
HAL Id: tel-03505908
https://theses.hal.science/tel-03505908v1

Submitted on 1 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of drying rate on delayed strain behavior of
cement-based materials - experimental and numerical

study
Justin Kinda

To cite this version:
Justin Kinda. Impact of drying rate on delayed strain behavior of cement-based materials - experimen-
tal and numerical study. Génie civil. Université Paris-Saclay, 2021. Français. �NNT : 2021UPAST020�.
�tel-03505908�

https://theses.hal.science/tel-03505908v1
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
T
0
2
0

Impact of drying rate on
delayed strain behavior of
cement-based materials -

experimental and numerical
study

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 579, sciences mécaniques et
énergétiques, matériaux et géosciences

Spécialité de doctorat: solides, structures et matériaux
Unité de recherche: Université Paris-Saclay, ENS Paris-Saclay, CNRS,
LMT- Laboratoire de Mécanique et Technologie 91190, Gif-sur-Yvette,

France
Référent: ENS Paris-Saclay

Thèse présentée et soutenue à l’École normale supérieure
Paris-Saclay, le 01 mars 2021, par

Justin Kinda

Composition du jury:
Jean-Michel Torrenti Président
Professeur, Ecole des Ponts ParisTech
Alain Sellier Rapporteur
Professeur, Université Paul Sabatier - Toulouse III
Matthieu Vandamme Rapporteur
Chercheur HdR, Ecole des Ponts ParisTech
Francois Hild Examinateur
Directeur de Recherche, CNRS
Catherine A. Davy Examinatrice
Professeur, Ecole Centrale de Lille
Bruno Huet Invité
Ingénieur Chercheur, LafargeHolcim

Farid Benboudjema Directeur de thèse
Professeur, ENS Paris-Saclay
Alexandra Bourdot Coencadrante
Maître de Conférence, ENS Paris-Saclay
Laurent Charpin Coencadrant
Ingénieur Chercheur, EDF R&D
Sylvie Michel-Ponnelle Coencadrante
Ingénieur Chercheur, EDF R&D



2



Contents

Contents i

List of Figures v

List of Tables xi

Remerciements 1

Résumé long - Long abstract 3

Background and outline of the thesis 7

1 Literature review 13
1.1 Generality on cement-based materials . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Hydration process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 The nanostructure of C-S-H . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Multi-scale porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.4 Water in cement paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.5 Water desorption isotherm . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Interaction with microstructure evolution and mechanical behavior 22
1.2.3 Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.4 Carbonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Drying shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Review of mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 Drying shrinkage and relative humidity . . . . . . . . . . . . . . . . . . 27
1.3.3 Concluding remarks on drying shrinkage mechanisms . . . . . . . . . 28

1.4 Basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.1 Mechanism of basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.2 Short term basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.3 Long term basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Drying creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.1 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.2 Mechanisms of drying creep . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.3 Modeling drying creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Investigation of drying shrinkage of cement-based materials assisted by Digital
Image Correlation 41
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Experimental programm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

i



CONTENTS

2.2.1 Samples preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.2 ESEM experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.3 Climatic chamber experiments . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.4 Experiments with saturated salt solutions humidity control system . 47

2.3 Brief description of Digital image correlation . . . . . . . . . . . . . . . . . . . 49
2.3.1 Principle of DIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2 Uncertainty sources in DIC measurement . . . . . . . . . . . . . . . . 50

2.4 DIC technique investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.1 Displacement and residual strain maps study . . . . . . . . . . . . . . 53
2.4.2 Strain sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.3 Discussion on uncertainty results . . . . . . . . . . . . . . . . . . . . . 56
2.4.4 Comparison of techniques . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Investigation of drying shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.1 Effect of drying rate on drying shrinkage . . . . . . . . . . . . . . . . . 58
2.5.2 Comparison with literature results . . . . . . . . . . . . . . . . . . . . . 60
2.5.3 Potential application of the method . . . . . . . . . . . . . . . . . . . . 61

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Experimental and numerical investigation of drying. Surface exchange effects,
impact on drying shrinkage 67
3.1 Motivation for the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Measurements of mass loss . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3 Measurement of desorption isotherm . . . . . . . . . . . . . . . . . . . 68
3.2.4 Measurement of drying shrinkage . . . . . . . . . . . . . . . . . . . . . 69
3.2.5 Summary of experimental campaigns and global strategy for numer-

ical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Model for drying of cementitious materials . . . . . . . . . . . . . . . . . . . . 70
3.4 Numerical simulation of drying: model identification, prediction and size

effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.1 Mesh and Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 71
3.4.2 Simulation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.3 Identification of desorption isotherm . . . . . . . . . . . . . . . . . . . 73
3.4.4 Identification of drying parameters . . . . . . . . . . . . . . . . . . . . 73
3.4.5 Scaling potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.6 Prediction of drying saturation profile - effect of surface exchange . . 76
3.4.7 Discussion on model identification . . . . . . . . . . . . . . . . . . . . 79

3.5 Investigation on surface moisture transport coefficient . . . . . . . . . . . . . 79
3.5.1 Drying process and surface evaporation . . . . . . . . . . . . . . . . . 79
3.5.2 Boundary conditions with surface factor . . . . . . . . . . . . . . . . . 80
3.5.3 Numerical study of the moisture transfer coefficient . . . . . . . . . . 81
3.5.4 Surface bulk constant number . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Experimental study and numerical modeling of drying shrinkage . . . . . . 85
3.6.1 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.2 Adopted drying shrinkage model . . . . . . . . . . . . . . . . . . . . . . 86
3.6.3 Experimental determination of drying shrinkage coefficient . . . . . 86
3.6.4 Prediction of drying shrinkage . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



CONTENTS

4 Creep of cement paste at variable humidity: Pickett effect and size effect - Exper-
imental study 95
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Study of drying creep and shrinkage in ESEM . . . . . . . . . . . . . . . . . . 96

4.3.1 Overall description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.3 Loading in ESEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.4 Imaging for strain evaluation . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.5 Protocol for ESEM campaign . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.6 ESEM tests results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Study of drying shrinkage and creep in climatic chamber . . . . . . . . . . . 102
4.4.1 Overall description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.2 Environmental control: relative humidity, temperature and carbon

dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.3 Loading and centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.4 Imaging and strain measurement . . . . . . . . . . . . . . . . . . . . . 105
4.4.5 Protocol for climatic chamber campaign . . . . . . . . . . . . . . . . . 105
4.4.6 Climatic chamber test results . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Macroscopic creep and shrinkage tests at three relative humidities . . . . . . 107
4.5.1 Overall description of experiments . . . . . . . . . . . . . . . . . . . . 107
4.5.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.3 Loading and centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.4 Strain measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.5 Results of macroscopic creep and shrinkage tests . . . . . . . . . . . . 109

4.6 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6.1 Dependence of basic creep on relative humidity . . . . . . . . . . . . . 113
4.6.2 Separation of mechanisms of drying creep and basic creep . . . . . . 114
4.6.3 Shrinkage vs. mass loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.6.4 Relation between creep and shrinkage in microscopic tests . . . . . . 116
4.6.5 Investigation on the kinetics of drying creep . . . . . . . . . . . . . . . 117

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Creep of cement paste at variable humidity: Pickett effect and size effect - nu-
merical simulations 125
5.1 Description of experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Description of the mechanical models . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Burger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2.2 Micro-Prestress Solidification (MPS) model . . . . . . . . . . . . . . . 128

5.3 Numerical analysis of experiments . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.1 Simulation of drying and creep: mesh and boundary conditions . . . 129
5.3.2 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3 Prediction of drying rate effect . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.4 Evaluation of model scaling capability . . . . . . . . . . . . . . . . . . 133
5.3.5 Prediction of basic creep at different relative humidities . . . . . . . . 134
5.3.6 Analysis of microcracking: prediction of stress profile evolution . . . 134

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4.1 Basic creep dependence on relative humidity . . . . . . . . . . . . . . 136
5.4.2 Identification of drying creep or Pickett effect . . . . . . . . . . . . . . 137

iii



CONTENTS

5.4.3 Assessment of intrinsic drying shrinkage on macroscopic specimens 137
5.4.4 Pickett effect: separation between micro-cracking and the intrinsic

mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.5 Modeling of drying creep: size effect . . . . . . . . . . . . . . . . . . . . 140

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Conclusion and Perspectives 147

Appendix 153
5.6 Burger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.6.1 Elasticity and basic creep . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.6.2 Drying shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.6.3 Desiccation creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7 Detailed Description of Micro-prestress solidification (MPS) model . . . . . 154

iv



List of Figures

1.1 Schematic representation of hydration process: cement powder (A), contact
with water and partially dissolution (B), C−S−H precipitates (C) onto sur-
face of powder. In set solid (D), the contact area increase between grains is
responsible for the mechanical strength increase, the acting force remaining
the same (Lesko et al., 2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Microstructure of C−S−H: Low Density C−S−H and High density C−S−H (Maruyama
et al., 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Deshydration of 1.4 nm tobermorite as captured using Transmission Elec-
tron Microscopy (TEM) (Richardson, 2008) . . . . . . . . . . . . . . . . . . . 16

1.4 Main constituents of C−S−H in P-B model . . . . . . . . . . . . . . . . . . . . 16

1.5 C−S−H layered structure (Feldman and Sereda, 1968) . . . . . . . . . . . . . 17

1.6 C-S-H globules, 5 nm characteristic length (Allen and Thomas, 2007) . . . . 18

1.7 Drying process in cement based materials (Mainguy et al., 2001) . . . . . . . 21

1.8 Schematic of relationship between the microstructural changes caused by
drying at various RHs and strength (Maruyama et al., 2014) . . . . . . . . . . 22

1.9 (a) Typical distributions of pore humidity at various times during drying;
(b) free shrinkage and creep at various points of cross section; (c) internal
stresses ((Bazant and Wittmann, 1982) . . . . . . . . . . . . . . . . . . . . . . 23

1.10 Schematic of mechanical equilibrium in hardened cement paste: the pore
structure viewed as a two parallel planes, with the disjoining pressure keep-
ing the thickness of adsorbed layer constant and balanced by the mechani-
cal stress of the skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.11 Schematic reprensentation of Gibbs-Banham shrinkage (Ye and Radlínska,
2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.12 Schematic microstructure of cement paste, with color indicating the stiff-
ness of each phase (Hu et al., 2019) . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Sample preparation process. (a) Curing conditions and (b) sawing of cylin-
der to obtain prism of size 10×10×2 mm. . . . . . . . . . . . . . . . . . . . . . 43

2.2 Specimens for multiscale investigation of drying shrinkage using saturated
saline solution (a) Climatic chamber (b) and ESEM (c) techniques . . . . . . 45

2.3 Experimental set-up for drying shrinkage measurement in ESEM using BSE
mode to image the sample on stand . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Illustration of target humidity, controled in ESEM, test DS-P2mm-ESEM-LCIs. 47

2.5 Experimental set-up for drying shrinkage measurement in climatic cham-
ber conditioning system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Experimental set-up for drying shrinkage measurement in relative humidity
chamber controlled by saturated salt solution. . . . . . . . . . . . . . . . . . . 49

v



LIST OF FIGURES

2.7 Region of Interest (a) and (b, c, d) different mesh sizes tested in uncertainty
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8 Images taken at T0 (test start) and T1 (test end) for uncertainty analysis,
(schematic drying path is given in fig.2.4) . . . . . . . . . . . . . . . . . . . . . 52

2.9 Deformed mesh along with associated residual map: element size= 4.2 µm;
regularization length= 133µm (a), element size=33µm, regularization length
= 133 µm (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.10 Displacement result of DIC calculation for element size 4.2 µm and regular-
ization length of 133 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.11 Displacement result of DIC calculation for element size 33 µm and regular-
ization length of 133 µm (between T0 and T1) . . . . . . . . . . . . . . . . . . 54

2.12 Result of DIC applied on images acquiredapproximately 2 minutes one after
another at relative humidity step of 79 %, 0.5 h after the start of the test. Cor-
relation residual and standard uncertainty for εdev , εxx and εy y as a function
the length of regularization for different mesh sizes (16, 64, 128 pix). . . . . . 55

2.13 Result of DIC applied on images acquired approximately 2 minutes one after
another at relative humidity step 39% RH, 1.7 h after the start of the test.
Correlation residual and standard uncertainty values for εdev , εxx , and εy y

as a function the length of regularization for different mesh sizes (16, 64,
128 pix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.14 Result of DIC applied on image acquired approximately 2 minutes one after
another at relative humidity step 9% RH, 4 h after the start of the test. Corre-
lation residual and standard uncertainty for εdev , εxx , and εy y as a function
the length of regularization for different mesh sizes (16, 64, 128 pix). . . . . . 57

2.15 Comparison of drying shrinkage measurement. (a) Climatic chamber and
(b) ESEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.16 Drying shrinkage coefficient assessment: effect of drying rate . . . . . . . . . 58

2.17 Drying length change assessed by DIC using two different systems: DS-P500µm-
CC-LCIs specimen , ksh = 8.5 10−5; DS-P200µm-CC-LCIs, ksh = 8.6 10−5; DS-
P2mm-ESEM-LCIs: ESEM, ksh = 9.1 10−5. More details on the tests are given
in tab.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.18 Drying Shrinkage [relative to maximum value] vs. relative humidity: data
from experiments P500µm-CC-LCIs, DS-P200µm-CC-LCIs, and DS-P2mm-
ESEM-LCIs; and from Neubauer and Jennings (1997), Baroghel-Bouny et al.
(1999), Maruyama et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Experimental desorption isotherm of the studied cement paste (w/c = 0.52)
and numerical fit using Van Genuchten’s model (a = 6.131 107 Pa , b = 0.512) 69

3.2 Mesh for drying and drying shrinkage simulations . . . . . . . . . . . . . . . 72

3.3 Identification of intrinsic water permeability K0 = 1.02× 10−21 m2 and the
tortuosity parameter of Van Genuchten’s relationship nk = 2.52 on experi-
ment DS-C18-CAC-RH50 (tab.3.2) performed at 20° C and 50% of humidity
in free air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Experimental result of test DS-C18-SS-RH20 of tab.3.2 and numerical com-
parison. Impact of using identified surface exchange coefficient Cs = 3.6×
10−9[kg /m2/s] and vapor diffusion parameter amq = 5[-]. . . . . . . . . . . . 75

vi



LIST OF FIGURES

3.5 Prediction of mass loss of 36× 180 mm cylinders, drying at different rela-
tive humidity levels (experiments C18-SS-RH80, C18-SS-RH58 and C18-SS-
RH20). Only the first 140 days data from C18-SS-RH20 was used in model
identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Simulation of the experiment DS-C18-CAC-RH50 using the complete Richards-
Fick model with the two types of boundary conditions: Dirichlet (without
exchange coefficient) and Neumann (with the identified exchange coefficient) 76

3.7 Prediction of mass loss of small prism (P1mm-DVS experimentm) of 1 mm
drying thickness using the identified models. . . . . . . . . . . . . . . . . . . 77

3.8 Prediction of mass loss of small prism (10×10×0.5 mm) with 0.25 mm drying
thickness using the parameters identified above . . . . . . . . . . . . . . . . . 77

3.9 Evolution of water saturation profiles of cylindrical, �36× 180 mm speci-
men (tests C18mm-SS-RH80, C18mm-SS-RH60, C18mm-SS-RH20 and C18-
CAC-RH50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.10 Sketching the boundary condition with surface effect . . . . . . . . . . . . . 80
3.11 Evolution of mass loss, when using Dirichlet and Robin boundary condi-

tions and different values of exchange coefficient Cs for specimens of differ-

ent drying thickness r ; t 1/2

r is the drying equivalent time. . . . . . . . . . . . . 82
3.12 Kinetic of mass loss evolution for material intrinsic permeability of K = 10−18,

10−21 and 10−23 m2, each for exchange coefficient Cs = 10−6, 10−7, 10−8

kg .m−2.s−1 and drying thicknesses r = 1, 2, 5 mm . . . . . . . . . . . . . . . 84
3.13 Determination of drying shrinkage coefficient ksh = 8.6× 10−5 by sorption

length change measurements on a small prism (experiment P500µm-CC-
LCIs), performed in climatic chamber. . . . . . . . . . . . . . . . . . . . . . . . 86

3.14 Prediction of drying shrinkage at centimeter level using kshḣ model, with
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Résumé long

Les enceintes du parc nucléaire français font l’objet d’un programme de maintenance
coûteux en vue de maintenir une étanchéité suffisante en regard des critères réglemen-
taires. L’ingénierie souhaite disposer de moyens pour optimiser ce programme de main-
tenance en vue de réduire les coûts. La perte de précontrainte est une cause majeure de
cette perte d’étanchéité. Ainsi, tous les phénomènes à l’origine de cette perte de précon-
trainte doivent être maîtrisés, au premier plan le fluage et le retrait du béton, pilotés à long
terme par son séchage. Pour prédire l’évolution de l’étanchéité à l’avenir, EDF a donc be-
soin de disposer de lois de comportement du béton des enceintes. Le développement de
telles lois a déjà fait l’objet de nombreux travaux à EDF, qui se poursuivent au sein de cette
thèse sur l’influence de la vitesse de séchage sur les déformations différées. En effet, les
modèles de retrait et de fluage actuellement utilisés à EDF R&D supposent que la variation
de retrait ou de fluage est liée à la variation d’humidité, indépendamment de la vitesse à
laquelle se fait cette variation. Or, les éprouvettes de laboratoire étant de très petite taille
par rapport à l’épaisseur des structures étudiées, le séchage est beaucoup plus rapide en
laboratoire que sur les enceintes. Il est donc nécessaire de vérifier que l’indépendance à la
vitesse de séchage est valable. Pour étudier cette thématique, il est nécessaire de pouvoir
piloter le degré de saturation d’échantillons de béton. Or, le séchage du béton est très lent
et induit des durées d’essai importantes. Ainsi, l’étude a été menée sur pâte de ciment,
qui est la source des déformations différées et présente donc qualitativement le même
comportement de retrait et de fluage que le béton. L’avantage de travailler avec la pâte de
ciment, c’est qu’il est possible de réaliser des échantillons représentatifs beaucoup plus
petits, qui s’équilibrent donc plus vite et permettent des durées d’essais raisonnables. Le
présent travail vise donc à apporter une contribution à la compréhension des mécan-
ismes de séchage, de retrait et de fluage à l’échelle de la pâte de ciment grâce à des essais
expérimentaux novateurs, notamment vis à vis de la vitesse de séchage et de l’effet Pick-
ett. Puis, à la lumière de ces résultats, l’objectif est de proposer un modèle prenant en
compte ces effets hydriques sur le comportement différé du béton.

Dans le volet expérimental, le but de la campagne est d’étudier l’effet de la vitesse
de séchage sur le fluage et le retrait. Une difficulté lors de la caractérisation du retrait et
du fluage séchant est la fissuration des échantillons en raison des gradients de séchage au
sein de l’échantillon. L’utilisation de petits échantillons de pâte de ciment qui s’équilibrent
rapidement et donc présentent des gradients moins marqués, permet de limiter les effets
de fissuration à l’échelle de la structure, et évite une microfissuration due aux contrastes
de retrait et de fluage entre la pâte de ciment et les granulats. Ainsi il est possible d’isoler
les effets purement matériaux à l’échelle de la pâte de ciment. Il a donc été décidé de
réaliser des essais de retrait et de fluage sur des échantillons de pâte de ciment d’épaisseur
2 mm. Ces essais microscopiques ont été réalisés : (1) sous microscope électronique à
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balayage environnemental (MEBE) à EDF R&D MMC et (2) dans la machine de traction-
compression biaxiale Mini-Astrée du LMT à l’ENS Paris-Saclay, placée sous enceinte cli-
matique avec une concentration en CO2 contrôlée et suivis par une caméra ultrarapide.
Les images obtenues lors de ces essais ont été analysées par corrélation d’images. Les ré-
sultats montrent que la vitesse de séchage n’a pas d’impact sur la déformation maximale
de retrait de dessiccation. En parallèle, il a été entrepris une campagne macroscopique
sur des échantillons séchants et prééquilibrés à différentes humidités relatives: 80 %HR,
58 %HR et 20 %HR. Ces essais mettent en évidence la diminution de la cinétique de fluage
propre quand l’humidité relative diminue.

Pour ce qui est du volet numérique, l’objectif est de proposer des modèles de séchage,
de retrait et de fluage qui intègrent au mieux l’impact de la vitesse de séchage, par l’étude
numérique des essais réalisés. L’analyse du séchage a été menée en premier lieu. Un
modèle de séchage prenant en compte la perméation de l’eau liquide et la diffusion de la
vapeur d’eau a été adopté, avec comme variable principale le degré de saturation en eau
liquide. Le modèle a été implémenté dans les outils de simulation d’EDF. Une attention
particulière a été portée sur l’identification des paramètres et aux conditions aux limites
de convection hydrique. Il est démontré que ce modèle de séchage permet de simuler
des échantillons de différentes tailles (rayon de séchage de 1 mm, 36 mm) avec un jeu
unique de paramètres. Une analyse de sensibilité au coefficient d’échange hydrique a été
menée. La déformation de retrait de dessiccation est supposée être proportionnelle à la
variation d’humidité relative. Le coefficient de proportionnalité est identifié à partir des
mesures d’isotherme de retrait réalisées sur les échantillons d’épaisseur 200 µm, 500 µm
et 2 mm. Le modèle s’est révélé particulièrement efficace pour reproduire le comporte-
ment en retrait de dessiccation d’échantillons de différentes tailles, séchant à différentes
vitesses. En dernier lieu, le fluage a été étudié: deux modèles de la littérature ont été
comparés. Le premier modèle est de type Burger avec une contribution du fluage pro-
pre irréversible modélisée selon la théorie de la consolidation. Par extension on appellera
Burger l’ensemble du modèle de fluage propre et dessiccation utilisé à EDF. Le second est
le modèle Micro-Prestress Solidification (MPS). Les deux modèles sont confrontés aux ré-
sultats expérimentaux, sous deux angles: (1) la dépendance du fluage propre à la teneur
en eau (2), l’effet de taille et de vitesse de séchage sur le fluage de dessiccation. La com-
paraison montre que le modèle Burger est à même de prendre en compte l’effet de taille
et de vitesse de séchage sur le fluage de dessiccation, ce qui n’est pas le cas pour le mod-
èle MPS. Pour ce qui est de la dépendance à l’humidité du fluage propre à long terme,
le modèle Burger prédit également mieux la cinétique que le modèle MPS. En effet, le
modèle MPS surestime considérablement la cinétique du fluage propre: plus l’humidité
relative est faible, plus le modèle surestime. Toutefois, la modélisation du taux de défor-
mation du fluage propre en fonction du niveau d’humidité des deux modèles peut être
améliorée.

Long abstract

The nuclear power plant containments buildings are subject to a costly maintenance pro-
gram to maintain sufficient tightness regarding the regulatory criteria. Engineering wants
to optimize this maintenance program to reduce costs. The loss of pre-stress is a signif-
icant cause of this loss of tightness. Thus, all the phenomena that cause the loss of pre-
stressing must be controlled. First and foremost, the creep and shrinkage of the concrete
are driven in the long term by its drying. To predict the evolution of the tightness in the
future, EDF needs to have at disposal the containment’s behavior laws. The development
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of such laws has already been the subject of much work at EDF. This thesis is a continua-
tion of this effort and focuses on the influence of the drying rate on delayed deformations.
Indeed, the shrinkage and creep models currently used at EDF R&D assume that the vari-
ation of shrinkage or creep is related to moisture variation, independently of the rate at
which this variation occurs. However, since the laboratory specimens are very small com-
pared to the thickness of the structures studied, the drying process is much faster in the
laboratory than in the test chambers. It is, therefore, necessary to verify that the inde-
pendence of the drying rate is valid. An effective way to address this issue is to control
the degree of saturation of concrete samples. However, the drying of concrete is very slow
and induces significant test durations. Thus, the study was carried out on cement paste,
which is the source of delayed deformations and thus presents qualitatively the same be-
havior of shrinkage and creep as concrete. The advantage of working with cement paste
is that it is possible to make much smaller representative samples, equilibrating faster
and allowing reasonable test durations. The present work aims to understand the drying,
shrinkage, and creep mechanisms at the cement paste scale thanks to innovative exper-
imental tests, particularly concerning the drying rate and the Pickett effect. Then, in the
light of these results, the objective is to propose a model considering these hydric effects
on the delayed behavior of concrete.

In the experimental part, the campaign aims to study the effect of the drying rate
on creep and shrinkage. When characterizing drying shrinkage and creep, the difficulty
is cracking of samples due to drying gradients. The use of small cement paste spec-
imens that equilibrate quickly and therefore have less pronounced gradients allows to
limit cracking due to drying gradients and avoids micro-cracking due to shrinkage and
creep contrasts between cement paste and aggregates. Thus it is possible to isolate the
purely material effects at the cement paste scale. Therefore, we decided to carry out
shrinkage and creep tests on cement paste samples of 2 mm thickness. These micro-
scopic tests were performed: (1) under an environmental scanning electron microscope
(SEM) at EDF R&D MMC; and (2) in the Mini-Astrée biaxial tension-compression machine
of the LMT at ENS Paris-Saclay, placed under a climatic chamber with a controlled CO2
concentration and monitored by an ultrafast camera. We analyzed the images obtained
during these tests by image correlation. The results show that the drying rate has no im-
pact on the maximum drying shrinkage deformation. In parallel, we undertake a macro-
scopic campaign on drying and pre-equilibrated samples at different relative humidities:
80 %RH, 58 %RH, and 20 %RH. These tests show the decrease of the creep kinetics when
the relative humidity decreases.

Regarding the numerical part, the objective is to propose drying, shrinkage, and creep
models that best integrate the impact of the drying rate through the numerical study of
the tests performed. We conducted the drying analysis first. A drying model taking into
account the permeation of liquid water and the diffusion of water vapor was adopted,
with the degree of liquid water saturation as the primary variable. The model has been
implemented in the EDF simulation tools. Particular attention has been paid to identify-
ing the parameters and the boundary conditions of water convection. The results demon-
strate that this drying model can simulate samples of different sizes (drying radius 1 mm,
36 mm) with a single set of parameters. We conducted a sensitivity analysis of the water
exchange coefficient. Second, the desiccation shrinkage strain is assumed to be propor-
tional to the change in relative humidity. We identify the proportionality coefficient from
the shrinkage isotherm measurements performed on the 200µm, 500µm, and 2 mm thick
samples. The model is particularly effective in reproducing the desiccation shrinkage be-
havior of samples of different sizes, drying at different rates. Finally, we studied creep:
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to do that, we compare two models from the literature. The first model is of Burger type
with an irreversible creep contribution modeled according to the consolidation theory.
By extension, we will call Burger the whole creep and desiccation model used at EDF. The
second is the Micro-Prestress Solidification (MPS) model. The two models are compared
with the experimental results from two angles: (1) the dependence of basic creep on wa-
ter content; (2) the effect of size and drying rate on desiccation creep. The comparison
shows that the Burger model can consider the effect of size and drying rate on the des-
iccation creep, which is not the case for the MPS model. Regarding the moisture depen-
dence of the long-term creep, the Burger model also predicts the kinetics better than the
MPS model. Indeed, the MPS model significantly overpredicts the kinetics of the basic
creep: the lower the relative humidity, the more the model overestimates. Nevertheless,
the relative humidity dependence of the basic creep of both models can be improved.
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Nuclear energy in France

The early 1970s marked a very important technological turning point in France’s energy
landscape. Since then, 59 PWR-type nuclear reactors had been built on 19 sites in France
(the construction period spread over some 30 years). Today, the share of nuclear power in
the production of electricity is about 75%. However, aging of nuclear power plants could
eventually call into question the ability of these structures to meet increasingly stringent
safety requirements for an extended period of time. This aging process is only really prob-
lematic if these components are non-replaceable; in a power plant, there are two of them:

1. the vessel containing the reactor core;

2. the containment, which is the subject of the present study.

Industrial and economic stakes

The current PWR nuclear fleet managed by EDF contains a set of 59 containment build-
ings which constitute the third and final containment barrier, an essential part of nuclear
safety. It is therefore necessary to ensure sufficient air tightness throughout the life of
the plant, the level of which is set by the safety authority. The stakes are therefore multi-
ple: it is a question of keeping the assets in good working and safe conditions, extending
their service life, while justifying or even adapting the installations at the right cost in
the face of legislative and regulatory changes, regarding safety or environment. The is-
sue of leak tightness of double-walled concrete containment buildings therefore remains
a major challenge for the operational life of the 1300 MWe and 1450 MWe plants. Thus,
the containments of the nuclear fleet are subject to a costly maintenance program in or-
der to maintain a sufficient airtightness with regard to the regulatory criteria. As part of
this effort, utilities need to have the means to optimize this maintenance program in or-
der to reduce costs and guarantee the success of the ten-year ILRT (Integrated Leak Rate
Tests) during which the leak tightness of the containment is assessed. Solutions are cur-
rently available for sealing complements (coatings) on the inner and outer faces of the
wall of the containment. But these operations are long, expensive and complex at the
same time. Consequently, the control of the state of health of each of the buildings of the
fleet until the end of its operating life is necessary to optimize maintenance costs. The
progress made in recent years thanks to the VERCORS mockup and the development of
digital twins puts this objective of predicting leakage rates for double-walled containment
structures within reach. Research efforts are continuing in R&D in this direction, based in
particular on the analysis of aging phenomena, and this thesis is part of this effort.
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Scientific issues

Scientific Background

The tightness of double-walled nuclear power plant buildings is based on the one hand
on the tightness of the internal prestressed concrete wall, and on the other hand on the
filtering of the air in the space between the walls. The prestressed concrete of the inner
enclosure must therefore remain in a sufficient state of compression throughout the life-
time of the structure. The leakage rate of the containments is checked every ten years and
compared to a strict criterion. The evolution of leakage through an enclosure is controlled
by the drying and delayed deformation of concrete. The water state plays a direct role on
the permeability of the concrete, but also an indirect role in that it influences the delayed
deformations of the concrete. These delayed deformations induce part of the loss of pre-
stress and consequently contribute to the risk of cracking or opening of existing cracks. It
is necessary for EDF to have models to simulate the evolution of the delayed deformations
of the concrete. These models must be calibrated on laboratory experiments when they
are available, or failing that, on monitoring measurements carried out directly on civil
engineering structures. Currently, EDF R&D has such a model, based on the postulate of
the additivity of the main components of delayed deformations: basic creep, desiccation
creep and desiccation shrinkage. The work carried out in recent years at EDF has focused
on basic creep (without moisture change). However, in order to succeed in the transpo-
sition from the laboratory (where samples are small and therefore the drying is fast) to
the structure (where drying is very slow), it is necessary to properly take into account the
influence of humidity on the delayed deformations and more precisely that of the drying
rate, an aspect of the model which has not been sufficiently studied, and little literature
data exists on the subject. From this point of view, the VERCORS model constitutes an
intermediate step between the laboratory and the real structure which is of great use in
validating the proposed models.

Scientific challenges

Part of the difficulty in modeling delayed deformation of concrete lies in the complex
impact of moisture on concrete, which is of at least three kinds:

1. Moisture variation causes a change in the stresses applied by the fluids occupying
the porous space on the solid skeleton of concrete, resulting in macroscopic defor-
mations called shrinkage.

