�,1/4}

)
and � ∈ Δ�∗(�, �),

������
∞∫

0

��
(
G, H

)
d��=8

(
H
)
−

∞∫
0

��
(
G, H

)
d��∗8

(
H
) ������ ≤ (� + 2�) + � + (� + �) = 2� + 4�.

Proof of (56): To prove (56), we note that similar to the proof of (53) in Lemma C.1
(by replacing ��∗8 by ��∗

8
and replacing ��(G∗ , H), ��(G∗ , H) by ��(G, H∗), ��(G, H∗)), we

can prove that for any =, 8 ∈ [=], � ∈ Δ�∗(�, �) and H∗ ∈ [0, 2-�], the following
inequality holds������

∞∫
0

��
(
G, H∗

)
d��∗

8
(G) −

∞∫
0

��
(
G, H∗

)
d��∗

8
(G)

������ ≤ � + �. (65)

Using this, we have������
∞∫

0

∞∫
0

��
(
G, H

)
d��∗

8
(G)d��∗8

(
H
)
−

∞∫
0

∞∫
0

��
(
G, H

)
d��∗

8
(G)d��=8

(
H
) ������

≤
∞∫

0

������
∞∫

0

��(G, H)d��∗
8
(G)−

∞∫
0

��(G, H)d��∗
8
(G)

������d��∗8 (H)

+

������
∞∫

0

∞∫
0

��(G, H)d��∗
8
(G)d��∗8 (H)−

∞∫
0

∞∫
0

��(G, H)d��∗
8
(G)d��=8 (H)

������
+

∞∫
0

������
∞∫

0

��(G, H)d��∗
8
(G) −

∞∫
0

��(G, H)d��∗
8
(G)

������d��=8 (H)
≤

∫ ∞

0
(�+�)d��∗8 (H)+

����
∫ ∞

0
E��(G, �∗

8 )d��∗
8
(G)−

∫ ∞

0
E��(G, �=8 )d��∗

8
(G)

����
+

∫ ∞

0
(�+�)d��=8 (H)

≤2�+2�+
∫ ∞

0

��E��(G, �=8 ) − E��(G, �∗
8 )
��d��∗

8
(G).

Finally, take !(56) = max{�0 , �
′
1} and apply (64), we deduce that (56) holds for any

= ≥ !(56)�
−2 ln

(
1

min{�,1/4}

)
.
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Proof of (57) Note that similar to the proof of (54) in Lemma C.1 (by replacing ��=8
by ��=8 and replacing ��(G∗ , H), ��(G∗ , H) by ��(G, H∗), ��(G, H∗)), we can prove that for

= ≥ !1�
−2 ln

(
1

min{�,1/4}

)
, 8 ∈ [=] and � ∈ Δ�∗(�, �),������

∞∫
0

��
(
G, H∗

)
d��=8 (G) −

∞∫
0

��
(
G, H∗

)
d��=8 (G)

������ ≤ � + 2�. (66)

Now, as in the proof leading to (64), we can prove that the following inequality holds

for any = ≥ max{�0 , �
′
1}�−2 ln

(
1

min{�,1/4}

)
, 8 ∈ [=] and H ≥ 0��E��(�∗

8 , H) − E��(�=8 , H)
�� ≤ �. (67)

Finally, take !(57) = max{!1 , �0 , �
′
1}, for any = ≥ !(57)�

−2 ln
(

1
min{�,1/4}

)
, 8 ∈ [=] and

� ∈ Δ�∗(�, �), we have������
∞∫

0

∞∫
0

��
(
G, H

)
d��=8

(
H
)
d��∗

8
(G) −

∞∫
0

∞∫
0

��
(
G, H

)
d��=8

(
H
)
d��=8 (G)

������
≤

∞∫
0

������
∞∫

0

��(G, H)d��∗
8
(G)−

∞∫
0

��(G, H)d��∗
8
(G)

������d��=8 (H)

+

������
∞∫

0

∞∫
0

��(G, H)d��∗
8
(G)d��=8 (H)−

∞∫
0

∞∫
0

��(G, H)d��=8 (G)d��=8 (H)

������
+

∞∫
0

������
∞∫

0

��(G, H)d��=8 (G) −
∞∫

0

��(G, H)d��=8 (G)

������d��=8 (H)

≤
∞∫

0

(� + �)d��∗
8
(G) +

∞∫
0

��E��(�∗
8 , H) − E��(�=8 , H)

��d��=8 (H)+
∞∫

0

(� + 2�)d��=8 (G)

≤2� + 4�.

Here, the second-to-last inequality comes from (65) and (66); and the last inequality is
due to (67). In conclusion, take !2 := max{!(55) , !(56) , !(57)}, we conclude the proof of
this lemma.

Remark on the Lottery Blotto games with continuous CSFs

In this section, we present and prove the remark stating that under the additional
assumption that the CSFs �� and �� are Lipschitz continuous on [0, 2-�] × [0, 2-�],
the statements in Theorem 6.1.3 also hold with (68) and (69) (see below) in places
of (6.4) and (6.5). For the sake of completeness, we formally state this result as follows.

Remark C.3. For any CSF �� and �� that are Lipschitz continuous on [0, 2-�] × [0, 2-�],
the following results hold (here, we denote � := (�� , ��)):
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(i) In any game ℒℬ=(�), there exists a positive number � ≤ Õ(=−1/2) such that for any

�∗ ∈ S(4.5)
= and � ∈ Δ�∗(�, �), the following inequalities hold for any pure strategy x�

and x� of players A and B:

Π
�
� (x� , IU

�∗

�
) ≤ Π

�
� (IU

�∗

�
, IU�∗

�
) + (2� + 5�),� , (68)

Π
�
� (IU

�∗

�
, x�) ≤ Π

�
� (IU

�∗

�
, IU�∗

�
) + (2� + 5�),� . (69)

(ii) For any � ∈ (0, 1], there exists a constant !� > 0 (that depends on � but does not depend

on �) such that in any game ℒℬ=(�) where = ≥ !��
−2 ln

(
1

min{�,1/4}

)
, (68) and (69)

hold for any �∗ ∈ S(4.5)
= , � ∈ Δ�∗(�, �) and any pure strategy x� , x� of players A and B.

Proof. We define the Lipschitz constant of �� , �� respectively by ℒ�� ,ℒ�� and let
ℒ� := max{ℒ�� ,ℒ��}. We focus on proving Result (88) of this Remark; Result (8) can
be deduced from Result (88) and thus is omitted.

Step 1: We prove that for any G∗ , H∗ ∈ [0, 2-�], there exists a constant �� (that does

not depend on � nor G∗ , H∗) such that for any = ≥ ���
−2 ln

(
1

min{�,1/4}

)
, the following

inequalities hold:

������
∞∫

0

��
(
G, H∗

)
d��=8 (G) −

∞∫
0

��
(
G, H∗

)
d��∗

8
(G)

������ ≤ �, (70)

������
∞∫

0

��
(
G∗ , H

)
d��=8

(
H
)
−

∞∫
0

��
(
G∗ , H

)
d��∗8

(
H
) ������ ≤ �. (71)

The proof of this statement is quite similar to the proof of Lemma A.7 (see Sec-
tion A.7). We present here the proof of (70); the proof of (71) can be done similarly.

Fix H∗ ∈ [0, 2-�]; we define 5 (G) := ��(G, H∗) and �̃1 := �
4+4-�ℒ�

. From Lemma A.1,
��=8 (G) = ��∗

8
(G) = 1,∀G > 2-�; therefore, the left-hand-side of (70) can be rewritten

as follows.������
∞∫

0

��
(
G, H∗

)
d��=8 (G)−

∞∫
0

��
(
G, H∗

)
d��∗

8
(G)

������=
����
∫ 2-�

0
5 (G)d��=8 (G)−

∫ 2-�

0
5 (G)d��∗

8
(G)

���� .
(72)

Let us define  :=
⌈ 2-�ℒ�

�̃1

⌉
and  + 1 points G 9 such that G0 := 0 and G 9 := G 9−1 + 2-�

 ,

∀9 ∈ [ ]. In other words, we have the partitions [0, 2-�] =
⋃ 
9=1 %9 where we denote

by %1 the interval [G0 , G1] and by %9 the interval (G 9−1 , G 9] for 9 = 2, . . . ,  . For any
G, G′ ∈ %9 ,∀9 ∈ [ ], since 5 is Lipschitz continuous, we have

| 5 (G) − 5 (G′)| ≤ ℒ� |G − G′ | ≤ ℒ�
2-�
 

≤ �̃1. (73)
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Now, we define the function 6(G) :=
 ∑
9=1

5 (G 9)1%9 (G). Here, 1%9 is the indicator function

of the set %9 . From this definition and Inequality (73), we have | 5 (G) − 6(G)| ≤ �̃1,
∀G ∈ [0, 2-�]. Therefore,����

∫ 2-�

0
5 (G)d��=8 (G) −

∫ 2-�

0
6(G)d��=8 (G)

���� ≤
∫ 2-�

0
�̃1d��=8 (G) ≤ �̃1 , (74)����

∫ 2-�

0
5 (G)d��∗

8
(G) −

∫ 2-�

0
6(G)d��∗

8
(G)

���� ≤
∫ 2-�

0
�̃1d��∗

8
(G) ≤ �̃1. (75)

Now, we note that for any 9 ∈ [ ], 5 (G 9) =
9∑

<=0

[
5 (G<) − 5 (G<−1)

]
; here, by convention,

we denote by G−1 an arbitrary negative number and set 5 (G−1) = 0. Using this, we have:����
∫ 2-�

0
6(G)d��=8 (G) −

∫ 2-�

0
6(G)d��∗

8
(G)

����
=

������
 ∑
9=1

5 (G 9)
[∫ 2-�

0
1%9 (G)d��=8 (G) −

∫ 2-�

0
1%9 (G)d��∗

8
(G)

] ������
=

������
 ∑
9=1

5 (G 9)
[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] ������
=

������
 ∑
9=1

(
9∑

<=0

[
5 (G<) − 5 (G<−1)

] [
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] )������
≤

������
[
5 (G0) − 5 (G−1)

]  ∑
9=1

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] ������
+

������
 ∑
<=1

©«
[
5 (G<) − 5 (G<−1)

]  ∑
9=<

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ]ª®¬
������ . (76)

Note that P
(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

)
=��=8 (G 9)−��=8 (G 9−1)−��∗

8
(G 9)+��∗

8
(G 9−1).27 Now, we

can rewrite the first term in (76) as follows.������
[
5 (G0) − 5 (G−1)

]  ∑
9=1

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ] ������
=

������ 5 (0) ·

 ∑
9=1

(
��=8 (G 9) − ��=8 (G 9−1) − ��∗

8
(G 9) + ��∗

8
(G 9−1)

)
������

=

��� 5 (0) · [��=8 (G ) − ��=8 (G0) − ��∗
8
(G ) + ��∗

8
(G0)

] ���
27For any 9 ≥ 2, this is trivially since %9 := (G 9−1 , G 9]. For %1 = [0, G1], we have that

P

(
�=
8
∈ %1

)
−P

(
�∗
8
∈ %1

)
= P(�=

8
∈ (0, G1])−P(�∗

8
∈ (0, G1])+P(�=8 = 0)−P(�∗

8
= 0); moreover, due to

Lemma A.3-(8), we also note that P(�=
8
=0)=P(�∗

8
=0).
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≤2 sup
G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���. (77)

Here, the last inequality comes from the fact that 5 (G) ≤ 1,∀G ∈ [0, 2-�] (since it is
a CSF).

