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Titre: Approches d’unitarité pour des amplitudes «tout-plus» à deux boucles
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Résumé: Avec la progression de la précision des
mesures expérimentales au Grand Collisionneur de
hadrons (LHC) du CERN, de nouvelles prédictions
théoriques de haut précision sont nécessaires pour éval-
uer la validité du modèle standard de la physique des
particules (SM). Un ingrédient essentiel sont les prédic-
tions pour des processus de chromodynamique quantique
(QCD). Celles-ci représentent la majorité des processus
connus dans les mesures expérimentales au LHC. Une
compréhension précise de ces processus est donc essen-
tielle pour les recherches de physique au-delà du modèle
standard.

Les prédictions théoriques de haute précision nécessi-
tent des corrections virtuelles en ordre sub-sub-dominant
(NNLO), qui sont typiquement fondées sur des ampli-
tudes de diffusion à deux boucles. Puisque le calcul des
amplitudes nécessaires pour les expériences est une tache
complexe, il est utile d’examiner des exemples simplifiés,
pour développer de nouvelles techniques et trouver de
nouvelles structures.

Dans cette thèse, je traite le calcul d’une classe
d’amplitudes simples, appelées amplitudes «tout-plus».
Celles-ci sont hautement symétriques, puisquelles carac-
térisent les interactions des gluons, qui ont tous la même
hélicité. Les propriétés de la configuration «tout-plus»
entraînent une simplification de l’expression de ces am-
plitudes, elles sont donc particulièrement accessibles à
examiner.

Un aspect remarquable des amplitudes tout-plus, ob-
server jusqu’au niveau deux boucles, est une réduction
de la complexité de leur calcul. Les amplitudes en ar-
bre sont nulles, tandis que les amplitudes à une boucle
peuvent être obtenues avec des techniques qui sont sim-
ilaires à celles utilisées au niveau arbre. Au niveau de
deux boucles, il a été établi que la plupart des ampli-

tudes sont accessibles par des techniques au niveau d’une
boucle.

Les termes des amplitudes tout-plus à deux boucles,
pour lesquelles une telle construction n’est pas connue
actuellement, sont les termes rationnels. Ces termes
représentent la part de l’amplitude qui ne contient pas
de polylogarithmes ou de pôles lors de la régularisation
dimensionnelle.

Fondée sur une conjecture du Badger, Mogull et Per-
aro, je présente dans cette thèse une approche pour le
calcul des termes rationnels des amplitudes tout-plus
à deux boucles, qui s’appuie entièrement sur des tech-
niques d’unitarité généralisée à une boucle. Cette ap-
proche n’est pas limitée à l’ordre dominant en couleur,
mais semble aussi s’étendre aux ordres sub-dominants.
Je montre que cette méthode reproduit tous les résultats
connus pour ces termes rationnels, y compris pour des
amplitudes non-planaires allant jusqu’à sept gluons. Les
résultats concordent aussi avec les termes rationnels de
l’amplitude sub-dominante à sept gluons avec une seule
trace de couleur, qui n’est actuellement connue que dans
le cadre d’une conjecture.

De plus, je montre que les termes rationnels peuvent
être obtenus à partir d’un calcul d’unitarité généralisée
à une boucle niché. Dans ce cas, une des boucles est
présente en tant que termes rationnels d’une amplitude
à une boucle. Ceci reflète une approche similaire trou-
ver pour les termes polylogarithmiques des amplitudes
dominantes en couleur.

Enfin, je présente de nouvelles relations entre les am-
plitudes partielles de la configuration tout-plus à deux
boucles, qui incluent des invariants de Mandelstam. Ces
relations ont donc une similarité frappante avec les rela-
tions BCJ, qui associent des amplitudes en arbre et des
intégrandes au niveau boucle à ces mêmes invariants.
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Abstract: With the continued advances in exper-
imental measurements at the Large Hadron Collider
(LHC), new high precision theoretical predictions are re-
quired to further test the validity of the Standard Model
of particle physics (SM). An essential ingredient for such
searches are predictions for processes in Quantum Chro-
modynamics (QCD). These make up the majority of the
understood background in LHC measurements. A pre-
cise understanding of these processes is therefore vital
for the search of physics beyond the SM.

High precision theory predictions require next-to-
next-to-leading order virtual corrections, typically based
on two-loop scattering amplitudes. As the computation
of such amplitudes for experiments is generally a com-
plex task, it is useful to study simplified cases, in order
to develop computational techniques and search for new
structures.

In this thesis I discuss the computation of such a sim-
pler class of amplitudes, called all-plus amplitudes. They
are highly symmetric, as they describe the interaction of
gluons which all have the same helicity. The properties
of the all-plus configuration lead to particularly compact
forms, making all-plus amplitudes convenient objects to
study.

A striking feature of all-plus amplitudes found so far
for up to two loops is a reduction in computational com-
plexity. Their tree amplitudes vanish, while their one-
loop amplitudes can be obtained from techniques, which
resemble those used at tree-level. In the two-loop case,
many parts of these amplitudes have been shown to be

computable using only one-loop techniques.
A part of two-loop all-plus amplitudes for which such

a construction from one-loop techniques is presently not
known in general are their rational parts. These are the
parts of the amplitude that are free of polylogarithms
and poles in dimensional regularization. Based on a pre-
vious conjecture, I present in this thesis an approach for
the computation of the rational part of two-loop all-plus
amplitudes based solely on one-loop generalized unitar-
ity techniques. This approach is not limited to leading
color, but appears to extend to the full-color amplitude.
I show that this method reproduces all known results for
such rational parts, including the non-planar ones, for
up to seven gluons. It also matches the rational part of
the seven gluon subleading single-trace amplitude, whose
form is presently only known as part of an all-n conjec-
ture.

Furthermore, I show that the rational parts can be
determined not only from one-loop techniques, but also
from a nested one-loop generalized unitarity computa-
tion. Here, one of the loops appears as the rational part
of a one-loop amplitude. This mirrors a similar deriva-
tion found for the leading-color polylogarithmic parts of
the amplitude.

Finally, I present new relations between the two-loop
partial amplitudes of the all-plus, which involve powers
of Mandelstam invariants. As such they have a strik-
ing similarity to BCJ relations, which relate tree-level
amplitudes and loop-level integrands via powers of such
invariants.
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Synthèse en français

Avec les progrès continus des mesures expérimentales au Grand Collisionneur de Hadrons (LHC),
de nouvelles prédictions théoriques de haute précision sont nécessaires pour tester d’avantage la va-
lidité du modèle standard de la physique des particules (SM). Un ingrédient essentiel pour de telles
recherches est la prédiction des processus en Chromodynamique Quantique (QCD). Ces processus
constituent la majorité du bruit de fond compris dans les mesures du LHC. Une compréhension
précise de ces processus est donc vitale pour la recherche de la physique au-delà du SM.

Pour obtenir des prédictions théoriques de haute précision, des corrections à lordre sub-sub-
dominant sont nécessaires, ce qui requiert généralement des amplitudes de diffusion à deux boucles.
Comme le calcul de ces amplitudes pour les expériences est généralement une tâche complexe, il
est utile détudier des cas simplifiés, afin de développer des techniques de calcul et d’explorer la
structure analytique de ces amplitudes.

Dans cette thèse, je discute du calcul dune telle classe damplitudes plus simples, appelées
amplitudes tout-plus. Ce sont les amplitudes de YangMills les plus symétriques, car elles décrivent
linteraction de gluons qui ont tous la même hélicité. Les propriétés de la configuration tout-plus
conduisent à des formes particulièrement compactes, faisant des amplitudes tout-plus des objets
pratiques à étudier.

Une caractéristique frappante des amplitudes tout-plus est une complexité de calcul réduite,
qui ne correspond pas à celle des configurations dhélicité générales au même ordre de boucle.
Notamment, leurs amplitudes darbre disparaissent,

A(0)(1+ . . . n+) = 0 (1)

alors quà une boucle, elles ont une complexité comparable aux amplitudes d’arbres génériques.
Pour lamplitude partielle en couleur principale, la forme générale pour un nombre arbitraire de
gluons a été conjecturée dans la réf. [1]

A(1)(1+ . . . n+) = −1

3

∑
1≤i<j<k<l≤n ⟨i|jkl|i]

⟨12⟩ ⟨23⟩ . . . ⟨(n− 1)n⟩ ⟨n1⟩
+O(ϵ), (2)

puis prouvée dans la ref. [2] ette forme fait apparaître deux caractéristiques des amplitudes tout-
plus à une boucle : dune part, elles ne contiennent aucun terme proportionnel aux puissances de
1
ϵ dans la régularisation dimensionnelle. Elles ne sont donc ni UV ni IR divergentes. Dautre part,
elles ne contiennent pas non plus de contributions polylogarithmiques, et sont donc exemptes de
coupures de branches dans la cinématique externe.

Au niveau à deux boucles, les amplitudes tout-plus présentent également une complexité con-
sidérablement réduite. Les premiers signes de simplification peuvent être observés en étudiant leur

i



ii

structure singulière UV et IR. Une amplitude générique à deux boucles peut être décomposée de
la façon suivante [3],

A(2) = A(0)I(2) +A(1)I(1) + F (2) +O(ϵ). (3)

Ici, I(2) est une fonction avec des divergences d’ordre 1
ϵ4 , tandis que I(1) est d’ordre 1

ϵ2 . F (2) est
finie en régularisation dimensionnelle, et peut contenir des termes rationnels et polylogarithmiques.
Alors que les amplitudes à deux boucles ont généralement des termes divergents dordre 1

ϵ4 , la
disparition de A(0) et la finitude de A(1) dans le cas de la configuration tout-plus ne permettent
que des termes avec des divergences d’ordre 1

ϵ2 , comme on s’y attendrait habituellement dans une
amplitude à une boucle. Dans la réf. [4], une forme générique pour la partie divergente A(1)I(1)

de l’amplitude tout-plus est donnée pour un nombre arbitraire de gluons et toutes les amplitudes
partielles. Comme nous pouvons obtenir les parties divergentes de A(2) par ce comportement
universel, seule la partie finie F (2) doit être déterminée.

Nous pouvons diviser F (2) en ses composantes polylogarithmique et rationnelle, P (2) et R(2),
de sorte que

F (2) = P (2) +R(2). (4)

La partie polylogarithmique P (2) possède des coupures de branches et est donc accessible par un
calcul d’unitarité généralisé à quatre dimensions. Dans les références [4–10], il a été montré que les
parties divergentes et polylogarithmiques finies peuvent être obtenues à partir dun calcul dunitarité
généralisée à une boucle, dans lequel chaque coupe implique une amplitude tout-plus à une boucle,[

A(1)I(1) + P (2)
]
(1+ . . . n+)

=
∑

+
∑

+
∑

+
∑

.
(5)

Ainsi, ces parties de l’amplitude suivent le modèle du cas à une boucle, et ont une complexité de
calcul réduite.

Il ne nous reste donc que les parties rationnelles finies R(2). Par définition, celles-ci ne contien-
nent pas de coupures de branche dans la cinématique, et ne peuvent donc être obtenues qu’à partir
de l’unitarité D-dimensionnelle.

Les amplitudes de diffusion dépendent généralement de la valeur de la dimension espace-temps
Ds, qui correspond à la trace du tenseur métrique g µ

µ . Cette dimension contrôle le nombre d’états
d’hélicité pour un champ. Dans le cas de bosons de jauge sans masse, tels que les gluons, le nombre
d’états d’hélicité est donné par (Ds − 2), ce qui dans Ds = 4 correspond au cas habituel de gluons
à hélicité positive et négative. Il est important de noter que les amplitudes de boucle ont une
dépendance polynomiale par rapport à Ds, car chaque boucle peut au maximum générer une seule
trace g µ

µ .
Au niveau de la couleur dominante, les réfs. [11, 12] relient les contributions rationnelles polylog-

arithmiques finies des amplitudes tout-plus à deux boucles à leur représentation comme polynômes
en puissance de (Ds−2). Plus précisément, jusqu’à l’ordre ϵ0, les contributions polylogarithmiques
finies P (2)

n proviennent entièrement du coefficient de (Ds−2), tandis que les termes rationnels R(2)
n
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sont entièrement déterminés par le coefficient de (Ds − 2)2,

F
(2)
n:1(1

+ . . . n+) = (Ds − 2)P(2)(1+ . . . n+)︸ ︷︷ ︸
P

(2)
n

+(Ds − 2)2R(2)(1+ . . . n+)︸ ︷︷ ︸
R

(2)
n

+O(ϵ). (6)

Ainsi, pour obtenir la partie rationnelle R(2) des amplitudes complètes tout-plus à deux boucles,
il suffit de calculer la partie rationnelle de son coefficient (Ds − 2)2.

La méthode de reconstruction dimensionnelle permet de retrouver la dépendance explicite des
amplitudes de boucle sur la dimension Ds. En tant que polynômes dans Ds, il suffit d’évaluer ces
amplitudes à plusieurs valeurs différentes de Ds pour fixer tous les coefficients. Les amplitudes à
deux boucles sont des polynômes quadratiques, de sorte que nous avons besoin de trois évaluations
de ce type. Les choix commodes pour ces évaluations sont Ds = 6, 7, 8. Les amplitudes dans
Ds = 7, 8 peuvent alors être reliées, par réduction de Kaluza-Klein, à des combinaisons linéaires
d’amplitudes à six dimensions, dans lesquelles les boucles portent soit des gluons à six dimensions,
soit des scalaires à six dimensions,

A
(2)
Ds

= A
(2)
6 + (Ds − 6)A

(2)
6,1,0 + (Ds − 6)2A

(2)
6,2,0 + (Ds − 6)(Ds − 7)A

(2)
6,1,1. (7)

Ici, A(2)
6 est l’amplitude purement gluonique, à six dimensions. L’amplitude A(2)

6,1,0 possède une
boucle scalaire, tandis que A

(2)
6,2,0 et A(2)

6,1,1 portent des scalaires dans leurs deux boucles. La
différence entre ces deux dernières est la manière dont les deux boucles scalaires sont connectées:
dans A(2)

6,2,0, les scalaires des deux boucles échangent un gluon, tandis que dans A(2)
6,1,1, les lignes

scalaires sont directement couplées via un terme de contact à quatre scalaires.
Nous connectons ensuite la proposition de ref. [12] pour les contributions finies avec le schéma

de reconstruction dimensionnelle. En réarrangeant eq. (7) et en comparant avec eq. (6), nous
obtenons les relations suivantes pour les contributions polylogarithmiques et rationnelles finies,

P (2)(1+ . . . n+) = (Ds − 2)F
[
A

(2)
6,1,0 − 2× 4(A

(2)
6,2,0 +A

(2)
6,1,1)−A

(2)
6,1,1

]
(1+ . . . n+), (8)

R(2)(1+ . . . n+) = (Ds − 2)2F
[
A

(2)
6,2,0 +A

(2)
6,1,1

]
(1+ . . . n+), (9)

où F représente l’opération d’extraction de la partie finie, en laissant tomber les termes d’ordre ϵ.
L’avantage de cette représentation en termes de A(2)

6,2,0 et A(2)
6,1,1 réside dans les topologies des

intégrales qui peuvent contribuer à ces amplitudes. Plus précisément, les règles de Feynman pour
les scalaires sont telles que les deux impulsions de boucle ne peuvent jamais apparaître dans le
même propagateur. Toutes les intégrales de base qui peuvent apparaître dans un calcul dunitarité
généralisée de ces amplitudes se factorisent donc en un produit dintégrales à une boucle, et toute
coupure généralisée que nous devons calculer est de la forme suivante

. (10)

Les deux boucles se rejoignent dans une amplitude quadri-scalaire, qui ne relie les lignes scalaires
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que par un échange de gluons ou un terme de contact. Comme les intégrales se factorisent, nous
pouvons procéder au calcul des coefficients boucle par boucle, ne nécessitant à chaque fois que
des techniques dunitarité généralisée à une boucle. Alors que nous devrions généralement utiliser
des amplitudes de scalaires sans masse à six dimensions dans le calcul, je soutiens que dans ces
calculs il est suffisant dutiliser des amplitudes de scalaires massifs à quatre dimensions. Les parties
rationnelles à deux boucles de la couleur principale montrent donc la même réduction de complexité
que celle déjà observée dans les parties divergentes et polylogarithmiques.

Alors que cette construction au carré à une boucle à la couleur principale a été présentée sous une
forme similaire dans les réfs. [11, 12], jusquà présent on ne savait pas si les parties rationnelles des
amplitudes partielles sub-dominantes en couleur présentaient une structure similaire. Dans cette
thèse, je présente une construction à une boucle au carré qui étend naturellement la construction
à une boucle au carré à toutes les amplitudes partielles non planes. Je montre comment générer
toutes les coupes au carré à une boucle appartenant aux différentes structures de traces dans la
décomposition en couleur à deux boucles. Dans cette procédure, jutilise lorigine des traces de
couleur dans la théorie des cordes comme guide. Dans les amplitudes de cordes ouvertes, les
surfaces de genre 2 suivantes peuvent apparaître,

(11)

Lorsquon habille les cordes avec des facteurs de Chan-Paton, chaque frontière de ces surfaces
contribue finalement à une seule trace de couleur. Pour la topologie de gauche, on obtient donc
trois traces, les traces vides se transformant en facteurs deNc. La topologie de droite ne produit
quune seule trace. En adhérant à ces topolgies, nous obtenons les types suivants de coupes au
carré à une boucle

(12)

Les coupes du type illustré à gauche appartiennent aux amplitudes partielles A(2)
n:1, A(2)

n:i et A(2)
n:i,r ;

celles appartenant au type illustré à droite conduisent à des amplitudes partielles sub-dominantes
à trace unique A(2)

n:1B. Par des évaluations explicite, je montre quen additionnant toutes les coupes
uniques de ces types, nous récupérons les parties rationnelles de toutes les amplitudes partielles
à quatre, cinq et six gluons, pour lesquelles des expressions analytiques sont disponibles dans la
littérature [4–10, 13–17]. De plus, cette approche est en accord numérique avec l’expression de la
couleur principale des sept gluons de la réf. [8], ainsi qu’avec le résultat conjecturé pour la partie
rationnelle de l’amplitude sub-dominante de la trace unique des sept gluons A(2)

7:1B [18].
Alors que la construction à une boucle au carré montre que le calcul des parties rationnelles à
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deux boucles des amplitudes tout-plus est dun niveau à une boucle, les parties polylogarithmiques
permettent une construction à une boucle encore plus explicite, comme on peut le voir dans l’eq. (5).
Dans cette thèse, je montre quune construction similaire existe également pour les termes rationnels.
Plus précisément, ils peuvent aussi être obtenus à partir dun calcul dunitarité généralisée à une
boucle imbriquée, où lune des boucles apparaît comme la partie rationnelle dune autre amplitude
à une boucle,

R(2)(1+ . . . n+) = + + .

Je justifie une telle construction en linterprétant comme une réorganisation de lapproche de la
coupe carrée à une boucle : Étant donné une coupe spécifique dune des boucles, nous pouvons
rassembler toutes les coupes appartenant à la deuxième boucle,

+ + + . . . −→ .

Les sommets à une boucle qui apparaissant dans ces coupes sont les parties rationnelles dun type
particulier damplitude quadridimensionnelle à une boucle qui ont deux scalaires massifs externes et
un nombre de gluons dhélicité positive. Dans cette thèse, je présente une méthode pour calculer ces
parties rationnelles à une boucle directement à partir de la récursion complexe. Lun des principaux
défis du calcul récursif des amplitudes à une boucle est lapparition de pôles uniques qui ne sont pas
associés à la factorisation de lamplitude. Une approche permettant dobtenir ces termes de pôles
supplémentaires est la procédure de récursion augmentée de la réf. [19], qui les détermine à partir de
courants off-shell particuliers. Cette méthode a été appliquée avec succès dans un certain nombre
de calculs à une boucle [20–22], et a été utilisée pour déterminer les contributions rationnelles
des amplitudes tout-plus à deux boucles dans les refs. [4–10]. Dans cette thèse, je présente une
approche hybride alternative, qui combine lunitarité généralisée et la récursion complexe. En
particulier, je montre que les termes de pôle manquants peuvent être obtenus à partir de seulement
deux coupes dunitarité. En conséquence, cette approche ne repose que sur des quantités on-
shell. En utilisant cette approche hybride, je détermine des formes analytiques compactes pour
les sommets à une boucle dans le cas de deux et trois gluons externes à hélicités positives. Je
vérifie ensuite numériquement pour les parties rationnelles tout-plus à deux boucles R(2)

4:1, R(2)
4:3,

R
(2)
4:11B et R(2)

5:1 quen additionnant toutes les coupures à une boucle appropriées impliquant ces
sommets, nous obtenons effectivement un accord avec les résultats de la littérature. Enfin, dans le
dernier chapitre, je présente brièvement de nouvelles relations entre les amplitudes partielles à deux
boucles de configuration tout-plus, qui font apparaître des puissances dinvariants de Mandelstam.
En tant que telles, elles présentent une similitude frappante avec les relations BCJ, qui relient les
amplitudes au niveau de larbre et les intégrandes au niveau de la boucle via les puissances de ces
mêmes invariants.
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Introduction

The Large Hadron Collider (LHC) is currently our most promising window to exploring the funda-
mental structures of our universe. The Standard Model of particle physics (SM) has so far been
able to accurately describe all observations in collider experiments. It is incomplete, making it
presumably only the effective theory of a more comprehensive underlying theory. So far no signif-
icant deviations from the SM have been detected directly in the energy regime accessible to the
LHC. Attempts of detecting physics beyond the Standard Model (BSM) will thus have to rely on
high-precision measurements, looking for small discrepancies from SM predictions.

In order to subtract the backgrounds of known SM processes from the experimental data we
require high-precision theory predictions in the form of higher-order corrections. The LHC is a
proton–proton collider, making quantum chromodynamics (QCD) the main source of such back-
grounds. For these, leading-order (LO) computations provide mostly qualitative results, with
predictions of approximately the correct order of magnitude. At next-to-leading order (NLO),
predictions become quantitatively more reliable, with uncertainties of the order of 15%. For pre-
cision measurements we require next-to-next-to-leading order (NNLO) corrections, which promise
uncertainties of just a few percent. While NLO predictions are well understood and are used exten-
sively for collider phenomenology today, NNLO predictions are still the subject of current research.
NNLO predictions for experiments like the LHC rely on two-loop scattering amplitudes in QCD,
whose computation presents a formidable challenge.

The study of scattering amplitudes has provided many insights into the structures present in
the interactions of fundamental particles. Particularly the on-shell techniques developed over the
last 20 years, have proven to be powerful tools to rein in the complexities of computing higher-order
virtual corrections.

In the traditional approach, scattering amplitudes are computed from the sum of Feynman
diagrams contributing to a process. A significant downside in applying this method to gauge
theories is the inclusion of gauge redundancies. While every diagram is dependent on the choice
of gauge, the sum of all diagrams is not. This can lead to complicated intermediate results, and
many non-trivial cancellations need to occur to recover the final result, which tends to be much
simpler. In the on-shell approach, Feynman diagrams are avoided all together. Instead, on-shell
tree-amplitudes are taken as the fundamental objects from which more complicated amplitudes are
constructed [23, 24]. As scattering amplitudes need to satisfy locality and unitarity, they have to
factorize again into amplitudes when internal propagators go on-shell. By harnessing this feature,
complicated amplitudes can be built up from simpler ones without introducing gauge redundancies,
providing a shortcut to the compact gauge-invariant result.

1
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An important technique in the on-shell approach for loop-amplitudes is generalized unitar-
ity [24–26]. Amplitudes are multivalued functions in the kinematics, which develop singularities
and branch cuts for internal propagators going on-shell. Instead of computing an amplitude di-
rectly, in generalized unitarity an amplitude is expressed in terms of a basis of Feynman integrals,
called Master Integrals. To determine the basis coefficients, generalized cuts are used to project the
amplitude onto the basis, according to their discontinuities. These generalized cuts—an extension
of physical unitarity cuts introduced by Cutkosky [27]—determine the discontinuities associated to
an arbitrary number of propagators going on-shell by computing the associated residues. Comput-
ing the residues “freezes” parts of the loop-momentum, and the basis integral coefficients can be
entirely determined from on-shell tree-amplitudes. By computing cuts of a dimensionally regulated
amplitude with D-dimensional loop-momentum, it is possible to construct the entire amplitude in
this manner, including contributions that do not contain branch cuts in four dimensions. The
generalized unitarity technology at one loop has been made accessible to collider phenomenol-
ogy through various automated software packages, such as BlackHat [28, 29], CutTools [30, 31],
ROCKET [32], HELAC1L [33], OpenLoops [34, 35] or NJet [36]. At the two-loop level, it has been
used to obtain amplitudes relevant for virtual NNLO QCD corrections [16, 17, 37–40]. On-shell
techniques have therefore become an essential tool for many collider predictions.

Due to the complexity of computing virtual corrections for experiments, it is often fruitful to
first consider simplified cases, which allow the development of new techniques and the discovery of
structures in amplitudes. The gained insights can then be used to further push the boundary of
theoretical predictions for particle phenomenology.

The archetype of non-abelian gauge-theories are Yang–Mills theories, which describe the inter-
action of gauge-bosons in the adjoint representation of a non-abelian gauge-group, typically SU(Nc)

or U(Nc). QCD is an example of a Yang–Mills theory with Nc = 3, coupled to fermions transform-
ing in the fundamental representation. Careful study of amplitudes in pure Yang–Mills theory, i.e.
without fermions, can therefore lead to an improved understanding of the strong interaction.

While pure Yang–Mills amplitudes already represent a simplification compared to those of QCD,
for generic helicity configurations they are still challenging to compute. It is therefore useful to
consider simple cases, which can act as laboratories for the development of new techniques. A
common example is that of amplitudes in N = 4 super-Yang–Mills theory (SYM), which is the
supersymmetric extension of Yang–Mills with the maximal number of supersymmetries allowed in
four dimensions for particles of spin 1. While these show a rich structure due their many symmetries,
their supersymmetric nature sets them apart from QCD amplitudes, required for collider physics.

Without resorting to supersymmetry, the next easiest class of gauge-theory amplitudes to con-
sider are Yang–Mills amplitudes, where all gluons have the same helicity. Typically the helicity is
chosen to be positive, and these amplitudes are often referred to as all-plus amplitudes. They are
the most symmetric class of Yang–Mills amplitudes, and as a consequence show a great amount of
simplicity, making them a good laboratory as well. Furthermore, as they are proper Yang–Mills am-
plitudes, and insights for all-plus amplitudes are more likely to be applicable to phenomenologically
relevant cases.

As a consequence of the properties of the all-plus configuration, their computational complex-
ity tends to be of lower-loop level. They vanish at tree level, and are entirely rational at one
loop. Generically two-loop amplitudes in dimensional regularization can be split into a divergent,
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a polylogarithmic finite and a rational finite piece. For two-loop all-plus amplitudes, Dunbar,
Perkins and Jehu showed [5–7] that one-loop techniques are sufficient to compute the divergent
and polylogarithmic finite parts. This eventually led to the determination of an analytic form for
these contributions at leading color, valid for an arbitrary number of gluons [7]. Thus, at least at
leading color, a complete understanding of these amplitudes requires only a general form of the
finite rational parts. Through extensive efforts over the last two decades, the full-color rational
parts are today known analytically for up to six gluons: the four-gluon results were first derived by
Bern, Dixon and Kosower [13], with the planar five-gluon amplitude following in ref. [16] through
the work of Gehrmann, Henn and Presti. The full-color five-gluon results were first presented by
Badger, Chicherin, Heinrich, Henn, Peraro, Wasser, Zhang and Zoia in ref. [17], and later rederived
by Dunbar, Perkins, Godwin, Strong in ref. [4] using complex recursion. Using the same technique,
Dalgleish, Dunbar, Perkins, Godwin and Strong were able to obtain the first result for the full-color
six-gluon amplitude in ref. [10]. For seven gluons, only an expression for the leading color contri-
bution is known [8], due to Dunbar, Godwin, Jehu and Perkins. Pairing the explicit results for five
and six gluons with a simplified collinear behavior, Dunbar, Perkins and Strong were additionally
able to formulate an all-n conjecture for the rational part of the subleading single-trace partial
amplitude in ref. [18].

Extending a previous conjecture of Badger, Mogull and Peraro [11, 12], I developed and im-
plemented a unitarity approach for the computation of rational terms applicable to all two-loop
all-plus partial amplitudes. In refs. [11, 12] it was first demonstrated that only one-loop squared
integrals contribute to the leading color two-loop all-plus rational terms. In these two-loop inte-
grals, no propagator carries the loop momentum of both loops. They therefore factorize into a
product of one-loop integrals, allowing the integral coefficient to be evaluated loop by loop. This
reduces the effective complexity of computing the two-loop rational parts to one loop. I will show
in this thesis that this approach is not only valid for leading color amplitudes, but also allows the
computation of subleading rational parts via one-loop unitarity. As rational contributions cannot
be computed from unitary cuts in four dimensions, we must work in higher dimensions, in this
case six. However, as we will apply one-loop D-dimensional unitarity techniques, it will suffice to
work with massive four-dimensional amplitudes, with the mass encoding the (D − 4)-dimensional
part of the loop momentum. Due to the substantial number of unitarity cuts involved in extending
the computations to high multiplicity, I created automated tools that allow both pure numerical
evaluation, as well as obtaining analytical results. Using my approach I am able to reproduce all
existing results at leading and subleading color.

Following the one-loop squared construction, I will show that the rational terms of two-loop
all-plus amplitudes can also be obtained from a nested one-loop computation, with one of the
loops appearing as part of a one-loop amplitude. This mirrors the approach for determining the
divergent and polylogarithmic finite parts of ref. [7].

Finally, I will briefly present new relations between the five-gluon all-plus partial amplitudes.
While some of these are linear relations, others include powers of Mandelstam invariants. They
are therefore similar in structure to BCJ relations, which usually only hold for integrands of loop
amplitudes.

To summarize, the primary results presented in this thesis are

• A construction of two-loop all-plus partial amplitudes (including non-planar ones) using only



4 CONTENTS

one-loop unitarity techniques

• An effective one-loop unitarity construction of such partial amplitudes using a one-loop vertex

• New relations between five-gluon two-loop all-plus partial amplitudes, which involve powers
of Mandelstam invariants, with a BCJ-like structure.

Interesting secondary results include

• A momentum twistor parameterization for an arbitrary number of massless particles

• Analytic results for tree amplitudes involving two massive scalar lines

• Analytic results for rational terms of one-loop amplitudes involving a massive scalar line

• A generalized unitarity approach for the computation of subleading single poles in BCFW
computations of one-loop amplitudes.



Chapter 1

Amplitudes Basics

In this chapter we will discuss the basic concepts in the study of scattering amplitudes that will
be required for later discussions. We will first provide a brief review of Yang–Mills theory, sum-
marizing information that can be found in most textbooks on quantum field theory. After a short
introduction to the spinor-helicity formalism useful for expressing amplitudes compactly, we discuss
tree-level amplitudes and some basic methods used to compute them using the on-shell approach.
Afterwards, we briefly cover some preliminaries for loop amplitudes, leaving the discussion of their
on-shell construction for the following chapter.

1.1 Yang–Mills Theory

The part of the Standard Model of particle physics that describes the interactions of quarks and
gluons is called Quantum Chromodynamics, or QCD for short. It is an example of a Yang–Mills
(YM) theory, which describes massless spin-1 particles with a gauge-symmetry described by a
generally non-Abelian Lie group. Chen Ning Yang and Robert Mills were the first to study these
types of theories [41], and since then they have played a crucial role in describing the interactions
of fundamental particles. Quantum Electrodynamics is derived from an abelian U(1) gauge-theory,
and weak interactions are described by a non-abelian SU(2) Yang–Mills theory. However, the
physical vacuum does not respect the full symmetry U(1)×SU(2), leading to electroweak symmetry
breaking. QCD is therefore the only realization of a Yang–Mills theory in the Standard Model
with an unbroken gauge-group, namely SU(3). The degree of the gauge group corresponds to the
number of colors in QCD, and is therefore typically denoted by Nc.

While we might only be interested in theories with Nc = 3 for particle phenomenological
purposes, Yang–Mills theories are the archetype of many Quantum Field Theories, and therefore
merit more fundamental investigations. Thus, we usually leave Nc unspecified, and study Yang–
Mills theories with a general gauge group SU(Nc). This is further justified by the fact that it is
possible to separate the kinematic dependence of scattering amplitudes from their color structure.
I will discuss this point in a following section.

As the underlying Lie group is essential to any gauge theory, we first spend a few moments
reviewing some basic properties of Lie groups. We will be considering gauge theories, whose

5
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fields transform in the adjoint representation of the non-Abelian Lie groups SU(Nc) and U(Nc),
generated by the Lie algebras su(Nc) and u(Nc). These algebras are spanned by generators T a,
where a ∈ (1, . . . N2

c − 1) for su(Nc) and a ∈ (1, . . . N2
c ) for u(Nc). Represented as matrices, the

T a are hermitian matrices in CNc×Nc , which in the case of su(Nc) have to be traceless. We will
use bases of generators that are normalized to

Tr(T aT b) = δab. (1.1)

The generators are related to structure constants fabc via

[T a, T b] = i
√
2fabcT c, (1.2)

or conversely
i
√
2fabc = i

√
2fabdtr(T dT c) = tr([T a, T b]T c)

= tr(T aT bT c)− tr(T bT aT c).
(1.3)

In the case of U(Nc) gauge groups we make use of the decomposition U(Nc) = SU(Nc) × U(1),
which allows us to extend the generators of SU(Nc) to those of U(Nc) by adding

TU(1) =
1√
Nc

INc , (1.4)

The normalization is consistent with that of eq. (1.1).

An explicit example of a generator basis as described above are the Gell-Mann matrices, which
normalized according to eq. (1.1) take the form

T 1 =
1√
2

0 1 0

1 0 0

0 0 0

 T 2 =
1√
2

0 −i 0

i 0 0

0 0 0

 T 3 =
1√
2

1 0 0

0 −1 0

0 0 0



T 4 =
1√
2

0 0 1

0 0 0

1 0 0

 T 5 =
1√
2

0 0 −i
0 0 0

i 0 0

 T 6 =
1√
2

0 0 0

0 0 1

0 1 0



T 7 =
1√
2

0 0 0

0 0 −i
0 i 0

 T 8 =
1√
6

1 0 0

0 1 0

0 0 −2

 .

These form a basis of su(3).

An important property of SU(Nc) and U(Nc) generators are the Fierz identities,

∑
a

(T a)ji (T
a)lk =

δliδ
j
k, U(Nc),

δliδ
j
k − 1

Nc
δji δ

l
k, SU(Nc).

(1.5)

In practice we typically omit the explicit sum over repeated color indices. As we will be mainly
concerned with traces of generators

Tr(T a1 . . . T an) (1.6)
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we translate the Fierz identities into relations of such traces. For U(Nc) they correspond to
concatenation and splitting of traces,

Tr(AT aB)Tr(C T aD) = Tr(ADCB),

Tr(AB T aCDT a) = Tr(AB)Tr(CD),
(1.7)

while for SU(Nc) we have to add a term proportional to 1
Nc

,

Tr(AT aB)Tr(C T aD) = Tr(ADCB)− 1

Nc
Tr(AB)Tr(CD)

Tr(AB T aCDT a) = Tr(AB)Tr(CD)− 1

Nc
Tr(ABCD).

(1.8)

The Lagrangian of Yang–Mills theory is,

LQCD = −1

4
F a
µνF

aµν (1.9)

The gauge bosons transform in the (N2
c −1)-dimensional adjoint representation of su(Nc), labelled

by a = 1, . . . , (N2
c − 1). As the strong force of the Standard Model is described by an SU(3) gauge

theory, these gauge bosons are typically referred to as gluons, even when considering general gauge
groups SU(Nc). The field-strength tensor appearing in the Lagrangian is given by,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (1.10)

The last term, proportional fabc, is the defining aspect of non-abelian gauge theories, as it generates
three- and four-gluon self-interactions.

While pure Yang–Mills is already a formidable topic of study, we can also choose to couple it
to matter fields. For example, in the case of QCD we add quarks through the Lagrangian,

Lf = qi(i /Dij −mij)qj . (1.11)

The qi are fermionic fields , which transform in the fundamental Nc representations of SU(Nc) in
the indices i, j = 1, . . . , Nc. To ensure gauge invariance we use the covariant derivative Dµ,

Dµqi = (∂µ − igAa
µT

a)qi, (1.12)

to couple the fermions to the gluons. More details are readily found in any modern QFT textbook,
see for example refs. [42–45].
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Choosing Feynman gauge, the pure Yang–Mills Feynman rules are therefore [42],

= gfabc
[
gµ1µ2(p1 − p2)

µ3 + gµ2µ3(p2 − p3)
µ1 + gµ3µ1(p3 − p1)

µ2

]

= −ig2
[
fabef cde(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3) + facef bde(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+ fadef bce(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
]

=
−igµνδab

p2 + i0
(1.13)

As we are working in a non-abelian gauge theory we would in principle also need to include Faddeev-
Popov ghosts [46]. However, these are only required in Feynman diagrammatic computations
of loop amplitudes. As we will soon review, there are methods better suited to compute such
amplitudes.

1.2 Spinor Helicity Formalism

Before we dive into the topic of scattering amplitudes, we will first review the spinor-helicity
formalism. Spinors are a convenient language to express amplitudes, as they allow us to encode
both the helicity information and kinematics of external particles. They are thus a natural choice
of variables to express on-shell quantities. Reviews of the formalism can be found in refs. [47, 48].
Here, we loosely follow the discussion of ref. [47], though with a different metric.

In this thesis we will always use the “mostly-minus”, or Bjorken–Drell metric

ηµν = diag(+1,−1, . . . ,−1). (1.14)

Let us begin with a massless momentum pµ, for which we would like to find an associated spino-
rial representation. As a reminder, Weyl spinors transform in the ( 12 , 0) and

(
0, 12

)
representations

of the Lorentz group. As a Lorentz vector, p transforms in the ( 12 ,
1
2 ) representation, and we might

therefore expect to find two spinors associated p, one for either representation.

To construct such spinors we use the Pauli matrices supplemented with the identity σi,

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.15)

Further defining,
(σ0, σi) = (σ0,−σi), (1.16)

we can define,
paḃ = pµ(σµ)aḃ,

pȧb = pµ(σµ)
ȧb.

(1.17)
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The spinors we are after have to satisfy the Weyl equation

paḃ |p]
ḃ
= 0, ⟨p|a paḃ = 0, (1.18)

pȧb |p⟩b = 0, [p|ȧ p
ȧb = 0. (1.19)

Here ⟨p|a, [p|ȧ are Weyl spinors associated to p that transform in the ( 12 , 0) and (0, 12 ) represen-
tations of the Lorentz group. We sometimes refer to spinors in the different representations as
“angle” and “bracket” spinors, respectively. By convention, we will always use undotted indices
a = 1, 2 for the ( 12 , 0) representation, and dotted indices ȧ = 1̇, 2̇ for the (0, 12 ) representation. As
objects transforming in representations of SU(2), we can raise and lower the spinor indices using
the antisymmetric tensors ϵab and ϵȧḃ,

|p⟩a = ϵab ⟨p|b , |p]ȧ = ϵȧḃ [p|ḃ . (1.20)

We use the sign convention,
ϵ12 = −ϵ12 = +1. (1.21)

We can further build SU(2) invariant spinor products,

⟨pk⟩ = ⟨p|a ⟨k|b ϵab = ⟨p|a |k⟩a [pk] = [p|ȧ [k|ḃ ϵ
ȧḃ = [p|ȧ |k]

ȧ
, (1.22)

which are naturally antisymmetric,

⟨pk⟩ = −⟨kp⟩ , [pk] = − [kp] . (1.23)

In amplitude calculations we deal with a set of numbered momenta {p1, . . . , pn} associated to the
external particles. To reduce clutter in computations, the spinors of these momenta are usually
labelled by their indices,

⟨12⟩ ≡ ⟨p1p2⟩ , [12] ≡ [p1p2] . (1.24)

From the Weyl equation we see that both paḃ and pȧb have a complex one-dimensional nullspace.
As they are matrices in C2×2, we can therefore express them as the outer product of two complex,
two-dimensional vectors. These vectors are the spinors associated to the momentum,

paḃ = |p⟩a [p|ḃ
pȧb = |p]ȧ ⟨p|b .

(1.25)

This representation trivializes the Weyl equations of eq. (1.18). We can also express momentum
conservation in spinorial form as follows,

∑
i

pµi = 0 ⇒

{ ∑
i p

aȧ
i =

∑
i |i⟩

a
[i|ȧ = 0∑

i pi,ȧa =
∑

i |i]ȧ ⟨i|a = 0
(1.26)
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The Weyl spinors can be associated to components of Dirac bispinors of specific helicities [47],

u−(p)

v+(p)

}
→

(
0

|p]ȧ

)
,

u+(p)

v−(p)

}
→

(
|p⟩a
0

)
(1.27)

u−(p)

v+(p)

}
→
(
⟨p|a , 0

)
,

u+(p)

v−(p)

}
→
(
0, [p|a

)
. (1.28)

u±/u± are in- and outgoing fermions, and v±/v± are in- and outgoing anti-fermions. As momenta
are always defined to be outgoing, a fermion with helicity ± 1

2 is associated to u±, or, in the spinor
language, to bracket and angle spinors respectively.

The Pauli matrices σµ and σµ fulfill the identity

tr(σµσν) = (σµ)aȧ(σ
ν)ȧa = 2ηµν , (1.29)

as well as
(σµ)aȧ(σµ)bḃ = 2ϵȧḃϵab

(σµ)ȧa(σµ)
ḃb = 2ϵȧḃϵab.

(1.30)

With the identities

⟨a|σµ|b] (σµ)
ȧa = 2 |b]ȧ ⟨a|a , [a|σµ|b⟩ (σµ)aȧ = 2 |b⟩a [a|ȧ , (1.31)

we can show that the four-momentum pµ is recovered from its spinors via,

pµ = 1
2 [p|σ

µ|p⟩ . (1.32)

These identities also give us the Fierz identity,

⟨a|γµ|b] ⟨c|γµ|d] = 2 ⟨ab⟩ [dc] . (1.33)

Using eq. (1.32) and the Fierz identity we can derive a relation between products of four-
momenta and the products of their spinors,

2pi · pj = 1
2 ⟨i|σ

µ|i] ⟨j|σµ|j] = ⟨ij⟩ [ji] . (1.34)

As vectors in a two-dimensional complex vector space, any set of three spinors must be linearly
dependent over C. In other words, given |i⟩, |j⟩ and |k⟩, there exist aj , ak ∈ C, such that

|i⟩ = aj |j⟩+ ak |k⟩ . (1.35)

The constants can be obtained from projecting |i⟩ on |j⟩ and |k⟩,

|i⟩ = ⟨ki⟩
⟨kj⟩

|j⟩+ ⟨ji⟩
⟨jk⟩

|k⟩ , (1.36)

or equivalently
⟨jk⟩ |i⟩+ ⟨ki⟩ |j⟩+ ⟨ij⟩ |k⟩ = 0, (1.37)
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This is the Schouten identity. A more general form of the this identity for strings of spinors takes
the form

[a| . . . b|c⟩ ⟨d|e . . . |f ] = [a| . . . b|d⟩ ⟨c|e . . . |f ]− ⟨cd⟩ [a| . . . be . . . |f ] . (1.38)

When defining the spinors as in eq. (1.25) we have a remaining freedom to rescale both angle
and bracket spinors simultaneously. The sets of spinors(

⟨p|
[p|

)
,

(
a ⟨p|
1
a [p|

)
(1.39)

both belong to the same momentum p, which can be verified via eq. (1.32). Spinors are there-
fore not uniquely defined. The source of this ambiguity are transformations of the little group.
This subgroup of the Lorentz-group is defined by all transformations that leave the momentum p

invariant. By moving to a frame

p′µ = Λµ
νp

ν = E
2 (1, 0, 0, 1), (1.40)

we identify the little group transformations as those that in the new frame rotate components (p′)1

and (p′)2. The little group for a massless particle is therefore U(1). The scale invariance in the
definition of spinors ⟨p|, [p| is the manifestation of this invariance.

Note that for real momenta, ⟨p| and [p| are linked by complex conjugation; the transformations
are therefore limited to be purely phases, i.e. a = eiϕ. If the momenta are complex, the spinors
are independent of each other, and we have a ∈ C.

Finally we note that the polarization vectors of gauge bosons can also be expressed in terms of
spinors [49],

εµ+(p; q) = − 1√
2

[p|γµ|q⟩
⟨pq⟩

, εµ−(p; q) =
1√
2

⟨p|γµ|q]
[pq]

, (1.41)

where we have to introduce an arbitrary massless reference momentum q. These definitions satisfy
the usual conditions of polarization vectors for circular polarizations, namely1

ε(p) · p = 0, ε+ · ε− = −1. (1.42)

1.2.1 Amplitudes and Spinors

In the discussion of the spinor-helicity formalism we saw that spinors are only defined up to
a rescaling, as the associated momentum is invariant under opposite scaling of both angle and
bracket spinors. Such scaling has direct ramifications for scattering amplitudes. While kinematic
factors such as Mandelstam invariants sij are constant under such scaling, the polarization vectors
or spinors of external gluons or fermions are not. Let us rescale the spinors of momentum p as
previously shown, (

⟨p|
[p|

)
−→

(
a ⟨p|
1
a [p|

)
. (1.43)

1While the relative sign of ε+ and ε− is fixed by the condition that ε+ · ε− = −1, the absolute sign is a Feynman
rule convention. We could equivalently choose the opposite signs in eq. (1.41), as long as we also flip the sign of the
three-gluon Feynman vertex.
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Positive-helicity fermions are associated to bracket spinors, while negative helicity ones are associ-
ated to angle spinors. Fermionic amplitudes will therefore scale as

A(. . . p
+ 1

2

f . . .) = [p|ḃ M
ḃ(. . . pf . . .) →

1

a
A(. . . p

+ 1
2

f . . .),

A(. . . p−
1
2 . . .) = ⟨p|b Mb(. . . pf . . .) → aA(. . . p

− 1
2

f . . .).

(1.44)

Similarly, by expressing gluon polarization vectors in terms of spinors, we find that gluon ampli-
tudes scale as follows,

A(. . . p±g . . .) = ε±µ (p)Mµ(. . . pg . . .) →

{
1
a2A(. . . p

+
g . . .),

a2A(. . . p−g . . .).
(1.45)

This scaling behavior generalizes to particles with arbitrary helicity h [47],

A(. . . ph . . .) → a−2hA(. . . ph . . .). (1.46)

This scaling property provides constraints on the final form of the amplitude. For one, it is
a useful cross-check during the computation of amplitudes. Furthermore, in the case of tree-level
amplitudes of three gluons,

A(0)(1h12h23h3), (1.47)

requiring the correct scaling behavior under little group transformations is sufficient to fix the form
of the amplitude entirely. Normally, such amplitudes of three massless particles are forbidden by
on-shell kinematics. However, this is only true for real kinematics. For complex momenta these
amplitudes are well defined. As we will see shortly, they are a useful building block to recursively
construct more complicated amplitudes.

Let us see how the form of these three-particle amplitudes in the case of gluons can be derived
using only scaling arguments. We follow here the procedure of refs. [47, 50, 51]. Ref. [51] also
provides a more general discussion of bootstrapping scattering amplitudes based on physical con-
straints. First we realize that for non-zero momenta, all spinors ⟨i| and [i| need to be non-zero.
Using momentum conservation we further see that all angle and bracket spinor products need to
be proportional to one another, as for example

⟨12⟩ = ⟨12⟩ [2q]
[2q]

= −⟨13⟩ [3q]
[1q]

,

[12] = [12]
⟨2q⟩
⟨2q⟩

= − [13]
⟨3q⟩
⟨1q⟩

.

(1.48)

Similar relations hold for ⟨13⟩, [13], ⟨23⟩ and [23]. Here we use the spinors ⟨q| and [q| of some
arbitrary massless reference momentum q, which we explicitly choose to be neither p1, p2 or p3.
Momentum conservation further requires that

(p1 + p2)
2 = p23 = 0 ⇒ ⟨12⟩ [21] = 0

(p1 + p3)
2 = p22 = 0 ⇒ ⟨13⟩ [31] = 0

(p2 + p3)
2 = p21 = 0 ⇒ ⟨23⟩ [32] = 0

(1.49)

As the spinors are assumed to be non-zero and the spinor products are proportional to one another,
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all three relations can only be fulfilled if either all angle or all bracket spinor products vanish. A
non-trivial amplitude that only depends on three massless momenta therefore can only contain
either angle or bracket spinor products. As angle and bracket spinors are each other’s complex
conjugate for real momenta, a gluonic three-point amplitude therefore can only be non-zero for
complex momenta. In this case angle and bracket spinors are independent.

