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Résumé 

 Le syndrome d’apnée obstructive du sommeil représente un problème de santé publique, en 

affectant environs 6% à 17% de la population adulte. Le traitement de référence de cette maladie 

reste la ventilation nocturne par l’envoi d’une pression positive continue (PPC) fixe ou autopilotée 

dans les voies aériennes supérieures du patient afin de les maintenir ouvertes. L’efficacité traitement 

de PPC autopilotée dépend des algorithmes et technologies implémentés qui détectent les 

événements respiratoires et qualifient leur mécanisme (lié à l’obstruction des voies aériennes 

supérieures ou à une altération de la commande centrale de respiration), qui sont protégés par les 

fabricants et perçus comme une boîte noire par le public. En pratique, le fonctionnement des 

machines est observé par enregistrement de la ventilation de patients sous traitement. Il paraît 

cependant difficile de comparer les différentes machines à cause des variabilités respiratoires inter- 

et intra-patient. Ainsi, des bancs d’essai ont été développés pour compenser ce manque en simulant 

des débits respiratoires et éventuellement des obstructions de voies aériennes supérieures, 

représentant des patients apnéiques. Les scénarios respiratoires simulés sont composés par une 

répétition des événements respiratoires extraits de patients ou conçus artificiellement. Avec les 

bancs d’essai précédents, la simulation d’un profil respiratoire entier enregistré par 

poly(somno)graphie peut sembler laborieuse parce que elle n’est pas automatisée.  

 L’objectif de cette thèse consiste à développer un banc d’essai physiologique, capable de 

reproduire automatiquement le profil respiratoire enregistré par polygraphie, en tenant compte des 

caractéristiques obstructives et centrales des événements respiratoires. 

 Un algorithme a ainsi été développé pour analyser les signaux polygraphiques et calculer la 

pression de l’effort musculaire de respiration et les résistances de voies aériennes supérieures pour 

piloter sur banc respectivement le poumon artificiel et la résistance de Starling qui 
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modélisait les obstructions dans les voies aériennes supérieures. Le profil respiratoire simulé avec 

ce nouveau banc physiologique a révélé une similitude satisfaisante avec celui des patients 

concernant des paramètres temporels, d’amplitude du débit respiratoire et la capacité à reproduire 

des événements respiratoires de différentes natures. Ensuite, cette approche innovante a été validée 

avec simulation de 15 scénarios respiratoires d’une heure, issus de 12 patients apnéiques (modérés 

ou sévères), exprimant tous types d’événements (i.e. obstructif, central et mixte). La performance de 

simulation du banc d’essai a été prouvée robuste face aux profils respiratoires testés. La capacité de 

simulation a finalement permis d’investiguer la précision de l’index d’apnée-hypopnée (IAH) 

résiduel déterminé par PPC, en comparant les IAH déterminés par 4 dispositifs de PPC (AirSense 

10, DreamStation Auto, S.Box et Prisma 20A) avec ceux obtenus en polygraphies diagnostiques des 

patients présentant des événements centraux et obstructifs. Les résultats ont montré que toutes les 

PPC testées ont eu un accord meilleur en index d’apnée qu’en index d’hypopnée (IH) avec la 

polygraphie. En plus, elles ont montré une tendance à la sous-estimation de l’IH par rapport à la 

polygraphie avec un degré variant en fonction du fabricant. 

 Ce nouveau banc d’essai physiologique permet de facilement simuler le profil respiratoire 

d’un patient spécifique à partir des données polygraphiques. Il pourrait être un outil utile pour la 

compréhension et la comparaison des appareils ventilatoires ainsi qu’un pas vers la personnalisation 

du traitement.   
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Summary 
 

Obstructive sleep apnea (OSA) represents a public health problem, affecting about 6% to 17% 

of adult population. So far, the reference treatment for moderate-to-severe OSA remains nocturnal 

ventilation via a Positive Airway Pressure (PAP) device delivering a either fixed or auto-titrating 

pressure to patient’s upper airway in order to maintain it open. The treatment efficiency of auto-

titrating PAP (APAP) depends greatly on the algorithms and technologies implemented for 

detecting and characterizing disordered breathing events (linked to upper airway obstruction or 

central command impairment). However, they are often protected by manufacturers and resembling 

a black box to the public. From clinical studies, device functioning can be indirectly observed by 

recording patient ventilation under APAP. However, it is difficult to compare treatment efficiencies 

of different PAP devices because of intra- and inter-patient breathing profile variability.  Thus 

respiratory simulation benches have been developed to resolve this problem, by reproducing 

respiratory scenarios artificially designed and composed of a repetitive string of typical obstructive 

and central events extracted from patients’ recordings. All of them seem to have a limitation in 

reproducing entirely a specific patient breathing profile for its poly(somno)graph recordings in an 

automatic manner. 

The aim of this thesis consists to develop a physiological bench which reproduces 

automatically the breathing profile registered in the polygraph recordings of patients diagnosed with 

sleep apnea syndrome, taking into account sleep disordered breathing (SDB) of central and 

obstructive mechanisms.  

To achieve this, a specific algorithm was developed for analyzing polygraph signals and 

calculating the respiratory muscular effort pressure and upper airway resistance required for 

controlling bench hardware, mainly constituted by an active lung simulator and a Starling 
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resistor modeling upper airway resistance. The respiratory profile simulated on this new bench 

showed a satisfying similarity to the one of patient in both temporal and intensity parameters of 

airflow, at the same time reproducing patient’s SDB events of central and obstructive mechanisms. 

Then this novel approach was validated by simulating on bench 15 one-hour breathing scenarios, 

sampled from polygraph recordings of 12 patients diagnosed with moderate-to-severe sleep apnea 

syndrome. The apnea index (AI) of these polygraph samples presented a wide spectrum from 1.4 to 

76.7 events/hour, containing all types (i.e. obstructive, central and mixed) of apneas. The bench 

simulation performance was proved robust for all the breathing phenotypes sampled. Finally, the 

accuracy of residual apnea hypopnea indices determined by 4 PAP devices (AirSense 10, 

DreamStation Auto, S.Box and Prisma 20A) of different manufacturers, was also investigated in 

comparison with polygraph scorings, through this physiological bench, simulating 25 breathing 

scenarios of 1-hour issuing from patients with predominant central sleep apnea syndrome. All PAP 

devices had shown a better agreement in AI than hypopnea index (HI) with polygraph scorings. 

They tended to underestimate HI with a severity dependent to manufacturer. 

 This new physiological bench facilitates simulating any apneic patient breathing profile 

from its polygraph recordings in an automatic manner. It can serve as a tool for learning about 

ventilation devices’ behaviors and helping clinicians in choosing an optimal ventilation device 

adapted to the specific breathing characteristics of their patients.  
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Introduction 

 

 Obstructive sleep apnea (OSA) is a highly prevalent disease, affecting about 6% to 17% in 

adult population (Baltzan et al. 2006). It is a kind of sleep disordered breathing (SDB), 

characterized by repetitive narrowing or closure of the upper airway during sleep (Remmers, 

deGroot, Sauerland, & Anch, 1978). This leads to intermittent arterial oxygen desaturations, and 

increased activation of the sympathetic nervous system, which may result in complications in 

cardiovascular diseases (Jean-Louis et al. 2008), as well as arterial hypertension (Nieto F et al. 2000) 

in the long term.  

 The reference treatment for patients affected by moderate to severe OSA is nocturnal 

ventilation, which delivers a positive airway pressure (PAP) to patient’s upper airways through a 

nasal or facial mask. This pressure can overcome the increased closing force from the upper airways 

during sleep and maintain them open. This treatment modality has been developed for about 40 

years (Sullivan et al. 1981). Initially, pressure delivered by PAP devices was fixed. Then they are 

becoming more and more intelligent thanks to the emergence of new technologies and great 

advances in computing power. They are able to detect and characterize patient's various disordered 

breathing events in real time: apneas and hypopneas of obstructive and central mechanisms, snoring, 

inspiratory flow limitations. Then the pressure delivered is adapted instantaneously in function of 

patient’s upper airways status. It is so-called APAP (auto-adjusting positive airway pressure) mode.  

 Each manufacturer possesses its own technology and algorithm to detect and characterize 

disordered breathing events. Their details are often undisclosed to the public and protected by 

manufacturers through patents. Most of the time, device functioning can be retrospectively 
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and indirectly observed by recording patient ventilation under PAP treatment. However, it is 

difficult to evaluate and compare the algorithms of miscellaneous PAP devices objectively under 

the same controlled conditions. That is why there have been some work developing respiratory 

simulation benches to evaluate APAP algorithms, as reported in the literature (Farré et al. 2002b; 

Abdenbi 2004; Coller, Stanley, and Parthasarathy 2005; Rigau et al. 2006; Hirose et al. 2008; 

Netzel, Hein, and Hein 2014; Zhu et al. 2015; Isetta et al. 2016). These benches simulate apneic 

patient breathing profile by using a representative disordered breathing scenario composed of a 

repetitive string of several typical respiratory events artificially designed or issued from real 

patients’ breathing recordings. According to these benches’ test results, we could know about the 

treatment efficiencies of various APAP algorithms for the specific bench simulated breathing 

scenario. However, it is always difficult to conclude from them an appropriate APAP algorithm for 

an individual patient, due to differences between patients’ breathing profiles and bench simulated 

ones. Furthermore, manufacturers tend to provide personalized therapy which is adapted to each 

patient’s pathophysiological characteristics in the next few years. All of these contexts put forward 

the demand of a physiological bench, which can mimic each patient’s disordered breathing profiles 

in a more detailed manner.  

 In this prospect, my thesis aims to develop a physiological bench, which is able to reproduce 

automatically breathing profiles registered in polygraph recordings, issuing from diagnostic 

examination of sleep apnea syndrome.  
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Chapter I. Sleep Apnea Syndrome 

 

 Sleep apnea syndrome is a kind of disordered breathing disease occurring during sleep, 

characterized by frequent respiratory pauses, namely apneas, which lead to intermittent arterial 

oxygen desaturations, increased activations of the sympathetic nervous system, resulting in 

cardiovascular complications in the long-term. The reasons for apneas can be related to two 

different mechanisms: due to a closed upper airway, i.e. the obstructive sleep apnea syndrome 

(OSAS); or due to the absence of central command to breathing, i.e. the central sleep apnea 

syndrome (CSAS). It has been also observed that there can be an overlap between OSAS and CSAS 

in certain patients. In this chapter, we will talk about the pathophysiological factors inducing sleep 

apneas as well as the treatment strategies at present. 

1.1 Obstructive sleep apnea syndrome 

1.1.1 Pathophysiology 

Human upper airway is a structure performing multiple functional tasks: speech, swallowing, 

air passage during breathing. It consists of numerous muscles and soft tissues but lacks rigid 

supports. The pharynx which extends from hard palate to larynx is the softest part in the upper 

airway. It’s also collapsible. The collapses of pharynx during sleep can cause the breathing disorder 

obstructive sleep apnea (OSA), which is defined by recurrent episodes of upper airway obstruction. 

The clinical consequences of this disease include daytime hypersomnolence, neurocognitive 

dysfunction, cardiovascular disease, metabolic dysfunction (Reichmuth et al. 2005), respiratory 

failure and cor pulmonale (Sidney Burwell et al. 1956). The major relevant risk factors are 
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found to be obesity, male gender, postmenopausal status and age (Jordan and McEvoy 2003; Young, 

Peppard, and Gottlieb 2002).  

Patency of the pharynx during sleep is maintained by the balance between anatomically 

imposed mechanical loads and compensatory neuromuscular responses. So the pathogenesis of 

OSA is believed to combine both the increased upper airway mechanical loads and defects in 

neuromuscular mechanisms (Mezzanotte, Tangel, and White 1992). Firstly, the increased upper 

airway mechanical loads can be related to alterations in upper airway anatomy, including structural 

changes like tonsillar hypertrophy (Moser and Rajagopal 1987), retrognathia (Lyberg, Krogstad, 

and Djupesland 1989), variations in craniofacial structures (Watanabe et al. 2002), the increased 

amounts of peripharyngeal fat due to obesity (Shelton et al. 1993), etc. It has also been 

demonstrated that the caliber of the upper airway during the absence of neuromuscular activity is 

reduced in patients with OSA compared to normal subjects (Isono et al. 1997), which predisposes 

the upper airway to more easily collapse. Of noteworthy, only anatomically increased mechanical 

loads on the upper airway might not be sufficient to produce pharyngeal collapse during sleep (Patil, 

Schneider, Marx, et al. 2007). They should be counterbalanced by the action of pharyngeal dilator 

muscles, which is regulated by wake vs sleep state dependent mechanisms, local mechanical 

responses to negative pressure as well as ventilatory control mechanisms. Compared to wakeful 

state, the activation of dilator muscles during sleep is reduced, due to the loss of wakefulness 

stimulus. Furthermore, if there is a dysfunction in upper airway sensory pathways or ventilatory 

control mechanisms, for example a high loop gain, the risk to develop OSA would then increase, in 

addition to increased mechanical loads on the upper airway.   

 In order to better understand the physics of upper airway collapse, Starling resistor is widely 

used to model the upper airway (Figure 1-1) (Patil, Schneider, Schwartz, et al. 2007).  In 
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analogy to human upper airway, the critical pressure (Pcrit) surrounding the collapsible tube 

represents upper airway mechanical loads; the pressure at the upstream segment (Pus) can be 

considered as nasal pressure; and the pressure at the downstream segment (Pds) represents tracheal 

pressure. Depending on the relationships between Pus, Pcrit and Pds, different inspiratory airflow 

patterns are observed. Indeed, when Pcrit is significantly lower than Pus and Pds, the pharynx is at the 

minimal resistance (Zone 3 in Figure 1-1), and the airflow through the tube follows the principles of 

an Ohmic resistor. While Pds falls below Pcrit during inspiration (Zone 2 in Figure 1-1), local 

collapse occurs in pharynx. At this time, the shape of inspiratory airflow becomes flattened. Its 

amplitude has only a linear relationship with the difference between Pus and Pcrit and would remain 

constant regardless of drop in Pds. Finally, when Pcrit becomes greater than both Pus and Pds (Zone 1 

in Figure 1-1), the pharynx would occlude totally. Pcrit of human upper airway can be measured by 

lowering nasal pressure until inspiratory airflow ceases. It  has then been sectioned to define a 

spectrum of upper airway obstruction from normal breathing (Pcrit < -10 cm H2O), to snoring (-10 

cm H2O ≤ Pcrit < -5 cm H2O), to obstructive hypopneas (-5 cm H2O ≤ Pcrit < 0 cm H2O) and to 

apneas (Pcrit ≥ 0 cm H2O) (Gleadhill et al. 1991; Smith et al. 1988). 



20 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

 

Figure 1-1: Explanation of physics in upper airway collapse via a Starling resistor model (Patil, 

Schneider, Schwartz, et al., 2007). 

1.1.2 Treatment 

● Positive airway pressure treatment 

Positive airway pressure (PAP) is the treatment of choice for patients with moderate-to-

severe obstructive sleep apnea (Malhotra and White 2002). This treatment is firstly proposed and 

described by Sullivan et al. in 1981 (Sullivan et al. 1981). It consists of delivering an effective 

positive air pressure via a nasal or facial mask to patient’s upper airway in order to compensate the 

hypotonic dilator muscle activities at the pharynx during sleep. Randomized controlled trials have 

demonstrated that PAP can effectively reduce the apnea-hypopnea index and improve subjective 

and objective sleepiness. In some studies, it has also been shown that PAP treatment in long 
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term can alleviate the neurocognitive sequelae, reduce the risks in cardiovascular complications 

(Levy et al. 2011) and improve the quality of life. Manufacturers of PAP devices often provide 

several pressure modalities available so that physicians can make choice between them and adapt 

the treatment strategy to each patient’s characteristics. The principle pressure modalities are 

described as follows.  

1) Continuous positive airway pressure 

Pressure delivered in continuous positive airway pressure (CPAP) mode is set to be constant. 

This pressure’s value is prescribed by a clinical professional, and corresponds to the effective 

treatment pressure determined via a pressure titration process.  

 CPAP treatment is efficient in reducing obstructive disordered breathing events; however, 

poor adherence could limit its effectiveness. According to literature, the percentage of non-adherent 

patients (nightly use < 4 hours/night) varies from 29% to 83% (Weaver and Grunstein 2008). The 

adherence is related to many factors: patient characteristics, disease severity, interface technology, 

patients’ experience related to the initial exposure to CPAP as well as psychological and social 

variables (Weaver and Grunstein 2008). The pattern of adherence has been proved to be established 

very early, within the first week of treatment, and it predicts the long-term use (Weaver et al. 1997). 

A systematic approach to PAP treatment including education, objective adherence monitoring, early 

intervention for side effects, telephone and clinic support, is thought to be essential for the prospect 

of optimizing patients’ adherence (Kakkar and Berry 2007). 

2) Auto-adjusting positive airway pressure 

 Rather than using a constant pressure during the whole night, certain PAP device provides 

also the option of adapting treatment pressure to patients’ instantaneous breathing status, 
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based on obstructive events’ detection, namely auto-adjusting positive airway pressure (APAP) 

mode. Briefly, the device increases the air pressure when it detects that upper airway resistance 

augments significantly, in order to prevent the other upcoming obstructive breathing events. Once 

the patient returns to normal breathing state, PAP device will decrease air pressure gradually for 

maximizing patients’ comfort. Indeed, APAP mode is invented for obtaining an optimal treatment 

pressure automatically, which is adapted to patients’ instantaneous needs and vary in function of 

body posture, sleep stage, previous drug or alcohol intake.  

 Besides, APAP could also serve as a tool of pressure titration in order to find an optimal 

constant pressure for CPAP mode. It is shown that automatic pressure titration with APAP is as 

effective as manual titration, for patients with moderate to severe obstructive sleep apnea (Fietze et 

al. 2007). Compared to in-laboratory manual titration accompanied by a technician, automatic 

pressure titration can be effectuated at home. Thus it costs less expensive and is more accessible to 

the public.  

 Treatment efficacy and adherence are similar between CPAP and APAP. Some subsets of 

patients prefer APAP to CPAP (Galetke et al. 2008). For patients with cardiovascular complications, 

they are recommended to be treated with CPAP or another mode called bilevel positive airway 

pressure described below, rather than APAP (Patruno et al. 2007), because APAP mode requests 

more frequently sympathetic nervous system activities than CPAP (Patruno et al. 2014).   

3) Bilevel positive airway pressure 

 The pressure delivered by bilevel positive airway pressure (BiPAP) mode is also always 

positive, except that the pressure level at expiration is lower than that at inspiration. This favors 
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patient’s spontaneous expiration. BiPAP is able to improve the adherence of some patients who are 

intolerant to CPAP mode.  

 

1.2. Central sleep apnea syndrome 

1.2.1 Pathophysiology 

 Central sleep apnea (CSA) is characterized by airflow cessation with an absence of 

respiratory muscular effort during sleep. It manifests in multiple pathologies: high altitude-induced 

periodic breathing, idiopathic CSA, narcotic-induced central apnea, obesity hypoventilation 

syndrome and Cheyne-Stokes breathing (Eckert et al. 2007). It is classified into 2 groups based on 

wakefulness CO2 level: hypercapnic CSA versus non-hypercapnic CSA (Bradley et al. 1986). The 

precedent is due to impaired central drive (for example, congenital central hypoventilation 

syndrome, obesity hypoventilation syndrome) or impaired respiratory motor control (for example, 

narcotic-induced CSA).  The underlying factor inducing non hypercapnic CSA is unstable 

ventilatory drive during sleep. During sleep, ventilatory drive becomes more vulnerable compared 

to awakening, due to the loss of wakefulness stimulus and behavioral inputs. It is modulated by 

chemical control. Chemoreceptors of H
+
, PaO2 and PaCO2 detect indirectly or directly blood CO2 

and O2 concentration change, thus regulating the ventilatory drive. While the concentration of H
+ 

and PaCO2 increases, hyperventilation will be triggered to excrete excessive CO2. However, if the 

PaCO2 decreases to a level below the apnea threshold, the ventilatory drive is then inhibited and a 

central sleep apnea takes place. This ventilatory output responding to a given change in PaO2 or 

PaCO2 (i.e. chemosensitivity) can vary greatly between individuals and with disease status as well. 

Individuals with high chemosensitivity are more likely at risk of unstable breathing, thus 
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presenting central sleep apnea syndrome. (Solin et al. 2000) The same CSA risk validates for 

individuals having a longer delay in the negative feedback loop controlling ventilation (Hall et al. 

1996) or minimal difference between the apnea threshold and sleeping eucapnic PaCO2. (Xie et al. 

2002) The transition from wakefulness to sleep unstabilizes the breathing control, thus generates 

CSA as well.   

In some patients, we can find an overlap between CSA and OSA. As the activation of upper 

airway dilator muscles is also controlled by central pattern generator neurons, patients with 

predominantly CSA and an anatomically narrowed upper airway are logically more predisposed to 

upper airway collapse compared to normal subjects. Furthermore, some OSA patients could develop 

treatment-emergent CSA during PAP therapy. This may be explained that the improved CO2 

excretion efficiency render the hypocapnic patient vulnerable to crossing the apnea threshold. 

Moreover, activation of stretch reflexes that may inhibit ventilation secondary to increased lung 

volume effects of CPAP (especially if over titrated) could contribute as well. 

 

1.2.2 Treatment  

Treatment approaches vary greatly in function of the pathophysiologic factors contributing 

to various forms of CSA. For patients affected by obesity hypoventilation syndrome, weight loss 

seems effective. However, it might not be easy to achieve. CSA can be induced by narcotic 

medication. In this case, dose reduction is likely to improve AHI quickly. O2 therapy seems to be 

effective to stabilize the respiratory control in non-hypercapnic CSA patients with heightened 

chemo-sensitivity. The non-invasive ventilation remains a major approach for reducing SDB events 

and improve the quality of life for patients with severe hypercapnic CSA.  
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CPAP ventilation is proved efficient for some patients with idiopathic CSA (Hoffstein & 

Slutsky, 1987). The mechanism is not clear, and might be related to prevention of inhibitory reflex 

arising during airway obstruction, and potentially the increased lung volume, O2 storage. It 

improves hemodynamics and SDB in heart failure patients. Furthermore, the combination of CPAP 

and increased CO2 could also be highly effective in treating idiopathic CSA (Hommura et al. 1997) 

and mixed central and obstructive SDB (Thomas, Daly, and Weiss 2005). 

Similarly, BiPAP may be effective in some CSA patients, however, deleterious to certain by 

inducing hypocapnia (Johnson and Johnson 2005). When used with a backup rate, it may lead to 

significant improvements in ventilation during sleep and a marked reduction in Paco2 in patients 

with obesity hypoventilation syndrome (Storre et al. 2006). 

Adaptive servo-ventilation is used to treat CSA patients especially with Cheyne-Stokes 

respiration or coexisting OSA and CSA. It can normalize patient breathing airflow by adapting the 

pressure support in function of hypoventilation and central apneas. At the same time, it applies also 

an auto-adjusting positive expiratory airway pressure to overcome upper airway obstruction. It 

showed efficacy in reducing SDB severity, improving cardiac function in patients with SDB and 

heart failure. (Sharma et al. 2012) However, adaptive servo-ventilation is not recommended for 

patients fulfilling the SERVE-HF inclusion criteria (i.e. predominant CSA and chronic systolic 

heart failure with substantially reduced left ventricular ejection fraction ≤ 45%) (Cowie et al. 2015). 

For these patients with severe impaired heart condition, the improved cardiac function can attenuate 

CSA as well.  
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Chapter II. State of the art of evaluating algorithms 

implemented in Auto-adjusting Positive 

Airway Pressure devices 

 

PAP is the treatment of choice for patients with moderate-to-severe OSA. In order to 

improve treatment comfort and optimize pressure in function of within-night and night-to-night 

variations in patient’s upper airway collapsibility, auto-adjusting positive airway pressure (APAP) 

is increasingly being used.  

Nowadays, a great variety of APAP devices from different manufacturers is commercialized 

at market. They use different technologies and algorithms to detect disordered breathing events and 

characterize their related mechanisms. Because the pressure responses required are different 

between obstructive and central SDB. The air pressure needs to be elevated after detecting 

obstructive events, in order to enlarge patient’s narrowed upper airway and to prevent the next 

upcoming obstructive events, whereas the pressure ought not to increase, following the detection of 

central events, otherwise, it could interrupt patients’ sleep and generate the unnecessary discomfort.  

As these algorithms implemented for APAP functioning mode are undisclosed to the public, 

they seem like a black box to the public and cannot be evaluated directly. Most of the time their 

functioning can be retrospectively and indirectly observed by recording patient ventilation under 

APAP treatment. However, it is difficult to compare the treatment efficiencies of APAP devices 

from different manufacturers objectively by means of clinical studies. Since the conditions of 

testing different APAP devices are never the same due to the within-night and night-to-
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night breathing variations within a real patient and these of inter-patients. Moreover, clinical trials 

could be time-consuming, expensive, and sometimes manufacturer-dependent in order to validate a 

novel functioning mode in a new generation of devices. This is why some attempts of respiratory 

simulation benches have been reported in literature, trying to evaluate miscellaneous devices with 

respiratory scripts composed of obstructive or central SDB.  

2.1 State of the art of evaluating PAP algorithms with a bench  

In the literature, there are several studies evaluating APAP algorithms with a bench test 

method (Farré et al. 2002; Abdenbi et al. 2004; Coller et al. 2005; Lofaso et al. 2006; Rigau et al. 

2006; Hirose et al. 2008; Netzel et al. 2014; Zhu et al. 2015; Isette et al. 2016). With time passing 

and new technologies arriving, the test bench also evolved in a more and more complete and 

physiological manner.  

 The first bench evaluating APAP algorithm in the literature was proposed by Farré et al. in 

2002. They used a computer controlled pump to reproduce the disordered breathing airflow patterns 

registered in patients with OSA. The breathing patterns generated could be programmed to be 

independent or dependent on the pressure delivered by APAP devices. In the latter mode, the 

severity of disordered breathing patterns was gradually alleviated with increased pressure delivered 

from APAP devices. As some APAP devices were beginning to be able to distinguish between SDB 

of obstructive and central mechanisms by using the forced oscillation technique (FOT), pressure 

pulses etc., Rigau et al. improved this model by adding a servo-controlled valve at the upstream of 

flow generator in 2006, in order to mimic upper airway obstruction. Instead of using a servo-

controlled valve, some researchers replaced it with a Starling resistor (Abdenbi et al. 2004; Coller et 

al. 2005; Hirose et al. 2008; Netzel et al. 2014; Zhu et al. 2015) to simulate upper airway 
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obstruction. It consists of an elastic tube mounted inside a sealed chamber filled with air, whose 

pressure is controllable. The APAP device circuit is connected to the elastic tube of Starling resistor. 

The degree of collapse of the elastic tube depends on the transmural pressure applied, which is 

defined as the difference between the pressure inside the elastic tube and the pressure of the sealed 

chamber. Therefore, by varying the chamber pressure, different degrees of obstruction are created in 

the elastic tube. Furthermore, the Starling resistor has an advantage of varying its resistance 

automatically in response to the pressure changes sent from APAP devices.    

