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Spécialité de doctorat: Physique
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Charles Coulomb) Examinateur

Michele Casula
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Résumé

Ce travail de doctorat a pour objet l’étude, dans le diamant, de l’influence de la pression
sur les transitions optiques entres l’état fondamental et les états excités du centre � azote-
lacune de carbone � NV , sans paramètre ajustable. Le centre neutre NV 0 et le centre
chargé négativement NV − ont chacun été étudiés. L’étude a nécessité le développement
d’un modèle de Hubbard où les valeurs des interactions sont obtenues sans ajustement sur
l’expérience, par une méthode de calcul à partir des principes premiers.

Le centre NV est un défaut à niveaux profonds, ses propriétés optiques et magnétiques
sont liées aux niveaux sans dispersion dans la bande interdite électronique associés à des
états électroniques fortement localisés. Ces niveaux proviennent de combinaisons linéaires
d’orbitales localisées correspondant aux quatre liaisons pendantes pointant vers le centre
de la lacune et issues des corrélations électroniques fortes. C’est pourquoi un traitement
rigoureux, à l’échelle quantique, est nécessaire. La DFT est une approche puissante pour
les calculs des propriétés de l’état fondamental des défauts ponctuels. Cependant, les états
électroniques en DFT ont un caractère mono-déterminantal : un seul déterminant de Slater
intervient, auquel il manque les corrélations non dynamiques. La DFT seule ne permet pas
de calculer certains états électroniques à N- corps qui caractérisent les défauts profonds. De
plus, les fonctionnelles d’échange et corrélation (FXC) utilisées en DFT ont une précision
limitée.

C’est pourquoi j’ai d’abord développé une approche combinée modèle d’Hubbard +
DFT. La transition triplet-triplet entre l’état fondamental et le premier état triplet excité
est étudié à la fois avec la FXC standard GGA-PBE, et la FXC hybride HSE06. Il est
montré que l’utilisation de cette dernière améliore la description des corrélations au-delà
de la DFT-PBE, et permet la prédiction des transitions optiques plus précise. De plus,
les interactions à longue portée ont un effet crucial dans la modélisation des défauts pro-
fonds: premièrement, les déformations élastiques, dues à la présence d’un atome de nature
différente (N) de ceux de la matrice (C), sont à longue portée et doivent être prises en
compte; ensuite, quand le défaut est chargé, il est important d’éviter l’interaction non-
physique charge-charge entre supermailles voisines, causée par l’utilisation des conditions
périodiques aux limites. Par conséquent, j’ai étudié la structure atomique d’un défaut dans
de grandes supermailles. La diagonalisation exacte soit, en termes de chimie quantique, le
calcul d’interaction de configurations, du Hamiltonian de Hubbard dans la base à plusieurs
électrons, construite à partir des niveaux localisé dans la bande interdite, permet d’accéder
aux états fondamental et excités multi-configurationels. Cette technique a été comparée
aux méthodes récentes de l’état de l’art.

La méthode développée est appliquée à l’étude de l’effet de la pression hydrostatique sur
les niveaux triplets et singulets du centre NV −, et sur les niveaux doublets et quadruplets
du centre NV 0. Parmi les nombreux résultats, j’ai découvert un effet très intéressant lié à la
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transition singulet-singulet sous pression hydrostatique dans le centre NV −. Les résultats
obtenus dans ce travail n’ont jamais été ni calculé ni mesurés expérimentalement.

En perspective, j’ai développé un nouveau code de calcul qui peut être utilisé pour
étudier d’autres défauts d’interêt dans les technologies quantiques.

Mots clefs : Défauts ponctuels; Diamant; centre NV ; Théorie de la fonctionnelle de la
densité; Théorie des groups; Modèle d’Hubbard; Magnétometrie; Pression hydrostatique;



Abstract

The aim of this doctoral thesis is to study the influence of the pressure on the optical
transitions between multi-determinant ground state and excited states of the NV center
from the first-principles.

In this work, I study both the neutral NV 0 and negatively charged NV − centers. This
study needed the development of the Hubbard model where the interaction parameters
were not fitted to the experiment but were calculated from the first-principles.

The NV center is a deep-center defect, its optical and magnetic properties are related
with localized levels in the electronic band-gap. These levels are believed to be built
out of the localized orbitals of dangling bonds pointing towards the vacancy, providing
strongly correlated electronic states. Thus, an accurate quantum mechanical treatment is
needed. DFT is a powerful approach for the calculation of the ground state properties of
defects. However, the single Slater determinant nature of the DFT wave function lacks
the non-dynamical correlations, that characterize such defects, and does not allow for the
calculation of many-body levels. Moreover, exchange and correlation (XC) functionals used
in DFT add have a limited accuracy.

Therefore, in this PhD work, I first develop a combined DFT + Hubbard model tech-
nique. I study the triplet-triplet transition both with the PBE XC functional and the
HSE06 one. I confirm that the use of the hybrid XC functional HSE06 improves the
description of correlations beyond DFT-PBE and allows for more accurate prediction of
optical transitions. Long-range interactions have a crucial effect in such defects: first,
elastic deformations have a long range and need to be accounted for; second, when the
defect has a charge, it is important to avoid spurious charge-charge interactions between
neighboring supercells caused by the use of periodic boundary conditions. Thus, I study
the atomic structure of defect with large supercells by the density functional theory (DFT).

An exact diagonalization (or in quantum chemistry language full Configuration Inter-
action calculations) of the Hubbard Hamiltonian in the many-electron basis constructed of
in-gap localized levels, allows to get access to multi-determinant ground and excited states.
I benchmark this technique comparing it to the recent state of the art methods.

Finally, I apply the developed technique in order to study the effect of the hydrostatic
pressure on NV − and NV 0 centers. Among many results of my work, I discovered a
very interesting effect related to the singlet-singlet transition in the NV − center under
hydrostatic pressure.

As a perspective, I developed a new code that can be applied to study other defect
systems of interest in the quantum technologies.

Key words: Point defects; Diamond; NV center; Density Functional Theory; Hubbard
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Résumé ii

Abstract iv

1 Introduction 1

I State of the art 4

2 Physics of NV − center in diamond 5
2.1 The NV − center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Defect structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Fine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

a. Orbital angular moment . . . . . . . . . . . . . . . . . . . . . . . 7
b. Spin angular moment . . . . . . . . . . . . . . . . . . . . . . . . 7
c. Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . 8
d. Spin-spin coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 8
e. Fine structure of the ground state (GS) . . . . . . . . . . . . . . 8
f. Fine structure of the excited state (ES) . . . . . . . . . . . . . . 8
f1. Low temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 8
f2. Room temperature . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
a. Optical transitions: internal transitions and capture processes . . 10
b. Zero phonon line (ZPL) . . . . . . . . . . . . . . . . . . . . . . . 10
c. Vertical excitation (VE) . . . . . . . . . . . . . . . . . . . . . . . 10
d. Phonon side-band . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Optical dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Magnetic sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 The Meissner effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Magnetic sensing at ambient pressure . . . . . . . . . . . . . . . . . 14
2.2.3 Magnetic sensing under high pressure . . . . . . . . . . . . . . . . . 15

a. Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
b. State of the art techniques . . . . . . . . . . . . . . . . . . . . . 15
b1. Transport measurements . . . . . . . . . . . . . . . . . . . . . . 15

vi



CONTENTS vii

b2. The SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
b3. Magnetic Circular Dichroism (MCD) . . . . . . . . . . . . . . . 16
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CHAPTER 1

Introduction

The subject of deep center defects in semiconductors and insulators is of special interest in
the area of quantum technologies and a challenging topic. The typical example of a deep-
center defect is the nitrogen-vacancy (NV ) center in diamond. Isolated defect-related
electronic levels are localized in the bandgap of the insulator. Photoexcited transitions
between these levels produce a photoluminescence which, for the NV center in diamond is
perfectly stable even at room temperature. Thus this quantum system can be used as an
efficient and practical single-photon source for quantum cryptography applications [1, 2].
Also, the spin states of this defect possess a long spin coherence time and can be optically
manipulated at room temperature, which makes them attractive candidates for quantum
computer applications [3–7]. Moreover, the NV center interacts with an external magnetic
field in a way similar to that of a real atom, in the sense that the Zeeman coupling of this
atom-like system can be used to measure the projection of the magnetic field along the
intrinsic quantization axis that is defined by the NV pair direction [8–11].

In addition, of concern in the present work, the atomic size of the NV center and the
long coherence time of its electron spin at room temperature provide a unique combination
of sensitivity and spatial resolution compared to other magnetometry techniques: a single
NV center can detect a magnetic field in the mT range with a µT uncertainty and a nm
resolution [12]. During the past years, this property was applied to image magnetic thin
films and to determine their magnetization texture [13, 14]. As described in the first part
of the present manuscript, this property has a special interest when used under extreme
conditions. Indeed, high pressure applied in a solid may generate metallic and supercon-
ducting states in insulators or semiconductors because of the closure of the electronic band
gap, and the detection of the superconducting states requires magnetometry in order to
detect the Meissner effect.

In more details, pressures above 100 GPa are routinely obtained in diamond cells (DAC)
but the tiny sample volume is almost incompatible with any non-optical detection scheme.
Thus, the use of NV diamond color centers as in-situ magnetic sensors integrated in the
DAC can enable scientists to address in table-top experiments open questions such as the
close-to-room temperature superconductivity of hydride compounds, or the exploration of
complex quantum phase diagrams when magnetic materials are pushed to high pressures.
This is the expertise of the Jean-François Roch’s experimental group with which I have been
discussing during the PhD work, in particular with Baptiste Vindolet and Margarita Lesik,
Laboratoire Aimé Cotton, ENS Paris-Saclay, Université Paris-Sud, and in collaboration
with Paul Loubeyre’s group, particularly with Thomas Plisson, CEA-DAM, Bruyères-le-
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Châtel. A very recent advance of my collaborators in this technique allowed to see the
Meissner effect associated to the superconductivity of MgB2 at 7 GPa [15]. An application
of this technique at pressures higher than 7 GPa, however, demands an attentive study
of the behavior of the NV center itself at such pressures and I point out that a better
understanding of the behavior of the many-body states of the NV center under pressure is
important in order to learn the sources of the limitations of the NV center application as a
magnetic sensor at high pressures. Despite some recent studies of the behavior of the NV
center under pressure [16–18] some effects are still not understood, which has motivated the
present theoretical work. In fact, to face the challenge of probing the magnetic field at ultra-
high pressure, I aim of predicting the spectroscopic properties of the NV center at very high
pressure. This implies the calculation of the manifold of the low-lying many-body states of
the NV center. This also rises the question of electronic correlations, their behavior under
pressure, and their treatment with theoretical methods. Indeed, the many-body states
of the NV center arise from combinations of occupations of the localized defect dangling
bonds, and thus are strongly correlated states that have a multi-determinant nature. Thus,
their evaluation requires an accurate quantum mechanical treatment.

The complexity of the present work is twofold. The first challenge is related to the re-
quirement of the development and utilization of the advanced methods to treat the strongly
correlated states. The second one, is related to the requirement of a balanced compromise
between the use of a method of moderate computational cost and the accuracy to treat
the electronic correlations. In fact, the theoretical treatment of defects in solids with peri-
odic boundary conditions, in general, requires the use of supercell techniques. This allows
to reduce the spurious interactions in neigboring supercells caused by the long-range in-
teractions, such as the elastic deformation induced by the presence of the defect and the
charge-charge interactions in the case of a charged defect like NV −. However, the supercell
method is computationally cumbersome.

Moreover, today, there is no method that is able to simultaneously provide an accurate
description of the weak and strong correlations at low computational cost. Therefore, in the
present work I develop and use a combination of the density functional method (DFT) with
the Hubbard model. The work is performed in the Materials Science Theory group, in the
Laboratoire Solides Irradiés, and this allowed me to benefit of the expertise on DFT-based
methods on the treatment of point defects in boron carbide and electron-phonon coupling.
The theoretical development was also done in collaboration with Michele Casula, IMPMC,
Sorbonne Unversité, and this collaboration gave rise to fruitful discussions.

More specifically, I aim at understanding the influence of pressure on the vertical tran-
sition and zero phonon line between the two triplet states and between two singlet states
of the NV center, that have been observed experimentally and are being used for magne-
tometry. As I will show, the hydrostatic pressure behavior of the triplet-triplet transition
has been well established both experimentally and theoretically, and I will use this fact
to validate my method. Moreover, very little is known about the singlet-singlet transition
under pressure. Finally, I will also study the NV 0 center for which even the ordering of
the many-body states is uncertain and for which there is a lack of the advanced theoretical
studies about the influence of the pressure.
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The outline of the manuscript reads as follows. In chapter 2 and chapter 3, I will
provide the background knowledge on the NV center physics including its properties and
applications to the magnetic sensing.

The chapter 4 contains a careful discussion on the treatment of electronic correlations
in different methods, as well as a review of the recent advances of theoretical methods
in application to the NV center. Finally, I will define the method that I will use in the
present work.

The part II is devoted to the results I have obtained during my PhD. In chapter 5, I
will present the results of the DFT calculations for the mono-determinant states of the NV
center. I will conclude on the validity of the DFT calculations for their use as references
for the Hubard model.

In chapter 6, I will introduce two Hubbard models and the code developed in the present
work. I will apply the 3-site and 4-site models to the negatively charged NV − center and
neutral NV 0 center at ambient pressure. I will benchmark my models by comparing my
results with the experimental data and the previous theoretical works.

Finally, in chapter 7, I will present my results of the pressure effect on the many-body
states of the NV − and of the NV 0 centers. One of the main outcomes of my results
concerns the behavior of the singlet-singlet transition, which to the best of my knowledge
has never been measured nor calculated before.

Finally, in chapter 8 I will draw conclusions and will discuss some perspective and
possible extentions of my model. The appendix 8 contains the details of the development
of the pseudopotential that have been used in the present work.

This work has required intensive computations in a high performance computing evi-
ronment with the Quantum ESPRESSO package and I would like to acknowledge the
computing time provided by the local LLR-LSI cluster (92 000 CPU hours has been spent
during my PhD), the computing time provided by French national centers GENCI-CINES
(1 710 742 CPU hours), GENCI-TGCC (238 745 CPU hours) and GENCI-IDRIS (120 279
CPU hours), also the computing time provided by PRACE project on JUWELS machine.

This work has been supported by the LabEx PALM, by the Paris Île-de-France Région
in the framework of DIM SIRTEQ, and by the 3-year fellowship of the Interfaces Doctoral
School which has started in October 2016.
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CHAPTER 2

Physics of NV − center in diamond

The nitrogen-vacancy NV center defect in diamond is considered nowadays as the most
studied deep-center defect [19–22]. The discovery of the NV center has taken a long time
from the first classification of the two types of diamond in 1934 [23] till 25 years later
the connection has been established between the spectroscopic properties of the type I of
diamond and the concentration of nitrogen atoms [24]. And finally, in 1965 the formation
of the NV − optical band has been observed after the radiation damage and annealing
by du Preez [25]. The NV has been a system of interest in the scientific community for
decades since then and gained even more interest when the fluorescence of the individual
NV center defect has been detected [26]. This played a crucial role in the emergence of
the new quantum technologies. Even though many of the NV center properties have been
understood, some of them are still the object of debates and are still unexplained. In this
chapter we will discuss the properties of the NV center that are the most relevant for the
understanding of this manuscript.

2.1 The NV − center

2.1.1 Defect structure

The NV center is a point defect in diamond that consists of a nitrogen atom in substitution
of a carbon atom and located next to a carbon vacancy, the pair axis being oriented
along the [111] crystal direction. In 1965 du Preez [25] has observed the formation of
an optical band in in diamond after the radiation damage and annealing of the sample.
He proposed that the optical band is related to the nitrogen-vacancy pairs. He explained
the formation of a pair as follows: diamond naturally contains nitrogen and the radiation
creates vacant sites which become mobile under the annealing and can be trapped by
nitrogen impurities. Later, the structure of the NV center, its trigonal symmetry C3v and
the A- to -E character of the optical transition were supported by studies of the polarization
of the photoluminescence in ref. [27] and by the study of the uniaxial stress in ref. [28].
Further studies of the electron paramagnetic resonance (EPR) in 1982 [29] allowed to
identify the spin multiplicity of the ground state as a triplet 3A, consequently a negative
charge has been attributed to the NV − center and this attribution was supported by a
molecular model. According to the molecular model, the NV − center defect contributes
to the electronic structure of the diamond with the localized molecular orbitals aN1 a1exey,
formed of the carbon dangling bonds σi and nitrogen lone pair σ4 pointing towards the
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vacant site as depicted in Fig. 2.1.1. The molecular orbitals are occupied by 6 electrons: 5
electrons are given by the dangling bonds and 1 electron is trapped from the neighboring
donor.

The described model is so called 4-site model which will be the basis of one of the two
Hubbard models studied in the present work. I will show later that an even simpler 3-site
model can be defined in order to describe the optical properties of the NV center. In
the 3-site model, the nitrogen atom will be included in the screening environment and not
directly in the molecular model. In that case molecular orbitals will consist of a1exey with
a screening modified by aN1 .

Valence band

Conduction band

(a) Atomic structure & dangling bonds (b) Defect molecular orbitals

C

C
C

N

[111]

Figure 2.1.1: 4-site model. (a) Schematic representation of the dangling bonds pointing to-
wards the vacancy. Figure is adapted from ref. [22]. (b) Schematic representation
of the molecular defect orbitals in the band gap of diamond. Figure is adapted
from ref. [30]

2.1.2 Electronic structure

The electronic excitations between the molecular orbitals of the NV center defect aN1 a1exey
create a structure of many-body excited states. The currently accepted electronic structure
of the many-body states is shown in Fig. 2.1.2. It consists of the triplet 3A2 ground state
with the molecular orbitals configuration aN1 (2)a1(2)e(2). Optically excited triplet 3E state
can be obtained by promoting one electron from the a1 orbital to the e degenerate orbital,
resulting in the aN1 (2)a1(1)e(3) configuration.

There are also two singlet excited states between the two triplet states []. They arise
from configuration interaction of the molecular occupations aN1 (2)a1(2)e(2). There were
many contentions concerning the ordering of the singlet states. Also, in the early model
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of the electronic structure of the NV − center, the existence of only one 1A1 singlet has
often been considered [31, 32]. According to the currently accepted model the 1E state
is lower than the 1A1 state [33]. These highly correlated electronic states play a crucial
role in the optical dynamics of the NV − center. It is also important to mention that
the relative positions of the triplet ground state with respect to the first excited singlet
3A↔1 E and first excited triplet with respect to the second excited singlet 3E ↔1 A1 are
unknown experimentally. The state of the art theoretical works predict that the 3E ↔1 A1
transition energy is around 0.4 eV and the 3A↔1 E one is also around 0.4 eV [22, 34, 35].

1
.9

4
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V

1
.1

9
 e

V
(a) Many-body states (b) Fine structure
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 e

V

1.42 GHz

2.88 GHz

Figure 2.1.2: NV − center. (a) Schematic representation of the electronic structure of the
many-body states. (b) Schematic representation of the electronic fine structure
at room temperature. Figures are adapted from ref. [20]

2.1.3 Fine structure

We briefly remind the definitions of quantities entering the spin Hamiltonian in order to
discuss the fine structure of the NV center.

a. Orbital angular moment

The orbital angular momentum L̂ is a relativistic effect due to the relative motion between
electron and nuclei and is at the origin of the orbital magnetic momentum µ̂l = glµBL̂.
Where gl=1 is a Landé factor, µB Bohr magneton - a basic unit of atomic magnetism.

b. Spin angular moment

The spin angular momentum Ŝ of an electron is at the origin of the spin magnetic momen-
tum µ̂s = gsµBŜ, where Landé factor gs=2.
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c. Spin-orbit coupling

The internal spin-orbit coupling is the magnetic coupling of the electron spin Ŝ to the orbital
magnetic moment L̂. The contribution of the spin-orbit coupling to the spin Hamiltonian
is HSO = λL̂Ŝ.

d. Spin-spin coupling

The magnetic coupling of the electron spin moment µ1 to the magnetic moment of another
electron spin, µ2 is called the spin-spin dipolar interaction and its contribution to the spin
Hamiltonian is HSS = µ0

4πr3 (µ̂1µ̂2 − 3
r2 (µ̂1r̂)(µ̂2r̂)), with µ0 - magnetic permeability.

e. Fine structure of the ground state (GS)

In the NV center ground state the spin-spin Hamiltonian results in HSS = Dgs(Ŝ2
z −S(S+

1)/3). Thus, due to the dipolar interaction between spins, there is a splitting Dgs between
the ms = 0 and the ms = ±1 states of the triplet 3A2 ground state at zero magnetic
field (Fig. 2.1.2 (b)). This splitting is called the zero-field splitting. The fine structure of
the 3A2 ground state is represented only by the zero-field splitting because the spin-orbit
interaction in weak in the ground state [20]. The zero-field splitting constant Dgs is of the
value 2.88 GHz, it has been observed very early in ref. in the ground state [29] in 1982.

f. Fine structure of the excited state (ES)

The fine structure of the first excite 3E state depends on temperature [20]. Thus, we
discuss both low temperature and room temperature cases.

f1. Low temperature

In contrast to the ground state, for the first excited triplet 3E it is only until ref.[36] in 2009
that the fine structure has been directly observed at low temperature and the Des constant
has been attributed to a value of 1.42 GHz [36]. The complexity of the direct observation of
the fine structure of the 3E state was due to the mixing of the spin sublevels in the lower fine
structure branch Ey by the local strain (Fig. 2.1.3) at the low temperature. This mixing
ensured that the lower branch did not have adequate fluorescence to be visible without the
application of microwave radiation. In ref. [36], the optical excitation at low temperature
was combined with a microwave excitation tuned to the ground state magnetic resonance.
That induced an increase of the fluorescence of the lower branch fine structure levels for
them to be observed. Also, in ref. [36], the effect of the strain on 3E state was studied
(Fig. 2.1.3 (b)). They have found that at some specific strains, identified by circles in Fig.
2.1.3 (b), the additional optical spin-flip transitions occur. The first area surrounded by
circle corresponds to the case where the spin mixing induced by the local strain provoke
avoiding crossing. In the second area at higher strain the spin sublevels are crossing. Due
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to these investigations it was found that the 3E level’s fine structure is more complicated
than the one of the 3A2 as depicted in Fig. 2.1.3.

(a) (b)

Figure 2.1.3: 3E state of the NV − center. (a) Schematic representation of the electronic fine
structure at low temperature. Figure is adapted from ref. [33] (b) Fine structure
observed at low temperature (4 K) as a function of transverse strain δ⊥ [36].
Figure is taken from [20]

Indeed, the fine structure of the 3E state at low temperature affected both by the spin-
orbit and spin-spin interactions. The Hamiltonian of the 3E excited state can be written
as H = HSO + HSS + Hstr, where HSO is a spin-orbit coupling presented by its diagonal
component λzL̂zŜz, because the transverse component λx,y(L̂xŜx + L̂yŜy) is weak. HS0
splits the 3E state into three equally separated orbital doublets. The spin-spin interaction
HSS = Des(Ŝz − 2/3) shifts these three levels and also lifts the degeneracy of A1 and A2
levels by splitting ±∆ (Fig. 2.1.3 (a)). Thus at zero strain the splitting of the fine structure
of the 3E state is characterized by parameters: λz = 5.5 GHz, Des = 1.42 GHz, ∆ = 3.1
GHz and λx,y = 0.2 GHz [37].

Also, the local strain can perturb the fine structure. More precisely, the local strain
can be described by the Hamiltonian: Hstr = δxV̂x + δyV̂y + δzV̂z, where δ is the strain

parameter and V̂i is a orbital operator along the i direction. The axial strain is along the
quantization axis z which is along the trigonal symmetry axis of the NV pair. Since the
E is a doubly degenerate level, under a non-axial strain (transverse to the trigonal axis)
the 3E level is separated into two branches, Ex and Ey, each containing Sx, Sy and Sz spin
projections. The transverse strain is described by δx and δy and the splitting is proportional
to δ⊥ = (δ2

x + δ2
y)1/2. The effects of the spin-orbit, spin-spin and strain interactions are

shown in Fig. 2.1.3 (a) and (b).

f2. Room temperature

The fine structure of the 3E state at room temperature was first observed by [38] and then
confirmed by refs. [39, 40]. However, it was Rogers et al. [37] who correctly explained
the temperature dependence of the fine structure. Rogers et al. attributed the change
of the fine structure behavior with temperature to a phonon-mediated averaging process.
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Due to the averaging the contribution of spin–orbit interaction λz and spin-spin interaction
∆ are effectively quenched. Thus, the averaging process results in an average state with
only a zero field splitting determined by the spin–spin interaction Des. So, finally, at
room temperature, the fine structure of the excited 3E state can be described by the same
Hamiltonian as the ground 3A2 state.

Interestingly, because of this averaging process, stronger spin polarization, which will
be discussed in next section, is obtained at room temperature than at low temperature [37],
which makes the NV center more attractive for the quantum application at room temper-
ature.

2.1.4 Optical properties

An important feature of theNV − center is linked to its bright and stable photoluminescence
as shown in Fig. 2.1.5 (a).

a. Optical transitions: internal transitions and capture processes

In general, optical emission of defects can be divided into two categories: due to internal
transitions and due to the capture process, also called the photoconversion process [21]. An
internal transition occurs between two many-body states of the defect and the charge of
the defect is conserved. In contrast, during the capture process, an electron can be emitted
from the valence band and captured by one of the defect state, with the consequence that
the charge state of the defect changes. In this manuscript I mainly consider the internal
transitions.

b. Zero phonon line (ZPL)

When talking about the photoluminescence spectrum, the NV − spectrum contains an
optical fingerprint which helps identifying the existence of the defect center in the diamond
structure. The fingerprint is a bright zero-phonon line at 1.945 eV (637 nm) [25]. The zero
phonon line is an electron transition from the lowest vibronic state of the electronic excited
state to the electron ground state via photoemission. It results in a sharp bright peak in
the photoluminescence spectrum (Fig. 2.1.5 (b)).

c. Vertical excitation (VE)

We remind the reader that according to the Franck–Condon principle, the electron excita-
tion occurs on a much faster time scale than the vibronic relaxations. When an electron is
excited from the ground state, the transition is referred to as a vertical transition. In ref.
[28] the vertical transition was assigned to be 2.2 eV by measuring an absorption spectrum.

The vertical transition and zero phonon line are schematically represented in Fig-
ure. 2.1.4
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Figure 2.1.4: Schematic representation of the energy as a function of the configurational co-
ordinate during the excitation process. The excitation occurs with a vertical
transition. However, shortly after the electron excitation, nuclei around the de-
fect relax finding a new equilibrium atomic configuration. This relaxation occurs
through interaction with phonons. The emission from the lowest vibronic state
is a zero phono line.

d. Phonon side-band

The photoluminescence spectrum contains also the broad part of phonon-assisted transi-
tions. This broad part of the spectrum is called the phonon side-band. It occurs due to the
interaction of the 3E excited state with totally symmetric, quasilocalized vibrational modes
that involve the displacement of the nitrogen atom and the carbon atoms surrounding the
vacancy [41]. A schematic photoluminescence spectrum is shown in Fig. 2.1.5 (b).
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Figure 2.1.5: NV − center. (a) Room temperature confocal image observed in ref. [19]. (b)
Schematic representation of the photoluminescence spectrum of the. Figure is
adapted from ref. [21].
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The bright zero-phonon line at 1.945 eV occurs due to the triplet-triplet 3E −3 A2
transition. Another zero-phonon line of the NV − center was observed in the infrared
region of the spectrum, at 1.19 eV [42]. In the ref.[42] Rogers et al. have identified the
symmetry of the transition as E − A1 by the uniaxial stress investigation. They have
also found that the transition corresponds to the singlet-singlet transition because of the
absence of the Zeeman splitting or of the broadening of the infrared zero-phonon line. The
presence of two singlet states between the ground state triplet 3A2 and excited triplet 3E
plays an important role in the non-radiative decay. The presence of two singlet states
plays also an important role in the optical spin polarization of the NV − center as will be
discussed in the section 2.1.5.

2.1.5 Optical dynamics

Another important property of the NV − center is the spin selective fluorescence that en-
ables the magnetic resonance measurements. We have seen in section 2.1.3 that the NV −

center has a fine structure of the excited state similar to the fine structure ground state
at the room temperature. The optical transitions of the NV − center obey the selection
rules ∆ms = 0, so the allowed optical transitions occur between the levels of the same spin
projection [4, 43]. Moreover, it was observed that the fluorescence between the correspond-
ing ms = 0 ground and excited states is stronger than the the fluorescence between the
ms = ±1 ground and excited states because of the non-radiative decay from 3E ms = ±1
to the 1A1 level [26, 44]. This spin selective behavior was observed with the help of the
optically detected magnetic resonance experiments (ODMR) in the ref. [26].

The spin selective fluorescence can be explained as follows. During an ODMR ex-
periment, the optical pumping is accompanied with a microwave excitation. When the
microwave frequency coincides with the frequency of the magnetic resonance of the ground
state, the ms = 0 level is depopulated and the subsequent optical excitation occurs from
the ms = ±1 level. When the electron is excited to the 3E ms = ±1 state, two paths
of the relaxation are possible: the direct decay to the ground state or the non-radiative
decay to the intermediate singlet levels. The non-radiative decay is possible due to the
spin-orbit interaction which couples the triplet and singlet state as in this case ∆ms 6= 0.
This process is called the intersystem crossing (ISC). Also it is believed that this process
is phonon-assisted [45]. Since the non-radiative decay rate of the ms = ±1 excited state
is much larger than that of the ms = 0 excited state, the resulting fluorescence of the
ms = ±1 state is lower. Thus, we observe a notch in the ODMR spectrum with the
minimum fluorescence at the ground state resonant frequency as depicted in Fig. 2.1.6
(b). This ODMR spectrum peak is also called the ODMR contrast [36]. This technique is
routinely applied for single-spin state optical readout [40].
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(a) Optical dynamics
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Figure 2.1.6: (a) Schematic representation of the photoluminescence excitation and decay
path. The grey solid lines represent strong non-radiative decay. Grey dashed
lines represent weak non-radiative decay. (b) Schematic representation of the
optically detected magnetic resonance spectrum of the NV − center.

Another important property during the optical excitation is a spin polarization of the
NV − center. The spin polarization occurs in a following way. After the non-radiative
decay of the electron to the 1A1 state and a 100 ps electronic lifetime in the 1A1 state [46],
a fast optical emission to the 1E state follows, as evidenced by the presence of the ZPL
at 1.19 eV. The 1E state has a longer lifetime than the 1A1 state and vary between about
371 ns and 165 ns depending on temperature [47]. Then, from the 1E state the system
preferably decays towards the ground state ms = 0 sublevel through the ISC, which is still
not completely understood [40, 48] (Fig. 2.1.6 (a)). As the consequence, after a few optical
excitation–emission cycles the ms = 0 ground state sublevel is populated and the ms = ±1
depopulated. Thus, the ground state of the NV − center is spin polarized [49].