Using this knowledge, let us write down an Ansatz for the spinor structure of the three-gluon
tree amplitude with two negative helicities and one positive helicity. We make the assumption that
all bracket spinors vanish, such that the most general form for this amplitude is,

A(0)(1−2−3+) ∝ ⟨12⟩x1 ⟨13⟩x2 ⟨23⟩x3 , (1.50)

where the proportionality factor does not depend on the kinematics. We can now use the little-
group scaling of this amplitude to solve for the exponents x1, x2 and x3. Under scaling of ⟨1|, we
require that,

a2A(0)(1−2−3+) = ax1+x2A(0)(1−2−3+) (1.51)

such that,
x1 + x2 = −2. (1.52)

Scaling ⟨2| and ⟨3| in the same manner leads us to the system of equations

x1 + x2 = 2,

x1 + x3 = 2,

x2 + x3 = −2,

(1.53)

which has the solution

x1 = 3, x2 = −1, x3 = −1. (1.54)

The expected form of this amplitude is therefore

A(1−2−3+) ∝ ⟨12⟩3

⟨23⟩ ⟨13⟩
, (1.55)

which agrees with the form of the Parke–Taylor amplitude shown in eq. (1.60) below. By assuming
all angle spinor products to vanish, we similarly determine,

A(1+2+3−) ∝ [12]
3

[23] [13]
, (1.56)

A diagrammatic computation agrees with these kinematic structures, and allows us to determine
the prefactors. We find from color ordered Feynman rules,

A(0)(1−2−3+) =
⟨12⟩3

⟨23⟩ ⟨31⟩
,

A(0)(1+2+3−) = − [12]
3

[23] [31]
,

(1.57)

Note that these are so-called color-ordered amplitudes, which have been stripped of any color
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structures and couplings. We will discuss such amplitudes in the next section. Aside from the
three-gluon case, tree amplitudes vanish unless at least two helicities differ from the rest, such that

A(0)(1±2+ . . . n+) = A(0)(1∓2− . . . n−) = 0. (1.58)

In appendix A.1 we review an argument for this vanishing based on making suitable choices for
gluon reference momenta.

The first non-vanishing helicity configuration A(1−2−3+ . . . n+) is called the MHV, or max-
imally helicity violating, amplitude [52, 53]. An additional negative helicity yields the NMHV,
or next-to-maximally helicity violating, amplitude. This principle generalizes to NkMHV ampli-
tudes. If all helicities are flipped, they are often called the anti-MHV/NkMHV, or MHV/NkMHV
amplitudes.

Note, that the vanishing of the amplitudes in eq. (1.58) holds only at tree level in non-
supersymmetric theories. In fact, Yang–Mills all-plus amplitudes at loop level have an interesting
structure, and are the main focus of this thesis.

1.3 Tree-Amplitudes

Tree amplitudes are the natural starting point in the discussion of scattering amplitudes and the use
of on-shell methods in their computation. Even in the absence of loops there exist rich structures
to be explored. In addition, tree amplitudes ultimately form the basis from which we will construct
loop amplitudes.

We define tree amplitudes as

A(0) = (−i)× sum of tree-level Feynman diagrams. (1.59)

The included normalization of (−i) ensures that the amplitude expression will be free of factors of
i. A common observation in the Feynman diagrammatic computation of gauge-theory amplitudes
is the appearance of large intermediate expressions. At the same time, the final result is usually
expressible in a considerably more compact form. A famous example is the Parke–Taylor amplitude,
describing the interaction of two gluons of negative helicity with the rest having positive helicity.
The general form of this amplitude was first presented in ref. [52], and later proven in ref. [54].
Expressed in terms of spinors products,

A(0)(1+2+ . . . i− . . . j− . . . (n− 1)+n+) =
⟨ij⟩4

⟨12⟩ ⟨23⟩ . . . ⟨(n− 1)n⟩ ⟨n1⟩
. (1.60)

This suggests that Feynman diagrams are not always the ideal approach to computing amplitudes,
and that other methods should exist to obtain the compact result in a more direct manner. One
significant source of complexity in amplitudes of gauge theory is gauge redundancy. While the
final on-shell amplitude may be gauge invariant, the individual Feynman diagrams are not. We
therefore require non-trivial cancellations to occur between the diagrams to obtain a manifestly
gauge invariant quantity. At this point on-shell methods come to our rescue. They allow us
to construct on-shell amplitudes from lower-point on-shell amplitudes. Each step is therefore
manifestly gauge-invariant, and we are able to derive compact gauge invariant expressions with
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relative ease. In the following we will review common techniques used in the computation of tree
amplitudes, which will be important for the later chapters of this thesis.

1.3.1 Tree-Level Color-Decomposition

The first complication when dealing with amplitudes in gauge theory is the fact that particles
transform in representations of the gauge group. Such amplitudes are therefore a mixture of
kinematic and group theory structures, which generally need to be manipulated simultaneously.
In QCD the latter are related to the particles’ color charge. Therefore, even in general SU(Nc)

Yang–Mills theories these group structures are often referred to as color structures.

A useful technique to separate the two classes is the color decomposition of gauge theory
amplitudes. Color decomposition relies on finding a basis of independent color structures, in
which the amplitudes gauge-group dependence can be encoded. The coefficients of these basis
elements are then dependent only on the external kinematics, and can be obtained directly from
special “color-ordered” Feynman rules. There are various options for choosing such a basis [55, 56],
however a common choice is the set of color traces{

Tr(T aσ(1)T aσ(2) . . . T aσ(n))
∣∣σ ∈ Sn�Cn

}
(1.61)

where Sn is the symmetric group of n elements, and Cn the cyclic group. We only need to consider
the quotient group of the two due to the cyclic symmetry of the traces. Given such a basis of color
traces, we are able to express any tree-amplitude in the form,

A(0)
n (1h1,a1 , 2h2,a2 , . . . , nhn,an)

= gn−2
∑

σ∈Sn⧸Cn

Tr(T aσ(1) . . . T aσ(n))A(0)
n (σ(1h1), . . . , σ(nhn)). (1.62)

Here, A(0)
n is the amplitude obtained from the usual Feynman rules involving color structures,

sometimes also refered to as the “full-color” amplitude. The A
(0)
n are called partial-, or color-

ordered amplitudes, and only depend on the momenta and helicities of the external momenta.
The name “color-ordered” derives from the fact that we can compute the A(0)

n based on Feynman
diagrams which are planar, such that the relative order of the particles is fixed. The planarity of
the diagrams contributing to A(0) is a feature of tree-level amplitudes, and does not hold at loop
level. However, the color-trace organisation will still be present.

A convenient feature of partial amplitudes is their invariance under gauge transformations.
As A(0) is an on-shell quantity, it has to be invariant under such transformations. Gauge trans-
formations do not mix the color traces. Therefore, for A(0) to be invariant under the residual
on-shell gauge transformations, cancellations need to occur for each coefficient separately. The
A

(0)
n therefore need to be separately gauge-invariant objects.

As an example, consider the four-gluon amplitude

A(1h1,a2h2,b3h3,c4h4,d) = + + + (1.63)
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Focusing just on their color structure, these diagrams give the contributions2

= g22fabef cdeG1,

= g22faedf bceG2,

= g22faecf bdeG3,

= g22
(
fabef cdeG4,1 + facef bdeG4,2 + fadef bceG4,3

)
,

(1.64)

where the Gi depend only on the kinematics. For simplicity, we assume the gauge group to be
U(N). We expect a basis of

∣∣∣S4�C4

∣∣∣ = 4!
4 = 6 color traces,

Tr(T aT bT cT d), Tr(T aT cT dT b), Tr(T aT dT bT c), (1.65)

Tr(T aT bT dT c), Tr(T aT dT cT b), Tr(T aT cT bT d), (1.66)

such that,

A(0)(1h1,a2h2,b3h3,c4h4,d) = g2
[
Tr(T aT bT cT d)A(0)(1h12h23h34h4)

+ Tr(T aT cT dT b)A(0)(1h13h34h42h2)

+ Tr(T aT dT bT c)A(0)(1h14h42h23h3)

+ Tr(T aT bT dT c)A(0)(1h12h24h43h3)

+ Tr(T aT dT cT b)A(0)(1h14h43h32h2)

+ Tr(T aT cT bT d)A(0)(1h13h32h24h4)
]
.

(1.67)

We can use the relation of eq. (1.3) as well as the Fierz identities (1.7) to rewrite the color factor
of the first diagram as

2fabef cde = −
[
Tr(T aT bT e)− Tr(T bT aT e)

] [
Tr(T cT dT e)− Tr(T dT cT e)

]
= −Tr(T aT bT cT d) + Tr(T aT bT dT c) + Tr(T aT cT dT b)− Tr(T aT dT cT b)

(1.68)

Repeating these steps for the remaining three diagrams, and collecting on the six color traces leads
2We also pull out a factor of 2 due to the choice of normalization for the gauge group generators in eq. (1.1)
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us to the partial amplitudes,

A(0)(1h12h23h34h4) = −G1 −G2 −G4,1 +G4,3

A(0)(1h14h42h23h3) = G1 −G3 +G4,1 +G4,2

A(0)(1h12h24h43h3) = G2 +G3 −G4,2 −G4,3

A(0)(1h13h32h24h4) = G1 −G3 +G4,1 +G4,2

A(0)(1h14h43h32h2) = −G1 −G2 −G4,1 +G4,3

A(0)(1h13h34h42h2) = G2 +G3 −G4,2 −G4,3.

(1.69)

At first glance this representation appears more complicated. However, there exist Feynman rules
that allow us to obtain these partial amplitudes directly, namely

=
i√
2
[gµ1µ2(p1 − p2)

µ3 + gµ2µ3(p2 − p3)
µ1 + gµ3µ1(p3 − p1)

µ2 ] ,

= i

[
gµ1µ3gµ2µ4 − 1

2
(gµ1µ2gµ3µ4 + gµ2µ3gµ4µ1))

]
,

=
−i

p2 + i0
.

(1.70)

With these, each of the partial amplitudes is given by the sum of three color-ordered Feynman
diagrams,

A(0)(1h12h23h34h4) = + + . (1.71)

While the color traces are independent of one another, the same cannot be said about the
partial amplitudes. An important class of relations between the partial amplitudes are the U(1)-,
or photon-decoupling identities. To derive them we consider amplitudes of a Yang–Mills theory
with gauge group U(Nc). As mentioned in section 1.1 we can separate the generators of the group
U(Nc) into those of SU(Nc), together with a generator of U(1) which corresponds to the trace.
Analogously we can also separate the gauge bosons of U(Nc) Yang–Mills theory according to these
two subgroups. We will refer to the gauge bosons of SU(Nc) as gluons and to the one of U(1)

as photon. The U(1)-decoupling identities rely on the observation that any mixed gluon-photon
amplitude has to vanish. One naïve argument can be made on the basis of the Yang–Mills field
strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbAc. (1.72)

The third term is the one of interest, as it generates the gauge boson self-interactions. In the case
of photon-gluon interactions, one of the indices of the structure constant fabc is associated with the
photon generator. As this generator has to be proportional to the identity 1Nc , such a structure
function is guaranteed to vanish, which can be seen via the relation (1.3). Thus, photons and
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gluons cannot interact with one another, and any amplitudes that involves even a single photon
has to vanish.

We can further see that the partial amplitudes have to be the same in both U(Nc) and SU(Nc)

Yang–Mills theories. Due to the Feynman rules being the same, we could carry out the color
decomposition entirely oblivious of the fact that photon structure constants vanish. We would
therefore necessarily end up with the same kinematic structures, i.e. partial amplitudes.

At tree level, instead of computing U(Nc) and SU(Nc) amplitudes separately, we can start
from the color decomposed SU(Nc) amplitude involving only gluons. To transform a gluon into
a photon we exchange the corresponding generator with the U(1) generator. As this generator is
proportional to the identity, it can always be removed from the traces, such that multiple partial
amplitudes end up with the same color structure. The vanishing of the full amplitude therefore
leads to linear relations between these partial amplitudes.

As an example, consider our previous four-gluon amplitude,

A(1h1,a
g 2h2,b

g 3h3,c
g 4h4,d

g ). (1.73)

We now turn gluon 1 into a photon by replacing its generator T a in the color decomposition with
1√
Nc
1Nc

. Rearranging the terms in eq. (1.67) then leads to,

0 = A(0)(1h1
γ 2h2,b

g 3h3,c
g 4h4,d

g ) =

g2√
Nc

[
Tr(T bT cT d)

(
A(0)(1h12h23h34h4) +A(0)(1h13h34h42h2) +A(0)(1h14h42h23h3)

)
+Tr(T bT dT c)

(
A(0)(1h12h24h43h3) +A(0)(1h14h43h32h2) +A(0)(1h13h32h24h4)

) ]
.

(1.74)
As the color structures are independent, we obtain the two relations,

0 = A(0)(1h12h23h34h4) +A(0)(1h13h34h42h2) +A(0)(1h14h42h23h3),

0 = A(0)(1h12h24h43h3) +A(0)(1h14h43h32h2) +A(0)(1h13h32h24h4).
(1.75)

This procedure generalizes, and the tree-level U(1)-decoupling relations can be summarized as,

0 = A(0)(1γ2g3g . . . ng) +A(0)(2g1γ3g . . . ng) + . . .+A(0)(2g3g . . . 1γng) (1.76)

and permutations thereof. At loop level, the U(1)-decoupling lead to important relations between
partial amplitudes, which we discuss in later sections.

Another class of relations between the tree-level partial amplitudes are the Kleiss–Kuijf rela-
tions [57]. These can be concisely summarized as [47],

A(0)(1, {α}, i, {β}) = (−1)|β|
∑

σ∈({α}�{β}T )

A(0)(1, σ, i), (1.77)

where {β}T is the set {β} in reversed order. The symbol � refers to the shuffle product, defined
as all mergers of the sets that preserve the ordering within each set. Note that at tree level, the
U(1) decoupling identities are included in the Kleiss–Kuijf relations.
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1.3.2 BCFW Recursion

A common technique in the on-shell approach to tree amplitudes is complex recursion [58, 59]. A
tree-level amplitudes factorize into smaller amplitudes when internal propagators go on-shell, and
we can exploit this property to recursively construct gauge-theory amplitudes in many cases.

The main feature of scattering amplitudes enabling this approach is their analyticity in the
kinematics. At tree level this is evident, as they are rational functions in momenta and spinors. To
understand the basic idea, let us consider a tree amplitude A(0) involving n massless particles with
momenta pk. By shifting the momenta by terms proportional to a—generally complex—parameter
z, the amplitude becomes an analytic function in z, which we call A(0)(z). As we only shifted the
momenta, we recover the original amplitude in the limit of vanishing z, i.e.

A(0)(0) = A(0). (1.78)

As A(0)(z) is an analytic function we can alternatively express this property via a contour integral.
Choosing a contour γ that only encircles z = 0, while avoiding any other poles, we find that∫

γ

dz
A(0)(z)

z
= (2πi)Res

z=0

[
A(0)(z)

z

]
= (2πi)A(0)(0) = (2πi)A(0). (1.79)

Let us expand the contour to infinity. We now have to acknowledge the fact that A(0)(z) contains
poles as well: Through the shifted momenta, a subset of propagators will depend on z. For each
such propagator we can find a value of z, so that the propagator becomes on-shell. The value of
z, for which A(0)(z) develops a pole due to a propagator 1/(pi + pj + . . . pk)

2, will be denoted by
zij...k. As we expand the contour we have to account for every such pole in z that we cross by
subtracting the associated residue. We therefore end up with∫

γ

dz
A(0)(z)

z
= −(2πi)

∑
poles
zij...k

Res
z=zij...k

[
A(0)(z)

z

]
+

∫
γ∞

dz
A(0)(z)

z
. (1.80)

In the last term, the contour γ∞ encircles the point at complex infinity, and it is this integral that
could spoil our computation. While the residues at finite values of z are associated to on-shell
propagators, a pole at infinity does not immediately allow for such an interpretation. There exist
methods to obtain such contributions from multiple different shifts [60]. However for simplicity we
assume here that under the specific shift we chose, the amplitude A(0)(z) falls off as 1/z in the
large-z limit. In this case we can safely ignore the last integral. Combining eqs.(1.79) and (1.80),
we are therefore able to relate the amplitude A(0) to the poles of A(0)(z) via

A(0) = −
∑
poles
zij...k

Res
z=zij...k

[
A(0)(z)

z

]
(1.81)

To relate the residues to the factorization of tree amplitudes, we will consider a specific choice
of shift, presented in [58, 59]. Given a set of massless momenta pk, k = 1 . . . n, we define a so-called
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BCFW [i, j⟩-shift of these momenta by introducing hatted set of momenta p̂k,

p̂µi = pi −
z

2
⟨i|γµ|j]

p̂µj = pj +
z

2
⟨i|γµ|j]

p̂k = pk, k ̸= i, j

(1.82)

where the spinors of pi, pj are given by

λ̂i = λi,
ˆ̃
λi = λ̃i − zλ̃j

ˆ̃
λj = λ̃j , λ̂j = λj + zλj .

(1.83)

We introduce the parameter z, generally assumed to be complex, which causes the hatted momenta
to be complex as well. The p̂k defined in such a way are again massless, conserve total momentum,
and fulfill the properties

p̂i · p̂j = pi · pj , ⟨̂iĵ⟩ = ⟨ij⟩ , [̂iĵ] = [ij] . (1.84)

These properties will help in improving the large-z behavior of A(0). We now need to identify the
propagators that develop poles in z under this shift. Since

p̂i + p̂j = pi + pj (1.85)

the only z-dependent propagators are those involving either p̂i or p̂j . As the two cases are related
by momentum conservation, let us focus on a propagator carrying p̂i, with the remaining momenta
collected in Q. Extracting the pole in z, we obtain

1

(p̂i +Q)
2 =

1

(pi +Q)
2 − z ⟨i|Q|j]

= − 1

⟨i|Q|j]

[
z − ⟨i|Q|i]

⟨i|Q|j]

]−1

= − ziQ

(pi +Q)
2

1

z − ziQ

(1.86)

Taking the residue of A(0)(1 . . . î . . . ĵ . . . n) at ziQ thus sets this internal propagator on-shell, and
replaces its denominator with − ziQ

(pi+Q)2
. In the case of the propagator belonging to a gluon, we

additionally have to deal with a non-trivial numerator. Here the completeness relation of gluon
polarization vectors comes to our aid. It ensures that if a gluon propagator goes on-shell, the
propagator’s numerator turns into the sum over polarization vectors. This is simplest to see in
axial gauge, where the propagator takes the form3

propµν
g (p) =

i

p2

(
−gµν +

2p(µqν)

2p · q

)
, (1.87)

3Here we are using the symmetrization over indices p(µqν) = 1
2
(pµqν + pνqµ).
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By using the definition of the polarization vectors in eq. (1.41), we have∑
h=±

εµhε
ν
h
= εµ+ε

ν
− + εµ−ε

ν
+

=+
1

2

⟨p|γ(µqγν)|p]
2p · q

=
1

4p · q

(
2q(ν ⟨p|γµ)|p]− ⟨p|γ(µγν)q|p]

)
=

1

4p · q

(
4q(µpν) − 2gµν2p · q

)
=− gµν +

2q(µpν)

2p · q
.

(1.88)

As we end up with on-shell quantities the choice of gauge is irrelevant, and we can use this
identification generally. When computing the residue, gluon propagator therefore turns into

propµν
g (p̂i +Q)

Resz=ziQ−→ −i ziQ

(pi +Q)
2

∑
h=±

εµhε
ν
h

(1.89)

At the level of the amplitude, the evaluation of the residue therefore leads to

− Res
z=ziQ

[
A(0)(1 . . . î . . . ĵ . . . n)

z

]

= −
∑
h=±

[
A(0)(. . . î . . . (−p̂i −Q)h)

1

(pi +Q)2
A(0)((p̂i +Q)h . . . ĵ . . .)

]∣∣∣∣
z=ziQ

(1.90)

Note that the overall minus sign is due to the normalization of (−i) which we include in every
amplitude. In computations we will often omit the explicit value of z at which we need to evaluate
the product of trees, though it is always implied. The factorization channel will always be evident
through the propagator-like factor.

A famous illustration of the power of complex recursion is the proof of the Parke-Taylor ampli-
tude [52],

A(0)(1+ . . . i− . . . j− . . . n+) =
⟨ij⟩4

⟨12⟩ . . . ⟨n1⟩
(1.91)

This was first presented in ref. [59], and we will sketch the arguments here. The proof follows from
induction. We already saw in eq. (1.57) that the form of eq. (1.91) applies for n = 3. We therefore
only need to show the inductive step. We choose a BCFW [i, i+ 1⟩-shift

p̂µi = pi −
z

2
⟨i|γµ|i+ 1]

p̂µi+1 = pi+1 +
z

2
⟨i|γµ|i+ 1]

(1.92)

with spinors
λ̂i = λi,

ˆ̃
λi = λ̃i − zλ̃i+1

ˆ̃
λi+1 = λ̃i+1, λ̂i+1 = λi+1 + zλi .

(1.93)

Evaluating the general form in eq. (1.91) on the shifted kinematics, we see that the amplitude
scales as 1

z . We should therefore be able to reconstruct this amplitude from its poles at finite
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values of z.

As single-minus tree amplitudes vanish except for the three-point case, the only factorization
allowed is

× , (1.94)

or more precisely

A(0)(1+ . . . i− . . . j− . . . n+)

= − 1

s(i+1)(i+2)
A(0)(1+ . . . î−K̂+(i+ 3)+ . . . j− . . . n+)A(0)((−K̂)−(̂i+ 1)

+
(i+ 2)+) (1.95)

One of the tree amplitudes is the Parke–Taylor amplitude with one fewer positive helicity gluons,
and we can therefore apply eq. (1.91) as the inductive assumption. The form of the second ampli-
tude in the factorization is given in eq. (1.57). As one of the momenta is negative, we need to define
spinors of a negative momentum. In this thesis we will always use the symmetric continuation

⟨−p| = i ⟨p| , [−p| = i [p| . (1.96)

We can then evaluate eq. (1.95)

A(0)(1+ . . . i− . . . j− . . . n+)

= − 1

s(i+1)(i+2)

⟨ij⟩4

⟨12⟩ . . . ⟨(i− 1)i⟩ ⟨(i+ 3)(i+ 4)⟩ . . . ⟨n1⟩
[(i+ 1)(i+ 2)]

3

[K̂(i+ 1)] [(i+ 2)K̂] ⟨iK̂⟩ ⟨K̂(i+ 3)⟩

=
⟨ij⟩4

⟨12⟩ . . . ⟨(i− 1)i⟩ ⟨(i+ 1)(i+ 2)⟩ ⟨(i+ 3)(i+ 4)⟩ . . . ⟨n1⟩
[(i+ 1)(i+ 2)]

2

⟨(i+ 3)|K̂|(i+ 1)] [(i+ 2)|K̂|i⟩

=
⟨ij⟩4

⟨12⟩ . . . ⟨(i− 1)i⟩ ⟨i(i+ 1)⟩ ⟨(i+ 1)(i+ 2)⟩ ⟨(i+ 2)(i+ 3)⟩ ⟨(i+ 3)(i+ 4)⟩ . . . ⟨n1⟩
,

(1.97)
which is exactly the form expected from eq. (1.91), completing the proof. In this computation
we never had to evaluate any spinors at the specific pole, as we were always able to eliminate
any contributions of shifted momenta through spinor products involving ⟨i| and [i+ 1|. This is
not possible in general, and the evaluation at the specific value of z usually leads to spurious
denominators, which only cancel between multiple factorization channels.

1.4 Loop Amplitudes

As explained in the introduction, tree-level amplitudes are not sufficient to explain physical obser-
vations in experiments and it is necessary to include loop corrections. Here we will look at some
general properties of loop amplitudes, as well as some basic methods used in their computation.

The characteristic feature of loop amplitudes are virtual particles that form closed loops in
the Feynman diagrams. These loops carry an associated four-momentum, over which we need to
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integrate. An L-loop amplitude can be written as [47],

A(L)
n = (−i)(4π)LD/2

∑
Gl

∫ ( L∏
i=1

dDℓi
(2π)D

)
1

SGL

cGL
NGl

[{pj}, ℓi]∏
αGL

∈GL
p2αGl

. (1.98)

The sum runs over all L-loop Feynman diagrams GL, whose propagators are labelled by αGl
. The

numerators cGl
and NGl

are respectively color and kinematic factors, and the 1
SGl

provide possible
symmetry factors, depending on the diagram topology. The dDℓi integrals run over the entire
D-dimensional Minkowskian momentum space, where the dimension is left unspecified for the
moment.

1.4.1 Feynman Integrals

The central feature of loop amplitudes are the integrations over the loop momentum. These
integrals present one of the main challenges in pushing perturbation theory to higher orders, as
their computation generally presents a formidable challenge. While one-loop integrals are well
understood, two-loop integrals are still a topic of current research, and many advanced techniques
have been developed over the past decades to aid in their computation.

As the computation of Feynman integrals has not been an integral part of my doctoral research,
and due to the wide breadth of topics that would have to be covered, I will only present a brief
overview.

Following the discussion in ref. [61], we will define the Feynman integral I(L),D
G of an L-loop

Feynman graph G with n external particles in D dimensions as

(2π)DδD

(∑
i

pi

)
I(L),D
G =

∫ ( I∏
i=1

dDki
(2π)D

1

(k2i −m2
i + iϵ)

)
V∏

v=1

(2π)DδD

(
Pv −

I∑
i=1

κivki.

)
(1.99)

The pi, i ∈ 1, . . . , n are the momenta of the external particles, while I and V denote the number
of internal lines and vertices in the graph G. For each vertex v the momentum Pv is the sum of
external momenta incident to that vertex. The incidence matrix κiv states whether the internal
momentum ki is flowing out of (κiv = −1), flowing into (κiv = +1) or not attached to the vertex
v (κiv = 0). Note that in comparison to ref. [61] we are not including the factors of i in the
propagators.

Using the identities [61],

1

(q2 −m2 + iϵ)ν
=

1

Γ(ν)

∫ ∞

0

dα αν−1 exp
(
−α(q2 −m2 + iϵ)

)
, (1.100)

and,

(2π)Dδ(D)

(
Pv −

I∑
i=1

κivki

)
=

∫
dDyv exp

[
−iyv

(
Pv −

I∑
i=1

κivki

)]
, (1.101)
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we can carry out the integrals over the internal momenta kl, and obtain for I(L),D
G the form [61],

I(L),D
G =

(−1)I

iL(4π)LD/2
Γ(I − LD

2 )

(∏
i

∫ ∞

0

dαi

)
δ(1−

∑
i

αi)
UI−(L+1)D/2

FI−LD/2
. (1.102)

ψ and φ are the first and second Symanzik polynomials, which are polynomials in the variables
Schwinger parameters αi. Their form can be related to the graph associated to the Feynman
integral’s propagators, as presented for example in ref. [62].

An important feature of Feynman integrals are their divergences. While we are mainly inter-
ested in the case D = 4, many integrals of interest diverge for this choice, and we need to regulate
them. The most common method is dimensional regularization, in which we use D = 4 − 2ϵ. By
working in non-integer dimension, we are able to evaluate the integrals as a Laurent expansion in
ϵ, where the divergences appear as powers of 1

ϵ . There are generally two classes of singularities
that can appear in a Feynman integral: ultraviolet (UV) and infrared (IR).

As the name suggests, ultraviolet divergences originate from regions of large loop momentum
in the integration. Consider for example the integral∫

dDℓ
1

ℓ2(ℓ−K)2
(1.103)

For large ℓ the integral measure and integrand scale together as ℓD−4. This corresponds to a
logarithmic divergence in D = 4 − 2ϵ, which would appear as a 1

ϵ pole in the regulated integral.
The source of these divergences in the Schwinger parameter representation of eq. (1.102) is the
prefactor Γ

(
I − LD

2

)
[62]. Substituting the appropriate values for our example integral, this

prefactor takes the form

Γ

(
2− 4− 2ϵ

2

)
= Γ(ϵ) =

1

ϵ
− γ +O(ϵ) (1.104)

where γ is the Euler-Mascheroni constant. Assuming a renormalizable theory like Yang–Mills,
these of divergences can always be absorbed into physical quantities through renormalization, as
discussed in QFT textbooks, for example refs. [42–45].

The second type of singularity is called infrared, as such singularities occur in the regions of
small, or at least finite loop momentum. There exist two types of IR singularities, namely soft and
collinear, and in the integral representation of eq. (1.102) they originate from the integrals over the
αi. The Landau equations [63] rigorously specify the locations of these singularities. At one-loop
they can also be understood from power counting arguments, which we will review here. These
arguments were first first presented in ref. [64].

The soft divergences appear in the limit of vanishing loop momentum. Take for example the
one-loop integral with four external massless momenta p1, p2, p3, p4 and four propagators∫

dDℓ
1

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
(1.105)

For small ℓ, the measure scales as ℓD. The first propagator naturally behaves as ℓ−2, while the
third is finite as

1

(ℓ− p1 − p2)2
=

1

ℓ2 − 2ℓ · (p1 + p2) + s12

ℓ→0
≈ 1

s12
(1.106)
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The second and fourth propagators on the other hand scale as ℓ−1, as for example

1

(ℓ− p1)2
=

1

ℓ2 − 2ℓ · p1
ℓ→0
≈ − 1

2ℓ · p1
(1.107)

The entire integral therefore scales as
(
1
ℓ

)4−D It therefore has a logarithmic singularity, which
appears as a 1

ϵ pole in the dimensionally regulated integral.

Collinear singularities originate from finite regions of the loop momentum integration, where ℓ
becomes proportional to a massless external momentum. Below we use arguments and notation of
ref. [65]. Let us again consider the integral∫

dDℓ
1

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
. (1.108)

To find the divergence for ℓ becoming collinear with p1 we can use a Sudakov decomposition of the
loop momentum with respect to p1 [65, 66],

ℓ = αp1 + βp−1 + ℓ⊥. (1.109)

Here α and β are new parameters, while p−1 is defined to be p−µ
1 = (p01,−pi1), so that (p−1 )

2 = 0.
The momentum ℓ⊥ has to be orthogonal to both p1 and p−1 , i.e. (ℓ⊥ ·p1) = (ℓ⊥ ·p−1 ) = 0. Through α,
β and ℓ⊥, ℓ is fully parametrized. The collinear limit with respect to p1 is obtained for vanishing β
and ℓ⊥, while keeping α at an arbitrary, but fixed value. We can parametrize this limit by making
the replacements,

β → δ β, ℓ⊥ → δ
1
2 ℓ⊥, (1.110)

We then approach the collinear region for δ → 0.

Let us first see the effect on the integration measure, which in the Sudakov decomposition takes
the form [66],

dDℓ = (p1 · p−1 ) dα dβ dD−2ℓ⊥. (1.111)

Leaving α fixed, the scaling of eq. (1.110) leads to a scaling of the measure

dDℓ
δ→0∼ δ

D
2 . (1.112)

In the integral of eq. (1.108), the last two propagators are finite in the small δ limit. For example,

1

(ℓ+ p4)2
=

1

ℓ2 + 2ℓ · p4
δ→0
≈ 1

αs14
. (1.113)

Each of the first two propagators however scale homogeneously as 1
δ ,

1

ℓ2
=

1

ℓ2⊥ + 2αβ(p1 · p−1 )
δ→0∼ 1

δ
,

1

(ℓ− p1)2
=

1

ℓ2⊥ + 2(α− 1)β(p1 · p−1 )
δ→0∼ 1

δ
.

(1.114)

The quadratic appearance of ℓ⊥ and only The entire integral therefore scales as
(
1
δ

)2−D
2 . This

is yet another logarithmic divergence, which also leads to a factor of 1
ϵ . Note that in the limit
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of vanishing α the collinear and soft divergences can overlap. A one-loop integral can therefore
have divergences up to 1

ϵ2 . Contrary to UV divergences these IR divergences cannot be removed
at the level of the loop amplitude. Rather, they cancel once we compute an observable. Since
colliders have a finite resolution, we have to include processed with soft real emissions that are
indistinguishable from the original process. At fixed order in the coupling, a one-loop virtual
process needs to be combined with a single real emission, that is either soft or collinear with respect
to the other particles. The phase-space integral of the real emission develops singularities, which
cancel the infrared divergences of the loop amplitude point-by-point. For multi-loop corrections,
multiple such real emissions are required for the cancellation to occur. The exact cancellation of
these infrared divergences at any order in the coupling is guaranteed by the KLN theorem [64, 67].

Feynman integrals are not independent functions, and it is often possible to reduce the integrals
appearing in an amplitude to a minimal set, often called master integrals. Such a basis of integrals
is not uniquely defined, and there are many different choices for the set of master integrals of a
given amplitude. While at one loop it simple to find such basis of integrals—as we will see in
the next chapter—finding such a basis for a multi-loop amplitudes can be difficult task. Several
approaches for such integral reductions have been developed over the years [68–71], and specialized
software packages are available, such as Reduze [72, 73], AIR [74], Kira [75–77] or FIRE [78–81].

1.4.2 Color-Decomposition for Loop Amplitudes

Just as in the tree-level case, we can separate the color and kinematic parts of loop amplitudes
through color decomposition. In contrast to tree amplitudes, the basis of color structures does not
only contain single traces of color generators. For an L-loop amplitude we can have at most L+ 1

such traces, which can include powers of Nc. Furthermore, the color decomposition of SU(Nc) and
U(Nc) loop amplitudes differ. In the former any trace of a single color generator vanishes, while
for the latter these are allowed in the case of the additional U(1) generator.

At this point I just state the general form of SU(Nc) decompositions of one- and two-loop
amplitudes. We will further discuss their origin in the next chapter.

1.4.2.1 One Loop

The color decomposition of a generic one-loop amplitude with SU(Nc) gauge group takes the form

A(1)
n = gn

[
Nc

∑
σ∈Sn⧸Cn

Tr[T σ(1) . . . T σ(n)]A
(1)
n:1(σ(1) . . . σ(n))

+

⌊n2 ⌋+1∑
r=3

∑
σ∈Sn⧸Pn:r

Tr[σ(1) . . . σ(r − 1)] Tr[σ(r) . . . σ(n)]

×A(1)
n:r(σ(1) . . . σ(r − 1);σ(r) . . . σ(n))

]
.

(1.115)
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Here, Sn and Cn are the symmetric and cyclic group of n elements. The Pn:r, defined as

Pn:r =

Cr−1 × Cr−1 × S2, n = 2(r − 1),

Cr−1 × Cn−r−1, otherwise
(1.116)

account for the cyclic symmetry of the traces (Ci), as well as the permutations of the traces (Si),
should they have equal length. The factor Nc in the decomposition can be interpreted as traces
containing the identity INc

.

We now have two classes of partial amplitude, those of a single color trace A(1)
n:1, and those

of the double traces A(1)
n:i. Due to the power of Nc, the former are called leading in color, while

the latter are referred to as subleading in color. The subleading partial amplitudes are entirely
determined by the leading ones via the relation [82, 83],

A
(1)
n:j(1, 2, . . . , j − 1; j, j + 1, . . . , n) =

∑
σ∈COP{α}{β}

A
(1)
n:1(σ(1, . . . , n)). (1.117)

This was derived using the one-loop U(1)-decoupling identities, and is a feature of one-loop ampli-
tudes.

1.4.2.2 Two Loops

Two-loop Yang–Mills amplitudes with gauge group SU(Nc) can be generically decomposed in terms
of color traces as follows [4, 10],

A(2)
n = gn+2

[
N2

c

∑
σ∈Sn⧸Cn

Tr[T σ(1) . . . T σ(n)]A
(2)
n:1(σ(1) . . . σ(n))

+Nc

⌊n2 ⌋+1∑
r=3

∑
σ∈Sn⧸Pn:r

Tr[σ(1) . . . σ(r − 1)] Tr[σ(r) . . . σ(n)]

×A(2)
n:r(σ(1) . . . σ(r − 1);σ(r) . . . σ(n))

+

⌊n2 ⌋∑
r=2

⌊n−r
2 ⌋∑

k=r

∑
σ∈Sn⧸Pn:r,k

Tr[σ(1) . . . σ(r)] Tr[σ(r + 1) . . . σ(r + k)] Tr[σ(r + k + 1) . . . σ(n)]

×A
(2)
n:r,k(σ(1) . . . σ(r);σ(r + 1) . . . σ(r + k);σ(r + k + 1) . . . σ(n))

+
∑

σ∈Sn⧸Cn

Tr[σ(1), . . . , σ(n)]A
(2)
n:1B(σ(1), . . . , σ(n))

]
,

(1.118)
where Pn:r is defined as in eq. (1.116), and

Pn:r,k =



Cr × Cr × Cr × S3, r = k, n = 3r,

Cr × Ck × Ck × S2, n = r + 2k,

Cr × Cr × Cn−2r × S2, r = k,

Cr × Ck × Cn−r−k, otherwise

. (1.119)
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In eq. (1.119), Pn:r,k has the same function as Pn:r in the one-loop case, namely to remove trace
color-trace structures based on their symmetries. The factors of Nc in the decomposition can again
be interpreted as traces containing the identity INc

. In this definition, the traces are ordered with
respect to their length,

For two loops, there exist four classes of partial amplitudes: the leading color single trace A(2)
n:1,

the subleading color double and triple trace amplitudes A(2)
n:r and A

(2)
n:r,k, as well as the subleading

color single trace amplitudes A(2)
n:1B. While relations connecting the leading and subleading ampli-

tudes exist also for two loops, they generally do not fix all subleading amplitudes, and they have
to be computed separately.



Chapter 2

Generalized Unitarity

In this chapter, we discuss the main technique we will be using throughout the thesis for the com-
putation of loop amplitudes: generalized unitarity. For a given amplitude, the relations between
Feynman integrals allow us to find a minimal basis of independent integrals. Once expressed in
such a basis, we are then able to find the integral coefficients of the amplitude from generalized uni-
tarity cuts. These in a sense project the amplitude onto the basis of integrals via their branch-cut
structure.

While we will discuss the computation of two-loop all-plus amplitudes in the following chapters,
a central point will be the explicit avoidance of two-loop unitarity techniques. Instead we find that
for our purposes we can rely solely on the well-developed one-loop technology, which is significantly
simpler. In this chapter I therefore choose to entirely omit multi-loop unitarity techniques, and
provide a more thorough discussion of the one-loop technology we will require later.

2.1 One-Loop Feynman Integrals

To discuss the required Feynman integrals for one-loop amplitudes, let us specialize the definition
of section 1.4.1 to L = 1. At one loop we need only consider the Feynman integrals of graphs
forming an n-sided polygon, as shown in Figure 2.1. We will require this class of integrals for the

Figure 2.1: All Feynman integrals appearing in one-loop amplitudes can be associated with
graphs Gn-poly taking the shape of an n-sided polygon. The momenta Ki are generally massive.

29
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remainder of the thesis. We use the normalization of ref. [84]

IDn
[
N [ℓ]

]
= I

(1),D
Gn-poly

[
N [ℓ]

]
= (−i)(−1)n(4π)D/2ID

n [N [ℓ]], (2.1)

where
ID
n

[
N [ℓ]

]
≡ I(1),D

Gn-poly

[
N [ℓ]

]
=

∫
dDℓ

(2π)D
N [ℓ]

ℓ2(ℓ−K1)2 . . .)(ℓ−K12...(n−1))2
. (2.2)

The Ki are the—generally massive—momenta attached to the loop, for which we also use the
notation,

Ki1i2...ik = Ki1 +Ki2 + . . .+Kik . (2.3)

While graphs at higher loops can in general be non-planar, at one loop we can bring any graph
into the planar form of Figure 2.1.

Including loop-momentum dependent numerators, a one-loop n-particle amplitude computed
via Feynman diagrams generally contains integrals of the form IDn [N [ℓ]]. However, as mentioned in
section 1.4.1, Feynman integrals are not independent, and this property is nowhere easier to observe
than in one-loop amplitudes. For external kinematics in four dimensions we can show that it is
sufficient to consider scalar integrals with up to four propagators. First, we can see that any tensor
integrals that may appear can be reduced to scalar ones via Passarino-Veltmann reduction [85] or
similar reduction schemes [86]. The fact that we only require integrals with up to four propagators
is due to the four-dimensionality of the kinematics. Given four linearly independent four-momenta
{K1,K2,K3,K4} we can express any additional momentum Q as a linear combination of the Ki.
We can use this property to rewrite any integral with n > 4 propagators as a linear combination
of integrals with (n − 1) propagators. More complete reviews of this procedure can be found for
example in refs. [48, 70]; here we will only provide a short summary of these.

A convenient way to express linear dependence between momenta is the Gram determinant,
defined by,

G

(
p1 p2 . . . pm

k1 k2 . . . km

)
=

∣∣∣∣∣∣∣∣
(p1 · k1) · · · (p1 · km)

...
. . .

(pm · k1) (pm · km)

∣∣∣∣∣∣∣∣ (2.4)

It vanishes if either one of the sets {pi} or {ki} is linearly dependent. Say for example that pm can
be expressed as a linear combination of the remaining (m− 1) momenta. We can then row reduce
the matrix to eliminate the lowest row, proving that the determinant vanishes. For the qi we could
perform the same operations on the columns. Due to the four-dimensionality of our kinematics we
particularly have for any pi, ki, i ∈ {1, . . . , n}, n > 5,

G

(
p1 p2 . . . pn

k1 k2 . . . kn

)
= 0. (2.5)

We can use this fact to reduce an n-point integral to a linear combination of (n−1)-point integrals
through [70]

IDn

[
G

(
K1 K12 K123 K1234 ℓ

K1 K12 K123 K1234 K12345

)]
= 0. (2.6)

Each term in the determinant will contain a product (ℓ ·K...). We can complete these to inverse



2.1. ONE-LOOP FEYNMAN INTEGRALS 31

propagators,
(ℓ ·K...) =

1
2

(
(ℓ+K...)

2 − ℓ2 −K2
...

)
. (2.7)

The first two terms each cancel one of the integral propagators, while the third will be proportional
to the original integral. By collecting the ℓ independent terms in the determinant then allows us
to rewrite the n-propagator integral in terms of a sum over (n− 1)-point integrals with kinematic
coefficients.

In the case of n = 5 we have to take care of a subtlety originating from dimensional regulariza-
tion. Assuming ℓ to be D-dimensional with D = (4−2ϵ), the gram determinant vanishes only up to
contributions stemming from the (−2ϵ)-components of the loop momentum. These will ultimately
lead to terms of order ϵ, so that we can loosely write,

G

(
K1 K12 K123 K1234 ℓ

K1 K12 K123 K1234 K12345

)
= O(ϵ) (2.8)

In section 2.3 we will discuss how to deal with these additional contributions. However, for the
moment we will assume the loop momentum to be four dimensional, such that the Gram determi-
nant in eq. (2.8) vanishes. Recursive application of this reduction thus allows us to express any
integral IDn [N [ℓ]] as a linear combination of integrals belonging to the four classes,

ID4 [1] ID3 [1] ID2 [1] ID1 [1]

. (2.9)

Due to their geometry they are usually called the box, triangle, bubble and tadpole integrals, and
they form a (four-dimensional) basis of Feynman integrals at one-loop. We will mainly concern
ourselves with amplitudes of Yang–Mills theory. We therefore usually ignore the tadpole integrals,
as they would be scaleless integrals, which vanish in dimensional regularization.

In determining these integrals as a Laurent series in ϵ we have to distinguish between cases
where different sets of external momenta are massive, as the massless limit and the expansion in
ϵ do not necessarily commute [84]. The internal propagators could generally be massive as well,
though for simplicity we ignore those cases here.

Starting with the box integrals, we have six different distinct cases,

, , ,

, , .

(2.10)

Here we label massless momenta by pi and single lines, while massive momenta have labels Ki and
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are represented by double lines. In the case of two massive momenta we have two distinct cases,
as the massive momenta can be either opposite or adjacent to one another. These are sometimes
called the easy and hard two-mass box integrals, reflecting the complexity of their derivation.

Defining the common prefactor of gamma functions,

rΓ =
Γ(1 + ϵ)Γ2(1− ϵ)

Γ(1− 2ϵ)
, (2.11)

these integrals can be expressed in terms of logarithms and dilogarithms up to order ϵ as follows [84,
87–89],

= ID4,0m[1] = 2rΓ

[
1

ϵ2
(
(−s12)−ϵ + (−s23)−ϵ

)
− 1

2
log2

(
−s12
−s23

)
− π2

2

]
+O(ϵ), (2.12)

= ID4,1m[1] =
2rΓ
s23s34

[
1

ϵ2
(
(−s23)−ϵ + (−s34)−ϵ − (−K2

1 )
−ϵ
)

− Li2

(
1− K2

1

s23

)
− Li2

(
1− K2

1

s34

)
− 1

2
log2

(
−s12
−s23

)
− π2

6

]
+O(ϵ),

(2.13)

= ID4,2me[1] =
2rΓ

s12s23 −K2
1K

2
3

[
1

ϵ2
(
(−s23)−ϵ + (−s34)−ϵ − (−K2

1 )
−ϵ − (−K2

3 )
−ϵ
)

− Li2

(
1− K2

1

s12

)
− Li2

(
1− K2

1

s23

)
− Li2

(
1− K2

3

s12

)
− Li2

(
1− K2

3

s23

)
− Li2

(
1− K2

1K
2
3

s12s23

)
− 1

2
log2

(
−s12
−s23

)]
+O(ϵ),

(2.14)

= ID4,2mh[1] =
2rΓ
s12s23

[
1

ϵ2
(
(−s23)−ϵ + (−s12)−ϵ − (−K2

1 )
−ϵ − (−K2

2 )
−ϵ
)

+
1

ϵ2
(−K2

1 )
−ϵ(−K2

2 )
−ϵ

(−s12)−ϵ
− Li2

(
1− K2

1

s23

)
− Li2

(
1− K2

2

s23

)
− 1

2
log2

(
−s12
−s23

)]
+O(ϵ),

(2.15)
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= ID4,3m[1] =
2rΓ

s12s23 −K2
1K

2
3

×

[
1

ϵ2
(
(−s23)−ϵ + (−s34)−ϵ − (−K2

1 )
−ϵ − (−K2

2 )
−ϵ − (−K2

3 )
−ϵ
)

+
1

ϵ2
(−K2

1 )
−ϵ(−K2

2 )
−ϵ

(−s12)−ϵ
+

1

ϵ2
(−K2

2 )
−ϵ(−K2

3 )
−ϵ

(−s23)−ϵ
− Li2

(
1− K2

1

s12

)
− Li2

(
1− K2

3

s23

)
+ Li2

(
1− K2

1K
2
3

s12s23

)
− 1

2
log2

(
−s12
−s23

)]
+O(ϵ),

(2.16)

I omitted here the definition of the finite four mass box integral ID4,4m[1], due to its lengthy definition.
An explicit form can be found in ref. [84]. Ref. [89] also provides expressions for these integrals
with internal masses in the propagators.

For triangle integrals we have three distinct cases, namely those integrals with one, two or three
massive momenta,

, , . (2.17)

The first two integrals are [84, 90],

= ID3,1m[1] =
rΓ
ϵ2

(−K2
1 )

−ϵ

(−K2
1 )

, (2.18)

= ID3,2m[1] =
rΓ
ϵ2

(
−K2

1

)−ϵ −
(
−K2

2

)−ϵ

(−K2
1 )− (−K2

2 )
, (2.19)

omitting again the finite three-mass integral ID3,3m. Its form can also be found in ref. [84].

Lastly we require the bubble integral

. (2.20)

As we are assuming the propagators to be massless, the external momentum K needs to be massive
for this integral to be non-zero in dimensional regularization. Up to order ϵ terms the integral is
then given by [89]

= ID2 [1] = (−K2)−ϵ

(
1

ϵ
+ 2

)
+O(ϵ). (2.21)
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2.2 Four-Dimensional Generalized Unitarity

In the previous section, we saw that any Feynman integral appearing in a one-loop amplitude A(1)

has to be expressible as a linear combination of box, triangle or bubble integrals, with coefficients
rational in the kinematics. Thus, we can express such an amplitude in terms of a basis of integrals,

A(1),D =
∑

C
(1)
Box I

D
4 [1] +

∑
C

(1)
Tri I

D
3 [1] +

∑
C

(1)
Bub I

D
2 [1] +R(1) +O(ϵ), (2.22)

where the summations are assumed over all possible box, triangle and bubble configurations. As
an example, consider the four gluon amplitude A(1)

4:1(1
+2+3−4−). We should be able to express

this amplitude as

A
(1)
4:1(1

+2+3−4−) = C
(1)
Box,1 I

D
4

[ ]
+C

(1)
Tri,1 I

D
3

[ ]
+C

(1)
Tri,2 I

D
3

[ ]
+C

(1)
Tri,3 I

D
3

[ ]
+C

(1)
Tri,4 I

D
3

[ ]
+C

(1)
Bub,1 I

D
2

[ ]
+C

(1)
Bub,2 I

D
2

[ ]
+R(1) +O(ϵ).

(2.23)

From a Feynman diagrammatic computation it would be exceedingly difficult to obtain the integral
coefficients in all but the simplest cases. However, we are able project to amplitudes onto such a
basis of Feynman integrals, and obtain the coefficients directly in terms of tree amplitudes. This
approach of obtaining loop-amplitudes by sewing together tree-level ones was first established in
refs. [23, 24], and later lead to the method of generalized unitarity [25, 91].

As discussed in section 1.4.1, Feynman integrals as analytic functions of the kinematics contain
singularities. These singularities are associated to loop propagators going on-shell, and their precise
location is given by the Landau equations. Each distinct Feynman integral has a unique set of
singularities. By extracting the part of the amplitude which has the set of singularities specific to
a given Feynman integral, we can deduce the basis coefficient belonging to that integral.

We have to distinguish between different classes of singularities: physical and anomalous ones.
The physical singularities are related to thresholds caused by the possible intermediate on-shell
particle production. As an example, consider a four-point one-loop amplitude A(1)(1234), with a
massive particle running in the loop. If s = (p1 + p2)

2 ≥ 4m2, the loop can create an on-shell
particle pair,

−→ . (2.24)

In this case, two of the internal propagators go on-shell. The particle creation is associated to a
singularity of the amplitude, with branch point s = 4m2, and a branch cut for s > 4m2. Singu-
larities associated to physical processes of particle creation are referred to as physical singularities.
The discontinuity across their branch cuts can be computed via the Cutkosky cutting rule [27]:
to obtain the discontinuity for a physical threshold with a set of propagators going on-shell, we
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replace each involved propagator using the rule,

i

(ℓ−K)2 −m2
→ 2πδ+((ℓ−K)2 −m2) (2.25)

The delta function δ+(P 2) ensures that momentum of the cut propagator has positive energy, i.e.

