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Introduction

Découvrir les premiers ligands pour une protéine cible, de manière rapide et économique, est un enjeu important en "drug design". En absence d'un ligand d'une protéine dont la structure tridimensionnelle est déjà connue, le docking (amarrage moléculaire) est en général utilisé comme outil de criblage virtuel, ceci malgré un problème toujours non-résolu de prédiction quantitative des affinités de focalise sur la conception des jeux de données "PubChem BioAssay" représentant une diversité de protéines cibles dont les biais dans la composition des composés actifs et inactifs sont réduits, et l'évaluation de ces jeux de données après préparation pour voir s'il y a encore des biais ou pas.

Résultats et discussions

Développement de méthodes de criblage virtuel basées sur les pharmacophores déduits des poches de liaison potentielles à la surface d'une protéine cible

L'élaboration et l'évaluation de protocoles de criblage virtuel se font en utilisant les jeux de données "Astex", "DUD-E" et "PubChem BioAssay" au long des trois challenges : un challenge de positionnement de ligand et deux challenges de criblage virtuel rétrospectif.

Le jeu de données "Astex" est utilisé pour le challenge de positionnement de ligand. Il se compose de Pour le deuxième challenge de criblage virtuel rétrospectif, on a choisi les jeux de données "PubChem BioAssay", qui nous fournit les vrais actifs et les vrais inactifs de chaque protéine cible qui ont déjà été vérifiés par les essais biologiques confirmatoires.

Plus précisément, les trois jeux de données suivants : ROCK2 (inhibiteurs de Rho 

Développement de jeux de données "PubChem BioAssay" non-biaisés pour les études de criblage virtuel rétrospectif

Les données de bioactivité expérimentales sont récupérées à partir du site web de "PubChem BioAssay", où se trouvent toutes les informations relatives aux essais biologiques déjà réalisés sur une cible thérapeutique, y compris les vrais actifs et les vrais inactifs ainsi que les valeurs d'affinité (EC 50 , IC 50 , K d , ou K i ) en µM ou nM. Une première étape de pré-sélection a eu lieu pour garder seulement les jeux de données avec au moins 10.000 substances testées, dont au moins 50 ont été confirmées comme actives par une étude dose-réponse, sur une protéine cible ayant été co-cristallisée au moins une fois avec un ligand du même phénotype (inhibiteur, agoniste, antagoniste, etc.) que celui des vrais actifs validés par l'essai biologique qui correspond. Une totalité de 21 jeux de données correspondant à 21 protéines cibles d'intérêt pharmaceutique, couvrant 11 familles de protéines, ont été retenus. Plusieurs familles fortement étudiées depuis des années, telles que les RCPGs (n = 3), les kinases (n = 3), ou les récepteurs nucléaires (n = 5), sont choisies. 162 structures cristallographiques en 3D (protéine en complexe avec un ligand pour chacune) pour l'ensemble des 21 jeux de données sont trouvées sur la "Protein Data Bank". Tous ces résultats ont été mis à jour au 31 décembre 2018.

Chaque complexe protéine-ligand a été ensuite téléchargé directement depuis le site web de la "Protein Data Bank" en format pdb. Les hydrogènes ont été ajoutés avec Protoss. Toutes les molécules d'eau qui se trouvent dans le site de liaison qui participent à au moins trois liaisons d'hydrogène avec la protéine et/ou le ligand, dont au moins deux sont avec la protéine, ont été conservées. Les structures des protéines, des ligands et des sites de liaison ont été enregistrées séparément en format mol2.

Toutes les substances de chaque jeu de données ont été téléchargées en format sdf depuis le site web de "PubChem BioAssay". Les informations relatives à chaque substance ont été ensuite récupérées, y compris l'activité (actif/inactif), le phénotype (inhibiteur, agoniste, antagoniste), la puissance (en μM), la valeur de HillSlope, la "fréquence de touche", la masse moléculaire, le coefficient de partage octanol/eau (ALogP), la charge formelle, le nombre de liaisons à rotation libre, et le nombre d'accepteurs ou de donneurs de liaisons d'hydrogène. Les règles de filtrage ont été déterminées de sorte que les faux positifs ainsi que l'enrichissement artificiel soient évités. Le processus de filtrage à quatre étapes est effectué comme suit :

 Etape 1 : Filtre de substances inorganiques : les molécules qui possèdent au moins un atome autre que H, C, N, O, P, S, F, Cl, Br, et I ont été enlevées.

Toutes les substances (actives et inactives) ont passé cette étape.

 Etape 2 : Filtre de faux positifs : un actif est retenu seulement si sa valeur de HillSlope est entre 0,5 et 2 (étape 2a), si la "fréquence de touche" est inférieure à 0,26 (étape 2b), s'il n'est pas considéré comme agrégateur ou inhibiteur de la luciférase et s'il n'a pas la propriété autofluorescente (étape 2c). Les substances inactives, par contre, n'ont pas passé cette étape. Presque 60% des vrais actifs ont été éliminés après toutes les étapes de filtrage. Il est observé que la sous-étape 2a a filtré le plus d'actifs (les actifs non-spécifiques ayant plusieurs sites de liaison). Par contre, seulement 10% des vrais inactifs ont été retirés, car ils n'ont pas passé l'étape 2 comme les substances actives (Figure 3). Ces étapes de filtrage soulignent l'importance de l'élimination des artefacts de test dans la composition des vrais actifs, car elles retirent non seulement les faux positifs qui pourraient ultérieurement impacter la performance du criblage virtuel, mais aussi font baisser le taux des actifs par rapport aux inactifs, rendant les taux de touche de nos jeux de données plus proches de ceux qui sont typiquement observés lors de criblages expérimentaux à haut débit. D'ailleurs, la puissance des composés actifs de DUD-E ou de ChEMBL est en général plus élevée que celle de nos jeux de données, c'est-à-dire que nos actifs sont plus difficiles à détecter, et permettent une meilleure discrimination entre les méthodes de criblage in silico, puisque la surestimation de la performance de ces méthodes est minorée. Les jeux de données déjà préparés ont été ensuite évalués par des méthodes de criblage virtuel "ligand-based" (recherche par similarité en 2D avec ECFP4 ou en 3D avec ROCS) ou "structure-based" (docking moléculaire avec Surflex-Dock). Le meilleur coefficient de Tanimoto (donné par les méthodes "ligand-based") et le meilleur score de docking (issu par Surflex-Dock) ont été enregistrés pour chaque substance. Chacun des 162 complexes cristallographiques trouvés dans la "Protein Data Bank" a été utilisé comme support ("template"), générant autant de listes de touches que de supports disponibles. En plus, l'approche "max-pooling" a été également utilisée, dans laquelle seulement le meilleur score donné par tous les supports a été retenu pour chaque substance. Les valeurs d'EF1% (enrichissement en vrais actifs correspondant à un taux de faux positifs de 1%) ont été calculées pour évaluer la performance du criblage.

Il est observé que les valeurs d'EF1% de chaque entrée sont très variables dans la plupart des cas, confirmant l'influence du choix du support de référence et de méthode sur la performance du criblage. L'enrichissement comparable à ou moins bon que celui obtenu par la sélection aléatoire (EF1% = 1,0) est observé chez plusieurs entrées.

Notamment, sur six jeux de données (ARO1, GLP1R, GLS, L3MBTL1, RORC, THRB), aucune méthode n'est arrivée à donner un enrichissement supérieur à 2,0 avec l'approche "max-pooling" (Figure 4). Pour cinq d'entre eux, aucun support n'a donné un EF1% > 2,0. Ceci signifie la difficulté remarquable de nos jeux de données, grâce à l'absence des biais structurels dans la composition des substances (les actifs, les inactifs et les ligands de référence) et la distribution de la puissance des vrais actifs qui n'est pas orientée vers les valeurs sub-micromolaires. Parmi les 21 jeux de données évalués, 15 (sauf les six mentionnés ci-dessus) ont été sélectionnés et constituent donc la nouvelle base de données intitulée LIT-PCBA. Chacun entre eux a été ensuite divisé en quatre sous-ensembles ("training actives", "validation actives", "training inactives", "validation inactives") par la méthode "asymmetric validation embedding" (AVE) qui mesure la distance dans l'espace chimique de chaque paire de molécules pour les distribuer dans les sous-ensembles de sorte que le biais total soit minimisé [6]. Pour 12 jeux de données (à part ALDH1, VDR, FEN1), une valeur de biais inférieure à 0,01 a été atteinte après seulement quelques itérations de l'algorithme génétique (pour les trois qui restent, les valeurs de biais total sont toutes inférieures à 0,10). Ceci confirme encore une fois qu'il y a très peu de biais dans la composition de nos jeux de données, et fait preuve de la qualité de LIT-PCBA en tant qu'une base de données prête à l'emploi pour évaluer la performance de méthodes de criblage virtuel à l'avenir. TRAN NGUYEN Viet Khoa -Ph.D. thesis 20

Conclusion générale

Les éléments pharmacophoriques "structure-based" issus d'IChem qui représentent le site actif d'une protéine (même sans ligand co-cristallisé) sont simples et assez précis pour faire du criblage virtuel. La nouvelle procédure proposée dans ce travail (alignement de molécules sur les pharmacophores par Shaper2, sélection de pose par l'énergie totale MMFF94, et classement de composés par l'énergie PLP) s'avère aussi efficiente que des méthodes computationnelles existantes dans l'identification des composés actifs et leurs chémotypes originaux, et peut donc être utilisée en parallèle avec d'autres méthodes de criblage in silico afin d'améliorer la performance globale du criblage. On présente également la nouvelle base de données LIT-PCBA, se composant de 15 protéines cibles, chacune avec les vrais actifs et les vrais inactifs déjà confirmés par les essais biologiques issus de "PubChem BioAssay". Ces jeux de données, préparés par une procédure rigoureuse de plusieurs étapes, sont moins biaisés, en matière de structure des ligands et de composition des sets de molécules, que ceux qui existent déjà (DUD, DUD-E, etc.), et sont donc plus difficiles. LIT-PCBA est prête à l'emploi pour des études comparatives de nouvelles méthodes de criblage virtuel, notamment celles basées sur l'intelligence artificielle.

Introduction

Discovering the very first ligand that exerts a desired bioactivity towards a protein target in a fast and cost-effective manner has long been a main challenge in drug design. For a particular protein whose ligands' three-dimensional structures are not yet available, the molecular docking technique is usually employed as a virtual screening tool to detect potential "hits", despite the unresolved issues in quantitatively predicting these molecules' binding affinity. It is therefore necessary to conceive a novel computational approach that can be applied to apoproteins. In 2012, the researchers at the "Laboratoire d'Innovation Thérapeutique" (University of Strasbourg) managed to design a new pharmacophore perception method that was already integrated in the IChem software package. 1,2 This method automatically detects all possible ligand-binding sites on the surface of any given protein target, then predicts the "druggability" of each cavity, and finally creates a set of structure-based pharmacophoric points that represent each pocket that was previously deemed potentially "druggable". At this point, a question arises as to how we make use of these pharmacophore models to screen a chemolibrary comprising thousands, or even millions of molecules, with the aim of rationally selecting potential "hits" for a protein of pharmaceutical interest, regardless of the availability of a co-crystallized ligand.

Once a novel in silico screening procedure is developed, it must be evaluated in terms of discriminatory power to make sure that it manages to retrieve active molecules for a biological target among a pool of structurally diverse compounds. This has to be done with the use of existing data sets, either found in the literature, or extracted from open-access databases.

However, numerous problems with the sets of ligands currently employed by the cheminformatics community have been observed and reported. [3][4][5][6] Among them are:

(i) The absence of experimental evidence confirming the impotence of presumably inactive molecules (known as "decoys");

(ii) The presence of too many true actives with high potency towards the target;

(iii) The hit rates of some data sets which are too high to be deemed realistic;

(iv) The chemical bias in the composition of ligand sets, as the actives are issued from only a few chemical series, the decoys are too different from the true hits in terms of physicochemical features, the active compounds are too structurally similar to the cocrystallized ligands used as references.

Therefore, such benchmarking data sets do not describe real life, as they fail to mimic chemolibraries used in actual high-throughput screening campaigns, and overestimate the real accuracy of virtual screening methods. As a result, there arises the need for developing a novel unbiased data collection built upon experimentally confirmed data which can be applied to validating both ligand-based and structure-based screening procedures, which has a difficulty level (in terms of distinguishing true actives from true inactives) as close as possible to that of real high-throughput screening decks, and which is able to capture the differences in the performances of different in silico methods.

In light of the problems explained above, the work portrayed in this Ph.D. thesis is composed of two main sections as follows:

 The first main part concerns the development of a new procedure to align small ligands on the previously generated structure-based pharmacophore models, prior to the selection of one best pose for each ligand and the creation of a hit list where all molecules are sorted according to certain scoring parameters. Once elaborated, this protocol can be employed to predict the pose of an active compound inside a "druggable" binding pocket of a protein, and to differentiate between the true actives and the "decoys" or the true inactives of a biological target of pharmaceutical interest. This part of the work is portrayed in the Chapter 2 of the dissertation.

 The second main part is focused on the construction of a new data set from experimental input deposited on PubChem BioAssay 7 that features a wide range of protein targets, with obvious and hidden design bias already reduced. A post-preparation evaluation of this data collection using various virtual screening methods and scoring functions is also carried out to make sure that the aforementioned bias has been mitigated, confirming the advantage of employing such data to validate new in silico screening approaches. This part of the work is portrayed in the Chapter 3 of the dissertation.

Besides, with the aim of facilitating future high-quality benchmarking data set developments, in the Chapter 1 of this dissertation, a comprehensive review of data collections built upon PubChem BioAssay input is also provided, along with an analysis of notable issues that must not be neglected when it comes to constructing a novel database, leading to the suggestion of some good practices that should be followed to ensure the quality of data set design. Finally, the Chapter 4 of this thesis concerns the rescoring of docking poses issued by a popular docking program (Surflex-Dock) on the ensemble of ligand sets previously presented in Chapter 3, aiming to highlight the advantage of scoring functions relying on protein-ligand interaction comparisons over energy-based empirical ones in recognizing the true hits of a biological target from a pool of chemically diverse and unbiased molecules.

Developing realistic data sets for evaluating virtual screening methods is a task that has been tackled by the cheminformatics community for many years. Numerous artificially constructed data collections were developed, but they all suffer from multiple drawbacks, one of which is the unknown potency of presumably inactive molecules, leading to possible false negatives in the ligand sets. In light of this problem, the PubChem BioAssay database, an open-access repository providing bioactivity information of compounds that were already tested on a biological target, is now a recommended source for data set construction. Nevertheless, there exist several issues with the use of such data that need to be properly addressed. In this chapter, an overview of benchmarking data collections built upon experimental PubChem BioAssay input is provided, along with a thorough discussion of note-worthy issues that one must consider during the design of new ligand sets from this database. This chapter has been published as a review article in the special issue "QSAR and Chemoinformatics in Molecular Modeling and Drug Design" of the International Journal of Molecular Sciences.

Introduction

The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov/bioassay) was first introduced in 2004 as a part of the PubChem project initiated by the National Center for Biotechnology Information (NCBI), aiming to provide the scientific community with an openaccess resource where experimental bioactivity high-throughput screening (HTS) data of chemical substances can be found. [1][2][3][4][5] Starting out with small-molecule HTS input from the National Institute of Health (NIH), the database now gathers data from over 700 different sources, including governmental organizations, world-renowned research centers, chemical vendors as well as other biochemical databases, featuring over 260 million bioactivity data points reported in both small-molecule assays and RNA interference reagents-screening projects. [5][6][7][8][9][10][11] Journal publishers are also acknowledged for a significant contribution to the growth of PubChem BioAssay, as the database has received experimental input from more than 30 million scientific publications in response to requests from over 400 peer-reviewed journals (as of April 30, 2020), [10][11][12] denoting a constant and tremendous effort from many sectors of the scientific community to support free sharing of HTS data.

Soon after its introduction, PubChem BioAssay has established itself as a reliable and highlyqueried public repository where information on each biological assay, from overall descriptions to detailed screening protocols, from input data to assay results, as well as chemical features and bioactivities of all tested molecules, can be easily accessed and downloaded directly from the webpage. The two search options (limits search and advanced search) allow a systematic and thorough investigation of the assays deposited on the database, according to various parameters, e.g. assay type, target type, or quantity of featured substances, offering a practical data collection and analysis tool. 13 Information on related targets and same-project assays enables a more complete look into the body of screening campaigns on the same or closely-related biological targets. Crosslinks to the NCBI Entrez information retrieval system, 14 PubMed Central 15 and the Protein Data Bank 16 also facilitate research relying on the use of data extracted from the resource. Various updates have been brought to PubChem BioAssay over the years, enlarging the size of available archival data, introducing new features to the web interface and improving data sharing capability. [17][18][19][20] Several million users have been procuring data from the website and its different programmatic services each month, 21 highlighting the importance of this public database as a key source of chemical information for researchers, students and the general public from around the world.

In this review article, a quick summary of assays and compounds deposited on PubChem BioAssay, along with an overview of data sets built by the cheminformatics community upon the data retrieved from this repository will be provided. We also give a thorough discussion of noteworthy issues that have to be addressed prior to utilizing such data in cheminformatics-related projects, with illustrations observed in our recently introduced LIT-PCBA data collection, 22 which was constructed from PubChem BioAssay data.

PubChem BioAssay Statistics: Assays and Compounds

As of April 30, 2020, there were 1,067,896 assays deposited on the database. The vast majority of them (99.98%) involved small-molecule screening, only 177 assays were conducted with RNA interference reagents. These assays are classified according to the number of tested substances (chemical samples provided by data contributors 8 ), the number of active substances, the screening stage, and the target type, as listed in Table S1. It can be deduced that most PubChem assays are small-scale screening projects, with over 99% of them conducted on fewer than 100 substances, and nearly 94% giving no more than nine actives (Figure 1). The screening stage was, in most cases (about three quarters), not specifically annotated. Assays giving confirmatory results regarding the bioactivities of tested molecules account for a larger proportion than primary screens, though dose-response curves are not always provided.

Interestingly, nearly 75% of available assays do not have a specific biological target (i.e. a protein, a gene or a nucleotide), but are rather cell-based assays identifying molecules that interfere with a certain cell function or an intracellular activity (e.g. tumor cell growth inhibitors, lipid storage modulators, HIV-1 replication inhibitors), or are pharmacokinetics studies. On the other hand, some assays take multiple macromolecules as targets (e.g. AID 1319). The utility of data extracted from these assays in cheminformatics-related research will be later discussed in the manuscript.

TRAN NGUYEN Viet Khoa -Ph.D. thesis 33 Figure 1. Partition of small-molecule PubChem bioactivity assays according to the number of tested substances (A), the number of active substances (B), and the screening stage (C). It is observed that most assays are small-scale screening projects in which fewer than 100 substances were tested, and no more than nine actives were identified. All statistics were updated as of April 30, 2020.

A total of 102,694,672 compounds were tested in at least one PubChem bioactivity assay (as of April 30, 2020), over 95% of which are organic molecules (i.e. molecules bearing no atom other than H, C, N, O, P, S, F, Cl, Br, and I). The term "compounds", according to PubChem, refers to unique chemical structures that were extracted and standardized from the community-provided substances. 8 A question always raised when it comes to drug design is whether a chemical giving criteria largely employed to predict a compound's drug-likeness, including the Lipinski's rule of five, 23,24 the Ghose filter, 25 and the Veber's rule. 26 PubChem compounds are analyzed according to each criterion, [23][24][25][26][27] and statistics are given in Table S2. Statistical results show that most compounds tested in PubChem bioactivity assays satisfy the aforementioned rules, indicating their potential to become orally active drugs (Figure 2). However, only 1% of them (over 1 million compounds) were deemed active in at least one screening experiment, highlighting the miniature portion of active molecules available in the database, and implying an average "hit rate" lower than those observed in artificially constructed data sets such as DUD, 28 DUD-E, 29 or DEKOIS 2.0. 30 The other compounds were either biologically inactive in all assays where they were tested, or were left "inconclusive" in terms of bioactivity. These "inconclusive" compounds, present in various AIDs such as 1345009, 1345010, or 743075, have to be discarded when data extracted from PubChem BioAssay are used in cheminformatics-related research. On the other hand, compounds being repeatedly inactive in HTS assays, dubbed "dark chemical matter", 31 are in fact important to keep, notably for identifying ligands of novel targets (e.g.

protein-protein interfaces). Nearly 85% of deposited compounds violate no more than one criterion. On the other hand, only 0.1% of all compounds (over 130,000) do not satisfy any criterion. Statistics were updated as of April 30, 2020.

What We Can Do with PubChem BioAssay Data: from the Data Set Construction Point of View

Being a wealth of experimental bioactivity data constantly gathered from many parts of the world, PubChem BioAssay offers ample opportunities for scientists from various disciplines, e.g. biochemistry, pharmacy, or cheminformatics, to exploit this abundant resource for both teaching and researching purposes. Access to the database is facilitated by numerous online services, in both manual (via PubChem limited and advanced search engines 32,33 ) and programmatic ways (via access routes such as the Power User Gateway PUG, 34 PUG-SOAP, 35 PUG-REST, 36 PUG-View, 37 the PubChemRDF REST interface 38 or the Entrez Utilities 14 ). Recently, a novel web service called ScrubChem was introduced, 39 gathering PubChem BioAssay data that were already reparsed, digitally curated and improved, allowing a systematic analysis of all targets, chemicals and assays featured on the database at low computational costs, after which the cleaned data can be downloaded for use in modeling applications. Upon acquiring experimental input from the resource, scientists may use it in various ways to achieve their research objectives.

Several review articles have been published in this regard, 7,40,41 summarizing a wide range of studies that were conducted on the basis of PubChem BioAssay data. [START_REF] Li | hERG classification model based on a combination of support vector machine method and GRIND descriptors[END_REF][43][44][45][46][47][48][49][50][51][START_REF] Nicholls | SAMPL2 and Continuum Modeling[END_REF][START_REF]SZYBKI theory[END_REF][54][55][START_REF] Poli | Conformational Sampling of Small Molecules with iCon: Performance Assessment in Comparison with OMEGA[END_REF][START_REF] Jain | Surflex-Dock 2.1: Robust Performance from Ligand Energetic Modeling, Ring Flexibility, and Knowledge-Based Search[END_REF][START_REF] Hawkins | Comparison of Shape-Matching and Docking as Virtual Screening Tools[END_REF][START_REF] Guner | Setting the Record Straight: The Origin of the Pharmacophore Concept[END_REF][START_REF] Spitzer | Surflex-Dock: Docking Benchmarks and Real-World Application[END_REF] In this section, we only place our focus on the research featuring benchmarking data collections that were constructed by the cheminformatics community from PubChem's experimental results as a means of validating in silico screening protocols.

Throughout the years, various artificially constructed data sets have been developed, [28][29][30][START_REF] Kellenberger | Comparative Evaluation of Eight Docking Tools for Docking and Virtual Screening Accuracy[END_REF][START_REF] Cleves | Knowledge-Guided Docking: Accurate Prospective Prediction of Bound Configurations of Novel Ligands Using Surflex-Dock[END_REF][START_REF] Kabsch | A Solution for the Best Rotation to Relate Two Sets of Vectors[END_REF][START_REF] Kuhn | The Hungarian Method for the Assignment Problem[END_REF][START_REF] Chaput | Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance[END_REF][START_REF] Wang | PubChem BioAssay: 2017 Update[END_REF][START_REF] Kruger | Comparison of Structure-and Ligand-Based Virtual Screening Protocols Considering Hit List Complementarity and Enrichment Factors[END_REF][68][69][START_REF] Lagarde | the Manually Curated Nuclear Receptors Ligands and Structures Benchmarking Database[END_REF][START_REF] Xia | Comparative Modeling and Benchmarking Data Sets for Human Histone Deacetylases and Sirtuin Families[END_REF] including DUD, DUD-E, or DEKOIS 2.0. However, the design of these collections suffers from many drawbacks, as demonstrated in several studies. [START_REF] Chaput | Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance[END_REF][START_REF] Wallach | Most Ligand-Based Classification Benchmarks Reward Memorization Rather Than Generalization[END_REF][START_REF] Chen | Hidden Bias in the DUD-E Dataset Leads to Misleading Performance of Deep Learning in Structure-Based Virtual Screening[END_REF][START_REF] Sieg | In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening[END_REF][START_REF] Lagarde | Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives[END_REF] One of them is the unknown potency of presumably inactive molecules, also known as "decoys", which were usually extracted from the BIOVIA Available Chemicals Directory (ACD) [START_REF]BIOVIA Available Chemicals Directory (ACD[END_REF] or the ZINC database. [START_REF] Irwin | ZINC -A Free Database of Commercially Available Compounds for Virtual Screening[END_REF] This means there is no guarantee that the "decoys" do not exert the desired bioactivity against the protein target, due to the lack of relevant experimental evidence, and it is therefore very likely that false negatives exist among the inactive molecules. Using data from PubChem BioAssay as input for database construction, on the other hand, helps alleviate this problem. A number of data collections of different sizes have been designed from PubChem data and introduced to the scientific community, offering better references for evaluating novel virtual screening methods. Not counting non-publicly available data sets (e.g. the three small-and medium-sized ligand sets that we designed in 2019 to validate our new pharmacophore-based ligand-aligning procedure [START_REF] Tran-Nguyen | All in One: Cavity Detection, Druggability Estimate, Cavity-Based Pharmacophore Perception, and Virtual Screening[END_REF] ), in this section, we only mention open-access ones, including the MUV data sets, [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] the UCI Machine Learning Repository, [START_REF] Schierz | Virtual Screening of Bioassay Data[END_REF] the BCL::ChemInfo framework by Butkiewicz et al., [START_REF] Butkiewicz | Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database[END_REF] the Lindh et al. data collection, [START_REF] Lindh | Toward a Benchmarking Data Set Able to Evaluate Ligand-and Structure-Based Virtual Screening Using Public HTS Data[END_REF] and our recently introduced LIT-PCBA (Table 1). 

   b  
a Ligand-based approaches are preferred. b Unbiased training and validation sets are provided for machine learning.

The MUV Data Sets

The Maximum Unbiased Validation (MUV) data sets, built by Rohrer and Baumann in 2008 and published in early 2009, [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] are among the first benchmarking sets of compounds whose bioactivity was experimentally determined and retrieved from PubChem BioAssay, which, as a result, avoids the issue regarding unknown potency values of presumably inactive molecules ("decoys") inherent in other data sets. [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] Based upon 18 pairs of primary HTS and corresponding confirmatory dose-response experiments, whose biological targets range from kinases, GPCRs, nuclear receptors to protein-protein interactions, 17 medium-sized ligand sets (15,030 compounds), each with an active-to-inactive ratio at 2 x 10 -3 , were generated, implying smaller hit rates in comparison to those of other databases. [START_REF] Lagarde | Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives[END_REF][START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] Specifically designed to be maximally unbiased, the MUV data sets were prepared according to a workflow that removed assay artifacts, prevented artificial enrichment, and reduced "analogue bias" in the composition of their ligands. A series of consecutive filters was first applied to eliminate "false positives" among active molecules, including promiscuous aggregators, frequent hitters exerting off-target or cytotoxic effects, as well as chemicals which are likely to spoil the assay's optical detection method. A subsequent "chemical space embedding filter", encoded by vectorized descriptors related to physicochemical properties of each molecule (e.g. molecular weight, number of hydrogen bond donors/acceptors), was next employed to rule out actives that were not adequately embedded in inactive compounds, ensuring that the inactive sets did not significantly differ from the sets of actives, thus avoiding possible artificial enrichment. Finally, a refined nearest neighbor analysis was applied, based on a "nearest neighbor function" and an "empty space function", to reduce both the level of self-similarity among the actives and the separation degree between active and inactive molecules, selecting only 30 true actives and 15,000 true inactives that were optimal as regards the criterion of spatial randomness for each ligand set.

Post-design analyses on the resulting data sets showed that (i) there exist a large number of distinct molecular scaffolds presented by the ligands (1.2 compounds/scaffold class), denoting the absence of "analogue bias" and a good representation of drug-like chemical space; (ii) the correlation between the degree of data set clumping and retrospective virtual screening performance was no longer observed after MUV design, suggesting that the final ligand sets were indeed not affected by benchmarking data set bias; and (iii) the MUV data were significantly less biased than the then-standard DUD data set, as evidenced by a lower molecular self-similarity level and a higher difficulty in distinguishing true actives from true inactives by ligand-based virtual screening simulations. The introduction of the MUV data collection therefore marks a milestone in the quest to construct realistic data sets entirely from experimental results with little design bias and applicability to evaluating both ligand-based and structurebased in silico methods, serving as an inspiration for future database development.

The UCI Repository

The UCI Machine Learning Repository was introduced in 2009. [START_REF] Schierz | Virtual Screening of Bioassay Data[END_REF] On the basis of data retrieved from 12 PubChem bioactivity assays, both primary (n = 7) and confirmatory (n = 5), a total of 21 medium-and small-sized data sets (69-59,795 compounds) were generated, either by using separately primary or confirmatory screening data, or by combining results from a primary assay and its corresponding confirmatory screen. In the latter case, compounds which were deemed as active in the primary experiments but later denounced as inactive by the confirmatory readouts were all considered inactive in the combined data sets (instead of being discarded as in the MUV collection). The active-to-inactive ratio ranges from 2 x 10 -4 to 0.33. Each ligand set was then randomly split into a training-and-validation set (80% of the population) and an independent test set (the other 20%) for machine learning algorithm assessments. [START_REF] Schierz | Virtual Screening of Bioassay Data[END_REF] Despite being one of the earliest remarkable attempts at using experimental data from PubChem BioAssay for data set construction, the UCI database itself has several limitations. Firstly, though the author offered 21 data sets in total, only four of them, which were built by combining primary and confirmatory results, were recommended. Reasons for this lie in (i) the high portion of false positives recorded in primary experiment-based ligand sets that casts doubt on the solitary use of such data for evaluating in silico screening; (ii) the hit rates observed in the sets built upon confirmatory assays alone are too high (7-33%) to be deemed realistic, notably in comparison to those of real screening decks; and (iii) the size of some data sets is too tiny (tens of active molecules among fewer than 100 compounds) for virtual screening methods (especially ligand-based ones) to give any meaningful result. Secondly, due to the lack of high-quality biological target 3D structures for several bioassays (e.g. AIDs 456, 1608) and insufficient information on possible binding site(s) of the molecules, the design focus of this data collection is implied to be limitedly placed on ligand-based (machine learning) approach evaluations. Thirdly, the issue of physicochemical bias in the composition of active and inactive molecules that may lead to artificial enrichment and an overestimation of virtual screening performance, which had been raised in the MUV paper, [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] was not addressed throughout the development of these data sets, raising questions on the real benefit of using such data for validating novel in silico screening procedures.

The Butkiewicz et al. Data Collection

Another PubChem BioAssay-based data collection was introduced in 2013 by Butkiewicz et al.

as a part of the cheminformatics framework BCL::ChemInfo. [START_REF] Butkiewicz | Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database[END_REF] Nine medium-and large-sized data sets (> 60,000 compounds) were constructed upon collating results from relevant confirmatory screens, thus avoiding the issue of false positives commonly observed when only primary readouts are accounted. Diverse classes of protein targets are covered in the database, including three GPCRs, three ion channels, the choline transporter, the serine/threonine kinase 33 and the tyrosyl-DNA phosphodiesterase. Active-to-inactive ratios range from 5 x 10 -4 to 7 x 10 -3 , implying small hit rates which are all lower than 0.8% (< 0.1% in most cases). Though the number of true actives is deemed sufficiently large (> 170 actives for each ligand set) and the hit rates are generally low, one drawback of this database is that the problems regarding assay artifacts, analogue bias, and artificial enrichment due to physicochemical differences between active and inactive molecules (which need to be properly addressed during the construction phase) were completely overlooked. These issues are even more critical when data sets intended for evaluating ligand-based virtual screening methods (which is, in fact, the design focus of this data collection) are developed. There is hence no guarantee that only a little chemical bias exists in the composition of these ligand sets, and it is likely that in silico screening performance could be overestimated due to such unconsidered issues.

The Lindh et al. Data Collection

In 2015, Lindh et al. introduced a novel data collection designed for evaluating both ligandbased and structure-based virtual screening methods. [START_REF] Lindh | Toward a Benchmarking Data Set Able to Evaluate Ligand-and Structure-Based Virtual Screening Using Public HTS Data[END_REF] A rigorous procedure of analyzing the whole PubChem BioAssay database was first carried out, after which only assays (excluding cell-based and multiplex ones) that were performed with more than 1000 compounds (at least 20 of which were identified as active) against a single protein target that had been co-crystallized with a drug-like molecule were kept. The sole protein structure chosen to represent each target had to be of the same species as that used in the corresponding high-throughput screen, must not be bound to any DNA fragment or cofactor other than ATP (to avoid the possibility of multiple binding sites), and had the highest resolution (< 3 Å) as well as the fewest missing atoms among the available structures on the Protein Data Bank. 16 Only 19 bioassays, both primary (n = 7) and confirmatory (n = 12), related to seven protein targets were retained. Molecules having been identified as active in primary assays but not validated by confirmatory screens were all discarded from the active ligand sets. The remaining active compounds were then subject to the Hill Slope filter (which takes inspiration from the MUV database) and the pan-assay interference compounds (PAINS) filter [START_REF] Baell | New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) From Screening Libraries and for Their Exclusion in Bioassays[END_REF][START_REF] Gilberg | Highly Promiscuous Small Molecules From Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology[END_REF][START_REF] Baell | Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS)[END_REF][START_REF] Capuzzi | Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS[END_REF][START_REF] Kenny | Comment on the Ecstasy and Agony of Assay Interference Compounds[END_REF][START_REF] Baell | Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017 -Utility and Limitations[END_REF] to eliminate potential false positives. In the end, seven mediumand large-sized data sets (> 59,000 compounds) were constructed, with active-to-inactive ratios ranging from 7 x 10 -5 to 1 x 10 -3 , indicating hit rates significantly lower than those commonly seen in other databases. It is observed that a large number of unique Bemis-Murcko scaffolds are present among the active molecules (1.4 compounds/scaffold), implying that there is little analogue bias and substantial structural diversity in the active set composition. Though no direct measure was taken to reduce artificial enrichment due to differences between the true actives and true inactives, retrospective virtual screening on the seven final data sets using physicochemical property similarity searches (1D approach) and molecular docking was carried out, suggesting that the docking performance was not based on artificial enrichment, as the 1D method gave much lower enrichment in true actives than the structure-based approach in most cases. The Lindh et al. data collection is therefore considered the next remarkable step towards employing experimental input from PubChem BioAssay to build realistic data sets suitable for both ligandbased and structure-based in silico screening evaluations while addressing (and avoiding, to a considerable extent) most issues inherent in many other databases, including false positives, analogue bias and artificial enrichment. However, due to the unreasonably rigorous data quality filters that were applied during the construction of this data collection, the quantity of target sets offered by the authors is relatively small (only seven), and several important protein families that have been largely investigated by biochemists, e.g. GPCRs, nuclear receptors, are neglected (only two kinases were included in the database).