2. At different humidities held constant, and under external loading, the magnitude
of the basic creep deformations (corrected of shrinkage) is modified (they are less
important at lower humidity). Little data support this effect, although there is a
consensus in the models.

3. At variable humidity, an excess of deformation under load is observed with respect
to the previous effects, due to:

a. the initiation of cracking due to water gradients (which is well studied in the
literature)

b. the inception of cracking due to the gradients of shrinkage properties, with
aggregates, anhydrous and some hydrates not being subjected to this (much
less studied)
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c. complex effects of water movement on hydrates that are debated in the litera-
ture.

An experimental characterization of these phenomena has been little studied for
the moment because the technical difficulties are important. One can however cite
some publications that the results of the present thesis seek to complete Gamble
and Parott (1978); Day et al. (1984). Indeed, in the existing databases, in this case
the RILEM and the Japanese Database, containing more than a thousand tests, we
have not found any tests meeting our needs (weighing, shrinkage and creep tests
on concrete samples drying at different rates, which is obtained by different sample
sizes or ambient humidities). The results of this thesis will be used to fill this gap.
A difficulty concerning the characterization of the influence of complex water ef-
fects on shrinkage and creep comes from the fact that on large sample sizes, water
equilibration times are very long. This prevents a specimen from being subjected
to variable but sufficiently homogeneous humidity to prevent shrinkage cracking.
Consequently, if phenomena 1) and 2) can be investigated on macroscopic sam-
ples - as was done at EDF by Huang (2018) , and also by Aili (2017), phenomenon
3) requires very small sample sizes, which allow to free oneself from effects 3-a)
and partially effect 3-b) to concentrate only on material aspect 3-c). To be able to
work with thin samples with a representative volume, cement paste is more suit-
able than concrete, all the more so as the delayed behavior of the two materials are
qualitatively the same. To sum up, the use of small paste samples, by avoiding the
effects of cracking at the scale of the structure and by avoiding microcracking due
to contrasts in shrinkage and paste-aggregate creep, could make it possible to iso-
late purely material effects at the level of the hydrates responsible for shrinkage and
creep: the C-S-H.

The modeling of these phenomena by microscopic approaches is a major topic at EDF
R&D MMC, the thesis of Huang (2018) addressing point ii) by micromechanical modeling
and macroscopic testing (especially with respect to aging), and the thesis of Adia (2017)
addressing points iii-a) and iii-c) by a numerical approach at the pore scale. While these
models allow to better understand or predict certain phenomena, they do not directly
allow simulations to be performed on the scale of a real structure, which is why it was de-
cided in this thesis to improve the phenomenological models available elsewhere, thanks
to the tests that will be carried out.

Objectives of the study and approach

The present study includes experimental and numerical parts. The experimental work
aims at understanding drying, shrinkage and creep mechanisms at the cement paste scale
through innovative experimental tests, in particular with respect to drying rate and Pickett
effect. Then, in the light of these results, the objective is to propose a model taking into
account these hydric effects on the delayed behavior of concrete.

Experimental part

Small and large size specimens will be used . The samples will be subjected to humidity
histories in which a constant humidity value or a constant value of the humidity evolution
rate will be set (humidity ramps). The experimental campaign includes:
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1 The characterization at room temperature of shrinkage and creep in simple com-
pression on specimens of 10×10×2 mm geometry under environmental scanning
electron microscope (ESEM) at the Material Ageing Institute (MAI) of EDF R&D
MMC, an instrument that combines the possibility of loading the sample, humidity
control, and imaging one side of the sample. Although shrinkage tests in ESEM ex-
ist in the literature Neubauer and Jennings (2000), creep results with ESEM are not
available. These tests required the development of a compression stage by adapting
an existing tensile stage. These tests are analyzed by digital image correlation.

2 The characterization at room temperature of drying, shrinkage and creep in sim-
ple and biaxial compression with LMT’s Mini-Astrée tensile-compression machine,
on specimens of 10×10×2 mm geometry. The relative humidity is controlled by a
climatic chamber. The imaging will then be carried out by photography. This test
requires the design and manufacturing of jaws for the Mini-Astrée machine, which
are adapted to the geometry of the specimens. An effort is also made to control the
CO2 content in the climatic chamber. These tests are analyzed by image correlation.

3 The characterization at room temperature of drying, shrinkage, and creep in sim-
ple compression on cylindrical specimens of dimensions 3.6×18 cm. These tests
are carried out in the Civil Engineering laboratory of EDF R&D MMC, at three hu-
midity levels of 11.10%, 58.15% and 81.2% RH controlled by saturated salt solutions.
Plexiglas chambers are designed to maintain humidity during these tests.

Numerical part

The main objective is to test and improve when needed the models at the macroscopic
scale, thanks to cement paste data for drying histories of the thesis. The modeling scale
will be the macroscopic scale. The approach adopted is as follows:

1. Preliminary numerical study: this study carried out with data from the literature has
helped to design the experimental and numerical program of this thesis. The first
step in this study consisted in the implementation and validation of Bazant’s Micro-
Prestress Solidification law Jirásek and Havlásek (2014) according to the MFront
formalism, interfaced with Code−Aster, the numerical simulation software of EDF
R&D. In a second step, this MPS model as well as the creep model of EDF R&D are
compared with the data of Day et al. (1984). This comparison could not be conclu-
sive, due to the lack of certain data, which nevertheless allowed the identification of
data gaps to be filled. This preliminary study was reported in Kinda et al. (2018).

2. Drying study: the first step consists in implementing in Code-Aster, a drying model
according to the SECH-NAPPE formalism. In order to be able to work on a wide
range of humidity (100%-20%), the drying model taking into account the perme-
ation of liquid water and the diffusion of water vapour is adopted; and to integrate
the desorption isotherm in the drying model, the principal variable of the model is
the degree of saturation in liquid water.

3. Study of desiccation shrinkage: based on experimental observations the desicca-
tion shrinkage strain is assumed to be proportional to the relative humidity vari-
ation. The coefficient of proportionality is identified from isothermal shrinkage
measurements made on very thin samples. The predictive capacity of the adopted
model, in particular on the size effect, has been investigated.
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4. Creep study: finally, creep is studied; two models from the literature are compared.
The first model is of Burger type with a contribution of irreversible inherent creep
modelled according to the consolidation theory. The second is the Micro-Prestress
Solidification (MPS) model. Special care is taken to identify the model parame-
ters with ADAO (a module for Data Assimilation and Optimization, http://www.
salome-platform.org/) developed at EDF R&D. The predictive capabilities of the
two models will be compared with the experimental results, from two angles: (1) the
dependence of the basic creep on the water content (2) the effect of size and drying
rate on the drying creep.

Organization of Contents

This Ph.D dissertation is written as an article-based thesis. The manuscript is organized
as follow:

• Chapter 1 provides an up-to-date account of the present state of knowledge on
cement-based materials, especially about microstructure, drying, drying shrinkage
and creep properties.

• Chapter 2 presents the application of Digital Image Correlation (DIC) technique to
study the drying shrinkage of thin cement paste specimens. An emphasis was put
on the validation of the technique.

• Chapter 3 presents the investigation, both experimentally and numerically of drying
rate impact on moisture loss, exchange coefficient and drying shrinkage of cement
paste.

• Chapter 4 presents the experimental study of creep of cement paste under variable
humidity in ESEM, climatic chamber and sealed chambers of saturated salines so-
lutions. The results of the experiments are reported; Pickett effect and size effects
are highlighted.

• Chapter 5 concerns the numerical investigation of creep of cement paste based on
experimental results presented in chapter 4. The delayed strains law used at EDF
R&D (Burger) and the microprestress-solidification (MPS) law are compared, espe-
cially on their ability to predict size, drying rate effects and long term creep.
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Chapter 1

Literature review

1.1 Generality on cement-based materials

Hardened cement paste is the glue component of concrete. Through series of complex
and parallel chemical reactions between cement powder and water, a complex microstruc-
ture is built up. This microstructure is made of various chemical components called hy-
drates, unhydrated phases, water, and multi-scale porosity. As hydration reactions pro-
ceed, the water-filled space is progressively replaced by solid hydration products, result-
ing in an increase of strength, decrease of internal relative humidity, and formation of
multi-scale porosity.

Among all the hydrated products, Calcium Silicate Hydrate (C−S−H) gel is at the ori-
gin of cohesion of cement paste and has the greatest influence on the durability of the
material. C−S−H is also the most affected phase during drying due to its nanoscale pore
system and its high water content. Many models attempt to describe the nanostructure
of C−S−H, but no consensus has been reached yet in the literature. The porosity that
spans four orders of magnitude (1 nm-10000 nm) is a very complex multi-scale system.
The pores at different scales are filled by more or less strongly bound water (free liquid
water, chemically and physically bound water), vapor, and possibly air.

The role of water is complex because, in fresh states of concrete, its presence is de-
sirable because it has a rather positive role on the fluidity of concrete. It allows in first
place for transport, molding before setting. But in the solid-state, the higher the water
content, the more porous concrete is, which is rather bad for all degradation and aging
mechanisms (chloride penetration, carbonation, creep, shrinkage).

1.1.1 Hydration process

Schematic description of the hydration reaction Cement grains (fig.1.1.a) are highly
charged at their surface, and once in contact with water, they dissolve (fig.1.1.b), to give
an interstitial electrolytic solution, mainly made of calcium and hydroxide ions (Nonat
and Mutin, 1992; Taylor, 1997). Schematically, hydration consists of reactions of cement
grains with this electrolytic solution, which will mainly lead to the precipitation of calcium
silicate hydrates (C−S−H) on the surface of grains (fig.1.1.c). Progressively, interactions
between cement grains are replaced by interactions between (C−S−H) (fig.1.1.d).

Characterization of the hydration reaction As mentioned by Scrivener and Kirkpatrick
(2008), innovative experimental techniques are available for studying the complex mix-
ture of cementitious phases. Some notable examples are:
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Figure 1.1: Schematic representation of hydration process: cement powder (A), contact with water
and partially dissolution (B), C−S−H precipitates (C) onto surface of powder. In set solid (D),
the contact area increase between grains is responsible for the mechanical strength increase, the
acting force remaining the same (Lesko et al., 2001)

• Rietveld analysis of X-ray diffraction data enables quantification of complex phase
mixtures (Scrivener et al., 2004).

• Scanning and transmission electron microscopies coupled with chemical micro-
analysis, allows investigating micro-structural development and microchemistry of
hydrated phases (Scrivener et al., 2004).

• Nuclear Magnetic Resonance (NMR) techniques, which provide information on C–S–H
structure. (Scrivener et al., 2004; Plassais et al., 2005)

• Small-angle neutron and X-ray scattering to probe the “mesostructure” or “gel” poros-
ity of C–S–H (Allen and Thomas, 2007).

The importance of hydration the microstructure of cement paste which is a pure prod-
uct of the hydration process, is responsible for the durability performance of cementi-
tious materials. First, the disjunction pressure, and its complementary part called micro-
prestress, known as the two most influencing factors of drying shrinkage and creep, builds
up during the hydration process in the hindered zones. Second, the hydration is respon-
sible for the gradual deposition of new gel on the walls of the capillary pore, thus allowing
the increase of the material stiffness, which is called solidification, one of the main mech-
anisms of short-term creep in the micro-prestress theory. Third, the capillary water and
the free adsorbed water, both responsible for short-term creep, in micro-diffusion theory
are pure products of the hydration process.

1.1.2 The nanostructure of C-S-H

As underlined by (Scrivener and Kirkpatrick, 2008), the performance of cementitious ma-
terials is driven by the physical and chemical processes taking place at the C−S−H scale.
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A quantitative understanding of the structure of C−S−H from atomic to micrometer scale,
and how its structure, at that scale interacts with drying, creep, and shrinkage of hydrated
cement paste is a key point to build up predictive models for the assessment of long term
behavior of concrete structures.

Nanostructure of C-S-H: description

In this section, we are going to discuss whether the C-S-H structure is colloidal or amor-
phous, depending on the scale of observation, the way it takes place, and its role in creep
and shrinkage.

Pioneering works by (Powers and Brownyard, 1946; Feldman and Sereda, 1968) have
addressed those questions for the first time by descriptive models for C−S−H. Later on,
Jennings (2000), proposed a new model, a kind of combination of the two first models
plus extra features; these models are described in section 1.1.2.
Since then, new experimental techniques have provided further justification for these pi-
oneering works.

Figure 1.2: Microstructure of C−S−H: Low Density C−S−H and High density C−S−H (Maruyama
et al., 2015)

It is commonly acknowledged today, that C−S−H could be decomposed in high den-
sity C−S−H gel, also called inner products, with high C/S ratio, a kind of granular struc-
ture (fig.1.2); and low density C−S−H gel having low C/S ratio, with lamellar shape type
(Richardson, 2008) (fig.1.3). For OPC (Ordinary Portland Cement), the inner product C−S−H
appears to be nearly equidimensional particles, with a characteristic length less than
10 nm with significant inter-particle porosity. In contrast, outer product C−S−H appear to
have more directional, fibrillar morphology on the 100 nm scale with 3-dimensional cap-
illary pore system between lamellar (Scrivener and Kirkpatrick, 2008). Each fibril consists
of a few nm to tens of nm long and thickness less than 5 nm, with significant inter-particle
porosity.

Nanostructure of C-S-H: Models

Papatzani et al. (2015) made a comprehensive review of C−S−H nanostructure models.
The three of the most cited models in the literature are the following:
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Figure 1.3: Deshydration of 1.4 nm tobermorite as captured using Transmission Electron Mi-
croscopy (TEM) (Richardson, 2008)

Figure 1.4: Main constituents of C−S−H in P-B model

• (Powers and Brownyard, 1946) model (P-B). This first model attempts to give a clear
picture of the C−S−H structure. The purpose was to (i) understand basics mecha-
nisms of shrinkage and swelling, (ii) approximate the surface area, (iii) determine
the size of pores, and (iv) differentiate the different types of water within the hy-
drated cement paste. In the first version of P-B model, C−S−H structure can be
viewed as spheres enclosing unreacted products with capillary water between spheres
fig.1.4. The creep in this model originates from the breaking and restoration of
bridges between C−S−H particles. The P-B model has shed light on the different
types of water of C−S−H gel, but it shows two limitations: one of the limitations
that persists today is that the exact particle size cannot be determined (Scrivener
and Kirkpatrick, 2008; Papatzani et al., 2015); another limitation is the inability of
the model to explain the irreversibility of sorption isotherm, which was resolved in
1966 by Feldman and Sereda (1968) who introduced a new model.

• Feldman and Sereda (1968) model (F-S). The authors postulate that C−S−H has a
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tobermorite-crystal like structure, and therefore, C−S−H has a layered type struc-
ture as depicted in fig.1.5. This model provides quantitative informations on the
relative contributions of interlayer water, adsorbed water, and capillary water to
volume change. The main contribution of F-S model is that interlayer water is con-
sidered as a part of C−S−H structure and emphasizes the fundamental role of it
in the evolution of mechanical and physical properties such as drying, creep, and
shrinkage. The irreversibility of the sorption isotherm is related in this model to
the fact that the energy barriers at desorption and sorption are different, which is
associated with the ink-bottle effect.

Figure 1.5: C−S−H layered structure (Feldman and Sereda, 1968)

• Jennings (2000) model. Jennings and co-workers proposed a colloidal model known
as the Jennings model in an attempt to account for some physical properties of
C−S−H in mature paste, including density, surface area, fractal character, pore size,
and size of individual particles. The model is a combination of layered models sim-
ilar to (F-S) and colloid type models similar to (P-B). The building unit of C−S−H in
this model are particles, which assemble to form globules of 5-5.6 nm, see fig.1.6;
and the globules, in turn, assemble to form packages of two types which differ by
their packing density: Low Density (L−D) C−S−H and High Density (H−D) C−S−H.
The proportions of those two types of C−S−H depend on the w/c ratio.

The packing density plays a fundamental role in the creep process. Creep in the light
of this model is viewed as a result of a compaction process. Hence the higher the
packing density, the less concrete creeps, which may explain why high-performance
concrete exhibits less creep. The part of C−S−H attributed to creep is Low-Density
C−S−H. The surface area and pore size distributions obtained from SAXS (Small
Angle X-ray Scattering), SANS (Small-Angle Neutron Scattering), NMR (Nuclear Mag-
netic Resonance Relaxation) studies are very consistent with this model.

1.1.3 Multi-scale porosity

The porosity is essential for the durability and mechanical performance of cement-based
materials. The porosity is at the origin of defects of concrete. Hence the foremost way
to increase concrete performance is to reduce its porosity. The most influencing factor
of porosity is the w/c ratio (Scrivener and Kirkpatrick, 2008); the lower the w/c ratio, the
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Figure 1.6: C-S-H globules, 5 nm characteristic length (Allen and Thomas, 2007)

Table 1.1: IUPAC pore size classification (Thommes et al., 2015)

Pore description Radius (nm)
Micropores < 2
Mesopores 2–50

Macropores > 50

lower the porosity, and the better the mechanical performances. In the following section,
the different types of porosity in cement paste and their main characteristics, along with
the existing characterization techniques, are highlighted.

Different sizes of porosity

Different pores size exist in cement paste, and they are divided into three categories in
the classification of Sing et al. (1985). The characteristics of pores in cement paste are
summarized in tab.1.1.

Characterization technique: methods and limitations

The porosities of the material is defined as the volume of the porous networks, (Vp ) in
relation to the total volume (Vt )

p = Vp

Vt
(1.1)

The main methods currently used to characterize porosity are mercury intrusion porosime-
try (MIP) and the water saturation method.

MIP technique has been used for the first time by Edelman et al. (1961), and since then,
has been widely used. It consists of subjecting the dry material to a step-by-step increase
of mercury pressure (typically between 0.01 and 400 MPa). The non-wetting nature of
the mercury allows filling the voids of the material progressively. The intruded volume is
converted into pore volume through Eq.1.2 (Washburn, 1921).

d = −4γHg cos(θ)

P
(1.2)
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where θ [◦] is the contact angle, usually taken equal to 140 (◦); however recent study by
(Muller and Scrivener, 2017) found a value of 120 ◦ , more convenient; γHg the mercury
surface tension; P the intrusion mercury pressure necessary to fill pores of diameter d .
Although MIP is widely used, the technique and results interpretation are still controver-
sial (Diamond, 2000). It is commonly accepted that MIP technique underestimates the
macroscopic porosity (Zeng et al., 2012) and overestimates the microscopic porosity (Di-
amond, 2000). Moreover, the MIP technique is limited to pore sizes ranging between 375-
0.003 µm. The microscopic porosity is overestimated because it requires the injection of
mercury under high pressure, which causes the opening of communication channels to
the macropores, which also fill up and usually does not communicate with the outside
environment (Diamond, 2000).

Saturation method: this method investigates the porosity based on Eq.1.3. Experimen-
tally, porosity is calculated according to the formula

φ= Mai r −Mdr y

Mai r −Mw ater
(1.3)

with φ the porosity accessible to water; Mai r the saturated mass under water. The AFPC
(1997) protocol recommends to saturate the sample with water; Mdr y is the dry mass,
and Mw ater the hydrostatic mass. The drying temperature recommended by AFPC (1997)
method is 105°C. A further study by (Gallé, 2001) pointed out that this drying tempera-
ture is too high and may lead to overestimating the porosity accessible to water (dilation
of porous space, microcracking). Tab.1.2, shows the variability of porosity values for dif-
ferent techniques for measuring dry mass (Gallé, 2001); the porosity variation between
drying at 105°C and vacuum or 60°C is about 6%.

Table 1.2: Water porosity (φw ), mercury porosity (φHg ), and threshold pore access diameter values
for CEM I pure cement hardened paste, w

c = 0.5, (Gallé, 2001)

Dying method φw (%) φHg (%) Threshold pore access diameter (µm)
Oven-drying 60°C 37.3 27.8 0.12

Vacuum-drying 37.7 27.4 0.07
Nitrogen Freeze-drying-195°C 35.0 29.6 0.05

The values after drying at 60°C and vacuum drying are very close. Recent works (Soleil-
het, 2017; Larbi, 2013) support these findings. Since porosity has a very important impact
on the permeability of the material, a good knowledge of porosity will help to better pre-
dict drying, and therefore delayed strains (creep, shrinkage).

1.1.4 Water in cement paste

The purpose of this section is first to review the different types of water in cement paste,
second to see how they relate to sorption isotherm, and last, to highlight the types of water
concerned at different stages of the drying process.

classification of types of water in cement paste

Hardened cement paste is a porous and hydrophilic material. The pioneering work of
Powers and Brownyard (1946), has shed light on the types of water in concrete. It was re-
fined later by (Jennings, 2000). The classification of water derives straightforwardly from
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the classification of pore space and how strong it is bounded to the solid skeleton (Re-
gourd, 1982; Guenot-Delahaie, 1997):

• capillary water also called bulk water is defined as the water free of solid surface at-
tractive forces (Mehta and Monteiro, 2006) and develops in pores wider than 10 nm.
One may distinguish capillary water located in large pores with radius larger than
50 nm and water from mesopores with a radius between 10 and 50 nm range. The
latter is responsible for capillary stress development during the drying process.

• Adsorbed water separated into free adsorbed water and hindered adsorbed water
type:

1. Free adsorbed water is formed in free adsorbed areas where the pore space is
sufficient enough for a layer of 10 molecules wide (2.6 mm approximately) to
develop (at 100% RH). This water is in contact with capillary water and vapor.

2. Hindered adsorption water is trapped in pores smaller than 2.7 nm in size
(2.7 nm is the size of 10 stacked water molecules). Hindered water can only
communicate with the liquid and vapor in capillary pores by micro diffusion
through nanopores.

• Interlayer water is the water contained in the interlayer space (less than 0.5 nm)

water and mechanical behavior

Jennings (2008) has shown that the ability of the structure to resist permanent microstruc-
tural rearrangement is increased as hydration proceeds. This is consistent with the re-
cent findings by Maruyama et al. (2014), who observed an increase of both flexural and
compressive strength of cement paste between 100 % and 95 % RH. In fact, at high rela-
tive humidities (typically above 95%), even after hydration has ceased, there is a contin-
uous evaporation/condensation process of capillary water to maintain equilibrium fol-
lowed by condensation of new hydrates; this process is accompanied by the formation of
new C−S−H bounds (Maruyama et al., 2014). The phenomenon is called crystallization
(Bazant and Prasannan, 1989); it is believed to increase the material stiffness, known as
the aging phenomenon.

1.1.5 Water desorption isotherm

Measurement of desorption isotherm

Desorption isotherms are fundamental for quantifying and predicting the hygral behav-
ior of the material subjected to drying. By definition, it is the water content vs. RH curve.
For the last decades, a lot of effort has been made to characterize it, using different tech-
niques with the intent to make it faster and more accurate. Different techniques exist,
such as volumetric method (Maruyama et al., 2014), saturated salt solutions. (Baroghel-
Bouny et al., 1999a; Baroghel-Bouny, 2007a; Semete et al., 2017), Dynamic Vapor Sorption
method (Poyet et al., 2016).

20



CHAPTER 1. LITERATURE REVIEW

A tool for investigating microstructure

Water sorption isotherms, which probe the pore structure of cement paste at all scales
where evaporable water exists, is a very powerful tool for evaluating microstructures (Jen-
nings et al., 2015; Brunauer et al., 1938; Hagymassy et al., 1969; Powers, 1958). Proper cap-
ture of sorption isotherms have been used to quantitatively explain changes in the pore
structure that occur during drying (Jennings, 2008; Maruyama et al., 2014). For example,
water that is either being removed or re-entering a sample at a particular RH can be linked
to a specific class of pores (i.e., the interlayer, gel, or capillary spaces). The fundamental
experimental work by Baroghel-Bouny et al. (1999b); Baroghel-Bouny (2007b) on cement
paste has shown that, whatever the material mix, the desorption curves are identical be-
low 40-50 %RH and scattered above these values. As interpreted by the authors, drying
above 40-50 %RH on the one hand, involves the removal of water from porous capillary
space (mesopores and large pores), which is very dependent on the paste mix such as w/c
ratio, additives (silica-fume, ...); while on the other hand, drying below 40-50 %RH is in-
timately related to the removal of gel pore water. Recent studies (Maruyama et al., 2014,
2015) support these findings.

1.2 Drying

1.2.1 Mechanisms

When an unsealed system of cement-based material is exposed to lower relative humidity
than its internal relative humidity, drying occurs. It consists of permeation of liquid water,
plus possibly diffusion of vapor from inner to the outside of the system (fig.1.7).

Figure 1.7: Drying process in cement based materials (Mainguy et al.,
2001)

The rate of evaporation is dependent on the temperature properties of pore solution
(Villani et al., 2014), the gradient of vapor pressure, the rate of airflow, and the diffusion
coefficient (Mainguy et al., 2001). Evaporation from the drying surface induces a flow of
liquid and diffusion of vapor within the material. As long as the liquid is continuous, the
gradient of capillary pressure between the surface and the interior of the material drives
the Darcy flow of pore solution (Mainguy et al., 2001). The rate of Darcy flow depends
on the permeability, properties of the pore solution (viscosity, surface tension), and the
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Figure 1.8: Schematic of relationship between the microstructural changes caused by drying at
various RHs and strength (Maruyama et al., 2014)

degree of saturation (Van Genuchten, 1980; Scherer, 2015). As soon as the liquid phase
becomes discontinuous, the vapor diffusion becomes dominant, with a smooth transi-
tion.

1.2.2 Interaction with microstructure evolution and mechanical behav-
ior

The main objective of this part is to review the interaction in the porous structure of well-
hydrated cement paste with water and the common techniques to characterize this inter-
action.

Maruyama et al. (2014) performed an extensive study on the effect of first desorption
on the microstructure bulk change; they observed an increase in macropores volume and
a decrease in mesopores volume during the first stage of drying from 95% to 40 %RH. The
authors attribute it to the densification of C−S−H sheets due to the increase of surface free
energy upon removal of adsorbed water. In latter drying stages, typically below 40 %RH,
they find an increase of mesopores volume and decrease of interlayer basal space caused
by the removal of interlayer water from globules. They associated it with compaction of
C−S−H layers, which in turn induce the creation of internal mesopores. Fig.1.8 shows
how these microstructural changes, evolution (increase or decrease) of packing density
of building unit of C−S−H, manifests itself at the macroscopic scale with an impact (im-
provement or reduction respectively) on mechanical strength. These highlights are con-
sistent with the earlier findings (Feldman and Sereda, 1968), which point out that a major
rearrangement of the layers or sheets of tobermorite-like C−S−H occurs during first des-
orption.

1.2.3 Cracking

When exposed to drying, the specimen surface undergoes a contraction rapidly while the
core of the specimen remains undeformed at this stage of drying, see fig.1.9. Gradients of
water content appear between the surface and the core of the specimen, (Benboudjema
et al., 2005; Hwang and Young, 1984). In the meantime, the surface of the specimen expe-
riences tensile stresses while its core is under compression (Bazant and Wittmann, 1982;
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De Sa et al., 2008; Samouh et al., 2019).

Figure 1.9: (a) Typical distributions of pore humidity at various times during drying; (b) free shrink-
age and creep at various points of cross section; (c) internal stresses ((Bazant and Wittmann, 1982)

The larger the specimen, the larger the moisture gradient between the core and the
surface of the specimen. Besides, the more likely the tensile stress may exceed the tensile
strength of the material, and the most likely cracking might occur. When studying ma-
terial behavior, cracking related to structural effects is problematic since measurements
are the result of both material and structural behavior. Avoiding cracking is a crucial way
to improve our understanding of material behavior. One way is to reduce as much as
possible the size of the specimen (Bažant et al., 1976; Day et al., 1984; Neubauer and
Jennings, 2000). On the one hand, this is useful for accelerating the drying process, as
it is well known that drying of cement-based materials is a very slow process (Acker and
Ulm, 2001). This idea of using cement paste specimens of small thickness for studying de-
layed strains has been proposed by Bažant et al. (1976), who used specimens of 0.72 mm
thickness to investigate creep and shrinkage of cement paste at variable water content.
Later, Day et al. (1984) followed up with 1.9 mm thick specimens. On the other hand, the
thinner the specimen, the most likely natural carbonation will affect drying because, like
desiccation, carbonation is a diffusion type process (Papadakis et al., 1989; Dweck et al.,
2000; Thiery et al., 2007; Auroy et al., 2015). Thus limiting natural carbonation when test-
ing samples of small thickness is crucial. It requires the use of an appropriate system to
reduce the CO2 content of the room environment (Day et al., 1984).

1.2.4 Carbonation

When concrete (or cement paste) is subjected to an environment containing CO2, a trans-
port of CO2 initiates from the environment towards the interior of the sample, where
it dissolves in the water of the cementitious matrix, producing HCO –

3 and CO 2 –
3 ions

(Castellote et al., 2009; Galan et al., 2013; Leemann and Moro, 2017). These ions combine
with Ca2+ ions, portlandite and C−S−H to produce calcite CaCO3. During this process,
C−S−H decalcifies, and this decalcification gives rise to C−S−H with a low Ca/Si ratio (Au-
roy et al., 2015), which impacts delayed shrinkage and creep behavior of the cement paste.
The transformation of portlandite to calcite releases water into the microstructure (Auroy
et al., 2015), reduces porosity because of the increase in the volume of the solid phase;
the volume of calcite formed is 11-12% larger than that of CH (Borges et al., 2010). These
modifications have significant consequences on drying. For example, the progression of
the carbonation front affects the evolution of the drying profile, (Villain et al., 2007), which
is especially true if the sample size is reduced. Reduction of porosity (especially capillary
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pores) reduces the values of the desorption isotherm, (Auroy et al., 2015), which is funda-
mental in fact for drying modeling; carbonatation also induces mass uptake, which makes
it difficult to measure mass loss induced by drying. The carbonation-drying coupling is
not taken into account in our models, see chapter.5, since it is not a very important phe-
nomenon in very large structures such as containment buildings. However, because we
are interested in studying thin specimens, it is becoming more important. Hence there
is a clear need to avoid or limit carbonation during shrinkage and creep testing on thin
specimens (lesser or equal to 2 mm thick, for instance, in the scope of this study). Ideally,
it would be good to be able to quantify carbonation at the end of these tests to check if it
occurred or not, as it may bias the interpretation of the results.

1.3 Drying shrinkage

Drying shrinkage is defined as the volumetric change caused by drying. However, drying
is an extremely slow process. In general, four primary theories for drying shrinkage can
be found in literature:

• Capillary theory (Feldman and Sereda, 1968; Hansen, 1987): the liquid water changes
the meniscus radius to maintain equilibrium with vapor.

• Disjoining pressure mechanism (Powers, 1968; Beltzung and Wittmann, 2005; Maruyama
et al., 2015): due to the withdrawal of adsorbed water due to drying, the gel particles
are pushed closer by Van Der Waals forces.

• Gibbs-Bangham shrinkage (Feldman and Sereda, 1968; Hansen, 1987; Maruyama
et al., 2015): increase in solid surface tension due to removal adsorbed molecules

• Movement of interlayer water from C−S−H gel (Feldman and Sereda, 1968).