δ+(P 2) = δ(P 2)Θ(P 0). (2.26)

A rigorous proof of the Cutkosky rules can be found in ref. [92].

The Cutkosky cutting rule are closely connected to the optical theorem, a classic result in
quantum field theory. I summarize here the discussion of ref. [42]. Defining the S-matrix as

S = 1+ iT, (2.27)

with T containing all non-trivial interactions, unitarity requires that,

1 = ⟨ϕ|ϕ⟩ = ⟨ϕ′|S†S|ϕ′⟩ . (2.28)

The S-matrix therefore has to satisfy,

1 = S†S = 1− iT† + iT+ T†T, (2.29)

or in other words,
iT† − iT = T†T. (2.30)

To see the consequence for amplitudes, we compute the expectation value with respect to external
states ϕout and ϕin

i ⟨ϕout|T†|ϕin⟩ − i ⟨ϕout|T|ϕin⟩ = ⟨ϕout|T†T|ϕin⟩ =
∑∫
ϕi

⟨ϕout|T†|ϕi⟩ ⟨ϕi|T|ϕin⟩ , (2.31)

where on the right-hand side we inserted an identity 1 in the form of a full set of single and
multi-particle states. The summation runs over the number of particles, as well as particle types,
while the integration represents a phase-space integral attributed to every particle. To make the
connection with the Cutkosky rule clearer, we can rewrite each of these integrals as,∫

d3p

(2π)3
1

2Ep
=

∫
d4p

(2π)4
(2π)δ+(p2 −m2). (2.32)

The equality of eq. (2.31) has to hold at every order in perturbation theory. Looking at the order
corresponding to one-loop amplitudes on the left-hand side, the right-hand side can only involve
two-particle states ϕi, such that

iA(1)∗(ϕin → ϕout)− iA(1)(ϕin → ϕout) =
∑∫

ϕi={φ1,φ2}

A(0)(ϕin → {φ1, φ2})A(0)∗(ϕout → {φ1, φ2})

(2.33)
Due to the analyticity of scattering amplitudes, the left-hand side can be interpreted as the dis-
continuity of A(1) in s =

∑
i∈ϕin

pi. The right-hand side is precisely the one-loop amplitude with
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two internal propagators cut via the Cutkosky rules

At next order in perturbation theory, the left-hand side of eq. (2.31) corresponds to the dis-
continuity of the two-loop amplitude, while the right-hand side can be interpreted as the two-loop
amplitude with either two- or three propagators cut

DiscA(2)(ϕin → ϕout) =
∑∫

ϕi={φ1,φ2}

A(0)(ϕin → {φ1, φ2})A(1)∗(ϕout → {φ1, φ2})

+
∑∫

ϕi={φ1,φ2}

A(1)(ϕin → {φ1, φ2})A(0)∗(ϕout → {φ1, φ2})

+
∑∫

ϕi={φ1,φ2,φ3}

A(0)(ϕin → {φ1, φ2, φ3})A(0)∗(ϕout → {φ1, φ2, φ3}).

(2.34)
Thus, requiring unitarity of the S-matrix leads to exactly the relation between the discontinuity
and cuts of an amplitude proven by Cutkosky [27]. Such cuts are therefore also called unitarity
cuts.

As mentioned before, amplitudes, and as an extension Feynman integrals, possess additional
singularities besides the physical ones, which are related to additional propagators going on-shell.
These singularities are sometimes called anomalous, as they do not correspond to a physical process,
with some being associated to complex momentum configurations. The precise determination of
the discontinuities across their associated branch cuts is not covered by the Cutkosky cutting rule,
as for example the delta function vanishes for complex arguments. A more rigorous approach of
computing the discontinuities is based on computing the residue of poles associated to on-shell
propagators [92–94]. This allows the computation of multiple discontinuities consecutively for all
thresholds, physical or non-physical, with the result of cutting an amplitude into more than two
parts. These are called generalized cuts, and form the basis of generalized unitarity method.

2.2.1 Unitarity Cuts and Loop-Momentum Parametrizations

We will now discuss the computation of the integral coefficients of eq. (2.22) using generalized
unitarity cuts. We review the procedure and loop momentum parametrization presented in ref. [95],
as these are well suited for analytic computations.

2.2.1.1 Box Coefficients

The easiest type of integral to consider in the basis of eq. (2.22) is the box integral. We will
focus in the following on the construction of integral coefficients for a one-loop amplitude A(1)

in Yang–Mills theory. Given such an amplitude and a box integral ID4 in the basis of eq. (2.22),
we would like to determine the associated coefficient C

(1)
Box. Let us assume the most general box

integral, namely the integral with four massive external momenta K1,K2,K3,K4. We choose the
loop integration variable ℓ to be the momentum of the propagator between K4 and K1 as shown
in Figure 2.2, such that,

ID4 =

∫
dDℓ

(2π)D
1

ℓ2(ℓ−K1)2(ℓ−K12)2(ℓ+K4)2
. (2.35)



2.2. FOUR-DIMENSIONAL GENERALIZED UNITARITY 37

Figure 2.2: A generic box cut. The momenta K1,K2,K3,K4 are assumed to be massive. The
loop momentum ℓ is defined to be flowing from the K4 and into the K1 corner.

We obtain C
(1)
Box by projecting the amplitude onto ID4 . Computing the discontinuities unique to

ID4 , i.e. the one associated to four on-shell conditions for the loop-momentum

ℓ2 = 0, (ℓ−K1)
2 = 0, (ℓ−K12)

2 = 0, (ℓ+K4)
2 = 0, (2.36)

where K12 = K1+K2. We can obtain this discontinuity through four generalized cuts. We will call
this operation the box cut CutBox As mentioned before, these discontinuities are not necessarily
associated to physical or even real momentum configurations. Keeping the external kinematics
fixed, we can assume the integration variable ℓ to be complex, and compute the residues through
contour integrals around the associated poles.

First let us act with CutBox on the amplitude, which splits the integrand into four on-shell tree
amplitudes. Assuming we are cutting gluon propagators, we can use the gluon polarization com-
pleteness relation to turn the cut propagators into sums over the polarization states, as discussed
in section 1.3.2. In this case we end up with

CutBox[A
(1)] = (−i)(4π)D/2i4

∑
hi=±

∑
ℓ=ℓ±

JA
(0)
1

(
(−ℓ)h1 , {K1}, (ℓ−K1)

h2

)
×A

(0)
2

(
(−ℓ+K1)

h2 , {K2}, (ℓ−K12)
h3

)
×A

(0)
3

(
(−ℓ+K12)

h3 , {K3}, (ℓ+K4)
h4

)
×A

(0)
4

(
(−ℓ−K4)

h4 , {K4}, (ℓ)h1

)
= (−i)(4π)D/2J

∑
ℓ=ℓ±

A
(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)A

(0)
4 (ℓ) +O(ϵ)

(2.37)

The A(0)
i are tree-level color-ordered amplitudes, with {Ki} being the set of external momenta

which sum to the momentum Ki. For conciseness, we will refer to these amplitudes only by their
indices. The factor of (−i) is the overall normalization we chose for all amplitudes, c.f. eq. (1.59),
while the factor of (4π)D/2 is the normalization of one-loop partial amplitudes following eq. (1.98).
The factor of i4 originates from applying the amplitude normalization (−i) to each of the A(0)

i .
Computing residues for the generalized cuts produces a factors (−i) for every cut propagator,
which are compensated by the factors of i in the propagator numerators.

The four cuts completely fix the four-dimensional part of ℓ. In four-dimensional unitarity we
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content ourselves with this situation, and choose to ignore any contributions stemming from the
(−2ϵ)-components of ℓ. We will describe their treatment in section 2.3. There exist generally two
solutions, denoted ℓ+ and ℓ−, which we need to sum over. In J we collect all terms that cancel in
the end, i.e. the integral

∫
d−2ϵℓ, Jacobians and factors of 2π that originate from the residues and

loop integrand.

Now that we know the action of CutBox on the left-hand side of eq. (2.22), let us see its effect
on the right-hand side. The given box integral is the only one with the specific discontinuities,
with all other integrals vanishing under the action of CutBox. Applying CutBox to ID4 [1] leads to,

CutBox

[
C

(1)
Box I

D
4 [1]

]
= C

(1)
Box(−i)(4π)

D/2(−i)4J
∑
ℓ=ℓ±

1

= 2C
(1)
Box(−i)(4π)

D/2J .

(2.38)

Comparing eqs.(2.37) and (2.38), we obtain for the box coefficient [25],

C
(1)
Box =

1

2

∑
ℓ=ℓ±

A
(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)A

(0)
4 (ℓ) +O(ϵ) (2.39)

The expression for the box coefficient in eq. (2.39) is independent of the particular realization of
ℓ±; we use the parametrization presented in ref. [96]. Note that in the case of triangle and bubble
cuts this will no longer hold, and the form of the coefficient will generally be parametrization
dependent.

We construct the loop momentum fulfilling the four on-shell conditions in terms of the external
kinematics. By projecting the massive momenta K1, K4 onto each other, we can obtain massless
momenta K♭

1, K♭
4,

K♭
1 =

γ2K1 − γK2
1K4

γ2 −K2
1K

2
4

, K♭
4 =

γ2K4 − γK2
4K1

γ2 −K2
1K

2
4

. (2.40)

In these expressions, γ is defined by,

(K♭
1)

2 =
γ4K2

1 + γ2(K2
1 )

2K2
4 − 2γ3K2

1 (K1 ·K4)

(γ2 −K2
1K

2
4 )

2
= 0 (2.41)

⇔ γ2K2
1 +K2

1K
2
4 − 2γ(K1 ·K4) = 0 (2.42)

⇒ γ = (K1 ·K4)±
√
(K1 ·K4)2 −K2

1K
2
4 , (2.43)

In case either K2
1 or K2

4 vanishes, the sign of the root is chosen such that γ is non-zero. We also
find that,

γ = (K♭
1 +K♭

4)
2 = 2(K♭

1 ·K♭
4), (2.44)

and that,

K1 = K♭
1 +

K2
1

γ
K♭

4, K4 = K♭
4 +

K2
4

γ
K♭

1. (2.45)

We use the momenta K♭
1 and K♭

4 to build an Ansatz for the loop-momentum. Following ref. [96],
we assume that

ℓµ = cK♭µ
1 + dK♭µ

4 +
1

2

(
t ⟨K♭

1|γµ|K♭
4] + b ⟨K♭

4|γµ|K♭
1]
)
+O(ϵ), (2.46)
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Figure 2.3: A generic triangle cut. The momenta K1,K2,K3 are generally massive. The loop
momentum ℓ is defined to flow out of the K3 and into the K1 corner.

where by O(ϵ) we mean the (−2ϵ)-dimensional components of ℓ in dimensional regularization. In
four-dimensional unitarity we ignore these contributions, and so we will drop them in this discussion,
though their presence is always implicitly assumed.

The on-shell condition ℓ2 = 0 translates into

b =
cd

t
.

Next, (ℓ−K1)
2 = 0 and (ℓ+K4)

2 = 0 fix the parameters c and d to,

c = −K
2
4 (γ +K2

1 )

γ2 −K2
1K

2
4

, d =
K2

1 (γ +K2
4 )

γ2 −K2
1K

2
4

. (2.47)

The last on-shell condition (ℓ−K12)
2 = 0 provides a quadratic relation for t, whose solutions are,

t± =
∆±

√
∆2 − 4cdtr−(K♭

1K2K♭
4K2)

2 ⟨K♭
1|K2|K♭

4]
, ∆ = −(2K2 · (K1 + cK♭

1 + dK♭
4) +K2

2 ). (2.48)

2.2.1.2 Triangle Coefficients

We now turn to the computation of coefficients of triangle integrals ID3 [1]. We again choose a generic
representative with all external momenta K1,K2,K3 being massive, with ℓ flowing between K3

and K1. This configuration is shown in Figure 2.3.

We again make use of the discontinuities of the amplitude to project it onto the basis. As we
are interested in the coefficient of a triangle integral, we only compute the discontinuities of three
thresholds, cutting the loop amplitude into three tree amplitudes. Computing the discontinuities
associated to the on-shell conditions

ℓ2 = 0, (ℓ−K1)
2 = 0, (ℓ+K3)

2 = 0, (2.49)

defines the triangle cut operation CutTri. However, the situation is complicated by the fact that
more than one basis integral develop such discontinuities. While all bubble and all but one triangle
integral vanish under application of CutTri, a set of box integrals contain the same propagators, and
will therefore not vanish when computing residues. We will therefore have to perform additional
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steps to disentangle the triangle from the box contributions.

As mentioned in the previous section, the form of the triangle coefficients will depend on the
particular loop momentum parametrization we use. A convenient choice is to reuse the parametriza-
tion of the box case, with the exception of leaving the parameter t unfixed. We again define the
massless momenta associated to K1 and K3,

K♭
1 =

γ2K1 − γK2
1K3

γ2 −K2
1K

2
3

, K♭
3 =

γ2K3 − γK2
3K1

γ2 −K2
1K

2
3

, (2.50)

where

γ = (K1 ·K3)±
√
(K1 ·K3)2 −K2

1K
2
3 .

Again, for vanishing K2
1 or K2

3 we choose the sign in γ such that γ is non-zero. We already found
a solution for the three on-shell conditions in eq. (2.49) in the box case, namely,

ℓµ = cK♭µ
1 + dK♭µ

3 +
1

2

(
t ⟨K♭

1|γµ|K♭
3] +

cd

t
⟨K♭

3|γµ|K♭
1]

)
, (2.51)

with
c = −K

2
3 (γ +K2

1 )

γ2 −K2
1K

2
3

, d =
K2

1 (γ +K2
3 )

γ2 −K2
1K

2
3

. (2.52)

Contrary to the box case, t is not fixed by the cuts, and needs to be integrated over.

Interestingly, just as in the box case we have two possible solutions for realizing the on-shell
conditions in this form. In case that neither K2

1 nor K2
3 vanishes these are provided by the two

different solutions for γ. Should one or both of the K2
i vanish, we have to choose the sign in γ such

that it is non-zero. In this case the second solution can be obtained from the one in eq. (2.51) via
complex conjugation,

ℓ∗µ = cK♭µ
1 + dK♭µ

3 +
1

2

(
t [K♭

1|γµ|K♭
3⟩+

cdγ − µ2

tγ
[K♭

3|γµ|K♭
1⟩
)
. (2.53)

However, the fact that we have two solutions for the triangle loop momentum does not mean that
imposing an additional on-shell condition for the box parametrization would lead to four solutions,
which would be in conflict with section 2.2.1.1. Instead, the resulting solutions for ℓ would be
degenerate, so we would still only have two distinct solutions.

To obtain the expression for the triangle coefficient C
(1)
Tri, let us again first act with CutTri on

the amplitude,

CutTri[A
(1),D] = (−i)(4π)D/2i3

∑
hi=±

∫
dtJt

[
A

(0)
1

(
(−ℓ)h1 , {K1}, (ℓ−K1)

h2

)
×A

(0)
2

(
(−ℓ+K1)

h2 , {K2}, (ℓ+K3)
h3

)
×A

(0)
3

(
(−ℓ−K3)

h3 , {K3}, ℓh1

) ]
= −(4π)D/2

∫
dtJt

∑
ℓ=ℓ(t),ℓ∗(t)

A
(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)

(2.54)

We again have to sum over the two solutions for the cut loop momentum ℓ(t) and ℓ∗(t). The
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t-dependent factor Jt collects all remaining factors, whose exact form will end up being irrelevant
to determining the triangle coefficients.

At this point the box and triangle contributions are still mixed together, and we need to separate
the two. Fortunately this task is simple in this case. As we used the parameter t to enforce the
fourth on-shell condition in the box case, box contributions will be associated with t poles of the
product A(0)

1 (ℓ)A
(0)
2 (ℓ)A

(0)
3 (ℓ). All such poles have to be at finite values ti. Thus to obtain the

proper triangle contributions we need only remove all parts of the product of amplitudes that
has a pole at finite values of t. This is a simple task when considering the large-t expansion of
A

(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ), as in this limit any finite pole will behave as

1

t− ti
=

1

t
+O

[(
1
t

)2] (2.55)

To make this separation of the pole terms from the triangle coefficient more explicit, we use the
notation of refs. [60, 95, 96]. Given a function f(x), we define Infx[f(x)] as,

f(x) = Infx[f(x)] +O
[(

1
x

)1]
, (2.56)

such that in general

Infx[f(x)] =

m∑
i=0

cix
i. (2.57)

The maximal power m is either an integer or ∞, depending on the large-x behavior of f(x). Using
Inf, we can therefore express f(x) via,

f(x) = Infx[f(x)] +
∑

poles xi

Resx=xi [f(x)]

x− xi
, (2.58)

assuming f(x) has only single poles in x. For later discussions we also define the notation,

Infx1x2...xn
[g(x)] ≡ Infx1

◦ Infx2
◦ . . . ◦ Infxn

[g(x)]. (2.59)

Applying eq. (2.58) to the product of trees in eq. (2.54) we obtain

A
(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ) = Inft

[
A

(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)

]
+

∑
poles ti

Rest=ti

[
A

(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)

]
t− ti

.

(2.60)
When applying CutTri to both sides of eq. (2.22), the 1/(t − ti) terms would match up with box
terms of the type C

(1)
Box CutTri[I

D
4 [1]]. As we have already determined the box coefficients we can

just ignore these pole terms and focus on the Inft contribution belong to the triangle in question,

CutTri[A
(1),D] = −(4π)D/2

∑
hi=±

∫
dtJt

∑
ℓ=ℓ(t),ℓ∗(t)

Inft

[
A

(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)

]
+ (Boxes).

(2.61)
The Inft terms introduce integrals of the form,∫

dtJtt
n. (2.62)



42 CHAPTER 2. GENERALIZED UNITARITY

Figure 2.4: A generic bubble cut. Assuming the massive momentum K to be outgoing, we define
the loop momentum ℓ to be flowing from the −K and into the K corner.

They vanish for n ̸= 0 [95, 97], ∫
dtJtt

n = 0, ∀n ̸= 0, (2.63)

which is a special feature of the parametrization used. Eq.(2.61) therefore turns into,

CutTri[A
(1),D] = −(4π)D/2

∑
hi=±

∑
ℓ=ℓ(t),ℓ∗(t)

Inft

[
A

(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)

]
t0

∫
dtJt + (Boxes).

(2.64)
where in Inft [. . .]|t0 we only keep the term proportional to t0. Acting with CutTri on our target
triangle integral results in,

CutTri[C
(1)
Tri I

D
3 [1]] = i(4π)D/2 C

(1)
Tri

∫
dtJt(−i)3

∑
ℓ=ℓ(t),ℓ∗(t)

1

= −2(4π)D/2 C
(1)
Tri

∫
dtJt.

(2.65)

Comparing eqs.(2.64) and (2.65) we can determine the coefficient C
(1)
Tri to be,1

C
(1)
Tri =

1

2

∑
hi=±

∑
ℓ=ℓ(t),ℓ∗(t)

Inft

[
A

(0)
1 (ℓ)A

(0)
2 (ℓ)A

(0)
3 (ℓ)

]
t0
. (2.66)

2.2.1.3 Bubble Coefficients

Finally, we need to determine the coefficients of bubble integrals in the basis of eq. (2.22). In bubble
integrals we have only one external massive momentum K, and we define the loop momentum ℓ

as shown in Figure 2.4.

We now apply two generalized cuts to either side of eq. (2.22). Computing the residues associ-
ated to the on-shell conditions,

ℓ2 = 0, (ℓ−K)2 = 0 (2.67)

defines the bubble cut CutBub. In the basis this removes all unwanted bubble contributions, leaving
us with the desired bubble integral. However, just as in the triangle case, there exist triangle and
box integrals in the basis, which share these propagators, and therefore are non-vanishing under
such bubble cuts. We will again have to perform additional steps to extract the pure bubble
coefficient.

As in the triangle case, the derivation of the bubble coefficient will depend on the specific loop
1The sign agrees with ref. [95] after accounting for the (−i) normalization of amplitudes used in this thesis. The

expression of ref. [96] requires a sign flip to match this result.
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momentum parametrization we use to make the on-shell conditions manifest. We would like to
choose a parametrization similar to the box and triangle case. However, in this case we cannot
define such a parametrization entirely in terms of the external kinematics, as we have only a single
momentum K. We therefore need to introduce an arbitrary reference momentum χ. Choosing χ
to be lightlike, we define the flattened version of K to be,

K♭ = K − K2

γ
χ, (2.68)

where
γ = 2(K · χ) = 2(K♭ · χ) . (2.69)

In analogy to the box and triangle cases, we make the Ansatz for the loop-momentum ℓ [95],

ℓµ = yK♭µ + dχµ +
1

2

(
t ⟨K♭|γµ|χ] + b ⟨χ|γµ|K♭]

)
. (2.70)

The on-shell conditions ℓ2 = 0 and (ℓ−K)2 = 0 then fix the parameters b and d to be,

d =
K2(1− y)

γ
, b =

yd

t
=
y(1− y)K2

tγ
, (2.71)

such that

ℓµ(t, y) = yK♭µ +
K2(1− y)

γ
χµ +

1

2

(
t ⟨K♭|γµ|χ] + y(1− y)K2

tγ
⟨χ|γµ|K♭]

)
. (2.72)

In contrast to the box and triangle case there exists only one solution, dependent on two parameters
t and y.

We again first act with CutBub on the amplitude,

CutBub[A
(1),D] = (−i)(4π)D/2i2

∑
hi=±

∫
dt dyJt,y

[
A

(0)
1

(
(−ℓ)h1 , {K}, (ℓ−K)h2

)
×A

(0)
2

(
(−ℓ+K)h2 , {−K}, ℓh1

) ]
= i(4π)D/2

∫
dt dyJt,yA

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y)),

(2.73)

leaving us with two integrals over the parameters t and y. As we will see, the process of disentan-
gling the bubble coefficient from the box and triangle contributions is more subtle here, so we will
proceed slowly. We first apply the decomposition of eq. (2.58) to the product of tree amplitudes
with respect to the variable y,

CutBub[A
(1),D] = i(4π)D/2

∫
dt dyJt,y

 Infy

[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]

+
∑

poles yi

Resy=yi

[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]
y − yi

.
(2.74)

The poles in y stem from additional propagators in either of the amplitudes A(0)
1 or A(0)

2 . The term
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Resy=yi

[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]
therefore descends from box and triangle integrals. On the other

hand, Infy
[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]
by definition has no poles in y. An important consequence is

that it does not possess any poles in t either. The source of the y poles is one additional propagator
going on-shell. Each of these poles could equally be expressed as a t pole. However, as by definition
the Infy term is entirely made up of contributions where no additional propagator can go on-shell,
we certainly cannot have any poles in t. Another way of seeing this is to consider the effect of the
Infy operation on an additional, uncut propagator with some momentum Q, i.e.

1

(ℓ(t, y) +Q)2
=[

y 2(Q ·K♭) +
K2(1− y)

γ
2(Q · χ) + t ⟨K♭|K3|χ] +

y(1− y)K2

tγ
⟨χ|Q|K♭] +Q2

]−1

. (2.75)

To obtain the Infy terms we have to series-expand this propagator for large values of y. As long
as there remains any y dependence in the propagator, the resulting expansion does not contain
any poles in t. The only case in which all y dependent terms in eq. (2.75) disappear is for Q to
simultaneously satisfy the three conditions,

K3 ·K♭ = 0, K3 · χ = 0, ⟨χ|K3|K♭] = 0. (2.76)

The only values of Q for which all conditions are satisfied is,

Qµ = C × ⟨χ|γµ|K♭] , (2.77)

for some constant C. As χ cannot be K♭, this Q would have to be complex, and the propagator
would turn into,

1

(ℓ(t, y) +Q)2
= − 1

Cγt
. (2.78)

Besides always being able to choose a value of χ for which this alignement does not occur, ref. [95]
showed that the associated t integral vanishes.

Returning to the cut amplitude, we now apply the decomposition of eq. (2.58) with respect to
t, so that eq. (2.74) turns into,

CutBub[A
(1),D] = i(4π)D/2

∫
dt dyJt,y

 Inft,y

[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]

+ Inft

 ∑
poles yi

Resy=yi

[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]
y − yi



+
∑

poles yi

∑
poles ti(yi)

Rest=ti

[
Resy=yi

[
A

(0)
1 (ℓ(t,y))A

(0)
2 (ℓ(t,y))

]
y−yi

]
t− ti(yi)

,

(2.79)

using the notation introduced in eq. (2.59). Note that the Inf and Res operations for t and y
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generally do not commute. Particularly, the sum over poles in t includes only those left over after
the yi residue, which is the reason for the notation ti(yi). The double residue terms belong to scalar
box integrals, while the double Inf term will contribute to the bubble coefficient. The parameter
integrals involved have been determined in ref. [95]. For positive powers in t they vanish∫

dt dyJt,yt
i ̸=0yj = 0. (2.80)

Power counting limits the maximal power in y in gauge-theory amplitudes to two. The associated
integrals

Yi =

∫
dt dyJt,yy

i (2.81)

evaluate to [95]
Y0 = 1, Y1 = −1

2
, Y2 =

1

3
, (2.82)

where I use the notation of ref. [96]. In practice this integration can be carried out via a simple
replacement, as∫

dt dyJt,y Inft,y

[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]
≡ Inft,y

[
A

(0)
1 A

(0)
2

] ∣∣∣
t0,yi→Yi

. (2.83)

The mixed Inft[Resy] term in eq. (2.79) requires more careful consideration. The pole in
y clearly identifies them as contributions originating from integrals with three propagators, i.e.
triangle integrals. However, this does not mean that they belong entirely to triangle coefficients.
We have to keep in mind that when the loop momentum appears in the numerator, we are dealing
with tensor integrals, which after Passarino–Veltman reduction can contain terms with only two
propagators. Such terms would also contribute to bubble coefficients. After the Inft operation, the
second term of eq. (2.79) contains only positive powers of t in the numerator, and these powers of
t can only appear through the presence of the loop momentum in the numerator. The t0 terms
do belong to the scalar triangle integrals, and therefore to triangle coefficients. For the remaining
powers ti we have to use Passarino–Veltman reduction to obtain the contribution to the bubble
coefficient.

To obtain the tensor integral terms, we take a step back and relate the yi pole terms of eq. (2.74)
to triangle cuts. The poles in y originate from on-shell propagators, and as we saw in discussion of
triangle cuts, three on-shell conditions lead to two distinct solutions. The poles in yi will therefore
always come in pairs, with each pair belonging to a specific third on-shell propagator. Let us
therefore consider a specific propagator (ℓ+K ′)2. Its on-shell condition translates into,

(ℓ(t, y) +K ′)2 = 0

⇒
[
y 2(K ′ ·K♭) +

K2(1− y)

γ
2(K ′ · χ) + t ⟨K♭|K ′|χ] + y(1− y)K2

tγ
⟨χ|K ′|K♭] + (K ′)2

]
= 0,

(2.84)

which we can solve for y [96],

y± =
c1 ±

√
c21 + 4c0c2
2c2

, (2.85)
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Figure 2.5: An example of a triangle cut contributing to the bubble coefficient. The momentum
K and the solid lines are those belonging to the original bubble. The momentum K ′ and dashed
lines are those of the additional on-shell condition.

with
c0 = t

[
γ(K ′)2 + 2(K ′ · χ)K2

]
+ t2γ ⟨K♭|K ′|χ] ,

c1 = K2 ⟨χ|K ′|K♭] + t
[
γ2(K ′ ·K♭)−K22(K ′ · χ)

]
,

c2 = K2 ⟨χ|K ′|K♭] .

(2.86)

We can make the poles of the propagator in y manifest by rewriting it in the form,

1

(ℓ+K ′)2
=

−tγ
K2 ⟨χ|K ′|K♭]

1

(y − y+)(y − y−)
. (2.87)

Let us further assume that this propagator is part of A(0)
2 in eq. (2.79), and define,

Ã
(0)
2 = (ℓ+K ′)2A

(0)
2 , (2.88)

with this propagator removed, such that,

Ã
(0)
2

(
(−ℓ+K)h2 , {−K}, ℓh1

)
(ℓ+K′)2→0−→ −

∑
h′=±

A
(0)
2,1

(
(−ℓ+K)h2 , {−K −K ′}, (ℓ+K ′)h

′
)
A

(0)
2,2

(
(−ℓ−K ′

2)
h′
, {K ′

2}, ℓh1

)
.

(2.89)

The factor of (−1) and sum over polarization states stem from the gluon propagator’s numerator,
as we have only removed its denominator2. This configuration is shown in Figure 2.5. To compute
the residues at y± we need to decompose the propagator. Looking only at the poles y± in the sum

2We also absorbed a factor of −i into definition of the second amplitude
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over poles yi, the second term of eq. (2.74) can be written as

i(4π)D/2

∫
dt dyJt,y

∑
yi=y±

1

y − yi
Res
y=yi

[
A

(0)
1 (ℓ(t, y))A

(0)
2 (ℓ(t, y))

]

= i(4π)D/2

∫
dt dyJt,y

∑
yi=y±

1

y − yi
Res
y=yi

[
A

(0)
1 (ℓ(t, y))

Ã
(0)
2 (ℓ(t, y))

(ℓ+K2)2

]

= i(4π)D/2(2πi)

∫
dt
∑

yi=y±

Jt,yi
Res
y=yi

[
A

(0)
1 (ℓ(t, y))

Ã
(0)
2 (ℓ(t, y))

(ℓ+K2)2

]

= −i(4π)D/2(2πi)

∫
dt dyJ̃ ′

t(δ(y − y+) + δ(y − y−))A
(0)
1 [ℓ(t, y)]A

(0)
2,1[ℓ(t, y)]A

(0)
2,2[ℓ(t, y)]

(2.90)

This can be related to a triangle cut of the amplitude, where in the loop-momentum parametriza-
tion of eq. (2.72) we fix y to y± to fulfill the third on-shell condition. We will call this operation
Cuttri/bub. Expressing the residue fixing y as two delta functions, careful evaluation of the Jaco-
bians leads to [95],

Cuttri/bub

[
A(1),D

]
= −i(4π)D/2i3

∫
dt dyJ ′

t(δ(y − y+) + δ(y − y−))A
(0)
1 [ℓ(t, y)]A

(0)
2,1[ℓ(t, y)]A

(0)
2,2[ℓ(t, y)]

= −i(4π)D/22(2πi)

∫
dt dyJ̃ ′

t(δ(y − y+) + δ(y − y−))A
(0)
1 [ℓ(t, y)]A

(0)
2,1[ℓ(t, y)]A

(0)
2,2[ℓ(t, y)]

(2.91)

Comparing with the last line of eq. (2.90), we can identify the pole part of the bubble cut with
triangle cuts of the amplitude using the bubble parametrization, up to a factor of 2.

Having connected the terms with poles in y to triangle cuts, we still need to expand this cut
for large values of t, as indicated by the Inft operation in eq. (2.79) We then need to determine
the parameter integrals of the triangle cut,

Ti =

∫
dtJ ′

tt
i. (2.92)

We only need to consider integrals over non-zero powers of t, as only these are related to tensor
integrals, and can therefore contain a bubble contribution. Performing the Passarino-Veltman
reduction results in [95],

T1 = − K2 ⟨χ|K ′|K♭]

2γ [(K ·K ′)2 −K2K ′2]
,

T2 =
3(K2)2 ⟨χ|K ′|K♭]

2

8γ2 [(K ·K ′)2 − (K2)K2]
2

[
(K ·K ′) +K ′2]

T3 = − (K2)3 ⟨χ|K ′|K♭]
3

48γ3 [(K ·K ′)2 −K2K ′2]
3 ,

×
(
11(K ·K ′)2 + 30(K ·K ′)K ′2 +K ′2 (4K2 + 15K ′2)) .

(2.93)

Again, in practice this integration can be carried out by replacing each power of ti in the Inft

expansion by Ti,
Inft

[
A

(0)
1 A

(0)
2 A

(0)
3

] ∣∣∣
ti>0→Ti

. (2.94)
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We now have all ingredients to find a compact form for the bubble coefficient. Applying the
bubble cut to the bubble basis integral leads to

CutBub[C
(1)
Bub I

D
2 [1]] = i(4π)D/2 C

(1)
Bub

∫
dt dyJt,y

= i(4π)D/2 C
(1)
Bub,

(2.95)

where in the second equality we use the definition of Y0 of eq. (2.82). Comparing with eq. (2.79)
and using the relation between the y pole terms and triangle cuts, we finally find for the bubble
coefficient,

C
(1)
Bub = Inft,y

[
A

(0)
1 A

(0)
2

] ∣∣∣
t0,yi→Yi

+
1

2

∑
triangle

cuts

∑
y±

Inft

[
A

(0)
1 A

(0)
2 A

(0)
3

] ∣∣∣
ti>0→Ti

. (2.96)

2.3 D-Dimensional Generalized Unitarity

In the discussion of the four-dimensional generalized unitarity method of the previous section
we ignored any contributions from the (−2ϵ) components of the D-dimensional loop momentum.
Instead, as the name suggests, we formulated the on-shell conditions under the assumption that ℓ
has four components, just as do the external momenta, hence the name. Such unitarity cuts probe
branch cuts in the four-dimensional kinematics, allowing us to determine any parts of an amplitude
that contain such discontinuities. However, loop amplitudes in Yang–Mills generally also contain
terms that are rational in the kinematics, and therefore are not obtainable from four-dimensional
unitarity. These can be interpreted as the result of cancellations between 1

ϵ UV-poles of integrals
with order ϵ parts of integral coefficients. Therefore, to capture these rational parts we need to
compute the integral coefficients by cutting propagators carrying D-dimensional loop momenta.
This technique is accordingly referred to as D-dimensional generalized unitarity [26, 98–103]. In
the following we will review the procedure presented in ref. [96].

We will always take the external momenta to be purely four-dimensional. It is then convenient
to split all loop-momenta ℓi into their 4- and (D − 4)-dimensional parts ℓi, ℓ̃i, such that,

ℓi = ℓi + ℓ̃i. (2.97)

Due to the external kinematics being four-dimensional, the ℓ̃i are guaranteed to be conserved
within each loop, and we can separate the integrations over ℓi and ℓ̃i,∫

dDℓ

(2π)D
→

∫
dD/2−2µ2

(2π)D−4

∫
d4ℓ

(2π)4
. (2.98)

Due to the external kinematics being four-dimensional, and requiring Lorentz invariance, guaran-
tees that the only structures the ℓ̃ can appear in are,

ℓ̃i · ℓ̃i = µ2
i , ℓ̃i · ℓ̃j = µij . (2.99)

Specializing to the one-loop case, we therefore extend the definition of one-loop Feynman integrals
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in eq. (2.1) to include numerators N [ℓ, µ2] depending on µ2, such that,

IDn
[
N [ℓ, µ2]

]
= (−i)(−1)n(4π)D/2ID

n [N [ℓ, µ2]], (2.100)

where,

ID
n

[
N [ℓ, µ2]

]
=

∫
dDℓ

(2π)D
N [ℓ, µ2]

ℓ2(ℓ−K1)2 . . .)(ℓ−K1 − . . .−Kn−1)2

=

∫
dD/2−2µ2

(2π)D−4

∫
d4ℓ

(2π)4
N [ℓ, µ2](

ℓ
2 − µ2

)(
(ℓ−K1)2 − µ2

)
. . .
(
(ℓ−K1...n−1)2 − µ2

) .
(2.101)

2.3.1 One-Loop Integral Basis in D Dimensions

When cutting D-dimensional propagators, the on-shell condition for ℓ can be rewritten in terms of
ℓ and ℓ̃ via

ℓ2 = 0 ⇒ ℓ
2
= −ℓ̃2 = µ2. (2.102)

We can therefore treat cuts involving the D-dimensional loop momentum ℓ as four-dimensional
cuts of the massive loop momentum ℓ, where the cut propagators include a mass term µ2 [104,
105]. The resulting integral coefficients will be dependent on both the external kinematics, as well
as µ2. As µ2 vanishes for D → 4 we can interpret this µ2 dependence to represent contributions
of higher order in ϵ.

The coefficients can only depend on powers of µ2, as any poles in µ2 have to originate from
additional propagators. The maximal power of µ2 is limited by power counting, meaning that for
boxes at most µ4 can appear, while for triangles and bubbles, only powers up to µ2 are allowed.
The box µ2 integral is of order ϵ, and therefore does not contribute.

To determine a basis of one-loop integrals in D = 4−2ϵ dimensions, we can again use the integral
reduction arguments described in section 2.1. As the loop-momentum is now D-dimensional we
can no longer ignore the −2ϵ components in the Gram determinant of eq. (2.8) when reducing
pentagon integrals. We thus need to include such integrals in a full D-dimensional basis. However,
if we are only interested in the amplitude up to terms of order ϵ, it is sufficient to work with an
integral basis of the form [96],

A(1),4−2ϵ =
∑

C
(1)
Box,[0] I

D
4 [1] +

∑
C

(1)
Tri,[0] I3[1] +

∑
C

(1)
Bub,[0] I2[1]

+
∑

C
(1)
Box,[4] I

D
4 [µ4] +

∑
C

(1)
Tri,[2] I3[µ

2] +
∑

C
(1)
Bub,[2] I

D
2 [µ2] +O(ϵ)

(2.103)

The integrals without powers of µ2 in their numerators are the parts of the amplitude obtainable
from four-dimensional unitarity. The integrals with µ2 numerator insertions evaluate to [96],

ID4 [µ4] = −1

6
+O(ϵ), ID3 [µ2] = −1

2
+O(ϵ),

ID2 [µ2] = −s
6
+O(ϵ),

(2.104)

where s is the square of the momentum flowing through the bubble. A derivation of these integrals,
as well integrals with higher powers of µ2 in the numerator can be found in appendix A.4. The
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Amplitude Vectors Fermions Scalars (complex)
A

(1)
s - - 1

A
(1)
N=1 (chiral) - 1 1

A
(1)
N=4 1 4 3

Table 2.1: Particle spectrum appearing in the loop of scalar and supersymmetric one-loop
amplitudes.

µ2 integrals do not appear in the four-dimensional construction and make up the rational parts of
the amplitude [96],

R(1) =
∑

C
(1)
Box,[4] I

D
4 [µ4] +

∑
C

(1)
Tri,[2] I3[µ

2] +
∑

C
(1)
Bub,[2] I

D
2 [µ2] +O(ϵ). (2.105)

2.3.2 SUSY Decomposition

In computing loop amplitudes from D-dimensional unitarity cuts, the states crossing cut propaga-
tors need to be D-dimensional. As we keep the external particles four-dimensional, we in principle
need to use tree amplitudes with a mixture of D- and four-dimensional states. For gluons and
fermions this is inconvenient as we would have to work with a non-integer number of states cross-
ing the cut propagators. We would much prefer to work with amplitudes where the number of
states does not depend on the dimension, which is only the case for scalars.

A common trick in D-dimensional generalized unitarity computations at one loop is to use
the supersymmetry decomposition. A gluonic one-loop amplitude can be expressed in terms of
supersymmetric amplitudes A(1)

N=4, A(1)
N=1, as well as amplitudes with a complex scalar in the loop

A
(1)
s . The complex scalar appearing in A

(1)
s can be thought of as a sum of two real scalars in the

loop. In all of these, the external states are taken to be the same, such that they only differ by the
particle spectrum in the loop, which is shown in Table 2.1.

An amplitude A(1)
g with only a gluon loop can be rewritten as,

A(1)
g = A

(1)
N=4 − 4A

(1)
N=1 +A(1)

s . (2.106)

We can convince ourselves of this by counting the number of gluonic, fermionic and scalar states.
The N = 4 amplitude provides the two gluonic helicity states that we are after. At the same time
it includes fermionic degrees of freedom, which we cancel by subtracting the N = 1 amplitude four
times. Both A

(1)
N=4 and A

(1)
N=1 come with additional scalars. Cancelling the fermions subtracted

one too many complex scalars in the loop, such thay wemneed to add back the scalar amplitude
A

(1)
s . For an amplitude A(1)

f with only a fermion in the loop we find a similar decomposition,

A
(1)
f = A

(1)
N=1 −A(1)

s . (2.107)

Having determined most of the amplitude from four-dimensional unitarity, we only need to
use D-dimensional unitarity to determine the rational part. The benefit of the supersymmetriy
decomposition is that supersymmetric amplitudes are entirely cut-constructible, and particularly
do not contain any rational parts. Therefore, in the relations of eqs.(2.106) and (2.107) the only



2.3. D-DIMENSIONAL GENERALIZED UNITARITY 51

source of rational terms are the scalar amplitudes A(1)
s , such that,

R(1)
g = R(1)

s , R(1)
g = −R(1)

s . (2.108)

Computing R
(1)
s via D-dimensional cuts is unproblematic: The cuts of D-dimensional massless

scalar propagators are equivalent to four-dimensional cuts of massive scalars with mass µ2. We can
therefore apply the D-dimensional unitarity approach, using tree-amplitudes of four-dimensional
massive scalars in the cuts.

2.3.3 Loop-Momentum Parametrization for D-Dimensional Cuts

To be able to carry out the projection onto the new integral basis involving µ2 terms, we need
to adapt the loop momentum parameterization of section 2.2. Following the approach of inter-
preting the D-dimensional cut momenta as massive four-dimensional momenta with mass µ2, we
parametrize ℓ, such that it fulfills the cut conditions ℓ2i = µ2. Besides the parameters already
introduced in the four-dimensional cuts, the loop momentum will additionally depend on µ2. This
method presented here is that of ref. [96].

2.3.3.1 Boxes

Let us again start with the box cut. We use the same conventions as in the four-dimensional
discussion, and make an Ansatz for the four-dimensional part of the loop momentum ℓ in terms of
the flattened momenta K♭

1 and K♭
4,

ℓ
µ
= cK♭µ

1 + dK♭µ
4 +

1

2

(
t ⟨K♭

1|γµ|K♭
4] + b ⟨K♭

4|γµ|K♭
1]
)
. (2.109)

The on-shell conditions ℓ2 = µ2 translates into

b =
cdγ − µ2

tγ
.

The on-shel conditions (ℓ −K1)
2 = 0 and (ℓ +K4)

2 = 0 fix the parameters c and d to the same
values as in the four-dimensional case

c = −K
2
4 (γ +K2

1 )

γ2 −K2
1K

2
4

, d =
K2

1 (γ +K2
4 )

γ2 −K2
1K

2
4

,

γ = (K1 ·K4)±
√
(K1 ·K4)2 −K2

1K
2
4 .

(2.110)

The last on-shell condition (ℓ−K1−K2)
2 = 0 provides a quadratic relation for t, with µ2 dependent

solutions

t± =
∆±

√
∆2 − 4 cdγ−µ2

γ tr−(K♭
1K2K♭

4K2)

2 ⟨K♭
1|K2|K♭

4]
, ∆ = −(2K2 · (K1 + cK♭

1 + dK♭
4) +K2

2 ) (2.111)

For rational terms we only require the leading coefficient in the large µ2 expansion. In computa-
tions it is therefore sufficient to use the leading behavior of the parameterized loop momentum.
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Expanding the solutions t± of eq. (2.111) for large values of µ2, we obtain

t± = ±

√
µ2

γ

√
tr−(K♭

1K2K♭
4K2)

⟨K♭
1|K2|K♭

4]
+O

[(
1√
µ2

)0
]

(2.112)

To obtain the box coefficients from the cut amplitude, we now require an additional step
compared to the four-dimensional case. Applying the D-dimensional box cut

CutBox

[
1

ℓ2(ℓ−K1)2(ℓ−K12)2(ℓ+K4)2

]
→ (−2πi)4δ(ℓ2)δ((ℓ−K1)

2)δ((ℓ−K12)
2)δ((ℓ+K4)

2)

(2.113)

to the amplitude results in a product of four tree-amplitudes, which still depends on µ2. We
proceed in the same manner as in the case of the four-dimensional triangle and bubble coefficients,
splitting the µ2 dependence into a Infµ2 and a pole part as

A
(0)
1

(
ℓ(µ2)

)
A

(0)
2

(
ℓ(µ2)

)
A

(0)
3

(
ℓ(µ2)

)
A

(0)
4

(
ℓ(µ2)

)
= Infµ2

[
A

(0)
1

(
ℓ(µ2)

)
A

(0)
2

(
ℓ(µ2)

)
A

(0)
3

(
ℓ(µ2)

)
A

(0)
4

(
ℓ(µ2)

)]
+

∑
poles µ2

i

Resµ2=µ2
i

[
A

(0)
1

(
ℓ(µ2)

)
A

(0)
2

(
ℓ(µ2)

)
A

(0)
3

(
ℓ(µ2)

)
A

(0)
4

(
ℓ(µ2)

)]
µ2 − µ2

i

(2.114)

The poles in µ2 stem from an additional propagator, meaning pentagon integrals. As we are
presently only interested in the rational contributions, we can discard the pole part as well as the
µ2 and µ0 terms of Infµ2 expansion, and we identify µ4 box coefficient as

C
(1)
Box,[4] =

1

2

∑
t=t±

Infµ2

[
A

(0)
1 A

(0)
2 A

(0)
3 A

(0)
4

]∣∣∣
µ4 (2.115)

2.3.3.2 Triangles

The procedure for triangle coefficients is largely the same as in the four-dimensional case. Using
the same setup as in section 2.2, we parametrize ℓ in terms of K♭

1 and K♭
3. The D-dimensional

on-shell conditions
ℓ
2
= µ2, (ℓ−K1)

2 = µ2, (ℓ+K3)
2 = µ2 (2.116)

lead to the solution [96]

ℓ
µ
= cK♭µ

1 + dK♭µ
3 +

1

2

(
t ⟨K♭

1|γµ|K♭
3] +

cdγ − µ2

tγ
⟨K♭

3|γµ|K♭
1]

)
(2.117)

where just as in the box case,

c = −K
2
3 (γ +K2

1 )

γ2 −K2
1K

2
3

, d =
K2

1 (γ +K2
3 )

γ2 −K2
1K

2
3

,

γ = (K1 ·K3)±
√
(K1 ·K3)2 −K2

1K
2
3 .

(2.118)
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In the case of γ having only one non-zero value, the second triangle loop-momentum solution can
be obtained from complex conjugation

ℓ
∗µ

= cK♭µ
1 + dK♭µ

3 +
1

2

(
t ⟨K♭

3|γµ|K♭
1] +

cdγ − µ2

tγ
⟨K♭

1|γµ|K♭
3]

)
(2.119)

We treat the additional dependence on µ2 as in the box case. We first extract the massive “four-
dimensional” triangle coefficient using the method of section 2.2. The integrals over non-zero
powers of t also vanish for massive four-dimensional propagators, such that we again only require
the t0 terms. We then decompose this coefficient into µ2 pole terms and the Infµ2 contribution. The
pole terms again belong to coefficients of integrals with additional propagators. For the rational
contribution we require the µ2 triangle integral coefficient, which we obtain via

C
(1)
Tri,[2] =

1

2

∑
ℓ,ℓ

∗

Infµ2,t

[
A

(0)
1 A

(0)
2 A

(0)
3

]∣∣∣
µ2,t0

(2.120)

2.3.3.3 Bubble

Finally, we need to find the bubble coefficient proportional to µ2. Again, using the setup of the
four-dimensional discussion, we find a parametrization of ℓ in terms of the momentum K flowing
through the bubble, as well as an arbitrary reference momentum χ. The on-shell conditions

ℓ
2
= µ2, (ℓ−K)2 = µ2 (2.121)

are fulfilled for [96]

ℓ
µ
= yK♭µ

1 +
s1(1− y)

γ
χµ +

1

2

(
t ⟨K♭

1|γµ|χ] +
y(1− y)s1 − µ2

tγ
⟨χ|γµ|K♭

1]

)
. (2.122)

When applying the D-dimensional bubble cut to the amplitude, we again separate terms propor-
tional to positive powers of µ2, i.e. Infµ2 , and terms that include poles in µ2. For the µ2 bubble
coefficient, the latter can again be discarded, and of the former we require only the µ2 term, such
that

C
(1)
Bub,[2] = Infµ2,t,y

[
A

(0)
1 A

(0)
2

] ∣∣∣
µ2,t0,yi→Yi

+
1

2

∑
triangle

cuts

∑
y±

[
Infµ2,t

[
A

(0)
1 A

(0)
2 A

(0)
3

]] ∣∣∣
µ2,ti→Ti (2.123)

The solutions y± used for the tensor triangle contribution to the bubble cofficient are now also
dependent on µ2. The additional on-shell condition (ℓ+K ′)2 = µ2 leads to [96]

y± =
c1 ±

√
c21 + 4c0c2
2c2

(2.124)

with
c0 = t

[
γ(K ′)2 + 2(K ′ · χ)K2

]
+ t2γ ⟨K♭|K ′|χ]− µ2 ⟨χ|K ′|K♭]

c1 = K2 ⟨χ|K ′|K♭] + t
[
γ2(K ′ ·K♭)−K22(K ′ · χ)

]
c2 = K2 ⟨χ|K ′|K♭]

(2.125)
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We additionally need to use a new set of parameter integrals Yi and Ti which are dependent on
µ2. The dependence is precisely that of four-dimensional cuts of massive propagators with mass
µ2. The parameter integrals for such cuts were determined in ref. [97], and specialize in our case
to [96]

Y0 = 1, Y1 = −1

2
, Y2 =

1

3

(
1− µ2

s

)
, (2.126)

and

T1 = − K2 ⟨χ|K ′|K♭]

2γ [(K ·K ′)2 −K2K ′2]
,

T2 =
3(K2)2 ⟨χ|K ′|K♭]

2

8γ2 [(K ·K ′)2 − (K2)K2]
2

[
(K ·K ′) +K ′2] ,

T3 = − (K2)3 ⟨χ|K ′|K♭]
3

48γ3 [(K ·K ′)2 −K2K ′2]
3

×
(
(K ·K ′)2

(
11 + 16

µ2

K2

)
+ 30(K ·K ′)K ′2 +K ′2 (4K2 + 15K ′2 − 16µ2

))
.

