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Chapter1

Introduction

Computer science is the study of computation and information [30]. In the
current information era, the most critical issue is speed: increasingly huge
amounts of data need to be processed in the shortest possible time '.

Reaching this goal with modern automatic computers is a two fold chal-
lenge: designing effective algorithms and translating these algorithms into
programs that utilize the full potential of the target hardware. Unfortunately,
scientific problems become more and more complex and technology keeps
evolving: scientists specialize and become experts in very narrow fields. Be-
ing able to solve problems from a very specific category and to keep track of
the latest hardware capabilities at the same time is hard.

Here programming languages and compilers come into play. Program-
ming languages provide developers with an abstraction layer while compilers
are in charge of effectively transforming the abstraction into a program that
makes the best use of the available hardware. Ideally, this lets programmers
focus on how to solve a problem and not on how to use the hardware.

Transfering the responsibility of reaching high performance to the com-
piler implies that good compilers can not merely translate high level lan-
guages into machine code: compilers must be able to automatically optimize
the programs.

The spectrum of possible automatic optimizations is vast. Loop nests
are known to be among the main culprits for long compute times. In con-

sequence, great effort has been done to optimize loops [2]. A popular way

! Other concerns are
power consumption
and cost. Usually,
decreasing compute
time also reduces

these two variables.
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grammers [72].

universal constants
at the start such that
the universe evolves to
contain the disk with
the data they want”
(image credit: Randal
Munroe, xkcd comics).
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to optimize loops is to use the polyhedral model [35]. This thesis deals with
polyhedral code generation and how to improve the generated code by redu-
cing control overhead (see Chapter 4), reducing synchronization overhead
(see Chapter 5) and increasing parallelism with pipelined multithreading

(see Chapter 6).

11 Programming Languages And Compilers

A computer left to its own devices will do nothing. It requires instructions.
Modern computers are electronic machines that do not understand natural
speech. Rumor has it (see Figure 1.1) that some expert programmers can rely

on bugs to control their computers.

nono? REAL HEY. REAL WELL, REAL NO, REAL | |REAL PROGRAMMERS EXCUSE ME, BUT
PROGRAMMERS PROGRAMMERS | | PROGRAMMERS | | PROGRAMMERS USE A MRGNETIZED REAL. PROGRAMMERS
USE emacs USE vim. USE ed. USE cot. NEEDLE AND A USE BUTTERFLIES.
\ | | | STEADY HAND. |
| | /
z rm THE DISTURBANCE RIFPLES  WHICH ACT AG LENSES THAT  [yieE,

THEYOPEN THEIR OUTWARD, CHANGING THE FLOVW  DEFLECT INCOMING COSMIC ! -
LANDS AND LET T k COURSE, THERES AN EMACS
Al HE | OF THE EDDY CURRENTS  RAYS, FOCUSING THEM TO COMMAND TO DO THAT

DELICATE WINGS FLAPONCE. | | THE UPPER ATMOSPHERE.  STRIKE THE DRIVE PLATIER ;
: AND FLIP THE DESIRED RIT. OH YEAH! GOoD oL
CoxThe Mrbutterfly..
% % f il
THESE CAUSE mﬂENTaRf me‘rs
OF HIGHER-PRESSURE ARTO FORH, DATT, ENMACS.

A more realistic way to address a computer is to use the same language
as the computer. They are built in a way that certain strings of binary di-
gits have meaning. However, writing binary strings is rather impractical. An
equivalent human-readable way to write programs for a computer is to write
assembly code: each word is associated with a valid binary string. A simple
program can then be used to convert the assembly code into a binary. For
instance, Listing 1.1 shows how to write an “Hello, world.” in x86 assembly.

Most developers do not write assembly code. It allows very fine control
over what parts of the computer are used which may be necessary to reach

optimal performance in very specific situations. However, in the general case
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+ .global start
2 .text

3 Message:

4 .ascii "Hello, world.\n"

5 start:

6 # C equivalent: 'write(1l, message, 14);'

7 mov $1, %rax # write: syscall 1

8 mov $1, %rdi # stdout: 1

9 mov $message, %rsi # address of string to output
10 mov $14, %rdx # number of bytes

u syscall

12 # C equivalent: 'exit(0);'

3 mov $60, %rax
14 mov $60, %rdi
5 syscall

Listing 1.1 — “Hello, World.” In X86 Assembly. Targeting another architecture
will require, at least, modifications of this code. To write this kind of code,
the developer is also required to know how the target architecture works (in
this example, syscalls numbers, what registers are available).

itimposes a strong constraint: extended knowledge of the inner works of the
target machine are required. Another caveat of assembly code is that it is ar-
chitecture dependent. Each processor family supports a different assembly
language. A program may have to run on multiple architectures: different
end users may own different kinds of computer (i.e. with different architec-
tures). Furthermore, it is common to find multiple microprocessor architec-
tures within a single computer. As a programmer, maintaining an assembly
code base can quickly become a hassle if multiple architectures must be sup-

ported.

This is the main reason why high level programming languages exist. A
programming language is a restricted set of keywords, grammar and syntax
rules that can be used to describe programs. A compiler will then translate
the program for the target hardware. The advantage is that it is the respons-
ibility of the compiler to support new architectures while the computer sci-
entist can focus on implementing efficient algorithms. Moreover, high level

programming languages provide abstractions so that the developer does not
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need to know about the hardware.

For instance, Listing 1.2 is an example of “Hello, world.” written in Ci.
As opposed to the code given in Listing 1.1, this program can be used on mul-
tiple architectures without modification: it just needs to be translated with
the appropriate compiler. Also, notice how the main part is shorter: writing
“Hello, world.” roughly requires 10 lines (lines 3-4 and 7-15) in Listing 1.1 while

it only amounts to 3 lines (lines 4-6) in Listing 1.2.

1 #include <stdlib. h>
. #include <unistd. h>
;5 int main(int argc, char* argv[argc + 11) {

4 const char* const hello = "Hello, world.\n";
5 write(1l, hello, 14);

6 exit(0);

7}

Listing 1.2 — “Hello, World.” In C11 (On A POSIX-Compliant Operating Sys-
tem). The program does not need to be modified to target different archi-
tectures: the developper just needs to use a compiler that supports the archi-
tecture (assuming — for this example — that a POSIX-compliant and the C
standard library will be available).

Compilers make life easier for developers. Early developers had to both
design effective algorithms and then find out how the best way to map these
algorithms onto hardware. Compilers take care of the translation so that
modern programmers can focus on the algorithms. More can be done: com-

pilers can also automatically optimize code.

1.2 Automatic Optimizations

It is commonly accepted that literal translation from a spoken language to
another is rarely adequate. Conveying the initial message sometimes re-
quires to select the appropriate idiom. The same principle also applies to
compilers.

Listing 1.3 a simple loop. This is the code most developers would write
to accumulate the product of two arrays in another array. This code sequen-

tially multiplies the elements of the arrays and updates the result in the des-
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tination array. On modern parallel hardware, the performance of a sequen-
tial execution of this code would be subpar. Indeed, this loop is embarass-
ingly parallel. For instance, it can divided into small parts that can be ex-
ecuted concurrently. Each of these parts can also be vectorized (some pro-

cessors can apply the some operation to multiple operands at the same time).

. for (size_t i = 0; i < N; ++i)
2 A[i] += B[i] * C[i];

Listing 1.3 — An Embarassingly Parallel Loop.

Experienced developers could tune the code from Listing 1.3 to achieve
better performance. There are many ways to do so (inlining assembly code,
using intrinsics, parallelizing with pthreads or OpenMP, etc.). However, just
as writing assembly code ties the program to a specific architecture, modi-
fying the code for performance could also restrict the set of computers that

may benefit from these adjustments.

Moreover, these optimizations could be done automatically during com-
pilation. We argued that compilers make life easier for programmers by lever-
aging the need to care about the hardware. They can also leverage many op-
timizations. Not only may the compiler be a better judge on the appropriate
way to optimize the code for the target hardware, this also requires less effort

and time from the developer.

Automatically optimizing the kind of loop given in Listing 1.3 can, for ex-
ample, be done using tools based on the polyhedral model [35]. The polyhed-
ral model” is an abstraction of loops as unions of polyhedra. Various trans- * also known as the
formations can be applied to the polyhedra depending on the target optim- polytope model
ization. Then, a code that scans the integer points of these polyhedra is gen-
erated. This polyhedral model takes root in work on parallelization |51, 57],
parametric integer programming [32] and code generation algorithms [7]. It
eventually found its way into compiler infrastructures or automatic optim-
izers such as GCC/Graphite [82], LLVM/Polly [47, 45], R-Stream [69], Pluto [19,
16] or PPCG [106]. Our interest in this manuscript is the generation of optim-

ized code by polyhedral techniques.
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1.3 Outline and Contributions

This thesis focuses on improving code generation in polyhedral compilers
for resulting programs to achieve shorter execution times. Code generation
in the polyhedral model has been considered until now as mature. We show
that there is still significant room for improvement and propose several tech-
niques to reduce the execution time of the generated code.

First of all, Chapter 2 introduces the scientific notions required to under-
stand the remainder of this manuscript. It presents the polyhedral model
and gives an overview of fork-join parallelization and its implementation in
the OpenMP framework. Chapter 3 discusses related work.

Chapter 4 presents our first contribution: how to reduce control over-
head in the generated code. It demonstrates that the internal representation
used in polyhedral compilers influences the end results and impacts runtime
control overhead. We propose to further refine Bastoul’s [11] extension of
Quilleré, Rajopadhye and Wilde [85] algorithm. Our technique uses Loech-
ner and Wilde’s [65] chamber decomposition of parameterized polyhedra to
split polyhedra during code generation in order to reduce the control over-
head of the generated code. Part of the work outlined in this chapter is also

presented in the following paper:

Harenome Razanajato, Vincent Loechner and Cédric Bastoul. “Splitting
Polyhedra to Generate More Efficient Code”. In: IMPACT 2017, 7th In-
ternational Workshop on Polyhedral Compilation Techniques. Stockholm,
Sweden, Jan. 2017. URL: https://hal.inria.fr/hal-01505764

Chapter 5 tackles the problem of reducing the number of synchroniza-
tions in parallel code generated by a polyhedral compiler. State-of-the-art
automatic parallelizers generate code where parallel loops are enclosed in
distinct single parallel regions. We argue that generating separate parallel
regions is subpar for it incurs thread team management overhead and su-
perfluous synchronizations. This chapter explains how to generate a joint
parallel region and how to take advantage of this unified region to remove
unnecessary synchronizations. The polyhedral model is used to analyze de-
pendencies and determine where synchronization barriers are needed and

where they can be omitted. This work is also presented in a paper:


https://hal.inria.fr/hal-01505764

7 1.3. OUTLINE AND CONTRIBUTIONS

Harenome Razanajato, Cédric Bastoul and Vincent Loechner. “Lifting
Barriers Using Parallel Polyhedral Regions”. In: 2017 IEEE 24th Interna-
tional Conference on High Performance Computing (HiPC).1EEE. 2017, pp. 338-
347. DOL: 10.1109/HiPC.2017.00046

Chapter 6 discusses our third contribution: pipelined multithreading of
sequential loop nests. It shows how to identify groups of sequential loops
generated by an automatic parallelizer that could benefit from pipelining.
Although individual loops may be sequential, interlacing their iterations in-

troduces pipelined parallelism. This work was first introduced in:

Harenome Razanajato, Cédric Bastoul and Vincent Loechner. “Pipelined
Multithreading Generation in a Polyhedral Compiler”. In: IMPACT 2020,
in conjunction with HiPEAC 2020. Bologna, Italy, Jan. 2020. URL: https:
//hal.inria.fr/hal-02456521

Finally, Chapter 7 concludes this thesis and discusses perspectives on fu-

ture work.


https://doi.org/10.1109/HiPC.2017.00046
https://hal.inria.fr/hal-02456521
https://hal.inria.fr/hal-02456521
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Chapter 2

Scientific Background

This thesis discusses code generation and how to reduce control overhead,
how to reduce synchronizations and how to increase parallelism during the
code generation phase of polyhedral compilers. The remainder of this ma-
nuscript uses concepts from the polyhedral model and notions of paralleliz-
ation. This chapter introduces the scientific background and notations that
will be used throughout the thesis. Section 2.1 introduces the polyhedral
model, an intermediate representation and framework that allows compilers
to perform code transformations and optimizations. Section 2.2 presents
parallel execution paradigms and, more specifically, focuses on the fork-join

model and its implementation in the OpenMP framework.

2.1 Polyhedral Model

A great amount of the total compute time of a program is spent in loop nests.
An experienced developer may be able to optimize a given set of loop nests.
In order to alleviate this burden to experts and to give inexperienced pro-
grammers access to these optimizations, extensive work has been done to
enable automatic optimizations of loop nests within compilers [2].

The polyhedral model (or polytope model) is used in computer science
to analyze, transform and optimize Static Control Parts (also known as SCoPs)
of programs, or affine loop nests [35]. A SCoP is a set of a loop nests where

loop bounds and conditionals are affine expressions of outer loop indices or
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constant parameters. A visual overview of the use of the polyhedral model

in compilers is shown in Figure 2.1. Roughly, there are three stages:

1. Raising the original code in the geometrical view as a set of polyhedra
associated to each statement. Polyhedra may represent iteration do-

mains, iteration ordering, data accesses, data dependences, etc.

2. Performing some geometrical transformations in this view while en-
suring the code is correct (i.e. the semantics of the original code is

preserved).

3. Lowering back the set of polyhedra to generated code.

211 Polyhedra

3 or d-dimensional DEFINITION 1 (Implicit representation). A d-polyhedron3 P is a subspace of

polyhedron Q“ that can be formally described by a system of inequalities and equalities:

7?:{xe@d‘AxZa}:{xEQd‘Bx:b,szc} (2.1)

where A € Z"*% and a € Z". As the system Az > a may contain implicit
equalities, it is sometimes written as Bx = b, Cx > cwhere B € VALRLS
C € Zm>*d b € 7™ and ¢ € Z™ to explicitly express the equalities and
inequalities such that Ax > a < Bz =b,Cx > c.

DEFINITION 2 (Explicit representation). A d-polyhedron P can be written
as the composition of a linear combination of lines, a positive linear com-

bination of rays and a convex combination of vertices:
P= {x cQ ‘ =LA+ Ru+Vv YA\, Vu > 0,Vv > 0, Z v= 1} (2.2)

where I, € Q™* represents the lines, \ € Q™, R € Q"2*? represents
the rays, 1 € Q2, V € Q"3*9 represents the vertices and v € Q"*. This

representation is also known as the Minkowski representation [70, 97].

The representations given in Definition 1 and Definition 2 are equivalent.
Computing one of the representation from the other can be done either using

the simplex method [68] or the Chernikova algorithm [37, 60].
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v for (i =0; i <= N; ++1)

2 for (j =0; j <= M; ++j)

3 S(1, 1)
(a) Input Static Control Part. Loop bounds are affine expressions of outer loop iter-
ators or constant parameters. (See Definition 11)

M 00000000
o000 0000

ececococooe N i 5 |0<i <N,
0 eeeeeeee Din M)~ Jj €Q 0<j<M

]

0 N

(b) Mathematical Representation. Polyhedron D;,, represents the iteration domain
(see Definition 14) of statement S.

0<ecl
M o0 000000
ecececccooe cl<N+M
e0000o0o0o0 N cl 9 0<¢c2
0 eeeeeeoee DOM(M>_ (CQ)EQ cl—N<¢2
[ I ]
0 N N+M c2< M
c2<cl

(c) Mathematical Transformation. For instance, skewing can be applied to D;y,.
This results in Dyq.

. for (cl = 0; cl <= N+M; cl++)
2 for (c2 = max(0, cl-N); c2<= min(M, cl); c2++)
3 S(cl - c2, c2);

(d) Output Code. A new code is generated. It scans the integer points of polyhedron
Dout-

Figure 2.1 — Polyhedral Model Overview. First, an input SCoP is analyzed
and represented as a union of polyhedra. Next, various mathematical trans-
formations may be applied depending on the optimization goals. Lastly, a
new code that scans the resulting union of polyhedra is generated.
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DEFINITION 3 (Homogeneous representation). The homogeneous form P of

a d-polyhedron P is the result of the application of the transformation x —

§
. [Ex ~ [&x
B =0,C >0 2.
(s (f) } Y
C
.0

x
to P:

A {x d+1
P — Q
{(5) ©

where B = [B| —bland C' =

0..

The original polyhedron P is the result of the intersection of P with the
¢ = 1 hyperplane:

[B—b](f>:0,

This transformation can also be applied to the explicit representation and

0...0] 1

A —
a] (f) >0« Bxr=0bCzx>c

results in the homogeneous form of the Minkowski representation as a cone,

transforming the vertices into rays:

5 §x d+1
o Q
{(5) ©

where [, =

(g) = LN+ Ry, Y\, Y > 0, } (2.4)

* Note thatwe  EXAMPLE 1. Consider the 3-polyhedron Py*:
introduce here an

equivalent,

. 0< <20,
human-friendly, s
notation. We will Py = yleQ|o<y<T, (2.5)
privilege this z 10 < 2 < 10
—_ — Y

representation as often

as possible.
P This polyhedron, as illustrated in Figure 2.2, is a rectangle on the z = 10

plane. Hence, its implicit representation can be expressed both with implicit
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equalities as in Equation (2.6) or with explicit equalities as in Equation (2.7):

1 0 0
—1 0 —20
* 0 ol [* 0
P, = c Q? > 2.6
0 Q 0 —1 0 yl| = _7 ( )
ya
0 1 10
0 —1 ~10
X
(0 0 1)|y|=10
€T z
= € Q? 1 0 0 (2.7)
X
z —1 0 20
yl| =
0 10 0
z
0 -1 0

The corresponding homogeneous representation (with implicit equalit-

ies) using a single constraints matrix is:

1 0 0 0
1 0 0 2|z
’ Lo 100 o]y
P=dlule@ || o, S]] =0 (2.8)
‘ 0 o 1 —10]|l1
0 0 —1 10

2.1.2 Incidence Matrix

DEFINITION 4 (Saturation). Aline orray 7 of the explicit homogeneous form
of a d-polyhedron P saturates a constraint ¢ (c € Borc e C ) from the

implicit homogeneous form of Pifc-r=0.

When a ray saturates a constraint, it means it lies on the facet of the poly-

hedron limited by this constraint.

implicit equalities

explicit equalities
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Za

10

~

Y

Figure 2.2 — 3D Representation Of Polyhedron Py. It is defined as a 3-
polyhedron but the resulting polyhedron is a 2D rectangle on the z = 10
plane.

DEFINITION 5 (Incidence matrix). The incidence matrix S is a boolean mat-
rix where rows correspond to constraints (lines from A and B from Equa-
tion (2.3)) and columns correspond to lines and rays (lines from Land R
from Equation (2.4)). Each element S;; € S is the boolean value which

indicates whether a line or ray r; saturates as constraint ¢;:

life;-r;, =0
Si ;= ! J ’ 2.
7 { 0 otherwise. (29)

The incidence matrix tells which intersection of constraints (as equalit-
ies) generate a ray, and which rays lie on the facet corresponding to a con-

straint.

2.1.3 Faces And k-faces

DEFINITION 6 (Supporting hyperplane). An hyperplane of dimension d — 1
which intersects the hull of a d-polyhedron D without intersecting its relat-

ive interior is a supporting hyperplane of D.

DEFINITION 7 (Face). A face of a polyhedron D is the intersection of D and

a supporting hyperplane of D.

DEFINITION 8 (k-face). A face of a polyhedron D is called a k-face ifitis a

k-polyhedron.
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More specifically, the 0-faces of a d-polyhedron are its vertices and the (d — 1)-faces
its facets.

EXAMPLE 2. Consider the 3-polyhedron Pj, (a tetrahedron) as described in

Equation (2.10):

0<zx
0<wy
x
Pr=<|y| €@ z+y=<10 (2.10)
z x+y§
leO—x+y

This 3-polyhedron has four 2-faces (its facets), six 1-faces (its edges) and
four O-faces (its vertices). The four facets ( f1 to f4) of Py, can be described as:

OSxSlO,y:O,x<z§10—;}

,y,2) € Q°
3 Yy - Y
Y<,<10-Y
) eQ g SES 2}
Y, 2 6@3‘x+y—105<z§10}
x,Y, 2 EQ?"x+y—100<z§5

\)

0<y<10,z =0,

=y
{
=
=

——

The six edges (e to eg) can be expressed as follows:

(z,y,2) € Q® zle—g,Ogyglo,x:O}
(

x,y,2) € Q? sz,yz0,0SleO}

)

)
(z,y,2) € Q° z:10—§,0§x§10,y:0}
( )

)




Y

z

10 ®

10

10
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Finally, the four vertices (v, to v,) are:

1)1:{(;E,y,z)€@3 sz,y:O,z:lO}
(v,9,2) €Q* |z =0,y =10,z =5}
(z,y,2) € Q® leO,yzO,ZzE)}
(z,y,2) € Q® sz,y:O,z:O}

2.1.4 Parametric Polyhedra

DEFINITION g (Parametric polyhedron). A parametric d-polyhedronD(p) is

a polyhedron where the constant part linearly depends on m parameters:
D(p) = {a: cQ? ‘ Ax > A'p+ a} (2.11)

where A € Z™¢, A" € Z™™, p € Z™ and a € Z™.

DEFINITION 10 (Combined polyhedron). A parametric d-polyhedron D(p)
with m parameters can be represented as a non-parametric polyhedron, or

combined polyhedron, D' in the combined space Q4™™:

() ea|[ala] )20} e

The intersection of the combined polyhedron with a hyperplane cutting

the parameter space (with a given value of p) is equivalent to the instanci-

ation of the parameter p.

2.1.5 Static Control Part

DEFINITION 11 (Static Control Part). A Static Control Part or SCoP is a set of
program statements where loop bounds, conditionals and data accesses are

affine expressions of outer loop indices or constant parameters.

