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Abstract

Due to the increasing performance offered by commodity servers and to
the general availability of multi-gigabit Ethernet-based networking hardware,
a growing number of performance-intensive and network-intensive applica-
tions are being migrated from dedicated to commodity hardware. Examples
thereof include scientific computing and network-packet processing, histor-
ically implemented by dedicated super-computing clusters and by dedicated
packet-processing hardware, respectively. However, media production for
professional broadcast (i.e., the process by which multiple audiovisual sources
are mixed and processed, in real-time, to elaborate the audiovisual stream
as it will be consumed by the final viewer) is still being implemented with
dedicated hardware equipment, based on the Serial Digital Interface (SDI),
an interconnection technology carrying the legacy of analog video. Despite
an ongoing industrial effort to replace SDI with IP-based interconnection —
as specified by the SMPTE 2022-6 and 2110 standards — the delay-sensitive
nature of media production still challenges its total transition to software
running on commodity servers. This thesis solves different aspects of that
problem.

First, the high rates and low jitter-tolerance of media production packet
streams have motivated a quantitative and qualitative study of the sources
of jitter undergone by those streams when they are processed by commodity
servers. In addition to results specific to Linux x86_64 servers, that work
has yielded a general jitter exploration methodology, applicable to any oper-
ating system and hardware commodity servers. Second, a generic platform
enabling the implementation of custom high-accuracy instrumentation for
hardware-based packet timestamping has been developed. By exposing a
high-level programming interface — relying on the P4 language — that plat-
form, despite being FPGA-based, allow network and broadcast operators
with little hardware design skills to specify custom logic for line-rate packet
processing and timestamping. In particular, such instrumentation can be
used to qualify the jitter properties of media production streams. Third, a
system to perform packet-pacing — i.e., the transmission of a constant-rate
packet stream with negligible jitter — has been proposed. By exclusively but
cleverly relying on commodity hardware, that work invalidates the common
belief according to which software-based media-production is impossible on
commodity servers (due to the jitter they introduce). The proposed system
has been formally and experimentally proven to yield a jitter, conforming
to the requirements of media production streams. Finally, a software frame-
work easing the implementation of media-production applications has been
developed. That framework relies on a separation between media processing
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and media transport: the media processing logic receives and transmits full
media frames (e.g., video frames) from the media transport logic, which
handles high-performance packet processing with techniques such as zero-
copy and kernel bypass networking. Those last techniques have been shown
to notably increase the scalability of media production on commodity serv-
ers.

Keywords — media processing, commodity servers, packet pacing, jit-
ter, instrumentation, Field Programmable Gateway Array, kernel bypass,
zero copy, software architecture
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Résumé
La production de média pour la diffusion audiovisuelle (i.e., le processus

par lequel plusieurs sources audiovisuelles sont mélangées et traitées en temps
réel pour élaborer le flux consommé par le téléspectateur) est généralement
implémentée par du matériel dédié, basé sur la Serial Digital Interface (SDI),
une technologie d’interconnection dérivé de la télévision analogique. Malgré
l’effort industriel présent pour remplacer le SDI par de l’IP (ainsi que spé-
cifié par les standards SMPTE 2022-6 et 2110) la sensibilité au délai de la
production de média rend difficile une transition totale vers un traitement
logiciel sur des serveurs générique. Cette thèse résout different aspects de ce
problème.

Premièrement, il a été conduit une étude quantitative et qualitative de
la gigue subie par ces flux lors d’un traitement logiciel. Au delà de résultats
obtenus pour des serveurs Linux x86_64, il a été dérivé une méthodologie
générale, applicable à tout système d’exploitation et architecture matérielle,
permettant d’étudier la gigue introduite.

Deuxièmement, une plateforme générique a été proposé afin de permettre
la réalisation de système d’instrumentation personnalisé, pour l’horodatage
précis de packet réseaux. Bien qu’étant basée sur la technologie des FPGA,
cette plateforme permet à tout opérateur réseau ou de diffusion audiovisuelle
de spécifier une logique d’horodatage personnalisée en utilisant le langage
P4. Cela permet en particulier la conception d’une instrumentation pour la
qualification de flux média.

Troisièmement, un système de lissage de traffic (packet-pacing) a été pro-
posé, afin de permettre l’envoi de flux de paquets avec une gigue négligeable.
Malgré un emploi exclusif de matériel générique, il a été prouvé formelle-
ment et expérimentalement que la gigue ainsi obtenue était suffisamment
faible pour des flux média.

Finalement, un cadre logiciel facilitant l’écriture d’applications de traite-
ment média a été proposé. Ce cadre repose sur la séparation entre le trai-
tement et le transport des flux média, la couche de transport s’occupant du
traitement haute performance des paquets réseaux par l’emploi de techniques
comme le zero-copy, ou le kernel-bypass.

Mots-clefs — traitement média, lissage de trafic, gigue, instrumentation,
serveurs standards, architecture logicielle, instrumentation, FPGA
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Chapter 1

Introduction

Prior to the development of general-purpose multi-core Central Processing
Units (CPU) and commoditised, multi-gigabit Ethernet hardware, a class of
performance-demanding applications was implemented either as Application-
Specific Integrated Circuits (ASIC), or as software running on dedicated
High-Performance Computing (HPC) clusters of — possibly application-
specific — servers. These are interconnected with also proprietary interfaces
such as InfiniBand [1] or Omni-Path [2]. The prohibitive Non-Recurring En-
gineering (NRE) costs of ASIC development are in opposition to the increas-
ing demand for flexibility in application development. Moreover, despite on-
going standardisation efforts — e.g., by the InfiniBand Trade Association [3]
— HPC interconnection technologies are proprietary and subject to vendor
lock-in, hence uncontrollable costs.

The availability of multi-core CPUs within the Intel x86_64 and ARM ar-
chitecture, of Graphical Processing Units (GPU) bringing massive vectorised
compute capacity, and of Ethernet networking equipment supporting rates
above 10 Gbit/s, materialises a performance increase in general-purpose com-
puting architectures. That initiated a paradigm change, even for the most
specialised and performance-demanding applications: they are increasingly
implemented modularly, as sets of micro-services, distributed across com-
modity servers in a data-centre. Such an implementation increases flexibility
and vendor-independence, reduces the infrastructure cost, and enables re-
source pooling, which, ultimately, allows deploying applications in the
cloud and full externalisation of all infrastructure-related costs.

This transition from dedicated to commodity hardware has be-
nefitted fields such as scientific computing, machine learning and artificial
intelligence [4–9]. Those workloads have the particularity of not being sub-
ject to tight timing constraints, i.e., tasks do not have tight deadlines by
which they must be completed. Therefore, that transition could be achieved

1
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Uncompressed 
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Figure 1.1: Functional overview of professional broadcasting

without considering the ability of the used commodity hardware, and of the
software-stack (e.g., operating systems, hypervisors, and application-level
frameworks), to deliver guaranteed delays and task completion times.

In this thesis, transition from dedicated to commodity hardware
is studied for a class of performance-demanding applications, sub-
ject to real-time constraints, rendering them more challenging to
implement on commodity hardware: media-production for profes-
sional broadcasting.

1.1 Professional Broadcasting

Professional broadcasting is the activity of acquiring one or multiple me-
dia streams, applying a pipeline of media processing operations, and deliver-
ing the processed media stream to the end users. A functional, technology-
independent, overview of a generic professional broadcasting setup is depicted
in figure 1.1, where a set of media streams is generated by media sources,
e.g., video cameras, and microphones.

Media streams are subject to media processing, i.e., to a sequence of au-
diovisual content alterations such as image insertion (e.g., a television chan-
nel’s logo), text insertion (e.g., contextual banners related to the broadcasted
program), video frame-rate adaptation, video deinterlacing, audio signal pro-
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cessing, etc. Eventually, all those streams are mixed, i.e., are merged into
a single stream, which will transport the content as seen by the end-user.
Mixing can consist of either selecting only one media input, or merging mul-
tiple streams according to various strategies (e.g., picture-in-picture, mosaic,
etc...). Those operations constitute the media production phase, as its final-
ity is the production (i.e., the elaboration) of the content as finally viewed by
the end-user. Any audio or video compression occurring before the end of me-
dia production would result into quality degradation and latency increase —
media streams are, therefore, kept uncompressed during media production.

The resulting stream is uncompressed and has a high data rate (e.g., in
the order of a gigabit-per-second for a High-Definition (HD) video stream
at 30 Frames Per Second (FPS)), which makes it impractical for delivery to
a client. This uncompressed stream is, therefore, to be prepared for deliv-
ery during a subsequent media distribution phase, starting with compression
and encoding. Those result in an encoded stream whose data-rate is in the
megabit-per-second order, depending on the used compression and encoding
algorithms. Finally, the encoded stream is transmitted to the end-user over
one or multiple distribution channels such as Terrestrial television or radio,
Satellite links, Content Distribution Networks (CDN) for Internet distribu-
tion, etc.

As shown in table 1.1, media production and distribution have different
requirements. For example, a delay in the order of seconds is acceptable
between the beginning and the end of media distribution (i.e., between the
end of media production and media consumption by a client). However, a
delay exceeding hundreds of milliseconds should not be introduced by media
production, given that it includes some processing steps — e.g., mixing —
which are controlled by humans operators, who, therefore, need to visualise
the output of media production. That visual feedback must be obtained with
a latency imperceptible to a human operator, i.e., in the order of hundreds
of milliseconds at most.

As a consequence of those different requirements, the methods applicable
to migrate media distribution from dedicated to commodity hardware are
different from the ones applicable to migrate media production. Reviews of
state-of-the-art solutions to implement media distribution and media pro-
duction are given in sections 1.1.1 and 1.1.2, respectively. As detailed in the
following, the media distribution field is more advanced in its migration to-
wards commodity hardware than is the media production field, as the former
is subject to less challenging data-rates and delay constraints than the latter.

3
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Media Distribution Media Production
Data rates ≈ 1 Mbit/s (com-

pressed audio and
video)

≈ 1 Gbit/s (raw audio
and videos)

Acceptable
latency

Seconds Hundreds of milli-
seconds

Stream replica-
tion

Thousands of clients
for a given stream

Almost none (only a
reduced number of
endpoints involved in
production)

Control over
the infrastruc-
ture

Low because distribu-
tion depends on the
medium used by the
end-user (terrestrial,
satellite, Internet, ...).

High because media
production is per-
formed in controlled
studios.

Table 1.1: Requirements for media distribution vs production

1.1.1 Media Distribution: From Internet Protocol Tele-
vision (IPTV) to Over-The-Top (OTT)

The development of Internet Protocol Television (IPTV) [10–12] demon-
strated the feasibility of using commodity hardware and general-purpose net-
working equipment to implement media distribution by Internet Service Pro-
viders (ISP). IPTV relies on the ISP’s Internet Protocol (IP) networks to
deliver media content, transported by IP packets.

Because IPTV is implemented by ISPs, it can use two features which are
only available across operator networks, i.e., networks that are managed by
a single operator, as opposed to features available across the wider Internet.
First, IPTV leverages IP multicast (which is unavailable across the Inter-
net), avoiding redundant packet transmissions and reducing the load on the
operator network. Second, Quality-of-Service (QoS) policies can be consist-
ently defined and enforced in operator networks, so as to prioritise IPTV
streams [13], since those are less resilient to packet losses than, e.g., TCP-
based web traffic.

Over-The-Top (OTT)1 media distribution [14] also transports media con-
tent over IP packets. Specifically, to define how media content is encapsu-

1Here, OTT media distribution is only considered in the context of live content, i.e., in
the context of professional broadcast. In the literature, OTT may also refer to techniques
used to distribute Video on Demand (VoD), which, unlike live content, is not subject to
delay constraints.
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lated into network streams, OTT media distribution standardised transport
methods such as Dynamic Adaptive Streaming over HTTP (DASH) [15] and
HTTP Live Streaming (HLS) [16]. However, that OTT traffic is transmitted
— as the name suggests — over the Internet, and is, therefore, likely to tra-
verse multiple independent operator networks. As a consequence, neither IP
multicast nor QoS policing are applicable to OTT media distribution, differ-
entiating it from IPTV. OTT traffic is necessarily unicast and is subject to
best-effort service. Therefore, IP multicast and QoS policing (used in IPTV)
need both be replaced by alternative techniques, which are not dependent on
the network infrastructure, and which are detailed in the following.

First, because those transport methods use the Hypertext Transfer Pro-
tocol (HTTP), they can be implemented by reusing components alreadyused
for content distribution, such as web servers and Content Delivery Networks
(CDN) [17–21]. The caching and geographical replication features offered by
CDNs enable network load reduction when streaming to several end-users,
and hence, are an alternative to IP multicast (used in IPTV), although they
are independent from the network infrastructure, and are usable across the
Internet.

Second, to maintain a guaranteed Quality of Experience (QoE) in the
absence of QoS policing, OTT media distribution exploits adaptive bitrate
streaming [22–24], i.e., the receiver-initiated adaptation of the bitrate of the
streamed media content to the network conditions (as evaluated by the me-
dia receiver). For example, DASH and HLS belong to a class of transport
methods, implementing adaptive bitrate streaming, and called HTTP Ad-
aptive Streaming (HAS). HAS-based transport methods all rely on chunking,
i.e., the discretisation of the media stream into atomic elements, called en-
coded chunks. Encoded chunks are sequentially generated by the “Compres-
sion and Encoding” stage of figure 1.1. Specifically, that stage discretises the
input uncompressed media stream into a sequence of uncompressed chunks
— each typically amounting to two to four seconds of media content for
DASH and HLS. Then, each uncompressed chunk is compressed and en-
coded using multiple encoding rate, and hence, with multiple quality levels,
yielding chunks of various sizes. The resulting encoded chunks are finally
made available for OTT distribution, through web servers and CDNs. Upon
media playback, the receiver continuously downloads encoded chunks cor-
responding to consecutive intervals of time, and decodes them to reproduce
the original media content. For each interval of time, depending on the cur-
rent connectivity conditions, the receiver chooses the bitrate (and, therefore,
size) of the encoded chunk to download — resulting into an implementation
of adaptive bitrate streaming.

As documented in [25], media chunking and HAS both increase the delay
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between media production and media playback at the receiver. That increase
is mainly due to two reasons. First, the generation of an encoded chunk of
two seconds requires the availability of two seconds of uncompressed media
prior to their compression, encoding, and delivery via web servers and/or
CDNs. Therefore, the Compression and Encoding stage must accumulate at
least two seconds of uncompressed media content before emitting the first en-
coded chunk, i.e., that stage adds a delay necessarily superior to two seconds.
Second, playback by the receiver requires media buffering, to accommodate
for any network delay variation (and avoid any playback interruption). This
buffering occurs with the granularity of a full encoded chunk, i.e., it intro-
duces a delay, which is an integer multiple of the duration of an encoded
chunk, e.g., two seconds. That coarse granularity is therefore likely to in-
crease the playback delay (as observed by the receiver).

To summarise, while the techniques developed for OTT media distribu-
tion have been showed to enable the transition of media distribution to a
general-purpose infrastructure (e.g., IP packet networks, web servers, CDNs),
those techniques necessarily introduce a delay superior to a second, rendering
them impractical to use for media production.

1.1.2 Media Production: The Serial Digital Interface
(SDI)

Media production has historically been implemented by chaining ded-
icated hardware appliances, interconnected by the Serial Digital Interface
(SDI) [26–29], as standardised by the Society of Motion Picture and Tele-
vision Engineers (SMPTE). SDI specifies an encapsulation of media content
over coaxial cables, at a fixed data-rate of 270 Mbit/s for Standard Television
Television (SDTV), and either 1.485 Gbit/s, or 1.485Gbit/s

1.001
≈ 1.483 Gbit/s2 for

High-Definition Television (HDTV). SDI was designed as a replacement for
analog video transmission standards [31] used in media production before
the development of digital television [32–34]. As a consequence, SDI shares
several features with analog video transmission standards over coaxial cables,
and offers a type of connectivity that is fundamentally different from that
provided by IP networking.

2The latter 1.483Gbit/s rate is mainly used in North America, and the 1.001 ratio can
be traced back to the frame rate of 30

1.001 ≈ 29.97 FPS defined by the National Television
System Committee (NTSC) analog color system [30].
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EAV (4 samples)

SAV (4 samples)

Vertical Blanking

Horizontal Blanking

Active video

Figure 1.2: Structure of an SDI video frame encoding a High-Definition,
interlaced, 1920x1080, 30 frames-per-second video stream. Each line contains
synchronisation sequences denoted as End of Active Video (EAV) and Start
of Active Video (SAV). Synchronisation sequences are 4-samples long and
contain information describing the current line. The frame is separated in
two fields from line 21 to 560 and 584 to 1123, corresponding to oddly and
evenly numbered lines on the video.

The Serial Digital Interface: Legacy from Analog Video

Following the SDI specification, a media stream is transmitted as a se-
quence of video frames. Each video frame is transmitted as a sequence
of video lines, and each video line is transmitted as a sequence of video
samples. A video sample is encoded as two consecutive 10-bits words.
This specifies a sequence of 10-bits words which are channel-coded — by
scrambled Non Return to Zero Inverted (NRZI) coding [35] — and serially
transmitted over the wire.

The information contained in a video frame and a video line are better
understood when considering analog video and Cathode Ray Tube (CRT)
displays. Schematically, a CRT screen is periodically scanned, line-by-line, by
an electron beam, whose intensity is modulated by the image to be displayed,
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i.e., by the input analog video signal. At the end of the scan of each line,
the electron beam must be repositioned at the beginning of the next line.
This repositioning time is the Horizontal Blanking Interval (HBI), and
is included in the input analog video signal. Similarly, at the end of the
last scan line, the electron beam must be repositioned at the top of the
screen, during the Vertical Blanking Interval (VBI). Finally, to improve
the perceived frame-rate, instead of displaying, e.g., 30 images per second,
interlaced video works by first scanning all the odd-numbered lines, and
then, after a first VBI, scanning all the even-numbered ones. That doubles
the refresh-rate, at the cost of only refreshing half the image at each scan,
i.e., between each VBI.

SDI was directly derived from the concepts from analog video thus, a video
frame transmitted by SDI also provisions one or two (if the transmitted video
is interlaced) VBIs. The video lines corresponding to those are defined as
inactive lines while the video lines containing information used to display
an image are active lines. Similarly, in an SDI active video line, some video
samples correspond to the HBI and are inactive samples, while others
each contain two 10-bits words encoding the color of an image pixel, and are
active samples.

Figure 1.2 depicts the structure of an SDI frame containing interlaced,
High-Definition (HD) video at 30 frames per second. This structure shows
that a significant fraction of the 1.485 Gbit/s serial data stream corresponds
to HBIs and VBIs and does not carry any active video, i.e., any information
required to display the current picture. To avoid wasting that fraction of
the channel’s capacity, for each SDI video frame, VBIs and HBIs are used
to carry ancillary data [36], i.e., non-video information related to the SDI
video frame.

Ancillary data embedded in the HBI is called Horizontal Ancillary Data
(HANC) and consists of content that needs to be synchronised with the
granularity of a video line. With the example depicted in figure 1.2, that
granularity is 1

1125∗30Hz
≈ 29.6 µs. Because of this fine granularity, HANC

data is typically used to embed audio samples [37, 38], accurately synchron-
ised with the current video. Ancillary data embedded in the VBI is called
Vertical Ancillary Data (VANC) and consists of content that needs to be syn-
chronised with the granularity of the full SDI video frame, e.g., per-frame
closed-captions3 [40, 41].

Finally, an SDI receiver consumes SDI video frames at a fixed frame-
rate, defined consistently across a media production setup. To guarantee

3This is, in essence, no different from the way teletext is embedded in the VBI of
analog video broadcast transmissions [39].
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such a consistent frequency, a common time reference — i.e., a clock —
must be delivered to every SDI-based appliance. Furthermore, media streams
originating from different media sources (e.g., different video cameras) must
be sampled with the same phase, i.e., the acquisition of the first video sample
of the first video line must be synchronised across all media sources. Indeed,
an SDI-based appliance mixing input streams with unsynchronised phases
can only generate a consistent SDI output stream by artificially delaying
all input streams, except the one with the most advanced phase. This is
suboptimal, as media production is very sensitive to end-to-end delay, as
summarised in table 1.1.

To ensure phase synchronisation in a media production setup, all the
SDI-based appliances receive a shared external signal, defining the times
at which the sampling of SDI video frames should start. A possible imple-
mentation of that external signal is the tri-level synchronisation signal,
which has standardised electrical specifications [31]. Furthermore, because
that external signal defines the occurrence times of periodic events (i.e., SDI
video frame sampling), it is usable as a clock shared by all SDI-based appli-
ances and, therefore, also enables frequency synchronisation.

To summarise, the SDI specification is highly influenced by analog video
transmission, and is very similar to the straight-forward digitisation thereof.
As a consequence, SDI-based transmissions have a fixed data-rate, inde-
pendently from the information actually transmitted, i.e., whether it is only
solely video, or video and ancillary data such as audio and closed-captions.
Because of that fixed-rate, an external signal is distributed across a media
production setup to synchronise all SDI-based appliances.

SDI Video Routers

As depicted in figure 1.1, a media production workflow consists of a chain
of media sources and processing elements. However, directly interconnecting
them with physical SDI cables limits the flexibility of the physical install-
ation: any workflow evolution requires time-consuming, and error-prone,
physical rewiring of the media production setup. That lacks of flexibility
motivated the use of SDI video routers to interconnect media sources and
processing elements.

SDI video routers – also called video switchers – appeared early during
the transition from analog to digital television [42]. An SDI video router
is a piece of equipment with multiple SDI inputs and outputs, and is con-
figurable to replicate each input on one or multiple outputs. In a media
production setup, all the SDI outputs from the media sources and processing
elements are connected to the inputs of an SDI video router, and all the
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SDI inputs from the media processing elements are connected to its outputs.
As a consequence, any media-processing pipeline can be implemented by re-
configuring the SDI video router, with no physical rewiring. This allows to
dynamically repurpose the physical infrastructure to accommodate for mul-
tiple media production pipelines. It is, therefore, a first step into media
processing resource pooling.

SDI connectivity vs the IP networking model

The serial, fixed-rate, synchronous, data transmission model, as defined
by SDI, is different from the packet-based IP networking model:

1. SDI only allows point-to-point unidirectional data transmission,
i.e., a physical SDI connexion has only one input and one output.
Consequently, any media stream replication must be performed by a
specific piece of equipment (an SDI video router). This is in contrast
to the IP networking model allows either point-to-multipoint uni-
directional data transmission (through IP multicast), or point-to-
point unidirectional or bidirectional data transmission (through
IP unicast). The network infrastructure, therefore, provides stream
replication through IP multicast4.

2. The SDI specification allows no multiplexing over a given physical
channel, i.e., one coaxial cable can transport only one media stream.
For example, an SDI connection capable of transporting an HDTV
stream (e.g., at 1.485 Gbit/s) cannot be reconfigured to carry multiple
SDTV streams (each of 270 Mbit/s), despite the SDI physical layer
being theoretically capable of doing so.

That is different from the IP network model, as the latter is packet-
based, and enables the multiplexing of packets belonging to dif-
ferent logical flows over a given network path. In other words, the IP
network model allows network capacity pooling across different logical
flows.

3. In a media production setup, all SDI-based data transmission are syn-
chronous with a centralised clock. This raises operational chal-
lenges because the tri-level synchronisation signal must be explicitly

4Here, IP multicast is assumed to be a viable option for the transport of media pro-
duction streams, because the packet switches constituting a potential IP-based media pro-
duction setup are assumed to be all operated by a single entity. It would not be the case
if a media production setup spanned over multiple network domains which are connected
through the Internet.
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distributed to all appliances. For example, the lengths of the cables
used to distribute that signal have an impact on the signal transmission
delay, and thus, might cause inconsistent synchronisation of those ap-
pliances. The IP networking model does not make any synchronisation
assumptions on the underlying link-level layer, which can, therefore,
implement asynchronous packet transmissions. For example, at the
physical-layer, a 802.3 Ethernet [43] packet is transmitted synchron-
ously with a clock, which is local to the transmitter. At the receiver,
the Physical Medium Attachment (PMA) layer includes a Clock and
Data Recovery (CDR) function which, for each incoming packet trans-
mission, synchronises with the transmitter’s clock, and recovers the
transmitted packet. As a consequence, no explicit clock distribution
is needed across an IP/Ethernet network, making the latter easier to
manage than an SDI-based installation.

The IP networking model differs from SDI connectivity in a way similar
to how packet-switched and circuit-switched communications differ. For ex-
ample, SDI video routers and Plain Old Telephone Service (POTS) switches
are essentially similar, as switching occurs on a per-call basis (in the case
of telephone services) or on a per-programme basis (in the case of media
production for professional broadcast). This is opposed to packet switching,
which occurs on a per-packet basis, with no notion of established connec-
tion. In that sense, a parallel can be made between the migration of media
production from dedicated to commodity hardware, and the evolution from
circuit-switched to packet-switched networking.

1.2 Media Production on Commodity Hardware
This section gives an overview of the existing standards and technolo-

gies, which enable the migration of media production from SDI-based to
IP-based media transport, and from SDI-based circuit-switching to IP-based
packet-switching. Furthermore, the main limitations of those standards and
technologies are presented.

1.2.1 Packetising SDI

To bring the benefits from the IP networking model (i.e., point-to-multipoint
communication, the ability to multiplex multiple media streams over a single
physical connection, and the absence of required physical-level clock syn-
chronisation) to media production, a natural idea consists of packetising the
serial data stream defined by the SDI standards, and encapsulating the result
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SDI video frame :
2200 video lines

          x 1125 samples/line
    x 20bits/sample

= 6.1875 MB

IP Header

RTP Header

SMPTE 2022-6 Header

SDI Data (1376 byte)

UDP Header

includes {sequence number, marker bit, 
packet timestamp}

includes {video format, frame counter, 
video timestamp}

includes {source port, destination port}

includes {source address, destination 
address}

SMPTE 2022-6 packet
1376 bytes of payload

(6.1875MB/frame) / (1376B/packet)
       = 4497 packets per frame

marker bit = set if the packet is the last of the SDI video frame
packet timestamp =  sampling time of the embedded data

video timestamp =  increasing counter, synchronous with the number of transmitted samples.

Figure 1.3: Structure of a SMPTE 2022-6 packet transporting an SDI stream

into IP packets. This approach was specified in 2012 by the SMPTE 2022-
6 standard [44], and is historically the first step to enable the transport of
media production streams over IP networks.

SMPTE 2022-6

As depicted in figure 1.3, a SMPTE 2022-6 packet includes IP, User Da-
tagram Protocol (UDP) [45], Real-Time Protocol (RTP) [46] and SMPTE
2022-6 headers. The endpoint identifiers at the IP layer (source and destina-
tion addresses) and at the UDP layer (source and destination ports) provide
a four-tuple, uniquely identifying a SMPTE 2022-6 media stream. As a con-
sequence, packets belonging to different SMPTE 2022-6 media streams can
be multiplexed over a shared commodity network infrastructure. Moreover,
IP multicast enables in-network replication of IP packets, and hence, of media
streams.

SMPTE 2022-6 packets are derived from SDI data by individually divid-
ing each SDI video frame into a sequence of 1376-byte chunks. As the size
of an SDI video frame is not necessarily a multiple of 1376 bytes, the last
chunk of that sequence is completed with padding until its size reaches 1376
bytes. As depicted in figure 1.3, each chunk is prepended with a SMPTE
2022-6 and an RTP header.
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The RTP header provides a packet sequence number and a packet timestamp.
Because the IP network layer provides best-effort service, packet drops may
occur. Those are detectable by the receiver, as a sequence number discontinu-
ity. Moreover, best-effort service does not formally provide any guaranteed
packet transmission delay, i.e., the packet reception time is not sufficient to
infer the associated media sampling time. It must therefore be embedded
explicitly, as the RTP packet timestamp. This piece of data enables SMPTE
2022-6-based media processing to be performed synchronously with regards
to a centralised clock, and hence enables mixing applications, similarly to the
mixing of multiple, phase-synchronised, SDI streams. Finally, if the chunk
transported by the RTP packet is the last of an SDI video frame, a marker
bit contained in the RTP header is set.

