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Abstract

Cryptographic algorithms are nowadays prevalent in establishing secure connectivity in our
digital society. Such computations handle sensitive information like encryption keys, which
are usually very exposed during manipulation, resulting in a huge threat to the security of the
sensitive information concealed in cryptographic components. Eventually, the compromission of
keys results in the compromission of the whole connected system. In the field of embedded systems
security, side-channel analysis is one of the most powerful techniques against cryptographic
implementations. It consists in the extracting the sensitive data by exploiting certain physically
observable leakages during the execution of the cryptographic components. As such attacks
pose a real threat, various protections have been studied and developed, wherein the random
masking is one of the most well-established. Basically, masking provides provable security
against side-channel analysis by splitting (at a systematic level) any sensitive variable into
several random shares. A fundamental parameter for a masking scheme is its security order ¢.
Thereby, any adversaries aiming at key-recovering must employ strictly more than ¢ shares to
launch a higher-order attack, whereas the data complexity increases exponentially in ¢ (under
noisy conditions), which in turn is providing security against side-channel analysis.

The main subject of this thesis is the measurable side-channel security of cryptographic
implementations, particularly in the presence of random masking. Overall, this thesis consists of
two topics. One is the leakage quantification of the most general form of masking equipped with
the linear codes, so-called code-based masking; the other one is exploration of applying more
generic information measures in a context of side-channel analysis. Two topics are inherently
connected to each other in assessing and enhancing the practical security of cryptographic
implementations.

Regarding the former, we propose a unified coding-theoretic framework for measuring the
information leakage in code-based masking. Specifically, our framework builds formal connections
between coding properties (including the dual distance and the kissing number of codes) and
leakage metrics in side-channel analysis (including signal-to-noise ratio and mutual information).

As has been reported in literature, different linear codes have distinct impact on the side-channel
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resistance of a code-based masking. Those formal connections enable us to push forward the
quantitative evaluation on how the linear codes can affect the concrete security of all code-based
masking schemes, including non-redundant cases (e.g., inner product masking, direct sum
masking, etc) and redundant cases (e.g., polynomial masking based on Shamir’s secret sharing,
etc). Moreover, relying on our framework, we consolidate code-based masking by providing the
optimal linear codes in the sense of maximizing the side-channel resistance of the corresponding
masking scheme. Our framework is finally verified by attack-based evaluation, where the attacks
utilize maximum-likelihood based distinguishers and are therefore optimal.

Regarding the latter, we present a full spectrum of application of alpha-information, a
generalization of (Shannon) mutual information, for assessing side-channel security. In side-
channel analysis, mutual information is frequently adopted in an information-theoretic evaluation
of side-channel security level. By a communication channel model, mutual information provides
an upper bound on the success rate of any attacks given a fixed set of side-channel measurements,
or it gives a lower bound on the number of measurements to achieve a specific success rate.
However, those bounds are loose, even much looser in highly noisy scenarios. In this thesis,
we propose to utilize a more general information-theoretic measure, namely alpha-information
(a-information) of order . The new measure also gives the upper bound on success rate and
the lower bound on the number of measurements. More importantly, with proper choices of «,
a-information provides very tight bounds, in particular, when « approaches to positive infinity,
the bounds will be exact. As a matter of fact, maximume-likelihood based distinguishers will
converge to the bounds. Therefore, we demonstrate how the two world, information-theoretic
measures (bounds) and maximum-likelihood based side-channel attacks, are seamlessly connected
in side-channel analysis.

In summary, our study in this thesis pushes forward the evaluation and consolidation of
side-channel security of cryptographic implementations. From a protection perspective, our
quantitative outputs allow to empower practical masked implementations with the highest
achievable side-channel resistance when equipped with the optimal linear codes. Therefore, we
provides a best-practice guideline for the application of code-based masking. From an evaluation
perspective, the application of alpha-information enables practical evaluators and designers to
have a more accurate (or even exact) estimation of concrete side-channel security level of their

cryptographic chips.
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Résumé

Les algorithmes cryptographiques jouent un réle prédominant pour établir une connectivité
sécurisée dans notre société numérique actuelle. Ces calculs traitent des informations sensibles
telles que des clés de chiffrement, qui sont généralement trés exposées lors de la manipulation, ce
qui représente une menace énorme pour la sécurité des informations sensibles dans les composants
cryptographiques et ’ensemble des systémes connectés. Dans le domaine de la sécurité des
systémes embarqués, I'analyse des canaux auxiliaires est 'une des techniques les plus puissantes
contre les implémentations cryptographiques. Elle consiste a extraire les données sensibles
en exploitant certaines fuites physiquement observables lors de ’exécution des composants
cryptographiques. Comme ces attaques représentent une menace réelle, diverses protections
ont été étudiées et développées. Parmi celles-ci, le masquage aléatoire est I'une des mieux
établies. Fondamentalement, le masquage offre une sécurité prouvable contre ’analyse des
canaux auxiliaires en divisant toute variable sensible en plusieurs parts aléatoires. Un paramétre
fondamental pour un schéma de masquage est son ordre de sécurité ¢ > 0. Ainsi, tout adversaire
visant & récupérer des clés doit utiliser strictement plus de ¢ parts pour lancer une attaque
d’ordre supérieur, alors que la complexité des données augmente de fagon exponentielle en ¢
(sous des conditions liées a la puissance du bruit de mesure), ce qui a son tour fournit une
sécurité contre les attaques par canaux auxiliaires.

Le sujet principal de cette thése concerne la sécurité mesurable des canaux auxiliaires des
implémentations cryptographiques, en particulier en présence de masquage aléatoire. Globale-
ment, cette thése se compose de deux sujets. L’un est la quantification des fuites de la forme
la plus générale de masquage équipé des codes linéaires, dit masquage & base de code ; I'autre
est 'exploration de ’application de mesures d’information plus génériques dans un contexte
d’analyse de canaux auxiliaires. Ces deux sujets sont intrinséquement liés I'un a ’autre dans
I’évaluation et 'amélioration de la sécurité pratique des implémentations cryptographiques.

Pour ce qui concerne le premier sujet, nous proposons un cadre théorique de codage unifié
pour mesurer la fuite d’informations dans le masquage basé sur les codes. Plus précisément,

notre cadre établit des connexions formelles entre les propriétés de codage (y compris la distance



duale et le nombre de points de contact permettant un sondage) et les métriques de fuite
dans analyse des canaux auxiliaires (y compris le rapport signal sur bruit et information
mutuelle). Comme cela a été rapporté dans la littérature, différents codes linéaires ont un
impact distinct sur la résistance aux attaques par canal auxiliaires d’un masquage basé sur un
code. Ces connexions formelles nous permettent de faire avancer ’évaluation quantitative sur
la fagon dont les codes linéaires peuvent affecter la sécurité concréte de tous les schémas de
masquage basés sur les codes, y compris les cas non-redondants (par exemple, masquage basé
sur le produit scalaire, masquage par somme directe, etc.) et les cas redondants (par exemple,
masquage polynomial basé sur le partage secret de Shamir, etc.). De plus, en nous appuyant
sur notre cadre théorique, nous consolidons le masquage basé sur le code en fournissant les
codes linéaires optimaux dans le sens qu’ils maximisent la résistance des canaux auxiliaires
du schéma de masquage correspondant. Notre formalisation est finalement vérifiée par une
évaluation basée sur les attaques, ol les attaques utilisent des distingueurs basés sur le maximum
de vraisemblance et sont donc optimales.

Concernant le deuxiéme sujet, nous présentons un spectre complet d’applications d’une
variante de l'information mutuelle de Shannon, appelée “alpha-information”. Il s’agit d’une
généralisation de 'information mutuelle permettant d’évaluer la sécurité d’une implémentation
face aux attaques par canaux auxiliaires. Dans ’analyse des canaux auxiliaires, I'information
mutuelle est fréequemment adoptée dans une évaluation du point de vue de la théorie de
I'information afin d’établir le niveau de sécurité des attaques par canaux auxiliaires. Par un
modéle de canal de communication, I'information mutuelle fournit une limite supérieure sur le
taux de succés de toute attaque étant donné un ensemble fixe de mesures de canaux auxiliaires.
Alternativement, elle donne une limite inférieure sur le nombre de mesures pour atteindre un taux
de succeés spécifique. Cependant, ces limites sont souples, encore plus souples dans des scénarios
a fort bruit de mesure. Dans cette thése, nous proposons d’utiliser une mesure plus générale du
point de vue de la théorie de I'information, a savoir I'information alpha (a-information) d’ordre
«. La nouvelle mesure donne également la limite supérieure du taux de succés et la limite
inférieure du nombre de mesures. Ce qui est remarquable, c’est qu’avec des choix appropriés de
a, I'information « fournit des bornes trés proches de la réalité ; en particulier, lorsque o tend
vers Uinfini (positif), les limites seront exactes. En fait, les distingueurs basés sur le maximum
de vraisemblance convergeront vers les limites. Par conséquent, nous démontrons comment les

deux mondes, a savoir les mesures du point de vue de la théorie de I'information (limites) et
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les attaques par canaux auxiliaires basées sur le maximum de vraisemblance, sont parfaitement
connectés dans I’analyse par canaux auxiliaires.

En résumé, notre étude dans cette thése fait avancer 1’évaluation et la consolidation de la
sécurité des canaux auxiliaires des implémentations cryptographiques. Du point de vue de
la protection, nos sorties quantitatives permettent de mettre en ceuvre des implémentations
masquées concrétes, implémentant une résistance vis-a-vis des attaques par canal auxiliaire la
plus élevée possible lorsqu’elles sont équipées des codes linéaires optimaux. Par conséquent, nous
fournissons un guide des meilleures pratiques pour I’application du masquage basé sur le code.
Du point de vue de I’évaluation, I’application de ’alpha-information permet aux évaluateurs
et concepteurs (développeurs) d’avoir une estimation plus précise (voire exacte) du niveau de

sécurité concret des canaux auxiliaires émanant de leurs puces cryptographiques.
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1.6 Measuring Leakage in a General Context

1.1 Cryptography & Cybersecurity

Nowadays, abundant electronic devices are proliferating in our daily life, such as SIM cards,
cell-phones, bank cards, etc. For instance, from Eurosmart’s SurveyEl, there are about 9.54 billion
shipped units of secure elements. Particularly, the Telecom market has closed 2020 with around
5,1 billion units shipped, including 309 million units shipped for eSIM and a 4,8 billion units for

SIM, which experienced a significant increase. Those secure elements are widely deployed in

IEurosmart, https://www.eurosmart.com/2019-shipments-and-2020-outlook/
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telecom, financial services, device manufacturers, etc. However, such secure elements usually
handle some sensitive information, which are very exposed during computations when loading,
manipulating, and storing them, resulting in massive scales of vulnerabilities and attacks in
practice. As a consequence, improving their security has become the highest priority task.

In this respect, modern cryptography is the cornerstone to build the chain of trust and security.
It plays a fundamental and pivotal role in establishing secure connectivity in this emerging digital
era. In other words, cryptography makes secure communications between different parties possible
and evolves along with computation and communication technologies. Basically, cryptography
provides five primary functionalities including confidentiality, integrity, authentication, non-
repudiation and key exchange. Those functionalities are well-established on the basis of various
concepts of mathematics such as information-theoretic security, computational-complexity theory,
number theory, coding theory, probability theory and so on.

Relying on mathematical tools, it is feasible to devise and construct theoretically secure
cryptographic algorithms or protocols. In the field of symmetric key cryptography, the Data
Encryption Standard (DES) [I16] and its successor Advanced Encryption Standard (AES) [117]
is one of the most important algorithms that was published two decades ago by National Institute
of Standards and Technology (NIST). On the contrary, in the field of public key cryptography,
RSA [14]I] and ECC [92] [I09] are two well-known instances that are based on the intractability

of the corresponding mathematical problems.

1.2 The Root of Security & the Chain of Security

As a basic rule and common consensus in cryptography, Kerckhoffs’s principle, dated back to
19th century, states that a cryptosystem should be secure, even if everything about the system
is accessible to adversaries except the key [90, [O1]. It is followed and reformulated by Claude E.
Shannon in 1949 known as Shannon’s maxim: “one ought to design (crypto) systems under the
assumption that the enemy will immediately gain full familiarity with them” [I47]. The keys in
a cryptosystem form the basis for the root of trust that is critical to the system. Theoretically,
above constructions (e.g., AES, RSA, ECC, etc) are computationally secure in this regard under
the black-box assumption, wherein an adversary can only access to inputs and outputs of a
cryptosystem.

However, in practical applications, the keys are not static but manipulated dynamically in

the digital world. Indeed, each stage of manipulations (computations) shall expose those keys,
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which leads to the demand of chain of security to guarantee security in reality. As a matter
of fact, any digital devices will leak physically observable information [I08] of internal states
during executions. Although mathematical proofs of security for cryptographic algorithms are
fundamental and indispensable, they usually cannot guarantee the practical security of the
corresponding cryptographic implementations. In reality, those cryptographic algorithms must
be run in some physical devices. Therefore, those physical observations usually violate the
black-box setting assumption that an adversary can only access to the inputs and outputs of a
cryptographic algorithm. As knowing certain observable information makes it advantageous to
adversary, the black-box model is lifted to gray-box setting by considering any (abstract) form
of observable leakages existing in practice. Accordingly, the attacks exploiting those physically

observable leakages are called physical attacks.

1.3 Side-Channel Analysis

Side-channel analysis (SCA) is among the most powerful physical attacks against cryptographic
implementations. Since the seminal works [04, 053], a very large amount of SCAs have been
proposed by exploiting various observable physical leakages in practice. Those physical leakages
include but not limited to the running time [59] [94], the power consumption [46, [95], the electro-
magnetic emanations |71, [I32], the acoustic emission [20, [73], the photonic emission |27, [67, [06],
etc., and more exploitable leakages emerge as technology improves (e.g., Nanotechnology)
and in-depth understanding of behaviors of elementary circuits, like micro-architectural data
leakages [72] 03, O8], [[04]. Essentially, any measurable secret-dependent information or behaviors
of the underlying cryptographic devices can be exploited to launch a successful side-channel
attack.

In principle, side-channel analysis consists of extracting the sensitive information from noisy
measurements. It is commonly classified into two classes depending on the ability of the adversary

and corresponding setting.

e Non-profiling attacks. An adversary attempts to extract the sensitive information by
correlating side-channel measurements and hypothetical leakages. Several well-known
attacks are simple power analysis (SPA) [94], differential power analysis (DPA) [95],
correlation power analysis (CPA) [10], mutual information analysis (MIA) [74, [163], etc.

e Profiling attacks. They are two-phrase attacks. an adversary is assumed to possess an

identical device to build some exact profiles on the leakage behaviors and then apply these
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profiles during the attack phrase. Some well-known instances are template attack [31],
stochastic attack [I43], etc. In particular, the template attack is known as the most

powerful side-channel attack knowing the leakage model.

Additionally, machine learning (including deep learning) techniques have been adapted into
side-channel analysis in both non-profiling [I21], (133} [I55] and profiling settings |10, 19, T0G,
168l [I71]. In essence, side-channel classifies different key hypotheses relying on observations,
in which learning-based techniques shall amplify those attacks dramatically. However, those
learning-based attacks tolerate a loss of interpretability on results, even in some restricted

scenarios.

1.4 Protections and Code-based Masking

In order to protect cryptographic chips (implementations) against SCA, many countermeasures
have been proposed, wherein three main routines are masking, shuffling and hiding. Specifically,
masking schemes [30, [49, [102], 139] randomize the dependency between sensitive data and
leakages by dividing each sensitive variable into several random shares to thwart SCA, while
Shuffling schemes [50}, B3], 140] randomize the order of operations during the executions. Quite
differently, by circuit-level alteration, hiding-based countermeasures [46] 102} [[34] attempt to
make the leakages uniformly independent to the data processed, while it is difficult to have
any guarantee [85]. Among them, masking schemes are a class of the most attractive and
frequently used techniques against SCA, since they provide formally provable security and could

be implemented on algorithmic-level without any hardware alteration.

1.4.1 Masking Schemes

Featured with the favorable provable security, masking has triggered a fruitful line of works,
ranging from theoretical constructions of secure components (usually called gadget) to practical
resilience evaluations by side-channel attacks. Typically, the key parameter of a masking scheme
is the security order ¢ under the probing model [86], which indicates the least order (¢t + 1) of
a successful attack must have. In a ¢-th order secure masking, each sensitive variable into at
least t + 1 shares. The rationale is that, the attack complexity increases exponentially with the
number of shares [30, [[28] given a sufficient amount of noise, while the implementation cost

increases only quadratically (or cubically in higher-order glitch-free implementations [79]).
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Various masking schemes have been proposed since 1999, as shown in Fig. Typically
instances include Boolean masking [30], Inner Product masking (IPM) [2] [3], Leakage Squeezing
(LS) [23, 24] and Direct Sum masking (DSM) [I7], 123]. Note that those proposals marked in
blue are the first proposals of the corresponding schemes. An exception exists for the original
IPM [], since there exist some first-order information leakages that are fixed in the improved
one [2]. To the best of our knowledge, the generalized code-based masking (GCM) [35, [164] is
the most generic scheme in this respect El In particular, polynomial masking [77, [[3T] is also a

special case of GCM, which is built upon Shamir’s secret sharing (SSS) scheme [145].

[CGC+21b]
GCM |Generalized code-based masking [WMCS20]
PM |Polynomial masking [[GF"X‘lljil]] [CPR12] [CMP18] [CS21]
) ) CG18] [CGG+19]
DSM | Direct sum masking [
[BCC+14] [PGS+17] [CGM19]
LS |Leakage squeezing [CDGM12] [CDG+14]

[MGD11] [Carl3]
[PRR14] [WSY+16]

IPM |Inner product masking [BFGV12] [BFG15] [BFG+17] [CGC+21a]
[ISW03]
BM [CJRR99] [RP10] [PR13]
1 1 1 1 1 1 1
1999 2012 2014 2016 2018 2020 2022

Figure 1.1: Various proposals of masking schemes with corresponding constructions, security

assessment, and some variants.

Naturally, two questions arise: first, how to measure information leakage in different schemes?

and second, for each scheme, how to choose optimal codes (or parameters)?

1.4.2 Generalizing to Code-based Masking

Code-based masking follows the generalization trend and unifies many schemes by concentrating
on the encodings in sharing. In code-based masking, two linear codes are involved, namely C and
D. The only requirement is that there is no nonzero codeword in their intersections [35] [164].
As a result, the resilience of a code-based masking against side-channel analysis depends highly
on the two linear codes, in which the coding-theoretic properties shall be connected to algebraic

complexity from a view of (pseudo)-Boolean function.

n the sequel, we call the code-based masking in the most general scenario for simplicity.
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The first representative scheme is IPM, in which the encoding is similar to the simplest
Boolean masking except that each share is equipped with a linear function (multiplied by a
public constant). It consumes n parameters in an n-share setting and enjoys the simple structure
that can be implemented quite efficiently [3]. As a special instance of non-redundant code-based
masking, two linear codes in IPM are complementary, resulting in a super simplification when
evaluating its side-channel resistance. Indeed, we demonstrate that the side-channel security of
IPM only depends on properties of the code D [37]. More generally, only the code D matters in
any non-redundant code-based masking like DSM.

Another typical example is the polynomial masking that is based on the SSS scheme. It also
employs n public parameters in an n-share setting, but forms an entirely different encoding.
Essentially, the encoding in SSS-based masking can be reformulated and connected to the
Reed-Solomon (RS) codes [29, T0T]. Considering an (n,t)-SSS based sharing as depicted in
Fig. it forms n shares while provides a ¢t-th order privacy (side-channel resistance) rather
than nt parameters in a random setting. From a coding-theoretic perspective, the RS code is
optimal in a given finite field which achieves the Singleton bound [I49]. However, as shown
in [29], distinct public points play a role in the resilience and the efficiency of the protection.
Therefore, the questions above still remain.

In the above two representative schemes, we can refine the second question: how to choose n
parameters to maximize the side-channel protection? More straightforwardly, how to choose

public points in the case of SSS-based masking.

A

(n,t)-SSS

deg(f) =1t s,
f(as) |

0 aq a2 %} s Olp

Figure 1.2: Illustration of an instance of redundant masking. In an (n,t)-SSS based polynomial

masking, the sensitive variable X = f(0) is encoded into n shares with a security order ¢.
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1.5 Towards Measurable Side-Channel Security

Side-channel attacks pose a considerable threat to cryptographic devices that are physically or
remotely accessible by an attacker. Naturally, the side-channel leakage is at the core of evaluating
the practical security of a given cryptographic implementation. That is, how much information
can an adversary collect and/or how much of it can be exploited in practice? Regarding the
former, we refer to information leakage quantification, in which we aim at measuring side-channel
leakage in a quantification way. Those leakages might be independent of specific attacks relying
on different statistical tools in the corresponding side-channel distinguishers. On the contrary,
the latter is much more relevant to the probability of success in extracting sensitive variables

(like secret keys) in real scenarios.

1.5.1 Information Leakage Quantification

Quantifying the information leakage is essential in assessing the concrete side-channel security
of a cryptographic chip. Typically, the performance of a side-channel distinguisher is highly
determined by the amount of information leakage that is usually measured by leakage metrics
like signal-to-noise ratio, correlation coefficients, mutual information, etc.

According to different leakage models and the abstraction level of cryptographic imple-
mentations, the strategies for quantifying side-channel leakages are roughly classified into five

categories as follows.

e Firstly, the conformance-based leakage detection aims at answering the following question
at a high abstraction level: does the device under test leak side-channel information? [13]
47, [T12]. Those statistical tools include Welch’s t-test |13, 7], x>-test [112} [136], etc. A
similar approach is detailed in ISO/IEC 17825 [87].

e Secondly, the proof-based evaluation intends to prove the side-channel resistance of a
masked design under abstract models like the probing model [86] and related variants [60]
62, 126l 128]. Typically, under independence assumption and large noise condition,
several leakage models are equivalent with certain forms of constants [I120] in providing
formal security guarantees of the masked implementation. However, physical defaults like
couplings, glitches, etc., usually contradict assumptions behind the probing model [5] [T03].
As a consequence, it is recommended to launch more quantitative evaluations in assessing

practical side-channel security.
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e Thirdly, the moment-based evaluation attempts to find the least order of moments of
side-channel measurement that depend on the sensitives. Representative metrics including
signal-to-noise ratio (SNR) [I51] under proper definitions and the normalized inter-class
variance (NICV) [I4], etc. Particularly, NICV is connected to SNR in the sense that both
of them evaluate the key-dependent variance of leakage. With proper definition, SNR, can

also be used to measure the leakage in presence of higher-order masking schemes.

e Fourthly, the information-theoretic evaluation aims at measuring side-channel leakages
by utilizing information-theoretic measures [I51] [I6G]. In essential, it usually provides
information-theoretic bounds on the probability of success for any side-channel distinguish-
ers given a set side-channel measurements [41], 57]. The frequently used measures include
Shannon mutual information (MI), Kullback-Leibler divergence, conditional entropy, etc.
Additionally, some more general measures like Rényi entropy and Rényi divergence shall

be considered for a purpose of more accurate evaluation.

e Finally, the fifth category of attack-based evaluation is at the core of side-channel security
evaluation, which aims at assessing the probability of success of a specific side-channel

distinguisher. We shall detail more in the following subsection.

Summing up, the conformance-based leakage detection only provides qualitative assertion on
whether the masked circuits leak or not, while other evaluations give quantitative assessment of
concrete side-channel security. In the following, we present the last evaluation strategy, which

quantifies information leakage by exploitation.

1.5.2 Information Leakage Exploitation by Attacks

As is argued frequently, the leakage detected information-theoretic evaluation (e.g., using mutual
information) might not lead to a successful attack in practice. Eventually, the exploitability of
the side-channel leakage determines the success rate of certain attacks.

In this respect, the last category, namely the attack-based evaluation is at the core of
side-channel security evaluation, which aims at assessing the probability of success of a specific
side-channel distinguisher. Relying on large variety of side-channel distinguishers like correla-
tion power analysis [10], template attacks [31], stochastic attacks [I43], higher-order optimal
distinguisher [I8], etc, the attack-based evaluation provides more accurate assessment of leakage,

which captures device-specific features of side-channel leakage. In particular, some metrics

10
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can help including the signal-to-noise ratio (SNR) for leakage detection and success rate as an
ultimate attacking metric.

Although attack-based evaluation allows us a more accurate characterization on the concrete
side-channel security, it is much more relying on the expertise of evaluators and measurement
environment (acquisition equipment, set-ups, etc). Moreover, compared to empirical attacks,
the bounds on the success rate given by information-theoretic tools are usually very loose, even
much looser when the noise level is high or the leakage model is not accurate (with model
mismatches). To the best of our knowledge, it is still an open problem: how to narrow down or
even bridge the gap between theoretical bounds and success rate in practical?

Table 1.1: Summary of evaluation strategies in assessing side-channel resilience of cryptographic

devices (implementations).

. o Tools /
Rationale Quantitative? Target
Metrics
t-test,
Conformance-based X Impl.
Xz—test, etc.
Proof-based v Abstract Probing model, etc.
SNR,
Moment-based v Impl.
NICV, etc.
Entropy, MI
Information-theoretic v Abstract & Impl. Py, ’
a-information, ete.
Success rate,
Attack-based v Impl.
Guessing entropy, etc.

e Impl. is short for implementations;

o Abstract denotes abstract or theoretical constructions.

All above five strategies are summarized in Tab. To a large extent, all five evaluation
approaches are complementary to each other in practical application, varying with different

evaluation requirements and necessary expertise on launching evaluations.

1.6 Measuring Leakage in a General Context

Shannon information theory (e.g., entropy, conditional entropy, mutual information, etc) is
frequently adopted in side-channel analysis for measuring the leakage from an information-
theoretic perspective. More generally, the problem of information leakage quantification shall
be extended into a more general one: given two dependent random variables X and Y, how to
measure the information that Y brings on X. Intuitively, it is to measure the difference between

the amount of uncertainty on X alone and the remaining uncertainty when Y is known (the

11
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equivocation). There is consensus, since the founding work of Shannon [I46], [147], that this
information must be given by the mutual information I(X;Y) = H(X) — H(X|Y) where H(X)
is the entropy and H(X|Y) is the equivocation.

Mutual information has been successfully applied to solve many telecommunication problems.
However, recent theories in computer science and information theory show that this paradigm
is not always satisfying in practice [I50]. Indeed, the “operational” definition of the quantities
I(X,Y), H(X), H(X|Y) is linked to the size of the corresponding typical sets (via the AEP,
the asymptotic equipartition property), thanks to the law of large numbers. It thus supposes
to constitute sequences i.i.d. infinitely long of X and Y to be operational. We would prefer
more practical definitions for much shorter sequences, typically for discrete variables, where
the knowledge of the information implies knowing at least partially X. For instance, in side-
channel analysis, the key-recovery attack is essentially to recover a discrete sub-key by utilizing
unintentional side-channel leakages (like computation time, electromagnetic emanation, power
consumption for embedded implementations).

In this regard, another promising approach is using Rényi entropy and divergence [I35], which
are known as a-information theory with a flexible order « (such that o > 0 and « # 1). It is
indeed a generalization of Shannon information theory. Particularly, Sibson’s a-information [T48§]
is more appropriate for some applications [88] [89] than other proposals, which generalizes mutual
information (without mutuality). More recently, several conditional versions of a-information
have been proposed [64], [09], T57] for generalizing conditional mutual information. Especially,
[99] shows great potentials when applied into side-channel analysis by providing much tighter
bounds on the probability of success, although only few candidates of order « are provided.

However, the open problem still remains: how to derive a more accurate or even exact bound
on the success rate of empirical attacks? In this thesis, we shall explore more possibilities in
applications of a-information theory in side-channel analysis and answer this open problem in a

formal and exact way.
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CHAPTER 2

Contributions

Contents
2.1 Empowering Inner Product Masking by Optimal Codes . . . . . I3
2.2 Leakage Quantification of the Code-based Masking . . . ... .. o4
2.3 Bounding Success Rate in Recovering Secret Key . . . . . .. .. o4
2.4 Generic Information-Theoretic Measures in SCA .. ... ....
2.5 Owutline of the Thesis . . . . .. ... ... v [16]

During this thesis, the main subject targets the measurable security of cryptographic
chips. More specifically, the first topic is how to unify and quantify the information leakage
of cryptographic implementations in the presence of masking protections. In this regard, we
present a coding-theoretic framework to concretely measure the information leakage in code-
based masking. Secondly, how the general information-theoretic measures (e.g., Rényi entropy,
a-divergence, a-information, etc) can be exploited to evaluate and understand the concrete
security level of cryptographic devices. In this respect, we present information-theoretic bounds
on the maximum success rate of key-recovery attacks and the minimum number of side-channel

traces to achieve a specific success rate.

2.1 Empowering Inner Product Masking by Optimal Codes

The first contribution of this thesis lies in optimizing Inner Product Masking (IPM) by providing
the optimal codes for it [30] 37, 40]. IPM is proposed to strengthen the frequently used Boolean

13
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masking by improving the algebraic complexity of encoding (or sharing). We propose a coding-
theoretic approach to quantitatively assess the side-channel security of the IPM. Specifically,
starting from the expression of IPM in a coded form, we use two defining parameters of the code
(namely the dual distance and the kissing number) to characterize its side-channel resistance.
We then connect it to two leakage metrics, namely signal-to-noise ratio (SNR) and mutual
information (MI) from an information-theoretic aspect. Next, we show how to systematically
choose optimal codes (in the sense of maximizing the resilience) to optimize IPM. We present a
simple but effective algorithm for choosing optimal codes for IPM, which should be of special

interest for designers when selecting optimal parameters for IPM.

2.2 Leakage Quantification of the Code-based Masking

In this thesis, we follow a generalization approach by targeting the most general code-based
masking called generalized code-based masking (GCM) [35], which includes Boolean masking,
IPM, Leakage Squeezing (LS), Direct Sum masking (DSM), Shamir’s Secret Sharing (SSS)-based
masking, etc. We follow the above coding-theoretic approach and propose a unified leakage
quantification framework for GCM by connecting the side-channel resistance of GCM with two
coding properties of the corresponding linear codes used in GCM. The two coding properties are
the dual distance and the adjusted kissing number. We demonstrate that the two properties are
analytically linked to commonly used leakage metrics, namely signal-to-noise ratio and mutual
information, in the case of GCM.

As straightforward applications, we show that our extended framework is consistent with
the above in IPM. Particularly, the adjusted kissing number converges to the kissing number
when the masking is non-redundant, e.g., in cases of IPM and DSM. Secondly, we illustrate how
the redundancy in SSS-based masking affects its side-channel resistance [35]. We highlight that
the public interpolation points (see in Fig. significantly impact the side-channel resistance
of SSS-based masking. We then provide an information-theoretic evaluation on public points

and show the optimal public points for SSS-based masking.

2.3 Bounding Success Rate in Recovering Secret Key

The third part of this thesis completes side-channel resistance of the code-based masking by
providing attack-based evaluations and present information-theoretic bounds when attacking

masked cryptographic implementations. In this respect, success rate (SR) is one of the ultimate
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metrics in side-channel analysis. Firstly, we employ the higher-order optimal distinguisher
(HOOD) against instances of code-based masking, namely IPM and SSS-based masking cor-
responding to redundant and non-redundant cases, respectively. The experimental results of
HOOD exactly confirm our previous information-theoretic evaluations. We emphasize that the
redundancy in code-based masking can only decrease its resilience against practical attacks. We
also provide some optimal and worst cases of both IPM and SSS-based masking, especially the
worst cases of (3,1)-SSS based masking is less resilient than the first-order Boolean masking in
spite of the same security order.

Secondly, we derive information-theoretic bounds on the success rate following a communica-
tion channel model [T, [I38]. When evaluating the practical side-channel security of chips, it is
extremely useful to have an upper bound on success rate of any attack given a (fixed) number of
side-channel measurements. Or conversely, it is equivalent to derive a lower bound on the number
of queries for a given success rate of any attacks. In this thesis, we derive several bounds in both
directions by using information-theoretic tools, particularly for cryptographic implementations
protected by masking schemes (including the code-based masking). In particular, those bounds
are bidirectional by either providing upper bounds on success rate of any attacks or lower bounds

on the number of traces to achieve a certain success rate.

2.4 Generic Information-Theoretic Measures in SCA

In the final part of this thesis, we investigate more general information-theoretic measures in the
context of side-channel analysis [43] [09], particularly in comparison with Shannon entropy and
mutual information [35] [138]. Those measures include Rényi entropies, guessing entropy and
a-information, etc. In the problem of guessing a cryptographic key, we illustrate a full spectrum
of upper bounds on the probability of success by using conditional a-information between the
secret key and information leakage. Especially, we show that the success rate is tightly upper
bounded by a-information of a larger enough order (e.g., when o > 100.00, as shown in Fig. .

More importantly, we demonstrate that the success rate of the maximum-likelihood (ML)
based attack converges to the exact upper bound by the conditional a-information of order
a — oo (also called maximal information). The ML-based attacks are optimal, for instance,
consider HOOD when the leakage model is known. Therefore, our derivatives imply that this
bound is also achievable. To the best of our knowledge, we shall for the first time seamlessly

connect information-theoretic measures and real attacks in side-channel analysis. Taking the
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Hamming weight leakage with additive white Gaussian noises, numerical results confirm our
findings and show meaningful indications in practice. As a perspective, it would be extremely

interesting to extend our evaluation into protected scenarios, e.g., in the presence of masking.
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Figure 2.1: Illustration of information-theoretic bounds on success rate y Shannon mutual
information and a-information of order v = 100.00 in an unprotected AES cases, with Gaussian

noise of variance o2 = 10.00.

2.5 Outline of the Thesis

This thesis mainly consists of four parts and accompanied with the introduction and conclusion
parts. The overall structure of this thesis is diagrammed as in Fig.

In Part [[I] we focus on optimizing inner product masking by a coding-theoretic approach.
Some basics on the linear codes, Pseudo-Boolean functions and information theory are firstly
revisited in Chap. [3]and they will be used throughout this thesis. Secondly, we dive into IPM in
Chap. [l by forming it into a coding-theoretic fashion. Then the information leakage is measured
by both signal-to-noise ratio and mutual information, along with numerical results. Moreover,
we present the rationale of selecting optimal codes on the basis of our leakage quantification.

Next, in Part [[TI] we present the generalization of several masking schemes into the most
general scenario, and also extend our coding-theoretic approach into this general scenario.

Specifically, in Chap. [5] we extend the leakage quantification approach to redundant scenarios,

2Note that the success rate is evaluated 10,000 times to be more accurate and the curve is much smoother.
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Information-theoretic evaluation (by Ml or a-info.)

This Thesis
v v
Part | Part VI

Introduction & Conclusions &

Contributions Perspectives
P i 2 2 e |
: Part 11 Part I11 Part IV : Part V S
1 8 Optimizing Information Attack-based 1 Generic =73
| < o IPMina Leakage Evaluationand !: Information- _g =
: © § Coding- in Code- Information- : Theoretic =0
| = Theoretic based Theoretic | Measures o
1 Approach Masking Bounds 1 and Bounds o
tmmmm s N 2 G J /\ J

. Y Y Y

Metrics SNR, MI SR, M SR, a-info.
i . J \ ) !
i Y Y ;
i . Moment-based evaluation Attack-based evaluation :
; Evaluations :
! i

Figure 2.2: The overall structure of this thesis.

for instance in the case of SSS-based masking. As an application, in Chap. [0} we present an
example that exactly verifies the effectiveness of our new framework and provides optimal linear
codes in several cases.

Then, in Part [[V] we first present an attack-based evaluation on code-based masking in
Chap. [[] In order to amplify the attack, we employ the optimal one that is based on the
maximum-likelihood rule. We highlight that those numerical results are well-coincided with our
theoretical derivatives. Second, we show how to derive several information-theoretic bounds on
the success rate of any attacks in Chap.

Last in Part[V]or in Chap. 0] we illustrate how those more general information-theoretic tools
can be applied in side-channel analysis. We first explore the application of Rényi information
theory (including Rényi entropy, Rényi divergence and related extensions) into the problem of
guessing the secret key from its Hamming weight leakage. Second, we propose to use conditional
a-information to assess the concrete side-channel security.

The conclusions of this thesis are in Part [V] along with possible investigations in the future.

Additional proofs and materials are included in appendices, Part [VII}
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Part 11

Optimizing Inner Product Masking
in a Coding-Theoretic Approach
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CHAPTER 3

Preliminaries: Basics on Linear Codes, Vector Space and

Pseudo-Boolean Functions

In this chapter, we revisit basics of the linear codes, the vector spaces and the pseudo-Boolean

functions that are used through this thesis.

Contents
3.1 Linear Codes . . . v v v v v vt e e e e e e e e e e e e e e e e e e e Z1
3.2 Complementary Vector Space . . . . . . . v v v v v v v vt 23]
3.3 Pseudo-Boolean Functions . . . . . . ... ... ... ... 25
3.4 Shannon Information-Theoretic Measures. . . . . . ... ... .. 26

3.1 Linear Codes

We recall several known definitions and properties of linear codes, which hold respectively when
the base field is K = F5 or K = Fqc. Let n, k, d € N* be positive integers such that k < n. The
linear code is defined as follows.