Now, we recall that for any < ∈ [ ], 5 (G<) − 5 (G<−1) ≤ 2-�ℒ�

 . Therefore, the
second term in (76) is������

 ∑
<=1

©«
[
5 (G<) − 5 (G<−1)

]  ∑
9=<

[
P

(
�=8 ∈ %9

)
−P

(
�∗
8 ∈ %9

) ]ª®¬
������

=

������
 ∑
<=1

©«
[
5 (G<) − 5 (G<−1)

]  ∑
9=<

[
��=8 (G 9) − ��=8 (G 9−1) − ��∗

8
(G 9) + ��∗

8
(G 9−1)

]ª®¬
������

=

�����
 ∑
<=1

( [
5 (G<) − 5 (G<−1)

] [
��=8 (G ) − ��=8 (G<−1) − ��∗

8
(G ) + ��∗

8
(G<−1)

] )�����
≤

 ∑
<=1

2-�ℒ�

 
· 2 sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���
=4-�ℒ� sup

G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���. (78)

Inject (77) and (78) into (76), we obtain that����
∫ 2-�

0
6(G)d��=8 (G) −

∫ 2-�

0
6(G)d��∗

8
(G)

���� ≤ (2 + 4-�ℒ�) sup
G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���.
(79)

Apply the triangle inequality and combine (74), (75), (79), we have that:����
∫ 2-�

0
5 (G)d��=8 (G) −

∫ 2-�

0
5 (G)d��∗

8
(G)

���� ≤ 2�̃1 + (2 + 4-�ℒ�) sup
G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

���.
(80)

Now, let us define �� := �1 · (4 + 4-�ℒ�)2 [ln(4 + 4-�ℒ�) + 1] (note that �1 is de-

fined in Lemma A.6) and we deduce that ���
−2 ln

(
1

min{�,1/4}

)
≥ �1 �̃

−2
1 ln

(
1

min{�̃1 ,1/4}

)
.28

Take �1 := �̃1, for any = ≥ ���
−2 ln

(
1

min{�,1/4}

)
, we have = ≥ �1�

−2
1 ln

(
1

min{�1 ,1/4}

)
and

by applying Lemma A.6, we obtain that sup
G∈[0,∞)

�����=8 (G) − ��∗
8
(G)

��� ≤ �1 = �̃1 and thus

by (72) and (80), we have:������
∞∫

0

��
(
G, H∗

)
d��=8 (G) −

∞∫
0

��
(
G, H∗

)
d��∗

8
(G)

������
28Apply Lemma A.2, ���

−2 ln
(

1
min{�,1/4}

)
= �1

(
4+4-�ℒ�

�

)2 [
ln(4+4-�ℒ�)+1

]
ln

(
1

min{�,1/4}

)
≥

�1

(
4+4-�ℒ�

�

)2
ln

(
4+4-�ℒ�

�

)
. Moreover, since �

4+4-�ℒ�
= min

{
�

4+4-�ℒ�
, 1
4

}
= min

{
�̃1 ,

1
4

}
(due to the

fact that �̃1 = �
4+4-�ℒ�

< 1
4 ).
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≤2�̃1 + (2 + 4-�ℒ�) �̃1

=(4 + 4-�ℒ�)�̃1 = �.

This is exactly (70).
Step 2: Based on (70) and (71), we can trivially deduce that the following inequalities

hold for any = ≥ ���
−2 ln

(
1

min{�,1/4}

)
and 8 ∈ [=]:

������
∞∫

0

��
(
G, H

)
d��=8

(
H
)
−

∞∫
0

��
(
G, H

)
d��∗8

(
H
) ������ ≤ �,∀G ≥ 0, (81)

������
∞∫

0

∞∫
0

��
(
G, H

)
d��∗8

(
H
)
d��∗

8
(G) −

∞∫
0

∞∫
0

��
(
G, H

)
d��=8

(
H
)
d��∗

8
(G)

������ ≤ �, (82)

������
∞∫

0

∞∫
0

��
(
G, H

)
d��∗

8
(G)d��=8

(
H
)
−

∞∫
0

∞∫
0

��
(
G, H

)
d��=8 (G)d��=8

(
H
) ������ ≤ �. (83)

We notice that the left-hand-sides of these inequalities are exactly the terms considered
in Lemma C.2; moreover, the upper-bounds given in(81), (82) and (83) are smaller than
that in (55), (56) and (57) of Lemma C.2.

Step 3: To complete the proof of Remark C.3, we follow the proof of Theorem 6.1.3
where we use (81), (82) and (83) instead of (55), (56) and (57). By doing this, we obtain
(68) and (69).

Proof of Lemma 6.1.7

(8) We first consider the game ℒℬ=(�').
Step 1: We prove that there exists �0 = O(�−1/'−1) such thatX�' (H∗ , �) ⊂ [H∗ − �0 , H

∗ + �0]
for any H∗ ∈ [0, 2-�]. Note that this is trivial if X�' (H∗ , �) = ∅. In the following, we
consider the case where X�' (H∗ , �) ≠ ∅. We denote by 5 : [0, 2-�] × [0, 2-�] → [0, 1]
the function:

5 (G, H∗) := |�'�(G, H∗) − ��(G, H∗)| =



G'

G'+(1−)(H∗)' , if G < H∗

0, if G = H∗

1 − G'

G'+(1−)(H∗)' , if G > H∗
.

Trivially, H∗ ∉ X�' (H∗ , �). Take an arbitrary G ∈ X�' (H∗ , �). If G < H∗, we have

5 (G, H∗) ≥ � ⇒ G'

G' + (1 − )(H∗)' ≥ � ⇒ G

H∗
≥

(
�

1 − �

1 − 



)1/'
.

Therefore, 0 < H∗ − G ≤ H∗
[
1 −

(
�

1−�
1−


)1/']
. Here, we note that the right-hand side

is positive (due to the condition � < ); moreover, it is upper-bounded by O(1 − �1/'),
thus bounded by O(�−1/' − 1).
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On the other hand, if G > H∗, we have:

5 (G, H∗) ≥ � ⇒ 1 − G'

G' + (1 − )(H∗)' ≥ � ⇒ G

H∗
≤

(
1 − �

�

1 − 



)1/'
.

Therefore we have 0 < G − H∗ ≤ H∗
[ ( 1−�

�
1−


)1/' − 1
]
. Here the right-hand side is

positive (due to the condition  + � < 1) and is upper-bounded by O(�−1/' − 1).
In conclusion, for any � < min{, 1−}, there exists �0 = O(�−1/'−1) such that

X�' (H∗ , �) ⊂ [H∗−�0 , H
∗+�0]. Note that a similar proof can be done to prove that there

exists �̂0 = O(�−1/' − 1) such that for any G∗ ∈ [0, 2-�], Y�' (G∗ , �) ⊂ [G∗ − �̂0 , G
∗ + �̂0].

Step 2: For any H∗ ∈ [0, 2-�] and �0 ≥ 0, let us define the set

�0(H∗) := [H∗ − �0 , H
∗ + �0]

⋂
[0, 2-�];

we want to show that
∫
G∈�0(H∗) d��∗

8
(G) ≤ 2=�̄�0F̄

¯
F ,∀8 ∈ [=].

Case 1: For 8 ∈ Ω�(�∗), then �∗
8�

(
�∗ ,8 , we have that∫

G∈�0(H∗)
d��∗

8
(G) ≤��(

�∗ ,8

(
H∗ + �0

)
− ��(

�∗ ,8

(
H∗ − �0

)

=




(H∗+�0)�∗
�

E�8
≤ 2�0�

∗
�

E�8
, if 0 ≤ H∗ ≤ �0

(H∗+�0)�∗
�

E�8
− (H∗−�0)�∗

�

E�8
=

2�0�
∗
�

E�8
, if �0 ≤ H∗ <

E�8
�∗
�
− �0

1 − (H∗−�0)�∗
�

E�8
=

E�8 −H∗�∗
�
+�0�

∗
�

E�8
≤ 2�0�

∗
�

E�8
, if

E�8
�∗
�
− �0 ≤ H∗ ≤ E�8

�∗
�
+ �0

1 − 1 = 0, otherwise

≤2=�̄�0F̄

¯
F

.

Case 2: For 8 ∉ Ω�(�∗), then �∗
8 = �,�∗ ,8 . We have∫

G∈�0(H∗)
d��∗

8
(G)

≤��,
�∗ ,8

(
H∗ + �0

)
− ��,

�∗ ,8

(
H∗ − �0

)

=




(H∗+�0)�∗
�

E�8
≤ 2=�̄�0F̄

¯
F , if 0 ≤ H∗ ≤ �0

(H∗+�0)�∗
�

E�8
− (H∗−�0)�∗

�

E�8
=

2�0�
∗
�

E�8
, if �0 < H∗ <

E�8
�∗
�
− �0

1 −
E�
8

�∗
�
−
E�
8

�∗
�

E�
8

�∗
�

− (H∗−�0)�∗
�

E�8
=

E�8
�∗
�

�∗
�
−H∗�∗

�
+�0�

∗
�

E�8
≤ 2�0�

∗
�

E�8
, if

E�8
�∗
�
− �0 ≤ H∗ ≤ E�8

�∗
�
+ �0

1 − 1 = 0, otherwise

≤2=�̄�0F̄

¯
F

.