The LIT-PCBA Data Collection

Five years later, we (Tran-Nguyen et al.) developed and introduced a novel data collection entitled LIT-PCBA. 22 failures. Physicochemical differences between active and inactive substances were mitigated, as all molecular properties of the remaining ligands were kept within the same range, thus avoiding the presence of molecules that are too different from others in terms of physicochemical features.

Retrospective virtual screening by ligand-based methods (2D fingerprint similarity searches and 3D shape-matching) on the resulting data collection confirmed that there was indeed little chemical bias in the composition of the ligand sets, as both approaches generally gave comparable performances to random selection. Results from molecular docking were also considered along with those of the two ligand-based approaches, leading to the selection of 15 small-to large-sized target sets (4247-362,088 molecules) that finally constituted the LIT-PCBA collection. Active-to-inactive ratios span over a relatively wide range from 5 x 10 -5 to 0.05, but are below 3 x 10 -3 in most cases, implying smaller hit rates than those of many other databases.

Moreover, active substances included in LIT-PCBA are generally less potent than those found in DUD-E and ChEMBL, which imposes a more difficult challenge for in silico screening. Each ligand set was then further unbiased by the asymmetric validation embedding method (AVE), [START_REF] Wallach | Most Ligand-Based Classification Benchmarks Reward Memorization Rather Than Generalization[END_REF] yielding validation and training subsets with minimized overall bias that are ready for benchmarking novel virtual screening procedures. To the best knowledge of the authors, LIT-PCBA is now the latest attempt at constructing realistic data sets from confirmatory PubChem BioAssay data, possessing numerous advantages. Firstly, a large variety of protein targets (including heavily researched ones) are featured in the collection and all available PDB structures are accounted. This practice takes into consideration at the same time the entire chemical diversity of known target-bound ligands and the complete conformational space accessible to the investigated target. Secondly, assay artifacts, chemical bias as well as potency bias in the composition of ligand sets were avoided or reduced, preventing possible overestimation of in silico screening performances. Thirdly, the eventual data-unbiasing step based on chemical space analyses offers a rational split of every existing set of molecules (instead of the random division that was previously observed in the UCI repository design). This further ensures the absence of both obvious and hidden bias in the final data sets. And lastly, thanks to the presence of at least one high-quality 3D structure with well-defined binding site(s) that represents each protein target, and the aforementioned chemically unbiased ligand set composition, the application of LIT-PCBA is thus not intended only for evaluating ligand-based or structure-based virtual screening alone, but rather for both, and especially for the field of machine learning algorithm development. There exist, however, some limitations in the design of this data collection, such as the relatively high hit rates of some ligand sets (2-5%), or the number of remaining true actives for several targets that is quite small (tens of molecules) for in silico methods to give any meaningful result. The current situation, as a consequence, still leaves plenty of room for further improvement, and more data sets based on experimental bioactivity assays are encouraged to be constructed, with inspirations taken from the existing collections mentioned above, to offer more realistic sets of molecules that mimic those employed in actual high-throughput screening campaigns, and to provide better evaluation tools for novel virtual screening approaches.

Note-Worthy Issues with Using Data from PubChem BioAssay for Constructing

Benchmarking Data Sets

As demonstrated in the literature and the previous section, data retrieved from PubChem BioAssay may be used for various purposes in cheminformatics-related research, including benchmarking data set construction. Due to the availability of a wide range of assays with diverse ligand sets that the database offers, it is important to be conscious of all the issues that may arise regarding the usage of such large data, 22,[START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF][START_REF] Lindh | Toward a Benchmarking Data Set Able to Evaluate Ligand-and Structure-Based Virtual Screening Using Public HTS Data[END_REF] One of the first questions that we have to face when using data from the PubChem BioAssay repository to build benchmarking data sets concerns which assay(s) that should be chosen. As mentioned earlier in the manuscript, as of April 30, 2020, there were over a million assays deposited on the database. However, only a few of them can be deemed suitable for method evaluation purposes. There are many factors that one should consider before deciding which assay(s) to use. We herewith propose, as primary conditions to filter out unsuitable assays, the selection of only small-molecule HTS assays yielding biologically active molecules. RNAi assays, on the other hand, were conducted on microRNA-like molecules comprising twenties of base pairs that violate most drug-likeness rules of thumb, and are therefore, not of great interest in small-molecule drug discovery. For the sake of having an acceptable amount of ligands in the data that may give meaningful retrospective evaluations of in silico screening methods, we recommend that only assays with no fewer than 10 actives selected among at least 300 tested substances should be kept. Data sets including only nine or fewer actives are considered too small and would be over-challenging for virtual screening, especially for machine learning algorithms to learn anything meaningful. On the other hand, assays conducted with fewer than 300 substances while yielding more than 10 actives give hit rates that are deemed too high in comparison to those typically observed in experimental screening decks, 22 even higher than those of existing data sets such as DUD, 28 DUD-E, 29 or DEKOIS 2.0. 30 There may exist, of course, assays with high hit rates that remain after this initial check (e.g. AIDs 1, 3, 720690, 720697); however, the aforementioned conditions are proposed to demonstrate that there is only a very small portion of available PubChem assays (0.20%) whose data may be considered for evaluating virtual screening protocols (Figure 3). The ligand sets of the remaining assays need to be further examined, and may be filtered, to ensure that their hit rates are as close as possible to those of experimental HTS campaigns, and that they are suitable for the nature of the screening method (ligand-based or structure-based).

Figure 3.

Primary selection of PubChem assays whose ligand sets should be further considered for evaluating virtual screening methods. We herewith recommend the use of only smallmolecule HTS assays giving at least 10 biologically active molecules among no fewer than 300 tested substances. Overall, there are only 2117 assays (0.20% of 1,067,896 assays in total as of April 30, 2020) that remain, indicating a very small portion of PubChem assays that may be considered after this initial check.

Assay Selection as Regards the Nature of Virtual Screening

As demonstrated in various papers, a ligand set may be appropriate for evaluating only ligandbased in silico approaches, [START_REF] Schierz | Virtual Screening of Bioassay Data[END_REF][START_REF] Butkiewicz | Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database[END_REF] or only structure-based methods, [START_REF] Lagarde | Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives[END_REF] or sometimes both. 22,[START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF][START_REF] Lindh | Toward a Benchmarking Data Set Able to Evaluate Ligand-and Structure-Based Virtual Screening Using Public HTS Data[END_REF] This depends on the quantity and the chemical composition of all molecules that constitute the data set, the availability and the quality of 3-dimensional structures of relevant protein targets, as well as the definition of binding site(s) in which active substances exert their bioactivity. Data sets retrieved from the PubChem BioAssay database, being no exception, have to be thoroughly examined according to the criteria mentioned above before being used to assess a certain virtual screening method. Ideally speaking, an assay whose ligands are considered for evaluating structure-based approaches needs to be conducted on a protein target whose structure has been solved at a high resolution, with no ambiguity in terms of electron density, with at least a molecule of the same phenotype (agonist, antagonist, inhibitor, etc.) as that of the active compounds. However, targets for which no crystallographic or electron-microscopic structure is deposited on the Protein Data Bank may also be considered, if high-quality homology models are

available. An example of this can be seen in the assay AID 588606, featuring inhibitors of the yeast efflux pump Cdr1. Though the protein target, the ABC drug resistance protein 1 of Candida albicans (CaCdr1p), has not yet been available on the Protein Data Bank with a known inhibitor, a homology model of this transporter was generated using the human ABCG5/G8 crystal structure as template, and possible binding sites located in the transmembrane domain were identified and validated by means of atomic modeling and systematic mutagenesis, confirming their essential role in Cdr1p-induced multidrug resistance. [START_REF] Nim | Atomic Modelling and Systematic Mutagenesis Identify Residues in Multiple Drug Binding Sites That Are Essential for Drug Resistance in the Major Candida Transporter Cdr1[END_REF] However, caution should be taken when one uses such artificially constructed models as input for structure-based screening approaches. On the other hand, the presence of many non-overlapping binding sites (orthosteric versus allosteric) in the 3D structures of protein targets (as observed in those of AIDs 1469, 624170, or 624417), either crystallographic or not, may ultimately become a reason for failures in screening PubChem molecules on such proteins, especially when there is no information on the exact binding site of the tested substances that can be deduced from the assay description. 22 As virtual screening performances may vary quite significantly depending on the protein structure employed as input, 22 one should therefore be cautious when using data of these assays for evaluating structure-based screening procedures, lest they give poorer performances than expected due to external reasons that are not related to the methods themselves. Another point that should not be overlooked concerns assays that were conducted on substances derived from only a few chemical series, as they may give rise to bias that overestimates screening performance, notably that of ligand-based approaches. If another similar assay on the same target but with a more diverse ligand set (in terms of chemical features) is available, one is recommended to make use of this assay instead. Otherwise, the "biased" data need further tuning to be deemed suitable for evaluation purposes, e.g. by filtering out "redundant" compounds (this point will be thoroughly discussed in the next section of this manuscript). However, this ligand-filtering process should not lower the number of active substances to a value so small that ligandbased methods or machine learning algorithms cannot come up with meaningful results.

Assay Selection as Regards the Screening Stage

Additionally, the use of data from "primary assays" should be subject to caution, as the activity outcome was only determined at a single concentration, and has not yet been validated on the basis of a dose-response relationship with multiple tested concentrations, 3,[START_REF] Hughes | Principles of Early Drug Discovery[END_REF] hence the potency values of active molecules are not confirmed. As a matter of fact, some substances originally deemed as active in a primary assay may be denounced as inactive by a subsequent confirmatory screen, as seen in AIDs 449 and 466, or AIDs 524 and 548. We therefore recommend that primary screening data should only be used if there exists a confirmatory assay that validates the potency of the selected active molecules. This practice was already observed in the construction of the MUV data sets by Rohrer and Baumann, [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] in which pairs of primary and corresponding confirmatory screens were employed, whose data were then combined to form the final ligand sets. In this manner, the large pool of inactive substances from the primary assay is not neglected, and the bioactivities of the confirmed hits are indeed guaranteed, affording a vast data set (usually implying a low hit rate) with fully validated active components. Otherwise, output data of primary screens alone should be used with great caution, due to the risk of assuming "false positives" that may later falsify virtual screening outcomes. An exhaustive search on the whole PubChem BioAssay database is therefore of paramount importance to select relevant data sets for retrospective assessments of in silico screening protocols in order to ensure the quality of such evaluations.

Detecting False Positives among Active Substances

Concerns have long been raised over the presence of chemical-induced artifacts in screening experiments, leading to false-positive findings among the molecules deemed as active. 22,[START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF][START_REF] Lindh | Toward a Benchmarking Data Set Able to Evaluate Ligand-and Structure-Based Virtual Screening Using Public HTS Data[END_REF][START_REF] Baell | New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) From Screening Libraries and for Their Exclusion in Bioassays[END_REF][START_REF] Gilberg | Highly Promiscuous Small Molecules From Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology[END_REF][START_REF] Baell | Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS)[END_REF][START_REF] Capuzzi | Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS[END_REF][START_REF] Kenny | Comment on the Ecstasy and Agony of Assay Interference Compounds[END_REF][START_REF] Baell | Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017 -Utility and Limitations[END_REF][START_REF] Hsieh | Accounting Artifacts in High-Throughput Toxicity Assays[END_REF] Misinterpretation of assay results and subsequent inaccurate conclusions may stem from various reasons largely discussed in the literature. Among them are off-target effects of compounds exerting unspecific bioactivities, possible biological target precipitation by organic chemicals aggregation, inherent fluorescent properties of substances that interfere with fluorescence emission detection methods, or luciferase inhibitory activities of molecules that spoil light emission measurement in reporter gene assays. [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] Active substances whose modes of action are subject to the aforementioned issues must therefore be removed from PubChem BioAssay ligand sets before the data can be used for retrospective virtual screening purposes. Rohrer and Baumann (2009) addressed this problem during the construction of their MUV data sets from the database, designing a so-called "assay artifacts filter" aiming to eliminate all active ligands that likely become false positives, thus prevent them from affecting subsequent screening performances. The filter is composed of three filtering "layers", including (i) the "Hill slope filter" after which actives whose Hill slopes for the dose-response curves are lower than 0.5 or higher than 2 are eliminated, (ii) the "Frequency of hits filter" that keeps only the molecules deemed as active in no more than 26% of the bioactivity assays in which they were tested, and

(iii) the "Auto-fluorescence and luciferase inhibition filter" that rules out compounds exhibiting auto-fluorescent properties along with inhibitors of luciferease. [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] All frequent hitters, unspecific binders (molecules with multiple binding sites), experimentally determined aggregators, and spoilers of optical detection methods are, as a result, removed from the PubChem data sets after these filtering steps. Such filters indeed have a profound impact on the population of active substances, as over a half of them were deleted by these "false positives filters" during the development of our recently introduced LIT-PCBA data set (Figure 4). 22 This drastic decrease in the number of confirmed actives also helps lower the "hit rates" observed in our ligand sets (as only the actives were subjected to these filters), thus bringing them closer to those typically reported in high-throughput screening decks in reality, and lower than those of artificially constructed data sets such as DUD, 28 DUD-E, 29 or DEKOIS 2.0. 30 This not only denotes the particular challenge brought by our data set, but also highlights the importance of detecting, and removing false positives in assembling active substances. Total number of active substances that remained after each filtering step was applied to PubChem BioAssay ligands during the construction of the LIT-PCBA data set: 22 Step 1inorganic molecules; Step 2aactives with Hill slopes < 0.5 or > 2;

Step 2bactives with frequency of hits > 0.26; Step 2cactives found among 10,892 confirmed aggregators, luciferase inhibitors or auto-fluorescent molecules; Step 3substances with extreme molecular properties;

Step 4 -3D conversion and ionization failures. It can be observed that the sole step 2a removed the most active molecules (over 50% of them), thus significantly reducing the population of true actives in comparison to that of true inactives.

Possible Chemical Bias in Assembling Active and Inactive Substances

As previously mentioned, a note-worthy issue of raw data published on PubChem BioAssay lies in the chemically biased composition of active and inactive substances for a particular target.

More specifically, there may exist "analogue bias" [START_REF] Good | Optimization of Camd Techniques 3. Virtual Screening Enrichment Studies: A Help or Hindrance in Tool Selection?[END_REF] present among the molecules constituting a ligand set, which likely leads to overly good performances of virtual screening methods. This bias is generally observed in data collections whose actives (or inactives) share similar chemical features, meaning a large number of these molecules are issued from the same (or similar) scaffolds. [START_REF] Lagarde | Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives[END_REF] As ligand-based and structure-based screening methods tend to recognize compounds of the same chemical series, such bias may result in an overestimation of in silico screening performance. [START_REF] Lagarde | Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives[END_REF] Besides, significant differences between active and inactive molecules, in terms of physicochemical properties, such as molecular mass, octanol-water partition coefficient, or atomic formal charge, may as well be the source of artificial enrichment. [START_REF] Rohrer | Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data[END_REF] Raw experimental data from PubChem BioAssay therefore need to be finely tuned before further use, by filtering out most compounds representing the same scaffold while ensuring that the TRAN NGUYEN Viet Khoa -Ph.D. thesis 50 physicochemical parameters of all included molecules are kept within the same range, so that chemical bias, if there were any, in the ligand set would be reduced. [START_REF] Lagarde | Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives[END_REF] An example of the importance of filtering input data can be seen in the MTORC1 ligand set (Figure 5) included in our recently introduced LIT-PCBA data collection, 22 comprising the molecules tested for an inhibitory activity towards the mTORC1 signaling pathway, targeting the human serine/threonine-protein kinase mTOR. [START_REF] Bemis | The Properties of Known Drugs. 1. Molecular Frameworks[END_REF][START_REF]Biovia Corp[END_REF] A hierarchical scaffold tree consisting of canonical SMILES strings that represent the rings, linkers and double bonds in each molecule was next generated according to an iterative ring-trimming procedure described by Schuffenhauer et al. (2007). [START_REF] Schuffenhauer | The Scaffold Tree, Visualization of the Scaffold Universe by Hierarchical Scaffold Classification[END_REF] All ligands were then clustered based on the smallest scaffold at the root of the scaffold tree for each ligand. The number that follows each hash symbol indicated in this figure refers to the ordinal number of a scaffold cluster as issued by Pipeline Pilot. Details of all clusters can be found in Supporting Information.

As to be expected, the full PubChem BioAssay data feature a larger number of scaffold clusters, with 59 clusters for the active set and 1151 clusters for the inactive set (against 41 and 1106 clusters in the LIT-PCBA active and inactive ligand sets, respectively). However, only 18 (out of 342, 5.26%) true actives possess unique scaffolds, meaning nearly 95% of all active substances in the full PubChem ligand set share chemical similarities with at least another active. Notably, nine clusters are reported to have more than 10 representatives (Figure 5A, Table S3). The pruned LIT-PCBA active ligand set, on the other hand, includes no cluster with over 10 members and 21 clusters (51.22%) with only one substance for each. This means nearly a quarter of LIT-PCBA active molecules (over four times the value observed in the full PubChem set) possess unique scaffolds. Moreover, the number of ligands falling into each cluster in the filtered LIT-PCBA active set is greatly reduced in comparison to that of the unfiltered data (Figure 5A, Table S3). On the other hand, around 25% of PubChem molecules were deemed to have extreme physicochemical properties and were therefore discarded as the MTORC1 ligand set was constructed. 22 These observations suggest that (i) there is indeed significant chemical bias in the full PubChem active ligand composition; and (ii) the filtering steps that were applied to build the LIT-PCBA data collection helped reduce this bias by lowering the number of active substances sharing the same chemical features (thus avoiding the presence of too many molecules issued from the same chemotype), and by ruling out compounds that were too different from others (hence preventing artificial enrichment). A similar conclusion can be drawn from the full PubChem inactive ligand set and the corresponding LIT-PCBA data (Figure 5B, Table S4). The benefit of filtering PubChem ligands in reducing chemical bias is again highlighted as the data sets undergo a subsequent unbiasing procedure using the previously described asymmetric validation embedding (AVE) method, [START_REF] Wallach | Most Ligand-Based Classification Benchmarks Reward Memorization Rather Than Generalization[END_REF] which measures pairwise distances in chemical space between molecules belonging to four sets of compounds (training actives, training inactives, validation actives, validation inactives, training-to-validation ratio = 3) based on ECFP4. [START_REF] Rogers | Extended-Connectivity Fingerprints[END_REF] A nearly zero overall bias value (0.001) was obtained from the LIT-PCBA MTORC1 ligand set after only seven iteration steps of the AVE genetic algorithm (GA), 22 while 16 GA iterations were necessary to bring the overall bias of the full PubChem set down to 0.006. This denotes that the pruned LIT-PCBA ligands are much less biased in terms of chemical features than the complete PubChem molecules, and confirms the necessity of detecting chemical bias in PubChem BioAssay data and removing it so that the data set is better adapted for further use.

The impact of filtering PubChem BioAssay molecules on subsequent retrospective screening performance can also be observed with the use of two in silico methods: 2D similarity searches using extended-connectivity ECFP4 fingerprints [START_REF] Rogers | Extended-Connectivity Fingerprints[END_REF] with Pipeline Pilot 95 (ligand-based) and molecular docking with Surflex-Dock (structure-based). [START_REF] Jain | Surflex-Dock 2.1: Robust Performance from Ligand Energetic Modeling, Ring Flexibility, and Knowledge-Based Search[END_REF] Both data sets (the full PubChem data and the pruned LIT-PCBA MTORC1 ligands) underwent the same screening protocols using the two aforementioned programs as described in our previous paper. 22 Screening performance is evaluated according to the EF1% (enrichment in true actives at a constant 1% false positive rate over random picking) values obtained by the "max-pooling" approach, taking into account all available PDB templates of the protein target (n = 11), while generating only one hit list that facilitates post-screening assessments. 22 It is observed that both methods performed better on the full PubChem data than on the filtered LIT-PCBA ligand set (Table 2). Interestingly, the true actives that were retrieved along with the top 1% false positives belong to the same scaffold clusters, or to clusters that are similar to each other. Such observations reconfirm that (i) ligandbased and structure-based screening approaches tend to recognize compounds that share chemical features, and (ii) the chemical bias present in the complete PubChem data indeed leads to over-optimistic screening performances. This, again, highlights the importance of filtering the ensemble of molecules deposited on PubChem BioAssay prior to evaluating virtual screening procedures, first to reduce chemical bias in the composition of the data, then to avoid overestimating the real discriminatory accuracy of in silico methods. the real accuracy of in silico screening. PubChem BioAssay data sets, especially those composed of highly potent true actives (potency below 1 µM), need to be filtered so that the so-called "potency bias" in the composition of their active ligand sets is reduced before further use.

An illustration of this point can be taken from the LIT-PCBA PPARG ligand set (27 true actives and 5211 true inactives) and the corresponding full PubChem BioAssay data (AID 743094, 78 true actives, 8532 true inactives) comprising small molecules that were tested for an agonistic activity on the peroxisome proliferator-activated receptor gamma (PPARg) signaling pathway. 22 The number of true actives with high potency (EC 50 < 1 µM) in the complete PubChem data is 19, nearly three times higher than that of the pruned LIT-PCBA ligand set (n = 7). Upon carrying out 2D similarity searches with Pipeline Pilot using ECFP4 fingerprints and ten structurally diverse crystallographic PPARg agonists randomly chosen from 138 available structures on the Protein Data Bank as templates, it is observed that, as expected, the screening protocol managed to retrieve more highly potent true actives from the full data set than from the filtered ligand set in 70% of the cases (Figure 6). Moreover, the "max-pooling" approach, when applied to the complete PubChem data, selected seven highly potent actives among the top 1%-ranked molecules, seven times higher than the amount obtained from LIT-PCBA. Among them, four even have potency values below 0.1 µM. The same screening method, on the other hand, failed
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to retrieve any true active with EC 50 < 0.1 µM from the pruned PPARG data. The screening performance observed on the full ligand set is, as a result, better than that obtained after ligandfiltering, as the EF1% value is nearly twice higher than that received with LIT-PCBA ligands.

This reconfirms that in silico screening procedures tend to recognize molecules with high potency towards a protein target, and the presence of too many highly potent ligands in the data likely leads to a better screening performance. It is therefore recommended that one should filter the ensemble of PubChem BioAssay ligands to ensure that there are not too many true actives with high potency that remain, in order to avoid possible "potency bias" in the data set and the subsequent overestimation of in silico methods' discriminatory power. 

Processing Input Structures Prior to Virtual Screening

PubChem BioAssay ligands, as deposited on the database, can be downloaded either as SMILES strings, [START_REF] Weininger | a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules[END_REF] or in 2D SDF format, 100 and are therefore, in general, not yet ready to be directly employed as input for most in silico screening protocols (except for 1D or 2D ligand-based approaches). A rigorous ligand-processing procedure is thus necessary to afford ready-to-use structures for virtual screening. This process concerns a wide range of aspects inherent in the 3dimensional structural formula of a molecule, including atomic coordinates in 3D space, formal charge assigned on each atom, the presence of different protonation states and tautomeric shifts that slightly alter the structure, the representation of undefined stereocenters or flexible rings, as well as the existence of multiple conformations and/or configurations. 101 Various studies have concluded that database-processing has indeed an impact on screening performance, some processing stages are even indispensable to certain programs. is not imperative when it comes to carrying out docking with GOLD 108 or Surflex-Dock, [START_REF] Jain | Surflex-Dock 2.1: Robust Performance from Ligand Energetic Modeling, Ring Flexibility, and Knowledge-Based Search[END_REF] this step has in fact a pivotal role in 3D shape similarity searches using ROCS (OpenEye). 109 The examples mentioned above denote that good in silico screening outcomes do require careful treatment of input ligand sets, and a thorough investigation of different data-processing procedures with commonly used programs (e.g. Protoss, 110 Corina, 111 MOE, 112 Sybyl, 113

Daylight 114 ) is thus recommended. If it is possible (if the data size is not too large), one should check each output structure by hand to ensure that the assigned atom types, bond types, stereochemical properties and protonation states are correct before further use. This also applies to protein structure preparation prior to screening, as structural features of the protein target, especially those of the binding site, are of indisputable importance to structure-based virtual screening performance.

Conclusion

Retrieving experimental PubChem BioAssay data to construct novel data sets for virtual screening evaluations helps avoid assuming false negatives among inactive ligands, which is a problem inherent in artificially developed data collections. However, there remain several issues regarding assay selection, false active molecules, chemical bias and potency bias, as well as data curation that are worth noticing prior to employing PubChem input for database-designing purposes. To the best of our knowledge, there have been several publicly available data sets that were constructed from the data deposited on this repository, but the quantity is not yet considerable, and there still exist some limitations in the design of these data collections. More effort in this regard is recommended, with the points raised in this manuscript taken into account, in order to offer more realistic data sets suitable for validating both ligand-based and structurebased in silico screening procedures in the future. Of course, the herein proposed good practices should also be applied to proprietary bioactivity data. 
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Take-home Messages

This first chapter provides a comprehensive overview of data collections developed from the experimental PubChem BioAssay database and a thorough discussion on the issues that one should take notice of when using PubChem input for data set construction purposes. We did not only review the history, or point out the challenges, but also proposed possible solutions to address the issues and provided our vision for future directions. This is potentially informative for both the cheminformatics community (including ligand-/structure-based method-developing groups) and the medicinal chemists who are working on rational drug design/drug discovery. At the time when scientists are struggling to find a good standardized data set to test their novel in silico screening approaches, we believe that the information provided in this chapter can answer most of the concerns we might have. This review has received rave comments from all three reviewers of the International Journal of Molecular Sciences, and was accepted over two weeks after the first submission, only with several minor modifications.

As explained earlier in the manuscript, well-known issues in predicting the strength of binding interactions between a small ligand and a macromolecule cast doubt on the use of scoring functions employed by docking programs, thus hampering the identification of potential "hits" for a protein target, especially in the case where structural information on neither endogenous nor synthetic ligands is available. A novel computational method tailored to ligand-free protein structures was proposed in 2012, which automatically detects ligand-binding cavities, then predicts their structural "druggability" before creating a structure-based pharmacophore model for the "druggable" binding sites. In this chapter, the design of a new accompanying tool namely 

Introduction

Computer-aided drug design 1 has become a standard tool to assist medicinal chemists in identifying and/or optimizing hits for targets of pharmaceutical interest. Corresponding computational methods are classically divided into ligand-based 2 or structure-based approaches 3 as to whether preexisting knowledge of ligands or target structures is taken into account. Among the ligand-centric methods, pharmacophore searches 4 are extremely popular for many reasons: (i)

the concept of pharmacophore is very intuitive and easily understood for both computational and medicinal chemists, (ii) it does not require the a priori knowledge of the target's threedimensional (3D) structure, (iii) it does not suffer from the main drawbacks 5 of structure-based approaches (e.g. inaccurate binding free energy estimates) since topological scoring functions 6 are used to rank ligand adequacy (fitness) to a pharmacophore query, and (iv) aligning a ligand onto a pharmacophore model intuitively guides its further optimization in order to gain or lose additional features.

Typical ligand-based pharmacophore searches first require that the template ligands share the same functional effect, then extract common features from these aligned ligands to derive a pharmacophore hypothesis, and search for potential hits that satisfy this hypothesis in a chemolibrary. If the X-ray structures of protein-ligand complexes are available, protein-ligandbased pharmacophores 7-10 may be derived as well by mapping features onto protein-interacting ligand atoms, and therefore, complement purely ligand-based pharmacophore models. However, there are still many protein structures and/or novel cavities for which not a single ligand has ever been identified. In order to avoid problems associated with structure-based approaches (e.g. target flexibility, absolute or relative ranking of compounds of interest) for such orphan targets, several methods have been proposed over the last decade to fill the gap between structure-based methods and pharmacophore searches.

Structure-based pharmacophore perception methods classically use a set of molecular probes (atoms, fragments) to locate energetically preferred probe locations. Grid-based methods (e.g. GRID, 11 SuperStar, 12 FTMap, 13 VolSite, 14 T2F, 15 GRAIL 16 ) locate these preferred positions on a three-dimensional lattice encompassing either the full protein or at least a user-defined binding cavity. Energy minima on the contour maps [17][18][19] are then saved for every probe and used as guides to define structure-based pharmacophoric features. Fragment-based methods rely on the prediction of hotspots from molecular dynamic simulations of the target (e.g. MCSS, 20 SILCS, 21 HSRP 22 ) with multiple copies of fragments bearing well-defined pharmacophoric properties.

Again, the most energetically favorable positions of every fragment are later converted into pharmacophores. The positions of these features can be topologically predicted by scanning the cavity-lining and accessible amino acids, in order to generate topologically ideal interaction vectors pointing at 3D space (spheres, cones) where potential ligand atoms should be located to optimally interact with the protein surface. The pioneering method LUDI 23 has inspired many structure-based pharmacophore perception methods (e.g. Virtual ligand, 24 SBP, 25 HS-Pharm, 26 Snooker, 27 Examplar 28 ) to position ideal pharmacophoric moieties from the 3D structure of a binding cavity.

Whatever the method, the number of generated features (a few hundreds) exceeds by far the upper complexity tolerated by pharmacophore searching algorithms. The number of features must therefore be considerably lowered to an acceptable value, usually below 10. A pre-selection phase aimed at pruning pharmacophoric features can be carried out based on energetic criteria, 15,16,[20][21][22] buriedness criteria, 15,19 hydration sites overlaps, 22 or locations with respect to knowledge-based predicted anchoring hotspots. 26 Most methods finish the filtering step by hierarchical clustering based on feature properties and inter-feature distances.

Receptor-based pharmacophore searches have proven to perform at least as effectively as molecular docking, with respect to enrichment in true actives in retrospective virtual screening experiments. 21,22,26,28 However, they suffer from, with a few exceptions, 21,28 a lack of automation since many of the above-cited post-processing steps are tedious, thus leaving the user with subjective decisions to make as regards, for example, the nature of probes to use, the acceptable energy minima, or the number of clusters. Moreover, the true value of receptor-based pharmacophore searches in posing a ligand has rarely been examined 29 and compared to that of molecular docking.

To address the above limitations, we herewith modified a previously-described cavity detection method (VolSite 14 ) in order to automatize many steps between cavity detection and workable pharmacophore query definition. VolSite has notably been embedded in the IChem 30 pharmacophores from the 3D structures of cavities predicted as "druggable". We next modified the previously reported Shaper method 14 to align ligand atoms onto cavity features by shapematching and tested several topological as well as energy-based scoring functions in posing and virtual screening challenges.

Computational Methods

Data Sets

Sc-PDB Diverse Set: 213 diverse protein-ligand complexes (Table S1) were retrieved from the sc-PDB database 31 according to the diversity of their protein-ligand interaction patterns, measured by a previously-reported graph-matching procedure (GRIM). 32 Starting from a full GRIM similarity matrix calculated on 9283 entries of the sc-PDB archive, clusters were defined using simple agglomerative clustering, a minimal pairwise similarity (GRIM score) of 0.70 between its representatives, a minimal size of 6 entries, and a single linkage criterion. For every cluster, representative X-ray structures of the bound ligand and its cognate target (cluster center)

were downloaded from the sc-PDB website. 33 Astex Diverse Set: 85 entries of the Astex Diverse Set 34 (Table S2) were downloaded from the CCDC website 35 and processed as follows. For each entry, the protein-ligand complex was reconstructed in Sybyl-X.2.1.1 36 by merging the ligand (mol2 file format) into the protein (mol2 file format). Bound water molecules were imported from the corresponding RCSB Protein Data Bank (PDB) 37 file, all hydrogen atoms were deleted, and the fully hydrated complex (heavy atoms only) was protonated using Protoss. 38 Ions and cofactors having no heavy atoms located in a 4.5-Å-radius sphere centered on the ligand's center of mass were deleted. Water molecules were kept if two conditions were satisfied: (i) the oxygen atom was located in the abovedescribed sphere; (ii) the bound water engaged in at least two hydrogen bonds with the protein (donor-acceptor distance not exceeding 3.5 Å, donor-hydrogen-acceptor angle not narrower than 120 deg.). The ligand, as defined in the original Astex data, and the hydrated protein (including the ions and cofactors that remained) were separately saved in mol2 file format.

DUD-E subset: 10 entries (Table S3), selected from a previous benchmarking study 32 The X-ray structure of the active state-stabilized human kappa opioid receptor in complex with the full agonist MP1104 was downloaded from the PDB (PDB ID 6B73) and further processed similarly to the Astex Diverse Set. The starting 3D coordinates of PubChem ligands (mol2 file format) were generated with Corina v.3.4 [START_REF] Li | hERG classification model based on a combination of support vector machine method and GRIND descriptors[END_REF] and all compounds were ionized at physiological pH with Filter v.2.5.1.4. 43 The fully processed data set comprises 34,083 compounds (35 actives and 34,048 inactives).