To conclude, we have seen that the ground state of the NV − center can be optically
manipulated. The ground state spin can be optically prepared to the ms = 0 state at the
room temperature. Moreover, the current state of the NV − center can be optically read
out due to the spin selective fluorescence. These properties enable the use of the NV −

within the wide domain of the applications in quantum technologies. In this work I will
concentrate on the magnetic sensing with the NV − center.
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2.2 Magnetic sensing

2.2.1 The Meissner effect

The Meissner effect is the signature of superconductivity. The Meissner effect is defined as
the expulsion of the external magnetic field from a superconducting sample as the sample
undergoes a superconducting transition under the cooling. Thus, in order to unambiguously
prove the onset of a superconducting state, one must observe the Meissner effect. One of
the possibilities to observe the Meissner effect is through the magnetic measurements.

2.2.2 Magnetic sensing at ambient pressure

In the section 2.1.3 it was shown, that the spin selective photoluminescence of the NV −

center exhibits a resonant ODMR peak at 2.88 GHZ when a continuous micro wave ex-
citation is applied. The application of an external magnetic field splits the ODMR peak
into two peaks: the ms = 1 and the ms = −1 projections. This splitting occurs due to the
Zeeman effect. Indeed, the spin Hamiltonian of the defect with C3v symmetry and with
the applied external magnetic field B is following:

H = D(S2
z − S(S + 1)/3) + gµBB·S = Hz +H⊥ (2.1)

where D is the zero-field splitting constant, the z coordinate axis coincides with the
center trigonal symmetry axis, g is a Landé factor and µB is Bohr magneton. One should
mention that both the strain effect and the hyperfine interaction is neglected in this Hamil-
tonian for the sake of simplicity. The first term describes the zero-field splitting in the
absence of the external magnetic field, as discussed earlier. The second term describes the
Zeeman splitting. One can see that the Zeeman splitting of the ODMR peak is proportional
to the magnetic field amplitude along the intrinsic quantization axis that is defined by the
NV pair direction, as depicted in Fig. 2.2.1. Thus, the splitting of the NV − center ODMR
spectrum allows the direct measurement of the magnetic field amplitude, and enables the
use of the NV − centers for magnetometry applications. The advantage of the use of the
NV − centers as an in-situ magnetic sensors is its µT magnetic sensitivity along with the
atomic-scale resolution [12].

The detection of the ODMR contrast under an applied external magnetic field, however,
has some limitations. It was observed in ref. [50] that the ODMR contrast decreases when
the condition Hz >> H⊥ is not satisfied or, in other words, when a strong transverse
magnetic field dominates. The decrease of the ODMR contrast occurs because of the
spin mixing of the ms = 0 and ms = ±1 components. This effect was explained in ref.
[50] by the fact that ms is not a good magnetic number when the quantization axis is
defined by the external magnetic field. Thus, the eigenenergies of the Hamiltonian 2.1
are the superposition of the ms = 0 and ms = ±1 components, so that the spin-selective
photoluminescence and the optical spin polarization become inefficient.
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Figure 2.2.1: (a) Schematic representation of the direction of the magnetic field and the pro-
jection of the magnetic field on the axis along the NV center axis; (b) Schematic
representation of the optically detected magnetic resonance spectrum of the NV −

center with applied magnetic field.

2.2.3 Magnetic sensing under high pressure

a. Purpose

High pressure applied on a semiconducting or insulating solid may lead to the closure of its
electronic band gap and eventually may generate metallic and superconducting states. For
instance, the sulfur hybrid H3S has been recently shown to exhibit the superconductivity
at the temperature of 203 K at 150 GPa pressure applied [51]. This temperature is the
highest superconductivity transition temperature ever measured. Pressures above 100 GPa
are routinely obtained in a diamond anvil cells (DAC) but the tiny sample volume available
in such a cell is almost incompatible with most of non-optical detection state of the art
schemes. The measurement of the superconductivity under high pressure add the additional
complexity to the problem since the experimental setups have to be adapted in order to
be operational with the DAC. In order to appreciate the elegance of the NV center based
method to measure magnetic and superconducting properties one should briefly explain
the challenges of the state of the art techniques.

b. State of the art techniques

The state of the art techniques consist primarily of two methods: the SQUID [52] and
the use of the synchrotron radiation [53–55] to detect either the Mössbauer effect or the
magnetic circular dichroism.

b1. Transport measurements

The superconducting material exhibits a number of extraordinary properties. We have
already discussed the Meissner effect, another property inherent to the superconductor is
the zero electric resistance. Thus, the onset of superconductivity can be observed through
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a transport measurement [56]. Nevertheless, this method is hardly convincing once imple-
mented in DAC. Due to the constraints of the DAC environment, a measurement of resis-
tivity is difficult to reproduce and is doomed to errors due to: (i) the averaging, implicit
in a transport measurement; (ii) the difficulty of contacting the sample once compressed
by the two diamond anvil; (iii) the pressure-induced deformation of the leads. Thus, other
methods have been used to measure the onset of superconductivity in a DAC.

b2. The SQUID

The use of a superconductivity quantum interference device (SQUID) enables to measure
the small response to a magnetic field induced in diamagnetic materials [52], as is the
case in the Meissner effect at the superconducting transition. In its principle, a SQUID
consists of two Josephson junctions connected in parallel in the superconducting loop, that
allows to detect the variation of the flux of the magnetic field inside the superconducting
loop, where the sample is located. At the superconducting transition the magnetic field is
expelled from the sample and the drop of the magnetic field is detected by the SQUID.

Working at high pressure, however, requires adapting the DAC to the SQUID [57].
Moreover, the protocol requires to repeatedly increase the pressure outside the SQUID
and then to insert the DAC back into the SQUID to measure the magnetic moment. At
ambient pressure the measurement takes approximately one hour. Thus, measuring the
Meissner effect at high pressure with this technique is a long process.

b3. Magnetic Circular Dichroism (MCD)

MCD is a differential optical spectroscopic technique that determines the difference of left
and right circularly polarized light in the presence of an axial magnetic field [58]. For
instance, in ref. [53] the x-ray MCD has been applied in order to investigate the change
of the magnetization of Ni under the compression. XMCD signal was obtained by taking
the difference between x-ray absorption spectra measured using parallel and antiparallel
orientations of the sample magnetization relative to the incident photon helicity. If a
sample present a net ferromagnetic or ferrimagnetic moment. The XMCD signal is then
directly proportional to the magnetic moment on the absorber atom [54]. However, since
this technique mainly addressing nuclear or electronic transitions and not the Meissner
effect directly, it is difficult to extract absolute quantitative information on the magnetic
moment.

b4. The Mössbauer spectroscopy

Mössbauer spectroscopy is based on the Mössbauer effect. The Mössbauer nucleus with
its nuclear magnetic moment acts as a local probe in the solid. The nuclear and atomic
(electronic) magnetic moments are coupled by the magnetic hyperfine interaction. This
provides that the nuclear magnetic moment senses a local magnetic field produced by the
electrons [59].
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For instance, in ref. [60] to detect the expulsion of the magnetic field in the hydrogen
sulfide (H2S), the foil of tin enriched with the 119Sn Mössbauer-active isotope was used
as the sensor. The screening of the external magnetic field during the superconducting
transition of the H2S was monitored with the nuclear resonant scattering of synchrotron
radiation that interacted with the spin 1/2 of 119Sn nuclei. The main problem of Mössbauer
spectroscopy is the small number of Mössbauer isotopes, which limits a number of magnetic
materials that can be studied with this technique [54].

c. The NV − as a magnetic sensor at high pressure

As we have seen, synchrotron based methods are widely used for the characterization of
the magnetic state under high pressure, however, these techniques encounter a number of
drawbacks such as (i) the non-unambiguous interpretation of signals; (ii) requirement of
specific isotopes or conditions to be implemented and (iii) access to a dedicated synchrotron
beam-line.

Thus the use of NV diamond color centers as in-situ magnetic sensors integrated in
the DAC can enable scientists to address in table-top experiments open questions such as
the close to room temperature superconductivity or the exploration of complex quantum
phase diagrams when magnetic materials are pushed to high pressures. A very recent
advance of the technique using NV centers allowed to observe the pressure evolution of
the magnetization of an iron bead up to 30 GPa showing the iron ferromagnetic collapse
and to see a Meissner effect associated to the superconductivity of MgB2 at 7 GPa [15].
Indeed, in ref. [15] NV center defects were directly implanted 20 nm below the surface
of the diamond anvil culet by a focused ion beam [61]. The excitation of the NV centers
and the measurement of their photoluminescence was performed with a green 532 nm laser
through the diamond anvil. The ODMR spectrum was then measured by applying the
microwaves with a turn coil that was attached to the rhenium gasket which confined the
sample. The scheme of the experimental setup is shown in Fig. 2.2.2. In ref. [15] the
sample was either an iron bead or MgB2 crystal placed into the DAC, and a ruby crystal
was used to calibrate the pressure inside the DAC. The DAC was filled with a pressure
transmitting medium (nitrogen or argon) which provided the hydrostatic pressure inside
the chamber during the experiment.

The optical magnetometry method based on NV center developed in ref. [15] as dis-
cussed in previous section, is an elegant technique which beats with its easiness, non-
invasiveness and possibility to map a stray magnetic field with a micrometer spatial res-
olution. Although the results of this method are very promising, in order to exploit this
technique at higher pressures, an attentive study of the behavior of the NV center itself at
high pressures is of a key importance and one of the main objectives of the present work.
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Figure 2.2.2: Magnetometry in diamond anvil cell with NV center. Scheme of the setup for
the optical magnetometry based on measurements with NV centers. The figure
is taken from ref. [15].

2.3 Behavior under hydrostatic pressure of the NV −

center

At the beginning of this work two experiments had been reported that studied the be-
havior of the NV − center under pressure: Kobayashi and Nisida [16] and Doherty ar al.
[17]. During the course of my PhD work, Lyapin eta al (2018). [62], B. Vindolet et al.
(my collaborators) and Hsieh et al. [63] reported new experimental results. The results
of Vindolet et al. and Hsieh et al. showed, however, that implanted NV centers were
submitted to uniaxial pressures rather than the quasi-hydrostatic ones. The behavior of
two distinct quantities has been reported.

2.3.1 Experiments

Doherty et al. [17] in their experimental study observed and measured the shift of the
ground state optically detected magnetic resonance (ODMR) and of the optical ZPL of
NV − under the quasi-hydrostatic conditions.

a. Shift of the fine structure of the GS

Doherty et al. observed, from their ODMR spectra, that the shift of the splitting parameter
D is mainly linear with pressure P and has a gradient dD(P )/dP=14.58 MHz/GPa.

An explanation of the pressure shift that has been proposed by Doherty et al. [17] in
order to explain the shift of the ODMR splitting was the following. The contraction of the
lattice under pressure leads to the shortening of distances between atomic orbitals. This
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induces a change in defect orbitals, as they are linear combinations of atomic orbitals. The
change of the defect orbitals corresponds to the compression of the unpaired spin density
of the ground state, that provokes an increase of the spin-spin interaction.

b. Shift of the ZPL

In ref. [17] the shift of the optical ZPL transition energy between 3E and 3A2 states
was linear with a gradient dZPL(P)/dP=5.75 meV/GPa at 296 K, which was in a good
agreement with an earlier observed at low temperature of 77 K gradient 5.5 meV/GPa in
the work of Kobayashi et al. [16].

In the recent work of Lyapin et al. (2018) [62] also studied the NV − center under the
hydrostatic pressure. In their experiment micro- and nanoscale diamonds, were placed in
a diamond-anvil cell (DAC) along with ruby crystal for the pressure measurements. The
sample chamber was filled with the He pressure transmitting media. In order to record the
photoluminescence the excitation was induced with the 499 nm Ar+ laser.

Lyapin et al. have found dZPL(P)/dP=5.81 meV/GPa at 296 K and dZPL(P)/dP=5.57
meV/GPa at 80K. The ZPL measured in their experiment was in a good agreement with
the previous works [16, 17]. They, however, noticed that the photoluminescence pressure
gradient is 5.81 meV/GPa and deviates slightly from the linear behavior.

In Table 2.1 we summarize available experimental results. The pressure behavior of the
photoluminescence of the NV − center

Table 2.1: Comparison of the experimental shift of the ZPL in the NV − center. PTM stays
for pressure transmitting medium. The hydrostatic pressure limits are taken from
[64] for gases and from [65] for NaCl. NaCl-type (B1) structure undergoes a phase
transition to the CsCl-type (B2) structure at around 30 GPa

PTM
hydrostatic until
Pmax (GPa)

T (K) dZPL(P)/dP (meV/GPa)

Kobayashi [16]
(1993)

N2 2.4 77 5.5

Doherty [17]
(2014)

NaCl/Ne 30/4.8 296 5.75

Lyapin [62]
(2018)

He 12.1
80 5.57
296 5.81

c. The loss of the optically detected magnetic resonance (ODMR) contrast

Also, in the ref. [17] Doherty et al. have found that the ODMR contrast (see definition
in section 2.1.5) disappears at pressures above 17.9 GPa in the NaCl pressure medium as
shown in Fig. 2.3.1. In the Ne pressure medium the contrast disappeared at 60 GPa. This
effect is not yet explained, and of the objectives of the present work is to provide more
understanding of this contrast loss.
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The possibility to record the ODMR spectrum comes from the dark intersystem cross-
ings (ISCs) between the excited triplet 3E and the singlet 1A1. There could be several
explanations of the loss of the ODMR spectrum contrast.

Figure 2.3.1: Optically detected magnetic resonance (ODMR) experience under high pressure.
(a) NV − ODMR spectra. NaCl remains a good transmitting medium below 30
GPa [66] which guarantee quasi-hydrostatic pressure conditions. The dashed line
indicates the position of the resonance at ambient pressure. (b) Pressure shift
of the ZPL of the NV − center. The solid line is a linear fit extrapolated to the
position of the 532 nm excitation laser. Figures are taken from [17].

The first hypothesis is connected to the purely technical problem. Since we have seen
that there is a shift of the optical triplet-triplet ZPL emission, and since the absorption
spectrum usually obeys the mirror law and is symmetric to the emission spectrum, one can
imagine that there could be a shift of the absorption peak. Taking into account that in
the experimental setup of ref. [17] the excitation of the NV − center was performed with
the help of a green laser at the fixed 532 nm wavelength, one can propose that the NV −

center excitation maximum was shifted under the influence of the pressure, so the laser
excitation was not efficient anymore to induce the polarization process.

Another hypothesis may be linked to the fact that the singlet 1A1 state behaves differ-
ently under pressure than the 3E, so at the end the intersystem crossing decreases, directly
providing the loss of the ODMR contrast. The process of the intersystem crossing is be-
lieved to be mediated by spin-orbit and electron-phonon coupling. Study of the spin-orbit
coupling and electron-phonon coupling is beyond of the scope of this work. However, the
behavior of the related excited many-body states under the pressure is of key importance
for understanding of this process and will be studied in this work.
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2.3.2 Theoretical works

There are a few works that studied the behavior of the NV center under hydrostatic
pressure. In 2014 Deng et al. [18] have studied NV − center under hydrostatic pressure with
constrained occupation density functional theory (CDFT). This methodology to calculate
excited states of defects will be discussed in chapter 4. Deng et al. have studied the
triplet-triplet 3E −3 A2 ZPL transition and found the gradient dZPL/dP=5.75 meV/GPa.

In the course of my PhD, Lyapin et al. (2018) [67] reported another ab initio study,
the negative NV − center have been studied with DFT. Lyapin et al. have reported the
calculated pressure coefficient of the NV − center of 6.5 meV/GPa with respect to his
experimental value 5.75 meV/GPa. In these calculations only redistribution of electron
density with pressure increase was taken into account. However, no details available about
the method that has been used for these calculations. Though the calculated pressure
coefficient is in good agreement with the experimental results for the NV − we will see in
chapter 3 that there were some discrepancies between calculations and experiment in the
case of the NV 0 center.

2.3.3 Conclusion

Till now, only the behavior of the triplet-triplet 3E −3 A2 transition under hydrostatic
pressure was studied theoretically and no studies are available for the singlet-singlet tran-
sition. I aim to study the behavior of the whole set of the low lying excited states of the
NV center under hydrostatic pressure and to understand the loss of the ODMR contrast.
This points will be discussed in part II, chapter 6. The pressure coefficients of the ZPLs
will be discussed in part II, chapter 4.

2.4 Behavior under a uniaxial pressure of the NV −

center

2.4.1 Experiments

a. Introduction

In fact, semiconductors have been intensively studied under various strain/stress conditions
in order to determine their optical constants under strain as well as deformation potentials
due to the electronic interaction with strains or with acoustic phonons [68, 69]. The
pressure applied in these cases is, however, much smaller than the one applied in DAC
in order to study the superconductivity. Indeed, these quantities (optical constants under
strain, deformation potentials) have been usually determined with strains introduced as a
small perturbation (in the vicinity of P=0).

The application of the strain/stress has also been widely used to study the fine structure
of defects in semiconductors and to determine the symmetry of their ground and excited
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states [70]. One of such experiments has been described in section 2.1.3, due to this study
the new insights about the fine structure of the excited state 3E were provided [36].

b. Measured quantities

In another experimental work [33] Rogers et al. performed series of experiments where
external stress is applied to the diamond along well-defined crystal axes while the dis-
placement and splitting of the ZPL were measured. Their study allowed to measure stress
parameters and to unambiguously identify the ordering of the singlet levels.

In general, stress along the symmetry axis results in shifts of the energy levels while
transverse stress lifts the degeneracy of the E state. Rogers et al. studied NV center with
application of stress along [001], [111] and [110] directions by means of a pneumatic driven
rod. Stress along these directions is always in a reflection plane or at right angles to a
reflection plane, and consequently the defect symmetry is always lowered to Cs, which may
lead to the different effect with respect to the hydrostatic pressure.

Rogers. et al. have measured the ZPL shift and splitting of both triplet-triplet 3E−3A2
transition and singlet-singlet 1A1 −1 E transition. They have found that the interaction
giving rise to the shift and splitting of the singlet-singlet ZPL is different from that giv-
ing rise to the shifts and splittings of the triplet-triplet ZPL. Summarizing their results,
they have found that the shift parameters due to the uniaxial stresses were smaller for
the singlet-singlet transition than for the triplet-triplet transition. Contrary, the splitting
stress parameters for the singlet-singlet transition were larger than for the triplet-triplet
transitions.

2.4.2 The Hamiltonian under a uniaxial strain/stress

The theory for uniaxial stress applied to an A−E transition at a defect of trigonal symmetry
been developed by Davies and Hamer [28, 71]. The stress perturbation at the NV center
whose axis is along [111] direction, defined as Z axis is given by the Hamiltonian

Ĥs = Â1(sxx + syy + szz) + Â′1(syz + szx+ sxy)
+ÊX(sxx + syy + 2szz) + ÊY

√
3(sxx − syy)

+Ê ′X(syz + szx+ 2sxy) + Ê ′Y
√

3(syz − szx)
(2.2)

where the stresses sij defined with respect to the crystal axes x, y, z. The operators A1,
A′1 are symmetry adapted electronic operators transforming as A1 irreducible representa-
tions and EX , EY , E ′X , E ′Y are operators transforming as components of E irreducible
representations.

Davies and Hamer have defined stress coupling coefficients in terms of the reduced
matrix elements of the operators AX ,A,EX , EY , E ′X , E ′Y between the |A〉, |EX〉 and |EY 〉
states of the center as follows:

A1 = 〈E||Â1||E〉 − 〈A||Â1||A〉, 2A2 = 〈E||Â′1||E〉 − 〈A||Â′1||A〉
B = 1

2〈E||Ê||E〉, C = 1
2〈E||Ê ′||E〉

(2.3)
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where A1, A2, B and C are the stress parameters that describe the shifts and splitting that
have been observed under different uniaxial stresses discussed in previous section 2.4.1 (a).

2.5 The molecular model predictions for the hydro-

static pressure

Though, Rogers et al. have not studied the effect of the hydrostatic pressure on the triplet
and singlet transitions, they have proposed the following statement using their molecular
model that has been already discussed in section 2.1.1. If the symmetry is not changed
by the applied stress (as it is a case for the hydrostatic pressure), it will only alter the
a1 − e energy separation. This will result in a change of the energy separation between
configurations but cause no change within each configuration.

Rogers et al. have considered as example the interaction in relation to the singlet
transition. The 1A1 (a(2)e(2)) - 1E (a(2)e(2)) transition is between levels within the same
a(2)e(2) configuration and so the transition energy cannot be shifted by the hydrostatic
strain.

2.6 Conclusions

In the present work, since I will study the behavior of the singlet and triplet transitions
under hydrostatic pressure, I will be able to check the theory of Rogers et al.



CHAPTER 3

Physics of NV 0 center in diamond

3.1 Introduction

During the fabrication of NV center defect, diamond which naturally contains some con-
centration of substitutional nitrogen is exposed to irradiations in order to create vacancies
[28]. The annealing at 600 ◦C enables the migration of vacancies, so vacancies can be
trapped by nitrogen atoms, creating the NV centers. NV centers can exist in both the
neutral and negative charge states. In the case of the negative NV − center, the neutral
NV 0 defect traps an additional electron from the diamond environment. Presumably, the
electron is donated by the substitutional nitrogen atom which is left in diamond after the
formations of NV centers. We have already discussed the most important properties of
the negative NV − center in chapter 2. In this chapter I discuss the neutral NV 0 center.

As we have seen from the previous chapter, the negative NV − center is a unique defect
whose spin dependent fluorescence and spin polarization make it attractive for numerous
applications in quantum technologies. Contrarily to the NV − center, the neutral NV 0

center has not been observed to manifest the analogous optical properties and thus was not
studied as intensively as the negative NV − center. Consequently, too little is understood
till now about the neutral NV 0 center. In particular, there are no many theoretical works
that study the NV 0 center under high pressure. The study the NV 0 center under high
pressure is the second main objective of the present work.

3.2 The NV 0 center at ambient pressure

3.2.1 Defect structure and charge state

The atomic structure of NV 0 defect is the same as that of the negative NV − center with
exception of the charge state. Mita [72] has shown that the NV 0 optical band observed at
2.156 eV (575 nm) corresponds to the neutral charge state of the NV center. Thus, the
molecular model of the NV 0 center represents 3 dangling bonds from carbon atoms and
one lone pair from the nitrogen atom, with 5 electrons distributed between them. Linear
combinations of these dangling bonds yield the same four defect levels as for NV − center.
These defect levels aN1 a1e are situated in the valence band and in the gap of diamond.
However, since they are occupied with 5 electrons, the electronic structure of the NV 0

center is different from the one of the NV − center.

24
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3.2.2 Optical properties

The NV 0 center main optical feature consists of the bright and sharp ZPL at 2.156 eV
(575 nm). This photoluminescence has been associated to optical transitions between the
ground and excited states with the orbital symmetry E and A respectively [28]. The
definition of the orbital symmetry of the NV 0 center states involved in optical transition
was established by photoluminescence polarization and uniaxial stress studies at the same
time as for the NV − [71] (see sections 2.1.1 and 2.4).

3.2.3 Spin state

The definition of the spin multiplicities of the optical transition of the NV 0, however, has
been a difficult task. Notably, because the NV 0 center does not have a detectable electron
paramagnetic resonance (EPR) signal related to it ground state nor to the first excited
state [20]. This absence was proposed to be linked with the dynamic Jahn-Teller effect
characteristic to the partially occupied double degenerate state of the E symmetry, so that
the NV 0 center ground state was proposed to be a 2E doublet [73]. At the same time, it
was found that the NV 0 center exhibited an EPR signal under a continuous excitation [73].
This signal corresponded to an intermediate quartet 4A2 excited state. The presence of the
quartet state in the NV 0 center confirmed once more the assignment of the neutral charge
because it confirmed the 5 electron model.

3.2.4 Symmetry of the ground state and excited state

The exact A1 or A2 symmetry of the optically excited A state s been a source of con-
tentions for a long time. Because of the absence of an EPR signal, and because the strain
experiments cannot distinguish between A1 and A2 symmetries [71], for a long time the
excited state has been erroneously assigned to the 2A1 symmetry [74, 75]. Indeed, the
group theory analysis of the molecular model predicts three different doublet states (2E,
2A1, 2A2) associated to the excited state configuration aN1 (2)a1(1)e(2), the ordering of these
doublets is unknown experimentally. It was presumed that the optical transition is more
likely to occur between the lowest lying doublet and ground state doublet. It is only since
the recent study of ref. [76] that the 2.156 eV transition in NV 0 has been assigned to
2E −2 A2 transitions. In order to reach this conclusion Manson et al. [76] have measured
the time-averaged emission spectrum of one single NV defect in diamond. This allowed for
the simultaneous detection of the ZPLs of the NV 0 and NV − centers. They have found
that due to strain in diamond the ZPLs of both charge states were split and it was found
that the splitting and polarization of the two ZPLs were identical. The strain splitting
was observed for the NV − center excited state 3E and for the NV 0 center’s ground state
2E, because both states have the doubly degenerate E symmetry. Taking in account that
selection rules imply that the strain split ZPLs of NV 0 and NV − can only have identical
polarization if the other levels involved in the transitions have identical orbital symmetry,
and since in the NV − center another level involved in the optical transition is A2 symmetry.
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It was concluded that in the NV 0 center the optical transition should also occur between
the levels with the E(GS) and A2(ES) symmetries.

a. The NV 0 −NV − photoconversion process

The symmetry assignment of optical transitions at 2.156 eV in the NV 0 center has been
achieved due to the possibility of recording simultaneously the ZPL signals of both NV −

and NV 0 centers. One should mention that this possibility itself is due to another im-
portant property of the NV center - the photoconversion process. The photoconversion
process relies on the capture process discussed in section 2.1.4.

The observation of the photoconversion process was done by Manson et al. [77]. The
photoconversion process belongs to the external transition type, accompanied by the change
of the charge state of the NV center during the excitation. Indeed, when exciting a single
center at a wavelength that coincides with the sidebands of both charge states, the one
center is converted back and forth between the two charge states. This process is yet to be
fully understood.

Some recent works explain this process with the help of a combination of two photon
absorption process and Auger effect [22, 78–80]. According to the currently available
explanation, first, the simultaneous absorption of two photons by a NV − center promotes
an electron from the a1 orbital in the band gap to the conduction band via the e level in the
gap. When the electron is above the conduction band edge, it can fall back to the a1 orbital
by kicking out another electron at e orbital and thus converting NV − in its neutral ground
state. Next, in order to convert the NV 0 back to its negative charge, another two-photon
absorption is needed to promote an electron from the a1 orbital to the e orbital and then,
to promote an electron from the valence band into the empty a1 orbital in the gap.

This process has been confirmed with the ab initio calculations [22, 79] by the calculation
of the Auger-recombination rate. The Auger-recombination rate was written as a Coulomb
interaction between the initial exciton state and all the possible final exciton states in ref.
[79]. Initial and final exciton state have been approximated by the electron-hole Kohn Sham
wave functions. In order to obtain the rate of transition, sum over all possible final states
was performed: the degenerate ex,y level and the electron in the conduction band minimum.
Their calculated Auger-recombination rate was 800 ps. In order to prove that the second
photon can be captured by electron on e orbital before the radiative recombination, they
have also calculated the radiative recombination lifetime, which resulted in 0.5 µs implying
that the Auger-recombination is a faster process, and indeed can take a place before the
radiative recombination.

b. Fine structure

Finally, only in 2019, during the course of my PhD work the fine structure of the NV 0 has
been determined by magnetic circular dichroism (MCD) spectroscopy [81] (see section 2.2.3
(c)). According to this study, the ground state 2E has a twofold orbital degeneracy that
gives rise to the spin-orbit fine structure as shown in panel (b) of Fig. 3.2.1. The optically
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excited 2A2 has no orbital degeneracy and exhibits no zero field fine structure. In ref. [81]
Barson et al. have also proposed that the absence of an EPR signal for the ground state
of the NV 0 center is likely due to the strain-broadening.

3.2.5 Conclusion

Summarizing all the experimental findings the currently accepted electronic structure of
excited state of the NV 0 has been determined very recently and is shown in Fig. 3.2.1. The
electronic structure of the NV 0 center consists of the doublet 2E ground state (S=1/2),
the optically excited doublet 2A2 (S=1/2) and an intermediate meta-stable quartet 4A2
(S=3/2). The relative position 4A2−2E or 2A2−4A2 is unknown experimentally, however
the Hund’s rule predicts the 4A2 to be lower than the excited doublets [76].
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Figure 3.2.1: The NV 0 center (a) Many-body states. (b) Fine structure of the ground state
2E and excited state 2A2. The arrows represent spin state, ± represent orbital
state The original figure can be found in ref. [81].

In Fig. 3.2.2 I summarize the details of the electronic structure of both NV − and
NV 0 centers known at the beginning of the present work. I show in blue color new details
that have been experimentaly observed very recently, during the course of my PhD work.
Notably, the fine structure of the NV 0 was finally directly observed in 2019 [81]. Also, the
symmetry of the optically excited state 2A2 was determined in 2013 [76]. The elements
denoted in red color are the quantities that are unknown experimentally, i.e. the relative
energy positioning of the singlet levels with respect to the triplet levels of the NV − center,
or the relative positioning of the metastable 4A2 level with resect to the ground state and
excited state doublets in the NV 0 center.
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Figure 3.2.2: Electronic structure of the NV center from the experimental point of view at
the beginning of the present PhD work. 3E and 3A2 triplet states are the mono-
determinantal states of NV − center that can be studied in DFT. The 1A1 and 1E
are the singlet states are the many-body states of the NV −. The 2E and 2A2 are
the many-body doublets of the NV 0 and the 4A2 is a mono-determinantal state
of the NV 0. Elements highlighted in blue color have been determined experi-
mentally during the course of the present PhD work [81]. Quantities highlighted
in red color are yet to be determined (relative energies of levels).

3.3 Behavior under quasi-hydrostatic pressure of the

NV 0 center

3.3.1 Experiments

In a recent study [62] Lyapin et al. have reported a hydrostatic pressure effect study on
NV 0 in nano- and micro- diamonds under hydrostatic pressure up to 50 GPa. The pressure
gradient of the photoluminescence has been found to be dZPL/dP=2.14 meV/GPa with
a linear behavior, which is very different from the pressure gradient of the NV − center
(5.81 meV/GPa, see section 2.3.1). The difference in the pressure behavior of the NV −

and NV 0 centers may be a reason of the decrease of the ODMR contrast of the NV − center
under the pressure, discussed in the section 2.3.1. Since under the excitation there can be a
photoconversion process between NV − and NV 0, under the pressure all the NV − centers
may have been converted into their neutral counterparts and are blocked in this state.

3.3.2 Theoretical works

In the later ref. [67] Lyapin et al. have compared the DFT calculations of the pressure
gradient of the NV − center and the NV 0 with their measurements. One should mention
that in DFT calculations only redistribution of electron density with pressure increase was
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taken into account. The DFT calculated pressure coefficient 6.5 meV/GPa was in a good
agreement with the measured one 5.8 meV/GPa in the case of the negative NV − center.
However, their calculated pressure coefficient for the NV 0 center 5.3 meV/GPa was very
different from the measured one 2.14 meV/GPa. Lyapin et al. argumented that the strong
correlations have been not taken into account in their calculations. Indeed, the optical
transition in NV 0 center occurs between the doublet state, which are highly correlated
states with the multi-determinantal nature and thus cannot be accurately treated within
DFT.