1.3.1 Review of mechanisms

Capillary pressure

From a thermodynamic point of view, the vapor-liquid equilibrium corresponds to a con-
dition where the rate of evaporation is equal to that of condensation on a molecular level,
which corresponds to a saturated state of 100% relative humidity. Under drying, the liq-
uid water changes the meniscus radius to maintain equilibrium with vapor (Feldman and
Sereda, 1968). The difference between the gas pressure above the meniscus and pressure
inside the liquid is called capillary pressure and is expressed by Young-Laplace equation
(Young, 1805)

Pc = Pg −Pl =
2γcosθ

rc − t
(1.4)

In Eq.1.4, Pc is the capillary pressure [Pa], Pg the gas pressure [Pa], Pl is the liquid pres-
sure [Pa], rc the capillary radius of the meniscus [m], γ the surface tension between pore
water and vapor [N/m], θ [◦] the contact angle denoting the hydrophilicity of the material
and t the thickness of adsorbed water [m], which is a function of relative humidity. The
relationship between capillary pressure and relative humidity is further given by Kelvin’s
equation.

Pc = ρl RM−1T ln

(
RH

xw

)
(1.5)
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In Eq.1.5, ρl [kg/m3] is the density of liquid, M the molar mass of the liquid [kg/mol],
R=8.314 [J/(mol.K)] the universal gas constant, T [K] the temperature and xw accounts
for the presence of ions in the pore solution. For an ideal solution (dilute) xw can be
simply considered as ionic concentrations (Baroghel-Bouny et al., 2011). But, for non-
ideal solutions, a more complex description is required and various formulas have been
proposed in the literature, (Nilsson, 1997; Cheng-long and Liang-sun, 2003).

Capillary pressure-driven shrinkage models are based on those two equations. Let
us note this type of model is strongly related to the pore size distribution, and almost
all existing capillary pressure-based models assume cylindric or circular pore shapes (Ye,
2015); which is a strong assumption but necessary for practical modeling. This mech-
anism is believed to dominate above 40-50 % relative humidity and takes place in large
capillary pores (r > 50 nm) and mesopores (2 < r <50 nm), where liquid water and water
vapor phases both exist, separated by a meniscus.

Disjoining pressure

Disjoining pressure, also called hydration pressure originates from the energy potential
gap between the adsorbed water layers and the surface of hydration products such as
C−S−H (Maruyama et al., 2014). Disjoining pressure is generated by confined water in the
narrow pore space (pores radius < 2.6 nm wide, which corresponds to 10 water molecules
wide) as hindered adsorbed layer and acts as a repulsive force toward the particles.

Figure 1.10: Schematic of mechanical equilibrium in hardened cement paste: the pore structure
viewed as a two parallel planes, with the disjoining pressure keeping the thickness of adsorbed
layer constant and balanced by the mechanical stress of the skeleton

The removal of adsorbed water in the hindered zone causes the relaxation of disjoin-
ing pressure, accompanied by reduction of the distance between adjacent surfaces of
C−S−H layers (fig.1.10).

By assuming that (i) the disjoining pressure is fully controlled by the thickness of ad-
sorption, and (ii) the thickness of adsorption is completely determined by the ambient
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relative humidity and temperature, the disjoining pressure is very often modeled in liter-
ature by Eq.1.6

Π(e) = ρl
RT

M
ln

(
P

P0

)
(1.6)

where P is the vapor pressure at the existing state, P0 the vapor pressure at the reference
state of the system.

However, as noticed by (Maruyama, 2010), if assumption (ii) is valid, the desorption
isotherm should be reversible, but in reality, the desorption isotherm shows hysteresis!

Surface tension

The surface tension is the state of stress of the solid phase due to interactions of adsorbed
molecules with forces on surface (Feldman and Sereda, 1968).

The increase of surface tension due to desorption induces compressive stress causing
the solid to shrink (fig.1.11). From a thermodynamic point of view, there are many ways to
derive the increase of surface energy due to desorption (Powers, 1968). The starting point
is from Gibbs-Duhem equation applied to surface phases at isothermal condition,

−Vdp +Adγ+Nw dµw = 0 (1.7)

where V = Ala is volume [m3], la the thickness of adsorbed liquid [m], and A the surface
area [m2]; Nw the mass of water of the surface phases [kg], µw [J/kg] the chemical poten-
tial per unit mass ; γ [N/m] the surface tension; p the pressure in surface phase which at
equilibrium is equal to pressure in the vapor [Pa]. Rewritting Eq.1.7 as per unit area form,

−ladp +dγ+Γw dµw = 0 (1.8)

In Eq.1.8, Γw = Nw /A is the surface concentration of molecules [kg/m2]. Because the liq-
uid phase and the vapor phase should be always in equilibrium, their chemical potential
are equal,

dµw = dµv = RM−1Td(lnRH) (1.9)

In Eq.1.9, M is molar mass of liquid [kg/(mol)], R is the universal gas constant [J/(mol.K)]
and T is Temperature [K]. Thus the isothermal change in surface tension can be expressed
as:

dγ=−Γw RM−1Td(ln(RH))+ lad p (1.10)

From that point, most of the models neglect the term lad p in eq.1.10. By assuming
lad p negligible, Eq.1.10 simplifies to Eq.1.11.

dγ=−Γw RM−1Td(ln(RH)) (1.11)

Thanks to the reversibility property of the process (Feldman and Sereda, 1968) at hu-
midity range for which this force is active, the total differential of γ exists; the variation of
it between two equilibrium points (denoted as RH2 and RH1 for instance) reads

∆γ=−RM−1T
∫ RH2

RH1

Γw d(l n(RH)) (1.12)
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Figure 1.11: Schematic reprensentation of Gibbs-Banham shrinkage (Ye and Radlínska, 2016)

where ∆γ in fact measure change is states of the stress of the solid due to an interaction
of the adsorbed water with forces on the solid surface, which put the solid in a state of
compressive stress.

To relate to strain, the Bangham equation postulates a proportionality between strains
and surface tension change, Eq.1.13 is used (Feldman and Sereda, 1968)

εGB =∆γ.λ (1.13)

where εGB is named Gibbs-Bangham shrinkage and λ the coefficient of proportionality
depending on material stiffness, specific mass, and pore wall surface [m/N].

1.3.2 Drying shrinkage and relative humidity

Successive experimental works on sorption isotherm and drying shrinkage (Baroghel-
Bouny et al., 1999b; Baroghel-Bouny, 2007b; Jennings, 2008; Jennings et al., 2015; Maruyama
et al., 2014, 2015) reveal a bimodal behavior of drying shrinkage regarding relative hu-
midity. The corresponding value of the transition point is found to be 44%RH (Baroghel-
Bouny et al., 1999b), 50%RH (Baroghel-Bouny, 2007b), 54%RH (Jennings, 2008), 45%RH
by (Jennings et al., 2015) and 40 %RH (Maruyama et al., 2014). In all investigations, the
driving mechanism of volumetric change was attributed (i) to capillary stress for rela-
tive humidity above the inflexion point and (ii) to surface tension for relative humidity
below the inflexion point fig;1.3. Moreover, the combination of length change measure-
ment along with the sorption measurements makes it possible to relate the water con-
tent with length change induced by drying (Baroghel-Bouny, 1994, 2007b; Bentz et al.,
1995; Maruyama et al., 2014). Recently, (Maruyama et al., 2014) performed short-term
length change isotherms and water vapor sorption isotherm of ordinary cement pastes of
1 year age, pre-equilibrated at different humidities. It was found that the water behavior
in hardened cement paste had two different domains, above and below 40 %RH. Their
results also showed a good correlation between (i) water vapor BET surface area and the
incremental strain of hardened cement paste for relative humidity between 5 %RH and
40 %RH, and (ii) the incremental statistical thickness of water adsorption and incremen-
tal strain for relative humidity ranging from 40 %RH to 98 %RH. It was concluded then
that drying shrinkage above 40 % RH was driven by disjoining or hydration pressure and
below 40%RH by a change in surface energy. These conclusions are consistent with the
fundamental works (Feldman and Sereda, 1968).
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1.3.3 Concluding remarks on drying shrinkage mechanisms

Powers (1968) was the first author to provide a physical description of mechanisms of dry-
ing shrinkage and to propose a model in the viewpoint of thermodynamics. Subsequently,
the mechanisms of drying shrinkage have been intensively investigated.

Some basic questions remain: how is drying shrinkage correlated to microstructure
change? Where does the irreversibility of drying shrinkage come from? Despite great
efforts, no agreement has been achieved so far about the dominant mechanism. It has
been argued that different mechanisms may govern at different relative humidity ranges
and pore sizes (tab.1.3).

Table 1.3: Mechanisms of drying shrinkage from Soroka quoted by (Benboudjema, 2002) and up-
dated

Let us point out that disjoining pressure change is inevitably related to surface tension
change because the removal of adsorbed water, which is the driving factor of disjoining
pressure, also draws particles closer, which is the primary cause for the increase in sur-
face tension. Moreover, the capillary meniscus, if present adjacent to nanopores, would
also affect the disjoining pressure. Hence, drying shrinkage on the entire relative humid-
ity range is controlled by capillary pressure and surface tension as pointed out earlier
(Hansen, 1987). Therefore, if one accepts that surface tension and capillary pressure are
reversible processes (Feldman and Sereda, 1968), it means indirectly that drying shrink-
age as a thermodynamically reversible process is independent of the drying rate. In other
words, whatever the path of drying, the value of drying shrinkage at equilibrium for a
given relative humidity step should be the same. To investigate the impact of drying rate
on drying shrinkage is one of the major goals of this thesis.

1.4 Basic creep

1.4.1 Mechanism of basic creep

The cement paste is a two-phase composite material consisting of elastic inclusions em-
bedded in a viscoelastic matrix, fig.1.12.

The elastic inclusions are portlandite (CH), ettringite (AFt) calcium, monosulfate (AFm)
and possibly unreacted clinker phase. At a smaller scale, the C−S−H matrix is composed
of C−S−H gel and capillary pores. The C−S−H gel itself is made of C−S−H layers or par-
ticles with interlayer water between an inner gel porosity. The creep mechanisms are
taking place at the C−S−H scale. Several theories have been proposed in the literature
to explain the basic creep of cement paste, but none of them have yet been universally
accepted. However, it is commonly accepted that water plays a fundamental role in the
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Figure 1.12: Schematic microstructure of cement paste, with color indicating the stiffness of each
phase (Hu et al., 2019)

creep of concrete (Tamtsia and Beaudoin, 2000). Several authors (Bažant and Moscho-
vidis, 1973; Philajavaara, 1974) have reported the decrease in the amplitude of the basic
creep for previously dried samples. Besides, it was observed that specimens pre-dried
at relative humidities close to zero showed almost no creep (Glucklich and Ishai, 1962).
However the underlying phenomenon of creep is still poorly understood today and is a
matter of intensive on-going research ((Tamtsia and Beaudoin, 2000; Bažant et al., 1997;
Acker and Ulm, 2001; Vandamme and Ulm, 2009; Jennings, 2008; Zhang et al., 2014; Rossi
et al., 2012; Torrenti and Le Roy, 2018). The analysis of the kinetics of basic creep tests on
cement paste and concrete highlight two distinct kinetics regimes regardless of the mix
composition (Ruetz, 1968; Ulm et al., 1999): short term creep with rapid kinetics from
loading up to few days after loading and long term creep, which has slow kinetics.

1.4.2 Short term basic creep

Short-term creep is strongly affected by the movement of water content and redistri-
bution in capillary porous space (Ruetz, 1968; Wittmann, 1973; Wyrzykowski and Lura,
2014). In fact, the applied external load triggers the free adsorbed water movement into
capillary porous space (Bazant and Wittmann, 1982; Torrenti et al., 2013). At the micro-
scopic level, the stress is transmitted through the hydration products that surround cap-
illary pores. At the C−S−H scale, this mechanism is typically represented with a linear
dashpot (Giorla and Dunant, 2018). At the macroscopic scale, the mechanism is modeled
by a Kelvin chain. The added spring allows representing the elastic phases of the cement
matrix.

1. In model B3 and its derivatives (Bažant et al., 1997, 2004; Jirásek and Havlásek, 2014;
Rahimi-Aghdam et al., 2019), this creep is modeled by several Kelvin chains, not
because of some arrangement of any physical object in the microstructure, but to
describe the creep compliance by Dirichlet series whose terms correspond to the
Kelvin chain factors. This is of great help to speed up numerical computation.

2. In the model by Benboudjema and derivatives (Benboudjema, 2002; Benboudjema
et al., 2005; Foucault et al., 2012; Hilaire, 2014; Charpin et al., 2017; Giorla and Dunant,
2018), only one Kelvin chain is used. (Bazzoni, 2014) reported that the C−S−H par-
ticles form as needles of single size characteristic of the binder; Muller (2014) re-
ported that the intrinsic gel porosity has a single characteristic size. Irfan-ul Hassan
et al. (2016) shows that this short-term creep is completely reversible by analyzing
3-minutes creep tests. Therefore, we think that using one Kelvin chain is more rep-
resentative of the physical process during short-term creep.
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1.4.3 Long term basic creep

It is commonly accepted in the literature that the long-term behavior is logarithmic and
completely irreversible and is taking place in the inter-layer basal space of C−S−H (Bažant
et al., 1997; Benboudjema, 2002; Sellier et al., 2016). Moreover it has been identified by
classical testing methods at the macroscopic scale (Acker and Ulm, 2001) and by nano-
indentation at the C−S−H scale (Vandamme and Ulm, 2009). Almost all the existing
models today agree on the following points: (i) the long term basic creep is completely
irreversible, (ii) and comes from viscous phenomena occurring in C−S−H interlayers, (iii)
and this viscous process involves a reorganization of nanostructure of C−S−H, and (iv)
the interlayer water lubricates the C−S−H layer surface, which reduces the creep mod-
ulus (Suwanmaneechot et al., 2020). But how this reorganization occurs is still a subject
of debate (Ye, 2015). Is it sliding (Bažant et al., 1997), or compaction (Vandamme and
Ulm, 2009), breaking and remaking of C−S−H bounds (Sellier et al., 2016), microcracking
(Rossi et al., 2012)? Two mains theories are widely adopted for modeling the long term
creep:

1. In the Micro-prestress theory (Bažant et al., 1997), it is modeled by a non-linear
Maxwell dashpot where the viscosity depends on the micro-prestress. The micro-
prestress characterizes self-equilibrated stresses at the nanoscale level. It is initially
produced by incompatible volume changes in the microstructure during hydration.
These stresses stretch and break the interatomic bonds of C−S−H layers, allowing
slip of parallel C−S−H sheets or adjacent C−S−H globules, which is believed to be
the main cause of creep in concrete in the long term.

2. In the consolidation theory, the long-term creep originates from compaction or
consolidation of the C−S−H nanostructure under load, (Vandamme and Ulm, 2009).
From the modeling viewpoint, Sellier and Buffo-Lacarriere (2009); Sellier et al. (2016)
modeled long-term creep by a non-linear Maxwell module, where the viscosity de-
pends on the creep strains. Following the same idea, Hilaire (2014) proposed a
model where the viscosity is made dependent on time.

1.5 Drying creep

1.5.1 Experimental observations

For a specimen subjected to both drying and mechanical load, the part of the deformation
not explained by basic creep and drying shrinkage is called desiccation creep.

εεεdc =εεεtot −εεεbc −εεεsh −εεεel (1.14)

where: εεεtot is the total strain tensor, εεεel the elastic strain, εεεsh drying shrinkage strain ten-
sor, εεεbc the basic creep strain tensor and εεεdc the drying creep strain tensor.

Drying creep corresponds to the additional deformation when concrete is stressed to-
gether with internal moisture change. This behavior, called Pickett effect, is quite para-
doxical. A pre-dried specimen creeps less than a saturated one, but when drying, the
lower the relative humidity at which the concrete is exposed, the more it will creep (Acker
and Ulm, 2001).
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1.5.2 Mechanisms of drying creep

Two mechanisms had been proposed in the literature to explain this phenomenon.

Structural origin of drying creep

To explain the transient creep effect caused by humidity change, the most apparent mech-
anism may be skin microcracking (Wittmann and Roelfstra, 1980). When an unloaded
specimen is subjected to drying, tensile stresses due to hydric gradients may exceed the
tensile strength of the material and lead to surface microcracking. The larger the struc-
ture, the larger the gradient will be, and the more likely cracking. Therefore this mech-
anism is intimately related to the structure and could be drastically reduced by testing
very thin specimens, (Day et al., 1984; Bažant and Yunping, 1994). But when a specimen
is subjected to compression and drying, the microcracking is less prominent than that of
the non-loaded specimen. Therefore, the measured strain is greater than the sum of basic
creep and drying shrinkage measured separately.

Intrinsic mechanism

However, many researchers found that the transient creep effects, under humidity change,
could not be only attributed to the microcracking or damage (Bažant et al., 1997; Ben-
boudjema et al., 2005; Havlásek and Jirásek, 2016). Experimental studies (Day et al., 1984;
Bažant and Yunping, 1994) have demonstrated that even thin specimens show significant
drying creep; although the very small thickness of specimens allows reducing the hygric
gradient, source of surface microcracking. Therefore, other mechanisms were proposed
to explain this complex coupled hydro-mechanical behavior. It mainly includes the seep-
age theory (Ruetz, 1968), the stress-induced shrinkage theory (Bažant and Chern, 1985;
Benboudjema et al., 2005), the poromechanics theory (Sellier et al., 2016), micro-prestress
relaxation theory (Bažant et al., 1997; Jirásek and Havlásek, 2014; Rahimi-Aghdam et al.,
2019), stress concentration theory (Brooks, 2001).

1.5.3 Modeling drying creep

Above all the mentioned theories, the most widely used is drying induced shrinkage (Bažant
and Chern, 1985). According to this theory, simultaneous loading and drying causes micro-
diffusion of water between micropores and macropores. This enhances bound breakage
of C−S−H gel , which in turn causes intrinsic drying creep

ε̇̇ε̇ε=µ|ḣ|σσσ (1.15)

Later on, Bažant et al. (1997) proposed that intrinsic drying creep that is not only due
to water flow between micropores and macropores, but any phenomenon likely to affect
the thermodynamic balance of C−S−H, described by the notion of relaxation of micro-
prestress.

Recently, Benboudjema et al. (2005) studied the interaction between drying, shrink-
age, creep, and cracking in concrete. The authors suggested that the drying process and
intrinsic drying creep mechanisms occurred with different kinetics. They modeled the
drying creep effect by adding Kelvin–Voigt unit to the rheological model of basic creep

ηε̇̇ε̇ε+θ|ḣ|κεεε= θ|ḣ|σσσ (1.16)
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where η is the viscosity of the micro-diffusing water; κ the stiffness of the load-bearing ab-
sorbed water layers; θ = 1s a unit conversion factor. This model assumes that the material
skeleton bounds the micro diffusion process in the adsorbed water layer.

Sellier and Buffo-Lacarriere (2009) proposed a coupled hygro-thermo-mechanical model
based on the framework of poromechanics. In their model, the effect of temperature and
humidity on creep is established by introducing several Biot coefficient terms to directly
correct creep amplitude.
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Chapter 2

Investigation of drying shrinkage of
cement-based materials assisted by
Digital Image Correlation

2.1 Motivation

When exposed to drying, a gradient of water content appears between the surface and the
core of the specimen (Benboudjema et al., 2007; Hwang and Young, 1984). Due to differ-
ential shrinkage, the surface of the specimen experiences tensile stresses while its core
is under compression (Benboudjema, 2002; De Sa et al., 2008; Samouh et al., 2019). The
larger the specimen, the larger the moisture gradient between the core and the surface of
the specimen. In addition, the tensile stress may exceed the tensile strength of the mate-
rial, and cracking might occur (Mauroux et al., 2012). When studying material behavior,
cracking related to structural effects is problematic since measurements are the result of
both material and structural behavior. The study presented in this chapter aims at im-
proving the understanding of the effect of drying rate on the delayed strain of cement-
based materials. For that purpose, experimental tests, where crack could be avoided or
limited as much as possible, have been designed. Avoiding cracking is a crucial way to
improve the understanding of material behavior. One way is to reduce as much as possi-
ble the size of the specimens (Bažant et al., 1976; Day et al., 1984; Neubauer et al., 2000;
Neubauer and Jennings, 2000). On the one hand, this is useful for accelerating the drying
process as it is known that drying of cement-based materials is a very slow process (Acker
and Ulm, 2001). This idea of using cement paste members of small thickness for studying
delayed strain has been proposed by Bažant et al. (1976), who used 0.72 mm thick speci-
mens to investigate creep and shrinkage of cement paste at variable water content. Later
on Day et al. (1984) followed up with 1.9 mm thick specimens. However, in both studies,
some information is missing (weight loss evolution, desorption isotherm, and cracking
characterization). On the other hand, the thinner the specimen, the most likely natural
carbonation will affect drying because, like desiccation, carbonation is a diffusion type
process (Papadakis et al., 1989; Thiery et al., 2007; Morandeau et al., 2014). Thus limiting
natural carbonation when testing samples of small thickness is crucial. It requires the use
of an appropriate system to reduce the CO2 content of the ambient environment (Day
et al., 1984).
In this study, two techniques are used to study the drying shrinkage on very thin cement
paste specimens:

1. The first method consists of using Environmental Scanning Electron Microscope

41



CHAPTER 2. INVESTIGATION OF DRYING SHRINKAGE OF CEMENT-BASED
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(ESEM) assisted by Digital Image Correlation (DIC). ESEM enables to control pres-
sure, temperature, and then indirectly relative humidity, at the same time when
imaging the sample surface at a chosen time frequency (Neubauer et al., 2000; Jankovic,
2008). Sub-micrometer spatial resolution images could be achieved using Secondary
Electron (SE) or Back-Scattered Electron (BSE) mode. SE imaging is mostly sensi-
tive to topography. BSE imaging is more sensitive to chemical contrast. Let us keep
in mind that, ESEM images may be affected by a considerable amount of imaging
artefacts (Maraghechi et al., 2019; Sutton et al., 2007b; Guery et al., 2013) which may
impede DIC accuracy for displacement and strain assessment.

2. The second method is to use a climatic chamber system assisted by DIC. The CO2
of the ambient air in the chamber is reduced as much as possible using the appro-
priate technique, described in this chapter. The monitoring is performed by using
an optical camera to image the whole sample surface, unlike ESEM imaging, where
only a small region of the surface is followed.

There are three important challenges to overcome with both experimental techniques.

1. Challenge number one is to avoid cracking because if it occurs, true drying shrink-
age, which is characteristic of the material, cannot be assessed. To address this is-
sue, samples of very small thicknesses are studied, and the relative humidity is de-
creased slowly. Particular attention has also been paid during sample preparation
to achieve the highest possible homogeneity as much as possible between samples.

2. Challenge number two is to acquire images in ESEM or Climatic Chamber, at dif-
ferent relative humidity conditions and at constant room temperature suitable for
DIC. It was decided not to use speckle deposit since it can impede the drying pro-
cess, even if this would have been of great help to improve the accuracy of DIC,
especially when images are taken at variable relative humidity.

3. The last challenge is finally to develop an ok analysis to assess strains induced by
drying shrinkage with the lowest possible uncertainty.

This chapter presents the study undertaken to tackle those objectives and is organized
as follows. In the first section, the experimental program is presented. In the second
section, digital image correlation method is introduced, followed by the analysis of the
uncertainties likely to occur in the experiments and how to limit their impact. In the third
section, the investigation of the DIC technique is carried out to validate the experiments.
The last section presents the investigation of drying length change isotherm results, a
comparison between different experimental results is proposed, and the impact of the
drying rate on drying-induced deformations is investigated.

2.2 Experimental programm

2.2.1 Samples preparation

The studied material is a cement paste of water to cement ratio (w/c) of 0.52. A cement
of type CEM I 52.5 N CE HES BENOR from Gaurin, with a density of 3.19 g /cm3 is used,
referring to VERCORS concrete (Charpin et al., 2018; Mathieu et al., 2018). The main char-
acteristics of cement are presented in Tab.2.1.
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Table 2.1: Chemical composition (in % wt)

SIO2 Al2O3 Fe2O3 TIO2 MnO CaO MgO SO3 Na2O K2O Cl –

20.8 4.5 2.3 0.3 0.1 63.2 2.1 3.3 0.16 0.73 0.05

Unlike in VERCORS concrete formulation (Thion et al., 2019), no admixture was added
since the water-cement ratio was high enough to facilitate the casting process. All speci-
mens came from different batches following the same fabrication process. For each batch,
the paste (2 L) was mixed with a thick stainless mixing blade of 5 L capacity for 1.5 min;
then tap water was added (1 min). Finally, for another 1.5 min, the mixer was turned
on after the paste was scrapped in the mixer. Specimens were cast in cylindrical molds
of sizes �36×180 mm or �30×40 mm. The specimens were demolded 24 h later and
were placed in hermetic containers at constant room temperature (T = 20±1◦C) with a
bottle of water inside to prevent desiccation (fig.2.1.a) for at least 90 days before testing.
Small plates of different thicknesses were obtained by cutting the cylinders with a dia-
mond saw (fig.2.1.b). The cylinders were kept flooded with water during cutting to avoid
temperature rise. The thin slabs were then covered with plastic and aluminum foil to pre-
vent exchange with the environment.

(a) (b)

Figure 2.1: Sample preparation process. (a) Curing conditions and (b) sawing of cylinder to obtain
prism of size 10×10×2 mm.

Porosity (accessible to water) measurement was carried out to verify according to the
AFREM standard with two specificities:

• Samples were saturated with water at approximately pH 12.

• The samples were directly immersed in water before vacuuming, whereas in the
AFREM recommendations, a first vacuum of 25 mbar is to be performed, and then
water is gradually introduced for about 15 min during a second vacuuming phase.
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It allows to verify that vertical casting does not lead to excessive porosity gradient (tab.2.2).
The maximum difference between all six tested samples is 0.6%. Therefore the homo-
geneity of the samples was considered to be very satisfactory.

Table 2.2: Porosity (%) values of two cylinders and at three locations

Porosity(%) Bottom Middle Top Average
Sample 1 46.5 46.48 46.47 46.48
Sample 2 46.59 46.43 45.99 46.33
Average 46.54 46.45 46.23 46.4

Two geometries are involved in investigating the effect of size and shape on the ulti-
mate drying shrinkage. For macroscopic tests, cylinders �36×180 mm are used; in case
of microscopic tests, specimens were 10×10×(2, 0.5 and 0.2) mm slabs (fig.2.2). Let us
note that the variability in the thickness of thin slabs is ±30 µm (which corresponds to the
thickness of the diamond saw wire). The feature of each test is specimen geometry and
drying thickness, plus the relative humidity control system and the rate of drying. The
acronyms used to describe the experiments are listed in tab.5.1. For example, DS-P2mm-
ESEM-LCIs will read: Drying Shrinkage test on Prismatic specimen of 2 mm thickness in
ESEM, Length Change Isotherm testing. The experimental program is summarized on
tab.2.4.

2.2.2 ESEM experiments

A new experimental protocol in ESEM for the assessment of drying shrinkage behavior
is proposed hereafter. The objective of these tests is to speed-up the drying rate so that
the long-term drying length change is assessed within a very short period of time. The
description of the technique is given hereafter. Experiments DS-P2mm-ESEM-FD and
DS-P2mm-ESEM-LCIs of tab.2.4 are concerned:

• specific preparation: specimens of size 10×10×2 mm were sawed from cylinders
with an impregnated diamond blade, while they were kept flooded during cutting
to avoid temperature rise and carbonation with room air. The specimens were first
wrapped with a plastic sheet and then with aluminum to keep them in endogenous
conditions and to prevent carbonation. 24 h hours before testing, the specimens
were kept under 5°C to prevent drying and hence cracking during the pumping cy-
cles of the ESEM. There was no speckle deposit on the specimen surface to enhance

Table 2.3: Acronyms used to describe specimen geometry and experimental condition

DS Drying Shrinkage
P2mm Prism of 2 mm thickness

P500 µm Prism of 500µm thickness
C36mm Cylinder of 36 mm diameter

CC climatic chamber
SS Salt Solution1

FD Fast Drying
LCIs Length Change Isotherm

RH20 20% Relative humidity
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(a):DS-C18mm-SS (b): DS-P2mm-CC (c):DS-P2mm-ESEM

18
m

m

10 mm

10
m

m

400 µ

26
0
µ

ZoneZonesawing

Figure 2.2: Specimens for multiscale investigation of drying shrinkage using saturated saline so-
lution (a) Climatic chamber (b) and ESEM (c) techniques

Table 2.4: Summary of experimental campaign undertaken on cement paste. TDS = Transitional
Drying Shrinkage

Test Geometry (mm) TDS LCIs System
DS-P2mm-ESEM-FD 10×10×2 X ESEM

DS-P2mm-ESEM-LCIs 10×10×2 X ESEM
DS-P500µm-CC-LCIs 10×10×0.5 X CC
DS-P200µm-CC-LCIs 10×10×0.2 X CC

DS-P2mm-CC-FD 10×10×2 X CC
DS-C18mm-SS-RH80 �36×180 X SS
DS-C18mm-SS-RH58 �36×180 X SS
DS-C18mm-SS-RH20 �36×180 X SS

contrast since it may prevent natural drying; for that reason, the natural contrast is
used.

• Environment: An ESEM of type Quanta-650 was used. The relative humidity was
controlled by varying the pressure inside the chamber while keeping the tempera-
ture at a constant value of 24°C; the temperature was regulated through an air con-
ditioning system and monitored using a PT100 temperature sensor provided with
the microscope. We have taken advantage of BSE imaging mode (fig.2.3) in order
to benefit from both chemical and topography contrast. This imaging mode also
allows to probe up to 30 nm depth. Since the energy of backscattered electrons car-
ries the signature of the atoms it has been interacting with, it gives a clue on these
atoms, being on surface or in bulk.

• Strain measurement: Images are post-processed by DIC. The BSE detector has
been used with an acceleration voltage of 30 kV and a working distance of
9.5 mm, adjusted by trial and error strategy (fig.2.3). The scanned area was 266×400
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µm with a definition of 1048×1524 pixels, and the pixel size is then 260 nm.

Stand Specimen Depth(µm)

e− emission
BSE e−

Esem conditions

Gas: water

Pressure:
2700 Pa

585 5850

W
D

(m
m

)

0

10

Detector

Figure 2.3: Experimental set-up for drying shrinkage measurement in ESEM using BSE mode to
image the sample on stand

• Testing procedure: A specific stand was designed (fig.2.3) to allow the specimen to
dry from all faces. This stand was clipped in ESEM, and then the sample was put on.
A first global image was pictured using a Navcam Camera to track any desired po-
sition on the sample surface when the chamber is closed. The ESEM chamber was
then closed, and the air inside the chamber was pumped to reach an equilibrium of
2700 Pa or slightly less, depending on the current temperature.

2.2.3 Climatic chamber experiments

A new protocol was developed for measuring the short drying length change on a thin
slab in a climatic chamber. The purpose was (i) to provide data for validation of ESEM
experiment and (ii) to evaluate the effect of drying rate on the ultimate drying shrinkage.
The procedure of these experiments, referred to in tab.2.4 as DS-P500µm-CC-LCIs, DS-
P200µm-CC-LCIs and DS-P2mm-CC-FD, is described hereafter.