EXAMPLE 3. Listing 2.1 provides an example of a SCoP. Statement S1 is en-
closed in two nested loops over iterators i and j. All loop bounds and array
accesses are affine forms of outer loop indices or constant parameters (N and
M).
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v for (i =0; 1 < N; ++1)
2 for (j = 0; j < M; ++j)
3 ¢ A[j1 = Aljl + BIil;

Listing 2.1 — Simple SCoP Example

2.1.6 Iteration Domain

DEFINITION 12 (Statement instance). Statements within loop nests may be
executed more than once. A statement instance is a given execution of a state-

ment. It corresponds to some given values of the enclosing loop iterators.

DEFINITION 13 (Iteration vector). A given statement instanceis uniquely iden-
tified by its iteration vector: it consists of the iterator values of the surround-

ing loops.

EXAMPLE 4. Statement S1 from Listing 2.1 is located in the body of a loop
nest of dimension 2. Hence, iteration vectors of statement S1 have two com-

ponents. There are [NV X M distinct instances of statement S1 from Listing 2.1.

0 0 0
Assuming that N > land M > 2, , or are valid itera-
0 1 M—-1

tion vectors for statement S1 whereas M 4D is not a possible statement
+

instance of S1.

DEFINITION 14 (Iteration domain). The iteration domain Dg(p) of a state-
ment S is the set of its possible iteration vectors. It may depend on fixed yet
unknown values or parameters. This set can be represented as the integer

points of a parametric polyhedron:
Ds(p) = {15 |Ds | p| =0 (213)

where pis the vector of parameters, 15 € 7.%m(7s) stands for an iteration vec-
tor of statement S, and Dg € Z™Ps*(dim(Ts)+dim@)+1) __ \where m s isthe

number of constraints — is an integer matrix that encodes the constraints.



M

5 the postfix notation

2 y R can also be used

but is seldom seen
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EXAMPLE 5. The iteration domain Dg; for statement S1 from Listing 2.1 is:

2 () {00

Here, the iteration vector 71 is composed of the two loop indices (7, j) and

(214)

0<i< N
0<j< M

the vector of parameters p'of the two unknown program variables (N, M ).

2.1.7 Relation

DEFINITION 15. Arelation R : F — Flisasubset G C EXF. x € Eis
said to be related withy € F if (z,y) € G. It is commonly noted 5z R y
orRxy.

EXAMPLE 6. Let R be the relation between two sets £ = {1,2,3,4} and
F =1{2,3,4,5} suchthatx Ry (x € E,y € F)ifz < y:

oo { () crur

This relation can be expressed as a polyhedron where each integer point

(215)

x<y,x€E,y€F}

x
( ) of the polyhedron corresponds to a relationz R yof R : £ — F":
Y

1 0 -1
-1 0 4| (=
R=<Sz—y 0 1 =2(|y]| = (2.16)
0 -1 5 \1
-1 1 1

2.1.8 Dependence Relation

DEFINITION 16 (Dependence relation). Dependences between statement in-
stances of a source statement S and a target statement 7' can be represented
as a relation between iteration vectors. Each integer point in the polyhedron

associated with the relation signifies that there is a dependency between the
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corresponding input and output iteration vectors. Such a polyhedron can be

defined by the following relation:

s
o 5 % .
osr(p) = s = | Rsy | | =20 (2.17)
p
1

DEFINITION 17 (Dependence graph). Dependencies between statement in-
stances can be represented with directed graphs: each vertex is associated
with a program statement and labeled with its iteration domain while edges
symbolize an existing dependence relation between two program statements

and are labelled with the corresponding dependence relation.

ExXAMPLE 7. Forthe SCoP example in Listing 2.1 there is a dependency due to
the consecutive accesses to array A, from iteration (4, j) to iteration (7', j'),

when ¢ < ¢’ and j = j'. The dependence relation can be expressed as:

o ()1

i=7
ExXAMPLE 8. Consider the SCoP given in Listing 2.2. There are two depend-

ence relations: a dependency between instances of S2 and a dependency

between instances of S2 and S3.

ds2.52() = {(3) = (7)
ds2.52(9) = {(7) = (7)

i=1— 1} (219)
i=i} (2.20)

. for (i =1; i < N; ++i)
2 : A[i] = A[1 - 1] + B[il;

s for (1 =1; i < N; ++1)
. : C[i] = A[i] * D[il];

Listing 2.2 — Simple SCoP

051,51

052,52

052,53
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2.1.9 Schedule Relation

DEFINITION 18 (Schedule relation). Schedule relations determine the tem-
poral ordering between statement instances. To do so, each instance of a

statement is associated with a logical date ts.

Lt

~
n

95(]7) = TS — Zf_:g TS . > 6 (2.21)
p
1

Schedule relations are used to reorder statement instances. For example,
parallelizing SCoPs amounts to determining a new scheduling where mul-
tiple statement instances have the same logical date (or where some logical
date dimensions are identified as parallel) while ensuring that all depend-
encies are preserved [19, 34]. Ensuring dependencies are preserved means
ensuring that all vectors of the scheduled (transformed by the scheduling

relation) dependence relations are lexicographically positive vectors.

2.1.10 Code Generation

The last step of the polyhedral compilation scheme is code generation. Once
a scheduling has been decided, the corresponding code can be generated. A
polyhedral code generation algorithm shall produce a code that scans each
point of the polyhedra in the partial order specified by the new schedul-
ing [54, 85]. The most recent refinements to the code generation problem
can be found in CLooG [11] (further discussed in Section 4.2 of Chapter 4),
CodeGen+ [23] and isl [46].

2.2 Parallel Execution Paradigms

One way to decrease the compute time of a given executed code is to execute
instructions concurrently. Two things are needed for concurrent execution:
hardware capable of parallel execution and software that can use the paral-

lel features of this hardware. Many architectures, models and programming
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paradigms have been proposed to tackle this challenge.

2.2.1 Hardware Capabilities Overview

Multiple levels of parallelism can be found in modern architectures:

Within Processing Units

Vectorization allows to execute one instruction on multiple data at once. The
most common form found in CPUs are SIMD (Single Instruction, Multiple
Data) vectors. Instruction Pipelining attempts to reduce processor idleness
by dividing instructions to be executed into multiple stages. Out-of-order ex-
ecution allows a processor to reorder some instructions depending on data
and execution units availability. Very Long Instruction Word (VLIW) instruc-

tions encode multiple operations to be run in parallel.

Symmetric Multiprocessing

A single processor can feature multiple physical cores (separate processing
units) and motherboards can host several processors. The physical cores in
a CPU do not necessarily need to be identical. For instance ARM big.LITTLE
CPUs consist of multiple cores from two different architectures (the idea is
to switch between powerful or energy-saving cores depending on the work

load). CPUs can also integrate logical cores that share the same hardware.

Accelerators

Dedicated specialized units can also be used to offload computations: Graphic
Processing Units (GPUs), Digital Signal Processors (DSPs), Field-Programmable
Gate-Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs) or other
accelerators. These specialized units can also feature inner parallelism as de-

scribed previously.

Distributed computing

Parallelism can also be achieved by using multiple computers and distrib-

uting work over a network. In computer clusters, nodes will execute the
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same task in parallel. whereas grid computers will be given different tasks.
The most powerful known supercomputers are collections of thousands of

powerful interconnected computers.

The work presented in this thesis will mostly focus on shared memory
multithreaded environments usually supported by multi core and multi CPU

architectures.

2.2.2 Parallel software development

Depending on the target level of parallelism, several ways to implement par-

allelism are at the disposal of the programmer.

The most low level features of a processing unit usually require to write
assembly code. Hardware manufacturers may also provide libraries to access
specific features of the processors from high level languages. For instance,
Intel provides intrinsics [50] for SSE, AVX, MMX (and more) instructions and

Arm provides intrinsics [8] for NEON instructions.

Various libraries and frameworks allow developers to introduce parallel-
ism in their programs and can be combined to take advantage of multiple
forms of parallelism at once. For example, multithreading can be achieved
with POSIX pthreads [48] or Cu1 threads [1, 49]. CUDA [74] or OpenCL [73]
provide facilities for offloading to specialized units. OpenMP [26, 79] and
OpenACC [109, 77] can support (depending on the implementation) both
multithreading and offloading via compiler directives. MPI [40, 107] allows
to distribute computations both on a single computer or on multiple com-

puters over the network.

Some languages such as Cilk, Go, or X10 are specifically designed for par-
allel computing (either implicitly or explicitly).

At a higher level, programs can also be used to schedule tasks on a com-

puter (for instance, GNU parallel, xargs, xjobs) or on multiple networked

computers (for example slurm, pssh).

Without loss of generality, we mainly focus on OpenMP parallel pro-

gramming in this thesis.
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2.2.3 Shared Memory Fork-Join: The OpenMP Framework

OpenMP [26, 79] is an Application Programming Interface (API) for shared
memory parallel programming. The specification of OpenMP is overviewed
by the OpenMP Architecture Review Board consortium while the actual im-
plementation is left to third parties. Hence, several competing implement-
ations exist (for instance, gcc/libgomp, clang/libomp, icc/libiomp) and vari-
ous independent extensions have been proposed (and sometimes adapted
in subsequent versions of the specification).

The programmer controls the execution of an OpenMP program by us-
ing compiler directives, calls to functions of the OpenMP library or envir-
onment variables. The library routines offer fine control over the execution
flow of the program. However restricting oneself to compiler directives res-
ults in portable code that can still be compiled without support for OpenMP
with minimal effort®, as compilers are authorized to ignore unrecognized
compiler directives. In C or C++ programs, these compiler directives (for

OpenMP) start with #pragma omp.

Fork-join model

DEFINITION 19 (fork-join model). The fork-join model is a parallel design
pattern where sequential execution of program is occasionally interrupted
with parallel sections or regions. At the start of a parallel region, the execu-
tion forks into multiple threads that may be executed in parallel. The threads
eventually join at the end of the parallel region. The program then resumes

sequential execution.

Parallel Regions

Parallel regions in OpenMP are delimited with the parallel construct. When
the execution flow of a program encounters this construct, a thread team
is created. By default, all threads in the thread team will execute the code
within the region. A barrier is implied at the end of the region: sequential
execution resumes only once all threads have reached the end. Some aspects
of the parallel region can be customized using clauses. Here follow a few ex-

amples of such clauses. The number of threads can be changed using the

6 this could be
achieved with
preprocessor as well

but it is more involving
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num_threads clause. The shared, private or firstprivate clauses set the

visibility and behaviour of variables from outer scopes.

EXAMPLE 9. Consider Listing 2.3. The parallel region (lines 3-6) contains
a single instruction which may be executed multiple times: each thread in
the thread team will execute the whole code enclosed in the parallel region.
Hence printf("Hello, World.\n") (line 5) will be executed as many times

as the number of threads in the thread team.

. #include <stdio.h>
. int main(int argc, char* argv[argc + 11) {

3 #pragma omp parallel

4 {

5 printf("Hello, World.\n");
6 }

7 return 0;

s}

Listing 2.3 — Hello, World With OpenMP. The corresponding program will
print as many "Hello, World.” as the number of threads.

Worksharing Constructs

Various worksharing constructs are provided to control how the threads in a
thread team execute some code in parallel. All threads will indiscriminately
execute the code within a parallel region until a worksharing construct is
encountered. At this point the execution will differ in the threads in a way
that depends on the worksharing construct. A barrier is also implied at the
end of all worksharing constructs, it may be lifted using the nowait construct.
Two of those worksharing constructs are particularly relevant to this thesis:
the single and for constructs. The single construct enforces the execution
of the enclosed code by only one thread while the for construct distributes
parts of a loop to threads. We will also discuss the task construct which is
used to create explicit tasks that may be executed right away or at a later

point in time.
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The for construct

The for construct is used in conjunction with for loops to distribute itera-
tions. In C programs, the corresponding directive is #pragma omp for.

The loop is divided into chunks that are distributed to threads. If not spe-
cified, the chunk size choice is left to the underlying OpenMP implementa-
tion. Each thread will execute one chunk at a time (in the case where there
are more chunks than threads) but independent threads may run in parallel.

The iterations within a chunk are executed sequentially.

EXAMPLE 10. Consider Listing 2.4. A loop that prints successive integers
(lines 6-7) is distributed with the loop construct (line 5). Assuming the thread
team contains more than one thread, the iterations of the loop will be di-
vided in chunks that will be executed in parallel: the numbers will most likely
not be printed in the original total order. However, total order within chunks
will still be preserved because the contents of a chunk are executed sequen-
tially.

For instance, if the loop is divided in 4 chunks of 4 iterations, the se-
quence 0, 1, 2, 3 will always be printed in this order but other numbers may

be printed before, in between or after those numbers.

. #include <stdio.h>
. int main(int argc, char* argv[argc + 11) {

3 #pragma omp parallel

4 {

5 #pragma omp for

6 for (size_t i = 0; i < 16; ++1i)
. printf("%szu\n", 1i);

8 }

9 return 0;

o}

Listing 2.4 — Loop Iterations Distribution With The For Construct. The
numbers will not be printed in order because chunks will be executed in par-
allel.

If the sole content of a parallel region is a unique for construct, the for
and parallel constructs may be combined as #pragma omp parallel for.

This is how current polyhedral automatic parallelizers parallelize loops.



7 another OpenMP
construct which we

will not discuss
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Multiple clauses can be used to tune the behaviour of the for construct.
Here follows a brief description of some of the clauses that will be used in
the remainder of this thesis.

The schedule(<policy>, <size>) clause can be used to control chunk
distribution and chunk sizes. The size parameter may be omitted. The
scheduling policy determines how the chunks are distributed among threads.
In particular, with the static policy, chunks sizes are approximately identical
(except the verylast chunk which may be smaller) and the chunks are distrib-
uted in a round robin fashion to the threads: it is possible to know in advance
which thread will execute which chunk. If the chunk size is not specified, at
most one chunk is distributed to each thread.

The nowait clause allows to omit the implicit barrier at the end of the
worksharing construct. It is the responsibility of the developer to ensure that
the semantics of the program is preserved. In the case of loops executed with
the static policy, the specification gives conditions under which compliant
implementations will guarantee safe use of the nowait clause on a parallel

loop succeeded by another parallel loop:

- both iteration domains are of the same size

- both loops have the same chunk size (be it explicitly specified or the

default value)
- both loops are in the same parallel region

- neither loops are associated with a SIMD construct’

The ordered clause can be used along the ordered construct to execute
parts of a parallel loop sequentially. The clause is added to the for construct
to indicate the presence of a sequential body and the ordered construct is
used in the loop body to delimit the sequential part. Only one ordered con-
struct may appear in a loop body. Code outside the ordered construct may

still be executed in parallel.

ExaMmPLE 1. Consider Listing 2.5. The parallel loop (lines 5-10) contains an
ordered construct (line 8-9). The code outside of this construct (line 7) will
be executed in parallel, while all iterations of the ordered construct will re-

main sequential.
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. #include <stdio. h>
. int main(int argc, char* argv[argc + 11) {

3 #pragma omp parallel

4 {

5 #pragma omp for ordered

6 for (size_ t i = 0; i < 8; ++i) {
7 printf("parallel: %zu\n", i);
8 #pragma omp ordered

0 printf("ordered: %zu\n", 1i);
10 }

n }

12 return 0;

5}

Listing 2.5 — Ordered Loop. The numbers preceded with the "parallel” will
be printed in parallel whereas the numbers preceded with the "ordered” text
will be printed in sequence.

Note that this construct was referred to as loop construct in prior ver-
sions (up to 4.5 [78]). But version 5 [79] introduced another loop construct
and renamed the previous one as the worksharing-loop construct. To avoid
confusion, we have referred to the worksharing-loop construct as the for con-

struct.

The Single Construct

The single construct is used to specify that only one thread shall execute the
enclosed code. The choice of the thread that will execute the code is imple-
mentation defined. Some clauses may be used to further tune the construct.

In particular, the nowait clause may be used to omit an implicit barrier.

EXAMPLE 12. Consider Listing 2.6. The code in the single construct (lines
5-6) will be executed once by one of the threads in the thread team. The
loop iterations of the parallel loop (lines 7-9) will be distributed among the
threads. Note that because of the implicit barrier at the end of worksharing
constructs, all threads will wait for the thread that executes the single con-

struct before proceeding with the parallel loop.
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 #include <stdio. h>
. int main(int argc, char* argv[argc + 11) {

3 #pragma omp parallel

4 {

5 #pragma omp single

6 printf("single thread.\n");

7 #pragma omp for

8 for (i = 0; 1 < 8; i++)

9 printf("%szu: loop iteration\n", 1i);
10 }

u return 0;

»  }

Listing 2.6 — Example Of The Single Construct. "single thread.” will be
printed once by a single thread. Other threads will wait at this point be-
cause of the implicit barrier ah the end of the single construct. "*: loop
iteration” will be printed multiple times in parallel (hence the numbers
will most likely not be in ascending order).

Task Construct

The task construct defines explicit tasks that may be executed at a later point
in time by any thread of the thread team: encountering a task construct only
creates the task. Hence the task may or may not be executed right away.
Threads may be assigned existing tasks at multiple points in a program. In

particular at implicit or explicit barriers or at taskwait points.

ExampLE13. Consider Listing 2.7. Because of the single construct (line 5), a
single thread will create the tasks while other threads may proceed with the
remainder (thanks to the nowait clause). Upon reaching the #pragma omp
taskwait, threads will be assigned and execute existing tasks. Note that in
this example, taskwait is superfluous because it is right before the end of the

parallel region: an implicit barrier is present at the end of the parallel region.

Synchronizations

In parallel contexts, synchronizations may be necessary to guarantee the cor-

rectness of the program. By default, a barrier is implied at the end of a work-
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. #include <stdio. h>
. int main(int argc, char* argv[argc + 1]) {

3 #pragma omp parallel

4 {

5 #pragma omp single nowait

6 for (size_t i = 0; i < 8; ++i) {
7 #pragma omp task

8 printf("task: %zu\n", 1);
9 }

10 #pragma omp taskwait

n }

12 return 0;

5}

Listing 2.7 — Example Of The Task Construct. One of the threads will create
tasks. Threads will start executing existing tasks upon reaching the taskwait
point.

sharing construct: threads will wait until all threads have reached the end of
the construct.

Barriers can also be placed anywhere in a parallel region using the barrier
construct or removed using the nowait clause (see previous examples). It is
the responsibility of the programmer to ensure that using the nowait clause
on agiven construct does not endanger the correctness of the program (datar-
aces, required execution order).

The low level runtime library also provides explicitlocks and correspond-
ing routines. The locks must be declared as omp_lock_t and manipulated
using the classical omp_init_lock(), omp_destroy lock(), omp_set_ lock()

and omp_unset lock()
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Chapter 3

Related Work

Several historical and seminal publications have already been referenced in
Chapters 1 and 2. Section 3.1 covers polyhedral code generation. Section 3.2
presents automatic parallelization. Section 3.3 overviews pipelined parallel-

ism.

3.1 Code Generation And Affine Control Overhead

Minimizing control overhead in generated code is a critical issue for polyhed-
ral code generation algorithms. Two alternatives to reach this goal have been
studied: either generating inefficient code then trying to remove its control
overhead, or generating directly efficient code.

Code generation in the polyhedral model started with the seminal work
by Ancourt and Irigoin [7]. It relies on the Fourier-Motzkin [41, 27] pair-wise
elimination technique and a generates a significant amount of redundant
control: Fourier-Motkin’s variable elimination may greatly increase the num-
ber of inequalities. Le Fur [59] improved the technique using the simplex
method [97] to remove redundant constraints.

Kelly et al. [54] showed how to scan several polyhedra when different
mappings may be used for each statements. Their method first generates
perfectly nested loops without duplication and then partly eliminates re-
dundant conditionals. It is implemented in the Omega library [53]. This

library relies on the Omega test [84] an extension of the Fourier-Motzkin
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technique that can determine whether a dependence exists between two ar-
ray references. Chen refined Kelly et al’s method in CodeGen+ [23]. Loop
overhead is removed by propagating up constraints identified as introducing
overhead and duplicating code. Guards in if statements are simplified by
comparing the constraints in a given guard condition with successives nodes
and building if-then-else trees.

Wetzel, Lengauer and Griebl [108, 44] deal with arbitrary affine sched-
ules by generating separate program parts and then merging them at the cost
of high control overhead or longer code.

The other family of code generation algorithms stems from Le Verge [61]'’s
algorithm which relies on the dual representation of polyhedra to avoid re-
dundant constraints. Parts of this work were included in the Polylib [66].
This work was extended by Quilleré, Rajopadhye and Wilde [85]’s algorithm.
They proposed a recursive algorithm to scan unions of polyhedra by pro-
jecting the polyhedra onto the outermost dimensions and separating these
projections into disjoint polyhedra. This method can directly generate code
without guards inside the loops (except some conditions that include mod-
ulos) at the expense of potentially high code length. Bastoul [11] proposed
changes to this algorithm to reduce code generation time and limit code
explosion: it avoids unnecessary polyhedra separation calculations (for in-
stance, input polyhedra may be identical or already disjoint) and merges
back point polyhedra into host polyhedra. Vasilache et al. [102] further im-
proved the algorithm with additional control overhead removal techniques.
Internal guards are be removed with if conditional hoisting, a pass depth-
first traversal of the AST that focuses only on conditionals at the current
depth to separates the domains. Modulo conditions are removed using a
combination of loop unrolling and strip-mining. The CL0oG [11, 9] tool in-
corporates the methods that were introduced in this paragraph.

Grosser et al. [46] added several new extensions such as shifted stride
detection to remove modulo conditions, components which avoid polyhedra
separation or an isolation mechanism that allows users to specify a part of
the space which should be processed separately to, e.g., isolate a vectorizable
loop or separate partial/full tiles. The isl [104] library was initially developed

to be used in CLooG (in place of PolyLib) and hence includes its code gener-
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ation techniques (or equivalent methods) as well as the algorithms proposed
by Grosser et al. [46].