Definition 3.1 (Linear code [I01]). A linear code C is a set of vectors, also called codewords,
which form a vector space. The parameters of a linear code C is a triple (n, k,d), where n is

the code length, k denotes its dimension, and d is its minimum distance. The parameters are
denoted as [n, k, d], to refer to the finite field F, the code is defined on.
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The minimum distance of a code C is defined as d¢c = min, e¢ du(c, ¢’) where dy denotes
the Hamming distance. In particular, d¢ equals to the minimum weight of its nonzero codewords.

Given a linear code C with parameters [n, k, d¢], its weight enumerator is defined as follows.

Definition 3.2 (Weight Enumerator [I01, §5.2]). The weight enumerator of a linear code

specifies the number of codewords C of each possible Hamming weight in C. Specifically, we have

We(X,Y) = BX"Y! (3.1)
1=0

where B; = [{c € Clwg(c) = i}| and wy () denotes the Hamming weight function. In particular,
By, is called the kissing number of C.

Lemma 3.1. Basic properties of B; € N:
e By=1,B = =Bg._1 =0,

e B;. > 0, meaning the kissing number is nonzero,

e B, =1 if and only if the code C has a codeword with all ones (e.g.,[1,...,1]).

Note that two linear codes are said to be equivalent if one can be obtained from the
other by a series of operations of the following two types: 1) an arbitrary permutation of the
coordinate positions and, 2) in any coordinate position, multiplication by any nonzero scalar.
Straightforwardly, equivalent linear codes have the same weight enumerator.

Definition 3.3 (Dual Code [I01} §1.8]). The dual code of C is the linear code C* = {u €
K" |Ve € C, ¢-u = 0}, where ¢ - u is the standard inner product.

Definition 3.4 (Dual Distance [I01]). The dual distance dg of a linear code C is the minimum
Hamming weight wg (u) of nonzero u € K", such that ) _.(—=1)“" # 0.

Let & a vector space of K™. The indicator of £ is the application

1 ifzxeg,
0 otherwise.

xEK"ng(x):{
Then we introduce a well-known property of the linear code as follows.
Lemma 3.2. For arbitrary linear code C and v € K", we have ) .o(—1)*" = |C|1¢L (u).

Proof. We give this well-known proof for the self-contained content. For u € C*, it is straight-
forward to see that > _.(=1)“" = |C|.

Suppose that v € C*, thus Jv € C such that u-v = 1. We denote C = C’' U (C' + v)
and dim(C’) = dim(C) — 1. Then ) ,(—1)" = Zc,ec,(—l)cl'“ + Zc,ec,(_l)(6'+v)'u =
Yo (D) = T e (D) = 0. O

Corollary 3.1. For a linear code C, we have dé‘ =dei.
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Therefore, the dual distance of a linear code C is the same as the minimum distance of the
dual code C*.

In this thesis, we consider two classes of linear codes: [n,k,dy]s and [nf, k€, dplo with
minimal distances d,, and d; at word- and bit-level, respectively. More precisely, the latter is
the expanded code of the former from Fqc into Fs. Indeed, if z is a codeword of the former code,
then the corresponding codeword [z]s of the latter code is obtained by replacing each term in z
by its coordinates with respect to some fixed basis (e, ..., es) of Foe over Fo. Let (by,...,bk)
be a basis of the former code, then a basis of the latter code is ([e;b;]2)i=1,....¢; j=1,... k-

According to [IT3, Theorem 5.1.18], there exists a self-dual basis of F,¢ over I, if and only if
either ¢ is even or both ¢ and ¢ are odd. For the sake of simplicity, we herein fix ¢ = 2. We call
above expansion the sub-field representation defined as follows.

Definition 3.5 (Sub-field representation [I0T] §7.7]). Let x € Fye, the sub-field representation
of x is [x]y € F5.

Definition 3.6 (Code Expansion [I01} §7.7]). By using sub-field representation, the elements
in Fy: are decomposed over Fy. Consider a generating matrix of a linear code of size k X n
in Fye. It becomes a generating matrix of size k¢ x nf in Fo. Any linear codes of parameters
[n, ko contain (2¢)F = 2% codewords, hence is turned into a [nf, k€], linear code in Fa. The

latter code is called the expansion code of the former.

Correspondingly, two kinds of security order ¢,, and t; are at word- and bit-level, respectively.
Summing up, the two definitions build a direct link between word- and bit-level representation
of a linear code and the corresponding conversion. This allows to connect the word (or register)-
level probing and the bit-level probing security models, depending on the granularity of the
attacker spying tool.

3.2 Complementary Vector Space

In this section, we introduce relevant properties of complementary vector space that will be
needed to derive our results. The set of n-bit vectors is denoted by Fy, which is an n-dimensional
vector space over the finite field K = Fs.

An [n, k,d], linear code C over K is a k-dimensional subspace of K", therefore, we use the
same notations as for the linear codes.
Definition 3.7 (Complementary Vector Space). Two subspaces C and D are complementary in

direct sum (denoted by C®&D = K") if C+D = K", and CND = {0}, that is: Vz € K™, 3!(c,d) €
C x D, such that z =c+d.
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Accordingly, we shall define the complementary codes as follows.

Definition 3.8 (Complementary Linear Codes [169]). Two linear codes C and D are comple-
mentary if C + D =K", and CND = {0}.

Lemma 3.3. Let C and D be two vector spaces in K™ built from independent bases, meaning
that CN'D = {0}. Then C*ND+ = (Co D)* .

Proof. First of all, we notice that (C @ D)+ C C*. Indeed, a vector orthogonal to all vectors of
C @ D is in particular orthogonal to all vectors of C + 0 = C. In a symmetric way, we have that
(C ® D)+ C D+. Therefore, (C® D)+ CC+ND .

Let us now prove the converse inclusion. Let 2 € Ct N'D+. For any vector y in C @ D, there
exists a unique pair (¢,d) € C x D (owing to the complementarity of vector spaces C and D),
such that y =c+d. Now,z-y=z-(c+d)=x-c+2-d=0+0=0. Indeed, z - ¢ = 0 because
r € Ct and x - d = 0 because x € D*. Therefore, we also have Ct N D+ C (C® D)*. O

Lemma 3.4. Let C and D two complementary vector spaces, namely: C N D = {0}, and
C® D =K". Then we have: Ct N D+ = {0}.

Proof. By application of Lemma we have that Ct N D+ = (C @ D)t = (K")+. Now, as K®

is the universe code, we have (K")* = {0}. O

Actually, for the general case when C and D are not complementary, we can complement

C & D with a vector space &£, such that:
e CND={0},CcNE={0}, Dn& = {0},
e CODBDE=K".

Then, a similar result as Lemma [3.4] holds:

Lemma 3.5. C* ND+n &L = {0}.

Proof. Similar with the proof of Lemma [3-] first treat C ®D together and then straightforwardly
apply Lemma [3:3] which gives the results. O

In this thesis, we consider two cases in the code-based masking:

e In the generalized code-based masking as a general case |35, [[64]: C N D = {0}, and
C ® D C K", where two linear codes C and D are not necessarily complement to each
other. In particular, the redundant case when n > ¢+ 1 corresponds to the strict condition:

C®D ¢ K" and then {0} C Ct N DL

e In inner product masking or direct sum masking as special cases: C N D = {0}, and
C ® D = K", meaning that C and D are complementary. This is the case of [37], where we
have Ct N D+ = {0} as shown in Lemma
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3.3 Pseudo-Boolean Functions

Leakage functions turn a bitvector into a real value, which the attacker measures. Those
functions are pseudo-Boolean functions P : K* — R, where K = F,.
It is well-known that a pseudo-Boolean function P can be uniquely expressed in a monomial

basis [25] called Numerical Normal Form (NNF) [I15]:

P(Z)=" > piZ, (3.2)

Ie{0,1}nt

,,,,,

and Z(10+0)2 = 7, 7,

In fact, P is a nice abstraction of practical attacks. For example, in differential power
analysis [05] against the most/least significant bit of the sensitive variable, then P equals
7(100-:0)> g 7(000-1)2 - Noreover, in correlation power analysis [I6] when the Hamming weight
model is adopted, P equals wy(Z) = Z(100-0)2 4 7(010--:0)> 4 ... 4 7(000--1)>

Thanks to the existence and the uniqueness of NNF, we can define the numerical degree of
P as follows.

Definition 3.9 (Numerical Degree [25]). The numerical degree of a pseudo-Boolean function
P denoted by deg(P) equals: deg(P) :=d = max{wg(I)|5r # 0}.

Definition 3.10 (Fourier Transform [22] §2.2]). The Fourier transform of a pseudo-Boolean
function P : K™ s R is denoted by P : K™ s R, and is defined as: P(z) = > yerne Py)(=1)V=.

Recall from [22, 25] that, P(z) = (—1)w#() Do IC{1, b }ssupp(z)CI 21113 where 8 =
2—%@(_2)‘]‘ ZZEFELZ;IgSupp(Z) P(Z).

Definition 3.11 (Convolution [22] §2.2]). The convolution of two pseudo-Boolean functions f
and g is defined as: (f @ g)(2) = 3, cxne [(y)9(y + 2)-

We recall below two well-known properties of Fourier transform as well as a property on the

convolution. We omit the proofs for the sake of brevity and refer to [22] for details.

~

Proposition 3.1 (Involution Property [22] §2.2]). P(z) = |[K"|P(z) = 2" P(z), Vz € K.

Proposition 3.2 (Inverse Fourier Transform [22, §2.2]). P(z) = 27" > yeknt P(y)(-1)v=,
Vz € K.

~

Proposition 3.3 (Fourier Transform and Convolution [22] §2.2, Prop. §]). @(z) = f(2)-9(2),
Vz € K™,
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3.4 Shannon Information-Theoretic Measures

We also define some information theoretic tools. The entropy of a random vector X of length ¢

is defined by:

— Y Pr(x)log, Pr(x).

xXEXY

The conditional entropy of a random vector X knowing vector Y is defined by:

HX|Y)=- > Pry)HX|Y =y)
yey
=~ > Pr(y) Y Pr(x|y)log, Pr(x|y).
yeY1 xXEX

The Mutual Information between two random vectors X and Y is defined as I(X;Y) =
H(X)— H(X|Y). The conditional Mutual Information I(X;Y | T) where X, Y and T are
random vectors is defined as I(X;Y | T) = H(X | T)- H(X | Y, T). Last, the Kullback-Leibler

divergence between two distributions p and ¢ over the same set X" is defined as:

D(pllg) = Y P(x)log, 8

zeX
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CHAPTER 4

Measuring the Leakages in IPM and Optimal Codes

The results presented in this chapter have been published in collaboration with Sylvain Guilley,
Claude Carlet, Jean-Luc Danger, and Sihem Mesnager in the IEEE Transactions on Information
Forensics and Security (T-IFS) [37] and the journal of Cryptography and Communications
Discrete Structures, Boolean Functions and Sequences (CCDS) [38].
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4.1 Introduction of Inner Product Masking

Masking is one of the most investigated countermeasures against side-channel analysis, allowing
all cryptographic operations to be performed on the masked data. Essentially, masking is a
sound way to improve the side-channel security of cryptographic implementations, since given
high enough noise, the attack complexity increases exponentially with the number of shares [12§],
while the implementation cost increases only quadratically (or only cubically in higher-order
glitches free implementations [(9]). For instance, the Boolean masking scheme is the simplest
one which enables high performance when implemented on real circuits. The first provably
secure higher-order masking scheme has been introduced by Ishai et al. [86] for the protection
of single bits in Fy. Then, this scheme has been extended to the protection of words (e.g. bytes
in Fos) with higher-order security by Rivain et al. [I39]. Interestingly, it has been noticed later
that this masking scheme can be further improved by mixing bits in each share (of £ = 8 bits).
In brief, the main idea is to elevate the bit-level algebraic complexity of the masking scheme.
Thus in this respect, Inner Product Masking (IPM) scheme has been proposed as an alternative,
in which inner product is adopted as a mixing operation.

The IPM scheme has been first introduced by Balasch et al. at ASTACRYPT’12 [4] as an
alternative to masking schemes like Boolean or multiplicative masking and has been further
improved by Balasch et al. at EUROCRYPT’15 [2] and at ASTACRYPT’17 [3]. In IPM,
the random masks are not used plain, but a mixing between the bits is carried out by the
multiplication with a public vector o = (1, o, ..., ay,) and then involved into the cryptographic
computation (Z = X + asYs + -+ + @, Y}, where X is the sensitive data and Y; are the n — 1
masks). Interestingly, by different settings of vector L and mask materials, Balasch et al. [4]
pointed out that IPM is the generalization of four typical kinds of masking schemes, namely the

Boolean one, the multiplicative one [76], the affine one [70] and the polynomial one [77, [I31].
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4.2 The-State-of-the-Arts

The concrete security order of a masking scheme depends not only on the number of shares but
also on the encodings involving the sensitive variables and mask materials into cryptographic
operations. With the same number of shares, Balasch et al. [4] observed that the IPM leaks
consistently less than Boolean masking, and further demonstrated this observation in [2, [3]. In
fact, this observable feature originates from the encoding of IPM, in which the random masks
are multiplied by the coordinates of the public parameter o € Fj,. Therefore several bits in
each share are mixed together, which increases the algebraic complexity of the encoding. By
contrast, in Boolean masking the masks are directly involved by bit-wise XOR, operation. This
is the primary advantage of IPM. Furthermore, another interesting effect in [3, Fig. 3] is that
the different choices of the L vector in IPM significantly affect its concrete bit-level security. For
instance, with n = 2 shares made up of £ = 8 bits (byte-oriented), the security order in bounded
moment model [T] can be tpouna = 3, while the security order in (word-level) probing model is
only t,, = 1.

In fact, this parameter effect in IPM has been studied firstly by Wang et al. [165], named
as “Security Order Amplification”. Wang et al. propose the parameter O,,;,, the lowest key-
dependent statistical moment, as a metric to measure the amplified security order. This metric
Onmin 1s directly related to the bit-level security order t; in bit-level probing model proposed by
Poussier et al. [123] since O, = tp + 1. More importantly, Poussier et al. firstly introduce
the coding form of IPM as: Z = XG + YH where X, Y, Z are the sensitive variable, random
mask(s) and masked variable, G and H are the generator matrices of two codes C and D,
respectively. Then they prove that the bit-level security of IPM is related to one of the defining
parameters of the code D (namely its dual distance d%). This result gives an explanation of the
security order amplification discussed in [1G5].

The other line of research on the encoding and parameter effect of masking schemes is about
the Leakage Squeezing (LS) which stems from Carlet et al. [24]. Particularly, Carlet et al. show
that IPM is an instance of LS. They statistically studied the security order of LS scheme by
linking the correlation immaunity [22] of the indicator of the code (that equals the dual distance
d2 minus 1), the mutual information (MI) and the success rate (SR) of side-channel attacks
together. More precisely, in logarithmic form, mutual information log(MI) is a linear function
of the logarithmic noise variance log(c?), and the slope (security order) of this linear function

equals the dual distance of D. To summarize, the bit-level security order ¢, of IPM is d%; -1,
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where d; is the dual distance of the code D in the coding form. Related works are summarized

in Tab. (note that SNR is short for attack signal-to-noise ratio [102] § 4.3.2, page 73]).

Table 4.1: Summary of side-channel security analysis on IPM.

Security Code

Metrics Comments
Orders | Parameters
Balasch et al. . .
B tw - MI MI varies for different L vectors
Wang et al. L Omin (= d35) was used (the lowest
) ty ds MI o
[165] key-dependent statistical moment)
Poussier 7et al. tor 1y ik Ml
23]
Balasch’ et al. _— B MI thound (= tp + 1) is in the bounded
[3] moment model
Carlet (?t al. foo by ik ML SR SR of the opt?'mal attack
Pl I15]

. N A unified framework to analyze all
This work tw, tp dp, Bd,t SNR, MI, SR

IPM codes by closed-form expression

* Here t,,, t, are word- and bit-level security orders, where t,, = n—1. Bit-level security order t;
equals to d5—1 as in [24] [123] and in this paper.

Actually, the security order of IPM depends on the code D involved in the scheme, which
can be easily demonstrated by information-theoretic metric. As shown in Fig. the
security order (the slope) of IPM depends on the dual distance of the chosen code D, namely dz.
Specifically, the slope in the log-log plot representation of MI as a function of noise variance
0? is —ds. However, it can be observed that for different choices of the code D with the same
dual distance, the MIs are distinctly different as shown in Fig. The smaller the number
of nonzero codewords of minimal weight (Bd%')7 the smaller the MI consistently over the full
range of noise variance o2, Similar situations happen with success rates of optimal attacks [18],
indicating that only parameter of D equal to the dual distance d%-) is not enough to characterize
the side-channel resistance of IPM. Therefore, a natural question is: What is/are other defining
parameter(s) of D that influence the concrete side-channel security level of IPM? Since the
different choices of the code D have critical impacts on the concrete security order of IPM, then
another question that comes with it is: how to choose optimal codes in the sense of side-channel

resistance for IPM?

?Note that the only criteria is the highest minimum Hamming distance [I58].
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Figure 4.1: Systematic investigation of linear codes of IPM over Fys grouped by do and Bd%,
and one BKLC code (Best Known Linear CodeEI).

4.3 IPM in a Coding-Theoretic Form

Let an information word X € K = Fyr and n—1 masks Y; € K, the Boolean masking scheme [123]
protects X as:
n
Z=<X+Zm,1@,y3,...,yn>:XG+YH, (4.1)
i=2
where G, H are generator matrices of two linear codes C and D as follows, respectively. Moreover,

C and D are supplementary codes such that C & D = K.

Gz(l 00 - o)eK“”,

1 1.0 -0

101 -0 s (4.2)
H=| . . . |eKk" "

100 - 1

IPM is an encoding to improve the algebraic complexity by mixing bits in each share together.
In IPM, linear functions are applied to mask materials y; to construct only the first share.
We define a family of bijective linear functions f; : K — K defined by f;(y;) = «;y; where
a=(a1,...,a,) €EK" a3 =1 and o; € K\{0} for i € {2,3,...,n}. Then the IPM scheme [2]
with n shares is expressed as:

n

Z=(X+Y fi(Y;),Y2,Ys,...,V,) = XG + YH. (4.3)
=2

Remark 4.1 (Word-level security order). In the first share Z; of Z, X is masked only by mask
Y7, where Y7 is a uniformly distributed mask equal to Y; def i fi(Y;). But still, the masking

scheme is more than second-order secure since the attacker cannot directly measure a leakage
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arising from Y;. Instead, to get information from Y7, the attacker should measure the leakage
from shares (Za,...,Z,) = (Ya,...,Y,), hence a n-order attack.

Two generator matrices G and H of the above linear codes are as follows. Note that this

encodindﬂ was first introduced in [123] and we borrow it here.

Gz( 1 00 - o)eK“",

as 1 0 - 0

as 0 1 - 0 . (4.4)
H=| . . . . |exroxm

o 0 0 oo 1

IPM is a generalization of Boolean masking (by choosing a; =1, 1 < i < n). Both schemes
ensure the property that X cannot be deduced from d < n shares provided Y; are uniformly

distributed (see Prop. [4.1] for a detailed formulation).

4.4 Quantifying Leakages of IPM via SNR

In this section, we focus on quantitatively assessing the leakages of IPM by SNR. Let P : K* — R
where K = Fy with numerical degree d°P be the leakages collected (and manipulated) by the
attacker. In practice, d°P reflects the strength of the attacker, because it is the number of
masked bits which shall be combined together to unveil a dependency on the key. Two typical

situations are:

- The devices leak bits individually, as in the probing model [36]. Therefore, the degree d of the

leakage function is the number of probed bits.

- The devices leak bits as words in parallel through a leakage function ¢. The attackers
subsequently apply their strategy (a composition function) % on top of ¢. For instance, ¢
is the Hamming weight and 1 consists of raising the result at some power d, resulting in

P=vo¢=uwn()"

4.4.1 Leakage Model & Attack Strategy

In practice, the security of a cryptographic implementation not only depends on its leakages
during execution but also highly relates to the capability of an adversary to exploit these leakages.
For instance, for a t-th order secure masking scheme, an adversary can launch a successful d-th

order attack against it when d is greater than ¢.

3Note that Equ. 5 in [I23] contains a mistake, namely G should be (I;,0,...,0), and not (1,...,1,0,...,0).
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As the first step, we clarify the leakage model of a device and the attack strategy of an

adversary in practical scenarios. An illustration is provided in Fig. Taking noisy leakage

Y: added masks
cryptographic ~ masking ¢ physical channel noise

algorithm ¥ (IPM) 7 XC4+YH leakage (2) N addition|

T, k*

= L4 Y .
—>L=¢(Z)+ N v SNR>0 e k: attack
d=1 attacker’s
@=1 " " olicy \QH No

Figure 4.2: Overview of the attacker’s strategy in the higher-order (moments) side-channel

attacks to extract the secret key k*, using side-channel leakages and the plain/cipher-text T

model with additive Gaussian noise into consideration, we specify the leakages of a real device

in two cases:

e In a serial implementation, all shares are manipulated at different times (clock cycles). We
denote the leakages from the device as L; = ¢(z;) + N;, where z; € K = Fy. is the ith share
and N; ~ N(0,0?) for i € {1,...,n} are associated noises. From the attacker’s point of view,
the best strategy is to combine these leakages together to launch higher-order attacks. As is
known, the centered product combination is the most efficient combination function [129] El
Thus,

d d d
Loor =[] Lo =[] (6(z1) + Ni) = [ oz) +¢+ [N
i=1 i=1 i=1 i=1

———
P(z): zeKn

where the adversary combines leakages of d shares over all n shares. ¢ denotes intermediate
terms with numerical degree d°¢ < d that does not depend on the sensitive variables thus
have no positive impact on attacks. Assume that N; for ¢ € {1,2,...,n} are i.i.d, then

V[T, N = o2

e In a fully parallel implementation, all shares are manipulated at the same time (the same
clock cycle). Thus we have £ = ¢(z) + N = >_"" | ¢(z;) + N by assuming the device leaks in

linear leakage model, where z € K™ and z; € K = Fy¢. In this case, the best strategy is to use

41t is worth noting that Pearson correlation coefficient is invariant under affine transformation, although
authors used the centered product in [I29] to launch the correlation power analysis (CPA).
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the least d-th order of statistical moments to launch the attack. Therefore,

d
Lpar = L = (Zaﬁ zi) + N) [1oGz) +¢" + N9,
=1
P(z): zeKn
where ¢’ denotes intermediate terms with numerical degree d°¢’ < d. For Gaussian noise

N ~ N(0,0?), by higher-order moments for Gaussian variables [120, § 5.4], we have:

4 [Nd] -F [N2d] _E [Nd]2
o (2d - 1)1 if d is odd,
© o ((2d - 1) = (d— 1)) if d is even.

2d

Hence, the variance of noise by raising to power d is proportional to ¢°%, namely:

V[N oc 0. (4.5)

In summary, we formalize the leakage function (with the attacker’s strategy) by a pseudo-
Boolean function P : K"® — R such that P(z) = Hle ¢(2;), which can be decomposed into
P(Zz) = Zlemg arZ! as in Eqn. ﬂ In both cases, we have V [N¢| « o2, Thanks to this
model, we are able to explain the link between leakages at word-level and at bit-level. We also
give an explanation on the physical defaults like physical couplings in a quantitative way. For
instance, in AES implemented on a 32-bit embedded device (e.g. ARM Cortex 4), leakages
of four bytes of intermediates may interfere with each other because of couplings, thus could
leak the sensitive data from the joint distribution of leakages. This kind of joint distributions

corresponds to the assignment of different values for a; of P(Z) as in Eqn.

Definition of SNR. The SNR [I02] is a critical security metric in the field of side-channel
analysis, which is the ratio between the signal variance and the noise variance.

Let £ = P(Z)+N denote the leakage which is irrespective to serial or parallel implementations.
N denotes the independent noise with variance V[N] = 02, , o 0@ as shown in Eqn. We
have V[E[P(Z) + N|X]] = VIE [P(Z)|X]], then the SNR of leakages is defined as:

VIELIX])] _ VIE[P(Z)|X]]

SNR = =
Vv [N] O.Eotal

(4.6)

In side-channel analysis, if SNR is null, attacks are merely impossible. Otherwise, attacks

are possible and are all the more powerful as the SNR is larger.
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4.4.2 Quantifying Leakages of IPM by SNR
Recall the coding form of IPM, whereby the sensitive variable X is encoded into Z by:
Z=XG+YHecK" =F,.

Let us consider this equation in Fy basefield, and thus let X = F5, Y = anfl)e and Z = F3*.
We clarify the computations as follows (where D is expanded as per Def. :

- E[P(Z2)|X =] for a given z € X is: E[P(aG +YH)] = >
1 Lyey P(@G +yH) = 17 Y yep P(aG + d),

- For any variable X, we have that V [E[P(Z)|X]] = E [E [P(Z)|Xﬂ _E[E[P(2)X]]>.

4ey P(Y = y)P(2G + yH) =

Hence, we have the following two lemmas to compute terms E [E [P(Z)|X ]2} and E[E [P(Z)|X]]
for IPM.

Lemma 4.1. E[E[P(Z)|X]] = 5 P(0).

~

Lemma 4.2. E [E [p(z»xﬂ = e (P(:c)>2.

The proofs of Lemma and [I:2] are in Appendix Therefore for the SNR of IPM

scheme we have the following theorem.

Theorem 4.1. Let a device be protected by the IPM scheme as Z = XG + YH. Assume
the leakages of the device can be represented in the form: L = P(Z) + N and an adversary
may launch a d-th order attack by using higher-order moments (e.g., in parallel scenarios) or
multivariate combinations (e.g., in serial scenarios). Hence the SNR of the exploitable leakages
18:

9—2nt R 2

SNR="5— > (P@)
Jtotal zeDL\{0}

2 2d
where 0, < 0°%.

Proof. On the basis of Lemma & 2] we have that

_ VIE[£]X]]
SNR = W
E [IE [P(Z)|X]2} ~E[E[P(Z)|X])?
- Var(N)
ot ) R (4.7)
=5 Z P%(z) — P%(0)
Ototal reDL
272712 N
2N Y P
total zeDL\{0}
O
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Remarkably, this quantity does not depend on the properties of the code C, except for the
fact it is supplementary to D in K" (recall Lemma. The only factor for the SNR of IPM that
makes all the differences is the choice of D. The special interest of Theorem is that it allows
quantifying the leakages of any IPM and its variants (e.g. [I65]). In a nutshell, Theorem [4.1
works under any form of P. Indeed, as shown in Fig. the function P is composed of the
leakage function ¢ from a device and the attack strategy v from an adversary, where ¢ and ¥
can be any functions. In particular, a real device may produce nonlinear leakages rather than

the simple Hamming weight one, where Theorem can be applied straightforwardly.

4.4.3 Link between SNR and Security Order t

In fact, it is easy to build the connection between SNR and the side-channel security order of an
implementation by checking whether SNR equals 0. From Theorem we deduce the security
order t of IPM from SNR as follows.

Theorem 4.2. If d°P < d, the attack exploiting leakage function P fails (i.e., SNR = 0), thus

the security order of IPM scheme in the bounded moment model is t = dz — 1.

Proof. We know from [I7, Lemma 1] (in fact, this is a direct consequence of results of [25]) that,
given a pseudo-Boolean function P, one has ﬁ(z) = 0 for all z € K" such that wg(z) > d°P.
Let z € DH\{0}; then wy(z) > dp. Assuming that the numerical degree of P is strictly less
than dz, we then have wy (2) > d > d°P, which means that ﬁ(z) equals 0, resulting in the fact
that SNR = sompir— > zeD\{0} P(z)? = 0. Hence, the security order ¢ in bounded moment

2nl 52
2 Ttotal

model equals do5 — 1. O

Let us assume that the attacker builds its attack by tweaking P. For example, if the device
leaks the sensitive variable Z through a noisy leakage function ¢, the attacker can choose to
use P=¢or P=¢? ..., or P = ¢? (see illustration in Fig. , or actually any composition
P = 1 o ¢. Therefore the security order is the minimum value of d°P such that SNR # 0.
Although the Theorem is essentially the same as [123] Proposition 1], we obtain this theorem
in a different way. More importantly, by combining with Theorem the quantitative leakages
can be assessed straightforwardly. In practice, we can directly compare, for a given leakage
model, two countermeasures: if SNR; < SN Ry, then the first countermeasure is more secure
than the second one.

With Theorem we directly link the dual distance d3 of codes D in IPM to the security
order in bounded moment model. Furthermore, the quantitative expression in Theorem

allows designers to assess easily the security order of an IPM scheme by using properties of
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the code D. Since IPM is the generalization of Boolean masking, Theorem [I.1] & [£:2] are also

applicable to the Boolean masking and other variants [1G5].

4.4.4 Connecting SNR with Code Parameters

As common leakage models, Hamming weight and affine models have been validated in practice

d

[123] for side-channel analysis. We set ¢(z) = wg(z), then use P(z) = wy(z)* as a leakage

model. Clearly, the numerical degree of P is d°P = d. Moreover, one can write:

P(z)=wu(2)'= ) (Jh ' d | an> ﬁzé}i

Tt ne=d

_ 3 (i)z‘“rd! Yy &8)

JEN™ st St Ji=d I1e{0,1}"*
wg (J)<d wpy (I)=d
where N = {0,1,...} is the set of integers. The multinomial coeflicient (Jl d J Z) is defined as

Jl!.fi.!l -7 (recall that J = (J1,...,Jne) € N with Z?ﬁl J; = d). This coefficient equals to d! as

long as for all ¢ (1 <i<n¥f), J; =0or 1. Now, the terms in P(z) are categorized into two cases:

e 2/ where J € N™, wy(J) < d, which consists in products of < d bits of z, as z/ =

Hie{l,“.,nZ} s.t. J;>0 i

o 2l where I € {0,1}", wg(I) = d which consists in products of d bits of z, as z! =

Hie{l,.u,né} s.t. ;=170

Indeed, let i € {1,...,nf}, then z;] =1if J; =0, and z;] = z; if J; > 0. The first terms z” have
numerical degree d°(z”) < d, hence can be discarded in the analysis (they contribute nothing to
the SNR). Remaining terms of numerical degree d are: Ele{o,l}nl,wH(I):d 2!. Hence we have
following theorem for quantifying the leakages of IPM.

Theorem 4.3. Let a device leak in Hamming weight model, which is protected with IPM at

bit-level security order t = d; — 1. A higher-order attack is possible only if the attacker uses a
leakage function P with d°P = d > t. Moreover, the SNR can be quantified by:

0 ifd°oP <t
2
(dé‘) ifd°P=t+1=db .

L
29D

SNR=1 &, (4.9)
D

Ttotal

Proof. Let ¢1(z) = 2! where I € {0,1}"¢. Thus

S]]~ :H% _ 2171‘[(1*(71)%). (4.10)

i€l el i€l
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By Theorem [L.2] all monomials with numerical degree d° < d have SNR = 0, hence we only
d

focus on monomials with d° = d. We have ¢;(z) = ¢1(z) + (;{) (—1)%ier % where ¢7(z) is

linear combination of monomials with numerical degree d° < d in ¢;(z). The Fourier transform

of or(z) is

Bily) = i) + G S () (-1

z

=i+ G o @1y

= ¢r(y) + (=1)"2" 11 (y).
We have ¢;(y) = 0 for y with wg (y) > d =t + 1> d (recall the proof of Theorem.
Thus by combining Eqn. with Eqn. we have the following equation for V [E [P(Z)| X]]:

vEP@X]= Y 2

yeD+\{0}

— 9—2nt Z Z (_1)d2n€—d (?) 1{[}(y)

y€D\{0} [Twu(I)=

=273 ) > <;l> Lin(y)

y€D+, wy (y)=d | Ilwn (I)=d

=272 )" (d!)?

yEDL, wi (y)=d

d\’
=5i(5)
Finally, using Theorem it appears that the only possible solution of d is d = d3 such
2
that SNR # 0, thus V [E[P(Z)|X]] = By (ﬁ) , then

L
29D

2

’ (4.12)

(4.13)

B, L 2
s VEPOW_ Di (481)°
V[N] Ototal 2dD

O

In a nutshell, Theorem provides a quantitative way for assessing the side-channel security

level of an implementation under Hamming weight leakages. More importantly, the SNR is

linked to two parameters of the code used in IPM, which brings great convenience on simplifying

the assessment. In practice, the designer can easily select a better or even optimal code for IPM
which amplifies the side-channel resistance of the implementation protected by IPM.

In fact, the quantitative result in Theorem can be extended to all linear (affine) leakages

[97] which can be expressed as:

P:zecFy¥ s P(z) = B0+ (B,2) €R, (4.14)
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where 8y € R is an unimportant additive constant that can be considered null (which is dropped
in the sequel), 8 = (81, - ,Bne) € R™ (note that 3; is normalized by B! = ﬁﬂi, where
18l = \/Z?ﬁl 32 is the Lo-norm of 3) are coordinate-wise weights, and (x,y) = Z?ﬁl ziy ER
is the canonical scalar product. This leakage model is also known as UWSB model (“unevenly
weighted sum of the bits”) as in [I72]. The validity of this leakage model can be tested easily by

stochastic profiling [I43] on practical samples. Therefore, we denote the leakage function as:

nt nt
P@):(;;&%yt: 2 (ngwm)IIwﬂﬂh

J1+J2+('i" i=1
ne= (4.15)

- ¥ (e e T 6"

JeN™ wy(I)<d Ie{0,1}™*
Jitetdne=d wp (I)=d
Thus, we deduce the following corollary for SNR under UWSB leakage model as follows:
Corollary 4.1. Let a device leak in UWSB model, which is protected with IPM at bit-level

security t = dp, — 1. A higher-order attack is possible only if the attacker uses a leakage function
P with numerical degree d°P = d > t. Moreover, the SNR 1is:

1 A\ 2 0 if d°P <t
SNR = \- 5 (2(1) — 1 dL 2 . L (416)
Ototal A 027(2;%) ZdeP:t+1:dD
total

2
@),MMA20ﬁd<d5

For instance, as the Hamming weight model is a special case of UWSB model with g; =1
fori e {1,2,...,nl}, we obtain A\ = Bdé, which is exactly the Theorem

In summary, by Corollary the SNR of IPM scheme under affine leakage model depends
only on the two parameters of D and the leakage model 8. In practice, [ is fixed for a given
device and mainly depends on the device itself that an adversary has no control on. Hence
the special interest is that designers can choose optimal codes D for IPM with maximized

side-channel resistance by simply selecting optimal d and Bdé.

Numerical Comparison with codes by SNR in Theorem [4.3] First, we show the SNR
of different codes for IPM in Tab. We omit the full table of all codes with different By,
but only showing codes with the maximal and the minimal values of Bd%. The last column
of Tab. [I-2] shows the possible candidates of ay in IPM, by which the generator matrix of

corresponding code D is H = (g, 1).
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4. MEASURING THE LEAKAGES IN IPM AND OPTIMAL CODES

Table 4.2: Demonstration of categorizing codes in IPM by SNR and MI.

25 B, 02.SNR when P(Z) = wg(2Z)¢ | MI-103 o
? d=11| d=2 (0 =3) | (Non-equivalent codes)
, | maxBy=8 | 0| 20000 4.4025 {a%} [
minBo=1 | 0 | 0.2500 3.8410 (a7}
5 | max B3=T7 0 0 0.5470 {a?*, a®5}
min Bs—1 0 0 0.2374 {a18, a3 a3 ..} P
L | maxBils |0 0 0 | 33.750 | 0.0494 {0, a8}
minBy=3 | 0 0 0 | 6.7500 | 0.0392 {08, al?6, o127}

In Tab. the green part shows where SNR equals 0 given different dz. Clearly, given a
d$ for IPM codes, the SNR of the corresponding IPM decreases along with Bd% . Moreover,
the MI decreases when do; increases and/or Bdé decreases. As a result, the code with the
maximized d% and minimized Bdﬁ performs best against side-channel analysis, which validates
our approach on selecting optimal codes for IPM.

To summarize, there are three optimal codes (up to equivalence) for 2-share IPM on Fas.
Those codes have dual distance 4 and only 3 codewords of nonzero minimum weight equal to
3. Those codes are the optimal for 2-share IPM operating on bytes, and were previously not
specifically distinguished amongst binary codes of parameters [16, 8]5. Their generating matrix

are provided in Appendix

4.5 Measuring Leakages by Mutual Information

We investigate the security order of IPM at both word- and bit-level, and show the essential reason
of the “Security Order Amplification” which has been observed and described in [3| 123} [165].
We here go further by using an information-theoretic metric, the standard notion of mutual

information (MI), to quantify the leakages of IPM.