Note that we can similarly prove that for any G∗ ∈ [0, 2-�] and �0 ≥ 0 and 8 ∈ [=], we

also have
∫
H∈�0(G∗) d��∗8 (H) ≤

2=�̄�0F̄

¯
F .
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Step 3: Conclusion. We note that all random variable �∗
8 , �

∗
8 , 8 ∈ [=] are bounded in

[0, 2-�]; therefore, for any G∗ , H∗ ∈ [0, 2-�] and �0 ≥ 0, we have:∫
G∈[H∗−�,H∗+�0]

d��∗
8
(G) =

∫
G∈�0(H∗)

d��∗
8
(G) and

∫
H∈[G∗−�,G∗+�0]

d��∗8 (H) =
∫
H∈�0(G∗)

d��∗8 (G).

Let us define �� := <8={1, 2=�̄�0F̄

¯
F } = O

(
=(�−1/' − 1)

)
and we conclude that:

max

{
max

H∗∈[0,2-�]

∫
X
�' (H∗ ,�)

d��∗
8
(G), max

G∗∈[0,2-�]

∫
Y
�' (G∗ ,�)

d��∗8 (H)
}
≤ ��.

This implies that �� ∈ Δ�∗(�' , �).

(88) We now turn our focus on the game ℒℬ=(�'). We first prove the existence of
�1 > 0 such that X�' (H∗ , �) ⊂ [H∗ − �1 , H

∗ + �1] for any H∗ ∈ [0, 2-�]. As in step 1 in
the above analysis of the game ℒℬ=(�'), we denote by 6 : [0, 2-�] × [0, 2-�] → [0, 1]
the function:

6(G, H∗) := |�'�(G, H∗) − ��(G, H∗)| =



4G'

4G'+(1−)4H∗' , if G < H∗ ,

0 , if G = H∗ ,

1 − 4G'

4G'+(1−)4H∗' , if G > H∗.

Trivially, H∗ ∉ X�' (H∗ , �). Take an arbitrary G ∈ X�' (H∗ , �). If G < H∗, we have

6(G, H∗) ≥ � ⇒ 4G'

4G' + (1 − )4H∗'
≥ �.

Therefore, 0 < H∗−G ≤ 1
' ln

( 1−�
�


1−

)
. Here, we note that the right-hand side is positive

(due to the condition � < ).
On the other hand, if G > H∗, we have:

6(G, H∗) ≥ � ⇒ 1 − 4G'

4G' + (1 − )4H∗'
≥ �.

Therefore, 0 < G − H∗ ≤ 1
' ln

( 1−�
�

1−


)
. Here, the right-hand side is positive (due to the

condition  + � < 1).
In conclusion, we have proved thatX�' (H∗ , �) ⊂ [H∗−�1 , H

∗+�1] for any H∗ ∈ [0, 2-�]
and �1 = O('−1 ln(�−1)). Now, we define �1(H∗) := [H∗ − �1 , H

∗ + �1]
⋂[0, 2-�]. Sim-

ilar to step 2 of the above analysis regarding the game ℒℬ=(�'), we can prove that∫
�1(H∗) d��∗

8
(G) ≤ 2=�̄�1F̄/ ¯

F for any H∗ ∈ [0, 2-�]. Therefore,

max

{
max

H∗∈[0,2-�]

∫
X
�' (H∗ ,�)

d��∗
8
(G), max

G∗∈[0,2-�]

∫
Y
�' (G∗ ,�)

d��∗8 (H)
}
≤ �� ,

where �� := min{1, 2=�̄�1F̄

¯
F } = O

(
='−1 ln(�−1)

)
and �� ∈ Δ�∗(�' , �).
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Proof of Theorem 6.1.8

Theorem 6.1.8. (Approximate equilibria of the ratio-form Lottery Blotto games) For

any �̄ > 0 and  ∈ (0, 1) such that �̄ < min{, 1 − }, there exists !̃ > 0 such that for

any = ≥ !̃�̄−2 ln
(

1
min{�̄,1/4}

)
, ' ≥ O

(
=
�̄ ln

( 1
�̄

) )
and �∗ ∈ S(4.5)

= , the IU�∗
strategy is an �̄,-

equilibrium of any game ℒℬ=(�') and ℒℬ=(�') having  as the tie-breaking-rule parameter.

Proof. Take � = �̄/21 and !̃ = !∗212(ln(21) + 1) (where !∗ is indicated in Theo-

rem 6.1.3). We note that !̃�̄−2 ln
(

1
min{�̄,1/4}

)
≥ !∗� ln

(
1

min{�,1/4}

)
;29 therefore, for any

= ≥ !̃�̄−2 ln
(

1
min{�̄,1/4}

)
, we have

= ≥ !∗� ln

(
1

min{�, 1/4}

)
.

Therefore, by applying Result (ii)-Theorem 6.1.3, for any ' > 0, we condlude that
the IU�∗

strategy is an (8�� + 13�),-equilibrium of the game ℒℬ=(�'). Similarly, the
IU�∗

strategy is an (8�� + 13�),-equilibrium of the game ℒℬ=(�')).
We first consider the game ℒℬ=(�'). Apply Lemma 6.1.7, we have �� ≤ �,

for any ' ≥ O
(
ln

( 1
�

)
ln

(
�
= + 1

) )
= O

(
ln

( 1
�

)
=
�

)
and �∗ ∈ S(4.5)

= . Therefore, for any

= ≥ !̃�̄−2 ln
(

1
min{�̄,1/4}

)
, ' ≥ O

(
=
�̄ ln

( 1
�̄

) )
, the IU�∗

strategy is an 21�,-equilibrium (i.e.,

�̄,-equilibrium) of the game !�(�').
Similarly, apply Lemma 6.1.7, for any �∗ ∈ S(4.5)

= and ' ≥ O
(
=
�̄ ln

( 1
�̄

) )
, we have

�� ≤ �. Therefore, for any = ≥ !̃�̄−2 ln
(

1
min{�̄,1/4}

)
, ' ≥ O

(
=
�̄ ln

( 1
�̄

) )
, the IU�∗

strategy

is an 21�,-equilibrium (i.e., �̄,-equilibrium) of the game !�(�').

29Note that � = �̄/21 and apply Lemma A.2 to have that !̃�̄−2 ln
(

1
min{�̄,1/4}

)
≥ !∗

(
21
�̄

)2
ln

(
21
�̄

)
;

moreover, we recall that �̄
21 < 1

4 ; therefore, ln
(

21
�̄

)
= ln

(
1

min{�̄/21,1/4}

)
= ln

(
1

min{�,1/4}

)
.
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Appendix D

Supplementary Materials for Section 6.2 on the

Gℛ−Cℬ�
= Game

D.1 Proof of Results in Section 6.2.2

Proof of Theorem 6.2.5

Theorem 6.2.5. In the F-APA game where ? ≥ 0, we have the following results:

(8) If @D�−? ≤ 0, there exists a unique pure equilibrium where players’ bids are G� = G� = 0
and their equilibrium payoffs are Π�

F-APA
= D� and Π�

F-APA
= 0 respectively.

(88) If 0 < @D�−? ≤ D�, there exists no pure equilibrium; there is a unique mixed equilibrium

where player A (resp. player B) draws her bid from the distribution ��+
2

(resp. ��+2 )

defined as follows:

��+
2
(G) =

{
?

@D�
+ G

@D�
,∀G ∈

[
0, @D� − ?

]
,

1 ,∀G > @D� − ?,
(6.8)

and ��+2 (G) =




1 − @D�

D�
+ ?

D�
,∀G ∈

[
0, ?@

)
,

1 − @D�

D�
+ @·G

D�
,∀G ∈

[
?
@ , D

�
]
,

1 ,∀G > D� .

(6.9)

In this mixed equilibrium, players’ payoffs are Π�
F-APA

= D� − @D� + ? and Π�
F-APA

= 0.

(888) If @D� − ? > D�, there exists no pure equilibrium; there is a unique mixed equilibrium

where player A (resp. player B) draws her bid from the distribution ��+
3

(resp. ��+3 )

defined as follows:

��+
3
(G) =

{
1 − D�

@D�
+ G

@D�
,∀G ∈

[
0, D�

]
,

1 ,∀G > D� ,
(6.10)

and ��+3 (G) =




0 ,∀G ∈
[
0, ?@

)
,

− ?

D�
+ @·G

D�
,∀G ∈

[
?
@ ,

D�+?
@

]
,

1 ,∀G >
D�+?
@ .

(6.11)

In this mixed equilibrium, players’ payoffs areΠ�
F-APA

= 0 andΠ�
F-APA

= D�−(D�+?)/@.

Proof. Proof of Result (8): For any G� ≥ D� and any G�, we have Π�
F-APA

(
G� , G�

)
< 0.

Moreover, due to the condition @D� − ? ≤ 0, we have G� > @G� − ? for any G� ≥ 0 and
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0 ≤ G� < D�; that is, player B always loses if she bids strictly lower than D�. Trivially,
G� = 0 is the unique dominant strategy of player B. Player A’s best response against
G� = 0 is G� = 0. In conclusion, we have:

Π
�
F-APA (0, 0) = D� and Π

�
F-APA

(
G� , 0

)
= D� − G� < D� ,∀G� > 0,

Π
�
F-APA (0, 0) = 0 and Π

�
F-APA

(
0, G�

)
< 0,∀G� > 0,

Proof of Result (88) First, from 0 < @D� − ? ≤ D�, we have 0 ≤ ?/@ < D�. We prove
(by contradiction) that there exists no pure equilibrium under this condition. Assume
that the profile G� , G� is a pure equilibrium of the F-APA game. We consider two cases:

• Case 1: If G� = 0, then player B’s best response is to choose G� = ?/@ + �

with an infinitesimal � > 0 since by doing it, she can guarantee to win (since
@(?/@ + �) − ? = @� > 0) and gets the payoff D� − ?/@ − � > 0.30 However, player
A’s best response against G� = ?/@ + � is not G� = 0.31

• Case 2: If G� > 0, then player B’s best response is either G� = (G� + ?)/@ + � if
there exists � > 0 small enough such that @D� − ? − G� − � > 0 or G� = 0 if there
is no such �. However, G� > 0 is not the best response of player A against neither
G� = (G� + ?)/@ + � nor against G� = 0.32

We conclude that G� , G� cannot the best response against each other; thus, there exists
no pure equilibrium in this case.