Renganarayanan et al. [94]’s approach is based on finding the inset poly-
hedron, i.e. the polyhedron that contains full tiles origins, to distinguish
full and partial tiles in and remove unnecessary loop bounds. This method
targeted one-level parametric tiling method and they further extended it to
multi-level parametric tiles [55, 95].

Specifying tiling information to let the code generator extract full tiles is
also possible in Reservoir Labs’s R-Stream Compiler [13].

Some work has been done towards control reduction in FPGA codes.
For instance, Zuo et al. [113] prefer to avoid polyhedra separation and pro-
pose to simplify control using several loop bound tuning methods. Alias and
Plesco [5] use semantic factorization of affine expressions to reduce control
in FPGA pipelines. These methods focus on polyhedral code generation in
high-level synthesis contexts.

Techniques based on Quilleré et al.’s algorithm may be strongly impacted
by polyhedral splitting (see Chapter 4). It was ignored because code genera-
tion tools let the underlying polyhedral libraries choose how to split (or not
to split) polyhedra regardless of the code generation problem. Isolation and

full tile extraction are a first step towards considering the problem.

3.2 Synchronization Reduction

A significant part of the overall compute time of a program can be imparted
toloops. Hence, the optimizing compilation community produced extensive
work on loop parallelization. Lamport [57] proposed a method to find paral-
lelism for multiprocessors. It modeled loops as iteration spaces and cutting
used hyperplanes to find a schedule.

Allen and Kennedy [6] propose a parallelization algorithm that com-
putes strongly connected components of the dependence graph to decide
about convenient loop distribution and extract parallel loops. Wolfand Lam’s
perfectly nested loop parallelization algorithm uses a unified representation
of a subset of loop transformations, known as unimodular transformations,

to extract parallelism [110]. The first algorithm for a general solution to inner-
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most parallelism extraction computes affine transformations and was pro-
posed by Feautrier [33, 34]. Lim and Lam [62, 63] extended Feautrier’s work
to extract outermost parallel loops. Lossing et al. [67] proposed a tool for
automatic generation of distributed code for task parallelization. It features
multiple optmization passes including a pass for communications minim-
ization. Bondhugula et al. [19, 16] developed the PLuTo scheduler, an auto-
matic parallelizer and data-locality optimizer. These techniques found their
way into high-level compilers such as Pluto [19], R-Stream [69] or TRACO [15],
and also in low-level compilers such as GCC [99], LLVM [45] or IBM XL [18].

Most of these techniques generate parallel loops with an implicit barrier
synchronization at the end of each parallel loop, such as the omp parallel
for construct from OpenMP [79]. Few algorithms are designed to generate

synchronizations e.g., Allen-Kennedy[6] and Lim-Lam [63].

Our technique (see Chapter 5) for synchronization reduction via barrier
lifting does not compete but complements these techniques: we do not pro-
pose anew scheduler but a post processing phase. It takes as input an optim-
ized generated code (or its internal polyhedral representation) and further
optimizes it by building a wider parallel region to minimize runtime over-
head and removing spurious synchronizations.

Synchronization barrier placement and optimization has been the sub-
ject of past works. Aiken and Gay [3] target SPMD (Simple Program, Multiple
Data) programs. They proposed a method to check the correctness of pro-
gram’s synchronization pattern and language features to make synchroniz-
ations more explicit and easier to check. O’Boyle and Stohr [76] proposed
a graph-based approach to determine the smallest number of required syn-
chronizations for a given program. Darte and Schreiber [28] proposed an
algorithm in linear time for barrier minimization at all levels of loop nests.
Cytron et al. [25] suggested to mix fork-join and SPMD programming. Their
approach takes as input a fork-join program and converts select parts into
SPMD programs. Tseng [100] further explored the idea of combining con-
cepts from fork-join and SPMD programming models to reduce synchroniz-
ation overhead. Sequential parts are executed by the master thread while
parallel regions are built to be treated as SPMD programs. Barriers are elim-

inated using communication analysis. Feautrier, Violard and Ketterlin [36]
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computes affine dates to remove clocks, which express explicit synchroniz-

ations, from Xio programs. Zhao et al. also proposed a technique which re-

duces task creation overhead [112] in the context of task-parallel programs.
All these publications strived for reducing synchronization overhead. Our

work goes in the same direction in a fork-join context.

3.3 Pipelined Multithreading

Extensive work has been done on software pipelining. The initial idea be-
hind software pipelining comes from Patel and Davidson [80]. They pro-
posed to delay computations to avoid collisions by inserting non compute
segments. Rau and Glaeser [90] initially introduced Modulo Scheduling [52].
They use the notion of Minimum Initiation Interval to ensure that a sched-
ule is correct. Their method targeted specialized hardware (the Polycyclic
Architecture) designed with software pipelining in mind. Software pipelin-
ing was improved by Lam [56 ] with new heuristics and modulo variable ex-
pansion which increases throughput by using multiple registers (in different
iterations) for a variable in a loop. This method did not require specialized
hardware and was applicable to VLIW architectures. Ning and Gao [75] pro-
posed a new software pipelining method that takes into account both in-
struction scheduling and register allocation instead of considering them as
separate passes. Rau [89, 88] proposed an iterative modulo scheduling al-
gorithm to find near-optimal solutions. Feautrier [31] showed that resource
constraints could be expressed as linear equalities that could be used, for
instance, with affine scheduling algorithms [33, 34]. It was extended by Fim-
mel and Miiller [39] who combine, instead of decoupling them, the optim-
ization process and the search for an optimum initiation interval.

There has also been a lot of research focusing on low-level pipelined code
generation |29, 4, 71], usually based on the concept of process network [98,
105]. The main concerns of these papers are the characterization of stream
types and sizes and the efficient placement of tasks on a fixed sized static
hardware. These issues are not relevant in a multithreaded general purpose
environment like OpenMP where the number of threads is virtually infinite

and the streams limited to the memory size.
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Previous work introduced pipelined execution and other forms of par-
allelims using OpenMP. Gonzalez et al. [43, 42] proposed an extension that
allowed to specify explicit point-to-point synchronizations. A similar beha-
viour can be attained in recent versions of OpenMP with task constructs
and depend clauses. Baudisch et al. [14] translate synchronous programs into
pipelines using OpenMP sections. Each pipeline stage is enclosed in an in-
finite loop which is placed in an OpenMP section. Variables read and writ-
ten by multiple stages are transferred using pipeline variables wich are read
and written in FIFO buffers. Sbirlea et al. [96] parallelize doaccross loops us-
ing the OpenMP ordered construct and clause. This transformation requires
specialized input: the programs are expressed in a Data-Flow Graph Lan-
guage and extended information on dependencies must be provided. Chatar-
asi et al. [22]’s framework handles OpenMP tasks and ordered constructs.
Input programs are already annotated OpenMP programs and hence expli-
citly parallel. The framework can check the correctness of the input or op-
timize it. Pop et al. [81] proposed OpenStream as an extension of OpenMP.
It can generate code which can exploit pipeline parallelism but it requires
the programmer to first annotate and expose parallelism in the input code.
Raman et al. [87] identify strongly connected components in the program de-
pendence graph to construct pipelines and considers blocking to avoid false
sharing. Liu et al. [64] extend the method to create pipelines in OpenMP
using tasks. However, neither of these works target automatic paralleliza-
tion to pipeline SCoPs. Nonetheless, all these works inspired new features
in parallel languages allowing fine control over thread parallelism and syn-
chronization which we extensively use in this thesis.

Our method for pipelined multithreading (see Chapter 6) leaves room
for software pipelining when sequential loops still contain more than one in-
struction. As opposed to aforementioned work, which expects annotated or
even explicitly parallel programs, our approach can target simple annotation-
free SCoPs: it expects as input a classic optimized polyhedral AST, which may

have been produced from a simple SCoP by an automatic optimizer.
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Chapter 4

Reducing Affine Loop Nests
Control Overhead

Code generation in polyhedral compilation frameworks corresponds to the
construction of a code that scans the integer points of unions of polyhedra [ 35,
10]. Those polyhedra are typically the result of a smart and complex optimiz-
ation process which makes sure the integer points are scanned in a satisfact-
ory order. As many scanning codes are possible for a given set of unions of
polyhedra, it is extremely important to generate an efficient scanning code
where the control overhead does not impair the optimizations enabled by
the polyhedral compiler.

One of the first methods to generate code that scans unions of polyhedra
is to generate a code that scans the convex hull of the input union where each
statement is enclosed in a guard which checks whether a given iteration of
that statement belongs to the iteration domain [7]. This approach results
in small code sizes at the expense of poor runtime performance because of
the heavy control overhead. The state-of-the-art code generation algorithm
(also known as QRW algorithm) was introduced by Quilleré, Rajopadhye and
Wilde [85] and extended by various subsequent works to further improve the
quality of the generated code [12, 11, 102, 46]. Although it avoids the genera-
tion of loop guards implied by the use of convex hulls, complex loop bounds
may remain in the final generated code and the corresponding program may

incur high control overhead.
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In this chapter, we propose a new extension of this algorithm to fur-
ther reduce the control overhead in loop bounds by splitting polyhedra. The
idea is to split polyhedra during the code generation phase into simple poly-
hedra using the chamber decomposition of parametric polyhedra [65]. This
chamber decomposition allows to compute the validity domains along each
scanned dimension. We will use these validity domains to split complex
polyhedra into unions of simple polyhedra.

This chapter is organized as follows. Section 4.1 demonstrates on a motiv-
ating example the relevance of our proposal. To understand how polyhedra
splitting is performed, the extended QRW [11] code generation algorithm is
recalled in Section 4.2 while Section 4.3 presents the chamber decomposi-
tion of parametric polyhedra and how it is computed. Polyhedra splitting
relying on chamber decomposition is eventually explained in Section 4.4.
Experimental results are detailed in Section 4.5. The limits of our technique
and possible solutions are discussed in Section 4.6 before Section 4.7 con-

cludes this chapter.

4.1 Motivation

In the polyhedral compilation context, a given polyhedron may be represen-
ted by many equivalent unions of polyhedra as long as they cover the same
set of integer points. Code generation tools heavily manipulate unions of
polyhedra without taking into account this fact and merely settle for the
representation choice of the underlying polyhedral library. However, using
different unions of polyhedra — even if mathematically equivalent — may
lead to generating very different outputs. For instance, a given polyhedron
may be translated into a code which requires high control overhead while an
alternative union of polyhedra would correspond to a longer yet lighter —

control-wise — code.

Consider the iteration domain Pjy:

Po(N, M) = {(;) € Q?
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This iteration domain corresponds to the simple loop nest shown in Fig-
ure 4.1 which executes statement S1 depending on two parameters /N and
M (with the context N > M).

for (int i=0 ; i<=N ; i++)

for (int j=0 ; j<=M ; j++)
S1(i,j);

>
1

N

(a) Loop Nest That Scans P,. (b) 2D Representation Of 7.

Figure 4.1 — Simple Loop Nest Defined By Equation 4.1. Each iterator is
independent and has a single lower and a single upper bound: the loop nest
scansa N x M rectangle.

Imagine that improving locality of data accesses performed by statement
S1 or allowing parallel execution of the inner loop may be achieved by skew-
ing this loop nest. The corresponding scheduling function which would be

given to a polyhedral code generator along the polyhedron P, could be:

)-)-() e

Applying the aforementioned transformation to polyhedron Py would
result in the polyhedron P; as depicted in Figure 4.2 and as formally de-

scribed in Equation 4.3.

0<¢cl,

cl <N+ M,
cl 0<e2,

Pi(N, M) = €@’ (4-3)
c2 cl — N <2,

c2< M,

c2<cl

Notice the presence of max() and min(), which stem from the fact that
iterator c2 has two lower bounds constraints (0 < c2andcl — N < ¢2)and
two upper bounds constraints (c2 < M and ¢2 < cl). These additional

operations introduce control overhead which could be avoided by consider-
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. for (cl1=0;cl<=N+M;cl++)
2 for

— (c2=max(0,cl-N);c2<=min(M,cl);c2++)
3 S1((cl-c2),c2);

Cc2

»
>

M N N+M C1

(a) Skewed Iteration Domain (b) Generated Code for Polyhedron P

Figure 4.2 — Skewed Loop Nest Represented by Equation 4.3. The trans-
formation from Equation 4.2 has been applied to the polyhedron Py, effect-
ively transforming the input rectangle into a parallelogram. Iterator c2 has
complex loop bounds: scanning this parallelogram requires min () and max ()
calculations.

ing a “better” equivalent union of polyhedra for the skewed iteration domain.
Our proposal is to transform polyhedra to this “better” representation before
the code generation phase. The key idea of our processing is to split the outer
loop in several parts, so that each inner loop has a single lower and a single

upper bound constraint, as presented in Figure 4.3.

. for (c1=0;cl<=M;cl++)

2 for (c2=0;c2<=cl;c2++)
3 S1((cl-c2),c2);

s for (cl=M+1;cl<=N-1;cl++)
5 for (c2=0;c2<=M;c2++)

M 7.
6 S1((cl-c2),c2);
;  for (cl=N;cl<=N+M;cl++)
M N N+M'} 8 for (c2=cl-N;c2<=M;c2++)
9 S1((cl-c2),c2);
(a) Split Iteration Domain (b) New Generated Code

Figure 4.3 — Split Alternative To The Skewed Loop Nest From Figure 4.2.
The parallelogram has been split into two triangles and one rectangle. The
loops are much simpler since each iterator has only one lower and only one
upper bound constraint: scanning such shapes can be done without resort-
ing to costly max () ormin() calculations at the price of a longer code.

To achieve our splitting into a form that leads to simpler generated loop
bounds, we rely on the notion of chambers [65] which is further explained

in Section 4.3. These chambers are used to split the polyhedron P; into the
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three domains shown in Figure 4.3a.

The vanilla program (the skewed loop nest from Figure 4.2b) and the
split program (the split loop nest from Figure 4.3b) were compiled with para-
meter values N = 10,000,000 and M = 1,024 and executed on an Intel
Xeon CPU E52650v3 at 2.30GHz. Several compilers and compilation options
were tested. Statement S1 was defined as the assignment of an incrementing

counter to an arbitrary array‘:
A[cl%10][c2] += counter++;

Table 4.1 presents execution times of various versions produced with gcc
5.4. The speedup column is the speedup (or slowdown) of the split loops
over the vanilla loops. With options -03 -march=native, gcc achieves vec-
torization on both the vanilla and the split loops. However, extra runtime
tests had to be inserted in the vanilla version whereas the split loops do not

require any test, resulting in better performance (1.32x).

Table 4.1 — gcc Execution Times and Speedup

gcc options vanilla split speedup
-Oo 5.728 5.328 107
-0 1.33S 0.958 1.40
-02 1.44S 0.958 152

-03 -march=native 0.29s  0.22s 132

The execution times of the outputs of icc 17.0 are given in Table 4.2 It
seems that splitting the loops prevents some icc optimizations with option
-00 as the split version is more than 2 times slower than the vanilla version.
However, with options -02 and -03 -march=native, icc vectorizes all loop
nests in both versions. Some of the loops were either protected with runtime
tests or peeled. With -03 -march=native, the speedup reaches 1.67x on this
example.

Table 4.3 shows the execution times of the programs when compiled us-
ing clang 3.8. It could not vectorize the vanilla loops whereas the split loops
were vectorized and lead to a very important speedup of 4.63x with options

-03 -march=native.

"We used a modulo 10 in the first array index to avoid allocating a huge array.
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Table 4.2 — icc Execution Times and Speedup

icc options vanilla split  speedup
-Oo 12.338 11958 1.03

-O1 1.418 3.38s 0.42

-02 0.36s 0.255 141

-0O3 -march=native 0.27s 0.16s 167

Table 4.3 — clang Execution Times and Speedup.

clang options vanilla split speedup
-Oo 7.308 6.16s 118

-O1 1.02S 0.958 1.08

-02 1.028 0.36s 2.85

-O3 -march=native 1.20s 0.26s  4.63

This first very simple example exhibits wide variations of performance
depending on the compiler, the compilation options and the polyhedra split-
ting technique. Lower control overhead may lead to significant performance
benefits and may also aid compilers in enabling further optimizations thanks
to a simpler generated code. Significant performance benefits may come
from a lower control overhead. Our technique to generate a code with sim-
pler control is explained in Section 4.4. Beforehand, as this technique builds
on existing work, the next Section details polyhedral code generation and

chamber decomposition.

4.2 Extended QRW Code Generation

The state-of-the-art Quilleré, Rajopadhye and Wilde [85]’s (QRW) code gen-
eration algorithm generates loops that scan the integer points of unions of
polyhedra by recursively processing each polyhedra dimension. At each di-
mension, a disjunct union of polyhedra is computed. The scanning code is
successively generated for each resulting subset. The output code has lower
runtime complexity than a convex-hull approach — since runtime verifica-
tions of iteration domain membership are unnecessary — at the expense of

a larger code size. On the other hand, some tests and multiple loop bound
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constraints remain and lead to minimum or maximum calculations. This is
caused by the coarse granularity splitting at each level of the recursion.

Algorithm 1, asimplemented in CLooG, describes Bastoul [11]’s extension
of the QRW code generation algorithm. It introduces various improvements
to avoid code explosion, notably by reducing the complexity of the splitting,
the number of different scanned subsets and the size of the generated code,
without degrading performance.

It is a recursive algorithm along the dimensions, from outermost (d = 1)
to innermost (d = n). It takes as input a polyhedron list, a context and the
current recursion depth. For a given loop level d, Step 1 is to intersect the
input polyhedra with the context. The polyhedra are then projected onto
the d outermost dimensions at Step 2. Step 3 and Step 4 then separate the
polyhedra into an ordered list of disjoint polyhedra. This list of subdomains
is scanned at Step 5 to generate the code for the current level d: for each of
these subdomains, the lower bound and the stride are computed at Step 5(a)
from the inner polyhedra that will be scanned in the subdomain. Step 5(b)
merges inner polyhedra (if possible) to keep the code compact. The inter-
section of the input context and the loops bounds of the current loop is used
as the context in recursive iterations of the algorithm to generate loops of in-
ner dimensions at Step 5(c). Step 6 and Step 7 reduce code size by removing
dead code and merging point polyhedra that may have been separated from

their neighboring higher dimensional fost polyhedra.

EXAMPLE 14. Figure 4.4 gives an example of code generation. The input
polyhedron list contains two polyhedra &; and S, for statements S and .Ss.
Step 1 of the algorithm is shown in Figure 4.4a where the polyhedra are in-
tersected with the context®. Figure 4.4b encompasses Step 2 to Step 5(a) of
the algorithm: the polyhedra are projected on the first dimension, separated
into disjoint polyhedra and the loop bounds and strides are computed. Fig-
ure 4.4c illustrates the recursion into inner dimensions as per Steps 5(b) and

5(c). This example is left unchanged by Step 6 and Step 7.

*Note that — though not shown in the Figure for the sake of simplicity — the polyhedra
should live in the same space and the algorithm actually uses two parametric polyhedra
S1(P) and Sz () with the same parameter and iterator space.
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Algorithm 1: Extended QRW Code Generation

input :7" := polyhedron list {73‘17 ey ’73"}
C :=: context (constraints on the parameters and the outer
loop bounds)
d :=: dimension
output: L :=: ordered list of loops [El, cee Em}, aloop
L; = (D;, s;, ;) is a 3-tuple where D; is the polyhedron to
be scanned in this loop, s; the stride of this loop and B; is
the body of the loop represented as another ordered list of
loops

Function CodeGeneration (T, C, d)
Step1 /* 1Intersect the polyhedra with the context */

Te + |[Te, | Te, = T5.NC, Ts, € T);

Step 2 P < list of the projections of 7¢, € Tt onto the d outer
dimensions;

Step3 D < separate P into a list of disjoint polyhedra;

Step 4 /* Build L from the polyhedra of D in lexicographical

order * /

L+ [(Di,z,z)’DieDADj<Dij<k ;

Step 5 foreach (D, s,B) = L € Ldo

5(a) compute the stride and lower bound for the current loop £
at level d, from the inner dimensions of the polyhedra
Ts, ---, Ts, touched by this loop and store the stride in s;

5(b) T" < new list of polyhedra created from 7g,, ..., Ts, by
merging adjacent polyhedra scanning the same set of
statements in this loop subdomain ;

5(c) B = CodeGeneration(7",CND,d+1);
end
step6 | foreach (D,s,B) € Ldo
/* Remove dead code and empty polyhedra */
Apply steps 2 to 4 to B;
end
Step 7 /* Reduce code size */

merge point polyhedra to adjacent sost polyhedra in L;

Step 8 return L;
end
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0<A<B<C
Context :
0<D<ELF

ogigB}

S1(B,E) = {(z’,j) €72

“'W”f““‘j z 0<j<E
: )
A BoC S2(A,C, D, F) (,5) € 72 AsisC
b b bl = 27 .
? ! D<j<F

(a) Step 1: Intersection Of The Polyhedra With The Context. The iteration domain
for Sy is represented in blue while the iteration domain for S is represented in red
except for the part where the iteration domains overlap drawn in purple.

J v for (1 =0; i <= A-1; ++1)
Fr ‘ N /* Sl * /
B L, for (i =A; i<=B; ++i) {
4 /* 81 and Sy */
D}
A B é “ s for (i = B+l; i <= C; ++1i)
St S1,52 T 7 /* Sy */

(b) Step 2 To Step 5(a): Projection And Separation On The First Dimension Do-
mains 0 < ¢ < Aand B < i < C correspond to domains where either S; or Sy
is the sole statement whereas S1 and Sz overlap somewhere inthe A < ¢ < B

domain.
v for (i =0; i <= A-1; ++1i)
2 for (j = 0; j <= E; ++j)
3 S1(i, j);
.« for (i = A; i <= B; ++i) {
' 5 for (j = 0; j <= D-1; ++j)
17 6 S1(d, §);
52| | for (j =D; j <= E; ++j) {
&&WE ] S1(i, j);
pl L 9 S2(i, )
o[ e 3
A Boe for (j = E+1; j <= F; ++j)
1 S2(i, j);
3 )

y  Ffor (i = B+1; i <= C; ++1)
15 for (j =D; j <= F; ++])
16 52(1: ])r

(c) Step 5(b) To Step 5(c): Recursion On The Second Dimension The iteration
domain is further separated for A < ¢ < B to distinguish the parts where 1 and
S overlap or are isolated.