4.5.1 Security Orders at Word-level ¢, and Bit-level t,

The first important property of IPM is its higher security order at bit-level than at word-level,

namely ¢, > t,,. Here we start from a very well-known property of the generator matrix.

IThis code corresponds to the Boolean masking where as = o® =1 and H = (1, 1).
2There are 36 codes (including equivalent codes) with d; = 3 and min B3 = 1 [39].
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4.5 Measuring Leakages by Mutual Information

Proposition 4.1. The mazimal number of linearly independent columns of the generator matrix
H of the code D is dp — 1.

It is a well-known theorem in error-correcting codes [I0I, Theorem 10]. Hence, if the attacker
probes up to d < d3; (inclusive) wires, the sensitive variable X is encoded as a codeword in FZ,
and is perfectly masked. Therefore no information on X can be recovered.

Lemma 4.3. The IPM is secure at the mazimized order t,, in the terms of probing model if

and only if the code generated by the 1 x n matriz H+ = (o = 1, a9, a3,...,ay,) is a code with

parameters [n, 1, dy]qe, where dy, = t,, + 1.

Proof. Note that H+ = (1, az, a3, . .., ay,) is the generator matrix of the dual code of D generated
by matrix H in Eqn. The masking scheme is secure at order t,, under probing model means
that any tuple of Z’s coordinates of size < t,, leaks no information on X. Now, Z = f(X)+YH,
i.e., similar to additive masking, which is secure at order t,, meaning that any t,, tuple of YH
is uniformly distributed (“Vernam code”). By definition, this means that dz > t,,.

Since for IPM, d3 = dp1 where the later is the minimum distance of the dual code D+. By
the definition of the dual distance, we have dp, = t,, + 1. O

Obviously, we have d3 = n if and only if o; # 0 for i € {1,2,...,n}. Therefore, the security
order of IPM scheme is t,, = d5 — 1 = (n — 1) over K = Fy. This has been formally proved
in [2, 3] and pointed out in [IZ3]. We put it here in Lemma [L.3] for completeness of this thesis
and we can directly obtain the word-level security order t,, by Theorem In brief, IPM is
optimal in term of word-level security and has the same security order as Boolean masking

(where o; = 1).

4.5.2 Bit-Level Security Order {,

By code expansion as Def. [3.0] we can expand the code D from K = Fy to K = Fo, which
turns a code [n, 1, dy)ae to [n€, €, dpla. At first, we show the connection between the two security
orders t,, and ¢, as follows.

Lemma 4.4. In IPM, the word-level security order is not greater than bit-level security order,

namely t,, < tp.

In fact, this is essentially the “Security Order Amplification” as explained in [I23]. Here we

give another proof as follows.

Proof. With code expansion, the generator matrix H+ = (1, s, - - - , a,) is expanded to [Ht]; =
(Ig, [@a], -, [an]), as per Def. Since «; # 0, we have at least one 1 in each row of [ay].
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4. MEASURING THE LEAKAGES IN IPM AND OPTIMAL CODES

Otherwise, if one row of o] is all zeros, we have:
[Oli] = € ngl

then [oy] is not invertible which indicates that L; does not exist. O
Remark 4.2. It is worth mentioning that since the Boolean masking is a special case of IPM
with a; =1 for ¢ € {1,...,n}, we always have t,, =n — 1, t;, = n — 1. While for IPM, ¢, can be
greater than n — 1 if there exists at least one i € {1,...,n} such that «; & {0,1}, where the
algebraic complexity of IPM is greater than Boolean masking.

To optimize IPM scheme, we aim at choosing ¢, as large as possible compared to t,,, thereby
increasing the security order as much as possible. For instance, with n = 2 shares of ¢ = 4 bits,
we have Fig = {0,1,,...,a*}, where Fi6 := Fa[a]/{a* + a + 1). There are 15 candidates for
ag € Fi16\{0}. All codes have the same word-level security since t,, = 1 (d,, = 2). While for
bit level security, we have ¢, = 1 (d, = 2) for 7 candidates and ¢, = 2 (d, = 3) for 8 candidates
(refer to Tab. for all codes), respectively. Therefore, in this case, the optimal ¢, for IPM is 2.

4.5.3 Linking Mutual Information with Code Parameters

The other primary means to evaluate the security of a cryptographic implementation is to utilize
the information-theoretic analysis. In this sense, mutual information is a well-known metric in
the field of side-channel analysis [I51I]. Therefore we use it to assess the leakages of IPM as

follows.

Theorem 4.4. For a device leaking under the Hamming weight model that is protected by IPM
scheme with Z = XG + YH, the mutual information |(L; X) between the leakage L = P(Z)+ N
and the sensitive variable X is approximately equal to the first nonzero term: 1(L£;X) =
dp!B, 1
D

ok # when the leakage function P of a higher-order attack has numerical degree
n2-2°D o°%D

d°P = d3. Specifically,

0, if d°P < ds
I(£; X) = db1B 1

T oaL
21n2-2%D

1 1 . n (4.17)
X —ar +0O (m) , if d°P = d3, when 0 — 400

where o is the standard deviation of noise.

Proof. 1t is obvious that there is no leakage when d°P = d < d%. We assess the leakages in

an information-theoretic sense as the mutual information between P(Z) and X, defined by
(P(Z); X)=H(P(Z)) — H(P(Z)|X), where:
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4.5 Measuring Leakages by Mutual Information

- the entropy is H(P(Z2)) = =3, P(P(z)) logy P(P(2)),

- the conditional entropy H(P(Z)|X) is:

H(P(Z)|X) = = ) Px(2) ) P(P(2)|x)logy P(P(2)|).

zng

In the presence of noise N, the mutual information between the noisy leakage £ = P(Z) + N
and the sensitive variable X can be developed using a Taylor’s expansio [23]:

+o00 2
(CX) =S L S gy Bl P D) — a(P(2))

d=0 2d!In2 z€F, (Var(P(2)) + 02)*

1 *f 1 V[ka(P(Z)|X)]

= 2 &= 2dl (V[P(Z)] + 02)? (4.18)

where kg is the d-th order cumulant [21].

As for a d-CI (Correlation Immune) function [22] that is not (d + 1)-CI, all moments of order
1 < d are centered, so are the cumulants. Hence the first nonzero cumulant kd% (X) is equal
to p1gy (X). It results that in Eqn. [1.18] the term V [kg(P(Z)|X)] is null for all d < d3, and it
is equal to V [,udé(P(ZﬂX)} =V |E P(Z)dé\XH for d = d. Thus, assuming the device is

leaking in Hamming weight model, the mutual information can be developed at the first order

in 1/02#3 by Eqn.

d5'B,.
I(L; X) P 1L+o( 1 ) (4.19)

T omn2.925  g2d o 2(d5+1)

when ¢ — +o00. This proves Theorem [4.4 O

Particularly from Theorem [.3] and @ it is noteworthy that reducing B,y allows both to
reduce the SNR and the MI, which demonstrates our intuition for the impact of B;. on the

concrete security level of IPM. In summary, two parameters that determine the leakages of IPM
are depicted in Fig.
- the slope in the log-log representation of the MI versus the noise standard deviation is all the
more steep as d1J5 is higher,
- the vertical offset is adjusted by Bd%: the smaller Bd% is, the smaller the MI.
When the noise variance o2 tends to infinity, 1(£; X) is converging to the dominating term
in the expansion given in Eqn. Hence, there is an affine law in the log-log representation,

in which the slope equals to the negative order of the first nonzero moment of random variable

L|X, namely the least order of key-dependent moments.
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Noise variance: o2

Lo Lo Lo

Reduce B,;1
D

i

1

1

iy

ML 1(£; X)

| Increase dp,

iy

Figure 4.3: Two concomitant objectives to reduce the mutual information.

Numerical Calc Approximation
—— Unprotected: dg =1, Byz=4 --- dg =1, Bg;=4
2-20 1 —— IPM with d3 =2, By; =4 -—- dg=2,Bg;=4
IPM with d =2, Bys =3 di=2,Bgs=3
2-26 | —— IPM with dg =2, Bz =2 -== d5=2,Bgy=2
IPM with dd =2, By =1 di=2,Bgy=1
5-32 | — IPM with dg =3, B4z =4 -—— d}=3,By=4
2734 IPM with dj =3, By, =3 --- dg=3,Bg;=

5-38 ] —— BKLC with dj =4, Bgy=14  ---= dg =4, By;=14

Mutual information: /(£; X)
N
|

277 276 =5 =4 -3 2.2 -1 20 1 52 23 24 25 26 7 28 9 olo
Noise level: o2

Figure 4.4: Numerical calculation and approximation of I(£; X') between leakages and the sensitive
variable X € Fys in IPM. The BKLC code [8, 4, 4] cannot be used in IPM. We put it here to show
the code with dp = 4.

Numerical Evaluation of MI. By information-theoretic analysis, we connected the mutual
information with two defining parameters of D, namely d3 and Bdé. In order to further
demonstrate Theorem [I.4] we numerically compute the MI for n = 2 shares and ¢ = 4 bits. The
value of I(£; X) is shown in Fig. M where L takes the “Hamming weight + Gaussian noise” as
leakages. Several illustrations of leakage distributions are depicted in Appendix for IPM

with oy € {1, a, a5}

5The normalization by In 2 allows the mutual information expressed in bits instead of nats.
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Obviously, d2 and Bd% clearly indicate the concrete security level of IPM as measured by MI.
Furthermore, our estimation of MI by Eqn. is in accordance with the numerical calculations.
From Fig. [I.4] the codes for practical applications can be chosen according to the noise level of
real devices (situations). For instance, if the noise level is 02 > 2, the d3; is more dominant on
choosing optimal codes, while if 02 < 271, By is more important; for noise level o%in [271,2],

more efforts are needed in choosing a good code.

4.6 A Unified Leakage Assessment Framework for IPM

We introduce a unified framework, consisting in the two parameters d and Bd% of code D, to
quantify the linear (e.g., Hamming weight) and affine leakages of IPM. By Theorem and
Corollary [£.1] we propose the unified framework for assessing the leakages of IPM as follows:

Framework 1 (Unified Leakage Assessment Framework for IPM). The leakages of IPM with

a linear code D can be quantified by the assessment framework consisting of two defining

parameters of D, namely its dual distance d5 and the coefficient Bd% in its weight enumerator

(recall Theorem[{.3)).

In summary, when the leakage model is Hamming weight or affine model, the side-channel
resistance of IPM scheme is straightforwardly related to two defining parameters of the selected
code D, namely dz and Bd% , which are core ingredients of our unified framework. From the
attacker’s perspective, the only way to compromise a countermeasure is to perform attacks with
order no less than d. From the other side of the coin, designers can use this framework in
practice, namely to enhance the side-channel security of IPM by choosing appropriate d%, and

Bdé. Hereafter, we show how to use this framework to select the optimal codes for IPM.

4.6.1 Selecting Optimal Codes for IPM

Recall that the generator matrix of dual code D+ is H+ = (a; = 1, a9, a3, ..., a,). From above,
two ingredients of our unified framework are d and B,y of the code D. Since our framework
straightforwardly indicates the concrete security order of IPM, we propose an algorithm to
choose optimal code for IPM as Alg. [T}

Summing up, our framework is generic and applicable to IPM under Hamming weight and
affine leakages. From the perspective of designers, it would be advantageous to choose the
optimal codes with proper d;, and By by using Alg. |l{instead of finding them via long and

tedious design then evaluation cycles. Some optimal codes are shown in Tab. [I.3]
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4. MEASURING THE LEAKAGES IN IPM AND OPTIMAL CODES

Algorithm 1: Conceptional Selection of Optimal Code for IPM
Input :All codes of D' generated by H*
Output : Code(s) with Optimized d3; and By

1 2 ¢+ all codes D with D*: [n,1,n]y over Fo ; // Optimize d,, in word-level,
dy=n if «a; #0

2 Do + {[D]2| D € 2} over Fyr with [DL]a: [nl, {,dy)s;

3 dp + max{dp| D € %} ; // Optimize in bit-level (dp)
49 ={D|ds=dy, D€ P} ; // Only keep codes with maximized d3
5 Bin < min{Bd7¢3| DeP'};

6 7" ={D| Byy = Bmin, DE '} ; // Only keep codes with minimized B,

7 return 2”;

For n = 2 and n = 3 shares for 4 & 8-bit variables, the best IPM codes and BKLC codes are
tabulated in Tab. [Z3]

Table 4.3: The optimal codes for IPM in several scenarios with BKL.Cs and Boolean one in

comparison (refer to [39)] for list of all codes).

Fye IPM Codes BKLC Codes | dis, —dityor | dism —diiae | SRboo1=0.8| SRipm=0.8 | SRiyic=0.8 Comments
- H-=(1, o®): [8, 4, 4]: (unique) ) 4 800 1p) | 4,000 1p) | 8,400 (1D) (I
~ dh =3, By =3 | dp=4 By =14 340 ep) | 1,320 20) | 2,500 (2b) -
l [123]. We introduce
i—s HY=(1, o8): [16, 8, 5]: (unique) 5 1 1,900 (1p) | >80,000 (1b)|>100,000 (1D) onli
= - one nonlimear
ds=4,B; =3 | ds=5 By =24 870 (20) |>20,000 (20) | >40,000 (20)
D L 5 code (16,256,6)
. New, the best
Ht=(1, o5, o10): [12, 4, 6]: 4,600 (1D) | >45,000 (1D)| >45,000 (1D)
(=4 3 0 IPM code is equivalent
- ds=6,By;. =12 | d =6, By =12 310 (3p) | 3,050 @3D) | 3,050 (3D)
i P 5 P 2 to BKLC code
= [123], the best
HL:(]' alsY al&'j): [241 8, 8]: B
=8 5 0 - - - IPM codes is better
d =8, Byy =7 |dp =8, By = 130 ‘
than BKLC one [39]

4.6.2 The Completeness of Our Unified Framework

In this chapter, we quantify the side-channel security of IPM using two complementary metrics,
namely the SNR and the MI, since they depict different aspects of the side-channel leakage.

Specifically,

e the SNR measures the amount of leakage at a given moment (mean, variance, etc.) in the

bounded leakage model;
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4.6 A Unified Leakage Assessment Framework for IPM

e the MI measures the total leakage distribution, namely depending on all orders of moments of

the leakage.

Both metrics are correlated with the attack metric SR, which is the pragmatic evaluation of the
exploitability of the leakage. This means that the smaller the SNR or the MI, the smaller the
SR for a given number of traces used to attack. Moreover, the two complementary metrics are
utilized to thoroughly validate our unified framework.

Our framework shows that security can be assessed only in terms of dual distance d2; and

parameter B of code D:

e regarding SNR, whatever the value of 0 — refer to Theorem for the Hamming weight
leakages and Corollary [L.1] for the affine leakages; moreover, for general leakages, e.g., nonlinear

leakages, refer to Theorem [I1}
e regarding MI, when o is large and the leakage model is Hamming weight — refer to Theorem[1-1]

Furthermore, equivalent codes feature the same SNR and MI when the leakage model is Hamming
weight, since permuting coordinates does not change the Hamming weight. So, we have that
the MI of two equivalent codes is the same whatever the value of o when the leakage model is
Hamming weight. But the converse does not hold, as shown in Tab.

It is interesting to notice that for n = 2 and ¢ = 4, all codes (1, ag)q¢ represented in Fy with
the same weight enumerator are equivalentEl as shown in Tab. Note that the codes in the
same rows are equivalent, so they have the same MI.

Table 4.4: Example of Non-equivalent IPM codes with n = 3, £ = 4 that have the same weight

enumerator but different MI (noiseless).

as | ag Weight Enumerators I(Z; X)
al | of 0, 1), (4, 2), (5, 3), (6, 2), (7, 4),

(0.1, (4,2, 5,8), 6.2, (R0, |
a? | o (8.3), (9, 1) ]
L 0, 1), (4, 2), (5, 3), (6, 2), (7, 4),
o o 1o o 6 6w |
a® | o (8,3),(9,1) ]

SFrom viewpoint of coding theory as described in Sec.
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Table 4.5: The weight enumerators of IPM codes with m = 2, £ = 4 and MI in a noiseless case.

Qs dp | By Weight Enumerators (Z; X)

o (Boolean masking) | 2 4 [ (0, 1), (2, 4), (4, 6), (6,4), (8, 1) ] 1.151963
al, ot 3 11(0,1),(2,3),(3,2), (4 3), (5,4), (6, 1), (7,2) ] | 0.380288

a?, al? 2 2 | [(0,1), (2, 2), (3, 3), (4, 3), (5, 4), (6,2), (7,1) ] | 0.287149

a?, al? 2 1 [ [(0,1), (2, 1), (3, 4), (4,3), (5, 4), (6,3) ] 0.199569

at,ab a0’ a8 a0 o't | 3 4 | [(0,1),(3,4), (4,5), (5, 4), (6,2) ] 0.181675
a®, ol 3 3 | 1(0,1),(38,3),(4,7),(5,4), (7,1)] 0.246318

4.7 Categorizing Linear Codes of 2-Share IPM over s

The key takeaway from the mathematical analysis of the previous section is that the two metrics
SNR and MI concur, in that show that d and Bd% are the two relevant parameters to consider
when seeking for an optimal code D. Namely, theorems and [I4] agree in that SNR and MI
decrease when d3 increases and when quji decreases. Therefore, we deduce an algorithm to
sort codes D of given length n with respect to their suitability in terms of IPM resistance. It is

sketched in Alg. [I} (borrowed from [37]).

Mutual information: /(£; X)
N

2732 4 Numerical Calc

S-36 1T —— IPM: L;=0, unprotected!
-3 IPM codes with different L;
2-40 | —— BKLC code: [16, 8, 5]

2-42

2 I—4 2 I*3 2 I*2 2 I—l 2'0 2'1 2'2 2'3 2'4 2'5 2'6 2'7 2'8 2'9 \210 2 11
Noise level: g2

Figure 4.5: Numerical simulation of mutual information 1(£; X) between leakages and the sensitive
variable X € Fus of all linear codes in IPM, and a BKLC' code of parameters [16,8,5]. The blue

curve is the one with Ly = 0 corresponding to unprotected case.

Clearly, the dual distance d, and the number of minimum weight nonzero codewords By
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are good indicators of the side-channel resistance of IPM. From Fig. the linear codes in IPM
can be classified into three categories with different d;, namely d3 = 2, 3 and 4. Note that
we call the linear codes used in IPM as IPM codes, where all of them are at word-level over
the field Fy., while all codes in DSM [I7] are at bit-level over Fy. In addition, we present the
unprotected one and the BKLC code of parameters [16,8, 5]. It is worth noting that the code
with parameters [16, 8, 5] is unique [I1] (up to equivalence). In Fig. when dual distance d;
gets larger, the slopes of mutual information curves get steeper. Therefore, the BKLC' code has
the best side-channel resistance and it is better than all IPM codes (but this code cannot be
used to carry out secure and provable computations, as is the case of IPM codes). Among IPM
codes, these with d, = 4 are better than others (dj = 3 or d; = 2).

Remark 4.3. In Fig. all curves of codes in IPM are between the blue and the red ones over
all range of noise variances o2. Moreover, the Boolean one (the first orange curve under the
blue one) is the highest among all codes in IPM, which indicates clearly that Boolean masking
is the worst case of IPM in the sense of side-channel resistance.

However, we observe that there exist distinct differences in each of classes categorized by d;,

which are affected by Bd%. Hereafter, we investigate each group of IPM codes with the same

dual distances by further studying the other code property Bd% .

4.7.1 IPM Codes with dp =2

As the first investigation, we move into the IPM codes with d; = 2 shown in Fig. There are
fifteen codes that can be classified into eight classes, each of which have two equivalent codes
with same Bd%. Recall that the IPM codes are determined by aw, thus we search ay as as = o
and we get i € {0,1,2,3,4,5,6,7,248,249, 250, 251, 252, 253, 254}. Correspondingly, the Bd%
are in the set {8,7,6,5,4,3,2,1,1,2,3,4,5,6,7}. The best two codes are equivalent and have
By =1 Itis worthy noting that Boolean masking is special case of IPM with as = o, which
is the highest curves in Fig. (the worst case of IPM). Hence in the sense of side-channel
resistance, IPM is more advantageous than the Boolean masking.

In summary, the (sub-)optimal codes in the class of d5 = 2 are these with the minimized

Byy =1 (meaning as € {a",a?*8}). This is in consistent with Theorem

4.7.2 TIPM Codes with dp =3

Secondly, we investigate all linear codes with dp = 3. There are 146 codes (68 non-equivalent

codes) in IPM.
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2_23: IPM codes with dg =2 IPM: L, = a*, By =4
2704 —— |PM: L =a®, Bgy =8 —— IPM: Ly =a®, Bgy =3
53 | — IPM: [, =a, Bgy=7 IPM: L, = a®, By; =2
1T —— IPM: L =0a?, By:=6 —— IPM: L =a, By =1
540 — IPM: L= a3, Bgg=5

Mutual information: /(£; X)
N

2'_4 2l3 2"2 2'_1 2'0 2'1 2'2 2'3 2'4 2'5 2'6 2'7 2'8 2'9 250 211
Noise level: o2

Figure 4.6: Numerical simulation of mutual information 1(£; X) between leakages and the sensitive
variable X € Fys in IPM where all codes have dp = 2 but different Bd%; .

Although there are 68 non-equivalent codes, the B 5 only takes seven values in set {1, 2, 3,4, 5,
6,7}. Again, we say that the codes with By, = 1 are (sub-)optimal in the sense of side-channel
resistance. In order to show this clearly, we only choose seven codes with different Bd% as in
Fig. For all codes with d%) = 3, there are 36 optimal candidates of as with Bdis =1.

However, there are two IPM codes (mutual equivalent) with as € {a%, a1%®} which have
different side-channel resistance under low noise situations (o2 < 271), while with higher noise
level they are in accordance with other codes. Their weight enumerator is shown as Eqn. .20}

W(X,Y) = X6 4 3X13Y3 4 4X12y* 4 16X Y5 + 36X10YC 4 43X9Y7 4 45X8Y8
+48X7Y? 4 36X°Y10 £ 17XPY £ exXAY12 4 XY!P, (420

The takeaway point for all codes with dp = 3 is that, they are preferable when the noise

level is very low (e.g., 02 < 273). Nevertheless, the optimal dual distance for 2-share IPM over

Fys is equal to 4 as shown in next subsection.

4.7.3 IPM Codes with dp = 4

As the last part, we investigate the rest of IPM codes with d% = 4 where there are 94 codes (40

non-equivalent codes).
Interestingly, there are 12 candidates of By in set {3,4,5,6,7,8,9,10,11,13,14,15}. In

order to show the differences between IPM codes with different B, we choose one code for
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4.7 Categorizing Linear Codes of 2-Share IPM over Fjs

Mutual information: /(£; X)

IPM codes with dg =3

1 — IPM: L = a5, Bgy =7

— IPM: L =, By =6

1 — IPM: L, =0a?7, B4y =5

IPM: Ly = a3, Bgy =4
IPM: Ly = a®7, Bg; =3
IPM: Ly = a®, By =2
IPM: Ly = a®, Bg; =1

2-1
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o1 22 23 24
Noise level: 02
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Figure 4.7: Numerical simulation of mutual information I(£; X) of IPM codes with di = 3 but
different Bd%_) .

each of distinct B;. as shown in Fig. @

Mutual information: /(£; X)

IPM codes with dy =4
IPM: L, = @%°, Bgy =15
IPM: L, = a®, By =14
IPM: L = @57, By =13
IPM: L, = @13, Bgy =11
IPM: L, = a6, Bgy =10
IPM: L, = a®, Bgg =9

IPM: L, = @24, Bgy =7
IPM: L, = a®, By =6
IPM: L = @®, Bgy =5
IPM: L, = a#, By =4
IPM: L, = a8, Bgy =3

22 23 24
Noise level: o2

Figure 4.8: Numerical simulation of mutual information I(£; X') of IPM codes with di = 4 but
different dei) .

Clearly, the optimal codes for IPM is the code with minimal Bdé = 3. These codes are

optimal with 02 > 1 and they correspond to as € {a®, «

247

,

126

,

129

,

127

,a!?8}. In summary,

a takeaway conclusion is that the optimal codes are with as € {a® a'? a'?8} (only three
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4. MEASURING THE LEAKAGES IN IPM AND OPTIMAL CODES

non-equivalent codes), in which the dz equals to 4 is maximized while B,y equals to 3 is
minimized among all possible codes in the 2-share IPM.

We underline that all above codes with corresponding as in IPM, dual distance dj the
parameter B;. and weight enumerators are available on Github [39] (all codes for 2-share and

3-share IPM over both Fas and Fys are included).

4.7.4 Estimation of MI by Theorem

In this section, we use the MI to show the impact of Bd%j in each of above three classes. In
addition, we add the unprotected one, the Boolean one (a3 = a® = 1) and the BKLC one for

comparison and shown in Fig.

Mutual information: /(£; X)
N

2-28 Numerical Calc IPM: L, = a4, dg =3, Bq; =7
;:22 —— IPM: L;=0, unprotected! —— IPM: L = a®, d$ =3, By =1
S| — IPM:iLp= a®, dy =2, By:=8 IPM: Ly = a®0, dg =4, By =15
2% MMile=ald=2,B4=7  _ ipM: 1, =af, dg =4, By =3
3w | — IPM:L;=a’, dy=2,By;=1 —— BKLC code: [16, 8, 5]

2-42

o4 273 otz 1 20 o1 22 23 24 25 26 57 28 29 2l Hu
Noise level: 0?

Figure 4.9: Comparing seven codes of IPM and one BKLC' code of parameters [16, 8, 5] where
all codes have different d and Bd% . The solid curves are from numerical simulation, while the
dotted lines are estimated by using Eqn.

From Fig. we can choose directly the optimal codes for IPM (the green curve). Further-
more, the BKLC' code of parameters [16, 8, 5] is better than all IPM codes and it is the best one
among all linear codes (but it cannot be used in IPM since there is no IPM code of parameter
(1, az) corresponding to the generator matrix of this BKLC code). This again confirms the
advantages of DSM beyond IPM in 2-share setting. However, the best IPM codes in 3-share

setting could be as good as the codes used in DSM.
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4.8 Further Applications to More General Masking Schemes

In Fig. the estimated MI (dotted curves) are close to numerical calculation (solid curves)
when the noise level is high. Moreover, the side-channel resistance of IPM is highly depend on
the linear codes used in it, which can be quantified easily by using two properties of the codes.
In a nutshell, even with 2-share setting, the side-channel resistance of IPM can be significantly
different. Hence, a dedicated choice of optimal codes for IPM is more than preferable, where

Alg. [[] provides a good solution.

4.8 Further Applications to More General Masking Schemes

We show in this work the optimal codes for 2-share IPM over Fys. In fact, our approach also
allows analyzing all codes used in DSM, which is the generalization of IPM. Consequently, these
results would be interesting for designers in practice, since the selection of the best parameters
of DSM is simple but very effective.

More generally speaking, IPM is a special case of Leakage Squeezing (LS) [23] and Direct Sum
Masking (DSM) [I7,24]. The connections between these masking schemes are shown in Fig.
Moreover, the efficient and secure algorithms for performing the elementary operations like
addition and multiplication on shared data are proposed in [I64] for DSM. In particular, in the
case of IPM, more efficient computations have been proposed in [3], in which the multiplication
part can be simplified. From a performance perspective, the overhead of IPM is about 40%
and 60% more than the Boolean masking when deployed on AES-128, for 2-share and 3-share

implementations, respectively [3, Tab. 2].

Direct Sum masking
(DSM)

Leakage Squeezing
(LS)

Inner Product
masking (IPM)

Boolean
masking

Figure 4.10: Connections between IPM, LS and DSM from a generalization perspective.
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4. MEASURING THE LEAKAGES IN IPM AND OPTIMAL CODES

Furthermore, the optimality of the selected codes not only holds under Hamming weight
model, but also holds under the “unevenly weighted sum of the bits” (UWSB) model, in which
each bit in the sensitive variables leaks differently. Indeed, in both cases the leakage function
P have the degree equal to 1. Eventually, Theorem is more general and can be used to
assess the codes under the nonlinear or higher order moments leakages where d°P > 1, e.g.,

P(Z) = wy(Z)? has d°P = d.

The Impact of Different Irreducible Polynomials. Although all representations of Fos
are isomorphic and therefore equivalent, they do not preserve their properties after sub-field
extension. In particular, there are 30 irreducible polynomials over Fos and two typical cases of

them are:
e gi(a) = a® +a* +a® + a + 1: which is the standard irreducible polynomial in AEY}

e go(a) = a® + a* + a® + a? + 1: which is the default irreducible polynomial in Magma and

Matlab, also the one used in this chapter.

In TPM, the irreducible polynomial plays an important role in expanding codes from Fas to Fa,
which determines the linear codes over Fy. As a result, the optimal choices of the linear code
for IPM may vary for different irreducible polynomials. Taking above two polynomials as an
example, the best achievable values of Bd% with dl% = 4 for 2-share IPM are different, where
the best Bd% for g1(a) and ga() are 4 and 3, respectively. Moreover, an information-theoretic
comparison on side-channel resistance of the corresponding IPM is shown in Fig. which
shows a slight advantage of using ga(«).

However, the different irreducible polynomials have marginal impact on the best linear codes
with respect to d% and Bdé. For instance, the possible values for d% are the same for both
g91(@) and gz(), and the difference on the best values of B,y is only one when other gi(a) or

g2(«) is deployed.

4.9 Conclusions

In this part, we followed a quantitative approach to characterize the side-channel resistance of
IPM scheme. In particular, we proposed a unified framework and linked it to two theoretical

metrics (SNR and mutual information), and also an attack metric (success rate). The framework

7As an example, this irreducible polynomial is used to construct the optimal codes in [33].
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4.9 Conclusions

Mutual information: /(£; X)

| — ga@)=at+a*+a*+a?+1;dg=4,Bg;=3

2-40 1 -x- gi(@)=al+a*+ad+a+1;dy=4,By=4
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Noise level: logio(0?)

Figure 4.11: Comparison of the impact of two irreducible polynomials (of the finite field) on the
best linear codes for IPM.

is based on two parameters of the code D, namely the dual distance d% and the coefficient Bd;
in its weight enumeration polynomial. We showed that the concrete security level of IPM can be
fully depicted by our framework. By our framework, we provided a quantitative explanation for
“Security Order Amplification”, which has been observed in previous works including CARDIS’16,
CARDIS’17 and ASTACRYPT’17. At last, we proposed an effective method to select the optimal
codes for IPM and validated by experiments.

Although we validated our framework by simulated leakages with realistic noise parameters,
it is still not clearly verified on real devices. As a perspective, we will consider the practical
validations of our findings. Moreover, we show in Tab. and optimal codes obtained by
an ezhaustive study, which is very time-consuming. Such method to find the optimal codes
becomes computationally impossible when the number of shares n gets larger (e.g., n > 5).
Hence, a systematic (e.g., algebraic) construction of better codes than mere random codes is
much preferable and could be leveraged. However, it is still an open problem to construct

optimal or suboptimal codes for IPM or LS with a larger number of shares.
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CHAPTER D

Quantifying Leakage in Code-based Masking

This chapter presents the work [35] published at JACR Trans. Cryptogr. Hardw. Embed. Syst.
(TCHES) 2021, issue 3. Part of results are also been demonstrated in [42].
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

5.1 Introduction

Masking is one of the most well-studied countermeasures to protect cryptographic implemen-
tations against side-channel attacks due to the favorable provable security it provides. The
core idea underlying any masking scheme is to split the sensitive (key-dependent) variables into
several shares and perform independent computations on masked variables only. Indeed, the
rationale is that, given a sufficient amount of noise, the attack complexity increases exponentially
with the number of shares [30] [128], while the implementation cost increases only quadratically
(or only cubically in higher-order glitch-free implementations [79]).

Two key ingredients of a masking scheme are the encoding for randomizing the sensitive
variables, and the masked operations for manipulating the random shares. Regarding the
latter, the secure masked operations can be constructed effectively [80], [139] for both bit- and
word-oriented variables. Furthermore, thanks to the well-established concept of (Strong) Non-
Inference (NI and SNI) introduced by Barthe et al. [0], the basic gadgets carrying out the
elementary operations (e.g., addition, multiplication, etc.) can be composed to construct the
whole implementation without losing the claimed security properties. Regarding the former, the
encoding is a more fundamental ingredient in masking that provides the achievable upper bounds
of side-channel security order with tunable public parameters. Indeed, firstly, the side-channel
security order of the full implementation cannot exceed the security order of the corresponding
encoding, and secondly, when implemented ideally, the security order of an implementation can
be guaranteed by its encoding. However, evaluating the concrete side-channel resistance of the
encoding in general cases remains an open problem since many different encodings in various
masking schemes behave differently when fed with diverse parameters. Therefore, a unified
quantification approach would formalize and compare the security of different encodings and

find optimal parameters for a specific masking scheme.

5.1.1 Unifying Masking Schemes by Generalization

Generalization is a promising approach to unify different masking schemes. In this trend,
the code-based masking generalizes many existing schemes, including Boolean masking, Inner
Product masking (IPM)El [2, B], Leakage Squeezing (LS) [23], [24] and Direct Sum masking
(DSM) [I7, 123]. To the best of our knowledge, the generalized code-based masking (GCM) [164]

I'We consider the improved TPM [2] rather than the original one [4], since firstly, there exist some first-order
information leakages in the latter [I30], and secondly the performance of the latter is much lower than the former,
which makes it impractical.
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5.1 Introduction

is the most generic scheme in this respect. In particular, polynomial masking [77, [I31] is also a
special case of GCM, which is built upon Shamir’s secret sharing (SSS) scheme [145].
Let X € F’;e and Y € ]ng be respectively the sensitive variable and ¢ random masks. Then

the encoded variable in GCM writes:
Z=XG+YHEeF],

given that k 4+t < n, where G and H are generator matrices of two codes C and D, respectively.
For the sake of simplicity, we take kK = 1, but essentially, the GCM can use packed secret sharing
techniques [79] [164] to improve the performance by parallelism. However, the side-channel
security evaluation of encoding is similar to any k, since each of the k sensitive variables is
encoded similarly. The overview of connections between these masking schemes is shown in

Fig. [0} where the four intersecting areas are:

/

Generalized Code-based Masking
(GEMm)

Direct Sum Masking

Leakage Squeezing

Inner Product
Masking (IPM)

Boolean Masking
(BM)

.

Figure 5.1: Overview of code-based masking schemes. In particular, all intersections I, II, ITI, and

IV mean that n = ¢+ 1 in SSS-based masking, where the two codes C and D are complementary.

e Intersection I: as pointed out in [5I], Boolean masking can be considered as a special case of

polynomial masking for small enough parameters (n < 6 or equivalently ¢ < 5).

o Intersection IT: in [2], the authors claimed that the polynomial masking is a special case of IPM.
However, this generalization does not indicate the exact connections between SSS-scheme and
RS codes. Indeed, if we take the polynomial evaluations in encoding into consideration, the

generalization from SSS-based masking to IPM is valid only when n = 2 and ¢t = 1.
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

e Intersections III and IV: in SSS-based masking, if n =t + 1, the codes C and D are comple-
mentary, therefore they can be viewed as DSM (or LS) scheme. Otherwise, if n >t + 1, the
corresponding masking schemes are out of DSM’s scope. On the other side, the linear codes
for DSM may not be converted into SSS-based schemes since the codes in SSS are endowed

with a specific algebraic structure.

The most significant benefit of utilizing code-based masking is the higher security order
than the simple Boolean masking given the same number of shares. Taking 2-share IPM over
Fys [3, 7] as an instance, when appropriate public parameters are chosen, the side-channel
security order can be maximized to 3 under the bit-probing model [123], which is higher than 1
in Boolean masking. Moreover, the security orders are enlarged to 7 vs. 2 (IPM vs. Boolean
one) in 3-share scenarios [37, Tab. 2|.

Currently, the side-channel security order of GCM has been connected to the dual distance
of D |24 [123], which is denoted as di. As a special case, the security order ¢ in IPM and
DSM is equal to d%s — 1 since the two codes C and D are complementary. However, as pointed
out in [37], the dual distance of D is not sufficient to characterize the concrete side-channel
resistance of IPM, hence a new framework with a new parameter (more precisely Bdé, which
counts the number of codewords of Hamming weight equal to d%) in D1) is proposed to model
IPM’s concrete security level more accurately. Nevertheless, this framework is not applicable to

GCM since C and D may not be complementary anymore.

5.1.2 Public Points in SSS and Polynomial Masking

To construct a t-th order secure polynomial masking, a polynomial of degree t is firstly selected:
Ffx(X) = X + 3, u;X?, where the secret X is then associated as the constant term in fy (X).
Secondly, fx(X) is evaluated in n distinct points «; for 1 < i < n, which are called “public
points” in the scheme. As a result, the secret X is encoded by using the private parameters wu;
(which are random masks viewed in the context of masking).