(2.127)

2.4 Color-Dressed Unitarity

In the discussion of generalized unitarity we have so far only focused on the kinematic part of
amplitude, while largely ignoring color structures. In fact, in the discussion of one-loop cuts we
have been using color-ordered tree amplitudes without properly motivating why these are a sensible
choice, or even what color ordering the particle ought to have. In this section we will motivate this
construction and see how to obtain unitarity cuts belonging to a specific color structure.

To understand the origin of the color structures in loop amplitudes, their origin from string
theory amplitudes provides an instructive picture. An L-loop gauge theory amplitudes can be
obtained from taking the infinite tension limit of amplitudes in open string-theory, where the
world-sheet is an orientable surface of genus L with at least one boundary. At one-loop the only
surface contributing is the annulus, which has two boundaries.

String amplitudes are constructed by placing vertex operators on the boundaries of the world-
sheet. They further allow the addition of extra degrees of freedom to the ends of the open string.
Endowing each string with a generator Tab and associating the two indices with the ends of the
string therefore allows us to realize a gauge group. These extra degrees of freedom are known as
Chan-Paton factors. Along the world-sheet boundary the indices are conserved, and summing over
all possible index values we recover the familiar traces of generators,

T 1
a1a2

T 2
a2a3

. . . Tn
ana1

= Tr (T 1T 2 . . . Tn). (2.128)

Using this construction, each boundary of the world-sheet provides us with exactly one trace. With
empty traces simplifying to Nc, amplitudes with the topology of an annulus can therefore have
color structures Tr2, and Nc Tr. These are exactly the color structures we expect from the color
decomposition of one-loop gauge theory amplitudes.

Following this picture we can now motivate a construction of unitarity cuts belonging to the
single and double trace gauge-theory amplitudes A(1)

n:1 and A
(1)
n:r of section 1.4.2.1. First we see
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−→

Figure 2.6: One-loop amplitudes in open string theory are obtained from a world-sheet with the
topology of an annulus (left). Each boundary provides a trace over color generators. The
associated unitarity cuts for gauge-theory amplitudes can be constructed by using color-ordered
tree amplitudes, following this scheme (right). The shown cut belongs to an amplitude A(1)

8:5, with
color structure Tr(T 1T 2T 3T 4)Tr(T 5T 6T 7T 8)

that the single trace amplitudes proportional to Nc are just a special case of the double trace one,
where one of the traces does not contain any generators. To build cuts belonging to a specific
double trace color structure, we build cuts as explained in sections 2.2 and 2.3 using color-ordered
tree amplitudes, choosing the color ordering such that particles of one trace are all on one side of
the loop, while those of the second trace are all on the opposing side. As an example, consider the
example shown in Figure 2.6. The cut on the right belongs to a double trace amplitude A(1)

8:5 with
color structure Tr(T 1T 2T 3T 4)Tr(T 5T 6T 7T 8). We can verify this construction through explicit
color algebra. We dress each of the tree amplitudes with their associated color traces, which are
contracted via the gluon propagators. The color factor associated to the cut is thus,

Tr(T 1T aT 5T d)Tr(T 2T bT 8T a)Tr(T 3T cT 7T b)Tr(T 4T dT 6T c). (2.129)

For simplicity we assume the gauge group to be U(Nc). We can then use the rules of eq. (1.7) to
simplify the contractions,

Tr(T 1T aT 5T d)Tr(T 2T bT 8T a)Tr(T 3T cT 7T b)Tr(T 4T dT 6T c)

= Tr(T 1T 2T bT 8T 5T d)Tr(T 3T 4T dT 6T 7T b)

= Tr(T 1T 2T 3T 4T dT 6T 7T 8T 5T d)

= Tr(T 1T 2T 3T 4)Tr(T 5T 6T 7T 8),

(2.130)

resulting in the expected product of traces.

This method is sometimes referred to as color-dressed unitarity. As an alternative to using
color-ordered tree amplitudes, it is also possible to construct cuts using full-color amplitudes. This
approach is more efficient in numerical applications, and was for example explored in ref. [106].
Color-dressed unitarity has also been used for the computation of subleading two-loop all-plus
partial amplitudes in refs. [4, 10], which are the main topic of this thesis. We will discuss the
necessary two-loop extension in the next chapter.

2.5 Generalized Unitarity Implementation in Mathematica

I created a series of Mathematica packages that automate the evaluation of one-loop D-dimensional
generalized unitarity cuts on kinematic points. These packages are written as addons to the
SpinorHelicity6D package of ref. [107], which provides the implementation of the four- and six-
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dimensional spinor-helicity formalism.

The main challenge in the computation of integral coefficients is the implementation of the
Inf operation. As a reminder, given some function f(x) that scales like xp for x → ∞, we define
Infx[f(x)] from its series expansion for large values of x, as,

f(x) =

p∑
i=0

cix
i +O

(
1

x

)
= Infx[f(x)] +O

(
1

x

)
(2.131)

We use Mathematica to perform these series expansions symbolically. While this approach does
not provide optimal numerical efficiency, we retain the full flexibility for choosing the kinematics.
For one we can use rational kinematics to make exact comparisons with literature results. It
also allows us to make use of the symbolic capabilities of Mathematica to perform computations
on partially or fully parametrized kinematics. Sample applications are the exact verification of
collinear behavior, obtaining analytic results from completely parametrized kinematics, or verifying
the large-z behavior of loop amplitudes under a BCFW shift.

The products of trees in D-dimensional unitarity cuts are always rational functions in the
loop-momentum parameters µ2, t and y, with coefficients generically being algebraic in the exter-
nal kinematics. A significant downside of performing the series expansions symbolically are the
possibly deeply nested intermediate expressions that can appear in the evaluation of such cuts
even for numerical kinematic points. We therefore avoid the Mathematica built-ins Series and
SeriesCoefficient, and instead use our own implementation of these functions RationalSeries
and RationalSeriesCoefficient, which are optimized for expansions of rational functions. Our
routines perform the series expansions recursively, caching intermediate results for improved per-
formance.

In addition, we store any coefficients depending only on the external kinematics in symbolic
objects called NumSymb. These can be defined recursively, and depend on NumSymb objects of previ-
ous steps in the computation. The dependence of every NumSymb object on other NumSymb objects
can therefore be arranged in the form of directed acyclic graphs. Importantly, we assign the same
NumSymb for repeated appearances of a specific subexpression, such that every NumSymb represents
a unique kinematic structure. To avoid unnecessary computations we additionally perform a zero
test on each newly defined NumSymb object, which can exactly and efficiently be performed using
the Mathematica function PossibleZeroQ with the option Method->ExactAlgebraics3. For this
zero test all kinematic parameters are set to random integer values with sufficient size to avoid
accidental cancellations.

For cut coefficients, only the final result is known to be rational in the kinematics: on purely
numeric rational kinematic points it will be a rational number, while for rational kinematics involv-
ing analytic parameters, it is a rational function in these parameters. Intermediate expressions can
generically involve square roots, which are only guaranteed to vanish in the final result. Perform-
ing simplifications in intermediate steps is therefore costly. Furthermore, the final result will not
necessarily depend on all of the NumSymb objects, as they may cancel or only contribute to powers
in the loop-momentum parameters that are not required for the coefficient. We therefore choose to
first perform the series expansion without any intermediate simplifications, storing the kinematic
dependence in the NumSymb objects mentioned before. In the end, the result of the expansion will

3When using this option the output of PossibleZeroQ is guaranteed to be correct [108].
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Rational Kinematics BCFW shifted Rational Kinematics
Series 209s automatic abort after 446s

RationalSeries 5.3s 25.3s/+15.5s for simplification

Table 2.2: Comparisons of timings between Mathematica’s Series and RationalSeries for
evaluation of one-loop bubble coefficient shown in. The timings in the second column are for an
evaluation on purely numeric rational kinematics. For the timings in the third column, the
numerical rational kinematics shifted by a BCFW shift involving an analytic parameter z. For
the evaluation using Series we provide Mathematica with the assumption that z is numeric.

be a single NumSymb object. We then simplify the result by traversing the dependency graph of this
final NumSymb object, and perform simplifications from the bottom up, or depth-first. This ensures
that we perform only simplifications required for the final result, and that every subexpression is
processed only once.

To compare the performance of my RationalSeries method to Mathematica’s Series, we
compute the cut,

belonging to a one-loop amplitude with two external massive scalars and four positive helicity
gluons. The next chapter will make the interest in the rational part of such amplitudes more
clear. For the benchmark the cut is evaluated on a rational kinematic point. To test the analytic
capabilities, we also evaluate the cut on a BCFW shift, where momenta p2 and p3 are shifted using
an analytic parameter z, with otherwise rational kinematics. The timings for the evaluation of
the cut coefficient are provided in Table 2.2. We see that the RationalSeries routine provides
much improved numerical performance compared to the Mathematica built-in function, and is
capable of deriving analytic and semi-analytic results that are not obtainable using Mathematica
own functionality.





Chapter 3

Two-Loop Rational Terms from
One-Loop Unitarity

One of the simplest gluon amplitudes to consider is the scattering amplitude in which all gluons
have the same helicity, typically called the “all-plus” configuration. The fact that we choose positive
helicities for the name is purely convention, as there is little difference between an amplitude in
which the gluons have all positive or all negative helicity, as the two cases are related by exchanging
angle and bracket spinors.

Having reviewed the basics of computing amplitudes at tree and one-loop level, we now turn
to main topic of the thesis. In the following we will discuss all-plus amplitudes of Yang–Mills
theory. These amplitudes have only gluons as external or internal states, and the label “all-plus”
refers to the helicity of the external particles. All gluons carry the same helicity, and a common
convention is that all gluons have helicity1+1. This is the most symmetric helicity configuration
we could choose, and this symmetry is reflected in the form that these amplitudes take. We
already saw that at tree level that these amplitudes have to vanish. At loop level we find further
simplifications. All-plus amplitudes are usually regarded as the simplest gauge-theory amplitude
to consider without resorting to supersymmetry.

At one loop, all-plus amplitudes are known for an arbitrary number of gluons, while at two
loops a general form exists for their divergent and polylogarithmic finite parts. For the two-loop
rational parts, an all-n conjecture is known only for the partial amplitudes A(2)

n:1B [18]. Up to six
gluons, the rational parts of all partial amplitudes are known, while for seven gluons an analytic
expression exists only at leading color. Based on findings of refs. [11, 12], we will here describe a
method that allows the computation of rational parts of using only one-loop unitarity techniques.

We structure this chapter as follows: first, we will provide a review of the currently known results
for all-plus amplitudes. We then extend the connection found between the leading color rational
parts and the (Ds−2)2 coefficient of all-plus amplitudes found in refs. [11, 12] to the rational parts
of all subleading partial amplitudes. We use the method of dimensional reconstruction to determine
the unitarity cuts that make up the (Ds − 2)2 coefficient. As was found for the leading color case
in refs. [11, 12], these cuts have a one-loop squared topology, letting us evaluate them via one-loop

1As the “all-plus” and “all-minus” cases are related by symmetry, a more accurate term would be “equal-helicity”
amplitude
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techniques. As a new result, we describe a method of computing the two-loop rational terms
of arbitrary two-loop all-plus partial amplitudes. Using this technique we are able to reproduce
all previous analytic results for such rational parts found in the literature. We are also able to
independently verify the form of R(2)

7:1B that follows from the conjecture of ref. [18], as it has not
been computed explicitly before.

3.1 The All-Plus: A Brief Review

Due to the simplicity of all-plus amplitudes they have been exceedingly well studied in the past.
In this section we review the currently known results through two loops.

It is well known that all-plus amplitudes, along with single-minus amplitudes, vanish at tree
level. In appendix A.1 we provide general arguments for this fact. The vanishing at tree level
has direct ramifications for the loop level structure of all-plus amplitudes. At one-loop, we can
decompose the all-plus amplitude as [3, 5]

A(1) = A(0)I(1) + F (1) +O(ϵ). (3.1)

Here, F (1) is finite in dimensional regularization, while I(1) is a singular function containing poles
of the form 1

ϵ2 and 1
ϵ . These poles contain the UV and IR divergences of the amplitude, and after

renormalization, the I(1) term provides the universal behavior of one-loop amplitudes described in
refs. [109–111]. From this decomposition we can immediately see that the vanishing of A(0) in the
all-plus case directly leads to the absence of 1/ϵ poles for their one-loop amplitudes.

We can further decompose the finite part F (1) into its polylogarithmic and rational parts P (1)

and R(1), such that,
F (1) = P (1) +R(1). (3.2)

P (1) contains four-dimensional branch cuts, and can be probed via four-dimensional unitarity cuts.
R(1) is free of branch cuts, and can be determined from D-dimensional unitarity. However, if we
were attempt to compute P (1), we would find that all cuts vanish. Placing any two propagators
on-shell via a double cut leads to products of tree-amplitudes which contain either an amplitude
of the all-plus or single-minus type,

→ + . (3.3)

This argument holds for all partial amplitudes in the color decomposition, such that one-loop full-
color all-plus amplitudes has to be free of branch cuts in four-dimensional kinematics. For every
partial amplitude we therefore have,

A(1)
n:r(1

+ . . . n+) = R(1)
n:r(1

+ . . . n+) +O(ϵ). (3.4)

For the leading-color partial amplitude, the general form for any number of gluons was conjectured
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in ref. [1] to be,

A(1)(1+ . . . n+) = −1

3

∑
1≤i<j<k<l≤n ⟨i|jkl|i]

⟨12⟩ ⟨23⟩ . . . ⟨(n− 1)n⟩ ⟨n1⟩
+O(ϵ), (3.5)

by demanding correct collinear factorization. This form was later proven in ref. [2]. Ref. [112]
additionally presented a construction of A(1) from complex recursion. The construction requires a
three-particle Risager shift [113] to avoid a pole at infinity.

Subleading-color partial amplitudes at one-loop can always be obtained from the leading-color
ones through color relations [82]. A compact form is known for these as well [4],

A(1)
n:r(1

+ . . . (r − 1)+; r+ . . . n+) = −2
s21...(r−1)

⟨12⟩ ⟨23⟩ . . . ⟨(r − 1)1⟩ ⟨r(r + 1)⟩ . . . ⟨nr⟩
, (3.6)

where r ≥ 3. Ref. [4] also provides an expression for the U(Nc) partial amplitude A(1)
n:2,

A
(1)
n:2(1

+; 2+ . . . n+) = −
∑

2≤i<j≤n [1|ij|1]
⟨23⟩ ⟨34⟩ . . . ⟨(n− 1)n⟩ ⟨n2⟩

(3.7)

This amplitude is equivalent to the one-photon amplitude A(1)(1γ 2+ . . . n+), for which a compact
all-n form was given earlier in ref. [1].

The absence of branch cuts and divergences in dimensional regularization are usually features
of tree-level amplitudes. It is therefore curious to find a one-loop amplitude possessing these
properties as well. We will see that this behavior continues in the two-loop amplitude, for which
we find behavior more closely aligned with a generic one-loop amplitude.

One-loop all-plus amplitudes are further connected to MHV amplitudes of N = 4 super-Yang–
Mills theory via,

A(1)(1+ . . . n+) = −2ϵ(1− ϵ)(4π)2

[
A

(1)
N=4(1

+ . . . i− . . . j− . . . n+)

⟨ij⟩4

]∣∣∣∣∣
ϵ→ϵ−2

(3.8)

The replacement ϵ→ ϵ− 2 amounts to shifting the dimension D from 4− 2ϵ to 8− 2ϵ. At the level
of the N = 4 MHV integrand, the relation can be understood as replacing the supersymmetry
preserving delta function via,

δ(8)(Q) −→ (Ds − 2)µ4, (3.9)

where µ2 is defined as in section 2.3 [12, 104]. This relation was first conjectured in ref. [104], and
recently proven to hold to all orders in ϵ in ref. [114].

The first computation of a two-loop all-plus amplitude was presented in refs. [13–15], which
provided analytic expressions for the full-color four-gluon amplitude. For five gluons, the planar
and non-planar integrands were derived in refs. [115] and [116] respectively, together with results
from numerical integration. Integrated expressions for these planar amplitude were presented in
ref. [16]. Evaluation of the non-planar integrals in refs. [17] led to the first evaluation of the
full-color two-loop all-plus amplitude.

Just as in the one-loop case, two-loop amplitudes can be decomposed with respect to their UV
and IR singular structure [3], which leads us to a relation similar to that of eq. (3.1),

A(2) = A(0)I(2) +A(1)I(1) + F (2) +O(ϵ). (3.10)
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Here, I(2) is a function with divergences up to 1
ϵ4 , while I(1) is the same as in eq. (3.1). F (2) is

finite in dimensional regularization, and can contain both rational and polylogarithmic terms. In
the case of all-plus amplitudes we again find significant simplifications: while two-loop amplitudes
generally have divergent terms of order 1

ϵ4 , the vanishing of A(0) and finiteness of A(1) only allow
for terms up to 1

ϵ2 , as would usually be expected in a one-loop amplitude. In ref. [4], a generic
form of the divergent part A(1)I(1) of the all-plus is given for an arbitrary number of gluons and all
partial amplitudes. As we can obtain the divergent parts of A(2) through this universal behavior,
only the finite part F (2) needs to be determined.

Just as in the one-loop case we split F (2) into its polylogarithmic and rational components P (2),
R(2), with

F (2) = P (2) +R(2). (3.11)

While P (2) possesses branch cuts and is therefore accessible via four-dimensional generalized uni-
tarity, R(2) does not contain such discontinuities and requires separate treatment.

Let us first discuss P (2). To probe P (2), as well as the divergent parts A(0)I(2) and A(1)I(1), we
compute the amplitude’s discontinuities in four-dimensional kinematics. For the two-loop all-plus
amplitude, the discontinuity of a physical singularity is associated to unitarity cuts of either two
or three internal propagators

→ + (3.12)

In the three particle cut on the left we obtain a product of two tree amplitudes. Due to the all-plus
helicity configuration, these cuts have to vanish, as one of the tree amplitudes is guaranteed to be
either of the single-minus or all-plus type. On the right we only cut one of the loops using the
two-particle cut. We therefore end up with a cut, which due to the all-plus configuration has to be
a product of a tree-level MHV and one-loop all-plus amplitude. We cannot place any additional
cuts, as these would be related to branch cuts of the one-loop all-plus amplitude. We can therefore
see that any discontinuity of the two-loop all-plus amplitude has to involve a product of amplitudes,
one of which is again a one-loop all-plus amplitude.

This simplifications allow us to phrase the computation of the cut constructible parts of
A(2)(1+ . . . n+) as a one-loop four-dimensional unitarity computation, with one of the amplitudes
again being a one-loop all-plus one,[

A(1)I(1) + P (2)
]
(1+ . . . n+)

=
∑

+
∑

+
∑

+
∑

.
(3.13)

The shown diagrams represent the combination of both cut coefficient and basis integral, with
the propagators taken to be cut. The internal helicities of cuts are constrained by the all-plus
configuration. Considering the expressions for the Feynman integrals provided in section 2.1,
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we can identify origin of P (2) in the one-mass and two-mass easy box integrals. In ref. [6] this
identification was used to derive P (2) for the leading-color five-gluon case. In ref. [7] a general form
of P (2) for all leading color partial amplitudes was found in terms of the normalized finite parts of
the two-mass easy box integral shown in eq. (2.14).

This leaves the two-loop rational part R(2). As discussed in chapter 2, these are not accessible
from four-dimensional unitarity, as they do not develop branch cuts in the kinematics. As in the
one-loop case they can be obtained from the two-loop extension of the D-dimensional generalized
unitarity technique presented in chapter 2. This route was chosen in refs. [16] and [17], and the
analytic results given therein include the rational parts R(2)

5:1, R(2)
5:3 and R

(2)
5:1B.

A second approach was followed in refs. [4–10]. Just as in the one-loop case, the two-loop
rational parts of all-plus partial amplitudes can be obtained from complex recursion. As in the
one-loop case, a Risager shift is required to obtain a construction only from poles at finite values
of the shift parameter z. Using this method the five-, six- and seven-gluon leading-color, as well
as all five- and six-gluon subleading rational parts were computed from the recursion approach.
This appears like great news at first glance. Recursive computations are of significantly lesser
complexity than those of generalized unitarity. They also make high multiplicity results easily
accessible, even if the recursion may not be immediately solvable for a closed form.

However, in the case of R(2) there exists a significant barrier. While the construction of one-
loop all-plus amplitudes from complex recursion proceeds much like a tree-level one, the previous
discussion taught us that we ought to expect features of one-loop computations for two-loop all-plus
amplitudes. In determining one-loop amplitudes from complex shifts we generally encounter two
features not seen at tree level: double poles, and single poles not attributable to factorizations. And
for the all-plus rational parts we encounter precisely these two features. While the double complex
poles can be obtained from the universal collinear behavior of amplitudes [112], no general simple
form is known for the additional single poles. Obtaining the latter presents therefore a significant
challenge. We defer a more detailed discussion of one-loop recursion to the next chapter.

The main challenge of computing R(2) in refs. [4–10] was therefore determining the single pole
terms of the recursion. The approach chosen for this task is the augmented recursion technique [19],
which allows to obtain them from off-shell currents. Due to the complexity of these currents this
approach is difficult to generalize to a large number of gluons, and we may want to look for
alternative routes for obtaining R(2).

Ideally we would like to find a construction similar to that of P (2) in eq. (3.13). By finding
an effective one-loop computation we made the one-loop structure of the polylogarithmic terms
manifest. As we are now dealing with rational parts of a loop amplitude we would expect to find
a D-dimensional unitarity construction of the form

R(2)(1+ . . . n+) = + + .

Assuming such a construction exists, the exact nature of the one-loop amplitude involved in the
cuts is the main question: while for the polylogarithmic terms the one-loop amplitude in the cuts
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was again an all-plus amplitude, for the rational parts we would expect amplitudes involving a
massive scalar pair.

A first hint towards such an approach is provided in refs. [11, 12], which finds local integrands
for the five- and six-gluon integrands of the two-loop all-plus at leading color. The basis of this
construction is the connection of the all-plus and N = 4 MHV amplitudes at the integrand level,
similar to the one-loop integrand relation of eq. (3.9) For two-loop integral topologies of N = 4

amplitudes, the associated all-plus integrands are connected to the local N = 4 integrands of
refs. [117, 118] via the replacement [11, 12],

δ(8)(Q) → F1 = (Ds − 2)
(
µ2
1µ

2
2 + (µ2

1 + µ2
2)

2 + 2µ12(µ
2
1 + µ2

2)
)
+ 16(µ2

12 − µ2
1µ

2
2). (3.14)

Based on their observations, ref. [12] conjectured that at leading color, the finite polylogarithmic
contributions P (2)

n:1 are entirely determined by integrands connected to N = 4 amplitudes. Further-
more, the leading-color rational parts R(2)

n:1 are conjectured to originate from integrands not shared
with N = 4. These are all of the “one-loop squared” topology, which for example include,

, , . . . (3.15)

Using these integrands, the relation for R(2)
n:1 was verified in ref. [12] by direct computation for five

and six gluons, comparing against the results of refs. [5, 16]. It is this one-loop squared construction
of the leading-color R(2) on which the majority of this thesis rests.

In the following we will use the representation of the two-loop leading color finite part given in
ref. [12],

F (2) = (Ds − 2)P(2) + (Ds − 2)2R(2) +O(ϵ).

Here, P(2) is entirely polylogarithmic, while R(2) is entirely rational. The construction of ref. [12]
makes the dependence of the amplitude on the spin dimension Ds explicit. We can observe in the
relation above that the rational parts are proportional to (Ds−2)2. Thus, assuming the conjecture
holds, to obtain the rational part of the all-plus we need only to determine the rational part of its
(Ds − 2)2 dependent part.

In the following we review the dimensional reconstruction method, which will allow us to make
the Ds dependence of an amplitude explicit.

3.2 Dimensional Reconstruction

Scattering amplitudes generically depend on the space-time dimension Ds. For gauge theories this
dimension controls the number of states running in loops: for example, in Yang–Mills theory there
are (Ds − 2) polarization states, which in Ds = 4 corresponds to positive and negative helicity
gluons. Different regularization schemes require specific choices of Ds, such as the four-dimensional
helicity scheme (FDH) [119], where Ds is set to four, or the ’t Hooft Veltman scheme (HV) with
Ds = 4− 2ϵ [120]. As in the HV scheme, the value of Ds need in general not be an integer, which
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further complicates computations. Details regarding the use of these regularization schemes can
be found in the reference given, as well as ref. [121].

We already saw in section 2.3.2 that at least for the computation of rational parts of one-loop
amplitudes, we can avoid using states of non-integer dimensions via the supersymmetry decompo-
sition of such amplitudes. An approach to circumvent this problem more generally is dimensional
reconstruction, first introduced for one-loop amplitudes in ref. [122]. Instead of working with a
fixed valued of Ds we rather take an amplitude to be a function of Ds. Evaluating the amplitude at
a sufficient number of values for Ds allows us the completely fix the functional dependence. Once
the generic form of the Ds dependence is found, obtaining the amplitude in a specific regularization
scheme is a matter of substituting the desired value of Ds.

Using this approach we avoid non-integer values of Ds entirely. We are free to perform all eval-
uations in integer dimensions, while amplitudes in non-integer dimensions are obtained through
interpolation. This makes dimensional reconstruction a useful technique for both analytic compu-
tations as well as automated codes. Note that for these evaluations we only set Ds to integer values.
The loop integrals remain D-dimensional, as we still need to regulate UV and IR divergences.

As ref. [12] connects the rational contributions of two-loop all-plus amplitude to its dependence
on the space-time dimension Ds, we will give here a brief review of the topic. The rest of the
section is based on the discussion at one-loop in ref. [122], as well as the L-loop generalization
presented in ref. [107].

The Ds dependence of loop amplitudes arises from contractions of the metric tensor gµν along
loops, as any such contraction that closes in on itself yields the trace gµµ = Ds. Gauge bosons in
Yang–Mills carry a single vector index, such that an L-loop scattering amplitude in gauge theory
can generically be written as a polynomial of degree L in Ds,

A
(L)
Ds

=

L∑
i=0

CiD
i
s. (3.16)

Computing an amplitude then amounts to determining the coefficients Ci through sampling A(L)
Ds

at L different values of Ds. The exact values for Ds that can be used for sampling are subject to
constraints that will be discussed below.

We will first discuss one-loop amplitudes, as they are the simplest case to consider. As we can
have at most a single contraction gµµ = Ds they are linear in Ds, and generically take the form,

A
(1)
Ds

= C0 + C1Ds. (3.17)

Thus, evaluating A(1)
Ds

in some dimensions D0, D1, and solving for the coefficients C0, C1, we end
up with,

A
(1)
Ds

=
Ds −D0

D1 −D0
A

(1)
D1

+
Ds −D1

D0 −D1
A

(1)
D0
. (3.18)

With the choice D1 = D0 + 1, the expression above simplifies to,

A
(1)
Ds

= (Ds −D0)A
(1)
D1

− (Ds −D1)A
(1)
D0
. (3.19)

Keeping the external kinematics four-dimensional, we need to choose D0 > 4 to capture the
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entire amplitude including rational contributions. However, we only need to chooseD0 large enough
such that we can fully embed the loop momentum. For simplicity, we assume for the moment the
loop momentum dimension to be Di, later analytically continuing to D = 4− 2ϵ. As described in
section 2.3, the (D0 − 4)-dimensional components of the loop-momentum in A

(1)
D0

can only appear
in the form of ℓ̃2 = ℓ

2
= µ2. At one-loop the simplest choice is therefore D0 = 5.

We chose for simplicity D1 = D0 + 1, where the loop-momentum in A
(1)
D1=6 has two (D1 − 4)

components, namely ℓ(4) and ℓ(5). To simplify the following steps, we use Lorentz invariance to
always set ℓ5 to zero. In the one-loop case we therefore have the loop-momenta

D0 = 5 : ℓi = (ℓi, ℓ
(4)
i )

D1 = 6 : ℓi = (ℓi, ℓ
(4)
i , 0).

(3.20)

A
(1)
D0=5 can be determined via generalized unitarity with five-dimensional states and a five-

dimensional loop-momentum. Just as in four dimensions, when cutting a propagator its numerators
can be written as a sum over the (D0 − 2) = 3 polarization states using the completeness relation
of polarization vectors

Cut[propµν(ℓ)] → −(2π)δ+(ℓ2)

D0−2∑
j=1

εµj (ℓ)ε
ν
j (ℓ), (3.21)

where the polarization vectors εi satisfy the conditions

εµi εjµ = −δij , ℓµε
µ(ℓ) = 0. (3.22)

Turning to A(1)
D1=6, we can take advantage of the fact that ℓ5 = 0, and perform a Kaluza-Klein

reduction [123, 124] of the six-dimensional gluon running in the loop. Since the loop momentum
is still only five-dimensional, there are no additional cuts compared to the computation in D0 = 5.
However every cut in D1 includes one additional polarization state in the sum of eq. (3.21). In
D1 = 6 we have four polarization states. Since ℓ in D1 is only non-zero in the five-dimensional
subspace, we identify three of the four polarizations to be those of dimension D0, i.e. polarization
vectors of a massless five-dimensional gauge-boson. For the fourth polarization vector we make the
choice εµ4 = δµ5 , which is consistent with the conditions of eq. (3.22). As the external momenta are
four-dimensional, and the loop momentum is five-dimensional, ε4 is the only vector with a non-zero
sixth-dimensional component, so that any contractions other than ε4 ·ε4 to vanish. ε4 can therefore
only appear contracted onto itself along the loop, coupling to the remaining polarization states as
if belonging to an adjoint scalar field. In the following we will therefore treat this state separately,
and due to its scalar-like behavior refer to it as φ.

We can directly derive Feynman rules for φ from the three- and four-point gluon vertices by
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setting Lorentz indices associated to φ to 5,

V 3(1φ2g3φ)µ = =
i√
2
(p1 − p3)

µ, V 4(1g2g3φ4φ)µν = =
i

2
gµν ,

V 4(1g2φ3g4φ)µν = = −igµν ,

propφ = =
i

p2
, propµν

g = =
−igµν

p2
,

(3.23)

with all other configurations vanishing. The contact terms are represented by a borderless disk,
with the internal lines representing the flow of the scalar flavor. This is in line with the conventions
of refs. [107, 115]. The Feynman rules exactly match those of an adjoint scalar field φa with
Lagrangian [107]

Lφ =

∫
dxDµφ

aDµφa, (3.24)

where φ only couples to gluons through the covariant derivative.

Separating ε4 from the five-dimensional polarization vectors allows us to decompose A(1)
D1

into
the sum,

A
(1)
D1=D0+1 = A

(1)
D0

+A(1)
s , (3.25)

where A(1)
s is an amplitude in D0 dimensions with only φ circulating in the loop. Substituting this

decomposition back into eq. (3.19) we obtain,

A
(1)
Ds

= (Ds −D0)
(
A

(1)
D0

+A(1)
s

)
− (Ds −D1)A

(1)
D0

= A
(1)
D0

+ (Ds −D0)A
(1)
s .

(3.26)

Therefore, the full amplitude can be reconstructed from only a single value of Ds, while having to
evaluate it with both vectors and scalars in the loop.

This construction of amplitudes generalizes to arbitrary loop order, as discussed in ref. [107].
We limit ourselves to the two-loop case required for the present work. Since there can be up to
two contractions of the metric tensor, an amplitude is a quadratic polynomial in Ds,

A(2) = C0 + C1Ds + C2D
2
s , (3.27)

and we need to evaluate it for three values of Ds to fix all the coefficients. Choosing dimensions

D0, D1 = D0 + 1, D2 = D0 + 2 (3.28)

we find the amplitude to be,

A
(2)
Ds

=
(Ds −D2)

2
(Ds −D1)A

(2)
D0

− (Ds −D0)(Ds −D2)A
(2)
D1

+
(Ds −D0)

2
(Ds −D1)A

(2)
D2
. (3.29)

As a consistency check we can verify that for Ds = D0, D1, D2 we obtain A
(2)
D0

, A(2)
D1

and A
(2)
D2

. As
we now have two loop momenta ℓ1, ℓ2, with the external momenta again four-dimensional, their
(D − 4)-dimensional components ℓ̃1, ℓ̃2 can appear as ℓ̃2i = µ2

i and ℓ̃1 · ℓ̃2 = µ12. To properly
represent the two loop momenta such that the µ2

i and µ12 are not linearly dependent, we need to
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choose at least D0 = 6, where the ℓ̃i only have components in the fifth and sixth dimension. We
set D1 = 7 and D2 = 8.

We again use Lorentz invariance to align the (D − 4)-dimensional parts of the loop-momenta
for A(2)

D0
, A(2)

D1
and A

(2)
D2

. We can always pick a frame where the loop momenta take the form,

D0 = 6 : ℓi = (ℓi, ℓ
(4)
i , ℓ

(5)
i ),

D1 = 7 : ℓi = (ℓi, ℓ
(4)
i , ℓ

(5)
i , 0),

D2 = 8 : ℓi = (ℓi, ℓ
(4)
i , ℓ

(5)
i , 0, 0).

(3.30)

We can then use the same construction as in the one-loop case to see that the extra polarization
states of A(2)

D1
and A(2)

D2
behave like scalars. The first (D0 − 2) = 4 polarization states are the same

for A(2)
D0

, A(2)
D1

and A
(2)
D2

. For the fifth state in A
(2)
D1

and A
(2)
D2

we choose the polarization vector
εµ5 = δµ6 , while for the sixth state in A

(2)
D2

we choose εµ6 = δµ7 .

Due to the orthogonality of the additional polarization vectors ε5, ε6 and the loop-momenta,
we can express the amplitudes A(2)

D1
and A(2)

D2
in terms of amplitudes in dimension D0, where some

of the loops carry an effective scalar degree of freedom. Such a decompositions would be of the
form,

A
(2)
D1

→ A
(2)
D0
, A

(2)
D0,1,0

, A
(2)
D0,2,0

,

A
(2)
D2

→ A
(2)
D0
, A

(2)
D0,1,0

, A
(2)
D0,2,0

, A
(2)
D0,1,1

.
(3.31)

We use the labelling conventions of ref. [107] for the scalar amplitudes. In A(2)
D0,1,0

only one closed
loop carries a scalar, while the remaining propagators are of D0-dimensional gluons. In A

(2)
D0,2,0

both loops carry a scalar degree of freedom, with the additional requirement that the two loops are
connected via the exchange of a D0-dimensional gluon. In A

(2)
D0,1,1

we also have two scalar loops,
however they are connected via a four-scalar contact term which originates from the four-gluon
vertex. Example diagrams contributing to these amplitudes are shown in Figures 3.1, 3.2a and 3.2b.
Separating the gluon-exchange and contact-term contributions in A(2)

D2
will allow us to collect terms

later on, as A(2)
D0,2,0

contributes to both the D1 and D2 amplitudes. Additionally, the contact term
whose form we will derive next requires the scalar flavors in two loops to be different, such that
one loop carries ε5 while the other carries ε6. With a gluon exchange connecting the loops there
is no such restriction.

To obtain the exact decomposition hinted at in eq. (3.31), we need to determine the Feynman
rules for the scalars. For A(1)

D1
the rules are identical to the ones of the one-loop case in eq. (3.23).

To obtain the rules for D2 = 8 we repeat the procedure from the one-loop case, denoting ε5 ≃ φ

and ε6 ≃ φ′. As they can be treated identically, we will also refer to them as having different scalar
“flavors”.

The Feynman rules for φ,φ′ are again obtained from the three- and four-gluon vertices by
setting Lorentz indices to µ = 6 for φ and µ = 7 for φ′. In addition to the Feynman rules of
eq. (3.23), we now have two additional four-scalar contact terms,

V 4(1φ2φ3φ
′
4φ

′
) = = − i

2
, V 4(1φ2φ

′
3φ4φ

′
) = = i. (3.32)

Cubic vertices coupling three scalars are absent, as at least one of their momenta would have to be
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Figure 3.1: Representatives of graphs contributing to A(2)
D0,1,0

. The grey circle is a quartic
gluon-scalar vertex. The dashed lines represent propagators of massless six-dimensional scalars,
while solid lines are associated to six-dimensional gluons.

(a) (b)

Figure 3.2: Representatives of graphs contributing to A(2)
D0,2,0

(a), and A
(2)
D0,1,1

(b). Solid lines
represent gluon propagators, while the dashed lines are associated to scalars. The different
dashings represent the possibility of the two loops having different scalar flavors. In (a), the
scalar flavors in the two loops can be the same, while the quartic scalar interaction represented in
(b) requires the flavors to be different. The quartic interaction with all scalars having the same
flavor vanishes. After summing over scalar flavors the diagrams in (a) and (b) therefore appear
with prefactors of (D2 −D0)

2 and (D2 −D0)(D2 −D0 − 1) respectively.
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contracted with ε5 or ε6. There are also no contact terms of four same-flavor scalars, as all three
terms of the quartic gluon vertex would contribute, and end up cancelling each other. The rules
of eqs.(3.23) and (3.32) are in agreement with those of ref. [115]2.

Given our rules, we can now make the decomposition of eq. (3.31) explicit,

A
(2)
D1

= A
(2)
D0

+ (D1 −D0)A
(2)
D0,1,0

+ (D1 −D0)
2A

(2)
D0,2,0

= A
(2)
D0

+A
(2)
D0,1,0

+A
(2)
D0,2,0

,

A
(2)
D2

= A
(2)
D0

+ (D2 −D0)A
(2)
D0,1,0

+ (D2 −D0)
2A

(2)
D0,2,0

+ (D2 −D0)(D2 −D0 − 1)A
(2)
D0,1,1

= A
(2)
D0

+ 2A
(2)
D0,1,0

+ 4A
(2)
D0,2,0

+ 2A
(2)
D0,1,1

.

(3.33)

When summing over the scalar-like degrees of freedom, each scalar loop in A
(2)
Di,1,0

and A
(2)
Di,2,0

leads to a prefactor of (Di −D0). For A(2)
D2,1,1

, the scalar contact term requires different scalars in
the two loops, of which there are (D2 −D0)(D2 −D0 − 1) combinations.

Applying eq. (3.33) to eq. (3.29), we finally obtain

A
(2)
Ds

= A
(2)
D0

+ (Ds −D0)A
(2)
D0,1,0

+ (Ds −D0)
2A

(2)
D0,2,0

+ (Ds −D0)(Ds −D0 − 1)A
(2)
D0,1,1

. (3.34)

As in ref. [107], we can compare the result in eq. (3.34) with similar approaches used for two-
loop computations in the literature. As an example, we can consider the derivation of the four-
and five-gluon all-plus amplitudes in ref. [115]. These were obtained by decomposing the integrand

∆
(2)
Ds

= ∆
(2)
6 + (Ds − 6)∆

(2)
6,s + (Ds − 6)2∆

(2)
6,ss, (3.35)

where ∆
(2)
6 is the full integrand of the six-dimensional amplitude, while ∆

(2)
6,s and ∆

(2)
6,ss are in-

tegrands from diagrams involving the extra-dimensional scalars. In the case of the four-point
amplitude, these scalar integrands correspond to contributions from the diagrams [115],

∆
(2)
6,s ≃ + + + + + , (3.36)

and,

∆
(2)
6,ss ≃ + . (3.37)

In the case of both loops carrying a scalar, ∆(2)
6,s and ∆

(2)
6,ss distinguish between the scalar flavor

conservation in the four-scalar vertex. The contractions in ∆
(2)
6,s require the scalars to be the same

in both loops, while those in ∆
(2)
6,ss are independent, justifying the respective subscripts.

For consistency between eq. (3.34) and eq. (3.35) with D0 = 6 we require after integration the
2Note that in ref. [115], the four-scalar contact-terms are defined with respect to the internal scalar flavor

conservation, before summing over the flavor assignments. With this definition each of the contact terms is non-
vanishing even in the case of all scalars being of the same flavor. However, one would also have to sum over the
three internal flavor routings,

+ + = 0

causing such contributions to vanish as in our discussion.
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correspondence,
∆

(2)
6,s → A

(2)
6,1,0 −A

(2)
D0,1,1

, ∆
(2)
6,ss → A

(2)
6,2,0 +A

(2)
D0,1,1

. (3.38)

For ∆
(2)
6,ss we see that this is indeed the case, as the types of diagrams shown in eq. (3.37) match

exactly the definitions of A(2)
6,2,0 and A

(2)
D0,1,1

. For ∆
(2)
6,s we can obtain agreement by using the

relation,

A
(2)
6,1,1 ≃ = − − , (3.39)

which follows from the quartic scalar Feynman rules of eq. (3.32).

We can further rearrange eq. (3.34) to obtain relations between coefficients of different sampling
dimensions. Collecting terms to turn eq. (3.34) into a polynomial in (Ds −D′

0), we obtain

A
(2)
Ds

=
[
A

(2)
D0

+ (D′
0 −D0)A

(2)
D0,1,0

+ (D′
0 −D0)

2A
(2)
D0,2,0

+ (D′
0 −D0)(D

′
0 −D0 − 1)A

(2)
D0,2,0

]
+ (Ds −D′

0)
[
A

(2)
D0,1,0

+ 2(D′
0 −D0)(A

(2)
D0,2,0

+A
(2)
D0,1,1

)
]

+ (Ds −D′
0)

2A
(2)
D0,2,0

+ (Ds −D′
0)(Ds −D′

0 − 1)A
(2)
D0,1,1

. (3.40)

For (Ds+L) ≤ D′
0, eq. (3.40) can be reinterpreted: the right hand side of the first line is just A(2)

D′
0
,

so that

A
(2)
Ds

= A
(2)
D′

0
+ (Ds −D′

0)
[
A

(2)
D0,1,0

+ 2(D′
0 −D0)(A

(2)
D0,2,0

+A
(2)
D0,1,1

)
]

+ (Ds −D′
0)

2A
(2)
D0,2,0

+ (Ds −D′
0)(Ds −D′

0 − 1)A
(2)
D0,1,1

. (3.41)

We can further make the identifications A(2)
D0,2,0

= A
(2)
D′

0,2,0
and A

(2)
D0,1,1

= A
(2)
D′

0,1,1
, since these

amplitudes have no closed gluon loops and should therefore not depend on the specific value of
space-time dimension. Lastly, we have to consider A(2)

D0,1,0
. This amplitude contains closed gluon

loops only through diagrams of the type,

, , , ∈ A
(2)
D0,1,0

(3.42)

Since D0, D
′
0 ≥ (Ds + L), the additional term 2(D′

0 − D0)(A
(2)
D0,2,0

+ A
(2)
D0,1,1

) adds or subtracts
from the diagrams shown in eq. (3.42) scalar-like polarization states in the gluon loop. The factor
2 takes into account that the gluon can be in either one of the two loops. We therefore have,

A
(2)
D′

0,1,0
= A

(2)
D0,1,0

+ 2(D′
0 −D0)(A

(2)
D0,2,0

+A
(2)
D0,1,1

), (3.43)

and eq. (3.40) turns into,

A
(2)
Ds

= A
(2)
D′

0
+ (Ds −D′

0)AD′
0,1,0

+ (Ds −D′
0)

2A
(2)
D′

0,2,0
+ (Ds −D′

0)(Ds −D′
0 − 1)A

(2)
D′

0,1,1
. (3.44)

3.3 Separability and Two-Loop Rational Terms

At leading color, refs. [11, 12] connect the finite polylogarithmic rational contributions of two-loop
all-plus amplitudes to their representation as polynomials in power of (Ds − 2).
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Figure 3.3: Generic example of two-loop cuts that have to be considered for A(2)
ss at leading color.

The two loops are only connected by a central tree-amplitude, which does not contain any
propagator carrying both loop-momenta.

Specifically, up to order ϵ0 the finite polylogarithmic contributions P (2)
n arise entirely from the

coefficient of (Ds − 2), while the rational terms R(2)
n are entirely determined by the coefficient of

(Ds − 2)2,

F
(2)
n:1(1

+ . . . n+) = (Ds − 2)P(2)(1+ . . . n+)︸ ︷︷ ︸
P

(2)
n

+(Ds − 2)2R(2)(1+ . . . n+)︸ ︷︷ ︸
R

(2)
n

+O(ϵ). (3.45)

This identification for R(2)(1+ . . . n+) was verified in ref. [12] for the five- and six-gluon leading
color partial amplitudes by integrating those two-loop integrands proportional to (Ds − 2)2. The
resulting analytic expressions were then numerically checked against the known results of refs. [5,
6, 8, 9, 16].

We can connect the statement of ref. [12] for the finite contributions with the dimensional
reconstruction picture of section 3.2. We choose as the base dimension D0 = 6, and use the
rearrangement of eq. (3.40) with D′

0 = 2. Comparing with eq. (3.45), we end up with the following
relations for the finite polylogarithmic and rational contributions,

P (2)(1+ . . . n+) = (Ds − 2)F
[
A

(2)
6,1,0 − 2× 4(A

(2)
6,2,0 +A

(2)
6,1,1)−A

(2)
6,1,1

]
(1+ . . . n+), (3.46)

R(2)(1+ . . . n+) = (Ds − 2)2F
[
A

(2)
6,2,0 +A

(2)
6,1,1

]
(1+ . . . n+), (3.47)

where F represents the operation of extracting the finite part, dropping terms of order ϵ.

Rephrasing the problem of computing R(2)(1+ . . . n+) in terms of A(2)
6,2,0 and A

(2)
6,1,1 leads to a

reduction in computational complexity. In A
(2)
6,1,1 the two scalar lines of the loops meet in a four-

scalar contact term, while for A(2)
6,2,0 the two loops are connected by an s-channel gluon exchange.

Thus, for these amplitudes the two loop momenta can never appear in a shared propagator, and
all two-loop integrals required for a complete integral basis factorize into a product of one-loop
integrals. To determine the coefficients of such a basis from unitarity cuts we can proceed loop
by loop. We first compute the coefficient of one of the loops using the usual one-loop unitarity
techniques. Treating this coefficient as if it were a tree amplitude, we then proceed with the
coefficient of the second loop in the same manner. The coefficient of the second loop ends up
being the one of the full one-loop squared two-loop integral. Due to the separate treatment of the
two loops, we call the described construction the separable approach. Note that this manner of
computing the A(2)

D0,1,1
and A

(2)
D0,2,0

also hints at the structure found for the finite polylogarithmic
parts of two-loop all-plus amplitudes, where one of the loops can be separately integrated to give
the one-loop all-plus amplitude. We will further discuss this similarity in chapter 4.
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Figure 3.4: The partial amplitudes A(2)
n:1, A(2)

n:r and A
(2)
n:r,k can be interpreted as originating from

open string amplitudes, in which the world-sheet takes the shape of a disc with two punctures.
This genus-2 surface is orientable and has three boundaries, therefore providing three traces of
color generators.

In ref. [12], the relation of eq. (3.47) was only discussed in reference to the leading-color partial
amplitudes. In the following we loosen this restriction and assume that it also extends to rational
contributions of all-plus amplitudes beyond leading color, more specifically those of non-planar
partial amplitudes. In the rest of this chapter we will discuss the construction of the non-planar
versions of A(2)

6,2,0 and A(2)
6,1,1 via color-dressed unitarity similar to the procedure for polylogarithmic

contributions shown in refs. [4, 10, 18]. By direct computation of A(2)
6,2,0 and A

(2)
6,1,1 for several

subleading color-structures and subsequent comparison with results available in the literature [4,
10] we will see that eq. (3.47) does indeed appear to hold for all partial amplitudes in the color
decomposition of all-plus amplitudes.

3.4 One-Loop Squared Cuts

3.4.1 Two-Loop Color Dressed Unitarity

We need to identify the two-loop cut topologies that contribute to the different trace structures in
full-color all-plus amplitudes. As in section 2.4, it is again useful to consider the string-theoretic
version of the amplitude, and use the origin of the color structures there as a guide for gauge theory.
A similar analysis was carried out in ref. [18].

Two-loop amplitudes in gauge theory can be obtained from taking the infinite tension limit of
amplitudes in open string theory, where the world-sheet is an orientable surface of genus 2 with
at least one boundary. There are two such surfaces: the disc with two punctures, which has three
boundaries, and the punctured torus, which has only a single boundary. Representations of these
surfaces are shown in Figures 3.4 and 3.5.

We again associate to each boundary a trace of color generators. With empty traces simplifying
to Nc, amplitudes with the topology of Figure 3.4 can therefore have color structures Tr3, Nc Tr

2

and N2
c Tr, while the topology of Figure 3.5 will always lead to a single trace Tr. These are again

precisely the two-loop color structures introduced in the two-loop color decomposition in 1.4.2.2.
The amplitudes A(2)

n:1, A(2)
n:r and A(2)

n:r,k can be obtained from cuts following the shape of Figure 3.4.
The three traces correspond to the two inner boundaries of the loops and the outer boundary.

