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RÉSUMÉ DÉTAILLÉ EN FRANÇAIS 

Introduction 

L'éclairage artificiel est l'une des forces motrices les plus importantes de la société moderne. 

La consommation d'énergie électrique dans le secteur de l'éclairage était d'environ 3500 TWh 

en 2012, ce qui correspond à une production équivalente de 1900 Mt en CO2. Étant donné que 

nous sommes de plus en plus préoccupés par les économies d’énergie et la réduction des gaz à 

effet de serre, l’éclairage est l’un des principaux domaines de mise à jour des technologies 

existantes et la recherche d’illuminants alternatifs efficaces est évidemment un moyen 

incontournable. D'autre part, l'évolution de la technologie exige des produits inventifs dotés 

d'architectures de dispositifs avancées. Les dispositifs électroluminescents organiques sont 

toujours efficaces, minces et flexibles. En outre, ils peuvent même être transparents, ce qui en 

fait une alternative prometteuse à leurs analogues inorganiques. 

En 1953, A. Bernanose et ses collègues ont tout d'abord observé une électroluminescence à 

partir de matières organiques. Toutefois, les matériaux électroluminescents organiques n’ont 

fait l’objet d’avancées qu’en 1987 en raison de la nécessité de tensions de commande élevées, 

ce qui entraîna des rendements énergétiques médiocres. En 1987, Tang et Friend ont inventé 

les diodes électroluminescentes organiques et polymères (OLEDs), qui permettaient déjà au 

dispositif de respecter des performances similaires aux tubes fluorescents. Il a également 

permis de lancer la période actuelle de recherche et développement sur les OLED. Ils ont mis 

au point une diode à structure bicouche par dépôt en phase vapeur de films minces de semi-

conducteurs organiques. Ces électrodes utilisaient une injection de porteur dans les matières 

organiques relativement efficace. En outre, la structure bicouche a favorisé la recombinaison à 

l'interface entre les deux films organiques semi-conducteurs afin d'éviter des pertes 

significatives liées à la trempe par électroluminescence au niveau des électrodes. 

Dans un dispositif OLED efficace, il est demandé aux électrons et aux trous de se recombiner 

dans la majeure partie du semi-conducteur organique, ce qui évite la désactivation par 

électroluminescence au niveau des électrodes. Pour atteindre cet objectif, l'injection et le 

transport de porteurs dans les matières organiques doivent être efficaces et équilibrés. 

L'injection d'électrons dans les semi-conducteurs organiques se produit dans l'orbitale 

moléculaire la plus basse non occupée (LUMO), tandis que l'injection de trous se produit dans 

l'orbitale moléculaire la plus haute occupée (HOMO). Cela signifie que pour obtenir des 

OLED efficaces, une électrode à haute fonction de travail et une basse demandent 
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respectivement une injection efficace de trous et d'électrons. Ensuite, la mobilité de ces 

porteurs de charge injectés dépend des différents types de semi-conducteurs. Ce transport de 

porteurs se produit par des effets tunnels activés thermiquement des porteurs de charges entre 

des sites localisés dans un paysage énergétique désordonné. Normalement, les films 

organiques dans les OLED doivent être extrêmement minces (moins de plusieurs centaines de 

nanomètres) pour obtenir un fonctionnement efficace. L'électroluminescence dans les OLED 

se produit par la recombinaison d'électrons et de trous pouvant former des paires d'excitons 

singulets et triplés, qui peuvent être à transition radiale, à transition non radiale ou dissociée. 

Typiquement, les phonons émis ont une énergie proche de la bande interdite du semi-

conducteur organique. Cependant, avec une seule couche organique, les OLED ne peuvent 

pas atteindre un bon équilibre entre électrons et trous. Par conséquent, une strcuture bicouche 

ou plusieurs couches organiques pouvant favoriser l’injection et la mobilité du porteur de 

charge ont été introduites dans l’OLED pour éviter ces problèmes. En conséquence, les coûts 

de production des OLED retardent considérablement leur entrée sur le marché à grande 

échelle pour des applications d'éclairage. 

En 1994, Pei et ses collaborateurs ont découvert que les propriétés des OLEDs peuvent être 

ajustées en mélangeant de fortes concentrations d'ions mobiles avec un polymère conjugué et 

un électrolyte solide organique. De plus, le comportement de l'appareil ne fonctionne pas 

comme une diode car il montre une émission en polarisation inverse et que l'intensité de la 

lumière est similaire pour les deux polarités de polarisation. Ils pensaient que l'oxydation 

électrochimique et la réduction du polymère conjugué provoquaient l'injection de charges 

électroniques à partir des électrodes. C’est l’origine du nom des nouveaux dispositifs (cellules 

électrochimiques électroluminescentes ou LEC). Dans leur travail, la tension d'activation se 

situe autour de la bande interdite du semi-conducteur polymère conjugué. De plus, cela 

indique que les matériaux stables à l'air peuvent être utilisés comme électrodes pour un 

dispositif efficace, malgré la grande barrière d'injection qui en résulte pour l'injection 

d'électrons. Deux décennies plus tard, de nombreuses alternatives d'émission ont été reportées, 

notamment les complexes de métaux de transition ionique (iTMC), les petites molécules 

(SM), les Quantum Dots (QD) et les nanoparticules (NP). Normalement, les exigences de 

l’émetteur sont un comportement électrochimique réversible et un rendement quantique de 

photoluminescence élevé à l’état solide. Outre le matériau émetteur, l'électrolyte est 

également crucial pour la performance des dispositifs LEC. Cependant, bien que de 

nombreuses recherches se soient concentrées sur les électrolytes pour les polymères contenant 

du polymère poly (oxyde d'éthylène) (PEO) ou encore les matériaux à base d'oligoéther et les 
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liquides ioniques, les chercheurs sont toujours à la recherche d'un électrolyte plus idéal pour 

la fabrication du LEC. 

Jusqu'à présent, très peu de travaux sont consacrés à l'étude d’électrolytes inorganiques pour 

intégration dans un dispositif LEC. Nous nous sommes intéressés dans ce projet à la création 

de LEC à base d'électrolyte de verre inorganique. En effet, la plupart de ces électrolytes 

organiques sont dangereux pour l'environnement, comparés à l'électrolyte en verre 

inorganique, ce qui va à l'encontre du concept de technologie verte. D'autre part, comparés à 

certains électrolytes organiques, le verre inorganique possède une conductivité ionique 

comparable, une meilleure stabilité physico-chimique et une meilleure capacité de résistance 

aux rayons ultraviolets (UV). Il est bien connu que le principal défi de la technologie LEC 

consiste à réduire la dégradation de l’émetteur organique, ce qui dépend fortement de la 

stabilité et de la capacité de l’électrolyte à résister aux rayons UV. Par conséquent, la bonne 

stabilité du verre face aux ultraviolets absorbés empêcheraient la dégradation de l'émetteur 

organique dans un dispositif LEC. Cependant, la morphologie du mélange molécule 

organique / électrolyte est également un élément clé d'un dispositif LEC. Ainsi, un émetteur 

organique qui non seulement possède un rendement quantique de photoluminescence élevé à 

l'état solide, mais peut également former un bon mélange avec un électrolyte de verre est 

recherché pour la génération de LEC. 

Le nom de phosphore provient du grec ancien phos et phorus, qui signifie respectivement 

lumière et de portée. Ceci est dû à la forte lumière du phosphore blanc. Cependant, la 

réactivité et la toxicité élevées de nombreux dérivés contenant du P empêchent son 

application dans les dispositifs émetteurs. Cette situation a changé une fois que les chimistes 

ont été capables de stabiliser et de protéger l'atome P, ce qui suggère que des dispositifs opto-

électroniques à base de dérivés organophosphorés peuvent être fabriqués. Fait intéressant, 

bien que les dérivés organophosphorés aient été étudiés pendant des décennies, leur insertion 

dans des dispositifs n’a que récemment été réalisée. Cependant, à notre connaissance, il existe 

peu de rapports sur des dispositifs LEC à base de dérivés organophosphorés, encore moins sur 

des LEC hybrides à base de dérivés organophosphorés et d’électrolyte solide hôte. 

L’objectif principal de ce travail est donc de développer un nouveau dispositif LEC à base 

d’électrolyte de verre inorganique dopé par des molécules organophosphorées. Lors de cette 

réalisation, la technique classique de fusion-trempe ne peut pas être utilisée. En effet, la 

température de fusion du verre est toujours beaucoup plus élevée que la température de 

dégradation de la molécule organique. Des voies alternatives ont ainsi été envisagées.  
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Dans le premier chapitre, le contexte de l’étude et le mécanisme des dispositifs LEC sont 

introduits. Le second et le troisième chapitre sont consacrés à l’obtention de LEC par le biais 

de la synthèse sol-gel et du frittage par Spark Plasma Sintering (SPS), respectivement. Enfin, 

lors du processus de préparation de LEC par SPS, un phénomène intéressant a été découvert. 

Une émission bleue à large bande a été observée dans le verre d’oxynitrure de phosphate de 

zinc exempt de terres rares. Le quatrième chapitre est donc consacré à ce phénomène 

inattendu. 

Chapitre 1 

Une cellule électrochimique électroluminescente (LEC) est un dispositif à couches planes, 

composé d’un semi-conducteur organique électroluminescent (OSC) et d’ions mobiles en tant 

que matériau actif pris en sandwich entre une anode et une cathode, comme illustré 

schématiquement à la Fig. 1 (à gauche). Il a été considéré comme l'exemple phare du 

dispositif d'éclairage à couches minces le plus simple. Parfois, les LEC peuvent également 

être préparées via une structure plane, comme illustré à la Fig. 1 (à droite). 

 

Fig. 1. Structure schématique d'un dispositif à cellules en sandwich (à gauche) et d'un dispositif à cellules 

planaires (à droite) avec un matériau actif monocouche 

Comparé aux OLEDs, une LEC peut fonctionner efficacement à basse tension. La tension 

d'activation de la cellule se situe autour de la bande interdite du semi-conducteur émetteur. Le 

tableau 1.1 donne un aperçu général et résume les avantages des LEC. 

Tableau 1 Comparaison de différents types de dispositifs électroluminescents organiques, OLED et LEC 

Paramètres OLEDs LECs Avantages des LECs 

Couches actives 4 ou plus 1 ou 2 Architecture de dispositif simple 

Epaisseur typique par 

couche 
60-120 nm 100-500 nm 

Des films plus épais promettent des 

process robustes 

Électrodes Sensible à l'air Air stable 
Les métaux stables à l'air peuvent 

être utilisés 

Conditions 

d'encapsulation 
Haut faible 

Les électrodes stables à l'air 

promettent un emballage moins 

exigeant 

Traitement des couches 

organiques 
À base de vide 

Basé sur la 

solution 
Traitement de préparation rentable 

Solvant n.a. Bénin Écologique 
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Tous ces avantages sont dus aux mécanismes opérationnels uniques des LEC. Un modèle 

électrochimique (ECM) et un modèle électrodynamique (EDM) ont été proposés pour 

expliquer le principe de fonctionnement d’une LEC, comme le montre la figure 2. Comme le 

montre la figure 2 (a), l'ECM suppose que si une tension V > Eg/e est appliquée sur le 

dispositif, où Eg est la bande interdite de l'émetteur et e est la charge élémentaire, l'injection 

d'électrons et de trous aux interfaces des électrodes provoquerait un dopage électrochimique 

de la couche active. De plus, l'injection d'électrons et de trous entraîne respectivement 

l'oxydation et la réduction du semi-conducteur à l'anode et à la cathode. Le semi-conducteur 

oxydé et réduit est compensé électrostatiquement par des anions et des cations provenant de 

l'électrolyte associé, respectivement, ce qui donne des régions dopées de type p et de type n 

dans la masse. L'EDM suppose que le mouvement des ions mobiles provoque la formation de 

doubles couches électriques minces (EDL : Electric Double Layer) aux interfaces des 

électrodes en raison de la tension de polarisation appliquée. En conséquence, l'injection de 

charges au niveau des électrodes s'est produite en raison du grand champ électrique interfacial 

présenté sur la figure 2 (b). 

 

Fig. 2. Modèles électrochimiques (a) et électrodynamiques (b) proposés pour des dispositifs LEC. La distribution 

spatiale associée du champ électrique est indiquée 
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La communauté scientifique concernée a mis près de deux décennies à parvenir à un 

consensus sur le mécanisme des dispositifs des LECs. Ce consensus est que les deux modèles 

proposés sont les deux régimes du même comportement électrique, aussi les deux modèles 

sont considérés corrects. 

Après avoir compris le mécanisme des LEC, le point clé de celles-ci est la couche d'émetteur 

constituée d'un mélange d'un émetteur et d'un électrolyte ionique. Les électrolytes en verre 

inorganique possèdent une fenêtre de stabilité électrochimique plus large, une conductivité 

ionique élevée, une transmission spectrale étendue et une stabilité mécanique, ce qui est 

probablement un matériau électrolytique recommandé pour une LEC. Dans ce travail, nous 

prévoyons d’utiliser deux technologies qui permettent d’éviter les conditions de températures 

élevées pour préparer le verre hybride organique-inorganique. L'une est la méthode sol-gel, 

une méthode de chimie douce par voie humide à basse température, et l'autre est le frittage 

Spark Plasma sintering (SPS), capable de fritter un verre à une température proche de la 

température de transition vitreuse (Tg) du verre. 

D'autre part, le semi-conducteur organique recommandé pour le dopage d’électrolytes de 

verre inorganiques doit présenter un rendement quantique de luminescence élevé à l'état 

solide, une stabilité chimique élevée et une température de dégradation élevée. Les semi-

conducteurs organophosphorés présentent tous ces avantages et seront donc utilisés comme 

émetteurs lors de nos travaux. 

Chapitre 2 

Dans ce chapitre, deux types de molécules OPSC ont été utilisés: OPSCS3 (émission dans le 

vert) et OPSCTD73 (émission dans le bleu). La structure de l’OPSCS3 et de l’OPSCTD73 est 

illustrée aux figures 3 (a) et (b), respectivement 

 

Fig. 3. Structure de l’OPSCTD73 (a) et de l’OPSCS3 (b) 
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Les xérogels de silice dopés à l'OPCS3 et à l'OPSCTD73 ont été préparés avec succès par la 

méthode sol-gel. La figure 4 montre les échantillons illuminés par lampe UV. Une forte 

photoluminescence (PL) a été observée à partir des deux échantillons. 

 

Fig. 4. Xérogel de silice dopée par les molécules OPSCS3 (a) et OPSCTD73 (b) sous lampe UV 

Les spectres de photoluminescence des deux échantillons ont été étudiés, comme le montre la 

figure 5. Les xérogel de silice dopés OPSCS3 et OPSCTD73 montrent un pic d'émission à 

environ 480 nm et 450 nm, respectivement. 

 

Fig. 5. Spectres de luminescence des xérogel dopes: OPSCS3 (a) and OPSCTD73 (b) 

Les xérogels de silice dopés OPSCS3 et OPSCTD73 présentent un “décalage bleu” de 30 nm 

et 20 nm, respectivement, par rapport à celui des molécules correspondantes dissoutes dans du 

DCM (dichlorométhane). Ce “virage bleu” peut être dû au changement de l'environnement de 

coordination de l’OPSC. La structure de l'OPSC aurait donc été modifiée. Le film de silice 

dopée par l’OPSCTD73 a également été préparé (figure 6). La figure 6 (b) présente la vue au 
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microscope optique du film de silice dopé montrant une bonne uniformité sous un 

grossissement x 1000. 

 

Fig. 6. Photographie du revêtement de silice dopée OPSCTD73 sous lampe UV (a) et sous microscope optique 

(b) (grossissement x1000) 

Une composition à base de 70% molaire de SiO2 et 30% de Li2O a été préparée en utilisant 

respectivement du LiNO3 et du LiCl comme précurseurs, comme illustré à la figure 7. 

 

Fig. 7. Photographie du xérogel TEOS-LiNO3 et TEOS-LiCl 

Sur la base de cette solution, des xérogels de silicate de lithium massifs ont été préparés, puis 

des films ont été réalisés. Cependant, lorsque la concentration de Li2O est supérieure à 10% 

en moles, il a été observé que des vides sont générés dans le revêtement, comme présenté sur 

la figure 8.  

Ces vides présents dans le revêtement préparé sont probablement dus à l’échelle de temps 

courte des processus de dépôt de film menant à une gélification susceptible de se produire par 

un processus physique. Lorsque la concentration de sels de lithium dépasse un certain point, 

étant donné que la réaction chimique entre le sel de lithium et le silanol ne se produit pas 

suffisamment en raison de la courte durée du processus de centrifugation, il existe certains 
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sels de lithium sous la forme d'origine (LiCl ou LiNO3) dans le revêtement. Et ces sels de 

lithium sont plus susceptibles de réagir avec l'eau, ce qui provoque l'apparition de vides. Etant 

donné qu'un grand excès d'eau, correspondant à un rapport molaire eau / TEOS supérieur à 

15, a favorisé la formation de métasilicate de lithium, qui favorise la réaction entre le lithium 

et le silanol, l'ajout excessif d'eau peut être la solution pour supprimer les vides dans le 

revêtement préparé. Une seconde possibilité, le procédé de dip-coating présente un temps de 

préparation plus long que celui de spin-coating, le temps de réaction chimique entre le sel de 

lithium et le silanol est probablement plus long, ce qui permettrait de préparer des films de 

verre de silicate à teneur élevée en lithium sans vides. 

 

Fig. 8. Revêtement TEOS-C6H5Li3O7 (a) et TEOS-LiNO3 (b) au microscope optique (grossissement 300 fois 

pour (a) et 100 fois pour (b)) trois jours après la préparation des revêtements 

Des xérogels de silice massifs et des couches minces de silice présentant une bonne 

uniformité ont été préparés avec succès. De plus, une forte photoluminescence a été observée 

à partir du xérogel de silice dopée à l'OPSC ainsi que des couches par illumination sous une 

lampe UV. Le spectre de photoluminescence a ensuite été étudié et il a été constaté que le pic 

du spectre de photoluminescence présente un décalage vers les courtes longueurs d’onde par 

rapport à celui de l'OPSC dilué dans du DCM.  

Ainsi, un xérogel de silicate massif à forte teneur en lithium a été préparé en utilisant 

différents précurseurs de lithium. Ensuite, des films de verre de silicate de lithium 

correspondants ont été préparés. Cependant, le xérogel de silicate contenant une teneur élevée 

en lithium a tendance à réagir avec l'eau et quelques vides apparaissent dans le film. Des 

expériences comparatives ont montré que le temps de vieillissement, les types de précurseurs 

de lithium et la concentration de lithium peuvent affecter l’apparition des vides dans ces films. 

Ces vides peuvent être causés par une réaction chimique inadéquate entre le sel de lithium et 



Résumé Détaillé En Français 

 

X 

 

le silanol en raison du court laps de temps possible pour les réactions de condensation. Cela 

indique qu’un ajout d'eau en excès pourrait être une voie envisageable pour supprimer 

l’apparition de bulles/vides dans le revêtement préparé. Une autre possibilité proposée pour 

supprimer ces vides consiste à préparer le revêtement de verre de silicate à haute teneur en 

lithium par dip-coating. 

Chapitre 3 

Dans ce chapitre, la molécule OPSCC2 a été utilisée. La structure de l'OPSCC2 est présentée 

en figure 9. Compte tenu de la température de dégradation des deux molécules, la température 

de production des verres a été maintenue inférieure ou égale à 300°C.   

 

Fig. 9. Structure de OPSCC2 

Un verre contenant 25% de Li2S04, 40% de Li2O et 35% de P2O5 (LiS25PM) présentant une 

conductivité ionique supérieure et une faible Tg a été préparé. La figure 10 présente la courbe 

DSC et les mesures de conductivités de ce verre. On peut voir que la Tg du verre LiS25PM 

est d'environ 297 °C et que la conductivité ionique peut atteindre 10-7 S/cm à température 

ambiante. 

 

Fig. 10. Courbe DSC des verres de Li2O-Li2SO4-P2O5 (à gauche) et diagrammes d'Arrhenius des conductivités 

en courant continu du verre LiS25PM (à droite) 
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Sur la base de cette composition de verre contenant 25% de Li2S04, le verre dopé par la 

molécule OPSCC2 a été préparé avec succès par la méthode de frittage SPS, comme illustré 

en figure 11. Un échantillon du verre de base (non dopé) a également été préparé par SPS 

comme échantillon de référence. La Fig. 11 montre que le verre hybride est jaunâtre, couleur 

similaire à la couleur de la molécule OPSCC2, ceci indique que les molécules sont 

probablement conservées au cours du processus SPS. 

 

Fig. 11. Photo du verre LiS25PS (en haut) et du verre hybride dopé avec l’OPSC (en bas) 

Les spectres de photoluminescence et d'excitation (PLE) du verre hybride sont présentés sur 

la figure 12. L'échantillon hybride a été excité optiquement dans la région des pics 

d'absorption principaux de l’OSPCC2 (430 nm).  

 

Fig. 12. Spectres PL (a) et PLE (b) du verre hybride 

Tout d'abord, une forte PL a été observée à partir du verre hybride montré dans l'encadré de la 

figure 12 (a) et le pic du spectre PL correspondant est à environ 600 nm. Ceci est une autre 

preuve convaincante que l'OPSCC2 est conservé pendant le processus de frittage SPS. 

Comparé à l'émission de l’OPSCC2 solide, un décalage vers le rouge de 50 nm est observé 

dans l'échantillon du matériau hybride. Cela provient du fait que l'environnement de 
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coordination est devenu rigide, ce qui a probablement une influence sur le gap HOMO-

LUMO de la molécule OPSCC2. Le spectre de PLE avec émission à 600 nm est illustré à la 

figure 12 (b). Le pic moyen se situe aux alentours de 465 nm, il est également décalé vers le 

rouge de 30 nm par rapport à celui de l’OPSCC2 solide. 

Afin d'examiner la microstructure de la molécule OPSCC2, une observation au microscope 

électronique à transmission (TEM) a été réalisée. De plus, le TEM est également un moyen 

envisageable d’étudier la morphologie de l’interface entre l’OPSC et la matrice vitreuse. Les 

images TEM du verre dopé avec l’OPSCC2 sont présentées en figure 13. La masse atomique 

de l'OPSCC2 (principalement du carbone) étant beaucoup plus petite que celle de l'hôte du 

verre (principalement P et O), l'OPSCC2 est claire et la matrice de verre sombre. 

 

Fig. 13. Images MET des verres hybrides 

On peut voir sur la figure 13 (a) que la molécule est en effet distribuée dans la matrice de 

verre. Cependant, la taille de l'OPSCC2 n'est pas uniforme, de 100 nm à 500 nm, comme 

indiqué sur la figure 13 (b). Quelques petites pièces de verre hybrides non frittées (inférieures 

à 500 nm) ont également été observées (figure 13 (c)). La figure montre des nanoparticules 

dans chaque petit morceau de verre et la taille des nanoparticules OPSCC2 est d'environ 100 

nm. La figure 13 (d) montre la plus grande nanoparticule OPSCC2 dans le verre qui a été 

observée, sa taille est de 540 nm. Aucune structure cristalline n’a été observée par MET. 
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De plus, une étude RMN du noyau 31P a été réalisée dans les compositions LiS25PM, le 

LiS25PS et le verre hybride, les résultats sont présentés à la Fig. 14. 

 

Fig. 14. RMN 31P de LiS25PM, LiS25PS et du verre hybride 

Sur la base des données MET et RMN, il est rationnel de souligner que l'OPSCC2 existe sous 

forme de nanoparticules amorphes dans la matrice de verre et que la taille moyenne de ces 

nanoparticules est d'environ 100 nm. Par conséquent, la séparation de phase est conservée à 

une échelle inférieure au micron, ce qui est bénéfique pour les performances d'un dispositif 

LEC. En outre, il est raisonnable de souligner qu’il n’y a pas d’accord de liaison entre 

l’OPSCC2 et le réseau vitreux. Néanmoins, étant donné que l’OPSCC2 existe sous forme de 

nanoparticules dans la matrice de verre, elles peuvent diminuer le mouvement des ions 

lithium dans le verre, ce qui peut réduire la conductivité ionique. 

La dernière partie est l'étude des propriétés électrochimiques du verre hybride. Tout d'abord, 

la conductivité ionique du verre hybride a été déterminée par analyse d'impédance complexe 

(figure 15), les résultats du verre LiS25PS étant donné à titre de référence. Malheureusement, 

le verre LiS25PS (8.110-8 S/cm) et le verre hybride (6.110-8 S/ cm) ont une conductivité 

ionique inférieure à celle du LiS25PM (10-7 S/cm), pouvant être causés par des défauts dû au 

processus de frittage tel que des impuretés, des pores résiduels et des joints de grains. 
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Fig. 15. Diagrammes d'Arrhenius des conductivités en courant continu du LiS25PS et du verre hybride 

On peut constater que la conductivité ionique du verre hybride est légèrement inférieure à 

celle du verre de base LiS25PS. Ceci est cohérent avec de l'effet de «blocage» lié à la 

présence de molécules OPSCC2. Un matériau monocristallin ou à phase amorphe unique, 

sans joint de grain, constituerait le support idéal pour une conduction ionique rapide. Par 

conséquent, la séparation de phase entre la matrice vitreuse et la molécule dans un verre 

hybride devrait être similaire au comportement des joints de grain rencontré dans des 

vitrocéramiques. 

 

Fig. 16. Parcelles de Nyquist en LiS25PS et verre hybride à 50 ° C 

Cette explication est corroborée par les tracés d'impédance complexes du verre LiS25PS et 

des verres hybrides. La figure 16 montre les courbes d’impédance complexe de LiS25PS et de 

verre hybride à 50 ° C (dans le but de maintenir une conduction  ionique supérieure à 10-7 

S/cm). Deux demi-cercles, un grand à haute fréquence et un petit à basse fréquence, ont été 

observés sur les courbes du verre hybride, phénomène non observé sur les autres verres 

préparés. Ce deuxième demi-cercle est une empreinte typique de la présence de joints de 
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grain. Bien qu’il n’y ait pas de joints de grain dans la matrice vitreuse, la séparation de phase 

est probablement à l’origine de la légère diminution de la conductivité ionique. Aussi, même 

si la conductivité ionique du verre hybride est inférieure à 10-7 S/cm à température ambiante, 

elle peut atteindre 10-6 S/cm à environ 65°C, répondant ainsi aux exigences d'un dispositif 

LEC. 
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Fig. 17. Mesure de voltamétrie cyclique du verre LiS25PS et de matériau hybride avec une vitesse de balayage 

de 0.2 mV / S à 50 ° C 

Comme mentionné précédemment, le modèle électrochimique suppose que le mécanisme 

d'une LEC est un processus électrochimique. Par conséquent, un processus de dopage 

électrochimique de l'OPSCC2 devrait se produire dans le verre hybride. D'autre part, la 

fenêtre de stabilité électrochimique de l'électrolyte doit être plus large que celle de la 

molécule. La mesure de voltamétrie cyclique (CV) permet de déterminer la fenêtre de stabilité 

électrochimique de l'électrolyte de verre ainsi que le processus de dopage électrochimique de 

l'OPSCC2. Comme le montre la figure 17, des courants anodiques et cathodiques attribuables 

respectivement à la dissolution de l'or (Au → Au3+ + 3e) et au dépôt (Au3+ + 3e- → Au) sont 

observés dans la plage de potentiel de 1,5 à 1,3 V, ce qui indique également une bonne 

réversibilité. De plus, des courants dus à la décomposition de l'électrolyte sont détectés dans 

la gamme -2V à 2 V. Dans le verre hybride, outre les pics observés, un couple rédox a été 

détecté. Ces couples rédox sont liés à la contribution de l’OPSCC2. 
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Fig. 18. Schéma de la plateforme pour tester le LEC basé sur le verre hybride 

Par la suite, un dispositif LEC basé sur le verre hybride a été fabriqué. L'épaisseur typique du 

revêtement émetteur d'un LEC est d'environ plusieurs dizaines de microns. Le verre étant 

fragile, il est très difficile de le polir en dessous de 100 microns. Le verre hybride a été poli à 

400 microns pour préparer le dispositif. En raison de l'épaisseur beaucoup plus importante que 

la normale, un dispositif de chauffage a été utilisé pour augmenter la température du verre 

dopé afin d'améliorer sa conductivité ionique. Le schéma de la plate-forme expérimentale de 

test de LEC basé est présenté à la figure 18 et l'encadré montre le dispositif réel. Cependant, 

nous n'avons pas observé d'électroluminescence à partir du verre hybride même lorsque la 

température a été augmentée jusqu'à 150 °C.  

Plusieurs raisons peuvent expliquer ce résultat:  

1. l’épaisseur du verre est encore trop importante;  

2. le contact superficiel entre le verre et les électrodes n'est pas parfait;  

3. la conductivité ionique est encore trop faible;  

4. des impuretés sont introduites par le processus SPS.  

Afin de réaliser des LEC, avec des taux de conversion effectifs, ces problèmes devront être 

résolus dans de futurs travaux. 