Cavity-Based Pharmacophore Perception (IChem)

The previously described VolSite algorithm 14 was embedded in the IChem toolkit v.5.2.9 32 with small modifications compared to the original description. First, hydrogen atoms were added to the input target PDB structure using Protoss, 38 therefore optimizing the intra-and inter-molecular hydrogen bond network for all molecules in the input PDB file. The pharmacophoric properties of protein atoms (hydrophobic features, aromatic features, hydrogen-bond donors, hydrogenbond acceptors, positively ionizable features, negatively ionizable features, metals) were detected on the fly from their atom types (mol2 input), thereby enabling us to consider additional molecules (ions, cofactors, water molecules, prosthetic groups, nucleic acids) as parts of the protein. Second, hydrophobic protein atoms were redefined using tighter rules in comparison to those indicated in our seminal report. 14 Hydrophobic atoms were restricted to carbon or sulfur atoms not bonded to heteroatoms or halogen atoms. Cavity-based pharmacophores were defined using a four-step protocol as described in Figure 1. Step 1 -Coarse-grained cavity detection: the general procedure for detecting cavities has already been described in a previous report 14 and will just be briefly summarized here. Starting from atomic coordinates of the target protein, a three-dimensional (3D) cube was centered on the center of mass of the target and filled with a 1.5-Å-resolution grid defining voxels with a volume of 3.375 Å 3 each. To every voxel was associated a site point along with a property at its center. If the corresponding voxel encompassed a protein atom or if its center was less than 2.0 Å away from any protein heavy atom, the site point would be considered inaccessible ("IN" property).

Any other point was then checked for buriedness by generating, from its coordinates, a set of 120 regularly spaced 8-Å-long rays. If the number of rays intersecting an "IN" cell (N ri ) was smaller than 55, the corresponding point would be deemed outside the enclosing cavity and was assigned the "OUT" property. The remaining points were claimed to encompass the cavity and checked for direct neighborhood with other cavity points. If isolated (fewer than 3 neighbors in adjacent voxels), the points were deleted. Site points closer than 4.0 Å to a protein atom were assigned one of the eight possible pharmacophoric properties (hydrophobic feature, aromatic feature, Hbond acceptor, H-bond donor, H-bond acceptor and donor, negatively ionizable feature, positively ionizable feature, metal-binding feature) complementary to that of the closest protein atom using the previously-reported interaction rules. 32 Points with no neighboring protein atoms within a 4-Å distance were assigned the null property ("dummy"). For each detected cavity, a set of site points (mol2 file format) and a "druggability" score (derived from a previously-described support vector machine model) 14 were given. Only cavities with positive druggability scores were further considered for the generation of cavity-based pharmacophores.

Step 2 -High-resolution cavity description: for each cavity, the previously-reported procedure (step 1) was repeated with two modifications: (i) the center of the 3D lattice was defined as the center of mass of the corresponding coarse-grained cavity, and (ii) the grid resolution was then set to 1.0 Å for a better description of cavity points. Each cavity point was assigned a pharmacophoric feature as previously reported.

Step 3 -Pruning pharmacophoric features: to describe the properties of true pharmacophoric features, "ideal pharmacophores" were deduced from 213 protein-ligand complexes of the sc-PDB Diverse Set. In an ideal pharmacophore model, a feature is assigned to any ligand atom in interaction with the target protein with a property equal to that of the corresponding interaction, but using exactly the same IChem rules (atom types, distances, angles, planes) as those used to define pharmacophoric properties of cavity points. An analysis of these ideal pharmacophoric features enables us to set threshold values for simple descriptors (buriedness, distance to the cavity center, interaction energy) in order to reduce the number of features without losing crucial information. Three pruning rules were applied in the following order: (i) buriedness N ri lower than 80, (ii) distance between the feature and the cavity center shorter than 8 Å, (iii) piecewise linear potential (PLP) 46 interaction energy lower than the corresponding feature-dependent threshold (for hydrophobic features, H-bond donors/acceptors, positively ionizable and negatively ionizable features: 0 kcal/mol; for aromatic features: -2.4 kcal/mol; for metal-binding features: -3.5 kcal/mol).

Step 4 -Refining and clustering pharmacophoric features: the remaining H-bond acceptors, aromatic features and hydrophobic features were next subjected to a refining step. As hydrogen atoms were explicitly described in the target protein, a cavity point would still be a hydrogenbond acceptor feature only on the condition that the nearest protein atom was a hydrogen-bond donor (previous definition in steps 1 and 2) and that the donor-hydrogen-feature angle was between 120 and 180 degrees. Previously-defined acceptor features not fulfilling the new angular threshold were therefore re-assigned a novel property according to the second nearest protein atom and so on until a new property could be unambiguously assigned. If it was not possible (no clear assignment possible from any of the protein atoms closer than 4 Å from the feature), the feature was simply eliminated. The remaining aromatic features were next reconsidered from their spatial location with respect to the aromatic plane to which the closest aromatic protein atom belonged. Apart from the previously applied distance criterion (distance between the feature and the protein atom shorter than 4 Å), we herein applied a second distance threshold of 1.5 Å, corresponding to the largest possible distance between the aromatic feature and two virtual points situated 4 Å away from the closest protein aromatic ring, along a normal to the aromatic plane in both directions. Again, aromatic features not satisfying this additional filter were either reassigned a new property (starting from the second closest protein atom) or eliminated if no assignment was possible. Last, the remaining hydrophobic features were also reconsidered and kept as hydrophobic only if: (i) more than 50% of the protein atoms located within 4.5 Å from the feature were hydrophobic, and (ii) at least 50% of the neighboring protein residues (less than 4.5 Å away) were considered hydrophobic (alanine, valine, leucine, isoleucine, proline, methionine, phenylalanine, tyrosine, and tryptophan). It is note-worthy that these refinements were applied at the step 4 and not to the full set of pharmacophoric features (step 2) to speed up the overall protocol.

The remaining features were then clustered using a simple hierarchical clustering method by pharmacophoric property and inter-feature distance (< 3.1 Å). The final pharmacophoric features were saved in three possible file formats (TRIPOS mol2 format, CATALYST chm file format, 47 and LigandScout pml format 8 ). The pharmacophore models describe for each feature the following items:

 Property: hydrophobic feature, aromatic feature, H-bond acceptor, H-bond donor, negatively ionizable feature, positively ionizable feature, metal-binding feature;

 Atomic coordinates of the feature (head); It is worth noting that features having the double property H-bond donor and H-bond acceptor were described by two separate properties (donor, acceptor) matched on the same point.

 A 3-Å-long

Ligand Alignment to IChem Pharmacophoric Features (Shaper2)

The previously-described Shaper algorithm, 14 designed to align cavities, was slightly modified to align ligand atoms (mol2 file format) onto the aforementioned set of cavity points. Shaper2 relies on OpenEye python libraries 43 to describe molecular shapes by a smooth Gaussian function and to align two molecular objects (ligand features, cavity features) by optimizing the intersection of their corresponding volumes. 48 During the alignment, cavity features are kept rigid while a maximum of 200 pre-defined conformers of the ligand to fit (fit object, constructed in Omega2 v.2.5.1.4) 43,49 S4). All aligned poses were then subjected to a two-step structure optimization process using the MMFF94 force field 51 implemented in SZYBKI v.1.8.0.1. 43 First, each pose was minimized with the steepest descent algorithm with respect to the MMFF94 potential in full Cartesian coordinates using default settings. Then, a single point calculation was done with the Poisson-Boltzmann (PB) protein-ligand electrostatics, [START_REF] Nicholls | SAMPL2 and Continuum Modeling[END_REF] calculating protein-ligand interaction energy including solvent effects. All possible ligand-cavity matches were scored according to the four following metrics:

 The TanimotoCombo similarity score:

TanimotoCombo = ShapeTanimoto + ColorTanimoto = OS C,L IS C +IS L +OS C,L + OC C,L IC C +IC L +OC C,L
-OS C,L is the overlap between the shapes of cavity and ligand features -IS C and IS L are the non-overlapping shapes of each entity -OC C,L is the overlap between the colors of cavity and ligand features -IC C and IC L are the non-overlapping colors of each entity -The score is asymmetric and varies between 0 and 2.

 The PLP interaction of each feature with the protein, as implemented in the original publication. 46  The MMFF94 protein-ligand interaction energy IntE:

IntE = E VdW-PL + E Coulomb-PL + E Protein_desolv_PB-PL + E Ligand_desolv_PB-PL + E Solvent_screening_PB-PL .
 The MMFF94 total energy TotE = TotIE + IntE:

TotIE (ligand MMFF94 intramolecular energy) = E VdW + E Coulomb + E Bond + E Bend + E StretchBend + E Torsion + E Improper_Torsion . IntE = E VdW-PL + E Coulomb-PL + E Protein_desolv_PB-PL + E Ligand_desolv_PB-PL + E Solvent_screening_PB-PL .
For more details, the reader is directed to the SZYBKI document on the OpenEye website, describing the MMFF94 force field implementation. [START_REF]SZYBKI theory[END_REF] TRAN NGUYEN Viet Khoa -Ph.D. thesis 101

Ligand Alignment to IChem Pharmacophores (Discovery Studio)

The input ligand 3D structure was converted from mol2 to sd file format using Corina v.3.4 [START_REF] Li | hERG classification model based on a combination of support vector machine method and GRIND descriptors[END_REF] and employed as input to generate 3D conformers using the "Generate Conformations" protocol of Discovery Studio v.2017. 54 The conformer generation method was set as "FAST", a maximum of 200 conformers were generated within an energy threshold of 20 kcal/mol (as regards the global minimum). Ligand conformers were next aligned to IChem pharmacophoric features (chm format) using the "citest" command of Discovery Studio. A maximum of 2000 pharmacophore models including from 2 to 6 features were generated to map ligand conformers in the rigid mode. The best mapping conformer (highest fit value) was finally saved in sd file format.

Ligand Alignment to IChem Pharmacophoric Features (LigandScout)

Ligands (sd file format) were converted to the LigandScout 55 v.4.1.10 ldb database format with the "idbgen" script that saved up to 200 conformations for each ligand using high-quality settings of the "iCon" conformer generator ("icon-best" option). [START_REF] Poli | Conformational Sampling of Small Molecules with iCon: Performance Assessment in Comparison with OMEGA[END_REF] The conformations were next aligned, with standard settings of the "iscreen" routine, to the IChem-generated pharmacophores (pml format). The best mapping conformer (highest fit value) was saved in sd file format.

Docking (Surflex-Dock)

Surflex-Dock v.4.227 was used as prototypical docking engine. [START_REF] Jain | Surflex-Dock 2.1: Robust Performance from Ligand Energetic Modeling, Ring Flexibility, and Knowledge-Based Search[END_REF] A protomol was first generated from the list of residues, ions, cofactors and water molecules lining the ligand-binding site (any molecule with a heavy atom in a 4.5-Å-radius sphere centered on the ligand's center of mass) using default settings. [START_REF] Jain | Surflex-Dock 2.1: Robust Performance from Ligand Energetic Modeling, Ring Flexibility, and Knowledge-Based Search[END_REF] The protomol was further used to dock a randomly generated conformation of the ligand using the "-pgeom" option. Only the best-ranked pose (scored by pK d values) was saved.

ROCS Shape Overlap

A maximal number of 200 conformers (sd file format) were generated for every PubChem ligand using standard settings of Omega2 v.2.5.1.4. 43,49 All conformers were then compared to the query (protein-bound ligand X-ray pose, mol2 file format) with ROCS v.3.2.0.4 43,[START_REF] Hawkins | Comparison of Shape-Matching and Docking as Virtual Screening Tools[END_REF] and scored by TanimotoCombo values, after which the best matching one (highest Tc) was determined.
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Results and Discussion

The pharmacophore concept is more than one century old [START_REF] Guner | Setting the Record Straight: The Origin of the Pharmacophore Concept[END_REF] and has been widely used in ligandbased 4 and, more recently, protein-ligand-based 7,8 virtual screening. When only structures of ligand-free proteins are available, defining simple and workable pharmacophore queries is more difficult for the simple reason that cavity structure-based pharmacophore perception is a complex and multi-step procedure. Cavities first need to be detected at the protein surface, and then evaluated for their potential "druggability". The positions of pharmacophoric features mimicking a perfect ligand must then be inferred from the coordinates of cavity-lining protein residues.

Very often, the number of ideal features exceeds by far the upper complexity tolerated by standard 3D pharmacophore searches. Therefore, they need to be rationally pruned, usually from interaction energy maps, to downsize the population and to enable the definition of a workable pharmacophore model (usually comprising fewer than 10 features). Moreover, there exist many methods [20][21][22] that rely on lengthy molecular dynamic simulations to locate the energetically preferred positions of probes, which prohibits their usage even at a low throughput. Although recent efforts have been reported to simplify the steps described above, 21,28 it is still necessary to design a tool that is able to quickly and reliably automatize the entire process from early cavity detection to late final pharmacophore definition.

Cavity-Based Pharmacophore Perception

The herein proposed cavity-based pharmacophore perception workflow is made of four consecutive steps (Figure 1). First, potentially druggable cavities were detected on the fly from the input protein structure using standard parameters of our in-house developed VolSite algorithm. 14 The method centers the protein in a 1.5-Å-resolution lattice and assigns a pharmacophoric feature (hydrophobic/aromatic/positively-charged/negatively-charged/metalbinding feature, H-bond donor and/or acceptor) to every accessible voxel, depending on the pharmacophoric property of the nearest accessible protein atom. The structural "druggability" of every detected cavity was predicted with the use of a support vector machine model 14 that showed a very good accuracy level in comparison to state-of-the-art methods. For each cavity, the detection procedure was repeated using a higher-resolution grid (1.0 Å) that was centered on the cavity's center of mass, after which the obtained features were pruned in order to decrease their population.

The previously published VolSite algorithm 14 was modified to take into account the positions of explicit hydrogen atoms, added by the Protoss knowledge-based method. 38 The main advantage of using hydrogen coordinates of the target protein is that hydrogen acceptor features can be better assigned from the corresponding vectors (donor-hydrogen-voxel center) than using the previous protocol that just relied on distances. Along the same spirit, we have also refined the definition of cavity aromatic features by taking into account additional topological measurements for detecting face-to-face aromatic interactions (see "Computational methods"). Last, the assignment of hydrophobic features is stricter and now requires that the closest protein atom be also annotated as hydrophobic and located in a global hydrophobic environment. The consequence of these changes is that the pharmacophoric assignment of cavity features may require several steps. For example, a hydrophobic protein atom (e.g. CB atom of an alanine) cannot be used to assign a hydrophobic property to a cavity voxel if the latter does not satisfy the above-described proximity conditions, even if it is the closest protein atom of that particular voxel. In that case, a second assignment step is done by considering the second closest protein atom to the voxel, and so on until one protein atom perfectly suits all the required conditions.

Therefore, contrary to the original VolSite implementation, 14 in this updated version, some cavity voxels may not be assigned a pharmacophoric property.

A key issue in the current work is the implementation of knowledge-based rules to limit the number of pharmacophoric features to the lowest possible number. To reach this objective, we carefully analyzed the position of "ideal" pharmacophoric features derived from a training set of 213 diverse protein-ligand structures. By "ideal", we mean that pharmacophoric features are directly mapped onto protein-bound ligand atoms if the corresponding atom is in direct interaction, according to IChem rules, with the protein. To define a set of ideal features, 213 high-resolution protein-ligand X-ray structures were extracted from the sc-PDB archive of druggable protein-ligand complexes. 31 These structures present a maximal diversity of proteinligand interaction patterns, as assessed by our previously described GRIM methodology 32 that directly computes the pairwise similarity of protein-ligand interaction patterns. Out of the 213 most diverse complexes, we could identify 4871 ideal features for which three properties were inspected: buriedness, distance to the cavity center, and PLP interaction energy (Figure 2). Whatever the feature type, more than 75% of the ideal features had buriedness values higher than 80 (Figure 2A). Likewise, over 90% of them were closer than 8 Å from the corresponding cavity center (Figure 2B). As expected, the recorded PLP interaction energy values of these features with their protein environment clearly show that they are negative and feature type-dependent (Figure 2C). Applying feature-dependent cut-off thresholds (for hydrophobic/positively ionizable/negatively ionizable features, H-bond donors and/or acceptors: 0 kcal/mol; for aromatic features: -2.4 kcal/mol; for metal-binding features: -3.5 kcal/mol) ensured that at least 95% of these ideal features would be selected.

The application of the above-described pruning rules all along the flowchart (Figure 3A) indeed limited the number of output features from 326 ± 90 at the beginning of the process (fine-grained cavity description) to 259 ± 95 after buriedness evaluations, 253 ± 88 after cavity center-feature distance calculations, 37 ± 7 after clustering, and finally 27 ± 7 after PLP interaction energy calculations (Figure 3B). The chronological order in applying these three filters does not affect the obtained results. To avoid repeating the PLP interaction energy evaluation before and after clustering, we decided to place this step at the end of the protocol. Here again, we verified that this choice did not bias the obtained results. protocol. An ideal feature is deemed "recovered" if it is located closer than 2.0 Å from a predicted feature of the same type, generated for the same test set according to identical topological rules by matching pharmacophoric properties to protein-interacting ligand atoms.
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We also verified that the observed drastic reduction in the number of features did not lead to a global loss of information. For that purpose, we estimated the percentage of ideal features recovery, by computing the closest distance between every IChem-predicted element and an ideal feature of a compatible pharmacophoric type. If the distance is smaller than 2.0 Å, the predicted feature is deemed close enough to the ideal one and the latter is recovered. Estimating the percentage of ideal features recovery at every step of the pruning stage (Figure 3C), we conclude that the filtering process did not discard a significant proportion of key elements. After the last step, about 80% of all features belonging to every feature type (except aromatic ones, for which the recovery rate was about 70%) were within a radius of 2 Å from a predicted element of the same type. We thus assume that our feature selection process is accurate enough to simplify the final cavity-based pharmacophore model without any major loss of information.

Ligand Posing Accuracy

Ligands were aligned onto the above-described cavity-based pharmacophoric features using a modified version (Shaper2) of our Shaper algorithm, 14 employing a smooth Gaussian function to maximize the shape overlap of ligand atoms and cavity features, and score the alignment by both shape and color (feature type) similarity. In comparison to the previous Shaper version that had been designed for pairwise cavity comparisons, the force field was modified in this updated one (Table S4) to enable ligand alignment to cavity features. A test set of 85 high-quality proteinligand complexes (Astex Diverse Set), 34 specifically designed to assess docking performance, was used for that purpose. To estimate the posing quality, we compared the results obtained with Shaper2 alignment on IChem features (this work) to those of a state-of-the-art docking tool (Surflex-Dock). [START_REF] Jain | Surflex-Dock 2.1: Robust Performance from Ligand Energetic Modeling, Ring Flexibility, and Knowledge-Based Search[END_REF] Moreover, we also compared the alignment accuracy of Shaper2 to that of two 65% of all ligands were docked with RMSD values to the X-ray pose below 2 Å (Table 1). This docking performance is quite similar to previous results obtained on this peculiar data set [START_REF] Spitzer | Surflex-Dock: Docking Benchmarks and Real-World Application[END_REF] and on other sets by us [START_REF] Kellenberger | Comparative Evaluation of Eight Docking Tools for Docking and Virtual Screening Accuracy[END_REF] and other groups. 5,[START_REF] Cleves | Knowledge-Guided Docking: Accurate Prospective Prediction of Bound Configurations of Novel Ligands Using Surflex-Dock[END_REF] We can therefore assess that no particular bias is present in both the data set and the manner we set the input files. In our hands, the two ligandbased pharmacophore tools (Discovery Studio, LigandScout) failed to predict the correct pose (RMSD < 2.0 Å) in approximately 90% of the cases (Figure 4, Table 1). In other words, the complexity of IChem cavity-based features (27 features on average for the Astex Diverse Set) is still too important for hard sphere-based alignment tools. The quality of IChem cavity-based pharmacophores is not responsible for this observation since Shaper2 alignment to the same pharmacophores produced much better results, albeit with significant differences as regards the chosen scoring function (Figure 4, Table 1). Just relying on the similarity of shapes and colors (Tc metric) was not sufficient to yield high-quality poses (average RMSD = 4.10 Å) although the obtained results were already better than those received from Discovery Studio and LigandScout.

Rescoring Shaper2 poses according to the PLP energy significantly improved the alignment (median RMSD = 2.95 Å, Table 1). However, this scoring method remains inferior to Surflex-Dock in producing high-quality poses (Figure 4).

We therefore minimized the pose (ligand in its protein environment) with the MMFF94 force field that includes an explicit Poisson-Boltzmann treatment of desolvation effects. [START_REF] Nicholls | SAMPL2 and Continuum Modeling[END_REF] Using either the total MMFF94 energy (TotE: ligand strain energy + protein-ligand interaction energy) or just the protein-ligand interaction energy term (IntE) yielded very accurate poses (identical median RMSD to the X-ray pose of 1.06 Å). Interestingly, although the fraction of high-quality poses (RMSD < 2.0 Å) was almost identical to that obtained with Surflex-Dock (approximately 65%), these two scoring functions were much more effective in producing very high-quality poses (RMSD to the X-ray pose < 1.0 Å; Table 1 

Virtual Screening Accuracy (DUD-E Set)

In the next challenge, we probed the accuracy of Shaper2 alignment to IChem cavity-based pharmacophores to discriminate between true actives and chemically similar decoys for a set of ten DUD-E targets (Table S3). 32,39 Although results obtained on such benchmarks are not fully predictive of real-life prospective virtual screening studies, [START_REF] Chaput | Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance[END_REF] we still wanted to compare our approach to Surflex-Dock in this exercise. Ten targets were selected to span major target families (G protein-coupled receptors, kinases, nuclear hormone receptors, proteases, other enzymes) and caution was given to discard easy test cases (targets leading to areas under the ROC curves above 0.85) as suggested by the seminal paper. 39 The chosen subset is believed to be rather difficult for docking (DUD-E authors used the Dock3.6 docking program as screening engine) with an average AUC value of 0.66, well below the mean AUC value (0.76) observed for the entire DUD-E database. 39 Results obtained with Surflex-Dock generally confirmed the previous report with a mean AUC value of 0.73 (Table 2). For two targets (GCR, FGFR1), the observed ROC AUCs were statistically better than random selection but still below 0.70, therefore indicating just a fair performance. Shaper2 alignment to IChem pharmacophores scored by the PLP potential led to a poor performance in this challenge (mean AUC value of 0.57; Table 2).

Conversely to the above-described challenge, scoring matching poses by either MMFF94 protein-ligand interaction energy or MMFF94 total energy marginally enhanced the virtual screening accuracy of the method (mean AUC values of 0.62 and 0.65, respectively; Table 2) despite significant ameliorations (AUC ≥ 0.70) for five out of the ten targets (ADRB2, GCR, ACE, FGFR1, AKT1), using the MMFF94 total energy as a scoring function. Given that the MMFF94 total energy led to the best performance, we tried to decouple the scoring function used to select the best poses from that utilized to sort compounds. The best combination was obtained by selecting the poses by MMFF94 total energy and sorting the compounds (actives and decoys)

by PLP energy (Table 2). Using this approach, a mean AUC value of 0.68, comparable to that observed with the docking program Dock3.6, was obtained. The performance was excellent for two targets (ADRB2, RENI: ROC AUC > 0.80), good for two other entries (FGFR1, AKT1: 0.70 < ROC AUC < 0.80), fair for four targets (AA2AR, GCR, ADA, ACE: ROC AUC ≥ 0.57) and remained poor but still better than random picking for two entries (ANDR, PGH2). Despite the small sample size, the distribution of ROC values observed from the three Shaper2 protocols with MMFF94 refinement (IntE, TotE, TotE + PLP) is statistically different from that seen when only PLP energy was taken into account in a two-sample t-test assuming either equal or unequal variance at a confidence interval of 95% (p < 0.05). The differences observed with respect to each pair of the refinement protocols are however statistically not significant in the same test.

Compared to Surflex-Dock, the mixed approach gave a better performance for three targets (ADRB2, ANDR, FGFR1), a rather similar accuracy level for three entries (GCR, RENI, AKT1), but gave a poorer performance for the other four entries (AA2AR, ADA, PGH2, ACE; Table 2, Figure 5).
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Virtual Screening Accuracy (PubChem BioAssay)

The real value of DUD-E ligands in evaluating virtual screening performance is currently under debate because of severe ligand-and target-based drawbacks in selecting decoys. [START_REF] Chaput | Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance[END_REF] The discriminatory power of most docking tools was reported to be overestimated, with the use of this data collection, for the simple reason that DUD-E actives tend to be chemically similar to the co-crystallized ligand in the 3D target structure that is selected for docking. [START_REF] Chaput | Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance[END_REF] We therefore challenged our method with true experimental screening data from the PubChem BioAssay repository, [START_REF] Wang | PubChem BioAssay: 2017 Update[END_REF] in which both true active and true inactive compounds have been explicitly defined according to in vitro assays. Three targets of pharmaceutical importance (one kinase, one nuclear hormone receptor, one G protein-coupled receptor) for which both high-quality screening data (primary assay, confirmatory dose-response assay) and 3D structural information (ligand-bound high-resolution X-ray structure) are available were selected as test cases (Table 3).

Virtual screening was carried out using one ligand-based method (3D shape-matching with ROCS), [START_REF] Hawkins | Comparison of Shape-Matching and Docking as Virtual Screening Tools[END_REF] and two structure-based approaches (molecular docking with Surflex-Dock, pharmacophore-based ligand-aligning with Shaper2). The virtual screening accuracy was simply estimated from the number of true actives ranked among the top 1% and the top 5% scorers. The experimentally determined hit rate is low (approximately 0.1%) for two screens (ROCK2, OPRK1) and much higher (3.71%) for the ESR1 challenge. Activity data range from low nanomolar to two-digit micromolar values. The ESR1 ligand set is the most enriched in molecules of very high potency (Table 3), and should, therefore, be easier to predict. This assumption was confirmed by an analysis of screening results given by 3D shape-matching using ROCS, as spectacular enrichment over random picking was observed when the top 1%-ranked ESR1 ligands were considered (Table 3). This means that the true actives in this set are similar in both shape and pharmacophoric properties to the reference ligand (4-hydroxytamoxifen) that was co-crystallized in the protein structure used for the stucture-based approaches.
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Surflex-Dock and Shaper2 gave identical results when the top 1% scorers of the ROCK2 screen were considered, although their performances were inferior to that of ROCS (Table 3).

Accounting a higher percentage of top scoring compounds (5%) allowed us to retrieve one additional active, but at the cost of a lower hit rate. For the easier ESR1 test case, Shaper2 gave much better results than Surflex-Dock, whatever the fraction that was considered to qualify virtual hits. Enrichment factors over random picking of 3.4 and 6.1 were observed for the top 1%

and the top 5% scoring molecules, respectively (Table 3). It is note-worthy that Shaper2 continued to retrieve novel actives as the number of selected virtual hits was increased, and even outperformed ROCS when the top 5% scoring hits were accounted. For the last data set (OPRK1), both Surflex-Dock and Shaper2 gave statistically good enrichment over random picking (8.8 and 2.9 at the top 1% scorers, 2.3 and 3.5 at the top 5% scorers). Docking performed better than cavity-based pharmacophore searches in the initial enrichment, but Shaper2 retrieved more actives than Surflex-Dock among the top 5% scorers (Table 3).

In agreement with many previous studies, [START_REF] Kruger | Comparison of Structure-and Ligand-Based Virtual Screening Protocols Considering Hit List Complementarity and Enrichment Factors[END_REF][68][69] we observed that the three virtual screening methods used in this study tend to retrieve different true actives, and most importantly, different chemotypes (Figure 6). In all screens, Shaper2 was able to identify true actives (one ROCK2 inhibitor, seven ESR1 antagonists, four OPRK1 agonists, Figure 6) not found by any other method. If one restricts the analysis to the retrieval of unique scaffolds, Shaper2 was the method producing the highest number of uniquely retrieved chemotypes (Figure 6), thereby demonstrating its utility and orthogonality to other virtual screening methods. Each chemotype retrieved by a single method is highlighted by a star.

The motivations for retrieving the top 5% scorers were two-fold. Firstly, since we were really mining HTS data with very few high affinity ligands, the number of hits retrieved among the top 1% scorers was low (even for the ligand-based ROCS shape-matching method). We therefore increased the threshold to select the top 5% scoring molecules in order to begin to see statistically meaningful differences between the screening methods. Secondly, retrieving a higher proportion of virtual hits enabled us to cluster them by scaffolds (maximum common substructures) and pick a more representative set of hits for experimental validation (in terms of scaffold coverage) than a strategy based on a harder cut-off (say, pick the top 100 scoring compounds). Of course, no definitive conclusion can be drawn from the present benchmarking exercise focusing on three independent HTS data. However, it appears that Shaper2 alignment on IChem cavity-based pharmacophores is at least as effective as other virtual screening methods (shape alignment, docking) when applied to three test cases for which the entire screening results were known. The good performance of Shaper2 in true virtual screening benchmarks is in contradiction to the previously reported poorer performance observed in artificially constructed DUD-E training sets, for which severe target and ligand bias has been noticed. [START_REF] Chaput | Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance[END_REF] We therefore recommend benchmarking virtual screening methods with true experimentally determined highthroughput screening data. Fortunately, the PubChem BioAssay repository [START_REF] Wang | PubChem BioAssay: 2017 Update[END_REF] proposes an increasing number of high-quality screening sets with both primary and confirmatory doseresponse data to guide computational method development and validation.

Comparison to Other Cavity-Based Pharmacophore Perception Methods

In comparison to current structure-based pharmacophore perception methods, [11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29] the herein described approach presents five noticeable assets. First, the pharmacophore perception method is fully automated, does not rely on any third party tool, and is freely available for non-profit research. The last criterion is particularly important to enable fair benchmarking. Second, in contrast to many alternative approaches, 11,15,16 IChem does not require user intervention in defining grid lattice coordinates. It scans the entire surface and can therefore generate as many pharmacophores as the non-overlapping binding sites. Third, IChem offers a unique opportunity to restrict pharmacophore perception to binding cavities predicted as structurally druggable.

Druggability (or ligandability) is predicted on the fly thanks to a robust support vector machine model, immediately after cavity detection. Fourth, IChem rules to select the most valuable pharmacophoric features have been derived from an exhaustive training set of 213 highresolution protein-ligand X-ray structures featuring non-redundant interaction patterns and 4871 pharmacophoric features. Fifth, the method has been extensively validated on different test sets (Astex Diverse Set, DUD-E, PubChem BioAssay) for its accuracy in ligand posing and virtual screening. We also provide herein several HTS data mimicking real life scenarios with fully validated true positives and true negatives. Such benchmarking data are, to our opinion, much more valuable than commonly used data sets in which actives (usually high affinity ligands) are mixed with chemically similar decoys of unknown affinity for the intended target.

