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Résumé

Le problème des données manquantes existe depuis les débuts de l'analyse des données, car les
valeurs manquantes sont liées au processus d'obtention et de préparation des données. Dans
les applications des statistiques modernes et de l'apprentissage machine, où la collecte de
données devient de plus en plus complexe et où de multiples sources d'information sont com-
binées, les grandes bases de données présentent souvent un nombre extraordinairement élevé
de valeurs manquantes. Ces données présentent donc d'importants dé�s méthodologiques et
techniques pour l'analyse : de la visualisation à la modélisation, en passant par l'estimation,
la sélection des variables, les capacités de prédiction et la mise en ÷uvre par des implémen-
tations. De plus, bien que les données en grande dimension avec des valeurs manquantes
soient considérées comme des di�cultés courantes dans l'analyse statistique aujourd'hui,
seules quelques solutions sont disponibles.

L'objectif de cette thèse est de développer de nouvelles méthodologies pour e�ectuer des
inférences statistiques avec des données manquantes et en particulier pour des données en
grande dimension. La contribution la plus importante est de proposer un cadre complet pour
traiter les valeurs manquantes, de l'estimation à la sélection d'un modèle, en se basant sur
des approches de vraisemblance. La méthode proposée ne repose pas sur un dispositif spéci-
�que du manque, et permet un bon équilibre entre qualité de l'inférence et implémentations
e�caces.

Les contributions de la thèse se composent en trois parties. Dans le chapitre 2, nous
nous concentrons sur la régression logistique avec des valeurs manquantes dans un cadre de
modélisation jointe, en utilisant une approximation stochastique de l'algorithme EM. Nous
étudions l'estimation des paramètres, la sélection des variables et la prédiction pour de nou-
velles observations incomplètes. Grâce à des simulations complètes, nous montrons que les
estimateurs sont non biaisés et ont de bonnes propriétés en termes de couverture des inter-
valles de con�ance, ce qui surpasse l'approche populaire basée sur l'imputation. La méthode
est ensuite appliquée à des données pré-hospitalières pour prédire le risque de choc hémorrag-
ique, en collaboration avec des partenaires médicaux - le groupe Traumabase des hôpitaux de
Paris. En e�et, le modèle proposé améliore la prédiction du risque de saignement par rapport
à la prédiction faite par les médecins.

Dans les chapitres 3 et 4, nous nous concentrons sur des questions de sélection de modèles
pour les données incomplètes en grande dimension, qui visent en particulier à contrôler les
fausses découvertes. Pour les modèles linéaires, la version bayésienne adaptative de SLOPE
(ABSLOPE) que nous proposons dans le chapitre 3 aborde ces problématiques en intégrant la
régularisation triée l1 dans un cadre bayésien �spike and slab�. Dans le chapitre 4, qui vise des
modèles plus généraux que celui de la régression linéaire, nous considérons ces questions dans
un cadre dit de �model-X�, où la distribution conditionnelle de la réponse en fonction des
covariables n'est pas spéci�ée. Pour ce faire, nous combinons une méthodologie 'knocko�"

1



et des imputations multiples. Grâce à une étude complète par simulations, nous démontrons
des performances satisfaisantes en termes de puissance, de FDR et de biais d'estimation
pour un large éventail de scénarios. Dans l'application de l'ensemble des données médicales,
nous construisons un modèle pour prédire les niveaux de plaquettes des patients à partir des
données pré-hospitalières et hospitalières.

En�n, dans le chapitre 5, nous fournissons deux logiciels libres avec des tutoriels, a�n
d'aider la prise de décision dans le domaine médical et les utilisateurs confrontés à des valeurs
manquantes.
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Abstract

The problem of missing data has existed since the beginning of data analysis, as missing
values are related to the process of obtaining and preparing data. In applications of mod-
ern statistics and machine learning, where the collection of data is becoming increasingly
complex and where multiple sources of information are combined, large databases often have
an extraordinarily high number of missing values. These data therefore present important
methodological and technical challenges for analysis: from visualization to modeling includ-
ing estimation, variable selection, predictive capabilities, and implementation through imple-
mentations. Moreover, although high-dimensional data with missing values are considered
common di�culties in statistical analysis today, only a few solutions are available.

The objective of this thesis is to provide new methodologies for performing statistical
inferences with missing data and in particular for high-dimensional data. The most important
contribution is to provide a comprehensive framework for dealing with missing values from
estimation to model selection based on likelihood approaches. The proposed method doesn't
rely on a speci�c pattern of missingness, and allows a good balance between quality of
inference and computational e�ciency.

The contribution of the thesis consists of three parts. In Chapter 2, we focus on performing
a logistic regression with missing values in a joint modeling framework, using a stochastic
approximation of the EM algorithm. We discuss parameter estimation, variable selection,
and prediction for incomplete new observations. Through extensive simulations, we show
that the estimators are unbiased and have good con�dence interval coverage properties,
which outperforms the popular imputation-based approach. The method is then applied to
pre-hospital data to predict the risk of hemorrhagic shock, in collaboration with medical
partners - the Traumabase group of Paris hospitals. Indeed, the proposed model improves
the prediction of bleeding risk compared to the prediction made by physicians.

In chapters 3 and 4, we focus on model selection issues for high-dimensional incomplete
data, which are particularly aimed at controlling for false discoveries. For linear models, the
adaptive Bayesian version of SLOPE (ABSLOPE) we propose in Chapter 3 addresses these
issues by embedding the sorted l1 regularization within a Bayesian spike-and-slab frame-
work. Alternatively, in Chapter 4, aiming at more general models beyond linear regression,
we consider these questions in a model-X framework, where the conditional distribution of
the response as a function of the covariates is not speci�ed. To do so, we combine knock-
o� methodology and multiple imputations. Through extensive simulations, we demonstrate
satisfactory performance in terms of power, FDR and estimation bias for a wide range of
scenarios. In the application of the medical data set, we build a model to predict patient
platelet levels from pre-hospital and hospital data.

Finally in Chapter 5, we provide two open-source software packages with tutorials, in
order to help decision making in medical �eld and users facing missing values.

3



Acknowledgements

D'abord je tiens à remercier Julie, qui m'a encadré tout au long de cette thèse et qui m'a
fait partager ses brillantes intuitions. Merci de m'avoir appris la richesse des statistiques et
l'importance des expériences de simulation. Merci également pour sa gentillesse, sa disponi-
bilité permanente et pour les nombreux encouragements qu'elle m'a prodigué. Et merci pour
tous les bons moments passés en dehors du travail, à Paris et à l'étranger.

Je remercie Marc du fond du c÷ur pour tout ce qu'il m'a appris. Depuis trois ans, c'est
à ses côtés que l'on m'a fait comprendre ce que signi�ent rigueur et précision. Et merci de
m'avoir proposé des sujets et des algorithmes passionants.

J'adresse tous mes remerciements à Adeline Samson et Daniel Yekutieli pour avoir accepté
de rapporter ce travail. Daniel, thank you very much for accepting to review this manuscript
of thesis and I am so honored that you agreed to be a member of the committee. Également,
merci à Karim Lounici, Pierre Neuvial et Bertrand Thirion, je suis très honorée que vous
avez accepté la demande de faire partie du jury de ma thèse, même dans une période aussi
compliquée.

Thanks to all those with whom I had the chance to collaborate during my thesis: Malgo-
rzata Bogdan, Blazej Miasojedow, Veronika Rockova, Asaf Weinstein and Szymon Majewski.
Gosia, thank you for proposing such a nice subject of collaboration and also for o�ering me
the golden opportunity to visit you in Wroclaw University. I cherish so much the time that I
spent in Poland with you. Blazej, thank you for supporting solidly the foundation of the work,
and for providing relaxing atmosphere during discussion. Veronika, thank you for enhancing
and improving the quality of our draft, your opinions are always enlightening. Asaf, thank
you for your broad knowledge in model selection, and for questioning always the imprecise
part. Szymon, thank you for your rigorous work of the mathematical derivation.

Je tiens aussi à remercier le Groupe TraumaBase de l'APHP, et en particulière à Sophie
Hamada, Tobias Gauss et Jean-Denis Moyer, qui m'ont toujours donné des conseils immédiats
d'un point de vue médical, et qui améliorent considérablement la qualité du travail. Je suis
honorée d'avoir la possibilité de contribuer à la prise de décision sur la base des données de
l'hôpital, et d'avoir travaillé avec des personnes gentilles. Merci également à Capgemini pour
l'organisation des sessions des travaux, en particulière pour le TrauMatrix plénières et le Data
Science workshop de SFAR.

Je tiens à remercier tout particulièrement DIM Math Innov ainsi que FMJH pour leur
aide et le �nancement de ces travaux. Merci à Dominique Wetzel pour l'organisation des
événements scienti�ques pour nous et pour ses salutations chaleureuses pendant l'épidémie.

Merci du fond du c÷ur à mes amis qui ont relu et corrigé des parties de cette thèse :
Aude et Pavlo. Aude, merci beaucoup pour ton amitié, les organization du group meeting,
les pauses café. Pavlo, thank you for your kind emails and your help. I would like to also
thanks other nice and brilliant persons who help and support me a lot during the thesis:

4



Manuel, thank you for letting me realize how essential our work is. Imke, merci beaucoup
pour ton amitié et pour ne m'avoir jamais laissé seul. Geneviève, merci d'être toujours au
centre et de nous diriger. Patrick, merci pour ton aide et tes idées pendant ces journées en
Pologne. Zoltan, thank you for responding my questions with great patience and organizing
the sessions for reading group every week.

Merci aussi aux camarades du CMAP, en particulier : Léa, Thomas, Alejandro, Othmane,
Ruben, Pierre et Marc Arthur, je suis heureux d'avoir partagé le bureau avec vous pendant
la première année. Merci aussi aux camarades du XPOP, en particulière à Belhal et Yao
pour vos amitiés. Thanks for other students and post-doc of Julie: Judith, Bénédicte, Tanu,
Marine, Antoine, Nicolas, Aravinth and Teresa, no matter how long you have been in the
group. Merci aussi à l'équipe administratif au CMAP, en particulier Nasséra, Alexandra,
Laura, Maud et Willfried, qui toujours nous aident et nous soignent.

I would like to thank all the nice people who welcomed and helped me in Wroclaw and War-
saw: Michal, Mateusz, MI2 DataLab team members especially Alicja and Pzymek. Thanks
for the warm people who encouraged me during XLV Konferencja Statystyka Matematyczna
in Bedlewo. Dzi¦kuj¦ !
最后， 感谢家人的支持和鼓励。感谢父母，尊重我的选择和意愿，给予自由成长

的空间，谁言寸草心，报得三春晖。感谢琳，一直以来的陪伴、付出和鼓励，长风破
浪会有时， 直挂云帆济沧海。

5



Scienti�c production

Articles

� Jiang W., Josse J., Lavielle M., TraumaBase Group (2018). Logistic regression with
missing covariates�parameter estimation, model selection and prediction. published,
Computational Statistics & Data Analysis.

� Jiang W., Bogdan M., Josse J., Miasojedow B., Rockova V., TraumaBase Group
(2019). Adaptive Bayesian SLOPE�high-dimensional model selection with missing
values. in revision, Journal of Computational and Graphical Statistics.

� Jiang W., Majewski S., Bogdan M., Josse J., Weinstein A. (2020). Knocko� with
missing values. preprint.

Packages

� R package misaem (2018), available on CRAN, with vignettes.

� R package ABSLOPE (2019), implementation with Rcpp, with vignettes.

� Medical application (TraumaBase): misaem is used to build a mobile application in
the ambulance for predicting hemorrhagic shock.

Awards

� Two-months visiting student researcher (at Wroclaw University) fellowship, Junior Sci-
enti�c Visibility program, FMJH (2019).

� First prize of young researchers' presentation, Polish Mathematical Statistics Confer-
ence (2019).

Communications in scienti�c congresses

1st year (2017-2018):

� Dec. 2017, London: 10th International Conference of the ERCIM WG on Computa-
tional and Methodological Statistics (CMStatistics 2017), oral communication.

6



� Apr. 2018, Nice: workshop StatLearn, poster.

� Jun. 2018, Paris : Journées de Statistique de la SFdS (JdS2018), oral communication.

� Jun. 2018, Paris : Data Science Summer School (DS3), Ecole Polytechnique, poster.

� Jul. 2018, Rennes : 7e Rencontres R, oral communication.

� Sep. 2018, Wroclaw : Mathematics joint meeting, session �Challenges and Methods of
Modern Statistics�, oral communication.

2nd year (2018-2019):

� Dec. 2018, Besançon: Proba-Stat seminar, invited presentation.

� May 2019, Paris: workshop Data Science, Société Française d'Anesthésie et de Réani-
mation (SFAR), presentation of TraumaBase project.

� Mar. 2019, Munich: conference DAGStat, oral communication.

� Jun. 2019, Paris : Data Science Summer School (DS3), Ecole Polytechnique, poster.

� July 2019, Toulouse : conference useR! 2019, oral communication.

3rd year (2019-2020):

� Dec. 2019, Bedlewo, conference Mathematical Statistics, oral communication.

� Dec. 2019, Warsaw & Wroclaw, R enthusiastic meetups, invited presentation.

� May 2020, (Online) International Seminar on Selective Inference, panelist (answering
questions on the Q&A board) for talk by M. Bogdan on joint work.

� August 2020, (Online) Bernoulli-IMS One World Symposium, poster.

Teaching

� Teaching assistant for course MAP 536, Ecole Polytechnique - Python/R for Data
Science (2017 - 2018).

� Teaching assistant for course MAP 531, Ecole Polytechnique - Statistics Refresher
(2018 - 2019).

� Teaching assistant for course MAP 536, Ecole Polytechnique - R (2018 - 2019).

� Two-hours tutorial, Wroclaw University: A missing values tour in R - with a special
focus on parameters estimation (Dec. 2019).

7



Others scienti�c activities

� Article with special focus on Covid-19: Gu C., Jiang W., Zhao T., Zheng B. (2020).
Mathematical recommendations to �ght against COVID-19.

� Co-organizing �Group Meeting Missing Values� � statistical seminar, CMAP, École
Polytechnique. (2018 - 2020).

� Reviewing for Journal of Machine Learning Research (JMLR); International Conference
on Machine Learning (ICML).

� Supervising �ve-month internship of Master student from Data science (2019).

� Interviewing for recruitment of Master Data Science for Business joint X-HEC program
(2019-2020).

8



Contents

1 Introduction 19

1.1 Overview of state of the art on missing values problematic . . . . . . . . . . 19

1.2 Linear regression with missing values . . . . . . . . . . . . . . . . . . . . . 21

1.3 Model selection with missing values . . . . . . . . . . . . . . . . . . . . . . 27

1.4 TraumaBase project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Supplementary material: sweep operator in EM . . . . . . . . . . . . . . . . 35

2 Logistic regression with missing covariates 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Assumptions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Parameter estimation by SAEM . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Model selection with likelihood criteria and prediction . . . . . . . . . . . . 46

2.5 Simulation study: estimation bias and variance . . . . . . . . . . . . . . . . 48

2.6 Modeling the risk of severe hemorrhage in the TraumaBase context . . . . . 54

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 ABSLOPE�High-dimensional model selection with missing values 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Statistical model and assumptions . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Model selection by ABSLOPE . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Simulation study: FDR and Power . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Modeling the level of placelet in the TraumaBase context . . . . . . . . . . 100

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 missKnocko�� controlled variable selection with missing values 119

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Knocko� with missing data . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9



4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.5 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Implementations, packages and tutorials 145

5.1 Tutorial: R package misaem . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Tutorial: R package ABSLOPE . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3 TraumaBase mobile application . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Conclusion 163

A Synthèse substantiel (en langue française) 167

10



List of Figures

1.1 Procedure of multiple imputation. . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Management scheme of a traumatized patient. . . . . . . . . . . . . . . . . 31

1.3 An extract of TraumaBase dataset with various missing data. . . . . . . . . 31

1.4 Percentage of missing values in each variables in TraumaBase dataset. . . . 32

1.5 Matrix of missingness patterns associated with X with 1 denoting an observed
variable and 0 denoting a missing variable . . . . . . . . . . . . . . . . . . . 38

2.1 Convergence plots for β1 obtained with three di�erent values of τ (0.6, 0.8,
1.0). Each color represents one simulation. The true value of β1 is 0.5. . . . 48

2.2 Top: Empirical distribution of the bias of β̂3. Bottom: Distribution of the
estimated standard errors of β̂3. For each method, the red point corresponds
to the empirical standard deviation of β̂3 calculated over the 1000 simulations.
Results shown are for 10% MCAR and correlation C. . . . . . . . . . . . . . 49

2.3 Empirical distribution of the estimates of β3 obtained under MCAR, with
n = 10 000 and 10% missing values. Left: the covariates are correlated;
right: no correlation between covariates. . . . . . . . . . . . . . . . . . . . 51

2.4 Empirical distribution of the bias of β̂3 obtained for misspeci�ed models under
MCAR, with n = 1000. Left: Student's distribution with v = 5 degrees of
freedom; right: Gaussian mixture model. . . . . . . . . . . . . . . . . . . . 52

2.5 Comparisons of the empirical distribution of the AUC, Brier score, and loga-
rithmic score obtained on the test set for the proposed SAEM without impu-
tation method, impMean, impPCA, and mice, over 100 simulations. . . . . . 54

2.6 The factor map of the variables from PCA. . . . . . . . . . . . . . . . . . . 55

2.7 Percentage of missing values in each variable. . . . . . . . . . . . . . . . . . 55

2.8 The observations' PCA factor map. Red points are hemorrhagic shock pa-
tients, and black points those who did not have hemorrhagic shock. Patient
number 3302 (circled in blue) has an incorrectly-calculated BMI. . . . . . . . 56

2.9 ROC curve of the test set predictions. . . . . . . . . . . . . . . . . . . . . . 58

2.10 Empirical distribution of the prediction errors of di�erent methods over 15
random splits of the TraumaBase data. . . . . . . . . . . . . . . . . . . . . 59

2.11 Average prediction errors of di�erent methods as a function of the cost ratio
{w0

w1
| w0

w1
> 1} taken over 15 random splits of the TraumaBase data. . . . . . 59

2.12 ROC curve on a simulated complete dataset. . . . . . . . . . . . . . . . . . 62

11



2.13 Empirical distribution of the bias of β̂3 obtained under an MAR mechanism,
with n = 1000 and 10% missing values. . . . . . . . . . . . . . . . . . . . . 62

2.14 Empirical distribution of the bias of β̂3 obtained over 1000 simulations, varying
the percentage of missingness (left: 10%; right: 30%) under MCAR, with
n = 1000 with methods no NA, CC, mice and SAEM. . . . . . . . . . . . . 63

2.15 Logistic regression (y,X ′β) plot varying the value of link function X ′β. . . . 64

2.16 Empirical distribution of the bias of β̂3 obtained over 1000 simulations, varying
the link function (left: X ′ = 2X; right: X ′ = 5X) under MCAR, with
n = 1000 with methods no NA, CC, mice and SAEM. . . . . . . . . . . . . 64

2.17 Empirical distribution of the bias and standard error of β̂3 obtained over 100
simulations, under MCAR, with n = 200 and 10% of missing values, with
methods no NA, CC, mice, SAEM and MCEM. . . . . . . . . . . . . . . . . 65

2.18 Empirical distributions of variables from TraumaBase. (a) Histograms of co-
variates; (b) The black line is the empirical cumulative distribution while the
red one corresponds to the normal distribution. . . . . . . . . . . . . . . . . 67

2.19 Convergence pro�les of the parameter estimates across SAEM iterations (sam-
ple size n1 = 200, 10% of missingness entry-wise, a�ecting all variables,
MCAR mechanism) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.20 Empirical distribution of the relative bias in parameter estimation, across 5
di�erent methods. E�ect of sample size: (left) n1 = 200 (right) n2 =
1000 (10% of missingness entry-wise, MCAR mechanism, ×100 replications
for each setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.21 Empirical distribution of the relative bias in parameter estimation, across 5
di�erent methods. E�ect of mechanism: (left) MCAR (right) MAR with
missingness in (Z2, U1, U2) depending on Z1 (n1 = 200, 10% of missingness
entry-wise, ×100 replications for each setting) . . . . . . . . . . . . . . . . 77

2.22 Empirical distribution of the relative bias in parameter estimation, across 5
di�erent methods. E�ect of mechanism: (left) MCAR (right) MAR with
missingness in Z2 depending on Z1, and in U2 depending on (Z1, U1) (n1 =
200, 10% of missingness entry-wise, ×100 replications for each setting) . . . 78

2.23 Empirical distribution of the relative bias in parameter estimation, across 5
di�erent methods. E�ect of percentage of missingness: (left) 10% entry-wise
(right) 30% entry-wise (n2 = 1000, MCAR mechanism, ×100 replications for
each setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Prior distribution of SLOPE and ABSLOPE, on β whose true value is non-null
(a) or null (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 ABSLOPE graphical model. Arrows indicate dependencies. White circles are
for latent variables, gray ones for observed variables and squares for parameters. 85

3.3 Convergence plots for three coe�cients with ABSLOPE (colored solid curves).
Black dash lines represent the true value for each β. Estimates obtained with
three di�erent sets of simulated data are represented by three di�erent colors. 92

12



3.4 Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for
n = p = 100, percentage of missingness 10% and Σ orthogonal (no correlation). 94

3.5 Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction
error (d), as function of length of true signal over the 200 simulations. Results
for n = p = 100, with correlation and strong signal. . . . . . . . . . . . . . 95

3.6 Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for
n = p = 500, percentage of missingness 10% and Σ orthogonal (no correlation). 96

3.7 Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction
error (d), as function of length of true signal over the 200 simulations. Results
for n = p = 500, with correlation and strong signal. . . . . . . . . . . . . . 97

3.8 Comparison of power (a), FDR (b), bias of β (c) and prediction error (d)
with varying sparsity and signal strength, with 10% missingness over 200
simulations in the case with correlation. . . . . . . . . . . . . . . . . . . . . 99

3.9 Percentage of missing values in each pre-selected variable from TraumaBase. 101

3.10 Empirical distribution of prediction errors of di�erent methods over 10 repli-
cations for the TraumaBase data. Results for SLOPE are not presented due
to its large gap compared to others, with a mean of prediction error equals to
0.27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.11 Empirical distribution of prediction errors of di�erent methods over 10 replica-
tions for the TraumaBase data, with interactions between each pair of variables.104

3.12 Convergence plots for σ with ABSLOPE (colored solid curves). (a) Case with
10% missing values; (b) Case without missing values. Black dash line repre-
sents the true value for σ. In (b) Colored dash lines indicate the biased MLE

σ̂MLE =
√

RSS
n

. Estimates obtained with three di�erent sets of simulated

data are represented by three di�erent colors. . . . . . . . . . . . . . . . . 111

3.13 Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for
n = p = 100, with 10% missingness and strong signal. . . . . . . . . . . . . 111

3.14 Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for
n = p = 500, with 10% missingness and strong signal. . . . . . . . . . . . . 112

3.15 Comparison of power (a), FDR (b), bias of β (c) and prediction error (d)
with varying sparsity and signal strength, with 10% missingness over 200
simulations in the case without correlation. . . . . . . . . . . . . . . . . . . 114

3.16 Histograms of pre-selected variables from TraumaBase. . . . . . . . . . . . . 115

3.17 The factor maps from PCA before correction of wrongly recorded entries. (a)
Observation's factor map (b) Variable's factor map. . . . . . . . . . . . . . 116

3.18 The factor maps from PCA after correction of wrongly recorded entries. (a)
Observation's factor map (b) Variable's factor map. . . . . . . . . . . . . . 117

13



4.1 Empirical distribution of power (upper) and FDR (lower) when Σ known,
grouped by length of true signal, over the 200 simulations. Results for n =
p = 100, percentage of missingness 10%, correlation as Toeplitz matrix with
0.5 coe�cient, signal strength 3

√
2 log p. . . . . . . . . . . . . . . . . . . . 124

4.2 Diagram of stages for handling missing values for model selection via miss-
Knocko� (aggregation by averaging the cases). . . . . . . . . . . . . . . . . 130

4.3 Empirical distribution of power (upper) and FDR (lower) when Σ known (left)
and when we estimate Σ (right), grouped by length of true signal, over the
200 simulations. Results for n = p = 100, percentage of missingness 10%,
correlation as Toeplitz matrix with 0.5 coe�cient, signal strength 3

√
2 log p. 133

4.4 Empirical distribution of power (upper) and FDR (lower) when Σ known (left)
and when we estimate Σ (right), grouped by average signal strength, over the
200 simulations. Results for n = p = 100, percentage of missingness 10%,
correlation as Toeplitz matrix with 0.5 coe�cient, length of true signal 20. . 134

4.5 Empirical distribution of power (upper) and FDR (lower) when Σ known
(boxes without �ll), when we estimate Σ using corrected shrinkage estima-
tion as eq. (4.16) (boxes with lightblue �ll) or empirical covariance matrix
without shrinkage (boxes with pink �ll), grouped by four methods, over the
200 simulations. Results for n = p = 100, percentage of missingness 10%,
correlation as Toeplitz matrix with 0.5 coe�cient, length of true signal 20
and signal strength 3

√
2 log p. . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.6 Empirical distribution of power (upper) and FDR (lower) when Σ known (left)
and when we estimate Σ using corrected shrinkage estimation as eq. (4.16)
(right), grouped by three methods with di�erent percentage of missing values,
over the 200 simulations. Results for n = p = 100, correlation as Toeplitz
matrix with 0.5 coe�cient, length of true signal 20 and signal strength 3

√
2 log p.136

4.7 Empirical distribution of power (upper) and FDR (lower) when we estimate
Σ, grouped by length of true signal, over the 200 simulations. Results for
n = p = 100, percentage of missingness 10%, correlation as Toeplitz matrix
with 0.5 coe�cient, signal strength 3

√
2 log p. . . . . . . . . . . . . . . . . 137

4.8 Empirical distribution of power (upper) and FDR (lower) when we estimate Σ,
when n = p = 100, grouped by length of true signal, over the 200 simulations.
Results for percentage of missingness 10%, correlation as Toeplitz matrix with
0.5 coe�cient, signal strength weak as 1.3

√
2 log p (left) or strong 3

√
2 log p

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.9 Empirical distribution of power (upper) and FDR (lower) when we estimate Σ,
when n = p = 100, grouped by length of true signal, over the 200 simulations.
Results for percentage of missingness 10%, correlation as Toeplitz matrix with
0.5 coe�cient, signal strength 3

√
2 log p. . . . . . . . . . . . . . . . . . . . 140

5.1 Screenshots of TraumaBase mobile application. . . . . . . . . . . . . . . . . 160

A.1 Procédure d'imputation multiple. . . . . . . . . . . . . . . . . . . . . . . . 168

A.2 L'algorithme EM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

14



A.3 Schéma de prise en charge d'un patient traumatisé. . . . . . . . . . . . . . 171

A.4 Un extrait de l'ensemble des données de TraumaBase avec diverses données
manquantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.5 Pourcentage de valeurs manquantes dans chaque variable de l'ensemble de
données TraumaBase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

15



List of Tables

1.1 Comparison of various model selection methods based on sparse regression. . 29

2.1 Coverage (%) for n = 10 000, correlation C and 10% MCAR, calculated over
1000 simulations. Bold indicates under-coverage. Inside the parentheses is
the average length of corresponding con�dence interval over 1000 simulations
(multiplied by 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Comparison of execution times between no NA, MCEM, mice, and SAEM
with correlation C and 10% MCAR, for n = 200 and n = 1000, calculated
over 1000 simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 For data with or without correlations, the percentage of times that each
criterion selects the correct true model (C), over�ts (O), or under�ts (U). . . 53

2.4 Estimation of β and its standard errors obtained by SAEM, using BIC for
model selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Confusion matrix for predictions on the test set. . . . . . . . . . . . . . . . 58

2.6 Coverage (%) for n = 1000, MCAR, and misspeci�ed models, calculated over
1000 simulations. Bold indicates under-coverage. Inside the parentheses is the
average length of the corresponding con�dence interval over 1000 simulations
(multiplied by 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Coverage (%) for n = 200 , correlation C and 10% MCAR, calculated over
100 simulations. Bold indicates under coverage. Inside the parentheses is the
average length of corresponding con�dence interval over 100 simulations. . . 65

2.8 Comparisons of the mean of the predictive performance (values are multiplied
by 100) of di�erent methods that can deal with missing data. AUC is the
area under the ROC curve; the accuracy is the number of true positives plus
true negatives, divided by the total number of observations; the sensitivity is
the true positive rate; the speci�city is the true negative rate; the precision
is the number of true positives over all positive predictions. Best results are
shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Comparison of average execution time (in seconds) for one simulation, in
the case without correlation and with 10% MCAR, for n = p = 100 and
n = p = 500 calculated over 200 simulations. (MacBook Pro, 2.5 GHz,
processor Intel Core i7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

16



3.2 Number of times that each variable is selected over 10 replications. Bold numbers

indicate which variables are included in the model selected by ABSLOPE. . . . . 102

3.3 The e�ect of the selected variables by ABSLOPE on the platelet. �+� indicates positive

e�ect while �−� negative; 0 indicates insigni�cant variables. . . . . . . . . . . . . . . 102

3.4 The variables selected more than 5 times out of the 10 replications, by each
method. �∗� indicates the interaction between two variables. . . . . . . . . . 104

17



Essential nomenclature

n number of rows in a data frame
p number of columns in a data frame
X matrix of covariates in Rn×p

N (µ,Σ) multivariate normal distribution with parameters:
the mean vector µ in Rp and covariance matrix Σ in Rp×p

Xobs covariates which are observed
Xmis covariates which are missing
y vector of responses in Rn

ε the noise vector in Rn

Xi i-th row of X in Rp

Xi,obs the observed elements in Xi (elements may di�er from one individual to another)
Xi,mis the missing elements in Xi (elements may di�er from one individual to another)
Xi,j (i, j)-th entry of X
X> transpose of X
β vector of parameters in a linear regression or generalized linear regression model in Rp

βj j-th parameter in β
θ a set of all model parameters
θ̂ estimates of θ
V̂ estimated variance of θ̂
i.i.d independent and identically distributed
◦ Hadamard product (element-wise product)
L(·) likelihood function
`(·) log-likelihood function
p(·) probability density function
‖X‖1 `1 norm of X (the sum of entries in absolute value)
r(β) rank of β
1n identity vector in Rn

∅ empty set

18



Chapter 1

Introduction

Contents

1.1 Overview of state of the art on missing values problematic 19

1.2 Linear regression with missing values . . . . . . . . . . . . . 21

1.2.1 Notations, ignorable missingness . . . . . . . . . . . . . . . . . 21

1.2.2 Estimation via MLE and EM algorithm . . . . . . . . . . . . . 24

1.2.3 Estimation via multiple imputation . . . . . . . . . . . . . . . . 25

1.2.4 Which method to use? . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Model selection with missing values . . . . . . . . . . . . . . 27

1.3.1 Model selection with complete data . . . . . . . . . . . . . . . . 27

1.3.2 Previous work with missing values . . . . . . . . . . . . . . . . 29

1.4 TraumaBase project . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Summary of contributions . . . . . . . . . . . . . . . . . . . . 33

1.5.1 Logistic regression with missing covariates . . . . . . . . . . . . 33

1.5.2 High-dimensional model selection to control FDR . . . . . . . . 33

1.5.3 Controlled variable selection with missing values in a model-X

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.4 Implementation and packages . . . . . . . . . . . . . . . . . . . 34

1.5.5 Contribution to the TraumaBase . . . . . . . . . . . . . . . . . 34

1.6 Supplementary material: sweep operator in EM . . . . . . . 35

1.6.1 De�nition of sweep operator . . . . . . . . . . . . . . . . . . . . 35

1.6.2 EM for a particular pattern . . . . . . . . . . . . . . . . . . . . 36

1.6.3 EM for general pattern . . . . . . . . . . . . . . . . . . . . . . . 37

1.1 Overview of state of the art on missing values
problematic

Missing data exist in almost all areas of empirical research. There are various reasons why
it may occur, including survey non-response, unavailability of measurements, and lost data.
Carrying out statistical analysis on data sets with missing data often requires to put additional
knowledge on how missing data are generated. The process by which data become incomplete
is called the missing data mechanism (Rubin, 1976; Seaman et al., 2013), and include the
following three types: i) Missing completely at random (MCAR), in which missingness of
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the data is independent of both the observed and the missing values; ii) Missing at random
(MAR), in which data missingness is independent of the missing values, given the observed
data. Missing data with MCAR and MAR are referred to as ignorable non-responses, because
maximum likelihood (ML) estimation can be obtained while ignoring these mechanisms. iii)
When the missingness depends on the missing values themselves given the observed data,
the process is missing not at random (MNAR), referred to as non-ignorable non-responses
because it is often necessary to model the mechanism that generate missing values to do
inference.

The most common practice of dealing with missing data, complete case analysis (or
listwise deletion), which con�nes the analysis to the observations with no missing attributes
leads to information loss and estimation bias, unless the missing data are MCAR. It really
must be stressed that this approach is no longer feasible in a large-scale context. As Zhu
et al. (2019) says: �One of the ironies of working with Big Data is that missing data play an
ever more signi�cant role, and often present serious di�culties for analysis.� As an example
to illustrate the inadequacy of complete case analysis with large data, they imagine a dataset
with n observations and p variables where each entry has a probability 1% to be missing
independently. If p = 5 then complete case analysis can be acceptable since we still have
around 95% observations; however, when dimension is much larger such as p = 300, only
5% complete rows are retained.

Many statistical methods have been developed to handle missing values (Schafer, 1997;
Little and Rubin, 2019; van Buuren, 2018; Josse and Reiter, 2018; Mayer et al., 2019; Mo-
han et al., 2013) in an inferential framework, i.e. when the aim is to estimate parameters
and their variance from incomplete data. One popular approach to handle missing values
is imputation, which consists in replacing the missing values by plausible values to get a
completed data that can be analyzed by any methods. One can either impute according to
a joint model or using a fully conditional modeling approach (van Buuren, 2018). Powerful
methods include imputation by random forest (Stekhoven and Buehlmann, 2012) and by low
rank methods (Josse and Husson, 2016; Robin, 2019; Udell and Townsend, 2019). More
recently, contributions also include imputation methods based on deep learning techniques,
such as a variational autoencoder (Mattei and Frellsen, 2019; Ma et al., 2018) and generative
adversarial networks (Yoon et al., 2018), however, these methods require a complete dataset
to best train the model. Without parametric assumptions, non-parametric Bayesian strategy
(Murray and Reiter, 2016) or recent approach using optimal transport (Muzellec et al., 2020)
are attempts in this direction. Nevertheless, even if we manage to impute by preserving
as well as possible the joint and marginal distribution of the data, a single imputation can
not re�ect the uncertainty associated to the prediction of missing values. To achieve this
goal, multiple imputation (MI) (Rubin, 2009; van Buuren and Groothuis-Oudshoorn, 2011)
consists in generating several plausible values for each missing data (to re�ect the variance
of prediction given observed data and imputation model) leading to di�erent imputed data
sets. Then, the analysis is performed on each imputed data sets and results are combined so
that the �nal variance takes into account the supplement variability due to missing values.

An alternative to handle missing values consists in modifying estimation processes so
that they can be applied to incomplete data. For example, one can use the EM algorithm
(Dempster et al., 1977) to obtain the maximum likelihood estimate (MLE) despite missing
values, accompanied by a supplemented EM algorithm (SEM) (Meng and Rubin, 1991) or
Louis' formula (Louis, 1982) for estimating the variance. This strategy is valid under MAR
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mechanisms. Even though this approach is perfectly suited to speci�c inference problems with
missing values, there are few solutions or implementations available, even for simple models
such as logistic regression. This can be explained because, unlike imputation, EM algorithm
relies explicitly on strong parametric assumptions and one has to derive an approach for each
statistical technique. But the clear advantage of EM is that one can expect better control of
the statistical properties of the approach developed. In addition, as it is often not possible to
get an explicit form for the EM algorithm, sampling methods were used such as Monte Carlo
sampling (Ibrahim et al., 1999), adaptive rejection sampling (Gilks and Wild, 1992), etc but
were time consuming which can also be explained why EM based algorithms were not used
in practice.

Another part of the literature focuses on statistical learning problems where the objective
is to best predict a response variable knowing that the covariates have missing data. For
instance, Josse et al. (2019) show the consistency of the simple mean imputation in prediction.
Kapelner and Bleich (2015) provide empirical results of predictive performance of decision
trees with missing covariates.

Even if there is a multitude of methods to manage missing data (more than 150 packages
exist in the R software as reported in Mayer et al. (2019)), surprisingly, there is really very
little solution, to make the selection of models and variables with missing data, especially
in large dimensions. In this dissertation, we consider the framework of statistical inference
with missing covariates and develop new methodologies of parameter estimation and model
selection to handle missing values. These works are motivated from a practical problem on a
severe trauma registry for decision making.

1.2 Linear regression with missing values

In this section, we focus on an introductory example�linear regression with missing covari-
ates. Let y ∈ Rn be the vector of responses and X ∈ Rn×p be the design matrix. Consider
the following classical linear regression model for complete data, with the vector of regression
coe�cients β ∈ Rp:

y = Xβ + ε , (1.1)

where the noise vector ε ∼ N (0, σ2
1n) with variance σ2.

To estimate its parameters β from incomplete covariates, we will describe on two key
methods: multiple imputation and EM algorithm. These method rely on assumptions on the
missing values mechanism. First, we start by recalling the classical mechanisms that generate
the missing values before sketching the methods.

1.2.1 Notations, ignorable missingness

For each individual i, we de�ne the missing data indicator vector Mi = (Mij, 1 ≤ j ≤ p),
with Mij = 1 if Xij is missing and Mij = 0 otherwise. The matrix M = (Mi, 1 ≤ i ≤ n)
then de�nes the missing data pattern. The missing data mechanism is characterized by the
conditional distribution of M given X and y, with parameter φ, i.e., p(Mi | Xi, yi, φ). In
addition, for one realization m of M , we can denote by obs(m) (resp. mis(m)) the indices
of the zero entries in m (resp. non-zero). Then we can decompose the i-th realization Xi
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with missing pattern m into a subset containing the observed data Xi,obs(m) and that for
the missing data Xi,mis(m). To lighten notations, when there is no ambiguity, we remove the
explicit dependence in m and write, e.g., Xi,obs and Xi,mis. Then we let Xobs (resp. Xmis)
be the observed (resp. missing) entries in the entire design matrix X.

Example 1. To illustrate the problem, we consider a simple example of a data matrix:

X =

1.3 2.4 2.3
2.1 3.2 3.6
1.8 4.1 4.2

 .

However, only the incomplete design matrix is available, denoted by X̃. Missing values are
symbolized with NA, representing �not available� and we assume for all value x ∈ R, NA×x =
NA and NA× 0 = 0 (Morvan et al., 2020). Then we have: X̃ = X ◦ (1−M) +NA ◦M ,
where the ◦ is used for Hadamard product. In summary, the available information can be
given for instance:

X̃ =

 1.3 2.4 2.3
NA 3.2 3.6
NA NA 4.2

 , M =

0 0 0
1 0 0
1 1 0

 .

In addition the decomposition of each row of X is give as:

X1 = X1,obs = (1.3, 2.4, 2.3), X1,mis = ∅ ,

X2 = (2.1, 3.2), X2,obs = (3.2, 3.6), X2,mis = 2.1 ,

X3 = (1.8, 4.1), X2,obs = 4.2, X2,mis = (1.8, 4.1) .

Now we can detail the de�nition of missing mechanisms. In the following, we use classical
notations from Little and Rubin (2019) even if these de�nitions are often subject to debates
(Seaman et al., 2013).

MCAR means that there is no relationship between the missingness of the data and any
values, observed or missing. In other words, MCAR implies that:

p(Mi | y,Xi, φ) = p(Mi|φ).

MAR means that the probability to have missing values may depend on the observed data,
but not on the missing data. Thus, the MAR assumption implies that, for each individual i,

p(Mi | yi, Xi;φ) = p(Mi | yi, Xi,obs;φ).

Let us consider a likelihood framework to perform regression with missing values. With
missing values, we need to consider a probabilistic framework and a distribution for the X.
Let us consider a joint Gaussian distribution where Xi ∼ N (µ,Σ). We note θ = (β, σ, µ,Σ),
the unknown parameters. Let's �rst recall the likelihood function of θ based on the complete
data (y,X):

L(θ | y,X) =
n∏
i=1

p(yi, Xi | θ) ,
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and its logarithm form:

`(θ | y,X) = logL(θ | y,X) =
n∑
i=1

log p(yi, Xi | θ) .