Figure 4.4 — Simple Execution Example Of The Extended QRW Algorithm 1.
Note that Step 6 and Step 7 have no effect on this particular example.
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4.3 Chamber Decomposition

The chambers of a parametric polyhedron define constraints on the para-
meters so that in each chamber there exists a single affine expression of the
vertices of the parametric polyhedron, or, equivalently, so that the paramet-
ric polyhedron has strictly (not piecewise) affine bounds.

Loechner and Wilde [65] propose an algorithm for computing the cham-
bers of a parametric polyhedron P. The idea is to consider a parametric
polyhedron of dimension d with m parameters as the combined space P’ of
the iterators and parameters and then to find the m-faces of this combined
space. These m-faces are then used to compute the parametric vertices and
corresponding validity domains which are the chambers of the parametric
polyhedron.

Chamber decomposition of a d-polyhedron parametric with m paramet-

ers consists of three steps :
1. Finding the m-faces of the combined polyhedron (see Subsection 4.3.1).

2. Computing the list of (parametric vertex, validity domain) couples

(see Subsection 4.3.2).

3. Separating the validity domains into disjunct domains (see Subsec-

tion 4.3.3).

We will derive this concept to our purpose in Section 4.4 by computing
the chambers of a slightly modified version of the inner polyhedra: outer
loop indices must be temporarily viewed as additional parameters.

As a running example along this section, we will use the parametric 2-
polyhedron Dy (p) illustrated in Figure 4.5. It is defined by Equation 4.4
while a 3D representation of the combined polyhedron D} is depicted in Fig-
ure 4.5b. Table 4.4 contains the corresponding 1-faces, parametric vertices

and validity domains.
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(a) Polyhedron Dy (p), Corresponding Rays Ry And Incidence Matrix 7.

Ia
P =
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(b) 3D Representation Of Combined Polyhedron D;,. The combined poly-
hedron D} is drawn in purple. The thick purple lines are its 1-faces. In-
stances of Dy are triangles for p < 10 and quadrilaterals for parameter
p > 10. For example, Dy (p = 10) is drawn in blue and has three vertices:

<8>, (g) and (2) Do(p = 30) is drawn in green and has four vertices:

(o) (6) (i) o= (" 20)

Figure 4.5 — Running Example Polyhedron D(p) For Section 4.3 Sec-
tion 4.3.1 will explain how to find the 1-faces of the combined polyhedron Dj,
and Section 4.3.2 will detail how to use these 1-faces to compute the validity

domains and parametric vertices of polyhedron Dy(p).
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4.31 Finding The k-faces Of A Polyhedron
A k-polyhedron F is a k-face of a d-polyhedron P if and only if:

- it saturates at least (d — k) equalities and inequalities, including all

equalities
- it contains k + 1 independent lines, rays and vertices

Algorithm 2 describes how to find the k-faces of a d-polyhedron P using its
incidence matrix. The set of k-faces is progressively constructed by consid-
ering all (d — k) combinations of constraints from the input polyhedron. If
a given set satisfies the two conditions stated above, it is a k-face. The al-
gorithm proposes to remember what constraints have already been inspec-

ted in order to avoid duplicates.

Algorithm 2: Finding k-faces Of A d-polyhedron
input : P := d-polyhedron
I :=incidence matrix of P

k := k-face dimension
output: L := list of k-faces

v Lo+ ;
2 C < all (d — k) combinations of constraints of P;
3 foreachC; € C do

4 S« 1IN Ci;
5 n <— number of values equal to 1 in S;
6 if n > k + 1 and S contains at least one vertex then
7 if No other already considered constraint saturates S then
8 | L+ LUC;
9 end
10 end
n end

In chamber decomposition, this algorithm is used to find the m-faces (m
is the number of parameters) of a given parametric polyhedron.

For example, Dj is a 3-polyhedron. It is the combined polyhedron for
parametric polyhedron Dy (p).

When applied to Dy, this algorithm finds the 1-faces represented as thick
purple lines in Figure 4.5b.
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4.3.2 Finding The Vertices And Validity Domains

Once the m-faces are found, the corresponding vertices and validity domains
can be computed as detailed in Algorithm 3 using the bases of the m-faces.
The base B is the lineality space of an m-face F and is built by taking m + 1
independent columns from the rays of .

The parametric vertex is the matrix product Bp - Bp' (where Bp and
Bp are restrictions of the k-face’s base 3 to the parameters or the iterators)

while the validity domain is the projection of F on the parameter space.

Algorithm 3: Finding Vertices And Validity Domains
input : F := list of m-faces of a given polyhedron
output: £ := list of (vertice, validity domain) couples

1 L < @;
foreach F; € F do

N

3 B < base of F;;
4 Bp < m + 1lastlines of B5;
5 Bp <+ n first lines and last line of 13;
6 if Bp can be inverted then
7 T+ B D BEI;
8 ) <— projection of F on parameter space;
9 L+ LU(T,V);
10 end
n end

4.3.3 Disjunct Validity Domains

The validity domains found with the method described in Section 4.3.2 may
overlap while it is desirable to find a partition w(D’) of the combined poly-
hedron. One way to construct this partition from the list of validity domains
is to progressively remove overlapping parts from previous domains as a new
domain is considered.

Algorithm 4 details this method. The algorithm iterates on the domains
from the input list. Each domain is intersected with the domains in the out-
put list. If the domains overlap, they are separated in up to three parts: the

intersection and the remainders from both domains. The separated parts are
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kept in the output list while the remainder from the currently considered
domain will be checked against the next domains in the output list. Once
the whole output list has been checked, the remainder of the currently con-

sidered domain, if it is not empty, is added to the output list.

Algorithm 4: Disjunct Validity Domains

input : L := list of (domain, parametric vertice) couples
m := parameter number
output: P := list of (domain, list of parametric vertices) couples

v P+ @;

» foreach (D,V) € Ldo

3 P« &

4 remainder < D;

5 foreach (D', V') € P do

6 if dim(D ND’) = m then

7 intersection < (D' N remainder, V' U{V});
8 dif ference < (D'\ remainder,V");

9 remainder < (D\ remainder, {V});

10 P’ « P'U {intersection} U {dif ference};
u if dim(remainder) = m then

12 | P'= P'U{remainder};

13 end

" else

15 | P+ P'U{D};

16 end

17 end

18 P+« P

19 end

Table 4.4 presents the vertices and validity domains found when apply-

ing Algorithm 3 and Algorithm 4 to D.

4.4 Splitting polyhedra

Our goal is to reduce control overhead in generated code by splitting poly-
hedra at Step 3 of the QRW Algorithm 1 using the chamber decomposition of
parametric polyhedra. These parametric polyhedra are versions of the para-

metric polyhedra to be scanned where, at a given dimension, outer iterators
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Table 4.4 — 1-faces And Corresponding Bases, Parameterized Vertices And
Validity Domains For D(p).

1-face base vertex domain
1= 0 0
0
Fi=40,5p)eQji=p By = 8 }8 <> 0<p<10
0<p<10 1 b
i=0 0 O
. ) 0 10 0
_ 3| _
Fo=1q(i,5,p) €Q%|j=10 By = 1 10 (1()) p>10
p>10 0 1
i=p—10 1 0 0
o . 0 10 p—
_ 3| _
Fz =14 (i,7,p) €Q°|j=10 Bi=1] 1o ( 10) p>10
p > 10 0 1
i=0 0 0
. . 0 0 0
f4{(z,3,p)€@3 Jj= Bi=|, o (0) p>0
= 2 0
.. . p
f5: (Z7jap)€(@3 ]:0 85: 10 <0> p>0
p>0 0 1

are considered as parameters. In order to find out how to split a domain,
we need to compute its subdomains in which each inner scanned polyhed-
ron is regular: its bounds are strictly (not piecewise-) affine functions of the
parameters and outer loop indices. At a given loop level, the parametric poly-
hedron is built from the domain to be scanned, by taking as parameters the
program parameters, the outer loop indices and the current loop index. This
parametric polyhedron is exactly the inner polyhedron that will be scanned
by the inner loops. By computing its chambers, we get the set of domains in

the parameters space in which the inner polyhedron is regular.

Algorithm 5 explains how to split polyhedra at a given loop level d. This
should occur after Step 3 of Algorithm 1. First, the input polyhedron and the
context are modified to consider the d outer iterators as parameters. The
chamber decomposition of the modified polyhedron is then computed. The
transformation of iterators into parameters is then reverted on the cham-

bers so that they are defined over the same space as the original polyhedron.
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Algorithm 5: Polyhedra Splitting

input :D := input polyhedron
IC := context
d := current level
output: L := list of polyhedra

stepr D’ <— new polyhedron from D where outer iterators up to
dimension d are considered as parameters;
K’ < extended context with the constraints from /C and the
constraints on the outer iterators from D;

stepz C' <— compute the chambers on D’ and K';
steps |2 <— revert temporary parameters as iterators in all C; € C;

steps P <— intersect the reverted chambers with the original domain;

Finally, the original polyhedron is split: it is intersected with the reverted

chambers.

EXAMPLE 15. Let us compute the chambers for polyhedron P; from Sec-
tion 4.1. The polyhedron P.; corresponds to Step 1 of the algorithm (iterator

cl is now considered as a parameter):

0<e2

cl—N <2
Per(N, M, cl) = {(c2) € Z (47)
c2<cl

c2< M

The chambers C to C5 are then computed at Step 2:

Ci = {(N,M,cl) e Q*0<cl <M} (4.8)
Co = {(N,M,cl) e Q)| M +1<cl <N-1} (4.9)
C; = {(N,M,cl) e Q})| N <cl <N+ M} (4.10)



53 4.4. SPLITTING POLYHEDRA

Step 3 converts the chambers into the appropriate polyhedra R} to Rj:

RN, M) = {(c1,c2) € Q*|0<cl < M} (4.11)
RLN,M) = {(c1,2) e Q*IM+1<cl <N -1} (412
Ry(N, M) = {(c1,2) € Q*| N <cl <N+ M} (413)

Finally, they are intersected with the original polyhedron P, at Step 4 to get
the polyhedra P o to P, > as shown in Figure 4.6:

) 0<cl <M
Pl,O(NvM) = (Cl,CQ)EZ (4-14)
0<c2<cl
, [ M+1<cl<N-1
Pii(N, M) = <(cl,2) €Z (4.15)
0<2<M
) N<cd<N+M
7)172(N,M) = (Cl,CQ)EZ (4.16)
cl—-N<2<M

>

M N N+M i

Figure 4.6 — 2D Representation of Polyhedra P, o, P; 1 and P; »

EXAMPLE 16. Let us consider a more complex example: imagine that do-
main P; is tiled in 8x8 square tiles. We will show that our technique is also ef-
fective to split loops taking out partial tiles from the full ones. Our algorithm
would split those loops in the following way. The original iteration domain

is:

" 0<cl<N+M,
/9 0<c2<cl,
D(N, M) = 0 €Z' cl-N<2<M,
9 8xtl <cl < 8xtl+ 8,
8xt2 <2< 8%x1t2+8
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The first splitting on index ¢1 is done by computing the parametric polyhed-
ron D'(N, M, t1) € Z having the same constraints: ¢ 1 was taken out of the
dimensions of this polyhedron and considered as a parameter. There are six
chambers in this parametric polyhedron, cutting the domain into six pieces,

depicted in Figure 4.7 as horizontal arrowed lines below the c1 axis.

Figure 4.7 — Tiled Version of Polyhedron P;

The first chamber is: C; = {(t1) € Z | 0 < 1,8 xt1 < M —
7}. Recursing in the algorithm, we generate the 2 dimension: the following

parametric polyhedron will be scanned in this first chamber:

) (same constraints, and)
D(N, M, 11,12) = (2)@% 0< 11,
‘ 81l < M—7

Computing the chambers of this parametric polyhedron, we obtain as expec-
ted two of them, the lower part containing complete tiles (darkened in the
figure) and the partial tiles on the upper edge of this triangle (dashed in the
figure):

Ci = {(N,M,t1,t2) € Z* | 0 < 12,8 12 < 8 t1 — T}
Co = {(N,M,t1,t2) € Z* | 8xt1 — 7 < 812 < t1}

The same process repeats for the five other chambers of the {1 dimension.
At the end of the algorithm, we obtain 30 different tile shapes being scanned
by 30 different loops bodies. The original CLooG version (see Listing 4.1) is
g lines long, hence it increases in the split version to 205 lines but removes

min() ormax () calculations (see Appendix A.1.1in the Appendix).
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for (t1=0;tl<=floord(N+M,8);tl++) {
for (t2=max(0,ceild(8*t1-N-7,8));
— t2<=min(floord(M,8),tl);t2++) {
for (cl1l=8*tl; cl<=min(min(N+M,8*t1+7),8*t2+N+7);cl++) {
for (c2=max(8*t2,cl-N); c2<=min(min(M,cl),8*t2+7);c2++) {
S1((cl-c2),c2);

Listing 4.1 — Extended QRW Generated Code

4.5 Experimental Results

We chose to implement our splitting algorithm in CLooG/PolyLib 0.18.4, since
the PolyLib embeds the required chambers decomposition computation. The
benchmarks were compiled with gcc version 6.2.1, icc version 17.0.0 and
clang version 3.8.1, in two flavors: without optimizations (-00) and with op-
timizations (-03 -march =native). The target architecture is a 2.40GHz In-
tel Xeon E5-2620v3, running linux 4.8. All the programs were run sequen-
tially on a single core. All measurements on CLooG's test suite are an aver-
age of 3 runs using the time command. The PolyBench measurements were

made using the provided script.

4.5.1 CLooG’s test suite

We ran a first set of benchmarks on the many test files that are shipped with
the CLooG distribution. Notice that most of them do not use tiling. The code
generated by our version differs from the mainline CLooG for 46 of them.
As can be seen in Figure 4.8, the resulting code size is usually bigger, with
a geometric mean (geomean) growth of 2.5x, and a maximum of 64.5x for a
corner test case for CLooG. The slowdown of the code generation itself varies
from 1x to 100x, with a geomean of 4.5x.

The execution time measurements were performed on those programs,

by incrementing a volatile counter in all statements. A summary of the res-
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ults is presented in Table 4.5. The first three columns represent the bench-

marks that were improved by our splitting method; the three following ones,

the benchmarks that were degraded. In each of these groups of three columns,

we show the percentage of improved versus degraded benchmarks, the max-

imum speedup/slowdown, and the geomean speedup. The last column shows

the total geomean speedup.

Table 4.5 — Overview Of The Speedups For The CLooG Examples.

speedup >1 speedup <1 geomean
compiler % max geomean % min geomean speedup
gcc -00 59 134 1.07 41 0.81 0.96 1.02
icc -00 66.7 121 1.03 33.3 0.97 0.99 1.01
clang -00 82.5 196 119 17.5 0.5 0.9 112
gcc -03 5.2 107 1.03 48.8 0.9 0.97 1.00
icc -03 61.5 111 1.02 38.5 0.89 0.98 1.00
clang -03 63.9 117 1.09 361 0.66 0.95 1.03

Full results with options -00 and -03 -march=native are given in Fig-

ure 4.9 and Figure 4.10.

Overall, there are more improvements than degradations. The geomean

of speedups for the improved benchmarks is about 10 percent greater than
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the one of degraded benchmarks. The difference is fading when the com-

piler optimizations become more aggressive: with -00 all the control is trans-

ferred in the generated code, while it is simplified by the compiler with -03.

However, extremal values show that the choice of polyhedral representation

is important: from half to twice the performance, depending on the way the

polyhedra are split. Performance and code size growth do not seem to cor-

relate.
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We ran a test on the linear-algebra and stencil examples from PolyBench 4.1

test suite. We used PLuto 0.11.4 with tiling (- - tile), and plugged our version

of CLooG to generate the output code. The slowdown of the code generation

by CLooG varies from 2x to 50x. The synthetic results are given in Table 4.6

while complete results are shown in Figure 4.1 and Figure 4.12.
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Table 4.6 — Overview of the speedups for the Polybench

speedup >1 speedup <1 geomean

compiler %  max geomean % min geomean speedup
gcc-Oo  8o.00 113 1.08 20.00 0.93 0.96 1.05
icc-Oo  70.00 147 111 30.00 0.96 0.98 1.07
clang-Oo 77.78 137 115 22.22  0.99 0.99 1.09
gcc-0O3 72.73 198 1.17 27.27 0.94 0.96 111
icc-03 1818 107 1.04 81.82 0.30 0.79 0.84
clang-O3 66.67 1.25 117 33.33 0.88 0.92 1.05

Those results confirm our previous observations. With gcc and clang, the
split versions are faster on average, up to 1.98x, with an average of 1.11x on all
these benchmarks for gcc -03. However, it seems that icc - 03 performs much
better on the original versions than on the transformed ones: the geomean
speedup is 0.84x in this case. This is probably due to icc’s linear algebra and
stencil pattern recognition algorithms performing very aggressive optimiza-

tions that were ineffective for our transformed versions.

4.6 Perspectives on Splitting Fitness Decision

We proposed a new method to perform a smart splitting to disjoint poly-
hedra, to generate code without tests or complex bounds in loops, with the
objective of reducing control overhead and facilitating vectorization for the
compiler. Experimental results show that although it may significantly im-
prove the quality of the generated code, loop splitting is not always bene-
ficial. It elongates code generation times and the resulting code may not
necessarily run faster than the unsplit version.

We have investigated multiple traits of both input and output loop nests:
we tried to determine how the number of dimensions, the number of con-
straints, the iteration domain sizes, the number of splits, the output code
size, the nesting depth of the splits impact the resulting performance. We
were not able to find a deterministic relation between these characteristics

and the final performance. Because control overhead is most significant in
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Figure 4.1 — Speedups on the PolyBench Test Suite with -00

innermostloops, another educated guess is to start splitting aloop nest at the
innermost depth and then progressively split loops on the outer dimensions
until a threshold number of splits is reached. In the current implementation,
we manually limited the total number of split domains that are generated to
an arbitrary fixed maximum.

The method described in Section 4.4 is general and attempts to split all
polyhedra at all loop levels. The initial observation on the motivation ex-
ample from Section 4.1 was that minimum and maximum calculations in-
creased control overhead. A naive way to identify such upper and lower
bounds is to inspect the constraints of a given iteration domain: if a bound
on an iterator involves multiple constraints, the corresponding code may re-
quire a minimum or maximum calculation. For instance, in polyhedron P,
we can identify two constraints for the upper bound of iterator c2: ¢2 < cl
and c¢2 < M. It is actually possible to split Py with as little information as

these two constraints: subtracting these two constraints builds the new con-
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straint0 < c1—M < ¢l > M and inverting this constraint gives c1 < M.

Adding either of these constraints to Py creates two new polyhedra:

0<cl,
cl <N+ M,
0<e2,
Pi_aii—o(N, M) = (i) €Q%lcl — N < ¢2,
‘ c2< M,
c2<cl
cl>M
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0<ecl,
cl <N+ M,
0 <2,
Pi_air—1(N, M) = (C;) € Q?|cl — N <2,
‘ c2< M,
c2<cl
cl < M

Code explosion is one of the caveats of our general splitting technique.
Because the method exposed above is restricted, it could serve as a basis to a
more conservative — albeit less general — technique which could perhaps
limit the output size of the code. We attempted to mitigate the drawbacks of
our splitting algorithm by trying to find how to limit its application domains.
Future work could perhaps build upon this restricted method and gradually

expand its use cases until a given threshold is reached.

4.7 Conclusion

Code generation tools heavily rely on polyhedral operations, usually provided
by general-purpose polyhedral libraries that are not specifically designed for
code generation. Unions of polyhedra have many possible representations
and we have shown that the generated code can significantly vary depending
on the way the polyhedra are modeled. Our initial intent was to reduce con-
trol overhead. These differences can definitely aid a compiler’s subsequent
optimization passes or, on the contrary, impair its capabilities. A polyhedral
code generator can and should attempt to facilitate the work of a compiler.

However, to what extent? This remains an open question.
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Chapter 5

Reducing Synchronization
Overhead

State-of-the-art polyhedral parallelizers generate code where loops identi-
fied as parallel are annotated so that each parallel loop is enclosed in a par-
allel region. This implies that threads may be created and destroyed at each
parallel loop entry and exit. Synchronization barriers will also be required at
loop exit before thread destruction. This synchronization overhead can be
averted. Indeed, an expert parallel programmer would avoid creating/des-
troying parallel regions whenever possible and permit threads to run asyn-
chronously for as long as possible. We will see in this chapter how to achieve
this automatically.

We propose to improve the generated parallel code by taking advantage
of several features of the OpenMP framework that are — so far — unused
by polyhedral parallelizers in order to remove implicit barriers and thread
restarts which are known to introduce significant overhead [20, 21]. Our
method takes as input an already optimized SCoP and embeds the whole
piece of code of interest into a single parallel region. This allows finer control
over synchronizations as unnecessary implicit barriers may be lifted while
explicit barriers may be placed where required. This is done automatically
thanks to the polyhedral model dependence analysis. We will exploit the fol-
lowing OpenMP [79] constructs and clauses: parallel, for, single, nowait,

and barrier.
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Our proposal is introduced in Section 5.1 with an example to show that
it can reduce the execution times of resulting parallel codes. Section 5.2 cov-
ers the general method for annotating an optimized code in order to create a
unique parallel region. Barrier lifting or explicit placement within a parallel
region is then explained in Section 5.3. Section 5.4 discusses the adjustments
to be made to generate code for a unique parallel region where barriers have
been lifted or explicitly placed. We show that our proposal improves the
performance of generated code on the PolyBench benchmark suite in Sec-

tion 5.5. Finally, Section 5.6 concludes this chapter.