 There are also various available options about the hardware used to simulate pulmonary 

function. Except flow pump, it could be a mechanical lung simulator like a Michigan lung simulator 

or an active lung simulator in advanced like ASL5000 (IngMar Medical, Pittsburgh, USA). The 

mimicked pulmonary movement in Michigan lung simulator is driven indirectly via a ventilator 

providing 2 different levels of pressure. The simulated pulmonary compliance is then regulated 

through a spring. On the contrary, the breathing airflow generated by an active lung simulator is 

controlled based on the physical model that the user has entered and parameterized through the 

interface of its related software. The user can enter respiratory muscular effort pressure, pulmonary 

compliance, airway resistance as inputs. Then the active lung simulator analyzes and calculates 

automatically the breathing airflow needed to be generated through the movement of a piston, in 

function of parameters entered previously as well as the instantaneous pressure measured at the 

output of the piston, which is influenced by the  pressure sent from APAP device and the 

instantaneous resistance of the upper airway simulator.  
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2.2 Objective of this PhD project  

As the bench tests mentioned above mimic the sleep disordered breathing profile of patients 

with SAOS or SACS by using a respiratory script composed of a repetitive string of several typical 

SDB events, it is difficult to generalize the knowledge about treatment efficiency differences 

between APAP algorithms acquired during bench tests to an individual patient. Because the 

characteristics of disordered breathing patterns could vary a lot from a patient to another and within 

a same patient as well, according to the sleep stage, sleep position, previous drug or alcohol intake 

etc. Moreover, APAP manufacturers are also adjusting their algorithm responses as a more and 

more detailed function of patient personal SDB characteristics to improve treatment performance. 

Thus, bench test models need to evolve in a physiological manner as well. Indeed, in 2016, Isetta et 

al. mimicked a full night of one female OSA phenotype on their bench, taking into account the 

influence of sleep positions and sleep stages (REM, Non-REM and awake) to the upper airway 

collapsibility. However, a predetermined database of disordered breathing patterns as well as non-

automatic bench integration represents a limitation in simulating a specific patient with their bench 

test model.  

 The aim of this PhD project is to develop a new physiological bench test model, which 

enables reproducing automatically the SDB profiles of apneic patients registered by polygraphs, 

taking into account their cycle-by-cycle disordered breathing of central and obstructive mechanisms. 

This bench model can then be used to help validate new functioning modes developed by 

manufacturers for some specific subgroups of patients, as well as select an optimal therapy device 

for any individual patient, adapted to its personal SDB patterns.  
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2.3 Bench hardware  

 The bench hardware used in this project is the same as that published in the thesis of Kaixian 

ZHU, which mainly consists of an active lung simulator ASL5000 (IngMar Medical, Ltd. 2013) and 

a Starling resistor.  

 

2.3.1 Active lung simulator ASL5000  

Figure below describes the functional concept of the lung simulation ASL5000. The 

inspiratory and expiratory airflow is generated by the movement of a piston. This is calculated 

mathematically via a host computer depending on the ventilatory model and the pulmonary setting 

parameters (like resistance, compliance) that the user has chosen and entered in the related software 

interface, as well as the pressure measured at the output of air. This pressure could be the pressure 

delivered from an external ventilator.  
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Figure 2-1: Functional concept of active lung simulator ASL 5000 (IngMar Medical, Ltd. 2013). 

 The ventilatory model used in this thesis corresponds to a single-compartment model 

(Figure 2-2), which mimics the ventilatory function via a single compliance (C) and a single 

resistance (R) connected in series. The C includes both the lung compliance and the chest wall 

compliance. The R represents the airway resistance at a normal state. Then the piston’s movement 

is govern with the equation below:  

Paw - ΔPmus  =  V/C + R*(dV/dt),  

where Paw is the air pressure measured at the output of ventilatory model, thus the output of piston 

as well. ΔPmus corresponds to patient’s muscular effort pressure for breathing, defined by 
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the user (the inspiratory muscular effort pressure is set to be negative.). V and  dV/dt are 

respectively instantaneous pulmonary volume and breathing airflow (inspiratory airflow values are 

thus positive).   

 

Figure 2-2: Single compartment model set in active lung simulator ASL 5000 (IngMar Medical, 

Ltd. 2013). 

To feature this lung model to reproduce a specific patient’s ventilatory function, we will 

need to set the parameters C, R and the breathing muscular effort. As apneic patients in general 

have a normal pulmonary compliance and this parameter does not influence directly PAP devices’ 

responses to patients’ SDB patterns, we have set C equal to 80 mL/cmH2O for all patients. As we 

use an external simulator, i.e. Starling resistor, to mimic a patient’s recurrent upper airway 

obstruction, this R is set to 7.25 cmH2O/L/s. The most important input should be patient breathing 

muscular effort, which determines the breathing airflow amplitude, period etc. The data frequency 

need to be 512 Hz. The method used by us to estimate it from patient polygraph recordings is 

described in chapter III. The interface window used for uploading patient breathing muscular effort 

data files is illustrated in figure 2-3.  
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Figure 2-3: File-based patient breathing muscular effort in active lung simulator ASL 5000 

(IngMar Medical, Ltd. 2013). 

2.3.2 Starling resistor 

 The Starling resistor used in this thesis has been described in thesis of Kaixian ZHU. It is 

composed of compliant rubber tube (120 mm long between two 15-mm external diameter 

connectors at each side of the cylinder) interposed within a cylindrical transparent chamber (180 

mm long, 28 mm internal diameter) (Figure 2-4). The opening degree of the rubber tube is mainly 

regulated via modifying the chamber pressure or the upstream pressure of rubber tube.  
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Figure 2-4: Cross-section of Starling resistor used in this thesis (Kaixian ZHU’s thesis, 2016).  
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Chapter III. A novel physiological bench test 

reproducing patient sleep disordered 

breathing profiles by using polygraph data 

 

With emergence of big data and artificial intelligence, APAP devices can probably adapt 

pressure responses in function of each patient’s own disordered breathing phenotypes in the near 

future. At that time, bench tests will be required to reproduce more easily the breathing profile of 

any apneic patient for being able to find an optimal ventilation device for him or her. To anticipate 

this new potential demand, we wonder to know whether it is feasible that a bench can be 

constructed in a manner, capable of reproducing automatically a patient’s SDB profile from its 

available medical data, for example, the polygraph recordings, which are performed during the 

diagnostic examination of Sleep Apnea Syndrome (SAS). This is why this study has been carried 

out.  
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3.1 Article:  

 

 

 

New physiological bench test reproducing nocturnal breathing pattern of patients 

with sleep disordered breathing  

(Accepted for publication by PLOS ONE Journal on November 13
th
, 2019) 
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Abstract 

Previous studies have shown that Automatic Positive Airway Pressure devices display different 

behaviors when connected to a bench using theoretical respiratory cycle scripts. However, these 

scripts are limited and do not simulate physiological behavior during the night. Our aim was to 

develop a physiological bench that is able to simulate patient breathing airflow by integrating 

polygraph data. We developed an algorithm analyzing polygraph data and transformed this 

information into digital inputs required by the bench hardware to reproduce a patient breathing 

profile on bench. The inputs are respectively the simulated respiratory muscular effort pressure 

input for an artificial lung and the sealed chamber pressure to regulate the Starling resistor. We did 

simulations on our bench for a total of 8 hours and 59 minutes for a breathing profile from the 

demonstration recording of a Nox T3 Sleep Monitor. The simulation performance results showed 

that in terms of relative peak-valley amplitude of each breathing cycle, simulated bench airflow was 

biased by only 1.48% ± 6.80% compared to estimated polygraph nasal airflow for a total of 6,479 

breathing cycles. For total respiratory cycle time, the average bias ± one standard deviation was 

0.000 ± 0.288 seconds. For patient apnea events, our bench simulation had a sensitivity of 84.7% 

and a positive predictive value equal to 90.3%, considering 149 apneas detected both in polygraph 

nasal simulated bench airflows. Our new physiological bench would allow personalizing APAP 

device selection to each patient by taking into account individual characteristics of a sleep breathing 

profile.  

Introduction 

Obstructive sleep apnea (OSA) is a sleep disordered breathing (SDB), characterized by 

repetitive narrowing or closure of the upper airway during sleep [1]. This leads to intermittent 

arterial oxygen desaturations [2], and also to increased activations of the sympathetic 
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nervous system, which may result in complications in cardiovascular diseases [3], as well as arterial 

hypertension [4]. Patients affected by OSA have symptoms like heavy snoring, excessive diurnal 

somnolence, and difficulty in concentration and memory, all of which significantly reduce their 

quality of life. Depending on severity, moderate and severe syndromes are largely treated by using 

continuous positive air pressure (CPAP) devices to maintain open airways, and prevent the 

occurrence of adverse breathing events during sleep at night. These treatments have proven to be 

efficient by drastically reducing the number of breathing events [5]. Moreover, they have a clearly 

beneficial impact on diurnal activities by significantly reducing sleepiness [5]. However, one of the 

key issues in treating a SDB patient with CPAP is the choices of medical device available on the 

market and of the ventilation mode (constant positive airway pressure or automatic positive airway 

pressure (APAP)). APAP mode relies on the use of a dedicated algorithm driving the response of 

the device to breathing events such as apneas or a significant reduction of respiratory flow. These 

algorithms are different from one device to another [6–13] and several setting options [14–16] can 

be chosen by users. Because the algorithms are protected by patents, they are like a black box to the 

public [17] and cannot be evaluated directly. Most of the time, device functioning can be 

retrospectively and indirectly observed by recording patient ventilation under APAP [18,19]. This is 

why there has been some work to develop respiratory benches, as reported in the literature [6–13], 

to evaluate miscellaneous devices. Some benches consist of a lung simulator to mimic the patient's 

respiratory airflow [6]. Other benches are additionally connected to an upper airway simulator by 

use of either an obstruction valve [9,13] or a Starling resistor [7,8,10–12], whose resistances are 

conditioned to pressure changes from APAP devices in different manners. The mechanical 

impedance in an obstruction valve is controlled via a predefined computer program, in function of 

the instantaneous pressure of the APAP. On the contrary, the resistance of Starling resistor reacts 

mechanically and automatically to the pressure changes. Bench hardware can be 
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programmed to simulate the artificially composed respiratory scenarios, which generally contain a 

string of repetitive disordered breathing events, i.e. obstructive and central apneas, obstructive and 

central hypopneas, inspiratory flow limitation, snoring. Various APAP devices are then connected 

to the bench simulation. Their pressure responses to the SDB events are recorded, assessed and 

compared. However, all these benches use airflow from a limited database of breathing airflow 

short segments recorded in patients and/or artificially designed. Thus, the respiratory scenarios 

simulated on bench cannot represent completely the physiological variability and chronology of 

human breathing. This is why it is difficult to generalize the bench-observed treatment efficiencies 

to one individual patient. Furthermore, as APAP manufacturers are adjusting their algorithm 

responses as a more and more detailed function of patient physiological breathing behaviors, this 

also underlines the needs to adapt the bench testing in a physiological manner. Based on these 

contexts, Isetta et al. mimicked a full night of one female OSA phenotype on their bench [13]. 

However, there still existed a distinction between bench simulated breathing profile and the one of a 

specific patient. Thus, a physiological bench, which could replicate automatically any apneic patient 

breathing profile by using its polygraph recordings, should solve this problem. Thus, the aim of our 

study was to develop a new approach for bench testing, which enables the automatic reproduction 

of a patient nasal breathing phenotype, taking into account the central and obstructive 

characteristics of each respiratory cycle. To accomplish this, the secondary aim was to develop an 

algorithm that is able to process a patient’s night polygraph data, and to calculate the digital inputs 

required to control the hardware of the bench simulation device.   

Material and methods 

 Bench test system design 

Our bench system is composed of two parts: signal processing and bench simulation. 
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Our work mainly focused on designing an algorithm that is able to integrate polygraph data as 

inputs, and to return as outputs the necessary digital inputs to control our bench hardware. This 

hardware consists of an artificial lung using a piston to mimic patient pulmonary motion during 

respiration, driven by simulated respiratory muscular effort pressure (ΔPmus) and a Starling resistor 

that mimics upper airway obstruction by varying its resistance. Our algorithm calculates the level of 

upper airway obstruction as well as the pressure intensity of the respiratory muscular effort to be 

simulated in each breathing cycle of a patient by analyzing polygraph data in a way that is most in 

line with AASM rules [20].  

Specifically, to simulate a targeted polygraph nasal airflow (V̇source) on our bench (Fig 1), the 

resistance of a Starling resistor was increased during an obstructive respiratory event, and set to 

minimum during periods of normal breathing as well as central breathing events. The ΔPmus used to 

command our artificial lung was calculated based on the breathing airflow issuing from a central 

ventilation command. We noted this estimated non-obstructed nasal airflow, without any 

obstruction occurring in the upper airways, as V̇cc.  
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Fig 1. Signal processing overview from polygraph data to its breathing profile simulated on 

bench.  
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The signal processing steps or steps refer to the main steps described in polygraph signal processing 

section. 

(a) Polygraph nasal airflow, steps 1 and 2: nasal airflow (V̇source) of period without movement 

artifact is derived from polygraph raw signals. It represents the target breathing airflow, which is 

aimed to be simulated on bench.     

(b) Sleep disordered breathing events characterization, steps 3, 4 and 5: breathing onset positions (*) 

and sleep disordered breathing (SDB) events (orange frames) are identified. SDB events can be 

obstructive apneas (OA), central apneas (CA), obstructive hypopneas, central hypopneas.  

(c) Central command airflow calculation, step 6: the estimated non-obstructed nasal airflow issuing 

from central ventilation command (V̇cc) is calculated by combining information of V̇source and SDB 

events characterization. During normal breathing periods or central SDB events, V̇cc is directly 

assumed identical to V̇source, whereas during obstructive breathing events, the amplitude of V̇cc is 

hypothesized to be equal to V̇source amplitude of the pre-event 2-minute baseline.  

(d) Muscular effort pressure calculation, step 6: the respiratory muscular effort pressure (ΔPmus) is 

calculated by taking into account V̇cc as well as the lung compliance and airway resistance set in the 

active lung simulator.  

(e) Upper airway obstructive level calculation, step 6: the sealed chamber pressure (Pch) used to 

regulate Starling resistor for each breathing cycle is calculated as a function of V̇cc and V̇source. 

(f) Bench airflow simulation: the bench-simulated airflow (V̇bench) is obtained by controlling the 

active lung simulator and the Starling resistor with ΔPmus and Pch. 

 Bench Hardware 
 

As shown in Fig 2, the bench hardware used in our study to reproduce the polygraph 

breathing profile was derived from a setup described in a previous study from our 
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laboratory [12]. The hardware consisted mainly of an active lung simulator ASL 5000 (IngMar 

Medical, Pittsburgh, USA) and a Starling resistor, in which a rubber tube could collapse as a 

function of transmural pressure. The transmural pressure is the difference between the intraluminal 

pressure at the upper stream (Pus) and the extra-luminal pressure, which corresponds to the sealed 

chamber pressure (Pch). In detail, Pus was set to 4 cmH2O, as the minimal default pressure sent by 

APAP devices. Then, the obstructive state in the rubber tube of the Starling resistor was altered by 

varying Pch via a pressure control system, which supplied continuous positive or negative pressures. 

The adjustment of obstruction level in the Starling resistor was triggered once at the beginning of 

each breathing cycle via a transistor-transistor logic (TTL) signal sent by the active lung simulator.  

 

Fig 2. Bench hardware diagram. PTG: pneumotachograph; V̇bench: bench airflow measured by a 

pneumotachograph; Pus: pressure at upstream of Starling resistor; Pch: sealed chamber pressure in 
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Starling resistor; TTL signal: transistor-transistor logic signal.   

 

To simulate ventilatory function, we used a single-compartment model in the active lung 

simulator, in which a patient’s lung was modeled as a single compliance C and a single resistor R 

connected in series, representing respectively lung compliance and airway resistance with C = 80 

mL/cmH2O and R = 7.25 cmH2O/(L/s). In our case, because we used a Starling resistor to mimic 

the upper airway pathophysiology, the airway resistance set in the active lung simulator did not take 

into account upper airway resistance. The digital input used to command each breathing cycle in 

active lung simulator was ΔPmus. There is a relationship between ΔPmus and non-obstructed 

breathing airflow V̇cc, dominated by the equation 

 ΔPmus =  −
Vcc

C
− R ∗ �̇�𝑐𝑐,                                                    (1) 

in which Vcc represents pulmonary instantaneous volume, thus 𝑉𝑐𝑐 = ∫ �̇�𝑐𝑐 𝑑𝑡 . 

The flow produced on the bench (V̇bench) was monitored by a pneumotachograph located 

between the source of positive pressure 4 cmH2O and the Starling resistor (Fig 2).  

All signals measured on the bench were sampled via a NI USB-6210 card (data acquisition 

card, National Instruments, USA) and a custom-developed LabVIEW (National Instruments) 

program at a rate of 20 Hz. Then, they were stored in a personal computer for further offline 

analysis.  

 Polygraph Signal Processing 
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The polygraph data used in our study issued from a one-night demonstration recording by a 

Nox T3 Sleep Monitor (Nox Medical, Reykjavik, Iceland). On our bench, we reproduced a total of 

8 hours and 59 minutes of this breathing profile by integrating polygraph recordings. The 

corresponding apnea-hypopnea index (AHI) of this recording was 22.6 events/h with apnea index 

(AI) = 15.5 events/h and hypopnea index (HI) = 7.1 events/h. The signals used in our study were 

respectively an acceleration signal sampled at 20 Hz, nasal pressure sampled at 200 Hz, thoracic 

and abdominal Respiratory Inductance Plethysmography (RIP thorax and RIP abdomen) sampled at 

25 Hz, RIP flow at 25Hz, pulse oximetry (SpO2) sampled at 3 Hz, and audio volume sampled at 100 

Hz. 

We developed an algorithm with Matlab (MATLAB, Signal Processing Toolbox and 

Statistics Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States) 

which allowed for interpretation of polygraph signals and calculation of the digital inputs that 

needed to be integrated into the bench hardware. Concretely, the ΔPmus to drive the artificial lung 

and the Pch to regulate the obstructive level in the Starling resistor were used for bench simulation. 

Fig 3 describes the six main signal-processing steps implemented in the algorithm. Each step is then 

depicted in detail in the following subsections. 
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Fig 3. Main steps in polygraph signal processing. The checked signals next to each signal-

processing step mean that they were directly associated with this step. 

  Step 1: Signal pre-processing: resampling and filtering  
 

 Nasal pressure, RIP flow, audio volume, RIP thorax and abdomen were first down-sampled 

at 20 Hz to homogenize the whole signal data for further analyses. Then nasal pressure, RIP flow, 

RIP thorax and RIP abdomen were smoothed by a Savitzky-Golay filter [21]. In our conditions, the 

filter was constructed by fitting successive sub-sets of adjacent data points in 1 second with a third-

degree polynomial function. According to AASM rules [20], the nasal airflow modulation with time 

V̇source (20 Hz) was estimated as the square-root transformation of nasal pressure. 

  Step 2: Automatic segmentation of stable periods by using acceleration signal 
 

The aim of this second step was to avoid body motion artifacts in the respiratory signals. We 

chose to exclude periods with a high probability of artifact occurrence by using the 3D 
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accelerometer signal (Fig 4(a)), which reflected body movement at night during recording. This 

signal was the calculation of the Euclidean norm of 3-axis acceleration.  

 

Fig 4. Segmentation of stable periods by analyzing acceleration signal. (a): Example of 

acceleration signal (20 Hz) obtained from polygraph. This signal corresponds to the 
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Euclidean norm of three-axis accelerations measured by the accelerometer installed in the 

polygraph device. (b): Energy signal - calculated in frames of 5 seconds with 50% overlap. (c): 

Determination of frame energy threshold in the resampled increasing frame energy array, 

represented by the blue line. The magenta line is the current linear regression line, which fits into 

six consecutive points in the resampled increasing frame energy array. The green line’s slope is the 

average value of all previously calculated slopes. The black line is a reference horizontal line. The 

slope of the magenta line is greater than 5.8 times that of the green line. The energy value of the red 

asterisk corresponds to the median energy of the six consecutive points fitted by the magenta line. 

Thus, the amplitude of the red asterisk is determined as the frame energy threshold. 

 

Stable periods were characterized by low acceleration amplitude segments, in comparison to 

periods with movement in the 3D accelerometer signal. To automatically identify stable periods, 

our method was based on setting up an adaptive threshold in the energy signal of 3D acceleration. 

The energy signal (Fig 4(b)) was calculated in a frame of 5 seconds with an overlap of 50%, as 

shown in equation (2), in which Sk (i) was the 3D accelerometer signal contained in the k
th
 frame of 

100 data samples, and Ek represented the energy of the signal in the k
th

 frame.  

      Ek=  ∑ |Sk
100
𝑖=1 (𝑖)|²     (2) 

 To determine an appropriate energy threshold discriminating between high and low energy 

frames, the energy array was sorted by an ascending order in the first step. Then, in order to 

decrease the required computing power, the energy array was down-sampled to obtain a new energy 

array composed by 1080 samples (Fig 4(c)). To detect the change onset point in the sorted and 

down-sampled energy array, we chose to detect the slope change position. Thus, we 
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calculated the slopes of every six consecutive energy points with a 50% overlap by performing a 

linear regression (Fig 4(c)). We obtained a slope array of 359 values. We assumed that the patient 

should spend at least 25% of the recording time sleeping with negligible body movement. 

Accordingly, the slope change position needed to be situated after index 90 (359*25% = 90) of the 

slope array. To find the slope change position, we divided each slope value situating from index 90 

by the average of its previous slope values. If this ratio was greater than 5.8, a number that was 

empirically determined, the corresponding slope was then considered as the change position in 

slopes. Consequently, the energy threshold was determined as the median of the 6 consecutive 

energy values, from which the corresponding slope was calculated.  

At the end, stable frames were combined if they overlapped and were lower than the 

calculated energy threshold. All considered signals in the remaining steps of the process were 

mostly extracted from these stable periods. Nevertheless, we allowed short periods of movement 

less than 2 minutes to maintain congruity of the polygraph signals.   

  Step 3: Identification of breathing cycles  
 

 The proper identification of each breathing onset from V̇source is mandatory to simulate 

corresponding respiratory cycles (Fig 5). As breathing onset positions are difficult to determine 

directly from V̇source during highly-reduced breathing periods, it is necessary to apply a methodology 

to identify breathing onsets depending on the amplitudes of the nasal airflow excursion signal. 

Firstly, we calculated the excursion of V̇source. We detected inspiratory peaks and expiratory valleys 

in a three-minute moving window by using an automatic multiscale-based peak detection (AMPD) 

algorithm developed by Scholkmann et al. [22]. The 3-minute window was chosen in consideration 

of both computational time and algorithm performance. Indeed, the AMPD algorithm has 
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an O(n²) complexity (n: signal length contained in a window), meaning that the smaller the window 

size is, the shorter the computational time will be. However, it should also contain enough breathing 

cycles so that the AMPD algorithm can capture the periodic pattern. In average, a 3-minute window 

contained about 45 (Ttot = 4s) to 72 (Ttot = 2.5s) breathing cycles, of which the amount was 

comparable to examples cited in Scholkmann et al’s paper [21]. Moreover, we also checked 

whether there were any missed cycle detections, by detecting oscillation around zero values with 

respect to amplitude threshold and a temporal threshold compatible with a respiratory cycle. These 

thresholds were established based on knowledge related to the mean amplitude and total respiratory 

cycle time (Ttot) of previous respiratory cycles without obstruction. Thus, the upper envelope and 

lower envelope of V̇source were obtained by interpolating peaks and valleys, respectively. Excursion 

was calculated as the difference between the upper envelope and lower envelope. Based on the 

excursion values, breathing onsets were then determined with two distinct methods. Considering 

periods with high excursion values, breathing onset positions were determined as the inflection 

point in V̇source between expiratory minimal and inspiratory maximal values respecting the order of 

two consecutive cycles. However, our algorithm relied on RIP signals to infer breathing onset 

positions for low nasal airflow excursion periods.  
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Fig 5. Identification of breath onset positions in polygraph nasal airflow.  

(a) Polygraph nasal airflow: an example of polygraph nasal airflow (V̇source), of which we need to 

identify breath onset positions.  
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(b) Reduced excursion segments identification: V̇source is segmented in function of its excursion:  

periods with reduced excursion (pink shade) and periods without reduced excursion (blue shade). 

(c) Breath onset determination relying on Respiratory Inductance Plethysmography (RIP) signals: 

during periods with reduced V̇source excursion, as breath onset positions are difficult to be directly 

determined from V̇source, the reference RIP signal’s valleys temporal coordinates are used to indicate 

the corresponding breath onset positions in V̇source. The choice between RIP thorax and RIP 

abdomen to be the reference RIP signal is determined by criterion of possessing a higher relative 

amplitude modulation compared to the other one.   

(d) Breath onset determination relying on V̇source: in segments without reduced V̇source excursion, 

breathing onsets can be directly determined as the inflection point in V̇source between expiratory 

minimal and inspiratory maximal values.  

(e) Breath onset identification result: all breath onsets in V̇source are obtained by combining results 

from (c) and (d).  

 

Highly reduced excursion criteria were defined as a reduction of nasal airflow excursion 

equal or greater than 65% of the two-minute pre-event baseline as well as a duration greater than 

four seconds. This airflow reduction threshold was determined with reference to AASM apnea 

scoring rules. As nasal airflow was calculated by square-root transformation of nasal pressure, the 

nasal pressure reduction threshold (≥ 90%) used in apnea detection would correspond to a reduction 

greater than 66.7% in nasal airflow. We used a threshold of 65% very close to this. The duration 

criterion of at least four seconds was set up to allow for detecting any single obstructive or central 

apneic breathing cycle. A breathing cycle lasted about 3 seconds. Another 1 second was added in 

order to account for the time delay between the airflow valley of the last breath before 
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reduced excursion and the start of the reduced excursion. 

Considering highly-reduced excursion periods, the breathing onset cannot be identified on 

V̇source by definition. Thus, we collected this information from the RIP signal. We determined for 

each period which RIP signal to refer to, namely thoracic or abdominal. This determination of the 

reference RIP signal was based on the following requirement: it need be the signal with a higher 

relative amplitude modulation during the reduced nasal airflow excursion period. Once we had 

decided upon the reference RIP signal, we used valley time coordinates in the reference RIP signal 

as the ones of breath onsets for the reduced nasal airflow excursion segments. 

  Step 4: Detection of apnea events and identification of significant breath 

attempts  

Apnea events were detected according to AASM recommendations for apnea rules updated 

in 2012 [20]. The main signal used for apnea detection was V̇source. We set a maximal apnea event 

duration of three minutes to discriminate between reduced breathing and mouth breathing. 

Furthermore, apnea events detected by V̇source were only considered if there was a simultaneous drop 

in the thermistance excursion signal or alternatively in the RIP flow excursion signal, which should 

be greater than 20% compared to the pre- and post-event baselines. For a given period, apneas were 

directly qualified as central apnea if there were no identified breathing attempts within the RIP 

signals. Moreover, we checked for the significance of the muscular effort indirectly represented in 

RIP signals for each breath attempt contained during the period of apnea. Significant breath 

attempts with collapsed upper airways, namely the obstructive apnea cycles, were then identified; 

otherwise, they were qualified as central due to a significant reduction of respiratory muscular effort 

modulation.  