Then the MLE θ̂ satis�es:
θ̂ = arg max

θ
`(θ | y,X) .

With missing data, we want to �nd θ that maximizes the observed likelihood i.e.,

θ̂ = arg max
θ

`(θ | y,Xobs) .

Proposition 1 (Ignorable missingness). The MAR assumption implies that the distribution
of M can be ignored when maximizing the observed likelihood (Little and Rubin, 2019).
Indeed,

L(θ, φ; y,Xobs,M) = p(y,Xobs,M ; θ, φ)

=
n∏
i=1

p(yi, Xi,obs,Mi; θ, φ)

=
n∏
i=1

∫
p(yi, Xi,Mi; θ, φ)dXi,mis

=
n∏
i=1

∫
p(yi, Xi; θ)p(Mi | yi, Xi;φ)dXi,mis

=
n∏
i=1

∫
p(yi, Xi; θ)p(Mi | yi, Xi,obs;φ)dXi,mis

=
n∏
i=1

p(Mi | yi, Xi,obs;φ)×
n∏
i=1

∫
p(yi, Xi; θ)dXi,mis

= p(M | y,Xobs;φ)× p(y,Xobs; θ) .

Therefore, to estimate θ, we can maximize L(θ; y,Xobs) = p(y,Xobs; θ).

The strategies suggested in the following sections are only valid under ignorable missing-
ness assumptions, which is common.

Another mechanism MNAR, i.e., for each individual i,

p(Mi | yi, Xi;φ) = p(Mi | yi, Xi,obs, Xi,mis;φ) ,

will result in signi�cantly biased estimation since the observed variables cannot represent the
population anymore. Therefore, the missing mechanism should be also be considered. It
can be considered explicitly to form the likelihood function, for example the distribution for
missing values is often assumed to be logistic; however it requires strong parametric apriori,
complicates the inference, burdens the computational cost and is often limited to cases with
few MNAR variables. Other works propose methods which don't explicitly model the missing
mechanism as in Mohan et al. (2018); Tang et al. (2003). MNAR also raises the problem
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of identi�ability (the distribution of data is identi�able only if the mechanism is identi�able)
and most work focus on it, for instance Nabi et al. (2020) address the characterization of
model identi�ability based on graphical models, by adopting a causal point of view for MNAR.
More discussion for inference with MNAR for speci�c models is available in Stubbendick and
Ibrahim (2003, 2006); Tchetgen et al. (2018); Sportisse et al. (2018, 2019).

1.2.2 Estimation via MLE and EM algorithm

Often there are no explicit solution to the MLE of the observed likelihood and one can resort
to an EM algorithm (Dempster et al., 1977). The EM algorithm starts with an initial value
θ0, and iterate as follows until convergence. Letting θt be the estimate of θ at t-th iteration,
the (t+ 1)-th iteration of EM is processed as follows:

� E step. Find the expectation of complete-data log-likelihood, with respect to the
conditional distribution of missing variables given the observed ones and if θ were θt:

Q(θ | θt) = E
(
`(θ | X, y) | Xobs, y, θ

t
)

=

∫
`(θ | X, y)p(Xmis | Xobs, y, θ

t)dXmis .

� M step. Determine θt+1 by maximizing this expected log-likelihood

θt+1 = arg max
θ

Q(θ | θt) .

In a speci�c case of joint multivariate Gaussian assumption on X, the calculation can be
simpli�ed. The approach consists in considering the joint Gaussian distribution for (y,X).

(y,X) ∼ N (µy,X ,Σy,X) with µy,X =

(
µy
µX

)
and Σy,X =

(
Σy Σy,X

ΣX,y ΣX

)
.

The E step in an exponential family follows from standard complete-data theory for means
of conditional distributions, and the M step uses the identical computational method as
MLE from complete data. Once the parameters of the Gaussian distribution are estimated,
the parameters of the regression can be directly obtained by plug-in the estimates into the
expression

β = (µy − Σy,XΣ−1
X µX ,Σy,XΣ−1

X )> .

In the same way, the variance can be estimated via the classical formula as:

V̂ (β) = diag(C) with C =
1

n

(
Σy − β>ΣXβ

)
(ΣX + µXµ

>
X)−1 . (1.2)

Note that there are no di�erences between the response variable and the explanatory
variables, since their role is symmetrical and only the joint distribution matters.

For the prediction on a test set, one can apply the classical formula:

E(y | X) = (µy − Σy,XΣ−1
X µX) + Σy,XΣ−1

X X .

If the covariates in test set also contain missingness, by applying the decomposition X =
(Xmis, Xobs) as introduced in Section 1.2.1, we have:

E(y,Xmis | Xobs) = (µy,mis − Σ(y,mis),obsΣ
−1
obsµobs) + Σ(y,mis),obsΣ

−1
obsXobs ,
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with µy,mis (resp. µobs) the missing (resp. observed) elements of µ for the new observation.
The covariance matrix Σ is decomposed in the same way. In this way, y for a new observation
is predicted using the observed information and estimated parameters.

One example of implementation of EM with incomplete multivariate Gaussian data is
provided in Novo and Schafer (2013) using the SWEEP operator (Schafer, 1997) (see Section
1.6 for details). As far as we know, the linear regression with missing values hasn't yet been
implemented. One of the contribution is, based on the SWEEP operator, the implementation
of the linear regression with missing values via EM, model selection via BIC, and prediction
on test set with missing values. The R package misaem (Jiang and Mozharovskyi, 2020) is
available in CRAN and is introduced in Chapter 5.

1.2.3 Estimation via multiple imputation

Multiple imputation consists in generating di�erent imputed values for each missing entries
leading to say K completed datasets, and then estimating the parameters, here the β from
each imputed dataset, by �tting linear regression respectively. Let's denote by β̂k, the set of
estimate from the kth completed data, and its estimated variance V̂k, for k ∈ {1, . . . , K}. In
the �nal pooling step, results are combined using Rubin's rules (Rubin, 2009). The estimate
is obtained by taking the average over β̂k from all K imputed datasets:

β̂ =
1

K

K∑
k=1

β̂k ,

and the estimated variance is obtained by combining the within-imputation component V̂within

and between-imputation component V̂between of overall variance as follows

V̂ = V̂within +

(
1 +

1

K

)
V̂between

=
1

K

K∑
k=1

V̂k +

(
1 +

1

K

)
1

K − 1

K∑
k=1

(θ̂k − θ̂)(θ̂k − θ̂)>

Figure 1.1 illustrates the main steps described above.

Figure 1.1: Procedure of multiple imputation.

When the imputation model is in agreement with the analysis model (here the regression
model) then multiple imputation can lead to unbiased estimates and con�dence intervals with
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good coverage properties. For instance, here, we can impute the data by assuming a joint
Gaussian distribution for (y,X) or by using iterative conditional imputation with regression
models of each variables given the others. More details can be found in Murray et al. (2018).
For the former approach, an EM algorithm will be performed to estimate µy,X and Σy,X ,
then missing values are imputed by drawing K times from their predictive distribution, i.e. a
Gaussian distribution of the missing values given observed values and estimated parameters.
An additional layer of bootstrapping is added to get what is called proper multiple imputation
(Little and Rubin, 2019; Efron, 1994).

Note that even though the aim is to perform a model of y on X, multiple imputation
is often carried out including the response variable in practice, which is quite debatable as
detailed in the following section.

1.2.4 Which method to use?

People often ask the question in the treatment of missing values, which method should we
use to achieve the most optimal estimate. However, we cannot say any of them is the best,
since the e�ectiveness depends on a combination of factors: the distribution of variables, the
structure of relationship, the percentage of missing values, and the mechanism underlying
the missing values. Therefore, before applying any method on the dataset, researchers are
encouraged to explore the data as much as possible, such as summarizing the variables and
visualizing the pattern of missing values.

Both EM and multiple imputation have advantages and drawbacks. One drawback of
EM is that it cannot provide variance estimate along, but must accompanied by another
method such as SEM (Meng and Rubin, 1991) or a bootstrap procedure (Efron, 1982). EM
algorithm is a model-based approach so a speci�c EM algorithm needs to be implemented for
each statistical analysis that one wants to apply on a dataset. In addition, such EM algorithms
are not necessarily straightforward to establish, in contrast to multiple imputation where once
the data have been multiply imputed, one can apply any methods. Multiple imputation is
easier to implement and we can expect both unbiased estimate and its variance if a proper
imputation model and aggregation rule are taken. However, it's debatable whether to use
response variable y in the imputation model, for example, D'Agostino Jr and Rubin (2000)
suggested not include the response to avoid conjecturing values for the missing covariates,
having already observed in the response values. While according to empirical results, some
researches (Donders et al., 2006; Little, 1992) encourage the use of response and claimed
that the response contain essential information about the distribution of missing covariates.
As a simple example, one can consider two variables positively correlated y and X1 and there
are missing values only on X1, the aim is to do regression of y on X1; to impute X1 it is
better to use y than X1 alone. From empirical study, the performance of EM and imputation
can vary in di�erent model, for instance, the likelihood based method performs better in
factor analysis studies compared to imputation (Bernaards and Sijtsma, 1999).

The debate for optimal methods lasts long and further abundant discussion is provided
in the literature (Pan and Bai, 2015; Little, 1992; Donders et al., 2006).
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1.3 Model selection with missing values

Handling missing data within the context of high-dimensional variable selection is a very
important problem. Indeed, missing data are omnipresent. For example, genetic data obtained
from microarray experiments often contain missing values for several reasons: insu�cient
resolution, image corruption, manufacturing errors, etc. And a vast number of predictors is
available but only a few are deemed relevant for explaining biological phenomena.

1.3.1 Model selection with complete data

First let's review the literature of model selection methods in a common case without any
missing value. Traditional regression methods, in which a variable is added or removed from
the model based on criteria such as AIC and BIC, have been widely used, but require intensive
calculations for large data. In general paradigms of modern statistics, solutions are usually
suggested based on sparse recovery. For instance, in the classical linear regression model as
described in eq.(1.1) but consider p >> n, the parameter vector β is assumed to be sparse.
The model selection problem can be viewed as a multiple testing:

H0 : βj = 0 ↔ H1 : βj 6= 0, j = 1, 2, · · · , p.

A general evaluation on the model selection results of an estimator β̂ = (β̂1, . . . , β̂p) is based
on both power and false discovery rate (FDR), de�ned as follows:

Power = E
(

#selected true variables
# all important variables

)
= E

(
#{j : β̂j 6= 0 ∧ βj 6= 0}
max(1,#{j : βj 6= 0})

)
,

FDR = E
(

# selected null variables
# selected variables

)
= E

(
#{j : β̂j 6= 0 ∧ βj = 0}
max(1,#{j : β̂j 6= 0})

)
.

In this context, the LASSO (Tibshirani, 1996), now a default penalized likelihood method,
has proved itself to be successful at simultaneously estimating parameters and covariate sets.
The LASSO aims at solving:

β̂LASSO = arg min
β∈Rp

{
1

2
‖y −Xβ‖2 + σλ‖β‖1

}
,

where the penalty coe�cient λ ≥ 0. While LASSO possesses nice theoretical guarantees, it
may lead to false discoveries (Su et al., 2017) and it allows to identify the true model only
under rather strict irrepresentability conditions (Wainwright, 2009; Tardivel and Bogdan,
2018). The adaptive LASSO variant (Zou, 2006) instead uses a weighted `1 penalty:

β̂adapt = arg min
β∈Rp

{
1

2
‖y −Xβ‖2 + σλ

p∑
j=1

wj|β|(j)

}
,

where w = (w1, w2, · · · , wp) is the weighting vector as a function of some initial estimates
of regression coe�cients. By adjusting regularization, adaptive LASSO reduces bias in esti-
mation and can be consistent for variable selection even when the irrepresentability condition
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is not satis�ed (see e.g. Fan et al. (2014); Tardivel and Bogdan (2018); Rejchel and Bogdan
(2019)). However, performance properties of adaptive LASSO still rely heavily on the weight
function and tuning parameters, whose optimal choices depend on unknown aspects of the
estimation problem such as signal magnitude or sparsity.
More recently, Ro£ková and George (2018) developed the Spike-and-Slab LASSO (SSL) pro-
cedure which bridges the default penalized likelihood approach (the LASSO) and the default
Bayesian variable selection approach (spike-and-slab). In SSL, the penalty function arises
from a fully Bayes formulation with a spike-and-slab prior:

p(β | γ) =

p∏
j=1

[γjφ1(βj) + (1− γj)φ0(βj)] ,

where φ1 serves as a slab distribution for modeling large e�ects, φ0 as a spike one for
modeling negligibly small e�ects, and γj ∈ {0, 1} indexes all the possible subset models. As
such, exerts self-adaptation properties with less hyper-parameter tuning required. In addition,
SSL alleviates over-shrinkage of important signals by providing enough prior support for large
e�ects. Theoretical results and simulations reported in Ro£ková and George (2018) and
Ro£ková et al. (2018) show that SSL attains near rate-minimax convergence (for the posterior
mode as well as the entire posterior) and performs very well even when the columns in the
design matrix are strongly correlated.
Another alternative is Sorted L-One Penalized Estimator (SLOPE) method of Bogdan et al.
(2015) by shrink larger coe�cient more stringently:

β̂SLOPE = arg min
β∈Rp

{
1

2
‖y −Xβ‖2 + σ

p∑
j=1

λj|β|(j)

}
,

where the penalty coe�cients λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and the absolute values of elements in
β are sorted in a decreasing order |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p). The main motivation behind
SLOPE was the control of the FDR, which is also the central goal of many methodological
developments in multiple regression (see e.g. Barber et al. (2015); Candes et al. (2018)).
Compared to methods aiming at perfect signal recovery, controlling for FDR is more liberal
as it allows for some small number of mistakes. As a result, this leads to substantial gains in
power and in prediction improvements when the signal is weak. As shown in Bogdan et al.
(2015), SLOPE controls for FDR when the design matrix is orthogonal. Moreover, Su and
Candès (2016) and Bellec et al. (2018) showed that, contrary to the LASSO, SLOPE allows
one to achieve the exact minimax convergence rate for regression coe�cients in sparse high
dimensional regression. However, similarly as with the LASSO, it is challenging to attain
good prediction and, at the same time, good variable selection with SLOPE in �nite samples.
Large amounts of shrinkage, needed to keep FDR small, result in large estimation bias of im-
portant regression coe�cients and thereby poor estimation. One practical remedy, suggested
by Bogdan et al. (2015); Brzyski et al. (2019), is proceeding in two steps: i) using SLOPE to
detect relevant predictors; ii) applying standard least-squares with selected predictors for es-
timation. This two-step approach allows one to diminish the bias of SLOPE. However, there
still remains the problem of the loss of FDR control, which typically occurs when the columns
of the design matrix are correlated. This loss of FDR control results from over-shrinkage of
large regression coe�cients, whose unexplained e�ect is often compensated by even slightly
correlated �false� explanatory variables (see Su et al. (2017) for the theoretical analysis of
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the similar phenomenon for the LASSO).

Other extension of the LASSO targeted on optimal trade-o� between false positive and
true positive includes LASSO-Zero (Descloux and Sardy, 2018) which, in a �st step, solves
the basis pursuit problem (Chen et al., 2001) (relevant for the noiseless case in standard linear
models), for an augmented design matrix with a noise dictionary consisting in a random matrix
(to �t the noise term), and in a second step the method thresholds the obtained solution
to retain only the largest coe�cients. In summary, Table 1.1 illustrates the advantages and
disadvantages for the representative methods mentioned above.

Table 1.1: Comparison of various model selection methods based on sparse regression.

Methods Advantages Disadvantages Theoretical results

LASSO
default penalized method;

good power

many false discoveries;

parameters tuning required;

strict irrepresentatbility condition

sign recovery;

support recovery

Adaptive LASSO bias reduction compared to LASSO

many false discoveries;

depending on the weight function;

parameters tuning required

consistency

SSL
parameters tuning less required;

bias reduction by providing prior support
many false discoveries convergence

SLOPE FDR control large bias due to over shrinkage
FDR control;

convergence

1.3.2 Previous work with missing values

There are only a few methods for selecting a model with missing values, whether to recov-
ering important variables or controlling the FDR. For example, in generalized linear models,
Claeskens and Consentino (2008); Ibrahim et al. (2008) adapted likelihood-based information
criteria designed for complete data such as AIC. However, their methods cannot process large
data where the dimension p is larger than (or comparable to) the sample size n.

To handle high-dimensional incomplete data in linear models, Loh and Wainwright (2012)
formulated a LASSO variant by modifying the covariance matrix estimation for the case of
missing values, and solved the resulting non-convex problem with an algorithm based on the
projected gradient descent. However, this method assumes that the l1 norm is bounded by a
constant which depends on the sparsity level rarely known in practice. In other related work,
Zhao et al. (2017) suggested a pseudo-likelihood method with a LASSO penalty, which can
be used to select variables, but does not estimate the parameters. Other extension based
on LASSO also includes convex conditioned LASSO (Datta et al., 2017), with asymptotic
sign-consistent selection property, but can handle only MCAR data. More recently, targeted
on sign recovery, Descloux et al. (2020) reformulated the missing covariates into a sparse
corruption problem and then solves it with robust LASSO-Zero method, which considered,
instead of the basis pursuit problem, solving the justice pursuit problem (Laska et al., 2009)
(relevant for the noiseless case in the sparse corruption problem), adding a random matrix
to account for noise. The method of Descloux et al. (2020) is robust to MNAR data given
theoretical guarantees on the sign recovery, however, empirical results are only satisfactory
when the sparsity index and/or proportion of missing entries is low.
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An alternative to do variable selection with missing values could be to do multiple impu-
tation, apply a variable selection on each imputed dataset and combine the results. However,
there is no common solution to aggregate the selected variables, since di�erent imputed
dataset can return di�erent models (di�erent sets of variables) and the Rubin's rules (Rubin,
2009) only serve for aggregating estimators (as a regression coe�cient). Liu et al. (2016)
combined penalized regression techniques with multiple imputation, where they showed in
empirical study, good selection performance when the correlation among variables and miss-
ing proportion are high. However, aggregating di�erent models for the resulting multiple
imputed data sets becomes increasingly complex as the number of data grows.

Despite recent advances, the model selection with missing values remains under-developed.
Interesting theoretical guarantees are often obtained under restrictive assumptions. Method-
ology for speci�c purpose, such as FDR control or non-parametric regression models, has non
been explored yet with missing values.

1.4 TraumaBase project

Our work is motivated by a collaboration with the TraumaBase1 group at APHP (Public As-
sistance - Hospitals of Paris), which is dedicated to the management of severely traumatized
patients.
Major trauma refers to injuries that cause prolonged disability or endanger a person's life,
such as injury from road accidents, interpersonal violence and falls. The World Health Or-
ganization has recently reported that major trauma is a prominent source of mortality and
morbidity around the world (Hay et al., 2017). In particular, major trauma is the leading
cause of mortality and second cause of disability in the 16�45 age group, while hemorrhagic
shock and traumatic brain injuries are the two leading causes of early preventable death in
severe trauma patients (Dutton et al., 2010; Kauvar and Wade, 2005).
The path of a traumatized patient involves several stages: from 1) the accident site, where
care is typically provided by emergency care teams, to transfer to 2) resuscitation room of
a trauma center, where immediate interventions such as CT-scan assessment, emergency
surgery or radiology can be organized, followed by the admission in 3) intensive-care unit
for organ dysfunction support optimization, and �nally 4) a comprehensive care at the hos-
pital, as presented in Figure 1.2. Due to the highly stressful and multi-player environments
involved, evidence suggests that the patient management�even in mature trauma systems�
often exceeds acceptable time frames (Hamada et al., 2014). In addition, discrepancies may
be observed between the diagnoses made by emergency doctors in the ambulance and those
made when the patient arrives at the trauma center (Hamada et al., 2015). Such discrepan-
cies can result in poor outcomes like inadequate hemorrhage control and delayed transfusion.
To improve decision-making and patient care, 19 French trauma centers have collaborated
since 2011 to collect detailed high-quality clinical data from the accident site right through to
the hospital. Some centers joined TraumaBase after January 2011. The resulting database,
TraumaBase, is a multicenter prospective trauma registry that is continually updated, and
now has data up to 20 000 trauma cases. Sociodemographic, clinical, biological and ther-
apeutic data (from the pre-hospital phase to discharge, if hospitalized) are systematically
recorded for all trauma patients, and all patients transported to the emergency rooms of

1http://www.traumabase.eu/
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Figure 1.2: Management scheme of a traumatized patient.

participating centers are included in the registry. The sheer quantity of collected data (with
more than 250 variables) makes this dataset unique in Europe. However, these data�coming
from multiple sources� have high inter-center variability, not to mention the fact that a lot
of data are missing, both of which problems make modeling challenging.
One aim of the project is to model the decisions and events taken by the emergency doctors

Figure 1.3: An extract of TraumaBase dataset with various missing data.

to help them making choices in a very stressful environment and avoid discrepancies between
the diagnosis made by the emergency doctors and the one made by the doctors when the
patient arrives at the Trauma-center. For instance, we would like to establish predictive
models to know whether or not to predict the risk of severe hemorrhage, in order to prepare
an appropriate response upon arrival at a trauma center, e.g., a massive transfusion protocol
and/or immediate haemostatic procedures.
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Figure 1.4: Percentage of missing values in each variables in TraumaBase dataset.

From a statistical point of view, the challenges involve performing predictive models such as
logistic regressions or regression with many missing values. Other tasks can include model
selection to choose the most important measurements to explain the response, in order to
help propose an innovative response to the public health challenge of major trauma.

Figure 1.3 shows an extract of dataset, with di�erent coding of missing values (NA for
Not Applicable, Imp for impossible, NR for Not Recorded, NM for Not Made), and Figure
1.4 summarizes the percentage of missing values in 45 representative variables among total
measures. Reasons why these missingness occurred can be various. For example, when one
patient is in a very urgent situation, there is no time left to measure some of the variables
(and the medical doctors know, without measuring it, that the values are critical); this case
can be considered as MNAR. Other cases include data that have simply been not recorded in
the database (Data were measured but not reported in the TraumaBase simply because they
are simply forgotten or when they are merged from di�erent sources for example). In addition,
as mentioned, some trauma centers have progressively joined the TraumaBase, and they do
not have necessarily the same device in each hospital, which results in particular missing data
structures with missing columns (corresponding to missing features) for some of the groups.
These codes�NR, NM, Imp�can therefore help to understand the nature of the missing
data and the reasons for their occurrence. Indeed, even if we will not detail these aspects in
this document, the �rst thing to do when we have missing data is to explore, visualize, make
descriptive statistics to understand the missing data. In this work, we have always exchanged
with the physicians to see if the hypotheses made seemed plausible. According to the �gures,
we observe how missingness signi�cantly a�ects the TraumaBase data, and how essential one
needs to design a speci�c methodology related to missing values.
In this thesis, we investigated a subset of the whole TraumaBase, which contains 7495
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individuals logged in the trauma data, included from January 2011 to March 2016, with ages
ranging from 12 to 96.

1.5 Summary of contributions

One may realize that the literature of statistical inference with missing values is not abundant
enough. Despite EM algorithm is studied thoroughly in these decades, but applications and
implementations are limited to the simple models, or with �xed pattern of missingness. As
far as we know, none of the available methods address model selection problem to deal with
missing values and control FDR simultaneously. The objective of this thesis is to provide
e�cient and complete statistical methodology to deal with inference problem with existence
of missing values, and in particular to the medical application as described in Section 1.4. In
addition, user-friendly implementations as R packages are developed. Throughout this dis-
sertation, we assume the MAR mechanism which implies that the missing values mechanism
can therefore be ignored when maximizing the likelihood (Little and Rubin, 2019), and we
suppose that the missingness occurs only in covariates X but not in the response y. Detailed
contributions are listed as follows.

1.5.1 Logistic regression with missing covariates

In Chapter 2, we address the problem of statistical inference for logistic regression model with
missing covariates. Surprisingly, there are very few solutions for performing logistic regression
with missing values in the covariates, even it's a common model. A complete approach based
on a stochastic approximation version of the EM (SAEM) algorithm (Lavielle, 2014; Delyon
et al., 1999) is proposed in order to perform statistical inference with missing values, including
the estimation of the parameters and their variance, derivation of con�dence intervals, and
also a model selection procedure. The problem of prediction for new observations on a test
set with missing covariate data is also tackled. Supported by a simulation study in which the
method is compared to previous ones, it has proved to be computationally e�cient, and has
good coverage and variable selection properties. The approach is then illustrated on Traum-
aBase by predicting the occurrence of hemorrhagic shock, a leading cause of early preventable
death in severe trauma cases. The aim is to improve the current red �ag procedure (Hamada
et al., 2018), a binary alert identifying patients with a high risk of severe hemorrhage.

1.5.2 High-dimensional model selection to control FDR

Chapter 3 provides a new methodology to select important variables with missing values,
speci�cally focusing on high-dimensional data where p is comparable to n or even larger
than n. We propose a new synergistic procedure�adaptive Bayesian SLOPE (ABSLOPE)
� which e�ectively combines the SLOPE method (sorted l1 regularization) (Bogdan et al.,
2015) together with the Spike-and-Slab LASSO method (Ro£ková and George, 2018). We
position our approach within a Bayesian framework which allows for simultaneous variable
selection and parameter estimation, despite the missing values. As with the Spike-and-Slab
LASSO, the coe�cients are regarded as arising from a hierarchical model consisting of two
groups: 1) the spike for the inactive and 2) the slab for the active. However, instead of
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assigning independent spike priors for each covariate, here we deploy a joint �SLOPE� spike
prior which takes into account the ordering of coe�cient magnitudes in order to control for
false discoveries. Through extensive simulations, we demonstrate satisfactory performance in
terms of power, FDR and estimation bias under a wide range of scenarios. Finally, we show
excellent performance in predicting platelet levels when analyzing TraumaBase data.

1.5.3 Controlled variable selection with missing values in a model-
X framework

Chapter 4 also tackle the problem of model selection with missing values while controlling
FDR. However, di�erent from the setting of Chapter 3, we suppose a model-X framework
where the conditional distribution of the response given the covariates is not speci�ed, but the
joint distribution of covariates is known. Such setting has advantages when the distribution
of y given X is complicated such as with non-linear regression model. The newly proposed
methodology�missKnocko� is based on the model-X knocko�s method (Candes et al., 2018).
Our method uses knocko�s twice: it �rst substitutes missing values with knocko�s, and then
proceeds with a standard application of model-X knocko�s on imputed dataset. In order to
account for the uncertainty, multiple imputation is easily incorporated by generating several
knocko� copies at the �rst stage, and we discuss di�erent ways to aggregate the support.
We study the performance in terms of power and FDR through extensive simulations.

1.5.4 Implementation and packages

Finally, Chapter 5 provides the instructions about the implementation of the methodologies
mentioned above. Two packages are developed to handle the statistical inference with missing
values:

� misaem is an R (R Core Team, 2017) package to apply statistical inference for linear
regression and logistic regression model with missing data. This methodology is based
on likelihood, including:

1. EM-type algorithms to estimate the parameters;

2. Obtain of variance of estimated parameters;

3. Model selection procedure based on BIC;

4. Prediction on test set with missing values.

� ABSLOPE is an R package which aims at high-dimensional model selection with missing
values via Adaptive Bayesian SLOPE. In addition, an simpli�ed algorithm to accelerate
the computing time is also implemented with C++ functions.

1.5.5 Contribution to the TraumaBase

We collaborate with medical partners (the Traumabase group from Paris hospitals) to improve
the management and care of severely traumatized patients as detailed in Section 1.4. We have
built models with missing values to predict the risk of hemorrhagic shock and level of platelet
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given pre-hospital data. Our collaborators, the doctors are extremely satis�ed with the results.
Indeed, the proposed model of logistic regression with missing values improves the prediction
of hemorrhagic risk compared to the prediction made by physicians. Therefore, the objective
is now to implement the model in real time, because beyond predictive quality, we must see
how physicians will react to such a decision support tool, how to present recommendations
with an ergonomic interface and how physicians react to this decision support tool. The
results were communicated through French Society of Anesthesia & Intensive Care Medicine
(SFAR) meeting and we received constructive comments and strong interest in real time
application.

1.6 Supplementary material: sweep operator in EM

In this section, we brie�y introduce the sweep operator and then show how to implement
EM algorithm to estimate the parameters for multivariate Gaussian distribution using sweep
operator.

1.6.1 De�nition of sweep operator

Single sweep

Suppose that G is a symmetric matrix of dimension p × p with element gij. The sweep
operator SWP[k] operates on G by replacing G with another p × p symmetric matrix H,
written as:

H = SWP[k]G ,

where the elements of H are given by:

hkk = − 1

gkk
,

hjk = hkj =
gjk
gkk

, for j 6= k ,

hjl = hlj = gjl −
gjkgkl
gkk

, for j 6= k and l 6= k .

(1.3)

We say that the matrix G is swept on position k.

Successive sweep

Suppose that a symmetric p × p matrix G can be partitioned as G =

[
G11 G12

G21 G22

]
, where

G11 is p1×p1. After successive applications of sweeping on positions 1, 2, · · · , p1, the matrix
becomes:

SWP[1, 2, · · · , p1]G
∆
= SWP[p1]SWP[p1−1] · · · SWP[1]G =

[
−G−1

11 G−1
11 G12

G21G
−1
11 G22 −G21G

−1
11 G12

]
.

Remark that the sweep operator is commutative.
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Reverse-sweep

It is also convenient to de�ne a reverse-sweep operator that returns a swept matrix to its
original form:

H = RSW[k]G ,

where the elements of H are given by:

hkk = − 1

gkk
,

hjk = hkj = −gjk
gkk

, for j 6= k ,

hjl = hlj = gjl −
gjkgkl
gkk

, for j 6= k and l 6= k .

(1.4)

Remark that the reverse-sweep operator is also commutative. We can verify that:

RSW[k]SWP[k]G = G .

1.6.2 EM for a particular pattern

First we consider a simple case of missing pattern for multivariate normal data. Suppose
X ∼ Np(µ,Σ). We partition X as X = (X1, X2) where X1 and X2 are submatrices with
dimension n× p1 and n× p2 respectively. We know the marginal distribution of X1 and X2

are Np1(µ1,Σ11) and Np2(µ2,Σ22), where µT = (µT1 , µ
T
2 ) and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, the block

decomposition corresponds to the decomposition of X.

Now we want to implement EM algorithm in a very simple case of missing pattern: all
X1 are observed and all X2 are missing.

In the setting described above, tth iteration of EM algorithm proceeds as follows:

� E-step. We consider another parametrization of the problem:

φ =

−1 µT1 αT2·1
µ1 Σ11 BT

2·1
α2·1 B2·1 Σ22·1

 ,

where X2|X1 ∼ Np2(µ2·1,Σ22·1) with:

µ2·1 = α2·1 +B2·1X1 ,

α2·1 = µ2 − Σ21Σ−1
11 µ1 ,

B2·1 = −Σ21Σ−1
11 ,

Σ22·1 = Σ22 − Σ21Σ−1
11 Σ12 .

(1.5)

Given θt obtained at the previous iteration, the sweep operator SWP and the reverse
sweep operator RSW will allow us to easily compute φt. Indeed, let

θt =

[
−1 (µt)T

µt Σt

]
,
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we have:

SWP[1, 2, · · · p1]θt =


(αt2·1)T

A

(Bt
2·1)T

αt2·1 (Bt
2·1)T Σt

22·1

 ,

and applying the reverse sweeping operator to the upper left block of the previous
matrix gives us:

φt =


(αt2·1)T

RSW [1, . . . , p1]A
(Bt

2·1)T

αt2·1 (Bt
2·1)T Σt

22·1

 .

In short, With θt obtained from last iteration, the E-step apply �rst the sweep to the
full matrix on position 1, 2, · · · p1 and then the reverse sweep to the upper-left (p1 +
1)×(p1+1) submatrix on position 1, 2, · · · p1. The result of these two transformation is

φt. Finally we replace the su�cient statistics T =

[
n 1TX

XT1 XTX

]
with their expected

values:

E(T |X1, θ
t) =

 n µT1 (µt2·1)T

µ1 Σ11 + µ1µ
T
1 X1(µt2·1)T

µt2·1 µt2·1X
T
1 Σt

22·1 + µt2·1(µt2·1)T

 ,

where all the elements can be found in φt.

� M-step. θt+1 may be computed from the su�cient statistics by:

θt+1 = SWP[0]n−1T .

1.6.3 EM for general pattern

In general case of missing data, we can specify all possibilities of missing patterns and see
how to apply the sweep operator in EM algorithm.

Missing patterns and preliminary manipulations We specify each column of data
matrix as X = (X1, X2, ·, Xp). Let matrix of missingness patterns R be a S × p matrix of
binary indicators with with element rsj where

rsj =

{
1, if Xj is observed in pattern s ,

0, if Xj is missing in pattern s .

R is shown as Figure 1.5. For each missingness pattern s, let O(s) and M(s) denote the
subsets of column labels {1, 2, · · · p} corresponding to variables that are observed and missing
respectively:

O(s) = {j : rsj = 1} ,
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Figure 1.5: Matrix of missingness patterns associated with X with 1 denoting an observed
variable and 0 denoting a missing variable

M(s) = {j : rsj = 0} .

Finally let I(s) denote the subset of observation numbers {1, 2, · · ·n} corresponding to the
rows of data that exhibit pattern s.

Implementation of EM As same as the idea in the simplest case, tth iteration of EM
algorithm performs as:

� E-step. For each missing pattern, sweep operates on positions related to observed
variables O(s), to transform θt to φt. Then calculate the expected value of su�cient
statistics E(T | Xobs, θ

t). We should pay attention here that in the formula of su�cient
statistics

T =

[
n 1TX

XT1 XTX

]
=
∑
i∈I(s)

S∑
s=1


1 Xi1 Xi2 · · · Xip

Xi1 X2
i1 Xi1Xi2 · · · Xi1Xip

...
...

...
. . .

...
Xip XipXi1 XipXi2 · · · X2

ip

 .

the �sum� should �rst operate for i ∈ I(s) then s = 1, 2, · · · , S.

� M-step. θt+1 = SWP[0]n−1E(T |Xobs, θ
t).

Now we can implement EM in a general case of missing data for multivariate normal distri-
bution as Algorithm 1.

Here the symbol �:=� indicates the operation of assignment. This implementation require
two (p+ 1)× (p+ 1) matrix workspaces: T , into which the expected su�cient statistics are
accumulated, and θ, which holds the current estimate of the parameter. For simplicity the
rows and columns of these matrices are labeled from 0 to p.

38



Algorithm 1 Single iteration of EM for multivariate normal data with missingness

Input: T := Tobs;
for s := 1, 2, . . . , S do
for j := 12, . . . , p do
if rsj = 1 and θjj > 0 then
θ := SWP[j]θ

else if rsj = 0 and θjj < 0 then
θ := RSW[j]θ

for i ∈ I(s) do
for j ∈M(s) do
cj := θ0j

for k ∈ O(s) do
cj := cj + θkjXik

for j ∈M(s) do
T0j := T0j + cj
for k ∈ O(s) do
Tkj := Tkj + cjxik

for k ∈M(s) and k ≥ j do
Tkj := Tkj + θkj + ckcj

Output: θ := SWP[0]n−1T .

In addition, a single vector of length p, denoted by c = (c1, c2, · · · , cp) is needed as a
temporary workspace to hold the values of X∗ij = a0j +

∑
k∈O(s) akjXik, where ajk denote

the (j, k) th element of matrix A = SWP[O(s)]θ.

The iteration begins by setting T equal to Tobs which we assume has already been com-
puted. The expectations of Xij and XijXik that contribute to Tmis are then calculated and
added into T , one missingness pattern at a time. In order to calculate these expectations
within a missingness pattern s, the θ matrix must be put into the required SWP[O(s)] con-
dition; for this, we use the convenient book-keeping device that a diagonal element θjj is
negative if and only if θ has been swept on position j. Finally after the expected su�cient
statistics are fully accumulated into T , the new parameter estimate is calculated and stored
in θ in preparation for the next iteration.

The sweep operator simpli�es the notation of EM algorithm for incomplete multivariate
normal data and also helps for its implementation. Furthermore, based on sweep operator,
the implementation of linear regression with missing values via EM becomes also simpli�ed
as presented in Section 1.2.2 and the corresponding implementations as an R package are
introduced in Chapter 5.
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Logistic regression with missing
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2.1 Introduction

In this chapter, we focus on the inference problem for logistic regression model with missing
values. In this case, classical EM algorithm as introduced in Section 1.2.2 often involves
unfeasible computations. In the framework of generalized linear models, Ibrahim et al. (1999,
2005) have suggested using a Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990;
McLachlan and Krishnan, 2008), replacing the integral by its empirical sum using Monte Carlo
sampling. Ibrahim et al. (1999) also estimated the variance using a Monte Carlo version of
Louis' formula, involving Gibbs sampling with an adaptive rejection sampling scheme (Gilks
and Wild, 1992). However, their approach has a high computational cost and was only
implemented for monotone patterns of missing values and for missing values in only two
variables in a dataset. In this chapter, we develop a stochastic approximation version of the
EM algorithm (SAEM) (Lavielle, 2014), based on Metropolis-Hastings sampling, to perform
statistical inference for logistic regression with incomplete data, where the missing data is
found anywhere in the covariates. SAEM uses a stochastic approximation procedure to
estimate the conditional expectation of the complete-data likelihood, instead of generating a
large number of Monte Carlo samples, which lead to an undeniable computational advantage
over MCEM, which we illustrate in the simulations. Note that another solution could be to
use a Laplace approximation to compute integrals; this linearizes the likelihood function via
di�erentiation, whereas SAEM supports likelihood-based inference without the intermediate
step.

In addition, SAEM allows for model selection using a criterion based on a penalized version
of the observed-data likelihood. This is very useful in practice, as there is few available
likelihood based methods that can be applied to data with missing values in many columns,
due to computational costs and the di�culty of implementation. Claeskens and Consentino
(2008); Consentino and Claeskens (2011) suggested an approximation of AIC, Jiang et al.
(2015) de�ned generalized information criteria, while Liu et al. (2016) proposed combining
penalized regression techniques with multiple imputation and stability selection. Chow (1979);
Fung and Wrobel (1989) also studied the linear discriminant function for logistic regression,
using pairs of observed values in di�erent columns to calculate the covariance matrix.

This chapter proceeds as follows: Section 2.2 provided the assumptions and notation used
throughout the chapter. In Section 2.3, we derive a SAEM algorithm to obtain the maximum
likelihood estimate of parameters in a logistic regression model for continuous covariate data,
under the MAR mechanism of missing data. Following parameter estimation, we show how to
estimate the Fisher information matrix using a Monte Carlo version of Louis' formula. Section
2.4 describes the model selection scheme, based on a Bayesian information criterion (BIC)
with missing values. In addition, we propose an approach to perform prediction for a new
observation that includes missing values. Section 2.5 presents a simulation study where the
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proposed approach is compared to methods such as multiple imputation (Rubin, 2009) with
respect to bias, coverage, and execution time. In Section 2.6, we apply the newly developed
approach to predict the occurrence of hemorrhagic shock in patients with blunt trauma in
the TraumaBase dataset, where it is crucial to e�ciently manage missing data because the
percentage of it varies from 0 to 60% depending on the variable. Predictions made using
SAEM show an improvement over those made by emergency doctors. Lastly, Section 2.7
discusses the results and provides conclusions.

Our contribution is to give users the ability to perform logistic regression with missing
values within a joint-modeling framework, one that combines computational e�ciency and a
sound theoretical foundation. The methods presented in this chapter are implemented as an
R package misaem, available on CRAN, which we introduce later in Chapter 5.

2.2 Assumptions and notation

We �rst introduce the basic notation and assumptions that we use throughout this chapter.
The logistic regression model for binary classi�cation can be written as:

P (yi = 1|Xi; β) =
exp(β0 +

∑p
j=1 βjXij)

1 + exp(β0 +
∑p

j=1 βjXij)
, i = 1, . . . , n, (2.1)

where y = (yi, 1 ≤ i ≤ n) an n-vector of binary responses coded as {0, 1}. We adopt a
probabilistic framework by assuming that Xi = (Xi1, . . . , Xip) is normally distributed:

Xi ∼
i.i.d.
Np(µ,Σ), i = 1, . . . , n.