As observed in [29], the public points in SSS play a significant role in the side-channel
resistance of SSS-based masking schemes. In fact, this problem of public points is inherent in
the SSS scheme and can be dated back to Massey [105] who claimed that SSS scheme “can
be attacked with the well-developed tools of algebraic coding theory”. The SSS-based masking
provides a practical example whereby changing the public points in polynomial masking, the

concrete security level can be significantly different.
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5.2 Our Contributions

However, to the best of our knowledge, there are neither qualitative principles for selecting
good or even optimal public points in SSS-based masking nor a quantitative approach to evaluate
the role of public points played in the side-channel resistance of SSS-based masking. In this
chapter, we propose solutions to the two problems by utilizing a coding-theoretic quantitative

approach.

5.1.3 Independence Assumption behind Masking Schemes

The independence assumption is an indispensable condition behind the security proofs when
extending from the probing model to the bounded moment model or noisy leakage models [8] [60].
For instance, if this independence condition is violated due to physical defaults (e.g., couplings
through the ground or parasitic capacitances, glitches, etc.), the side-channel security order
will decrease accordingly [61]. However, this independence condition is essentially related to
inter-share leakages from different shares in masking and treats each share as a whole.
Moreover, the independence issue also happens in intra-share cases where the leakages of
different bits in the same share leak jointly. This kind of leakage is often called non-linear
leakages and comes, e.g., from registers or memory units of real devices. In fact, both intra-share
and inter-share independence issues can happen simultaneously. Taking AES implemented
on ARM Cortex-M4 as an example, where the registers are 32-bit, and each share is in Fos,
four shares can be manipulated at the same time. Consequently, the register will leak jointly,
including intra-share and inter-share leakages. To the best of our knowledge, the intra-share
independence issue has not yet been studied thoroughly in the sense of security order reduction.
We will show that essentially, the intra-share independence is the condition for higher security

orders under the bounded moment model [§].

5.2 Our Contributions

In view of the above state-of-the-art, our contributions are threefold as follows.

A Unified Leakage Quantification Approach for GCM. We derive a closed-form ex-
pression for SNR to quantify the information leakages in GCM for any leakage functions. In
particular, we present a simplified expression for the Hamming weight leakage model. In fact,
this new result generalizes the framework proposed in [37] for IPM. Furthermore, we use mutual
information (MI) to quantify the information leakages of GCM in an information-theoretic sense.

Both SNR and MI are connected to two properties (namely the dual distance and the number

63



5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

of conditioned codewords) of the linear codes used in GCM. Relying on a theoretical analysis of
SNR and MI, we propose a unified approach to quantify information leakage in GCM. Then we
show how to select optimal codes for GCM by optimizing the two properties. The experimental
results confirm that the MI can be minimized by utilizing optimal codes, which indicates the

improved concrete security level of the corresponding masking scheme.

Optimal Public Points for SSS-based Polynomial Masking. As an application of our
unified approach, we characterize the side-channel resistance of polynomial masking from
a coding-theoretic point of view. The first outcome is a more accurate characterization of
information leakage and the second outcome is a straightforward method to choose optimal
linear codes (parameters) for SSS-based masking. For the first time, we quantify the impact of
combining different public points in SSS-based masking in the context of side-channel analysis
and show that more shares leak more information (given a specific t). In particular, our coding-
theoretic approach can exactly depict the observations made in [29]. Using MI, we present the
quantitative results of information leakages in SSS-based masking, which again validate our
unified approach. For the first time, we exhibit several optimal tuples of public points (the linear
codes in a coding-theoretic perspective) for SSS-based masking in the sense of side-channel

resistance.

Revisited Independence Condition in Masking Schemes. Independence condition re-
quires that the information leakages from different variables are statistically independent. In the
context of masking, it exists in two cases: inter-share and intra-share. Specifically, the former
means that the leakages of different shares are independent, which is well-studied in literature [§].
The latter deals with the leakages from one share, in which different bits in this share may
leak independently or not. To capture both of them, we introduce the leakage function P,
where its numerical degree indicates both cases’ independence conditions. For instance, the
commonly assumed Hamming weight leakage model has a numerical degree equal to 1, a perfect
independent case. Moreover, we show how the degree of P affects the side-channel security order
of a masking scheme.

We underline that all mathematical derivations presented in this chapter have been verified
formally with Magma computational algebra system [I58]. The open sources of this work are

available on Github [34].
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5.3 Encodings in Code-based Masking

Differences between Chap. 4] or [37] with GCM. In this work, we study GCM by using
a similar coding-theoretic approach as in [37]. However, two key differences make this work
significantly different from [37].

Firstly, GCM generalizes IPM by allowing C, and D to be non-complementary, which allows
deriving security metrics in a more general manner. In [37], the authors prove that the side-
channel security of IPM only depends on the code D. While in this work, for the first time, we
show that the side-channel security depends on both C and D. In particular, the quantitative
findings enable us to put forward optimal GCM encodings which are new upon [51]: given the
same parameters n and ¢ (the number of shares and security order), we decrease the information
leakage in GCM to the lesser possible extent.

Secondly, GCM allows for protections in much more general contexts. Namely, GCM can be
used to withstand glitches [I31] and to detect errors against fault injection attacks on top of
preventing side-channel attacks. Therefore, our work has broader implications for the protection
of realistic platforms. In a nutshell, GCM opens a new path to derive unified countermeasures

against both fault injection and side-channel attacks.

5.3 Encodings in Code-based Masking

5.3.1 Technical Overview

Let n, k be positive integers and K = Fq¢ be a finite field. Let C be an [n, k], linear code
parameter with generator matrix G defined over F, (here we use ¢ = 2). Let the irreducible
polynomial be g(a) = a® + a* + a3 + a? + 1 to generate the field K = Fys. Recall that for
an (n, t)-SSS scheme, the secret X is split into n shares, and the sharing is ¢-privacy, where
any t 4+ 1 shares can be used to recover the secret but not for less than ¢ shares. Note that the
(n, t)-SSS scheme is also connected to the Reed-Solomon (RS) code with parameters [n, ¢ + 1].
Let X € K, Y € K* and Z € K" be the sensitive variable, the random masks, and the
shared variable; we use Eqn. as the uniform representation of encoding in GCM which is

used throughout the chapter:
Z=XG+YHEeFL, (5.1)

where k+t < n, G and H are two generator matrices of the two codes C and D with CND = {0}.
In this work, we focus on GCM, which is the most general case of code-based maskingsﬂ By

using the uniform representation as Eqn. we revisit the encodings of code-based masking

LAs a special case of IPM, a Boolean masking can be obtained by taking a; = 1 for 1 <4 < t in Tab.
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

schemes as in Tab. B11

Table 5.1: Encodings in IPM, LS, DSM, SSS-based masking and GCM, revisited.

IPM Lsf DSM SSS-based masking GCM
23] B3] [I7) 23] [77) 131 [I64]
Conditions cnND =0}, cND={0},|CNnD={0},
CND={0} CnND={0}
on C and D C+D=K" C+D=K"|C+D=K"
G e Kkxn ( 1 00 0) GeKkbm | GeKM ( 11 1 ) G e Kkxn
ap 1 0 0 al ol al
as 0 1 0 o? o a?
tXn txXn 1 2 n
HeKtxn HcK HeK . HEKtxn
ap 0 0 1 of o al
Security n==%k+t. n==k+t. n>k+tand fx(X). n>k+t.
parameters: k=1l,n=t+1 G, H can be | G, H can be In glitch-free case, G, H can be
n, k, t any matrices | any matrices n>2t+1 [I31] any matrices

5.3.2 Connecting SSS Scheme to the RS code

We recall the (n, t)-SSS scheme by mainly referring to [28, [29]. Let X € K again be the secret
and can be split into n shares such that no tuple of shares with cardinality lower than ¢ depends
on X. The SSS scheme consists in selecting a random polynomial fx(X) = X + 27;?:1 uX?
of degree t where u; with 1 < ¢ < t are ¢t random coefficients (masks) in K. The secret X
is the constant term: X = fx(0). Then a (n,t)-sharing (Z1, Zs,...,Z,) of X is defined by
evaluating the polynomial fx(X) in n distinct public non-zero points aj, s, ..., a, in K such
that Z; = fx(«;). The recovery of X from its sharing consists in two steps: fx(X) is first
recovered by using the Lagrange interpolation and second, fx(X) is evaluated in 0. Since in
an (n, t)-SSS, any tuple of shares with cardinality greater than ¢ can be used to recover X, we
denote by U the selected shares (|U| >t + 1), which is called the interpolation set.
Actually, these two steps can be combined into one [29]:

X=> Zv,

Z;eU

(5.2)

where the public constants «; are computed from «; by: v; = H;.l:l st j#i Z,eU @ -
-t g, Z

Y5
_a7 M

11S consists of the application of an arbitrary bijection on the shares. Although it has only been studied on
vectors of bits (on F2), it can be trivially extended to vectors on Foe. When the bijections are linear, LS is thus
equivalent to DSM.
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Remark 5.1. Note that in K = Fy¢, the subtraction is the same operation as the addition.

Remark 5.2. In an (n,t)-SSS scheme, any combination of more than ¢ shares, meaning |U| > t+1,
can be used to recover the polynomial fx(X) and the secret X. Hence, in each combination
(e.g., each set U), 7; should be computed correspondingly.

Next, we recall the Reed-Solomon codes.

Definition 5.1 (Reed-Solomon Code [29]). The Reed-Solomon code RS(S,¢ + 1) € K™ of
dimension ¢ + 1 over a finite field K and with evaluation subset S = {ag, a1, ..., a,} of Kis the

subspace:
RS(S,t+1) = {(f(ao), f(er),..., flom)); f(X) € K[X] and deg(f) <t} .

Given the degree of f(X) is t, then ¢ + 1 evaluations of it can be used to recover f(X) itself
and the codewords. In terms of RS codes, the sharing of X with SSS scheme is an encoding

with a RS code RS ({a1,...,a,},t+1):

G

Z=(21,Z4,.... %) = (X,Y) (H

> = XG + YH, (5.3)

where (I(-;I) is the generator matrix (Oég)ie[l;n],je[o; #]- More precisely, G is an 1-by-n matrix
equal to (1,1,...,1) and H is a Vandermonde matrix. By denoting G; and H; the i-th column
of G and H respectively, we have: Z; = fx (o) = X +Y'_, Yol = XG; + (Y1,....Y;) H,.
Accordingly, the reconstruction of X from Z = (Zy,Zs,...,Z,) is done by taking Z; to
obtain an interpolation set U such that |[U| > ¢ 4+ 1. We also call this scheme the redundant
sharing when n > t + 1 since at least ¢ 4+ 1 shares can recover X. We will show in Sec. [6.2] that

more redundancies in sharing of SSS-based masking leak more information on X.

5.4 Quantifying Information Leakages in GCM

In this section, we use SNR as a leakage metric to evaluate the information leakages in GCM. In
particular, SNR, quantifies the key-dependent leakage at certain degrees. SNR is thus attractive
in that if SNR at a given degree d is null, then one can conclude that the scheme is secure at

order d.

5.4.1 Uniform Representation of Leakage Function

As the first step, we formalize the information leakages from a device. In this respect, we rely

on the clarification on serial and parallel implementations proposed in [g].
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

Before formalization, we give an example to provide some intuition for the uniform leakage
function P. Let Z = (Z1,Zs,...,Z,) denote the encoded intermediate with n shares and
X be the secret. By ignoring the noise, we assume the leakage of each share is £L; = Z;
under the identity leakage model and £ =), £; is the total leakage. To launch a successful
attack, an adversary needs to find the (smallest) key-depend statics, namely raising d such that
E [£d|X] #E [Ed], but E [/f|X} =E [Ei] for all i < d. Equivalently, an adversary needs the
smallest d such that V [E [£d|X ]] # 0, which measures the informative part in L.

Formally, let P = ¢p o ¢p denote the leakage function, where ¢p is the leakage model for
each share, and pp is the combination function that assembles the leakages from selected shares.
In this thesis, we call ¢p and pp the intra-share and inter-share leakage model, respectively.
For instance, in serial implementations, the leakage of each share is: £; = ¢p(Z;) + N;, then
the exploitable leakages can be combined by ¢p. For instance, taking the Hamming weight
model and centered product as leakage model and combination function, respectively, then
Li=¢p(Z:)+ Ny = wg(Z) + N; and £ = [[°_,(Le — E[L]) = P(Z) + Niotar where the latter
combines leakages of d shares by the normalized product. Consequently, the highest order of
key-dependent leakages is captured by P with numerical degree d.

Therefore, we use the following representation of P as a pseudo-Boolean function:

P@2)= > BZ', (5.4)

Ie{0,1}n*

where Z1 = [Ticqi,...ney st. 1,21 Zi, and Br € R and deg(P) = max{wx (I) | B1 # 0}.

Two Probing Models. For the purpose of a finer-grain analysis, we clarify the two kinds of

probing model (see also [64], §2.2]) and corresponding security orders as follows:

e Bit-probing model: each probe only gets one bit at a time where each bit leaks independently
or jointly. Correspondingly, ¢p is defined at bit-level and ¢ p at certain degrees are used to

combine the bit-level leakages. The security order in the bit-probing model is denoted by .

e Word-probing model: each probe gets an ¢-bit word at a time, where an ¢-bit variable leaks
as a whole. As a result, the degree of ¢p implies how many numbers of bits leaked jointly,
in which the intra-share independence condition plays a role in security order reduction, as

shown above. Similarly, the security order is then denoted by t,,.

When connected to coding-theoretic properties, the security orders ¢, and ¢,, are related to

the dual distance of the code D used in GCM over Fy and Fye, respectively [37), 123]. More
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5.4 Quantifying Information Leakages in GCM

precisel we have t,, = dps — 1 and t, = d5, — 1 where D; is the sub-field representation of
D. In the sequel, we call t the security order for the sake of simplicity, ¢, and t,, should be

unambiguous from the context (e.g., variables in Fy or Fye).

5.4.2 SNR-based Information Leakage Quantification

Let P(Z) be a leakage function as in Eqn and let N denote the independent noise with zero

~ _ 52 2d
mean and variance V [N] = o7 ,,; o 0%¢ (

oc means proportional to 02¢) [37]. Then, the leakage
is:
L=P(Z)+ N.

We have V[E[P(Z) + N|X]] = V[E[P(Z)|X]], where Z = XG +YH ¢ K" = FJ, is the
encoding in GCM (Equ. . The SNR of leakages is defined as:

_ VIE[L]X]] _ VI[E[P(Z)|X]]
SNR = = o = 2 . (5.5)

Ototal

Therefore, we propose the following theorem to quantify the leakages in the GCM scheme by
SNR.

Theorem 5.1. Let a device be protected by the GCM scheme as Z = XG + YH. Assume the
leakages of the device can be represented in the form: L = P(Z)+ N. Then the SNR of the

exploitable leakages is:

SNR:V[EE;)(ZZ)XH:22M.1U2 l S wRw]. 69

z,yGDL\Cl; :chyGCL
where o2, < 02 is the total noise and P(-) is the Fourier transform of P(-)

The demonstration of Theorem [5.1|involves computing V [E [P(Z)|X]], which can be derived

by the following Lemma 5.1} In order to have the paper read fluently, its proof is relegated in
Appendix [A-T.T] which also proves Theorem

Lemma 5.1. Let a pseudo-Boolean function P(Z) denote the leakage function, and taking the

same notations as above, we have

V[E[P(Z)|X]] = 22—2 3 P(x)P(y). (5.7)
z,yeDI\Ct; atyeCt

n [I64], a special case is presented with t > d% — 1. However, we always have t = dé — 1 if the optimal
codes are used in GCM. Especially, the equality holds for all RS codes in SSS-based masking.
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

Remark 5.3. Note that Lemma encompasses the core result in [37]. Indeed, as a special case,
if n =t +1 in SSS-based masking, the two codes C and D are complementary, as well as C+ and
D+, Since by Lemma we have C+ N'D+ = {0} and the only possible solution in Eqn. is
x =y # 0. Therefore, V [E [P(Z)|X]] can be simplified into:

VEPE)IX) = g Y P, (5.8)
zeD+\{0}

which is exactly the same result as in [37].

As a nutshell, the information leakages from GCM can be quantified by Theorem under
the generic leakage model characterized by P, which evaluates the SNR of the leakages. As a
direct result, we have the following proposition, which connects the code property dz and the

security order in GCM.

Proposition 5.1. The GCM is secure at the order t = dp — 1 under the bounded moment
model and the probing model if deg(P) < dp.

~

Proof. Given a pseudo-Boolean function P, one has P(z) =0 for all z € K" such that wg(z) >
deg(P) [25]. As a result, SNR will be zero since deg(P) < d3 and all codewords of D+\C* as
in Eqn. have Hamming weight no less than dz. O

Consequently, the attacks on GCM fail if deg(P) < d2;. Conversely, for an attack to succeed,
one must have deg(P) > d%). This is, however, only a necessary condition, but not a sufficient
one. Indeed, it is possible that attacks in the setting deg(P) > do fail. This is illustrated in the
next remark.

Remark 5.4. The security order can be even higher than d; — 1 when there is no x, y € D\C*t
such that = +y € C* which have weight d5. Indeed, in Eqn. the sum will be empty if
the degree of P is equal to deg(P) = d%. Thus the SNR is equal to zero, and the security
order increases accordingly. A specific example can be found in [164] Example 1| (shown in
Appendix , in which dé equals 2 and the security order equals 2 as well.

5.5 Quantifying Hamming Weight Leakages

One realistic leakage model is the so-called “Hamming weight” leakage: each bit is leaking
in a similar amount, though independently from others. It has been demonstrated to be
practical in many works, such as [I6]. In this case, the attacker can measure a quantity
P(Z) =wy(XG +YH). However, E[P(Z)|X] = E[P(Z)] if the masking is perfect. But there
exists a d > 1 such that for some z, E [P(Z2)%|X = x| # E [P(2)4].
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5.5 Quantifying Hamming Weight Leakages

5.5.1 Simplifications

We use P(z) = wg(2)? as the informative part in a leakage model, which captures the higher-

order leakages where the numerical degree deg(P) equals d. Moreover, we have:

P(z) = wn(2)?

d nt J
Z <J1,...,JnE>HZii
=1

Tt dpe=d

3 @zud! o

JEN™ sit. wy(J)<d; Ie{0,1}"%;
Z;Lil Ji=d wg (I)=d

where N = {0, 1,...} is the set of integers. The multinomial coefficient (Jl d an,) is defined as
Jl'di‘jwe' (recall that J = (Jy,..., Jue) € N™ with Z?ﬁl Ji = d). This coefficient equals d! as

long as for all ¢ (1 <4 <nf), J; =0 or 1. Now, the terms in P(z) are categorized into two cases:

e 27 where J € N™ wp(J) < d, which consists in products of < d bits of z, as z/ =
Hie{1 ..... ne} s.t. J;>0 Fi
e 2! where I € {0,1}", wy(I) = d which consists in products of d bits of z, as 2! =
Hie{l,.“,nﬁ} s.t. ;=1 %
Indeed, let ¢ € {1,...,nl}, then z;ji =1if J;, =0, and z;]i = z; if J; > 0. The first terms z”/
have numerical degree deg(z’) < d, hence can be discarded in the analysis (they contribute
nothing to the SNR). Remaining terms of numerical degree d are: ZIE{O,I}M,wH(I):d 2L

Relying on decomposition in Eqn. we can simplify lemma as follows.

Lemma 5.2. Let a pseudo-Boolean function P(Z) = wg(Z)? denote the leakage function, and

taking the same notations as above, we have

VIE[P(2)|X]] = B, (;{L) . (5.10)

where B!, denotes the adjusted coefficient in weight enumerator which is defined in Def. ,

Before diving into the proof of Lemma we define the parameter B:i . which count the
D

number of codewords under certain conditions in C+ and D+.

Definition 5.2 (Adjusted coefficient in weight enumerator). Let C and D denote two linear
codes. The adjusted coefficient B is defined as:

B) = |{(z,y) € (D\CH)? |z +y € Ct, wy(z) = wy(y) = d}|. (5.11)
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

To be more precise, we use subscript 2 (if necessary) to indicate the subfield representation
of a linear code. For instance, D> denotes the subfield representation of D over Fy. Therefore,

we have the following lemma for B/,.

Lemma 5.3. Recall that Bd% is the coefficient in weight enumerator of Dy defined in Def.
2
then we have the following inequality in SSS-based masking:

B >B, .
d%g - dDQ

Proof. B, " is the number of pairs of codewords (x, ) in D+\C* which satisfy the two conditions:
2

their sum is in C* and their weights are equal to dp,. Clearly, this number is greater or equal
to the same number of pairs where in addition, = and y are chosen to be identical. In the latter

case, the number of codewords is equal to:
[{z € DI\CHwp(z) =dp,}| , (5.12)

because  + y = 0 does always belong to C+ and that x and y have the same Hamming weight
since they are equal. Now, Eqn. is the minimum nonzero coefficient in the weight enumerator
of DH\C*, which is equal to By in SSS-based masking. O

Hereafter, we demonstrate Lemma [5.2] by utilizing Eqn. to simplify Lemma [5.1

Proof of Lemma[5.3 Let ;(z) = 2! where I € {0,1}". Thus

IR ) (== R § CRE) (5.13)

i€l i€l i€l

Since all monomials with numerical degree smaller than d have SNR = 0, we only focus on
d

monomials with numerical degree equal to d. Taking ¢;(z) = ¢1(2) + %(—1)21@ # where

¢1(z) is linear combination of monomials with numerical degree smaller than d in ¢;(z), then

the Fourier transform of pr(z) is:

G1(y) = orly) + (_Q}i)d Z(—l)“(_UZ'y = r(y) + (-1) Z(_l)z.(1+y)

R _1\d
= i) + S ).

We have af(y) = 0 for y with wy (y) > dj = t+1 > d, since given a pseudo-Boolean function P,
one has P(z) = 0 for all z € K" with wy(z) > deg(P) [I7, Lemma 1]. As a result, by combining
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5.5 Quantifying Hamming Weight Leakages

Eqn. with Eqn. we have the following equation:

VEPE)X] = 5 Y P@)P()
a:,yeDL\CL
m—i—yECL

1 (-1 /d (-1 /d
= 22n€ Z Z 2d—n€ (I)ﬂ{l}(x) Z 2d—n€ I ]l{I}(y)
z,yeD\ct \Ilwu (I)=d
zyect

_ d d (5.15)
SSadlD DU D SR (4 EIC) N D ol G LIS
z,yeD\ct \Ilwu()=d THwg (I)=d
zt+yect
ay?
() X
z,yeD\Ct; z4yeCt
AN
_ !/
- Bd <2d> )
where B/ is the adjusted coefficient in weight enumerator defined in Def. O

5.5.2 Connecting SNR with Code Properties

Taking Lemma [5.2| as an input to Theorem we have the following theorem for Hamming
weight leakages in GCM.

Theorem 5.2. Let a device be protected by the GCM scheme as Z = XG + YH. Assume the
device is leaking in Hamming weight model in the form: L= P(Z) 4+ N. Then the SNR of the

exploitable leakages is:

; L
svpo YEP@OX) _ | 0, . if deg(P) < dp
O otal e(4B), ifdeg(P) = db

p) T
Tiotal \ 29D

(5.16)

where o2, ., is the total noise such that o2, o o*® with deg(P) = d.

Proof. Obviously, substituting the expression of V [E [P(Z)|X]] in Theorem by Lemma [5.2]
gives the proof. O

The takeaway point is, the Hamming weight leakages, in which deg(P) = 1, are quantified
by Theorem [5.2] in which the two parameters that have an impact on SNR are the dual distance
dé and the coefficient B(’i . Therefore, the two parameters also affect the concrete security level
of GCM. As a straightforward application of Theorem the side-channel resistance of GCM

can be optimized by increasing d5; and/or decreasing B, .
D
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

5.5.3 Ml-based Information-Theoretic Leakage Quantification

We extend the leakage quantification approach by using another metric, namely MI, in an
information-theoretic sense. Let the secret X be encoded as in Eqn. and let the leakages be
L = P(Z)+ N, then the MI between £ and X is defined as I(£; X) = H(L) — H(£L|X) where:

- the total entropy is: H(L) = — [, Pllog, Pldl,
- the conditional entropy H(£|X) is: H(L|X) = — Zmng Pz [, Pl|zlog, Pl|xdl.

In multivariate cases, two entropies are computed on £ = (L1, Lo, ..., Ly) for a d-variate MI by
a d-D integral on continuous variables. While in monovariate cases, two entropies are computed

by 1-D integrals. Moreover, I(£; X) can be expanded using a Taylor’s expansiorﬂ [23]:

SR ™ pr(a) BalPO) — kulP(Z))" (5.17)

0= Z 2diin2 2 (V[P(2)] + %)

where kg is the d-th order cumulant [21].

Assuming the device is leaking in the Hamming weight model, we have the following theorem
for quantifying the information leakages in GCM.
Theorem 5.3. Let a device be protected by the GCM scheme as Z = XG + YH. Assume the
leakages of the device can be represented in the form: L = P(Z)+ N. Then the MI between L

and X 1is estimated as:

0, if deg(P) < d

|(£;X) = dé!B;L (5.18)

L
21n 222D

310 (é)’ if deg(P) = d, when 0 — +00

a_zd% U2(d%+1)
where o is the standard deviation of noise in the leakage of each share.

Proof. Since for a d-CI (Correlation Immune) function [22] Def. 1], all moments of order i < d

are centered, so are the cumulants. Therefore, the first nonzero cumulant kq(X) is ks (X) and
it equals 141 (X). As a consequence, the term E {(kd(P(Z)|X) - kd(P(Z)))2] in Eqn. |5.17is
null for all d < db and it is equal to E [(ud(P(Z)\X) - /,Ld(P(Z)))Q] _ [,de%, (P(Z)|X)J -
v [E [P(Z)d%|X” for d = d5.

Assume that the device leaks in Hamming weight model, then P(Z )dJLD has a degree equal to
d3. Hence the MI is equal to:

ot

LV [IE [P(Z)d%p(ﬂ

I(£; X) =

1
" 225l (v(p(2)] 1 02 ((W(znm)dé“) S

IThe normalization by In2 allows the mutual information to be expressed in unit of bits.

74



5.6 Optimal Codes for GCM

when ¢ — +oo. Finally, Eqn. can be further developed at the first order in 1/ 025 as
follows after involving Eqn.

dp! B, 1 1
. — D
(£ X) = ona. 220 < g2ap T O (a2<d$+1>) ’

when o — +o0, which proves Theorem O

A comparison of MIs by estimation and numerical calculation is shown in Fig. More
precisely, the estimated MIs are converging to numerical one when log;, 0? ~ 1.5, which verifies

Theorem numerically.

""'"'f"'“';“"--ij-:,—--‘;___ x—x Numerical Calc |
‘ ‘ ‘ 3 - ‘ ‘ »-+ Estimation

--#- Unprotected case
— dy =2, B'44=34:1i,,k=0,1,2
—— di=2,B'g:=1:1jk=0,7,15
.—— dp=3,B'44=60:i,,k=0,24,48
-104 — dp=3,B'4;=1:1i,,k=0,8,79
-11+ —— dp =4, B'4;=44:i,j,k=0,72,80

Mutual information: logio(/(£; X))
&

220 -15 -10 -05 00 05 1.0 15 20 25 3.0 35 4.0
Noise level: log1o(0?)

Figure 5.2: Numerical calculation and approximation of 1(£; X) between leakage £ and the

sensitive variable X in (3,1)-SSS based masking. The three public points are a; = o, ag =

j k
o az = a”.

Summing up, the information leakages of GCM under the Hamming weight model can be
estimated by the two parameters d3; and B(’i n in an information-theoretic sense. In the general
case of leakage function P, the MI can be estimated similarly by applying different forms of P
into Eqn. to derive connections to coding properties correspondingly.

5.6 Optimal Codes for GCM

Thanks to Theorem and we can compare the information leakages of GCM in a

quantitative manner. More importantly, relying on the analytic characterization of information
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

leakages, the three theorems enable us to choose optimal linear codes for GCM. Specifically,
the codes with maximized dé and minimized B:i L are the best candidates for GCM. Consid-
ering the SSS-based masking as a special case, the optimal public points can be determined
straightforwardly by applying the two theorems.

To thoroughly validate the optimal codes, we consider multivariate leakages. In particular,
it is shown in [I53] that comparing to sum, absolute difference, and normalized product, the
joint distribution is the most efficient way to combine the multivariate leakages in side-channel
analysis. In this work, we consider both sum and joint distribution to exploit the multivariate
leakages. A comparison of the two combination functions in an information-theoretic sense is
presented in Appendix

We take (3,1)-SSS based masking as an example of GCM and specify it as follows. Let X

be encoded into Z = XG + YH with n = 3 shares, the two generator matrices are:

G (1 1 1),

H:(oq oy Qs ):(1 od ak). (5.20)

Considering the common “ Hamming weight + Gaussian noise” model, the side-channel leakages
are simulated as follows. Let £ = (Ly, L2, L3) be 3-D leakages where £; = ¢p(Z;) + N; =
wi(Z;) + N; for 1 <i < 3 and N; ~ N(0,0?) is the Gaussian noise. To combine the 3-D
leakages, other sum or joint distribution are applied wherein pp(L) = Z?:o L; is called 1-D

leakages or wp(L) = (L1, L2, L3) is called 3-D leakages, respectively.

The results are shown in Fig. [5.3(a)|and [5.3(b)[ are 1-D MI and 3-D MI, respectively (more

results over Foa are in Fig. . The first observation is that the 3-D MI utilizing joint distribution
exploits more key-dependent information existed in leakages, therefore the attack is more efficient
when using the joint distribution of leakages [I8]. Secondly, the numerical results in Fig. are
in accordance with the Theorem and where the two parameters dg and B!, L in codes
play a significant role in determining the side-channel resistance of GCM.

Thirdly, the strategy to choose the optimal codes for GCM is to maximize the dual distance
d2 and/or to minimize the conditioned number of codewords B, . Moreover, the concrete
side-channel security level of GCM will be improved by optimizing either of the two parameters.
Interestingly, when the noise levels are at certain intervals, the codes with smaller d3 (also with

smaller B;l 1) may be better than that with larger d{a. For instance, for the curves in purple
D

(the fourth one) and in sky-blue (the fifth one) of Fig. the corresponding d3 are 2 and 3,
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Figure 5.3: An information-theoretic evaluation of the leakages £ and the sensitive variable X in

(3,1)-SSS based masking. We choose seven codes

three public points are a1 = o*, aa = o’ , a3 = a”.
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Figure 5.4: An information-theoretic evaluation of the leakages £ and the sensitive variable

X € Faa. Six codes are chosen with different déZ and/or B/,
D

2

respectively. When o2 < 10, the purple curve shows a better side-channel resistance than the

sky-blue one.

5.7 Conclusions and Perspectives

This chapter presented a unified approach to quantifying the information leakages of code-based
masking in the most general case, namely GCM, which already encompasses many state-of-the-

art masking schemes. Firstly, by a uniform representation of encodings in GCM, we proposed a
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

quantitative approach to evaluate the concrete security level of GCM. The signal-to-noise ratio
and mutual information are used as two complementary metrics to quantify the lowest degree
of key-dependent leakages. By this unified approach, we were able to quantify the impact of
different codes in GCM and optimize it by choosing optimal codes for it. Next, we evaluated
the impact of public points in Shamir’s Secret Sharing in the context of masking. Thanks to the
unified analytic approach, we showed the impact of public points in side-channel security orders
of the corresponding masking. More importantly, we provided a roadmap to optimal linear codes
for designers to optimize the SSS-based masking (also GCM) soundly. Lastly, we revisited the
independence condition behind the masking scheme and showed that the intra-share dependence
could ruin higher-order security under the bounded moment model. In particular, we showed

how the higher-order intra-share leakages affect the side-channel security orders precisely.
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CHAPTER O

Redundancy in Code-based Masking

This chapter presents the work [35] published at JACR Trans. Cryptogr. Hardw. Embed. Syst.
(TCHES) 2021, issue 3. Part of results are also been demonstrated in [42].

Contents
6.1 A Starter Example . ... ... ... ... 00000, [70]
6.2 Enhancing the SSS-based Polynomial Masking . . . . .. ... .. R0
6.2.1 Further Clarifications . . . . . . . . . .. .. ... ... ... . 7]
6.2.2 Representing Linear Codes in Subfield F5 . . . . ... ... ... .. BT
6.2.3 More Redundancy in Sharing Leaks More . . . . . ... .. ... .. S
6.2.4 Different Codes for (3,1)-SSS and (5, 2)-SSS based Masking . . . . . B
6.3 Revisiting the Independence Condition . ... ... ........
6.4 Related WOTKS . & v v v v vt e e e e e e e e e e e e e e e e e e BT
6.4.1 Differences with [37] in Detail . . . . . . . ... ... ... .. .... 7]
6.4.2 Connections with [BI] . . . .. ... ... ... ..o L. 53]
6.4.3 Efficient Implementations of GCM . . . . .. .. ... ... .....
6.4.4 Further Application to Low Entropy Masking Schemes . . . . . . ..
6.5 Conclusions and Perspectives . . . ... ... ... ......... 00

6.1 A Starter Example

As shown in Remark there are some cases of GCM in which the side-channel security order

can be greater than the dual distance of D minus one. In particular, Wang et al. [I64] presented
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6. REDUNDANCY IN CODE-BASED MASKING

an example where the generator matrices of C and D as follows, respectively,

/111100 0 0\ oxs

G_(00001100>€F2’
11000000 (6.1)
oo 1100 0 1| us

H=10 001110 0%
00000111

We can compute the generator matrices of the dual codes C+ and D+ as follows, respectively,

10010000
01010000

. loo110000 bxs

G =looo0oo01100|E%
0000O0GO0T10
0000O0O0O0 1 (6.2)
11000000

C loo1o000 11 s

H 0001010 1|
00001110

where C is a code with parameters [8,6,1] and D+ is of parameters [8,4,2]. We have dj =
dpi =2 and By = 1 for D+. Therefore, there is only one codeword u = [1,1,0,0,0,0,0,0] € D+
such that wg(u) = 2. Since u is also in C, which indicates that B} equals 0. As a consequence,
applying Theorem gives that SNR equals 0 for deg(P) = d3, = 2 under Hamming weight
leakages (e.g., P(Z) = wy(Z)) and then the security order is at least equal to do;, rather than
d — 1. More generally, taking Theorem gives the same conclusion for any leakage function
P with deg(P) = 2.

In particular, we checked that the first nonzero lei 5 for nonzero codewords is B; = 3.

Therefore the security order is exactly 2 in above example.

6.2 Enhancing the SSS-based Polynomial Masking

In the context of masking, the random masks in SSS-based masking are u; for 1 < i <t where

a1, Qa, ..., 0, are n public points. Two main observations made in [29] are:

e the choices of public points «; can have an impact on side-channel resistance of the corre-
sponding masking scheme, therefore, combining different ¢ + 1 tuples of Z;, the efficiencies of

corresponding template attacks are different,

e combining more than t + 1 tuples of Z; may improve the attack efficiency in the sense of the

number of traces needed to recover the secret key.
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6.2 Enhancing the SSS-based Polynomial Masking

Recall that the generator matrices in SSS-based masking (e.g., the RS code) from Tab.
G and H are the same as the generator matrices in DSM when n =t 4 1. In the context of
masking, we only care about G and H, since the former is used to encode the secret X and the
latter is for encoding the random masks (e.g., u1,...,u; in the case of SSS-based masking).

Note that H is a Vandermonde matrix, resulting in that the code D is a maximum distance
separable (MDS) code, it is optimal at word-level. However, with different parameters «; for
1 <4 < n, the codes have different impacts on side-channel resistance when they are adopted in

masking schemes.

6.2.1 Further Clarifications

We further clarify the properties of the code D and its dual as follows. Let D be an RS code of
parameters [n, ¢, n — t + 1] which is generated by H in Eqn. Then its dual code D+ is also
an RS code of parameters [n, n — ¢, t + 1] [I0I]. Recall the connections between the RS code
and SSS scheme, D can be used to construct an (n, t)-SSS scheme.

Given that n >t + 1, we assume that ¢t + 1 < n’ < n, the code D’ is constructed by selecting
n' columns from the generator matrix H of D (or equivalently, remove n — n’ columns in H).
Subsequently, the code D’ has parameters [n/, ¢, n’ —t + 1]. It is also an RS code and its dual
code D'+ has parameters [n’, n’ —t, t + 1]. Therefore, the dual distance of D’ is equal to D,
namely d35, = dp =t + 1. In summary, removing some coordinates (n’ > ¢+ 1) in RS code does
not decrease its dual distance (at word-level).

Remark 6.1. Note that for two arbitrary linear codes D and D’ where the latter is generated
from the former as above (by selecting some coordinates), we have the following lemma for their
dual distances.

Lemma 6.1. dp < dz,.

Proof. Assume u € D'+, by appending n — n’ zeros to u, then the new codeword (u, 0,_,/) is
also a codeword of D+. Therefore we have dp < d3, [26]. O

Interestingly, Lemma [6.1] implies that given a fixed ¢, adding more shares in an (n,t)-SSS
based masking cannot increase the security order of the corresponding masking scheme and can

be more likely to lower the security order, especially under the bit-probing model.