The SMPTE 2022-6 header describes the format of the transported SDI
stream (video frame-rate and resolution), and includes a frame counter and
a video timestamp. The frame counter is incremented for each newly trans-
mitted SDI frame, and thus provides a unique identifier for each of these.
The video timestamp is a counter, giving the number of transmitted video
samples (i.e., pairs of 10-bit words) before the first video sample fully in-
cluded in the current chunk. Contrary to the RTP packet timestamp, the
value of the video timestamp is not necessarily synchronised with a central-
ised clock. As the frequency of the video timestamp is equal to the video
sampling frequency (e.g., for interlaced HD video at 30

1.001
FPS, that frequency

is 1125 lines × 2200 samples × 30
1.001

FPS = 74.25
1.001

MHz), it can be used by a
SMPTE 2022-6 receiver to recover the underlying SDI video sample clock [44].

From the Tri-Level Synchronisation Signal to Precision Time Pro-
tocol (PTP) clocks

In an SDI-based installation, all equipment is synchronised by the tri-
level synchronisation signal. Ethernet-based networks do not provide a sim-
ilar physical-layer-based synchronisation feature. Thus SMPTE 2059 [47,48]
specifies the use of the Precision Time Protocol (PTP) [49] to distribute a
common time reference in a media production setup. The Technical Re-
commendation 4 (TR-04) by the Video Service Forum (VSF) [50] com-
pletes the SMPTE-provided standards by specifying how the RTP packet
timestamps from SMPTE 2022-6 are to be deterministically derived from a
PTP-distributed time reference.
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Use Case: Replacing SDI Video Routers with Packet Switches

Migrating a media production setup from dedicated to commodity hard-
ware requires the replacement of SDI-based media-processing equipment with
general-purpose, IP-based equipment. Because of the cost of this equipment,
this migration is, most commonly, gradual . Specifically, the first step of this
migration consists of only replacing SDI video routers with their IP-based
counterparts, i.e., IP/Ethernet packet switches transporting SMPTE 2022-6
streams [51]. This first step alone bring two operational benefits:

1. As the throughput of a single HD SMPTE 2022-6 stream is 1.5 Gbit/s,
a single full-duplex 10 Gbit/s Ethernet port on a packet switch can
simultaneously receive and transmit up to six different media streams.
Therefore, it is functionally equivalent to six SDI inputs and six SDI
outputs on an SDI video router.

From an operational perspective, in a media production setup, trans-
porting a given number of media streams requires less ports (and less
cables) when media-transport is IP-based than when it is SDI-based.

2. Any physical piece of equipment implementing SDI-based video rout-
ing depends on the transported media format. For example, an SDI
video router designed for SDTV streams cannot receive and transmit
HDTV streams, despite the physical SDI connectors being identical.
Consequently, any video format evolution requires upgrades of the SDI
video routers interconnecting the media production setup. IP/Ethernet
based packet switches are agnostic to the media format of the trans-
ported streams, provided that their throughputs do not exceed the
network link capacities. That makes a media production setup based
on IP/Ethernet packet switches more evolutive than one based on SDI
video routers.

To enable a gradual migration from SDI-based to IP-based equipment, the
replacement of SDI video routers with IP packet switches should be possible
without replacing all SDI-based media processing appliances with IP-based
ones. Therefore, to convert SDI streams into SMPTE 2022-6 ones (and vice
versa), SDI-to-IP (or IP-to-SDI) gateway devices have appeared.

Specifically, media sources generate SDI streams, which are transformed
into SMPTE 2022-6 streams and fed into network packet switches. For each
step of a media processing pipeline, the SMPTE 2022-6 streams are switched
to an IP-to-SDI gateway, media processing is performed by SDI-based equip-
ment, and the resulting stream is transmitted to an SDI-to-IP gateway, and
then back to the network packet switch. Such a hybrid media production
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Media 
Source Step 1 Media 

DistributionStep 2

SDI streams

SMPTE 2022-6 streams
(through a network packet switch)

SDI-based media acquisition and processing

SDI-to-IP gateway

IP-to-SDI gateway

Packet-switched 
interconnection

Figure 1.4: Functional illustration of an hybrid SDI and SMPTE 2022-6
media production setup. SDI-based media acquisition and processing com-
ponents are interconnected by a packet switched architecture, SDI-to-IP and
IP-to-SDI gateways.

setup, mixing SMPTE 2022-6 based interconnection (with commodity net-
work packet switches) and SDI-based media acquisition and processing (with
dedicated hardware) is depicted in figure 1.4.

While the sole replacement of SDI video routers with network packet
switches brings clear operational benefits, it is only the first step in the mi-
gration from dedicated hardware to commodity hardware. The next natural
step consists of directly processing SMPTE 2022-6, with commodity hard-
ware capable of transmitting and receiving network packets.

1.2.2 Software-based Media Processing on Commodity
Servers: Challenges and Limitations of SMPTE
2022-6

Processing a packet-based, SMPTE 2022-6 stream with commodity serv-
ers appears to be a straight-forward process, as those are equipped with in-
expensive general-purpose Network Interface Cards (NIC), capable of receiv-
ing and transmitting network packets at multi-gigabit data-rates. However,
while SMPTE 2022-6 enables replacing SDI-based connectivity in a hybrid
media production setup, that standard is ill-adapted to software-based media
processing for two main reasons: media essence multiplexing, and undefined
packet transmission timing.
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From Multiplexed To Separate Media Essences

As a packetised version of SDI, a SMPTE 2022-6 stream embeds audio,
video, and ancillary data. When the receiver is implemented as SDI-based
dedicated hardware, multiplexing those three logical data streams over a
single serial digital transmission brings operational benefits, as it avoids the
necessity for three distinct physical connexions. Moreover, the digital logic
required to demultiplex video, audio and ancillary data has limited complex-
ity, as the layout of an SDI video frame and the locations of VANC and
HANC are well-defined by the SDI standards. In other words, multiplex-
ing the audio, video, and ancillary media essences5 in the SDI payload is
adapted to media production setups where, eventually, media streams are
received and processed as SDI streams — e.g., the hybrid media production
setup of figure 1.4.

However, if the receiver consists of software processing packets through
a network stack, the previous benefits of multiplexed media essences vanish.
First, a network path can already, natively, multiplex as many logical data
streams as needed, each of which being identified by a unique five-tuple
(IP protocol number, the source and destination IP addresses, and source
and destination transport-layer ports). Five-tuple-based demultiplexing only
requires parsing IP and UDP headers. Demultiplexing audio, video, and an-
cillary data streams from a SMPTE 2022-6 stream is more CPU-intensive, as
it requires parsing each 10-bit word of each SMPTE 2022-6 packet. Further,
in a software-based media production setup with multiple servers hosting
media-processing application, audio, video and ancillary data streams are
not necessarily processed at the same location, which makes the use of the
multiplexed SMPTE 2022-6 format impractical.

Because multiplexed media essences — as required by SMPTE 2022-6 —
are unadapted to software-based media processing, the SMPTE 2110 family
of standards [52] was developed. It specifies distinct packet-based transport
for each media essence: SMPTE 2110-20 [53] for video transport, SMPTE
2110-30 [54] for audio transport and SMPTE 2110-40 [55] for ancillary data
transport.

While audio and ancillary data transported in an SDI or a SMPTE 2022-
6 stream are naturally synchronised with the corresponding video (as they
are associated with a given SDI video frame for VANC or with a given video
line for HANC), that synchronisation disappears when decoupling the trans-

5Despite its lacking of a formal definition, the term of art media essence designates
a sub-stream belonging to a media stream, and transporting media data of a single nature.
Typically, a media stream has three media essences: video data, audio data, and ancillary
data.
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port of the different media essences, as specified by SMPTE 2110. SMPTE
2110-10 [56] addresses that issue by specifying a unified timing framework,
connecting the different timestamps appearing in the packet transporting
audio, video, and ancillary data.

To summarise, SMPTE 2110 enables separate processing of the audio,
video and ancillary data component included in a media stream, without sac-
rificing the synchronisation between those components. That eases software-
based processing, as it removes the requirement for any CPU-intensive demul-
tiplexing of the different media essences included in an SDI or SMPTE 2022-6
stream. Moreover, it eases the pooling of compute and network resources in
a data-centre, as the different essences are transported independently and
can be processed by different pieces of equipment.

Undefined Packet Transmission Timing

The SMPTE 2022-6 standard only specifies a packet format to transport
SDI data and does not mandate any property relating to packet transmission
timing. As a consequence, it is implied that packet transmissions are lossless
and occur in such a way that a SMPTE 2022-6 receiver is always able to
consume a packet from its internal buffer, if it needs to do so. In other words,
SMPTE 2022-6 does not include any flow or congestion control mechanism,
but relies on the assumption that the network provides reliable transport and
ensures transmission delays consistent with the packet consumption schedule
of the receiver.

In practice, despite an unspecified timing behaviour, SMPTE 2022-6
transmitters are implemented so that packets are transmitted at a constant
packet-rate, as implied, e.g., by the data sheet of a Xilinx FPGA intellec-
tual property core implementing an SDI to SMPTE 2022-6 converter [57].
However, even if packet transmissions occurs at a constant-rate, i.e., with a
constant Packet Inter-arrival Time (PIT), an IP/Ethernet packet-switched
network introduces a non-constant delay, causing packet arrival jitter at a
SMPTE 2022-6 receiver, which, therefore, needs buffer packets, so as to be
able to consume them at a constant rate. Because SMPTE 2022-6 does not
constraint that jitter, buffer dimensioning at the receiver is challenging and
must be done empirically.

If SMPTE 2022-6 is only used to replace SDI video routers with packet
switches in a hybrid media production setup as depicted in figure 1.4, packets
are periodically transmitted by SDI-to-IP gateways, and periodically con-
sumed by IP-to-SDI gateways. Latency measurements [58] show that packet
switches typically used for hybrid media production introduce a jitter lower
than two microseconds. As a consequence, and given that the nominal PIT
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of a SMPTE 2022-6 stream — e.g., 7.419 µs when transporting interlaced,
1920x1080, 30 frames-per-second video — is considerably higher than that
jitter, very limited buffering at the IP-to-SDI gateway is sufficient to ensure
that packet can be consumed at a constant-rate.

Conversely, commodity servers running packet-processing software in-
troduce substantial jitter when receiving and transmitting SMPTE 2022-6
streams. Because SMPTE 2022-6 does not specify the jitter that a receiver
must tolerate, it is impossible to formally specify real-time constraints on
a packet-processing software, so that it accommodates any SMPTE 2022-6
receiver.

Consequently, the SMPTE 2110 family of standards constrains timing
more explicitly than does SMPTE 2022-6. In particular, SMPTE 2110-21 [59]
defines a set of packet transmission profiles to which any SMPTE 2110
sender must conform. A profile is formally defined by the behaviour of a
packet receiver, i.e., a receive buffer size, and a packet consumption schedule.
A SMPTE 2110 sender conforms to a profile if no receive buffer overflow or
starvation occurs for a hypothetical packet receiver behaving as defined in
the profile, and connected to the sender by way of an hypothetical network
introducing no delay.

For example, hardware-based receivers may have reduced buffering cap-
abilities — e.g., because they may be implemented on Field Programmable
Gate Arrays with limited memory. Consequently, SMPTE 2110-21 defines a
Narrow (N) profile, associated with a reduced buffer size. An SMPTE 2110
sender, conforming to the N profile, must transmit packets in such a way that
a receiver with reduced buffering capabilities will experience no starvation
nor overflow. In particular, such a sender is compatible with hardware-based
receivers. Similarly, software-based receivers have higher buffering capabilit-
ies — e.g., because modern NICs support large receive queue sizes and thus,
SMPTE 2110-21 defines a Wide (W) profile, associated with a high buffer
size. Consequently, senders compliant with the W profile are compatible
with software-based receivers, but may incur buffer overflow or starvation on
hardware-based receivers.

In summary, as neither any flow control method nor any packet trans-
mission timing property are defined by SMPTE 2022-6, that standard can-
not be used beyond the scope of hardware-based SMPTE 2022-6 generation
(through SDI-to-IP gateways), delivery (through packet switches) and con-
sumption (through IP-to-SDI gateways), i.e., it cannot be used for software-
based media production stream processing. Indeed, the latter yields non-
negligible jitter thus, an accurate specification of packet transmission timing
is needed, which is achieved by the SMPTE 2110-21 standard. That stand-
ard specifies the packet transmission regularity required from a SMPTE 2110
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sender by providing normative information, which is differentiated depending
on the type of the targeted receiver (software- or hardware-based).

Migrating media production from dedicated hardware to commodity serv-
ers and networking equipment is a gradual process, and raises challenges
due to fundamental differences between SDI-based and packet-switched data
transport. While the SMPTE 2022-6 and 2110 standards have been shown to
offer the tools to accurately specify the desired behaviour of both hardware-
based or software-based packet-based media production components, those
standards leave open the problem of implementing such components.

1.3 Thesis Contributions

Going one step beyond the specification problem (largely covered by
SMPTE 2110 and SMPTE 2022-6), this thesis addresses the implementa-
tion problem, which is:

To what extent can software-based media production be
realised on commodity servers and general-purpose network-
ing hardware?

Chapter 2 proposes a reproducible, software-based, experimental meth-
odology to evaluate the jitter incurred by a periodic packet stream — such
as a SMPTE 2022-6 stream — upon reception by software executed on a
commodity server. Specifically, that methodology includes the exhaustive
enumeration of all jitter sources — depending on the hardware, the used op-
erating system, the properties of the network-stack, etc — and the relative
contributions thereof to the overall jitter. That methodology is applied to a
Linux-based, x86_64 commodity server receiving a SMPTE 2022-6 stream.
The obtained experimental results support the fact that, as stated in sec-
tion 1.2, software-based packet processing for media production introduces
an amount of jitter which is incompatible with hardware-based receivers with
a limited buffering capability.

The contribution presented in chapter 3 extends jitter evaluation to hard-
ware-based methods. Specifically, the development of hardware-based packet
timestamping tools is made easier, through the proposal of a novel FPGA-
based framework: the Open Platform For Programmable Precise Packet
Timestamping (OP4T). By leveraging the packet-processing-oriented P4 pro-
gramming language [60], OP4T renders the design of custom, hardware-based
measurement tools, accessible to broadcasting and network operators with
little hardware design expertise. Furthermore, an implementation of OP4T
is experimentally evaluated, and shown to allow packet timestamping with a
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microsecond-scale accuracy — which is necessary to assess the conformity of
media production streams to packet timing profiles, such as those specified
in SMPTE 2110-21.

Chapter 4 offers an extensive analysis of packet pacing on commodity
server, i.e., the transmission of a packet stream, as periodically as possible,
and with a minimal jitter. To that end, a mathematical definition of jitter is
first proposed, and then, is used to expose the root causes limiting the accur-
acy of software-based packet pacing on commodity servers. To overcome that
limitation, this chapter introduces the notion of pacing assistant, i.e., an
auxiliary component, external to the server, and which is able to provide
sufficient assistance to the server, to enable high-accuracy packet pacing. A
pacing architecture, and algorithms relying on a pacing assistant, are given
and the achievable jitter is mathematically quantified. Furthermore, pacing
assistants are shown to be effectively implementable with existing commod-
ity hardware and packet switches and thus, are proven not to be purely
abstract constructs. In summary, the work of chapter 4 is a key enabler for
the transmission of low-jitter SMPTE 2022-6 and 2110 packet streams for
media production on commodity servers.

Finally, chapter 5 proposes a software framework and architecture, which
ease the implementation of media-processing applications. That is achieved
by abstracting media transport away from media processing, i.e., by hid-
ing the entire packet processing details from media-processing applications.
Therefore, instead of the traditional socket API, a media-processing applica-
tion is exposed a virtual Media Interface (vMI), which, instead of pack-
ets, relies on a coarser data unit: media frames. A media frame is a
generalisation of an SDI video frame, i.e., correspond to a an atomic element
belonging to a media stream. In chapter 5, that vMI architecture is spe-
cified, implemented, and shown to improve the performance and scalability
of realistic media processing pipelines.

1.4 Publications and Software Production
This section enumerates the scientific and software production resulting

from this thesis.

• Arthur Toussaint, Mohammed Hawari, Thomas Clausen, “Chasing Linux
Jitter Sources for Uncompressed Video” in 2018 14th International
Conference on Network and Service Management (CNSM), derived
from the work presented in chapter 2.

• Mohammed Hawari, Juan-Antonio Cordero-Fuertes, Thomas Clausen,
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“High-Accuracy Packet Pacing on Commodity Servers for Constant-
Rate Flows” accepted for publication in IEEE/ACM Transactions On
Networking, derived from the work presented in chapter 4.

• Mohammed Hawari, Axel Taldir, André Surcouf, Yoann Desmouceaux,
Thomas Clausen, “vMI: Software Architecture for Transparent High-
Performance Media Transport” submission in preparation, derived from
the work presented in chapter 5.

• Mohammed Hawari, Thomas Clausen, “OP4T: Bringing Advanced Net-
work Packet Timestamping into the Field” submission in preparation,
derived from the work presented in chapter 3.

• The software and hardware design developed for OP4T, open-source
release in preparation, derived from the work presented in chapter 3.

• Cisco Herisson, available at https://github.com/cisco/herisson as
open source code, derived from the work of chapters 4 and 5.
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Chapter 2

Chasing Linux Jitter Sources for
Uncompressed Video

As discussed in chapter 1, the development of network-based transport
for media streams — such as SMPTE 2022-6 and SMPTE 2110 — is an
enabler for software-based media processing on commodity servers, because
those have Network Interface Cards (NICs), and, therefore, can receive, pro-
cess, and transmit network packets. However, those streams have high data-
rates — around 1.5 Gbit/s for SMPTE 2022-6 — and high packet-rates —
around 135000 packets per second for SMPTE 2022-6 — causing Packet
Inter-arrival Times (PIT) in the order of a 7.41 µs. Moreover, chapter 1 de-
tailed the reasons justifying those streams undergoing Constant Rate (CR)
packet transmission, and justifying their sensitivity to packet jitter. As a
consequence, it is critical to understand and to be able to quantify the jitter
introduced by software-based packet processing of CR packet streams, when
it is performed on commodity servers running general-purpose Operating Sys-
tems (OS). An understanding of this jitter informs of the suitability of using
commodity servers for software-based media-processing, and informs on the
buffering capacity required at a SMPTE 2022-6 or 2110 receiver consuming
a software-processed media stream.

In this chapter, the term Video Processing Function (VPF) generically
designates a piece of software receiving a packet-based media stream.

Related Work

Understanding jitter on general-purpose OS’es has, especially, been stud-
ied for real-time or High-Performance Computing (HPC) applications. OS
jitter quantifies how unpredictable the performance of a running applica-
tion will be. An experimental analysis of the effects hereof on CPU-bound
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tasks in a distributed HPC environment is given in [61] – which shows that
jitter affects the overall performance of multi-stage workloads, where each
stage is running on parallel nodes. Specifically, jitter significantly impacts
the synchronisation steps between each stage, incurring a significant waste
of computing capacity. In-kernel methods to quantify accurately the contri-
bution of each jitter source to the overall system jitter are developed and
evaluated in [62,63].

For hard real-time applications, a deterministic lower bound on the per-
formance is required. A recurring problem is determining the variability of
the response time i.e., the total elapsed time from when an interrupt request
is raised, and until the corresponding application-level thread is scheduled.
From this perspective, [64] compares Real-Time Operating Systems (RTOS)
and general purpose OS’es, in the context of embedded systems used in ex-
perimental nuclear physics.

Aside from the analysis in [65] of periodic networked systems with events
in the order of 100 µs on a FreeBSD-based Commercial Off-The-Shelf (COTS)
server, little attention has been given to characterising jitter on periodic
events.

Yet, with SMPTE 2022-6 receivers expecting a CR stream giving rise to
a packet arrival time with a periodicity in the order of 7.41 µs, if a VPF is to
be successfully executed on a COTS server, a granular understanding of its
jitter properties is required.

Statement of Purpose

This chapter characterises the jitter, introduced by a COTS x86 server
running a Linux-based operating system, upon reception of network packets
corresponding to a SMPTE 2022-6 video stream. This includes an analysis
of the packet reception path in the Linux kernel, an enumeration of identified
jitter sources, and an experimental quantification of the relative contribution
of each of these.

Chapter Outline

The remainder of this chapter is organised as follows: section 2.1 describes
the data-path taken by a packet, from wire to application, enumerating the
potential sources of jitter that can be encountered. Section 2.2 motivates and
introduces the experimental setup used to quantify these sources of jitter,
which is then used for producing the results presented in section 2.3. This
chapter is concluded in section 2.4.
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Figure 2.1: Schematic view of the path taken by a data packet – from Network
Interface Card (NIC) to Application.

2.1 From wire to application

The jitter sources along the path of a packet through a COTS server,
depicted in figure 2.1, from its arrival at the Network Interface Card (NIC)
until it is delivered to an application, are analysed in this section.

2.1.1 From Wire to Interrupt

When a packet arrives at the NIC, it is decoded and copied into RAM
using Direct Memory Access (DMA). DMA allows external devices, such as
NICs, controlled access to a portion of the CPU’s RAM.

DMA uses the system PCI bus, which is a shared resource with potential
contention for access – and hence, is a potential source of jitter. Another
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source of jitter is access to the RAM itself, since the NIC (hardware), and the
NIC driver (part of the operating system) will be competing for access hereto.
Finally, multiple layers of cache, which are shared with all the processes of a
CPU, can introduce further jitter during the phases of copying data to and
from RAM.

Once a packet has been copied into RAM, the NIC raises an interrupt to
signal to the CPU that a new packet is available. Interrupts are also raised
through the system PCI bus, where contention may again introduce jitter.
However, some NICs also implement Interrupt Rate Throttling (ITR), which
delays or suppress some interrupts from being raised, so as to avoid interrupt
overload at high data rates. While this feature does reduce the OS per-packet
processing cost, it does constitute an additional source of jitter, especially
among packets received in a periodic stream. Illustrating this by a simple
example, if ITR suppresses 9 out of 10 interrupts, then packet number 1 in
a stream will incur a further delay of receipt of another 9 packets before an
interrupt is raised, and it can be processed, whereas receipt of packet number
10 will cause an interrupt to be raised immediately.

2.1.2 From Interrupt to Application

A raised interrupt triggers a call to the kernel Interrupt Service Routine
(ISR). The time from an interrupt is raised, and until the beginning of the
execution of the ISR can vary, e.g., due to other higher-priority or non-
masked interrupts, or the need to awaken the core executing the ISR from
suspension. Thus, this constitutes a potential jitter source.

Execution of the ISR is the first event, which can be timestamped in
software by the operating system. In Linux, specifically, this is the irq_entry
event. Then the ISR calls the New API (NAPI) component, which attempts
to reduce the load induced by network activity on the CPU during high
load scenarios, by processing packets in bursts. Thus, this also constitutes a
potential jitter source.

NAPI calls the NIC driver, which fetches the packets from RAM (where
they had been placed using DMA by the NIC) – and hands these off to the
set of kernel components constituting the network stack, see figure 2.1, for
further processing (decoding received packet headers, extracting metadata
corresponding to the different network layers, etc). This processing is subject
to optimisations such as memory prefetching, cache hits, etc., and therefore
also constitutes a potential jitter source.

The processing step in the networking stack is to identify if a given packet
matches an open socket – i.e., if there’s an application able to receive the
payload of the packet. If there is, and if the application process is sleeping,
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or is waiting for data from this socket, it is awoken by the kernel – which
requires (i) a call to the scheduler and (ii) a context switch. These two
operations also constitute a potential jitter source.

2.1.3 Network-Independent Jitter

In addition to the jitter sources within the data-path itself other sources
of jitter — henceforth network-independent jitter — exist. Essentially, those
consists of events that temporarily interrupt packet processing anywhere on
the path discussed in section 2.1.2 and illustrated in figure 2.1.

First, the Linux kernel’s scheduler can preempt running processes. Sus-
pending a running process from execution will cause jitter, as the process
will not be able to perform any action during the time it is not scheduled.

Second, hardware interrupts take precedence over any other kernel-space
or userspace task. Thus, a non-masked interrupt being raised will trigger the
kernel ISR, interrupting any other execution on the CPU core charged with
handling that interrupt. This can introduce jitter in any part of the stack –
noting that a high-priority interrupt being raised can delay the execution of
the ISR corresponding to a packet arrival.

Completely transparent to the operating system, System Management
Interrupts (SMI) literally steal control of a CPU from the OS, for doing low-
level house-keeping tasks. With no direct proof of their execution provided
to the operating system kernel, SMIs are both a potential jitter source and
are very hard to detect. One possible way to detect SMIs is to run an infinite
loop polling the current time and to detect gaps in those measurements.

2.2 Experimental Setup

To quantify the contribution of the potential jitter sources, identified in
section 2.1, to the overall jitter of a VPF receiving a SMPTE 2022-6 stream,
each is studied in an isolated environment.

2.2.1 A Packet Sink VPF

In order to eliminate any application impact (such as memory bandwidth
consumption, CPU cache pollution, etc), a “packet sink VPF” with minimal
application behaviour is used: on receipt of a packet, the application gen-
erates a timestamp, drops the packet without inspecting the payload, and
computes the sequence of packet inter-arrival times ∆T . The resulting time
series can then be analysed to quantify the jitter introduced by the server.
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Figure 2.2: Abstract view of the analysed system

To differentiate between hardware-level and kernel-level jitter, another
source of timestamps is needed – at the ingress of the kernel. For this purpose,
the Linux kernel event tracing subsystem1 is used, to record events at key
steps of the packet data path. In particular, this allows recording timestamps
for ISRs triggered by interrupts raised from the NIC, thus providing a second
time series related to packet arrivals.

2.2.2 Quantitative Scope

The test setup is illustrated in figure 2.2, where the stream at the ingress
of the server is assumed to be CBR. Understanding to what extent this
assumption is true is necessary, to be able to interpret the recorded time-
series meaningfully.

Thus the COTS server in figure 2.2 was substituted by a SMPTE 2022-
6 hardware network analyser2. The measurement results are depicted in
figure 2.3 and show a standard deviation σ = 0.6µs in the distribution of the
packet inter-arrival times. The stream received in the experimental setup is,
therefore, CR with a precision of 1 µs, and any sub-microsecond packet delay
variation observed, therefore, cannot be attributed to the server hardware or
software in this setup.

1https://www.kernel.org/doc/html/v4.17/trace/index.html
2Specifically, a Tektronix PRISM.
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Figure 2.3: Histogram of the packet inter-arrival times at the ingress of the
server

2.2.3 Hardware setup

The hardware setup is as follows, with reference to figure 2.2:

(a) A commercial SDI to SMPTE 2022-6 converter configured to output a
SMPTE 2022-6 stream encapsulating a 1080i 29.97 frames per second
video test pattern is used as CR Generator.

(b) A server with two Intel(R) Xeon(R) CPU E5-2690 v4 is used as the
COTS server.

(c) An Intel(R) XL710 with a 40 Gbit/s optical interface is used as the
Ingress NIC.

(d) The interconnection between the packet generator and the COTS server
is implemented by a Cisco Nexus 9000 fully non-blocking switch.

2.3 Experiments and Results

This section experimentally quantifies the contribution of each source of
jitter, as enumerated in section 2.1. In the setup of section 2.2, all known
sources of jitter eliminated, a baseline is established. These sources are then
restored one by one and their impact is measured.
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Table 2.1: Available kernel options to reduce network-independent jitter

Kernel Option Description

nohz_full = <CPU_LIST> For each CPU core in <CPU_-
LIST>, disables the scheduler
periodic tick when at most one
thread is runnable on it.

isolcpus = <CPU_LIST> Prevents the CPU cores in
<CPU_LIST> from running any
threads that were not explicitly
assigned to a core in the list.

rcu_nocbs = <CPU_LIST> Offloads Read Copy Update
(RCU) callbacks from the CPU
cores in <CPU_LIST> to a
kernel thread scheduled elsewhere.

rcu_nocb_poll Put the aforementioned kernel
thread in polling mode so as to
prevent RCU-offloaded CPU cores
from having to notify the CPU
core running that kernel thread.

idle=poll Forces a polling idle loop, which
reduces the time taken to wake up
an idle CPU core by making it con-
stantly busy.

processor.max_cstate=1
intel_idle.max_cstate=0

Disables all energy-saving modes
of the CPUs, further reducing the
wake-up penalty.