Let θ = (µ,Σ, β) be the set of parameters of the model. Then, the log-likelihood for the
complete data can be written as:

`(θ;X, y) =
n∑
i=1

`(θ;Xi, yi)

=
n∑
i=1

(
log(p(yi|Xi; β)) + log(p(Xi;µ,Σ))

)
.

Our main goal is to estimate the vector of parameters β = (βj, 0 ≤ j ≤ p) when missing
values exist in the design matrix, i.e., in the matrix X.

Missing values are assumed to be MAR as de�ned in Chapter 1, which allows to derive
MLE by ignoring the missing values mechanism and maximizing the observed-data likelihood
`(θ; y,Xobs).

2.3 Parameter estimation by SAEM

2.3.1 The EM and MCEM algorithms

We aim to estimate the parameter θ of the logistic regression model by maximizing the
observed log-likelihood `(θ;Xobs, y). Let us start with the classical EM formulation for ob-
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taining the maximum likelihood estimator from incomplete data. Given some initial value θ0,
iteration k updates θk−1 to θk with the following two steps:

� E-step: Evaluate the quantity

Qk(θ) = E[`(θ;X, y)|Xobs, y; θk−1]

=

∫
`(θ;X, y)p(Xmis|Xobs, y; θk−1)dXmis.

(2.2)

� M-step: Update the estimation of θ: θk = arg maxθQk(θ).

Since the expectation (2.2) in the E-step for the logistic regression model has no explicit
expression, MCEM (Wei and Tanner, 1990; Ibrahim et al., 1999) can be used. The E-step of
MCEM generates several samples of missing data from the target distribution p(Xmis|Xobs, y; θk−1)
and replaces the expectation of the complete log-likelihood by an empirical mean. However,
an accurate Monte Carlo approximation of the E-step may require a signi�cant computational
e�ort, as illustrated in Section 2.5.

2.3.2 The SAEM algorithm

To achieve improved computational e�ciency, we can derive a SAEM algorithm (Lavielle,
2014) which replaces the E-step (2.2) by a stochastic approximation. Starting from an initial
guess θ0, the kth iteration consists of three steps:

� Simulation: For i = 1, 2, . . . , n, draw X
(k)
i,mis from

p(Xi,mis|Xi,obs, yi; θk−1). (2.3)

� Stochastic approximation: Update the function Q according to

Qk(θ) = Qk−1(θ) + γk

(
`(θ;Xobs, X

(k)
mis, y)−Qk−1(θ)

)
, (2.4)

where (γk) is a non-increasing sequence of positive numbers.

� Maximization: Update the estimation of θ:

θk = arg max
θ

Qk(θ).

The choice of the sequence (γk) in (2.4) is important for ensuring the almost sure convergence
of SAEM to a maximum of the observed likelihood (Delyon et al., 1999). We will see in
Section 2.5 that, in our case, very good convergence is obtained using γk = 1 during the �rst
iterations, followed by a sequence that decreases as 1/k.
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2.3.3 Metropolis-Hastings sampling

In the logistic regression case, the unobserved data cannot in general be drawn exactly from
the conditional distribution (2.3), which depends on an integral that is not calculable in
closed form. One solution is to use a Metropolis-Hastings (MH) algorithm, which consists of
constructing a Markov chain that has the target distribution as its stationary distribution. The
states of the chain after S iterations are then used as a sample from the target distribution.
To de�ne a proposal distribution for the MH algorithm, we observe that the target distribution
(2.3) can be factorized as follows:

p(Xi,mis|Xi,obs, yi; θ) ∝ p(yi|Xi; β)p(Xi,mis|Xi,obs;µ,Σ).

We select the proposal distribution as the second term p(Xi,mis|Xi,obs, µ,Σ), which is normally
distributed:

Xi,mis|Xi,obs ∼ Np(µi,Σi), (2.5)

where

µi = µi,mis + Σi,mis,obsΣ
−1
i,obs,obs(Xi,obs − µi,obs),

Σi = Σi,mis,mis − Σi,mis,obsΣ
−1
i,obs,obsΣi,obs,mis,

with µi,mis (resp. µi,obs) the missing (resp. observed) elements of µ for individual i. The
covariance matrix Σ is decomposed in the same way. The MH algorithm is described further
in Section 2.8.1.

2.3.4 Observed Fisher information

After computing the MLE θ̂ML with SAEM, we estimate its variance. To do so, we can
use the observed Fisher information matrix (FIM): I(θ) = −∂2`(θ;Xobs,y)

∂θ∂θT
. According to Louis'

formula (Louis, 1982), we have:

I(θ) =− E
(
∂2`(θ;X, y)

∂θ∂θT
∣∣Xobs, y; θ

)
− E

(
∂`(θ;X, y)

∂θ

∂`(θ;X, y)T

∂θ

∣∣Xobs, y; θ

)
+ E

(
∂`(θ;X, y)

∂θ
|Xobs, y; θ

)
E
(
∂`(θ;X, y)

∂θ
|Xobs, y; θ

)T
.

The observed FIM can therefore be expressed in terms of conditional expectations, which
can also be approximated using a Monte Carlo procedure. More precisely, given S samples
(X

(s)
i,mis, 1 ≤ i ≤ n, 1 ≤ s ≤ S) of the missing data drawn from the conditional distribution
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(2.3), the observed FIM can be estimated as ÎS(θ̂) =
∑n

i=1−(Di +Gi −∆i∆
T
i ), where

∆i =
1

S

S∑
s=1

∂`(θ̂;X
(s)
i,mis, Xi,obs, yi)

∂θ
,

Di =
1

S

S∑
s=1

∂2`(θ̂;X
(s)
i,mis, Xi,obs, yi)

∂θ∂θT
,

Gi =
1

S

S∑
s=1

(
∂`(θ̂;X

(s)
i,mis, Xi,obs, yi)

∂θ

)(
∂`(θ̂;X

(s)
i,mis, Xi,obs, yi)

∂θ

)T

.

Here, the gradient and the Hessian matrix can be computed in closed form. The procedure
for calculating the observed information matrix is described in Section 2.8.2.

2.4 Model selection with likelihood criteria and pre-
diction

2.4.1 Information criteria

In order to compare di�erent possible covariate models, we can consider penalized likelihood
criteria such as BIC. For a given model M and an estimated parameter θ̂M, the BIC is
de�ned as:

BIC(M) = −2`(θ̂M;Xobs, y) + log(n)d(M),

where d(M) is the number of estimated parameters in a modelM. The distribution of the
complete set of covariates (xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p) does not depend on the regression
model used for modeling the binary outcomes (yi, 1 ≤ i ≤ n); we assume the same normal
distribution Np(µ,Σ) for all regression models. Thus, the di�erence between the numbers
d(M) of estimated parameters in two models is equivalent to the di�erence between the
numbers of their non-zero coe�cients in β. Note that, unlike the approach we suggest,
existing methods (Claeskens and Consentino, 2008; Consentino and Claeskens, 2011) use
an approximation of the Akaike information criterion (AIC) without estimating the observed
likelihood.

2.4.2 Observed log-likelihood

For a given model and parameter θ, the observed log-likelihood is, by de�nition:

`(θ;Xobs, y) =
n∑
i=1

log (p(yi, Xi,obs; θ)) .

With missing data, the density p(yi, Xi,obs; θ) cannot in general be computed in closed form.
We suggest approximating it using an importance sampling Monte Carlo approach. Let gi be
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the density function of the normal distribution de�ned in (2.5). Then,

p(yi, Xi,obs; θ) =

∫
p(yi, Xi,obs|Xi,mis; θ)p(Xi,mis; θ)dXi,mis

=

∫
p(yi, Xi,obs|Xi,mis; θ)

p(Xi,mis; θ)

gi(Xi,mis)
gi(Xi,mis)dXi,mis

= Egi
(
p(yi, Xi,obs|Xi,mis; θ)

p(Xi,mis; θ)

gi(Xi,mis)

)
.

Consequently, if we draw M samples from the proposal distribution (2.5):

X
(s)
i,mis ∼

i.i.d.
N (µi,Σi), m = 1, 2, . . . , S,

we can estimate p(yi, Xi,obs; θ) by:

p̂(yi, Xi,obs; θ) =
1

S

S∑
m=1

p(yi, Xi,obs|X(s)
i,mis; θ)

p(X
(s)
i,mis; θ)

gi(X
(s)
i,mis)

,

and derive an estimate of the observed log-likelihood `(θ;Xobs, y).

2.4.3 Prediction on a test set with missing values

In supervised learning, after �tting a model using a training set, a natural step is to evaluate
the prediction performance, which can be done with a test set. Assuming X̃ = (x̃obs, x̃mis)
is an observation in the test set, we want to predict the binary response ỹ. One important
point is that test set also contains missing values, since the training set and the test set have
the same distribution (i.e., the distribution of covariates and the distribution of missingness).
Therefore, we cannot directly apply the �tted model (which uses p coe�cients) to predict ỹ
from an incomplete observation of the test set X̃.

Our framework o�ers a natural way to tackle this issue by marginalizing out missing
covariates given the observed data. More precisely, with S Monte Carlo samples

(x̃
(s)
mis, 1 ≤ s ≤ S) ∼ p(x̃mis | x̃obs),

we estimate directly the response by maximizing its distribution marginalized over missing
data given the observed ones:

ŷ = arg max
ỹ

p(y | x̃obs) = arg max
ỹ

∫
p(y | X̃)p(x̃mis | x̃obs) dx̃mis

= arg max
ỹ

Epx̃mis|x̃obs
p(ỹ | X̃)

= arg max
ỹ

S∑
s=1

p
(
ỹ | x̃obs, x̃

(s)
mis

)
.

Note that in the literature there are very few solutions for dealing with missing values in a
test set. In Section 2.6.2, we compare the proposed approach with other methods used in
practice, which are based on imputation of the test set.
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2.5 Simulation study: estimation bias and variance

2.5.1 Simulation settings

We �rst generated a design matrix X of size n = 1000 × p = 5 by drawing each observation
from a multivariate normal distribution N (µ,Σ). Then, we generated the response according
to the logistic regression model (2.1). We considered as the true parameter values: β =
(−0.2, 0.5,−0.3, 1, 0,−0.6), µ = (1, 2, 3, 4, 5), and Σ = diag(σ)Cdiag(σ), where σ is the
vector of standard deviations σ = (1, 2, 3, 4, 5), and C the correlation matrix

C =


1 0.8 0 0 0

0.8 1 0 0 0
0 0 1 0.3 0.6
0 0 0.3 1 0.7
0 0 0.6 0.7 1

 . (2.6)

Before generating missing values, we performed classical logistic regression on the com-
plete dataset, the results (ROC curve) are provided in Section 2.8.3. We then randomly in-
troduced 10% missing values in the covariates, initially with a missing-completely-at-random
(MCAR) mechanism, where each entry has the same probability of being observed.

2.5.2 The behavior of SAEM

The algorithm was initialized with the parameters obtained after mean imputation, i.e., where
missing values of a given variable were replaced by the unconditional mean calculated on the
available cases, and then logistic regression was applied to the completed data. For the non-
increasing sequence (γk) in the stochastic approximation step of SAEM, we chose γk = 1

τ = 0.6 τ = 0.8 τ= 1.0

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

iteration

β 1

Figure 2.1: Convergence plots for β1 obtained with three di�erent values of τ (0.6, 0.8, 1.0).
Each color represents one simulation. The true value of β1 is 0.5.
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during the �rst k1 iterations in order to converge quickly to a neighborhood of the MLE,
and from k1 iterations on, we set γk = (k − k1)−τ to ensure the almost sure convergence of
SAEM. In order to study the e�ect of the sequence of stepsizes (γk), we �xed the value of
k1 = 50 and used τ = (0.6, 0.8, 1) during the next 450 iterations. Representative plots of
the convergence of SAEM for the coe�cient β1, obtained from four simulated data sets, are
shown in Figure 2.1. For each given simulation, the three sequences of estimates converged to
the same solution, but for larger τ , SAEM converged faster and �uctuated less. We therefore
use τ = 1 in the following.

2.5.3 Comparison with other methods

We ran 1000 simulations and compared SAEM to several other existing methods, initially in
terms of estimation errors for the parameters. We mainly focused on i) the complete case
(CC) method, i.e., all rows containing at least one unobserved data value were removed, and
ii) multiple imputation by chained equations (mice) with Rubin's combining rules (van Buuren
and Groothuis-Oudshoorn, 2011). More precisely, missing values are imputed successively by
a series of regression models, where each variable with missing data is modeled conditional
upon the other variables. For instance, linear regression is used to model continuous variables
and binary variables are modeled using logistic regression. More details can be found in van
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Figure 2.2: Top: Empirical distribution of the bias of β̂3. Bottom: Distribution of the
estimated standard errors of β̂3. For each method, the red point corresponds to the empirical
standard deviation of β̂3 calculated over the 1000 simulations. Results shown are for 10%
MCAR and correlation C.

49



Buuren and Groothuis-Oudshoorn (2011). Finally, we used the dataset without missing values
(�no NA�) as a reference, with parameters estimated using the Newton-Raphson algorithm.
We varied the number of observations: n = 200, 1000, 10 000, the missing value mechanism:
MCAR or MAR, the percentage of missing values: 10% or 30%, and the correlation structure,
either using C given by (2.6), or an orthogonal design.

Figure 2.2 (top) displays the distribution of the estimates of β3 for n = 1000 and n =
10 000 under MCAR, with the correlation between covariates given by (2.6). Simulation
results for n = 200 are presented in Section 2.8.8. This plot is representative of the results
obtained with the other components of β. As expected, larger samples yielded less variability.
Moreover, we observe that in both cases, the estimation obtained by mice could be biased,
whereas SAEM provided unbiased estimates with small variances. Figure 2.2 (bottom) shows
the empirical distribution of the estimated standard error of β̂3. For SAEM it was calculated
using the observed Fisher information as described in Section 2.3.4. With larger n, not only
the estimated standard errors�but also variance in the estimation�clearly decreased for all
methods. In the case where n = 1000, SAEM and mice slightly overestimated the standard
error, while CC underestimated it, on average. Globally, SAEM provided the best results;
compared with mice, it gave a similar estimate of the standard error, on average, but with
much less variance.

Table 2.1 shows the coverage probability of the con�dence interval for all parameters and
inside the parentheses is the average length of the corresponding con�dence interval. We
would expect coverage of 95%, corresponding to the nominal 95% level. The simulation
margin of error for the coverage results is 1.35%. SAEM had between 94.3% and 95.4%
coverage, while mice struggled for certain parameters: the coverage rates for two estimates
were 89.6% and 86.5%, signi�cantly below the nominal level. Even though CC showed
reasonable results in terms of coverage, the widths of its con�dence intervals were still too
large. Simulations with smaller sample sizes gave similar results�see Section 2.8.8 for n =
200.

Table 2.1: Coverage (%) for n = 10 000, correlation C and 10% MCAR, calculated over
1000 simulations. Bold indicates under-coverage. Inside the parentheses is the average length
of corresponding con�dence interval over 1000 simulations (multiplied by 100).

parameter no NA CC mice SAEM
β0 95.2 (21.36) 94.4 (27.82) 95.2 (22.70) 94.9 (22.48)
β1 96.0 (18.92) 94.7 (24.65) 93.9 (21.77) 95.1 (21.51)
β2 95.5 (9.53) 94.6 (12.41) 94.0 (10.97) 94.3 (10.83)
β3 94.9 (8.17) 94.3 (10.66) 86.5 (9.03) 94.7 (9.03)
β4 94.6 (4.00) 94.2 (5.21) 96.2 (4.49) 95.4 (4.42)
β5 95.9 (5.52) 94.4 (7.19) 89.6 (6.20) 94.7 (6.17)

Lastly, Table 2.2 highlights large di�erences between the methods in terms of execution
time. As an aside, we also implemented the MCEM algorithm (Ibrahim et al., 1999) using
adaptive rejection sampling; even with a very small sample size of n = 200, MCEM took 5
minutes per simulation on average. In contrast, multiple imputation took less than 1 second
per simulation, and SAEM less than 10 seconds, which remains reasonable. However, the
bias and standard errors for the SAEM and MCEM estimates were quite similar�see Section
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2.8.8. Due to the prohibitive execution time required, for larger sample sizes we did not
compare MCEM with the other methods.

Table 2.2: Comparison of execution times between no NA, MCEM, mice, and SAEM with
correlation C and 10% MCAR, for n = 200 and n = 1000, calculated over 1000 simulations.

Execution time (seconds)
for one simulation no NA MCEM mice SAEM
n = 1000
min 2.87× 10−3 492 0.64 9.96
mean 4.65× 10−3 773 0.70 13.50
max 43.50× 10−3 1077 0.76 16.79
n = 200
min 1.26× 10−3 67.91 0.24 2.64
mean 2.32× 10−3 291.47 0.28 3.91
max 21.53× 10−3 1003 0.48 6.04

Results obtained for independent covariates are presented in Figure 2.3 (right), for esti-
mation in the orthogonal design case. SAEM was slightly biased since it estimated non-zero
terms for the covariance, but still outperformed CC and mice.
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Figure 2.3: Empirical distribution of the estimates of β3 obtained under MCAR, with n =
10 000 and 10% missing values. Left: the covariates are correlated; right: no correlation
between covariates.

2.5.4 Extended simulations

Missing-at-random mechanisms We �rst simulated the pattern of missingness as a
binary vector η = (η1, η2, . . . , ηp) from the Bernoulli distribution, where ηj = 0 indicates that
the corresponding variable xj can be missing while ηj = 1 indicates it is always observed.
Then the probability of having missing data in one variable is calculated by a logistic regression
model. For example in our case with the realizations of η = (1, 0, 1, 0, 0), the probability
that covariates (x2, x4, x5) are missing is calculated by a logistic regression model conditional
on x1 and x3. The weights in the linear combination of x1 and x3 have an e�ect on the
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proportion of missingness. We introduced 10% missing values into the covariates using an
MAR mechanism. The results presented in Section 2.8.4 are�as expected�similar to those
obtained under MCAR, and show that the parameters are estimated without bias.

Robustness to the normal assumption for covariates First we generated a design
matrix of size n = 1000 × p = 5 by drawing each observation from a multivariate Student
distribution tv(µ,Σ) with v = 5 or v = 20 degrees of freedom, and (µ,Σ) the same as those
in the normal distribution in Section 2.5.1. Then, we considered the Gaussian mixture model
case by generating half of the samples from N (µ1,Σ) and the other half from N (µ2,Σ),
where µ1 = (1, 2, 3, 4, 5) and µ2 = (1, 1, 1, 1, 1), with the same Σ as previously. Then, we
generated the response according to the same logistic regression model as in Section 2.5.1,
and considered either MCAR or MAR mechanisms.

Figure 2.4 illustrates the estimation bias of the parameter β3, and Section 2.8.5 shows the
coverage for all parameters, with the average length of the corresponding con�dence interval
in parentheses. This experiment shows that the estimation bias for regression coe�cients
with the proposed method�even based on normal assumptions�is robust to such model
misspeci�cation. Indeed, the bias may increase when covariates do not exactly follow a
normal distribution, but the increase is negligible compared to the bias of imputation-based
methods. We also observe only a small level of under-coverage as compared to mice, and a
more reasonable length of con�dence interval as compared to CC.

Varying the percentage of missing values When the percentage of missing values in-
creases, variability in the results increases, but the suggested method still provide satisfactory
results�see Section 2.8.6.

Varying the separability of the classes When the classes are well-separated, SAEM can
exhibit bias and large variance, as illustrated in Section 2.8.7. However, logistic regression
without missing values also encounters di�culties.
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Figure 2.4: Empirical distribution of the bias of β̂3 obtained for misspeci�ed models under
MCAR, with n = 1000. Left: Student's distribution with v = 5 degrees of freedom; right:
Gaussian mixture model.
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In summary, not only did these simulations show that SAEM leads to estimators with
limited bias, but also that we obtained accurate inference by taking into account the additional
variance due to missing data.

2.5.5 Model selection

To look at the performance of the method in terms of model selection, we considered the same
simulation scenarios as in Section 2.5.1, with some parameters set to zero. We now describe
the results for the case where all parameters in β are zero except β0 = −0.2, β1 = 0.5,
β3 = 1, and β5 = −0.6. We compared the BICobs based on the observed log-likelihood, as
described in Section 2.4, to those based on the complete cases BICcc and obtained from the
the original complete data BICorig.

Table 2.3 shows, with or without correlation between covariates, the percentage of cases
where each criterion selects the true model (C), over�ts (O)�i.e., selects more variables than
there were, or under�ts (U)�i.e., selects less variables than there were. In the case where
the variables were correlated, the correlation matrix was the same as in Section 2.5.1. These
results are representative of those obtained in the other simulation settings.

Table 2.3: For data with or without correlations, the percentage of times that each criterion
selects the correct true model (C), over�ts (O), or under�ts (U).

Non-Correlated Correlated
Criterion C O U C O U
BICobs 92 3 5 94 2 4
BICorig 96 2 2 93 0 7
BICcc 79 1 20 91 0 9

2.5.6 Predictions for a test set with missing values

To evaluate the prediction performance on a test set with missing values, we considered the
same simulation scenarios for the training set as in Section 2.5.1 with sample size 1000× 5.
We also generated a test set of size 100 × 5. We compared the approach described in
Section 2.4.3 with imputation methods. More precisely, we considered single imputation
methods on the training set, followed by classical logistic regression and variable selection by
BIC on the imputed dataset. The single imputation methods included i) imputation by the
mean (impMean) ii) imputation by PCA (impPCA) (Josse and Husson, 2016), which is based
on a low-rank assumption of the data matrix to impute. In addition, we considered multiple
imputation using mice. Note that Hentges and Dunsmore (1998) showed in a simulation
study that imputation methods for MCAR data can perform well when the aim of logistic
regression is prediction. For all of the imputation methods, we also imputed the test set
independently and then applied the model that had been selected on the training set. Note
that this would be a limitation if there was only one individual in the test set, whereas our
method does not encounter this issue.

We compared all of these approaches in terms of classical criteria to evaluate the predicted
probabilities from the logistic regression. Criteria included AUC (area under the ROC curve),
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the Brier score (Brier, 1950) and the logarithmic score (Good, 1952). Figure 2.5 shows that
on average, marginalizing over the distribution of missing values gave the best performance:
the largest AUCs and logarithmic scores, and the smallest Brier scores.
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Figure 2.5: Comparisons of the empirical distribution of the AUC, Brier score, and logarithmic
score obtained on the test set for the proposed SAEM without imputation method, impMean,
impPCA, and mice, over 100 simulations.

2.6 Modeling the risk of severe hemorrhage in the
TraumaBase context

In the analysis of medical dataset TraumaBase as introduced in Section 1.4, the fundamental
goal of our work is to accelerate and simplify the detection of patients presenting with
hemorrhagic shock due to blunt trauma in order to speed up management of this, the most
preventable cause of death in major trauma cases. Optimized organization is essential to
control blood loss as quickly as possible and reduce mortality.

2.6.1 Preprocessing of data

The TraumaBase group decided to focus on patients with blunt trauma so as to be able
to compare results with existing prediction rules. Patients with pre-hospital cardiac arrest,
penetrating trauma, and missing pre-hospital data, were excluded. This led to 5162 patients
being retained in the data set. Based on clinical experience, 16 in�uential quantitative
measurements were included. Detailed descriptions of these and their histograms are shown
in Section 2.8.9. These variables were chosen because they were all available to the pre-
hospital team, and therefore could be used in real situations.

There was strong collinearity between variables, as can be seen in the variables' PCA
factor map (obtained by running an EM-PCA algorithm (Josse and Husson, 2016) which
performs PCA with missing values) in Figure 2.6, in particular between the minimum sys-
tolic (PAS.min) and diastolic blood pressure (PAD.min). Based on expert advice, the re-
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Figure 2.6: The factor map of the variables from PCA.

coded variables, SD.min and SD.SMUR (SD.min = PAS.min − PAD.min; SD.SMUR =
PAS.SMUR − PAD.SMUR) were used since they have more clinical signi�cance (Hamada
et al., 2018). Thus, we had 14 variables to predict hemorrhagic shock.

Figure 2.7: Percentage of missing values in each variable.

Figure 2.7 shows the percentage of missingness per variable, varying from 0 to 60%, which
demonstrates the importance of taking appropriate account of missing data. Even though
there may be many reasons why missingness occurred, overall considering them all to be
MAR remains a plausible assumption. For instance, FC.SMUR (heart rate) and SD.SMUR
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(the pulse pressure measured when the ambulance arrives at the accident site) contain many
missing values because doctors collected these data during transportation. However, many
other medical institutes and scienti�c publications use measurements on arrival at the acci-
dent scene. Consequently, doctors decided to record these as well, but this occurred after
TraumaBase was set up.

We �rst applied SAEM for logistic regression with all 14 predictors and for the whole
dataset. The estimation obtained by SAEM was broadly similar to that obtained by multiple
imputation. Next, we used the model selection procedure described in Section 2.4. There were
two observations that led to a very small value for the log-likelihood. Upon closer inspection,
we found that for patient number 3302, the BMI was obtained using an incorrect calculation,
and for patient number 1144, the weight (200 kg) and height (100 cm) values were likely
to be incorrect. Hence, the observed log-likelihood also helped us to identify undetected
outliers. In the observations' PCA factor map shown in Figure 2.8, patient number 3302
(circled in blue) is one of the outliers.

Figure 2.8: The observations' PCA factor map. Red points are hemorrhagic shock patients,
and black points those who did not have hemorrhagic shock. Patient number 3302 (circled
in blue) has an incorrectly-calculated BMI.

2.6.2 Predictive performance

We divided the dataset into training and test sets. The training set contained a random
selection of 70% of the observations, and the test set contained the remaining 30%. In
the training set, we selected a model with the approach suggested in Section 2.4, and used
forward selection, resulting in a model with 8 variables. The estimates of parameters and
their standard errors are shown in Table 2.4.

The TraumaBase medical team indicated to us that the signs of the coe�cients were in
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Table 2.4: Estimation of β and its standard errors obtained by SAEM, using BIC for model
selection.

Variables Estimate (standard errors)
(Intercept) -0.12 (0.64)
Age 0.017 (0.0037)
Glasgow.moteur -0.22 (0.040)
FC.max 0.024 (0.0028)
Hemocue.init -0.26 (0.033)
RT.cristalloides 0.00088 (0.00011)
RT.colloides 0.0018 (0.00023)
SD.min -0.027 (0.0055)
SD.SMUR -0.018 (0.0061)

agreement with their prior intuition: all things being equal, a) Older people are more likely
to have hemorrhagic shock; b) A low Glasgow score implies little or no motor response,
which often is the case for hemorrhagic shock patients; c) A typical sign of hemorrhagic
shock is rapid heart rate; d) The more a patient bleeds, the lower their hemoglobin is and
more blood must be transfused. It is then more likely they will end up with hemorrhagic
shock; e) Therapy involving two types of volume expanders, cristalloides and colloides, can
be conducted to treat hemorrhagic shock; f) If an extremely low pulse pressure is observed,
the cause may be a low stroke volume, which is usually the case in hemorrhagic shock.

Next, we assessed the prediction quality on the test set with the usual metrics based on
the confusion matrix (false positive rate, false negative rate, etc.). We need to ensure that
the cost of a false negative is much more than that of a false positive, as non-recognition of
a potential hemorrhagic shock leads to a higher risk of patient mortality. With this in mind,
we de�ne the validation error on the test set as:

l(ŷ, y) =
1

n

n∑
i=1

w01{yi=1,ŷi=0} + w11{yi=0,ŷi=1} (2.7)

where w0 and w1 are user de�ned weight for the cost of a false negative and false positive
respectively, with w0 + w1 = 1. In this way, we can choose a threshold for the logistic
regression by giving values for w0 and w1. For instance, we chose w0

w1
= 5, i.e., a false

negative is �ve times more costly than a false positive. This cost function was chosen after
discussions with experts. Note that the test set was also incomplete, so we used the strategy
described in Section 2.4.3 to perform prediction. The confusion matrix of the predictive
performance on the test set is shown in Table 2.5. The associated ROC curve is shown in
Figure 2.9, which has an AUC of 0.88.

2.6.3 Comparison with other approaches

Next, we compared the proposed method to other approaches. Similar to in Section 2.6.2,
we considered single imputation methods followed by classical logistic regression and variable
selection on the imputed training dataset, such as single imputation by PCA (impPCA) (Josse
and Husson, 2016), imputation by Random Forest (missForest) (Stekhoven and Buehlmann,
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Figure 2.9: ROC curve of the test set pre-
dictions.

2012), and mean imputation (impMean). We also compared the logistic regression model
with other prediction models such as Random Forest (predRF) and SVM (predSVM), both
applied on the Random Forest-imputed (Stekhoven and Buehlmann, 2012) dataset. We also
considered mice: we applied logistic regression with a classical forward selection method, with
the BIC calculated on each imputed data set. However, note that there is no straightforward
solution for combining multiple imputation and variable selection; we followed the empirical
approach suggested in Wood et al. (2008) where they select variables that appear in at least
half of the models selected in each imputed dataset.

We also considered three rules used by doctors to predict hemorrhagic shock: i) Doctors'
prediction (doctor): the prediction recorded in TraumaBase. This showed whether the doctor
considered the patient to be at risk of hemorrhagic shock; ii) The assessment of blood
consumption score (ABC): this is an examination usually performed when the patient arrives
at the trauma center. As such, the score is not exactly pre-hospital but can be computed
very early in a hospitalization; iii) the trauma associated severe hemorrhage score (TASH):
this score was also designed for hemorrhage detection, but at a later time-point since it uses
some values that are only available after laboratory tests and radiography.

Figure 2.10 compares the methods in terms of their validation error (2.7). The splitting of
data (into training and test sets) was repeated 15 times and we �xed the threshold such that
the cost of a false negative was �ve times that of a false positive, i.e., w0

w1
= 5. On average,

SAEM performed well and with low variability between trials, while all of the imputation
methods performed similarly to each other even naive mean imputation. In addition, other
prediction methods (Random Forest and SVM) did not give smaller errors on the test sets
than the logistic regression models. Lastly, the rules used by doctors, even those using more
information than pre-hospital data, did not perform as well as SAEM. Section2.8.10 gives
further details on classical criteria (AUC, sensitivity, speci�city, accuracy and precision) to
compare the predictive performance of the methods. The SAEM approach performed well
on average, and particularly well for sensitivity, i.e., it rarely misdiagnosed hemorrhagic shock
patients, which gels well with the clinical needs of emergency doctors.
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More generally, without de�ning a speci�c threshold, we show in Figure 2.11 the average
predictive loss over 15 replicates as a function of the cost ratio {w0

w1
| w0

w1
> 1} for all methods.

SAEM had a small error on the test sets given the value of w0

w1
, especially when we increased

Figure 2.10: Empirical distribution of the prediction errors of di�erent methods over 15
random splits of the TraumaBase data.

Figure 2.11: Average prediction errors of di�erent methods as a function of the cost ratio
{w0

w1
| w0

w1
> 1} taken over 15 random splits of the TraumaBase data.
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the cost of false negatives. Note that the errors for the doctors' rules and ABC increased as
a function of the cost importance w0

w1
, which means that these rules are more conservative

than SAEM is, which may be problematic in this setting. Also, missForest had excellent
predictive capabilities which is consistent with the results of Josse et al. (2019). However, it
is di�cult to interpret the results from random forest in terms of selected variables, which is
often crucial for emergency doctors.

Note that even if our proposed methodology is based on the assumption of normally
distributed covariates, its performance is better than the predictions made by widely-used
medical criterion in terms of prediction error. Further discussion on the normal assumption
is provided in Section 2.8.9. In addition, it should be noted that the proposed methodology
can be extended to other assumptions about the joint distribution of covariates, such as a
mixture of distributions.

In summary, based on the TraumaBase application and comparisons with other methods,
we have demonstrated that this new approach has the ability to outperform existing popular
methods that deal with missing data.

2.7 Discussion

In this chapter, we have developed a comprehensive joint-modeling framework for logistic
regression with missing values. The method is implemented in the R package misaem,
which we introduce later in Chapter 5. The experiments we have performed indicate that
this method is computationally e�cient and easy to implement. In addition, compared with
multiple imputation�especially in the case of correlation between variables�estimation using
SAEM is less biased than other methods and generally leads to interval-estimate coverage
that is close to the nominal level. Based on our algorithm, model selection with BIC and
missing data can be performed in a natural way. In view of the results reported in this
article, we have been invited by emergency-room doctors in one of the TraumaBase centers
to implement the missing-data methodology outlined here in a prospective study to evaluate
its performance in a real-time clinical setting.

Paths for possible future research include further developing the method to handle both
quantitative and categorical data. Since the data have have high inter-center variability, it
is also important to take the hospital e�ect as an explanatory variable. However, modeling
with mixed and incomplete data is challenging.

We have begun to explore initial ways of adapting our methodology in the mixed data
framework for the logistic regression model. The approach is the following: use a general
location model (GLOM) (Olkin et al., 1961) with simpli�cation, then maximize the observed
likelihood of the data using the SAEM algorithm. A detailed algorithm and the �rst results
of the implementation are provided in Section 2.8.11. Nevertheless, the e�ciency of the
proposed algorithm still needs to be improved in order to apply it on more complex cases and
on real data.

This chapter focused on making inference with missing values, but we have also suggested
a method to predict from a test set with missing values. More work could be done in
the direction of supervised learning with missing values, especially when we want to better
estimate the variance of predictions. Extensions of the methods of Schafer and Schenker
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(2000) could be considered. In addition, in the TraumaBase dataset, it would be reasonable
to expect to have both MAR and missing-not-at-random (MNAR) values. MNAR means
that missingness is related to the missing values themselves, and therefore a more correct
methodology would require incorporating models for missing data mechanisms. As a �nal
note, our proposed method may be quite useful in a causal inference framework, especially
for propensity score analysis, which estimates the e�ect of a treatment, policy, or other
intervention. Indeed, inverse probability weighting methods (IPW) are often performed with
logistic regression, and the proposed method o�ers a potential solution for times where there
are missing values in the covariates.

2.8 Supplementary materials

2.8.1 Metropolis-Hastings sampling

During SAEM iterations, Metropolis-Hastings sampling is performed as in Algorithm 2, with
target distribution f(Xi,mis) = p(Xi,mis|Xi,obs, yi; θ) and proposal distribution g(Xi,mis) =
p(Xi,mis|Xi,obs;µ,Σ).

Algorithm 2 Metropolis-Hastings sampling.

Input: An initial sample X(0)
i,mis ∼ g(Xi,mis);

for s = 1, 2, . . . , S do
Generate X(s)

i,mis ∼ g(Xi,mis);
Generate u ∼ U [0, 1];

Calculate the ratio w =
f(X

(s)
i,mis)/g(X

(s)
i,mis)

f(X
(s−1)
i,mis )/g(X

(s−1)
i,mis )

;

if u < w then
Accept X(s)

i,mis;
else
X

(s)
i,mis ← X

(s−1)
i,mis ;

Output: (X
(s)
i,mis, 1 ≤ i ≤ n, 1 ≤ s ≤ S).

2.8.2 Calculation of the observed information matrix

Procedure 3 shows how we calculate the observed information matrix.

2.8.3 Logistic regression on a simulated complete dataset

Figure 2.12 shows the ROC curve on a simulated complete dataset. The corresponding AUC
(for the training set) is 0.8976.
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Procedure 3 Calculation of the observed information matrix.

Input: After drawing MH samples (X
(s)
i,mis, 1 ≤ i ≤ n, 1 ≤ s ≤ S) for unobserved data

(Xi,mis, 1 ≤ i ≤ n), we have imputed observations, noted as (Z
(s)
i , 1 ≤ i ≤ n, 1 ≤ s ≤ S),

where Z(s)
ij = Xi,obs, if xij is observed; else Z(s)

ij = X
(s)
i,mis.

for n = 1, 2, . . . , n do
for s = 1, 2, . . . , S do
Calculate the gradient:

∇fis =
∂`(θ;Xi,obs,X

(s)
i,mis,yi)

∂β
= Z

(s)
i

(
yi −

exp(β̂0+
∑p
j=1 β̂jZ

(s)
ij )

1+exp(β̂0+
∑p
j=1 β̂jZ

(s)
ij )

)
;

Calculate the Hessian matrix:

His =
∂2`(θ;Xi,obs,X

(s)
i,mis,yi)

∂β∂βT
= −Z(s)

i Z
(s)
i

T exp(β̂0+
∑p
j=1 β̂jZ

(s)
ij )(

1+exp(β̂0+
∑p
j=1 β̂jZ

(s)
ij )

)2 ;
∆i ← 1

s
[(s− 1)∆i +∇fis];

Di ← 1
s
[(s− 1)Di +His];

Gi ← 1
s
[(s− 1)Gi +∇fis∇fTis ];

ÎS(β̂)← ÎS(β̂)− (Di +Gi −∆i∆
T
i );

Output: ÎS(β̂).

2.8.4 Simulation results for missing-at-random data

We consider a missing-at-random mechanism to generate data. Figure 2.13 shows that the
biases were very similar to those obtained under a MCAR mechanism, and parameters were
estimated without bias.
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Figure 2.12: ROC curve on a simulated com-
plete dataset.

Figure 2.13: Empirical distribution of the bias
of β̂3 obtained under an MAR mechanism,
with n = 1000 and 10% missing values.

2.8.5 Simulation results for model misspeci�cation: coverage

Table 2.6 shows the coverage for all parameters, and the average lengths of the corresponding
con�dence intervals in parentheses.
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Table 2.6: Coverage (%) for n = 1000, MCAR, and misspeci�ed models, calculated over
1000 simulations. Bold indicates under-coverage. Inside the parentheses is the average length
of the corresponding con�dence interval over 1000 simulations (multiplied by 100).

parameter no NA CC mice SAEM
Student distribution: (v = 5)
β0 94.7 (68.02) 94.3 (84.14) 94.6 (67.69) 93.8 (68.25)
β1 95.2 (54.78) 94.2 (72.15) 91.7 (61.96) 93.5 (63.05)
β2 94.9 (27.66) 94.6 (36.39) 91.4 (31.21) 93.7 (31.84)
β3 94.9 (26.76) 94.3 (35.24) 81.5 (30.46) 94.7 (29.98)
β4 95.2 (11.52) 95.4 (15.16) 95.8 (12.94) 95.5 (12.88)
β5 93.7 (17.63) 94.9 (23.22) 83.4 (20.40) 93.3 (19.93)
Gaussian mixture:
β0 94.8 (57.54) 95.2 (75.42) 95.4 (61.95) 95.0 (61.33)
β1 94.7 (58.00) 96.2 (76.05) 95.4 (66.66) 95.3 (66.13)
β2 94.3 (28.49) 95.3 (37.35) 95.3 (32.65) 94.0 (32.50)
β3 94.7 (26.16) 94.9 (34.38) 94.9 (28.91) 94.5 (29.10)
β4 94.4 (12.68) 94.4 (16.60) 94.4 (14.24) 94.7 (14.09)
β5 95.3 (17.70) 94.7 (23.25) 94.7 (19.86) 95.3 (19.92)

2.8.6 Simulation results varying percentage of missingness

We varied the percentage of missingness from 10% to 30% and results of bias are shown in
Figure 2.14.

Figure 2.14: Empirical distribution of the bias of β̂3 obtained over 1000 simulations, varying
the percentage of missingness (left: 10%; right: 30%) under MCAR, with n = 1000 with
methods no NA, CC, mice and SAEM.
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2.8.7 Simulation results varying the separability of classes

We varied the separability of classes by augmenting the value of design matrix X ′ = 2X
or X ′ = 5X to in�uence the link function X ′β, where X is the design matrix used in the
previous simulation setting in Subsection 6.1. We present the data (y,X ′β) in Figure 2.15
and the results of bias are shown in Figure 2.16. The left plots represents a case with medium
level of separability, where the proposed methodology had a good performance of estimation;
while the right plots shows a nearly perfect linear separability, where the performance of mice
was strongly a�ected but the proposed method is still acceptable in comparison to the case
without missing values.
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Figure 2.15: Logistic regression (y,X ′β) plot varying the value of link function X ′β.
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Figure 2.16: Empirical distribution of the bias of β̂3 obtained over 1000 simulations, varying
the link function (left: X ′ = 2X; right: X ′ = 5X) under MCAR, with n = 1000 with
methods no NA, CC, mice and SAEM.
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2.8.8 Simulation results of comparison with MCEM

We generated a small sample with n = 200 in order to illustrate the performance of MCEM,
which is computationally intensive. The bias and standard error of estimates over 100 simu-
lations are shown in Figure 2.17.