• Specific preparation: the same sample preparation as in cases of ESEM testing was
used, except the fact that the step of cooling the sample to 5°C was not necessary.

• Environment: The relative humidity and temperature were controlled using a cli-
matic chamber. They were monitored using PT100 sensors for temperature and for
relative humidity. To deal with carbonation, a specific box was designed, allowing
air to pass through and be filled with lime powder compacted to reduce the space
between grains. The box was placed in the air inlet of the climatic chamber, fig.2.5,
so when the air comes in, CO2 was captured before reaching the chamber space,
where the specimen lies. It proved to reduce the CO2 content of room air to less
than 100 ppm (between 20 and 90 ppm).
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Figure 2.4: Illustration of target humidity, controled in ESEM, test DS-P2mm-ESEM-LCIs.

• Strain measurement: Images were acquired and analyzed by DIC using mesh sizes
of 50×50 pixels. As in the ESEM case, only natural contrast of cement paste was
used. The experimental set-up is shown in fig.2.5. An optical camera of type Ed-
mund optic, equipped with 0.125× telecentric lens (in order to limit effects of out
of plane movement), was used. The surface of the specimen was constantly illumi-
nated using LED light. It was checked that lighting did not induce temperature rise.
All the surface of the specimen was imaged with a definition of 1000×1000 pixels,
which correspond to a physical pixel size of 10µm.

2.2.4 Experiments with saturated salt solutions humidity control sys-
tem

These tests were designed in order to provide with ultimate drying shrinkage data of
slow and long drying experiments to be compared with results of short-term measure-
ments (ESEM, climatic chamber). In the following, the procedure for these long drying
length change tests (DS-C18mm-SS-RH80, DS-C18mm-SS-RH58, DS-C18mm-SS-RH20
of tab.2.4) is given.

• Specific preparation: Tested samples are �36×180 mm cylinders. The specimens
were ground and stored under endogenous conditions until the start of the test.

• Environment: It was decided to design sealed humidity chambers (fig.2.6) capable
of maintaining some humidity generated by a given saturated salt solution (tab.2.5),
minimizing water exchanges with the atmosphere, set at 50 % RH. Temperature and
humidity were monitored with a PT100 temperature sensor and a Rotronics capac-
itive probe. The probes were placed on the wall of the chamber as close as possible
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Figure 2.5: Experimental set-up for drying shrinkage measurement in climatic chamber condi-
tioning system.

to the specimen. Because the air in the chamber did not circulate (in order to avoid
cracking), the relative humidity decreased slowly.

Table 2.5: Saturated solution for generating relative humidities in macroscopic tests

RH(%) 11 58 81.2
Saturated solution LiCl2 NaBr KCl

• Strain measurement: For each specimen, the axial strain was monitored using three
LVDT (Linear Variable Differential Transformer) displacement sensors, installed at
120° (allowing correction of possible unexpected sample bending); the measure-
ment was made on a 10.8 cm basis.
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Figure 2.6: Experimental set-up for drying shrinkage measurement in relative humidity chamber
controlled by saturated salt solution.

2.3 Brief description of Digital image correlation

2.3.1 Principle of DIC

The inputs of DIC are two gray level pictures, denoted as f (x) (reference image) and
g (x) (deformed image) (Hild and Roux, 2008). DIC searches for displacement field u(x)
that relate f and g based on gray level conservation:

f (x) = g (x+u(x)) (2.1)

The outputs are displacement fields between the 2 input images plus possibly extra cor-
rections e.g. gray level and the difference between f (x) and g (u(x)+x), also called residual.
Mainly, two types of correlation techniques exist: local and global correlation techniques.
For local DIC, the displacement u is sought for each center of each Zone of Interest (ZOI).
The minimization is performed independently for each ZOI.

For global DIC, displacement u is sought such that it satisfies continuity requirement.
The displacement is written as in Eq. 2.2:

u(x, t ) =∑
i

vi (t )ΨΨΨi (x) (2.2)

where vi denotes the discretization of displacement u according to chosen basis func-
tionsΨΨΨi in the sense of finite element framework. Two main outputs are sought, the resid-
ual of calculation and the displacement. The former represents the quality of the corre-
lation between the two input images. The latter allows computing the strain whenever
possible. In the present study, DIC is carried out using Correli-RT3, software developed
at LMT Laboratory (Tomičević et al., 2013). It offers the advantage of performing global
DIC analysis using finite element mesh with triangular elements. It also introduces me-
chanical regularization (Tomičević et al., 2013), which makes it possible to track subpixel
displacements, which reveals to be powerful when it comes to analyzing natural textures
such as cement paste without speckle deposit on its surface. In fact, the regularization
acts as a mechanical filter on the displacement field to erase high-frequency fluctuations
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likely to occur due to image acquisition noise. The cut-off frequency of this filter is char-
acterized through a single parameter, called here regularization length. When the regu-
larization length is less than the mesh size, it means that the regularization has no effect;
that is why it is always taken greater or equal to the element size.

2.3.2 Uncertainty sources in DIC measurement

The accuracy of strain evolution is of central importance, especially when small defor-
mations are sought (Grediac and Hild, 2011). Uncertainty in the type of experiments per-
formed in this study, being in ESEM (Maraghechi et al., 2019) or in a climatic chamber may
originate from various sources. First of all, due to relative humidity variations, the images
can suffer from contrast and brightness variations. This may impede the DIC method
because the information registered on the material point is not the same. In the case of
ESEM testing, this type of error can be minimized or even canceled out by superimposing
several images of scanning as recommended in (Sutton et al., 2009). Regarding experi-
ments in climatic chambers, two images acquired under the same operating conditions
may have gray levels that vary by a random quantity whose difference can reach a few
tenths of the dynamic range. Second, we have thermal errors coming from thermal heat-
ing. In ESEM, scanning causes local heating of the material. This kind of error can be
minimized by turning on the electron beam for few minutes before acquisition of the ref-
erence image so that the thermal balance could be reached before imaging (Sutton et al.,
2007a). For climatic chamber, the lighting source may cause thermal heat of the sample
surface. Third, out-of-plane movements may occur during tests leading to artificial strain.
This artifact is handled in the ESEM study by setting the working distance to a constant
value throughout the test. For climatic chamber testing cases, the telecentric lens allows
minimizing this kind of artifact.

2.4 DIC technique investigation

In this section, we focus on the DS-P2mm-ESEM-LCIs test tab.2.4, first to assess DIC per-
formance, and second to validate this measurement technique by comparison of results
of tests carried out in ESEM and in climatic chamber. The Region of Interest (ROI) and the
different mesh sizes to use in this study are presented in fig.2.7.

The images used for evaluation of the DIC technique are displayed in fig.2.8; they ex-
hibit enough contrast for DIC to be applied.

50



CHAPTER 2. INVESTIGATION OF DRYING SHRINKAGE OF CEMENT-BASED
MATERIALS ASSISTED BY DIGITAL IMAGE CORRELATION

500 1000

400

600

800

Reference mesh

(a) Zone of analysis (b) Mesh: 16 ×16 pixels

500 1000

400

600

800

Reference mesh

500 1000

400

600

800

Reference mesh

(c) Mesh: 64 ×64 pixels
(d) Mesh: 128 ×128 pixels

Figure 2.7: Region of Interest (a) and (b, c, d) different mesh sizes tested in uncertainty analysis.
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(a) Test set up: T0 = 0
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(b) T0 + 2 min
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Figure 2.8: Images taken at T0 (test start) and T1 (test end) for uncertainty analysis, (schematic
drying path is given in fig.2.4)
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2.4.1 Displacement and residual strain maps study

In this section, for a demonstration purpose, DIC was run between an image at a relative
humidity of 79 % and pressure of 2468 Pa (fig.2.8.b) and an image pictured at a relative
humidity of 9 % and pressure of 277 Pa (fig.2.8.c). The comparison has been made using
two mesh sizes: a coarse mesh of 33 µm (fig.2.11) and a fine mesh of 4.2 µm (fig.2.10):
in both cases, the regularization length is 133 µm. The output residual along with the
deformed mesh is presented for both mesh sizes in fig.2.9. The residual map shows that
it is quite homogeneous over the study zone (fig.2.7), and its value remains below 5%
(Eq.2.3).

R = σ( f − g )

max( f )−mi n( f )
(2.3)

where R is the residual, σ denotes the root mean square value of the picture difference, f
and g respectively the reference and the deformed images, max( f )−mi n( f ) is dynamic
range of reference image f . Hence the residual is the ratio of uncorrelated pixels over the
total number of pixels of the reference reference image (1048×1524 pixels for instance in
ESEM images).

Figure 2.9: Deformed mesh along with associated residual map: element size= 4.2 µm; regular-
ization length = 133 µm (a), element size=33 µm, regularization length = 133 µm (b)

The measured displacement fields associated with these residuals are shown for both
meshes sizes in fig.2.10 and fig.2.11. The analysis of this displacement in the central zone
shows a quasi-linear variation over the ROI.
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Figure 2.10: Displacement result of DIC calculation for element size 4.2 µm and regularization
length of 133 µm
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Figure 2.11: Displacement result of DIC calculation for element size 33 µm and regularization
length of 133 µm (between T0 and T1)
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The linearity of displacement over the ROI demonstrates that the hypothesis of uni-
form strain is satisfied.

2.4.2 Strain sensitivity study

DIC was run on every pair of images acquired at the very end of each relative humidity
step represented in fig.2.4 and for different element sizes.

The benefit of regularization to reduce the uncertainty of measurement is also tested.
The results of analyze for a relative humidity of 79 %, 39 %, and for 9% RH are presented
in figs.2.12, 2.13 and 2.14 respectively. In each figure, the uncertainty on strain εxx , εy y ,
εx y , εdev are presented, they are evaluated as the standard deviation of the strains maps.
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Figure 2.12: Result of DIC applied on images acquiredapproximately 2 minutes one after another
at relative humidity step of 79 %, 0.5 h after the start of the test. Correlation residual and standard
uncertainty for εdev , εxx and εy y as a function the length of regularization for different mesh sizes
(16, 64, 128 pix).

The greater the regularization length, the smaller the uncertainty on the strain is.
These results clearly show the advantage of regularization, which allows decreasing the
error on strain down to 10−4. The measurement error on strain is significantly minimized
by increasing element size and a stronger regularization. As it can be noticed, the uncer-
tainty on mean strain could be reduced to less than 10−4 thanks to proper regularization.
This is interesting because we are expecting strain levels of the order of 10−3-10−2 for this
type of material in the range of investigated relative humidity.

55



CHAPTER 2. INVESTIGATION OF DRYING SHRINKAGE OF CEMENT-BASED
MATERIALS ASSISTED BY DIGITAL IMAGE CORRELATION

0 100 200 300 400 500 600
Regularization length[pix]

4.33

4.34

4.35

4.36

4.37

C
o

rr
el

at
io

n
 R

es
id

u
al

[%
]

Residual

16
64
128

0 100 200 300 400 500 600
Regularization length[pix]

10-6

10-5

10-4

10-3

10-2

st
ra

in
[-

]

dev

16
64
128

0 100 200 300 400 500 600
Regularization length[pix]

10-5

10-4

10-3

10-2

st
ra

in
 [

-]

xx

16
64
128

0 100 200 300 400 500 600
Regularization length[pix]

10-6

10-5

10-4

10-3

10-2

st
ra

in
[-

]

yy

16
64
128

un
ce

rt
ai

nt
y[

-]
un

ce
rt

ai
nt

y[
-]

un
ce

rt
ai

nt
y[

-]
C
or

re
la

ti
on

 r
es

id
ua

l[
%

]

Regularization length[pix] Regularization length[pix]

Figure 2.13: Result of DIC applied on images acquired approximately 2 minutes one after another
at relative humidity step 39% RH, 1.7 h after the start of the test. Correlation residual and standard
uncertainty values for εdev , εxx , and εy y as a function the length of regularization for different
mesh sizes (16, 64, 128 pix)

2.4.3 Discussion on uncertainty results

The imaging technique developed in this study allows to image surfaces without any
speckle deposit. As described above, the principle of DIC consists of comparing two gray
level images, and three main outputs are displayed: the first one is the grey level residual,
which represents the quality of the correlation between the two registered images. The
level of residual is always below 5 %. It is checked that the residual map is homogeneous
over the ROI, and its value remains acceptable. The uncertainty analysis performed us-
ing different regularization lengths shows that the strain uncertainty can be reduced to
less than 10−4 -10−5. There is a compromise to be made between the spatial resolution
and the measurement uncertainty. If average strains are sought, then one must use a very
large regularization and coarse mesh. Yet if local behavior is sought, then the mesh size
and the regularization length must be as small as possible in respect to the local contrast
of the surface. Regarding the uncertainty results and because we are more interested in
mean strains, we decided to use a mesh size of 133 µm with a regularization length of 133
µm.
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Figure 2.14: Result of DIC applied on image acquired approximately 2 minutes one after another
at relative humidity step 9% RH, 4 h after the start of the test. Correlation residual and standard
uncertainty for εdev , εxx , and εy y as a function the length of regularization for different mesh sizes
(16, 64, 128 pix).

2.4.4 Comparison of techniques

In this section, a confrontation is made between DS-P2mm-ESEM-FD in ESEM and DS-
P2mm-CC-FD in Climatic Chamber. One should question if the measured strain in the
ESEM test holds any meaning because we calculate the strain from an image size of 266×400
[µm xµm] that represents a tiny window from the total heterogeneous surface of 10×10 mm.
Moreover, the sample surface might be affected by carbonation, cracking, not visible to
the naked eye, and possibly outside the observation zone. To address this issue, the com-
parison between the climatic chamber and ESEM results is presented in fig.2.15.
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Figure 2.15: Comparison of drying shrinkage measurement. (a) Climatic chamber and
(b) ESEM

The amplitude of drying shrinkage reached when drying from 80% to 20% relative hu-
midity is found to be 3940 µm/m for climatic chamber test (fig.2.15.a) and 4077 µm/m for
ESEM test (fig.2.15.b); the difference between is only 147 µm/m. The comparison is very
satisfactory and allows us to validate the experimental techniques.

2.5 Investigation of drying shrinkage

2.5.1 Effect of drying rate on drying shrinkage

Since the pioneering works of Pickett (1942), experimental investigations have shown that
the kinetics of drying shrinkage depends on the drying rate, (Hansen, 1966; Hwang and
Young, 1984). In fact, the specimen size or shape will influence the rate at which water
moves toward the environment, and therefore will impact the rate of shrinkage. Yet, the
open question is whether the final drying shrinkage level depends on the drying rate or
equivalently on the size and shape of the structure.
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Figure 2.16: Drying shrinkage coefficient assessment: effect of drying rate
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In fig.2.16, the test duration is displayed with the change of drying shrinkage versus
humidity. Despite the large difference in the rate of drying of fig.2.16. (a) (-15% relative
humidity/hour) and fig.2.16.(b) (-0.24% relative humidity/hour), drying shrinkage seems
to reach almost the same value at each relative humidity step. In this study, the drying
shrinkage coefficient ksh [-] (Eq.2.4) is assessed through different experiments conducted
on specimen thickness 200 µm, 500 µm and 2000 µm (fig.2.17).
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Figure 2.17: Drying length change assessed by DIC using two different systems: DS-P500µm-
CC-LCIs specimen , ksh = 8.5 10−5; DS-P200µm-CC-LCIs, ksh = 8.6 10−5; DS-P2mm-ESEM-LCIs:
ESEM, ksh = 9.1 10−5. More details on the tests are given in tab.2.4

ε̇= kshḣ (2.4)

where ε̇ [s−1] is the rate of variation of drying shrinkage related to change of relative hu-
midity ḣ [s−1].

These results show that drying shrinkage can be assumed to be proportional to relative
humidity even for a large range of humidity (typically from 80%-20% RH). Let us assume
that the drying shrinkage rate is proportional to the variation of humidity. The results on
fig.2.17 shows that the drying shrinkage coefficient is almost the same regardless, of the
specimen size, with a mean value of ksh = 8.74 10−5[-] where ε̇= kshḣ.

The so-called drying shrinkage coefficient does not depend on the specimen size, at
least from a material point of view.

In fig.2.17, the drying shrinkage curve of DS-P2mm-ESEM-LCIs exhibits a non-expected
behavior between 50-60 % RH range. Such behavior has already been observed on Vycor
7930 Corning glass (Amberg and McIntosh, 1952) and reported in (Vlahinić et al., 2009).
This behavior has been attributed to the morphology of the material. In this case, this
behavior may be induced by the heterogeneity at the microscale level of cement paste.
More investigation, both experimentally and numerically, would be needed to clarify this
point.
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RH [%] Shape Geomtry [mm] Initial
RH
[%]

Drying
thickness
[mm]

Experiment Drying
shrinkage
[µm.m−1]

20 Cylinder 36×180 88% 18 DS-C18-SHC-RH20 5280
20 Prism 10×10×2 80% 2 DS-P2mm-ESEM-LCIs 5502
20 Prism 10×10× 0.5 80% 0.5 DS-P500µm-CC-LCIs 5150
20 Prism 10×10×0.2 80% 0.2 DS-P500µm-CC-LCIs 5160

Table 2.6: Comparison of the final drying shrinkage at equilibrium for experiments in tab.2.4 at
20 % RH

The undertaken study makes it also possible to compare drying shrinkage reached at
20% RH for different sizes and shapes of specimen and in different drying conditions. This
comparison is displayed on tab.2.6.

From those results, fig.2.15, 2.17 and tab.2.6, our point of view is that for a given mate-
rial, for a given relative humidity, at room temperature, the final drying shrinkage is inde-
pendent of the rate of drying, at least on the cement paste level. This result is supported by
other findings (Day et al., 1984; Hwang and Young, 1984; Bissonnette et al., 1999). It would
be interesting to verify if the same conclusion stands at mortar and concrete levels since
aggregates could induce cracking at the mesoscopic level in these materials compared to
the cement paste. The answer to that question is of first importance for the prediction of
structure delayed strain by modeling. At the concrete level, Campbell-Allen and Rogers
(1975) found by analyzing the existing literature data that the assumption stating that the
final drying shrinkage strongly depends on the specimen size is not well supported; but
the only impacting factor is the skin cracking, which is likely to occur in massive struc-
tures. However, the depth of skin-cracks is negligible compared to the overall thickness
of the structure. Moreover, most of the cracks would close upon the pres-stressing (in
pre-stressed structures). So, for pre-stressed structures, the drying rate will not affect that
much the final drying shrinkage. However, it would be useful to investigate further the
skin cracking effect on drying shrinkage, especially on a laboratory scale (millimeter and
centimeter-scale), since skin cracking would significantly affect the measurements.

2.5.2 Comparison with literature results

To the best knowledge of the authors, it is the first time that DIC has been used to inves-
tigate the drying shrinkage coefficient dependence on humidity range and rate of drying.
Therefore, it is interesting to compare the present results to studies made in the past on
similar materials with different measurement methods. The main characteristics of those
tests compared to the ones performed in this chapter are summarized in tab.2.7.

Table 2.7: Experimental method of different experiment literature in comparison to the ones per-
formed in this chapter

Parameters Neubauer and Jennings Baroghel-Bouny et al. Maruyama et al. DS-P2mm-ESEM-LCIs DS-P200µm-CC-LCIs
w
c 0.5 0.34 0.55 0.525 0.525

Curing Lime water endogenous curing Lime water endogenous endogenous
Curing Temp. 20 23 20 20 20

Drying thickness 1 1.5 0.5 1 0.1
Test Temp. 10 23 20 20 20

Age (d) 28 365 180 365 180
RH control ESEM Salt solution TMA ESEM CC
Initial RH 80 90 90 80 80

Monitor system DIC dial gauges LVDT DIC DIC
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A brief description of each test is given below.

Experiment of Baroghel-Bouny et al. (1999) : performed drying shrinkage isotherm
study on cement paste with w/c =0.34 through measuring the diameter length change
for 1-year-old slice specimens by dial gauges with an accuracy of 1 µm.

Experiment of Maruyama et al. (2015) : performed short drying length variation test
on ordinary cement paste with w/c =0.55. The relative humidity was controlled by a ther-
momechanical analyzer (TMA) associated with an RH generator (AXS TMA4000SA and
HC9700, Bruker). The tested specimens were six months old, and the length change was
monitored by LVDT (accuracy of 0.5 µm).

Experiment of Neubauer and Jennings (1997) : first test to investigate drying shrink-
age of cement paste combining ESEM and Image matching technique. The authors used
a small specimen of 10×10×2 mm geometry made of ordinary cement paste, similar to
the tested sample for the ESEM test in the present chapter. Images of a field of view of
100 µm with a resolution of 512×512 pixels were taken. The test started at 80 % RH, and
the specimen was kept at that RH for about 10 min before the first image was taken. Se-
quence images at 80%-60%-40%-20%-5% RH are taken with ten minutes between each.
The testing temperature was 10◦C.

Comparison

The desorption length changes result presented in fig.2.18 point out two ranges of RH,
above and below 45% RH in agreement with the literature. In (Baroghel-Bouny et al.,
1999), the authors found a change at 44% RH, and in (Maruyama et al., 2015), the change
occurred at 40% RH. In the former range (45% <RH<80%), which corresponds to pore sizes
between 20 and 50 Å, the driven mechanism is attributed to capillary pressure (Coussy
et al., 2004). But for RH < 45 %, the capillary pores (larger than 20 Å are empty, the
water phase is disconnected, and the C-S-H surface layers are covered by adsorbed wa-
ter (Baroghel-Bouny et al., 1999). Therefore a drying shrinkage model accounting only for
capillary effects will not be suitable for this humidity range. The model should also ac-
count for surface tension (Coussy et al., 2004; Maruyama et al., 2015). The key idea is that
such a model should take into account at least two driving mechanisms (El Tabbal et al.,
2020).

2.5.3 Potential application of the method

The behavior of large structures, such as large bridges or nuclear containment buildings,
is mainly dependent on the evolution of drying shrinkage, especially in the long term.
Common engineering practice is to use empirical formulas to extrapolate the final drying
shrinkage based on short-term measurements, which may lead to large errors, especially
when the test duration is far less than the time necessary to reach equilibrium (Dohnalová
and Havlásek, 2020; Samouh et al., 2017). Yet, even on the laboratory scale, drying shrink-
age assessment is difficult. It is very time-consuming because the drying of cement-based
materials is a very slow process. Furthermore, the deformation phenomena are very de-
pendent on factors such as material mix, geometry, size, and possible cracking due to hy-
dric gradient for large specimen sizes. Therefore using specimens of small size in environ-
mental controlled humidity seems to be an interesting idea. The experimental technique
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Figure 2.18: Drying Shrinkage [relative to maximum value] vs. relative humidity: data from exper-
iments P500µm-CC-LCIs, DS-P200µm-CC-LCIs, and DS-P2mm-ESEM-LCIs; and from Neubauer
and Jennings (1997), Baroghel-Bouny et al. (1999), Maruyama et al. (2015).

we developed combines the use of very thin specimens and DIC by taking advantage of
different relative humidity control systems at our disposal. Using thin specimens to as-
sess drying deformations has several advantages. First, it is possible to reach equilibrium
for a given RH within a reasonable amount of time. Second, the thinner the specimen, the
lower is the hydric gradient, and less cracking may occur.
This technique is intended to be applied in parallel with classical shrinkage tests de-
scribed in (Maruyama et al., 2015; Baroghel-Bouny et al., 1999) so as to infer potential
synergies of these different methodologies, particularly in view of the DIC technique fill-
ing gaps of information at size range in which classical shrinkage tests are not possible.

2.6 Conclusion

An alternative method for investigating drying shrinkage behavior based on DIC is pro-
posed in this chapter:

1. we started by performing a sensitivity study to show the accuracy of DIC. The tech-
nique allowed us to reach an uncertainty level below 100 µm/m for relative humidi-
ties ranging from 80 % to 9% RH. The use of DIC also allowed for checking that the
strains were uniform at the observation scale, which validated that a representative
element volume had been obtained and crack was not present or diffuse.

2. The confrontation between the ESEM method and climatic chamber showed that
the final value of drying shrinkage was the same regardless of the drying rate. The
ESEM method presents the advantage of accelerating the drying process without
inducing cracking.
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3. By comparing the final drying shrinkage reached at 20 % RH, for two shapes (cylin-
der and prism) and various drying thicknesses (18, 1, 0.25, 0.1 mm), it was found
that neither the specimen shape nor the rate of drying affected the final drying
shrinkage. Furthermore, the results showed that drying shrinkage at equilibrium
was linearly dependent on relative humidity. These findings are of first importance
since they suggest that it is possible to build simple drying shrinkage models for
concrete.

4. The length change isotherm of the studied cement paste was investigated, using
ESEM and climatic chamber, both assisted by DIC. The results were compared to
literature data, using more well-established drying shrinkage assessment methods.
The comparison gives satisfactory results demonstrating that the developed tech-
nique was trustworthy. Last, the potential of the experimental technique developed
was highlighted.

From these results, two perspectives are listed below:

• First, the results presented may help to testing or building delayed strain models for
concrete structures, which are able to take into account the effect of rate of drying.
This is a critical point when such models are used at the structure level because the
experiments used in the lab to calibrate models exhibit much faster drying than that
of structures. One possible way to tackle that goal is to predict drying shrinkage tests
of specimen of large size with length change isotherm coefficient obtained by the
method presented in this study. Moreover, via homogenization, drying shrinkage
values at equilibrium for a given relative humidity can be upscaled from the cement
paste to concrete (Xi and Jennings, 1997).

• Second, as it is carried herein for drying shrinkage, the effect of rate of drying on
creep could also be investigated with the same approach. This will require the de-
velopment of a mechanical compression system in a climatic chamber or ESEM.
But the outcome will be very important from both fundamental and practical view-
points. In fact, this will be an opportunity to investigate for a large range of relative
humidity and for different drying rates the relationship between shrinkage and dry-
ing creep. Since the method made possible the assessment of drying shrinkage, free
of skin cracking, the part of Pickett effect (Pickett, 1942) attributed to cracking will
be avoided, and the study will focus on the intrinsic cause of drying creep. Should
drying creep be predicted from drying shrinkage measurements as stated by (Day
et al., 1984)? This study is currently undertaken.
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Chapter 3

Experimental and numerical
investigation of drying. Surface exchange
effects, impact on drying shrinkage

3.1 Motivation for the study

The durability of major pre-stressed structures such as nuclear power plants or large bridges
has been a critical topic for many years (Acker and Ulm, 2001; Bendboudjema, 2002;
Charpin et al., 2018; Bažant and Jirásek, 2018). Since the durability of such structures
strongly depends on the level of pre-stress, every phenomenon causing changes of the
pre-stress level should be studied. The first of these phenomena is drying (Bažant et al.,
1976; Bazant and Chern, 1985; Hansen, 1987; Baroghel-Bouny et al., 1999; Baroghel-Bouny,
2007; Cagnon et al., 2015; El Tabbal et al., 2020) since it is the primary source of drying
shrinkage and drying creep that are essential phenomena occurring in such large struc-
tures (Granger, 1995; Bendboudjema, 2002; Foucault et al., 2012; Jirásek and Havlásek,
2014; Sellier et al., 2016; Ishida and Tiao, 2018; Rahimi-Aghdam et al., 2019). The mod-
eling viewpoint adopted in this study is a staggered thermo-hydro-mechanical model
(Bendboudjema, 2002; Hilaire, 2014; Soleilhet, 2017; Sleiman et al., 2020), which makes
it possible to study the thermal behavior in a first step. In a second step, drying is com-
puted using thermal results as input. In the final step, both fields feed in the mechanical
calculation. In this chapter, the temperature is assumed to be constant and equal to room
temperature. Thus, the prediction accuracy of mechanical calculations will strongly de-
pend on the drying properties (Benboudjema and Torrenti, 2012; Di Bella et al., 2017).
We focus here on the intrinsic behavior without cracking due to drying shrinkage gradi-
ents. Therefore, a progressive decrease of relative humidity is applied. Moreover, since
drying shrinkage occurs only in the cement paste (except in the case where lightweight
aggregates are used), experimental studies focus on the cement paste.

The first part of this chapter focuses on the investigation of drying both from experi-
mental and numerical viewpoints. The water desorption isotherm of the studied material
is measured and used as input for the drying model. The parameters of the drying model
are identified and used for the prediction of mass loss of specimens of various sizes under
different drying conditions. In the case of specimens with small thickness, the surface
moisture transfer coefficient is carefully examined to ensure it could be calibrated inde-
pendently of drying model bulk parameters. The unknown that has been chosen to study
the drying process is the saturation degree. Herein, the Richards-Fick drying model was
chosen to model the drying process (Sleiman et al., 2020). In the second part of the chap-
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ter, drying shrinkage is studied after the calibration of the drying model. Drying shrinkage
is considered to be proportional to the variation of pore relative humidity (Wittmann and
Roelfstra, 1980; Benboudjema and Torrenti, 2012; Bažant and Jirásek, 2018; Menu et al.,
2018).

3.2 Experimental method

3.2.1 Material

Details on the studied material were reported in Section.2.2.1.

3.2.2 Measurements of mass loss

Four distinct mass-loss experiments were performed:

• Cylinder �36 mm diameter exposed to 50% RH in a large room, where humidity
was controlled by a Circulated Air Conditioning (CAC) system.

• Cylinders �36 mm in diameter exposed to drying, at 20-58-80 % relative humidity,
imposed by saturated saline solutions in small hermetic chambers (humidity was
not constant but slowly decreased from an initial value close to the sample initial
internal RH, to the target value imposed by the Saturated Saline Solution (SSS). This
protocol reduces the risk of cracking by drying shrinkage gradient. Mass loss of
these cylinders was recorded using a balance of type of KERN with 6200 g capacity
and with a precision of 0.1 g .

• Prism of 1×10×10 mm geometry, drying at different humidities step using Dynamic
Vapor System (DVS). A digital microbalance with 1 g total capacity and 0.1 µg of
precision is used.

• Prism of 0.5×10×10 mm size, drying at different humidity steps controlled by a Cli-
matic Chamber (CC). A Mettler Toledo balance type with 220 g of total capacity and
0.01 mg of precision is used.

3.2.3 Measurement of desorption isotherm

Desorption isotherms are fundamental for the quantification and prediction of the behav-
ior of the material subjected to drying. By definition, it is the water content vs. RH curve.
For the last decades, a lot of efforts had been made to characterize it using different tech-
niques with the intent to make it faster and more accurate. Different techniques exist,
such as saturated salt solutions (Baroghel-Bouny et al., 1999; Baroghel-Bouny, 2007), vol-
umetric method (Maruyama et al., 2014), Dynamic Vapor Sorption method (Poyet et al.,
2016).

In this study, the desorption isotherm measurement was performed on cement paste
using (i) powder obtained by hand grinding and (ii) on Prism of 1×10×10 mm, both from
cylinder specimens of 6 months age cured under endogenous conditions. The dynamic
Vapor Sorption (DVS) method was used, and the tests were carried out at a temperature
of 25°C. This method is quick and has shown to provide compatible results with classical
methods such as saturated water solutions of desiccators or climatic chambers (Garbalin-
ska et al., 2017; Simon et al., 2017). Moreover, the results obtained from powder and from
the slab of 1 mm in thickness are similar (fig.3.1)
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Figure 3.1: Experimental desorption isotherm of the studied cement paste (w/c = 0.52) and nu-
merical fit using Van Genuchten’s model (a = 6.131 107 Pa , b = 0.512)

3.2.4 Measurement of drying shrinkage

The drying shrinkage measurements were performed by Digital Image Correlation or by
LVDT probes:

• Shrinkage tests in salt solutions (C18-SS-RH20, C18-SS-RH58, C18-SS-RH80): axial
strain was monitored using three LVDT (Linear Variable Differential Transformer)
sensors installed at 120°. The measurement was made on a 10.8 cm basis (Huang,
2018; Kinda et al., 2021).