Pour conclure ce chapitre, nous pouvons mettre en avant le fait qu’une composition de verre 

au phosphate avec une bonne transmission dans le domaine visible (environ 90%), une faible 

Tg (297 °C) et une conductivité ionique relativement élevée (10-7 S/cm) a été obtenue par 

trempe. Ensuite, sur la base de cette composition de verre, en utilisant un procédé en deux 

étapes consistant en une trempe et un frittage de poudre par SPS, des verres hybrides dopés à 
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l'OPSCC2 ont été préparés avec succès. L'observation d’une forte PL du verre hybride montre 

que l'OPSCC2 n'est pas dégradée au cours du processus de frittage par SPS. Cette constatation 

est également supportée par les résultats MET. D'après les résultats du MET, la taille de 

l'OPSCC2 varie de 100 à 500 nm dans le verre dopé. Bien que la morphologie topographique 

ne puisse pas être mise en évidence par MET, cela suggère que l'échelle de séparation de 

phase peut atteindre une échelle inférieure au micron. Cela signifie qu'une bonne morphologie 

peut être obtenue en améliorant les paramètres de mélange. De plus, la conductivité ionique 

du verre hybride a été déterminée par des tracés d'impédance complexes. Celle-ci peut 

atteindre 6.110-8 S/cm et 10-6 S/cm à la température ambiante et à 65 °C, respectivement. 

Enfin, les mesures par voltamétrie cyclique suggèrent qu'un processus de dopage chimique de 

l'OPSCC2 se produit dans le verre hybride. De plus, la fenêtre de stabilité électrochimique de 

l'hôte en verre est plus large que celle de l'OPSCC2. Bien qu'aucune électroluminescence du 

dispositif à base de verre hybride n'ait été observée, sur la base de toutes ces données, il est 

raisonnable de supposer que ce verre hybride est un bon candidat à utiliser comme matériau 

émetteur en vue de la réalisation de LEC. 

Chapitre 4 

Au cours du processus de préparation du verre de phosphate pour la préparation de LEC, nous 

avons observé une luminescence bleue à partir de verres au phosphate et de zinc. Nous avons 

été intrigué car il existe très peu de travaux sur ce type de verre. Dans ce chapitre, la cause de 

l’émission dans le verre de zinc amorphe a été étudiée. Après avoir compris la raison de la 

luminescence bleue, nous avons essayé de trouver une application potentielle à ce verre. 

Des verres binaires au phosphate de zinc (40%  ZnO - 60%  P2O5) ont été préparés par un 

procédé classique de fusion-trempe en utilisant un creuset de silice. Des verres constitués de 

ZnO (99,999%) et de P2O5 (99,99%) sont nommés PO (20g), et les verres obtenus à partir de 

ZnO (99,999%) et de (NH4) 2HPO4 (99,99%) sont nommés NHPO (20g). Ensuite, l'un des 

échantillons NHPO a été placé dans un four tubulaire à travers un flux d'ammoniac à 800 ℃ 

pendant 10 h pour obtenir un verre de phosphate de zinc oxynitruré nommé NNHPO. Les 

verres préparés par P2O5 et les verres dopés au Mn correspondants sont respectivement 

désignés par PO et POxMn (x = 0,3, 0,6, 1,0, 1,5, 2,0); le verre préparé par NH4H2PO4 et les 

verres dopés Mn correspondants correspondent respectivement à NHPO et NHPOxMn (x = 

0,3, 0,6, 1,0, 1,5, 2,0). 

La figure 19 (a) affiche les spectres d'absorption des échantillons préparés. Tout d'abord, on 

peut voir dans la zone de transparence qu'il n'y a aucun signe de centres de couleur ou d'autres 
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bandes d'absorption formées par des impuretés. De plus, le pic d’absorption des compositions 

PO, NHPO et NNHPO est située au-dessous de 300 nm, avec une forte augmentation de 

l’absorption à 220, 230 et 250 nm. Les décalages du bord d'absorption sont très probablement 

liés au réarrangement structural du verre. Les échantillons de verre NHPO et NNHPO 

montrent une large émission autour de 420 nm lorsqu'ils sont excités à 250 nm, les spectres 

d'excitation de photoluminescence (PLE) et de photoluminescence (PL) sont représentés sur 

les figures 19 (b) et (c). Les mécanismes proposés correspondants pour les émissions de 

lumière bleue sont illustrés dans l'encadré de la figure 19 (d). Les émissions violettes et bleues 

sont attribuées aux transitions des états Zni et Zni étendus à la bande de valence, 

respectivement. Il convient de noter que la bande d’émission dans le verre NNHPO présente 

un décalage vers le rouge par rapport à celui du verre NHPO (figure 19 (c)). Un autre 

comportement typique de la PL des clusters de ZnO amorphes est la courte durée de vie 

atteignant un niveau de l’ordre de la nanoseconde. 

 

Fig. 19. Spectres d’absorption (a), excitation (b), photoluminescence (c) des échantillons préparés et spectre de 

décroissance de luminescence (d) du verre NNHPO. 

La décroissance de luminescence de NNHPO a été mesurée à 420 nm sous une excitation 

d’impulsions nanoseconde à 250 nm. L'émission ultra-rapide avec le temps de décroissance a 

été mesurée comme indiqué sur la figure 19 (d). On peut voir que le temps de décroissance de 

NNHPO peut atteindre le niveau de la nanoseconde. Sur la base de ces résultats, malgré 

l'absence de bande d'émission UV intrinsèque évidente, il est possible de souligner que 
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l'émission bleue dans l'échantillon de verre préparé doit appartenir à une certaine forme de 

ZnO amorphe. 

Pour trouver la raison de l'intensité plus forte et fournir plus d'informations sur la 

microstructure des échantillons de verre préparés, la microscopie électronique à transmission 

(MET) a été étudiée et est présentée Fig. 20 et Fig. 20 (a), (b), (c) pour les verres PO, NHPO, 

NNHPO, respectivement. Comme on peut le voir sur les figures 20 (a)-(c), une certaine 

agrégation à l'échelle nanométrique s'est formée dans un échantillon NHPO et NNHPO, mais 

ne s'est pas formée dans le verre PO, ce qui correspond aux propriétés de luminescence des 

échantillons de verre. Par conséquent, il est raisonnable de souligner que ces agrégations à 

l'échelle nanométrique sont des clusters de ZnO et que les images MET indiquent à nouveau 

que ces clusters de ZnO sont amorphes. De plus, la taille ou l'échelle des amas de ZnO à 

l'échelle nanométrique amorphes (ANZC : Amorphous Nanometric Zinc Cluster) dans 

NNHPO est plus grande que celles dans NHPO, ce qui expliquerait la forte intensité de 

l'émission bleue dans NNHPO. Cette ANZC présente la possibilité de former des états Zni 

plus étendus, ce qui provoquerait le décalage vers le rouge de la bande d’émission de 

NNHPO. 

 

Fig. 20. Image en microscopie électronique à transmission des échantillons PO (a), NHPO (b) et NNHPO (c); (d) 

unités tétraédriques des phosphates - atomes d'oxygène (rose) reliés à des atomes de phosphore (bleus); e) teneur 

en azote dans les échantillons de verre préparés (% en poids) 

Cependant, la raison pour laquelle les échantillons de verre présentent différents phénomènes 

ANZC nous intrigue profondément. Les tétraèdres de phosphate ont un, deux, trois oxygènes 

pontants. Ces unités peuvent être classées en utilisant la terminologie Qi, où i représente le 

nombre d'atomes d'oxygène pontés par tétraèdre, comme indiqué sur la figure 20 (d). Il a été 

constaté que l'azote peut être présent sous forme de verre phosphate = N- ou> N-, comme le 
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montre la figure 21 (a). Le spectre Raman des échantillons préparés présenté à la figure 21 

(b)(c) suggère que les contraintes topologiques des verres préparés sont modifiées. 

 

Fig. 21. (a) Schéma des possibilités de liaison de l’azote dans des verres de phosphate; (b) spectres Raman des 

verres PO, NHPO et NNHPO; (c) le pic ʋ (P-O) des échantillons de PO, NHPO et NNHPO; (d) déconvolution 

du pic du spectre Raman du verre NNHPO 

 

Fig. 22. Illustration schématique montrant le niveau de difficulté de l'évolution des grappes de ZnO dans les 

sous-réseaux structurés en 2D (a) et en 3D (b). Schéma de la mésostructure de PO (c) et de NNHPO (d) 

La matrice de verre PO se déplace vers une chaîne bidimensionnelle (“type polymère”) en 2D 

et ces chaînes ne présentent pratiquement pas de liaisons croisées. D'après l'illustration 

schématique des sous-réseaux 2D (figure 22 (a)), on peut voir dans cette configuration 

topologique que les polyèdres ZnO sont aisément déplaçables dans les directions X et Y et 
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que la seule contrainte topologique se trouve la direction Z. La figure 22 (c) montre 

l'illustration schématique de la mésostructure du verre correspondant, des chaînes “semblables 

à des polymères” sans liaisons croisées. Normalement, une configuration topologique avec 

une seule contrainte de direction ne tend pas à former une agrégation. Alors que, dans NHPO 

et NNHPO, la teneur en “oxygène libre” a été réduite en raison de la diminution du nombre de 

groupes hydroxy et en particulier de l’ajout d’azote. Ceci peut conduire à la séparation de 

tétraèdres de ZnO du réseau vitreux et le transformer en modificateur de verre sous forme 

octaédrique. De plus, l'azote modifie également la matrice de verre à partir de chaînes 2D 

“ressemblant à un polymère” à une structure de cadre tridimensionnelle (3D) en formant des 

entités >N-  susceptibles de provoquer des réticulations entre chaînes. L'illustration des sous-

réseaux présentée à la figure 22 (b) montre que, dans cette configuration, les polyèdres ZnO 

sont difficiles à déplacer, quelle que soit la direction X, Y ou Z. Le schéma de la 

mésostructure du verre correspondant comportant des liaisons croisées causées par des entités 

>N-  est illustré sur la figure 22 (d). Cette configuration 3D avec des contraintes dans 3 

directions “expulserait” des polyèdres ZnO, modificateurs de verre, formant ainsi des agrégats 

de ZnO amorphes. En outre et dans une certaine mesure, plus le niveau d’entités >N-  est 

grand, plus la structure du verre sera asymétrique et compacte. Par conséquent, il est plus 

facile de former des ANZC plus étendus dans le NNHPO que dans les NHPO, ce qui illustre 

une PL plus intense dans les premiers verres cités. 

Après avoir compris la formation d'ANZC dans le verre, nous avons souhaité mettre en 

évidence une application potentielle de ce type de matériau, l’étude s’est portée sur des diodes 

électroluminescentes blanches (pc-WLED : phosphor-converted white light-emitting diodes). 

Ces dernières années, l’émergence de recherches sur les verres luminescents émettant de la 

lumière blanche par émission de terres rares (REF) suggère que ce type de verre luminescent 

semble être un nouveau matériau compatible pour des applications pc-WLED. Dans ce 

travail, nous proposons une solution pc-WLED unique à base de ANZC au phosphate de zinc 

dopé au manganèse. En outre, le verre présentant ce phénomène de luminescence de lumière 

blanche chaude présente un CRI (Color Rendering Index) élevé et une température de couleur 

basse, des caractéristiques comparables au phosphore cristallin à haute efficacité lumineuse. 

La figure 23 (a) schématise un dispositif pc-WLED basé sur le verre préparé et la figure 23(b) 

le photoluminescence d'échantillons de verres NHPO dopés Mn2+ excités à 250 nm. La figure 

23 (b) montre le PL des échantillons excités à 250 nm. De toute évidence, le transfert 

d'énergie entre les ions amorphes ZnO et Mn2+ s'est produit. 
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Fig. 23. (a) Schéma d'un dispositif pc-WLED basé sur un verre NHPO dopés Mn2+ et (b) PL d'échantillons de 

verres NHPO dopés Mn2+ excités à 250 nm. 

Les coordonnées chromatiques de la CIE (Commission internationale de l’éclairage) des 

échantillons de verre NHPOxMn (x = 0.3, 0.6, 1.0, 1.5 et 2.0), calculées sur la base du spectre 

d’émission correspondant, sont représentées à la Fig. 24. Des détails complémentaires sont 

présentés dans le tableau 2. 

 

Fig. 24. Diagrammes de chromaticité CIE des échantillons de verres NHPO dopés Mn2+; encart: photographie de 

la WLED réalisée basée sur un échantillon de verre NHPO1.5Mn, allumée (à gauche) et éteinte (à droite) 

Tableau 2. Coordonnées CIE et température de couleur des NHPO dopés Mn2+ 

Verres 
coordonnées CIE  

Température de couleur (K) 
X Y  

NHPO0.3Mn 0.25 0.23  >10000 

NHPO0.6Mn 0.31 0.27  8000 

NHPO1.0Mn 0.37 0.33  3998 

NHPO1.5Mn 0.41 0.35  3000 

NHPO2.0Mn 0.44 0.36  2500 

L’échantillon NHPO1.0Mn présente des valeurs CIE de x = 0.37 et y = 0.33, ce qui 

correspond à celles attendues pour un matériau émettant de la lumière blanche pure. En outre, 

il a été constaté que la température de couleur était de 3998 K, valeur attendue pour une 

source de lumière blanche chaude. De même, une efficacité quantique externe élevée (1%) a 
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été obtenue. De plus, les WLED encapsulées à base des verres synthétisés ont été préparées. 

La longueur d’onde d’excitation optimale n’ayant pas été utilisé, des recherches 

complémentaires devrait permettre d’améliorer ces résultats. Les pc-WLED encapsulés 

réalisées à partir du verre NHPO1.5Mn ont des valeurs de CIE : x = 0.33, y = 0.35; TDC avec 

5228 K; Ra = 86. Ces excellentes propriétés rendent ce verre extrêmement prometteur pour la 

réalisation de WLED à couleur chaude avec l’utilisation d’une LED UV appropriée. 

En résumé et à notre connaissance, une émission de bleu aussi intense et ultra-rapide a été 

observée pour la première fois dans un verre d'oxynitrure de phosphate de zinc. Selon le 

spectre de PL et le spectre de décroissance de la luminescence, l'émission a été attribuée à des 

amas de ZnO nanométriques amorphes, supposition qui a été validée par des images MET des 

échantillons de verres préparés. L’intégration de l’azote dans le réseau de verre est la clé pour 

obtenir ces clusters de ZnO nanométriques amorphes. L'azote module les contraintes 

topologiques de la matrice de verre de la 2D à la 3D en passant par la réticulation des chaînes 

de verre via des entités >N-. Les contraintes topologiques 3D forment des clusters de ZnO 

nanométriques amorphes plus étendus, qui conduisent à une PL plus forte. Sur la base de ce 

verre, des verres d'oxynitrure de phosphate de zinc dopés au magnésium présentant une 

lumière blanche chaude sous excitation UV ont été préparés. Parmi ceux-ci, l'échantillon 

NHPO1.0Mn montre des valeurs de CIE, une température de couleur qui correspondent aux 

critères recherchés pour un matériau émettant de la lumière blanche pure et chaude. 

Conclusion générale 

Dans ce travail, notre objectif principal a été de développer un nouveau dispositif LEC basé 

sur un électrolyte en verre inorganique dopé par un semi-conducteur organophosphoré. Ces 

matériaux hybrides ne pouvant être synthétisé en utilisant la technique classique de fusion-

trempe, les technologies sol-gel et SPS ont été utilisées pour préparer le verre hybride. 

Dans le cas du procédé sol-gel, des films de verre de silice dopée par des molécules 

organophosphorées semi-conductrices ont été préparés avec succès. Cependant, certains vides 

ont été générés dans les films de verres contenant une teneur élevée en lithium, c’est-à-dire 

ceux présentant une conductivité ionique souhaitée pour une application LEC. Les raisons 

probables de la génération de ces vides ont été identifiées et des travaux seront effectués pour 

réaliser des améliorations.  

Dans le cas de la technologie SPS, le verre hybride a été également été préparé avec succès. 

Les propriétés optiques, la microstructure et les propriétés électrochimiques du verre hybride 

ont été étudiées. Les résultats montrent que ce verre hybride peut être utilisé dans un dispositif 
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LEC, qui a ainsi été préparé. Cependant, aucune électroluminescence n'a été observée à partir 

de l'échantillon de verre hybride. Cela peut être dû aux raisons suivantes: 1. l’épaisseur du 

verre est encore trop grande; 2. le contact superficiel entre le verre et les électrodes n'est pas 

optimal; 3. la conductivité ionique est encore trop faible; 4. des impuretés sont introduites lors 

du processus SPS. Ces problèmes devront être réglés pour pouvoir observer une luminescence 

à partir des dispositifs réalisés. 

Au cours du processus de préparation de LECs, nous avons observé une luminescence bleue à 

partir de verres de phosphate contenant du zinc. Nous avons démontré que cette luminescence 

bleue provient de clusters amorphes de zinc nanométriques dans le verre. L’introduction 

d'azote module les contraintes topologiques de la matrice vitreuse de la 2D à la 3D en jouant 

sur la réticulation des chaînes de verre. Les contraintes topologiques 3D forment des clusters 

nanométriques de ZnO amorphes plus étendues conduisant à une PL plus intense. Finalement, 

après avoir compris la raison de la luminescence bleue, nous avons préparé avec succès des 

diodes électroluminescentes blanches à conversion de phosphore à partir des verres de 

phosphate contenant des clusters nanométriques de ZnO amorphes. 
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GENERAL INTRODUCTION 

Artificial lighting is one of the most important driving forces of modern society. The 

consumption of electrical energy in the lighting sector was ca. 3500 TW hour in 2012, which 

is corresponding to an equivalent CO2 production of 1900 Mt. Since we become more and 

more concerned about saving energy and decreasing greenhouse gases, lighting represents one 

of primary fields to update existing technologies and searching for alternative efficient 

illuminants is obviously an efficient way. On the other hand, the evolution of technology 

request inventive products with advanced device architectures. Organic electroluminescent 

devices are always efficient, thin and flexible. Besides, they can be even transparent, which 

makes them a promising alternative to their inorganic analogs.  

In 1953, A. Bernanose and coworkers firstly reported electroluminescence from organic 

materials. However, subsequent advancement of organic electroluminescent materials was not 

obtained until 1987 because of the requirement of high drive voltages, which causes poor 

power efficiencies. In 1987, Tang and Friend invented organic and polymer light-emitting 

diodes (OLEDs), which made the device already meet the typical performances of fluorescent 

tubes. It also started the current period of global OLED research and development. A diode 

with a bilayer structure by vapor deposition of thin films of organic semiconductors was 

developed by them. Electrodes with work functions that carrier injection in the organics was 

relatively efficient was used. Furthermore, the bilayer structure promoted recombination at the 

interface between the two organic semiconducting films in order to avoid significant losses 

related to electroluminescence quenching at the electrodes. 

In an efficient OLED operation, electrons and holes are requested to recombine in the bulk of 

the organic semiconductor, which avoids electroluminescence quenching at the electrodes. In 

order to achieve this target, efficient and balanced carrier injection and transport in the 

organics is the most primary. Electron injection in organic semiconductors occurs in the 

lowest unoccupied molecular orbital (LUMO), whereas hole injection occurs in the highest 

occupied molecular orbital (HOMO). That means, in efficient OLEDs, one high- and one low-

work function electrode are ask for efficient hole and electron injection, respectively. Then, 

the mobility of these injected charge carriers depends on the different types of semiconductor. 

This transportation of carriers happens through thermally activated tunneling of the charge 

carriers among localized sites in a disordered energy landscape. Normally, the organic films 

in OLEDs should be extremely thin (below hundreds of nanometers) to obtain efficient 

operation. Electroluminescence in OLEDs happens through recombination of electrons and 



General Introduction 

 

2 

 

holes that may form singlet and triplet exciton pairs, which can be transition radiatively, 

transition non-radiatively, or dissociate. Typically, the emitted phonons are with an energy 

that is close to the bandgap of the organic semiconductor. However, with only one organic 

layer, OLEDs can not achieve a good balance between electrons and holes. Therefore, a 

bilayer or more organic layers which could promote injection and the mobilities of charge 

carrier was introduced in OLED to avoid these problems. As a result, production costs of 

OLEDs are considerable delaying their large-scale market entry for lighting applications. 

In 1994, Pei and co-workers found that the properties of OLEDs can be drastically adjusted 

by blending high concentrations of mobile ions with a conjugated polymer and an organic 

solid electrolyte. Besides, the behave of the device does not work like a diode because it 

shows emission in reverse bias and the light intensity is similar for both bias polarities. They 

thought the electrochemical oxidation and reduction of the conjugated polymer cause the 

injection of electronic charges from the electrodes. This is the origin of the name of the new 

devices (light-emitting electrochemical cells or LECs). In their work, the turn-on voltage is 

around the bandgap of the conjugated polymer semiconductor. Moreover, it indicates that air 

stable materials can be the electrodes of the efficient device, despite the consequent large 

injection barrier for electron injection. Two decades later, a lot of emitting alternative have 

been reported including ionic transition metal complex (iTMC), small molecule (SM), 

quantum-dot (QD) and nanoparticle (NP). Normally, the emitter requirements are a reversible 

electrochemical behavior and a high photoluminescence quantum yield in solid-state. On the 

hand, besides the emitter material, the electrolyte is also crucial for the performance of LEC 

devices. However, although there are many researches focused on electrolytes for LEC 

containing polymer poly (ethylene oxide) (PEO), oligoether-based material and ionic liquids, 

the researchers are still seeking a more ideal electrolyte for making LEC. 

Up to now, there are very few works focuses on inorganic electrolyte for a LEC device. As 

glass researchers, we are intrigued by the promise of making a LEC based on inorganic glass 

electrolyte. On one hand, most of those organic electrolytes are environmentally hazardous 

compare with inorganic glass electrolyte, which side against the concept of green technology. 

On the other hand, compare to some organic electrolytes, inorganic glass possesses 

comparative ionic conductivity, better physical chemistry stability and better ultraviolet (UV) 

prevention ability. It is well known that the main challenge for LEC technology is to lower 

the degradation of the organic emitter, which deeply depends the stability and UV prevention 

ability of the blend electrolyte. Therefore, the good stability and ultraviolet prevention ability 

of glass would prevent the degradation of organic emitter in a LEC.  However, the 
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morphology of the blend of organic molecule and electrolyte is a key point of a LEC device 

too. Thus, an organic emitter which not only possesses high photoluminescence quantum 

yield in solid-state, but also can form a good blend with glass electrolyte is seeking for a LEC 

based on glass electrolyte. 

The name of phosphorus is originated from ancient greek phos and phorus, which means light 

and bringing, respectively. This is because of the strong light of white phosphorus. However, 

the high reactivity and toxicity of many P containing derivatives prevent its application in 

emitting devices. This situation changes after that chemists are able to stabilize and protect the 

P-atom, which suggests the organophosphorus derivatives based opto-electronic devices can 

be made. Interestingly, while the organophosphorus derivatives have been investigated for 

decades, their insertion into devices has been recently achieved. However, to our best 

knowledge, there is few reports on the LEC based on organophosphorus derivatives, let alone 

the LEC based on organophosphorus derivatives doped glass electrolyte host.  

The main objective of this work is to develop a new LEC device based on organophosphorus 

doped inorganic glass electrolyte, which cannot be synthesized by using classic melt-

quenching technique. That because the melting temperature of glass is always much higher 

than the degradation temperature of organic molecule. In first chapter, the background and 

mechanism of LEC were introduced. Thus, the second and third chapter is devoted to obtain 

the LEC through Sol-gel and spark plasm sintering (SPS), respectively. Moreover, during the 

process of preparing the LEC by SPS, an interesting phenomenon was found. A broadband 

blue emission was observed in rare-earth free zinc phosphate oxynitride glass. The fourth 

chapter is focus on this interesting phenomenon. 
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1. Introduction 

The light-emitting electrochemical cell (LEC) is a planar layered device, which is comprised 

of an electroluminescent organic semiconductor (OSC) and mobile ions as the active material 

sandwiched between an anode and a cathode, as depicted schematically in Fig. 1.1(left). It has 

been considered as the leading example of the simplest thin-film lighting device. Sometimes, 

LEC also can be prepared through a planar structure as shown in Fig. 1.1(right). Typically, 

both the active-material and electrode layers can be very thin (around 100 nm), so a substrate 

to provide mechanical robustness to the layers is needed. Moreover, since the emission is 

generated within the active layer, one electrode (may contain substrate) of the device needs to 

be transparent, whereas the other electrode commonly is reflective in order to get efficient 

lighting.  

 
Fig. 1.1. The schematic structure of a sandwich-cell device(left) and a planar-cell device(right) with a single-

layer active material 

Interestingly, unlike a diode, although different work function electrodes were used, the 

device does not block current in reverse bias. This behavior is illustrated in the current-

voltage characteristic shown in Fig. 1.2.  

 
Fig. 1.2. Current-voltage-luminescence characteristic of a typical LEC 

The light intensity is similar for both bias polarities, showing that the device possesses the 

same efficient in both forward and reverse bias conditions, despite the presence of large 

injection barriers for at least one of the biasing conditions. At the same time, compare to 
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OLEDs, a LEC can operate efficiently at low voltages. The turn-on voltage of the cell is 

found to be around the bandgap of the emitting semiconductor. 

The first LEC device was invented by Pei and coworkers, who used a conjugated polymer 

(CP) as the OSC and a solid polymer electrolyte, poly(ethylene oxide) (PEO), as the source of 

mobile ions in their pioneering study published in 19951. At nearly the same time Lee et al. 

showed a LEC with efficient electroluminescence based on an ionic transition-metal complex 

(iTMC) sandwiched in between two electrodes2. They used a tris-ruthenium(II) sodium salt 

with a bandgap of roughly 2.6 eV and the corresponding light-voltage and current-voltage 

curves and structure of iTMC is shown in Fig. 1.3 and the inset, respectively. Moreover, the 

combined use of ions and organic semiconductors in LECs is not limited to these materials. 

These will be detailed in section 1.3 and 1.4.  

 
Fig. 1.3. Right current (open symbols) and luminance (closed symbols) characteristics of iTMC-based LECs, in 

which the iTMC layer is formed by spin-coating (circles) and self-assembly (triangles)2 

The applications benefit from large-area fabrication such as lighting and signage was thought 

to be the most promising field for LECs. However, the longer turn on time limits LEC use for 

further application in high-end displays3. This is because, compare to OLEDs, LECs always 

show a longer turn-on times ranging from milliseconds to hours depending on the ionic 

conductivity of the light-emitting layer. Besides turn on time, Stephan van Reenen et al. 

reviewed the figures of merit of LEC performance as follows4: 

1. The turn-on time (ton), which is defined by the time from switch-on of the cell by 

application of a bias voltage to the luminance reaching a certain predefined level. 

2. The luminance (cd/m2), a measure of the brightness of the LEC, shows the amount of 

luminous power per unit area which is corrected for the wavelength-dependence of the 

sensitivity of the human eye.  
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3. The electroluminescent efficiency (Effmax), which can be expressed either in lm/W (power 

efficiency) or cd/A (efficacy) where 1 lm = 1 cd·sr. Effmax describes the conversion efficiency 

of electronic carriers in photons, which is also corrected by the sensitivity curve of the human 

eye.  

4. External quantum efficiency (EQE), which is the ratio of photons emerging from the device 

per injected electrons. Another definition is through the equation EQE=bΦ/2n2, where b is the 

recombination efficiency (equal to unity for two ohmic contacts), Φ is photoluminescence 

quantum yields, and n is the refractive index of the glass substrate. 

5. The lifetime (t1/2), which is defined by the time for the luminance to decay to half-

maximum or to below a certain threshold that can depend on the foreseen application.  

6. Color coordinates, which can be described by the three colors mapping functions x(λ),y(λ) 

andz(λ) based on the definition of Commission Internationale de l’Eclairage (CIE), are used 

to compare color in a standardized way.  

Considering the inherent tolerance to layer thickness variations, which will be discussed in the 

1.1 sections, LECs highlights the primary advantage: low cost by virtue of facile solution-

based fabrication. It should be noted that the total manufacturing costs of an LEC device also 

contain the cost of materials, substrate, electrodes, and packaging. Regarding further 

application of LECs in the future, it is important to optimize the key features of LECs as 

opposed to OLEDs.  