5.1 Motivating Example

When used as an automatic parallelizer, the state-of-the-art polyhedral com-
piler PLUTO [19] generates multi-threaded code where parallel loops are an-
notated with OpenMP directives. Each parallelloop is preceded by an OpenMP
omp parallel fordirective. This method yields satisfactory results on simple
cases, e.g., if there is one single outer parallel loop. However, superfluous syn-
chronizations and overhead may be induced in more complex cases: threads
are started and stopped (even if modern OpenMP implementations do not
create and destroy thread teams for each parallel region) for each parallel
for construct and there is an implicit synchronization barrier at the end of
parallel loops.

Let us consider the main computation of the atax program from the Poly-
Bench suite [83]. The original code is given in Listing 5.1. It is a linear algebra
kernel that consists of a matrix transposition and a vector multiplication.

Listing 5.2 presents the parallelized and optimized code produced by
PLUTO version 0.11.4 (with option --parallel. Array tmp is first initialized
in a parallel loops (lines 1-3) and its content is computed in another parallel
loop (lines 4—9). Array y is initialized in a parallel loop (lines 10-12). Two
nested loops then compute the content of array y (lines 13-19). Due to data-
dependencies, PLuTo skewed the loop nest to parallelize the inner loop (line
16).

We propose to reduce overhead by embedding this whole code into a

single parallel region and removing unnecessary implicit synchronizations
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. for (i =0; 1 < N; i++)
2 y[i] = 0;
s for (1 =0; 1 <M; i++) {

4 tmp[i] = 0.0;
5 for (j = 0; j < N; j++)

6 tmp[i] += A[i][j] * x[j];
7 for (j = 0; j < N; j++)

8 y[jl += A[i][j] * tmp[i];
o }

Listing 5.1 — Atax: Original Code A linear algebra kernel which computes
y = AT(Ax).

as shown in Listing 5.3. The omp parallel directive encloses the whole ker-
nel (lines 1-2 and 22). The threads are started and stopped once, at region
entry and exit. The schedule(static) and nowait clauses are then used on
the first two parallel loops. The dependencies between the first and second
loop (lines 3—11) allow the safe use of the nowait clause on the first loop since
the same threads will access the same array elements of array tmp. There are
no dependencies from the first or the second loop to the third parallel loop
(lines 3-14): the nowait clause can be used on the second parallel loop (line
7). How to ensure these clauses can be used and how to annotate loops is
detailed in Section 5.3. On the other hand, the successive writes to array y
prevent the asynchronous execution of the last two loop nests: the third par-
allel loop (line 12) is not annotated with the nowait clause. In the same vein,
no nowait clause is added to the last parallel loop (line 117) because of suc-

cessive iterations of the outer loop (line 16).

The speedups of those versions of the code, depending on the dataset

size, are given in Table 5.1. The baseline (1x) is the execution time of the

Table 5.1 — Performance On The Atax Benchmark

Dataset ~ Prutoversion Reduced synchronizations version

medium 0.46x 1.31X

large 1.24X 1.94X
extralarge 127X 2.19X
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. #pragma omp parallel for

. for (int t2 = 0; t2 <=M - 1; t2++)
3 tmp[t2] = 0.0;

s if (N> =1) {

5 #pragma omp parallel for

6 for (int t2 = 0; t2 <=M - 1; t2++)

7 for (int t3 = 0; t3 <= N - 1; t3++)
8 tmp[t2] += A[t2][t3] * x[t3]

9 }

o #pragma omp parallel for

« for (int t2 = 0; t2 <= N - 1; t2++)

12 y[t2] = 0;

w if ((M>= 1) & (N >= 1)) {

" for (int t2 = 0; t2 <= N+ M - 2; t2++) {

15 #pragma omp parallel for

6 for (int t3 = max(0, t2 - M + 1); t3 <= min(t2, N -
- 1); t3++)

W y[t3] += A[t2 - t3][t3] * tmp[t2 - t3];

1 }

v }

Listing 5.2 — Atax: Parallelized And Optimized Code Using PLuTO Version
oa1.4 Each parallel loop is annotated with an omp parallel for directive.
In the last loop nest, the inner loop is parallelized.

sequential version. The experimental platform is a 6-core Intel processor, as
described later in Section 5.5. Our version is on average 1.97x faster than the
Pruro version. This is mainly due to the OpenMP thread re-creation that is
avoided inside the last parallel loop of this code.

Next section introduces the general method for parallel region genera-

tion.

5.2 Parallel Region Generation

Current code generation methods in polyhedral compilers create a distinct

OpenMP parallel region for each parallel loop. The consequences are that:

1. the start of a loop coincides with the parallel region start: a thread

team is created at the start of the loop,
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v #pragma omp parallel

: {

3 #pragma omp for schedule(static) nowait

4 for (int t2 = 0; t2 <= M - 1; t2++)

5 tmp[t2] = 0.0;

6 if (N >=1) {

7 #pragma omp for schedule(static) nowait

8 for (int t2 = 0; t2 <=M - 1; t2++)

o for (int t3 = 0; t3 <= N - 1; t3++)

1 tmp[t2] += A[t2][t3] * x[t3];

u b

12 #pragma omp for

1 for (int t2 = 0; t2 <= N-1; t2++)

1 y[t2] = 0;

5 if ((M>= 1) & (N >= 1)) {

6 for (int t2 = 0; t2 <= N+ M - 2; t2++) {

17 #pragma omp for

8 for (int t3 = max(0, t2 - M + 1); t3 <= min(t2,
< N-1); t3++)

19 y[t3] += A[t2 - t3][t3] * tmp[t2 - t3];

20 }

2 }

» )

Listing 5.3 — Atax: Further Optimized Code Where Some Synchronizations
Have Been Lifted. As opposed to Listing 5.2, a unique parallel region encom-
passes the kernel. The loops are annotated with omp for directives (instead
of omp parallel for)and nowait directives have been added to the first two
parallel loops (lines 3 and 7).

2. the thread team must always synchronize at the end of a loop because

it is also the end of the surrounding parallel region,

3. the end of a loop coincides with the parallel region end: the thread
team may be destroyed at the end of the loop.

Modern OpenMP implementations attempt to be clever in regard to this
matter: thread teams may be simply started or stopped instead of being com-
pletely created or destroyed. Nonetheless, consequent control overhead still
remains [ 20, 21].

We propose to refine current code generation methods by generating a
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single parallel region, when it is profitable: it would be futile for a kernel
that contains a single outer parallel loop. However, gathering multiple par-
allelloops or nested inner parallel loops within a unique outer parallel region
will eliminate the overhead of multiple parallel regions. Thus, our technique
should be applied only on loop nests containing inner parallel loops or when
factorizing multiple parallel loops into a single parallel region is possible.

The general algorithm for parallel region and annotation is described in
Alg. 6. The input of the algorithm is an automatically parallelized (using the
polyhedral techniques) Abstract Syntax Tree (AST), encoded as a list of AST
nodes. The annotate function is a function that annotates a given AST node
with the text passed as a second argument.

Step 1 tackles both the annotation of parallel loops and sequential por-
tions of the code. Sequential parts must also be annotated because the in-
put AST may contain statements which were not identified as potentially
parallel. Within a parallel region, all threads will execute the statements en-
countered by the execution flow unless instructed otherwise. Thus, state-
ments not identified as parallel must be protected with the OpenMP single
construct to ensure they are executed only once. Parallel loops are annotated
with the for construct (instead of parallel for). The algorithm recurses in
inner nodes of the AST unless the current node is a parallel loop: in this case
the annotation process can stop at level of the parallel loop. Because Step 1
indiscriminately may annotate more nodes than necessary with the single
construct (for example if a block contains multiple non parallel statements:
the statements will be annotated and the block will also be annotated). Step
2 removes nested inner single constructs in order to keep only the outer-
most annotations.

Another reason to embed kernels in wide parallel regions is to get rid of
superfluous synchronization barriers. This is performed at Step 3 which is
further explained in Section 5.3.

Step 4 merges consecutive nodes annotated with the single construct
that require a barrier: multiple barriers are not created in that case. On
the other hand, successive single constructs without barriers should not be
merged: different threads may then execute the distinct single constructs

in parallel. This step also justifies why the single construct is preferred over
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Algorithm 6: Parallel Regions Annotation. This algorithm takes
asinputan Abstract Syntax Tree and annotates its nodes with work-
sharing constructs or synchronization clauses. Where appropriate,
nowait annotations indicate that no thread synchronization is re-
quired between two given nodes. annotate_nowait is described in
Algorithm 7

input :7" := Abstract Syntax Tree
output: 7’ := Annotated AST

Function region_annotation(T)

Step1 foreach node n € root(7T') do

if n is a loop identified as parallel then
‘ annotate(n, "#pragma omp for”);

else if n has a body then
‘ region_annotation(body(n));

end

if neither n nor body (n) contain a parallel loop then
‘ annotate(n, "#pragma omp single”);

end
end
Step 2 remove inner nested #pragma omp single constructs;
Step 3 annotate_nowait(7, T, &);
Step 4 /* Clean up successive synchronized #pragma omp single
constructs

T «+ merge consecutive #pragma omp single constructs that
require a barrier;

Steps /* Create the parallel region

T" < new block with 7" as body;
annotate (7", "#pragma omp parallel”);
return 77;

end

the master construct'.

Eventually®, the unique parallel region is created with the omp parallel

directive. As it should surround the whole kernel, Step 5 creates a new AST

'Programmers often confuse both constructs as they instruct that the enclosed code
must be executed by only one thread. However the master construct behaves very differ-
ently as it enforces the execution by the master (or first) thread and has no implicit barrier.

*Note that Step 5 could also be placed at the very beginning of Algorithm 6.
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node which surrounds the input AST and annotates the new node with the
directive.

Listing 5.4 presents a short comparison of the output of this algorithm
with the output of a classic automatic parallelizer. Listing 5.4a would be
the output of a classic automatic polyhedral parallelizer whereas Listing 5.4b
corresponds to the output of our algorithm for the same input AST. First, Al-
gorithm 6 places the whole kernel in a single parallel region (lines1—2 and 17).
Assuming both the loops over statements S1 and S2 require a barrier, the two
loops are grouped into a unique single construct. Assuming the depend-
encies allow it, the first parallel loop would be annotated with the nowait

clause. Finally, the last parallel loop is left untouched.

1+ #pragma omp parallel

» {
3 #pragma omp single
o . . 4 {
for (%"t 1=0; i<N; i++) 5 for (int i=0; i<N; i++)
S1(1); . S1(i);
] . . . 7 for (int i=0; i<N; i++)
for (%nt i=0; i<N; i++) ; $2(i);
S2(1); , }
#pragma omp parallel for 10 #pragma omp for nowait

for (int i1=0; i<N; i++) : for (int i=0: i<N: i++)

53(1); - S3(1);
for (int 1=0; i<M; i++) o for (int i=0; i<M; i++)
#pragnja onllp palrallel. for Y #pragma omp for
for (int j=0; j<N; j++) 5 for (int j=0; j<N; j++)
>4{1, 3 o S4(i, §);
7}
(a) Classic Output. (b) Our Output.

Listing 5.4 — Simple Comparison Example Of Algorithm 6. Listing 5.4a
would be generated after an automatic polyhedral parallelizer optimized
some code. Two parallel loops are annotated with omp parallel for con-
structs. Listing 5.4b corresponds to the output of our algorithm for the same
optimized AST.
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5.3 Barrier Lifting

Enclosing code in a single parallel region raises the opportunity to alleviate
synchronization overhead. Indeed, implicit barriers are placed at the end
of OpenMP worksharing constructs. These barriers may be lifted using the
nowait clause.

The OpenMP specification states that under certain circumstances, the
nowait clause may be safely used on a for construct which precedes an-
other for construct if the latter loop’s statement instances depend only on
the same logical iteration of the former loop. If such dependences exist, the

specification imposes several restrictions:
1. the sizes of both iteration domains are equal,
2. the chunk size is either the same for both loops or not specified,
3. both loops are bound to the same parallel region,
4. none of the loops is associated with a SIMD construct.

Subsection 5.3.1 will explain how to check the dependences and how to en-
sure the conditions are met.

Safe use of the nowait clause in this fashion also requires the scheduling
policy of both loops to be static. Enforcing this policy ensures that a given
thread is assigned the same logical iterations (or the same chunks) for both
loops.

Current known implementations of OpenMP default to the static policy.
However, not only is it not required by the specification, it may be modified
by surrounding code. Hence, in our case, the scheduling policy should be
explicitly specified in the generated code. Note that, for readability, code
examples in this chapter may omit the scheduling policy.

Special care must be paid to worksharing constructs enclosed in loops. If
the worksharing construct of interest is the last of the outer loop, it may pre-
cede the next worksharing construct in the generated code as well as the first
worksharing construct in the outer loop. In this case, determining whether

the nowait clause can be used requires to analyze multiple dependencies.
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The minimal requirement is the possibility to use the nowait clause between
constructs within the loop. If the next worksharing construct is not compat-
ible with the nowait clause, a barrier construct must be used right before
the latter construct instead of right after the former loop. Listing 5.5 presents
such an example: the nowait clause can safely be used for successive itera-
tions of the loop on 1i for statement S1 (lines 3-6) but the very last parallel
loop over S1 (i = N - 1) must be completed before the parallel loop over
S2 can be executed. A barrier is placed after the enclosing loop (line 7) as a
synchronization to ensure the parallel loop on statement S2 can be entered.

Correct barrier placement is addressed in Subsection 5.3.2.

+ #pragma omp parallel

o A{

3 for (int i = 0; i < N; i++)

4 #pragma omp for nowait

5 for (int j = 0; j < M; j++)
6 : Alj1 = A3l + B[1];

7 #pragma omp barrier

8 #pragma omp for

o for (int i = 0; i < M; i++)

o for (int j = 0; j < 1; j++)
u ¢ C[i] = C[i] * A[j];
v}

Listing 5.5 — SCoP Example Where The Use Of The nowait Clause Requires
A Barrier.

Subsection 5.3.1 explains how to ensure the nowait clause can be used.
Subsection 5.3.2 details how to annotate an already optimized AST to encode
parallel regions, single constructs and barrier lifting. Finally, Subsection 5.4

discusses the changes required at the code generation phase.

5.3.1 Determining the validity of the nowait clause

Implicit barriers are placed at the end of worksharing constructs. Omitting
these barriers may be done under certain circumstances.
The most simple situation is the case of two or more successive work-

sharing constructs without any dependencies. It is valid to annotate such
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worksharing constructs (except the last one) with the nowait clause. Annot-
ating the last construct still requires further analysis of the remainder of the

code.

The OpenMP specification details four conditions for the safe use of the
safe use of nowait (aslong as the schedule type is set to static) when there

are dependencies between subsequent for constructs.

One of the requirements is for the iteration domain sizes of the loops to
be equal. This can often be easily verified by comparing the loop bounds and
strides of the loops. If needed, it can be further ascertained using the poly-
hedral model: determining that the sizes of two iteration domains coincide

is possible by comparing their Ehrhart polynomials [24].

The fulfillment of the other conditions (identical chunk sizes, the loops
binding to the same parallel region and the absence of SIMD constructs) is
trivial: our code generation algorithm aims to produce a single parallel re-
gion and thus enforces by design that the worksharing constructs bind to
the same parallel region. In the same vein, identical chunk sizes and the ab-
sence of SIMD constructs can be enforced by design during the code genera-

tion phase.

If the aforementioned conditions are met, compliant OpenMP imple-
mentations assign the same logical iterations to the same threads. Hence,
the last step is to ensure that the only existing dependencies lie between
identical logical iterations. This dependence analysis is presented hereun-
der.

Let S and 7" be two statements such that 7" depends on S. Using the
notation introduced in Definition 16, the dependencies dg 1 between S and

T' are expressed as follows:

U
. " v =
557T(ﬁ) = u — v RS,T ﬁ Z 0 (5.1)
1

Assuming u; is the parallel dimension for S and v; is the parallel dimen-

sion for T', the polyhedron Lg 1 (p) that links the same logical iterations of
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S and 7" can be expressed as:

Lsr(p) = {u — U|u; =v;} (5.2)

The dependencies in different logical iterations of S and 7" can be de-

scribed using the two previous equations as:

657 (P) \ Lsr(P) (5:3)

Let 0% and Ly 7 be the projections of these two equations onto the
space combined space of dimensions u; + v;. Then, 5 1 \ Lg 7 is a simpler
way to express all dependencies of some form over dimensions u; and v,
between S and 7. It immediately follows that the necessary condition for

the validity of the nowait clause on statement S is:

—

!/ / —
S,T(m \‘CS,T<(p)) =0 (5-4)
EXAMPLE 17. For instance, consider the two statements S'1 and S2 in List-
ing 5.6.
1 #pragma omp parallel
: {
3 #pragma omp for nowait
4 for (int i = 0; 1 < N; ++1)
5 for (int j = 0; j < M; ++j)
6 A[i][j] = SL(B[il[]jl);
7 #pragma omp for
8 for (int a = 0; a < N; ++a)
9 for (int b = 0; b < M; ++b)
10 Clal = S2(A[allb]);
n }

Listing 5.6 — Example Of A Loop Nest Compatible With The nowait Clause.

Statement S2 depends on the same logical iteration of S1 (assuming the

loops are normalized):

wa=10) )
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worl()-

The dependencies 0 g1 g2 link the same logical iterations of S1 and S2.

Here are the projections of the two polyhedra:

%152 ={(1) = (o) | i =0} (57)
s =1{(1) = (a) | i=d} (5.8)

Thus, 0, ¢o(P) \ L1 52(p) is empty and the first parallel loop (line 3)

can be annotated with the nowait clause.

ExaMPLE18. The dependenciesbetween statements S3 and S4 in Listing 5.7

prevent the safe use of the nowait clause on the first parallel loop:

053,54 = { (;) — (k) z i Z; 1’} (5.9)

Lg3.510 = { (;) — (k) i= a} (510)
> k1,

51@3,54 = {(Z) — (k) z ; I } (5.11)

s ={(0) = (1) [i =4} (512

Indeed, a given statement instance of the second parallel loop (lines 7-

9) depends on three distinct statement instances of the first loop. Here,

0s3,54(P) \ Ls3.54(P) is nonempty:

053,54(P) \ Lszs1(p) = {(0) = (k) [ i = k = 1JU{() = (k) | i =k + 1}
(513)
and thus the first parallel loop can not be annotated with the nowait clause.
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1 #pragma omp parallel

: {

3 #pragma omp for

4 for (int 1 = 0; i < N; ++1i)

5 for (int j = 0; j < M; ++j)

6 S3(A[i], BIil[jl);

7 #pragma omp for

8 for (int k = 0; k < N; ++k)

0 S4(C[k], A[k-11, A[k], A[k+1]);
o}

Listing 5.7 — nowait Incompatible Code

5.3.2 nowait Annotation

Once an optimized AST has been annotated in order to generate a single
parallel region, implicit barriers may be lifted and explicit barriers may be
placed. Step 3 of Algorithm 6 calls annotate_nowait which is described in
Algorithm 7.

The algorithm will annotate each node of the AST to indicate whether a
barrier is needed. The key idea is to progressively build nowait-groups. Two
successive nodes may belong to the same nowait group if no barrier is re-
quired between the two nodes. If a barrier is required between two nodes,
the first node is annotated and a new nowait-group is built (lines 6-7, 19-20
and 25-26).

At first, the algorithm assumes a given node does not require a barrier
(line 2). If the node is a worksharing construct, it is checked against the cur-
rent nowait-group. Either the node is added to the current group (line g9) or
anew group is started (line 7). If the current node is not a work sharing con-
struct, the algorithm recurses into its body, if any (line 12-13). If the node is
a loop, the algorithm also checks the dependencies between its first and last
nowait-group (if there is more than one): because of the loop, the last nowait-
group is also a predecessor of the first nowait-group. The node is checked
against the current nowait-group which is adjusted accordingly (lines 23-36).