• Shrinkage tests in ESEM and climatic chamber (P2mm-ESEM-FD, P500µm-CC-LCIs,
P2mm-CC-SD): Image are acquired all along with the test duration and analyzed
by DIC. For ESEM tests, a backscattered electron (BSE) imaging mode was used,
while for the latter, a classical optical camera was used. The images are then post-
processed by DIC (Hild and Roux, 2008) to assess strains (Mauroux et al., 2012;
Kinda et al., 2021).

3.2.5 Summary of experimental campaigns and global strategy for nu-
merical study

The abbreviations used to describe the experiment throughout this chapter are listed in
tab.3.1.

The experimental campaign is summarized on tab.3.2.
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Table 3.1: Acronyms used to describe specimen geometry and experimental condition

DS Drying Shrinkage
P2mm Prism of 2 mm thickness

P500 µm Prism of 500µm thickness
C36mm Cylinder of 36 mm diameter

CC climatic chamber
SS Salt Solution1

SD Slow Drying
FD Fast Drying

LCIs Length Change Isotherm
RH20 20% Relative humidity

Table 3.2: Summary of experimental campaign undertaken on cement paste. DS = Transient Dry-
ing Shrinkage; LCI = Length Change Isotherm. SS = Saturated Solution. DVS =Dynamic Vapor
Sorption. CAC= Circulating Air Conditioning

Test Geometry (mm) mass DS LCI system
P2mm-ESEM-FD 10×10×2 - X - ESEM

P1mm-DVS 10×5×1 - X - DVS
P500µm-CC-LCIs 10×10×0.5 - X X CC

P2mm-CC-SD 10×10×2 X X - CC
C18-SS-RH80 % 36×180 X X - SS
C18-SS-RH58 % 36×180 X X - SS
C18-SS-RH20 % 36×180 X X - SS

C18-CAC-RH50 % 36×180 X X - CAC

3.3 Model for drying of cementitious materials

Drying of cementitious materials is a very complex phenomenon, involving permeation,
diffusion, adsorption-desorption, and condensation-evaporation (Mainguy, 1999; Main-
guy et al., 2001; Thiery et al., 2007). The model used herein is the Richard-Fick proposal
accounting for permeation of liquid and diffusion of water vapor in the porous network
of the material (Hilaire, 2014; Soleilhet, 2017), using the saturation degree as a primary
variable (Sleiman et al., 2020). The main mass balance equation reads Eq.3.1

∂Sl

∂t
=∇(D(Sl )∇Sl ) (3.1)

where D is the global diffusion coefficient depending non-linearly on liquid water sat-
uration degree (Sl ) named saturation hereafter. Under the assumption of constant gaz
pressure, the global diffusion coefficient is given by :

D(Sl ) = 1(
1− ρv

ρl

) ∂Pc

∂Sl

[Ke f f (Sl )

φµl
+De f f (Sl )

( Mv

ρl RT

)2
Pv sat exp

(
Pc

Mv

ρl RT

)]
(3.2)

with � the porosity of the material, Ke f f the effective permeability of the liquid, De f f the
effective gas diffusion coefficient, Pc the capillary pressure. ρl , ρv , µl are respectively the
density of the liquid and gas, the dynamic viscosity of the liquid. T is the temperature, and
R the perfect gas constant. Pv sat and Mv are respectively the saturating vapor pressure
and the water molar mass.

The first term in Eq.3.2 represents the liquid permeation mechanism and the second
term accounts for vapor diffusion. The former is dominant when saturation is high, while
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the latter becomes predominant at lower saturation (Mainguy et al., 2001; Thiery et al.,
2007). This observation will be helpful in building the strategy for model identification.
In fact, whenever possible, the parameter related to liquid permeation will be identified
on mass loss of specimen exposed to high humidity, typically above 50% RH; and the
ones dealing with vapor diffusion should be identified on experiments performed at lower
humidity, typically below 30% RH. Studies in the literature (Baroghel-Bouny et al., 1999;
Maruyama et al., 2015) provide the clear fact that a transition zone exists between the two
mechanisms, but the relative humidity at which one mechanism becomes more domi-
nant than another makes no consensus in the literature. This point will be discussed later
in this chapter based on simulation results.

The effective permeability Ke f f decreases when saturation diminishes. It can be split
into the product of two functions Ke f f (S) = K0kr l (S) (Hilaire, 2014): a constant parameter,
denoted K0, which is the intrinsic permeability of the material at full saturation, to be
identified by inverse analysis on mass loss experiment; and the relative permeability kr l ,
given by the Van Genuchten relation (Mualem, 1976),

kr l = Snk
l

(
1− (1−Sb

l )1/b
)2

(3.3)

where nk is an empirical parameter accounting for the morphology of the material pore
network to be identified by inverse analysis on mass loss. The second parameter b is the
same as used in Van Genuchten’s model for the desorption isotherm.

Pc (Sl ) = a[S−b
l −1]1−1/b (3.4)

The gas diffusion De f f dependence on the saturation coefficient is given by Milling-
ton’s empirical relationship, (Thiery et al., 2007), and and reads Eq.3.5.

De f f (Sl ) = D0.φamq (1−Sl )bmq (3.5)

where amq is interpreted as a reduced porosity to enhance the fact that air movement
within the material encounters more resistance than in case of free diffusion in the open
air for a given temperature. amq is to be identified by inverse analysis of mass loss of
specimen drying preferably below 20% RH while bmq and D0 are set respectively to 4.2
and 10−5 m2/s (Thiery et al., 2007).

To solve the differential equation of drying, the boundary condition of Neumann Eq.3.6
or of Dirichlet, Eq.3.7 is imposed depending on the drying conditions (more details will
be given hereafter).

jx− = Cs(Ss −Se ) (3.6)

Ss = Se (3.7)

Where jx− [kg /m2/s] is the moisture flux toward the environment; Ss and Se are respec-
tively the vapor saturation of the specimen surface and that of surrounding air; Cs [kg /m2/s]
the surface exchange coefficient.

3.4 Numerical simulation of drying: model identification,
prediction and size effect

3.4.1 Mesh and Boundary conditions

The meshes used for the simulations are presented in fig.5.2.
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Figure 3.2: Mesh for drying and drying shrinkage simulations

An axisymmetric configuration for cylinders and 1/8 for prismatic samples was used.
The discretization and the boundary conditions are presented in fig.5.2 and tab.5.3. Note
that a fine mesh was considered at each drying face of the samples.

Table 3.3: Boundary conditions. DSF = Drying Surface, ND = Non Drying Surface.

Face 3D 2D
Top ND ND

Bottom ND ND
Left ND ND

Right DSF DSF
Front ND
Back DSF

3.4.2 Simulation strategy

The way these experiments are used in our simulations in order to fulfill the objectives of
the study is as follow:

• C18-CAC-RH50: identification of liquid permeation parameters nk (Eq.3.3) and K0

of Richard model

• C18-SS-RH20: identification of vapor diffusion parameter amq (Eq.3.5) of Fick model
and the exchange coefficient Cs (Eq.3.6).

• C18-SS-RH80, DS-C18-SS-RH58, P1mm-DVS: validation of drying model identifica-
tion by predicting mass loss

• P500µm-CC-LCIs: determination of drying shrinkage coefficient of the studied ma-
terial

• P2mm-ESEM-FD, DS-P2mm-CC-SD, DS-C18-SS-RH80, DS-C18-SS-RH58: valida-
tion of drying and shrinkage model parameters by predicting drying shrinkage for
different sizes and rates of drying.
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3.4.3 Identification of desorption isotherm

Isotherm: from experimental measurement to data for simulations

For finite element simulation purposes, one needs to move from experimentally mea-
sured water content to an equivalent humidity or saturation, depending on the primary
variable needed in drying calculations. Given the drying model, which will be described
hereafter, the water content in desorption experiments was converted to saturation. It
was achieved by dividing the water content at equilibrium for a given relative humidity
by the one at the maximum humidity (max RH) (not necessarily the saturated state). This
point is a critical step because the desorption isotherm, in the end, will strongly depend
on the chosen max RH. This max RH should be close to 1 as much as possible, with the
highest possible confidence on the corresponding water content, which in turn depends
on the measurement technique. We have decided to use 95% as max RH, which corre-
sponds to the starting humidity step in our experiment in the DVS apparatus. Measure-
ments performed on powders and solids give very similar results, fig.3.1.

Fit of desorption curve

First, parameters a and b of capillary pressure (Eq.3.4) were identified successfully and
the results are displayed in fig. 3.1. These parameters are used as input to feed the drying
simulation. Let us note that, given the fact that the humidity at full saturation is set to
95%, the saturation corresponding to a relative humidity of 100% is slightly greater than 1
due to the use of max RH (the saturation is a relative parameter).

3.4.4 Identification of drying parameters

The fixed parameters in drying simulations are reported on tab.3.4 while the identified
parameters are presented in tab.3.5.

Table 3.4: Fixed parameters of drying model

φ[−] ρpaste [kg/m3] Si ni t [-] bmq [-] Pv sat [Pa] µl [Pa.s] ρl [kg/m3] ρv [kg/m3] T [K] D0 [m2.s−1]
0.465 1870 0.99 4.2 3062 0.001 1000 0.018 293 10−5

Table 3.5: Identified parameters of drying model

K [m2] nk [−] amq [-] Cs [kg .m−2.s−1]
1.02 10−21 2.52 5 3.6 10−9

Liquid permeation parameters

Second, parameters nk and K0 of the liquid permeation term in Eq.3.2 are identified using
test DS-C18-CAC-RH50 of tab.3.2; and Dirichlet boundary coefficient. In fact, the air ve-
locity around the sample in this experiment was high enough to allow for instantaneous
evaporation of vapor at the sample surface; therefore, imposing a constant saturation
condition at the surface or adopting a very large exchange coefficient is more adapted
in this situation. The comparison between experiment and simulation is presented in
fig.3.3, showing that the result is trustworthy.
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Figure 3.3: Identification of intrinsic water permeability K0 = 1.02×10−21 m2 and the tortuosity
parameter of Van Genuchten’s relationship nk = 2.52 on experiment DS-C18-CAC-RH50 (tab.3.2)
performed at 20° C and 50% of humidity in free air.

Vapor diffusion parameters

Last the parameter amq of the vapor diffusion term of Eq.3.2 is identified thanks to exper-
iment DS-C18-SS-RH20 presented on tab.3.2. A type of Neumann boundary conditions
was used for this experiment, which means to identify a supplementary term, called Cs .
Results displayed in fig.3.4 demonstrate that the identification is trustworthy.

3.4.5 Scaling potential

Since models are usually calibrated on laboratory tests and then used to predict the be-
havior at the structural level, the scaling potential of the drying model is tested. The same
parameters identified in the previous section are used to predict drying moisture loss for
different specimen sizes and different drying conditions.

First, the prediction accuracy for different humidity levels is studied through the sim-
ulation of experiments C18-SS-RH80 and C18-SS-RH58 of tab.3.2. The numerical results
are compared to experimental observations in fig.3.5, and the agreement is very satisfac-
tory.

The rate of mass loss of test C18-SS-RH20 is also well captured (calibration was on
140 days while validation is performed over 200 days). Using the identified exchange co-
efficient for Neumann boundary conditions along with the Richards model (water per-
meation) shows us that the kinetics of mass loss is underestimated even if the "final mass
loss” is well captured as expected (fig.3.6). Therefore, the exchange coefficient is only a
reflection of the indoor drying conditions, not the specimen size nor the model.
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Figure 3.4: Experimental result of test DS-C18-SS-RH20 of tab.3.2 and numerical comparison. Im-
pact of using identified surface exchange coefficient Cs = 3.6×10−9[kg /m2/s] and vapor diffusion
parameter amq = 5[-].
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Figure 3.5: Prediction of mass loss of 36×180 mm cylinders, drying at different relative humidity
levels (experiments C18-SS-RH80, C18-SS-RH58 and C18-SS-RH20). Only the first 140 days data
from C18-SS-RH20 was used in model identification.
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Figure 3.6: Simulation of the experiment DS-C18-CAC-RH50 using the complete Richards-Fick
model with the two types of boundary conditions: Dirichlet (without exchange coefficient) and
Neumann (with the identified exchange coefficient)

Second, the accuracy of the model to predict size effects is tested. For that purpose,
experiment P1mm-DVS performed on a slab of 1. mm in thickness (see more description
on tab.3.2) is simulated successfully. The result in fig.3.7 shows a good agreement with
the experiment.

An attempt to predict the moisture loss response of prismatic of 0.5 mm thick sample
drying in a climatic chamber, referred to as test P500µm-CC-LCIs on tab.3.2 was con-
ducted, and the overall trend of mass loss is well captured (fig.3.8).

3.4.6 Prediction of drying saturation profile - effect of surface exchange

The prediction of the saturation profiles of the tests on �36×180 mm cylinders is shown
in fig.3.9. It is seen that if surface humidity is imposed slowly enough (fig.3.5), the sat-
uration profiles are almost flat, as in the case of fig.3.9-(a-b). On the contrary, when the
relative humidity is imposed rapidly on the surface (fig.3.3), the hydric gradients between
the core and the surface of the sample are very strong, especially in the first moments of
exposure as shown in fig.3.9-(d). For an intermediate drying rate level, the gradients are
less pronounced fig.3.9-(c).
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Figure 3.7: Prediction of mass loss of small prism (P1mm-DVS experimentm) of 1 mm drying thick-
ness using the identified models.

Figure 3.8: Prediction of mass loss of small prism (10×10×0.5 mm) with 0.25 mm drying thickness
using the parameters identified above
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Figure 3.9: Evolution of water saturation profiles of cylindrical, �36× 180 mm specimen (tests
C18mm-SS-RH80, C18mm-SS-RH60, C18mm-SS-RH20 and C18-CAC-RH50)
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3.4.7 Discussion on model identification

The drying process was modeled using the Richards-Fick model to account for liquid
permeation and vapor diffusion (Mainguy et al., 2001; Thiery et al., 2007; Hilaire, 2014;
Soleilhet, 2017; Sleiman et al., 2020). Three parameters of the model and additionally sur-
face factor were successfully identified using two experiments (DS-C18-CAC-RH50 and
DS-C18-SS-RH20). The identification strategy consists of identifying the parameters of
liquid permeation on experimental mass loss of DS-C18-CAC-RH50 test, and the one re-
lated to vapor diffusion thanks to DS-C18-SS-RH20 results. The model was used to predict
the mass loss of specimen 1. mm in thickness (P1mm-DVS), presented in fig.3.7; and the
one with 0.5 mm thickness in a climatic chamber (fig.3.8). For simulation of P1mm-DVS,
Dirichlet type boundary conditions were used, while in P500µm-CC-LCIs test conducted
in a climatic chamber, the identified surface factor Cs was necessary. Simulations of mass
loss of cylinders 36 mm in diameter submitted to drying at different humidity levels were
successful, as shown in fig.3.5. Those results suggest that the drying model used herein
correctly accounts for the size on a large range of humidity. The simulations also em-
phasize that the boundary conditions to be used in simulations should not be only di-
rected by the specimen size but also depend on surrounding environmental factors. The
air velocity around the sample seems to be the major environmental factor. In fact, even
though the specimen of experiments C18-SS-RH20, C18-SS-RH58, C18-SS-RH80 are rel-
atively large compared to test P1mm-DVS, the air change rate on the specimen surface,
on the contrary, was relatively low because of the use of a hermetic chamber without any
ventilation. Since the air change rate was very low, a moisture transfer coefficient was
then introduced to prescribe a realistic boundary condition. A constant surface exchange
coefficient Cs = 3.6 10−9 [kg /m2/s] identified on test C18-SS-RH20 was used in this study.
The exchange coefficient has the beneficial effect of limiting hydric gradients between
the surface and the core of samples, as shown in fig.3.9. Therefore, it allows reducing the
risk of hydric gradient cracking during drying. A further study on the surface exchange
coefficient is undertaken in the following section.

3.5 Investigation on surface moisture transport coefficient

3.5.1 Drying process and surface evaporation

Water leaves material through evaporation on its surface. A complete review of the drying
process has been made by Crank (2002); Hall and Hoff (2002); Wang and Pereira (1986),
and the attempt here is to recall the main findings. First, when exposed to drying, the ma-
terial surface heats up or cools down to balance with the surrounding atmosphere tem-
perature. Second, it goes up under a constant drying rate period, during which liquid flow
through the porous medium is fast enough to maintain a wet surface. The evaporation on
the surface proceeds the same way as in the case of flat water surface evaporation as if
the solid phase was absent. Otherwise, this stage is not observed for materials where the
initial water content is low (Hall and Hoff, 2002). Last, in the final stage, the drying rate
decreases. In fact, the film of liquid water becomes discontinuous, the liquid flow slows
down, and the material surface may no longer be fed with water, so it starts to dry (the film
water is shrinking) due to evaporation. As a consequence, the evaporation rate drops.
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Figure 3.10: Sketching the boundary condition with surface effect

3.5.2 Boundary conditions with surface factor

Let us note x = 0 the surface of the material (fig.3.10) in contact with the surrounding
atmosphere. For the sake of simplicity, we consider herein, a unidirectional drying hy-
pothesis at a surface defined by its normal x+. The moisture flux on the material surface
(fig.3.10) denoted jx+ is obtained by projecting Eq.3.1 onto the normal direction x+ and
reads Eq.3.8:

jx+ = D(Sl )
∂Sl

∂x
(3.8)

When the flux of water jx+ from the bulk, driven by diffusion within the porous medium,
is fast enough (thin specimen or highly porous materials) to exceed the evaporation rate
at the surface, controlled by the surrounding environmental factors such as air velocity,
temperature, humidity (Hall and Hoff, 2002; Hall and Allison, 2010), a humidity gradient
is created between the surface of porous medium and region of air outside its influence.
A moisture flux, jx− of vapor, is then established. jx− is driven by vapor diffusion in air
and is modeled by using Fick’s law (Hall and Hoff, 2002; Hall and Allison, 2010) expressed
in Eq.3.9:

jx− = Dv s
∂Cv

∂x
(3.9)

where Dv s is the diffusivity of vapor of the surface, and Cv is vapor concentration of air.
By defining the water saturation in the air in analogy with material saturation Sl as

Cv = ρv S, Eq.3.9 rewrites in form of Eq.3.10:

jx− = ρv Dv
∂S

∂x
(3.10)

where ρv is the density of vapor water. Note that ρv , and Dv s depend on environment
factors such as air temperature and humidity, air velocity (Hall and Hoff, 2002).

The term ∂S
∂x of Eq.3.10 is the most difficult to deal with in evaporation problems (Hall

and Hoff, 2002). A first approximation is to assume a linear variation of it in the transition
zone (Huang et al., 2015), which is expressed as:

∂S

∂x
= Smat −Senv

δ
(3.11)

where Smat is the vapor saturation of the surface of porous medium, Senv the vapor satu-
ration of air out of zone of influence of the solid surface, and δ the length of the transition
zone.
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Introducing Eq.3.11 in Eq.3.10 yields:

jx− = Cs(Smat −Senv ) (3.12)

where Cs is the so-called surface factor or surface mass loss coefficient [kg.m−2s−1], ex-
plicitly defined by

Cs = ρv Dv s

δ
(3.13)

Cs may be identified by inverse analysis (Huang et al., 2015) on mass loss (a method used
in this chapter) or by analytical calculation (Hisatake et al., 1995); the thickness of the
boundary layer is of the order of δ= 1mm (Bakhshi et al., 2012; Huang et al., 2015). Hisa-
take et al. (1995) proposed

δ=
√
νl

U
(3.14)

where U [m/s] is the flow velocity outside the boundary layer; ν [m2/s] the kinetic vis-
cosity, and l [m] is the drying thickness, which is considered as the characteristic length
of drying. For instance, for U = 1m/s, ν = 1.510−5m2/s, l = 0.01m , the thickness of the
boundary layer δ= 1.2mm.

3.5.3 Numerical study of the moisture transfer coefficient

Thanks to the calibrated model of the previous section, simulations were performed on
specimens 1, 2, and 5 mm in thickness. Two types of boundary conditions were tested for
each simulation. In the case of Robin type boundary conditions, the mass loss transfer
coefficient Cs was varied from 10−5 kg .m−2.s−1 (very high value, close to Dirichlet type
boundary conditions) to 10−10 kg .m−2.s−1 (very low value, far from Dirichlet boundary
conditions) to cover a wide range of environmental drying conditions (air change rate,
temperature, humidity).
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Figure 3.11: Evolution of mass loss, when using Dirichlet and Robin boundary conditions and

different values of exchange coefficient Cs for specimens of different drying thickness r ; t 1/2

r is the
drying equivalent time.

According to the results of the sensitivity analysis shown in fig.3.11 for mass loss, an
exchange coefficient greater herein or equal to 10−7 gives identical results as Dirichlet
condition, regardless of the specimen size. Those results demonstrate that a threshold
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value of exchange coefficient exists above which, whenever applying Dirichlet or Neu-
mann type boundary condition gives the same mass loss results independently of the
specimen size. In the numerical simulations undertaken, this value is found to be 10−7

kg .m−2.s−1.

3.5.4 Surface bulk constant number

The sensitivity of the kinetics of mass loss is studied. The results displayed in fig.3.12
demonstrate that a threshold value exists above which the kinetic of mass loss is the same
regardless of the drying thickness or the material intrinsic permeability. The threshold of
exchange coefficient, which separates convection to diffusion action on material surface
is estimated to be 10−7 kg .m−2.s−1.

These results suggest that it is possible to derive a practical number, which will tell us
whenever we are in or out of the zone of influence of the exchange coefficient (fig.3.10) for
a given material (diffusivity D, dry material density ρd ) of a given size (drying thickness l )
exposed to certain drying condition (exchange coefficient Cs). Considering a volume of
water per unit area flowing along a drying thickness l and crossing surface A, the rate of
evaporation noted R, is given by

R =− 1

A

dm

d t
(3.15)

Let us introduce the following dimensionless variables:

• ϑ = Ds
l 2 × t the dimensionless time; where t [s] is the time, Ds [m2.s−1] the average

diffusivity of the material in a steady state; l = V
A , where V[m3] is the volume of the

drying specimen and A its surface exposed to drying.

• w = m
m f

the unit mass per dry material (mass at given time during drying normalized

by the mass of completely dried material); m = ρd ×A× l ×w , m f = ρd ×A× l . m f is
the mass of dry material and ρd the dry mass per unit volume.

Using these variables, Eq.3.15 becomes:

R =−ρd Ds

l

d w

dϑ
(3.16)

The continuity of moisture transfer rate on the surface requires that R = jx−

R =−ρd Ds

l

d w

dϑ
= Cs(Ss −Se ) (3.17)

The left board side of Eq.3.17 is controlled by the diffusion process in bulk, while the
right board side is a signature of the surface evaporation process. Therefore, we introduce
the dimensionless Surface Bulk Constant SBC number.

SBC = Cs l

ρd ×Ds
(3.18)

where l is the drying thickness, which is considered as the characteristic length of dry-
ing; Cs the surface exchange coefficient given by Eq.3.13, is completely determined by the
drying condition; and Ds the water diffusivity in bulk at a steady state in concrete. By
analogy to the Biot number (Smith, 2011; Omini et al., 1990), which expresses the ratio of
the heat transfer resistance inside of a body to the heat transfer resistance of its surface,
the SBC number defined in this chapter defines the ratio of moisture transfer resistance
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Figure 3.12: Kinetic of mass loss evolution for material intrinsic permeability of K = 10−18, 10−21

and 10−23 m2, each for exchange coefficient Cs = 10−6, 10−7, 10−8 kg .m−2.s−1 and drying thick-
nesses r = 1, 2, 5 mm

inside a structure to the moisture transfer resistance on its surface. It is noteworthy that
by increasing drying thickness l , or surface evaporation Cs (air rate change, temperature
increase) or decreasing diffusivity Ds , the SBC number increases also, and the diffusion
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in the bulk concrete dominates. Conversely, the smaller the specimen, the smaller SBC,
meaning that the surface effects become more and more dominant.

3.6 Experimental study and numerical modeling of drying
shrinkage

3.6.1 Mechanisms

Shrinkage of cement-based materials occurs over a broad range of scales from nanometer
to the meter level. Four mechanisms are proposed to explain drying shrinkage in the
literature, and they all act at the nanometer level. The mechanisms are well-documented
thanks to intensive research since the pioneering work of Feldman and Sereda (1964), and
Powers (1968), and we recall the definition of each mechanism briefly:

• Capillary pressure: the capillary pressure acts on the water−air menisci in the par-
tially empty pores, which induces anisotropic compressive stress causing the rigid
solid skeleton to shrink (Coussy et al., 2004; Rougelot et al., 2009).

• Movement of interlayer water: the microstructure of C-S-H is a layered-bricks struc-
ture with water molecules in between. Therefore, the removal of water due to drying
will cause C-S-H sheets to shrink, which results in macroscopic contractions (Jen-
nings, 2008).

• Surface tension: a molecule of water within the material is submitted to attractive
and repulsive forces in all directions from neighboring molecules. But in the case
of molecules lying on the surface, due to lack of symmetry, there is a non-zero re-
sultant force perpendicular to the surface, causing its contraction like a stretched
elastic skin (El Tabbal et al., 2020).

• Disjoining pressure: it is visualized as the force pushing apart adjacent solid parti-
cles on water penetration in regions where free adsorption related to Van der Walls
forces cannot fully develop when relative humidity is increased. As a direct con-
sequence of drying, the removal of this interlayer water will cause the disjoining
pressure to decrease and the particles to shrink (Maruyama, 2010).

On the one hand, physics-based models focus on those mechanisms, but due to lack
of experimental data at intermediate scales, jumps over six orders of magnitude are per-
formed to predict data at the millimeter scale and then compared against macroscopic
test results (Coussy et al., 2004; El Tabbal et al., 2020). On the other hand, another class of
models known as phenomenological are derived from macroscopic observations at cen-
timeter scales but lack physical base, (Bažant and Jirásek, 2018; Granger, 1995). Therefore
it is interesting to know the latter models type are still valuable on smaller scales. The pur-
pose of this section is to dig into that question. The drying shrinkage model adopted in
this chapter supposed that drying shrinkage strains were proportional to the variation of
relative humidity (Eq.3.19). In the following, the model parameter is calibrated from ex-
perimental measurements, and the ability of the model to predict drying shrinkage from
micrometer scale to centimeter-scale is tested. The drying strain is analyzed, assuming
that endogenous shrinkage can be neglected since all the specimens involved in this study
were well hydrated. They are at least three months old, and the water to cement ratio was
sufficiently large.
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3.6.2 Adopted drying shrinkage model

The rate of drying shrinkage is considered to be proportional to the rate of humidity
change (Bažant et al., 2004; Bažant and Jirásek, 2018) and formulated

ε̇sh = kshḣ (3.19)

where ksh [-] is the shrinkage coefficient, which relates an increment of shrinkage strain
to an increment of the local humidity within the material.

3.6.3 Experimental determination of drying shrinkage coefficient

In a first attempt, the drying shrinkage coefficient is assessed experimentally thanks to
experiment P500µm-CC-LCIs. The coefficient of shrinkage is considered to be the ratio
between the shrinkage over the relative humidity difference. The value of this coefficient
is found to be ksh = 8.6×10−5 for the experimental result displayed in fig.3.13. The dura-
tion for equilibrium at different relative humidity steps is reported on tab.3.6.

Table 3.6: Duration for equilibrium at different relative humidity steps

Relative humidity (%) 80 60 42 27 20
Duration (h) 24 24 30 60 165
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Figure 3.13: Determination of drying shrinkage coefficient ksh = 8.6 × 10−5 by sorption length
change measurements on a small prism (experiment P500µm-CC-LCIs), performed in climatic
chamber.
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3.6.4 Prediction of drying shrinkage

Specimen of various sizes are used for different drying kinetics, and strains are mea-
sured at different scales. Using the identified drying shrinkage coefficient ksh = 8.6×10−5

[-] to perform finite element simulations, the experimental results of drying shrinkage
from centimeter to micrometer scales are well reproduced. centimeter scale is shown on
fig.3.14, millimeter scale on fig.3.15 and micrometer scale on fig.3.16 and fig.3.17.
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Figure 3.14: Prediction of drying shrinkage at centimeter level using kshḣ model, with the param-
eters identified above for experiments C18-SS-RH80, C18-SS-RH58 and C18-SS-RH20

For each case, a drying simulation was performed first using the drying model iden-
tified in the previous section (the parameters were kept the same), and the result was
used to feed the mechanical calculations. This suggests that the drying model identifi-
cation is trustworthy. The agreement with experimental results also tells us that, for the
cement paste, if the water desorption isotherm of material is measured, and if drying of
the material can be simulated, the drying shrinkage can be predicted in a straightforward
manner. A single experiment of a few days duration helps to identify the drying shrinkage
coefficient. Considering the pore relative humidity as a primary variable for shrinkage
and saturation for drying is a good combination for the prediction of drying shrinkage.
Yet, the simulations were performed only on cement paste specimens in this study, and a
similar work should be performed on concrete, with the combination of homogenization
calculations.
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Figure 3.15: Prediction of drying shrinkage of small prism P2mm-CC-SD with 1 mm drying thick-
ness using the parameters identified above.
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Figure 3.16: Prediction of drying shrinkage of small prism P500µm-CC-LCIs with 0.25 mm drying
thickness using the parameters identified above.

88



CHAPTER 3. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DRYING.
SURFACE EXCHANGE EFFECTS, IMPACT ON DRYING SHRINKAGE

20

40

60

80

Re
la

tiv
e 

hu
m

id
ity

 [%
]

0 2 4 6 8 10 12 14 16
time[h]

0

2000

4000

Sh
rin

ka
ge

[
m

/m
]

P2mm-ESEM-FD experience
P2mm-ESEM-FD model

Figure 3.17: Prediction of drying shrinkage of small prism P2mm-ESEM-FD with 1 mm drying
thickness using the parameters identified above.