Table 1-1 Comparison of different types of organic light-emitting devices, OLEDs and LECs 

Parameter OLEDs LECs Benefits of LECs 

Active layers 4 or more 1 or 2 Simple device architecture 

Typical thickness per 

layer 
60-120 nm 100-500 nm 

Thicker films promise robust 

processes 

Electrodes Air sensitive Air stable Air stable metals can be used 

Encapsulation 

requirements 
High Low 

Air stable electrodes promise less 

demanding packaging 

Processing of organic 

layers 
Vacuum-based Solution-based Cost-efficient preparing processing 

Solvent n.a. Benign Environmental friendly 

 

Table 1-1 gives a rough overview and summarizes the advantages of LECs. LECs can not 

only be made based on conventional substrates like foil and glass, but also can be fabricated 

on a large range of different kinds of substrates such as fibers, paper5, flexible material, 6and 

even on complex-shaped surfaces like kitchen forks 7. It seems that the current industry still 

put the attention on OLEDs because of their energy efficiency, color quality, and high-

contrast ability. A primary advantage of organics is to reduce the cost of the technology, 

which, however, has not been obtained today. LEC, obviously, is a strong promising device to 
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reach the target described by Sandström and Edman7. They pointed that if LECs are produced 

with a reasonable luminance of 1000 cd/m2 in a high-volume roll-to-roll-coating scenario, 

then the cost per lumen would be roughly 0.0036 €/lm. And this cost would decrease one 

order of magnitude of the current projected costs for LEDs and OLEDs7. 

2. Operational Mechanisms for LECs 

Since the discovery of the LEC concept in 1995,1,8 several techniques like electrostatic force 

microscopy (EFM), microcavity effects, scanning Kelvin probe microscopy (SKPM), time-of-

flight secondary ion mass spectroscopy (ToF-SIMS), numerical modelling, electrochemical 

impedance spectroscopy (EIS), optical-beam-induced-current imaging of frozen p–i–n 

junctions, and current–voltage characteristics have thoughtfully been used for studying the 

impact of the ions on the device mechanism. 9-53 However, the related scientific community 

spend nearly 2 decades to reach a consensus about the device mechanism 13,14. 

2.1 Electrochemical Model (ECM) 

The electrochemical doping model was first reported by Pei et al.1 24 and later on supported by 

the work of theoretical calculation by Smith24 and Manzanares et al. 25. As shown in Fig 

1.4(a), if a voltage that shows V > Eg/e is applied for the device, where Eg is the band-gap of 

the emitter and e is the elementary charge, injection of electrons and holes at the electrode 

interfaces would cause an electrochemical doping of the active layer. Moreover, injection of 

electrons and holes leads, respectively, to the oxidation and reduction of the semiconductor at 

the anode and the cathode. The oxidized and reduced semiconductor is electrostatically 

compensated by anions and cations from the related electrolyte, respectively, which results in 

p-type and n-type doped regions in the bulk. The presence of small and mobile ions keeps the 

doped regions to be stable, which can control their movement well based on the continuous 

charge injection.  Since the doped regions close to the electrode interfaces, regardless of the 

work function of the electrodes, it can efficiently assist charge injection. Except the doped 

region, there is still intrinsic region which called i, which is between n and p doped regions. 

And this region is the place where injected electronic charges recombine. Both the request of 

time to form the i region and its position are decided by the growth and stabilization of the 

doped regions. Moreover, the characteristic of the electrochemical mechanism is that a large 

electric field would form in the i region and a small electric field also forms in the doped 

regions, causing the externally applied potential difference drops in the boundary. 
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Fig. 1.4. Electrochemical (a) and electrodynamic (b) models proposed for the LEC operation. The associated 

spatial distribution of the electric field is shown underneath  

2.2 Electrodynamic Model (EDM) 

The electrodynamic mode 9-11 was proposed by Demello and co-workers which was further 

supported by Slinker and co-workers in 2007 through an EFM technique applied to planar 

iTMC-based LECs12. As shown in Fig. 1.4 (b), due to the applying bias voltage, the 

movement of the mobile ions cause the formation of thin electric double layers (EDLs) at the 

electrode interfaces. As a result, the charge injection at the electrodes happened due to the 

large interfacial electric field. The ions continue to redistribute in the coating until a quasi 

steady-state is reached, which dissipates the local electric field throughout the coating. This is 

the characteristic of EDM. 

2.3 Current Consensus Understanding of Operational Mechanism of LECs 

Both of the aforementioned models agree that the presence of ions provides a unique device 

behavior. However, the only difference is how the carrier injection occurs. In 2007, the 

groups of Ginger, Kemerink and their co-workers demonstrated that both the fingerprint of 

ECM and EDM can be achieved by varying the work function of the electrode metal 13. 

Actually, systematic experiments 26,53 and numerical modeling 53,54 also have confirmed this 
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fact. More exactly, the applicability of each model was found to decide by the ability to form 

Ohmic injecting contacts.  

Table 1-2 Overview of the universal operational mechanism of light-emitting electrochemical cells  

(reproduced from ref 4) 

Light-emitting electrochemical cells 

Requirement 

(depends on 

applied bias 

voltage and 

injection barriers) 

0 ohmic contacts 1 ohmic contact 2 ohmic contacts 

Operating 

mechanism 
EDM PECM ECM 

Voltage 

distribution 

(back line) and 

Recombination 

zone(orange) 

   

Electron (•), 

Hole (∘), anion 

(⊖), cation (⊕) 

distributions: 
   

 

An ohmic contact is a non-rectifying electrical junction: a junction between two conductors 

that has a linear current–voltage (I-V) curve as with Ohm's law. Low resistance ohmic 

contacts are used to allow charge to flow easily in both directions between the two 

conductors, without blocking due to rectification or excess power dissipation due to voltage 

thresholds. This Ohmic injecting contacts depends on a combination of applied bias voltage 

and the height of the barriers for carrier injection. If no Ohmic contacts are formed, the LEC 

shows the EDM behavior; if Ohmic contacts are formed, the LEC shows the ECM behavior. 

For the Ohmic contacts situation, there actually are two kinds, namely one Ohmic contact 

(one electrode interface) and two Ohmic contacts (two electrode interfaces).  Thus, for only 

one Ohmic contact, normally only p-type doped regions or n-type doped regions is formed at 

the anode or the cathode, respectively, which also called preferential ECM (PECM). This 

consensus model for these LECs based on CP and iTMC emitters has been confirmed by 

various experimental and numerical studies1,2,4,11,14,25,26,55. An overview of this unifying model 

is shown in Table 1-2. 

2.4 Transient Phenomena 

The ions in the electrolyte of LECs cause operation of these cells extremely time-dependent. 

Normally, it takes far less than a second to reach quasi-steady state for electronic movement 
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in organic semiconductors. However, compare to OLEDs, the movement of ions are much 

slower in LECs since they need to physically move through a solid-state material. Thus, turn-

on times in LECs can range from several seconds 1 to several hours, 19 which is decided by the 

combination of the constituents and the active layer thickness as well as the applied bias 

voltage. 

  
Fig. 1.5. Normalized current, luminance, and efficacy transients of polymer and iTMC-LECs at two temperatures 

each and biased at 3.5 V 46 

Large quantitative differences are observed in the turn-on transients based on these vast 

amounts of LECs configurations studies and reports 19,23,46,56-61. It can be found that the turn-

on transients of CP-based LECs in stacked and planar configuration show strong qualitative 

resemblance with the same architecture iTMC-based LECs. Van Reenen et al. reported the 

work on the resemblance of two architectures 4. In this work, the time-dependent current, 

luminance, and efficacy just after switch-on of freshly prepared CP- and iTMC-based LECs 

were studied. The result shows that the temperature strongly affects the timescale of turn-on 

process. This temperature dependence is scaled out through normalizing to the turn-on time. 

Furthermore, both types of LECs show a universal shape based on normalized current, 

luminance and efficacy, which is shown in Fig. 1.5. Moreover, the activation energy of the 

turn-on time and the ionic conductivity measured in the off-state were similar. This indicates 

that the turn-on of LECs is definitely determined by the ionic conduction. 

2.5 Planar LECs configuration 

Planar LECs configuration has allowed researchers to investigate the active layer through 

various experimental surface techniques. As shown in Fig. 1.6 (a) and (b), this allowed 

researchers to study the luminescence including electroluminescence (EL) and 

photoluminescence (PL) position in LECs. PL studies are always using UV illumination to 
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excite the semiconductor. It is known, electrochemical doping of semiconductors can quench 

PL. Therefore, this technique can be used to investigate the dynamic electrochemical doping 

process in LECs during turn-on 23,55,59,62. As shown in Fig. 1.6 (a) and (b), as both p- and n-

type doping quench the UV-excited PL, the doped regions appear darker than undoped 

regions. In Fig. 1.6(c)–(e) schematic drawings of the anion and cation concentration 

distributions in LECs are shown before operation (c), during doping front progression (d), and 

in steady state (e)50. These experiments show that p- and n-type electrochemical doping 

occurs in the LEC by accelerating doping fronts that move through the active layer, starting 

from the electrodes, until both meet 63. The position where the p- and n-type doping fronts 

meet coincides with the region where light emission takes place as shown in the photograph 

of 26 s (last one) in Fig. 1.6 (a).  

 
Fig. 1.6. Photographs of planar Au/SY-PPV + PEO + KCF3SO3/Au LECs with an interelectrode gap of ∼ 90 μm 

during operation at V bias = 8 V and T = 333 K. Two different SY-PPV:PEO:KCF3SO3 weight ratios were used: 

a) 1:1.35:0.25 – ion-rich and b) 1:1.35:0.06 – ion-poor. c–e) The ionic redistribution and doping process is 

schematically shown in. a− (red area), c+ (green area), p−, and p+ refer to anions, cations, reduced polymer, and 

oxidized polymer respectively. In the gray regions, the anion and cation concentrations are equal. The arrows in 

(d) indicate the position of the doping fronts4,50. 

The corresponding device current keeps growing during front propagation and after the fronts 

connect (Fig. 1.7(a)). The continuous electrochemical doping of the doped regions contributes 

to the increasing current. From the Fig. 1.6 (a) (9s and 14s), it can be found that quenching of 

PL is enhanced after doping front connection. Other reports have shown that as well, besides 

this continuation of doping after front connection, the recombination zone can also shift 

towards the anode or the cathode with time 23,50. Van Reenen et al. studied the turn-on in 

planar cells by means of a numerical drift-diffusion model. The transient current (see Fig. 1.7 

b) that qualitatively reproduces the experiment can be calculated (Fig. 1.7 a) 62. The potential 
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profile evolution in the active layer was studied experimentally by use of scanning Kelvin 

probe microscopy and numerically, the results are shown in Fig 1.7 c and d, respectively.  

 
Fig. 1.7. a) Current measured during turn-on of the planar CP-based LEC shown at Fig 1.6a. b) Modeled current 

in a planar CP-based LEC. c) Experimental potential profile evolution during turn-on of a similar planar CP-

based LEC as shown at the Fig 1.6a. d) Modeled potential profile evolution of a planar CP-based LEC4 

After application of a bias voltage, charges are injected. Electric double layers form at the 

interfaces, see Fig. 1.7 (c) and (d), enabling carrier injection and consequently n-type and p-

type electrochemical doping of the active layer. The p- (a−p+) and n-type (c+p−) doping fronts 

propagate towards each other while splitting the available paired ions (a−c+) for the doping 

process (see Fig 1.6 (d)). As shown in Fig. 1.7 (c) (at t ~ 10 s) and (d) (as indicated), the 

potential is distributed almost evenly across the active layer when the fronts meet. Doping 

does not stop until all the mobile ions are contributing the electrochemical doping. This is the 

reason for the continues increasing current. The current gets a highest value in both the model 

and experiment. During this period, it can be found that the potential change dramatically, 

which becomes distributed mainly recombination region as shown in Fig. 1.7 (c) (at t ~ 30 s) 

and (d) (as indicated). The model displays that, meantime, the recombination zone becomes 

depleted of ions. Thus, the recombination zone becomes intrinsic, i.e., undoped, and therefore 

has a lower conductivity. Compare to the high conductivity in the chemical doped regions, 

this lower conductivity of the recombination zone requires a larger field to have current 

conservation across the device. In Fig. 1.7 (a) and (b), the drop of the current is because the 

voltage redistributes around the recombination zone. The interesting properties about carrier 
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mobilities and local field distributions are always intriguing the researchers, therefore the 

formation of electrochemically doping front in planar LECs has been a major topic.  

  
Fig. 1.8. Schematic of the ion mobility criteria with respect to the doping dependent electron and hole mobility 

(blue line) that result in the formation of accelerating doping fronts in LECs during switch-on 62 

Several experimental studies64-66 have been performed on these fronts as well as analytical 47 

67 and numerical modeling 68. Robinson and co-workers developed an analytical model that 

predicts the position of the doping fronts and the resultant switch-on time 62. In ref 62, S. van 

Reenen et al. shows that accelerating doping fronts are only formed in case a doping 

dependent μp/n is chosen in addition to μion being approximately equal to μp/n in the undoped 

state (μp/n,0) , where μp/n and μion represents a factor of doping density dependency of the 

electron/hole mobility and ion mobility, respectively, which is detailed in the reference 62, the 

schematic is shown in Fig. 1.8. 

In the electrochemically doped systems, compare to the mobility enhanced by field effect, the 

mobility enhanced by the doping density is stronger 47. It seems that doping sites can act like a 

charge traps at low doping densities, which causes a low mobility in weakly doped 

semiconductors 69. At higher doping densities, neighboring doping sites are so close to move 

even without the additional energy to escape the energetically favorable trap 47,69. That is the 

reason for the enhanced mobility of the carriers in highly doped system. Both doping fronts 

are unstable with small perturbations and different outcomes at the nonlinear stage, as shown 

in Figs 1.9(a), (b), (c). This makes another typical feature of doping fronts in planar LECs, the 

formation of some peaks similar to “fingers”. An example of this is shown in Fig. 1.9(d). 

Moreover, a higher applied voltage would increase the instability 70. In order to further know 

this behavior, Bychkov et al. work on various numerical modeling studies on the propagation 

of doping front 22,71. 
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Fig. 1.9. Experimental photos of the doping fronts demonstrate development of the instability at the initial stage 

(a), t = 46 s, at the developed stage (b), t = 80 s, and the dynamic p-n junction (c), t > 170 s. Plot (d) compares 

the p-front shapes obtained in the simulations (white curve) and experiments (shading) at 70 s. Plots (e), (f) show 

relative increase of the electric field in the undoped region obtained numerically for the whole front squeezed 

along Y-axis, (e), and for the selected part with equal scales, (f). 69 

It was found that the local electric field at the apexes of the doping front is relatively high 

(Fig. 1.9 (e), (f)), which accelerates the doping front propagation locally. This leads to an 

enhancement of the finger shape and this process explains the instability at the doping fronts 

and allowed the researchers to model a similarly shaped doping front. 

2.6 Sandwich LECs configuration 

Similar to in planar LECs configuration, the ions transport also dominates the turn-on time in 

stacked LECs configuration. Van Reenen et al. study these transients by a calculated model 57.  

They tried to use the determined ion mobility and density simulate the turn-on transient of the 

same CP-based LEC based on the experimental data of the ion conductivity using 

electrochemical impedance spectroscopy, 57 which is display in Fig. 1.10 dashed line. It was 

found the timescale of the simulated transient is different from the experiment. The modeled 

turn time is shorter than that of experiments, however, which can be explained by the binding 

energy between the ions. 25 (see Fig. 1.10 solid line). 
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Fig. 1.10. Modeled current transient of a LEC biased at 3.5 V with (straight line) and without (dashed line) 

binding energy between anions and cations.4 

3. Emitter for LECs 

Most of the aforementioned breakthroughs in LECs have been achieved using CP and iTMC 

emitters. Some typical CP and iTMC emitters are shown in Fig. 1.11 and Fig. 1.12, 

respectively. CP consist in a polymeric structure where monomers are pi-conjugated system 

such as PPV (PolyPhenylene Vynylene, Fig. 1.11). This polymer display fluorescence around 

554 nm. 

 
Fig. 1.11. Chemical structures of some typical conjugated polymers 

Another strategy consists in using triplet emitters based on transition metal complexes (Ru 

complexes, Ir complexes etc, Fig. 1.12) featuring bipyridine or phenylpyridine based ligands. 

These compounds have been widely used in the context of OLEDs. Tuning metal center and 

ligands allow tuning the emission wavelength from blue to red. However, a limitation of 

photoluminescence features was found based on only these materials. For example, there are 

just a few examples of blue, red and infra-red emitting LECs based on these materials. 72-79. 

Therefore, the researchers in LECs field has started to carry out the other library of emitters 

for LECs – i.e., copper(I) complexes, small molecules (SMs), quantum dots (QDs), and 

nanoparticles (NPs).  
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Fig. 1.12. Chemical structures of the iTMCs. Compound 1 is the first iTMC used for LECs: poly-[Ru(vbpy)3]2n+, 

vbpy=4-vinyl-4’-methyl-2,2’-bypiridine; Compound 2 is the archetypal complex of the largest class of Ir(III)-

iTMCs used in LECs: [Ir(ppy)2(bpy)]+ in which ppy is 2-phenylpridinate and byp is 2,2’-bipyridine; Compound 

3 is [Ru(bpy)3][PF6]2; Compound 4 is [Ir(ppy)2(dtb-bpy)][PF6]. 

 

3.1 Copper(I) complexes 

Since the abundance, low cost, well-known chemistry, and high photo-luminescence features, 

copper(I) complexes have intrigued the researchers. In 1978, McMillin and co-workers found 

heteroleptic copper(I) complexes containing N- and P-coordinating ligands. 80,81 Not long 

after that, Nishikawa’s group attributed the photoluminescence mechanism to efficient 

thermally activated delayed fluorescence (TADF) process. 82 Briefly, compounds with a small 

energy gap between the singlet and triplet excited states can emit a delayed fluorescence 

emission that is thermally promoted. This means it is possible to form a triplet excited state 

upon electro-hole recombination in fluorescent materials. It indicates that these fluorescent 

emitters can be highly efficient like phosphorescence emitters. However, they were not 

reported being used in thin-film lighting devices until recent days. 83-85 D. Costa et al. detailly 

reviews the state-of-the-art LECs based on copper(I) complexes in ref 86. Here, we make a 

brief introduction. The chemical structures of the different families of compounds are 

provided in Fig. 1.13-17 (reproduced from ref 54), the most relevant figures-of-merit of the 

devices were summarized in ref 54. 
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Fig. 1.13. Chemical structures of the copper(I) complexes 1.  

As shown in Fig. 1.13, complexe 1 is the NHC-copper(I) dipyridylamine complex, which was 

the first blue-emitting LEC obtained by D. Costa et al in 2016 87. They noted that the 

complexes have a TADF emission mechanism. This complex is the most promising blue-

emitting copper(I) complexes in the work: λem = 458 nm; ϕ = 0.86, which were applied into 

LECs. LECs with the ITO/PEDOT:PSS/1 (100 nm)/Al architecture were investigated based 

on I–V–L assays and different pulsed current densities. However, a strong luminance decay 

was observed since the repetitive I –V–L experiments lead the device unstable. The authors 

think this is because the electrochemical behavior of this family of complexes is not 

satisfying. Even then, the luminance level and the efficiency are comparative to most of the 

blue-emitting LECs based on iridium (III) complexes. 88-91 

Compounds 2 and 3 in Fig 1.14 are the heteroleptic copper(I) complexes, which were 

discovered by Wang and Armaroli’s groups in 2006.92,93 The thin films based on these 

compounds showed a broad emission peaked at 520 nm with a ϕ value of 0.70.  

 
Fig. 1.14. Chemical structures of the copper(I) complexes 2-3.  

Compounds 4 and 5 are yellow-emitting copper(I) complexes which were discovered by 

Bolink, Constable, Housecroft and co-workers in 2014, as shown in Fig. 1.15. In the 

compounds, P^P was POP and N^N were different bipyridine derivatives bearing methyl 

groups at the positions 6 and 6’.94 The LEC devices with the composition complex 4 and 

5:[EMIM][PF6] in a molar ratio 1 : 1 shows the ϕ values of 0.01 and 0.05, respectively.  
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Fig. 1.15. Chemical structures of the copper(I) complexes 4-5.  

More recently, compounds 6, 7, 8 and 9 were proposed by Costa and co-workers by 

modifying bpy at the 4 and 4’ positions with MeO, Me, H, NO2, respectively, which enhance 

the device performance. 95 These compound shows the emission peaked at 548 nm (6), 570 

nm (7) and 600 nm (8, 9), respectively. Besides, the ϕ values of LEC devices based on these 

complexes were enhanced up to 0.19. 

 
Fig. 1.16. Chemical structures of the copper(I) complexes 6-9. 

On the one hand, De Cola, Bruggeller, and co-workers reported a study on a yellow emitting 

dinuclear copper(I) complex based on a rigid tetraphosphine bridge and 2,9-dimethyl-1,10-

phenanthroline (10) – Fig. 1.17.94 These complexes showed a yellowish green emission (550 

nm) with a ϕ value of 0.49.  

The first example of an orange-emitting LEC was prepared in 2005, at almost the same time, 

the first LEC based on copper(I) complexes was reported.96 As shown in Fig. 1.17, a yellow-

emitting (λem = 570 nm) dinuclear copper(I)complex (11) was prepared by Teng, Fu, and co-
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workers 97. I–V–L assays showed a low turn-on voltage of around 2 V with a maximum 

efficiency of 0.16 cd A-1 at 12 V for the LEC device based on these complexes. 

 
Fig. 1.17. Chemical structures of the copper(I) complexes 10-12.  

After that, Friend and co-workers reported the first LECs based on a copper(I) complex 

polymer (12) – Fig. 1.17.98 The corresponding LEC device emitted a broad spectrum with an 

infrared light (800 nm) at a low applied voltage of 8 V. In very recently, Housecroft, Sessolo, 

Ortí and co-workers investigated the synthesis and characterization of five 

[Cu(P^P)(N^N)][PF6] complexes99, which can emit from 522 - 589 nm. In particular, 

luminances as high as 370 cd m-2 were obtained for the complex [Cu(tBu2xantphos)(6,6′-

Me2bpy)][PF6](13), which correspond to an efficiency of 3.7 cd A−1, as shown in Fig. 1.18. 

 
Fig. 1.18. Structures of the copper(I) complexes 13 

However, it suggests the copper(I) complexes could easily be degraded during device 

operation conditions, for example, high applied bias. Thus, optimized synthesis protocols and 

a proper ligand design can strongly help to improve the device performance 86. 

3.2 Small molecules 

The advantages of SMs for LECs are: their wide variety using easy-to-functionalized 

structural scaffolds; their emission covering the whole visible range with high quantum 

efficiency (ϕ) values; their stable electrochemical and thermal stabilities; their easy 
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processability and high stability in solution; and their good carrier mobilities. Actually, SMs 

can meet most general requirements for LECs, which will be discussed in this section. The 

chemical structures of some SMs are provided in Fig. 1.19–21 (reproduced from ref 54). 

 
Fig. 1.19. Chemical structures of the SMs 14-16.  

The first blue-emitting LEC based on SMs was reported by Chen and co-workers in 2011, and 

the SMs is based on 2,7-substituted fluorene core, as shown in Fig. 1.19.100 They select the 

compound 14 is because it possesses a peak at 393 nm blue emission band; reversible 

electrochemical behavior and good carrier mobilities, which are the typically features of 

terfluorene derivatives. 101 The LEC device with a architecture of ITO/PEDOT:PSS/27:IL(200 

nm)/Al showed an EQE of 1.04% and a luminous power efficiency of 0.63 lmW-1 under a 

constant bias of 3.2–3.4 V. 

In 2013, Kervyn and co-workers reported another family of blue-emitting SMs based on 

borazine derivatives. 102 This compound (15) shows photoluminescence emission maximum 

centered in the UV-region (λem = 300–375 nm) with ϕ values of 6–7%. Besides, the 

phenanthroimidazole derivatives, which also can emit blue emission was provided in 2015 by 

Choe’s group, as shown in Fig. 1.19. 103,104 The authors tried a neutral compound with a 

structure containing a phenanthroimidazole moiety linked to a pyrene unit (16). 103 The 

emission of solid-state compound 16 is around 480nm with ϕ value of 0.3, thermal stability of 

up to 430 oC, and only one quasi-reversible oxidation feature. The I–V–L characteristics of 

this device display a luminance value of 120 cd m-2 at 10 V under a turn-on voltage of 4.3 V. 

In 2013, Edman and co-workers reported a study on SM-based LECs using green- and red-

emitting SMs, which are already tested in OLEDs 105,106 including 4-(3,5-di(4-sec-

butoxyphenyl)phenyl)-7-(7-(3,6-di(1-naphthyl)-carbazol-9-yl)-9,9-di-n-octylfluoren-2-yl)-

2,1,3-benzothiadiazole (17) and 4,7-bis(4-(4-sec-butoxyphenyl)-5-(3,5-di(1-

naphthyl)phenyl)thiophen- 2-yl)-2,1,3-benzothiadiazole (23) – Fig. 1.20 and 21.107  These 

compounds present emission wavelength peaked at 500 (17) and 610 (23) nm with ϕ values of 

0.62 (17) and 0.71 (23).  



Chapter I Light-emitting electrochemical cell 

 

24 

 

 

 

Fig. 1.20 Chemical structures of the SMs 17-22. 

At the same year, a SM-LEC based on an active layer containing two ionic SMs with opposite 

charge transport features was reported by Chen and co-workers .108 In particular, compound 

18 was employed as a hole-transport material and a compound 19 as an electron-transport 

material, both of which were shown in Fig. 1.20. Upon an applied bias of 3 V, the mixing 

active layer of 18: 19 (1:3 mass ratio) displays a green emission located at 550 nm associated 

with EQE and power efficiency values of 3.04% and 10.29 lm W-1, respectively. 

At last, the first LECs based on TADF SMs emitters was reported by Zysman-Colman and 

Bolink groups in 2015.109 Then, the same authors designed another two ionic TADF SM 

emitters: compound 20 and 21 based on a previously reported N-carbazoyldicyanobenzene 

scaffold,110 as shown in Fig. 1.20. Compound 20 shows an emission centered at around 558 

nm with ϕ values of 0.0093 in thin films. Compound 21 shows an emission centered at around 

572 nm with ϕ values of 0.21 in thin films. They also designed a LEC using 21 as a host and 

22 as a guest that can emit yellow emission. 110 They exhibited a 5-times increase of the 

luminance (165 cd m-2) and EQE (1.90%), however, the device stability was too short (around 

several seconds). 

After that, Edman and co-workers reported a red-emitting SM-based LECs and a green-

emitting SM (23) mentioned above. 107 Upon being driven at a constant current density of 

38.5 mA cm-2, the device based on 26 can reach a maximum luminance of 225 cd m-2 in a few 

seconds with a stability of around 15 h. The I–V–L characteristics showed a low turn-on 

voltage at around 4.0 V, reaching a maximum luminance of 750 cd m-2 and a maximum 

efficiency of 1.05 cd A-1.  
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In 2013, Chen and co-workers also proposed to design near-infra red emitting dyes using a 

cationic iridium(III) complex (λem = 595 nm) as a host and two fluorescent ionic cyanines 24 

and 25 as a guest, as shown in Fig. 1.21.111 These devices were driven at a constant voltage of 

2.4 V, showing an electroluminescence centered at around 730 and 810 nm, respectively. 

Furthermore, the EQE values of the devices based on 24 and 25 can reach 0.93 and 1.49% at 

2.5 V, respectively.  

 
Fig. 1.21. Chemical structures of the SMs 23-30. 

In 2016, Costa, Coutsolelos, and co-workers reported another type of red-emitting SMs 

(porphyrin derivatives) for LECs112-114 because the photophysical features of porphyrins are 

easy to be modified through proper molecular design.  They used the BODIPY unit acts as a 

host and the porphyrin unit as a guest, which is “BODIPY-porphyrin dyad (26)”. 112 

Following this work, the authors used more efficient porphyrins changing the metal core such 

as Zn2+(27), Pt2+(28), Pd2+(29), and Sn4+(30) porphyrins as shown in Fig. 1.21.113 They 

demonstrated that the metal core is a key aspect to control the nature of the photo-

luminescence. For example, the λem of compound 27 is around 600 nm and that of 28 is 

around 675 nm. The devices with these compounds show the fluorescence: 27, 600 and 650 

nm, ϕ = 3.8%; 28, 675 and 730 nm, ϕ = 0.095%; 29, 565–610 nm and 710 nm, ϕ = 0.0047 and 

0.0013 for fluorescence and phosphorescence, respectively; 30, 610 and 665 nm, ϕ = 1.8. 

3.3 Quantum dots and perovskite nanoparticles 

Inorganic colloidal semiconductor nanocrystals such as CdSe/ZnS QDs, have been studied 

over the last 30 years and have been applied in many applications including displays, lighting 
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devices, photovoltaics, biological imaging and detection, etc. 115-117 In 2014, Friend and co-

workers discovered the hybrid organic–inorganic halide perovskites (PKs).118 This series of 

material consists of a distorted Pm3m crystal APbX3 structure. The X can be Cl, Br, or I that 

formed the corner-sharing metal halide octahedral, and A can be either an organic compound 

or an inorganic metal ion. Both compounds are compatible with ionic additives like IP or IL 

in solution, which is allowed to prepare thin-films by solution-based techniques. Besides, the 

photoluminescence features of these materials can be easily modified such as emission color 

and f values. 115-117,118-122 This has recently intrigued the LEC researchers. 