We again use color algebra to convince us of this construction. We are mainly interested in
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(a)

(b) (c)

Figure 3.5: Three equivalent representations of the world-sheet of open string amplitudes, which
lead to the field-theory partial amplitudes A(2)

n:1B. This genus-2 surface is orientable, but has only
one boundary, giving a single color trace. Its relation to the surface of Figure 3.4 is shown in (a).
The representation in (b) will be useful for constructing the required unitarity cuts for the
rational contributions to A(2)

n:1B. Figure (c) shows the equivalence to the punctured torus. In (b)
and (c) the dotted lines need to be sewn together according to their arrows.
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Figure 3.6: Sample one-loop squared cut to illustrate color routing. This cut belongs to the trace
structure Tr(T 1 . . . T 6)Tr(T 10T 11T 12)Tr(T 7T 8T 9)

one-loop squared cuts, such as the one shown in Figure 3.6. Dressing the tree-amplitudes with
color factors imposed by cyclic ordering, we obtain,

Tr(T 1T aT 8T f )Tr(T aT 2T bT 7)Tr(T bT 3T cT 12T eT 6T f )Tr(T cT 4T dT 11)Tr(T dT 5T eT 10). (3.48)

Using the U(Nc) Fierz identities, we can rewrite this product as

Tr(T 1T aT 8T f )Tr(T aT 2T bT 7)Tr(T bT 3T cT 12T eT 6T fT 9)Tr(cT 4T dT 11)Tr(dT 5T eT 10),

=Tr(T 1T 2T bT 7T 8T f )Tr(T bT 3T cT 12T eT 6T fT 9)Tr(T cT 4T 5T eT 10T 11)

=Tr(T 1T 2T 3T cT 12T eT 6T fT 9T 7T 8T f )Tr(T cT 4T 5T eT 10T 11)

=Tr(T 1T 2T 3T cT 12T eT 6)Tr(T 9T 7T 8)Tr(T cT 4T 5T eT 10T 11)

=Tr(T 1T 2T 3T 4T 5T eT 10T 11T 12T eT 6)Tr(T 7T 8T 9)

=Tr(T 1T 2T 3T 4T 5T 6)Tr(T 10T 11T 12)Tr(T 7T 8T 9),

(3.49)

obtaining the three color traces expected for this graph. Note the direction of color flow, clockwise
in the outer trace, and counter-clockwise in the two inner traces.

The partial amplitudes A(2)
n:1B on the other hand are constructed from unitarity cuts which

adhere to the structure of the punctured torus shown in Figure 3.5. This illustrated at the one-
loop squared cut shown in Figure 3.7. The dotted lines opposite of each other are connected.
Whereas in A

(2)
n:1,A(2)

n:r and A
(2)
n:r,k the loops were adjacent at the connecting vertex, they are now

crossed. As the underlying surface has only one boundary, this cut produces a single color trace
without factors of Nc. We again verify this explicitly: Dressing the amplitudes with color traces
according to the shown ordering of particles, we obtain for the cut shown in Figure 3.7

Tr(T 1T aT 8T f )Tr(T aT 2T bT 7)Tr(T 6T bT 3T cT 12T fT 9T e)Tr(T cT 4T dT 11)Tr(T dT 5T eT 10),

=Tr(T 1T 2T bT 7T 8T f )Tr(T 6T bT 3T cT 12T fT 9T e)Tr(T cT 4T 5T eT 10T 11)

=Tr(T 1T 2T 3T cT 12T fT 9T eT 6T bT 7T 8T f )Tr(T cT 4T 5T eT 10T 11)

=Tr(T 1T 2T 3T 4T 5T eT 10T 11T 12T fT 9T eT 6T 7T 8T f )

=Tr(T 1T 2T 3T 4T 5T 6T 7T 8T f )Tr(T 10T 11T 12T fT 9)

=Tr(T 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12).

(3.50)
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Figure 3.7: An example of a unitarity cut following the topology of Figure 3.5b. The open lines
are connected according to the dashing, following Figure 3.5b. Dressing the amplitudes with the
color structure according to the orderings shown gives us a single overall trace
Tr(T 1T 2 . . . T 11T 12). We can therefore identify such cuts as belonging to the subleading partial
amplitude A(2)

n:1B.

3.4.2 Generating Sets of Cuts

Now that know how to construct unitarity cuts belonging to the color structures in the two-loop
color decomposition, we make the construction of the amplitudes A(2)

6,2,0 and A(2)
6,1,1 from such cuts

explicit. We will then use this construction to verify the conjecture of section 3.3 about their
connection to the rational contributions of all-plus amplitudes.

As discussed in section 3.3, the integral bases of A(2)
6,2,0 and A

(2)
6,1,1 include all one-loop squared

two-loop integrals, each of which can be factorized into a product of one-loop integrals. The
partial amplitudes of the all-plus are symmetric under cyclic permutations of the particles in each
of the color traces, and we choose to make these cyclic symmetries manifest in our computational
approach. Instead of immediately summing over all cuts, we divide them into sets, which are
related to each other by the permutations of the color structure. In analytic computations, we
then only need to find the expression for one of the sets to recover the full amplitude. Due to this
property, we call a reduced integral basis together with its coefficients a generating set R̃(2). In
the following we will give the generic procedure for obtaining the generating sets R̃(2).

Due to the factorization of the required integrals, we only need to consider integral topologies
where each loop is either a box, triangle, or bubble. As we are working Yang–Mills theory we can
neglect tadpoles. In A

(2)
6,2,0 and A

(2)
6,1,1 both loops carry scalars, we are free to choose which loop’s

coefficient to compute first. We can therefore impose an ordering in the integrals that enter R̃(2),
such that the number of cuts in the left loop is always greater or equal to the number of cuts in
the right. The opposite case will be obtained through the cyclic permutations once we compute
R(2). We thus limit ourselves to the following classes of integrals

. (3.51)

As described in section 2.4, the partial amplitudes fall into two different topologies, which need
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to treated separately: the twice-punctured disk, and the punctured torus.

3.4.2.1 Twice Punctured Disk

First we will consider the twice-punctured disk topology. The associated partial amplitudes are
A

(2)
n:1, A(2)

n:k and A
(2)
n:r,k, whose rational parts we denote by R

(2)
n:1, R(2)

n:k, R(2)
n:r,k. As discussed above,

we define their generating sets R̃(2)
n:1, R̃(2)

n:k, R̃(2)
n:r,k, such that,

R
(2)
n:1(1 . . . n) =

∑
σ∈Cn

R̃
(2)
n:1

(
σ(1 . . . n)

)
, (3.52)

R
(2)
n:k(1 . . . k − 1; k . . . n) =

∑
σ1∈Ck−1

σ2∈Cn−k−1

R̃
(2)
n:k

(
σ1(1 . . . (k − 1));σ2(k . . . n)

)
, (3.53)

R
(2)
n:r,k(1 . . . r; (r + 1) . . . (r + k); (r + k + 1) . . . n) =∑

σ1∈Cr, σ2∈Ck
σ3∈Cn−r−k

R̃
(2)
n:r,k

(
σ1(1 . . . r);σ2((r + 1) . . . (r + k));σ3((r + k + 1) . . . n)

)
. (3.54)

Note that the sums do not include possible permutations of the traces themselves. Rather we
include such permutations in our definition of the R̃(2). In the most general case, we have three
traces of color generators, where each trace is the color structure of one of the boundaries in a cut,
as described in section 3.4.1. We therefore have to separately account for all 6 possible assignments
of the traces to these boundaries, treating each power of Nc as a trace without generators Tr(1Nc

).
For the leading-color case R(2)

n:1, the single trace can only be associated to the outer boundary of
the cut, consistent with refs. [11, 12] Any other assignment would turn one of the loops into a
tadpole, and therefore would not contribute.

By choosing to construct the rational contributions through the generating sets R̃(2), we have
to be make sure that every cut is only counted once when summing over cyclic permutations. If
two different cuts are related by a permutation, we can avoid overcounting by including only one
of them in the generating set. Figure 3.8 shows an example of such cyclicly related cuts of color
structure Nc Tr(T

1T 2)Tr(T 3T 4T 5T 6T 7). Only one of the cuts would be kept in the generating set
R̃

(2)
7:3.

For an even number of momenta, cuts exist that are related to themselves under cyclic per-
mutation. For these it is not possible to avoid an overcounting, and we are forced to introduce
symmetry factors. As an example, consider the cut contributing to R̃(2)

6:1 shown in Figure 3.9. It
is invariant under shifting all momenta by three positions, and therefore would contribute to R(2)

6:1

twice. When adding this cut to R̃(2)
6:1, we therefore need to dress it with a symmetry factor of 1

2 .

As mentioned in section 2.2, to obtain the full one-loop bubble coefficient we not only have
to compute the bubble cut itself, but also need to include contributions from any triangle cuts
obtained by cutting an additional propagator in the bubble. These triangle contributions to bubble
coefficients have to be included in the generating sets as well, with the restriction that we cannot
introduce cuts which separate both scalar pairs at once. Such cuts would belong to neither A(2)

2,0

nor A(2)
1,1 from the dimensional reconstruction point of view, and according to our premise should

therefore not contribute to R(2).
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Figure 3.8: Example of overcounting after summing over cyclic permutations. The two cuts with
color structure Nc Tr(T

1T 2)Tr(T 3T 4T 5T 6T 7) are related to each other by shifting the momenta
of the traces by one and three places respectively. Therefore only one of the cuts should be added
to R̃(2)

7:3.

−→ S = 1
2

Figure 3.9: Example of symmetric cut for which overcounting cannot be avoided. Cuts of this
type require a symmetry factor of S = 1

2 .

3.4.2.2 Punctured Torus

We now turn to the second topology, the punctured torus. Only one partial amplitude is associated
to this topology, namely A(2)

n:1B, with rational part R(2)
n:1B. As described in section 2.4, we construct

one-loop squared cuts belonging to this color structure by adhering to the topology shown in
Figure 3.5b. One example of such a cut is shown in Figure 3.7.

By explicitly connecting the scalar lines of these cuts and flattening them,

−→ (3.55)

we obtain the familiar one-loop squared form. From this point of view we can use the discussion
of the previous section to construct generating sets of R(2)

n:1B, i.e. building cuts according to the
topologies of eq. (3.51). The main difference lies in the attachment of the scalar lines to the four-
scalar vertex: while before the scalar lines did not intersect, they now cross each other in the
central vertex.

A downside of working with the flattened version of 1B cuts is their tendency to hide the
symmetries of the topology. While before the notion of particle attachments "inside" and "outside"
the loops led to inclusions in different color traces, there is only a single trace in 1B partial
amplitudes. The different attachments now only signify the relative ordering of the generators
within the single trace, which is also less obvious than in the twice-punctured disk topology.
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Figure 3.10: The cut at the top is the real contribution to Rn:1B. Expressed in the usual one-loop
squared layout it has four equally valid representations. When working cuts in the flattened
layout, one has to ensure that only one is included in the generating set, as we would otherwise
overcount the cut shown at the top.

−→ S = 1
4 , −→ S = 1

2

Figure 3.11: Examples of cuts that need to be included in the R̃(2)
n:1B with a symmetry factor S.

The left cut requires S = 1
4 , as shifting all labels by four places amounts to a 90◦ rotation of the

cut, causing it to appear four times in the permutation sum. Similarly, shifting all momenta in
the right cut by four places is equivalent to a 180◦ rotation, such that S = 1

2 .

In addition, every 1B cut has four equivalent flattened representations, as shown in Figure 3.10.
These representations appear unique at first glance as their two loops appear swapped or turned
inside out, so particular care must be taken to ensure that no cut is included in R̃

(2)
n:1B more than

once. The four different representations also lead to new symmetry factors S. For an even number
of momenta, some 1B cuts can be related to either two, or all of their representations under cyclic
permutations. These cuts therefore need to be included in R̃(2)

n:1B with a symmetry factor of either
S = 1

2 or S = 1
4 respectively.

The unflattened representation on the other hand does not distinguish between the sides of
loops, and the overcounting and symmetry factor discussion simplifies, as they can be directly
related to the rotational symmetry of the cuts, see Figure 3.11.
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3.4.2.3 Mathematica Implementation

We automated the generation of cuts and symmetry factors required for the generating sets of the
type R̃(2)

n:1, R̃(2)
n:i, R̃

(2)
n:r,k and R̃

(2)
n:1B in Mathematica. The code is completely generic and is able to

obtain generating sets for an arbitrary number of gluons.

3.5 Six-Dimensional Amplitudes

To compute the amplitudes A(2)
6,2,0 and A(2)

6,1,1 from generalized unitarity we in principle require tree-
amplitudes with six-dimensional states. While we keep the external momenta four-dimensional,
all the momenta in the loops are generically six-dimensional, and in explicit sums over gluon
polarizations we have to take into account the two additional states.

Fortunately, the loops of A(2)
6,2,0 and A

(2)
6,1,1 carry only six-dimensional scalars, and the (D − 4)-

dimensional components of the loop momenta are conserved within each loop. We can therefore
treat the six-dimensional massless scalars as four-dimensional massive ones, allowing us to use the
one-loop D-dimensional unitarity techniques presented in section 2.3. However, the resulting tree
amplitudes require careful consideration, as they are in principle still six-dimensional. There are
two classes of such amplitudes we need to consider: those amplitudes with a single scalar pair,
appearing in each loop, and those with two scalar pairs, which connect the two loops.

While we could compute these tree amplitudes fully six-dimensionally using techniques laid
down in refs. [125, 126], we can relate the required contributions to four-dimensional massive
scalar QCD amplitudes, for which expressions partially exist in the literature. There are two key
features that require special attention: the six-dimensional momentum components of the scalars,
and the contact terms resulting from dimensional reduction, which are typically absent in scalar
QCD. We will discuss the effects of these differences separately for amplitudes with one or two
scalar lines.

3.5.1 Tree Amplitudes with One Scalar Pair

Let us first consider the single scalar-pair amplitudes,

A(0)(1φ2+ . . . (n− 1)+nφ). (3.56)

As we only have one scalar line, the quartic scalar interactions do not play a role in this type of
amplitude. Further, as the gluons only carry four-dimensional momenta, the (D − 4)-dimensional
momentum components are conserved within the scalar pair. The only way these components can
appear in the amplitude are contractions of the form

µ2 = (p
(5)
1 )2 + (p

(6)
1 )2 = (p(5)n )2 + (p(6)n )2. (3.57)

As the six-dimensional scalars are massless, we have µ2 = p21 = p2n, and we can interpret µ2 as
the squared mass of four-dimensional scalars. Thus, for four-dimensional gluon momenta the six-
dimensional amplitudes A(0)(1φ2+ . . . (n − 1)+nφ) are exactly those of four-dimensional massive
scalar QCD, with squared scalar mass µ2. In computing these amplitudes using BCFW, gluonic



3.5. SIX-DIMENSIONAL AMPLITUDES 81

factorization channels will appear, and we would in principle have to include the two additional
gluonic states in the polarization sum. However, the identification of the six-dimensional ampli-
tudes with those scalar QCD shows us that we do not need to take these states into account, as
their contribution is guaranteed to vanish.

Many results for the required scalar QCD tree-amplitudes already exist in the literature, so we
will not discuss them any further here. In section B.1 we provide the expressions for the amplitudes
used. In these and all following expressions we use six-dimensional Mandelstam invariants instead
of four-dimensional ones, as they lead to more compact expressions.

3.5.2 Tree-Amplitudes with Two Scalar Pairs

In the case of the two scalar pair amplitudes, the situation is slightly more intricate. There exist two
classes of amplitudes, differentiated by the manner in which the scalar lines interact. Amplitudes,
where the scalar lines connect via the exchange of a gluon, we will denote by A

(0)
gluon, while those

involving a four-scalar contact term we will call A(0)
contact. Let us first consider such amplitudes

without any external gluons. Three such amplitudes exist,3

A
(0)
gluon(1

φ2φ3φ
′
4φ

′
) A

(0)
contact(1

φ2φ3φ
′
4φ

′
) A

(0)
contact(1

φ2φ
′
3φ4φ

′
)

, (3.58)

The first is required for A(2)
6,2,0, while the second and third appear in cuts of A(2)

6,1,1. Amplitudes of
the type A(0)

contact(1
φ2φ

′
3φ4φ

′
) will be required for subleading single trace partial amplitudes A(2)

n:1B

as hinted at in section 2.4. If the scalar lines cross as shown in the third amplitude, the Feynman
rules of eq. (3.32) do not allow for gluon exchange, hence the absence of A(0)

gluon(1
φ2φ

′
3φ4φ

′
). If we

include an additional four-dimensional gluon, we have the five distinct possibilities4

A
(0)
gluon(1

φ2φ3+4φ
′
5φ

′
), A

(0)
contact(1

φ2φ3+4φ
′
5φ

′
), A

(0)
gluon(1

φ2+3φ4φ
′
5φ

′
),

A
(0)
contact(1

φ2+3φ4φ
′
5φ

′
), A

(0)
contact(1

φ2+3φ
′
4φ5φ

′
)

(3.59)

3Thanks to Ingrid Holm for suggesting the graphical representation of the scalar lines’ internal connection. The
absence of an internal border is meant to differentiate this representation from one-loop amplitudes.

4The external gluon in A
(0)
gluon(1

φ2φ3+4φ
′
5φ

′
) can also be attached to the gluon propagator connecting the two

scalar lines.
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For amplitudes of both A
(0)
gluon and A

(0)
contact type, the (D − 4)-dimensional momentum compo-

nents are separately conserved for each scalar line. While the A(0)
gluon amplitudes are built using

the same Feynman rules as scalar QCD, the gluon propagator contracts the momenta of the scalar
lines, and particularly their (D − 4)-dimensional components. These contractions are a feature of
six-dimensional amplitudes and in principle we cannot obtain these contributions from purely four-
dimensional techniques. Fortunately, for our purposes the four-dimensional parts of the amplitudes
are sufficient. In the language of D-dimensional unitarity the missing terms will be proportional to
µ12. For one-loop squared topologies, µ12 integral coefficients are guaranteed to vanish by Lorentz
invariance, and we can again use results from massive scalar QCD.

We use different methods to evaluate the four-scalar amplitudes. For simple cases, Feynman
diagrams are a convenient choice to obtain compact expressions without spurious poles. The
contact term amplitudes have a natural construction in terms of off-shell scalar currents that are
sewn together at the contact term. For amplitudes where either of these methods becomes too
complex we turn to massive BCFW recursion.

3.5.2.1 Feynman Diagrams

The four scalar amplitudes without external gluons shown in eq. (3.58) are each computed from a
single Feynman diagram,

= , = ,

= ,

(3.60)

such that

A
(0)
gluon(1

φ2φ3φ
′
4φ

′
) = −

(
1

2
+
s23
s12

)
, (3.61)

A
(0)
contact(1

φ2φ3φ
′
4φ

′
) = −1

2
, (3.62)

A
(0)
contact(1

φ2φ
′
3φ4φ

′
) = 1. (3.63)

The expression for A(0)
gluon(1

φ2φ3φ
′
4φ

′
) is consistent with the one used in ref. [13], as well as the

result of ref. [127]5.

In the presence of a single external gluon, Feynman diagrams are also a viable approach, as
the analytic manipulations are still tractable. For the gluon-exchange amplitudes we again use

5The results in ref. [127] are defined up to prefactors, which in this case needs to be 2 for agreement with our
expression
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Feynman diagrams to obtain the compact expressions

A
(0)
gluon(1

φ2φ3+4φ
′
5φ

′
) = −s24(s23 [3|45|3] + s34 [3|12|3])

2s12s23s34s45

− [3|24|3] (s12(s34 − s14) + s45(s23 − s25) + 2s23s34 − s12s45)

2s12s23s34s45

(3.64)

A
(0)
gluon(1

φ2+3φ4φ
′
5φ

′
) = − [2|13|2] (s34 − s35) + s12 [2|(4− 5)3|2]

2s12s45s23
(3.65)

The expression in eq. (3.64) was verified numerically using Berends–Giele recursion. It is also in
agreement with the result of ref. [127]6.

3.5.2.2 Contact-Term Amplitudes from Off-Shell Scalar Currents

We obtain the contact-term amplitudes A(0)
contact from off-shell scalar currents. In these amplitudes,

the two scalar lines are connected via a contact term. As these contact terms only amount to
factors, we can construct the amplitudes from a Berends–Giele recursion [54], where we connect
four off-shell scalar currents to the contact-term. The required currents contain a scalar line
with a number of positive helicity gluons attached. Compared to the on-shell case there are two
conditions that we have to loosen in our computations. By nature of an off-shell current, the mass
and momentum square of the off-shell scalar are no longer connected. In addition, the current
will no longe be gauge invariant, such that its form generally depends on the choice of reference
momentum for the gluon polarization vectors.

The scalar current with only a single positive gluon matches exactly the on-shell amplitude, as
it only consists of a single Feynman diagram,

Jφ(2
+3φ) = − [2|3|q⟩

⟨2q⟩
. (3.66)

Note that we define the currents Jφ to be the sum of Feynman diagrams normalized by a factor
of (−i), just as in the case of on-shell amplitudes. The scalar propagators sewing the currents
to the contact term therefore have to be −1

sijk...
. We can use this current to obtain the amplitude

A
(0)
contact(1

φ2φ3+4φ
′
5φ

′
),

A
(0)
contact(1

φ2φ3+4φ
′
5φ

′
) = V (φφφ′φ′)

−1

s23
Jφ(2

φ3+)

+ V (φφφ′φ′)
−1

s34
Jφ′(3+4φ

′
)

=
1

2s23s34 ⟨3q⟩
([3|2|q⟩ ⟨3|4|3]− [3|4|q⟩ ⟨3|2|3])

=
1

2s23s34 ⟨3q⟩
([3|2|3⟩ ⟨q|4|3]− [3|24|3] ⟨3q⟩ − [3|4|q⟩ ⟨3|2|3])

= − [3|24|3]
2s23s34

.

(3.67)

In the six-point case, i.e. amplitudes with two gluons, we generally require the two-gluon current
6As in the case of eq. (3.61), the result of ref. [127] requires a factor of 2 for agreement, due to it being defined

only up to a prefactor.
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Jφ(2
+3+4φ) and Jφ(2+3φ4+). If we choose the reference momenta q2 = p3, q3 = p2, we obtain for

Jφ(2
+3+4φ),

Jφ(2
+3+4φ) =

m2
4 [23]

s34 ⟨23⟩
+

s234

2 ⟨23⟩2
, (3.68)

which closely resembles the on-shell result,

A(0)(1φ2+3+4φ) =
m2

4 [23]

s34 ⟨23⟩
. (3.69)

As we made a specific choice for the reference momenta, we have to make the same choice for the
remaining currents. For Jφ(2+3φ4+) we get,

Jφ(2
+3φ4+) = −m

2
3 [24]

2

s24s34
− s234 [2|3|4⟩ [4|3|2⟩

s23s34 ⟨24⟩2
, (3.70)

where the first term again mirrors the on-shell amplitude,

A(0)(1φ2+3φ4+) = −m
2
3 [24]

2

s24s34
. (3.71)

We can now construct the on-shell amplitudes. For A(0)
contact(1

φ2φ3+4+5φ
′
6φ

′
) we obtain,

A
(0)
contact(1

φ2φ3+4+5φ
′
6φ

′
) = V (φφφ′φ′)

−1

s234
Jφ(2

φ3+4+)

+ V (φφφ′φ′)
−1

s345
Jφ′(3+4+5φ

′
)

+ V (φφφ′φ′)

(
−1

s23
Jφ(2

φ3+)

)
×
(
−1

s45
Jφ′(4+5φ

′
)

)
= − 1

2 ⟨34⟩

[
[3|25|4]
s23s45

− [34]

(
m2

2

s23s234
+

m2
5

s345s45

)]
.

(3.72)

Similarly, A(0)
contact(1

φ2φ3+4φ
′
5φ

′
6+) and A

(0)
contact(1

φ2+3φ4φ
′
5+6φ

′
) evaluate to,

A
(0)
contact(1

φ2φ3+4φ
′
5φ

′
6+) = V (φφφ′φ′)

×
(
−1

s23
Jφ(2

φ3+) +
−1

s34
Jφ′(3+4φ

′
)

)
×
(
−1

s56
Jφ′(5φ

′
6+) +

−1

s61
Jφ(6

+1φ)

)
= −1

2

[3|24|3]
s23s34

[6|51|6]
s56s61

,

(3.73)

A
(0)
contact(1

φ2+3φ4φ
′
5+6φ

′
) = V (φφφ′φ′)

×
(
−1

s21
Jφ(1

φ2+) +
−1

s23
Jφ(2

+3φ)

)
×
(
−1

s45
Jφ′(4φ

′
5+) +

−1

s56
Jφ′(5+6φ

′
)

)
= −1

2

[2|13|2]
s21s23

[5|46|5]
s45s56

,

(3.74)

where we used the same steps as in eq. (3.67). The sum over currents factorizes, as the gluons
can never both appear in the same current. Note that in A

(0)
contact(1

φ2φ3+4φ
′
5φ

′
6+) the currents
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in each factor belong to the same scalar line, while in A
(0)
contact(1

φ2+3φ4φ
′
5+6φ

′
) they do not.

Finally, we determine A(0)
contact(1

φ2+3φ4+5φ
′
6φ

′
),

A
(0)
contact(1

φ2+3φ4+5φ
′
6φ

′
) = V (φφφ′φ′)×

(
−1

s12
Jφ(1

φ2+)

)
×
(
−1

s34
Jφ(3

φ4+)

)
+ V (φφφ′φ′)×

(
−1

s12
Jφ(1

φ2+)

)
×
(
−1

s45
Jφ′(4+5φ

′
)

)
+ V (φφφ′φ′)×

(
−1

s23
Jφ(2

+3φ)

)
×
(
−1

s45
Jφ′(4+5φ

′
)

)
+ V (φφφ′φ′)×

(
−1

s234
Jφ(2

+3φ4+)

)
= −1

2

[
m2

3 [24]
2

s23s234s34
− ⟨2|3|4] ⟨4|1|2]

s12s34 ⟨24⟩2
+

⟨2|5|4] ⟨4|1|2]
s12s45 ⟨24⟩2

+
⟨2|3|4] ⟨4|3|2]
s23s34 ⟨24⟩2

− ⟨2|5|4] ⟨4|3|2]
s23s45 ⟨24⟩2

]

= −1

2

[
m2

3 [24]
2

s23s234s34
+

[2|13|2] [4|35|4]
s12s23s34s45

]
.

(3.75)

As the currents are agnostic as to the scalar type, we can summarize the results as follows,

A
(0)
contact(1

φ12φ23+4φ35φ4) = V (φ1φ2φ3φ4)×
[
[3|24|3]
s23s34

]
, (3.76)

A
(0)
contact(1

φ12φ23+4+5φ36φ4) = V (φ1φ2φ3φ4)×
[

[3|25|4]
s23s45 ⟨34⟩

− [34]

⟨34⟩

(
m2

2

s23s234
+

m2
5

s345s45

)]
,

(3.77)

A
(0)
contact(1

φ12φ23+4φ35φ46+) = V (φ1φ2φ3φ4)×
[
[3|24|3]
s23s34

[6|51|6]
s56s61

]
, (3.78)

A
(0)
contact(1

φ12+3φ24+5φ36φ4) = V (φ1φ2φ3φ4)×

[
m2

3 [24]
2

s23s234s34
+

[2|13|2] [4|35|4]
s12s23s34s45

]
. (3.79)

where the φi can be specified to be either φ or φ′.

3.5.2.3 Massive BCFW Recursion

For gluon-exchange amplitudes with more than one gluon, as well as contact-term amplitudes with
more than two gluons we make use of BCFW recursion [59]. If such an amplitude has two adjacent
gluons, we can use a standard BCFW gluon-gluon shift. We have verified using Berends–Giele
recursion that the relevant amplitudes with up to three gluons scale as 1

z or better under such
shifts. If an amplitude does not possess a pair of adjacent gluons, we can still use recursion, now
shifting the momenta of an adjacent gluon and massive scalar pair. Such shifts have been used
for example in refs. [128, 129] to compute tree-amplitudes with a single massive scalar line. In the
case of four-scalar amplitudes, such shifts can also be used, provided that only the gluon’s angle
spinor is shifted, and the shifted gluon and scalar are adjacent. We will demonstrate the method
by recomputing A(0)

gluon(1
φ2φ3+4φ

′
5φ

′
) and A

(0)
contact(1

φ2φ3+4φ
′
5φ

′
).

As in ref. [129], we choose to construct the shifted momenta using the massless projection of
the massive momentum with respect to the massless one. For the amplitude in question, we use a
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⟨3, 2♭]-shift of the form,

p2 → p̂2 = p2 −
z

2
[3|γ|2♭⟩ , p3 → p̂3 = p3 +

z

2
[3|γ|2♭⟩ ,

λ3 → λ3 = λ3 + zλ♭2, λ̃3 → ˆ̃
λ3 = λ̃3.

(3.80)

The momentum p♭2 is the massless projection of p2 on p3 [130],

p♭2 = p2 −
µ2
2

2(p2 · p3)
p3. (3.81)

From this definition we see that the shifted momenta p̂2, p̂3 satisfy all the requirements for a
BCFW shift,

p̂22 = p̂2 · p2 = p22, p̂23 = p̂3 · p3 = p23,

p̂2 · p̂3 = p̂2 · p3 = p̂3 · p2 = p2 · p3.
(3.82)

From these shifted momenta, the gluon-exchange amplitude can be computed via,

A
(0)
gluon(1

φ2φ3+4φ
′
5φ

′
) =−

∑
h=±

A(0)(2̂φ, K̂h, 1φ)
1

s12
A(0)(5φ

′
, (−K̂)−h, 3̂+, 4φ

′
)

−A
(0)
gluon(1

φ, 2̂φ, K̂φ′
, 5φ

′
)
1

s34
A

(0)
3 ((−K̂)φ

′
, 3̂+, 4φ

′
).

(3.83)

Note that we are only summing over the four-dimensional polarization states. To compute the full
six-dimensional amplitude, we would at this point also have to include the six-dimensional states7.
However, for simplicity we discard these terms, as they would lead to cross-terms µ14, µ15, µ15,
µ25, which will be irrelevant for our computations. Using the result for the four-scalar amplitude
in eq. (3.61) as well as the two-scalar amplitudes in appendix B.1, we obtain,

A
(0)
gluon(1

φ2φ3+4φ
′
5φ

′
) =

1

∆

(
[3|45|3]2m2

2 + [3|21|3]2m2
4

s12s45
− [3|42|3]2 s15

s23s34

)
− [3|42|3]

2s23s34
, (3.84)

where ∆ = (s34 [3|12|3] + s12 [3|42|3]) is a spurious pole. This expression numerically matches the
Feynman diagram result of eq. (3.64).

For the contact-term amplitude, we have to discard in eq. (3.83) any channels corresponding
to a gluon exchange between the scalar lines, and replace all appearances of A(0)

gluon with A
(0)
contact,

A
(0)
contact(1

φ2φ3+4φ
′
5φ

′
) = −A(0)

contact(1
φ2̂φK̂φ′

5φ
′
)
1

s34
A

(0)
3 ((−K̂)φ

′
, 3̂+4φ

′
). (3.85)

Due to the simplicity of the tree amplitudes involved, the result is free of spurious poles, and agrees
with the expression in eq. (3.76).

While recursion allows us to obtain analytic expressions tree-amplitudes with a arbitrary num-
ber of gluons, the results almost always suffer spurious poles which cancel non-trivially. In ad-
dition, as four-scalar amplitudes of previous steps appear in the recursion, these spurious poles
propagate and lead to large expressions in denominators. For our purposes we only require these
tree-amplitudes for up to three gluons, at which point the complexity of the expressions remains

7When summing over these states defined as in refs. [125, 126], they need to be accompanied by a relative
sign compared to the four-dimensional states, as the polarization vectors in the completeness relation in eq.(33) of
ref. [125] are contracted by anti-symmetric tensors
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manageable.

3.6 Momentum Twistor Parametrization

To obtain analytic expressions for R(2)
5:1 and R(2)

5:3 we will use parametrized kinematics based on their
representation in momentum twistor space. We therefore provide a short summary of momentum
twistors and one possible choice of an n-momentum parametrization, which is the one used for the
results of section 3.7.2.

Starting with an ordered set of massless four-dimensional momenta (p1, . . . , pn) satisfying∑
pi = 0, one can associate to the pi a set of elements yi in dual momentum space, satisfying

the relation yi−yi−1 = pi. The yi are constructed explicitly as yi =
∑i

j=0 pj , where p0 can be cho-
sen arbitrarily. Since the momenta are massless we further have the property that (yi−yi−1)

2 = 0.
Ref. [131] details the construction of the twistor version of this dual momentum space, called
projective momentum-twistor space. Momentum twistors are elements of CP3, and for every mo-
mentum pi in our set we can find an associated momentum twistor with homogeneous coordinates
ZI
j = (λαj , µ

α̇
j ). Here λi is the angle spinor of pi defined as usual, while µi is a spinor transforming

in the conjugate SU(2) representation. The λi and µi satisfy the incidence relation

µiα̇ = λαi yiαα̇. (3.86)

Under the usual little group transformation λ and µ scale equally, as can be seen from the incidence
relation. This is consistent with the fact that the ZI are homogeneous coordinates in CP3, and a
total rescaling of ZI describes the same point in projective momentum-twistor space.

The bracket spinor λ̃α̇i of a momentum pi can be obtained via the relation [131],

λ̃α̇i =
⟨i(i+ 1)⟩µα̇

i−1 + ⟨(i+ 1)(i− 1)⟩µα̇
i + ⟨(i− 1)i⟩µα̇

i+1

⟨i(i+ 1)⟩ ⟨(i− 1)i⟩
. (3.87)

Based on this relation, we can see that scaling λα and µα̇ leads to the inverse behavior for λ̃α̇ as
expected.

A convenient way of expressing the momentum twistors ZI
i of an n-momentum configuration

is as a (4×N)-matrix,

Z = (ZI
1Z

I
2 . . . Z

I
n−1Z

I
n) =

(
λα1 λα2 . . . λαn−1 λαn

µα̇
1 µα̇

2 . . . µα̇
n−1 µα̇

n

)
. (3.88)

In this representation all required spinor products can be obtained by computing appropriate
minors of the matrix Z.

As masslessness and momentum conservation are manifest in kinematics defined through mo-
mentum twistors, any choice of values for the entries of Z represents a valid momentum config-
uration. This makes them a useful tool for generating numeric momentum configurations with
elements in the rational numbers Q or a finite field Fp.

We can use symmetries of our kinematics to reduce the number of independent entries in Z.
As mentioned before, the Zi are homogeneous coordinates, allowing us to fix one element in each
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column of Z. In choosing a frame, spatial rotations, Lorentz-boosts and shifts fix an additional
10 parameters. The remaining (3n − 10) entries are free, and are sufficient to obtain any valid
configuration of momenta by choosing their values appropriately. Momentum twistors therefore
greatly simplify finding parametrizations of generic massless kinematics, as any choice of fixing
entries leads to a different valid parametrization.

While spinors and Mandelstam invariants are linked by relations such as momentum conser-
vation or Schouten identities, the momentum twistor parameters are independent of one another.
Thus, parameterized momentum twistors allow us to express integral coefficients and rational parts
of amplitudes as multivariate rational functions in the parameters, while encapsulating the full an-
alytic dependence on the kinematics. In this representation, simplifications can be easier to carry
out as there are no additional relations, and the simplification of multivariate rational expressions
is a standard—though still challenging—problem.

When moving to momentum-twistor parameters we are removing the explicit spinorial depen-
dence, and therefore any phase information. In fact, when we fix (n + 10) entries of Z, we make
a specific choice for the phases of the spinors. When evaluating expressions with non-zero phase-
weight, such as helicity amplitudes, we therefore have to introduce a normalization factor that
cancels the phase dependence, allowing us to restore it when necessary. In the case of all-plus
partial amplitudes a convenient choice of normalization is to assign a Parke–Taylor factor to every
color trace, so that in general

Tr(T 1 . . . T i−1)Tr(T i . . . T j−1)Tr(T j . . . Tn) → 1

PTF(1 . . . i− 1)

1

PTF(i . . . j − 1)

1

PTF(j . . . n)
,

(3.89)
where

PTF(1 . . . n) = ⟨12⟩ . . . ⟨n1⟩ . (3.90)

As we are usually interested in obtaining a result in terms of spinors and Mandelstam invariants,
we also need to find a solution to the momentum-twistor parameters in terms of these objects.
Examples of parametrizations for four, five and six momenta together with such solutions can be
found in refs. [115, 132]. In the following we give a parametrization of n-momentum kinematics,
that extends the structure found in these examples. Other general parametrizations have been
found in the past [133, 134], however the one presented below was discovered independently of
these results.

Splitting the parameters into three sets ap, bq and cr, with p ∈ {1, . . . , n − 2} and q, r ∈
{1, . . . , n− 4}, we choose Z as follows,

Z =


1 0 y1 y2 y3 . . . yn−3 yn−2

0 1 1 1 1 . . . 1 1

0 0 0 bn−4

a2
b̃n−5 . . . b̃1 1

0 0 1 1 c̃n−4 . . . c̃2 c̃1

 . (3.91)
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The yk, b̃k and c̃k are defined recursively,

yk =

k∑
i=1

i∏
j=1

1

aj
,

b̃k = b̃k−1 + an−k(b̃k−1 − b̃k−2) + bk,

c̃k = c̃k−1 + an−k+1(c̃k−1 − c̃k−2) +
bk−1

bn−4
(ck − 1),

. (3.92)

with ak>(n−2) = b̃k<0 = c̃k≤0 = 0 and b0 = b̃0 = 1. The associated solution in terms of spinors and
Mandelstam invariants is then

a1 = s12

ak>1 = −⟨k, k + 1⟩ ⟨k + 2, 1⟩
⟨1, k⟩ ⟨k + 1, k + 2⟩

,

bn−4 =
s23
s12

,

bk =
⟨n− k|n− k + 1|2]

⟨n− k|1|2]
,

ck = −⟨1|3|n− k + 2]

⟨1|2|n− k + 2]
,

(3.93)

where in the solution for the ck the spinor labels have to be taken mod n.

3.7 Results

3.7.1 The Four-Gluon Amplitude Analytically

To demonstrate the separable approach, we will given an analytic derivation of the rational parts
R

(2)
4:1, R(2)

4:3 and R
(2)
4:1B of the four-gluon two-loop all-plus partial amplitudes A(2)

4:1, A(2)
4:3 and A

(2)
4:1B.

3.7.1.1 Leading Color R(2)
4:1

For the leading-color contribution R
(2)
4:1 we can determine the required cuts to be those shown

in Figure 3.12. As we have an even number of external particles, we have to include symmetry
factors to avoid overcounting when summing over cyclic permutations, as described in section 3.4.
Together with these symmetry factors the cuts form the generating set R̃(2)

4:1, such that

R
(2)
4:1(1

+2+3+4+) =
∑
σ∈C4

R̃
(2)
4:1(1

+2+3+4+), (3.94)

where R̃(2) is given by,

R̃
(2)
4:1 = (Ds − 2)2

[
1

2
I
[2]
3 I

[2]
3 C(2)

[ ]
+ I

[2]
3 I

[2]
2 [s34] C

(2)

[ ]
+

1

2
I
[2]
2 [s12]I

[2]
2 [s34] C

(2)

[ ]]
. (3.95)
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S = 1
2 S = 1 S = 1

2

Figure 3.12: Cuts required for R(2)
4:1, together with their symmetry factors S.

Due to separability, we can first focus our attention on the right-hand loop. There are only two
distinct cuts, namely a triangle and a bubble with two gluons and two massive scalars,

(I) , (II) . (3.96)

For the triangle cut (I), we use the loop-momentum parametrization of eqs.(2.117), (2.119), which
in this case simplifies to,

ℓµ1 =
1

2

(
t ⟨4|γµ|3]− µ2

s34t
⟨3|γµ|4]

)
,

ℓ∗µ1 =
1

2

(
t ⟨3|γµ|4]− µ2

s34t
⟨4|γµ|3]

)
.

(3.97)

Using the expressions for the scalar tree amplitudes from Appendix B.1, a brief computation leads
to

C
(1)
Tri,[2]

[ ]
=

1

2

∑
ℓ,ℓ∗

Infµ2,t

[
A(0)(kφ1 k

φ
2 ℓ

φ′

3 (−ℓ2)φ
′
)

×A(0)(3+ℓφ
′

1 (−ℓ3)φ
′
)A(0)(4+ℓφ

′

2 (−ℓ1)φ
′
)
]∣∣∣

µ2,t0

=
1

2
Infµ2,t

[∑
ℓ,ℓ∗

[3|ℓ1|4⟩
⟨34⟩

[4|ℓ1|3⟩
⟨43⟩

sk1ℓ3

s34

]∣∣∣
µ2,t0

=
1

2
Infµ2,t

[ µ2

⟨34⟩2
(
2sk13 +

(
t ⟨4|k1|3]−

µ2

s34t
⟨3|k1|4]

)
+
(
t ⟨3|k1|4]−

µ2

s34t
⟨4|k1|3]

))]∣∣∣
µ2,t0

=
sk13

⟨34⟩2
.

(3.98)

For the coefficient of the bubble integral associated to cut (II) in eq. (3.96) we would generally have
to include a triangle contribution, where an additional cut is placed in the gluon vertex. However,
by choosing the bubble reference momentum χ to be p3, the triangle contribution vanishes, and
only the bubble cut itself is required. With this choice for χ, the generic bubble loop-momentum
parametrization of eq. (2.122) simplifies to,

ℓµ1 = ypµ4 + (1− y)pµ3 +
1

2

(
t ⟨4|γµ|3] +

(
y(1− y)

t
− µ2

ts34

)
⟨3|γµ|4]

)
, (3.99)
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and we obtain for the bubble coefficient,

C
(1)
Bub,[2]

[ ]
= Infµ2,y,t

[
A(0)(kφ1 k

φ
2 l

φ′

1 (−l2)φ
′
)×A(0)(3+4+ℓφ

′

2 (−ℓ1)φ
′
)
]∣∣∣

t0,yi→Yi,µ2

= − Infµ2,y,t

[sk1ℓ1

s34

µ2

s3ℓ1

[34]

⟨34⟩

]∣∣∣
t0,yi→Yi,µ2

= Infµ2,y,t

[ µ2

y ⟨34⟩2 s34

×
[
ysk14 + (1− y)sk13 + t [3|k1|4⟩+

y(1− y)s34 − µ2

s34t
[4|k1|3⟩

]]∣∣∣
t0,yi→Yi,µ2

=
sk14 − sk13

⟨34⟩2 s34
.

(3.100)

In this case the Infy operation only leads to a y0 term, whose parameter integral Yi is 1.

We can now use these results to compute the cuts of Figure 3.12 by evaluating the left-hand
side loops,

(I) , (II) . (3.101)

For the triangle cut (I), we use the loop-momentum parametrization,

ℓµ1 =
1

2

(
t ⟨2|γµ|1]− µ2

s12t
⟨1|γµ|2]

)
,

ℓ∗µ1 =
1

2

(
t ⟨1|γµ|2]− µ2

s12t
⟨2|γµ|1]

)
.

(3.102)

The coefficients of the first two cuts in Figure 3.12 evaluate to,

C(2)

[ ]
= C

(1)
Tri

[
× C

(1)
Tri

[ ]]
=

1

2

∑
ℓ1,ℓ∗1

Infµ2,t

[
A(0)((−ℓ3)φ1+ℓφ1 )A(0)((−ℓ1)φ2+ℓφ2 )C

(1)
Tri

[ ]]∣∣∣∣
t0,µ2

=
1

2

s12

⟨12⟩2 ⟨34⟩2
∑
ℓ1,ℓ∗1

Infµ2,t

[
sℓ33

]∣∣∣
t0,µ2

=
1

2

s12

⟨12⟩2 ⟨34⟩2
Infµ2,t

[
µ2
(
2s13 +

(
t ⟨2|3|1]− µ2

s12t
⟨1|3|2]

)
+
(
t ⟨1|3|2]− µ2

s12t
⟨2|3|1]

))]∣∣∣
µ2,t0

=
s12s13

⟨12⟩2 ⟨34⟩2
,

(3.103)
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C(2)

[ ]
= C

(1)
Tri

[
× C

(1)
Bub

[ ]]
=

1

2

∑
ℓ1,ℓ∗1

Infµ2,t

[
A(0)((−ℓ3)φ1+ℓφ1 )A(0)((−ℓ1)φ2+ℓφ2 )C

(1)
Bub

[ ]]∣∣∣∣
t0,µ2

=
1

2

s12

⟨12⟩2 ⟨34⟩2
∑
ℓ1,ℓ∗1

Infµ2,t

[
sℓ34 − sℓ33

]∣∣∣
t0,µ2

=
s14 − s13

⟨12⟩2 ⟨34⟩2
.

(3.104)
For the third cut in Figure 3.12, we choose χ = p1 as the reference momentum for the loop
momentum of the left bubble, so that no triangles contribute to its coefficient,

ℓµ1 = ypµ2 + (1− y)pµ1 +
1

2

(
t ⟨2|γµ|1] +

(
y(1− y)

t
− µ2

ts12

)
⟨1|γµ|2]

)
. (3.105)

The double-bubble coefficient therefore evaluates to,

C(2)

[ ]
= C

(1)
Bub

[
× C

(1)
Bub

[ ]]
= − Infµ2,t,y

[
A(0)(1+2+ℓφ2 (−ℓ1)φ)C

(1)
Bub

[ ]]∣∣∣∣
yi→Yi,t0,µ2

= − Infµ2,t,y

[ [12]
⟨12⟩

µ2

s1ℓ1

s4ℓ1 − s3ℓ1

⟨34⟩2 s34

]∣∣∣
yi→Y i,t0,µ2

= 2
s13 − s14

⟨12⟩2 ⟨34⟩2 s12
.

(3.106)

With the integrals in eq. (2.104), we can now evaluate R̃(2)
4:1 according to eq. (3.95),

R̃
(2)
4:1(1

+2+, 3+4+) =
5s12s23 + s223

18 ⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨41⟩
. (3.107)

After summing over cyclic permutations of the external kinematics we obtain,

R
(2)
4:1(1

+2+3+4+) =
∑
C4

R̃
(2)
4:1(σ(1)

+σ(2)+σ(3)+σ(4)+)

=
s213 + 8s12s23

9 ⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨41⟩
,

(3.108)

which agrees with the result of refs. [13, 15].

3.7.1.2 Subleading Color R(2)
4:3

The four-gluon partial amplitude A(2)
4:3 is the simplest example subleading in color for which we

can demonstrate the separable approach. The color structure associated to this amplitude is of
the type Nc Tr(T

1T 2)Tr(T 3T 4), meaning that we construct the generating set such that we obtain
the full rational contribution after separately summing over the cyclic permutations of momenta
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S = 1 S = 1 S = 1 S = 1

S = 1 S = 1 S = 1 S = 1

S = 1 S = 1 S = 1 S = 1

Figure 3.13: Cuts required for R(2)
4:3. As none of the cuts are self-similar under cyclic

permutations of the traces, all the symmetry factors S are one.

in each of the traces,

R
(2)
4:3(1

+2+; 3+4+) =
∑

σ1∈C2({12})
σ2∈C2({34})

R̃
(2)
4:3(σ1(1)

+σ1(2)
+;σ2(1)

+σ2(2)
+). (3.109)

The method laid out in section 3.4 leads us to a generating set that includes 12 cuts, shown in
Figure 3.13. The cuts are each distinct under cyclic permutations of the traces, such that no
symmetry factors are required here. The generating set of the rational term R

(2)
4:3 can therefore be

constructed as follows,

R̃
(2)
4:3(1

+2+; 3+4+) = (Ds − 2)2
[
I
[2]
3 I

[2]
3 C(2)

[ ]
+ I

[2]
3 I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
3 I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
2 [s12]I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
3 I

[2]
3 C(2)

[ ]
+ I

[2]
3 I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
3 I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
2 [s12]I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
3 I

[2]
3 C(2)

[ ]
+ I

[2]
3 I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
3 I

[2]
2 [s34] C

(2)

[ ]
+ I

[2]
2 [s12]I

[2]
2 [s34] C

(2)

[ ]]
. (3.110)

As the tree amplitudes have at most two external gluons attached, we can relate the coefficients of
the cuts in eq. (3.110) to the ones already found for R̃(2)

4:1. From the relations,

A(0)(1φ2+3φ) = −A(0)(3φ2+1φ), A(0)(1φ2+3+4φ) = A(0)(4φ3+2+1φ), (3.111)
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we find that the cuts for R̃(2)
4:3 can be obtained from the expressions (3.103), (3.104), and (3.106)

by appropriate exchanges of the momenta. We thus obtain

C(2)

[ ]
=

s12s14

⟨12⟩2 ⟨34⟩2
, C(2)

[ ]
=

s13 − s14

⟨12⟩2 ⟨34⟩2
,

C(2)

[ ]
=

s42 − s41

⟨12⟩2 ⟨34⟩2
, C(2)

[ ]
= 2

s14 − s13

⟨12⟩2 ⟨34⟩2 s12
,

C(2)

[ ]
=

s34s32

⟨12⟩2 ⟨34⟩2
, C(2)

[ ]
=

s31 − s32

⟨12⟩2 ⟨34⟩2
,

C(2)

[ ]
=

s24 − s23

⟨12⟩2 ⟨34⟩2
, C(2)

[ ]
= 2

s32 − s31

⟨12⟩2 ⟨34⟩2 s12
,

C(2)

[ ]
=

s12s24

⟨12⟩2 ⟨34⟩2
, C(2)

[ ]
=

s23 − s24

⟨12⟩2 ⟨34⟩2
,

C(2)

[ ]
=

s41 − s42

⟨12⟩2 ⟨34⟩2
, C(2)

[ ]
= 2

s24 − s23

⟨12⟩2 ⟨34⟩2 s12
.

(3.112)

Evaluating eq. (3.110) with these coefficients gives us,

R̃
(2)
4:3(1

+2+; 3+4+) = −1

9

s12

⟨12⟩2 ⟨34⟩2
(14s12 + s13). (3.113)

After summing over the permutations of the particles in the two traces, some algebra leads to the
final result,

R
(2)
4:3(1

+2+; 3+4+) =
∑

σ1∈C2({12})
σ2∈C2({34})

R̃
(2)
4:3(σ1(1)

+σ1(2)
+;σ2(1)

+σ2(2)
+)

= −6
[12]

2

⟨34⟩2
.

(3.114)

This result is in agreement with ref. [15].