For each breath attempt, the significance threshold was set as 10% of the thoracic or 
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abdominal RIP excursion baseline. The respiratory effort excursion of each breath attempt within an 

apnea was determined as the excursion value, whose time axis coordinate corresponds to this of the 

peak position in the RIP signal. The excursion baseline was determined as the within the one minute 

pre- and post-event excursion average. 

  Step 5: Detection and characterization of hypopnea events  
 

Our algorithm detected hypopnea events according to the scoring rules of AASM updated in 

2012 [20]. Similar to apnea detection, we mainly used V̇source to detect hypopneas. Our algorithm 

also assessed RIP flow excursion or naso-buccal thermistance excursion. A descending tendency of 

that signal greater than or equal to 10% in comparison to the one-minute pre- and post-event 

baseline was required to exclude the possibility of mouth breathing, which could cause an 

amplitude drop in V̇source as well. Additionally, to assure that this drop in nasal airflow excursion 

greater or equal to 30% was not due to sensor displacement, we also set a maximal event duration 

of three minutes.  

Moreover, we followed the classification rules recommended by AASM [20] to classify 

hypopnea events as either obstructive or central hypopneas. Indeed, to consider an obstruction in the 

upper airway, one of the three following criteria was required: i) snoring, ii) thoracoabdominal 

paradoxical movements, or iii) flattened inspiratory airflow shape specific to obstruction. 

In summary: 

i) We evaluated the audio power difference between the inspiratory phase and 

expiratory phase to detect snoring.  

ii) To identify the occurrence of thoracoabdominal paradox, the algorithm was based on 

the temporal closeness between peak and valley positions in RIP thorax and those in 

RIP abdomen. For example, during a given cycle with a thoracoabdominal 
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paradox, the RIP thorax peak was supposed to be temporally closer to the valley 

rather than peak in RIP abdomen. 

iii) We were inspired from the methodology proposed by Zhi et al. [23] to detect an 

inspiratory flow limitation in V̇source. Briefly, we trained a four-layer neural network 

(7*14*14*1) with seven features extracted from inspiratory airflow as inputs. The 

features were peak numbers, peak amplitude normalized by precedent 2-minute peak 

amplitude baseline, scooping index, kurtosis, deviation index, flattening index, 

skewness.   

If none of these three criteria were detected, the candidate hypopnea event was considered 

as a central event.  

  Step 6: Calculation of digital inputs for integration into bench hardware 

  Artificial lung input: simulated respiratory muscular effort pressure ΔPmus 

calculation 

The relationship between ΔPmus and V̇cc is modeled by equation (1). V̇cc was assigned directly 

to V̇source for respiratory cycles included in normal breathing or in central respiratory events; V̇cc was 

then estimated by a sinusoidal form, with an amplitude equal to the 2-minute pre-event baseline for 

respiratory cycles involved in obstructive events. Inspiratory and expiratory time of V̇ cc in 

obstructive cycles was calculated with respect to the temporality of V̇ source (for obstructive 

hypopneas) and the reference RIP signal (for obstructive apneas).  

 Due to technical limitations in our bench hardware, inspiratory and expiratory volumes 

needed to be equal for each cycle. Consequently, we equilibrated inspiratory and expiratory airflow 

with respect to their inspiratory peak and expiratory valley coordinates.  

  Starling resistor input: sealed chamber pressure Pch calculation 
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 Here, the aim was to apply the appropriate Pch to transform the amplitude of V̇cc into the 

desired V̇bench in order to simulate V̇source. Preliminary work allowed us to study the relationship 

between V̇cc and the resulting flow after application of various Pch, that is to say various levels of 

obstruction. This relationship was studied respectively for inspiration and expiration. This work 

allowed us to calculate Pch for each obstructive cycle as a function of V̇cc and V̇source.  

 Bench simulation performance evaluation 
 

 We compared mainly V̇bench with V̇source to evaluate our bench simulation performance with 

respect to two categories: 1. normal and hypopnea breathing; 2. apneas.  

 For normal and hypopnea breathing, we assessed the agreement between V̇bench and V̇source 

cycle-by-cycle in terms of relative peak-to-valley amplitude (A) and Ttot by means of linear 

regression analysis, histogram representation of bias, and Bland and Altman analysis [24]. We 

measured the similarity in airflow morphology between V̇ bench and V̇ source cycle-by-cycle by 

calculating a Pearson correlation coefficient (r) for each corresponding pair of cycles respectively in 

V̇source and V̇bench. We assumed that the number of airflow samples in each respiratory cycle was ≥ 40 

and that the distribution was normal. Then we calculated the mean ± one standard deviation (SD) of 

r following two separated groups of respiratory cycles: cycles respectively with obstruction and 

without obstruction in upper airways. 

For apneas, we calculated sensitivity and Positive Predictive Value (PPV) to evaluate the 

correspondence between apneas detected in V̇source and those in V̇bench. To assess apnea onset time 

agreement as well as apnea duration agreement between V̇source and V̇bench, we evaluated apnea onset 
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time differences by calculating its mean and SD, and performed linear regression and Bland and 

Altman analyses for apnea duration.  

Results 
 

 Our algorithm allowed us to simulate a breathing profile from polygraph recordings by using 

a bench. Fig 6 shows two extracts of the bench simulations. The extracts describe respectively an 

obstructive SDB period and another breathing period without disordered breathing events. There is 

a graphical correspondence in signal amplitude and breathing events between the bench and the 

polygraph signals. 
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Fig 6. Illustration of bench simulation results: polygraph nasal airflow versus bench airflow. 

(a) and (b): example of a breathing profile with obstructive apnea events marked in orange shade. 

The polygraph nasal airflow (V̇source) and bench simulation airflow (V̇bench) are respectively showed 

in (a) and (b) with blue curves. The red curve in (b) represents the estimated non-obstructed nasal 

airflow (V̇cc), issuing from a central ventilation command. (c) and (d): example of a breathing 
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profile without disordered breathing events. The V̇source and V̇bench are respectively showed in (c) and 

(d) with blue curves. The magenta points in all graphs represent the breath onsets.  

 

Concerning bench simulation performance for normal breathing (5,476 cycles) and 

hypopnea breathing (1,003 cycles), the average bias (M) in A between V̇source and V̇bench was 1.48% 

with a SD of 6.80% (Fig 7). Taking into account the 95% percent of cycles distributed around M, 

the SD of their biases decreased to 4.12%, whereas the M remained more or less unchanged 

(1.88%). The M in Ttot for each corresponding pair of respiratory cycles respectively in V̇source and 

V̇bench was approximately 0, with a SD equal to 0.288 seconds (Fig 8). Considering the 95% percent 

distributed around the M in Ttot, the M ± one SD was -0.001 ± 0.139 seconds. The similarity 

assessed by Pearson correlation coefficient between each pair of respiratory cycles respectively in 

V̇source and V̇bench was 0.98 ± 0.08 considering all the normal and central hypopnea respiration cycles, 

and 0.87 ± 0.22 among all the obstructive hypopnea respiration cycles.  
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Fig 7. Linear regression, histogram, Bland and Altman plot analyzing similarity in relative 

amplitude between polygraph nasal airflow and bench airflow for 6,479 normal and hypopnea 

breathing cycles. (a1): Linear regression between polygraph estimated nasal airflow cycle relative 

amplitude (Asource) and bench airflow cycle relative amplitude (Abench). Red line: the linear 

regression line. Black line: the identity line. Magenta points: breathing cycles with the difference 

between Abench and Asource (Abench – Asource) greater than 97.5 percentile. Blue points: breathing cycles 

with Abench – Asource between 2.5 percentile and 97.5 percentile. Green points: breathing cycles with 

Abench – Asource lower than 2.5 percentile. (b1): histogram analysis of difference between Abench and 

Asource. Green cyan and magenta dashed line: their x-axis coordinates represent respectively 2.5 

percentile (-15.5%), median (2.7%) and 97.5 percentile (10.1%) of Abench – Asource. (c1): Bland-

Altman plot analyzing the agreement between Abench and Asource. Magenta, blue and greens points 

represent the same breathing cycles as described in graph (a1). Graphs (a2), (b2), (c2): the same 
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analyses as in graphs (a1), (b1) and (c1) except that the cycles taken into account are those whose 

Abench – Asource is between the 2.5 percentile and 97.5 percentile. 

 

Fig 8. Linear regression, histogram, Bland and Altman plot analyzing similarity in total 

respiratory cycle time between polygraph nasal airflow and bench airflow for 6,479 normal 

and hypopnea breathing cycles. (a1): Linear regression between polygraph nasal airflow cycle 

time (Tsource) and bench airflow cycle time (Tbench). Red line: the linear regression line. Black line: 

the identity line. Magenta points: breathing cycles with the difference between Tbench and Tsource 

(Tbench – Tsource) is greater than 97.5 percentile. Blue points: breathing cycles with Tbench – Tsource 

between the 2.5 percentile and 97.5 percentile. Green points: breathing cycles with Tbench – Tsource 

lower than the 2.5 percentile. (b1): Histogram analysis of the difference between Tbench and Tsource. 

Green cyan and magenta dashed line: their x-axis coordinates represent respectively 2.5 percentile 

(-0.600 seconds), median (0 seconds) and 97.5 percentile (0.600 seconds) of Tbench – Tsource. (c1): 

Bland-Altman plot analyzing the agreement between Tbench and Tsource. Magenta, blue and greens 

points represent the same breathing cycles as described in graph (a1). Graphs (a2), (b2), 
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(c2): the same analyses as in graphs (a1), (b1) and (c1), except that the cycles taken into account are 

those whose Tbench – Tsource is between the 2.5 percentile and 97.5 percentile.  

 

As for apnea events, simulation sensitivity and PPV were respectively equal to 84.7% and 

90.3% by taking into account 149 apneas occurring correspondingly both in V̇source and V̇bench. 

Concerning the precision of apnea onset time, the average difference between apnea onset time in 

V̇source and V̇bench is equal to 0.19 seconds with a SD of 4.71 seconds (Fig 9). Concerning apnea event 

duration, the average bias is 0.12 seconds with a SD of 5.11 seconds, comparing the corresponding 

pair of apneas occurring in V̇source and V̇bench (Fig 10).  

 

Fig 9. The relationship between apnea-onset time difference and apnea duration for apneas 

detected correspondingly in both bench airflow and polygraph nasal airflow (149 apneas). 

Tapnea-bench: duration of apneas detected in bench airflow (V̇bench). Tapnea-source: duration of apneas 

detected in polygraph nasal airflow (V̇source). Tonset-bench: the apnea onset time of apneas detected in 

V̇bench. Tonset-source: the apnea onset time of apneas detected in V̇source.  
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Fig 10. Linear regression, Bland and Altman analyses of apnea duration determined from 

respectively bench airflow and polygraph nasal airflow (149 apneas). Only the apneas detected 

both in bench airflow (V̇bench) and in polygraph nasal airflow (V̇source) are taken into account. (a): 

linear regression analysis between apnea duration determined from V̇source (Tapnea-source in x-axis) and 

the one from V̇bench (Tapnea-bench in y-axis). Red line: the linear regression line. Black line: the identity 

line. (b): Bland and Altman analysis of agreement between Tapnea-source and Tapnea-bench.  

 

Discussion 

 Findings statement 

Our study proposed a physiological method for developing a bench to test different APAP 

devices. By processing polygraph data, we derived the digital inputs required to instruct bench 

hardware, of which the active lung simulator was driven by ΔPmus, and a Starling resistor was 

regulated by Pch to mimic a polygraph nasal breathing profile on the bench as similarly as possible. 

The bias existing in the airflow peak-valley amplitude can be partly explained by the limits of 

pressure regulators in terms of dynamic time response to a decreased Pch, corresponding to 

breathing cycles represented in green points in Fig 7. Moreover, this is also related to the incertitude 

in controlling the resistance effect in the Starling resistor.  
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Our bench seems to have an excellent performance in cycle period simulation and good 

similarity in terms of signal morphology between V̇source and V̇bench, especially for respiratory cycles 

without obstruction in the upper airways.  However, as for obstructive breathes, similarity was 

moderate. This can be explained by the fact that when increasing the resistance in the Starling 

resistor, we can no longer control the V̇bench signal shape. We can only make sure that there are 

inspiratory flow limitation phenomena occurring among the obstructive breathing cycles and the 

amplitudes of these obstructive cycles are very similar to those in V̇source. 

There was satisfactory sensitivity and a good PPV for apnea-event correspondence between 

V̇source and V̇bench. There was some mismatch between bench and polygraph recordings for apnea 

onset and duration. These values are perfectible by optimizing the resistance incertitude in the 

Starling resistor, thus allowing for the desired reduction in airflow amplitude, as well as by 

attenuating the artifact in the airflow. Indeed, the airflow artifact was caused by the promptly 

collapsing rubber tube in the Starling resistor during the transition phase from breathing without 

obstruction to breathing with obstruction. This artifact was proportional to the level of obstruction. 

We did not calculate the specificity because we could consider that normal and hypopnea breathing 

periods account for the majority of polygraph recording time. The correspondence for normal and 

hypopnea breathing in V̇source and V̇bench should always be near perfect.  

 Advantages of our new approach 

Compared to previous published bench tests, our bench system is able to automatically 

reproduce an apneic patient nasal breathing profile from its polygraph recordings for both 

obstructive sleep apnea syndrome and central sleep apnea syndrome. This assures that the bench-

simulated airflow contains the breath-to-breath variability showed in real patient airflow. Our bench 

can simulate an unlimited spectrum of disturbed breathing events issuing from apneic 
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patients of various phenotypes. Moreover, our bench arranges the occurrence of different disordered 

breathing events in a physiological order. These depend on many factors related to patient 

characteristics such as age, gender, body mass index, craniofacial structure, as well as night-to-night 

variation like sleep stage, body position, alcohol or drug use, etc. Furthermore, the disordered 

breathing events of the obstructive mechanism simulated on our bench are capable of reacting to 

small steps of pressure change delivered by APAP devices by gradually increasing airflow 

amplitudes. This is a so-called closed loop. 

 Limits of the bench 

Only one Starling resistor was used in our study, whose geometrical and mechanical 

property was unique, such as in the collapsible tube’s ellipticity, wall stiffness, and upstream 

resistance at the onset of inspiratory flow limitation [25]. Thus, it may not represent the physical 

properties of all apneic patient upper airways. For the critical closing airway pressure, while it can 

be set to different values by varying Pch in the Starling resistor, we do not have any information 

about a patient’s real critical closing airway pressure from the polygraph examination, nor regarding 

an effective treatment pressure. Accordingly, the critical closing airway pressure and the effective 

treatment pressure, which were specific to our test bench, could differ from that of patients. By 

simulating a patient breathing profile and testing it with different devices on our bench, we cannot 

determine the exact pressure range needed by a particular patient. However, according to the 

treatment performance that each device demonstrates and the pressure range used by each device, 

we can always recommend a suitable device for a particular patient, despite the fact that we cannot 

know the real treatment pressure range that the patient needs. Furthermore, our bench does not take 

into account patient physiological responses to previous treated or partially-treated disordered 
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breathing events, like its ventilatory stability [26], which may influence the occurrence of upcoming 

disturbed breathing events.  

 Future improvements 
 

 Concerning inspiratory flow limitations in the simulation method, there are two different 

modes in our bench according to whether the inspiratory flow limited cycle is contained in an 

obstructive disordered breathing event. If it is, the cycle is simulated with a partially closed rubber 

tube in the Starling resistor, and the ΔPmus of this cycle is derived from V̇cc. In this case, the bench-

generated limited flow shape may present a difference with the one in polygraph recordings. 

Otherwise, it is simulated by integrating the ΔPmus derived directly from the  V̇ source, with a 

completely opened Starling resistor. This results in more similar inspiratory flow limitation 

morphology, however, without a true obstruction in the Starling resistor. 

 In the near future, we are considering implementing two other versions of algorithms on our 

bench, using two different methodologies (version I and version II) to simulate patient inspiratory 

flow limitation.  

Version I: all cycles presenting an inspiratory flow limitation would be simulated as 

obstructive cycles with the rubber tube in Starling resistor partially collapsed;  

Version II: all cycles presenting an inspiratory flow limitation would be simulated in the 

same manner as cycles of normal breathing or a central breathing event with the rubber tube in the 

Starling resistor fully open.  

These two versions are complementary. With version I, we can learn to what extent the 

tested ventilation device is able to adapt the treatment pressure to an inspiratory flow limitation, and 

our bench will react to the pressure change delivered by the device in a closed loop. With version II, 

our bench would simulate the exact airflow shape of these cycles with an inspiratory flow 
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limitation. In this way, we can learn whether the test device accurately recognizes such inspiratory 

flow limitations.  

Conclusion 

Our new approach for APAP devices test bench overcomes previous existing constraints in 

simulating all kinds of breathing phenotypes in apneic patients by using a bench. This new 

physiological bench provides a more detailed characterization of different respiratory devices 

responses to a specific patient profile. It can serve as an aid tool for personalized therapy to 

facilitate device selection, option settings, etc. This work reproduces the breathing profile at night 

during sleep registered in polygraph. The next step would be to further validate this bench by 

integrating different patient polygraph recordings in order to evaluate inter-individual as well as 

intra-individual variabilities.  
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3.2 Summary 

In this study, we developed a new approach of bench test, which enabled automatically 

reproducing nocturnal breathing patterns of patients with SAS. The hardware consisted mainly of an 

active lung simulator ASL5000 and a Starling resistor, used for modeling upper airway obstruction. 

The main work consisted in developing an algorithm, which processed polygraph signals and 

calculated automatically the digital inputs required by bench hardware to reproduce the breathing 

profile registered in polygraph. The lung simulator used respiratory muscular effort pressure as 

inputs. The resistance of Starling resistor was regulated via varying the sealed chamber pressure. By 

analyzing polygraph signals, the algorithm identified all breathing cycles, and classified them into 

normal breathing or disordered breathing according to the breathing airflow amplitude and oxygen 

saturation variations in line with AASM rules of 2012. Then it characterized the mechanisms of the 

disordered breathings (linked to upper airway obstruction or the damages of central ventilation 

command) by regarding whether respiratory muscular effort was present during apneas and whether 

there were snoring, inspiratory flow limitation or thoraco-abdominal paradox accompanying 

hypopnea events. Considering bench hardware input calculation, during normal breathing or the 

disordered breathing of central mechanism, the resistance was set at minimum in the Starling 

resistor. The respiratory muscular effort pressure needed by the active lung simulator was calculated 

directly from patient’s nasal airflow, the pulmonary compliance and clear airway resistance 

parameters set in the pulmonary model. Nevertheless, simulating obstructive disordered breathing 

events would more complicated. Their respiratory muscular effort pressure was estimated with 

reference to this of the precedent normal breathing cycles. The obstructive level set in Starling 

Resistor was derived in function of the registered patient’s reduced nasal airflow amplitude due to 

the upper airway obstruction and the estimated airflow amplitude issuing from central ventilation 

command, which should have been if there had not been obstruction in patient’s upper 
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airway. The latter is calculated based on the breathing airflow during pre-event 2-minute normal 

breathing. 

  With this new approach, we simulated on our bench a total of 8 hours and 59 minutes of a 

breathing profile issuing from the demonstration recording of Nox T3 Sleep Monitor. The 

simulation performance results showed that in airflow amplitude, the simulated bench airflow was 

biased by 1.48% ± 6.80% compared to patient’s nasal airflow from polygraph. Considering total 

respiratory cycle time, the average bias ± one standard deviation (Std) was 0.000 ± 0.288 seconds. 

The sensitivity and positive predictive value (PPV) of apnea simulation performance were 84.7% 

and 90.3%, taking into account 149 apneas detected correspondingly both in polygraph and bench-

simulated breathing profile.  

In conclusion, this new approach facilitated simulating nocturnal breathing patterns of 

patients with sleep disordered breathing on bench. The breathing profile reproduced on bench was 

very similar to that in polygraph. This physiological bench can help evaluate algorithms 

implemented in PAP devices in a more detailed manner, and aid clinicians in choosing an 

appropriate PAP algorithm for a specific patient.   
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Chapter IV. Validation of a new physiological bench test 

 

 In the previous chapter, we developed a new physiological bench test approach, which 

enabled reproducing automatically on bench the breathing profile with sleep disordered breathing 

registered in polygraph recordings, while taking into account cycle by cycle obstructive or central 

breathing mechanisms at the same time. However, this novel method of bench simulation had only 

been tested with the polygraph data issued from the demonstration recording of Nox-T3 sleep 

monitor.  

In this chapter, we would like to validate our new bench simulation approach with a wide 

spectrum of breathing profiles issued from patients of different phenotypes and characteristics. 

These breathing profiles vary from one to another, regarding apnea hypopnea indices and the 

relative distribution between breathing events of central and obstructive mechanisms.  
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4.1 Article: 

 

 

 

Validation of a new physiological bench test reproducing nocturnal breathing profile 

of patients with sleep apnea 
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Abstract 
 

Previously, we developed a new approach to reproduce nocturnal breathing profile of 

patients with sleep apnea syndrome on bench by using their polygraph recordings.  The objective of 

this study was to validate this approach with a wide variety of breathing profiles issued from 

patients of different characteristics and phenotypes.  

We totally extracted 15 polygraph recording samples of 1.3 ± 0.3 hours from 12 subjects 

diagnosed with moderate-to-severe sleep apnea to reproduce their breathing profiles on bench. 

According to polygraph scorings, the apnea indices varied from 1.4 to 76.7 events/hour with a mean 

± one standard deviation (std) of 29.6 ± 23.5 events/hour. The apnea mechanisms could be 

obstructive, mixed or central. 

The bench simulation results showed that the airflow simulated on bench had a good 

similarity to patient nasal airflow. The amplitude bias and total respiratory cycle time bias were 

respectively 1.14% ± 4.65% and 0.014 ± 0.377 second(s). Regarding apnea simulation, the 

sensitivity and PPV were 92.4% and 90.8%. The apnea-hypopnea index (AHI), apnea index (AI) 

and hypopnea index (HI) calculated from analyses of patient nasal airflow and bench simulated 

airflow were highly correlated (r > 0.95). The average differences were respectively -2.1 ± 5.5, 0.6 

± 2.0 and -2.9 ± 5.7 events/hour. Considering the agreement in indices of different types of apneas 

(noted as OAI for obstructive apnea, CAI for central apneas, MAI for mixed apneas) between 

patient and bench simulation, they were highly correlated as well (r ≥ 0.90). The average 

differences were 1.4 ± 1.9, 0.1 ± 1.5 and -0.9 ± 1.6 events/hour with respect to the order of OAI, 

CAI and MAI. We evaluated the event-by-event correspondence between patient and bench 

simulation as well. The sensitivities and PPV were: 0.90 and 0.84 for obstructive apneas, 0.51 and 

0.78 for mixed apneas, 0.83 and 0.82 for central apneas, 0.81 and 0.88 for hypopneas.  
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In conclusion, this new approach to bench simulation reached a good performance 

concerning the similarity between bench-simulated airflow and patient nasal airflow, as well as the 

reproduction of patients’ all kinds of disordered breathing events. Thus, it has been proven robust in 

simulating various kinds of breathing profiles from real patients. 
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Introduction 
 

Obstructive Sleep Apnea (OSA) is a respiratory disease, occurring during sleep, 

characterized by repetitive narrowing or collapse of the upper airways.(Patil, Schneider, Schwartz, 

et al. 2007) Its prevalence in adult population ranges from 6% to 17%.(Senaratna et al. 2017) 

Patients affected by OSA show symptoms such as heavy snoring, excessive daytime somnolence 

due to the restless sleep at night, etc. In the long term, this disease could result in cardiovascular 

complications.(Jean-Louis et al. 2008) 

At present, the reference treatment for severe OSA patients is still the nocturnal ventilation 

via a continuous positive pressure, provided by a non-invasive ventilator.(Calik 2016) The pressure 

could be set to be either constant, or auto-adjusting, according to the prescriptions effectuated by 

medical professionals. In the auto-adjusting positive airway pressure (APAP) mode, the ventilator is 

supposed to be able to detect various sleep disordered breathing (SDB) events like obstructive and 

central apneas, obstructive and central hypopneas, snoring, inspiratory flow limitation, etc. And it 

should adapt the treatment pressure based on the previously detected event, in order to prevent the 

next incoming of the obstructive breathing event. The technologies and algorithms used for 

detecting and characterizing the SDB events vary among the ventilator manufacturers. They are 

usually protected by patents. The details of the algorithms are undisclosed to the public. Medical 

professionals could examine the treatment efficiency retrospectively by viewing their patients 

treatment data, from which, it is perceived that the pressure responses from ventilators of different 

manufacturers are not equivalent.  

For the purpose of comparing the treatment performances of different ventilators more 

objectively and under the same conditions, some researchers have developed the bench test to 

mimic the typical SDB events that OSA patients could meet during sleep.(Farré et al. 2002a; 

Abdenbi 2004; Rigau et al. 2006; Hirose et al. 2008; Zhu et al. 2013; Isetta et al. 2016) 
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They reached the same conclusion. However, before 2016, the SDB profile simulated on bench 

could hardly cover the diversity in OSA patients’ characteristics and phenotypes, such as the shape 

of airflow signal specific to each patient, so it’s difficult to transpose the knowledge acquired from 

bench tests to clinical practice such as selecting an appropriate device for a specific patient, 

according to its breathing phenotypes. In 2016, Isetta et al. published their study about simulating a 

female OSA phenotype with taking into consideration the patient’s specific respiratory 

characteristics, the impact of sleep stages and body positions, as well as awake.(Isetta et al. 2016) 

We also tried to make our bench test become more physiological, and furthermore in an automatic 

manner. Concretely, our method was based on taking use of patient’s polygraph data, in which our 

bench enables reproducing the breathing profile registered via a custom-made algorithm. The 

algorithm analyses automatically patient’s polygraph data and calculates automatically the digital 

inputs needed to be integrated into our bench hardware.  

Previously, we only tested our new physiological bench test approach with the polygraph 

data issued from the demonstration recording of Nox-T3 sleep monitor. To ensure that our bench is 

capable to reproduce a wide spectrum of breathing phenotypes from patients of different 

characteristics, the objective of this study is to validate our physiological bench test approach with 

various polygraph data, taking into account apnea, hypopnea indices and relative distribution of 

central and obstructive mechanisms.  
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Materials and Methods 
 

1) Polygraph recording samples 

The polygraph recordings obtained from 12 subjects were used in this study (table 1). They  

were referred to the Sleep Medicine Center of Université Paris-Sud in Clamart by their physicians 

because of either night clinical signs (snoring, arousals, polyuria) or day dizziness evoking sleep 

apnea diagnosis. All of them were examined by one of us (GR and MP), and have been recorded by 

either a NOX T3 or NOX A1 (NoxMedical, Reykjavík, Iceland) polygraphs. They were recruited in 

order to provide real physiologic signals obtained from patients with sleep apnea diagnosis, and a 

validation of our physiologic bench model. The use of their personal data has been approved by 

Comité d’Ethique de l’Université Paris-Saclay (N° 2018-032). All subjects provided their informed 

written consent, and the study was conducted in accordance with the latest release of the 

Declaration of Helsinki. According to the ethic committee prescription, these data were suppressed 

after using them in the bench model. There was no interference between this study and the 

treatment and follow up of all these patients.    