2.3.1 Baseline: Minimal Jitter

To eliminate external jitter sources, some of the available CPU cores
are isolated from the scheduler, and assigned statically and exclusively to
executing the (user-space) VPF, handling NIC interrupts, and handling other
(non-NIC) interrupts. This is done by way of using the Linux kernel options,
indicated in table 2.1, as follows:
nohz_full=<CPU_LIST > isolcpus=<CPU_LIST > rcu_nocbs=<

↪→ CPU_LIST > rcu_nocb_poll

Moreover, as illustrated in figure 2.4a, the VPF is shielded from all interrupts
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Figure 2.4: Interrupt and scheduling affinity. Involved cores are identified as
core 1, 2 and 3.

other than those raised by the receiving NIC, as they are routed to a core
different from the one running the VPF.

To eliminate jitter at the hardware level i.e., between the arrival of the
packet and the execution of the interrupt handler, the following is implemen-
ted. First, interrupt throttling is disabled in the i40e kernel module — the
NIC driver used by the Intel XL710 — as follows:
ethtool -i <interface > -C adaptative -rx off
ethtool -i <interface > -C rx-usecs 0

Then, as illustrated in figure2.4a, the ISRs corresponding to the NIC are
shielded from the rest of the interrupts of the system as these are routed to a
CPU core different from the one executing the NICs ISRs. For each interrupt
number <INT> and target CPU core <CPU>, rerouting interrupts is achieved
as follows:
echo <CPU > > /proc/irq/<INT >/ smp_affinity_list

All energy saving options are disabled by adding the following kernel options
(described in table 2.1):
processor.max_cstate =1 intel_idle.max_cstate =0

With the same objective, all CPU cores are configured to run at their max-
imum frequency:
echo performance | sudo tee /sys/devices/system/cpu/cpu

↪→ */ cpufreq/scaling_governor

In order to further reduce the CPU core wake-up penalty and as illustrated
by figure 2.4a, the NICs interrupts are routed to the same CPU core as the
one which the VPF is scheduled, which spares one CPU core wake-up and
one Inter-Processor Interrupt (IPI), as the network stack (running on the
same CPU core as the ISR) will not need to communicate with another CPU
core when notifying the VPF.
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Finally, the packet sink VPF used for the experiments and described in
section 2.2 is implemented in polling mode; by calling recvfrom in a tight
loop with the MSG_DONTWAIT flag, the VPF never blocks which eliminates the
call to the scheduler evoked in section 2.1.

2.3.2 Baseline: Experiments and Results

To differentiate between network-independent jitter, which was defined in
section 2.1.3, and the jitter introduced by the processing of incoming packets,
a dummy program is implemented; it consists of a loop, busy waiting for
7.41 µs and generating a timestamp at each iteration. Therefore, this dummy
program has no interaction with the network stack and is able to provide
measurements of the network-independent jitter of the system. In that setup,
the sequence of timestamp should increase by 7.41 µs at every iteration, unless
the dummy program is somehow interrupted. In that case, the time series
∆T corresponding to the difference between a sampled timestamp and the
next one in the loop would show some spikes in the same order of magnitude
of the network-independent jitter.

Figure 2.5 shows the results obtained with the dummy program running
for one million iterations — corresponding to 7.41 s in the baseline configur-
ation. Four spikes in the order of 15 µs can be observed, which gives an idea
about the minimum jitter that can be observed on such a system, independ-
ently from the network stack.

In that same setup, figure 2.6b depicts the time series of packet inter-
arrival times as measured by the VPF, while figure 2.6a shows the time
series of the duration between two consecutive ISR, this data being obtained
with the kernel tracing subsystem. Confronting both figures as well as fig-
ure 2.5 suggests that the jitter seen by the VPF is a mixture of (i) network-
independent jitter as shown by the similarity of the spikes in figure 2.5 and
figure 2.6b, and (ii) network jitter as shown by the similarity of the 1 µs-wide
noise around the 7.41 µs average in figure 2.6a and 2.6b.

Figure 2.7a and figure 2.7b give finer-grained information about the jitter
introduced by the network stack itself i.e., from ISR to the VPF. For ex-
ample, there is a small but noticeable amplification in the standard deviation
between the distribution of ∆T at the ISR level and the distribution at the
VPF-level which corresponds to the jitter introduced by the network stack.
Moreover, the clustering and discrete patterns observed in figure 2.7b can be
plausibly explained by associating each cluster to a succession of events that
happened during the packet processing. In other words, each cluster could
correspond to a possible code path.

Given the previous analysis of the baseline system, the sources of jitter
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Figure 2.5: Dummy program : 1M acquisitions

enumerated in section 2.1 are restored independently so as to study their
relative contribution.

2.3.3 ISR Start Of Execution

For multiple reasons, the elapsed time between interrupt and ISR execu-
tion can vary, hence jitter. For example, the CPU core handling the interrupt
can be idle when the interrupt is raised. This is evaluated by removing the
idle=poll kernel parameter. In this situation, figure 2.8 shows the appari-
tion of many spikes in the order of 15 µs when compared to figure 2.6a.

When interrupts are routed to a different CPU core than the one on
which the VPF is scheduled, it is plausible to assume jitter reduction as
ISRs are granted a dedicated core. Jitter increase is also plausible because
of the requirement for inter-core synchronisation, which is a source of jitter
i.e., because of cache synchronisation or IPIs. Jitter increase is also possible
because the newly dedicated core is not doing anything else, which means it
is likely to be asleep, hence a wake-up-induced jitter at ISR execution.

To discriminate between those hypotheses, three experiments have been
designed as follows: In the first experiment (figure 2.6a) NIC interrupts are
routed to the same CPU core as the one on which the VPF is scheduled,
in the second (figure 2.9a), NIC interrupts are re-routed to a different CPU
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(a) Tracing irq_entry (b) Timestamps in the VPF

Figure 2.6: Baseline system: time series

(a) Tracing irq_entry (b) Timestamps in the VPF

Figure 2.7: Baseline system: Histogram of ∆T

core, and on the third (figure 2.9b), NIC interrupts are re-routed to a dif-
ferent CPU core, but the latter is kept busy by an infinite loop. The CPU
core configuration in those two last experiments is illustrated in figure 2.4b.
According to these figures, the most likely hypothesis is that routing the in-
terrupts to a dedicated core slightly increases jitter in the absence of another
program on the same core, and significantly increases it in the presence of an
always runnable thread on that CPU core (with frequent spikes in the order
of 15 µs).
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Figure 2.8: System without idle=poll: tracing irq_entry

2.3.4 Linux Scheduler induced jitter

The straightforward approach to packet reception is to use the recvfrom
function exposed by the kernel, which in its default behaviour, and if no
packet is available in the socket queue at the time of the call, blocks and
triggers a context switch and a call to the Linux scheduler. It will, therefore,
need to be rescheduled as soon as the network stack makes a packet available
to the socket, hence introducing additional jitter. Even with the idle=poll
kernel option, such an approach shows spikes of up to 16µs (figure 2.10.
Without the latter kernel option, this blocking leads to even more jitter,
showing spikes of up to 60µs

As explained in section 2.3.1, that jitter can be eliminated by receiving
packets in polling mode.

2.3.5 Interrupt Throttling jitter

The major source of jitter studied in this paper originates in the NIC’s in-
terrupt moderation capacities. Those features prevent the NIC from flooding
a CPU core with interrupts at high data rates by limiting the rate at which it
triggers an interrupt. But at low data rates, those features introduce unne-
cessary and variable latency, as some interrupts are delayed, preventing the
CPU from processing the incoming packet unless the throttling period has
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(a) With infinite loop (b) Without infinite loop

Figure 2.9: System with re-routed interrupts: irq_entry

elapsed.

As described in [66], the Intel XL710 NIC, supports two interrupt mod-
eration features: Interrupt Throttling (ITR) and Interrupt Rate Limiting
(INTRL). ITR limits the instantaneous interrupt rate, and guarantees a min-
imum gap between two consecutive IRQs, whereas INTRL limits the average
number of interrupts per second on a given period.

On the vanilla 4.13 Linux kernel, those options were not configurable
at runtime and needed a kernel compilation in order to be changed. The
default behaviour is to use an adaptive algorithm to change the ITR period
depending on the current input bandwidth. On the 4.17 kernel, ITR is
configurable using ethtool but INTRL still remains always-on. The results
described hereafter were obtained with a custom kernel, specifically tweaked
so as to disable INTRL.

The effects of ITR is quantified in this section by enabling it on the 4.17
kernel and choosing an ITR period equal to 100 µs. This value is chosen
because it is the same as the default value on Linux 4.13. Results of this
experiment are depicted in figure 2.11.

The 100 µs spikes caused by ITR can easily be observed in this figure.
These processing phases show nearly no jitter and do not show any pattern
change if a blocking socket is used instead of a nonblocking polling loop. This
last behaviour can be explained, as even a recvfrom call in a blocking setup
will block once in every 100 µs as shown in figure 2.11. Therefore, ITR hides
all the other sources of latency studied here.
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Figure 2.10: Measurements in blocking mode: VPF

2.4 Conclusion

As media production streams have a low tolerance for jitter, characterising
it on a COTS server running a general-purpose OS is a crucial step, on the
path towards building VPFs for a software-based, all-IP, media production
setup. A detailed analysis of the packet reception path showed that sources
of jitter can be classified as either (i) hardware-related such as ITR or the
variable delay between the ISR and the interrupt, (ii) network-stack related
such as the impact of the Linux scheduler, or (iii) network-independent such
as SMIs, unrelated interrupts, or any higher priority code stealing cycles from
the CPU. A quantitative study assessed that, in the context of SMPTE 2022-
6 reception, hardware-related effects and especially ITR have the stronger im-
pact, as they easily hide the impact of the Linux scheduler. The experimental
methodology exposed in this chapter consists of building a baseline system
with a minimal jitter (through system analysis and experimental iterations)
and reinstating each potential source of jitter, to study its impact.

The jitter characterisation for SMPTE 2022-6 gives, at the same time, res-
ults about the particular hardware setup used in the performed experiments
— allowing to better understand the constraints a VPF needs to satisfy and
the performance it can get from the OS — and a generic methodology to
reproduce the study on any commodity platform, potentially enabling the
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Figure 2.11: Measurements with ITR activated and setting of TITR = 100µs

implementation of software-based VPFs in a variety of environments.

38



Chapter 3

OP4T: Bringing Advanced
Network Packet Timestamping
into the Field

While the methodology developed in chapter 2 allows characterising the
jitter incurred on a constant-rate media stream when it is received by a
piece of software, the implemented technique relies on software timestamp-
ing. As a consequence, the accuracy of the obtained timestamps is lim-
ited by some of the identified jitter sources. For example, the network-
independent jitter sources evoked in the conclusion of chapter 2 — such
as the occurrence of unpredictable and uncontrollable System Management
Interrupts — severely limit the ability to perform software-based packet
timestamping. This chapter proposes a generic hardware platform, allow-
ing to build hardware-based instrumentation to perform high-accuracy and
flexible packet timestamping.

As detailed in the following, the latency evaluation problem addressed in
chapter 3 has a scope beyond media production, and spans over the design
and management of any latency-sensitive networked system.

Background

Accurate measurement of latency is a key tool for qualifying the perform-
ance of networked systems. Previous work has shown that traffic patterns
in data-centre networks include packet bursts [67, 68], observed as a heavy-
tailed distribution of packet interarrival times [69]. Bursts are responsible
for an increased buffer occupation in packet switches, eventually leading to
queuing and, if buffers are undersized, packet drops. The corresponding ad-
ditional delays, even when they are in the microsecond scale, are in turn re-
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sponsible for observable, application-level, performance impairments [68,70].
Moreover, packet bursts in data-centre networks are transient, appear at
time-scales in the order of a few dozen micro-seconds [71], and are difficult to
detect by coarse measurements. That is different from traffic patterns, occur-
ring in wide-area networks, and observable by methods such as tomographic
inference [72], which are derived from coarse metrics,

To understand such transient network traffic patterns, and to diagnose
transient latency spikes, instrumentation enabling accurate packet timestamp-
ing on selected flows is, therefore, crucial. Such instrumentation is already
available as a part of network testers, i.e., systems capable of generating pre-
defined traffic patterns, and monitoring the latency introduced by networked
Devices Under Test (DUTs). Despite the prior existence of network testers,
both as commercial hardware appliances — e.g., Ixia PerfectStorm or Spirent
TestCenter, and as open source hardware designs — e.g., the Open Source
Network Tester (OSNT) [73] or FlueNT10G [74], the cost, programmability
and/or performance of those solutions are subject to limitations, described
in this chapter. More fundamentally, those network testers are only designed
to be used during the qualification phase of a DUT, and not in situ, i.e., for
understanding latency issues in a real deployment.

Statement of Purpose

This chapter extends beyond the scope of simple network testers by intro-
ducing the Open Platform for Programmable Precise Packet Timestamping
(OP4T). While network testers are external to a DUT, and are responsible
both for generating traffic patterns and for monitoring a temporal response,
OP4T exposes a deliberately different semantic; OP4T belongs to the cat-
egory of Smart Network Interface Card (SmartNIC) and exposes the same
services as a regular network interface. Used in a data-centre server in place
of a commodity Network Interface Card (NIC), OP4T enables in-band packet
timestamping, with a minimal disruption of normal application operations.

The OP4T architecture is designed according to five guiding principles.

1. Openness Primarily targeted towards the research community, OP4T
must be compatible with an affordable network prototyping Field-
Programmable Gate Array (FPGA) board and, as much as possible,
must reuse existing open-source hardware designs.

2. Programmability OP4Tmust allow programmable packet timestamp-
ing and payload alteration, to enable selecting the packet flows to mon-
itor, and, potentially, those to alter with in-band timestamps. As such
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programmability must be accessible to network operators, not necessar-
ily specialised in field programmable logic design, OP4T must provide
a programming abstraction adapted to packet parsing, matching, and
alteration, i.e., equivalent to the one exposed by the P4 programming
language [60].

3. Precision Destined to diagnose transient latency issues at small times-
cales, OP4T must be able to perform timestamping with a precision in
the order of the microsecond at worst.

4. Performance When replacing a regular server NIC, OP4T must not
introduce any performance limitation in terms of achievable throughput
or packet rate.

5. Flexibility Like most debugging, understanding transient latency spikes
in a data-centre can be a complex, and interactive process, i.e., can
require changes in the program defining packets to timestamp and al-
terations to perform. Therefore, those changes must be possible, with
minimal disruption in network operations. For example, a full repro-
grammation of the FPGA board is not acceptable, as it would require
reloading the network interface driver. From a network operation per-
spective, this is highly disruptive.

The main contributions of this chapter are (i) the design of OP4T as an
architecture following those principles, (ii) the implementation of OP4T as
an open-source hardware design, usable on the NetFPGA SUME board [75],
along with a high-performance network interface driver, (iii) an experimental
evaluation of the precision achievable by OP4T for a synthetic traffic pattern
and a typical P4 program.

3.1 Related Work and Limitations
In this section, an overview of existing open-source solutions for packet

timestamping is given. These solutions are analysed on two particular as-
pects: performance, and programmability. Other aspects and limitations of
the packet timestamping capabilities of state-of-the-art network testers are
already detailed in [74].

3.1.1 Performance

To analyse fine-grained latency variations, it is necessary to be able to
timestamp, with high-precision, all the packets in a given stream. Moon-
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Gen [76] is an open source network tester, exploiting the Precision Time
Protocol (PTP) support in commodity Network Interface Cards (NIC), to
perform accurate packet timestamping. However, the Application Program-
ming Interface (API), exposed by such a NIC, exposes packet timestamps in
an internal register, which is to be read and cleared by the driver each time a
timestamp is to be retrieved. This severely limits the achievable packet rate
in case all packets must be timestamped.

OSNT is capable of altering the received packets with a timestamp, inser-
ted at a programmable position in the packet. The packet is then transmitted
to the host server via Direct Memory Access (DMA), and the timestamps can
be retrieved by parsing the received packets. However, preliminary experi-
ments showed that the DMA core used by OSNT has insufficient performance
to allow capturing a packet stream of 1.5 Gbps, which is only a fraction of
the 10Gbps line-rate supported by the used NetFPGA-SUME board.

FlueNT10G timestamps packets in a way similar to OSNT, but rely on
the Xilinx DMA/Bridge Subsystem for PCI Express v3.1 DMA core, which
provides sufficient performance to saturate the PCI-Express bus, and there-
fore, allows capturing all the timestamped packets of a 10 Gbps stream.

3.1.2 Programmability

FlueNT10G offers a level of programmability by providing a software
framework allowing network testing automation. However, the program-
mability of the hardware design itself is limited to specifying a list of MAC
addresses, used to filter ingress packets. OSNT has more advanced filter-
ing rules: it allows specifying a list of flows to timestamp, determined by
IP-and-port-based packet matching rules.

3.2 Hardware Architecture

Figure 3.1 depicts the architecture of OP4T, independently from the un-
derlying hardware target. In this section, the flow of a packet through this
architecture is described, with a focus on timestamp acquisition, and the
programmable packet processor.

3.2.1 Packet Flow

Figure 3.1 represents the different blocks traversed by each packet. Along
with its data, packet metadata is transported between the different blocks.
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Figure 3.1: Abstract hardware architecture of OP4T. Red: elements from
the static design. Blue: user-programmable packet processor.

Metadata includes information related to the packet, and which is to be
shared across blocks, e.g., the source and destination physical ports.

As OP4T mimics the behaviour of a network interface, a packet entering
the system can originate either from the host server, or from the physical
medium. In the first case, packet data and metadata are retrieved from
the host memory by the DMA core of figure 3.1. In the second case, the
packet is received over one of the physical mediums connected to OP4T, by
the corresponding Reception Medium Access Control core (RX MAC). The
packet data is then enqueued into a reception queue (RX Queue), along with
metadata, generated on-the-fly. In both cases, packet metadata includes the
source of the packet, i.e., whether it was generated by the host server, or the
identity of the reception physical medium.

Regardless of its source, the packet is then transmitted to an input arbiter
with multiple packet inputs and one output. The input arbiter selects a
packet from one of its inputs, and transmits it to the packet processor. It
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alters the packet data and metadata by executing user-specified operations.
In particular, a destination is added to the metadata. The packet is finally
transmitted to the output lookup block, which, depending on the destination,
routes it either to the DMA core for transmission to the host server, or to
one of the transmission queues (TX Queues), for transmission over one the
connected physical mediums.

3.2.2 Timestamp Acquisition

Timestamping is performed in two places in the design: at the ingress
of the RX Queues, and at the egress of the TX Queues. Timestamping as
closely to the MACs as possible eliminates the jitter introduced by, e.g., the
different sources contending at the input arbiter, or by the packet processor.

At the RX Queue, a timestamp is generated for each incoming packet,
and inserted in the packet metadata for later consumption by the packet pro-
cessor. However, that is not applicable at the TX Queue, as metadata are lost
upon packet transmission over the physical medium. Therefore, a timestamp
acquired at the TX Queue must be inserted in the packet data. To avoid
altering all the packets flowing through the design, the packet metadata in-
cludes a flag, set by the packet processor, and indicating whether a timestamp
should be added by the TX Queue. Moreover, if that flag is set, the packet
metadata must also include the data offset where the timestamp should be
inserted.

3.2.3 Reconfigurable Packet Processor

The packet processor contains user-defined logic, performing data and
metadata alteration. That logic is expected to set the destination information
in the metadata, so that the output lookup block can route the packet.
Typically, to mimic the behaviour of a NIC, the user-defined logic should
read the source from the metadata, and route packets originating from a
physical medium towards the host, and those originating from the host to
the corresponding physical medium.

Runtime flexibility is brought to the packet processor by control-plane,
and by partial logic reconfigurability. As represented on figure 3.1, control-
plane enables the host server to push stateful information into the packet
processor at runtime, e.g., traffic matching rules, specifying packets to be
altered with timestamps. Partial logic reconfigurability is a feature of some
FPGAs, enabling updates of part of the programmed logic, without erasing
and resetting the whole design. In OP4T, the packet processor is partially
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reconfigurable, enabling live updates, with minimal disruption from the per-
spective of the host. When performing live latency debugging, this allows a
network operator to push a packet processor logic, specifically tailored to the
current debugging scenario, without a full reset of what appears as a network
interface to the host server.

In the remainder of this chapter, the term static design designates all the
components of figure 3.1 that are not reconfigurable at runtime, i.e., all the
elements at the exclusion of the packet processor.

3.3 Implementation
The hardware architecture described in section 3.2 was implemented on

the NetFPGA SUME FPGA board [75]1. As much as possible, this im-
plementation also relies on open-source Intellectual Property (IP) cores, as
detailed in the following.

3.3.1 Overview

The presented implementation of OP4T is derived from OSNT-SUME,
i.e., the adaptation of OSNT to the NetFPGA-SUME board. Specifically,
the RX and TX MACs, timestamping unit, input arbiter and output lookup
block from figure 3.1 are reused from OSNT-SUME. The RX Queues and
TX Queues blocks are derived from those used in OSNT-SUME, and were
modified to implement timestamping as described in section 3.2.2. Following
the OSNT-SUME implementation, the block interconnections from figure 3.1
are implemented by AXI4-Stream buses for packet data and metadata trans-
port, an AXI4-Lite bus for the control-plane, and the PCI Express bus for
the interface with the host server.

Because of its performance limitations, the DMA core included in OSNT-
SUME and NetFPGA-SUME was replaced with a custom implementation,
which consists of a wrapper around the Xilinx DMA/Bridge Subsystem for
PCI Express (XDMA) IP core, provided as part of the Xilinx toolchain.

Finally, the P4-NetFPGA workflow and source code [77] are partially
reused and adapted to allow the creation of custom packet processors in P4.

1In 2020, the NetFPGA SUME board is the de facto standard prototyping platform
in the network research community.
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3.3.2 DMA Core integration

The proposed implementation of OP4T uses the XDMA IP core to provide
high-performance packet transmission and reception over PCI-Express (PCIe).
Specifically, XDMA provides Card To Host (C2H) and Host To Card (H2C)
channels. Those appear to the host as queues of read (for a C2H channel)
or write (for a H2C channel) DMA operation descriptors. Each descriptor
is first enqueued by the software, then dequeued by the XDMA hardware,
which finally executes the associated read/write DMA operation. On the
hardware design, channels appear as AXI4-Stream (for the data-plane) or
AXI4-Lite (for the control plane) input (for a C2H channel) or output (for a
H2C channel) ports belonging to the XDMA core.

Because the host is to be exposed the semantic of a network interface,
each received packet is mapped to a read DMA operation, and each trans-
mitted packet, to a write DMA operation. That is performed in the proposed
OP4T implementation by a Data Plane Development Kit (DPDK) Poll-Mode
Driver, communicating with XDMA over PCIe, and translating DMA oper-
ations into packets.

3.3.3 P4 Packet Processor and Partial Reconfiguration

To facilitate the implementation of custom user-logic for the packet pro-
cessor, the proposed design extends the Xilinx Vivado Partial Reconfigura-
tion flow [78], as depicted in figure 3.2. First, the static design is synthetised
(a), into a netlist. Then, a first flavor of the user-logic, denoted by packet
processor 0 and written in P4, is translated into Register-Transfer Level
(RTL) code (b) by the Xilinx P4-SDNet and Xilinx SDNet compilers2, fol-
lowing the P4-NetFPGA workflow [77]. The generated RTL code is then
synthetised (c) into a netlist, which is combined with the netlist of the static
design. The resulting netlist is placed and routed (d), finally forming an
implementation of OP4T with Packet Processor 0 (OP4T-PP0).

To enable partial reconfiguration of the packet processor, i.e., replacement
of packet processor 0 with another P4-based user logic, the implementation
of OP4T-PP0 is first stripped from all placement and routing information
related to packet processor 0 (e), resulting in the implemented static design.
Then, another P4 code, denoted by packet processor 1, is translated into
RTL code (b1), synthetised (c1), and combined with the implemented static

2This toolchain is described by documentation available at https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2018_2/ug1252-p4-sdnet.pdf
and https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/
ug1012-sdnet-packet-processor.pdf
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design (d1) for placement and routing. The result of that operation is an
implementation of OP4T with Packet Processor 1 (OP4T-PP1), fully com-
patible with that of OP4T-PP0, i.e., placement and routing of the elements
of the static design are identical in both implementations. Therefore, partial
reconfiguration is possible by reprogramming, at runtime, only the FPGA
area corresponding to the packet processor. This operation can be repeated
for as many additional P4-based user logics as needed, as shown in figure 3.2.

Placement and routing of OP4T with additional packet processors are
constrained by the placement and routing of OP4T-PP0 (d), which are con-
strained by the complexity of packet processor 0 itself. Therefore, when using
the workflow of figure 3.2 for implementing multiple configurations OP4T-
PP0, OP4T-PP1, ..., OP4T-PPn, packet processor 0 should be chosen so
that OP4T-PP0 is the most challenging configuration for the placement and
routing engines.

3.3.4 Discussion

The workflow detailed in section 3.3.3 enables implementing multiple ver-
sions of OP4T, each with a a different packet processor. Moreover, partial
reconfiguration enables switching from one version to the other, without dis-
rupting the static design, thus, requiring neither resetting the DMA core, nor
impacting the network interface exposed to the host server. However, two
main difficulties arise when implementing partial reconfiguration.

Firstly, it requires floorplanning, i.e., the FPGA physical resources alloc-
ated to the static design and to the packet processor must be determined
prior to placement and routing. Although automated tools can assist floor-
planning [79–81], it still requires prior knowledge of the resource utilisation
induced by the packet processor. Therefore, once floorplanning is performed,
the thereby provisioned resources limit the complexity of any future packet
processor.

Secondly, choosing packet processor 0 so that OP4T-PP0 is the most
challenging design to place and route implies prior knowledge of all future
packet processors, which is not necessarily possible in the scenarios targeted
by OP4T, e.g., generating an ad hoc packet processor to diagnose a given
latency issue, in a production data-centre, without fully reprogramming the
FPGA. The proposed implementation avoids that issue by explicitly regis-
tering all the inputs and outputs between the static design and the packet
processor, at the cost of increased latency.
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3.4 Case Study: OP4T for Software Switch Test-
ing

In this section, the OP4T implementation from section 3.3 is used in
a latency evaluation scenario, different from network testing: evaluating the
latency introduced by a software packet forwarder itself, i.e., only the latency
introduced by packet processing and PCIe-based DMA. To that end, a packet
processor is specified, inserted in the OP4T design, eventually forming the
OP4T for Software Switch Testing (OP4T-SST) configuration.
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3.4.1 Scenario

When evaluating the latency of a Packet Forwarder (PF), a network tester
generates a packet stream (testing stream), transmits it to the PF and mon-
itors the packets forwarded by the latter. The Round Trip Time (RTT)
obtained by comparing transmission and reception timestamps at the net-
work tester provides an evaluation of the latency of the PF. While that
measurement is impacted by the packet delay variations due to the network
path, those can be considered as negligible in a controlled infrastructure (part
of a network testing setup). Consequently, the measurements obtained are
precise.

However, in a real deployment hosted in a data centre running production
applications, testing traffic is subject to non-negligible packet delay variation,
due to, e.g., congestion and queueing occurring in the data-centre switching
fabric. To accurately evaluate the latency of a software packet forwarder
— typically, a Virtual Network Function — deployed in such a data-centre,
it is necessary to timestamp packets upon reception and transmission, at
the network interface. If the latter is based on OP4T, such timestamping
can be implemented by a custom packet processor. In this case study, the
testing stream to be selected by OP4T for timestamping, is a User Datagram
Protocol (UDP) stream.

3.4.2 OP4T-SST Packet Processor

The behaviour of the packet processor used in OP4T-SST is represented
in figure 3.3. When a packet is received (1), OP4T generates a timestamp
t1, inserted in the packet metadata (2). The packet processor then parses
the packet’s headers, and performs a table lookup (3). The destination In-
ternet Protocol (IP) address is matched against a table (created by the host
server, through the control plane), to determine whether the packet belongs
to a stream of interest to be timestamped. This lookup can either yield a
TimeStamp (TS) or a do not TimeStamp (noTS) action. If the TS action is
matched, then, t1 is inserted between the UDP header and the data. Other-
wise the packet is not altered. Then, the processed packet is sent to the host
through the DMA core (4). As a Software Packet Forwarder is running on
the host, the packet is sent back to OP4T, and, the packet processor performs
the same table lookup as before. If the TS action is matched, the packet is
altered to provision zero-ed bytes immediately after the UDP header, and the
packet metadata is altered, so that, upon transmission, the TX Queue block
replaces the provisioned bytes with a transmission timestamp t2 (5). Finally,
the resulting packet contains, just after the UDP header, two timestamps
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t2 and t1, whose difference evaluates the latency introduced by the Software
Packet Forwarder.