3.7.1.3 Subleading Color R(2)
4:1B

Finally, we can obtain the subleading single trace rational part R(2)
4:1B of the four-gluon amplitude

using the separable approach as well. A possible set of cuts for R̃(2)
4:1B is given in Figure 3.14.

The first and third cuts in the top row are invariant under all cyclic permutations of the external
momenta, as these permutations are just the different representations of the real non-planar contri-
bution (cf. Figure 3.10 and the associated discussion in section 3.4). As such, these cuts require a
symmetry factor of 1

4 . In addition there are two cuts that are invariant under shifting all momenta
by two positions, and that therefore have to be included with a factor of 1

2 .

As these cuts contain the twisted scalar amplitude, we cannot reuse the previous results. We
again begin with the right hand loops, of which there are now three distinct types,

(I) , (II) , (III) . (3.115)
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S = 1
4 S = 1

2 S = 1
4 S = 1
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2 S = 1
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S = 1 S = 1
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Figure 3.14: Cuts required for R(2)
4:1B, together with the required symmetry factors S.

Using the same loop-momentum parametrization as in eqs. (3.97) and (3.99), we obtain for these
cuts,

C
(1)
Tri,[2]

[ ]
=

1

2

∑
ℓ,ℓ∗

Infµ2,t

[
A(0)(kφ1 ℓ

φ′

3 k
φ
2 (−ℓ2)φ

′
)A(0)(3+ℓφ

′

1 (−ℓ3)φ
′
)

×A(0)(4+ℓφ
′

2 (−ℓ1)φ
′
)
]∣∣∣

µ2,t0

= −1

2
Infµ2,t

[∑
ℓ,ℓ∗

[3|ℓ1|4⟩
⟨34⟩

[4|ℓ1|3⟩
⟨43⟩

]∣∣∣
µ2,t0

= − Infµ2,t

[µ2s34

⟨34⟩2
]∣∣∣

µ2,t0
=

[34]

⟨34⟩
,

(3.116)

C
(1)
Bub,[2]

[ ]
= Infµ2,y,t

[
A(0)(kφ1 l

φ′

1 k
φ
2 (−l2)φ

′
)A(0)(3+4+ℓφ

′

2 (−ℓ1)φ
′
)
]∣∣∣

t0,yi→Yi,µ2

= − Infµ2,y,t

[ µ2

s3ℓ1

[34]

⟨34⟩

]∣∣∣
t0,yi→Yi,µ2

= Infµ2,y,t

[ µ2

y ⟨34⟩2
]∣∣∣

t0,yi→Yi,µ2

= 0,

(3.117)

C
(1)
Bub,[2]

[ ]
= Infµ2,y,t

[
A(0)(kφ1 l

φ′

1 k
φ
2 (−l2)φ

′
)A(0)(3+(−ℓ1)φ

′
4+ℓφ

′

2 )
]∣∣∣

t0,yi→Yi,µ2

= Infµ2,y,t

[µ2 [34]
2

s3ℓ1s3ℓ2

]∣∣∣
t0,yi→Yi,µ2

= − Infµ2,y,t

[ µ2

y(1− y) ⟨34⟩2
]∣∣∣

t0,yi→Yi,µ2

= 0.

(3.118)

Because the bubble cuts vanish, most of the cuts in Figure 3.14 vanish, and only the double-triangle
cuts give a non-zero contribution to R̃(2)

4:1B. It is again sufficient to compute only one of the double-
triangle cuts, as they are all related to each other by appropriate signs and exchanges of momenta
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due to the reversal identity of eq. (3.111). Picking one specific cut, we obtain

C(2)

[ ]
= C

(1)
Tri

[
× C

(1)
Tri

[ ]]
=

1

2

∑
ℓ1,ℓ∗1

Infµ2,t

[
A(0)((−ℓ3)φ1+ℓφ1 )A(0)((−ℓ1)φ2+ℓφ2 )C

(1)
Tri

[ ]]∣∣∣∣
t0,µ2

=
1

2

∑
ℓ1,ℓ∗1

Infµ2,t

[ [1|ℓ1|2⟩
⟨12⟩

[2|ℓ1|1⟩
⟨21⟩

[34]

⟨34⟩

]∣∣∣
t0,µ2

=
[12] [34]

⟨12⟩ ⟨34⟩
.

(3.119)
The remaining five cuts are then,8

C(2)

[ ]
= C(2)

[ ]
= C(2)

[ ]
= C(2)

[ ]
=

[12] [34]

⟨12⟩ ⟨34⟩
,

C(2)

[ ]
= C(2)

[ ]
= − [12] [34]

⟨12⟩ ⟨34⟩
.

(3.120)
Combining these coefficients with their associated symmetry factors, we obtain

R̃
(2)
4:1B(1

+2+3+4+) = (Ds − 2)2
[
1

4
I
[2]
3 I

[2]
3 C(2)

[ ]
+

1

2
I
[2]
3 I

[2]
3 C(2)

[ ]
+

1

4
I
[2]
3 I

[2]
3 C(2)

[ ]
+ I

[2]
3 I

[2]
3 C(2)

[ ]
+ I

[2]
3 I

[2]
3 C(2)

[ ]
+ I

[2]
3 I

[2]
3 C(2)

[ ]]
=

[12] [34]

⟨12⟩ ⟨34⟩

[
1

4
+

1

2
+

1

4
− 1− 1 + 1

]
= 0,

(3.121)

and as a consequence,

R
(2)
4:1B(1

+2+3+4+) =
∑
σ∈C4

R̃
(2)
4:1B(σ(1)

+σ(2)+σ(3)+σ(4)+) = 0. (3.122)

This is again consistent with the result of ref. [14, 15]

3.7.2 The Five-Gluon Amplitude Analytically

In the color decomposition of the five-gluon amplitude we require three partial amplitudes A(2)
5:1,

A
(2)
5:3 and A

(2)
5:1B, whose rational parts we label R(2)

5:1, R(2)
5:3, and R

(2)
5:1B. Following the discussion of

section 3.4, we create generating sets R̃(2)
5:1, R̃(2)

5:3 and R̃(2)
5:1B, which require 12, 62 and 133 unitarity

cuts respectively. The topologies for the cuts of R̃(2)
5:1, R̃(2)

5:3 are shown in Figures 3.15 and 3.16,
while those of R̃(2)

5:1B are omitted for brevity. As we have an odd number of momenta, none of the
cuts are related by cyclic permutations, and no symmetry factors are required.

Beginning with five-gluon amplitudes, we rely on our implementation in Mathematica to com-
pute the unitarity cuts due to their increased number and complexity. As our code is able to

8Keeping in mind that [12][34]
⟨12⟩⟨34⟩ =

[13][24]
⟨13⟩⟨24⟩
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n = 4 n = 5 n = 6 n = 7

R̃
(2)
n:1 3(7) 12(33) 47(149) 126(413)

R̃
(2)
n:3 12(27) 62(171) 242(729) 773(2440)

R̃
(2)
n:4 — — 240(735) 768(2422)

R̃
(2)
n:2,2 — — 1023(3168) 3300(10760)

R̃
(2)
n:1B 16(42) 133(385) 847(2678) 3909(12751)

Table 3.1: A table showing the number of cuts in the generating sets for partial amplitudes up to
seven gluons. In each case the first number excludes the triangle contributions to bubble
coefficients, while for the number in parenthesis they are included.

perform computations symbolically, we evaluated the cuts using parametrized kinematics obtained
from the momentum twistor parametrization of section 3.6, giving us analytic results. As an ex-
ample, an analytic expression of the generating set R̃(2)

5:1 derived with this approach is provided in
appendix B.2.

We verify our approach using the known results for the three partial amplitudes of refs. [4, 6,
18], which were obtained from augmented recursion. Our expressions are in numerical agreement
with these results9 and satisfy the color relations of ref. [135]10. We further notice that only
double-triangle cuts contribute to R̃(2)

5:1B.

3.7.3 The Six- and Seven-Gluon Amplitudes: Numeric Results

An analytic expression for the leading-color rational part R(2)
6:1 of the six-gluon two-loop all-plus

was first presented in ref. [5]. Ref. [10] further provides analytic expressions for the rational parts
of all six-gluon partial amplitudes, namely R

(2)
6:3, R(2)

6:4, R(2)
6:2,2 and R

(2)
6:1B. We are therefore able to

to verify the one-loop squared approach for the full color six-gluon amplitudes.

Due to the increased number of parameters in fully parametrized six-gluon kinematics, we limit
ourselves to numerical checks. Using the automated routines in Mathematica we find generating sets
R̃

(2)
6:1, R̃(2)

6:3,R̃(2)
6:4, R̃(2)

6:2,2 and R̃
(2)
6:1B. The number of cuts involved in these sets is shown in Table 3.1.

For numerical evaluations we have to perform the sum over permutations before evaluation. For
R

(2)
6:1, R(2)

6:3,R(2)
6:4, R(2)

6:2,2 and R
(2)
6:1B we therefore have to evaluate a total of 894, 5832, 6615, 25344

and 16068 cuts respectively. For all partial amplitudes we find complete numerical agreement with
the expressions of refs. [5, 10]. As in the five-gluon partial amplitude R(2)

5:1B, we find for R(2)
6:1B that

the only non-zero cuts are of the double-triangle type.

Further, we compute the seven-gluon leading-color rational part R(2)
7:1 numerically. Its generating

set R̃(2)
7:1 contains 126 unique cuts, which increases to 413 when including all triangle cuts required

for bubble coefficients. For numerical evaluations we need to perform the cyclic sum explicitly,
such that we have to compute 2891 one-loop squared cuts in total. We compared our result with
the evaluation of the analytic expression of ref. [8], which was obtained using augmented recursion.
We find our result to be in exact numerical agreement.

9We compared with the expressions of the published version.
10The equivalent expression given in ref. [4] is missing an overall sign.
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Figure 3.15: One-loop squared cuts for R̃(2)
5:1. The full set of cuts can be obtained by summing

over cyclic permutations. As the number of particles is odd, no symmetry factors are required.
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Figure 3.16: One-loop squared cuts for R̃(2)
5:1. The full set of cuts can be obtained by separately

summing over cyclic permutations of (12) and (345). As the number of particles is odd again, we
also do require symmetry here.
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Figure 3.17: Unitarity cuts required for R̃(2)
6:1. The full set of cuts can be obtained by summing

over cyclic permutations. As the number of momenta is even, a symmetry factor of 1
2 is necessary

to avoid overcounting of symmetric cuts.
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3.7.4 Agreement with Seven-Gluon R
(2)
7:1B Conjecture

The simple factorization behavior of the subleading partial amplitudes R̃(2)
n:1B made it possible to

formulate a conjecture for a closed analytic all-n form of R̃(2)
n:1B [18]. While the five- and six-gluon

rational terms R(2)
5:1B, R(2)

6:1B are known from explicit computations in refs. [4, 10], the seven-gluon
case R

(2)
7:1B is only known as part of the all-n conjecture. As the conjecture was based solely

on requiring the correct two-particle collinear factorization behavior, we can use the separable
approach to provide an independent cross-check of this result. Finding agreement would provide
evidence for both the correctness of the conjecture of ref. [18], while at the same time validating
the use of the separable approach in the computation of the rational contributions R(2)

n:1B.

Specializing the all-n form of ref. [18] to n = 7 we obtain

R
(2)
7:1B = R

(2)
7:1B,1 +R

(2)
7:1B,2, (3.123)

with11

R
(2)
7:1B,1 = 2

∑
1≤i<j<k<l≤7 tr5(ijkl)

⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨45⟩ ⟨56⟩ ⟨67⟩ ⟨71⟩

R
(2)
7:1B,2 = −4

[
C3745tr5[(1 + 2 + 3)547]− C3746tr5[(1 + 2 + 3)647] + C3756tr5[(1 + 2 + 3)657]

+ C2634tr5[(1 + 2)43(6 + 7)] + C2734tr5[(1 + 2)437]− C2635tr5[(1 + 2)53(6 + 7)]

− C2735tr5[(1 + 2)537] + C2645tr5[(1 + 2)54(6 + 7)] + C2745tr5[(1 + 2)547]

+ C2736tr5[(1 + 2)637]− C2746tr5[(1 + 2)647] + C2756tr5[(1 + 2)657]

+ C1523tr5[132(5 + 6 + 7)] + C1623tr5[132(6 + 7)] + C1723tr5[1327]

− C1524tr5[142(5 + 6 + 7)]− C1624tr5[142(6 + 7)]− C1724tr5[1427]

+ C1534tr5[143(5 + 6 + 7)] + C1634tr5[143(6 + 7)] + C1734tr5[1437]

+ C1625tr5[152(6 + 7)] + C1725tr5[1527]− C1635tr5[153(6 + 7)]

− C1735tr5[1537] + C1645tr5[154(6 + 7)] + C1745tr5[1547)]− C1726tr5[1627]

+ C1736tr5[1637]− C1746tr5[1647] + C1756tr5[1657]
]
.

(3.124)
The Crsij are sums over terms with a Parke–Taylor like structure,

Crsij =
∑

α∈Srsij

CPT(1, . . . , r, j, {α}, i, s . . . , 7), (3.125)

where,
CPT(a1, . . . , a7) =

1

⟨a1a2⟩ ⟨a2a3⟩ . . . ⟨a6a7⟩ ⟨a7a1⟩
. (3.126)

Further defining the sets S1, S2 and S3 by splitting {1, . . . , 7} according to,

{1, . . . , 7} = {1, . . . , r} ∪ S1 ∪ {i} ∪ S2 ∪ {j} ∪ S3 ∪ {s, . . . , 7}, (3.127)
11Defining tr5(ijkl) = tr−(ijkl)− tr+(ijkl), tr−(ijkl) = ⟨i|jkl|i] and tr+(ijkl) = [i|jkl|i⟩.
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the sets Srsij are obtained via the shuffle product,

Srsij = S1 � ST
2 � S3. (3.128)

The transposition denotes the reversal of the elements in S2.

The form of the conjecture slightly obscures the final form in terms of spinor products. After
evaluation of the Crsij and applications of the Schouten identity we find,

R
(2)
7:1B,2 =

4

⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨45⟩ ⟨56⟩ ⟨67⟩ ⟨71⟩
×[ ⟨12⟩ ⟨23⟩ ⟨45⟩

⟨13⟩ ⟨24⟩ ⟨25⟩
tr5(1325) +

⟨12⟩ ⟨23⟩ ⟨46⟩
⟨13⟩ ⟨24⟩ ⟨26⟩

tr5(1326) +
⟨12⟩ ⟨23⟩ ⟨47⟩
⟨13⟩ ⟨24⟩ ⟨27⟩

tr5(1327)

+
⟨12⟩ ⟨45⟩
⟨14⟩ ⟨25⟩

tr5(1425) +
⟨12⟩ ⟨46⟩
⟨14⟩ ⟨26⟩

tr5(1426) +
⟨12⟩ ⟨47⟩
⟨14⟩ ⟨27⟩

tr5(1427)

+
⟨12⟩ ⟨34⟩ ⟨45⟩
⟨14⟩ ⟨24⟩ ⟨35⟩

tr5(1435) +
⟨34⟩ (⟨12⟩ ⟨36⟩ ⟨45⟩+ ⟨13⟩ ⟨24⟩ ⟨56⟩)

⟨14⟩ ⟨24⟩ ⟨35⟩ ⟨36⟩
tr5(1436)

+
⟨34⟩ (⟨12⟩ ⟨37⟩ ⟨45⟩+ ⟨13⟩ ⟨24⟩ ⟨57⟩)

⟨14⟩ ⟨24⟩ ⟨35⟩ ⟨37⟩
tr5(1437) +

⟨12⟩ ⟨56⟩
⟨15⟩ ⟨26⟩

tr5(1526)

+
⟨12⟩ ⟨57⟩
⟨15⟩ ⟨27⟩

tr5(1527) +
⟨13⟩ ⟨56⟩
⟨15⟩ ⟨36⟩

tr5(1536) +
⟨13⟩ ⟨57⟩
⟨15⟩ ⟨37⟩

tr5(1537)

+
⟨13⟩ ⟨45⟩ ⟨56⟩
⟨15⟩ ⟨35⟩ ⟨46⟩

tr5(1546) +
⟨45⟩ (⟨13⟩ ⟨47⟩ ⟨56⟩+ ⟨14⟩ ⟨35⟩ ⟨67⟩)

⟨15⟩ ⟨35⟩ ⟨46⟩ ⟨47⟩
tr5(1547)

+
⟨12⟩ ⟨67⟩
⟨16⟩ ⟨27⟩

tr5(1627) +
⟨13⟩ ⟨67⟩
⟨16⟩ ⟨37⟩

tr5(1637) +
⟨14⟩ ⟨67⟩
⟨16⟩ ⟨47⟩

tr5(1647)

+
⟨14⟩ ⟨56⟩ ⟨67⟩
⟨16⟩ ⟨46⟩ ⟨57⟩

tr5(1657) +
⟨23⟩ ⟨34⟩ ⟨56⟩
⟨24⟩ ⟨35⟩ ⟨36⟩

tr5(2436) +
⟨23⟩ ⟨34⟩ ⟨57⟩
⟨24⟩ ⟨35⟩ ⟨37⟩

tr5(2437)

+
⟨23⟩ ⟨56⟩
⟨25⟩ ⟨36⟩

tr5(2536) +
⟨23⟩ ⟨57⟩
⟨25⟩ ⟨37⟩

tr5(2537) +
⟨23⟩ ⟨45⟩ ⟨56⟩
⟨25⟩ ⟨35⟩ ⟨46⟩

tr5(2546)

+
⟨45⟩ (⟨23⟩ ⟨47⟩ ⟨56⟩+ ⟨24⟩ ⟨35⟩ ⟨67⟩)

⟨25⟩ ⟨35⟩ ⟨46⟩ ⟨47⟩
tr5(2547) +

⟨23⟩ ⟨67⟩
⟨26⟩ ⟨37⟩

tr5(2637)

+
⟨24⟩ ⟨67⟩
⟨26⟩ ⟨47⟩

tr5(2647) +
⟨24⟩ ⟨56⟩ ⟨67⟩
⟨26⟩ ⟨46⟩ ⟨57⟩

tr5(2657) +
⟨34⟩ ⟨45⟩ ⟨67⟩
⟨35⟩ ⟨46⟩ ⟨47⟩

tr5(3547)

+
⟨34⟩ ⟨67⟩
⟨36⟩ ⟨47⟩

tr5(3647) +
⟨34⟩ ⟨56⟩ ⟨67⟩
⟨36⟩ ⟨46⟩ ⟨57⟩

tr5(3657)
]
.

(3.129)

We build the generating set R̃(2)
7:1B from 3909 unitarity cuts, which expand to 12751 cuts when

including all triangle contributions to bubble coefficients. After summing over permutations, we
have to compute a total of 89257 one-loop squared cuts. For each permutation, there exist only
416 non-vanishing cuts. These again all belong to the double-triangle topology.

To ensure a reliable comparison we evaluate the cuts semi-analytically on a univariate kinematic
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slice, parameterized by a variable δ,

(
⟨1|
[1|

)
=


439436
7631

−38

− 31698(285029δ2−7419)
1865571745δ2−8709906

44612(285029δ2−7419)
1865571745δ2−8709906

 ,

(
⟨2|
[2|

)
=


40
13

(
22991

8689δ2+2348 + 15
)

−50
(8689δ2+2348)(216723227δ2−704805)

43549530−9327858725δ2

(8689δ2+2348)(264559501δ2−370950)
18655717450δ2−87099060

 ,

(
⟨3|
[3|

)
=


36

−39
10094
39

− 6161
39

 ,

(
⟨4|
[4|

)
=


66

−97

−72

19

 ,

(
⟨5|
[5|

)
=


36

−52

−1

19

 ,

(
⟨6|
[6|

)
=


− 4

5 (27δ − 38)
3
5 (39δ − 88)

− 2
65 (5047δ + 52)
6161δ
65 + 84

5

 ,

(
⟨7|
[7|

)
=


6
5 (24δ + 19)

− 6
5 (26δ + 33)
40376δ
195 − 6

5
63
5 − 24644δ

195

 .

(3.130)
We chose the slice such that the limit δ → 0 probes the collinear momentum configuration 6||7.
Due to the symbolic approach of our code, we preserve the full analytic dependence of our result
on δ during the computation. Choosing all remaining kinematic degrees of freedom to be rational,
we can perform an exact comparison with the conjectured form on the entire slice.

We evaluate all 89257 cuts on these parameterized kinematics. We find that the resulting
expression and the conjectured form as rational functions of δ are in full analytic agreement. We
also explicitly verify that the result has the correct collinear behavior,

R
(2)
7:1B(1

+2+3+4+5+6+7+)
6||7−→ R

(2)
6:1B(1

+2+3+4+5+K+)× Split
(0)
− (6+7+), (3.131)

which is to be expected, as the conjecture of ref. [18] was based on demanding the correct two-
particle collinear limits.





Chapter 4

Integrating A Loop: The Effective
One-Loop Picture

In the previous chapter we have seen that two-loop rational terms can be obtained using only one-
loop techniques due to the separability of the computation. However, as discussed in section 3.1, the
finite polylogarithmic contributions possesses an even more explicit one-loop structure. They can
be constructed in a one-loop four-dimensional unitarity computation, where one of the amplitudes is
itself a one-loop all-plus amplitude. Based on the previous chapter, it appears reasonable to attempt
a similar construction for the rational contributions. We may expect them to be constructible from
a one-loop D-dimensional unitarity computation, where one of the amplitudes is a one-loop all-plus
amplitude with a massive scalar pair,

R(2)(1+ . . . n+) = + + .

We can justify such a construction by interpreting it as a reorganization of the one-loop square
cut approach of the previous chapter. Given a specific cut of one of the loops we collect all cuts
belonging to second loop, which then sum to an object resembling a one-loop amplitude,

+ + + . . . −→ .

As the rules for computing these one-loop vertices are exactly those of computing the rational
part of an amplitude with two massive scalars and a gluon running in the loop, we will call them
massive-scalar one-loop amplitudes.

We will first demonstrate explicitly that, for the rational parts of all two-loop four-gluon all-plus
amplitudes, such a rearrangement can be done consistently. As we have computed the one-loop
squared cuts explicitly in section 3.7.1 we will also be able to easily derive analytic forms for the
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required scalar one-loop amplitudes. We will then discuss the computation of the one-loop massive
scalar amplitudes with additional gluons, required for the two-loop rational parts of five or more
gluons. Instead of computing these one-loop amplitudes entirely via unitarity, we will adopt a
hybrid approach making use of both BCFW recursion as discussed in section 4.2.1, as well as the
unitarity approach of the previous chapter.

4.1 Four-Gluon Rational Terms from a One-Loop Vertex

As in section 3.7.1, it is easiest to start with the leading-color rational part of the amplitude
A

(2)
4:1(1

+2+3+4+). Let us for the moment assume that the rational part of this amplitude can be
obtained from a one-loop D-dimensional unitarity computation. Having replaced a gluon loop with
a scalar one, including a factor of two for the two helicities, color-dressed unitarity would lead us
to expect the following construction,

R
(2)
4:1(1

+2+3+4+) ≃ 2
∑
C4

[
C

(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

]
(4.1)

The one-loop vertex in this construction is a one-loop partial amplitude A(1)
4:1(k

φ
1 k

φ
2 3

+4+), where kφ1
and kφ2 are massive four-dimensional scalars. The two scalars are massive and have to transform
in the adjoint representation of the gauge group. The loop vertex is then dressed with the color
structure Nc Tr(T

k1T k2T 3T 4), such that we recover the expected overall structure N2
c (T

1T 2T 3T 4)

in eq. (4.1). As we are only interested in the rational contributions R(2)
4:1(1

+2+3+4+) we also only
need to include the rational part of this amplitude, R(1)(kφ1 k

φ
2 3

+4+). From the one-loop squared
construction discussed in the previous chapter, we know which D-dimensional scalar cuts have to
enter the computation of this rational part, namely,

R
(1)
4:1(k

φ
1 k

φ
2 3

+4+) = 2×

[
C

(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

]
. (4.2)

The cuts involve the four-scalar tree-amplitude, combining both gluon-exchange and contact-term
contributions, meaning that the external massive scalars cannot be split across two different tree
amplitudes. We have also split the common prefactor (Ds − 2)2 (evaluated at Ds = 4) between
the two one-loop computations. In section 3.7.1 we already provided expressions for these cut
coefficients, and can evaluate R(1)

4:1(k
φ
1 k

φ
2 3

+4+).

R
(1)
4:1(k

φ
1 k

φ
2 3

+4+) = 2

[
−1

2

sk13

⟨34⟩2
− 1

6

sk14 − sk13

⟨34⟩2

]
= −1

3

sk14 + 2sk13

⟨34⟩2
= −1

3

sk13 − s34

⟨34⟩2
(4.3)

Using this expression we can evaluate the cuts of eq. (4.1). We find

C
(1)
Tri,[2]

[ ]
= −1

3

s12(s13 − s34)

⟨12⟩2 ⟨34⟩2
, C

(1)
Bub,[2]

[ ]
= −1

3

s23 − s13

⟨12⟩2 ⟨34⟩2
, (4.4)
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so the right hand side of eq. (4.1) is,

2 ×
∑
C4

[
C

(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

]

=
∑
C4

[
1

3

s12(s13 − s12)

⟨12⟩2 ⟨34⟩2
+

1

9

s12(s23 − s13)

⟨12⟩2 ⟨34⟩2

]
=
∑
C4

[
−s12(5s12 + s23)

9 ⟨12⟩2 ⟨34⟩2

]
.

(4.5)

We can check numerically that this is the two-loop rational part R(2)
4:1 multiplied by a factor of 2.

This allows us to make the relation in eq. (4.1) precise,

R
(2)
4:1(1

+2+3+4+) =
1

2
× 2

∑
C4

[
C

(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

]
(4.6)

To understand the origin of the additional factor of 1
2 that is required, consider the one-loop square

cut

As the two loops are indistinguishable, this cut has to be counted only once in the one-loop squared
computation. In fact, we had to introduce a symmetry factor of 1

2 in the generating set R̃(2)
4:1 to

ensure this. In the present computation we single out one of the loops, while still summing over
all cyclic permutations. The cut above will therefore appear two times, once for each of,

and .

The same argument holds for all other cuts, and we require an overall symmetry factor of 1
2 . As it

is linked to the indistinguishability of the loops in the one-loop squared approach, we expect this
factor to be also required when constructing the two-loop rational parts of amplitudes with more
than four gluons.

In chapter 3 we saw that the one-loop squared construction is also applicable to rational parts
of amplitudes subleading in color. We can therefore attempt an effective one-loop construction for
these partial amplitudes as well. We first discuss R(2)

4:3(1
+2+; 3+3+). From color dressed unitarity,
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we expect the following one-loop cuts to contribute to the color structure Nc Tr(T
1T 2)Tr(T 3T 4)

R
(2)
4:3(1

+2+; 3+4+) =
∑

C2({1,2})

[
C

(1)
Tri,[2]

  ID3 [µ2] + C
(1)
Bub,[2]

[ ]
ID2 [µ2]

+ C
(1)
Tri,[2]

  ID3 [µ2] + C
(1)
Bub,[2]

[ ]
ID2 [µ2]

]

+
∑

C2({3,4})

[
C

(1)
Tri,[2]

  ID3 [µ2] + C
(1)
Bub,[2]

[ ]
ID2 [µ2]

+ C
(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

]

+
∑

C2({1,2})
C2({3,4})

[
C

(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

+ C
(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

]
(4.7)

Here we already included the symmetry factor of 1
2 . We see that we need an additional one-loop

massive scalar amplitude R(1)
4:3(k

φ
1 k

φ
2 ; 3

+4+), associated to the color structure Tr(T k1T k2)Tr(T 3T 4).
Again requiring that the two scalars be attached to the same tree amplitude, this one-loop ampli-
tude can be computed from unitarity cuts via,

R
(1)
4:3(k

φ
1 k

φ
2 ; 3

+4+) = 2
∑

C2({3,4})

[
C

(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Bub,[2]

[ ]
ID2 [µ2]

]
. (4.8)

The two cuts evaluate to the expression in eq. (4.3), which after the summation over the two
assignments of labels 3 and 4 turns into,

R
(1)
4:3(k

φ
1 k

φ
2 ; 3

+4+) =
∑

C2({3,4})

[
− 1

3

sk13 − s34

⟨34⟩2

]
=

s34

⟨34⟩2
. (4.9)

Using this as a vertex in the cuts of eq. (4.7) we find

C
(1)
Bub,[2]

[ ]
= C

(1)
Bub,[2]

[ ]

= C
(1)
Bub,[2]

[ ]
= C

(1)
Bub,[2]

[ ]
= 0, (4.10)

C
(1)
Tri,[2]

  = C
(1)
Tri,[2]

 
= C

(1)
Tri,[2]

  = C
(1)
Tri,[2]

  =
s12s34

⟨12⟩2 ⟨34⟩2
. (4.11)
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The remaining cuts of eq. (4.7) can be related to the leading color ones of eq. (4.4), such that
eq. (4.7) evaluates to

R
(2)
4:3(1

+2+; 3+4+)

=
∑

C2({1,2})

[
− s12s34

⟨12⟩2 ⟨34⟩2

]
+

∑
C2({3,4})

[
− s12s34

⟨12⟩2 ⟨34⟩2

]
+

∑
C2({1,2})
C2({3,4})

[
−s12(5s12 + s13)

9 ⟨12⟩2 ⟨34⟩2

]
. (4.12)

After carrying out the permutation sums, we can verify that this matches the result for R(1)
4:3 we

found in section 3.7.1. Furthermore, we can alternatively expand the cuts of eq. (4.7) into one-loop
squared cuts using the unitarity construction of the one-loop vertices. We find that we obtain
every one-loop squared cut of section 3.7.1 exactly twice, justifying the inclusion of the symmetry
factor of 1

2 .

Lastly, we can attempt to find a one-loop construction of the R(2)
4:1B rational terms. We can

use the flattened representation of the one-loop squared 1B cuts introduced in chapter 3 to find
the associated one-loop cuts. To obtain the single trace of color generators without any factors of
Nc we require one-loop vertices where the scalars are distributed between the two traces. For the
moment it is convenient to assume the gauge group to be U(Nc). For two scalars φ1, φ2 and two
gluons 3, 4 there then exist two unique color structures of this type, Tr(Tφ1)Tr(Tφ2T 3T 4) and
Tr(Tφ1T 3)Tr(Tφ2T 4). All other structures can be obtained from permutations of the scalars and
the gluons. We denote the associated one-loop vertices as R(1)

4:2(k
φ
1 ; k

φ
2 3

+4+) and R(1)
4:2(k

φ
1 3

+; kφ2 4
+),

and we can compute them using the expressions for the cuts found in section 3.7.1.

R
(1)
4:2(k

φ
1 ; k

φ
2 3

+4+) = 2C
(1)
Tri,[2]

  ID3 [µ2] = − [34]

⟨34⟩
(4.13)

R
(1)
4:3(k

φ
1 3

+; kφ2 4
+) = 2

[
C

(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Tri,[2]

[ ]
ID3 [µ2]

]
= 2

[34]

⟨34⟩

(4.14)

We did not include the bubble contributions explicitly as they vanish.

To obtain the one-loop cuts of R(2)
4:1B from color-dressed unitarity, the second loop is sewn into

both of the traces. Up to cyclic permutation, the one-loop cuts compatible with the R(2)
4:1B structure

are then

Set (I)


(4.15)
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Set (II)


(4.16)

We again include only triangle cuts. We found in the one-loop squared construction of R(2)
n:1B with

at least up to seven gluons that all one-loop squared cuts involving either a box or a bubble vanish,
such that we can expect the contruction of R(2)

n:1B purely from triangle cuts to hold in general. We
also split the cuts into two sets, which are mirror images of each other. When we expand the
one-loop cuts into one-loop squared ones we can see that the two sets are in fact the same cuts,
related by the symmetry of the punctured torus topology. To avoid overcounting we therefore limit
ourselves to computing set (I). Note that even after removing the redundant set (II) we will still
overcount cuts when summing over cyclic permutations. This is the same redundancy we found
in the one-loop construction of R(2)

4:1 and R(2)
4:3 above, and again makes the inclusion of a symmetry

factor of 1
2 necessary. The redundancy of sets (I) and (II) in addition to the one of the permutation

sum are the realization of the four-fold symmetry we found for one-loop squared cuts of R(2)
n:1B in

section 3.4. We therefore expect,

R
(2)
4:1B(1

+2+3+4+) =
∑
C4

[
C

(1)
Tri,[2]

  ID3 [µ2] + C
(1)
Tri,[2]

[ ]
ID3 [µ2]

+ C
(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Tri,[2]

[ ]
ID3 [µ2]

+ C
(1)
Tri,[2]

[ ]
ID3 [µ2] + C

(1)
Tri,[2]

[ ]
ID3 [µ2]

]
.

(4.17)

Evaluation of these coefficients as in section 3.7.1 leads to following expressions for the coefficients,

C
(1)
Tri,[2]

  = − [12] [34]

⟨12⟩ ⟨34⟩
, C

(1)
Tri,[2]

[ ]
= 2

[12] [34]

⟨12⟩ ⟨34⟩
,

C
(1)
Tri,[2]

[ ]
= − [12] [34]

⟨12⟩ ⟨34⟩
, C

(1)
Tri,[2]

[ ]
=

[12] [34]

⟨12⟩ ⟨34⟩
,

C
(1)
Tri,[2]

[ ]
= −2

[13] [24]

⟨13⟩ ⟨24⟩
, C

(1)
Tri,[2]

[ ]
=

[14] [23]

⟨14⟩ ⟨23⟩
.

(4.18)

Even before summing over the cyclic permutations the sum over cuts in eq. (4.17) vanishes1, such
that we recover the expected result,

R
(2)
4:1B(1

+2+3+4+) = 0 (4.19)

1Using [12][34]
⟨12⟩⟨34⟩ =

[13][24]
⟨13⟩⟨24⟩ =

[14][23]
⟨14⟩⟨23⟩ .



4.2. ONE-LOOP MASSIVE SCALAR AMPLITUDES 111

We have thus shown that the rational parts of all four-gluon two-loop partial amplitudes with
all-plus helicity are constructible from a one-loop unitarity computation. The results of this con-
struction are given in eqs.(4.19), (4.12) and (4.6) The cuts involve vertices reminiscent of rational
parts of one-loop amplitudes, which include a massive scalar pair. From unitarity we derived ana-
lytic expressions for these in eqs. (4.3), (4.9), (4.13) and (4.14). In the next section we will build on
this interpretation, and describe how to use one-loop amplitude techniques to compute the vertices
for additional gluons. We will then show explicitly that the leading color five-gluon rational term
is constructible via one-loop unitarity as well.

4.2 One-Loop Massive Scalar Amplitudes

In this section we will discuss the origin and the computation of the one-loop vertices in more
detail.

A natural interpretation for the one-loop vertices derives from their dimensional reconstruction
origins in the one-loop squared picture. As a reminder, we used the one-loop squared cuts to
compute the six-dimensional amplitudes A(1)

6,2,0 and A(1)
6,1,1, which together formed the coefficient of

(Ds − 2)2. These two-loop amplitudes are associated to the Lagrangian [107],

L6D,scalar = +
1

2
Dµφ

aDµφa +
1

2
Dµφ

′aDµφ′a − g2

2
fabcfadeφbφ′cφdφ′e, (4.20)

describing two massless six-dimensional scalar fields in the adjoint representation of the gauge
group. In A

(1)
6,2,0 and A

(1)
6,1,1, each loop carries such a scalar, and the loops are connected via gluon

exchange or a four-scalar contact term respectively.

We can therefore identify the one-loop vertices used in the construction of the previous section
as six-dimensional one-loop amplitudes, with a six-dimensional massless external scalar, and a
massless scalar running in the loop. As the scalars are the only external particles carrying six-
dimensional momentum, the arguments used for the scalar tree-amplitudes in section 3.5, and we
can compute the relevant cuts via massive four-dimensional methods.

Considering the one-loop squared construction of two-loop rational contributions subleading in
color, we require subleading one-loop partial amplitudes as well. In the language of the one-loop
color decomposition, we require the rational parts of the amplitudes,

Tr (1φ2g . . . iφ . . . ng) → R
(1)
n:1(1

φ2+ . . . iφ . . . n+),

Tr (1φ2g . . . iφ . . . (r − 1)g)Tr (rg . . . ng) → R(1)
n:r(1

φ2+ . . . iφ . . . (r − 1)+; r+ . . . n+),

Tr (1φ2g . . . (r − 1)g)Tr (rφ . . . ng) → R(1)
n:r(1

φ2+ . . . (r − 1)+; rφ(r + 1)+ . . . n+),

(4.21)

for both the gluon-exchange and contact-term contributions. As for tree amplitudes, we distinguish
the two via a subscript, i.e. R(1)

gluon and R
(1)
contact. In the first two cases, the two external scalars φ

appear in the same trace. As in the four-gluon example, these amplitudes will be required for the
twice punctured disk topology. Both gluon-exchange and contact-term versions of these amplitudes
exist. In the third case, the two external scalars are distributed across the two traces, and are
required for the punctured torus topology, i.e. R(2)

n:1B. As the external scalar line crosses the loop,
only contact-term amplitudes can contribute.



112 CHAPTER 4. INTEGRATING A LOOP: THE EFFECTIVE ONE-LOOP PICTURE

4.2.1 One-Loop BCFW

To compute the rational part of the one-loop massive scalar amplitudes, we will use a hybrid
approach of BCFW recursion and unitarity.

As the BCFW construction makes use of the analyticity of scattering amplitudes it can also
be used to determine rational parts of loop amplitudes. In the presence of loops, there are new
features in the BCFW computations that require special consideration. For one, not all poles
can be associated to on-shell propagators. We are also not limited to single poles anymore; in
one-loop amplitudes we will generally encounter double poles in the shift parameter z. While the
double poles follow from the universal collinear behavior, there exist single poles that cannot be
obtained from on-shell factorization. In refs. [112, 136], BCFW shifts were used to define a recursive
construction of one-loop single-minus amplitudes, as well as all-plus amplitudes with a massless
fermion pair. In these, the missing pole contributions were found by experimentation, and turn out
to be related to a product of soft functions. As a more general procedure, ref. [19] introduced the
augmented recursion procedure, which allows one to determine these missing poles from off-shell
currents. This method has been successfully applied in a number of one-loop computations [20–22],
and was used to determine the rational contributions to two-loop all-plus helicity amplitudes in
refs. [4–10]. For our computation, we will choose a different approach for the missing pole terms.
We will see that both the double- and missing single-pole terms originate from a limited number
of unitarity cuts. In the leading-color case only two cuts are generally required, which have a
particularly simple form. Contrary to the augmented-recursion procedure, we only require on-shell
tree-amplitudes in this approach.

As a warm up, we will review the computation of the five-gluon single-minus amplitude, as it
was presented in ref. [112]. We then show that the missing pole pieces are obtainable from two
unitarity cuts, which we compute explicitly. We will then apply this method to the massive scalar
amplitudes required for our effective one-loop approach to the two-loop rational terms.

4.2.1.1 The One-Loop Single-Minus Amplitude from BCFW

Just as in the case of tree amplitudes, we can use analyticity to construct the rational parts of
loop amplitudes recursively in the BCFW spirit. However, the analytic structure is slightly more
complicated, as propagators going on-shell are now not the only source of poles.

To explore the peculiarities involved in using BCFW recursion to compute one-loop amplitudes,
we review the BCFW construction of the amplitude,

A(1)(1−2+3+4+5+) =
1

3 ⟨34⟩2

[
⟨14⟩3 ⟨35⟩ [45]
⟨12⟩ ⟨23⟩ ⟨45⟩2

+
⟨13⟩3 ⟨24⟩ [23]
⟨15⟩ ⟨23⟩2 ⟨45⟩

+
[25]

3

[12] [15]

]
. (4.22)

We will follow the discussion of ref. [112]. As a one-loop single-minus amplitude, it is purely
rational, and has all relevant features required for later discussions.

We use a [1, 2⟩-shift, which has the form,

[1̂| = [1| − z [2| , ⟨1̂| = ⟨1| ,

⟨2̂| = ⟨2|+ z ⟨1| , [2̂| = [2| .
(4.23)
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We see from the expression (4.22) that A(1)(1−2+3+4+5+) scales as 1
z at worst. We would therefore

expect to reconstruct the amplitude from its finite poles in z. At tree level, such poles stem entirely
from propagators going on-shell, and we would naively expect to obtain the amplitude via,

A(1)(1−2+3+4+5+) ∼−
∑
h=±

A(0)(1̂−K̂h5+)
1

s15
A(1)(2̂+3+4+(−K̂)h)

−A(1)(1̂−K̂+4+5+)
1

s34
A(0)(2̂+3+(−K̂)−)

(4.24)

Using the results for the one-loop all-plus and single-minus amplitudes of eqs.(3.5) and (A.9), these
channels result in,

−A(0)(1̂−K̂−5+)
1

s15
A(1)(2̂+3+4+(−K̂)+) = −1

3

⟨1K̂⟩
3

⟨K̂5⟩ ⟨51⟩
1

s15

[34] [K̂2]

⟨34⟩ ⟨K̂2̂⟩

=
1

3

1

⟨34⟩2
[25]

3

[15] [12]
,

(4.25)

−A(0)(1̂−K̂+5+)
1

s15
A(1)(2̂+3+4+(−K̂)−) = −1

3

[1̂K̂]
3

[K̂5] [51̂]

1

s15

⟨2̂4⟩ [24]3

⟨2̂3⟩ ⟨34⟩ [K̂2] [K̂4]
= 0, (4.26)

−A(1)(1̂−K̂+4+5+)
1

s23
A(0)(2̂+3+(−K̂)−) =

1

3

⟨K̂5⟩ [K̂5]
3

⟨K̂4⟩ ⟨45⟩ [1̂K̂] [1̂5]

1

s23

[23]
3

[3K̂] [K̂2]

=
1

3

⟨14⟩2 [45]
⟨23⟩ ⟨45⟩2 ⟨12⟩ ⟨34⟩

s5K̂
[1̂5]

=
1

3 ⟨34⟩2
⟨14⟩3 ⟨35⟩ [45]
⟨12⟩ ⟨23⟩ ⟨45⟩2

.

(4.27)

We recover the first and last term of eq. (4.22), but are missing the second. When we evaluate
this term on the shifted kinematics we can spot the root of the problem. It contains the troubling
factor,

[23]

⟨2̂3⟩2
=

[23](
⟨23⟩+ z ⟨13⟩

)2 , (4.28)

that is a double pole in the s23 channel. This is a feature we have not accounted for in the
construction of eq. (4.24). This factor generates a double pole only for complex momenta, as
spinor products ⟨23⟩ and [23] are then independent. For real momenta they are linked by complex
conjugation, and we recover the expected physical single pole 1/ ⟨23⟩ in this term, up to a phase.

The source of the double pole can be understood from the behavior of the amplitude in the
collinear region 2||3. Besides the factorization involving the tree-level splitting function,

A(1) × Split(0) → × , (4.29)

we also need to consider contributions from the one-loop splitting function Split(1). It can be
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thought of diagrammatically as,

A(0) × Split(1) → × . (4.30)

The splitting function Split
(1)
h (i+, j+) receives contributions from diagrams of the form [55, 56, 137,

138],

Split
(1)
h (i+, j+) ≃ 1

sij

[
+

]
. (4.31)

and evaluates to [56],

Split
(1)
+ (i+j+) = − i

6

ε+K · (pi − pj)√
2pi · pj

[
ε+i · ε+j −

ε+i · pj ε+j · pi
pi · pj

]
+O(ϵ), (4.32)

with K = −(pi + pj). We removed a factor of i/(4π)2 to align Split(1) with our definition of
one-loop amplitudes given in eq. (1.98).

Assuming all momenta to be complex, we can express Split(1)+ (i+j+) in terms of spinor products.
As there are only three on-shell momenta, all invariants have to vanish. Furthermore, all angle
spinor products are proportional to one another, as are all the bracket products, causing either
all angle or all bracket spinor products to vanish. Similar to the three-gluon MHV amplitude, we
assume the products ⟨Ki⟩, ⟨jK⟩ and ⟨ij⟩ to be zero. Starting from the expression in eq. (4.32),
we then obtain

Split(1)(i+j+) = −1

6

ε+K · (pi − pj)√
2pi · pj

[
ε+i · ε+j −

ε+i · pj ε+j · pi
pi · pj

]

=
1

3

1

s2ij

[Ki] ⟨iq⟩
⟨Kq⟩

[ij] ⟨jq⟩
⟨iq⟩

[ji] ⟨iq⟩
⟨jq⟩

= −1

3

[Ki] [ij] [jK]

s2ij
.

(4.33)

Here we chose the reference momenta of the three polarization vectors to be the same arbitrary
momentum q. The double pole is manifest, and when the momenta i and j—now assumed to be
real—become collinear we obtain,

Split(1)(i+j+)
i||j
∝ [ij]

⟨ij⟩2
, (4.34)

as expected. The ⟨23⟩ double pole in our example is generated by the collinear factorization2

A(1)(1−2+3+4+5+)
2||3−→ −A(0)(1−K−4+5+)× Split

(1)
+ (2+3+) + other, (4.35)

where we have neglected contributions from the tree-level splitting functions.

We can use this splitting function to explicitly add the double pole contribution in the BCFW
2The sign is the result of having normalized all amplitudes and splitting functions by a factor of −i
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computation of eq. (4.24). As in ref. [112] we define,

V (1)(i+j+k+) = −1

3
[ij] [jk] [ki] . (4.36)

as the factorizable part of the one-loop splitting function without its denominator. We can see
that the term

−A(0)(1̂−K̂−4+5+)
1

s234
V (1)(K̂+2̂+3+) (4.37)

in the 2||3 limit exactly reproduces the behavior predicted by the one-loop splitting function.
In other words, using the shifted kinematics, we can probe the 2||3 limit by taking the limit
z → z23 = − ⟨23⟩

⟨13⟩ . In this case the term in eq. (4.37) is the required contribution to the universal
factorization behavior.

Evaluating eq. (4.37) we get,

−A(0)(1̂−K̂−4+5+)
1

s234
V (1)(K̂+2̂+3+) = − ⟨1K̂3⟩

⟨K̂4⟩ ⟨45⟩ ⟨51⟩
1

s223

1

3
[K̂2] [23] [3K̂]

=
1

3

⟨13⟩2 ⟨12⟩ [23]
⟨34⟩ ⟨45⟩ ⟨15⟩ ⟨23⟩2

,

(4.38)

which does not match the middle term in eq. (4.22). To see why, we evaluate the amplitude of
eq. (4.22) on shifted kinematics and make the z23 poles of the ⟨2̂3⟩ denominators manifest. We
can then write the amplitude in the form,

A(1)(z) =
f(z)

(z − z23)2
+

g(z)

z − z23
+ h(z). (4.39)

where the functions

f(z) =
1

3

⟨13⟩ ⟨2̂4⟩ [23]
⟨34⟩2 ⟨15⟩ ⟨45⟩

, g(z) =
1

3

⟨14⟩3 ⟨35⟩ [45]
⟨34⟩2 ⟨13⟩ ⟨12⟩ ⟨45⟩2

, h(z) =
1

3

[25]
3

⟨34⟩2 [1̂2] [1̂5]
, (4.40)

are free of z23 poles. In the BCFW construction we have to determine the residue of −A(1)(z)/z

at z23, which given the form for A(1)(z) turns into

− Res
z=z23

[
A(1)(z)

z

]
= −

[
−f(z23)

z223
+

1

z23

df

dz

∣∣∣∣
z=z23

+
g(z23)

z23

]
. (4.41)

We already obtained the last term from the A(1) ×A(0) factorization, and indeed we recover

− g(z23)

z23
=

1

3

⟨14⟩3 ⟨35⟩ [45]
⟨34⟩2 ⟨23⟩ ⟨12⟩ ⟨45⟩2

. (4.42)

The first term is exactly the one we obtained from requiring the universal collinear behavior, as

f(z23)

z223
=

1

3

⟨13⟩2

⟨23⟩2
(⟨24⟩ ⟨13⟩ − ⟨14⟩ ⟨23⟩) [23]

⟨34⟩2 ⟨15⟩ ⟨45⟩ ⟨23⟩2
=

1

3

⟨13⟩2 ⟨12⟩ [23]
⟨34⟩ ⟨15⟩ ⟨45⟩ ⟨23⟩2

(4.43)

matches eq. (4.38). We are however missing the middle term involving the derivative of f(z), which



116 CHAPTER 4. INTEGRATING A LOOP: THE EFFECTIVE ONE-LOOP PICTURE

evaluates to

− 1

z23

df

dz

∣∣∣∣
z=z23

=
1

3

⟨13⟩2 ⟨14⟩ [23]
⟨34⟩2 ⟨15⟩ ⟨45⟩ ⟨23⟩

. (4.44)

These single-pole contributions descend from the double-pole piece, and are in some sense hidden
underneath the double pole. For this reason they have been coined pole-under-pole contributions
in ref. [19], or PUP terms for short. Currently no universal construction in terms of products
of amplitudes is known for these types of contributions, and they have to be obtained by other
means. In the specific case of one-loop single-minus amplitudes, an all-n construction in terms of
soft factors was proposed in ref. [112]. By adding to the usual BCFW poles and universal double
pole contributions the term,

−A(0)(1̂−K̂−4+ . . . n+)
1

s23
V (1)(−K̂+2̂+3+)× Soft(0)(1̂gK̂

+4g)Soft
(0)(3g(−K̂)−2̂g) (4.45)

the n-gluon one-loop single-minus amplitude can be constructed recursively. In ref. [139] it was
shown that gauge- and Lorentz-invariance are sufficient to derive this all-n form for the PUP terms.
The soft functions Soft(0),

Soft(0)(ig s
+ jg) =

⟨ij⟩
⟨is⟩ ⟨sj⟩

, Soft(0)(ig s
+ jg) = − [ij]

[is] [sj]
, (4.46)

specify the universal behavior of a tree amplitude when one of the particle momenta vanishes,

A(0)(. . . ig s
h jg . . .)

ps→0→ A(0)(. . . ig jg . . .)× Soft(0)(ig s
h jg). (4.47)

The subscript g is meant to indicate that the particle is a (massless) gluon. In appendix A.3 we
derive the form of the soft functions shown above, and also provide expressions in the case that
one or both of the momenta are massive scalars.