We extracted totally 15 polygraph recording samples with obstructive and central sleep 

apneas from these 12 polygraph recordings to simulate on bench. Each sample lasted 1.3+/-0.3 

hours. The selection was made in order to represent various breathing phenotypes of moderate to 

severe sleep apnea syndrome in this study.  

The characteristics including duration, apnea hypopnea index (AHI) and the related apnea 

hypopnea indices) of these samples are described in table 1. The related indices about apneas, 

hypopneas are issued from either polygraph data analysis, performed by the software Noxturnal 

(V5.1, NoxMedical, Reykjavík, Iceland) and reviewed by 2 physicians, or patient nasal airflow 

signal analysis performed with our custom-made algorithm. 
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TABLE 1] Characteristics of 15 polygraph recording samples extracted from 12 patients 

 

Scenario Patient Duration 

(hour)  

AHIPG AHIflow_PG AHIflow_lab AIPG AIlab [OAIPG -CAIPG - 

MAIPG]  

1 a 1.4 16.6 33.1 27.4 1.5 0 [1.5 - 0 - 0] 

2 b 1.1 45.7 58.1 49.9 3.8 4.6 [3.8 - 0 - 0] 

3 c 0.9 33.9 65.5 68.6 13.1 10.3 [12 - 1.1 - 0] 

4 d 1 38 64 77.5 14 12.7 [10 - 4 - 0] 

5 d 0.9 51.5 55.9 62.4 16.5 10.6 [11 - 5.5 - 0] 

6 e 1.3 39 58.5 51.9 17.3 14.6 [17.3 - 0 - 0] 

7 f 1.8 44.2 55.6 35.4 23.5 25.3 [23.5 - 0 - 0] 

8 e 1.5 55.2 65.9 68.4 37.3 31.9 [35.3 - 0.7 - 1.3] 

9 g 1.4 90.7 104 99.7 52.4 47.2 [52.4 - 0 - 0] 

10 h 1.1 87.1 92.5 77.6 79 81.1 [56.6 - 22.4 - 0] 

11 j 1.3 27.6 51.3 48.4 20.5 23.8 [6.3 - 14.2 - 0] 

12 k 2 64.7 79.9 72.9 25.8 27.8 [10.1 - 15.7 - 0] 

13 l 1.1 50.6 69.7 74.5 32.3 32.2 [9.6 - 18.3 - 4.4] 

14 m 0.9 74.4 98.5 88.8 43.8 41.2 [4.4 - 37.2 - 2.2] 

15 h 1.1 65.4 82.4 76.7 62.5 66.5 [22.7 - 35.1 - 4.7] 

 

AHIPG: apnea hypopnea index obtained from polygraph software Noxturnal analyzing patient’s 

nasal cannula airflow and arterial oxygen saturation with respect to AASM scoring rules 2012. 

AHIflow_PG: apnea hypopnea index obtained from Noxturnal with use of hypopnea scoring rules that 

are based only on patient nasal airflow analysis. AHIflow _lab: apnea hypopnea index obtained from a 

custom-made algorithm by analyzing patient nasal airflow based on the same scoring rules in 

AHIflow_PG calculation. AIPG: apnea index in AHIPG. AIlab: apnea index calculated by a custom-

made algorithm analyzing patient nasal airflow in line with the same apnea scoring rules of AIPG. 

OAIPG: obstructive apnea index obtained from Noxturnal. CAIPG: central apnea index obtained 

from Noxturnal. MAIPG: mixed apnea index obtained from Noxturnal.  

 

Indeed, in the configuration of polygraph data analysis of software Noxturnal, we chose an 

option of polygraph data analysis based on respiratory nasal cannula airflow. Thus, the apneas are 

defined as a drop in nasal cannula airflow greater than 90% compared to 2 minute pre-event 
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baseline, which should last between 10 seconds and 2 minutes. As for hypopnea scorings, we used 

two different scoring rules in Noxturnal software. They are respectively (1) the scoring rules 

according to AASM: there is a nasal cannula airflow drop ≥ 30%, lasting between 10 seconds and 2 

minutes, and associated with a decrease in blood oxygen saturation ≥ 3%; (Berry, Budhiraja, et al. 

2012) (2) the scoring rules with regard only to airflow signal, i.e. only a nasal cannula airflow drop 

≥ 30%, lasting between 10 seconds and 2 minutes would be sufficient. This choice resulted in two 

different AHI scorings from Noxturnal: AHIPG, AHIflow_PG. A custom-made algorithm developed by 

us for analysing patient nasal airflow used the same apnea scoring rules as that in the Noxturnal and 

the second hypopnea scoring rules defined in Noxturnal, which is only based on air flow reduction, 

to calculate apnea index (AI) and AHI, noted as AHIflow_lab and AIlab. According to table 1, the 

apnea index of these polygraph recording samples (AIPG) present a wide range from 1.4 to 76.7 

events/hour. The apnea properties could be obstructive, central and mixed. 

2) Physiological bench simulation system 

 The material and algorithm used in this study to simulate patient nocturnal breathing profile 

is the very same physiological bench simulation described in our previous paper. The hardware of 

this bench is mainly composed by an active artificial lung and a Starling resistor, which could 

mimic upper airway collapses. Our algorithm was able to take polygraph signals as inputs and 

calculate automatically the digital inputs needed to command our bench hardware, i.e., respiratory 

muscular effort pressure for artificial lung and sealed chamber pressure of Starling resistor, to 

simulate patient breathing profile, including their various sleep disordered breathing events. All the 

patient breathing profile samples are reproduced on our bench with connecting to an APAP device 

set with a constant pressure of 4 cmH2O. 
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3) Data analysis 

To evaluate our bench performance in simulating all these scenarios, we firstly assessed the 

similarity between airflow simulated on our bench (L/min) and the patient nasal airflow (cmH2O). 

The Nasal and bench airflow were firstly normalized by dividing each value by their respective 85 

percentiles of overall airflow amplitudes. Thus we obtained a normalized patient nasal airflow and a 

normalized bench airflow. In the later part of this article, all mentioned patient nasal airflow and 

bench airflow refer to the normalized ones. Their agreements in amplitudes and total respiratory 

cycle time (Ttot) were assessed by linear regression, Bland-Altman method (Bland and Altman 

1986b) as well as Spearman’s rank correlation coefficient. To obtain a more detailed information, 

we separated them by respiratory cycles without and with obstruction.  

Secondly, we evaluated bench-simulation performance specifically concerning apneas, 

about the agreements in apnea duration and apnea onset time between patient breathing profiles and 

bench simulation. These were performed with linear regression analysis and Bland-Altman method. 

Next, we assessed the agreement in different kinds of SDB indices obtained from analyses 

of respectively patient nasal cannula airflow and bench airflow. These SDB indices contain AHI, AI, 

hypopnea index (HI), obstructive apnea index (OAI), central apnea index (CAI) and mixed apnea 

index (MAI), of which AHI, AI and HI were calculated by using the previously mentioned custom-

made algorithm. To calculate OAI, CAI and MAI, we had developed another algorithm to qualify 

apneas of polygraph recordings and of bench simulation. Concerning apneas of polygraph 

recordings, we determined an apnea as central if both thoracic and abdominal RIP signals drop by at 

least 90% compared to their pre-event 2-minute baseline; otherwise, it was supposed that there were 

significant breathing effort during the corresponding apnea. If muscular effort occurred only in the 

second half of an apnea period, we would categorize it as a mixed apnea. Otherwise, it was 
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attributed to an obstructive apnea. The bench-simulated apneas were qualified by criterion of 

whether the upper airway model was obstructed during simulation. We used respectively the 

Wilcoxon signed-rank test, Spearman’s rank correlation coefficient, linear regression and Bland-

Altman analysis to evaluate their agreements.  

Finally, to investigate in a further step the SDB event-by-event correspondence between 

patient breathing profiles and bench-simulated ones, we established a detailed contingency table to 

check whether our simulation would mistake the SDB event type of patients’.  

 

Results 
Comparing airflow from patients and from bench, we found an amplitude bias of 1.14% +/- 

4.65% and a Ttot bias of 0.014+/-0.377 seconds(s) (Figure 1 and 2).  

 
Figure 1 - Bar chart of apnea hypopnea indices obtained from the polygraph analysis of the 

25 polygraph samples selected to be simulated on bench. HI = hypopnea index; OAI = 

obstructive apnea index; MAI = mixed apnea index; CAI = central apnea index. 
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This result is based on a cycle-by-cycle comparison including normal breathing and 

hypopneic breathing periods, totally taking 15842 breathing cycles into account, whereas excluding 

apnea periods. 

 

 

Figure 2 - Linear regression and Bland-Altman plots of apnea hypopnea indices detected by 

positive airway pressure devices with these determined by polygraph, regarding totally 25 

polygraph recording samples. PAP = positive airway pressure devices; PG = polygraph; AHI = 

apnea hypopnea index. 

 

 Considering obstructive hypopnea breathing periods (3320 breathing cycles), the bias in 

amplitude between patient nasal and bench airflow was 1.9% +/- 5.5%. The linear relationship 

between those two amplitude variables could be described by a slope of 1.03 and an intercept of 0.01, 

with a coefficient of determination equal to 0.90 and a Spearman’s rank correlation coefficient of 0.95. 

The bias in Ttot was 0.02 +/- 0.63s. The linear regression between Ttot from patient nasal 
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airflow and bench airflow showed a slope of 0.92 and an intercept of 0.31, with a coefficient of 

determination equal to 0.74 and a Spearman’s rank correlation coefficient of 0.85. 

 Similarly, considering respiratory cycles without obstruction (12522 cycles), i.e. central 

hypopnea and normal breathing periods, the bias in amplitude between patient nasal and bench 

airflow was 0.9% +/- 4.4%. The linear relationship between those two amplitude variables could be 

described by a slope of 0.88 and an intercept of  0.07, with a coefficient of determination equal to 

0.96 and a Spearman’s rank correlation coefficient of 0.99. The bias in Ttot was 0.01 +/- 0.28s. The 

linear regression between Ttot from patient nasal airflow and bench airflow showed a slope of 0.98 

and an intercept of 0.10, with a coefficient of determination equal to 0.96 and a Spearman’s rank 

correlation coefficient of 0.96. 

 Regarding apnea simulation performance, there was a total of 501 apneas detected 

correspondingly at the same time in patient nasal airflow and bench airflow, with a sensitivity and a 

PPV equal to 92.4% and 90.8%. About the agreements in apnea duration and apnea onset time 

between patient nasal airflow and bench airflow, the Bland and Altman plot showed an average apnea 

duration difference of 0.07 seconds with a std of 4.1 seconds (Figure 3). The average difference in 

apnea onset time was -0.55 seconds with a std of 3.0 seconds (Figure 3).  
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Figure 3: Apnea simulation performance evaluation regarding the agreements in apnea 

duration and apnea onset time between bench-simulated apneas and the corresponding ones 

in patients (501 apneas). Only the apneas detected correspondingly both in bench simulated 

airflow and patient nasal airflow are taken into account. Graphs in the first row: linear regression 

and Bland-Altman plots analyzing the agreement between bench-simulated apneas’ duration (T-

apnea-bench) and those of the corresponding patients’ apneas (T-apnea-patient). In linear regression 

plot, the solid line is the linear regression line; the dashed represents the identity line; r² means the 

coefficient of determination. In Bland-Altman plot, the y-coordinate of solid horizontal lines 

represents the mean difference between T-apnea-bench and T-apnea-patient; then the y-coordinate 

of dashed lines represents 95 percent limits of agreement. Graph in the second row:  scatter plot of 

apnea onset time difference versus the mean apnea duration between bench-simulated 



88 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

apneas and the corresponding patients’ ones.  Mean: mean difference. LA: 95 percent limits of 

agreement. 

Concerning the agreements of AHI, AI and HI calculated respectively from patient nasal 

airflow and bench simulated airflow for the 15 polygraph recording samples, the Wilcoxon signed-

rank tests demonstrated that the difference in AI was not significant with p > 0.05; whereas the 

differences in AHI and HI were significant (p < 0.05). Bland-Altman analysis showed the mean 

differences in AHI, AI and HI were respectively equal to -2.1, 2.0 and -2.9 events/hour (Figure 4). 

Their limits of agreement were respectively [-13.1; 8.9], [-3.4; 4.6] and [-14.4; 8.6] events/hour with 

respect to the order of AHI, AI and HI (Figure 4).  Regarding linear correlations, they were highly 

linearly correlated (Figure 4). Linear regression analyses revealed slopes of 1.02, 0.96 and 0.94, 

intercepts of -3.61, 1.79, 0.73, with coefficients of determination equal to 0.93, 0.99, 0.91, respecting 

the order of AHI, AI and HI. Their Spearman’s rank correlation coefficients were 0.93, 0.99, 0.97.  
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Figure 4: Linear regression and Bland-Altman plots analyzing the agreement of apnea 

hypopnea indices calculated from bench airflow and patient nasal airflow. AHI: apnea-

hypopnea index. AI: apnea index. HI: hypopnea index. In linear regression plots, solid lines are 

linear regression lines; dashed lines are identity lines; r² represents coefficients of determination; p 

means the p-values. In Bland-Altman plots, the y-coordinate of solid horizontal lines represents the 

mean difference between apnea hypopnea indices of bench airflow and those calculated 
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from patient nasal airflow; then the y-coordinate of dashed lines represents 95 percent limits of 

agreement. Mean: mean differences. LA: 95 percent limits of agreement. 

 

While investigating in a further step the agreement in apnea indices for different categories of 

apneas (OAI, CAI and MAI) between patient nasal airflow and bench airflow,  the Wilcoxon signed-

rank tests showed that the difference in CAI was not significant (p > 0.05), whereas the differences in 

OAI and MAI were significant (p < 0.05). According to Bland Altman analyses, the mean differences 

of OAI, CAI and MAI were respectively 1.4, 0.1 and -0.9 events/hour between patient nasal airflow 

and bench airflow (Figure 5). Their limits of agreement were respectively [-2.4; 5.2], [-3.0; 3.2] and [-

4.2; 2.3] events/hour. Regarding the linear correlation, they were linearly correlated as well. Linear 

regression analyses revealed slopes of 1.09, 0.85 and 0.63, intercepts of -0.22, 1.13 and 0.08, with 

coefficients of determination equal to 0.99, 0.99 and 0.81, respecting the order of OAI, CAI and MAI. 

Their Spearman’s rank correlation coefficients were 0.996, 0.96 and 0.81.  
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Figure 5: Linear regression and Bland-Altman plots analyzing the agreement in indices of 

different kinds of apneas calculated from bench airflow and patient nasal airflow. OAI: 

obstructive apnea index. CAI: central apnea index. MAI: mixed apnea index. HI: hypopnea index. 

In linear regression plots, solid lines are linear regression lines; dashed lines are identity lines; r² 

represents coefficients of determination; p means the p-values. In Bland-Altman plots, the y-

coordinate of solid horizontal lines represents the mean difference between apnea indices of 
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bench airflow and those calculated from patient nasal airflow; then the y-coordinate of dashed lines 

represents 95 percent limits of agreement. Mean: mean differences. LA: 95 percent limits of 

agreement. 

 

Evaluating the qualification correspondence for each pair of SDB events detected in patient 

nasal airflow and in the bench simulated airflow (Table 2), it was found that the sensitivities for 

obstructive apnea, central apneas, mixed apneas and hypopneas simulation were respectively 0.90, 

0.83, 0.51 and 0.81. And their PPV were respectively 0.84, 0.82, 0.78 and 0.88.  

TABLE 2] Sleep disordered breathing events contingency table between patients’ and bench-

simulated ones 

 Patients' SDB 

OA (n = 374) CA (n = 119) MA (n = 49) H* (n = 705) 

Bench-simulated SDB 

OA (n = 399) 336 11 18 34 

CA (n = 121) 2 99 5 15 

MA (n = 32) 2 3 25 2 

H* (n = 648) 33 5 1 573 

Simulation performance 

Sensitivity 90% 83% 51% 81% 

PPV 84% 82% 78% 88% 

 

Integer values represent event numbers for each type of SDB. SDB: sleep disordered breathing; OA: obstructive apnea; 

CA: central apnea; MA: mixed apnea; H*: hypopneas detected only based on airflow analysis; PPV: positive predictive 

value. 

 

 

Discussion 
 

 Findings statement 

 

With this new physiological test bench, we are enabled to simulate reliably a wide range of 

night breathing profiles, issuing from various patient phenotypes. Indeed, the 15 breathings 
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profiles we have simulated on our bench represent a wide range, taking in account apnea, hypopnea 

indices and relative distribution of central and obstructive mechanisms. Regarding airflow 

simulation reliability, our bench reached a satisfying similarity to the patient nasal airflow. This was 

assessed by analysing biases in cycle by cycle amplitudes, Ttot for both obstructive and non-

obstructive breathing periods.  

About the temporal performance of patient apnea simulation, first of all, we have a 

satisfactory sensitivity and PPV. Then the average apnea duration difference for each corresponding 

apnea occurring in patient nasal airflow and bench airflow was nearly 0 seconds, as well as the 

apnea onset time difference. However, the std of these differences was about 3 to 4 seconds, 

corresponding more or less to the Ttot of a breathing cycle. This is explicable by the simulation bias 

in breathing airflow amplitudes.  

Concerning the agreement for AHI, AI and HI calculated respectively from patient nasal 

airflow and from bench airflow, the difference in AI was rather distributed symmetrically around 0. 

However the HI of bench airflow tended to be slightly lower than this of patient nasal airflow, so 

did the AHI. This could be explained by the inaccuracy of amplitude simulation for obstructive 

cycles and the bench material limitation for simulating a great inspiratory airflow amplitude or a 

great tidal volume. The second factor might cause that the moving baselines used for detecting SDB 

breathing events in bench airflow are sometimes slightly lower than those in patient nasal airflow.   

About the consistency of apnea qualifications between patient breathing profile and bench 

simulation, the sensitivity and PPV for obstructive apneas are the best among all types of apneas. 

Although, the Wilcoxon signed-rank test showed that the differences in OAI between patient nasal 

airflow and bench airflow did not distribute symmetrically around 0, the differences were very 

small compared to the average OAI of patient nasal airflow and bench airflow. Concerning mixed 

apneas, 46.2% of mixed apneas in patient nasal airflow were then characterized as 
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obstructive apneas after bench simulation. These mixed apneas in patient nasal airflow were either 

preceded or followed by an obstructive cycle. If its amplitude simulated on bench was inferior to 

that in patient nasal airflow and at the same time it satisfied the airflow reduction criterion for 

scoring apneas, it would be considered as a part of apnea during bench airflow analysis and so as to 

affect the qualification of the apnea. In analogy, that’s also the reason for which some central 

apneas of patient breathing profile were then characterized as obstructive apneas after bench 

simulation. We also noticed that within all the central apneas characterized on our bench, about 12% 

were originally hypopneas in patient breathing profile. By comparing the bench airflow with patient 

nasal airflow, we found that the patient nasal airflow during these hypopneas were usually 

contaminated by nasal cannula movement artifact such that the airflow data samples were 

consistently negative values with sinusoidal shapes. Due to the limit of our bench in simulating a 

long duration of expiration with a large expiratory volume, finally the bench airflow amplitudes 

during these periods were attenuated compared to the patient nasal airflow. So they were 

characterized as central apneas while analyzing bench airflow.  

We chose to detect hypopneas by regarding only the patient nasal airflow and bench airflow 

amplitude changes, without taking into account the arterial oxygen (de)saturation, while assessing 

the AHI agreement between patient and bench simulation. The first reason is that we do not 

simulate patient’s arterial oxygen saturation on bench. The second reason is that for now, most 

APAP devices commercialized in market do not take measures of patient’s arterial oxygen 

saturation either. They adapt the treatment pressure based on the breathing airflow characteristics as 

well as the measured or statistically estimated upper airway resistance. Considering these two 

reasons, we think it should be more relevant that we detect hypopneas only based on the airflow 

changes to evaluate our bench simulation performance.  

 Advantages of the physiological test bench 
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Compared to previous published APAP algorithm evaluation benches, the main advantage 

of this bench is the proximity between bench-simulated breathing profile and patient’s real 

breathing profile, as well as the facility to simulate each specific SDB patient breathing profile on 

our bench, as long as their polygraph recordings are provided.  

In this study, we validated the new physiological bench approach by integrating 15 

polygraph recording samples. It achieved a rather constant simulation performance, which is 

conform to our previous paper, regardless of the variations in apnea, hypopnea indices and in ratios 

between central SDB events and obstructive SDB events. So this bench is able to simulate a wide 

spectrum of SDB patient breathing profiles, taking into account cycle-by-cycle obstructive and 

central breathing characteristic. Concretely, patients’ obstructive SDB events and inspiratory flow 

limitations are simulated with an increased resistance in the Starling resistor, which models 

obstruction in patient upper airways.  

Compared to clinical validation of APAP devices, in general, the bench evaluation methods 

have the advantage of comparing them in an objective and identical condition, however, it could 

have a main weakness of being a lot artificial and lacking variability compared to a patient 

breathing profile. Consequently, bench test results could not mimic what really happened while a 

device treated a patient. According to this study, the new bench simulation method has overcome 

the conventional challenge. It can reliably simulate a wide range of sleep apnea patient breathing 

profile by simply using its polygraph recordings. So, right now, bench test results are becoming 

more convincing than before, by simulating different breathing profiles in a more detailed, 

automatic and reproducible manner. With the use of this bench, we can verify whether APAP 

devices are capable of detecting disordered breathing events and correctly characterizing their 

patterns (central, obstructive or mixed) by setting them at 4cm H2O to rule out treatment effect.  



96 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Furthermore, this bench is also able to react to the pressure increase delivered from APAP 

devices in a closed-loop manner by reducing the Starling resistor resistance of next upcoming SDB 

events of obstructive mechanism or inspiratory flow limitations. It can help clinic professionals 

select appropriate APAP devices and different comfort setting options, specifically adapted to their 

patients breathing characteristics. With this bench, we can also learn more about APAP algorithms 

diversity and try to find reasons why sometimes a patient cannot get used to some APAP device.  

Bench limits 

Of noteworthy, the Starling resistor used in our bench could not represent the physical 

properties of all apneic patient upper airways, such as patient’s critical closing upper airway 

pressure, the upper airway compliance, the effective treatment pressure, etc., as stated in our 

previous paper. Therefore, the pressure range needed to overcome the bench-simulated obstructive 

SDB events could differ from this really required for the patient. However, according to the bench 

test results, we could always recommend an adapted device for the patient by choosing the device, 

which could overcome almost all the bench-simulated obstructive SDB events of this patient, at the 

meantime not increasing the treatment pressure to an unnecessary high level.  

Conclusion 
 

In conclusion, our physiological bench enables to simulate reliably and automatically a wide 

range of breathing profiles issuing from patients of various breathing phenotypes. Our bench could 

serve as an aid tool of personalized therapy by helping clinical professionals select an appropriate 

APAP device as well as different setting options likes the comfort modes, adapted to the specific 

breathing characteristics of their patients. 
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4.2 Summary 
 

 In this study, we totally extracted 15 polygraph-recording samples of 1.3 ± 0.3 hours from 

12 subjects diagnosed with sleep apnea syndrome to simulate on bench, with the objective of 

validating our novel approach to a physiological bench test. According to polygraph scorings, the 

apnea index represented a wide range from 1.4 to 76.7 events/hour with a mean ± Std of 29.6 ± 23.5 

events/hour. The mechanisms of apnea could be obstructive, mixed or central. 

 The bench simulation results showed that the airflow simulated on bench had a good 

similarity to patient nasal airflow. The amplitude bias and total respiratory cycle time bias were 

respectively 1.14% ± 4.65% and 0.014 ± 0.377 second(s). Regarding apnea simulation, the 

sensitivity and PPV were 92.4% and 90.8%. The AHIflow, AI, and HIflow scored from patient nasal 

airflow and bench simulated airflow were highly correlated (r > 0.95) as well. The average 

differences were respectively -2.1 ± 5.5, 0.6 ± 2.0 and -2.9 ± 5.7 events/hour. Considering the 

agreement in indices of different types of apneas (OAI for obstructive apneas, MAI for mixed 

apneas and CAI for central apneas) between patient and bench simulation, they were highly 

correlated as well (r ≥ 0.90). The average differences were 1.4 ± 1.9, -0.9 ± 1.6 and 0.1 ± 1.5 

events/hour with respect to the order of OAI, MAI and CAI. We had evaluated the event-by-event 

correspondence between patient and bench simulation as well. The sensitivities and PPV were 

respectively: 0.90 and 0.84 for obstructive apneas, 0.51 and 0.78 for mixed apneas, 0.83 and 0.82 

for obstructive apneas, 0.81 and 0.88 for hypopneas.  

 The bench simulation reached a good performance regarding the similarity between bench 

simulated airflow and patient nasal airflow, as well as the reproduction of patients’ all kinds of 
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disordered breathing events. This novel bench simulation approach has been shown being rather 

robust to all kinds of breathing profiles from real patients that we tested on bench.    
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Chapter V. Bench test evaluation of apnea hypopnea 

indices agreement between PAP algorithms 

and polygraph in predominant CSA patients 

 

The medical data provided by PAP devices about patient’s residual apnea hypopnea indices 

are of great importance for clinicians to evaluate treatment efficiency, follow up patient health 

status, and manage their pathways. Since OSA patients are possible to develop emergent CSA 

during PAP therapy, with a prevalence of 3.5% in week 1 or week 13 after PAP therapy initiation 

(D. Liu et al. 2017). Hence, the accuracy of PAP device report data plays a crucial role in 

monitoring patient health status and informing clinicians as early as possible to modify ventilator 

modalities of patients developing emergent CSA.   

In literature, some studies compared the residual apnea hypopnea indices determined by 

PAP devices with PSG, especially focusing on OSA patients (Baek, Jeon, and Lee 2016; Berry, 

Kushida, et al. 2012; Li et al. 2015; Stepnowsky et al. 2013; Ueno, Kasai, and Kasagi 2010). They 

have shown that AHI from PAP devices are linearly correlated with PSG and that the agreements in 

AI are better than in HI. The latter is explained by different hypopnea scoring rules used by PAP 

devices and PSG. Some studies involving oximetry (Pittman et al. 2006) or PSG (Baltzan et al. 

2006) have also found that a surprisingly large fraction of patients thought to be well treated by 

PAP, still have a considerable number of residual events. As the apnea hypopnea indices calculated 

by PAP devices are widely used to monitor treatment efficiency. It should be important that these 

data are consistent between PAP devices of different manufacturers. At present, there exist few 
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studies in literature evaluating apnea hypopnea indices agreement between PAP devices because of 

the intra- and inter-patient variabilities inherent in clinical trials.    