3.3.3 Conclusion

In this work, additionally to the NV − center we will study the effect of the hydrostatic
pressure on the NV 0 center’s many-body states. In order to study the optical transitions
of the NV 0 center, we have to address the highly correlated doublet states. In the present
work I developed and employed an advanced methodology of the treatment of the highly
correlated levels with the Hubbard model as will be explained in the part II.

3.4 Behavior under a uniaxial pressure of the NV 0

center

3.4.1 Experiments

In ref. [71] Davies has measured the photoluminescence and absorption of the NV 0 under
small [001], [111] and [110] uniaxial stresses. Similar study has been performed recently
on NV − center in ref. [33] as discussed in section 2.4.1. In both works, the stress shift
and splitting parameter A1, A2, B and C have been found (see section 2.4.2). In ref. [33]
these parameters were compared for both NV − and NV 0 centers. It was found that the
shift and splitting stress parameters of the NV 0 and NV − centers are very similar and
very different from those of the singlet-singlet ZPL transition of the NV − center. At the
moment of the work in ref. [71] the ZPL transition of the neutral NV 0 center has been
attributed to the transition between levels with E and A symmetry. The precise symmetry
has been determined only very recently by Manson et al. [76] as discussed in section 3.2.4.



CHAPTER 4

Methods

4.1 Some definitions about electronic correlations

In the real many-body system each electron interacts with another electron through the
instantaneous Coulomb repulsion. The Hamiltonian contains the sum of the pairwise
Coulomb interactions, the ground state wave function depends on all of the electronic
positions. Changing the position of one electron has an effect on all of the other positions.
In other words, the behavior of electrons is correlated. However, a realistic treatment of
many-body problem is very complicated, as it would require to find the exact solution
of the many-body Hamiltonian. One way to solve the problem is to map the many-body
problem of instantaneously interacting particles to single particle interacting with a average
potential due to the presence of other particles. This is the way followed in the Hartee-Fock
approximation. Thus, historically, as defined by Löwdin, the electron correlation energy
is the difference between the exact energy and Hartree-Fock energy, since Hartree-Fock
energy contains exact exchange energy but no correlation energy [82, 83].

In quantum chemistry it is usually comfortable to divide correlation energy into two
contributions: the dynamic one and nondynamic, or static, one, a division was first pro-
posed by Sinanoǧlu [84]. The Dynamical correlation energy is a short range effect, related
to the tight pair of electrons. The repulsion energy rises when two electrons approach [83].

The Non-dynamic correlation effect is related to the energy lowering of the ground
state because of the interaction of the HF configuration with low-lying excited states.
To be accurately accounted for, it requires multi-determinantal reference wave functions.
Non-dynamic correlations have a long range effect [83].

The term strong correlation is used when non-dynamic correlations become dominant
[85]. Non-dynamic correlations are essential in the description of such strongly correlated
systems like molecules to describe bond dissociation limits; in various transition-metal
compounds; diradicals; molecular magnets [85]; and to describe the localized levels of
deep-center defects [35].

The multiplet splitting of states that are equivalent by symmetry and thus, degenerate,
in the one-electron approximation, is an archetypal example of static correlations. Finally,
non-dynamic correlation is considered as a system-specific contribution, whereas dynamic
electron correlation is agreed to be a universal contribution [86].

Last but not least, one should be careful about the terminology since the word corre-
lations can be used in a more general sense. These are various correlation functions: a
dynamic correlation function describes the correlation between events at different times; a

30
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static correlation function yield a physical property measured or computed with snapshots
(in space) of the system [82].

4.2 Treatment of electron correlations with wave

function methods

Today, there is no method that is able to simultaneously provide weak (or dynamic) and
strong (or static) correlations at low computational cost. Many quantum chemistry wave
function based methods have been developed for directly solving the Schrödinger equation.
Among them, one can cite the configuration interaction (CI) that is a multi-configurational
variational method, the Møller-Plesset second order perturbation correction to the HF
energy (MRPT2), the coupled-cluster expansion (CC), the complete active space self-
consistent field (CASSCF) that includes static correlations, the complete active space
perturbation theory (CASPT2), where the dynamic correlation is a small perturbation
of the CASSCF, and the quantum Monte Carlo (MC) method [87]. In principle, it is
almost impossible to make a clear cut between dynamic and non-dynamic correlations.
However, it is believed that in quantum chemistry methods, a good account of dynamic
correlations is insured by the inclusion of multiple configurations (or excitations) to the
wave functions, by taking a sum of single Slater determinants, whereas inclusion of multiple
references (the reference to which excitations are generated) introduces static correlations
[86]. Moreover, these methods are believed to have a straightforward scaling of accuracy, in
the sense that inclusion of more excitations or more references will give results converging
to the exact solution of the many-body electronic problem. However, because of the cou-
pling between coordinates in the many-electron Schrödinger equation, the computational
cost of such methods are usually significant and these techniques are mostly applied to the
small molecules.

In the present work, I will compare my results obtained with beyond-DFT methods, as
described below, with results obtained with some of the quantum chemistry wave function
approach. In particular, I will compare my calculations to the CI, and to the CI combined
with constrained RPA (cRPA) of ref. [35] published in the course of my PhD.

In the work [35] various flavors of the CI method have been applied to treat the NV −

center. The main outcome has been the necessity both to treat explicitly static correla-
tions with CI [88] and to include the screening of the Coulomb interaction with the cRPA
approach [89].

4.3 Treatment of electron correlations in DFT

The density functional theory (DFT) is a method that is able to account for some static
and dynamic correlations via exchange and correlation (XC) functionals with a mean-field
computational cost [90]. In principle, the exact exchange and correlation functional should
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cover all non-dynamic and dynamic correlation contributions, however, the exact XC func-
tional is not known and the DFT accuracy is based on the approximation used for chosen
XC functional. The standard DFT functionals (LDA and GGA) are considered to describe
only dynamic correlations [91]. Despite the general success of the local and semilocal ap-
proximations for exchange and correlation, limitations and failures of the density functional
theory occur for (i) the description of systems with localized electrons [92]; (ii) the de-
scription of the binding energy, which shows up in particular in the evaluation of the band
gap of semiconductors [93].

Both failures have been known for a long time and are attributed to the discontinuity
of the exchange and correlation potential when the number of electrons in the system is
modified [94, 95]. Both kind of limitations will be discussed in the following sections.

4.4 Treatment of electron correlations beyond DFT

4.4.1 The DFT LDA+U and DFT GGA+U approaches

One says that the system is strongly correlated when electrons in the system occupying
localized orbitals are penalized with an additional on-site Coulomb repulsion energy term,
which adds to the total energy of the system. In such systems the DFT+U method, which
ca use both DFT-LDA+U and DFT-GGA+U functionals, can be used [96–99]. The on-
site Coulomb interaction U , first introduced by Hubbard [100], has been a parameter that
was system dependent, and was different in a bulk element and in its oxide, for instance.
Nowadays, the calculation of the Hubbard U can be determined to be consistent with the
occupation of the localized orbitals, thus rationalizing the choice of U [101], so that the
method does not contain any ad hoc parameter.

The method has been well tested for bulk systems with localized d and f orbitals,
transition metal (TM) oxides, TM metal silicates, and rare-earth correlated metals [102,
103]. The DFT-LDA+U and DFT-GGA+U are the methods of choice to include part of
static correlations. For defects in diamond, however, the localized atomic-like orbitals do
not come from the carbon atom, they are generated by the presence of the defect itself.
Thus, the method of ref. [103] is not applicable to the NV − center in diamond, and I had
to rely on a different method.

4.4.2 Hybrid functionals

Alternatively, the development of new hybrid functionals is based on an empirical mixing of
the orbital-dependent HF and of DFT exchange to obtain a more realistic account of the X
energy. Such hybrid functionals contain a part of exact exchange, and thus, correct for the
part of self interaction error (see section 4.5.2). Like in the Hartree-Fock method, hybrid
functionals produce an increase of the value of the band gap. In diamond, my computed
band gap is 4.75 eV too low in GGA, at the respective equilibrium values of the lattice
parameter. With the HSE06 hybrid functional, the computed value of the band gap is 5.99
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at the equilibrium lattice parameter, with respect to the experimental value of 5.47 eV
[104]. Thus, hybrid functionals are known to partly cure the limitation (ii) of DFT-LDA
and DFT-GGA (see section 4.3).I stress, however, that the HSE06 functional is not able to
provide an XC discontinuity when changing the number of particles and thus, is not able
to provide a complete remedy to the band gap problem [105].

The use of a hybrid functional has also the non intuitive virtue of providing some
improvement of the dynamic correlations. One has to note that generally, there are two
empirical parameters of a hybrid functional: the mixing coefficients of the exact exchange
part with the exchange in PBE α, and the adjustable screening parameter governing the
extent of short-range interactions ω as shown in eq. 4.1.

Ehybrid
XC = αEHF,SR

X (ω) + (1− α)EPBE,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C (4.1)

where SR stands for short range, and LR stands for long range.
Many works have demonstrated in recent years that the hybrid functionals can include

the screening effectively [92]. For, example, since the HSE06 [106, 107] contains a range-
separated potential, it includes a part of the non-local exchange (see eq. 4.1). In this way,
one can think that the HSE06 can mimic an effect of the screening of the exchange in the
GW being at the same time less computationally expensive.

The use of two parameters can be seen as an approximate treatment of electronic
correlations that weakens the direct exchange interaction. It is in this sense that the
HSE06 will be used in the present work to improve the DFT-GGA treatment of deep-levels
in defected diamond. I did not tune the HSE06 α nor ω parameters and used the standard
value α=0.25 and ω=0.106 for the HF and and ω=0.189 for the PBE part [107]. In part II,
the HSE06 functional will be used with the Hubbard model (see section 6.2.1).

(4.2)

4.4.3 The GW method

Another beyond-DFT method to study insulators with periodic boundary conditions is
the GW approach [108]. This approach is based on the many-body perturbation theory.
Nowadays, it is a most used technique to describe the excitation phenomena in solids.
An advantage over the DFT is an accurate inclusion of the screening of the Coulomb
interaction.

In particular, the GW method is one of the rare methods able to provide the XC
discontinuity necessary when changing the number of particles, and is able to accurately
predict band gap of semiconductors and insulators when electrons are not localized ones.
So the use of the GW method could have provided me a good treatment of the band gap
of diamond. However, the GW method lacks some of the dynamic correlations that are
necessary to describe localized electrons, and in particular deep-center levels like those of
the NV − center in diamond. Nevertheless, in the present work, I will compare some of
my results with results obtained with GW calculations combined with the Hubbard model
[34].
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4.4.4 Conclusion

A big advantage of the DFT with respect to the wave function theory is the possible
extension to big systems with low computational cost. However, contrarily to the wave
function theory (WFT), there is no systematic way of improvement of the XC functional,
so the accuracy of the many-electron interactions cannot be achieved in a stepwise way [91].
This mostly comes from the different ways in the definitions of the total correlation energy
at the DFT and WFT levels of theory.

In this work, I aim to study the manifold of the excited many-body levels of the NV
center under pressure. The electronic structure of the NV center contains highly localized
in-gap defect-related levels. This fact implies that we need to deal with strongly correlated
electrons. At the same time, I seek for the computational cost efficiency because the study
of charged defects requires a use of large supercells. In this context the Hamiltonian models
have much value. The Hubbard model, developed by James Hubbard [100], is a simple
model that addresses the problem of strongly correlated electrons in solids. Its simplicity,
however, does not prevent it to predict the complex effects in some correlated systems.
So, in this work I will introduce a combined DFT - Hubbard model technique. Special
attention will be given to the application of the Hubbard model to the NV center. In the
present work I will mainly use the DFT-GGA approach in combination with the Hubbard
model. I will compare my results with those obtained with a hybrid functional (see section
4.4.2). By using HSE06 functional, I will improve the description of the dynamic electronic
correlations, and the static ones by using the Hubbard model. In the following sections I
will briefly discuss the methodology, that will be used in this work, also, I review the state
of the art theoretical works.

4.5 Treatment of strongly correlated states of the

NV − defect

The optical properties of the NV center defect are important for its applications. As
explained in chapter 2, as an example, the calibration of the pressure dependence of optical
fingerprints may allow to use the NV center as a magnetic sensor under high pressure.

In the present section I review some of the recent advances that have been undertaken
in the calculations of highly correlated many-body states of the NV − center from the
first principles. I only discuss methods that will be used in this manuscript, the complete
reviews of the ab initio calculations for defects can be found in refs. [105] [21] and [109].

4.5.1 Caveats

In the present work several theoretical points have to be highlighted before proceeding to
application. First, I want to describe all of the low lying many-body states of the NV
center. This includes the ground states of NV − and NV 0, and some of the excited states
(see Fig. 3.2.2).
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The GS of the NV − being a triplet state, its Ms = ±1 projection is a closed-shell
system, for which a treatment in DFT-GGA is in principle meaningful. The calculation
of all other states requires a deepening of the theoretical arguments before applying a
DFT-based method.

4.5.2 The ∆SCF method

a. Principles

The first method is the delta self consistent field method (∆SCF), which enables one to
treat an excitation energy as the difference in total energies of two atomic-like configura-
tions. Indeed, the attempt to obtain excited state energies using time-independent DFT
(rather than time-dependent DFT) can be traced back to the demonstration that station-
ary solutions of the GS functional represent excited states [110, 111]. The ∆SCF method
has thus been developed by Ziegler [112] and von Barth [113] for the Hartree-Fock method
and for the spin-local density approximation in DFT, respectively. The standard self con-
sistent field is modified at each iteration by imposing the occupation numbers: molecular
orbitals of high energy are occupied, while lower in energy orbitals are unoccupied. The
∆SCF method is known to produce reasonable results for excitation energies in atoms and
molecules [95, 114].

b. Advantage with respect to the differences in eigenvalues

When one uses differences of Kohn Sham eigenvalues rather than of total energies, self-
interaction correction (SIC) is required. Indeed, the main drawback of the DFT is the
fact that the DFT Kohn-Sham eigenenergies do not have the physical meaning inherent
to the Hartree-Fock eigenenergies. The Kohn-Sham eigenenergies do not correspond to
the quasi-particle addition and removal energies. This drawback is coming from the fact
that the traditional exchange and correlation functionals (LDA, GGA) suffer from the self-
interaction error, i.e. the Hartree energy contains the interaction of the electronic density
at r with itself. In the Hartree-Fock, the exact exchange term exactly cancels the self
interaction present in the Hartree energy. This is not the case in DFT-LDA nor DFT-
GGA. This is particularly the case for the calculation of ionization potentials obtained
from GGA-HOMO Kohn Sham energies [115, 116]. I note that the inclusion of a part of
exact-exchange in hybrid functionals corrects for part of the self-interaction error [116].
However, the self-interaction correction is hardly affordable for big systems as those that
will be treated in part II of this manuscript.

c. Performance of the ∆SCF method

Finally, some results reported in the litterature have shown that ionization potentials ob-
tained with the ∆SCF method and the HSE06 hybrid functional are superior to those
obtained with the ∆SCF method and the PBE functional [116]. The ∆SCF method with
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a hybrid functional has also been shown to be the best method for the calculation of ion-
ization potentials with respect to experiment, and to perform even better than the GW
method in the simplest one shot application G0W 0. Therefore, the ∆SCF method with the
HSE06 hybrid functional can be the method of choice in my PhD work. I stress, however,
that even though, for atomic-like properties, the ∆SCF method is a method of choice, it is
not the case for the calculation of band gaps. An approximate form of the ∆SCF method
has been extended to compute band gap in solids [117]. However, the GW method remains
the method of choice for such calculations.

d. Conclusion

In conclusion, I want to treat a system which demonstrates atomic-like properties in a
bulk solid environment. The use of the ∆SCF method in the form of constrained DFT in
conjunction with the HSE06 functional is a fair compromise between the accuracy of the
description of atomic-like properties (for which the ∆SCF method is a method of choice)
and the description of the screening environment (for which the GW method would be the
method of choice).

Last but not least, I also stress that even though the ∆SCF method has been initially
developed to obtain multi-determinant levels for some atomic configurations [112, 113], it
was shown that for the case of strong correlations so they no longer can be described in
terms of a reduction of the Slater integrals, the ∆SCF method does not apply [113]. Thus,
in the case of my system, one cannot obtain the multi-determinant solutions. I have to
combine the ∆SCF method with the Hubbard model to reach this aim. In the present
work, the ∆SCF method is used in the form of constrained DFT to compute the mono-
determinantal solutions with fixed spin configurations, i.e. the triplet states 3A2 and 3E
of the NV − center, or the closed-shell singlet state 1A′1 of the NV − center, lying at high
energy.

4.5.3 Mono-determinantal states with constrained DFT

In order to calculate the defect internal optical transitions (see section 2.1.4), one can
approximately calculate some excited states with the constrained DFT approach [118].

a. Principles

In this approach the total energy of the excited state is approximated by the total energy
of the Kohn-Sham system, where some Kohn-Sham orbitals (KSO) unoccupied and some
KSO with higher energy are occupied. These constrained occupations are kept fixed during
the self-consistent solution of the Kohn-Sham equations. In this approach it is assumed the
change of orbital occupations can mimic an excitation process. As discussed in section 4.5.2,
it was shown recently that the self-interaction error can be corrected by the mixing of
part of the nonlocal Hartree-Fock exchange with the traditional DFT functional. It was
demonstrated that the HSE06 hybrid functional not only brings a significant improvement
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in the band gap description of some semiconductors [106, 107], as discussed in section 4.4.2,
but also that it enables a very accurate reproduction of the optical transition lines of some
defects [119–121]. Therefore, I will use the constrained DFT to describe the excitation
processes.

b. Limitations

The constrained DFT approach however has some limitations. Because of the single Slater
determinant nature of the DFT it fails to accurately describe the total energies of the
states that have a multiconfigurational nature. Thus, for example, one cannot calculate
open-shell singlet states with constrained DFT, as they are cannot be represented as a
single Slater determinant. In order to understand which states can be represented as a
single Slater determinant the use of the group theory is helpful.

c. Group theory analysis

Group theory is a powerful mathematical tool to describe the symmetry properties of
crystals. The introduction of a point defect into the crystal lattice produces a reduction
of the symmetry. Subsequently, the symmetry of the defect impurity is represented by a
subgroup of the original point group of the crystal. According to experimental data, the
symmetry of the NV center is C3v [27, 28]. The states near the point defect are localized.
Each carbon has a dangling bond σi pointing towards the vacancy, and the nitrogen has
a lone pair σ4. These atomic orbitals can be used to construct the symmetry adapted set
of molecular orbitals of the defect {ψr}, by the projection technique [122, 123]. In this
technique the dangling bonds are projected onto each irreducible representation (IR) of
the point group of the defect:

ψr = P (r)σi = lr
h

∑
e

χ(r)
e Reσi, (4.3)

where P (r) is the projection operator of the IR of index r, χ(r)
e is the character of the

symmetry operation Re, lr is the dimension of the IR, h is the number of elements in the
group. It has been shown using this technique in ref. [124] that there are 4 single-electron
defect-related levels based on the symmetry-adapted linear combination of these dangling
bonds. The results of ref. [124] are summarized in Fig. 4.5.3. However, I choose to work
with the notations and conventions used in ref. [118]
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Figure 4.5.1: Molecular model of the NV center. (a) Schematic representation of the dan-
gling bonds pointing towards the vacancy. (b) Symmetry-adapted wavefunctions
describing the molecular defect orbitals, constructed as a linear combinations of
the dangling bonds; α is a parameter of mixing between the nitrogen lone pair
and the carbon dangling bonds. (c) Schematic representation of the molecular
defect orbitals. Adapted from [75]

d. Wave function of the many-body states

The energy levels of the defect center are characterized by the number of electrons occu-
pying the orbitals. There are two possible representations: the description of the electrons
in the orbitals, or the description of the holes. Both representations are totally equivalent,
it is useful to choose the representation with the asmallest number of particles. In the case
of the NV − center, the defect contains 6 electrons, two of them being in the aN1 resonant
state. Three electrons are coming from the carbon dangling bonds, two electrons come
from the nitrogen atom, and one is due to the fact that the NV − center is negatively
charged. Finally, the representation of the total many-body wave function can be found
by the direct product of the representation of each hole/electron Γhn and its spin function
D1/2:

ΓΨ =
∏
n

(Γhn ⊗D1/2) (4.4)

We summarize the full set of 28 wave functions in table 4.1. With the help of this table I
can immediately see which of the many-body states of the NV − center can be represented
as a single Slater determinant, and which states are mixed ones and require the sum of at
least two Slater determinants. For example, as we can see from table 4.1, the Ms = ±1
total spin projections of the 3A2 state are single Slater determinants and thus, can be
calculated within the DFT approach by aligning two spin up electrons on the degenerated
exey level to reproduce the total spin S = 1. The first excited triplet 3E can be obtained
by promoting one spin down electron from the a1 level to the exey level while preserving
the total spin, S=1.
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Table 4.1: NV − defect. The full symmetry adapted wave functions of the many-body states are
written in the fifth column. Wave functions are written in the hole representation.
We note the spin projections in the third column. In the fourth column I indicate
which representation transforms as x or y, for the case of doubly degenerate E
representations. From ref. [118] and [124].

Configuration Symmetry Spin (x,y) Wave function

aN1 (2)a1(2)e(2) 3A2 1 |exey〉
0 1√

2(|exey〉+ |exēy〉)
-1 |ēxēy〉

1E 0 y 1√
2(|ēxey〉 − |exēy〉)

0 x 1√
2(|exēx〉 − |eyēy〉)

1A1 0 1√
2(|exēx〉+ |eyēy〉)

aN1 (2)a1(1)e(3) 3E 1 x |a1ex〉
1 y |a1ey〉
0 x 1√

2(|ā1ex〉+ |a1ēx〉)
0 y 1√

2(|ā1ey〉+ |a1ēy〉)
-1 x |ā1ēx〉
-1 y |ā1ēy〉

1E ′ 0 x 1√
2(|a1ēx〉 − |ā1ex〉)

0 y 1√
2(|a1ēy〉 − |ā1ey〉)

aN1 (2)a1(0)e(4) 1A′1 0 |a1ā1〉
aN1 (1)a1(2)e(3) 3E ′N 1 x |aN1 ex〉

1 y |aN1 ey〉
0 x 1√

2(|ā1
Nex〉+ |aN1 ēx〉)

0 y 1√
2(|ā1

Ney〉+ |aN1 ēy〉)
-1 x |ā1

N ēx〉
-1 y |ā1

N ēy〉
1E ′N 0 x 1√

2(|aN1 ēx〉 − |ā1
Nex〉)

0 y 1√
2(|aN1 ēy〉 − |ā1

Ney〉)
aN1 (1)a1(1)e(4) 3AN1 1 |aN1 a1〉

0 1√
2(|ā1

Na1〉+ |aN1 ā1〉)
-1 |ā1

N ā1〉
1A′1

N 0 1√
2(|ā1

Na1〉 − |aN1 ā1〉)
aN1 (0)a1(2)e(4) 1A′1

N 0 |aN1 ā1
N〉

4.5.4 Previous works for the mono-determinantal solutions

The constrained DFT (CDFT) method has been previously used to calculate the triplet-
triplet 3E −3 A2 optical transition. Several works have employed CDFT with local and
semi-local functionals [6, 118, 125–129], in all the works the 3E−3A2 optical ZPL has been
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found in the range 1.68-1.8 eV with respect to the experimental value of 1.945 eV [28].
In the refs. [125, 128] the ordering of the low lying many-body states of the NV − center
has been found using the von Barth technique [130] that allows to treat approximately the
singlet states in the CDFT.

It has been shown that the most advanced results of the description of the optical
transition in CDFT can be achieved by the use of the hybrid functional HSE06. Indeed,
several works have shown the ability of the HSE06 functional to reproduce the experimental
3E −3 A2 optical transition of the NV − with a great accuracy: 2.02 eV [6], 2.035 eV [129]
and 1.955 eV [119].

4.5.5 Multi-determinantal many-body states with the Hubbard
model

As we have seen from the previous section, the CDFT approach has an important lim-
itation that does not allow to calculate highly correlated many-body states that have a
multi-configurational nature. On the other hand, the CI calculations require a large com-
putational power and are not affordable for large supercell calculations.

Therefore, in the present section I discuss an alternative approach which provides the
multi-configurational many-body levels at an affordable computational cost. This approach
implies the utilization of the extended Hubbard model. The Hamiltonian of the extended
Hubbard model reads:

Ĥ =
∑
iσ

εiĉ
†
iσ ĉiσ−

∑
i 6=j,σ

tij ĉ
†
iσ ĉjσ+

∑
iσ

Un̂†i↑n̂i↓+
∑

i>j,σ,σ′
V n̂†iσn̂jσ′ +

∑
i>j,l>mσ,σ′

Xijlmĉ
†
iσ ĉ
†
jσ′ ĉmσ′ ĉlσ

(4.5)
where ĉ†iσ, ĉi,σ are respectively creation and annihilation operators for the electrons, and

n̂†iσ is the particle number operator for the electrons. The parameters εi, tij, U , V are
respectively on-site energy, hopping energy, on-site Coulomb repulsion term and nearest-
neighbor Coulomb repulsion term. X is the exchange interaction term.

An exact diagonalization of this Hamiltonian, in the multi-configurational basis of the
dangling bond occupations, allows to find the many-body states of the NV − center, in-
cluding the open-shell singlet levels such as 1E and 1A1.

4.5.6 Vertical excitation in the Hubbard model

In the Hubbard model, the calculated value is a vertical transition energy because in the
Hubbard model the change of atomic positions after the excitation is not taken into account.

4.5.7 Previous works for the multi-determinantal solutions

In ref. [75] Ranjbar et al. have calculated the Hubbard model parameters by direct
calculation of the interaction integrals in the local basis of the defect orbitals with the
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BLYP hybrid XC functional, i.e. the tij was calculated as (in atomic units):

tij =
∫
ϕ ∗i (r)[−1

2 5
2 +V (r)]ϕj(r)d3r, (4.6)

where ϕi(r) and ϕj(r) are the dangling orbitals of the NV from the single-electron DFT
calculations. The Coulomb interaction parameters were obtained as (in atomic units):

Xijlm =
∫
ϕ ∗i (r)ϕ ∗j (r′) 1

|r − r′|
ϕl(r)ϕm(r′)d3rd3r′, (4.7)

where Xijlm with indices (Xiiii) was Ui, with indices (Xiijj) was Vij and the remaining
part was the exchange part.

With the Hubbard parameters calculated in such a way, they have found a value of
the 3E −3 A2 vertical transition of 2.38 eV, 0.18 eV higher than the experimental value of
2.20 eV [28]. As for the singlet-singlet 1A1−1E vertical energy transition, they have found
a value of 0.61 eV, the experimental value of the vertical excitation for 1A1−1E transition
is unknown. Their vertical transition can be tentatively compared to the 1A1−1 E ZPL of
1.19 eV [131].

In ref. [34] Choi et al. have studied the NV − center with the extended Hubbard model,
however, the exchange part X has been neglected in their work. Also, Choi et al. have
used a different method to calculate the Hubbard model parameters. The tight-binding
parameters in ref. [34] have been found by the construction of the maximally localized
Wannier functions. Then, the interaction parameters U and V have been found by fitting
the quasi-particle energies from the diagonalization of the Hubbard Hamiltonian to the
quasi-particle energies found with a GW calculations. Choi et al. have found a value of
the 3E −3 A2 vertical transition of 2.1 eV. Also, they have found a value of the 1A1 −1 E
vertical transition around 0.8-1.0 eV. There is no experimental data to compare with. I
note that the experimental ZPL is 1.19 eV [131].

In the course of my PhD work, the results of Choi et al. have been compared to more
advanced methods in ref. [35]. Bockstedte et al. have combined Configuration Interaction
(CI) with constrained Random Phase Approximation (cRPA) in order to account for the
screening of the interaction between highly correlated defect levels. The CI method alone
turned out to be insufficient. The results will be discussed in the part II.

These results indicate that both static correlation effect of the localized dangling bonds
and the dynamic screening effects must be taken into account in order to describe the
open-shell singlet states of the NV − point defect accurately. They also tend to prove that
the Hubbard model is sufficient to account for static correlations.

4.5.8 Conclusion

In the present work I will address the highly correlated many-body states of the NV −

center with the Hubbard model. The multi-configurational basis set will enable me to
treat the static correlation effects. Also, I will introduce a new approach to parameterize
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the Hubbard model through the fitting to total energy differences calculated with the hybrid
HSE06 functional in the framework of ∆SCF method. The use of the HSE06 functional
will enable me to treat non-local screening effects, like in GW , and thus, to improve the
description of the environment. It will also enable me to improve the dynamic correlations
and to partly correct the self-interaction error of my atomic-like system, i.e. the deep levels
in the gap introduced by the point defect.

4.6 Treatment of strongly correlated states of the NV 0

defect

Contrarily to the NV − center case, there was only a small number of theoretical studies
of the many-body states of the NV 0 center.

4.6.1 Mono-determinantal states with constrained DFT

To the best of my knowledge, there is only one work where the CDFT has been applied
to the neutral NV 0 center. In ref. [74] Gali et al. have calculated the 4A2 −2 E energy
difference of the NV 0 center. Gali et al. have shown that the single Slater determinants
aN1 (2)a1(2)ex(1) and aN1 (2)a1(2)ey(1) are the true orthonormal eigenstates of the 2E ground
state of the C3v point group and thus can be calculated with CDFT. In order to calculate
the 4A2 state a single Slater determinant can be constructed by aligning all electrons with
spin up in the configuration aN1 (2)a1(1)e(2) to obtain Ms =+3/2. Their calculated energy
difference 4A2 −2 E was 0.86 eV.

In the present work, I are interested in the optical transitions of the NV 0 center. It has
been found experimentally, that the optical transition in the neutral NV 0 center occurs
between 2A2 and 2E doublet states [76]. However, the 2A2 state is a highly correlated state
that cannot be calculated in CDFT. Thus, more advanced techniques are needed.

4.6.2 Multi-determinantal many-body states with the Hubbard
model

Using the 4-site Hubbard model, with parameters calculated through the direct calculation
of interaction integrals in the local basis, Ranjbar et al. [75] have predicted the following
ordering of the many-body states: 2EGS, 4A2, 2A1, 2E, 2A1, 2E. Their 4A2 was situated
0.68 eV above the ground state, which is 0.22 eV lower than the value predicted with CDFT
by Gali et al. [74]. The experimental value is, however, unknown. In the ref. [75] Ranjbar
et al. have assigned the optical transition to the 2A1 −2 E one, which is in a disagreement
with the recent experimental results [76] where the optical transition has been assigned to
the 2A2 −2 E. I will discuss this issue in part II.
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4.7 Conclusion

The limited number of theoretical works does not allow to reflect on the many-body states
ordering nor to make robust conclusions about the optical transition. In Fig. 4.7.1 I
summarize the theoretical knowledge ath the beginning of my PhD work, as well the data
that have been reported during the PhD. Indeed, the field is moving rapidly.