Finally, the algorithm proceeds with the next node (line 37).
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Algorithm 7: nowait Annotation.This recursive algorithm annotates

nodes where barriers are required. The nowait-group is expanded or re-

placed before recursing on inner or following nodes.

input :7n := Current AST node

R :=Root of the AST

G := Current nowait group
output: n := Annotated AST node

1 Function annotate nowait(n, R, G)

n.nowait <— true;

if n is a worksharing construct then

2

3
4
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38 end

end

if check nowait safety((, n) then
‘ G+ GU{n}
else
pred < last_predecessor(R, n);
pred.nowait < false;
G+ {n};

end

b+ body(n);
b < annotate nowait(b, R, GG);
last_node <+ last(b);
first_group <— first_group(b);
if n is a loop then
last_group <— last_group(b);
if = check_nowait_safety (last_group, first group) then
last_node.nowait < false;
G +— &,
end
end
if — check_nowait_safety (G, first_group) then
pred < last p redecessor(R, n);
pred.nowait <— false;
G+ @
end
if last node.nowait then
‘ G+ g;
else if first_group # last_group then
‘ G + last_group;
else
‘ G+ GU{nk

end

n.next <— annotate nowait(next(m), R, G);

return n;

check_nowait_-
safety() ensures the
dependencies allow
barrier lifting as per
Subsection 5.3.1.
last _predecessor()
returns the preceding
node.

last() returns the last
node from a node list.
first group() and
last group()
respectively return the
first and last
nowait-group from a
node list.
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5.4 Pretty Printing

The pretty printing phase is akin to current techniques, with a few minute
modifications. First, the whole SCoP must be enclosed in a block annotated
with the #pragma omp parallel construct. Parallel loops will be annotated
with #pragma omp for instead of #pragma omp parallel for. Any sequen-
tial block or loop must be annotated with #pragma omp single constructs. If
a given AST node is marked as requiring a barrier: the #pragma omp barrier
directive must be printed right after the generated code for this node. If this
node corresponds to a worksharing construct, no additional code is needed
as worksharing constructs have implicit barriers. On the other hand, if the
AST node does not require a barrier, no additional code is needed unless
the node corresponds to a worksharing construct: worksharing constructs
must be annotated with the nowait clause. Moreover, the schedule(static)

clause should be added if the worksharing construct is a for loop,

5.5 Experimental Results

We evaluated our approach with benchmarks taken from the PolyBench [83]
suite. We used PLUTO version 0.11.4 on all benchmarks of the suite with two
sets of options: the first one with automatic parallelization (--parallel),
and the second one with parallelization and tiling (- -tile - -parallel). We
applied our method on a selection of 34 benchmarks out of 50 (2 x 25).
Those selected benchmarks were chosen because they contained at least one
internal parallel loop. 14 out the 34 benchmarks are tiled versions. Table 5.2
describes the main characteristics of each of these benchmarks: the number
of main loop nests that they contain, the number of parallel loops embedded
into outer sequential loops, the number of single regions, and the number of

nowait clauses that are introduced by our method.
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Table 5.2 — Benchmarks Main Characteristics

benchmark #main loop #inner #single  #nowait
nests paral. loops

adi

adi-tile

atax

bicg

cholesky
cholesky-tile
correlation
covariance
doitgen
doitgen-tile
fdtd-2d
fdtd-2d-tile
floyd-warshall
floyd-warshall-tile
gemver
gramschmidt
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H O OW W 3O NN DD

gl 0 W = =

gramschmidt-tile
heat-3d
heat-3d-tile
jacobi-1d
jacobi-1d-tile 1

—
==

jacobi-2d 10
jacobi-2d-tile

oA B R H AN W R HOHE HE R W W NDNNN == DNDN

lu

1
2

lu-tile 2
nussinov 2
nussinov-tile 1
reg_detect 16
reg_detect-tile 1
seidel-2d 1
seidel-2d-tile 1
trisolv 2
trisolv-tile 2
trmm 2
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We conducted our experiments on three platforms:

1. An Intel Xeon E5-2620v3 @ 2.40GHz (6 cores, 12 threads), running the
Linux 4.11.5 kernel. Intel Turbo Boost and Hyperthreading were dy-
namically disabled during the execution of the benchmarks. In or-
der to further reduce the variance of the measurements, Linux FIFO
scheduling was enabled via the PolyBench’s macro POLYBENCH_LINUX_-
FIFO_SCHEDULER. The compiler is gcc 7.1.1 using options - fopenmp,

-03 and -march=native.

2. The second platform is a dual socket Intel Xeon E5-2650v3 @ 2.30GHz
(2*10 cores, 40 total threads), running Linux 4.4.0. The compiler is
gcc 5.4.0, using options -03 -march=native - fopenmp. No particular
environment variable was set on this platform to get stable measure-

ments.

3. The last platform is the same computer, but using this time the icc
compiler version 17.0.0 and options -03 -march=native -qopenmp.
We had to put the environment variable OMP_NUM_THREADS to 20 in or-
der not to use hyperthreading to get more stable measurements. Still,
the variance was much higher on this configuration than on the previ-
ous ones, so the results on this platform are less reliable: the variance

exceeds 5% in about half of the measurements that we made.

The environment variable OMP_PROC_BIND was set to true on all platforms.
The PolyBench scripts that we used perform all time measurements as the
average of 3 median measurements out of 5 runs. Notice that we report some
speedups that are larger than the number of available cores; this is not a sur-
prise as PLUTO is not only a parallelizer but also a data locality optimizer and
vectorizer.

Figure 5.1 presents the acceleration of our version compared to the PLuTo
version on the 6-cores first platform for the small, medium, and large data-
sets of the PolyBench suite. We can notice from this figure that our method
improves many of these benchmarks: the acceleration is most often greater
than 1x. The geometric mean acceleration for all datasets is given on the bot-

tom line. On smaller datasets, the benefit of our method is often greater: in
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many cases the ratio between threads creation and synchronizations time

towards computation time is higher when computing small datasets. The

overall mean acceleration on all dataset sizes available in PolyBench (includ-

ing mini and extralarge, not shown in the figure) is 1.36x.

However, we noticed that in some of these benchmarks, PLuTto did not

improve the performance over the sequential version of the code. In order

to support our conclusions, we checked that our method improves both the

efficient parallelized codes and the inefficient ones.
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Figure 5.2 presents both the acceleration of the PLuTO version and the
one of our version, over the sequential version on the standard dataset. The
geometric mean of our version speedup over PLuto, when PLuTO performs
worse than 1x is 1.95%, and when PLuTO performs better than 1x it is 1.09x. So
our method improves more the poor performing PLuTo codes, which is not a
surprise: the synchronization over computation time ratio is usually higher
on those codes. Nevertheless, we checked that our method improves the per-

formance of most of the PLuTO parallel codes, whether PLuTO performs well

or not.
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Figure 5.2: Speedup Over The Sequential Version (Platform 1, Medium).

We also ran those benchmarks on 4o threads in the second configura-
tion (2x 10-cores hyperthreaded), to get the results presented in Fig. 5.3. The
geometric mean of those accelerations is 1.52x on the large dataset, and 1.39x
on the extralarge dataset.

Finally, we ran the benchmarks on the 20 threads third configuration, us-
ing the icc compiler and the Intel OpenMP runtime. Each benchmark accel-
eration of our version over the PLUTO version is given in Fig. 5.4 for the large

and extralarge datasets. Some benchmarks, marked with ¥, are not reported
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since there is a numerical divergence between the different versions, prob-
ably due to the icc vectorizer: the vector floating point unit does not have the
same precision as the main one. The average acceleration of our version is
respectively 1.14x and 1.11x for the large and extralarge datasets. The overall
acceleration is a bit lower than the previous ones, most probably due to the
more efficient OpenMP runtime. But those measurements are less reliable,
as said before, since the variance in time measurements often exceeds the

PolyBench default limit (5%).

5.6 Conclusion

In this chapter, we explained how to generate wide parallel regions rather
than separate parallel loops. Our approach brings many advantages to most
high-level optimizing compilers that solely rely on parallel for constructs.
First, the overhead of computation threads start/stop is minimized. Second,
it allows to remove unnecessary and costly synchronizations. Lastly, it may

increase data locality between loops at thread level. Our method is not com-
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peting but is complementary to existing parallelization frameworks: its input

is an already optimized code and its output is an even more efficient optim-

ization. It exploits the polyhedral representation of programs and a barrier

lifting phase to factorize parallel loops into wider and deeper loop regions

where superfluous synchronization barriers have been removed. We con-

ducted a wide experimental study showing that our approach is nearly al-

ways beneficial and brings a significant gain over the state-of-the-art PLuto

compiler, from 1.14 to 1.63 speedup in average, depending on the dataset size.

High-level polyhedral compilers should now always target parallel regions

rather than collections of independent parallel loops.
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Chapter 6

Exploiting Pipelined
Multithreading

6.1 Introduction

Pipelines are essential constructions for exploiting parallelism at any level,
from processor hardware to high-level software. This chapter explains how
we can automatically generate a pipelined parallel code in a multihtreading
environment such as OpenMP.

There has been extensive research on pipelines mainly focusing on hard-
ware generation, low level implementation [80, go] or VHDL generation [ 29,
4, 71,114] for instance, to target field-programmable devices. In most of these
works the input programs are already in pipelined tasks format, and their
objective is to map the tasks efficiently on the available hardware. The two
main addressed difficulties are to characterize stream types and stream sizes
between tasks and to allocate the streams and the tasks on the fixed-size
hardware.

However, automatically extracting tasks amenable to a pipeline execu-
tion from general sequential programs and implementing the pipeline itself
remains a challenge.

We address the automatic generation of high-level pipelined multith-

reading codes. The two main issues that we address are:
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1. how to automatically identify pipelines within a polyhedral compiler

2. how to generate pipelined code using the OpenMP high level multi-
threading API

The concept of pipelined multithreading is introduced in Section 6.2 on
a short example. Section 6.3 describes the method for pipelined code gener-
ation in a polyhedral compiler while Section 6.4 refines the technique with
explicit synchronizations. Experimental results are given in Section 6.5. Fu-

ture work is discussed in Section 6.6 and Section 6.7 concludes this chapter.

6.2 Motivation

Listing 6.1 shows an example of an obviously pipelineable — yet ignored by
current polyhedral optimizers — SCoP. This program is a succession of loops
with loop-carried dependencies. Hence, an automatic polyhedral parallel-
izer will leave this code untouched because no parallel loop can be iden-
tified as exhibited by the red arrows in the visual representation of the de-
pendencies in Figure 6.1. However, it can also be observed that dependencies
between loops do not require a given loop to be completely executed before
another loop can start. This is where pipelined parallelism can be extracted:
the red and green arrows in the dependency graph show that an iteration of
a given loop only has two direct predecessors: the preceding iteration within
the loop and the same logical iteration in the preceding loop. Our goal is to
transform Listing 6.1 into Listing 6.2 to take advantage of pipelined multith-
reading with OpenMP without violating the execution order imposed by the
dependencies.

Roughly, the following steps can transform the original code from List-
ing 6.1 into the pipelined multithreaded parallel code from Listing 6.2. First,
a traditional polyhedral scheduling is applied — for example, using the high-
level compiler PLuto. Then, strongly connected components are identified
in the flow graph thanks to the precision of the polyhedral dependence ana-
lysis and can be used to detect potential pipelines. The corresponding code

can be generated by enclosing the pipeline stages in a parallel region and
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. for (int 1 = 1; i < N; ++1)

2 i A[i] = f(A[i], A[i-1]);
s for (int i = 1; i < N; ++1i)
4 : B[i] = f(A[i]l, B[i-1]);

¢ for (int i = 1; i < N; ++1)
7 : F[i] f(E[i], F[i-11);

Listing 6.1 — Original Pipelineable Example. Loop-carried dependences pre-
vent polyhedral automatic parallelizers from identifying parallelism.

()

NN N NG

Figure 6.1— Visual Representation Of The Dependency Graph For The Code
From Listing 6.1. Red arrows represent loop carried dependencies. These
dependencies prevent a polyhedral optimizer from identifying any loop as
parallel. Green arrows symbolize dependencies between loops.

using the OpenMP clauses ordered and nowait to allow pipelined execu-
tion while preserving the required order. Loop bodies must be enclosed in a
ordered construct: it is necessary to specify what part (the whole loop body
in our case) of a ordered loop is not parallel.
Using this method on the original code produces the code shown in List-
ing 6.2. For each loop, each thread will execute a block of successive itera-
tions. The static scheduling policy (not shown in the code excerpt) ensures
that each thread will always be assigned the same range of iterations. For in-
stance, the first thread will be assigned iterations 1 to N/number of threads
for each loop®. The nowait clause specifies that a thread can proceed right °Note that the actual

away with the nextloop while the ordered clause ensures that iteration blocks "¢ is unspecified,

what matters is that

within a loop are executed in the correct order. Figure 6.2 further shows the _
this range will be the

execution flows for Listing 6.1 and Listing 6.2: the sequential code will com- ¢, .¢ for all loops
pletely execute a given loop (following the red arrows) before entering the
next loop (progressing from one line to the other). In the parallel code, each
thread will be assigned a column and will follow the green arrows. In the par-

allel execution, the red arrows represent the synchronizations that enforce
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. #pragma omp parallel

o {

3 #pragma omp for ordered nowait
4 for (int 1 = 1; 1 < N; ++1)

5 #pragma omp ordered

6 S1: A[i] = f(A[i], A[i-11);
7 #pragma omp for ordered nowait
8 for (int 1 = 1; i < N; ++1)

9 #pragma omp ordered

1 S2: B[i] = f(A[i], B[i-11);
u /X o0 x/

12 #pragma omp for ordered nowait
" for (int 1 = 1; i < N; ++1)

" #pragma omp ordered

15 S6: F[i] = f(E[i], F[i-11);
6}

Listing 6.2 — Pipelined OpenMP Target Program. The use of ordered en-
sures correct iterations ordering within a loop while nowait allows early
entry into the following loop.

relative ordering of the iterations of a given loop. The number of columns is
lower or equal to the number of threads.

This process enables the parallelization of a code which would remain
sequential with state-of-the-art polyhedral automatic parallelization tech-

niques. Next section details this method.

6.3 Pipelined Multithreading Generation

Pipelined multithreading interlaces sequential loops and thus targets sequen-
tial loops. Hence, our approach takes as input an already scheduled SCoP

and targets loops that are still sequential. The steps are:

1. performing loop distribution on sequential loops,

2. annotating groups of consecutive sequential loops with the ordered

and nowait clauses,

3. if necessary, performing loop fusion between parallel and ordered se-

quential loops
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?
Figure 6.2 — Visual representation of the execution order. Loop carried de-
pendencies are drawn in red. Dependencies between loops are represented
in green.

With the code from Listing 6.1, the single thread will execute one loop after
the other. In this example, each line will be completely executed before the
next line starts.

With the code from Listing 6.2, each loop will be divided into chunks (in
this example, 8 chunks). Each thread will execute the chunks on a column,
ordered as indicated by the green arrows. The nowait clause allows a thread
to immediately enter the next loop once its current chunk has been com-
pleted. The dependencies symbolized by red arrows are not violated thanks
to the ordered clause: a chunk will not be executed unless its preceding
chunk has already been executed.

Note that our method also requires the scheduling policy of for loop itera-
tions to be set to static. Moreover, the choice of the chunk sizes should not be
specified?: we want the number of chunks to be lower or equal to the number
of threads. Specifying a wrong size may result in a number of chunks greater

than the number of threads.

6.3.1 Sequential loop distribution

Interlacing loop iterations using the ordered and nowait requires separate
loops. Input loops may contain multiple statements. To maximize the po-
tential for interlacing, our strategy is to perform loop distribution on such

loops. However, loop distribution can not be performed on each and every

9 As per the OpenMP
specification [79], each
thread will be assigned

at most one chunk.
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. for (int 1 = 2; 1 < N; ++1) {

2 : al[i] = h[i-1] + R[i];

3 : b[i] = a[i-1] + alil;
v for (int i =2; i < N; ++1) { . : c[i] = b[i-1] + b[il;
2 i alil = h[i-1] + R[i]; 5 :d[i] = c[i-1] + c[i];
3 : b[i] = a[i-1] + alil; 6 :e[i] = d[i-2] + d[i-1];
4 i c[i] = b[i-1] + b[i]; 7 i f[i] = e[i-2] + e[i-1];
5 :d[i] = c[i-1] + c[i]; s 1 gli] = f[i] + X[i];
6 i e[i] = d[i-2] + d[i-1]; o : h[i] = g[i] + Y[i];
7 : f[i] = e[1-2] + e[i-1]; v }
8 1 glil = f[i] + X[i]; nw  for (int i = 2; 1 < N; ++1) {
9 : h[i] = g[i] + Y[i]; 12 ufi] = v[i - 1] + d[i];
10 :u[i] = v[i-1] + d[i]; 13 :v[i] = u[i] + Z[i];
u vov[i] = uli] + Z[i]; u }
e}

(b) Loop distribution performed on
(a) Van Dongen: original code Van Dongen

Listing 6.3 — Van Dongen: Code After Safe Loop Distribution. The original
loop can be separated into two loops because the dependency graph con-
tains two strongly connected components: statements S01 to S08 and state-
ments S09 and S10.

statement of such loops because it may change the scheduling in an illegal
way. Loop distribution may only be applied to groups of statements when
there are no backward loop-carried data dependencies, which we assess us-
ing polyhedral data dependence analysis.

Since we take as input a SCoP which should have already been optimized
for locality, we do not want to reorder the statements from the input loop
(apart from the reordering caused by the loop distribution): relative ordering
within strongly connected components should remain unscathed. Determ-
ining how to perform loop distribution for our pipelining method amounts
to computing strongly connected components from the dependence graph:
each strongly connected component may belong to a standalone loop.

For example, in Listing 6.3, statements S1 to S8 are grouped in the same
loop while statements S9 and S10 are placed in another loop. There is a loop-
carried dependence between statements S1 and S8: S1, S8 and all statements
in between belong to the same loop. In the same vein, 59 and 516 must be

placed together but can be separated from statements S1 to S8 since there is
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no loop-carried dependence between the two groups.

6.3.2 Relaxed conditions on the nowait clause

According to the OpenMP specification [79], the nowait clause may be safely
used on a for construct which is followed by another for construct if the

following conditions are met:

1. both iteration domain sizes are equal
2. chunk sizes are equal or not specified
3. both for loops are bound to the same parallel region

4. theloops are not associated with a SIMD construct

Chapter 5 explains how to generate code using the nowait clause for con-
secutive parallel for loops. This method can only be applied when the de-
pendencies between loops link the same logical iterations. For example, as-
suming each block in Figure 6.2 represents exactly one iteration, only de-
pendences represented as green arrows allow to safely use the nowait clause
on consecutive parallel for loops.

Using the ordered clause allows us to relax the restrictions. Once a given
thread executes an iteration 7,, of a loop, all previous iterations %,, (m < n)
have been executed. In this case, the allowed dependencies between loops
include more than dependencies between identical logical iterations. In other
words, on Figure 6.2, using the ordered clause ensures that for any given
block, all blocks in the intersection of previous lines and previous columns
have been executed.

Hence, Equation (5.2) can be extended to:

,CSLSQ(@ = {l_l: — 17| U; S Uj} (61)

The remainder of the analysis is unchanged as explained in Chapter s5:
determining whether the nowait clause can be used to create multithreaded

pipelines amounts to verifying that:

/ / —
51,52 \ PSLSQ = @
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6.3.3 Annotations

Annotating sequential loops

To annotate sequential loops with the ordered and nowait clauses, the method

from ?? can be used with the following modifications:
1. all sequential loops are annotated with #pragma omp for ordered,

2. the bodies of ordered loops are enclosed in #pragma omp ordered re-

gions,

3. the validity of the nowait clause is determined as described in Sec-

tion 6.3.2.

The motivating example of Listing 6.2 gives an example of such a gener-

ated loop nest.

Extension to parallel loops and cleanup

Section 5.3.1 and Section 6.3.2 explain how to add the nowait clause on loops
that precede another loop of the same kind: either a parallel loop preced-
ing another parallel loop or a sequential loop preceding another sequential
loop. Determining whether a parallel loop preceding a sequential loop — or
vice versa — can be annotated with the nowait clause amounts to selecting
the appropriate set of requirements: if the considered loop is a parallel loop,
the stricter conditions on the use of the nowait clause apply, otherwise, the
relaxed conditions are sufficient.

Finally, any ordered loop without a nowait clause that is neither pre-
ceded by another ordered loop nor precedes another ordered loop should
be reverted to an annotation-free loop enclosed in a #pragma omp single

region.

6.4 Explicitly synchronized pipelines

Section 6.3 introduced multithreaded pipelines with the ordered and nowait

clauses. However, this method could be more flexible. For instance, the
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chunk sizes should be chosen so that each thread is assigned, at most, one
chunk. Otherwise, threads will wait for their next chunk (because of the
ordered clause) and will not start the next loop right away. Moreover, in the
general case, the ordered construct and clause may be used to order only
some statements within a parallel loop. Thus, an OpenMP implementation
may place synchronizations for each instance of an ordered construct. In our
case, because the loops we target are completely sequential, we only need
synchronizations at the start and at the end of a chunk.

An alternative to generating code with #pragma omp orderedandnowait
annotations is to block loops over a given block size, fuse the resulting loops
over the blocking dimension, distribute the iterations, with a chunk_size
of 1, over this dimension and manually synchronize threads using OpenMP
locks as shown in the example in Listing 6.4.

The pipelining then occurs as follows:

1. for each thread, each stage of the pipeline is associated with a lock

(thus, n X mlocks are required for n threads and m stages),

2. foreach stage i, thread t attempts to own lock[t%n] [1] at stage entry
and releases lock[ (t+1)%n][1i] at stage exit (hence, each thread will

wait for its predecessor to complete a given stage of the pipeline),

3. except for the first thread, all locks are locked at the beginning of the

parallel region.

Construction

Additional code must be generated at the start and the end of the parallel
region to allocate, initialize, destroy and free the locks. In particular, it is
imperative to set all locks — apart from the locks assigned to the first thread
— before the multithreaded pipeline starts.

Because the code generation already splits the loops into iteration chunks,
the enclosing loop must be annotated with schedule(static, 1) to cor-
rectly distribute its iterations. We want threads to execute only one iteration
of this loop at a time: otherwise pipelining opportunities may be lost as a

given thread may execute two or more subsequent blocks of a given stage. We
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Figure 6.3 — Stage-blocking execution order example for a 3-stage pipeline.
This graph is an example of a 3-stage pipeline akin to the code presented
in Listing 6.4. Loop carried dependencies are drawn in red. Dependencies
between loops are represented in green.

The schedule(static, 1) clause ensures each thread will execute one block
at a time. The dependencies symbolized by green arrows are always respec-
ted because the iterations within a loop iteration are sequential. The locks
ensure that the dependencies represented by red arrows are not violated.
The execution order for thread 70 is depicted by the black arrows. It will
first execute all the stages of a given block. Thread ¢1 will progressively be
allowed to start its own pipeline. At the end of its current pipeline, thread
t0 will proceed with another block but it will only start once thread ¢2 as
completed its first stage (in the same vein, {2 will not start its first stage until
t1 has completed its own first stage).

also want the scheduling policy to be static so that iterations are distributed
in a round robin fashion. Dynamic (or similar methods such as guided) dis-
tributions of iterations would break our locking mechanism where threads
lock and unlock their preceding or succeeding threads in a round robin fash-

ion.