Leger and co-workers firstly reported the QD-based LECs in 2011.56 In this report, the active 

layer comprised two QDs: CdSe/ZnS QDs as emitter blended with organic electrolytes. In 

2014, Qian and co-workers proposed another approach to design QD-based LECs.123 In 

particular, they think the long alkyl chains should act as an insulating barrier for direct charge 

injection, so they exchanged the organic shell of the QDs by 4-mercaptobenzoic. This 

improved the miscibility of the QDs with ILs, at the same time, also promoted the charge 

injection and mobility. Recently, Frohleiks and co-workers reported a new type of hybrid 

bilayer LEC consisting of top and bottom layers. The top layer is a red-emitting CdSe/CdS 

QDs (λem = 620 nm) and the bottom layer is a yellow-emitting iTMCs (λem = 570 nm).124 

In 2015, Costa and co-workers reported the first LECs based on MAPbBr3 and FAPbBr3 

perovskite NP. The authors not only prepared the LECs based on NPs blended with IP, but 

also prepared the LECs based on only NPs with similar film thickness. However, the LECs 

based on only NPs did not show any emission in spite of the similar electrical behavior. After 

that, Li and co-workers studied LEC devices based on green (MAPbBr3; λem = 520 nm), 

orange (MAPbBr2I; λem = 593 nm), and blue (MAPbCl1.8Br1.2; λem = 474 and 520 nm) PK 

NPs, which are prepared using a solution of the PbX2 precursors and MA (500 mg mL-1) with 

a PEO polymer (Mw = 600 000; 16 mg mL-1) solution with a mass ratio of 0.5 : 1, 0.75 : 1, 

and 1 : 1 PEO/PKs.125. At the same time, the mechanism of bulk perovskite (MAPbI3-xBrx) 

was investigated by Zhang and co-workers. They worked on a LEC based on MAPbI3-xBrx 

(400 nm) that sandwiched in between two stable electrodes ITO/ PEDOT:PSS(30 nm) and 

MoO3(8 nm)/Au with work functions of 5 and 5.3 eV, respectively.126 

4. Electrolyte for LECs 

As we mentioned above, the enabling characteristic of the LEC, which separates it from the 

OLED, is the presence of mobile ions, i.e., an electrolyte, in the light-emitting active 

material.127-130 The LEC performance is as such intimately dependent on the properties of this 
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electrolyte. An inadequate electrolyte would cause some drawbacks, such as slow turn-on; 

poor efficiency; limited stability.131-134 

4.1 Poly (ethylene oxide) based electrolytes (PEO) 

In the first LEC work by Pei et al., the electrolyte consisted of the alkali metal salt LiCF3SO3 

dissolved in the ion-transporting polymer poly(ethylene oxide) (PEO).1 The PEO possesses 

good ionic mobility since it solvates the cations and provides ionic transport paths as shown 

in the left portion of Fig. 1.22.1 The PEO-based electrolyte was presumably originated from 

the energy storage field, where a lot of solid-state electrolytes have been extensively 

investigated since the late 1970s, primarily for use in solid-state Li batteries.135,136 After many 

years of researching, although PEO is a decent ion-transporting material for LECs and much 

of the subsequent LEC research has utilised PEO-based electrolytes, it is not perfect choice. 

PEO is a semi-crystalline polymer with a melting temperature of 60 oC, and it could form 

high-melting crystalline complexes in case blend with many salts. This make they tend to be 

crystallisation at room temperature. Since it has been demonstrated that ion transport almost 

exclusively takes place in the amorphous PEO regions which is above the glass transition 

temperature.137 Thus, such crystallisation would limit the practical operational temperature of 

the corresponding devices to be above the melting point of the electrolyte, for example, room 

temperature. 133  

 
Fig. 1.22 A schematic illustration of the structure and cation coordination of representative ether-based ion 

transporters. For the star-branched oligoether to the right, R represents the end-group, which can be a hydrogen 

or a methyl group138. 

Like the battery, Li-based salts have been the common choice for the salt in PEO-based 

electrolytes in LECs. This is because the first group of scientists in the LEC field were 

inspired by the field of Li batteries. However, in several LEC studies, the light-emitting p–n 

junction will be moved away depending on the observed cations. Normally, it moved away 

from the cathode and be more centred in case the employ of other cations than Li+. It is 

desirable since it will effectively eliminate undesirable electrode quenching effects.54 Among 
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MClO4 salts (M = Li, K, Na, Cs, Rb), it is found that, the use of larger cations always led to 

the light-emitting p–n junction being more centred and more strongly emitting. The work of 

Shin et al. confirms these findings. The effects of the cation for MCF3SO3 (M = Li, K, Rb) 

salts was reported and compared to M= Li, a more centred and brighter p–n junction as well 

as faster turn-on for devices with M=K and Rb  were obtained.133,139 This counterintuitive 

result maybe can be explained by the fact that the ionic conductivity of PEO:MCF3SO3 

electrolytes increases with increasing cation size.140 

Another way to modulate is the selection of the anion.141,142 A markedly faster turn-on for 

sandwich cells was achieved through replacing the CF3SO3 (Tf) anion with a larger 

N(CFsSO2)2 (TFSI) anion in a PEO:LiX electrolyte. A higher ionic conductivity was obtained 

since the LiTFSI salt was in part developed for suppressing the room temperature crystallinity 

of the corresponding PEO-based electrolytes.143 The fastest turn-on was attained by using a 

combination of both the Tf and the TFSI anions. Besides, it is plausible that this mixed 

electrolyte featured an even lower degree of crystallinity at room temperature, which is 

presumably because the combination of two anions kinetically hinder the crystallisation of the 

electrolyte. However, with these solutions, the long-term stability of the electrolyte is 

suffered.132 This can be attributed to the lower cathodic stability of the TFSI anion than the Tf 

anion, which is implying that the preferred cathodic reaction is reduction of the TFSI anion 

and not n-type doping of OMC. 

4.2 Ionic liquids  

Ionic liquids (IL) (or ‘molten salts’) are electrolytes with a low melting point (in some cases 

below room temperature), which can be hydrophobic, highly conductive. The primary 

advantage of IL is a broad electrochemical stability window.144 Ioinc liquids are a frequent 

addition to ITMC-LECs to speed up the turn-on kinetics.145 The first ionic liquids employed 

in CP-LECs were based on a tetra-alkylammonium cation.38,146,147 There are also some studies 

investigated the liquid LECs based on imidazolium148,149 or phosphonium cations150,151. The 

chemical structures of two investigated ionic liquids with promising properties are presented 

in Fig. 1.23. Interestingly, several early LEC studies found a severe phase separation occurred 

between the ionic liquid and the CP, thus the device performance was not impressive.146,150 

However, some success has been attained, the first low-voltage operation of a planar LEC 

with a mm-sized electrode gap at room temperature was demonstrated by Shin and coworkers. 

They employ a 1-ethyl-3-methylimidazolium ethylsulfate (EMI-ES) ionic liquid with a 
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melting temperature below -20 oC.152 Moreover, a long operational lifetime of several days at 

significant luminance from sandwich-cell LECs, using methyl-trioctylammonium 

trifluoromethanesulfonate (MATS) as the ionic liquid was reported by Shao et al.38 

 
Fig. 1.23 The chemical structure of the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate (EMI-ES) and 

methyltrioctylammonium trifluoromethane- sulfonate (MATS). 

There are also some reports on linear or non-linear oligoether-based electrolytes153,154, which 

is shown in Fig 1.22 center and right. Besides, developing a multifunctional compound, which 

simultaneously features electronic conductivity, ionic conductivity, and electroluminescence, 

is one solution to effectively solve the issues with phase separation. Examples of such 

compounds are presented in Fig.1.24, and include CPs endowed with ion-transporting side 

chains in the form of oligoethers (Fig. 1.24 (a))155-157 or crown ethers 158 (Fig. 1.24 (b)), or the 

inclusion of an ion-transporting oligoether block within a conjugated main chain for the 

formation of a block copolymer (Fig. 1.24 (c)).159,160 However, these groups of compounds 

have only been explored to a limited extent in LECs. J. Mindemarkab and L. Edman pointed 

that most commonly utilised electrolyte groups in LECs – alkali metal salts dissolved in ether-

based ion transporters and ionic liquids – are imports from neighbouring scientific fields138. 

And polymerisable electrolytes and mixed ion and electron conductors were to some extent 

explicitly developed to address LEC-specific issues such as a slow turn-on time and phase 

separation. 

 
Fig. 1.24 A conjugated polymer endowed with an ion-transporting side chain comprising either an oligoether (a) 

or a crown ether (b). A block copolymer comprising conjugated and oligoether repeat units (c). 
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Thus, they also claimed that the efforts dedicated to the design and synthesis of a ‘complete’ 

electrolyte that considers all of the specific requirements of LECs is rather limited.138 In order 

to response their prospect, as glass researchers, we seek a possibility of preparing a inorganic 

glass host as the electrolyte for a LEC. 

5. Inorganic Glass electrolyte and organophosphorus semiconductor 

Glass oxide electrolytes, denoted as Li2O-MOx (M = Si, B, P, Ge, etc.), are typically formed 

by network-former oxides (e.g., SiO2, B2O3, P2O5, GeO2, etc.) and network-modifier oxides 

(Li2O). In 1966, Otto reported glass composition of Li2O– SiO2–B2O3 with high lithium ion 

conductivity (>10-4 S/cm) at about 350°C 161. It was also demonstrating that disorder structure 

can support fast lithium-ion conduction. Considering some primary advantages of glass oxide 

electrolytes including isotropic ionic conduction; negligible electronic conductivity; no highly 

resistive and corrosion-sensitive grain boundaries continuously variable composition; easy of 

fabrication into complex and thin-walled structures, it would be an ideal electrolyte material if 

it can reach a high conductivity. Therefore, many researches have been focused on improving 

the conductivity of the glass. Two strategies have been used in the design of lithium ion 

conducting electrolytes. One is to use a combination of two anionic species which are known 

to give increased ionic conductivity and is attributed to the so-called mixed anionic effect 162. 

The other strategy is to dissolve a highly ionic conductive lithium salt in a conventional 

polymeric lithium glass 163. Moreover, it was also found that mixed glass-former cation 

glasses are an efficiency way to improve the ionic conductivity 164. Although the increased 

conductivity is attributed to a volume increasing effect of the dissolved ionic salt 163, most 

oxide glass electrolytes show a low conductivity at room temperature, except some glasses 

with high Li+ ion concentration (containing lithium halogen), which present a relatively high 

ion conductivity of 10−6 S/cm 165. LiPON (Lithium Phosphorous Oxynitride) amorphous thin-

film also has the same level of conductivity 166. LiPON has been used in thin-film batteries 

because reducing the electrolyte thickness decreases its resistance. Compare to oxide glasses, 

a higher ionic conductivity can be obtained in sulfide containing glasses. In the system Li2S–

P2S5, the glasses containing more than 70 mol% Li2S have a conductivity of over 10−4 S cm−1 

167. Moreover, the Arrhenius ionic conductivity of some inorganic crystal and glass with high 

ionic conductivity are shown in Fig. 1.25. It can be seen that the ionic conductivity of 

inorganic glass electrolyte is comparable to some organic polymer electrolytes 46. 
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Fig. 1.25. Arrhenius ionic conductivity of some inorganic crystal and glass 

Like the polymer electrolyte, both the inorganic crystals and glasses electrolytes were 

investigated for the lithium battery application. However, the conducting mechanism of each 

of them is different. Typically, the occurrence of ionic conductivity in crystalline solids is 

linked to the existence of special structures, “open channels”. For example, in β-alumina, the 

Na+ ion migration is confined to motion in two dimensions in conduction planes located 

between the close packed spinel blocks 168. Depending on the details of the structure, crystals 

can in fact be one-, two- or three-dimensional conductors. Glass lacks long-range order, 

therefore it lacks the possibility of interconnected “open channels”. The details about the ionic 

conduction in glass will be discussed in 5.1 section. 

5.1 Models of ionic Conduction in Glass 

The ion transport mechanism is still not clear in glass because of the disorder structure. 

Although the conduction in glass is viewed from a vacancy defect-type of mechanism, it is 

different from inorganic crystal since the vacancy concentration in glasses is believed to be 

significantly larger than in crystals 169. The binding energies holding the mobile ions in 

metastable state and the migration energy barriers hindering the mobile ions are considered to 

be the two main factors for deciding the magnitude of conductivity of the glass. For most 

glasses, conduction is solely determined by a single ionic species, anionic or cationic.  

The conductivity, σ, is expressed as the product of charge carrier, concentration, and mobility 

as given by the following equation 
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where eZ is the charge of the conducting ion, normally is +1, μ is the mobility of the 

conducting ion, and n is the concentration of the conducting ion. Thus, understanding the two 

terms μ and n in the equation (1) is the key to model the ionic conductivity in glass. Although 

several models have been proposed ever, here we briefly introduce two main models: “strong 

electrolyte” (SE) model and “weak electrolyte” (WE) model that are generally agreed by the 

researchers. The former supposes that all cations are equally available for conductivity, and 

the latter supposes that only dissociated cations are available for conduction. The WE model 

suggests that the activation energy barrier represents the binding energy holding the ions in 

the metastable state. Once an ion dissociated away from its metastable state, it is thought to 

face no other energy barriers for moving in the glass. Martin and Angell developed a general 

model 170, and in this approach, the two models can be thought of as the two extremes of a 

more general model where both factors contribute to the conduction energetics in glass. The 

approach would be introduced after reviewing the SE and WE model. 

5.1.1 Strong electrolyte Model  

In 1954, a calculation of the conduction energetics in an ion-conducting glass was proposed 

by Anderson and Stuart 171. In their analysis, the total activation energy , is the sum of 

two parts  

 

where  is the electrostatic binding energy and  is the strain energy.  describes the 

coulombic forces acting on the ion as it moves away from its charge-compensating site, and 

 describes the mechanical forces acting on the ion as it dilates the structure sufficiently to 

allow the ion to move between sites. After several approximations 171,172, Anderson and Stuart 

model was revised that  

 

 

where β and γ are parameters, with the latter being set equal to the relative dielectric 

permittivity, ε; Z and r, are the charges and radii of the cation, respectively;  and  are the 

charges and radii of anion, respectively;  is the "doorway" radius or radius of the network 

constriction between cation sites; and G is the shear modulus of the glass. λ is the jump 

distance between cation sites.  
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To understand the model better, we introduce a visualization of the energetics of the 

conduction that provided by Martin and Angell 170, as shown in Fig. 1.26.  is treated as the 

energy holding the target cation in its equilibrium site, which comes from the coulomb forces. 

Its value is equal to the difference between the coulombic potential energy of the cation when 

it is midway between the two sites (potential energy maximum) and when it is in its 

equilibrium position (potential energy minimum).  is envisioned as an energy barrier in a 

short-range. If the cation is able to pass to the next site, it needs the energy to "dilate" the 

glass structure. This energy can be treated as the . However, this model ignores that, in 

high alkali ions situation, r may be close to  , which means  is possible to zero that 

supports WE model. 

 
Fig. 1.26. Physical representation of the energetics of ion conduction according to the Anderson and Stuart 

model by Martin et al170 

5.1.2 Weak electrolyte Model  

The weak electrolyte model was developed by Ravaine and Souquet to describe the 

conduction energetics in glass 173. They think there are many similarities that exist between 

aqueous and glassy electrochemistry. In this model, the main energetic barrier for the cation 

transport in the glass is the dissociation process away from the nonbridging oxygen (or salt 

anion). Therefore, they suggest that, if a cation has dissociated away from its origin site, the 

cation enables to migrate before it meets another charge-compensating site. The envisioned 

dissociation can be occurred by the following reaction: 

 
where Na2O and ONa- are the undissociated and dissociated cation sites, respectively, and Na+ 

is believed to be the dissociated or "free" cation. Moreover, this approach can be generalized 

to other dopants. 
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5.1.3 Martin and Angell revised general model 

The general model which can reconcile the two models mentioned above was proposed by 

Martin and Angell 170,174. They think if  is larger than , the glass is behaving as a weak 

electrolyte; if the  is greater than , the glass is behaving as a strong electrolyte. They 

insist that a strain energy barrier is always present in both the SE and WE model. This is 

because the fact that a cation needs the volume to transport in the glass conducting process.  

 
Fig. 1.27. Physical representation of the energetics of ion conduction according to the revised Anderson and 

Stuart model by Martin et al170 

They use the physical representation shown in Fig 1.27 to explain the dissociated and 

undissociated states in the weak electrolyte model. From the figure, it can be seen that there is 

a metastable “ridge” at the transition point between the deep potential well of the equilibrium 

site and the short-range strain energy barrier. This means the availability of “metastable” sites 

need a higher energy than the bound lowest energy sites. The presence of such intermediate 

sites would temporarily stabilize or “store” a dissociated cation and make it “available” for 

ionic conduction. 

5.2 Possible inorganic glass electrolytes for LECs  

From these researches of a desired electrolyte for LECs 138,175, it is known that a electrolyte 

with a wider electrochemical stability window, high ionic conductivity, a wide spectral 

transmission and mechanical stability would be good for a LEC. Inorganic glass electrolytes 

may meet all these requirements, but this does not mean it is easy to find an appropriate 

inorganic glass host for the LEC. This is because, contrarily to the organic polymer 

electrolyte, the inorganic glass electrolytes are always prepared at high temperature. The 

temperature of the preparing process (900 °C) is much higher than the degradation 

temperature of the organic molecule (300 °C). This is also one of the primary challenges to 

prepare the LEC based on an inorganic glass electrolyte. In this work, we plan to use two 
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technologies that can avoid the high temperature condition to prepare the organic-inorganic 

hybrid glass. One is the Sol-gel method, a low temperature wet chemistry method, and the 

other one is spark plasma sintering (SPS) which is able to sinter a glass at the glass transition 

temperature (Tg). Therefore, the glasses electrolytes which can be simply prepared by these 

two methods will be given the priority in our work. Only based on this term, seeking the 

higher ionic conductivity of the glass does really make sense. It is known silicate glass have 

the best mechanical stability among all the kinds of glass, and there are abundant works on the 

way to prepare silicate glasses by sol-gel. Therefore, using Sol-gel method to prepare the 

lithium modified silicate glass electrolyte is a reasonable plan.  

On the other hand, although SPS technology can agglomerate the glass by sintering at around 

Tg, the Tg of the glass should not be higher than the degradation temperature of the OSC. 

Therefore, an OSC with higher degradation temperature is also desired for a LEC based on 

inorganic glass electrolyte, which will be discussed later. This also means glasses with low Tg 

and relative higher ionic conductivity would be the promising material. Sulfide glasses seem 

to be a good choice since it not only has a higher ionic conductivity than oxide glass, but also 

has a low Tg. However, the bad spectral transmission in visible light hinder it becoming an 

appropriate electrolyte for LEC applications. Then, phosphate glasses come into our view 

since it has a lower Tg than silicate and borate glass, comparable ionic conductivity and are 

fully transparent in the visible range.  

5.3 Organophosphorus semiconductor 

The system based on phosphorus was unlike the other five-membered heterocyclic systems 

based on such as nitrogen, sulfur, or oxygen, which have been known for more than 130 years 

and have been studied for decades. Phosphorus was discovered176 60 years ago and has been 

incorporated into π-conjugated systems only since the 90s.177 The phosphole exhibits unique 

properties different from the other five-membered heterocyclic members making it an 

interesting building block for the construction of p-systems having specific properties.178 For 

example, phospholes (containing one phosphorus atom) possess unique favorable properties 

that have several applications in organic electronic materials; (i) phospholes are weakly 

aromatic favoring the electronic delocalization in extended p-conjugated systems, (ii) 

substituents of the phosphole can influence the aromaticity of the phosphole and have an 

effect on the properties of the p-system, especially those directly linked to the phosphorus 

atom; (iii) phospholes contain a reactive phosphorus atom, which may tune the 
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physicochemical properties and (iv) the pyramidal shape of the P-atom affords steric 

hindrance that prevents π-stacking in the solid state and thus promotes solid-state emission.179 

Moreover, many organophosphorus derivatives have been inserted into electronic devices.  

The organophosphorus semiconductor used in this work have the desired advantages for 

doping in the inorganic glass electrolyte including high quantum efficiency in solid state, high 

chemical stability and high degradation temperature. And the details will be discussed in the 

corresponding chapter. All these organophosphorus molecules used in this work come from 

the Phosphorus & Molecular Materials research group, which is under the direction of Prof. 

Muriel Hissler, belonging Organometallics: Materials & Catalysis research team of Institut 

des Sciences Chimiques de Rennes (UMR CNRS 6226). 

6. Conclusions 

The researchers around the world did a lot work to understand the complicated device physics 

of LECs. The carrier injection in the emitter layer is mainly determined by the injection 

barrier and the applied bias voltage. And the carrier injection plays a key role in the operation 

of LECs. The electrochemical model is preferred the operational mechanism of LECs when 

the carrier injection is not limited. The transient properties of the LEC are also determined by 

the electrochemical doping process.  

Both the traditional emitter such as CP and iTMC and new emitter including copper(I) 

complexes, SMs, QDs and NPs were brief reviewed. These new emitters significantly 

enhanced the device performances and enrich the LECs family. However, after two decades 

of intensive research, the state-of-the-art of LECs indicate that this technology has only 

achieved a moderate performance compared to that of lighting sources and displays based on 

the OLED concept. The “short slab” of LEC technology is the electrolyte. The common 

organic electrolytes have been briefly reviewed. The result shows an ideal electrolyte for a 

LEC should have wider electrochemical stability window, high ionic conductivity, a wide 

spectral transmission and mechanical stability. Moreover, the morphology between the 

electrolyte and OSC is also very important. 

Inorganic glass electrolytes have all the advantages required for making ideal electrolytes for 

a LEC application, however, to our best knowledge, there is few reports on the LEC based on 

organophosphorus derivatives. As glass researchers, we are curious to know that if the 

inorganic glass electrolytes can be used in a LEC? So, we thought about the possibilities to 

prepare a LEC based on the OSC doped inorganic glass. First of all, to successfully prepare 
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the OSC doped glasses, the OSC should have a high degradation temperature. The 

organophosphorus semiconductors have not only high degradation temperature, but also high 

quantum efficiency in solid state and high chemical stability. Thus, it is one ideal OSC for 

doping in an inorganic glass electrolyte. 

Therefore, the main objective of this work was to develop a new LEC device based on 

organophosphorus doped inorganic glass electrolyte, which cannot be synthesized by using 

classic melt-quenching technique. That because the melting temperature of glass is always 

much higher than the degradation temperature of organic molecules. Thus, the challenge was 

to find the way to blend OSC and inorganic glass host. Fortunately, we found two possible 

ways to try working out the challenge. And these possible solutions should use the advantages 

of both the OSC and inorganic glass host, which will be discussed in details in the following 

chapters.  
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1. Introduction 

Silicate glass is developed throughout modern technology. Among all the glass kinds, silicate 

glass is the “oldest” one. Silicate glasses have many applications in the life including 

windows, lamps and optical components which be used in a wide of the specialized field such 

as communication, electronics, laser and composites 1-9.  

Numerous works have been carried out to determine the structure of silicate glass using 

various kinds of technology 1,10-15. Silica glass is the simplest silicate glass, which is the most 

refractory glass in commercial use. Silica glass is based on the Si-tetrahedra [SiO4], which is 

resulting from the formation of sp3 hybrid orbitals of Si outer electrons (3s23p2). The addition 

of other oxide modifiers into the silica glass can form other silicate glass. These oxide 

modifiers can react with the network to break the bonds producing mobile ions and increasing 

the degrees of freedom of the network. A simple example of this involves the binary lithium 

silicate glass. Addition of modifier oxide Li2O makes Si-O- Li+ units which reduce the rigidity 

of the network since Li+ is mobile, and Si-O- units produce more degrees of freedom available 

to the network than Si-O-Si bonds.  

For a long time, glass was employed an electrical insulator. In 1966, Otto reported glass 

composition of Li2O–SiO2–B2O3 with high lithium ion conductivity (>10-4 S/cm) at about 350 

°C, thereby starting the researches of fast lithium ion conduction in the glass. Extensive 

efforts have been done in order to further increase the conductivity of silicate glass to a 

practical level for all solid state lithium battery. However, it has to be admitted that silicate 

glass has a relatively low conductivity for producing batteries (10-5 S/cm at 423K for the 

30Li2O-70 SiO2 glass composition)16. Fortunately, this ionic conductivity is high enough to 

study the possibility of preparing a LEC using such an inorganic glass electrolyte. As we 

mentioned silicate glasses needs high temperature of the melting before being quenched 

(usually above 1300 °C). This melting temperature is far higher than the other glass families 

such as phosphate, fluoride, chalcogenide or metallic glasses. Therefore, it is obviously 

impossible to use the traditional melt-quenching way to develop an organic 

semiconductor(OSC) doped silicate glass. To tackle this problem, the sol-gel technology was 

used to avoid the high temperature process of melt-quenching. Compared to the glass melt-

quenching method, the sol–gel process has the advantages of low temperatures and tunable 

structure that allows controlling over the morphology, porosity, size. 
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The sol-gel process of silicate glass refers to the controlled hydrolysis and polymerization of a 

metal alkoxide, generally tetraethyl orthosilicate (TEOS)3. The active units that are produced 

by hydrolysis process grow in size and molecular weight by the condensation and 

polymerization process. A polymer is a huge molecule which is formed from hundreds or 

thousands units call monomers that are capable of forming at least two bonds. At some time 

during the polymerization process, the solution undergo a sol-gel transition, and a stiff gel is 

formed. The gel is then dried before being heat treated.  

 

Fig. 2.1. Sol-Gel process technology and chemistry preparation of metal oxides using sol-gel routes proceeds 

Depending on the aging time of the solution, different forms of samples can be prepared as 

shown in Fig 2.1. In this work, we are devoted to use this method to prepare an 

organophosphorus organic semiconductor (OPSC) doped organic-inorganic hybrid lithium 

modified silicate glass coating. However, since the presence of alkali in sol-gel solutions not 

only can encourage polymerization, but also can cause depolymerization, the process of 

polymerization becomes more complicated after adding alkali ions into the solutions. 

Therefore, it is rational to formulate the study from preparing silica glass coatings before 

assembling the lithium modified silicate glass coating. On the other hand, although the 

underlying physics and chemistry that govern polymer growth and gelation are essentially the 

same for films as bulk gels, the structural evolution in films are more complicated than that in 

bulk 17. Therefore, it is impartial to develop the bulk gel before preparing the coating. Thus, 
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the systematic schedule of the experiments is shown below for both silica and modified 

silicate glasses:   

I. Silica glass  

1) synthesis of the bulk silica gel;  

2) synthesis of OPSC doped bulk silica gel;  

3) preparation of silica coating;  

4) preparation of OPSC doped silica coating.  

 

II. Lithium modified silicate glass:  

1) synthesis of the bulk lithium modified silicate glass gel;  

2) preparation of OPSC doped bulk lithium modified silicate glass gel;  

3). preparation of lithium modified silicate glass coating;  

4). preparation of OPSC doped lithium modified silicate glass coating. 

2. Experiments 

2.1 Raw Chemicals 

The following precursors were used without further purification to prepare silica-based sol-gel 

derived glasses; Tetraethyl orthosilicate (C8H20O4Si, 99+%, Alfa Aesar, US), Lithium hydrate 

(LiOH, 99%, Alfa Aesar, US), Lithium chloride (LiCl, 99%, Alfa Aesar, US), Lithium Nitrate 

((LiNO3, 99.99%, Alfa Aesar, US), Lithium citrate tribasic tetrahydrate (C6H5Li3O7.4H2O, 

99%, aladdin, China), Ethanol (CH3CH2OH,>99.7%, Sigma-Aldrich, Fr), Acetone 

(CH3COCH3, >99.5%, Sigma-Aldrich, Fr), Hydrochloric acid (HCl, ACS reagent 37%, 

Sigma-Aldrich, Fr), H2O (home made  deionized water) 

2.2 Sol-gel synthesis methods  

2.2.1 Silica gel 

The reaction was initiated by diluting TEOS in ethanol and magnetically stirred for about 10 

minutes. Then H2O and HCl were added dropwise into the vessel and mixed by stirring for 2 

hours. The schematic of the sol-gel synthesis of silica gel is shown in Fig 2.2. 
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Fig. 2.2. Schematic of the sol-gel synthesis of silica xerogel 

2.2.2 Lithium modified glass 

There are two lithium precursors: LiOH and LiNO3. The process is a bit different for both of 

them.  

1. LiOH as precursor:  

The reaction was initiated by diluting TEOS in ethanol and magnetically stirred for about 10 

minutes. Then H2O and LiOH were mixed firstly before being added dropwise into the vessel. 

Follow that, the solution was mixed by stirring for 2 hours. The schematic of the sol-gel 

synthesis of silica gel is shown in Fig. 2.3. 