In the case of the NV − center the theoretical works seem to agree with experimental
data (see Fig 3.2.2) and one with another. However, in the case of the NV 0 center, some
theoretical works contradict one another. For instance, Zyubin et al. [132] and Ranjbar et
al. [75] do not agree about the symmetry of the first excited doublet state. Zyubin et al.
have found the first excited doublet state of 2A2 symmetry which is in a good agreement
with the recent experimental assignment of the optical transition in the NV 0 [76]. However,
the theoretical work of Zyubin et al. does not predict the existence of the intermediate
quartet state 4A2. While Ranjbar et al. predict the existence of the quartet state, however,
the symmetry of their first excited doublet state 2A1 seems to be in disagreement with
the experimental assignment. Both works seem to be in agreement with each other for the
three following states lying higher in energy. Since, those works are the two only theoretical
works that have studied the neutral NV 0 center, it is difficult to draw a conclusion on the
ordering of the low lying many-body states.

Moreover, my aim is to study the behavior of the many-body states of NV 0 under
a hydrostatic pressure. Thus, more investigations are needed in the case of the neutral
NV 0 center. As for the case of the NV −, center I am going to use the Hubbard model
parameterized by fitting it to the DFT-PBE or DFT-HSE06 total energies. However, as
explained, there is only a small number of many-body states of the NV 0 center that can be
calculated in DFT. One should mention, that in ref. [75] the Hubbard parameters for NV −

and NV 0 were very similar except for the exchange and the on-site Coulomb repulsion.
In my model, I neglect the exchange interaction and I will make an approximation, using
the same Hubbard model parameters for NV − and NV 0. I will show in part II that this
approximation is reasonable in order to study the pressure behavior of the many-body
states.
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Figure 4.7.1: Electronic structure of the NV − and NV 0 center from the theoretical point
of view at the beginning of my PhD. Elements highlighted in blue color have
been determined theoretically during the course of my PhD work. Quantities
highlighted in red color are still to be determined. In particular, the discrepancy
in the symmetry of excited doublet state of the NV 0 between the refs. [132]
and [75] is highlighted in red color. The relative positioning of the singlet levels
with respect to the triplet levels in the NV − center is highlighted in blue color
as calculated in ref. [34] and confirmed by a recent calculation in ref. [35] that
has been performed in the course of my PhD. See Fig. 3.2.2 for analog from the
experimental point of view. (a) Values are taken from refs. [6, 118, 125–129]. (b)
Values are taken from refs. [6, 119, 129]. (c) Value is taken from ref. [75]. (d)
Value is taken from ref. [34]. (f) Value is taken from ref. [74]. (g) Value is taken
from ref. [132]. (h) Value is taken from ref. [35]
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CHAPTER 5

Treatment of correlations in DFT

In this chapter, I present the method with which I will calculate the difference ETOT (3E)−
ETOT (3A2), where ETOT is the total energy of the system in the 3E and 3A2 configura-
tions of the NV − center in diamond. I study both ZPL and VE transitions as defined in
sections 2.1.4 (b) and 2.1.4 (c). I use the DFT calculations as defined in section 4.5.3 and
I study the effect of the supercell size and functionals DFT-LDA, DFT-PBE and DFT-
HSE06 on the ETOT (3E)−ETOT (3A2) ZPL. I discuss the importance of the correlations for
the calculations of the ZPL. I discuss also some technical problems related to the open-shell
configuration calculations in DFT. I then apply a hydrostatic pressure and study the be-
havior of the aforementioned ZPL and VE transitions. Finally, I compare my results with
the experimental studies. Last but not least, I conclude on the validity of the DFT calcu-
lations used in the pressure dependence investigations and I conclude on the methodology
that will be used for further investigations in the next chapter.

5.1 Computational details

If not mentioned otherwise the results obtained in this chapter have been performed with
the Quantum ESPRESSO package [133, 134] in the 128-atom supercell (4×4×4 2-atom
fcc cell, with alat=6.79 (a.u.)) with the 222 Monkhorst Pack [135] k-points sampling.
The cutoff energy was 40 Ry. The normconserving pseudopotentials [136] used for the
calculations have been developed in the present work (details about the pseudopotential
can be found in the Appendix 8.1). The need of the development of the normconserving
pseudopotentials has been linked with the issue of the utilization of the available in the
database [137] ultrasoft pseudopotentials [138] with the HSE06 functional in the Quan-
tum ESPRESSO package. The issue manifested into the huge computational load. The
calculations have been performed with DFT-LDA, DFT-PBE and HSE06 functionals. In
the case of HSE06 functional I have used the standard value of the parameters (see section
4.4.2) and the three-dimensional mesh for q-points (k1-k2) sampling of the Fock operator
has been set to nqx1=nqx2=nqx3=1. In the case of the charged cell in a periodic calcu-
lation a compensating jellium background is inserted to remove divergences. The atomic
positions in the supercell containing the defect were relaxed for each functional with the
convergence threshold of 0.001 (a.u.).
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5.2 DFT modeling of the monodeterminantal states

Fig. 5.2.1 shows a schematic representation of the defect-related levels in the gap. 3A2
is the ground state, 3E is a low lying excited-state, for these levels their Ms = ±1 can
be represented as a single Slater determinant and thus, can be calculated within the DFT
approach as discussed in chapter 4. The understanding of whether the state can or cannot
be represented as a single-Slater determinant can be obtained from the group theory by
constructing the total wave function of the state. In the case of the NV − a detailed analysis
has been performed in ref. [124], as discussed in section 4.5.3.

In order to calculate the total energy corresponding to the 3A2 ground state, and to the
3E excited state of NV −, we fill the levels in the gap with the electrons in the ways shown
in figure 5.2.1. The ground state triplet is constructed by aligning two spin-up electrons
in the degenerated exey state to reproduce the total spin S = 1. The first excited triplet
is obtained by promoting one spin-down electron from the a1 state to the exey state by
preserving the total spin. In order to find the energy transition, I calculate the difference
between the corresponding total energies ETOT (3E)−ETOT (3A2). When both total energies
are computed at the equilibrium atomic positions of the 3A2 configuration, I compare my
result to the vertical excitation, as defined in section 2.1.4 (c). When the total energies
are computed at their respective equilibrium atomic positions, I compare my result to the
zero phonon line as defined in section 2.1.4 (b).

mono multi
determinant

Figure 5.2.1: The NV − center. (a) Schematic representation of the defect-related levels in
the band gap, adapted from ref. [30], same as Fig. 2.1.1 (b). (b) Constrained
occupations of the single particle levels in the gap in order to calculate the many-
body ground state and excited state. The aN1 level is occupied with 2 electrons,
being a resonant state.
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5.3 Open-shell calculation problem

In the case of the 3E state, however, an additional problem arises. Indeed, since the exey
state is two-fold degenerated, spin-down electron occupies either the ex or ey orbital, and
both cases should give the same energy of the many-body state. However, the treatment
of the open-shell configurations with the orbital degeneracy is a complex case for the DFT
calculations and is still an open methodological question. Many new methods have been
developed in order to treat this problem, among them the ground state ensembles Kohn-
Sham theory [139] or the multi-configurational DFT [140]. Because of this problem, in
the DFT-PBE calculations, the convergence of the 3E state is slow with respect to the
calculation of the 3A2 state. I observe in my calculations that the convergence of the state
occurs with a spurious breaking of the degeneracy of the exey level everywhere (except
at the k-point 1

4
1
4

1
4 of my calculation). An even greater problem occurs in the HSE06

functional calculations. The problem occurs since the HSE06 explicitly depends on the
orbitals, the convergence of the 3E state become impossible. To avoid the problem of the
convergence, I have chosen a strategy to perform restricted calculations with fractional
occupations [105, 141]. Therefore, in order to calculate the total energy of the 3E state, I
equally occupy ex and ey level by a half of the spin-down electron. This technique preserves
the exey degeneracy.

5.4 Calculation of the ZPL and VE

In this chapter, I investigate both the vertical excitation line between 3E−3A2 and the zero-
phonon line between 3E −3 A2. In order to describe the vertical excitation with our DFT
method, I impose the electron occupations corresponding to the excited state and I fix the
atomic coordinates to those that correspond to the ground state equilibrium configuration.
Then, I calculate the energy difference between the total energy of the 3A2 ground state
and of the vertically excited one 3E.

In order to calculate the zero phonon line, I impose the electronic occupations corre-
sponding to the excited state and I allow atoms to relax inside a supercell. Then I calculate
the energy difference between the total energy of the 3A2 ground state in its equilibrium
atomic configuration and the excited state total energy 3E in the relaxed configuration.

5.5 Impact of the supercell size on the ZPL and VE

I first study the influence of the supercell size and functionals on the zero phonon line
for the 3E −3 A2 transition. Fig. 5.5.1 shows the ZPL for the 3E −3 A2 transition as a
function of the supercell size. As one can see, for the 3E−3A2 transition within DFT-PBE
the curve saturates for the supercell size of 512-atoms, which yields a ZPL value for the
transition 3E −3 A2 transition equal to 1.728 eV, which is underestimated with respect to
the experiment 1.945 eV. In Fig. 5.5.1 I also compare my PBE ZPL to other theoretical
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calculations [18], [127] and [119], which were performed with the DFT-PBE. As one can
see, my DFT-PBE results are in agreement with other theoretical works. I conclude that,

• first, there is a size effect on the ZPL which can be eliminated for sufficiently large
supercells with the size starting from 216 - 512-atoms.

• second, there is a common trend of the PBE functional to underestimate an internal
defect transition energy along with the band gap energy.
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Figure 5.5.1: NV − center. Experimental 3E −3 A2 ZPL [17] and ZPL calculated within DFT-
PBE as a function of the supercell size; ref a,b [119]; ref c [18]; ref d [127].

5.6 Impact of the functionals

Although the size effect is eliminated starting from the 512-atom cell, in order to limit the
computational cost I consider the 128-atom supercell, which I found to be the only feasible
one with HSE06 to perform repeated calculations at various pressures, and being also the
one that is big enough to weaken the spurious interaction of the charge in the neighboring
unit cells. Indeed, I checked that the defect-related bands in the gap are almost flat for
the 128-atom fcc supercell.
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I study the effect of the exchange-correlation functional on the behavior of the system
under a hydrostatic pressure. I apply the hydrostatic pressure to the system by varying
the lattice parameter of the cubic fcc supercell. In order to calculate the ZPL, the atomic
coordinates are allowed to relax inside the supercell at each pressure. Fig. 5.6.1 shows a
comparison of the experimental ZPL [17] between the triplet states as a function of the
pressure with my calculated ZPL both with the DFT-LDA, DFT-PBE and DFT-HSE06
functionals. If we consider first the ambient pressure, one can see, that the DFT-PBE
underestimates the absolute value of the photoluminescence line - 1.703 eV, whereas DFT-
HSE06 overestimates the absolute value of the photoluminescence - 2.13 eV with respect
to the experimental 1.945 eV. The discrepancy in my HSE06 result with respect to the
experimental value might come from the supercell size effect. It has been recently shown,
that the HSE06 hybrid functional provides not only a more accurate value of the band gap
energy for some semiconductors [106, 107], but also the ZPL in the NV − center in the
512-atom supercell [119] (the black triangle in Fig.5.6.1).
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Figure 5.6.1: NV − center. Experimental E(3E) − E(3A2) ZPL as a function of pressure,
extracted from [17] and ZPL calculated within DFT-PBE, DFT-LDA and HSE06
in a 128-atom fcc supercell.
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This is explained by the fact that the mixing of the PBE with the Hartree-Fock exact
exchange improves the overall exchange and correlation. In particular, HSE06 allows to go
beyond the standard DFT and to mimic the self-interaction correction (see sections 4.4.2
and 4.5.2 (b)).

5.7 Results: pressure effect on ZPL

As my goal is to study the effect of the hydrostatic pressure of the zero phonon line of
the E(3E)−E(3A2) transition which implies the repeated calculations of the ground state
and excited state total energies with the subsequent relaxation of atomic coordinates at
each pressure. Such a task would demand an important computational power if done in
the 512-atom supercell with the HSE06 functional. If we, however, concentrate only on
the pressure behavior and not on the absolute value of the transition energy, I will show
that the 128-atom cell is a reasonable compromise between the computational cost and the
precision. Table 5.1 compares the pressure gradients of the ZPL calculated with different
functionals with the experiment. I mention, however, that at high pressures (130 GPa),
the behavior of the ZPL deviates from the linear one.

Table 5.1: NV − center. Comparison of the pressure gradients (meV/GPa).

Exp. 1 [17] Exp. 2 [16] LDA PBE HSE06
5.75 5.5 4.5 5.0 5.9

As one can see, all functionals reproduce with a good agreement the experimental
pressure gradient of the ZPL. The LDA functional reproduces the experimental pressure
gradient within an error of 22%, PBE within 13% and HSE06 within a -2% error. One
should mention that the fitting has been performed in the range 0-50 GPa, the range
corresponding to the available experimental data. In such a way, I show that even though
the 128 supercell calculations suffer from the size effect, the pressure coefficient is well
reproduced.

5.8 Results: pressure effect on ZPL vs VE

I now investigate the behavior of the vertical excitation between 3E −3 A2 as a function
of the applied pressure. The Fig. 5.8.1 illustrates the comparison of the vertical and the
zero phonon lines calculated with the PBE and HSE06 functionals. I find that the vertical
excitation is higher in energy than the ZPL, with the Stokes shift at zero pressure of 0.23 eV.
I, also, get that the Stokes shift slightly increases as a function of the pressure as we can
see that from the values of the pressure gradients in the Table 8.1. One can conclude, that
the pressure behavior of the vertical excitation and ZPL has the same order of magnitude.
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However, the ionic relaxations reduce the pressure coefficient by 0.9 meV/GPa, i.e. 1̃3-15 %
for both PBE and HSE06 functionals.
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Figure 5.8.1: NV − center. Comparison of the ZPL and vertical excitation within PBE and
HSE06.

Table 5.2: NV − center. Comparison of the pressure gradients of ZPL and VE(meV/GPa).

Exp. 1 [17] Exp. 2 [16] LDA PBE HSE06
ZPL 5.75 5.5 4.5 5.0 5.9
VE - - - 5.9 6.8

5.9 Conclusions

I would like to sum up some important conclusions of this chapter. First of all, I show
that the DFT calculations, whatever the functional, reproduce the pressure gradient of
the E(3E) − E(3A2) optical transition. The most accurate result is obtained using the
HSE06 hybrid functional. However, in order to reproduce the absolute value of the energy
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transition one should properly account for the electron correlations. The use of the HSE06
is crucial here. Even though the absolute value of the optical transition depends on the
functional and is sensitive to the supercell size, I show that the DFT total energy method is
a rather good reference to study the pressure behavior of the system. This is an important
conclusion because in the next chapter I will show that the energy transitions calculated in
the DFT can be used in order to parameterize the Hubbard model. I will show, that more
mono-determinantal excited states higher in energy can be calculated in constrained DFT.
This will give me enough references to fit the parameters of the Hubbard model. The
Hubbard model will give me the possibility to study multi-determinantal excited states
that are not accessible with the DFT calculation.



CHAPTER 6

Treatment of correlations with the
Hubbard model: theoretical
developments

In this chapter I apply the extended Hubbard model to the negatively charged NV − and
to the neutral NV 0 center, in order to model multi-determinant states, which cannot be
obtained by the DFT modeling. I introduce the new 3-site model for the NV center
and I compare it to the conventional 4-site model [34, 75]. I provide both analytical and
numerical solutions for the two models. I demonstrate that the low-lying excited states of
the NV center obtained with the two models are the same. The 3-site model contains less
parameters than the 4-site model and thus requires less references to fit the parameters. I
introduce the new technique to parameterize the Hubbard model using DFT total energies.
Finally, I compare the many-body excited states obtained by my Hubbard model with the
state-of-the art theoretical methods.

6.1 The Hubbard model and the hubbardcode

In this work, I aim to study the manifold of the excited many-body levels of the NV center.
The electronic structure of the NV center contains highly localized in-gap defect-related
levels. This fact implies I need to deal with strongly correlated electrons. The Hubbard
model, developed by James Hubbard [100] is a simple model that addresses the problem of
strongly correlated electrons in solids (see section 4.5.5). In order to model electron-electron
and ion-electron interactions I employ the extended Hubbard model Hamiltonian:

Ĥ =
∑
iσ

εiĉ
†
iσ ĉiσ −

∑
i 6=j,σ

tij ĉ
†
iσ ĉjσ +

∑
iσ

Un̂†i↑n̂i↓ +
∑

i>j,σ,σ′
V n̂†iσn̂jσ′ , (6.1)

where ĉ†iσ, ĉi,σ are creation and annihilation operators, n̂†iσ is a particle number operator.
Parameters εi, tij, U , V are respectively on-site, hopping energies, on-site Coulomb repul-
sion and nearest-neighbor Coulomb repulsion. Fig. 6.2.2 schematically demonstrates the
meaning of these parameters: the hopping parameter tCC is the probability of the electron
to transfer from one site to another with spin conservation, εC is the energy that an electron
possesses when occupying the carbon site. On-site Coulomb repulsion occurs between the
electrons of different spins. The nearest-neighbor Coulomb repulsion contains interactions

54
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between all spins.
In this chapter I will consider 3- and 4-site Hubbard models in order to study the NV

center. In order to construct the Hamiltonian of the considered system I use a fortran code
that I have developed during my PHD work - the hubbardcode. The general algorithm of the
code is the following. The python script constructs a multi-electron basis set for the chosen
number of electrons and sites. The code constructs the Hamiltonian in the multi-electron
basis by performing the action of the second quantization operators on the basis functions.
When the Hamiltonian is constructed, the code writes as output the Hamiltonian in the
matlab or python format, so the subsequent analytical diagonalization is possible with the
python sympy library of in the Matlab software using symbolic tools. For the numeric
diagonalization I use the ScaLAPACK linear algebra library. In the last part of the code, I
perform the fit procedure for the parameterization of the Hamiltonian parameters, as will
be explained in the next sections. The code also performs the symmetry analysis of the
resulting eigenfunctions. Fig. 6.1.1 represents the workflow of the code.

Input

Hamiltonian construction

# electrons, # sites, basis

Symbolic diagonalization

basis construction

Code

SCALAPACK 

Python script

Python
sympy 

      Matlab
symbolic tools 

Numeric diagonalization

Output

  Hamiltonian
Matlab format 

  Hamiltonian
Python format 

Eigenenergies/values
    Fitting procedure
  Symmetry analysis 

Code

Figure 6.1.1: Workflow of the hubbard code.



6.2. THE HUBBARD MODEL FOR THE NV − CENTER 56

6.2 The Hubbard model for the NV − center

6.2.1 The 3-site Hubbard model

a. State of the art

In this work, I adopt a strategy to model the NV − center as a defect molecule and to
construct the Hubbard model to model the multi-determinant many-body states. This
means that I consider only the nearest neighbors to the vacancy both in this section and
in section 6.2.2. In the other works, where the NV center has been studied with the
Hubbard model [34, 75], the 4 atoms around the vacancy have been taken into account:
3 carbons atoms and the nitrogen atom. This choice is dictated by the picture of the
unsatisfied bonds. Each carbon has a dangling bond pointing towards the vacancy and
the nitrogen has a lone pair (see section 4.5.3 (c)). Using the group theory projection
technique [122, 123] it has been shown in ref. [124] that there are 4 single-electron defect-
related levels based on the symmetry-adapted linear combination of these dangling bonds.
It has also been shown in ref. [124] using symmetry and charge considerations that the
nitrogen related single-electron level should be the lowest in energy among those 4 levels.
The DFT calculations [118] have shown eventually that, indeed, there are 3 single-electron
levels that are located in the electronic band gap, however, the nitrogen-related level is
situated in the valence band. I confirm this result with my DFT calculations. It was also
shown experimentally and with ab initio calculations that the greatest contribution to the
defect orbitals comes from the nearest neighbor carbon atoms to the vacancy [49, 118, 126,
142]. I confirm these results by calculating the projections of the wave functions onto the
atomic orbitals, indeed, I find that the nitrogen atomic wave functions have a very small
projection onto the single-electron a1 level located in the band gap. Fig. 6.2.1 illustrates
the defect-related single-electron levels.

Valence band

Conduction band

Figure 6.2.1: Schematic representation of the single-electron defect-related levels, which are
the linear combinations of the atomic orbitals of the nearest neighboring atoms
to the vacancy. Same as Fig. 2.1.1 (b).

b. Method

Based on these results I have decided to neglect the nitrogen and to use 3-site model. Thus,
I will consider only 3 carbon atoms around the vacancy in the 3-site Hubbard model. One
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should mention that the vacancy is modeled by the absence of a site, so the electrons are
allowed to stay on carbon sites only. In the spirit of the original Hubbard model, there is
one orbital per site, which can host two electrons of different spin by the Pauli principle.
Fig. 6.2.2 schematically represents my system.

C CC e-e-

e-

e-

Figure 6.2.2: Schematic representation of the 3-site Hubbard model. Large grey balls are the
sites which model carbon atoms. The small light grey ball is a vacant site. Each
site can host spin-up and spin-down electron, this is indicated with the black
squares.

According to the electron counting, we have to distribute 4 electrons among 3 sites.
Three electrons are coming from the carbon dangling bonds and one is due to the fact
that the NV − center is negatively charged. Therefore, our multi-electron Fock space basis
set contains 15 basis functions. They are constructed as all possible combinations for 4
electrons to occupy 6 spin orbital sites (C6

4 = 15).
The multi-electron basis reads:

φ1 = |0 ↑↓ ↑↓ 〉 S = 0
φ2 = | ↑ ↑ ↑↓ 〉 S = 1
φ3 = | ↑ ↓ ↑↓ 〉 S = 0
φ4 = | ↑ ↑↓ ↑ 〉 S = 1
φ5 = | ↑ ↑↓ ↓ 〉 S = 0
φ6 = | ↓ ↑ ↑↓ 〉 S = 0
φ7 = | ↓ ↓ ↑↓ 〉 S = −1
φ8 = | ↓ ↑↓ ↑ 〉 S = 0
φ9 = | ↓ ↑↓ ↓ 〉 S = −1
φ10 = | ↑↓ 0 ↑↓ 〉 S = 0
φ11 = | ↑↓ ↑ ↑ 〉 S = 1
φ12 = | ↑↓ ↑ ↓ 〉 S = 0
φ13 = | ↑↓ ↓ ↑ 〉 S = 0
φ14 = | ↑↓ ↓ ↓ 〉 S = −1
φ15 = | ↑↓ ↑↓ 0 〉 S = 0

(6.2)
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where I indicate the total spin of the basis function in the right column. The same basis
can be represented in the matrix form as it is implemented in the hubbardcode, that I have
developed during my PhD work. In the matrix the columns correspond to sites. Two
columns are reserved per site. Every first position per site is reserved for majority spins,
every second - for minority spins.

Φ =



0 0 1 1 1 1
1 0 1 0 1 1
1 0 0 1 1 1
1 0 1 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1
0 1 0 1 1 1
0 1 1 1 1 0
0 1 1 1 0 1
1 1 0 0 1 1
1 1 1 0 1 0
1 1 1 0 0 1
1 1 0 1 1 0
1 1 0 1 0 1
1 1 1 1 0 0



(6.3)

I obtain the following Hubbard Hamiltonian for my 3-site system using the hubbardcode:

H =



E1 0 t 0 t −t 0 −t 0 0 0 0 0 0 0
0 E2 0 t 0 0 0 0 0 0 −t 0 0 0 0
t 0 E2 0 t 0 0 0 0 t 0 0 −t 0 0
0 t 0 E2 0 0 0 0 0 0 t 0 0 0 0
t 0 t 0 E2 0 0 0 0 0 0 t 0 0 t
−t 0 0 0 0 E2 0 t 0 −t 0 −t 0 0 0
0 0 0 0 0 0 E2 0 t 0 0 0 0 −t 0
−t 0 0 0 0 t 0 E2 0 0 0 0 t 0 −t
0 0 0 0 0 0 t 0 E2 0 0 0 0 t 0
0 0 t 0 0 −t 0 0 0 E1 0 t −t 0 0
0 −t 0 t 0 0 0 0 0 0 E2 0 0 0 0
0 0 0 0 t −t 0 0 0 t 0 E2 0 0 t
0 0 −t 0 0 0 0 t 0 −t 0 0 E2 0 −t
0 0 0 0 0 0 −t 0 t 0 0 0 0 E2 0
0 0 0 0 t 0 0 −t 0 0 0 t −t 0 E1



(6.4)

where I replaced tCC by t for simplicity and used the following conventions:

E1 = 2U + 4V + 4εC
E2 = U + 5V + 4εC

(6.5)

I first present the analytical solution of this problem.
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c. Analytical solution

Before we diagonalize the Hamiltonian 6.4, one can make some simplifications. The sub-
traction of a constant from the diagonal of the Hamiltonian can reduce the number of
non-zero elements and parameters of the Hamiltonian and save the time of the symbolic
diagonalization which is usually more time consuming than the numerical one. Also, this
operation can give us an important insight about the model. In my case, I decide to sub-
tract the value of E2 from the diagonal of the Hamiltonian: H − E2I. One can easily see
that this subtraction reduces the Hamiltonian to two non-zero parameters: t and U − V .
This gives us the clue that the final eigenenergies will depend only on these quantities.
One should mention that we should add the same constant afterwards to obtain the final
eigenenergies. However, the addition of the constant will only shift the absolute values
of the final eigenenergies. So, with this analysis one can already obtain some information
about the behavior of our model. In fact, this tells us that my model has only 3 indepen-
dent parameters: t, U − V and εC , where εC only shifts the manifold of the many-body
states.

The following simplification can be further undertaken. One can bring the Hamiltonian
to the block-diagonal form due to its intrinsic symmetry. It can be shown that the Hamilto-
nian commutes with the total spin projection Ms, so it is a conserved quantity. Thus, only
elements situated at the intersection of the same Ms projections will be non-zero. In order
to bring my Hamiltonian to a block-diagonal form I employ the Cuthil-McKee technique to
reduce the bandwidth of the sparse symmetric matrix [143] as implemented in the Matlab
software. Fig. 6.2.3 shows a simplified form of the initial Hamiltonian. Non-zero terms are
represented as colored points. I then rewrite the same Hamiltonian in the block-diagonal
form as explained. The blocks represent spin projections respectively Ms: 0, 1, -1,

0 5 10 15

0

5

10

15

H initial

0 5 10 15

0

5

10

15

H permuted

Figure 6.2.3: The 3-site Hubbard model. Schematic representation of the initial Hamiltonian
and the same Hamiltonian in the block-diagonal form.

where two blocks corresponding to Ms=1,-1 are the same and equal to:
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 0 −tCC tCC
−tCC 0 tCC
tCC tCC 0

 (6.6)

and the sub-block with Ms=0 is:



(U− V) −tCC tCC 0 −tCC tCC 0 0 0
−tCC 0 0 −tCC tCC 0 tCC 0 0
tCC 0 0 tCC 0 tCC 0 tCC 0
0 −tCC tCC (U− V) 0 0 −tCC tCC 0
−tCC tCC 0 0 0 0 0 −tCC −tCC
tCC 0 tCC 0 0 0 −tCC 0 tCC
0 tCC 0 −tCC 0 −tCC 0 0 −tCC
0 0 tCC tCC −tCC 0 0 0 tCC
0 0 0 0 −tCC tCC −tCC tCC (U− V)


(6.7)

The eigen function coefficient matrix is (for the sake of simplicity, the eigenvectors are
not normalized, but they are orthogonal)

C =



0 0 0 0 0 0 0 0 0 1 1 − f
2 t 0 − g

2 t 0
1 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 −1 0 b

8 t − c
8 t 0 − g

4 t 0 − f
4 t

−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 b

8 t − c
8 t 1 g

4 t 1 f
4 t

0 1 0 0 1 0 0 −1 0 − b
8 t

c
8 t 0 g

4 t 0 f
4 t

0 0 1 0 0 1 0 0 −1 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 − b

8 t
c

8 t −1 − g
4 t −1 − f

4 t
0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 f

2 t −1 g
2 t −1

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 b

8 t − c
8 t −1 0 −1 0

0 1 0 0 0 0 0 1 0 − b
8 t

c
8 t 1 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 1



(6.8)

Here I have used the following notations

a = (U − V )2 − 4(U − V )t+ 36t2

b = U − V − 2 t+
√
a

c = −(U − V ) + 2 t+
√
a

d = (U − V )2 + 2(U − V )t+ 9t2

f = U − V + t−
√
d

g = U − V + t+
√
d

(6.9)
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The total spin of the system in a state i can be found as

Si = STbasis|C|2, (6.10)

where Sbasis is a matrix which contains the spins of the basis states and |C|2 is the coefficient
matrix C in which all the element are squared (not to confuse with C × C). This |C|2
matrix contains the weight of each state in each site.

The eigenenergies (where I added E2 that was subtracted in the beginning) and total
spins of states are

Total spin Total energy Total energy if U = V = 0
S1 = 1 E1 = U + 5V + 4 ε− 2 t 4ε− 2t
S2 = 0 E2 = U + 5V + 4 ε− 2 t 4ε− 2t
S3 = −1 E3 = U + 5V + 4 ε− 2 t 4ε− 2t
S4 = 1 E4 = U + 5V + 4 ε+ t 4ε+ t
S5 = 0 E5 = U + 5V + 4 ε+ t 4ε+ t
S6 = −1 E6 = U + 5V + 4 ε+ t 4ε+ t
S7 = 1 E7 = U + 5V + 4 ε+ t 4ε+ t
S8 = 0 E8 = U + 5V + 4 ε+ t 4ε+ t
S9 = −1 E9 = U + 5V + 4 ε+ t 4ε+ t

S10 = 0 E10 = 3U
2 + 9V

2 + 4 ε+ t−
√
a

2 4ε− 2t
S11 = 0 E11 = 3U

2 + 9V
2 + 4 ε+ t+

√
a

2 4ε+ 4t
S12 = 0 E12 = 3U

2 + 9V
2 + 4 ε− t

2 −
√
d

2 4ε− 2t
S13 = 0 E13 = 3U

2 + 9V
2 + 4 ε− t

2 −
√
d

2 4ε− 2t
S14 = 0 E14 = 3U

2 + 9V
2 + 4 ε− t

2 +
√
d

2 4ε+ t

S15 = 0 E15 = 3U
2 + 9V

2 + 4 ε− t
2 +

√
d

2 4ε+ t

(6.11)

The differences of eigenenergies with respect to the ground state energy are

Energy Degeneracy Symmetry

∆E1 = 0 (g = 3) 3A2

∆E2 = 3 t (g = 6) 3E

∆E3 = 1
2(U − V ) + 3 t−

√
a

2 (g = 1) 1A1

∆E4 = 1
2(U − V ) + 3 t+

√
a

2 (g = 1) 1A1

∆E5 = 1
2(U − V ) + 3 t

2 −
√
d

2 (g = 2) 1E

∆E6 = 1
2(U − V ) + 3 t

2 +
√
d

2 (g = 2) 1E

(6.12)

The analysis of the analytical solution brings us to the following important conclusions:
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• The difference between the triplet levels (from 1 to 9) in eq. (6.11) does not depend
on U nor V , but the absolute value does.

• The difference between the singlet levels depends on (U − V ) and t.

• All the levels contain the ε parameter in the form 4ε. So, changing ε will just shift
all the levels in the same manner.

• None of the model parameters (ε, t, U, V ) changes the triplet eigenstates (the columns
of the C matrix: Cij, where 1 < j < 9), which is not the case for the triplet energies.