Thus, the aim of this study was to evaluate the apnea hypopnea indices agreement between 

four currently commercialized PAP devices and polygraph, with the use of the new physiological 

bench developed in this thesis, which simulated reliably the breathing profiles of patients with a co-

existence of OSA and CSA, registered in their polygraph recordings.   

  



102 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

 

 

 

5.1 Article: 

 

 

 

 

 

Bench test evaluation of apnea-hypopnea-index agreement between positive air 

pressure devices and polygraph in predominant central sleep apnea patients 
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Bench test evaluation of apnea-hypopnea-index agreement between positive air 

pressure devices and polygraph in predominant central sleep apnea patients 

 

Abstract 

Apnea hypopnea index (AHI) determination from positive airway pressure (PAP) devices 

require a quantitative evaluation. With a physiological bench, composed of an active lung simulator 

and an upper airway model that is able to simulate breathing profiles from polygraph (PG) 

recordings, we evaluated AHI, apnea index (AI) and hypopnea index (HI) agreement between four 

PAP devices and PG.   

We extracted a total of twenty-five one-hour samples from four whole-night respiratory 

polygraph recordings of patients diagnosed with predominant central sleep apnea (CSA). According 

to polygraph analysis, the AHI of these recordings was 42.3 ± 21.7 events/hour (mean ± standard 

deviation), varying from 12 to 77.7. Apneas and hypopneas numbers were balanced (Apneas: 

55.3%; Hypopneas: 44.7%). Moreover, central apneas represented 55.8% ± 27% among all apneas. 

Then we simulated on bench each sample four times, while connecting different PAP devices 

(AirSense 10, DreamStation Auto, S.Box, Prisma 20A) set at 4 cmH2O to rule out treatment effects.  

The results showed that AHI and AI determined by the PAP devices were highly and 

linearly correlated with PG scorings (AHI: Pearson correlation coefficient (r) = [0.91 (min), 0.94 

(max)]; AI: r = [0.92 (min), 0.97 (max)]), whereas relationships in HI were weak (r = [-0.10 (min), 

0.59 (max)]). Additionally, the bias value between PAP devices and PG in AI was lower than in HI. 

The four tested PAP devices showed a tendency to underestimate patient HI. However, the severity 

of underestimation was not the same between the PAP devices: the average bias between the HI of 

PAP and PG varied from -14.2 to -2.6 events/hour. 
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In conclusion, AHI calculated by PAP devices may not be an accurate indicator of real AHI 

for patients with predominant CSA. We found a non-negligible discrepancy between HI provided 

by the PAP devices of different manufacturers under the same breathing profile conditions.  

 

Introduction 
 

Positive Airway Pressure (PAP) devices are widely used to treat patients with moderate to 

severe obstructive sleep apnea (OSA) syndrome
1
. The prescribed pressure can be either fixed or 

auto-adjusting in a preset range. For each treatment session, devices are capable of identifying 

residual breathing events based on airflow analysis. These data are of great importance for 

treatment efficiency evaluation, follow up, as well as patient pathway management
2
. During PAP 

therapy patients may develop central breathing events, with a prevalence of 3.5%
3
. Risk 

management of adverse cardiovascular outcomes and comorbidity may be dependent on device data 

accuracy. This data would play a crucial role in monitoring patient status and informing clinicians 

as early as possible to adapt treatment strategy.  

Some studies have compared PAP residual events with polysomnography (PSG), especially 

in OSA patients.
4–9

 The apnea hypopnea index (AHI), apnea index (AI), hypopnea index (HI) from 

PAP devices have been correlated with indices from PSG. However, AI agreement was better than 

the one in HI. This could be explained by hypopnea scoring rules used by PAP devices differing 

from those used in PSG. In addition, some studies involving oximetry
10

 or PSG
11

 found a large 

fraction of patients thought to be well treated by PAP, with a considerable number of residual 

events. However, obtaining accurate AHI with PSG in all patients treated by PAP devices is overly 

time consuming and impractical in most public healthcare systems. Therefore, AHI from PAP 

devices (AHIPAP) are still widely used to monitor treatment efficiency.  

Given the fact that PAP device manufacturers use different technology and 
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algorithms to detect residual events, we cannot rule out possible AHIPAP discrepancies from 

different manufacturers. As clinical studies do not allow for an evaluation of different PAP devices 

simultaneously, the influence of night-to-night breathing profile variability in a patient is difficult to 

rule out. A method to bypass this methodological shortcoming would be useful and would permit 

the examination of AHIPAP validity and reliability in identical conditions. An official statement from 

the American Thoracic Society in 2013 mentioned PAP adherence tracking systems and their 

related data
12

. The statement concluded by encouraging PAP data standardization and further 

studies to evaluate data outcomes
12

. In this context, the aim of our study was to evaluate AHI 

agreement between a polygraph and four currently commercialized PAP devices with a 

physiological bench, which can confidently reproduce the breathing profiles of apneic patients. 

Since an accurate detection of disordered breathing events is an important preliminary step before 

reaching a more efficient treatment, we aimed to understand SDB event detection in each PAP 

device as well as differences between the devices.  

 

Materials and Methods 

 Physiological Bench Test System 

 The bench test used in this study to simulate a patient nocturnal breathing profile was the 

same as in our previous paper. This bench was composed of an active lung simulator ASL5000 

(IngMar Medical, Pittsburgh, USA) and a Starling resistor, mimicking patient upper airway 

collapses. We developed an algorithm that is able to process a patient’s polygraph signals and 

automatically calculate related digital inputs to drive the bench simulation process. This allowed the 

simulation of any patient breathing profile registered by polygraph, taking into account cycle-by-

cycle central and obstructive characteristics. Various patient breathing profiles, as inputs, could then 

be reproduced several times on our bench, with accuracy and reproducibility.  
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 Experimental Data from Polygraph 
 

Four apneic subjects with obstructive and central events were recruited, providing real 

physiologic signals obtained from their polygraph examination. They were initially referred to the 

Sleep Medicine Center of Université Paris-Saclay in Clamart by their physicians. All were 

examined by GR or MP, and were recorded by either NOX T3 or NOX A1 poly(somno)graphs 

(NoxMedical, Reykjavík, Iceland). Use of their data was approved by the Comité d’Ethique de 

l’Université Paris-Saclay (N° 2018-032). All subjects provided informed written consent, and the 

study was conducted in accordance with the latest release of the Declaration of Helsinki. According 

to the ethic committee prescription, the anonymized data was erased from our computer after using 

them in the bench model. There was no interference between this study and the treatment of these 

patients.    

Twenty-five polygraph samples of one hour were extracted from the four whole-night 

polygraph recordings without PAP treatment. Those samples were reproduced on our bench with 

respect to the original breathing profile: amplitude and time parameters as well as their obstructive 

and central characterization. Periods with movement artifacts greater than two minutes were 

excluded. The related AHI, AI, HI, Central Apnea Index (CAI), Mixed Apnea Index (MAI) and 

Obstructive Apnea Index (OAI) of these samples are described in Figure 1. They were scored from 

the polygraph signals analysis performed by Noxturnal software (V5.1.0.19071, NoxMedical, 

Reykjavík, Iceland), and reviewed by two physicians (GR and MP). The scoring rules were in line 

with AASM 2012
13

, using a nasal pressure transducer as a sensor. Apneas were defined as a 

decrease in nasal cannula airflow ≥ 90% during a period of at least 10 seconds. Hypopneas were 

scored with respect to a nasal airflow reduction ≥ 30% during a period of at least 10 seconds, with 

oxygen saturation decreasing by ≥ 3%.  
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Figure 1 - Bar chart of apnea hypopnea indices obtained from the polygraph analysis of the 

25 polygraph samples selected for bench simulation. HI = hypopnea index; OAI = obstructive 

apnea index; MAI = mixed apnea index; and CAI = central apnea index. 

 

The AHI of simulated samples was 42.3 ± 21.7 events/hour (Fig.1). Apneas were 

predominant in comparison to hypopnea, representing 55.3% of events. Central apneas represented 

55.8 +/- 27% in all apneas.  

 Experimental Protocol 

Four different PAP devices and their related software were included in this study: AirSense 

10 Autoset with Rescan by Resmed (San Diego, United States); DreamStation Auto with Encore 

Pro 2 by Philips Respironics (Murrysville, United States); S.Box with SEFAM Analyze by Sefam 

(Nancy, France) and Prima 20A with Prisma TS by Löwenstein Medical (Bad Ems, Germany). 

AHIPAP and related indices were acquired through the analysis reports generated with the 
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device-related software.  Firstly, we used a custom-made algorithm to process the selected 25 

polygraph samples exported in EDF format, to generate the digital inputs: muscular pressure and 

sealed chamber pressure. Then, we integrated the algorithm outputs in the bench hardware with 

ASL Software (Version 3.4.0, IngMar Medical, Pittsburgh, USA) to drive the artificial lung and 

with a custom-made Labview program to pilot the Starling resistor for each breathing cycle.  

Each polygraph sample was simulated four times on our bench with the four PAP devices 

connected to the test bench in a random order. The PAP tubing was 22 mm in diameter, in 

accordance with the device setting. Devices were set at 4 cmH2O without any comfort options in 

order to rule out treatment effect. The airflow produced on bench was sampled at 20 Hz and stored 

in a PC. Once the simulation of a polygraph-recording sample completed, we exported from a 

corresponding SD card: AHIPAP ([AHIAirSense10, AHIDreamStation, AHIS.Box, AHIPrisma20A]), AIPAP 

([AIAirSense10, AIDreamStation, AIS.Box, AIPrisma20A]) and HIPAP ([HIAirSense10, HIDreamStation, HIS.Box, 

HIPrisma20A]).  

 Data Analysis 

The similarity between the bench simulation and patient breathing profile was assessed in a 

cycle-by-cycle manner, using the Bland-Altman method considering airflow amplitudes and total 

respiratory cycle time (Ttot).  

Since the data distribution was not Gaussian, agreements between AHI, AI and HI from the 

polygraph and from PAP devices were assessed by nonparametric Wilcoxon-signed-rank tests. 

Corresponding biases and limits of agreement in AHI, AI and HI were visualized by Bland-Altman 

plots. Linear regression, Pearson correlation coefficients (r) and intraclass correlation coefficients 

(ICC) were also calculated to characterize these relationships. ICC was calculated with a two-way 

mixed model measuring absolute agreement for single measures. A p-value (p-val) inferior to 0.05 

was considered statistically significant. 
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We developed a custom-made algorithm to score apneas and hypopneas from bench 

simulated airflow and patient nasal airflow, based only on airflow reduction. These thresholds were 

applied in line with AASM 2012
13

. In addition, this algorithm excluded bench airflow changes 

caused by pressure pulses delivered from DreamStation during apneas, by replacing them with 

patient nasal airflow. Thus, we obtained the related AHIflow_bench and AHIflow_patient from bench 

simulated airflow and patient nasal airflow analyses, respectively. We defined an indicator of bench 

simulation performance calculated as the absolute difference between AHI flow_bench and AHIflow_patient. 

In the same way, we defined an indicator of PAP device performance for event detection by 

calculating the absolute difference between AHIPAP and AHI from a polygraph (AHIPG). The impact 

of bench simulation performance on PAP device performance for SDB detection was studied with 

Spearman’s rank correlation coefficient. A multiple linear regression model was also constructed to 

explain AHIPAP as a function of AI, HI from polygraph (AIPG, HIPG), and the simulation 

performance indicator.  

The accuracy of PAP devices in identifying breathing profiles with AHIPG>30 was 

calculated.  

A transition matrix for AHIPAP among different manufacturers was established. In this 

matrix, linear regressions were performed to estimate AHIPAP linear relationships between each pair 

of devices. Based on these models, one AHIPAP could be estimated from the AHIPAP scored by 

another manufacturer.  

Results 
 

 AHIPAP Evaluation 

Comparing patient and bench airflow, the simulation process bias was 4.5 ± 5.4% in 
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amplitude and 0.007 ± 0.650s in Ttot. These amplitude and Ttot biases also remained in the same 

range when considering the four PAP devices (Table 1).  

 

 

 

 

 

TABLE 1. Agreement between Patient and Bench Airflow: Amplitude and Ttot Biases 

 AirSense10 DreamStation  S.Box Prisma20A Overall 

average 

Amplitude bias, % 4.6 ± 5.1 4.0 ± 5.5 3.9 ± 5.3 5.4 ± 5.7 4.5 ± 5.4 

Ttot bias, s 0.007 ± 0.589 0.000 ± 0.910 0.010 ± 0.511 0.009 ± 0.486 0.007 ± 0.650 

Values represent means ± standard deviation. Ttot = total respiratory cycle time. 

Wilcoxon signed-rank tests showed that AHI underestimation by AirSense10, S.Box and 

Prisma20A were significant, in comparison with AHIPG (Table 2). Even though AHIPG and AHIPAP 

were highly correlated (Fig. 2). Noteworthy, AIPAP and AIPG were very greatly correlated (Fig. 3). 

Agreements between AIPG and AIPAP were better than these of HI. No significant differences were 

observed from Wilcoxon signed-rank tests between AIPAP of AirSense10, DreamStation, 

Prisma20A and AIPG. AIS.Box was a little higher than AIPG. All PAP devices underestimated HI 

compared to HIPG (Fig. 4). The underestimation magnitude was manufacturer-dependent (Table 2). 

Linear regression analyses showed poor correlation regarding HI of DreamStation, Prisma20A with 

HIPG. Whereas, there were no significant correlations between HIPAP of AirSense10, S.Box and 

HIPG (Fig. 4).  
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TABLE 2. Agreement Analyses between PAP Devices and Polygraph: AHI, AI and HI 

 AHI  AI  HI 

 Bias  

(p-val) 

r  

(p-val) 

ICC  

(p-val) 

Bias 

 (p-val) 

r  

(p-val) 

ICC  

(p-val) 

Bias  

(p-val) 

r  

(p-val) 

ICC  

(p-val) 

AirSense10 -14.2 ± 9.0 

(<0.001) 

0.91 

(<0.001) 

0.75 

(0.04) 

0.0 ± 5.5 

(0.16) 

0.97 

(<0.001) 

0.97 

(<0.001) 

-14.2 ± 10.2 

(<0.001) 

-0.10 

(0.62) 

-0.02 

(0.59) 

DreamStation -2.6 ± 7.3 

(0.08) 

0.94 

(<0.001) 

0.94 

(<0.001) 

3.0 ± 8.7 

(0.07) 

0.92 

(<0.001) 

0.91 

(<0.001) 

-5.6 ± 8.0 

(0.002) 

0.59 

(0.002) 

0.47 

(0.001) 

S.Box -7.6 ± 8.5 

(<0.001) 

0.92 

(<0.001) 

0.87 

(0.001) 

5.0 ± 8.1 

(<0.001) 

0.94 

(<0.001) 

0.90 

(<0.001) 

-12.6 ± 10.2 

(<0.001) 

-0.03 

(0.87) 

-0.01 

(0.54) 

Prisma20A -3.9 ± 7.3 

(0.02) 

0.94 

(<0.001) 

0.93 

(<0.001) 

2.8 ± 6.9 

(0.08) 

0.95 

(<0.001) 

0.94 

(<0.001) 

-6.7 ± 8.9 

(0.002) 

0.56 

(0.02) 

0.32 

(<0.001) 

 

Bias was calculated as the average difference between PAP and polygraph. Wilcoxon-signed-rank 

tests were conducted to examine whether AHI, AI, HI biases between PAP devices and polygraph 

were significant. A p value ≤ 0.05 is considered statistically significant. AHI = apnea hypopnea 

index; AI = apnea index; HI = hypopnea index; PAP = positive airway pressure; p-val = p-value; r = 

Pearson correlation coefficient; and ICC = intraclass correlation coefficient. 
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Figure 2 - Linear regression and Bland-Altman plots of apnea hypopnea indices detected by 

positive airway pressure devices with those determined by polygraph, regarding totally 25 

polygraph-recording samples. PAP = positive airway pressure devices; PG = polygraph; and AHI 

= apnea hypopnea index. 
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Figure 3 - Linear regression and Bland-Altman plots of apnea indices detected by positive 

airway pressure devices with those determined by polygraph, regarding totally 25 polygraph-

recording samples. AI = apnea index. See Figure 2 legend for an expansion of other abbreviations. 
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Figure 4 - Linear regression and Bland-Altman plots of hypopnea indices detected by positive 

airway pressure devices with those determined by polygraph, regarding totally 25 polygraph-

recording samples. See Figure 1 and 2 legends for an expansion of abbreviations. 

 

There was no correlation between simulation performance and device performance in 

detecting SDB. Corresponding Spearman’s rank correlation coefficients were 0.12 (p = 0.55) for 

AirSense10, 0.04 (p = 0.84) for DreamStation, 0.26 (p = 0.21) for Prisma20A, 0.15 (p = 0.48) for 
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S.Box.  

 Consequently, from the multiple linear regression model, AHIPAP were related to AIPG and 

HIPG, whereas they were not linked statistically with the bench simulation performance indicator 

(Table 3). 

TABLE 3. Analysis of AHIPAP Determinants by Multiple Linear Regression 

 

 AirSense10 AHI DreamStation 

AHI 

S.Box AHI Prisma20A AHI 

Beta p-val Beta p-val Beta p-val Beta p-val 

Polygraph AI 0.97 <0.001 0.83 <0.001 0.92 <0.001 0.88 <0.001 

Polygraph HI 0.11 0.05 0.45 <0.001 0.23 0.003 0.36 <0.001 

Bench simulation 

performance 

0.01 0.84 -0.02 0.78 -0.05 0.45 -0.08 0.28 

R² 0.947 0.889 0.905 0.901 

 

Beta represents the weight of each input variable according to the multiple linear regression model. 

Variables were normalized by its own average and standard deviation before multiple linear 

regression analyses. p-val are for testing the null hypothesis that the coefficient Beta is equal to zero. 

A p-val < .05 indicates that we can reject the null hypothesis. AHI = apnea-hypopnea index; AHIPAP 

= AHI determined by positive airway pressure devices; AI = apnea index; HI = hypopnea index; 

and p-val = p-value.  

 

The accuracy of PAP devices in identifying breathing profiles with AHIPG ≥ 30 events/hour 

were 84% for AirSense10, 96% for DreamStation, 88% for S.Box and 96% for Prisma20A. Chi-

square statistics showed that PAP devices’ classification was dependent on the polygraph 

classification. 

 AHIPAP Relationship between Manufacturers 
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According to the AHIPAP transition matrix among different manufacturers (Fig. 5), they were 

correlated from one to another with coefficients of determination (R²) greater than 0.75. More 

concretely, AHIAirSense10 seemed to correlate more with AHIS.Box than with AHIDreamStation or 

AHIPrisma20A, whereas AHIDreamStation correlated more with AHIPrisma20A than with AHIAirSense10 or 

AHIS.Box. AHIS.Box showed a slightly better correlation with AHIPrisma20A and AHIAirSense10 than with 

AHIDreamStation. AHIPrisma20A had a stronger correlation with AHIDreamStation and AHIS.Box than with 

AHIAirSense10.   

 



117 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Figure 5 – Apnea hypopnea index transition matrix for switching from one device to another. 

Linear regression analysis of apnea hypopnea indices was performed from each possible switch of 

the four different devices.  

 

 

Discussion 

 To the best of our knowledge, this study was the first to evaluate AHI agreement between 

AASM scoring rules updated in 2012
13

 and algorithms embedded in PAP devices by using 

reproducible respiratory profiles. This was also the first application of our physiological bench 

testing which simulated breathing profiles of apneic patients with obstructive and central events by 

using their polygraph recordings.  

AHIPAP were highly and linearly correlated to AASM scoring rules, but still underestimated. 

This good correlation was largely attributed to a strong linear relationship between AIPG and AIPAP, 

whereas HIPAP was not satisfactorily correlated with HIPG and was underestimated. These findings 

were then consolidated by the AHI agreement analysis between polygraph and PAP devices 

scorings, which showed a better agreement, namely a lower bias, in AI than in HI as well. HI 

underestimation by PAP devices could be explained by two factors. Firstly, hypopneas scored with 

polygraph may be considered as normal breathing in PAP devices, rather than detected as flow 

reduction. Indeed, PAP devices lack physiological measures such as arterial oxygen saturation and 

EEG to score hypopneas. Thus, PAP device manufacturers may have opted for a higher airflow 

reduction threshold than AASM rules to avoid hypopneas over-detection. Secondly, the airflow 

reduction threshold of apneas used in PAP devices may have implied an easier classification of 

respiratory events as apneas, compared to AASM rules, which resulted in categorizing a 
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few hypopneas as apneas. Nevertheless, the severity of HI underestimation also varied among PAP 

devices of different manufacturers. This is to be interpreted with respect to the differences in the 

scoring rules for each device, particularly the airflow reduction thresholds for hypopneas and other 

different parameters involved in the baseline calculation, such as window length, feature selection 

like airflow peak-to-peak amplitude, or minute ventilation as an example. It was noteworthy that 

when we designed our SDB scoring algorithm based on airflow analysis, we were confronted with 

various choices in calculating the airflow peak-to-peak excursion baseline. These choices resulted 

in different hypopnea-scoring results, especially during periods with continuous breathing events. 

For example, the number of cycles taken in account, the choice between median, mean or a specific 

percentile to characterize the peak-to-peak excursion baseline feature, significantly influenced the 

scoring results. Each manufacturer should have made their own choices. Moreover, manufacturers 

may have added some other features in hypopnea scoring rules. For example, the manufacturer of 

AirSense10 claimed usage of airflow pattern. Indeed, HIAirSense10 takes in account only hypopneas, 

which are associated with inspiratory flow limitations and thus are considered as obstructive. Apart 

from algorithm differences, airflow signal quality was also not the same, for example, sampling 

frequency varied from 5 to 25 Hz depending on manufacturer. This may enhance AHIPAP 

determination discrepancy. 

Of noteworthy interest, the linear relationship and agreement between AHIPAP and AHIPG 

depended on both AI and HI. The more the AHIPG was linked to AIPG, the better the AHIPAP was 

correlated to AHIPG. PAP devices displayed better performance in calculating AI rather than HI. 

This might have an impact on the follow-up of patients characterized by a residual hypopnea 

predominance. For example, OSA patients with asthma are more like to express this phenotype. 

Literature shows that their HI account for approximately 75% of the total AHI
14

. Patients with heart 

failure
15

 or those who develop emergent central events after setting up PAP treatment may 
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also present a non-neglectable amount of hypopneas.   

In the literature, some studies have evaluated SDB detection agreements between PAP 

devices from Philips-Respironics or Resmed, and PSG
5–9

. Their findings were in accordance with 

ours. Indeed the AHI, AI, HI determined from PAP devices and poly(somno)graph were linearly 

correlated and AI agreements were better than HI. Nevertheless, there was a little discrepancy in HI 

determination for different PAP device generations of Resmed: S8 auto-CPAP tended to 

overestimate HI compared to PSG,
7,8

 whereas S9 CPAP
9
 had a tendency to underestimate PSG HI. 

This difference might be due to the algorithm update between S8 and S9, which began to prevent 

the scoring of hypopneas that were not considered obstructive.  

A recent task force of the American Thoracic Society (ATS) recommended that the indices 

from PAP devices need to be designated with a subscript ‘flow’, since their scoring rules are 

different from that AASM recommendation
12

. Concerning differences in AHI determination rules 

used by PAP device manufacturers, care providers were recommended to be familiar with them in 

order to interpret residual events reported by each PAP device in an optimal manner
12

. For a 

concrete example, when switching the treatment device for a patient from one manufacturer to 

another, caregivers might need to know how to interpret the difference in AHI determined by the 

two PAP devices. This could be a difficult task because the modification in AHI could be a 

combination of different treatment efficacies and different SDB detection algorithms used in the 

PAP device. Our proposed transition matrix may be a useful reference for clinicians and caregivers 

to address this issue.  

Compared to clinical studies, our methodology used a physiological bench to simulate 

patient SDB profiles, which provided the means to limit the impact of breathing profile variability 

on device comparisons. Indeed, in clinical studies comparing different PAP devices, observed 

behavioral differences might be due to not only to algorithm differences between devices, 
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but also the various breathing profiles from night-to-night used to test different PAP devices. A 

typical breathing phenotype could vary in an intra-patient and interpatient manner. Meanwhile, our 

bench test did not compromise on physiological variability, in comparison with real patients. 

Compared to previously published studies, which focused tightly on the agreement of AHI 

between PAP devices and PSG for OSA patients, our findings should be more relevant for patients 

who are affected by coexisting OSA and CSA, for example, patients concurrently having 

comorbidities of obesity hypoventilation syndrome
16

, heart failure
17

, etc. Moreover, the ranges of 

AHI (42.3 ± 21.7 events/h), AI (25.9 ± 19.6 events/h) and HI (16.5 ± 9.8 events/h) we simulated on 

bench were larger than previous studies in the literature. Indeed, past studies evaluated residual 

breathing event agreement between PAP devices and PSG during CPAP titration process with PSG. 

Consequently, the majority of obstructive breathing events were treated by PAP. This study could 

be complementary to those, because we prevent PAP devices to have any treatment action. Our 

approach presents an opportunity to evaluate how devices differ from one another, without any 

interference in terms of AHI range magnitude.  

 In this study, the patient sample size with an overlap between OSA and CSA was relatively 

small, consisting of four patients. However, the 25 corresponding recordings chosen gave a wide 

range of AHI (from 10 to 80 events/hour) and CAI was increasing with AHI as well. Thus, as a first 

attempt to assess PAP devices with this methodology, our samples could be considered as well 

balanced and representative of miscellaneous challenging situations.   

We chose to evaluate the discrepancy in the related apnea hypopnea indices among different 

PAP devices tested at 4 cmH2O. It is likely that this discrepancy would not be the same if all 

devices were set at an efficient pressure that allowed treatment of all obstructive respiratory events. 

However, this does not jeopardize our comparisons demonstrating that differences do exist among 

devices from different manufacturers.   
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Conclusion 

 In conclusion, AHI determined by PAP devices may not be an absolute indicator of real AHI 

in OSA patients with residual or emergent central sleep events. The difference in residual AHI 

among manufacturers is important, especially concerning hypopneas. Accordingly, switching from 

one device to another, treatment efficiency may be biased by the SDB detection algorithm in cases 

of AHI interpretation from different manufacturers. Thus, our study reinforces the need for a 

poly(somno)graph examination during PAP treatment initiation and follow up, which represents an 

essential step for ensuring treatment efficiency, while waiting for a standardization of AHI flow 

among manufacturers as suggested by ATS.
12
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5.2 Summary 

In this study, we evaluated the apnea hypopnea index agreement between four positive 

airway pressure devices and polygraph through a physiological bench, which permitted simulating 

automatically the breathing profiles registered in polygraph recordings with use of mainly an active 

lung simulator and a Starling resistor for modeling upper airway obstruction, while connected to a 4 

cmH2O source pressure.   

We used twenty-five 1-hour polygraph samples issuing from the whole-night respiratory 

polygraph recordings of four patients diagnosed with predominant central sleep apnea syndrome. 