Conclusion

We herewith propose an alternative computational method (IChem-Shaper2) to molecular docking to identify ligands from the single knowledge of a protein 3D structure. The concept of structure-based pharmacophores has already been exploited, but rarely led to pharmacophore queries truly adapted to virtual screening purposes. The proposed approach is fully automatized and consists of three consecutive steps, each of which can be customized if necessary: (i) 

######################################### # DEFINE # ######################################### ###### define degree (independent of explicit/implicit) DEFINE hd1 [X1H0,X2H1,X3H2,X4H3,X5H4,X6H5] DEFINE hd2 [X2H0,X3H1,X4H2,X5H3,X6H4] DEFINE hd3 [X3H0,X4H1,X5H2,X6H3] DEFINE hd4 [X4H0,X5H1,X6H2] ###### hydrophobic DEFINE php [#6,#16&$hd2&!$(S=*),#35,#53;R0;!$(*~[!#1;!#6;!$([#16;$hd2])])] DEFINE thp [$php;$hd1] DEFINE hp [$php;!$hd1] DEFINE ehp [$hp;!$(*([$hp])[$hp])] ###### acceptors DEFINE ACamine [N;!$(N*=[!#6]);!$(N~[!#6;!#1]);!$(Na);!$(N#*);!$(N=*)] DEFINE ACphosphate [O;$hd1;$(O~P(~O)~O)] DEFINE ACcarboxylate [O;$hd1;$(O[C;!$(*N)]=O),$(O=[C;!$(*N)][O;$hd1])] DEFINE ACwater [OH2] DEFINE AChet6N [nH0;X2;$(n1aaaaa1)] DEFINE ACphosphinyl [O;$(O=P);!$(O=P~O)] DEFINE ACsulphoxide [O;$(O=[S;!$(S(~O)~O);$(S([#6])[#6])])] #DEFINE ACprimaryAmine [$ACamine;$hd1;!X4] #leave off for implict charge DEFINE AChet5N [nH0;X2;$(n1aaaa1)] DEFINE ACthiocarbonyl [S;X1;$(S=[#6])] DEFINE AChydroxyl [O;$hd1;$(O-[C;!$(C=*)])] DEFINE ACsulphate [O;$hd1;$(O~S(~O)~O)] #DEFINE ACtertiaryAmine [$ACamine;$hd3] #
*=[O,S,N])])[#6;!$(*=[O,S,N])])] DEFINE ACprimaryAniline [N;$(Na);$hd1] DEFINE ACnitro [O;$hd1;$(O~N~[O;$hd1])] DEFINE AChet5O [o;X2;$(o1cccc1),$(o1ccccc1);!$(*[#6]=O)] DEFINE ACsulphone [O;$(O=[S;$(S(~O)(~O)([#6,#7])[#6])])] ### strong acceptors DEFINE strongAcceptor [$ACphosphate,$ACcarboxylate,$ACwater,$AChet6N,$ACphosphinyl] ### moderate acceptors #DEFINE moderateAcceptor [$ACsulphoxide,$ACprimaryAmine,$AChet5N,$ACthiocarbonyl,$AChydroxyl,$ACsulphate,$ACtertiaryAmine,$ ACamide,$ACcarbamate,$ACurea] DEFINE moderateAcceptor [$ACsulphoxide,$AChet5N,$ACthiocarbonyl,$AChydroxyl,$ACsulphate,$ACamide,$ACcarbamate,$ACurea] ###
])] ###### cation intermediate DEFINE CATnonewN [#7;!$(NC=O);!$(NS(=O)=O)] DEFINE CATguanidine [$CATnonewN]!:[#6](!:[$CATnonewN])!:[$CATnonewN] DEFINE CATguanidineC [#6]~[$CATguanidine] DEFINE CATamine [N;!$(N*=[!#6]);!$(N~[!#6;!#1]);!$(Na);!$(N=*);!$(N#*);!$([#7;X0])] ###### Zn intermediates DEFINE hydroxamate O=[CX3]N[O-] DEFINE reverseHydrox O=[CH][NX3][O-] # # ######################################### # TYPES # #########################################
TYPE donac # # ######################################### # PATTERNS # ######################################### ###### rings PATTERN rings [R]~1~[R]~[R]~[R]1 PATTERN rings [R]~1~[R]~[R]~[R]~[R]1 PATTERN rings [R]~1~[R]~[R]~[R]~[R]~[R]1 PATTERN rings [R]~1~[R]~[R]~[R]~[R]~[R]~[R]1 ### hydrophobic # terminal hp PATTERN hydrophobe [$thp]~*(~[$thp])~[$thp] #triple PATTERN hydrophobe [$thp][!$(*(~[$thp])(~[$thp])~[$thp]);!$(*=[N,S,O])][$thp] #double PATTERN hydrophobe [$thp;!$(*~*~[$thp]);$(*~[$php])] #single PATTERN hydrophobe [$thp;#35,#53] #large # non-terminal hp PATTERN hydrophobe [$ehp][$hp][$hp][$ehp] PATTERN hydrophobe [$ehp]([$ehp])[$hp][$ehp] PATTERN hydrophobe [$hp]([$ehp])([$ehp])[$ehp] PATTERN hydrophobe [$ehp][$hp][$hp][$hp][$ehp] PATTERN hydrophobe [$ehp][$hp][$hp;$(*[$hp][$hp][$ehp])] ### donor/acceptor patterns PATTERN acceptor [$strongAcceptor,$moderateAcceptor,$weakAcceptor] PATTERN donor [$strongDonor,$moderateDonor,$weakDonor] ### anion/cation patterns # cations PATTERN cation [$CATnonewN]!:[#6;!$(C(N)(N)N)](!:[$CATnonewN])!:[$CATnonewN] #guanidine PATTERN cation [$CATnonewN]!:[#6;!$([$CATguanidineC]);!$(C(N)N)]!:[$CATnonewN] #amidine PATTERN cation n:1cncc1 #azole PATTERN cation [$CATamine] # anions PATTERN anion [$negHet][#6X3]~[$terminalHet] #carboxylate PATTERN anion [$negHet][#16X4](~[$terminalHet])~[$terminalHet] #sulfonate PATTERN anion [$negHet][#15X4](=O)[$negHet,$terminalHet] #phosphonate PATTERN anion [n;$hd2]1[n;$hd2][n;$hd2][n;$hd2]c1 #tetrazole PATTERN anion [$ANarylsulfonamide,$ANmalonic,$ANarylthiol,$ANhalideion,$ANhydroxylamine] ######################################### # Type Patterns # ######################################### ############ metal binders ############## #### Pattern Ca_Mg & ZN PATTERN metal [#8;-] PATTERN metal [#16;-] #### Pattern Ca_Mg # PATTERN metal [nh0]1aaaa1 ##### Pattern Zn PATTERN metal [nh0;-] PATTERN metal [#7;-] PATTERN metal [#8;-;!$([$hydroxamate,$reverseHydrox])] PATTERN metal O=[CX3]N[O-] PATTERN metal O=[CH][NX3][O-] PATTERN metal [S]([N,-1])(=[O])(=[O]) PATTERN metal O=C[ND2][O-]

Take-home Messages

The work portrayed in this chapter presents a novel structure-based virtual screening tool whose performance is comparable to that of other in silico approaches. However, the total amount of time required to fully process the ligands (notably during the treatment of desolvation effects: 5 seconds per pose x hundreds of poses per ligand) is larger than that consumed by most molecular docking tools or ligand-based screening programs, which, as a result, impedes the application of this novel approach to virtual screening campaigns using ultra-large chemolibraries that comprise millions (or even billions) of ligands. A possible resolution is to start such screens with faster approaches, and subject only the top scorers issued from these methods (0.01-0.1% of the total population) to our protocol in order to rescore the ligands. Other approaches may be used simultaneously, yielding as many hit lists as the employed methods, after which all hit lists (including that given by our procedure) are fused to select, for example, the top-ranked compounds that the lists have in common. The ligand-aligning script can also be modified to allow a faster calculation on multiple cores, in hopes of reducing the computation time.

Another remarkable point of this work is that we used experimentally confirmed data from a highly-queried public repository (PubChem BioAssay) to validate our method. This rules out the issue regarding unknown potency values of presumably inactive molecules ("decoys") inherent in artificially constructed data sets (DUD, DUD-E). Though a few data-processing steps were carried out before the employment of these data in retrospective virtual screening, the question as to whether the resulting ligand sets are still biased was not fully addressed. Starting from our first attempts described in this study, and taking inspiration from other publications reporting data set construction based on PubChem BioAssay data (reviewed in the Chapter 1 of this manuscript), we developed a novel unbiased data collection entitled LIT-PCBA from fully validated components in terms of bioactivity towards a macromolecular target, which can be applied to validating both ligand-based and structure-based in silico screening approaches. More details concerning the preparation and the evaluation of this new data set will be given in the next chapter of this thesis.

Introduction

Virtual screening (VS) of compound libraries has established itself, notably in academic settings, as a fast and cost-efficient alternative to high-throughput screening (HTS) for identifying preliminary hits of pharmaceutically interesting targets. [1][2][3] Because of the availability of hundreds of virtual screening tools, 4 choosing the right method for a specific project often relies on benchmarking studies designed to delineate the context-specific advantages and drawbacks of each method. Many target-specific ligand sets [5][6][7][8][9][10] and statistical evaluation protocols [11][12][13] have been reported during the last decade to pinpoint the ability of a VS method to prioritize, for purchase and validation, the shortest possible hit list with an optimal enrichment factor in true actives. In the early 2000s, such data sets were limited in size due to the paucity of available experimental data. Inactive compounds were randomly chosen from databases of drug-like chemicals. 5,14,15 Very soon, it appeared that the random selection of presumably inactive molecules ("decoys") led to artificially high enrichment values, because of the bias in molecular property ranges (e.g. molecular weight) that often differed between active and inactive sets. 16 One of the first attempts at designing a docking-dedicated benchmarking database led to the introduction of the DUD data collection, 6 gathering 2950 ligands of 40 different targets from the literature, seeded among property-matched decoys (36 decoys for each active) from the ZINC archive of commercially available ligands. 17 In DUD, decoys were specifically designed to share physicochemical properties with actives but with a different chemical topology. Despite the caution given to the selection of decoys, independent groups rapidly noticed three major issues for both DUD active and decoy sets: (i) actives tend to spread over a few dominant scaffolds (socalled "analog bias"), 18 (ii) decoys exhibited molecular net charges different from those of actives, 19 and (iii) decoys were too similar to true actives and were likely false negatives. 8 The DUD set was upgraded to a revised version (DUD-E) 10 describing an enhanced and more diverse target space (102 targets), containing 22,886 clustered true actives with known experimental data from the ChEMBL database, 20 enhancing the proportion of decoys in the ligand sets (50 decoys for each active). The debate on the best protocol to select decoys has led to many contributions 8,9,21 to design novel decoy sets. As an alternative to DUD-E, other sources of active compounds (e.g. PubChem BioAssay 22 ) have also been utilized. Note-worthy is the MUV database 7 that provides many advantages: (i) the data sets (targets, ligands, assay conditions) are publicly available, (ii) the included compounds are drug-like, (iii) many experimental data were TRAN NGUYEN Viet Khoa -Ph.D. thesis 138 utilized to remove false positives and assay artifacts, and (iv) ligands were selected by a nearest neighbor analysis to permit a spatially unbiased distribution of actives and decoys. Consequently, the MUV data collection is considered more challenging than DUD-E. 23 For many years, the DUD-E has been considered the gold standard for benchmarking VS and machine learning methods, until recent reports [24][25][26][27] warned the community about both obvious and hidden bias in its design. First, Chaput et al. 24 noticed that differences in key molecular properties (polar surface area, H-bond donor count, embranchment count) remain between DUD-E actives and decoys. Moreover, chemical bias is still present in actives that tend to resemble target-bound PDB ligands, thereby overestimating the real discriminatory power of standard docking methods. 24 In 2018, Wallach and Heifets described the asymmetric validation embedding (AVE) method 25 to quantify data set bias and optimally design training/validation ligand sets. When applied to ligand-based VS methods, all standard benchmarking data collections (DUD, DUD-E, MUV) were shown to be massively biased, rewarding memorization rather than learning. 25 The latter danger is even higher for currently popular artificial intelligence methods (e.g. machine learning, deep neural networks) 28 that are hardly interpretable and tightly dependent on the quality of the input data and the way they are split to train and test a model.

Two different groups 26,27 just reported hidden bias in the DUD-E data set when applying deep neural networks (DNNs) to either predict binding affinities or classify complexes as active/inactive from X-ray structures or docking poses. Intriguingly, DNNs trained with rigorous cross-validation procedures on simple ligand descriptors were almost as accurate as those trained on protein-ligand attributes, suggesting that deep learning did not learn anything about the physics of protein-ligand interactions. Strikingly, the literature is full of overoptimistic reports describing machine learning models [29][30][31] with near perfect performances on the above-described data sets, although true VS practitioners have known for long that such an accuracy level does not mirror the proportion of experimentally confirmed hits in real prospective VS experiments.

There is more than ever an urgent need to design an unbiased and realistic data set specifically dedicated to virtual screening and machine learning. 27 We herewith present our contribution based on the following eight principles:

(i) The data set should mimic "real-life" screening decks and guide VS methods to discriminate moderately potent actives (primary hits) from inactive compounds;
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(ii)
The potency of all compounds (actives, inactives) for a particular target should have been determined experimentally in homogeneous conditions;

(iii) The ratio of actives to inactives should reflect hit rates typically observed in HTS campaigns against targets of pharmaceutical interest; 32 (iv) Actives should be filtered to remove false positives, frequent hitters, assay artifacts and truly "undruggable" compounds; besides, dose-response curves should be available for all actives;

(v) Active and inactive compounds should span common molecular property ranges;

(vi) Potency distribution of confirmed actives should not be biased towards too high affinities and should ideally mimic that observed in HTS decks;

(vii) The data set should be applicable to both ligand-based and structure-based virtual screening;

(viii) Unbiased training and validation sets should be available for machine learning.

We therefore decided to choose the PubChem BioAssay database (PCBA) 22 as the source of experimental bioactivity data. PCBA is an open-access archive hosted by the National Center for Biotechnology Information (NCBI), the National Library of Medicine (NLM) and the National Institute of Health (NIH). At the time this manuscript was written, the database stores over 1 million assay records, 134,000 of which are annotated by an activity type (IC 50 , EC 50 , K d , K i ). It covers about 7200 HTS projects from 80 sources (pharmaceutical companies, academic sources, governmental sources) on a chemical repository of 2.2 million compounds. The database can be easily queried according to numerous filters and is a first-class source of bioactivity data for computer-aided drug discovery. 33 We hereby describe a workflow for retrieving assays of interest and filtering compounds and targets for bioactivity data acquisition. The retrieved target sets were then subjected to state-ofthe-art virtual screening experiments in order to ascertain their suitability. The final data collection entitled LIT-PCBA contains 15 targets, 7844 true active and 407,381 true inactive compounds in total; with ready-to-use input files (ligands, targets) that have been unbiased for machine learning applications. It is available for download at http://drugdesign.unistra.fr/LIT-PCBA.
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Computational Methods

Data Selection

Bioactivity data were retrieved from the PubChem BioAssay database, 22 where all information on true active and true inactive substances for a protein target is provided based on experimental results from confirmatory dose-response bioactivity assays, whose related details including assay principles, general protocols and other remarks are also given. All data were updated as of December 31, 2018. The "limits" search engine (https://www.ncbi.nlm.nih.gov/pcassay/limits) was used to filter the PubChem BioAssay resource by various options, with "Activity Outcome" set as "Active", "Substance Type" set as "Chemical", and "Screening Stage" defined as "Confirmatory, Dose-Response". 149 assays, each targeting a single protein target, operated on at least 10,000 substances, and giving no fewer than 50 confirmed actives were first retained.

The experimental screening data were kept if the target was characterized by at least one Protein Data Bank (PDB) 34 entry, in complex with a ligand of the same phenotype (i.e. inhibitor, agonist, or antagonist) as that of the tested active substances of the corresponding bioactivity assay.

Altogether, 21 raw HTS data tables were directly retrieved as csv files from the PubChem BioAssay website along with actives and inactives in separate sd files. The PDB resource was then browsed by Uniprot identifiers (Uniprot IDs) 35 to retrieve the corresponding PDB entries in the suitable ligand-bound form.

Template Structure Preparations for Each Target Set

Protein-ligand complexes (in pdb file format) corresponding to the chosen target sets were processed as follows. For each PDB entry, explicit hydrogen atoms were added with Protoss 36 to any molecule (protein, cofactor, prosthetic group, ion, ligand, water). The output pdb file was then visualized in Sybyl-X 2.1.1. 37 A water molecule was kept under two conditions: (i) it was found at the binding site of the ligand, i.e., the distance between the oxygen atom of the water molecule and at least one heavy atom of the co-crystallized ligand was not greater than 5 Å; and

(ii) it engaged in no fewer than three hydrogen bonds with the protein and/or the ligand, at least two of which were with the protein. Hydrogen bonds must satisfy the following criteria: the donor-acceptor distance must not exceed 3.5 Å; the angle formed by the donor, the hydrogen atom and the acceptor (with the vertex of the angle positioned at the hydrogen atom) must be TRAN NGUYEN Viet Khoa -Ph.D. thesis 141 larger than 120 degrees. The protonated ligand and protein (including all remaining bound water molecules, cofactors, prosthetic groups and ions) were saved separately in mol2 file format with Sybyl-X 2.1.1. 37 In case more than 20 ligand-bound protein entries were available for each target, all proteinligand structures were clustered according to the diversity of protein-ligand interaction patterns.

These patterns were computed as graphs with IChem 38 as previously described, 39 and targetspecific interaction pattern similarity matrices were computed using the GRIM score metric. 39 Each matrix was then used as input for agglomerative nesting clustering using the "agnes" function in R v.3.5.2, the Ward clustering method, a Euclidean distance matrix and a total number of clusters fixed to 15. For each cluster, the PDB entry with the highest resolution was chosen as the protein-ligand PDB template for the corresponding target set.

Determination of Filtering Rules for True Active and True Inactive Substances of Each Target Set

Metadata on every substance (true active and true inactive) constituting each selected target set were collected directly from the website of PubChem BioAssay, including: the substance identifier (SID), the activity label (active or inactive), the phenotype (inhibitor, agonist, or antagonist), the potency (EC 50 or IC 50 , in µM), and the Hill slope for the dose-response curve of each true active. The frequency of hits (FoH) for a confirmed active molecule was computed as the ratio of the number of PubChem bioactivity assays in which the substance was identified as true active to the number of assays in which it was tested. Additional molecular properties (molecular weight, AlogP, total formal charge, number of rotatable bonds, number of hydrogen bond donors and acceptors) were computed in Pipeline Pilot v.19.1.0.1964. 40 For each target set, all true actives and true inactives were then filtered according to four steps: 41 Last, compounds were standardized and ionized at physiological pH with Filter v.2.5.1.4. [START_REF] Li | hERG classification model based on a combination of support vector machine method and GRIND descriptors[END_REF] All preparation failures were discarded.



2D Similarity Searches

Extended-connectivity circular ECFP4 fingerprints 43 were computed for PubChem compounds and PDB ligands in Pipeline Pilot v.19.1.0.1964. 40 Pairwise similarity of PubChem compounds to PDB ligands was estimated by the Tanimoto coefficient (Tc), thereby leading to a PDB ligand-specific hit list sorted by decreasing Tc values. The areas under the ROC (receiver operating characteristic) 11 and BEDROC (Boltzmann-enhanced discrimination of ROC) 12 curves (α = 20) along with the enrichment in true actives at a constant 1% false positive rate over random picking (EF1%) were calculated for each separate hit list. The same procedure was applied by fusing all lists and keeping the maximal Tc value for each compound (the "maxpooling" approach).

3D Similarity Searches

For each target set, a maximal number of 200 conformers were generated for every PubChem compound with the standard settings of Omega2 v.2.5.1.4. 44 All conformers were then compared TRAN NGUYEN Viet Khoa -Ph.D. thesis 143 to the query (PDB ligand) with ROCS v.3.2.0.4. 45 The best matching conformer was selected for every ligand according to the TanimotoCombo similarity score, 13 and all molecules of each target set were sorted based on this same value in descending order. Retrospective virtual screening performance was evaluated by ROC AUC, BEDROC AUC and EF1% values calculated as described above.

Molecular Docking

Starting from the mol2 structure of a fully processed template protein (including remaining bound water molecules after preparation) and that of its co-crystallized ligand, a protomol representing the ligand-binding site was generated from protein-bound ligand atomic coordinates using the default settings of Surflex-Dock v.3066. 46 All molecules in the relevant target set were docked into the protomol with the "-pgeom" option of the docking engine. The best-ranked pose according to docking scores (pK d values) was retained for each molecule, and all ligands of the set were then sorted based on this value in descending order. Retrospective virtual screening performance was evaluated by ROC AUC, BEDROC AUC and EF1% values calculated as described above.

Target Set Unbiasing

For each target set, the unbiasing of the training and validation sets was done using the previously described asymmetric validation embedding (AVE) method, 25 Convergence was reached when the bias value B was lower than 0.01, i.e., the GA was programmed to stop as soon as the total bias was below 0.01. To enable the script to process large sets of compounds (more than 100,000 molecules), the bias-removing script (remove_AVE_bias.py) originally proposed by Wallach and Heifets 25 was modified to allow a faster calculation on multiple cores.
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Results and Discussion

The aim of the present study is to design an unbiased data set dedicated to virtual screening as well as machine learning, along four main ideas:

(1) Experimental data should be available for all compounds, including the inactives.

Each true active should have been confirmed by a full dose-response curve.

(2) The target should be a single protein, for which a high-resolution X-ray structure is available on the PDB. Moreover, the target should have been crystallized at least once, with a ligand exhibiting a phenotype (e.g. inhibitor, full agonist, neutral antagonist) identical to that of active compounds in the corresponding bioassay.

(3) PubChem target sets should be suitable for both ligand-based and structure-based virtual screening. The performance of three orthogonal methods (2D fingerprint similarity searches, 3D shape similarity searches, molecular docking) was evaluated to select only the target sets for which at least one of these three methods achieves an EF1% value ≥ 2.0, or in other words, performs at least twice better than random picking (EF1% = 1.0).

(4) The finally selected target sets should be as unbiased as possible, when it comes to comparing true actives to true inactives in chemical space, and when the data are split into training and validation sets.

To this end, we designed a computational workflow (Figure 1) that will be presented and discussed, step-by-step in the following sections.

TRAN NGUYEN Viet Khoa -Ph.D. thesis 145 Health (NIH). The PubChem BioAssay resource 22 was queried to retrieve 149 assays according to multiple queries (see "Computational methods"). To ascertain that the data set will be further suitable for both ligand-based and structure-based virtual screening, we checked that each single protein target not only had a representative structure on the PDB, but was also co-crystallized with a ligand sharing the same phenotype or function with the true actives. This sanity check enables the selection of the right activation state (e.g. for G-protein coupled receptors) and the right binding site for docking. Of course, we cannot ensure at this step that all true actives share the same binding site with all PDB ligand templates. However, it serves as the first filter to avoid comparing ligands with known opposite or different functions. To control the bioactivity of each compound, only confirmatory dose-response screening assays were kept. A total of 21 assays (Table 1) performed on isolated enzymes (n = 6), soluble protein-protein interactions (n = 4) and target-expressing cells (n = 11); using four different readouts (fluorescence intensity, fluorescence polarization, luminescence, alpha screen) were finally saved. Except for five screens in which only 10,000 compounds were tested, most assays were run on a large number of compounds (from 200,000 to 400,000). Importantly, each assay was analyzed in detail, notably regarding the activity threshold qualifying a compound as active, which is target-dependent and was not further modified in this study. Compounds whose activity outcome was deemed as "inconclusive" were removed from the final ligand sets, only ligands confirmed as either actives or inactives were retained.

Corresponding targets are single proteins representing 11 families of pharmaceutical interest, including nuclear hormone receptors (n = 5), protein kinases (n = 3), and G protein-coupled receptors (n = 3). Most target sets describe compounds tested for an inhibitory activity against a protein target (13 target sets). Overall, 162 structures of protein-ligand complexes in PDB format were chosen as templates for the 21 target sets (Table 1). More information on each selected PubChem bioactivity assay (brief assay description, readout, format, PDB templates) can be found in Table S1. 

HTS Data Cleaning

All active and inactive compounds were next submitted to a series of filters (see "Computational methods") aimed at removing inorganic compounds (step 1), frequent hitters and assay artifacts (step 2), 7 compounds exhibiting molecular properties outside pre-defined ranges (step 3), and molecules for which either 2D-to-3D conversion or ionization at pH 7.4 failed (step 4). It can be observed that nearly 60% of true active substances were removed during the filtering steps (see Table S2, S3 for exhaustive statistics), with step 2a eliminating the most true actives (Figure 2).

This step is aimed at ruling out actives that exhibit very strong binding cooperativity and have multiple binding sites. 47 True inactive substances, on the other hand, were not subjected to the three filtering steps 2a, 2b and 2c, thus lost much fewer members than the true actives, with over 90% of substances still remaining in the end. actives tend to be much more potent (potency at the sub-micromolar level in most cases) and consequently easier to be picked, thereby overestimating the real benefit of virtual screening methods. At the individual target set level, the same trend applies when comparing the potency of LIT-PCBA and ChEMBL ligands for 19 common target sets (Figure S1). Importantly, we believe that the enhanced difficulty proposed by our data collection may enable a better discrimination of in silico screening methods.

Virtual Screening and Performance Assessments

The suitability of the 21 fully processed target sets for virtual screening was next assessed by three standard methods: 2D fingerprint similarity searches, 3D shape similarity searches, and molecular docking. The aim of the computational experiments was not to compare the virtual screening accuracy degrees of all methods but to check which of the 21 target sets may be unsuitable for in silico screening purposes. Hence, there is no guaranty that PubChem and PDB template ligands are strictly comparable (e.g. sharing the same binding site and molecular mechanism of action). Ligand-based screening will rapidly assess whether obvious bias is present in the ligand sets in terms of either 2D or 3D topologies. In addition, docking will ascertain if PubChem ligands share binding sites and interaction patterns with PDB templates. In each screen, all available PDB ligand/target templates were iteratively used as references, thereby generating as many hit lists as the available 162 templates. This exhaustive approach, albeit cumbersome, enables the selection of all references and takes into account the known chemical diversity of target-bound ligands (ligand-based virtual screening) or the known conformational space accessible to the target of interest (docking). In addition, a target-based "max-pooling" approach was followed by merging all screening data related to any LIT-PCBA ligand, whatever the corresponding template, and retaining the highest value (2D similarity, 3D similarity, docking score) per ligand. Statistical analyses of the data were primarily focused on enrichment factors in true actives at a constant 1% false positive rate (EF1%, Figure 4) as such values mirror the expectation of prospective virtual screening practices. Besides, areas under the ROC and BEDROC curves have also been calculated and are given in Tables S4-S6. shows that the EF1% values may vary quite significantly according to the chosen template. In many instances, enrichment close to or even poorer than that obtained by random picking (EF1% = 1.0) is observed (Figure 4). We considered as acceptable any virtual screening protocol yielding an EF1% value ≥ 2, or in other words, at least twice better than random picking. At this threshold, ligand-based methods clearly outperformed docking (Figure 4). Interestingly, only 10% of all in silico screening assays led to enrichment higher than 10. This result highlights the particular challenge of screening the current data set that we attribute to two main reasons: (i) the apparent absence of obvious bias in the distribution of PubChem actives in chemical space, and

(ii) the potency distribution of PubChem actives not centered on sub-micromolar values.

Final Target Set Selection and Unbiasing

In order to facilitate the analysis, we will from now on discuss the results obtained by fusing, for each virtual screening method, all data across all available target-specific templates ("maxpooling" approach). This strategy was supported by two main reasons: (i) the fused approach provides enrichment values usually close to that obtained with the best possible template (Figure 4), and (ii) it enables the definition of a single hit list for each screening run while considering all templates. 15 out of the initial 21 target sets can be considered suitable (EF1% ≥ 2.0) for at least one of the three methods (Figure 5).

TRAN NGUYEN Viet Khoa -Ph.D. thesis 154 cases (GBA, OPRK1, PKM2, ESR1-ago), two methods succeeded. Last, only one method was able to perform correctly for 9 sets (ALDH, IDH1, VDR, MTORC1, MAPK1, ESR1-ant, TP53, FEN1, KAT2A; Figure 5). This result is in agreement with many previous studies [48][49][50] suggesting that in silico screening methodologies are orthogonal, and is reassuring as it highlights the absence of obvious bias in both 2D molecular graphs and 3D shapes of LIT-PCBA compounds. It can therefore be implied that the remaining true actives (besides the ADRB2 and PPARG sets) do not resemble their corresponding PDB template ligands in both 2D and 3D shapes; meaning similarities between them, if there were any, did not significantly contribute to improving virtual screening performance, notably in early enrichment of true actives.

For each of the remaining 15 target sets, we ensured that the chemical diversity of PDB template ligands was not biasing our analysis. A first comparison of the number of Bemis-Murcko frameworks 51 to the total number of templates indicates that a wide variety of chemotypes are indeed available among the chosen PDB template ligands (Table S7). A self-similarity plot of templates (Tanimoto coefficient on MDL public keys) confirms this observation and shows, for most of the target sets (MTORC1 being an exception), a large chemical diversity (Figure S2). 40 No analysis is provided for three target sets (FEN1, OPRK1, VDR) for which a single PDB template ligand is available.

Take-home Messages

As explained in Chapter 1, LIT-PCBA marks the latest milestone in the quest to construct realistic benchmarking data sets for validating virtual screening methods entirely from experimental data. This data collection offers a pool of chemically unbiased ligands whose activity has been tested on a wide range of protein targets of pharmaceutical interest, presenting hit rates lower than those observed in most artificially constructed data sets and generally close to those of real-life high-throughput screening decks. Four subsets of ligands for each target were rationally designed, using a recently published method, to offer unbiased materials ready for evaluating both ligand-based and structure-based screening approaches, especially those relying on machine learning. Despite the existence of some limitations, e.g. the moderately high hit rates for several target sets or the relatively low number of remaining true actives in a few cases, the LIT-PCBA data collection does not suffer from serious drawbacks inherent in other benchmarking databases. More efforts in building novel data sets are recommended, with inspiration taken from the design of LIT-PCBA portrayed in this chapter and the good practices proposed in Chapter 1, in hopes of offering better evaluation tools for in silico screening methodologies.

Introduction

The scoring problem in molecular docking has been the subject of various studies aiming to select the correct pose (that matches experimentally determined output) for a ligand, and to ameliorate the screening utility as well as the scoring accuracy of a docker, i.e., to improve its ability to rank bioactive ligands above inactive ones in the hit list according to the calculated binding affinity. [1][2][3][4][5] Many approaches were designed to address this problem, defining a function composed of physical/chemical terms inherent in the process of protein-ligand binding, on the basis of existing complexes with known affinities and 3D structures. 3,[5][6][7][8][9][10][11][12][13][14][15][16] The energy-based scoring functions employed in several popular docking programs such as Surflex-Dock 6 or FlexX 11,17 rely on the empirical Bohm approach 2 that takes into account hydrophobic contacts and polar interactions that are formed between the involved molecules, along with the costs of entropic fixation due to torsional, translational and rotational freedom losses as the ligand and the protein are bound to each other. 6 However, concerns have long been raised over the accuracy of such empirical methods to estimate the binding affinity of a small molecule with its macromolecular target, and the reliability of using data obtained from them for in silico screening purposes. 3,[18][19][20] Several alternatives to these scoring functions were developed, with the aim of rescoring the ensemble of poses generated by docking programs so that active molecules can be better ranked than inactive ligands, leading to an improvement in early enrichment of true actives. Among them are the two rescoring methods based on comparing ligand-protein interactions observed in a reference (e.g., a crystallographic structure found on the Protein Data Bank 21 ) and those of a molecule's docking pose as issued by a docker. 22,23 The first method (IFP) relies on the similarity of protein-ligand interactions between a docking pose and any given template (e.g., the X-ray structure of the cognate protein with a known active molecule). 22 In the first step, an interaction fingerprint for each docked ligand is generated as a fixed-length bitstring that registers the presence or the absence of non-covalent interactions between a set of user-defined protein residues (along with cofactors, ions and water molecules) and the ligand. Interaction fingerprints of the screened molecules are then compared to that of the template and are sorted by decreasing similarity as expressed by the Tanimoto coefficient.

The second method (GRIM) computes a graph whose nodes are interaction pseudoatoms which are placed on the ligand interacting atom, the protein interacting atom, and the barycenter of any TRAN NGUYEN Viet Khoa -Ph.D. thesis 176

given protein-ligand interaction. 23 A clique detection algorithm is used to find the maximal common subgraph between the graph generated from the docking pose and that from the template. 23 In comparison to interaction fingerprints, interaction pattern graphs are not restricted to a fixed list of binding site atoms such that pairwise comparisons are also possible for binding cavities of different sizes.

The two aforementioned methods have been proven effective in predicting the binding modes of various ligands before the release of experimental crystallographic structures in international docking competitions, and in screening large pools of chemically diverse molecules, giving even better performances than popular docking algorithms. [22][23][24][25] In this final chapter, these two methods are applied to the 15 target sets of the LIT-PCBA data collection, on which the energybased scoring function of Surflex-Dock only managed to give comparable performances to random selection, 26 in order to assess the discriminatory power of such methods when a challenging set of different ligands from various biological targets is employed, allowing a comparison between their accuracy levels and that of Surflex-Dock.

Computational Methods

Rescoring LIT-PCBA Docking Poses by Protein-Ligand Interaction Fingerprint (IFP) Similarity

The IFP module 22 of the IChem package 27 was employed to compute the similarity between the IFP recorded for each docked ligand from LIT-PCBA and that of the corresponding reference ligand, expressed by a Tanimoto coefficient (Tc) as the final output. The mol2 structures of the binding site and the reference (already prepared during the LIT-PCBA data set construction), along with the multi-mol2 files containing the docking poses issued by Surflex-Dock were used as input. The binding site refers to amino acid residues (plus water molecules, ions and cofactors) of the protein having at least one heavy atom within 5.0 Å from any heavy atom of the co-crystallized ligand (preparation was done with Sybyl-X 2.1.1 28 ). All docking poses were rescored and the pose with the highest Tc value was retained for each LIT-PCBA ligand, giving template-specific hit lists in which all ligands were sorted by decreasing Tc scores. The areas under the ROC (receiver operating characteristic) 29 and BEDROC (Boltzmann-enhanced discrimination of ROC) 30 curves (ROC AUC, BEDROC AUC, α = 20) along with the enrichment in true active molecules at a constant 1% false positive rate over random picking (EF1%) were calculated for each separate hit list. The same procedure was carried out by fusing all lists and keeping the maximal Tc value for each compound ("max-pooling" approach).

Rescoring LIT-PCBA Docking Poses by Interaction Graph-Matching (GRIM)

The GRIM module 23 of the IChem package 27 was employed to post-process the docking results obtained from Surflex-Dock. All docking poses in multi-mol2 file format were matched to the crystallographic reference ligand pose (in mol2) for rescoring based upon the similarity scores (GrScore) of interaction pattern graphs with the corresponding binding site (in mol2). The best matching pose was selected for every ligand according to the GRIM score, 23 and all molecules of each target set were sorted based on this same value in descending order. ROC AUC, BEDROC AUC and EF1% values were calculated as described above.

Results and Discussion

Virtual screening results on 15 ligand sets of the LIT-PCBA data collection, 26 S1), GRIM (Table S2), and Surflex-Dock, 26 respectively. When the "max-pooling" approach was applied, at least one of these interaction rescoring methods performed better than energy-based scoring across the whole data collection. Notably, both GRIM and IFP outperformed Surflex-Dock in nearly three quarters of the cases (including the "easy" sets ADRB2 and GBA, on which Surflex-Dock gave significantly better performances than random selection; 26 and several "challenging" sets where the Surflex-Dock scoring function failed, e.g. ALDH1, ESR1-ago, or PKM2). This reconfirms the conclusions drawn in earlier publications, which highlight the necessity of post-processing docking poses issued by docking programs and the benefit of using scoring functions based on ligand-protein interaction comparisons (rather than energy-based empirical docking scores, e.g. pK d values given by Surflex-Dock) for virtual screening. [22][23][24][25] Figure 1. Retrospective virtual screening results on 15 target sets of the LIT-PCBA data collection using the native Surflex-Dock scoring function (SD), protein-ligand interaction fingerprint rescoring (IFP), and interaction graph-matching rescoring (GRIM). Scores were obtained from the same set of docking poses generated by the Surflex-Dock docking engine.

The differences in screening performances given by Surflex-Dock, IFP and GRIM can be further analyzed by examining each target set. An example can be taken from the ESR1-ago set, gathering 5596 substances tested for an agonistic activity on the estrogen receptor alpha (ERalpha) signaling pathway. Among them, 13 have been confirmed as active, the other 5583 molecules were deemed inactive. A total of 15 protein-ligand complex structures were selected from the Protein Data Bank 21 and used as templates. The scoring function of Surflex-Dock failed to retrieve any active compound along with the top 1% false positives (EF1% = 0.00 across all 15 templates), while IFP managed to select one true active for six templates, and GRIM successfully retrieved one active for five templates and two actives for one template (Table S3).