In the example in Listing 6.4, The block_size value approaches the chunk
size which would be chosen by most known OpenMP implementations for

the code example shown in Listing 6.2.
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omp_lock t** locks;
#pragma omp parallel

{

}

const size_t num_threads = (size_t)
— omp_get num threads();
const size t block size = (N / num_threads) + 1;
const size_t block count = ((N + block size - 1) /
— block size);
/* Omitted: code to allocate, initialize and set the
— locks. */
#pragma omp for schedule(static, 1)
for (size_t block = 0; block < block count; ++block)
= {
const size t start = 1 + block * block size;
const size_t end = MIN(start + block size, N);
const size_t self = block % num_threads;
const size_ t next = (block + 1) % num threads;

omp_set lock(&locks[self][0]);

for (size_t i = start; i < end; ++i) {
A[i] = F(A[i], A[i-11);

}

omp_unset lock(&locks[next][0]);

/* Omitted: other stages of the pipeline */

omp_set lock(&locks[self][5]);

for (size_t i = start; i < end; ++i) {
F[i]l = f(E[i], F[i-1]);

}

omp_unset lock(&locks[next][5]);

}

/* Omitted: code to destroy and free locks */

Listing 6.4 — Teaser: Explicitly synchronized multithreaded pipeline. At
the start, all locks are set except for thread 0. Thread 0 will proceed and
progressively set its locks and unlock stages for thread 1. Hence, on its next
iteration over the block loop, it thread o will wait for the last thread to com-
plete its stages. In the same vein, each stage entry for a thread requires stage
exit from the previous thread.
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Comparison With Ordered Loops

We presented two multithreading pipelining methods. Both techniques re-
quire the scheduling policy to be set to static. However, explicitly syn-
chronized pipelines are superior as they provide greater control over various
aspects of the code.

First, explicit pipelines allow to precisely control the amount of synchron-
izations. Second, they permit a number of blocks greater than the number of
threads: the for construct enforces that threads complete all their assigned
chunks before they leave the loop. An example of this execution flow can
be viewed in Figure 6.3. With the ordered and nowait clauses, thread 0
would have to execute both chunks for S1 before it could start executing its
chunks for S2 (and it would have to wait for threads ¢1 and 2 to complete
their first chunk). With explicitly synchronized pipelines, thread 0 can fol-
low the black arrows in the figure.

The third reason why explicitly synchronized pipelines should be favored
is that they allow further refinements which are discussed in Section 6.6:
greater control over synchronizations permit chunk starts and endings (and

thus sizes) to be adjusted on a stage basis.

6.5 Experimental Results and Discussion

Our experiments were conducted on an Intel Xeon E5-2620v3 @ 2.40GHz
(6 cores, 12 threads) running Linux 5.5.4. The benchmarks were compiled
with options -03 -march=native -fopenmp using gcc 9.2.1, clang 9.0.1 and
icc 19.1.0.166. Linux FIFO scheduling was enabled and process priority was
set to 75 for measurement stability.

Benchmarks van_dongen (Listing 6.5) and wdf (Listing 6.6) come from
Fimmel and Miiller [39] who derive these examples from Van Dongen et
al. [101] and Fettweis [38]. The mix benchmark (Listing 6.7) is a code example
which contains both parallel loops and sequential loops. The last benchmark
(Listing 6.8) is based on our teaser example where all statements execute a
1 nanosecond nanosleep and then return the sum of the two operands. The

aim is to simulate long sequential computation.
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. for (int i = 2; 1 < N; ++1i) {
2 : ali] = h[i-1] + R[i];

3 : b[i] = a[i-1] + alil;
4 : c[i] = b[i-1] + b[i];
5 : d[i] = c[i-1] + c[i];
6 i e[i] = d[i-2] + d[i-1];
7 : fli] = e[i-2] + e[i-11;
8 i gli]l = f[i] + X[1i];
9 i h[i] = gl[i] + Y[il];
1 :ufi] = v[i-1] + d[i];
" : v[i] = ul[i] + Z[i];
e}

Listing 6.5 — Van Dongen: original code
. for (int i = 1; 1 < N; ++i) {
2 :ali]l = X[1] + e[1 - 1];
3 ¢ b[i] = al[i] - g[i - 1];
. 1 c[i]l = b[i] + elil;
5 : d[i] = gammal * b[i];
6 :e[i] = d[i] + e[i - 11;
7 : f[i] = gamma2 * b[i];
8 :gli]l = f[i] + g[i1 - 11;
. ©Y[i] = c[i] - gli];
o}

Listing 6.6 — WDF: original code

We used PLUTO [19] version 0.11.4 and autoPar from the ROSE [86] Com-

piler version 0.9.12.0 on our code samples and can confirm these tools do not

expose parallelism on our benchmarks (apart from the parallel loop in mix).

Nonetheless, statements are reorganized in wdf and van_dongen to improve

data locality.

We compared four versions of each benchmark: the output code of PLuTo,
the code annotated with our ordered+nowait approach and the code with
explicit locks.

A tempting alternative to our approach is to use OpenMP task constructs.
Indeed, the task construct (in conjunction with the depend annotation) al-
lows finer control over execution order. We manually wrote the fourth ver-

sion of our benchmarks where tasks are created for each loop body after we
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. for (int 1 = 1; i < N; ++1i)

2 for (int j = 0; j < M; ++j)

3 for (int k = 0; k < M; ++k)

4 S1: C[i] += BIjl + A[K] + 1.;
s for (int i = 1; 1 < N; ++i) {

6 52: D[i] = D[1i - 1] * C[il;
. S3: E[i] = E[i - 1] * D[il;
s}

Listing 6.7 — Mix: original code

. for (int i = 1; 1 < N; ++1i)
2 S1: A[i] = f(A[il, A[i-11);
3 for (int i = 1; i < N; ++i)
4 S2: B[i] = f(A[i]l, B[i-1]);
s for (int i = 1; 1 < N; ++1i)
6 S3: C[i] = f(B[i], C[i-11);
; for (int i = 1; i < N; ++i)
8 S4: D[i] = f(C[il, D[i-11);
o for (int i = 1; 1 < N; ++1)
10 S5: E[i] = f(D[i], E[i-11);
w for (int i = 1; 1 < N; ++1i)
" S6: F[i] f(E[i], F[i-1]);

Listing 6.8 — Teaser: original code

applied loop distribution as described in Section 6.3.1.

Figure 6.4 presents results observed on the code compiled with gcc with
options -03 -march=native -fopenmp.

Both our approach and the task versions allow our teaser+nanosleep
example to significantly outperform the sequential version. Moreover, it can
be noticed that task creation competes with our approach when the num-
ber of tasks remains contained and compute times are high. However, the
introduced overhead can tremendously impede the resulting program as the
number of tasks grows larger and the compute times of the tasks is small.
This can clearly be seen on teaser, wdf and vandongen. The overhead is due
to the growing number of tasks to create and the dependencies which must
be checked at runtime.

Explicit locks outperform the ordered+nowait versions and even allow
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teaser [l 0.54
teaser+nanosleep NGNS 2.99
vandongen NN 1.31

wdf [l 0.45

mix [ 1.01

locks mmm ordered+nowait tasks+distribution

Figure 6.4 — Pipelined Multithreading: Speedups Or Slowdowns Over
PLuTo Version (Code Compiled With gec 9.2.1). N = 100, 000 for teaser,
wdf and van_dongen, N = 2,000 and M = 2,000 for mix

our teaser example to exhibit speedups without the call to nanostleep. The
results show the speedups for block sizes similar to the default chunk size for
non blocked versions. We have observed even greater speedups with differ-
ent block sizes (for instance a speedup of 9.6 with a block size of 2048 on our
teaser code). The values were guessed based on the input code and cache
size of our test environment. Further work is required to determine how to
find optimal block sizes for a given pipeline and environment.

The measurements were also conducted over code compiled with clang
and libomp and the results are presented in Figure 6.5. The same observa-
tions can be made: stage blocking and explicit locks generally outperform the
tasks and ordered+nowait versions although the locking mechanism seems

less efficient.
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teaser

teaser+nanosleep

wdf

vandongen

mix

locks mmm ordered+nowait tasks+distribution

Figure 6.5 — Speedups Or Slowdowns Over PLuTO Version (clang 9.0.1).
N = 100, 000 for teaser, wdf and van_dongen. N = 2000 and M = 2000

for mix.
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Figure 6.6 presents experimental results on the code compiled with icc
19.1.0166. Synchronization is less efficient with icc/libiomp as can be ob-
served on the teaser+nanosleep example. Great speedups are observed on
the mix example because icc is able to heavily optimize the parallel loop and
significantly decrease its compute time. Overall, those results show that the
explicit locks version outperforms all the other versions on those pipelined

loops whatever the compiler and execution environment.

teaser | 7.2-10 2

teaser+nanosleep IEEEEEEN 2.3
wdf § 0.11

vandongen il 0.27

mix [ . 07

locks mmm ordered+nowait tasks+distribution

Figure 6.6 — Speedups Or Slowdowns Over PLuTO Version (icc 19.1.0.166).
N = 100, 000 for teaser, wdf and van_dongen. N = 2000 and M = 2000

for mix.

6.6 Future Work: Skewed Pipelines

We introduced explicitly synchronized pipelines in Section 6.4. Such pipelines
offer greater control over the distributions of the iterations. In particular,
they make it possible to control the placement of the chunks: different stages
of the pipeline do not necessarily need to be of equal size or to be aligned (it-
eration domain wise). The techniques previously presented in this chapter
targeted sequential loops. We show in this section how to pipeline parallel

loops as well, using this greater control over chunk placement and sizes.

Further extending Equation (6.1), multithreaded pipelines could be cre-

ated for loops if the dependencies between the loops on the parallel dimen-
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sions are of the form:

Ls152() = {4 — Tso | us —a < vy <u;+ b} (6.2)

Let us consider jacobi-1d from the PolyBench suite as shown in List-
ing 6.9. A given iteration ¢ of loop S2 depends on previous iterations ¢, ¢ — 1
and ¢+ 1 ofloop S1. In the same vein, (because the two loops are enclosed in
aloop), a given iteration ¢ of loop S1 depends on previous iterations ¢, 7 — 1
and 7 + 1 of loop S2. PLuToO [19] version o.11.4 with option - -parallel will

skew and fuse the two loops (see Appendix A.2.1).

for (t = 0; t < PB TSTEPS; t++) {
for (i = 1; i < PBN - 1; i++) {
: B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 11);
}
for (1 = 1; i < PB N - 1; i++) {
: A[i] = 0.33333 * (B[i-1] + B[i] + B[i + 11);

}

Listing 6.9 — jacobi-1d: Original Code. This kernel is a stencil computation
over1D data. Thisis a simplified version which computes the average of three
points.

This code is actually eligible for multithreaded pipelining as shown in
Listing 6.10. The method is similar to the method described in Section 6.4.
However, the main difference is that each stage potentially starts and ends
at a different index (the code example stores these indices in an array (lines
9-15) instead of inlining them in the loop bounds for legibility): each stage
is one iteration shorter and starts one iteration earlier except the first stage.
The execution order is close to skewed loops but the array accesses remain
as is. This code features another useful characteristic for pipeline extraction:
the surrounding loop over t. Partially unrolling this loop to taste makes it
possible to expose as many stages as needed (within the boundaries set by
the actual value of TSTEPS and the block sizes).

With options --partlbtile --parallel, PLuTO [19] can perform dia-
mond tiling [17]. This tiling technique is especially efficient tiling for sten-

cil computations. We compared three versions: the "skewed pipelines” code
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for (size_t steps = 0; steps < TSTEPS; t++) {

/* Omitted: code to set locks... */

#pragma omp for schedule(static, 1)

for (size_t block = 0; block <= block count; ++block) {
/* Compute self and next thread indexes. */
const size_t self = block % num_threads;
const size t next = (block + 1) % num threads;
const int distance = 1;

int start[stages], end[stages];
for (size_t i = 0; i < stages; ++i) {
const int skew = i + distance - 1;
const int skew start = offset + block * block size - skew;
start[i] = MAX(skew start, offset);
end[i] = MIN(skew start + block size, N - 1);

size_t stage = 0;

omp_set lock(&locks[self][stagel);

for (int i = start[stage]; i < end[stage]; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 11);

omp_unset lock(&locks[next][stagel);

stage++;

omp_set lock(&locks[self][stagel);

for (int i = start[stage]; i < end[stage]; i++)
A[i] = 0.33333 * (B[i-1] + B[i] + B[i + 1]);

omp_unset lock(&locks[next][stagel);

stage++;

/* Omitted: subsequent stages... */
}
/* Omitted: code to reset locks... */

Listing 6.10 — jacobi-1d: Skewed Pipelines.

(with 12 stages), the "parallel” version (the output of PLuTO with - -parallel)
and the "diamond”. We set TSTEPS to 1200 and the size to EXTRALARGE and
compiled the three versions with with gcc 9.3.0, icc 19.1.0.166 and clang 9.0.1
using options -03 -march=native -fopenmp. Table 6.1 presents execution

times of the three versions.
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Table 6.1 — Execution Times For jacobi-1d

flavour gce icc clang
parallel 0.02396233 0.09838166 0.12271866
skewed pipeline  0.00246000 0.01128500 0.00947800
diamond 0.00271200  0.00593033  0.00595900

With all three compilers the simple parallel version is the less favorable
while the skewed pipelines are significantly faster. With gcc, the skewed
pipelines are on par with the diamond tiles. Although diamond tiling in-
creases the amount of concurrent starts, the compiler failed to vectorize some
of the numerous loops in the diamond tiled version. All loops in the skewed
pipelines were vectorized. The execution times are less encouraging on the
versions compiled with icc and clang. Asseen previously, both locking mech-
anismswith clang/libomp and icc/libiomp seem less efficient thanin gcc/libgomp.
Moreover, icc failed to vectorize the skewed pipeline stages.

The other multithreaded pipelining methods presented in this chapter
target loops that are left as sequential after the scheduling phase and can
be applied during the code generation phase. On the other hand, skewed
pipelines generation target parallel loops and also require the scheduling
phase to be modified: we do not want the scheduling phase to heavily trans-
form the parallel loops which may benefit from skewed pipelines. This sec-
tion introduced the idea of skewed pipelines, further work is needed to de-
termine whether other stencil computations may benefit from this technique

and how to modify scheduling algorithms to specifically target such pipelines.

6.7 Conclusion

In order to preserve the semantics of a program, some loops must remain
sequential. However, this restriction does not necessarily forbid all forms of
parallelism. We present a new compiler technique which is able to detect,
to extract and to implement pipelined multithreading in some sequences of

sequential loops. The specific dependence analysis for the parallel execu-
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tion of interlaced iterations is enabled by polyhedral techniques, while the
pipelined execution is implemented using a specific stage-blocking trans-
formation and a code generation building on either ordered and nowait OpenMP
clauses, or explicit locks. With our method, we are able to expose pipelined
multithreading in programs which current state-of-the-art automatic poly-
hedral parallelizers fail to parallelize.

Our study shows that programs with multiple consecutive sequential loops
after loop distribution and with long enough sequential iterations can bene-
fit from pipelined multithreading. Future work should investigate how to
find optimal chunk sizes for multithreaded pipelines. We present the gen-
eral idea for skewed multithreaded pipelines. This new transformation may
compete with tiling or diamond tiling and requires further refinements and

investigations.



CHAPTER 6. EXPLOITING PIPELINED MULTITHREADING 106



107

Chapter 7

Conclusion And Perspectives

High performance computing requires extensive knowledge of the problem
domain, software engineering and the target hardware architecture. It is in-
creasingly difficult for single individuals to master all of these trades at once.
Automatic optimizers can alleviate this burden on programmers. Program-
mers can focus on problem solving and let the optimizing compilers select
an adequate way to use the target hardware. Automatic loop nest optimiz-
ation can be performed using tools based on the polyhedral model: various
aspects of the loops (iteration domains, dependences, etc.) can be represen-
ted as unions of polyhedra. These polyhedra can be manipulated via algeb-
raic transformations. Once polyhedra have been modified to reach a given
optimization goal, a code that scans the integer points of these polyhedra
is generated. In this thesis, we demonstrate that code generation in poly-
hedral compilers, — despite being considered as efficient — still has room
for improvement and we propose new solutions towards generating efficient

codes.

7.1 Contributions

7.1.1  Reducing Affine Control Overhead

Latest advances on polyhedral compilation focus on, e.g,, tiling strategies [17],

optimizing tensor codes [103, 111] and targeting accelerators [29, 4, 58, 106]
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leave the impression that code generation algorithms in polyhedral com-
pilers are considered to be fairly satisfactory. These algorithms produce a
code that scans the integer points of unions of polyhedra [11]. Unions of poly-
hedra can be represented in multiple equivalent ways. Code generation tools
use general-purpose libraries that do not necessarily focus on code genera-
tion and do not consider efficiency of the generated code.

We showed in Chapter 4 that the internal representation actually influ-
ences the performance of the end result. Generating code from unions of
polyhedra may introduce control overhead in loop bounds such as minimum
and maximum calculations. We demonstrate that these calculations can be
avoided by properly splitting polyhedra.

We proposed to refine Bastoul’s extension [11] (extended QRW) of the
Quilleré, Rajopadhye and Wilde’s [85] (QRW) algorithm for code generation:
polyhedra splitting occurs during the separation phase of extended QRW al-
gorithm.

Our method relies on the "chamber decomposition” of parametric poly-
hedra [65]. During the separation phase of the extended QRW algorithm, we
temporarily convert outer iterators of the considered polyhedra into para-
meters. We then compute the chambers of these tuned polyhedra. Finally,
these chambers are then intersected with the original polyhedra.

We implemented our algorithm in CLooG [11], a code generator that im-
plements the extended QRW algorithm. We applied our code generation
technique on CLooG's test suite and on programs from the PolyBench [83]
benchmark suite. We compared the output of our method to the output of
an unaltered version of CLooG. Experimental results show that our method

is beneficial on average.

7.2 Reducing Synchronization Overhead

Classic automatic parallelizers such as PLUTO [19] generate code where par-
allel loops are isolated in distinct parallel regions using omp parallel for
OpenMP annotations. We argue in Chapter 5 that separate parallel regions
are not the best way to generate parallel code. Control overhead is induced

by thread management at entry and exit of parallel regions and many super-
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fluous synchronizations are performed.

We show how to generate wide parallel regions from an optimized poly-
hedral AST instead of sparse parallel regions. We proposed to enclose the
whole optimized SCoP in a unique parallel region, to embed sequential code
in single constructs and to annotate parallel loops with the for construct.
Placing all worksharing constructs in a common parallel region also gives
the opportunity to lift barriers: by default, worksharing constructs end with
implicit barriers which may not always be required.

Our approach for synchronization reduction relies on dependence ana-
lysis through the polyhedral model. It allows us to identify sequences of
worksharing constructs that may be executed without interlaced synchron-
izations. Our algorithm recurses on the input optimized AST and progress-
ively builds groups of synchronization free worksharing constructs. Each
worksharing construct is tested (for inclusion) against the current group and
either expands the group or is placed in a new group. At the end of the al-
gorithm, implicit synchronizations are removed within the groups and expli-
cit synchronizations (if no implicit synchronization is present at this point)
are placed at the end of each group.

We compared the code produced by our method to the output of PLuTo.
Our best performing versions were up to 4x faster than the code whereas the
least favorable exhibited no significant difference over the output of PLuToO.
Based on these observations, this method should always be applied. Auto-
matic parallelizers should target unique parallel regions and stop generating

isolated parallel regions.

7.3 Pipelined multithreading

Automatic parallelizers such as PLuTo [19], PPCG [106] or ROSE [86] are fairly
proficient in parallelizing a wide class SCoPs by introducing loop-level par-
allelism. However, they do not generate multi-loop pipeline parallelism.
We show in Chapter 6 that these compilers could not automatically par-
allelize loop nests where individual loops had to remain sequential but could
be interlaced into pipelined multithreading. We presented a method for

identifying, extracting and implementing such pipelines. Our method tar-
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gets successive sequential loops after an automatic parallelization pass. We
identify strongly connected components in the dependence graph of con-
secutive sequential loops and perform loop fission of sequential loops in
order to maximize the number of pipeline stages: distinct strongly connec-
ted components belong to distinct loops. Pipelined multithreading validity
is ensured by extending the dependence analysis introduced in Chapter 5:
the method can be slightly relaxed for sequential loops. We then proposed
two alternative code generation methods to expose pipelined multithread-
ing: using ordered constructs or using explicit locks.

We carried out experiments on a limited set of cases. We compared the
output of our algorithm to the output of PLuto. The output of PLuTO was not
parallel but the tool still performed data-locality optimizations. We showed
that, for pipelined multithreading, explicit locks should be favoured over
ordered constructs. Our versions with locks either performed better or were
equivalent to the output of Pluto. Our study shows that programs including

sequential loops could benefit from pipelined multithreading.

7.2 Perspectives

7.2.1  Affine Control Overhead Reduction

Chapter 4 introduced polyhedra splitting to reduce control overhead. Al-
though experimental results show an overall benefit, performance is subpar
on a few cases. As the transformation should not always be applied, a de-
cision method is needed. Future work may attempt to identify what charac-
teristics make a loop nest eligible to polyhedra splitting.

Another possible direction would be to gradually expand the set of tar-
get loop nests instead of limiting the splitting of polyhedra. The method we
proposed indiscriminately splits all polyhedra up to a given threshold. Faced
with the code explosion aspect of the algorithm, we eventually attempted to
restrict the method. A starting point in the opposite direction was given in
Section 4.6. We show how in a very simple case, a polyhedron can be split
into several polyhedra via a naive inspection of the constraints. Hence, fu-

ture work may achieve better results by progressively increasing the scope of
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the transformation.

7.2.2 Transformed Pipelined Multithreading

We present pipelined multithreading in Chapter 6. This technique targets
groups of successive loops. In Section 6.6, we explained how this method
could be adapted to target parallel loops and used it on a example stencil ker-
nel. A comparison with a version of this kernel where diamond tiling [17] is
applied shows promising results. Further work should investigate how to sys-
tematically apply this transformation to parallel loops and whether it could

complement or compete with other parallelization schemes.