Figure 2.17: Empirical distribution of the bias and standard error of β̂3 obtained over 100
simulations, under MCAR, with n = 200 and 10% of missing values, with methods no NA,
CC, mice, SAEM and MCEM.

Table 2.7: Coverage (%) for n = 200 , correlation C and 10% MCAR, calculated over 100
simulations. Bold indicates under coverage. Inside the parentheses is the average length of
corresponding con�dence interval over 100 simulations.

parameter no NA CC mice SAEM MCEM
β0 96 (1.61) 96 (2.20) 97 (1.50) 96 (1.73) 96 (1.71)
β1 98 (1.44) 95 (1.98) 97 (1.40) 97 (1.70) 99 (1.67)
β2 97 (0.72) 96 (0.98) 96 (0.69) 97 (0.84) 96 (0.82)
β3 92 (0.63) 90 (0.90) 46 (0.56) 89 (0.74) 89 (0.72)
β4 92 (0.30) 96 (0.41) 95 (0.30) 93 (0.34) 92 (0.34)
β5 94 (0.43) 94 (0.60) 54 (0.38) 92 (0.50) 92 (0.49)

Table 2.7 presents the coverage if the con�dence interval for all parameters over 100
simulations and inside the parentheses is the average length of corresponding con�dence
interval over 100 simulations.

2.8.9 De�nitions of variables in the TraumaBase dataset

In this section, we de�ne the selected quantitative variables:

� Age: Age.
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� Poids: Weight.

� Taille: Height.

� BMI: Body Mass index, BMI = Weight in kg
(Height in m)2

� Glasgow: Glasgow Coma Scale.

� Glasgow.moteur: Glasgow Coma Scale motor component.

� PAS.min: The minimum systolic blood pressure.

� PAD.min: The minimum diastolic blood pressure.

� FC.max: The maximum number of heart beats per unit time (usually a minute).

� PAS.SMUR: Systolic blood pressure at ambulance arrival.

� PAD.SMUR: Diastolic blood pressure at ambulance arrival.

� FC.SMUR: Heart rate at ambulance arrival.

� Hemocue.init: Capillary hemoglobin concentration.

� SpO2.min: Oxygen saturation.

� Remplissage.total.colloides (or RT.colloides): Fluid expansion colloids.

� Remplissage.total.cristalloides (or RT.cristalloides): Fluid expansion cristalloids.

� SD.min (= PAS.min− PAD.min): Pulse pressure for the minimum values of dias-
tolic and systolic blood pressure.

� SD.SMUR (= PAS.SMUR− PAD.SMUR): Pulse pressure at ambulance arrival.

Figure 2.18 shows the histogram and the empirical cumulative distribution function of
some of the covariates in TraumaBase. Several of these are not symmetric. In practice,
it is possible to consider that suitable transformation of covariates can be approximated by
normal distributions. For example, transformations of the form log(c + x) and log(c − x),
may be appropriate for right-skewed and left-skewed distributions respectively. We applied
the proposed methodology to the real dataset after the log-transformation. However, the
prediction results from cross-validation did not show any advantage to transforming the
variables. Indeed when a log transformation is used as a prepossessing step, it only operates
on the observed part, which is appropriate under MCAR values. Consequently, we have
decided not to use any transformation on the dataset.

2.8.10 Details on the predictive performance on TraumaBase
data

Details on the predictive performance on TraumaBase data are given in Table 2.8.
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Figure 2.18: Empirical distributions of variables from TraumaBase. (a) Histograms of covari-
ates; (b) The black line is the empirical cumulative distribution while the red one corresponds
to the normal distribution.
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Table 2.8: Comparisons of the mean of the predictive performance (values are multiplied by
100) of di�erent methods that can deal with missing data. AUC is the area under the ROC
curve; the accuracy is the number of true positives plus true negatives, divided by the total
number of observations; the sensitivity is the true positive rate; the speci�city is the true
negative rate; the precision is the number of true positives over all positive predictions. Best
results are shown in bold.

Metrics SAEM missForest impMean impPCA mice predRF predSVM
AUC 88.5 88.8 88.9 89.0 87.7 88.0 80.4
Accuracy 86.9 87.0 87.3 86.7 85.3 87.2 88.3
Precision 41.1 41.6 42.2 41.0 37.9 41.6 44.0
Sensitivity 74.6 74.3 73.2 75.0 75.2 71.5 66.0
Speci�city 88.2 88.4 88.8 87.9 86.4 88.9 90.6

2.8.11 First results on logistic regression with mixed and incom-
plete data

In this section, we brie�y discuss the problem of logistic regression with mixed and incomplete
data. To solve it, we �rst suggest modeling the covariates with a simpli�ed general location
model then adapt the SAEM algorithm in the mixed data setting.

Covariate model based on GLOM

To specify the joint distribution of mixed covariates, in classi�cation problems, people often
refer to the general location model (GLOM) (Olkin et al., 1961), where the categorical
variables are marginally distributed as a multinomial distribution with a given number of states
(i.e., locations); then given a speci�c state of the categorical variable, the continuous ones
follows conditionally Gaussian distribution, with either homoscedasticity or heteroscedasticity
across the locations.

Unfortunately, implementing this kind of model has been hindered in practice by compu-
tational issues related to estimation, due to problems associated with the analysis of discrete
data. Indeed, when the number of categorical covariates increases and when the latent
variables related to missingness involve, solving likelihood problem becomes complicated for
such models. Consequently, we take the sparse structure of data into consideration and the
proposed model will be a simpli�ed GLOM one.

In the sequel, we assume the same logistic regression model as introduced in Section
2.2. In addition, to correctly identify the continuous variables and the categorical ones
contained in Xi, we'll introduce Zi and Ui to denote respectively the continuous covariates
and the categorical ones, such that Xi = (Zi, Ui), ∀i ∈ {1, . . . , n}. Considering that Zi
is M -dimensional and Ui is L-dimensional, we can go further and write for each subject
i: Zi = (Zim,m ∈ {1, . . . ,M}) and Ui = (Ui`, ` ∈ {1, . . . , L}), where Zim ∈ R and
Ui` ∈ {1, 2, . . . , K`} (K` = number of categories associated to the random variable U`,
` ∈ {1, . . . , L}).

To make the notations more precise, when a speci�c distribution depends on parameter
θ, we'll explicit the dependence by writing the distribution as follows: p(Xi ; θX) for the
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distribution of X, or p(yi|Xi ; θy|X) for the conditional distribution of y|X for instance.

To set up the model for the joint distribution of covariates, let's �rst decompose p(Xi ; θX)
with respect to the continuous covariates Zi and categorical ones Ui:

p(Xi ; θX) = p(Zi, Ui ; θZ,U)

= p(Zi|Ui ; θZ|U) p(Ui ; θU) .

We can decompose the joint distribution of X = (Z,U) by either opting for the con-
ditional distribution of (Z|U) multiplied by the marginal distribution of U , or the opposite,
i.e. the conditional distribution of (U |Z) multiplied by the marginal distribution of Z. Our
choice to focus on the former one, was supported by the opinions of medical experts in favor
of the dependence of the continuous covariates Z on the categorical ones U . For instance,
it seems reasonable to assume that the blood pressure or heart rate values (i.e., continuous
covariates) observed in a patient will be signi�cantly di�erent depending on whether the ki-
netics of the trauma was high or low (i.e., categorical covariate). Furthermore, as most of
these categorical variables are actually binary, with possible strong correlations between some
of them, we could expect an easier modeling.

Simpli�ed GLOM linear model for p(Zi|Ui ; θZ|U)

Due to the presence of discrete data, we will �rst adopt a simpli�ed formulation of the
conditional distribution of (Z|U), derived from the most general GLOM approach. More
precisely, we assume the following linear model between Z and U :

Zi1 = λ01 +
L∑
`=1

K`−1∑
k=1

λk`11Ui`=k + εi1 ,

Zi2 = λ02 +
L∑
`=1

K`−1∑
k=1

λk`21Ui`=k + εi2 ,

...
...

...

ZiM = λ0M +
L∑
`=1

K`−1∑
k=1

λk`M1Ui`=k + εiM ,

∀i ∈ {1, . . . , n}. (2.8)

where for each m ∈ {1, . . . ,M}, the vector of parameters associated to the m th contin-
uous variable Zm is:

λm = (λ0m, λ
1
1m, . . . , λ

K1−1
1m , λ1

2m, . . . , λ
K2−1
2m , . . . , λ1

Lm, . . . , λ
KL−1
Lm ) ∈ R

∑L
`=1K` − L+ 1 .

And a block covariance matrix εi = (εi1, εi2, . . . , εiM) ∼ N (0RM ,Σ) with Σ ∈ SM(R) and it
denotes the n−dimensional vector of residual terms observed within the n individuals when
considering the m th continuous variable Zm = (Z1m, . . . , Znm).

Note that:

� As for each ` ∈ {1, . . . , L} and i ∈ {1, . . . , n}, we get the relationship
∑K`

k=1 1Ui`=k =

1, we only need to de�ne K`−1 parameters (λ1
`m, . . . , λ

K`−1
`m ) associated to each couple

of variables (Zm, U`) to perfectly de�ne the above model;
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� If for each couple of variables (Zm, U`), it appears that U` has no in�uence on Zm then
we get (λ1

`m, . . . , λ
K`−1
`m )> = 0RK`−1 ;

� This formulation helps reduce the dimensionality of parameters, because supposing
that the ` th categorical variable U` has K` categories, that makes a total of

∏L
`=1K`

possible states for the multinomial U . In a classical GLOM model, where the continuous
variables are conditionally multivariate normal given each state of the multinomial
variable, that implies M ×

∏L
`=1 K` unknown values to only characterize each mean.

With the above hypothesis, there are onlyM×(
∑L

`=1K`−L + 1) values to determine.
As an example, let's take 10 continuous covariates and 15 binary covariates in the mixed
setting (which is approximately the values we'll �nd in the Traumabase pre-hospital
measurements), we get 327 680 (classical GLOM) vs. 160 (linear).

Thus if we use the notations U̇ for the following design matrix:

U̇ =


1 1U11=1 . . . 1U11=K1−1 1U12=1 . . . 1U12=K2−1 . . . . . . 1U1L=1 . . . 1U1L=KL−1

1 1U21=1 . . . 1U21=K1−1 1U22=1 . . . 1U22=K2−1 . . . . . . 1U2L=1 . . . 1U2L=KL−1
...

...
. . .

...
...

. . .
...

. . . . . .
...

. . .
...

1 1Un1=1 . . . 1Un1=K1−1 1Un2=1 . . . 1Un2=K2−1 . . . . . . 1UnL=1 . . . 1UnL=KL−1


matrix dimension = n× (

∑L
`=1K` − L+ 1)

;

Then We can write eq. (2.8) in the synthetic linear matrix form:

Zm = U̇ λm + εm , ∀m ∈ {1, . . . ,M} . (2.9)

Note that U̇ is almost the complete disjunctive table associated to the L−dimensional
multivariate categorical variable U .

To completely de�ne the aforementioned linear model eq. (2.9), the parameters θZ|U to
characterize are the components of the matrices Λ = (λ1, . . . , λM)> (dimension = M ×
(
∑L

`=1K`−L+ 1)) and Σ (dimensionM×M). Now given an observation Ui of multinomial
variable U for subject i (with

∏L
`=1 K` possible states for Ui), let U dum

i denote the value
taken for subject i by the dummy variable associated to U , that we'll denote by U dum, we
can write:

U dum
i = (1Ui1=1, . . . ,1Ui1=K1−1,1Ui2=1, . . . ,1Ui2=K2−1, . . . ,1UiL=1, . . . ,1UiL=KL−1) .

If we introduce the notation U̇ dum
i such that: U̇ dum

i = (1, U dum
i

)
, we'll then be able

to explicit the multivariate normal conditional distribution of (Z|U) thanks to the notations
proposed. Indeed we can write:

Zi|Ui ∼
i.i.d.
N (ΛU̇ dum

i ,Σ) .

Consequently we get:

p(Zi|Ui ; Λ,Σ) =
1

(2π)M/2 |Σ|1/2
exp
(
− 1

2
(Zi − ΛU̇ dum

i )>Σ−1(Zi − ΛU̇ dum
i )

)
.

We have therefore de�ned a GLOM-type model where given a speci�c state Ui for the
discrete variable U in subject i, the conditional distribution of (Z|U) in subject i is multivariate
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normal, with mean ΛU̇ dum
i and covariance matrix Σ. As we hypothesize that Σ is the same

across di�erent locations, we are in a homoscedasticity setting.

Depending on how we hypothesize the structure of the block matrix Σ, i.e. depending
on the number and sizes of the di�erent blocks, we'll obtain a "clustered" structure for
the conditional joint distribution of (Z1, . . . , ZM) given U , that is a partition of the set of
variables (Z1, . . . , ZM) in a given number of subsets (= �clusters�), with variables mutually
correlated when contained in the same cluster, and conditionally independent of those from
other clusters.

Thus, if we de�ne CZ clusters, it will always be possible to rearrange the order of the
continuous components of Z so as to express Σ with the following form:

Σ =



Σ1

size = |cluster 1|

0 . . . 0

0 Σ2
size = |cluster 2|

. . . 0

...
...

. . .
...

0 0 . . . ΣCZ

size = |cluster CZ |


size =M

(2.10)

And the conditional distribution p(Zi|Ui ; θZ|U) = p(Zi|Ui ; Λ,Σ) can then be simpli�ed
in:

p(Zi|Ui ; Λ,Σ) =

CZ∏
d=1

p(Z̃id|Ui ; Λd,Σd) , (2.11)

where Z̃d refers to the variable associated to the d th cluster (d ∈ {1, . . . , CZ}), which can
be univariate or multivariate, depending on the size of the cluster.

Note that we can write:

Z = (Z1, . . . , ZM) = (Z̃1, . . . , Z̃CZ ) .

In the eq. (2.11), Σd represents the d th block of Σ (d ∈ {1, . . . , CZ}), and Λd represents
the submatrix of Λ formed by the lines of Λ corresponding to the variables Zm speci�cally
contained in Z̃d. To illustrate this, let's say we have 5 continuous variables (Z1, Z2, Z3, Z4, Z5)
grouped in 3 clusters when considering the conditional distribution of (Z|U). If the clusters
are such that Z̃1 = Z2, Z̃2 = (Z1, Z3) and Z̃3 = (Z4, Z5), then we have also Λ1 = λ2,
Λ2 = (λ1, λ3), and Λ3 = (λ4, λ5).
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Clustered multinomial distributions for p(Ui ; θU)

Quite similarly to the above section, we propose a "clustered" dependency structure to model
the joint distribution of our categorical variable (U1, . . . , UL), that is a partition of this set of
variables in CU independent categorical variables called Ũj (j ∈ {1, . . . , CU}), with CU the
number of di�erent independent clusters.

Then we assume that each Ũj follows a multinomial distribution with parameters πj =
(πj1, πj2, . . . , πjRj) (Rj−dimensional probability vector, Rj being the number of modalities

associated to the j th variable Ũj, with πjr = P(Ũij = r) ∀i ∈ {1, . . . , n}, ∀r ∈ {1, . . . , Rj}
and

∑Rj
r=1 πjr = 1). We can write:

p(Ui ; θU) =

CU∏
j=1

p(Ũij ; πj) . (2.12)

Naturally, the parameters to be estimated in this part of the model are the components
of the parameter vectors πj, such that θU = (πj, j ∈ {1, . . . , CU}).

Having speci�ed each probability distribution composing our model as well as their pa-
rameters, we'll now focus on the di�erent tasks to execute.

Adaptation of SAEM in mixed data setting

We recall that one of the key steps in SAEM at kth iteration is the simulation step as
introduced in Section 2.3, i.e. being able to draw for each individual i a set of samples X(k)

i,mis

from the conditional distribution p(Xi,mis | yi, Xi,obs ; θ(k−1))

Within mixed data setting, the objective becomes to draw two subsets of unobserved vari-
ables Z(k)

i,mis and U
(k)
i,mis, one continuous and one categorical respectively, from the conditional

joint distribution:
p(Zi,mis, Ui,mis | yi, Zi,obs, Ui,obs ; θ(k−1)) .

Drawing from such a distribution can be achieved by Gibbs sampling, as detailed in
Algorithm 4.

Algorithm 4 Gibbs sampling applied to mixed data: draw Z
(k)
i,mis and U

(k)
i,mis, at k

th SAEM
iteration.

Input: An initial sample U (k,0)
i,mis = U

(k−1)
mis obtained from previous (k−1)th SAEM iteration;

for t = 1, 2, . . . , T do
Generate

Z
(k,t)
i,mis ∼ p(Zi,mis | yi, Zi,obs, Ui,obs, U

(k, t−1)
i,mis ; θ(k−1)) ; (2.13)

Generate
U

(k,t)
i,mis ∼ p(Ui,mis | yi, Zi,obs, Ui,obs, Z

(k,t)
i,mis ; θ(k−1)) ; (2.14)

Output: Z
(k,T )
i,mis = Z

(k)
i,mis and U

(k,T )
i,mis = U

(k)
i,mis , i = 1, 2, · · · , n.

In order to de�ne relevant proposal distributions for MH sampling, let's observe how the
target distributions in eq. (2.13) and eq. (2.14) can be factorized:
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� For continuous missing covariates sampling:

p(Zi,mis | yi, Zi,obs, Ui ; θ) ∝
w.r.t.Zmis

p(yi |Zi, Ui ; β) · p(Zi,mis |Zi,obs, Ui ; Λ,Σ)

∝
w.r.t.Zmis

p(yi |Xi ; β) · p(Zi,mis |Zi,obs, Ui ; Λ,Σ) .

(2.15)

Then, to draw Z
(k,t)
i,mis from p(Zi,mis | yi, Zi,obs, Ui,obs, U

(k, t−1)
i,mis ; θ(k−1)) in eq. (2.13),

we'll select as a proposal distribution for MH algorithm (see Section 2.3.3) the sec-
ond term in the above factorization, i.e. p(Zi,mis |Zi,obs, Ui ; Λ(k−1),Σ(k−1)), which is
normally distributed:

Zi,mis |Zi,obs, Ui ∼ N (µ∗i ,Σ
∗
i ) ,

where

µ∗i = (Λ(k−1)U̇ dum
i )i,mis + Σ

(k−1)
i,mis,obs

(
Σ

(k−1)
i,obs,obs

)−1 (
Zi,obs − (Λ(k−1)U̇ dum

i )i,obs

)
,

Σ∗i = Σ
(k−1)
i,mis,mis − Σ

(k−1)
i,mis,obs

(
Σ

(k−1)
i,obs,obs

)−1
Σ

(k−1)
i,obs,mis ,

with (Λ(k−1)U̇ dum
i )i,mis (resp. (Λ(k−1)U̇ dum

i )i,obs) the missing (resp. observed) ele-
ments, with respect to Zi,mis (resp. Zi,obs), of Λ(k−1)U̇ dum

i . The covariance matrix
Σ(k−1) is decomposed in the same way. We recall that Λ(k−1) and Σ(k−1) refer to the
estimates of the parameters Λ and Σ updated at the end of (k− 1)th SAEM iteration.
Note also that actually we should consider Λ

(k−1)
d and Σ

(k−1)
d (where d ∈ {1, . . . , CZ})

rather than Λ(k−1) and Σ(k−1), due to the �cluster� structure de�ned in eq. (2.10) but
we wanted to preserve readability and avoid overly heavy notations.

Furthermore, the factorization proposed in eq. (2.15) allows us to precise an explicit
form for the ratio of the target distribution over the proposal one, which is mandatory
in MH structure (as detailed in Section 2.3.3). Here this ratio reads:

p(Z
(k,t,s)
i,mis | yi, Zi,obs, Ui,obs, U

(k, t−1)
i,mis ; θ(k−1))

p(Z
(k,t,s)
i,mis |Zi,obs, Ui,obs, U

(k, t−1)
i,mis ; µ∗i ,Σ

∗
i )

= p(yi |X(k,t,s)
i,comp ; β(k−1))

=


exp
(
β(k−1)>·

(
Ẋ

(k,t,s)
i,comp

)dum)
1+exp

(
β(k−1)>·

(
Ẋ

(k,t,s)
i,comp

)dum) , if yi = 1 ,

1− exp
(
β(k−1)>·

(
Ẋ

(k,t,s)
i,comp

)dum)
1+exp

(
β(k−1)>·

(
Ẋ

(k,t,s)
i,comp

)dum) , if yi = 0 ,

(2.16)

where X(k,t,s)
i,comp = (Zi,obs, Z

(k,t,s)
i,mis , Ui,obs, U

(k, t−1)
i,mis ) is a completed set of observations for

individual i, at kth iteration of SAEM, tth iteration of Gibbs sampling, and sth iteration
of Metropolis-Hastings sampling; and we denote:(

X
(k,t,s)
i,comp

)dum
= (Zi,obs, Z

(k,t,s)
i,mis , U

dum
i,obs, (U

(k, t−1)
i,mis )dum) ,

the dummy observation vector associated withX(k,t,s)
i,comp. And �nally we have

(
Ẋ

(k,t,s)
i,comp

)dum
=(

1,
(
X

(k,t,s)
i,comp

)dum
)
.
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� For categorical missing covariates sampling:

p(Ui,mis | yi, Zi, Ui,obs ; θ)

∝
w.r.t.Umis

p(yi |Zi, Ui ; β) · p(Zi |Ui ; Λ,Σ) · p(Ui,mis |Ui,obs ; (πj)j∈{1,...,CU})

∝
w.r.t.Umis

p(yi |Xi ; β) · p(Zi |Ui ; Λ,Σ) · p(Ui,mis |Ui,obs ; (πj)j∈{1,...,CU}) .

(2.17)

Then, to draw U
(k,t)
i,mis , we'll select the third term in the above factorization:

p(Ui,mis |Ui,obs ; (πj
(k−1))j∈{1,...,CU}), which can be de�ned according to the cluster

structure de�ned in eq. (2.12) and by ratios of appropriate probabilities extracted from
the set of parameters θ(k−1)

U = (πj
(k−1), j ∈ {1, . . . , CU}), whose expressions rely on

a case-by-case basis.

Furthermore, as seen in eq. (2.16), the factorization proposed in eq. (2.17) allows us
to precise an explicit form for the ratio of distributions:

p(U
(k,t,s)
i,mis | yi, Zi,obs, Ui,obs, Z

(k,t)
i,mis ; θ(k−1))

p(U
(k,t,s)
i,mis |Ui,obs ; (πj(k−1))j∈{1,...,CU})

= p(yi |X(k,t,s)
i,comp ; β(k−1)) · p(Z

(k,t)
i,comp |U

(k,t,s)
i,comp ; Λ(k−1),Σ(k−1)) ,

where:

� p(yi |X(k,t,s)
i,comp ; β(k−1)) has an explicit form given by eq. (2.16), depending on the

value of yi ∈ {0 , 1};

� p(Z
(k,t)
i,comp |U

(k,t,s)
i,comp ; Λ(k−1),Σ(k−1)) is normally distributed according to:

Z
(k,t)
i,comp |U

(k,t,s)
i,comp ∼ N

(
Λ(k−1)

(
U̇

(k,t,s)
i,comp

) dum
, Σ(k−1)

)
,

with X(k,t,s)
i,comp = (Zi,obs, Z

(k,t)
i,mis, Ui,obs, U

(k,t,s)
i,mis ) a completed set of observations for indi-

vidual i, at kth iteration of SAEM, tth iteration of Gibbs sampling, and sth iteration
of Metropolis-Hastings sampling, de�ned analogously as in eq. (2.16) ;

(
X

(k,t,s)
i,comp

)dum
=(

Zi,obs, Z
(k,t)
i,mis, U

dum
i,obs, (U

(k,t,s)
i,mis )dum

)
the dummy observation vector associated withX(k,t,s)

i,comp,

and
(
Ẋ

(k,t,s)
i,comp

)dum
=
(

1,
(
X

(k,t,s)
i,comp

)dum
)
; and with Z(k,t)

i,comp = (Zi,obs, Z
(k,t)
i,mis) the analo-

gously de�ned completed continuous observation vector for individual i at kth SAEM it-
eration and tth Gibbs iteration; and with �nally

(
U̇

(k,t,s)
i,comp

) dum
=
(
1, Udum

i,obs, (U
(k,t,s)
i,mis )dum

)
is the �extended-dummy� observation vector associated with completed categorical
U

(k,t,s)
i,comp = (Ui,obs, U

(k,t,s)
i,mis ).

Simulation study

We �rst generated the following design matrix X = (Z,U) with the characteristics:

� dimension n1 = 200× p = 4;
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� 2 categorical variables (U1, U2), with 3 possible categories for U1 , and 2 categories for
U2 (binary), such that Ui1 ∈ {�red�; �blue�; �yellow�} and Ui2 ∈ {�big�; �small�} for
each individual i ∈ {1, . . . , n};

� 2 continuous variables (Z1, Z2) such that the conditional distribution of (Z1, Z2|U1, U2)
is bivariate normal;

� we considered as the true parameter values:

β = (β0, β
Z
1 , β

Z
2 , β

U
11, β

U
12, β

U
21)> =

[
0 2 −3 3 −1 2

]
, (2.18)

Λ =

[
0 2 3 2
0 3 2 3

]
, (2.19)

Σ =

[
1 0
0 1

]
, (2.20)

π1 =

 πred

πblue

πyellow

 =

 0.2
0.5
0.3

 , (2.21)

π2 =

[
πbig

πsmall

]
=

[
0.6
0.4

]
. (2.22)

� Generative process : we �rst generate n1 samples of (U1, U2) from their own multino-
mial distribution of respective parameters (π1, π2); given the categories generated, we
transform each Ui vector into its dummy equivalent Udum

i and we can then generate
values for (Z1, Z2|U1, U2) from the bivariate normal distribution of parameters Λ U̇dum

i

(mean) and Σ (covariance matrix); eventually, we are able to generate the binary re-
sponse yi for each individual i according to a logistic regression model with parameters
β.

Our objective given these simple settings is to assess how the proposed approach behaves
in estimating the true parameters de�ned above, with a given amount of missing values
introduced in the covariates according to a given missingness mechanism. We'll systematically
compare the results of SAEM to the other methods as mentioned in Section 2.5. We note
that for MeanImp method, i.e. mean imputation, each missing value in a given column
is replaced either by the mean of its belonging column for continuous covariates, or by a
sample from the empirical probability mass function for categorical covariates; then a logistic
regression estimation is performed on the completed dataset.

In Figure 2.19, one can observe the convergence pro�les of the estimates across SAEM
iterations, which are quite acceptable.

In Figures 2.20, 2.21, 2.22 and 2.23 presented below, we aimed at comparing the empirical
distributions of the relative bias of each estimate, across the �ve di�erent methods considered,
focusing in each �gure on the variation of a given con�guration parameter:

� Figure 2.20 shows the comparative e�ects of two di�erent sample sizes:

� n1 = 200;

� n2 = 1000;
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Figure 2.19: Convergence pro�les of the parameter estimates across SAEM iterations
(sample size n1 = 200, 10% of missingness entry-wise, a�ecting all variables, MCAR mech-
anism)

� Figures 2.21 and 2.22 show the comparative e�ects of three di�erent missingness mech-
anisms:

� MCAR, where each entry has the same probability to be observed;

� MAR with missingness in (Z2, U1, U2) depending on values of fully observed Z1;

� MAR with missingness in Z2 conditionally to fully observed Z1, and in U2 condi-
tionally to fully observed (Z1, U1);

� Figure 2.23 shows the comparative e�ects of two di�erent percentages of missingness:

� 10% entry-wise;

� 30% entry-wise;

Each estimation task is replicated 100 times per setting. We recall that the relative bias
of an estimate, for instance β̂0, is de�ned by:

Relative bias (β̂0) =
β̂0 − β true

0

| β true
0 |

(2.23)

As expected, larger samples yielded less variability. Moreover, we observe that SAEM pro-
vided unbiased estimates (which is clearly highlighted with n2 = 1000) with small variances.
In contrast, estimating with a preliminary mean imputation produced a signi�cant bias. It
also appeared that the standard errors observed in CC estimates seemed to be regularly worse
than those for SAEM, such a di�erential e�ect being more visible when the missingness rate
increased (see Figure 2.23), or when the missingness mechanism was assumed to be MAR
rather than MCAR (see Figures 2.21 and 2.22). Unsurprisingly, the apparent unbiased prop-
erty of the same CC method in our di�erent settings also vanished when the missingness
assumption changed from MCAR to MAR. Finally it seems in Figure 2.21 that MAR as-
sumption introduced some bias tendency in SAEM estimates, but this may result from a
somewhat small sample size, and unfortunately we had not performed yet the simulations
with n2 = 1000 to con�rm this hypothesis.
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Figure 2.20: Empirical distribution of the relative bias in parameter estimation, across 5
di�erent methods.
E�ect of sample size: (left) n1 = 200 (right) n2 = 1000
(10% of missingness entry-wise, MCAR mechanism, ×100 replications for each setting)
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Figure 2.21: Empirical distribution of the relative bias in parameter estimation, across 5 dif-
ferent methods.
E�ect of mechanism: (left) MCAR (right) MAR with missingness in (Z2, U1, U2) de-
pending on Z1

(n1 = 200, 10% of missingness entry-wise, ×100 replications for each setting)
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Figure 2.22: Empirical distribution of the relative bias in parameter estimation, across 5
di�erent methods.
E�ect of mechanism: (left) MCAR (right) MAR with missingness in Z2 depending on Z1,
and in U2 depending on (Z1, U1)
(n1 = 200, 10% of missingness entry-wise, ×100 replications for each setting)
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Figure 2.23: Empirical distribution of the relative bias in parameter estimation, across 5
di�erent methods.
E�ect of percentage of missingness: (left) 10% entry-wise (right) 30% entry-wise
(n2 = 1000, MCAR mechanism, ×100 replications for each setting)
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Chapter 3

ABSLOPE�High-dimensional
model selection with missing values
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3.1 Introduction

In this chapter, we focus on high-dimensional variable selection with missing values. In par-
ticular we are interested in methods that control the FDR. As introduced in Section 1.3,
controlling FDR is one of the central goals of many methodological developments in multiple
regression (see e.g. Barber et al. (2015); Candes et al. (2018)). Compared to methods
aiming at perfect signal recovery, controlling for FDR is more liberal as it allows for some
small number of mistakes. As a result, this leads to substantial gains in power and in pre-
diction improvements when the signal is weak. Sorted l1 penalization estimates (SLOPE)
is suggested by Bogdan et al. (2015) for the purpose, however, large amounts of shrinkage,
needed to keep FDR small, result in large estimation bias of important regression coe�cients
and thereby poor estimation. On the other hand, when the data contain missing values, to
the best of our knowledge, no method exists so far to control FDR on the same time.
To improve the estimation when controlling FDR and to deal with missing values simulta-
neously, we propose here the adaptive Bayesian version of SLOPE (ABSLOPE) addresses
these issues by incorporating aspects of the Spike-and-Slab LASSO and SLOPE. By embed-
ding SLOPE within a Bayesian spike-and-slab framework, our prior is constructed so that the
�spike� component e�ectively reduces to regular SLOPE for very small regression coe�cients.
Together with a bias-reducing slab for large signals, this allows for FDR control under a wide
range of possible scenarios, as will be seen from our extensive simulation study. In addition,
the �slab� component of our mixture prior preserves the averaging property of SLOPE for
similar regression coe�cients (see Figueiredo and Nowak (2016) for discussion of the SLOPE
averaging e�ect). This leads to very good prediction properties when regressors are substan-
tially correlated. The hyper-parameters of our mixture SLOPE prior are iteratively updated
using the full Bayesian model in the spirit of stochastic approximation EM (Lavielle, 2014),
which can also handle missing data.

Our aim is to develop a complete and e�cient methodology for selection of variables with
high dimensional data and missing values. The methodology has been implemented in an R
(R Core Team, 2017) package ABSLOPE (Jiang et al., 2019), which we introduce in details
later in Chapter 5. The code that reproduces all our experiments is available from GitHub
(Jiang, 2019a).

This chapter is organized as follows: Section 3.2 introduces notation and assumptions
about our ABSLOPE model. Section 3.3 describes the stochastic approximation EM al-
gorithm (and its simpli�ed variant) for processing missing data. Section 3.4 evaluates the
methodology with a comprehensive simulation study focusing on power, FDR and estimation
bias. In Section 3.5, we apply our approach to a medical dataset of trauma patients to
develop a model that predicts the rate of platelets using (incomplete) medical information
collected by the ambulance. Finally, Section 3.6 concludes our work with a discussion.
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3.2 Statistical model and assumptions

Let y = (yi, 1 ≤ i ≤ n) be a vector of n responses, centered such that ȳ = 1
n

∑n
i=1 yi = 0;

and let X = (Xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p) be a design matrix of dimension n×p standardized
so that each column has mean 0 and a unit l2 norm, i.e.

∑n
i=1Xij = 0 and

∑n
i=1X

2
ij = 1

for 1 ≤ j ≤ p. We consider the problem of estimating β based on realizations y from the
linear regression model:

y = Xβ + ε,

where β = (βj, 1 ≤ j ≤ p) is the vector of regression coe�cients of length p, for which we
assume a sparse structure, and ε is a vector of length n of independent Gaussian errors with
mean 0 and variance σ2, i.e. ε ∼ N (0, σ2

1n).

3.2.1 SLOPE

SLOPE (Bogdan et al., 2015) estimates coe�cients by minimizing a regularized residual sum
of squares using a sorted l1 norm penalty which generalizes the LASSO by penalizing larger
coe�cients more stringently:

β̂SLOPE = arg min
β∈Rp

{
1

2
‖y −Xβ‖2 + σ

p∑
j=1

λj|β|(j)

}
, (3.1)

where the penalty coe�cients λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and the absolute values of elements
in β are sorted in a decreasing order |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p). The sorted l1 penalty can
also be written as:

pen(λ) = σ

p∑
j=1

λj|β|(j) = σ

p∑
j=1

λr(β,j)|βj| ,

where r(β, j) ∈ {1, 2, · · · , p} is the rank of βj among elements in β in a descending order. To
solve the convex but non-smooth optimization problem (3.1), a proximal gradient algorithm
can be used as detailed in Bogdan et al. (2015). Unlike in SSL, the SLOPE formulation
operates under the following premise: the higher the rank (i.e. the stronger the signal),
the larger the penalty. This behavior is quite similar to the Benjamini-Hochberg procedure
(BH) (Benjamini and Hochberg, 1995), which compares more signi�cant p-values with more
stringent thresholds. In this way, SLOPE can be seen as building a bridge between the LASSO
and the False Discovery Rate (FDR) control for multiple testing. In the context of multiple
regression we de�ne FDR of an estimator β̂ = (β̂1, . . . , β̂p) as

FDR = E
(

V

max(1,R)

)
,

where
R = #{j : β̂j 6= 0} and V = #{j : β̂j 6= 0 ∧ βj = 0} .

SLOPE (Bogdan et al., 2015) uses the sequence of parameters λBH = (λBH,1, . . . , λBH,p) with

λBH,j = Φ−1

(
1− j × q

2p

)
,

where Φ(·) denotes the cdf of N (0, 1) and q is the target FDR level.
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3.2.2 Adaptive Bayesian SLOPE

As with any other penalized likelihood estimator, SLOPE can be seen as a posterior mode
under the following prior (Sepehri, 2016):

p(β | σ2;λ) = C(λ, σ2)

p∏
j=1

exp

(
− 1

σ
λr(β,j)|βj|

)
,

where C(λ, σ2) is a normalizing constant.

This prior depends on just one sequence of tuning parameters λ, which regulates both
model selection and shrinkage. Simulation results reported in Bogdan et al. (2015) show that
the selection of λ leading to FDR control also leads to over-excessive shrinkage and large
estimation bias. To solve this problem we follow the idea of the Spike-and-Slab LASSO (SSL)
(Ro£ková and George, 2018). SSL avoids over-shrinkage of large e�ects with a two-point
Laplace mixture prior, where large coe�cients can escape shrinkage by migrating towards the
slab portion of the prior. The spike component is assigned a large penalty λ0 (small variance)
to weed out noise, while the slab component has a small penalty λ1 (large variance) to
provide enough support for large signals. The Spike-and-Slab LASSO procedure is based on
maximum a posteriori estimation (MAP) which relies on fast weighted LASSO calculations
with weights automatically adjusted throughout the algorithm. Namely, separately for each
variable we have a penalty which depends on the (conditional) posterior probability that
this variable is an important predictor. The SSL prior also automatically learns the level of
sparsity through an empirical-Bayes plug-in inside the algorithm. The optimal choice of the
spike penalty λ0 relates to the prior mixing weight θ and should re�ect the inherent sparsity
of the signal (Ro£ková et al., 2018). The SSL procedure does not choose a single value λ0

but, similarly as the LASSO, creates a solution path indexed by increasing values of λ0. Since
the SLOPE procedure was shown to be adaptive to the level of sparsity, we will replace the
spike portion of the SSL prior with the Bayesian SLOPE prior to achieve more automatic
sparsity adaptation.

In our adaptive Bayesian SLOPE (ABSLOPE), we thereby consider a di�erent hierarchical
Bayesian model with the spike prior based on the sequence of SLOPE decaying parameters to
provide FDR control and with the SLOPE slab prior to stabilize estimation of large signals by
additional shrinkage of regression parameters towards one another (see Brzyski et al. (2019)
for some discussion of the SLOPE shrinkage). ABSLOPE borrows strength across covariates
(by tying them together through the spike distribution) and, similarly as SSL, allows for
estimation of latent inclusion parameters and the level of sparsity (i.e. number of nonzero β
coe�cients). The procedure requires only three interpretable input parameters: FDR level q
and the hyperparameters a and b of the Beta prior for the sparsity level θ ∼ Beta(a, b).

The ABSLOPE prior on the regression vector β is formally de�ned as:

p(β | γ, c, σ2;λ) ∝ c
∑p
j=1 1(γj=1)

p∏
j=1

exp

{
−wj|βj|

1

σ
λr(Wβ,j)

}
. (3.2)

This formulation may seem a bit complicated at �rst sight and so we carefully explain its
components below:

1. Each βj 6= 0 is regarded as signal and noise otherwise.
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2. As is customary with spike-and-slab priors, each covariate xj is equipped with a binary
inclusion indicator γj ∈ {0, 1} which indicates whether βj is is substantially di�erent
from the noise level. The vector γ = (γ1, · · · , γp) then indexes 2p possible model
con�gurations. Conditionally on a mixing (prior inclusion) weight θ ∈ (0, 1), we de�ne
the model distribution as an independent Bernoulli product:

p(γ | θ) =

p∏
j=1

θγj(1− θ)1−γj ,

where θ = P(γj = 1; θ) is formally de�ned as the expected fraction of large βj, i.e.,
θ indicates the level of sparsity. We assume that θ arose from a beta distribution
Beta(a, b), where the values of a and b can be selected by the user, according to an
initial guess of the signal sparsity.

3. The parameter c ∈ (0, 1) is the ratio of average signal magnitudes between the null
components and the non-null components. We assume a non-informative prior c ∼
U [0, 1].

4. We de�ne a diagonal weighting matrix W = diag(w1, w2, · · · , wp) consisting of ele-
ments

wj = cγj + (1− γj) =

{
c, γj = 1

1, γj = 0
.

5. For the case when the noise variance σ is unknown, we assume an uninformative prior
p(σ2) ∝ 1

σ2 .

3.2.3 Motivation

In Section 3.7.1 it is proved that the prior (3.2) leads to the regular SLOPE prior on the
transformed parameter vector z = Wβ, i.e.

p(z | σ2;λ) ∝
p∏
j=1

exp

{
− 1

σ
λr(z,j)|zj|

}
, (3.3)

As a result, when W is known (i.e. we know the signal and noise variables from γj ∈
{0, 1}) and when the data are fully observed, the MAP for β under the ABSLOPE prior (3.2)
can be obtained as a solution to SLOPE (3.1) with a weighted design matrix X̃ = XW−1.
Let us now clarify the value of introducing the weighting matrix W . It turns out that when
γj = 0 we have wj = 1, i.e., noise variables are treated with the regular SLOPE penalty
which will assign substantially larger shrinkage to smaller e�ects. This is di�erent from the
SSL prior, which would shrink all the noise coe�cients equally by λ0. On the other hand,
when γj = 1 we have wj = c < 1 and the variables are treated as true signals and thereby
not shrunk as much. This is achieved by multiplying the respective elements of the vector
of tuning parameters by c and, additionally, by moving these variables towards the end of
sequence. This implies that, under ABSLOPE, the large e�ects βj will be assigned a penalty
cλr(Wβ,j) that is smaller than λr(β,j) obtained under the regular SLOPE. As a result, this
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(a) Non-null β (b) Null β

Figure 3.1: Prior distribution of SLOPE and ABSLOPE, on β whose true value is non-null
(a) or null (b).

adaptive version is poised to yield more accurate estimation since the l1 penalty on true
signals will be much smaller.