Interestingly, the active substance ID 144206564 (Figure 2) was repeatedly selected by the two interaction-comparing scoring functions (in 75% of the cases, Table S3). This denotes the agreement of these methods in choosing active molecules among a pool of chemically diverse ligands in the data set. Moreover, this true active shares several key chemical features with the co-crystallized template ligands (Figure 2), including the presence of two hydroxyl groups linked to a series of aromatic rings, facilitating three hydrogen bonds with the residues Glu353, Arg394 and His524 of the binding pocket that can also be seen in the PDB template structures (Figure 3). While the pK d scores issued by Surflex-Dock constantly failed to select this molecule, IFP and GRIM rescoring managed to recognize this compound among the top rankers multiple times, thanks to the advantage of comparing ligand-protein interactions in in silico screening. This, again, supports the use of this strategy rather than the energy-based empirical scoring functions of popular docking programs in identifying potential hits on the basis of known ligand structures. However, the above observations on the chemical similarities between this IFP-/GRIM-retrieved active molecule and the PDB template ligands do not imply that the screening performance of these two interaction-comparing scoring functions depends on how similar the true actives are to the references; as the Tanimoto values obtained from 2D ECFP4 fingerprint similarity searches are not correlated to those received from IFP comparisons, and also to the computed GRIM scores (R 2 < 0.1000 across all 15 templates of the ESR1-ago target set, Figure S1). This suggests that the similarity level of protein-ligand interaction fingerprints and of interaction pattern graphs is independent of the chemical similarity of the compared molecules. bonds with the site residues are observed from both poses, including one bond with His524, one bond with Glu353, and another bond with Arg394, all involving the hydroxyl groups in the structures of both ligands (the bond acceptors and bond donors are also identical). Moreover, all hydrophobic interactions recorded in the PDB template are preserved in the IFP-selected pose, e.g. the interaction between Met421 and an aromatic ring of the ligands. This figure was prepared with MOE 2018.01. 31 The ligands (SID 144206564 and DC8) are portrayed as sticks, while the involved protein residues are portrayed as lines and labeled.
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It is observed that the pK d docking scores issued by Surflex-Dock did not manage to select the pose with the closest interaction patterns with the binding site to those of the references in most cases (nearly 90%). In rare instances where docking selected the same pose as the ligand-protein interaction-comparing algorithms, the empirical pK d values still failed to rank active molecules above inactive ones in the hit list. An example of this can be taken from the three inactive substances IDs 144203677, 144203979 and 144204501 (Figure 4) included in the ESR1-ago set of LIT-PCBA. Both IFP and Surflex-Dock chose the same best pose for each of these three molecules when the PDB template ID 2Q70 was employed. However, while the native energybased scoring function ranked all these inactives above the confirmed hit SID 144206564, IFP rescoring successfully assigned a higher rank to this true active. An analysis of ligand-protein interactions observed from the aforementioned molecules is provided in Table 1. Based on the above analyses, it is clear that the true active SID 144206564 gave the most similar interaction patterns with the binding site to those observed in the PDB template 2Q70. The IFP rescoring, upon comparing interaction fingerprints of the PubChem molecules with those of the reference (Table S4), managed not only to select the right pose for the true active, but also to rank this confirmed hit above the three inactives (SIDs 144203677, 144203979 and 144204501) in the hit list, thus recognizing it among the top rankers, while Surflex-Dock gave this true active the lowest (and poorest) pK d docking score. The observations detailed herein reconfirm that the energy-based empirical scoring functions employed by docking programs (e.g. Surflex-Dock) are not as effective as those relying on comparisons of ligand-protein interactions in selecting potential hits for a protein target among chemically diverse ligands.

On a side note, while IFP and GRIM outperformed Surflex-Dock on the 15 target sets of LIT-PCBA, their performances on this data collection are still poorer than those obtained from other databases, including DUD-E. 22,23 This once again highlights the particular challenge brought by our newly introduced data set, thanks to the absence of both obvious and hidden bias in its design, which indeed prevents an overestimation of virtual screening performances. and of interaction pattern graphs (GRIM). This highlights the importance of post-processing the docking poses output by docking programs, notably by the approaches relying on comparing the interaction modes inside the binding pocket of these poses with those of a high-quality reference in in silico screening. S4. The interaction fingerprints issued by IFP (IChem) of the true active SID 144206564 and the three true inactive SIDs 144203677, 144203979 and 144204501 included in the ESR1-ago target set of LIT-PCBA, using the PDB entry 2Q70 as template (co-crystallized ligand HET code: DC8). The bold red digits in the bit strings mark the differences between the IFP of the LIT-PCBA ligands and those of the reference. It can clearly be seen that the active SID 144206564 gave the most similar IFP to those of DC8, with only one difference; while the IFP observed in all three inactive molecules differed significantly from those of the PDB entry. Thanks to these comparisons, IFP managed to rank the true active higher than the true inactives in the hit list, thus recognizing it among the top rankers, while the energy-based empirical scoring function of Surflex-Dock failed to do so. The readers are addressed to the Table 1 of this chapter for detailed analyses. Overall, the original work portrayed in this doctoral thesis addressed the issues explained in the Introduction section, offering novel solutions that may come in useful for future in silico screening-related research. More specifically:  A novel small molecule-aligning procedure based on pharmacophoric points derived from the residues constituting a potentially "druggable" cavity of any given protein target was developed. This method was proven more effective than Surflex-Dock, LigandScout and Discovery Studio in predicting the exact binding poses of various ligands inside their binding pockets, and was deemed comparable in discriminatory power to several state-ofthe-art virtual screening programs in retrieving true active molecules, and recognizing their scaffolds, among different pools of chemically diverse ligands. Moreover, this method is applicable to apoprotein structures, denoting its high utility even in the absence of a co-crystallized ligand. The method is expected to contribute to virtual screening campaigns in the future, with a view to improving the overall hit rates obtained by using it in parallel with other in silico screening methods.

Conclusion

 A new unbiased benchmarking data set named LIT-PCBA based on experimentally confirmed data deposited on PubChem BioAssay was developed. Many disadvantages inherent in other data collections, especially the artificially constructed DUD, DUD-E, or DEKOIS, have been avoided or alleviated, to a certain extent, during the design of this data set, as evidenced by post-design evaluation results using various virtual screening procedures. LIT-PCBA is expected to become a new generation of realistic data sets that mimic those employed in real-life high-throughput screening campaigns, offering better validation tools for novel in silico screening approaches, both ligand-based and structurebased, especially those relying on machine learning.

Apart from the two main points indicated above, this Ph.D. thesis also provides a comprehensive review of data sets built upon PubChem BioAssay data, analyzes the note-worthy issues that must be addressed when it comes to constructing novel data collections, and proposes a set of good practices that should be followed in order to avoid the aforementioned problems and ensure the quality of data set design. Besides, a part of this dissertation serves to reconfirm the advantages of using ligand-protein interaction-comparing methods, e.g. those relying on interaction fingerprints and interaction pattern graphs, rather than the energy-based empirical

Overall Conclusions

TRAN NGUYEN Viet Khoa -Ph.D. thesis 193 scoring functions of popular docking programs, in virtual screening exercises; as such methods were deemed more effective in retrieving true hits for a protein target, even when applied to a challenging data collection like LIT-PCBA.

Further improvements may be brought to the output of the work portrayed in this thesis; for example, by modifying the ligand-aligning script to allow a faster calculation on multiple cores, thus enabling the screening of a larger set of molecules while reducing the amount of time required to finish the jobs; or by applying more filtering rules on the LIT-PCBA ligands (e.g., to limit the quantity of highly potent molecules so that their population does not exceed 10% of the active data size), in order to further reduce the hit rates of several target sets, especially those at 2-5%. Morever, other virtual screening methods, notably deep neural networks, are expected to be applied to LIT-PCBA, in hopes of delineating the true benefit of machine learning approaches in "real-life" structure-based design scenarios. Inspiration can also be taken from the points raised in the review article featured in Chapter 1, even other good practices are encouraged to be added, to give a more complete and effective guideline for developing novel realistic data sets adapted to in silico screening evaluation purposes in the future.

Viet Khoa TRAN NGUYEN DEVELOPPEMENT DE JEUX DE DONNEES NON BIAISES ET DE NOUVELLES METHODES DE CRIBLAGE VIRTUEL

Résumé en français

Les éléments pharmacophoriques issus d'IChem qui représentent le site actif d'une protéine (même sans ligand co-cristallisé) sont simples et assez précis pour faire du criblage virtuel. La nouvelle procédure proposée dans ce travail s'avère aussi efficiente que des méthodes computationnelles existantes dans l'identification des composés actifs et leurs chémotypes originaux, et peut donc être utilisée en parallèle avec d'autres méthodes de criblage in silico afin d'améliorer la performance globale du criblage. On présente également la nouvelle base de données LIT-PCBA, se composant de 15 protéines cibles, chacune avec les vrais actifs et les vrais inactifs déjà confirmés par les essais biologiques issus de "PubChem BioAssay". Ces jeux de données, préparés par une procédure rigoureuse de plusieurs étapes, sont moins biaisés, en matière de structure des ligands et de composition des sets de molécules, que ceux qui existent déjà (DUD, DUD-E, etc.), et sont donc plus difficiles. LIT-PCBA est prête à l'emploi pour des études comparatives de nouvelles méthodes de criblage virtuel, notamment celles basées sur l'intelligence artificielle.

Mots-clés : pharmacophore, site actif, in silico, criblage virtuel, alignement, jeux de données, PubChem BioAssay, biais.

Résumé en anglais

The pharmacophoric points issued by IChem that represent the active site of any given protein target (even without co-crystallized ligands) are simple and accurate enough to be employed for virtual screening. The novel ligand-aligning procedure proposed herein has been proven as effective as existing computational methods in identifying active compounds among a pool of chemically diverse molecules, and can be used in parallel with other in silico methods in hopes of improving the overall screening performance. Also presented in this work is the novel data collection entitled LIT-PCBA, comprising 15 target sets built upon experimentally confirmed data deposited on PubChem BioAssay. Undergoing a rigorous procedure involving multiple preparation steps, this data set is much less biased, in terms of chemical composition, than the artificially constructed DUD, DUD-E, or DEKOIS, and does not suffer from many drawbacks inherent in other databases. LIT-PCBA therefore imposes a more difficult challenge on virtual screening methods, and is now ready for benchmarking studies of novel in silico screening procedures, notably those relying on machine learning.

Keywords: pharmacophore, active site, in silico, virtual screening, alignment, data set, PubChem BioAssay, bias.

  liaison des touches potentielles. Il nécessite donc de concevoir une nouvelle approche computationnelle qui peut être appliquée aux apo-protéines. En 2012, les chercheurs du Laboratoire d'Innovation Thérapeutique (Université de Strasbourg) sont arrivés à mettre en oeuvre une nouvelle méthode in silico qui a déjà été intégrée au logiciel IChem [1,2]. Il s'agit de la génération des pharmacophores déduits des poches de liaison potentielles à la surface d'une protéine cible. La méthode nous permet de détecter automatiquement toutes les cavités à la surface d'une protéine donnée, puis prédire la droguabilité de chaque cavité, et créer un pharmacophore pour chaque site considéré comme potentiellement droguable. Une vingtaine d'éléments pharmacophoriques "structure-based" qui réprésentent chaque cavité qu'on étudie sont retenus. A ce stade, il nous reste à élaborer une stratégie d'utilisation de ces pharmacophores pour faire du criblage virtuel de chimiothèques, afin de sélectionner de manière rationnelle les touches potentielles pour une protéine d'intérêt pharmaceutique, même à défaut de ligand co-cristallisé. Lorsqu'une nouvelle méthode de criblage in silico est développée, il faut évaluer la performance de cette méthode pour voir si elle arrive à choisir les vraies touches d'une TRAN NGUYEN Viet Khoa -Ph.D. thesis 9

  85 complexes, chacun est une structure d'une protéine avec un ligand co-cristallisé en 3D [7]. Une totalité de 17.555 conformères ont été créés pour toutes les entrées. Les conformères ont été ensuite alignés sur les éléments pharmacophoriques générés par le programme VolSite, puis scorés par le programme Shaper2 développé au laboratoire ; les poses ayant été préalablement optimisées en présence de la protéine avec SZYBKI 1.8.0.1 [8]. Une seule pose a été retenue pour chaque ligand, selon quelques critères. Il est observé que si l'on sélectionne la pose avec la meilleure énergie d'interaction ligand-protéine MMFF94 ou celle avec la Thesis Summary in French TRAN NGUYEN Viet Khoa -Ph.D. thesis 10 meilleure énergie totale MMFF94 pour chaque ligand, les valeurs moyennes d'écart quadratique moyen RMSD ("root-mean-square deviation") à la pose cristallographique sont les meilleures: 2,221 Å et 2,232 Å, respectivement, indiquant une très bonne performance qui est même meilleure que celle qu'on a eue auparavant avec le docking moléculaire en utilisant Surflex-Dock (RMSD = 2,575 Å) [9]. Le nombre des entrées qui ont donné une RMSD < 1 Å avec notre méthode est plus élevé que celui obtenu avec le docking [9] (Figure 1). Il est clair donc que les deux critères ci-dessus sont les meilleurs pour la sélection de pose. On a également comparé la performance de notre méthode avec celles de LigandScout et de Discovery Studio, en utilisant toujours les mêmes éléments pharmacophoriques issus d'IChem comme input. Les deux programmes ne sont pas arrivés à positionner correctement les ligands dans quasiment 90% des cas étudiés (RMSD > 4 Å). En tenant compte du fait que notre méthode d'alignement marche très bien avec les mêmes pharmacophores, il est certain que ce sont les méthodes d'alignement de LigandScout et de Discovery Studio qui échouent, et que la qualité de nos pharmacophores "structure-based" n'est pas coupable de cet échec.

Figure 1 .

 1 Figure 1. Performance de différentes méthodes de criblage virtuel dans la prédiction de

kinase 2 )

 2 , ESR1 (antagonistes du récepteur alpha des oestrogènes), et OPRK1 (agonistes des récepteurs opioïdes kappa) ont été choisis. Les résultats qu'on a obtenus montrent que les nombres des vrais actifs récupérés parmi les 5% des composés les mieux classés par notre méthode (alignement de molécules sur les pharmacophores par Shaper2, sélection de pose par l'énergie totale MMFF94, classement de composés par l'énergie PLP), dans la plupart des cas, sont égaux ou supérieurs à ceux obtenus par le docking moléculaire avec Surflex-Dock, et par la recherche par similarité géométrique en 3D avec ROCS. Notre méthode est également arrivée à récupérer le plus de "chémotypes/scaffolds" des vrais actifs par rapport aux deux autres méthodes pour les deux entrées ESR1 et OPRK1 (Figure 2). Il est clair donc que notre approche est aussi efficiente que d'autres méthodes computationnelles Thesis Summary in French TRAN NGUYEN Viet Khoa -Ph.D. thesis 13 dans des challenges de criblage virtuel et tend à récupérer plus de chémotypes originaux des composés actifs.

Figure 2 .

 2 Figure 2. Performance des trois méthodes de criblage virtuel (ROCS, Surflex-Dock,

 Etape 3 :

 3 Filtre de propriétés moléculaires : une substance est retenue seulement si sa masse moléculaire est entre 150 et 800 Da, si son ALogP est entre -3 et +5, s'il possède moins de 15 liaisons à rotation libre, 10 accepteurs/donneurs de liaisons d'hydrogène, et si sa charge formelle est entre -2 et +2. Toutes les substances ont passé cette étape.  Etape 4 : Conversion en 3D et ionisation : les structures en 2D des substances restant ont été converties en 3D avec Corina, et ensuite ionisées à pH physiologique avec Filter (OpenEye). Toutes les substances ont passé cette étape.

Figure 3 .

 3 Figure 3. Les nombres de vrais actifs et de vrais inactifs de PubChem, sélectionnés

Figure 4 .

 4 Figure 4. "Heat map" illustrant la performance des trois méthodes de criblage in silico :

Figure 2 .

 2 Figure 2. Partition of compounds tested in PubChem bioactivity assays according to four criteria of the Lipinski's rule of five. It is observed that most compounds (over 70%) satisfy all criteria.Nearly 85% of deposited compounds violate no more than one criterion. On the other hand, only 0.1% of all compounds (over 130,000) do not satisfy any criterion. Statistics were updated as ofApril 30, 2020. 

Figure 4 .

 4 Figure 4. Total number of active substances that remained after each filtering step was applied to PubChem BioAssay ligands during the construction of the LIT-PCBA data set:22 Step 1inorganic molecules; Step 2aactives with Hill slopes < 0.5 or > 2; Step 2bactives with frequency of hits > 0.26; Step 2cactives found among 10,892 confirmed aggregators, luciferase inhibitors or auto-fluorescent molecules; Step 3substances with extreme molecular properties; Step 4 -3D conversion and ionization failures. It can be observed that the sole step 2a removed the most active molecules (over 50% of them), thus significantly reducing the population of true actives in comparison to that of true inactives.

Figure 5 .

 5 Figure 5. Number of substances falling into each scaffold cluster that includes more than 10 true active molecules (A) or 600 true inactive molecules (B). Bemis-Murcko frameworks derived from the input molecules were first created by trimming each active and each inactive separately with Pipeline Pilot 19.1.0.1964.[START_REF] Bemis | The Properties of Known Drugs. 1. Molecular Frameworks[END_REF][START_REF]Biovia Corp[END_REF] A hierarchical scaffold tree consisting of canonical SMILES strings that represent the rings, linkers and double bonds in each molecule was next generated according to an iterative ring-trimming procedure described bySchuffenhauer et al. (2007).[START_REF] Schuffenhauer | The Scaffold Tree, Visualization of the Scaffold Universe by Hierarchical Scaffold Classification[END_REF] All ligands were then clustered based on the smallest scaffold at the root of the scaffold tree for each ligand. The number that follows each hash symbol indicated in this figure refers to the ordinal number of a scaffold cluster as issued by Pipeline Pilot. Details of all clusters can be found in Supporting Information.

Figure 6 .

 6 Figure 6. The number of highly potent true actives (EC 50 < 1 µM) retrieved among the top 1%ranked molecules by 2D ECFP4 fingerprint similarity searches from the full PubChem BioAssay data and the corresponding LIT-PCBA PPARG ligand set after ligand-filtering. Ten known crystallographic PPARg agonists were randomly chosen as templates from 138 available structures on the Protein Data Bank.

  [101][102][103][104] Kellenberger et al. (2004),103 Perola and Charifson (2004),104 and Cummings et al. (2007) 101 pointed out that the initial conformation and orientation in 3D space of a molecule, which are determined based on details featured in the original SMILES string, may significantly affect the final enrichment output by a docking program. Performance of structure-based screening methods whose scoring functions rely on ligand-receptor interactions 105,106 may be sensitive to a change in explicit hydrogen assignment or protonation states, as the positions of hydrogen-bonding groups and protoncarrying atoms are crucial to properly detecting intermolecular hydrogen bonds and ionic interactions, respectively. 101,107 While a generation of correct multiple conformers for a molecule

  Shaper2 is described, aligning small ligands to the aforementioned cavity-derived pharmacophoric features with the use of a smooth Gaussian function. The selection and validation process of scoring parameters to screen the previously aligned ligands is next reported, with the aim of selecting as many active molecules as possible among the top-ranked compounds. The work portrayed in this chapter has been published as an original research paper in the Journal of Chemical Information and Modeling, and was presented at various conferences, both as a poster presentation and as an oral presentation. Tran-Nguyen, V. K.; Da Silva, F.; Bret, G.; Rognan, D. All in One: Cavity Detection, Druggability Estimate, Cavity-Based Pharmacophore Perception, and Virtual Screening. J. Chem. Inf. Model. 2019, 59, 573-585. doi: 10.1021/acs.jcim.8b00684.

  toolkit to perform the following operations: (i) on-the-fly detection of all cavities at the surface of a target of interest, (ii) prediction of their structural druggability, and (iii) perception of potential TRAN NGUYEN Viet Khoa -Ph.D. thesis 93

and representing 5

 5 important target families (G protein-coupled receptors, nuclear receptors, protein TRAN NGUYEN Viet Khoa -Ph.D. thesis94 kinases, proteases, other enzymes) were retrieved from the DUD-E database39 and further processed similarly to the Astex Diverse Set.ROCK2 screening set: 59,805 compounds tested for Rho kinase 2 (ROCK2) inhibitory activities were downloaded from the PubChem BioAssay repository in 2D sd file format. Primary screening data (% of inhibition at a single concentration of 6 µM, AID 604)40 for all compounds and confirmatory potency values for primary hits (IC 50 s from the dose-response assay ID 644)41 were collected directly from PubChem. Compounds with IC 50 values equal to or lower than 10 µM (n = 67) were considered active, all other compounds were considered inactive. The X-ray structure of human ROCK2 kinase in complex with an inhibitor (1426382-07-1) was retrieved from the PDB (PDB ID 4WOT) and further processed similarly to the Astex Diverse Set. The starting 3D coordinates of PubChem ligands (mol2 file format) were generated with Corina v.3.4[START_REF] Li | hERG classification model based on a combination of support vector machine method and GRIND descriptors[END_REF] and all compounds were ionized at physiological pH with Filter v.2.5.1.4.43 The fully processed data set comprises 59,781 compounds (67 actives and 59,714 inactives).ESR1 screening set: 10,486 compounds tested for estrogen receptor α (ESR1) antagonism were downloaded from PubChem BioAssay in 2D sd file format. Dose-response inhibitory concentrations for the confirmed hits (IC 50 values, AID 743080)44 were also collected from PubChem. Compounds with IC 50 values equal to or lower than 25 µM, exhibiting full inhibition curves and devoid of Sn and P atoms (n = 59) were kept as actives. To avoid bias in the inactive set, inactive compounds were selected among the molecules free of Sn and P atoms, with molecular weights falling in the same range (310-750 Da) as that observed for true actives. 1530 inactive compounds were finally selected. The X-ray structure of human estrogen receptor α in complex with the selective antagonist 4-hydroxytamoxifen was retrieved from the PDB (PDB ID 3ERT) and further processed similarly to the Astex Diverse Set. The starting 3D coordinates of PubChem ligands (mol2 file format) were generated with Corina v.3.4[START_REF] Li | hERG classification model based on a combination of support vector machine method and GRIND descriptors[END_REF] and all compounds were ionized at physiological pH with Filter v.2.5.1.4.43 The fully processed data set comprises 1589 compounds (59 actives and 1530 inactives).OPRK1 screening set: 284,220 compounds tested for kappa opioid receptor (OPRK1) agonism were downloaded from PubChem BioAssay in 2D sd file format. Dose-response activity data (EC 50 values, AID 1777)45 were also collected from PubChem. Compounds with EC 50 values equal to or lower than 20 µM (n = 35) were considered active. All other compounds were considered inactive, from which a randomly selected set of 34,048 compounds was retrieved.

Figure 1 .

 1 Figure 1. Overall flowchart of the method.(1) Starting from a hydrogens-containing protein input structure, cavities were automatically detected using standard VolSite parameters and described as a collection of pharmacophoric features (blue, cyan, red and green dots). (2) The cavities predicted as "druggable" (enclosed by a red circle) were submitted to a second structurebased pharmacophoric description step using a tighter grid resolution (1.0 Å). Pharmacophoric features (hydrophobic features: cyan; aromatic features: orange; hydrogen bond acceptors and negatively ionizable features: green; hydrogen bond donors and positively ionizable features: magenta) were assigned according to the pharmacophoric properties of the nearest acceptable protein atom (see "Computational methods"). (3) Pharmacophoric features were pruned according to knowledge-based rules (buriedness, distance to cavity center, PLP interaction energy). (4) Hierarchical clustering of pharmacophoric features was carried out. (5) Shape-based alignment of ligand atoms onto the cavity-based features (same color coding as in step 2) was done by optimizing the overlap of the corresponding molecular shapes.

Figure 2 .

 2 Figure 2. Properties of 4871 ideal pharmacophoric features generated from the sc-PDB Diverse Set (213 complexes). (A) Box-and-whisker plot of the distribution of pharmacophoric features' buriedness (Hyd: hydrophobic features; Aro: aromatic features; Don: H-bond donors; Pos: positively ionizable features; Acc: H-bond acceptors; Neg: negatively ionizable features; Met: metal-binding features) expressed by the number of 8-Å-long rays (out of 120 in total) originating from the feature center and the intersecting protein atoms. The boxes delimit the 25th and the 75th percentiles, the whiskers delimit the 5th and the 95th percentiles. The median and mean values are indicated by a horizontal line and an empty square in the box, respectively. The crosses delimit the 1st and the 99th percentiles. The minimum and maximum values are indicated by the dashes. (B) Distance of the feature (in Å) to the cavity center, expressed by the cumulative number of features. The cumulative distribution follows a Boltzmann sigmoidal function (R 2 = 0.999). (C) Box-and-whisker plot of the distribution of inter-feature PLP 46 interaction energy (Hyd: hydrophobic features; Aro: aromatic features; Don: H-bond donors; Pos: positively ionizable features; Acc: H-bond acceptors; Neg: negatively ionizable features; Met: metal-binding features) and their protein environment. The boxes delimit the 25th and the 75th percentiles, the whiskers delimit the 5th and the 95th percentiles. The median and mean values are indicated by a horizontal line and an empty square in the box, respectively. The crosses delimit the 1st and the 99th percentiles. The minimum and maximum values are indicated by the dashes.

Figure 3 .

 3 Figure 3. The five-step protocol to prune cavity-based pharmacophoric features in IChem. Features were defined from the IChem-detected ligand-binding sites of 213 entries of the sc-PDB Diverse Set. (A) The flowchart. (B) The decreasing number of pharmacophoric features that remained all along the protocol. (C) The percentage of ideal features recovery all along theprotocol. An ideal feature is deemed "recovered" if it is located closer than 2.0 Å from a predicted feature of the same type, generated for the same test set according to identical topological rules by matching pharmacophoric properties to protein-interacting ligand atoms.

  standard pharmacophore search methods (Discovery Studio, LigandScout), using the same set of IChem-derived features. Four scoring functions were evaluated to analyze Shaper2 matching poses to IChem pharmacophores. The first one (Tc) just computes the TanimotoCombo similarity (shape + color) between the aligned poses and the protein-bound ligand X-ray coordinates. The second one (PLP) computes the PLP interaction energy of the feature with its protein environment. The third and fourth ones (TotE, IntE) register the MMFF94 total interaction energy and MMFF94 protein-ligand interaction energy using a Poisson-Boltzmann treatment of desolvation effects.TRAN NGUYEN Viet Khoa -Ph.D. thesis 107Plotting, for each Astex Diverse Set entry, the root-mean square deviation (RMSD) of the best Surflex-Dock pose (heavy atoms only) to the true X-ray pose, defines the base line for applying a structure-based docking tool to this data set (Figure4).

Figure 4 .

 4 Figure 4. Performance of different methods in predicting the poses of 85 ligands from the Astex Diverse Set. Posing was done using docking (Surflex-Dock), ligand-based pharmacophore searches (Discovery Studio, LigandScout), and cavity-based pharmacophore searches (IChem). IChem alignment was scored by four different functions: TanimotoCombo similarity (Tc), PLP interaction energy (PLP), total MMFF94 energy (TotE), MMFF94 protein-ligand interaction energy (IntE). (A) Cumulative percentage of entries from the Astex set for which the top-ranked pose of the cognate ligand is within a certain RMSD to the X-ray pose. (B) Distribution of RMSD values to the X-ray pose. The boxes delimit the 25th and the 75th percentiles, the whiskers delimit the 5th and the 95th percentiles. The median and mean values are indicated by a horizontal line and an empty square in the box, respectively. The crosses delimit the 1st and the 99th percentiles. The minimum and maximum values are indicated by the dashes.

Figure 5 .

 5 Figure 5. Virtual screening performance of Surflex-Dock (white bars) and Shaper2 (gray bars) on 10 entries of the DUD-E set. 32 Shaper2 alignment to IChem cavity-based pharmacophores was scored by MMFF94 total energy, whereas DUD-E compounds were ranked by increasing PLP interaction energy. (A) Area under the BEDROC curve (α = 20). (B) Enrichment in true actives at a constant 1% false positive rate.

Figure 6 .

 6 Figure 6. Orthogonality of three virtual screening methods (ROCS, Surflex-Dock, Shaper2) in retrieving true actives among the top 5% ranking hits, from three PubChem BioAssay highthroughput screens (ROCK2 inhibitors, PubChem BioAssay AID 644; ESR1 antagonists, PubChem BioAssay AID 743080; OPRK1 agonists, PubChem BioAssay AID 1777). The numbers of true actives recovered by each method are displayed by Venn diagrams,[START_REF] Lagarde | the Manually Curated Nuclear Receptors Ligands and Structures Benchmarking Database[END_REF] highlighting molecules uniquely found by a single method or common to two or three hit lists. Each chemotype retrieved by a single method is highlighted by a star.
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  which systematically measures pairwise distance in chemical space between molecules belonging to four sets of compounds (training actives, training inactives, validation actives, validation inactives). Using circular ECFP4 fingerprints 43 as chemical descriptors and a training-to-validation ratio of 3, a maximal number of 300 iteration steps of the AVE genetic algorithm (GA) were run to select training and validation molecules while minimizing the overall bias B (B ∈ [0;1]) of the target set.

Figure 1 . 1 ) 2 ) 3 )

 1123 Figure 1. Workflow for LIT-PCBA data set construction. (1) Data retrieval from PubChem BioAssay according to user-defined filters (activity outcome: active; ≥ 10,000 tested substances; ≥ 50 active substances; substance type: chemical; screening stage: confirmatory, dose-response; target: single; target type: protein target). (2) Data cleaning: removal of inorganic compounds, false positives, frequent hitters, assay artifacts and compounds with extreme molecular properties. Selection of target sets having at least a representative target structure on the Protein Data Bank co-crystallized with a ligand of the same phenotype as that of the actives in the corresponding bioassay. (3) Virtual screening of the cleaned HTS target sets with three methods (2D similarity, 3D similarity, docking). (4) Performance assessments of the methods on all cleaned target sets (ROC, BEDROC, EF1%). (5) Selection of target sets for which at least one method achieves an EF1% value ≥ 2.0. AVE unbiasing 25 of the corresponding ligand sets and definition of training and validation sets for machine learning.

Figure 2 .

 2 Figure 2. Total number of actives and inactives remaining after each filtering step was applied to the 21 selected target sets from PubChem BioAssay. Step 1: inorganic molecules; Step 2a: compounds with Hill slope h < 0.5 or > 2; Step 2b: compounds with frequency of hits FoH > 0.26; Step 2c: assay artifacts interfering with the readouts (10,892 substances classified as aggregators or auto-fluorescent molecules or luciferase inhibitors); Step 3: compounds with extreme molecular properties; Step 4: 3D conversion and ionization failures. Steps 2a, 2b and 2c were not applied to true inactives.

Figure 3 .

 3 Figure 3. Properties of LIT-PCBA and standard data sets. (A) Confirmed hit rates for the LIT-PCBA data set (red bars), standard cheminformatics data sets (DUD, 6 DUD-E, 10 MUV; 7 blue bars), and a representative sample of 10 high-throughput screens from a major pharmaceutical company (green). 32 (B) Potency distribution of actives in the LIT-PCBA (red) and DUD-E (green) data sets. Potency is expressed as pIC 50 , pEC 50 , pK i or pK d .

Figure 4 .

 4 Figure 4. Performance of three different virtual screening methods (2D: ECFP4 similarity, 3D: 3D shape similarity, SD: molecular docking with Surflex-Dock) on 21 fully processed target sets. The graphs represent the distribution of EF1% values (enrichment in true actives at a constant 1% false positive rate over random picking) obtained after screening. The boxes delimit the 1 st and 3 rd quartiles, and the whiskers delimit the minimum and the maximum values. The median and the mean values are indicated by a green vertical line and a red dot located in each box, respectively. In cases where there is only one PDB template for a target set, or all templates gave the same EF1% value, the boxes are shrunk down into a single line. The purple crosses represent the EF1% values obtained by the "max-pooling" approach.

The 15 target

 15 sets were last unbiased by the AVE method25 to propose optimal training and validation sets for machine learning applications. In brief, a genetic algorithm (GA) is used to select four subsets of active and inactive compounds for training and validation sets, based on pairwise distances in chemical space (ECFP4 circular fingerprints) between the above-described four ligand subsets. The objective function of the GA (bias value) gears the splitting procedure to select training and validation sets for which distances in chemical space are homogenously distributed when training actives, validation actives, training inactives and validation inactives are compared. For 14 out of 15 target sets, just a few iterations (< 100) of the GA were necessary to unbias the corresponding target sets with low bias values (

Figure 1 .

 1 demonstrated by EF1% values, using IFP and GRIM rescoring on the docking poses issued by Surflex-Dock are portrayed in It can be observed that IFP and GRIM rescoring generally gave good performances that surpassed those of native Surflex-Dock scoring, as the average values of EF1% given by both methods are higher than those received from Surflex-Dock for all 15 target sets: overall enrichment factors were recorded at 4.77 ± 2.85, 4.78 ± 3.11, and 2.07 ± 1.00 by IFP (Table

Figure 2 .

 2 Figure 2. 2D structure of SID 144206564 from the LIT-PCBA ESR1-ago ligand set (the PubChem active substance repeatedly selected by IFP and GRIM along with the top 1% false positives), and those of several PDB template ligands. It can be observed that SID 144206564 shares several key chemical features with the known templates, including two -OH groups linked to a series of aromatic rings, forming three hydrogen bonds also observed in the template structures, which partly explains why the two ligand-protein interaction-comparing methods managed to retrieve this molecule.

Figure 3 .

 3 Figure 3. The best pose inside the binding pocket (PDB ID 2Q70) of the active substance ID 144206564 selected by IFP rescoring (A) and the crystallographic pose of a known ligand (HET code: DC8) retrieved from the Protein Data Bank (B) explaining why this active molecule was successfully selected by comparing protein-ligand interaction fingerprints. Identical hydrogen

Figure 4 .

 4 Figure 4. 2D structures of three inactive substances IDs 144203677, 144203979 and 144204501 from the LIT-PCBA ESR1-ago ligand set. IFP and Surflex-Dock agreed on the best pose for each substance, but Surflex-Dock failed to rank the confirmed hit SID 144206564 above these three inactives in the hit list (with the PDB ID 2Q70 used as template), while IFP rescoring managed to do so.