6.2.2 Representing Linear Codes in Subfield F,

We take o as the subfield, then any codes over Fy: can be expanded into subfields by code
expansion Def. We further investigate the properties of codes D and D’.
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Let Dy and D) denote the expanded codes of D and D’ over Fa, respectively. Since they are
not MDS codes at the bit level, there is no straightforward method to compare the dual distances
of Dy and D). However, by Lemma it is obvious to have dp_ < d%;- This connection helps
in SSS-based masking since, by increasing n, the dual distance at word-level keeps the same,
but the dual distance at bit-level cannot be larger than in the case with n’ =t + 1. Moreover,
from the adversary’s viewpoint, combining more than ¢ + 1 shares may be more efficient when
attacking a specific SSS-based implementation.

From the quantitative results in Sec. two parameters that have an impact on the side-
channel resistance of GCM is the dual distance dg;, and the coefficient B/, 5. Hereafter, we use
the information-theoretic metric to show how the more redundant shares affect the concrete

security level in SSS-based masking.

6.2.3 More Redundancy in Sharing Leaks More

We present an information-theoretic evaluation on (3, 1)-SSS based polynomial masking. Taking
n =3 and t = 1, then the three public points (a1, asz, a3) can be derived by setting a; = af,
as = o and o = aF, where i, j, k must be distinct integers. Due to the equivalence of the
linear codes (Sec. , we can choose i =0, 1 < j < k < 254 and obtain 32131 candidates rather
than (235): 2731135 in total. Recall that the generator matrices G and H are as in Eqn.

Therefore, taking a random mask u;, the X is encoded into:
Z = (21, Zs, Zg) =XG+uH= (X +uiar, X +ujag, X —|-U1043) . (63)

For all possible values of a1, as, as € Fos, we study the dual distance d%) and the coefficient
Bd% at both word-level and bit-level. As expected, all codes have the same weight enumerator
at word-level (they are all MDS codes and optimal at word-level). However, there are three
possible values for d3; at bit-level, namely d1J52 € {2, 3, 4}. Hence, for each possible d%)?, we
further study the possible values for the other parameter Bd%z' In particular, for each case
of d%)z, we show two or three codes with maximal and minimal values of Bdéa' The specific
properties of the codes are listed in Tab. El and the MI between the leakages £ and X are
depicted in Fig. The complete details of all linear codes for the (3,1)-SSS based masking

are available in [34].

1The data in Tab. is formally verified by Magma [I58]. Moreover, the scripts for calculating B«/i are also
available on Github [34].
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6.2 Enhancing the SSS-based Polynomial Masking

Table 6.1: Exhibiting different codes in (3,1)-SSS scheme generated by Eqn. Note that we

take a1 = o' =1, ae = o’ and a3 = o,

j=11j=1| =7 |j=24]| j=8 || j=59 | j="2
k=2 |k=3| k=15 || k=48 | k=79 || k=172 | k=80
Minimum distance dp 3 3 3 3 3 3
Dual distance (word) dg 2 2 2 2 2 2
Dual distance (bit) dp, 2 2 2 3 3 4 4
Coefficient (bit) Bd$2 20 18 1 22 1 76 36
Coefficient (bit) B/, 5 34 18 1 60 1 140 44

As shown in Tab. for the first time, we exhibit an approach to find the optimal codes for
SSS-based masking and present optimal codes for (3,1)-SSS based masking. Specifically, the
code with a1 = 1, ay = @™ and a3 = o® (in the last column of Tab. is one of the best
candidates for (3,1)-SSS based masking. In addition, the generator matrices of all three optimal
(nonequivalent) codes are shown in Appendix It is worth noting that the codes obtained by
permuting the order of «; for 1 < i < 3 are equivalent, resulting in only three optimal codes for
(3,1)-SSS based masking over Fys.

Using the same settings of (3,1)-SSS based masking as in Sec. the results of MI on the
information leakages of 3-share and corresponding 2-share combinations are shown in Fig. [6.1]
In each of four cases, the main takeaway point is that given a specific ¢ in (n,t)-SSS based
masking, all the more shares leak more key-dependent information. Specifically, we first highlight

that the smallest security order determines the side-channel security of SSS-based masking

n

: +1) combinations. In the context of coding theory, the dual distance of n-share

among all (

SSS-based masking is determined by the minimum value of dual distances in truncated codes

D’. Two instances are in Fig. [6.1(b)|and [6.1(c¢)| where the minimum of dual distances are 2 and

3, respectively.
Secondly, when the codes in SSS and its truncated variants have the same dual distance,

the parameter B(’i . plays a role in side-channel resistance. More precisely, smaller B& . brings
D D

improved concrete security for GCM. Two instances are shown in Fig. [6.1(a)|and [6.1(d)| where

the dual distances of D are 2 and 4, respectively. Interestingly, a recent work [5I] provides
empirical comparisons on some instances of (2,1)-SSS and (3,1)-SSS based masking, which

confirms our information-theoretic evaluation.
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Figure 6.1: More shares leak more information, two study-cases on (3, 1)-SSS based masking,

where the three public points are: oy = o, as = o, as = oF.

In summary, the information-theoretic evaluations in Fig. confirms that more redundancy
in sharing of GCM would leak more information. Besides, one way to find optimal codes for

GCM is to build up from (sub-)optimal choices of the codes with less shares.

6.2.4 Different Codes for (3,1)-SSS and (5,2)-SSS based Masking

We present further results for both (3,1)-SSS and (5,2)-SSS based masking schemes which are

supplementary to Tab.

Note that in Tab. we fix both a; and as since there are too many candidates for
enumeration (more accurately, (225): 8,637,487,551 candidates in total). In addition, the
reason for taking as = o® is that (1 o®) € Fas is one of the optimal code for (2,1)-SSS based

masking.
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Table 6.2: Exhibiting different codes in (3, 1)-SSS scheme over F,4 generated by Eqn. Note

that we take a1 = o' =1, a2 = o and as = o”.

k

=1|j=1|j=3|j=4| j=5
k=2 | k=3 |k=7| k=8| k=10
Minimum distance dp 3 3 3 3 3
Dual distance (word) dz 2 2 2 2 2
Dual distance (bit) dp, 2 2 2 3 3
Coefficient (bit) Bdéz 8 6 1 17 16
Coefficient (bit) B(’%2 14 6 1 45 40

Table 6.3: Exhibiting different codes in (5, 2)-SSS scheme over Fys. Note that we fix a1 = o' = 1,

a2 = a® and enumerate all possible a3 = of, a4 = o' and a5 = a”.

k=116 k=1 k=139 | k=1 k=18 k=1 k=14 | k=90

1 =169 =3 =172 | 1= =52 = =111 | 1=92

r=214 | r=184 || r=225 | r=12 || r=219 | r=51 || r =219 | r =192
Minimum distance dp 4 4 4 4 4 4 4 4
Dual distance (word) dg 3 3 3 3 3 3 3 3
Dual distance (bit) dp, 3 3 4 4 5 5 6 6
Coefficient (bit) Bdéz 19 1 29 1 43 1 115 30
Coefficient (bit) B:i%;,, 35 1 39 1 55 1 215 32

Table 6.4: Exhibiting different codes in (5, 2)-SSS scheme over Fos. Note that we take a1 = o' = 1,

az = o, agzak,cu:al and a5 = a’.

j=Lk=4| 7=1k= 1=1k= j=3k= =1 k=

1=6,r=12 | l=6,r=11 | [=3,r=11 || l=9,r=12 | l=5,1 =
Minimum distance dp 4 4 4 4 4
Dual distance (word) dp 3 3 3 3 3
Dual distance (bit) dp, 3 3 3 4 4
Coefficient (bit) BdéQ 12 11 1 25 17
Coefficient (bit) B;é2 20 19 1 225 39

6.3 Revisiting the Independence Condition

Failing to ensure the independence of the shares can ruin a masking scheme by revealing a lower

order of key-dependent leakages than the designed security order. For instance, the unintentional
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physical coupling [8] in the hardware device can combine leakages from different shares, hence
degrade the concrete security level of a masked implementation. In this section, we investigate
the intra-share independence issue and show the theoretical condition of higher-order security of
code-based masking, especially in GCM as it is the most general case.

Another reason why the independence condition might be broken is the existence of glitches.
Let us reason on a canonical example, namely that of the exclusive-or (XOR) gate. Let Z;
and Z5 be two single-bit shares, which enter an XOR gate. Recall that the leakage function
is P = pp o ¢p as introduced in Sec. Taking ¢p = 1, then the leakage function is the

pseudo-Boolean function ¢ p, which lives in Fy x Fs — R. It is equal to:
(pp(Zl, Z2) = Z1 X ZQ + (1 — Zl) X (1 — ZQ) = 221 X Z2 — Z1 — ZQ + 1. (64)

This function can glitch because of the term Z; x Z5. Indeed, if Z; changes, then the leading
term still depends on Zy (derivative). Therefore, glitches are dreadful since they consist in

combinations from within the chip, even before the measurement noise arrives.

An Information-Theoretic Evaluation of Intra-Share Independence. We consider the
Hamming weight as leakage model in a perfect independent case and take the weighted square

of Hamming weight as second-order (non-linear) leakages as follows:

¢ ¢ ¢
op(Z) = Zij+w) ZijZiy=wn(Zi)+wY  Zi;Zix (6.5)
J=1 i#k J#k

where Z; is an {-bit share and w is the weight of second-order leakages. As a consequence,
P(Z) = ¢p(Z) will be the same as Hamming weight model with deg(P) = 1 if w = 0. Otherwise,
there exists a different amount of second-order leakages indicated by w where the degree of
P equals 2. The MI results on four candidates of w are shown in Fig. for 4-bit and 8-bit
variables, respectively. It is worthwhile to note that in 2-share settings with n =2 and ¢t =1,
the SSS-based masking can be transformed into IPM by changing the way of involving public
parameters a; for 1 <7 < n. Essentially, the two schemes are different because of the structure

of G and H as in Tab. but are comparable from a side-channel perspective.
The first observation from Fig. [6-2]is that MI increases along with the increasing amount of
second-order leakages. More importantly, in the presence of second-order leakages, the security
order under the bit-probing model [123] (indicated by the slope of MI curves when the noise

level is high) decreases by one since the degree of ¢p is 2. Similarly, the security order will
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Figure 6.2: The intra-share independence issue: the existence of higher-order leakages decreases
the security of the corresponding masking scheme (two public parameters are a; = o, as = o/ as
in Tab. . Note that the blue curves are for the Boolean masking.

reduce by two when the degree of ¢p equals 3 in the red curves of Fig. However, the
lowest security order under the bit-probing model is bounded by the Boolean masking under
the word-probing model. More precisely, increasing the degree of ¢p only affects the intra-share
independence and therefore decreases the security order under the bit-probing model, while
the degree of ¢p (e.g., induced by couplings) affects the security order under the word-probing

model.

6.4 Related Works

6.4.1 Differences with [37] in Detail

As summarized in Sec. this work tackles GCM, which is a more general masking scheme
than the one studied in [37]. In fact, we utilize the same notion of the numerical degree and a
similar coding-theoretic approach as in [37], and also the same leakage assessment metrics like
SNR and MI. However, generalizing [37] to this work is not trivial at all, we show hereafter the
technical differences from [37].

We first highlight the different constructions of the generator matrices G and H in Tab.
for the codes C and D, respectively. Indeed, C and D are not complementary in GCM, while
they are complementary in IPM. In this respect, we show that Eqn. is simplified as Eqn.

when C and D are complementary, thus we recover the main results in [37] (see Remark [5.3)). As
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6. REDUNDANCY IN CODE-BASED MASKING

a special case, the framework proposed in [37] is applicable when C and D are complementary,
e.g., when n =t + 1 in SSS-based masking.

Moreover, we prove that GCM requires introducing a more general parameter B/ (see
Def. , which is a novel parameter for linear codes. Particularly, in [37] the parameter By
only depends on D. While B/, depends on both C and D, which indicates the importance of
selecting appropriate candidates for both of them in practice. We also provide efficient magma
scripts to evaluate this quantity [34].

Finally, we insist that the generalization in this work is a significant improvement that works
for all GCMs. Since firstly, we show in Remark [5.4] that the security order can be greater than the
dual distance minus one in GCM, which cannot be explained by the framework in [37], but can be
explained perfectly by this work in a quantitative manner. Secondly, the redundancies in GCM
allow detecting faults (e.g., for glitch-free designs [I31]), which is currently an active research
topic. We leave open the question on the construction of coding-theoretic countermeasures

against both side-channel and fault injection attacks for future investigation.

6.4.2 Connections with [51]

The SSS-based masking is also the topic of a recent work [51], in which Costes et al. showed that
the Boolean masking is a special case of SSS-based masking when n < 6. More interestingly, their
simulation-based multivariate attacks [I8] confirm our mathematical derivations, in particular,
the information-theoretic evaluation in Fig. [6.1]

More generally, this work provides a unified framework for quantifying information leakage
of all GCM instances. As a straightforward application, Theorems and in this chapter
enable us to explain the empirical observations in practical attacks. For instance, the three
codes for (3,1)-SSS in Fig. 3 of [51] correspond to different dz and/or By . However, we stress
that the three codes for (2,1)-SSS in the same figure are not equivalent to each other but have
the same dz equal to 4 and closely distributed Bd% € {11, 8,8}. Moreover, this work presents a
systematic way to select optimal codes for SSS-based masking and GCM, which is out of the

scope of [51].

6.4.3 Efficient Implementations of GCM

In this chapter, we optimize security without touching the performances of GCM (there is
no tradeoff between security and performance). Our coding-theoretic approach shows that

both SNR and MI security metrics concur that dual distance and adjusted coeflicient in weight
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enumerator are the two drivers for security improvements. Essentially, we stick to the definition
of GCM (recall the rightmost column in Tab. , and propose an effective way to tune the
underlying codes.

In terms of performances, they are the same (with respect to memory and speed) as the
generic GCM. A more detailed study could consist in attempting to represent the generator
matrices G and H as compactly as possible (with as many zeros and ones in coefficients as
possible, or with a specific structure, say “cyclic” for instance). Besides, Wang et al. [164]
showed a complementary way to improve the overall performance of GCM implementations by
an amortization technique. Both approaches would ease an efficient implementation of GCM,

leaving an open problem for future study.

6.4.4 Further Application to Low Entropy Masking Schemes

Compared with the high cost of masking schemes, lower entropy masking scheme (LEMS) [78|
1T4], [T70] provides a practical approach to reduce both randomness and implementation costs
by only taking a small set of random masks. As a specific example, rotating S-Box masking

(RSM) [12], @4}, [TT0}, [TT4] takes only 16 random masks which are elaborately chosen to achieve

maximal protection. RSM is also the core protection used in [DPA Contest v4.1 & v4.2] [154] for

masked AES implementations.
In fact, RSM shall be represented in the form of code-based masking. Specifically, the two

codes C and D in RSM are complementary. Let X € F§ be the sensitive variable, then
Z=(X+YHY) (6.6)

be the encoding in RSM [12] where Z € Fi? be the encoded variable, Y € F3 is the mask and H
is a 4 x 8 matrix with coefficients in Fy. Indeed, C is spawn by the 8 x 12 matrix G = (Is,0)
and D is spawn by the 4 x 12 matrix H = (H, I4) where H € ngg is the generator matrix of
the code [8,4,4] (which is known to be optimal and unique [24]). Therefore, we have

G = (Is 0Ogxa),

1000 1110 1000
0100 1101 0100 (6.7)
0010 1011 0010
0001 0111 0001

H=(H L) =

As a consequence, the dual distance of D is d5 = 2. Indeed, the dual code D+ has parameters

[12,8,2] and its weight distribution is: [(0, 1), (2,4), (4, 70), (6, 108), (8, 65), (10, 8)]. Accordingly,
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the security order of RSM with this [8,4, 4] code can only achieve a second-order side-channel
resistance (under bit-probing model).

However, the above choice of the code D [I2] is not optimal in the sense of d. For instance,
it can be improved by using the optimal code [12,4, 6] and its dual code has parameters [12, 8, 3].

The generator matrix of D is then as:

0110 1110 1000
1010 1101 0100
1111 1011 0010
0011 0111 0001

H=(H I)= (6.8)

Note that the coordinates of H is permuted to have a systematic view. Accordingly, the weight dis-
tribution of the dual code D+ is: [(0, 1), (3,16), (4,39), (5, 48), (6, 48), (7,48), (8,39), (9, 16), (12,1)],

which achieves a third-order side-channel resistance.

6.5 Conclusions and Perspectives

In this chapter, we investigate the side-channel resistance of redundant code-based masking and
applications of our theoretical derivatives in SSS-based masking. In particular, we highlight
the impact of the adjusted kissing number B[’% that depends on both codes C and D. As
applications, we present optimal codes for (3,1)-SSS based masking as a first-order protection,
and (5,2)-SSS based masking as a second-order protection, respectively (over both Fos and Fas).

However, the construction of optimal codes for a large number of shares is still an open
problem. We launched an exhaustive study on (3,1)-SSS based masking and presented some
results on (5,2)-SSS in [34]. But the exhaustive enumeration would be computationally infeasible
when n gets larger (e.g., n > 8) in SSS-based masking or, more generally, in GCM. A heuristic
solution is to construct new (sub-) optimal codes by concatenating two optimal or sub-optimal
codes, following a gradient descent idea. Alternatively, constructing the (sub-)optimal codes by
an algebraic approach under certain constraints is a promising solution. We will explore both

solutions for GCM in the future.

90



Part 1V

Masked Cryptographic
Implementations: Attacks and

Information-Theoretic Bounds

91






CHAPTER [

Optimal Attacks in the Presence of Code-based Masking

In this chapter, we present the results of higher-order optimal attacks against protected crypto-
graphic implementations by the code-based masking. Part of work presented in this chapter is

under submission (see [CGD21]| in publication list).
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7. OPTIMAL ATTACKS IN THE PRESENCE OF CODE-BASED MASKING

7.1 Introduction

Side-channel analyses (SCAs) are among the most powerful attacks against cryptographic imple-
mentations. Since the seminal works [94, [05], a very large amount of SCAs have been proposed by
exploiting various observable physical leakages in practice, like power consumption [46] 5], the
electro-magnetic emanations |71} [I32], etc. In essential, SCAs attempt to extract the sensitive
information from noisy measurements containing unintended emissions or leakages, where the
measurements are correlated with internal states or behaviors of a cryptographic device.

Along with a large body of attacks, numerous countermeasures have been proposed to protect
practical implementations against SCAs. Relying on different strategies and principles, two
major lines of countermeasures are hiding and masking [I02]. Specifically, the hiding approach
attempts to balance the leakage of different key-dependent operations or data, resulting in
less informative signals in side-channel measurements [32) [I56]. In contrast, the masking
approach randomizes the internal states by splitting internal sensitive variables into several
shares, which breaks the straightforward connection between the sensitive variables and the
measurements. In particular, the latter is more preferable since it is featured with the provable
security rather than engineering intuitions of designers. However, protecting cryptographic
implementations against SCAs is usually not trivial and expensive in the sense of implementation
cost [15], 30, [79], 128]. Furthermore, many proposals of protection are devised under abstract
assumptions like independence assumption [7], [103], sufficiently noisy condition [30}, 128], etc.,
which are not always fulfilled in real scenarios |5l [48].

Therefore, the evaluation of side-channel security of an implementation, especially in the
presence of protection, plays a significant role in understanding its concrete security level and
verifying the correctness and effectiveness of certain protections. In the following, we focus on

the evaluation of masked implementations.

7.1.1 Evaluation of Side-Channel Security

According to different leakage models and the abstraction level of cryptographic implementations,
evaluation tools are classified into four categories.

Firstly, the conformance-based leakage detection utilizes conformance testing to check whether
there are significant differences in side-channel measurements of different key-dependent variables
and/or operations [47, [T07, [TT2], 144} T52]. It is intended to answer the following question at

a high abstraction level: does the device under test leak side-channel information? Those
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statistical tools include Welch’s t-test, y2-test, etc. However, the conformance-based leakage
detection only provides qualitative result, which is usually independent of the exploitation of the
leakages, e.g., to launch a successful key-recovery attack. Furthermore, it might be difficult to
interpret the detection result when the conformance testing gives a negative answer indicating
no significant leakage. Therefore, other evaluations are necessary to further verify the leakage.

Secondly, the proof-based evaluation intends to prove the side-channel resistance of a masked
design under abstract models like the probing model [86] and related variants [60, [62] [126], [T28].
Typically, under independence assumption and noise condition, several leakage models are
equivalent with certain forms of constants [I26] by providing formal security guarantees of
the masked implementation. However, physical defaults like couplings, glitches, etc. usually
contradict assumptions behind the probing model [5l [T03]. As a consequence, it is recommended
to launch the attacked-based quantitative evaluation.

Thirdly, the information-theoretic evaluation aims at measuring side-channel leakages by
utilizing information-theoretic measures [I51, [I6G]. The frequently used measures include
Shannon mutual information, Kullback-Leibler divergence, conditional entropy, etc. In fact, this
category of evaluation measures the full distribution of leakages and provides insights on how
much information an adversary can obtain. In essential, it usually provides information-theoretic
bounds on the probability of success for any side-channel distinguishers given a set side-channel
measurements [41, 57]. It is worth mentioning that not all distribution-based leakages can
not be exploited by side-channel distinguishers. For instance, correlation power analysis is a
typical non-profiling attack and it exploits only a few orders of moments of side-channel leakage.
However, one of the major difficulties of using information-theoretic evaluation is how to estimate
the leakage distribution accurately when the number of measurements is not sufficiently enough.

Finally, the attack-based evaluation is at the core of side-channel security evaluation, which
aims at assessing the probability of success of a specific side-channel distinguisher. Relying
on large variety of side-channel distinguishers like correlation power analysis [16] [82], mutual
information analysis [55] [74] [I63], template attacks [31), [[T9], stochastic attacks [0} [I43], higher-
order optimal distinguisher [I8] [84], etc, the attack-based evaluation provides more accurate
assessment of leakage, which captures device-specific features of side-channel leakage. However,
it is infeasible to exhaust all distinguishers to launch attack-based evaluation provided a limited
resources and time.

Summing up, the conformance-based leakage detection only provides qualitative assessment of

side-channel security while other three evaluations give different levels of quantitative assessment.
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To a large extent, four evaluation approaches are complementary to each other in practical
application, varying with different evaluation requirements and necessary expertise on launching
evaluations.

In this chapter, we complete the evaluation of side-channel resistance of masked implementa-
tions protected by the code-based masking, which is complementary to information-theoretic

evaluation in Chap. [I] and [§] for IPM and GCM, respectively.

7.1.2 Metrics in Attack-based Evaluation

Considering a key-recovery attack in SCA, the ultimate metric is the success rate indicating
the probability of an adversary can succeed in recovering the secret key [151ﬂ In particular,
two interrelated problems in attack-based evaluation are, on one hand, how many side-channel
measurements are needed for a successful attack? Or on the other hand, what is the probability
of success given a certain number of measurements? Therefore, it is preferable to show how the
success rate evolve when the number of measurements increases.

Moreover, another attack metric is the guessing entropy (GE) [I51], which measures the
average rank of the correct key among all candidates based on distinguishing scores after an
attack. GE is complementary to success rate as it indicates how wrongly guessed keys behave
before a successful attack, and it converges to 1 when the success rate goes to 100% stably.

Therefore, we use both success rate and guessing entropy in evaluating the exploitability of

information leakages in the code-based masking.

7.2 Contributions

We complete the evaluation of side-channel resistance of code-based masking by attacking results.

In particular, our contributions are as follows.

HOOD-based Evaluation of GCM. We provide an extensive evaluation on the side-channel
resistance of the generalized code-based masking. The attacks are based on the higher-order
optimal distinguisher as it is the best attack strategy following the Maximum-Likelihood principle.
We investigate both IPM and SSS-based masking, since they are representatives of non-redundant

and redundant masking schemes, respectively. We highlight that the side-channel resistance

IThere are different order of success rates when considering an adversary can launch key enumeration [124} [162]
as a post-processing technique after side-channel attacks. However, we focus on the first-order success rate by
convention as it is more straightforward.
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of GCM is highly related to coding-theoretic properties wherein the dual distance and the
adjusted kissing number are good indicators as we show in Chap. [5]from an information-theoretic
perspective. Therefore, we verify our framework on quantifying the information leakage in GCM

by HOOD-based attacks.

Redundancy in Code-based Masking Decreases Side-Channel Resistance. We lever-
age on both information-theoretic and attack-based evaluations to illustrate that the redundancy
in sharing can only decrease the side-channel resistance of the corresponding masking schemes.
Compared to the state-of-the-arts, our HOOD-based results challenge the evaluation launched
in [29], but are in accordance with the ones in [5I]. In particular, the authors showed in [29] that
exploiting leakages from more shares does not always lead to more efficient attacks, whereas we
show the improvements using leakages from more shares. Moreover, compared to [51], we extend
the state-of-the-art in two directions: 1) we show the best cases of the linear codes, that are
recommended to use, and 2) we give the worst cases of the linear codes that are not recommend

for practical applications.

Challenges on Practical Use of Probing Model. Counsider an (n, t)-sharing in redundant
code-based masking, e.g., in (n,t)-SSS based masking, a sensitive variable is split into n shares
while any ¢+ 1 shares among n are need to recover the sensitive. As a consequence of redundancy
in sharing, increasing n can only decrease the concrete side-channel security given a fixed
t. However, different sharings with the same ¢ possess the same side-channel security order
under the probing model. Therefore, only preserving security orders in proof-based evaluation
of redundant code-based masking is not sufficient: it always has to be completed with the
information-theoretic or attack-based evaluations. To verify this, we consider (2, 1) and (3,1)-SSS
based masking, and show that exploiting leakages from all three shares always leads to more

efficient attacks than using two shares.

7.3 Side-channel Distinguishers

We first recall the side-channel distinguishers in unprotected scenarios (without masking, etc).
Let X € K be the sensitive variable which depends on the secrets in the cryptographic imple-
mentations. For instance, the sensitive variable is usually X = S(T @ K), the output of Sbox
given a plaintext (or ciphertext) T' and a subkey K, e.g., in AES or PRESENT, then we may

use X (k) in order to indicating a specific key guess k in generating X.
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Considering simulated measurements, we adopt the common scenario in which the interme-
diates leak in Hamming weight model with independent additive white Gaussian noise (AWGN).
Therefore, we have £/ = wg(X7) + N7, 1 < j < ¢ for ¢ traces, where wg denotes the Hamming
weight function and N7 ~ N(0,0?) is Gaussian noise with standard deviation o. The basic

setting of side-channel analysis seen as a communication channel is illustrated in Fig.

K X c K
—{ Crypto Channel Attack —

T N T

Figure 7.1: Side-channel seen as a communication channel.

7.3.1 Different Distinguishers

In SCA, a key-recovery attack intends to extract the secret key from ¢ traces by exploiting
certain side-channel distinguishers. In particular, a distinguisher takes maximization over all
key hypothesis and gives the most possible candidate(s) by:
k = argmax A(k) = argmax A(L, X (k). (7.1)
keK keK

Formally, we define the side-channel distinguisher as follows.

Definition 7.1 (Side-Channel Distinguisher [80]). Given a set of side-channel measurements £
and known cryptographic inputs (or outputs) 7', a side-channel distinguisher returns a theoretical

value

Alk) = AL, X (k) (7.2)
for any key guesses k € K and the estimator ﬁ(k) converges to A(k) as ¢ — oo, in the sense
that the mean-squared error E [(A(k) — 3(/{))2} approaches 0 when ¢ — oo.

Note that we shall simplify X (k) as X by implicitly indicating the link between the sensitive
variable and the key hypothesis. In view of Def. several classic side-channel distinguishers

are presented as follows:

e Difference of Means (DoM): it is the original distinguisher proposed in the seminal work [95],
known as Differential Power Analysis (DPA). Let f,(X) be the selection function which
returns one specific bit of X, then we have

Ak) = [E[L]f,(X) = 0] = E[L[f,(X) = 1]],

S XS T A0 (7.3)
A =1 T ) TR0 |

98



7.3 Side-channel Distinguishers

where the absolute value is always considered in maximization for each key hypothesis.

e Correlation Power Analysis (CPA) [10]: in which the distinguisher value is given by
computing the Pearson correlation coefficient between the side-channel traces and the

hypothetical leakages:

AE) — (£ x| = 1CovEFON| _ [EI£F(X)] - ELIE (X))

ILOf(X) TLOf(X)

L:Jf(X]) — I IS f(X) (7.4)

Iq
¢ > L) ﬁ S (92— (A, f(x))2

where f(-) denotes the leakage function, e.g., in the Hamming weight leakage model

f(X) =wg(X). The absolute value is taken for each key hypothesis.

e Mutual Information Analysis (MIA) [74] [I63]: the mutual information is used as a metric
for assessing the dependency between the side-channel traces and the hypothetical leakages
in an information-theoretic sense:

A(k)=1(£,X)=H(L)— H(L|X),

- S X — )l Pr(L=1X =2) (7.5)
_;;P(ﬁ_l,X— )1g2ﬁ(£:l)ﬂ(X:x),

e Maximum Likelihood (ML)-based attack [31], [84]: when the leakage distribution is known,
the optimal strategy for launching such attack is to use the maximum likelihood (ML)

approach:
A(k) = Pr(L]|X (k)),

Ak) = Pr(L, | X (k ﬁ r(L7, X7 (k)), (7.6)

where side-channel measurements are assumed to be i.i.d. Therefore, the best key guess is

made by:

k = argmax A(k). (7.7)
k€K

Note that the ML rule is equivalent to Maximum A Posterior (MAP) rule with equiprobable

keys. It is the case as commonly assumed that K is uniformly distributed over K.

Given a side-channel distinguisher, a primary question arises: whether the attack utilizing the
distinguisher will be succeed eventually? Therefore, we define the soundness of a distinguisher

as follows.
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—

Definition 7.2 (Soundness of a Distinguisher [80] [I51]). A side-channel distinguisher A(k) is
said to be sound if the theoretical distinguisher value is maximized at the correct key hypothesis,

namely,

A(k") > A(k) for any k # k™. (7.8)

Apparently, if a distinguisher is sound, the attack tends to succeed with success rate equal
to 100% eventually given enough number of traces (e.g., when ¢ — 00).

Remark 7.1. For above classic distinguishers, CPA is sound [§1], so as the DoM, since DoM
can be seen as a special case of CPA [80] when ¢ — co. MIA is also proved to be sound under
Gaussian noise [ITT], [127]. Moreover, ML-based distinguishers are sound by design, where the

correct key guess will rank the first given enough amount of side-channel measurements.

7.3.2 Optimal Distinguisher in the Presence of Masking

We focus on code-based masking, which generalizes several existing masking schemes. The
communication view in the presence of masking is depicted in Fig. Let X e Kand Y € K¢

be respectively the sensitive variable and ¢ random masks. Then the sharing in GCM writes:
Z=XG+YHeK", (7.9)

given that ¢t + 1 < n, where G and H are generator matrices of two codes C and D, respectively.
For the sake of simplicity, we concentrate on scenarios in which the sensitive variable is a scalar.

As assumed previously, the sensitive variable is X = S(T @ K).

K X . z c K
—  Crypto Masking Channel Attack [—

T[ Y N T

Figure 7.2: Side-channel seen as a communication channel in the presence of masking.

Regarding the simulated measurements, we utilize the Hamming weight model with inde-
pendent AWGN. For each share Z;, we have £; = wy(Z;) + N;, 1 < i < n for n shares and
N; ~ N(0,0?) is Gaussian noise with standard deviation o. Given a dataset of ¢ traces, we
further denote all traces as £ = (ﬁf) forl<i<mand1<j<gq.

In our scenario, as the leakage model is assumed to be known, the best strategy for performing
key-recovery attacks is to utilize the ML-based approach. Following the principle of ML-based
attack, the higher-order optimal distinguisher (HOOD) is known as follows.
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Lemma 7.1 (Higher-Order Optimal Distinguisher [I8]). Given a set of ¢ measurements L =
(Ci) = f(ZZJ) +Nij for1 <i<nand 1 < j <q such that Nij are 1.i.d. across 1 < j < q and
independent across 1 < i < n. When the leakage distribution is known (both the leakage function

and the noise distribution), the d-th order optimal distinguisher is:
d . .
H > Py =y []Pr(c]1Z)), (7.10)
j=1yeK? i=1
where the calculation of Zij implicitly involves Y = vy. Therefore, the key hypothesis is given by

k= argmax A(k). (7.11)
keK

In the sequel, we focus on attack-based evaluation of the generalized code-based masking,

particularly we target IPM with n = 2 and n = 3, and (3, 1)-SSS based masking.

7.4 Attacks against Non-Redundant Code-based Masking

Considering IPM as an instance of non-redundant code-based making, the generating matrices

of C and D are:

G=(1 00 0)

(5] 1 0 0

a; 0 1 0 (7.12)
H:

a 0 0 -+ 1

where n =t + 1 and «; € K\{0} for 1 < i < ¢. In particular, by taking a; = 1 for 1 <7 < ¢
recovers the Boolean masking. As a result, the generator matrix of D+ is: H = (layas -+ ay)
with df, = t + 1, indicating that IPM with n shares has a security order equal to n — 1 under
word-probing model [3, [123]. We denote o = (1, a1, ..., ;) the public parameters in IPM.

7.4.1 Optimal Distinguishers

Relying on Lemma the HOOD is instantiated in the context of Hamming weight leakage
with an AWGN as follows.

q d
=1] Pr(Y H (L))
j=1yeKn—1
, . (7.13)
- H Pr(Y H (L wg(2)),0?)
j=1yeKkn—1 i=1
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Since Y is uniformly distributed (Pr(Y =vy) = WI‘H) required by a sound masking scheme, it
is independent of each key hypothesis and hence has no impact on A(k). Taking logarithms
further eases the numerical computations (avoiding float overflows), the HOOD is equivalent to

the following distinguisher score [29] [51]:

q d
S(k)zZlog S TN wa (=), 0%, (7.14)

yeKn—1i=1

then the key guess is determined by maximizing S(k).
Formally, thanks to masking, an adversary cannot obtain anything about the sensitive
variable if the order d of a HOOD is not greater than the security order ¢t. A prerequisite for
launching a successful attack is d > ¢ in our scenario when targeting IPM, which is consistent

with coding-theoretic conditions.

7.4.2 IPM with n =2

Taking n = 2 gives t = 1, resulting that only one parameter in IPM is a3 and H = (a7 1).
There are 255 candidates for oy as it cannot be zero. In order to facilitate practical applications
and fair comparison with the state-of-the-art, we aim at the irreducible polynomial g(X) =
X8 4 X* 4 X3 4 X + 1 that is used in AES to generate the field K = Fys.

As shown in Chaps. [4] the two coding-theoretic properties that indicate the side-channel
resistance of IPM are the dual distance d3; and the kissing number B,y . Herein, we first
investigate the statistical properties of d3; and Bdis among all linear code candidates. The
distribution of d3; are enumerated in Tab. and the corresponding choices of the codes with
given d{s and Bdé are in Tab. while in the latter we are only interested in the linear codes
with the maximal and minimal values of Bd% for each dé.

Table 7.1: Distribution of d3 for IPM with n = 2.

b =d [ l{a} | max{Ba} | min (B2} |

d=2 35 8 1
d=3 146 [§ 1
d=14 74 17 4

As shown in Tab.[7.2] there are only 12 optimal linear codes which maximize d3 and minimize

B,y at the same time.

1 We use ~ to denote that two linear codes with the given parameters are equivalent over Fo, or after the
sub-field representation in Fa, see [37, [42] for details.
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Table 7.2: Choices of the codes for IPM with n = 2.

‘ dp=d ‘ By ‘ [{a1}] ‘ Candidates of oy Comments
B; =38 1 {1} Boolean masking
d=2 | ,o | {16,17,34,3,60,90, 115,116,119, 120, 133,
a4 =
140, 180, 182, 201, 207, 215, 230, 234, 247}
Bs=6 8 (3,83, 101, 137, 158, 166, 202, 246}
d=3 {14,15, 19, 20, 40, 44, 48,49, 52, 56, 61, 67
Bg=1 58
69,75,76,80,84,94,97,99,103,112,113,.. .}
By =17 2 {29, 64} 29 % 640
d=4 {23, 46,51, 54, 81,92, 95, 12 optimal codes
By =4 12
102,108,162, 165, 184} in total

7.4.2.1 Experimental Results

As mentioned previously, the simulated traces are £ = (Ez) for 1 <i<mnand1l<j<qwhere
L) = wy(Z]) + N7 denotes the leakage of i-th share in j-th trace. The evaluation metric is the
minimum number of traces achieving Ps > 95%, which integrates the success rate along with
different noise levels.

For linear codes of different d2; shown in Tab. we choose both the minimum and the
maximum of Bd%, excluding the Boolean one. The evaluation results of IPM with n = 2 are
shown in Fig. by using up to ¢ = 100,000 traces. Moreover, we include Boolean masking
(BM) with n = 2 and n = 3 shares in comparison.