3.4.3 Precision and Cross-connect

As a consequence, that measured latency includes the delay introduced
by the packet processor itself. Due to internal pipelining, this delay may not
be constant, impacting measurement precision.

To evaluate the loss thereof, the OP4T-SST packet processor has a cross-
connect (Xconnect) feature. When a packet is received from the network, it
is not necessarily sent to the DMA core. Instead, a lookup is performed on
another table, different from the one mentioned in section 3.4.2 , as shown
in figure 3.3. If the Xconnect action is matched in this table, the packet is
directly transmitted back to the network, without going through the Software
Packet Forwarder. Moreover, in that case, if the packet is determined to
match the TS action, t2 and t1 are both appended after the UDP header,
thus, providing an evaluation of the base latency introduced by the packet
processor.

3.5 Evaluation

This section presents the process and results of a quantitative evaluation
of OP4T-SST.

3.5.1 FPGA Resource utilisation

As stated in section 3.3.4, the implementation of OP4T requires explicit
floorplanning. The conducted experimental evaluation used the floorplan
depicted in figure 3.4. While the packet processor spans over almost all
the available slices, actual FPGA resource usage is summarised in table 3.1.
Overall, OP4T-SST occupies approximately one third of all FPGA resources.
Specifically, the packet processor only uses half the resources it is allocated
by floorplanning, making the used floorplan suitable for designing additional,
more complex packet processors.

3.5.2 Experimental Setup

The study aims at evaluating the precision of OP4T-SST, as well as ex-
ploring how features of the testing traffic impact the latency necessarily in-
troduced by the design.
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Figure 3.4: Floorplanning for OP4T with the packet processor defined in 3.4.
The lower part is reconfigurable and allocated to the packet processor (blue),
which almost fills it. The upper part is allocated to the static design (orange).
In white are represented inteconnection points between the reconfigurable
packet processor and the static design.

Table 3.1: Resource Utilisation

Resource Static Design Packet Processor Total
Used Usage Used Usage Used Usage

Slice
LUTs

64130 24.44% 86643 50.73% 150773 34.80%

Slice Re-
gisters

84186 16.04% 152297 44.58% 236483 27.29%

Block
RAM

266.5 30.28% 268.5 44.51% 535 36.39%
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The software packet forwarder under test is the Vector Packet Processor
(VPP) [82]. To obtain precise and reproducible results, the purpose in this
evaluation is the latency experienced by constant-rate packet streams with
a stable period. Contrary to state-of-the-art network testers, OP4T does
not integrate any packet generator, and the method developed in MoonGen
is used for generating a testing stream with a stable period. That method
consists of transmitting, at line-rate, alternately one packet from the testing
stream, and a certain number of other packets, crafted so as to be dropped
by a packet switch before reaching the receiver (e.g., with a bad Cyclic Re-
dundancy Check(CRC)). That last number of packets determines the period
achieved by the generator.

The experimental setup consists of a packet generator, a packet monitor,
and a server running VPP and hosting a network interface implemented as a
NetFPGA-SUME board programmed with OP4T-SST. A testing stream is
transmitted by the generator, traverses the server through OP4T (as depicted
in figure 3.3), and is finally received by the packet monitor. The latter then
estimates the latency incurred by each packet by computing the difference
between the two timestamps t1 and t2.

Finally, OP4T-SST and/or VPPmust be configured to forward the stream
received from the packet generator to the packet monitor. Four ways were
experimentally implemented to achieve that goal: (i) using the Xconnect fea-
ture of OP4T-SST, effectively bypassing VPP and yielding a baseline latency
estimation, (ii) using the layer-2 patch feature of VPP (iii) using the layer-2
cross-connect feature of VPP (iv) using VPP as a layer-3 packet switch with
an appropriately configured routing table. As those three last VPP-based
configurations rely on code paths of increasing complexity, comparing the
measured latencies in those configuration evaluates the ability of OP4T-SST
to detect fine-grained software behaviour.

3.5.3 Results

Figure 3.5 summarises the different experimental results. The baseline
experiment shows that, the latency incurred by traversing OP4T has a neg-
ligible standard deviation (around 4 nanosecond). This number is difficult
to improve, as the used implementation is clocked at 250MHz, i.e., with a 4
nanosecond period. Moreover, the measured baseline latency only depends
on the packet sizes, not on the packet rate. Dependency on packet sizes is ex-
plained by store-and-forward packet transmissions at the ingress and egress
of the hardware design, which necessarily add an extra-latency proportional
to the packet size.

The results for the three VPP-based configurations realistically illustrate
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Figure 3.5: Measured average latency experienced by testing streams of vari-
ous packet rates and sizes. The server traversed by the stream is configured
(from left to right): (i) with the OP4T-SST Xconnect feature, (ii) with the
layer-2 patch VPP feature, (iii) with the layer-2 cross-connect VPP feature,
(iv) with VPP configured as a layer 3 packet switch. Error bars are centred
around the average and their height is twice the standard deviation of the
latency.

the internal behaviour of VPP. First, the latency increases with the com-
plexity of the involved code, with a clear difference between layer-3 forward-
ing and layer-2 cross-connect. Second, the standard deviation also increases
with the complexity of the code, which is explained by an increased num-
ber of sources of packet processing time variations (cache-misses, software
or hardware preemption). Finally, in a given configuration and for a given
packet size, latency is constant when increasing the packet rate, until a clear
threshold (400000 packets per second), beyond which latency is linear. This
is an experimental confirmation of batched packet processing occurring in
VPP.

3.6 Conclusion

OP4T specifies an open programmable architecture, capable of high-
precision packet timestamping, in situ, i.e., deployed in a data-centre. To
achieve that goal, OP4T is designed to be usable simultaneously as a network
interface, transmitting and receiving production traffic, and as a partially re-
programmable packet timestamp acquisition device, altering selected pack-
ets by the adjunction of reception and/or transmission timestamps. The
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programmability of OP4T is key to debugging complex latency issues, as
it brings the ability to interactively refine the packet timestamping logic,
without disrupting the exposed network interface.

This architecture was implemented on the NetFPGA-SUME board, rely-
ing on open source IP cores derived from the NetFPGA-SUME, P4-NetFPGA,
and OSNT-SUME projects. Specifically, programmability was achieved by
the joint use of the P4 programming language, and partial logic reconfigurab-
ility provided by modern FPGAs. The obtained open-source implementation
was shown to achieve timestamping with a precision in the order of a single
clock cycle, and was shown to be precise enough to measure fine-grained
properties of a software packet forwarder such as VPP, which is a synthetic
example of data-centre application.

As mentioned in chapter 1, packet transport and processing in the con-
text of media production are specific cases of latency sensitive applications.
In particular, the work presented in this chapter can be reused to qualify the
regularity of SMPTE 2022-6 or SMPTE 2110 flows. The next chapter pro-
poses a deep dive into the definition of such regularity, proposes methods to
ensure it (through packet-pacing), and leverages part of the work developed
in this chapter to experimentally evaluate them.
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Chapter 4

High-Accuracy Packet Pacing on
Commodity Servers for
Constant-Rate Flows

As described in chapter 1, because the packet-based SMPTE 2022-6 and
SMPTE 2110 media production standards are derived from unidirectional
SDI-based media transport, they formally (for SMPTE 2110) or informally
(for SMPTE 2022-6) mandate that packets are delivered to a receiver with
a certain regularity, which is formalised in this chapter. Furthermore, it de-
velops methods to achieve packet pacing on commodity servers, and, there-
fore, demonstrates that those are able to transmit packets with a regularity
compatible with the aforementioned standards, and hence, are usable to im-
plement a media production setup relying on commodity hardware.

Background

In packet-switched networks, the packet transmission rate needs to be
controlled so that the receive buffer never overflows. Known as flow control,
that task is usually achieved asynchronously, e.g., with the stop-and-wait
Automatic Repeat reQuest (ARQ) protocol (introduced in [83]), or with a
sliding-window-based algorithm, e.g., as in the Transmission Control Pro-
tocol (TCP) [84]. For either of those, the receiver sends an explicit signal,
authorising the sender to transmit more data. TCP achieves flow control
by permitting a maximum number — the current receiving window — of
transmitted and unacknowledged data. A TCP Acknowledgment (ACK) de-
creases the amount of unacknowledged bytes and thus acts as authorisation
for the sender to transmit subsequent data.

Some applications will consume packets from their receive buffer at a
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given rate, independently from the state of the buffer. An example hereof
is a video player, which expects to always have enough packets available to
build the next video frame. If incoming packets are late, these applications
might try to consume a packet from an empty buffer, a condition known as
buffer starvation – which, in the video player example, results in a visually
unsatisfactory user experience.

The design of the system, the sender, and the receiver, should prevent
this from happening, i.e., each packet in such a stream must be received
before a certain time. This is different from flow control, which seeks to
delay transmission by the sender until after it has been confirmed that there
is buffer space available by the receiver.

Towards Software Pacers

If a sender transmits, and receiver consumes, packets at the exact same
rate, the receive buffer will be subject to neither overflow nor to starvation
– assuming that the delay introduced by the network between sender and
receiver is close to constant. As mentioned in chapter 1, that is the ap-
proach adopted in standards defining packet-based transport for media pro-
duction such as SMPTE 2022-6 and 2110, as those assume Constant-Rate
(CR) packet transmission.

Therefore, as those standards are intended as enablers for the broad-
casting industry to migrate media processing from dedicated to commodity
hardware, the latter must be able to generate and carry sufficiently regular
CR streams.

Furthermore, and as mentioned in chapter 1, migration from “all media-
dedicated hardware” to “all software running on commodity hardware” in-
cludes an intermediate state with SDI-to-IP and IP-to-SDI gateway devices.
As a transition technology, gateway devices may have (for reasons of cost-
containment) limited memory, i.e., limited receive buffers. Consequently,
upon reception of an insufficiently regular stream, such buffers are poten-
tially exposed to overflow and starvation.

This motivates the design of a packet pacer – a system, which buffers an
incoming, and potentially insufficiently regular, packet stream and releases
the packets sufficiently regularly for a CR receiver to never be subject to
buffer overflow, nor to starvation. In support of transitioning from dedicated,
to commodity, hardware, such a packet pacer should be a generic software
solution, requiring also only generic hardware.
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Figure 4.1: System overview: A stream of packets, generated by a Constant-
Rate Packet-Generator (CR-PG), undergoes some Best-Effort processing,
and hence a loss of regularity. Those packets are buffered into B1 by the
Pacer, which transmits them, with sufficient regularity, so that the receive
buffer B2 of a Constant-Rate Packet-Consumer (CR-PC) never undergoes
overflow or starvation. Packet transmissions (by the CR-PG) and consump-
tions (by the CR-PC) occur at times, sorted into a sequence tc.

Related Work

Previous work related to packet pacing can be categorised into techniques
to avoid congestion control and reduce queueing delays, into specifically
scheduling of packet transmission for video-streaming, and into implement-
ability considerations for real-time packet transmission.

Techniques to avoid congestion and reduce queuing delays

In [85], the effects of pacing on TCP flows are shown to bring higher
fairness at the cost of lower overall throughput, especially as the number of
concurrent flows increases. Further, [86] identifies a point of inflexion in the
number of flows, above which pacing reduces throughput. This is explained
by a synchronisation phenomenon when TCP flows experience simultaneous
congestion window reductions, leading to inefficient network usage, first de-
scribed in [87]. Pacing is also a building block of Bottleneck Bandwidth
and Round-trip time (BBR) [88], a congestion control algorithm for TCP
that reacts to congestion by reducing the pacing rate, instead of by solely
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reducing the TCP congestion window. In [89] and [90], dynamic pacing
schemes are proposed to improve transport-layer performance in small-buffer
networks and reduce congestion. Queue-Length Based Pacing (QLBP), de-
scribed in [89], uses the number of buffered packets to determine the pacing
rate. In [90], a poly-logarithmic-complexity online pacing algorithm is shown
to reduce short-timescale burstiness, while still transmitting each packet be-
fore a given deadline.

Video streaming

In [91], the problem of scheduling packet transmissions so that a CR
receiver experience neither buffer overflow nor starvation is formulated in
the framework of network calculus, and the set of feasible packet departure
curves is determined, given the characteristics of the receiver and the network.
In [92], this problem is addressed for stored video, and an optimal packet
transmission schedule is constructed, given a non-necessarily-constant packet
consumption profile at the receiver. This is applicable, e.g., to Variable Bit-
Rate (VBR) video streaming.

Implementability

Given the real-time nature of the pacing task, implementing it as a piece
of software proves challenging. In [93], the scalability of traditional imple-
mentations of pacing (e.g. the Linux Hierarchical Token Bucket (HTB) or
the Fair Queue (FQ) queueing discipline (qdisc)) is shown to be limited for
large number of flows to be paced, due to the intrinsic per-flow cost.

Software pacing without relying on timers is proposed in [94], by intro-
ducing a concept of gap-frames : interleaving carefully-sized IEEE 802.3 flow
control frames (as defined in [43]) and packets from a flow of interest. IEEE
802.3 flow control frames are dropped by a packet switch on the network path,
resulting in pacing of the flow of interest. In [95], a timer-based implement-
ation is introduced, compared to the gap-frame approach and is experiment-
ally shown to outperform the latter in terms of accuracy. That conclusion
is challenged in [76], which uses the gap-frame approach to implement rate-
control in a packet generator and evaluates the resulting pacing accuracy to
be higher than in [94] and [95]. A possible explanation is that the imple-
mentation in [76] relies on the Data Plane Development Kit (DPDK) [96],
which is designed to provide higher and more predictable performance than
is the Linux network stack, which was used in [94] and [95].
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Statement of Purpose

The objective of this chapter is to propose a software-based packet pacer,
able to run on commodity hardware, able to accept an insufficiently regular
packet stream, and able to return a sufficiently regular packet stream, suit-
able for any CR receiver – including receivers expecting an SMPTE compliant
packet stream. This is illustrated in figure 4.1.

Further, given that the aforementioned production gateway devices are
opaque packets consumers, this chapter – unlike e.g., [91] – assumes that
the pacer sees the Constant-Rate Packet Consumer (CR-PC) as an opaque
component, i.e., with an unknown packet-consumption curve.

The required real-time properties make running a pacer as software on
commodity hardware challenging. This chapter analyses and formalises those
challenges. This chapter also generalises the previously discussed use of gap-
frames [76, 94] for accurate packet scheduling, into the notion of a Pacing-
Assistant – which enables abstract expression and analysis of packet pacing
algorithms.

Finally, within this framework, software pacing algorithms are analysed,
are implemented, and are subjected to exhaustive experimental tests, con-
firming the viability of the postulated approach.

Chapter Outline

The remainder of this chapter is organised as follows. Section 4.1 form-
alises the pacing problem and section 4.2 discusses the limitations of a pure-
software approach. Section 4.3 introduces Pacing-Assistants (PA), as a form
of hardware-assistance, and proposes algorithms using it. Those are suppor-
ted by a theoretical analysis provided in section 4.4, and are shown to be
effectively implementable on general-purpose hardware in section 4.5. Sec-
tion 4.6 presents the associated experimental evaluation. Section 4.7 dis-
cusses the obtained results and their practical impact for media production.
Section 4.8 concludes this chapter.

4.1 System Model

While the theoretical objective of packet pacing is to generate a perfectly
constant-rate packet stream, the formalism of time sequences is introduced
in this section, to provide a practical, quantitative definition of a sufficiently-
regular constant-rate packet stream.
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4.1.1 Time sequences

The regularity of packet stream is only described by the sequence of trans-
mission times. Defined hereafter, the formalism of time sequences enables
describing any sequence of recurring events.

Definition. A time sequence is a nondecreasing sequence of times t =
(ti)i∈N, such that lim

n→+∞
tn = +∞. The abstract event happening at time ti is

called the i-th cycle of t, or the i-th t-cycle.

Definition. The following metrics are used to quantify the potential period-
icity of a time sequence.

• The period of t is, when it exists, T := lim
n→+∞

tn
n
. This definition

is equivalent to the average duration between two consecutive events,

i.e., T := lim
n→+∞

1
n

n∑
i=1

ti − ti−1.

• The frequency of t is the inverse of the period, when it exists, f := 1
T
.

• The Peak Period jitter of t is:

Jp (t) = lim sup
i≥0

|T − (ti+1 − ti)|

• The Asymptotic Long Term (ALT) jitter of t is:

JALT (t) = inf
i0∈N
u≥0

sup
i≥i0
ti≥u

|T (i− i0)− (ti − u)|

JP (t) asymptotically measures how far the duration between two consec-
utive cycles, ti+1 − ti, is from the period T . The definition of JALT (t) is
interpreted by comparing t with a perfectly-regular time sequence t′ whose
i-th cycles occur at t′i = T × i. t and t′ have the same period T . As it is
perfectly-regular, t′ can be used to measure the current time with a granu-
larity of T , provided that a well-known number i of t′-cycles have elapsed.
JALT (t) asymptotically quantifies the maximal error on that measurement if
t is used in place of t′. Therefore, JALT (t) provides a certain measure of the
irregularity of t when compared with the perfect time sequence t′ of same
period T .

In the rest of this chapter, tp is the time sequence corresponding to the
packet transmission times by the pacer of figure 4.1. tc is the time sequence
corresponding to the packet production times by the Constant-Rate Packet
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Generator (CR-PG), and consumption times by the CR-PC1. The periods
and frequencies are respectively denoted by T p, T c, fp and f c.

4.1.2 (b, f)-paced streams

In the following, a definition of a sufficiently regular constant-rate packet
stream is given as a property, relating the time sequence tp associated with
packet transmission, with a buffer size b and a packet consumption rate f ,
both associated with the receiver. It is assumed that there is no delay between
the sender and a receiver. Upon reception of the i-th packet, an infinite-sized
buffer at the receiver would contain i − ftpi packets. That motivates the
following definition:

Definition. A system sends a (b, f)-paced stream if the packet transmission
time sequence (tpi )i∈N are such that there exists a time, t0, and an integer, i0,
satisfying:

∀i ≥ i0 : tpi ≥ t0 =⇒ 0 ≤ (i− i0)− f × (tpi − t0) ≤ b (4.1)

i.e., a virtual receiver, consuming packets at a rate f and with a b-sized input
buffer, may choose an integer number i0 and a time t0, so that, dropping
the i0 first packets and only starting consumption after time t0 prevents any
overflow or starvation.

This definition reflects only the asymptotic behaviour of packet transmis-
sions, i.e., is sensitive neither to the initial variability of the stream, nor to
the initial behaviour of the consumer. Moreover, the provided definition is
still valid if the delay between the transmitter and the receiver is constant
— and not null as initially assumed — because any constant delay can be
captured in t0, i.e., the time packets start being consumed.

Using equation (4.1) for i and i + 1, taking the difference, and dividing
by f , yields:

Property 1. If a stream of packet transmission time sequence tp is (b, f)-
paced, then there exists an integer i0 such that for all integers i ≥ i0:∣∣∣∣ 1f − (tpi+1 − t

p
i

)∣∣∣∣ ≤ b

f

1The assumption here is, that the CR-PC would be able to – was it connected directly
to CR-PG, such as would be the case for a video camera and a viewscreen – consume
packets at the precise rate at which they were generated. Pacing is intended for compens-
ating for the best effort processing variation that occurs in case when CR-PC and CR-PG
are not directly connected, as in figure 4.1.
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i.e., the buffer of a virtual receiver, as in the definition of a (b, f)-paced
stream, never experiences variations larger than b between two arrivals.

Property 1 gives necessary conditions — real-time constraints — that
must be verified if a stream is to be qualified as sufficiently-regular. Specific-
ally, the (i+ 1)-st packet can be output neither before time tpi + 1−b

f
nor after

time tpi + 1+b
f
. Consequently, if a (b, f)-paced stream is to be generated by

software, the latter must be executed on a system providing (i) some notion
of time consistent with the frequency f , so that software can wait at least
1−b
f

between two transmissions, and (ii) execution-time guarantees so that a
transmission can never occur more than 1+b

f
after the previous transmission.

Those constraints shall be used in section 4.2 to demonstrate the difficulty
of pure-software pacing.

For the time sequence tp associated with the transmission of a (b, f)-paced
stream, property 1 only provides necessary conditions, not sufficient ones.
As a counter-example, a packet stream transmitted at times t′i = Ti+ ln (i)
verifies property 1 without being (b, f)-paced.

The following property uses the peak period jitter and ALT jitter to
provide metrics, quantifying to what extent a stream is constant-rate. In
particular, it provides a necessary and a sufficient condition to qualify a
(b, f)-paced stream.

Property 2. t is a time sequence of frequency f , associated with the packet
transmission times of a stream.

1. If the stream is (b, f)-paced, JALT (t) ≤ b
2f
.

2. Conversely, if JALT (t) < b
2f
, then the stream is (b, f)-paced.

3. If t satisfies

∃i0 : ∀i ≥ i0 :

∣∣∣∣ 1f − (ti+1 − ti)
∣∣∣∣ ≤ b

f
(4.2)

then Jp(t) ≤ b
f
.

4. Conversely, if Jp(t) < b
f
, then t satisfies equation (4.2).

Proof. (See Appendix)

While, as per property 1, a too high value of Jp is incompatible with
sufficient regularity, the latter is shown to be equivalent to a low value of
JALT by property 2. JALT shall therefore be used to verify the correctness of
the algorithms developed in this chapter.
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4.2 Limitations of a pure software approach
In this section, a software execution model is given, and shown to be rich

enough to describe commonly-used commodity hardware. As part of that
model, timers are defined as components, enabling software to have access
to time – which is necessary to transmit a sufficiently-regular CR stream.
By inspecting the available timers on a commodity server and the achievable
latency, software-pacing is finally proven to be challenging.

4.2.1 Software Execution Model

In this chapter, software execution on a commodity server is modelled
asynchronously. A server is modelled as a set of programmable components,
each considered as a reactive system, maintaining an internal state, and re-
ceiving notifications from other components. Software run by a component
consists of the specification, for each received notification, of a sequence of
actions to be executed by the component. This sequence, called the noti-
fication handler, consists of actions which are either updates to the internal
state, or transmissions of notifications to other components2.

Not only can such an execution model describe interrupt-driven com-
ponents — as a notification models an interrupt, and a handler models an
Interrupt Service Routine (ISR) — but it can also describe components busy-
waiting for some condition involving an external state, and executing some
action as soon as that condition is verified. In that latter case, the notific-
ation is the external state update, and the handler is the action executed
whenever the condition is satisfied. The latency of a component is the —
generally unknown — execution duration of the handler associated with a
received notification.

That execution model describes any commodity server based on an inter-
ruptible Central Processing Unit (CPU), and running a preemptive multi-
task operating system. Considering, e.g., an x86_64 server running a Linux
kernel, three types of components can be described, each exhibiting an asyn-
chronous behaviour.

A user-space application

is composed of a sequence of instructions, either updating an internal
state (such as registers or private memory), reading from or writing to an

2A more formal treatment of that topic is provided by input/output automata defined
in [97].
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external state (such a read/write operation in shared memory, or a non-
blocking system call), or performing a blocking system call. Therefore, the
application is modelled as a component, interacting with external states and
the operating system’s kernel by way of notifications. For example, a system
call is modelled as a notification sent to the operating system’s kernel. The
completion of a system call is modelled as the reception of a notification,
whose handler models the subsequent instructions.

The operating-system kernel

registers ISRs within the interrupt controller, and, when a device (concep-
tually another component) raises an interrupt (conceptually sends a notifica-
tion), the CPU jumps to the address of the corresponding ISR. In the absence
of runnable threads, the kernel is idle and only waits to be interrupted.

In hardware

the CPU performs Input/Output (I/O) operation (e.g., inw or outw in-
structions) or accesses nonlocal memory (via Direct Memory Access (DMA),
or memory that does not reside in a register) by sending requests to the
relevant components (e.g., the memory controller or the DMA controller).
The CPU effectively stalls until a response is notified back, which can be
modelled as the subsequent instructions being the handler to that response.

4.2.2 Timers

While the aforementioned model does not allow to express a time at
which a given action shall be performed, software-based generation of a paced
packet stream still requires the ability to perform an action after a certain
release-time. The solution is provided by a component, a timer, sending no-
tifications at well-specified times. Any handler executed upon such a notific-
ation is therefore known to necessarily complete after a determined time. In
particular, when a program is generating a (b, f)-paced stream, each packet
transmission must occur upon notification from a timer.

Generalising the software architecture observed in the Linux kernel, timers
available to the different components of a commodity server are classified in
two categories. Timers from the first category — clock event devices in Linux
terminology — are components, raising interrupts (periodically or at pro-
grammable times), so that software may have a notion of time. Timers from
the second category are derived from clocks — clock sources in Linux termin-
ology — which must be explicitly requested for the current time, expressed as
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a numerical timestamp. Timers from the second category are implemented
by probing a clock for the current time, and sending a notification whenever
the probed value is posterior to a given time.

Considering timers available to the three types of components described
in section 4.2.1:

In hardware

the CPU and chipset have direct access to the clocks originating from
one or multiple oscillators on the motherboard. These clocks are used to
maintain clock sources such as the Time Stamp Counter (TSC), and clock
event devices such as the Local Advanced Programmable Interrupt Control-
ler (LAPIC) timer. The TSC and the LAPIC timer will be used as typical
examples of clock sources and clock event devices. This is also without loss of
generality, as the following is also applicable to other clock sources and clock
event devices (e.g., the High Precision Event Timer (HPET) on x86_64 or
the Generic Timer on ARM). The TSC is a register, containing the number of
elapsed CPU-cycles since the last reset, and which exhibits an access latency
in the order of a few dozen nanoseconds [98]. The LAPIC timer is a device
operating asynchronously, and which is to be programmed to raise an inter-
rupt at a programmed time. tTSC,h denotes the time sequence corresponding
to TSC-cycles, and tL,h denotes the one corresponding to interrupts from the
LAPIC timer.

The operating system kernel

can register an ISR to be executed upon notifications from the LAPIC
timer. For the i-th interrupt raised by the LAPIC timer, the time at which
the matching ISR starts is denoted tL,ki . That defines a time sequence tL,k,
different from tL,h. Therefore, in kernel-space, software can be specified to be
executed after times defined by that time sequence. The latency tL,ki − t

L,h
i

between the LAPIC i-th interrupt and the start of execution of the matching
ISR may vary, intuitively making the time sequence tL,k less regular than
tL,h.

In kernel-space, software is also able to read the TSC register, compare
its value to a given threshold, and execute an action, whenever the read value
is larger than the threshold. This effectively enables the kernel to execute a
sequence of actions, each starting at times corresponding to a time sequence
tTSC,k, different from tTSC,h, as the former takes into account the latency
between the update of the TSC, and the execution of the corresponding
action in kernel-space.
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In user-space

any system call, specified to suspend a program for a fixed amount of
time — such as nanosleep — or to schedule a notification at a given time
— such as alarm — relies on a clock event device (e.g., the LAPIC timer),
itself relying on an interrupt. It is serviced in kernel space, the corresponding
notification is dispatched to the suspended program, which is finally awoken
by the scheduler. Consequently, a user space program can specify actions to
be executed at times corresponding to a time sequence tL,u with tL,ui − tL,ki
being the latency between the beginning of the i-th LAPIC ISR execution,
and the time when the user-space program resumes execution.

A user space program can also compare the current time — obtained
from a clock source by way of a system call such as clock_gettime — to
a predefined threshold, so as to start executing an action after a specified
time. That allows a user space program to specify actions to be executed
according to a time sequence tTSC,u derived from the times at which the TSC
is updated3. tTSC,u is different from tTSC,k due to the latency between the
update of the TSC, and the execution of the specified action in user space.

4.2.3 Timer limitations: drift

In the setup in figure 4.1, if the packet pacing frequency fp is slightly dif-
ferent from the packet consumption frequency f c, the buffer B2 is necessarily
subject to overflow or starvation. The cause for this drift between f c and fp
can be traced to insufficient timer accuracy.