Figure 3.1 shows the di�erence between the SLOPE prior and the ABLSOPE prior on a
single coe�cient βj. On the left, we have a slab prior distribution on an active coe�cient
βj which shows that ABSLOPE promotes larger estimates: the mass is greater in the tails
compared to SLOPE. On the other hand, for the irrelevant βj (spike prior depicted on the
right), ABSLOPE reduces to the double exponential SLOPE peak to threshold out small
e�ects.

The ABSLOPE prior can be seen as a spike-and-slab prior, where the spike component
models regression coe�cients close to the noise level and the slab component models large
regression coe�cients. In fact, the spike-and-slab LASSO prior can be regarded as a special
case when one considers the constant sequence of tuning parameters λ1 = . . . = λp = λ0

for the spike SLOPE component and c as the ratio between spike and slab penalties. The
algorithm described in Section 3.3.4 shows that the slab component is destined to de-bias
the large regression coe�cients while the spike component is aimed at FDR control.

3.2.4 Scaling with existence of missingness

We adopt a probabilistic framework by assuming that Xi = (Xi1, . . . , Xip) is normally dis-
tributed:

Xi ∼
i.i.d.
Np(µ,Σ), i = 1, · · · , n .

Missing values are assumed to be either MCAR or MAR as de�ned in Chapter 1, which
allows to derive MLE by ignoring the missing values mechanism and maximizing the observed-
data likelihood. Since the covariates should be standardized (as we assumed at the beginning
of Section 3.2), we have to reconsider our scaling of X in the light of missing data. When the
missing values are MCAR, scaling can be performed as a pre-processing step before performing
the analysis. Since observed values represent a random sample from the population, standard
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deviations estimated using observed data are unbiased estimates of the population standard
deviation even if their variance is larger. When the missing data are MAR, standard deviations
estimated using observed data can be severely biased. Indeed, consider the case when two
variables are highly correlated and missing values occur in one variable when the values of
the other variable are larger than a constant, then the estimated standard deviation will be
biased downwards. Consequently, its estimation needs to be included in the analysis. In
Section 3.7.2, we detail how we update mean and standard deviation at each iteration of the
algorithm presented in Section 3.3.

3.2.5 Overview of modeling

Figure 3.2 shows our ABSLOPE graphical model with variables, parameters and their rela-
tions. We aim at estimating β and σ2, treating parameters µ and Σ as nuisance.

y

Xobs Xmisμ, Σ

θ γ

c
β

σ2

X

Figure 3.2: ABSLOPE graphical model. Arrows indicate dependencies. White circles are for
latent variables, gray ones for observed variables and squares for parameters.

3.3 Model selection by ABSLOPE

In this section, we develop an ABSLOPE method based on the stochastic approximation EM
algorithm. As this algorithm entails proper sampling which can be quite time consuming, we
also provide a simpli�ed heuristic version called SLOBE, where the stochastic step is replaced
with deterministic approximations of parameter expected values. This faster variant allows
us to consider models of larger dimensions and, according to our simulation study, performs
very similarly to the stochastic version.
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3.3.1 Maximizing the observed penalized likelihood

According to the model de�ned in Section 3.2 and presented in Figure 3.2, the penalized
complete-data log-likelihood can be written as:

`comp = log p(y,X, γ, c; β, θ, σ2) + pen(β)

= log
{
p(X | µ,Σ) p(y | X; β, σ2) p(γ | θ) p(c)

}
+ pen(β)

=− 1

2
log(2π|Σ|)− 1

2
(X − µ)TΣ−1(X − µ)− n log(σ)− 1

2σ2
‖y −Xβ‖2

+

p∑
j=1

1(γj = 1) log θ +

p∑
j=1

1(γj = 0) log(1− θ)− 1

σ

p∑
j=1

wj|βj|λr(Wβ,j).

(3.4)

Similarly as the EMVS variable selection procedure of Ro£ková and George (2014), we focus
on obtaining the MAP point estimates and do not aspire at fully Bayesian inference which
would entail calculating the entire posterior distribution. Due to the presence of latent
variables Xmis, γ and c, we estimate β by maximizing the observed log-likelihood which
integrates over the latent variables: `obs =

∫∫∫
`comp dXmis dc dγ. We use the EM algorithm

(Dempster et al., 1977) to estimate β, and in the meantime, obtain simulated γ to distinguish
the true signals from the noise, i.e. to select variables. Given the initialization, each iteration
t updates βt to βt+1 with the following two steps:

� E step: The expectation of the complete-data log likelihood with respect to the
conditional distribution of latent variables is computed, i.e.,

Qt = E(`comp) wrt p(Xmis, γ, c, θ | y,Xobs, β
t, σt, µt,Σt) .

Since this is not tractable, we derive a stochastic approximation EM (SAEM) algo-
rithm (Lavielle, 2014) by replacing the E step by a simulation step and a stochastic
approximation step.

� Simulation: draw one sample (X t
mis, γ

t, ct, θt) from

p(Xmis, γ, c, θ | y,Xobs, β
t−1, σt−1, µt−1,Σt−1) ; (3.5)

� Stochastic approximation: update function Q with

Qt = Qt−1 + ηt

(
`comp

∣∣∣
Xt

mis,γ
t,ct,θt

−Qt−1

)
, (3.6)

where ηt is the step-size.

The step-size (ηt) is chosen as a decreasing sequence as described in Delyon et al.
(1999) which ensures almost sure convergence of SAEM to a maximum of the observed
likelihood in their continuously di�erentiable case.

� M step: (βt+1, σt+1, µt+1,Σt+1) = arg maxQt+1.
Note that Σt+1 is estimated as above only when p << n. Otherwise we consider a
shrinkage estimation as discussed in Remark 1. Indeed, we regard (µ,Σ) as auxiliary
parameters, which are needed only to update the missing values.
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Despite the apparent complexity of the algorithm, it turns out that the likelihood (3.4) can
be decomposed into several terms: one term for the linear regression part, one term for the
covariates distribution and terms for the latent variables γ and c, as illustrated in Figure 3.2.
Consequently, one iteration can be divided into tractable sub-problems, as detailed in the
following subsections.

3.3.2 Simulation step: sampling the latent variables

To perform the simulation step (3.5), we use the Gibbs sampler. To simplify notation, we hide
the superscript and note that all conditional distributions are computed given the quantities
from the previous iteration. We perform the following sampling procedure:
γ ∼ Bin

(
θc exp(−c 1

σ
|βj |λr(Wβ,j))

(1−θ) exp(− 1
σ
|βj |λr(Wβ,j))+θc exp(−c 1

σ
|βj |λr(Wβ,j))

)
;

θ ∼ Beta
(
a+

∑p
j=1 1(γj = 1), b+

∑p
j=1 1(γj = 0)

)
, with Beta(a, b) a prior for θ ;

c ∼ Gamma
(

1 +
∑p

j=1 1(γj = 1), 1
σ

∑p
j=1|βj|λr(Wβ,j)1(γj = 1)

)
truncated to [0, 1].

(3.7)
The detailed calculation and interpretation can be found in Section 3.7.3. In addition, to
simulate the missing values Xmis, we perform a decomposition:

Xmis ∼ p(Xmis | γ, c, y,Xobs, β, σ, θ, µ,Σ)

= p(Xmis | y,Xobs, β, σ, µ,Σ)

∝ p(y | Xobs, Xmis, β, σ) p(Xmis | Xobs, µ,Σ) .

(3.8)

Here, we observe that the target distribution (3.8) is a normal distribution since the two
terms after factorization are both normal. In the following proposition, we give the explicit
form of the target distribution as a solution to a system of linear equations.

Proposition 2. For a single observation x = (xmis, xobs) we denote with xobs and xmis

observed and missing covariates, respectively. Let M be the set containing indexes for
missing covariates and O for the observed ones. Assume that p(xobs, xmis; Σ, µ) ∼ N (µ,Σ)
and let y = xβ+ ε where ε ∼ N(0, σ2). For all the indexes of the missing covariates i ∈M,
we denote:

mi =

p∑
q=1

µjsiq, ui =
∑
k∈O

xkobssik, r = y − xobsβobs, τi =
√
sii + β2

i /σ
2 ,

with sij elements of Σ−1 and βobs the observed elements of β.
Let µ̃ = (µ̃i)i∈M be the solution of the following system of linear equations:

rβi/σ
2 +mi − ui
τi

−
∑

j∈M,j 6=i

βiβj/σ
2 + sij

τiτj
µ̃j = µ̃i , for all i ∈M , (3.9)

and let B be a matrix with elements:

Bij =

{
βiβj/σ

2+sij
τiτj

, if i 6= j

1, if i = j
,

87



then for z = (zi)i∈M where zi = τix
i
mis we have:

z | xobs, y; Σ, µ, β, σ2 ∼ N(µ̃, B−1) .

As a result, we can simulate missing covariates from:

xmis | xobs, y; Σ, µ, β, σ2 ∼ N(µ̃� τ, B−1 � (ττT )) ,

where τ = (τi)i∈M � is used for Hadamard division. The proof is provided in Section 3.7.4.

3.3.3 Stochastic approximation and maximization steps

After the simulation step, we obtain one sample for each latent variable: X t
mis, γ

t, ct, and thus
W t with diagonal elements wtj = 1−(1−ct)γtj. Now we have several parameters to estimate,
but each parameter only concerns some of the terms in the complete-data likelihood. This
helps us simplify calculations. The maximization step is nevertheless quite di�cult because
the complete model does not belong to a regular exponential family (if so we could update
the su�cient statistics and maximize more easily).

As the implementation of SAEM is quite challenging in the general step-size case, we start
with the simpler case of �xed step-size ηt = 1. It is important to note that this causes larger
variance compared to setting the step-size as a decreasing sequence (Delyon et al., 1999)
and there is no guarantee of convergence to the actual mode, only to its neighborhood.

Step-size ηt = 1

When ηt = 1, estimation boils down to maximizing the complete-data likelihood completed
by sampling the latent variables from their conditional distribution given the observed values
.

1. Update β.

βt = arg max
β

Qt
1(β) := − 1

2(σt−1)2‖y −X
tβ‖2 − 1

σt−1

p∑
j=1

wtj|βj|λr(W tβ,j) ,

where X t = (Xobs, X
t
mis). This estimate corresponds to the solution of SLOPE, given

the value of W , Xmis and σ. In our implementation of ABSLOPE we solve the SLOPE
optimization problem using the Alternative Direction Method of Multipliers of (Boyd
et al., 2011), which turns out to be much quicker then the proximal gradient algorithm
of (Bogdan et al., 2015) when the regressors are strongly correlated or when they are
on di�erent scales, as in our reweighting scheme.

2. Update σ.

σt = arg max
σ

Qt
2(σ) := −n log(σ)− 1

2σ2
‖y −X tβt‖2 − 1

σ

p∑
j=1

wtj|βtj|λr(W tβt,j) .
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Given by the derivative, the solution to estimate σ is:

σt =
1

2n

 p∑
j=1

λr(W tβt,j)w
t
j|βtj|+

√√√√( p∑
j=1

λr(W tβt,j)wtj|βtj|

)2

+ 4nRSS

 , (3.10)

where the RSS (residual sum of squares) is ‖y −X tβt‖2.

If we omit the penalization term, (3.10) amounts to σt =
√

RSS
n

, which is the classical

formula for MLE of σ when β is also estimated by MLE. In this case this estimator would
be biased downwards. Interestingly, our posterior mode estimator of

√
nσ is larger than

the corresponding RSS, which, according to the simulation results in Subsection 3.4.2,
often leads to a less biased estimator when most of the true e�ects are detected by
ABSLOPE.

3. Update µ,Σ:

µt,Σt = arg max
µ,Σ

−1

2
log(2π|Σ|)− 1

2
(X t − µ)>Σ−1(X t − µ) .

When p << n, the solution is given by the empirical mean and the empirical covariance
matrix:

µt = X̄ t =
1

n

n∑
i=1

X t
i and Σt =

1

n

n∑
i=1

(X t
i − X̄ t)(X t

i − X̄ t)> .

In high dimensional setting, estimation of Σt by the empirical covariance matrix is
replaced by shrinkage estimation, as discussed in Remark 1.

Remark 1. To tackle the problem of estimation and inversion of the covariance matrix in
high dimensions, one can resort to shrinkage estimation as detailed in Ledoit and Wolf (2004).
With the assumption that the ratio n

p
is bounded, they propose an optimal linear shrinkage

estimator as a linear combination of identity matrix Ip and the empirical covariance matrix
S, i.e.:

Σ̂ = ρ1Ip + ρ2S, where ρ1, ρ2 = arg min
ρ1,ρ2

E‖Σ̂− Σ‖2 .

The method boils down to shrinking empirical eigenvalues towards their mean. The parame-
ters ρ1 and ρ2 are chosen with asymptotically (as n and p go to in�nity) uniformly minimum
quadratic risk in its class.

General step-size

With a general step-size (say ηt = 1
t
), for a model parameter ψ we set

ψt+1 = ψt + ηt

[
ψ̂tMLE − ψt

]
, (3.11)

where ψ̂tMLE is the MLE estimator of the complete-data likelihood completed by drawing
the latent variables from their conditional distributions given the observed information. This
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exactly corresponds to the estimate in Subsection 3.3.3 when ηt = 1. In other words, we
apply stochastic approximations on the model parameters, instead of directly operating on
the likelihood in (3.6). When the likelihood (3.4) is a linear function of the parameters, the
stochastic approximation step in equation (3.6) corresponds exactly to our proposal (3.11).
In other situations, it gives good results from an empirical point of view.

3.3.4 SLOBE: Quick version of ABSLOPE

The implementation of SAEM, as described in Subsection 3.3.2 and 3.3.3, can still be costly
in terms of computation time, even if the terms of the likelihood decompose well and we use
the approximation (3.11). We therefore propose a simpli�ed version of the algorithm, called
SLOBE, which instead of drawing samples (X t

mis, γ
t, ct, θt) from their conditional distribution

(3.5) in the simulation step, approximates them by their conditional expectation, i.e.,

(X t
mis, γ

t, ct, θt)← E(Xmis, γ, c | y,Xobs, β
t−1, σt−1, µt−1,Σt−1) ;

To simplify notation, we hide the superscript, but note that all the conditional expectations
are computed given the quantities from the previous iteration.

1. Approximate γj by:

π := E(γj = 1 | γ−j, c, β, σ, θ,W ) = p(γj = 1 | γ−j, c, β, σ, θ,W )

(3.7)
=

θc exp
(
−c 1

σ
|βj|λr(Wβ,j)

)
(1− θ) exp

(
− 1
σ
|βj|λr(Wβ,j)

)
+ θc exp

(
−c 1

σ
|βj|λr(Wβ,j)

) . (3.12)

2. Approximate θ by:

E(θ | γ, y,Xobs, Xmis, β, σ, c, µ,Σ,W ) = E(θ | γ, β, σ,W )
(3.7)
=

a+
∑p

j=1 1(γj = 1)

a+ b+ p
,

(3.13)

where a and b are �xed parameters in the prior of θ.

3. Approximate c by:

E(c | γ, y,Xobs, Xmis, β, σ, θ, µ,Σ,W )
(3.18)
=

∫ 1

0
xa
′
exp(−b′x)dx∫ 1

0
xa′−1 exp(−b′x)dx

, (3.14)

where a′ = 1 +
∑p

j=1 1(γj = 1), b′ = 1
σ

∑p
j=1|βj|λr(Wβ,j)1(γj = 1).

4. In the case with missing values, for the ith observation Xi, approximate Xi,mis by:

E(Xi,mis | γ, c, y,Xi,obs, β, σ, θ, µ,Σ) = E(Xi,mis | y,Xi,obs, β, σ, µ,Σ) ,

which is provided by Proposition 2.

Then, in step M, we maximize the likelihood of the complete data, as in Subsection 3.3.3.
The impact of replacing the simulation step with a conditional expectation is that we ignore
the variability of latent variable sampling, which in high dimensional settings helps reduce
noise of the algorithm, and which also leads to accelerations as shown in our simulation study
in Subsection 3.4.5. We provide a summary of ABSLOPE and SLOBE methods in Section
3.7.5.
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3.4 Simulation study: FDR and Power

3.4.1 Simulation setting

To illustrate the performance of our methodology, we perform simulations by �rst generating
data sets as follows:

1. A design matrix Xn×p is generated from a multivariate normal distribution N (µ,Σ) .
The matrix is standardized, s.t., the mean of each column is 0 and its `2-norm is 1.

2. The signal magnitude is c0

√
2 log p1 when c0 is large the signal strength is stronger.

Only k on the p predictors are non-zero and all equal to c0

√
2 log p.

3. The response vector is generated from y = Xβ + ε with ε ∼ N(0, σ2In) and σ = 1 to
start.

4. Missing values are entered into the design matrix using a MCAR or MAR mechanism.
For the former, we randomly generate 10% of missing cells; for the later, we follow the
multivariate imputation procedure proposed by Schouten et al. (2018).

We set the initialization and the hyperparameters as follows.

Initialization Section 3.7.6 provides the default values we have taken for the following
simulation studies. The algorithm is not sensitive to the choice of values a and b (3.12), but
initial values for β may have a stronger impact. In practice, we use the LASSO estimates
based on preliminary mean imputation (missing values replaced by the average of the observed
values for each variable) to initialize the coe�cients.

Step-size We set ηt = 1 for the �rst t0 = 20 iterations to approach the neighborhood of
the MLE, then, choose a positive decreasing sequence ηt = 1

t−t0 to approximate the MLE,
with the stochastic approach formula (3.11).

λ sequence A sequence of penalty coe�cients λ must be chosen before implementing
the algorithm. As introduced in the Subsection 3.2.1, we use a BH sequence inspired by
orthogonal designs:

λBH(j) = φ−1(1− qj), qj =
jq

2p
, j = 1, 2, · · · , p.

3.4.2 Convergence of SAEM

We �rst illustrate the convergence of SAEM. We set the size of design matrix as n = p =
100 while the number of true predictors is k = 10, the signal strength 3

√
2 log p and the

percentage of missingness 10%. The covariance Σ is an identity matrix to start.

1This signal strength is inspired by the penalty coe�cient of the Bonferroni method to control the family
wise error rate (FWER) : λBonf = σφ−1(1− α

2p ) ≈
√

2 log p, for p large and α �xed, say α = 0.05.
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Figure 3.3: Convergence plots for three coe�cients with ABSLOPE (colored solid curves).
Black dash lines represent the true value for each β. Estimates obtained with three di�erent
sets of simulated data are represented by three di�erent colors.

Figure 3.3 shows the convergence of some coe�cients with SAEM for three simulated data
sets. These graphs are representative of all the observed results. There are large �uctuations
during the �rst t0 =20 iterations, then after introducing the stochastic approximation at the
20th iteration, convergence is achieved gradually. Due to the existence of a sorted l1 penalty,
the estimates are still slightly biased.

In addition, we also represent the convergence curves for σ with ABSLOPE in Section
3.7.7 in order to compare the estimate of σ by ABSLOPE to the biased MLE estimator

without prior knowledge, i.e., σ̂MLE =
√

RSS
n

. We can see that the estimates of σ with both

methods are biased downward, but since ABSLOPE has an additional correction term (3.10),
it leads to a less biased estimator.

3.4.3 Behavior of ABSLOPE - SLOBE

We then evaluate ABSLOPE and SLOBE in a di�erent parametrization setting to see how
the signal strength, sparsity and other parameters in�uence their performance.

Criterion We apply ABSLOPE or SLOBE on a synthetic dataset and get estimates for β̂
and the sampled γ̂ indicating the model selection results. We compare the selected model to
the true one. The total number of true discoveries is TP = #{j : |βj| > 0 and |β̂j| > 0}
and the total number of false discoveries is FN = #{j : |βj| > 0 and β̂j = 0}.

To evaluate the performance, we consider the following quantities:

� Power = TP
TP+FN

;

� FDR = FP
FP+TP

;
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� MSE of β (Relative l2 norm error) = ‖β̂−β‖2
‖β‖2 ;

� Relative prediction error = ‖Xβ̂−Xβ‖2
‖Xβ‖2 .

For each set of parameters, we repeat the procedure 200 times: i) data generation ii) estima-
tion and model selection with ABSLOPE/SLOBE iii) evaluation with the criteria presented
above and we compute the means over the 200 simulations. The simulations were imple-
mented with parallel computing.

Scenario 1

We �rst consider n = p = 100 and vary:

� sparsity: number of true signal k = 5, 10, 15, 20;

� signal strength
√

2 log p , 2
√

2 log p , 3
√

2 log p , 4
√

2 log p;

� percentage of missingness 0.1, 0.2, 0.3, generated randomly, i.e., MCAR;

� correlation between covariates Σ = toeplitz(ρ)2 where ρ = 0, 0.5, 0.9.

Then we applied the Algorithm 5 on each synthetic dataset.

Results 1: no correlation, 10% missingness - vary signal strength According to
Figure 3.4:

� We observe that FDR is always controlled at the expected level 0.1.

� Power increases and estimation bias decreases with larger sparsity or stronger signal.

� When the signal is too weak (signal strength =
√

2 log p), the power is near 0, which
is due to the identi�ablility issue that ABSLOPE cannot distinguish the signal from
the noise. Indeed, the value c = λ1

σ
√

2 log p
is greater than one where λ1 is the largest

penalization coe�cient. In addition, the bias is signi�cant. This behaviour can be
explained by the fact that we choose the penalty λ to reduce the noise σ; but when
the signal is as weak as σ, this choice of λ also "kills" the real signal.

2The Toeplitz structure (or auto-regressive structure) for correlation has been introduced for microarry

study (Guo et al., 2006), with the form: Σ =



1 ρ · · · ρp−2 ρp−1

ρ 1
. . . · · · ρp−2

...
. . .

. . .
. . .

...

ρp−2 · · ·
. . .

. . . ρ
ρp−1 ρp−2 · · · ρ 1


p×p

, where ρ ∈ [0, 1] is

a constant. For the Toeplitz structure, adjacent pairs of covariates are highly correlated and those further
away are less correlated, as in microarry study, genes are correlated due to their distance in the regularity
pathway.
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Figure 3.4: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for n = p = 100,
percentage of missingness 10% and Σ orthogonal (no correlation).

94



Results 2: with correlation, strong signal - vary percentage of missingness Now
we add the correlation as Σ = toeplitz(ρ) where ρ = 0.5, and also �x a strong signal strength
as 3
√

2 log p. We then vary the sparsity and percentage of missingness. The results in Figure
3.5 show that:
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Figure 3.5: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal over the 200 simulations. Results for n = p = 100,
with correlation and strong signal.

� The power increases and the estimation bias decreases when the percentage of missing
data decreases.

� In the presence of correlation, the FDR control is slightly lost when the number of
non-zero coe�cients is greater than 10 and the percentage of missing values exceeds
0.2, but is still near the nominal level.

Scenario 2

Now we consider a larger dataset n = p = 500 and vary the same parametrization as
in Subsection 3.4.3, except the sparsity, for which we take wider range of choices among
k = 10, 20, 30, · · · , 60. In this scenario of larger dimension, we have applied the simpli�ed
SLOBE algorithm as described in Subsection 3.3.4 to avoid intensive computation.
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Results 1: no correlation, 10% missingness - vary signal strength According to
Figure 3.6:
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Figure 3.6: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for n = p = 500,
percentage of missingness 10% and Σ orthogonal (no correlation).

� FDR is always controlled at expected level 0.1.

� Similar to Figure 3.4, power increases and estimation error decreases with larger sparsity
and stronger signal. However in this larger dimension case, we can handle with larger
number of relevant features until 30 or 40, at which we observe a phase transition due
to the identi�ability issue.

Results 2: with correlation, strong signal - vary percentage of missingness Now
we add the correlation as Σ = toeplitz(ρ) where ρ = 0.5, and also �x a strong signal strength
as 3
√

2 log p. We then vary the sparsity and percentage of missingness. The results in Figure
3.7 show that:

� Similar to Figure 3.5, the power increases and the estimation error decreases when the
percentage of missing data decreases.

� Due to the existence of correlation, the FDR control is slight lost, especially in the less
sparse and more missing case.
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Figure 3.7: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal over the 200 simulations. Results for n = p = 500,
with correlation and strong signal.

� With 10% missing values, if the number of relevant features is below 40, then we can
always achieve an e�cient power and perfect FDR control. With larger percentage of
missing values, the sparsity of this changing point will be more conservative.

In addition, we present the results varying the correlations in Section 3.7.8.

3.4.4 Comparison with competitors

We use the same simulation scenario and criteria as those used in Subsection 3.4.3 to compare
ABSLOPE and SLOBE to other approaches that can be considered to select variables in the
presence of missing data.

� ncLASSO: Non-convex LASSO (Loh and Wainwright, 2012)

� Methods based on preliminary mean imputation (MeanImp): missing values are replaced
by the average of the observed values for each variable, then on the completed data
set is applied:

� SLOPE: Applying two steps i) SLOPE (Bogdan et al., 2015) ii) OLS on the
selected predictors to estimate the parameters;

� LASSO: LASSO with λ selected by cross validation;

� adaLASSO: adaptive LASSO (Zou, 2006);
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For SLOPE, ABSLOPE and SLOBE, we set the penalization coe�cient λ as the BH sequence
which controls the FDR at level 0.1. The values of the tuning parameters for the di�erent
methods can be found in the available code on GitHub (Jiang, 2019b). We try to make the
comparisons as fair as possible and also favor the competitors: we give the true σ to SLOPE
whereas we estimate it with ABSLOPE. ncLASSO requires to specify a bound on the l1
norm of the coe�cients, i.e., β < R = b0#{βj : βj 6= 0}, for which we take the real value
of sparsity and signal strength.

Note that we do not make comparisons with the widely used multiple imputation (van
Buuren and Groothuis-Oudshoorn, 2011), where several imputed values are made for each
missing value to re�ect the uncertainty in the missingness. There are several reasons, includ-
ing the inability to perform model selection with multiple imputation and the di�culty to
aggregate the estimates from the imputed datasets.

We present the results for the case n = p = 100 in Section 3.7.9 while Figure 3.8
summarizes the result for the case n = p = 500, 10% missingness and with correlation
toeplitz(0.5). Lighter colors indicate smaller values.

� ABSLOPE and SLOBE both have strong power and accurate prediction, where FDR
is always controlled.

� The power and FDR control achieved by ABSLOPE and SLOBE are better than the
case n = p = 100. On one hand, correlation helps the generation of missing values.
On the other hand, sparsity considered here is less complicated.

� Other methods pay the price of FDR control to achieve good power.

3.4.5 Comparison of computation time

Table 3.1 presents the execution time of the di�erent methods considered in the simulation.
In addition, we have implemented our proposed algorithm in C and we use Rcpp (Eddelbuettel
and Balamuta, 2017) to integrate these functions within R. In the case n = p = 100, we

Table 3.1: Comparison of average execution time (in seconds) for one simulation, in the
case without correlation and with 10% MCAR, for n = p = 100 and n = p = 500 calculated
over 200 simulations. (MacBook Pro, 2.5 GHz, processor Intel Core i7)

Execution time (seconds) n = p = 100 n = p = 500
for one simulation min mean max min mean max
ABSLOPE 12.83 14.33 20.98 646.53 696.09 975.73
SLOBE 0.53 0.60 0.98 35.82 39.18 57.66
SLOBE (with Rcpp) 0.31 0.34 0.66 14.23 15.07 29.52
MeanImp + SLOPE 0.01 0.02 0.09 0.24 0.28 0.53
ncLASSO 16.38 20.89 51.35 91.90 100.71 171.00
MeanImp + LASSO 0.10 0.14 0.32 1.75 1.85 3.06
MeanImp + adaLASSO 0.45 0.58 1.12 45.06 47.20 71.24

observe that the most time consuming method is ncLASSO, which spent on average 20
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Figure 3.8: Comparison of power (a), FDR (b), bias of β (c) and prediction error (d) with
varying sparsity and signal strength, with 10% missingness over 200 simulations in the case
with correlation.
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seconds on one simulation. While ABSLOPE also took on average 14 seconds for one run, its
simpli�ed version SLOBE reduced this cost to 0.6 seconds, which is comparable to MeanImp
+ adaLASSO. While when n = p = 500, the convergence of ABSLOPE requires much more
time but SLOBE helps to simplify the complexity. In addition, the version of C for SLOBE
is more accelerated, saving half of the computation time, which makes SLOBE capable of
handling larger datasets.

3.5 Modeling the level of placelet in the TraumaBase
context

3.5.1 Details on the dataset and preprocessing

In our analysis on medical dataset TraumaBase as introduced in Section 1.4, we have focused
on one speci�c challenge: developing a statistical model with missing covariates in order to
predict the level of platelet upon arrival at the hospital. This model can aid creating an
innovative response to the public health challenge of major trauma. The platelet is a cellular
agent responsible for clot formation. It is essential to control its levels to prevent blood loss
as quickly as possible in order to reduce early mortality in severely traumatized patients. It
is di�cult to obtain the level of platelet in real time on arrival at hospital and, if available,
its levels would determine how the patients are treated. Accurate prediction of this metric is
thereby crucial for making important treatment decisions in real time.

We focus on patients after an accident who were sent directly to the hospital (not sent
to Emergency Care Unit). After this pre-selection, 6384 patients remained in the data set.
Based on clinical experience, in order to predict the level of platelet on arrival at the hospital,
15 in�uential quantitative measurements were included as pre-selected variables. Detailed
descriptions of these measurements are shown in Section 3.7.10. These variables were in-
cluded here because they were all available to the pre-hospital team, and therefore could be
used in real situations.

Figure 3.9 shows the percentage of missingness per variable, varying from 0 to 60%. If we
were to perform the complete case analysis (i.e., ignoring all the observations with missing
values) only less than one third of the observations (1648 patients) would still remain in the
dataset. This loss of data demonstrates the importance of appropriately handling the missing
values.

3.5.2 Model selection results

As is customary in supervised learning, we divide the dataset into training and test sets. The
training set contains a random selection of 80% of observations whereas the test set contains
the remaining 20%. In the training set, we select a model and estimate the parameters. We
apply ABSLOPE and compare it with the same methods than those described in Section
3.4, namely MeanImp + SLOPE, MeanImp + LASSO, MeanImp + adaLASSO, MeanImp +
SSL except ncLASSO since we do not known the sparsity and the l1 bound of coe�cients.
Moreover, we also include:

� BIC: Mean imputation followed by a stepwise method based on BIC;
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Figure 3.9: Percentage of missing values in each pre-selected variable from TraumaBase.

� RF: Mean imputation followed by a random forest (Liaw and Wiener, 2002). This
approach is assessed only for its prediction properties as it does not explicitly select
variables.

In the SLOPE type methods, we set the penalization coe�cient λ as BH sequence which
controls the FDR at level 0.1. Since we consider our design matrix being centered and without
an intercept, we also center the vector of responses and apply the procedure on ỹ = y − ȳ,
where ȳ is the mean of y. We repeat the procedure of data splitting (into training and test
sets) 10 times and Table 3.2 shows that, over 10 replications, how many times each variable
is selected. In addition, Table 3.3 reports whether the selected variables by ABSLOPE have
on average a positive or negative e�ect on the platelet.

The TraumaBase medical team indicated that the signs of the coe�cients were partially
in agreement with their a-priori expectations. Large values of shock index, vascular �lling,
blood transfusion and lactate give signs of severe bleeding for patients and, thereby, lower
levels of platelets. However, the e�ects of delta Hemocue and the heart rate on the platelet
were not entirely in agreement with their opinion.

3.5.3 Prediction performance

In supervised learning, after a model has been �tted on a training set, a natural step is to
evaluate the prediction performance on a test set. Assuming an observationX = (Xobs, Xmis)
in the test set, we want to predict the binary response y. One added di�culty is that the
test set also contains missing values, since the training set and the test set have the same
distribution (i.e., the distribution of covariates and the distribution of missingness). Therefore,
we cannot directly apply the �tted model to predict y from an incomplete observation of the
test X.

Our framework o�ers a natural remedy by marginalizing over the distribution of missing
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Table 3.2: Number of times that each variable is selected over 10

replications. Bold numbers indicate which variables are included in

the model selected by ABSLOPE.

Variable ABSLOPE SLOPE LASSO adaLASSO BIC
Age 10 10 4 10 10
SI 10 2 0 0 9
MBP 1 10 1 10 1
Delta.hemo 10 10 8 10 10
Time.amb 2 6 0 4 0
Lactate 10 10 10 10 10
Temp 2 10 0 0 0
HR 10 10 1 10 10
VE 10 10 2 10 10
RBC 10 10 10 10 10
SI.amb 0 0 0 0 0
MBP.amb 0 0 0 0 0
HR.max 3 9 0 1 0
SBP.min 5 10 10 10 8
DBP.min 2 10 2 1 0

Table 3.3: The e�ect of
the selected variables by AB-

SLOPE on the platelet. �+�
indicates positive e�ect while
�−� negative; 0 indicates in-
signi�cant variables.

Variable E�ect
Age −
SI −
MBP 0
Delta.Hemo +
Time.amb 0
Lactate −
Temp 0
HR +
VE −
RBC −
SI.amb 0
MBP.amb 0
HR.max 0
SBP.min 0
DBP.min 0

data, given the observed ones. More precisely, with S Monte Carlo samples (X
(s)
mis, 1 ≤ s ≤

S) ∼ p(Xmis|Xobs), we estimate directly the response by maximum a posteriori value:

ŷ = arg max
y

p(y|Xobs) = arg max
y

∫
p(y|X)p(Xmis|Xobs)dXmis

= arg max
y

EpXmis|Xobs
p(y|X)

= arg max
y

S∑
s=1

p
(
y|Xobs, X

(s)
mis

)
.

Note that in the literature there are not many solutions to deal with the missing values in
the test set (Josse et al., 2019). For those imputation based methods, we imputed the test
set with mean imputation and predicted the platelet by ŷ = X impβ̂. Finally we evaluate the
relative l2 prediction error: err = ‖ŷ−y‖2

‖y‖2 . Prediction results obtained are presented in Figure
3.10.

ABSLOPE's performance is comparable to the one of Random Forest and adaptive
LASSO, and is slightly better than traditional stepwise regression and LASSO. There is a
signi�cant gap between the results of ABSLOPE and those of SLOPE. One of the possible
reasons is that the classic version of SLOPE may encounter di�culties in the presence of
correlation, while ABSLOPE works well even with correlations (an aspect adopted from
the Spike-and-Slab LASSO). Random forests have excellent predictive capabilities which is
consistent with the results of Josse et al. (2019) who show good performance of supervised
machine learning even in the case of the simple mean imputation. However, it is di�cult to
interpret results in terms of selected variables, which is often crucial for physicians.
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Figure 3.10: Empirical distribution of prediction errors of di�erent methods over 10 replica-
tions for the TraumaBase data. Results for SLOPE are not presented due to its large gap
compared to others, with a mean of prediction error equals to 0.27.

Figure 3.10 and Table 3.2 show that ABSLOPE and adaLASSO methods, which have the
best predictive capabilities, select almost the same variables with adaLASSO selecting MBP
(mean blood pressure) and ABSLOPE selecting SI (shock index). These two variables are
highly correlated since both are measurements based on the systolic blood pressure.

Finally, we also performed ABSLOPE on the whole standardized dataset without cross-
validation, and the formula of regression with model selection was reported as: Platelet =
−6.92Age− 7.28SI + 6.53Delta.hemo− 8.87Lactate + 10.05HR− 3.96VE− 8.91RBC +
3.25SBP.min. This selection largely agrees with the results from cross-validation presented
in Table 3.2. The coe�cient values demonstrate the importance of corresponding variables
and provide a medical tool to predict the platelet value for a new patient.

3.5.4 Results with Interactions

We also consider a more complete model by adding second order interactions between the
covariates, which increases the dimensionality at p = 55. We apply the same procedure as
before and report the predictive results in Figure 3.11.

Table 3.4 shows which variables are selected more than 5 times out of the 10 replications.
Results for SSL and SLOPE are not presented due to their large gap compared to others,
with a mean of prediction error equals to 0.35 and 0.40 respectively; BIC is not shown for
this case with interactions, because it's computational heavy for this step-wise method with
many variables. The average sizes of the variables set selected by ABSLOPE, LASSO and
adaLASSO are respectively 6, 7 and 12.

Again, ABSLOPE provides good results in terms of prediction while being sparse. We ob-
serve that when interactions are added, age often appears in combination with other variables.
LASSO methods tend to include a larger number of variables with a potentially increased
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Figure 3.11: Empirical distribution of predic-
tion errors of di�erent methods over 10 repli-
cations for the TraumaBase data, with inter-
actions between each pair of variables.

Method Variables selected

ABSLOPE Age ∗ MBP.amb, Delta.hemo ∗ Lactate
Lactate ∗ RBC, HR ∗ SBP.min
RBC, SBP.min, Age ∗ Lactate

LASSO Age ∗ VE, Delta.hemo ∗ Lactate
Delta.hemo ∗ VE , Lactate ∗ RBC

Age ∗ Time.amb, Age ∗ HR
Age ∗ MBP.amb, Age ∗ SBP.min

adaLASSO MBP ∗ HR, Delta.hemo ∗ VE
Lactate ∗ VE, HR ∗ HR.max
HR ∗ SBP.min, VE ∗ RBC

Table 3.4: The variables selected more than
5 times out of the 10 replications, by each
method. �∗� indicates the interaction be-
tween two variables.

false discovery rate. Note that the prediction properties with interactions are slightly worse
than those without interactions, which happened due to the existence of missing values (e.g.
the interaction term between Age and Lactate will be missing if either of these two variables
is unobserved). In conclusion, other methods, apart from ABSLOPE, have a tendency to
over�t when interactions are present.

3.6 Discussion

ABSLOPE penalizes noise coe�cients more stringently to control for FDR while leaving
larger e�ects relatively unbiased through an adaptive weighting matrix. In addition, casting
our method within a Bayesian framework allows one to assign a probabilistic structure over
models and estimate the pattern of sparsity. We develop an SAEM algorithm which handles
missing values and which treats model indicators as missing data. According to the simulation
study, ABSLOPE is competitive with other methods in terms of power, FDR and prediction
error. For future research, we will consider the problem of high-dimensional model selection
with missing values for categorical or mixed data and other missing mechanisms such as
MNAR.In terms of algorithm e�ciency, we can develop a screening rule (Larsson et al.,
2020) for ABSLOPE, which allows predictors to be discarded before estimating the model.
Alternatively the EMVS procedure of Ro£ková and George (2014) could be adapted to modify
the algorithm, in order to establish a mathematically more rigorous algorithm for the model
selection problem with missing values.
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3.7 Supplementary materials

3.7.1 Deviation of prior (3.2) started from SLOPE prior

We assume a random variable z = (z1, z2, · · · , zp) has a SLOPE prior:

p(z | σ2;λ) ∝
p∏
j=1

exp

{
− 1

σ
λr(z,j)|zj|

}
,

and then de�ne β = W−1z = ( z1
w1
, · · · , zp

wp
), or equally, zj = βjwj where the diagonal

elements in the weight matrix are wj = cγj + (1 − γj) =

{
c, γj = 1

1, γj = 0
, j = 1, 2, · · · , p.

Then according to the transformation of variables, we have the prior distribution for β:

p(β | W,σ2;λ) ∝
∣∣∣∣det

(
dz

dβ

)∣∣∣∣ pz(Wβ | W,σ2;λ)

=

p∏
j=1

wj

p∏
j=1

exp

{
− 1

σ
λr(Wβ,j)|wjβj|

}

= c
∑p
j=1 1(γj=1)

p∏
j=1

exp

{
−wj|βj|

1

σ
λr(Wβ,j)

}
,

which corresponds to our proposed prior (3.2).

3.7.2 Standardization for MAR

We update mean and standard deviation at each iteration of algorithm.