The main takeaway point from Fig. is that, IPM with the linear code of the maximized
dual distance d and the minimized kissing number B, indeed has the best achievable side-
channel resistance. The attack-based evaluation also confirms: 1) all 2-share IPM are better
than the first-order Boolean masking (with n = 2); 2) good choices of linear codes of 2-share
IPM can even be better than the second-order Boolean masking (with n = 3) when the noise
level is 02 > 1.0. The reason is that in IPM, the best cases of d3 is larger and Bdé is smaller
than that in the second-order Boolean masking, respectively; 3) it is also advantageous to adopt
2-share IPM rather than 3-share BM from a performance perspective. For instance, the clock
cycles are 157,196 vs 160, 357 as reported in [3] for an AES-128 implementations on an AVR

architecture protected by the former and the latter, respectively.

Optimal Codes for 2-Share IPM. According to Tab. there are only 12 optimal codes

with the best coding-theoretic properties. For the sake of brevity, we present four cases of
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Figure 7.3: Attack-based evaluation of IPM with n = 2 shares. Taking two codes in each group
with different d and/or B, L

optimal codes as in Fig. The primary observation is that those four codes have similar
side-channel resistance from an adversary perspective who launches HOOD-based attacks. Note
that the fluctuations among those four curves are due to the nature of numerical simulation with
certain random seeds. Overall, those four codes perform closely against HOOD-based attacks.
We assume that the leakage distribution is known when launching such attacks, this scenario
allows a worst-case evaluation of side-channel resistance of IPM. However, this assumption is
usually too radical in practice, where the leakage properties of the device is unknown and the
acquisition environment might be various. Furthermore, when other distinguishers are adopted

in carrying out attacks, ML-based analysis also provides an upper bound on the success rate. In
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Figure 7.4: Comparison of four instances of optimal codes for 2-share IPM, according to the best

coding-theoretic properties given by di = 4 and B, L= 4.

summary, our worst-case evaluation provides some insights on how successful can an attack be

in practice and shows how to select optimal codes when applying IPM.

The Impact of B;.. We have showed how to select optimal codes according to both d2 and
Bdé, yet the solo role of Bdé is not explicitly investigated. In the following, we compare several
instances of the linear code in IPM with the same d, while different Byy.

As shown in Fig. we set df = 2 and Bdé € {1,2,3,5,8} where 2-share BM being a
special case of IPM has Bd% = 8. Apparently, reducing Bd%3 leads to a more difficult attack in

the sense of the necessary number of traces to launch a successful attack. In addition, since we
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choose dé = 2, all those codes will not outperform 3-share BM in full range of noise levels.
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Figure 7.5: Illustrating the impact of Bd% given the same dp in 2-share IPM.

Summing up, we demonstrate how Bd% plays a significant role in indicating the side-channel
resistance of IPM. More generally, it is integrated with the dual distance as indicators in

evaluating side-channel security of non-redundant code-based maskings like DSM and LS, etc.

7.4.3 Linear Codes for IPM with n =3

Herein we present the classification of the linear codes of 3-share IPM. Taking n = 3, resulting that
t = 2 and two free parameters in a = (1, a1, ag) are ag, ag € K\{0}. There are 255 x 255 = 65025

candidates, where the number of candidates can be dramatically reduced by considering the
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equivalence of the linear codes [35]. Therefore, we take ay < ap, which reduces the number of
the codes to 32640.

The distribution of d5 are enumerated in Tab. and the choices of the codes under given
d2 and B,y are in Tab. Note again that in Tab. we only focus on the maximal and

minimal values of B .

Table 7.3: Distribution of dp for IPM with n = 3.

[db=d | [{(a1,00)}| | max{Ba} | min{Ba} |

d=3 207 8 1
d=14 1730 6 1
d=5 7242 7 1
d=26 15304 13 1
d=17 7929 12 1
d=38 228 20 6

As shown in Tab. there are only 3 optimal codes which maximize dz and minimize Bdiﬁ
at the same time. Since the maximized dual distance is d3 = 8, IPM with those optimal codes
should be comparable with the eighth-order BM, namely n = 8 given a certain level noise. In
particular, considering the security order in the bit-probing model, the former and the latter
share the same security order ¢, = dj — 1 = 7. Therefore, it is recommended to apply IPM
rather than BM with many more shares since as a rule of thumb, the implementation cost

increases at least quadratically with n.

7.5 Attacks on Redundant Code-based Masking

In the sequel, we investigate the HOOD-based evaluation on the polynomial masking |77, [131],
where in its central is Shamir’s Secret Sharing (SSS) scheme. Taking SSS-based masking as an
example of redundant code-based masking, the parameters are denoted as a = (a1, g, ..., ap)
and the condition for «; is that «; # oy for any i # j. Then we have the following generator

matrices for the codes C and D, respectively,

G=(1 1 1)
ap a ay

o a? a% sl (7.15)
ai  aj ay,
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Table 7.4: Choices of the codes for IPM with n = 3.

‘ ds =d ‘ By ‘ {(a1, az)} Candidates of (a1, az) Comments
Bs=38 1 {(1,1)} Boolean masking
d=3 1,16), (1,17), (1, 34), (1, 39),
se1 | s {(1,16),(1,17),(1,34), (1,39)
(1,60), (1,90, (1,115), (1,116),...}
Bi=6 3 {(2,3), (140, 141), (246, 247)}
= 1,14), (1, 18), (1, 19), (1, 20),
i=1 | 51| 1o {(1,19),(1,18),(1,19), (1,20)
(1,21),(1,30),(1,41), (1,42),...}
{(1,176), (2,164), (5,143), (8,64),
Bqa=7 8
(8,232), (12,12), (29, 232), (82, 141)}
d=5
1,23), (1,31), (1,46), (1,47),
pe1 | asas {(1,23),(1,31),(1,46), (1,47
(1,75),(1,77),(1,98), (1,107),...}
By =13 2 {(1,130), (127,127)}
d=26 2,184), (3,45), (3, 46), (3, 47),
P I I CRTINCRCRERTNCR )
(3,59),(3,65),(3,77),(3,81),...}
By =12 3 {(16,185), (56, 142), (116, 242)}
— 3,53), (7,45), (7,49), (7,77),
N I ((8,53),(7,45),(7,49), (7,77)
(7,99), (7,106), (7,107), (9,154), ...}
By =20 3 {(94,109), (97,124), (147, 161)}
d=28 Only three cases
By=6 3 {(27,196), (91, 204), (218, 240)}
are optimal.

where a; for 1 <14 < n are also called public points in SSS-based masking. The corresponding

scheme is also denoted as (n,t)-SSS based masking.

From a coding-theoretic perspective, the SSS scheme is connected to the Reed-Solomon (RS)
code. Given the two generator matrices as in Eqn. the rank of H equals ¢, so the dual
distance of D is t + 1 [35]. Accordingly, the side-channel security order in the word-probing

model is t,, = t.

7.5.1 Optimal Distinguishers

Recall the form of H in Eqn. that, there are n public points to be determined in SSS-based

masking. However, the masking itself is in the ¢-th order.

Similarly as in IPM, the optimal distinguisher is determined by applying the ML rule.
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Considering the same assumption on leakage distribution, we have:

q d
k):HZPr = HPrﬁj\zj

j=1yeK® i=1
d
= H Z Pr(Y H (L wg (2]), 02).

Taking logarithms to ease the numerical computations, the HOOD is therefore equivalent to the

(7.16)

following distinguisher score [51]:

Zlog > HN (Ll lwi (), 7). (7.17)

yeK? i=1

Remark 7.2. Note that the distinguisher proposed in [29, Eqn. 13] is problematic, which leads
to suspicious conclusions. In fact, the summation within the logarithm is over y € K? rather

than over y € K®! when n > t + 1, namely in redundant cases.

7.5.2 HOOD against (3,1)-SSS based Masking

Considering n = 3 and t = 1, the generator matrices G and H are as follows.

G=(1 1 1) r13)
H:(a1 Q9 ag),

where a; for 1 <4 < 3 are not equal to each other. We can fix oy = 1 by utilizing the equivalence
of the linear codes. Additionally, we set as < a3 as in [35] and resulting that there are 32131
candidates (instead of 2731135 codes for any pairwise different oy, as and ag).

The distribution of d are exhausted in Tab. and the choices of the codes under given
d3 and Bdé are in Tab. in which we only focus on the maximal and minimal values of Bd%

as above.
Table 7.5: Distribution of d3 for (3,1)-SSS based masking.

[d2=d [ I{(0z,00)}| | max{Ba) | min{Ba) |

d=2 11460 13 1
d=3 20581 19 1
d=4 90 73 37

Remark 7.3. In SSS-based masking, we should use the adjusted kissing number B’ s instead

of Bd% . Typically, we have B/, i > BdL in SSS-based masking as pointed out in [35]. However,

we use Bdé here since it follows the same trend as B’ 41 - Note that given a specific C, different
D

choices of D with the same B;. may lead to different B,
D
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Table 7.6: Choices of the codes for (3,1)-SSS.

‘ dy =d ‘ Bg {(az2,as3)} Candidates of (a2, as) ‘ Comments
Th st
By =13 3 ((2,4), (2,141), (141,203)} o wors
cases
d=2
3,17), (3,34), (3,37), (3, 39),
By—1 5976 {(3,17),(3,34), (3,37), (3,39)
(3,48),(3,49), (3,51), (5,60),.. .}
By=19 3 {(6,137), (71,123), (105, 158)}
- 7,23), (7,53), (7, 111), (7, 148),
d=3 | p _, 135 {(7,23),(7,53), ( )i ( )
(7,198), (11,84), (11,94), (11,154), ...}
B,=13 3 {(29,37), (64,131), (77,128)}
d=4 Only three cases
By =37 3 {(51,54), (102, 228), (108,198)}

are optimal

7.5.2.1 Experimental Results

With the same setting as in evaluation of IPM, the simulated traces are £ = (ﬁf Yfor1<i<mn
and 1 < j < q where E{ = wH(Zf) + Nij denotes the leakage of i-th share in j-th trace.

For linear codes of different d2; shown in Tab. we choose both the minimum and the
maximum of Bd% . The evaluation results of (3,1)-SSS based masking are shown in Fig. by
using up to ¢ = 100, 000 traces. Moreover, we include Boolean masking (BM) with n = 2 and
n = 3 shares in comparison.

From Fig. the most important takeaway point is that the public points in (3, 1)-SSS based
masking make a significant difference in side-channel resistance of the corresponding masking
scheme. Furthermore, we can observe that: 1) with dedicated selection of good linear codes,
the side-channel resistance of the scheme can be improved significantly; 2) comparing with the
attack-based evaluation on 2-share IPM, the side-channel security of (3,1)-SSS based masking
is degraded because of the redundancy, which is consistent with our information-theoretic
evaluation in Chap. [6} 3) similarly as in 2-share IPM, the best codes can provide comparable
security level as 3-share BM when the noise level is higher enough (e.g., 0% > 5.0); 4) for the
first time, we show that with bad choices of the code, the security level of (3,1)-SSS based
masking can be continuously lower than 2-share BM.

In the sequel, we further leverage the last two points by providing more instances of the

optimal and the worst codes for (3,1)-SSS based masking, respectively.

Optimal Codes for (3,1)-SSS based Masking. According to Tab. there are only three

cases of optimal codes. The evaluation results are depicted in Fig. [7.7} It is more obvious
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Figure 7.6: Attack-based evaluation of (3,1)-SSS based masking. Taking two codes in each group
with different d3 and/or By

in logarithmic view as in Fig. that those three codes lead to very close side-channel
resistance.

To sum up, the optimal choices of public points in SSS-based masking can significantly
improve its side-channel resistance that is much higher than 2-share BM. In particular, those

optimal codes can even provide comparable security as 3-share BM.

Worst Codes for (3,1)-SSS based Masking. From Tab. there are several classes of
the linear codes that are worse than 2-share BM, including the three worst cases. The evaluation

results are plotted in Fig. Interestingly, those worst codes make the SSS-based masking
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Figure 7.7: The optimal codes for (3,1)-SSS based masking, in which d3 is maximized and Bd%)

is minimized given a specific dj = 4.
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le4
- 12 —=
0.41 -x-- BM, n=2, d=2, B4=8 % e
—=— SSS, a=(1,2,4), d=2, B4=13 X 1 -
SSS, a=(1,2,141), d=2, B4=13 < < O o ¥
D 0.3{ —=— SSS, a=(1,141,203), d=2, B,=13 A 2 =y "
S / .10
© . n X —
s . % X "
0.2 L 7
] hes X
Q o e’ /
£ 5 8 # /
201 2 / Y -x BM, n=2, d=2, B4=8
. g —&— SSS, a=(1,2,4), d=2, B4=13
z 7 SSS, a=(1,2,141), d=2, By=13
00 ; —=— 555, @=(1,141,203), d=2, B4=13
. — 6
0.51.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Noise level: 02 Noise level: 02
(a) Number of traces in normal scale. (b) Number of traces in loga scale.

Figure 7.8: The worst codes for (3,1)-SSS based masking, where dz is minimized and By is

maximized given a specific dp = 2.

To the best of our knowledge, we identify, for the first time, the worst cases of public points
in SSS-based masking or more generally in the context of secret sharing schemes, when each
share leaks certain noisy information. Comparing with the state-of-the-art, our coding-theoretic
approach not only provides the optimal cases, but also identifies the worst cases of the public
points in SSS-based masking. Both of them are instructive in designing redundant code-based

masking in protecting cryptographic implementations in practice.
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7.6 Comparisons: How Redundancy Matters?

As shown in Chap. [} the redundancy in code-based masking gives rise to more leakage from
an information-theoretic sense when assessed by mutual information. However, more leakage
detected by mutual information can not always be exploited by side-channel distinguishers. As a
result, it is not clear how much impact can the redundancy have from an attacking perspective.

In this section, we demonstrate from an attack-based evaluation that, adding redundancy in
code-based masking can only reduce the side-channel resistance of the corresponding masking
scheme. To have a fair comparison, we consider two instances of (3,1)-SSS based masking and
reuse the parameters in 2-share IPM. Specifically, in (3,1)-SSS based masking, the parameters
are @ = (1, a1, an), while any 2-out-of-3 element in « gives an instance of IPM and there are
three instances in total. Then those four instance of code-based masking are evaluated by
HOOD-based attacks (e.g., refer to Eqn. and Eqn. respectively).

The first group of comparisons is shown in Fig. where we have a = (1,2, 4). The first
observation is that adding one share of redundancy always reduces the concrete side-channel
security of code-based masking. Secondly, given the same security order under the word-probing
model, IPM always outperforms SSS-based masking. The more redundancy can only further
reduce the security level. Interestingly, as three instances of IPM have the same security order
under the bit-probing model, a major difference exists in Bdé. Put differently, given the same

d2 over Fa, more redundancy leads to a greater value of By, indicating a lower security level.
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Figure 7.9: Illustrating the impact of redundancy by comparing 2-share IPM with (3, 1)-SSS
based masking, using a = (1,2,4) in the latter.

Another group of comparison is presented in Fig. with o = (1,3,17). It is worth noting
that, both coding-theoretic parameters are different in SSS-based masking and IPM. Although
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one instance of IPM is even better than the 3-share BM, the instance of SSS-based masking
gets much worse with one share of redundancy. In particular, the latter is worse than the worst
one among the three instances of IPM. Overall, the attack-based evaluation results verify the

impact of redundancy on the concrete security level of code-based masking.
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Figure 7.10: Illustrating the impact of redundancy by comparing 2-share IPM with (3, 1)-SSS
based masking, using a = (1, 3,17) in the latter.

At last, we illustrate the impact of redundancy by presenting a comparison between the
optimal codes in IPM and SSS-based masking. Those optimal codes are visualized in Fig.
In particular, the four (out of twelve) optimal codes for 2-share IPM and three optimal codes
for (3,1)-SSS based masking are already shown in Fig. and respectively. Apparently,
the redundancy can leverage an easier key-recovery attack in the sense of the necessary number
of traces to succeed.
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Figure 7.11: Illustrating the impact of redundancy by comparing 2-share IPM with (3, 1)-SSS
based masking, using « = (1,3,17) in the latter.

Those observations made in above two groups of comparison invoke the need of a trade-off
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between the amount of redundancy and the concrete security level in code-based masking. From a
theoretical perspective, more redundancy can lead to more leakage, which is indicated by the two
coding-theoretic properties. As a consequence, it is always advantageous to adopt non-redundant
masking schemes rather than redundant ones when thwarting side-channel analysis. However,
considering fault injection attacks (FIA) in real scenarios, a redundant masking scheme provides
a combined countermeasure against both SCA and FIA.

More generally, above evaluation results pose a challenge on practical applications of the
probing model when assessing the concrete security level of a protected cryptographic imple-
mentation. Specifically, given the same side-channel security order (irrespective to word-level or
bit-level), adding redundancy will always facilitate the adversaries in recovering secrets, and
lower the practical security in the sense of attacks. Therefore, we recommend to further assess
the practical security of code-based masking by verifying both the dual distance and the kissing
number in practice.

In summary, the attack-based evaluation confirms those theoretical findings in Parts [[]]
and [[T]] of this thesis. That is, we connect the dots in studying and improving code-based
masking schemes. Particularly, we propose a unified framework to quantify the information
leakage in code-based masking, and verify extensively by considering both IPM and SSS-based

masking as instances of non-redundant and redundant code-based masking.

7.7 Revisiting All Codes in the State-of-the-Art

Regarding the state-of-the-art, various instances of code-based masking have been presented in
literature, accompanied with specific linear codes (which are tuning parameters) used in them.
We therefore revisit all linear codes in the literature for a thorough comparison.

For the purpose of a fair comparison, we focus on instances of code-based masking in which
the codes are generated over Faos by using AES’s irreducible polynomial (see Sec. . The
results are detailed in Tab.[7.7} In particular, we present the best codes in several cases, along
with the corresponding coding-theoretic properties.

The main takeaway point is that those optimal shall be used straightforwardly in practice,
for instance, to protect AES implementations. We also provide instructive details for employing

those codes in real circuits.
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7. OPTIMAL ATTACKS IN THE PRESENCE OF CODE-BASED MASKING

Table 7.7: Revisiting all linear codes used in literature over Fys, with redundancy when n > ¢+ 1

while no redundancy when n =1¢ + 1.

Security Num. of Masking Coding-Theoretic Properties
Parameters o in Sharing Comments
Order ¢ Shares n Scheme dp By B,
(1,255) IPM 3 2 2 .
(3,7) (2,1)-8S8 3 2 2 o
(1,17) 2 1 1
)
(1,5) IPM 3 4 4
Three distinct codes
n=2 (1,7 4 8 8
Non-redundant (221,198), (188, 189), (237,198) (2,1)-588 3,3,3 1, 1,1 1, 1,1 [51]. Note that a = (237,175)
(237,175) o 4 4 4 is optimal
This work. 12 optimal code
(1,23), (1,46), (1,51), ... IPM 4,4,4, ... 4,4,4,...(4,4,4, ..
in total, see Tab.|7.2
t=1 (5,221, 198) 3 1 1
5 (237,175,221) (3,1)-SS 3 3 3 B
n=:
(237,221, 198) 4 6 6
. This work. Only 3 optimal codes,
(1,51,54), (1,102,228), (1,108,198)  (3,1)-SSS 4,4, 4 37, 37, 37 | 53, 53, 53
see Tab.
(5,237,221,198) 3 10 10
n=4 (237,175,221, 198) (4,1)-888 3 12 12 530
(12,80, 176, 237) 3 19 53
n=>5 (5,237,175, 221, 198) (5,1)-5SS 2 2 2 B
(1,15,233) IPM 5 1 1 .
3 (13,240, 163) (3,2)-SSS 6 2 2 =
n=
. (1,146, 147), (1,188, 189) (3,2)-8S8 3,3 8, 8 8, 8 [51]. Both are equivalent to BM
Non-redundant :
This work. Only 3 optimal codes,
(1,27,196), (1,91,204), (1,218,240) IPM 8, 8,8 6, 6, 6 6, 6, 6
t=2 see Tab. [7.4
(125,246, 119, 104, 150), (86, 23, 115,107, 189) 4, 4 1,1 1,1
(169, 63, 106,49, 112) (5,2)-SSS 4 2 2 9
n=>5 (5,237,175, 221,198) 5 6 6
This work. We find only one optimal
(1,23,71,167,235) (5,2)-SSS 6 36 46
code by fixing a1 = 1 and ap = 23

7.8 Conclusions

In this chapter, we present an attack-based evaluation on two representative instances of code-
based masking, namely IPM and SSS-based masking. The higher-order optimal distinguisher is
employed in evaluation. As shown in previous chapters, we highlight that various encodings
have significant impacts on the side-channel analysis of the corresponding scheme. Moreover, as
an ultimate metric, the success rate of empirical attacks confirm the advantages of applying
optimal instances of code-based masking.

Furthermore, our attack-based evaluation completes the assessment of code-based masking
in known leakage model. However, this study shall be further verified on practical measurements

from real circuits.
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CHAPTER 8

Information-Theoretic Bounds on Attacks

Measuring the information leakage is critical for evaluating practical security of cryptographic
devices against side-channel analysis. More straightforwardly, it is interesting to have an upper
bound on success rate of any attack given a (fixed) number of side-channel measurements.
Or conversely, we wish to derive a lower bound on the number of queries for a given success
rate of optimal attacks. In this chapter, we derive several bounds in both directions by using
information-theoretic tools, particularly for cryptographic implementations protected by masking
schemes. We show that a generic upper bound on the probability of success, irrespective of
specific attacks, is linked to mutual information between side-channel measurements and the
secret. Moreover, our numerical evaluation confirms that, the success rate of optimal maximum
likelihood distinguishers is tightly bounded given a fixed number of measurements.

Part of results shown in this chapter has been presented in [4I] (preprint on ArXiv).
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8.1 Introduction

Since the seminal work by Kocher et al. [95], side-channel analyses (SCAs) have been one of the
most powerful attacks against cryptographic devices in practice. They exploit physical observable
information leakages like instantaneous power consumption [95] or electromagnetic radiation [71]
to recover the secrets used in cryptosystems. From an adversary’s perspective, many attacks
(distinguishers) have been proposed to exploit various leakages and there are several metrics to
compare them in a fair way [I51]. However, bounding how (any) side-channel attack succeeds
is still an open problem. In other words, given a set of side-channel measurements, we seek
a generic upper bound on the success rate of any attack. In this respect, Chérisey et al. [57]
propose several bounds on the key extraction success rate by using information-theoretic tools,
which are tight in assessing unprotected cryptographic implementations.

To counteract SCAs, many countermeasures are proposed wherein masking is a well-
established one which provides provable security [86] [128]. Indeed, the number of measurements
for a successful attack against masked implementations is exponential to the masking order
(e.g., the number of random masks per sensitive variable) provided with a sufficient amount of
noise [61]. However, the lower bounds proposed in [61], [128] are demonstrated by approximations
and inequalities, resulting in loose bounds on the number of traces needed for a given success
rate. Moreover, as we will show in this chapter, those bounds on success rate given in [57] by
using mutual information (MI) for several measurements are also very loose when targeting
protected cryptographic implementations.

In this chapter, we aim at providing tight bounds on the success rate of any SCA by leveraging

information-theoretic tools. To do so, we consider a similar communication-channel framework
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8.1 Introduction

which has been developed in [57, B4] and adapt it to masking schemes. The overview of the

framework is shown in Fig. and notations are introduced in the following section.

8.1.1 Notations

In the sequel, uppercase letters (e.g. X) denote random variables where calligraphic letters (e.g.,
X) are for sets, lowercase letters (e.g., x) are for realizations and bold letters are for vectors and
matrices.

Therefore, as illustrated in Fig. we have

e K € Fye denotes the secret key (typically £ = 8, e.g., in AES), and K is the output of a

side-channel attack
e Tec Fg( denotes plaintexts or ciphertexts of length ¢

e U is the sensitive variable, say U = S(T @ K) where S denotes a cryptographic operations
like the Sbox in AES

e without or with masking:

— V = U if no masking, which is the case for [57], [84]

— V=(UaM,M) if considering e.g., the 1st-order Boolean masking with a random
mask M € FJ,

— V = UG + MH if taking the code-based masking [35] where G and H are two

generator matrices used in the masking

e X = f(V) is the noiseless leakage, say X = f(V) and f = wy in co-called Hamming
weight model

e Y is the noisy leakage, which models ¢ measurements (traces) in practice, say Y = X + N
where N denotes the additive white Gaussian noise: N ~ N(0,0I). Additionally, the

channel is assumed to be memoryless.

! iy l i
U \4 X Y 2
K—> Crpro Masking Leaka.ge Channel Attacks —>K
Operations Function
e.g. U=S5(TaK) V = (UsM,M) X =wy(V) Y=X+N

Figure 8.1: Representation of side-channel analysis of a masked cryptographic operation as a

communication channel.
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8. INFORMATION-THEORETIC BOUNDS ON ATTACKS

As a consequence, assuming T is known, other variables form a Markov chain: K—U-V—-X—
Y- K. By Markovity, when related to single-letter quantities, we have: I(X;Y|T) < ¢I(X;Y|T)

as in [57]. In particular,

e in [57, §3.1], one of the bounds is given by: ¢ > I(XCim So I(X;Y|T) comes naturally

from bounds.

e in [37) Theorem 4], the leakage metric is: I(K;Y|T) = I(U;Y|T), which is implicitly

connected to ¢ [24].

8.2 Contributions

In this work, we derive security bounds for side-channel attacks in the presence of countermeasures.
First of all, instead of utilizing universal inequality-based bounds on mutual information as
in [57], we use mutual information itself and derive bounds on the success rate by applying
Fano’s inequality [52]. Secondly, we suggest to use I(U;Y|T) instead of I(X;Y|T) in masked
cases, since the bounds on success rate by the former is much tighter than by the latter. At last,
we furnish numerical results in a commonly used side-channel setting which confirm that, our
new bound provides more accurate security guarantees in the context of masked cryptographic

implementations.

8.3 Applying MlIs of Different Variables
8.3.1 Links between Different Pairs of MIs

With notations shown in Fig. we have following equalities and inequalities with respect to

MIs given different pairs of variables in the context of side-channel analysis.
Lemma 8.1. By a side-channel setting as in Fig.[3]] one has
I(K;Y|T)=1I(U;Y|T) < I(V;Y|T) = I(X;Y|T). (8.1)

Proof. For I(V;Y|T) = I(X;Y|T), knowing T gives that V — X — Y forms a Markov chain
and, since X = f(V) then X —V —7Y also forms a Markov chain. Thus I(V;Y|T) = I[(X;Y|T).
Similarly, we get the first equality.

For I(U;Y|T) < I(V;Y|T), it is straightforward as U — 'V —Y is a Markov chain. Yet the
converse is not true because of the random mask M. O

120



8.3 Applying MIs of Different Variables

As a consequence of Lemma [8.1] we only focus on two quantities I(U; Y|T) and I(X;Y|T),
where intuitively, the former should give a better bound than the latter. Next, since the ML
(Maximum Likelihood)-based distinguishers are optimal [84] in SCAs, we have the following

lemma which works for any distinguisher.

Lemma 8.2. Considering any distinguisher, including the optimal one (namely the ML-based
one), one has

I(K;:K) < I(K; K|T) = I(K; Y|T). (8.2)
where K = o(y,t) = argmax;, p(Y = y(k)|T = t) follows the distinguisher rule in SCAs.

Proof. Since H(K|K) > H(K|K,T) and K is independent of T, we have I(K;K|T) =
H(K|T) - H(K|K,T) = HK) — HK|K,T) > HK) - HK|K) = I(K; K).

Secondly, knowing T implies that K is a deterministic function of Y following the ML rule:
K =¢(Y,T)= argmax;, p(y(k)|T = t), which proves equality. O

Remark 8.1. The ML rule coincides with MAP (Maximum A Posterior) rule assuming K is

uniformly distributed (to maximize its entropy), which is a common setting in SCAs.
Interestingly, we can upper bound I(K;Y|T) as follows.

Lemma 8.3. Given the same setting as in Fig.[S.1], one has
I(K;Y|T) < HK). (8.3)

Proof. The inequality holds in the side-channel setting of Fig. since I(K;Y|T) = H(K|T)—
H(K|Y,T)=H(K)—-H(K|Y,T) < H(K) where H(K|Y,T) > 0. O

In practice, Lemma [B3] reflects the fact that the total amount of information any adversary
could extract cannot exceed the information carried by the secret key, while the latter is measured

by the entropy H(K).

8.3.2 Connecting to Capacity
Lemma 8.4. Considering the same setting as in Fig. [S_1, one has
I(X;Y)-I(T;Y) =I(X;Y|T) > 0. (8.4)

Proof. Since T — X — Y forms a Markov chain, we have H(Y|X,T) = H(Y|X) H Hence
I(X;Y|T) = H(Y|T) — H(Y|X,T) = H(Y|T) — H(Y|X) = H(Y) — H(Y|X) — (H(Y) —
H(Y|T)) =1(X;Y) - I(T;Y). O

IWe use H for entropy of both discrete and continuous variables, although h is used more frequently for
differential entropy of a continuous variable.
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8. INFORMATION-THEORETIC BOUNDS ON ATTACKS

In fact, I(X;Y) — I(T;Y) > 0 is also a direct consequence of the data processing inequality
where T — X — Y forms a Markov chain.
This leads us to define the capacity of the side-channel as
C= pIAX I(X;Y)-I(T;Y)

(8.5)
= max_I(X;Y|T),
T-X-Y

where the maximum is taken over all distributions of X given T such that T — X —Y is a
Markov chain. The capacity can be determined from the following lemma.

Lemma 8.5. One has
C= max I(X;Y) (8.6)
where the maximum is taken over all channel input distributions X.

Proof. From (8.5), one has I(X; Y|T) = ExI(X; Y|T = t) and each I(X; Y|T = t) is maximized
taking p(x|t) = p(x), so as to maximize I(X;Y). Since the optimal distribution does not
depend on t, it also maximizes the expectation ErI(X;Y|T = t) = I(X;Y|T) and thus
maxr_x-y [(X;Y|T) = maxx I(X;Y). O

Remark 8.2. We can consider the more general situation where the channel also depends on T.
In this case we would have C' = E{Cr} where Cy = maxx I(X;Y|T =t).

8.4 Bounding Success Rates and Capacity

8.4.1 Upper Bounds on Success Rates

As shown in [57], the mutual information itself gives the tightest bound on the success rate of a
side-channel attack. By combining Lemmas and we have I(K; I?) <I(U;Y|T) <
H(K).

The probability of success (say success rate) in SCA is defined as: P, = P(K = K).

Accordingly, the error rate is P, = 1 — P;. Now, we have the following upper bound on F;.

Theorem 8.1. Given a side-channel setting as in Fig. we have
fe(P) < I(U; YIT), (8.7)

where fp(p) = H(K) — Ha(p) — (1 — p)log(2 — 1) and Hz(p) = —plogp — (1 — p)log(1 — p),
for p € 27%,1] and ¢ denotes the number of bits in K = k.

Proof. By Fano’s inequality [52] and Lemma [8.2] we have: fp(P;) = H(K) — Hy(Ps) — (1 —
P)log(2¢ — 1) < I(K; K) < I(U; Y|T). O
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Since fp(p) is strictly increasing for p € [27¢, 1] [56, §A], T heorem not only provides an
upper bound on Ps, but also gives a lower bound on the number of traces ¢ to obtain a specific
P, in SCAs, where ¢ is involved in I(U;Y|T). Apparently, we have I(U;Y|T) < ¢ - I(U;Y|T).
Remark 8.3. Tt is trivial to have a much loose bound on P; as: fp(Ps) < I(X;Y|T). However, as

we will show later, this bound is too loose and is out of use in evaluating masked implementations.
Furthermore, I(X; Y|T) cannot be bounded by H(K) (recall Lemma[8.3) and it increases linearly

in q.

8.4.2 Bounding /(X;Y|T) by Shannon’s Channel Capacity

As mentioned in Remark[8:3] I(X; Y|T) will not be bounded by H(K) in protected cryptographic
implementations. But still, it is upper bounded by the capacity defined in (8.5)) as in the following

lemma.

Lemma 8.6. Given a side-channel setting in Fig. [8_], we have
I(X;Y|T) < glog(l + SNR), (8.8)

where SNR is the signal-to-noise ratio and o2 denotes the variation of noise.

Proof. I(X;Y|T) < q- I(X;Y|T) = q- (H(Y|T) — H(Y|X)) < q- (H(Y) — H(Y|X)) < q-C =

21og(1+ SNR). O
We will show in next section that this upper bound on I(X;Y|T) is very tight in the presence

of a Boolean masking.

8.5 Applying into Hamming Weight Leakages with Addi-

tive Gaussian Noise

By equalities in Lemma the only two MIs that need to be evaluated are I(X;Y|T) and
I(U;Y|T) El Taking notations from Fig. [8.1} we calculate both MIs in a numerical manner. We
have

I(X;Y|T) = H(Y|T) — H(Y|X,T),

I(U;Y|T) = H(Y|T) — H(Y|U, T), 59
where H(Y|T) and H(Y|U,T) = H(Y|U) can be estimated by Monte-Carlo simulations and,

H(Y|X,T) = H(Y|X) = H(N)

8.10
=q- %log (277602) . ( )

'We use log, to have mutual information and entropy expressed in bits.
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8. INFORMATION-THEORETIC BOUNDS ON ATTACKS

8.5.1 Importance Sampling in Monte-Carlo Simulation

Monte-Carlo simulation is a well-known method to estimate expectations of a function under
certain distribution by repeated random sampling, where the importance sampling can be used
to improve the efficiency and speedup the convergence procedure [I00, Chap. 29].

By Monte-Carlo simulation, we can estimate the first term H(Y|T) in subtractions by

randomly drawing N¢ samples. Particularly, equipped with importance sampling, we have
HOYT) = [ Solyo0) o s

: (8.11)
~ lim —— lo I,
Nc; gp(y’|t’)

Ng—o0

where each (t7,y7), for 1 < j < N¢, is drawn randomly. The estimation in (8.11]) is sound based
on the law of large numbers [52] Chap. 3] and it has been numerically verified in [57]. Similarly,

H(Y|U) can be estimated using Monte-Carlo simulation by H(Y|U) = Nlc < logp(y’|u?).

Convergence in Monte-Carlo Simulation. Since the accuracy of Monte-Carlo simulation
highly depends on the number of samples, we justify hereafter how we chose N¢. As shown in
Fig. the estimation of I(X;Y|T) (in unprotected case, cf Sec. gets more accurate
by using larger N¢. In particular, this estimation on I(X;Y|T) is accurate enough by using
only N = 100,000 draws. However, we use No = 1,000,000 throughout this chapter (e.g., in
Fig. and to have a more stable estimation.

8_
£
o L
><6' i i i
= —o— N = 1000
C5_
2 Nc = 4000
o, —— N¢ = 6000
5 —— Nc = 10000
[t
£ 34 —— N¢ = 100000
© | | |
g 21
=

1_

0

0 20 40 60 80 100 120 140 160 180 200 220 240
Number of traces: q

Figure 8.2: Monte-Carlo simulation with various N¢ draws where o2 = 10.00.
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8.5 Applying into Hamming Weight Leakages with Additive Gaussian Noise

In the following, we present different cases of p(y|t) of one draw in both unprotected and

masked cases.

8.5.2 Without Masking

The unprotected case corresponds to the one considered in [57]. Here (t/,y7), for 1 < j < N¢,

is drawn according to this process:
o t/ ~U(FL,),
o kJ ~U(Fy), and
oy~ N(wy (St @ k7)), 0%1,) € RY

We then have for one draw (t,y):

q
p(ylt) = p(k)p(y[t, k) = > p(k) [ p(vilti, k)
g oo (8.12)
k 1 bieaGen)?
- Zp lj[l 271.02)1/2 7 :
Since K € Fye is uniformly distributed, (8.12)) gives
q 2
—(yi—wg (St;®k))
log p(y|t) = log Zp 1:[1 27r02 e
= (8.13)

=—(— flog 27m —&-logznew
k oi=1
The numerical results of I(X;Y|T) are shown in Fig. with different levels of noise (02).
Note that we take No = 1,000,000 random draws in Monte-Carlo simulation. These bounds
are the same as those already plotted in [57]. Here, plotting the bounds as a function of various
values of o2 highlights that I(X;Y|T) curves are about homothetic, in that they I(X;Y|T)

depends only on q/c?. Said differently, from an attacker perspective, the effort in terms of traces

collection scales linearly in the noise variance (for a given value of mutual information).