Finding a scoring function

  to select one best pose for a ligand among those issued by a docking program and to rank these molecules in a hit list with the aim of retrieving as many potential hits as possible is a task that has long been tackled by the cheminformatics community. Various publications in the literature have raised the issue with energy-based empirical scoring functions employed by popular docking programs, as regards their inaccuracy in estimating the binding affinity of a molecule, and in screening a data set in several virtual screening challenges. The findings portrayed in this chapter reconfirm the conclusions indicated in earlier papers, pointing out that the pK d docking scores issued by Surflex-Dock gave generally poorer performances on the LIT-PCBA data collection (in terms of early enrichment of true actives) than the two scoring functions based on measuring the similarity level of protein-ligand interaction fingerprints (IFP)
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Table 1 .

 1 Overview of the main open-access benchmarking data sets developed from experimental PubChem BioAssay data.

			Number	Number of	Active-to-	Assay data	Assay	Chemical	Virtual screening suitability
	Data sets Year	of ligand sets	molecules per ligand set	inactive ratio	Primary	Confirmatory	artifacts avoided	bias avoided	Ligand -based	Structure-based
	MUV 80	2009	17	15,030	2 x 10 -3					 a	
	UCI 81	2009	21	69 to	2 x 10 -4 to						
				59,795	0.33						
	Butkiewicz	2013	9	61,849 to	5 x 10 -4 to						
	et al. 82			344,769	7 x 10 -3						
	Lindh et	2015	7	59,462 to	7 x 10 -5 to						
	al. 83			338,003	1 x 10 -3						
	LIT-	2020	15	4247 to	5 x 10 -5 to						
	PCBA 22			362,088	0.05						

  A rigorous systematic search was first performed on the ensemble of

	PubChem bioactivity assays, keeping only confirmatory screens conducted with over 10,000
	substances, giving no fewer than 50 active molecules, against a single protein target having at
	least one crystal PDB structure bound to a drug-like ligand of the same phenotype as that of the
	confirmed actives. A total of 21 assays corresponding to 21 targets covering 11 diverse protein
	families, including three GPCRs, three kinases and five nuclear hormone receptors, were
	retained. Contrary to the data sets of Lindh et al., in LIT-PCBA, all relevant protein-ligand
	structures available on the Protein Data Bank were kept, providing 162 "templates" in total.
	Taking inspiration from the MUV paper, we also addressed the issues of false positives, artificial
	enrichment and analogue bias during the construction of the LIT-PCBA data sets. The active and
	inactive substances retrieved from PubChem BioAssay were subjected to a series of consecutive
	filters, which ruled out inorganic chemicals (bearing at least one atom other than H, C, N, O, P,
	S, F, Cl, Br, and I), frequent hitters, non-specific binders, promiscuous aggregators, spoilers of
	optical detection methods, compounds with extreme molecular properties, and ligand preparation
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	4.1. Assay Selection for Evaluating Virtual Screening Methods
	4.1.1. Assay Selection as Regards the Data Size and Hit Rates
	in terms of assay selection and data
	curation, to properly employ these abundant resources.

Table 2 .

 2 Retrospective Potency Bias in the Composition of Active Ligand SetsAs of April 30, 2020, there were 1,067,719 small-molecule assays deposited on the PubChem BioAssay database, but only 240,999 of them (22.6%) yielded active substances with confirmed potency values. These values are provided in different terms (EC 50 , IC 50 , K d , K i ), and the threshold to distinguish true actives from true inactives varies from assay to assay, depending on the researchers who conducted the experiments. Some assays accept active substances with potency values above 100 µM (e.g. AIDs 1030, 1490, 504847), even at millimolar level (e.g.

		2D ECFP4 fingerprint similarity searches	Molecular docking
		EF1%	Number of retrieved actives	EF1%	Number of retrieved actives
	Full PubChem data	0.6	2	3.2	11
	LIT-PCBA MTORC1 data	0.0	0	1.0	1

screening performance of 2D ECFP4 fingerprint similarity searches with Pipeline Pilot (ligand-based) and molecular docking with Surflex-Dock (structure-based) on the full PubChem BioAssay data and the pruned LIT-PCBA MTORC1 ligand set, demonstrated by EF1% (enrichment in true actives at a constant 1% false positive rate over random picking) values and the numbers of true actives retrieved along with the top 1% false positives by the "max-pooling" approach.

AIDs 1045, 1047); while in some others, several substances with even sub-micromolar potency are not deemed actives (e.g. AIDs 1221, 1224, 1345010). It is therefore comprehensible that the potency range of true actives as well as its distribution is quite diverse across all assays of PubChem. As active molecules with high potency towards a biological target are easier to be picked by both ligand-based and structure-based virtual screening methods,

22 

ligand sets with too many actives whose potency values are in the sub-micromolar range are prone to overestimate

thesis 63 Supporting InformationTable S1 .

 S1 Number of PubChem bioactivity assays according to the number of tested substances, the number of active substances, the screening stage, and the target type. Statistics were updated as ofApril 30, 2020. 

		Assay type	
	Criteria	Small-molecule	RNA interference
		assay	assay
	1. Number of tested substances (N t ):		
	• N t < 100	1,060,707	22
	• 100 ≤ N t < 1000	4530	92
	• 1000 ≤ N t < 10,000	1359	14
	• 10,000 ≤ N t < 100,000	422	48
	• N t ≥ 100,000	701	1
	2. Number of active substances (N a ):		
	• N a < 10	1,000,714	28
	• 10 ≤ N a < 50	60,328	57
	• 50 ≤ N a < 100	3562	18
	• 100 ≤ N a < 1000	2399	60
	• N a ≥ 1000	716	14
	3. Screening stage:		
	• Primary screening	1416	113
	• Confirmatory, dose-response curves	276,216	0
	not provided		
	• Confirmatory, dose-response curves	3904	0
	provided		
	• Summary	701	10
	• Screening stage not annotated	785,482	54
	4. Target type:		
	• Single protein	238,096	0
	• Single gene	17	0
	• Single nucleotide	95,325	0
	• Multiple proteins	25,649	0
	• Multiple genes	3	0
	• Multiple nucleotides	8646	0
	• Protein-protein interaction	210	0
	• None	795,301	177
	All	1,067,719	

52. Guha, R.; Schurer, S. C. Utilizing High Throughput Screening Data for Predictive Toxicology Models: Protocols and Application to MLSCN Assays. J. Comput. Aided Mol. Des. 2008, 22, 367-384. 53. Zhang, J.; Hsieh, J. H.; Zhu, H. Profiling Animal Toxicants by Automatically Mining Public Bioassay Data: A Big Data Approach for Computational Toxicology. PLoS One 2014, 9, 11. 54. Sedykh, A.; Zhu, H.; Tang, H.; Zhang, L.; Richard, A.; Rusyn, I.; Tropsha, A. Use of in Vitro HTS-derived Concentration-Response Data as Biological Descriptors Improves the Accuracy of QSAR Models of in Vivo Toxicity. Environ. Health Perspect. 2011, 119, 364-370. 55. Kim, M. T.; Huang, R.; Sedykh, A.; Wang, W.; Xia, M.; Zhu, H. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data. Environ. Health Perspect. 2016, 124, 634-641. 56. Zhu, H.; Zhang, J.; Kim, M. T.; Boison, A.; Sedykh, A.; Moran, K. Big Data in Chemical Toxicity Research: The Use of High-Throughput Screening Assays to Identify Potential Toxicants. Chem. Res. Toxicol. 2014, 27, 1643-1651. 57. Chen, B.; Wild, D.; Guha, R. PubChem as a Source of Polypharmacology. J. Chem. Inf. Model. 2009, 49, 2044-2055. 58. Zhang, J.; Han, B.; Wei, X.; Tan, C.; Chen, Y.; Jiang, Y. A Two-Step Target Binding and Selectivity Support Vector Machines Approach for Virtual Screening of Dopamine Receptor Subtype-Selective Ligands. PLoS One 2012, 7, e39076. 59. Swamidass, S. J.; Schillebeeckx, C. N.; Matlock, M.; Hurle, M. R.; Agarwal, P. Combined Analysis of Phenotypic and Target-Based Screening in Assay Networks. J. Biomol. Screen. 2014, 19, 782-790. 60. Lounkine, E.; Nigsch, F.; Jenkins, J. L.; Glick, M. Activity-Aware Clustering of High Throughput Screening Data and Elucidation of Orthogonal Structure-Activity Relationships. J. Chem. Inf. Model. 2011, 51, 3158-3168. 61. Bissantz, C.; Folkers, G.; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations. J. Med. Chem. 2000, 43, 4759-4767. 62. McGovern, S. L.; Shoichet, B. K. Information Decay in Molecular Docking Screens against Holo, Apo, and Modeled Conformations of Enzymes. J. Med. Chem. 2003, 46, 2895-2907. 63. Diller, D. J.; Li, R. Kinases, Homology Models, and High Throughput Docking. J. Med. Chem. 2003, 46, 4638-4647. 64. Lorber, D. M.; Shoichet, B. K. Hierarchical Docking of Databases of Multiple Ligand Conformations. Curr. Top. Med. Chem. 2005, 5, 739-749. 65. Irwin, J. J.; Raushel, F. M.; Shoichet, B. K. Virtual Screening against Metalloenzymes for Inhibitors and Substrates. Biochemistry 2005, 44, 12316-12328. 66. Miteva, M. A.; Lee, W. H.; Montes, M. O.; Villoutreix, B. O. Fast Structure-Based Virtual Ligand Screening Combining FRED, DOCK, and Surflex. J. Med. Chem. 2005, 48, 6012-6022. 67. Pham, T. A.; Jain, A. N. Parameter Estimation for Scoring Protein-Ligand Interactions Using Negative Training Data. J. Med. Chem. 2006, 49, 5856-5868. TRAN NGUYEN Viet Khoa -Ph.D.

Table S2 .

 S2 Number of compounds featured in PubChem bioactivity assays that satisfy each criterion of the Lipinski's rule of five, the Ghose filter, and the Veber's rule. Statistics were updated as ofApril 30, 2020. 

	Criteria	Number of PubChem compounds
	1. Lipinski's rule of five:	
	• Molecular mass ≤ 500 Da	88,667,112
	• ClogP ≤ 5	78,183,471
	• Number of hydrogen bond donors ≤ 5	101,211,514
	• Number of hydrogen bond acceptors ≤ 10	99,344,677
	• Compounds satisfying all criteria	73,062,126
	2. Ghose filter:*	
	• Molecular mass from 180 Da to 480 Da	82,926,795
	• AlogP from -0.4 to +5.6	79,473,661
	• Number of atoms from 20 to 70	71,554,127
	3. Veber's rule:	
	• Number of rotatable bonds not exceeding 10	93,857,861
	• Polar surface area not exceeding 140 Å 2	96,031,201
	All	102,694,672

* The criterion regarding molar refractivity of the Ghose filter is not addressed in this table, as no relevant search option is available on PubChem Compound.

Table S3 .

 S3 Scaffold clusters of PubChem BioAssay active ligands (AID 493208) and the number of their representatives before and after LIT-PCBA filters.

	50	(O=C1NC=NC=C1)	2	
	51	(c1ncncn1)	5	
	52	(c1cnncn1)	1	
	53	(C1CCC=CCC1)	Number of substances falling into each scaffold 2
	Scaffold cluster 54 55	(c1cn[nH]n1) Scaffold structure (C1CCCCC1)	1 Full data from 1	cluster Data from the LIT-PCBA
	56	(O=C1NCC=C1)	AID 493208 1	MTORC1 ligand set
	1 57	(O=C1CNCCO1) (C1CN=CC=C1)	3 2	
	2 58	(c1ccncc1) (S1C=CC=NC=C1)	38 1	
	3 59	(o1cccc1) (o1nccn1)	9 1	
	4	(O=C1CC=CN1) All	15 342	97
	5	(N=C1NC=CN1)	8	
	6	(c1nnn[nH]1)	4	
	7	(c1cncnc1)	40	
	8	(c1ccsc1)	3	
	9	(C1COCO1)	1	
	10	(O=C1NC=CC1=O)	5	
	11	(c1nc[nH]n1)	4	
	12	(O=C1NC=CSC=C1)	1	
	13	(C1CN=CN1)	1	
	14	(c1ccccc1)	9	
	15	(C1CC=CCN1)	5	
	16	(c1cn[nH]c1)	20	
	17	(c1cc[nH]c1)	13	
	18	(C1CCNCC1)	6	
	19	(c1nnc[nH]1)	5	
	20	(c1cscn1)	16	
	21	(C1OC=CO1)	5	
	22	(C1CNC=CC1)	2	
	23	(C1CCC\C=C/CC1)	2	
	24	(c1c[nH]cn1)	13	
	25	(C1CNCCN1)	13	
	26	(o1cccn1)	3	
	27	(C1COC=CC1)	1	
	28	(c1c[nH]nn1)	2	
	29	(C1C=CNC=N1)	1	
	30	(O=C1NC=CC=C1)	7	
	31	(C1COC=CO1)	3	
	32	(C1CC=CN1)	3	
	33	(C1CCC=NCC1)	1	
	34	(O=C1NN=CC=C1)	8	
	35	(c1ccnnc1)	4	
	36	(O=C1NC=CN=C1)	2	
	37	(C1NC=CN=C1)	2	
	38	(C1COC=CN1)	1	
	39	(O=C1NN=CN=C1)	3	
	40	(O=S1(=O)NC=CC=C1)	1	
	41	(o1ccnc1)	21	
	42	(c1nncs1)	4	
	43	(O=C1NC=CC(=O)N1)	5	
	44	(C1CC=CO1)	5	
	45	(C1OC=CC=C1)	1	
	46	(O=C1C=CNC=C1)	1	
	47	(O=C1NC=CS(=O)(=O)C=C1)	1	
	48	(C1CN=CO1)	3	
	49	(O=C1C=COC=C1)	1	
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Table S4 .

 S4 Scaffold clusters of PubChem BioAssay inactive ligands (AID 493208) and the number of their representatives before and after LIT-PCBA filters.

	Scaffold cluster 1 2 3 4 5 6 7 8 9 100 101 102 103 104	Scaffold structure (O=S(=O)(NC1=NCNCN1)c2ccccc2) (c1ccc2ncccc2c1) (O=C1NC=Cc2ccccc12) (C1OC=Cn2ccnc12) (O=C1NC=Nc2ccccc12) (C1OC=Cc2ncccc12) (O=C1NC(=O)c2cccnc2N1) (O=C1NNc2ncccc12) (O=C1OC=Cc2ccccc12) (c1cnc2ccnn2c1) (O=C1COc2ccccc2N1) (c1ccc2[nH]ccc2c1) (O=C(CN1CCCNCC1)Nc2ccccc2) (O=C1C=CNc2ccnn12) (C1CCc2sccc2C1) (C1COc2ccccc2O1) (c1ccc2ncncc2c1) (O=C(CC1NCCNC1=O)Nc2ccccc2) (C1N=CNc2nccn12) (c1nnc2cc[nH]c2n1) (O=C(NC1C=CNC1=O)c2ccccc2) (O=C1CC2=C(N1)NC(=O)NC2=O) (o1cnc2ncccc12) (O=C(CSC1=NC(=O)C=CN1)Nc2ccccc2) (O=C1CNC(=O)N1c2ccccc2) (O=C1NC(NS(=O)(=O)c2ccccc2)C(=O)N1) (c1cnc2ncnn2c1) (c1cn2nccc2nn1) (O=C1NN=C2COC=CN12) (O=C1CN=CN1C2CCCCC2) (O=C(CC1NCCOC1=O)Nc2ccccc2) (N=C1Nc2ccccc2S1) (C1C=NNC1c2cn[nH]c2) (O=C(CNS(=O)(=O)c1ccccc1)NCc2ccccc2) (O=C1C=CN2C=CC=CC2=N1) (O=C(CNS(=O)(=O)c1ccccc1)Nc2ccccc2) (c1ccc(cc1)c2nn[nH]n2) (O=C(CNc1ccccc1)Nc2ccccc2) (c1ccc(cc1)n2cnnn2) (O=C(CSc1nncs1)Nc2ccccc2) (O=C1C2CN3CC1CN(C2)C3c4ccccc4) (O=C1NCNc2ncccc12) (o1ccc2ccccc12) (C(N1CCNCC1)c2ccccc2) (O=C1CCC2=C(O1)C=CNC2=O) (c1ccc(cc1)c2ccc[nH]2) (O=S(=O)(c1ccccc1)n2ccnc2) (c1ccc2nsnc2c1) 175 (o1nc2ccccc2n1) Number of substances falling into each scaffold cluster Full data from AID 493208 Data from the LIT-PCBA MTORC1 ligand set 638 288 5 5 196 195 12 12 256 150 28 5 160 160 49 48 34 25 439 305 402 393 1139 733 8 8 35 31 319 180 281 250 98 16 19 19 10 10 33 27 13 13 42 42 72 65 15 15 7 7 15 15 274 205 6 6 6 6 5 0 7 7 8 8 5 3 14 14 12 12 46 39 50 42 31 31 23 23 34 34 26 23 5 5 604 405 21 21 14 14 139 100 14 14 68 68 (O=C1NC(=NC=C1)SCc2oncn2) 3 3 (O=C(CCS(=O)(=O)c1ccccc1)Nc2ccccc2) 12 12 (C(Nc1ncc[nH]1)c2ccccc2) 9 8 (O=C1NC=C(C(=O)N1)S(=O)(=O)Nc2ccccc2) 5 5 (N=C1NC=Nc2[nH]ncc12) 27 27 (O=C(CCn1cnnn1)Nc2ccccc2) 13 13 (C1CN(CCN1)c2ccccc2) 166 151 (O=S(=O)(Nc1ncccn1)c2ccccc2) 27 27 (O=C1Nc2ncnn2C=C1) 12 12 (O=C1NC(=O)c2[nH]cnc2N1) 190 175 (O=C(CNCCc1ccccc1)Nc2ccccc2) 14 14 (O=C(NCCc1ccccc1)C(=O)Nc2ccccc2) 14 14 (C(c1nocn1)n2cccn2) 6 6 (N(c1ccccc1)c2nccs2) 17 14 (O=C(Nc1ccccc1)C2CNC(=O)C2) 11 11 (O=C(CSc1ocnn1)c2ccccc2) 8 8 (O=C1C=CN=C2C=CC=CN12) 438 424 (O=C(CSCc1cocn1)N2CCNCC2) 13 13 (O=C(Oc1ccn[nH]1)c2ccccc2) 42 15 (O=C1NC=CS(=O)c2ccccc12) 123 72 (O=C(CS(=O)Cc1cocn1)NCCc2ccccc2) 13 13 (O=C(CNc1ccccc1)NCCSCc2ccccc2) 14 14 (O=C(CSCc1cocn1)NCc2ccccc2) 13 13 (O=C1Oc2ccccc2C=C1) 438 336 (C(N1CCCCC1)c2cocn2) 50 44 (O=C(Nc1ccccc1)c2occc2) 30 26 (O=C(NC1CCNCC1)Nc2ccccc2) 12 12 (O=C1CSc2ccccc2N1) 138 134 (o1cnc2ccccc12) 528 287 (O=C1CCCC2=C1CC=CN2) 6 6 (c1cnn2cnnc2c1) 82 75 (c1ccc2[nH]cnc2c1) 682 415 (O=C(Nc1ccccc1)C2CCCN2) 5 5 (c1ccc2cnncc2c1) 88 40 (O=C1Cc2ccccc2N1) 126 124 (O=C1Nc2ccccc2O1) 359 354 (O=C1NN=C(C=C1)c2ccccc2) 70 67 (C1NC=Cc2ccnn12) 13 13 (O=S(=O)(NCC1CCCCC1)c2ccccc2) 18 12 (O=C1Nc2ccccc2N1) 128 128 (O=C1CN=Cc2ccccc2N1) 32 21 (O=C1C=CNc2ccccc12) 671 563 (O=C1NCC2=C1OC=CC2=O) 110 97 (C1Oc2ccccc2O1) 666 570 (O=C(NCc1cccs1)Nc2ccccc2) 17 15 (O=C(NCCc1ccccc1)c2occc2) 32 31 (O=S(=O)(c1ccccc1)c2c[nH]nn2) 15 15 (c1ccc2n[nH]nc2c1) 76 30 (O=C(Nc1ccccc1)\C=C\c2ccccc2) 21 19 (O=S(=O)(N1CCCCCC1)c2ccccc2) 11 11 (c1ccc(cc1)c2ccn[nH]2) 11 0 (N=C1NC(=O)CC(S1)C(=O)Nc2ccccc2) 8 8 (O=C1N=CNc2sccc12) 2 2 (O=C1CCC(=NN1)c2ccccc2) 48 48 (C1Cc2scnc2C=C1) 11 (C1C=Cc2ncsc12) 13 13 (O=C1CNc2ccccc2N1) 44 43 (O=C1CNCc2ccccc2N1) 70 63 (O=C1CCC2=C(COC2=O)N1) 12 12 (O=C1CCC2=C(O1)C=COC2=O) 7 7 (O=C(CCOc1ccccc1)Nc2ccccc2) 8 8 (c1ccn2ccnc2c1) 143 64 (O=C1CN(C2CCCCC2)C(=O)CN1) 50 41 (c1ccc(cc1)c2ccncn2) 11 11 (O=C(CSCc1ccccc1)NCc2ccccc2) 7 6 (C1CCc2[nH]ncc2C1) 13 13 (O=C1NC2=CC=CCC2=C1) 16 16 (O=C(NCc1ccccc1)c2occc2) 37 37 (o1ccnc1c2ccccc2) 32 32 (O=S(=O)(NCc1ccccc1)c2ccccc2) 12 5 (O=C(COc1ccccc1)Nc2cn[nH]c2) 6 6 (O=C(COc1ccccc1)Nc2cccs2) 14 14 (o1cnnc1c2ccccc2) 36 22 (O=C(Nc1ccccc1)c2c[nH]cn2) 5 5 (O=S(=O)(N1CCCCC1)c2ccccc2) 27 27 (O=S(=O)(N1CCOCC1)c2ccccc2) 27 27 (O=C(Nc1ccccc1)\C=C\c2occc2) 26 21 (O=C1NC(=O)c2c[nH]cc2N1) 59 42 (C1Cc2ccccc2CN1) 142 120 (C(Oc1ccccc1)c2occc2) 10 10 (C1CC2(CCN1)OCCO2) 34 31 (O=C(Nc1ccccc1)c2ccccc2) 133 76 (O=C(COc1ccccc1)NC2CCS(=O)(=O)C2) 12 12 (O=C1NC=CS(=O)(=O)c2ccccc12) 170 104 (O=C(NC1CCS(=O)(=O)C1)c2ccccc2) 32 32 (c1ccc(cc1)n2ccnn2) 20 20 (O=C1NN=Nc2sccc12) 80 34 (c1ccc2scnc2c1) 819 610 (O=C1NCc2cn[nH]c12) 118 91 (o1cnc(n1)c2ccccc2) 75 72 (O=C(NCC12CC3CC(CC(C3)C1)C2)c4cc[nH]n4) 6 0 (o1cnc(n1)c2ccncc2) 20 20 (c1ncc2cn[nH]c2n1) 225 175 (O=C(CSc1ocnn1)Nc2ccccc2) 36 36 (C1C=CNc2ncnn12) 273 164 (C(Oc1ccccc1)c2oncn2) 13 13 (c1ncc2cc[nH]c2n1) 76 3 (O=C1NN=Cc2ccccc12) 75 70 (O=C(CN1CCNCC1)Nc2ccccc2) 26 26 (c1cnc2sccc2c1) 168 111 (o1cnc(n1)c2occc2) 21 21 (O=C1NC(=O)c2ccsc2N1) 305 200 (c1ccn2cnnc2c1) 33 24 (O=C1NC=Nc2ccsc12) 114 46 (O=C(Nc1ccccc1)C2CCNCC2) 40 40 (c1cc2ncnn2cn1) 167 83 (O=C1Nc2ccccc2S(=O)(=O)N1) 58 37 (O=C1NC=Nc2sccc12) 203 151 (C1CN2CCC1c3ncccc23) 17 16 (O=C1NCC2=C(CNC2=O)N1) 13 13 (O=C1NC(=O)c2ccccc2N1) 571 501 (O=C1C=CC2=C1CC=CN2) 11 11 (O=C(CSc1ncc[nH]1)Nc2ccccc2) 89 72 (C1CNc2ccccc2C1) 299 264 (O=C(CSC1=NC(=O)NC=C1)Nc2ccccc2) 13 13 (O=S(=O)(Cc1occc1)c2cccs2) 39 39 (C1C=CNc2nnnn12) 24 24 (O=C(NCCc1occc1)C(=O)NCCc2ccccc2) 12 12 (O=C(NCCc1occc1)C(=O)NCc2ccccc2) 11 11 (C(N1CCNCC1)c2occc2) 18 18 (C1CC(CCO1)c2cccs2) 24 24 (O=C1Nc2nccn2C=C1) 12 12 (O=C1NNC=C1NS(=O)(=O)c2ccccc2) 6 6 (O=C1NC=COc2ccccc12) 4 4 (O=C1CC(=O)Nc2ccccc2N1) 25 25 (O=C(NCCc1ccccc1)C(=O)NCCc2cccs2) 12 12 (O=C(NCCc1cccs1)C(=O)NCc2ccccc2) 13 13 (c1cnc2[nH]ccc2n1) 17 17 (C(N1CCNCC1)c2cccnc2) 63 63 (O=C(CSc1ccccn1)Nc2ccccc2) 56 19 (O=C(CNS(=O)(=O)c1conc1)Nc2ccccc2) 13 13 (C(c1occc1)n2ccnc2) 13 13 (C1NC=Cc2nncnc2O1) 33 18 (O=C1NC=Nc2cc[nH]c12) 175 74 (O=C1CCCC2=C1C=CC(=O)N2) 62 42 (O=C1NC=CC(N1)c2cn[nH]c2) 13 13 (c1cnc2nccn2c1) 89 65 (O=C(CSC1=NC=CC(=O)N1)Nc2ccccc2) 49 45 (O=C1C2CN3CC1CN(C2)C3c4cc[nH]c4) 14 14 (O=C(CNc1ccccc1)NCc2ccccc2) 14 14 (C1CC2CNC=CN2C1) 26 26 (O=C1CCn2nccc2N1) 86 86 (O=C1NN=Cc2c[nH]nc12) 105 105 (O=C1CCc2ccccc2N1) 107 107 (c1cnc2n[nH]cc2c1) 25 6 (O=S1(=O)NC=Cc2ncncc12) 106 75 (O=C(CNS(=O)(=O)c1cc[nH]c1)N2CCNCC2) 13 13 (c1ccc(cc1)n2cnnc2) 9 9 (O=C1CNC(=O)C2CCCCN12) 19 19 (C1Cn2cnnc2S1) 37 37 (C1Cc2ccsc2CN1) 86 53 (C(C1CCNCC1)N2CCCCCC2) 13 13 (O=C(NCCc1occc1)c2ccccc2) 13 13 (C(C1CCNCC1)N2CCCC2) 13 13 (c1cnn2ccnc2c1) 13 13 (C(C1CCNCC1)N2CCOCC2) 13 13 (O=S(=O)(Cc1cccs1)c2cccs2) 26 26 (C(C1CCNCC1)N2CCCCC2) 18 18 (C1COc2ccccc2N1) 214 212 (O=C(CNS(=O)(=O)c1cc[nH]c1)NCc2ccccc2) 13 13 (O=C(CNS(=O)(=O)c1cc[nH]c1)Nc2ccccc2) 31 31 (O=S(=O)(N1CCCCC1)c2cc[nH]c2) 99 99 (O=C(NCc1ccccc1)c2ccn[nH]2) 13 13 (O=C1C=CN=C2SC=NN12) 649 595 (O=C1CCCc2ccccc2N1) 93 93 (C1CSc2ccccc2N1) 137 99 (c1cn2ncsc2n1) 69 (C1CCc2nncn2CC1) 24 24 (c1cn2ccsc2n1) 99 87 (O=C1OC2(CCNCC2)C=C1) 25 25 (o1cccc1c2oncc2) 12 12 (O=C1NC=CC=C1CN2CCCCC2) 25 25 (o1nccc1c2cccs2) 36 36 (o1nccc1c2ccccc2) 112 110 (O=C1NCc2ccccc12) 206 205 (O=S(=O)(N1CCNCC1)c2ccccc2) 80 54 (C(C1CCCCC1)n2cccc2) 12 12 (O=S1(=O)C=CC(=N1)NCc2ccccc2) 12 12 (O=C1C=CNc2ncccc12) 75 66 (O=C1OC=Cc2[nH]cnc12) 22 22 (O=C1NC=CC=C1CN2CCNCC2) 43 43 (O=C(COCc1ccon1)Nc2ccccc2) 12 12 (O=C(NCc1nnn[nH]1)c2ccccc2) 13 13 (O=S(=O)(N1CCCCCC1)c2cn[nH]c2) 20 20 (O=S(=O)(N1CCCCC1)c2cn[nH]c2) 35 35 (O=C(NCCS(=O)(=O)N1CCNCC1)C2CNC(=O)C2) 11 11 (O=C1NCC=C(CN2CCNCC2)N1) 17 17 (O=C(NC1=NCCC(=O)N1)c2ccccc2) 13 13 (o1ncc2cncnc12) 164 127 (C(Oc1ccccc1)c2cocn2) 23 18 (C1CNc2ccnn2C1) 13 13 (C1Nc2cccnc2OC=C1) 47 38 (c1cnc2[nH]ncc2c1) 164 99 (c1cnc2[nH]cnc2c1) 388 296 (C1NCc2ccccc2O1) 43 23 (O=C(N1CCCCC1)c2cn[nH]c2) 45 42 (O=C1CCSc2ccccc2N1) 67 62 (c1ccn(c1)c2ccn[nH]2) 79 59 (C1CCc2cc[nH]c2CC1) 23 18 (C(Sc1ncc[nH]1)c2ccccc2) 13 13 (C1CCN(C1)c2cccnn2) 23 22 (C1CN(CCO1)c2cccnn2) 13 13 (C1CCN(CC1)c2cccnn2) 42 20 (O=C1Nc2nncn2C=C1) 241 230 (c1ccc(cc1)c2cccnn2) 30 30 (O=C1CN(Cc2occc2)C(=O)N1) 13 13 (O=S(=O)(N1CCCC1)c2cc[nH]c2) 25 25 (O=C1CN(Cc2cccs2)C(=O)N1) 13 13 (O=C(CC1NC(=O)NC1=O)Nc2ccccc2) 69 68 (C1CCN(CC1)c2nncs2) 111 87 (C1C=CNc2ccnn12) 39 33 (c1ccc(cc1)n2cccn2) 26 21 (C1CC(CCN1)c2ccn[nH]2) 129 79 (o1ncnc1c2c[nH]nn2) 65 65 (O=C1C=CSc2ccccc12) 39 39 (O=C1NC=CSc2ccccc12) 202 108 (c1cn2ncnc2s1) 220 198 (O=S(=O)(NCCc1cscn1)c2ccccc2) 13 13 (O=C1Nc2ccccc2C=C1) 244 237 (O=C(NCCc1cscn1)C(=O)Nc2ccccc2) 31 31 (C1Cc2ccccc2N1) 884 872 (O=C1NC(=O)c2[nH]ccc2N1) 158 73 (O=C1NC=Nc2occc12) 69 (o1ccc2cncnc12) 151 151 (c1cn2nnnc2cn1) 52 52 (O=S(=O)(N1CCOCC1)c2cc[nH]c2) 13 13 (O=C(Cc1ccccc1)NCCc2cscn2) 12 12 (O=C(NCCc1cscn1)c2ccccc2) 31 27 (O=S(=O)(NCCc1cncs1)c2ccccc2) 17 17 (O=C(NCCc1cncs1)C(=O)Nc2ccccc2) 29 29 (O=C(NCCc1cncs1)c2ccccc2) 31 28 (O=C(NCCc1cccs1)c2ccccc2) 13 10 (O=S1(=O)CCCCN1c2ccccc2) 42 42 (O=C1Nc2ccccc2NC1=O) 130 130 (O=C1CC(=O)c2ccccc12) 21 13 (O=C(NCc1ccccc1)c2cncnc2) 20 20 (O=C(Nc1ccccc1)c2cncnc2) 18 17 (O=C1NN=Cc2cc[nH]c12) 353 246 (C1CCc2cnoc2C1) 18 18 (O=C(NCCc1ccccc1)c2c[nH]nn2) 13 13 (O=C(NCc1cccs1)c2c[nH]nn2) 13 13 (O=C(NCc1ccccc1)c2c[nH]nn2) 19 19 (C(N1CCOCC1)c2ccccc2) 39 39 (C(N1CCCC1)c2ccccc2) 16 16 (O=C(CN1C=CC=CC1=O)Nc2ccccc2) 13 13 (O=C(Nc1ccccc1)c2ccon2) 29 25 (o1cncc1c2ccccc2) 45 45 (O=C(NCc1ccc[nH]1)Nc2ccccc2) 12 12 (O=C(Nc1cnon1)c2occc2) 6 6 (O=C(COc1ccccc1)Nc2cnon2) 12 12 (O=C(Nc1ccccc1)c2c[nH]nn2) 69 69 (c1ncc2nc[nH]c2n1) 32 32 (O=S(=O)(N1CCNCC1)c2cc[nH]c2) 17 17 (C1CCc2nccn2CC1) 87 87 (O=C1NC=Nc2oncc12) 65 65 (c1ccc2nccnc2c1) 242 88 (O=C1NC=CSc2ncccc12) 24 24 (O=C1NC=Cc2ncccc12) 99 99 (O=S1(=O)N=Cc2ccccc12) 9 9 (O=S(=O)(NCc1oncn1)c2ccccc2) 10 10 (O=C(CCn1cccn1)NCc2ccccc2) 11 11 (O=C(CCn1cccn1)Nc2ccccc2) 29 29 (C(Sc1nnc[nH]1)c2oncn2) 63 27 (O=C(CCCc1oncn1)Nc2ccccc2) 13 13 (O=S1(=O)C=CNc2ccccc12) 22 19 (c1ccc2sccc2c1) 50 46 (O=C1CSC2(N1)C=CNC2=O) 102 84 (O=C1OC2(CCCCCC2)C=C1) 18 18 (O=C1OC2(CCCCC2)C=C1) 35 35 (O=C(Cn1cccc1)Nc2ccccc2) 13 13 (O=C(CSc1ncccn1)Nc2ccccc2) 10 10 (c1cc2nncn2cn1) 37 33 (O=C(CNS(=O)(=O)c1ccsc1)Nc2ccccc2) 12 12 (O=S(=O)(Nc1ccccc1)c2ccsc2) 28 20 (O=S(=O)(N1CCNCC1)c2ccsc2) 24 22 (O=C(CNS(=O)(=O)c1cccs1)Nc2ccccc2) 39 37 (O=C1Nc2[nH]ncc2C=C1) 176 166 (O=C(Nc1nncs1)c2ccccc2) 54 54 (O=S1(=O)NCCCN1Cc2ccccc2) 10 10 (c1cn2cnnc2cn1) 64 55 (C1Cn2cnnc2C=N1) 23 7 (C1CSc2ncccc2N1) 63 60 (C1CCc2[nH]ccc2C1) 43 16 (C1CCc2ccccc2NC1) 51 35 (O=C1NC=Nc2[nH]ncc12) 68 44 (O=C(NC1CCCCCC1)C2CNCC(=O)N2) 12 12 (O=C1NC=COc2ncccc12) 58 58 (c1nncc2n[nH]cc12) 122 86 (C(NC1CCNCC1)c2ccccc2) 6 6 (C1CCN2CCNCC2C1) 13 13 (C(NC1CCNCC1)c2occc2) 13 13 (O=S1(=O)C=CC(=N1)N2CCCCC2) 49 49 (O=C1NN2C=NC=NC2=C1) 72 50 (o1ncc2ccccc12) 61 60 (O=C1C=CN=C2CCCCCN12) 77 76 (O=C1NC=CN=C1NCCc2ccccc2) 13 13 (O=C1NC=CN=C1NCc2ccccc2) 13 13 (c1nc(ns1)c2c[nH]nn2) 34 23 (O=C(NCc1oncn1)c2ccccc2) 30 27 (C1Nc2sccc2C=N1) 13 11 (c1csc(c1)c2ccncn2) 13 4 (O=C1NC=Cc2sccc12) 90 83 (O=C(NCc1ccccc1)C2CCCCC2) 7 7 (O=C(NCCc1ccccc1)C2CCCCC2) 11 9 (O=C1OC=Cc2sccc12) 65 39 (O=S1(=O)NC=Cc2ccccc12) 56 53 (N1C=CS/C/1=N\c2ccccc2) 5 5 (O=C1CCCc2ncncc12) 6 6 (c1ccc(cc1)c2cc[nH]n2) 14 10 (O=S1(=O)CCC(C1)NCc2cccs2) 23 23 (o1cccc1c2ccccc2) 11 4 (O=C1C=CNc2ncnn12) 19 18 (C(CSc1nnn[nH]1)NCc2ccccc2) 36 36 (O=C1CCC2=C(N1)NC(=O)NC2=O) 6 6 (C1CCNCC1) 13 13 (c1c[nH]c(c1)c2cccs2) 13 7 (O=C(CSc1nnc[nH]1)Nc2ccccc2) 42 42 (C1Cc2ncccc2CN1) 26 26 (O=S(=O)(Nc1ccccc1)c2cccs2) 13 13 (O=C(NCc1ccccc1)C2CCNCC2) 16 16 (c1cnc2nncn2c1) 48 47 (O=S(=O)(N1CCCCC1)c2conc2) 120 108 (O=C(Nc1cccs1)\C=C\c2ccccc2) 11 8 (O=C1C=COc2ccccc12) 204 170 (C(=C\c1nccs1)/c2ccccc2) 10 1 (O=C(COc1ccccc1)Nc2nnc[nH]2) 6 6 (N=C1Nc2ccccc2N1) 5 5 (O=C1NC(=O)C2=CC=CNC2=N1) 23 23 (O=C1OCCc2ccccc12) 27 19 (c1nncc2c[nH]cc12) 1 1 (O=S(=O)(N1CCCC1)c2ccccc2) 12 12 (C(Sc1ocnn1)c2ccccc2) 18 18 (O=C(NCC1CCCO1)\C=C\c2ccccc2) 6 6 (O=C(CSc1nnc[nH]1)N2CCCCC2) 12 12 (O=C1NCC=C(CN2CCCCC2)N1) 6 6 (C(Oc1ccccc1)c2ocnn2) 17 17 (C(Cc1ccccc1)Cc2ocnn2) 11 11 (N(c1ccccc1)c2ncccn2) 2 2 (O=C(CSc1nccnn1)Nc2ccccc2) 22 12 (c1ncc2ccsc2n1) 63 22 (O=C(Nc1ccccc1)c2conc2) 11 11 (O=C(CCn1cccc1)NC2CCCCC2) 8 8 (O=C(NS(=O)(=O)c1ccccc1)c2ccccc2) 13 5 (O=C(COc1ccccc1)NCc2oncn2) 13 13 (O=C(Nc1ncns1)c2ccccc2) 13 13 (c1ccc(cc1)n2cccc2) 9 0 (c1cc(ccn1)c2nnc[nH]2) 7 7 (O=C(CCC(=O)c1ccccc1)Nc2ccccc2) 11 11 (O=S(=O)(N1CCNCC1)c2cccs2) 17 15 (O=C1NC=C(C(=O)N1)S(=O)(=O)N2CCNCC2) 5 5 (O=C(Cn1cccc1)NC2CCCCC2) 5 5 (O=C(Cn1cccc1)NC2CCCCCC2) 5 3 (O=S(=O)(NCC1CCCCC1)c2cccs2) 12 12 (O=C(C1CCCCC1)N2CCNCC2) 8 8 (O=S(=O)(N1CCCCC1)c2cccs2) 20 20 (C1C=CNc2nccn12) 31 13 (C1CCc2ccsc2CC1) 92 35 (O=C(CS(=O)Cc1cocn1)N2CCNCC2) 9 9 (O=C(NC1CCCCC1)c2occc2) 6 5 (O=C(CN1CCNC1=O)NCc2ccccc2) 12 12 (O=C(NCc1ccccc1)c2ccccc2) 22 21 (O=C(NCCc1ccccc1)c2ccccc2) 5 5 (C(SCc1ccccc1)c2occc2) 23 0 (C1Cc2ccsc2C1) 62 56 (O=C1Nc2ccccc2SC=C1) 5 0 (O=C1Nc2ccccc2S(=O)C=C1) 5 5 (S1C=CC=Nc2ccccc12) 28 8 (O=C(C1CCNCC1)N2CCNCC2) 62 57 (C1CC(CN1)c2ccccc2) 8 8 (O=C(CS(=O)Cc1cocn1)NCc2ccccc2) 12 12 (O=C(CCSCCc1ccccn1)Nc2ccccc2) 7 7 (O=C(CSCc1cocn1)NCCc2ccccc2) 12 12 (O=C(CCSCc1ccccc1)NCc2ccccc2) 11 11 (O=C(CCSCc1ccccc1)NCCc2ccccc2) 10 10 9 (O=C(CN1CCNS1(=O)=O)Nc2ccccc2) (O=C1NN=Nc2ccsc12) 13 5 (O=S
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Table S4 )