1. Initialization: In the initialization step, we �rst substitute missing values Xmis with
the mean of non-missing entries in each column, and obtain a imputed matrix X̃0 =
(Xobs, X

0
mis), where X

0
mis contains imputed values. We denote the mean and standard

deviation of each column of X0, by the vectors m0 and s0 respectively. Then we
centered and scaled the imputed X0, s.t., for each observation i:

X̂0
i = (X0

i −m0)� (
√
ns0),

where the � is used for Hadamard division.

2. During tth iteration of the algorithm, we obtain a new imputed datasetX t = (Xobs, X
t
mis),

where X t
mis contains imputed values in t

th iteration. Then we �rst reverse scaling using:

X̃ t = (
√
nst−1) ◦X t +mt−1,

where the ◦ is used for Hadamard product. The vectors mt and st are then updated as
the means and standard deviations of X̃ t. Finally we perform scaling on X̃ t to obtain
a scaled matrix:

X̂ t
i = (X̃ t −mt)� (

√
nst).
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3.7.3 Details of the simulation step: sampling the latent vari-
ables

To perform the simulation step (3.5), we use a Gibbs sampler. To simplify notation, we hide
the superscript, and note that all conditional distributions are computed given the quantities
from the previous iteration.

1. Simulate γ. According to the dependency between variables presented in Figure 3.2,
simulating the element γj boils down to:

γj ∼ p(γj | γ−j, c, y,Xobs, Xmis, β, σ, θ, µ,Σ)

= p(γj | γ−j, c, β, σ, θ) ,

where γ−j = (γ1, · · · , γj−1, γj+1, · · · , γp); i.e., sampling from a Binomial distribution
with probability:

P(γj = 1 | γ−j, c, β, σ, θ) =
P(γj = 1 | θ)p(β | γj = 1, γ−j, c, σ)∑
γj∈{0,1} P(γj | θ)p(β | γj, γ−j, c, σ)

=

[
1 +

(1− θ) exp
(
− 1
σ
|βj|λr(W 0β,j)

)
× (c)

∑
−j 1(γ−j=1)

∏
−j exp

(
−w0

−j|β−j| 1σλr(W 0β,−j)
)

θc exp
(
−c 1

σ
|βj|λr(W 1β,j)

)
× (c)

∑
−j 1(γ−j=1)

∏
−j exp

(
−w1

−j|β−j| 1
σt
λr(W 1β,−j)

) ]−1

=

[
1 +

(1− θ) exp
(
− 1
σ
|βj|λr(W 0β,j)

)
θc exp

(
−c 1

σ
|βj|λr(W 1β,j)

) ×
∏
−j exp

(
−w0

−j|β−j| 1σλr(W 0β,−j)
)∏

−j exp
(
−w1

−j|β−j| 1σλr(W 1β,−j)
)]−1

,

(3.15)

where the weighting matrix W 1 and W 0 have the same diagonal elements w1
−j =

w0
−j = 1 − (1 − c)γ−j, except for the position j: w1

j = c while w0
j = 1. Sampling

from (3.15) requires to store in memory ordered list which needs to be updated for
every index j, such an approach could be computationally exhaustive. So we use an
approximation, which does not perturb solution signi�cantly, by replacing bothW 1 and
W 0 by the estimate of weighting matrix from previous iteration, noted byW . With the
approximation, we partially retrieve the information of γj from the last iteration, so the
di�erence between the estimates from last and the current iteration will be reduced.
Consequently, (3.15) is drawn from:

P(γj = 1 | γ−j, c, β, σ, θ,W ) =

[
1 +

(1− θ) exp
(
− 1
σ
|βj|λr(Wβ,j)

)
θc exp

(
−c 1

σ
|βj|λr(Wβ,j)

) ]−1

=
θc exp

(
−c 1

σ
|βj|λr(Wβ,j)

)
(1− θ) exp

(
− 1
σ
|βj|λr(Wβ,j)

)
+ θc exp

(
−c 1

σ
|βj|λr(Wβ,j)

) ,
(3.16)

which can be interpreted as the posterior probability of binary signal indicator for jth

variable, given the prior guess P(γj = 1 | θ) = θ and the conditional likelihood of the
vector β given γj = 1 and γj = 0, see (3.2).
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2. Simulate θ. The update of θ boils down to generate from:

θ ∼ p(θ | γ, c, y,Xobs, Xmis, β, σ, µ,Σ,W )

= p(θ | γ, β, σ,W ) ∝ p(θ) p(γ | θ) ,

where p(γ | θ) is a Bernoulli distribution. In addition, if we also assume a prior for θ as
a Beta distribution Beta(a, b) with a and b known, to o�er additional initial information
for the sparsity of signal, then the posterior is:

Beta

(
a+

p∑
j=1

1(γj = 1), b+

p∑
j=1

1(γj = 0)

)
, (3.17)

from which we can generate the latent variable θ. The target distribution (3.17) also
takes the prior knowledge of the sparsity into consideration, for example:

� If a = n
100

and b = n
10
, the prior mean on sparsity is 0.091, which has the same

e�ect as a single observation;

� If a = 2
p
and b = 1− 2

p
, the prior mean on sparsity is 2

p
, which assumes a sparse

structure a priori.

3. Simulate c. We also consider the weighting matrix W from the previous iteration.

c ∼ p(c | γ, y,Xobs, Xmis, β, σ, θ, µ,Σ,W )

= p(c | γ, β, σ,W ) ∝ p(c) p(β | c, γ, σ,W )

= p(c) c
∑p
j=1 1(γj=1) exp

(
− c
σ

p∑
j=1

|βj|λr(Wβ,j)1(γj = 1)

)
,

where p(c) is the prior distribution of c. If the prior is chosen as c ∼ U [0, 1] then we
just need to sample from a Gamma distribution truncated to [0,1]:

Gamma

(
1 +

p∑
j=1

1(γj = 1),
1

σ

p∑
j=1

|βj|λr(Wβ,j)1(γj = 1)

)
. (3.18)

If the signal is strong enough, i.e., βj is relative large compared to level of noise σ
when γj = 1, we will observe that the most typical values from the above Gamma
distribution fall in the interval [0, 1]. As a result, the simulation will be closer to the
original Gamma distribution without truncation. However, if the signal strength go
down, then the distribution will be more truncated and skewed towards 1, where c
exactly corresponds the inverse of average signal magnitude.

3.7.4 Proof of conditional distribution of missing data

Proof of Proposition 2 is provided as follows.

Proof. For a single observation x = (xmis, xobs) where xobs, and xmis denotes observed and
missing covariates respectively. Assume that p(xobs, xmis; Σ, µ) ∼ N (µ,Σ) and let y = xβ+ε
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where ε ∼ N(0, σ2). Then we have the following conditional distribution of the missing
covariate with index i:

p(ximis | xobs, y, σ, β,Σ, µ, x
−i
mis) ∝ p(xiobs, x

i
mis | Σ, µ)p(y | xiobs, x

i
mis, β, σ) ,

where x−imis =
(
xjmis, j 6= i

)
. DenoteM the set containing indexes for the missing covariates

and O for the observed ones. We then explicitly give the formula, with sij elements of Σ−1:

p(ximis | xobs, y, σ, β,Σ, µ, x
−i
mis) ∝ exp

[
− 1

2σ2
(y − xβ)2 − 1

2
(x− µ)>Σ−1(x− µ)

]
∝ exp

[
− 1

2σ2

(
y − xobsβobs − ximisβi −

∑
j∈M,j 6=i

xjmisβj

)2

− 1

2

(
sii(x

i
mis − µi)2 + 2ximis

∑
j∈M,j 6=i

(xjmis − µj)sij + 2ximis

∑
k∈O

(xkobs − µk)sik

)]
.

After rearranging terms, with notations:

mi :=

p∑
q=1

µqsiq, ui :=
∑
k∈O

xkobssik, r := y − xobsβobs, τi :=

√
sii +

β2
i

σ2
,

we get:

p(ximis | xobs, y, σ, β,Σ, µ, x
−i
mis)

∝ exp

{
−1

2

[
(ximis)

2
(
sii +

β2
i

σ2

)
− 2ximis

(
rβi
σ2

+mi − ui
)

+ 2ximis

∑
j∈M,j 6=i

(
βiβj
σ2

+ sij

)
xjmis

]}

∝ exp

{
−1

2

[
ximisτi −

rβi/σ
2 +mi − ui
τi

+
∑

j∈M,j 6=i

βiβj/σ
2 + sij

τiτj
xjmisτj

]2}
.

(3.19)

By the other hand, we can conclude from equations (4.9) (4.10) in Besag (1974), that,
for z = (zi)i∈M where zi = τix

i
mis we have:

p(zi | xobs, y, σ, β,Σ, µ, x
−i
mis) ∝ exp

−1

2

(
zi − µ̃i +

∑
j∈M,j 6=i

Bij (zj − µ̃j)

)2
 , (3.20)

and
z | xobs, y; Σ, µ, β, σ2 ∼ N(µ̃, B−1) .

Combine equations (3.19) and (3.20), we obtain the solution:

rβi/σ
2 +mi − ui
τi

−
∑

j∈M,j 6=i

βiβj/σ
2 + sij

τiτj
µ̃j = µ̃i , for all i ∈M ,

and

Bij =

{
βiβj/σ

2+sij
τiτj

, if i 6= j

1, if i = j
, for all i, j ∈M .

108



3.7.5 Summary of algorithms

Algorithm 5 Solving ABSLOPE with SAEM.

Input: Initialization β0, σ0, c0, θ0, X0
mis, µ

0, Σ0;
for t = 1, 2, · · · ,Maxit do
(Simulation step)

1. Generate γt from (3.16);

2. Generate θt from Beta distribution (3.17);

3. Generate ct from truncated Gamma distribution (3.18);

4. Generate X t
mis from Gaussian distribution (3.9);

(Stochastic Approximation step)

1. Calculate (βtMLE, σ
t
MLE, µ

t
MLE, Σt

MLE), which are the MLE for complete-data
likelihood integrating sampled missing values, as detailed in Subsection 3.3.3;

2. With step-size ηt =

{
1, if t ≤ 20

1
t−20

, if t > 20
, update

βt+1 ← βt + ηt
[
βtMLE − βt

]
.

Update σ, µ and Σ similarly;

if ‖βt+1 − βt‖2 < tol then
Stop;

Output: Indexes for model selection γ̂ ← 1
20

∑t
t′=t−19 γ

t′ (the average of the last 20 itera-

tions), and estimates β̂ ← βt · γ̂.

We propose the ABSLOPE model and solve the problem of the maximization of the
penalized likelihood using the SAEM algorithm, described in Algorithm 5. We also give the
SLOBE algorithm in Algorithm 6 which is an approximated and accelerated version.

3.7.6 Initialization of ABSLOPE

Here we suggest the following starting values:

� β0 is obtained from elastic net LASSO (Simon et al., 2011), or Spike and Slab LASSO
(Ro£ková and George, 2018);

� X0
mis are imputed by PCA (imputePCA) (Josse and Husson, 2016), or imputed by the

mean of column (imputeMean);

� µ0 and Σ0 are estimated with the empirical estimators obtained from the imputed initial
data;
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Algorithm 6 SLOBE: a quick version of ABSLOPE.

Input: Initialization β0, σ0, c0, θ0, X0
mis, µ

0, Σ0;
for t = 1, 2, · · · ,Maxit do
(Imputation by expectation)

1. for j = 1, 2, · · · , p do γtj ← E(γj = 1 | γ−j, c, β, σ, θ,W ), according to (3.12);

2. θt ← E(θ | γ, β, σ,W ), according to (3.13);

3. ct ← E(c | γ, y,Xobs, Xmis, β, σ, θ, µ,Σ,W ), according to (3.14);

4. for i = 1, 2, · · · , n do X t
i,mis ← E(Xi,mis | y,Xi,obs, β, σ, µ,Σ), according to

Proposition 2;

(Maximization of integrated likelihood)

� (βt+1, σt+1, µt+1, Σt+1) ← (βtMLE, σ
t
MLE, µ

t
MLE, Σt

MLE), which are the MLE for
complete-data likelihood integrating the imputed missing values by expectation.

if ‖βt+1 − βt‖2 < tol then
Stop;

Output: Estimates β̂ ← βt and indexes for model selection {j : β̂j 6= 0}.

� σ0 is given by the standard deviation: ‖y−X
0
misβ

0‖√
n−1

;

� c0 = min

{( ∑p
j=1 β

0
j

#{j: |β0
j |>0}+1

)−1

σ0λr(β0,1), 1

}
, where the sign # means the cardinality of

a set. c0 can be interpreted as the inverse of average magnitude for the true signal,
i.e, β0

j 6= 0;

� θ0 =
#{j: |β0

j |>0}+a
p+b

where a and b are known parameters of the prior Beta distribution

on θ. Here we choose i) a = 2
p
and b = 1− 2

p
, such that the prior mean on sparsity is

2
p
; ii) a = 0.01n and b = 0.01n; iii) a = 1 and b = p. Our estimation results are not

sensible to the choice of hyperparameters a and b.

3.7.7 Convergence of SAEM: σ

Following the simulation study in Section 3.4, we represent the convergence curves for σ
with ABSLOPE in Figure 3.12 (a). The behavior is the same as for the beta coe�cients.
We also represent convergence in the case without missing values in Figure 3.12 (b), in
order to compare the estimate of σ by ABSLOPE (colored solid curves) to the biased MLE

estimator without prior knowledge (colored dashed lines), i.e., σ̂MLE =
√

RSS
n

. We can see

that the estimates of σ with both methods are biased downward, but since ABSLOPE has
an additional correction term, it leads to a less biased estimator.
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(a) With 10% missing values (b) Without missing values

Figure 3.12: Convergence plots for σ with ABSLOPE (colored solid curves). (a) Case with
10% missing values; (b) Case without missing values. Black dash line represents the true

value for σ. In (b) Colored dash lines indicate the biased MLE σ̂MLE =
√

RSS
n

. Estimates

obtained with three di�erent sets of simulated data are represented by three di�erent colors.
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(d) Prediction error

Figure 3.13: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for n = p = 100,
with 10% missingness and strong signal.
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3.7.8 Behavior of ABSLOPE: e�ect of correlation

n = p = 100, 10% missingness, strong signal - vary correlation

Following the simulation study in Section 3.4, we consider additional scenarios varying cor-
relation as follows. We consider a small dataset n = p = 100. The signal strength is strong
and equals to 3

√
2 log p and the percentage of missingness is 10%. We then vary the sparsity

and correlation. The results in Figure 3.13 show:

� When there is no or little correlation, the FDR is controlled to the desired level of 0.1,
but in case of high correlation, the control of the FDR is lost.

� The existence of a correlation can give more power. On on hand, the generation of
missing covariates depends on those observed; on the other hand, the structure among
covariates improves the prediction performances.

n = p = 500, 10% missingness, strong signal - vary correlation
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Figure 3.14: Mean of power (a), FDR (b), bias of the estimate for β (c) and prediction error
(d), as function of length of true signal, over the 200 simulations. Results for n = p = 500,
with 10% missingness and strong signal.
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We consider a larger dataset n = p = 500 while the other parameters same as before. We
then vary the sparsity and correlation. The results in Figure 3.14 show the same phenomenon
as Figure 3.13 for the e�ect of correlation on FDR control.

3.7.9 Comparison with competitors: n = p = 100

Following the simulation study in Section 3.4, we compare the proposed methodology with
its competitors as follows. Figure 3.15 summarizes the result for the case n = p = 100, 10%
missingness and without correlation. Lighter colors indicate smaller values.

� ABSLOPE and SLOB both have a strong power and an accurate prediction when the
sparsity is large and the signal strength is strong enough;

� FDR is always controlled with ABSLOPE or SLOB. Other methods pay a price in FDR
control to achieve good power.

3.7.10 Variables in the TraumaBase dataset and preprocessing

Following the introduction of TraumaBase dataset in Section 3.5, we give the detailed expla-
nation of the variables in the TraumaBase dataset:

� Age: Age

� SI: Shock index indicates level of occult shock based on heart rate (HR) and systolic
blood pressure (SBP). SI = HR

SBP
. Evaluated on arrival of hospital.

� MBP: Mean arterial pressure is an average blood pressure in an individual during a
single cardiac cycle, based on systolic blood pressure (SBP) and diastolic blood pressure
(DBP). MBP = 2DBP+SBP

3
. Evaluated on arrival of hospital.

� Delta.hemo: The di�erence between the hemoglobin on arrival at hospital and that in
the ambulance.

� Time.amb: Time spent in the ambulance i.e., transportation time from accident site
to hospital, in minutes.

� Lactate: The conjugate base of lactic acid.

� Temp: Patient's body temperature.

� HR: heart rate measured on arrival of hospital.

� VE: A volume expander is a type of intravenous therapy that has the function of
providing volume for the circulatory system.

� RBC: A binary index which indicates whether the transfusion of Red Blood Cells Con-
centrates is performed.

� SI.amb: Shock index measured on ambulance.
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Figure 3.15: Comparison of power (a), FDR (b), bias of β (c) and prediction error (d) with
varying sparsity and signal strength, with 10% missingness over 200 simulations in the case
without correlation.
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Figure 3.16: Histograms of pre-selected variables from TraumaBase.
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� MAP.amb: Mean arterial pressure measured in the ambulance.

� HR.max: Maximum value of measured heart rate in the ambulance.

� SBP.min: Minimum value of measured systolic blood pressure in the ambulance.

� DBP.min: Minimum value of measured diastolic blood pressure in the ambulance.

The distribution of each variable is displayed as Figure 3.16.

With PCA, we visualized the individual and variable factor map on the two �rst dimension.
As shown on the left in Figure 3.17, there were two observations regarded as outliers. In
details, the temperature of 773th patient was measured as 12.3, while the MBP of 7287th

patient was only 38.33, which both stand for a mistake of record.
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(a) Observation's factor map
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Figure 3.17: The factor maps from PCA before correction of wrongly recorded entries. (a)
Observation's factor map (b) Variable's factor map.

We corrected all the mistakes in the records, for example, converting the value temperature
smaller than 34 degree to NA and recalculating the MBP with the same unity for SBP. After
that, we presented the factor maps from PCA in Figure 3.18, where the distribution of
individuals in the principal dimensions were more homogeneous and the outliers disappeared
.
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Chapter 4

missKnocko�� controlled variable
selection with missing values
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4.1 Introduction

In previous chapter, we've developed ABSLOPE for high-dimensional linear regression problem
with missing values, and it targets speci�cally FDR control. In this chapter, we consider a
similar problem of controlled model selection with high-dimensional and incomplete data, but
without specifying a parametric regression model. To adress this challenge, we will leverage
the knocko� methodology.

4.1.1 Problem statement

Consider a setting where observe i.i.d. (p+ 1)-dimensional random vectors

(Xi1, Xi2, · · · , Xip, yi) ∼ P, i = 1, ..., n,
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where P stands for a joint distribution for the covariates Xi = (Xi1, Xi2, · · · , Xip) and
response yi, for each i. Similar to ABSLOPE in Chapter 3, our aim is to select important
features when the design matrix is potentially contaminated by missing values (Xij for some
i and j may be missing). However, considering a non-parametric regression framework,
here we turn to the knocko� methodology proposed by Candes et al. (2018) which has the
advantage of assuming no knowledge of the conditional distribution Py|X ; nevertheless the
joint distribution of the covariates PX is assumed to be known. The objective is to identify a
subset S ⊂ [p] indexing important variables; in other words, variableXj with j ∈ H0 := [p]/S
is null, if y ⊥⊥ Xj | X−j, where X−j denotes the remaining p− 1 variables excluding Xj. We
start by recalling the knocko� method before describing our approach missKnocko� to handle
missing values. Our methodology consists in combining the strength of multiple imputation
(Rubin, 2009; van Buuren and Groothuis-Oudshoorn, 2011) and recent aggregation strategies
that have been suggested to stabilize the knocko� (Holden and Hellton, 2018; Gimenez and
Zou, 2018; Nguyen et al., 2019). In addition, we suggest a new aggregation strategy with
theoritical guarantees.

4.1.2 Knocko�

When selecting variables, we aim at controlling the False Discovery Rate (FDR) (Benjamini
and Hochberg, 1995), which can be de�ned as follows: let Ŝ be a model selection outcome
through a certain procedure, then:

FDR := E

[
|Ŝ ∩ H0|
|Ŝ|

]
= E

[
number of false positives

number of selected variables

]
,

where |·| denotes the length of a set. For the parametric models such as penalized linear
regression, one available method is SLOPE (Bogdan et al., 2015) which penalizes larger
coe�cients more stringently. Alternatively, based on the assumption that we are capable
to model X rather than y conditionally on X, Candes et al. (2018); Barber et al. (2019)
suggest a methodology named as knocko�. Intuitively, knocko� �rst generates a set of �fake�
variables that depend on the original covariates and mimic their correlation structure. Then
it returns true variables which are clearly more important than their knocko� copies according
to some feature importance measures. More formally, knocko� consists of three steps:

1. First construct a set of �fake� covariates X̃ = (X̃1, X̃2, · · · , X̃p) which satisfy:

(a) Exchangeability: for any subset S ⊂ {1, . . . , p},

(X, X̃)swap(S)
d
= (X, X̃), (4.1)

by swapping the entries Xj and X̃j for each j ∈ S.
(b) Unimportant variables: X̃ ⊥⊥ y|X, which can be guaranteed if X̃ is constructed

without looking at y.

A practical approximation solution described in Candes et al. (2018) consists of relaxing
the condition (4.1) as to match the �rst two moments of the distribution (second-order
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knocko� ). For instance, if we consider Gaussian covariates, i.e., X ∼ N (0,Σ), then
a joint distribution obeying equation (4.1) can be:

(X, X̃) ∼ N (0, G), where G =

[
Σ Σ− diag(s)

Σ− diag(s) Σ

]
, (4.2)

with any choice of the diagonal matrix diag(s) s.t. G is positive semide�nite. Barber
et al. (2015) introduce the equicorrelated construction using:

sj = 2λmin(Σ) ∧ 1, ∀j , (4.3)

where λmin indicates the smallest eigenvalue. This construction makes X̃ as uncorre-
lated with X as possible, while all the variable-knocko� pairs have the same correlation.
As a result, one possible way to construct a knocko� X̃ is to sample from its conditional
distribution:

X̃ | X d
= N (µc,Σc),

where

µc = X −XΣ−1diag(s)

Σc = 2diag(s)− diag(s)Σ−1diag(s) .
(4.4)

More general constructions of knocko� can be performed by generative models as
suggested in Romano et al. (2018).

2. Once knocko�s built, to use them for variable selection, we need to de�ne some statis-
tics Zj and Z̃j which measure the importance of Xj and X̃j respectively. For example,
we can perform a supervised learning algorithm, such as cross-validated Lasso regres-
sion, on response y and covariates (X, X̃) then obtain �tted coe�cient vector as

Zj = |β̂j(λ)|, Z̃j = |β̂j+p(λ)| .

Then we de�ne a Lasso coe�cient-di�erence (LCD) (Candes et al., 2018) statistic
Wj = Zj − Z̃j to measure the relative importance of Xj to X̃j. It's also possible to
choose other statisticsWj but intuitivelyWj should be large and positive if jth variable
is not null; otherwise, Wj should be small and arbitrarily positive or negative.

3. Find knocko� threshold τ > 0 under the constraint of target FDR level q, by setting:

τ = min

{
t > 0 :

# {j : Wj ≤ −t}+ 1

# {j : Wj ≥ t}
≤ q

}
in order to establish the estimated support Ŝ = {j : Wj ≥ τ}.

4.2 Knocko� with missing data

A popular strategy to handle missing values is single imputation, which consists in replacing
the missing values by plausible values to get a completed data that can be analyzed by any
methods, (Little and Rubin, 2019; Mayer et al., 2019). One can either impute according to
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a joint model or using a fully conditional modeling approach (van Buuren, 2018). Powerful
methods include imputation by random forest (Stekhoven and Buehlmann, 2012) and by
principal component analysis (Josse and Husson, 2016). Nevertheless, even if we manage to
impute by preserving as well as possible the joint and marginal distribution of the data, a single
imputation can not re�ect the uncertainty associated to the prediction of missing values.
To achieve this goal, multiple imputation (MI) (Rubin, 2009; van Buuren and Groothuis-
Oudshoorn, 2011) consists in generating several plausible values for each missing data leading
to di�erent imputed data sets. Then, the analysis is performed on each imputed data sets
and results are combined. A �proper� MI method need to account for the variability of
the imputation model parameters (due to sampling) to appropriately re�ect the variance of
prediction. It is often done by using bootstrap approaches. In the following subsections,
we discuss how to combine the imputation methods and knocko� to achieve the controlled
variable selection with missing covariates.

4.2.1 Single imputation � Gaussian covariates

We begin with a simple assumption of Gaussian variables, i.e., X ∼ N (0,Σ). With existence
of missing values, the eq. (4.2) can be decomposed as follows. For each individual i =
1, 2, · · · , n:

(Xi,obs, Xi,mis, X̃i,obs, X̃i,mis) ∼ N (0, G), where G =

[
Σ Σ− diag(s)

Σ− diag(s) Σ

]
, (4.5)

where X̃i,obs (resp. X̃i,mis) are the knocko� copies in X̃i corresponding to the observed
(resp. missing) elements in Xi. Note that we can only access Xi,obs, in consequence, the
construction of knocko� copies turns into the following two steps sampling:

1. For each individual i = 1, 2, · · · , n, draw values for the missing elements X̂i,mis from
its conditional distribution:

p(Xi,mis | Xi,obs) = N (µi,Σi), (4.6)

where µm and Σm:

µi = Σi,mis,obsΣ
−1
i,obs,obsXi,obs

Σi = Σi,mis,mis − Σi,mis,obsΣ
−1
i,obs,obsΣi,obs,mis .

(4.7)

with the decomposition of the covariance matrix Σ corresponding to the missing or
observed elements in Xi.

2. Sample knocko� copies X̃ based on the completed data X̂ = (Xobs, X̂mis):

p(X̃ | X = X̂) = N (µc,Σc),

where µc and Σc are the same as in eq. (4.4).

Once the knocko� copies built, the model selection can be proceeded, as introduced in
Step 2 and 3 in Section 4.1.2.

This strategy of single imputation followed by knocko�, controls the FDR as stated in
the following theorem.
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Theorem 1. Model-X knocko� procedure with missing values imputed from p(Xmis|Xobs)
controls FDR at the level q.

Proof. We start by observing that the design matrix with imputed missing values satis�es
the exchangeability condition

(Xobs, X̂mis, X̃)swap(S)
d
= (X, X̃) .

Indeed, according to the imputation, we generate values for missing covariates with:

X̂mis ∼ p(Xmis | Xobs) ,

so the completed variables share the same distribution with the original ones:

(Xobs, X̂mis)
d
= X .

It is also obvious that conditioned on (Xobs, Xmis), the knocko� vector X̃ is independent of
y. From Lemmas 3.2 and 3.3 in Candes et al. (2018), the signs of W for null variables are
i.i.d coin �ips, and FDR is controlled, according to Theorem 3.4 in Candes et al. (2018).

Remark 2. The theorem above is satis�ed only when we know the distribution of covariates
X and especially that we assume knowledge of the covariance matrix.

Remark 3. When we generate X̂i,mis as eq. (4.6), it entails that X̂i,mis is independent
of y conditionally on Xi,obs. However Xi,mis (the actual unobserved part of Xi) is not in
general conditionally independent of y (unless all the missing coordinates are null variables).
Consequently, the procedure we propose�the construction of the model free knocko�s�
leads to the loss of power , but FDR control should be retained. More precisely, for an index
j of missing components, we immediately have that imputed variables X̂j and knocko� ones
X̃j are completely exchangeable conditionally on y, whether or not j is a null or a non-null
variable. For intuition, assume we have two covariates X1 and X2 correlated and non-null,
and 99% of observations in X1 are missing while X2 is complete. In this case, If we sample
X1 independent from the response but only conditional on X2, then we have virtually the
same power for detecting X1 as when X1 is a null variable. This point would deserve further
research in the direction of independence test (Candes et al., 2018) with missing values, as
we also mention in Section 4.4.
Figure 4.1 demonstrates the loss of power when we generate values for missing elements
conditional only on Xobs (red boxes), compared to that conditional both on (Xobs, y) (blue
boxes). However, the FDR control is always achieved. The method could be extended to the
case where Xmis are imputed using the information in y but this requires additional model
assumptions or extensive non-parametric density estimation. Therefore, in simulation studies
presented in this section, we restrict attention to the situation where the missing values
are imputed using only the information in Xobs. Note also that this point is reminiscent
of the controversy in classical multiple imputation framework where people question about
including the response variable y in the imputation model, especially when the aim is to
perform a regression afterward. Relevant discussion is provided in Section 1.2.4.
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Figure 4.1: Empirical distribution of power (upper) and FDR (lower) when Σ known, grouped
by length of true signal, over the 200 simulations. Results for n = p = 100, percentage of
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4.2.2 Multiple imputation � Gaussian covariates

In the �rst step of sampling which we described in Section 4.2.1, we suggest replacing the
single imputation by several possible values drawing from the same distribution, followed
by knocko� on each imputed dataset and a rule of aggregation. The detailed stages are
described as follows:

1. For each individual i = 1, 2, · · · , n, sampleM plausible values X̂1
i,mis, X̂

2
i,mis, · · · , X̂M

i,mis

for the missing elements in Xi.

Xi,mis | Xi,obs ∼ N (µi,Σi), (4.8)

This step will be modi�ed when we will estimate Σ, as described in Section 4.2.3. with
µi and Σi same as eq. (4.7).

2. Sampling one set of knocko� copies X̃m based on each completed dataset:

p(X̃ | X = (Xobs, X̂
m
mis)) = N (µc,Σc), m = 1, 2, · · · , M , (4.9)

where µc and Σc are the same as eq (4.4) where X is replaced by the completed set
(Xobs, X̂

m
mis). The vector s remains unchanged as eq. (4.3) when Σ is known.

3. For each pair of imputation and knocko� set (Xobs, X̂
m
mis, X̃

m), perform a supervised
learning algorithm, such as cross-validation LASSO, on response y, then obtain �tted
coe�cient vectors and statistics:

Zmj = |β̂mj(λ)|, Z̃mj = |β̂m,j+p(λ)| , (4.10)

However, in order to estimate the knocko� threshold, we can provide several possible
ways to de�ne and aggregate the statistics {Wmj}. The methods of aggregation are
inspired by multiple knocko� (Holden and Hellton, 2018; Gimenez and Zou, 2018;
Nguyen et al., 2019). In these articles with a general case without missing values, they
aim at improving the stability of the selected features, and consider running the standard
knocko� procedure multiple times in parallel. And they propose di�erent methods in
order to aggregates the knocko� statistics {Wmj}, �nd the knocko� threshold τ , and
establish the estimated support. We will use and adapt these approaches of aggregation
to deal with the case with missing values via multiple imputation. In the following, we
�rst explain the quantile aggregation method suggested in Nguyen et al. (2019), and
show how to adapt it in the framework with missing values. The we propose a new
and straightforward method of aggregation that we call aggregation by averaging the
cases. Both methods work under the assumption of second-order knocko� (Candes
et al., 2018).

� Quantile aggregation of multiple knocko� (Nguyen et al., 2019) �rst calculates
test statistics:

Wmj = Zmj − Z̃mj, m = 1, 2, · · · ,M and j = 1, 2, · · · , p ,

and converts the test statistics to estimated p-values:

πmj =

{
1+#{k:Wmk≤−Wmj}

p
if Wmj > 0

1 if Wmj ≤ 0
.
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Then quantile aggregation of these p-values can be de�ned as follows:

π̄j = min

{
qγ
(
πmj)

)
γ

, 1

}
j = 1, 2, · · · , p , (4.11)

for γ ∈ (0, 1) with qγ the empirical γ quantile function.
To achieve the FDR control at level q, the p-values π̄j are ordered ascendingly:
π̄(1) < π̄(2) · · · < π̄(p), and then the largest index k such that π̄(k) ≤ kq

p
(Benjamini

and Hochberg, 1995) is founded. The corresponding FDR threshold is τ = π̄(k)

and the j-th variable is rejected if π̄j ≤ τ .

We apply the same aggregation method in the case with missing values. Note
that in our situation, we consider only a single knocko� copy for each variable,
but multiple imputation for each missing element.

� Aggregation by averaging the cases. Quantile aggregation provably controls FDR
but requires very large p to obtain a reasonable power. Below we introduce a new
�heuristic� approach, which according to the simulation study controls FDR and
has larger power than the quantile aggregation. We also provide some theoretical
justi�cation for this procedure.

Our method relies on two de-randomizaton steps. First, the knocko� threshold
value τ is calculated based on many knocko� test statistics:

Wmj = Zmj − Z̃mj, m = 1, 2, · · · ,M and j = 1, 2, · · · , p ,

and then estimate the knocko� threshold by the formula:

τ = min

{
t :

1

M

M∑
m=1

# {j : Wmj ≤ −t}+ c

# {j : Wmj ≥ t} ∨ 1
≤ q

}
, (4.12)

where c is a regularizing constant. The choice of c corresponding to Candes et al.
(2018) is that c = 1

m
. In the second step for each j = 1, 2, · · · , p, we calculate

the median of Wmj over m = 1, 2, · · · ,M to obtain W̄j,. Then we reject j-th
variable if W̄j ≤ τ .

To justify our procedure, in the following theorem, we �rst show that average multiple
knocko�s aggregation can be used to obtain an upward biased estimator of FDR for the single
knocko� procedure which rejects H0j if Wj > t.

Theorem 2. Consider the single knocko�s procedure, which rejects H0j : βj = 0 if the
feature statistics Wj satisifes Wj > t and let

FDR(t) = E
[

#{j ∈ H0 : Wj ≥ t}
1 ∨#{j : Wj ≥ t}

]
. (4.13)

If for each i ∈ 1, . . . ,m it holds that the signs of the feature statistics Wmj , j ∈ {1, . . . , p}
are i.i.d coin �ips then we have:

E

(
1

M

M∑
m=1

# {j : Wmj ≤ −t}
# {j : Wmj ≥ t} ∨ 1

)
≥ FDR(t)
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Proof. The proof is presented in Section 4.5.2.

Remark 4. The above theorem implies, that for any constant t > 0, and integer M > 1,
the quantity

F̂DPM(t) =
1

M

M∑
m=1

# {j : Wm,j ≤ −t}
# {j : Wmj ≥ t} ∨ 1

is an upwards biased estimator of FDR (t), with variance which diminishes with M . One
may also note that it holds almost surely that

lim
M→∞

F̂DPM(t) = E
[
F̂DP (t)|Xobs, Y

]
,

where the right-hand side represents the conditional expected value of the estimator of the
false discovery proportion provided by the single knocko� procedure. Therefore, if we assume
that the joint distribution of (Xobs, Xmis, X̃) is known, and treat Xobs, Y as the parameters

of conditional distribution (Wj)
p
j=1|(Xobs, Y ), the estimator F̂DPm(t) is asymptotically the

Rao-Blackwellization of F̂DP (t).

Remark 5. Theorem 2 states, that if we care about FDR estimation instead of FDR control
the constant c can be equal to 0. It is easy to see that this will also be true if we change the
constant threshold t for a random threshold τ , that is independent of W . At the same time
when the threshold τ is fully dependent on W (it is a function of W ), like in the classical
single knocko� procedure, then the constant c should be equal to 1. It is interesting to ask
why. One way of thinking about it, is that it is an overcompensation for the error caused by
optimal stopping in the choice of τ . Speci�cally, we can think about the classic choice of τ
as starting with τ = 0 and increasing it until the proportion of Wi below −τ to Wi above τ
is small enough. Assuming for the sake of argument that all |Wi| are di�erent, the fraction
that we base our choice of τ on, will decrease after we pass a negative Wi, and increase after
we pass a positive Wi. Therefore the �rst time the proportion goes below a certain quantity
q, we have just passed a negative Wi. On the other hand, for constant τ (or τ independent
of W ) one would expect that the frequencies with which the last Wi for which |Wi| < t is
positive or negative would be equal - at least if we restrict ourselves to null features. In this
case the "+1" in the numerator is unnecessary. The stopping rule is therefore a source of

downward bias in F̂DP (τ), when we think of it as an estimator of FDR(τ). An easy �x is
to change the bias downwards to bias upwards, by adding this "just removed" negative Wi

to the count in the numerator.

Conjecture 1. Let us de�ne

V (t,X, Y ) = E

(
# {j : Wj ≤ −t}

# {j : Wj ≥ t} ∨ 1

)
= lim

M→∞

1

M

M∑
m=1

# {j : Wm,j ≤ −t}
# {j : Wmj ≥ t} ∨ 1

and let
τ(X, Y ) = min{t : V (t,X, Y ) ≤ q}

. Let us denote by FDP (τ(X, Y )) the False Discovery Proportion of the single knocko�
procedure rejecting H0j when Wj > τ(X, Y ). It holds

E(FDP (τ(X, Y )) ≤ q .
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In Section 4.5.1, we also review how the other available approaches of multiple knocko�
are normally used for complete data, and then present how to adapt the rules of aggregation
to the case with missing values.

4.2.3 High-dimensional covariance estimation with missing val-
ues

Both in the step of generating imputed values and sampling knocko�, knowledge of the
covariance matrix Σ is required. In many situations, we don't know the true covariance
matrix. As a result, we need to estimate it given the fact that we are in high dimension and
that there are missing values.

Without missing values In the classical knocko� without missing values, Candes et al.
(2018) illustrate that the empirical covariance is a poor estimator in high dimension, but
applying the graphical Lasso method (Friedman et al., 2008) on available data results in
indistinguishable power and FDR from the case with the true covariance, when the precision
matrix of covariates Σ−1 is assumed to be sparse.

Alternatively if we have no prior knowledge of the covariance structure, we can advocate
the use of shrinkage estimation as detailed in Ledoit and Wolf (2004). More precisely, with the
assumption that the ratio n

p
is bounded, they propose an optimal linear shrinkage estimator

as a linear combination of identity matrix Ip and the empirical covariance matrix S, i.e.:

Σ̂ = ρIp + (1− ρ)S, where ρ = arg min
ρ

E‖Σ̂− Σ‖2 . (4.14)

The method boils down to shrinking empirical eigenvalues towards their mean. The parameter
ρ is chosen with asymptotically (as n and p go to in�nity) uniformly minimum quadratic risk
in its class, and the resulting parameters depend on the low-dimensional estimate S = (sij)
and its variance:

ρ̂ =

∑
i 6=j V ar(sij) +

∑
i V ar(sii)∑

i 6=j s
2
ij +

∑
i(sii − 1)2)

. (4.15)

In the setting of �nite sample size, Schäfer and Strimmer (2005) designed improved shrinkage
parameters in eq. (4.14), by replacing the variance of S in eq. 4.15 by its unbiased sample
counterparts.

With missing values The simplest way to handle missing values is to �rst delete all the
observations with missingness and then estimate the covariance matrix by graphical Lasso or
shrinkage estimator using only the complete cases. However, this could be valid only under
MCAR values and it is nearly impossible to do this as complete case analysis would result in
deletion of almost all data.

An alternative, suggested by Lounici et al. (2014), in a MCAR homogeneous case where
each data entry has a probability δ to be observed independently of the others, is �rst
to impute all the missing values by 0. Then the author proposes adding a correction term
related to the probability δ on the empirical covariance matrix of the initially imputed dataset.
Furthermore, the author suggests a covariance version of matrix Lasso estimation and it is
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demonstrated that, given the covariance matrix is low rank, the estimator is unbiased and
valid for large sample size and dimension, typically n << p.

Another typical solution to estimate parameters with missing values is to use an EM
algorithm (Dempster et al., 1977) on the normal covariates to estimate Σ, which is a valid
strategy under a MAR mechanism but not directly designed to handle cases where n << p.
Even though the regularized EM algorithm (Schneider, 2001) can handle large dimensional
data by replacing the submatrix of estimated covariance inverse with a well conditioned
matrix, but it is computationally intensive.