Specializing this construction to our five-gluon amplitude, we obtain

−A(0)(1̂−K̂−4+5+)
1

s23
V (1)(−K̂+2̂+3+)

× Soft(0)(1̂gK̂
+4g)Soft

(0)(3g(−K̂)−2̂g)

= − ⟨1K̂⟩
3

⟨K̂4⟩ ⟨45⟩ ⟨51⟩
1

s34

1

3
[K̂2] [23] [3K̂]

⟨14⟩
⟨1̂K̂⟩ ⟨K̂4⟩

[32]

[3K̂] [K̂2]

=
1

3

1

⟨23⟩
⟨13⟩2 ⟨14⟩ [23]
⟨34⟩2 ⟨45⟩ ⟨15⟩

,

(4.48)

which is precisely the missing contribution of eq. (4.44).

A similar construction in terms of soft functions also exists for two-fermion amplitudes [136],
and in the case of gravity amplitudes partial results are known [140].

4.2.1.2 Pole-under-pole Terms from Unitarity

We now describe a method to obtain the pole-under-pole terms via generalized unitarity methods.
While the augmented recursion procedure provides a path for their derivation, we would have to
work with off-shell currents. By instead using unitarity, we are able to reuse the results for scalar
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on-shell amplitudes we derived in the previous chapter.

As a reminder, we would like to obtain the pole-under-pole contributions of A(1)(1−2+3+4+5+)

under a ⟨2, 1]-shift. As discussed in section 4.2.1, the double pole contributions originate from
the one-loop factorizing splitting function Split(1). For the amplitude in question, the diagrams
contributing to universal behavior described by the splitting function are of the form,

, (4.49)

where the hatched disks represent the sum of all Feynman diagrams. The double-pole and pole-
under-pole terms therefore belong to the s23-channel, where

s2̂3 = 0 ⇒ z23 = −⟨23⟩
⟨13⟩

. (4.50)

Considering the Feynman diagrams above, we might expect the double pole and pole-under-pole
terms to be related to the unitarity cuts,

, (4.51)

The third cut is the contribution of the tensor triangle integral to the bubble coefficient. The fine
dashing represents the third propagator cut in addition to the bubble cut shown in the center.
As we are interested in rational contributions, we replaced the gluon loop with a scalar one, and
use D-dimensional unitarity techniques. We will see that after evaluating these cuts on BCFW
kinematics, their combined single and double poles in z23 are exactly the double pole and pole-
under-pole terms, for which we found expressions in eqs.(4.38) and (4.44) of section 4.2.1.

Let us first evaluate the triangle cut in eq. (4.51). The triangle loop-momentum parametrization
of eq. (2.51) takes the form,

ℓµ1 =
1

2

(
t ⟨3|γµ|2]− µ2

s23t
⟨2|γµ|3]

)
, ℓ∗µ1 =

1

2

(
t ⟨2|γµ|3]− µ2

s23t
⟨3|γµ|2]

)
. (4.52)

We obtain the associated integral coefficient via,

C
(1)
Tri,[2]

[ ]
=

1

2

∑
ℓ,ℓ∗

Infµ2t

[
A(0)

(
(−ℓ2)φ4+5+1−ℓφ3

)
×A(0)

(
(−ℓ3)φ2+ℓφ1

)
A(0)

(
(−ℓ1)φ3+ℓφ2

) ]
t0,µ2

= −1

2

[23]

⟨23⟩
∑
ℓ,ℓ∗

Infµ2t

[
A(0)

(
(−ℓ2)φ4+5+1−ℓφ3

) ]
t0,µ0

.

(4.53)

Here we used,

A(0)
(
(−ℓ3)φ2+ℓφ1

)
A(0)

(
(−ℓ1)φ3+ℓφ2

)
= −µ2 [23]

⟨23⟩
, (4.54)
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which is true for both ℓ and ℓ∗ in the parametrization of eq. (4.52). Using the expression for the
amplitude in eq. (B.4), the cut becomes,

C
(1)
Tri,[2]

[ ]
= −1

2

[23]

⟨23⟩
∑
ℓ,ℓ∗

Infµ2t

[
− µ2 [45]

3

sℓ3(−ℓ2) [51] [1|(4 + 5)(−ℓ2)|5]

+
⟨1|ℓ3(4 + 5)(−ℓ2)|4]2

s(ℓ3)4sℓ31 ⟨45⟩ ⟨51⟩ [1|(4 + 5)(−ℓ2)|4]

]
t0,µ0

. (4.55)

Extracting the t0 and µ0 part of the Infµ2,t expansion, we obtain

C
(1)
Tri,[2]

[ ]
= −

⟨12⟩ [23]
(
2 ⟨13⟩2 ⟨24⟩2 − ⟨14⟩2 ⟨23⟩2

)
2 ⟨15⟩ ⟨23⟩2 ⟨24⟩2 ⟨34⟩ ⟨45⟩

, (4.56)

giving the contribution to the amplitude,

= 2C
(1)
Tri,[2]

[ ]
ID3,[2]

[ ]
=

⟨12⟩ [23]
(
2 ⟨13⟩2 ⟨24⟩2 − ⟨14⟩2 ⟨23⟩2

)
2 ⟨15⟩ ⟨23⟩2 ⟨24⟩2 ⟨34⟩ ⟨45⟩

.

(4.57)
We now evaluate this expression on the BCFW kinematics of eq. (4.23). The cut only contains a
double pole in z23, which we easily determine as∣∣∣∣

z23-double pole
=

⟨12⟩ ⟨13⟩2 [23]
⟨15⟩ ⟨23⟩2 ⟨34⟩ ⟨45⟩

(4.58)

Next, we need to determine the bubble and tensor triangle cut of eq. (4.51). For the loop
momentum parametrization of eq. (2.122) we choose the reference momentum χ to be p3 for
convenience, meaning that

K = p2 + p3, K♭ = K − s23
2(K · p3)

p3 = p2, γ = s23 . (4.59)

The loop momentum therefore takes the form

ℓµ = ypµ2 + (1− y)pµ3 +
1

2

(
t ⟨2|γµ|3] + y(1− y)s23 − µ2

ts23
⟨3|γµ|2]

)
. (4.60)

Besides resulting in a simple loop-momentum parametrization, choosing p3 as reference momen-
tum further eliminates the tensor triangle cut contribution on the right of eq. (4.51). Evaluating
eq. (4.60) at the two values y± associated with the extra on-shell propagator leads to the two
triangle solutions of eq. (4.52). The contributions to the bubble coefficient are related to integrals
over positive powers of t, which we know vanish for the parametrization of eq. (4.52). Alternatively
we can see that the t-integrals of eq. (2.127) vanish explicitly, as they are proportional to [K♭|p2|χ⟩
for the cut in question.

The bubble cut of eq. (4.51) does not specify the bubble integral coefficient entirely, as we are
missing additional tensor triangle contributions. These do not belong to the graph topologies of
eq. (4.49), and are therefore not relevant for our computation. We determine the bubble-cut part
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C̃
(1)
Bub,[2] of the coefficient C

(1)
Bub,[2] by

C̃
(1)
Bub,[2]

[ ]
= Infµ2,t,y

[
A(0)

(
(−ℓ2)φ4+5+1−ℓφ1

)
A(0)

(
(−ℓ1)φ2+3+ℓφ2

) ]
yi→Yi,t0,µ2

= − [23]

s23 ⟨23⟩
Infµ2,t,y

[1
y
A(0)

(
(−ℓ1)φ4+5+1−ℓφ2

) ]
y→Y i,t0,µ0

,

(4.61)
where we used

A(0)
(
(−ℓ1)φ2+3+ℓφ2

)
= − µ2 [23]

ys23 ⟨23⟩
. (4.62)

Only the y0 coefficient in the Infy expansion is non-zero, and we end up with

C
(1)
Tri,[2]

[ ]
=

⟨13⟩2 (⟨13⟩ ⟨24⟩ − 3 ⟨12⟩ ⟨34⟩)
⟨15⟩ ⟨23⟩3 ⟨34⟩2 ⟨45⟩

, (4.63)

making the contribution to the amplitude

= 2C̃
(1)
Bub,[2]

[ ]
ID2,[2]

[ ]
=

⟨13⟩2 [23] (⟨13⟩ ⟨24⟩ − 3 ⟨12⟩ ⟨34⟩)
3 ⟨15⟩ ⟨23⟩2 ⟨34⟩2 ⟨45⟩

.

(4.64)

Evaluating on the BCFW shift kinematics, we first extract the double pole via∣∣∣∣
z23-double pole

=
1

⟨23⟩2

[
⟨13⟩2 [23] (⟨13⟩ ⟨2̂4⟩ − 3 ⟨12⟩ ⟨34⟩)

3 ⟨15⟩ ⟨34⟩2 ⟨45⟩

]∣∣∣∣∣
z=z23

= − 2 ⟨13⟩2 [23] ⟨12⟩
3 ⟨15⟩ ⟨34⟩ ⟨45⟩ ⟨23⟩2

.

(4.65)

Combining this with the double pole of the triangle cut of eq. (4.58),∣∣∣∣
z23-double pole

+

∣∣∣∣
z23-double pole

=
⟨13⟩2 [23] ⟨12⟩

3 ⟨15⟩ ⟨34⟩ ⟨45⟩ ⟨23⟩2
, (4.66)

reproduces the double pole we found in eq. (4.38).

Following the procedure shown in section 4.2.1, we can extract the pole-under-pole term via∣∣∣∣
z23-PUP

= − 1

z23

d

dz

[
1

⟨13⟩2
⟨13⟩2 [23] (⟨13⟩ ⟨2̂4⟩ − 3 ⟨12⟩ ⟨34⟩)

3 ⟨15⟩ ⟨34⟩2 ⟨45⟩

]∣∣∣∣∣
z=z23

=
⟨13⟩
⟨23⟩

d

dz

[
[23] (⟨13⟩ ⟨2̂4⟩ − 3 ⟨12⟩ ⟨34⟩)

3 ⟨15⟩ ⟨34⟩2 ⟨45⟩

]∣∣∣∣∣
z=z23

=
⟨13⟩3 [23] ⟨14⟩

3 ⟨15⟩ ⟨23⟩ ⟨34⟩2 ⟨45⟩
,

(4.67)

which matches eq. (4.44). The factor of 1/ ⟨13⟩2 inside the derivative stems from removing the
(z − z23)

2 denominator, as
⟨2̂3⟩ = ⟨13⟩ (z − z23) (4.68)
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We can thus see that by using both BCFW recursion and generalized unitarity we can com-
pute the one-loop amplitude A(1)(1−2+3+4+5+) from a small number of cuts using only on-shell
quantities. In the following we will apply this approach in computing massive-scalar amplitudes.

4.2.2 Contact Term Amplitudes

We will focus first on the rational contributions R(1)
contact, as these end up being particularly simple.

Requiring the four-scalar contact term to appear forces the external scalar line to be directly
attached to the scalar loop. Thus neither class of Feynman diagram generating the double pole
can exist, and we expect R(1)

contact to be free of complex double poles. However, this does not mean
that all single poles have to originate from a factorization into a product of tree amplitudes. To
give a heuristic argument, let us consider the two classes of Feynman diagrams which led to such
double poles,

, . (4.69)

The hatched disks are off-shell currents to which the remaining gluons are attached. Due to the
required appearance of the contact term in R

(1)
contact, the center propagator usually providing one

of the two complex poles in these diagram classes is absent. The remaining pole in the bubble
diagrams shown on the right is now related to a factorization channel, and should therefore be
obtainable from a factorization into a one-loop amplitude and a three-gluon tree vertex. In the case
of the triangle diagrams, one of the complex poles is due to the triangle integral itself. These types
of poles are still present in R(1)

contact, and are non-factorizable. However, due to their connection to
the triangle integral, we will be able to obtain these poles from the associated triangle cut.

For the computations we choose to shift one of the massive scalar momenta and an adjacent
gluon. We are able to numerically verify our results using the Mathematica one-loop generalized
unitarity implementation discussed in section 2.5. We are also able to carry out the unitarity com-
putation semi-analytically on the shifted kinematics, keeping the full z-dependence. By considering
the large-z behavior this allows us to verify apriori the validity of our choice of shift.

For one-loop amplitudes of two massive scalars and two gluons, there exist six rational parts
of amplitudes,

R
(1)
4:1(1

φ2φ3+4+), R
(1)
4:3(1

φ2φ; 3+4+), R
(1)
4:2(1

φ2+3+; 4φ), R
(1)
4:3(1

φ2+; 3φ4+),

R
(1)
4:1(1

φ2+3φ4+), R
(1)
4:2(1

φ2φ3+; 4+).

(4.70)
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The four amplitudes in the top row we already encountered in the four-gluon example computation.
For the amplitudes in the bottom row there exist no unitarity cuts, consequently they have to be
zero. Focusing on R

(1)
contact(1

φ2φ3+4+), we use a massive BCFW shift of the form

p2 → p̂2 = p2 −
z

2
[3|γ|2♭⟩ , p3 → p̂3 = p3 +

z

2
[3|γ|2♭⟩ ,

λ3 → λ3 = λ3 + zλ♭2, λ̃3 → ˆ̃
λ3 = λ̃3.

(4.71)

Under this shift, there are no standard factorization channels. Nonetheless, we can check nu-
merically via unitarity that this amplitude is non-zero. The reason for this discrepancy is the
non-factorizable z34 pole, which in this particular case makes up the entire amplitude. We can
compute this pole from the cut

(4.72)

With the triangle loop momentum parametrization

ℓµ1 =
1

2

(
t ⟨4|γµ|3]− µ2

s3̂4t
⟨3̂|γµ|4]

)
, ℓ∗µ1 =

1

2

(
t ⟨3̂|γµ|4]− µ2

s3̂4t
⟨4|γµ|3]

)
, (4.73)

we determine the cut coefficient to be

C
(1)
Tri,[2]

[ ]
=
1

2

∑
ℓ,ℓ∗

Inf
[
A

(0)
contact(1

φ2̂φℓφ
′

3 (−ℓφ
′

2 ))

×A(0)((−ℓ2)φ
′
3̂+ℓφ

′

1 )A(0)((−ℓ1)φ
′
4+ℓφ

′

3 )
]
t0,µ2

=
1

4

∑
ℓ,ℓ∗

[34]

⟨3̂4⟩
=

1

2

[34]

⟨3̂4⟩
.

(4.74)

We again used,

A(0)((−ℓ2)φ
′
3̂+ℓφ

′

1 )A(0)((−ℓ1)φ
′
4+ℓφ

′

3 ) = −µ2 [34]

⟨3̂4⟩
. (4.75)

Including the triangle integral I(1)3 [µ2] we obtain for the cut,

= 2I
(1)
3 [µ2] C

(1)
Tri,[2]

[ ]
= −1

2

[34]

⟨3̂4⟩
. (4.76)

Following the four-gluon example computations, we also include a factor of two. The step of
extracting the z34 residue is trivial in this case. The non-factorizable pole-term that we need to
add to the [2♭, 3⟩-shift construction of R(1)

contact(1
φ2φ3+4+) is,

R
(1),non−fact z34
contact (1φ2φ3+4+) =

1

−z34
Res
z=z34

[ ]
. (4.77)

Instead of explicitly calculating the residue, it is in practice slightly simpler to determine the entire
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right-hand side of eq. (4.77) at once via,

1

−z34
Res
z=z34

[ ]
=

1

⟨34⟩

[
⟨3̂4⟩ ×

] ∣∣∣∣∣
z=z34

= −1

2

[34]

⟨34⟩
. (4.78)

As there are no factorizable poles, we therefore have

R
(1)
contact(1

φ2φ3+4+) = R
(1),non−fact z34
contact (1φ2φ3+4+) = −1

2

[34]

⟨34⟩
. (4.79)

We can apply the same construction to the remaining non-vanishing amplitudes shown in eq. (4.70),

R
(1)
4:3,contact(1

φ2φ; 3+4+) = − [34]

⟨34⟩
,

R
(1)
4:2,contact(1

φ; 2φ3+4+) =
[34]

⟨34⟩
,

R
(1)
4:3,contact(1

φ2+; 3φ4+) = −2
[24]

⟨24⟩
.

(4.80)

In the case of R(1)
contact(1

φ2φ; 3+4+) there exists no adjacent scalar-gluon pair to shift. However we
can verify via unitarity that shifting any scalar-gluon pair causes the amplitude to scale as 1

z in
the large-z limit. We can therefore apply the approach above to all rational parts of eq. (4.70).
For each of these we need to compute two triangle cuts. For example, in R

(1)
4:3,contact(1

φ2φ; 3+4+),
both the cuts,

and , (4.81)

belong to triangle integrals that contain non-factorizing poles. We also find that the forms of
R

(1)
4:3,contact(1

φ2φ; 3+4+) already matches that of R(1)
4:3(1

φ2φ; 3+4+) found in eq. (4.9). The corre-
sponding gluon amplitude is therefore expected to vanish.

Furthermore we can attempt to find a BCFW construction for the non-factorizing contributions
of R(1)

contact(1
φ2φ3+4+) based on soft factors. As the contact-term amplitudes do not possess

complex double poles we neglect the term that explicitly generates them. We could expect the
non-factorizing pole to originate from,

−A(0)(1φ2̂φK̂−)
1

s34
V (1)((−K̂)+3̂+4+)× Scontact(1

φ2̂φ3̂+4+|K)× Soft(0)(4g (−K̂)− 3̂g) (4.82)

where Scontact(1
φ2̂φ3̂+4+|K) is the equivalent of the soft function Soft(0)(∗K+ ∗) in eq. (4.45).

Indeed, we find the concise form

Scontact(1
φ2̂φ3̂+4+|K̂−) = −3

2

[K̂q]

⟨K̂|1|q]
. (4.83)

Moving on to a slightly more complicated example, we compute R(1)
contact(1

φ2φ3+4+5+). We
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again use a [2♭, 3⟩-shift. There now exists a factorizable contribution, which we determine as follows

R
(1),fact
contact(1

φ2φ3+4+5+) = −R(1)
contact(1

φ2̂φK̂+5+)
1

s34
A(0)((−K̂)−3̂+4+)

=
1

2

[K̂5]

⟨K̂5⟩
1

s34

[34]
3

[4K̂] [K̂3]

= −1

2

[
[35]

⟨34⟩ ⟨45⟩
+

[3|24|5|
⟨34⟩ ⟨45⟩ s23

]
.

(4.84)

To obtain the non-factorizable pole we compute the unitarity cut,

(4.85)

After determining the coefficient,

C
(1)
Tri,[2]

[ ]
=
1

2

∑
ℓ,ℓ∗

Infµ2,t

[
A

(0)
contact(1

φ2̂φℓφ
′

3 (−ℓφ
′

2 ))

×A(0)((−ℓ2)φ
′
3̂+ℓφ

′

1 )A(0)((−ℓ1)φ
′
4+ℓφ

′

2 )
]
t0,µ2

=+
1

2

∑
ℓ,ℓ∗

Inf

[
µ2 [34]

⟨3̂4⟩
[5|(−ℓ2)1|5]
2s15s(−ℓ2)5

]
t0,µ2

=+
1

4

[34]

⟨3̂4⟩ s15

(
[53] ⟨4|1|5]
⟨4|5|3]

+
[54] ⟨3̂|1|5]
⟨3̂|5|4]

)

=+
1

⟨3̂4⟩
1

4s15

(
[3|41|5]
⟨45⟩

− [4|3̂1|5]
⟨3̂5⟩

)
,

(4.86)

and including the triangle integral and factor of 2,

= 2I
(1)
3 [µ2] C

(1)
Tri,[2]

[ ]
= − 1

⟨3̂4⟩
1

4s15

(
[3|41|5]
⟨45⟩

− [4|3̂1|5]
⟨3̂5⟩

)
, (4.87)

the non-factorizable pole contribution evaluates to,

R
(1),non−fact z34
contact (1φ2φ3+4+5+) =

1

−z34
Res
z=z34

[ ]
=

1

⟨34⟩

[
⟨3̂4⟩ ×

] ∣∣∣∣∣
z=z34=− ⟨34⟩

⟨2♭4⟩

= − 1

4s15 ⟨34⟩

 [3|41|5]
⟨45⟩

−
[4|31|5]− s34

[3|21|5]
[3|2|4⟩

⟨35⟩ − ⟨34⟩ [3|2|5⟩
[3|2|4⟩


= − 1

4s15 ⟨34⟩

(
[3|41|5]
⟨45⟩

− [4|31|5] [3|2|4⟩ − s34 [3|21|5]
s23 ⟨45⟩

)
= − [3|41|5]

2s15 ⟨34⟩ ⟨45⟩
.

(4.88)
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We therefore get for the full rational part

R
(1)
contact(1

φ2φ3+4+5+) = −1

2

[
[35]

⟨34⟩ ⟨45⟩
+

[3|24|5|
⟨34⟩ ⟨45⟩ s23

+
[3|41|5|

⟨34⟩ ⟨45⟩ s15

]
. (4.89)

We have verified this expression against a numerical unitarity computation.

As in the case of R(1)
contact(1

φ2φ3+4+), we can attempt to find a BCFW construction, where the
non-factorizable terms are obtained from a product of soft factors. We find,

R
(1)
5:1,contact(1

φ2φ3+4+5+) =−R
(1)
4:1,contact(1

φ2̂φK̂+5+)
1

s34
A(0)((−K̂)−3̂+4+)

−A(0)(1φ2̂φK̂−5+)
1

s34
V (1)((−K̂)+3̂+4+)

× Scontact(1
φ2̂φ3̂+4+5+|K)Soft(0)(4, (−K̂)−, 3̂),

(4.90)

where the would-be soft function closely resembles the one found for R(1)
contact(1

φ2φ3+4+),

Scontact(1
φ2̂φ3̂+4+5+|K̂) = −3

2

[K̂5]

⟨K̂|1|5]
. (4.91)

Interestingly, in the limit of vanishing scalar mass, this turns into a proper soft factor, as

− [K̂5]

⟨K̂|1|5]
= −⟨2̂|K̂|5]

[15]

1

⟨K̂1⟩ ⟨2̂K̂⟩
=

⟨2̂1⟩
⟨K̂2̂⟩ ⟨1K̂⟩

= Soft(0)(2̂φ K̂+ 1g)
∣∣∣
m→0

. (4.92)

Repeating this computation for R(1)
5:2,contact(1

φ2+3+4+; 5φ) we find

R
(1)
5:2,contact(1

φ2+3+4+; 5φ) =
[24]

⟨23⟩ ⟨34⟩
+

[2|53|4]
s25 ⟨23⟩ ⟨34⟩

+
[2|35|4]

s45 ⟨23⟩ ⟨34⟩
. (4.93)

The similarity with the expression of eq. (4.89) can be understood from the form of the four-scalar
contact-term tree-amplitudes given in eq. (3.76): these amplitudes can be expressed in terms of
a universal kinematic factor together with the relevant four-scalar contact-term. The amplitudes
R

(1)
contact(1

φ2+3+4+; 5φ) and R
(1)
contact(1

φ2φ3+4+5+) thus differ only in the choice of contact term
and relabeling of momenta.

At the time of writing we have not determined the remaining three gluon R
(1)
contact amplitudes.

4.2.3 One-Loop Gluon-Exchange Amplitudes

Next we consider amplitudes with a gluon exchange between the external scalar line and the internal
scalar line of the loop. These are more complicated to compute due to the appearance of double
poles, which will generally require determining a bubble coefficient as well. For R(1)

gluon(1
φ2φ3+4+)

we require the cuts,

. (4.94)
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As the procedure is the same as the one shown in section 4.2.1, we will not show the computation
explicitly here, and only present the result. Casting the pole-under-pole term into the form of a
product of soft factors, we find the BCFW construction,

R
(1)
4:1(1

φ2φ3+4+) = −A(0)(1φ2̂φK̂−)
1

s234
V (1)(−K̂+3̂+4+)

×
(
1 + s34Soft

(0)(4g (−K)−3̂g)Sgluon(1
φ2̂φ3̂+4+|K̂)

)
,

(4.95)
where

Sgluon(1
φ2̂φ3̂+4+|K̂) = − [K̂q]

2 ⟨K̂|1|q]
. (4.96)

After evaluation we find the compact form,

R
(1)
gluon(1

φ2φ3+4+) =
1

6

s23 − s13

⟨34⟩2
. (4.97)

From unitarity we find numerically that,

R
(1)
4:3,gluon(1

φ2φ; 3+4+) = 0, (4.98)

as expected.

For the pole-under-pole terms of R(1)
5:1,gluon(1

φ2φ3+4+5+) we compute the cuts,

. (4.99)

From these we find the BCFW construction,

R
(1)
5:1,gluon(1

φ2φ3+4+5+) =−R
(1)
4:1,gluon(1

φ2̂φK̂+5+)
1

s34
A(0)((−K̂)−3̂+4+)

−A(0)(1φ2̂φK̂+)
1

s12
A(1)(−K̂−3̂+4+5+)

−A(0)(1φ2̂φK̂−)
1

s12
A(1)(−K̂+3̂+4+5+)

−A(0)(1φ2̂φK̂−5+)
1

s34
V (1)((−K̂)+3̂+4+)

× Scontact(1
φ2̂φ3̂+4+5+|K)Soft(0)(4, (−K̂)−, 3̂),

(4.100)

where,

Sgluon(1
φ2̂φ3̂+4+5+|K̂) = Soft(0)(2̂φ K̂+5g) +

1

2

[K̂5]

⟨K̂|1|5]

+m2

[
[K̂5]

⟨K̂|1|5] s15
+

s15 [35]
2
[45]

⟨K̂|1|5]
2
⟨K̂|2|3] [34] [K̂5]

]
. (4.101)
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4.2.4 Combining R
(1)
contact and R

(1)
gluon Amplitudes

Just as in the one-loop squared computations, we will require the sum of both R(1)
contact and R(1)

gluon

to derive the two-loop rational parts R(2).

In the case of the leading color R(1)
4:1, we combine the results of eqs.(4.79) and (4.97),

R
(1)
4:1(1

φ2φ3+4+) = R
(1)
4:1,contact(1

φ2φ3+4+) +R
(1)
4:1,gluon(1

φ2φ3+4+) = −1

3

s13 − s34

⟨34⟩2
, (4.102)

which agrees with the result we previously found from unitarity cuts in eq. (4.3).

In general we expect the leading-color scalar rational part R(1)
n:1) to be constructed via

R
(1)
n:1(1

φ2φ3+ . . . n+) =−R
(1)
n−1:1(1

φ2̂φK̂+5+ . . . n+)
1

s34
A(0)(−K̂−3̂+4+)

−
n∑

i=5

∑
h=±

A(0)(1φ2̂φK̂h(i+ 1)+ . . . n+)
1

s3...i
A(1)(−K̂h3̂+4+ . . . i+)

−A(0)(1φ2̂φK̂−5+ . . . n+)
1

s234
V (1)(−K̂+3̂+4+)

−A(0)(1φ2̂φK̂−5+ . . . n+)
1

s234
V (1)(−K̂+3̂+4+)

× Soft(0)(4g (−K)−3̂g)S(1φ2̂φ3̂+ . . . n+|K̂),

(4.103)

where S needs to be determined. In the case of massless external scalars we are able to find through
experimentation that both for five and six gluons S is just the sum of two soft factors

Smassless(1
φ2̂φ3̂+4+5+|K̂) =

[
Soft(0)(2̂φ K̂+5g) + Soft(0)(2̂φ K̂+ 1φ)

]∣∣∣
m→0

,

Smassless(1
φ2̂φ3̂+4+5+6+|K̂) =

[
Soft(0)(2̂φ K̂+5g) + Soft(0)(2̂φ K̂+ 1φ)

]∣∣∣
m→0

.
(4.104)

Soft(0)(∗φ K̂+∗g) and Soft(0)(∗φ K̂+∗φ) are respectively the soft factors for K̂ adjacent to a
massive and a massless particle, or two massive particles. We derive the form of these soft function
in appendix A.3. In the massless limit they both reduce to the function Soft(0)(∗g K̂+∗g). We
verified this form of the pole-under-pole terms by numerically comparing the resulting amplitudes
against a unitarity computation.

In the leading color three gluon case with massive scalars, we combine the expressions of
eqs. (4.91) and (4.101) to find,

S(1φ2̂φ3̂+4+5+|K̂) = Soft(0)(2̂φ K̂
+5g)−

[K̂5]

⟨K̂|1|5]
+m2

[
[K̂5]

⟨K̂|1|5] s15
+

s15 [35]
2
[45]

⟨K̂|1|5]
2
⟨K̂|2|3] [34] [K̂5]

]
.

(4.105)
While we can check numerically that,

S(1φ2̂φ3̂+4+5+|K̂) ̸= Soft(0)(2̂φ K̂+5g) + Soft(0)(2̂φ K̂+ 1φ), (4.106)

we can use the relation of eq. (4.92) to see that for vanishing m we do reproduce this sum of soft
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Figure 4.1: Cuts required for the one-loop construction of R(2)
5:1.

factors. Evaluating eq. (4.103) for R(1)
5:1 leads to,

R
(1)
5:1(1

φ2φ3+4+5+)

=
1

3

[
− m2 ⟨35⟩ [3|12|3] [35]3

s12 ⟨45⟩ [3|2(3 + 4)|5] (s12 ⟨4|2|3]− ⟨34⟩ [3|12|3])

+
m2 ⟨5|2|3] [35]3

⟨45⟩ [3|2(3 + 4)|5] (s12 ⟨4|2|3]− ⟨34⟩ [3|12|3])
− m2 ⟨4|1|5] [3|2(3 + 4)|5] [34]
s152 ⟨34⟩ ⟨45⟩ [3|(1 + 2)1|5]

− m2 [3|42|3] [35]2 [45]
⟨34⟩ ⟨45⟩ [3|(1 + 2)1|5] [3|2(3 + 4)|5] [34]

+
2s12 [34] [3|42|3]
s23 ⟨34⟩ ⟨5|4|3]2

− [3|21|3] [3|2(3 + 4)|5] [34]
s12 ⟨5|4|3] (s12 ⟨4|2|3]− ⟨34⟩ [3|12|3])

− s23 ⟨4|1|5]2 [34]
s15 ⟨34⟩2 ⟨45⟩ [3|(1 + 2)1|5]

+
s15 [34] [3|42|3]
s23 ⟨34⟩ ⟨5|4|3]2

+
⟨4|1|5]2 ⟨5|1(3 + 4)2|3] [34]2

s152 ⟨34⟩ ⟨45⟩ ⟨5|4|3] [3|(1 + 2)1|5]
+

⟨4|1|5] [3|2(3 + 4)|5] [34]
s15 ⟨34⟩ ⟨45⟩ [3|(1 + 2)1|5]

− 2 [3|12|3] [34]2

s23 ⟨5|4|3]2
]
.

(4.107)
We were also able to derive an expression for S(1φ2̂φ3̂+4+5+6+|K̂) in the massive case, which
currently only exists in an unsimplified form, and is not present here.

4.3 One Loop Construction of R(2)(1+2+3+4+5+)

In section 4.1 we saw that the rational contributions to the four-gluon all-plus partial amplitudes are
derivable from a one-loop unitarity computation. While it seems plausible that this construction
generalizes to amplitudes with additional gluons, it warrants further verification. As the one-loop
squared construction holds at least up to seven gluons, an initial cross-check involves comparing the
sets of one-loop squared cuts with those obtained from expanding the loop vertex in the one-loop
construction. We have verified by hand that this is indeed the case for R(2)

5:1. As we have derived
a closed-form expression for the three-gluon two-scalar amplitude R(1)(1φ2φ3+4+5+), we can also
verify the one-loop construction of R(2)

5:1 explicitly. Such a unitarity construction consists of six cuts,
shown in Figure 4.1, only two of which require the three-gluon one-loop amplitude. Numerically
evaluating these cuts in the manner of the four-gluon computations, we indeed recover the value
expected from the known analytic form. In particular, we need to include the symmetry of 1

2 to
obtain the correct result.

Moving on to non-planar partial amplitudes, or additional gluons, the number of cuts grows
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rapidly. We have not carried out a systematic comparison of cuts between the one-loop squared
and effective one-loop approaches for additional partial amplitudes, though we fully expect the two
to agree.



Chapter 5

BCJ-Like Relations for Two-Loop
All-Plus Amplitudes

In this last chapter we briefly discuss new relations between the two-loop partial amplitudes of the
all-plus configuration. We focus mainly on amplitudes of five gluons, for which ref. [135] provides
a universal set of relations. These relations are solely based on the gauge-group structure, and
therefore have to hold for any two-loop amplitudes in gauge theories. An example of such relations
are the U(1) decoupling identities we encountered in chapter 1.

A further class of relations between gauge-theory amplitudes that we will touch on are the BCJ
relations, first presented in ref. [141] and later proven in refs. [142–146]. At tree level, these relate
color ordered amplitudes multiplied by Mandelstam invariants. For example, for five gluons the
BCJ relations provide the two identities [141],

(s12 + s45)A
(0)(12345) = s24A

(0)(12435)− s14A
(0)(12354)

s34s15A
(0)(12345) = −s24s13A(0)(12453)− s14(s13 + s35)A

(0)(12354)
(5.1)

For loop amplitudes, the BCJ relations usually do not directly link partial amplitudes. Rather
they manifest themselves as relations between loop integrands.

We present relations between the two-loop all-plus partial amplitudes of five gluons, which were
found numerically. We find four additional linear relations beyond what is expected from group
theory, which can be expressed in terms of the partial amplitudes R(2)

5:3. Furthermore, we encounter
additional relations which involve one or two powers of Mandelstams. This type of structure is
well known from BCJ relations. However, in our case the relations do not apply to the integrand
but to the rational part of the integrated partial amplitudes.

129
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5.1 Linear Relations

The colour decomposition of a five-gluon two-loop amplitude A(2)
5 with gauge group SU(Nc) takes

the form,

A(2)
5 = g3

[
N2

c

∑
S5⧸C5

Tr(T a1T a2T a3T a4T a5)A
(2)
5:1(a1, a2, a3, a4, a5)

+Nc

∑
S5⧸C2×C3

Tr(T a1T a2)Tr(T a3T a4T a5)A
(2)
5:3(a1, a2; a3, a4, a5)

+
∑

S5⧸C5

Tr(T a1T a2T a3T a4T a5)A
(2)
5:1B(a1, a2, a3, a4, a5)

]
.

(5.2)

In the case of all-plus amplitudes, the cyclic symmetry of each of the traces reduces the number of
independent A5:1 and A

(2)
5:1B amplitudes to |S5/C5| = 5!

5 = 24, while for the amplitudes A(2)
5;3 there

exist |S5/(C2 × C3)| = 5!
2×3 = 20.

The single trace amplitudes are antisymmetric under reversal, thereby reducing the number of
each from 24 to 12. For five gluons, ref. [135] showed that the subleading single trace amplitudes
A

(2)
5:1B are entirely determined in terms of the A(2)

5:1 and A
(2)
5:3, via the,

A
(2)
5:1B(1, 2, 3, 4, 5) = −

[
−A

(2)
5:1(1, 2, 4, 3, 5) + 2A

(2)
5:1(1, 2, 5, 3, 4) +A

(2)
5:1(1, 2, 5, 4, 3)

−A
(2)
5:1(1, 3, 2, 4, 5) + 2A

(2)
5:1(1, 3, 4, 2, 5)− 5A

(2)
5:1(1, 3, 5, 2, 4)

− 2A
(2)
5:1(1, 3, 5, 4, 2) + 2A

(2)
5:1(1, 4, 2, 3, 5) +A

(2)
5:1(1, 4, 3, 2, 5)

+ 2A
(2)
5:1(1, 4, 5, 2, 3) +A

(2)
5:1(1, 4, 5, 3, 2)

− 1

2

∑
Z5

(
A

(2)
5:3(1, 2; 3, 4, 5)−A

(2)
5:3(1, 3; 2, 4, 5)

)]
.

(5.3)

and permutations thereof.

While the A(2)
5:1B are completely determined by the A(2)

5:1 and A
(2)
5:3, they themselves are related

by more identities than those expected from U(1) decoupling. After picking a 12 element basis of
A

(2)
5:1B, constructed by removing cyclic and reversal symmetry, there are 6 additional linear relations.

These have been previously discovered as part of L-loop identities of five-point amplitudes [135], or
Kleiss–Kuijf style relations [147]. The latter appear to continue trivially at seven, and non-trivially
at eight points, and may be interesting to look at, considering that there now exists a conjecture
for the n-point form of A(2)

n:1B [18]. In the five-point case the Kleiss–Kuijf-like relations described
by ref. [147] can be written as

A
(2)
5:1B(1, {α}, 5, {β}) = (−1)|β|

∑
σ∈OP({α}∪{βT })

A
(2)
5:1B(1, σ(2, 3, 4), 5). (5.4)

Taking into account cyclic- and reversal symmetry, this expression describes six unique identities,
as expected. Note that these are expressly included in the twelve two-loop relations of ref. [135].

Let us now consider the amplitudes A(2)
5:3. These are related by five U(1) decoupling identities [4]

0 = A
(2)
5:3(2, 3; 1, 4, 5) +A

(2)
5:3(2, 3; 1, 5, 4) +A

(2)
5:3(4, 5; 1, 2, 3) +A

(2)
5:3(4, 5; 1, 3, 2) (5.5)
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reducing the number of independent A(2)
5:3 to 15. Besides these, we also observe that the A(2)

5:3 are
generally antisymmetric under reversal of the three generator traces, which would provide us with
10 additional constraints, one for each A(2)

5:3(i, j; . . .), j > i. However, this antisymmetry trivializes
the U(1) decoupling identity, as it implies separately

0 = A
(2)
5:3(2, 3; 1, 4, 5) +A

(2)
5:3(2, 3; 1, 5, 4),

0 = A
(2)
5:3(4, 5; 1, 2, 3) +A

(2)
5:3(4, 5; 1, 3, 2).

(5.6)

The U(1)-identities are therefore included in the antisymmetry relations, such that we are left with
a total of 10 independent A(2)

5:3.

We now specialize to the rational parts R(2)
5:1, R(2)

5:3 and R(2)
5:1B, for which explicit forms are given

in [4]. We find four additional relations that are independent of the ones discussed so far. These
were found through numeric evaluations, and take the form

R
(2)
5:3(21; 345) = R

(2)
5:3(23; 451) +R

(2)
5:3(24; 531) +R

(2)
5:3(25; 341),

R
(2)
5:3(31; 245) = R

(2)
5:3(32; 451) +R

(2)
5:3(34; 251) +R

(2)
5:3(35; 241),

R
(2)
5:3(41; 235) = R

(2)
5:3(42; 351) +R

(2)
5:3(43; 521) +R

(2)
5:3(45; 231),

R
(2)
5:3(51; 234) = R

(2)
5:3(52; 341) +R

(2)
5:3(53; 421) +R

(2)
5:3(54; 231),

(5.7)

or, expressed more compactly,

R
(2)
5:3(i1; jkl) =

∑
C3(jkl)

R
(2)
5:3(ij; kl1) i ∈ {2, 3, 4, 5}. (5.8)

These are not part of the group theory relations of ref. [135], and appear to be previously unknown.
Including these relations, we are left with 6 linearly independent R(2)

5:3. One possible choice of basis
would be

R
(2)
5:3(35; 124), R

(2)
5:3(25; 134), R

(2)
5:3(24; 135),

R
(2)
5:3(15; 234), R

(2)
5:3(14; 235), R

(2)
5:3(13; 245).

(5.9)

5.2 Relations Involving Mandelstam Invariants

There exist further relations beyond the linear ones we just described. Inspired by the BCJ rela-
tions [141] relating amplitudes at tree-level and numerators at loop-level via factors of Mandelstams,
we look for relations between structures of the form R(2)slij . We focus for now on R

(2)
5:1, for which
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a linearly independent basis contains twelve elements, for example:

R̂
(2)
5:1 =



R
(2)
5:1(12345)

R
(2)
5:1(12354)

R
(2)
5:1(12435)

R
(2)
5:1(12453)

R
(2)
5:1(12534)

R
(2)
5:1(12543)

R
(2)
5:1(13245)

R
(2)
5:1(13254)

R
(2)
5:1(13425)

R
(2)
5:1(13524)

R
(2)
5:1(14235)

R
(2)
5:1(14325)



(5.10)

For l = 1, we pick a linearly independent basis S1
5 of sij ,

Ŝ1
5 = {s12, s23, s34, s45, s51} (5.11)

We find numerically that there exist no linear relations between the 60 products,

Ŝ1
5 ⊗ R̂

(2)
5:1 =

{
s12R

(2)
5:1(12345), . . . , s51R

(2)
5:1(14325)

}
. (5.12)

For l = 2, there are 15 linearly independent products sijspq, for example:

S2
5 =

{
s12

2, s12s23, s12s34, s12s45, s12s15, s23
2, s23s34, s23s45, s15s23, s34

2, s34s45,

s15s34, s45
2, s15s45, s15

2
}

(5.13)

In this case we do find linear relations between the 180 combinations,

S2
5 ⊗ R̂

(2)
5:1 = (s212R

(2)
5:1(12345), s12s23R

(2)
5:1(12345), . . . , s

2
51R

(2)
5:1(14325)). (5.14)

There exist five such relations, which expressed in the basis of eq. (5.10) take the form,

0 = v5:1;i · R̂(2)
5:1, i = 1, 2, 3, 4, 5, (5.15)
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with the v5:1;i defined as follows:

v5:1;1 =



0

−((s12 − s23)(s12 − s15 + s23 − s34 − 3s45))

(s12 − s15)(s12 + s15 − s23 − 3s34 − s45)

−((2s12 + s23 − s34 − 2s45)(s12 − s15 + s23 + s34 + s45))

(2s12 + s15 − 2s34 − s45)(s12 + s15 − s23 + s34 + s45)

−((s34 − s45)(3s12 + s15 + s23 − s34 − s45))

(s15 − s45)(−s12 + s15 − 3s23 − s34 + s45)

−((s12 − s15 + 2s23 − 2s45)(s12 + s15 + s23 − s34 + s45))

−((s12 + 2s15 − s23 − 2s34)(s12 + s15 + s23 + s34 − s45))

0

−((2s15 − 2s23 − s34 + s45)(s12 − s15 − s23 − s34 − s45))

(s23 − s34)(−s12 − 3s15 + s23 + s34 − s45)



, (5.16)

v5:1;2 =



s12(−s15 + s23 − 2s34 + 2s45) + (s15 + s23)(s34 − s45)

(s15 − s23 + 2s45)(−2s12 + s23 + s34 + s45)

(s15 − s23 − 2s34)(−2s12 + s15 + s34 + s45)

(s12 + s23 − s45)(−s15 + s23 + 2(s34 + s45))

−((s12 + s15 − s34)(s15 − s23 + 2(s34 + s45)))

s12(s15 − s23 − 2s34 + 2s45)

s12(3s15 − 3s23 − 2(s34 + s45)) + s15(3s23 − s34 − 4s45) + s15
2 − 3s23s34 − 4s23

2 + 2s34s45 + 2s45
2

(s15 − s23 + 2s45)(2s12 + s15 + 2s23 − s34 − s45)

−((s15 − s23 − 2s34)(2s12 + 2s15 + s23 − s34 − s45))

(s12 − s34 − s45)(3s15 − 3s23 − 2s34 + 2s45)

s12(5s15 − 5s23 − 2s34 + 2s45)− 2
(
s15(2s34 + 3s45) + s15

2 − s34(3s23 + s34)− 2s23s45 − s23
2 + s45

2
)

−s12(3s15 − 3s23 + 2(s34 + s45))− s45(3s15 + s23 − 2s34) + 3s15s23 − 4s15
2 − 4s23s34 + s23

2 + 2s34
2



,

(5.17)

v5:1;3 =



(s23 − s34)(s12 − s15 + s45)

−((s12 − s34 − 2s45)(s12 + s15 − 2s23 + s45))

−((s12 − s15 + s23 + s34)(s12 − s15 − 2s34 − s45))

0

(3s12 + s15 − 2s34 − s45)(s15 − s23 + s34 + s45)

(2s12 + s23 − s45)(s12 + s15 − 2s34 + s45)

(s12 + s15 + 2s23 − s45)(s15 − s23 − s34 − s45)

−((s12 + s15 + s23 − s34)(s12 − s15 + 2s23 − 3s45))

(s12 + 2s15 − s34)(s12 − s15 + 2(s23 + s34)− s45)

(2s12 + s23 − s34 − 2s45)(s12 + 3s15 − 2(s23 + s34) + s45)

(2s15 − s23 + s45)(s12 + s15 − 2(s23 + s34)− s45)

0



, (5.18)
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v5:1;4 =



s23(−s12 + s15 + s34 − s45)

s12(−s12 + s15 + s34 + 3s45)

(s12 − s15 + s23 + 2s34)(s12 − s15 − s34 − s45)

s12(−2s23 + 3s34 + 8s45)− 4s12
2 − (s34 + 2s45)(s15 − 2s23 − s34 + s45)

−((s15 − s23 + s45)(3s12 + s15 − 3s34 − s45))

−((s12 + s15 − s34 + s45)(2s12 + s23 + s34 − s45))

−s12(s15 + s23 − s45)− s15(5s23 + s34) + s15
2 + s45(5s23 + s34) + s23s34 − s45

2

−((s12 − s15 + 3s23 − 2s45)(s12 + s15 − s34 + s45))

−s12(s15 + 2s23 + 3s34 − s45)− s12
2 + 2

(
s15(−2s23 − 4s34 + s45) + s15

2 + s34(s23 + 2s34)
)

s12(−6s15 + 9s23 − 8s45) + 2s12
2 + s15(5s23 + 8s34)− 4s15

2 − 9s23s34 − 5s23s45 + 6s34s45 − 2s34
2 + 4s45

2

−((s12 − s15 − s34 − s45)(2s15 − 3s23 − s34 + s45))

s34(s12 + 3s15 − s34 + s45)



,

(5.19)

v5:1;5 =



−s45(s12 + s15 − 2s23 + s34) + 2s12s15 + s12s23 − 3s15s23 + 2s15s34 − s23s34

s12(−3s15 + 4s23 + s34 − 3s45)− s12
2 + 2(s15 − s23)(s23 + s34) + 3s45(s15 + s34) + 4s45

2

s12(4s15 − 3(s23 + s34) + s45)− s12
2 + s15(s23 − 3(s34 + s45))− s15

2 + s45(2s23 + 3s34) + s34(3s23 + 4s34)

s12(−6s15 + 8s23 + 3s34 − 5s45) + 4s12
2 + s15(−2s23 + 3s34 + 7s45)− s45(8s23 + 7s34)− 2s23s34 + 2s23

2 − 3s34
2

s12(5s15 − 3s23 − 8s34) + 4s12
2 − s15(s23 + 7s34 + 2s45) + s15

2 + 2s45(s23 − 2s34) + s34(5s23 + 2s34)− 2s45
2

s12(4s15 + 5s23 + s34 − 4s45) + 6s12
2 + 2s45(−2s15 + s23 + 3s34) + 3(s15 − s34)(s23 + s34)− 2s45

2

s12(s15 + s23) + s15(5s23 + s34)− s15
2 − s23(s34 + 2s45)

s12(−4s15 + s23 + s34 − 5s45)− s12
2 + s15(−5s23 + s34 + s45)− s15

2 + s23s34 − 10s23s45 + 4s23
2 + s34s45 + 4s45

2

(s12 + s15 − s34)(s12 + 2(s23 + s34)− s45)

s12(−6s15 + 3s23 + 8s34 + 3s45)− 2s12
2 + s15(−7s23 + 2s34 + 9s45) + 2s15

2 − 3s45(2s23 + 3s34) + 3s23s34 + 4s23
2 − 4s34

2

s12(−2s15 + s23 + s34) + s15(s23 + s34 + 2s45)− (s23 + s34)(s34 + 2s45)

(s12 − s34)(−2s23 + s34 + s45) + 3s15(−2s23 + s34 + s45) + 2s15
2



.

(5.20)
We have verified these relations numerically.

We can repeat this process for R(2)
5:3, using the six-element basis of eq. (5.9), i.e.