We have seen that all the variables in the C matrix and the eigenenergies depend only
on the difference U − V . This could be initially seen from the form of the Hamiltonian
as has been discussed in the beginning of section 6.2.2 (b). If we take the difference of
the diagonal terms of the Hamiltonian, we will get: E1 − E2 = U − V . This provides a
huge time saving of the exact diagonalization of the Hamiltonian because we reduce the
number of variables from four (ε, U, V, t) to two (U − V, t). This is especially important
in the case where we want to perform a symbolic diagonalization for large systems. One
should remember, however, that using this procedure implies we are only interested in the
differences of eigenenergies. One can find the absolute eigenenergies to adding back the
term E2 that we subtracted out of the diagonal of the Hamiltonian.

In eq. (6.11) in the case when we put U = V = 0 in the resulting many-body eigenen-
ergies we have the following degeneracies g of levels:

g(4ε− 2t) = 6
g(4ε+ t) = 8
g(4ε+ 4t) = 1

(6.13)

In fact, when we neglect electron-electron interactions we obtain the limit case of a non-
interacting system with many electrons. One can see, that degeneracies are increased with
respect to the interacting system, so at the end we have only three levels. One can say
that we have downfolded the many-electron system to an effective non-interacting system.
The same connection might be done starting from ”bottom-up”, from the single-electron
system, described in the next section.

d. The single electron case

In the single electron case, we simply have only one electron hosted by 3 carbon sites.
Thus, the single electron basis is:
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φ
(1)
1 = | ↑ 0 0 〉 S = 1/2
φ

(1)
2 = |0 ↑ 0 〉 S = 1/2
φ

(1)
3 = |0 0 ↑ 〉 S = 1/2
φ

(1)
4 = | ↓ 0 0 〉 S = −1/2
φ

(1)
5 = |0 ↓ 0 〉 S = −1/2
φ

(1)
6 = |0 0 ↓ 〉 S = −1/2

(6.14)

Or, in the matrix form,

Φ(1) =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


(6.15)

The single electron Hamiltonian in this system is

H(1) =



ε −t −t 0 0 0
−t ε −t 0 0 0
−t −t ε 0 0 0
0 0 0 ε −t −t
0 0 0 −t ε −t
0 0 0 −t −t ε


(6.16)

We obtain eigenfunctions coefficient matrix by the diagonalization (since this system
is much simpler than the multielectron one, we can write the normalized and orthogonal
eigenvectors)

C(1) =



−
√

2
2 −

√
2

2 0 0
√

3
3 0√

2
2 0 0 0

√
3

3 0
0

√
2

2 0 0
√

3
3 0

0 0 −
√

2
2 −

√
2

2 0
√

3
3

0 0
√

2
2 0 0

√
3

3
0 0 0

√
2

2 0
√

3
3


(6.17)

The single electron eigenenergies are:
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Total spin Total energy

S
(1)
1 = 1/2 E

(1)
1 = ε+ t

S
(1)
2 = 1/2 E

(1)
2 = ε+ t

S
(1)
3 = −1/2 E

(1)
3 = ε+ t

S
(1)
4 = −1/2 E

(1)
4 = ε+ t

S
(1)
5 = 1/2 E

(1)
5 = ε− 2 t

S
(1)
6 = −1/2 E

(1)
6 = ε− 2 t

(6.18)

which can be represented with the following schema:

(↑)E(1)
1 , (↑)E(1)

2 , (↓)E(1)
3 , (↓)E(1)

4

(↑)E(1)
5 , (↓)E(1)

6

As denoted in 6.18 spin-up and down projection energies E
(1)
5 and E

(1)
6 correspond to the

lowest defect-related single-electron level as shown in the schema above, whereas the E
(1)
1−4

eigenenergies correspond to the two-fold degenerate single-electron state which is higher in
energy. So, in order to obtain a non-interacting many-body energy using single-electron
energies of eq. (6.18) one should sum these energies as many times as the number of
electrons we want to put in the corresponding state of the schema. Now we can ”build” the
multielectron states in the framework of the single-electron states. So, we have six electron
levels (or three if we incorporate the spin) and we need to place four electrons on these six
levels. The total energy of a state will be just the sum of single electron energies. In the
following table I show all 15 non-interacting many-electron states constructed in this way.
One can see that at the end we obtain the same three levels, with the same degeneracies
and the same energies as in the case where we started from the many-electron system 6.11.
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N Configuration Energy Total spin

1
↑ ↓

↑ ↓
E

(1)
5 + E

(1)
6 + E

(1)
1 + E

(1)
3 = 4ε− 2t S=0

2
↑ ↑

↑ ↓
E

(1)
5 + E

(1)
6 + E

(1)
1 + E

(1)
2 = 4ε− 2t S=1

3
↑ ↓

↑ ↓
E

(1)
5 + E

(1)
6 + E

(1)
1 + E

(1)
4 = 4ε− 2t S=0

4
↓ ↑

↑ ↓
E

(1)
5 + E

(1)
6 + E

(1)
3 + E

(1)
2 = 4ε− 2t S=0

5
↓ ↓

↑ ↓
E

(1)
5 + E

(1)
6 + E

(1)
3 + E

(1)
4 = 4ε− 2t S=-1

6
↑ ↓

↑ ↓
E

(1)
5 + E

(1)
6 + E

(1)
2 + E

(1)
4 = 4ε− 2t S=0

7
↑ ↓ ↑

↑
E

(1)
5 + E

(1)
1 + E

(1)
3 + E

(1)
2 = 4ε+ t S=1

8
↑ ↑ ↓

↑
E

(1)
5 + E

(1)
1 + E

(1)
2 + E

(1)
4 = 4ε+ t S=1

9
↑ ↓ ↓

↑
E

(1)
5 + E

(1)
1 + E

(1)
3 + E

(1)
4 = 4ε+ t S=0

10
↓ ↑ ↓

↑
E

(1)
5 + E

(1)
3 + E

(1)
2 + E

(1)
4 = 4ε+ t S=0

11
↑ ↓ ↑

↓
E

(1)
6 + E

(1)
1 + E

(1)
3 + E

(1)
2 = 4ε+ t S=0

12
↑ ↑ ↓

↓
E

(1)
6 + E

(1)
1 + E

(1)
2 + E

(1)
4 = 4ε+ t S=0

13
↑ ↓ ↓

↓
E

(1)
6 + E

(1)
1 + E

(1)
3 + E

(1)
4 = 4ε+ t S=-1

14
↓ ↑ ↓

↓
E

(1)
6 + E

(1)
3 + E

(1)
2 + E

(1)
4 = 4ε+ t S=-1

15
↑ ↓ ↑ ↓

E
(1)
1 + E

(1)
3 + E

(1)
2 + E

(1)
4 = 4ε+ 4t S=0
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e. Analytical parameterization

In the present work I am interested in studying the energy transitions between low-lying
many-body states of theNV center, notably E(3E)−E(3A2), E(1A1)−E(1E), and compare
them to the experimental findings. Since I am interested only in energy differences, as I
have shown earlier, my 3-site model is reduced to two parameters: t and U − V . Since
the 3-site model is a relatively simple model, I have an analytical solution of the energy
differences 6.12.

On the other hand, in the previous chapter 5, I have shown that some of these energy
transitions can be calculated from the DFT. These are energy transitions between states
that can be represented as a single Slater determinant. /degenar

Valence band

Conduction band

(a) Single particle states (b) Single particle states 

occupations

(c) Many-body states
mono multi

determinant

Figure 6.2.4: (a) Schema of the single-electron levels of the NV center in the band gap. Same
as Fig. 2.1.1 (b). (b) Occupations of the single-electron levels of panel (a)
corresponding to the many-body state in panel (c). (c) Many-body levels of the
NV − center that can be found from 3-site model. Levels that can be represented
as a single Slater determinant are in the left column, the multi-determinant ones
are in the right column.

The 3-site model results in 15 eigenstates. Taking into account their degeneracies, it
gives us 6 many-body states of the following symmetries: 3A2, 1E, 1A1, 3E, 1E ′, 1A′1. I
note that the prime symbol in the symmetry notation is just to distinguish the levels of the
same symmetry, but those with the prime are of higher energy. Among these 6 levels, only
3 can be calculated with the DFT. They are the 3A2 and the 3E Ms = ±1 projections,
as discussed in the previous chapter. Another level is a closed-shell singlet 1A′1. This
state is calculated by promoting all electrons from the lowest in-gap a1 level to the exey
levels. Fig. 6.2.4 (b) shows the constrained occupations that have to be imposed in order
to calculate these levels in DFT.
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So, the idea of my approach is to calculate two reference energy transitions from DFT
and to associate them with the corresponding energy transition in the Hubbard model.
This gives us two equations with two unknown variables t and U − V . In this way I
associate the Hubbard energy transitions ∆E2 and ∆E4 from 6.12 to the DFT total energy
differencies:

∆E2 = ETOT (3E)− ETOT (3A2) (6.19)

∆E4 = ETOT (1A′1)− ETOT (3A2) (6.20)

Substituting the energy values from 6.11, we get

∆E2 = 3t (6.21)

∆E4 = (U − V )
2 + 3 t+

√
(U − V )2 − 4 (U − V ) t+ 36 t2

2 . (6.22)

It is seen that the ∆E2 triplet-triplet transition depends only on the t parameter and
the ∆E4 triplet-singlet transition depends on t and on (U − V ). Since I can find only one
parameter among U and V , I put V artificially to zero. Then I find the parameters t and
U from the DFT energies ∆E2 and ∆E4 in the following way:

t = 1
3∆E2 (6.23)

U − V = ∆E4
2 − 6 ∆E4 t

∆E4 − 4 t (6.24)

f. Numerical parameterization

One should mention that it is not always possible to obtain the full analytical expressions
of the parameters as a function of the DFT energies. As I will show, it is not possible in
the case of the 4-site model. Another way to parameterize the Hamiltonian is to perform
a numeric fit of t and U − V to the DFT transitions. Such a fit procedure has been
implemented in the hubbardcode. The strategy is the standard one, I start with some guess
parameters and I fit the Hubbard levels to the corresponding DFT transitions until they
coincide within e.g. 1 meV error. In the fit procedure, as an error ctriterion, I have taken
a root-mean square error:

RMSE =
√

1
2 [(∆3EDFT −∆3EHub.)2 + (∆1A′1

DFT −∆1A′1
Hub.)2] (6.25)

where ∆ stands for the energy difference between corresponding states 3E or 1A′1 and the
ground state 3A2, for example ∆3E =3 E −3 A2.
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g. My results of the 3-site model: many-body states of NV − at ambient pressure

In this section I apply the method presented in the first part of this chapter in order to
find the many-body states of the NV − center at ambient pressure using the 3-site model. I
present only the results obtained using analytical expressions as my numerical fit procedure
yields the same result. In my model, the calculated value is a vertical transition energy
because in the Hubbard model the change of atomic positions after the excitation is not
taken into account. Table 6.1 contains a comparison between the DFT energy transitions
calculated in the present work and used as references and those calculated from the 3-site
Hubbard model. The transition are energies calculated with respect to the ground state
energy. I show both my PBE and HSE06 calculations.

Table 6.1: The 3-site Hubbard model for the NV − center. Vertical energy transition between
many-body excited states and the 3A2 ground state.

Symmetry
DFT-PBE

(eV)
Hub.+PBE

(eV)
DFT HSE06

(eV)
Hub.+HSE06

(eV)

1A′1 4.28 4.28 5.27 5.27
1E ′ 2.84 3.42
3E 1.89 1.89 2.36 2.36
1A1 0.71 0.82
1E 0.27 0.32
3A2 0.0 0.0 0.0 0.0

The parameters I have found using PBE references are: tCC = 0.630 eV, U − V =
1.216 eV, I have chosen εC = 0. In principle, it can be any value, because it does not
influence the energy differences but rather their absolute position and I am only interested
in the energy differences. In the case of the HSE06 references I have found tCC = 0.787 eV
and U − V = 1.365 eV.

g1. Comparison with the experiments

As one can see from the table 6.1 the states 3A2, 3E and 1A′1 coincide with my DFT
calculations since the model has been fit in a way to reproduce my DFT calculations.
The additional knowledge we obtain from the 3-site Hubbard model consists in the multi-
determinant states 1E, 1A1 and 1E ′. I am mostly interested in the transition energies that
have been observed in the experiments, in particular, the 3E - 3A2 and 1A1 - 1E transitions.

I find the value of the vertical transition 3E - 3A2 = 1.89 eV in PBE and 2.36 eV in
HSE06 as compared to the experimental vertical transition of 2.2 eV [28].

As for the singlet-singlet transition, the 1A1 - 1E = 0.44 eV in PBE and 0.51 eV in
HSE06. Even though, my 1A1 - 1E energy of a vertical transition cannot be directly
compared to the experimental zero phonon line, I remind here that the measured ZPL
value is 1.19 eV [131] and that the ZPL value provide a lower bound for the VE value (see
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Fig. 2.1.4). Thus, my singlet-singlet transition comes out to be underestimated by a factor
of two.

g2. Comparison with the recent previous works

Finally, I find the order of the multiplet levels that is in complete agreement with the
previous works that are shown in Fig. 6.2.5.
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Figure 6.2.5: NV − center. Comparison of the low-lying many-body states obtained with
different methods. [a] ref. [34], [b] ref. [35]. I indicate as Hub.+PBE and
Hub.+HSE06 my results where the many-body states have been obtained using
my DFT-PBE and HSE06 calculations as references for the 3-site Hubbard model.

Fig.6.2.5 shows the comparison of the low-lying excited states, as calculated in the
present work with the 3-site Hubbard model, with the experimental vertical transition and
the most recent theoretical works. One should mention that the relative positions of the
triplet ground state with respect to the first excited singlet 3A2 ↔1 E and first excited
triplet with respect to the second excited singlet 3E ↔1 A1 are not known experimentally.
Also, these relative positions calculated with different methods are rather scattered (see
next section). The most complete comparison of all theoretical findings is summarized in
the ref. [35].

Among the theoretical works which have considered the problem of the NV − center, I
single out the recent works of [34, 35], in which state of the art techniques have been applied
and which yield results which agree with each other and reproduce best the experimental
data. I represented the data of ref. [34] and [35] in Fig. 6.2.5. In ref.[34], Choi et
al. have used quasiparticle energies calculated with the GW method, in order to fit U
and V parameters in their 4-site model. I will show in Fig. 6.2.14 that my 3-site and
4-site models yield results that are consistent with each other, so the difference between
my results and Choi’s results does not come from the model. In the GW method the
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screening of the Coulomb interaction is taken into account by the W term using the random
phase approximation. In their work, the tight-binding parameters have been found by the
construction of the Maximally localized Wannier functions. Choi et al. have found 3E -
3A2 = 2.1 eV for the vertical transition. In ref. [35], Bockstedte et al. have combined
Configuration Interaction (CI) with constrained Random Phase Approximation (cRPA) in
order to account for the screening of interaction between highly correlated defect levels.
The two methods of refs.[34] and [35] have a similar spirit in the sense that both methods
treat accurately the screening of the Coulomb interaction which is important in strongly-
correlated systems.

On the other hand, many works have demonstrated in recent years that the hybrid
functionals can include the screening effectively [92]. For example, since the HSE06 contains
a range-separated potential, it includes a part of the non-local exchange. In this way, one
can think that the HSE06 can mimic part of the effect of the screening of the exchange
in the GW being at the same time less computationally expensive (see section 4.4.2).
Indeed, my results of the 3E - 3A2 transition, obtained with the 3-site Hubbard model
parameterized using the HSE06 hybrid functional, compare rather well to the experimental
vertical transition between triplet levels, and, as I will show in the next section, to the
calculation of Ranjbar et al for both triplet-triplet and singlet-singlet transitions.

g3. Comparison with previous CI works

In figure 6.2.6, I show that the relative positions of the triplet ground state with respect
to the first excited singlet 3A2 ↔1 E and first excited triplet with respect to the second
excited singlet 3E ↔1 A1 calculated with different flavors of the CI method are rather
scattered.
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Figure 6.2.6: NV − center. Comparison of the low-lying many-body states obtained with
different methods. [a] ref. [35]. I indicate as Hub.+PBE and Hub.+HSE06 my
results where the many-body states have been obtained using my DFT-PBE and
HSE06 calculations as references for the 3-site Hubbard model.
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For instance, CI with RPA yields a value of 1A1 −1 E vertical transition of 0.65 eV,
in close agreement with my values. The introduction of cRPA increases the value of the
1A1 −1 E transition to 0.92 eV, close to the experimental lower bound of 1.19 eV (ZPL).

g4. Comparison with previous works including electron-hole interaction

In figure 6.2.7, I show that the inclusion of the electron-hole interaction on top of the GW
correction, as done in ref. [34] and in ref. [127], yields values of the 1A1 −1 E vertical
transition of 0.63 eV and 0.60 eV respectively.
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Figure 6.2.7: NV − center. Comparison of the low-lying many-body states obtained with
different methods showing the effect of electron-hole interaction. [a] ref. [127]. [b]
ref. [34]. I indicate as Hub.+PBE and Hub.+HSE06 my results where the many-
body states have been obtained using my DFT-PBE and HSE06 calculations as
references for the 3-site Hubbard model.

The value of the singlet-singlet transition is thus very sensitive to the electron-hole
interaction. The inclusion of the electron-hole interaction with the Bethe-Salpeter equation
has the effect of cancelling the effect of the GW correction. This has already been observed
in the calculations of optical absorption spectra of semiconductors [144]. Thus, one has to
consider Choi’s results with some care when only the GW correction is accounted for, and
not combined with the accounting for the electron-hole interaction with BSE.

One should mention that when both quasiparticle corrections are applied in the work
of ref. [127] where the direct GW+BSE calculation was performed and in the work of
ref. [34] where the GW+BSE was included in Hubbard model, the results are very close.
My Hubbard+HSE06 results are not far from these results, which tends to show that the
BSE cancels in part the GW correction. Also, the role of the Hubbard model in the results
of ref. [34] is questionable as the results are very close to the direct calculation with
GW+BSE of ref. [127].
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g5. Comparison with another Hubbard model-based work

Finally, in figure 6.2.8, I compare my results with the calculation of Ranjbar et al [75], based
on the B3LYP functional and the 4-site model. In that work, the Hubbard parameters have
been directly computed (see section 4.5.7). Ranjbar et al have found a value of 2.38 eV
for the 3E −3 A2 triplet-triplet transition, in perfect agreement with my HSE06 value of
2.36 eV (see section 6.2.1). This validates that my results weakly depend on the type of
hybrid functional. Moreover, Ranjbar et al found a value of 0.61 eV for the singlet-singlet
1A1 −1 E vertical transition, to be compared with my result of 0.51 eV. Thus, my value
is very close to that of Ranjbar et al, although the methods to find the parameters of the
Hubbard model were rather different.
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Figure 6.2.8: NV − center. Comparison of the low-lying many-body states obtained with
different methods. [a] ref. [75]. I indicate as Hub.+PBE and Hub.+HSE06 my
results where the many-body states have been obtained using my DFT-PBE and
HSE06 calculations as references for the 3-site Hubbard model.

h. Discussion

h1. Possible limitation of DFT

My results for the 3E−3A2 transition depend on the t hopping parameter of the eq. (6.22)
which is predicted with an error of 10% in the HSE06 and B3LYP [75] calculations with
respect to the experimental value. As the latter is determined with optical experiments
which are very accurate, the error comes from the calculation. On the other hand, an error
of 0.1 eV is the typical accuracy that one can expect from a supercell calculation with
hybrid functionals and pseudopotentials. Thus, my results are in the standards of DFT
calculations.

On the other hand, my results for the 1A1−1E transition depend on the U−V parameter
of eq. (6.22) which is predicted with an error estimated to be as large as 100%. Although
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the effect of the supercell size needs to be checked, a test which is still being performed at
the moment of writing of the manuscript 1, I do not expect large changes from a calculation
with the 216-atom supercell. First, I point that, through the t parameter, finite size effects
should show up in the singlet-singlet transition and in the triplet-triplet one and the latter
is already within the DFT standard accuracy.

Rather, I would like to discuss the choice of the 1A′1 state as a reference state for the
fit of the Hubbard model. Although it is a closed-shell system (see Fig. 6.2.4), which
requires a single Slater determinant (see table 4.1), the calculation of its total energy with
constrained DFT may be insufficient.

h2. Gedanken experiment on 1A′1 singlet state

In fact, in eq. (6.22), the parameter U − V should be made larger by at least 2.24 eV
(3.6-1.365 eV) in HSE06 in order to increase the 1A1 −1 E transition energy by 0.68 eV
(i.e 1.19-0.51 eV) to be larger than the experiment lower bound. I performed a Gedanken
experiment by deducing the value of ETOT (1A′1) − ETOT (3A2) which would be required.
It turns out that ETOT (1A′1) − ETOT (3A2) should be increased by at least 1.33 eV. The
increase of the 1A′1 reference total enegy would not only provoke the increase of the 1A1−1E
transition but would also push all singlet states 1A1, 1E, 1E ′ and 1A′1 to higher energies,
as summarized in table 6.2.

Table 6.2: The 3-site Hubbard model for the NV − center. Vertical energy transition between
many-body excited states and 3A2 ground state. Obtained with the evaluated 1A′1
state in a way to reproduce the 1A1 −1 E transition. Thus, 1A′1 level is indicated as
DFT+PBE/HSE06 Gedanken.

Symmetry
DFT-PBE

(eV)
Hub.+PBE

(eV)
DFT HSE06

(eV)
Hub.+HSE06

(eV)

1A′1
6.22

(Gedanken)
6.22

(Gedanken)
6.60

(Gedanken)
6.60

(Gedanken)
1E ′ 5.52 5.44
3E 1.89 1.89 2.36 2.36
1A1 1.66 1.72
1E 0.46 0.52
3A2 0.0 0.0 0.0 0.0

In particular, the singlet state 1E ′, has been found to be quasi-degenerate with the 3E
state in the calculations with GW+BSE by Ma et al. in ref. [127]. This finding is in
controversy with the results of Bockstedte et al., who found the 1E ′ state by 1 eV higher
in energy than the 3E state [35]. In my Gedanken experiment the 1E ′ state was found

1Calculations with the HSE06 functional are of tremendous computational load, and the calculations
realized in the present manuscript are already very involved.
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to be higher in energy by the value of 3.63 eV in DFT-PBE and by the value of 3.08 eV
in DFT-HSE06. This fact excludes any possibility for the 1E ′ state to be involved in the
intersystem crossing mechanism. The new parameters that has been found in this thought
experiment are tCC = 0.630 eV, U − V=4.1 eV for the DFT-PBE and tCC = 0.787 eV,
U − V=3.6 eV for DFT-HSE06.

This thought experiment substantiates the inadequacy of the DFT in evaluation the
total energy of the 1A′1 reference state, if we trust the experimental value. One reason of
the deficiency might come from the fact that the DFT should be able to reproduce the
low-lying excited state that has a symmetry different from the ground state [145]. Indeed,
the 3E triplet state is the first excited state of E symmetry, as the excited singlet state
1E has E symmetry but it has a different spin (see figure 4.7.1). Thus, constrained DFT
yields satisfying results on the 3E −3 A2 transition. On the other hand, the 1A′1 state is
not the excited state of the lowest energy. The singlet 1A1 is also present (see figure 4.7.1).
So it is probable that I have encountered the limitation of the DFT for excited states in
my calculations of the 1A′1 state. An alternative explanation requires to reconsider the
experimental value.

h3. Fit to experiment

In the Gedanken experiment I have fitted the 1A1−1E transition to the experimental value
and have fixed the 3E −3 A2 transition to my DFT value in order to estimate what should
have been my 1A′1 to be in DFT in order to be in closer agreement to the experiment. In
this section, I take the experimental values for both transitions as the reference values for
my 3-site model. I summarize results in table 6.3

Table 6.3: The 3-site Hubbard model for the NV − center. Vertical energy transition between
many-body excited states and 3A2 ground state. Obtained with the Hubbard model
fit onto the experimental data.

1.19

One can see from table 6.3 that the many-body states fit onto the experiment are in-
between the DFT-PBE and DFT-HSE06 results that I find with the Gedanken experiment
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of section 6.2.1. The Hubbard model parameters that have been found to reproduce the
experimental data are: tCC=0.645 eV and U −V=4.19 eV. Finally, the procedure of the fit
onto the experimental data is interesting in the sense to find the Hubbard model parameters
at ambient pressure. However, since for the fit of my 3-site Hubbard model, at least two
reference values are needed and since there only available experimentally data is about the
triplet-triplet transition, one cannot use the experimental data for the pressure dependence
study. Thus, I will continue to use my DFT calculations for the pressure study. Although
the value of the singlet-singlet transition will be underestimated, we have seen in chapter
5 that the pressure coefficient for the triplet-triplet transition was valid.

k. Conclusions

I conclude that

• Many-body state ordering calculated in the 3-site Hubbard model turn out to be in
perfect agreement with other recent state of the art theoretical results.

• When one accounts properly for the correlations in my model by fitting it to the
HSE06 hybrid functional calculations, one can reproduce the experimental value of
the triplet-triplet vertical transition 3E - 3A2.

• The 3-site model is proposed for the first time in the present work and I show will
show in the next section that the 3-site model is enough to study the low lying many-
body excited states of the NV − center. Our 3-site Hubbard model contains only two
independent parameters, which requires only two DFT references to be fit. For the
study of the pressure dependence, the DFT references are indispensible.

• When one trusts the experimental results, and fit the 3-site model on experiment
with no adhoc hypothesis, there is no qualitative change in the level ordering.

• I have identified a possible reason for the partial failure of DFT in calculation of the
singlet-singlet transition energy in section 6.2.1 (g).

Finally, the fact that with a different approach, my results are close to those of Ranjbar
et al [75] is puzzling and the reasons cannot be clarified from the reported results of ref.
[34].

6.2.2 The 4- site Hubbard model

a. Method

I consider now the 4-site model. In this model I include the nitrogen site and 3 carbon
sites neighboring the vacancy as shown in Fig. 6.2.9.
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Figure 6.2.9: Schematic representation of the 4-site Hubbard model. Large grey balls are the
carbon sites, the large blue ball is the nitrogen site. The small light grey ball is
the vacant site. Each site can host spin-up one and spin-down one electron, this
is indicated with the black squares.

Our Fock space contains C8
6 = 28 basis functions. Thus, the Hamiltonian of the system

is a 28× 28 matrix. By analogy with the 3-site model, I start with the analytical solution.

b. Analytical solution

The analytical exact diagonalization of the 28 by 28 Hamiltonian is a tedious task, so I aim
to simplify the Hamiltonian. I employ the same technique as for the 3-site model. Initially,
the 4-site model contains 6 parameters: tCC , tCN , εC , εN , U , V . I first subtract from all
the diagonal elements of the Hamiltonian its second diagonal element E2: H − E2I, where
E2 = 2U + 13V + 4 εC + 2 εN . This operation reduces my Hamiltonian to four parameters:
tCC , tCN , εC − εN and U − V . We can use the symmetry of the Hamiltonian and write
it in the block-diagonal form. The Hamiltonian splits into three blocks with different spin
projections: a 16×16 Hamiltonian with Ms=0, a 6×6 one with Ms=1 and a 6×6 one with
Ms=-1. This allows us to diagonalize each block separately. For the sake of simplicity, the
full initial and permuted Hamiltonians can be found in the Appendix 8.2 in the eq. (8.1)
and eq. (8.2). I represent schematically non-zero matrix elements of the Hamiltonian in
the block-diagonal in Fig. 6.2.10
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Figure 6.2.10: Schematic representation of the initial Hamiltonian and the same Hamiltonian
in the block-diagonal form.