Now, we prove that if player B plays according to ��+2 , player A has no incentive
to deviate from playing according to ��+

2
. Denote by �+

2 and �+
2 the random variables

that correspond to ��+
2

and ��+2 , since ��+
2

is a continuous distribution on
(
0, @D� − ?

]
,

we have:

Π
�
F-APA

(
��+

2
, ��+2

)
=

[
D�P

(
�+

2 <
?

@

)
− 0

]
P

(
�+

2 = 0
)
+

[
D�P

(
�+

2 =
?

@

)
− 0

]
P

(
�+

2 = 0
)

+
∫ @D�−?

0

[
D�P

(
�+

2 <
G + ?
@

)
− G

]
d��+

2
(G)

= D���+2

(
?

@

)
?

@D�
+ 0 +

∫ @D�−?

0

[
D���+2

(
G + ?
@

)
− G

]
d��+

2
(G)

(84)

=
(
D� − @D� + ?

) ?

@D�
+

∫ @D�−?

0

(
D� − @D� + ?

) 1
@D�

dG

30Note that if player B choose G� = 0, she loses and hes payoff is only 0.
31Player A’s best response against G� = ?/@ + � is G� = @� + � (with an infinitesimal � > 0 such that

D� − @� − � > 0).
32The best response of player A against G� = (G�+ ?)/@+ � is G�+ @�+ � where 0 < � < D�− G�− @� (�

exists thanks to the condition on � and that @D� − ? ≤ D�) and her best response against G� = 0 is G� = 0.
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= D� − @D� + ?.

Here, (84) comes from the fact that P
(
�+

2 = ?/@
)
= 0, due to definition. Now, if player

A plays a pure strategy G� > @D� − ? while player B plays ��+2 , her payoff is:

Π
�
F-APA

(
G� , ��+2

)
≤ D� − G� < D� − @D� + ? = Π

�
F-APA

(
��+

2
, ��+2

)
.

Moreover, for any pure strategy G� ∈ [0, @D� − ?], we have:

Π
�
F-APA

(
G� , ��+2

)
= D�P

(
�+

2 <
G�+?
@

)
+ D�P

(
�+

2 =
G�+?
@

)
−G�

≤ D���+2

(
G�+?
@

)
−G� = D�

[
1− @D

�

D�
+ @

D�
(G�+?)

@

]
−G�

=D�−@D�+?

=Π
�
F-APA

(
��+

2
, ��+2

)
.

In conclusion, Π�
(
��+

2
, ��+2

)
≥ Π�

(
G� , ��+2

)
for any G� ≥ 0.

Similarly, we prove that when player A plays ��+
2
, player B has no incentive to

deviate from ��+2 . Indeed, since ��+2 is a continuous distribution on [?/@, D�], we have

Π
�
F-APA

(
��+

2
, ��+2

)
=

[
D�P

(
�+

2 < 0
)
− ?

@

]
P

(
�+

2 =
?

@

)

+
[
(1 − )D�P

(
�+

2 = 0
)
− ?

@

]
P

(
�+

2 =
?

@

)

+
∫ D�

?/@

[
D�P

(
�+

2 < @G − ?
)
− G

]
d��+2 (G)

= 0 + 0 +
∫ D�

?/@

[
D���+

2

(
@G − ?

)
− G

]
d��+2 (G) (85)

=

∫ D�

?/@

[
D�

(
?

@D�
+ @G − ?

@D�

)
− G

]
@

D�
dG

= 0.

Here, (85) comes from the fact P
(
�+

2 = ?/@
)
= 0 and that P(�+

2 = I) = 0 for any
I ∈ (0, @D� − ?] due to definition. Now, as stated above, for any pure strategy G� > D�,

triviallyΠ�
F-APA(��+

2
, G�)< 0. Moreover,Π�

F-APA

(
��+

2
, G�

)
≤ D���+

2

(
@G�−?

)
−G�=0 for

any G� ∈ [0, D�]. Therefore, we conclude that Π�
F-APA

(
��+

2
, ��+2

)
≥ Π�

F-APA

(
��+

2
, G�

)
for any G� ≥ 0.

Proof of Result (888) Similarly to the proof of Result (88), we can prove that there
exists no pure equilibrium if @D� − ? > D� > 0. Now, let us denote by �+

3 and �+
3
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the random variables that correspond to ��+
3

and ��+3 ; we prove that if player B plays
according to ��+3 , player A has no incentive to deviate from playing according to ��+

3
.

Π
�
F-APA

(
��+

3
, ��+3

)
=

[
D�P

(
�+

3 <
?

@

)
− 0

]
P

(
�+

3 = 0
)
+

[
D�P

(
�+

3 =
?

@

)
− 0

]
P

(
�+

3 = 0
)

+
∫ D�

0

[
D�P

(
�+

3 <
G + ?
@

)
− G

]
d��+

3
(G)

= 0 + 0 +
∫ D�

0

[
D���+2

(
G + ?
@

)
− G

]
d��+

3
(G)

=

∫ D�

0

[
D�

(−?
D�

+ @

D�
(G + ?)
@

)
− G

]
d��+

3
(G)

= 0.

Moreover, trivially, for any G� > D�, we have Π�
F-APA

(
G� , ��+3

)
< 0 and for any

G� ∈ [0, D�], we have

Π
�
F-APA

(
G� , ��+3

)
≤D���+3

(
G� + ?
@

)
− G�

=D�
[−?
D�

+ @

D�
(G� + ?)

@

]
− G�

=0 = Π
�
F-APA

(
��+

3
, ��+3

)
.

Therefore, Π�
F-APA

(
��+

3
, ��+3

)
≥ Π�

F-APA

(
G� , ��+3

)
for any G� ≥ 0.

On the other hand, since ��+3 is a continuous distribution on
[
?
@ ,

D�+?
@

]
, we do not

need to consider the tie cases and we can deduce that:

Π
�
F-APA

(
��+

3
, ��+3

)
=

∫ D�+?
@

?/@

[
D���+

3

(
@G − ?

)
− G

]
d��+3 (G)

=

∫ D�+?
@

?/@

[
D�

(
1 − D�

@D�
+ @G − ?

@D�

)
− G

]
@

D�
dG

= D� − D� + ?
@

.

Moreover, trivially, for any G� > D�, we have Π�
(
��+

3
, G�

)
< 0 < D� − D�+?

@ ; and for

any G� ∈ [0, D�], we have:

Π
�
F-APA

(
��+

3
, G�

)
≤ D���+

3

(
@G� − ?

)
−G� = D�

(
1 − D�

@D�
+ @G� − ?

@D�

)
−G� = D�−D

� + ?
@

.

Therefore, we can conclude that Π�
F-APA

(
��+

3
, ��+3

)
≥ Π�

(
��+

3
, G�

)
for any G� ≥ 0.
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Finally, for a proof of uniqueness of the mixed equilibrium in Result (88) and (888),
we can follow the scheme presented by Baye, Kovenock, and Vries (1996) and check
through a series of lemmas. This is a standard approach in the literature of all-pay
auction and we omit the detailed proof here.

Proof of Theorem 6.2.13

For a proof of this theorem, we prove the following statement: There exists a constant

�∗ > 0 such that for any �∈ (0, 1]and in any gameGℛ−Cℬ�
= with =≥ �∗�−2 ln

(
1

min{�,1/4}

)
,

the following inequalities hold for any (�̃� , �̃�) ∈ R2 satisfying (6.18) (with �̃ = �) and
any pure strategy x�, x� of players A and B.

Π
�
�'(x� , IU

�̃� ,�̃�

�
) ≤ Π

�
�'(IU

�̃� ,�̃�

�
, IU�̃� ,�̃�

�
) + 2�,, (86)

Π
�
�'(IU

�̃� ,�̃�

�
, x�) ≤ Π

�
�'(IU

�̃� ,�̃�

�
, IU�̃� ,�̃�

�
) + 2�,. (87)

This is very similar to Result (88)-Theorem 4.2.3 that states the result for the IU�∗

strategy in the game Cℬ= . We can prove (86)-(87) by following the same scheme as
in the proof of Theorem 4.2.3 presented in Section A. This proof is long and in this
section, we will not repeat all the technical details. Instead, we only point out here the
high-level ideas and show the main difference between the two proofs.

At the high-level, we need to prove two statements:
Statement 1: {�

��̃�,�̃�

8

} is optimal against {�
��̃

�,�̃�

8

}. This can be deduced from the

fact that

(
�
��̃�,�̃�

8

, �
��̃

�,�̃�

8

)
is the equilibrium of the all-pay auction with favoritism

F-APA with D� = �̃�F8 , D� = �̃�F8 , ? := ?8 and @ := @8 .
Statement 2: ���'=,8

(resp. ���'=,8
) uniformly converges toward �

��̃�,�̃�

8

(resp. �
��̃

�,�̃�

8

)

as = increases. Here, ���'=,8
(resp. ���'=,8

) denotes the marginal of the IU�̃� ,�̃�

�
strategy

(resp. IU�̃� ,�̃�

�
) corresponding to battlefield 8. Formally, we want to prove that:

Proposition D.1. There exists� > 0, such that for any � ∈ (0, 1], any = ≥ �1�
−2 ln

(
1

min{�,1/4}

)
and 8 ∈ [=],

sup
G∈[0,∞)

�������'= (G) − �
��̃�,�̃�

8

(G)
���� ≤ � and sup

G∈[0,∞)

�������'= (G) − �
��̃

�,�̃�

8

(G)
���� ≤ �. (88)

To prove this, we can simply copy the proof of Lemma A.6 in Appendix A.6 (that
is based on the Hoeffding’s theorem) and replace ��=8 , ��=8 by ���'=,8

, ���'=,8
and replace

��∗
8
, ��∗8 by �

��̃�,�̃�

8

, �
��̃

�,�̃�

8

. The only difference is that in Lemma A.6, in proving

Inequality (32) leading to Inequality (33), we use the fact that in expectation, the budget
constraints hold when players draw their allocations from {��∗

8
}8∈[=] and {��∗8 }8∈[=]. On

the other hand, in the Gℛ−Cℬ�
= game, in expectation,

{
�
��̃�,�̃�

8

}
8∈[=]

and

{
�
��̃

�,�̃�

8

}
8∈[=]
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may violate the budget constraints; however, this violation only involves a small error

�̃ = �. We only need to check that this violation does not affect the proof: denote��̃� ,�̃�

8

the random variable corresponding to the distribution �
��̃�,�̃�

8

(8 ∈ [=]), we need to

find the condition on = such that when33������
∑
8∈[=]
E

[
��̃� ,�̃�

8

]
− -�

������ ≤ �, (89)

the following inequality holds with a number � = O(�−1) (see the proof of Lemma A.6
for a precise definition of �):

P
©«
������
∑
8∈[=]

��̃� ,�̃�

8 − -�

������ >
1
�

ª®¬
≤ O(�). (90)

Indeed, we can prove this statement by first observing that under the assump-
tion (89),

P
©«
������
∑
8∈[=]

��̃� ,�̃�

8 − -�

������ >
1
�

ª®¬
≤ P ©«

������
∑
8∈[=]

��̃� ,�̃�

8 −
∑
8∈[=]
E

[
��̃� ,�̃�

8

] ������ >
1
�
− �

ª®¬
. (91)

This can be proved by considering two cases:

• Case 1: If
∑
8∈[=] �

�̃� ,�̃�

8 − -� > 1/�, then we have:∑
8∈[=]

��̃� ,�̃�

8 −
∑
8∈[=]
E

[
��̃� ,�̃�

8

]
>

∑
8∈[=]

��̃� ,�̃�

8 − -� − � >
1
�
− �.