89



CHAPTER 3. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DRYING.
SURFACE EXCHANGE EFFECTS, IMPACT ON DRYING SHRINKAGE

3.7 Conclusion

Tests were performed on hardened cement paste specimens. The cement paste was tested
with different geometries: cylinder �36 mm in diameter and thin slabs 0.5, 1, 2 mm thick.
The specimens were dried at various rates and with different steps of humidity, using dif-
ferent conditioning systems: environmental scanning electronic microscope (ESEM), cli-
matic chamber (CC), Dynamic Vapor Sorption (DVS), and saturated salt solution (SSS).
Drying modeling was performed via a Richards-Fick model, which accounts for water
permeation and vapor diffusion. The parameters of the model plus a unique moisture
transfer coefficient were identified. The prediction of mass loss showed that the model
was trustworthy to account for the drying rate, size, and humidity influence on the mois-
ture loss. This point is important since it tells us that for a given structure, the parameters
of the model could be determined from laboratory tests. At the structure scale, bound-
ary conditions of the Dirichlet type were suitable, but for laboratory tests, the choice of
boundary condition is not straightforward. In fact, for some experiments presented in
this study, it was necessary to identify Robin-type boundary conditions essentially due to
the low air change rate, not only on the specimen size as one may think. However, the
strategy of identification adopted in this study reveals that it is possible to identify the
material parameters and the surface factor independently. It is quite appealing to draw
a more precise criterion about the impact of the surface factor. In the second section of
this chapter, a sensitivity study on the surface factor is conducted, and a practical number
named surface bulk constant (SBC) was derived to predict the influence of such factor on
moisture loss rate for any material of a given size drying at given specific conditions. In
the last section, the drying shrinkage model ε̇= khḣ was tested. Let us stress that kh was
identified directly on experiment results of only 250-hour duration, on prismatic spec-
imen 0.5 mm in thickness; these results demonstrate that this kind of model is able to
account for the drying rate effect on drying shrinkage. Particularly the model is found
to be trustworthy for a broad range of humidities ranging from 95% to 20 %. Since this
model is only based on the pore humidity variation rate, the quality of results is mainly
due to the quality of drying results, which is strongly dependent on the water desorption
isotherm.

As a perspective, we could think of predicting drying shrinkage at the concrete scale
and further on the structural scale with this model type based on single length change
measurement. The linearity of drying shrinkage with relative humidity makes it possible
to fully calibrate the model for large ranges of relative humidity based on one single drying
shrinkage experiment. It will be time effective to carry out experiments on cement paste
and retrieve the corresponding coefficient for concrete through homogenization.
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Chapter 4

Creep of cement paste at variable
humidity: Pickett effect and size effect -
Experimental study

4.1 Motivation

The motivation of the present study is the investigation of the influence of relative humid-
ity, drying rate and size effects on creep. In fact, the question of modeling the long-term
behavior of large structures such as containment of nuclear power plants (Benboudjema,
2002; Reviron, 2009; Foucault et al., 2012; Charpin et al., 2017) addresses a safety problem
of first importance. However, predicting this behavior is delicate (Benboudjema and Tor-
renti, 2001) because the material exhibits a paradoxical behavior known as Pickett effect
(Pickett, 1942), which is still a matter of intensive research today (Hilaire, 2014; Mathieu
et al., 2018; Ishida and Wang, 2018; Samouh et al., 2019; Rahimi-Aghdam et al., 2019).
The Pickett effect corresponds to the additional deformation when concrete is stressed
together with internal moisture change (Acker and Ulm, 2001; Benboudjema et al., 2005).
Pre-dried specimens creep less than saturated ones, but when drying, the lower the rel-
ative humidity at which the sample is exposed, the more it will creep (Acker and Ulm,
2001). According to the current state of the art, drying creep is coming from two sources
(Wittmann and Roelfstra, 1980; Bazant and Chern, 1985; Granger, 1995): intrinsic creep
and microcracking. The first mechanism is a material characteristic, while the latter is a
structural effect. From an experimental point of view, the characterization of the Pick-
ett effect, which is a crucial point for creep modeling, is difficult (Bažant and Yunping,
1994). The difficulty comes from the fact that on large specimens, equilibrium times are
very long, (Baroghel-Bouny et al., 1999; Cagnon et al., 2015). This phenomenon prevents
a specimen from being subjected to variable but sufficiently homogeneous humidity to
prevent shrinkage cracking (Hwang and Young, 1984; De Sa et al., 2008). The use of small
cement paste samples (Bažant et al., 1976; Day et al., 1984; Neubauer and Jennings, 2000)
by avoiding the effect of shrinkage cracking due to contrast in paste-aggregate and drying
cracking due to stress gradients could make it possible to isolate purely material effects at
the level of hydrates responsible for creep and shrinkage in C-S-H.

The following experimental study aims to contribute to bridging that gap by perform-
ing experiments at various drying rates using three conditioning systems:

1. Environmental Scanning Electron Microscopy (ESEM): axial creep and shrinkage
measurements on samples 10×10×2 mm in size for different drying rates.

95



CHAPTER 4. CREEP OF CEMENT PASTE AT VARIABLE HUMIDITY: PICKETT EFFECT
AND SIZE EFFECT - EXPERIMENTAL STUDY

2. Climatic Chamber (CC): axial and biaxial creep, shrinkage, and mass loss measure-
ments on specimens 10×10×2 mm in size, for different drying rates.

3. Saturated Salt Solution (SSS): axial creep (drying and pre-dried) with recovery, shrink-
age, mass loss measurements for three relative humidities, 20%, 60% and 80% on
specimens �36×180 mm in size.

The experimental results are made available so that researchers can challenge their mod-
els, especially regarding the influence of humidity, size effect, and drying rate on creep.

4.2 Sample preparation

Details on the studied material were reported in Section.2.2.1.

4.3 Study of drying creep and shrinkage in ESEM

4.3.1 Overall description

A new experimental protocol in ESEM for the assessment of drying shrinkage and dry-
ing creep is proposed. The equipment for this study is introduced on fig.4.1. Creep and
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Figure 4.1: Overview of experimental set up

shrinkage tests were performed on cement paste specimens of size 10×10×2 mm, under
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ESEM, and strain measurements were performed by Digital Image Correlation (DIC) (Tomiče-
vić et al., 2013). One of the central goals of the experimental campaign presented in this
study was to avoid surface microcracking. In fact, to reach the initial relative humidity, the
air was pumped out, and the very low pressure of less than 2.7 % of atmospheric pressure
was reached. However, the gas inside the material was initially at atmospheric pressure.
This means that if the surface of the specimen is exposed to severe drying, very high rela-
tive humidity gradients occur, and this gradient may induce surface cracking. Therefore,
there is a need to prevent the specimens from drying at this stage. Two strategies were
adopted: (1) the sample was stored for at least 24 hours under 5°C relative humidity be-
fore the test starts; (2) a bottle containing 2 ml water was introduced in the ESEM cham-
ber, and droplets were deposited around the sample. This water was previously externally
heated to approximately 40° C and decarbonized with an external vacuum pump. Heating
aimed at allowing the water to evaporate quickly during the pumping stage and prevent
the specimen surface from drying due to its low-temperature level. The pumping was
intended to withdraw the entrapped air, likely to contain carbon dioxide that may cause
carbonation. For each test, a 4 × 4 matrix of images centered on the observation area
of the sample surface was acquired to verify that there was no apparent microcracking at
the scale of observation (fig.4.2). An additional visual scan of the entire surface confirmed
that there was no cracking present at the surface visible with naked eye or carbonation at
the preparation stage.

Figure 4.2: ESEM image with natural contrast of cement paste
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4.3.2 Environment

An ESEM Quanta-650 was used. The relative humidity was controlled by varying the pres-
sure inside the ESEM chamber while keeping the temperature at a constant value of 24°C.
The temperature was regulated through an air conditioning system and monitored us-
ing a PT100 temperature sensor provided with the microscope. The relative humidity is
indirectly determined by Rankine relation,

HR = Pv

exp(13.7− 5120
T )

(4.1)

where Pv (Pa) is the vapor pressure in ESEM chamber, HR (%) the relative humidity; T(K)
the temperature in the chamber, and the denominator corresponds to the Rankine for-
mula.

A preliminary test was performed by introducing a relative humidity sensor in the
ESEM chamber. The comparison of the two techniques of measurement gave very close
results, as shown in fig.4.3. Unfortunately, the chamber temperature was controlled en-
tirely by room temperature, and a tiny modification affects the relative humidity. The load
level was 7 MPa, which corresponds to 1/4 of the compressive strength at 90 days.
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Figure 4.3: Relative humidity measurement in ESEM using the internal sensor
(ESEM sensor) and external capacitive hygrometer (External sensor)

4.3.3 Loading in ESEM

The last challenge to overcome in order to perform creep tests in ESEM is to be able to
perform in-situ loading. The loading system is presented in fig.4.4. It is a uniaxial com-
pression machine made of a mobile jaw and a fixed jaw mounted on a Deben-type ma-
chine for uniaxial compressive tests. A Teflon sheet was placed at the contact between
each jaw and the specimen in order to limit friction.
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Figure 4.4: Experimental set up for in situ creep and shrinkage tests in ESEM

In order to check the loading quality, we have compared the results of in-situ compres-
sion tests with those obtained with a conventional testing machine (fig.4.5), and many
conclusions can be drawn. First, the loading rates were similar between both compres-
sive tests; (2) second, the compressive strength obtained by the two loading systems were
quite the same, which means that centering of the specimen in the ESEM in-situ test is
correct. Last, the loading rates in creep tests were the same as those of compressive tests,
and the forces remained constant, which indicates that the force regulation went well. An
important issue is to verify if the specimen was not bending during the in-situ creep test,
see Section.4.3.4.

4.3.4 Imaging for strain evaluation

We have taken advantage of the Back Scattered Electron (BSE) imaging mode in order
to benefit from both chemical and topography contrast. This imaging mode also allows
to probe up to 30 nm depth. Since the energy of the backscattered electron carries the
signature of the atoms, it gives a clue on the atoms on the surface or in bulk. An ac-
celeration voltage of 30 kV with a working distance (WD) of 9.5 mm was used. Those
parameters were adjusted by trial and error. The scanned area was 266×400 µm with a
spatial resolution of 1048×1524 pixels; the pixel size was then 260 nm. Special attention
was paid to avoid out-of-plane displacements, as shown in fig.4.6. The WD is the distance
between the BSE detector and the surface of the sample; therefore, if the specimen bends,
the WD will decrease. Hence the WD was recorded for each image pictured during the
tests. Fig.4.7 shows that it remained constant for all images, then it was concluded that
there was no out-of-plane displacement induced by loading, and consequently, there was
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Figure 4.5: Compressive test on cement paste : 10×10×2 mm slabs tested in ESEM and
�36×180 mm cylinders tested with a classical testing machine

a spurious strain. The acquired images were post-processed by 2D-DIC Tomičević et al.
(2013).
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Figure 4.6: Out-of plane strain with manual
change of working distance dZ in ESEM
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Figure 4.7: Working distance of images ac-
quired in ESEM, P2mm-ESEM-SD test

4.3.5 Protocol for ESEM campaign

The procedure for the tests under ESEM is the following:

1. Configure the pressure regulation program

2. Set up two samples on the loading stage. A Teflon sheet was placed between the
loading plate and the sample loaded surfaces.
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3. Pre-load the sample at -20 N compressive force.

4. Close the chamber, take a global image with Navcam of the ESEM. It will help navi-
gate on the sample surface during the test.

5. Reopen the chamber, introduce a beaker with 2 ml of deaerated water at about 40◦C
and few water droplets around each sample. This is intended to prevent cracking
during the load stage.

6. Close the ESEM chamber, choose the ESEM mode according to the starting rela-
tive humidity of the test and given the current temperature, choose the appropri-
ate pressure, then start the pumping process, and wait until the desired pressure is
achieved.

7. Move the loading stage to reach the working distance of 9.5 mm (specific to GAD
detector type),

8. Turn on the beam, choose the position on sample surface for imaging, make adjust-
ments of brightness and contrast, to reach the best possible image quality.

9. Take an initial image of the two samples.

10. Load to an intermediate load level and acquire images again.

11. Load from this intermediate level to the load level for the creep test, and image
samples again.

12. Launch automatic image acquisition and start the pressure regulation program.

4.3.6 ESEM tests results

Drying shrinkage, total strain, relative humidity, temperature, and loading force were
monitored simultaneously in each test. The temperature was kept constant at 24 ◦C. Un-
fortunately, the mass loss could not have been monitored in this campaign. The main
characteristics of the tests are summarized in tab.4.1.

Table 4.1: Main characteristics of tests performed under ESEM

Test curing humidity Geometry (mm) Creep Shrinkage Mass
P2mm-ESEM-FD 80% 10×10×2 X X -
P2mm-ESEM-SD Endogenous 10×10×2 X X -

Two drying rates (at which the relative humidity was decreased) were tested, a Slow
Drying test labeled as P2mm-ESEM-SD and a fast one called P2mm-ESEM-FD (tab.4.1).
First, the relative humidity was reasonably well controlled for both drying rates as pre-
sented in fig.4.8.a. Then the drying shrinkage evolution, which was obtained by Digital
Image Correlation, as shown in fig.4.8.b.

Third, the evolution of loading forces of creep tests is presented in fig.4.9.a. Last, total
strains of simultaneously drying and loaded samples, for both drying rates are displayed
in fig.4.9.b.

As expected, the lower the drying humidity, the larger drying shrinkage (fig.4.8), and
the total strain in these tests (fig.4.9). Most of the strains occur during the humidity transi-
tion period and evolve with very slow kinetics when the relative humidity remained con-
stant. The load level was 144 N, which corresponds to a compressive stress of 7 MPa.
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Figure 4.8: Evolution of relative humidity (a) and (b) corresponding drying shrinkage for the tests
in ESEM
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Figure 4.9: (a) Evolution of loading force and (b) corresponding creep strains for the tests under
ESEM

It explains why the magnitude of the total strain is not much higher than that of drying
shrinkage.

4.4 Study of drying shrinkage and creep in climatic cham-
ber

4.4.1 Overall description

A new protocol was developed for studying creep and shrinkage along with mass loss
measurements of thin cement paste slabs in a climatic chamber (fig.4.10). The purpose
was (i) to provide data for validation of the ESEM experiment, and (ii) to evaluate the ef-
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fect of drying rate on both drying shrinkage and drying creep of very thin cement paste
slabs 2 mm in thickness, in uniaxial and biaxial compressive tests. Total creep and dry-
ing shrinkage tests were carried out simultaneously on separate specimens for each. The
mass loss of drying shrinkage specimen was also monitored every 10 minutes during the
test with Metler Toledo balance with 0.01 mg of precision. As in ESEM cases, only natural
contrast of the cement paste was used here. The experimental set-up is shown in fig.4.10.
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Figure 4.10: Overview of climatic chamber conditioning system.

4.4.2 Environmental control: relative humidity, temperature and car-
bon dioxide

The relative humidity and temperature were controlled using a climatic chamber. For
each specimen, one sensor was used to monitor temperature, carbon dioxide, and rela-
tive humidity. To deal with carbonation, a specific box was designed, allowing air to pass
through and be filled with lime powder compacted to reduce the space between grains.
The box (fig.4.11) was placed in the air inlet of the climatic chamber, fig.4.10, so when the
air came in, CO2 was captured before reaching the chamber space where the specimens
were placed. It was proven to reduce CO2 content of the room air to less than 100 ppm
(between 20 and 90 ppm), see fig.4.12.
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Figure 4.11: System for capturing CO2 of air
in the chamber space
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Figure 4.12: Evolution of CO2 air content in
climatic chamber

4.4.3 Loading and centering

The loading was performed with an electromechanical testing machine, mini-ASTREE (Bertin,
2016) (fig.4.13). The machine is able to prescribe arbitrary forces in two orthogonal direc-
tions, with opposite actuators that can be controlled in a symmetric fashion so that the
specimen center is motionless. F1 will denote the load amplitude applied by the two cou-
pled actuators along one direction and F2 for the other two coupled actuators in the or-
thogonal direction. Uniaxial/Biaxial compressive and tensile tests can be run with a load
range F1,2 in ± 2000 N. The maximum sample thickness was 8 mm, and the maximum
stroke of each actuator was 5 mm. An anti-wrinkling device is designed for positioning
the specimen.

Figure 4.13: Mini-ASTREE machine and loading system for in-situ mechanical test in the cli-
matic chamber

For the creep test, the loading sequence is as follows: in the first part, the load is in-
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creased at a constant rate from 20 N (preload level) to 200 N in a time window of 36 s.
During that stage, images are acquired for both specimens every 1 s. In the second step,
the load is kept at the constant level (200 N), and images were acquired every 10 min for
both specimens. The applied load level is one-third of the compressive strength at 90
days.

4.4.4 Imaging and strain measurement

One camera with 0.125× telecentric lens (in order to limit effects of out of plane move-
ment) is used. The optical camera is linked to commercial software StreamPix to allow for
automatic acquisition. The surface of the specimen was illuminated all time using LED
lighting. It has been checked that lighting does not induce a temperature rise. The images
of 700×688 pixel definition were taken on an area of 9.7×9.7 mm, which corresponds to
physical size of 75 pix/mm. These images are analyzed by DIC using an element size of
50×50 pixels and a regularization length of 128 pix. The ROI was chosen at the center of
the image.

4.4.5 Protocol for climatic chamber campaign

The procedure of the campaign in the climatic chamber is as follow:

1. Set up the carbon dioxide capturing device, the sensors for carbon dioxide, temper-
ature, humidity, and mass balance in the climatic chamber.

2. Wait for climatic chamber humidity to stabilize at 80 %RH.

3. Set up the two samples: (weighing + shrinkage) sample on balance, creep specimen
on the loading machine.

4. Pre-load at -20 N the specimen for creep

5. Set up the program for relative humidity control

6. Adjust image contrast and brightness on the camera

7. Launch loading, simultaneous image acquisition

8. Launch climatic chamber control

4.4.6 Climatic chamber test results

The two tests performed in the climatic chamber are presented in tab.4.2.

Table 4.2: Main characteristics of tests performed in CC

Test curing humidity Geometry (mm) Creep Shrinkage Mass
P2mm-CC-1-SD 80% 10×10×2 X X X
P2mm-CC-2-FD 80% 10×10×2 X X X

The evolution of carbon dioxide and relative humidity are presented in fig.4.14 for the
Slow Drying (P2mm-CC-1-SD) and Fast Drying (P2mm-CC-2-FD) rates in climatic cham-
ber, fig.4.2. It is seen that the CO2 level is increasing when a constant humidity of 20% is
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Figure 4.14: Environmental conditions during climatic chamber tests, carbon dioxide (CO2) and
relative humidity

reached. Fortunately, at that humidity level, the low saturation of the specimen stops the
carbonation process (Turcry et al., 2017).

The results of mass loss and drying shrinkage for the two drying rates are displayed in
fig.4.15.a-b. As expected, the mass loss at the end of drying does not depend on the rate
at which the specimen was dried. Moreover, drying shrinkage at the end of testing does
not depend on the rate of drying either.
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Figure 4.15: Mass loss and drying shrinkage evolution in both tests in climatic chamber

The biaxial and uniaxial creep results are displayed together with the corresponding
loading forces in fig.4.16 for axial strains and in fig.4.17 for lateral strains. Unfortunately,
the relative humidity history in the biaxial and axial tests are different, which makes direct
comparisons difficult. Yet, the comparison could be carried out indirectly by numerical
simulation. It allows for benchmarking models.

106



CHAPTER 4. CREEP OF CEMENT PASTE AT VARIABLE HUMIDITY: PICKETT EFFECT
AND SIZE EFFECT - EXPERIMENTAL STUDY

0 10 20 30 40 50 60 70 80

50

100

150

200

Time [hours]

Fo
rc

e-
x

[N
]

CC Force axe-y

P2mm-CC-1-SD Fx
P2mm-CC-2-FD Fx

(a) Axial loading force

0 10 20 30 40 50 60 70 80
0

2000

4000

6000

Time [hours]

To
ta

lS
tr

ai
n-
ε y

y
[µ

m
/m

]

CC -Total Strain- εyy

P2mm-CC-1-SD
P2mm-CC-2-FD

(b) Axial strain

Figure 4.16: Evolution of axial strain (for tests in climatic chamber) with the corresponding applied
forces
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Figure 4.17: Evolution of lateral strains for creep tests in climatic chamber

4.5 Macroscopic creep and shrinkage tests at three relative
humidities

4.5.1 Overall description of experiments

The purpose of the experiments described in this section is the characterization of drying
shrinkage and total creep under uniaxial loading at 20 °C. These experiments were carried
out on one geometry (�36×180 mm), one material, and for different levels of relative hu-
midity. The relative humidity was controlled using Saturated Salt Solutions (SSS). Because
the air in the chamber is not circulated (in order to avoid cracking), the relative humidity
decreased slowly. The experiments are summarized in Tab.4.3, with their acronyms to be
used hereafter.
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Table 4.3: Summary of experimental campaign undertaken on cement paste

Acronym Relative humidity (%) Testing
D-C18mm-SS-RH80 81 Drying

DSC-C18mm-SS-RH80 81 Drying shrinkage followed by creep
TCR-C18mm-SS-RH80 81 Creep followed by Recovery

D-C18mm-SS-RH58 58 Drying
DSC-C18mm-SS-RH58 58 Drying shrinkage followed by Creep
TCR-C18mm-SS-RH58 58 Creep followed by Recovery

D-C18mm-SS-RH20 20 Drying
DSC-C18mm-SS-RH20 20 Drying shrinkage followed by Creep
TCR-C18mm-SS-RH20 20 Creep followed by Recovery

4.5.2 Environment

It was decided to design sealed humidity chambers (fig.4.18), capable of maintaining
some humidity generated by a given saturated salt solution (tab.4.4), and minimizing wa-
ter exchanges with the atmosphere, set at 50 %RH.

Table 4.4: Saturated solution for generating relative humidities in macroscopic tests chambers

RH (%) 11 58 81.2
Saturated solution LiCl2 NaBr KCl

Temperature and humidity were monitored with PT100 temperature sensors and a
Rotronics capacitive probe. The probes were placed on the wall of the chamber as close
as possible to the specimens, fig.4.18.

4.5.3 Loading and centering

The specimens’ surfaces were grounded (fig.4.19), and the specimens were stored under
endogenous conditions until the start of the test. Grinding aimed to provide specimens
with a planar surface suitable for mechanical loading. For creep specimens, a centering
operation was performed to ensure that the load is applied correctly so that the stress state
would be homogeneous throughout the sample. Centering was necessary to compensate
for the geometrical defects of the sample. To do that, the sample was loaded at 500 daN (6
MPa), and the sample was rotated until the relative deviation between each of the 3 LVDT,
compared to the average, was less than 20%.

4.5.4 Strain measurement

For each specimen, the axial strain was monitored using three LVDT (Linear Variable Dif-
ferential Transformer) displacement sensors, installed at 120° in order to be able to com-
pute the longitudinal strain correctly; the measurement was made on a 10.8 cm gauge
length, fig.4.19.
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Figure 4.18: Overview of the experimental set up for creep, drying shrinkage and mass loss tests
in sealed chambers with relative humidity controlled by saturated salt solution

4.5.5 Results of macroscopic creep and shrinkage tests

Environmental conditions

The temperature and relative humidity histories during the macroscopic campaign are
presented in fig.4.20. Although the relative humidity for each testing cell was equilibrated
before the beginning of the campaign, it increased quickly when the specimen was in-
troduced in the chamber due to the release of water vapor by the specimen. Then it de-
creased in a second period until it is stabilized.
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Figure 4.19: Surface preparation for mechanical loading and LVDT installation for strain mon-
itoring
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Figure 4.20: Evolution of temperature and relative humidity in macroscopic tests.

Mass loss

The mass loss results are presented in fig.4.21. It was periodically monitored on a com-
panion specimen for each humidity cell. The mass of all specimens was recorded at the
beginning and the end of the tests. The total mass loss is presented in tab.4.5.
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Figure 4.21: Mass loss evolution in macroscopic tests

Table 4.5: Total mass loss of all specimens tested in macroscopic campaign at 80%, 58% and 20 %
relative humidities

Specimen Test Final mass loss (%)
D-C18mm-SS-RH80 Drying 2.24

DSC-C18mm-SS-RH80 Drying Shrinkage 2.34
TCR-C18mm-SS-RH80 Total Strain 3.31

D-C18mm-SS-RH58 Drying 9.70
DSC-C18mm-SS-RH58 Drying Shrinkage 9.61
TCR-C18mm-SS-RH58 Total Strain 9.41

D-C18mm-SS-RH20 Drying 15.92
DSC-C18mm-SS-RH20 Drying shrinkage 15.76
TCR-C18mm-SS-RH20 Total Strain 16.05

For specimen D-C18-SS-RH80 (mass loss at 80% RH), the mass loss showed (fig.4.21)
a significant jump from 1.35% (124.9 days of testing) to 3.30% (135 days of testing). It
doubled in 10 days and remained almost constant until the end of the test. One of the
possible reasons is that the specimen for mass measurement was regularly exposed to
relative humidity between 40-50 % during mass monitoring; this repeated exposure to a
gradient of about 30-40%RH, for an extended period, seems to create a cumulated effect,
which in turn, caused the discontinuity on the mass loss curve, observed in fig.4.21.

Loading forces and strain results

The mechanical results of the campaign performed on�36×180 mm cylinder, and at 80%,
58% and 20% relative humidity (tab.4.3) are presented in this section. For the sake of
clarity, two main groups of results are distinguished: the group labeled as DSC (Drying
Shrinkage then Creep) and TCR (Total Creep then Recovery). The following observations
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Table 4.6: Some informations on the macroscopic strains

Test εel Load (µm/m) εel Unload (µ/m) Amplitude (µ/m) Reversible strain (%)
DSC-C18mm-SS-RH20 1150 1150 7360 19
DSC-C18mm-SS-RH58 1000 900 5330 22
DSC-C18mm-SS-RH80 800 950 4600 28
TCR-C18mm-SS-RH20 950 890 - -
TCR-C18mm-SS-RH58 900 870 9330 18.
TCR-C18mm-SS-RH80 870 1000 5600 26

are drawn:

1. In fig.4.23.a, just a few weeks before unloading, the displacement hit its limits, and
the force was not regulated anymore. As a consequence, the specimen started to
relax, as seen in fig.4.23.a but the effect on the strain was not significant.

2. In fig.4.22.a, the force in DSC-C18mm-SS-RH80 test increased significantly in the
end due to a temporary defect of the loading system.
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Figure 4.22: Evolution of total strains for three relative humidity history, with the corresponding
loading history during macroscopic tests

3. Instantaneous strains computed from fig.4.23.b and 4.22.b and displayed in tab.4.6,
suggest that elastic strain is quite the same at loading and unloading, regardless of
the drying and loading history. Moreover, figs.4.23.b-4.22.b show that the rate of
deformation after unloading appears to be very slow. The reversible part of the total
strain, calculated for all drying and loading history, is found to range between 18 to
28 % of the total strain.

4. In fig.4.23.b, the test TCR-C18mm-SS-RH20 strain result comprises two phases with
a one month gap without data. The LVDT sensors had saturated in that period due
to excessive strain. The first LVDT was saturated in the testing period of t = 21-58
days, the second between t = 26-58 days and the last between t = 36-58 days; the
LVDT were then reset to zero at t = 58 days (note the specimen is kept loaded), for
the measurement to continue; then, it was decided to post-process separately, the
two periods of measurement. In order to simulate this experiment, the simulation
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Figure 4.23: Loading history (a) and the evolution of delayed strains for three relative humidity
history (b).

data must be post-processed in such a way that it is also reset to 0 from 58 d. In prac-
tice, this means subtracting from the part of the data for t >= 58 d, the deformation
at t = 58 d.

5. The results of total strain displayed in fig.4.23.b show that total creep is accelerated
by drying. The lower the relative humidity, the higher the total strain, tab.4.6. The
same trend is observed in fig.4.22.b, during the free-load period. The total strain
increased with decreasing relative humidity, as expected.

4.6 Analysis and Discussion

4.6.1 Dependence of basic creep on relative humidity

Experimental observations (Bažant et al., 1976; Wittmann, 1970; Abiar, 1986) showed that
cement paste and concrete creep less at reduced water content, which is consistent with
the present experimental study (fig.4.24). To the best knowledge of the authors, the only
experimental data showing this feature of basic creep on cement paste are those of (Wittmann,
1970).

The present contribution allows bridging that gap partly. It is noteworthy that re-
cent advancements in nano-indentation and micro-indentation techniques allows better
characterization of the dependence of creep modulus on relative humidity at the micro-
scale (Vandamme and Ulm, 2013; Zhang et al., 2014; Frech-Baronet et al., 2017; Chen et al.,
2020; Suwanmaneechot et al., 2020), but macroscopic data are still essential for building,
testing and improving macroscopic models (Giorla and Dunant, 2018).
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Figure 4.24: Evolution of basic creep strains for different relative humidity levels. The strains cor-
respond to the loading period when moisture equilibrium of samples was reached (tests DSC-
C18mm-SS-RH20, DSC-C18mm-SS-RH58 and DSC-C18mm-SS-RH80)

4.6.2 Separation of mechanisms of drying creep and basic creep

One of the difficulties of modeling the creep behavior comes from the difficulty of char-
acterizing the drying and basic creep behavior separately. Even for specimens simultane-
ously submitted to drying and loading, the mechanisms of basic creep are still activated,
and the longer the test duration, the more likely basic creep deformation will develop.
Therefore, (short term) accelerated drying tests allow to increase the drying creep com-
ponent rapidly while limiting the development of basic creep. The ratio of drying creep
over basic creep strain is computed, by Eq.5.9, and will be referred to as creep rate factor,

CF = JTC − JBC

JBC
(4.2)

where CF [-] is the creep rate factor inspired but different from the one defined by (Vlahinić
et al., 2012). JTC [µm/m/MPa] the total creep compliance, JBC [µm/m/MPa] the basic
creep compliance.

The basic creep data used for calculation is obtained from a uniaxial compressive
creep test under endogenous conditions carried out on similar material tested at 90 days
age (Huang, 2018). The creep rate factor evaluates the drying strain contribution to the
total strain of various materials subjected to drying. Fig.4.25 compares the evolution of
creep rate factors with time for microscopic and macroscopic testing, and it tells us that
the basic creep component is low in accelerated drying tests.

These findings are of first importance since accelerated drying tests like the one per-
formed in this study make it easier to identify the drying part of the models such in (Ben-
boudjema et al., 2001; Bažant et al., 2004; Hilaire, 2014; Jirásek and Havlásek, 2014; Sellier
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Figure 4.25: Evolution of creep rate factor vs. time (inspired from (Vlahinić et al., 2012)) for micro-
scopic tests (P2mm-CC-1-SD, P2mm-CC-2-FD) in climatic chamber and macroscopic tests (TCR-
SS-RH80 and TCR-SS-RH60) using saturated salt solutions technique.

et al., 2016; Rahimi-Aghdam et al., 2019).

4.6.3 Shrinkage vs. mass loss

The evolution of drying shrinkage with mass loss is studied, for microscopic tests (10×10×2
mm geometry) and macroscopic tests (�36×180 mm geometry) and displayed shown in
fig.4.26.a,b.