2. LiNO3 as precursor:  

The difference from the LiOH as precursor process is that after the H2O and LiNO3 were 

added into the TEOS solution, the HCl was also added into the solution. In addition, the 

mixing time increase to 3h. The schematic of the sol-gel synthesis of silica gel is shown in Fig 

2.4. 
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Fig. 2.3. Schematic of the sol-gel synthesis of lithium modified silicate xerogel using LiOH as precursor 

 

 Fig. 2.4. Schematic of the sol-gel synthesis of lithium modified silicate xerogel using LiNO3 as precursor 

2.2.3 OSC doped silica glass 

This process was initiated by diluting OSC in acetone and ultrasonic vibrated for about 10 

min. Then, the next step is similar to the process of silica gel preparation. The complete 

schematic of the sol-gel synthesis of silica gel is shown in Fig. 2.5. 
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Fig. 2.5. Schematic of the sol-gel synthesis of OPSC doped silica gel  

2.3 Drying procedure 

The obtained homogeneous solutions of both silica and lithium silicate glass were aged at 

room temperature for three days in glass containers with cast before drying in an oven 

(EV014-Townson& Mercer, Cheshire, UK). The temperature was then increased gradually 

(0.5 °C s-1) up to 60 °C and kept for three days.  
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Fig. 2.6. Heat treatment diagram for the sol-gel synthesised silica and lithium modified silicate gel. 

Then, the heating was continued at 120 °C for an additional three days. Finally, the 

temperature was increased to 250 °C and kept for three days to remove any remaining solvent 

and aiming to obtain bulk, amorphous samples 18. After the final heating stage, the oven was 
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turned off and samples left overnight in the oven to cool down slowly. Fig. 2.6 shows the 

heat-treatment diagram for the synthesis of silica and lithium modified silicate gel. 

2.4 Coating method  

2.4.1 Substrate and its clean process 

Silicate glass (K9) substrate (2020 mm) was used as the substrate. 5 steps have been 

performed to clean the substrates before preparing the coatings. Firstly, the substrates should 

be flushed using large amount of deionized water. Secondly, the substrates should be soaked 

in acetone for 10 min. Thirdly, the substrates should be soaked in ethanol in the beaker put in 

the ultrasonic cleaners. Fourthly, the substrates should be flushed again using larger amount 

of deionized water. The last step is put the substrates in a container with the cast to dry in the 

oven.  

2.4.2 Spin-coating method 

There are four main method to prepare the coating as shown in Fig 2.7. Here, we use the spin 

way to prepare the coating. The model of the spin-coater is SPIN150 (SPS-Europe, Fr). The 

coater was put in the dust-free worktable to keep from the dust.  

 

Fig. 2.7. Common methods to prepare coating for sol-gel. 

2.4.3 Drying process 

The obtained coating was put in a container that was placed in an oven at 100 °C for 1 h. Then 

the sample was put in the furnace, and the temperature was then increased gradually (0.5 

°C/s) to 100 °C and kept for 1 h. Following this, a dwell of 3 h at 250 °C was added to 

remove adsorbed species and organics except OPSC molecules 18. After the final heating 

stage, the oven was turned off and samples left overnight in the oven to cool down slowly. Fig 

2.8 shows the heat-treatment diagram for the spin-coater synthesized silicate glasses coating.  
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Fig. 2.8. Heat treatment diagram for the sol-gel coating. 

3. Silica bulk glass  

3.1 Structural evolution during Sol-gel process 

As silicon alkoxides can react rapidly with water, they became popular precursors. The 

reaction between the precursors and water is called hydrolysis because a hydroxyl ion 

becomes attached to the metal atom, which can be depicted in the following reaction: 

 

The R represents a proton or other ligand (if R is an alkyl, then OR is an alkoxy group), and 

ROH is an alcohol; the “ ” is used to represent a chemical bond. The redundant amount of 

water and catalyst makes the hydrolysis go to completion, which means all of the OR groups 

are replaced by OH 

 

The lack of water and catalyst causes the partial hydrolyzation of the metal, 

. These partially hydrolyzed molecules can also link together in a 

condensation reaction, such as: 

 

Or 

 

Through definition, condensation liberates a small molecule including water and alcohol. This 

reaction can also build bigger and bigger silicon-containing molecules by polymerization.  

Compare to other transition metals, silicon has a less electropositive property. This makes it 

less susceptible to nucleophilic attack. Besides, both the coordination number and the 
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oxidation state of silicon is 4, which makes the coordination expansion does not 

spontaneously occur with nucleophilic reagents. These factors make both the hydrolysis and 

condensation process of silicon considerably longer than that of other transition metal 

systems. Normally, in order to save the time, the catalyst is very important for the 

polymerization process. Typically, the hydrochloric acid and ammonia water are the most 

common catalyst through adjusting the pH of the reaction condition. 

The polymerization process can be divided into three approximate pH domains: pH<2, 

2<pH<7, and pH>7. pH 2 is the isoelectric point (IEP) of SiO2 sol, where the electrical 

mobility of the silica particles is zero. pH above 7 make the silica particles be ionized so that 

the particles grow without aggregation or gelation. In addition, the mechanism of the 

polymerization process between the pH<2 and the pH within 2-7 is different.  

These three parts are detailed below: 

1) Polymerization when pH 2-7 

When the pH > IEP, a nucleophilic mechanism occurs. The surface of the silica particles can 

attract OH-, so the condensation rate is proportional to [OH]- as in the following reaction 

sequence: 

 

 

Among all the silicate species, the silanol in the most highly condensed species are the acidic 

silanol, which is most likely to be deprotonated according to Equation (4).  Therefore, the 

condensation in Equation (5) happens preferentially between more highly condensed species 

and less highly condensed neutral species, for example, the reaction: 

 occurs preferentially over 

. This means, the rate of dimerization is low, however, once 

the  condensed species form, the   or (  ) or (   ) would fast form. Then, 

more condensed species will be formed. In  notation, the superscript n denotes the number 

of bridging oxygens (-OSi) surrounding the central silicon, and the sum of the subscripts, x, 

equals the number of silicons comprising the silicate species. Moreover, since the solubility of 

silica is low in this pH range, the particle stops growing when the solubility and size-

dependence of solubility is greatly reduced, which limits the size of the particle at around 2-4 

nm.  

2) pH > 7 
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Above pH 7, it is also nucleophilic mechanism. However, since all the condensed species are 

in the ionized state and therefore mutually repulsive, which makes the growth of the 

condensed species depend on the addition of monomers to more highly condensed particles 

rather than aggregation.  

3) pH < 2 

When pH < IEP, an electrophilic mechanism takes place.  The surface of the silica particles 

can attract H+, so the polymerization rate is proportional to H+ as in the following reaction 

sequence: 

 

 

 

This mechanism involves an intermediate siliconium ion . This intermediate  

attacks other  to form another intermediate , which finally 

form , to achieve condensation. 

The ratio between H2O and Si(OR)4 (r) determines the pattern of the poly-silicate product 

including fibers, bulk gels, or colloidal particles through controlling the hydrolysis reaction. 

For TEOS as the alkoxides, when r = 4, the TEOS can be totally hydrolysed. Therefore, in the 

range of r < 4, the increase of the value of r generally decreases the time of gelation because 

of promoting hydrolysis, whereas in the range r > 4, an increase of the value of r generally 

increases the gelation time because of decreasing concentration of Si-OH. Larger value of r 

causes liquid-liquid immiscibility, therefore, other solvent like alcohol was used to obtain 

homogenization of the solution.  

3.2   Preparation of Silica bulk xerogel 

In our work, we used the TEOS-H2O-C2H5OH ternary system with HCl as catalyst to prepare 

the silica bulk xerogel. An addition of C2H5OH is needed because water and alkoxysilanes are 

immiscible, a mutual solvent such as alcohol is normally used as a homogenizing agent 19. 

Since, water is produced as a by-product of the condensation reaction, r, even lower than 4, is 

theoretically sufficient for complete hydrolysis and condensation to yield anhydrous silica. 

Moreover, acid-catalyzed hydrolysis process with low H2O: Si ratio produces weakly 

branched “polymeric” sols, whereas base-catalyzed hydrolysis prefer produces highly 

condensed “particulate” sols 20. Considering the transport of lithium ions in the material, 

“polymeric” structure, which is analogous to organic electrolyte, is advisable for our work. 
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Therefore, in this work, 5 ml solution was prepared with the molar ratio TEOS: H2O: 

C2H5OH =1:3:4, and the pH is maintained below 2 using 12N HCl. The synthesis process to 

prepare the sample is shown in Fig 2.2, cast and drying steps were vanished. 

 

Fig. 2.9. Photograph of cracked silica xerogel sample 

After the homogeneous solution was prepared, the solution is just put in the ambient 

atmosphere without any other treatment. Three days later, the gel is formed. Two weeks later, 

the gel becomes xerogel. Unfortunately, the sample finally cracked as shown in Fig 2.9. This 

is because the vanished cast step leads the evaporation rate of the solvent is too fast to balance 

the interfacial residual stress. This problem was solved later by prolonging the drying time 

using a plastic film, which casts the container as described in the schematic of Fig 2.2, and the 

sample is shown in Fig 2.10.  

 

Fig. 2.10. Photograph of silica xerogel sample 

After the drying process shown in Fig 2.6, the phase and crystalline structure of the silica 

xerogel were characterized by XRD (D/max 2550 VB/PC Rikagu, Japan). All measurements 

were carried out at room temperature using Cu kα radiation(λ=1.54056Å). A step size of 0.02ᵒ 

(2θ) was used with a scan speed of 2ᵒ/min. The result is shown in Fig 2.11. There are no 

obvious crystal peaks, which suggests that the sample is amorphous.  
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Fig. 2.11. XRD pattern of silica xerogel 

3.3   OPSC doped Silica bulk xerogel 

Based on the silica bulk gel, we investigated the preparation of hybrid gel by introducing 

organophosphorus organic semiconductor (OPSC). In this work, two kinds of OPSC 

molecules were used: OPSCS3 (green) and OPSCTD73 (blue). The structure of the 

OPSCTD73 and OPSCS3 are shown in Fig 2.12 (a) and (b), respectively.  

 

Fig. 2.12. Structure of OPSCTD73 (a) and OPSCS3 (b) 

The first experiment consisted in doping the OPSCS3 within silica gel. The process is similar 

to the classical process of silica gel described before, the only difference remains in the 

addition of the OPSCS3 molecule into the solution after mixing the precursor. The 

concentration of OPSCS3 is of 0.06 w%. After doping the OPSCS3, it was found that the 

OPSCS3 is not soluble in the solution. Some obvious OPSCS3 particles can be observed (Fig. 

2.13) by the naked eyes.  

Fig 2.13 shows the gel after 7 days and 10 days of preparation. It was found that the bulk 

xerogel is crack into two pieces. 
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Fig. 2.13. Photograph of OPSCS3 doped silica gel after 7 days and 10days of preparation  

It is probably because the OPSCS3 molecules can not dissolve in the solution of silica gel, 

they remain as big solid particles within the solution and thus could frustrate the 

polymerization process in the gel, creating some mechanical constrains. This phenomenon of 

insolubilization is more obvious after two weeks of drying as shown in Fig 2.14.  

 

Fig. 2.14. Photograph of OPSCS3 doped silica gel, two weeks after preparation (slow drying) 

Therefore, in order to obtain a totally homogeneous solution and crack free bulk gel, a solvent 

that can dissolve the OPSCS3 must be introduced. Since the OPSCS3 could be dissolved in 

acetone that would not affect the reactions during the sol-gel process, it is rational to use the 

mutual solvent to improve the homogeneity of the solution. The corresponding preparation 

process is already shown in Fig 2.5. Before adding the OPSC molecule into the mixing 

solution, the OPSC molecule was dissolved into acetone under an ultrasonic vibration 

process. Through this process, the totally homogeneous gel can be obtained as shown in Fig. 

2.15. 
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Fig. 2.15. Photograph of OPSCS3 doped silica wet gel with acetone 

4. Preparation of silica glass coating 

Since LECs are film device, the inorganic glass electrolytes should be prepared in film form. 

Obviously, preparing the thin film is one of the most important aspects of sol-gel technology. 

Compare to gelation, the fluid or solution is more appropriate for preparing the films by some 

low-cost common processes as dipping, spinning, or spraying. These processes only require 

simple devices than those processes of chemical vapor deposition (CVD), evaporation, or 

sputtering. Moreover, the microstructure of the deposited film such as pore volume, pore size 

and surface area can be precisely controlled. 

 

Fig. 2.16. Schematic of four stages of the spin-coating process 

In order to prepare thin films, we used the spin coating process. The process of spin coating 

can be divided into four stages: deposition, spin-up, spin-off, and evaporation, as shown in 

Fig 2.16 21. An excess of solution is dispensed on the surface in the first stage. In the second 

stage, the centrifugal force would make the liquid radially flow outward. In the third stage, the 

excess liquid flows to the boundary. In the last stage, the liquid would be evaporated because 

of the high rotation speed. Spin coating has one important advantage that a film of solution 

tends to keep the uniform thickness during the second stage. Moreover, once the film is 
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uniform, it tends to keep this uniform property. The thickness of an initially uniform film 

during spin-off is described by the following equation 

 

where h0 is the initial thickness, t is the time, ω is the angular velocity, and ρ is the density of 

the solution. It is known from the Equation (9) that the films tend monotonically toward 

uniformity by the increasing time. 

First experiments of this film preparation were performed on the basic silica glass in order to 

handle the spin coater equipment and to optimize the parameters of spinning. These first 

experiments are needed to avoid a waste of organic molecules. The solution composition is 

the same of the silica xerogel prepared above (TEOS: H2O: C2H5OH =1:3:4, pH<2). The 

substrate used for the coating is a silicate glass substrate. The process is shown in Fig 2.17 

and the aging time for drying silica glass coating is of 1 h.  

 

Fig. 2.17. Schematic of the silica spin-coating process 

As display in Fig 2.18, the parameters for the spin-coater are: acceleration speed of 500 

Rpm/s; rotation speed of 2000 Rpm/s (60s) and 3000 Rpm/s (60s) for first stage and second 

stage, respectively. 
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Fig. 2.18. Schematic of the dynamic process of silica spin-coating  

A uniform coating on the silicate glass substrate can be obtained after drying process as 

presented in Fig. 2.19.  

 

 

Fig. 2.19. Photograph of the silica coating  

Pictures of the coating taken under optical microscope with magnification of 20 times and 

1000 times are presented in Fig. 2.20. The photographs of the coating under microscopy were 

taken by digital microscope VHX-6000 series, Keyence, Japan.  It can be seen that the coating 

has a uniform property even at magnification of 1000 times. 
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Fig. 2.20. Silica coating under optical microscope, magnification of 10 times (left) and 1000 times (right) 

Moreover, OPSC doped silica coatings were also prepared. The preparation of the solution is 

the same as the OPSC doped silica xerogel (Fig. 2.5). As mentioned above, the lack of the 

solvent that can dissolve the OPSC induces the phase separation between OPSC and the silica 

xerogel. This phenomenon is more obvious when the coatings are prepared because of the 

highest ratio surface /volume. Fig. 2.21 shows the picture of the coating containing 

OPSCTD73 molecule lighten under UV light without (a) and with acetone (b).  It can be seen 

that the addition of acetone into the solution could strongly improve the uniform continuity of 

the coating. In addition, luminescence of the OPSCTD73 doped silica coating was observed 

(Fig. 2.21). This phenomenon will be discussed in detail later in this chapter. 

 

Fig. 2.21. Photograph of the OPSCTD73 doped silica coating onto onto 20x20mm substrates 

5. Photoluminescence of the OPSC doped Silica glass  

When the OPSC doped silica xerogel is obtained as shown in Fig. 2.13 and 2.14, the xerogel 

became yellow, the color of the OPSCS3 molecule. Unlike to OPSCS3 molecule doped silica 

xerogel, the OPSCTD73 molecule doped silica xerogel is colorless. However, both OPSCS3 

and OPSCTD73 molecules doped silica xerogel has strong luminescence under UV light (365 

nm) as shown in Fig. 2.22 (a) and (b), respectively. In order to further understand the 
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photoluminescence (PL) properties, the photoluminescence spectrum of both samples was 

investigated.  

 

Fig. 2.22. OPSCS3(a) and OPSCTD73(b) doped silica xerogel under UV lamp 

5.1 Photoluminescence spectrum 

Firstly, the absorption and photoluminescence (PL) spectrum of OPSC molecules that are 

dissolved in diluted CH2Cl2 solution (DCM) are presented in Fig. 2.33(a) and (b), 

respectively.  They both possess luminescence in the visible range, characteristic of p-

conjugated phospholes 22. 

 

 

Fig. 2.23. Absorption(left) and emission(right) spectra of OPSC molecules in diluted DCM solutions. 

The PL spectrum of OPSCS3 doped silica xerogel was measured 30 days after preparation as 

shown in Fig. 2.24. The photoluminescence spectra were measured by FLS980 with a 450 W 

ozone free xenon arc lamp that covers a range of 230 nm to 1000 nm for steady state 

measurements. The sample was stimulated at 380 nm that is the peak of the absorption 

spectrum of OPSCS3 dissolved in DCM. From Fig 2.24, it can be seen that the shape of the 
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spectrum of OPSCS3 doped silica xerogel is similar to that of OPSCC3 dissolved in CH2Cl2 

solution (DCM) as shown in Fig. 2.23 (right). In addition, the OPSCS3 doped silica xerogel 

shows an emission peak at around 480 nm, which corresponds to a “blue shift” if compared to 

that of OPSCS3 (510 nm) dissolved in DCM. Similar blue shift was also observed in 

OPSCTD73 doped silica xerogel. 
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Fig. 2.24. Photoluminescence spectrum of OPSCS3 doped silica xerogel  

The PL spectrum of OPSCTD73 doped silica xerogel was measured 30 days after preparation 

(Fig. 2.25).  The sample was excited at 350 nm, wavelength corresponding to the peak of the 

absorption spectrum of OPSCTD73 dissolved in DCM. The shape of the spectrum of 

OPSCTD73 doped silica xerogel is similar to that of OPSCTD73 dissolved.  
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Fig. 2.25. Photoluminescence spectrum of OPSCTD73 doped silica xerogel  

in DCM. The OPSCTD73 doped silica xerogel shows the emission peaked at around 450 nm, 

which also represents a “blue shift” compared to that of OPSCTD73 (470 nm) dissolved in 
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DCM. Therefore, this “blue shift” may be due to the change of the local environment around 

the OPSC, thereby the electronic structure of the OPSC has probably changed. 

5.2 Luminescent concentrator based on OPSC doped silica coating 

In addition, the PL was observed from the OPSCTD73 doped silica coating as presented in 

Fig 2.21. From Fig 2.21(b), it is noted that the coating makes the substrate be a luminescent 

concentrator which emits from the edges of the substrate. The schematic of a luminescent 

solar concentrator is shown in Fig 2.26 (a). Actually, Fig 2.26 (a) shows the operating 

principle of a luminescent solar concentrator (LSC) that are devices comprising a transparent 

matrix embedding optically active centers that absorb the incident radiation, which is re-

emitted at a specific wavelength and transferred by total internal reflection to photovoltaic 

(PV) cells located at the edges of the matrix 23. 

 

Fig. 2.26. Schematic of a luminescent solar concentrator (a)15 and picture of OPSCS3 doped silica xerogel under 

UV lamp (b) 

Fig. 2.26 (b) shows the coating on a bigger silicate glass substrate, where this phenomenon is 

more obviously observed. In reference 24, the authors point out that “Organic–inorganic 

hybrids incarcerating trivalent lanthanide ions (Ln3+) are a very promising class of materials 

for addressing the required challenges in the LSC design to improve solar energy harvesting 

and, then, PV energy conversion.” Considering the sol-gel method can combine the inorganic 

part such as Ln3+ or other quantum dots and the organic emitters, it will be a good choice to 

prepare the Ln3+ and OPSC co-doped hybrid coating for LSC.  

6.   Preparation of lithium modified Silica bulk glass and coating 

6.1 Lithium modified silicate glass bulk xerogel  

Alkali silicate glass prepared by conventional melting often present phase separation and 

crystallize during quenching, which limits their application in the optical and electrical field 
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that need higher requirement of homogeneity. The sol-gel process for forming alkali silicates 

has been considered as an alternative way to avoid this problem 18. However, compare to 

sodium silicate glass 25-28, there are very few reports for lithium silicate glass. The first report 

of lithium silicate glass prepared by sol-gel was reported in 1983.29 After that, the stability of 

lithium silicate gels was studied by Schwartz18. Study on the conductivity of lithium silicate 

glass prepared by sol-gel were studies by Klein30. Recently, the lithium-silicate sol-gel 

bioactive glass was reported by L.B. Macon et al. 31. In these reports, the precursor for lithium 

is commonly either LiNO3 and LiOH because of their good solubility in water. Thus, in our 

work, both the LiNO3 and LiOH were used as precursors. Moreover, we also studied the 

behavior of LiCl as precursor.  

 

Fig. 2.27. Photograph of TEOS-LiOH wet gel 

With LiOH as precursor, the (100-x) % mol SiO2 and x % mol Li2O (x=3,6,8,11) binary 

glasses were prepared. This synthesis process is performed in a base solution as shown in Fig 

2.3. However, the obtained results are a little bit different from the references 29 30. Fig 2.27 

shows the composition based on x=3,6,8,11(S1-S4) mol % Li2O after drying 5 days. It can be 

seen that all the samples were gel, however, a serious phase separation were observed. With a 

longer mixing time (5h), the phase separation disappears in S1 gel, but the sample is opaque 

shown in the inset. This result was also found in the dried xerogel of lithium silicate by the 

work of L.C. KLEIN 30.  

Considering LiNO3 as the precursor, the (100-x) % mol SiO2 and x % mol Li2O (x= 6,8,11) 

binary glasses were prepared. The main difference consists in the fact that the synthesis 

process is performed in acidic solution as shown in Fig 2.4. The gels are shown in Fig 2.28 

after 5 days of drying. It can be seen that all of the gels are homogeneous and totally 

transparent, and in this case no obvious phase separation is observed. 
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Fig. 2.28. Photograph of TEOS-LiNO3 wet gel  

After the wet gel was heated using the drying process shown in Fig 2.6, xerogel was obtained. 

Then, XRD experiments were performed. The XRD pattern of X=11 sample is shown in Fig 

2.29, it indicates that the sample is amorphous. In fact, the observed peaks belong to the 

aluminum holder. 
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Fig. 2.29. XRD pattern of TEOS-LiNO3 xerogel 

Moreover, since there is no report about preparing the lithium silicate glass using lithium 

chloride, we also tried to prepare the glass replacing the LiNO3 by LiCl. When using LiCl, the 

process is the same as LiNO3 silicate glass. The solution also becomes a gel after 5 days, and 

the photo is shown in Fig 2.30. 
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Fig. 2.30. Photograph of TEOS-LiCl wet gel 

It suggests that the lithium silicate gel can also be prepared by lithium chloride. Besides, a 

bulk lithium silicate xerogel with 6% mol Li2O using LiCL as precursor was obtained as 

shown in Fig 2.31.  

 

Fig. 2.31. Photograph of TEOS-LiCl xerogel 

Although the lithium silicate xerogel were successfully prepared with the precursor LiNO3 

and LiCl, the concentration of lithium is still low which probably lead to a low ionic 

conductivity of the glass. Therefore, after having obtained silicate xerogel with relatively low 

concentration of lithium, we increased the lithium concentration in silicate xerogel to enhance 

the ionic conductivity.  

 

Fig. 2.32. Photograph of TEOS-LiNO3 and TEOS-LiCl xerogel 
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The composition based on 70 % mol SiO2 and 30 % mol Li2O binary lithium silicate xerogel 

were prepared by using LiNO3 and LiCl as precursors, respectively, as shown in Fig 

2.32.Considering the high lithium content may lead to the appearance of phase separation or 

crystallization, XRD measurements of both samples were performed after being dried.  The 

result is presented in Fig 2.33. It can be seen that the curves of both samples are similar to that 

of low lithium content shown in Fig 2.29, which indicates both of the samples are amorphous, 

the observed peaks still belong to the aluminum holder. 
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Fig. 2.33. XRD of TEOS-LiNO3 and TEOS-LiCl xerogel (70 % mol SiO2 - 30% mol Li2O) 

However, the silicate xerogel containing higher concentration of lithium react easily with 

water, especially for LiCl silicate xerogel, leading the bulk to crack and tend to be soluble 

again. Probably, a more optimized drying process may be the key to solve this problem. 

6.2 Lithium modified silicate glass coating  

Although there are lots of works on silica coating 21,32-35, there is rather few works on lithium 

silicate glass coating. In our experiment, the main aim consists in preparing the lithium 

silicate solution (70% mol SiO2-30% mol Li2O) using LiCl as precursor. The lithium silicate 

glass coatings were prepared using the same process and parameters of the silica glass coating 

presented before. However, it was observed that voids are generated in the coating as 

displayed in Fig. 2.34. It can be seen that the largest size of the void can reach 120 μm. Since 

the LEC devices require the emitting layer to be between two electrodes, the emitting layer 

should enable to prohibit the contact between electrodes. Therefore, the existence of voids 

within the coating will probably lead to contact between electrodes and thus to short circuit. It 

is crucial to vanish these voids in the coating. 
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Fig. 2.34. TEOS-LiCl coating under optical microscope (scale) 

As mentioned above, the addition of alkali ions in sol-gel solutions lead to the 

complexification of polymerization process. Considering this key issue, it is not difficult to 

assume that the appearance of the voids are probably due to the kind of lithium precursor as 

well as its concentration. Besides, the lithium silicate glass coating was prepared using the 

same process and parameters of the silica glass coating including the aging time of solution, 

whereas the assigned aging time of lithium silicate glass solution should be theoretically 

different from that of silica glass coating because of the more complicated polymerization. It 

suggests that these voids may also be caused by the incorrect aging time of the lithium silicate 

solution. Thus, there are three possibilities of the appearance of the voids including 1) aging 

time of the solution; 2) the concentration of lithium precursor; 3) the kind of the lithium 

precursor.  

Firstly, we investigated the relations between the appearance of voids and the aging time of 

the solution. The aging time of the solution was investigated using the lithium silicate solution 

(70% mol SiO2 - 30% mol Li2O) with LiCl as precursor. The coating was prepared with 

different aging times of solution of 0.5h, 1h, 6h, 20h, 24h and 48h, respectively. After 48h, 

the viscosity of the solution was too large to use the spin-coating process. The photo of the 

coatings under microscopy with 10 times magnification are shown in Fig. 2.35. These photos 

were taken just after finishing the coating process. It can be seen that, in spite of all the 

coatings contain voids, the coating prepared after 20h of aging presents less amounts of voids 

when LiCl is used as precursor. Even if it is noted that the size of the voids is depending of 

the aging time, however, no obvious trend was found. Since the voids are always present after 

different aging time of the solution, it is rational to point out that the aging time of the 

solution is not the main reason for the appearance of these voids. 
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Fig. 2.35 TEOS-LiCl coating under optical microscope after different aging time  

Secondly, the concentration of the lithium precursor was investigated. The 70% mol SiO2-

30% mol Li2O and 90% mol SiO2-10% mol Li2O solutions using LiCl as precursor were 

prepared. The coating based on both solutions were prepared after aging for 1h.  The photo of 

the coatings observed by microscope are shown in Fig. 2.36. Both pictures were taken just 

after finishing the coating process. It can be seen that no voids are observed from the coating 

prepared with the solution containg 10% mol of Li2O. On the contrary, many voids are 

observed in the other coating. Obviously, the concentration of the lithium precursor largely 

affects the number and size of voids within the coating.  
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Fig. 2.36 TEOS-LiCl coating of 10% mol Li2O (a) and and 30% mol Li2O under optical microscope (10 times 

magnification for (a) and 100 times magnification for (b))  

Lastly, the nature of the lithium precursor was investigated. Besides the LiCl precursor 

studied above, the LiNO3 and C6H5Li3O7 precursors were used. The 70% mol SiO2 - 30% mol 

Li2O solution using LiNO3 and C6H5Li3O7 as precursor were prepared. The coating based on 

these two solutions was synthesized after 1h of aging. The pictures of the coatings taken 

under microscope are shown in Fig. 2.37.  

 

Fig. 2.37 TEOS-C6H5Li3O7 (a) and TEOS-LiNO3 (b) coating under optical microscope (300 times magnification) 

when the coatings were just prepared 

Fig. 2.37 (a) shows the the coating prepared using the C6H5Li3O7 as precursor (magnification 

300 times). It can be seen that the coating does not present voids, and the black dot in the 

coating is probably due to the dust. Fig 2.37 (b) shows the coating prepared using the LiNO3 

as precursor (magnification 300 times). Although in this coating, there are lots of dust dots, 

there are no voids that have been observed before. These results clearly highlight how the 

kind and content of precursor affect the formation of holes within the thin films. 
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As mentioned, all these photos were taken just after the coating preparation, however, the 

voids start to appear after 3 days kept in the air at room temperature, as shown in Fig. 2.38. It 

can be seen that the size of the voids remains below 10 μm. 