• Case 2: If
∑
8∈[=] �

�̃� ,�̃�

8 − -� < −1/�, then we have:∑
8∈[=]

��̃� ,�̃�

8 −
∑
8∈[=]
E

[
��̃� ,�̃�

8

]
<

∑
8∈[=]

��̃� ,�̃�

8 − -� + � < −1
�
+ �.

Therefore, we have������
∑
8∈[=]

��̃� ,�̃�

8 − -�

������ >
1
�

=⇒

������
∑
8∈[=]

��̃� ,�̃�

8 −
∑
8∈[=]
E

[
��̃� ,�̃�

8

] ������ >
1
�
− �,

thus, (91) holds.

Now, we apply the Hoeffding’s theorem on the random variables
{
��̃� ,�̃�

8

}
8∈[=]

that

are bounded in [0, F̄�̃�] (see the definition of �
��̃�,�̃�

8

in Definition 6.2.7 and Table 6.2),

P
©«
������
∑
8∈[=]

��̃� ,�̃�

8 −
∑
8∈[=]
E

[
��̃� ,�̃�

8

] ������ >
1
�
− �

ª®¬
≤ 2 exp

[
2
( 1
� − �

)2∑
8∈[=] F8�̃�

]
.

33This is a corollary of (6.18).
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Note that � = O(�), thus, 1
�−� = O(�). Therefore, by choosing = ≥ �̃1�

−2 ln
(

1
min{�,1/4}

)
,

where �1 is the constant chosen similarly as in the proof of Lemma A.6 (see Ap-
pendix A.6), we have that

P
©«
������
∑
8∈[=]

��̃� ,�̃�

8 −
∑
8∈[=]
E

[
��̃� ,�̃�

8

] ������
ª®¬
≤ O(�).

Combining this with (91), we conclude that (90) holds. At a high-level, the condition
on = mentioned above is the same as the one indicated in the proof of Lemma A.6;

therefore, the fact that

{
�
��̃�,�̃�

8

, �
��̃

�,�̃�

8

}
8∈[=]

are only “almost” the optimal univariate

distributions does not affect the proof and Statement 2 can be proved.
The remaining proof of (86) and (87) can be done by copying the proof of Theo-

rem 4.2.3 (see Section A) and replace the elements of the Cℬ= game by the correspond-
ing elements of the Gℛ−Cℬ�

= game. We omit the details here.
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Appendix E

Supplementary Materials for Chapter 8 on

SOOSP and the Online Semi-Bandit CB Game

E.1 Proof of Algorithm 11’s Output

Proof. Fixing an edge 4 ∈ ℰ, we prove that when Algorithm 11 takes the edges weights
{FC(4), 4 ∈ ℰ} as the input, it outputs exactly @C =

∑
p∈OC (4) GC(p). We note that if

4′ ∈ ℜC(4) := {4′ : 4′ → 4}, then {p ∈ P : p ∋ 4′} ⊂ OC(4).
We denote |ℜC(4)| = �4 and label the edges in the set ℜC(4) by {41 , 42 , . . . , 4�4 }.

The for-loop in lines 4-8 of Algorithm 11 consecutively run with the edges in 'C(4)
as follows:

(8) After the for-loop runs for41, we have  (41) :=
∑

p∋41
∏

4̄∈pF̄(4̄) =
∑

p∋41 FC(p); there-
fore, @C(4) =

∑
p∋41 GC(p) since�∗(B, 3) = ∑

p∈P FC(p) computed from the original weights
FC(4̄), 4̄ ∈ ℰ. From line 8 that sets F̄(41) := 0, henceforth in Algorithm 11, the weight
F̄(p) :=

∏
4∈p F̄(4) of any path p that contains 41 is set to 0.

(88) Let the for-loop run for 42, we have  (42) :=
∑

p∋42 F̄(p) =
∑

{p∋42}\{p∋41}
FC(p) because

any path p ∋ 41 has the weight F̄(p) = 0. Therefore,

@C(4) =
∑

p∋41
GC(p) +

∑
{p∋42}\{p∋41}

GC(p).

(888) Similarly, after the for-loop runs for 48 (where 8 ∈ {3, . . . , �4}), we have:

@C(4) =
8∑
:=1

©«
∑

{p∋4:}\
⋃
9<:

{p∋4 9}
GC(p)

ª®®®¬
.

(8E) Therefore, after the for-loop finishes running for every edge in ℜC(4); we have
@C :=

∑
p∈OC (4) GC(p) where each term GC(p) was only counted once even if p contains

more than one edge that reveals the edge 4.

E.2 Proof of Theorem 8.2.1

Theorem 8.2.1. The expected regret of the Exp3-OE algorithm in the SOOSP satisfies:

') ≤ log(%)
/
� +

[
� + (= · �)

/
2
]
·
∑

C∈[)]
&C . (8.3)
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Proof. We first denote34 ,C :=
∑

p∈P FC(p),∀C ∈ [)]. From line 9 of Algorithm 10, we
trivially have:

FC+1(p) = FC(p) · exp(−�!̂C(p)),∀p ∈ P ,∀C ∈ [) − 1]. (92)

We recall that !̂C(p) :=
∑
4∈p ℓ̂ C(4) and the notation EC denoting the expectation w.r.t.

to the randomness in choosing p̃C in Algorithm 10 (i.e., w.r.t. the information up to
time C − 1). From (8.2), we have:

EC

[
!̂C(p)

]
≤ !C(p) :=

∑
4∈p

ℓ C(4),∀p ∈ P . (93)

Under the condition that 0 < �, we obtain:

,C+1

,C
=

∑
p∈P

FC+1(p)
,C

=

∑
p∈P

FC(p) · exp(−�!̂C(p))
,C

=

∑
p∈P

GC(p) · exp(−�!̂C(p)))

≤
∑
p∈P

[
GC(p)

(
1 − �!̂C(p) +

�2

2
(!̂C(p))2

)]

= 1−
∑
p∈P

[
GC(p)

(
�!̂C(p)−

�2

2
(!̂C(p))2

)]
. (94)

Here, the second equality comes from (92) and the inequality comes from the fact that
exp(−0) ≤ 1 − 0 + 02/2 for 0 := �!̂C(p) ≥ 0. Now, we use the inequality ln(1 − H) ≤ −H,

∀H < 1 for H :=
∑

p∈P

[
GC(p)

(
�!̂C(p)− �2

2 (!̂C(p))2
)]

,35 then from (94), we obtain

ln

(
,)+1

,1

)

=

)∑
C=1

ln

(
,C+1

,C

)

≤
)∑
C=1

©«
−�

∑
p∈P

GC(p)!̂C(p)+
�2

2

∑
p∈P

GC(p)(!̂C(p))2ª®¬
. (95)

On the other hand, let us fix a path p∗ ∈ P, then

ln

(
,)+1

,1

)

≥ ln

(
F)+1(p∗)
,1

)

34We recall that FC (p) :=
∏
4∈p FC (4).

35We can easily check that �!̂C (p) − �2!̂C (p)2/2 < 1 for any � > 0 and thus,∑
p∈P

[
GC (p)

(
�!̂C (p)− �2

2 (!̂C (p))2
)]

< 1.



227

= ln
F)(p∗) exp(−�!̂)(p∗))

%

= ln
F)−1(p∗) exp(−�!̂)(p∗)−�!̂)−1(p∗))

%

= − �

)∑
C=1

!̂C(p∗) − ln(%). (96)

In the arguments leading to (96), we again use (92) and the fact that F1(p) = 1,∀p ∈ P,
including F1(p∗). Therefore, combining (95) and (96) then dividing both sides by �,
we have:

)∑
C=1

∑
p∈P

GC(p)!̂C(p)

≤ ln(%)
�

+
)∑
C=1

!̂C(p∗) +
�

2

)∑
C=1

∑
p∈P

GC(p)(!̂C(p))2. (97)

Now, we take EC on both sides of (97), then we apply (93) to obtain:

)∑
C=1

∑
p∈P

GC(p)EC[!̂C(p)]

≤ ln(%)
�

+
)∑
C=1

!C(p∗)+
�

2

)∑
C=1

∑
p∈P

GC(p)EC[!̂C(p)2]. (98)

Now, we look for a lower bound of
∑

p∈P GC(p)EC
[
!̂C(p)

]
. For any fixed p ∈ P,

we consider:

EC

[∑
4∈p

ℓ̂ C(4)
]
=

∑
p̃∈P

[
GC(p̃)

∑
4∈p

(
ℓ C(4)
@C(4)+�

I{4∈OC (p̃)}
)]

=

∑
4∈p

∑
p̃∈O(4)

GC(p̃)
ℓ C(4)

@C(4) + �

=

∑
4∈p

@C(4)ℓ C(4)
@C(4) + �

. (99)

Using (99) and recalling that ℓ C(4) ≤ 1,∀4 ∈ ℰ, we have:∑
p∈P

GC(p)EC
[
!̂C(p)

]
−

∑
p∈P

GC(p)!C(p)

=

∑
p∈P

GC(p)
∑
4∈p

@C(4)ℓ C(4)
@C(4) + �

−
∑
p∈P

GC(p)
∑
4∈p

ℓ C(4)

=

∑
p∈P

GC(p)
∑
4∈p

ℓ C(4)
(

@C(4)
@C(4) + �

− 1

)
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≥ −
∑
p∈P

GC(p)
∑
4∈p

�

@C(4) + �

= − �
∑
4∈ℰ

∑
p∋4

GC(p)

@C(4) + �

= − �&C . (100)

Therefore, a lower bound of
∑

p∈P GC(p)EC
[
!̂C(p)

]
is

∑
p∈P GC(p)!C(p) − �&C .