The nominal frequencies of hardware clocks are usually given with a tol-
erance expressed in parts per million (ppm). For example, a 1 MHz clock
with a tolerance of 100 ppm has an actual frequency between 999.9 kHz and
1.001 MHz. Because of that inaccuracy, the notion of time given by any
timer is never exact. Moreover, due to thermal fluctuations, the frequency
of a periodic timer is not stable. Consequently, if a pacer and the CR-PC do
not have access to a common source of time, drift will necessarily occur.

4.2.4 Latency

In section 4.2.2, hardware and software layers of a typical commodity
server were shown to have access to different timers. Conceptually, and fol-
lowing the terminology of section 4.2.1, timer notifications from hardware to
the different software layers are propagated with a certain latency. While
most of the literature on real-time operating systems emphasises obtaining

3A user space program can also directly probe the TSC without any system call.
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latency upper bounds, the definition of pacing given in section 4.1 is insens-
itive to the addition of any constant delay to the packet transmission time
sequence. Consequently, the achievability of packet pacing only depends on
obtaining a reduced amplitude between maximal and minimal latency. The
sources of those latency variations are categorized as:

State-induced

From different initial states, software execution time will differ, yielding
differences in latency. At the hardware layer, the micro-architectural state
of the CPU — e.g., the state of the caches, or the out-of-order execution
pipeline — has an impact on the execution time of an instruction sequence.
This variability can be analysed and exploited, as in [99]. Depending on
the power-save state of the CPU, the start of execution of an ISR may be
subject to a variable latency. At the software layer, the state of the kernel
varies from one execution of an ISR to another, which may incur branching
in some parts of the code, also yielding variable latency, detectable in user
space.

Contention-induced

Latency variations may also be caused by contention for a given resource;
when two tasks are contending for some resource the latency experienced by
one of them varies, depending on whether it has access to the resource before
the other one.

Preemption, i.e., suspension of the current execution to process another
notification, is a case of contention for a CPU core, and is responsible for
latency variations. User-space software may be preempted by higher-priority
tasks, scheduled on the same CPU core. A user-space or kernel-space pro-
gram may be preempted by a non-masked interrupt, because the matching
ISR will then need to be executed.

Conversely, the existence of non-preemptible sections in the operating
system, i.e., sections which cannot be preempted by a high-priority task, is
a cause for contention for a CPU core; because a high-priority task is unable
to preempt the operating system, it is sporadically delayed, thus, experiences
latency variations.

Contention-induced sources are already controllable with Real-Time Op-
erating Systems (RT-OS) such as the PREEMPT-RT patch for the Linux
kernel [100] or Xenomai [101]. As much as possible, RT-OSs reduce non-
preemptible sections in their kernel, to allow a task, specified as high-priority
by the user, to always preempt a low-priority task. For example, the PRE-
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Figure 4.2: Distribution of the time between SMIs and their duration.

EMPT-RT patch replaces the majority of spinlocks from the kernel source
code with mutexes, allowing preemption to occur at those points. Con-
sequently, an RT-OS has a lower maximal latency, especially on a highly-
loaded system as shown in [100].

However, System Management Interrupts (SMI) are not maskable, may
happen sporadically, and do execute transparently to the kernel, i.e., instead
of being serviced by an ISR specified by the kernel, the current code execution
is suspended to execute firmware code, opaquely to the operating system.
SMIs may indistinctly preempt the execution of kernel code or user-space
code and are impossible to disable, making them a major source of latency
variations, even on an RT-OS. Reducing non-preemptible sections in the
operating system’s kernel (as performed by the PREEMPT-RT patch for the
Linux Kernel) has no impact on SMIs, as those are executed in a context
which is transparent to the kernel. A more detailed analysis of the impact of
SMIs on system performance is given in [102].

4.2.5 Quantitative analysis of the impact of SMIs

In the following, the pacer of figure 4.1 is a pure-software pacer, i.e., is
only implemented as a a reactive system, driven by timers, described in sec-
tion 4.2.2. Due to the latency variations, described in section 4.2.4, the in-
stants at which packets are enqueued into the Network Interface Card (NIC)
for transmission, are subject to peak period jitter, itself yielding peak period
jitter on the packet transmissions on the wire.

Measurements performed in [103] suggest that SMIs are responsible for a
peak period jitter in the order of 20 µs. That is experimentally confirmed by
running the hwlat_detector tracer, which is part of the Linux tracing sub-
system. hwlat_detector consists of kernel-space code, specifically designed
to measure the impact of SMIs, by polling the TSC in an uninterruptible
loop. SMIs are detected when the TSC evolution undergoes irregular jumps,
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as those mean that the current CPU core was executing non-kernel code,
i.e., it was servicing an SMI. Figure 4.2 shows the obtained results, and con-
firms that SMIs are happening frequently (every second), and incur a latency
ranging from 10 µs to 40 µs.

For a SMPTE-compliant stream received by a typical gateway device,
the target frequency fp of packet transmissions times tp is in the order of
fp = 135 000 Hz, while the receive buffer size is in the order of B2 = 4. As per
property 1, the maximal admissible peak period jitter is Jp(tp) = B2

fp
≈ 30 µs,

which approaches the measured and sporadic additional latency from SMIs.
Therefore, in the context of media production, software generation of a
(B2, f

p)-paced stream is potentially unreliable. That result is quantitat-
ively and qualitatively confirmed by the experimental results presented in
section 4.6.

4.3 Pacing with a Pacing-Assistant

In sections 4.2.3 and 4.2.5, the peak period jitter obtained by pure soft-
ware pacing methods was shown to be at least in the order of 40 µs, which is
too high for the media production use cases described in the introduction.

As the root cause to that jitter is the unpredictable and unavoidable
latency spikes incurred by CPU preemption to service SMIs, a natural solu-
tion consists of delegating the time-sensitive tasks of sending packets, and of
waiting between transmissions, to an uninterruptible external system, com-
municating with the main server through a command queue. That approach
enables packet-pacing with the required accuracy (contrary to a purely software-
based one), while still being implementable with commodity servers and net-
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working hardware (see section 4.5), i.e., in a commodity data centre.

4.3.1 Assisted Pacing

That uninterruptible external system is modelled by an abstract com-
ponent, called a Pacing-Assistant (PA), capable of sending packets spaced
by a precise amount of time, and not subject to the previously discussed
jitter sources, as it is uninterruptible. In other words, that component can
send packets, synchronously with a time sequence of negligible ALT-jitter.
Defined as an abstraction in this section, a PA is shown to be constructible
with general-purpose networking hardware in section 4.5.

Figure 4.3 depicts the architecture of a pacer relying on a PA. A PA is
periodically notified by a timer, at times defining a time sequence te, with a
period T e, and frequency f e. The software part of the pacer communicates
with the PA by way of commands, inserted into a command queue Qc.

At each te-cycle, the PA dequeues a command from Qc, if one is available.
Commands are one of the following categories:

• wait(n): when this command is dequeued by the PA, the next n te-
cycles are skipped, which is equivalent to waiting n× T e. Afterwards,
the next command in Qc is dequeued, if available. It is assumed that
there is a minimum value nmin and a maximum value nmax to the
admissible values for n. In order to prevent holes in the range of values
that PA can wait:

nmax > 2× nmin (4.3)

• send(p): when this command is dequeued by the PA, the transmission
of packet p starts, and lasts for a number of cycles, dependent on the
size of p. After the transmission completes, the next command in Qc

is dequeued, if available.

The cost of a command is the number of te-cycles spent processing it, i.e., the
cost of wait(n) is n, and the cost of send(p) is the number of te-cycles
necessary to transmit p, denoted by dur(p).

4.3.2 PA-based free-running pacing

As a PA is able to send packets aligned with a time sequence te of negli-
gible jitter, a software pacer only needs to enqueue a sequence of wait and
send operations, whose execution (upon dequeueing by the PA) will gener-
ate a (B2, f

c)-paced stream. τ is the target number of te-cycles between two
consecutive packets. For a target period T c, τ is defined as the ratio T c

T e .
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Algorithm 1: Packet pacing
Primitive : wait, send, dur(p) as defined in section 4.3.1
Primitive : dequeuePacket: returns an input packet from B1

Parameter : nmin: minimum value for wait
Parameter : nmax: maximum value for wait
Parameter : τ : target pacing period (in te cycles)
Precondition : nmax > 2nmin

Precondition : ∀p : nmin ≤ τ − dur(p)
Precondition : dequeuePacket always returns a packet.

1 s← 0;
2 while True do
3 if s < 1 then
4 p ← dequeuePacket();
5 send(p);
6 s← s+ τ − dur(p);
7 end
8 else if s ≥ nmax + nmin then
9 wait(nmax);

10 s← s− nmax;
11 end
12 else if s ≤ nmax then
13 wait(bsc);
14 s← s− bsc;
15 end
16 else
17 wait(nmin);
18 s← s− nmin;
19 end
20 end

Algorithm 1 specifies the sequence of operations to enqueue, so that the PA
generates a stream with period T c.

As used in algorithm 1, the wait and send primitives enqueue the cor-
responding operation in the command queue Qc if it is not full, and are
blocking otherwise.

Assumption 1. The command queue Qc never starves, i.e., at each te-cycle,
the PA is always either processing a wait or a send command. Also, the
commands are reliably enqueued in Qc.

Algorithm 1 alternates between issuing a sequence of wait commands,
and issuing a single send command. s is the (possibly fractional) number
of te cycles between the execution (by the PA) of the last enqueued wait
command and the execution of the next send command to be enqueued.

Thus, a send command is enqueued as soon as there is less than a full
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te-cycle in s. If s > bsc (i.e., s is fractional), the remaining fraction of te-
cycle is accumulated for the next sequence of wait operations. Also, as the
parameter passed to wait must be within [nmin, nmax], the algorithm slices s
appropriately, so that only compliant wait calls are performed.

Discussion

Algorithm 1 uses the explicit value τ . If te and tc are neither derived
from the same oscillator, nor otherwise synchronized, T c is not necessarily a
rational multiple of T e. Thus, the quotient τ = T c

T e cannot be meaningfully
digitally represented. Also, as stated in section 4.2.3, the nominal values of
T e, and T c are given with a non-zero tolerance (due, e.g., to the underly-
ing hardware being subject to thermal noise), and thus, cannot be used to
compute τ .

Therefore, algorithm 1 is only usable when the timers originating the time
sequence te and tc are synchronized, so that τ is known exactly.

4.3.3 PA-based frequency-controlled pacing

When τ is unknown, frequency-controlled pacing replaces τ with a frequency-
controller. A frequency-controller is an external signal F , such that, after the
elapse of u te-cycles, F (u) estimates the total number of packets transmitted
by a CR packet generator of period T c.

Formally, a frequency-controller is an integer-valued function F , satisfy-
ing:

lim
u→∞

u

F (u)
=
T c

T e
(4.4)

Being an integer-valued function, F is an alternative to an explicit value
τ , as it avoids the representation problem described in the discussion of
section 4.3.2.

Algorithm 2 uses F to achieve pacing at the target frequency f c. That
algorithm is derived from algorithm 1, but replaces the input parameter
τ with a variable τcur. The core idea driving frequency-controlled pacing,
consists of using F to periodically update τcur. The period of those updates
is determined by an input parameter W .

Algorithm 2 maintains a variable ynow, containing the total cost of all
enqueued operations at a given point of the execution. Under assumption 1,
this means that, if an operation is enqueued when ynow = y, then it will be
executed at y-th te-cycle by the PA. The value ylast of ynow at the last update
of τcur is also maintained. Every W te-cycles, τcur is updated to a new value

ynow−ylast
F (ynow+W )−F (ylast+W )

. As estimated by F , that value is the average (over a
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Algorithm 2: Controlled packet pacing
Primitive : Same as in algorithm 1
Parameter : nmin, nmax as in algorithm 1
Parameter : F : frequency-controller
Parameter : W : update window
Precondition : nmax > 2nmin

Precondition : ∀p, ∀a ∈ N :
nmin ≤ W

F (a+W )−F (a) − dur(p)
1 s← 0;
2 τcur ← 0;
3 ylast ← −W ;
4 ynow ← 0;
5 while True do
6 if s < 1 then
7 if ynow − ylast ≥W then
8 τcur ← ynow−ylast

F (ynow+W )−F (ylast+W ) ;
9 s← 0;

10 ylast ← ynow;
11 end
12 p ← dequeuePacket();
13 send(p);
14 s← s+ τcur − dur(p);
15 ynow ← ynow + dur(p);
16 end
17 else if s ≥ nmax + nmin then
18 wait(nmax);
19 s← s− nmax;
20 ynow ← ynow + nmax;
21 end
22 else if s ≤ nmax then
23 wait(bsc);
24 s← s− bsc;
25 ynow ← ynow + bsc;
26 end
27 else
28 wait(nmin);
29 s← s− nmin;
30 ynow ← ynow + nmin;
31 end
32 end

duration of ylast − ynow te-cycles) number of te-cycles between two packet
arrivals of a CR-stream of period T c. In other words, algorithm 2 performs
the same pacing as does algorithm 1, but with a parameter, τ , adjusted
periodically to reflect the spacing between packet transmissions estimated
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by F .
Also, at a given point of the execution time, frequency-controlled pa-

cing only needs to evaluate F in F (ynow + W ) and F (ylast + W ), i.e., two
digitally-representable, finite-precision values, making frequency-controlled
pacing implementable.

Discussion

Frequency-controlled pacing is designed to avoid drift due to the numer-
ical value τ = T c

T e not being accurately accessible. Algorithm 2 thus impli-
citly extracts the target pacing rate from an external signal (the frequency-
controller), which is therefore required.

4.4 Analysis
This section analytically quantifies the period and ALT-jitter of the packet

transmissions obtained when applying the algorithms detailed in section 4.3.
As per property 2, those metrics are sufficient to assess whether the transmis-
sions are (B2, f)-paced. Also, the correctness of those algorithms is verified.

4.4.1 Safety

A program is safe when it can be guaranteed that no program execution
will cause an undesirable state to be reached. It is achieved for algorithms 1
and 2 if and only if the arguments passed to the wait primitive are within
the interval [nmin, nmax].

The two algorithms assume that, at any time, for any dequeued packet p,
and for any value of τ (either given, for algorithm 1, or dynamically computed
for algorithm 2) nmin ≤ τ − dur(p). The opposite would require the PA to
somehow wait less than nmin cycles, i.e., that the pacer is requested to pace
at a higher-than-its-maximum-frequency. Considering both algorithms at
the beginning of the j-th iteration of the while loop, the values of the state
variables are denoted with index j so that, e.g., the value of s is sj. τj = τ
for algorithm 1, and τj = τcur at the j-th iteration for algorithm 2.

Property 3. sj satisfies the following.

1. For all j > 0, sj ∈ [0, 1) ∪ [nmin,+∞).

2. sj ≥ 1 =⇒ nmin ≤ sj − sj+1 ≤ nmax.

Proof. (See Appendix)
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Algorithms 1 and 2 only call the wait primitives when sj ≥ 1, with
parameter sj − sj+1. The second part of property 3 proves that parameter is
always in [nmin, nmax], hence the safety of the algorithms.

4.4.2 Free-running pacer period

Analysing the state of algorithm 1 at the beginning of the j-th iteration
of the main loop, sj is defined as the value of state variable s, Nj as the total
count of enqueued send operations, and yj as the total cost of all enqueued
operations. Initially, s1 = 0, N1 = 0 and y1 = 0. At each iteration, s is
decremented by the cost of the enqueued PA-operation and incremented by
τ if a packet is transmitted, yielding:

sj = τNj − yj (4.5)

For all integers i > 0, ji is defined, so that the ji-th iteration of the loop
enqueues the send operation sending the i-th packet. Then, equation (4.5)
implies:

sji = (i− 1)τ − yji (4.6)

As sji ∈ [0; 1[ by construction, and yji is an integer number of te-cycles, then
yji = b(i− 1)τc. Per assumption 1, yji is also the number of elapsed te-cycles,
when the i-th packet will be transmitted. The time of that transmission is
therefore given by:

tpi = teb(i−1)τc = τT ei+ o(i) (4.7)

This proves that the period of the paced stream is τT e.

4.4.3 Frequency-controlled pacer period

A similar analysis is performed for algorithm 2. At the j-th iteration of
the main loop, yj is the total cost of all enqueued operations. ji is defined
such that, the i-th send operation is enqueued at the ji-th iteration of the
main loop.

Property 4. With the previous notations, yji satisfies:

yji =

⌊
W

i− 1− F (W (k(i)− 1))

F (Wk(i))− F (W (k(i)− 1))

⌋
+W (k(i)− 1) (4.8)

with k(i) defined as

k(i) = max{k ≥ 1
∣∣ F (W (k − 1)) + 1 ≤ i}
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Furthermore, τcur is updated exactly at the iterations of the main loop where
the state satisfies ynow − ylast = W .

Proof. (See Appendix)

By definition of k(i), and by maximality:

F (W (k(i)− 1)) + 1 ≤ i < F (W (k(i))) + 1

The second precondition of algorithm 2 yields:

F (W (k(i)− 1)) +
W

nmin
≥ F (W (k(i)))

Combining those two last equations:

i− 1 ≤ F (W (k(i))) ≤ i+
W

nmin
− 1

yielding: F (W (k(i))) = i+o(i). Applying in the equation given by property 4
yields:

yji = O(1) +
W (k(i))

F (W (k(i)))
(i+ o(i)) =

T c

T e
i+ o(i)

tpi = T ci+ o(i)

Consequently, algorithm 2 results in a packet transmission time sequence of
frequency f c.

4.4.4 ALT-Jitter

The ALT-jitter of the stream, generated by algorithms 1 and 2, can be
evaluated for each of the algorithms, as follows

ALT jitter for the free-running pacer

For all i0 and t0, and i so that i ≥ i0 and tpi ≥ t0 and from equation (4.7):

|T p(i− i0)− (tpi − t0)| = |τT e(i− i0)− (tebiτc − t0)|
≤|T e(biτc − bi0τc)− (tebiτc − t0)|+ |T e({iτ} − {i0τ})|
≤ sup

j≥bi0τc
tej≥t0

|T e(j − bi0τc)− (tej − t0)|+ T e
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Figure 4.4: Frequency-controlled pacer: F , sent packets , consumed packets
by a perfect CR-consumer. Note: the CR consumer on the figure starts
at an arbitrary time, i.e., an X-axis offset, and after an arbitrary number
of dropped packets, i.e., a Y-axis offset. The ALT jitter is the asymptotic
maximum horizontal distance Φ between curve (b) and an optimally-shifted
curve (c)

Considering the supremum over all possible i, then the infimum over all i0
and t0 yields:

JALT (tp) ≤ JALT (te) + T e (4.9)

The ALT-jitter of the stream, JALT (tp), is thus bounded by a component
originating from the internal jitter of the PA, and a component bounded by
one period T e. The latter component disappears if T p is a multiple of T e,
i.e., if τ ∈ N.

ALT-jitter for the frequency-controlled pacer

For algorithm 2, te is assumed to be perfectly periodic, i.e., that ∀i :
tei = T ei. This is justified by the fact that the ALT-jitter of te is negligible
with respect to the one introduced by the variations in τcur. Figure 4.4
illustrates equation (4.8) by representing (a) the function F , (b) the total
number of packets transmitted by the pacer, and (c) the cumulative number
of consumed packets by a perfect CR-consumer. On this figure, bounding
the ALT jitter consists of asymptotically bounding the horizontal distance Φ
between (b) and (c).
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AW (F ) and CW (F ) are defined as:
AW (F ) := T e lim sup

k
|τ(F (W (k + 1))− F (Wk))−W |

CW (F ) := T e inf
k1∈N
k0∈N

sup
k>k0

|τF (kW )− kW + k1W |

AW (F ) is the maximum time interval error when using F to measure a time
interval of length W te-cycles. CW (F ) measures how accurately τF tracks
the number of elapsed te cycles on the long term. An upper bound on the
ALT-jitter is given by Property 5.

Property 5. Under the assumption that te is perfectly periodic, the ALT-
jitter of the stream tp generated by algorithm 2 is bounded by:

JALT (tp) ≤ AW (F ) + CW (F ) + T e (4.10)

Proof. (See Appendix)

This bounds the ALT jitter of tp into three components:

• AW (F ), which bounds the error |τcur − τ |;

• CW (F ), which quantifies how accurately F tracks the number of packets
consumed by a perfect consumer, when evaluated at multiples of W ;
and

• T e, which bounds the rounding error, since τcur is not necessarily in-
teger.

4.5 Constructing a Pacing-Assistant and a fre-
quency-controller

Algorithms 1 and 2 rely on a Pacing-Assistant, providing hardware assist-
ance for pacing. Algorithm 2 also requires a frequency-controller. Procedures
for building those elements with commodity hardware are described in this
section.

4.5.1 Constructing a Pacing-Assistant

This software-based method for implementation of a Pacing-Assistant re-
lies on a commonly-available NIC, and the network infrastructure connected
to it. The NIC and network infrastructure must satisfy the following:
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• The NIC has a well-defined line rate r, and is able to saturate its output
interface at rate r, by consuming packets from a Transmit (TX) queue.
The latter consists of an in-memory queue, into which software inserts
packets to be sent, and out of which the NIC dequeues packets and
actually transmits them on the wire.

• There is a type of packets — gap packets — consumed by the NIC
at rate r and dropped by some equipment along the network path,
before reaching CR-PC, as introduced in [76,94]. Two possible options
for gap packets are (i) packets with a bad Cyclic Redundancy Check
(CRC), dropped by any receiver but still effectively consumed by the
NIC at rate r, and (ii) IEEE 802.3 Flow Control frames, which should
be dropped by any network equipment (e.g., a layer 2 switch) with
disabled IEEE 802.3 Flow Control. The maximum IEEE 802.3 frame
size (usually at least 1538 bytes) must also be larger than twice the
minimum frame size (usually around 64 bytes), so that condition (4.3)
from section 4.3.1 holds.

Given that, a PA can be implemented as follows. The PA command queue
Qc is the TX queue of the NIC. The timer of the PA (which events occur at
time sequence te) is implemented as the byte-clock of the NIC, i.e., the timer
whose cycles correspond to the transmission of a byte from the TX queue
to the wire. The wait(u) and send(p) PA commands are implemented as
u-sized gap packets and p packets, respectively.

As discussed in section 4.3.2, for an Ethernet NIC whose byte-clock is
derived from a local oscillator, and is not synchronized with any external
source, drift will occur, effectively limiting the applicability of algorithm 1.

However, the Synchronous Ethernet (SyncE) standard [104,105] specifies
a network architecture, where the Ethernet physical clock of multiple devices
— Network Elements (NE) — is derived from a common master by way
of a Phase-Locked Loop (PLL), replacing the local free-running oscillator.
Consequently, if the NIC used to build the PA relies on SyncE, and the CR-
PC relies on the same external time source, then the nominal value T c/T e is
exact and algorithm 1 can be used.

4.5.2 Constructing a frequency controller: basic version
Fb

The frequency-controlled pacer of algorithm 2 relies on a function, F ,
satisfying equation (4.4), section 4.3.3. If the pacing software is implemen-
ted on a system receiving notifications from two timers, at respective time
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sequences tα and tβ, and of respective periods T c and T e, then at the u-th
notification from the second timer, it can count Fb(u) as the total number
of received notifications from the first timer, i.e., Fb(u) is interpreted as the
cumulative number of consumed packets by the CR-PC (as tα is of period
T c) after u te-cycles have elapsed (as tβ is of period T e). Following, and by
definition:

Fb(u) := max
{
i ∈ N

∣∣ tαi ≤ tβu
}

Also, by definition tαFb(u)
≤ tβu and by maximality tαFb(u)+1 > tβu.

u

Fb(u)
≥ u

Fb(u)

tαFb(u)

tβu

u→+∞−−−−→ T c

T e

And

u

Fb(u)
<

u

Fb(u)

tαFb(u)+1

tβu

u→+∞−−−−→ T c

T e

Thus, Fb satisfies equation 4.4 and is thus a frequency-controller. Con-
sequently, if the system on which algorithm 2 is implemented receives no-
tifications from two timers of period T c and T e, a basic version of a suitable
frequency controller can be constructed. Methods to implement access to
such timers are detailed in the following.

Receiving notifications at tα

In the abstract setup, depicted in figure 4.1, the CR-PG is transmitting
packets with a period T c. If tα is defined as the arrivals at the pacer of an
auxiliary CR packet stream, output directly by the CR-PG, and bypassing
best-effort processing, then tα is a time sequence of period T c. In the context
of media processing, often relying on IP multicast streams, such an auxiliary
stream can be implemented by simply replicating (in the network path) the
original media stream transmitted by the CR-PG.

Receiving notifications at tβ

At the u-th te-cycle, Qc(u) is the total cost of all the operations in Qc.
With assumption 1 from section 4.3.2, the command queueQc is never subject
to starvation. In algorithm 2, ynow is the cost of all the commands enqueued
by the software. With ynow(u) as the value of ynow at the u-th te-cycle, and
per assumption 1:

Qc(u) = ynow(u)−max
{
i ∈ N

∣∣ tei ≤ u
}
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As Qc(u) is bounded, lim
u→+∞

ynow(u)
u

= f e. The time sequence tβ is defined as

the sequences of times at which ynow increases by 1, i.e., ∀k : ynow(tβk) = k.
Then:

lim
k→+∞

tβk
k

= lim
k→+∞

tβk
ynow(tβk)

= T e

The period of tβ is thus T e, making that time sequence suitable for construct-
ing a frequency-controller Fb. Following that construction, at any time, the
value Fb(ynow) used in algorithm 2 is the number of elapsed tα cycles and
Fb(ylast), is the value of Fb(ynow) at the previous iteration.

4.5.3 Constructing F : NW -regularized version, Fr
Algorithm 2 only evaluates F at multiples of W (see section 4.4), and

thus, estimates τcur at the k-th update as W
F (kW )−F ((k−1)W )

. Consequently, the
variations of τcur will increase with the variability of F (kW )−F ((k− 1)W ).
Increasing W has the disadvantage of reducing how often τcur is updated,
making the algorithm more likely to deviate from the targeted period T c.

Given parameters W and NW , the NW -regularized construction of F , Fr
is derived from Fb as obtained in section 4.5.2, and is defined as:

Fr(t) =
1

NW

NW−1∑
l=0

Fb(t− lW )

Following that construction, instead of periodically updating τcur by using the
increments Fb(W + ynow)−Fb(W + ylast), algorithm 2 uses a moving average
of these increments over the past NW ·W te-cycles. That approach allows to
smooth the variations of the basic version Fb, but still keeps updating τcur
every W te-cycles.

4.5.4 Implementation considerations of algorithms 1 and
2

The validity of the analysis provided in section 4.4, and hence the cor-
rectness of the obtained pacing system is conditioned by the assumption 1
in section 4.3.2, i.e., the non-starvation of the command queue Qc. This is
equivalent to the non-starvation of the TX queue of the NIC, which motivates
the following implementation choices.

First, algorithms 1, and 2 were implemented as a user-space application,
using DPDK for direct access to the NIC. This allows to busy-wait on the
state of the TX queue, and to enqueue a packet as soon as possible, hence
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maintaining the TX queue full as often as possible. Using DPDK instead
of the network stack of the OS kernel also prevents any kernel-originated
cross-traffic, which would be injected into the TX queue along with the gap
packets and the stream to be paced, and would behave as spurious additional
wait commands.

Then, to minimise the number of times the OS kernel suspends that user-
space application, it is assigned to a specific CPU core, isolated from any
other tasks by the isolcpus kernel boot option. All hardware interrupts are
also rerouted to a CPU core different from that. To avoid any spurious page
fault, a call to mlockall is performed to guarantee that all the memory used
for pacing is locked into physical memory.

As the pacing software thread is alone to be runnable on its assigned
CPU core, the Linux kernel is prevented from issuing periodic ticks on that
CPU core, as the nohz_full kernel boot option is enabled, and the kernel,
compiled with the CONFIG_NO_HZ_FULL option. The used version of the Linux
kernel is the 4.19.3, without the PREEMPT-RT patch, as, in the absence of
any concurrent task on the used CPU core, and with all hardware interrupts
rerouted to different CPU cores, there is no need for preemption, and hence,
no reason to make the kernel more preemptible.