 

Fig. 2.38 TEOS-C6H5Li3O7 (a) and TEOS-LiNO3 (b) coating under optical microscope (300 times magnification 

for (a) and 100 times for (b)) three days after the coatings were prepared 

Normally, in case of bulk gel, a solid-state salt metathesis reaction occurred between lithium 

salt and the silanol and subsequently diffuses within the bulk silica network 31, the schematic 

of which is shown in Fig. 2.39. Although the underlying physics and chemistry that govern 

polymer growth and gelation are essentially the same for films as bulk gels, their structural 

evolution is different 36. In the case of films, because of the short time span for condensation 

reactions to occur, the competition between evaporation and continuing condensation 

reactions occurs. Evaporation compacts the structure, whereas condensation reactions stiffen 

the structure, thereby increasing the resistance to compaction. In addition, the brief duration 

of the deposition and drying stages of films cause the less crosslinking than bulk gels. 

 

Fig. 2.39 Schematic representing the precipitation of lithium salt within the porous structure of silica gels, 

subsequently followed by the diffusion of lithium, induced by thermal stabilization, within the silicate networks, 

decreasing connectivity of the network 31 

Brinker, C. J. et al. point out several consequences of this short timescale of the film 

deposition processes 36. One of these consequences is that there is little time available for 

condensation reactions to occur. Thus, gelation may actually occur by a physical process, 
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through the concentration dependence of the viscosity, rather than a chemical process. 

Especially, this physical process tends to be happened in case of the solution consists of 

complicated entrained condense phases. In fact, these voids presented in the prepared coating 

in our work are probably due to this reason. When the concentration of lithium salts beyond a 

certain point, since the chemical reaction between lithium salt and silanol are not sufficiently 

happen because of the short time of spin process, some lithium salt exists as the origin form 

(LiCl or LiNO3) in the coating. And these lithium salts are more likely to react with water, 

which cause the appearance of the voids. Thus, the voids were not observed in TEOS-LiCl 

coating with 10% mol Li2O, whereas were observed the TEOS-LiCl coating with 30% mol 

Li2O. In addition, compare to lithium nitrate and citrate, lithium chloride is easier to react 

with water, which leads the voids appeared immediately in the TEOS-LiCl coating and later 

in TEOS-LiNO3 and TEOS- Li3C6H5O7. Therefore, controlling the metathesis reaction 

between lithium salt and silanol is the key to avoid the appearance of voids in the coating. 

According to Ref 37, a large excess of water, corresponding to a water to TEOS molar ratio 

above 15, favoured the formation of lithium metasilicate. Thus, the excess addition of water 

may be the possibility of vanish the voids in the prepared coating. Besides, considering the 

dip-coating process with a longer preparation time than that of spin-coating, it probably has a 

longer time for the chemical reaction between lithium salt and silanol, thereby it is possible to 

prepare the high lithium content silicate glass coating without voids through dip-coating.  

7. Conclusion 

The bulk silica xerogel and silica coating with good uniformity were successfully prepared. In 

addition, strong photoluminescence was observed from the OPSC doped silica xerogel and 

coating under UV lamp. The photoluminescence spectrum was also investigated, and it was 

found that the peak of the photoluminescence spectrum is a bit “blue shift” compared to that 

of OPSC diluted in DCM.  

Based on the silica gel, bulk silicate xerogel with the high lithium content was prepared using 

different lithium precursor. Then, the corresponding lithium silicate glass coatings were 

prepared as well. However, the high lithium content silicate xerogel has the tendency of 

reacting with water and some voids are created within the coating. Through the comparing 

experiments, it was found that aging time, kinds of lithium precursor and the concentration of 

lithium can affect the appearance of the voids in the coating. These voids may be caused by 

the inadequacy of chemical reaction between lithium salt and silanol due to the short time 
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span for condensation reactions of coating process. It indicates the excess addition of water 

may be the possibility to vanish the voids in the prepared coating. Another possibility to 

consider consists in preparing the high lithium content silicate glass coating through dip-

coating. 
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1. Introduction 

Phosphate glass were developed by Schott and co-workers more than 100 years. Subsequent 

interest in alkaline earth phosphate glasses have never been on wane. More recently, 

phosphate glasses have been developed for a variety of specialty applications1,2. The 

crystalline and amorphous phosphates are based on the P-tetrahedra, which is resulting from 

the formation of sp3 hybrid orbitals by the P outer electrons (3s23p3). The fifth electron is 

promoted to a 3d orbital where strong p-bonding molecular orbitals are formed with oxygen 

2p electrons. Various phosphate anions are formed based on these tetrahedra link through 

covalent bridging oxygens. The tetrahedra are specified using the Qi terminology 1, where i 

represents the number of bridging oxygens per tetrahedron (shown schematically in Fig. 3.1). 

The networks of phosphate glasses can be specified by the oxygen-to-phosphorus ratio, which 

sets the number of tetrahedral linkages, through bridging oxygens, between neighboring P-

tetrahedra3. Since the depolymerization starts from a network with a threefold linked 

structural unit, the number of crosslinks is small in phosphate glasses compared with those in 

silicate glasses of same metal oxide content4. On the other hand, a large number of terminal 

oxygen atoms exist. Thus, a high degree of flexibility remains for the orientation of the PO4 

groups, which also means a lower Tg of phosphate glass than that of silicate and borate 

glasses.  

 
Fig. 3.1 Phosphate tetrahedral sites that can exist in phosphate glasses 

 

In addition, phosphate glasses can present some high ionic conductivity 5. xM2O+(l-x)P2O5 

where M is an alkali, silver, or even copper, are the simplest ionically conducting phosphate 

glasses. Bartholomew was the first to examine the  ionic conductivity of these binary alkali 

phosphate glasses6. He investigated the electrical properties of xLi2O-(1-x) P205, xNa2O-(1-

x)P2O5, and xAg2O-(1-x)P2O5 series with high high-alkali concentration. The work was 

followed by Doreau et al7. They perform a thorough study of the xLi2O-(1-x)P2O5 series and 

of the ternary series Li2O-P2O5-LiCl (10-7 S/cm at RT). After that, Pradel et al. used the 

roller-quenching techniques to expand the normal high-alkali glass-forming range in Li2O-

P2O5 glasses from x=0.6 to x=0.7, which increases the maximum ionic conductivity 
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obtainable in these glasses (310-7 S/cm at RT) 8. Then, Martin examine glasses down to 

x=0.36 through preparing these glasses in an anhydrous glove box5. However, below this 

limit, they found the volatization of P2O5 during melting that prevent the formation of a stable 

liquid phase. The composition dependences of the conductivity and of the activation energy 

for binary Li2O-P2O5, Li2O-B2O3, and Li2O-SiO2 glasses were reviewed by Martin5. The 

silicate glasses have the highest ionic conductivity but phosphate glasses have lowest ionic 

conductivity, and borate glasses are in the middle. Besides, the activation energy for ionic 

conduction is the reverse. Martin and Angell thought that this trend order arises from 

systematically increasing the fraction of alkali-carrying nonbridging oxygens on passing from 

alkali phosphate to borate and finally to silicate glasses 9. They think the structure of the glass 

having the similar composition to the crystal should have similar repeated unit. Therefore, the 

metaphosphate, metaborate, and metasilicate glasses properties are expected to be dominated 

by the chain repeat unit which are observed in their crystals. Based on this hypothesis, Martin 

and Angell explained the trend of ionic conductivity. 

 

 
Fig. 3.2 The chain repeat unit of binary phosphate, borate and silicate glass 

They observed that the fraction of oxygens possessing a full negative charge increases from 

0.25 for LiPO3 to 0.33 for LiBO2 to 0.5 for Li2SiO3 , and the schematic is shown in Fig. 3.2. 

They suppose that this is the reason why the phosphate glasses exhibit lower conductivities 

than the borates and silicates ones (nearly 2 and 3 orders of magnitude, respectively). It is 

mainly due to the fact that the mobile cation fraction is higher for the borate and silicate 

glasses than for the phosphate glasses. This higher cation fraction is thought to reduce the 

activation energy by increasing the overlap of the coulomb energy domes that exist between 

sites. Here, as the jump distance between sites decreases, the coulombic term acting on the 

cations becomes less negative before the cation begins to experience the attractive coulombic 

potential of the next nonbridging oxygen site. They also use this model to explain the rapid  

decrease of the activation energy for conduction with the increasing alkali oxide fraction in 

any glass-forming series. 
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Fortunately, the ternary alkali phosphate glasses have a much better ionic conductivity. In 

1972, Malugani et al. found that a glass can be obtained with large amounts of LiX, where X 

is I-, Br-, and CI- dissolved into LiPO3 glass10. They found that room-temperature 

conductivities and activation energies for LiX-LiPO3 glasses sharply increase and decrease 

with the addition of LiX, respectively. This is because, based on the weak electrolyte theory, 

the energy to dissociate the Li+ cation from a larger and single charged anion (halide) would 

be less than that for a Li+ cation linked to a double charged oxygen anion. Besides, the glass 

compositions outside the glass-forming rang are easy to crystallize. Consequently, the 

conductivity and activation energy decreases and increases, respectively. Martin assumes the 

relative ordering of the conductivities and activation energies is what would be expected from 

both the Anderson and Stuart and weak electrolyte models. They think that the LiI-doped 

glasses exhibit the lowest activation energy because of the largest I- anion, and, therefore, the 

dissociation energy would be the smallest. They also think LiI would also lead to larger 

interstitial window radii in the glass matrix, and consequently, a smaller strain energy barrier 

was obtained as well. They also compared the effect of adding Li2O and LiI to LiPO3 9. They 

found that LiI increases the conductivity and decreases the activation energy at a rate faster 

than does Li2O. However, the F- anion behaves very differently from the other halides11. Since 

the F- ion is a strong enough Lewis base, it would form terminal F- groups through attacking 

the covalently bonded phosphate network (or chain segments). And these terminal F- groups 

would form high-basicity cation traps which decrease ionic conductivity rather than increase 

it.  

Moreover, it was found that, in the series Li2SO4-LiPO3, additions of Li2SO4 act similarly to 

additions of LiX and Li2O in causing increases in conductivity 12 (10-6 S/cm at RT). It was 

also observed that the glass-forming limit occurs around 30 mol% Li2SO4, which agrees with 

observations for (LiI)2- and Li2O-doped glasses.  

However, there are very few works on the glass electrolytes for making LEC, let alone 

integrated report combine a glass host with all the properties including mechanical, optical, 

electric and electrochemical properties. In this chapter, we discuss the possibility of using a 

phosphate glass as the electrolyte for  LEC applications. There are two main reasons to chose 

phosphate glass. On one hand, phosphate glasses not only have a high ionic conductivity, but 

also have a high transparency in the visible range and good chemical durability. On the other 

hand, phosphate glasses have a relative low Tg compare to silicate glass or borate glasses. As 

we mentioned in chapter I, the way to prepare the organic-inorganic hybrid glass is one of the 
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challenges. In this chapter, we plan to synthesize the organophosphorus organic 

semiconductor (OPSC) doped organic-inorganic hybrid glass using the spark plasma sintering 

(SPS) technology that can sinter the glass at its glass transition temperature (Tg). The details 

about the SPS will be presented in the next section. Thus, the low Tg value of phosphate glass 

enables their agglomeration by SPS sintering at temperatures below the degradation 

temperature of OPSC. This technique will allow to homogeneously embedded the molecules 

within the glass. Moreover, considering the other requirements for a LEC, list of main 

parameters concerning ideal phosphate glass electrolytes prepared by SPS have been realised: 

1) low Tg ; 2) high ionic conductivity (at least 10-7 S/cm at RT); 3) high transmittance at 

visible light range; and 4) wide electrochemical stability window (ESW).  

 

Fig. 3.3 Schematic of preparing hybrid glasses by SPS 

Since phosphate glasses always have a high transmittance in the visible light range and a wide 

electrochemical stability window, the key point concerns the low Tg of the glass combined to 

a high ionic conductivity. Then, we proposed two approaches to fulfill these requirements. 

The approach one is to firstly prepare a glass with low Tg, and then modify the glass 

composition (adding alkali salts) to obtain a high ionic conductivity. The approach two is 

trying to prepare the glass with high ionic conductivity for the first step, then optimize the 

glass composition to obtain a lower Tg. The schematic of both process is shown in Fig. 3.3. 
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2. Experiments and Measurements 

2.1 Raw chemicals  

The used raw chemicals are listed in table 3-1. 

Table 3-1 The data of raw materials 

Chemical formula Gradient Producer 

NH4H2PO4 99.99% ACROS-ORGANICS Co.Ltd 

Li2CO3 99.99% ACROS-ORGANICS Co.Ltd 

ZnO 99.99% ACROS-ORGANICS Co.Ltd 

SnO 99.99% Alfa Aesar Co.Ltd 

Li2SO4 99% ACROS-ORGANICS Co.Ltd 

 

2.2 Organophosphorus organic semiconductor 

The organophosphorus organic semiconductor (OPSC) used here is named OPSCC2 and the 

structure of the molecule is shown in Fig. 3.4. Considering the degradation temperature of 

both molecules, the temperature of producing the glasses was kept below or equal to 300 ℃ 

in this chapter. More details about the OPSCC2 molecule can be found in the Ref 13.  

 
Fig. 3.4 The structure of OPSCC2 

2.3 Preparation process 

2.3.1 Approach 1:  

1. The 70% P2O5 - 30% SnO (mol ratio) glass samples were prepared by flame method using 

NH4H2PO4 and SnO as initial raw materials, as shown in Fig 3.5. 

 2. The glass samples with compositions of 75% SnO-25%(30%ZnO-70% P2O5)(ZSP1) and 

50%SnO-50%(30%ZnO-70%P2O5)(ZSP2) were prepared by mechanical milling method 

using NH4H2PO4, SnO and ZnO. 
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Fig. 3.5 Flame method of preparing glass 

Before the mechanical milling process, the glass sample of 30%ZnO-70% P2O5 were prepared 

by conventional melt-quench method in alumina crucibles in muffle furnace. Batches 

consisting of ZnO and NH4H2PO4 were calcined at 300 °C for 12 h in an ambient atmosphere. 

Then, the calcined solid melted in air at 1100 °C for 30 min. The glass melt was quenched on 

a steel plate at room temperature and then annealed at the glass transition temperature, Tg, for 

1 h. The the samples were mechanically grinded to powders as the raw materials for high 

energy mechanical milling. Mechanical milling is a solid-state process, which uses 

mechanical energy at about room temperature to induce chemical reaction. Thus, using this 

equipment the problem of the different melting temperatures is overcome 14. The mechanical 

milling instrument used during the preparation is SPEX Mixer 8000D as shown in Fig. 3.6. 

Tungsten carbide balls of 6 mm diameter and tungsten carbide molds of 45ml were used in 

this work. The running time of both ZSP1 and ZSP2 is 60h. 

 
Fig. 3.6 Mechanical milling instrument (SPEX Mixer 8000D) 
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2.3.2 Approach 2: 

1. Binary alkali phosphate glasses with composition x%Li2O-(100-x)%P2O5 (x=40, 50, 60) 

were prepared by conventional melt-quench method in alumina crucibles in muffle furnace. 

Batches consisting of Li2O and NH4H2PO4 were calcined at 300 °C for 12 h in an ambient 

atmosphere. Then, the calcined solid melted in air at 1000 °C for 30 min. The glass melt was 

quenched on a steel plate at room temperature. 

2. Ternary alkali phosphate glass with composition 25%Li2SO4-40%Li2O-35%P2O5 

(LiS25PM) and 30%Li2SO4-35%Li2O-35%P2O5 (LiS30PM) were prepared by the same way 

of binary alkali phosphate glass. The only difference is the melting temperature is lowered to 

900 °C. 

3. The LiS25PM glass was crushed into powder to be used as raw material for synthesizing 

OPSC doping hybrid glass by spark plasma sintering (SPS). The powder was weighted (0.5 g) 

and load into the graphite die of 10 mm diameter using a sheet of Papyex® (flexible graphite 

sheet) to ensure the release of the solid as well as to protect the diffusion of the graphite 

component from the mold. Different glass samples were prepared by SPS with different 

pressures and temperatures. The sintering temperature ranges from 270 °C to 300 °C. The 

pressure varies from 3kN to 5kN. The schematic of SPS instrument is shown in Fig 3.7 left. 

The glasses were named BSPS-temperature-pressure, for example, BSPS3005, which means 

that blank glass prepared at 300°C and 5kN. And the schematic of the optimized parameters 

of SPS process is shown in Fig. 3.7 right.  

 
Fig. 3.7 Schematic of SPS instrument(left) and the optimized parameters of SPS process for (right) 

 

4. The OPSC doped glass were prepared based on the optimized parameter (300 °C and 5kN). 

Firstly, 1 mg OPSC were dissolved in around 5 ml  acetone in a beaker, then 0.5 g LiSPM 

glass powder were added. After that, the beaker was disposed into an ultrasonic apparatus and 
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processed for 20 minutes at 50 °C. Then, the beaker was put in a hot plate at around 50 °C to 

dry. After drying, the mixed powder was put in the agate mortar to grind. This is for getting a 

better homogeneity of the sample. Last step, the powder was loaded into the graphite die to be 

sintered at 300°C with a pressure of 5kN.  

2.3.3 Working principle of SPS  

Basic SPS configuration is shown in Fig. 3.7 left. The SPS system consists of a hydraulic 

press with a vertical single pressurization axis. The pressure is transferred via two steel 

cylinders that are also simultaneously used as electrodes. Besides two graphite punches, there 

are two graphite spacers as well which were not depicted in the Fig 3.7 left. The two graphite 

spacers are between upper and lower punch electrodes. The sintered powder is put in the 

middle of the cylindrical die and pressed using the punches. Electric current formed by the 

power supply is flowing through graphite punches, the powder inside the cylinder and 

particularly through graphite die. Therefore, the spacers, die and the punches are made from 

an electrically conductive material that are able to resist high temperature and pressure, such 

as graphite and tungsten carbide. The high DC pulse current might create Joule-heating and 

sparking among the particles of the sintered powder, which leads to the faster heat and mass 

transfer instantaneously. 

This equipment has been used already for molding some exotic glasses such as chalcogenide 

glasses, which present approximatively the same Tg as the phosphates glasses we plan to 

use 15. 

3. Analysis of P2O5 – SnO and ZnO-SnO-P2O5 glasses 

Based on our first approach, a glass composition with low Tg should be prepared. According 

to a previous works16, SnO phosphate glass always has a low Tg. Therefore, the 30%P2O5 – 

70%SnO (mol ratio) glass was prepared by flame method firstly. However, the glass is not 

totally amorphous. Phase and crystal structure of the the prepared glasses were characterized 

by the X-ray diffraction measurements (XRD) (D/max 2550 VB/PC Rikagu, Japanese). All 

measurements were carried out at room temperature using Cu Kα radiation (λ=1.54056Å). A 

step size of 0.02ᵒ(2θ) was used with a scan speed of 2ᵒ/min. The XRD patterns of the prepared 

glass, shown in Fig. 3.8, reveals the presence of several diffraction peaks belonging to the 

SnO2 crystalline phase dispersed in a mainly amorphous matrix. 
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Fig. 3.8 XRD of the prepared 30%P2O5 – 70%SnO glass sample 

The Tg of the glass is higher than that in the report 16,17. This is due to the formation of Sn4+, 

which is caused by the oxidation reaction of Sn2+. In order to obtain a Sn2+ phosphate glass, 

the synthesis should be done in an inert glove box by the melting and quenching technique or 

by using mechanical milling. On the other hand, the addition of ZnO into tin containing 

phosphate glasses can increase the glass forming ability with only slight increase of the Tg. 

Thus, we decided to prepare the ZnO-SnO-P2O5 glass rather than binary SnO phosphate glass. 

Two glass compositions of 75%SnO-25% (30%ZnO-70% P2O5 ) (ZSP1) and 50% SnO-50% 

(30%ZnO-70% P2O5) (ZSP2) were prepared by mechanical milling method. Before the 

mechanical milling process, the 30%ZnO-70% P2O5 glass was prepared by melt-quench 

technology.  
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Fig. 3.9 XRD of ZSP1 sample prepared with different time 

Fig. 3.9 shows the XRD of ZSP1 prepared after different time (20 h and 60 h) of mechanical 

milling. It can be seen that, although the composition is not amorphous after milling 60h, the 

existence of the only one crystalline phase (SnO), suggests that this technology indeed avoid 
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the formation of Sn4+. In addition, a slight signal was observed as well of ZSP1 prepared with 

60 h. This indicates that a portion of SnO integrates the glass composition after the milling 

process of 60h. At the same time, a different result concerning the ZSP2 was attained.  

 
Fig. 3.10 XRD of ZSP2 sample prepared with 60 H 

A totally amorphous ZSP2 powder was obtained after 60 h milling process, as observed by 

the XRD (see Fig 3.10). Then, the Tg of the prepared ZSP2 was determined by the differential 

scanning calorimetry (DSC). The DSC scans (TA Instruments SDT 2960) were carried out on 

a sample contained in a Al pan. Temperature calibration was carried out over a large range 

employing high-purity materials approved by the Committee on Standardization of the 

International Confederation for Thermal Analysis (ICTA). The overall accuracy of this 

measurement is expected to be within ±1 K. The Tg was determined at a heating rate of 20 

K/min. As shown in Fig. 3.11, it can be seen that the Tg of the glass is around 270 °C, which 

is much lower than the degradation temperature of the OPSCC2.  
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Fig. 3.11 DSC curve of ZSP2 prepared with 60 h 
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Since it is known that the SnO-ZnO-P2O5 glass have a low conductivity, the task of modifying 

the glass composition to obtain a higher ionic conductivity should be done next step. 

Unfortunately, the glass forming ability of alkali containing SnO-ZnO-P2O5 glassy system is 

really weak, which preventing the integration of alkali halide within the glassy matrix. This 

means a high ionic conductivity is hardly being achieveable. Therefore, this approach was 

given up.  

4. Analysis of P2O5 – Li2O glasses 

As mentioned above, glasses with high content of alkali generally have a high ionic 

conductivity. Concerning phosphate glasses, both thermal properties and electric properties of 

Li metaphosphate glasses have been investigated by Martin9,18.  The ionic conductivity of 

various alkali glasses at 150 °C are shown in Fig 3.12. It can be seen that the ionic 

conductivity of binary Li phosphate glasses increases with the rise of Li content.  

 
Fig. 3.12 Comparison of conductivities at 150°C for Li glasses in the different systems9  
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4.1 Ionic conductivity 

The frequency dependent electrochemical impedance spectroscopy (EIS) of the prepared 

60%Li2O-40%P2O5 glass at each temperature (Fig. 3.13) is used to assess the experimental 

DC conductivity σdc at each temperature 9. The electrochemical impedence spectroscopy (EIS) 

was characterized from the electrochemical station (Autolab PGSTAT302N). Before the 

measurement, two gold electrodes were made on both the surfaces of the glass sample by the 

Low Vacuum Coater Leica EM ACE200 during 180 seconds. A stainless-steel plate covered 

by gold were attached onto both faces of the pellet as working and counter electrodes. The 

sample was put in a sealed cell with an architecture is presented in Fig. 3.13 left, and the 

electrochemical station and associated measuring devices is shown in Fig. 3.13 right. 

 

 

Fig 3.13 Thermo-controlled sealed measuring cell used for EIS characterizations (left) and associated measuring 

device (right) 

As shown in Fig. 3.14 left, typically, for ions transport glass solid electrolyte, a semicircle at 

high frequency and a low-frequency spike would be observed. The semicircle is attributed to 

bulk conductivity, whereas the spike is a product of space-charge polarization effects from the 

accumulation of ions at the electrodes. The conductivity of the prepared Li phosphate glasses 

were also determined by the frequency dependent complex impedance, 

. The real part of conductivity was calculated according to   
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where t is the thickness of the glass and A is the area of the electrode. Here, since just the DC 

conductivity was considered, the circuit resistance (R) that is equal to the real impedance 

 when the imaginary impedance  is at a local minimum at low frequencies(equal 

to about 0), and the equivalent circuit was depicted in Fig. 3.14 right up. Thus, the Eq (1) is 

approximately equal to 

 

where R is equal to , and this is shown in Fig. 3.14 right down 9.  

 

 
Fig 3.14 Nyquist plots of 60%Li2O-40%P2O5 glass at different temperature(left)  and at 293 K(right down), a 

classic equivalent circuit of the ideal solid electrolyte (right up) 

 

Besides, the fitting of the ionic conductivity of the samples also obey well the Arrhenius law:  

 

which is shown in Fig. 3.15. Here, A and Eact denote respectively the pre-exponential factor 

and the activation energy of the dc conductivity, while kB is Boltzmann’s constant. It can be 

seen that, the ionic conductivity of the 60%Li2O-40%P2O5 glass composition is the highest 

among the samples. However, it is still a bit below 10-7 S/cm at room temperature, which is 

consistent with the previous report 9. 
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Fig. 3.15 Arrhenius plots of the DC conductivities obtained from the impedance plots of X Li2O-(1-X) P2O5 

glasses, X=40,50,60 

4.2 DSC analysis  

On one hand, the ionic conductivity of the prepared binary Li phosphate glasses are still lower 

than 10-7 S/cm which was listed as required value, on the other hand, the Tg of these glasses 

are higher than 300 °C as shown in Fig. 3.16. The Tg  of all the prepared Li binary phosphate 

glasses is higher than 310 °C, which is also comparable to the reports 9,18. Therefore, lithium 

phosphate glasses can not meet the listed requirements. 
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Fig. 3.16 DSC curve of XLi2O-(1-X)P2O5 glasses, X=40,50,60 

 

5. Analysis of Li2O-Li2SO4-P2O5 glasses 

On one hand, as we mentioned, the addition of Li2SO4 into binary alkali phosphate glass 

could effectively increase the ionic conductivity. On the other hand, the addition of S into 

glass matrix would break the bridging oxygen, which should decrease the Tg of the glass. 

Therefore, Li2O-Li2SO4-P2O5 glasses were prepared by conventional melt-quenching process. 
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5.1 DSC analysis  

According to the previous studies19,20, two composition, 25%Li2SO4-40%Li2O-35%P2O5 

(LiS25PM) and 30%Li2SO4-35%Li2O-35%P2O5 (LiS30PM), with higher ionic conductivity 

were prepared. Before we measured the conductivity of the prepared samples, the Tg of the 

glasses were measured and illustrated in Fig. 3.17. The Tg of LiS25PM is below 300 °C 

meeting the requirement, being below the degradation temperature of the OPSC. However, 

the Tg of LiS30PM is higher than that of LiS25PM, which is different from the report 17. In 

report 17, the Tg of LiS30PM is lower than that of LiS25PM (15 °C). In fact, the similar 

phenomenon is also observed in binary lithium phosphate glass. It is observed that below 50% 

Li2O segment, the Tg of the glass decreases with the addition of Li2O. However, after that, the 

Tg of the glass increase with the addition of Li2O.9   
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Fig. 3.17 DSC curve of Li2O-Li2SO4-P2O5 glasses 

5.2 Ionic conductivity 

Then, the ionic conductivity of LiS25PM glass sample was determined using complex 

impedance analysis. The complex impedance plots of LiS25PM at each temperature is shown 

in Fig. 3.18 (a). The ionic conductivity and Arrhenius fitting are shown in Fig 3.18(b). It can 

be seen that the ionic conductivity of LiS25PM can reach 10-7 S/cm at room temperature and 

reach 10-6 S/cm at 60 °C. 
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Fig. 3.18 Nyquist plots of LiS25PM glass at different temperature(a) and Arrhenius plots of the dc conductivities 

of LiS25PM 

Compared to the 60%Li2O-40%P2O5 glass sample, a slight improvement of the ionic 

conductivity of  LiS25PM was observed as shown in Fig. 3.19. Although it is only a slight 

improvement, it brings the hope of being a good candidate electrolyte for a LEC ( around or 

beyond 10-7 S/cm).  

 

 
Fig. 3.19 Arrhenius plots of the dc conductivities of 60%Li2O-40%P2O5 and LiS25PM glass 

 

5.3 XRD and optical properties of LiS25PM glass 

 

As previously observed, both Tg and ionic conductivity of LiS25PM glass meet the 

requirement for making efficient electrolytes for LEC application. Since the electrolyte of a 

LEC should be transparent for the emission of the related OSC. So, the transmittance 

spectrum of LiS25PM was measured by ultraviolet spectrophotometer ranging from 300 to 

1000 nm (Fig. 3.20). It is noticed that the glass is totally transparent in the visible 

wavelengths. Besides, there is a sharply decrease around 310 nm, which also suggests that the 

glass could prevent the OPSC from damaging of UV due to the surface absorption. 
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Fig 3.20 The transmittance spectrum of LiS25PM 

Because the OPSC will integrate into the glassy matrix, the morphology property between 

them are important because of its transparency it will be easy to investigate the morphology of 

the particles if the glass matrix is totally amorphous. However, if some part of the glass are 

crystalline, then due to scatterings induced by particles, the coordination environment of the 

OPSC will be much more complicated to identify.  

 
Fig 3.21 XRD pattern of LiS25PM 

The XRD pattern of LiS25PM sample is shown in Fig. 3.21. The result shows the LiS25PM 

glass is totally amorphous. Thus, at present, the LiS25PM glass composition can meet all the 

requirements that are determined for being an efficient electrolyte for  making LEC. 