According to polygraph analyses, the AHI (events/hour) of these recording samples varied from 12 

to 77.7 with mean (Std) of 42.3 (21.7). Apneas were predominant to hypopneas (55.3% versus 

44.7%) and central apneas represented 55.8% ± 27% among all types of apneas. Then we simulated 

each polygraph sample four times on bench, with a connection to a different PAP device each time. 

They were all set to 4 cmH2O in order to rule out treatment effects.  The bench-simulated airflow 

presented a good similarity to this of patients’ (amplitude bias: 4.5 ± 5.4%; total respiratory cycle 

time bias: 0.007 ± 0.650 s). 

The bench simulation results showed that AHIPAP, AIPAP determined by PAP devices were 

linearly correlated to the polygraph scorings AHIPG (r² = [0.83; 0.89]), AIPG (r² = [0.84; 0.94]), 

especially great for AI. The linear relationship between HIPAP and HIPG was much weakened (r² = 

[0.00; 0.35]), compared to this of AI. The agreement in AI between PAP devices and polygraph was 

better than this of HI as well. More concretely, all the four tested PAP devices had a tendency to 

underestimate HIPG (mean HIPG  ± Std: 16.5 ± 9.8 evts/hour). Nevertheless, the severity of HIPG 
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underestimation varied among PAP device manufacturers, which meant that HI determined by PAP 

devices were not equivalent.  

In conclusion, the AHI given by PAP devices may not be an absolute indicator of the 

realistic AHI for patients with predominant CSA. Therefore, regular poly(somno)graphy 

examinations after initiation of PAP therapy are important for monitoring patient health status. 

While switching from a PAP device to another of a different manufacturer, AHI interpretation 

needs take into account discrepancies of algorithms used by different manufacturers.  
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Chapter VI. Discussion 

 

 The physiological bench developed in this project should be the first one capable of 

reproducing automatically the breathing profiles of patients affected with sleep apnea syndrome,  

which are registered in polygraph recordings, according to literatures. The bench reached a great 

simulation performance, while regarding the similarity between patient breathing airflow and the 

bench-simulated airflow in terms of airflow intensity, morphology and temporal parameters. In the 

meantime, it reproduced patients’ various SDB events of obstructive and central mechanisms with a 

satisfying sensitivity and PPV as well. Furthermore, it has also been proved robust in simulating the 

breathing profiles of diverse phenotypes.  

 A physiological bench like this allows saving expensive and time-consuming clinical trials, 

in order to find an optimal PAP device for a specific patient. It also permits comparing PAP devices 

of different manufacturers under the same physiological conditions, which is indeed not allowed 

throughout clinical studies. Although this physiological bench has many advantages, it has some 

limitations like that it cannot react in the same manner as a patient concerning its physiological 

responses to an increased pulmonary volume and a decreased PaCO2, following the pressure 

increases delivered by PAP devices.  

 In this chapter, we would like to discuss firstly the technical difficulties that we have 

encountered during the development of this polygraph-based physiological bench, the solutions that 

we have brought to try to guarantee that the bench-simulated breathing profile represented a 

patient’s own SDB phenotypes. Only in this approach can the PAP device test results 
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acquired on bench be better applied to a specific patient for helping choosing an optimal APAP 

algorithm. Then we will discuss the possible reasons that we think could be relevant to explain the 

discrepancies between HI determined by different PAP devices. In the next step, we would like to 

talk about what we have observed on bench about PAP device characteristics, which are specific to 

each manufacturer for qualifying patient’s mixed apneas. Finally, we will approach various 

perspectives of this new physiological bench.  
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6.1 Validity of a novel bench-simulation approach from polygraph recordings to 

reproduce automatically the breathing profiles registered 

 As APAP algorithms are becoming more and more intelligent and probably adapt treatment 

strategy to each patient breathing characteristics in the next few years with the benefit of big data, 

this underlines the need to render the bench test more physiological as well.  This is why in this 

thesis a novel approach to a physiological bench was developed, aimed at reproducing 

automatically on bench apneic patient breathing profiles registered in polygraph recordings during 

the diagnostic examination. Our methodology was based on creating an algorithm, which used 

patient polygraph recordings as inputs and calculated automatically the digital inputs necessary for 

commanding bench hardware composed by an active lung simulator and an upper airway 

obstruction model. This permitted simulating automatically the breathing profile of any patient 

affected by sleep apnea syndrome (SAS) on bench, while taking into account their individual 

breathing phenotypes at the same time.  

 According to the literature up to now, the hardware used to simulate breathing profiles of 

patients affected by SAS consists generally of an active lung simulator and an upper airway 

obstruction model (for example, a Starling resistor). Ideally, the active lung simulator needs to be 

driven by patient respiratory muscular effort pressure. The resistance set in the upper airway model 

needs to approach that of patient as well. However, it is difficult to measure these parameters 

directly from the patient in a non-invasive manner. With polygraph recordings, we could know 

about patient’s sleep position, breathing airflow, presence of respiratory muscular effort pressure, 

arterial oxygen saturation, snoring as well. We could not have access to the respiratory muscular 

effort pressure or the upper airway resistance directly, which thus set up an obstacle for simulating 

on bench the breathing profiles contained in polygraph recordings. Therefore, the algorithm 
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developed by us enabled estimating and deriving this implicit information from polygraph data for 

bench simulation. More concretely, by analyzing polygraph signals, the algorithm firstly detected 

different disordered breathing events and characterized their mechanisms as well. Then it estimated 

patient non-obstructive breathing airflow issuing from central command and the obstruction level in 

upper airways, based on patient’s nasal airflow and previously identified SDB events. During 

central breathing events and normal breathing, the breathing airflow issuing from central command 

was assumed identical to patient nasal airflow, and the resistance in patient upper airways was 

assumed at minimum. On the contrary, during obstructive breathing events, the central command 

airflow was estimated by referring to the nasal airflow during the pre-event 2 minutes, and the 

obstructive level in upper airways was then assessed by comparing patient actual nasal airflow to its 

estimated central command airflow. The respiratory muscular effort pressure used for commanding 

the artificial lung could then be derived from patient central command airflow, and pulmonary 

parameters (compliance, opening airway resistance) set in artificial lung. The demanded Starling 

resistor’s resistance for each obstructive breathing cycle was calculated according to the 

relationship between the central command breathing airflow generated by the artificial lung (under 

the condition of a minimal resistance set in Starling resistor) and the resulted bench airflow 

amplitude from applying various resistance levels in Starling resistor.  
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Figure 3-1: A novel bench-simulation approach from polygraph recordings to its breathing 

profile reproduced automatically on bench. OA: obstructive apnea; CA: central apnea. 
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6.2 Justification of methodology choices in polygraph signals processing 

 As described in chapter 3, the algorithm used for analyzing polygraph signals was mainly 

composed of 6 signal processing steps while totally taking 7 polygraph signals (acceleration, nasal 

pressure, thermistance or alternatively RIP flow, RIP thorax & abdomen, SpO2 and audio volume) 

as inputs:  

 Step 1: signal pre-processing: resampling and filtering 

 Step 2: automatic segmentation of stable periods by using acceleration signal 

 Step 3: identification of breathing cycles 

 Step 4: detection of apnea events and identification of significant breath attempts 

 Step 5: detection and characterization of hypopnea events 

 Step 6: calculation of digital inputs for integration into bench hardware 

Some justifications of certain choices made in steps 3-6 are described as follows. 

6.2.1 Justification of methodology choices related to polygraph signals processing step 3 

6.2.1.1 Why does identification of breathing cycles consist in an important step before bench 

simulation? 

As described previously, we mainly used an artificial lung and an upper airway model 

Starling resistor to replicate the nocturnal breathing profile of patients affected by sleep apnea 

syndrome. The artificial lung was set in an active lung mode, modeled by a compliance (pulmonary 

compliance) and a resistance (airway resistance) connected in series and driven by respiratory 

muscular effort pressure, in order to mimic patient lung movement in a physiological manner. 

Starling resistor served for mimicking upper airway obstruction. In fact, there was a 
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technical constraint about the synchronization between Starling resistor’s resistance and pulmonary 

movement simulated in the artificial lung: the Starling resistor’s resistance could only be varied 

once per breathing cycle and this was triggered by the transistor-to-transistor logic (TTL) signal 

sent from the artificial lung at the beginning of a breath. Thus, it was considered as important that 

patient’s upper airway resistance could be determined for each breathing cycle in order to better 

mimic patient’s SDB breathing profile on bench with taking into account cycle by cycle obstructive 

and central characteristics. To achieve this objective, each breathing cycle needs firstly be identified.  

6.2.1.2 Why is breathing cycle identification mainly based on nasal airflow?  

We chose to mainly use patient's nasal airflow (Vn’, 20Hz) to detect breathing attempts, as 

our objective was to reproduce patient nasal airflow on bench, in the meantime taking into account 

their cycle-by-cycle obstructive and central characteristics. The nasal airflow was estimated as the 

square-root of patient nasal air pressure, which was measured with nasal cannula during polygraph 

examination. We decided simulating patient nasal breathing profile on bench instead of its oronasal 

breathing profile by considering that the signal measured by the oronasal thermal airflow sensor 

was not proportional to flow. According to patient's nasal airflow excursion, 2 different breathing 

cycle identification methods were applied. During periods with high excursion values in Vn’, 

breathing onset positions were directly determined as the inflection point in Vn’ between expiratory 

minimal and inspiratory maximal values respecting the order of two consecutive cycles. However, 

during low excursion periods (a reduction greater than 65% compared to two-minute pre-event 

baseline), breathing onset positions were inferred from RIP signals.  

6.2.1.3 Why is the automatic multiscale-based peak detection algorithm selected to detect 

peaks (valleys) in nasal airflow? 
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We firstly detected peaks and valleys in Vn’ using an algorithm developed by Scholkmann et 

al. for automatic multiscale-based peak detection (AMPD) in noisy periodic or quasi-periodic 

signals. We preferred this algorithm because it could automatically identify the appropriate local 

maximum in case of several local maximums occurring in a same breathing cycle, without 

requirements of setting a parameter before, compared to the findpeaks function in Matlab. However, 

the computational complexity of this algorithm was not very optimal. It was in the order of n², 

where n represents the number of data samples in a signal. Considering this, we applied this 

algorithm in each 3-minute window with two peaks (valleys) overlap to save computation time. 

Observing the detection results, sometimes, we found some non-detected peaks and valleys. These 

could be due to the airflow artifact or breathing instability in certain periods, which broke the quasi-

periodic pattern of the signal. So we added a step to check whether there were any missed cycle 

detection by detecting oscillation around zeros values. The newly added peak (valley) needed also 

satisfy both amplitude and temporal threshold compatible with a respiratory cycle. The amplitude 

threshold was defined as at least 10% of a closest previously detected peak (valley) amplitude. Then 

the time interval between the newly added peak (valley) and two adjacent valleys (peaks) should be 

both greater than 1.5 seconds. The upper envelope and lower envelope of Vn’ were obtained by 

interpolating peaks and valleys. And the excursion was calculated as the difference between the 

upper envelope and the lower envelope.  

6.2.1.4 How are breathing onset points in nasal airflow during periods without highly 

reduced excursions determined?  

The inflection point in the nasal airflow valley-to-peak segment during periods without 

highly reduced excursions was determined by regarding the absolute ratio between slopes calculated 

respectively by fitting the following 7 points and the precedent 7 points with linear 
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regression. This meant that we did a linear regression in a window of 7 consecutive points. And the 

window moved forward 1 point each time. Then the inflection point was assigned to the point 

where this ratio was the biggest, and in the meantime, its absolute amplitude should be inferior to 

10% of the difference between peak and valley amplitudes.  

6.2.1.5 How is the reference RIP signal chosen for each reduced nasal airflow excursion 

period to aid in breath onsets’ positions determination? 

Since we had 2 RIP signals (RIP thorax & RIP abdomen), the reference RIP signal used for 

inferring breathing onsets during a period with highly reduced Vn’ excursion was chosen according 

to the following detailed criteria:  

a. Firstly, we calculated the amplitude average of 5 valleys prior to the highly reduced Vn’ 

excursion period (Avalley_prec), the amplitude average of all valleys inside the highly reduced 

Vn’ excursion period (Avalley_in), as well as the amplitude average of all peaks inside the 

highly reduced Vn’ excursion period (Apeak_in) for RIP thorax and RIP abdomen.  

b. If |Avalley_in - Avalley_prec| was bigger than |Apeak_in - Avalley_prec| for one RIP signal whereas it 

was the opposite for the other RIP signal, the second one was assumed more likely to be in 

the same phase as patient respiratory muscular effort. So we used this RIP signal as the 

reference.  

c. Otherwise, the reference signal was attributed to the signal with a higher relative amplitude 

modulation compared to pre-segment 2-minute amplitude modulation baseline during the 

reduced excursion periods.  



134 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

 The time indices of valleys in the reference RIP signal were assumed to be patient breathing 

onset time during highly reduced Vn’ excursion periods. Thus the corresponding breathing onset 

time(positions) in Vn’ during highly reduced excursion periods were determined. 

6.2.1.6 How are the breath attempts during highly reduced nasal airflow excursion periods 

identified with use of RIP thorax&abdomen signals?  

 The peaks and valleys in RIP signals were detected in a similar manner as in Vn’. Firstly, we 

used the AMPD algorithm to detect peaks and valleys in each 3-minute window with two peaks 

(valleys) overlap. During obstructive or central breathing events, the amplitudes in RIP signals 

could be highly reduced. Thus the signal to noise ratio were also decreased. Peak and valley 

detections in those periods were often influenced by signal noise. To avoid detecting excessive 

peaks and valleys due to the signal noise, we added a step of filtering peaks and valleys. We 

calculated the RIP signal excursion. The selected peak should satisfy that its excursion value was 

greater than 10% of 60 percentile among the corresponding excursion values of all peaks identified 

within precedent 1-minute. The reason that we used the 60 percentile representing excursion 

baseline is for the consideration of ruling out the effect of greater amplitude during initial 

ventilation recovery phase as well as the reduced amplitudes during SDB events. There could be 

only one valley between 2 adjacent peaks. So we conserved only the valley whose excursion value 

was the lowest in case of more than one valleys between two adjacent peaks.  

6.2.2 Justification of methodology choices related to polygraph signals processing step 4 

 Why are apneas detected based on nasal airflow instead of nasal pressure or the oronasal 

thermistance? 
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 We detected apnea events based on Vn’ signal, although American Academy of Sleep 

Medicine (AASM) rules recommend using oronasal thermal airflow to score apneas. We chose to 

use Vn’ instead of oronasal thermal airflow because firstly in several patients polygraph recordings, 

the oronasal thermal airflow was not available. Secondly, as we simulated SAS patient breathing 

profile on bench for the purpose of testing the algorithm performance in PAP devices. Based on the 

fact that SAS patients usually wear a nasal mask to receive PAP therapy, therefore it should make 

more sense that we used Vn’ to detect apneas and simulated patient nasal breathing profile on bench.  

6.2.3 Justification of methodology choices related to polygraph signals processing step 5

 6.2.3.1 Why are the hypopneas detected on the basis of nasal airflow instead of nasal 

pressure? 

Hypopnea events were detected in our algorithm according to the scoring rules of AASM 

updated in 2012. It required a reduction in nasal airflow excursion greater than 30% as well as an 

oxygen desaturation greater than 3% compared to the pre-event 2-minute baseline. We used nasal 

airflow excursion instead of nasal pressure excursion to detect hypopneas in consideration that we 

aimed to simulate patient nasal airflow on bench.  

6.2.3.2 How are the hypopneas’ properties characterized? 

We followed the AASM rules updated in 2012 to classify hypopneas as well. The methods 

used for phase shift detection and snoring detection are detailed below. And we used the 

methodology invented by Zhi et al for inspiratory flow limitation detection.  

  Phase Shift Detection 
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To identify the thoraco-abdominal phase shift in hypopneas, the algorithm was based on the 

temporal correspondence between RIP thorax peaks and RIP abdomen peaks. For example, {B1, 

B2, …, Bk} were k breathing cycles contained in the hypopnea. The corresponding time coordinates 

of peaks occurring in RIP thorax signal and RIP abdomen signal were respectively {t th_1, tth_2… 

tth_k}, {tab_1, tab_2… tab_k}, assuming one peak per cycle. Then for every RIP thorax peak occurring 

time tth_i, there were 4 time coordinates in RIP abdomen corresponding to tth_i: the last RIP abdomen 

peak occurring time prior to tth_i, named t1, the last RIP abdomen valley occurring time prior to t th_i, 

named as t2, the first RIP abdomen peak occurring time posterior to t th_i, named as t3, the first RIP 

abdomen valley occurring time posterior to tth_i, named as t4. the algorithm calculated the minimal 

value from { |t1 – tth_i|, |t2 – tth_i|, |t3 – tth_i|, |t4 – tth_i|}. If the minima corresponded to the time interval 

between an abdominal valley and that thoracic peak, the algorithm noted “0” for the ith cycle in a 

vector named thorax_peaks_correspondence, otherwise, it noted “1”. In the same way, the 

algorithm calculated a vector abdomen_peaks_correspondence. If 2 consecutive “0” occurred in 

either  thorax_peaks_correspondence or abdomen_peaks_correspondence vector, or there were “0” 

for the same breathing cycle in both thorax_peaks_correspondence and 

abdomen_peaks_correspondence vectors, the algorithm considered that the thoraco-abdominal 

phase shift took place in the hypopnea. 

  Snoring Detection  

Audio volume signal of 20 Hz was used for snoring detection. The snoring detection 

algorithm was based on finding an adaptive threshold in frame of 5 seconds with 99% overlap to 

decide if the data in the middle of the frame is significantly bigger than the two sides. The detailed 

procedures for analyzing a data frame composed of {d0, d1, d2, d3… d98, d99, d100} were as follows:  
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a. Compute the median of the data frame noted as dmedian. 

b. Separate the data frame into 2 sub data frames df1 and df2: df1 = {d0, d1... d48, d49}, 

df2 = {d51, d52... d100}. In each sub data frame, calculate the standard deviation (SD) 

of every 30 data with moving one data forward every time. Therefore, there are 21 

standard deviation values in each sub data frame. We note the minimal standard 

deviation value in each data frame as SDmin0-49 and SDmin51-100. Calculate an average 

value between SDmin0-49 and SDmin51-100, named as SDmin. 

c. If d50 - dmedian > 13*SDmin, then the time of sampling d50 is considered as a time 

point when patient snoring (figure 5(B)). 

 To regroup all snoring time points detected into cycles, a maximal time interval between two 

consecutive snoring time points was set as 1 second. So if the time interval between two 

consecutive snoring time points was bigger than 1 second, the two snoring time points were 

assigned to 2 different breathing cycles (figure 6-2).  
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Figure 6-2: An example of snoring detection from audio volume signal. 

A) nasal pressure. B) audio volume, wherein data surpassing adaptive threshold marked in red 

points. C) audio volume, wherein data surpassing adaptive threshold regrouped by respiratory 

cycles, marked by red bars. Red dashed vertical lines highlight the snoring detected during the 

inspiratory phase of one respiratory cycle. 

6.2.4 Justification of methodology choices related to polygraph signals processing step 6 

The digital inputs used for driving bench hardware were calculated in two different 

approaches, depending on breathing cycles’ characterization (obstructive / non-obstructive).   

Considering non-obstructive cycles (i.e. normal breathing or central breathing events), their 

respiratory muscular effort pressure data was directly derived from the patient's nasal airflow, 

which corresponded to the airflow aimed to be reproduced on bench as well. The resistance in 

Starling resistor was then set at minimum for these cycles.   
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During obstructive cycles, as patient’s breathing airflow issuing from central command 

could not be known from its polygraph recordings, we assumed that it was in the same amplitude 

scale as the pre-event 2-minute nasal airflow amplitude baseline. Then the respiratory muscular 

effort pressure of obstructive cycles was derived from this estimated non-obstructive nasal airflow 

(also named as airflow of central command in this thesis). Although in reality, patient’s muscular 

effort pressure during obstructive events perhaps decreases to a more negative value than the ones 

of precedent normal breathing, our assumption and simulation should not impact the PAP device 

responses to patient’s obstructive events as long as its increased upper airway resistance and limited 

inspiratory airflow pattern were reproduced on bench. The sealed chamber pressure (Pch) regulated 

in Starling resistor for obstructive cycles was a function of patient’s estimated non-obstructive 

airflow and its nasal airflow (i.e. the desired bench airflow resulting from a proper resistance 

applied in Starling resistor). The relationship between different levels of non-obstructed airflow 

produced by the corresponding muscular effort pressure entered in the active lung simulator, and 

the resulting bench airflow after application of various Pch was studied via an experimental matrix, 

in which the upstream pressure of Starling resistor was set at 4 cmH2O.  

Of noteworthy, the Pch could only be constant within a cycle and changed once at the 

beginning of each breathing cycle due to the material constraints. Therefore, patient’s upper airways 

resistance variation within a breathing cycle was not taken into account on this bench.  
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6.3 Bench limitations in simulating a specific patient breathing profile from 

polygraph recordings 

 The capability to simulate any apneic patient breathing profile on bench from its polygraph 

recordings permits evaluating different APAP algorithms under the same physiological conditions, 

and finding more easily an optimal treatment device for a specific patient, in comparison with 

expensive and time-consuming clinical trials. Nevertheless, we need also keep in minds that so far, 

the breathing profile simulated on bench could not be completely the same as each patient’s 

physiological behaviors. This is mostly due to that some physical information are difficult to be 

measured invasively through poly(somno)graph recordings, for example, patient’s lung compliance, 

respiratory muscular effort pressure, airway resistance, pharyngeal critical closing pressure etc. 

Moreover, we could not know patient’s variations of PaO2, PaCO2, and ventilatory drive stability, 

in front of an increased pulmonary volume induced by an elevated upper airway pressure. Therefore, 

the arrangement of SDB simulated on bench does not take into account patient’s pathophysiological 

reactions to physical parameters’ changes caused by PAP device’s pressure. It remains the same to 

this registered in the diagnostic examination through a polygraph, in terms of the respiratory 

muscular effort pressure and the sealed chamber pressure (i.e. the simulated upper airway closing 

force) set respectively in the active lung simulator and in the Starling resistor. However, this should 

not jeopardize the accuracy of bench’s recommendation about the PAP device, which should be 

suitable to treat a specific patient, because bench test results can provide us detailed information 

about whether a PAP device is capable to detect various phenotypes of SDB in a specific patient, 

and to deliver an efficient and optimal pressure. Despite the efficient pressure of bench is probably 

different to the one of the patient, a PAP device, which is able to provide an efficient and optimal 
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pressure for overcoming bench-simulated obstructive SDB, will also be able to achieve the almost 

same performance while treating the patient.  

 Another limitation is that the upper airway status simulated on bench during central or 

mixed SDB events could have a discrepancy from the ones in patients. Because patient’s upper 

airway status is not monitored during poly(somno)graph recordings, we cannot know whether its 

upper airway is open throughout the SDB of central mechanism. Badr et al. used a fiber-optic 

nasopharyngoscopy to view pharyngeal patency of central apneas and observed that the upper 

airway was completely occluded during a majority of central apneas without requirement of sub 

atmospheric intraluminal pressure in patients with sleep apnea syndrome (Badr, Toiber, Skatrud, & 

Dempsey, 1995). For now, we set the resistance of the upper airway model to minimum while 

simulating patients’ central SDB events or the central part of mixed SDB events. In the next step, 

we could also change the resistance to maximum while simulating central apneas or the central 

portion of mixed apneas to verify whether PAP devices will be able to detect the occlusion and 

open the upper airway model.  

 Moreover, hypopneas were detected in our custom-made algorithm through polygraph data 

analyses, with regard to patient’s breathing airflow, arterial oxygen saturation. We did not have 

access to patient’s arousals through polygraph data. Therefore, the hypopneas scored from 

polygraph data might lack some hypopneas, appearing with micro-arousals. This could lead to that 

the number of obstructive hypopneas simulated on bench with a partially collapsed upper airway 

model was less than the real obstructive hypopneas’ number of a patient as well. Furthermore, we 

have noticed a phenomenon that patient’s inspiratory airflow limitation can persist during some 

periods of sleep without inciting a decrease in oxygen saturation greater than 3% while regarding 

patient’s polygraph data. We simulated these breathing periods with a completely open 
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pharyngeal model, despite flatten inspiratory airflow shapes are a strong sign of an increased upper 

airway resistance compared to a sinusoidal shape. And we did not simulate patient’s snoring on 

bench neither. Therefore, we think of implementing two other versions of the algorithm, which will 

simulate patient’s inspiratory airflow limitations which are outside of obstructive hypopneas in 

different manners, respectively with a partially occluded upper airway model (version A), or with a 

completely open upper airway model (version B). In fact, in version A, the bench-simulated 

inspiratory airflow limitations will be responsive to the pressure increase from PAP devices, by 

increasing the airflow amplitude and in the meantime decreasing the degree of flattened shape until 

it disappears. However, this simulation methodology shows also an inconvenience that the flattened 

airflow shape produced on bench is not the same as the one in the patient, because we will lose 

control of airflow shape while increasing resistance in the upper airway model (Starling resistor on 

our bench), which is related to the Starling resistor’s mechanical properties. We could only 

guarantee that the flattened airflow’s amplitudes were almost identical to those of patient while the 

pressure delivered from PAP devices remains 4cmH2O (the minimal pressure setting in PAP 

devices). Consequently, the version B should be complementary to the version A. It permits 

simulating almost exactly patient’s flattened inspiratory airflow shape so that we are able to check 

whether PAP devices manage to recognize flattened airflow shapes, which are personalized and 

specific to each patient. Considering snoring simulation, we consider adding a microphone-in-box 

at the upstream of the Starling resistor. The microphone will play patient’s snoring sound, which is 

synchronized to inspiratory phases, in order to generate high-frequency breathing airflow 

oscillations.   
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6.4 Hypopnea scoring rules diversity among PAP devices from different 

manufacturers 

In chapter 5, we studied the apnea hypopnea indices agreement between positive airway 

pressure devices (PAP) and polygraph via a bench test evaluation method. The PAP devices 

concerned were AirSense 10 Autoset by Resmed, DreamStation Auto by Philips Respironics, S.Box 

by Sefam and Prisma 20A by Löwenstein Medical GmbH & Co. Kg. We found that the AHI 

derived by PAP devices were linearly correlated this scored from polygraph analysis. the agreement 

in AI between polygraph and PAP devices was much better than HI. PAP devices showed a 

tendency to underestimate HI when compared to polygraph scorings. Furthermore, there existed a 

non-negligible discrepancy among HI provided by PAP devices from different manufacturers as 

well. The HI inconsistencies among PAP devices could be due to the differences of airflow 

reduction threshold and/or some other airflow features chosen by PAP manufacturers to score 

hypopneas. For example, the manufacturer of AirSense 10 claimed the usage of inspiratory airflow 

limitation pattern in their hypopnea scoring rules. All these factors certainly involved in the 

differentiation of HI obtained from PAP devices of different manufacturers. However, there should 

exist another factor usually ignored, which we thought of when we designed our own SDB scoring 

algorithm. It is how to calculate airflow peak excursion baseline, especially in periods with 

continuous breathing events. According to AASM “Chicago consensus paper” statement in 1999 

(“Sleep-Related Breathing Disorders in Adults: Recommendations for Syndrome Definition and 

Measurement Techniques in Clinical Research. The Report of an American Academy of Sleep 

Medicine Task Force” 1999), baseline is defined as the mean amplitude of stable breathing in the 2 

minutes preceding the onset of the event (in individuals who have a stable breathing pattern during 

sleep) or the mean amplitude of the 3 largest breaths in the 2 minutes preceding onset of the 
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event (in individuals without a stable breathing pattern). Nevertheless, when we used the mean 

amplitude of the 3 largest breaths as the airflow peak excursion baseline, we found that it could 

result in scoring excessive periods with airflow reduction, especially during periods when the 

airflow signal measured by the nasal pressure transducer of a nasal cannula was not stable and was 

possibly contaminated by artifact. In polygraph, a great part of them could avoid being scored as 

hypopneas thanks to the measure of arterial oxygen saturation and/or EEG signals. As PAP devices 

do not have these physiological measures, they might apply a different method to define the 

baseline in order to avoid excessive scorings, such as changing the baseline window length, the 

number of cycles taken into account to calculate peak excursion baseline, selecting a specific 

percentile instead of the average, or using the minute ventilation rather than airflow signal to 

calculate peak excursion baseline, etc. All of these technical choices should also be relevant to the 

discrepancy of HI determined by different PAP devices.  