Finally, SMIs are the only remaining cause for the preemption of the pa-
cing software. As stated in section 4.2.5, SMIs may last up to 40 µs, while
the time taken by a typical 10 Gbit/s NIC to drain all the 1500-bytes-sized
packets from its 512-packets TX queue is in the order of 0.5 ms. As a con-
sequence, SMIs are unlikely to be responsible for the starvation of the TX
queue, and, therefore, do not impact assumption 1.

4.6 Experimental Evaluation

The pacing algorithms 1 and 2 are evaluated in experimental scenarios
sourced from a media production setup. The experimental setup and meth-
odology are described in section 4.6.1. Qualitative and quantitative results
are provided in section 4.6.2, with metrics derived from the peak period jitter
and ALT jitter of the paced stream tp. The frequency-controlled approach is
experimentally analysed in section 4.6.3, and an experimental estimation of
the two constants AW (F ) and CW (F ), evoked in section 4.4, is also provided.

4.6.1 Setup and methodology

The setup used to evaluate algorithms 1 and 2 is an implementation of
the abstraction from figure 4.1, with (i) a CR-PG and a CR-PC, both imple-
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Setup Video output Video failure type
No Intermediary Yes n/a
Linux + iptables No Permanent
DPDK forwarding Yes with failures Sporadic
pacer (freerun) Yes with failures Periodic

pacer (controlled) Yes n/a

Table 4.1: Video status of the CR-PC

mented as commodity off the shelf broadcasting pieces of equipment sending
and receiving a SMPTE 2022-6 1080i59.94 CR video stream, at a nominative
packet rate of f c = 4497×30

1.001
≈ 134 775.22 pkts/s, (ii) a pacer implemented as

software running on an x86_64 Linux server, and implemented as described
in section 4.5 (iii) the time sequence tc (corresponding to packet consumptions
by the CR-PC) defined by the signal output by a tri-level sync generator,
i.e., a piece of broadcasting equipment distributing an out-of-band common
clocking signal to CR-PG and CR-PC.

The pacer runs in either frequency-controlled, or free-running, mode, de-
pending on the algorithm under test. The PA is as described in section 4.5.1,
and uses IEEE 802.3 flow control frames. The pacing software is implemented
as described in section 4.5.4. A 10 Gbit/s network switch ensures the inter-
connection between the CR-PG, the CR-PC, and the pacer. As described in
section 4.5.2, F is constructed by way of an auxiliary stream, implemented as
a statically-configured multicast replication of the stream transmitted by the
CR-PG. The stream transmitted by the pacer is also replicated to a device
— detailed below — for quantitative evaluation.

Unless stated otherwise, the frequency-controlled mode uses a valueW =
1 s = 1 250 000 000 B and an NW -regularised F with NW = 2. The best-effort
processing stage depicted on figure 4.1 is not part of the experimental setup,
as the pacer accumulates the packets of the stream of interest into B1, making
it lose all its timing properties. Given this setup, the methodology to obtain
quantitative results is described from the perspective of instrumentation, and
baseline experiments.

Instrumentation (detailed in chapter 3)

An accurate evaluation of the jitter of a periodic stream is difficult to
obtain using software methods on commodity platforms, for the exact same
reasons as those motivating the use of hardware-assisted pacing, i.e., variable
latency due to unavoidable causes, e.g., SMIs. Consequently, the measure-
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ments are performed using dedicated hardware, implemented on a NetFPGA-
SUME programmable card, [75]. The Open Source Network Tester (OSNT)4

[73] for this card appears suitable capturing packets with accurate timestamps.
However, a suboptimal Direct Memory Access (DMA) design of OSNT pre-
vents packets and timestamps acquisition, at a rate as high as that of the flow
of interest. Consequently, for the purpose of the experiments in this section,
the original DMA design in OSNT was replaced by the Xilinx DMA/Bridge
Subsystem for PCI Express (XDMA) intellectual property core – and, a
minimal DPDK driver for acquisition of packets and of timestamps, was im-
plemented.

Timestamp acquisition on this platform is dependent on the accuracy
(how valid the nominal frequency is) and jitter of its internal clock. It is
assumed (from the datasheet [106] of the Silicon Lab Si5324 oscillator used
on the NetFPGA SUME board), that this jitter, being in the order of the
nanosecond, is negligible for the results presented in this chapter. However,
because of the accuracy limitations of any hardware oscillator — as described
in section 4.2.3 — and because no clock drift compensation was implemented,
the absolute values of the measured packet transmission timestamps tp are
not independently exploitable, and must be compared to baseline values,
obtained as described in the following.

Baseline experiments

The free-running and frequency-controlled PA-based pacers are compared
to three baseline experiments:

• No intermediary element exists between the CR-PG and CR-PC. This
is expected to show the most regular behaviour.

• The PA-based pacer is replaced with a Linux iptables-based setup, re-
directing the received stream from the CR-PG to the CR-PC, and using
the NetFPGA board for measurement. This is designed to quantify the
impact of the Linux networking stack on the periodicity of the stream,
thus motivating the need for PA-based pacing, even when the stream
undergoes minimal processing.

• The pacer is replaced with a basic DPDK-based forwarder, sending the
packets to the CR-PC and the NetFPGA board as fast as possible.
This allows to assess whether bypassing the Linux kernel is sufficient
to maintain a reliably low-jitter compatible with the CR-PC.

4OSNT offers a Verilog/VLSI design for the NetFPGA SUME card.
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Figure 4.6: Empirical distribution of Packet Inter-arrival Times (left), of
packets received during one second (middle), and of a simulated representa-
tion of the CR-PC ingress buffer (up to an additive constant).

4.6.2 Results

As the used CR-PC gives no indication about the occupation of its 8-
packets buffer, no direct quantitative experimental data can be extracted.
However, the CR-PC consumes SMPTE 2022-6 packets to produce video,
which gives a qualitative feedback: the presence, or absence, of video. Qual-
itative and quantitative results are presented hereafter.

Qualitative results: status of CR-PC

Table 4.1 summarizes the state of the video output of CR-PC. In the case
where there is no intermediary node between CR-PG and CR-PC, no buffer
overflow or starvation is observed, i.e., the video output of CR-PC never
stops. Similarly, the frequency-controlled pacer also generates a sufficiently
regular stream, so that the video output does not stop.

When going through the Linux network stack, the stream is not suffi-
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ciently regular for consumption by the CR-PC, and buffer overflow or star-
vation are so frequent, that the video never locks, i.e., the receiver never
consumes a sufficient number of consecutive SMPTE 2022-6 packets to be
able to generate valid video output.

In case (i) of the DPDK-based forwarder, and (ii) of the free-running
pacer, video is output by the CR-PC, but interruptions occur, due to over-
flows or starvations. Qualitatively, the failures seem to happen sporadically
in (i), and periodically in (ii). In order to better understand the nature of
those failures, the Time Between Failures (TBF) is measured in both cases
over twenty-four hours, and its Cumulative Distribution Function (CDF) is
shown on figure 4.5.

In case (i), failures are effectively periodic as the CDF is close to a step
function, i.e., there is only one value of TBF. Periodic and repeated failures
are explained by a mismatch between the period T p of the output of the
free-running pacer, and the period T c of CR-PC. Because of that mismatch,
the buffer occupation increases at a fixed frequency ∆f = 1

T p − 1
T c . As a

consequence, after a fixed amount of time proportional to the receive buffer
capacity B2 and the drift ∆f , overflow will occur (or starvation if ∆f is
nonpositive). After that event, a video failure occurs, the CR-PC is reset,
and the process repeats with the same drift ∆f , hence, failure after the same
duration. Consequently, drift-induced failures are periodic.

In case (ii), the CDF shows that the TBF values are spread across a
wide range of possible values, i.e., failures are sporadic. This is due to the
latency spikes experienced by the DPDK-based forwarding process, triggering
violations of property 1, thus starvation or overflow.

Quantitative results: timed captures with the NetFPGA board

For each setup, and corresponding output packet time sequence tp, and
for the i-th transmitted packet, the Packet Inter-arrival Times (PIT), defined
as tpi+1− t

p
i , is measured with the NetFPGA board. The statistical deviation

of the PIT from the period value T p is an indicator of how often property 1is
violated. Figure 4.6 shows that both versions of the PA-based algorithm pro-
duce PIT values which present a step-function-like CDF, i.e., a very reduced
peak-period jitter.

Surprisingly, according to the experimental data, the CR-PG does not
actually generate a perfectly constant-rate stream, as the PIT distribution is
observably different from a Dirac.

The DPDK-based and Linux-based forwarders are work-conserving setups,
i.e., they do not artificially delay the incoming packets from the CR-PG. As
such, the difference between the measured PIT distribution at the output of
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both of those setups, and the PIT distribution for the setup with no inter-
mediary, quantifies the distortion introduced by the operating system or the
hardware itself. The high-spread observed in both cases in figure 4.6 confirms
that, without hardware assistance, accurate pacing is not feasible.

The PIT distributions for algorithms 1 and 2 are indistinguishable on
figure 4.6, as the main difference between them is their mean value, i.e., T p.
The CDF of the number of packets received in one-second samples is therefore
plotted as well on figure 4.6. This shows that the work-conserving setups and
frequency-controlled pacer maintain the target T p, whereas the free-running
version introduces a frequency-drift, which leads to the observed periodic
video failures.

The PIT distribution gives fine-grained information quantifying how often
the peak period jitter Jp is too high. In order to construct fine-grained
information quantifying how often the ALT-jitter is too high, for each i, and
for each setup, the value i − f ctpi is computed. This value is the simulated
state of a virtual receiver upon reception of the i-th packet of the studied
stream, if the receiver starts consuming packets immediately after receiving
the first one (i.e., i0 = 0 and t0 = 0, see section 4.1). Figure 4.6 also shows
the empirical CDF of this value.

The analysis of figure 4.6 allows to conclude as to why no video was
observed in the Linux forwarding case: the graph shows a significant fraction
of values far from each other hinting at frequent, large variations of the
buffer state, necessarily leading to overflows or starvation. The frequency-
controlled pacer leads to a contained buffer occupancy, between -1 and 2,
hence JALT (tp) ≤ 2, validating that the built pacer generates a (4, f c)-paced
stream as per property 2.

4.6.3 Experimental qualification of F

The bound on the ALT jitter from section 4.4.4 depends on the behaviour
of function F , summarised as two constants AW (F ) and CW (F ). As they
only depend on the values of F at multiples of W , i.e., values F (Wk) for
all integers k, a sample of values fW,k = F (Wk) is experimentally acquired
by using the frequency-controlled pacer with parameters NW = N0

W = 1
and W = W 0 ≈ 100 µs. From this base sample, the constants AW (F ) and
CW (F ) are estimated for all values of W which are multiple of W 0 and all
NW . Figure 4.7 illustrate these estimates by showing, the sensitivity of these
constants both to varying W for a fixed NW , and to NW for a fixed W .

This figure gives a conclusive argument for increasing NW instead of W .
AW — which quantifies the deviation from a perfect CR stream due to the
instantaneous frequency-error of the pacer — can be observed to be insens-
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Figure 4.7: Experimental estimation of AW (F ) (maximal error when F is
used to measure a time interval of length W), CW (F ) (maximal error when
τF is used to track the current time modulo W ) and AW (F ) + CW (F ), by
varying NW (regularisation parameter used in the NW -regularised version of
F ) and W (sampling period of F ).

itive to increasing only W . That result confirms the intuition motivating
NW -regularisation: solely increasing W improves the τcur estimate, but at
the cost of less frequent τcur updates (as they happen every W ). Globally,
AW is therefore not improved by an increased W .

Figure 4.7 also shows that, fixing W and increasing NW considerably
reduces AW . That result also confirms the intuition: increasing NW yields a
more accurate estimate τcur but does not change how often τcur is update.

Figure 4.7 also shows that CW is similarly sensitive to increasing W
or NW . This is interpreted as an unexpected burst of tα cycles (see sec-
tions 4.5.2) being smoothed by averaging over a longer duration (which is
the consequence of both increasingW and NW ). That smoothening improves
how well τ × F (Wk) tracks the number of te-cycles, i.e., Wk.

Finally, AW + CW , i.e., the bound established in section 4.4, decreases
faster when increasing NW , than it does when increasing W . That gives a
conclusive argument for increasing NW instead of W .

The measured values of AW +CW remain higher than the observed ALT
jitter for W = 1 s and NW = 1. Especially if the ALT jitter were equal to
the value of AW +CW predicted on figure 4.7, the used CR-consumer would
necessarily have starved with an 8-packets buffer. That shows AW +CW +T e

to be a fairly conservative bound on the ALT jitter.

4.6.4 Operational perspective

The experimental results show that (B2, f
c)-pacing is feasible with the

frequency-controlled pacing approach. Also, property 5, and the method
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used to experimentally evaluate F , yields a practical policy for choosing NW

and W : if a stream is to be paced with a target buffer size B2, repeating the
experiments performed in section 4.6.3 allows to determine which values of
NW and W need to be chosen so that AW + CW + 1 ≤ B2

fc
.

As per property 5, the stream will then be guaranteed to be (B2, f
c)-

paced.

4.7 Discussion

In a professional broadcasting environment, the loss of more than a single
video-frame (due to a single packet loss) per day is unacceptable [107]. In
the absence of high-capacity buffers, jitter and drift must be contained. Con-
sidering a system with a receive buffer of reduced capacity (in the order of
10 packets), and receiving a packet stream with a frequency of 134775.22
packets per second, the impact of the approach proposed in this chapter is
discussed hereafter.

4.7.1 Practical impact of jitter reduction

The model from section 4.1 shows that a consistently small jitter (in the
order of a few dozen microseconds) is necessary to enable lossless reception
and timely consumption at a CR-PC with small buffers. From an operational
perspective, if the experienced jitter is too high, the receiving CR-PC needs
to provision a larger buffer. This is not necessarily practically possible, for
example, IP-to-SDI gateway devices are usually implemented on FPGAs,
with limited and non-evolutive buffering capacity.

Because the proposed pacing system uses commodity servers and general-
purpose networking hardware, it is flexible enough to absorb any jitter, and
to adapt to any CR-PC.

Finally, the proposed pacing algorithms assume that, whenever a send
operation is enqueued, the corresponding packet must be available to the
pacer. That condition requires that the pacer stores a sufficient number of
packets (in the B1 buffer of figure 4.1), before starting the execution of the
chosen pacing algorithm. That initial buffering necessarily introduces some
unavoidable delay, depending on the jitter of the input stream. However,
this buffering is not specific to pacing; even in the absence thereof, before
starting packet consumption, the CR-PC would need buffer the same amount
of packets — and, therefore, add the same delay — as would the pacer.
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4.7.2 Quantitative impact of drift compensation

The SMPTE stream used in the experimental evaluation has a nominal
PIT of

(
4497∗30Hz

1.001

)−1 ≈ 7419.761 32 ns. Introducing, for example, a 0.1 ns
error results in a PIT of 7419.76132−0.1 = 7419.661 32 ns, hence an effective
packet rate of 1

7419.661 32 ns
= 134777.04 packets per second. That is, a drift of

134777.04− 134775.22 ≈ 1.82 packets per second.
In the context of professional broadcast, SMPTE streams are unidirec-

tional (allowing, e.g., multicast transmission), and, therefore, no explicit flow
control is performed. In that context, if the CR-PC receives 1.82 packets
more than consumed every second, a 10 packets receive buffer will overflow
after at most 10/1.82 ≈ 5.5 s, which is far from the expected reliability of
a single frame loss per day. Consequently, achieving pacing for professional
broadcast requires the frequency-controlled approach.

4.8 Conclusion

Systems relying on constant-rate packet consumption, and using receiv-
ers with small buffers, require transmitted packets to be regularly paced.
This chapter shows that such high-accuracy packet pacing can be implemen-
ted in software, through designs imposing minimal hardware requirements,
captured in the notion of a Pacing-Assistant.

Data processing workflows requiring CR packet streams (such as media
processing for broadcasting), and which are traditionally implemented us-
ing dedicated hardware, can, using the approach proposed in this chapter,
be replaced by software running on commodity hardware, and still benefit
from a guaranteed sufficiently regular stream. Two pacing algorithms were
presented and analysed. While the free-running algorithm is only applic-
able when the Pacing-Assistant and the packet consumer internal clocks are
synchronised, the frequency-controlled algorithm has a broader-scope, at the
expense of increased operational complexity, arising from the construction
and parametrisation of a frequency-controller (as described in section 4.6.4).

An implementation of the approach proposed in this chapter has been
tested in real conditions and hardware, and the viability of software-based
packet pacers has been experimentally demonstrated for media-production
streams.

From among the conclusions of this chapter, the experiments and ana-
lysis presented demonstrate, that the proposed approach is able to bring
additional functionalities (pacing regularity and minimisation of buffer occu-
pation), which are not available through standard mechanisms as provided
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in general-purpose hardware.
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Chapter 5

vMI: Software Architecture for
Transparent High-Performance
Media Transport

The previous chapters have been qualifying (in chapter 2), measuring (in
chapter 3), and overcoming (in chapter 4) any jitter related to software-based
packet processing. In particular, chapter 4 demonstrated that commodity
servers can be used to transmit media-production packet streams which are
compliant with the timing requirement specified by SMPTE 2022-6 and 2110.

The work developed in this chapter goes beyond constant-rate packet
transport and analyses software-based media processing in itself, and how it
can be implemented on commodity servers in a scalable way. Specifically,
this chapter proposes an architecture enabling media processing by way of
software running on commodity hardware.

Statement of Purpose

At a glance, this chapter reproduces the media production counterpart
of Network Function Virtualisation (NFV) and Service Function Chaining
(SFC), which are designed to enable virtualised and software-based network
packet-processing.

However, while Virtual Network Functions (VNF) process network pack-
ets, the atomic piece of processed information in media-production is a video
frame — embedding some audio samples and ancillary data. The existence
of such coarse “atoms” is an opportunity to reduce the rate of notifications
between the different software elements constituting a media-processing infra-
structure. In other words, while a VNF is either notified for every received
packet or rely on an (unpredictable) batching heuristic, media-processing
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software can be designed so that notifications predictably occur only once
per reception of a full video frame.

To this end, this chapter proposes the virtual Media Interface (vMI) soft-
ware framework, as a way to enable implementing real-time media-processing
applications. vMI introduces the abstraction of media-frames, i.e., atomic
pieces of data for elementary media-processing. By using vMI, a media-
processing application only receives media-frames from abstract inputs and
transmits media-frames to abstract outputs, vMI being responsible for net-
work operations and packet processing.

Separating packet processing (in vMI), from media-processing (in the ap-
plication) allows transparent optimisation of the former, i.e., without modi-
fying the media-processing code. Due to the high data-rate of media streams,
this chapter shows that the use of kernel-bypass and zero-copy signific-
antly improves the scalability attainable on some hardware infrastructure.

Finally, the semantic exposed by vMI to media processing applications is
similar to the Application Programming Interfaces (APIs) exposed by com-
mercially available SDI-based video extension cards, traditionally used to de-
velop media-processing dedicated appliances. That similarity substantially
eases the transition from SDI-based to vMI-based – and, therefore, software-
based – media-processing.

Related Work

Kernel bypass is a technique to implement high-performance network
applications [108], by providing frameworks wherein packets are treated in
user space rather than within the kernel network stack, which reduces the
impact of context switches and removes the need for copies between user and
kernel space. Kernel bypass frameworks include netmap [109] (which reuses
the kernel’s drivers before mapping packets to userspace), the Data Plane
Development Kit (DPDK) [96] (which exposes PCI memory to user space,
thus requiring to re-write NIC drivers in userland), or the eXpress Data Path
[110]. These frameworks are specifically used to implement VNFs [111–113],
virtual switches [82, 114], or user-space Layer-4 stacks [115,116].

As it will be detailed in section 5.3.2, kernel bypass usually requires a
component to perform packet stream demultiplexing, precisely because the
network stack of the operating system is bypassed, and, therefore, cannot per-
form that function anymore. Using a virtual switch for that demultiplexing
is, for instance, proposed by the memif library [117], which enables user-
space applications to connect to the the Vector Packet Processor (VPP) [82]
virtual switch and receive packets matched by the Forwarding Information
Base (FIB). However, while using the memif library imposes a packet copy
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between VPP and the application, this chapter proposes a zero-copy archi-
tecture, bringing considerable performance benefits.

Service Function Chaining (SFC) [118] consists of pipelining mul-
tiple network functions, similarly to media-processing pipelines for media-
production. In that context, the performance challenges raised by software-
based SFC are studied in [119], while scheduling aspects for VNF chains are
explored in [120]. In [121], a disaggregated software-based packet-processing
architecture is proposed, wherein each atomic network function can be shared
between multiple chains. In the context of media distribution (but not media
production), architectures relying on SFC have been introduced, for instance,
to assess video quality in cellular networks [122], or to provide video analytics
(e.g., motion detection) [123].

Packet-based media processing: While complex video pipelines have
been studied and deployed [124], little work has emerged regarding high-
performance software processing of SMPTE 2022-6 or 2110 streams. [125]
argues in favour of the use of dedicated FPGAs and kernel-bypass stacks to
achieve deterministic processing and reach performance and reliability levels
of SDI. In [126], a software implementation is introduced that permits capture
and reassembly of packet-based video streams, before displaying them locally.
Contrary to the work presented in this chapter, [126] does not allow for
pipelined video processing. Furthermore, it uses the kernel network stack,
and inter-process communication is achieved by writing to and reading from
a pcap file – thus incurring a large latency (around 10 s) and packet loss rate
(around 10%). In [127], an FPGA-based platform to demultiplex SMPTE
2110 streams is proposed, with a microsecond-scale latency. However, the
system can only handle one stream at a time, contrary to the work presented
in this chapter.

Chapter Outline

The remainder of this chapter is organised as follows. Section 5.2 defines
the vMI framework and software architecture. In section 5.3, vMI is shown
to be a suitable layer to implement zero-copy and kernel-bypass techniques,
and thereby to optimise the transport of media-frames. Section 5.4 describes
implementation considerations. Section 5.5 provides an experimental evalu-
ation of vMI. Section 5.6 concludes this chapter.
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5.1 Motivation

In this section, the path of a video-frame received by an SDI-based appli-
ance is analysed and, quantitatively compared to the reception of an SMPTE
2022-6 flow on an Ethernet Network Interface Card (NIC).

5.1.1 SDI-based media production: analysis

SDI-based media-processing appliances are proprietary, i.e., their internal
implementation is not necessarily fully documented. This section extracts
common features from the analysis of open source code, of some well-documented
hardware architectures, and of Software Development Kits (SDKs) used by
media-processing appliances.

The Video For Linux version 2 (V4L2) framework

To support media devices such as video cameras, digital television tuner
extension cards, and video-capture devices devices, the Linux kernel offers an
abstraction layer in the form of the Linux Media Subsystem [128]. The specific
component of that subsystem responsible for transmitting and receiving video
frames between hardware devices and user-space applications is the Video For
Linux version 2 (V4L2) framework [129].

The Application Programming Interface (API) exposed by V4L2 has the
following features:

• V4L2 is frame-based: user-space applications which capture video
from V4L2 directly receive full video-frames. As a result, the rate at
which a user-space application is notified is, at most, the video frame-
rate.

• Through the dma-buf sharing API [130], V4L2 allows descriptor-
based video frame manipulation, enabling an application to receive
and send File Descriptors (FD) in place of video buffers. Therefore, if
the video data does not need processing, such an FD is directly trans-
ferred from an input to an output, with no actual video data-transfer.
For example, that can be used to implement software-controlled video-
switching, as video only need to be passed from an input to an output.

• V4L2 supports zero-copy data reception. Passed as arguments to
the mmap system call, the aforementioned FD enables direct access to
the buffer targeted by the DMA transfer performed upon video frame
acquisition.
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Even as a piece of software, V4L2 assists hardware-based media-processing,
as it can be used with SDI extension cards, and hardware processing pipelines
spanning over multiple processing devices.

SDI extension cards

Some SDI-based media production appliances consists of commodity serv-
ers equipped with compute resources (as Central Processing Units (CPU) and
Graphical Processing Units (GPU)) and SDI extension cards, providing SDI
Input/Outputs (I/O). In many cases, for capturing and generating video, me-
dia processing software communicate with those cards through proprietary
SDKs such as [131–133].

Among those SDI card, the AJA PCI cards have an open-source driver
available [134]. An analysis of that source code shows that the driver integ-
rates into the V4L2 framework, hence generates a maximum of one user-space
notification per received video-frame. Furthermore, for each received video-
frame, the SDI card raises two interrupts corresponding to the availability
of a new video-frame, and the completion of the associated Direct Memory
Access transfer. The interrupt rate corresponding to one video stream is,
hence, twice the video frame-rate.

Hardware processing pipelines

Another class of media-processing appliances consists of hardware-only
solutions, controlled by V4L2. An example thereof, the Zynq-7000 SoC
ZC702 Base Targeted Reference Design, a media-processing System on Chip
(SoC) integrating a Field Programmable Gateway Array (FPGA) [135], is
analysed in the following.

That SoC embeds an ARM processor running a modified Linux ker-
nel [136], and a set of media-processing elements (called media entities) im-
plemented in the FPGA. Each media entity has one or multiple I/O channels,
and a Linux-based application such as GStreamer [137,138] is used to chain
multiple media entities into a media-processing pipeline. Among those media
entities are a video test pattern generator (one output), a video input (one
output), a video output (one input), and a Sobel filter (one input, and one
output). All these media entities have DMA controllers, with access to a
centralized memory space (shared with the ARM processor).

Those media entities have drivers exposing a V4L2 API to user-space
applications. A user-space application controls the parameters of the media
entities, and, as described in section 5.1.1, is notified upon reception of a
video-frame from each of them. By using the dma-buf sharing API, the user-
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space application dequeues file descriptors representing video-frames from the
output of each media-entity (which is a step of the media-processing pipeline),
and enqueues them into the input of the next media-entity in the pipeline.
Therefore, the user-space application only sees video-frames as abstract file
descriptors and never reads the underlying data, the latter being processed
by the hardware media-entities.

5.1.2 Processing high-throughput packet streams for me-
dia-production

Two approaches enable applications to receive uncompressed media, trans-
ported by packet-streams, as specified by SMPTE 2022-6.

The first consists of hardware-based packet processing, which results in
reconstructed video frames being exposed to the software. For example,
some video extension cards (similar to the SDI extension cards mentioned
in section 5.1.1), have Ethernet sockets instead of SDI coaxial I/Os, and use
dedicated hardware to perform packet processing. As a result, that approach
would lack flexibility as any evolution in the media-packet format would
require hardware changes.

The second approach consists of using NICs, resulting in the software
receiving network packets, which would need be processed to extract a media-
stream, before being transmitted to the application. Due to its hardware-
independence and hence, flexibility, that latter approach is analyzed in this
section.

Packet-rate analysis

In the following, a SMPTE 2022-6 stream encapsulating a 1920x1080
interlaced video at 30

1.001
≈ 29.97 frames per second is analyzed. According

to [27], a frame is encoded as 1125 lines, each containing 2200 video samples
encoded on 20 bits, for a frame size of 6 187 500 B. According to the SMPTE
2022-6 encapsulation [44], each IP packet contains up to 1376 B of video
payload, i.e., more than 6187500

1376
≈ 4496.72 packets are required to encode one

video frame. Therefore, the packet rate of such a SMPTE 2022-6 stream is
4497× 30

1.001
≈ 134775 packets per second.

Packet flow

As described in [66], upon arrival at the NIC, a packet is enqueued in a re-
ceive queue, allocated by the NIC’s driver. Then, the NIC raises an interrupt
to notify the operating system, which will process the received packet, copy
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Table 5.1: Measured interrupt rates upon SMPTE 2022-6 streams reception
on a single core.

With Interrupt Coales-
cing

Without Interrupt Co-
alescing

Stream
Count

Interrupt
rate

CPU load Interrupt
rate

CPU load

1 7909 0.135 134773 0.484
2 15816 0.289 269536 0.877
3 23724 0.443 367471 0.999
4 31633 0.578 268388 1.00
5 39541 0.716 198792 1.00
6 47449 0.845 122283 1.00

it into a user-space-allocated buffer, and notify the user-space application.
This flow thereby incurs at least two context-switches, corresponding to the
raised interrupt, and to the notification of the user-space application. At high
packet-rates, the overhead incurred by context-switches motivates batching,
e.g., (i) interrupt coalescing and (ii) polling. By implementing interrupt co-
alescing, a NIC limits the rate at which it raises interrupts notifying about
packet reception, so as to reduce the CPU load. Polling with the New API
(NAPI) [139] allows the operating system to mask interrupts from the NIC,
and process multiple packets from the receive queue at once.