6. Preparation and analysis of hybrid glasses based on LiS25PM 

6.1 Preparation of hybrid glass 

The LiS25PM successfully meet all the requirements(wide transparency, low Tg, high ionic 

conductivity) and can be easily prepared by melt-quenching technology. The next step 

consists in preparing the hybrid material based on the LiS25PM glass and OPSC using the 
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spark plasma sintering (SPS) process. Thus, we should find the best parameters of SPS 

experiments such as time, temperature and dwell time, to prepare the glass using the powder 

of LiS25PM as raw material. The digital photos of the  samples prepared by SPS with 

different parameters are shown in Fig 3.22, and the corresponding parameters are presented in 

the table. As already observed in other papers 21,22, glasses can be easily sintered close to their 

glass transition temperature by SPS. The pressure applied is limited to 5kN due to the use of 

graphite molds of 10 mm diameter.  

 

Fig. 3.22 Sintering parameters and digital photos of the prepared samples by SPS 

It can be seen that the sample prepared at 298°C and 5kN pressure for 3 min has better 

transmittance property. In fact, the samples prepared at 298-300°C and 5kN pressure for 3 

min always present a relatively good transmittance. The transmittance spectra in the range of 

380-2000 nm were recorded with a Perkin-Elmer-Lambda 900UV/VIS spectrophotometer. In 

order to define the samples, the glass prepared by SPS with best transmittance is named as 

LiS25PS. As predicted, the sample with better transmittance always has a larger density. 

However, even the sample with the best transmittance prepared by SPS still has a smaller 

density (2.26 g/cm3) than that prepared by melt-quenching (2.34 g/cm3). It is can be explained 

by the diffusion of carbon into the glass matrix or small pores inducing scatterings in the short 

wavelength as shown in Fig. 3.23. Considering that SPS is an efficient way to prepare the 
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glass, the OPSCC2 doped hybrid glass was prepared using the same parameter the one used to 

obtain dense LiS25PS. 

 

Fig. 3.23 Transmittance spectrum of LiS25PS 

6.2 Analysis of hybrid glasses 

The pictures of LiS25PS and of OPSCC2 doped hybrid glasses are shown in Fig. 3.24. The 

details of the synthesis process was depicted previously, and the mass of LiS25PS glass 

powder and  the doping concentration of OPSCC2 is 0.5g and 1000 ppm, respectively. The 

hybrid glass is yellowish, which is similar to the OPSCC2 indicating that the molecules is 

probably conserved during the SPS process. 

 

Fig. 3.24 Pictures of LiS25PS (up) and of OPSC doped hybrid glass(down) 

6.2.1 Photoluminescent and excitation spectra 

Photoluminescence spectra, including excitation (PLE) and emission spectra (PL) of the 

hybrid glass were measured by FLS980 (Edinburgh Instruments Ltd. England) fluorescence 

spectrometer at room temperature. The FLS980 comes standard with a 450 W ozone free 
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xenon arc lamp that covers a range from 230 nm to 1000 nm for steady state measurements. 

The PL and PLE spectra of the hybrid glass are shown in Fig. 3.25. The hybrid sample were 

optically excited in the region of the main absorption peaks of OSPCC2 (430 nm). Firstly, a 

strong PL was observed from the hybrid glass shown in the inset of Fig 3.25(a) and the peak 

of the corresponding PL spectrum is at around 600 nm. This is another strong evidence that 

the OPSCC2 is conserved during the SPS process. Compare to the emission of solid OPSCC2, 

a red-shift of 50 nm is observed in the hybrid glass sample. This is because the local 

environment around OPSCC2 changed, which probably influence the HOMO-LUMO of 

OPSCC2. The PLE spectrum with emission at 600nm is shown in Fig. 3.25(b),  the mid-peak 

is around 465 nm , which is also red-shifted of 30nm compared to that of solid OPSCC2. 

 

Fig. 3.25 PL (a) and PLE (b) spectra of the hybrid glass 

6.2.2 Microstructure of the hybrid glass 

In order to study the microstructure of the OPSCC2 molecule, a transmission electron 

microscope (TEM, JEOL JEM 2100F) was executed. Moreover, TEM is also a feasible way 

to investigate the interface morphology between OPSC and glass matrix. The TEM pictures of 

OPSCC2 doped glass are shown in Fig. 3.25. Since the atomic mass of the OPSCC2 (mainly 

carbon) is much lower than the glass host (mainly P and O), the OPSCC2 is bright and the 

glass matrix is dark. The detailed microstructures and chemical compositions of the samples 

were observed by transferring onto a copper grid for characterization. It can be seen from Fig. 

3.26 (a) that the molecule is indeed distributed in the glass matrix. However, the size of the 

OPSCC2 is not unify, from 100 nm to 500 nm, as shown in Fig. 3.26(b). 
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Fig. 3.26 TEM images of the hybrid glass 

Some small hybrid glass pieces (below 500 nm) were also observed (Fig. 3.26(c)). From the 

figure, nanoparticles can be seen in each small glass piece, and the size of the OPSCC2 

nanoparticles are all around 100 nm. Fig. 3.26(d) displays the biggest OPSCC2 nanoparticle 

in the glass host that have been observed during the measurement, and the size is of 540 nm.  

In order to confirm that the observation of bright nanoparticle is indeed the OPSCC2, TEM 

images of the LiS25PS glass (without OPSCC2) was also obtained (Fig. 3.27). No bright 

nanoparticles were observed in the LiS25PS glass sample, whereas the dark glass matrix is 

similar to the hybrid glass sample. It is worthy noting that all these observed bright 

nanoparticles are not the ones which are formed in the glass after the SPS process, which is 

consistent with the result of XRD measurement of the hybrid glass (Fig. 3.28).  

It can be seen that the hybrid glass is totally amorphous since the OPSCC2 does not have a 

crystalline structure. Thus, it is reasonable to think that these bright nanoparticles are 

OPSCC2. Moreover, as observed, although TEM can not directly evidences the topography 

morphology of the hybrid glass, it suggests the hybrid glass exhibits a minor phase separation 

on a sub-micron scale 23. 
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Fig. 3.27 TEM images of the LiS25PS glass 

Thus, a better morphology of the hybrid glass can be obtained after the implementation of a 

better doping homogeneity.  

 

Fig. 3.28 XRD of the hybrid glass 

Moreover, the NMR study of the 31P nucleus has been performed in the LiS25PM, LiS25PS 

and hybrid glass, the results are presented in Fig. 3.29. All solid-state NMR experiments were 

performed using a Bruker 600 Avance III spectrometer (14T) using a Bruker triple-gramma 

2.5 mm probe head operating at Larmor frequency of 242 MHz for 31P. Magic Angle 

Spinning frequency was set to 20 kHz. 31P NMR spectra were acquired using a single pulse 

sequence. The pulse length was set to 1.5 µs corresponding to a 90° flip angle with a 
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repetition delay set to 30 s. 31P chemical shifts were referenced relative to the 85% H3PO4 

solution. Spectra were fitted using dmfit software. The 31P resonances and related parameters 

have been identified and all the chemical shifts are listed in Table 3-2. Only two 31P 

resonances are observed. By comparing to the literature 17,24,25, these resonances are 

associated with 31P in metaphosphate (chemical shift around -22 ppm) and pyrophosphate 

(chemical shift around -3 ppm).  

 

Fig. 3.29 31P NMR of LiS25PM, LiS25PS and the hybrid glass 

The relative intensities of the two resonances measured by the areas under the peaks are also 

listed in Table 3-2.  

Table 3-2 31P chemical shifts of LiS25PM, LiS25PS and the hybrid glass and the relative proportions of Q1 and 

Q2 species as determined by 31P NMR 

Sample  iso (ppm) FWHM (Hz) CSA (ppm) CSA  I(%) 

LiS25PM 
Q1 -3.4 2000 98 0.2 38 

Q2 -21 3200 -125 0.6 62 

LiS25PS 
Q1 -3.2 2100 89 0.3 46 

Q2 -20.2 3300 -117 0.9 54 

Hybrid  
Q1 -3.3 2000 94 0.2 47 

Q2 -20.2 3200 -124 0.5 53 
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Typically, polyphosphate glasses (P2O5 < 50%) have networks based on Q2 chains terminated 

by Q1 tetrahedra. The average chain length becomes progressively shorter as the [O]/[P] ratio 

increases. In these 31P NMR spectra, there are two resonances observed at a chemical shift of 

-3 ppm and -20 ppm, respectively. The chemical shift of -3 ppm and -20 ppm contribute to Q1 

and Q2 species, respectively 17,26,27. As expected, no peaks of Q3 species (chemical shift of -50 

ppm) were observed. In between metaphosphate (P2O5=50%) and pyrophosphate (P2O5=67%) 

boundaries, the fraction of Q1 and Q2 tetrahedra can be given by 1:  

                                                                                                            

Where x is the mole ratio of lithium modifiers here. Thus, the fraction of Q1 and Q2 of all the 

prepared glasses should be around 0.85 and 0.15, respectively. However, according to the 

NMR data, the fraction of Q1 and Q2 is 38 and 62 for LiS25PM, respectively; 46 and 54 for 

LiS25PS, respectively; 47 and 53 for the hybrid glass, respectively. This is because the 

Li2SO4 raw material introduces S into the glass matrix, which decrease the [O]/[P] ratio 

leading to the decrease of Q1.  

 

Fig. 3.30 SEM image of LiS25PM  and the correponding EDX analysis mapping images of P, O, S in the glass 

SEM images and Energy Dispersive Spectrometer (EDS) elemental mappings of the 

LiS25PM was obtained with a JEOL JSM-7100F. Before the measurement, the gold 

deposition was made on the surface of the samples. This gold deposition is prepared by the 
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Low Vacuum Coater Leica EM ACE200 with 60 seconds. As shown in Fig 3.30, it can be 

seen that distribution of all the elements is homogeneous. 

One can notice that the ratio between Q1 and Q2 species is directly affected by the synthesis 

process, passing from 38/62 for an “usual” melted and quenched process (LiS25PM) to 46/54 

for SPS (LiS25PS and hybrid glass). It evidences that the glassy network is less polymerized 

after SPS glasses. Moreover, the linewidth is similar for the 3 samples (Q1: about 2kHz and 

Q2: about 3.2 KHz). That indicates that the local disorder is not impacted by the synthesis 

route or the presence of the molecule. Chemical shift tensor presents approximatively the 

same values for the 3 samples (iso, CSA and ηCSA are quite similar for LiS25PM, LiS25PS and 

hybrid glass). So, the chemical environment is not affected by the synthesis process or by the 

presence of the OPSCC2.  

Therefore, based on all these data, several conclusions about the microstructure of hybrid 

glasses can be obtained. Firstly, the OPSCC2 exists as amorphous nanoparticle in the glass 

matrix and the average size of these nanoparticles is around 100 nm. Therefore, the phase 

separation is on a sub-micron scale, which is beneficial to the performance of a LEC 

device23,28,29. In addition,  it is reasonable to point out that there are no bonding arrangements 

between OPSCC2 and glass network. Since the OPSCC2 exists as nanoparticles in the glass 

matrix, they can decrease the movement of lithium ions in the glass, which may decrease the 

ionic conductivity.    

6.2.3 Electrochemical properties of the hybrid glass 

In addition to the PL property and microstructure of the hybrid glass which have been 

investigated and discussed before, the last but not least task is the electrochemical 

characterization of the hybrid glass, which plays the crucial role for a LEC. 

6.2.3.1 Ionic conductivity 

First of all, the ionic conductivity of the hybrid glass was determined by the complex 

impedance analysis and the corresponding Arrhenius plots was fitted as shown in Fig. 3.31, 

LiS25PS is shown as a reference. Unfortunately, both LiS25PS (8.110-8 S/cm ) and hybrid 

glass (6.110-8 S/cm) with a lower ionic conductivity than LiS25PM (10-7 S/cm), which may 

be caused by defects due to the sintering process such as impurities, residual pores and grain 

boundaries.  
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Fig. 3.31 Arrhenius plots of the dc conductivities of LiS25PS and hybrid glass 

It can be seen that the ionic conductivity of the hybrid glass is slightly lower than that of 

LiS25PS. This is consistent with the inference of “blocking” effect of OPSCC2 we discussed 

above. In fact, a single crystal or single amorphous phase material, without grain boundary, is 

the ideal medium for fast ionic conduction. Therefore the phase separation between the glassy 

matrix and OPSCC2 in the hybrid glass is expected to be  similar to the grain boundary 

behaviour in the glass-ceramics 30,31. 

 

Fig. 3.32 Nyquist plots of LiS25PS and hybrid glass at 50 °C 

This explanation is supported by the complex impedance plots of the LiS25PS glass and 

hybrid glasses. The complex impedance plots of LiS25PS and hybrid glass at 50 °C (keep the 

ionic above 10-7 S/cm) is shown in Fig. 3.32. Two semi-circle, a big one at high frequency 

and a small one at low frequency, were observed in the case of hybrid glass, which is not 

observed from other prepared glasses. According to other reports 30,31, this second semi-circle 

is a typical fingerprint of the grain boundary. Although there is no grain boundary in the glass 

matrix, the phase separation is probably causing the slight decrease of the ionic conductivity. 
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In spite of the ionic conductivity of the hybrid glass is below 10-7 S/cm at room temperature, 

it can reach 10-6 S/cm at around 65 °C meeting the requirement of a LEC device. 

6.2.3.2 Cyclic voltammetry 

As mentioned previously, the electrochemical model assumes that the mechanism of a LEC is 

a electrochemical process. Therefore, an electrochemical doping process of the OPSCC2 is 

expected to occur in the hybrid glass. On the other hand, the electrochemical stability window 

of the electrolyte need to be wider than that of OPSCC2. Cyclic voltammetry (CV) 

measurement is used to determine the electrochemical stability window of the glass 

electrolyte as well as the electrochemical doping process of the OPSCC2. The cyclic 

voltammetry  was undertaken using a chemical station (Autolab PGSTAT302N) at a scanning 

rate of 0.2 mV/s between -2.1 and 2.3 V. The other processes is similar to that of EIS 

measurement. As shown in Fig. 3.33, visible anodic and cathodic current respectively 

attributable to gold dissolution (Au→ Au3+ + 3e-) and deposition (Au3+ + 3e- →Au) are 

observed in the potential range from 1.5 to 1.3 V, which also shows a good reversibility. In 

addition, current due to electrolyte decomposition is detected in -2 and 2 V. In hybrid glass, 

besides the observed peaks, a redox couple were observed. These redox couple were 

contributed to the OPSCC2. Although the oxidation peak (Epa) and reduction peak (Epc) of the 

OPSCC2 have been measured in CH2Cl2, referenced to Fc/Fc+ half cell 13, it can not make a 

simple comparison here since the measurement condition is different.  
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Fig. 3.33 Cyclic voltammetry measurement of LiS25PS and hybrid glass  

with a scanning rate of 0.2 mV/S at 50 °C 

Therefore, more experiments need to be done to confirm the redox peaks belonging OPSCC2. 

If it is, that means a chemical doping process can be obtained in the OPSCC2 doped hybrid 
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glass as well as a wider electrochemical stability window than the OPSCC2, which is an ideal 

emitting material for a LEC. 

7. LEC device based on the hybrid glass 

Further more, a LEC device based on the hybrid glass was made. The typical thickness of the 

emitting coating of a LEC is around several tens of microns 28,32. Since the glass is fragile, it 

is very difficult to polish it below 100 microns. The hybrid glass was polished down to 400 

microns to prepare the device. Because of the much larger thickness, a heating device was 

used to increase the temperature of the hybrid glass sample to improve the ionic conductivity. 

The schematic of the experimental platform to test the LEC based on the hybrid glass is 

shown in Fig. 3.34, and the inset shows the real devices. However, we failed to observe the 

electroluminescence from the hybrid glass even when the temperature was increased up to 

150 °C. Several possible reasons can explain this result: 1. the glass thickness is still too large; 

2. the surface contact between glass and electrodes are not perfect; 3. the ionic conductivity is 

still too low; 4. impurities are introduced by SPS process. In the next step, all of these 

possible problems would be tackled to test the electroluminescence of the hybrid glass. 

 

Fig. 3.34 Schematic of the platform to test the LEC based on the hybrid glass 

8. Conclusion 

A phosphate glass composition with good transmittance in the visible range (around 90%), 

low Tg (297 °C) and relatively high ionic conductivity (10-7 S/cm) was obtained by melt-

quenching. Then, based on this glass composition, by using a two-step method consisting of 

melt-quenching and subsequent SPS process, the OPSCC2 doped hybrid glasses have been 

prepared successfully. The observation of the strong PL of the hybrid glass evidences that the 

OPSCC2 is not degraded during the SPS process. This contestation is also supported by the 

TEM results which underlines the presence of OPSCC2 nanoparticles in the hybrid glass, with 

a size ranging from 100 to 500 nm. Although the topographical morphology can not be 
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evidenced by TEM, it suggests that the phase separation scale can reach sub-micron scale. 

This means a good morphology can be obtained through improving the parameters of mixing. 

In addition, the ionic conductivity of the hybrid glass was determined by EIS. It can reach 

6.110-8 S/cm and 10-6 S/cm at room temperature and 65 °C, respectively. Lastly, the CV 

measurement suggests that chemical doping process of OPSCC2 occurs in the hybrid glass. 

Moreover, the electrochemical stability window of the glass host is wider than that of 

OPSCC2. However, in order to confirm this result, more experiments and analysis should be 

done. Although no electroluminescence of the hybrid glass based device was observed, based 

on all these data, it is reasonable to point out that this hybrid glass is a good candidate to be 

used as the emitting material for LEC application. 
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1. Introduction 

During the process of preparing phosphate glass for making LECs, blue luminescence was 

observed from the tin and zinc oxide phosphate glass excited under 256 nm UV lamp, mainly 

due to the contribution of SnO luminescence centers 1. However, a blue luminescence was 

also observed in the entirely amorphous zinc binary phosphate glasses in our work, which 

intrigues us since there are very few works reported on it. Fortunately, the similar blue 

photoluminescence (PL) was observed in some totally amorphous zinc multicomponent 

silicate glasses 2-4.   

Normally, embedding ZnO nanocrystals in a glass matrix can help to stabilize their 

luminescence properties largely influenced by the surface-interface of the nanoparticles 5, so 

ZnO glass-ceramics have been extensively investigated 6,7. However, it is worthwhile 

mentioning that besides ZnO glass-ceramic, quite a few amorphous zinc glasses also have PL 

that is different from that of ZnO crystals or nanoparticles 2. The PL of amorphous zinc 

glasses always shows stronger UV but weaker visible emission, which was considered 

interesting to be used in short wavelength opto-electrical devices 8. According to these 

researches 2-4 of amorphous zinc multicomponent silicate glasses, the luminescence is 

probably due to amorphous ZnO in the glass matrix, which is consistent with the results 

obtained from our experiments. However, most of these investigations solely pertain to the PL 

study and are restricted to some settled multicomponent silicate glasses 2-4. Because of the 

complicated bonding arrangements in multicomponents glass system, it is hard to thoroughly 

study the cause of the emission, therefore, so far little is known about the cause of the 

emission in amorphous zinc glasses. 

Compared to multicomponents glass system, binary phosphate glass system has a simpler 

structure facilitating the study of the causes of the emission. Therefore, in this work, we also 

seek to remedy the problem by analyzing both PL and structure properties of the glass. The 

preliminary hypothesis is that the emission is caused by amorphous nanoscale ZnO clusters 

(ANZC) which are formed after engineering the topological features of the glass matrix. It is 

hoped that this research will contribute to a deeper understanding of the formation of ANZC 

in glass. 

Moreover, after understanding the formation of ANZC within glass, we devoted to preparing 

a phosphor-converted white light-emitting diode (pc-WLEDs) based on this glass. WLEDs 

based solid-state lighting system is rapidly replacing incandescent and fluorescent light 

sources, both in general lighting and display backlights, because of their high luminous 
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efficiency, environmental friendliness, and long lifetime.9-12 Phosphor-converted white light-

emitting diodes (pc-WLEDs) are emerging as an indispensable solid-state light source due to 

their unique properties including but not limited to energy savings, environment-friendliness, 

small volume, and long persistence.10,13,14 Until now, major challenges in pc-WLEDs have 

been to achieve a high luminous efficiency, high chromatic stability, brilliant color-rending 

index (CRI), and price competitiveness against fluorescent lamps, which rely critically on the 

phosphor properties.15-18 While the field of luminescent materials for solid-state lighting has 

seen a tremendous increase in the past two decades, the most common way to generate white 

light is the combination of blue LED chips with yellow-emitting phosphor materials.19 

However, the difference between individual degradation rates of chips and phosphors coated 

on chips would cause a chromatic aberration and a poor white light performance.20 

Fortunately, luminescent glass is a rational solution, and among various kinds of pc-WLEDs, 

luminescent glasses possess some obvious advantages:10,21 homogeneous light-emitting; 

simpler manufacture procedure; lower production cost; better thermal stability and epoxy 

resin free in assembly process.  

White light-emitting glass was developed by Zhang et al. in 199122 for the first time, it 

intrigues many researchers in the past three decades.21,23-25 Most of these researches focus on 

trivalent rare earth ions (REI) doped glass, however, the narrow and sharp emission of REI, 

which is due to its 4f-4f transition that is hardly affected by the surrounding coordination, 

makes the related white light-emitting devices possess a lower color rendering. In recent 

years, the emergence of researches of white light-emitting from rare earth free (REF) 

luminescent glass suggests that this kind of luminescent glass seems to be a novel pc-WLEDs 

material.1,20,26 This is because the REF luminescent glass not only shows white light emission 

comparable to the crystalline phosphor, but also shows a broader emission band which could 

improve the color rendering property of the luminescent glass.1 For example, Chen et al. 

investigated the Cu/Mn co-doped white light glass;26 Masai et al. discovered the Mn/Sn co-

doped white light glass.1 However, the former work failed to obtain warm WLED glass (low 

color temperature); the latter work has not yet clarified the mechanism of the light observed in 

the glass. Last but not least, neither of them clarified the mechanism of the emission from 

Mn2+ ions of the glasses in detail.  

In this work, we propose a unique pc-WLEDs based on manganese single doped zinc 

phosphate containing ANZC. Besides, for the first time, we try investigating the mechanism 

of the emission from Mn2+ ions based on static luminescence analysis through Mn3+ as an 

“energy acquisition probe”. The energy transfer process between the glass host and Mn2+ ions 
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in the prepared glass is demonstrated as well. Moreover, the prepared novel warm white light 

luminescent glass displays a high CRI; low color temperature; comparable to the crystalline 

phosphor of luminous efficacy. Considering the advantages of luminescent glass mentioned 

above, the prepared white light glass presents a substantial advance towards tackling the 

major challenges in pc-WLEDs field. 

2 Experiments and Chemicals 

2.1 Experiments of phosphate glass containing ANZC 

The binary zinc phosphate glasses (40% ZnO-60% P2O5) were prepared by a conventional 

melt-quenching method using a silica crucibe. Batches consisting of ZnO (99.999%) and P2O5 

(99.99%) are donated as PO (20g), and batches consisting of ZnO (99.999%) and 

(NH4)2HPO4 (99.99%) are donated as NHPO (20g). All batches were initially calcined at 800

℃ for 3 h in an ambient atmosphere. The calcined solid was then melted at 1000 ℃ for 60 

min in an ambient atmosphere. The glass melt was quenched on a stainless plate maintained at 

room temperature. Then one of NHPO sample was put into a tube furnace through an 

ammonia flow at 800 ℃ for 10h to obtain oxyntride zinc phosphate glass donated as NNHPO. 

The samples were then mechanically polished to produce a mirror surface and cut into 

10*10*1 mm wafer. 

2.2 Experiments of manganese doped phosphate glass containing ANZC 

Phosphate glasses with composition 40ZnO-60P2O5 (mol%) were produced by mixing 

different inorganic precursors. P2O5 (99.99%, metal basis) or NH4H2PO4 (99.99%, metal 

basis), and ZnO (99.99%, metal basis) were mixed during 30min at room temperature and 

heated to 450 ℃ in an alumina crucible in air. The material was maintained at this 

temperature for 1 h to decompose the phosphorus pentoxide leading to the release of ammonia 

and water. The material was then heated to temperatures in the range of 1000 ℃, and kept at 

these temperatures for 1 h, for the liquid homogenization. The mixing and heating steps were 

similar for all glasses, and the melting temperature and time for homogenization were the 

same. The liquid was stirred, and cast in a heated aluminum mold. Glasses were then annealed 

at 490 ℃ for 2 h, and finally cooled to room temperature using the furnace thermal inertia. 

Glasses were doped with 0.3, 0.6, 1.0,1.5 and 2 mol% of MnO (99.99%, metal basis). If P2O5 

is used as precursor, the atmosphere is oxidative. If NH4H2PO4 is used as precursor, the 

atmosphere will be reductive. The decomposition of NH4H2PO4 evolves ammonia and 
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hydrogen which are responsible for the reductive atmosphere. The glasses prepared by P2O5 

and the corresponding Mn doped ones are indicated as PO and POxMn (x=0.3, 0.6, 1.0, 1.5, 

2.0), respectively; the glass prepared by NH4H2PO4 and the corresponding Mn doped ones 

correspond to NHPO and NHPOxMn (x=0.3, 0.6, 1.0, 1.5, 2.0), respectively. All samples 

were cut and polished into 10 × 10 × 2 mm for further measurements.  

2.3 Mersurements 

Phase and crystal structure of the the prepared glasses were characterized by the X-ray 

diffraction measurements (XRD) (D/max 2550 VB/PC Rikagu, Japanese). All measurements 

carried out at room temperature using Cu Kα radiation (λ=1.54056Å). A step size of 0.02ᵒ(2θ) 

was used with a scan speed of 2ᵒ/min. The detailed microstructures and chemical 

compositions were measured by transmission electron microscope (TEM, JEOL JEM 2100F). 

The obtained samples were transferred onto copper grid for TEM characterization. The 

photoluminescent (PL) and photoluminescent excitation (PLE) spectra were collected by a 

high resolution spectrofluorometer (Fluorolog 3-211, Horiba Jobin Yvon Inc., Edison, NJ) 

using a 450 W Xe-lamp as the excitation source. The color rendering index of glasses was 

measured in an integrating sphere with a high sensitive spectrometer (Nova, Idea Optics 

Instruments). Finally, in order to determine the valence state of Mn ions in the host glass, 

electron paramagnanetic resonance (EPR, Germany Bruker A300-10/20, tested in 100K) and 

the X-ray photoelectron spectroscopy (XPS, Britain Kratos AXIS Supra) analysis is 

performed. All the measurements were performed at room temperature. 

3. Results and discussion of ANZC glass  

The XRD results of the prepared samples (Fig. 4.1), suggest that all the prepared samples are 

amorphous.  

 

Fig. 4.1.  XRD pattern of PO, NHPO and NNHPO samples 
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Fig. 4.2(a) displays the absorption spectra of the prepared samples. Firstly, it can be seen in 

the transparency region there is no sign of color centers or other well-shaped absorption bands 

from impurities. Besides, the absorption edge of PO, NHPO and NNHPO is situated below 

300 nm, and with a steep increase of the absorption at 220, 230 and 250 nm.  

 

Fig. 4.2.  The absorption (a), excitation (b), photoluminescence (c) and spectra of the prepared samples and 

luminescence decay (d) spectrum of NNHPO 

The shifts of the absorption edge are most likely related to the structural rearrangement of the 

glass. The glass sample NHPO and NNHPO show a broad emission around 420 nm when 

excited at 250nm, the photoluminescence excitation (PLE) and PL spectra are shown in Fig. 

4.1 (b) and (c). 

This blue emission was also observed in ZnO nanoshells 27, ZnO hollow nanoparticles 28 and 

other emitting amorphous zinc glass 29. Zeng et al. assigned the violet and blue emission to Zn 

interstitial-related complex defect (Zni) in ZnO lattice 30. The corresponding proposed 

mechanisms of blue emissions is illustrated in the inset in Fig. 4.2(d). The violet and blue 

emissions are attributed to the transitions from Zni and extended Zni states to the valence 

band, respectively. It is worth noting that emission band in NNHPO shows a red shift 

compare to that in NHPO shown in Fig. 4.2(c). This means more extended Zni states may be 

formed in NNHPO based on the mechanisms provided above. Fortunately, the results found 

below suggests that NNHPO does have a higher possibility of forming more considerable 

extended Zni states than NHPO. On the other hand, another typical behavior of the PL of 

amorphous ZnO clusters is the short lifetime reaching a nanosecond level 31. The 
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photoluminescence decay of NNHPO was measured at 420nm under the nanosecond pulse 

excitation at 250nm. The superfast emission with the decay time was measured as shown in 

Fig. 4.2(d). It can be seen that the decay time of NNHPO can reach a nanosecond level. Based 

on these results, in spite of missing obvious intrinsic UV emission band, it is possible to point 

out that the blue emission in the prepared glass sample should belong to a certain amorphous 

ZnO structure. Moreover, the common wide defect-originated emission at 530–600 nm from 

ZnO is also not obviously observed in the prepared glass samples, which coincides with those 

reported by Qian et al. 29. The PLE spectrum of NHPO and NNHPO exhibits a peak at about 

260 and 246 nm in the deep UV region, which is also similar to that of other emitting 

amorphous zinc glass 3,4. It is worth noting that NNHPO has a stronger emission than NHPO. 