Indeed, the apnea hypopnea index given by PAP devices serves as an important medical 

data. Clinicians or caregivers use it to evaluate treatment efficiency under PAP therapy, follow up 

patients’ health status evolutions as well as manage their pathways. Since OSA patients are possible 

to develop emergent central sleep apnea during PAP therapy, with a prevalence of 3.5% in week 1 

or week 13 after PAP therapy initiation, the accuracy of AHI plays a crucial role in informing 

clinicians as early as possible to adapter treatment strategy for these patients with overlap between 

OSA and CSA. Since CSA can promote or indicate cardiac arrhythmia, reduced cardiac function 

and it has a strong correlation with mortality in patients with heart failure. Thus it was 

recommended by American Thoracic Society in 2013 that the AHI detected by PAP devices was 

reported as AHIFlow to avoid the confusion with AHI of poly(somno)graph. As for the discrepancies 

of apnea hypopnea detection rules among PAP manufacturers, at least the clinicians and 
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caregivers needed to know the apnea hypopnea definitions of the corresponding PAP device in 

order to interpret the residual SDB indices in an optimal manner.  

6.5 Apnea qualification discrepancies between PAP devices 

 A demand to investigate the apnea qualification agreements between PAP devices has been 

expressed in literature. During the third study evaluating apnea hypopnea indices agreement 

between PAP algorithms and polygraph in predominant CSA patients, an apnea qualification 

difference between PAP algorithms, especially concerning complex apnea type, has been observed, 

while reproducing on bench breathing profiles from 25 polygraph samples. Figure 6-3 describes 

different types of apnea indices (OAI, MAI and CAI) for these 25 polygraph samples determined 

respectively by polygraph analyses in line with AASM rules of 2012, a custom-made algorithm 

used for analyzing bench-simulated breathing profile, and four PAP devices from difference 

manufacturers (AirSense 10, DreamStation Auto, S.Box and Prisma 20A).  
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Figure 6-3: Description of different types of apnea indices obtained from polygraph, bench-

simulated breathing profile analyses and four PAP devices tested, concerning the breathing 

scenarios issuing from 25 polygraph samples. OAI: obstructive apnea index. MAI: mixed apnea 

index. CAI: central apnea index. PG: polygraph. BS: bench-simulated breathing profile analyses. 

AS: PAP device AirSense 10. DS: PAP device DreamStation Auto. SB: PAP device S.Box. PM: 

PAP device Prisma 20A. Each barplot represents a polygraph sample. 

 

 The custom-made algorithm characterized mechanisms of bench-simulated apneas by 

regarding the resistance level set in Starling resistor, i.e. the difference between pressure at the 

upstream segment (Pus) and the sealed chamber pressure (Pch) of Starling resistor, namely the 

transmural pressure (Ptm). Indeed, the Pus corresponded to the pressure sent by the tested PAP 

device as well (Figure 2 in the article of Chapter 3). In general, the rubber tube of the Starling 

resistor used on our bench is completely open at the condition of Ptm ≥ 3 cmH2O. On the 
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contrary, when Ptm drops below -4 cmH2O, it becomes fully occluded, thus the respiratory muscular 

effort simulated in the active lung simulator can no longer generate any airflow. This is co-called 

simulation of an apneic breath of obstructive mechanism. Then an apneic breath of central 

mechanism is generated on our bench very simply by introducing a very small respiratory muscular 

effort amplitude (about 0.1 cmH2O) in the lung simulator, which increments TTL by 1 so that the 

Pch can be updated in comparison with the previous breath cycle to make sure the Starling resistor in 

an opening state. In the meantime, the airflow produced by the lung simulator is almost invisible 

(valley-to-peak amplitude of about 0.1 L/s). We chose this manner to simulate the breath cessation 

of central mechanism, due to the technical constraints in our bench hardware. Therefore, if a bench-

simulated apnea consisted of only breathes of obstructive mechanisms, it would be classified as an 

obstructive apnea. On the contrary, if it consisted only of breathes of central mechanisms, it was 

then categorized as a central apnea. However, if an apnea in a patient has simultaneously 

obstructive breathes as well as breath cessation of central mechanism, it would then be more 

difficult to characterize its property, because patient’s upper airway status in the central part cannot 

be derived from poly(somno)graph. Therefore, we defined their characterizations in the custom-

made algorithm as follows:  

 a. If the apnea were started by an obstructive apneic breath, it would be qualified as an 

obstructive apnea. Otherwise, 

 b. If the time of breath cessation of central mechanism before the first obstructive breath was 

greater than half of the apnea duration, it would be qualified as a mixed apnea. Otherwise, it would 

be still attributed to an obstructive apnea. 

 According to figure 6-3, the bench simulation showed a good performance in reproducing 

the quantity of patient’s apneas. In few polygraph samples, there was a little discrepancy 
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between AI from polygraph and AI calculated from bench-simulated breathing profile analyses. 

This was linked to the algorithm differences in detecting apneas between polygraph and the custom-

made algorithm, for example, the strategy of determining pre-event airflow baseline, especially 

during unstable breathing periods. In terms of the proportion of different types of apneas, the 

agreement between polygraph and bench simulation was great for a majority of polygraph samples. 

In some polygraph samples, the bench seemed to over-simulate patient’s obstructive apneas and 

under-simulate patient’s central apneas. This does not mean that our simulation did not reproduce 

patient’s breathing profile. In fact, polygraph samples used by us were issuing from patients with 

co-existing OSA and CSA, it was sometimes difficult to characterize the property of their apneas. 

For example, within a polygraph-scored central apnea, there could exist one or two breath attempts 

at the end of the apnea (Figure 6-4). Furthermore, before the central apnea, the patient could snore, 

and the airflow decreased with the sign of inspiratory airflow limitation as well (Figure 6-4). 

Therefore, our custom-made algorithm would characterize this kind of apnea as mixed apnea or 

obstructive apnea (in case that the last breath before respiratory muscular effort cessation was 

included into the apnea event).  This could explain the reason why there could have been some 

difference in indices of different types of apneas between polygraph and bench simulation.  
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Figure 6-4: Illustration of some polygraph-scored central apneas with one or two breath 

attempts at the end. Before the central apnea, the patient snored and its airflow decreased, 

accompanied by inspiratory airflow limitation. 
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 Furthermore, in some obstructive apneas (figure 6-5), there could be a long breath cessation 

of central mechanism between obstructive breathes. If this lasted longer than 4 seconds, we then 

simulated it on bench with an open Starling resistor for the central part (figure 6-6).  

 

Figure 6-5: An example of polygraph samples showing apneas of both obstructive and central 

mechanisms. Red frames: There was a respiratory muscular effort cessation between two 

obstructive breathes in an apnea.   

 

c
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Figure 6-6: Bench simulation of the polygraph example cited in figure 6-5. During periods with 

breathing muscular effort cessation, patient central command airflow were set to closely 0. So the 

respiration muscular effort integrated in the active lung simulator were nearly 0 cmH2O as well. In 

addition, the Starling resistor was open (bench-measured pressure from PAP device > bench-

measured Pch+3). However, during obstructive breathes, patient central command airflow were 

comparable to this of normal breathing. The Starling resistor was in state of obstruction (bench-

measured pressure from PAP device < bench-measured Pch-4).  

 

 While subjecting PAP devices of different manufacturers to the same bench-simulated 

breathing scenarios, a difference between them about apnea mechanism characterization has been 

observed, particularly concerning apneas with both obstructive and central mechanisms. It was 

illustrated in figure 6-7, which reflected the SDB events detected by PAP devices while subjecting 

them to the bench-simulated breathing scenario showed in figure 6-6. AirSense 10 has 



152 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

shown a good sensitivity in detecting obstructive part of complex apneas, and thus qualified them as 

obstructive apneas, whereas Prisma 2A was more sensitive to the central part (with open Starling), 

thus qualified them more often as central apneas. In addition, both AirSense 10 and DreamStation 

Auto use forced oscillation technics to determine patient’s upper airway status. Then, the apnea 

qualification from DreamStation Auto depended greatly on the status (open or closed) of Starling 

resistor when the device sent pressure pulses (corresponding to the small red bars marked on the 

device-measured airflow of DreamStation Auto in figure 6-7). Therefore, it can qualify complex 

apneas as obstructive or central apneas. Our bench showed a limitation in testing apnea 

qualification characteristics of S.Box, because S.Box detects central apneas by mainly regarding 

patient’s cardiac oscillations. As we did not simulate them during central apneas, the criteria of 

S.Box for qualifying a central apnea could become more restrained, based on analyses of breathing 

airflow shape during the breathing recovery, whose amplitudes should be gradually increasing in 

the following three consecutive breathes, in the meantime, satisfying a certain threshold. Sometimes, 

a patient may not necessarily present a crescendo breathing airflow during the breathing recovery 

after central apneas. This could explain why S.Box scored more obstructive apneas than other 

devices (Figure 6-3).  
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SDB event (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Polygraph scoring OA H OA OA OA CA OA CA CA CA 

Bench simulation OA H OA* OA* OA* MA OA* MA OA* MA 

AirSense 10 OA ND OA OA OA OA OA OA OA OA 

DreamStation Auto CA H H OA CA OA CA OA ND CA 

S.Box OA OA OA OA OA H OA OA OA OA 

Prisma 20A OA CA CA CA CA CA OA CA CA CA 

(A summary table of SDB events correspondence between polygraph, bench simulation and PAP devices.) 

Figure 6-7: Apnea characterization differences between PAP devices for the breathing profile 

described in figures 6-5 and 6-6. H: hypopnea. CA: central apnea. MA: mixed apnea. ND: sleep-

disordered-breathing event not detected. OA: obstructive apnea. OA*: obstructive apnea, in which 

there was respiratory muscular effort cessation of central mechanism. These periods were simulated 

on bench with an open Starling resistor, except the obstructive breathes. The small red bars marked 

above the airflow measured by DreamStation Auto represent the moments when the device sends a 

pressure pulse. 

  

 To illustrate more clearly discrepant features of PAP devices in qualifying apneas 
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with both obstructive and central mechanisms, of patients suffering from an overlap of CSA and 

OSA, we calculated the ratio of obstructive apneas to all apneas scored by PAP devices, as well as 

this obtained from analyses of bench-simulated breathing profile by using the previously described 

custom-made algorithm. As PAP devices do not distinguish mixed apneas from obstructive apneas, 

we categorized bench-simulated mixed apneas as obstructive apneas to calculate the ratio as well, in 

order to keep consistent with PAP devices. Then we analyzed the agreement between the ratio of 

obstructive apnea simulated on bench and this of PAP devices (Figure 6-8). It enhanced our finding 

that Prisma 20A showed a tendency to characterize mixed apneas as central apneas; S.Box 

characterized more frequently apneas as obstructive events if a patient did not show the sign of 

cardiac oscillation during the central part.  
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---- AirSense 10 (r² = 0.91);  ---- DreamStation Auto (r² = 0.51);  

 ---- S.Box (r² = 0.04);  ---- Prisma 20A (r² = 0.38)   

Figure 6-8: Scatter plot and Bland-Altman plot of the obstructive apnea’s ratio to all 
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apneas determined by PAP devices versus this calculated by analyzing bench-simulated 

breathing profiles. Each circle represents bench simulation of a polygraph sample, with connection 

to a PAP device. The size of circle is proportional to the apnea index (AI) calculated from analysis 

of bench-simulated breathing profile. OA: obstructive apnea. The linear regression is weighted in 

function of AI obtained by analyzing bench-simulated breathing scenario of each polygraph sample.   

  

 Therefore, each PAP device had its own and particular behavior in characterizing mixed 

apneas with both central (an open upper airway) and obstructive (an occluded upper airway) 

mechanisms on bench tests, depending on the technology and algorithm implemented by each 

manufacturer. Clinical professionals may need to take into account this subtle distinction between 

manufacturers while prescribing a PAP device to a patient with mixed syndromes of CSA and OSA.  
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6.6 Perspectives 

 This new physiological bench can serve as an APAP algorithm validation tool, checking 

whether currently commercialized PAP devices arrive at providing an efficient and optimal 

treatment to the bench-simulated physiological breathing profiles, which are issued from sleep 

apnea patients of different pathological breathing phenotypes. It can also help check the data 

accuracy in the reports provided by ventilator devices after each usage session (Lofaso et al. 2006; 

Ogna et al. 2016), as what we have done to evaluate the agreements between apnea hypopnea 

indices determined by PAP devices and these scored in line with AASM scoring rules 2012, 

considering breathing profiles with an overlap of OSA and CSA. In this study, we have set all PAP 

devices at 4 cmH2O in order to rule out treatment effects and assure that the bench-generated 

breathing profiles were the same as the ones registered in polygraph recordings. However, since 

patients are more often treated with a higher pressure than 4 cmH2O, it seems worthy that this study 

is further continued by setting device pressures respectively at 6, 8, 10, 12 cmH2O to see whether 

the great discrepancy between HI determined by PAP devices from different manufacturers will 

persist or in which manner it will evolve. Then the same study can be applied to the breathing 

profiles of patients suffering OSA, which represent a majority of population receiving PAP therapy.      

  Moreover, we can try to carry out clinical studies and bench studies at the same time to 

validate this bench in a further step by confirming that the PAP devices’ responses to bench-

simulated SDB events are identical to these observed in real patients. This bench can then serve as a 

personalized therapy tool, which helps clinicians find an appropriate APAP algorithm adapted to a 

patient specific characteristics. After having accumulated enough knowledge about the optimal 

matches between patients’ breathing phenotypes and different APAP algorithm characteristics, a 
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digital application could be developed, to recommend a suitable PAP device for a patient based on 

its polygraph recordings performed during the diagnostic.   
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Conclusion 

 

 A physiological bench has been developed within this thesis, enabling reproducing 

automatically apneic patient’s SDB profiles through its polygraph recordings, performed during the 

diagnostic examination. It is achieved via an algorithm, which analyzes patient’s polygraph signals 

and then calculates the corresponding digital inputs required by the active lung simulator (i.e. 

respiratory muscular effort pressure) and the Starling resistor (i.e. upper airway resistance) in order 

to reproduce the specific breathing profile on bench.  

 Then this new approach to bench simulation has been validated by simulating 15 various 

breathing scenarios, each of which lasted about 1-hour, issuing from 12 patients affected by 

moderate-to-severe sleep syndrome. These scenarios were different from one to another, regarding 

the apnea hypopnea indices as well as the portion represented by each mechanism (obstructive or 

central) of SDB event. The bench simulation results showed that its performance remained robust 

regardless a variety of patients’ breathing phenotypes. 

 With this bench, the accuracy of residual apnea hypopnea indices provided by different PAP 

devices (AirSense 10, DreamStation Auto, S.Box, Prisma 20A) has been investigated in comparison 

with polygraph scoring results which are in line with AASM apnea hypopnea scoring rules of 2012, 

especially concerning the breathing profiles of patients with a predominant central sleep apnea 

syndrome. All PAP devices showed a better agreement in AI than in HI with AASM scoring rules 

because all PAP devices tended to underestimate HI, with a severity depending on manufacturers. It 

is noteworthy that the HI determined by PAP devices is not equivalent, which can have impacts on 

treatment efficiency comparison between devices subjected to a same patient. 
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 Compared to precedent benches, this bench permits easily reproducing the pathological 

breathing characteristics specific to each patient, according to polygraph recordings. It permits 

comparing APAP algorithms under the same conditions, with polygraph scoring from sleep 

physicians. This work is the first step to a personalized treatment by allowing recommendation of 

the most appropriated device to a specific patient breathing phenotype.  

 

 

  



161 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Bibliography 

 

Abdenbi, F. 2004. “Bench Testing of Auto-Adjusting Positive Airway Pressure Devices.” European 

Respiratory Journal 24 (4): 649–58. https://doi.org/10.1183/09031936.04.00133703. 

Asyali, Musa H., Richard B. Berry, and Michael C. K. Khoo. 2002. “Assessment of Closed-Loop 

Ventilatory Stability in Obstructive Sleep Apnea.” IEEE Transactions on Bio-Medical 

Engineering 49 (3): 206–16. https://doi.org/10.1109/10.983454. 

Baek, Joon Hyun, Ji-Ye Jeon, and Sang-Ahm Lee. 2016. “Accuracy of the Auto Scoring by the S9 

CPAP in Patients with Obstructive Sleep Apnea.” Sleep Medicine Research 7 (1): 26–32. 

https://doi.org/10.17241/smr.2016.00059. 

Baltzan, Marcel A, Ibrahim Kassissia, Osama Elkhol, Mark Palayew, Richard Dabrusin, and 

Norman Wolkove. 2006. “Prevalence of Persistent Sleep Apnea in Patients Treated with 

Continuous Positive Airway Pressure.” SLEEP, 2006, sec. 29. 

Berry, Richard B., Rohit Budhiraja, Daniel J. Gottlieb, David Gozal, Conrad Iber, Vishesh K. 

Kapur, Carole L. Marcus, et al. 2012. “Rules for Scoring Respiratory Events in Sleep: 

Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events.” 

Journal of Clinical Sleep Medicine, October. https://doi.org/10.5664/jcsm.2172. 

Berry, Richard B., Clete A. Kushida, Meir H. Kryger, Haideliza Soto-Calderon, Bethany Staley, 

and Samuel T. Kuna. 2012. “Respiratory Event Detection by a Positive Airway Pressure 

Device.” Sleep 35 (3): 361–67. https://doi.org/10.5665/sleep.1696. 

Berry, Richard B, James M Parish, and Kristyna M Hartse. 2002. “The Use of Auto-Titrating 

Continuous Positive Airway Pressure for Treatment of Adult Obstructive Sleep Apnea.” 

Sleep 25 (2): 148–73. 

Bland, J. M., and D. G. Altman. 1986a. “Statistical Methods for Assessing Agreement between 

Two Methods of Clinical Measurement.” Lancet (London, England) 1 (8476): 307–10. 

Bradley, T. D., W. T. McNicholas, R. Rutherford, J. Popkin, N. Zamel, and E. A. Phillipson. 1986. 

“Clinical and Physiologic Heterogeneity of the Central Sleep Apnea Syndrome.” The 

American Review of Respiratory Disease 134 (2): 217–21. 

https://doi.org/10.1164/arrd.1986.134.2.217. 

Brown, Lee K. 2006. “Autotitrating CPAP.” Chest 130 (2): 312–14. https://doi.org/10.1016/S0012-

3692(15)51841-2. 

Calik, Michael W. 2016. “Treatments for Obstructive Sleep Apnea.” Journal of Clinical Outcomes 

Management: JCOM 23 (4): 181–92. 



162 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Cilli, Aykut, Rusen Uzun, and Ugur Bilge. 2013. “The Accuracy of Autotitrating CPAP-

Determined Residual Apnea–Hypopnea Index.” Sleep and Breathing 17 (1): 189–93. 

https://doi.org/10.1007/s11325-012-0670-x. 

Coller, Dale, Dawn Stanley, and Sairam Parthasarathy. 2005. “Effect of Air Leak on the 

Performance of Auto-PAP Devices: A Bench Study.” Sleep and Breathing 9 (4): 167–75. 

https://doi.org/10.1007/s11325-005-0032-z. 

Cowie, Martin R., Holger Woehrle, Karl Wegscheider, Christiane Angermann, Marie-Pia d’Ortho, 

Erland Erdmann, Patrick Levy, et al. 2015. “Adaptive Servo-Ventilation for Central Sleep 

Apnea in Systolic Heart Failure.” The New England Journal of Medicine 373 (12): 1095–

1105. https://doi.org/10.1056/NEJMoa1506459. 

Eckert, Danny J., Amy S. Jordan, Pankaj Merchia, and Atul Malhotra. 2007. “Central Sleep Apnea: 

Pathophysiology and Treatment.” Chest 131 (2): 595–607. 

https://doi.org/10.1378/chest.06.2287. 

Epstein, Lawrence J., David Kristo, Patrick J. Strollo, Norman Friedman, Atul Malhotra, Susheel P. 

Patil, Kannan Ramar, et al. 2009. “Clinical Guideline for the Evaluation, Management and 

Long-Term Care of Obstructive Sleep Apnea in Adults.” Journal of Clinical Sleep Medicine: 

JCSM: Official Publication of the American Academy of Sleep Medicine 5 (3): 263–76. 

Farré, Ramon, Josep M. Montserrat, Jordi Rigau, Xavier Trepat, Paula Pinto, and Daniel Navajas. 

2002a. “Response of Automatic Continuous Positive Airway Pressure Devices to Different 

Sleep Breathing Patterns.” American Journal of Respiratory and Critical Care Medicine 

166 (August): 469–73. https://doi.org/10.1164/rccm.2111050. 

Fietze, Ingo, Martin Glos, Isabel Moebus, Christian Witt, Thomas Penzel, and Gert Baumann. 2007. 

“Automatic Pressure Titration with APAP Is as Effective as Manual Titration with CPAP in 

Patients with Obstructive Sleep Apnea.” Respiration; International Review of Thoracic 

Diseases 74 (3): 279–86. https://doi.org/10.1159/000100364. 

Galetke, Wolfgang, Norbert Anduleit, Kerstin Richter, Sven Stieglitz, and Winfried J. Randerath. 

2008. “Comparison of Automatic and Continuous Positive Airway Pressure in a Night-by-

Night Analysis: A Randomized, Crossover Study.” Respiration; International Review of 

Thoracic Diseases 75 (2): 163–69. https://doi.org/10.1159/000097767. 

Gentina, Thibaut, Francois Fortin, Bernard Douay, Jean Marc Dernis, Frederic Herengt, Jean 

Christophe Bout, and Catherine Lamblin. 2011. “Auto Bi-Level with Pressure Relief during 

Exhalation as a Rescue Therapy for Optimally Treated Obstructive Sleep Apnoea Patients 

with Poor Compliance to Continuous Positive Airways Pressure Therapy—a Pilot Study.” 

Sleep and Breathing 15 (1): 21–27. https://doi.org/10.1007/s11325-009-0322-y. 

Gleadhill, I. C., A. R. Schwartz, N. Schubert, R. A. Wise, S. Permutt, and P. L. Smith. 1991. 

“Upper Airway Collapsibility in Snorers and in Patients with Obstructive Hypopnea and 

Apnea.” The American Review of Respiratory Disease 143 (6): 1300–1303. 

https://doi.org/10.1164/ajrccm/143.6.1300. 



163 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Hall, M. J., A. Xie, R. Rutherford, S. Ando, J. S. Floras, and T. D. Bradley. 1996. “Cycle Length of 

Periodic Breathing in Patients with and without Heart Failure.” American Journal of 

Respiratory and Critical Care Medicine 154 (2 Pt 1): 376–81. 

https://doi.org/10.1164/ajrccm.154.2.8756809. 

Hirose, Minoru, Junichi Honda, Eiji Sato, Toshihiro Shinbo, Kenichi Kokubo, Toshio Ichiwata, and 

Hirosuke Kobayashi. 2008. “Bench Study of Auto-CPAP Devices Using a Collapsible 

Upper Airway Model with Upstream Resistance.” Respiratory Physiology & Neurobiology 

162 (1): 48–54. https://doi.org/10.1016/j.resp.2008.03.014. 

Hommura, F., M. Nishimura, M. Oguri, H. Makita, K. Hosokawa, H. Saito, K. Miyamoto, and Y. 

Kawakami. 1997. “Continuous versus Bilevel Positive Airway Pressure in a Patient with 

Idiopathic Central Sleep Apnea.” American Journal of Respiratory and Critical Care 

Medicine 155 (4): 1482–85. https://doi.org/10.1164/ajrccm.155.4.9105099. 

Isetta, Valentina, Josep M. Montserrat, Raquel Santano, Alison J. Wimms, Dinesh Ramanan, 

Holger Woehrle, Daniel Navajas, and Ramon Farré. 2016. “Novel Approach to Simulate 

Sleep Apnea Patients for Evaluating Positive Pressure Therapy Devices.” Edited by 

Gennady Cymbalyuk. PLOS ONE 11 (March): e0151530. 

https://doi.org/10.1371/journal.pone.0151530. 

Isono, S., J. E. Remmers, A. Tanaka, Y. Sho, J. Sato, and T. Nishino. 1997. “Anatomy of Pharynx 

in Patients with Obstructive Sleep Apnea and in Normal Subjects.” Journal of Applied 

Physiology (Bethesda, Md.: 1985) 82 (4): 1319–26. 

https://doi.org/10.1152/jappl.1997.82.4.1319. 

Javaheri, Shahrokh, Rakesh Shukla, Haoyue Zeigler, and Laura Wexler. 2007. “Central Sleep 

Apnea, Right Ventricular Dysfunction, and Low Diastolic Blood Pressure Are Predictors of 

Mortality in Systolic Heart Failure.” Journal of the American College of Cardiology 49 (20): 

2028–34. https://doi.org/10.1016/j.jacc.2007.01.084. 

Jean-Louis, Girardin, Ferdinand Zizi, Luther T. Clark, Clinton D. Brown, and Samy I. McFarlane. 

2008. “Obstructive Sleep Apnea and Cardiovascular Disease: Role of the Metabolic 

Syndrome and Its Components.” Journal of Clinical Sleep Medicine 4 (3): 12. 

Johnson, Karin G., and Douglas C. Johnson. 2005. “Bilevel Positive Airway Pressure Worsens 

Central Apneas during Sleep.” Chest 128 (4): 2141–50. 

https://doi.org/10.1378/chest.128.4.2141. 

Jordan, Amy S., and R. Doug McEvoy. 2003. “Gender Differences in Sleep Apnea: Epidemiology, 

Clinical Presentation and Pathogenic Mechanisms.” Sleep Medicine Reviews 7 (5): 377–89. 

Julien, Joanne Y., James G. Martin, Pierre Ernst, Ronald Olivenstein, Qutayba Hamid, Catherine 

Lemière, Carmela Pepe, Naftaly Naor, Allen Olha, and R. John Kimoff. 2009. “Prevalence 

of Obstructive Sleep Apnea–Hypopnea in Severe versus Moderate Asthma.” Journal of 

Allergy and Clinical Immunology 124 (2): 371–76. 

https://doi.org/10.1016/j.jaci.2009.05.016. 