R̂
(2)
5:3 =



R
(2)
5:3(35; 124)

R
(2)
5:3(25; 134)

R
(2)
5:3(24; 135)

R
(2)
5:3(15; 234)

R
(2)
5:3(14; 235)

R
(2)
5:3(13; 245)


. (5.21)

We can find numerically that there exist no linear relations for,

Ŝ1
5 ⊗ R̂

(2)
5:3, Ŝ2

5 ⊗ R̂
(2)
5:3. (5.22)

Next we combine the bases R̂(2)
5:1 and R̂

(2)
5:3,

R̂
(2)
5 = R̂

(2)
5:1 ⊕ R̂

(2)
5:3. (5.23)

The elements of R̂(2)
5 are linearly independent, and due to the R(2)

5:1B being determined by R(2)
5:1 and

R
(2)
5:3, constitute a basis for all five-gluon all-plus two-loop partial amplitudes. There exist 10 linear

relations between the 90 elements of,
Ŝ1
5 ⊗ R̂

(2)
5 , (5.24)

which can be expressed in terms of R̂(2) as

0 = v5;i · R̂(2), i = 1, . . . , 10, (5.25)
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with

v5;1 =



s45 − s15

−s12 + s34 + 2s45

s12 − s34

−s15 − s45

−2s12 − s15 + 2s34 + s45

s34 − s12

s12 − s34

s15 + s45

s15 + s45

s12 − s34

s15 + s45

s12 + 2s15 − s34
1
2 (s12 + s15 − s34 − s45)

0
1
2 (−s12 − s15 + s34 − s45)
1
2 (s12 + s15 − s34 − s45)

0
1
2 (−s12 + s15 + s34 + s45)



, v5;2 =



s34 − s12

s23 − s45

s23 + s34

s34 + s45

0

s12 + s23

0

s12 + s23 − s34 − s45

−s12 − s15

s12 + s15 − s34 − s45

−s12 − s15 + s23 + s34

s23 − s15
1
2 (−s23 − s34)

1
2 (−s12 − s15 + s23 + 2s34 + s45)

1
2 (s12 + s15 − s23 − s34)

1
2 (2s12 + s15 − 2s34 − s45)
1
2 (−s12 − s15 + s34 + s45)
1
2 (s12 + s23 − s34 − s45)



, (5.26)

v5;3 =



s34 − s15

0

s34 + s45

−s12 − s15 + s34 + s45

−s12 − s15

s45 − s12

s45 − s23

s15 − s23 − s34 + s45

0

s12 + s15 − s23 − s34

s23 + s34

s15 + s45
1
2 (s12 + s15 − s34 − s45)

1
2 (−s12 − s15 + s23 + 2s34 + s45)

1
2 (−s34 − s45)

1
2 (s12 + 2s15 − s23 − 2s34)
1
2 (−s12 − s15 + s34 + s45)

1
2 (s15 − s34)



, v5;4 =



s23 − s45

−s34 − s45

0

s12 + s23

s12 + s23 − s34 − s45

s12 − s34

s23 + s34

0

−s15 + s23 + s34 − s45

−s12 + s15 − s23 + s45

−s15 − s45

s34 − s15
1
2 (−s12 − s23 + s34 + s45)
1
2 (s12 − s15 + s23 − s45)
1
2 (s15 − s23 − s34 + s45)

1
2 (−s12 + s15 − 2s23 + 2s45)

1
2 (s12 − s15 + 2s23 + s34 − s45)

1
2 (−s23 − s34)



,

(5.27)
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v5;5 =



s12 − s15 + s23 − s45

−s12 − s15

s12 − s15

s12 − s15 + s23 − s45

−s12 − s15 + s23 − s45

−s12 − s15

s12 + s15

−s12 + s15 − s23 + s45

s12 + s15 + s23 − s45

−s12 + s15 − 2s23 + 2s45

s12 − s15 + s23 − s45

s12 + s15
1
2 (2s15 − s23 + s45)

s12 − s15 + s23 − s45
1
2 (−2s12 − s23 + s45)

−s12 + s15 − 3
2 (s23 − s45)

s12 + s23 − s45
1
2 (−2s12 − s23 + s45)



, v5;6 =



s12 + 2s15 + s34 − 4s45

−s12 + 2s15 + 2s23 + s34 + 2s45

−s12 + 2s15 + 2s23 + 5s34 + 4s45

3s12 + 2s15 − s34 − 2s45

3s12 + 2s15 − 5s34 − 4s45

s12 + 2s15 + 2s23 − s34 + 4s45

−s12 − 4s15 − 2s23 + s34 + 6s45

−3s12 − 4s15 + s34 − 6s45

3s12 + 4s15 − 5s34 − 4s45

11s12 + 8s15 − 2s23 − 11s34 − 6s45

3s12 − 8s15 + 4s23 − s34 − 6s45

s12 + 4s15 + 2s23 − s34 + 4s45

−s12 − 2s15 − s23

2(s23 + s34 + s45)

−s12 − s23

−s12 − s23 + 2s45

0

s23 − s12



,

(5.28)

v5;7 =



−s12 + s15 + 2s23 − 2s45

5s12 + 5s15 − 6s23 + 6s45

−5s12 + 5s15 − 4s23 + 4s45

7s12 − s15 + 4s23 − 4s45

−s12 − s15 + 2s23 − 2s45

−5s12 + 3s15 − 4s23 + 4s45

−5s12 − 5s15 − 6s23 + 6s45

s12 − s15 + 4s23 − 4s45

s12 + s15 + 2s23 − 2s45

5s12 − 5s15 + 6s23 − 6s45

s12 − 7s15 + 4s23 − 4s45

−3s12 + 5s15 − 4s23 + 4s45

−2s15 + s23 − s45

−2(s12 − s15 + s23 − s45)

2s12 + s23 − s45

s45 − s23

−2s12

2s15 − s23 + s45



, v5;8 =



−5s12 + 5s15 + s23 − s45

s12 + s15 − 3s23 + 3s45

s12 − s15 − s23 + s45

5s12 + 3s15 + s23 − s45

5s12 + 5s15 − s23 + s45

−7s12 − s15 − 3s23 + 3s45

−s12 − s15 − 3s23 + 3s45

5s12 − 5s15 + 11(s23 − s45)

−5s12 − 5s15 − s23 + s45

−s12 + s15 − 3s23 + 3s45

−3s12 − 5s15 + s23 − s45

s12 + 7s15 − 3s23 + 3s45

−2s15 + s23 − s45

−2(s12 − s15 + s23 − s45)

2s12 + s23 − s45

2s12 − 2s15 + s23 − s45

2s15

−2s15 + s23 − s45



, (5.29)
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v5;9 =



−3s12 + s15 + 3s23 − s34

s12 − 3s15 − s23 + 3s34

s12 − 5s15 + s23 + 5s34

3s12 − s15 + 3s23 + s34

3s12 + s15 + s23 − s34

−11s12 − 5s15 − s23 + 5s34

−s12 + 5s15 − 11s23 − 5s34

3s12 + s15 + 3s23 − s34

−3s12 − 7s15 + 3s23 + 7s34

−s12 − 5s15 + s23 + 5s34

−s12 + s15 − 3s23 − s34

s12 + 5s15 + s23 − 5s34

s12 + 2s15 − s23 − 2s34

−2s12

s12 + s23

s12 − s23

2(s15 − s34)

−s12 − 2s15 + s23 + 2s34



, v5;10 =



3(s12 − s15 − s34 + s45)

3(s12 − s15 − s34 − 3s45)

−3s12 − s15 + 3s34 − s45

3s12 − s15 − 3s34 − 7s45

−9s12 − 3s15 + 9s34 + 3s45

3s12 − s15 − 3s34 − s45

−s12 + 3s15 + s34 − 3s45

−s12 + 3s15 + s34 + 3s45

3s12 + 7s15 − 3s34 + s45

−7s12 − 3s15 + 7s34 + 3s45

s12 + 3s15 − s34 + 3s45

−3(s12 + 3s15 − s34 + s45)

2(s15 + s45)

2(s12 − s15 − s34 − s45)

0

2s34 − 2s12

0

0



. (5.30)

We have again verified all of these relations numerically.

In addition, we have verified that there further exist 53 relations between the 270 elements of

Ŝ2
5 ⊗ R̂

(2)
5 , (5.31)

which include the five relations of eq. (5.15). At least five of the remaining 48 are instances of the
Ŝ1
5 ⊗ R̂

(2)
5 relations in disguise. At this point, we have not determined how many of these relations

are distinct from the ones we found previously.





Conclusion

Let us summarize the main results presented in this thesis:

In chapter 3, we saw that one-loop generalized unitarity techniques are sufficient to compute
the rational parts of the full-color two-loop all-plus amplitude. We started from the conjecture by
Badger, Mogull and Peraro [11, 12], relating the (Ds − 2)2 coefficient of the leading-color ampli-
tude to its rational part. We extended the scope of this conjecture to include partial amplitudes
subleading in color as well. Through dimensional reconstruction we saw that this coefficient can
be constructed from cuts of six-dimensional amplitudes with massless scalars circulating in both
loops. These amplitudes do not allow propagators to be shared between the two loops. They can
therefore be expressed in terms of a basis of two-loop integrals that factorize into a product of
one-loop integrals. We are able to determine the coefficients of such integrals loop-by-loop using
one-loop generalized unitarity cuts. The factorization of the integrals further allowed us to use
four-dimensional amplitudes of massive scalars, instead of six-dimensional massless scalar ampli-
tudes, further solidifying the similarity to one-loop computations. A necessary ingredient for the
computation of the cuts are four-dimensional tree amplitudes involving two massive scalar lines, for
which we derived new analytic expressions. For the computation of analytic expressions, we also
found a new parametrization of momentum twistors, valid for an arbitrary number of momenta,
whose parameters have simple solutions in terms of spinors. Via explicit analytic and numerical
computations we were able to reproduce all previously known analytic results for rational terms
of two-loop all-plus amplitudes up to seven gluons. In particular, we saw that this construction
reproduces all four-, five-, and six-gluon results subleading in color. For seven gluons we were also
able to find agreement with the conjectured form of the subleading single trace rational part.

In chapter 4, we saw that construction in terms of one-loop squared integrals of chapter 3 can
be reformulated as an effective D-dimensional one-loop generalized unitarity computation. This
reformulation introduced rational parts of one-loop amplitudes, which could be identified as six-
dimensional amplitudes with a two external massless scalars, and a scalar running in the loop.
We saw that all four-gluon rational parts could be derived from such a computation. We further
discussed the computation of the one-loop rational parts required for such computations from
complex recursion. The subleading and non-factorizing single poles in this recursion were shown
to arise from a small set of unitarity cuts. We further saw that these pole terms can be expressed
in a form resembling the product of soft factors found for one-loop single-minus and two-fermion
all-plus amplitudes in refs. [112, 136]. Having derived the one-loop rational term for two scalars
and three gluons, we were then able to verify that the leading color five-gluon rational term can
be derived from an effective one-loop computation as well.

Finally, in chapter 5 we saw that there exist non-trivial relations for two-loop all-plus partial
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amplitudes of five gluons. After finding a linearly independent basis of partial amplitudes, the new
relations were found by allowing such basis elements to be multiplied by powers of Mandelstam
invariants. They therefore follow the structure of BCJ relations, which usually only apply at the
integrand level for loop amplitudes.

There are several future research directions that could be followed based on the results presented
in this thesis:

• As we saw in chapter 4, the rational terms of the two-loop all-plus allow for a natural
one-loop computational approach. Precisely such an approach has led to the derivation of
general results for the leading-color polylogarithmic parts in ref. [8], and the hope is that this
construction opens the door for finding an all-n form of the leading-color rational parts as
well. Finding such a derivation from unitarity directly would certainly be more challenging
as we require box, triangle, and bubble contributions for the rational parts, whereas for the
polylogarithms only two-mass easy boxes were needed. As an alternative, one might be able
to use the one-loop construction of chapter 4 as an aid in the determining the rational terms
from complex recursion.

• In ref. [148], it was proven that one-loop all-plus amplitudes are conformally invariant. The
two-loop amplitudes can be verified not to be conformally invariant as a whole, however the
breaking of conformal symmetry may be constrained. A first hint of such behavior can be
seen in the case of the finite polylogarithmic parts of the two-loop leading-color amplitude.
These are given by the product of truncated two-mass easy box integral and a rational
prefactor. This prefactor on its own was shown to be conformally invariant in ref. [148]. The
construction of the rational terms in chapter 4 is similar to that of the polylogarithmic terms.
It may therefore present a route to better understand the behavior of the two-loop rational
contributions under conformal transformations.

• In ref. [149], Dunbar, Jehu and Perkins further explored the application of the one-loop
approach to two-loop all-plus graviton amplitudes in pure gravity. They found for four
and five gravitons, that the polylogarithmic part also allows for a one-loop construction
involving a one-loop all-plus graviton amplitudes. This again follows the pattern found
for the polylogarithmic part of all-plus amplitudes in Yang–Mills. Based on the one-loop
construction of the rational terms presented in this thesis, it would be natural to ask, whether
a similar pattern exists for the rational parts of two-loop all-plus graviton amplitudes.

• In a more speculative direction, it would be interesting to see, whether an extension of the
one-loop squared construction exists for single-minus amplitudes. These are the second class
of amplitudes that are finite at one-loop level, and as such may also have simpler properties
at two-loop level.

• Finally, the relations between the rational parts of the five-gluon amplitudes presented in
chapter 5 are only the result of a preliminary analysis that needs to be carried out more
systematically. Right away there exist two main question, which beg to be answered: Do
there exist manifestations of such relations for one-loop all-plus amplitudes? And do such
relations extend to two-loop amplitudes with more than five gluons? Furthermore, as we
have found these relations numerically it would be interesting to investigate whether their
origin can be understood from general principles.



Appendix A

A.1 The Vanishing of A(0)(1±2 + . . . n+)

We can prove that the A(0)(1±2+ . . . n+) amplitudes vanish by dimensional arguments and making
appropriate choices for the reference momenta of the gluon polarization vectors. This section follows
the arguments of ref. [47].

First we have to determine the mass dimension of a scattering amplitude A(0)
n , which can be

inferred from the number of cubic vertices and propagators. We limit ourselves to amplitudes in
Yang–Mills, though the dimension has to be the same in all renormalizable theories. The number
of vertices V , edges E and faces F of a planar graph are related by,

V − E + F = 2. (A.1)

At tree-level, F = 1, such that V − E = 1. V and E still include the external particles, which are
irrelevant for the dimension counting. Removing them by introducing the reduced variables,

v = v3 + v4 = V − n, e = E − n, (A.2)

we still obtain,
e− v = 1. (A.3)

v3 and v4 represent the number of internal three- and four-gluon vertices. Next we relate the
number of internal edges to the number of vertices and external particles,

e = 1
2 (3v3 + 4v4 − n) = n− v4 − 3. (A.4)

Each vertex contributes with either three or four edges. Each of the edges belongs to two vertices,
leading to the factors of 1

2 , and the term (−n
2 ) removes the external edges in this counting. Using,

(v3 + v4)− e = 1

⇒ v3 = n− 2v4 − 2,
(A.5)

we obtain,
e = 1

2 (3v3 + 4v4 − n) = n− v4 − 3. (A.6)

Each v3 vertex has mass dimension one, while every edge e reduces the dimension by two powers
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due to the propagator. Therefore, the total mass dimension of an n-point amplitude tree-amplitude
is [

A(0)
n

]
mass

= v3 − 2e = 4− n. (A.7)

This statement ends up being true for loop amplitudes as well, as they have to be of the same mass
dimension as the tree-level amplitudes (assuming dimensionless couplings).

Now consider the case, where n gluons of the same helicity, for example +, interact via a
tree-level diagram. Each external gluon is accompanied by a polarization vector εµi+. Choosing
all reference momenta to be the same, any product (ε+ · ε+) vanishes. For the all-plus amplitude
to not vanish, every polarization vector needs to be contracted with one of the external momenta.
These however only appear in the numerator due to the cubic gluon vertices, of which there are
v3 = (n− 2v4 − 2) (c.f. eq. (A.5)). In the best case scenario there are no quartic vertices, meaning
that v3 = n − 2. However, even in this case we do not have a sufficient number of momenta to
contract all polarization vectors. Thus, there must exist a contraction of the form (ε+ · ε+), and
the amplitude has to vanish.

We can find a similar argument to show that single-minus amplitudes vanish. If we choose all
reference spinors of the positive helicity gluons to be the momentum of the negative helicity gluon,
all products (ε+ · ε−) and (ε+ · ε+) vanish. The amplitude must therefore be zero due to the same
lack of momenta for the contraction of the polarization vectors. This argument of course excludes
the three-point amplitudes A(0)(1−2−3+), where we cannot choose the reference momenta to be
any of the gluon momenta.

The vanishing properties of these tree-level amplitudes can therefore be concisely summarized
as,

A(0)(1±2+ . . . n+) = A(0)(1∓2− . . . n−) = 0. (A.8)

A.2 Single-Minus One-Loop Amplitudes

Single-minus amplitudes at one loop were first computed for four and five gluons in refs. [119, 150,
151]. In addition there exist general forms of for this helicity configuration for an arbitrary number
of positive helicity gluons [2, 112]. For up to six-gluons these amplitudes are,

A(1)(1−2+3+4+) = − ⟨24⟩ [24]3

3 ⟨23⟩ ⟨34⟩ [12] , [14]
+O(ϵ) (A.9)

A(1)(1−2+3+4+5+) =
1

3 ⟨34⟩2

[
⟨14⟩3 ⟨35⟩ [45]
⟨12⟩ ⟨23⟩ ⟨45⟩2

+
⟨13⟩3 ⟨24⟩ [23]
⟨15⟩ ⟨23⟩2 ⟨45⟩

+
[25]

3

[12] [15]

]
+O(ϵ), (A.10)
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A(1)(1−2+3+4+5+6+) =
1

3

(
⟨1|2 + 3|6]3

s123 ⟨12⟩ ⟨23⟩ ⟨45⟩2 ⟨3|1 + 2|6]
− ⟨1|3 + 4|2]3

s234 ⟨16⟩ ⟨34⟩2 ⟨56⟩ ⟨5|3 + 4|2]

− [26]
3

s345 [12] [16]

(
[35]

⟨34⟩ ⟨45⟩
− [45] [56]

⟨34⟩ ⟨3|1 + 2|6]
+

[23] [34]

⟨45⟩ ⟨5|3 + 4|2])

)
+

⟨14⟩3 ⟨35⟩ ⟨1|2 + 3|4]
⟨12⟩ ⟨16⟩ ⟨23⟩ ⟨34⟩2 ⟨45⟩2 ⟨56⟩

+
⟨15⟩3 ⟨46⟩ [56]

⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨45⟩2 ⟨56⟩2

+
⟨13⟩3 ⟨24⟩ [23]

⟨16⟩ ⟨23⟩2 ⟨34⟩2 ⟨45⟩ ⟨56⟩

)
+O(ϵ). (A.11)

A.3 Tree-Level Soft Functions

Here we would like to derive the form of the tree-level soft-functions Soft(0). We use these in the
construction of pole-under-pole contributions in one-loop BCFW computations. The soft functions
specify the leading behavior of tree-amplitudes in the limit of vanishing momentum of a massless
particle, In a color-ordered amplitude, the form of the soft function depends on the momenta of
the particles adjacent to the soft one, as well as on the soft particles helicity. The soft function is
generally defined via,

A(0)(. . . i sh j . . .)
ps→0−→ A(0)(. . . i j . . .)× Soft(0)(i, sh, j) (A.12)

While in the single-minus amplitude of section 4.2.1 we only required the soft functions for a gluon
adjacent to two other gluons becoming soft, the discussion of chapter 4 requires the generalization
to one or two of the adjacent particles to be massive scalars.

For a massless particle becoming soft, the leading behavior of an amplitude is given by the
diagrams,

−→ + (A.13)

We will always assume that the soft particle is a gluon. Let us first assume that particles i and
j are gluons, such that the vertices in the right hand diagrams are cubic gluon interactions. The
hatching represents the sum over Feynman diagrams. The diagrams are divergent in the limit
ps → 0, as the propagators 1/(pi + ps)

2 and 1/(ps + pj)
2 will go on-shell. In this limit these

diagrams evaluate to

A(0)(. . . ig s
h jg . . .)

ps→0−→

Mµ(. . . (pi + ps)g jg . . .)
(−i)
sis

i√
2
[εµi εs · (−2pi − ps) + εµs εi · (2ps + pi) + (pi − ps)

µ εi · εs]

+Mµ(. . . ig (pj + ps)g . . .)
(−i)
ssj

i√
2

[
εµj εs · (2pj + ps) + εµs εj · (−2ps − pi) + (ps − pj)

µ εj · εs
]
.

(A.14)
With the help of the Ward identity, we can see that the second and third term in each of the
brackets are subleading for ps → 0. Contracting the Mµ with εµi,j just returns the amplitude
A(0)(. . . ij . . .). Choosing pj as reference momentum for the soft gluon the first term of the third
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bracket vanishes as well, so that we end up with,

A(0)(. . . ig s
h jg . . .)

ps→0−→ A(0)(. . . ig jg . . .)
−
√
2(εs · pi)
sis

(A.15)

When the soft gluon has positive and negative helicity we get respectively,

A(0)(. . . ig s
h jg . . .)

ps→0−→ A(0)(. . . ig jg . . .)

{ ⟨ij⟩
⟨is⟩⟨sj⟩ , h = +,

− [ij]
[is][sj] , h = −,

(A.16)

so that we can identify the soft functions,

Soft(0)(ig s
+ jg) =

⟨ij⟩
⟨is⟩ ⟨sj⟩

, Soft(0)(ig s
− jg) = − [ij]

[is] [sj]
. (A.17)

Let us now assume that particle i is a massive scalar φ, whose massive propagator 1/sis vanishes
in the soft limit. For the massive propagators we use the compact six-dimensional Mandelstam
notation as a short hand to include the mass term. Expanded, sis is the usual (pi + ps)

2 −m2,
where m is the scalar mass. The two leading diagrams evaluate to,

A(0)(. . . iφ sh jg . . .)
ps→0−→

M(. . . (pi + ps)φ jg . . .)
−i
sis

i√
2
[εs · (−2pi − ps)]

+Mµ(. . . iφ (pj + ps)g . . .)
−i
ssj

i√
2

[
εµj εs · (2pj + ps) + εµs εj · (−2ps − pi) + (ps − pj)

µ εj · εs
]
.

(A.18)
Again choosing pj as reference momentum for the soft gluon, the entire second bracket vanishes,
and we end up with,

A(0)(. . . iφ sh jg . . .)
ps→0−→ A(0)(. . . iφ jg . . .)

{
[s|i|j⟩
sis⟨sj⟩ , h = +,

− ⟨s|i|j]
sis[sj]

, h = −.
(A.19)

When j is a massive scalar, we instead have,

A(0)(. . . ig s
h jφ . . .)

ps→0−→

Mµ(. . . (pi + ps)g jφ . . .)
(−i)
sis

i√
2
[εµi εs · (−2pi − ps) + εµs εi · (2ps + pi) + (pi − ps)

µ εi · εs]

+M(. . . ig (pj + ps)φ . . .)
(−i)
ssj

i√
2
[εs · (2pj + ps)] .

(A.20)
Now choosing pi as reference momentum, we obtain,

A(0)(. . . ig s
h jφ . . .)

ps→0−→ A(0)(. . . ig jφ . . .)

{
− [s|j|i⟩

sjs⟨si⟩ , h = +,
⟨s|j|i]
sjs[si]

, h = −.
(A.21)

In summary we have the following soft functions for a gluon becoming soft while adjacent to a
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massive and a massless particle

Soft(0)(iφ s
+ jg) =

[s|i|j⟩
sis ⟨sj⟩

, Soft(0)(ig s
+ jφ) = − [s|j|i⟩

sjs ⟨si⟩
,

Soft(0)(iφ s
− jg) = − ⟨s|i|j]

sis [sj]
, Soft(0)(ig s

− jφ) =
⟨s|j|i]
sjs [si]

,

(A.22)

In the massless limit these reduce to the massless soft functions of eq. (A.17).

Lastly, we can consider the case of the soft gluon being adjacent to two massive scalars. In this
case, the leading Feynman diagrams lead to,

A(0)(. . . iφ sh jφ . . .)
ps→0−→M(. . . (pi + ps)φ jφ . . .)

(−i)
sis

i√
2
[εs · (−2pi − ps)]

+M(. . . iφ (pj + ps)φ . . .)
(−i)
ssj

i√
2
[εs · (2pj + ps)] .

(A.23)

In this case we have no obvious choice for reference momentum, so we will use an arbitrary mo-
mentum q. For a positive helicity gluon the expression above then becomes,

A(0)(. . . iφ s+ jφ . . .)
ps→0−→ A(0)(. . . iφ jφ . . .)

[
− [s|i|q⟩
sis ⟨sq⟩

+
[s|j|q⟩
sjs ⟨sq⟩

]
. (A.24)

Using the Schouten identity, this can be simplified to,

− [s|i|q⟩
sis ⟨sq⟩

+
[s|j|q⟩
sjs ⟨sq⟩

=
1

sissjs ⟨sq⟩
(− [s|i|q⟩ ⟨s|j|s] + [s|j|q⟩ ⟨s|i|s])

=
[s|ij|s]
sissjs

,

(A.25)

eliminating the dependence on the reference momentum. We therefore have,

A(0)(. . . iφ s+ jφ . . .)
ps→0−→ A(0)(. . . iφ jφ . . .)×

[s|ij|s]
sissjs

. (A.26)

Repeating this procedure in the negative helicity case leads to,

A(0)(. . . iφ s− jφ . . .)
ps→0−→ A(0)(. . . iφ jφ . . .)×

[
−⟨s|ij|s⟩
sissjs

]
. (A.27)

The soft functions for massive adjacent scalars are therefore,

Soft(0)(iφ s
+ jφ) =

[s|ij|s]
sissjs

, Soft(0)(iφ s
+ jφ) = −⟨s|ij|s⟩

sissjs
. (A.28)

In addition, by setting one or both of the masses to zero we recover the soft functions of eq. (A.22)
and eq. (A.17).

A.4 Computing One-Loop µ2 Integrals

In D-dimensional unitarity, we generally need to include basis integrals with powers of µ2 in the
numerator. For Yang–Mills power counting we have argued in section 2.3.1 that for a one-loop
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basis in D = (4− 2ϵ) only three integrals are required, namely,

I4[µ
4] = −1

6
+O(ϵ),

I3[µ
2] = −1

2
+O(ϵ),

I2[µ
2] = −s

2
+O(ϵ).

(A.29)

Box integrals with µ2 numerator do not contribute, as they are of order ϵ. If we were to instead
consider amplitudes in gravitational theories, the power counting doubles, and we would have to
also include the integrals

I4[µ
8], I4[µ

6], I3[µ
6], I3[µ

4], I2[µ
4]. (A.30)

For these integrals partial results can be found in the literature [152].

The essential ingredient in the computation of one-loop µ2 integrals are the so-called dimension
shifting identities. These allow us to reduce the degree of the µ in the numerator by increasing
the dimension of the loop momentum that is integrated over, thereby allowing us to reduce every
µ integral to a Feynman integral without such a numerator. For an integral,

I4−2ϵ
m [µ2r] =

∫
d4ℓ

(2π)4
d−ϵµ2

(2π)−2ϵ

µ2r

(ℓ2 − µ2)((ℓ−K1)2 − µ2) . . . ((ℓ2 −
∑m−1

i=1 Ki)2 − µ2)
, (A.31)

the dimension shifting identity takes the form [152],

I4−2ϵ
m [µ2r] = −ϵ(1− ϵ) . . . (r − 1− ϵ)(4π)rID=4+2r−2ϵ

m . (A.32)

To obtain the rational parts of the integral Im[µ2r], we first extract all divergent parts by manipu-
lating the integrand, and then apply the dimension shifting identities. This will cancel the 1

ϵ poles,
leaving us with the desired result up to terms of order ϵ. We will see that using this method we
only ever need to compute (higher dimensional) tadpole diagrams of both the scalar and tensor
kind, which are however relatively trivial.

The general expression for the massive tadpole in arbitrary dimension [42, 153] is,

∫
dDℓ

(2π)D
1

(ℓ2 −M2)α
= i(−1)α

(M2)
D
2 −α

(4π)
D
2

Γ(α− D
2 )

Γ(α)
. (A.33)

For higher powers in µ2 we will need to perform Passarino–Veltman reduction of high tensor
ranks. Here I would like to document some identities that will prove to be useful. We will need to
deal with reduction of tensor integrals of the form

ℓµ1 . . . ℓµ2n

(ℓ2 −M2)α
= g(µ1µ2...µ2n−1µ2n)A2n (A.34)

where g(µ1...µ2n) is the symmetrization

g(µ1...µ2n) =
1

n!2n

∑
σ∈S2n

gµσ(1)µσ(2) . . . gµσ(2n−1)µσ(2n) (A.35)
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The number N(n) of unique combinations of the gµiµj in this sum is given recursively by,

N(n) = (2n− 1)N(n− 1), N(2) = 3. (A.36)

For example, in the case of n = 2 the three combinations are,

{gµ1µ2gµ3µ4 , gµ1µ3gµ2µ4 , gµ1µ4gµ2µ3}. (A.37)

Solving the recursion using Mathematica, we obtain,

N(n) = 2n−1( 32 )n−1 = 2n−1Γ(
1
2 + n)

Γ( 32 )
=

(2n)!

n!2n
(A.38)

which is defined using the Pochhammer symbol,

(x)n = x(x+ 1)(x+ 2) . . . (x+ n− 1) =
Γ(x+ n)

Γ(x)
. (A.39)

The first few values are,

N(2) = 3, N(3) = 15, N(4) = 105, N(5) = 945, N(6) = 10395 (A.40)

Next, we would like to contract g(µ1µ2...µ2n−1µ2n) with a given ordering of gµiµj , that is,

gµ1µ2
. . . gµ2n−1µ2n

g(µ1...µ2n) ≡ G(n). (A.41)

Depending on how the indices in these contractions match up, we will get chains of contracted gµν

and factors of gµµ = D. In the end, G(n) will be a polynomial in D, where the coefficients have to
add up to N(n). Using the fact that,

g(µ1...µ2n) =

2n∑
i=2

gµ1µig(µ2...µi−1µi+1...µ2n), (A.42)

and the fact that g(...) is symmetrized, we can write down a recursion relation for G(n),

G(n) = DG(n− 1) + (2n− 1)G(n− 1), G(1) = D, (A.43)

which we again solve using Mathematica,

G(n) = 2n−1D(1 + D
2 )n−1 = 2n

Γ(D2 + n)

Γ(D2 )
. (A.44)
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The first few values of G(n) are,

G(1) = D,

G(2) = D2 + 2D,

G(3) = D3 + 6D2 + 8D,

G(4) = D4 + 12D3 + 44D2 + 48D,

G(5) = D5 + 20D4 + 120D3 + 400D2 + 384D,

G(6) = D6 + 30D5 + 340D4 + 1800D3 + 4384D2 + 3840D.

(A.45)

Adding up the coefficients in each case yields exactly the associated value of N(n), as expected.

As a warm up, let us Passarino–Veltman-reduce the rank-2 massive tensor tadpole integral. As
there are no four-momenta involved, we know it has to be expressible as

ℓµℓν

(ℓ2 −M2)4
= gµνA, (A.46)

where A needs to be determined. Contracting with gµν we obtain,

A =
1

D

(
1

(ℓ2 −M2)3
+

M2

(ℓ2 −M2)4

)
. (A.47)

We can further simplify this via the IBP relation,

0 =

∫
dDℓ

∂

∂ℓµ

(
ℓµ

1

(ℓ2 −M2)α

)
= D

∫
dDℓ

1

(ℓ2 −M2)α
− 2α

∫
dDℓ

ℓ2

(ℓ2 −M2)α+1

⇔
∫

dDℓ
M2

(ℓ2 −M2)α+1
=

(
D

2α
− 1

)∫
dDℓ

1

(ℓ2 −M2)α
,

(A.48)

allowing us to make the identification

A =
1

6

1

(ℓ2 −M2)3
. (A.49)

The integral therefore becomes,

ℓµℓν

(ℓ2 −M2)4
=
gµν

6

1

(ℓ2 −M2)3
, (A.50)

which is notably independent of D.

Now consider the reduction of the general integral,

ℓµ1ℓµ2 . . . ℓµ2n

(ℓ2 −M2)α+n
= g(µ1...µ2n)A2n. (A.51)
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Contracting with metric tensors and repeatedly using the IBP identity of eq. (A.48), we obtain,

A2n =
1

G(n)

(ℓ2)n

(ℓ2 −M2)α+n

=
1

G(n)

1

(ℓ2 −M2)α

 n∑
i=0

(
n

i

) n−i∏
j=0

(
D

2(α+ (n− i)− j)
− 1

)
︸ ︷︷ ︸

G̃(n)

.
(A.52)

The expression of G̃(n) is automatically simplified by Mathematica to,

G̃(n) =
Γ(D2 + n)

Γ(D2 )

(
Γ(α+ n)

Γ(α)

)−1

= G(n)

(
2n

Γ(α+ n)

Γ(α)

)−1

. (A.53)

Substituting this back into A2n we obtain for the Passarino–Veltman decomposition,

ℓµ1ℓµ2 . . . ℓµ2n

(ℓ2 −M2)α+n
= g(µ1...µ2n)

1

G2α(n)

1

(ℓ2 −M2)α
, (A.54)

which is defined in terms of Ga(n),

Ga(n) ≡ G(n)
∣∣
D→a

. (A.55)

Extracting the UV divergent parts of the integral we expanding the propagators around large
loop-momentum configurations1. This will introduce larger powers of 1

ℓ2 , which will eventually
lead to (spurious) IR divergences. Since we know that these divergences cancel in the end, and we
are not really interested in them anyway, we can add a fictitious mass to each propagator, which
will end up being irrelevant for the UV-divergent contribution. Note that in the large 1

ℓ2 expansion
of the propagators we make the integral more and more UV convergent, while introducing terms
that are IR divergent. The only terms that are both UV divergent and (spuriously) IR divergent
are the order zero terms in the loop momentum power counting, i.e. the logarithmically divergent
terms, and these are the ones we have to regulate with the fictitious mass. The terms of the
expansion that are quadratically or worse UV divergent are IR convergent and scaleless. Their UV
contribution has to be zero, as in dimensional regularization, the UV and IR divergent parts of
scaleless integrals cancel each other. Therefore, in the end the logarithmically divergent terms in
the expansion contain the entire information about the UV divergence of the original integral.

The µ2 triangle I3[µ2] and the µ4 box I4[µ4] are simple to compute, as they are already
logarithmically divergent. To extract the logarithmically divergent pieces, we therefore only have
to replace each propagator with 1

ℓ2−M2 , and then use the dimension shift identity. In practice this
means,

I3[µ2] = −ϵ(4π)
∫

d6−2ϵℓ

(2π)6−2ϵ

1

(ℓ2 −M2)3
+O(ϵ)

= ϵ
i

(4π)2−ϵ
M−ϵ Γ(ϵ)

Γ(3)
+O(ϵ)

=
1

2

i

(4π)2
+O(ϵ),

(A.56)

1I would like to thank Ben Page for showing me this method.
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I4[µ4] = −ϵ(1− ϵ)(4π)2
∫

d8−2ϵℓ

(2π)8−2ϵ

1

(ℓ2 −M2)4
+O(ϵ)

= −ϵ i

(4π)2−ϵ
M−ϵ Γ(ϵ)

Γ(4)
+O(ϵ)

= −1

6

i

(4π)2
+O(ϵ).

(A.57)

With the normalization of eq. (2.1), we therefore obtain the expected result,

I4[µ
4] = −1

6
+O(ϵ), I3[µ

2] = −1

2
+O(ϵ). (A.58)

A more complicated case is the bubble integral with a µ2 numerator I2[µ2]. Just focusing on
the integrand, we can effectively perform the expansion by repeatedly using the identity,

1

(ℓ+ p)2
=

1

ℓ2

(
1− 2(ℓ · p) + p2

(ℓ+ p)2

)
. (A.59)

Note that the extra terms have better UV convergence behavior than the original term. Applying
this identity to the integrand, we obtain,

µ2

ℓ2(ℓ+ p)2
=

µ4

(ℓ2)2
−
(
2(ℓ · p) + p2

)
µ2

(ℓ2)2(ℓ+ p)2

=
µ4

(ℓ2)2
− p2µ2

(ℓ2)6
+

4(ℓ · p)2µ2

(ℓ2)4
+ (UV convergent terms).

(A.60)

Only the last two terms are non-vanishing in dimensional regularization as they are logarithmically
UV divergent. They are also IR divergent, though as the original integral was IR convergent
we know that this divergence is spurious. These divergences must therefore be compensated by
contributions from the remaining UV convergent terms. To remove these IR divergences and
extract only the UV behavior we can now make the propagators massive, so that,

µ2

ℓ2(ℓ+ p)2
= − p2µ2

(ℓ2 −M2)3
+

4(ℓ · p)2µ2

(ℓ2 −M2)4
+ (UV/IR convergent terms)

= − p2µ2

(ℓ2 −M2)3
+

4

6

p2µ2

(ℓ2 −M2)3
+ (UV/IR convergent terms)

= −1

3

p2µ2

(ℓ2 −M2)3
+ (UV/IR convergent terms).

(A.61)

Using the dimension shift identity we obtain,

I2[µ2] = −ϵ(4π)2
(
−p

2

3

∫
d6−2ϵℓ

(2π)6−2ϵ

1

(ℓ2 −M2)3

)
+O(ϵ)

= −ϵ (−i)
(4π)2−ϵ

(
−p

2

3
M−ϵ Γ(ϵ)

Γ(3)

)
+O(ϵ)

= −1

6

i

(4π)2
p2 +O(ϵ),

(A.62)

such that we again obtain the expected result,

ID2 [µ2] = −p
2

6
+O(ϵ). (A.63)
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This agrees with the result in ref. [96]. That reference also provides the result for the case of
massive propagators in the bubble, namely,

ID2 [µ2] = −1

6
(p2 − 3(m2

1 +m2
2)) +O(ϵ), (A.64)

where m1 and m2 are the masses of the two propagators. We can reproduce this result by using
modified relations for the expansion,

1

ℓ2 −m2
1

=
1

ℓ2

(
1 +

m2
1

ℓ2 −m2
1

)
,

1

(ℓ+ p)2 −m2
2

=
1

ℓ2

(
1− 2(ℓ · p) + p2 −m2

2

(ℓ+ p)2 −m2
2

)
.

(A.65)

The integrand then becomes

µ2

(ℓ2 −m2
1)((ℓ+ p)2 −m2

2)
= − (p2 − (m2

1 +m2
2))µ

2

(ℓ2 −M2)3
+

4

6

p2µ2

(ℓ2 −M2)4
+ (UV/IR convergent terms)

= −1

3

p2µ2

(ℓ2 −M2)3
+

(m2
1 +m2

2)µ
2

(ℓ2 −M2)3
+ (UV/IR convergent terms)

= −1

3

µ2
(
p2 − 3(m2

1 +m2
2)
)

(ℓ2 −M2)3
+ (UV/IR convergent terms),

(A.66)
leading us to the expected result,

I2[µ2] = −1

6

i

(4π)2
(p2 − 3(m2

1 +m2
2)) +O(ϵ). (A.67)

We can automate the series expansion approach in Mathematica. Using the general results for the
Passarino–Veltman reduction of tadpole integrals in eq. (A.54), we can obtain generic results for an
arbitrary power of µ2 in the numerator. Using the Mathematica method FindSequenceFunction
and explicit values of I2[µ2r] up to r = 40, we find the following fitted form,

I2[µ
2r] = −1

3

1

22r−1

Γ(r)

( 52 )r−1

(p2)r +O(ϵ). (A.68)

The denominator again contains the Pochhammer symbol from eq. (A.39). This expression cor-
rectly reproduces the result of eq. (A.63), while for µ4, µ6 and µ8 it evaluates to

I2[µ
4] = − 1

60
(p2)2 +O(ϵ),

I2[µ
6] = − 1

420
(p2)3 +O(ϵ),

I2[µ
8] = − 1

2520
(p2)4 +O(ϵ).

(A.69)

Moving on to triangles and bubbles, deriving a general form becomes more complicated as the result
will be a polynomial of multiple kinematic variables. Extending the automation in Mathematica,
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we obtain for the triangles ID3 [µ4], ID3 [µ6] the forms,

ID3 [µ4] = − 1

24
(p21 + p22 + s12) +O(ϵ),

ID3 [µ6] = − 1

180
((p21)

2 + (p22)
2 + p21p

2
2 + s12(p

2
1 + p22) + s212) +O(ϵ).

(A.70)

For the boxes ID4 [µ6], ID4 [µ8] we get,

ID4 [µ6] = − 1

60

i

(4π)2
(2s12 + 2s23 + s13) +O(ϵ)

= − 1

60

i

(4π)2
(p21 + p22 + p23 + p24 + s12 + s23) +O(ϵ),

ID4 [µ8] = − 1

840

i

(4π)2

[
2
(
(p21)

2 + (p22)
2 + (p23)

2 + (p24)
2
)

+ 2
(
p21p

2
2 + p22p

2
3 + p23p

2
4 + p24p

2
1

)
+ 2

(
s212 + s223

)
+ 2(s12 + s23)(p

2
1 + p22 + p23 + p24) + p21p

2
3 + p22p

2
4 + s12s23

]
+O(ϵ).

(A.71)

As a cross-check we can use the result for the easy two-mass box ID4 [µ8] from ref. [154], which the
result above matches exactly for p22 = p24 = 0. As we go from bubbles to triangles to boxes we can
also see a pattern emerging in the arrangement of the kinematic variables.
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B.1 Scalar Tree Amplitudes

For unitarity cuts, in addition to the four-scalar tree amplitudes section 3.5.2 we require amplitudes
with a single massive scalar pair. These are well known, and below we collect the ones relevant
for the computations in this paper. For adjacent scalars and up to four gluons, we obtain these
expressions from ref. [128]. Arbitrary-multiplicity expressions exist as well for the all-plus [155–158]
and single-minus [155] helicity configurations. In the case of tree amplitudes with non-adjacent
scalars we use Kleiss–Kuijf relations [57] to obtain them from adjacent-scalar ones.

We numerically verified all tree-amplitudes via Berends–Giele recursion.

A(0)(1φ2+3+4φ) =
m2

s12

[23]

⟨23⟩
, (B.1)

A(0)(1φ2+3−4φ) = −⟨3|1|2] ⟨3|4|2]
s12s23

, (B.2)

A(0)(1φ2+3+4+5φ) = −m
2 [4|(2 + 3)1|2]
s12s45 ⟨23⟩ ⟨34⟩

, (B.3)

A(0)(1φ2+3+4−5φ) = − m2 [23]
3

s15 [34] [4|(2 + 3)1|2]
+

⟨4|5(2 + 3)1|2]2

s12s45 ⟨23⟩ ⟨34⟩ [4|(2 + 3)1|2]
, (B.4)

A(0)(1φ2+3−4+5φ) = − m2 [24]
4

s15 [23] [34] [4|(2 + 3)1|2]
+

⟨3|1|2]2 ⟨3|5|4]2

s12s45 ⟨23⟩ ⟨34⟩ [4|(2 + 3)1|2]
, (B.5)

A(0)(1φ2+3+4+5+6φ) = −m
2 [5|6(4 + 5)(2 + 3)1|2]

s12s123s56 ⟨23⟩ ⟨34⟩ ⟨45⟩
. (B.6)

For A(0)(1φ2+3+4+5−6φ) we have to flip the sign of the second term in the result of ref. [128] to
match our own BCFW result, such that,

A(0)(1φ2+3+4+5−6φ) =
(s123 ⟨5|6(2 + 3 + 4)1|2]−m2 ⟨5|643|2])2

s12s123s1234 ⟨23⟩ ⟨34⟩ ⟨45⟩ [5|6(4 + 5)(2 + 3)1|2]

− m2 [4|(2 + 3)1|2]3

s12 ⟨23⟩ ⟨3|(4 + 5)(1 + 6)1|2] [45] [5|6(4 + 5)(2 + 3)1|2]

− m2 ⟨5|(3 + 4)|2]3

s2345s345 ⟨34⟩ ⟨45⟩ ⟨3|(4 + 5)(1 + 6)1|2]
.

(B.7)

For A(0)(1φ2+3+4−5+6φ), we were not able to align the expression in eq.(3.21) of ref. [128]
with our numerical result. While the last two lines of eq.(3.21) could be separately verified, as
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they belong to the s234 and s16 channels in the BCFW computation, the first two lines belonging
to the s23 channel do not match. We therefore replace these lines with our less compact result for
this channel,

A(0)(1φ2+3+4−5+6φ) =

[23]

s12 ⟨23⟩
(

s23[2|1(1+2+3)(2+3)1|2][25]
[2|13|2] + [5|(2 + 3 + 4)(1 + 2 + 3)(2 + 3)1|2]

)
×
[

m2 [5|(2 + 3)1|2]4

[4|(2 + 3)1|2] [45] (s16 [2|31|2] + s23 [2|61|2])
+

⟨4|(1 + 2 + 3)(2 + 3)1|2]2 ⟨4|6|5]2

s123s56 ⟨45⟩ ⟨4|3|2]

]
− m2 ⟨4|(3 + 5)|2]4

s61s345 ⟨34⟩ ⟨45⟩ ⟨3|(4 + 5)(1 + 6)1|2] ⟨5|(3 + 4)|2]

− m2 [23]
3
[5|(1 + 6)1|2]

s56s234 ⟨5|(3 + 4)|2] [34] [4|(2 + 3)1|2]
.

(B.8)

For the seven-gluon rational contributions we also require scalar amplitudes with five positive
helicity gluons. We obtained the adjacent scalar amplitude using the all-multiplicity form of
ref. [158],

A(0)(1φ2+3+4+5+6+7φ) =

m2 (−s23 [2|1(5 + 6 + 7)(5 + 6)7|6] + [2|1(2 + 3)1(2 + 3 + 4)(5 + 6)7|6])
s12s123s567s67 ⟨23⟩ ⟨34⟩ ⟨45⟩ ⟨56⟩

, (B.9)

while the non-adjacent scalar amplitudes are again obtained using Kleiss–Kuijf relations.

B.2 Analytic Expressions for R
(2)
5:1

Here we present the unsimplified result for R̃(2)
5:1, obtained from the automated analytic computation

described in section 3.7.2. The full two-loop rational part R(2)
5:1 can be obtained from summing the

expression over all cyclic permutations of the external momenta. For evaluation of the one-loop
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squared cuts the momentum twistor parametrization of section 3.6 was used.

R̃
(2)
5:1(1

+2+3+4+5+)

= − 1

18(s12 + s13)(s13 + s23) ⟨12⟩3 ⟨13⟩4 ⟨23⟩2 ⟨25⟩2 ⟨34⟩2 ⟨35⟩2 ⟨45⟩3 ⟨51⟩

×
[
− s12(s12 + s13)(s13 + s23) ⟨15⟩3

(
⟨13⟩2 ⟨45⟩2 ((s13 + s23)(11 ⟨15⟩ ⟨34⟩+ 12 ⟨13⟩ ⟨45⟩)

− s12 ⟨15⟩ ⟨34⟩)− 2s45 ⟨15⟩2 ⟨34⟩2 (7 ⟨15⟩ ⟨34⟩+ 12 ⟨13⟩ ⟨45⟩)
)
⟨23⟩5

+ s12 ⟨12⟩ ⟨15⟩2 ⟨35⟩
(
2(s13 + s23)

(
2s223 + 31(s12 + s13)s23

+ (s12 + s13)(28s12 + 29s13)
)
⟨15⟩3 ⟨34⟩3

+ 2(s13 + s23)
(
2s223 + 47(s12 + s13)s23 + (s12 + s13)(44s12 + 45s13)

)
⟨13⟩ ⟨15⟩2 ⟨45⟩ ⟨34⟩2

+ (s12 + s13)
(
− 19s213 − 58s23s13 − 39s223 + s12(5s13 + 9s23)

)
⟨13⟩2 ⟨15⟩ ⟨45⟩2 ⟨34⟩

− 12(s12 + s13)(s13 + s23)(2s13 + 3s23) ⟨13⟩3 ⟨45⟩3
)
⟨23⟩4

+ ⟨12⟩2 ⟨15⟩ ⟨35⟩2
(
(s13 + s23)

(
(19s12 + 11s13)s

2
23 + (s12 + s13)(111s12 + 25s13)s23

+ 2(s12 + s13)
(
42s212 + 51s13s12 + 7s213

))
⟨15⟩3 ⟨34⟩3 + 2(s13 + s23)

(
60s312

+ 9s23(8s12 + s23)s12 + 8s313 + 13s213(6s12 + s23)

+ 5s13
(
26s212 + 17s23s12 + s223

))
⟨13⟩ ⟨15⟩2 ⟨45⟩ ⟨34⟩2 + s12(s12 + s13)

(
s12(7s13 + 15s23)

− 2
(
s213 + 25s23s13 + 24s223

))
⟨13⟩2 ⟨15⟩ ⟨45⟩2 ⟨34⟩

− 6s12(s12 + s13)
(
s213 + 6s23s13 + 5s223

)
⟨13⟩3 ⟨45⟩3

)
⟨23⟩3

+ ⟨12⟩3 ⟨35⟩3
(
2(s13 + s23)

(
(15s12 + 13s13)s

2
23 + 7(s12 + s13)(7s12 + 4s13)s23

+ (s12 + s13)
(
28s212 + 43s13s12 + 14s213

))
⟨15⟩3 ⟨34⟩3 + 2(s13 + s23)

(
2(6s12 + 5s13)s

2
23

+ (s12 + s13)(51s12 + 26s13)s23

+ (s12 + s13)
(
36s212 + 53s13s12 + 16s213

))
⟨13⟩ ⟨15⟩2 ⟨45⟩ ⟨34⟩2

+ s12(s12 + s13)
(
− 23s223 + (7s12 − 17s13)s23 + 3s13(s12 + 2s13)

)
⟨13⟩2 ⟨15⟩ ⟨45⟩2 ⟨34⟩

− 6s12(s12 + s13)s23(s13 + s23) ⟨13⟩3 ⟨45⟩3
)
⟨23⟩2

+ (s12 + s13)(s13 + s23) ⟨12⟩4 ⟨34⟩ ⟨35⟩4
((
14(s12 + s13)

2 + 19s223

+ (41s12 + 37s13)s23
)
⟨15⟩2 ⟨34⟩2 + 2

(
8(s12 + s13)

2 + 5s223

+ (14s12 + 13s13)s23
)
⟨13⟩ ⟨15⟩ ⟨45⟩ ⟨34⟩ − 3s12s23 ⟨13⟩2 ⟨45⟩2

)
⟨23⟩

+ 2(s12 + s13)s23(s13 + s23)(3s12 + 3s13 + 2s23) ⟨12⟩5 ⟨15⟩ ⟨34⟩3 ⟨35⟩5
]

(B.10)
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