To find the reason for the stronger intensity and provide more information about the 

microstructure of the prepared glass samples, the transmission electron microscopy (TEM) 

was investigated in Fig. 4.3 and Fig. 4.3(a), (b), (c) displays the TEM images of the PO, 

NHPO, NNHPO, respectively. As can be seen from Fig. 4.3(a)-(c), some nanoscale 

aggregation was formed in NHPO and NNHPO sample but was not formed in PO, which is 

consistent with the luminescence properties of the glass samples. Therefore, it is reasonable to 

point out that these nanoscale aggregations are ZnO clusters and the TEM images again 

provide that these ZnO clusters are amorphous. Besides, the size or scale of the ANZC in 

NNHPO is larger than that of those in NHPO, and this was thought to be the reason for the 

strong intensity of the blue emission in NNHPO. While, obviously, this more significant 

ANZC also has a higher possibility of forming more extended Zni states, which causes the red 

shift of the emission band of NNHPO. 

 

Fig. 4.3.  Transmission electron microscopy image of sample PO(a), NHPO(b) and NNHPO(c); (d) phosphate 

tetrahedral units – oxygen atoms (pink) connected to a phosphorus atoms (blue); (e) nitrogen contents in the 

prepared glass samples (weight %) 
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However, the reason why the glass samples have different ANZC phenomena deeply intrigues 

us. In order to explore this interesting and novel phenomenon, the glass structures must be 

discussed. The structure of phosphate glasses can be described as a network of phosphate 

tetrahedra that are linked through covalent bonding of the corner shared oxygen atoms, 

referred to as bridging oxygen atoms. Oxygen atoms that do not link two phosphate tetrahedra 

are called non- bridging; the ratio of bridging to non-bridging oxygens depends on the glass 

composition. Phosphate glasses typically consist of long “polymer like” phosphate chains. 

The linked phosphate tetrahedra have one, two, three, bridging oxygens. These units can be 

classified using Qi terminology 32, where i represents the number of bridging oxygen atoms 

per tetrahedron, which is shown in Fig. 4.3(d).  

The glass transition temperature (Tg) is a typical factor of the glass structure, and, normally, 

the higher Tg, the more compact is the glass structure. Hence, the glass transition temperature 

(Tg) of the prepared glasses were measured by differential scanning calorimetry (DSC), as 

shown in Fig. 4.4(a). 

 

Fig. 4.4.  DSC curve (a) and Fourier-Transform Infrared absorbance spectroscopy (b)  

of the prepared glass samples 

It can be seen that the Tg of PO and NNHPO is the lowest and the highest, respectively. There 

are two reasons for this. On one hand, hydroxy in glass can depolymerize the phosphate 

network by forming P-OH bonds and so reducing the Q3 fraction 33. From the Fourier-

Transform Infrared Spectroscopy (FTIR) shown in Fig 4.4(b), the typical features of the 

bending vibration of O-H at 1600 cm-1 was observed, and the hydroxy content gradually 

decreased according to the following sequence PO, NHPO and NNHPO. However, it can be 

seen that the hydroxy content in NHPO and NNHPO is almost the same but the Tg of NNHPO 

is much higher than NHPO. It is also worth noting that the crystallization peak of NHPO and 

NNHPO disappears between the range of 400-600 oC. Therefore, hydroxy can not be the only 

interpretation to the increasing Tg of NNHPO with the nitrogen being the other key reason. 
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Normally, the nitrogen can be present as N3- ions which replace the O2- ions in phosphate 

melts according to the general reaction 34:     

 

According to this reaction, two ions replace three ions and water is a reaction 

product. From the previous studies 34,35, introducing nitrogen into phosphate glasses network 

would change some properties of glasses, such as glass transition temperature (Tg) and the 

ability of inhibiting crystallization through compacting and disordering the structure of the 

glass. On the other hand, the nitrogen content of the prepared glasses was measured by 

nitrogen elemental analyzer. The results displayed in Fig. 4.3(e) shows that the nitrogen 

content is clearly related to the increase in Tg and the ability of inhibiting crystallization. 

Hence, these findings indicate nitrogen integrates the glass. 

 

Fig. 4.5 (a) Schematic of the bonding arrangements of nitrogen in phosphate glasses; (b) Raman spectra of PO, 

NHPO and NNHPO; (c) the peak of ʋ(P-O) of PO,NHPO and NNHPO sample; (d) deconvolution of the raman 

spectrum peak of  NNHPO 

Previous work suggests that nitrogen can be present as either =N- or > N- in phosphate glass, 

as shown in Fig. 4a 36,37. Normally, nitrogen replaces the BO and NBO at random without 

preference, and the non-bridging oxygens (P-O) associated with the modifying cations remain 

unchanged, maintaining a concentration sufficient to charge-compensate the modifying 

cations 34. Raman spectroscopy was used to study the structures of the prepared phosphate 

glasses. Fig. 4.5(b) shows normalized Raman spectrum of the prepared samples. The large 

band around 700 cm−1 is attributed to the symmetric stretching mode of bridging oxygen 

between two Q2 tetrahedra, (POP)sym 38. Notably, as shown in Fig. 4.5(c), the peak of NHPO 

and NNHPO, at 684 and 670 cm−1, respectively, is different from that of PO, at 705 cm-1. 

Besides, both the full width at half maximum (FWHM) and cross-section of the peak shows 
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the trend NNHPO > NHPO > PO. Since the bands near 650 cm−1 can be assigned to > N- 34, it 

is reasonable to attribute the difference among the (POP)sym peak of the glass samples to >N-, 

which indicates a good correlation between DSC and nitrogen content analysis. However, 

from the Raman spectrum, only >N- was obviously observed, which means most of the 

nitrogen in NHPO and NNHPO are present as >N-. All the samples show the most intense 

signal at 1207 cm−1 which is attributed to the symmetric stretching of the P–O non-bridging 

oxygens on Q2 phosphate tetrahedra, (PO2)sym. The 1260 cm−1 peak, a shoulder of the 1207 

cm−1 peak, corresponds to the asymmetric stretching of P–O non-bridging oxygen atoms, 

(PO2)asym. It was found that the NNHPO has the highest (PO2)asym peak, which suggests 

NNHPO has a more asymmetric glass structure. At the same time, it should be pointed out 

that both NHPO and NNHPO samples have another shoulder at 1260 cm−1 and the peak was 

decomposed to define the structure. The deconvoluted peak around 1355 cm−1 should belong 

to vibration of (P=O), which is shown in Fig 4.5(d). It can be explained by the fact that the 

hydroxy content decreases and the glass has more Q3 fraction strengthening the glass matrix. 

It is interesting to notice that the 330 cm-1 peak assigned to ʋ(Zn-O) gradually increases with 

the more asymmetric and compact glass structure, and this can be explained by the 

topological constraints theory 39.   

 

Fig. 4.6.  Schematic illustration showing the level of difficulty of clusters evolution of ZnO in 2D(a) and 3D(b) 

structured sublattices. Schematic of mesostructure of PO(c) and NNHPO(d) 

Normally, the phosphate chain and ring anions are linked by bonds between various 

modifying metal cations and the non-bridging oxygen; these bonds are more ionic in nature. 
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According to the structural model proposed for ultraphosphate glasses by Hoppe40, the 

bonding arrangements of modifier ions in the ultraphosphate glasses would be dependent on 

the number of terminal oxygen available to coordinate modifier ions Rʋ+, where ʋ is the ion 

valence. Such cations will have coordination numbers (CNR) similar to those found in 

appropriate crystalline phases. For glasses with the stoichiometry x(R2/vO)(1-x)P2O5, the 

number of terminal oxygens per modifying ion is  

                                                    .                                              (2) 

When > CNR, the ions exist as isolated coordination polyhedra within the phosphate 

network; when < CNR, the ions coordination polyhedra exist as bridges between 

neighboring Q2 through sharing corners and edges. A number of researchers found the 

coordination numbers of Zn in ulrtraphosphate glasses decrease from 6 to 4 for x=0.33 to 0.5, 

which means ZnO has two bonding arrangements in the prepared glasses ( =5), namely 

isolated ZnO tetrahedron within phosphate network and ZnO octahedron as bridges between 

neighboring Q2 through sharing corners and edges. In PO, the existence of large amounts of 

hydroxy groups depolymerize the phosphate network by forming P-OH leading Zn2+ to have 

more “free oxygen” to form ZnO tetrahedron. Although ZnO tetrahedron can also enter the 

glass network, the glass matrix of PO moves towards two-dimensional (2D) “polymer like” 

chain and these chains hardly have cross-links with each other. From the schematic 

illustration of 2D sublattices shown in Fig 4.6(a), it can be seen in this topological 

configuration that the ZnO polyhedra are easy to move on the X and Y direction and the only 

topological constraint is in Z direction. Fig 4.6(c) shows the schematic illustration of the 

corresponding glass mesostructure, “polymer like” chains without cross-links. Normally, a 

topological configuration with just one direction constraint is not easy to form an aggregation. 

While, in NHPO and NNHPO, “free oxygen” content was decreased because of less hydroxy 

group and especially the adding of nitrogen, which may separate some ZnO tetrahedron from 

glass network and sever as ZnO octahedron glass modifier. Moreover, the nitrogen also 

constructs the glass matrix from 2D “polymer like” chains to three-dimensional (3D) 

framework structure through forming >N- entities that may cause cross-links between glass 

chains or layers. The illustration of sublattices shown in Fig 4.6(b) displays that, in this 

topological configuration, the ZnO polyhedra are hard to move on no matter the X, Y or Z 

direction. The schematic of the corresponding glass mesostructure with cross-links caused by 

>N- entities is shown in Fig 4.6(d). This 3D topological configuration with 3 directions 

constraints would “extrude” the ZnO polyhedra glass modifier forming ZnO clusters within 
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limits. Besides, within a certain scope, the greater >N- level in glass, the more asymmetric 

and compact the glass structure would be. Therefore, NNHPO is easier to form more 

extensive ANZC than NHPO, which illustrates the stronger PL in NNHPO.       

4. Results and discussion of manganese doped ANZC glass 

EPR spectra of Mn doped phosphate glasses (PO2Mn and NHPO2Mn, see in experimental 

part) are shown in Fig. 4.7(a), revealing the typical fingerprint of Mn2+ which comprises a 

sextet hyperfine line structure (no resonance was observed in undoped glasses).41,42 The 

electronic structure of Mn2+ (3d5) is well known and the Tanabe–Sugano diagrams of a d5-

electron configuration is shown in Fig 4.7(b). Combining the optical excitation spectra of the 

zinc phosphate glasses shown in Fig 4.7(c), it can be found that the ground state is 6A1(S); 

two obvious transitions can readily be identified in the optical excitation spectra of PO glass, 

peaking at 346 nm and 405 nm, respectively; three obvious transitions can readily be 

identified in the optical excitation spectra of NHPO glass, peaking at 250 nm, 346 nm, 405 

nm, respectively.  
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Fig. 4.7. EPR spectra of PO2Mn and NHPO2Mn glass samples (a), Tanabe–Sugano diagrams for a d5-electron 

configuration (b) and excitation spectra of Mn doped glass samples(c) 

The peak of 346 and 405 nm correspond to the transitions 6A1(S) → 4E(D) and 6A1(S)→ 

4A1(G), respectively; The peak around 250 nm of NHPO2Mn is due to the charge transfer 

which was investigated in previous part. Evaluation of crystal field parameters from the bands 

in the electronic spectra yields a crystal field parameter Dq = 1054 cm-1, Racah parameter B = 

775 cm-1 and consequently Dq/B = 1.36. 

Normally, the color of the manganese doped glass is dependent on the valence state of the 

manganese ions in the glass: pale yellow when Mn2+ is present and violet when Mn3+ is 

present. Noteworthy, with increasing manganese content, the PO samples exhibit increasing 

violet coloration which indicates that Mn3+ also exist in the PO glass matrix. In order to 

confirm this point, the absorption spectra of PO2Mn and NHPO2Mn were investigated as 

shown in Fig. 4.8(a). It can be seen that a broad band around 540 nm can be only observed in 

PO2Mn, which corresponds to the 5Eg→5T2g transition of Mn3+, which has a 3d4-electron 

configuration shown in the inset of Fig 4.8(a). Due to this spin-allowed transition, the 

intensity of this peak is even stronger than those of Mn2+ which are spin-forbidden. The XPS 

spectra illustrated in Fig 4.8(b) again supports this finding. It can be seen that the binding 

energy value of Mn 2p3/2 of PO2Mn (642.2 ev) is larger than that of NHPO2Mn (641.3 ev), 

which suggests the chemical state of Mn in PO2Mn is higher than that in NHPO2Mn.43-45 

 

Fig. 4.8. Absorption (a) and XPS (b) spectra of PO2Mn and NHPO2Mn glass samples 

The PL spectrum of Mn2+ is deem to be the contribution of two main components: emission 

from isolated Mn2+ ions; emission from Mn2+ ion pairs.20,46 However, a much debated 

question is, before concentration quenching, whether the energy migration happened between 

Mn2+ and Mn2+ pairs.47,48 On one hand, in Ref.47, the nonexponential decay curves of the 

Mn2+ in Zn2SiO4:Mn2+ were fitted by the Yokota-Tanimoto model for luminescence decay in 

the presence of diffusion limited energy migration to traps. Good fits were obtained and 
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information was derived from the fitting parameters. The model describes the luminescence 

decay of donor ions in the case of (isotropic) diffusion limited energy migration to (deep) 

traps. The schematic representation of this model is given in Fig. 4.9(e). On the other hand, in 

Ref. 48, although only the luminescence decay curves of low concentration Mn2+-doped 

MgAl2O4 was fitted to the exponential model, the authors think the emission comes from the 

exchange coupling for antiferromagnetic exchange-coupled Mn2+ pairs. This exchange-

coupled Mn2+ pairs will form new splitting energy levels which contain one spin-allowed 

transition. For example, Fig. 4.9 (f) shows the schematic representation of the splitting pattern 

for a Mn2+ pair with both ions in the ground state and one ion in the excited state, the 

interaction has been taken as an antiferromagnetic interaction for both the 6A1-6A1 ground 

state and the 6A1 - 4T1 excited state. The value of J is dependent on the distance between ions 

in the pairs. Emissions originating from the pairs can be attributed to transitions from the 

lowest excited spin state to different spin components of the ground state. The details were 

reviewed in Ref. 28. However, due to the intricate coordination environment of Mn2+ pairs, it 

is too difficult to investigate the model only by dynamic luminescence behavior. 47,48 Here, we 

try investigating this debated question based on static luminescence analysis through Mn3+ as 

an “energy acquisition probe”. 

Glass samples were optically excited in the region of the main absorption peaks (410nm). The 

PL spectrum and the corresponding cumulative fit peak of the prepared glass samples are 

shown in Fig. 4.9 (a)-(c). From Fig. 4.9(a), it can be seen that the emission intensity of NHPO 

samples is stronger than PO, which can be explained by the concentration of Mn2+ supported 

by the XPS. The cumulative fitting peaks of NHPO2Mn and PO2Mn are shown in Fig. 4.8(b) 

and (c). Here, the peak around 575 nm and the peak around 630 nm are attributed to Mn2+ 

isolate ions and Mn2+ pairs, respectively. It obviously indicates that the emission of Mn2+ 

pairs is stronger than that of Mn2+ isolate ions in NHPO2Mn. However, it is the opposite in 

PO2Mn, which means the amount of Mn2+ pairs are less than Mn2+ isolate ions in PO2Mn. 

This can be explained by the existence of Mn3+ which could inhibit the formation of Mn2+ 

pairs, the interpretation illustration is shown in Fig. 4.8 (d). 

In our experiment, although the crystal field on the position of the energy levels for 3d5 

transition metal Mn2+ is a bit different from that in the previous study,27, 28 the Mn2+ is still in 

the high spin state which was calculated above that is suitable to the two models. Therefore, 

the corresponding model can be adopted in our glass samples. Firstly, we suppose the excited 

donor ions in the case of isotropic diffusion to traps. Then, as an example, the transition 

process in PO2Mn sample is discussed here. As shown in Fig. 4.8(e), the energy should 
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diffuse isotropically. Therefore, there are three possible transition traps: Mn2+ isolate ions, 

Mn2+ pairs and Mn3+ isolate ions. As we mentioned above, the Mn3+ isolate ion has a spin-

allowed transition around 540 nm. Considering the emission of Mn2+ isolate ions peaked at 

575 nm, the radiative energy transition process between Mn2+ and Mn3+ is hardly possible, 

which means the only energy transfer process between Mn2+ and Mn3+ is energy diffusion. It 

suggests that if the donor was trapped by Mn3+, the emission around 540 nm should be 

observed and the luminescence decay curve with shorter lifetime should be observed as well. 

However, as shown in Fig. 4.8 (b) and (c), no obvious emission peak around 540 nm and 

shorter lifetime is observed from PO2Mn sample. Thus, although the nonexponential decay 

curves with a good fit was obtained in Ref. 47, the isotropic energy diffusion model is not 

reliable. In the exchange-coupled model,28 emissions originating from the pairs can be 

attributed to transitions from the lowest excited spin state to different spin components of the 

ground state, which can explain our results very well. 

 

Fig. 4.9. Photoluminescence spectra of Mn doped glass samples excited by 410nm(a); deconvolution of the PL 

spectrum of NHPO2Mn (b) and PO2Mn (c); (d) schematic illustration of formation of Mn2+ pairs in the glass 

matrix, energy diffusion model(e) and (f)the splitting for energy levels in 6A1 - 6A1 ground state and 6A1 - 4T1 

state resulting from exchange coupling for antiferromagnetic exchange-coupled Mn2+ pairs 

Fig. 4.10 (a) presents a pc-WLED based on the prepared glass and (b) PL of Mn2+ single 

doped NHPO glass samples exited by 250 nm. From Fig. 4.7(c), it can be seen that the most 

efficient excitation spectrum is around 410 nm, fortunately, which is exactly the emission 

wavelength emitted by the zinc phosphate oxynitride glass that was described previously. 

Therefore, it is possible to prepare a pc-WLED based on the efficient energy transfer process, 

which schematic of is shown in Fig. 4.10 (a). Fig. 4.10 (b) shows the PL of the samples 

excited at 250 nm. Obviously, the energy transfer between the amorphous ZnO and Mn2+ ions 
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occurred. Besides, it can be found that the intensity of the luminescence of Mn increase with 

the increasing Mn concentration.  

 

Fig. 4.10. (a) Schematic of a pc-WLED based on the prepared glass and (b) PL of Mn2+ single doped NHPO 

glasssamples exited by 250 nm 

On the contrary, the intensity of the blue emission of the glass host decrease with the 

increasing Mn concentration. This is explained by the fact that, with more Mn2+ ions, the 

glass host transfer more energy to Mn2+ ions. Furthermore, as shown in Fig. 4.10(b), if 

spectrum of low Mn2+ concentration are compared to the ones of high Mn2+ concentration, a 

“red shift” is observed, explained by the increasing amount of Mn2+ pairs discussed above.  

 

Fig. 4.11. Schematic of brief energy level diagram of Mn2+ single doped NHPO glass samples 

 

The details of the energy transfer process can be described below and the energy transfer 

diagram is shown in Fig. 4.11. On one hand, energy transfer from glass host to Mn2+ ions can 

easily occur via the excited state of amorphous ZnO nanoparticle in the glass which is 

energetically close to the 4T2(G) and 4A1(G) level of Mn2+ ions, resulting in populating the 

Mn2+ excited state 4T2(G) and 4A1(G) from the ground state. Mn2+ ions then undergo multi-

phonon relaxation to the emitting level 4T1(G) followed by radiative relaxation to the ground 

state, emitting at 600 nm. As we discussed above, the Mn2+ pairs also contribute to the 
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emission, so it can be seen from the inset of Fig 4.11, actually, the 4T1(G) level consists of not 

only the level of isolate Mn2+ ions, but also the level of exchange-coupled Mn2+ pairs.  

 

Table 4-1. CIE coordinates and color temperature of Mn2+ doped zinc phosphate oxynitride glass 

Glass 
CIE coordinates  

Color temperature(K) 
X Y  

NHPO0.3Mn 0.25 0.23  >10000 

NHPO0.6Mn 0.31 0.27  8000 

NHPO1.0Mn 0.37 0.33  3998 

NHPO1.5Mn 0.41 0.35  3000 

NHPO2.0Mn 0.44 0.36  2500 

The CIE (Commission International de l'éclairage) chromaticity coordinates for the prepared 

glass samples NHPOxMn (x=0.3, 0.6, 1.0, 1.5 and 2.0) which were calculated based on the 

corresponding emission spectrum are represented in Fig. 4.12. Besides, details and the 

correlated temperature are listed in Table 4-1. 

 

Fig. 4.12. CIE chromaticity diagrams of the Mn2+ single doped NHPO glass samples; inset:  the photograph of 

the encapsulated WLED based on NHPO1.5Mn glass sample, turn on (left) and turn off (right) 

The NHPO1.0Mn sample shows CIE values with x=0.37, y=0.33, which is matching to that 

expected for a pure white light emitting material. Furthermore, the “Color Temperature” was 

found to be 3998 K, which is expected for a warm white light source. Besides, a high external 

quantum efficiency (1%) is obtained. Moreover, the encapsulated WLEDs based on the 

prepared glasses were prepared as well. Although due to the larger excitation wavelength of 

the violet chip (276 nm) than the best excitation wavelength, the result still deserves 

expectation. The encapsulated pc-WLED based on NHPO1.5Mn glass presented in the inset 

of Fig. 4.12 shows:  CIE values with x=0.33, y=0.35; CCT with 5228 K; Ra=86. These 
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excellent properties make the prepared glass promising for the warm WLEDs with a proper 

ultraviolet chip. 

5. Conclusions 

To the best of our knowledge, a strong superfast blue emission was observed in simple zinc 

phosphate oxynitride glass for the first time. According to the PL and luminescence decay 

spectrum, the emission was assigned to amorphous nanoscale ZnO clusters which was 

validated by TEM images in the prepared glass samples. Nitrogen integrating the glass 

network is the key to obtaining these amorphous nanoscale ZnO clusters. Nitrogen modulates 

the topological constraints of the glass matrix from 2D to 3D  through >N- cross-linking the 

phosphate glass chains. The 3D topological constraints forms more extensive amorphous 

nanoscale ZnO clusters, which illustrates a stronger PL.  

Based on this glass, the magnesium single doped zinc phosphate oxynitride glasses with warm 

white light were prepared. EPR and XPS suggest manganese is existence as Mn2+/Mn3+ in PO 

glasses samples and as single Mn2+ in NHPO glasses. The mechanism of the emission from 

Mn2+ pairs was investigated based on static luminescence analysis through Mn3+ as a “energy 

acquisition probe”. The result asserts that the emission comes from the exchange-coupled 

effect. 48 Among the prepared glasses, the NHPO1.0Mn sample shows CIE values with 

x=0.37, y=0.33, which is matching to that expected for a pure white light emitting material. 

Further the “Color Temperature” was found to be 3998 K which is expected for a warm white 

light source. Moreover, the encapsulated pc-WLED based on 276 nm violet chip shows 

excellent CIE values with x=0.33, y=0.35; CCT with 5228 K; Ra=86. Although the CCT is 

higher than that of 250 nm excitation, it is deserving expectation that, with a proper violet 

chip, a pc-WLED with high CRI, low CCT and relative high quantum efficiency can be 

obtained based on this manganese single doped phosphate glass containing ANZC.  
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GENERAL CONCLUSIONS 

In this work, our main objective is to develop a new LEC device based on organophosphorus 

semiconductor doped inorganic glass electrolyte, which cannot be synthesized by using 

classic melt-quenching technique. Thus, sol-gel and SPS technology was used to prepare the 

organophosphorus doped hybrid glass. 

In the case of sol-gel method, the organophosphorus semiconductor doped silica glass coating 

was successfully prepared. However, some voids were generated in the silicate glass coating 

containing high lithium content which has the applicable ionic conductivity for a LEC. 

Fortunately, the probably reason for generation of the voids was found. We will work on 

vanishing the voids in the silicate glass coating containing high lithium content. After 

obtaining the silicate glass coating containing high lithium content, the LEC device can be 

prepared based on this coating. 

In the case of SPS technology, the hybrid glass has been successfully prepared. The optical 

properties, microstructure and electrochemical properties of the hybrid glass were 

investigated. The results show this hybrid glass can be used in a LEC, and thereby the LEC 

device based on the hybrid glass was prepared as well. However, no electroluminescence was 

observed from the hybrid glass sample. This may be due to the reasons as shown below: 1. the 

glass thickness is still too large; 2. the surface contact between glass and electrodes are not 

perfect; 3. the ionic conductivity is still too low; 4. impurities are introduced by SPS process. 

In the next step, all of these possible problems would be tackled to test the 

electroluminescence of the hybrid glass. 

During the process of preparing phosphate glass for LECs, blue luminescence was observed 

from amorphous zinc binary phosphate glasses in our work. We find that this blue 

luminescence is from the amorphous nanoscale zinc clusters in the glass. Nitrogen modulates 

the topological constraints of the glass matrix from 2D to 3D  through >N- cross-linking the 

phosphate glass chains. The 3D topological constraints forms more extensive amorphous 

nanoscale ZnO clusters, which illustrates a stronger PL. After understanding the reason for the 

blue luminescence, we prepared the phosphor-converted white light-emitting diodes based on 

the phosphate glass containing amorphous nanoscale ZnO clusters. 

 



 

 

 

 





 

 

 

 



 

 



 

 

 

 

 

Titre :   Matériaux hybrides verres inorganiques / molécules organiques pour des applications light-emitting 
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Résumé :    La cellule électrochimique 
électroluminescente (LEC) est un dispositif à couches 
minces, composé d’un semi-conducteur organique 
électroluminescent (OSC) et d’ions mobiles en tant 
que matériau actif intercalé entre une anode et une 
cathode.  
Dans le premier chapitre, le contexte et le 

mécanisme de la LEC ont été introduits. Dans le 
deuxième chapitre, nous avons dopé la molécule 
organophosphorée dans un verre de silicate 
contenant une teneur élevée en lithium par la 
méthode sol-gel. 
Dans le troisième chapitre, nous avons travaillé à 

l’obtention d’un verre de phosphate dopé à une 
molécule organophosphorée avec une conductivité 

ionique élevée par frittage Spark Plasma Sintering 
(SPS). Un verre de phosphate hybride ayant une 
conductivité ionique d'environ 10-7S / cm a été 
obtenu et une forte photoluminescence a été 
observée. En outre, les propriétés électrochimiques 
ont également été étudiées. 
De plus, lors du processus de préparation de la LEC 
par SPS, un phénomène intéressant a été 
découvert. Une émission bleue à large bande a été 
observée dans le verre d’oxynitrure de phosphate de 
zinc exempt de terres rares. Le quatrième chapitre 
est consacré à ce phénomène. 

 

Title :  Hybrid materials based on inorganic glasses doped with organophosphorus molecules for light-emitting 
electrochemical cell applications............................ ...................................................... ............................ 

Keywords : luminescence, hybrid glass,  light-emitting electrochemical cell, LEC 

Abstract: The light-emitting electrochemical cell 

(LEC) is a planar layered device, which is comprised 
of an electroluminescent organic semiconductor 
(OSC) and mobile ions as the active material 
sandwiched between an anode and a cathode. 
Electrolyte is one of the “short slab” of LEC 
technology. 
The main objective of this work is developing a new 
LEC device based on organophosphorus molecule 
doped organic-inorganic hybrid glass electrolyte. 
This hybrid glass cannot be synthesized by using 
classic melt-quenching technique because the 
melting temperature of glass is always much higher 
than the degradation temperature of organic 
molecule. Thus, in this work, we devote to that how 
to dope the organophosphorus molecule into the 
glass with high ionic conductivity. 

 

In first chapter, the background and mechanism of 
LEC were introduced. 
In the second chapter, we attempted to dope the 
organophosphorus molecule into silicate glass 
containing high lithium content by sol-gel method.  
In third chapter, we are working to obtain 
organophosphorus molecule doped phosphate glass 
with high ionic conductivity through spark plasm 
sintering (SPS). A hybrid phosphate glass with ionic 
conductivity of around 10-7 S/cm was obtained, and 
strong photoluminescence was observed. Besides, 
the electrochemical properties were investigated as 
well.  
Moreover, during the process of preparing the LEC 
by SPS, an interesting phenomenon was found. A 
broadband blue emission was observed in rare-earth 
free zinc phosphate oxynitride glass. The fourth 
chapter is focus on this interesting phenomenon. 
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