Interrupt coalescing and NAPI-based polling use heuristics to determine
optimal batch sizes, ignoring the application-level batches occurring when
full video frames — e.g., 4497 packets for streams such as described in sec-
tion 5.1.2 — are received. Table 5.1 depicts the interrupt count and CPU
load when a single CPU core is exposed to a varying number of SMPTE
2022-6 streams. Even with interrupt coalescing, the interrupt rate observed
is multiple orders of magnitude higher than the video framerate, as opposed
to the interrupt rate resulting from video reception on SDI extension cards,
as described sections 5.1.1 and 5.1.1.

A high-interrupt rate can artificially degrade the performance of packet-
processing, as described in [140]. Moreover, as the user-space application is
notified of incoming packets, that high measured interrupt-rate is responsible
for a high context-switch rate, which is detrimental to performance. That
issue is amplified when pipelining multiple media-processing applications on
one server, if packet-based transport is also used between successive stages.
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Towards a virtual Media Interfaces (vMI)

The limitations described in section 5.1.2 motivate an architecture provid-
ing an abstraction layer responsible for the transport of media-frames. In par-
ticular, that abstraction layer should mediate all video-frame-based (or more
generally media-frame-based) communication between the media-processing
application, and commodity NICs. That layer would provide a virtual Media
Interface (vMI), mimicking the API offered by software frameworks interact-
ing with SDI-based processing hardware. In particular, vMI targets:
Support for multiple transports: Similarly to unified frameworks such
as V4L2, which are compatible with a variety of video devices, vMI aims at
providing multiple types of media-transports, packet-based, or not.
Low notification overhead: An application relying on vMI should only
perform one sending call to transmit a media-frame, and only be notified
once per received media-frame. Furthermore, depending on the underlying
transport, vMI should be designed so as to minimize notifications from the
operating system or other processes.
An endpoint-agnostic API: While a packet-receiving/transmitting ap-
plication must be aware of the packets’ origin/destination, vMI should only
expose opaque inputs/outputs. This allows media-frame reception/trans-
mission, independently from the identity of the remote transmitter/receiver.
Such an endpoint-agnostic API is natural in a media-production environ-
ment, as SDI-cabling is part of the infrastructure, not of media-processing.
Buffer-sharing and zero-copy: One of the underlying motivation to soft-
warization is gained flexibility, in particular through modularity. By pur-
suing interprocess media-frame sharing and zero-copy media-frame trans-
mission (similarly to the V4L2 framework described in section 5.1.1), vMI
prevents the performance degradation described in section 5.1.2 upon ap-
plication chaining. That enables the construction of a disaggregated media-
processing pipeline, i.e., a modular chain of user-space applications, each
performing an elementary operation on the media-stream.

5.2 Overview of the vMI framework
In this section, the vMI framework is described, and its use to implement

media-processing application is illustrated.

5.2.1 Main Concepts

To provide media-processing applications with an abstract interface, hid-
ing how media is transported, vMI introduces the concepts illustrated in
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figure 5.1 and defined in the following.
vMI Frames are objects, manipulated by a media-processing application,
and represent media-frames. They are composed of media-data, e.g., the
pixel values of a video frame, and vMI metadata, e.g., a media sampling
timestamp, a media-frame sequence number, the type of media-data (audio
or video), etc.
A vMI Module is the software equivalent of an SDI extension card. A vMI
module is instantiated by a media-processing application and is configured
with a set of vMI inputs and outputs, equivalents of I/O connectors on an
SDI extension card, and a vMI callback. Each vMI input and output has its
own configuration, embedded in the configuration of the vMI module. The
vMI callback is a routine, specific to the application, and associated with the
vMI module. Upon reception of any complete media-frame, that routine is
executed, similarly to an interrupt service routine called when an SDI card
receives a full video-frame. Therefore, the callback routine of a vMI module
with i inputs, each receiving a stream at a frame-rate f , would be called at
a rate f × i.
vMI Inputs/Outputs (I/O) are endpoints for the reception and transmis-
sion of vMI frames from the infrastructure. They are never directly manip-
ulated by the application. They have a type, depending on the underlying
channel used to receive or transmit vMI frames. Some examples of vMI I/O
types are listed in table 5.2, along with their configuration. For example,
a vMI input of type SMPTE 2022-6 is used to receive an SMPTE 2022-6
stream from a network interface, decode it, and transform the received video
frames into vMI frames usable by the application.

5.2.2 The Flow of a vMI frame

Figure 5.1 depicts the flow of a vMI frame through a media-processing
application. A vMI input receives data from a communication channel ( 1 )
and builds a vMI frame. Then, the vMI callback routine is executed ( 2 ) with
arguments including an opaque value, identifying the received frame, and
an index identifying the corresponding input. That application-dependent
routine triggers actual processing on the frame (e.g., image processing). The
vMI module is then requested to transmit the modified vMI frame ( 3 ) to
the infrastructure, via a vMI output (identified by its index). Finally, the
corresponding vMI output performs that transmission ( 4 ).
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Table 5.2: Examples of vMI I/O types

Type Description Configuration
SMPTE
2022-6
Input

On the network interface
with IP address interfaceAd-
dress, subscribe to the mul-
ticast group mgrp, listen to
UDP port port to receive an
SMPTE 2022-6 stream and
decode it.

mcastgroup=mgrp,
ip=interfaceAddress,
port=port

SMPTE
2022-6
Output

Encode vMI frames into an
SMPTE 2022-6 stream, and
transmit it to the multicast
group mgrp, on UDP port
port, through the network
interface with IP address in-
terfaceAddress.

mcastgroup=mgrp,
ip=interfaceAddress,
port=port

Shared
Memory
Input

Receive vMI frames from
a shared memory segment
identified by id, whenever
notified on UDP port id.

control=id

Shared
Memory
Output

Copy vMI frames into a
shared memory segment
identified by id, and sends
a notification on UDP port
id.

control=id
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Figure 5.1: Flow of a vMI frame through a media-processing application

5.2.3 Disaggregated media-processing

A media-processing pipeline is a sequence of vMI-based applications, each
performing some elementary media-processing. Compared to monolithic
media-processing (e.g., as performed by dedicated, SDI-based, appliances),
such a disaggregated media-processing architecture allows to seamlessly dis-
tribute compute-intensive media-processing, either over multiple CPUs on
the same server or over multiple physical servers.

As depicted in figure 5.2, applications in a media-processing pipeline must
be configured so as to ensure the connection of the vMI output of each ap-
plication, to the vMI input of the next in the pipeline. As shown in table 5.2,
such a connection can be implemented over the network (e.g., with a pair of
SMPTE 2022-6 I/Os) or over Inter-Process Communication (IPC) channels
provided by the operating system (e.g., with a pair of Shared Memory I/Os).
vMI enables seamless switching between those different transport types, as
it only requires the reconfiguration of the vMI modules, hence additional
flexibility in the construction of media-processing pipelines.

5.3 High-performance vMI frame transport

This section describes how transport of vMI frames can be optimised by
way of vMI I/Os using kernel-bypass and zero-copy. This allows implement-
ing a media-processing pipeline as described in section 5.2, with minimal
notification overhead, and minimal data copies.
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5.3.1 Interprocess vMI frame sharing

The shared memory vMI I/Os in table 5.2 impose a memory copy when
a vMI frame is sent through a vMI output. This is because those I/Os only
share memory segments between one vMI input and one vMI output. For
example, in a media processing pipeline with three applications A1, A2 and
A3, and using two shared memory segments S1→2 (connecting the output
of A1 to the input of A2) and S2→3 (connecting the output of A2 to the
input of A3), A3 does not have access to S1→2. Thus a vMI frame copy
is necessary between S1→2 and S2→3. A pipeline comprising n applications
would, therefore, require at least n− 2 copies.

To enable all processes (hosted on the same server) in a media-processing
pipeline to operate with a minimal number of copies, they should, therefore,
all have access to a shared memory region, used to allocate all the vMI
frames. To that end, vMI uses the multiprocessing capabilities of the Data-
Plane Development Kit (DPDK) [96].

DPDK-based memory sharing

DPDK implements multi-processing capabilities so that multiple inde-
pendent processes, whose memory space is theoretically isolated from each
other, can collaborate to process packets. To that end, DPDK provides a
memory allocator which uses hugepages [141], i.e., operating-system-provided
memory regions, identified by a file descriptor, shareable across process, and
necessarily backed by contiguous physical memory. How DPDK allows mul-
tiple processes to access the same memory is outlined in the steps below.
Step 1: A first process, AM , is started, and initialises the DPDK library in
primary mode. AM will map some hugepages into virtual memory (by way
of the mmap system call), which are then used to initialise DPDK’s internal
structures. The mappings between each hugepage and the corresponding vir-
tual memory address are finally recorded in a specific file f .
Step 2: Another process A1 is started, and initialises the DPDK library in
secondary mode. Each hugepage-to-virtual-memory address mapping, recor-
ded in f , is tentatively reproduced by A1, by using the mmap system call. 1

Step 3: Other secondary processes A2, A3, ... go through step 2 and therefore
can all see the same hugepages, mapped at the same virtual addresses, as if
they were part of the same memory space.

A vMI module allows specifying whether vMI must initialise DPDK, in

1Because of Address Space Layout Randomisation (ALSR) [142], this can fail as the
virtual memory addresses used in one of the mapping can collide with the heap, stack or
code of A1
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Figure 5.2: A vMI-based media-processing pipeline

which case, all vMI frames will be allocated by using the DPDK-provided
allocator and, hence, are shareable among multiple processes in the same
media-processing pipeline.

DPDK-based message-passing

DPDK also provides synchronisation by way of a message API, allowing
a primary or secondary process to register a message-handler callback, ex-
ecuted each time a certain message (identified by a string) is received. If
a primary process AM sends a message m, all secondary processes A1, A2...
will execute their message-handler callback for m, if any. If a secondary pro-
cess A1 sends a message m, only the primary process AM will execute the
message-handler callback for m. By using that message API, each process
in a media-processing pipeline can signal to the next that a vMI frame is
available for processing.

Zero-copy vMI shared memory I/Os

The following steps describe the use of the DPDK features introduced
in sections 5.3.1 and 5.3.1 to build a zero-copy media-processing pipeline.
To that end, zero-copy vMI shared memory I/Os are introduced, in
addition to the I/Os described in table 5.2.

1. First, a unique vMI master process AM initialises DPDK as a primary
process. AM is not a media-processing application, but is part of the
infrastructure, with as sole responsibility, the role of a hub for messages
between media processing applications. This is because secondary-to-
secondary messages are not supported, per section 5.3.1.

2. Then vMI-based media-processing applications A1, A2, ... are started as
secondary processes and configured to use DPDK allocated memory, as
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described in section 5.3.1. These processes have zero-copy vMI inputs
and/or zero-copy vMI outputs, each configured with a queue identifier
and a notification identifier. Each input allocates (in shared memory) a
queue of pointers to vMI frames, recorded in a shared-memory structure
under the same name as the queue identifier. This queue will be used by
the input to receive vMI frames. Each input also registers a message-
handler callback for the message named as the notification identifier.
This message-handler callback is executed whenever a new vMI frame
is available in the queue.

Once all vMI I/Os are initialised, a flow of frames can follow a zero-
copy path across multiple media-processing applications A1, A2, .... Each
application Ai in the pipeline has a zero-copy vMI output directly connected
to a zero-copy vMI input of Ai+1. Those vMI I/Os are both configured with
a queue identifier Qi,i+1, and with a notification identifier Ni,i+1.

First, a vMI frame is allocated, processed in A1, and enqueued for trans-
mission on a zero-copy vMI output. vMI then inserts the address of that vMI
frame in the queue, identified Q1,2, and sends the notification N1,2, received
by the vMI master, which, as a hub, repeats it to all secondary processes.
Due to the initialisation of its zero-copy vMI input, A2 executes the message-
handler callback for N1,2, signalling the availability, in queue Q1,2, of a vMI
frame address (also valid in A2, per section 5.3.1), which is finally dequeued,
and passed to the media-processing part of A2. The latter performs some
in-place processing, and similarly sends out the vMI frame to A3, and so on.

5.3.2 Kernel-bypass networking

Kernel-bypass networking consists of moving packet processing from the
kernel network-stack to a user-space process. In that setting, the kernel is
therefore not able to perform IP- or port-based flow demultiplexing upon
packet reception, and applications using kernel-bypass necessarily follow one
of three models:
No-demultiplexing implies that each network interface is fully owned by
a single application, i.e., packets received on that interface are processed by
that application. That is simple to deploy, as the set of network interfaces
used by each application are disjoint, thus little interference is possible. How-
ever, given that a media-stream can have a data-rate as low as 1.5 Gbit/s,
while the line-rate of a typical server-grade NIC is 10 Gbit/s, that model is
likely to yield network capacity underutilisation: a media-processing applic-
ation receiving one single stream would still own a full network interface,
hence the waste of some 8.5 Gbit/s worth of capacity.
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Hardware-assisted demultiplexing uses the fact that some NICs can
match received packets against a set of rules, specified by the driver: each
packet matching a rule is inserted into a specified Receive (RX) queue. A
NIC implementing that feature can perform demultiplexing if, at the software
layer, there is a way to assign a queue to a given user-space process. Remote
Direct Memory Access (RDMA) [143] is one hardware-assisted kernel-bypass
technique, allowing received packets matching specific rules to be directly
delivered to the memory of a user-space process, i.e., RDMA-capable NICs
include hardware-assisted demultiplexing. NICs implementing Single-Root
Input Output/Virtualisation (SR-IOV) [144] expose a set of Virtual Func-
tions (VFs) to the operating system, each VF appearing as an independent
interface. Demultiplexing can, therefore, be achieved by configuring each
VF to receive packets matching an application-specific set of rules, and then
assigning it to the corresponding application. Contrary to the absence of
demultiplexing, that model allows to fully use the capacity of a NIC, at
the cost of increased operational complexity, and hardware-independence, as
each NIC has its own demultiplexing capabilities, and must be configured
independently.
Software-mediated demultiplexing implies that all NICs are owned by
a virtual switch, i.e., a user-space process receiving all the incoming packets,
and taking all demultiplexing decisions. Replacing the operating system’s
network stack by a user-space application, the virtual switch is, therefore,
required to provide high-performance packet-processing. Once a packet is
demultiplexed by the virtual switch, an IPC mechanism is used to pass the
packet to the relevant application. That is hardware-independent, but re-
quires an additional software component (the virtual switch), increasing op-
erational complexity and resource usage.

To maximise hardware-independence (one of the goals of the softwarisa-
tion of media production) vMI relies on the software-mediated demultiplexing
model, and uses VPP as a virtual switch. No packet-copy is performed when
packets are received by VPP and are passed to a media-processing application
through vMI, saving memory bandwidth and reducing latency.

Flow establishment

The SMPTE 2022-6 vMI input from table 5.2 is extended with a “VPP”
mode to enable kernel bypass. In that mode, the vMI input initialises by con-
necting to a running instance of VPP (through the VPP API) and passing all
the relevant networking parameters (multicast group, port, interface) of the
media stream to receive. Similar to DPDK’s memory sharing (section 5.3.1),
the vMI input maps the memory used by VPP, so that all the packet vir-
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Algorithm 3: Batched Polling algorithm
Parameter : V (batch size)
Primitive : getRXQueueSize(): get the current number of enqueued

packets
Primitive : dequeueFromRXQueue(n): dequeue n packet addresses

from the packet RX queue and return them in an array
Primitive : processPkts(a): decode the packets in array and

extract media data
Primitive : yieldScheduler(): yields so that the operating system

can schedule other threads
1 pendingArray ← array of size V ;
2 while True do
3 available← getRXQueueSize();
4 if available ≥ V then
5 pendingArray ← dequeueFromRXQueue(V);
6 processPkts(pendingArray) ;
7 end
8 else
9 yieldScheduler() ;

10 end
11 end

tual memory addresses which are seen by VPP, become valid to the media
processing application. Then two queues are created: the packet RX queue,
and the packet recycling queue, whose uses are described hereafter. Finally,
an entry is created in VPP’s Forwarding Information Base (FIB), so that re-
ceived packet matching the vMI input configuration (multicast group, port,
and interface) are passed to the application.

Packet receive flow

VPP constantly polls the state of all the RX queues of all the NICs to
which it has access. When a NIC receives a packet, it is transferred using
DMA at a location, pre-allocated by VPP. It is then processed, and matched
against the FIB. If it matches a rule corresponding to a vMI input, the
address of that packet is enqueued in the corresponding packet RX queue,
located in a memory area shared among all vMI-based applications.

The application, to which the vMI input belongs, is actively polling the
vMI input packet RX queue. Arriving packets are dequeued, reassembled,
and decoded as a vMI frame, before being passed to the media-processing
application. At that point, the packet buffers are no longer needed, and all
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relevant media-data has been extracted by vMI.

Buffer recycling flow

Unlike the zero-copy flow for full vMI frames, described in section 5.3.1,
the buffer transmitted from VPP to a media-processing application is not
allocated by the vMI framework, but by VPP. Thus, it must also be deal-
located by VPP. To that end, when a received packet is no longer needed
by the vMI input, its address is inserted into the packet recycling queue.
Whenever VPP sees an address in the packet recycling queue, it deallocates
the corresponding buffer.

Performance considerations

Unlike vMI frames, which are transmitted at the frame-rate of the video
(between 25 and 60 frames per second), packets are enqueued and dequeued
from the packet RX queue at the packet-rate of the stream (in the order of
100000 packets per second). Such a high rate prevents VPP from explicitly
notifying the application (as described in section 5.3.1 for vMI frames), which
is, therefore, required to poll the packet RX queue. As it is shared between
the VPP thread performing packet processing and the application thread
consuming the packets, frequent enqueue and dequeue operations are a cause
for performance degradation. That is mainly due to locking, and cache-line
invalidation.

Locking occurs in a multi-producer or multi-consumer scenario with mul-
tiple threads concurrently enqueuing/dequeuing data into/from a shared
memory queue. It occurs when using, e.g., atomic Compare-and-SWap (CSW)
instructions to increment/decrement pointers to the next-available or last-
used slot in the queue, as described in [145]. Locking is avoided in vMI
by imposing that each packet RX queue has a single producer and a single
consumer.

As documented in the MESI cache-coherency protocol [146], cache-line
invalidation necessarily occurs as the consumer thread updates the last-used
slot, which needs to be read by the producing thread to determine if there is
enough room to enqueue a new element or not. That is avoided by performing
a single dequeue operation for multiple packets at once. That approach is
detailed in algorithm 3, describing how packets from the packet RX queues
are consumed by vMI.
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Figure 5.3: Hardware setup used in the conducted experiments

5.4 Implementation

The vMI framework as presented in section 5.2 has been implemented
and has been extended with the high-performance vMI I/Os presented in
section 5.3, i.e., zero-copy shared memory I/Os as well as VPP-based in-
puts. Moreover, both the vMI master and virtual switch features of sec-
tions 5.3.1 and 5.3.2 were implemented in a single VPP plugin, effectively
merging them into a single process, supporting the infrastructure necessary
to high-performance media-transport.

5.5 Evaluation

The high-performance media transport methods developed in section 5.3
are, first, microbenchmarked, to determine the impact of VPP-based me-
dia transport on resource usage and scalability. Then, a realistic media-
processing pipeline is implemented, and the impact of memory sharing on
vMI frame transport is quantified.

5.5.1 Experimental methodology

Figure 5.3 depicts the hardware setup used. A media stream generator,
composed of an SDI player and an SDI-to-SMPTE 2022-6 converter, pro-
duces a total of six multicast SMPTE 2022-6 streams. Each one of those is
a 1080i59.94 video stream, transported over a UDP/IP stream amounting to
134775 packets per second, and 1.5 Gbit/s. The generator is connected to a
non-blocking 10 Gbit/s packet switch. Software media-processing is imple-
mented on an x86 server with two Intel Xeon E5-2690 v4 CPUs, totalising
28 cores, 128 GB of quad-channel 2400MHz DDR4 RAM, and an Intel X710
NIC with four 10 Gbit/s ports all connected to the packet switch. That setup
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allows each of the six multicast streams to be replicated onto the four ports
of the NIC, allowing reception by the server of up to 24 streams.

The server runs a Linux 4.19.3 kernel, configured in full dynamic tick
mode2, with 24 CPU cores isolated from the scheduler to reduce interference
from threads not involved in the experiments. Also, interrupt requests from
devices, other than the NIC, are routed to one of the four remaining CPU
cores.

Parameters and Metrics

The experiments consist of receiving and processing N media-streams on
the server. The system scalability is evaluated by increasing N , and evalu-
ating the reliability of each processing pipeline, using two metrics, reported
every second.
Losses Per Second (LPS): Due to buffer overflows, packets may be dropped
at some point in time between arrival at the NIC and consumption by vMI.
SMPTE 2022-6 streams are not resilient to packet drops, making such events
critical errors triggering video interruption. The LPS metric is generated by
evaluating, over consecutive one-second intervals, whether a loss happened,
and computing the ratio of the number of intervals with losses, over the total
number of intervals.
Frames Per Second (FPS): Due to insufficient compute resources, a media-
processing pipeline may not be able to process vMI frames at the nominal
video frame rate, hence a drop in the number of processed frames per second.
Memory Bandwidth (MEMBW): The zero-copy optimisations presented
in section 5.3 aims at reducing the impact of media streams on the memory
bus usage, quantified by sampling hardware performance counters embedded
in the memory controller.

CPU core allocation strategy

Between an SMPTE 2022-6 packet arrival at the NIC, and the completion
of the associated media processing pipeline, these compute-intensive tasks
are performed, all in different threads: First, the packet undergoes network
processing either in kernel-space or, if VPP is used, in user-space. Then,
application reception occurs, either through a call to the socket API or, if
VPP is used, by packet RX queue polling. Finally, the packet is parsed to
build a vMI frame.

During the experiments presented hereafter, available CPU cores are par-
titioned into task groups T1, T2, ..., Tn, each associated to one of the aforemen-

2https://lwn.net/Articles/549580/
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Ingress Converter Encoder

SMPTE 2022-6

vMI Frames
(10 bits)

vMI Frames (8 bits)

H264

Figure 5.4: Logical view of the three-stage pipeline used in the conducted
experimental evaluation. The ingress receives a SMPTE 2022-6 stream, and
decodes it into a sequence of vMI frames containing containing 10 bits video,
which is then transformed into 10 bits video by the converter, and finally
encoded into an H264 stream.

tioned tasks (network processing, application reception, and parsing). The
presented results are parameterised by the number Ci of CPU cores allocated
to each task group Ti. To avoid an intractable, exhaustive, parameter-space
exploration, CPU cores are allocated to tasks by iteratively increasing N ,
and determining the limiting task group Tl. A CPU core is then tentatively
moved from one of the other task groups Tj to the limiting task group, such
that Cl is incremented and Cj is decremented. If doing so is possible without
making Tj a limiting taskgroup, that process is iterated. Otherwise, the
obtained allocation is considered a local optimum.

5.5.2 Microbenchmarks

The impact of VPP-based kernel bypass is evaluated on a single-stage
media-processing pipeline, comprising an application configured with an SMPTE
2022-6 input, using either VPP or the kernel network stack, and simply drop-
ping the received vMI frames. Microbenchmarking only uses 12 out of the
14 CPU cores on the first CPU, as it also controls the PCI Express bus con-
nected to the NIC. The two remaining cores are used for tasks unrelated to
media-processing, such as gathering experimental results.

Task groups description

Packets are processed differently when using the kernel network-stack, or
when using VPP. In the former case, packet-processing is interrupt-driven
and is performed by the CPU core which received the corresponding In-
terrupt ReQuest (IRQ). In the following, CPU cores assigned to receiving
those IRQs are called IRQ Cores. In the latter case, packet-processing is
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Figure 5.5: vMI performance using the kernel network stack, with an applic-
ation only receiving vMI frames. The optimal allocation is represented in the
last column, as the total number of available cores is 12 = 3 IRQ Cores + 5
RX Cores + 4 Parse Cores. Because they represent Losses Per Second (LPS),
the graphs of the third row show no data points in lossless configurations.

performed by VPP, which at least need two CPU cores3. The number of
CPU cores affected to VPP was never the limiting factor in the conducted
experiments, and hence, is not part of the parameter-space considered. CPU
cores performing application-reception are referred to as RX Cores, the ones
performing SMPTE 2022-6 parsing and decoding are called Parse Cores.

115



CHAPTER 5. VMI
5.5. EVALUATION

1 RX Core 
5 Parse Cores 

5 RX Cores 
1 Parse Core 

5 RX Cores, 
5 Parse Cores 

M
E

M
B

W
 (

M
B

/s
)

F
P

S
L
P

S

2 4 6 8 2 4 6 8 5 10 15 20 25

0

10000

20000

30000

0

20

40

60

0.00

0.25

0.50

0.75

1.00

Number of Streams

Lossless

Lossy

Figure 5.6: vMI performance using VPP, with an application only receiving
vMI frames. The optimal allocation is represented in the last column, as the
total number of available cores is 12 = 2 VPP Cores + 5 RX Cores + 5 Parse
Cores. Because they represent Losses Per Second (LPS), the graphs of the
third row show no data points in lossless configurations.

Results

Figures 5.5 and 5.6 summarise the results, with the kernel network-stack
and VPP, respectively. In both cases, the optimal CPU core allocation is
depicted in the last column, and, the marginal performance of each task is
quantified by limiting the corresponding task group to one CPU core.

When using the kernel network-stack, and configuring the NIC with a
single queue and a single IRQ core, 3 streams can be received before exper-
iencing packet losses. If the NIC is configured with multiple queues, each

3VPP requires a main core (handling all tasks unrelated to packet processing) and a
worker core (actually performing packet processing).
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receiving a single stream, a single IRQ core is able to process 6 streams.
Therefore, all the experiments concerning the kernel network-stack were con-
ducted by ensuring that each stream is received on a different queue, inde-
pendently from the number of IRQ cores.

Figures 5.5 and 5.6 show that kernel-bypass networking with VPP im-
proves scalability by 40%, as the maximum number of received flows is in-
creased from 15 to 21. Despite zero-copy packet transmission, the VPP-based
architecture relies on busy-polling, which introduces a high fixed memory-
bandwidth cost. The marginal benefits of zero-copy only appear when re-
ceiving more than 4 streams.

Using VPP, between 21 and 24 streams, the observed losses are sporadic,
unlike losses appearing above 15 streams when using the kernel network-
stack. The former case is explainable by unpredictable latencies leading
to queue overflows, whereas the latter case results from low overall packet-
processing efficiency.

Finally, when using kernel-bypass, context switches, and hence Last Level
Cache (LLC) thrashing, is avoided, improving the performance of the parsing
code. That is experimentally supported in figures 5.5 and 5.6, which show
that, when using the kernel network-stack, a single parse core can process
up to 5 streams before the FPS drops, whereas when using VPP, the FPS
remains stable even with 8 received streams.

5.5.3 Full media-processing pipeline

In this section, the impact of the conjunction of kernel-bypass and zero-
copy vMI frame transport is quantified on a realistic multi-stage media pro-
cessing pipeline.

Description

As depicted in figure 5.4, a media-processing pipeline of three stages, each
implemented as a vMI-based application, is used.

The ingress application includes an SMPTE 2022-6 input and a shared
memory output. It is responsible for receiving a media stream from the
network and producing a corresponding stream of vMI frames. Those embed
video data, encoded as a sequence of 10-bits samples, packed in a contiguous
buffer. Therefore, the first video byte contains the eight Most Significant
Bits (MSB) of the first sample, the second video byte contains the two Least
Significant Bits (LSB) of the first sample, and the six MSB of the second
sample, etc. To further ease processing, the converter application drops the
two LSBs of each sample, to produce vMI frames where each byte is a sample.
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Figure 5.7: vMI performance using the kernel network stack, with a full
media processing pipeline. A copy is performed at each stage of the pipeline.
The optimal allocation is represented in the last column, as the total number
of available cores is 24 = 3 IRQ Cores + 5 RX Cores + 4 Parse Cores + 5
Convert Cores + 7 Encode Cores.