Finally, if we are willing to make some assumptions on the shape of covariance matrix
as in probabilistic principal component analysis (PPCA) (Tipping and Bishop, 1999), we
can estimate the covariance matrix using an EM algorithm. More precisely, they establish a
linear model with latent variables and noise vector to explain the observed covariates, then
use maximum likelihood estimates to recover the covariance matrix. Nevertheless, Ilin and
Raiko (2010) show from a series of simulation results, that parameters are well estimated
only when n >> p; while for larger scale problem where n ≈ p, they recommend variational
Bayesian PCA (VBPCA), in which they introduce priors over the model parameters to increase
regularization and perform the estimation by variational EM algorithm (Neal and Hinton,
1998).
In the simulation study, to estimate Σ, we propose to combine linear shrinkage (Ledoit and
Wolf, 2004) with the correction term related to percentage of missing values proposed by
Lounici et al. (2014). More formally, with δ̂ an estimation of δ as the proportion of observed
entries, the covariance matrix can be estimated by:

Σ̂ =
(
δ̂−1 − δ̂−2

)
diag

(
Σ̂n

)
+ δ̂−2Σ̂n , (4.16)

where Σ̂n is linear shrinkage estimation introduced by Schäfer and Strimmer (2005) based
on eq. (4.14) and eq. (4.15), on the empirical covariance matrix of initially imputed dataset
by 0.
Note that when we estimate the covariance matrix, the procedure of multiple imputation

described as eq. (4.8) needs to be modi�ed to be �proper�. We need to have di�erent
estimated coe�cients to generate multiple values for missingness, in order to re�ect the
variance of prediction for missing values which contains both the variance of estimation and
that of the noise. To achieve this, we bootstrap the observationsM times, to obtain di�erent
estimation of Σ, denoted by (Σ̂m)m=1,2,··· ,M , and draw the values as:

X̂1
i,mis ∼ N (µ̂1

i , Σ̂
1
i ) ,

X̂2
i,mis ∼ N (µ̂2

i , Σ̂
2
i ) ,

· · ·
X̂M
i,mis ∼ N (µ̂Mi , Σ̂

M
i ) ,

where µ̂mi and Σ̂m
i are calculated from eq. (4.7) where Σ is replaced by the estimated Σ̂m,

for all m = 1 , 2 , · · · ,M . For the same reason, the generation of knocko� copies is also
modi�ed, such that in eq. (4.7), not only X is replaced by the imputed set (Xobs, X̂

m
mis), but

the constant s is calculated using the estimated Σ̂m
i .

In summary, the entire procedure is illustrated on Figure 4.2 and in Algorithm 7, including
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Figure 4.2: Diagram of stages for handling missing values for model selection via missKnocko�
(aggregation by averaging the cases).
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processing missing values and model selection via multiple knocko�, aggregated by averaging
the cases.

Algorithm 7 missKnocko�: multiple knocko� with missing values (aggregation by averaging
the cases)

Input: X = (Xmis, Xobs);
for m = 1, 2, · · · ,M do
(Bootstrap)

1. Bootstrap X with missing values.

2. On bootstrap samples, estimate the covariance Σ̂m from eq. (4.16);

3. Impute missing values ˆXmis
m

from eq. (4.8) and generate knocko� copies X̃m

from eq. (4.9);

4. On the set (y,Xobs, ˆXmis
m
, X̃m), use LASSO to obtain �tted coe�cient vectors

and statistics Zmj and Z̃mj from (4.10), j = 1, 2, · · · , p;

5. Calculate test statistics Wmj = Zmj − Z̃mj, j = 1, 2, · · · , p;

(Aggregation)

1. Estimate the knocko� threshold τ by eq. (4.12);

2. Calculate the median of {Wmj} over m = 1, 2, · · · ,M to obtain W̄j;

if W̄j ≤ τ then
Reject j-th variable.

Output: Indexes for model selection {j : W̄j > τ}

Note that in Figure 4.2, for missKnocko� with quantile aggregation, one only need to
replace the median W̄j over imputation number with aggregated p-values π̄j from eq. (4.11).

4.3 Simulation study

To illustrate the performance of our methodology, we perform simulations by �rst generating
data sets as follows:

� A design matrix Xn×p is generated from a multivariate normal distribution N (0,Σ) .

� The signal magnitude is c0

√
2 log p1 when c0 is large the signal strength is stronger.

Only k on the p predictors are non-zero and all equal to c0

√
2 log p.

� The response vector is generated from y = Xβ + ε with ε ∼ N(0, σ2In) and σ = 1.
In Section 4.3.1, nonlinear model is also considered.

1This signal strength is inspired by the penalty coe�cient of the Bonferroni method to control the family
wise error rate (FWER) : λBonf = σφ−1(1− α

2p ) ≈
√

2 log p, for p large and α �xed, say α = 0.05.
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� Missing values are entered into the design matrix using a MCAR mechanism: we
randomly generate a proportion 1− δ of missing cells.

� Correlation between covariates is considered as Σ = toeplitz(ρ)2. In Section ??, results
are presented when all the pairwise correlation equals ρ.

4.3.1 Aggregation by averaging the cases � E�ect of parameters

In the following, we illustrate the e�ect of di�erent parameters setting and present di�erent
methods:

� knocko�: classical second-order knocko� on original complete dataset;

� miss1Knocko�: a single imputation to deal with missing values in knocko�, as described
in Section 4.2.1;

� miss5Knocko�: multiple imputation to deal with missing values in knocko�, as de-
scribed in Section 4.2.2. The number of imputed datasets equals to 5 and we apply
the proposed method of aggregation by averaging the cases.

� miss10Knocko�: same as described in MI5Knocko�, but with 10 imputed datasets
instead.

We consider both the case when the covariance Σ is known and when we estimate Σ using
eq. (4.16).

Scenario 1: Linear model

We �rst consider n = p = 100, 10% missingness, correlation as Toeplitz matrix with coe�-
cient 0.5 and the following parameters can be varied:

� sparsity: number of true signal k = 10, 20, 30, 40;

� signal strength: from weak to strong 1.3
√

2 log p , 2
√

2 log p , 3
√

2 log p

2The Toeplitz structure (or auto-regressive structure) for correlation has been introduced for microarry

study (Guo et al., 2006), with the form: Σ =



1 ρ · · · ρp−2 ρp−1

ρ 1
. . . · · · ρp−2

...
. . .

. . .
. . .

...

ρp−2 · · ·
. . .

. . . ρ
ρp−1 ρp−2 · · · ρ 1


p×p

, where ρ ∈ [0, 1] is

a constant. For the Toeplitz structure, adjacent pairs of covariates are highly correlated and those further
away are less correlated, as in microarry study, genes are correlated due to their distance in the regularity
pathway.
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Results 1: E�ect of sparsity We keep the signal strength strong 3
√

2 log p and un-
changed, but vary the number of non-zero elements in coe�cients. According to Figure
4.3:

� The classical knocko� on original complete dataset (red boxes) achieves great power
and FDR control, regardless of the varying number of non-zero elements.

� When missing data occur, obviously a single imputation (green boxes) cannot reaches
the same level of power as the knocko� with complete dataset does, and its variance is
huge, However even the power is a bit lower, FDR control is still satisfying on average,
under the target level 0.1.

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●●● ● ●●

●

●●●

●

●

●

●

●

●●● ●

●

●

●

●●●

●

●●

●

●●●●

●

●
●

●

●●
●

●

●

●

●

●●●
●

●

●●●●●

●

●

●
●●●●●
●●●

●

●
●
●●
●
●
●

●

●●
●

●

●●

●

●

●

●●

●●

●

●●●●●●●● ●●● ●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●●

●

●
●

●

●

●

●

●
●●●●●

●

●●

●

knownSigma estimSigma

P
ow

er
F

D
R

10 20 30 40 10 20 30 40

0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.4

length of true signal

method knockoff miss1Knockoff miss5Knockoff miss10Knockoff

Figure 4.3: Empirical distribution of power (upper) and FDR (lower) when Σ known (left)
and when we estimate Σ (right), grouped by length of true signal, over the 200 simulations.
Results for n = p = 100, percentage of missingness 10%, correlation as Toeplitz matrix with
0.5 coe�cient, signal strength 3

√
2 log p.

� When multiple imputed datasets are considered (blue and magenta boxes), the selection
results improve a lot compared to single imputation, especially in more sparse case
(number of true signal equals to 10 or 20). However, when the sparsity decrease, we
cannot expect a better power as before. FDR is also controlled, but more conservative,
less than 0.03 on average.
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� We notice that multiple imputation with 10 replicates (magenta boxes) generally has
a better power than that with only 5 replicates (blue boxes). When the number of
imputed datasets increases, we observe that the FDR is more conservative. Intuitively,
due to the aggregation by averaging the cases, the variability of model selection is
reduced.

� When we estimate the covariance matrix, if we compare the sub�gures on the right
side to the left side, the power of model selection results don't change much for all
these methods. In particular with missing values, we almost recover the case when Σ
is known. Still, FDR is controlled under the target level 0.1 on average.

Results 2: E�ect of signal strength Now we �x the number of true signal equal to 20
but change the signal strength from weak to strong. According to Figure 4.4:
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Figure 4.4: Empirical distribution of power (upper) and FDR (lower) when Σ known (left) and
when we estimate Σ (right), grouped by average signal strength, over the 200 simulations.
Results for n = p = 100, percentage of missingness 10%, correlation as Toeplitz matrix with
0.5 coe�cient, length of true signal 20.

� The results emphasize what we previously observe in Figure 4.3: perfect FDR control on
average, both in the case with or without missing values. In our method, when number
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of imputed datasets increase, the power improves generally and the FDR becomes more
conservative.

� Weaker signal strength cause more di�culty in achieving good power. However,
miss10Knocko� can almost have the same level of power as the original knocko� on
complete dataset, even in the case when the covariance Σ need to be estimated. A
perfect performance can be observed when signal strength is equal to 3

√
2 log p.

Results 3: E�ect of covariance estimation To look closer how the estimation of
covariance in�uences the results, now the signal strength is �xed as 3

√
2 log p, also length of

true signal equal to 20. According to Figure 4.5:
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Figure 4.5: Empirical distribution of power (upper) and FDR (lower) when Σ known (boxes
without �ll), when we estimate Σ using corrected shrinkage estimation as eq. (4.16) (boxes
with lightblue �ll) or empirical covariance matrix without shrinkage (boxes with pink �ll),
grouped by four methods, over the 200 simulations. Results for n = p = 100, percentage of
missingness 10%, correlation as Toeplitz matrix with 0.5 coe�cient, length of true signal 20
and signal strength 3

√
2 log p.

� On average, both the power and FDR remains at a similar value when we estimate Σ
compared to the case when it is known.
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� Generally the variability of true positive number is reduced, but the number of false
discovery shows slightly more variation.

� Obviously empirical covariance estimation is not appropriate even for the complete
dataset, where the FDR control is sacri�ced largely to achieve a good power. Note that
only for classical knocko� methods, we present the empirical covariance estimates, since
for the other cases, using empirical ones results in ill-posed problem without solutions.

Results 4: E�ect of percentage of missingness To evaluate how the percentage of
missingness in�uences the results, now the signal strength is �xed as 3

√
2 log p, also length

of true signal equal to 20. The percentage of missingness is varied from 10 to 40. According
to Figure 4.6:
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Figure 4.6: Empirical distribution of power (upper) and FDR (lower) when Σ known (left) and
when we estimate Σ using corrected shrinkage estimation as eq. (4.16) (right), grouped by
three methods with di�erent percentage of missing values, over the 200 simulations. Results
for n = p = 100, correlation as Toeplitz matrix with 0.5 coe�cient, length of true signal 20
and signal strength 3

√
2 log p.
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� FDR is always control regardless of the percentage of missing values.

� When percentage of missing values is larger, the power obtained is reduced. Multiple
imputation, on average, can result in a larger power with less variability.

Scenario 2: Nonlinear model

We consider the same setting as the previous scenario but a more complicated nonlinear model
in our simulation study: y = exp(

∑p
j=1 βjXj + β0) + ε, with ε ∼ N(0, σ2In) and σ = 1. in

order to demonstrate that the model selection with missing values based on knocko� can be
�exible and useful in many applications.
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Figure 4.7: Empirical distribution of power (upper) and FDR (lower) when we estimate Σ,
grouped by length of true signal, over the 200 simulations. Results for n = p = 100,
percentage of missingness 10%, correlation as Toeplitz matrix with 0.5 coe�cient, signal
strength 3

√
2 log p.

In missKnocko� procedure, the regular LASSO described as eq. (4.10) used to compute
the statistic is replaced by rank LASSO (Rejchel and Bogdan, 2019) in order to deal with
the heavy tail issue caused by exponential function. The ranks of y are de�ned as Ri =∑n

j=1 I (yj ≤ yi) , i = 1, . . . , n . Then the rank LASSO problem, where the actual values
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of the response are replaced by their centered ranks3, aims at solving:

θ̂ = arg min
θ∈Rp

1

2n

n∑
i=1

(Ri/n− 0.5− θ′Xi)
2

+ λ|θ|1 .

Model selection results are presented in Figure 4.7 when n = p = 100, percentage
of missingness 10%, correlation as Toeplitz matrix with 0.5 coe�cient, and strong signal
strength 3

√
2 log p.

� The FDR control by missKnocko� still hold well, while sacri�cing a bit power.

� In general, multiple imputation outperforms a single one in terms of power, except
when length of true signal is too large (40), which is an extreme di�cult case for
missKnocko�.

4.3.2 Method comparison

In this section, we aim at comparing the proposed method with the other approaches in terms
of power and FDR control. The following methods are presented:

� miss10Knocko�, multiple imputation to deal with missing values in knocko�, as de-
scribed in Section 4.2.2. The number of imputed datasets equals to 10 and we apply
the aggregation by averaging the cases. The e�ect of parameters including the number
of imputation for this method is discussed in Section 4.3.1. Here we only present the
best case with ten imputations.

� qtKnocko�: instead of the aggregation rule above, using quantile aggregation for mul-
tiple imputed datasets in missKnocko�;

� ABSLOPE: high-dimensional model selection with missing values targeted at FDR con-
trol based on sorted l1 penalization, as proposed in Chapter 3;

� SLOB: simpli�ed version of ABSLOPE;

� knocko�: classical knocko� on original complete dataset.

Various relationships between X and y are considered, including linear model and nonlinear
ones.

3Take a simple example:

y x1 x2
10 6.4 2.6
2 3.3 1.2
4 5.2 1.8

. Then ranks are R = (3, 1, 2). In the objective function of

rank LASSO, the corresponding centered ranks (Ri/n− 0.5) are ( 1
2 ,−

1
6 ,

1
6 ).

Replacing values of response variables by their ranks is a well-known approach in non-parametric statistics and
leads to robust procedures. (Rejchel and Bogdan, 2019) shows that, under certain standard assumptions,
the support of θ coincides with the support of β. In addition, the method can properly identify relevant
predictors, even when the distribution of error terms is unknown and the link function is nonlinear
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Scenario 1: Linear model

We �rst consider n = p = 100, 10% missingness, correlation as Toeplitz matrix with coe�-
cient 0.5 and the following parameters can be varied:

� sparsity: number of true signal k = 10, 20, 30, 40;

� signal strength: from weak to strong 1.3
√

2 log p , 2
√

2 log p , 3
√

2 log p

Results 1: Strong signal We keep the signal strength strong 3
√

2 log p or weak as
1.3
√

2 log p, and also vary the number of non-zero elements in coe�cients. According to
Figure 4.8:
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Figure 4.8: Empirical distribution of power (upper) and FDR (lower) when we estimate Σ,
when n = p = 100, grouped by length of true signal, over the 200 simulations. Results
for percentage of missingness 10%, correlation as Toeplitz matrix with 0.5 coe�cient, signal
strength weak as 1.3

√
2 log p (left) or strong 3

√
2 log p (right).

� In both cases, only the miss10Knocko� (blue boxes) and algorithm ABSLOPE (and its
simpli�ed version) (red boxes) controls FDR;

� Even quantile knocko� (magenta boxes) can result in a good power, but FDR control
is slightly lost especially when signal is sparse and weak; this can be explained that,
with eq. (4.11), the empirical p-value will be bound below by 1

p
; which means if p is

not big enough, this p-value will be quite large compare to the FDR threshold after
applying the BH correction for controlling FDR.
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Scenario 2: Nonlinear model

Result: Strong signal We consider the exponential model as described previously in
Section 4.3.1. We take strong signal strength 3

√
2 log p. According to Figure 4.9:
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Figure 4.9: Empirical distribution of power (upper) and FDR (lower) when we estimate Σ,
when n = p = 100, grouped by length of true signal, over the 200 simulations. Results
for percentage of missingness 10%, correlation as Toeplitz matrix with 0.5 coe�cient, signal
strength 3

√
2 log p.

� The simpli�ed version ABSLOPE (red boxes) fails to select any variable, since the
method was developed only for linear model.

� The knocko� based methods can still reach a good level of power, while the miss10Knocko�
(blue boxes) has a good control of FDR. Same as the reasons described for Figure 4.8,
quantile aggregation (magenta boxes) slight loses FDR control.

4.4 Discussion

In this chapter, we integrate the model selection for non-parametric regression using knocko�
and imputation methods to handle missing values. Both theoretical guarantee and simulated
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evaluation are provided for the performance of the proposed methodology. However, due to
the ignorance of information provided by the responses, there is still room of improvement for
the power. To do this, It would be necessary to return to the issue of testing unconditional
independence (Candes et al., 2018) with missing values. Another extension is to consider
di�erent sampling methods such as imputation based on neural network (Yoon et al., 2018),
and generating knocko� based on deep learning (Romano et al., 2018) to achieve a �model-
free� solution both for covariates and responses.

4.5 Supplementary materials

4.5.1 Other approaches of multiple knocko� aggregations

� Multiple model-free knocko�s (Holden and Hellton, 2018) assume the same setting as
Candes et al. (2018) (a perfect knowledge of the distribution of X), but replace the
typical statistics (absolute value of the estimated Lasso coe�cient) by:

W1j = Z1j −
1

M ′ − 1

2M ′−1∑
u=M ′+1

Z̃uj

Wmj = Z̃mj −
1

M ′ − 1

2M ′−1∑
u=M ′+1

Z̃uj ,

(4.17)

where M ′ is a reformulation of the replicate numbers of the multiple knocko�s, which
satis�es M = 2M ′− 1. Intuitively a large value of W1j indicates that the j-th variable
is signi�cant, while a large value of Wmj for m > 1 is only due to randomness.

Then the threshold is de�ned as:

τ = min

{
t > 0 :

# {1 < m ≤M ′, 1 ≤ j ≤ p : Wmj ≥ t}
# {1 ≤ j ≤ p : W1j ≥ t} (M ′ − 1)

≤ q

}
. (4.18)

and �nally we reject j-th variable if W1j ≤ τ . The knocko� randomness is reduced
and the power is increased.

With missing values In order to adapt this procedure in the framework with missing
values, we need some modi�cations, since we have several di�erent coe�cients calcu-
lated from the multiple imputation, i.e., Zmj are di�erent for each m = 1, 2, · · · ,M .
The statistic W1j in the eq. (4.17) can be replaced by:

W
(m)
1j = Zmj −

1

M ′ − 1

2M ′−1∑
u=M ′+1

Z̃uj .

As a result, we take each imputation into account. And we also modify the eq. (4.18)
as:

τ = min

t > 0 :
# {1 < m ≤M ′, 1 ≤ j ≤ p : Wmj ≥ t}

#
{

1 ≤ m ≤M ′, 1 ≤ j ≤ p : W
(m)
1j ≥ t

}
M ′−1
M ′

≤ q

 .
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And �nally we reject j-th variable if median(W
(m)
1j ) ≤ τ.

� Simultaneous multiple knocko� (Gimenez and Zou, 2018) doesn't neither suggest the
absolute value of the estimated Lasso coe�cient as the test statistics. They �rst
consider descending order of the coe�cient vectors Z = (Z1j, Z̃1j, Z̃2j, · · · , Z̃Mj) for
each variable j, as (Z

(ord)
j )0≤ord≤M . For all 1 ≤ j ≤ p, de�ne:

κj = arg max
0≤ord≤M

Z
(ord)
j τj = Z

(0)
j − Z

(1)
j .

The crucial result is that null κj behave uniformly and independently in distribution
and can be used to estimate the number of false discoveries:

F̂DP =
1
M

+ 1
M

# {j : κj ≥ 1, τj ≥ t}
# {j : κj = 0, τj ≥ t} ∨ 1

,

and hence the threshold can be de�ned as:

τ = min

{
t > 0 :

1
M

+ 1
M

# {j : κj ≥ 1, τj ≥ t}
# {j : κj = 0, τj ≥ t} ∨ 1

≤ q

}
. (4.19)

Finally we reject the j-th variable if κj = 0 and τj ≤ τ .

With missing values Same as the �rst method �multiple model-free knocko��, we
are able to modify the procedure to adapt to the case with missing values. First we
have multiple coe�cient vectors Z ′mj = (Zmj, Z̃1j, Z̃2j, · · · , Z̃Mj) for each variable j
and m = 1, 2, · · · ,M due to multiple imputation. Then descending ordering results in
(Z

(ord)
mj )0≤ord≤M . For all 1 ≤ j ≤ p and 1 ≤ m ≤M , de�ne:

κmj = arg max
0≤ord≤M

Z
(ord)
mj τmj = Z

(0)
mj − Z

(1)
mj .

And hence the threshold (4.19) can be modi�ed as:

τ = min

{
t > 0 :

1 + 1
M

# {j,m : κmj ≥ 1, τmj ≥ t}
# {j,m : κmj = 0, τmj ≥ t} ∨ 1

≤ q

}
.

Finally we select the j-th variable if median(κmj) = 0 and median(τmj) ≥ τ .

4.5.2 Proof of theorem 2

Let H0 ⊆ {1, . . . , p} be the subset of indexes of the null features. Obviously we have

F̂DP (t) =
#{j : Wj ≤ −t}

1 ∨#{j : Wj ≥ t}
≥ #{j ∈ H0 : Wj ≤ −t}

1 ∨#{j : Wj ≥ t}
.

It is therefore enough to prove:

E
[

#{j ∈ H0 : Wj ≤ −t}
1 ∨#{j : Wj ≥ t}

]
≥ E

[
#{j ∈ H0 : Wj ≥ t}
1 ∨#{j : Wj ≥ t}

]
(4.20)

142



For convenience, let Z =
∑

j 6∈H0
1(Wj ≥ t). We will prove the inequality (4.20) while

conditioning expectations on both sides on Z = 0 and Z > 0. From such inequalities the
desired eq. (4.20) follows directly.

We start with the case Z > 0. We would like to prove:

E

[∑
j∈H0

1(Wj ≤ −t)− 1(Wj ≥ t)

1 ∨
∑n

j=1 1(Wj ≥ t)
| Z > 0

]
≥ 0 (4.21)

Let S = {η : ηj = 1 for j 6∈ H0, ηj ∈ {−1, 1} for j ∈ H0}. Choose an η ∈ S.
From the assumption, and the fact that Z only depends on non-null variables, we know that
vector (W1η1, . . . ,Wnηn, Z) has the same distribution as (W1, . . . ,Wn, Z). Therefore, for
any η ∈ S, eq. (4.21) is equivalent to:

E

[∑
j∈H0

1(ηjWj ≤ −t)− 1(ηjWj ≥ t)

Z +
∑

j∈H0
1(ηjWj ≥ t)

| Z > 0

]
≥ 0

and since the right hand side does not depend on η ∈ S, the inequality (4.21) is equivalent
to: ∑

η∈S
E

[∑
j∈H0

1(ηjWj ≤ −t)− 1(ηjWj ≥ t)

Z +
∑

j∈H0
1(ηjWj ≥ t)

| Z > 0

]
≥ 0. (4.22)

We can look at the sum of two "opposite" terms in the above sum, that is term for a given
η and term for η with the sign of ηj �ipped for j ∈ H0. We would get:

E

[∑
j∈H0

1(ηjWj ≤ −t)− 1(ηjWj ≥ t)

Z +
∑

j∈H0
1(ηjWj ≥ t)

+

∑
j∈H0

1(ηjWj ≥ t)− 1(ηjWj ≤ −t)
Z +

∑
j∈H0

1(ηjWj ≤ −t)
| Z > 0

]

= E


(∑

j∈H0
1(ηjWj ≤ −t)− 1(ηjWj ≥ t)

)2

(Z +
∑

j∈H0
1(ηjWj ≥ t))(Z +

∑
j∈H0

1(ηjWj ≤ −t))

 ≥ 0

Since the terms in eq. (4.22) can be coupled into 2|H0|−1 pairs whose sums are non-negative,
therefore eq. (4.21) is established.

To �nish, we need to prove eq. (4.20) with both sides conditioned on Z = 0. Let
N =

∑
j∈H0

1(|Wj| ≥ t). For and let Y ∼ B(N, 1/2) be a Bernoulli random variable. We
have:

E

[∑
j∈H0

1(Wj ≤ −t)− 1(Wj ≥ t)

1 ∨
∑n

j=1 1(Wj ≥ t)
| Z = 0, N

]
= E

[
N − 2Y

1 ∨ Y

]
,

hence to show that eq. (4.20) with both sides conditioned on Z = 0 holds, it is enough to
prove that:

E
[
N − Y
1 ∨ Y

]
≥ E

[
Y

1 ∨ Y

]
.

The above inequality is trivially true for N = 0. For N > 0, we notice that E
[

Y
1∨Y
]

=
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1− 2−N , as well as

E
[
N − Y
1 ∨ Y

]
≥ E

[
N − Y
1 + Y

]
= 2−N

N∑
k=0

(
N

k

)
N − k
1 + k

= 2−N
N∑
k=1

(
N

k − 1

)
= 1− 2−N .

This ends the proof.

Remark 6. Theorem 2 states, that if we care about FDR estimation instead of control the
"+1" in the numerator is unnecessary. It is easy to see that this will also be true if we change
the constant threshold t for a random threshold τ , that is independent of W . At the same
time when the threshold τ is fully dependent on W (it is a function of W ) the "+1" is
indispensable.

It is interesting to ask why. One way of thinking about it, is that it is an overcompensation
for the error caused by optimal stopping in the choice of τ . Speci�cally, we can think about
the classic choice of τ as starting with τ = 0 and increasing it until the proportion of Wi

below −τ toWi above τ is small enough. Assuming for the sake of argument that all |Wi| are
di�erent, the fraction that we base our choice of τ on, will decrease after we pass a negative
Wi, and increase after we pass a positive Wi. Therefore the �rst time the proportion goes
below a certain quantity q, we have just passed a negative Wi. On the other hand, for
constant τ (or τ independent of W ) one would expepct that the frequencies with which the
last Wi for which |Wi| < t is positive or negative would be equal - at least if we restrict
ourselves to null features. In this case the "+1" in the numerator is unnecessary. The

stopping rule is therefore a source of downard bias in F̂DP (τ), when we think of it as an
estimator of FDR(τ). An easy �x is to change the bias downwards to bias upwards, by
adding this "just removed" negative Wi to the count in the numerator.
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Chapter 5

Implementations, packages and
tutorials
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5.1 Tutorial: R package misaem

5.1.1 Introduction of misaem

misaem is a CRAN package (Jiang and Mozharovskyi, 2020), to perform linear regression and
logistic regression with missing data, under MCAR (Missing completely at random) and MAR
(Missing at random) mechanisms. The covariates are assumed to be continuous variables.
The methodology implemented is based on maximization of the observed likelihood using
EM-types of algorithms. The package includes:

1. Parameters estimation:

� for linear regression, we consider a joint Gaussian distribution for covariates and re-
sponse, then the norm package (Novo and Schafer, 2013) allows to estimate the mean
vector and a variance covariance matrix with the EM algorithm and SWEEP operator
(Schafer, 1997). Finally we have reshaped the outputs of the norm package to obtain
the regression coe�cient.

� for logistic regression, we use a stochastic approximation version of EM algorithm
(SAEM) based on Metropolis-Hasting sampling as introduced in Chapter 2.
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2. Estimation of standard deviation for estimated parameters:

� for linear regression, with classical formula 1.2.
� for logistic regression, with Louis formula.

3. Model selection procedure based on BIC.
4. Prediction on test set with missing values.

The package can be installed and loaded with the following commands:

# install.packages('misaem')

library(misaem)

5.1.2 Linear regression with missing covariates

Synthetic dataset

Let's generate a synthetic example of classical linear regression. We �rst generate a design
matrix of size n = 50 times p = 2 by drawing each observation from a multivariate normal
distribution N (µ,Σ). We consider as the true values for the parameters:

µ = (1, 1),

Σ =

[
1 1
1 4

]
.

Then, we generate the response according to the linear regression model with coe�cient
β = (2, 3,−1) and variance of noise vector σ2 = 0.25.

set.seed(1)

n <- 50 # number of rows

p <- 2 # number of explanatory variables

# Generate complete design matrix

library(MASS)

mu.X <- c(1, 1)

Sigma.X <- matrix(c(1, 1, 1, 4), nrow = 2)

X.complete <- mvrnorm(n, mu.X, Sigma.X)

# Generate response

b <- c(2, 3, -1) # regression coefficient

sigma.eps <- 0.25 # noise variance

y <- cbind(rep(1, n), X.complete) %*% b + rnorm(n, 0, sigma.eps)

Then we randomly introduced 15% of missing values in the covariates according to the
MCAR (Missing completely at random) mechanism. To do so, we use the function ampute

from the R package mice (van Buuren and Groothuis-Oudshoorn, 2011). For more details
about how to generate missing values of di�erent mechanisms, see Mayer et al. (2019).
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library(mice)

##

## Attaching package: 'mice'

## The following objects are masked from 'package:base':

##

## cbind, rbind

# Add missing values

yX.miss <- ampute(data.frame(y, X.complete), 0.15, patterns = matrix(

c(0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0),

ncol = 3, byrow = TRUE), freq = c(1, 1, 1, 2, 2, 2) / 9,

mech = "MCAR", bycases = FALSE)

y.obs <- yX.miss$amp[, 1] # responses

X.obs <- as.matrix(yX.miss$amp[, 2:3]) # covariates with NAs

Have a look at the synthetic dataset:

head(X.obs)

## X1 X2

## [1,] 0.30528180 -0.1473747

## [2,] 1.59950261 1.2164969

## [3,] 0.22508791 -0.5764402

## [4,] 2.86148303 3.8938533

## [5,] 0.05283648 2.0009229

## [6,] -1.07586521 -0.1496864

Check the percentage of missing values:

sum(is.na(X.obs))/(n*p)

## [1] 0.17

Estimation for linear regression with missing values

The main function in our package to �t linear regression with missingness is miss.lm function.
The function miss.lm mimics the structure of widely used function lm for the case without
missing values. It takes an object of class formula (a symbolic description of the model
to be �tted) and the data frame as the input. Here we apply this function with its default
options.
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# Estimate regression using EM with NA

df.obs = data.frame(y, X.obs)

miss.list = miss.lm(y~., data = df.obs)

## Iterations of EM:

## 1...2...3...4...5...6...7...8...9...10...11...12...13...14...15...16...17...

Then it returns an object of self-de�ned class miss.lm, which consists of the estimation
of parameters, their standard error and observed log-likelihood. We can print or summarize
the obtained results as follows:

print(miss.list)

##

## Call: miss.lm(formula = y ~ ., data = df.obs)

##

## Coefficients:

## (Intercept) X1 X2

## 1.942 3.052 -1.004

## Standard error estimates:

## (Intercept) X1 X2

## 0.04171 0.03484 0.01936

## Log-likelihood: 31.85

print(summary(miss.list))

##

## Call:

## miss.lm(formula = y ~ ., data = df.obs)

##

## Coefficients:

## Estimate Std. Error

## (Intercept) 1.94205 0.04171

## X1 3.05205 0.03484

## X2 -1.00424 0.01936

## Log-likelihood: 31.852

summary(miss.list)$coef

## Estimate Std. Error

## (Intercept) 1.942050 0.04170924

## X1 3.052050 0.03483511

## X2 -1.004244 0.01936094
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Self-de�ned parameters can be also taken such as the maximum number of iterations
(maxruns), the convergence tolerance (tol_em) and the logical indicating if the iterations
should be reported (print_iter).

# Estimate regression using self-defined parameters

miss.list2 = miss.lm(y~., data = df.obs, print_iter = FALSE,

maxruns = 500, tol_em = 1e-4)

print(miss.list2)

##

## Call: miss.lm(formula = y ~ ., data = df.obs, print_iter = FALSE,

## maxruns = 500, tol_em = 1e-04)

##

## Coefficients:

## (Intercept) X1 X2

## 1.942 3.052 -1.004

## Standard error estimates:

## (Intercept) X1 X2

## 0.04175 0.03487 0.01938

## Log-likelihood: 31.85

Model selection

The function miss.lm.model.select adapts a BIC criterion and step-wise method to return
the best model selected. We add a null variable with missing values to check if the function
can distinguish it from the true variables.

# Add null variable with NA

X.null <- mvrnorm(n, 1, 1)

patterns <- runif(n)<0.15 # missing completely at random

X.null[patterns] <- NA

X.obs.null <- cbind.data.frame(X.obs, X.null)

# Without model selection

df.obs.null = data.frame(y, X.obs.null)

miss.list.null = miss.lm(y~., data = df.obs.null)

## Iterations of EM:

## 1...2...3...4...5...6...7...8...9...10...11...12...13...14...15...

print(miss.list.null)

##

## Call: miss.lm(formula = y ~ ., data = df.obs.null)

##
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## Coefficients:

## (Intercept) X1 X2 X.null

## 1.88617 3.05883 -1.00391 0.04435

## Standard error estimates:

## (Intercept) X1 X2 X.null

## 0.05670 0.03438 0.02125 0.02853

## Log-likelihood: 15.87

# Model selection

miss.model = miss.lm.model.select(y, X.obs.null)

print(miss.model)

##

## Call: miss.lm(formula = Y ~ ., data = df, print_iter = FALSE)

##

## Coefficients:

## (Intercept) X1 X2

## 1.942 3.052 -1.004

## Standard error estimates:

## (Intercept) X1 X2

## 0.04171 0.03484 0.01936

## Log-likelihood: 31.85

Prediction on test set

In order to evaluate the prediction performance, we generate a test set of size nt = 20 times
p = 2 following the same distribution as the previous design matrix, and we add or not 15%
of missing values.

# Prediction

# Generate dataset

set.seed(200)

nt <- 20 # number of new observations

Xt <- mvrnorm(nt, mu.X, Sigma.X)

# Add missing values

Xt.miss <- ampute(data.frame(Xt), 0.15, patterns = matrix(

c(0, 1, 1, 0),

ncol = 2, byrow = TRUE), freq = c(1, 1) /2,

mech = "MCAR", bycases = FALSE)

Xt.obs <- as.matrix(Xt.miss$amp) # covariates with NAs

The prediction can be performed for a complete test set:
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#train with NA + test no NA

miss.comptest.pred = predict(miss.list2, data.frame(Xt), seed = 100)

print(miss.comptest.pred)

## [1] 3.3878210 2.6112345 -0.5562864 6.5926842 2.9231974 8.0234969

## [7] 0.8286503 3.9363413 6.7515266 3.3517064 6.8156632 2.2406832

## [13] 2.0321507 5.9852215 7.8101528 5.0863422 4.2238612 4.4541193

## [19] 3.5522691 3.0003519

And we can also apply the function when both train set and test set have missing values:

#both train & test with NA

miss.pred = predict(miss.list2, data.frame(Xt.obs), seed = 100)

print(miss.pred)

## [1] 3.3878210 3.4804264 -0.5562864 6.5926842 2.9231974 8.0234969

## [7] 0.1435715 3.9363413 6.7515266 3.3517064 6.8156632 2.2406832

## [13] 2.0321507 5.9150631 7.8101528 3.5570286 4.2238612 4.4541193

## [19] 3.5522691 3.0003519

5.1.3 Logistic regression with missing covariates

Synthetic dataset

We �rst generate a design matrix of size n = 500 times p = 5 by drawing each observation
from a multivariate normal distribution N (µ,Σ). Then, we generate the response according
to the logistic regression model.

We consider as the true values for the parameters

β = (0, 1,−1, 1, 0,−1),

µ = (1, 2, 3, 4, 5),

Σ = diag(σ)Cdiag(σ),

where the σ is the vector of standard deviations

σ = (1, 2, 3, 4, 5)

,
and C the correlation matrix

C =


1 0.8 0 0 0

0.8 1 0 0 0
0 0 1 0.3 0.6
0 0 0.3 1 0.7
0 0 0.6 0.7 1

 .
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# Generate dataset

set.seed(200)

n <- 500 # number of subjects

p <- 5 # number of explanatory variables

mu.star <- 1:p #rep(0,p) # mean of the explanatory variables

sd <- 1:p # rep(1,p) # standard deviations

C <- matrix(c( # correlation matrix

1, 0.8, 0, 0, 0,

0.8, 1, 0, 0, 0,

0, 0, 1, 0.3, 0.6,

0, 0, 0.3, 1, 0.7,

0, 0, 0.6, 0.7, 1), nrow=p)

Sigma.star <- diag(sd)%*%C%*%diag(sd) # covariance matrix

beta.star <- c(1, -1, 1, 1, -1) # coefficients

beta0.star <- 0 # intercept

beta.true = c(beta0.star,beta.star)

# Design matrix

X.complete <- matrix(rnorm(n*p), nrow=n)%*%chol(Sigma.star)+

matrix(rep(mu.star,n), nrow=n, byrow = TRUE)

# Reponse vector

p1 <- 1/(1+exp(-X.complete%*%beta.star-beta0.star))

y <- as.numeric(runif(n)<p1)

Then we randomly introduced 10% of missing values in the covariates according to the
MCAR (Missing completely at random) mechanism.

# Generate missingness

set.seed(200)

p.miss <- 0.10

patterns <- runif(n*p)<p.miss # missing completely at random

X.obs <- X.complete

X.obs[patterns] <- NA

Have a look at the synthetic dataset:

head(X.obs)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.0847563 1.71119812 5.0779956 9.731254821 13.02285225

## [2,] 1.2264603 0.04664033 5.3758000 6.383093558 4.84730504

## [3,] 1.4325565 1.77934455 NA 8.421927692 7.26902254

## [4,] 1.5580652 5.69782193 5.5942869 -0.440749372 -0.96662931

## [5,] 1.0597553 -0.38470918 0.4462986 0.008402997 0.04745022

## [6,] 0.8853591 0.56839374 3.4641522 7.047389616 NA
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Estimation for logistic regression with missingness

The main function for �tting logistic regression with missing covariates in our package is
miss.glm function, which mimics the structure of widely used function glm. Note that we
don't need to specify the binomial family in the input of miss.glm function. Here we apply
this function with its default options, and then we can print or summarize the obtained results
as follows:

df.obs = data.frame(y, X.obs)

#logistic regression with NA

miss.list = miss.glm(y~., data = df.obs, seed = 100)

## Iteration of SAEM:

## 50 100 150 200

print(miss.list)

##

## Call: miss.glm(formula = y ~ ., data = df.obs, seed = 100)

##

## Coefficients:

## (Intercept) X1 X2 X3 X4 X5

## -0.03659 1.50705 -1.28208 1.12342 1.03435 -1.07691

## Standard error estimates:

## (Intercept) X1 X2 X3 X4 X5

## 0.3210 0.3446 0.2056 0.1408 0.1240 0.1284

## Log-likelihood: -171.7

print(summary(miss.list))

##

## Call:

## miss.glm(formula = y ~ ., data = df.obs, seed = 100)

##

## Coefficients:

## Estimate Std. Error

## (Intercept) -0.03659 0.32104

## X1 1.50705 0.34456

## X2 -1.28208 0.20560

## X3 1.12342 0.14076

## X4 1.03435 0.12396

## X5 -1.07691 0.12843

## Log-likelihood: -171.74
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summary(miss.list)$coef

## Estimate Std. Error

## (Intercept) -0.03659218 0.3210369

## X1 1.50704588 0.3445570

## X2 -1.28208040 0.2056000

## X3 1.12341764 0.1407630

## X4 1.03435057 0.1239566

## X5 -1.07690679 0.1284274

Model selection

To perform model selection with missing values, we adapt criterion BIC and step-wise method.
The function miss.glm.model.select outputs the best model selected. With the current
implementation, when p is greater than 20, it may encounter computational di�culties for the
BIC based model selection. In the following simulation, we add a null variable with missing
values to check if the function can distinguish it from the true variables.