Now, we look for an upper bound of
∑

p∈P GC(p)EC
[
!̂C(p)2

]
. To do this, fix p ∈ P,

we consider

EC

[
!̂C(p)2

]
=EC

[(∑
4∈p

ℓ̂ C(4)
)2

]

≤= · EC
[∑

4∈p
ℓ̂ C(4)2

]

== ·
∑
p̃∈P

[
GC(p̃)

∑
4∈p

(
ℓ C(4)

@C(4) + �
I{4∈OC (p̃)}

)2
]

≤= ·
∑
4∈p

∑
p̃∈OC (4)

GC(p̃)
1

(@C(4) + �)2

== ·
∑
4∈p

@C(4)
1

(@C(4) + �)2

≤= ·
∑
4∈p

1
@C(4) + �

. (101)

The first inequality comes from applying Cauchy–Schwarz inequality. The second
inequality comes from the fact that ℓ C(4) ≤ 1 and the last inequality comes from
@C(4) ≤ @C(4) + � since � > 0.

Now, applying (101), we can bound∑
p∈P

GC(p)EC
[
!̂C(p)2

]
≤= ·

∑
p∈P

GC(p)
∑
4∈p

1
@C(4) + �

== ·
∑
4∈ℰ

∑
p∋4

GC(p)
1

@C(4) + �

== ·
∑
4∈ℰ

AC(4)
@C(4) + �

= = · &C . (102)

Here, we recall the notation AC(4) and &C defined in Section 8.2.2. Replacing (100) and
(102) into (98), we have that the following inequality holds for any p∗ ∈ P.

)∑
C=1

∑
p∈P

GC(p)!C(p) −
)∑
C=1

�&C −
)∑
C=1

!C(p∗)
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≤ ln(%)
�

+�

2

)∑
C=1

=&C .

Therefore, we conclude that

') =

)∑
C=1

∑
p∈P

GC(p)!C(p) −
)∑
C=1

!C(p∗)

≤ ln(%)
�

+
)∑
C=1

&C

(
=
�

2
+ �

)
.

E.3 Lemmas on Graphs’ Independence Numbers

In this section, we present some lemmas in graph theory that will be used in the next
section to prove Theorem 8.2.2. Consider a graph �̃ whose vertices set and edges set
are respectively denoted by Ṽ and ℰ̃. Let ̃ be its independence number.

Lemma E.1. Let �̃ be an directed graph and �E be the in-degree of the vertex E ∈ Ṽ, then∑
E∈Ṽ

[1/(1 + �E)] ≤ 2̃ ln
(
1 + |Ṽ |/̃

)
.

A proof of this lemma can be found in Lemma 10 of Alon, Cesa-Bianchi, Gentile,
and Mansour (2013).

Lemma E.2. Let �̃ be a directed graph with self-loops and consider the numbers :(E) ∈ [0, 1],
∀E ∈ Ṽ such that there exists � > 0 and

∑
E∈Ṽ :(E) ≤ �. For any 2 > 0, we have

∑
E∈Ṽ

:(E)
1
�

∑
E′→E

:(E′)+2
≤ 2�̃ ln

(
1+ �⌈|Ṽ |2/2⌉ + |Ṽ |

̃

)
+2�.

A proof of this lemma can be found in Lemma 1 of Kocák et al. (2014).

Lemma E.3. Let �̃ be an undirected graph with self-loops and consider the numbers :(E) ≥ 0,

E ∈ Ṽ. We have ∑
E∈Ṽ

[
:(E)

/∑
E′→E

:(E′)
]
≤ ̃.

This lemma is extracted from Lemma 3 of Mannor and Shamir (2011).

E.4 Proof of Theorem 8.2.2

Theorem 8.2.2. Let us define " := ⌈2�2/�⌉, #C := log
(
1+"+�

C

)
and  C := log

(
1+ ="+�

C

)
.

Upper-bounds of &C in different cases of �$C are given in the following table:

Satisfies (�1) Does not satisfy (�1)
Symmetric C =C
Non-Symmetric 1+2C#C 2= (1+C C)
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Case 1: �$C does not satisfy Assumption (�1). Fixing an edge 4, due to the fact that =
is the length of the longest paths in P, we have

=@C(4)==
∑

p∈OC (4)
GC(p) ≥

∑
4′→4

∑
p∋4′

GC(p)=
∑
4′→4

AC(4′)

⇒&C=

∑
4∈ℰ

AC(4)
@C(4)+�

≤
∑
4∈ℰ

AC(4)
1
=

∑
4′→4

AC(4′)+�
. (103)

Case 1.1: If �$C is a non-symmetric (i.e., directed) graph, we apply Lemma E.2 with
� = =, 2 = � on the graph �̃ = �$C (whose vertices set Ṽ corresponds to the edges set ℰ
of �) and the numbers36 :(E4) = AC(4),∀E4 ∈ Ṽ (i.e., ∀4 ∈ ℰ). We obtain the following
inequality: ∑

4∈ℰ

AC(4)
1
=

∑
4′→4

AC(4′)+�
≤ 2=C ln

(
1+ =⌈�

2/�⌉+�
C

)
+ 2=.

Case 1.2: If �$C is a symmetric (i.e. undirected) graph, we apply Lemma E.3 with the
graph �̃ = �$C (whose vertices set Ṽ corresponds to the edges set ℰ of the graph �)
and the numbers :(E4) = AC(4),∀E4 ∈ +̃ (i.e., ∀4 ∈ ℰ) to obtain:∑

4∈ℰ

AC(4)
1
=

∑
4′→4

AC(4′)+�
≤ =

∑
4∈ℰ

AC(4)∑
4′→4

AC(4′)
≤ =C .

Case 2: �$C satisfies Assumption (�1). Under this Assumption, @C(4) =
∑
4′→4 AC(4′) due

to the definition of OC(4). Therefore, &C =
∑
4∈ℰ

[
AC(4)

/ (∑
4′→4 AC(4′) + �

) ]
.

Case 2.1: If �$C is a non-symmetric (i.e., directed) graph. We consider a discretized
version of GC(p) for any path p ∈ P that is G̃C(p) := :/" where : is the unique integer
such that (: − 1)/" ≤ GC(p) ≤ :/"; thus, G̃C(p) − 1/" ≤ GC(p) ≤ G̃C(p).

Let us denote the discretized version of AC(4) by ÃC(4) :=
∑

p∋4 G̃C(p). We deduce that
AC(4) ≤ ÃC(4) and

∑
4′→4

AC(4) ≥
∑
4′→4

(
ÃC(4′) −

1
"

)
≥

∑
4′→4

ÃC(4′) −
�

"
.

We obtain the bound:

&C =

∑
4∈ℰ

AC(4)( ∑
4′→4

AC(4′) + �

) ≤
∑
4∈ℰ

ÃC(4)∑
4′→4

ÃC(4′)−�/"+� . (104)

We now consider the following inequality: If 0, 1 ≥ 0 and 0 + 1 ≥ � > � > 0, then

0

0 + 1 − � ≤ 0

0 + 1 + �

� − �. (105)

36We verify that these numbers satisfy∑
4∈ℰ

AC (4)=
∑
4∈ℰ

∑
p∋4

GC (p)=
∑
p∈P

∑
4∈p

GC (p)≤
∑
p∈P

=GC (p) = =.
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A proof of this inequality can be found in Lemma 12 of Alon, Cesa-Bianchi, Gentile,
and Mansour (2013). Applying (105)37 with 0 = ÃC(4), 1 =

∑
4′→4 ,4′≠4

ÃC(4′)+�, � = �
" , and

� = � to (104),

&C ≤
∑
4∈ℰ

©«
ÃC(4)∑

4′→4
ÃC(4′) + �

+ �/"
� − �/"

ª®¬
≤

∑
4∈ℰ

ÃC(4)∑
4′→4

ÃC(4′)
+ 1. (106)

The last inequality comes from the fact that �
"�−� ≤ �

2�2−� ≤ 1
2�−1 ≤ 1

� ,∀� ≥ 1.
Finally, we create an auxiliary graph �∗

C such that:

(8) Corresponding to each edge 4 in� (i.e., each vertex E4 in�$C ), there is a clique, called
C(4), in the auxiliary graph �∗

C with "ÃC(4) ∈ N vertices.

(88) In each cliqueC(4) of �∗
C , all vertices are pairwise connected with length-two cycles.

That is, for any :, :′ ∈ C(4), there is an edge from : to :′ and there is an edge from :′

to : in �∗
C .

(888) If 4 → 4′, i.e., there is an edge in �$C connecting E4 and E4′; then in �∗
C , all vertices

in the clique C(4) are connected to all vertices in C(4′).

We observe that the independence number C of �$C is equal to the independence
number of �∗

C . Moreover, the in-degree of each vertex : ∈ (4) in the graph �∗
C is:

�∗: = "ÃC(4)−1+
∑

4′→4 ,4′≠4

"ÃC(4′)=
∑
4′→4

"ÃC(4′)−1. (107)

Let us denote +∗
C the set of all vertices in �∗

C , then we have:

∑
4∈ℰ

ÃC(4)∑
4′→4

ÃC(4′)
=

∑
4∈ℰ

"ÃC(4)∑
4′→4

"ÃC(4′)
=

∑
4∈ℰ

∑
:∈C(4)

1
�∗
:
+1

=

∑
:∈+∗

C

1

�̃: + 1
≤ 2C ln

(
1 + " + �

C

)
. (108)

Here, the second equality comes from the fact that |C(4)| = "ÃC(4) and (107). The
inequality is obtained by applying Lemma E.1 to the graph �∗

C and the fact that
|+∗
C | =

∑
4∈ℰ "ÃC(4) ≤ "

∑
4∈ℰ (AC(4)+1/")≤�+".

In conclusion, combining (106) and (108), we obtain the regret-upper bound as
given in Theorem 8.2.2 for this case of the observation graph.

Case 2.2: Finally, if �$C is a symmetric (i.e., undirected) graph, we again ap-
ply Lemma E.3 to the graph �̃ = �$C and the numbers :(E4) = AC(4) to obtain that
&C ≤

∑
4∈ℰ

[
AC(4)

/∑
4′→4 AC(4′)

]
≤ C .