 S4 has been set up to align ligand atoms to cavity features. It consists of SMARTS (simplified molecular-input line-entry system arbitrary target specification) patterns for nine pharmacophoric feature properties (hydrophobic features, rings, H-bond donors, H-bond acceptors, H-bond donors and acceptors, cations, anions, Ca_Mg, Zn) and 56 patternmatching rules to score the shape-based alignment by pharmacophoric similarity (Table

undergo rigid body rotations and translations. Contrary to the original Shaper method, the updated version allows users to choose among different overlap methods (by default: Exact), different overlap minimization techniques (by default: Subrocs) and diverse similarity metrics (by default: TanimotoCombo). A detailed description of all options is available online. 50 TRAN NGUYEN Viet Khoa -Ph.D. thesis 100 A specific force field (

Table 1 .

 1 ). It is also note-worthy that the scoring function employed to rank Shaper2 poses is very important. Energy-based scoring functions are preferred to accelerate shape/color overlap estimations. Moreover, an explicit treatment of desolvation effects yields a very accurate pose ranking, albeit at the cost of an extra computational demand (approximately 5 seconds per pose). Posing accuracy of molecular docking (Surflex-Dock), ligand-based pharmacophore searches (Discovery Studio, LigandScout), and receptor-based pharmacophore searches (IChem), applied to 85 protein-ligand complexes from the Astex Diverse Set.

	Altogether, Shaper2 alignment on IChem cavity-based pharmacophore models is therefore
	competitive with a standard docking tool as regards posing accuracy. The competitive advantage
	of a Gaussian function (Shaper2) in comparison to either the Kabsch algorithm 63 (Discovery

Studio) or the Hungarian matcher

[START_REF] Kuhn | The Hungarian Method for the Assignment Problem[END_REF] 

(LigandScout) appears quite significant, when it comes to considering the complexity of pharmacophore queries (27 features on average) produced by our method.

a Average root-mean-square deviation (heavy atoms) to the ligand X-ray pose b Median root-mean-square deviation (heavy atoms) to the ligand X-ray pose c Surflex-Dock pose with the lowest internal score (pK d ) d Discovery Studio pose with the highest fit score e LigandScout pose with the highest fit score f Shaper2 pose with the highest TanimotoCombo score g Shaper2 pose with the lowest PLP interaction energy h Shaper2 pose with the lowest MMFF94 total energy i Shaper2 pose with the lowest MMFF94 ligand-protein interaction energy

Table 2 .

 2 Area under the ROC plot of a binary classification (actives, decoys) of DUD-E ligand poses to the X-ray structures of 10 representative targets.32 

	Posing

Table 3 .

 3 Virtual screening of PubChem BioAssay data.

	Target	Rho kinase 2	Estrogen receptor α	Kappa opioid receptor
	Encoding gene	ROCK2		ESR1		OPRK1	
	PubChem BioAssay AID	604, 644		743080		1777	
	Number of actives	67		59		35	
	Number of inactives	59,714		1530		34,048	
	Activity range, μM	0.03-9.78		0.03-9.69		0.06-18.10
	Hit rate, %	0.11		3.71		0.10	
	Virtual screening a	Top 1%	Top 5%	Top 1%	Top 5%	Top 1%	Top 5%
	 ROCS b	2 (3.0)	3 (0.9)	11 (18.5)	11 (3.7)	1 (2.9)	1 (0.6)
	 Surflex-Dock c	1 (1.5)	2 (0.6)	1 (1.7)	6 (2.0)	3 (8.8)	4 (2.3)
	 Shaper2 d	1 (1.5)	2 (0.6)	2 (3.4)	18 (6.1)	1 (2.9)	6 (3.5)

a Number of true actives among the top 1% and the top 5% scoring molecules. Numbers in brackets indicate the observed enrichment over random picking. b Ligands ranked by TanimotoCombo similarity scores to the template ROCK2-bound inhibitor (ligand ID 3SG, PDB ID 4WOT), ESR1bound antagonist (ligand ID OHT, PDB ID 3ERT), and OPRK1-bound agonist (ligand ID CVV, PDB ID 6B73). c Ligands ranked by pK d (Surflex-Dock score). d Ligands ranked by PLP energy after MMFF94 energy minimization.

thesis 122 Supporting InformationTable S1 .

 S1 The method appears to be quite robust in producing high-quality poses, distinguishing true actives from decoys, and retrieving confirmed hits from high-throughput experimental screens. It should be considered as a novel weapon to the arsenal of current virtual screening methods such as protein-ligand docking or ligand-centric similarity searches. Since virtual screening benchmarks suggest its strong orthogonality to existing methods, we recommend its usage in parallel with docking and/or ligand-based approaches to retrieve different chemotypes and optimize virtual screening hits for medicinal chemistry research. Sc-PDB Diverse Set of 213 protein-ligand complexes.

		3E7X 1AJ2 2UYY 3FY4	AMP 2PH NA7 FAD	D-alanine-poly(phosphoribitol) ligase subunit 1 Dihydropteroate synthase Putative oxidoreductase GLYR1 (6-4)DNA photolyase	14 6 13 11	0.315 N/A 0.277 0.858
		3E87 2FSN 4DLK 2HSD	G95 ADP ATP NAD	RAC-beta serine/threonine-protein kinase Archaeal actin homolog Phosphoribosylaminoimidazole carboxylase, 3-alpha-(or 20-beta)-hydroxysteroid	8 15 15 6	0.427 0.550 0.199 N/A
		1VBM YSA 2FSV NAP	Tyrosine-tRNA ligase NAD(P) transhydrogenase subunit beta ATPase subunit dehydrogenase	9 9	0.418 0.221
		1VC2 1KYI 1VTK 3QGZ	NAD ATP TMP ADN	Glyceraldehyde 3-phosphate dehydrogenase ATP-dependent protease ATPase subunit HslU Thymidine kinase Histidine triad nucleotide-binding protein 1	52 6 9 7	0.877 0.472 0.553 0.025
		3OWA FAD 3P88 P88 1LHN AON 2VWW 7X2	Acyl-CoA dehydrogenase Bile acid receptor Sex hormone-binding globulin Ephrin type-B receptor 4	22 8 8 7	0.132 0.447 N/A 0.178
	Cluster	PDB ID 3OWB BSM Ligand ID 2FTO TMP 1LIK ADN 3G5E Q74 1VCF FMN 3P8X ZYD 2V0I UD1 3QOV ADP 2R8O T5X 1AKW FMN 1B9I PXG 2W0J ZAT	Protein name Heat shock protein HSP 90-alpha Thymidylate synthase Adenosine kinase Aldose reductase Isopentenyl-diphosphate delta-isomerase Vitamin D3 receptor Bifunctional protein GlmU Phenylacetate-coenzyme A ligase Transketolase 1 Flavodoxin Putative UDP-kanosamine synthase Serine/threonine-protein kinase Chk2	sc-PDB entries in cluster 21 10 6 7 8 66 10 8 32 9 7 7	0.140 0.170 0.241 0.103 DPI 0.507 0.099 0.105 0.180 value, Å 0.059 0.043 0.155 0.165
		10GS 1KP8 3EHG 1XOI	VWW ATP ATP 288	Glutathione S-transferase P 60 kDa chaperonin Sensor histidine kinase DesK aminotransferase subunit Glycogen phosphorylase, liver form	18 21 26 6	0.350 0.225 0.120 0.214
		1KJX 3E8X 3P8Z 3PJG 3R04	IMP NAP 36A UGA UNQ	Adenylosuccinate synthetase BH1520 protein RNA-directed RNA polymerase NS5 UDP-glucose 6-dehydrogenase Serine/threonine-protein kinase pim-1	9 17 12 6 7	0.386 0.115 0.114 0.265 0.099
		2R3A 1KPG 1KYX 2V1U 3GJQ	SAM SAH CRM ADP TRP_GLU_	Histone-lysine N-methyltransferase SUV39H2 Cyclopropane mycolic acid synthase 1 6,7-dimethyl-8-ribityllumazine synthase ORC1-type DNA replication protein 1 Caspase-3	25 33 20 11 7	0.160 0.239 0.358 0.521 N/A
		2R3F 1A80 1AM1 3EWR	SC8 NDP ADP APR HIS_ASP_	Cyclin-dependent kinase 2 2,5-diketo-D-gluconic acid reductase A ATP-dependent molecular chaperone HSP82 Non-structural protein 3	6 30 14 6	0.094 0.328 0.148 0.219
		3E5H 3E92 3EHX 4DQW ATP GNP G6A BDL ACE	Ras-related protein Rab-28 Mitogen-activated protein kinase 14 Macrophage metalloelastase Inosine-5'-monophosphate dehydrogenase	171 21 13 13	0.062 0.152 0.165 0.318
		13PK 1VDC 2FV9 3PLQ 2WE3	ADP FAD 002 RP2 DUT	Phosphoglycerate kinase, glycosomal Thioredoxin reductase 1 Disintegrin and metalloproteinase domain-cAMP-dependent protein kinase type I-alpha Deoxyuridine 5'-triphosphate	6 28 6 6 6	0.451 0.213 0.248 0.390 0.211
		2FDE 3E9H	385 KAA	Protease Lysine-tRNA ligase containing protein 17 regulatory subunit nucleotidohydrolase	81 10	0.442 0.278
		1V3S 4C4F 2FVC 4DR9 1XWK GDN ATP 7CE 888 BB2	Signaling protein Dual specificity protein kinase TTK Genome polyprotein Peptide deformylase Glutathione S-transferase Mu 1	31 8 12 16 7	0.142 0.179 0.207 0.148 0.682
		2FDP 3OX4 4D86 1W05 4FHH	FRP NAD ADP W05 0U3	Beta-secretase 1 Alcohol dehydrogenase 2 Poly [ADP-ribose] polymerase 14 Isopenicillin N synthase Vitamin D3 receptor A	66 7 6 20 9	0.398 0.252 0.159 0.199 0.282
		1V45 1KQB 2RKG 4DRX 2WQO VGK 3DG FMN AB1 GTP	Purine nucleoside phosphorylase Oxygen-insensitive NAD(P)H nitroreductase Pol protein Tubulin alpha chain Serine/threonine-protein kinase Nek2	11 18 11 10 6	0.408 N/A 0.144 0.170 0.204
		3ORF 2R97 3P9J 3EXH 3RLL	NAD FMN P9J TPP RLL	Dihydropteridine reductase NAD(P)H dehydrogenase (quinone) Aurora kinase A Pyruvate dehydrogenase E1 component subunit Androgen receptor	58 12 11 19 10	0.208 0.243 0.961 0.319 0.133
		3ORN 4C58 2RKU 4FSM	3OR 824 R78 HK1	Dual specificity mitogen-activated protein Cyclin-G-associated kinase Serine/threonine-protein kinase PLK1 alpha, somatic form, mitochondrial Serine/threonine-protein kinase Chk1	11 7 13 12	0.473 0.201 0.142 0.178
		4C5O 2RL5 1BIF 1O6H	FAD 2RL AGS W37	kinase kinase 1 Putative monooxygenase Vascular endothelial growth factor receptor 2 6-phosphofructo-2-kinase Squalene-hopene cyclase	30 13 13 7	0.818 0.342 0.201 0.374
		3ORO 4C61 4D9T 1BJY 4GFD	AGS LMM 0JG CTC 0YB	Serine/threonine protein kinase Tyrosine-protein kinase JAK2 Ribosomal protein S6 kinase alpha-3 Tetracycline repressor protein class D Thymidylate kinase	65 7 7 7 6	0.353 0.228 0.273 0.368 0.120
		2R4B 3OY1 4D9W 1LVG 4GFN	GW7 589 X32 5GP SUY	Receptor tyrosine-protein kinase erbB-4 Mitogen-activated protein kinase 10 Thermolysin Guanylate kinase DNA gyrase subunit B	9 7 13 7 10	0.558 0.198 0.043 0.184 0.136
		3E65 3OY3 1L2T 2GLX 4GPJ	XXZ XY3 ATP NDP 0Q1	Nitric oxide synthase, inducible Tyrosine-protein kinase ABL1 Uncharacterized ABC transporter ATP-binding 1,5-anhydro-D-fructose reductase Bromodomain-containing protein 4	8 28 12 7 6	0.171 0.196 0.156 0.223 0.116
		3ORZ 1KQM ANP BI4 3EYG MI1 4GV2 5ME	3-phosphoinositide-dependent protein kinase 1 Myosin heavy chain, striated muscle protein MJ0796 Tyrosine-protein kinase JAK1 Poly [ADP-ribose] polymerase 3	10 10 16 19	0.255 0.581 0.142 1.312
		1KLK 2R9R 1L4E 1BOO 3IUB	PMD NAP RBZ SAH FG2	Dihydrofolate reductase Voltage-gated potassium channel subunit beta-2 Nicotinate-nucleotide-dimethylbenzimidazole Modification methylase PvuII Pantothenate synthetase	9 10 8 17 6	N/A 0.239 0.187 0.334 0.071
		1A28 1KQN 2GQT 4JD4	STR NAD FAD JDM	Progesterone receptor Nicotinamide mononucleotide phosphoribosyltransferase UDP-N-acetylenolpyruvoylglucosamine Dihydroorotate dehydrogenase (fumarate)	19 6 14 10	0.155 0.199 0.078 0.059
		2R4F 2G1N 1SQB	RIE 1IG AZO	3-hydroxy-3-methylglutaryl-coenzyme A adenylyltransferase 1 Renin reductase Cytochrome b	17 8 6	0.118 N/A 0.549
		4C8G 2UDP 2V6G 4KFN	C5P UPP NAP 1QR	reductase 2-C-methyl-D-erythritol 2,4-cyclodiphosphate UDP-glucose 4-epimerase 3-oxo-Delta(4,5)-steroid 5-beta-reductase Nicotinamide phosphoribosyltransferase	9 11 6 8	0.190 0.129 0.179 0.109
		1A2N 1AQB 3PTQ 3ZCM	TET RTL NFG PX3	UDP-N-acetylglucosamine 1-synthase Retinol-binding protein 4 OSIGBa0135C13.7 protein Integrase	9 6 8 13	0.266 0.106 0.438 0.088
		2FKY 3ELJ 3F3Y	N2T GS7 4OA	carboxyvinyltransferase Kinesin-like protein KIF11 Mitogen-activated protein kinase 8 Bile salt sulfotransferase	17 10 6	0.319 0.121 0.355
		1V79 4CA6 3ELM 2GTB	FR7 3EF 24F AZP	Adenosine deaminase Angiotensin-converting enzyme Collagenase 3 Orf1ab polyprotein	6 21 6 6	0.756 0.529 0.145 0.229
		2R4T 3P0N 4DC3 2V95	ADP BPU 2FA HCY	Glycogen synthase Tankyrase-2 Putative adenosine kinase Corticosteroid-binding globulin	13 12 14 6	0.117 0.121 0.242 0.166
		2FEQ 1VHN 3EN4 4DYA	34P FMN KS1 0MF	Prothrombin tRNA-dihydrouridine synthase Proto-oncogene tyrosine-protein kinase Src Nucleocapsid protein	76 28 22 6	0.519 0.081 0.407 1.304
		2R59 2RD2 2UUO 1W7K	PH0 QSI LK3 ADP	Leukotriene A-4 hydrolase Glutamine-tRNA ligase UDP-N-acetylmuramoylalanine-D-glutamate Dihydrofolate synthase	7 6 8 10	0.136 0.376 0.428 0.185
		1A42 3EBH 4E0I	BZU BES FAD	Carbonic anhydrase 2 M1 family aminopeptidase ligase Mitochondrial FAD-linked sulfhydryl oxidase	9 12 10	N/A 0.238 0.503
		2R5C 1VHW ADN C6P 1AUX AGS	Kynurenine aminotransferase Purine nucleoside phosphorylase DeoD-type 1 Synapsin-1 ERV1	23 18 7	0.224 0.077 0.374
		3OTF 3P19 3EOS 3F82	CMP NAP PK2 353	Potassium/sodium hyperpolarization-activated Putative blue fluorescent protein Queuine tRNA-ribosyltransferase Hepatocyte growth factor receptor	18 91 12 8	0.509 0.177 0.109 0.475
		4CCB 3EPP 1C1C	OFG SFG 612	cyclic nucleotide-gated channel 4 ALK tyrosine kinase receptor mRNA cap guanine-N7 methyltransferase Reverse transcriptase/ribonuclease H	8 14 6	0.203 0.445 0.910
		1KNR 3P23 3EPT 3PZB	FAD ADP FDA NAP	L-aspartate oxidase Serine/threonine-protein kinase Putative FAD-monooxygenase Aspartate-semialdehyde dehydrogenase	125 39 10 9	0.392 0.400 0.519 0.157
		1KNU 2FOI 4DFP 1C30	YPA JPA 0L7 ADP	Peroxisome proliferator-activated receptor Enoyl-acyl carrier reductase DNA polymerase I, thermostable Carbamoyl-phosphate synthase large chain	7 22 9 6	0.470 0.475 0.158 0.141
		1ADC 4DGM AGI PAD 3FBU COA	gamma Alcohol dehydrogenase E chain Casein kinase II subunit alpha Acetyltransferase, GNAT family	17 8 7	N/A 0.143 0.144
		3OU2 4CDG 1B0H 3Q0U	SAH ADP LYS_LYS_ LL3	SAM-dependent methyltransferase Bloom syndrome protein Periplasmic oligopeptide-binding protein HTH-type transcriptional regulator EthR	174 16 10 6	0.077 0.359 0.140 0.100
		1KOL 4CDQ 1CBF	NAD 7VR ALN SAH	Glutathione-independent formaldehyde Polyprotein Cobalt-precorrin-4 C(11)-methyltransferase	75 6 6	0.096 0.063 0.224
		3P3C 3PD3 2HA8	3P3 A3T SAH	dehydrogenase UDP-3-O-[3-hydroxymyristoyl] N-Threonine-tRNA ligase Probable methyltransferase TARBP1	8 6 11	0.035 0.183 0.088
		2R6H 3EQP 2VFZ	FAD T95 UPF	NADH:ubiquinone oxidoreductase, Na acetylglucosamine deacetylase Activated CDC42 kinase 1 N-acetyllactosaminide alpha-1,3-	32 7 9	0.435 0.482 0.583
		2FPT 1B0P	ILB TPP	translocating, F subunit Dihydroorotate dehydrogenase (quinone), Pyruvate-flavodoxin oxidoreductase galactosyltransferase	14 7	0.226 0.372
		2R6J 3ERK 4E7Z	NDP SB4 ADP	Eugenol synthase 1 mitochondrial Mitogen-activated protein kinase 1 Unconventional myosin-VI	6 7 10	0.098 0.239 0.258
		1KOR 3EEI 1VRW NAD ANP MTM 1WKG POI	Argininosuccinate synthase 5'-methylthioadenosine/S-Enoyl-ACP reductase Acetylornithine/acetyl-lysine aminotransferase	21 8 15 11	0.125 0.125 0.297 0.312
		2R6W 4DK5 4EAW 0NQ LLB 0KO	Estrogen receptor adenosylhomocysteine nucleosidase Phosphatidylinositol 4,5-bisphosphate 3-kinase RNA-directed RNA polymerase	17 7 9	0.219 0.476 0.277
		2R7M 3EEJ 4EB3	AMP 53R 0O3	5-formaminoimidazole-4-carboxamide-1-(beta)-Strain CBS138 chromosome J complete catalytic subunit gamma isoform 4-hydroxy-3-methylbut-2-enyl diphosphate	28 13 7	0.213 0.254 0.141
		1VSO	AT1	D-ribofuranosyl 5'-monophosphate synthetase sequence Glutamate receptor ionotropic, kainate 1 reductase	9	0.125
		1A4Z 3P5S 4DKO 3FLK	NAD AVU 0LM NAD	Aldehyde dehydrogenase, mitochondrial CD38 molecule Envelope glycoprotein gp160 D-malate dehydrogenase [decarboxylating]	31 7 6 8	0.529 0.186 0.163 0.168
		1V9N 3EFQ 1B3D 2VNA	NDP 714 S27 NAP	Malate dehydrogenase Farnesyl pyrophosphate synthase Stromelysin-1 Prostaglandin reductase 2	10 6 16 6	0.206 0.215 0.643 0.179
		3OW3 2RH1 3PEH 3QCF	SMY CAU IBD NXY	cAMP-dependent protein kinase catalytic Beta-2 adrenergic receptor Endoplasmin homolog, putative Receptor-type tyrosine-protein phosphatase γ	8 6 7 7	0.135 0.273 0.738 0.461
		3P7N 2GA2 1MP3	FMN A19 TTP	subunit alpha Sensor histidine kinase Methionine aminopeptidase 2 Glucose-1-phosphate thymidylyltransferase	8 6 6	0.316 0.209 N/A
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detection of druggable cavities at the surface of the target of interest, (ii) generation of cavitybased pharmacophore queries, and (iii) alignment of library compounds to the structure-based pharmacophores. TRAN NGUYEN Viet Khoa -Ph.D. The Diffraction Precision Index (DPI) is calculated according to Kumar, K. S. et al. Online_DPI: a web server to calculate the diffraction precision index for a protein structure. J. Appl. Crystallogr. 2015, 48, 939-942. N/A: not available. The Diffraction precision index (DPI) cannot be calculated due to insufficient parameters.

Table S2 .

 S2 Astex Diverse Set of 85 protein-ligand complexes.

	1SQN	NDR	Progesterone receptor	0.082
	1T40	ID5	Aldose reductase	0.118
	PDB ID Ligand ID 1T46 STI	Protein Name Homo sapiens V-kit Hardy-Zuckerman 4 feline sarcoma viral	DPI, Å 0.083
	1G9V	RQ3	Hemoglobin alpha chain oncogene homolog	0.146
	1GKC 1T9B	NFH 1CS	92 kDa type IV collagenase Acetolactate synthase, mitochondrial	0.316 0.157
	1GM8 1TOW	SOX CRZ	Penicillin G acylase beta subunit Fatty acid-binding protein, adipocyte	0.181 0.249
	1GPK 1TT1	HUP KAI	Acetylcholinesterase Glutamate receptor, ionotropic kainate 2	0.140 0.161
	1HNN 1TZ8	SKF DES	Phenylethanolamine N-methyltransferase Transthyretin	0.292 0.125
	1HP0 1U1C	AD3 BAU	Inosine-adenosine-guanosine-preferring nucleoside hydrolase Uridine phosphorylase	0.273 0.334
	1HQ2 1U4D	PH2 DBQ	6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase Activated Cdc42 kinase 1	0.047 0.239
	1HVY 1UML	D16 FR4	Thymidylate synthase Adenosine deaminase	0.212 0.896
	1HWI 1UNL	115 RRC	HMG-CoA reductase Cyclin-dependent kinase 5	0.291 0.250
	1HWW 1UOU	SWA CMU	Alpha-mannosidase II Thymidine phosphorylase	0.150 0.604
	1IA1 1V0P	TQ3 PVB	Dihydrofolate reductase Cell division control protein 2 homolog	0.117 0.193
	1IG3 1V48	VIB HA1	Thiamin pyrophosphokinase Purine nucleoside phosphorylase	0.144 0.282
	1J3J 1V4S	CP6 MRK	Bifunctional dihydrofolate reductase-thymidylate synthase Glucokinase isoform 2	0.318 0.298
	1JD0 1VCJ	AZM IBA	Carbonic anhydrase XII Neuraminidase	0.077 0.406
	1JJE 1W1P	BYS GIO	IMP-1 metallo beta-lactamase Chitinase B	0.158 0.275
	1JLA 1W2G	TNK THM	HIV-1 RT A-chain Thymidylate kinase TMK	0.502 0.199
	1K3U 1X8X	IAD SO4	Tryptophan synthase alpha chain Tyrosyl-tRNA synthetase	0.088 0.170
	1KE5 1XM6	LS1 5RM	Cell division protein kinase 2 cAMP-specific 3',5'-cyclic phosphodiesterase 4B	0.338 0.139
	1KZK 1XOQ	JE2 ROF	Protease cAMP-specific 3',5'-cyclic phosphodiesterase 4D	0.029 0.122
	1L2S 1XOZ	STC CIA	Beta-lactamase cGMP-specific 3',5'-cyclic phosphodiesterase	0.153 0.063
	1L7F 1Y6B	BCZ AAX	Neuraminidase Vascular endothelial growth factor receptor 2	0.099 0.188
	1LPZ 1YGC	CMB 905	Blood coagulation factor Xa Coagulation factor VII	0.497 0.126
	1LRH 1YQY	NLA 915	Auxin-binding protein 1 Lethal factor	0.173 0.323
	1M2Z 1YV3	DEX BIT	Glucocorticoid receptor Myosin II heavy chain	0.936 0.138
	1MEH 1YVF	MOA PH7	Inosine-5'-monophosphate dehydrogenase HCV NS5B polymerase	0.142 0.390
	1MMV 1YWR	3AR LI9	Nitric-oxide synthase, brain Mitogen-activated protein kinase 14	0.212 0.185
	1MZC 1Z95	BNE 198	Protein farnesyltransferase beta subunit Androgen receptor	0.133 0.147
	1N1M 2BM2	A3M PM2	Dipeptidyl peptidase IV soluble form Human beta2 tryptase	0.812 0.297
	1N2J 2BR1	PAF PFP	Pantothenate synthetase Serine/threonine-protein kinase CHK1	0.137 0.143
	1N2V 2BSM	BDI BSM	Queuine tRNA-ribosyltransferase Heat shock protein HSP90-alpha	0.215 0.173
	1N46	PFA	Thyroid hormone receptor beta-1	0.329
	1NAV	IH5	Hormone receptor alpha 1, THRA1	0.297
	1OF1	SCT	Thymidine kinase	0.144
	1OF6	DTY	Phospho-2-dehydro-3-deoxyheptonate aldolase, tyrosine-inhibited	0.238
	1OPK	P16	Proto-oncogene tyrosine-protein kinase ABL1	0.122
	1OQ5	CEL	Carbonic anhydrase II	0.085
	1OWE	675	Urokinase-type plasminogen activator	0.133
	1OYT	FSN	Thrombin heavy chain	0.094
	1P2Y	NCT	Cytochrome p450cam	0.369
	1P62	GEO	Deoxycytidine kinase	0.129
	1PMN	984	Mitogen-activated protein kinase 10	0.291
	1Q1G	MTI	Uridine phosphorylase putative	0.191
	1Q41	IXM	Glycogen synthase kinase-3 beta	0.156
	1Q4G	BFL	Prostaglandin G/H synthase 1	0.139
	1R1H	BIR	Neprilysin	0.195
	1R55	097	Adam 33	0.112
	1R58	AO5	Methionine aminopeptidase 2	0.198
	1R9O	FLP	Cytochrome p450 2C9	0.172
	1S19	MC9	Vitamin D3 receptor	0.181
	1S3V	TQD	Dihydrofolate reductase	0.156
	1SG0	STL	NRH dehydrogenase [quinone] 2	0.086
	1SJ0	E4D	Estrogen receptor	0.206
	1SQ5	PAU	Pantothenate kinase	0.283
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Table S3 .