# Add null variable with NA

X.null <- mvrnorm(n, 1, 1)

patterns <- runif(n)<0.10 # missing completely at random

X.null[patterns] <- NA

X.obs.null <- cbind.data.frame(X.obs, X.null)

# Without model selection

df.obs.null = data.frame(y, X.obs.null)

miss.list.null = miss.glm(y~., data = df.obs.null)

## Iteration of SAEM:

## 50 100 150 200

print(miss.list.null)

##

## Call: miss.glm(formula = y ~ ., data = df.obs.null)

##

## Coefficients:

## (Intercept) X1 X2 X3 X4 X5

## -0.08280 1.52860 -1.29067 1.13314 1.05171 -1.09399

## X.null

## 0.03964

## Standard error estimates:

## (Intercept) X1 X2 X3 X4 X5

## 0.3585 0.3514 0.2084 0.1417 0.1241 0.1291

## X.null
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## 0.1666

## Log-likelihood: -171.4

# model selection for SAEM

miss.model = miss.glm.model.select(y, X.obs.null)

print(miss.model)

##

## Call: miss.glm(formula = Y ~ ., data = df, print_iter = FALSE,

## subsets = subset_choose)

##

## Coefficients:

## (Intercept) X1 X2 X3 X4 X5

## -0.06956 1.55837 -1.30913 1.14401 1.06008 -1.10143

## Standard error estimates:

## (Intercept) X1 X2 X3 X4 X5

## 0.3244 0.3500 0.2094 0.1440 0.1279 0.1317

## Log-likelihood: -172

Prediction on test set

In order to evaluate the prediction performance, we generate a test set of size nt = 100 times
p = 5 following the same distribution as the design matrix, and without and with 10% of
missing values. We evaluate the prediction quality with a confusion matrix.

# Generate test set with missingness

set.seed(200)

nt = 100

X.test <- matrix(rnorm(nt*p), nrow=nt)%*%chol(Sigma.star)+

matrix(rep(mu.star,nt), nrow = nt, byrow = TRUE)

# Generate the test set

p1 <- 1/(1+exp(-X.test%*%beta.star-beta0.star))

y.test <- as.numeric(runif(nt)<p1)

# Generate missingness on test set

p.miss <- 0.10

X.test[runif(nt*p)<p.miss] <- NA

# Prediction on test set

pr.saem <- predict(miss.list, data.frame(X.test))

# Confusion matrix

pred.saem = (pr.saem>0.5)*1

table(y.test,pred.saem )
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## pred.saem

## y.test 0 1

## 0 34 8

## 1 6 52

5.2 Tutorial: R package ABSLOPE

5.2.1 Introduction of ABSLOPE

ABSLOPE is a package to perform high-dimensional model selection with missing values,
under MCAR (Missing completely at random) and MAR (Missing at random) mechanisms.
We target at sparse linear model and the objective is to simultaneously perform variable
selection and parameter estimation, despite the missing values among the covariates. The
implemented method, adaptive Bayesian version of SLOPE (ABSLOPE), as described in
Algorithm 5, addresses these issues by embedding the sorted l1 penalization (Bogdan et al.,
2015) (an extension of LASSO (Tibshirani, 1996) within a Bayesian framework. Speci�cally,
the aim of model selection is controlling false discovery rate (FDR).

The package can be installed and loaded with the following commands:

# library(devtools)

# install_github("wjiang94/ABSLOPE")

library(ABSLOPE)

##

## Attaching package: 'ABSLOPE'

## The following object is masked from 'package:stats':

##

## power

With following example of synthetic data set, we illustrate how to use the package. ##
Synthetic dataset Let's generate a synthetic example of linear regression. We �rst generate
a design matrix where the number of observations n and dimension size p are equally large
with n = p = 100. We generate each observation from a multivariate normal distribution
N (µ,Σ) and then standardize the matrix. We consider all elements in µ equals to 0 and the
covariance matrix as a Toeplitz structure, i.e.,

Σ = toeplitz(ρ) =


1 ρ · · · ρp−2 ρp−1

ρ 1
. . . · · · ρp−2

...
. . . . . . . . .

...

ρp−2 · · · . . . . . . ρ
ρp−1 ρp−2 · · · ρ 1


p×p

,

where the correlation ρ = 0.5. This structure indicates that, adjacent pairs of covariates are
highly correlated and those further away are less correlated, for instance, in microarry study
(Guo et al., 2006), genes are correlated due to their distance in the regularity pathway.
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we generate the response according to the linear regression model with coe�cient β. In
a sparse setting, we let only the �rst 10 predictors non-zero and all equal to 2

√
2 log p and

the variance of noise vector σ2 = 1.

set.seed(100)

n <- 100 # number of rows

p <- 100 # number of explanatory variables

mu <- rep(0, p) # mean of covariates distribution

corr <- 0.5 # correlation

Sigma <- toeplitz(corr�(0:(p-1))) # variance of covariates distribution

# Design matrix

X.comp <- matrix(rnorm(n*p), nrow = n) %*% chol(Sigma) +

matrix(rep(mu,n), nrow = n, byrow = TRUE)

X.comp <- scale(X.comp)/sqrt(n) # Standardization

# Coefficient and response vectors

signallevel <- 3 # signal strength

amplitude <- signallevel*sqrt(2*log(p)) # signal amplitude

nspr <- 10 # number of non-zero predictors

sigma <- 1 # noise variance

nonzero <- sample(p, nspr)

beta <- amplitude * (1:p %in% nonzero) # regression coefficient

y <- X.comp %*% beta + sigma*rnorm(n)

Then we randomly introduced 10% of missing values in the covariates according to the
MCAR (Missing completely at random) mechanism.

# Add missing values

X.obs <- X.comp

p.miss <- 0.1

patterns <- runif(n*p)< p.miss # missing completely at random

X.obs[patterns] <- NA

Have a look at the synthetic dataset:

X.obs[1:5, 1:5]

## [,1] [,2] [,3] [,4] [,5]

## [1,] -0.049485626 -0.06877051 -0.02834139 -0.164145080 -0.17609787

## [2,] 0.012600891 0.15429398 0.03219760 -0.065157685 -0.03263146

## [3,] -0.008016932 -0.05707007 0.05397834 -0.057504622 0.10270804

## [4,] 0.086593834 0.14518582 0.10977987 0.001515076 -0.07490049

## [5,] 0.011174444 -0.15181138 NA 0.052723903 -0.04856800

Alternatively the function data.generation can also help to generate the dataset with
missing values.
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data.list = data.generation(n, p, nspr, p.miss, mu, Sigma,

signallevel, mec='MCAR', sigma=sigma)

X.obs = data.list$X.obs

X.comp = data.list$X

y = data.list$y

beta = data.list$beta

5.2.2 Estimation and model selection with missing values�Algorithm
ABSLOPE

The main function in our package to �t high-dimensional linear regression with missingness is
ABSLOPE function. It takes the data frame and regularizing sequence as the inputs. Here we
set the regularizing parameters as Benjamini-Hochberg sequence (Benjamini and Hochberg,
1995) in order to achieve FDR control at target level 0.1, and then we apply the main function
with its default options.

# ABSLOPE

lambda = create_lambda_bhq(ncol(X.obs),fdr=0.10)

list.res = ABSLOPE(X.obs, y, lambda)

Then it returns the estimation of parameters. We can print the obtained results as follows:

print(list.res$beta)

## [1] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

## [8] 0.000000 0.000000 0.000000 0.000000 0.000000 10.557724 0.000000

## [15] 0.000000 0.000000 0.000000 7.695746 0.000000 11.443353 8.076250

## [22] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7.878916

## [29] 0.000000 0.000000 0.000000 0.000000 0.000000 10.515769 0.000000

## [36] 0.000000 0.000000 0.000000 0.000000 9.149652 0.000000 0.000000

## [43] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

## [50] 0.000000 0.000000 9.354592 0.000000 10.772740 0.000000 7.363948

## [57] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

## [64] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

## [71] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

## [78] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

## [85] 0.000000 0.000000 3.755438 0.000000 0.000000 0.000000 0.000000

## [92] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

## [99] 0.000000 0.000000

To check which variables are selected:

selected = which(list.res$beta!=0)

print(selected)
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## [1] 13 18 20 21 28 34 40 52 54 56 87

Then the power and FDR can be calculated:

power(beta, selected)

## [1] 1

fdp(beta, selected)

## [1] 0.09090909

Accelarated version of ABSLOPE and implementation with Rcpp

A simpli�ed version of the algorithm has also been developed as described in Algorithm 6,
where the sampling procedure in the algorithm ABSLOPE is replaced by conditional expecta-
tion. In addition, advanced implementations using Rcpp (Eddelbuettel and Balamuta, 2017)
integrate C codes which contributes to e�cient solutions to large scale problems.

# Accelarated version

lambda = create_lambda_bhq(ncol(X.obs),fdr=0.10)

list.res.approx = SLOBE(X.obs, y, lambda)

Summarize the results with power and FDR:

selected.approx = which(list.res.approx$beta!=0)

power(beta, selected.approx)

## [1] 1

fdp(beta, selected.approx)

## [1] 0.09090909

Compare the calculating time between the original ABSLOPE and approximated version:

list.res$time # Execution time for ABSLOPE

## Time difference of 18.09972 secs

list.res.approx$time # Execution time for approximated version

## Time difference of 1.190781 secs
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Screenshots of TraumaBase mobile application.
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5.3 TraumaBase mobile application

The TraumaBase Group has decided to take the algorithms developped into real-time appli-
cation. In the �rst step, a mobile application is under developement, as shown in Figure 5.1.
This application is designed speci�cally for the emergency doctors, who can log in with the
identi�er of the hosipital center as shown in the subplot (a). The purpose of the following
secure form is to collect data from severely traumatized patients from both a health and
scienti�c perspective, and then to send them at regular intervals to the APHP and to the
TraumaBase dataset. Data colleted include heart rate and systolic blood pressure, diastolic
blood pressure, the hemoglobin etc. as presented in the suplots (b) to (e). In a �nal step as
shown in the subplot (f), the application asks the doctor whether he thinks the patient will
have a hemorragic shock; In the meanwhile, the application will predict the probability that
the patient can have a hemorragic shock despite the inavailabitily of some measurements in
the form, using the decision tool misaem package as described in Section 5.1. Then we can
compare the doctor's prediction with the prediction from misaem, and �nally we will have
access to the ground truth. In this way, both medical research and statististical analysis on
TraumaBase dataset would be improved. Note that in the future use of the application, the
procedure shown in the subplot (f) will moved to the �rst screen, just after the screen (a).
In this way to avoid the in�uence of misaem results, the doctor will �rst give his opnion then
�ll in the form.
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Chapter 6

Conclusion

The objective of this thesis was to provide an e�cient and comprehensive statistical method-
ology to handle the problem of statistical inference with the existence of missing values, in
particular in regression based methods. Even if regression is one of the most widely used
basic techniques, and knowing how to carry it out with missing data seems indispensable,
both the applications and implementations are restricted to simple models, in low-dimension
or with simple missing pattern.

In this thesis, we developed a complete framework for dealing with missing values when
performing regression analysis, from estimation to model selection, from prediction to imple-
mentation and with the possibility to handle high-dimensional data. The proposed methods
provide a good balance between the quality of inference and the e�ciency of the calculation.
The framework is grounded in the theoretical aspects of the likelihood based methods and
EM types algorithm; and for high-dimensional data, we focus on methods that control the
false discovery rate.

We started with the problem of �tting logistic regression model with missing covariates.
In Chapter 2, we proposed a complete approach based on a stochastic approximation version
of the EM (SAEM) algorithm in order to perform statistical inference with missing values,
including the estimation of the parameters and their variance, the derivation of con�dence
intervals, and also a model selection procedure. The problem of predicting new observations
on a test set with missing covariate data was also discussed. Supported by a simulation
study in which the method is compared to previous ones, it has proven to be computationally
e�cient, with good coverage and variable selection properties.

Based on the same computational tool�SAEM algorithm, in Chapter 3 we looked beyond
data with a regular sample size, but focused on high-dimensional data where the number
of features is comparable or even larger than the number of observations. The proposed
new procedure�adaptive Bayesian SLOPE (ABSLOPE)�combines the sorted l1 regulariza-
tion together with a Bayesian framework which e�ectively handles latent variable modeling.
Through extensive simulations, we demonstrated satisfactory performance in terms of power,
false discovery rates and estimation bias in a wide range of scenarios.

Inspired by the problem speci�ed previously in Chapter 3, we tackled also controlled model
selection with high-dimensional and incomplete data, but without specifying a parametric
regression model. To do so, in Chapter 4, a model-X framework was supposed where the
conditional distribution of the response given the covariates was not speci�ed, but the joint
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distribution of covariates was known. Knocko� methodology and multiple imputations were
combined together with speci�cally designed aggregation rules. Both theoretical guarantees
and simulation evaluations were provided for FDR control despite missing values.

Finally, equipped the new methodologies for estimation and model selection problem with
missing values, we implemented two open source R packages misaem and ABSLOPE available
in CRAN. In Chapter 5, detailed instructions and tutorials were provided for users.

Another essential contribution has been to assist decision making in the medical �eld with
missing data. As mentioned almost in all chapters, the developed approaches were illustrated
on TraumaBase, for instance, by predicting the occurrence of hemorrhagic shock, a leading
cause of early preventable death in severe trauma cases; and by predicting platelet levels
using pre-hospital and in-hospital data with a large number of missing values. The logistic
regression model proposed with the missing values mentioned above improved the current
red �ag procedure, to identify patients with a high risk of severe hemorrhage. Moreover, as
introduced in Chapter 5, a mobile application designed for emergency doctors is currently
under development in order take the algorithms into real-time application.

The contributions of this thesis paved the way for future research in both theoretical and
applied directions.

A �rst extension of the proposed methods would be to deal with mixed covariates with
both continuous and categorical, ordinal and binary data. Even if we experimented �rst ideas
using GLOM model as shown in the supplementary materials in Chapter 2, the e�ciency of
the proposed algorithm still needs to be improved in order to apply it on more complex cases
and on real data, especially for high-dimensional data. One alternative could be to model
the mixed data using Gaussian copula (Zhao and Udell, 2019) which �ts arbitrary marginals
for continuous variables and handles ordinal variables with many levels; then e�cient EM
algorithm can be applied on the Gaussian copula model. However, estimating the marginal
distributions with missing values is still challenging even under MAR.

In the same vein to consider other types of variables, since the sorted penalty l1 can also
be used in generalized linear models (Abramovich and Grinshtein, 2018), we can combine the
problematic of Chapter 2 and that of Chapter 3, to tackle the problem of logistic regression in
high dimensions with missing values and to also show the control of FDR, and then compare
it to the method based on knocko� proposed in Chapter 4.

Another important line of research would be to consider another missing mechanism,
namely the MNAR case, which is notoriously known to be di�cult to handle. Indeed, the
suggested methods in this thesis are dedicated to MAR values and MNAR can also be fre-
quent in application. For instance, when a patient's condition is quite critical with extreme
low or high value of heart rate, physicians would rather provide emergency care than do
measurement. The di�culty with these missing MNAR data is that often it is necessary to
specify the model that generated the missing data, and therefore to have strong a priori on
the parametric forms. However, part of the literature tries to take into account the mech-
anism without modeling it. For instance, Mohan et al. (2018) suggested such an approach
mainly for a self-masked mechanism, i.e., the lack depends only on the missing variable itself
in a regression framework. In recent work (Mohan and Pearl, 2014; Mohan et al., 2013,
2018), the missing data have been treated as a causal inference problem and graph-based
procedures for consistently estimating parameters have been proposed to e�ciently handle
the MNAR case. Further extension of high-dimensional model selection in the MNAR case
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needs to be explored.

On the theoretical part, there are improvements to be made to prove the FDR control
of ABSLOPE in Chapter 3 and missKnocko� in Chapter 4, with less restricted assumptions
on the data. Moreover, we need to consider testing unconditional independence (Candes
et al., 2018) with missing values, in order to use the information provided by the responses
to improve the power for missKnocko�.

Alternatively, we can also extend the method to handle missing values to other models,
such as hierarchical Bayesian model (Yekutieli and Weinstein, 2019) which addresses large-
scale inference without parametric assumptions and aims at the empirical distribution of the
parameter vector, in a fully Bayesian framework with no previous information on problem.

Last but not least, we hope that the methods developed can help the credibility of the use
of statistics and machine learning to improve health care. In order to be used and trusted,
the methods which manage missing values must be interpretable, transparent and founded
from a theoretical point of view, but also be able to be applied to large modern data.
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Appendix A

Synthèse substantiel (en langue
française)

État de l'art sur la problématique des valeurs man-
quantes

Les données manquantes existent dans presque tous les domaines de la recherche empirique.
Il existe plusieurs raisons à cela, notamment la non-réponse à une enquête, l'indisponibilité
des mesures et la perte de données. E�ectuer une analyse statistique sur des ensembles
de données comportant des données manquantes nécessite souvent de mettre en place des
connaissances supplémentaires sur la manière dont les données manquantes sont générées. Le
processus par lequel les données deviennent incomplètes est appelé le mécanisme de données
manquantes (Rubin, 1976; Seaman et al., 2013), et comprend les trois types suivants : i)
Manque complètement au hasard (MCAR), dans lequel le manque de données est indépendant
à la fois des valeurs observées et des valeurs manquantes ; ii) Manque au hasard (MAR),
dans lequel le manque de données est indépendant des valeurs manquantes, compte tenu des
données observées. Les données manquantes avec MCAR et MAR sont appelées des non-
réponses ignorables, car l'estimation du maximum de vraisemblance peut être obtenue en
ignorant ces mécanismes. iii) Lorsque l'absence de données dépend des valeurs manquantes
elles-mêmes, compte tenu des données observées, le processus est appelé non-réponse non
aléatoire (MNAR), appelé non-réponse non ignorable car il est souvent nécessaire de modéliser
le mécanisme qui génère les valeurs manquantes pour faire une inférence.

La pratique la plus courante pour traiter les données manquantes, à savoir l'analyse
complète des cas (ou la suppression par liste), qui limite l'analyse aux observations sans
attributs manquants, entraîne une perte d'informations et un biais d'estimation, sauf si les
données manquantes sont MCAR. Il faut vraiment souligner que cette approche n'est plus
possible dans un contexte à grande échelle. Comme le dit Zhu et al. (2019) : "L'une
des ironies du travail avec de grandes données est que les données manquantes jouent un
rôle toujours plus important, et présentent souvent de sérieuses di�cultés d'analyse. Pour
illustrer l'inadéquation d'une analyse de cas complète avec de grandes données, ils imaginent
un ensemble de données avec des observations n et des variables p où chaque entrée a
une probabilité de 1% d'être manquante indépendamment. Si p = 5, alors l'analyse de
cas complète peut être acceptable puisque nous avons encore environ 95% d'observations ;
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cependant, lorsque la dimension est beaucoup plus grande, comme p = 300, seules 5% des
lignes complètes sont retenues.

De nombreuses méthodes statistiques ont été développées pour traiter les valeurs man-
quantes (Schafer, 1997; Little and Rubin, 2019; van Buuren, 2018; Josse and Reiter, 2018;
Mayer et al., 2019; Mohan et al., 2013) dans un cadre inférentiel, c'est-à-dire lorsque l'objectif
est d'estimer des paramètres et leur variance à partir de données incomplètes. Une approche
populaire pour traiter les valeurs manquantes est l'imputation, qui consiste à remplacer les
valeurs manquantes par des valeurs plausibles pour obtenir des données complètes qui peu-
vent être analysées par n'importe quelle méthode. On peut soit imputer selon un modèle
commun, soit utiliser une approche de modélisation entièrement conditionnelle (van Buuren,
2018). Parmi les méthodes puissantes �gurent l'imputation par forêt aléatoire (Stekhoven
and Buehlmann, 2012) et par des méthodes de rang inférieur (Josse and Husson, 2016; Robin,
2019; Udell and Townsend, 2019). Plus récemment, les contributions comprennent égale-
ment des méthodes d'imputation basées sur des techniques d'apprentissage approfondi, telles
qu'un auto-codeur variationnel (Mattei and Frellsen, 2019; Ma et al., 2018) et des réseaux
adversaires générateurs (Yoon et al., 2018), cependant, ces méthodes nécessitent un ensem-
ble de données complet pour former au mieux le modèle. Sans hypothèses paramétriques,
la stratégie bayésienne non paramétrique (Murray and Reiter, 2016) ou l'approche récente
utilisant le transport optimal (Muzellec et al., 2020) sont des tentatives dans ce sens. Néan-
moins, même si nous parvenons à imputer en préservant au mieux la distribution conjointe et
marginale des données, une seule imputation ne peut pas re�éter l'incertitude associée à la
prévision des valeurs manquantes. Pour atteindre cet objectif, l'imputation multiple (MI) (Ru-
bin, 2009; van Buuren and Groothuis-Oudshoorn, 2011) consiste à générer plusieurs valeurs
plausibles pour chaque donnée manquante (pour re�éter la variance de la prédiction compte
tenu des données observées et du modèle d'imputation) conduisant à di�érents ensembles de
données imputées. Ensuite, l'analyse est e�ectuée sur chaque ensemble de données imputées
et les résultats sont combinés de manière à ce que la variance �nale tienne compte de la
variabilité supplémentaire due aux valeurs manquantes. La �gure A.1 illustre les principales
étapes décrites ci-dessus.

Figure A.1: Procédure d'imputation multiple.

Une alternative pour traiter les valeurs manquantes consiste à modi�er les processus
d'estimation a�n qu'ils puissent être appliqués à des données incomplètes. Par exemple,
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on peut utiliser l'algorithme EM (Dempster et al., 1977) pour obtenir l'estimation du max-
imum de vraisemblance malgré les valeurs manquantes, accompagné d'un algorithme EM
supplémenté (Meng and Rubin, 1991) ou la formule de Louis (Louis, 1982) pour estimer la
variance.

La �gure A.2 illustreles les principales idées de l'EM: l'objectif est de maximiser la courbe
bleue, pour ce faire, nous approximons sa limite inférieure, la courbe verte, puis nous mettons
itérativement à jour les estimations en maximisant la courbe verte.

Figure A.2: L'algorithme EM.

Cette stratégie est valable dans le cadre des mécanismes MAR. Même si cette approche
est parfaitement adaptée aux problèmes spéci�ques d'inférence avec des valeurs manquantes,
il existe peu de solutions ou d'implémentations disponibles, même pour des modèles simples
tels que la régression logistique.

Cela peut s'expliquer par le fait que, contrairement à l'imputation, l'algorithme EM repose
explicitement sur des hypothèses paramétriques fortes et qu'il faut dériver une approche pour
chaque technique statistique. Mais l'avantage évident de l'algorithme EM est que l'on peut
s'attendre à un meilleur contrôle des propriétés statistiques de l'approche développée. En
outre, comme il est souvent impossible d'obtenir une forme explicite pour l'algorithme EM,
des méthodes d'échantillonnage ont été utilisées telles que l'échantillonnage Monte Carlo
(Ibrahim et al., 1999), l'échantillonnage par rejet adaptatif (Gilks and Wild, 1992), mais elles
prenaient beaucoup de temps, ce qui peut également expliquer pourquoi les algorithmes basés
sur l'EM n'ont pas été utilisés en pratique.

Une autre partie de la littérature se concentre sur les problèmes d'apprentissage statistique
où l'objectif est de prédire au mieux une variable de réponse en sachant que les covariables
ont des données manquantes. Par exemple, Josse et al. (2019) montre la cohérence de
l'imputation moyenne simple dans la prédiction. Les Kapelner and Bleich (2015) fournissent
des résultats empiriques de la performance prédictive des arbres de décision avec des covari-
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ables manquantes.

Même s'il existe une multitude de méthodes pour gérer les données manquantes (plus
de 150 paquets existent dans le logiciel R, comme indiqué dans Mayer et al. (2019)), il est
surprenant de constater qu'il n'existe vraiment que très peu de solutions pour sélectionner
des modèles et des variables avec des données manquantes, en particulier dans les grandes
dimensions. Dans cette thèse, nous considérons le cadre de l'inférence statistique avec les
covariables manquantes et nous développons de nouvelles méthodologies d'estimation des
paramètres et de sélection des modèles pour traiter les valeurs manquantes. Ces travaux sont
motivés par un problème pratique sur un registre de traumatismes graves pour la prise de
décision.

Projet TraumaBase

Notre travail est motivé par une collaboration avec le groupe TraumaBase1 de l'APHP (As-
sistance publique - Hôpitaux de Paris), qui se consacre à la prise en charge des patients
gravement traumatisés. Les traumatismes majeurs désignent les blessures qui entraînent une
invalidité prolongée ou mettent en danger la vie d'une personne, comme les blessures dues aux
accidents de la route, aux violences interpersonnelles et aux chutes. L'Organisation mondiale
de la santé a récemment indiqué que les traumatismes majeurs sont une source importante
de mortalité et de morbidité dans le monde entier (Hay et al., 2017). En particulier, les
traumatismes majeurs sont la première cause de mortalité et la deuxième cause d'invalidité
dans la tranche d'âge 16�45 ans, tandis que le choc hémorragique et les lésions cérébrales
traumatiques sont les deux principales causes de décès précoce évitable chez les patients
sou�rant de traumatismes graves (Dutton et al., 2010; Kauvar and Wade, 2005).

Le parcours d'un patient traumatisé comporte plusieurs étapes : du 1) site de l'accident,
où les soins sont généralement dispensés par des équipes de soins d'urgence, au transfert vers
la 2) salle de réanimation d'un centre de traumatologie, où des interventions immédiates telles
que l'évaluation par scanner, la chirurgie d'urgence ou la radiologie peuvent être organisées,
puis à l'admission en 3) unité de soins intensifs pour l'optimisation du soutien en cas de
dysfonctionnement d'un organe, et en�n 4) une prise en charge complète à l'hôpital, comme
le montre la �gure A.3.

En raison des environnements très stressants et multi-agents impliqués, il est prouvé
que la gestion du patient, même en cas de traumatisme mature dépasse souvent les délais
acceptables (Hamada et al., 2014). En outre, des divergences peuvent être observées entre les
diagnostics faits par les médecins urgentistes dans l'ambulance et ceux faits lorsque le patient
arrive au centre de traumatologie (Hamada et al., 2015). De telles divergences peuvent
entraîner de mauvais résultats, comme un contrôle inadéquat des hémorragies et un retard
de transfusion.

Pour améliorer la prise de décision et les soins aux patients, 19 centres de traumatologie
français ont collaboré depuis 2011 pour collecter des données cliniques détaillées de haute
qualité les données du site de l'accident jusqu'à la l'hôpital. Certains centres ont rejoint
TraumaBase après janvier 2011. La base de données qui en résulte, TraumaBase, est un
registre polycentrique prospectif des traumatismes qui est continuellement mis à jour et qui

1http://www.traumabase.eu/
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Figure A.3: Schéma de prise en charge d'un patient traumatisé.

contient maintenant des données sur 20 000 cas de traumatismes.

Les données sociodémographiques, cliniques, biologiques et thérapeutiques (de la phase
pré-hospitalière à la sortie, en cas d'hospitalisation) sont systématiquement enregistrées pour
tous les patients traumatisés, et tous les patients transportés aux urgences des centres par-
ticipants sont inclus dans le registre. La quantité de données collectées (avec plus de 250
variables) fait de cet ensemble de données un ensemble unique en Europe. Cependant, ces
données, provenant de sources multiples, sont présentent une forte variabilité inter-centres,
sans parler du fait qu'il manque beaucoup de données, deux problèmes qui rendent la mod-
élisation di�cile.

Un des objectifs du projet est de modéliser les décisions et les événements pris par les
médecins urgentistes pour les aider à faire des choix dans un environnement très stressant et
éviter les divergences entre le diagnostic posé par les médecins urgentistes et celui posé par
les médecins à l'arrivée du patient au centre de traumatologie. Par exemple, nous voudrions
établir des modèles prédictifs pour savoir s'il faut ou non prévoir le risque d'hémorragie
grave, a�n de préparer une réponse appropriée à l'arrivée dans un centre de traumatologie, par
exemple un protocole de transfusion massive et/ou des procédures hémostatiques immédiates.

D'un point de vue statistique, les dé�s consistent à réaliser des modèles prédictifs tels
que des régressions logistiques ou des régressions avec de nombreuses valeurs manquantes.
D'autres tâches peuvent inclure la sélection de modèles a�n de choisir les mesures les plus
importantes pour expliquer la réponse, a�n d'aider à proposer une réponse innovante au dé�
de santé publique que représente un traumatisme majeur.

La �gure A.4 montre un extrait de l'ensemble de données, avec di�érents codages des
valeurs manquantes (NA pour Non Applicable, Imp pour Impossible, NR pour Non Enregistré,
NM pour Non Fabriqué), et la �gure A.5 résume le pourcentage de valeurs manquantes
dans 45 variables représentatives parmi le total des mesures. Les raisons pour lesquelles ces
valeurs manquantes se sont produites peuvent être diverses. Par exemple, lorsqu'un patient
se trouve dans une situation très urgente, il n'y a plus de temps pour mesurer certaines
des variables (et les médecins savent, sans le mesurer, que les valeurs sont critiques) ; ce
cas peut être considéré comme un MNAR. D'autres cas incluent des données qui n'ont tout
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Figure A.4: Un extrait de l'ensemble des données de TraumaBase avec diverses données
manquantes.

Figure A.5: Pourcentage de valeurs manquantes dans chaque variable de l'ensemble de don-
nées TraumaBase.
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simplement pas été enregistrées dans la base de données (les données ont été mesurées mais
non rapportées dans la TraumaBase simplement parce qu'elles sont oubliées ou lorsqu'elles
sont fusionnées à partir de di�érentes sources par exemple). En outre, comme mentionné,
certains centres de traumatologie ont progressivement rejoint la TraumaBase, et ils n'ont
pas nécessairement le même dispositif dans chaque hôpital, ce qui se traduit notamment par
des structures de données manquantes avec des colonnes manquantes (correspondant à des
caractéristiques manquantes) pour certains des groupes. Ces codes�NR, NM, Imp�peuvent
donc aider à comprendre la nature des données manquantes et les raisons de leur apparition.
En e�et, même si nous ne détaillerons pas ces aspects dans ce document, la première chose
à faire lorsque nous avons des données manquantes est d'explorer, de visualiser, de faire
des statistiques descriptives pour comprendre les données manquantes. Dans ce travail,
nous avons toujours échangé avec les médecins pour voir si les hypothèses formulées nous
semblaient plausibles. Selon les chi�res, nous observons comment les données manquantes
a�ectent de manière signi�cative les données de TraumaBase, et combien il est essentiel de
concevoir une méthodologie spéci�que liée aux valeurs manquantes.

Dans cette thèse, nous avons étudié un sous-ensemble de l'ensemble de la TraumaBase,
qui contient 7495 individus enregistrés dans les données de traumatisme, inclus de janvier
2011 à mars 2016, avec des âges allant de 12 à 96 ans.

Résumé des contributions

On peut se rendre compte que la littérature sur l'inférence statistique avec des valeurs man-
quantes n'est pas assez abondante. Bien que l'algorithme EM soit étudié de manière appro-
fondie au cours de ces décennies, les applications et les mises en ÷uvre sont limitées aux mod-
èles simples, ou avec un schéma �xe de valeurs manquantes. À notre connaissance, aucune
des méthodes disponibles n'aborde le problème du choix du modèle pour traiter les valeurs
manquantes et contrôler simultanément le taux de fausses découvertes. L'objectif de cette
thèse est de fournir une méthodologie statistique e�cace et complète pour traiter le problème
d'inférence avec l'existence de valeurs manquantes, et en particulier pour l'application médi-
cale. En outre, des mises en ÷uvre conviviales sous forme de paquets R sont développées.
Les contributions détaillées sont énumérées ci-dessous.

Régression logistique avec covariables manquantes

Dans le chapitre 2, nous abordons le problème de l'inférence statistique pour le modèle de
régression logistique avec covariables manquantes. Il est surprenant de constater qu'il existe
très peu de solutions pour e�ectuer une régression logistique avec des valeurs manquantes
dans les covariables, même s'il s'agit d'un modèle commun. Une approche complète basée
sur une version d'approximation stochastique de l'algorithme EM (SAEM) (Lavielle, 2014;
Delyon et al., 1999) est proposée a�n de réaliser une inférence statistique avec des valeurs
manquantes, y compris l'estimation des paramètres et de leur variance, la dérivation des
intervalles de con�ance, et également une procédure de sélection du modèle. Le problème
de la prédiction de nouvelles observations sur un ensemble de tests avec des données de
covariables manquantes est également abordé. Soutenue par une étude de simulation dans
laquelle la méthode est comparée aux précédentes, elle s'est avérée e�cace sur le plan du
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calcul, et présente de bonnes propriétés de couverture et de sélection des variables. L'approche
est ensuite illustrée sur TraumaBase en prédisant l'apparition d'un choc hémorragique, une des
principales causes de décès précoce évitable dans les cas de traumatismes graves. L'objectif
est d'améliorer la procédure actuelle d'alerte rouge (Hamada et al., 2018), une alerte binaire
identi�ant les patients présentant un risque élevé d'hémorragie grave.

Sélection de modèles en haute dimension pour contrôler le taux
de fausses découvertes (FDR)

Le chapitre 3 propose une nouvelle méthodologie pour sélectionner les variables importantes
comportant des valeurs manquantes, en se concentrant plus particulièrement sur les données
à haute dimension où p est comparable à n ou même supérieur à n. Nous proposons une
nouvelle procédure synergique � la méthode bayésienne adaptative SLOPE (ABSLOPE) - qui
combine e�cacement la méthode SLOPE (régularisation triée l1) (Bogdan et al., 2015) avec
la méthode LASSO (Spike-and-Slab LASSO) (Ro£ková and George, 2018). Nous positionnons
notre approche dans un cadre bayésien qui permet la sélection simultanée de variables et
l'estimation de paramètres, malgré les valeurs manquantes. Comme pour la méthode LASSO
de Spike-and-Slab, les coe�cients sont considérés comme provenant d'un modèle hiérarchique
composé de deux groupes : 1) le pic pour les inactifs et 2) la dalle pour les actifs. Toutefois,
au lieu d'assigner des valeurs préalables de pic indépendantes pour chaque covariable, nous
déployons ici un pic conjoint �SLOPE" qui prend en compte l'ordre des coe�cients a�n de
contrôler les fausses découvertes. Grâce à des simulations approfondies, nous démontrons
une performance satisfaisante en termes de puissance, de FDR et de biais d'estimation dans
un large éventail de scénarios. En�n, nous démontrons une excellente performance dans la
prévision des niveaux de plaquettes lors de l'analyse des données de TraumaBase.

Sélection de variables contrôlées avec valeurs manquantes dans
un cadre de modèle-X

Le chapitre 4 aborde également le problème de la sélection des modèles avec des valeurs
manquantes lors du contrôle des FDR. Cependant, à la di�érence du cadre du chapitre 3, nous
supposons un cadre de modèle-X où la distribution conditionnelle de la réponse donnée aux
covariables n'est pas spéci�ée, mais où la distribution conjointe des covariables est connue.
Un tel cadre présente des avantages lorsque la distribution de y given X est compliquée,
comme c'est le cas avec un modèle de régression non linéaire. La nouvelle méthode proposée
- missKnocko� est basée sur la méthode de simulation modèle-X (Candes et al., 2018).
Notre méthode utilise deux fois les knocko�s : elle substitue d'abord les valeurs manquantes
par des knocko�s, puis procède à une application standard des knocko�s du modèle-X sur
l'ensemble de données imputées. A�n de tenir compte de l'incertitude, l'imputation multiple
est facilement incorporée en générant plusieurs copies imitées au premier stade, et nous
discutons de di�érentes façons d'agréger le support. Nous étudions les performances en
termes de puissance et de FDR grâce à des simulations approfondies.
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Implémentation et packages

En�n, le chapitre 5 fournit les instructions relatives à la mise en ÷uvre des méthodologies
mentionnées ci-dessus. Deux progiciels sont développés pour traiter l'inférence statistique
avec les valeurs manquantes :

� misaem est un progiciel R (R Core Team, 2017) permettant d'appliquer l'inférence
statistique pour la régression linéaire et le modèle de régression logistique avec données
manquantes. Cette méthodologie est basée sur la vraisemblance, notamment :

1. EM-type algorithmes pour estimer les paramètres ;

2. Obtention de la variance des paramètres estimés ;

3. Procédure de sélection du modèle basée sur le BIC ;

4. Prédiction sur l'ensemble de test avec des valeurs manquantes.

� ABSLOPE est un paquet R qui vise à la sélection de modèles à haute dimension avec
des valeurs manquantes via la SLOPE bayésienne adaptative. En outre, un algorithme
simpli�é pour accélérer le temps de calcul est également mis en ÷uvre avec des fonctions
C++.

Contribution à la TraumaBase

Nous collaborons avec des partenaires médicaux (le groupe TraumaBase des APHP) pour
améliorer la prise en charge et les soins des patients gravement traumatisés. Nous avons
construit des modèles avec des valeurs manquantes pour prédire le risque de choc hémorrag-
ique et le niveau de plaquettes à partir de données pré-hospitalières. Nos collaborateurs, les
médecins, sont extrêmement satisfaits des résultats. En e�et, le modèle de régression logis-
tique proposé avec les valeurs manquantes améliore la prédiction du risque hémorragique par
rapport à la prédiction faite par les médecins. L'objectif est donc maintenant d'implémenter
le modèle en temps réel, car au-delà de la qualité prédictive, il faut voir comment les médecins
vont réagir à un tel outil d'aide à la décision, comment présenter des recommandations avec
une interface ergonomique et comment les médecins réagissent à cet outil d'aide à la décision.
Les résultats ont été communiqués lors de la réunion de la Société Française d'Anesthésie et
de Réanimation (SFAR) et nous avons reçu des commentaires constructifs et un fort intérêt
pour l'application en temps réel.
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Résumé: Le problème des données manquantes
existe depuis les débuts de l'analyse des données,
car les valeurs manquantes sont liées au proces-
sus d'obtention et de préparation des données.
Dans les applications des statistiques modernes et
de l'apprentissage machine, où la collecte de don-
nées devient de plus en plus complexe et où de
multiples sources d'information sont combinées, les
grandes bases de données présentent souvent un
nombre extraordinairement élevé de valeurs man-
quantes. Ces données présentent donc d'importants
dé�s méthodologiques et techniques pour l'analyse :
de la visualisation à la modélisation, en passant par
l'estimation, la sélection des variables, les capacités
de prédiction et la mise en oeuvre par des implémen-
tations. De plus, bien que les données en grande di-
mension avec des valeurs manquantes soient consid-
érées comme des di�cultés courantes dans l'analyse
statistique aujourd'hui, seules quelques solutions

sont disponibles. L'objectif de cette thèse est
de développer de nouvelles méthodologies pour ef-
fectuer des inférences statistiques avec des données
manquantes et en particulier pour des données en
grande dimension. La contribution la plus impor-
tante est de proposer un cadre complet pour traiter
les valeurs manquantes, de l'estimation à la sélec-
tion d'un modèle, en se basant sur des approches
de vraisemblance. La méthode proposée ne repose
pas sur un dispositif spéci�que du manque, et per-
met un bon équilibre entre qualité de l'inférence et
implémentations e�caces. La méthode est ensuite
appliquée aux données pré-hospitalières, en collab-
oration avec des partenaires médicaux - le groupe
Traumabase des hôpitaux de Paris. En�n, nous four-
nissons deux logiciels open-source avec des tutoriels,
a�n d'aider la prise de décision dans le domaine
médical et les utilisateurs confrontés à des valeurs
manquantes.

Title: Statistical inference with incomplete and high-dimensional data�modeling poly-

traumatized patients
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Abstract: The problem of missing data has ex-
isted since the beginning of data analysis, as missing
values are related to the process of obtaining and
preparing data. In applications of modern statis-
tics and machine learning, where the collection of
data is becoming increasingly complex and where
multiple sources of information are combined, large
databases often have an extraordinarily high num-
ber of missing values. These data therefore present
important methodological and technical challenges
for analysis: from visualization to modeling includ-
ing estimation, variable selection, predictive capa-
bilities, and implementation through implementa-
tions. Moreover, although high-dimensional data
with missing values are considered common di�cul-
ties in statistical analysis today, only a few solutions

are available. The objective of this thesis is to pro-
vide new methodologies for performing statistical in-
ferences with missing data and in particular for high-
dimensional data. The most important contribution
is to provide a comprehensive framework for dealing
with missing values from estimation to model selec-
tion based on likelihood approaches. The proposed
method doesn't rely on a speci�c pattern of missing-
ness, and allows a good balance between quality of
inference and computational e�ciency. The method
is then applied to pre-hospital data, in collabora-
tion with medical partners - the Traumabase group
of Paris hospitals. Finally, we provide two open-
source software packages with tutorials, in order to
help decision making in medical �eld and users fac-
ing missing values.
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