37Trivially, we can verify that 0 + 1 ≥ � and � > � comes from the fact that � ≥ � 1
� > �

⌈2�2/�⌉ .
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E.5 Parameters Tuning for Exp3-OE: Proof of Corollary 8.2.3

In this section, we suggest a choice of � and � that guarantees the expected regret given
in Corollary 8.2.3.

Corollary 8.2.3. In SOOSP, let  be an upper bound of C ,∀C ∈ [)]; with appropriate choices

of the parameters � and �, the expected regret of the Exp3-OE algorithm is:38

(8) ') ≤ Õ(=
√
) log(%)) in the general cases.

(88) ') ≤ Õ(
√
=) log(%) if Assumption (�1) is satisfied by the observation graphs �$C ,

∀C ∈ [)].

Case 1: Non-symmetric (i.e. directed) observation graphs that do not satisfy

Assumption (�1). We find the parameters � and � such that 'C ≤ Õ
(
=
√
)

)
. We

note that C ≥ 1, ∀C ∈ [)]; therefore, recalling that  is an upper bound of C , from
Theorem 8.2.1 and Theorem 8.2.2, we have:

') ≤ ln(%)
�

+
)∑
C=1

(
=
�

2
+�

)
2=

[
1+C ln

(
1+ ="+�

C

)]

≤ ln(%)
�

+)
(
=
�

2
+�

)
2= [1 +  ln (+="+�)]

=
ln(%)
�

+ �)=2 [1 +  ln ( + =" + �)]

+ 2�)= [1 +  ln ( + =" + �)] . (109)

Recalling that " := ⌈2�2/�⌉, by choosing any

� ≤ 1/
√
)=[1 +  ln( + =⌈�2/�⌉ + �)], (110)

and � =
√

ln(%)/
√
=2)

[
1 +  ln

(
 + =⌈�2/�⌉ + �

) ]
,

we obtain the bound:

') ≤2=
√
) ln(%) · [1 +  ln( + =" + �)]
+ 2

√
)=[ +  ln( + =" + �)] (111)

≤Õ
(
=
√
) ln(%)

)
.

In practice, as long as it satisfies (110), the larger � is, the better upper-bounds
that Exp3-OE gives. As an example that (110) always has at least one solution, we now
prove that it holds with

�∗ =
−)=2�2+

√
()=2�2)2+4)=(1+ ln +�+=)
2)=(1+ ln +�+=) . (112)

38Recall that Õ is the variant of the asymptotic notation O that ignores the logarithmic factors (in terms
of = and )).
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Indeed, �∗ > 0 and it satisfies:

�∗2 · )=(1 +  ln  + � + =) + �∗)=2�2
= 1.

⇒�∗2 · )=(1 +  ln  + �) + �∗2)=2

(
�2

�∗
+ 1

)
= 1

⇒�∗2 · )=(1 +  ln  + �) + �∗2)=2
⌈�2

�∗
⌉
≤ 1

⇒�∗ ≤ 1√
)= (1 +  ln  + � + =")

.

On the other hand, applying the inequality ln(1 + G) ≤ G, ∀G ≥ 0, we have:

=" + �


≥ ln

(
1 + =" + �



)

⇒=" + �


+ ln  ≥ ln( + =" + �)

⇒=" + � +  ln  + 1 ≥  ln( + =" + �) + 1

⇒ 1√
)= (1 +  ln  + =" + �)

≤ 1√
)= ( ln ( + =" + �) + 1)

.

Therefore, �∗ satisfies (110). Finally, choosing � = �∗ = Ω
(
=�2/[1+ ln +�+=]

)
as in (112), we have

" = ⌈2�2/�⌉ ≤ O([1+ ln +�+=]/=).

Combining this with (111), we obtain the regret bound indicated in Section 8.2.2.
Case 2: symmetric observation graphs that do not satisfy (�1). Trivially, we have

that if � := 1/
√
=) and � = 2

√
ln(%)/

√
=2), then

') ≤ ln(%)
�

+
(
=
�

2
+ �

)
=)

=
1
2
=
√
) ln(%) + =

√
) ln(%) +

√
=) (113)

≤ Õ
(
=
√
) ln(%)

)
.

Case 3: non-symmetric observation graphs �$C satisfying Assumption (�1), ∀C.
We will prove that ') ≤ Õ

(√
=) ln(%)

)
for any

� ≤ 1/
√
)[1 + 2 ln

(
1 + ⌈�2/�⌉ + �

)
], (114)

� = 2
√

ln(%)/
√
)= [1 + 2 ln ( +" + �)]. (115)

Indeed, from Theorem 8.2.1 and Theorem 8.2.2, we have:

') ≤ ln(%)
�

+
)∑
C=1

(
=
�

2
+�

) [
1+2C ln

(
1+"+�

C

)]
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≤ ln(%)
�

+
)∑
C=1

(
=
�

2
+�

)
[ + 2 ln (1 +" + �)]

=
ln(%)
�

+ �)
=

2
[1 + 2 ln (1 +" + �)]

+ �) [1 + 2 ln (1 +" + �)] . (116)

We replace (114) and (115) into (116) and obtain:

') ≤ 3
2

√
)= [1 + 2 ln (1 +" + �)] · ln(%)

+
√
) [1 + 2 ln (1 +" + �)]. (117)

≤ Õ
(√
=) ln(%)

)
.

A choice for � that satisfies (114) is

�∗ :=
−)�2+

√
()�2)2+)(3 + 2�)
)(3 + 2�) . (118)

Moreover, with this choice of �∗ = Ω(�2/(3+2�)), we deduce" := ⌈2�2/�∗⌉ ≤ O(3 + 2�).
Combining this with (117), we obtain the regret bound indicated in Section 8.2.2.

Case 4: all observation graphs are symmetric and satisfy (�1). From Theo-
rem 8.2.1 and Theorem 8.2.2, we trivially have that if � := 1/

√
) and � = 2

√
ln(%)/

√
=),

then ') ≤ 2
√
=) ln(%) +

√
) ≤ Õ

(√
=) ln(%)

)
.

E.6 The Actions Set of the Hide-and-Seek game

We give a description of the graph corresponding to the actions set of the learner
in the HS games with the =-search among : locations and coherence constraints
|zC(8) − zC(8 + 1)| ≤ �,∀8 ∈ [=] for a fixed � ∈ [0, : − 1].

Definition E.4 (HS Graph). The graph �:,=,� is a DAG that contains:

(8) # := 2 + := vertices arranged into = + 2 layers. Layer 0 and Layer (= + 1), each con-

tains only one vertex, respectively labeled B–the source vertex and 3–the destination vertex.

Each Layer 8 ∈ {1, . . . , =} contains : vertices whose labels are ordered from left to right by

(8 , 1), (8 , 2), . . . , (8 , :).
(88) There are directed edges from vertex B to every vertex in Layer 1 and edges from every vertex

in Layer = to vertex 3. For 8 ∈ {1, 2, . . . , = − 1}, there exists an edge connecting vertex (8 , 91)
to vertex (8 + 1, 92) if | 91 − 92 | ≤ �.

The graph �:,=,� has � = 2:+(=−1) [:+�(2:−�−1)] = O(=:2) edges and at least
Ω(�=−1) paths from B to 3. The edges ending at vertex 3 are the auxiliary edges that
are added just to guarantee that all paths end at 3; these edges do not represent any
intuitive quantity related to the game. For the remaining edges, any edge that ends
at the vertex (8 , 9) represents choosing the location 9 as the 8-th move. In other words,
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a path starting from B, passing by vertices (1, 91), (2, 92), . . . , (=, 9=) and ending at 3
represents the =-search that chooses location 91, then moves to location 92, then moves
to location 93, and so on.

Proposition E.5. Given :, � and =, there is a one-to-one mapping between the action set (:,=,�
of the learner in the HS game (with =-search among : locations and coherence constraints with

parameter �) and the set of all paths from vertex B to vertex 3 of the graph �:,=,�.

E.7 Exp3-OE Algorithm and OSMD Algorithm in the CB and HS Games

(8)As stated in Section 8.3.1, the observation graphs in the CB games are non-symmetric
and they satisfy Assumption (�1). If we choose � = �∗ as in (118), then � satisfies (114).
Moreover, � = O(1/

√
)=�); thus, " = O(�2

√
)=�). From (117), the expected regret

of Exp3-OE in this case is bounded by O
√
)=(��) ln" ln(%) (recall that �� = :=

is an upper bound of independence numbers of the observation graphs in the CB
games). Therefore, to guarantee that this bound is better than the bound of the OSMD

algorithm (that is
√

2)=�), the following inequality needs to hold:

O (�� · ln" ln(%)) ≤ �

⇒O
(
=: · ln (�2

√
)=�) ln(2=)

)
≤ =:2

⇒O
(
ln (�2

√
)=�) ln(2=)

)
≤ :

⇒O
(
= ln (=3:5

√
))

)
≤ :.

(88)As stated in Section 8.3.2, the observation graphs in the HS games with condition
(�1) are symmetric and do not satisfy Assumption (�1). If we choose � = 1/

√
=)

then by (113), we have that ') is bounded by O
(
=
√
�() ln(%)

)
(recall that �( = :

is an upper bound of the independence numbers of the observation graphs in the HS
games). Therefore, to guarantee that this bound is better than the bound of the OSMD

algorithm in HS games, the following inequality needs to hold:

O (�( · = ln(%)) ≤ �

⇒O (: · = ln(%)) ≤ =:2

⇒O (ln(%)) ≤ :

⇒O (= ln�) ≤ :.

(888) Finally, the observation graphs in the HS games with condition (�2) are non-
symmetric and do not satisfy Assumption (�1). Therefore, if we choose � = �∗ as
in (112), then � satisfies (110). In this case, � = O(1/

√
)=�) and " = O(�2

√
)=�).