The first 16×16 sub-block of the Hamiltonian has Ms=0 and reads:



2 (εC − εN) + (U− V) tCN −tCN 0 −tCN 0 tCN 0 0 −tCN 0 tCN 0 0 0 0
tCN (εC − εN) 0 tCN 0 −tCN tCC 0 0 0 −tCN tCC 0 0 0 0
−tCN 0 (εC − εN) −tCN tCC 0 0 −tCN 0 tCC 0 0 −tCN 0 0 0

0 tCN −tCN (U− V) 0 −tCC 0 tCC 0 0 −tCC 0 tCC 0 0 0
−tCN 0 tCC 0 (εC − εN) tCN 0 0 −tCN tCC 0 0 0 tCN 0 0

0 −tCN 0 −tCC tCN 0 0 0 −tCC 0 tCC 0 0 tCC 0 0
tCN tCC 0 0 0 0 (εC − εN) tCN tCN 0 0 tCC 0 0 tCN 0
0 0 −tCN tCC 0 0 tCN 0 tCC 0 0 0 tCC 0 tCC 0
0 0 0 0 −tCN −tCC tCN tCC (U− V) 0 0 0 0 −tCC tCC 0
−tCN 0 tCC 0 tCC 0 0 0 0 (εC − εN) tCN 0 0 0 −tCN −tCN

0 −tCN 0 −tCC 0 tCC 0 0 0 tCN 0 0 0 0 −tCC −tCC
tCN tCC 0 0 0 0 tCC 0 0 0 0 (εC − εN) tCN −tCN 0 tCN
0 0 −tCN tCC 0 0 0 tCC 0 0 0 tCN 0 −tCC 0 tCC
0 0 0 0 tCN tCC 0 0 −tCC 0 0 −tCN −tCC 0 0 −tCC
0 0 0 0 0 0 tCN tCC tCC −tCN −tCC 0 0 0 0 tCC
0 0 0 0 0 0 0 0 0 −tCN −tCC tCN tCC −tCC tCC (U− V)


(6.26)

The two 6×6 sub-blocks are identical and they have Ms=1,-1, I show only one of them
below: 

0 −tCN −tCC tCN tCC 0
−tCN (εC − εN) tCN tCC 0 tCC
−tCC tCN 0 0 tCC −tCN
tCN tCC 0 (εC − εN) tCN tCC
tCC 0 tCC tCN 0 −tCN
0 tCC −tCN tCC −tCN (εC − εN)


(6.27)

As two 6×6 sub-spaces of the Hamiltonian are the same, the eigenenergies will be
identical. The diagonalization of all sub-spaces gives us 28 eigenvalues, or 11 different ones
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(as some are degenerated). I present the differences of energies with respect to the ground
state:

Energy Degeneracy Symmetry

∆E1 = 0 (g = 3) 3A2

∆E2 = 1
2(εC − εN) + 2 tCC − 1

2

√
f (g = 6) 3E

∆E3 = 1
2(εC − εN) + 2 tCC + 1

2

√
f (g = 6) 3E

∆E4 = 1
3(εC − εN) + 2 tCC +m+ bh−1/3 + h1/3 (g = 2) 1E

∆E5 = 1
3(εC − εN) + 2 tCC +m− 1

2bh
−1/3 − 1

2h
1/3 − j (g = 2) 1E

∆E6 = 1
3(εC − εN) + 2 tCC +m− 1

2bh
−1/3 − 1

2h
1/3 + j (g = 2) 1E

∆E7 = (εC − εN) + 4 tCC (g = 3) 3A1

∆E8 = a1 − k1 + 2 tCC − 1
6
√
n1 − p1j1

−1/4l1
−1/6 (g = 1) 1A1

∆E9 = a1 − k1 + 2 tCC + 1
6
√
n1 − p1j1

−1/4l1
−1/6 (g = 1) 1A1

∆E10 = a1 + k1 + 2 tCC − 1
6
√
n1 + p1j1

−1/4l1
−1/6 (g = 1) 1A1

∆E11 = a1 + k1 + 2 tCC + 1
6
√
n1 + p1j1

−1/4l1
−1/6 (g = 1) 1A1

(6.28)
The analytical solutions of the 4-site model are more complex than in the case of the

3-site model, I have used the notations indicated in eq. (6.29) and 6.30 to simplify them.

a = (εC − εN) + (U− V)− 2 tCC

b = 1
3(tCC((εC − εN) + 2(U− V) + tCC)− (εC − εN) (U− V)) + 1

9a
2 + tCN

2

c = tCC((εC − εN) + 2(U− V) + tCC)− (εC − εN) (U− V) + 3 tCN
2

d = 1
6a c− (εC − εN) tCC

2 + 1
2(U− V) tCC

2 − 1
2(U− V) tCN

2 + 3 tCC tCN
2 + 1

27a
3

f = (εC − εN)2 − 4 (εC − εN) tCC + 4 tCC
2 + 12 tCN

2

g =
(
tCC

3 − 1
2(εC − εN) (U− V) tCC + d

)2
− b3

h = d+√g + tCC
3 − 1

2(εC − εN) (U− V) tCC

j =
√

3
2 (bh−1/3 − h1/3) 1i

m = 1
3((U− V)− 2 tCC)

(6.29)

I notice that all of the singlet levels of the 1A1 symmetry contain the a1−p1 expressions,
with
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a1 = 3
4 (εC − εN) + 1

2(U− V) + tCC

b1 = −6 a1
2 + 2 (εC − εN)2 + 4 (εC − εN) (U− V) + 10 (εC − εN) tCC + (U− V)2 + 8 (U− V) tCC

− 4 tCC
2 − 12 tCN

2

c1 = 2 (εC − εN)2 + 4 (εC − εN) (U− V) + 10 (εC − εN) tCC + (U− V)2 + 8 (U− V) tCC − 4 tCC
2

− 12 tCN
2

d1 = 2 (εC − εN)2 (U− V) + 4 (εC − εN)2 tCC + (εC − εN) (U− V)2 + 12 (εC − εN) (U− V) tCC

− 16 (εC − εN) tCC
2 − 12 (εC − εN) tCN

2 + 4 (U− V)2 tCC − 16 (U− V) tCN
2 − 16 tCC

3

f1 = 3 a1
4 − c1 a1

2 + d1 a1 − 4 (εC − εN)2 (U− V) tCC + 16 (εC − εN)2 tCC
2 − 2 (εC − εN) (U− V)2 tCC

+ 8 (εC − εN) (U− V) tCN
2 + 32 (εC − εN) tCC

3 − 24 (εC − εN) tCC tCN
2 − 4 (U− V)2 tCC

2

+ 4 (U− V)2 tCN
2 + 16 (U− V) tCC

3 − 48 tCC
2 tCN

2

g1 = 8 a1
3 − 2 c1 a1 + d1

h1 = 16 b1
4 f1 + 4 b1

3 g1
2 + 128 b1

2 f1
2 + 144 b1 f1 g1

2 + 256 f1
3 + 27 g1

4

j1 = 9 l12/3 − 6 b1 l1
1/3 − 12 f1 + b1

2

k1 = 1
6

√
j1 l1

−1/6

l1 = 4
3 b1 f1 +

√
3

18

√
h1 + 1

27b1
3 + 1

2g1
2

m1 = 72 b1 f1 + 3
√

3
√
h1 + 2 b1

3 + 27 g1
2

n1 = 12 f1

√
j1 − b1

2
√
j1 − 9

√
j1 l1

2/3 − 12 b1

√
j1 l1

1/3

p1 = 3
√

6 g1
√
m1

(6.30)
As in the case of the 3-site model, the triplet energy differences obtained with the 4-site

model do not depend on the U-V parameter.

c. Parameterization

I now want to parameterize my model. On the one hand, the 4-site model contains 4
parameters whereas the 3-site model contains only two, and thus more DFT references are
needed. On the other hand, the Fock space of the 4-site model is also larger (28 basis
function w.r.t to 15 ones). This fact allows us to associate more high energy transitions
to those calculated in the DFT. I associate the differences ∆E2,∆E3,∆E7,∆E9,∆E11
from eq. (6.28) with the references ETOT (3E) − ETOT (3A2), ETOT (3EN) − ETOT (3A2),
ETOT (3AN1 )−ETOT (3A2), ETOT (1A′1)−ETOT (3A2), ETOT (1A′1

N)−ETOT (3A2) that can be
calculated from the DFT. Fig. 6.2.11 shows what occupations should be imposed in the
constrained DFT in order to calculate these levels.
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Valence band

Conduction band

(a) Single particle states (b) Single particle states 

occupations

(c) Many-body states
mono multi

determinant

Figure 6.2.11: (a) Schema of the single-electron levels of the NV center in the band gap.
same as Fig. 2.1.1 (b). (b) Occupations of the single-electron levels of panel
(a) corresponding to the many-body state in panel (c). (c) Many-body levels
of the NV − center that can be found from the 4-site model. States that can
be represented as a single Slater determinant are in the left column, the multi-
determinant ones are in the right column.

I note that we have a set of dependent equations as ∆E2 + ∆E3 = ∆E7, this can be
easily seen from the eq. (6.28). This means that we cannot solve together these 3 equations
to obtain 3 parameters, but instead 2 parameters can be found. So, I solve 2 equations
∆E2 and ∆E3 from eq. (6.28) with respect to the parameters tCC , tCN and this gives us:

tCC = 1
4(∆E2 − (εC − εN) + ∆E3)

tCN = 1
2

√
1
12 (3 ∆E3 − 3 (εC − εN)−∆E2) (3 (εC − εN)− 3 ∆E2 + ∆E3)

(6.31)

Interestingly, the relation of the triplet energy levels, ∆E2 + ∆E3 = ∆E7 that I obtain
analytically from my model is verified by my DFT calculations. By substituting my DFT-
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PBE 2 values I find that this equation holds to the precision of 0.01 eV with my DFT-PBE
calculations. This result is important because it confirms that my model is consistent with
my DFT calculations and that I properly identify the levels that I occupy with constrained
DFT.

Till now we have found only two parameters and two more are left undetermined. In
principle, we have enough DFT references in order to obtain analytical expressions for all
of the parameters. However, we have already used two triplet references to find tCC and
tCN and another triplet reference ∆E7 cannot be used since it forms a dependent set of
equations, and thus, it is not a true reference. We are left with two singlet references
∆E9 and ∆E11. Unfortunately, the analytical expressions for these singlet references are
equations of a high order and an analytical solution cannot be found for the parameters
εC − εN and U − V . Therefore, in the parameterization of the 4-site model I use a mixed
determination of the parameters: I find tCC and tCN using formulas that I found and I
perform the numerical fit of the εC − εN and U − V parameters as explained previously.
As an error ctriterion, I have taken the root-mean square error:

RMSE =(1
4 [(∆3EDFT −∆3EHub.)2 + (∆1A′1

DFT −∆1A′1
Hub.)2

+ (∆3ENDFT −∆3ENHub.)2 + (∆1A′1
NDFT −∆1A′1

NHub.)2])1/2,
(6.32)

where ∆ stands for the energy difference between corresponding states 3E or 1A′1 and the
ground state 3A2, for example ∆3E =3 E −3 A2.

d. Results: Many-body states of NV − at ambient pressure

I apply now my mixed analytical-fit procedure in order to find the many-body states of the
NV − center using the 4-site model. Table 6.4 shows the comparison of DFT calculated
reference energies and energies found from the Hubbard model. Energy differences are
calculated with respect to the ground state.

2The HSE06 calculations of the excited states of high energy are so far not being converged
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Table 6.4: The 4-site Hubbard model for the NV − center. Energy of the transitions between
many-body excited states and the 3A2 ground state.

Symmetry
DFT-PBE

(eV)
Hub.+PBE

(eV)

1A′1
N 8.65 8.65

1A′1
N 6.83

3AN1 6.03 6.03
1E ′N 4.79
1A′1 4.28 4.28
3EN 4.14 4.14
1E ′ 2.13
3E 1.89 1.89
1A1 0.75
1E 0.31
3A2 0.0 0.0

In order to reproduce the PBE energy differences I have found the following Hubbard
parameters: εC − εN = 1.486 eV, tCC = 1.136 eV, tCN = 0.609 eV, U − V = 1.219 eV.
As in the case of the 3-site model, I find a good agreement of the ordering of the low-lying
excited states with the previous works reported in Fig 6.2.5. Also, the transition energies
for the low lying states in the 4-site model are in very good agreement with the 3-site
model.

e. Occupation matrix and unpaired spin density

Two other interesting properties of the system that can be calculated from my Hubbard
model are the occupation matrix and the unpaired spin density. The calculation of the
unpaired spin density in a certain site allows us to perform a comparison with experiments
where the distribution of the spin density on the atoms neighboring to vacancy of the
NV − center was found with the EPR technique [29, 142]. Similar calculations have been
performed in the ref. [75]. Such a comparison allows us to provide an additional validation
of my Hubbard model.

The occupation matrix in my model is defined as follows:

Q = ΦT |C|2, (6.33)

where ΦT is the transposed matrix of the basis functions. The C matrix is the eigenfunction
coefficient matrix that we obtain after the diagonalization of the Hamiltonian of the system.
Defining the occupation matrix Q in this way, the columns of this matrix correspond to the
states and the raws correspond to the sites. I remind that there are two position reserved
per site, the first one is the spin-up position, the second one is the spin-down position. So
the occupation of the site i in the state j is given by the matrix element Qij and it has the
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meaning of which number of electrons does occupy the considered site in the considered
state.

From this definition I can derive the normalization condition for the Q matrix: for any
state j we have

∑
i

Qij = N, (6.34)

where N is the total number of electrons in the system (4 in our case). So, the sum over
all sites in each state gives the total number of electrons in the system.

The occupation matrix itself is not very informative, however, we can define in a similar
manner another physical quantity: the unpaired spin density matrix. Since fully occupied
sites do not participate to the total spin, in order to calculate the spin density in a certain
site, one should make the sum of squares of the corresponding eigenfunction coefficients of
the basis functions that have one electron in the considered site:

Q′ = Φ′T |C|2, (6.35)

where Φ′ is non-zero only when the site is occupied only with one electron. I use the
parameters found in the previous section in order to calculate numerically the spin den-
sity. Table 6.5 summarizes spin densities in the 3 carbon sites and in the nitrogen site at
each many-electron state calculated using the Hubbard parameters fit onto the DFT-PBE
calculations.

As one can see from Table 6.5, I have found that the spin density in the nitrogen site in
the ground state 3A2 is completely zero. Also, it is negligible in the two first excited singlets
1E and 1A1. In the higher excited states, the spin density increases in the nitrogen site
and decreases in carbon sites. This is in perfect qualitative agreement with experimental
EPR studies [29, 142] which have shown that the unpaired-electron probability density of
the ground state is mainly localized on the nearest-neighbor carbon atoms.

Also, in ref. [75] where the unpaired spin density was calculated with the 4-site Hubbard
model with exchange terms (see section 4.5.7), it was found that, in the excited 3E state,
the density around the nitrogen atom increases while it decreases around the carbon atoms.
Our spin densities of the 4-site model compare rather well with the previous studies of this
quantity in the Hubbard model [75] and in the EPR experiments [29, 142].
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Table 6.5: The 4-site Hubbard model for the NV − center. Spin density in carbon sites and
nitrogen site for each many-body state of the NV −.

Symmetry spin-up spin-down

C1 C2 C3 N C1 C2 C3 N

3A2 0.333 0.333 0.333 0 0.333 0.333 0.333 0
0.333 0.333 0.333 0 0.333 0.333 0.333 0
0.333 0.333 0.333 0 0.333 0.333 0.333 0

1E 0.170 0.389 0.438 0.004 0.170 0.389 0.438 0.004
0.494 0.276 0.227 0.004 0.494 0.276 0.227 0.004

1A1 0.333 0.333 0.333 0.001 0.333 0.333 0.333 0.001

3E 0.103 0.190 0.370 0.337 0.136 0.147 0.379 0.337
0.331 0.275 0.058 0.337 0.324 0.282 0.056 0.337
0.331 0.223 0.108 0.337 0.342 0.247 0.073 0.337
0.374 0.199 0.090 0.337 0.316 0.277 0.070 0.337
0.086 0.207 0.370 0.337 0.380 0.137 0.146 0.337
0.129 0.231 0.303 0.337 0.087 0.203 0.373 0.337

1E ′ 0.218 0.278 0.014 0.490 0.218 0.278 0.014 0.490
0.122 0.062 0.326 0.490 0.122 0.062 0.326 0.490

3EN 0.170 0.373 0.294 0.163 0.125 0.315 0.398 0.163
0.366 0.258 0.213 0.163 0.355 0.118 0.364 0.163
0.175 0.22 0.444 0.163 0.201 0.192 0.445 0.163
0.358 0.366 0.113 0.163 0.308 0.394 0.135 0.163
0.439 0.230 0.168 0.163 0.193 0.199 0.445 0.163
0.437 0.220 0.181 0.163 0.378 0.336 0.123 0.163

1A′1 0.185 0.185 0.185 0.444 0.185 0.185 0.185 0.444

1E ′N 0.252 0.246 0.245 0.257 0.252 0.246 0.25 0.257
0.244 0.250 0.250 0.257 0.244 0.250 0.250 0.257

3AN1 0.167 0.167 0.167 0.5 0.167 0.167 0.167 0.5
0.167 0.167 0.167 0.5 0.167 0.167 0.167 0.5
0.167 0.167 0.167 0.5 0.167 0.167 0.167 0.5

1A′1
N 0.312 0.312 0.312 0.065 0.312 0.312 0.312 0.065

1A′1 0.235 0.235 0.235 0.295 0.235 0.235 0.235 0.295
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6.2.3 Comparison of the 3- and 4- site models

a. Method

One can compare 3 and 4 site models if one considers the 3-site model as the limiting case
of the 4-site model when tCN=0.

3- site model 4- site model

parameters:
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Figure 6.2.12: Schematic representation of the Hamiltonians of the 3-site model on the top
left panel; 4-site model - top right panel; and the limit case tCN = 0 in the
4-site model in the bottom panel. The identical sub-blocks in Hamiltonians are
highlighted with the same color. The text within each sub-block indicates on
which parameters it depends. A small drawing near each sub-block illustrates
where the holes are localized in the basis functions corresponding to this sub-
block.
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When we put tCN=0 in the Hamiltonian of the 4-site model in the block-diagonal form,
it splits in more sub-blocks. This can be easily understood because in this case the system
splits into two isolated systems: 1 nitrogen site and 3 carbon sites. Fig. 6.2.12 summarizes
the comparison of the Halmitonians of the 3-, 4-site models and a model of 4-sites with
tCN = 0. One can identify the sub-blocks that are identical to those from the 3 site block-
diagonal Hamiltonian. I highlight the identical sub-blocks with the same color in Fig.
6.2.12. This is the first sub-block which is identical to the first sub-block from the 3-site
model in red color:



(U− V) −tCC tCC 0 −tCC tCC 0 0 0
−tCC 0 0 −tCC tCC 0 tCC 0 0
tCC 0 0 tCC 0 tCC 0 tCC 0
0 −tCC tCC (U− V) 0 0 −tCC tCC 0
−tCC tCC 0 0 0 0 0 −tCC −tCC
tCC 0 tCC 0 0 0 −tCC 0 tCC
0 tCC 0 −tCC 0 −tCC 0 0 −tCC
0 0 tCC tCC −tCC 0 0 0 tCC
0 0 0 0 −tCC tCC −tCC tCC (U− V)


(6.36)

Next, sub-blocks 2 and 5 are in blue color and are identical to the sub-blocks 2 and 3
of the 3-site model:  0 −tCC tCC

−tCC 0 tCC
tCC tCC 0

 (6.37)

The sub-blocks 3, 4, 6 and 7, in green color, are identical and correspond to the situation
when one hole is hosted by one of three carbon atoms and one hole is hosted by the nitrogen
atom. This situation is not possible in the 3-site model. I show only one of them: (εC − εN) tCC tCC

tCC (εC − εN) tCC
tCC tCC (εC − εN)

 (6.38)

The very last sub-block of the Hamiltonian in purple color, contains only one element.
This level corresponds to the situation when 2 holes are hosted by the nitrogen atom. This
situation is also inherent only to the 4-site model and the term reads:

2 (εC − εN) + (U− V). (6.39)

To conclude, a simple analysis of the 4-site Hamiltonian with tCN=0 allows us to un-
derstand that the 3-site model is completely contained in the 4-site model. We can find,
inherent to the 3-site model Hamiltonian, sub-blocks that are inside the Hamiltonian of
the 4-site model in the limiting case of tCN=0. Therefore, the eigenenergies resulting from
the diagonalization of these sub-block will be the same in the limiting case, as shown in
the next section.



6.2. THE HUBBARD MODEL FOR THE NV − CENTER 87

b. Numerical comparison: limiting case

I first want to compare the eigenenergies of the two models in the limiting case. In
Fig. 6.2.13 I plot in the 3-site and 4-site levels together. I choose parameters which are
close to the realistic ones of the 3-site model: εC= 2.0 eV, εN= 1.0 eV, tCC=0.66 eV,
U − V=1.24 eV. I plot the 4-site model levels as a function of tCN in order to make a con-
nection with the 3-site level at tCN = 0. Indeed, one can see that the 3-site model is fully
contained in the 4-site model. All 3-site levels convert into the corresponding 4-site levels
in the limiting case. I have done the same conclusion just looking at the Hamiltonian of
the 4-site model with tCN = 0: it contains all sub-blocks of the 3-site model, plus nitrogen-
related sub-blocks. Thus, on the right-hand side of the plot we can find nitrogen-related
levels with a N superscript that have no analogue in the 3-site model.
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Figure 6.2.13: Comparison of eigenenergies of the 3-site and 4-site models. The 3-site model
energy levels are plotted on the left util tCN = 0 value (energies are artificially
drawn as a continuous line, there is no variation of tCN value since the 3-site
model does not contain this parameter). After this value, the 4-site model
energy levels are plotted as a function of tCN . Levels marked with a colored
square are coming from the Hamiltonian sub-block of the corresponding color
in Fig. 6.2.12. All levels are normalized with respect to the ground state. Black
squares with the DFT signature illustrate that those levels can be calculated
from the DFT (see section 6.2.1 (e)). The green square with the DFT signature
illustrates that the level can be calculated from DFT but it forms a set of
dependent equations and is not used as a reference level in the present work.
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In Fig. 6.2.13 I indicate energy transitions which are of interest for the present study,
namely, those corresponding to the triplet-triplet and singlet-singlet transitions observed
experimentally.

Finally, I can conclude that the levels that are important for this study can be found
from the 3-site model, and thus, the 3-site model is sufficient for our purposes.

c. Numerical comparison: fit onto DFT references

I now aim to compare the eigenenergies of the two models in the case when both are fit
independently onto the DFT references, as discussed in previous sections 6.2.2 and 6.2.1
about parameterization. I plot in Fig. 6.2.14 the levels of both 3-site and 4-site models
using the parameters at which both models fit the DFT references.

0.0

2.0

4.0

6.0

8.0

Ve
rti

ca
l t

ra
ns

iti
on

 (e
V

)

4-sites
3-sites

Figure 6.2.14: Comparison of eigenenergies of the 3-site and 4-site model when both models
fit onto the DFT-PBE references.

One can see from Fig. 6.2.14 that the low-lying excited many-body levels 3A2, 1E, 1A1,
3E calculated with the 3-site model and the 4-site model are in perfect agreement with
each other. Of course, the levels 3A2, 3E and 1A′1 are the same in both models because
they are fit onto the same DFT references. However, the 1E and 1A1 singlet levels also
come out in perfect agreement, a knowledge which could not be known before the present
study.
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d. Comparison of the model parameters

One should mention that although in Fig. 6.2.14 the two models are fit on DFT-PBE
references, the corresponding parameters are different in the two models, as one can see
from rows 1 and 3 of table 6.6. As discussed in section 6.2.1 (g) the on-site energy provides
a mere shift of the eigenenergies and does not play an important role. The difference in the
tCC parameter between the 3-site and 4-site model is larger than the difference between
PBE and HSE06 with the 3-site model. However, the U − V parameter is close in both
models.

I compare also my parameters of the 4-site model to those found in previous works of
refs. [34] and [75] (rows 3, 4 and 5 of table 6.6). One can say that the tCC and tCN of my
4-site model are very close to those obtained with fit onto the GW quasiparticles [34] (rows
3 and 4 of table 6.2.14). One should mention that the difference in the sign of the hopping
parameter and the on-site energy with respect to my results is because of the different sign
convention in the corresponding terms of the Hamiltonian in my model and in refs. [34]
and [75].

Table 6.6: Comparison of the Hubbard model parameters. Top part of the table: the 3-site
and 4-site models of this work as fit onto DFT references and the 4-site models of
refs. [a] [34] and [b] [75]. Bottom part of the table: reference values for the 3-site
model as given by the Gedanken experiment and by the fit onto the experimental
values, as discussed in section 6.2.1 (h2) and 6.2.1 (h3)

Parameters εC (eV) εN (eV) εC − εN (eV) tCC (eV) tCN (eV) U − V (eV) UC UN VCC VCN

3-sites PBE 0.0 - - 0.630 - 1.216 - - - -
3-sites HSE06 0.0 - - 0.787 - 1.365 - - - -
4-sites - - 1.486 1.136 0.609 1.219 - - - -
4-sites GW [a] - - 2.56 -1.03 -0.68 2.6 3.43 3.43 0.83 0.83
4-sites B3LYP [b] -7.59 -2.73 10.32 -3.68 -2.97 3.54 10.8 0.02 5.66

3-sites Gedanken PBE 0.0 - - 0.630 - 4.1 - - -
3-sites Gedanken HSE06 0.0 - - 0.787 - 3.6 - - -
3-sites EXP 0.0 - - 0.645 - 4.19 - - -

e. Discussion of the electronic correlation

In this section I want to discuss the values of the (U − V ) Hubbard parameter. To this
end, I consider the experimental value of the 1A1 −1 E transition as a reference one, as
was done in my Gedanken experiment in section 6.2.1 (h2) and in section 6.2.1 (h3) where
the fit was performed on both 3E −3 A2 transition and 1A1 −1 E transition experimental
values. The model parameters found in these two cases are presented in the bottom part
of table 6.6.

The electronic correlations contained in the U − V parameter are underestimated in
my model where the fit was done onto the DFT-PBE and HSE06 references (row 1-3 in
table 6.6). Surprisingly, the (U−V ) parameter is also severely underestimated in the 4-site
model fit onto the GW in ref. [34]. Furthermore, the parameter UC−VCC found in ref. [75]
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is close to the reference Gedanken HSE06. Extending the 4-site Hubbard model with the
parameter UN − VCN yields scattered values for this parameter (row 5 of table 6.6) but
does not improve significantly the results.

One should mention that including additional effects in the theoretical model such as
electron-hole interaction may have an influence on the transition energies. As discussed in
section 6.2.1 (h2) Ma et al. [127] have shown that the 1E ′ singlet state is strongly affected
by the electron-hole interaction. Also, in section 6.2.3 (c) we have seen, that in my 4-site
model, the 1E ′ state is precisely much affected by the inclusion of the nitrogen site (see
Fig. 6.2.14). In my 4-site model the 1E ′ state appears to be quasi-degenerate with the 3E
triplet state within the precision of the calculation (Fig. 6.2.14). The same was also found
in the work of Ma et al. [127]. Based on this result Ma et al. proposed an alternative
mechanism for the intersystem crossing, involving the 1E ′ level. This model would imply
that the 1E ′ state is the upper state in the singlet-singlet transition, substantiating my
4-site model result. In my results, the 1A1 state never appears very close to the 3E triplet
state and is never quasi degenerate with 3E as would be required for the intersystem
crossing, contrarily to the result of my 4-site model. Thus, the 1E ′ singlet state may better
explain the intersystem crossing mechanism playing a crucial role in the optical dynamics
of the NV − center. However, this comes in opposition to the experimental study of Rogers
et al. [33].

f. Conclusion

It was not obvious that the levels which I obtain purely from the 3-site and 4-site Hubbard
models (such as singlets 1E, 1A1 and 1E ′) should coincide.

I have shown that both models yield almost the same results for the low-lying 1E and
1A1 states, and that the only level for which the two models predict a different energy is
1E ′ singlet state.

I have made a detailed comparison of the Hubbard parameters, that turn out to be
different in the 3-site and 4-site model with the exception for (U − V ) parameter.

I have shown that my 3-site Hubbard model allows to gain a deep understanding on
the value of the electronic correlations for the NV − center. So far, the value of (U − V ) in
the literature is underestimated with respect to the value one should find if one trusts the
experimental results for the ZPL attributed to the 1A1 −1 E transition.

Finally, I am, interested in studying the pressure dependence of the transitions that
are observable experimentally at ambient pressure: the 3E−3A2 and 1E−1A1 transitions.
Therefore, the fact that the two models give the same result for these transitions give us
the possibility to concentrate only on the 3-site model, as will be discussed in the chapter 7.
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6.3 The Hubbard model for the NV 0 center

6.3.1 The 3-site Hubbard model

a. Parameterization

The neutral NV 0 center contains one electron less that the negatively charged NV − center.
Thus, in the 3-site model one should accommodate 3 electrons on six spin orbitals. The
Fock space of 3 electrons distributed between 3 sites is C6

3 = 20 and the basis set is:

φ1 = |0 ↓ ↑↓ 〉 S = −1/2
φ2 = |0 ↑ ↑↓ 〉 S = 1/2
φ3 = |0 ↑↓ ↓ 〉 S = −1/2
φ4 = |0 ↑↓ ↑ 〉 S = 1/2
φ5 = | ↓ 0 ↑↓ 〉 S = −1/2
φ6 = | ↓ ↓ ↓ 〉 S = −3/2
φ7 = | ↓ ↓ ↑ 〉 S = −1/2
φ8 = | ↓ ↑ ↓ 〉 S = −1/2
φ9 = | ↓ ↑ ↑ 〉 S = 1/2
φ10 = | ↓ ↑↓ 0 〉 S = −1/2
φ11 = | ↑ 0 ↑↓ 〉 S = 1/2
φ12 = | ↑ ↓ ↓ 〉 S = −1/2
φ13 = | ↑ ↓ ↑ 〉 S = 1/2
φ14 = | ↑ ↑ ↓ 〉 S = 1/2
φ15 = | ↑ ↑ ↑ 〉 S = 3/2
φ16 = | ↑ ↑↓ 0 〉 S = 1/2
φ17 = | ↑↓ 0 ↓ 〉 S = −1/2
φ18 = | ↑↓ 0 ↑ 〉 S = 1/2
φ19 = | ↑↓ ↓ 0 〉 S = −1/2
φ20 = | ↑↓ ↑ 0 〉 S = 1/2

(6.40)

The differencies of the analytical eigenenergies with respect to the ground state are



6.3. THE HUBBARD MODEL FOR THE NV 0 CENTER 92

Energy Symmetry Degeneracy

∆E1 = 0 2E (g = 4)
∆E2 = 1

6c0 b0
−1/3 + 1

6b0
1/3 + f0 − 2

3 (U− V) 4A2 (g = 4)
∆E3 = 1

6c0 b0
−1/3 + 1

6b0
1/3 + f0 + 1

3(U− V) 2A+2 A (g = 4)
∆E4 = 1

2c0 b0
−1/3 + 1

2b0
1/3 + f1,0

2E (g = 4)
∆E5 =

√
3

3 d0b0
−1/3 2E (g = 4)

(6.41)

where I have used the following notations

a0 = −243 t4 − 27 t2 (U− V)2 − (U− V)4

b0 = 9√a0 t− (U− V)3

c0 = 27 t2 + (U− V)2

d0 = −b0
2/3 i + t2 27i + (U− V)2 i

f0 =
√

3 d0

6 b0
1/3

(6.42)

By solving the equation ∆E2 with respect to the parameter t, we get:

t = 1
2 (∆E2 − (U− V))

√
4 ∆E2

9 ∆E2 − 6 (U− V) (6.43)

One can associate ∆E2 with the 4A2 −2 E transition between quartet first excited
level and doublet ground state. The 4A2 state can be, in principle, calculated in the
DFT, as it was done in the ref. [74]. The single Slater determinant can be constructed by
aligning all electrons with spin-up in the configuration aN1 (2)a1(1)e(2) to obtain Ms=+3/2.
However, it is not obvious that the ground state doublet 2E of the NV 0 can be calculated
in the DFT. Gali et al. have shown that the single Slater determinants aN1 (2)a1(2)ex(1)
or aN1 (2)a1(2)ey(1) are the true orthonormal eigenstates of the 2E ground state of the C3v
group. Their calculated quartet 4A2 level is 0.86 eV higher the ground state. Gali et al.
mention however, that because of the strong correlation interaction of the 2E ground state
with 2E excited states, calculated in DFT, the 4A2−2E transition might be underestimated.
My DFT HSE06 calculation yields 0.44 eV 4A2 −2 E transition, which is underestimated
with respect to Gali’s et al calculation by a factor of two. For the Fock space of the 3-site
model I cannot associate another transition that can be calculated from the DFT. This
results in a situation where we have more parameters in the model than the reference
energy transitions to fit these parameters. In this case, I cannot use the method that has
been applied in the case of the NV − center.

In order to calculate the many-body states of the NV 0 center I make the hypothesis that
the parameters do not change when modeling the NV center in the different charged states.
Indeed, this is reasonable because these parameters should mainly be system-dependent.
So, one can apply the same parameters found for NV − but change the basis functions.
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b. Results

I diagonalize numerically the Hamiltonian of the system in order to find the many-body
states of the NV 0 center at ambient pressure. I do not show the Hamiltonian for the sake
of simplicity. My results are summarized in Table 6.7. The ground state 2E is shifted to
zero. One can see that my results predict the quartet 4A2 that is the first excited state
in my model, 1.22 eV above the ground state. Also I find the state with 2A symmetry in
the manifold of low lying states, 2.44 eV above the ground state. This is in a reasonable
agreement with the experimental ZPL 2.156 eV. I remind, however, that our calculated
quantity is a vertical excitation and should not be directly compared to the ZPL, which
only provide the lower bound.

Table 6.7: The 3-site Hubbard model for theNV 0 center. Energy of vertical transitions between
many-body excited states and the 2E ground state.