8.5.3 With a First-order Boolean Masking
Here (t7,y7), for 1 < j < Ng, is drawn i.i.d. according to this process:
ot NU(Fg@),

o m’ NZ/{(ng),
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Mutual information /(X; Y|T)

—— 02=050 —+— 0%2=5.00
02 =1.50 —5— 02 =17.00
—— 02=3.00 —— 02=10.00

0 20 40 60 80 100 120 140 160 180 200
Number of traces: q

Figure 8.3: Evolution of I(X;Y|T) with the number of traces under different levels of noise in
the unprotected case without masking, N¢ = 1,000, 000.

o &/ ~U(Fy), and
oy ~ N(wy (St @ k) ®m’) + wy(m?),0?1,) € RI.

Note that we consider the zero-offset leakage [24] where the leakages of each share are summed
together (see the sum of two Hamming weights above).

We have for one draw (t,y):

q

p(yt) = > p(k)p(y[t, k) = > p(k) [ [ p(vilts, k)
k

k =1

Z HZP mi)p(yilti, k,mi) (8.14)

=1 m;

7(y7 Fbikm))?

Z HZP m) W

i=1 m;

where f(t;, k,m;) = wg(S(t; ® k) ® m;) + wy(m;) is the zero-offset leakage under Hamming
weight model. Again, taking K € Fqo uniformly, and considering that all masks are i.i.d.

~ U(Fy¢), we have

(i1 )
logp(y|t) = —l(¢g+1) — flog 2770 —|—logZHZe T . (8.15)

k i=1 m
The numerical results of I(X;Y|T) are depicted in Fig. It clearly appears that the effect
of masking is to relax the values of I(X;Y|T), which motivates for the fact that a bound based
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8.5 Applying into Hamming Weight Leakages with Additive Gaussian Noise

on I(X;Y|T) will be very loose. This motivates for the shifting to focus on I(U;Y|T). Back
to Fig. B-4] the dotted black lines show the upper bounds given by Lemma [8:6] The takeaway

observation is that the bounds are all the tighter as the noise level increases.

1000 : = —~ —
" Il P
— // P N o
= 8001 /) ’/ , 2 >
>.. u J w
§ ¥ /,' s
S 600 Y
=1 / / Y
© /7
g F /'l P g - 7
€ 400 {4/ = e A
= 7 /' o T -=. Capacity-based bounds
=] 7 w7
5 200 S A —— 0?=050 —+— 02=5.00
= . T ) 5
f 7 AT 0?=150 —— 02=17.00
Hi —— 02=3.00 — 02=10.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Number of traces: q

Figure 8.4: Bounding on I(X;Y|T) by Shannon’s channel capacity in masked cases, N¢ =
1,000, 000.

Estimation of I(U;Y|T). Similarly as in (8.15), we have

—(yi—f'(u;,m))? m))?
logp(y|lu) = —qf — = log 27ra —|— logH Z e 2072 . (8.16)

i=1 m
where f/'(u;,m) = wy(u; ®m) +wg(m).

The numerical results of I(U;Y|T) are shown in Fig. with different levels of noise (02).

As shown in Fig. I(U; Y|T) is bounded by H(K) as expected (see Lemma [8.3). Par-
ticularly, given the same noise level, the number of traces needed to obtain I(K;Y|T) =
I(U;Y|T) = 8 bits is much larger than in the unprotected case shown in Fig. The curves
I(U;Y|T) vs 02 also look homothetic with a scale of 02 (as was the case of curves I(X;Y|T) vs
o2 without masking, cf. Fig.[8.4)). This is justified by a simple scaling argument: if the number
of traces for a given set of (T, U) is doubled, then the mutual information is the same as with

the nominal number of traces, but with SNR doubled as well.

8.5.4 Bounding Success Rate in Masked Implementations

Relying on Theorem [3-1] we have a upper bound on probability of success Ps, which also gives a

lower bound on the minimum of ¢ to get a specific Ps. Moreover, a linear bound on ¢ is given
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NN
N

Mutual information /(U; Y|T)
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Figure 8.5: Evolution of mutual information I(U;Y|T) with the number of traces under different
levels of noise in masked cases, Nc¢ = 1,000,000. Note that I(U;Y|T) is upper bounded by
H(K) = 8 bits.

by I(U;Y|T) < ¢q- I(U;Y|T).

We apply Theorem into the masked case. Numerical results are shown in Fig. [8:0] where
we present several instances with different levels of Gaussian noises. In particular, the ML
attacks utilize the higher-order distinguishers which have been demonstrated to be optimal in
the presence of masking [18]. In order to evaluate P, of ML attacks, each attack is repeated 200

times to have a more accurate success rate.

As shown in Fig. the bound given by I(U;Y|T) is very tight. Indeed, a commonly used
metric on attacks is the minimum number of traces to reach P, > 95%. Considering o2 = 3.00
in Fig. [8.6] we set Py = 95% and the ML attack needs around ¢ = 800 traces, where our new
bound gives ¢ = 720, while the bound proposed in [57] by using I(X;Y|T) only gives ¢ = 12.
Furthermore, the latter bound would be much looser when the noise level continues to increase.
A more detailed comparison is depicted in Fig. which shows the predicted minimum numbers
of traces reaching P, > 95% given by both I(U;Y|T) and I(X;Y|T). These curves show that
our new bound is much tighter than the previous one from the state-of-the-art, as it captures
the masking scheme (recall from Fig. that the masking countermeasure step is between U

and Y but not between X and Y).
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Figure 8.6: Application and comparison of bounds on success rate. We present six instances
with different noise levels by using gmax = 4800 traces. Note that we omit the bounds given by
I(X;Y|T) as they are invisible when plotted together with bounds given by I(U;Y|T).
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Figure 8.7: Comparison of the minimum number of traces gmin to reach Ps > 95% predicted by
our new bound, by I(X;Y|T) as in [57] and also the baseline given by an ML attack.

8.6 Extending to Code-based Masking

We have shown the advantages of the code-based masking against side-channel attacks in previous
chapters. As the information-theoretic bounds in this chapter are generic, we therefore apply
those evaluations into the code-based masking.

The general communication channel framework is the same as in Fig. [8.1] except that
the Boolean masking is replaced by a more general masking scheme. Specifically, we say

V =UG + MH where G, H are the generator matrices of two codes C and D in code-based
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masking, respectively. For the sake of simplicity, we consider IPM with n = 2, meaning that

V=UG+MH=U(10)+M/ay 1)
(8.17)
= (U+uM, M),

where a is the only public parameter in IPM. As a consequence, different values of «a; lead to

various linear codes in IPM.

8.6.1 Bounding Mutual Information

From a high abstract view of communication channel, utilizing code-based masking satisfies the
same inequality as in Lemmas and Therefore, we have that I(K; I/(\') <I(U;Y|T) <
H(K), an information-theoretic upper bound for I(K; K ) by the entropy of K, for instance,
H(K) = ¢ under the uniform assumption.

Considering the Hamming weight leakages under AWGN, the simulation setting is the same
as in the Boolean masking, except that: y/ ~ N(wg (St k%)@ (anm?)) +wy (m?), 0%1,) € RY,
Accordingly, Eqn. is updated by replacing f'(u;,m) by f”(u;,m, 1) = wg(u; ® aym) +

wg (m) for the zero-offset leakage:

q 11 Py
= 4 2 —(vi—wg(ui@f" (uj,m,aq))
logp(y[u) = —qf — 5 log (2m0?) 4 log | | E e 202 ) (8.18)

i=1 m

After inserting Eqn. into Eqn. we launch the Monte-Carlo simulation and the
numerical results are shown in Fig. [3.§

The takeaways from Fig. are twofold. Firstly, I(U;Y|T) is well-bounded by H(K) = 8.
The bound is tight, since given an enough amount of side-channel measures (¢), we should
have I(U; Y|T) = H(K). Secondly, as already illustrated in Chaps. [f] and [7] different choices
of the codes in IPM have distinct impact on the effectiveness of side-channel protection. We
herein provide another argument such that «a; = 23 is one of the optimal codes for 2-share IPM.
Additionally, compared with the state-of-the-art (e.g., |3} B7]), we complete the analysis of IPM
by I(U;Y|T) rather than I(U;Y|T), where the former enables concrete predication of number

of traces to launch a successful attack.

8.6.2 Bounding the Probability of Success

In the presence of code-based masking, Fano’s inequality also holds, meaning that fp(Ps) <

I(U;Y|T). By Theorem the success rate P is straightforwardly linked to I(U;Y|T).
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Figure 8.8: Numerical results of I(U;Y|T) under different choices of a; in IPM. Note that

a1 = 1 corresponds to Boolean masking as shown in Fig. IESI for other levels of noise.

Therefore, we derive the same upper bound on Py, the best probability of success an attack can
obtain given a set of ¢ measurements.

Similarly with the above setting, we can numerically verify the bound on success rate
considering the Hamming weight leakage under AWGN. Those numerical results are depicted in
Fig. 89 where the ML attack follows the maximum likelihood rule.

As shown in Fig. 8] first of all, the effectiveness of protection against SCA increases
from «; = 1 (corresponds to the Boolean masking) to a; = 23. It can be explained by the
coding-theoretic properties like the dual distance and the kissing number of the code D as IPM
is non-redundant. Secondly, with the same noise level (02), it is significantly more difficult to
attack IPM with o; = 23 than the Boolean one. The gap is much larger along with o2 increases,
as frequently stated in demonstrating the security of masking schemes [128].

In above analysis, we derive the success rate of attack given a certain fixed number of traces.

Conversely, given a certain value of Py, we are able to predict the minimum number (lower

131



8. INFORMATION-THEORETIC BOUNDS ON ATTACKS

1.0 1.0
Q0.8 Q0.8
4] 9]
T 0.6 | | @06
< — 02=025 <
wn [92]
o 02 = 0.50 o 0% = 0.50
Vo4 Joa
S — o?=100 | 9 — 02=1.00
=1 | | H + + >
wn | | | | | w0
0.2 B8 Our new bounds by /(U; Y|T) 0.2 E-E Our new bounds by /(U; Y|T)
mmm ML attacks mmm ML attacks
0.0 v y v y v 0.0
0 400 8001200 1800 2400 3000 3600 4200 4800 0 400 8001200 1800 2400 3000 3600 4200 4800
Number of traces: q Number of traces: q
(a) a1 = 1. (b) a1 =17.
1.0 1.0 e |
Q" 0.8 Q0.8
9] 9]
© 0.6 T 0.6
o~ o
7 2 _ 050 7
9} Cilia b o
0.4 0.4
9 — 02=1.00 9 — 02=1.00
> H H H . . > H H . .
(%] i i i i i (] i i i i i
0.2 3-8 Our new bounds by /(U; Y|T) 0.2 ; =H Our new bounds by /(U; Y|T)
i e ML attacks G e ML attacks
.0 : ; i v ; v v v 0.0 ; ; v ; v y v
0 400 8001200 1800 2400 3000 3600 4200 4800 0 400 8001200 1800 2400 3000 3600 4200 4800
Number of traces: q Number of traces: q
(¢) a1 =3. (d) a1 =23.

Figure 8.9: Bounds on success rate Ps by I(U;Y|T) under different choices of a1 in IPM.

bound) of traces needed to achieve this P;. The twined problems are unified by Theorem
knowing the one direction gives the bound for the other one. Accordingly, inverse to Fig.
we can plot the predicted number of traces to achieve Py > 95% as in Fig. We also add
the prediction by I(X;Y|T) |27, B8] in comparison. Note that several points in Fig. |8.10(c)|
and are missing since g, are already exceed 5000 in corresponding noise levels.

As shown in Fig. the lower bound on g, given by I(U;Y|T) is much tighter than that
given by I(X;Y|T). Consequently, It is recommended to utilize the bound given by I(U;Y|T)
rather than I(X;Y|T) in the presence of masking.

In order to show the exponential properties, we depict in Fig. with the number of traces
in normal scale. More apparently from Fig. 811} the inherent properties of higher algebraic
complexity in IPM significantly improve the side-channel resistance when empowered by optimal
linear codes. When moving to redundant code-based masking, for instance in SSS-base masking,
those optimal codes also achieve the best protection against SCA, while bad codes may degrade

the protection as already demonstrated in Chap. []
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Figure 8.10: Prediction of qumin achieving Ps > 95% under different choices of o in IPM. Note
that the number of traces are in log, scale.

8.7 Conclusions

We derive security bounds for side-channel attacks in the presence of countermeasures. In this
respect, we leverage the seminal framework from Chérisey et al. in TCHES 2019, and extend it
to the case of a protection aiming at randomizing the leakage. Interestingly, the generalization
allows to improve bounds compared to Chérisey et al’s. Also, we improve on the computation
method for the security metric, by resorting to a powerful probabilistic information estimation
based on importance sampling.

Furthermore, we verify our information-theoretic bounds in the context of code-based masking.
On the one hand, those bounds confirm again the advantages of code-based masking compared to
the commonly used Boolean masking, when the former is equipped with optimal codes. On the
other hand, those bounds also allow us to predict how successful can an ML-based distinguisher
be: evaluated by either an upper bound on the success rate given a set of traces or a lower bound

on the number of traces to succeed in recovering the secret key. In summary, our results provide
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Figure 8.11: Prediction of gmin achieving Ps > 95% under different choices of o in IPM.

quantitative bounds allowing for the theoretical (i.e., “pre-silicon”) evaluation of protections

applied on top of a cryptographic algorithm.
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Generic Information-Theoretic
Measures and Applications to

Side-Channel Analysis
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CHAPTER 9

Towards Exact Assessment of Side-Channel Leakage by a-Information

Measuring the leakages of sensitive variables is the key to evaluate the security level in many
secrecy and privacy problems. In practice, an adversary can observe some “information” about
the manipulation of secrets, e.g., she can get some physically observable leakages like cache timing
variations, power consumption, electromagnetic radiations, etc. Those physical observations are
particularly called side-channel leakages when targeting cryptographic systems. Therefore, the
problem is how much information about a variable is carried in its side-channel leakages. In this
chapter, we study this problem, instead of using Shannon information theory (Shannon entropy,
mutual information, divergence, etc), in a more general sense by using Rényi entropies, Rényi
divergences and alpha-information.

Part of results shown in this chapter has been presented in IEEE Information Theory

Workshop (ITW 2021) [99].
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9.1 Introduction

Since the seminal work [146] by Claude E. Shannon published in 1948, entropy and mutual
information have been fundamental tools for measuring uncertainty and dependency in in-
formation theory. These information-theoretic tools have achieved great success in a large
variety of domains and topics, including quantification, storage, and communication of digital
information. Particularly, they have been widely used in cryptography [147], along with the
concept of “perfect secrecy”. Later on, several generalizations of entropy El and divergence have
been proposed, wherein Alfred Rényi propose a parameterized one depending on « for o > 0
and a # 1 in 1961 [I35], usually called Rényi entropies and divergences. Essentially, all these
information-theoretic tools measure the intrinsic properties and connections between different
distributions of variables (under certain assumptions) despite using various tools.

The generalization of Shannon information theory continues. On one hand, regarding the
conditional version of Rényi entropies, at least six proposals have been come up with [II, [66} [T48].
In particular, the one proposed by Arimoto [I], known as Arimoto-Rényi conditional entropy,
is a good definition possessing several fundamental features. On the other hand, regarding
the generalization of mutual information, the one proposed by Sibson [148], known as Sibson’s
mutual information, is perhaps the most preferred generalization of classical mutual information
and has been applied in various scenarios [63, [64], [122] [137], 157 [160].

However, there is no widely accepted definition on conditional mutual information. Recently,
two proposals are [63] [157], both of which do not have the uniform expansion property (UEP)
as shown in [09]. In this respect, our proposal in [99] is featured with UEP and other good

properties which are useful in the context of quantifying information leakage in side-channels.

I'We call entropy, exclusively for Shannon entropy except stated otherwise.
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9.2 Contributions

9.1.1 Information-Theoretic Measures in Side-Channel Analysis

Mutual information has been extensively exploited in evaluating side-channel security of practical
cryptographic implementations. Typically, as a theoretical tool, it can be applied as a side-
channel distinguisher [9} [74] 84] [TTT] [I63], or a leakage evaluation tool [41l 57, [I5T]. Interestingly,
from a framework of communication channel model, an optimal side-channel distinguisher is
derived in [84] in the sense that it can make the best use of leakage. Later on, the same
framework is explored in universally upper bounding the success rate of any attacks [41], [57], or
conversely giving lower bounds on the number of measurements to launch a successful attack
(e.g., with a success probability Py > 95%).

However, there is a gap between the success rate of an optimal ML-based attack and the
upper bounds given by mutual information, and the gap is even widened when other estimated
bounds are adopted [57]. We will show how the conditional a-information closes the gap and

provides an exact bound on attacks in this chapter.

9.2 Contributions

In this chapter, we aim at quantifying information leakage by utilizing generalized information-
theoretic measures and provide numerical simulation results in the context of guessing the value
of a discrete variable from its side-channel leakage. In this regard, we first show how conditional
information-theoretic tools are applied to quantify the amount of information carried by the
leakage in a Hamming weight leakage model. We present numerical results in both noiseless and
noisy scenarios. The takeaway is that the conditional a-entropy brings different bounds on the
information leakage when equipped with various . In particular, the larger value of « gives a
much tighter bound.

Secondly, we present a full spectrum of application a-information in side-channel analysis
equipped with different «. In particular, we fully fill the gap between two worlds, namely
information-theoretic measures and side-channel attacks by applying conditional a-information.
Notably, it is the first time that we are able to predict exactly the success rate of the maximum-
likelihood (ML)-based attack in SCA, or conversely to predict the minimum number of traces to
launch a successful key-recovery attack. Furthermore, we also prove that when « approaches
positive infinity, the ML-based attack converges to conditional a-information between the leakage
and the sensitive variable. Therefore, this conditional a-information will provide the best upper

bound on the success rate of any attacks.
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9.3 Quantifying Hamming Weight Leakages by Rényi En-
tropy

Considering two random variables X and Y, where Y denotes the general leakage from the
sensitive variable X. For instance, Y is the side-channel leakage of sensitive variables during
its computation, storage, or even some micro-architectural caching information. An abstract
overview of the leakage model is illustrated in Fig. in which f can be any deterministic or

probabilistic function on X and N denotes some additive noises.

X— fX) —EIT}—*Yzf(X)JrN

N

Figure 9.1: Leakage model: the sensitive variable X and the leakage Y with some noise N.

We first present several definitions. Let p(z) and p(y) be the probability distributions (e.g., in
discrete case) or probability density functions (e.g., in continuous case) of X and Y, respectively.
We recall the definition of Rényi entropy as follows.

Definition 9.1 (Rényi entropy [I35]). The a-entropy, or Rényi entropy of order a > 0 is defined
for 0 < @ < 400 and a # 1 as

Ha(X) = = g B(p(0)" ) = 1 log Yoolo)", (9.1)

Remark 9.1. Considering different choices of «, we shall recover various entropies [I37]:

e Hartley’s entropy (max-entropy): taking a — 0 gives Hp(X) = log|SuppX| where
|[SuppX| = ip(m)>0 1 denotes the volume/cardinality of the support of the distribution.

e Shannon entropy: taking o — 1 recovers H;(X) = Elog 55y =fp(z log = H(X).

e Min-entropy: taking a — oo leads to Huo(X) = log where the notation sup p denotes

sup P

the oo-norm ||p||o. In discrete case, we have Hy (X) = log W

Then defining the conditional a-entropy H,(X|Y) implies an expectation over Y. We use in

this chapter the Arimoto’s conditional a-entropy as it is attributed with some good properties:

Definition 9.2 (Conditional Arimoto-Rényi Entropies [I]). The conditional a-entropy or
conditional Arimoto-Rényi entropy of order a > 0 is defined for 0 < o < 400 and o # 1 as

o BVl = 1 1o S p() (f wlaly®) 92)

Ho(X]Y) =

Remark 9.2. Similarly, we shall recover conditional version of above entropies as follows.
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e Conditional max-entropy (conditional 0-entropy): taking o — 0 gives Ho(X|Y) =
sup, Ho(X[Y = y) = log(supy|Supr|Y = y}) where the sup, is the infinity norm

as above.

e Conditional Shannon entropy (conditional 1-entropy): taking o — 1 gives Shannon’s
conditional entropy: H; (X|Y) = H(X|Y).

¢ Conditional min-entropy (conditional co-entropy): taking o — oo leads to Hoo (X |Y) =

log m where the sup,, is the infinity norm as above.

We aim at characterizing the leakages by utilizing the (conditional) guessing entropy and
Rényi entropies [142] [159], then build quantitative connections and upper/lower bounds between
the entropies and the success rates (SR). In particular, for quantifying the information that Y

brings on X, we focus on following four metrics.
e Guessing entropy
e Conditional Shannon entropy
e Conditional Arimoto-Rényi entropies (the a-entropy [1GI])
e Success rate (or success probability)

Assume that the discrete variable X € Fy¢ is uniformly distributed over X with cardinality

|X] = M and N = 0 in noiseless scenario, the marginal and joint distributions are:

P(X=x)=2""= % P(Y =y) = ‘f_l# P(X,Y) = % S (9.3)

The conditional probability distributions are as follows.

1 ify= P(Y|X)P(X e ify=
P(Y|X) = ity =f(x) P(X|Y) = PYIXPX) _ Jmign Hy=/f@) (9.4)
0 otherwise P(Y) 0 otherwise
Next, the maximum probability of success is defined as follows.
Py(X) = maxp(z). (9.5)
x
For any leakage function f, we have: Ps(X|Y) = E, max, p(z[Y) = >_, p(y)- m =2 &=

Mﬁ, > 47, where M’ = || and M = |X]|.

In the following, we assume that the sensitive variable X leaks the Hamming weight model,
which is the well-studied leakage model in side-channel analysis. The reason is that, hardware
implementations leak bits in parallel, hence the leakage is the sum of the registers state bits,
that is the Hamming weight of the register contents. The schematic is shown in Fig. where

we have f = wy for Hamming weight leakages.
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9.3.1 Guessing with Noiseless Leakages
Let f(X) = wg(X) where N = 0 and |X| = M = 2 for the sake of calculation. Hence,

P(Y|X)P(X) _ Lycune)
P(Y) O

P) =, P =Y.  Plly)= (96)

We focus on quantifying the reduction of uncertainty of X knowing its Hamming weight

leakages Y. The four metrics are then calculated as follows.

e Conditional guessing entropy.
) 11 (2
G(X|Y) = ZIP’ Zx.ﬁvmy):zvl(zz. ) +2Z+1(£>. (9.7)

e Conditional Shannon entropy.

H(X|Y) = pr y)logp(zly) = 2~ €Z< ) -log (£> : (9.8)

Y

e Conditional Arimoto-Rényi Entropies.

logZP (Zp(xl@“) - % <£ —log (5) ) . (9.9

Ho(X|Y) =

e Conditional success probability.

M l+1
P,(X|Y) = By maxp(e]Y) = — - = ; . (9.10)
By using the upper bound from Fano’s inequality [65] and the lower bound H(X|Y) >

©*(Ps(X|Y)) where

@7 (5) = [2)(sT 11 = 1) log 1] + (1= [1) (s = 1) ) log[ L1, (9.11)
and Ho(XY) > 12 log ¢}, (Ps(X]Y')), where
#1.(s) = ((5 SO (- (s =) T (9.12)

(proposed by Sason et al. [142]), we numerically show the conditional Shannon and Rényi
entropies of X as Fig.[0.2] and Fig.[0.3] Specifically, the upper bound of Rényi entropy is highly
dependent on the o. With a much larger than 1.0, the marked region is much smaller than the

region with a < 1.0.
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Figure 9.3: Conditional Rényi entropies of guessing X knowing Y with different a.

9.3.2 Guessing with Noisy Leakages

In fact, noise is the intrinsic part in the side-channel leakages, like in the power consumption and
electromagnetic radiations. Thus we consider the noisy leakages in a classic way by assuming

the noise is the additive white Gaussian noise (AWGN), which is a common noise model to
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9. TOWARDS EXACT ASSESSMENT OF SIDE-CHANNEL LEAKAGE

mimic the effect of many random processes.
2

We assume that N = ¢(z) ~ N(0,0?%) and ¢(z) = ﬁ(fﬁ which is a nonincreasing

function of |z|. Then, we have:

(X =) = % ,
p(x) - plylr) = ey — f(z
Z M Z (9.13)
P(ylz) = (y - f(x)),
_ plylop(x) oy — f(x))
=T T e F@)
In addition, the maximum conditional probability of success is computed as follows.
- p(ming [y — f(z )I)
Fo = Empxplall) = /(MZ” e ) > ely—f) ¢
— 31 [ wminaly = @) dy 011

- % /@(y — fl@*(y))dy  (where 2™ (y) = argmin |y — f(z)[)
M’ M =1 A/2
=27 2 © (o) ’

where M’ is the cardinality of f(z) and Q(z) = jerfc (%), A equals the regularly spaced

distance of f(x), for instance A = 1 in the Hamming weight model.

Thus, we calculate the conditional Shannon and Arimoto-Rényi entropies as follows.
e Conditional Shannon entropy. Given I(X;Y) = H(X)—-H(X|Y)=h(Y)-h(Y|X)
and the differential entropy of Gaussian variable Y is h(Y') = 3 log(2mec?), the conditional

Shannon entropy is:
H(X|Y)=H(X)—-hY)+ h(Y|X)

log(2 2 1 9.15
zlogM—&—M—/p(y)log—dy. (9.15)
2 p(y)

e Conditional Arimoto-Rényi entropies.

Ha(XIY) = 2 log Yop(u) (3 plaly)®) '

reX
1 falog/p(y)(z plzly)™) " dy
Y TEX
@ (9.16)
1 log/y(;(p(x,y)a) /* dy
= - aalog]b/y(;w(yf(x)) )1/ad
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With function scipy.integrate.quad in Python, we numerically investigate the remaining
information of X with knowing noisy Hamming weight leakages Y where the noise is the additive
Gaussian noise. Specifically, for conditional Shannon entropy, its upper bound is given by Fano’s

inequality and lower bound is: H(X|Y) > ¢*(Ps(X|Y)) where

@"(s) = [1)(sT41 = ) log[ L] + (1= [L](sT1] — 1)) log[ 11, (9.17)
While for conditional Arimoto-Rényi entropies, the upper bound and lower bound are given by
Sason et al. [142]. Particularly, H,(X[Y) > 72 log ¢}, (Ps(X|Y')), where

aas) = (s =) [+ (1= ) (T 1s - 1)) [, (0.18)

S S S S S
and it does not depend on M.

With noise level o € [0.05, 5.00], the conditional Shannon entropies with different M are as
in Fig. Specially note that for M = 4 and noise level o = 0.05, the lower bound is 0.5, while
the conditional Shannon entropy is 0.5000000000000003, which is very close but greater than
the lower bound.

From the Fig. the conditional Shannon entropy is increasing along with M, which in fact
impacts the success probability Ps. In the noisy scenarios, adding noise increases the difficulty
of guessing, resulting in that the conditional entropy is increasing along with noise level and
approaching H(X). As a result, the numerical results are consistent with theoretical analysis.

With the same setting of noise level, the conditional Arimoto-Rényi entropies with different
« are plotted as in Fig. It is interesting to show that with greater a, the upper bounds
are tighter. This result is the same as in Fig. The conditional Arimoto-Rényi entropies are
increasing along with noise level o as expected. But the shape of the conditional entropies curve
changed from concave to convex, and approaching to lower bound with an increase of «.

With observations from Fig. we recommend to use Arimoto-Rényi entropies with larger a
under the Hamming weight leakages. It is worthy noting that H;; is highly related to guessing
entropy [45], and can be utilized to estimate the bounds for key ranking in a fast and scalable

way.

9.4 Good Definition of a-Information

We extend our investigation to a-information El It is well-known that a-information is related

to a-divergence. Therefore, we first recall the definition of the latter.

'We remove “mutual” in a-information since in general: I (X;Y) # Io(Y; X).
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Figure 9.4: Conditional Shannon entropies of guessing X knowing Y with different M, which

indicating different probabilities of Ps(X|Y).

o
IS

Definition 9.3 (Rényi Divergence [I35] 137, [159]). Let p, ¢ be distributions such that % is well
defined. The a-divergence, or Rényi divergence of order o > 0 is defined for 0 < o < 400 and

a#1as

Dal(plla) = - i 1 loglE(igi)la == i 1 logip"‘(x)ql‘“(x), (9.19)

where X ~ p(z). In particular, if p and ¢ are binary distributions, say (p,1 —p) and (¢q,1 — q),

respectively, then the binary a-divergence is:

da(p || @) = log(p®q" = + (1 —p)*(1 — q)* 7). (9.20)

a—1
Then we present Sibson’s a-information and identity.

Definition 9.4 (Sibson’s a-Information [53], 148, [I60]). Let p, ¢ be distributions such that % is
well defined as above. The Sibson’s a-information of order o« > 0 is defined for 0 < o < +00

and a # 1 as

I.(X;Y) = TfllinDa(py|X||QY|pX) = ngin Do (px,yllpxay). (9.21)
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Figure 9.5: Conditional Arimoto-Rényi entropies of guessing X knowing noisy Y with different
a € [0.25,0.50,2.00,4.00], and also different noise level.

Explicitly, the closed-form formula for Sibson’s a-information is:

I (X3Y) = 2o Y (3 pla)p ol)) (9.22)

a—1

Definition 9.5 (Sibson’s Identity [148, [I60]). On the basis of above definition, we have Sibson’s
identity:

I.(X;Y) = Do(py|xllay Ipx) — Da(dy llay) (9.23)

for any probability distribution gy, where ¢j- is the minimizing probability distribution such
that I,(X;Y) = ming, Do(py|x|lay|px) = Da(py|xllay|px)-

It is worth mentioning that Sibson’s a-information satisfies the following basic properties [122]

[137], which are seamlessly connected to Shannon mutual information.

e Shannon mutual information: taking a@ — 1 recovers Shannon’s mutual information:

L(X;Y)=I(X;Y).

e Independence Characterization: I,(X;Y) > 0 with equality iff X 1 Y.
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9. TOWARDS EXACT ASSESSMENT OF SIDE-CHANNEL LEAKAGE

e Uniform expansion property (UEP): if X is discrete uniformly distributed (p(z) = 57), we
obtain I,(X;Y) =log M — H,(X|Y). This links a-information to conditional a-entropy.

e Data processing inequality (DPI): if X —Y —Z forms a Markov chain, we have the data “post-
processing” inequality (post-processing cannot increase information): I, (X; Z) < I,(X;Y),
and the data “pre-processing inequality” (pre-processing cannot increase information):

I.(X;2) < 1,(Y; Z).

In summary, Sibson’s a-information provides a continuous extension from Shannon mutual
information to the parametric one by order « for & > 0 and « # 1. However, in the context
of side-channel analysis, an adversary usually is allowed to know some public information, for
instance plaintexts or ciphertexts when targeting cryptographic algorithms or implementations.

Therefore, it is critical to define the conditional version of a-information.

9.4.1 Extending to Conditional a-Information

As a natural continuation of the definitions in the preceding section, we define the conditional a-
information with a “log-expectation” closed-form expression, obtained by taking the expectation
over the conditional variable inside the logarithm in Eqn. [9.22] the expression of Sibson’s
(unconditional) a-information.

Rényi entropy and divergence are well-known generalizations of Shannon’s entropy and
Kullback-Leibler divergence:
Definition 9.6 (Compact Representation of Rényi Entropy and Divergence [99]). Assume

that either 0 < a < 1 or 1 < a < 400. The a-entropy of a probability distribution P and

a-divergence of P from (@) are defined as

Ha(P) = 125 10g [|pla,

(9.24)
Do(P|IQ) = 15 log(plla)a

where we have used the special notation:

1 _ 1
ol = ()", Glabe = (o) (9.25)
with the following convention: All considered probability distributions P, () possess a dominating
measure p such that P < p and @ < pu, the corresponding lower-case letters p, g are densities

of P,(Q with respect to p.

Therefore, we shall have the following definition for a-information.
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Definition 9.7 (Conditional a-Information, Closed-Form Definition [99]). The a-information

between random variables X and Y knowing 7 is:

(6% (6%
I.(X;Y|Z) = T log EzEy |z (px|yzllpx|2)a = p— logEy z(px|yzIpx|z)a-  (9.26)

More explicitly, it is equivalent to:

(07

1(x:¥12) = ~2 10 Y 003 (F ptelop wlo ) di (@) F diy ) dz(2). 021)

To the best of our knowledge, this definition has not been considered elsewhere.

Interestingly, we have the following property for the impact of order o in conditional

a-information.

Lemma 9.1. Given fized distributions of X, Y given Z, I,(X,Y|Z) is non-decreasing in «, in

particular,
1(X;Y[Z) < I(X;Y(|2) = I(X;Y[Z) < L(X3Y(2) < 1o (X3 Y|Z), (9.28)

where I(X;Y|Z) is the Shannon mutual information, and we call Io(X;Y|Z) the quadratic
a-information as in convention. Additionally, we call I.o(X;Y|Z) the (conditional) mazimal

information[l] as o — oo.

Proof. Since a-divergence is non-decreasing in «, if a < 8, then Do (Pxyz||Px|zQvz) <
Dg(Pxyz||Px|zQyz) given a distribution of X,Y and Z. By the conditional Sibson’s identity,
we have that IQ(X,Y‘Z) S DQ(PXYZnP)(‘ZQyz) S Dﬁ(PXYZ||PX|ZQYZ)~ Finally, taking
Q3 for minimization gives Dg(Pxyz||Px|zQ% z) = 1s(X;Y|Z). O

In the following, we present some important properties of this conditional a-information.

9.4.2 Basic Properties

The conditional a-information in Def. 0.7] enjoys three important properties, namely consistency,
UEP and DPI. Note that we refer the interested reader to [99] for detailed proofs of above

properties.

Property 1 (Consistency of Conditional a-Information w.r.t. a-Information [99]). If Z is
independent of (X,Y) then I,(X;Y|Z) = I.,(X;Y).

Property 2 (UEP for Conditional a-Information [99]). If U ~ U(M) is uniformly distributed
independent of Z, then

I,(U:Y|Z) = Hy(U) — Hy(U|Y Z) = log M — H,(U|Y Z). (9.29)

1We use term mazimal information to highlight the essential meaning of “information” in reducing uncertainty,

e.g., in guessing games, side-channel analysis, etc. Another similar notion proposed in [89] is called mazimal
leakage. In a nutshell, mazimal leakage shall be larger than maxzimal information in conditional scenarios.
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9. TOWARDS EXACT ASSESSMENT OF SIDE-CHANNEL LEAKAGE

We say that a sequence of random variables forms a conditional Markov chain given some
random variable T if it is Markov for any T = t.
Property 3 (DPI for Conditional a-Information [99]). If W — X —Y — Z forms a conditional

Markov chain given T, then
L(X:Y|T) > L(W: Z|T). (9.30)

It is noteworthy that, firstly, the consistency property provides a continuous connection to
unconditional Sibson’s a-information. Secondly, we are especially interested in UEP since in
cryptographic applications, the sensitive variable is usually discrete and uniformly distributed,
say X ~U(M). Therefore, it enables us to derive some straightforward but non-trivial bounds
on how much information an adversary could infer knowing certain leakages. At last, DPI
allows us to apply the conditional a-information to several communication channel-based
frameworks [57, 58], [84]. We shall therefore expect that conditional a-information will bring

some insights in practical scenarios.

9.5 Applications in Side-channel Analysis

As we have demonstrated in previous chapters, side-channel analysis (SCA) is a very powerful
attacks against cryptographic implementation. In 2009, Standaert et al. establish a connection
between side-channel analysis and information theory for the first time [I5I]. Then it is exploited
by [84] to derive the optimal distinguisher and by [57] to obtain generic and universal bounds on
how successful an optimal distinguisher can be in context of SCA. In this section we will generalize
the results of [57] by Rényi information measures, particularly the conditional a-information,

and deduce new upper bounds for the probability of success of side-channel attacks.

9.5.1 Side-Channel in a Communication Channel View

Recall that the secret key is denoted as K, and the plaintext or ciphertext is T, which is the
input or output of the cryptographic implementation. By cryptographic operations, K and
T are “encoded”, and processed by some leakage function, producing a sensitive variable X.
Then X is leaked along with inherent noise IV in the channel, denoted as the noisy leakage Y.
From a perspective of an adversary, she exploits Y to recover the key by certain side-channel
distinguishers, resulting in K asa guess of K.

The communication channel view of side-channel analysis is shown in Fig. In particular,

we assume that,
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K X Y K
—{ Crypto Channel Attack —

T N ‘ T‘
Figure 9.6: A communication channel view of side-channel analysis.

e K is uniformly distributed over K = Fy: = {0,...,2° — 1}. Denote M = |K| = 2°.
e T is independent with K, which is assumed to be available, e.g., in a key-recovering attack.
e the leakage function is a deterministic function, but not necessarily known to the attacker.

Based on this model, we have the following observation.

Lemma 9.2 (Conditional Markov Chains [57]). The communication channel we described above

admits the following Markov chains when given T':
K—Y 5K, KsX—Y (9.31)

Proof. When T is known, it is clear that p(E|y, k)= p(@|y) and p(y|x, k) = p(y|z). O

9.5.2 Upper Bounding the Success of Probability for Any Attacks

Considering the communication channel framework in Fig.[9.6] we have the following lemma.