Therefore, from (111), in this case, ') is bounded by O(=
√
)�( ln �( ln(="). There-

fore, to guarantee that this bound is better than the bound of OSMD (that is,
√

2)=�),
the following inequality needs to hold:

O (�( · = ln =" ln(%)) ≤ �
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⇒O
(
=: ln (�=) ln(=�2

√
)=�)

)
≤ =:2

⇒O
(
= ln� ln (=4:5

√
))

)
≤ :.
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Appendix F

Supplementary Materials for Chapter 9 on

OSPBand and the Online Bandit CB Game

F.1 Optimization Exploration Distributions of Edge by SDPs

To formulate the problem (9.5)-(9.6) into a SDP, we first observe that for any distri-
bution � such that the paths set P is spanned by the support of �, the matrix "(�)
always has a fixed number of zero eigenvalues (denoted by  ) and this number can
be easily computed.39 Therefore, the problem of maximizing �∗["(�)] is equivalent to
maximizing the sum of  + 1 smallest eigenvalues of "(�) which is formulated as:

minimize ( + 1)B + Tr(/) (119)

subject to / � 0 (120)

/ +
∑%

8=1
G8 · p8p⊤8 + B�� � 0. (121)

Here, x ∈ [0, 1]% and A, B ∈ R, / ∈ M�×� are the variables. �� is the identity matrix
and the notation - � 0 indicates that the matrix - is positive semi-definite. This is
trivially deduced from the Linear Matrix Inequalities representation of the sum of
 + 1 largest eigenvalues of the matrix (see e.g., Nesterov and Nemirovsky (1994) and
Vandenberghe and Boyd (1996)).

F.2 A Regret Lower-bound of OSPBand

Proposition 9.5.1. There exists an instance of OSPBand on a graph, where the number of

edges is � and the length of the longest paths is =, such that

inf
strategies

sup
adversaries

') = Ω

(
=
√
�)

)
.

Proof. This proof follows Audibert, Bubeck, and Lugosi (2014) (Theorem 4.1) regarding
the lower-bound of an online combinatorial bandit problem (i.e., the learner’s action
set is a subset of {0, 1}�) whose main argument follows the standard lower bounds of
the bandit problems (see Cesa-Bianchi and Lugosi (2006)).40 Intuitively, the instance
used in Audibert, Bubeck, and Lugosi (2014) is the problem where players play in

39'0=:("(�)) < � is the size of the largest linear independent subset of P, which is fixed and only
depends on the structure of the layered graph �:,= . Rank-nullity theorem implies that  is also fixed. We
can compute  by computing rank of any particular matrix, say "(�uni).

40Note also that a similar proof can be found in Audibert and Bubeck (2010) (Theorem 30) but they
only focus on the case corresponding to the problem where = = 1 and it involves only the oblivious
adversaries.
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parallel = finite games with : := �/= actions in each game; the learner plays against
a p-adversary which is parameterized by an action p ∈ ( of the learner (p is chosen
randomly and hidden) and defined in such a way that p is the optimal action of the
learner against the p-adversary.

Given an = > 0, � = : · = (: ≥ 2) and ) ≥ �. Let us consider a OSPBand on a DAG
(multi-graph) � as follows: � contains = + 1 nodes labeled from 1 (the source node) to
= + 1 (the destination node); for each 8 ∈ [=], there are : edges from a node 8 to node
8+1 labeled from [8 , 1] to [8 , :] (each edge from 8 to 8+1 represents an action in the 8-th
game). An illustration of the graph with = = 2, : = 4 is given in Figure 5. Note that we
can always construct a simple graph corresponding to � (each edge in � corresponds
to a pair of edges in the simple graph) that have 2� edges and the length of the longest
path is 2= (an illustration is given in Figure 6).

1st Game

2nd Game

Figure 5: Multigraph with = = 2, : = 4.

1st Game

2nd Game

Figure 6: The simple graph corresponding to � with = = 2, : = 4.

The action set of the learner in the OSPBand on � is the set of paths from the source

to the destination, that is ( =

{
p ∈ {0, 1}� :

∑:
9=1 p[8 , 9] = 1,∀8 ∈ [=]

}
. Here, p[8 , 9] = 1

if and only if the edge [8 , 9] (9-th edge from node 8 to 8 + 1) belongs to the path p.
Given a path p ∈ (, a p-adversary is the adversary who at stage C, samples a loss

ℓ C(4) from a Bernoulli distribution with parameter 1/2 if 4 ∉ p and from a Bernoulli
distribution with parameter 1/2−� if 4 ∈ p. That is, in expectation, the edges belonging
to p has a slightly smaller loss than other edges. We can easily see that this adver-
sary corresponds to the one defined in Theorem 4.1 of Audibert, Bubeck, and Lugosi
(2014). Therefore, following Audibert, Bubeck, and Lugosi (2014), we can conclude
this proposition.
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F.3 A Regret Lower-bound of Online Bandit CB Games

Proposition 9.5.2. There exists an instance of the online bandit CB game with 2= battlefields

(= ∈ N\{0}) such that in the corresponding OSPBand, we have

inf
strategies

sup
adversaries

') = Ω

(
=
√
)
)
. (9.9)

Proof. We consider a CB game having the parameters as follows (they are known to
the learner):

1. There are 2= battlefields divided into two groups: the big battlefields indexed
by {11 , 12 , . . . , 1=} where each has a value of 1; the small battlefields indexed by
{B1 , B2 , . . . , B=} where each has a value of 1/2.

2. The learner has : = = troops. Thus, her strategy set is

( := {z ∈ {1, . . . , =}2= :
∑

8∈[2=]
z 8 = =}.

As a convention, hereinafter, we denote by z18 and zB8 the allocations toward
battlefields 18 and B8 of a strategy z ∈ (.

3. The tie-breaking rule is in favor of the adversary.

Next, we design a special adversary as follows: the adversary has =2 troops, she
chooses a set � ⊆ {1, 2, . . . , =} uniformly at random (� is unknown to the learner). At
each stage C, the adversary does the following:

1. allocates 0 troop to each small battlefield B8 ,∀8 ∈ [=],

2. chooses an index 8C ∈ {1, . . . , =} uniformly at random (8C is kept secretly from
the learner),

3. allocates = troops to the big battlefield 1 9 for any 9 ≠ 8C ,

4. for the big battlefield 18C :

if 8C ∈ �,
{

allocates = troops with probability 1/2 − �,

allocates 0 troop with probability 1/2 + �,

if 8C ∉ �,

{
allocates = troops with probability 1/2 + �,

allocates 0 troop with probability 1/2 − �.

Note importantly that we desire an adversary who maximizes the learner’s regret and
may not want to optimize her own payoffs; therefore, the strategy of the adversary can
be irrational and she may not use all the troops that she has.

We have some intuitive remarks on the payoffs of the learner against such an
adversary as follows:
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1. The learner can always guarantee to win all the small battlefields (by allocating
1 troop to each one of them) and loses all big battlefields.41 In that case, for each
8 ∈ [=], ℓ C(18) + ℓ C(B8) = 1 + 0 = 1. Therefore, her total loss by playing this strategy
is !C = =. Let us call this by the safe-strategy.

2. The loss that the learner receives in each battlefield is the same when her alloca-
tion there belongs to the set {1, 2 . . . , <}.42 In other words, against the adversary
described above, in each battlefield, it only matters to the learner whether she
allocates 0 troop or more than 0 troop. Formally, for any strategy of the learner,
say z̃ ∈ (, there exists a strategy in the set (∗ = {z ∈ {0, 1}2= :

∑
8∈[2=] z 8 = =} ⊂ (

yielding a better loss than z̃ against this adversary.

3. The optimal (in expectation) strategy that the learner can do against such an
adversary is z� = (z11 , . . . , z1= , zB1 , . . . , zB= ) ∈ (∗ where z18 = 1, zB8 = 0, ∀8 ∈ �

and z1 9 = 0, zB 9 = 1, ∀9 ∉ �. We call this the �-strategy. Intuitively, to obtain this
strategy, starting from the safe-strategy, the learner moves one troop from the
small battlefield B8 to the big battlefield 18 for any 8 ∈ �. Note importantly that �
is unknown to the learner; therefore, she cannot compute this optimal strategy
at the beginning of each stage.

The last remark above comes from the following observation: for any 8 ∈ �, at each
stage, if the learner follows a strategy such that she allocates 1 troop to the big battlefield
18 and 0 troop to the small battlefield B8 (i.e., 18 = 1, B8 = 0), then the expected losses
she receives from these battlefields are

ℓ C(18)+ℓ C(B8)

=
1
=

[(
1
2
−�

)
· 1+

(
1
2
+�

)
· 0 + 1

2

]
+ = − 1

=
(1 + 0)

=1− �

=
.

Therefore, in the optimal case, by playing the � strategy, the learner’s total loss is
= − |�|�/=, which is optimal.

On the other hand, for any 9 ∉ �, if the learner allocates 1 troop to the big battlefield
1 9 and 0 troop to the small battlefield B 9 (i.e., 1 9 = 1, B 9 = 0), then the expected losses
she receives from these battlefields are:

ℓ C(1 9)+ℓ C(B 9)

=
1
=

[(
1
2
+�

)
· 1+

(
1
2
+�

)
· 0 + 1

2

]
+ = − 1

=
(1 + 0)

=1+ �

=
.

41She only has = troops; therefore, by allocating them toward the small battlefields, she gives up all big
battlefield (note that if there is a tie 0 − 0 at a battlefield, the learner still loses that battlefield).

42The learner wins a small battlefield as long as she allocates more than 0 troop. In big battlefields, if
the adversary allocates = troops, then the learner always loses regardless of what she does; otherwise, if
the adversary allocates 0 then the learner always wins as long as she allocates more than 0.
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Therefore, the problem that the learner faces at each stage is equivalent to the case
where she has the action set (′ = {0, 1}= containing all the �-strategies corresponding
to all � ⊂ {1, . . . , =} and that at stage C + 1, for each 8 ∈ [=], the learner needs to guess
whether 8 ∈ � based on C incurred loss samples. If she guesses correctly, she reduces
�/= from the loss of the safe-strategy; but if he guesses incorrectly, then her total loss
increases by �/= comparing to that of the safe-strategy.

Following Dani et al. (2008), this is equivalent to the statistic problem of deciding
between two Bernoulli distributions whose means differ by 2�/= based on C samples
and the initial prior belief is shared equally (i.e., in the prior, each Bernoulli distribution
has 50% to be the actual distribution). In this problem, it holds with probability Ω(1)
that an error is made unless there are more than C = Ω

( (
=
2�

)2
)

samples (see Dani

et al. (2008)). Therefore, we have shown that in expectation, regardless of the learner’s
decision, the loss she suffers from the pair of battlefields 18 , B8 contributes at least

Ω

(
min

{
),

(
=
2�

)2
}
· 2�
=

)
to the total regret. Taking the summation over all battlefields,

the total expected regret is Ω

(
min

{
2)�, =

2

2�

})
and we obtain the bound in (9.9) by

setting � = =/
√
).
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