Symmetry
Hub.+PBE

(eV)
Degeneracy

2E 4.03 4
2A+2 A 2.44 4
2E 2.07 4
4A2 1.22 4
2E 0.0 4

The group theory considerations dictate that the NV 0 center contains the following
many-body states aN1 (2)a1(2)e(1): 2E, aN1 (2)a1(1)e(2): 4A2, 2A2, 2E and 2A1. One can see
from Table 6.7 that my 3-site model one cannot discriminate between the 2A1 and the 2A2
excited doublets, but instead one find the four times degenerate doublet of A symmetry.
Since the state of A symmetry cannot be four times degenerate, I suppose that in my 3-site
model, 2A1 and 2A2 excited doublets have accidental degeneracy. This might be due to
the fact that the 3-site model provides a not large enough Fock space. Therefore, in the
section 6.3.2 I study NV 0 using the 4-site Hubbard model.

c. Previous data

Contrarily to the NV − center case, there was only a small number of theoretical studies of
the many-body states of the NV 0 center. Using the 4-site Hubbard model, with parameters
calculated through the direct calculation of the interaction integrals in the local basis,
Ranjbar et al. [75] have predicted the following ordering of the many-body states: 2EGS,
4A2, 2A1, 2E, 2A1, 2E. Earlier, Zyubin et al. [132] had used various theoretical methods and
basis sets and using finite model NCnHm clusters. Using the CASPT2 calculations Zyubin
et al. predicted the following ordering: 2EGS, 2A2, 2E, 2A1, 2E. It is clear that there are
some discrepancies between my work and previous calculations. One should mention also
that in the previous works, the value of the optical transition has been misidentified, being
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assigned to the 2A1 −2 E transition. This erroneous identification has been circulating
in the literature for a long time [74, 75]. The recent experimental study of the ZPLs
under strain, combined with the study of the polarization of split ZPLs allowed, finally
to assign the optical transition to the 2A2 −2 E transition [76]. Among the two previous
theoretical works, only Zyubin et al. has predicted the low-lying excited state of the proper
orbital symmetry 2A2 giving the optical transition of 2.4 eV, whereas in Ranjbar’s et al.
work, all of the excited doublets of A symmetry have the A1 orbital symmetry. However,
Zyubin et al. have not predicted any excited quartets, which seems to be in disagreement
with the experimental findings where the low lying quartet 4A2 was observed in electron
paramagnetic resonance for the NV 0 center in optically excited state. This low lying
quartet is believed to be under the optically allowed excited doublet. This feature had
been properly captured in Ranjbar’s work.

d. Conclusion

In summary, until now there was no theoretical study that predicted both the features of
the NV 0 centers many-body states: the proper symmetry of the optically active state 2A2
and the existence of the quadruplet state 4A2 below the optically active one. Our study
predicts both these features.

6.3.2 The 4-site Hubbard model

a. Results

The Fock space of the NV 0 center in the 4-site model contains C8
5=56 basis functions. With

the help of the simplifications by intrinsic symmetry, we can reduce the 56×56 Hamiltonian
matrix to the 2 matrices of 24×24 and 2 matrices of 4×4 that can be diagonalized sepa-
rately. However, because of the complexity of the analytical expressions, I do not overload
this manuscript and do not present my analytical solutions. Moreover, in the 4-site model
similarly to the 3-site model, we cannot calculate enough DFT energy transitions in order
to fit the model parameters. Therefore, I use the parameters of the 4-site model that have
been found for the case of the negative NV − center. I show, the many-body states of the
NV 0 found with the 4-site model in Table 6.8.
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Table 6.8: The 4-site Hubbard model for the NV 0 center. Energy of the vertical transition
between many-body excited states and the 2E ground state.

Symmetry
Hub.+PBE

(eV)
Degeneracy

2A1 10.21 2
2E 8.23 4
2A1 8.11 2
2E 6.32 4
2E 5.97 4
4E 5.30 8
2A1 4.50 2
2A2 4.35 2
2E 4.08 4
2E 3.70 4
4A2 3.42 4
2A1 2.06 2
2E 1.64 4
2A2 1.45 2
4A2 1.17 4
2E 0.0 4

b. Discussion

One can see that in the case of the 4-site model as in the case of the 3-site model, I obtain
that 4A2 is the first excited state. However, the 2A2 excited doublet is now 1.45 eV, which is
underestimated with respect to the experimental optical transition of 2.156 eV. Contrarily
to the NV − case, I find that in the case of the NV 0 center the 3- and 4-site models do not
agree with each other. The ordering given by the two models is slightly different. Because
of the small availability of other theoretical methods, it is difficult to say which ordering
is pertinent. Moreover, the ordering of the excited state doublet is not known from the
experiment. Finally, my hypothesis that the model parameters should be insensitive to the
charge of the system is a strong statement which might be questionable. Ranjbar et al. for
example, have found that the on-site Coulomb interaction in the case NV − and NV 0 was
different [75].

c. Conclusion

To conclude, because of the discrepancies in the ordering of the excited doublet levels in the
3-site and 4-site models in the case of the NV 0 one cannot conclude on the level ordering.
However, I believe that the NV 0 parameters should be very similar to those that I have
used. Therefore, I believe that my choice of parameters is valid in order to estimate the
pressure behavior of the NV 0 center.
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6.4 Conclusions

In this chapter I have introduced a new 3-site model and a conventional 4-site Hubbard
model for the NV center. The 3-site model has been developed and used for the first time
in the present work. I can conclude that:

• I have shown that 3-site model is able to reproduce the low lying set of the many-body
states of the NV − center in very good agreement with the 4-site model. Moreover,
my 3-site model contains less independent parameters than the 4-site model, and
thus requires less DFT references to fit the parameters. This makes the 3-site model
more attractive for the investigations of the pressure behavior of the NV center.

• The procedure to fit the Hubbard model parameters to the DFT references that has
been proposed in the present work, can, in principle, be generalized to other defect
systems, however, under the condition that the reference states of the system can be
represented as a single Slater determinant.

• I have shown that in the case of NV 0 it is not possible to calculate enough DFT
references in order to fit the Hubbard parameters. However, since the charge should
not influence the parameters but rather should be taken into account through the
basis set, I have undertaken a strategy to use for the NV 0 center the parameters
found for the NV − center. I have shown that this approach is not accurate enough
to conclude firmly on the many-body level ordering of the NV 0 center. However, it
is still can be used for the estimation of the pressure behavior on the NV 0 center.



CHAPTER 7

Effect of the hydrostatic pressure

In this chapter I apply the 3-site and 4-site Hubbard models developed in this work and
presented in chapter 6 in order to study many-body excited states under a hydrostatic
pressure. I first study the pressure behavior of those high energy excited states that can be
calculated within the DFT, as it has been done in the chapter 5 for the energy transition
between the ground state 3A2 and the first excited triplet 3E. I then study the many-
body states under pressure using the Hubbard model. My Hubbard Hamiltonian does not
contain terms that depends on pressure explicitly. I rather want to introduce the pressure
dependence in the model through the pressure dependence of the model parameters. In
order to include the pressure dependence, I combine the Hubbard model with my DFT
calculations of the NV center under a hydrostatic pressure, as explained in chapter 5.
Finally, I perform an exact diagonalization of the Hubbard Hamiltonian at each pressure,
which gives me access to the pressure dependence of the multi-determinant excited states
that cannot be calculated in the DFT. I compare the pressure dependence in both the
3-site and 4-site models. In addition, I then use Hubbard parameters found for the NV −

center in order to study the pressure dependence of the NV 0 center.

7.1 Many-body states of the NV − center

a. Results

Fig. 7.1.1 (a) illustrates the behavior of the transition energy between the many-body
excited states and the ground state under pressure calculated in this work with the DFT-
PBE. The ground state energy is shifted to zero at each pressure. As I have already
shown in chapter 4, the DFT predicts the pressure coefficient of the 3E−3A2 transition in
very good agreement with the experiment of ref. [16, 17, 67] (see table 2.1). Therefore, I
have used the pressure dependence of the DFT reference transitions 3E −3 A2, 3EN −3 A2,
1A′1 −3 A2, 1A′1

N −3 A2 in order to parameterize my pressure-dependent Hubbard model
(see Fig. 6.2.11).

I show the result for the 4-site model of NV − in Fig. 7.1.1 (b). I highlight with black
color, the levels that were fit to reproduce the DFT calculations, and which are thus the
same as in panel (a). I highlight with red color the multi-determinant states that occur
due to the multi-configurational nature of the Hubbard model basis set. Even though the
3AN1 state can be calculated in the DFT, I highlight it with red color, because I do not use
it as a reference level, so it does not appear in Fig. 7.1.1 (a).

97
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Figure 7.1.1: NV − center. (a) Pressure dependence of the transition energy between the DFT-
PBE calculated levels; (b) Pressure dependence found with the 4-site Hubbard
model fit to the DFT-PBE. In both plots the ground state at each pressure has
been normalized to zero. (c) Schematic representation of the many-body excited
states that can and cannot be represented as a single Slater determinant.
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Fig. 7.1.1 (c) schematically represents the many-body states of the NV − center that
can be represented as a single Slater determinant on the left column and those that cannot
be - on the right one. I then compare the pressure behavior of the NV − states obtained
with the 3-site and 4-site model. This comparison is reported in Fig. 7.1.2.
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Figure 7.1.2: NV − center. Comparison of the transition energy between the many-body ex-
cited states and the ground state calculated in the 4-site model (black solid line)
and the 3-site model (red dashed line).

As I have shown in chapter 6, the 3-site and 4-site models predict the ordering of low-
lying excited many-body levels in very good agreement with each other. One can see from
the Fig. 7.1.2 that the pressure behavior of the low-lying excited many-body levels 3A2,
1E, 1A1, 3E calculated with the 3-site model and the 4-site model is also in very good
agreement with each other. In Fig. 7.1.3 I show the pressure dependence of two transitions
3E −3 A2 and 1A1 −1 E studied with the 3-site model fit both onto DFT-PBE and HSE06
calculations.
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(c) Schema of transitions

Figure 7.1.3: NV − center. Pressure dependence of the triplet transition 3E−3A2 and singlet
transition 1E−1A1 studied in the 3-site Hubbard model fit to both PBE (a) and
HSE06 (b) calculations. (c) Schema explaining studied transitions.
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My result of the pressure shift of the triplet-triplet transition is in very good agreement
with the results of Doherty et al. as can be seen from Table 7.1. An important conclusion
coming from my results is the very different behavior under the pressure of the triplet-triplet
transition 3E −3 A2 and the singlet-singlet 1E −1 A1 one. Indeed, I have found, that the
singlet-singlet transition is almost unchanged under the hydrostatic pressure. One should
mention that this result has never been calculated nor observed experimentally before.

Table 7.1: NV − center. Comparison of the pressure gradients of the vertical triplet-triplet
and singlet-singlet transitions in the 3-site Hubbard model fit onto DFT-PBE and
HSE06 (meV/GPa). [a] from ref. [17]. [b] from ref. [16]. [c] from ref. [67]

296 K 77 K PBE HSE06
E(3E)− E(3A2) 5.75 [a] 5.5 [b] 5.2 6.4

5.81 [c] 5.57 [c]
E(1A1)− E(1E) - - 0.6 -0.5

b. Analysis of the molecular model

I have also made the important observation that all many-body excited states that orig-
inate from the same defect orbital configuration have the same pressure coefficient, as
summarized in Table 7.2. To this end, I use the molecular model presented in section 2.5.
For example, the many-body states 3A2, 1E, 1A1 belong to the same defect orbital con-
figuration a1(2)e(2) and they all have almost the same pressure coefficient. I believe that
the slight differences in the pressure coefficients for this set of states is due to the accuracy
limitations. So, the pressure has the same effect on the levels 3A2, 1E, 1A1, and therefore,
we find that the 1E−1A1 transition energy stays almost constant as a function of pressure.
Whereas the 3E and 1E ′ states belong to the a1(1)e(3) configuration and they also have the
same pressure coefficient. But when we think about the triplet-triplet transition 3E−3A2,
the two states belong to different defect molecule configurations and are influenced in a
different way by pressure, thus there is a shift of the optical transition under pressure.

One should mention that Rogers et al. [33] have studied the dependence of the triplet
and singlet transitions under an uniaxial strains, as was discussed in chapter 2, section 2.4.1.
Although they have not studied the effect of a hydrostatic pressure on the triplet-triplet
and singlet-singlet transitions, they have proposed the following statement using their
molecular model. If the symmetry is not changed by the applied stress (as it is the case
for the hydrostatic pressure), it will only alter the a1e energy separation. This will result
in a change of the energy separation between configurations but causes no change within
each configuration.

Rogers et al. have consideredhe example of the interaction in relation to the singlet-
singlet transition. The 1A1 (a(2)e(2)) - 1E (a(2)e(2)) transition is between levels within
the same a(2)e(2) configuration and so the transition energy cannot be shifted by the
hydrostatic strain.
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My Hubbard model confirms the proposition that have been done by Rogers et al. [33].

Table 7.2: NV − center. Pressure coefficients of all many-body states of the NV − center

.
Configuration aN1 (2)a1(2)e(2) aN1 (2)a1(1)e(3) aN1 (2)a1(0)e(4) aN1 (1)a1(2)e(3) aN1 (1)a1(1)e(4) aN1 (0)a1(2)e(4)

Symmetry 3A2
1E 1A1

3E 1E ′ 1A′1
3E ′N 1E ′N 3AN1

1A′1
N 1A′1

N

dE(P )
dP

(meV
GPa

) 0 0.06 0.2 5.2 4.6 9.7 5.0 5.1 10 9.3 9.7

c. Conclusion

In summary, in this section I performed a study of the pressure behavior of the many-body
states of the NV − center. I highlight the following important conclusions:

• I cross-checked one more time that the 3-site and 4-site model in the case of the NV −

center give the same results. The pressure behavior of the low-lying many-body states
is in good agreement between each other in the two models.

• My results indicate that the pressure influences in the same way the states that
originate from the same defect orbital configuration.

• As a consequence of the previous conclusion, the behavior of the optically observed
singlet-singlet 1A1 −1 E and triplet-triplet 3E −3 A2 transitions is very different.

7.2 Many-body states of the NV 0 center

a. Method

In this section, I use the same Hubbard model parameters for the NV 0 as for the NV −

center, as was explained in chapter 6. Therefore, I take parameters found for the NV −

center at each pressure and diagonalize the Hamiltonian of the NV 0 in the basis of the NV 0

center. Since in the chapter 6 we have seen that this technique leads to slight discrepancies
between the 3- and 4-site models I investigate both of them under pressure.

b. Results

In Fig. 7.2.1 I present the pressure behavior of the many-body states of NV 0 obtained with
3-site and 4-site models. Looking at Fig. 7.2.1 one can make the same conclusion as I did
for the NV − center: namely, all many-body states originating from the same configuration
of occupation of defect levels have almost the same pressure coefficient. This conclusion
holds equally for the results obtained with the 3- and 4-site models. I summarize the results
in Table 7.3.
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Figure 7.2.1: NV 0 center. Pressure dependence of the many-body states studied in the 3-site
Hubbard model (a) and with the 4-site Hubbard model (b). The ground state
level is normalized to zero at each pressure.

One can see from table 7.3 that the pressure dependence of the optical transition
2A2 −2 E is predicted to be in the range of 4.6 - 5.8 meV/GPa when using the same
parameters of the Hubbard model found for the NV − center. Even though my choice to
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use the parameters as in NV − for NV 0 leads to some discrepancies in the level ordering
obtained with the 3-site and 4-site models, we can see that the pressure coefficients are in a
reasonable agreement between the two models. In addition, I confirm my observation that
the many-body levels of the same molecular configuration are influenced in the same way
by pressure. Therefore, since the 4A2 low lying quartet state and the 2A2 doublet state, re-
sponsible for the optical transition, are of the same molecular configuration aN1 (2)a1(1)e(2)
I can calculate the pressure behavior of the 4A2 from the DFT. Indeed, as I explained in
the chapter 6 the 4A2 −2 E transition can be calculated directly using constrained occu-
pation DFT. Therefore, I calculate the behavior of this transition under pressure directly
from DFT and suppose that this behavior is the same for 2A2 and 4A2. This result is
demonstrated in Fig. 7.2.2.

Our DFT calculations predict that the pressure coefficient of the 4A2 −2 E vertical
transition is 5.5 meV/GPa. This is in good agreement with the prediction of my Hubbard
3- and 4-site models, which yield respectively 5.3 meV/GPa and 4.2 meV/GPa (see table
7.3), and give results in the range of 4.2-5.3 meV/GPa for the first group of molecular
orbitals (see table 7.3).

c. Conclusion

I conclude that:

• First, my DFT and Hubbard models are in good agreement for predicting the pressure
coefficient of the 4A2 −2 E vertical transition, this indicates that my assumption of
using parameters found for NV − in order to study the pressure behavior of the NV 0

is reasonable.

• I have found that the use of the same parameters in the NV − and NV 0 leads to
the slight discrepancy in the ordering of the low lying doublets in the 3- and 4- site
models. If the Hubbard parameters I took for NV 0 were the true parameters of this
system, I would expect the coincidence of the two 3- and 4-site models, as it was a case
of the NV − center. I think however, that the true NV 0 parameters should not very
different from those that I have used. Thus, I cannot conclude on the levels ordering
but the pressure behavior can be predicted by my model. Also, my model allows
us to make an important conclusion about the influence of the pressure on levels of
the same molecular configuration. This observation has allowed us to cross-check my
model with my DFT calculation for NV 0 under pressure.



Table 7.3: NV 0 center. Pressure coefficients of all many-body states center.

Configuration aN1 (2)a1(2)e(1) aN1 (2)a1(1)e(2) aN1 (1)a1(2)e(2) aN1 (2)a1(0)e(3) aN1 (1)a1(1)e(3) aN1 (1)a1(0)e(4) aN1 (0)a1(2)e(3) aN1 (0)a1(1)e(4)
Symmetry 4 site 2E 4A2

2A2
2E 2A1

4A2
2E 2A1

2A2
2E 4E 2E 2E 2A1

2E 2A1

3 site 2E 4A2
2A2

2E 2E

dE(P )
dP

(meV
GPa

)
4 site 0.0 5.3 4.6 4.9 4.8 5.1 7.5 5.0 5.7 8.3 10.4 9.5 9.6 15.7 9.4 14.5

3 site 0.0 4.2 5.8 5.2 10.6
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Figure 7.2.2: Nv0 center. Pressure dependence of the 4A2 −2 E transition of the NV 0 center in DFT-HSE06.
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7.3 Conclusions

In this chapter I studied the pressure behavior of the many-body states of the negatively
charged NV − center and neutral NV 0 center. The pressure dependence was introduced
through the fitting of the Hubbard parameters to the pressure dependent DFT transition
energies.

I have shown that in both systems I can make an important observation: the pressure
behavior of the states originating from the same defect orbital configuration is the same.
This conclusion results in a very different pressure behavior of the singlet-singlet and triplet-
triplet transitions of the NV − center. This fact might have the important consequences on
the application of the NV center as a magnetic sensor. For example, one can tentatively
link the loss of the ODMR contrast (see section 2.3.1) to the difference of the pressure
behavior of the singlet-singlet and the triplet-triplet transition. The ODMR contrast is
believed to be caused by the intersystem crossing between the excited triplet state 3E and
excited singlet state 1A1. My observation that under pressure the energy gap between these
two states increases does not directly says that the intersystem crossing should decrease,
to make such a conclusion one should to account for electron-phonon interaction and spin-
orbit couplings. However, my observation gives a hint that this could be one of the possible
reasons of the ODMR contrast loss.

In the case of the NV 0 I have used the parameters found for NV −. I have shown that
this choice is reasonable in order to study the pressure behavior of the optical transition
2A2 −2 E, even though I cannot conclude on the level ordering. This conclusion was
cross-checked through the calculation of the pressure dependence of the quartet state 4A2
directly with DFT, because of the fact that 4A2 and 2A2 states originate from the same
molecular orbital configuration and must have the same pressure behavior according to my
observation.



CHAPTER 8

Conclusions and perspectives

To conclude, in this work I have developed and compared the results of two Hubbard models
used to study the NV center. I have used both the conventional 4-site Hubbard model and
my 3-site model that is reported for the first time. I have presented both analytical and
numerical solutions of the two models.

The analytical solution allowed me to obtain the analytical expressions of the Hubbard
parameters as a function of the DFT total energies. In order to find the manifold of the
many-body states of the NV − center, the Hubbard model was parameterized through the
fitting to the DFT total energies. I have shown that in the case of NV −, the 3- and 4-site
models are in good agreement with each other and with previous theoretical studies with
respect to the low-lying many-body states ordering. Moreover, I have pointed out that the
advantage of the 3-site model over the 4-site model is its simplicity since it contains only
2 parameters and can be directly fit onto experiment with no ad hoc assumption.

In the case of the neutral NV 0 center, I have shown that it was not possible to apply the
same fitting procedure because not enough DFT references are accessible for this system.
The approximation I have applied in order to calculate the many-body states of the NV 0

center consisted in the supposition that the Hubbard parameters of the NV 0 center should
be the same as for the NV − center. I have found that this approach can be used for the
estimation of the pressure behavior on the NV 0 center.

Finally, the effect of the hydrostatic pressure on the many-body states have been stud-
ied for the NV − and NV 0 centers. For both systems I have observed that the hydrostatic
pressure does not produce a shift between the many-body states within the same molec-
ular configuration, but rather between the states of different molecular configurations. In
the case of the negative NV − center, the previous observation leads to the important
consequences that the singlet transition 1A1 −1 E and triplet transition 3E −3 A2 behave
very different under the hydrostatic pressure. This difference in the behavior can have an
important influence on the intersystem crossing for 3E −1 A1 and 1E −3 A2 transitions.

In the case of the neutral NV 0 center, the conclusion about the influence of the hydro-
static pressure with respect to the molecular configurations allows to crosscheck the result
of the Hubbard models. Due to the fact that the non optical quartet 4A2 state and the
optical excited doublet 2A2 state belong to the same molecular configuration, they should
have the same pressure behavior. Since among these two states only 4A2 can be calcu-
lated with DFT, I have studied its pressure behavior within DFT and I have confirmed
the validity of 3-site and 4-site Hubbard models. So, finally I have found that the pressure
coefficients of the optical transition of the NV − and NV 0 centers are almost the same
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under the hydrostatic pressure.
There are two perspectives which I would like to discuss about the possible extensions of

my model. The first perspective deals with the inclusion of the electron-phonon coupling.
In fact, in order to explain the difference of the pressure coefficients of the triplet-triplet
and the singlet-singlet transition of the NV − center more in detail, one should take into
account an important aspect when talking about the optical transitions. The change of
the electronic configuration is followed by the relaxation of the ionic configuration. As
it was shown earlier [34, 118], and confirmed with my DFT calculations, in the ground
state relaxed configuration carbon atoms are located closer to vacancy than the nitrogen,
whereas in the 3E excited state I observe an opposite pattern: the nitrogen relaxes inwards
and carbon atoms outwards. This leads to the fact that the equilibrium ionic configuration
is very different in the ground and in the first excited triplet. Since the optical transition is
very sensitive to the ionic configuration, the additional change of the lattice nuclei positions
under pressure shifts the optical transition energy. However, my Hubbard model does not
take into account the ionic relaxations. The relaxations occur through the interaction with
phonons, thus a possible solution is to include the ionic relaxations into the Hubbard model
by adding of the electron-phonon interaction term into the Hamiltonian. This extension to
the Hubbard model is called the Hubbard-Holstein model [146]. It was successfully applied
and parameterized through DFT in order to study the K3 picene molecule [147]. However,
such a study never performed for the NV center in diamond and it is out of the scope of
this work. Nevertheless, I think it would be important to perform this study in perspective.

The second perspective deals with the extension of the study to a uniaxial pressure.
In the present work, I have studied the effect of a hydrostatic pressure on the many-body
states of the NV center. My study is in very satisfactory agreement with the experiments
reported in refs. [16, 17, 67] where the pressure applied on NV centers was hydrostatic
because the NV centers were located inside the chamber of the diamond anvil cell. The
recent works in ref. [63] and in ref. [15] indicate that the pressure could be non hydrostatic
inside the diamond of the anvil cell and would rather be an effective Peff which is probably
uniaxial. Thus, because the implanted NV centers are not located inside the diamond anvil
cell chamber but inside the diamond itself, the pressure felt by theNV centers could contain
non hydrostatic components, whose precise determination is still lacking. We have seen in
section 2.4 that new effects appear in optical properties when applying a uniaxial pressure.
The shifts and splittings of ZPL are different with respect to the hydrostatic conditions
and depend on the axis along which the pressure was applied.

Thus, to account for non-hydrostatic stress in my Hubbard model, I have identified two
approaches:

• Firstly, the ZPL pressure coefficient obtained with the experiment where the NV
centers feel the uniaxial pressure can be re-scaled in a way to reproduce the pressure
coefficient under hydrostatic conditions, and the so-determined scaling factor may be
applied to all of the many-body states of my model.

• Secondly, in order to compare the pressure behavior of the many-body levels found
with my model to experiments where a uniaxial stress is present one needs to fit the
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Hubbard model to DFT calculations performed under a uniaxial pressure. Conse-
quently, one has to distinguish between the case of ”hidden anisotropy”, where the
C3v symmetry is preserved by the effect of averaging the orientation of several NV
centers, for which my model is valid; and the case of one isolated center, which has
some anisotropy. In the latter case the model requires some extensions to account
for the reduction of the symmetry to the Cs point group.

Finally, my model can be extended to study other defects in diamond as well as deep
level centers in other materials like silicon carbide.



Appendix

This appendix is to provide the details on the pseudopotentials that have been generated
in the present work and have been used in the calculations, as discussed in section 5.1.

8.1 Pseudopotentials

8.1.1 Performance of available pseudopotentials

In this section, the discussion is made about the impact of different pseudopotentials on
the calculation of the same system.

Five pseudopotentials available in the PSlibrary [137] were selected in order to test the
lattice parameter relaxation in the diamond structure. Table 8.1 summarizes properties
of selected pseudopotentials and figure 8.1.1 represents the plot of the total energy as a
function of lattice parameter.

One can mention from the plot, that different pseudopotentials have different values of
the equilibrium lattice parameter and of bulk modulus. Lattice parameters are specified
in the table and compared to the experimental value [148]. The error of lattice parameter
with respect to the experimental value is within 1%, which is acceptable for calculations.
However, we can see that the calculated results depend on the choice of the pseudopotential.
The best reproducibility of the experiment is found for C-EB.pw used for boron carbide in
refs. [149–152], C.pz-vbc.UPF and C.pbe-rrkjus.UPF pseudopotentials.
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Figure 8.1.1: Total energy as a function of lattice parameter for different pseudopotentials.



Table 8.1: Properties of pseudopotentials

Name Configuration XC method N projectors rc2s0,a.u. rc2s2 rc2p0 rc2p2 rc3d−2 lloc lnloc grid alateq a.u.
th− exp
exp

,%

Experiment 6.74

C-EB.pw 2s22p2 LDA NC 1 1.74 1.74 1 0 851 6.71 -0.45

C.pz-vbc.UPF 2s22p2 LDA NC 1 0 0 1 0 269 6.71 -0.45

C.pz-rrkjus.UPF 2s22s02p22p03d−2 LDA US 4 1.6 1.6 1.6 1.6 1.3 0,0,1,1 1425 6.67 -1.04

C.pbe-rrkjus.UPF 2s22s02p22p03d−2 PBE US 4 1.6 1.6 1.7 1.7 1.7 0,0,1,1 627 6.74 0

C.pz-van ak.UPF 2s22p2 LDA US van 4 1.1 1.1 0,0,1,1 721 6.68 -0.89
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One should mention here, however, that selected pseudopotentials differ by many pa-
rameters from each other. Among those parameters the number of points in the radial grid,
the cut off radii of projectors, the exchange-correlation approximation and the method of
pseudopotential construction. In principle, the disagreement in results is expected. There-
fore, the next subsection is devoted to the understanding of the impact of the parameters
of the pseudopotential on the error in the calculation of lattice parameter.

8.1.2 Generation of pseudopotentials with reduced errors

a. Objectives

In previous section the pseudopotentials were hardly comparable. The aim of present sec-
tion was to see the impact of adding a 3d projector. The idea was to generate 2s2p and
2s2p3d pseudopotentials which would be comparable, meaning that all other parameters are
the same. For simplicity, the norm-conserving C-EB.pw pseudopotential have been taken
as a reference and its copy was generated, also, the same pseudopotential but containing 3d
projector was generated. Another point of this section is to understand the impact of inter-
nal pseudopotential parameters on its performance. When generating the pseudopotential
one should choose which component of the orbital moment will be attributed to the local
part of the pseudopotential, and which to the nonlocal one. Therefore, pseudopotentials
with different combination of component per local and nonlocal part of the potential were
generated. For each pseudopotential, the cut off radius of wave function of each orbital
moment was varied between 1.74 a.u. and 1.3 a.u.. A total, 44 pseudopotentials were stud-
ied. The table 8.1.2 shows lattice parameters and errors with respect to the experimental
value.

b. Performance criterion

As a first criterion of the pseudopotential performance, the relative error of the total energy
of the atom as a function of the cut off radius was chosen. However, it turned out that it
does not correlate with the error on lattice parameter. So in the solid phase, for example,
pseudopotentials with larger error because of the cut off radius were giving better results
for lattice parameters. Thus, the differences in total energies for potentials with different
cut off radii was not taken as important and only the error on the lattice parameters were
considered.

c. Results

An interesting observation was done: if to vary the cut off radius of wave function with l,
this variation influences the profile of the local part of the potential only if its l is the same
of what we change the radius. This is natural behavior, since the wave function is related
to the eletronic density which can influence the potential.

It was found from this study that for the NC pseudopotential the addition, to the
configuration, of the non occupied 3d orbital leads to the rise of the lattice parameter error
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when keeping the same cut off radii as in 2s2p case. However, it is possible to recover again
a smaller value of the error when reducing the cut off radius for all s, p, d components
to the 1.3 a.u.. This works for any value of local potential (lloc), however, the lloc=1
comparing to lloc=0, or lloc=2 seems to result in the smallest errors on the calculated
lattice parameter calculation.

As a result of this work, two pseudopotentials were chosen for future calculations.
One 2s2p with 1.74 a.u. cut off radii for each l component and one 2s2p3d with 1.3 a.u.
cut off radii for each component.These two pseudopotentials given an error on the lattice
parameter of 0.45%.



Comparison of 2s2p and 2s2p3d pseudopotentials with different cut off radii.