164 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Kakkar, Rahul K., and Richard B. Berry. 2007. “Positive Airway Pressure Treatment for 

Obstructive Sleep Apnea.” Chest 132 (3): 1057–72. https://doi.org/10.1378/chest.06-2432. 

Kribbs, Nancy Barone, Allan I Pack, Lewis R Kline, Joanne E Getsy, Jeanne S Schuett, John N 

Henry, Greg Maislin, and David F Dinges. 1993. “Effects of One Night without Nasal 

CPAP Treatment on Sleep and Sleepiness in Patients with Obstructive Sleep Apnea.” Am 

Rev Respir Dis 147 (5): 1162–68. 

Levy, P., R. Tamisier, C. Minville, S. Launois, and J.-L. Pepin. 2011. “Sleep Apnoea Syndrome in 

2011: Current Concepts and Future Directions.” European Respiratory Review 20 (121): 

134–46. https://doi.org/10.1183/09059180.00003111. 

Li, Qing Yun, Richard B. Berry, Mark G. Goetting, Bethany Staley, Haideliza Soto-Calderon, 

Sheila C. Tsai, Jeffrey G. Jasko, Allan I. Pack, and Samuel T. Kuna. 2015. “Detection of 

Upper Airway Status and Respiratory Events by a Current Generation Positive Airway 

Pressure Device.” Sleep 38 (4): 597–605. https://doi.org/10.5665/sleep.4578. 

Liu, Chaoling, Mao-Sheng Chen, and Hui Yu. 2017. “The Relationship between Obstructive Sleep 

Apnea and Obesity Hypoventilation Syndrome: A Systematic Review and Meta-Analysis.” 

Oncotarget 8 (54): 93168–78. https://doi.org/10.18632/oncotarget.21450. 

Liu, Dongquan, Jeff Armitstead, Adam Benjafield, Shiyun Shao, Atul Malhotra, Peter A. Cistulli, 

Jean-Louis Pepin, and Holger Woehrle. 2017. “Trajectories of Emergent Central Sleep 

Apnea During CPAP Therapy.” Chest 152 (4): 751–60. 

https://doi.org/10.1016/j.chest.2017.06.010. 

Liu, Shuo, Yann Rétory, Amélie Sagniez, Sébastien Hardy, François Cottin, Gabriel Roisman, 

Michel Petitjean. 2019. “New physiological bench test reproducing nocturnal breathing 

pattern of patients with sleep disordered breathing” Edited by Heming Wang. PLOS ONE 14 

(12): e0225766. https://doi.org/10.1371/journal.pone.0225766. 

Lofaso, Frédéric, Gilbert Desmarais, Karl Leroux, Vincent Zalc, Redouane Fodil, Daniel Isabey, 

and Bruno Louis. 2006. “Bench Evaluation of Flow Limitation Detection by Automated 

Continuous Positive Airway Pressure Device.” Chest 130 (2): 343–49. 

https://doi.org/10.1378/chest.130.2.343. 

Lyberg, T., O. Krogstad, and G. Djupesland. 1989. “Cephalometric Analysis in Patients with 

Obstructive Sleep Apnoea Syndrome. I. Skeletal Morphology.” The Journal of Laryngology 

and Otology 103 (3): 287–92. https://doi.org/10.1017/s0022215100108734. 

Malhotra, Atul, and David P. White. 2002. “Obstructive Sleep Apnoea.” Lancet (London, England) 

360 (9328): 237–45. https://doi.org/10.1016/S0140-6736(02)09464-3. 

Mezzanotte, W. S., D. J. Tangel, and D. P. White. 1992. “Waking Genioglossal Electromyogram in 

Sleep Apnea Patients versus Normal Controls (a Neuromuscular Compensatory 

Mechanism).” The Journal of Clinical Investigation 89 (5): 1571–79. 

https://doi.org/10.1172/JCI115751. 



165 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Moser, R. J., and K. R. Rajagopal. 1987. “Obstructive Sleep Apnea in Adults with Tonsillar 

Hypertrophy.” Archives of Internal Medicine 147 (7): 1265–67. 

Netzel, T., H. Hein, and Y. Hein. 2014. “APAP Device Technology and Correlation with Patient 

Compliance.” Somnologie - Schlafforschung Und Schlafmedizin 18 (2): 113–20. 

https://doi.org/10.1007/s11818-014-0662-0. 

Nieto F, Young TB, Lind BK, and et al. 2000. “Association of Sleep-Disordered Breathing, Sleep 

Apnea, and Hypertension in a Large Community-Based Study.” JAMA 283 (14): 1829–36. 

https://doi.org/10.1001/jama.283.14.1829. 

Nolan, G. M. 2006. “Comparison of Three Auto-Adjusting Positive Pressure Devices in Patients 

with Sleep Apnoea.” European Respiratory Journal 28 (1): 159–64. 

https://doi.org/10.1183/09031936.06.00127205. 

Ogna, Adam, Helene Prigent, Line Falaize, Karl Leroux, Dante Santos, Isabelle Vaugier, David 

Orlikowski, and Frederic Lofaso. 2016. “Accuracy of Tidal Volume Delivered by Home 

Mechanical Ventilation during Mouthpiece Ventilation: A Bench Evaluation.” Chronic 

Respiratory Disease 13 (4): 353–60. https://doi.org/10.1177/1479972316647177. 

Patil, Susheel P., Hartmut Schneider, Jason J. Marx, Elizabeth Gladmon, Alan R. Schwartz, and 

Philip L. Smith. 2007. “Neuromechanical Control of Upper Airway Patency during Sleep.” 

Journal of Applied Physiology (Bethesda, Md.: 1985) 102 (2): 547–56. 

https://doi.org/10.1152/japplphysiol.00282.2006. 

Patil, Susheel P., Hartmut Schneider, Alan R. Schwartz, and Philip L. Smith. 2007. “Adult 

Obstructive Sleep Apnea.” Chest 132 (1): 325–37. https://doi.org/10.1378/chest.07-0040. 

Patruno, Vincenzo, Stefano Aiolfi, Giorgio Costantino, Rodolfo Murgia, Carlo Selmi, Alberto 

Malliani, and Nicola Montano. 2007. “Fixed and Autoadjusting Continuous Positive Airway 

Pressure Treatments Are Not Similar in Reducing Cardiovascular Risk Factors in Patients 

with Obstructive Sleep Apnea.” Chest 131 (5): 1393–99. https://doi.org/10.1378/chest.06-

2192. 

Patruno, Vincenzo, Eleonora Tobaldini, Anna M. Bianchi, Martin O. Mendez, Orietta Coletti, 

Giorgio Costantino, and Nicola Montano. 2014. “Acute Effects of Autoadjusting and Fixed 

Continuous Positive Airway Pressure Treatments on Cardiorespiratory Coupling in Obese 

Patients with Obstructive Sleep Apnea.” European Journal of Internal Medicine 25 (2): 

164–68. https://doi.org/10.1016/j.ejim.2013.11.009. 

Pearse, Simon G., and Martin R. Cowie. 2016. “Sleep-Disordered Breathing in Heart Failure.” 

European Journal of Heart Failure 18 (4): 353–61. https://doi.org/10.1002/ejhf.492. 

Pittman, Stephen D., Giora Pillar, Richard B. Berry, Atul Malhotra, Mary M. MacDonald, and 

David P. White. 2006. “Follow-up Assessment of CPAP Efficacy in Patients with 

Obstructive Sleep Apnea Using an Ambulatory Device Based on Peripheral Arterial 

Tonometry.” Sleep and Breathing 10 (3): 123–31. https://doi.org/10.1007/s11325-006-0058-

x. 



166 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

“Positive Airway Pressure Initiation: A Randomized Controlled Trial to Assess the Impact of 

Therapy Mode and Titration Process on Efficacy, Adherence, and Outcomes.” 2011. Sleep, 

August. https://doi.org/10.5665/SLEEP.1166. 

Reichmuth, Kevin J., Diane Austin, James B. Skatrud, and Terry Young. 2005. “Association of 

Sleep Apnea and Type II Diabetes: A Population-Based Study.” American Journal of 

Respiratory and Critical Care Medicine 172 (12): 1590–95. 

https://doi.org/10.1164/rccm.200504-637OC. 

Remmers, J. E., W. J. deGroot, E. K. Sauerland, and A. M. Anch. 1978. “Pathogenesis of Upper 

Airway Occlusion during Sleep.” Journal of Applied Physiology 44 (6): 931–38. 

https://doi.org/10.1152/jappl.1978.44.6.931. 

Rigau, Jordi, Josep M. Montserrat, Holger Wöhrle, Diana Plattner, Matthias Schwaibold, Daniel 

Navajas, and Ramon Farré. 2006. “Bench Model to Simulate Upper Airway Obstruction for 

Analyzing Automatic Continuous Positive Airway Pressure Devices.” Chest 130 (2): 350–

61. https://doi.org/10.1378/chest.130.2.350. 

Savitzky, Abraham, and Marcel JE Golay. 1964. “Smoothing and Differentiation of Data by 

Simplified Least Squares Procedures.” Analytical Chemistry 36 (8): 1627–39. 

Scholkmann, Felix, Jens Boss, and Martin Wolf. 2012. “An Efficient Algorithm for Automatic Peak 

Detection in Noisy Periodic and Quasi-Periodic Signals.” Algorithms 5 (November): 588–

603. https://doi.org/10.3390/a5040588. 

Schwab, Richard J., Safwan M. Badr, Lawrence J. Epstein, Peter C. Gay, David Gozal, Malcolm 

Kohler, Patrick Lévy, et al. 2013. “An Official American Thoracic Society Statement: 

Continuous Positive Airway Pressure Adherence Tracking Systems. The Optimal 

Monitoring Strategies and Outcome Measures in Adults.” American Journal of Respiratory 

and Critical Care Medicine 188 (5): 613–20. https://doi.org/10.1164/rccm.201307-1282ST. 

Senaratna, Chamara V., Jennifer L. Perret, Caroline J. Lodge, Adrian J. Lowe, Brittany E. Campbell, 

Melanie C. Matheson, Garun S. Hamilton, and Shyamali C. Dharmage. 2017. “Prevalence 

of Obstructive Sleep Apnea in the General Population: A Systematic Review.” Sleep 

Medicine Reviews 34 (August): 70–81. https://doi.org/10.1016/j.smrv.2016.07.002. 

Sharma, Bhavneesh K., Jessie P. Bakker, David G. McSharry, Akshay S. Desai, Shahrokh Javaheri, 

and Atul Malhotra. 2012. “Adaptive Servoventilation for Treatment of Sleep-Disordered 

Breathing in Heart Failure: A Systematic Review and Meta-Analysis.” Chest 142 (5): 1211–

21. https://doi.org/10.1378/chest.12-0815. 

Shelton, K. E., H. Woodson, S. Gay, and P. M. Suratt. 1993. “Pharyngeal Fat in Obstructive Sleep 

Apnea.” The American Review of Respiratory Disease 148 (2): 462–66. 

https://doi.org/10.1164/ajrccm/148.2.462. 

Sidney Burwell, C., Eugene D. Robin, Robert D. Whaley, and Albert G. Bickelmann. 1956. 

“Extreme Obesity Associated with Alveolar Hypoventilation—A Pickwickian Syndrome.” 

The American Journal of Medicine 21 (5): 811–18. https://doi.org/10.1016/0002-

9343(56)90094-8. 



167 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

“Sleep-Related Breathing Disorders in Adults: Recommendations for Syndrome Definition and 

Measurement Techniques in Clinical Research. The Report of an American Academy of 

Sleep Medicine Task Force.” 1999. Sleep 22 (5): 667–89. 

Smith, P. L., R. A. Wise, A. R. Gold, A. R. Schwartz, and S. Permutt. 1988. “Upper Airway 

Pressure-Flow Relationships in Obstructive Sleep Apnea.” Journal of Applied Physiology 

(Bethesda, Md.: 1985) 64 (2): 789–95. https://doi.org/10.1152/jappl.1988.64.2.789. 

Solin, P., T. Roebuck, D. P. Johns, E. H. Walters, and M. T. Naughton. 2000. “Peripheral and 

Central Ventilatory Responses in Central Sleep Apnea with and without Congestive Heart 

Failure.” American Journal of Respiratory and Critical Care Medicine 162 (6): 2194–2200. 

https://doi.org/10.1164/ajrccm.162.6.2002024. 

Stepnowsky, Carl, Tania Zamora, Robert Barker, Lin Liu, and Kathleen Sarmiento. 2013. 

“Accuracy of Positive Airway Pressure Device—Measured Apneas and Hypopneas: Role in 

Treatment Followup.” Sleep Disorders 2013: 1–6. https://doi.org/10.1155/2013/314589. 

Storre, Jan Hendrik, Benjamin Seuthe, René Fiechter, Stavroula Milioglou, Michael Dreher, 

Stephan Sorichter, and Wolfram Windisch. 2006. “Average Volume-Assured Pressure 

Support in Obesity Hypoventilation: A Randomized Crossover Trial.” Chest 130 (3): 815–

21. https://doi.org/10.1378/chest.130.3.815. 

Sullivan, ColinE., Michael Berthon-Jones, FaiqG. Issa, and Lorraine Eves. 1981. “REVERSAL OF 

OBSTRUCTIVE SLEEP APNOEA BY CONTINUOUS POSITIVE AIRWAY PRESSURE 

APPLIED THROUGH THE NARES.” The Lancet 317 (8225): 862–65. 

https://doi.org/10.1016/S0140-6736(81)92140-1. 

Thomas, Robert Joseph, Robert W. Daly, and J. Woodrow Weiss. 2005. “Low-Concentration 

Carbon Dioxide Is an Effective Adjunct to Positive Airway Pressure in the Treatment of 

Refractory Mixed Central and Obstructive Sleep-Disordered Breathing.” Sleep 28 (1): 69–

77. https://doi.org/10.1093/sleep/28.1.69. 

Ueno, Kanako, Takatoshi Kasai, and Satoshi Kasagi. 2010. “Evaluation of the Apnea-Hypopnea 

Index Determined by the S8 Auto-CPAP, a Continuous Positive Airway Pressure Device, in 

Patients with Obstructive Sleep Apnea-Hypopnea Syndrome.” Journal of Clinical Sleep 

Medicine, no. 2: 6. 

Watanabe, Toshihide, Shiroh Isono, Atsuko Tanaka, Hideki Tanzawa, and Takashi Nishino. 2002. 

“Contribution of Body Habitus and Craniofacial Characteristics to Segmental Closing 

Pressures of the Passive Pharynx in Patients with Sleep-Disordered Breathing.” American 

Journal of Respiratory and Critical Care Medicine 165 (2): 260–65. 

https://doi.org/10.1164/ajrccm.165.2.2009032. 

Weaver, Terri E., and Ronald R. Grunstein. 2008. “Adherence to Continuous Positive Airway 

Pressure Therapy: The Challenge to Effective Treatment.” Proceedings of the American 

Thoracic Society 5 (2): 173–78. https://doi.org/10.1513/pats.200708-119MG. 

Weaver, Terri E., Nancy Barone Kribbs, Allan I. Pack, Lewis R. Kline, Deepak K. Chugh, 

Greg Maislin, Philip L. Smith, et al. 1997. “Night-To-Night Variability in CPAP 



168 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Use Over the First Three Months of Treatment.” Sleep 20 (4): 278–83. 

https://doi.org/10.1093/sleep/20.4.278. 

Xie, Ailiang, James B. Skatrud, Dominic S. Puleo, Peter S. Rahko, and Jerome A. Dempsey. 2002. 

“Apnea-Hypopnea Threshold for CO2 in Patients with Congestive Heart Failure.” American 

Journal of Respiratory and Critical Care Medicine 165 (9): 1245–50. 

https://doi.org/10.1164/rccm.200110-022OC. 

Young, Terry, Paul E. Peppard, and Daniel J. Gottlieb. 2002. “Epidemiology of Obstructive Sleep 

Apnea: A Population Health Perspective.” American Journal of Respiratory and Critical 

Care Medicine 165 (9): 1217–39. 

Zhi, Ying Xuan, Daniel Vena, Milos R. Popovic, T. Douglas Bradley, and Azadeh Yadollahi. 2018. 

“Detecting Inspiratory Flow Limitation with Temporal Features of Nasal Airflow.” Sleep 

Medicine 48 (August): 70–78. https://doi.org/10.1016/j.sleep.2018.04.006. 

Zhu, Kaixian, Sami Aouf, Gabriel Roisman, and Pierre Escourrou. 2016. “Pressure-Relief Features 

of Fixed and Autotitrating Continuous Positive Airway Pressure May Impair Their Efficacy: 

Evaluation with a Respiratory Bench Model.” Journal of Clinical Sleep Medicine 12 (03): 

385–92. https://doi.org/10.5664/jcsm.5590. 

Zhu, Kaixian, Ramon Farré, Ira Katz, Sébastien Hardy, and Pierre Escourrou. 2018. “Mimicking a 

Flow-Limited Human Upper Airway Using a Collapsible Tube: Relationships between Flow 

Patterns and Pressures in a Respiratory Model.” Journal of Applied Physiology 125 (2): 

605–14. https://doi.org/10.1152/japplphysiol.00877.2017. 

Zhu, Kaixian, Haissam Kharboutly, Jianting Ma, Mourad Bouzit, and Pierre Escourrou. 2013. 

“Bench Test Evaluation of Adaptive Servoventilation Devices for Sleep Apnea Treatment.” 

Journal of Clinical Sleep Medicine, September. https://doi.org/10.5664/jcsm.2982. 

Zhu, Kaixian, Gabriel Roisman, Sami Aouf, and Pierre Escourrou. 2015. “All APAPs Are Not 

Equivalent for the Treatment of Sleep Disordered Breathing: A Bench Evaluation of Eleven 

Commercially Available Devices.” Journal of Clinical Sleep Medicine, July. 

https://doi.org/10.5664/jcsm.4844. 

 

  



169 

 
 

 

 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin 

Annexes 

A.1 Submission proof for article described in chapter III 
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Synthèse en Français 

 Le syndrome d’apnées obstructives du sommeil représente un problème de santé publique, 

en affectant environs 6% à 17% de la population adulte. Ce syndrome entraîne de nombreuses 

conséquences cardio-vasculaires d’où l’importance de son traitement qui consiste à maintenir 

ouvertes les voies aériennes supérieures (VAS) du patient à l’aide d’une machine de pression 

positive continue (PPC). L’efficacité du traitement par PPC autopilotée dépend des algorithmes et 

technologies implémentés qui détectent les événements respiratoires et qualifient leur mécanisme : 

soit l’obstruction des VAS, soit une altération de la commande centrale de respiration. Ces procédés 

sont protégés par les fabricants par des brevets et perçus comme une boîte noire par le public. En 

pratique, le comportement de ces machines est observé par enregistrement de la ventilation de 

patients sous traitement. Il paraît cependant difficile de comparer les différentes machines à cause 

des variabilités respiratoires inter- et intra-patient. Ainsi, des bancs d’essai ont été développés pour 

compenser ce manque en simulant des débits respiratoires et des périodes d’obstruction de VAS, 

représentant des patients apnéiques, à l’aide d’un simulateur pulmonaire et d’un modèle de 

résistance de VAS. Les scénarios respiratoires simulés sont composés par une répétition 

d’événements respiratoires extraits de patients ou conçus artificiellement. Avec les bancs d’essai 

précédents, la simulation d’un profil respiratoire entier enregistré par poly(somno)graphie peut 

sembler laborieuse parce que elle n’est pas automatisée.  

 L’objectif de cette thèse a donc consisté à développer un banc d’essai physiologique, 

capable de reproduire automatiquement le profil respiratoire nocturne de patients enregistré par 

polygraphie, en tenant compte des caractéristiques obstructives et centrales des événements 

respiratoires. 
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 Comme le profil respiratoire des patients apnéiques est issu d’une combinaison de la 

contraction diaphragmatique et des obstructions potentielles dans les VAS, un algorithme a ainsi été 

développé pendant cette thèse pour analyser les signaux polygraphiques et calculer les données 

digitales demandées par le matériel du banc: la pression de l’effort musculaire inspiratoire et la 

résistance des VAS pour piloter sur banc respectivement le simulateur pulmonaire et la résistance 

de Starling qui est utilisée pour modéliser des obstructions de VAS (Figure 10-1). Concrètement, en 

analysant les signaux polygraphiques, des événements respiratoires sont identifiés, par exemple, des 

apnées, hypopnées de mécanisme obstructif, central ou mixte. Le débit respiratoire issu de la 

commande centrale ou également de la contraction diaphragmatique pourrait être estimé à partir du 

débit respiratoire réel du patient et des événements respiratoires détectés. Lors de la respiration 

normale ou des événements de type central, le débit de la commande centrale est supposé égal au 

débit respiratoire réel. Par contre, lors des respirations obstructives, il est estimé à partir du débit 

respiratoire réel de base pendant les 2 minutes précédant l’évènement. Ainsi la pression musculaire 

de respiration à intégrer dans le simulateur pulmonaire est calculée en fonction du débit de la 

commande centrale et de la compliance et la résistance pulmonaire saisie dans le simulateur 

pulmonaire. Le niveau de la résistance dans les VAS du patient est évalué par le ratio entre le débit 

réel et le débit issu de la commande centrale. Plus ce ratio est petit, plus la résistance dans les VAS 

est importante. La pression à régler dans la chambre hermétique de la résistance de Starling est 

adaptée à ce ratio. En utilisant ce nouveau banc physiologique, le profil respiratoire simulé a révélé 

une similitude satisfaisante avec celui des patients concernant des paramètres temporels, 

d’amplitude du débit respiratoire et la capacité à reproduire des événements respiratoires de 

différentes natures.  
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Figure 10-1: Principe d’un nouveau banc d’essai physiologique, reproduisant 

automatiquement le profile respiratoire enregistré par polygraphie ventilatoire. AO : apnée 

obstructive ; AC : apnée centrale ; AM : apnée mixte ; Pmus : pression musculaire de respiration ; 

R : résistance pulmonaire ; C : compliance pulmonaire ; Pch : pression dans la chambre hermétique 

de la résistance de Starling ; Rmax : résistance maximale de la résistance de Starling ; Rmin : 

résistance minimale de la résistance de Starling. * : positions de début de respiration. 

Ensuite, cette approche innovante a été validée avec simulation de 15 scénarios respiratoires 

d’une heure, issus de 12 patients apnéiques (modérés ou sévères), exprimant tous types 

d’événements (i.e. obstructif, central et mixte). La performance de simulation du banc d’essai a été 

jugée robuste face aux profils respiratoires testés.  

La capacité de simulation a finalement permis de déterminer la précision de l’index d’apnée-

hypopnées (IAH) résiduel estimé par des machines de PPC, en comparant les IAH déterminés par 4 

dispositifs (AirSense 10, DreamStation Auto, S.Box et Prisma 20A) avec ceux obtenus en 

polygraphies diagnostiques des patients présentant des événements centraux et obstructifs. 
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Les résultats ont montré que toutes les PPC testées ont eu un accord meilleur en index d’apnées 

qu’en index d’hypopnées avec la polygraphie. En plus, elles ont montré une tendance à la sous-

estimation de l’IAH par rapport à la polygraphie avec un degré variant en fonction du dispositif 

considéré. 

 Ce nouveau banc d’essai physiologique permet de simuler facilement le profil respiratoire 

d’un patient spécifique à partir des données polygraphiques. Il pourrait être un outil utile pour la 

compréhension et la comparaison des appareils ventilatoires ainsi qu’un pas vers la personnalisation 

du traitement en aidant au choix de la machine la plus adaptée à son profil. 
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Titre : Développement et application d’un banc d’essai physiologique, capable de simuler 

automatiquement les profils respiratoires enregistrés par polygraphie ventilatoire 

Mots clés : banc d’essai, simulation respiratoire, syndrome d’apnée du sommeil, polygraphie, 
pression positive continue, index d’apnée-hypopnée 

Résumé : Le syndrome d’apnée obstructive du 
sommeil affecte 6% à 17% de la population 

adulte. Le traitement de référence est la 

ventilation nocturne par une pression positive 
continue (PPC) fixe ou autopilotée afin de 

maintenir les voies aériennes ouvertes. 

L’efficacité de traitement des PPC autopilotées 

dépend des algorithmes et technologies pour 
détecter et qualifier les événements respiratoires  

Des bancs d’essai ont été créés pour évaluer les 

PPC autopilotées en conditions comparables, en 
simulant des scénarios respiratoires composés 

de chaînes répétitives d’événements 

respiratoires. Les profils respiratoires simulés 
par les bancs d’essai précédents sont 

standardisés et simplifiés par rapport au profil 

respiratoire du patient.  

Pour tendre vers des essais plus réalistes, un 
nouveau banc d’essai physiologique permettant 

de reproduire automatiquement les profiles 

respiratoires à partir des données 
polygraphiques a été créé pendant cette thèse. Il 

a été validé en évaluant la simulation de 

scénarios respiratoires de différents phénotypes 

issus de 12 patients. 
Via ce banc d’essai, la précision de l’index 

d’apnée-hypopnée (IAH) résiduel fourni par 

PPC a été évalué, en comparant les IAH 
déterminés par 4 dispositifs de PPC (AirSense 

10, DreamStation Auto, S.Box et Prisma 20A) 

avec ceux de polygraphie. Les résultats ont 
permis de quantifier les différences d’IAH afin 

d’aider les médecin à en tenir compte. 

 

 

Title : Development and application of a physiological ventilation device test bench, capable of 
reproducing automatically respiratory profiles registered with ventilation polygraph 

Keywords : bench test, respiration simulation, sleep apnea syndrome, polygraph, positive airway 
pressure, apnea-hypopnea index 

Abstract: Obstructive sleep apnea syndrome 

affects 6% to 17% of adult population The 
reference treatment is nocturnal ventilation via 

an either fixed or auto-titrating positive airway 

pressure (APAP) to maintain upper airway 
(UA) open. Treatment efficiency of APAP 

depends greatly on algorithms and technologies 

used for detecting and characterizing 
disordered breathing events (linked to UA 

obstruction or central command).  

Bench tests have been developed to evaluate 

APAP devices under the same conditions, by 
simulating respiratory scenarios composed of a 

repetitive string of several disordered breathing 

events registered from apneic patients or 
artificially designed.  

Therefore, breathing profiles simulated on 

benches are standardized and simplified, in 

comparison with patients’. To improve this 
disadvantage, a new physiological bench, 

which enables reproducing automatically a 

specific patient breathing profile from its 
polygraph recordings, has been created. It has 

been validated by simulating various breathing 

profiles issuing from 12 patients of different 
pathological phenotypes.  

Through this new bench, the accuracy of 

residual apnea hypopnea indices (AHI) 

determined by 4 APAP devices (AirSense 10, 
DreamStation Auto, S.Box and Prisma 20A) 

has also been investigated in comparison with 

polygraph scorings. The results would help 
physicians in clinical practice thanks to the 

quantification of AHI discrepancies between 

manufacturers. 
 

 

 