 S3 10 DUD-E entries.

	Protein Name	PDB ID	Ligand ID	Number of pharmacophoric features	Number of actives	Number of decoys
	G protein-coupled receptors					
	Adenosine A2A receptor (AA2AR)	3PWH	ZMA	35	482	31,500
	Beta2 adrenergic receptor (ADRB2)	3NY8	JRZ	42	231	15,000
	Nuclear hormone receptors					
	Androgen receptor (ANDR)	2AM9	TES	33	269	14,350
	Glucocortocoid receptor (GCR)	1P93	DEX	36	258	15,000
	Other enzymes					
	Adenosine deaminase (ADA)	1A41	DCF	19	282	16,900
	Prostaglandin G/H synthase 2 (PGH2)	3LN1	CEL	44	104	6958
	Proteases					
	Angiotensin-converting enzyme (ACE)	3ZQZ	SLC	28	139	8700
	Renin (RENI)	3SFC	S53	43	293	16,450
	Protein kinases					
	Fibroblast growth factor receptor 1 (FGFR1)	3TT0	07J	23	93	5450
	RAC-alpha protein kinase (AKT1)	4EKL	0RF	41	435	123,150

Table S4 .

 S4 Shaper2 force-field for aligning ligand atoms to cavity features.
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 1 List of 21 selected PubChem bioactivity assays

		Target	Assay		Substances b	PDB
	ID	Name	AID a	Tested Actives Phenotype	entries
	ADRB2	Beta2 adrenergic receptor 492947	331,108	80	Agonist	8
	ALDH1	Aldehyde dehydrogenase	1030	220,402 16,117	Inhibitor	8
		1					
	ARO1	Aromatase	743083	10,486	905	Inhibitor	3
	ESR1-ago Estrogen receptor alpha	743075	10,486	589	Agonist	15
	ESR1-ant	Estrogen receptor alpha	743080	10,486	477	Antagonist	15
	FEN1	Flap endonuclease 1	588795	391,275	1368	Inhibitor	1
	GBA	Glucocerebrosidase	2101	326,770	299	Inhibitor	6
	GLP1R	Glucagon-like peptide-1	624417	408,352	6432	Inverse	2
		receptor				agonist	
	GLS	Glutaminase	624170	409,400	846	Inhibitor	11
	IDH1	Isocitrate dehydrogenase 602179	390,606	365	Inhibitor	14
	KAT2A	Histone acetyltransferase	504327	387,485	817	Inhibitor	3
		KAT2A					
	L3MBTL1 Lethal(3)malignant brain	485360	225,505	1495	Inhibitor	1
		tumor-like protein					
		isoform I					
	MAPK1	Mitogen-activated	995	72,004	711	Inhibitor	15
		protein kinase 1					
	MTORC1 Mechanistic target of	493208	43,989	342	Inhibitor	11
		rapamycin					
	OPRK1	Kappa opioid receptor	1777	284,220	51	Agonist	1
	PKM2	Pyruvate kinase muscle	1631	264,516	892	Agonist	9
		isoform 2					
	PPARG	Peroxisome proliferator-	743094	10,486	78	Agonist	15
		activated receptor gamma					
	RORC	Retinoic acid-related	2551	309,031 16,824	Inhibitor	15
		orphan receptor gamma					
	THRB	Thyroid hormone	1469	282,587	183	Inhibitor	1
		receptor					
	TP53	Cellular tumor antigen	651631	10,488	602	Agonist	6
		p53					
	VDR	Vitamin D receptor	504847	401,452	3735	Antagonist	2
	a Full details for each assay are available at https://pubchem.ncbi.nlm.nih.gov/bioassay/AID.

b Structures deposited by individual data contributors. Unique chemical structures are called "compounds". TRAN NGUYEN Viet Khoa -Ph.D. thesis 148

Table 2

 2 

	). Interestingly, optimal

For two target sets (ALDH1, VDR), the high number of true actives forced us to reduce by 25% the size of the data set in order to reach GA search completion. In both cases, care was taken to TRAN NGUYEN Viet Khoa -Ph.D.

thesis 157 4. Conclusion A

  rigorous ligand set preparation process is necessary to benchmark virtual screening and/or machine learning methods. Since the body of known experimental data is continuously increasing, such benchmarking data sets need periodical revisions to remove both obvious and hidden bias inherent in human decision-making. Otherwise, errors are propagated across the literature and prevent a true comparison of novel methodological developments. Several recent reports[24][25][26][27] unambiguously demonstrated that the cheminformatics community is currently facing this situation, leading notably to overoptimistic reports on the real benefit of artificial intelligence methods (e.g. deep neural networks) when applied to structure-based ligand design.We herewith present LIT-PCBA as a novel generation of virtual screening benchmarking data sets, specifically designed to reveal the true potential of computational methods in in silico screening exercises. The data collection has been designed from dose-response PubChem bioactivity assays for which active and inactive compounds are unambiguously defined.

Importantly, a careful examination of metadata allowed the removal of assay artifacts, frequent hitters and false positives. LIT-PCBA comprises 15 target sets covering a wide diversity of ligands and target proteins. Preliminary virtual screening attempts with state-of-the-art methods (2D similarity searches, 3D shape-matching, and molecular docking) suggest that the data set is very challenging, notably because potency distribution bias among the labeled active compounds is no longer present. A recently described unbiasing procedure

25 

was finally applied to LIT-PCBA to enable a rational and optimal distribution of training and validation sets for machine learning. We do believe that the particular challenge brought by this data collection will allow a clearer appreciation of modern artificial intelligence methods in structure-based virtual screening scenarios. The full LIT-PCBA data set is now freely accessible for download at http://drugdesign.unistra.fr/LIT-PCBA.
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 S1 Description of 21 selected PubChem bioactivity assays.

	RORC	2551	qHTS for inhibitors of ROR gamma transcriptional activity	Lumi	CBA	4WPQ, 4YMQ, 5APH, 5C4T, 5NTK, 5NTN,
						5NTP, 5NTQ, 5NTW, 5UFR, 5VB6, 5X8Q, 6A22,
						6B33, 6CVH
	THRB	1469	qHTS for inhibitors of the interaction of thyroid hormone	FP f	PPI g	2PIN
			receptor and steroid receptor coregulator 2			
	Target set AID TP53 651631 qHTS assay for small molecule agonists of the p53 signaling Assay description	Readout Format PDB templates Fluo CBA 2VUK, 3ZME, 4AGO, 4AGQ, 5G4O, 5O1I
	ADRB2		qHTS assay of beta-arrestin-biased ligands of beta2-pathway	Lumi	CBA	3P0G, 3PDS, 3SN6, 4LDE, 4LDL, 4LDO, 4QKX,
	VDR	adrenergic receptor 504847 Inhibitors of the vitamin D receptor (VDR): qHTS	FP	PPI	6MXT 3A2J, 3A2I
	ALDH1 a fluorescence intensity qHTS assay for inhibitors of aldehyde dehydrogenase 1 ARO1 qHTS assay to identify aromatase inhibitors b enzyme activity assay ESR1-ago qHTS assay to identify small molecule agonists of the estrogen receptor alpha (ER-alpha) signaling pathway c luminescence d cell-based assay e alpha screen ESR1-ant qHTS assay to identify small molecule antagonists of the f fluorescence polarization	Fluo Fluo Fluo Lumi	EAE CBA CBA CBA	4WP7, 4WPN, 4X4L, 5AC2, 5L2M, 5L2N, 5L2O, 5TEI 3S7S, 4GL5, 4GL7 1L2I,2B1V, 2B1Z, 2P15, 2Q70, 2QR9, 2QSE, 2QZO, 4IVW, 4PPS, 5DRJ, 5DU5, 5DUE, 5DZI, 5E1C 1XP1, 1XQC, 2YAR, 2IOG, 2IOK, 2OUZ, 2POG,
			estrogen receptor alpha (ER-alpha) signaling pathway using			2R6W, 3DT3, 5AAU, 5FQV, 5T92, 5UFX, 6B0F,
			the BG1 cell line			6CHW
	FEN1		qHTS assay for the inhibitors of human flap endonuclease 1	Fluo	EAE	5FV7
	GBA		qHTS assay for inhibitors and activators of N370S	Fluo	EAE	2V3D, 2V3E, 2XWD, 2XWE, 3RIK, 3RIL
			glucocerebro-sidase as a potential chaperone treatment of			
			Gaucher disease			
	GLP1R		qHTS of GLP-1 receptor inverse agonists	Lumi	CBA	5VEW, 5VEX
	GLS		qHTS for inhibitors of glutaminase	Fluo a	EAE b	3UO9, 3VOZ, 3VP1, 5FI2, 5FI6, 5FI7, 5HL1,
						5I94, 5JYO, 5WJ6, 5JYP
	IDH1		qHTS for inhibitors of mutant isocitrate dehydrogenase 1	Fluo	EAE	4I3K, 4I3L, 4UMX, 4XRX, 4XS3, 5DE1, 5L57,
						5L58, 5LGE, 5SUN, 5SVF, 5TQH, 6ADG, 6B0Z
	KAT2A		qHTS assay for inhibitors of GCN5L2	Fluo	PPI	5H84, 5H86, 5MLJ
	L3MBTL1 qHTS assay for the inhibitors of L3MBTL1	Alpha	PPI	3P8H
	MAPK1		qHTS assay for inhibitors of the ERK signaling pathway	Alpha e	CBA	1PME, 2OJG, 3SA0, 3W55, 4QP3, 4QP4, 4QP9,
			using a homogeneous screening assay			4QTA, 4QTE, 4WJ0, 4ZZN, 5AX3, 5BUJ, 5V62,
						6G9H
	MTROC1		Acumen qHTS assay for inhibitors of the mTORC1 signaling	Fluo	CBA	1FAP, 1NSG, 2FAP, 3FAP, 4DRH, 4DRI, 4DRJ,
			pathway in MEF (Tsc2-/-, p53-/-) cells: Sytravon			4FAP, 4JSX, 4JT5, 5GPG
	OPRK1		uHTS identification of small molecule agonists of the kappa	Lumi c	CBA d	6B73
			opioid receptor via a luminescent beta-arrestin assay			
	PKM2		qHTS assay for activators of human muscle isoform 2	Lumi	EAE	3GQY, 3GR4, 3H6O, 3ME3, 3U2Z, 4G1N, 4JPG,
			pyruvate kinase			5X1V, 5X1W
	PPARG		qHTS assay to identify small molecule agonists of the	Fluo	CBA	1ZGY, 2I4J, 2P4Y, 2Q5S, 2YFE, 3B1M, 3HOD,
			peroxisome proliferator-activated receptor gamma (PPARg)			3R8A, 4CI5, 4FGY, 4PRG, 5TTO, 5TWO, 5Y2T,
			signaling pathway			5Z5S
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Table S2 .

 S2 Number of remaining active compounds after each filtering step.

	Target set	PubChem AID	Start	Step 1	Step 2a	Filtering steps Step 2b Step 2c	Step 3	Step4
	ADRB2		80	80	19	19	19	17	17
	ALDH1	1030	16,117	16,070	8052	8023	7716	7170	7168
	ARO1		905	852	298	150	150	121	121
	ESR1-ago		105	89	20	18	18	15	13
	ESR1-ant		473	453	217	145	145	103	102
	FEN1		1368	1353	502	448	425	370	369
	GBA	2101	299	298	240	236	233	166	166
	GLP1R		6432	6431	3000	2997	2942	2180	2180
	GLS		846	842	255	251	236	224	224
	IDH1		365	364	57	56	54	39	39
	KAT2A		817	794	297	268	234	194	194
	L3MBTL1		1495	1492	587	583	541	501	501
	MAPK1	995	711	707	414	402	322	308	308
	MTORC1		342	342	137	136	136	97	97
	OPRK1	1777	35	35	30	30	29	24	24
	PKM2	1631	892	892	578	578	557	546	546
	PPARG		78	75	46	41	41	27	27
	RORC	2551	16,824	16,805	8397	8355	8053	6874	6874
	THRB	1469	183	179	92	78	64	53	53
	TP53		602	571	181	111	111	81	79
	VDR		3735	3685	1099	1067	1041	886	884
	Unique compounds		45,771	45,294	23,058	22,653	21,819	18,939	18,930
	% remaining		100.00	98.96	50.38	49.49	47.67	41.38	41.36

Table S3 .

 S3 Number of remaining inactive compounds after each filtering step.

	Target set	PubChem AID	Start	Step 1	Filtering steps Step 3	Step 4	Final Actives/Inactives ratio
	ADRB2		329,716	329,642	312,493	312,483	1/18,381
	ALDH1	1030	148,322	148,166	137,980	137,965	1/19
	ARO1		8846	8661	5440	5381	1/44
	ESR1-ago		9089	8897	5640	5583	1/429
	ESR1-ant		8297	8121	5003	4948	1/49
	FEN1		382,244	382,117	355,420	355,402	1/963
	GBA	2101	314,877	314,654	296,080	296,052	1/1783
	GLP1R		321,735	321,657	304,879	304,866	1/140
	GLS		401,810	401,672	371,883	371,860	1/1660
	IDH1		388,463	388,376	362,063	362,049	1/9283
	KAT2A		376,634	376,467	348,571	348,548	1/1797
	L3MBTL1		217,165	217,107	204,490	204,480	1/408
	MAPK1	995	66,078	65,908	62,652	62,629	1/203
	MTORC1		41,294	41,294	32,972	32,972	1/340
	OPRK1	1777	284,169	284,120	269,818	269,816	1/11,242
	PKM2	1631	259,866	259,782	245,525	245,523	1/450
	PPARG		8532	8357	5267	5211	1/193
	RORC	2551	256,777	256,580	243,311	243,284	1/35
	THRB	1469	281,374	281,090	254,491	254,442	1/4801
	TP53		6973	6836	4215	4168	1/53
	VDR		384,189	383,989	355,415	355,388	1/402
	Unique compounds		464,805	464,047	422,400	422,256	
	% remaining		100.00	99.84	90.88	90.85	

Table S4 .

 S4 Virtual screening results obtained by 2D ECFP4 similarity searches on 21 fully processed selected target sets.

	Target set	PubChem AID	Min	Max	ROC Mean ± SD	Fused	Min	Max	BEDROC Mean ± SD	Fused
	ADRB2		0.53	0.70	0.63 ± 0.06	0.68	0.14	0.28	0.24 ± 0.05	0.24
	ALDH1	1030	0.49	0.52	0.51 ± 0.01	0.52	0.07	0.11	0.09 ± 0.01	0.11
	ARO1		0.50	0.52	0.51 ± 0.01	0.52	0.06	0.06	0.06	0.06
	ESR1-ago		0.56	0.72	0.65 ± 0.05	0.72	0.06	0.28	0.16 ± 0.06	0.22
	ESR1-ant		0.42	0.54	0.50 ± 0.03	0.50	0.02	0.09	0.06 ± 0.02	0.04
	FEN1		0.44	0.44	0.44	0.44	0.04	0.04	0.04	0.04
	GBA	2101	0.45	0.53	0.50 ± 0.03	0.48	0.03	0.10	0.06 ± 0.03	0.07
	GLP1R		0.48	0.50	0.49 ± 0.01	0.50	0.06	0.07	0.07 ± 0.01	0.07
	GLS		0.32	0.37	0.34 ± 0.02	0.33	0.01	0.02	0.01	0.01
	IDH1		0.28	0.52	0.42 ± 0.07	0.38	0.01	0.15	0.04 ± 0.04	0.06
	KAT2A		0.36	0.37	0.40 ± 0.06	0.44	0.03	0.06	0.04 ± 0.02	0.04
	L3MBTL1		0.41	0.41	0.41	0.41	0.02	0.02	0.02	0.02
	MAPK1	995	0.45	0.58	0.52 ± 0.04	0.53	0.03	0.12	0.06 ± 0.02	0.06
	MTORC1		0.47	0.52	0.48 ± 0.02	0.45	0.03	0.05	0.04 ± 0.01	0.04
	OPRK1	1777	0.69	0.69	0.69	0.69	0.26	0.26	0.26	0.26
	PKM2	1631	0.41	0.64	0.55 ± 0.08	0.64	0.03	0.16	0.09 ± 0.05	0.16
	PPARG		0.58	0.80	0.68 ± 0.07	0.78	0.01	0.27	0.14 ± 0.09	0.21
	RORC	2551	0.36	0.56	0.43 ± 0.05	0.44	0.02	0.10	0.04 ± 0.02	0.04
	THRB	1469	0.37	0.37	0.37	0.37	0.03	0.03	0.03	0.03
	TP53		0.38	0.56	0.47 ± 0.06	0.42	0.03	0.06	0.05 ± 0.01	0.03
	VDR		0.44	0.44	0.44	0.44	0.06	0.06	0.06	0.06
	Overall		0.45	0.54	0.50 ± 0.05	0.51	0.05	0.11	0.08 ± 0.02	0.09
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Table S5 .

 S5 Virtual screening results obtained by 3D shape similarity searches on 21 fully processed selected target sets.

	Target set	PubChem AID	Min	Max	ROC Mean ± SD	Fused	Min	Max	BEDROC Mean ± SD	Fused
	ADRB2		0.47	0.66	0.53 ± 0.06	0.67	0.08	0.24	0.14 ± 0.05	0.20
	ALDH1	1030	0.46	0.53	0.50 ± 0.03	0.49	0.07	0.11	0.08 ± 0.01	0.09
	ARO1		0.60	0.69	0.65 ± 0.05	0.62	0.07	0.10	0.09 ± 0.02	0.07
	ESR1-ago		0.46	0.65	0.56 ± 005	0.65	0.03	0.22	0.12 ± 0.05	0.15
	ESR1-ant		0.58	0.64	0.60 ± 0.02	0.61	0.06	0.14	0.10 ± 0.02	0.13
	FEN1		0.45	0.45	0.45	0.45	0.03	0.03	0.03	0.03
	GBA	2101	0.33	0.40	0.38 ± 0.03	0.34	0.02	0.05	0.03 ± 0.01	0.03
	GLP1R		0.51	0.52	0.52 ± 0.01	0.52	0.04	0.06	0.05 ± 0.01	0.05
	GLS		0.37	0.45	0.40 ± 0.03	0.44	0.01	0.04	0.02 ± 0.01	0.04
	IDH1		0.35	0.50	0.41 ± 0.05	0.39	0.00	0.09	0.03 ± 0.02	0.02
	KAT2A		0.38	0.44	0.39 ± 0.03	0.43	0.05	0.06	0.06 ± 0.01	0.06
	L3MBTL1		0.50	0.50	0.50	0.50	0.04	0.04	0.04	0.04
	MAPK1	995	0.45	0.62	0.53 ± 0.05	0.55	0.03	0.13	0.08 ± 0.03	0.11
	MTORC1		0.44	0.52	0.47 ± 0.03	0.52	0.03	0.07	0.04 ± 0.01	0.06
	OPRK1	1777	0.55	0.55	0.55	0.55	0.03	0.03	0.03	0.03
	PKM2	1631	0.48	0.67	0.60 ± 0.07	0.59	0.02	0.20	0.12 ± 0.07	0.15
	PPARG		0.59	0.76	0.72 ± 0.05	0.73	0.04	0.30	0.20 ± 0.06	0.30
	RORC	2551	0.38	0.51	0.45 ± 0.03	0.44	0.02	0.07	0.04 ± 0.01	0.04
	THRB	1469	0.57	0.57	0.57	0.57	0.07	0.07	0.07	0.07
	TP53		0.54	0.62	0.58 ± 0.04	0.56	0.04	0.13	0.08 ± 0.04	0.11
	VDR		0.37	0.37	0.37	0.37	0.02	0.02	0.02	0.02
	Overall		0.47	0.55	0.51 ± 0.03	0.52	0.04	0.10	0.07 ± 0.03	0.09
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Table S6 .

 S6 Virtual screening results obtained by molecular docking on 21 fully processed selected target sets.

	Target set	PubChem AID	Min	Max	ROC Mean ± SD	Fused	Min	Max	BEDROC Mean ± SD	Fused
	ADRB2		0.41	0.52	0.46 ± 0.04	0.44	0.03	0.08	0.06 ± 0.02	0.09
	ALDH1	1030	0.51	0.53	0.52 ± 0.01	0.53	0.09	0.10	0.09	0.09
	ARO1		0.47	0.53	0.51 ± 0.03	0.5	0.03	0.07	0.05 ± 0.02	0.04
	ESR1-ago		0.26	0.51	0.36 ± 0.07	0.48	0.00	0.05	0.01 ± 0.02	0.03
	ESR1-ant		0.43	0.54	0.50 ± 0.03	0.53	0.04	0.08	0.06 ± 0.01	0.06
	FEN1		0.47	0.47	0.47	0.47	0.08	0.08	0.08	0.08
	GBA	2101	0.48	0.72	0.64 ± 0.08	0.69	0.09	0.21	0.16 ± 0.04	0.18
	GLP1R		0.50	0.51	0.51 ± 0.01	0.51	0.05	0.06	0.06 ± 0.01	0.06
	GLS		0.34	0.43	0.38 ± 0.03	0.35	0.02	0.06	0.04 ± 0.01	0.02
	IDH1		0.30	0.48	0.37 ± 0.05	0.38	0.00	0.09	0.04 ± 0.03	0.04
	KAT2A		0.35	0.40	0.38 ± 0.03	0.39	0.04	0.06	0.05 ± 0.01	0.06
	L3MBTL1		0.45	0.45	0.45	0.45	0.04	0.04	0.04	0.04
	MAPK1	995	0.48	0.55	0.52 ± 0.02	0.54	0.04	0.07	0.06 ± 0.01	0.07
	MTORC1		0.49	0.54	0.52 ± 0.02	0.51	0.04	0.07	0.06 ± 0.01	0.05
	OPRK1	1777	0.58	0.58	0.58	0.58	0.09	0.09	0.09	0.09
	PKM2	1631	0.49	0.56	0.54 ± 0.02	0.62	0.04	0.05	0.05 ± 0.01	0.05
	PPARG		0.65	0.74	0.69 ± 0.02	0.71	0.08	0.24	0.16 ± 0.04	0.18
	RORC	2551	0.36	0.42	0.37 ± 0.01	0.36	0.02	0.04	0.03 ± 0.01	0.02
	THRB	1469	0.36	0.36	0.36	0.36	0.04	0.04	0.04	0.04
	TP53		0.47	0.57	0.51 ± 0.04	0.51	0.02	0.06	0.04 ± 0.02	0.02
	VDR		0.34	0.36	0.35 ± 0.01	0.34	0.01	0.01	0.01	0.01
	Overall		0.44	0.51	0.48 ± 0.02	0.49	0.04	0.08	0.06 ± 0.02	0.06
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Table S7 .

 S7 Chemical diversity of PDB template ligands assessed by the number of unique Bemis-Murcko frameworks.51 

	Target set	Number of PDB templates	Number of Bemis-Murcko scaffolds
	ADRB2	8	
	ALDH1	8	
	ESR1-ago	15	14
	ESR1-ant	15	15
	FEN1	1	
	GBA	6	
	IDH1	14	14
	KAT2A	3	
	MAPK1	15	15
	MTORC1	11	
	OPRK1	1	
	PKM2	9	
	PPARG	15	15
	TP53	6	
	VDR	2	
	Bemis-Murcko frameworks were computed from mol2 files, with the "Generate Fragments" component of Pipeline
	Pilot 2019.		
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Table 1 .

 1 Analysis of protein-ligand interactions observed from the best poses (selected by both IFP and Surflex-Dock) of SIDs 144203677, 144203979 and 144204501 (LIT-PCBA ESR1-ago ligand set) inside the binding pocket of the PDB ID 2Q70. A similar analysis of the true active SID 144206564 (best pose selected by IFP) is also provided for comparison.

		SID 144206564	SID 144203677	SID 144203979	SID 144204501
		(active)	(inactive)	(inactive)	(inactive)
				The hydrogen	
	Hydrogen bonds	All hydrogen bonds observed in the PDB template were retained. No additional hydrogen bond was formed.	All hydrogen bonds observed in the PDB template were retained. However, the ligand engaged in another hydrogen bond with Met421.	bond with the residue Arg394 observed in the PDB template was not formed by the ligand. Besides, the ligand engaged in another hydrogen bond with	The hydrogen bond with the residue His524 observed in the PDB template was not formed by the ligand. No additional hydrogen bond was formed.
				Leu346.	
	Hydrophobic interactions	All 36 hydrophobic interactions with 14 residues in the binding site observed in the PDB template were retained. The ligand also engaged in hydrophobic interactions with one more site residue (Met388).	33 hydrophobic interactions with 15 residues in the binding site were formed. In comparison to the PDB template, this ligand did not engage in hydrophobic interactions with Trp383, but with two other residues (Met388 and His524).	33 hydrophobic interactions with 15 residues in the binding site were formed. In comparison to the PDB template, this ligand formed hydrophobic interactions with another residue (Met388).	30 hydrophobic interactions with 13 residues in the binding site were formed. In comparison to the PDB template, this ligand did not engage in hydrophobic interactions with Leu349 and Leu384, but with another residue (Met388).
	pK d by				
	Surflex-	8.0184	8.1467	10.5816	8.1929
	Dock				
	Tc values by				
	IFP	0.9000	0.7368	0.7500	0.7895
	rescoring				
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Table S3 .

 S3 List of true active SIDs included in the ESR1-ago target set of LIT-PCBA that were retrieved along with the top 1% false positives by rescoring the docking poses issued by Surflex-Dock with the two ligand-protein interaction-comparing methods IFP and GRIM. The numbers in brackets represent the EF1% values obtained after virtual screening. Results from Surflex-Dock 26 are also indicated for comparison.

	Table						
	PDB	True active SIDs retrieved	True active SIDs retrieved	True active SIDs retrieved
	entry	by Surflex-Dock scoring	by IFP rescoring	by GRIM rescoring
	1L2I	None	(0.00)	144206564	(7.69)	None	(0.00)
	2B1V	None	(0.00)	144209467	(7.69)	144207138	(7.69)
	2B1Z	None	(0.00)	None	(0.00)	None	(0.00)
	2P15	None	(0.00)	144206564	(7.69)	144206564	(7.69)
	2Q70	None	(0.00)	144206564	(7.69)	None	(0.00)
	2QR9	None	(0.00)	None	(0.00)	None	(0.00)
	2QSE	None	(0.00)	None	(0.00)	None	(0.00)
	2QZO	None	(0.00)	None	(0.00)	None	(0.00)
	4IVW	None	(0.00)	None	(0.00)	144206564	(7.69)
	4PPS	None	(0.00)	None	(0.00)	None	(0.00)
	5DRJ	None	(0.00)	None	(0.00)	None	(0.00)
	5DU5	None	(0.00)	None	(0.00)	144207138	(7.69)
	5DUE	None	(0.00)	None	(0.00)	144206564 144203706	(15.38)
	5DZI	None	(0.00)	144206564	(7.69)	None	(0.00)
	5E1C	None	(0.00)	144206564	(7.69)	144206564	(7.69)
	Max-pooling	None	(0.00)	None	(0.00)	144206564	(7.69)
	EF1%	0.00		3.08 ± 3.90		3.59 ± 4.92	

cible biologique, de manière rétrospective, à partir d'une banque de molécules. Ceci est fait en utilisant les données déjà existantes, soit dans la littérature, soit dans les bases de données ouvertes au public. Cependant, de nombreux problèmes avec les jeux de données actuellement utilisés dans la communauté de chémoinformatique, tels que DUD, DUD-E, ChEMBL, ou MUV, ont été observés et avertis[3][4][5][6]. Plus précisément, il y a des biais dans la composition des actifs et des "decoys", par exemple: la puissance des "decoys" n'est pas encore connue et vérifiée par les tests biologiques, le nombre des actifs est trop élevé, et les actifs ressemblent trop à des molécules de référence.Ces jeux de données ne décrivent pas la vraie vie, car ils n'imitent pas les données utilisées au criblage à haut débit en réalité, et ils surestiment la précision des méthodes de criblage in silico. Il nécessite donc de concevoir un nouveau jeu de données nonbiaisé qui est dédié à des méthodes de criblage virtuel "structure-based" ainsi que "ligand-based", qui a un niveau de difficulté similaire à celui des chimiothèques utilisées au criblage à haut débit, et qui est capable de capturer les différences entre les performances de différentes méthodes.Devant les problèmes expliqués ci-dessus, mon travail de thèse se compose en deux parties principales. La première partie concerne le développement d'une procédure d'alignement de petits ligands sur les pharmacophores "structure-based" déjà générés, avant de choisir une meilleure pose pour chaque ligand, et de classer les ligands selon un certain paramètre. Une fois élaboré, ce protocole pourrait être utilisé pour prédire la pose d'un composé actif pour une protéine cible, et distinguer entre les vrais actifs et les "decoys" (qui sont chimiquement similaires à des vrais actifs), ou entre les vrais actifs et les vrais inactifs d'une cible d'intérêt pharmaceutique. La deuxième partie se

Figure S1. Comparison of potency values (in pIC 50 , pEC 50 , pK i , pK d ) for confirmed actives of the LIT-PCBA, DUD-E and ChEMBL ligands.

Overall Conclusions

PATTERN acceptor [14#8] PATTERN cation [15#7] PATTERN anion [17#8] PATTERN rings [15#6] PATTERN hydrophobe [13#6] #PATTERN donac [15#8] PATTERN metal

rings rings attractive gaussian weight=1.0 radius=1.0 INTERACTION hydrophobe hydrophobe attractive gaussian weight=1.0 radius=1.0 INTERACTION donor donor attractive gaussian weight=1.0 radius=1.0 INTERACTION donac donac attractive gaussian weight=1.0 radius=1.0 INTERACTION acceptor acceptor attractive gaussian weight=1.0 radius=1.0 INTERACTION cation cation attractive gaussian weight=1.0 radius=1.0 INTERACTION anion anion attractive gaussian weight=1.0 radius=1.0 INTERACTION metal metal attractive gaussian weight=10.0 radius=1.0 # INTERACTION rings hydrophobe attractive gaussian weight=1.0 radius=1.0 INTERACTION donor cation attractive gaussian weight=1.0 radius=1.0 INTERACTION acceptor anion attractive gaussian weight=1.0 radius=1.0 INTERACTION donac donor attractive gaussian weight=1.0 radius=1.0 INTERACTION donac acceptor attractive gaussian weight=1.0 radius=1.0 INTERACTION metal anion attractive gaussian weight=10.0 radius=1.0 INTERACTION metal acceptor attractive gaussian weight=10.0 radius=1.0 INTERACTION metal donac attractive gaussian weight=10.0 radius=1.0 # INTERACTION anion cation repulsive gaussian weight=1.0 radius=1.0 INTERACTION metal hydrophobe repulsive gaussian weight=10.0 radius=1.0 INTERACTION metal rings repulsive gaussian weight=10.0 radius=1.0 INTERACTION metal cation repulsive gaussian weight=10.0 radius=1.0 INTERACTION metal donor repulsive gaussian weight=10.0 radius=1.0 # INTERACTION hydrophobe donor repulsive gaussian weight=1.0 radius=1.0 INTERACTION hydrophobe acceptor repulsive gaussian weight=1.0 radius=1.0 INTERACTION hydrophobe donac repulsive gaussian weight=1.0 radius=1.0 INTERACTION hydrophobe cation repulsive gaussian weight=1.0 radius=1.0 INTERACTION hydrophobe anion repulsive gaussian weight=1.0 radius=1.0

As previously mentioned in the manuscript, artificially constructed ligand sets classically used by the cheminformatics community (DUD, DUD-E, DEKOIS 2.0) suffer from multiple drawbacks ranging from the presence of possible false negatives/positives to obvious and hidden design bias, therefore overestimating the true accuracy of virtual screening methods. In this chapter, we present a novel data set entitled LIT-PCBA that was specifically designed for virtual screening and machine learning, relying on data from dose-response PubChem bioactivity assays that were additionally processed to avoid the issues inherent in other databases. The resulting ligand sets were finally unbiased by the recently described asymmetric validation embedding procedure to afford the final data collection that mimics experimental screening decks in terms of hit rate (ratio of active to inactive compounds) and potency distribution, and is ready for The current virtual screening exercise suggests that six target sets (GLS, GLP1R, ARO1, THRB, RORC, L3MBTL1) are not adequate for in silico screening purposes since none of the three methods was able to clearly distinguish the confirmed actives from inactive compounds when the "max-pooling" approach was applied (EF1% < 2.0) (Figures 45). Moreover, for five target sets among them (GLS as the only exception), the template-based scoring approach did not give any EF1% value above 2.0 either. Reasons for failures in screening these targets were: (i) the promiscuity of the binding site towards many low-affinity chemotypes (e.g. ARO1), (ii) the presence of non-overlapping binding sites (orthosteric versus allosteric) for PDB templates and PubChem actives (e.g. GLP1R, GLS, RORC), and (iii) the availability of a single PDB template (e.g. L3MBTL1, THRB).

Two target sets (ADRB2, PPARG) seem easier to handle since all three virtual screening methods could successfully retrieve true actives with enrichment factors higher than 5.0. In four 

Rescoring LIT-PCBA Docking Poses with Interaction-Based Scoring Functions

From the results portrayed in Chapter 3, it can clearly be inferred that Surflex-Dock generally gave comparable performances to random selection on the LIT-PCBA data collection, suggesting that the energy-based empirical scoring function of this docking program was not highly effective in selecting true active molecules from a pool of chemically diverse and unbiased ligands. Several alternatives have been introduced in the literature, including two methods relying on the comparison of protein-ligand interaction fingerprints (IFP) and of interaction pattern graphs (GRIM) that were in-house developed by the researchers of our laboratory. They have both been proven more effective than popular docking programs in several virtual screening experiments, with encouraging results in terms of areas under the ROC curves and early enrichment of true actives. The questions are: will these approaches still give good performances when applied to the challenging LIT-PCBA data set, and will they once again outperform the Surflex-Dock scoring function on such a difficult data collection? This final chapter serves to answer the questions above. 
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