7.2.3 Further use of OpenMP

Classic automatic parallelizers optimize loop nests by parallelizing loop nests
with #pragma omp parallel for. We have shown in this thesis that the out-
put programs could be further improved by using more features of OpenMP.
The possibilities offered by OpenMP have yet to be used to their full extent
by automatic parallelizers. Work [96, 22, 81] has been done in that direction
but these methods require initial annotations to expose parallelism whereas
other optimizers such as Pluto target loop nests without annotations.

Forinstance, our pipelined multithreading method islimited by the num-
ber of stages: the number of threads dedicated to a pipeline should not be
greater than the number of stages. Adjusting the number of threads could
potentially free some threads for other independent tasks. This could be ad-
dressed with the teams construct (which can also be used on the host since
version 5.0 of OpenMP [79]) or with nested parallelism, if supported by the
implementation. In the same vein, the section construct can be used to ex-
ecute multiple independent sequential parts in parallel.

In this thesis, we explored some of the features provided by OpenMP.
These features, and many other, are currently used only by expert program-
mers. Automatic optimizers should exploit them in the best way to reach the

level of performance that a skilled parallel programmer can achieve.
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Appendix A
Code Excerpts

A1 Reducing Affine Loop Nests Control Overhead

Aaa  Split Tiled Motivation

/* Generated from o2.cloog by CLooG 0.18.4-8bde68f gmp bits in
— 0.42s. */
for (t1=0;tl<=floord(M-7,8);tl++) {
for (t2=0;t2<=t1-1;t2++) {
for (cl=8*tl;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=8%1t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (t2=t1;t2<=floord(8*t1+7,8);t2++) {
for (cl=8*t2;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=cl;c2++) {
S1(tl1,t2,(cl-c2),c2);
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if (M%8 <= 6) {
tl = floord(M,8);
for (t2=ceild(4*t1-3,4);t2<=0;t2++) {
for (cl1=8*tl;cl<=8*t2+7;cl++) {
for (c2=0;c2<=cl;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (c1=8*t2+48;cl<=8*t1+7;cl++) {
for (c2=0;c2<=8*t2+7;c2++) {
S1(tl1l,t2,(cl-c2),c2);

¥
for (t2=0;t2<=t1-1;t2++) {
for (cl=8*tl;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=8*t2+7;c2++) {
S1(tl1l,t2,(cl-c2),c2);

}
for (t2=max(1l,ceild(4*t1-3,4));t2<=floord(M-8,8);t2++) {
for (cl=8*tl;cl<=8*t2+6;cl++) {
for (c2=8*t2;c2<=cl;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (cl=8*t2+7;cl<=8*t1l+7;cl++) {
for (c2=8*t2;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (t2=max(1l,ceild(M-7,8));t2<=tl1;t2++) {
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for (cl1l=8*tl;cl<=M-1;cl++) {
for (c2=8*t2;c2<=cl;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (cl1=M;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=M;c2++) {
S1(tl1,t2,(cl-c2),c2);

}
for (tl=ceild(M+1,8);tl<=floord(N-7,8);tl++) {
for (t2=0;t2<=floord(M-8,8);t2++) {
for (cl=8*tl;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}
t2 = floord(M,8);
for (cl=8*tl;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

}
if ((N+7)%8 <= 5) {
tl = floord(N-1,8);
for (t2=0;t2<=floord(8*t1-N,8);t2++) {
for (cl=8*tl;cl<=N-1;cl++) {
for (c2=0;c2<=8*t2+7;c2++) {
S1(tl,t2,(cl-c2),c2);
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}
for (cl=N;cl<=8*t2+N+7;cl++) {
for (c2=cl-N;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (t2=0;t2<=min(floord(M-7,8),floord(8*tl1-N+6,8));t2++) {
for (cl=8*tl;cl<=8*t2+N;cl++) {
for (c2=8*t2;c2<=8*t2+7;c2++) {
S1(tl1l,t2,(cl-c2),c2);

}
for (c1=8*t2+N+1;cl<=8*t1+7;cl++) {
for (c2=cl-N;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (t2=ceild(M-6,8);t2<=floord(8*t1-N+6,8);t2++) {
for (cl1=8*t1l;cl<=8*t2+N;cl++) {
for (c2=8*t2;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (c1=8*t2+N+1;cl<=8*t1+7;cl++) {
for (c2=cl-N;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (t2=ceild(8*t1-N+7,8);t2<=floord(M-8,8);t2++) {
for (c1=8*tl;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=8*t2+7;c2++) {

132



123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

143

144

145

146

147

148

149

133

}
fo

—

—

}

for

if

}
fo

—

—

A.1. REDUCING AFFINE LOOP NESTS CONTROL OVERHEAD

S1(tl1,t2,(cl-c2),c2);

r
(t2=max(ceild(M-7,8),ceild(8*t1-N+7,8));t2<=floord(M,8);t2++)
{
for (cl=8*tl;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

(tl=ceild(N,8);tl<=floord(N+M-8,8);tl++) {
((7*N+7)%8 <= 6) {
t2 = floord(8*t1-N-1,8);
for (cl=8*tl;cl<=8*t2+N+7;cl++) {
for (c2=cl-N;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

r
(t2=ceild(8*t1-N,8);t2<=min(floord(M-7,8),floord(8*t1-N+6,8));t2++)
{
for (cl=8*tl;cl<=8*t2+N;cl++) {
for (c2=8*t2;c2<=8%t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (c1=8*t2+N+1;cl<=8*t1+7;cl++) {
for (c2=cl-N;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);
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}
for (t2=ceild(M-6,8);t2<=floord(8*t1-N+6,8);t2++) {
for (cl=8*tl;cl<=8*t2+N;cl++) {
for (c2=8*t2;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (c1=8*t2+N+1;cl<=8*t1+7;cl++) {
for (c2=cl-N;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (t2=ceild(8*t1-N+7,8);t2<=floord(M-8,8);t2++) {
for (cl1=8*t1l;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}

for
< (t2=max(ceild(M-7,8),ceild(8*t1-N+7,8));t2<=floord(M,8);t2++)
= {
for (cl=8*tl;cl<=8*t1+7;cl++) {
for (c2=8*t2;c2<=M;c2++) {
S1(tl1,t2,(cl-c2),c2);

}
tl = floord(N+M,8);
for (t2=ceild(8*t1l-N-7,8);t2<=floord(M-8,8);t2++) {
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for (cl1=8*tl;cl<=8*t2+N+7;cl++) {
for (c2=cl-N;c2<=8*t2+7;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (t2=ceild(M-7,8);t2<=floord(8*t1-N,8);t2++) {
for (cl=8*tl;cl<=N+M;cl++) {
for (c2=cl-N;c2<=M;c2++) {
S1(tl,t2,(cl-c2),c2);

}
for (t2=ceild(8*t1-N+1,8);t2<=floord(M,8);t2++) {
for (cl=8*tl;cl<=8*t2+N;cl++) {
for (c2=8*t2;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

}
for (c1=8*t2+N+1;cl<=N+M;cl++) {
for (c2=cl-N;c2<=M;c2++) {
S1(t1,t2,(cl-c2),c2);

A.2 Pipelined Multithreading

A.21 Jacobi-1d: Pluto Parallel

int t, i;
int t1, t2, t3;
int lb, ub, lbp, ubp, 1b2, ub2;

register int lbv, ubv;
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/* Start of CLooG code */
if ((_PB.N >= 3) && ( PB TSTEPS >= 1)) {
B[1] = 0.33333 * (A[1 -1] + A[1] + A[1 + 11);;
for (tl=2;tl<=min( PB N-2,3* PB TSTEPS-2);tl++) {
if ((2%t1+1)%3 == 0) {
B[1] = 0.33333 * (A[1 -1]1 + A[1] + A[1l + 11);;
}
lbp=ceild(2*t1+2,3);
ubp=t1;
#pragma omp parallel for private(lbv,ubv,t3)
for (t2=1bp;t2<=ubp;t2++) {
BL(-2*t1+3*t2)] = 0.33333 * (A[(-2*t1+3*t2)-1] +
o AL(-2%t143%t2) ] + A[(-2*%t1+3*t2) + 11);;
A[(-2%t1+3*t2-1)] = 0.33333 * (B[(-2*t1+3*t2-1)-1] +
o BL(-2*t1+3*t2-1)] + B[(-2*t1+3*t2-1) + 1]);;

}
¥
if (_PB N == 3) {
for (t1l=2;tl<=3* PB TSTEPS-2;tl++) {
if ((2%tl+1)%3 == 0) {
B[1] = 0.33333 * (A[1 -1] + A[1] + A[1l + 11);;
}
if ((2%t1+2)%3 == 0) {
A[1] = 0.33333 * (B[1 -1] + B[1] + B[l + 11);;
}
}
}

for (t1=3* PB TSTEPS-1;tl<= PB N-2;tl++) {
lbp=t1- PB TSTEPS+1;
ubp=t1;
#pragma omp parallel for private(lbv,ubv,t3)
for (t2=1bp;t2<=ubp;t2++) {
B[(-2*t1+3*t2)] = 0.33333 * (A[(-2*t1+3*t2)-1] +
o A[(-2%t1+3*%t2)] + A[(-2%t1+3*t2) + 11);;
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A[(-2%t1+3*t2-1)] = 0.33333 * (B[(-2*t1+3*t2-1)-1] +
— B[ (-2*t1+3*t2-1)] + B[(-2*t1+3*t2-1) + 1]);;

}
if (_ PB N >= 4) {
for (tl= PB N-1;tl<=3* PB TSTEPS-2;tl++) {
if ((2*%t1+1)%3 == 0) {
B[1] = 0.33333 * (A[1 -11 + A[1] + A[1 + 11);;
}
lbp=ceild(2*t1+2,3);
ubp=floord(2*tl+ PB N-2,3);
#pragma omp parallel for private(lbv,ubv,t3)
for (t2=1bp;t2<=ubp;t2++) {
BL(-2*t1+3*t2)] = 0.33333 * (A[(-2*t1+3*t2)-1] +
—  A[(-2%t1+43*%t2)] + A[(-2*%t1+3*t2) + 1]);;
A[(-2*t1+3*t2-1)] = 0.33333 * (B[(-2*t1+3*t2-1)-1] +
—  B[(-2*t1+3*t2-1)] + B[(-2*t1+3*t2-1) + 11);;
}
if ((2*%tl+ PB N+2)%3 == 0) {
A[( PB N-2)] = 0.33333 * (B[(_PB N-2)-1] + B[(_PB N-2)]
— + B[(_PB N-2) + 1]);;

}

for

< (tl=max(_PB_N-1,3* PB TSTEPS-1);tl<=3* PB TSTEPS+ PB N-5;t1++)

= |
lbp=t1l- PB TSTEPS+1;
ubp=floord(2*tl+ PB N-2,3);
#pragma omp parallel for private(lbv,ubv,t3)
for (t2=1bp;t2<=ubp;t2++) {
B[(-2*t1+3%t2)] = 0.33333 * (A[(-2*t1+3*%t2)-1] +
o A[(-2%t1+3*%t2)] + A[(-2*t1+3*t2) + 1]);;
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}
Al

—

AL(-2%t1+3%t2-1)] = 0.33333 * (B[(-2*t1+3*t2-1)-1] +
o BL(-2%t1+3%t2-1)] + B[(-2%t1+3*t2-1) + 11);;

}

if ((2%tl+ PB N+2)%3 == 0) {
A[( PB N-2)] = 0.33333 * (B[( PB N-2)-1] + B[( PB N-2)] +
< BI(_PBN-2) + 11);;

( PB N-2)] = 0.33333 * (B[(_PB N-2)-1] + B[( PB N-2)] +
B[(_PB_N-2) + 11);;
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Annexe B

Résumé en francais

B.1 Introduction

En raison des difficultés technologiques limitant 'augmentation des perfor-
mances des unités de calcul séquentiel, I'informatique s’est progressivement
tournée vers toujours plus de parallélisme. Plusieurs types de parallélisme
ont vu le jour : pipelines d’éxécution, instructions vectorielles, threads (fils
d’exécution) ou processus multiples sur processeurs multi-coeurs, architec-
tures multi-processeurs a mémoire distribuée et accélérateurs de calcul. Ex-
ploiter au mieux ces types de systémes nécessite actuellement une connais-
sance approfondie de plusieurs domaines (techniques d’'optimisation, archi-
tecture, parallélisme) et est par conséquent 'apanage d'une poignée d’ex-
perts. Pour y pallier, il existe des outils doptimisation et de parallélisation
automatiques.

Certains de ces outils reposent sur le modele polyédrique. Il s'agit d'un
modele mathématique permettant de représenter et manipuler sous forme
de polyedres des nids de boucles affines. Son utilisation en compilation du
modele polyédrique peut se décomposer en trois phases : modélisation, trans-
formation et génération de code. Dans un premier temps, le code source est
analysé afin d’en extraire une représentation mathématique sous forme de
polyedres. Ces polyedres peuvent ensuite étre manipulés et transformés en
utilisant les techniques de I'algebre linéaire selon 'optimisation ciblée. Enfin,

la génération de code consiste a produire un code qui parcourt ces polyedres.
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Une grande partie des travaux actuels dans le domaine du modeéle poly-
édrique porte sur les transformations a appliquer et les optimisations ainsi
permises. A linverse, la génération de code est délaissée car la littérature
correspondante offre des algorithmes considérés comment étant suffisam-
ment performants. Nous montrons dans cette these non seulement qu’il sub-
siste une nette marge d’amélioration vis-a-vis de I'état de I'art mais que, par
ailleurs, les défis a relever par la phase de génération de code mériteraient
d’étre pris en considération lors de la phase de transformation et d'optimisa-
tion.

Nous expliquons en Section B.2 comment le cotit du contréle dii au par-
cours de plusieurs polyedres dans le code généré par un compilateur poly-
édrique peut étre diminué [93]. Dans le cas de codes paralléles, les synchro-
nisations peuvent limiter drastiquement la performance d'un programme.
Nous donnons en Section B.3 la méthode permettant de détecter et éliminer
les barriéres de synchronisation superflues [91]. Enfin, la Section B.4 aborde
le pipelined multithreading [92], une transformation qui introduit du paral-
lélisme sur une classe de programmes jusqu'a présent ignorée par les paral-

léliseurs polyédriques.

B.2 Réduction du cotiit du controle

Létape de génération de code dans un compilateur polyédrique prend en
entrée une union de polyedres et produit un code qui parcourt les points
entiers de cette union. De nombreux travaux ont été menés afin d'améliorer
le code produit. Néanmoins, le cotit du controle reste élevé dans certains cas.

Il est possible de représenter un méme domaine par plusieurs unions
distinctes — mais équivalentes — de polyedres. Les outils d'optimisation
automatique n'y prétent pas attention et laissent le choix de 'union retenue
aux biliothéques de manipulation de polyedres sous-jacentes. Le parcours de
certains polyedres requiert du controle supplémentaire tel que des calculs
de minimums ou maximums tandis qu'une union de polyédres plus simple
mais équivalente pourrait ne pas nécessiter de tels calculs.

La décomposition en chambres d'un polyedre paramétré permet de cal-

culer les domaines de validité et les sommets de ce polyedre. Nous propo-
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sons d'utiliser ce procédé afin de découper les domaines d'itération lors de
la génération de code polyédrique. L'algorithme de génération de code étant
un algorithme récursif sur les dimensions des polyedres, a chaque étape,
nous considérons temporairement les dimensions extérieures comme des
parametres afin de rechercher sa décomposition en chambres. Les chambres
ainsi calculées sont alors utilisées pour découper le polyédre de départ.

Les résultats expérimentaux montrent sur un grand nombre d'exemples
la pertinence de cette approche : selon les conditions, jusqua 98% d’accé-
lération et jusqu'a 10% en moyenne. Cependant, la baisse de performance
observée (jusqu'a 70%) sur certains cas extrémes suggere que le découpage
de domaines ne peut étre systématique. La nature des paramétres permet-

tant de prendre cette décision restent un probléme ouvert.

B.3 Réduction des synchronisations

Les paralléliseurs polyédriques automatiques générent du code annoté al'aide
d’'instructions de parallélisation. L'outil considéré comme I'état de I'art se con-
tente d’ajouter des annotations autour des boucles identifiées comme étant
paralléles et ne tire pas parti de I'ensemble des instructions de parallélisation
disponibles. Ce choix d’annotations isole chaque boucle parallele dans une
région paralléle distincte. En conséquence, des threads doivent étre créés au
début de chaque boucle parallele et chaque boucle parallele est terminée par
une barriére de synchronisation.

Nous proposons d’utiliser des structures de controle de parallélisation
disponibles afin de créer une unique région paralléle pour I'ensemble du
code généré. Le désavantage de cette transformation est que les parties sé-
quentielles doivent désormais étre explicitement exclues du parallélisme.
Mais l'avantage et le but de cette transformation est d’éliminer les synchro-
nisations superflues (ce qui était impossible lorsque les régions paralleles
étaient séparées). Le modele polyédrique nous permet d’analyser les dépen-
dances entre les différentes boucles paralléles. Cette analyse nous permet
d’identifier les zones du code ne nécessitant pas de synchronisation.

D’apres les expériences, et comme prévu, I'impact de cette transforma-

tion est plus élevé sur des programmes ot le temps de synchronisation consti-
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tue une part non négligeable du temps total d'exécution. A l'inverse, les effets
sont de moins en moins marqués lorsque les temps de calculs augmentent et
progressivement masquent les temps de synchronisation. Néanmoins, notre
méthode n'introduit jamais de ralentissement et il est donc raisonnable de
toujours l'appliquer en complément de la phase de parallélisation automa-

tique.

B.4 Pipelines multi-fils d’exécutions

Les outils de parallélisation automatique polyédrique ciblent essentiellement
des boucles parallélisables de maniére isolée. Une boucle est annotée avec
des instructions de parallélisation lorsque I'exécution en parallele de toutes
les itérations de cette boucle est valide. De méme, en ce qui concerne le pa-
rallélisme, les transformations appliquées a une ou plusieurs boucles vise a
obtenir des boucles dont les itérations sont indépendantes.

ATinverse, une boucle n'est pas parallélisée dés lors que certaines de ses
itérations doivent étre exécutées séquentiellement. Cependant, une autre
forme de parallélisme peut parfois étre extrait : le parallélisme de pipeline.
Nous proposons de cibler les boucles restées séquentielles apres la passe de
parallélisation automatique.

Notre technique de pipelining s'applique sur des groupes de boucles sé-
quentielles successives. La premiere étape est, apres I'analyse du graphe de
dépendances, d’'identifier les composantes fortement connexes afin de les sé-
parer en boucles distinctes. Une autre analyse permet ensuite de determiner
si des boucles successives peuvent étre exécutées en pipeline. Si tel est le cas,
nous utilisons des annotations de parallélisation pour indiquer que chaque
boucle doit étre découpée en blocks (chunks), que ces chunks doivent étre
exécutés dans l'ordre et que chaque fil d'exécution peut passer a la boucle
suivante deés lors que son chunk est terminé.

Cette transformation peut ensuite étre raffinée en utilisant des synchro-
nisations explicites : nous découpons les boucles en chunks de notre choix
et les pipelines progressent lorsque chaque fil d'exécution effectue une syn-
chronisation a la fin d'un chunk.

Nos résultats expérimentaux montrent que cette méthode est d'autant
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plus bénéfique que le nombre de boucles susceptibles d’étre affectées aug-
mente. A défaut d’étre bénéfique dans des cas plus simples, cette transforma-
tion n'est pas négative non plus. Nous n’avons pas observé de contre-indication

a une application systématique de notre technique.

B.s Conclusion

Au cours de cette these nous avons montré que la génération de code po-
lyédrique efficace est une tache ardue. Nous avons présenté des méthodes
permettant de réduire le cotit du contrdle, déliminer les synchronisations
superflues et d'introduire plus de parallélisme. Bien que les résultats soient
encourageants, notre technique de réduction du coiit de controle offre des
performances mitigées : de futurs travaux devront déterminer dans quelle
mesure appliquer le découpage de domaines. La réduction des synchroni-
sations et I'introduction du pipelined multithreading sont deux opérations
qui peuvent s'appliquer aprés une phase de génération de code classique.
Il n'y a aucune contre indication a I'application de ces passes. Il s'agit donc
en I'état de méthodes complémentaires aux techniques d’'optimisation po-
lyédrique existantes. Néanmoins, nos observations montrent que ces mé-
thodes seraient plus efficaces si ces possiblités étaient prises en compte lors
des phases précédentes d'optimisation. De futures améliorations des tech-
niques d'ordonnancement polyédrique pourraient explicitement cibler des

boucles sans synchronisation ou des pipelines de boucles.
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ABSTRACT

This thesis proposes new extensions to the code generation phase in polyhedral compilers. The
main focus of recent work on polyhedral compilation focus is the optimizations leveraged by poly-
hedral transformations while state-of-the-art code generation algorithms are considered satisfact-
ory. We show that state-of-the-art polyhedral code generation can still be further improved.

We explain how splitting polyhedra can reduce the control overhead introduced by polyhedra scan-
ning in the code generated by a polyhedral compiler. Synchronizations in parallel code can drastic-
ally impede a program’s performance. We propose a method to detect and lift unnecessary syn-
chronization barriers. Finally, we introduce pipelined multithreading, a transformation that intro-

duces parallelism in a class of programs that was, until now, ignored by polyhedral parallelizers.
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étant suffisamment performants. Nous montrons dans cette these qu'il subsiste une nette marge
d’amélioration vis-a-vis de I'état de l'art.
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généré par un compilateur polyédrique peut étre diminué. Dans le cas de codes paralléles, les syn-
chronisations peuvent limiter drastiquement la performance d'un programme. Nous donnons la
méthode permettant de détecter et éliminer les barrieres de synchronisation superflues. Enfin, nous
proposons le pipelined multithreading, une transformation qui introduit du parallélisme sur une
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