The following remarks can be drawn:

• Microscopic tests: the relationship between drying shrinkage and mass loss dis-
played in fig.4.26.a does not depend on the drying rate. Three regimes are observed:
(1) in the first stage (80 to 50%), drying shrinkage evolves linearly with mass loss; (2)
in the second stage (50 to 20%), mass loss continues to increase without subsequent
drying shrinkage, when the relative humidity reaches the constant value of 20%;
and (3) in the last stage drying shrinkage increases linearly again with mass loss.
Firstly, it is interesting to note that the linear relationship of drying shrinkage with
mass loss suggests that drying has not caused cracking. Hence the drying shrinkage
corresponds to the intrinsic behavior of the material. It is also interesting to ana-
lyze the source of the plateau observed around a shrinkage of about 3000 µm/m. It
corresponds to a relative humidity of 40-50 % as seen on the drying length change
isotherm, fig.4.26.c. Successive experimental works on sorption isotherm and dry-
ing shrinkage (Baroghel-Bouny et al., 1999; Baroghel-Bouny, 2007; Jennings, 2008;
Jennings et al., 2015; Maruyama et al., 2014, 2015) reveal a bimodal behavior of dry-
ing shrinkage with relative humidity. The corresponding value of the inflexion point
is found to be 44% (Baroghel-Bouny et al., 1999), 50% (Baroghel-Bouny, 2007), 54%
(Jennings, 2008), 45% (Jennings et al., 2015) and 40 % (Maruyama et al., 2014). In all
those investigations, the driving mechanism of volumetric change was attributed
(i) to capillary stress for relative humidity above the inflexion point and (ii) to sur-
face tension for RH below the inflexion point. Similarly, we think that in fig.4.26.a,b,
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Figure 4.26: Evolution of Drying shrinkage vs. mass loss at different scales: microscopic testing (a),
macroscopic testing (b); and relationship between drying shrinkage at equilibrium with relative
humidity (c).

the capillary pressure and the disjoining pressure are at stake during stages 1 and 3
respectively.

• Macroscopic tests: in fig.4.26.b, three stages of evolution are distinguished, for all
tested specimens. For specimens exposed to 60% and 20 %RH, a rapid increase of
shrinkage with mass loss is observed at the beginning, followed by a linear evolution
with slope 335 µm/m/(1.% mass loss), and in last stage, the rate is decreasing pro-
gressively. Regarding the relationship of specimens submitted to drying at 80%RH,
the evolution is fast and non-linear at the beginning, then linear with slope 850
µm/m/(1%) for mass loss at middle range and at the end, mass loss does not cause
any shrinkage.

4.6.4 Relation between creep and shrinkage in microscopic tests

The evolution of uniaxial drying creep compliance with drying shrinkage is plotted in
fig.4.27.a for P2mm-CC-1-SD (slow drying rate in the climatic chamber) and P2mm-ESEM-
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FD (fast drying rate in ESEM). In these uniaxial loading tests, regardless of the drying rate,
a bilinear relationship is observed with the inflection point around 3000 µm/m, which is
the same value of drying shrinkage observed in shrinkage vs. mass loss (previous section).
However, for the biaxial creep test (fig.4.27.b), the drying creep strain evolves linearly with
drying shrinkage for drying shrinkage range 0-3000 µm, which corresponds to a relative
humidity range from 100 to 50 % (fig.4.26.c). This linearity of drying creep vs. drying
shrinkage was previously observed by Day et al. (1984) for cement paste and by Gamble
and L.J. (1978) for concrete.
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Figure 4.27: Drying creep vs. Drying shrinkage

4.6.5 Investigation on the kinetics of drying creep

The drying creep relation with mass loss in the case of slow drying (P2mm-CC-1-SD), and
fast drying (P2mm-CC-2-FD) is linear, and the coefficient does not depend that much on
the drying rate (fig.4.29).

The linearity tells us that the drying creep response is driven by the loss of water, and
the structural effect on drying creep is avoided or limited in the way that its impact is not
significant. In other words, the intrinsic drying creep and drying have the same kinetics.
This is very interesting since it suggests that a model where the rate of drying creep rate is
linearly proportional to the rate of variation of saturation or humidity at material points
will be suitable for retrieving the intrinsic drying creep behavior of cement paste. Such a
model was proposed in the past by (Bažant and Chern, 1985), and as a starting point, it
will be interesting to test this model against the current experimental data.

Moreover, earlier investigation of drying shrinkage by means DIC method, both in
ESEM and climatic chamber, have shown that using specimens of 10×10×2 mm geome-
try allows assessing experimentally the intrinsic drying shrinkage. Therefore, skin-micro-
cracking contribution to drying shrinkage and creep of small size in the present study
could be neglected. The two results analyzed together demonstrate that the characteriza-
tion of drying shrinkage and drying creep behavior of cement paste at the material scale
is possible with the new techniques of characterization presented in this study.
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Figure 4.28: Microscopic

Figure 4.29: Evolution of creep rate factor vs. mass loss for microscopic tests ( P2mm-CC-1-SD,
P2mm-CC-2-FD) rate in climatic chamber

4.7 Conclusion

The objective of this experimental campaign was to gain knowledge about the influence
of relative humidity, drying rate, and size effects on creep. The tests were performed on
paste samples (w/c = 0.52). The innovative part of the study was the development of
creep tests in ESEM and climatic chamber under axial and biaxial mechanical loading.
The techniques provide the opportunity to investigate the relationship between drying,
free drying shrinkage, and intrinsic drying creep, within a short amount of time, for a
large range of relative humidity and drying rates. The method made possible the assess-
ment of drying shrinkage, free of skin cracking (Kinda et al., 2021), avoiding the part of
Pickett effect (Pickett, 1942) attributed to cracking and allowing to investigate the intrin-
sic mechanism of drying creep.

The relationship between mass loss, shrinkage, drying creep, and basic creep was ex-
amined for both classical macroscopic creep tests (�36×180 mm cylinder) and original
microscopic creep tests (10×10×2 mm prism ) and the main results are summarized as
follows:

1. The long-term kinetics of basic creep is lower at reduced humidity.
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2. Drying creep tests on small slabs allow to investigate the purely drying creep behav-
ior of the material since interaction with basic creep and cracking are low.

3. Drying shrinkage as well as drying creep evolves almost linearly with mass loss.

4. Drying and drying creep have the same kinetics.

The results are regarded as important with respect to the prediction of creep strains when
the environmental humidity changes. From these results, two perspectives are listed be-
low:

• The results presented in this chapter could assist in testing or building creep models
for concrete structures, which are able to take into account the effect of drying rate,
size, and relative humidity on the creep modulus. This is a critical point when such
models are used at the structure level because the experiments used in the lab to
calibrate the model exhibit much faster drying than the drying of structures.

• The innovative creep test techniques developed in this study, in ESEM, and in a
climatic chamber, are down-scalable. Even though we have focused the attention
on mean strain measurements, DIC, which has been used for the strain assessment,
also allows for full-field measurements at all scales, which means that the present
techniques are also valuable for studying the interaction between drying creep and
the micro-structure at smaller scales. It all depends on the possibility of acquiring
images of sufficient quality for DIC processing.
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Chapter 5

Creep of cement paste at variable
humidity: Pickett effect and size effect -
numerical simulations

Introduction

A part of the concrete containment buildings (CBB) in French nuclear power plants oper-
ated by EDF are double-walled. Concrete of the post-tensioned inner containment build-
ing plays a major role as a barrier against radiological release during a hypothetical ac-
cident. The leak-tightness of the inner CCB vastly depends on the pre-stress level. If it
becomes too low due to the delayed strains, some parts of the structure may experience
tension during the integrated leak rate test (performed every ten years) or an accident, in-
ducing cracking and increased leakage. Therefore, EDF studies drying, creep, and shrink-
age of concrete both from a theoretical (Sanahuja, 2013; Adia, 2017; Guihard et al., 2020)
and an experimental point of view (Reviron, 2009; Huang, 2018; Charpin et al., 2018b).
Those experiments aim at building simulation tools dedicated to the prediction of strains
in CCBs, which requires properly calibrated models (Charpin et al., 2017; Mathieu et al.,
2018; Charpin et al., 2018a). Often, models are calibrated on laboratory tests on rather
small samples, while CCBs are very large structures. These different concrete thicknesses
induce vastly different drying kinetics. Thus, concrete constitutive laws should be able to
correctly take into account the effect of drying rate on delayed strains (creep, shrinkage)
of concrete. As an introduction to this subject, experimental data from the literature (Day
et al., 1984) were simulated with the delayed strains law used at EDF R&D (Benboudjema,
2002; Foucault et al., 2012) and the microprestress-solidification law (Bažant et al., 1997;
Bažant et al., 2004; Jirásek and Havlásek, 2014). It was shown that both those constitu-
tive laws can reproduce the main features of the shrinkage and creep tests, but also that
the experimental program lacked some information to be truly discriminant (Kinda et al.,
2018). This observation has motivated further experimental developments.
The present study presents a numerical analysis of the experimental results presented in
chapter. 4. The objectives of this numerical study are (i) to simulate the different exper-
imental results obtained from new protocols developed in this thesis, (ii) investigate the
drying rate effect on drying creep and drying shrinkage through numerical analysis of ex-
periments, and (iii) to compare different modeling approaches for drying creep (Bažant
et al., 2014). To meet these goals, the chapter is divided into four parts. First, the exper-
iments to be tested with the constitutive laws are described briefly. Second, the descrip-
tion of the delayed strains law used at EDF R&D (Charpin et al., 2017) is given as well
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as the microprestress-solidification law (Jirásek and Havlásek, 2014). Third, the numeri-
cal analysis of the experiments is presented. Last, the drying rate effect and the different
modeling approaches of drying creep are discussed.

5.1 Description of experimental data

The experiments were performed on specimens of two sizes: �36×180 mm cylinders and
10×10×2 mm thin slabs. Shrinkage and creep were monitored for each test. Different
techniques for controlling humidity were tested, including ESEM, Climatic Chamber, and
Saturated Salt Solution. The designation of each test includes specimen geometry and
drying thickness, plus the relative humidity control system and the rate of drying. For the
sake of clarity, the abbreviations used to describe the experiments are listed in tab.5.1.

BC Basic Creep
DSC Drying Shrinkage and Creep
TCR Total Creep and Recovery
LCIs Length Change Isotherm

P2mm Prism of 2 mm thickness
C18mm Cylinder of 18 mm radius

SD Slow Drying
FD Fast Drying
CC Climatic Chamber
SS Saturated Solution1

RH20 20% Relative humidity
RH58 58% Relative humidity
RH80 80% Relative humidity

Table 5.1: Abbreviations used to describe experiments

The different tests we will simulate are given in tab.5.2; and the drying humidity con-
ditions of these tests are presented in Fig.5.1a, 5.1b, 5.1c. Chapter 4 gives detailed de-
scription of the experiments. These experimental results provide a basis for establishing
the correct theoretical model, especially regarding the relative humidity effects on creep.

Test curing conditions Geometry (mm) Creep Shrinkage Mass
P2mm-ESEM-FD 80%RH 10×10×2 X X -
P2mm-ESEM-SD Endogenous 10×10×2 X X -

DS-P500µm-CC-LCIs Endogenous 10×10×0.5 - X -
P2mm-CC-1-SD 80%RH 10×10×2 X X X
P2mm-CC-2-FD 80%RH 10×10×2 X X X

BC-C15mm-SS-RH95 (Tsitova 2021) Endogenous �30×60 X X -
DSC-C18mm-SS-RH80 Endogenous �36×180 X X X
DSC-C18mm-SS-RH58 Endogenous �36×180 X X X
DSC-C18mm-SS-RH20 Endogenous �36×180 X X X
TCR-C18mm-SS-RH80 Endogenous �36×180 X X X
TCR-C18mm-SS-RH58 Endogenous �36×180 X X X
TCR-C18mm-SS-RH20 Endogenous �36×180 X X X

Table 5.2: Summary of experimental campaign undertaken on cement paste.

Let’s bring to attention that the basic creep data comes from Tsitova’s thesis, which

1Saturated salt solution
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started in 2018 and currently in progress within the framework of a tripartite partnership
(CEA, LMT, and EDF).
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Figure 5.1: Drying conditions of different tests to be simulated

5.2 Description of the mechanical models

In this section, the models used for numerical analysis of the experiments are introduced.
Two models are considered for this analysis: the first one is the so-called Burger model (Charpin
et al., 2017), and the second is the Micro-prestress solidification (MPS) model (Jirásek and
Havlásek, 2014).

5.2.1 Burger model

The Burger model (Charpin et al., 2017) was originally developed in the framework of lin-
ear viscoelasticity (Benboudjema et al., 2001). The basic creep part was later improved
(Foucault et al., 2012) based on the work of (Sellier and Buffo-Lacarriere, 2009). The des-
iccation creep component is inspired by the work of (Bazant and Chern, 1985). The model
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is built as a sum of four components

ε̇̇ε̇ε= ε̇̇ε̇εel + ε̇̇ε̇εbc + ε̇̇ε̇εshr + ε̇̇ε̇εdc (5.1)

with ε̇̇ε̇εel the elastic strain tensor , ε̇̇ε̇εbc the basic creep strain tensor, ε̇̇ε̇εshr the drying shrink-
age strain tensor and ε̇̇ε̇εdc the desiccation creep strain tensor. The original model was im-
plemented in Code−Aster, (R7.01.35, 2017). In the original version, the rate of variation of
drying shrinkage was taken proportional to the variation of water content, ε̇̇ε̇εshr = kCĊ111,
where kC is a constant coefficient of proportionality. Based on experimental observations
on cement paste, drying shrinkage at equilibrium as a function of relative humidity is
quasi-linear for a wide range of relative humidity (100-20%) (Chapter 2). Then, the drying
shrinkage equation of the model is modified to read: ε̇̇ε̇εshr = khḣ111, where kh is a con-
stant coefficient of proportionality. Desiccation creep is modeled by the law proposed by
Bazant and Chern (1985); Benboudjema et al. (2005), which relates the desiccation strain
rate to the variation of internal relative humidity, expressed by

ε̇̇ε̇εdc = |ḣ|η f dσσσ (5.2)

A zero Poisson’s ratio is associated with the desiccation creep, according to this model.
This hypothesis was discussed elsewhere (Charpin et al., 2017). Further details on the
model equations are given in appendix.5.6.

5.2.2 Micro-Prestress Solidification (MPS) model

The model was introduced by Jirásek and Havlásek (2014). It is built in the framework of
aging viscoelasticity, and creep is completely described by a unique compliance function
J depending on both the current time (t ) and the loading time (t ′).

The total strain tensor reads Eq.5.16:

εεε(t ) =εεεel +εεεve (t )+εεε f (t )+εεεshr (t ) (5.3)

with εεεel the instantaneous strain, εεεve the viscoelastic component of basic creep, εεε f the
flow strain; an aging dashpot with viscosity dependent on microprestress S, for long term
creep, εεεshr (t ) the volumetric change due to drying. Desiccation creep in this model is
coupled with the viscous flow term εεε f (t ), by considering the viscosity as temperature-
humidity dependent (Jirásek and Havlásek, 2014). Further details on the model equa-
tions are given in section.5.15, and on the implementation given in (Jirásek and Havlásek,
2014).
The model has been implemented in Code−Aster and validated by comparison to litera-
ture data (Adia et al., 2018).

5.3 Numerical analysis of experiments

For simulation of structure behavior, models are often calibrated on laboratory tests on
rather small samples. However, structures like CCBs are very large. Thus, the concrete
constitutive laws should be able to correctly take into account this size effect. In this
study, two delayed strain models with two different modeling approaches of drying creep
have been investigated. In the Burger model (sect.5.2.1), desiccation creep is modeled by
stress-induced shrinkage theory, (Bazant and Chern, 1985), while in the MPS model, the
microprestress relaxation theory (Bažant et al., 1997) is considered. One of the major ob-
jectives of these simulations is to establish an experimentally well-supported numerical
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Table 5.3: Boundary conditions. u0: uniform displacement, ND: Non Drying Surface, DSF: Drying
Surface

Face 3D 2D
Top Fz , u0

z , ND Fy , u0
y , ND

Bottom uz = 0, ND uy = 0, ND
Left ux = 0, ND ux = 0, ND

Right DSF, u DSF, u
Front Fy , u0

y , ND −
Back DSF, u −

model for drying creep. In the case of drying, a full water transport analysis is necessary.
The drying model with the identification procedure has been detailed in chapter.3. The
identified model is used to simulate drying in order to get the water content evolution. To
obtain the optimal values of the model parameters, we use ADAO (a module for Data As-
similation and Optimization, http://www.salome-platform.org/). The finite element
code is arranged as a subroutine for the optimization scheme.

5.3.1 Simulation of drying and creep: mesh and boundary conditions

An axisymmetric configuration for cylinders and 1/8 for prismatic samples is used. The
discretization and the boundary conditions are presented in fig.5.2 and tab.5.3.

Top

Right
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z

x

y

(a) 3D mesh

Top

Left

Bottom

Right

y

x

(b) AXI mesh

Figure 5.2: Mesh

Note that a fine mesh is considered at each drying face of the samples, where the hy-
dric gradients are more pronounced.

5.3.2 Model identification

A staggered approach is adopted. The elastic modulus and the creep Poisson’s ratio are
respectively 14.5 GPa and 0.248 (Charpin et al., 2017).

129

http://www.salome-platform.org/


CHAPTER 5. CREEP OF CEMENT PASTE AT VARIABLE HUMIDITY: PICKETT EFFECT
AND SIZE EFFECT - NUMERICAL SIMULATIONS

Identification of drying shrinkage

We simply calculate the drying shrinkage capacity coefficient ksh = 8.6×10−5[-] by linear
regression from the experimental data (slope of the line). This parameter value of drying
shrinkage is somewhat intrinsic to the material. In fact, the measurement was performed
on an extremely thin specimen 500 µm in thickness, and the humidity was decreased
gradually and so slowly that the pore humidity distribution is assumed to remain almost
uniform at all times. The duration for equilibrium at different relative humidity steps are
reported in tab.5.4. More details on the study of drying shrinkage can be found in the
chapter 2 (experimental) and chapter 3 (numerical).

Table 5.4: Duration for equilibrium at different relative humidity steps

Relative humidity (%) 80 60 42 27 20
Duration (h) 24 24 30 60 165
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Figure 5.3: Determination of drying shrinkage coefficient ksh = 8.6× 10−3 [-] by sorption length
change measurement on small prism (10×10×0.5 mm), performed in climatic chamber

Identification of basic creep

In a first attempt, we identified the creep parameters of the two models on the 7, 28, 90
days aging basic creep tests performed on cement paste by Huang (2018). However, let
us emphasize that, unlike the material studied here, the author has added an admixture
in the composition of the material. To verify the quality of the identified parameters, we
predicted the basic creep tests BC-C15mm-SS-RH95, the result was not satisfactory (the
results are not shown here for simplicity). Then using the identified models, we predict
the basic creep tests C15mm-SS-RH95 (tab.5.2). But since the material used in the tests of
C15mm-SS-RH95 (tab.5.2) is similar to the material of our study (same composition and
exact manufacturing process); we found it more reliable to reidentify the basic creep pa-
rameters for both models on the this test exception made of the aging parameter m of the
MPS model. The final parameters concerning basic creep of both models are presented in
tabs.5.5-5.6. Note that the desiccation creep parameters of both models are not activated
at this stage of identification. They are set to values such that they do not contribute to
the output strain of simulation.
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Table 5.5: Basic creep identified parameters of MPS model; µs[Pa.s−1] is the parameter of desic-
cation creep, set to very low value, in order to shortcut its contribution.

Identified parameters q1 (Pa−1) q2 (Pa−1) q4 (Pa−1) α (-) n (-) m (-)
Identified value 1.005×10−20 5.997×10−10 1.425×10−10 0.17 0.15 1.09

Fixed parameters αs (-) αr (-) αe (-) ν µs (Pa.s)−1 ksh (-)
Value 0.1 0.1 10. 0.248 1.×10−24 8.6×10−3

Table 5.6: Basic creep identified parameters of Burger-h model; η f d [Pa.s−1] is the parameter of
desiccation creep, set to large value, in order to shortcut its contribution

Identified parameters κ (-) kr d (Pa) ηr d (Pa.s−1) ηi d (Pa.s−1) -
Identified Value 0.0013 2.938×1010 4.53×1015 5.73×1016 -

Fixed parameters Eel (Pa) νel (-) ν f lu (-) η f d (Pa.s−1) ksh(−)
Value 15109 0.248 0.248 1.×1012 8.6×10−3

The identification results are displayed in fig.5.4. The overall response is very well re-
produced by both models. In particular, the recovery is well reproduced by Burger model
during unloading demonstrating that the identification of the reversible part of the model
went well. In fact, during unloading, the contribution of irreversible parts is vanishing.
Meanwhile the MPS model shows an unrealistic response during unloading.
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Figure 5.4: Identification of basic creep on test BC-C15mm-SS-RH95

Identification of drying creep

The desiccation creep parameter η f d of the Burger model and µs of the MPS model are
identified using the biaxial creep test P2mm-CC-2-FD. For a recall, the test was performed
on 10×10×2 mm prism, with relative humidity decreasing from 80% to 20% in 4.5 h. The
test is considered as fast. The best agreement was reached with the parameters are sum-
marized in tab.5.7.
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Figure 5.5: Identification of drying creep parameters of both models using fast drying rate biaxial
test in climatic chamber (P2mm-CC-2-FD) both axial (a) and lateral strain (b)are identified simul-
taneously assuming a constant creep Poisson’s ratio.

Model Burger MPS
Desiccation creep parameter η f d (Pa.s−1) µs (Pa.s)−1

Value 1.5×109 3.5×10−14

Table 5.7: Best fitting of desiccation creep parameters of Burger and MPS models

The identification results for both models are displayed in fig.5.5. The Burger model
reproduces the experiment well, while the best fitting with the MPS model overestimates
the strain in the long term.

5.3.3 Prediction of drying rate effect

In this section, the models are evaluated on their capability to predict the drying rate effect
on creep. In the following, all simulations were run with the parameters of basic creep,
drying creep, and drying shrinkage identified in the previous section. The tests are for
different drying rates

Climatic chamber tests

The uniaxial test with slow drying (P2mm-CC-SD) is simulated with the identified models.
This test is considered slow drying. In fig.5.6, the Burger model reproduces quite well the
experiment data, both lateral and axial strains. For the MPS model, however, the predic-
tion of axial strain is somehow acceptable, while the lateral response of the model tends
to decrease at the end (fig.5.6). Since a constant Poisson’s ratio ν = 0.248 was imposed,
this response of the model is quite unexpected.
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Figure 5.6: Prediction of creep in Slow Drying (SD) rate test in climatic chamber (P2mm-CC-1-SD)
axial strain (a) and axial strain (b)

ESEM tests

Fig.5.7 compares the microscopic in-situ creep tests in ESEM, including fast and slow dry-
ing rates with numerical simulations. In the case of fast-drying rate (fig.5.7.a), both mod-
els overestimate the creep rate when the relative humidity was decreased from 80 % to 20
%, but they capture well the asymptotic value. For slow drying rate (fig.5.7.b), however,
the responses of the two models are similar and below the experimental data and diverge
at the end: MPS underestimates, and Burger overestimates the creep rate.
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Figure 5.7: Prediction of creep tests in ESEM P2mm-ESEM-FD (a) and P2mm-ESEM-SD (b)

5.3.4 Evaluation of model scaling capability

In this section, the objective is to evaluate the two model capability to account for size
effects on drying creep. For that purpose, predictions are probed on drying creep tests
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carried out on �36×180 mm cylinders at 60 % and 80 % relative humidity. The results
are shown in fig.5.8. The prediction accuracy is quite satisfactory with the Burger model,
while the MPS model drastically overestimates the experimental results.
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Figure 5.8: Scaling capability of the models with drying creep, prediction from 10×10×2 mm to
�36×180 mm size: Comparison with experimental results of total creep at 80% and 60% relative
humidity

5.3.5 Prediction of basic creep at different relative humidities

In this section, the capability of both models to predict the long-term basic creep de-
pendence on relative humidity is investigated. Three experiments at different relative
humidities 20%, 60% and 80% are simulated (DSC-C18mm-SS-RH20, DSC-C18mm-SS-
RH58, and DSC-C18mm-SS-RH80, tab.5.2). As already pointed out in chapter.4, in the
first period of these tests (0-200 days), the specimens were only drying and free of ex-
ternal load; thus, drying shrinkage was measured. Then once moisture equilibrium was
reached, the specimens were loaded, allowing to measure basic creep. The confrontation
of numerical simulation results with experimental data is displayed in fig.5.9.

The Burger model better predicts the dependence of long-term basic creep on relative
humidity than the MPS model. Let us point out that the prediction of the kinetics with
the Burger model is much better for tests at 80% and 60% RH than at 20% RH. At 20% RH,
the kinetics of creep of the model is significantly different from the experiment. Again, the
MPS model drastically overestimates the kinetics of creep; the lower the relative humidity,
the more the model overestimates this mechanism.

5.3.6 Analysis of microcracking: prediction of stress profile evolution

In this section, the stress distribution σθθ and σzz along the axial radius of �36×180 mm
cylinder in DSC-C18mm-SS-RH58 test (tab.5.2) is studied. The prediction concerns the
prior loading period (the sample was not loaded during the first 220 days of testing while
drying). The computation was performed with the identified Burger model, and the result
is displayed in fig.5.10.
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Figure 5.9: Dependence of long term basic creep on relative humidity. Prediction with Burger and
MPS models vs. experimental measurements
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Figure 5.10: Stress Distribution along the central radius of cylindrical �36× 180 mm specimen
submitted to environmental variable relative humidity (ref fig.5.1.c)-C18mm-RH60)

During the first stage of drying, the specimen surface experiences tensile stresses,
while the core is under compressive stresses. The tensile stress grows to reach a maximum
of 1.5 MPa after about 50 days of drying and then decreases. At the final drying stage, the
stress profile is inversed, the core is under tension while the surface is under compres-
sion. It is noteworthy to highlight that during the entire drying process, the stress level in
the entire section remains less than the tensile strength of the material ( ft ≈ 2.5−3 MPa).

5.4 Discussion

The simulations using various drying conditions and different specimen sizes allow us to
discuss some points of the model.
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5.4.1 Basic creep dependence on relative humidity

Experimental observations of the present study showed that cement paste and concrete
creep less at reduced water content, which corroborates literature results (Abiar, 1986;
Bažant et al., 1976; Wittmann, 1970). However, the Burger model overestimates or under-
estimates the long-term kinetics of creep, depending on the relative humidity, as shown
in fig.5.9. Meanwhile, Mathieu et al. (2018) calibrated the model on laboratory tests on
concrete and were able to predict with good accuracy the delayed strains evolution at the
structure level; the structure was submitted to an environment of average 50% RH. Thus
the poor accuracy of the model at lower relative humidities has little impact in this case.
For clarity of analysis, the modeling of long-term kinetics of the two models is recalled
below. In the Burger model, the humidity effect on the long term kinetics of basic creep is
accounted for by multiplying the local stress with the relative humidity value

ε̇̇ε̇εs,d = h

ηi s,i d
σσσs,d (5.4)

where subscript s, d denotes spherical and deviatoric parts respectively, h the relative
humidity, σσσ the local stress at a material point, and ηi is the long term viscosity at the
saturated state.

The MPS model overestimates the basic creep deformation when relative humidity is
low. To investigate that non-intuitive response of the model, let us look closer to how the
model considers the humidity effect on basic creep: On the one hand, a reduced time tr
increment (Eq.5.5) replaces the load duration t for evaluating the viscoelastic compliance
(see appendix.5.5, Eq.5.18). Mind that the humidity dependent factor (Eq.5.6) becomes
very small at low relative humidities. For αr = 0.1, and for 20%RH, this factor is 0.136,
which means that the compliance evolution rate is 7.3× (1./0.136=7.3) faster than at full
saturation.

dtr =Ψr (T,h)d t (5.5)

Ψr (T,h) = exp(
Qr

kB
(

1

T0
− 1

T
)).(αr + (1−αr )h2) (5.6)

In the other hand, the relative humidity impacts the evolution of the viscous flow com-
ponent of basic creep, Eq.5.28:

ε̇̇ε̇ε= Ψs(h)

q4
σσσ (5.7)

Where σσσ is the local stress, and q4 the parameter of the long term basic creep. The
humidity-dependent factor Ψs (Eq.5.8) is similar to that of the viscoelastic strain.

Ψs(h) = (αs + (1−αs)h2) (5.8)

with αs = 0.1. The lower the relative humidity, the lower is the viscosity variation rate (ref.
Eq.5.28), and the less the viscous flow part of basic creep develops. Hence, at low humid-
ity, the viscoelastic component of basic creep of MPS model increases while the purely
viscous component of the model decreases. The former contribution is by far more im-
portant according to the results obtained here. To summarize, the humidity-dependent
factor isαs+(1−αs)h2 for the MPS model and h for the Burger model. Such expressions are
very practical since they do not require any identification, but they appear to show some
limitations in the present study. One alternative consists of determining the dependence
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of basic creep to relative humidity, based on micro-indentation or nano-indentation tests
(Vandamme and Ulm, 2013; Zhang et al., 2014). Recently Frech-Baronet et al. (2017); Chen
et al. (2020); Suwanmaneechot et al. (2020) have taken advantage of those advanced tech-
niques to study the evolution of the basic creep modulus with relative humidity. Thus,
from such experiments, a refinement of the expression of humidity reducing factors is
possible and improves the model capability to predict the long-term creep behavior (Aili
et al., 2020).

5.4.2 Identification of drying creep or Pickett effect

Because basic creep reduces when the relative humidity decreases make it difficult to in-
vestigate the mechanisms separately at play in basic creep and drying creep. Ignoring
that fact may also cause an underestimation of the well-known Pickett effect (Bažant and
Yunping, 1994). Then, using drying creep data of very thin specimens is an opportunity
for investigation of the Pickett effect by allowing the separation of basic creep and drying
creep. In the case of very thin specimens, they remain at a quasi-instantaneous equilib-
rium state with drying humidity, and thus, the contribution of basic creep may be ne-
glected, at least during the transitional drying period. From a practical point of view, this
statement could be checked by considering the basic creep on macroscopic tests. The
creep rate factor, which is inspired but different from the one defined by (Vlahinić et al.,
2012) CF, is expressed in Eq.5.9.

CF = εtot al −εbasi c

εbasi c
(5.9)

Where εtot al is the uniaxial total creep strain, while εbasi c is the uniaxial basic creep strain.
The creep rate factor evaluates the drying strain contribution to the total stain of various
materials, subjected to drying. The creep rate factor, computed using Eq.5.9, basically
represents the ratio of drying creep over basic creep. Fig.5.11 shows the evolution of the
creep rate factor computed for 10×10×2 mm samples submitted to different drying rates
(P2mm-CC-1-FD (uniaxial) and P2mm-CC-3-SD (biaxial)). Drying creep grows rapidly
and reaches amplitudes of about 8× that of basic creep. This shows that the creep rate
factor evolves linearly with mass loss. It can be noted that the starting time t = 0 cor-
responds to the elastic response, and because the elastic strain in a biaxial test is lower
than in a uniaxial test, the creep rate factor of P2mm-CC-3-SD (biaxial) is negative at the
beginning.