Name Configuration XC method N projectors
rc2s0

a.u.
rc2s2 rc2p0 rc2p2 rc3d−2 ∆Es,p,d

ps lloc lnloc grid
alat

eq

a.u.

th− exp
exp

,%

Experiment 6.74

C-EB.pw 2s22p2 LDA : NC 1 1.74 1.74 1 0 851 6.71 -0.45

C.my.rrkjnc.UPF 2s22p2 LDA NC 1 1.74 1.74 1 0 887 6.71 -0.45

C.my.rrkjnc.UPF 2s22p2 PBE NC 1 1.74 1.74 1 0 887 6.79 +0.74

C.my.rrkjnc.UPF 2s22p2 LDA NC 1 1.3 1.3 1 0 887 6.71 -0.45

C.my.rrkjnc.UPF 2s22p2 PBE NC 1 1.3 1.3 1 0 887 6.78 +0.89

C.my.rrkjnc.UPF (3d) 2s22p23d−2 LDA NC 2 1.3 1.3 1.3 1 0,2 887 6.71 -0.45

C.my.rrkjnc.UPF (3d) 2s22p23d−2 PBE NC 2 1.3 1.3 1.3 1 0,2 887 6.77 +0.45

C.my.rrkjnc.UPF (3d) 2s22p23d−2 LDA NC 2 1.74 1.74 1.74
1.3·10−4

1 0,2 887 6.68 -0.89

1.6
7.8·10−5

1 0,2 6.68 -0.89

1.5
1·10−4

6.68 -0.89

1.4
7.2·10−5

6.68 -0.89

1.3 6.68 -0.89

1.74 1.3
1.9·10−2

6.68 -0.89

1.6 1.3
2.6·10−3

6.67 -1.04

1.5 1.3
1.1·10−2

6.67 -1.04

1.4 1.3
1.6·10−2

6.67 -1.04



1.3 1.3 6.71 -0.45

1.3 1.74
3.4·10−4

6.67 -1.04

1.3 1.6
1.6·10−4

6.67 -1.04

1.3 1.5
1.8·10−4

6.67 -1.04

1.3 1.4 6.67 -1.04

1.74
1.6
1.3

1.3
2.2·10−2

2.2·10−2

6.67
6.71

-1.04
-0.45

1.6
1.6
1.3

1.3
1.2·10−2

1.2·10−2

6.69
6.71

-0.74
-0.45

1.5
1.6
1.3

1.3
1.4·10−2

1.4·10−2

6.68
6.71

-0.89
-0.45

1.4
1.6
1.3

1.3
6.6·10−3

7·10−3

6.67
6.71

-1.04
-0.45

1.3
1.6
1.3

1.3
6.67
6.71

-1.04
-0.45

1.74
6.8·10−4

2 0,1 6.64 -1.48

1.6
2.2·10−4

2 0,1 6.64 -1.48

1.5
2·10−4

6.64 -1.48

1.4
4.7·10−4

6.64 -1.48

1.3 6.64 -1.48



1.74 1.3
8.8·10−3

2 0,1 6.64 -1.48

1.6 1.3
1.8·10−3

2 0,1 6.65 -1.34

1.5 1.3
1.5·10−2

6.67 -1.04

1.4 1.3
1.7·10−2

6.67 -1.04

1.3 1.3 6.67 -1.04

1.74
1.6
1.3

1.3
2.2·10−2

2.3·10−2

2 0,1
6.65
6.67

-1.34
-1.04

1.6
1.6
1.3

1.3
1.2·10−2

1.2·10−2

2 0,1
6.65
6.67

-1.34
-1.04

1.5
1.6
1.3

1.3
1.4·10−2

1.4·10−2

6.67
6.67

-1.04
-1.04

1.4
1.6
1.3

1.3
6.5·10−3

7·10−3

6.67
6.71

-1.04
-0.45

1.3
1.6
1.3

1.3
6.67
6.71

-1.04
-0.45

1.74
1.6·10−4 0 1,2 6.58 -2.3

1.6
5.6·10−4

0 1,2 6.58 -2.3

1.5
1.8·10−4

6.59 -2.2

1.4
4.4·10−5

6.59 -2.2

1.3 6.59 -2.2



1.74 1.3
7.7·10−3

0 1,2 6.59 -2.2

1.6 1.3
3.1·10−3

0 1,2 6.61 -1.92

1.5 1.3
1.8·10−2

6.62 -1.78

1.4 1.3
2.1·10−2

6.64 -1.48

1.3 1.3 6.67 -1.04

1.74
1.6
1.3

1.3
4·10−2

4.2·10−2

0 1,2
6.64
6.67

-1.48
-1.04

1.6
1.6
1.3

1.3
1.7·10−2

1.7·10−2

0 1,2
6.64
6.67

-1.48
-1.04

1.5
1.6
1.3

1.3
1.8·10−2

1.8·10−2

6.65
6.67

-1.34
-1.04

1.4
1.6
1.3

1.3
8.5·10−3

8.5·10−3

6.67
6.71

-1.04
-0.45

1.3
1.6
1.3

1.3
6.67
6.71

-1.04
-0.45



8.1.3 Impact of the exchange correlation approximation

The two most used approximations: local-density approximation (LDA) and generalized
gradient approximation (GGA) have disadvantages. LDA always underestimates the vol-
ume while Perdew, Burke, Ernzherfor (PBE - one of the various flavors of the GGA ap-
proximations) often overestimates the lattice constants [153].

In order to understand the role played by the exchange correlation approximation, the
two previously selected LDA pseudopotentials have been studied, and compared to the
same pseudopotentials generated with the PBE approximation. The lattice parameter
calculations were done with these four pseudopotentials. Table 8.3 shows results of the
calculations and error with respect to the experiment.

Indeed, we can see that the LDA underestimates the value of lattice parameter and
PBE overestimates. For the 2s2p pseudopotential PBE error turned out to be larger than
the LDA. While for the 2s2p3d the absolute value of the error stayed the same. In both
cases the error did not exceed 1%.

Table 8.3: Comparison of LDA and PBE pseudopotentials.

Configuration XC rc2s2 rc2p2 rc3d−2 alat
eq

a.u.

th− exp
exp

,%

Experiment 6.74

2s22p2 LDA 1.74 1.74 6.71 -0.45

2s22p2 PBE 1.74 1.74 6.79 +0.74

2s22p23d−2 LDA 1.3 1.3 1.3 6.71 -0.45

2s22p23d−2 PBE 1.3 1.3 1.3 6.77 +0.45

8.1.4 Transferability test

In the previous sections, the discussion was about the performance that the pseudopoten-
tials can achieve in the solid state. Basing on results of this study four best NC pseu-
dopotentials were chosen. In order to choose the best potential among this four, their
performance inside atom was tested - the transferability test was performed. This test
allows to estimate errors on the determination of energy levels when we excite electrons
between these levels. The error is with respect to the all electron calculation. This test
can be performed for the atom in neutral state as well as for the ionized one.

At the first step neutral state (valence charge is 4) of the diamond was tested for 2s-2p,
2p-3d and 2s-3d transitions. Energy level errors were studied. Table 8.1.4 shows all tested
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configurations and related errors.
It was observed that for each pseudopotential both PBE and LDA, whatever the tran-

sition is (2s-2p, 2p-3d, 2s-3d) the errors on s and p levels ∆ε2sae−ps, ∆ε2pae−ps always rise with
increasing the number of electrons in the 2p level, the order of magnitude of the error for
∆ε2sae−ps, ∆ε2pae−ps is in the same range (10−4 - 10−3 Ry). However, the error ∆ε3dae−ps is ei-
ther very small (10−5) or zero in the case where 3d transition takes place. Those errors are
acceptable for our purposes. One should however be careful in the case of 2p-3d transition
when we depopulate completely 2p level - the error exceeds out limit and becomes 10−2

order.
Comparing errors of eigenvalues for PBE and LDA approximations one should say that

the absolute value of errors in the case of PBE is somewhat larger, but is of the same order
of magnitude. Therefore, PBE approximation was considered to be not discussed further.

Since those pseudopotentials are going to be used in the calculation of defects in dia-
mond and since defects usually have a charged state, the NV − center for example, it is
interesting to study how our pseudopotentials will behave in this case. Therefore, the same
transferability test was repeated for the ionized configuration with the valence charge equal
3 and 3.5.

Tables 8.1.4 and 8.1.4 shows results of the transferability test for ionized configurations.
It was found that for 2s-2p transitions values of ∆ε2sae−ps and ∆ε2pae−ps are almost the same
for both ionized configurations, however, ∆Etot

ae−ps is one order of magnitude larger in the
case of valence charge equal 3. For the 2p-3d transition problem with 2p0 configuration
became even worse in the case of ionized configurations since ∆ε2sae−ps and ∆ε2pae−ps exceeded
10−2 Ry error limit. Another configuration leading to the limit case the in 2p-3d transition
was the 2p0.5 which gave ∆ε2pae−ps equal to 10−2 Ry.

Conclusion

To conclude, ionized configurations showed lower transferability in the case where 3d tran-
sitions are involved, compared to the neutral configuration. Thus, the pseudopotential that
was used for calculations in the present manuscript was 2s2p PBE pseudopotential with
the cut off radius of wave function of each orbital moment of 1.74 a.u..
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Neutral state transferability test of four selected pseudopotentials.

Name Configuration ∆Etot
ae−ps ∆ε2s

ae−ps ∆ε2p
ae−ps ∆ε3d

ae−ps XC Method N proj. rc2s2 rc2p2 rc3d−2 lloc lnloc grid
alat

eq

(a.u.)

th− exp
exp

,

(%)

Experiment 6.74

C-EB.pw 2s22p2 LDA NC 1 1.74 1.74 1 0 851 6.71 -0.45

C.my.rrkjnc.UPF 2s22p2 LDA NC 1 1.74 1.74 1 0 887 6.71 -0.45

2s2 2p2 0 0 0

2s1.5 2p2.5 1.7·10−4 2.1·10−4 9·10−4

2s1 2p3 7.1·10−4 1.2·10−4 1.6·10−3

2s0.5 2p3.5 1.7·10−3 2.5·10−4 2.1·10−3

C.my.rrkjnc.UPF 2s22p2 PBE NC 1 1.74 1.74 1 0 887 6.79 +0.74

2s2 2p2 0 0 0

2s1.5 2p2.5 3.3·10−4 2.6·10−4 1.1·10−3

2s1 2p3 1.4·10−3 1.1·10−3 1.9·10−3

2s0.5 2p3.5 3.1·10−3 1.6·10−3 2.3·10−3

C.my.rrkjnc.UPF (3d) 2s22p23d−2 LDA NC 2 1.3 1.3 1.3 1 0,2 887 6.71 -0.45

2s2 2p2 0 0 0

2s1.5 2p2.5 1.7·10−4 4.2·10−4 2.6·10−4

2s1 2p3 6.8·10−4 9.9·10−4 4.1·10−4



2s0.5 2p3.5 1.6·10−3 1.7·10−3 4.6·10−4

2s2 2p2 3d-2 0 0 0

2s2 2p1.5 3d0.5 9.5·10−5 1·10−5 5.4·10−4 0

2s2 2p1 3d1 7.9·10−4 9·10−4 2.6·10−3 0

2s2 2p0 3d2 9.6·10−3 1·10−2 1.9·10−2 1·10−5

2s1.5 2p2 3d0.5 4.2·10−5 1.8·10−4 1.4·10−4 0

2s1 2p2 3d1 1.8·10−4 4.1·10−4 8·10−5 0

C.my.rrkjnc.UPF (3d) 2s22p23d−2 PBE NC 2 1.3 1.3 1.3 1 0,2 887 6.77 +0.45

2s2 2p2 0 0 0

2s1.5 2p2.5 1.9·10−4 3.2·10−4 4·10−4

2s1 2p3 7·10−4 6.6·10−4 6.2·10−4

2s0.5 2p3.5 1.5·10−3 1.1·10−3 7.1·10−4

2s2 2p2 3d-2 0 0 0

2s2 2p1.5 3d0.5 1.1·10−4 2.5·10−4 6.4·10−4 0

2s2 2p1 3d1 9.3·10−4 1.4·10−4 3.1·10−3 0

2s2 2p0 3d2 1.1·10−2 8.6·10−3 2.6·10−2 2·10−5

2s1.5 2p2 3d0.5 4.7·10−5 2.9·10−4 4.7·10−4 0

2s1 2p2 3d1 3.8·10−4 1.2·10−3 1.2·10−3 0



3.5 valence charge state transferability test of two selected LDA pseudopotentials.

Name Configuration ∆Etot
ae−ps E2s

ae−ps E2p
ae−ps E3d

ae−ps XC Method N proj. rc2s2 rc2p2 rc3d−2 lloc lnloc grid
alat

eq

a.u.

th− exp
exp

,%

Experiment 6.74

C-EB.pw 2s22p2 LDA NC 1 1.74 1.74 1 0 851 6.71 -0.45

C.my.rrkjnc.UPF 2s22p2 LDA NC 1 1.74 1.74 1 0 887 6.71 -0.45

2s2 2p1.5 0 4.6·10−4 1.2·10−3

2s1.5 2p2 5.7·10−4 1.7·10−3 1·10−3

2s1 2p2.5 6.4·10−4 2.5·10−3 2.9·10−3

2s0.5 2p3 1.6·10−4 2.8·10−3 4.4·10−3

C.my.rrkjnc.UPF (3d) 2s22p23d−2 LDA NC 2 1.3 1.3 1.3 1 0,2 887 6.71 -0.45

2s2 2p1.5 0 4.6·10−4 1.2·10−3

2s1.5 2p2 5.7·10−4 1.7·10−3 1·10−3

2s1 2p2.5 6.4·10−4 2.5·10−3 2.9·10−3

2s0.5 2p3 1.6·10−4 2.8·10−3 4.4·10−3

2s2 2p1.5 3d0 0 4.6·10−4 1.2·10−3 3·10−5

2s2 2p1 3d0.5 1.5·10−3 5.5·10−4 5.6·10−3 3·10−5

2s2 2p0.5 3d1 6.6·10−3 4.7·10−3 1.6·10−2 4·10−5

2s2 2p0 3d1.5 1.9·10−2 1.4·10−2 3.4·10−2 2·10−5

2s1.5 2p1.5 3d0.5 6.7·10−4 2.4·10−3 1.3·10−3 2·10−5



2s1 2p1.5 3d1 2.6·10−3 5.3·10−3 1.8·10−3 2·10−5



3 valence charge state transferability test of two selected LDA pseudopotentials.

Name Configuration ∆Etot
ae−ps E2s

ae−ps E2p
ae−ps E3d

ae−ps XC Method N proj. rc2s2 rc2p2 rc3d−2 lloc lnloc grid
alat

eq

a.u.

th− exp
exp

,%

Experiment 6.74

C-EB.pw 2s22p2 LDA NC 1 1.74 1.74 1 0 851 6.71 -0.45

C.my.rrkjnc.UPF 2s22p2 LDA NC 1 1.74 1.74 1 0 887 6.71 -0.45

2s2 2p1 0 4·10−4 5.4·10−3

2s1.5 2p1.5 2.2·10−3 2.5·10−3 1.1·10−3

2s1 2p2 3.6·10−3 4.8·10−3 2.7·10−3

2s0.5 2p2.5 4.2·10−3 6.4·10−3 5.6·10−3

C.my.rrkjnc.UPF (3d) 2s22p23d−2 LDA NC 2 1.3 1.3 1.3 1 0,2 887 6.71 -0.45

2s2 2p1 0 4·10−4 5.4·10−3

2s1.5 2p1.5 3.6·10−3 2.4·10−3 1.1·10−3

2s1 2p2 3.6·10−3 4.8·10−3 2.7·10−3

2s0.5 2p2.5 4.2·10−3 6.4·10−3 5.9·10−3

2s2 2p1 3d0 0 4·10−4 5.4·10−3 3.7·10−4

2s2 2p0.5 3d0.5 5.1·10−3 4.5·10−3 1.6·10−2 1.8·10−4

2s2 2p0 3d1 1.7·10−2 1.4·10−2 3.4·10−2 1·10−4

2s1.5 2p1 3d0.5 210−6 8.7·10−4 8.3·10−3 1.7·10−4

2s1 2p1 3d1 7.7·10−4 2.6·10−3 1.3·10−2 2.1·10−4





8.2 Matrices of the 4-site model Hamiltonian

The full Hamiltonian for the NV − 4-site model discussed in section 6.2.2 (b) of chapter 6.



U− V 0 tCC 0 tCC 0 tCN −tCC 0 −tCC 0 −tCN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 tCC 0 tCN 0 0 0 0 0 0 0 0 −tCC 0 −tCN 0 0 0 0 0 0 0 0 0 0 0
tCC 0 0 0 tCC 0 tCN 0 0 0 0 0 0 tCC 0 0 0 0 −tCC 0 −tCN 0 0 0 0 0 0 0
0 tCC 0 0 0 tCN 0 0 0 0 0 0 0 0 tCC 0 0 0 0 0 0 0 0 −tCN 0 0 0 0
tCC 0 tCC 0 0 0 tCN 0 0 0 0 0 0 0 0 tCC 0 0 0 0 0 0 tCC 0 0 −tCN 0 0
0 tCN 0 tCN 0 εC − εN 0 0 0 0 0 0 0 0 0 0 tCC 0 0 0 0 0 0 tCC 0 0 0 0
tCN 0 tCN 0 tCN 0 εC − εN 0 0 0 0 0 0 0 0 0 0 tCC 0 0 0 0 0 0 tCC 0 0 tCN
−tCC 0 0 0 0 0 0 0 0 tCC 0 tCN 0 −tCC 0 −tCC 0 −tCN 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 tCC 0 tCN 0 0 0 0 0 0 −tCC 0 −tCN 0 0 0 0 0 0
−tCC 0 0 0 0 0 0 tCC 0 0 0 tCN 0 0 0 0 0 0 tCC 0 0 0 −tCC 0 −tCN 0 0 0

0 0 0 0 0 0 0 0 tCC 0 0 0 tCN 0 0 0 0 0 0 tCC 0 0 0 0 0 0 −tCN 0
−tCN 0 0 0 0 0 0 tCN 0 tCN 0 εC − εN 0 0 0 0 0 0 0 0 tCC 0 0 0 0 tCC 0 −tCN

0 0 0 0 0 0 0 0 tCN 0 tCN 0 εC − εN 0 0 0 0 0 0 0 0 tCC 0 0 0 0 tCC 0
0 0 tCC 0 0 0 0 −tCC 0 0 0 0 0 U− V 0 tCC 0 tCN −tCC 0 −tCN 0 0 0 0 0 0 0
0 −tCC 0 tCC 0 0 0 0 0 0 0 0 0 0 0 0 tCN 0 0 0 0 0 0 −tCN 0 0 0 0
0 0 0 0 tCC 0 0 −tCC 0 0 0 0 0 tCC 0 0 0 tCN 0 0 0 0 tCC 0 0 −tCN 0 0
0 −tCN 0 0 0 tCC 0 0 0 0 0 0 0 0 tCN 0 εC − εN 0 0 0 0 0 0 tCC 0 0 0 0
0 0 0 0 0 0 tCC −tCN 0 0 0 0 0 tCN 0 tCN 0 εC − εN 0 0 0 0 0 0 tCC 0 0 tCN
0 0 −tCC 0 0 0 0 0 0 tCC 0 0 0 −tCC 0 0 0 0 0 0 tCN 0 −tCC 0 −tCN 0 0 0
0 0 0 0 0 0 0 0 −tCC 0 tCC 0 0 0 0 0 0 0 0 0 0 tCN 0 0 0 0 −tCN 0
0 0 −tCN 0 0 0 0 0 0 0 0 tCC 0 −tCN 0 0 0 0 tCN 0 εC − εN 0 0 0 0 tCC 0 −tCN
0 0 0 0 0 0 0 0 −tCN 0 0 0 tCC 0 0 0 0 0 0 tCN 0 εC − εN 0 0 0 0 tCC 0
0 0 0 0 tCC 0 0 0 0 −tCC 0 0 0 0 0 tCC 0 0 −tCC 0 0 0 U− V 0 tCN −tCN 0 0
0 0 0 −tCN 0 tCC 0 0 0 0 0 0 0 0 −tCN 0 tCC 0 0 0 0 0 0 εC − εN 0 0 0 0
0 0 0 0 0 0 tCC 0 0 −tCN 0 0 0 0 0 0 0 tCC −tCN 0 0 0 tCN 0 εC − εN 0 0 tCN
0 0 0 0 −tCN 0 0 0 0 0 0 tCC 0 0 0 −tCN 0 0 0 0 tCC 0 −tCN 0 0 εC − εN 0 −tCN
0 0 0 0 0 0 0 0 0 0 −tCN 0 tCC 0 0 0 0 0 0 −tCN 0 tCC 0 0 0 0 εC − εN 0
0 0 0 0 0 0 tCN 0 0 0 0 −tCN 0 0 0 0 0 tCN 0 0 −tCN 0 0 0 tCN −tCN 0 2 εC − εN + U− V


(8.1)

The full permuted Hamiltonian of the 4-site model discussed in section 6.2.2 (b) of
chapter 6.



2 εC − εN + U− V tCN −tCN 0 −tCN 0 tCN 0 0 −tCN 0 tCN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tCN εC − εN 0 tCN 0 −tCN tCC 0 0 0 −tCN tCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−tCN 0 εC − εN −tCN tCC 0 0 −tCN 0 tCC 0 0 −tCN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 tCN −tCN U− V 0 −tCC 0 tCC 0 0 −tCC 0 tCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−tCN 0 tCC 0 εC − εN tCN 0 0 −tCN tCC 0 0 0 tCN 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −tCN 0 −tCC tCN 0 0 0 −tCC 0 tCC 0 0 tCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tCN tCC 0 0 0 0 εC − εN tCN tCN 0 0 tCC 0 0 tCN 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −tCN tCC 0 0 tCN 0 tCC 0 0 0 tCC 0 tCC 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −tCN −tCC tCN tCC U− V 0 0 0 0 −tCC tCC 0 0 0 0 0 0 0 0 0 0 0 0 0
−tCN 0 tCC 0 tCC 0 0 0 0 εC − εN tCN 0 0 0 −tCN −tCN 0 0 0 0 0 0 0 0 0 0 0 0

0 −tCN 0 −tCC 0 tCC 0 0 0 tCN 0 0 0 0 −tCC −tCC 0 0 0 0 0 0 0 0 0 0 0 0
tCN tCC 0 0 0 0 tCC 0 0 0 0 εC − εN tCN −tCN 0 tCN 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −tCN tCC 0 0 0 tCC 0 0 0 tCN 0 −tCC 0 tCC 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 tCN tCC 0 0 −tCC 0 0 −tCN −tCC 0 0 −tCC 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 tCN tCC tCC −tCN −tCC 0 0 0 0 tCC 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −tCN −tCC tCN tCC −tCC tCC U− V 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −tCN −tCC tCN tCC 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −tCN εC − εN tCN tCC 0 tCC 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −tCC tCN 0 0 tCC −tCN 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tCN tCC 0 εC − εN tCN tCC 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tCC 0 tCC tCN 0 −tCN 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tCC −tCN tCC −tCN εC − εN 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −tCN −tCC tCN tCC 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −tCN εC − εN tCN tCC 0 tCC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −tCC tCN 0 0 tCC −tCN
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tCN tCC 0 εC − εN tCN tCC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tCC 0 tCC tCN 0 −tCN
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tCC −tCN tCC −tCN εC − εN


(8.2)
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Titre: Etude théorique des états électroniques à plusieurs corps des défauts dans le diamant : le cas du
centre NV sous haute pression
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Résumé:
Ce travail de doctorat a pour objet l’étude, dans le
diamant, de l’influence de la pression sur les transi-
tions optiques entres l’état fondamental et les états
excités du centre azote-lacune de carbone NV ,
sans paramètre ajustable. Le centre neutre NV 0 et
le centre chargé négativement NV − ont chacun été
étudiés.
Le centre NV est un défaut à niveaux profonds,
ses propriétés optiques et magnétiques sont liées
aux niveaux sans dispersion dans la bande inter-
dite électronique associés à des états électroniques
fortement correllés et localisés. C’est pourquoi
un traitement rigoureux, à l’échelle quantique, est
nécessaire. La DFT est une approche puissante pour
les calculs des propriétés de l’état fondamental des
défauts ponctuels. Cependant, les états électroniques
en DFT ont un caractère mono-déterminantal. La
DFT seule ne permet pas de calculer certains états
électroniques à N- corps qui caractérisent les défauts
profonds. De plus, les fonctionnelles d’échange et
corrélation (FXC) utilisées en DFT ont une précision
limitée.
C’est pourquoi j’ai d’abord développé une approche

combinée modèle d’Hubbard + DFT, où les valeurs
des interactions dans le modèle d’Hubbard sont
obtenues par une méthode de calcul à partir des
principes premiers. La diagonalisation exacte soit,
en termes de chimie quantique, le calcul d’interaction
de configurations, du Hamiltonian de Hubbard dans
la base à plusieurs électrons, construite à partir
des niveaux localisé dans la bande interdite, per-
met d’accéder aux états fondamental et excités multi-
configurationels. Cette technique a été comparée aux
méthodes récentes de l’état de l’art.
La méthode développée est appliquée à l’étude de
l’effet de la pression hydrostatique sur les niveaux
triplets et singulets du centre NV −, et sur les niveaux
doublets et quadruplets du centre NV 0. Parmi
les nombreux résultats, j’ai découvert un effet très
intéressant lié à la transition singulet-singulet sous
pression hydrostatique dans le centre NV −. Les
résultats obtenus dans ce travail n’ont jamais été ni
calculé ni mesurés expérimentalement.
En perspective, j’ai développé un nouveau code
de calcul qui peut être utilisé pour étudier d’autres
défauts d’interêt dans les technologies quantiques.

Title: Theoretical study of the many-body electronic states of defects in diamond: the case of the NV center
under high pressure

Keywords: Point defects, Diamond, NV center, Density Functional Theory, Hubbard model, Group Theory,
Magnetometry, Hydrostatic pressure

Abstract:
The aim of this doctoral thesis is to study the influence
of the pressure on the optical transitions between
multi-determinant ground state and excited states of
the NV center from the first-principles. In this work,
I study both the neutral NV 0 and negatively charged
NV − centers.
The NV center is a deep-center defect, its optical
and magnetic properties are related with strongly cor-
related localized levels in the electronic band-gap.
Thus, an accurate quantum mechanical treatment is
needed. DFT is a powerful approach for the calcula-
tion of the ground state properties of defects. How-
ever, the single Slater determinant nature of the DFT
wave function does not allow for the calculation of
some many-body levels. Moreover, exchange and
correlation (XC) functionals used in DFT have a lim-
ited accuracy.
Therefore, in this PhD work, I first develop a combined

DFT + Hubbard model technique, where the interac-
tion parameters of the Hubbard model were calcu-
lated from the first-principles.
An exact diagonalization (or in quantum chemistry
language full Configuration Interaction calculations) of
the Hubbard Hamiltonian in the many-electron basis
constructed of in-gap localized levels, allows to get ac-
cess to multi-determinant ground and excited states.
I benchmark this technique comparing it to the recent
state of the art methods.
Finally, I apply the developed technique in order to
study the effect of the hydrostatic pressure on NV −

and NV 0 centers. Among many results of my work,
I discovered a very interesting effect related to the
singlet-singlet transition in the NV − center under hy-
drostatic pressure.
As a perspective, I developed a new code that can be
applied to study other defect systems of interest in the
quantum technologies.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Acknowledgements
	Résumé
	Abstract
	Introduction
	I State of the art
	Physics of NV- center in diamond
	The NV- center 
	Defect structure
	Electronic structure
	Fine structure
	a. Orbital angular moment
	b. Spin angular moment
	c. Spin-orbit coupling
	d. Spin-spin coupling
	e. Fine structure of the ground state (GS)
	f. Fine structure of the excited state (ES)
	f1. Low temperature
	f2. Room temperature

	Optical properties
	a. Optical transitions: internal transitions and capture processes
	b. Zero phonon line (ZPL)
	c. Vertical excitation (VE)
	d. Phonon side-band

	Optical dynamics

	Magnetic sensing
	The Meissner effect
	Magnetic sensing at ambient pressure
	Magnetic sensing under high pressure
	a. Purpose
	b. State of the art techniques
	b1. Transport measurements
	b2. The SQUID
	b3. Magnetic Circular Dichroism (MCD)
	b4. The Mössbauer spectroscopy
	c. The NV- as a magnetic sensor at high pressure


	Behavior under hydrostatic pressure of the NV- center
	Experiments 
	a. Shift of the fine structure of the GS
	b. Shift of the ZPL
	c. The loss of the optically detected magnetic resonance (ODMR) contrast

	Theoretical works
	Conclusion

	Behavior under a uniaxial pressure of the NV- center
	Experiments
	a. Introduction
	b. Measured quantities

	The Hamiltonian under a uniaxial strain/stress

	The molecular model predictions for the hydrostatic pressure
	Conclusions

	Physics of NV0 center in diamond
	Introduction
	The NV0 center at ambient pressure
	Defect structure and charge state
	Optical properties
	Spin state
	Symmetry of the ground state and excited state
	a. The NV0- NV- photoconversion process
	b. Fine structure

	Conclusion

	Behavior under quasi-hydrostatic pressure of the NV0 center
	Experiments
	Theoretical works 
	Conclusion

	Behavior under a uniaxial pressure of the NV0 center
	Experiments


	Methods
	Some definitions about electronic correlations
	Treatment of electron correlations with wave function methods
	Treatment of electron correlations in DFT
	Treatment of electron correlations beyond DFT
	The DFT LDA+U and DFT GGA+U approaches
	Hybrid functionals
	The GW method
	Conclusion

	Treatment of strongly correlated states of the NV- defect
	Caveats
	The SCF method
	a. Principles
	b. Advantage with respect to the differences in eigenvalues
	c. Performance of the SCF method
	d. Conclusion

	Mono-determinantal states with constrained DFT 
	a. Principles
	b. Limitations
	c. Group theory analysis
	d. Wave function of the many-body states

	Previous works for the mono-determinantal solutions
	Multi-determinantal many-body states with the Hubbard model
	Vertical excitation in the Hubbard model
	Previous works for the multi-determinantal solutions
	Conclusion

	Treatment of strongly correlated states of the NV0 defect
	Mono-determinantal states with constrained DFT
	Multi-determinantal many-body states with the Hubbard model

	Conclusion


	II Theoretical results
	Treatment of correlations in DFT
	Computational details
	DFT modeling of the monodeterminantal states
	Open-shell calculation problem
	Calculation of the ZPL and VE
	Impact of the supercell size on the ZPL and VE
	Impact of the functionals
	Results: pressure effect on ZPL
	Results: pressure effect on ZPL vs VE
	Conclusions

	Treatment of correlations with the Hubbard model: theoretical developments
	The Hubbard model and the hubbardcode
	The Hubbard model for the NV- center
	The 3-site Hubbard model
	a. State of the art
	b. Method
	c. Analytical solution
	d. The single electron case
	e. Analytical parameterization
	f. Numerical parameterization
	g. My results of the 3-site model: many-body states of NV- at ambient pressure
	g1. Comparison with the experiments
	g2. Comparison with the recent previous works
	g3. Comparison with previous CI works
	g4. Comparison with previous works including electron-hole interaction
	g5. Comparison with another Hubbard model-based work
	h. Discussion
	h1. Possible limitation of DFT
	h2. Gedanken experiment on 1A'1 singlet state
	h3. Fit to experiment
	k. Conclusions

	The 4- site Hubbard model 
	a. Method
	b. Analytical solution
	c. Parameterization
	d. Results: Many-body states of NV- at ambient pressure
	e. Occupation matrix and unpaired spin density

	Comparison of the 3- and 4- site models
	a. Method
	b. Numerical comparison: limiting case
	c. Numerical comparison: fit onto DFT references
	d. Comparison of the model parameters
	e. Discussion of the electronic correlation
	f. Conclusion


	The Hubbard model for the NV0 center
	The 3-site Hubbard model
	a. Parameterization
	b. Results
	c. Previous data
	d. Conclusion

	The 4-site Hubbard model
	a. Results
	b. Discussion
	c. Conclusion


	Conclusions

	Effect of the hydrostatic pressure
	Many-body states of the NV- center
	a. Results
	b. Analysis of the molecular model
	c. Conclusion

	Many-body states of the NV0 center
	a. Method
	b. Results
	c. Conclusion

	Conclusions

	Conclusions and perspectives
	Appendix
	Pseudopotentials
	Performance of available pseudopotentials
	Generation of pseudopotentials with reduced errors
	a. Objectives
	b. Performance criterion
	c. Results

	Impact of the exchange correlation approximation
	Transferability test
	Conclusion


	Matrices of the 4-site model Hamiltonian 