This processing is CPU-and-memory-intensive, as it requires multiple bit-
shifting and bit-masking operations, making the converter a realistic facsimile
of video processing applications. Finally, an encoder application uses the
x264 library to transform vMI frames into a compressed H264 video stream,
ready for media distribution.

This media-processing pipeline is evaluated in two configurations. First,
the SMPTE 2022-6 inputs are using the kernel network-stack and each stage
communicates with the next stage with a different shared memory segment,
implying vMI-frames copies as stated in section 5.3.1. The second configur-
ation uses VPP-based SMPTE 2022-6 inputs and zero-copy shared memory
I/Os. Thus, the first configuration serves as a baseline to quantify the vMI
frame transport optimisations introduced in section 5.3.

Additional task groups

The ingress stage of the pipeline requires the same tasks groups as men-
tioned in section 5.5.2 for microbenchmarking. Those are allocated the same
CPU cores as the optimal allocation iteratively determined in section 5.5.2.
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Figure 5.8: vMI performance using VPP and zero-copy, with a full media
processing pipeline. The optimal allocation is represented in the last column,
as the total number of available cores is 24 = 2 VPP Cores + 5 RX Cores +
5 Parse Cores + 5 Convert Cores + 7 Encode Cores.

Therefore, all the cores of the first CPU are dedicated to reception and
parsing of SMPTE 2022-6 streams. The task groups corresponding to 10-
bits-to-8-bits video conversion and H264 video encoding are allocated CPU
cores from the second CPU, which, in the following, are called convert cores
and encode cores, respectively.

Results

Results are depicted in figure 5.7 for the baseline configuration and in
figure 5.8 for the VPP-based zero-copy configuration. In the baseline config-
uration, as vMI frames are copied between stages, the associated allocated
memory can be immediately reused once they reach the vMI output, hence
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no apparent losses, even when the convert-and-encode tasks consume excess-
ive resources. In this situation, scalability must be quantified by way of the
FPS metric.

In the zero-copy configuration, the lifetime of vMI frames is that of their
progress through the whole pipeline (hosted on a single server). As vMI
uses a pooled allocator for frames, whenever processing in any stage of the
pipeline takes excessive time, packet losses occur as the ingress can allocate
no further vMI frames. In this situation, scalability is quantifiable by the
FPS and the LPS.

Determined using the method in section 5.5.1, the optimal allocation
consists of five convert CPU cores, and seven encode CPU cores, for both
configurations. By allocating a single CPU core to the convert task group, the
marginal scalability of 10-to-8-bits video conversion is quantified. Figures 5.7
and 5.8 show that VPP and zero-copy operation enable processing 4 streams,
whereas the baseline only allowed 3 streams.

Similarly, when using a single encode core, the baseline configuration only
allows 2 streams, vs 5 for the one with optimised vMI-frame transport. When
considering the performance of the full system, the optimisations presented
in section 5.3 increase scalability by 89%, with 17 processed streams vs 9
with the baseline configuration.

Finally, comparing figures 5.8 and 5.7 shows that the proposed optim-
isations systematically incur a smaller memory-bandwidth footprint, despite
the polling overhead of VPP (unlike microbenchmarks). This is explained
by the pipeline’s depth, which, due to memory-copies, strongly penalises the
baseline case, even when considering a single processed stream.

5.6 Conclusion

Until standardisation of SMPTE 2022-6 and 2110, real-time uncompressed
media streams for professional broadcast were transported over SDI, with
as consequence a limited flexibility due to stressed hardware-dependencies.
Even after SMPTE 2022-6 proposed a way of encapsulating SDI data over
IP, it has mostly been used to replace video switching with IP routing, as
described in chapter 1. Using commodity NICs for processing is challenging,
due to the high data-rate and packet-rates involved.

The vMI architecture, proposed in this chapter, was designed, and has
been shown, to enable implementation of media processing applications us-
ing commodity hardware, without breaking the concepts introduced by APIs
coming from the SDI-world. Specifically, a full software-oriented architec-
ture including kernel bypass networking and zero-copy frame transmission
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has been specified and implemented, while targeting the use of as generic
hardware as possible. The experimental evaluation showed both the feasib-
ility and scalability of vMI. Quantitatively, the conjunction of kernel bypass
networking and zero-copy frame transmission improved scalability by 89%,
for a realistic media-processing pipeline, hosted on a single server.

From a different perspective, vMI is a key enabler for intra-server media
transport, either between the NIC and the application, or between two ap-
plications. This is in addition to packet-based media transport technologies
such as SMPTE 2022-6 and SMPTE 2110, which enable inter-server media
transport, and which have been shown to be implementable on commodity
hardware in chapter 4. Therefore, the joint use of vMI and of packet-based
media transport offers a complete solution for media production on commod-
ity servers.

121



CHAPTER 5. VMI
5.6. CONCLUSION

122



Chapter 6

Conclusion

The increasing performance and parallelism offered by general-purpose
CPUs and GPU on commodity servers, as well as the increasing data-rates
supported by general-purpose networking equipment — such as Ethernet
packet switches — motivated the transition of certain performance-demand-
ing applications from dedicated hardware to software executed on
commodity servers. Examples of such applications include scientific com-
puting (which was migrated from dedicated super-computers, to networks
of commodity servers [147, 148]), and network packet processing (which has
been increasingly implemented on commodity servers running Virtual Net-
work Functions (VNF) [149]). Such a migration enables the reuse of the same
hardware infrastructure for multiple applications, enabling resource pooling
and, ultimately, reducing operational costs.

Prior to the work developed in this thesis, the availability of 10 Gbit/s
Ethernet had initiated that transition in the field of professional broadcast
and, specifically, in media production, i.e., the process of elaborating, in
real-time, the audiovisual content that will be consumed by end viewers.
That transition had started with the standardisation of network-based —
instead of SDI-based — media transport, described in SMPTE 2022-6 and,
more completely, in SMPTE 2110. The latter specified timing constraints,
with which media production packet streams are required to comply. How-
ever, as a consequence of those timing constraints, actually realising media
production with commodity hardware was still an open issue, at it raises
multiple challenges.

First, it was generally believed by the broadcasting community, that
software-based packet processing introduced a high jitter, making it unsuit-
able for media production. Prior to this thesis, the validity of that claim was
not explicitly analysed and quantified. Furthermore, reducing that jitter was
not believed to be technically possible without relying on specialised hard-
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ware, capable of packet pacing. Finally, the transition from SDI-based to
packet-based media processing was likely to incur large engineering costs, as
video-frame processing and packet packet processing are fundamentally dif-
ferent tasks. It was therefore necessary to propose a software framework to
ease the implementation of media processing applications, without sacrificing
the required performance and scalability.

By addressing all aforementioned challenges, this thesis has, therefore,
enabled the migration of media production from dedicated hardware to soft-
ware executed on commodity servers.

In chapter 2, the jitter introduced by commodity servers upon processing
packets belonging to a media production stream has been established to be
incompatible with a SMPTE 2022-6 receiver with a limited buffering capacity
— which, therefore, rigorously verifies what was, until then, only an informal
claim in the broadcasting community. Specifically, on an x86_64 server run-
ning a Linux operating system, a minimal jitter in the order of dozens of
microseconds was observed, which is too high for some hardware-based re-
ceivers (e.g., some IP-to-SDI gateway devices) whose buffering capacity is no
higher than 4 packets. Furthermore, that chapter identified all root causes
of jitter and classified them into three categories: (i) hardware-related, (ii)
network-stack related, and (iii) network-stack independent. Among all the
causes, only one has been identified to be impossible to mitigate: the oc-
currence of System Management Interrupts (SMI). By stealing CPU-cycles
(unbeknownst to the operating system’s software), SMIs introduce sporadic
latency spikes, and thus, set a lower bound on the jitter achievable by com-
modity servers. Conversely, the relevant steps to disable each other identified
jitter source have been enumerated and thus, can easily be exploited to op-
erate media production setups.

More generally, SMIs challenge the accuracy of packet timestamping per-
formed by any kind of software method: an SMI may occur between packet
reception and timestamp acquisition and thus, can add an unknown meas-
urement error to the acquired timestamp. In chapter 3, OP4T has been
developed as an FPGA-based framework, simplifying the implementation of
packet timestamping solutions which, because they are hardware-based, are
not affected by the previously-identified jitter sources. Because it is program-
mable in the P4 language (which is specifically tailored for network packet
processing) OP4T can be used by network or broadcasting operators — who
are not necessarily specialised in hardware design — to implement a custom
packet processing and timestamping logic, which shall be executed on an
FPGA-based NIC, with no performance penalty. In particular, OP4T en-
ables packet timestamping with sufficient precision to qualify the compliance
of a SMPTE 2110 stream to a certain profile, or to assess that a SMPTE
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2022-6 stream has a jitter compatible with a certain receiver buffer size.
Furthermore, OP4T was experimentally verified to allow measurements with
a microsecond-scale precision when implemented on the NetFPGA-SUME
platform, in a simple scenario consisting of evaluating the jitter introduced
by a software packet forwarder.

In chapter 4, a solution has been brought to the problem of packet pa-
cing, i.e., the transmission of a packet stream, at a constant-rate and with
negligible (microsecond-scale) jitter. Notably, the proposed solution does not
require any specific hardware development, and can be built using a commod-
ity server and general-purpose networking equipment. Consequently, it es-
sentially enables software-based transmission of SMPTE 2022-6 and SMPTE
2110 media streams, even to small-buffered receivers with low jitter tolerance.
To achieve that goal and circumvent the previously-identified irremediable
jitter sources — i.e., the occurrence of SMIs — the concept of assisted-pacing
has been introduced, and has been shown to be implementable on commod-
ity hardware, by the clever use of gap-packets, i.e., packets transmitted by a
network interface card at a known line-rate, but dropped by the network in-
frastructure. Furthermore, to ensure that the pacing frequency is exactly the
one expected by the receiver, pacing algorithms have been specified, formally
proven, and experimentally evaluated. Such an analysis requires an adequate
mathematical definition of jitter, which has, therefore, also been proposed in
that chapter.

Finally, in chapter 5, the virtual Media Interface (vMI) software archi-
tecture has been introduced, as a novel paradigm easing the implementation
of high-performance scalable media-processing applications for professional
broadcast. Specifically, while a packet-processing application receives and
transmits network packets — by relying, e.g., on a socket-like API — a vMI-
based media-processing application receives and transmits media frames. Me-
dia frames generalises SDI video frames, and correspond to atomic elements,
the sequence of which constitutes a media stream. For example, a media
frame can be a video frame, an audio sample, or the closed-captions associ-
ated with a video frame. A media-processing application has, therefore, to
process media frames only and thus, media transport — e.g., over SMPTE
2022-6 or 2110 packet streams — is confined into vMI, and is separated
from media-processing. That separation has enabled to transparently bring
the benefits of modern packet-processing techniques such as kernel bypass
and zero-copy networking to media-processing applications by implementing
those techniques once, as part of vMI. Those have been shown to improve
the scalability of a typical commodity server by almost doubling the number
of streams it can process, in a realistic media encoding scenario.

In addition to academic publications (chapters 2 and 4), and submissions
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(chapters 3 and 5), those contributions have led to the release of the work
from chapters 4 and 5 as part of the open-source project Cisco Herisson1.
OP4T is also planned to be released to the community. Furthermore, vMI
has been used as part of industrial collaborations with the broadcasting in-
dustry, and has been proved to ease the porting of existing SDI-based media-
processing appliances, to software running on commodity servers [150,151].

In summary, the work realised in this thesis has addressed the main chal-
lenges occurring when considering the transition of media production from
dedicated to commodity hardware. Those challenges range from the scale
of packet transmissions (with the understanding, measurement, modelling,
and mitigation of network jitter) to the scale of media streams and media-
processing applications (with the design of the vMI software architecture).
The nature of the vMI software framework has allowed the implementation
of media-processing applications as disaggregated pipelines of independent
programs, each performing an elementary media-processing operation, and
which are distributed across multiple CPU cores, or even, across multiple
servers in a data-centre.

As a consequence, the next natural research questions arise from the
study of software-based media production at a scale even coarser than media-
processing applications, i.e., the study of entire media-production pipelines.
Open issues at that scale essentially revolve around the assignment of re-
sources of a media production data centre, to tasks belonging to a set of
media production pipelines, as well as around the scheduling of those tasks.

1Available at https://github.com/cisco/herisson
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Appendix A

Mathematical Proofs for
Chapter 4

Proof of property 2.

t is (b, f)-paced =⇒ JALT (t) ≤ b
2f

By definition of t being (b, f)-paced, there exist i0 and u so that, for all
i > i0, if ti ≥ u:

0 ≤ (i− i0)− f × (ti − u) ≤ b

That inequality is invariant by increasing i0 by an arbitrary integer m and
increasing u by m

f
. Consequently, u and i0 can be chosen, without loss of

generality, so that u ≥ b
2f
. Defining u′ = u− b

2f
≥ 0 yields:

− b
2
≤ (i− i0)− f × (ti − u′) ≤

b

2

for all i ≥ i0 so that ti ≥ u′. Hence, by definition of the ALT jitter, JALT (t) ≤
b
2f
.

JALT (t) < b
2f

=⇒ t is (b, f)-paced

By definition of the ALT jitter, there exist i0 and u so that

sup
i≥i0
ti≥u

∣∣∣∣i− i0f
− (ti − u)

∣∣∣∣ ≤ b

2f
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Defining u′ = u+ b
2f
, then for all i ≥ i0

(i− i0)− f × (ti − u′) = (i− i0)− f × (ti − u) +
b

2

≤ f sup
i≥i0
ti≥u

∣∣∣∣i− i0f
− (ti − u)

∣∣∣∣+
b

2
≤ b

Also

(i− i0)− f × (ti − u′) = (i− i0)− f × (ti − u) +
b

2

≥ −f sup
i≥i0
ti≥u

∣∣∣∣i− i0f
− (ti − u)

∣∣∣∣+
b

2
≥ 0

Consequently, t is (b, f)-paced.

∃i0, ∀i ≥ i0 :
∣∣∣ 1f − (ti+1 − ti)

∣∣∣ ≤ b
f

=⇒ Jp(t) ≤ b
f

By existence of i0,

sup
i≥i0

∣∣∣∣ 1f − (ti+1 − ti)
∣∣∣∣ ≤ b

f

The peak period jitter Jp(t) is the infimum of that value over all possible i0,
yielding Jp(t) ≤ b

f
.

Jp(t) < b
f

=⇒ ∃i0, ∀i ≥ i0 :
∣∣∣ 1f − (ti+1 − ti)

∣∣∣ < b
f

If Jp(t) < b
f
, then by definition, there exists i0 so that for all i ≥ i0:∣∣∣∣ 1f − (ti+1 − ti)

∣∣∣∣ ≤ 1

2

(
Jp(t) +

b

f

)
<
b

f

Proof of property 3.
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∀j ≥ 1 : sj ∈ [0, 1) ∪ [nmin,+∞)

The predicate P (j) is defined as sj ∈ [0, 1) ∪ [nmin,+∞). A proof by
induction of ∀j ≥ 1 : P (j) is provided in the following. P (j) is verified for
j = 1, i.e., P (1) is true (s1 = 1). The evolution of s is given by the rules:

sj+1 =


sj + τj+1 − dur(p), sj < 1

sj − nmax, sj ≥ nmax + nmin

sj − bsjc, 1 ≤ sj ≤ nmax

sj − nmin, otherwise

Reasoning by induction, P (j) is assumed to be true for a given j > 0. From
the evolution rules, in the first case (sj < 1), sj ≥ 0 because of P (j), and
combining with precondition τj+1−dur(p) ≥ nmin yields sj+1 ≥ nmin, hence
P (j+1). In the second and third case, P (j+1) is trivially true. In the fourth
case, sj ∈]nmax, nmax+nmin[ because the evolution would have fallen into one
of the previous cases otherwise. Hence, sj+1 = sj−nmin ∈]nmax−nmin, nmax[.
As per condition (4.3), nmax − nmin > nmin, which proves P (j + 1). Thus,
by induction, P (j) is true for all j > 0.

sj ≥ 1 =⇒ nmin ≤ sj − sj+1 ≤ nmax

If sj ≥ 1, the case hit by the evolution rule is the second, the third, or
the fourth one. In the second case, sj − sj+1 = nmax. In the third case,
sj − sj+1 = bsjc, and bsjc ≥ nmin per P (j) and bsjc ≤ nmax by definition of
the third case. In the fourth case, sj − sj+1 = nmin.

Proof of property 4. sj and τj are defined as the values of state variables s
and τcur at the beginning the j-th iteration of the main loop. Nj is defined
as the total count of enqueued send operations. By an analysis similar to
the one performed in section 4.4.2:

sj =

Nj∑
i=1

τji − yj (A.1)

Algorithm 2 being derived from algorithm 1 with varying τ , it is natural
to analyse the evolution of τcur. τcur is only updated at an iteration of the
loop corresponding to s < 1, i.e., a packet transmission. Consequently, it
is possible to define ik so that the k-th update of τcur happens at the same
iteration as the one sending the ik-th packet. Thus between the jik-th and
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(jik+1
− 1)-th iteration of the loop, the value of τcur is constant. Considering

equation (A.1) for i ∈ [ik, ik+1 − 1] and noting that Nji = i− 1:

sji − sjik = (i− ik)τjik − (yji − yjik ) (A.2)

From algorithm 2, line 7, and as sji ∈ [0, 1[yji − yjik =

⌊
sjik + (i− ik)

yjik
−yjik−1

F (W+yjik
)−F (W+yjik−1

)

⌋
ik+1 = min

{
l > ik

∣∣ yjl − yjik ≥ W
} (A.3)

As sj1 = 0 and yji1−yji0 = W , it follows from A.3 by a trivial induction that,
for all k ≥ 1, sjik = 0, yjik − yjik−1

= W , and Njik+1
−Njik

= F (W + yjik )−
F (W + yjik−1

). Thus, summing over k yields, for all k ≥ 2, yjik = W (k − 1),
Njik

= F (W (k − 1)). Finally, from the first equation of ( A.3):

yji =

⌊
W

i− 1− F (W (k(i)− 1))

F (Wk(i))− F (W (k(i)− 1))

⌋
+W (k(i)− 1) (4.8)

Proof of property 5. yji and k(i) are defined as in section 4.4.3. wi is defined
as wi = W (k(i) − 1). For all i0 ∈ N,y0 > 0, and i > i0 so that yji ≥ y0, the
following holds:

τ(i− i0)− (yji − y0) (A.4)

= τ(i− i0)−
(⌊

W
i− 1− F (wi)

F (W + wi)− F (wi)

⌋
+ wi − y0

)
= τi−

(
W

i− 1− F (wi)

F (W + wi)− F (wi)
+ wi −Mi + τi0 − y0

)
=

((
τ − W

F (W + wi)− F (wi)

)
(i− 1− F (wi))

)
+ (τ(F (wi) + 1)− wi) +Mi − τi0 + y0 (A.5)

with Mi, some fractional part bounded by 1. Consider ε > 0. By definition
of AW (F ) and CW (F ), there exists k1 ∈ N and k0 ∈ N so that:

sup
k>k0

|τ(F (W (k + 1))− F (Wk))−W | ≤ AW (F )

T e
+ ε

sup
k>k0

|τF (kW )− kW + k1W | ≤
CW (F )

T e
+ ε
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Choosing i0 = k0, y0 = τi0 + k1W , and applying to equation (A.5) yields:

sup
i>i0
yji>y0

|τ(i− i0)− (yji − y0)|

≤ AW (F )

T e
+
CW (F )

T e
+ 1 + 2ε

As such i0 and y0 may be constructed for all ε > 0, the infimum of that last
equation over all possible y0 and i0, and multiplying by T e gives:

JALT (tp) ≤ AW (F ) + CW (F ) + T e
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Appendix B

Résumé en français

La production de média pour la diffusion audiovisuelle (i.e., le processus
par lequel plusieurs sources audiovisuelles sont mélangées et traitées en temps
réel pour élaborer le flux consommé par le téléspectateur) est généralement
implémentée par du matériel dédié, basé sur la Serial Digital Interface (SDI),
une technologie d’interconnection dérivé de la télévision analogique. Malgré
l’effort industriel présent pour remplacer le SDI par de l’IP (ainsi que spé-
cifié par les standards SMPTE 2022-6 et 2110) la sensibilité au délai de la
production de média rend difficile une transition totale vers un traitement
logiciel sur des serveurs générique. Cette thèse résout different aspects de ce
problème.

Premièrement, il a été conduit une étude quantitative et qualitative de
la gigue subie par ces flux lors d’un traitement logiciel. Au delà de résultats
obtenus pour des serveurs Linux x86_64, il a été dérivé une méthodologie
générale, applicable à tout système d’exploitation et architecture matérielle,
permettant d’étudier la gigue introduite. En particulier, il a été montré que
la gigue induite par les serveurs Linux x86_64 était de l’ordre de plusieurs
dizaines de microsecondes, et ce indépendamment de toute optimisation lo-
gicielle implémentée au niveau du système d’exploitation. Ceci est due à
un certain type d’interruption, les System Management Interrupts (SMIs)
qui entrainent régulièrement l’exécution de code spécifique à la platforme
matérielle, et ce indépendamment de la volonté du système d’exploitation
(execution dite en System Management Mode, ou ring -1)

Deuxièmement, une plateforme générique a été proposé afin de permettre
la réalisation de système d’instrumentation personnalisé, pour l’horodatage
précis de packet réseaux. Bien qu’étant basée sur la technologie des FPGA,
cette plateforme permet à tout opérateur réseau ou de diffusion audiovisuelle
de spécifier une logique d’horodatage personnalisée en utilisant le langage
P4. Cela permet en particulier la conception d’une instrumentation pour
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la qualification de flux média. Cette plateforme a été mise à l’épreuve lors
d’une étude de cas, consistant à évaluer la latence et la gigue introduite par
un système de traitement de paquets purement logiciel, disponible en open-
source : le Vector Packet Processor (VPP). Plus particulièrement, une logique
d’horodatage adaptée a été specifiée en P4, et le système ainsi obtenu a été
expérimentalement évalué. Les résultats obtenus montrent que la plateforme
proposée permet une precision optimale (de l’ordre de un cycle de FPGA),
et qu’elle permet d’observer le comportement de VPP avec une granularité
très fine. En particulier, le traitement de paquet par lots, caractéristique très
spécifique à VPP) a pu être retrouvé par une simple observation de les séries
temporelles obtenues par le système d’horodatage.

Troisièmement, un système de lissage de traffic (packet-pacing) a été pro-
posé, afin de permettre l’envoi de flux de paquets avec une gigue négligeable.
Malgré un emploi exclusif de matériel générique, il a été prouvé formelle-
ment et expérimentation que la gigue ainsi obtenue était suffisamment faible
pour des flux média. Spécifiquement, le système de lissage surmonte les li-
mitations inhérentes aux serveurs génériques (comme les SMIs mentionnés
ci-dessus) en adoptant une approche de lissage assisté, c’est à dire, l’emploi
d’un composant externe (Pacing-Assistant) qui réalisera les operations d’en-
voi de paquet et d’attente entre chaque paquet, sans être contraint par les
SMIs. Il a été montré que ce composant externe pouvait effectivement être
réalisé avec du matériel générique, par exemple la conjonction d’une interface
réseau physique et d’un commutateur de paquets standard.

Finalement, un cadre logiciel facilitant l’écriture d’applications de traite-
ment média a été proposé. Ce cadre repose sur la séparation entre le trai-
tement et le transport des flux média, la couche de transport s’occupant du
traitement haute performance des paquets réseaux par l’emploi de techniques
comme le zero-copy, ou le kernel-bypass. Ces techniques ont été expérimen-
talement évaluées, et leurs avantages ont été prouvés dans un contexte de
passage à l’échelle.
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Titre : Aspects réseaux et systèmes de la migration d’application hautes performances de matériel dédié vers
des serveurs génériques : l’exemple de la production de média pour la diffusion audiovisuelle

Mots clés : traitement média, lissage de trafic, gigue, instrumentation, serveurs standards, architecture logi-
cielle

Résumé : La production de média pour la diffusion
audiovisuelle (i.e., le processus par lequel plusieurs
sources audiovisuelles sont mélangées et traitées en
temps réel pour élaborer le flux consommé par le
téléspectateur) est généralement implémentée par du
matériel dédié, basé sur la Serial Digital Interface
(SDI), une technologie d’interconnection dérivé de la
télévision analogique. Malgré l’effort industriel présent
pour remplacer le SDI par de l’IP (ainsi que spécifié
par les standards SMPTE 2022-6 et 2110) la sen-
sibilité au délai de la production de média rend dif-
ficile une transition totale vers un traitement logiciel
sur des serveurs générique. Cette thèse résout dif-
ferent aspects de ce problème. Premièrement, il a
été conduit une étude quantitative et qualitative de
la gigue subie par ces flux lors d’un traitement lo-
giciel. Au delà de résultats obtenus pour des ser-
veurs Linux x86 64, il a été dérivé une méthodologie
générale, applicable à tout système d’exploitation et
architecture matérielle, permettant d’étudier la gigue
introduite. Deuxièmement, une plateforme générique
a été proposé afin de permettre la réalisation de

système d’instrumentation personnalisé, pour l’horo-
datage précis de packet réseaux. Bien qu’étant basée
sur la technologie des FPGA, cette plateforme permet
à tout opérateur réseau ou de diffusion audiovisuelle
de spécifier une logique d’horodatage personnalisée
en utilisant le langage P4. Cela permet en particu-
lier la conception d’une instrumentation pour la qua-
lification de flux média. Troisièmement, un système
de lissage de traffic (packet-pacing) a été proposé,
afin de permettre l’envoi de flux de paquets avec
une gigue négligeable. Malgré un emploi exclusif de
matériel générique, il a été prouvé formellement et
expérimentalement que la gigue ainsi obtenue était
suffisamment faible pour des flux média. Finalement,
un cadre logiciel facilitant l’écriture d’applications de
traitement média a été proposé. Ce cadre repose sur
la séparation entre le traitement et le transport des
flux média, la couche de transport s’occupant du trai-
tement haute performance des paquets réseaux par
l’emploi de techniques comme le zero-copy, ou le
kernel-bypass.

Title : System and Networking Aspects of the Transition of High-Performance Applications from Dedicated to
Commodity Hardware: the Example of Media Production for Professional Broadcast

Keywords : media processing, packet pacing, jitter, instrumentation, commodity servers, software architecture

Abstract : Media production for professional broad-
cast (i.e., the process by which multiple audiovisual
sources are mixed and processed, in real-time, to ela-
borate the audiovisual stream as it will be consumed
by the final viewer) has currently been implemented
with dedicated hardware equipment, based on the Se-
rial Digital Interface (SDI), an interconnection techno-
logy carrying the legacy of analog video. Despite an
ongoing industrial effort to replace SDI with IP-based
interconnection — as specified by the SMPTE 2022-
6 and 2110 standards — the delay-sensitive nature
of media production still challenges its total transition
to software running on commodity servers. This the-
sis solves different aspects of that problem. First a
quantitative and qualitative study of the sources of jit-
ter undergone by those streams upon software pro-
cessing has been conducted. In addition to results
specific to Linux x86 64 servers, that work has yiel-
ded a general jitter exploration methodology, appli-
cable to any operating system and hardware com-
modity servers. Second, a generic platform enabling
the implementation of custom high-accuracy instru-

mentation for hardware-based packet timestamping
has been developed. Despite being FPGA-based, that
platform allows network and broadcast operators with
little hardware design skills to specify custom logic
for line-rate packet processing and timestamping, by
using the P4 language. In particular, such instrumen-
tation can be used to qualify the jitter properties of
media production streams. Third, a system to perform
packet-pacing — i.e., the transmission of a constant-
rate packet stream with negligible jitter — has been
proposed. Despite exclusively relying on commodity
hardware, the proposed system has been formally
and experimentally proven to yield a jitter, conforming
to the tight requirements of media production streams.
Finally, a software framework easing the implementa-
tion of media-production applications has been deve-
loped. That framework relies on a separation between
media processing and media transport. The trans-
port layer handles high-performance packet proces-
sing with techniques such as zero-copy and kernel by-
pass networking.
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