5.4.3 Assessment of intrinsic drying shrinkage on macroscopic speci-
mens

The evolution of self-equilibrated stresses across the specimen thickness during the dry-
ing process is illustrated in fig.5.10. Even though for the period between the onset of dry-
ing and the onset of loading, the sample is macroscopically unloaded, it is not internally
stress-free. Self-equilibrated stresses develop for two main reasons: (i) macroscopic non-
uniformity of the drying process, and (ii) if the local stress induced by hydric gradient ex-
ceeds the tensile strength of the material, micro-cracking will occur. The second origin of
local stresses is due to the incompatibility of shrinking phases (mainly C-S-H) and non-
shrinking phases (CH, for instance) of the material. Similarly, if the self-restraint stress
exceeds the tensile strength, micro-cracking occurs. It is interesting to note that the local
stresses will cause creep, which in turn will release the stresses partially. Fig.5.10 shows
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Figure 5.11: Evolution of the creep rate factor with time (a) and mass loss (b)

self-equilibrated stresses, resulting from the combination of these three phenomena. It
is noteworthy to highlight that, despite the relatively large dimensions of �36×180 mm
cylinders (equivalent drying thickness of 18 mm), drying has not induced micro-cracking
since the stress gradients reported in fig.5.10 remains under the tensile strength of the
material ( ft ≈ 2.5− 3 MPa). This is also supported by the analysis of water profiles dis-
played in fig.5.12. This was possible because the prescribed drying humidity was slow
enough to limit the rise of hydric gradient stress, likely to induce skin-micro-cracking.
Therefore the measured shrinkage can be considered as uniform within the specimen at
this investigation scale.
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Figure 5.12: Evolution of water saturation profile of cylindrical specimen, �36×180 mm dimen-
sions in tests (see tab.5.2) DSC-C18mm-SS-RH60 (a) and DSC-C18mm-SS-RH80 (b)

5.4.4 Pickett effect: separation between micro-cracking and the intrin-
sic mechanism

Drying creep, also known as the Pickett effect, corresponds to the additional deformation
when concrete is stressed together with internal moisture change. One of the possible
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origins is micro-cracking. When the specimen is subjected simultaneously to compres-
sion and drying, micro-cracking is less prominent than unloaded samples. Therefore,
the measured strain is greater than the sum of basic creep and drying shrinkage mea-
sured separately. The larger is the specimen size, and the more likely cracking will occur
unless the humidity is decreased very slowly, such that the specimen remains at quasi-
instantaneous equilibrium with the drying environment. Earlier investigations of drying
shrinkage using the DIC technique, both in ESEM and climatic chamber, have shown that
using 10×10×2 mm specimens allows to assess the intrinsic drying shrinkage (Kinda et al.,
2021) experimentally. Hence, skin-micro-cracking contributions to drying shrinkage and
creep of small size samples in the present study could be neglected, fig.5.13. Many mech-
anisms have been proposed in the literature to explain the origin of drying creep, but no
consensus has been reached yet. Among them, can be cited drying induced shrinkage
(Bazant and Chern, 1985; Benboudjema et al., 2005) and micro-prestress relaxation the-
ory (Bažant et al., 1997; Bažant et al., 2004; Jirásek and Havlásek, 2014; Rahimi-Aghdam
et al., 2019). The most widely used mechanism is drying-induced shrinkage. According
to this hypothesis, simultaneous loading and drying cause micro-diffusion of water be-
tween micro-pores and macro-pores. The linearity of drying creep vs. shrinkage relation
in fig.5.13, during the biaxial creep test P3mm-CC-3-FD, suggests that the kinetics of dry-
ing shrinkage and drying creep are both driven by the same process, which is drying (Day
et al., 1984; Hilaire, 2014).
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Figure 5.13: Relationship between drying shrinkage and mass loss (a); and Desiccation creep vs.
Drying shrinkage during biaxial loading test in climatic chamber on prism of 10×10×2 mm

From recent findings (Vlahinić et al., 2012), drying of cement-based materials oper-
ates at two scales. At the macroscale, a macro-diffusion of water vapor occurs from large
capillary pores toward the environment. However, at the micro-scale, micro-diffusion of
water from nanopores of C-S-H gel to capillary pores happens. Let us assume, on the one
hand, that drying shrinkage is driven by macro-diffusion, which is a quasi-instantaneous
process, and then considered as elastic, ε̇̇ε̇εsh = kshḣ111. On the other hand, let’s consider
drying creep as a result of micro-diffusion promoting bond breakage in C-S-H gel which
is a purely viscous process, ε̇̇ε̇εdc = µ|ḣ|σσσ (Bazant and Chern, 1985). Then, the linear re-
lationship between drying creep and drying shrinkage, in fig.5.13, also reported by (Day
et al., 1984; Hilaire, 2014), suggests that micro-diffusion compensates macro-diffusion.
More importantly, fig.5.13 demonstrate that drying creep is stress-induced shrinkage. In
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the framework of stress-induced theory, (Bazant and Chern, 1985) proposed Eq.5.10.

ε̇̇ε̇ε=µ|ḣ|σσσ (5.10)

whereµ is a material parameter; ḣ the local relative humidity variation rate; η= (µ(̇h))−1 is
the viscosity of drying creep; and the drying creep rate ε̇̇ε̇ε is a viscous response completely
controlled by the drying process. The viscosity dependence on the humidity change rate
allows to retrieve the drying creep results for different drying rates and specimen thick-
nesses with one single material parameter η f d of the Burger model (sect.5.2.1) as shown in
the present study. This result tells us that drying creep and drying have the same kinetics;
since drying has a limited potential, drying creep is therefore bounded. This means that
for a given relative humidity variation, there is an amplitude for drying creep, which can
be measured, if the specimen is very thin and drying very slowly enough to avoid cracking
(Day et al., 1984; Bažant et al., 1976). Moreover, drying shrinkage and drying creep are
very strongly related; this feature has to be taken into account in models (Bažant, Z. P.,
2015; Wittmann and Roelfstra, 1980).

5.4.5 Modeling of drying creep: size effect

The results of fig.5.8 suggest that drying creep in the Burger model better accounts for size
effects than the modeling approach adopted in the MPS model. For the sake of clarity, the
two modeling approaches are recalled:

• Burger model (sect.5.2.1): a single viscosity parameter η f d (Bazant and Chern, 1985)
(Eq.5.10), is able to reproduce the drying creep response of cement paste, regard-
less of the drying rate and specimens size. That means that the drying process and
drying creep have the same kinetics. Since drying has a limited potential, drying
creep is also bounded (Dohnalová and Havlásek, 2018). In other words, for a given
relative humidity, there might exist an ultimate value for drying creep, which is in-
dependent of the drying rate. It could be measured experimentally if the specimen
is thin enough and drying low enough to avoid cracking. When cracking occurs,
numerical simulations (Benboudjema et al., 2005) on concrete data (Granger, 1995)
show that no suitable value of the material parameter η f d can be identified in order
to retrieve experimental drying creep results.

• MPS model (sect.5.2.2) overestimate the drying creep strain when the specimen
size increases. This reversed size effect of the model has already been pointed out
by (Bažant et al., 2014) who carried out a numerical study on experimental data
(Bryant and Vadhanavikkit, 1987). The main reason explained by the authors is
that the originally postulated equation for microprestress relaxation is too simple
and does not cover a full spectrum of relaxation times. This leads to a delay be-
tween the humidity changes and the resulting increase of viscosity that contributes
to drying creep. A modification that takes into account instantaneous effects on
viscosity by an additional viscous dashpot has been proposed by adding a viscos-
ity, term which is dependent on humidity variations, (Bažant et al., 2014). Recently,
Rahimi-Aghdam et al. (2019) proposed the extended MPS theory (XMPS), inspired
by molecular dynamics (MD) simulations of Vandamme et al. (2015). The viscosity
relationship with the microprestress (sect.5.2.2), initially defined as a power func-
tion of micro-prestress (Bažant et al., 2004), is reformulated as

1

η
= aS +b|Ṡ| (5.11)
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where S is the microprestress, and η is the viscosity of the dashpot. The evolution of
microprestress Ṡ (Eq.5.11) is mainly caused by the variation of capillary pore pres-
sure and disjoining pressure. Numerical analysis by the authors demonstrates that
this extended version predicts well the size effect on drying creep. It will be inter-
esting to test this improved version of the MPS model on the current experimental
data.

5.5 Conclusion

Creep and shrinkage have been monitored on 10×10×2 mm and �36×180 mm samples.
Simulations were carried out with two constitutive models. Based on the numerical anal-
ysis carried out, the following conclusions are drawn:

1. First, the models were challenged with basic creep results at three relative humidi-
ties (80%, 58% and 20%). The recovery part of the tests allows identifying the re-
versible components of the models. However, the identification of the irreversible
component of creep was difficult. For both models, no suitable value of the viscos-
ity of Maxwell dashpot was found. This may be due to the fact that long-term ba-
sic creep is strongly dependent on relative humidity, and none of the investigated
models accounts well for this dependence. Therefore, the creep modulus relation
with relative humidity needs to be improved, especially for the low relative humid-
ity range (50-20% RH). Experimental studies with the nano-indentation technique
will be of great help.

2. Second, the drying components of creep were studied. The experimental study on
thin 10×10×2 mm specimens allows, on the one hand, to minimize the interaction
between drying creep and basic creep, and on the other hand, to minimize crack-
ing. Moreover, the drying shrinkage capacity coefficient was directly identified on
the sorption length change isotherm, and the same parameter is used for both mod-
els in all simulations. Then simulations carried out on 10×10×2 mm samples fo-
cused on the characteristics of intrinsic drying creep. It was found that drying in
the Burger model (sect.5.2.1) predicts well the drying rate and size effects, while the
MPS model (sect.5.2.2) underestimated the drying creep component if the speci-
men size was reduced. More importantly, for cement paste, drying and drying creep
have the same kinetics. In addition, the amplitude of drying creep is independent
of the drying rate. Thus, it is possible for a given material to build a drying creep
isotherm so that for a given environmental humidity, the drying creep amplitude
can be determined in a straightforward manner.
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Conclusion and Perspectives

Conclusion

The prediction of the delayed strain behavior of concrete structures submitted to envi-
ronmental drying conditions is crucial for the serviceability of concrete structures. Most
of the time, models are calibrated on laboratory tests on rather small samples and used to
predict the behavior of structures that are far larger. These different concrete thicknesses
induce different drying kinetics. Thus, the constitutive laws should be able to correctly
take into account the effect of the rate of drying on the delayed strains (creep, shrink-
age) of concrete. In this thesis, the objective was to investigate, both from experimental
and numerical viewpoints, the impact of the rate of drying on the delayed strain behav-
ior of cement paste. For that purpose, experimental tests were carried out for shrinkage
and creep at the cement paste scale for different sample sizes under various drying rates.
The study was performed on small representative samples of cement paste to allow rea-
sonable test duration on the one hand, and on the other hand, to avoid cracking due to
hydric gradients. Cement paste is the source of the delayed deformations and, therefore,
qualitatively presents the same shrinkage and creep behavior as concrete. The experi-
ments enable us to understand better the impact of drying rate on drying shrinkage and
drying creep and propose a model taking into account that influence.

Contributions

From experimental viewpoint

Tests were performed on hardened cement paste specimens. One cement paste was tested
with different geometries: �36×180 mm cylinders and thin slabs (10×10×0.5, 10×10×1,
10×10×2 mm). The specimens were dried at various rates and with different steps of hu-
midity, using different conditioning systems. The experimental study is summarized as
follows:

1. axial creep and shrinkage measurements in Environmental Scanning Electron Mi-
croscopy (ESEM) on 10×10×2 mm samples, for different drying rates.

2. drying desorption isotherm and mass loss assessed by DVS, using cement pow-
der and 10×10×1 mm specimen; drying length change isotherm investigated on
10×10×0.5 mm, 10×10×2 mm specimens using ESEM and climatic chamber.

3. axial and biaxial creep, shrinkage, and mass loss measurements in a climatic cham-
ber, on 10×10×2 mm specimens, for different drying rates.

4. axial creep (drying and pre-dried) with recovery, shrinkage, mass loss measure-
ments for relative humidity 20%, 60%, and 80% controlled by saturated saline so-
lutions using 36x180 mm cylinders.
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This experimental campaign is very large and enable to study a lot of parameters. The
creep tests in ESEM and climatic chamber under axial and biaxial mechanical loadings
are particularly innovative and informative. These techniques allow the investigation of
the relationship between drying, free drying shrinkage, and intrinsic drying creep, within
a short amount of time, for a large range of relative humidity and different drying rates.
Since the method made possible the assessment of drying shrinkage, free of skin cracking,
the part of the Pickett effect attributed to cracking was avoided, allowing to investigate the
intrinsic mechanism of drying creep. The drying creep test on small slabs allowed us to in-
vestigate the purely drying creep behavior of the material for two reasons (1) since the test
durations were short, the development of basic creep was limited, (2) cracking was not
present or diffuse. These experiments were assisted by Digital Image Correlation (DIC).
Thanks to the uncertainty analysis, it is demonstrated that DIC is trustworthy for investi-
gating delayed strains of cement-based materials under complex drying conditions. The
cement paste’s natural contrast allows reaching an uncertainty level below 100 µm/m for
relative humidities ranging from 80 % to 9%. The use of DIC also allowed checking that the
strains were uniform at the observation scale, which validated that crack was not present
or diffuse. These experimental investigations allowed us to learn about the influence of
relative humidity, drying rate, and size effects on creep. From the experimental results,
some conclusions were drawn.

1. Drying shrinkage. The results show that the final drying shrinkage at the mate-
rial level is independent of drying rate. Moreover, it was found that drying shrink-
age bears a quasi-linear relationship with relative humidity for a broad range (100-
20% RH). These findings are of first importance since they suggest that it is possible
to build simple drying shrinkage models for concrete.

2. Creep study. The most important outcomes are: (1) the kinetics of basic creep in the
long term decreases with decreasing humidity; (2) drying creep of thin specimens
(2 mm) bears a linear relationship with their mass loss, regardless of the drying rate,
which tells us that at the material level, drying creep and drying have same kinetics.
In particular, drying creep seems to be driven mainly by the gradient between the
flux water movement in macro-pores, which causes mass loss and flux of water flow
in the nanoporosity, which induces drying creep.

From numerical viewpoint

The experimental database served for numerical investigations of drying, drying shrink-
age, and creep models. The objective was to propose a delayed strain constitutive law for
concrete structures, which could take into account the effect of the rate of drying. This
is a critical point when such models are used at the structure level because the experi-
ments used in the lab to calibrate models exhibit much faster drying than in structures.
The main contributions regarding numerical aspects are as follow:

1. First, the proposed Richards-Fick drying model, which accounts for water perme-
ation and vapor diffusion, is shown to account well for size effects, drying rate and
works well for a range of relative humidity from 100% down to 20% RH at room tem-
perature. This point is important since it demonstrates that the parameters of the
model could be determined from laboratory tests and further used to predict dry-
ing at the structure level. A sensitivity analysis on the surface exchange coefficient
was carried out, and the results showed that for the usual environmental conditions
(20°C, 50% RH, normal airflow rate), the effect of the surface exchange coefficient
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on drying could be neglected for specimens of large drying thicknesses (18 mm in
this case). At the same time, it was essential for very thin specimens. However,
when the airflow rate was quite low, the impact of surface exchange coefficient was
important for any specimen size (in the range of sizes tested in this campaign, i.e.,
up to 18 mm).

2. Second, the drying shrinkage model adopted reads ε̇̇ε̇εsh = kshḣ111, where ḣ is the rate
of variation of pore relative humidity. Let us stress that the proportionality factor
ksh was identified directly on experiment results of only 250 h duration, on a 0.5
mm thick sample. The results demonstrate that this kind of model could account
well for drying rate and size effects on drying shrinkage at room temperature. In
particular, the model was found to be trustworthy for a broad range of relative hu-
midity (100-20%). Since this model is only based on the pore humidity variation
rate, the quality of results was mainly due to the quality of drying results, which
was strongly dependent on the water desorption isotherm. The linearity of drying
shrinkage with relative humidity made it possible to fully calibrate the model for a
large range of relative humidity based on one single drying shrinkage experiment.

3. Third, two constitutive laws for creep were studied (Burger and MPS models). The
main concern was evaluating the capacity of those constitutive laws to account for
size effects correctly. A staggered approach was used for simulations, cracking was
not considered, and the temperature was set to 20°C. Particular attention was paid
to the identification of model parameters by inverse analysis, and the identification
was successful. In a first step, basic creep parameters were identified on the basic
creep test with recovery, which allowed better identification of reversible parts of
basic creep. In a second step, the drying shrinkage capacity coefficient was iden-
tified directly on sorption length change isotherm. The drying creep component
was identified in a last step thanks to creep measurement (in climatic chamber) on
thin 10×10×2 mm specimens since the interaction between drying creep and basic
creep was limited and cracking was not present or diffuse. The identified parame-
ters are used for predictions of tests at various drying rates and specimens size. It
was found that the Burger model predicted well the drying rate and size effects,
while the MPS model overestimated the drying creep component for increasing
specimen size. The simulation results support that drying and drying creep has
the same kinetics. Moreover, the amplitude of drying creep was independent of
drying rate, which means that it is possible for a given material to build a drying
creep isotherm so that for a given environmental humidity, the drying creep ampli-
tude can be determined straightforwardly. The simulations also revealed that the
dependence of long-term creep viscosity on relative humidity should be refined for
both models.

Perspectives

Further improvements can be proposed to complete the work of this thesis both on ex-
perimental and numerical viewpoints:

1. The experimental database could serve for extensive comparisons of others creep
models, including constitutive laws such as LMDC model Manzoni et al. (2020), Ex-
tended Microprestress Solidification (XMPS) model Rahimi-Aghdam et al. (2019),
as well as prediction models like fib Model Code 2010, B4 model Dohnalová and
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Havlásek (2018). The results could help testing or building delayed strain models
for concrete structures, which are able to take into account the effect of drying rate.
One possible way to tackle that goal is to predict drying shrinkage tests of large size
specimens with the length change isotherm coefficient obtained using the method
presented in this study. Moreover, by homogenization, drying shrinkage values at
equilibrium for a given relative humidity can be upscaled from the cement paste to
concrete if one assumes in first approach a perfect cohesion between the cement
paste matrix and aggregates. This is an oversimplification of reality and could po-
tentially lead to overestimated shrinkage. The present database, which includes ax-
ial and biaxial creep, drying shrinkage under various drying conditions for cement
paste, could also be extended for different temperatures and loading conditions and
different material formulations.

2. The quality of predictions of delayed strains vastly relies on drying input, which in
turn depends on two factors: desorption isotherm and model parameters. There-
fore, for improving the prediction of delayed strains of nuclear containment build-
ings (CCB), a good knowledge of the desorption isotherm of on-site concrete of each
CCB is very important. For the last decade, innovative techniques to characterize
the sorption-desorption isotherm of cement-based materials have emerged, such
as the volumetric or Dynamic Vapor Sorption methods. The advantage of those
techniques is that they are time-cost effective. The drying model could also be ex-
tended to variable temperature for sake of generality.

3. In this work, we focused on cement paste, and the variety of tests allowed us to
propose an original method of calibration of the models: to complete this study, we
propose to test the identification of the parameters of the models on concrete tests
according to the following procedure.

(a) Determination of the long-term viscosity of basic creep based on nano-indentation
tests combined with homogenization techniques. Identification of the reversible
component and the consolidation parts of basic creep on short-term tests, in-
cluding recovery of few days.

(b) The drying shrinkage parameter of the model could be identified by (1) inverse
analysis on one single drying shrinkage experiment on concrete (long duration
method) or by homogenization of the drying shrinkage isotherm of paste to
obtain the drying shrinkage capacity coefficient of concrete.

(c) Determination of the parameter of drying creep by inverse analysis of drying
creep test on concrete with basic creep and drying shrinkage parameters set.

And then, as a final step, to predict the evolution of deformations at the structural
scale. By doing so, we will have a proven method to go from the laboratory scale to
the structural scale, with a considerable saving in testing time, even more so if we
study different concrete compositions.

4. The structural effects of drying creep or Pickett effect were not addressed in this
study. From experimental results, we inferred that at room temperature, the final
drying shrinkage at the material level is independent of the rate of drying. It would
be interesting to verify if the same conclusion stands at mortar and concrete lev-
els since aggregates could induce cracking at the mesoscopic level in these materi-
als compared to cement paste. In massive structures, such as nuclear containment
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buildings, large bridges, the depth of skin-cracks is negligible compared to the over-
all thickness of the structure. Moreover, most of the cracks would re-close upon the
pre-stressing (in prestressed structures). So the drying rate will not affect that much
the final drying shrinkage for the pre-stressed structures

5. Variation of temperature and RH, including drying and wetting, should be studied
experimentally and numerically since structures are submitted to various climatic
conditions. Besides, tensile stresses should be applied in order to build a robust
model able to predict delayed strains in cement-̀based materials.
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Appendix

5.6 Burger model

5.6.1 Elasticity and basic creep

Figure 5.14: Basic creep and elasticity unit of Burger-h model (spherical chain)

The model is assumed to be isotropic. It is split into spherical and deviatoric parts (here-
after, subscript s will refer to spherical, and subscript d will denote deviatoric compo-
nents). Creep Poisson’s ratio relates the spherical and the deviatoric strains. Each part
is modeled using a rheological chain model, fig.5.14. Each chain is composed of elas-
tic strain (εεεel

s and εεεel
d ), reversible basic creep modeled by Kelvin-Voigt elements (εεεr bc

s and

εεεr bc
d ) and irreversible basic creep modeled by Maxwell elements using a viscosity that is

dependent on the current state of strain (Sellier and Buffo-Lacarriere, 2009; Sellier et al.,
2016). The basic creep strains are assumed to be proportional to relative humidity. The
model equations are now recalled for the spherical part (the equation for the deviatoric
part is obtained by replacing s with d .

• The spherical part of the elastic deformation is represented by Eq.(5.12):

εel
s = σs

3kel
(5.12)

with σσσs the spherical component of the stress tensor and kel the elastic compress-
ibility modulus.

• The spherical part of the reversible creep strain given by Eq.(5.13):

hσs = kr sεεεr bc
s +ηr sε̇εεr bc

s (5.13)

with h the relative humidity, kr s and ηr s the Kelvin-Voigt chain variables.
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• The spherical part of the irreversible creep strain given by Eq.(5.14):

hσσσs = ηi s ε̇i s
s (5.14)

where the viscosity depends on the current state of irreversible strain through ηi s =
ηi s

0 exp(∥ εεεi bcm ∥ /κ) where εεεi bc
m = max(εεεi bc

m ,
√
εεεi bc :εεεi bc ). κ is a fitting parameter of

order of 10−3 for ordinary concrete, and if it is too high, the viscosity becomes inde-
pendent of the strain level.

Another hypothesis of the model is a constant Poisson’s ratio assumption for basic
creep. Hence, the relation between parameters of spherical and deviatoric strains reads
ηi s

ηi d = ηr s

ηr d = kr s

kr d = 1+νel

1−νel .

5.6.2 Drying shrinkage

The drying shrinkage variation rate is considered to be proportional to the humidity change
rate following εεεshr = k shr ḣ111 where 111 is the second-order identity tensor and k shr , a pro-
portional scalar factor.

5.6.3 Desiccation creep

Desiccation creep is modeled by the law proposed by Bazant and Chern (1985); Benboud-
jema et al. (2005), which relates the desiccation strain rate to the variation of internal rel-
ative humidity, expressed by

ε̇̇ε̇εdc = |ḣ|η f dσσσ (5.15)

A zero Poisson’s ratio is associated with the desiccation creep, according to this model.
This hypothesis was discussed elsewhere (Charpin et al., 2017).

5.7 Detailed Description of Micro-prestress solidification (MPS)
model

The model is developed in the framework of aging viscoelasticity (Bazant and Prasannan,
1989; Bažant et al., 1997, 2004) and later improved by Jirásek and Havlásek (2014). Hence,
creep is completely described by a unique compliance function J depending on both the
current time t and the loading time t ′. The complete constitutive model is represented by
the rheologic schematic of fig.5.15.

It consists of (i) a non-aging elastic spring for instantaneous strain, (ii) solidifying
Kelvin chain series, representing short term creep, (iv) an aging dashpot with viscosity
dependent on microprestress S for long term creep, (iv) a shrinkage unit for the volumet-
ric changes due to drying, and (v) a unit representing the thermal expansion.

The number of units depends on the simulation duration and is fixed to 11 units by
default.
Because all these units are connected in series, the total strain tensor is the sum of the
individual contributions, while the stress across all units is the same. The total strain
sensor of the model reads Eq.5.16.

εεε=εεεel +εεεve +εεε f (5.16)

where each term is specified below:
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Figure 5.15: Rheological schematic of complete microprestress-solidification theory. Serial cou-
pling of an elastic spring, solidifying Kelvin chain, flow element affected by microprestress relax-
ation, and units corresponding to free shrinkage and thermal expansion

• Elastic strain tensor:

εεεel = q1 :σσσ (5.17)

The instantaneous strain, modeled by a non-aging elastic spring, should not be con-
fused with the material elastic modulus, which is time-dependent. It is a kind of
asymptotic modulus corresponding to a very short time of loading, typically of 10−4

s.

• The viscoelastic strain tensor εεεve originates from the solid gel of calcium silicate hy-
drates and is described by the solidification theory (Bazant and Prasannan, 1989).
The aging property of creep is attributed to new solidified hydration products, mainly
calcium-silicate-hydrates (C-S-H). C-S-H is considered a non-aging component with
material properties invariable in time, and the dependence of compliance with load-
ing age is attributed to the growth of volume fraction of hydration products. These
considerations lead to Eq.5.18 linking the viscoelastic strain rate to the rate γ̇̇γ̇γ of the
non-aging viscoelastic function and to the function ν(t ) of the specific volume of
cement gel that has been solidified up to time t .

εεεve = γ̇γγ

ν
(5.18)

γγγ=
∫ t

0
φ(t −τ)σ̇σσ(τ)dτ (5.19)

where φ(t −τ) = q2l n(1+ψn); ψ= t−t ′
λ0

; and ν(t )−1 = α+ (λ0
t )n .

The free parameters of the viscoelastic strain in the model are q2 (MPa−1) and α

(-) while for usual concrete, the others take the following values: n = 0.11 (-), λ0 =
86400 s and m = 0.5 (-). Those values have been determined based on a large set of
experimental data on concrete Bažant et al. (1997) . Let us note that γγγ, which is the
viscoelastic strain of cement gel, is fully recoverable under unloading but εεεv is only
partially because of the multiplicative aging function ν(t ).

The viscoelastic strain should be adjusted to take into account the effect of humid-
ity and temperature changes. The effect of humidity and temperature on micro-
structure aging and creep rate is modeled by introducing two transformed times,
te and tr (Bažant et al., 2004). te (Eq.5.20) is the equivalent hydration time, which
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characterizes the degree of hydration impact on aging. tr (5.22) is the reduced time
representing the impact on the rate of bound breaking and restoration at creep sites

dte =Ψe (T,h)d t (5.20)

Ψe (T,h) = exp(
Qe

kB
(

1

T0
− 1

T
)).

1

1+ [αe (1−h)]4
(5.21)

dtr =Ψr (T,h)d t (5.22)

Ψr (T,h) = exp(
Qr

kB
(

1

T0
− 1

T
)).(αr + (1−αr )h2) (5.23)

In Eqs.5.21-5.23, T (K) the absolute temperature, T0(K) is the reference temperature
and h(-) the pore relative humidity. Qe and Qr are the activation energies and kB is
Boltzmann’s constant. By default, Qe /kB = 2700K and Qr /kB = 5000K, αe = 10, and
αr = 0.1. 1

1+[αe (1−h)]4 is the correction factor for the progress of the hydration rate as
a function of the degree of saturation. For αe = 10, the value of this factor is 1/17 at
80% RH, which means that hydration is slowed down 17 times compared to that at
saturation. A 60% relative humidity, the hydration rate is 257 times slower than at
full saturation.

• εεε f stands for the flow strain tensor occurring in long term. On the one hand, the
viscous dashpot in fig.5.15 is the age dependent-viscosity,

η(t ) = t

q4
(5.24)

where q4 is a fitting parameter. Let us emphasize that this creep is completely ir-
recoverable. Moreover, Bažant et al. (1997, 2004) pointed out that micro-prestress
facilitates sliding of the C-S-H sheets at the micro-structure scale, which means that
the flow strain increases as the micro-prestress decreases

ε̇εε f = σσσ

η(S)
(5.25)

where η(S) is the dashpot viscosity for flow strain and is related to the so called
microprestress S by power law function:

1

η(S)
= cpSp−1 (5.26)

where c and p are positive constants.

The microprestress is considered to be much bigger than any stress acting at the
macroscopic level. Hence it is not influenced by macroscopic stress. Its evolution
is essentially driven by internal relative humidity and temperature changes and fol-
lows

dS

d t
+Ψs(T,h)c0Sp = k1.|d(Tln(h))

d t
| (5.27)
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where c0 and k1 are constant parameters, p an exponent set equal to 2 (Jirásek and
Havlásek, 2014); Ψs the multiplying factor to account for the acceleration of micro-
prestress relaxation at higher temperatures, and its deceleration at low humidities.
The dependence of Ψs on humidity and temperature is assumed in a form similar
to Eq.5.23, but with different parameters in general, Qs/kB = 3000 K and αs = 0.1.
The governing differential equation of the viscosity reads

η̇+ µS

T0
|Ṫln(h)+T

ḣ

h
|η2 = Ψs

q4
(5.28)

where µs reads Eq.5.29 and has to be identified by numerical inverse analysis.

µs = c0T0k1q4 (5.29)

with the initial condition for viscosity as

η(t0) = t0

q4
(5.30)

where q4 is the parameter for flow strain, which includes long term basic creep and
drying creep.
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Résumé: Le présent travail vise à apporter
une contribution à la compréhension des mé-
canismes de séchage, de retrait et de fluage de
la pâte de ciment et de pouvoir ensuite proposer
un modèle prenant en compte l’effet de taille sur
le comportement différé du béton. En premier
lieu, le but de la campagne expérimentale est
d’étudier l’effet de la vitesse de séchage sur le
fluage et le retrait. Une difficulté lors de la car-
actérisation du retrait et du fluage séchant est
la fissuration des échantillons en raison des gra-
dients de séchage au sein de l’échantillon. Ainsi,

afin d’isoler les effets purement «matériaux » à
l’échelle de la pâte de ciment, nous avons décidé
de réaliser des essais sur la pâte de ciment avec
humidité contrôlée: au Microscope Electronique
à Balayage Environnemental, en Enceinte Cli-
matique à taux de CO2 maîtrisée et par Solu-
tions Salines Saturées.
En deuxième lieu, ces essais nous ont permis
de proposer des modèles simples de séchage, de
retrait et de fluage qui intègrent l’impact de
la vitesse de séchage sur le comportement des
matériaux cimentaires sous solliccitations hy-
dromécaniques.
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Abstract: This work aims to contribute to the
understanding of drying, shrinkage and creep
mechanisms at the cement paste scale and in
the light of that, to propose a model taking into
account these hydric effects on the delayed be-
haviour of cement-based materials. Firstly, an
experimental campaign is carried out to study
the effect of drying rate on creep and shrinkage.
A difficulty in characterizing shrinkage and dry-
ing creep is the cracking of the samples due to
drying gradients within the sample. Thus, in

order to isolate the purely "material" effects at
the cement paste scale, it was decided to study
cement paste samples at controlled humidity
by mean of: Environmental Scanning Electron
Microscope, Climatic Chamber with controlled
CO2 concentration and Saturated Saline Solu-
tion.
Secondly, the analysis of experimental results al-
lows us to propose drying, shrinkage and creep
models that best integrate the impact of dry-
ing rate on the hydro-mechanical behavior of
cement-based materials.
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