Lemma 9.3.
L.(K,Y|T) = I.(X,Y|T) (9.32)

Proof. Since K — X — Y is a Markov chain given T, using Eqn. we have I, (K, Y|T) <
I,(X,Y|T).
Conversely, when T is known, X is a deterministic function of K, which means X —
K — Y also forms an Markov chain given T. Again from Eqn. we have I,(K,Y|T) >
I.(X,Y|T). O
In order to build a connection between a-information and the probability of success, we

introduce the generalized Fano’s inequality as follows.

Lemma 9.4 (Rioul’s Generalized Fano Inequality [I37, Thm. 1]).
L(X;Y) 2 do(Py(X]Y)|[P:(X)) (9.33)

where
da(pllg) = L5 log(p™g" > + (1 —p)*(1 — @)™ %) (9.34)

denotes binary a-divergence.
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Therefore, we derive the main result as follows.

Theorem 9.1 (Generic Upper Bound on Success Rate [99]). Given a side-channel setting as in
Fig. [9:0, we have

(P, | %) < L(K,Y|T). (9.35)

Proof. Given Eqn. , it is enough to prove I,(K,Y|T) > do(P; || 37). Since K —Y — K
forms an Markov chain given T, by DPI in Eqn. we have Io(K;Y|T) > I.(K; K|T).
Using UEP in Eqn. one has I,(K; K|T) = log M — Ho(K|K,T) > log M — H, (K|K) =
I, (K; K ), where the inequality holds since conditioning reduces a-entropy [IL [66]. Then by
Rioul’s Fano inequality (Lemma, we have I (K; K) > do(Ps || ). O

By applying binary a-divergence as in Eqn. we have

1 Pe  (1-P)

1
do(Ps || —) = 1 s+
(Pl 3p) = o =1 loelgps (Lf*l)a—l)

)+

= ]og( log((M — 1)0(—1}3;1 + (1 — Ps)a)a

M -1 a—1
where do(Ps || 77) is an increasing function of Py when Py > -, as illustrated in Fig. Note
that we have P > ﬁ because if there is no leakage, e.g., when ¢ = 0, then an adversary can

only guess k randomly. Therefore, the probability of success is ﬁ
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Figure 9.7: Illustration of du (P || 7;) as a function of P, with different o, where M = 2°.

Since dq (P || ;) is a monotonous function of Pj, it provides a lower bound on I,(X,Y|T)
by Theorem given a specific Ps. As a result, it enables us to derive a lower bound on
the number of traces to achieve that success rate P; as I,(X,Y|T) < ql,(X,Y|T) where
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X = (X1, Xs,...,X,) and X, are i.i.d., the same with Y and T. More precisely, given a set

of leakages with length ¢, I,(X,Y|T) involves ¢ itself, which should be more tighter than

do (Ps |l 57)
q= IQ(X,Y\N%) :

Inversely, given a fixed set of leakages with length ¢ gives a fixed I, (X, Y|T), then Theorem[J.]]
leads to an upper bound on P;. In particular, let f, ! be the inverse of d (Ps || ﬁ) of P, then
we have Py < f;'(Io(X,Y]|T)). Note that f; ' is also monotonous in its valid domain, e.g., the
range is determined by < < P, < 1.0. The inverse function f; ' of do(Ps || ;) is illustrated in

Fig. 03
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Figure 9.8: Illustration of the inverse of do (Ps || ;) with different o where M = 2°.

In summary, Theorem allows us to derive twined bounds in two directions, namely an
upper bound on P, and a lower bound on ¢. In the sequel, we illustrate applications of this

theorem by numerical experiments.

9.5.3 Maximal Information Meets ML-based Attacks

In view of Lemma given a fixed distribution for corresponding variables, conditional a-
information is non-decreasing with respect to the order «, and oo-information with o — oo is
the maximal one. Considering the communication channel model shown in Fig. we shall
apply this maximal information to side-channel analysis.

Recall that in the maximum-likelihood based distinguisher in Chap. [7| (see Eqn. and ,
the best key guess is made by

k = argmax A(k) = argmax p(Y |k, T). (9.36)
kEK keK
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It is worth mentioning that ML-based distinguisher is sound by design, implying the best key
guess will be the true key used in the cipher with a success rate Ps; given enough number
of side-channel measurements. Therefore, we have the following theorem which bridges the

maximum a-information to the ML-based distinguisher.

Theorem 9.2 (Exact Upper Bound on Success Rate by Maximal Information). Given a

side-channel setting as in Fig. we have
1

when Io(K,Y|T) denotes the (conditional) mazimal information, and Pyy, is the success rate

achieved by a mazximum-likelihood based distinguisher.

Proof. By definition, we have

(K Y[2) = 5 tog Yop03E (5F plb)9° (10, 0) s () ¥ iy () dpr (0

gllogzp(t)i Zp kD™ (ylk, ) * dpay ()

. logZp(t)i Zp “(ylk,t) ) duy (y)

(zkp(k»pa(mk,t))é
Pl

a (S p(R)p* (ylk, 1)) =

TR SAP YT ey

(e (lk,t)

Spylkt)

The equality in p(k|t) = p(k) holds since T is independent of K and p(k) = 47 as it is uniformly

1
distributed. Moreover, (Zk pa(y\k;,t))“ is the a-norm of p(yl|k,t). Therefore, we obtain

(9.38)

=2 logEy,r
a—1 ’

log EY,T

=log M + a
a—1

1
(XL (ylk, b))~ = mgx{p(y|k,t)} = Pymr, when o — oo, resulting that

S\ML

2k p(ylk,t)

In other words, Py)nr, is the exact success rate (e.g., evaluated by hundreds or more repetitions)

I (K;Y|T)=logM +logEy r =———— (9.39)

given by the ML-based distinguisher. Conversely, inserting the same P\, and a — oo into dg
gives equality in Eqn. O

Intuitively, Theorem coincides with the fact that if the distinguisher is sound, then the
probability of success for the correct key guess will exceed all other wrong key guesses. Indeed,

the infinity norm in a-information when a — oo exactly fits with the ML-based distinguisher
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by which it returns the most possible key guess. Still, it gives an upper bound for the success
rate, implying that Theorem leads to an exact bound achievable by using the optimal
distinguishers (e.g., the ML-based one).

As we will show in the sequel, the derivatives in Eqn. [0:38 are easy to be implemented and
evaluated by Monte-Carlo simulations. We shall simplify the notation Py, to Ps when there
is no ambiguity.

Remark 9.3. It is worth mentioning that Theorem [0.2] will recover the conditional maximal
leakage proposed in [89], Def. 6]. However, the maximum is considered not only over Pr(K = k),
but also over Pr(T = t), resulting in a larger value than our a-information when « tends to

infinity.

9.6 Applications to Hamming Weight Leakage with AWGN

Let K € Fye be the secret key and T' € o be the plaintext or ciphertext, where typically ¢ = 8,
e.g., in AES. Therefore, in side-channel analysis, an adversary aims to recover the secret key
by exploiting several (many) side-channel measurements, say ¢ traces. That is, considering the

commonly used Hamming weight leakage model, the side-channel leakage can be generated by:

where wy is the Hamming weight function, S denotes certain cryptographic operation within a
cipher and N; are i.i.d ~ N(0,02) for 1 <i < q.
Applying the definition of I,(X,Y|T) as in Def. we have:

I,(X, Y|T) = I(K, Y|T)
== log(Zp(t)/y(zp(klt)p"(ylhk));duy(y))
t k

a—1

allog(/yzt:p(y,t) (Epp(He (v1t: ) duy(y))

(9.41)

Q=

a p(y[t)

Next, Eqn. 0-47] can be estimated by using Monte-Carlo simulation by the law of large

numbers. Indeed, we have

Ne¢ . Lo 1
- k[t )pe (v |67, k) =

ep (X YD) ) ~ lim E:(ka” (¥ |8, )
« Nc—oo No = p(y] |t])

1 NZ (Sip(h)p (7167, )
S p(R)p(yilti k) 7

(9.42)

Q=

= lim
Ng—o0 NC —1
J:
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where t/ ~ U(F1,) and y7 ~ N(f(t/,k7),0°1;) € R? by choosing k7 ~ U(Fqe) and f(t7,k7) =
’LUH(S(tj ©® kj))
Considering independent Gaussian noise in each y?, we can simplify (0.42) and insert

into ([9.41)), therefore,

Ne (I T =
I.(X, Y|T) ~ 0+ - 1 Z(Zw (y7|t7, k)

log — ——
a=1 " Ne & pyIE, k)

Yo (3, e*ﬁllyjff(tj,k)llz)é

(9.43)

(0%
ny, log ~— —
a1 %N, 2 S L LI

Jj=1
given a larger enough N¢.

Hereafter, we depict I,(X,Y|T) with different choices of a.

9.6.1 Evaluation of /,(X,Y|T) with Different o

We first consider the lower level of Gaussian noise with 02 = 1.00 and 2.00. The results are
depicted in Fig. by using ¢ = 50 side-channel traces in total. As the first observation,
I,(X,Y|T) is non-decreasing in «, which confirms Lemma Note that for the sake of clarity
on comparison at beginning, we ignore the first point when ¢ = 0, which gives I,(X,Y|T) = 0.

Secondly, we push forward our evaluation into scenarios with high noise levels as shown
in Fig. For instance, 0% = 8.00 corresponds to SNR = 0.25 in Fig. Therefore,
the second observation is that the gap between larger and smaller orders enlarges when the
variance of noise increases. Intuitively, I,,(X, Y |T) with a larger order « should be more relevant
in side-channel analysis. The reason is that a larger value of o makes this measure be more
sensitive to key guesses that have higher probabilities, which is exactly the case when a sound

distinguisher [80, [I5T] is adopted in corresponding attacks.

9.6.2 Bounding the Probability of Success

Relying on Theorem [9.1] we derive upper bounds on the probability of success Ps. For the sake
of clarity, the bounds of P, given by applying the generalized Fano’s inequality is plotted in
Fig. and then the numerical results on the success rate are shown in Fig. for different
pairs of a in I,(X,Y|T).

The main takeaway from Fig. is that, larger orders in I,(X,Y|T) enable to derive

better bounds on the success rate. Specifically, taking o = 100.00 as an example, it almost
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Figure 9.9: Numerical comparison of Shannon mutual information I(X,Y|T) and a-information

I1,(X,Y|T) with different « in a side-channel analysis context, with ¢ = 50 traces.

pushes to the limit of supremum. However, smaller orders, e.g., taking a < 1.0, only provide
loose upper bounds on Ps.

Next, we compare those upper bounds given by I, (X, Y|T) with empirical success rate from
ML-based attacks (using optimal distinguishers [84]). The numerical results under different
noise levels are shown in Fig. and 013 for gmax = 50 and 200 traces, respectively. The most
significant observation is that when the order is larger enough, the information-theoretic bounds
provide exact upper bound on P;, or conversely, the empirical success rate of the ML-based
attack will converge to the upper bound by I,(X,Y|T). Compared with the state-of-the-art
bound [57] given by Shannon mutual information I(X,Y|T), our new bounds with large orders

« are significantly better in a sense of tight upper bounds.
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Figure 9.10: Numerical comparison of Shannon mutual information I(X,Y|T) and a-information

I,(X,Y|T) with different « in a side-channel analysis context, with ¢ = 200 traces.

To summing up, we present the full spectrum of upper bounds when applying I, (X, Y|T)

in bounding the success rate of the optimal attacks in SCA. Particularly, we shown that a

larger order of I, (X, Y|T) will give a tighter bound. When pushing to the limit, I, (X, Y|T)

would lead to the best upper bound on P, since I(X,Y|T) is increasing in « as proved in

Lemma At last, the optimality of the ML-based distinguisher indicates that there is no

distinguisher better than it. In other words, the success rate of utilizing other distinguishers like

CPA, DPA and MIA will not exceed that of ML-based distinguishers. As a consequence, the

bound by I (X, Y|T) is truly the supremum of success rate of any attacks, which confirms our

theoretical derivatives shown in Theorem [0.2

As applications, the bound given by I(X,Y|T) bridges two worlds: the one is the
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Figure 9.11: Comparison of applying the Rioul’s generalized Fano inequality on Ps in a-

information I, (X, Y|T) with different o in a side-channel analysis context, with ¢ = 50 traces.

information-theoretic evaluation of side-channel leakage and the other is the exploitability
of those leakage. Additionally, it should also bring us a deeper understanding on the precise

security level of real devices in practice.

9.6.3 Predicting the Minimum Number of Traces for an Attack

As another application of Theorem we shall derive lower bounds on the number of traces
gmin tO achieve a given success rate Py, since ¢ is implicitly involved in 7, (X, Y|T). The lower
bounds on gui, are shown in Fig. where in each figure, one pair of values of order «
are added for comparison. Specifically, two groups of « are: 2.00 vs 0.50 and 100.00 vs 0.01.

In particular, & = 2 corresponds to collision information (or collision entropy Hs(X,Y|T)).
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Figure 9.12: Comparison of upper bounds on success rate Ps given by Shannon mutual information
I(X,Y|T) and a-information I,(X,Y|T) with different « in a side-channel analysis context, with
q = 50 traces.

Moreover, we consider a = 100.00 as a large enough order in a-information. Note than the
empirical success rate given by ML-based attack is obtained by 400 repetitive experiments, while
N¢ = 1,000,000 random draws are used in Monte-Carlo evaluation of I,(X,Y|T) to get a good
convergence.

As expected, lower bounds given by I, (X, Y|T) with larger values of « are tighter than those
with smaller values of «. In particular, the order a = 100.00 gives an almost exact prediction
on the minimum number of traces to achieve P, > 95%. Additionally, we shall predict that
I(X,Y|T) will provide us the exact number of traces to achieve such a success rate, since the

success rate of ML attack will converge to the bound given by the maximal information.
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Figure 9.13: Comparison of upper bounds on success rate Ps given by Shannon mutual information
I(X,Y|T) and a-information I (X, Y|T) with different o in a side-channel analysis context, with

q = 200 traces.

9.7 Conclusions

In this chapter, we aim at measuring information leakage by utilizing more general information-

theoretic measures instead of Shannon information measures. We show first how the Hamming

weight leakage is assessed by conditional a-entropy in both noiseless and noisy cases. In

particular, we illustrate that the leakage quantification will be more accurate when the order «

is larger enough.

More importantly, we present how the conditional a-information is applied in assessing the

side-channel leakage. In this respect, we show a full spectrum of bounds given by conditional
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Figure 9.14: Comparison of lower bounds on the number of traces gmin to reach Ps > 95%.

a-information with different orders. The outputs are twofold. On one hand, the success rate
of any key-recovering attack is upper bounded by the conditional a-information between the
sensitive variable and the corresponding leakage. We therefore, for the first time, provide a
supremum of empirical success rate of any attacks. On the other hand, the minimum number of
traces that achieves a specific success rate is lower bounded by the conditional a-information.
Again, the bound is tight when the order « is larger enough, meaning that optimal attacks can

reach this bound, e.g., by utilizing maximum-likelihood based distinguishers.
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cHAPTER 10

Conclusions and Perspectives

10.1 Conclusion

Measuring the concrete side-channel security is in the center of designing and evaluating
cryptographic implementations in practice, which is still an active and dynamic research area.
This problem is all the more important for evaluating masked implementations to understand
and enhance their practical security. In this thesis, we contribute to this problem in two aspects.
On the one hand, we present a unified and generic information leakage quantification framework
for the code-based masking, which allows us to assess the side-channel resistance of all instances
of code-based masking. On the other hand, we explore possibilities of applying more general
information-theoretic tools in side-channel analysis.

The first two parts of this thesis focus on quantifying information leakage in code-based
masking. Because of the generalization, the leakage quantification framework works for all
code-based masking instances like the simplest Boolean masking, inner product masking, direct
sum masking, Shamir’s secret sharing based masking, etc. Technically, our framework formally
binds the coding-theoretic properties of the corresponding linear codes to two leakage metrics,
namely signal-to-noise ratio (SNR) and mutual information (MI). Particularly in the case of
the Hamming weight leakage model, we find that both SNR and MI depend exclusively on the

dual distance and the kissing number of the linear codes used in the masking. Those theoretical
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derivatives enable us to enhance the code-based masking by providing optimal linear codes for
it in the sense of side-channel resistance.

Next, in the third part, we investigate the exploitability of those information leakages. We
consider the higher-order optimal distinguisher as it is the most powerful one based on the
maximum-likelihood rule. We first verify our theoretical framework from a perspective of
attack-based evaluation. The experimental results fairly confirm those theoretical findings and
demonstrate the advantages of employing code-based masking in practice. Another takeaway is
that redundancy can only reduce the side-channel resistance as expected, implying that a trade-
off must be considered in designing code-based masking against both side-channel analysis and
fault injection attack simultaneously. Second, by utilizing traditional information-theoretic tools,
we provide several theoretical bounds in attacking protected cryptographic implementations, in
the presence of code-based masking.

Finally, in the fourth part, we devote ourselves to applying general information-theoretic
measures for tighter universal bounds on how successful can any side-channel attack achieve.
This is of special importance in understanding and defeating side-channel analysis in practice.
In this respect, we propose to utilize a-information featured with an order  and investigate
several relevant properties in the context of side-channel analysis. Interestingly, with various
choices of a, we obtain a full spectrum of upper bounds on the success rate of the optimal
attacks (distinguishers), from the loosest one to the tightest one. In particular, we prove that
the success rate of the optimal attack converges to the upper bound given by a-information,
indicating that our new bounds are exactly tight. As a straightforward application, we verify
our theoretical bounds in side-channel analysis by considering the common Hamming weight
leakages. The simulation results exactly match with theoretical predictions.

Relying on above progresses made in this study, we put forth the evaluation tools and pave
the way to measurable side-channel security, especially in the presence of protections. From a
perspective of protection, we also provide the best-practice guideline for applying code-based

masking in practical cryptographic chips.

10.2 Further Perspectives

In view of topics studied and some progresses made in this thesis, we shall investigate the

following aspects in the future.
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Efficient Construction of Optimal Linear Codes. We showed in this thesis that different
linear codes have significant impact on the side-channel resistance of a specific code-based
masking. Thanks to our unified leakage quantification framework, we provided use-cases for
several masking schemes with lower number of shares (e.g., n < 5) [35], 37]. However, it is still
an open problem to construct those optimal codes rather than enumerate all possible candidates
exhaustively, which would be infeasible soon when n increases [123]. A possible approach is to
construct linear codes by adding small blocks recursively in a greedy fashion. This approach can
be very efficient but the output of this approach might not be the global optimum. Moreover, it
will be interesting to consider algebraic codes with certain good structures as well, which we

shall explore more in the near future.

Generic Construction of Masked Gadgets against Both SCA and FIA. Devising
combined countermeasures against both side-channel analysis and fault injection attacks (FIA)
is always a very active topic in this field. Considering the intrinsic nature of a linear code, it
can detect (or correct) errors provided that the number of erroneous “digits” is smaller than the
minimum distance (or half of the minimum distance) of the code. Therefore, a question arising
in code-based masking is, whether it can be extended to counteract both SCA and FIA. In
this respect, an interesting construction of gadgets is proposed in [164], which presents several
generic and efficient gadgets against SCA, while not all of them are applicable to thwart FIA. As
a consequence, our interest particularly lies in constructing generic and efficient gadgets against

both SCA and FIA for future study.

Practical Applications of Code-based Masking. We have demonstrated significant ben-
efits of utilizing code-based masking from a security perspective and also provided evidence of
its efficiency when implemented in practice. Our theoretical derivatives have been verified by
numerical simulation experiments. However, it still remains to be validated in real devices. In
particular, it is still non-trivial to devise a secure masked implementation, considering various
physical defaults (like couplings, etc) and glitches in practical circuits (chips), which usually ruin
the security guarantees provided by protections. In the case of code-based masking, we shall
push forward the practical evaluation by considering various settings and platforms in practice.
Moreover, it is also interesting to apply code-based masking in protecting implementations of

post-quantum cryptographic schemes and algorithms.
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Extended Applications of a-Information in Side-Channel Evaluations. As already
shown in this thesis, the general a-information paves the way to seamlessly connect the
information-theoretic evaluation and side-channel attacks. In particular, we presented a tight
upper bound on the success rate of any side-channel distinguishers in unprotected scenarios.
More generally, a-information is expected to provide tight bounds in the presence of masking
or other protections. As perspectives, we will aim at applying a-information into side-channel
security evaluations. Especially, we shall also explore possible construction of security proofs
under the noisy leakage model, which may narrow down or even fill the gap between the theo-
retical proof-based security and the practical security of masked cryptographic implementations.
Finally, we will investigate how a-information can be put into practice, where a tighter bound
on success rate of any attacks implies an exact security guarantee against side-channel attacks.
To summarize, those perspectives shall contribute to measurable side-channel security both in

theory and in practice.

10.3 List of Publications

We list publications as follows during this thesis. Note that those with referred citations are

more relevant to this thesis than that with increasing serial numbers.

Journal Papers

[35] Wei Cheng, Sylvain Guilley, Claude Carlet, Jean-Luc Danger, Sthem Mesnager. Informa-
tion Leakages in Code-based Masking: A Unified Quantification Approach. TACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(3): 465-495 (2021). https://doi.org/10.46586/
tches.v2021.13.465-495|

[40] Wei Cheng, Sylvain Guilley, Jean-Luc Danger. Categorizing all linear codes of IPM
over Fos. Cryptogr. Commun. 13(4): 527-542 (2021). https://doi.org/10.1007/
512095-021-00483-1l

[33] Wei Cheng, Claude Carlet, Kouassi Goli, Jean-Luc Danger, Sylvain Guilley. Detecting
faults in inner product masking scheme. J. Cryptogr. Eng. 11(2): 119-133 (2021).
https://doi.org/10.1007/s13389-020-00227-6,

[37] Wei Cheng, Sylvain Guilley, Claude Carlet, Sihem Mesnager, Jean-Luc Danger. Opti-
mizing Inner Product Masking Scheme by a Coding Theory Approach. IEEE Trans. Inf.
Forensics Secur. 16: 220-235 (2020). https://doi.org/10.1109/TIFS.2020.3009609.

168


https://doi.org/10.46586/tches.v2021.i3.465-495
https://doi.org/10.46586/tches.v2021.i3.465-495
https://doi.org/10.1007/s12095-021-00483-1
https://doi.org/10.1007/s12095-021-00483-1
https://doi.org/10.1007/s13389-020-00227-6
https://doi.org/10.1109/TIFS.2020.3009609

10.3 List of Publications

[5] Trevor Kroeger, Wei Cheng, Sylvain Guilley, Jean-Luc Danger, Naghmeh Karimi. Assess-
ment and Mitigation of Power Side-Channel based Cross-PUF Attacks on Arbiter-PUFs
and their Derivatives. IEEE Trans. Very Large Scale Integr. Syst. 2021. (To appear)

[6] Jingdian Ming, Huizhong Li, Yongbin Zhou, Wei Cheng, Zchua Qiao. Revealing the
Weakness of Addition Chain Based Masked SBox Implementations. TACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(4): 326-350 (2021). https://doi.org/10.46586/tches|
v2021.14.326-350.

[7] Jingdian Ming, Yongbin Zhou, Wei Cheng, Huizhong Li, Guang Yang, Qian Zhang.
Mind the Balance: Revealing the Vulnerabilities in Low Entropy Masking Schemes. IEEE
Trans. Inf. Forensics Secur. 15: 3694-3708 (2020). https://doi.org/10.1109/TIFS|
2020.2994775.

Conference & Workshop Papers

[422] Wei Cheng, Yi Liu, Sylvain Guilley, Olivier Rioul. Towards Finding Best Linear Codes
for Side-Channel Protections. PROOFS 2021: 1-16 (2021). (To appear)

[I38] Olivier Rioul, Wei Cheng, Sylvain Guilley. Cumulant Expansion of Mutual Information
for Quantifying Leakage of a Protected Secret. ISIT 2021: 2596-2601 (2021). https:
//doi.org/10.1109/ISIT45174.2021.9517886l

[99] Yi Liu, Wei Cheng, Sylvain Guilley, Olivier Rioul. On Conditional a-Information and
its Application to Side-Channel Analysis. ITW 2021: 1-6 (2021). https://doi.org/10!
1109/1TW48936.2021.9611409.

[4] Jingdian Ming, Wei Cheng, Yongbin Zhou, Huizhong Li. APT: Efficient Side-Channel
Analysis Framework against Inner Product Masking Scheme. ICCD 2021: 575-582 (2021).
https://doi.org/10.1109/ICCD53106.2021.00093.

[5] Trevor Kroeger, Wei Cheng, Sylvain Guilley, Jean-Luc Danger and Naghmeh Karimi. En-
hancing the Resiliency of Multi-Bit Parallel Arbiter-PUF and its Derivatives against Power
Attacks. COSADE 2021:303-321 (2021). https://doi.org/10.1007/978-3-030-89915-8_
14.

[6] Trevor Kroeger, Wei Cheng, Jean-Luc Danger, Sylvain Guilley and Naghmeh Karimi.
Making Obfuscated PUFs Secure Against Power Side-Channel Based Modeling Attacks.
DATE 2021:1000-1005 (2021). https://doi.org/10.23919/DATE51398.2021.9474137.

169


https://doi.org/10.46586/tches.v2021.i4.326-350
https://doi.org/10.46586/tches.v2021.i4.326-350
https://doi.org/10.1109/TIFS.2020.2994775
https://doi.org/10.1109/TIFS.2020.2994775
https://doi.org/10.1109/ISIT45174.2021.9517886
https://doi.org/10.1109/ISIT45174.2021.9517886
https://doi.org/10.1109/ITW48936.2021.9611409
https://doi.org/10.1109/ITW48936.2021.9611409
https://doi.org/10.1109/ICCD53106.2021.00093
https://doi.org/10.1007/978-3-030-89915-8_14
https://doi.org/10.1007/978-3-030-89915-8_14
https://doi.org/10.23919/DATE51398.2021.9474137

10. CONCLUSIONS AND PERSPECTIVES

7]

18]

191

[10]

[11]

Patrick Solé, Wei Cheng, Sylvain Guilley, Olivier Rioul. Bent Sequences over Hadamard
Codes for Physically Unclonable Functions. ISIT 2021: 801-806 (2021). https://doi.
org/10.1109/ISIT45174.2021.9517752.

Patrick Solé, Yi Liu, Wei Cheng, Sylvain Guilley, Olivier Rioul. Linear Programming
Bounds on the Kissing Number of g-ary Codes. ITW 2021:1-5 (2021). https://doi.org/
10.1109/1ITW48936.2021.9611478.

Trevor Kroeger, Wei Cheng, Jean-Luc Danger, Sylvain Guilley and Naghmeh Karimi.
Effect of Aging on PUF Modeling Attacks based on Power Side-Channel Observations.
DATE 2020: 454-459 (2021). https://doi.org/10.23919/DATE48585.2020. 9116428

Trevor Kroeger, Wei Cheng, Sylvain Guilley, Jean-Luc Danger, Naghmeh Karimi. Cross-
PUF Attacks on Arbiter-PUFs through their Power Side-Channel. ITC 2020: 1-5 (2020).
https://doi.org/10.1109/ITC44778.2020.9325241.

Wei Cheng, Claude Carlet, Kouassi Goli, Sylvain Guilley, Jean-Luc Danger. Detecting
Faults in Inner Product Masking Scheme - IPM-FD: IPM with Fault Detection. PROOFS
2019: 17-32 (2019). https://doi.org/10.29007/fv2n.

Pre-prints & Submissions

]

2]

13

Wei Cheng, Yi Liu, Sylvain Guilley, Olivier Rioul. Attacking Masked Cryptographic
Implementations: Information-Theoretic Bounds. ArXiv.org/abs/2105.07436, 2021. (Pre-
print on ArXiv)

Wei Cheng, Sylvain Guilley, Jean-Luc Danger. Information Leakage in Code-based
Masking: Another Look on Probing Model Security. (Submitted)

Qianmei Wu, Wei Cheng, Sylvain Guilley, Fan Zhang. On Efficient and Secure Code-
based Masking: A Pragmatic Evaluation. (Submitted)

Open Datasets of Optimal Codes for Code-based Masking

(1]

2]

Wei Cheng, Sylvain Guilley. Optimal linear codes for inner product masking (IPM) with
2 and 3 shares over both Fos and Fos. https://github.com/Qomo-CHENG/0C-IPM,

Wei Cheng, Sylvain Guilley. Optimal linear codes for generalized code-based masking
(GCM): taking (3,1) and (5,2)-SSS based masking over both Fos and Fos. https://

github.com/Qomo-CHENG/GeneralizedCM.

170


https://doi.org/10.1109/ISIT45174.2021.9517752
https://doi.org/10.1109/ISIT45174.2021.9517752
https://doi.org/10.1109/ITW48936.2021.9611478
https://doi.org/10.1109/ITW48936.2021.9611478
https://doi.org/10.23919/DATE48585.2020.9116428
https://doi.org/10.1109/ITC44778.2020.9325241
 https://doi.org/10.29007/fv2n
https://github.com/Qomo-CHENG/OC-IPM
https://github.com/Qomo-CHENG/GeneralizedCM
https://github.com/Qomo-CHENG/GeneralizedCM

Part VII

Appendix

171






APPENDIX A

Further Proofs, Lemmas and Discussions

A.1 Detailed Proofs

Before presenting these proofs, we recall below two well-known properties of Fourier transform.

We omit the proofs for the sake of brevity and refer to [22] for details.

Lemma 1.1 (Involution Property). ﬁ(z) = |K™|P(z) = 2" P(z), Vz € K™.

Lemma 1.2 (Inverse Fourier Transform). P(z) =27 > yeknt P(y)(—=1)¥=, Vz € K.

A.1.1 Proof of Lemma [5.1]

In order to demonstrate Lemma [5.1] we clarify the computations in V [E [P(Z)|X]] as follows.
Let us consider Eqn. in basefield Fy, and thus let X = F5, V = F and Z = F3*. Moreover,
the C and D are expanded into Fy by using code expansion (Def. :

o E[P(Z)|X = z] for a given z € X is:

E[P(zG + YH)| = Y P(Y = 4)P(2G + yH) = ﬁ 3 PG + yH)
yey yey
= % > P(aG +d).
deD

e For any variable X, we have that:

VIE[P(2)|X]] = E [E[P(2)|X]"] - E[E[P(2)|X])".
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Next, we derive formulas for both sub-terms E [E [P(Z)|X]] and E |E [P(Z)|X]2} and their
proofs are in Appendix [A-T.2] and respectively.
Lemma 1.3. E[E [P(2)|X]] = 35 > e cap). P(2)-

Lemma 1.4. E [E [P(Z)|Xﬂ = 2 Y yen P@)P(y).
z+yect

Particularly, when two codes C and D are complementary, we can simplify above two lemmas

as follows, which is exactly the case for IPM (recall Lemmas and .
Lemma 1.5. E[E[P(Z)|X]] = 5 P(0).

Proof. Given that C ® D = Fyne, then we obtain (C ® D)+ = {0}. Therefore, E[E [P(Z)|X]] =
Tluf X:gce(C@D)L P(x) = giep(o)- [

Lemma 1.6. E [E [P(Z)|Xﬂ =Y s (ﬁ(m))Q.

Proof. Given that C and D are complementary, then C N D = {0}, so as C* N D+ = {0}.
Therefore, the conditional codewords x, y € D+ and = +y € C* gives x +y = 0, or equivalently

x =y. As a result, Lemmabecomes E []E [P(Z)|X]2] = o7 Zw’yepL’Hyecl P(z)P(y) =

N2
7 Yoene (P@) - o
Therefore, relying on the two lemmas, the proof of Lemma [5-1]is as follows.

Proof of Lemma 01} From Lemma we compute E [E[P(Z)|X])* as follows:

2 2

EEPOIX= 5 X P@)| =g | X P@

ze(CLnDL) ze(CtnDL) (A1)

:ﬁ S P@)Py).

z,ye(CL+tnNDL)

Finally, we obtain V [E [P(Z)|X]] by combining Lemma and Eqn. as follows.

VIE[P(2)|X]] =E [E[P(2)X]"] - E[E[P(2)|X]”

1 ~ 1 ~
= 920t Z P(z)P(y) — 920t Z P(z)P(y)
x,yeDL; z,ye(C+tnDL)
z+yect (A.2)
1 ~ ~ ~ ~
=t | X P@PG) - Y P@P()
z,yeDL; z,yeDL;
THyeCt x, yeCt

Due to Lemma we have Ct N D+ = (C ® D)+ in SSS-based polynomial masking, where
@ denotes the direct sum operation. Notice that {(x,y) € K" x K"|z,y € D+, s +y € Ct} D
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{(z,y) € (Dt NCt) x (DX NCY)}. This means that in Eqn. the subtracted terms are
already included in the first sum. Indeed, if 2 € D+ also satisfies x € C*, then 2 +y € C* in
the first sum implies y € C*. Therefore, Eqn. can be rewritten as follows:

V[E[P(2)|X]] =E [E[P(2)|X]"] - E[E[P(Z)|X]

_ ﬁ 3 P(2)B(y).

z,yeD\Ct; styeCt

(A.3)

A.1.2 Proof of Lemma (411

Proof. Note that C N D = {0}, while (C ® D)+ = (Ct N D1) D {0}. We have

E[E[P(Z |XI;((D}ZPIG+CI> |C|Z< ch+d>

deD ceC dE'D
- P(c+d)
|C||D| 2 Pl
ceC,deD
_ ( +d)- 7
= |C||D| 2M Z Z erare > By Lemma[l ]

ceC,deD ZGF”[

= 7 2 P (Z )) (Dl)“) (A4)

z€Fgt ceC deD
1 1 ~
= ont Z P(w)]lci (x)lps(z) = ot Z P(z)
zEFPE wect, zeDt
1 ~
= omt Z P(z) . > By Lemma[7 ]
ze(C+D)+

A.1.3 Proof of Lemma [4.2]

Proof. By definition,

IE[IE[P( } |C|Z<|D|Z c+d>2 C||D|2Z<2Pc+d> (A.5)

deD €C \deD

We have:

2
Z(ZP(CN)) :ﬁﬁ S P(a)Py)(—1)mcrdtrlerd) (A 6)

c€C \deD ceC,d,d' €D

z,y€eFy’

since, according to the inverse Fourier transform (by using Lemma, we have:

W =273 Pla)(-

zeIFg@
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Hence we obtain

1 1 ~ ,
BanE0= 555 2. Pl@)Py)(-petorersain

ceC,d,d eD
x,ye]ng

1 1 ~ o~ ,

=g O P@P)(-)Ee(- -1y (A7)
ceC,d,d' €D
x,yG]F;Le

1 o~ o~
= lel DY P)P),
z,ye€DL;r+yeCt
where C, D are not necessary to be complementary codes and |C||D| = 2 < 2. Indeed, since C
is linear, ZCGC(—l)($+y).C is null when x +y does not belong to C* and equals the size of C if it
does, and the same with D. Note that =, y € D+ and 4y € C* which implies z +y € C-ND+.

In summary, we have the following result for E {E [P(2)|X ]2}

1 1 ~
E[EPIXT] = s g 1P >0 P@)Ply)
CIDP "2 oen et

_ ﬁ S PPy

z,yeDL;x+yeCt
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APPENDIX B

Generator Matrices for Some Optimal Linear Codes

B.1 Optimal Codes for IPM with n = 2

This appendix provides the details about the three non-equivalent optimal codes identified by
Alg. [[]and reported in the last line of Tab. [12]

Extension of the first optimal code from Fy55 to Fs.

The generating matrix for the

expanded code spanned by (1 oz8) from Fo56 on the base field Fy is:

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

10111000
01011100
00101110
00010111
10110011
11100001
11001000
01100100

Extension of the second optimal code from Fy54 to Fs.

expanded code spanned by (1 «

126)

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

10111000
01011100
00101110
00010111
10110011
11100001
11001000
01100100

177

€ F5x16,

The generating matrix for the

from Fo56 on the base field Fs is:

€ Fx16,
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Extension of the third optimal code from Fo55 to Fs.

expanded code spanned by (1 «

127)

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

00110011
10100001
11101000
01110100
00111010
00011101
10110110
01011011

from Fy56 on the base field Fy is:

€ T8,

B.2 Optimal Codes for (3,1)-SSS based Masking

As shown in Tab. the generator matrix of D is H = (a1 Q9 ag). From an exhaustive study
on 32131 candidates, the three optimal codes for (3,1)-SSS based masking are: (a1, oo, a3) €

{(a®,a™,a80), (a°,al™ a®7), (a°,a®, a!®)}. Note that permutation on three public points

does not change the codes due to equivalence.

The generator matrices of the three optimal codes are shown below.

H, = (ozo a? o

H, = (a® o7 o7) =

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

10000000
01000000
00100000
00010000
00001000
00000100
00000010

00000001

10100110
01010011
10010001
11110000
01111000
00111100
00011110
00001111

11111111
11000111
11011011
11010101
11010010
01101001
10001100
01000110
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11100111
11001011
11011101
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